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1 The Task 
 

The viridiofungins (−)-A, (−)-A2 and (−)-A4 (Figure 1, right) and (+)-xeniolide F (Figure 1, 

left) are members of very different natural product classes. While the viridiofungins 1 are 

members of the alkyl citrate natural product family, (+)-xeniolide F (2a) is a xenicane 

diterpene.  
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Figure 1 

 

At first sight, these natural products do not have a lot in common except two adjacent 

stereogenic centers. The substitution patterns at the stereogenic centers are significantly 

different. The polar head group of the viridiofungins (e.g. 1a) includes a quaternary 

stereogenic center and shows a high degree of oxidation. In contrast, (+)-xeniolide F (2a) is 

characterized by two vicinal tertiary stereogenic centers. Nevertheless, we proposed that both 

natural products may be synthesized from a common starting material – the α-allyloxy-

substituted α,β-unsaturated esters 3 (Scheme 1).  
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Scheme 1: Retrosynthetic analysis of (+)-xeniolide F (2a) and (−)-viridiofungin A (1a) lead in both cases to α-

allyloxy-substituted α,β-unsaturated esters 3.  
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The α-allyloxy-substituted α,β-unsaturated esters 3 are precursors of α-allyloxy-substituted 

carbanions (e.g. 7) which are prone to undergo a [2,3]-Wittig rearrangement. Deprotonation 

of 4 and resonance stabilization of 5 provides 7 (Scheme 2). 
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Scheme 2: Identification of the [2,3]-Wittig retron in 8 - a precursor for the synthesis of (−)-viridiofungin A 

(1a). 

  

Structural similarities between the rearrangement product 8 and the polar head group of the 

target molecule 1a are clearly visible. The three carboxylic acid groups of 1a are introduced 

as an ester, an enol ether and a protected alcohol. This would allow the chemoselective 

transformation of each of the three prospective carboxylic acid groups individually. 

 

Furthermore, since α-allyloxy-substituted α,β-unsaturated esters 3 contain an allyl vinyl ether 

element, they are prone to undergo Claisen rearrangements. The transformation results in γ,δ-

unsaturated α-keto esters 9. The Claisen retron is highlighted in Scheme 3. Consequently, by 

using an appropriately substituted α,β-unsaturated ester 3 the total synthesis of the natural 

product 2a may be realized. 
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Scheme 3: Identification of the Claisen retron in (+)-xeniolide F (2a). 

 

The aim of this work was the completion of the total synthesis of the viridiofungin A, A2 and 

A4 triesters with an ester dienolate [2,3]-Wittig rearrangement as key CC-connecting step. 

Fundamental work for this part of the project has been performed previously by Lars 

Abraham – a former Ph.D. student in our research group1 - and his contributions to the 

successful completion of the total synthesis is gratefully acknowledged. 

 

In a second part of my Ph.D. thesis work the total synthesis of the diterpene (+)-xeniolide F 

(2a) should be investigated. Utilization of the catalytic asymmetric Claisen rearrangement 

(CAC) as key CC-connecting step for the enantioselective generation of the two adjacent 

stereogenic centers of the target molecule 2a was envisioned. In the context of this work, a 

stereoselective route toward the Z-configured allylic alcohol 11 had to be developed. 

Additionally, 2-alkoxycarbonyl-substituted allyl vinyl ethers 10 should be synthesized 

utilizing a new, stereoselective strategy for the generation of the E-configured vinyl ether 

double bond.  

 

(+)-xeniolide F (2) CO2Me

O

SiMe3

OBn
TBSO

(E,Z)-10

OH

OBn
TBSO

11  
Scheme 4: Retrosynthetic analysis of 2a involves the (E,Z)-10 and the Z-configured allylic alcohol 11. 

 
For the benefit of a concise presentation of the results achieved during my Ph.D. thesis, the 

viridiofungins and (+)-xeniolide F will be addressed individually. 

                                            
1 Deceased on a motorcycle accident in September 2003. 
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2 Introduction 

2.1 Fungi: Versatile Multi-Purpose Organism with Fundamental 

Importance. 
 

Fungi are one of the five kingdoms of life. There are over 100,000 known species of fungi.2 

The most familiar fungi are mushrooms and mold fungi (Image 1). 

 

 
Image 1: Familiar phenotypes of fungi: mold (middle) and mushrooms (left and right).3 

 

According to their lack of chlorophyll they depend on organic food sources. Most of them are 

saprophytes which means that they are living off of dead organisms decaying the organic 

material. They are especially important for the digestion of cellulose the main organic 

component of fouling plants. By breaking down the organic material of dead animals and 

plants, they are of fundamental importance in continuing the circle of nutrients through 

ecosystems. Despite this ecological relevance as recyclers, various beneficial applications of 

fungi play highly desirable roles in human life (Image 2). Mushrooms for example - the edible 

fungi - comprise some species being very popular among gourmets (e.g. cep or truffle). Yeast 

and barm fungi are essentially involved in the production of bread, wine and beer. Special 

molds are used for the fabrication of various cheese types (e.g. Roquefort or Camembert).  

                                            
2 (a) Alexopoulos, C. J.; Mims, C. W.; Blackwell. M. Introductory Mycology (4th Ed.). John Wiley and Sons, 
New York, USA, 1996. (b) Schwantes, H. O. Biologie der Pilze – eine Einführung in die angewandte Mykologie 
(3rd Ed), Ulmer, Stuttgart, Germany, 1996. 
3 The images have been obtained from the following web pages (from left to right): (a) 
http://www.grossschutzgebiete.brandenburg.de/np_nllr/_fotos/Pilze-1.jpg; 25.05.2006 (b) http://www.ib-
rauch.de/Beratung/schim/schimpi01.jpg; 25.05.2006 (c) http://www.christoph-schnauss.de/misc/pilze/braun.jpg; 
25.05.2006 
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Image 2: Desirable applications of fungi are found in food production.4 

 

Another example of a highly useful application derived from fungi is penicillin 12 (Figure 2), 

the outset and first example of an antibiotic, which was isolated from the fungal strain 

Penicillium chrysogenum.5  

N

S

O
CO2H

N
H

O

Ph

penicillin G (12)

H

 
Figure 2 

 

On the other side, fungi infestation is known to cause severe harvest losses. Some toxins 

produced by such fungi are severely pathogenic. Examples are aflatoxins which are produced 

by Asparagyllus sp. that regularly affects cereals and nuts; or ergotoxins – alkaloids found in 

Claviceps pupurea (ergot) that often infects rye (Image 3). 

 

 
Image 3: From left to right: Claviceps purpurea, ergot on rye spikes, corn infected by Aspargyllus flavus, and a 

microscopic image of the ascospores of the latter.6 

                                            
4 The images have been obtained from the following web pages: from left to right (a) http://www.provence-
personally.com/images/trufle.jpg; 25.05.2006 (b) http://www.frencheese.co.uk/cheeses/photos/roquefort.jpg; 
25.05.2006 (c) http://www.fraenkische-schweiz.com/info/images/bierglas.jpg; 25.05.2006 (d) http://www.uni-
ulm.de/LiLL/forschendeslernen/europakontakte/brot.jpg; 25.05.2006  
5 http://en.wikipedia.org/wiki/Penicillin 
6 The images have been obtained from the following web pages (left to right): (a) 
http://www.dipbot.unict.it/sistematica/Immagini/13002.JPG; 25.05.2006 (b) 
http://www.grzyby.pl/foto/ww/w_Claviceps_purpurea_030704_01.jpg; 25.05.2006 (c) 
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Mold infestation in human dwellings is known to cause allergic reactions in sensitive people. 

Infections can result from fungal contact, with ringworm and athlete’s foot being probably the 

most widespread diseases in connection with fungal infection. 

 

2.2 Trichoderma Viride 
 

Trichoderma viride is one of the most commonly reported and widely distributed of all soil 

fungi (Image 4).7  

 

 
Image 4: Microscopic image of Trichoderma viride: Hyphae (elongated filamentous forms) with conidias 

(spores) at the tips.8 

 

Colonies of Trichoderma viride grow rapidly. Due to the filamentous consistence, they appear 

wooly and become compact in time.9 The filaments are colorless. The eponymous dark teal to 

greenish color (viridis (lat.) = green) is derived from the formation of conidias. 

 

 
Image 5: Typical instars of Trichoderma viride.10 

                                                                                                                                        
http://www.viarural.com.ar/viarural.com.ar/agricultura/aa-enfermedades/aspergillus-spp.-01.jpg; 25.05.2006 (d) 
http://index.hu/cikkepek/0410/belfold//asp_flavus.jpg; 25.05.2006 
7 Lieckfeldt, E.; Samuels, G. J.; Nirenberg, H.I.; Petrini, O. Appl. Environ. Microbiol. 1999, 65, 2418-2428. 
8 The picture was obtained from the following web page: http://botit.botany.wisc.edu/Toms_fungi/nov2004.html; 
25.05.2006 
9 http://www.doctorfungus.org/thefungi/Trichoderma.htm 
10 The pictures have been obtained from the following web pages (from left to right): (a) 
http://www.nahuby.sk/sk/images/fotosutaz/2006/oldrich_roucka2006_28138_t.jpg; 25.05.2006 (b) 
http://www.nahuby.sk/sk/images/fotosutaz/2005/oldrich_roucka2005_24301_t.jpg; 25.05.2006 (c) 
http://www.nahuby.sk/sk/images/fotosutaz/2004/milan_novotny2004_9222_t.jpg; 25.05.2006 
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Its natural habitats are found throughout the world spanning all different climatic zones. 

Predominant is the ability to digest chitin and cellulose. As a result of these nutritional 

preferences Trichoderma sp. are commonly found growing on fouling wood and plant 

material but as well on damp wall paper and paper boards. In fact, due to its highly developed 

cellulose digestion ability the fungi are an important source for cellulases - enzymes that 

degrade cellulose.11 The proteins are obtained from biotechnologically cultured strains of 

Trichoderma viride.12 They may be used for hydrolization and degradation of cellulotic 

materials from a wide variety of sources. The paper producing industry uses these cellulases 

extensively to avoid environmental pollution. Sludge and pulp waste can be degradeted into 

fermentable sugars.13 Efforts have been made to use this process to reveal new resources for 

sugar production that might be used as renewable energy resources for e.g. bio-ethanol 

production.14 Often, the biotechnologically cultured fungi themselves are used for the 

biodegradation (e.g. transformation of banana waste into sugar,15 biodegradation of waste 

paper16 and agro waste17). An interesting application of the cellulases of Trichoderma sp. 

which furnishes a commonplace object of everyday use can be found in the fabrication of the 

so-called ‘stone-washed jeans’. The popular effect is a result of the partially but irregularly 

cotton digestion conducted by cellulases.18 

The other important enzyme class present in Trichoderma viride is the class of chitinases. 

These enzymes enable the fungi to be parasites of other fungi which cell walls are primarily 

composed of chitin.18 This ability was used for a number of agricultural applications. The 

fungi offered an attractive and non-toxic alternative to control various pathogenic fungal plant 

diseases, e.g. black seed rot disease and dry basal rot of oil palm trees,19 infection by 

Fusarium moniliform20 and blight.21 This method of biological control is considered a more 

natural and environmentally acceptable alternative to the existing chemical treatment.19 

Chitinases were as well used for the biodegradation of shrimp shell waste into sugars.22 

                                            
11 http://schimmel-schimmelpilze.de/schimmelpilz/trichoderma-viride.html 
12 For a detailed description of cellulase seperation see: Selby, K; Maitland, C. C. Biochem. J. 1967, 104, 716-
724. 
13 van Wyk, J. P. H.; Mohulatsi, M. J. Polym. Env. 2003, 11, 23-28. 
14 Zayed, G.; Meyer, O. Appl. Microbiol. Biotechn. 1996, 45, 551-555. 
15 Majid, M. A.; Khan, M. R. Science Internat. (Lahore) 2003, 15, 287-288.  
16 van Wyk, J. P. H.; Mogale, A. M.; Seseng, T. A. J. Solid Waste Techn. Manag. 2001, 27, 82-86.  
17 Tabassum, B.; Saleem, M.; Kausar, T. Science Internat. (Lahore) 2003, 15, 97-101.  
18 http://botit.botany.wisc.edu/Toms_fungi/nov2004.html  
19 Eziashi, E. I.; Uma, N. M. A.; Airede, C. E. Afr. J. Biotechn. 2006, 5, 703-706. 
20 Yates, I.; Meredith, F.; Smart, W.; Bacon, C.; Jaworski, A. J. Food Prot. 1999, 62, 1326-1332. 
21 Hou, C. T.; Ciegler, A.; Hesseltine, C. W. Appl. Microbiol. 1972, 183-185. 
22 (a) Shindia, A. A.; El Hawa, M. I. A.; Shalaby, K. El-S. M. Egypt. J. Microbiol. 2001, 36, 119-134. (b) 
Shindia, A. A.; El Hawa, M. I. A.; Shalaby, K. El-S. M. Egypt. J. Bot. 2001, 39, 219-132. 
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Efforts have been made to take advantage of the high tolerance of fungi with respect of heavy 

metal pollution and the known phenomenon of bioaccumulation of these metals. This 

characteristic might be used for waste water treatment of sewage contaminated with heavy 

metals.23 

 

2.3 Viridiofungins 

2.3.1 Viridiofungin A – an Alkyl Citrate 
 

In 1993, Merck Research Laboratories reported the isolation and structure elucidation of 

several members of a novel family of amino alkyl citrates.24 The screening was part of a 

bioassay-guided search for inhibitors of the squalene synthase as cholesterol lowering agents 

and antifungal drugs. Originally, the filamentous soil fungi of the strain Trichoderma viride 

attracted attention due to their broad spectrum antifungal activity which was later found to be 

the consequence of the inhibition of the serine palmitoyltransferase.25 Viridiofungins, 

obtained from fermentation of this mold are summarized in Table 1. Beside viridiofungin A-C 

(entry 1-3, Table 1), a compounds 1d-1i have been isolated as minor components (entry 4-9, 

Table 1).  

 

 

 

 

 

 

 

 

 

                                            
23 Bishnoi, N. R.; Garima, S. J. Sci. Ind. Res. 2005, 64, 93-100.  
24 Harris, G. H.; Turner Jones, E. T.; Meinz, M. S.; Nallin-Omstead, M.; Helms, G. L.; Bills, G. F.; Zink, D.; 
Wilson, K. E. Tetrahedron Lett. 1993, 34, 5235-5238. The term ‘alkyl citrate’ is commonly used for citrate 
analogues alkylated or alkenylated in 2-position. It does not reflect an alkyl ester of a citrate as it might be 
concluded from the term ‘alkyl citrate’. 
25 Mandala, S. M.; Thornton, R. A.; Frommer, B. R.; Dreikorn, S.; Kurtz, M. B. J. Antibiotics 1997, 50, 339-343. 
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O R2

HO2C OH
HO2C R1

viridiofungin 1a-i  
Entry Compound R1 R2 Viridiofungin 

1 1a 
 

(CH2)6CH3

O

(CH2)6  

 

NH

HO2C

OHtyr=

 

 

A 

2 1b 
 

(CH2)6CH3

O

(CH2)6  

 

NH

HO2C

phe=

 

 

B 

3 1c 
 

(CH2)6CH3

O

(CH2)6  

 

NH

HO2C

HNtrp=

 

 

C 

4 1d 
 

(CH2)6 (CH2)6CH3

OH

 

 

tyr 
 

A1 

5 1e  
(CH2)13CH3 

 

tyr 
 

A2 

6 1f 
 

(CH2)13CH3 

 

phe 
 

B2 

7 1g 
 

(CH2)13CH3 

 

OH 
 

Z2 

8 1h 
 

(CH2)5CH3

O

(CH2)6  

 

tyr 
 

A3 

9 1i 

 

(CH2)8CH3

O

(CH2)6  
 

 

tyr 
 

A4 

Table 1: Structure of viridiofungins 1a-i. 

 

The viridiofungins belong to the amino alkyl citrates. The common feature of the members of 

this family of natural products is a citric acid structural element 13 (Figure 3) that is alkylated 

in 2-position.  

CO2H
HO2C OH

HO2C

citric acid (13)

2
1 3

4
5

 
Figure 3 
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Naturally occurring agaricic (14) and caperatic acid (15) (Figure 4)26 that are collagen cross 

linking inhibitors are commonly used as additives in the cosmetic industry for the fabrication 

of crèmes and sun protecting lotions.27 The cross linking inhibition may be attributed to the 

structural similarities between the alkyl citrates and the important membrane component 

ceramide (16) which both consist of a lipophilic tail attached to a polar head group.27 

 

CO2H

R
HO2C OH

HO2C
HO C15H31

OH

HN

O
C16H32

R= C16H33 agaricic acid (14)
R= C14H29 caperatic acid (15)

ceramide (16)
 

Figure 4: Structural similarities of the simple alkyl citrates agaricic (14) and caperatic acids (15) and the 

sphingolipid ceramide (16).  

 

Other representatives of this class of secondary metabolites are the highly oxygenated 

zaragozic acid A (17) 28 which was found to be a very potent squalene synthase inhibitor, 

trachyspic acid (18),29,30 the acyclic L-731,120 (19),31 and the citrafungines (20)32 (Figure 5). 

These natural products were all isolated from fermented fungal strains. 

 

                                            
26 Lichen is the common source of agaricic and caperatic acid. 
27 Rona, C.; Vailati, F.; Berardesca, E. J. Cosm. Derm. 2004, 3, 26-34. 
28 Wilson, K. E.; Burk, R. M.; Biftu, T.; Ball, R. G.; Hoogsteen, K. J. Org. Chem. 1992, 57, 7151-7158. For 
reviews covering total synthesis of zaragozic acids, see: (a) Jotterand, N.; Vogel, P. Curr. Org. Chem. 2001, 5, 
637-661. (b) Nadin, A.; Nicolaou, K. C. Angew. Chem. 1996, 108, 1733-1760; Angew. Chem., Int. Ed. 1996, 35, 
1622-1656. For biosynthetic studies, see: (c) Byrne, K. M.; Arison, B. H.; Nallin-Omstead, M.; Kaplan, L. J. 
Org. Chem. 1993, 58, 1019-1024. 
29 Isolation: Shiozawa, H.; Takahashi, M.; Takatsu, T.; Kinoshita, T.; Tanzawa, K.; Hosoya, T.; Furuya, K.; 
Takahashi, S.; Furihata, K.; Seto, H. J. Antibiotics 1995, 48, 357-362. 
30 Total synthesis: (a) Hirai, K.; Ooi, H.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2003, 5, 857-859. 
(b) Zammit, S. C.; White, J. M.; Rizzacasa, M. A. Org. Biomol. Chem. 2005, 3, 2073-2074. 
31 Harris, G. H.; Dufresne, C.; Joshua, H.; Koch, L. A.; Zink, D. L.; Salmon, P. M.; Goklen, K. E.; Kurtz, M. M.; 
Rew, D. J.; Bergstrom, J. D.; Wilson, K. E. Bioorg. Med. Chem. Lett. 1995, 5, 2403-2408. 
32 Singh, S. B.; Zink, D. L.; Doss, G. A.; Polishook, J. D.; Ruby, C.; Register, E.; Kelly, T. M.; Bonfiglio, C.; 
Williamson, J. M.; Kelly, R. Org. Lett. 2004, 6, 337-340. 
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Figure 5: Representative examples of alkyl citrates. 

 

2.3.2 Viridiofungins – Biological Activity 
 

As mentioned earlier, viridiofungin A (VFA) was found to be an inhibitor of the squalene 

synthase.33 The activity was found to be 1000-fold lower than for zaragozic acid A (17) 

(Table 2).24  

 

Inhibition of the squalene synthase IC50 [μM] 
Entry Compound 

Saccaramyces cerevisiae Candida albicans 

1 Zaragozic acid A (17) 1.0·10−4 1.7·10−4 

2 VFA (1a) 12.0 11.8 

3 VFB (1b) 1.7 11.3 

4 VFC (1c) 0.35 11.4 
Table 2: In vitro inhibition of the squalene synthase. 

 

                                            
33 Inhibitors of the squalen synthase have been reviewed: Abe, I.; Tomesch, J. C.; Wattanasin, S.; Prestwich, G. 
D. Nat. Prod. Rep. 1994, 11, 279-302. 
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However, in vitro inhibition of squalene synthase of S. cerevisia and C. albicans successfully 

realized in micromolar concentrations still appears to be an attractive and promising activity 

for reasonable applications as a pharmaceutical candidate.34 The squalene synthase is 

involved in the formation of squalene by reductive dimerization of two molecules farnesyl 

pyrophosphate (FPP) (21). As shown in Scheme 5, squalene (22) is a precursor for the de 

novo cholesterol synthesis. Therefore, inhibition of the squalene formation is believed to offer 

a versatile possibility to treat hypercholesterolemia (high cholesterol levels in human blood).34 

This diagnostic finding is known to be one of the prime risk factors for cardiovascular 

diseases such as arteriosclerosis and heart attack. 

 

OPP

FPP NADPH

PPi

farnesyl pyrophosphate (C15) (21)

NADP   + H

squalene (C30) (22)
ergosterol cholesterol

squalen   synthase

 
Scheme 5: Reductive head-to-head dimerization of two molecules FPP resulted in the formation of squalene a 

precursor for the de novo cholesterol (mammalian) and ergosterol (fungal) biosynthesis. 

 

The molecular mode of action of the zaragozic acids 17 has been investigated.35 Due to 

structural similarities, the biological activity of the viridiofungins may be based on the same 

strategy. Thus, the inhibition may be attributed to a mimicking effect of the viridiofungins 1 

that may result in a competitive inhibition of the enzyme.36 

                                            
34 Meinz, M. S.; Pelaez, F.; Omstead, M. N.; Milligan, J. A.; Diez, M. T.; Onishi, J. C.; Bergstrom, J. D.; 
Jenkins, R. F.; Harris, G. H.; Jones, E. T. T.; Huang, L.; Kong, Y. L.; Lingham, R. B.; Zink, D. Eur. Pat. Appl. 
EP 526,936 (Cl. C07C235/76), 1993; Chem. Abstr. 1993, 118, 183428t. 
35 Hasumi, K.; Tachikawa, K.; Sakai, K.; Murakawa, S.; Yoshikawa, N.; Kumazawa, S.; Endo, A. J. Antibiotics 
1993, 46, 689-91. (b) Bergstrom, J. D.; Kurtz, M. M.; Rew, D. J.; Amend, A. M.; Karkas, J. D.; Bostedor, R. G.; 
Bansal, V. S.; Dufresne, C.; VanMiddlesworth, F. L.; O.D., H. Proc. Natl. Acad. Sci. USA 1993, 90, 80-84. (c) 
Bergstrom, J. D.; Dufresne, C.; Bills, G. F.; Nallin-Omstead, M.; Byrne, K. Annu. Rev. Microbiol. 1995, 49, 607-
639. 
36 (a) Lindsey, S.; Harwood, H. J., Jr. FASEB J. 1994, 8, A1285. (b) Lindsey, S.; Harwood, H. J., Jr. J. Biol. 
Chem. 1995, 270, 9083-9096. (c) Ref. 28b. 
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Later it was demonstrated, that the potent antifungal activity37 of the viridiofungins in vivo is 

triggered by the nanomolar inhibition of the serine palmitoyltransferase SPT (Table 3).38,39  

 

Entry Compound Inhibition of the SPT IC50 [nM] 

1 VF Z2 (1g) 3817 

2 VF B2 (1f) 62.5 

3 VFA (1a) 13.1 

4 VF A4 (1i) 3.2 
Table 3: In vitro inhibition of the serine palmitoyltransferase SPT tested for C. albicans. 

 

Obviously, the absence of the carbonyl group in the lipophilic tail resulted in significantly 

reduced inhibitory activity (entry 1, Table 3). Interestingly, the elongated side chain of the 

minor component VF A4 (1i) caused an enhanced activity against the SPT of C. albicans 

(entry 4, Table 3). This pyridoxal 5’-phosphate-dependent enzyme catalyzes the first step of 

the de novo synthesis of sphingosines (25).40 The sphingosines are intermediates of the 

ceramide (16) biosynthesis (Scheme 6), the latter being precursors for a range of different 

cytoplasma membrane components (e.g. sphingomyeline, glycosphingolipides, cerebrosides, 

gangliosides and neuramine acids) that have structural functions and are involved in cell-cell 

recognition and signal transduction. Furthermore, the ceramides and sphingosines themselves 

are essentially involved as second messengers in the regulation of enzyme activity and for the 

control of cell cycle processes such as growth, differentiation, cell cycle arrest and 

programmed cell death (apoptosis).41 

 
                                            
37 For an instructive review covering different potential targets for antifungal development, see: Wills, E. A.; 
Redinbo, M. R.; Perfect, J. R.; Del Poeta, M. Emerg. Ther. Targ. 2000, 4, 1-32. 
38 Tested in vitro for Candida albians and HeLa cells. See reference 25. 
39 For serine palmitoyltransferase inhibitors other than alkyl citrates, see: (a) Sundaram, K. S.; Lev, M. J. 
Neurochem. 1984, 42, 577-581. (b) Sundaram, K. S.; Lev, M. Lipid Res. 1985, 26, 473-477. (c) Medlock, K. A.; 
Merrill, A. H., Jr. Biochemistry 1988, 27, 7079-7084. (d) Holleran, W. M.; Williams, M. L.; Gao, W. N.; Elias, 
P. M. J. Lipid. Res. 1990, 31, 1655-1661. (e) Zweerink, M. M.; Edison, A. M.; Wells, G. B.; Pinto, W.; Lester, 
R. L. J. Biol. Chem. 1992, 267, 25032-25038. (f) Horn, W. S.; Smith, J. L.; Bills, G. F.; Raghoobar, S. L.; 
Helms, G. L.; Kurtz, M. B.; Marrinan, J. A.; Frommer, B. R.; Thornton, R. A.; Mandala, S. M. J. Antibiotics 
1992, 45, 1692-1696. (g) Horvath, A.; Sütterlin, C.; Manning-Krieg, U.; Movva, N. R.; Riezmann, H. EMBO J. 
1994, 13, 3687-3695. (h) Nakamur, S.; Kozutsumi, Y.; Sun, Y.; Miyake, Y.; Fujita, T.; Kawasaki, T. J. Biol. 
Chem. 1996, 271, 1255-1257. (i) Mandala, S. M.; Frommer, B. R.; Thornton, R. A.; Kurtz, M. B.; Young, N. M.; 
Cabello, M. A.; Genilloud, O.; Liesch, J. M.; Smith, J. L.; Horn, W. S. J. Antibiotics 1994, 47, 376-379.  
40 For rewiews concerning the biosynthesis and biological function of sphingolipides, see: (a) Kolter, T.; 
Sandhoff, K. Angew. Chem. 1999, 111, 1632-1670; Angew. Chem., Int. Ed. Engl. 1999, 38, 1532-1568. (b) Chen, 
J. K.; Lane, W. S.; Schreiber, S. L. Chem. Biol. 1999, 6, 221-235. (c) Linn, S. C.; Kim, H. S.; Keane, E. M.; 
Andras, L. M.; Wang, E.; Merill, A. H. Biochem. Soc. Trans. 2001, 29, 831-835. (d) Merill, A. H. J. Biol. Chem. 
2002, 277, 25843-25846. (e) Radin, N. S. Biochem. J. 2003, 371, 243-256. 
41 Merill, A. H., Jr.; Sandhoff, K. in Biochemistry of Lipids, Lipoproteins and Membranes (4th Edn.) Vance, D. 
E.; Vance, J. E. (Eds.) 2002, Elsevier Science, B.V. pp. 373-407. 
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sphingolipides
(e.g. sphingomyelin, glycoshingolipides, neuramic acids, or gangliosides) 

Scheme 6: Serine palmitoyl transferase catalyses the first step of the de novo ceramide biosynthesis. 

 

As part of the membranes, glycosphingolipide play an essential role for cell recognition and 

immune response. In this respect, the pharmacological effect of SPT inhibitors (cell wall 

destabilisation/disintegration and immuno suppression) can be easily rationalized. Recently, 

studies with NA 255 (26) – a compound closely related to the viridiofungins - have been 

performed (Figure 6).42  

 

O NH

HO2C OH
HO2C

O

HO2C

O

NA 255 (26)  
Figure 6 

 

                                            
42 Sakamoto, H.; Okamoto, K.; Aoki, M.; Kato, H.; Katsume, A.; Ohta, A.; Tsukuda, T.; Shimma, N.; Aoki, Y.; 
Arisawa, M.; Kohara, M.; Sudoh, M. Nat. Chem. Biol. 2005, 1, 333-337. 
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It was shown, that as a result of the serine palmitoyltransferase inhibition the formation of the 

so-called lipid rafts – microdomains of the cell membranes that are enriched with cholesterol, 

shingolipides and phospholipides43 – is disrupted. A potential application was found in the 

treatment of earlier stages of hepatitis C virus (HCV) infections since the inhibition of liquid 

raft formation interferes with the association of non-structural proteins of the virus, 

preventing its proliferation inside the host. Hence, this biological activity suggests, that 

inhibition of sphingolipide metabolism may provide a new therapeutic strategy for the 

treatment of HCV infections.42 

 

The ability to inhibit the farnesyl transferase is another characteristic of the viridiofungins.44 

Farnesylation of the oncogenic Ras protein was found to be involved in the transformation of 

normal cells into cancer cells.45,34 Thus, the inhibition of the farnesyl transferase may block 

this transformation and natural products that are able to inhibit such enzymes are potentially 

useful for cancer treatment.34,46  

 

2.3.3 Proposed Biosynthesis of Viridiofungins 
 

The biosynthesis of the viridiofungins (1) is assumed to proceed in close analogy with the 

formation of citrate itself during the citrate cyclus.24,28c Instead of acetyl CoA (28) an 

activated ester of the appropriated fatty acid (e.g. 30) would be employed. Condensation of 

oxalacetate (27) with the α-methylene group of the fatty acid 30 followed by the displacement 

of the activated ester with an aromatic amino acid should finally generate the viridiofungin 

1e. This hypothetic biosynthetic pathway allows the easy rationalisation of the amino acid 

position. 

 

                                            
43 http://en.wikipedia.org/wiki/Lipid_raft 
44 Appels, N. M. G. M.; Beijnen, J. H.; Schellens, J. H. M. Oncologist 2005, 10, 565-578. 
45 Cancer types wherein this transformation was found to be involved are e.g. colorectal carcinoma, exocrine 
pancreatic carcinoma and myeloid leukaemia. 
46 For reviews covering the potential of farnesyl transferase inhibitors in cancer chemotherapy, see: 
Wittinghofer, A.; Waldmann, H. Angew. Chem. 2000, 112, 4360-4383; Angew. Chem., Int. Ed. 2000, 39, 4192-
4214. (b) Bell, I. M. J. Med. Chem. 2004, 47, 1869-1878. 
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Scheme 7: Biosynthetically, the viridiofungins 1 may be produced analogue to citrate (13) itself. 

 

2.3.4 Published Total Syntheses of Viridiofungins 
 

In an earlier attempt the research group of Hatakeyama and co-workers successfully realized 

the total synthesis of (−)-viridiofungin A trimethyl ester Me3-1a (Scheme 8).47  

 

MeO2C

NHO

MeO2C

O

OH

CO2MeHO

(−)-viridiofungin A trimethyl ester (Me3-1a)

vinyllithium + CO2

amide coupling

Wittig olefination + isomerisation

epoxid ring opening with a vinyl cuprateKatsuki-Sharpless AE

 
Scheme 8: Important reactions involved in the first published total synthesis of (−)-viridiofungin A trimethyl 

ester (Me3-1a) by Hatekeyama. 

 

Two diastereomers (syn-34 and anti-34) were synthesized and then coupled with 

enantiomerically pure methyl ester of the amino acids S-tyrosine (S-TyrMe) or R-tyrosine (R-

TyrMe) to afford four distinct diastereomers (Scheme 9).  

                                            
47 Esumi, T.; Iwabuchi, Y.; Irie, H.; Hatekeyama, S. Tetrahedron Lett. 1998, 39, 877-880. 
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Scheme 9: Four diastereomers of Me3-1a have been synthesized and their analytical data used for comparison 

with semi-synthetic Me3-1a. 

 

Comparison of the optical rotation values and spectroscopic data of these synthetic 

diastereomers with semi-synthetic Me3-1a was utilized for the assignment of the relative and 

absolute configuration of naturally occurring VFA (1a). The total synthesis of Me3-1a was 

realized with a longest linear sequence of 27 steps. The crucial absolute configuration at the 

stereogenic quaternary carbon atom C3 was set by a Katsuki-Sharpless asymmetric 

epoxidation48 (88% ee) (Scheme 10). 

 

HO

PMBO OH

PMBO

PMBO

I

OTHP

PMBO OH

PMBO

O

PMBO

CO2Me

OTHP

PMBO

OH

HO

PMBO

a-d e f-h

i j

39 (88% ee)

35 36 37

38 40  
Scheme 10: Synthesis of intermediate 40 bearing two of the three stereogenic centers of the natural product: a) 

p-(MeO)C6H4CH2Cl (PMBCl), NaH, n-Bu4NI, THF; b) n-BuLi, (CH2O)n, THF, 75% (two steps); c) Red-Al, 

Et2O, 0 °C to rt, then I2, −50 °C to rt; d) pyridinium p- toluene sulfonic acid (PPTS), dihydropyranone (DHP), 

CH2Cl2, 78% (two steps); e) t-BuLi, CO2, Et2O, −78 °C, then MeI, DMF, 96%; f) DIBAl-H, CH2Cl2, −78 °C; g) 

PMBCl, NaH, n-Bu4NI, THF, reflux; h) PPTS, MeOH, reflux, 72% (three steps); i) diisopropyl L-tartrate (0.09 

eq), Ti(Oi-Pr)4 (0.07 eq), t-BuOOH, (2.0 eq), 4 Å molecular sieves, CH2Cl2, −30 °C, 92%; j) CH2=CHMgBr, 

CuI, THF, −25 °C, 93%. 

 

Protection of the hydroxyl group of 35 (a), nucleophilic addition of the deprotonated alkyne to 

parafomaldehyde (b), stereoselective reduction of the corresponding propargylic alcohol with 

subsequent iodine trapping of the aluminium intermediate (c) and protection of the hydroxyl 
                                            
48 Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc.1980, 102, 5974-5976. 
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group (d) afforded the vinyl iodide 36. Halogen lithium exchange and subsequent reaction 

with carbon dioxide (e) afforded 37. Reduction (f), protection (g) and cleavage of the ether (h) 

provided allylic alcohol 38 that was successfully subjected to the conditions of a Katsuki-

Sharpless asymmetric epoxidation (i).48 The epoxide 39 was formed with an enantiomeric 

excess of 88% ee. Regio- and stereoselective nucleophilic ring opening with vinyl magnesium 

bromide (j) provided 40 with good yields.  

Wittig olefination and subsequent double bond isomerization was utilized for the generation 

of the isolated E-configured double bond. The synthesis of the starting materials, aldehyde 

syn- and anti-41 is depicted in Scheme 11. 

PMBO

OH

HO

PMBO

PMBO O

OH

PivO

PMBO

O

O

PMBO

OPiv

OPMB

CHO
O

O

PMBO
OPMB

CHO
O

O

PMBO
OPMB

a,b

e, f g, h

c,d

40 syn-41

42 43 anti-41  
Scheme 11: Formation syn-41 and its diastereomer anti-41: a) (MeO)2CMe2, PPTS, benzene, reflux; b) OsO4, 

NMO, THF/H2O 3/1, then NaIO4, 83% (two steps); c) PivCl, Et3N, CH2Cl2; d) OsO4, NMO, THF/H2O 3/1, then 

NaIO4; e) NaBH4, MeOH; f) (MeO)2CMe2, PPTS, CH2Cl2, 31% (four steps); g) NaOH, MeOH; f) (COCl)2, 

DMSO, Et3N, CH2Cl2, −60 °C to rt, 60% (two steps). 

 

Aldehyde syn-41 was generated by transketalization of diol 40 with acetone dimethyl acetale 

(a) followed by Lemieux-Johnson oxidation (b).49 The corresponding diastereomer anti-41 

was generated by a six-step procedure as depicted in Scheme 11. After protection of the 

primary hydroxyl group as pivatoyl-ester (c), Lemieux-Johnson oxidation (d)49 afforded the 

aldehyde 42 that was reduced to the corresponding alcohol (e) and protected as ketale 43 (f). 

Finally, ester cleavage (g) and oxidation (h) afforded the aldehyde anti-41. 

The formation of the E-configured double bond of Me3-1a was realized by Wittig olefination 

followed by a double bond isomerization which was realized after some manipulation of the 

                                            
49 Pappo, R.; Allen, D.; Lemieux, R.; Johnson, W. J. Org. Chem. 1956, 21, 478-479. 
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olefination product (Scheme 12). The isomerization - initialized by exposure to UV radiation 

in the presence of PhSSPh - afforded the desired pure E-isomers syn- and anti-47 after 

chromatographic separation of the 82/18 mixture of double bond isomers. 
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45 (Z/E > 95/5)

46  
Scheme 12: Construction of the E-configured double bond by Wittig olefination and subsequent E/Z-

isomerization: a) 44, THF, 0 °C, 80%; b) Li, THF, liq. NH3, −33 °C; c) TPSCl, Et3N, CH2Cl2, 86% (two steps); 

d) (COCl)2, DMSO, Et3N, CH2Cl2, −60 °C to rt; e) NaClO2, NaH2PO4, 2-methyl-2-butene, t-BuOH/H2O 4/1; f) 

CH2N2, Et2O, 96% (three steps); g) conc. HCl, t-BuOH; h) 46% HF/MeCN 1/7; i) H2CrO4, aq acetone, −10 °C; j) 

CH2N2, Et2O, 50% (four steps); k) hν, PhSSPh, cyclohexane, 100%. 

 

Final steps afforded the diastereomers syn- and anti-34 ready for amid formation (Scheme 

13). 

 
O
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Scheme 13: Final steps for the generation of the acids syn- and anti-34: a) NaOH, MeOH; b) CH2N2, Et2O; c) 

H2CrO4, aq acetone, −10 °C (yields given in Table 4). 

 

Both diastereomers syn- and anti-34 were subjected to either R-tyrosine methyl ester or S-

tyrosine methyl ester using EDCl,50 1-hydroxybenzotriazole (HOBt) and N-methylmorpholine 

                                            
50 EDCl= (1-(3-(dimethylamino)-propyl)-3-ethylcarbodiimide hydrochloride (Me2N(CH2)3N=C=NEt·HCl). 
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(NMM) to induce the amide formation (Table 4). The specific rotation as well as 

spectroscopic data of the amide coupling product between syn-34 and S-tyrosine methyl ester 

were in good agreement with results obtained for semi-synthetic Me3-1a. Therefore, it was 

concluded that the absolute configuration of the natural product is (3S,4S,2’S).  
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O
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O
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5 5

5 5
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(3S,4R,2'S)-49 (3S,4R,2'R)-50
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Entry 
Starting 

material 

Tyrosine methyl 

ester 
Yield [%] Product 

Optical rotation 

in MeOH 

1 syn-34 S-TyrMe 48 3S,4S,2’S −19.1 (c 0.43) 

2 syn-34 R-TyrMe 38 3S,4S,2’R −15.5 (c 0.43) 

3 anti-34 S-TyrMe 8a 3S,4R,2’S +33.3 (c 0.47) 

4 anti-34 R-TyrMe 10a 3S,4R,2’R +31.6 (c 0.47) 

5 - - - 
semisynthetic 

Me3-1a 
−23.0 (c 0.47) 

Table 4: Results of the amid formation.a From anti-41 (15 steps); EDCl= Me2N(CH2)3N=C=NEt·HCl; NMM= 

N-methylmorpholine; HOBt= 1-hydroxy-benzotriazole, TyrMe= tyrosine methyl ester, DMF= 

dimethylformamide. 

 

In 2005, a second generation synthesis of 1a was published.51 Formation of tert-butyl ester 

instead of methyl ester allowed the generation of unprotected natural occurring 1a after 

deprotection under acid conditions as final step. In this improved synthesis 22 steps were 

required for the generation of VFA (1a). The first steps parallel the earlier published strategy 

(Scheme 14). Using a more efficient strategy, the protection-deprotection sequence prior to 

the Katsuki-Sharpless epoxidation was avoided. Replacement of the ketal protection group by 

                                            
51 Morekuma, K.; Takahashi, K.; Ishihara, J., Hatakeyama, S. Chem. Comm. 2005, 2265-2267. 
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a cyclic carbonate avoided the yield limiting lactonization step in the previously described 

synthesis.  

HO PMBO OTHP

HO
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t-BuO2C OH

HO

PMBO OTHP
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CO2t-Bu
PMBO

O

OO
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52 (87% ee)

m n-p

18

35 51

53 54  
Scheme 14: First steps of the improved synthesis of 1a: a) PMBCl, NaH, n-Bu4NI, THF; b) n-BuLi, (CH2O)n, 

THF; c) Red-Al, Et2O, 0 °C to rt, then I2, −50 °C to rt; d) PPTS, DHP, CH2Cl2; e) t-BuLi, CO2, Et2O, −78 °C, 

then MeI, DMF; f) DIBAl-H, CH2Cl2, −78 °C, 56% (six steps); g) diisopropyl L-tartrate (0.3 eq), Ti(O-i-Pr)4 

(0.25 eq), t-BuOOH, (2.0 eq), 4 Å molecular sieves, CH2Cl2, −20 °C, 100%; h) SO3·pyridine, Et3N, DMSO, 

CH2Cl2; i) NaClO2, NaH2PO4, 2-methyl-2-butene, t-BuOH/H2O 4/1; j) N,N’-diisopropyl-O-2-tert-butylisourea, 

CH2Cl2; k) PPTS, MeOH, 74% (four steps); l) CH2=CHMgBr, CuI, THF, −26 °C, 71%; m) triphosgene, 

pyridine, THF; n) DDQ, CH2Cl2/H2O 20/1, 79% (two steps); o) H2CrO4, aq. acetone, −10 °C; p) N,N’-

diisopropyl-O-2-tert-butylisourea, CH2Cl2, 84% (two steps). 

 

For the construction of the of the isolated C5/C6 double bond a cross metathesis strategy was 

successfully employed. Reaction of 55 with hexadec-15-en-8-one resulted in the formation of 

the desired E-configured coupling product E-56 together with the Z-configured isomer thereof 

and unreacted starting material 55 (Eq. 1).52 
 

O

OO

CO2t-But-BuO2C
Ru

Ph

NMesMesN

PCy3

Cl
Cl

O

OO

CO2t-But-BuO2C

C7H15

O

CH2=CH(CH2)6C(O)C7H15
CH2Cl2, 40 °C, 84 h

56 (65%, + 24% 55) E/Z= 88/1255  
Eq. 1 Mes= mesityl, Cy= cyclohexyl. 

 

The cleavage of the carbonate was realised by formation of the allyl carbonate 57 (a) followed 

by palladium-catalyzed deallylation (b) affording the corresponding alcohol. Jones oxidation 

(c) gave the corresponding carboxylic acid which was amidated (d) under the conditions 
                                            
52 Seperation of the double bond isomers E-56 and E-56 is not explicitely explained. Possibly it was achieved 
during the final reversed phase chromatography. 
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described previously to provide 58. Final cleavage of all tert-butyl ester groups in formic acid 

(e) afforded (−)-viridiofungin A (1a) (Scheme 15). 
 

O

OO

CO2t-But-BuO2C

C7H15

O

O

C7H15

O
t-BuO2C

HO CO2t-Bu

NH

t-BuO2C

OH

O

C7H15

O
t-BuO2C

HO CO2t-Bu

O O

5
5a

5b-d e
(−)-viridiofungin A (1a)

56 57

58  
Scheme 15: Final steps for the total synthesis of viridiofungin A (1a): a) K2CO3, CH=CHCH2OH, −20 °C, 80%; 

b) HCO2NH4 (3 eq), Ph3P (0.3 eq), Pd(PPh3)4 (0.1 eq), THF, 98%; c) H2CrO4, aq. acetone, −10 °C; d) S-tyrosine 

tert-butyl ester, EDCl, NMM, HOBt, DMF, 78%; e) HCO2H, 74%. 
 

With the successful total synthesis of VFA the absolute configuration proposed previously 

could be unambiguously verified. 
 

Very recently, a short and simple route toward viridiofungin trimester 59 was published 

(Scheme 16).53 
 

t-BuO2C

NHO

t-BuO2C

O

Ot-Bu

(−)-viridiofungin A triester 59

cross metathesis

amidationasymmetric aldol addition

CO2MeHOenolate alkylation

 
Scheme 16: Important reactions involved in the recently published total synthesis of the viridiofungin A triester 

59. 

 

Asymmetric aldol reaction54 and enolate alkylation were employed as key CC-connection 

steps. The isolated double bond was generated by cross metathesis.  

                                            
53 Goldup, S. M.; Pilkington, C. J.; White, A. J. P.; Burton, A.; Barrett, A. G. M. J. Org. Chem. 2006, 71, 6185-
6191. 
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Starting from oxazolidinone precursor 6055 reaction with glyoxylate (a) afforded the syn-aldol 

product 61. Cleavage of the chiral auxiliary (b), saponification of the ethyl ester (c) and 

treatment with trimethylchlorosilane (d) and pivaldehyde (e) afforded dioxolane 62. 

Conversion to 63 was realized by deprotonation of 62 with LiHMDS and subsequent reaction 

with tert-butyl-α-bromo acetate (f). Final steps include transesterification (g), amide coupling 

(h) and cross-metathesis (i). 
 

O

ON

O

Bn

S S

O

ON

O

Bn

EtO2C

OH

CO2H

O
OO

t-Bu

H S S

MeO2C OH
t-BuO2C

O NH

t-BuO2C

Ot-Bu

MeO2C OH
t-BuO2C

O NH

t-BuO2C

Ot-Bu
C7H15

O

O
OO

t-Bu

t-BuO2C CO2H
S

S
a b-e f

g-h i

60 61 62 63

64 59  
Scheme 17: Synthesis of intermediate 59: a) Bu2BOTf, Et3N, CH2Cl2, −78 °C to 0 °C; EtO2CCHO, −78 °C to 0 

°C, 72%; b) LiOH, H2O2, THF/H2O 3/1, 0 °C; c) LiOH, MeOH/H2O 1/1, 0 °C to rt, 85% (two steps); d) 

Me3SiCl, (i-Pr)2NEt, THF, rt; e) t-BuCHO, Me3SiOTf (20 mol%), CH2Cl2, −35 °C, 79% (two steps); f) 

LiHMDS, DMF, −70 °C, 50 min; BrCH2CO2t-Bu, −70 °C, 15 min, 61%; g) K2CO3, MeOH, 0 °C to rt; h) 4-t-

BuOC6H4CH2CH(CO2t-Bu)NH2·HCl, HOBT, HBTU,56 (i-Pr)2NEt, DMF, 0 °C, 28% (two steps); i) hexadec-15-

ene-8-one, Grela catalyst57 (20 mol%), CH2Cl2, 55 °C (microwaves), 54%. 

                                                                                                                                        
54 For a review concerning asymmetric aldol reactions, see: Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc. 
Rev. 2004, 33, 65-75. 
55 Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127-2129. 
56 HOBT= 1-hydroxy-1,2,3-benzotriazole; HBTU= 2-(1H-benzo-triazol-1-yl)-1,1,3,3-tetramethyluronium 
hexafluorophosphate. 
57 Michrowska, A.; Bujok, R.; Harutyunyan, S.; Sashuk, V.; Dolgonos, G.; Grela, K. J. Am. Chem. Soc. 2004, 
126, 9318-9325. 
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3 Retrosynthetic Analysis of Viridiofungin A 
 

Viridiofungin A consists of a highly functionalized, polar head group connected with a 

lipophilic tail. Beside the amide functionality, two additional sites for a retrosynthetic 

disconnection were identified (Scheme 18). The E-configured C5/C6 double bond may be 

generated by an inherently E-selective Julia-Kocienski olefination.58 For the formation of the 

two neighboured stereogenic centers of the polar head group utilization of the ester dienolate 

[2,3]-Wittig rearrangement was envisioned.59 

 

MeO2C

NHO

MeO2C

O

OH

CO2i-PrHO

(−)-viridiofungin A triester 65a

amidation

Julia-Kocienski
olefination

ester dienolate 
[2,3]-Wittig rearrangement

 
Scheme 18: Retrosynthetic analysis of (−)-viridiofungin A triester 65a. 

 

According to this plan, the target molecule was disassembled into two fragments that are 

named ‘eastern half’ and ‘western half’ (Scheme 19).60  

 

65a

O
MeO2C

BnO

MeO2C

BnO

C7H15

O

C7H15
S

O O
N

N
N N

Ph OO
+

5

western half (67) eastern half (68)

CO2i-PrTBSO

CO2i-PrTBSO

66

 
Scheme 19: 65 may be generated by the coupling of the western half with the eastern half. TBS= tert-

butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl.61 

 

                                            
58 Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998, 26-28. 
59 (a) Hiersemann, M. Tetrahedron 1999, 55, 2625-2638. (b) Hiersemann, M.; Lauterbach, C.; Pollex, A. Eur. J. 
Org. Chem. 1999, 2713-2724. (c) Hiersemann, M.; Abraham, L.; Pollex, A. Synlett 2003, 1088-1095. 
60 For concise reasons, solely the retrosynthetic analysis of VFA (1a) will be discussed in this chapter.  
61 The depicted protecting groups reflect the realized synthetic strategy. For details, see page 56 ff. 
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This highly convergent strategy enables the straight forward synthesis of various natural and 

non-natural analogues of VFA (1a) simply by using different coupling partners 68. The easy 

synthesis of minor components owning interesting biological activities (e.g. VF A4 (1i), see 

Table 3) that are difficult to obtain from fermentation processes is one of the possible 

applications of this strategy. Furthermore, non-natural analogues – often advantageously for 

studying the molecular mode of action of a specific substance – may be prepared. 

Accordingly triesters of the viridiofungin A and the minor components A4 and A2 were 

chosen to prove the versatility of this synthetic strategy. The synthesis of 65a is required for 

data comparison. 

 

For the synthesis of the eastern half (68), a sequential alkylation of 1,3-dithiane62 and the 

introduction of the sulfanyl-1-phenyl-1H-tetrazole by the application of a Mitsunobu redox-

condensation was envisioned (Scheme 20).63  

 

C7H15
S

O O
N

N
N N

Ph OO

C7H15
SN

N
N N

Ph SS

C7H15

SS
HO(CH2)7

5

eastern half (68)

7

69 70  
Scheme 20: Retrosynthetic analysis of the eastern half (68). 

 

The highly functionalized western half (67) might be disassembled to 71 containing the retron 

of an ester dienolate [2,3]-Wittig rearrangement. An appropriated α-allyloxy-substituted α,β-

unsaturated ester 4 should represent a possible synthon for this purpose (Scheme 21).  

 

western half (67)

O
MeO2C

BnO BnO

BnO
[2,3]

8 4

CO2i-PrOBnO
BnOCO2i-PrTBSO CO2i-PrHO

 
Scheme 21: Retrosynthetic analysis of the western half (67). TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= 

benzyl. 

 

                                            
62 For reviews concerning the utilization of 1,3-dithianes in natural product synthesis, see: (a) Smith, A. B.; 
Adams, C. M. Acc. Chem. Res. 2004,. 37, 365-377. (b) Yus, M.; Najera, C.; Foubelo, F. Tetrahedron 2003, 59, 
6147-6212. (c) Smith, A. B.; Condon, S. M.; McCauley, J. A. Acc. Chem. Res. 1998, 31, 35-46. 
63 Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380-2382. 
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Deprotonation of 4 would provide ester dienolate 71 which is prone to undergo [2,3]-Wittig 

rearrangement to afford the 1,5-hexadienes 8 as depicted in Scheme 22.  

 

CO2i-PrOBnO
BnO

OBn

O
BnO Oi-Pr

O
Li

BnO

BnO

4 71 8

CO2i-PrHO

 
Scheme 22: Proposed synthesis of 8 utilizing an ester dienolate [2,3]-Wittig rearrangement. Bn= benzyl. 

 

Generation of the α-allyloxy-substituted a,ß-unsaturated ester 4 may be realized by the 

application of an aldol-condensation strategy between ester 73 and aldehyde 72 (Scheme 23) 

that is well established in our research group and was successfully employed for various 

similar α-allyloxy-substituted α,β-unsaturated esters. 64  

 
CO2i-Pr

O

BnO

BnO

CO2i-Pr

O

BnO

O
BnO

+

4

72

73  
Scheme 23: Aldol condensation strategy. 

 

In the following section (23 pages) I will outline important characteristics of the key CC-

connecting step: the ester dienolate [2,3]-Wittig rearrangement. The historical development as 

well as mechanistic considerations will be covered. Those readers who are mainly interested 

in the synthetic strategy and the results of the present work are referred to chapter 5 (page 56). 

                                            
64 Hiersemann, M. Synthesis 2000, 1279-1290. 
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4 Ester Dienolate [2,3]-Wittig Rearrangement 

4.1 Historical Development, Main Characteristics and 

Heteroatom Analogues 
 

In 1949, Wittig et al. reported that treatment of 9-allyloxy-9H-fluorene (74) with phenyl 

lithium resulted in the formation of 9-allyl-9H-fluoren-9-ol (75) (Eq. 2) 

 

O HO

PhLi, Et2O, −10 °C

75 (80%)74  
Eq. 2 

 

This reaction is the prototype for the [2,3]-Wittig rearrangement – a term that is used for 

[2,3]-sigmatropic rearrangements of α-allyloxy-substituted carbanions 76 to afford 

homoallylic alcohols 78 (Scheme 24). It allows the formation of a carbon-carbon σ-bond 

starting from an easier accessible carbon-oxygen bond. Since its discovery, the [2,3]-Wittig 

rearrangement has been developed as a powerful tool for the stereoselective generation of 

homoallylic alcohols. In various natural product syntheses the potential of this transformation 

has been proven.65 At low temperatures, the pericyclic reaction proceeds through a six-

electron five-membered cyclic transition state 77 in a concerted fashion (Scheme 24). The 

competing diradical pathway 79 can be prevented by running the reaction at low 

temperatures.66 

                                            
65 For examples, see: (a) Midland, M.; Gabriel, J. J. Org. Chem. 1985, 50, 1143-1144. (b) Kiyota, H.; Ueda, R.; 
Oritani, T.; Kuwahara, S. Synlett, 2003, 219-220. (c) Anderson, J. C.; Whiting, M. J. Org. Chem. 2003, 68, 
6160-6163. (d) Berberich, S. M.; Cherney, R. J.; Colucci, J.; Courillon, C.; Geraci, L. S.; Kirkland, T. A.; Marx, 
M. A.; Schneider, M. F.; Martin, S. F. Tetrahedron 2003, 59, 6819-6832. (e) Audrain, H.; Skrydstrup, T.; 
Ulibarri, G.; Riche, C.; Chiaroni, A.; Grierson, David S. Tetrahedron 1994, 50, 1469-1502. (f) Watanabe, K.; 
Iwasaki, K.; Abe, T.; Inoue, M.; Ohkubo, K.; Suzuki, T.; Katoh, T. Org. Lett. 2005, 7, 3745-3748. (g) Ng, F. W.; 
Lin, H.; Danishefsky, S. J. J. Am. Chem. Soc. 2002, 124, 9812-9824. (h) Abe, T.; Iwasaki, K.; Inoue, M.; Suzuki, 
T.; Watanabe, K.; Katoh, T. Tetrahedron Lett. 2006, 47, 3251-3255. (i) Nakamura, Y.; Kiyota, H.; Ueda, R.; 
Kuwahara, S. Tetrahedron Lett. 2005, 46, 7107-7109. (j) Pollex, A.; Abraham, L.; Müller, J.; Hiersemann, M. 
Tetrahedron Lett. 2004, 45, 6915-6918. (k) Pollex, A.; Millet, A.; Müller, J.; Hiersemann, M.; Abraham, L. J. 
Org. Chem. 2005, 70, 5579-5591. 
66 For reviews, see: (a) Marshall, J. A. In Comprehensive Organic Synthesis; Trost, B. M.; Flemming, I., Eds.; 
Pergamon: Oxford 1991; Vol. 3, p. 975-1014. (b) Nakai, T.; Koichi, M. In Organic Reactions, Paquette, L. A., 
Ed.; Wiley: New York 1994; Vol. 46, p. 105-209. (c) Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885-902. (d) 
Kallmerten, J. In Houben Weyl, Methods of Organic Chemistry; Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; 
Schaumann. E., Eds; Thieme: Stuttgart, 1995; Vol. E21, p. 3757-3809. (e) Mikami, K.; Nakai, T. Synthesis 1991, 
594-604. (f) Brückner, R. Nachr. Chem. Techn. Lab. 1990, 38, 1506-1510. 
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Scheme 24: Competing mechanism for the [2,3]-Wittig rearrangement: concerted (top) or a stepwise (bottom). 
At the low temperatures the concerted mechanism is preferred. G= carbanion stabilizing group.67 
 

The driving force of this rearrangement is the transformation of a carbanion into a more stable 

oxyanion. By replacing the ether oxygen by other hetero atoms, (e.g. sulphur or nitrogen) 

aza68 and thio69 analogues have been developed. Representative examples are depicted in Eq. 

and Eq. 4. 

 

BocN

SiPhMe2

Ot-Bu

CONMe2

SiPhMe2

Ot-Bu

CONMe2BocHN
LDA, THF, −78 to 0 °C

81 (78%, > 99% de)80  
Eq. 3 Boc= tert-butyloxy carbonyl, LDA= lithium diisopropylamide. 

 

 

S P(O)(OM*)2

M*OH= L-(−)-menthol

sec-BuLi, HMPA
THF, −75 °C, 75 min (*MO)2P

O
SH

83 (95%, 88% de)82
 

Eq. 4: HMPA= hexamethylphosphoramide {[(CH3)2N]2PO}. 

                                            
67 The equilibrium between the starting material and the transition state is not explicitly depicted. We have 
chosen this formulation for it allows a concise representation of the transformation proceeding through the 
corresponding transition states. The placing of the transition state formula within the arrow is used to emphasize 
that the transition state must not be seen as intermediate. 
68 For recent examples, see: (a) Anderson, J. C.; Siddons, D. C.; Smith, S. C.; Swarbick, M. E. J. Org. Chem. 
1996, 61, 4820-4823. (b) Anderson, J. C.; Flaherty, A.; Swarbrick, M. E. J. Org. Chem. 2000, 65, 9152-9156. (c) 
Anderson, J. C.; Whiting, M. J. Org. Chem. 2003, 68, 6160-6163. (d) Åhman, J.; Jarevång, T.; Somfai, P. J. Org. 
Chem. 1996, 61, 8148-8159. (e) Åhman, J.; Somfai, P. Tetrahedron Lett. 1996, 37, 2495-2498. (f) Anderson, J. 
C.; Ford, J. G.; Whiting, M. Org. Biomol. Chem. 2005, 3, 3734-3748. For a review, see: Vogel, C. Synthesis 
1997, 497-505. 
69 (a) Marchand, P.; Gulea, M.; Masson, S.; Saquet, M.; Collignon, N. Org. Lett. 2000, 2, 3757-3759. (b) Emde, 
H. v. d.; Brückner, R. Tetrahedron Lett. 1992, 33, 7323-7326. (c) Brickmann, K.; Brückner, R. Chem. Ber. 1993, 
126, 1227-1239. (d) Uneyama, K.; Ohkura, H.; Hao, J.; Amii, H. J. Org. Chem. 2001, 66, 1026-1029. 
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4.1.1 The Carbanion Stabilizing Group G 
 

Alkyl Groups 

The group G may be simply an alkyl group. However, such carbanions are highly unstable 

and afford special conditions for their formation. Methods for the generation of these 

unstabilized carbanions will be discussed in chapter 4.1.2. 

 

Aryl-, Vinyl- and Alkynyl-Groups 

Various [2,3]-Wittig rearrangements have been reported that employ aryl-, vinyl- and 

propargyl-groups as carbanion stabilizing group G (Figure 7).  

 

O

O

G= vinyl (85)

O

G= propargyl (86)

O Ar

G= aryl (87)

1
2

3

1'
2'

G

84

 
Figure 7 

 

For unsymmetrical bisallylic ethers (G= vinyl), a regioselectivity problem arises (Eq. 5). 

Either of the allylic positions may be deprotonated and, consequently, both of the possible 

rearrangement products could be generated. Eq. 5 outlines a representative example.70 

 

O
1 2 3 4

1'
2'

3'

2
4

OH

3' 1'

2
4 3'

1'

OH
n-BuLi, THF, −78 °C

+

77% 
[1',4]/[2,3'] = 43/57

[1',4]-rearrangement
product

[2,3']-rearrangement
product

88 89 90

 
Eq. 5 

 

However, it was shown, that the carbanion is usually generated at the less sterically hindered 

allyl fragment. Therefore, if appropriately substituted bisallyl ethers are employed, the 

                                            
70 Nakai, T.; Mikami, K.; Taya, S.; Fujita, Y. J. Am. Chem. Soc. 1981, 103, 6492-6494. 
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reaction proceeds with good regioselectivity.71 Rearrangement of bisallyl ether 91 afforded 92 

as the only product of the transformation (Eq. 6).71c 

 

O

SiMe3

OH

LDA, THF, −78 °C to rt

87%
91 92  

Eq. 6: LDA= lithium diisopropylamide. 

 

An application of the [2,3]-Wittig rearrangement of an allyl propargyl ether 93 is shown in 

Eq. 7.72 94 was formed as single diastereomer and enantiomer with the latter being the 

consequence of 1,3-chirality transfer.73 

 

O

OH

n-BuLi, THF, −90 °C to rt

94 (71%)93  
Eq. 7 

 

π-Acceptors 

Functional groups that allow stabilization of the carbanion by resonance were also used as 

group G (Scheme 25). Noteworthy examples are ketones (or the hydrazone derivatives 

thereof), nitriles, phophonates, and carboxylic acid derivatives (e.g. esters, amides, or 

oxazolines).  

 

                                            
71 For recent examples, see: (a) Dorling, E. K.; Thomas, A. P.; Thomas, E. J. Tetrahedron Lett. 1999, 40, 475-
476. (b) Spino, C.; Godbout, C.; Beaulieu, C.; Harter, M.; Mwene-Mbeja, T. M.; Boisvert, L. J. Am. Chem. Soc. 
2004, 126, 13312-13319. (c) Tomooka, K.; Igarashi, T.; Kishi, N.; Nakai, T. Tetrahedron Lett. 1999, 40, 6257-
6260. 
72 Liang, J.; Hoard, D. W.; Khau, V. V.; Martinelli, M. J.; Moher, E. D.; Moore, R. E.; Tius, M. A. J. Org. Chem. 
1999, 64, 1459-1463. 
73 1,3-chirality transfer as an useful tool during substrate induced stereoselectivity will be discussed in more 
detail in chapter 4.3.1. 
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R= alkyl, alkoxy, hydroxy etc.
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95 96
 

Scheme 25: Representative example for the carbanion stabilization by resonance employing an adjacent 

carbonyl group. 

 

4.1.2 Formation of the Carbanion  
 

There are different strategies for the formation of the carbanion. Unstabilized carbanions (G= 

alkyl, H) are most commonly generated by transmetallation of stannanes or reductive 

lithiation of S,O-acetales. Stabilized carbanions (G≠ alkyl or H) are usually formed by the 

treatment of the substrate with a base causing deprotonation.  

 

Transmetallation and reductive lithiation of S,O-acetales 

In 1978, the introduction of the Still-variation was an important breakthrough for the 

development of the [2,3]-Wittig rearrangement as an useful tool in organic synthesis. It 

allowed the selective formation of carbanions lacking any stabilizing groups under mild 

conditions (Scheme 26).74 

 

H9C4

OH

H9C4

O SnBu3

H9C4

OH

KH, Bu3SnCH2I
THF, rt, 30 min

n-BuLi, −78 °C
30 min

99 (95%)97 98  
Scheme 26: [2,3]-Wittig rearrangement according to Still. 

 

The carbanion is formed by transmetallation of a tin organyl to afford a lithium organyl that 

readily undergoes the rearrangement at low temperatures. 

                                            
74 Still, W. C.; Mitra, A. J. Am. Chem. Soc. 1978, 100, 1927-1928. 
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Later, Brückner and Broka independently used the reductive lithiation of S,O-acetales - 

originally developed by Cohen and co-workers for the formation of α-allyloxy-substituted 

organo lithium compounds75 - as preliminary step for [2,3]-Wittig rearrangement (Eq. 876a).76  

 

O SPh O Li
OH

Lithium naphthalenide
THF, 0 °C [2,3]

102 (91%)100 101  
Eq. 8 

 

This intriguing alternative to the highly toxic alkyl tin compounds significantly increased the 

scope of the reaction because it allowed the incorporation of various substituents on the 

carbanionic center. Later, methods were developed to generate secondary and tertiary 

stannanes making secondary and tertiary lithium organyls accessible by transmetallation.77 

 

Mulzer reported a transmetallation strategy employing a silicon-lithium exchange.78 

 

Deprotonation 

A very common method for the formation of the carbanion is the deprotonation facilitated by 

the presence of a carbanion stabilizing group. Carbonyl groups in particular are frequently 

applied. Applications of this method will be discussed later (chapter 4.3-4.5). 

 

Miscellaneous 

Further variations for the formation of the carbanion include lithium-halogen exchange,79 

fluoride induced desilylation80 and SET-induced formation of carbanions using SmI2.81 

The α-allyloxy-substituted anions, prone to undergo the [2,3]-sigmatropic rearrangement may 

as well be formed by the reaction of allyl ethers with metal carbenes. Versatile starting 

materials are diazocarbonyl compounds that readily produce the required metal carbenes upon 

                                            
75 (a) Cohen, T.; Daniewski, W. M.; Weisenfeld, R. B. Tetrahedron Lett. 1978, 49, 4665-4668. (b) Cohen, T.; 
Matz, J. R. Synth. Comm. 1980, 10, 311-317. (c) Cohen, T.; Matz, J. R. J. Am. Chem. Soc. 1980, 102, 6900-
6902. 
76 (a) Broka, C. A.; Shen, T. J. Am. Chem. Soc. 1989, 111, 2981-2984. (b) Kruse, B.; Brückner, R. Chem. Ber. 
1989, 122, 2023-2025. 
77 Hoffmann, R.; Brückner, R. Angew. Chem. 1992, 104, 646-648, Angew. Chem., Int. Ed. Engl. 1992, 31, 647-
649. For a more detailed discussion, see chapter 4.3.1. 
78 Mulzer, J.; List, B. Tetrahedron Lett. 1996, 37, 2403-2404. 
79 Maciá, B.; Gómez, C.; Yus, M. Tetrahedron Lett. 2005, 46, 6101-6104. 
80 Malezcka, R. E., Jr.; Geng, F. Org. Lett. 1999, 1, 1111-1113. 
81 Kunishima, M.; Hioki, K.; Kono, K.; Kato, A.; Tani, S. J. Org. Chem. 1997, 62, 7542-7543. 
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treatment with rhodium(II) or copper(I) complexes.82 Intermediary, ylides are generated 

(Scheme 27). 

 

O G
R

N2

O

O G
R

O
+

[2,3]catalyst

catalyst: Rh2Ln or CuLn (L= ligand)

O G
R

O
85 103 104 105

 
Scheme 27: Charge accelerated [2,3]-sigmatropic rearrangement of oxonium ylides is similar to the [2,3]-Wittig 

rearrangement. 

 

The present discussion will concentrate on the [2,3]-Wittig rearrangement of α-allyloxy-

substituted carbanions. Therefore, neither the heteroatom analogues nor the charge 

accelerated [2,3]-sigmatropic rearrangement of ylides will be discussed in more detail. 

 

4.2 Mechanism and Simple Diastereoselectivity 
 

As a result of the rearrangement, up to two vicinal stereogenic centers and one stereogenic 

double bond are formed. Similar to the [3,3]-sigmatropic rearrangements the [2,3]-Wittig 

rearrangement proceeds through a highly ordered cyclic transition state. Consequently, 

attempts have been made to develop models that allow the explanation and reliable prediction 

of the stereochemical outcome of the rearrangement. However, models developed so far are 

not as self-consistent and highly intuitive as the well defined and energetically distinct 

conformations of a cyclohexane system used to describe the transition state of [3,3]-

sigmatropic rearrangements. The reaction is believed to proceed through an envelope-like 

transition state rather than through a transition state with half chair conformation. However, 

the energetic differences between the different possible low energy conformations are very 

small. Of the five possible envelope conformations, the conformer with the terminal vinyl 

residue adopting an out of plane orientation (Scheme 28) is in good agreement with 

experimental evidence and is commonly used for the projection of the stereochemical 

consequences.66  

 

                                            
82 For the first examples of the [2,3]-sigmatropic rearrangement of oxonium ylides, see: (a) Pirrung, M. C.; 
Werner, J. A. J. Am. Chem. Soc. 1986, 108, 6060-6062. (b) Roskamp, E. J.; Johnson, C. R. J. Am. Chem. Soc. 
1986, 108, 6062-6063. 
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O G
G

O
G

OH[2,3]

84 106 107  
Scheme 28: Commonly used projection to describe the transition state of the [2,3]-Wittig rearrangement. 

 

The presence of an allylic substituent and a carbanion stabilization group G results in different 

conformations with the substituents being in exo (toward the convex face of the cyclopentane 

frame) or endo (directed toward the concave face of the cyclopentane ring) position (Scheme 

29).  

 

Gexo

Rexo O

Gendo

Rendo

O

GendoRexo O

Gexo

Rendo

O

H

H

H

H

108 109

110 111  
Scheme 29: Possible transition states if an additional allylic substituent is present. 

 

In most cases the allylic substituent prefers an exo-orientation toward the convex face of the 

cyclopentane frame (Rexo). Consequently, an E-configured double bond is preferentially 

formed. However, there are exceptions of this general rule. One example for such an unusual 

Z-selectivity is the rearrangement of zirconium ester enolates which exclusively affords Z-

alkenes. This result may be accounted to unfavourable steric interactions between the ethyl 

residue and the sterically demanding cyclopentadienyl ligands (Eq. 9Eq. ).83 

 

O
SiMe3

O
Zr

Cp

Cp
Oi-Pr

O

CO2i-Pr

SiMe3
SiMe3

CO2i-Pr

OH
LDA, Cp2ZrCl2, THF, −78 °C

 113 (72%)
single diasteromer

112

113  
Eq. 9 LDA= lithium diisopropylamide, Cp= cyclopentadienyl. 

 

                                            
83 Kuroda, S.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1987, 28, 803-804. 
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In the following example, the unusual formation of the Z-configured double bond is the result 

of the presence of an additional substituent at C-2 of the double bond (Scheme 30). Due to the 

absence of a substituent R3≠ H at C-3 the 1,3-allylic strain is expected to be less important for 

the stereochemical outcome of the rearrangement. In contrast, the presence of the methyl 

group at C-2 increases the relevance of the 1,2-allylic strain. For the formation of E-

configured 118, the rearrangement would have to proceed through a transition state with 

maximized 1,2-allylic strain while for the generation of Z-configured 119 a transition state 

conformation with minimized 1,2-allylic strain would be adopted.  

 

H9C4

O SnBu3

H9C4

OH

n-BuLi, −78 °C
30 min 118 (95%)

H9C4
OH

H

H

H

OH9C4

Li

minimized
1,2-allylic strain

H

H

H
H9C4

O
Li

increased
1,2-allylic strain

115

116

117

119

 
Scheme 30: The preferred formation of the rearrangement product with Z-configured double bond is the 

consequence of unfavourable steric interactions. 

 

The diastereoselectivity is influenced by the carbanion stabilizing group G and the double 

bond configuration. The general rules can be summarized as following (Table 5): 

- If non-carbonyl anion-stabilizing groups are employed, E-configured starting material will 

rearrange to give the anti-products while Z-configured alkenes will afford syn-products.84  

- For substrates in which the carbanion is stabilized by a carbonyl group the syn/anti-

diastereoselectivity is reversed.  

 

 

                                            
84 [2,3]-Wittig rearrangement with phosphorus anion stabilizing groups afforded anti-configured rearrangement 
products regardless what the double bond configuration was. See: Denmark, S.; Miller, P. C. Tetrahedron Lett. 
1995, 36, 6631-6634.  
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O G
G

OH

G

OHn-BuLi
THF, −85 °C, 6-8 h

+

(±)-syn-121 (±)-anti-121120  

Entry G 
E/Z  

(starting material) 
syn/anti 

1 93/7 7/93 

2 
C≡CH 

2/98 88/12 

3 93/7 21/79 

4 
CH=CH2 

5/95 88/12 

5 93/7 63/37 

6 
Ph 

5/95 93/7 

7 93/7 88/12 

8 
CO2H 

5/95 25/75 
Table 5: Dependence of the diastereoselectivity from the nature of the carbanion stabilizing group G and the 

double bond configuration.85 

 

If G is an alkynyl group, comparable diastereoselectivities for both double bond isomers were 

observed (Table 5, entry 1 and 2). However, if phenyl was used as carbanion stabilizing group 

the E-configured starting material rearranged with significantly lower diastereoselectivity 

(Table 5, entry 5 and 6). With vinyl groups employed as G slightly improved 

diastereoselectivities are observed (Table 5, entry 3 and 4). In case of the acid (Table 5, entry 

7 and 8) the diastereoselectivity was reversed. 

 

A model was developed that nicely explains these results. Thus, the orientation of the 

carbanion stabilizing group G on the envelope-like transition state is decisive (Scheme 31).  

 

                                            
85 Obtained from reference 66c. 
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Scheme 31: Analysis of the possible transition state conformations with respect to the carbanion stabilizing 

group G. The Newman projection illustrates steric interactions along the newly formed bond. 

 

Stronger pseudo-1,3-diaxial interactions in transition states 123/125 were accounted for a 

preferred endo orientation of G (Gendo). The transition state 126 only suffers from a gauche 

interaction between G and RE. Consequently, sterically higher demanding groups G would 

cause stronger steric gauche interactions along the newly formed bond what would lead to a 

decreased syn/anti-selectivity overall but especially if the double bond is E-configured (entry 

3 and 5, Table 5).  

In the case of G containing a carbonyl group, calculations of the relative energy revealed the 

preference of the opposite orientation (Gexo) on the cyclopentane frame.86 The presence of the 

carbonyl group might render transition states 126/127 - resulting in significant gauche 

interactions between RE/Z and Gendo along the newly formed bond - less favourable than the 

corresponding transition state 123/125. Consequently, the syn/anti-selectivity is reversed. As 

well, better diastereoselectivities are expected for the rearrangement of Z-configured starting 

materials (entry 7, Table 5) because transition state 125 profits from a favourable 

antiperiplanar arrangement of RZ and Gexo. 

 

                                            
86 Wu, Y.-D.; Houk, K. N.; Marshall, J. A. J. Org. Chem. 1990, 55, 1421-1423. 
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4.3 Induced Diastereo- and Enantioselectivity during [2,3]-Wittig 

Rearrangements 
 

Beside the simple diastereoselectivity, affords have been made to develop enantioselective 

and/or diastereoselective variations. There are four different possible strategies for the 

induction of enantio- or diastereoselectivity: 

- substrate induction (4.3.1), 

- auxiliary induction (4.3.2), 

- reagent induction (4.3.3), 

- or catalyst induction (4.3.4). 

 

4.3.1 Substrate-Induced Diastereo- and Enantioselectivity: 1,3-

Chirality Transfer and Remote Stereocontrol 
 

Due to the highly ordered transition state, the possibilities for chirality transfer are similar to 

those known for the related [3,3]-sigmatropic events. Various successful applications of the 

1,3-chirality transfer employed in the [2,3]-Wittig rearrangement of allylic ethers of 

secondary alcohols proved the value of this strategy.87 The extent of asymmetric induction 

during the self-immolative chirality transfer is generally very high (>95%). An example is 

depicted in Scheme 32.88 

 

                                            
87 For examples, see: (a) Scheuplein, S. W.; Kusche, A.; Brückner, R.; Harms, K. Chem. Ber. 1990, 123, 917-
925. (b) Hoffmann, R.; Brückner, R. Angew. Chem. 1992, 104, 646-648, Angew. Chem., Int. Ed. Engl. 1992, 31, 
647-649. (c) Uchikawa, M.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 4581-4582. (d) Balestra, 
M.; Kallmerten, J. Tetrahedron Lett. 1988, 29, 6901-6904. (e) Tsai, D. J. S.; Midland, M. M. J. Org. Chem. 
1984, 49, 1842-1843. (f) Marshall, J. A.; Jenson, T. J. Org. Chem. 1984, 49, 1707-1712. (g) Sayo, N.; Kitahara, 
E.; Nakai, T. Chem. Lett. 1984, 259-262. (h) Tsubuki, M.; Okita, H.; Kamata, T.; Ohinata, A.; Kaneko, K.; 
Honda, T. Tetrahedron: Asymmetry 2000, 11, 4725-4736. (i) Uchiyama, M.; Kimura, Y.; Ohta, A. Tetrahedron 
Lett. 2000, 41, 10013-10017. 
88 Midland, M. M.; Kwon, Y. C. Tetrahedron Lett. 1985, 26, 5013-5016. 
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O

SnBu3 OH

(Z)-128
92% ee

(S,E)-130
72%, 92% ee

n-BuLi
THF, −78 °C

129

O

Li

OH

(R,Z)-130

less favourable due to 
significant 1,3-allylic strain

 
Scheme 32: An unfavourable 1,3-allylic strain in 129 may be accounted for the preferred formation of (S,E)-130. 
 

The preferred formation of the E-configured rearrangement product (S,E)-130 can be 

accounted to a strong 1,3-allylic strain provoked by the presence of the methyl group at C-3 

that render 129 less favourable. In contrast, if E-configured (E)-128 is rearranged, decreased 

E/Z-selectivities were observed (Eq. 10). (R,E)-130 and (S,Z)-130 are formed in roughly equal 

amounts (Eq. 10). The decreased E/Z-selectivities may be rationalized by the decreased 1,3-

allylic strain between R3Z= H and the substituent in allylic position compared to R3Z= Me in 

the above example. Note that even though the E/Z-selectivity is low the chirality transfer is 

comparable to the above example given in Scheme 32. 

 

O

SnBu3 OH OH

(E)-128
92% ee

72%, 92% ee

n-BuLi, THF, −78 °C

(R,E)-130 (S,Z)-130

(R,E)/(S,Z) = 53/47

HO

Li

smaller 
1,3-allylic strain

131

 
Eq. 10 

 

Inversion of the directing allylic stereogenic center represents an effective strategy to generate 

the opposite enantiomer. This strategy was successfully employed in the synthesis of steroidal 

side chains.89 Representative examples – the formation of campestane (S)-133 and ergostane 

steroids (R)-133 – are shown in Scheme 33. 

                                            
89 (a) Castedo, L.; Granja, J. R.; Mouriño, A. Tetrahedron Lett. 1985, 26, 4959-4960. (b) Castedo, L.; Granja, J. 
R.; Mouriño, A.; Pumar, M. Synth. Comm. 1987, 17, 251-256. (c) Midland, M. M.; Kwon, Y. C. Tetrahedron 
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Scheme 33: 1,3-chirality transfer was employed as powerful tool for the side chain formation of steroids. TBS= 

tert-butyldimethylsilyl [Si(t-Bu)Me2]. 

 

Remote stereocontrol was found to be another powerful tool to control the diastereoselectivity 

of the reaction.90 Eq. 11 shows an instructive example for the potent control of the 

diastereofacial selectivity.91  

 

O

SnBu3

N
Boc

O N
Boc

O

OH

n-BuLi, THF, HMPA, −78 °C

135
75%, >98% de

134
 

Eq. 11 HMPA= hexamethylphosphoramide {[(CH3)2N]2PO}, Boc= tert-butyloxycarbonyl. 

 

                                                                                                                                        
Lett. 1985, 26, 5017-5020. (d) Midland, M. M.; Kwon, Y. C. Tetrahedron Lett. 1985, 26, 5021-5024. (e) 
Mikami, K.; Kawamoto, K.; Nakai, T. Tetrahedron Lett. 1985, 26, 5799-5802. (f) Mikami, K.; Kawamoto, K.; 
Nakai, T. Tetrahedron Lett. 1986, 27, 4899-4902. (g) Koreeda, M.; Ricca, D. J. J. Org. Chem. 1986, 51, 4090-
4092. (h) Tsubuki, M.; Ohinata, A.; Tanaka, T.; Takahashi, K.; Honda, T. Tetrahedron Lett. 2005, 61, 1095-
1100. 
90 For selected examples, see: (a) Balnaves, A. S.; McGowan, G.; Shapland, P. D. P.; Thomas, E. J. Tetrahedron 
Lett. 2003, 44, 2713-2716. (b) Mulzer, J.; List, B. Tetrahedron Lett. 1994, 35, 9021-9024. (c) Keegan, D. S.; 
Midland, M. M.; Werley, R. T.; McLoughlin, J. I. J. Org. Chem. 1991, 56, 1185-1191. (d) Abe, T.; Iwasaki, K.; 
Inoue, M.; Suzuki, T.; Watanabe, K.; Katoh, T. Tetrahedron Lett. 2006, 47, 3251-3255. (e) Ghosh, A. K.; Wang, 
Y. Tetrahedron 1999, 55, 13369-13376. (f) Dorling, E. K.; Thomas, A. P.; Thomas, E. J. Tetrahedron Lett. 1999, 
40, 475-476. 
91 Priepke, H.; Brückner, R.; Harms, K. Chem. Ber. 1990, 123, 555-563. 



44  Ester Dienolate [2,3]-Wittig Rearrangement 
 

 
Ph.D. Thesis Annett Pollex 

Finally, the possibility to employ a configurationally defined secondary or tertiary lithium 

organyls should be mentioned. This strategy relies on configurationally defined secondary 

stannanes and S,O-acetales which upon lithiation form a configurationally defined lithium 

organyl which in turn undergoes the rearrangement (Eq. 12).92a 

 

O

OTMPSBu3Sn n-BuLi, THF
−78 °C, 15 min

O

OTMPSLi

(S)

OH

(S)

OTMPS[2,3]

138
80%, 86% de

136 137
 

Eq. 12 TMPS= [dimethyl-(1,1,2-trimethylpropyl)]-silyl. 

 

4.3.2 Auxiliary-Induced Diastereoselectivity 
 

If the group G is a π-acceptor, chiral auxiliaries are easy to introduce. Chiral esters, amides, 

oxazolines, hydrazones and phosphonates have been successfully employed. The auxiliary-

induced diastereoselectivities were usually moderate to good.93 A selection of representative 

examples is given below.94  

 

The research group of Kress et al. utilized chiral amino indanoles as auxiliaries for an amide 

enolate [2,3]-Wittig rearrangement (Eq. 13).95 

 

                                            
92 (a) Ref. 77 (b) Tomooka, K.; Igrashi, T.; Watanabe, M.; Nakai, T. Tetrahedron Lett. 1992, 33, 5795-5798. (c) 
Verner, E. J.; Cohen, T. J. J. Am. Chem. Soc. 1992, 114, 375-377. 
93 Usually, both the simple diastereoselectivities and the auxiliary induced diastereoselectivities have to be 
considered. To allow the reader an easy appreciation of the auxiliary induced diastereoselectivity the latter is 
given as ‘de’ in the following equations while the simple diastereoselectivity is documented by the syn/anti-
relation in parantheses. For a more detailed discussion of scope and limitations of the descriptors de and ee, see: 
Gawley, R. E. J. Org. Chem. 2006, 71, 2411-2416. 
94 For a review concerning asymmetric [2,3]-Wittig reactions, see: Nakai, T.; Tomooka, K. Pure & Appl. Chem. 
1997, 69, 595-600. 
95 Kress, M. H.; Yang, C.; Yasuda, N.; Grabowski, E. J. J. Tetrahedron Lett. 1997, 38, 2633-2636. For additional 
examples of asymmetric amide enolate [2,3]-Wittig rearrangement, see: (a) Mikami, K.; Takahashi, O.; Kasuga, 
T.; Nakai, T. Chem. Lett. 1985, 1729-1732. (b) Uchikawa, M.; Hanamoto, T.; Katsuki, T.; Yamaguchi, M. 
Tetrahedron Lett. 1986, 27, 4577-4580.  
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O
O

N

Ph

O

O

N

OHO

Ph

LiHMDS, THF, HMPA
−78 °C to −10 °C

140 (68%, 86% de)
(syn/anti = 91/9)

139
 

Eq. 13: LiHMDS= Li[N(SiMe3)2], HMPA= hexamethylphosphoramide {[(CH3)2N]2PO}. 

 

Transformation of ketones into the corresponding chiral hydrazones and subsequent [2,3]-

Wittig rearrangement resulted in auxiliary-induced diastereoselectivities up to 92% de (Eq. 

14).96  

 

O
N

N

C2H5

C2H5
MeO

N
N

C2H5

C2H5
MeOOH

LDA, THF, HMPA
−78 °C, 22 h

142 (86%, 91% de)
(syn/anti = 95/5)

141
 

Eq. 14: HMPA= hexamethylphosphoramide {[(CH3)2N]2PO}, LDA= lithium diisopropylamide. 

 

Chiral oxazolines used as carbanion stabilizing group G as well induced diastereoselectivity 

with reasonable success.97 Nakai et al. found enhanced diastereoselectivities in the presence 

of 18-crown-6 (Eq. 15).97f  

 

O
N

O
Ph

OMe N

O
Ph

OMe

OH

144 (100%, 78% de) 
(syn/anti = 9/1)

KH, THF, 18-crown-6, rt

143
 

Eq. 15 

                                            
96 Enders, D.; Backhaus, D.; Runsink, J. Angew. Chem. 1994, 106, 2167-2170; Angew. Chem., Int. Ed. Engl. 
1994, 33, 2098-2100. For further examples, see: (a) Luengo, J. L.; Koreeda, M. J. Org. Chem. 1989, 54, 5415-
5417. (b) Enders, D.; Bartsch, M.; Backhaus, D.; Runsink, J.; Raabe, G. Synthesis 1996, 1438-1442. (c) Enders, 
D.; Backhaus, D.; Runsink, J. Tetrahedron 1996, 52, 1503-1528. (d) Enders, D.; Backhaus, D. Synlett 1995, 631-
632.  
97 (a) Mikami, K.; Fujimoto, K.; Nakai, T. Tetrahedron Lett. 1983, 24, 513-516. (b) Mikami, K.; Fujimoto, K.; 
Kasuga, T.; Nakai, T. Tetrahedron Lett. 1984, 25, 6011-6014. (c) Rossano, L. T.; Plata, D. J.; Kallmerten, J. J. 
Org. Chem. 1988, 53, 5189-5191. (d) Kress, M. H.; Haller, B. F.; Kishi, Y. Tetrahedron Lett. 1993, 34, 8047-
8050. (e) Sudo, Y.; Hashimoto, Y.; Kimoto, H.; Hayashi, K.; Saigo, K. Tetrahedron: Asymmetry 1994, 5, 1333-
1346. (f) Mikami, K.; Kasuga, T.; Fujimoto, K.; Nakai, T. Tetrahedron Lett. 1986, 27, 4185-4188. 
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A very good auxiliary-induced diastereoselectivity was reported for the use of phosphonates. 

The rearrangement products have been obtained with up to 99% de (Eq. 16). 98a 

 

N
PO O

t-Bu

O

N
PO

O

t-Bu
OH

n-BuLi, THF, −70 °C

146 (88%, >99% de)
(syn/anti =1/99)

14
 

Eq. 16 

 

Eq. 17 illustrates an ester enolate [2,3]-Wittig rearrangement incorporating a chiral ester 

alcohol residue.99 

O CO2R*

Ph

CO2R*

OH
LDA, THF, HMPA, −78 °C

R*=
148 (75%, 94% de)

(syn/anti = 9/1)
147

 
Eq. 17 HMPA= hexamethylphosphoramide {[(CH3)2N]2PO}, LDA= lithium diisopropylamide. 

 

4.3.3 Reagent-Induced Enantioselectivity 
  

The reagent-induced enantioselectivity is less frequently employed for asymmetric variations 

of the [2,3]-Wittig rearrangement. Chiral lithium amides have been used.100 However, 

appreciable enantioselectivities were observed only for specific cyclic substrates.  

Chiral ligands such as (−)-sparteine101 or bis(oxazolines)102 have been employed. 

Enantioselectivities up to 50% ee could be realized by using (−)-sparteine for the 

rearrangement of allyl heteroaryl ethers (Eq. 18). 

 

                                            
98 For representative examples using phosphonates, see: (a) Denmark, S. E.; Miller, P. A. Tetrahedron Lett. 
1995, 36, 6631-6634. (b) Gulea-Purcarescu, M.; About-Jaudet, E.; Collignon, N. Tetrahedron Lett. 1995, 36, 
6635-6638. 
99 Takahashi, O.; Mikami, K.; Nakai, T. Chem. Lett. 1987, 69-72. 
100 (a) Marshall, J. A.; Lebreton, J. Tetrahedron Lett. 1987, 28, 3323-3326. (b) Marshall, J. A.; Lebreton, J. J. 
Am. Chem. Soc. 1988, 110, 2925-2931. (c) Marshall, J. A.; Lebreton, J. J. Org. Chem. 1988, 53, 4108-4112. 
101 For recent examples, see: (a) Capriati, V.; Florio, S.; Ingrosso, G.; Granito, C.; Troisi, L. Eur. J. Org. Chem. 
2002, 478-484. (b) Kawasaki, T.; Kimachi, T. Tetrahedron 1999, 55, 6847-6862. 
102 (a) Tomooka, K.; Komine, N.; Nakai, T. Tetrahedron Lett. 1998, 39, 5513-5516. (b) Barrett, I. M.; Breeden, 
S. W. Tetrahedron: Asymmetry 2004, 15, 3015-3017. 
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O

Ph
S

N

S

N

Ph OH

NN

1.5 eq (−)-sparteine, THF, −78 °C
then n-BuLi, −78 °C to rt

(−)-sparteine:

150 (79%, 50% ee)149  
Eq. 18 

 

Bis(oxazoline) ligands have been used for reagent induced enantioselectivity during the 

rearrangement of crotyl propargyl ethers. The corresponding [2,3]-Wittig rearrangement 

products could be obtained in up to 89% ee (Eq. 19).102  

 

O
OH

N N

O O

1.5 eq t-BuLi, 1.5 eq (S,S)-152
pentane, −95 °C

(S,S)-152:

153 
(>90%, >95% de, 89% ee)

151
 

Eq. 19 

 

4.3.4 Catalyst-Induced Enantioselectivity 
 

Examples of catalyzed [2,3]-Wittig rearrangements are very rare. Recently, the first 

organocatalytic version of the [2,3]-Wittig rearrangement has been reported.103 Gaunt and co-

workers utilized cyclic secondary amines for their approach. The catalytic activity of the 

amine is based on the formation of an enamine (Scheme 34). 

 

                                            
103 McNally, A.; Evans, B.; Gaunt, M. J. Angew. Chem. 2006, 118, 2170-2173; Angew. Chem., Int. Ed. 2006, 45, 
2116-2119. 
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MeOH
N
H

O

Ph

N

O

Ph

O

H2O

O

N

H OMe

Ph

H2O

Ph

OH

N

Ph

OH

O

N
H

δ+

[2,3]

pyrrolidine, MeOH

OMe

MeOH

154 155

156
157

158

 
Scheme 34: Mechanism of the organo catalytic [2,3]-Wittig rearrangement: formation of an enamine initialized 

the reaction. 
 

It was shown, that 5 mol% of pyrrolidine was a sufficient amount to induce the 

rearrangement. Low temperatures (below −5 °C) were required to obtain the rearrangement 

product with significant diastereoselectivity (Table 6, entry 4). In a preliminary experiment 

the potential of a catalytic asymmetric process was investigated. When a chiral diamine was 

utilized, ambient temperatures were required (Table 6, entry 5). Consequently, the 

diastereoselectivity was only low. Nevertheless, an intriguing 60% ee could be obtained 

which makes this access an exciting lead for prospective developments in this field.  
 

O

Ph

O
catalyst, MeOH

Ph

OH

O

154 155  

Entry Catalyst 
Catalyst loading 

[mol%] 

Temperature 

[°C] 

Reaction time 

[h] 
syn/anti 

1 pyrrolidine 20 23 0.5 3/1 

2 pyrrolidine 20 −5 24 6.5/1 

3 pyrrolidine 20 −25 90 10/1 

4 pyrrolidine 5 −5 96 8/1 

5 
N
H

N
 

20 23 120 2/1 (60% ee) 

Table 6: [2,3]-Wittig rearrangement by way of enamine catalysis. 
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No metal catalysed variation has been reported for the [2,3]-Wittig rearrangement. Only for 

the charge accelerated [2,3]-sigmatropic rearrangement of ylides considerable success has 

been achieved and should be mentioned in this context. As it was pointed out earlier, the 

carbanion is formed by the reaction of a rhodium-104  or copper-carbene105 with the oxygen of 

an allyl ether. If chiral ligands are used to form the catalyst complex, catalytic asymmetric 

variations could be realized.106 Doyle et al. reported remarkable enantioselectivities up to 

98% ee for an intermolecular reaction, although yields were low (about 30%).107 In contrast, 

an intramolecular reaction provided the resulting cyclic ethers with good yields but moderate 

enantioselectivities (Eq. 20). 

 

O
N2

O
CO2Me

O

O
CO2Me

2 mol% Rh2(S-PTTL)4
toluene, 0 °C, 2 h

160 (70%, 74% ee)
N

O

O

HO2C

t-Bu(S-PTTL)-H:

159

 
Eq. 20  

 

4.4 Ester Enolate [2,3]-Wittig Rearrangement 
 

In the 1980ies different research groups reported successful ester enolate [2,3]-Wittig 

rearrangements. The formation of the carbanion is facilitated by the presence of the carbonyl 

group. However, since the carbanion is highly stabilized, it exhibited only limited reactivity. 

Increased reaction rates at low temperatures were realized by the addition of the co-solvent 

HMPA.108 Without the co-solvent, reaction temperatures of 0 °C were required.109 In a 

different approach the lithium enolate is transformed into a zirconium enolate prior to the 

rearrangement. The transmetallation facilitated the subsequent rearrangement (Eq. 21).110 The 

unusual formation of the Z-configured double bond is the result of a chelated transition state 

                                            
104 Kitagaki, S.; Yanamoto, Y.; Tsutsui, H.; Anada, M.; Nakajima, M.; Hashimoto, S. Tetrahedron Lett. 2001, 
42, 6361-6364. 
105 Clark, J. S.; Fretwell, M.; Whitlock, G. A.; Burns, C. J.; Fox, D. N. A. Tetrahedron Lett. 1998, 39, 97-100.  
106 For reviews, see: (a) Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem. Rev. 1997, 97, 2341-2372. (b) Hodgson, 
D. M.; Pierard, F. Y. T. M.; Stupple, P. A. Chem. Soc. Rev. 2001, 30, 50-61. 
107 Doyle, M. P.; Forbes, D. C.; Vasbinder, M. M.; Peterson, C. S. J. Am. Chem. Soc. 1998, 120, 7653-7654. 
108 Takahashi, O.; Saka, T.; Mikami, K.; Nakai, T. Chem. Lett. 1986, 1599-1602. 
109 Raucher, S.; Gustavson, L. M. Tetrahedron Lett. 1986, 27, 1557-1560. 
110 Uchikawa, M.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 4581-4582. 
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and the steric demanding cyclopentadienyl ligands. Noteworthy is the excellent 

diastereoselectivity as well as the high degree of chirality transfer. 

 

O

O
Zr

Cp

Cp
Oi-Pr

O CO2i-Pr CO2i-Pr

OH

LDA, THF, −100 °C, 1 h
then Cp2ZrCl2, −78 °C, 1 h, −20 °C, 18 h

163
(91%, 100% de, >96% ee)

162

161

 
Eq. 21 LDA= lithium diisopropylamide, Cp= cyclopentadienyl. 

 

In the following years, numerous examples of the ester enolate [2,3]-Wittig rearrangement 

have been reported and are covered by comprehensive review articles.66 Powerful asymmetric 

versions involve chirality transfer111 and auxiliary induced diastereoselectivity.112  

 

4.5 Ester Dienolate [2,3]-Wittig Rearrangement 
 

The first example of an ester dienolate [2,3]-Wittig rearrangement was reported in 1999.59a,113 

In this version the easy and regioselective formation of the carbanion was combined with the 

higher reactivity of bisallyl ethers. No donor solvent or metal salt addition was required to 

trigger the rearrangement. Quantum chemical calculations revealed a smaller energy gap 

between the HOMO and the LUMO of the ester dienolate compared to the HOMO-LUMO 

gap of the corresponding ester enolate.59b This finding may be accounted for the observed 

higher reactivities of the ester dienolates. The rearrangement of Z-configured substrate 164 

afforded the rearrangement product anti-165 with high diastereoselectivity (Eq. 22).114 In 

contrast but not unexpected, the auxiliary induced diastereoselectivity was rather low.115 

 

                                            
111 For a successful application in target oriented synthesis, see: Mulzer, J.; Riether, D. Org. Lett. 2000, 2, 3139-
3141. 
112 An example for the auxiliary induced of diastereoselectivity was given in Eq. 17. 
113 For examples of conceptual different dienolate [2,3]-Wittig rearrangements, see: (a) Li, Y.-J.; Lee, P.-T.; 
Yang, C.-M.; Chang, Y.-K.; Weng, Y.-C.; Liu, Y.-H. Tetrahedron Lett. 2004, 45, 1865-1868. (b) Pevet, I.; 
Meyer, C.; Cossy, J. Tetrahedron Lett. 2001, 42, 5215-5218. 
114 The terms syn and anti refer to the projection of the product as substituted pentenoic acid as depicted in Eq. 
22. This representation is used throughout chapter 4.5. In the following sections and in accordance to the 
procjected total synthesis of viridiofungins 1, the structure that is formed by the [2,3]-Wittig rearrangement and 
that mirrors a central element of the viridiofungins 1 will represented as a 1,5-diene backbone. The preferred 
anti-configuration was confirmed by 2D-NMR experiments of a lactone derivative (formed by a one-pot 
desilylation/lactonization sequence of the rearrangement product). 
115 In the following example ‘de’ reflects the result of the simple (syn-/anti) diastereoselectivity. 
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CO2R*O

TIPSO OTIPS
CO2R*

HO
LDA, THF

−78 °C to rt

anti-165 (71%, >90% de)
(R*-induced dr: 1.2/1)

164
 

Eq. 22: HOR*= (−)-menthol, TIPS= triisopropylsilyl [Si(i-Pr)3], LDA= lithium diisopropylamide. 

 

Furthermore, it was shown, that α,β-unsaturated esters possessing γ-protons can undergo the 

ester dienolate [2,3]-Wittig rearrangement. Formation of the α-carbanion can be rationalized 

by the resonance concept (Scheme 35). 

 

O CO2R

R2

R1

O CO2R

R2

R1

O CO2R

R2

R1

R2
CO2R

HO
base [2,3]

166 167 168 169  
Scheme 35: 2-alkoxycarbonyl substitute AVEs as substrates for ester dienolate [2,3]-Wittig rearrangements. 

 

Subsequently, results were published that confirmed the previously reported stereochemical 

rule [(E) to syn and (Z) to anti]66 directed by the allyl double bond configuration.59b,116  

 

O CO2R*

n-Pr n-Pr
CO2R*

HO

n-Pr
CO2R*

HOLDA, THF
+

syn-172 anti-172

O CO2R*

n-Pr

+

170 171  
Entry Substrate Reaction conditions Yield [%] syn/anti 

1 (E)-170/171- −78 °C, 12 h 90 93/7 

2 (Z)-170/171 −78 °C, 10 min, then 0 °C, 1 h 78 6/94 

Table 7: ‘[(E) to syn and (Z) to anti]’ selectivity observed for the rearrangement of 170/171. HOR*= (−)-

menthol, LDA= lithium diisopropylamide. 

 

 

 

                                            
116 Hiersemann, M. Synlett 2000, 415-417. 
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Small changes in the substitution pattern can have a strong influence both for the 

diastereoselectivity and the reactivity (Table 8).59c 

O CO2i-Pr

R2

CO2i-Pr

HO R2

CO2i-Pr

HO R2LDA, THF
−78 °C to rt

+

syn-175 anti-175

R1

R3

R1 R1

R3 R3

O CO2i-Pr

R2
R1

R3

+

173 174  
Entry R1 R2 R3 Yield [%] syn/anti 

1 H H (E)-Et 90 91/9 

2 H H (Z)-Et 92 14/86 

3 H Me (Z)-Et 83 5/95 

4 Ph H (E)-Et 91 79/21 

5 Me H (E)-Et 40 92/8 

6 OBn H (E)-Et 20-50 80/20 

7 OTPS H (E)-Et n.r. - 

8 H H OBn 65 72/28 

9 H H OTPS 81 >95/5 
Table 8: Dependency of the stereochemical result and the reactivity from the substituents present on the 

substrate. LDA= lithium diisopropylamide. 

 

Substrates 173/174 containing a Z-configured allylic ether double bond rearranged with lower 

diastereoselectivity than the corresponding E-configured substrates (Table 8, entry 1 and 2). 

However, if a methyl group was introduced at C2 improved diastereoselectivities were 

observed (Table 8, entry 3). If a R1-substituent other than hydrogen was used, reduced 

diastereoselectivities were observed in most cases (Table 8, entry 5-7). Noteworthy is the 

reduced reactivity observed for those cases. Entry 8 and 9 impressively show how the change 

of the nature of the protecting group can have a strong effect on the diastereoselectivity. 

 

A qualitative model was developed to explain the stereochemical course of the ester dienolate 

[2,3]-Wittig rearrangement.59 Based on a favourable formation of a chelate, it is conceivable 

to assume the formation of a Z-configured enolate 176 (Figure 8).  
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H

R5

O

ORO

R1

R1'

Li

= coordinative bond

176  
Figure 8: Preferred formation of a Z-configured enolate 176 as a result of favourable chelate formation. 

 

For the rearrangement of each of the dienolates (E)-177 and (Z)-177 two different transition 

states (E)- or (Z)-ul (176 and 181) and (E)- or (Z)-lk (179 and 180) may be postulated 

(Scheme 36 and Scheme 37).117  

Considering (E)-177 as starting material, the E-configured double bond should result in a less 

dominant 1,3-allylic strain. As well, the 1,2-allylic strain is expected to be rather small for 

each of the possible transition states (E)-ul-176 and (E)-lk-179. Consequently 1,2-relations 

along the newly formed bond have to be considered. The transition state 179 is destabilized 

by steric interactions between the substituents on C1 and C5 with pseudo-eclipsed 

arrangement and a pseudo-transannular-diaxial interaction between the H-atom on C5 and the 

ester enolate unit. The pseudo-gauche arrangement of the C1 and C5 substituent in 176 

should be more favourable. Furthermore, the partial negative charge at the center of the allyl 

fragment might be stabilized by an attractive interaction with the lithium cation.118 Due to the 

smaller distance between lithium cation and the allyl ether moiety, this stabilizing interaction 

should be significantly higher for 176. Therefore, rearrangement of (E)-177 preferentially 

gives (±)-syn 178 (Scheme 36). 

 

                                            
117 For a detailed discussion of the lk/ul descriptors, see: Seebach, D.; Prelog, V. Angew. Chem. 1982, 94, 696-
702; Angew. Chem., Int. Ed. Eng. 1982, 21, 654-660. 
118 (a) Okajiama, T.; Fukuzawa, Y. Chem. Lett. 1997, 81-82. (b) Mikami, K.; Uchida, T.; Hirano, T.; Wu, Y.; 
Houk, K. N. Tetrahedron 1994, 50, 5917-5926. 
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O R2
R5E
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R1
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O R2

O
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Li
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R5E

O
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R5E

H
Li
O R2

O

R1
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(E)-177

R5E
CO2R

HO R2

R5E
CO2R

HO R2

(±)-syn-178

(±)-anti-178

R1

R1

(E)-ul -176

(E)-lk-179

δ−

δ−

(E)-177

1

3
5

= coordinative bond

H

R5

O

ORO

R1

R1'

Li

R5

H

O

OR

R1'

R1

Li
 

Scheme 36: Proposed qualitative transition state model for the ester dienolate [2,3]-Wittig rearrangement of (E)-

177. ul = unlike lk = like 

 

Analogue to the arguments outlined in the preceding paragraph, the rearrangement of (Z)-177 

should proceed through the transition state (Z)-lk-180 rather than through (Z)-ul-181 giving 

(±)-anti-178 as major product (Scheme 37). However, (Z)-lk-180 suffers from a stronger 1,3-

allylic strain between R5Z and the substituents at C3. This can result in decreased 

diastereoselectivities (Table 8, entry 1 and 2).  
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Scheme 37: The [2,3]-Wittig rearrangement of ester dienolates with Z-configured double bond preferentially 

gave anti-products. 

 

Having discussed the theoretical background of the ester dienolate [2,3]-Wittig 

rearrangement, the following chapter will cover the results of the realized total synthesis of 

the triesters of viridiofungin A, A2 and A4 as well as the non-natural diastereomers thereof. 

The underlying synthetic plan was outlined previously and – if required – the interested reader 

is kindly referred to chapter 3 (page 27) to recapitulate the intended strategy. 
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5 Synthesis of the Eastern Half 
 

For the attempted total synthesis of the viridiofungins A, A2 and A4 three different sulfones 

68a-c were required (Table 9).  

 

Viridiofungin Required sulfone = eastern half 

A S
OO

N
N

N N

OOPh

68a  

A4 
S

OO
N

N
N N

OOPh

68b  

A2 
SN

N
N N

OOPh

68c  
Table 9 

 

Pentadecanol (70c), the starting material for the formation of 68c, is commercially available. 

For sulfone 68a and 68b the required alcohols may be generated by sequential alkylation of 

1,3-dithiane (182) and subsequent cleavage of the thioketale. 

 

In the first alkylation step 1,3-dithiane (182) was subjected to n-BuLi and 1-bromoheptane 

(183a) or 1-bromononane (183b) respectively (Scheme 38).119  

 

S S

1.05 eq n-BuLi, THF, −5 °C, 1 h
then 1.01 eq BrCH2(CH2)5R (183a,b)

−78 °C to rt, 3 h
S S

R

R= Me
R= n-Pr

184a (93%)
184b (97%)

182
 

Scheme 38 

 

Iodide 186, required for the second alkylation step was obtained in two steps. After functional 

group exchange the free hydroxyl group was protected as silyl ether120 (Scheme 39). 

                                            
119 (a) Corey, E. J.; Seebach, D. Angew. Chem. 1965, 77, 1134-1135; Angew. Chem., Int. Ed. Engl. 1965, 4, 
1077-1078. (b) Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231-237. 
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OHHO ITPSO
2.0 eq 185

1. 1.0 eq I2, 2.0 eq PPh3
   2.0 eq imidazole, 0 °C to rt, 3 h
2. 1.05 eq TPSCl, 1.2 eq imidazole
    THF, rt, 16 h

186 (71%)  
Scheme 39 TPS= tert-butyldiphenylsilyl [Si(t-Bu)Ph2]. 

 

For the second alkylation step a stronger base was required.121 Thus, 184a,b were treated with 

t-BuLi to generate the carbanion that in turn was alkylated by the iodide 186. Since we were 

unable to purify the reaction product after this step, the crude material was deprotected using 

TBAF. Deprotected alcohols 70a,b were easily separable from excess of 184 by flash 

chromatography (Scheme 40).  

 

S S
(CH2)6R

S S
(CH2)6R

HO

1. 3.0 eq t-BuLi, 4.0 eq HMPA
    THF, −78 °C, 1 min
    1.0 eq TPSOCH2(CH2)5CH2I (186)
    −78 °C, 1 h
2. 1.0 eq TBAF, THF, rt, 1 h

R= Me
R= n-Pr

70a (92%)
70b (86%)

1.5 eq 184
 

Scheme 40 TPS= tert-butyldiphenylsilyl [Si(t-Bu)Ph2], TBAF= tetrabutyl ammonium fluoride [(n-Bu)4NF], 

HMPA= hexamethylphosphoramide {[(CH3)2N]2PO}. 

 

Alcohols 70a-c were converted into the 5-alkylsulfanyl-1-phenyl-1H-tetrazole derivatives 

69a-c. Again, a Mitsunobu procedure was successfully employed and afforded 69a-c in 

almost quantitative yield (Scheme 41). 

 

OHR SR

N N
N

N
Ph

H29C14

SS
H19C9

SS
H15C7

1.5 eq PT-SH, 1.3 eq DIAD
1.2 eq PPh3, THF, rt, 15 min

69a (100%)
69b  (98%)
69c  (99%)

a R=

b R=

c R=

70a-c

 
Scheme 41 PT-SH= 1-phenyl-1H-tetrazole-5-thiol, DIAD= diisopropyl azodicarboxylate. 

 
                                                                                                                                        
120 Hanessian, S.; Lavallee, P. Can. J. Chem. 1975, 53, 2975-2977. 
121 Williams, D. R.; Sit, S. Y. J. Am. Chem. Soc. 1984, 106, 2949-2954. 
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Since the chemoselective oxidation of the sulfide in the presence of the thioketale proved to 

be unsuccessful, the thioketale cleavage was performed first. Treatment of 69a,b with CuII in 

water resulted in the formation of the ketones 187a,b (Scheme 42).122  

 

SS
R(CH2)6

S

N N
N

N
Ph

R(CH2)6 (CH2)7S

O

N
N

NN
Ph

2.0 eq CuCl2, 4.0 eq CuO
acetone, H2O, rt, 1 h

69a,b R= Me
R= n-Pr

187a (86%)
187b (85%)  

Scheme 42 

 

The following oxidation step of the sulfides 187a-c afforded the corresponding sulfones 

188a,b and 68c (Scheme 43).  

 

SR

N N
N

N

H29C14

H19C9

H15C7

188a  (99%)
188b  (85%)
  68c  (86%)

a R=

b R=

c R=

SR

N N
N

N

187a,b and 69c

OO
O

O

0.1 eq (NH4)6Mo7O24
10.0 eq H2O2, H2O, rt, 16 h

Ph Ph

 
Scheme 43 

 

Finally, the carbonyl groups of 188a,b were converted into cyclic ketales 68a,b (Scheme 44). 

We found the Noyori conditions123 for the generation of the ketales 68a,b a more reliable 

alternative than the conventional method of ketalization using 1,2-ethandiol under acidic 

conditions.  

 

                                            
122 Mukaiyama, T.; Narasaka, K.; Furusato, M. J. Am. Chem. Soc. 1972, 94, 8641-8642. 
123 Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 1357-1358. 
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R(CH2)6
S

N N
N

N
PhO OO

3.0 eq (TMSOCH2)2
0.1 eq TMSOTf
CH2Cl2, −5 °C, 24 h

S

N N
N

N
PhOOOO

R

68a (98%) 
68b (92%)

188a,b

R= Me 
R= n-Pr  

Scheme 44 TMS= trimethylsilyl [SiMe3], TMSOTf= trimethylsilyloxy trifluoromethane sulfonic acid 

[Me3SiOSO2CF3]. 
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6 Synthesis of the Western Half 
 

The synthesis of the α-allyloxy-substituted α,β-unsaturated ester 4 was realized by the well 

established aldol condensation strategy.64 This convenient multigram access was routinely 

performed on a 10 g scale. Starting from commercially available compounds, five steps were 

required for the synthesis of 4 (Scheme 46).  

 

BnO

OH

BnO

O

CO2i-PrBnO5 steps

189 4  
Scheme 45 

 

Etherification of mono-benzylated (Z)-2-butene-1,4-diol 189124 was followed by esterification 

with iso-propanol (Scheme 46).125  

 

BnO

OH

BnO

O

CO2i-Pr

1. 1.o eq n-BuLi, 1.05 eq ICH2CO2Na
   THF, −78 °C to rt, 16 h
2. 2.0 eq i-PrOH, 1.1 eq DCC, 0.05 eq DMAP
   CH2Cl2, 0 °C to rt, 30 min

73 (89%)189  
Scheme 46: DCC= dicyclohexylcarbodiimide, DMAP= N,N-dimethyl-4-aminopyrridine. 

 

Aldol condensation of the α-allyloxy-substituted ester 73 with benzyloxy acetaldehyde 72 was 

employed for the generation of the vinyl ether double bond. Ozonolysis of dibenzylated (Z)-2-

butene-1,4-diol 190 was recruited to provide the required aldehyde 72 (Eq. 23).  

 

                                            
124 Both mono- and dibenzylated 2-butene-1,4-diol (189 and 190) are commercially available from Aldrich, 
ACROS and others (~8 €/g and ~9 €/g respectively). Both were required for our synthesis. For economical 
reasons we synthesized 189 and 190 starting from (Z)-2-butene-1,4-diol by mono- and dibenzylation. The 
dibenzylated side product of the monobenzylation could be combined with the main product of the dibenzylation 
and vice versa. For details. See: Experimental Section. 
125 Neises, B.; Steglich, W. Angew. Chem. 1978, 90, 556-557; Angew. Chem., Int. Ed. Eng. 1978, 17, 522-524. 
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BnO

OBn

BnO

O
O3, CH2Cl2, MeOH, −78 °C

then 4.0 eq Me2S, −78 °C to rt

72 (99%)190  
Eq. 23 

 

The α-allyloxy substituted ester 73 was deprotonated with LDA and subsequently subjected to 

the aldehyde 72 (Eq. 24). As it was pointed out earlier, ester enolates exhibit reduced 

reactivity with respect to the [2,3]-Wittig rearrangement. Therefore, this competing side 

reaction could be efficiently prevented by keeping the reaction at low temperatures.  

 

BnO

O

CO2i-Pr

BnO

O

CO2i-Pr
OH

BnO
1.2 eq LDA, THF, −78 °C, 15 min

then 1.2 eq BnOCH2CHO (72)
−78°C, 30 min

191 (82%, dr= 55/45)73  
Eq. 24: LDA= lithium diisopropylamide, Bn= benzyl. 

 

The resulting diastereomeric β-hydroxyl esters 191 were mesylated to enable DBU-mediated 

elimination (Scheme 47). The α-allyloxy-substituted α,β-unsaturated ester 4 was obtained as 

1/1 mixture of double bond isomers (E,Z)- and (Z,Z)-4 which may be separated by preparative 

HPLC or carefully performed flash chromatography.126 

 

BnO

O

CO2i-Pr
OH

BnO

BnO

O

CO2i-Pr
RZ

RE1. 1.2 eq MsCl, 1.3 eq Et3N
    CH2Cl2, 0 °C to rt, 30 min
2. 3.0 eq DBU, THF, rt, 16 h

4 (82%, E/Z= 1/1)

(E,Z)-4: RE= CH2OBn, RZ= H
(Z,Z)-4: RE= H, RZ= CH2OBn

191

 
Scheme 47: MsCl= methane sulfonyl chloride, DBU= 1,8-Diazabicyclo[5.4.0]-7-undecene. 

 

With the successfully realized synthesis of 4, the crucial [2,3]-Wittig rearrangement was 

performed next. It was found that slight excess of LDA in concert with THF as solvent and a 

                                            
126 For details, see: Experimental Section. 
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reaction temperature of −78 °C which was slowly warmed to −10 °C gave the best results for 

the transformation.127 We expected that both double bond isomers should lead to the same 

rearrangement product (±)-syn-8. Indeed, syn-/anti-selectivity was found to be 95/5 or higher 

for both cases and afforded the desired syn-diastereomer (±)-syn-8.128 However, (E,Z)-4 

exhibited considerably lower chemoselectivity than (Z,Z)-4. Low yields were isolated together 

with varying amounts of reisolated starting material and several unidentified side products 

(Table 10, entry 1). In contrast, (Z,Z)-4 rearranged to the desired syn-product (±)-syn-8 with 

acceptable yields (Table 10, entry 2).  

 

BnO

O

CO2i-PrBnO

BnO

OBn

CO2i-PrHO1.2 eq LDA, THF
−78 °C to −10 °C

(±)-syn-84  
Entry Substrate Yield syn/anti 

1 (E,Z)-48 9 >95/5 

2 (Z,Z)-48 57 95/5 
Table 10: Unexpected different chemoselectivities were observed for the rearrangement of (E,Z)-4 and (Z,Z)-4. 

LDA= lithium diisopropylamide, Bn= benzyl. 

 

The enol ether was formed with E-configuration exclusively. Selected NOEs are presented 

Scheme 48. 

 

BnO

OBn

CO2i-PrOH
H

H

(±)-syn-8

=  NOE

 
Scheme 48: Selected NOEs for (±)-syn-8. 

                                            
127 Different bases, solvents and temperature protocols were tested. Abraham, L., unpublished results. 
128 In accordance to the procjected total synthesis and the structure element of the viridiofungines that is formed 
by the rearrangement event we will use a 1,5-diene backbone to illustrate the rearrangement product in the 
following sections. Using this projection instead of the previously described pentenoic acid backbone applied in 
chapter 4.3-4.5 consequently resulted in a ‘Z to syn-‘ instead of ‘Z to anti-selectivity’. Even though we are aware 
of the inconvenience of this change that is attributed to the softness of the stereochemical descriptors we prefer 
this projection in this context for it results in a representation that guides the reader to the similarities between 
the rearrangement product and the target molecule. However, for the discussion of general trends and 
stereoselectivites of the [2,3]-Wittig rearrangement such a projection would not have been useful. 
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The exact reason(s) for the observed finding of the different chemoselectivities for (E,Z)-4 

and (Z,Z)-4 remain speculative. We assume that the deprotonation to the ester dienolate rather 

than the consecutive rearrangement is influenced by the configuration of the vinyl ether 

double bond.65k The following model is recruited to consider possible reasons for the different 

behaviour of the double bond isomers as well as for a reasonable explanation of the preferred 

formation of an E-configured double bond.  

The vinyl ether double bond and the carbonyl group adopt a planar arrangement to allow 

resonance stabilization. During the transition state of the deprotonation event, the leaving 

proton would be oriented in right angle with respect to the plane of the present sp2-configured 

carbon atoms to allow the overlap of the p-orbital (formed by the hybridisation change from 

sp3 to sp2) with the p-orbitals of the already existing π-bonds. At the same time this allows the 

delocalisation of the negative charge by resonance. To minimize the 1,3-allylic strain, the 

benzyloxy substituent would be expected to prefer conformation A finally resulting in an E-

configured enol ether rather than conformation B that would lead to a Z-configured enol ether 

(Scheme 49).129  

 

OBn
RZ
RE

H

H
BA

H
RZ
RE

H

BnO
 

Scheme 49: Possible conformations of 4 that would lead to either E-configured enol ethers (A) or Z-configured 

enol ethers (B). 

 

To rationalize the different behaviours of (E,Z)-4 and (Z,Z)-4, structure A requires a more 

detailed analysis. Some features may be emphasized (Scheme 50): 

- As discussed earlier, in the transition state of the deprotonation the leaving proton has to 

adopt a right angular out of plane orientation. 

- It appears reasonable to argue that the 1,3-allylic strain between the remaining hydrogen-

atom at C1’’ and the allyloxy substituent of Z-4 (RZ= ORallyl, RE= CO2i-Pr) (Scheme 50, 

right) would be significantly smaller than the 1,3-allylic strain between the hydrogen atom 

and the ester group of E-4 (RZ= CO2i-Pr, RE= ORallyl) (Scheme 50, left). In the former case, 

repulsion results from the steric interaction of the hydrogen atom with the lone pairs of the 

sp3-configured ether oxygen-atom. In contrast, in the latter case, the trigonal planar sp2-

configured carbon-atom bears two substituents (carbonyl oxygen and Oi-Pr). Additionally, 
                                            
129 It can not be excluded, that the preferred formation of the E-configured enol ether is the result of a 
thermodynamic equilibrium of the dienolate. 
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due to the possible resonance stabilization of the vinyl ether double bond and the carbonyl 

bond a planar arrangement is preferred what would further increase the disadvantageous 1,3-

allylic strain. Therefore, the adoption of a conformation required for a successful 

deprotonation is more unfavourable for E-4 than for Z-4. In summary, the above reasons 

should increase the activation barrier for the deprotonation of (E,Z)-4 compared to (Z,Z)-4 and 

could therefore be accounted for the different behaviours of the double bond isomers (E,Z)-4 

and (Z,Z)-4 with respect to the [2,3]-Wittig rearrangement.  

 

(E,Z)-4

H1

ORallyl
H

BnO
Oi-Pr

O

(Z,Z)-4

H1 ORallyl
H

BnO

O
i-PrO

vs.

 
Scheme 50: Rationalization of the different behaviours of (E,Z)-4 compared to (Z,Z)-4 by consideration of the 

1,3-allylic strain. 

 

However, it should be emphasized once again, that the above described model is speculative 

and was only employed to rationalize the observed finding. No further experiments or 

calculations have been undertaken to support the above assumption. 

 

For the construction of the carboxylic group at C1 the benzyl enol ether of the rearrangement 

product (±)-syn-8 was cleaved under acidic conditions. The resulting aldehyde was 

immediately oxidized to the corresponding acid (±)-syn-192 (Scheme 51). At this step, the 

cleaved benzyl alcohol of the preliminary step had to be carefully removed to prevent its 

interference during the following esterification.130 

 

BnO

OBn

CO2i-PrHO
HO2C

OBn

CO2i-PrHO

(±)-syn-8 (±)-syn-192 (93%)

1. 1.5 eq 2 N HCl, THF, rt, 72 h
2. 10.0 eq NaClO2, 7.0 eq NaH2PO4
      t-BuOH, 2-methyl-2-butene, rt, 18 h

 
Scheme 51 

 

                                            
130 If benzylalcohol is not completely removed by flash chromatography it could form the benzyl ester under the 
conditions of the following esterification. 
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Esterification of (±)-syn-192 was followed by protection of the tertiary alcohol as silyl ether131 

using TBSOTf and 2,6-lutidine to afford (±)-syn-193 (Scheme 52).132 Preparation of the 

western half may be completed by ozonolysis of the terminal double bond to provide the 

desired aldehyde (±)-syn-67. However, (±)-syn-67was found to be unstable. Consequently, it 

was generated prior to the following Julia-Kocienski olefination and used immediately 

without further purification. 

 

HO2C

OBn

CO2i-PrHO
MeO2C

OBn

CO2i-PrTBSO

1. 2.0 eq MeOH, 1.1 eq DCC
    0.05 eq DMAP, CH2Cl2, 0 °C to rt, 2 h
2. 3.0 eq TBSOTf, 4.0 eq 2,6-lutidine
    CH2Cl2, 0 °C to rt, 3 h

(±)-syn-8 (±)-syn-193 (79%)  
Scheme 52 TBS= tert-butyldimethylsilyl, OTf= trifluoromethanesulfonyl, DCC= dicyclohexylcarbodiimide, 

DMAP= N,N-dimethyl-4-aminopyrridine. 

                                            
131 Nelson, T. D.; Crouch, R. D. Synthesis 1996, 1031-1069. 
132 Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Tetrahedron Lett. 1981, 22, 3455-3458. 
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7 Synthesis of the Viridiofungin A, A2 and A4 Triesters 
 

Completion of the carbon skeleton of the viridiofungins was attempted next. The polar head 

group and the lipophilic tail are connected by an isolated, E-configured double bond. 

Following our synthetic plan, Julia-Kocienski olefination was identified as a prospective 

synthetic tool for the formation of the isolated C5-C6 double bond. Kocienski's 

modification133 of the classical Julia olefination134 allows the transformation to be completed 

in one step. This attractive improvement has been frequently employed for the construction of 

isolated E-configured double bonds.135 The preferred formation of the E-configuration was 

accounted to the kinetically controlled diastereoselective addition of the metallated alkyl 1-

phenyl-1H-tetrazol-5-yl sulfones to the aldehyde affording anti-β-alkoxysulfones anti-194.135 

This inherently unstable addition product undergoes a Smiles rearrangement136 that affects the 

transfer of the heterocycle from sulfur to oxygen. The rearrangement proceeds through the 

spirocyclic intermediate 195. The resulting sulfinate 196 readily eliminates sulfur dioxide and 

lithium phenyltetrazolone. Anti-elimination of the two leaving groups which are in 

antiperiplanar arrangement yields the E-configured olefin (E)-197 (Scheme 53).135  

 

                                            
133 (a) Kocienski, P. J.; Lythgoe, B.; Ruston, S. J. Chem. Soc., Perk. Trans. 1 1978, 829-834. (b) Kocienski, P. J.; 
Lythgoe, B.; Roberts, D. A. J. Chem. Soc., Perk. Trans. 1 1978, 834-837. (c) Kocienski, P. J.; Lythgoe, B.; 
Waterhouse, I. J. Chem. Soc., Perk. Trans. 1 1980, 1045-1050. (d) Kocienski, P. J.; Lythgoe, B.; Ruston, S. J. 
Chem. Soc., Perk. Trans. 1 1979, 1290-1293. 
134 Julia, M.; Paris, J.-M. Tetrahedron Lett. 1973, 14, 4833-4836. 
135 For a review concerning the modified Julia-olefination, see: Blakemore, P. R. J. Chem. Soc., Perk. Trans. 1 
2002, 2563-2585. 
136 Levy, A. A.; Rains, H. C.; Smiles, S. J. Chem. Soc. 1991, 3264-3269. 
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Scheme 53: Mechanism of the Julia-Kocienski olefination. Highly diastereoselective formation of anti-194 

during the initial addition was accounted for the overall E-selectivity of the olefination. PT= 1-phenyl-1H-

tetrazol-5-yl. 

 

In the course of our synthetic effort, sulfones 68a-c were treated with potassium hexamethyl 

disilazide (KHMDS) at −78 °C and then subjected to the aldehyde (±)-syn-67. (Scheme 54) 

The reaction afforded the corresponding coupling products (±)-198a-c as single double bond 

isomers. 

 

SN
N

N N

OOPh
R

MeO2C

OBn

CO2i-PrTBSO

C14H29

C9H19

OO

C7H15

OO

MeO2C
O

OBn

CO2i-PrTBSO

MeO2C

OBn

CO2i-PrTBSO
R

68a-c

O3, CH2Cl2, MeOH, −78 °C
then Me2S, −78 °C to rt

a R=

b R=

c R=

(±)-syn-67

KHMDS, toluene, THF, −78 °C
then add (±)-syn-67, −78 °C to rt

(±)-198a (84%)
(±)-198b (71%)
(±)-198c (70%)

(±)-syn-193

 
Scheme 54: Julia-Kocienski olefination.137 KHMDS= potassium hexamethyl disilazide [K(N(SiMe3)2)], TBS= 

tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

                                            
137 For the utilized ratios of the starting materials, see: Experimental section. 
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Application of LiHMDS instead of KHMDS as deprotonation agent for the Julia-Kocienski 

olefination led to inferior E/Z-selectivities (Table 11). 

 

MeO2C
O

OBn

CO2i-PrTBSO
SN

N
N N

OOPh
C14H29 MeO2C

OBn

CO2i-PrTBSO
C14H29

(±)-syn-67

+

68c

toluene, THF
−78 °C to rt

(±)-198c  
Entry Base Yield 

[%] 

E/Z 

1 KHMDS 70 >95/5 

2 LiHMDS 47 2/1 
Table 11: Utilization of LiHMDS instead of KHMDS led to inferior E/Z-selectivities for the Julia-Kocienski 

olefination. KHMDS= potassium hexamethyl disilazide, LiHMDS= lithium hexamethyl disilazide. 

 

The exclusive formation of the E-configured double bond was verified for the coupling 

product (±)-198a by NOE-experiments (Table 12). 

 

MeO2C
Oi-PrO2C OO

TBS

HBnO
(±)-198a

=  NOE4 5
6

7

 
 

Entry NOE cross peaks between Conclusion 

1 4-H (2.68-2.57 ppm) 6-H (5.44 ppm) 5-E 

2 5-H (5.24 ppm) 7-CH2 (1.98-1.86 ppm) 5-E 

3 4’-H (3.32 ppm) 6-H (5.44 ppm) 5-E 
Table 12: Selected NOEs for (±)-57a 

 

In an additional experiment, Z-configured double bond isomer (Z)-198c was synthesized by 

application of the inherently Z-selectivite Wittig olefination for the formation of the double 

bond. The required Wittig-salt 200 was easily accessible by the reaction of 1-bromo-

pentadecane (199) with triphenylphosphine in acetonitrile (Eq. 25).138  

 

                                            
138 Kumar, V.; Dev, S. Tetrahedron 1987, 43, 5933-5948. 
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H29C14 Br H29C14 PPh3

Br
1.0 eq PPh3, MeCN

reflux, 12 h

200 (97%)199  
Eq. 25 

 

Reaction of aldehyde (±)-syn-67 with deprotonated 200 provided (±)-(Z)-198c in 17% non-

optimized yield (Eq. 26).  

 

H29C14 PPh3

Br

MeO2C O

OBn

CO2i-PrTBSO

MeO2C

BnO

CO2i-PrTBSO

C14H29

1.1 eq KHMDS, 0 °C, 15 min
0 °C to −78 °C

then add 1.0 eq (±)-syn-67, −78 °C to rt, 16 h

(±)-syn-67:
1.2 eq 200 (±)-(Z)-198c (17%)

 
Eq. 26 KHMDS= potassium hexamethyl disilazide K[Si(NMe3)2], TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], 

Bn= benzyl. 

 

A significant downfield shift was found for 4-CH of (±)-(Z)-198c (Scheme 55, Table 13). 

Comparison of the coupling constants of the vinylic protons supported the assignment of the 

double bond configuration (Table 13). 
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(ppm)
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Scheme 55: Detail of the 1H NMR spectra of (±)-(E)-198c and (±)-(Z)-198c. 
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(±)-(E)-198c (±)-(Z)-198c Entry C-atom 

Chemical 

shift 

[ppm] 

Multiplicity, coupling 

constant 

[Hz] 

Chemical 

shift 

[ppm] 

Multiplicity, coupling 

constant 

[Hz] 

1 5-CH= 5.24 dd, J = 15.2, 9.6 5.27 dd, J = 10.7, 10.7 

2 6-CH= 5.44 ddd, J = 15.0, 6.5, 6.5 5.45 ddd, J = 11.3, 7.2, 7.2 

3 2-CH2 2.80 

2.89 

dAB = 15.3 

dAB = 15.3 

2.84 

2.97 

dAB = 15.2 

dAB = 15.3  

4 4-CH 2.57-2.68 m 2.97-3.05 m 
Table 13: Selected 1H NMR signals of (±)-(E)-198c and (±)-(Z)-198c. 

 

The vinylic protons at C5 and C6 have significantly higher coupling constants for (±)-(E)-

198c than for (±)-(Z)-198c (Table 13, entry 1 and 2). As it would be expected, the analytical 

data for the protons bond to C2 are similar for both double bond isomers (Table 13, entry 3). 

In contrast, the signal of the proton bound to C4 shows a significant downfield shift for (±)-

(Z)-198c. 

 

The recently published viridiofungin syntheses51,53 as well as the synthesis of the 

sphingolipide backbone139 involved a cross-metathesis reaction as key CC-connecting 

reaction for the generation of the isolated double bond (Eq. 27). 

 

TPSO

OPMB

NHFmoc

Ru
Ph

Cl

Cl

PCy3

NN MesMes

TPSO

OPMB

NHFmoc
C13H27

Grubbs II
pentadecene

202 (87%, single 
double bond isomer)Grubbs II:

201

 
Eq. 27: Fmoc= fluoromethyloxycarbonyl, TPS= tert-butyldiphenylsilyl [Si(t-Bu)Ph2], PMB= p-methoxybenzyl, 

Mes= mesityl. 

 

It was tried, to employ this strategy for the installation of the E-configured double bond of the 

viridiofungins. However, reaction of (±)-syn-193 with 1-hexadecen in the presence of Grubbs 

                                            
139 Rai, A. N.; Basu, A. Org. Lett. 2004, 6, 2861-2863. 



Synthesis of the Viridiofungin A, A2 and A4 Triesters 71 
 

 
Ph.D. Thesis Annett Pollex 

catalyst (2nd generation) resulted in the homo-coupling of 1-hexadecen and reisolation of (±)-

syn-193.  

 

MeO2C

OBn

CO2i-PrTBSO
MeO2C

OBn

CO2i-PrTBSO
C14H29

(±)-syn-193 (±)-198c

20 mol% Grubbs II
hexadecene, CH2Cl2, reflux

Ru
Ph

Cl

Cl

PCy3

NN MesMesGrubbs II:

 
Eq. 28 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl, Mes= mesityl. 

 

Cross metathesis is known to be strongly dependent from the steric demand of the substituents 

present at the substrates. Manipulation of (±)-syn-193 might render the metathesis successful. 

However, since the Julia-Kocienski olefination provided an reliable tool for the 

stereoselective formation of the C5/C6 double bond, no further experiments were performed 

for the cross metathesis. 

 

For the completion of the synthesis of the viridiofungins A, A4 and A2 the third carboxylic 

acid functionality had to be constructed starting from a protected alcohol. Standard 

debenzylation procedures were tested (DDQ, Li/NH3, LiDBB, cyclohexa-1,4-diene/Pd/C).140 

However, formation of the lactone (±)-204a circumvented these methods. Any attempts of 

lactone cleavage failed to provide the desired deprotected alcohol (±)-203a (Scheme 56).140 

 

MeO2C

OBn

CO2i-PrTBSO
R

C7H15

OO

CO2i-PrTBSO
R

OO

MeO2C

OH

CO2i-PrTBSO
R

a R=

(±)-198a

conditions

(±)-203

(±)-204

conditions

 
Scheme 56: Undesired lactonization has to be considered as side reaction during debenzylation of (±)-198. 

TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

                                            
140 Abraham, L. unpublished results. 
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Finally, it was found that hydrogenolysis using simply hydrogen in concert with palladium on 

activated carbon allowed the chemoselective debenzylation in the presence of the isolated 

double bond. Careful monitoring of the reaction using TLC provided (±)-203a-c within a 

view minutes. Without further purification141 the primary alcohols (±)-203a-c were subjected 

to tetra-n-propyl-ammonium perruthenate (TPAP) and N-methylmorpholine N-oxide (NMO). 

The raw aldehydes were immediately oxidized to the corresponding stable acids (±)-205a-c 

(Scheme 57). 

 

MeO2C

OBn

CO2i-PrTBSO
R

(±)-198a-c

MeO2C

OH

CO2i-PrTBSO
RH2, Pd/C, DMF, rt

1. TPAP, NMO, mol sieves
    CH2Cl2, rt, 20 min
2. NaClO2, t-BuOH, NaH2PO4
    2-metyl-2-butene, rt, 16 h

MeO2C

OH

CO2i-PrTBSO
R

O

C14H29

C9H19

OO

C7H15

OO

a R=

b R=

c R=

(±)-203a-c

(±)-205a-c

(±)-205a (81%)
(±)-205b (69%)
(±)-205c (70%)  

Scheme 57: Formation of the acids (±)-205a-c by deprotection and sequential oxidation. TBS= tert-

butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl, TPAP= tetra-n-propylammoniumperruthenate, NMO= N-

methylmorpholine N-oxide. 

 

Utilization of HF·pyridine for the deprotonation of the tertiary alcohol cleaved the ketal 

protection groups as well. The deprotected acids (±)-206a-c were then subjected to several 

peptide coupling reagents and conditions.142 Benzotriazolyloxytris(pyrrolidino)phosphonium 

hexafluorophosphate (PyBOP) in concert with N-methylmorpholine (NMM) was identified to 

provide the most convenient reaction conditions for the coupling of racemic acids (±)-206a-c 

with enantiomerically pure, commercially available S-tyrosine methyl ester (S-TyrMe) 

(Scheme 58).  

                                            
141 Attempts to purify the alcohol (±)-203 led to the lactonization product (±)-204. 
142 Abraham, L. unpublished results. For a review concerning peptide coupling reagent, see: Han, S.-Y.; Kim, 
Y.-A. Tetrahedron 2004, 60, 2447-2467. 



Synthesis of the Viridiofungin A, A2 and A4 Triesters 73 
 

 
Ph.D. Thesis Annett Pollex 
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C14H29b R= c R=a R=
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(±)-206a-c(±)-205a-c

+

(−)-65a-c (+)-207a-c
65/207a (71%)
65/207b (90%)
65/207c (80%)

(±)-206a (51%)
(±)-206b (56%)
(±)-206c (76%)

 
Scheme 58: TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], S-TyrMe= S-tyrosine methyl ester, PyBOP= 

Benzotriazolyloxytris(pyrrolidino)phosphonium hexafluorophosphate, NMM= N-methylmorpholine. 

 

The resulting mixtures of virdiofungin A, A4 and A2 triester diastereomers 65/207a-c could be 

separated by reversed phase HPLC. Figure 9 - Figure 11 show the chromatograms of the 

separation of the viridiofungin triester 65/207a-c by analytical HPLC.  

 

MeO2C

NH

CO2i-PrHO

O

MeO2C

OH

O
MeO2C

NH

CO2i-PrHO

O

MeO2C

OH

O

+

(−)-65a (+)-207a

 
Figure 9: Chromatogram for the separation of 65a/207a by analytical HPLC (reversed phase) isocratic A/B = 

60/40 (Rt (−)-65a: 14.9 min, Rt (+)-207a: 15.0 min).143 

 

                                            
143 Analytical HPLC (reversed Phase): Column: ECLIPSE XDB-C8, 4.6 × 150 mm, 5 µm; Eluent: isocratic A/B 
(solvent A: H2O + 0.1 % TFA, solvent B: CH3CN + 0.1 % TFA, 1 ml/min). 
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(−)-65b (+)-207b

Figure 10: Chromatogram for the separation of 65b/207b by analytical HPLC (reversed phase) isocratic A/B = 

60/40 (Rt (−)-65b: 17.7 min, Rt (+)-207b: 19.0 min).143 
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Figure 11: Chromatogram for the separation of 65c/207c by analytical HPLC (reversed phase) isocratic A/B = 

71/29. (Rt (−)-65c: 25.6 min, Rt (+)-207c: 27.1 min).143 

 

Application of the optimized conditions for the preparative HPLC afforded the triesters of 

natural (−)-viridiofungin A (65a), (−)-A4 (65b) and (−)-A2 (65c) as well as the nonnatural 

diastereomers thereof ((+)-207a-c).144 The assignment of (−)-65a as the diastereomer with the 

natural configuration was based on the comparison with reported data of synthetic Me3-1a 

and (t-Bu)3-1a.145 The configuration of viridiofungin A2 and A4 was assigned in analogy to 

the known configuration of viridiofungin A. Since we expect the chemical and physical 

properties of the natural products being closely related we propose 65b,c as the diastereomers 

with the absolute configuration of the natural diastereomers even though no analytical data 

are available that would allow verification by comparison. 

                                            
144 Diastereomeric ratio >9:1 concluded from 500 MHz 1H NMR of the separated diastereomers. 
145 For a detailed justification of the assigned constitution and configuration, see chapter 8. 
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8 Verification of the Proposed Structure of Viridiofungin A 

Triester (−)-65a 
 

The diastereomer (−)-65a which exhibits the configuration of the natural product VFA is 

chosen for the approval of the proposed structure. The IR-spectrum of (−)-65a includes the 

following characteristic signals: peaks at 1742 and 1715 cm−1 indicate the presence of at least 

two ester carbonyl groups while the low carbonyl band at 1642 cm−1 indicates the presence of 

an amide. Several additional signals between 2859 and 2932 cm−1 show the presence of 

aliphatic CH-bond vibrations. A broad peak at 3372 cm−1 indicates the presence of a hydroxyl 

group.  

Analysis of the 13C NMR spectrum of (−)-65a shows signals of non-hydrogen-substituted 

carbon atoms of carbonyl groups at 213.4, 172.2, 171.6, 170.6, and 170.5 ppm. The 

significant downfield shift of the first of these five signals indicates the presence of a ketone, 

while the latter signals may result from ester or amide group carbonyl carbon atoms. Two 

non-hydrogen-substituted aromatic carbon atoms were detected at 155.4 and 127.3 ppm. The 

first of these two signals is shifted downfield due to an adjacent oxygen atom. Further 

aromatic signals are present at 130.4 and 115.5 ppm. Each of these peaks represents two 

equivalent aromatic CH-groups. Two olefinic carbon atoms each bearing one hydrogen atom 

(5- and 6-CH=) gave signals located at 137.8 and 122.4 ppm. Non-aromatic carbon atoms 

directly connected with an oxygen atom gave signals at 76.1, 70.2, 52.3 and 51.8 ppm. The 

first of these four signals is a non-hydrogen-substituted carbon atom. Therefore, the signal is 

attributed to 3-C. The other three signals represent CH- or CH3-carbon atoms of ester alcohol 

residues. Two CH-carbon atoms neighboured to carbonyl groups were detected at 57.6 (4-

CH) and 53.3 (2’-CH) ppm as well as three CH2-carbon atoms adjacent to a carbonyl group at 

43.0, 42.7 and 41.6 ppm. The first two of these three signals were assigned as carbon atoms 

12-CH2 and 14-CH2 by HSQC analysis and the latter as 2-CH2. Additional prominent CH2-

signals were found at 36.6 and 32.5 ppm (3’- and 7-CH2). The slight downfield shift is a result 

of the adjacent unsaturated carbon atoms. Due to γ-effect146 18-CH2 resulted in the unusual 

high ppm value found for this group (31.7 ppm). Eight further CH2 groups gave signals 

between 29.7 and 22.6 that could not be assigned to an individual carbon atom by 2D-NMR 

                                            
146 Kalinowski, H.-O.; Berger, S.; Braun, S. 13C-NMR-Spektroskopie Thieme: Stuttgart, New York 1984; p.93-
101.  
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analysis. The isopropyl-CH3 groups resulted in two separated signals at 21.7 and 21.6 ppm. 

The signal with the smallest ppm-value can be attributed to the terminal methyl group. 

The 1H-NMR spectrum of (−)-65a shows the following signals: a doublet of the amide and a 

singulet of the aromatic hydroxyl group are located at 6.67 and 6.34 ppm. Four aromatic 

protons were found at 6.95 and 6.76 ppm each showing doublet-multiplicity. Due to the 

distinct multiplicities the olefinic signals at 5.63 and 5.49 ppm could be assigned as 6-CH= 

(ddd) and 5-CH (dd) respectively. The characteristic septet signal of the isopropylester was 

identified at 5.05 ppm. The next upfield signal belongs to 2’-CH with the high ppm value of 

4.74 being the result of the nitrogen and the carbonyl group adjacent to the CH-group. The 

singulet at 4.49 is the signal of the OH-group at 3-C. Further singulets at 3.72 and 3.65 

indicate the presence of OCH3-groups. Several doublets between 3.09 and 2.42 ppm were 

identified as 4-CH, 2-CH2 and 3’-CH2 by the analysis of COSY- and HSQC-spectra. The 

latter two have AB-system character. Two triplets with similar chemical shifts at 2.42 and 

2.41 were assigned as the CH2-groups adjacent to the ketone (12- and 14-CH2). A multiplet 

between 2.01 and 1.92 may be attributed to 7-CH2 with the slight downfield shift being the 

consequence of the neighboured double bond. Two multiplets between 1.59-1.48 and 1.34-

1.18 cover 11- and 15-CH2 and 20 protons of the seven remaining CH2-groups and the two 

CH3-groups of the isopropyl ester respectively. The triplet at 0.86 ppm belongs to the terminal 

CH3-group at C-20. 
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Figure 12: COSY spectrum (500 MHz, CDCl3) of (−)-65a: signals from left to right 5’-CH, 6’-CH, NH, Ph-OH, 

6-CH=, 5-CH=, OiPr-CH, 2’-CH, 3-OH, 1’-OMe, 1-OMe, 4-CH, 3’CH2, 2-CH2 (1H), 2-CH2 (1H), 12- and 14-

CH2, 7-CH2, 11- and 15-CH2, 8-,9-,10-,16- to 19-CH2 and OiPr-CH3, 20-CH3. 

 

NOE cross peaks between 5-CH= and 7-CH2 as well as between 4-CH and 6-CH2 verified the 

E-configuration of the double bond. The syn-configuration of C3 and C4 was assigned in 

analogy to experiments published earlier.59a 
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Scheme 59: Selected NOEs for (−)-65a. 
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The assignment of the absolute configuration was made by comparison of optical rotation 

value und spectroscopic signals with data reported. Table 14 compares 1H NMR data of 

viridiofungin A triester (−)-65a (Table 14, middle column) with its unnatural diastereomer 

(+)-207a (Table 14, right column) and the reported data for Me3-1a (Table 14, left column). 

 

Viridiofungin A trimethylester 

Me3-1a in CD3OD47 

 

Viridiofungin A triester 

(−)-65a in CD3OD 

Viridiofungin A triester 

(+)-207a in CD3OD 

0.90 (t, J = 7.5 Hz, 3H) 0.97 (t, J =7.0 Hz, 3H) 0.97 (t, J = 6.4 Hz, 3H) 

– 1.30 (d, J = 6.3 Hz, 3H) 1.30 (d, J = 5.8 Hz, 3H) 

– 1.32 (d, J = 6.3 Hz, 3H) 1.32 (d, J = 6.1 Hz, 3H) 

1.29 (m, 14H) 1.36 (m, 14 H) 1.36 (m, 14H) 

1.53 (m, 4H) 1.60 (m, 4H) 1.61 (m, 4H) 

1.98 (m, 2H) 2.06 (m, 2H) 2.01 (m, 2H) 

2.43 (t, J = 7.5 Hz, 4H) 2.51 (t, J = 7.4 Hz, 4H) 2.51 (t, J = 7.3 Hz, 4H) 

2.60 (d, J = 16.0 Hz, 1H) 2.65 (d, J = 15.8 Hz, 1H) 2.67 (d, J = 15.8 Hz, 1H) 

2.87 (dd, J = 14.5, 8.5 Hz, 1H) 2.94 (dd, J = 14.5, 8.7 Hz, 1H) 2.85 (d, J = 15.8 Hz, 1H) 

2.92 (d, J = 16.0 Hz, 1H) 2.97 (d, J = 15.9 Hz, 1H) 2.95 (dd, J = 14.0, 9.0 Hz, 1H) 

3.07 (dd, J = 14.5, 5.0 Hz, 1H) 3.15 (dd, J = 14.1, 5.1 Hz, 1H) 3.16 (dd, J = 14.0, 5.1 Hz, 1H) 

3.19 (d, J = 8.5 Hz, 1H) 3.26 (d, J = 8.7 Hz, 1H) 3.20 (d, J = 9.1 Hz, 1H) 

3.64 (s, 3H) – – 

3.70 (s, 3H) 3.71 (s, 3H) 3.70 (s, 3H) 

3.71 (s, 3H) 3.79 (s, 3H) 3.78 (s, 3H) 

4.61 (dd, J = 8.5, 5.0 Hz, 1H) 4.68 (dd, J = 9.1, 5.2 Hz, 1H) 4.69 (dd. J = 8.9, 5.1 Hz, 1H) 

– 5.06 (sept, J = 6.3 Hz, 1H) 5.01 (sept, J = 6.2 Hz, 1H) 

5.51 (m, 2H) 5.60 (m, 2H) 5.58 (m, 2H) 

6.67 (d, J = 8.5 Hz, 2H) 6.74 (d, J = 8.5 Hz, 2H) 6.78 (d, J = 8.5 Hz, 2H) 

6.98 (d, J = 8.5 Hz, 2H) 7.06 (d, J = 8.5 Hz, 2H) 7.08 (d, J = 8.5 Hz, 2H) 

Table 14: Comparison of 1H NMR signals found for (−)-65a and its diastereomer (+)-207a with data reported 

for Me3-1a. 

 

In the table below 13C NMR data (diagnostic signals) and optical rotation values are listed for 

reported Me3-1a, (t-Bu)3-1a and viridiofungin A triester (−)-65a (Table 15). 
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 Viridiofungin A 

trimethylester (Me3-1a) in 

CD3OD47 

Viridiofungin A tri-tert-

butylester (t-Bu3-1a) in 

CD3OD51 

Viridiofungin A triester 

(−)-65a in CD3OD 

Optical rotation 

[α]26
D 

−19.1° (c 0.43, MeOH) 

 
−8.3° (c 1.16, MeOH) −6.6 (c 0.15, CHCl3) 

212.3 212.8 212.9 

174.3 171.9 172.0 

173.4 170.5 171.8 

173.3 170.4 171.6 

171.9 169.5 170.4 

157.5 155.4 156.0 

137.7 137.0 136.3 

131.3 130.6 129.8 

128.4 127.5 127.2 

124.6 122.5 123.0 

116.2 115.3 114.8 

- 83.0 - 

- 82.1 - 

- 81.4 - 

78.3 75.6 76.3 

- - 69.4 

58.3 58.1 56.7 

13C-NMR data 

(diagnostic 

signals) 

55.2 54.0 53.2 

Table 15: Comparison of 13C NMR signals and optical rotation values of Me3-1a, (t-Bu)3-1a and viridiofungin A 

triester (−)-65a. 
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9 Introduction 

9.1 Xenias: Soft Corals of the Genus Anthozoa – their Biology and 

the Resulting Potential as Sources of Pharmaceutical 

Interesting Natural Products 

 

The first report covering the isolation of pharmaceutical interesting natural products from a 

marine source dates back to the 1950s.147 This early discovery has stimulated an ever 

increasing interest in marine organism as sources of potent pharmaceuticals.148 Marine 

invertebrates were found to produce a variety of secondary metabolites with promising anti-

bacterial, anti-fungal, and especially anti-cancer properties.149 In recent years many marine 

natural products which are promising candidates for new drugs have been discovered (Table 

16).150 

 

Entry 
Potentially useful 

for the treatment of 
Compound Organism Origin 

1 Cancer Bryostatin 1 Bryozoan 
Gulf of 

California 

2 Cancer Dolastatin 10 Sea hare Indian Ocean 

3 Cancer 
Ecteinascidin-743 (ET-743, 

Trabectidin, YondelisTM) 
Tunicate Caribbean 

4 Cancer Halichondrin B Sponge Okinawa 

5 Cancer Kahalaide F Mollusc Hawaii 

6 HIV 
Cyclodidemniserinol 

trisulfate 
Tunicate Palau 

7 Nematode infection Dithiocyanates Sponge Australia 

8 Asthma Contignasterol Sponge 
Papua, New 

Guinea 

10 Pain Conotoxins Snail Australia 
Table 16: Marine natural products as potential therapeutic compounds (in clinical trials: phase II and III). 

                                            
147 Bergmann, W. W.; Jeffrey, C.; Stempien, M. F., Jr. J. Org. Chem. 1957, 22, 1308-1313. 
148 Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2004, 67, 1216-1238. 
149 Swartsmann, G.; Ratain, M. J.; Cragg, G. M.; Wong, J. E.; Saijo, N.; Parkinson, D. R.; Fujiwara, Y.; Pazdur, 
R.; Newman, D. J.; Dagher, R.; Di Leone, L. J. Clin. Oncol. 2002, 20, 47S-59S. 
150 Kijjoa, A.; Sawangwong, P. Mar. Drugs 2004, 2, 73-82. 
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The focus of pharmaceutical companies and marine chemists screening and evaluating natural 

products is concentrated on organism lacking physical protection. For their survival they 

strongly rely on a chemical defence.151 Soft corals have been found to be a rich source of 

interesting natural products.152 These polypoid cnidarians belong to the class Anthozoa which 

is often called Octocorallia. This reflects the typical eightfold radial symmetry of the 

organisms.153 The polyp consists essentially of a hollow cylinder with a fringe of eight 

tentacles around the mouth – the opening on the top of the polyp.154 The tentacles are pinnate 

– small branches come off of the main tentacles creating a fragile and feather-like appearance 

of the soft coral (Image 6). 

 

 
Image 6: Pinnated tentacles of different Octocorallia species.155 

 

The animals live together in soft, fleshy, irregularly shaped colonies (Image 7, left) with each 

polyp being attached to a connecting tissue called conenchyme. The colony is sessile in its 

nature and ones attached to the surface it usually remains sedentary for the whole span of its 

life.156 It can reproduce both sexually and asexually. For sexual reproduction, mature colonies 

release gametes into the water (spawning) that form planula larvaes after fertilisation. The 

planula then settles on a new substrate and develops a polyp. Starting from a single polyp, the 

colony growth occurs asexually by budding (Image 7, right).  

 

                                            
151 (a) Kelman, D.; Benayahu, Y.; Kashman, Y. J. Exp. Mar. Biol. Ecol. 1999, 238, 127-137. (b) Drugs from the 
sea, will the next penicillin come from a sponge? by Kerr, R.: http://www.science.fau.edu/drugs.htm; 04.07.2006 
152 Faulkner, D. J. Nat. Prod. Rep. 2002, 19, 1-48. 
153 Introduction to the Octocorallia: http://www.ucmp.berkeley.edu/cnidaria/octocorallia.html 
154 Soft corals by Shimek, R.: http://www.reefs.org/library/aquarium_net/0998/0998_5.html; 24.04.2006 
155 The pictures have been obtained from the following web pages (from left to right): (a) 
http://www.nanoreef.it/immagini/schede/invertebrati/xenia3.jpg; 26.04.2006 (b) 
http://www.pbs.org/kcet/shapeoflife/imaganim/cnidaria2.jpg; 25.04.2006; (c) 
http://www.bellsouthpwp.net/1/o/loguell/Saltwater/100gRR/Xenia_coral_03.jpg; 25.04.2006 
156 Coral ecosystems at the web page of the Australian Institute of Marine Science (http://www.aims.gov.au): 
General biology: http://www.aims.gov.au/pages/reflib/bigbank/pages/bb-09g.html  
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Image 7: A soft coral colony (left) and budding of a soft coral (right).157 

 

The family Xeniidae was found to have a unique mode of reproduction: the colonies produce 

elongate excrescences similar to runners of strawberry plants. Another colony forms on the 

end. After some time the connection withers, resulting in two separate colonies.158 
 

Soft corals are filter-feeders harvesting plankton from the water flowing around the colony. 

However, most of them live in a symbiotic relationship with unicellular dinoflagellates called 

zooxanthellaes (or Symbiodinium). They are responsible for the bright colors found among the 

soft corals (Image 8).  
 

 
Image 8: The bright colors of soft corals are the result of symbiotic zooxanthellaes.159 

                                            
157 The pictures have been obtained from the following web pages (from left to right): (a) 
http://www.wetpixel.com/legacy/reviews/10duk_smith/images/soft%20coral%20at%20night.jpg; 25.04.2006 (b) 
http://www.mar.dfo-mpo.gc.ca/oceans/e/essim/gully/images/softcoral2.jpg; 25.04. 2006 
158 Coral ecosystems at the web page of the Australian Institute of Marine Science (http://www.aims.gov.au): 
Reproduction: http://www.aims.gov.au/pages/reflib/bigbank/pages/bb-09i.html  
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The zooxanthellas play an essential role for the biology of their host organism. It is agreed 

that at least a few of the secondary metabolites found in soft corals are produced by the 

zooxanthellaes.160 External stress (increased temperature, pollution, salinity shock or high UV 

radiation) may lead to the ejection of the symbiotic algae resulting in the known phenomenon 

of the so called coral bleaching.161 Although it is known that corals can survive and recover 

from short time bleaching events,162 distortion of the whole colony will occur if the reason for 

the bleaching maintains.160,163 Under healthy conditions the soft corals nutrition often relies 

on a combination of plankton digestion and supplements from the photosynthetic activities of 

the symbionts. The algae on the other hand profits from the digestion waste produced by the 

coral, for despite their impressive biodiversity, the coral ecosystems are in fact characterized 

by a low level of anorganic nutrients.164 Indeed, over-nutrition can cause the distortion of a 

reef ecosystem for it may result in the overgrowth with algae.165  

Members of the genus Xenia are relatively autonomic from phytoplankton as source for 

nutrition and strongly rely on the photosynthetic products of their symbiotic partners.166 This 

is reflected in the preferred shallow water habitats of Xenia soft corals. There, sufficient 

amounts of light enable photosynthetic activity. The independence from external food sources 

stimulated the widespread popularity of the organisms among aquarists for light is much 

easier provided in an artificial environment than it would be to install a reasonable 

phytoplankton source.167  

                                                                                                                                        
159 The pictures have been obtained from the following web pages: top left: 
http://www.coralreefnetwork.com/stender/marine/cnidaria/Anthelia%20edmondsoni.jpg; 26.04.2006; top right: 
http://www.reef-eden.com/Xenia%20pulse%20coral.jpg; 26.04.2006; middle left: 
http://www.uga.edu/cuda/images/HLsoftcoralCU72.jpg; 26.04.2006; middle centre: 
http://www.premiumaquatics.com/softcoral/tonga.jpg; 26.04.2006; bottom left: 
http://www.imagequest3d.com/pages/articles/articleofmonth/softcoral/rstn_sfl.jpg; 26.04.2006; bottom right: 
http://www.tauchfoto.de/03_15.jpg; 27.04.2006; bottom small picture: http://www.reef-
encounters.com/Livestock%20subpages/Soft%coral%.jpg; 27.04.2006 
160 (a) König, G. M.; Kehraus, S.; Seibert, S. F.; Abdel-Lateff, A.; Müller, D. ChemBioChem 2006, 7, 229-238. 
(b) Proksch, R.; Edrada, R. A.; Ebel, R. Appl. Microbiol. Biotechnol. 2002, 59, 125-134. (c) Kokke, W. C. M. 
C.; Epstein, S.; Look, S. A.; Rau, G. H.; Fenical, W.; Djerassi, C. J. Biol. Chem. 1984, 259, 8168-8173. (d) The 
ecology and biochemistry of soft corals by Michalek-Wagner, K. on the web page of the reef research center: 
http://www.reef.crc.org.au/aboutreef/coral/softcoralbiochem.html; 27.04.2006 
161 Buddemeier, R. W.; Fautin, D. G. BioScience 1993, 43, 320-326. and references therein. 
162 Status of coral reefs in the world: 1998 by Wilkinson, C. at the web page of the Australian Institute of Marine 
Science (http://www.aims.gov.au): Executive Summary: How coral reefs respond to stress: 
http://www.aims.gov.au/pages/research/coral-bleaching/scr-004.html  
163 (a) Strychar, K. B.; Coates, M.; Sammarco, P. W.; Piva, T. J. J. Exp. Mar. Biol. Ecol. 2004, 304, 99-121. (b) 
Spawning Studies Investigate Bleaching Effects by Ashworth, T. at the web page of the reef research centre: 
http://www.reef.crc.org.au/publications/explore/feat19.html; 27.04.2006 
164 http://netpet.org/fish/fishnews/articles/hermatypic.html 
165 Barber, R. T.; Hilting, A. K.; Hayes, M. L. Human Ecol. Risk. Manag. 2001, 7, 1255-1270. 
166 http://www.augsburg.edu/biology/aquaria/SpeciesInfoFiles/soft_XeniaElongata.html 
167 http://www.dtplankton.com/phytoplankton/articles/sandbeds.html 
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In contrast to the closely related reef building Scleractinians (hard corals), soft corals lack the 

protective calcium carbonate skeleton. Therefore, Octocorallia would be expected to be an 

attractive food source for predators. However, surveys revealed that the rate of predation is 

surprisingly low.168 The organism developed some efficient weapons to defend themselves 

not only against predators but as well against competitors for space, invasions of algae, and 

against bacterial or viral infections. The chemical defence of these sessile animals that lack 

physical protection and that literally are unable to run away is highly developed. A large 

number of soft corals produce noxious chemicals. Storing of those compounds is a useful 

defence against predators by rendering the coral distasteful or unpalatable for grazing animals. 

Since the soft corals possess only a very simple immune system the defence against infection 

and fouling strongly relies on bioactive chemicals.163b Therefore, it was not surprising that a 

range of different anti-fouling agents with anti-bacterial and anti-fungal characteristics were 

isolated during the screenings. However, defence is required not only against those immanent 

dangers. The organisms live in a constant battle against competitors for food and light. 

Cytotoxic secondary metabolites are often secreted into the water to interfere the growing 

and/or to inhibit the settling of other marine organism.169 Those compounds that interfere with 

quickly proliferating cells are interesting potential therapeutics for cancer treatment since 

cancer cells as well exhibit high cell proliferation rates. Apparently, the chemicals produced 

by the coral provide an effective defence even in the high dilution of the aquatic environment. 

Consequently, they are expected to be highly active inducing the desired response if 

administered in very small dosages what makes them interesting targets for pharmaceutical 

research and as potential drug candidates.170 

 

 

 

 

 

 

 

                                            
168 (a) Davies-Coleman, M. T.; Beukes, D. R. S. Afr. J. Sci. 2004, 100, 539-544. (b) Coral ecosystems at the web 
page of the Australian Institute of Marine Science (http://www.aims.gov.au): Predation and defence: 
http://www.aims.gov.au/pages/reflib/bigbank/pages/bb-09j.html  
169 Artificial delocated soft corals were found to induce necrosis in neighbouring hard corals due to excreted 
allelopatic substances: Alino, P. M.; Sammarco, P. W.; Coll, J. C. Mar. Ecol. Prog. Ser. 1992, 81, 129-145. 
170 Conotoxin (ziconotideTM) for example – a pain killer and analgesic isolated from the venom of a marine snail 
proved to be 1000 times more active than morphine. McCleskey, E. W.; Fox, A. P.; Feldman, D.; Cruz, L. J.; 
Olivera, B. M.; Tsien, R. W.; Yoshikami, D. Proc. Natl. Acad. Sci. USA 1987, 84, 4327-4331. 
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9.2 Xenicane Diterpenes 

9.2.1 Xeniolide F – One Bioactive Representative of the Xenicane 

Diterpenes 

 

(+)-Xeniolide F (2a) belongs to the xenicane diterpenes (Figure 13). These secondary 

metabolites have been isolated from brown algae and cnidarians. Especially soft corals of the 

genus Xenia were found a rich source of these natural products.171 The characteristic feature 

of the xenicane diterpene class is the presence of a nine membered carbocyclus that is usually 

annulated with a second ring to form a bicyclic frame.172  
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Figure 13 

 

The xenicane diterpenes are divided into five types depending on the additional functional 

groups present in the molecule. The xenicines 208,173 xeniolides 2,174 and xeniaethers 209175 

possess an oxabicyclic skeleton. They are distinguished by the oxidation states of the carbon 

atoms in α-position to the oxygen atom (Figure 14). 

 

                                            
171 For recent reports on the isolation of xenicanes from Xenia sp., see: (a) Duh, C.-Y.; Li, C.-H.; Wang, S.-K.; 
Dai, C.-F. J. Nat. Prod. 2006, 69, 1118-1192. (b) Cheng, Y.-B.; Jang, J.-Y.; Khalil, A. T.; Kuo, Y.-H.; Shen, Y.-
C. J. Nat. Prod. 2006, 69, 675-678. (c) El-Gamal, A. A. H.; Chiang, C.-Y.; Huang, S.-H.; Wang, S.-K.; Duh, C.-
Y. J. Nat. Prod. 2005, 68, 1336-1340. (d) El-Gamal, A. A. H.; Wang, S.-K.; Duh, C.-Y. J. Nat. Prod. 2006, 69, 
338-341. (e) Shen, Y.-C.; Lin, Y.-C.; Ahmed, A. F.; Kuo, Y.-H. Tetrahedron Lett. 2005, 46, 4793-4796. 
172 We suggest the numbering depicted in Figure 13 for it reflects the proposed biosynthesis of the diterpene with 
geranylgeranyl diphosphate as starting material. For details, see chapter 9.2.2. 
173 Xenicin (208), the first isolated xenicane diterpene was reported in 1977: Vanderah, K. J.; Steudler, P. A.; 
Ciereszko, L. S.; Schmitz, F. J.; Ekstrand, J. D.; van der Helm, D. J. Am. Chem. Soc. 1977, 99, 5780-5784.  
174 The first reported xeniolide (2b) was isolated by Kashman et al.: Kashman, Y.; Groweiss, A. Tetrahedron 
Lett. 1978, 19, 4833-4836. 
175 Xeniaether A (209), the first xenicane diterpene containing the 9-membered carbocyclus fused to a 
tetrahydrofuran, was isolated in 1995: Iwagawa, T.; Amano, Y.; Hase, T.; Shiro, M. Tetrahedron 1995, 51, 
11111-11118. 
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Figure 14: Ac= acetyl. 

 

Xenicane diterpenes with a bicyclo[7.2.0]undecane skeleton are named xeniaphyllanes 210 

(Figure 15, left).176 The monocyclic azamilides 211 represent the most recently discovered 

group of xenicane diterpenes.177 They are usually acylated with saturated C16-C20 fatty acids 

(Figure 15, right). 
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Figure 15 

 

Xenicane diterpenes have shown interesting biological activities in vitro, e.g. cytotoxic 

potential which was tested against different cancer cell lines,178 antibacterial activity,179 

inhibitory activity against farnesyl protein transferase (FPT) and antiangiogenic activity thus 

significantly inhibiting the tube formation of the human umbilical vein endothelial cell 

(HUVEC) enduced by the basic fibroblast growth factor (bFGF),180 anti-inflammatory181 and 

anti-fungal activity.182 

                                            
176 The first reported xeniaphyllenol (210) was isolated in 1978: Groweiss, A.; Kashman, Y. Tetrahedron Lett. 
1978, 19, 2205-2208. 
177 For the isolation and structure elucidation of the first azamilide (211), see: Iwagawa, T.; Amano, M.; 
Nakatani, M.; Hase, T. Bull. Chem. Soc. Jpn. 1996, 69, 1309-1312. 
178 (a) Reference 171a (b) El-Gamal, A. A. H.; Wang, S.-K.; Duh, C.-Y. Tetrahedron Lett. 2005, 46, 4499-4500. 
(c) Duh, C.-Y.; El-Gamal, A. A. H.; Chiang, C.-Y.; Chu, C.-J.; Wang, S.-K.; Dai, C.-F. J. Nat. Prod. 2002, 65, 
1882-1885. 
179 (a) Iwagawa, T.; Kawasali, J.-i.; Hase, T. J. Nat. Prod. 1998, 61, 1513-1515. (b) Iwagawa, T.; Masuda, T.; 
Okamura, H.; Nakatani, M. Tetrahedron 1996, 52, 13121-13128. 
180 Rho, J.-R.; Oh, M.-S.; Jang, K. H.; Cho, K. W.; Shin, J. J. Nat. Prod. 2001, 64, 540-543. 
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(+)-Xeniolide F (2a) was isolated from a not yet classified Xenia species collected near the 

Togean islands (Image 9)183 - a remarkably diverse archipelago of coral und volcanic isles 

near Sulawesi (Indonesia).  

 

 
Image 9: Xenia sp.184 of which xeniolide F (2a) was isolated was collected from coral reefs near the Togean 
islands.185 
 

Extraction of 300 g of the animal afforded 0.41 g of a diterpene enriched mixture of organic 

material. Flash chromatography and reversed phase HPLC resulted in the isolation of 4.7 mg 

of (+)-xeniolide F. The molecular formula of the diterpene was determined by electron spray 

mass spectroscopy (ESMS) and high resolution FAB molecular spectroscopy (HRFABMS). 

The constitution and relative configuration was solved by 1D and 2D NMR methods. The 

absolute configuration of (+)-xeniolide F (2a) was not explicitly determined. However, the 

depicted absolute configuration at C2 and C10 is in agreement with the results obtained by 

Yamada et al.186 As a result of these studies, the absolute configuration of xeniolide A, 

xenialactol and xeniaoxolane was determined by the application of the modified Mosher’s 

                                                                                                                                        
181 (a) Hooper, G. J.; Davies-Coleman, M. T.; Schleyer, M. J. Nat. Prod. 1997, 60, 889-893. (b) Hooper, G. J.; 
Davies-Coleman, M. T. Tetrahedron 1995, 51, 9973-9984. 
182 Fusetani, N.; Asano, M.; Matsunga, S.; Hashimoto, K. Tetrahedron 1989, 45, 1647-1652. 
183 Anta, C.; González, N.; Santafé, G.; Rodríguez, J.; Jiménez, C. J. Nat. Prod. 2002, 65, 766-768. 
184 We thank Professor Carloz Jiménez for kindly providing us with the above picture of the Xenia sp. from 
which the natural product was originally isolated. As well he has sent copies of the NMR spectra of xeniolide F 
what is gratefully acknowledged. 
185 The map has been obtained from the following web site: http://www.wrm.org.uy/Indonesia/Togean5.jpg; 
11.05.2006. 
186 (a) Miyaoka, H.; Mitome, H.; Nakano, M.; Yamada, Y. Tetrahedron 2000, 56, 7737-7740. (b) Miyaoka, H.; 
Nakano, M.; Iguchi, K.; Yamada, Y. Tetrahedron 1999, 55, 12977-12982. 
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method187 while the absolute configuration of xeniadiol was resolved by the application of the 

lactone sector rule.188 For two crystalline xenicane diterpenes isolated independently in two 

different research groups single crystal X-ray analysis were performed revealing as well the 

represented absolute configuration.189 Moderate Cytotoxic activity was found during in vitro 

tests against the human cancer cell lines A-549 (lung adenocarcinoma), HT-29 (colon cancer) 

and MEL-28 (melanoma) as well as against murine cell line P-388 (lymphocytic leukaemia). 

As for various other natural products of marine origin, an unsolved supply issue complicates 

the further investigation of the mode of action and the development into clinical candidates.190 

Beside their interesting structural features this justifies them as attractive targets for synthetic 

oriented research groups.  

 

9.2.2 Proposed Biosynthesis of (+)-Xeniolide F 

 

Although no biosynthetic studies have been undertaken for xenicane diterpenes so far, it is 

believed that they are derived from transannular carbocation cyclization of the common 

diterpene precursor geranylgeranyl diphosphate (GGPP) (212) (Scheme 60).191 The analogue 

biosynthesis of the related sesquiterpene caryophyllane was verified by isotopic labelling 

studies.192  

 

                                            
187 Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092-4096. 
188 (a) Jennings, J. P.; Klyne, W.; Scopes, P. M. J. Chem. Soc. 1965, 7211-7242. (b) Shalon, Y.; Yanuka, Y.; 
Sarel, S. Tetrahedron Lett. 1969, 10, 957-960. (c) Melton, L. D.; Morris, E. R.; Rees, D. A.; Thom, D. J. Chem. 
Soc., Perkin Trans. 2 1979, 10-17. 
189 (a) Lelong, H.; Ahond, A.; Chiraroni, A.; Poupar, C.; Riche, C.; Potier, P.; Pusset, J.; Pusset, M.; Laboute, P.; 
Menou, J. L. J. Nat. Prod. 1987, 50, 203-210. (b) König, G. M.; Coll, J. C.; Bowden, B. F.; Gublis, J. M.; 
MacKay, M. F.; La Barre, S. C.; Laurent, D. J. Nat. Chem. 1989, 52, 294-299. 
190 (a) König, G. M.; Wright, A. D. Planta Med. 1996, 62, 193-211. (b) See reference 160. 
191 (a) Green, D.; Carmely, Y. B.; Kashman, Y. Tetrahedron Lett. 1988, 29, 1605-1608. (b) Kashman, Y.; Rudi, 
A. Phytochem. Rev. 2004, 3, 309-323. 
192 (a) Croteau, R.; Gundy, A. Arch. Biochem. Biophys. 1984, 233, 838-841. (b) Cane, D. E. Acc. Chem. Res. 
1985, 18, 220-226. 
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Scheme 60: Proposed biosynthesis of xeniolides starting from geranylgeranyl pyrophosphate GGPP (212). PP= 

pyrophosphate, B= base. 

 

Starting from dimethylallyl pyrophosphate DMAPP (218) the biosynthesis of GGPP (112) is 

initiated by the formation of the allyl cation 219. The cation 219 may then be attacked by 

isopentenyl pyrophosphate IPP (218) affording geranyl pyrophosphate GPP (220) after the 

loss of a proton from the primary addition product (Scheme 61).  

 

OPP

−PPO
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220218
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218219  
Scheme 61: Biosynthesis of geranyl pyrophosphate GPP (220). PP= pyrophosphate. 

 

Propagation with another molecule 218 generates farnesyl pyrophosphate FPP (21) and one 

additional propagation step finally produces geranylgeranyl diphosphate (212) (Scheme 62). 
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Scheme 62: With two additional propagation steps 220 may be transformed to 212. PP= pyrophosphate. 

 

9.2.3 Published Total Synthesis of Xenicane Diterpenes 

 

The only realized total synthesis of a xenicane diterpene was published by Leumann et al.193 

The synthesis of (+)-coraxeniolide A (221) was based on the pioneering synthesis of 

caryophyllene by Corey and co-workers.194 The synthetic strategy rests on a Grob-

fragmentation195 of an appropriated functionalized tricyclus 223 for the stereospecific 

construction of the nine-membered ring 222 (Scheme 63).  
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(+)-coraxeniolide A (221) 222 223  
Scheme 63: Retrosynthetic analysis of coraxeniolide A (221). Ts= para-toluene sulfonyl. 

 

As starting material enantiomerically pure Hajos-Parrish diketone 224196 was utilized. The 

single asymmetric center allowed the diastereoselective formation of all remaining 

stereogenic centers as shown in Scheme 64. 

 

                                            
193 Renneberg, D.; Pfander, H.; Leumann, C. J. J. Org. Chem. 2000, 65, 9069-9079. 
194 Corey, E. J.; Mitra, R. B.; Uda, H. J. Am. Chem. Soc. 1964, 86, 485-492. 
195 (a) Grob, C. A.; Baumann, W. Helv. Chim. Acta 1955, 38, 594-610. (b) Grob, C. A. Angew. Chem., Int. Ed. 
Engl. 1969, 8, 535-546; Angew. Chem. 1969, 81, 543-554. 
196 (a) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1612-1615. (b) Hajos, Z. G.; Parrish, D. R. J. Org. 
Chem. 1974, 39, 1615-1621. 
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Scheme 64: Total synthesis of coraxeniolide A (221) was realized as following. a) NaBH4, EtOH, −10-5 °C, 

94%; b) TBSCl, imidazole, DMAP, CH2Cl2, 82%; c) LiAlH4, Et2O, −78 °C, 90%; d) C2H5OC2H3, Hg(OAc)2, 40 

°C, 80%; e) Mg(ClO4)2, CH3NO2, 83%; f) CH(OCH3)3, montmorillonite clay K-10; Et2O, 98%; g) m-CPBA, 

CH2Cl2, −5-0 °C, 80%, h) LiCN, THF, reflux, 84%; i) KOH, EtOH, 69%; j) TMSCl, imidazole, DMAP, CH2Cl2, 

99%; k) DIBAl-H, hexane, 76%; l) NaBH4, EtOH, −10 °C, 89%; m) HCl, THF; n) Ag2CO3 on Celite, benzene, 

reflux, 61% (two steps); o) TsCl, pyrridine, CHCl3, 92%; p) DIBAl-H, CH2Cl2, −65 °C, 98%; q) NaH, DMSO 

88%; r) TBSCl, imidazole, CH2Cl2, 98%, s) TiCp2CH2ClAlMe3, THF, pyrridine, −5 °C to rt, 70%; t) TBAF, 

THF, 85%; u) Ag2CO3 on Celite, benzene, 60 °C, 89%; v) LDA, 1-bromo-4-methylpent 2-ene, THF, DMPU, 

−78 to −69 °C, 50%; w) TBD, toluene, 80%. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], DMAP= N,N-

dimethylamino-4-pyridine, Ac= acetyl, m-CPBA= meta-chlor perbenzoic acid, TMS= trimethylsilyl [SiMe3], 

DIBAl-H= diisobutyl aluminium hydride, Ts= para-toluene sulfonyl, DMSO= dimethyl sulfoxide, Cp= 

cyclopentadienyl, TBAF= tetrabutyl ammonium fluoride [(t-Bu)4NF], LDA= lithium diisopropylamide, DMPU= 

dimethylpropylenurea, TBD= 1,5,7-triazabicyclo[4.4.0]dec-5-ene. 

 

Chemo- and diastereoselective reduction of the isolated carbonyl functionality of 224 (a), 

protection of the resulting hydroxyl group (b) and reduction of the conjugated carbonyl group 

(c) followed by mercuric acetate catalyzed transetherification (d)197 resulted in the allyl vinyl 

                                            
197 Watanabe, W. H.; Conlon, L. E. J. Am. Chem. Soc. 1957, 79, 2828-2833. 
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ether 225 that, when treated with Mg(ClO4)2, underwent [1,3] sigmatropic rearrangement198 to 

form an aldehyde (e). This aldehyde was protected as dimethylacetale 226 (f). After 

epoxidation of the double bond (g), treatment with LiCN resulted in regioselective ring 

opening to afford the β-hydroxynitrile 226 stereoselectively (h). Epimerisation of 

(2R,3R,6R,7S,10R)-227 to the thermodynamically more stable nitrile (2S,3R,6R,7S,10R)-227 

(i), protection of the hydroxyl group (j) and reduction of the nitrile functionality afforded the 

corresponding aldehyde (k). After the reduction of this aldehyde functionality to the 

corresponding alcohol 228 (l), treatment with 2 N HCl resulted in global deprotection (m) and 

formation of a hemiacetale that was oxidized to a lactone employing the very mild oxidation 

reagent silver carbonate on Celite (n)199 which allowed the selective oxidation of the acetale 

in the presence of a secondary alcohol. The lactone was then tosylated (o) and reduced to the 

lactol 229 (p). Treatment with methylsulfinyl carbanion200 resulted in the fragmentation 

reaction to form 230 (q). Final steps included protection (r), Tebbe olefination201 of the 

ketocarbonyl group (s), deprotection (t) and oxidation (u). The lacton 231 was then 

deprotonated with LDA and subjected to 1-bromo-4-methylpent 2-ene (v). The alkylation 

products (+)-221 and (−)-epi-221 were formed in a 1/5.7 ratio and could be separated by 

column chromatography. Equilibration of 4-epi-coraxeniolide A with 1,5,7-

triazabicyclo[4.4.0]dec-5-ene (TBD) afforded (+)-221 and (−)-epi-221 as 3/1 mixture (w). 

 

In conclusion, the synthesis of coraxeniolide A (221) was realized with a longest linear 

sequence of 25 steps in an overall yield of 1.6%. This synthetic approach seems to offer a 

reasonable solution for various xeniolides with a C6/C7 endocyclic double bond. However, 

xeniolides with an exocyclic C7/C20 double bond have to be synthesized on a different route. 

                                            
198 Grieco, P. A.; Clark, J. D.; Jagoe, C. T. J. Am. Chem. Soc. 1991, 113, 5488-5489. 
199 (a) Fétizon, M.; Golfier, M.; Louis, J.-M. Tetrahedron 1975, 31, 171-176. (b) Fétizon, M.; Golfier, M.C.R. 
Hebd. Seances, Acad. Sci.; Ser. C. 1968, 267, 900-903. 
200 Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1345-1353. 
201 Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611-3613. 
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10 Retrosynthetic Analysis of Xeniolide F 

 

The retrosynthetic analysis of xeniolide F (2a) is build upon our recently developed catalytic 

asymmetric Claisen rearrangement (CAC)202 as the key CC-connecting step (Scheme 65).  
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Scheme 65: Retrosynthetic analysis of (+)-xeniolide F (2a) led to acyclic allyl vinyl ether 10. CAC= catalytic 

asymmetric Claisen rearrangement, Bn= benzyl, TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2].203 

 

In one step the two neighboured stereogenic carbon atoms C2 and C10 of the α-keto ester 233 

could be generated enantioselectively. The diastereoselectivity would be the result of the 

concerted nature and the chair-like geometry of the transition state of the Claisen 

rearrangement of acyclic allyl vinyl ether 10. Best results for the diastereoselectivity are 

expected for allyl vinyl ethers with Z-configured allyl ether double bonds.204 To obtain the 

                                            
202 (a) Abraham, L.; Czerwonka, R.; Hiersemann, M. Angew. Chem. Int. Ed. 2001, 40, 4700-4703; Angew. 
Chem. 2001, 113, 4835-4837. (b) Hiersemann, M.; Abraham, L. Eur. J. Org. Chem. 2002, 1461-1471. (c) 
Abraham, L.; Körner, M.; Schwab, P.; Hiersemann, M. Adv. Synth. Catal. 2004, 346, 1281-1294. (d) Abraham, 
L., Körner, M.; Hiersemann, M. Tetrahedron Lett. 2004, 45, 3647-3650. For recent successful application in 
target oriented synthesis, see: (e) Pollex, A.; Hiersemann, M. Org. Lett. 2005, 7, 5705-5708. (f) Körner, M.; 
Hiersemann, M. Synlett 2006, 121-123. 
203 The depicted protecting groups reflect our realized synthetic route (see chapter 13.2.2). Chemoselective 
deprotection of the benzyl group in the presence of isolated double bonds might be realized using an oxidative 
cleavage strategy. Utilization of the TBS-group for the protection of the allyl alcohol functionality was 
performed with respect to a previously described synthesis of an analogue intermediate (see chapter 13.2). 
204 For a more detailed analysis and discussion of the simple diastereoselectivity as a result of the double bond 
geometry see chapter 11.2. 
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desired anti-selectivity,205 an E-configured vinyl ether double bound is required. Since the 

starting material is achiral, an external chiral inductor is required to control the absolute 

configuration of the rearrangement product. For this purpose, we envisioned the application of 

the chiral Lewis acid [Cu{(S,S)-t-Bu-box}](SbF6)2(H2O)2
206 [(S,S)-234a] that promotes the 

CAC. Unfortunately, application of the easily accessible (S,S)-234 to (E,Z)-AVE 10 would 

deliver α-keto ester (2S,10R)-233 with reversed absolute configuration with respect to the 

assumed absolute configuration of the natural product (Eq. 29).207 

 

O

MeO2C SiMe3

OBn
TBSO

O

SiMe3

OTBS

OBn

MeO2C
N

O

Cu
N

O

t-Bu t-BuOH2H2O

2 SbF6

2

10
2

10

2

(2S,10R)-23310

(S,S)-234

 
Eq. 29: Bn= benzyl, TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2]. 

 

For the total synthesis of (+)-xeniolide F (2a) [Cu{(R,R)-t-Bu-box}](SbF6)2(H2O)2 [(R,R)-

234a] with reversed absolute configuration would be required. However, this catalyst would 

be disproportionately more expensive.208 Therefore, we decided to perform the initial 

synthetic studies toward (−)-xeniolide F with the less expensive (S,S)-234a (Scheme 66). 

With an established route to the target molecule, the synthesis of the natural product may be 

realised by an analogue route employing (R,R)-234a as catalyst for the CAC. 

 

                                            
205 The term ‘anti’ is used to describe the relative configuration at the two neighboured stereogenic centers in a 
‘zigzag’ presentation of the molecule as represented in Scheme 65. 
206 For reviews see: (a) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325-335. (b) Evans, D. A.; Rovis, 
T.; Johnson, J. S. Pure Appl. Chem. 1999, 71, 1407-1415. (c) Jørgensen, K. A. Angew. Chem. 2000, 112, 3702-
3733; Angew. Chem., Int. Ed. 2000, 39, 3558-3588. (d) Gosh, A. K.; Mathivanan, P.; Cappiello, J. Tetrahedron: 
Asymmetry 1998, 9, 1-45. 
207 This assumption is made in analogy to results obtained earlier in our research group. See reference 202. 
208 Starting material for the synthesis of the (S,S)-234a [(S)-t-leucine] is available from Aldrich (236,20 €/ 0.5 
kg) while the (R)-t-leucine is about 100-times more expensive (242.00 €/ 5 g). 
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Scheme 66: Synthetic plan for (−)-2a. Bn= benzyl, TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2]. 

 

Starting from the α-keto ester 233, we planned to introduce the side chain at C11 by 

olefination chemistry.209 The formation of the nine-membered carbocyclus of (−)-2a should 

be addressed by an intramolecular addition of a vinyl anion at C7 to an aldehyde functionality 

at C6.210 The aldehyde group may be generated by deprotection of the alcohol functionality at 

C6 and subsequent oxidation of the hydroxyl group. For the formation of the vinyl anion we 

envisioned a sequence of iododesilylation211 and halogen-lithium exchange. Starting from 

vinyl iodide 232, the carbonyl addition might as well be performed under Nozaki-Hiyama-

Kishi conditions.212 The latter method was found to be especially useful for the formation of 

medium sized rings – a synthetic challenge for which only limited reliable solutions were 

                                            
209 For Wittig olefinations involving unprotected hydroxy groups, see: (a) Maryanoff, B. E.; Reitz, A. B.; Dahl-
Emswiler, B. A. J. Am. Chem. Soc. 1985, 107, 217-226. (b) Maryanoff, B. E.; Reitz, A. B.; Dahl-Emswiler, B. 
A. Tetrahedron Lett. 1983, 24, 2477-2480. For a Wittig olefination involving a very similar, unsaturated Wittig 
salt with an unprotected OH-group, see: (c) Taber, D.; Teng, D. J. Org. Chem. 2002, 67, 1607-1612. (Eq. 61, 
page 186). 
210 We are aware of a possible intramolecular Michael addition between the vinyl anion and carbon atom C12. 
For alternative strategies to generate the nine-membered ring, see chapter 18. 
211 The iododesilylation as tool for the formation of vinyliodides is known. For references, see chapter 17. 
212 (a) Stamos, D. P.; Sheng, X. C.; Chen, S. S.; Kishi, Y. Tetrahedron Lett. 1997, 38, 6355-6358. (b) Takai, K.; 
Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 6048-6050. (c) 
Jin, H.; Uenishi, J.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644-5646. (d) Takai, K.; Kimura, K.; 
Kuroda, T.; Hiyama, T.; Nozaki, H. Tetrahedron Lett. 1983, 24, 5281-5284. (e) Kress, M. H.; Ruel, R.; Miller, 
W. H.; Kishi, Y. Tetrahedron Lett. 1993, 34, 5999-6003. (f) Kress, M. H.; Ruel, R.; Miller, W. H.; Kishi, Y. 
Tetrahedron Lett. 1993, 34, 6003-6007. For a review, see: (g) Takai, K.; Nozaki, H. Proceed. Jpn. Acad. B 2000, 
76B, 123-131. For recent applications of the NHK, see: (h) Mi, B.; Maleczka, E., Jr. Org. Lett. 2001, 3, 1491-
1494. (i) Corminboeuf, O.; Overman, L. E.; Pennington, L. D. J. Am. Chem. Soc. 2003, 125, 6650-6652. (j) 
Venkatraman, L.; Aldrich, C. C.; Sherman, D. H.; Fecik, R. A. J. Org. Chem. 2005, 70, 7267-7272. (k) Bian, J.; 
Van Wingerden, M.; Ready, J. M. J. Am. Chem. Soc. 2006, 128, 7428-7429. 
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found.213 Instructive examples for the successful application of the Nozaki-Hiyama-Kishi 

(NHK) coupling in the formation of eight-212a, nine-214, and eleven-215 rings are given below 

(Eq. 30 -Eq. 32). 

 
O

O

O

O

O
OBn

H
OTf
CHO

O

OH

O

O

O

O

OBn
H

CrCl2, cat. NiCl2
THF, DMF, 4-t-BuPy, rt

237 (65%)236  
Eq. 30: Formation of an eight-membered ring by the NHK-reaction. Bn= benzyl, Tf= trifluoromethane sulfonyl 

(CF3SO2), DMF= dimethyl formamide, 4-t-BuPy= 4-tert-butylpyridine. 

 

O

I

OTBS

O O OH

OTBS

CrCl2, cat. NiCl2
DMSO, Me2S, rt, 36 h

239 (68%, 90% de)238  
Eq. 31: Formation of a nine-membered ring by the NHK-reaction. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], 

DMSO= dimethyl sulfoxide. 

 
HO

OH

CHO

OH

I
CrCl2, cat. NiCl2
DMSO, rt, 12 h

241 (43%)240  
Eq. 32: Formation of an eleven-membered ring by the NHK-reaction. DMSO= dimethyl sulfoxide. 

 

Pivotal for the success of our envisioned synthesis of (−)-2a is an efficient access to the 

achiral 2-alkoxycarbonyl substituted allyl vinyl ether (AVE) 10 with defined double bond 

configuration. Retrosynthetically, we selected the inherently E-selective Horner-Wadsworth-

                                            
213 (a) Fürstner, A. Chem. Rev. 1999, 99, 991-1045. (b) Yet, L. Chem. Rev. 2000, 100, 2963-3007. 
214 MacMillan, D. W. C.; Overman, L. E.; Pennington, L. D. J. Am. Chem. Soc. 2001, 123, 9033-9044. 
215 Yamamura, S.; Matsuura, T.; Terada, Y. Tetrahedron Lett. 2000, 41, 2189-2192. 
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Emmons olefination216 as useful transform for the generation of the vinyl ether double bond 

of AVE 10. For the synthesis of the required phosphonate 245 a rhodium(II)-catalysed OH-

insertion between diazo phosphonate 246 and allylic alcohol 11 might be utilized (Scheme 

67). The application of a sequence of a rhodium(II)-catalyzed OH-insertion217 and a Horner-

Wadsworth-Emmons olefination for the synthesis of alkoxycarbonyl-substituted vinyl ether 

double bonds was first reported by Sinaÿ and co-workers.218 Further successful applications 

of this two step strategy were realised independently by Ganem,219 and Berchtold.220 An 

intramolecular approach was developed by Moody and co-workers.221 

 

O

SiMe3

OTBS

OBn

MeO2C

SiMe3

O

O

MeO2C P(OMe)2
O

BnO
OTBS

HO

OTBS
BnO

MeO2C P(OMe)2
O

N2
1011 11

11

HWE OH-insertion
+

10 245

244

11

246

10

 
Scheme 67: Retrosynthetic analysis led to allyl alcohol 11. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= 

benzyl, HWE= Horner-Wadsworth-Emmons olefination. 

 

For the synthesis of the crucial Z-configured allylic alcohol 11 a B-alkyl Suzuki-Miyaura 

cross coupling222 between boran 247 and vinyl iodide 248 might be attempted (Scheme 68). 

 

                                            
216 (a) Horner, L.; Hoffmann, H.; Wippel, H. G.; Klahre, G. Chem. Ber. 1959, 92, 2449-2507. (b) Wadsworth, 
W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733-1738. 
217 For a review concerning the OH-insertion see: Miller, D. J.; Moody, C. J. Tetrahedron 1995, 51, 10821-
10843. 
218 (a) Paquet, F.; Sinaÿ, P. Tetrahedron Lett. 1984, 25, 3071-3074. (b) Paquet, F.; Sinaÿ, P. J. Am. Chem. Soc. 
1984, 106, 8313-8315. See: Scheme 119, page 162. 
219 Wood, H. W.; Buser, H. P.; Ganem, B. J. Org. Chem. 1992, 57, 178-184. 
220 (a) Pawlak, J. L.; Berchtold, G. A. J. Org. Chem. 1987, 52, 1765-1771. (b) Lesuisse, D.; Berchtold, G. A. J. 
Org. Chem.  1988, 53, 4992-4997. (c) Mattia, K. M.; Ganem, B. J. Org. Chem. 1994, 59, 720-728.  
221 (a) Davies, M. J.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1 1991, 1-8. (b) Davies, M. J.; Moody, C. J. J. 
Chem. Soc., Perkin Trans. 1 1991, 9-17. 
222 Miyaura, N.; Ishiyama, T.; Ishikawa, M.; Suzuki, A. Tetrahedron Lett. 1986, 27, 6369-6372. 
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HO
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11 247 248

+

 
Scheme 68: Retrosynthetic analysis of allylic alcohol 11. BBN= borabicyclo[3.3.1]nonane, TBS= tert-

butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

In the following section (37 pages) I will outline important characteristics of the key CC-

connecting step: the aliphatic Claisen rearrangement. The historical development as well as 

mechanistic considerations will be discussed. A particular focus is set on the simple and the 

induced diastereo- and enantioselectivity and especially the catalytic asymmetric Claisen 

rearrangement CAC. Furthermore, characteristics and recent applications of the essentially 

involved copper(II)-bis(oxazoline) complex (S,S)-234a are covered. Readers who are mainly 

interested in the synthetic strategy and the results of the present work are referred to chapter 

13 (page 144). 
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11 The Catalytic Asymmetric Claisen Rearrangement (CAC) 

11.1  Historical Development and Important Variations 

 

 

The term ‘Claisen rearrangement’223 is used for the [3,3]-sigmatropic rearrangement224 of 

allyl vinyl ethers generating γ,δ-unsaturated carbonyl compounds.225 The first example was 

reported by Ludwig Claisen in 1912 (Eq. 33).226 The distillation of O-allylated ethyl 

acetoacetate 249 in the presence of NH4Cl afforded the γ,δ-unsaturated ketone 250. 

 

O
EtO2C O

EtO2C

Δ
"some NH4Cl"

249 250  
Eq. 33 

 

During the nine decades after its discovery, the reaction has gained a lot of attention and 

today, certainly belongs to the most important synthetic methods for CC-bond formation. The 

major strengths of the transformation can be summarized as following: 

- An easier accessible C-Het-bond is transformed into a CC-σ-bond that is usually more 

difficult to install. 

- Up to two adjacent chirality centres and one stereogenic double bond are formed with high 

diastereoselectivity. 

- The reaction conditions are tolerable for a wide range of different functional groups. 

 

A great number of variations have been developed. Replacing the oxygen atom by other 

heteroatoms, aza-227 and thio-analogues228 were introduced. Utilization of alternative starting 

materials for the Claisen rearrangement allowed the access to other useful target structures. 

                                            
223 The present discussion covers exclusively the aliphatic Claisen rearrangement. 
224 The description of the Claisen rearrangement as a [3,3]-sigmatropic event refers to a numeration which focus 
the bond that will be broken. The atoms that form that bond are given the numbers 1 and 1’ respectively. 
Consequently, the new bond is formed between the atom C3 and C3’. 
225 For reviews see: (a) Castro, A. M. M. Chem. Rev. 2004, 104, 2939-3002. (b) Ziegler, F. E. Chem. Rev. 1988, 
88, 1423-1452. 
226 Claisen, L. Ber. Dtsch. Chem. Ges. 1912, 45, 3157-3167. 
227 Bennett, G. B. Synthesis 1977, 589-606. 
228 Takahashi, H.; Oshima, K.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1973, 95, 5803-5804. 
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Often, intermediary formed ketene acetales were employed. For some of the most noteworthy 

examples the basic structural features and typical reaction conditions are given below. 

 

Carroll-Claisen rearrangement 

In 1940 the thermal rearrangement of β-keto esters 251 was described.229 The reaction is 

terminated by the decarboxylation of 253 yielding γ,δ-unsaturated ketones 254 (Eq. 34). 

 

−CO2
O

O

OHO

O

OHO

O

O
Δ

O

251 252 253 254  
Eq. 34 

 

Eschenmoser-Claisen rearrangement 

Eschenmoser reported the [3,3]-sigmatropic rearrangement of N,O-ketene acetales 256 which 

were formed intermediary upon heating of a mixture of an amide acetale and an allylic 

alcohol 255.230 The products of these transformations are γ,δ-unsaturated amides 257 (Eq. 35). 

 

OH

Δ
MeC(OMe)2NMe2

O

NMe2

O

NMe2

255 256 257  
Eq. 35 

 

Johnson-Claisen rearrangement 

In the attempt of Johnson and co-workers in 1970, allylic alcohols 255 were subjected to an 

orthoacetate in the presence of trace amounts of a weak acid.231 The intermediary formed 

ketene acetales 259 rearranged to yield γ,δ-unsaturated esters 260 (Eq. 36). 

 

                                            
229 (a) Carroll, M. F. J. Chem. Soc. 1940, 704-706. (b) Carroll, M. F. J. Chem. Soc. 1940, 1266-1268. (c) Carroll, 
M. F. J. Chem. Soc. 1941, 507-510. 
230 (a) Wick, A. E.; Felix, D.; Steen, K.; Eschenmoser, A. Helv. Chim. Acta. 1964, 47, 2425-2429. (b) Wick, A. 
E.; Felix, D.; Gschwend-Steen, K.; Eschenmoser, A. Helv. Chim. Acta. 1969, 52, 1030-1042. 
231 Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T. T.; Faulkner, D. J.; Peterson, M. R. 
J. Am. Chem. Soc. 1970, 92, 741-743. 
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OH
MeC(OEt)3 

H+ O

EtO OEt

O

OEt
Δ

O

OEt
−EtOH

255 258 259 260  
Eq. 36 

 

Ireland-Claisen rearrangement 

The Ireland Claisen rearrangement, introduced in 1972,232 has attracted great attention 

especially in recent efforts to develop asymmetric variations of the Claisen rearrangement.233 

Allyl trimethylsilyl ketene acetales 262 underwent the [3,3]-rearrangement at low 

temperatures (ambient temperature or below). As a result of the transformation γ,δ-

unsaturated silyl esters 263 are formed (Eq. 37). 

 

O

O

O

OTMS

O

OTMS
LDA, TMSCl

261 262 263  
Eq. 37: TMS= trimethylsilyl [SiMe3], LDA= lithium diisopropylamide. 

 

The major advantage of these substrates is the possibility to control the vinyl ether double 

bond configuration simply by the choice of the deprotonation conditions.234 The Ireland 

Claisen rearrangement proceeds under basic or neutral conditions and at exceptionally low 

temperatures. It was later expanded to allylic ester enolates of various other metals used as 

Lewis acid accelerators of the reaction.235  

 

Miscellaneous 

The Claisen rearrangement of propargyl vinyl ethers results in the formation of allenes (Eq. 

38). 

 

                                            
232 (a) Ireland, R. E.; Mueller, R. H. J. Am. Chem. Soc. 1972, 94, 5897-5898. (b) Ireland, R. E.; Willard, A. K. 
Tetrahedron Lett. 1975, 46, 3975-3978. (c) Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc. 
1976, 98, 2868-2877. 
233 For a more detailed discussion, see chapter 11.3.3. 
234 For a more detailed discussion, see chapter 11.2.3. 
235 Examples of the Lewis acid accelerated Claisen rearrangement are discussed in chapter 11.3.3. 
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O [3,3]

•

O

264 265  
Eq. 38 

 

Although the rearrangement of such systems usually affords special conditions (e.g. 

microwave irradiation) interesting target-orientated applications for highly functionalized 

starting materials have been reported.236 
 

In some examples transannular variations were described.237 In these cases the allyl vinyl 

ether is part of a ring. The rearrangement causes ring contraction. An instructive example is 

given in Scheme 69.237c  
 

O

N
Pg

O O

N
Pg

TBSO
NPg

HO2CLDA, TBSCl, 
THF, −100 °C [3,3]

1
2

3

1' 2'

3'

3

3'

2

1'

TIPSO TIPSO TIPSO

−100 °C to rt

268 (55%)266 267  
Scheme 69: Transannular Claisen rearrangement according to Knight et al. 237c Pg= CO2Et, LDA= lithium 

diisopropylamide, TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], TIPS= triisopropylsilyl [Si(i-Pr)3]. 
 

11.2   Mechanism and Simple Diastereoselectivity 

11.2.1 Mechanism  

 

Although the mechanism of the Claisen rearrangement has been in the focus of numerous 

methodical238 and theoretical239 studies, the exact structure of the transition state can not be 

                                            
236 Durand-Reville, T.; Gobbi, L. B.; Gray, B. L.; Ley, S. V.; Scott, J. S. Org. Lett. 2002, 4, 3847-3850. 
237 For some instructive examples see: (a) Frank, S. A.; Works, A. B.; Roush, W. R. Can. J. Chem. 2000, 78, 
757-771. (b) Corey, E. J.; Kania, R. S. J. Am. Chem. Soc. 1996, 118, 1229-1230. (c) Cooper, J.; Knight, D. W.; 
Gallagher, P. T. J. Chem. Soc., Perkin Trans. 1 1992, 553-559. 
238 (a) Burrows, C. J.; Carpenter, B. K. J. Am. Chem. Soc. 1981, 103, 6983-6984. (b) Burrows, C. J.; Carpenter, 
B. K. J. Am. Chem. Soc. 1981, 103, 6984-6986. (c) Curran, D. P., Suh, Y.-G. J. Am. Chem. Soc. 1984, 106, 
5002-5004. (d) Wilcox, C. S.; Babston, R. E. J. Am. Chem. Soc. 1986, 108, 6636-6642. (e) Coates, R. M.; 
Rogers, B. D.; Hobbs, S. J.; Curran, D. P.; Peck, D. R. J. Am. Chem. Soc. 1987, 109, 1160-1170. (f) Gajewski, J. 
J.; Jurayj, J.; Kimbrough, D. R.; Gande, M. E.; Ganem, B.; Carpenter, B. K. J. Am. Chem. Soc. 1987, 109, 1170-
1186. 
239 (a) Carpenter, B. K. Tetrahedron 1978, 34, 1877-1884. (b) Dewar, M. J. S.; Healy, E. F. J. Am. Chem. Soc. 
1984, 106, 7127-7131. (c) Vance, R. L.; Rondan, N. G.; Houk, K. N.; Bordan, W. T. J. Am. Chem. Soc. 1988, 
110, 2314-2315. (d) Wiest, O.; Black, K. A.; Houk, K. N. J. Am. Chem. Soc. 1994, 116, 10336-10337. (e) Wiest, 
O.; Houk, K. N.; Black, K. A.; Thomas, B. J. Am. Chem. Soc. 1995, 117, 8594-8599. (g) Wiest, O.; Montiel, D. 
C.; Houk, K. N. J. Phys. Chem. A 1997, 101, 8378-8388. (h) Meyer, M. P.; DelMonte, A. J.; Singleton, D. A. J. 
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exactly defined. The bond breaking and bond formation are concerted. Ideally, the concerted 

bond reorganisation proceeds through a quasi aromatic transition state (Scheme 70, middle). 

However, in most cases bond breaking and bond formation are not equally advanced resulting 

in two mechanistic borderline cases: 

- If the bond formation is more advanced than the bond breaking the transition state can be 

described as a 1,4-diyl (Scheme 70, top). 

- In contrast, if the bond breaking is further advanced than the bond formation, the transition 

state is best represented by a bisallyl (Scheme 70, bottom). 
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O O
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269 270

 
Scheme 70: The bond reorganisation of the Claisen rearrangement is concerted. Two mechanistic borderline 

cases are possible to describe the nature of the transition state. 

 

The real structure of the transition state can be visualized with a More-O’Ferrall-Jencks 

diagram.240 The location of the transition state within this plot depends both on the 

substitution patterns and the reaction conditions.  

 

 

 

 

                                                                                                                                        
Am. Chem. Soc. 1999, 121, 10865-10874. (i) Guner, V.; Khuong, K.S.; Leach, A.G.; Lee, P. S.; Bartberger, M. 
D.; Houk, K. N. J. Phys. Chem. A 2003, 107, 11445-11459. (j) Dewar, M. J. S.; Jie, C. J. Am. Chem. Soc. 1989, 
111, 511-519. (k) Gajewski, J. J.; Gee, K. R.; Jurayj, J. J. Org. Chem. 1990, 55, 1813-1882. (l) Sehgal, A.; Shao, 
L.; Gao, J. J. Am. Chem. Soc. 1995, 117, 11337-11340. (m) Hrovat, D. A.; Beno, B. R.; Lange, H.; Yoo, H. J.; 
Houk, K. N. J. Am. Chem. Soc. 1999, 121, 10529-10537. (n) Coates, R. M.; Rogers, B. D.; Hobbs, S. J.; Peck, D. 
R.; Currran, D. P. J. Am. Chem. Soc. 1987, 109, 1160-1170. (o) Yoo, H. Y.; Houk, K. N. J. Am. Chem. Soc. 
1997, 119, 2877-2884. (p) Aviyente, V.; Yoo, H. Y.; Houk, K. N. J. Org. Chem. 1997, 62, 6121-6128. (q) 
Aviyente, V.; Houk, K. N. J. Phys. Chem. A 2001, 105, 383-391. (r) Severance, D. L.; Jørgensen, W. L. J. Am. 
Chem. Soc. 1992, 114, 10966-10968. (s) Wiest, O.; Houk, K. N. J. Org. Chem. 1994, 59, 7582-7584. (t) Yoo, H. 
Y.; Houk, K. N. J. Am. Chem. Soc. 1994, 116, 12047-12048. (u) Yamabe, S.; Okumoto, S.; Hayashi, T. J. Org. 
Chem. 1996, 61, 6218-6226. (v) Gajewski, J. J. Acc. Chem. Res. 1997, 30, 219-225. (w) Khaledy, M. M.; Kalani, 
M.Y. S.; Khuong, K. S.; Houk, K. N.; Aviente, V.; Neier, R.; Soldermann, N.; Velker, J. J. Org. Chem. 2003, 68, 
572-577. 
240 (a) More O’Farrell, R. A. J. Chem. Soc. B 1970, 274-277. (b) Jencks, W. P. Chem. Rev. 1972, 72, 705-718. 
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11.2.2 Simple Diastereoselectivity (Syn-/Anti-Selectivity)  

 

It is agreed that as a [3,3]-sigmatropic pericyclic reaction the Claisen rearrangement of acyclic 

allyl vinyl ethers shows a high preference for a chair-like transition state (Scheme 71).225b If 

the allyl vinyl ether is substituted in 1 and 6 position the relative configuration (syn/anti)241 of 

the newly generated chirality centers is controlled by the configuration of the stereogenic 

double bonds.  
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Scheme 71: Idealized presentation of the concerted nature of the transition state of the Claisen rearrangement: 

Both enantiomorphic transition states are shown for allyl vinyl ether 271 substituted in 1- and 6-position.242 

 

As illustrated in Scheme 72, the rearrangement of 271 proceeds through either of the two 

possible enantiomorphic transition states 272 or 275 possessing identical energies. Therefore, 

the Claisen rearrangement of achiral allyl vinyl ethers affords racemic products. 

 

                                            
241 The terms ‚syn’ and ‚anti’ are employed with respect to the relative configuration of the substituents at C1 
and C6 adopted in a zigzag presentation of the molecule. 
242 The equilibrium between the starting material and the transition state is not explicitly depicted. We have 
chosen this formulation for it allows a concise representation of the transformation proceeding through the 
corresponding transition states. The placing of the transition state formula within the arrow is used to emphasize 
that the transition state must not be seen as intermediate.  
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Scheme 72: The allyl fragment can approach either of the two enantiotopic faces of the vinyl ether double bond. 

Without external asymmetric induction the resulting transition states 272 and 275 are enantiomorphic, i.e. they 

have identical energy values. 

 

According to the concerted nature and the chair-like transition state, the relative configuration 

of the rearrangement product can be reliably predicted. As a general rule the AVEs (E,Z)- and 

(Z,E)-278 rearrange to anti-279/280 (Scheme 73). 
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Scheme 73: Rearrangement of (E,Z)- and (Z,E)-278 affords anti-configured rearrangement products. 

 

In contrast, the AVEs (Z,Z)- and (E,E)-278 afford syn-281/282 (Scheme 74). 
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Scheme 74: Rearrangement of (Z,Z)- and (E,E)-278 affords syn-configured rearrangement products. 

 

11.2.3 Strategies for the Diastereoselective Formation of the 

 Vinyl Ether Double Bond  

 

In order to achieve the rearrangement products as single diastereomers it is essential to create 

the starting materials as single double bond isomers - a synthetic hurdle that is often 

troublesome and there are only few reliable strategies to overcome this problem. The Ireland-

Claisen rearrangement offers the most convenient strategy. As mentioned earlier, the choice 

of the deprotonation conditions may control the vinyl ether double bond configuration. The 

Ireland-model provides a good rationalization for the preferential formation of an E-ester 

enolate double bond during the deprotonation with LDA.243 Stronger 1,3-diaxial interactions 

in transition state 286 were accounted for the preferred formation of E-ester enolate 285 

(Scheme 75). 
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Scheme 75: Less dominant, unfavourable 1,3-diaxial interactions may be accounted to explain the preferred 

formation of E-ester enolates 285 during the deprotonation with LDA. LDA= lithium diisopropylamide. 
                                            
243 Ireland, R. E.; Willard, A. K. Tetrahedron Lett. 1975, 16, 3975-3978. 
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If the formation of a Z-ester enolate 287 is required, two of the following options may be 

employed. Addition of a donor solvent (e.g. HMPA) prevents the formation of the six-

membered cyclic transition state. Thus the deprotonation results in the preferred generation of 

the thermodynamically more stable Z-ester enolate 287. Similarly, utilization of bases other 

than LDA was found to give Z-ester enolate 287 predominantly.  

 

Wood et al. reported a rhodium(II)-carbenoid initiated tandem OH-insertion/[3,3]-

rearrangement process (Scheme 76).244  

 

O
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(R)-291  
Scheme 76: The rhodium(II)-carbenoid initiated Claisen rearrangement proceeds via allyl vinyl ether 290 with 

Z-enol double bond geometry. Ac= acetyl. 

 

The primary addition product of the allylic alcohol with the rhodium(II)-carbenoid is the Z-

configured enol (Z)-290. It was speculated,244 that the high preference for the formation of the 

Z-configured enol double bond is a consequence of an intramolecular proton transfer (Scheme 

77).  

 

HO
O

CO2Me

N2

O H O

MeO2C

Rh2OAc4

OH
O

MeO2C

Rh2OAc4

289
288

292 (Z)-290
 

Scheme 77: The highly selective formation of the Z-configured enol may be rationalized by an intramolecular 

proton transfer. 

 

The formation of a silyl enol ether 293 prior to the insertion prevented the intramolecular 

proton transfer. After the enol ether cleavage the thermodynamically more stable (E)-290 is 

generated. Consequently, Claisen rearrangement of (E)-290 resulted in the formation of the 

                                            
244 Wood, J. L.; Moniz, G. A. Org. Lett. 1999, 1, 371-374. Even though 1,3-chirality transfer is involved in this 
expample, it is included in this chapter for it represents an interesting variation to allow the diasteroselective 
formation of the vinyl ether double bond. 
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enantiomeric rearrangement product (S)-291 (Scheme 78). Employing this strategy allowed 

an enantioselective access to both of the possible enantiomers of 291.245 

 

TBSO

N2

OMe

O

OH

TBSO

OMe

O

O
OHO

CO2Me CO2Me

O

OH

Rh2(OAc)4
benzene, Δ

1. p-TSA
    benzene, rt
2. benzene, Δ [3,3]

293 289 294 (E)-290 (S)-291
 

Scheme 78: Enantiomeric rearrangement products (S)-291 are accessible by formation of the silyl enol ether 

prior to the OH-insertion. Ac= acetyl, TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], TSA= toluene sulfonic acid. 

 

Another interesting alternative is the so-called chelate-enolate-Claisen rearrangement.246 The 

additional Lewis basic position results in the formation of a chelate complex. Consequently 

the E-enolate is preferentially formed (Scheme 79). 

 

O

O
RHN

O

O
RN

Zn
RHN CO2H

LDA, ZnCl2
THF, −78 °C −78 °C to rt

(±)-syn-297 
(88%, 86% de)

295 296
 

Scheme 79: Chelate formation controls the geometry of the vinyl ether double bond. R= benzyloxycarbonyl, 

LDA= lithium diisopropylamide. 
 

Aza-Ireland-Claisen rearrangements of (E)-300 afforded syn-302 with excellent 

diastereoselectivity. It was assumed, that a steric interactions between the methyl group and 

the substituents on the nitrogen atom led to the preferred formation of the Z-enolate 298 and 

consequently to the generation of the syn-configured rearrangement product (Scheme 80).247 

                                            
245 Wood, J. L.; Monitz, G. A.; Pflum, D. A.; Stoltz, B. M.; Holubec, A. A.; Dietrich, H.-J. J. Am. Chem. Soc. 
1999, 121, 1748-1749. 
246 Kazmaier, U. Angew. Chem. 1994, 106, 1046-1047; Angew. Chem., Int. Ed. Engl. 1994, 33, 998-999. The 
chelate formation to control the vinyl ether double bond configuration was as well employed as preliminary step 
during Ireland –Claisen applications. For instructive examples, see: (a) Mulzer, J.; Mohr, J.-T. J. Org. Chem. 
1994, 59, 1160-1165. (b) Kallmerten, J.; Gould, T. J. Tetrahedron Lett. 1983, 24, 5177-5180. (c) Burke, S. D.; 
Fobare, W. F.; Pacofsky, G. J. J. Org. Chem. 1983, 48, 5221-5228. 
247 Tsunoda, T.; Sasaki, O.; Itô, S. Tetrahedron Lett. 1990, 31, 727-730. 
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NBu

O

NBu

OTMS

NHBu

O

302 (92%, 99% de)

LDA, TMSCl [3,3]

300 301  
Scheme 80: Preferred formation of Z-enolates 298 during aza-Claisen rearrangements. LDA= lithium 

diisopropylamide, TMS= trimethylsilyl [SiMe3]. 
 

11.3  Induced Diastereo- and Enantioselectivity during Claisen 

 Rearrangements 
 

Beside the simple diastereoselectivity, affords have been made to develop enantioselective 

and/or diastereoselective variations. There are four different possible strategies for the 

induction of enantio- or diastereoselectivity: 

- substrate induction (11.3.1), 

- auxiliary induction (11.3.2), 

- reagent induction (11.3.3), 

- or catalyst induction (11.3.4). 

 

11.3.1 Substrate-Induced Diastereo- and Enantioselectivity: 

 1,3-Chirality Transfer and Remote Stereocontrol 

 

Numerous applications of substrate-induced diastereo- and enantioselectivity have been 

successfully employed in total syntheses.248 In those examples, the 1,3-chirality transfer is the 

most frequently utilized strategy to achieve substrate-induced enantioselectivity.249 The 

                                            
248 For some instructive examples, see: (a) Mulzer, J.; Mohr, J.-T. J. Org. Chem. 1994, 59, 1160-1165. (b) 
Kawasaki, T.; Ogawa, A.; Takashima, Y.; Sakamoto, M. Tetrahedron Lett. 2003, 44, 1591-1593. 
249 We prefer to use a different numbering for the allyl vinyl ether with the vinyl ether double bond located 
between the carbon atoms C1 and C2 and the allyl ether double bond between carbon atoms C5 and C6. The 
historical numbering is reflected in the terms ‘[3,3]-sigmatropic rearrangement’ and ‚1,3-chirality transfer’. In 
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absolute configuration of the oxygen-substituted carbon atom C4 will merge into the newly 

formed stereogenic center with complete stereocontrol.250 As depicted in Scheme 81, the 

presence of the chirality center leads to the availability of two energetically distinct transition 

states.  

 

O

R'R
R

O
R'

O
R

R'
H

O

R'R4
6

faster

slower O

R'R

303 304 305

306 307  
Scheme 81: Representative scenario for a 1,3-chirality transfer. The presence of a substituent at C4 results in two 

diastereomorphic transition states for the Claisen rearrangement.242 

 

Remote stereocontrol has also been reported. In those examples, the chirality center is 

attached to carbon atom C1 or C6. A number of instructive examples were reviewed and 

thoroughly discussed recently by Nubbemeyer.251 

 

11.3.2 Auxiliary-Induced Diastereoselectivity 

 

Chiral auxiliaries might be employed for diastereoselective versions of the Claisen 

rearrangement. The presence of the additional stereogenic center(s) in the auxiliary enables 

the more easy separation of the resulting diastereomers. Auxiliary-induced 

diastereoselectivity may be detected by usual NMR-techniques. The major drawback is the 

requirement of two additional synthetic steps: one for the introduction and the second for the 

removal of the auxiliary. The principles of the induction are similar to those of the remote 

stereocontrol. Some applications of this strategy are given below. 

 

The aza-Claisen rearrangement allows the introduction of a chiral auxiliary bound to the 

nitrogen. However, high temperatures were required to initiate the aza-Ireland Claisen 

                                                                                                                                        
this thesis, numbering starts at the potentially broken bond in either direction with 1 and 1’ respectively. The 
new bond will be formed between carbon atoms C3 and C3’.   
250 Fuij, K. Chem. Rev. 1993, 93, 2037-2066. 
251 Nubbemeyer, U. Synthesis 2003, 961-1008. 
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rearrangement resulting in low diastereoselectivities.252 This problem was solved by the 

application of a zwitterionic aza-Claisen rearrangement (Scheme 82).253 The presence of the 

OTBS-group in the rearrangement product 311 enabled the smooth cleavage of the 

auxiliary.254 

 

Ph N

OTBS

N3 F

O N

O

Ph
OTBSN3 Ph

N3

N

O
OTBSMe3Al, K2CO3

CHCl3, 0 °C [3,3]

311 (91%, >90% de)
(syn/anti >95/5)

308 309 310
 

Scheme 82: Zwitterionic aza-Claisen rearrangement according to Nubbemeyer. TBS= tert-butyldimethylsilyl 

[Si(t-Bu)Me2]. 
 

During the Eschenmoser-Claisen rearrangements, nitrogen-bound auxiliaries allow the 

generation of the corresponding γ,δ-unsaturated amides 316 with high auxiliary-induced 

diastereoselectivity (Scheme 83).255  

 

O

N
Ar*

O

H
N

Ar*
OMe
NH2

LDEA, THF
−78 °C, 5 h

316 (78%, 94% de)
(anti/syn >97/3) (S)-Ar*-NH2

315
 

Scheme 83: Auxiliary induced diastereoselectivity in the Eschenmoser-Claisen rearrangement. LDEA= lithium 

diethylamide. 

 

                                            
252 (a) Tsunoda, T.; Ozaki, F.; Shirakata, N.; Tamaoka, Y.; Yamamoto, H.; Itô, S. Tetrahedron Lett. 1996, 37, 
2463-2466. (b) Tsunado, T.; Nishii, T.; Yoshizuka, M.; Yamasaki, C.; Suzuki, T.; Itô, S. Tetrahedron Lett. 2000, 
41, 7667-7671. 
253 (a) Laabs, S.; Scherrmann, A.; Sudau, A.; Diedrich, M.; Kierig, C.; Nubbemeyer, U. Synlett 1999, 25-28. (b) 
Laabs, S.; Münch, W.; Bats, J.-W.; Nubbemeyer, U. Tetrahedron 2002, 58, 1317-1334. (c) Zhang, N.; 
Nubbemeyer, U. Synthesis 2002, 242-252. 
254 Cleavage of the silylether led to the formation of ammonium ester 313 that, upon transesterification, provided 
ester 314. 

R N

O OTBS HCl, MeOH
60 °C, 48 h

R O

O H2
N Cl

R OMe

O

314 (>80%)312 313  
255 (a) Hungerhoff, B.; Metz, P. Tetrahedron 1999, 55, 14941-14946. (b) Hungerhoff, B.; Metz, P. J. Org. Chem. 
1997, 62, 4442-4448. 
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Metzner et al. successfully employed chiral sulfoxides as highly efficient stereodirecting 

groups. Representative examples with the sulfoxide bound to C1 or C5 are depicted in Eq. 

39256 and Eq. 40257. 

 

S NMe2

S
Cy

O

S
Cy

O

NMe2

S

THF,  66 °C, 1 h

318 (76%, 100% de)317  
Eq. 39 Cy= cyclohexyl. 

 

On-Bu

MeO2C

Ph
S

p-TolO

O

Ph
S

p-Tol
O

MeO2C

n-Bu

320 (79%, 100% de)

DMF, 130 °C, 1 h

319  
Eq. 40 Tol= toluenyl. 

 

The successful utilization of the RAMP/SAMP-methodology for a Carroll-Claisen 

rearrangement was reported by Enders et al.258 The hydrazones 321 rearranged in good yields 

and usually with high auxiliary induced diastereoselectivity (Scheme 84). 

 

N
N

OMe

O

O

Cy

N
N

OMe

Cy

OH

LDA, THF/TMEDA, −100 °C
then −100 °C to rt

then LiAlH4, Et2O, rt

322 (83%, >99% de)
(syn/anti = 4/96)

321
 

Scheme 84: The chiral SAMP auxiliary efficiently induced diastereoselectivity during the Carroll-Claisen 

rearrangement LDA= lithium diisopropylamide, TMEDA= N,N,N’,N’-tetramethylethylenediamine, Cy= 

cyclohexyl. 

                                            
256 Nowaczyk, S.; Alayrac, C.; Reboul, V.; Metzner, P.; Averbuch-Pouchot, M.-T. J. Org. Chem. 2001, 66, 
7841-7848. 
257 Fernandez de la Pradilla, R.; Montero, C.; Tortosa, M. Org. Lett. 2002, 4, 2373-2376. 
258 (a) Enders, D.; Knopp, M.; Runsink, J.; Raabe, G. Angew. Chem. 1995, 107, 2442-2445; Angew. Chem., Int. 
Ed. Eng. 1995, 34, 2278-2280. (b) Enders, D.; Knopp, M.; Runsink, J.; Raabe, G. Liebigs Ann. 1996, 1095-1116. 
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11.3.3 Reagent-Induced Enantioselectivity 

 

In recent years, various examples for reagent-induced enantioselectivity have been 

developed.259 Important examples are highlighted below. 

 

Aluminium(III) 

Lewis acids based on aluminium were found to accelerate the Claisen rearrangement.260 

Marouka and Yamamoto developed different chiral Lewis acids based on aluminium. The 

focus of Maruoka’s work is laid upon bidentate Lewis acids.261 The efforts culminated in the 

development of the chiral bidentate organoaluminium Lewis acid 324 that was successfully 

tested as chiral accelerator of the Claisen rearrangement of 323 (Eq. 41).262  

 

OAlMe MeAlO
Cl Cl

OTPS TPSO

O

t-Bu

1.1 eq 324, PPh3, CH2Cl2
−78 °C, 1.5 h, −45 °C, 4 h

O

t-Bu

325
70%, 85% ee

324

323

 
Eq. 41 TPS= tert-butyldiphenylsilyl [Si(t-Bu)Ph2]. 

 

Yamamoto et al. developed the C3-symmetric chiral Lewis acids 326 based on aluminium.263 

One example of a successful application is given in Scheme 85. 

 

                                            
259 For reviews concerning the enantioselective Claisen rearrangement see: (a) Ito, H.; Taguchi, T. Chem. Soc. 
Rev. 1999, 28, 43-50. (b) Enders, D.; Knopp, M.; Schiffers, R. Tetrahedron: Asymmetry 1996, 7, 1847-1882. 
260 Takai, K.; Mori, I.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1981, 22, 3985-3988. 
261 (a) Ooi, T.; Takahashi, M.; Maruoka, K. J. Am. Chem. Soc. 1996, 118, 11307-11308. (b) Ooi, T.; Takahashi, 
M.; Yamada, M.; Tayama, E.; Omoto, K.; Maruoka, K. J. Am. Chem. Soc. 2004, 126, 1150-1160. 
262 Tayama, E.; Saito, A.; Ooi, T.; Maruoka, K. Tetrahedron 2002, 58, 8307-8312.  
263 Maruoka, K.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 1165-1166. 
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Scheme 85: Enantioselective Claisen rearrangement using the chiral Lewis acid 326 based on aluminium(III). 

 

Unfortunately, the rearrangement products have a stronger affinity to the reagent than the 

substrate preventing the potential use of Lewis acids based on aluminium(III) as catalysts.264  

 

Boron(III) 

Corey and co-workers developed the chiral boron(III) Lewis acid 328 as accelerator of the 

Ireland Claisen rearrangement.265 The boron(III)-mediated Ireland Claisen rearrangement of 

327 afforded 329 with excellent diastereo- and enantioselectivity (Scheme 86).  
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SO2Ar
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O

1.1 eq 328, i-Pr2EtN
CH2Cl2, −20 °C, 7 d

329 (75%)
98% de, >97% ee

Ar= CF3

CF3

327

328  
Scheme 86: Corey’s version of a reagent-induced enantioselective Ireland-Claisen rearrangement. Ph= phenyl. 

 

A transannular variation of the reaction was successfully employed in the total synthesis of 

dolabellatrienone.237b However - as for the aluminium(III)-based accelerators - the reagent 

had to be added in at least stochiometric amounts to give good enantioselectivities. 

 

Magnesium(II) 

In 2001 MacMillan et al. reported a chiral Lewis acid 332 based on magnesium(II) as reagent 

for the aza-Claisen rearrangement of morpholin derivatives (Scheme 87).266  

 

                                            
264 The only catalytic application of an AlIII-based Lewis acid was published in 1996: Saito, S.; Shimada, K.; 
Yamamoto, H. Chem. Lett. 1996, 720-722.  
265 Corey, E. J.; Lee, D.-H. J. Am. Chem. Soc. 1991, 113, 4026-4028. 
266 Yoon, T. P.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001, 123, 2911-2912. 
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Scheme 87: MacMillan’s asymmetric aza-Claisen rearrangement was induced by the chiral magnesium(II) 

complex 332. PMB= p-methoxy benzyl, Bn= benzyl, Ln*= chiral Arbox ligand. 

 

Chelate-Enolate-Claisen 

In the research group of Kazmaier et al. chiral Lewis acids were employed for 

enantioselective versions of the chelate-enolate-Claisen rearrangement.267 Best results were 

achieved using the cinchona alkaloids (e.g. quinine (336)), Al(Oi-Pr)3 as chelating metal salt 

and LiHMDS instead of LDA for the deprotonation. The resulting γ,δ-unsaturated amino 

acids 337 were formed in excellent yields. Beside high diastereoselectivity, good 

enantioselectivities up to 87% ee could be achieved (Scheme 88). 
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Scheme 88: Cinchona alkaloids 336 gave the best enantioselectivities when employed as chiral ligands for the 

chelate-enolate-Claisen rearrangement. LiHMDS= Li[N(SiMe3)2]. 

 

 

 

                                            
267 Kazmaier, U.; Mues, H.; Krebs, A. Chem. Eur. J. 2002, 8, 1850-1855. 
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11.3.4 Catalyst-Induced Enantioselectivity 

 

Catalyzed Claisen Rearrangement in Biological Systems 

 

There is only one known example for the Claisen rearrangement catalyzed by enzymes in 

biological systems. The Claisen rearrangement of chorismate (338) to prephenate (339) – a 

key step in the biosynthesis of shikimic acid which is a precursor for folate, anthranilate and 

aromatic amino acids268 - is catalyzed by the chorismate mutase (Eq. 42).269 The catalytic 

activity is believed to be the result of various non-covalent interactions.270  

 

CO2

OH
O CO2

O2C

OH

CO2

Ochorismate mutase

338 339  
Eq. 42 

 

Attempts, to employ organo catalyst (e.g. Brønstedt acids) for the Claisen rearrangement are 

limited. Pioneering work was performed by Curran et al.271 Ureas were used as organo 

catalysts. They are assumed to cause rate acceleration by forming two hydrogen bonds to the 

Lewis basic oxygen atom of the substrate.272 However, to induce reasonable reaction rates at 

80 °C stochiometric amounts of the Brønstedt acid were required. 

 

First Attempts: Application of the Late Transition Metal Palladium 

 

With the importance and the high potential of the Claisen rearrangement in mind, it is 

somewhat surprising that there are only few catalytic versions of the rearrangement. As it was 

                                            
268 For a concise presentation of biosynthetic pathways involved in the biosynthesis of shikimic acids see: 
http://www.chem.qmul.ac.uk/iubmb/enzyme/reaction/misc/shikim.html 
269 Ganem, B. Tetrahedron 1978, 34, 3353-3383. 
270 (a) Repasky, M. P.; Guimaraes, C. R. W.; Chandrasekhar, J.; Tirado-Rives, J.; Jørgensen, W. L. J. Am. Chem. 
Soc. 2003, 125, 6663-6672. (b) Wiest, O.; Houk, K. N. J. Am. Chem. Soc. 1995, 117, 11628-11639. (c) Marti, S.; 
Andres, J.; Moliner, V.; Silla, E.; Tunon, I.; Bertran, J. J. Phys. Chem. B 2000, 104, 11308-11315. (d) Wiest, O.; 
Houk, K. N. J. Org. Chem. 1994, 59, 7582-7584. 
271 Curran, D. P.; Kuo, L. H. Tetrahedron Lett. 1995, 36, 6647-6650. 
272 (a) Connon, S. J. Chem. Eur. J. 2006, 12, 5418-5424. (b) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299-
4306. 
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shown in the above examples (see chapter 11.3.3), Lewis acids are capable to accelerate the 

Claisen rearrangement. However, the major drawback results from the obvious higher Lewis 

basic characteristics of the rearrangement products compared to the starting materials. The 

reason can be rationalized by the possible mesomeric structures of starting material 269 and 

rearrangement product 270 (Scheme 89). 

 

OO

ether oxygen atom:
diminished Lewis basicity

carbonyl oxygen atom: 
enhanced Lewis basicity

O O[3,3]

269 270340 341

 
Scheme 89: The product inhibition observed often for Lewis acid accelerated Claisen rearrangements may be the 

result of different Lewis basic characteristics of the starting material and the rearrangement product. 

 

The first example of a catalyzed aliphatic Claisen rearrangement was reported by van der 

Baan and Bickelhaupt.273 They utilized (CH3CN)2PdCl2 for their studies. Application of this 

catalyst to various differently substituted allyl vinyl ethers showed that the result of the 

rearrangement was strongly dependent on the substitution pattern of the AVEs. Only for a 

limited number of the tested allyl vinyl ethers the reaction afforded the rearrangement product 

in preparatively useful yields. As a late transition metal, palladium has a stronger affinity 

toward the ‘softer’ electron rich double bonds than to the ‘harder’ Lewis basic oxygen atoms. 

Therefore, it was proposed that the coordination to one or both of the double bonds is the 

reason for the catalytic effect.274 

In initial attempts of our research group, the ability of palladium(II)-complexes to catalyze the 

Claisen rearrangement of 2-alkoxycarbonyl substituted allyl vinyl ethers was investigated. 

Only the (E,E)-configured AVE 342 rearranged under those conditions (Eq. 43).275 

 

CO2i-Pr

O
CO2i-Pr

O

5 mol% (PhCN)2PdCl2]
CH2Cl2, rt, 24 h

342 (Z,E)/(E,E) = 64/36 343 (43%, 74% de)
(+ 51% unreacted (Z,E)-27) 

Eq. 43 

 
                                            
273 van der Baan, J. L.; Bickelhaupt, F. Tetrahedron Lett. 1986, 27, 6267-6270. 
274 Sugiura, M.; Nakai, T. Chem. Lett. 1995, 697-698. 
275 Hiersemann, M. Synlett 1999, 1823-1825. 
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The most recent development in the field of the palladium(II) catalyzed Claisen 

rearrangement was published in 2004. A catalytic enantioselective Claisen rearrangement 

using [(R)-diamino-binaphtyl trifluoromethane sulfonyl amide]-Pd complex (R)-DABNTf 

was reported by Mikami and co-workers (Scheme 90).276 The author proposed a mechanism 

similar to that suggested by Nakai et al.274 The rearrangement was assumed to proceed via a 

boat-like transition state 345 with the palladium coordinated to both double bonds.274 
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NTf
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NTf NCMe
NCMe

O

Pd
N

N
Ln

*

5 mol% (R)-DABNTf

CH3CN, 80 °C, 14 h

344
E/Z= 83/17

346 (69%)
 56% de, 77% ee

(R)-DABNTf:

345  
Scheme 90: Catalytic asymmetric Claisen rearrangement employing a chiral palladium(II)-complex. Tf= trifluoromethane 

sulfonyl [CF3SO2]. 

 

New Catalysts for the Claisen Rearrangement 

 

A milestone observation for the development of the catalytic asymmetric Claisen 

rearrangement (CAC) was made in 2000 by Trost et al. Lanthanide(III) cations were found to 

catalyse the Claisen rearrangement of aliphatic allyl vinyl ethers 347 (Eq. 44).277 

 

O
O

10 mol% Ho(fod)3
CHCl3, 50-60 °C

O

OH

348 (96%, 98% ee)347  
Eq. 44 fod= [CF3(CF2)2C(O)CH2C(O)C(CH3)3] 

 

Surprisingly no product inhibition of the catalyst was observed in this case what might be 

rationalized by the tendency of 1,2-diketones to tautomerize to the corresponding enols 

                                            
276 Akiyama, K.; Mikami, K. Tetrahedron Lett. 2004, 45, 7217-7220. 
277 Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 2000, 122, 3785-3786. 
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(Scheme 91). In contrast to the carbonyl oxygen atom which possesses Lewis basic 

characteristics, the enol oxygen atom owns a partially positive charge due to resonance 

stabilization.  

 

O

O

O

OH
349 350  

Scheme 91 

 

Therefore, the coordination of the rearrangement product to the Lewis acid might be rendered 

unfavourable.  

 

In our research group we are interested in the rearrangement of 2-alkoxycarbonyl substituted 

AVEs. Beside the ether oxygen atom they include a second binding site (the ester oxygen 

atoms) for a Lewis acidic catalyst at a spatially close position. 

 

Inspired by Trosts’s finding, we employed different lanthanide(III) triflates and Ce(OTf)4 as 

catalysts for the Claisen rearrangement of the AVE 351.202b With 10 mol% of the catalyst 

(Ln= Lu, Yb, Tm, Er, Ho) clean conversion was observed in CH2Cl2 within 6-24 h (Table 17).  

 

CO2i-Pr

O
CO2i-Pr

O

CO2i-Pr

O

10 mol% Ln(OTf)3
3 Å molecular sieves

CH2Cl2, rt
+

(±)−syn-352 (±)-anti-352351, Z/E = 9/1
syn/anti = 9/1  

Entry Ln(OTf)3 Reaction time [h] Yield [%] 

1 Lu(OTf)3 6 98 

2 Yb(OTf)3 6 98 

3 Er(OTf)3 24 100 

4 Ho(OTf)3 24 100 
Table 17: Catalytic Claisen rearrangement using lanthanide triflates. Tf= trifluoromethane sulfonyl [CF3SO2] 
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In contrast to other Lewis acid accelerated Claisen rearrangements, no product inhibition was 

observed. As a reason for this finding, we suggest an unfavourable s-cis conformation of the 

two carbonyl groups present in the catalyst-product-complex (Scheme 92). 

 

ResterO O

OR
Ln

3 OResterO

RO

s-cis
[Ln   α-keto ester] α-keto ester

s-trans

+ Ln 3

353 354

 
Scheme 92: An unfavourable s-cis arrangement of the carbonyl groups in the (lanthanide·α-keto ester) complex 

might enable the release of the catalyst. Ln= lanthanide(III)-cation. 

 

Subsequent reactions were performed with the more reactive Sc(OTf)3 as catalyst. The 

isolated yields were quantitative. Interestingly, the diastereoselectivities were found to be 

dependent on the ally ether double bond configuration (Table 18).  

 

CO2i-Pr

O
CO2i-Pr

O

CO2i-Pr

O

5 mol% Sc(OTf)3
3 Å molecular sieves

CH2Cl2, rt, 1 h
+

(±)−syn-343 (±)-anti-343342  
Entry Configuration of 342 Yield [%] syn/anti 

1 Z,Z 95 96/4 

2 E,Z 100 4/96 

3 Z,E 98 44/56 

4 E,E 99 70/30 
Table 18: Sc(OTf)3-catalysed Claisen rearrangement. Tf= trifluoromethane sulfonyl [CF3SO2]. 

 

AVEs with Z-configured allyl ether double bond rearranged with high diastereoselectivity to 

the corresponding α-keto esters. As expected (see chapter 11.2), (E,Z)-342 gave (±)-syn-343 

(entry 1) while (Z,Z)-342 lead to the formation of (±)-anti-343 (entry 2). In contrast, for the 

catalyzed rearrangement of the (Z,E)-342 and (E,E)-342 with E-configured allyl ether double 

bond the observed diastereoselectivities are surprisingly low (entry 3 and 4). 
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This unexpected poor selectivity was verified by calculations performed by Julia Rehbein in 

our research group.278 It was shown, that the formation of the substrate-catalyst complex 

results in increased bond lengths of the 355 and therefore a formal ‘destabilization’ of the 

substrate. On the other hand, the smaller deviation from planarity of the vinyl ether double 

bond and the ester carbonyl group is enforced by the copper(II)-catalyst. This allows a better 

conjugation compared to the thermal rearrangement and hence contributes to a better 

stabilization of the transition state. This transition state stabilization in concert with the formal 

substrate destabilization results in a smaller activation barrier and can be accounted for the 

catalytic activity of the transition state metal complexes (Table 19).  

 

O

CO2i-Pr

O

CO2i-Pr

(Z,E)-355 (Z,Z)-355  
 ΔG# [kcal/mol] 

AVE (Z,Z)-355 (Z,E)-355 

Thermal  29.9 28.7 

Catalytic 13.0 8.5 
Table 19: Calculated activation barriers for the thermal and the catalytic Claisen rearrangement of (Z,Z)-355 and 

(Z,E)-355. 

 

Furthermore, the transition state of the catalyzed Claisen rearrangement is significantly more 

dissoziative than the transition state of the thermal Claisen rearrangement (Table 20). To 

achieve high diastereoselectivities, a significant energy gap between boat-like and chair-like 

transition state is required. The calculations revealed that this energy gap is significantly 

decreased for the catalyzed process (Table 20). 

 

 

 

 

 

 

                                            
278 Rehbein, J.; Hiersemann, M. The Catalytic Asymmetric Claisen Rearrangement: How the [CuII(box)]-
Catalyst Achieves Rate Acceleration and Stereodifferentiation – A Computional Study. Poster for Synthetic, 
Mechanistic and Reaction Engineering. Aspects of Metal Containing Catalysts, 2005, Berlin, and unpublished 
results. 
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 Critical bond length r(C1-C6) [Å]a ΔΔG#
(chair-boat) [kcal/mol] 

AVE (Z,Z)-355 (Z,E)-355 (Z,Z)-355 (Z,E)-355 

Thermal 2.375 2.370 −6.2 −3.9 

Catalytic 2.888 2.814 −1.1 −0.2 

Table 20: Critical bond lengths and energy gaps between chair-like transition state and boat-like transition state 

using (Z,Z)-355 and (Z,E)-355 as representative examples. a Values for the chair-like transition state. Similar 

extensions were calculated for r (O3-C4). Comparable results were obtained for the boat-like transition state.  

 

Additionally, ΔΔG was found to be considerably greater for the rearrangement of the (Z,Z)-

355. The latter finding nicely mirrors the experimentally found better diastereoselectivity 

observed for the catalytic rearrangement of AVEs with Z-configured allyl ether double 

bond.279 The calculated value of 0.2 kcal/mol should result in a diastereomeric ratio of 58/42 

what is in very good agreement with the experimental verified diastereoselectivity of 57/43.280 

How can these results be explained? Normally, 1,3-diaxial interactions as well as steric 

repulsions due to the eclipsed arrangement of the substituent render the boat-like transition 

state less favourable. These interactions are expected to be less dominant in the more 

dissoziative transition states of the catalyzed rearrangement. To rationalize the greater gap 

between the activation energies of the possible transition states found for the catalyzed 

rearrangement of (Z,Z)-355 compared with (Z,E)-355 may be explained by analyzing the 

graphical representation of the transition states (Scheme 93).  

 

                                            
279 Level of theory: uB3LYP/6-31G*, gas phase, T = 298.15 K. Calculated with Gaussian 98: Gaussian 03, 
Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; 
Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; 
Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, 
M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; 
Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; 
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, 
K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; 
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. 
G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; 
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; 
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.280 
Catalyzed process with Cu(OTf)2 as catalyst. 
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Scheme 93: Chair- and boat-like transition states for (Z,E)- and (Z,Z)-AVE 355.281 

 

The following important characteristics may be emphasized. In all cases the chair-like 

transition states 356/358 are expected to be more attractive than the corresponding boat-like 

transition states 357/359. In the transition states for the rearrangement of the (Z,E)-355 (356 

and 357), the spatial relationship of R1 and R6 may be described as synclinal (chair-like 

transition state) versus anticlinal (boat-like transition state). In contrast, in the transition states 

for the rearrangement of (Z,Z)-355 (358 and 359), R1 and R6 are in antiperiplanar (chair-like 

transition state) versus synperiplanar (boat-like transition state) relation. Analysis of the 

spatial 1,6-arrangement gives the following results: 

- The chair-like transition state 356 is destabilized by a gauche interaction between the two 

methyl substituents. This interaction is absent in the chair-like transition state 358. Therefore, 

358 is more attractive than 356. 

- In contrast, the boat-like transition state 359 suffers from strong interactions between the 

methyl groups that are in eclipsed arrangement. This interaction is much less dominant for 

boat-like transition state 357, since only a repulsion between a methyl group and a hydrogen 

atom (instead of another methyl group) has to be considered. 

The above analysis may be illustrated by Scheme 94 that once again shows the destabilization 

of the boat-like transition state 359 compared to 357 and the stabilization of the chair-like 

transition state 358 in comparison to 356 and consequently results in a smaller energy gap for 

the rearrangement of (Z,E)-355. With this representation the different diastereoselectivities 

can be easily rationalized 
                                            
281 For descriptors of the steric relationship across single bonds, see: Klyne, W.; Prelog, V. Experientia 1960, 16, 
521-523. 
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Scheme 94: Illustration of the relative energy values of the different possible transition states for the catalyzed 

rearrangement of (Z,E)-355 (left) and (Z,Z)-AVE 355 (right).  

 

With the successful catalysis of the Claisen rearrangement of 2-alkoxycarbonyl substituted 

AVEs by lanthanide(III) triflates in hand, we next turned our attention toward Cu(OTf)2 and 

Yb(OTf)3.282 It was found that in the presence of 3 Å molecular sieves both triflates were able 

to catalyze the transformation. Both, diastereoselectivity and reactivity showed strong 

dependency on the substrate structure. However, the two catalysts usually gave comparable 

results (Table 21).  

 

CO2i-Pr
R1

O
R1

CO2i-Pr

O

catalyst
3 Å mol sieves
CH2Cl2, rt, 24 h

360 361  
Entry R1 Catalyst Yield [%] syn/anti 

1 Bn 5 mol% Cu(OTf)2 98 93/7 

2 Bn 7.5 mol%Yb(OTf)3 99 96/4 

3 i-Pr 5 mol% Cu(OTf)2 99 93/7 

4 i-Pr 7.5 mol%Yb(OTf)3 99 91/9 
Table 21: Cu(OTf)2 and Yb(OTf)3 catalyzed Claisen rearrangement. Tf= trifluoromethane sulfonyl [CF3SO2]. 

                                            
282 Hiersemann, M.; Abraham, L. Org. Lett. 2001, 3, 49-52. 



128                                                    The Catalytic Asymmetric Claisen Rearrangement (CAC) 
 

 
Ph.D. Thesis Annett Pollex 

Catalytic Asymmetric Claisen Rearrangement 

These promising results guided us to the development of an enantioselective variation of the 

Claisen rearrangement. To induce enantioselectivity, a chiral ligand is required to provide the 

chiral environment that is essential to discriminate between the two possible enantiomorphic 

transition states. In our first attempts we employed the well known copper(II) bis(oxazolines) 

(S,S)-362 (Figure 16).206 

 

N

O

Cu
N

O

R ROTfTfO

R= t-Bu    
R= Ph

(S,S)-362a
(S,S)-362b 

Figure 16: Copper(II)-bis(oxazoline)-complex. Tf= trifluoromethane sulfonyl [CF3SO2]. 

 

We concentrated on AVEs with Z-configured allyl ether double bond or lacking a stereogenic 

allyl ether double bond.283 Generally, isolated yields were very good. When applied to 

different test substrates, copper(II) bis(oxazoline) complex (S,S)-362b afforded the 

corresponding rearrangement products with high diastereoselectivities and enantioselectivities 

up to 88% ee (Table 22).202b 

 
CO2i-Pr

O CO2i-Pr

O

CO2i-Pr

O

5 mol% (S,S)-32a
CH2Cl2, rt, 38 h

+

 syn-343  anti-343342  
Entry Configuration Yield [%] syn/anti ee [%] 

1 E 99 3/97 88 

2 Z 98 99/1 84 
Table 22: Application of [Cu{(S,S)-Ph-box}](OTf)2 [(S,S)-362b] for the catalytic asymmetric Claisen 

rearrangement (CAC). Tf= trifluoromethane sulfonyl [CF3SO2]. 

 

Comparison of the copper(II)-bis(oxazoline) catalysts (S,S)-362a and (S,S)-362b as catalysts 

for the Claisen rearrangement was performed next (Table 23).202b  

                                            
283 AVEs with E-configured allyl ether double bond rearrange with decreased diastereoselectivities. See 
preceding paragraph. 
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CO2i-Pr
R1

O

(R)-364

R1

CO2i-Pr

O

(S)-364

R1

CO2i-Pr

O

catalyst
CH2Cl2, rt +

363  
Entry R1 Z/E Catalyst Reaction time [h] Yield [%] (R)/(S) 

1 Me 96/4 5 mol% (S,S)-362b 1 100 91/9 

2 Me 96/4 10 mol% (S,S)-362a 24 99 6/94 

3 Bn 97/3 5 mol% (S,S)-362b 1 99 88/12 

4 Bn 97/3 10 mol% (S,S)-362a 72 94 8/92 
Table 23: Comparison of [Cu{(S,S)-Ph-box}](OTf)2 [(S,S)-362b] and [Cu{(S,S)-t-Bu-box}](OTf)2 [(S,S)-362a] 

as catalysts for the catalytic asymmetric Claisen rearrangement (CAC). Tf= trifluoromethane sulfonyl [CF3SO2], 

Bn= benzyl. 

 

We found that the copper(II)-t-Bu-box catalyst (S,S)-362a is less reactive than the copper(II)-

Ph-box catalyst (S,S)-362b (Table 23, entry 2 and 4). Often, the addition of molecular sieves 

was required to enhance the reaction rate if (S,S)-362a was used as catalyst. However, the 

observed enantioselectivities were found to be slightly higher (Table 23, entry 2 and 4). 

Another interesting result is the reversed absolute configuration of the product 364 that was 

observed for the rearrangement with (S,S)-362a compared to (S,S)-362b (Table 23, entry 1 

and 3). 

 

The enhanced enantioselectivity and the reversal of the absolute configuration may be a result 

of the geometry of the complexes (S,S)-362a and (S,S)-362b. In an effort to explain the 

finding, a set of quantum chemical calculations was performed by Julia Rehbein in our 

research group.284 For [Cu{(S,S)-t-Bu-box}](H2O)2(SbF6)2 [(S,S)-234a] a distorted square-

planar coordination geometry around the copper(II) central atom was determined (Figure 17, 

right) that is even more pronounced for [Cu{(S,S)-Ph-box}](H2O)2(SbF6)2 [(S,S)-234b] 

(Figure 17, left).  

 

 

 

                                            
284 Rehbein, J.; unpublished results. 
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Figure 17: Calculated distorted square-planar coordination of (S,S)-234a and (S,S)-234b.

279,285 

 

The degree of distortion may be expressed by the dihedral angle. With an assumed plane 

spread out between the copper central atom and the two nitrogen atoms coordinatively bound 

to it, the dihedral angels may be defined as deviation of the water ligands from this plane 

assuming an almost planar arrangement of the oxazoline rings in this plane and a view axis 

along the copper atom and the C1-linker connecting the two oxazolines rings (Scheme 95). 

 

N

O

Cu
N

O

R ROH2H2O

234

dihedral angle 1 dihedral angle 2

view axis

 
Scheme 95: Visualization of the position of the dihedral angles.285 

 

 

 

                                            
285 Charges and counter ions are not depicted for concise reasons. 



The Catalytic Asymmetric Claisen Rearrangement (CAC) 131 
 

 
Ph.D. Thesis Annett Pollex 

Calculated values are represented in Table 24. 

 

 (S,S)-234a (S,S)-234b 

Dihedral angle 1 136.1 125.1 

Dihedral angle 2 −53.0 −72.6 

Table 24: Dihedral angles for (S,S)-234a and (S,S)-234b.279,284 
 

As a consequence of this distortion, the attack of the allyl fragment from the opposite 

enantiotopic face of the vinyl ether double bond appears possible.286 

 

Since the [Cu{(S,S)-t-Bu-box}](OTf)2 [(S,S)-362a] - that gave the better enantioselectivities - 

showed only limited reactivity, we sought for a related catalyst with increased Lewis acidity 

that at the same time maintains the capability to differentiate between the two enantiotopic 

faces of the vinyl ether double bond. Exchange of the triflate counter ion with the less 

coordinating hexafluoro antimonate resulted in the “cationic” complex [Cu{(S,S)-t-Bu-

box}](H2O)2(SbF6)2 [(S,S)-234a] which was originally described by Evans and co-workers 

(Figure 18).287  

 

N

O

Cu
N

O

t-Bu t-BuOH2H2O

2 SbF6

2

(S,S)-234a  
Figure 18: Cationic copper(II)-bis(oxazoline)-complex (S,S)-234a. 

 

Replacing (S,S)-362a by the “cationic” copper(II)-bis(oxazoline) complex (S,S)-234a 

enhanced both reaction rates and enantioselectivities.202d Different AVEs were successfully 

rearranged under those conditions (Table 25). The presence of protected alcohol 

functionalities allows further manipulation of the rearrangement products and therefore 

renders them versatile intermediates for target oriented synthesis. 

 

 

                                            
286 For a more detailed discussion, see chapter 11.3.4 – Proposed Mechanism. 
287 (a) Evans, D. A.; Murry, J. A.; von Matt, P.; Norcross, R. D.; Miller, S. J. Angew. Chem., Int. Ed. Engl. 1995, 
34, 798-800; Angew. Chem. 1995, 107, 864-867. (b) Evans, D. A.; Miller, S. J.; Lectka, T.; Matt, v. P. J. Am. 
Chem. Soc. 1999, 121, 7559-7573. 
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Entry Allyl vinyl ether 
Rearrangement 

product 

Catalyst 

loading 

[mol%] 

Reaction 

time  

[h] 

Yield 

[%] 

de 

[%] 

ee 

[%] 

1 
CO2i-Pr

O

 

CO2i-Pr

O  
10 3 99 98 99 

2 

CO2i-Pr

O

BnO

TPSO

 

CO2i-Pr

O

TPSO

BnO  
2.5 1.5 99 98 99 

3 
CO2i-Pr

O

BnO

TPSO

 

CO2i-Pr

O

TPSO

BnO  
2.5 1.5 99 98 99 

4 
CO2i-Pr

O

TPSO

 
CO2i-Pr

O

TPSO

 
10 1.5 98 - 99 

5 

CO2i-Pr

O

TPSO

BnO

 

CO2i-Pr

O
TPSO

BnO

 
10 48 98 98 99 

Table 25: Different allyl vinyl ethers that have been successfully applied to the CAC using [Cu{(S,S)-t-Bu-

box](SbF6)2(H2O)2 (S,S)-234a as catalyst. 

 

Proposed catalytic cycle 

As a result of our studies we propose the following catalytic cycle. We assume that the rate 

determining step of the catalytic asymmetric Claisen rearrangement is the formation of the 

catalyst-substrate complex 365 rather than the rearrangement itself. Thus according to the 

Izumi-Tai classification,288 the CAC with [Cu{(S,S)-t-Bu-box}](H2O)2(SbF6)2 [(S,S)-234a] 

has to be classified as enantiotopos and not as enantioface differentiating reaction. Once the 

complex 365 is formed, the reorganisation is fast leading to the product-catalyst complex 367. 

In a final step the α-keto ester 9 has to be replaced by another molecule 3 to regenerate the 

substrate-catalyst complex 365 (Scheme 96). 

 

                                            
288 Izumi, Y.; Tai, A. Stereodifferenziating Reactions Academic Press New York, 1977.  
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Scheme 96: Proposed catalytic cycle for the Claisen rearrangement of 2-alkoxycarbonyl substituted allyl vinyl 

ethers catalyzed by [Cu{(S,S)-t-Bu-box](SbF6)2(H2O)2 [(S,S)-234a]. 

 

Transition state and enantioselectivity 

Steric repulsions direct the coordination of the catalyst with one of the two enantiotopic lone 

pairs of the ether oxygen atom of O3. As illustrated in Scheme 96 a conformation is adopted 

that allows a maximal spatial distance between the allyl moiety and the tert-butyl substituent 

of the ligand. Figure 19 shows the calculated transition state for the copper(II)-t-Bu-box-

catalyzed rearrangement. 
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Figure 19: Transition state for the [Cu{(S,S)-t-Bu-box}]-catalysed Claisen rearrangement of a 2-alkoxycarbonyl 

substituted allyl vinyl ether.279 

 

Once coordinated to the catalyst, the approach of the opposite enantiotopic face of the vinyl 

ether double bond by the allyl moiety would require the energetically unfavourable breaking 

of the copper oxygen bond (Scheme 97).  

 



The Catalytic Asymmetric Claisen Rearrangement (CAC) 135 
 

 
Ph.D. Thesis Annett Pollex 

N
Cu

N

O

OR

O

OO

t-Bu t-Bu
S Re

N
Cu

N

O
OR

O

OO

t-Bu t-Bu
Si

N
Cu

N

O

OR

O

OO

t-Bu t-Bu
R

222

fast

slow

368 370

S S S S

(S,S,Si)-topicity (S,S,Re)-topicity

O

OR

O O

OR

O

369

372371  
Scheme 97: For the formation of the diastereomorphic complex 370 the Cu-O(ether)-bond of 368 needs to be 

ceased - an energetically disfavoured process. The formation of the complex 370 suffers from a 

disadvantageously steric interaction. 
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12 Copper(II) Bis(oxazoline) Complexes 

 

Since the copper(II) bis(oxazoline) complexes are of fundamental importance for our 

synthetic strategy, some important information concerning bis(oxazoline) complexes in 

general and the copper(II) bis(oxazoline) complexes in particular shall be summarized in the 

following section.289 The introduction of the “cationic” copper(II) bis(oxazoline) complex 

(S,S)-234a for asymmetric synthesis was the result of a long-standing development process 

toward catalytic enantioselective transformations.206b Chiral bis(oxazoline) ligands have been 

introduced since 1989.290 A small selection of the various structurally diverse examples that 

have been developed over the years is depicted in Figure 20. They can be subdivided 

according to the number of atoms that link the two oxazoline rings of the bis(oxazoline). 

Depending on the linker different metal chelate ring sizes will be formed: bis(oxazolines) 

with a C0 linker (e.g. 373) will form five-membered rings. The widely used bis(oxazoline) 

ligands with C1 linker (e.g. 374-376) result in six-membered rings. Further increased linker 

sizes (e.g. 377 and 378) consequently generate seven- or eight-membered rings. The latter 

bis(oxazolines) often contain an additional coordination site which renders the ligand 

tridentate (e.g. 378). 

 

                                            
289 Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2006, 106, ASAP, DOI: 101021/cr0505324. 
290 (a) Nishiyama, H.; Sakaguchi, H.; Nakamura, T.; Horihata, M.; Kondo, M.; Itoh, K. Organometallics 1989, 8, 
846-548. (b) Balavoine, G.; Clinet, J. C.; Lellouche, I. Tetrahedron Lett. 1989, 30, 5141-5144. 
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Figure 20: Selected bis(oxazoline) ligands that were successfully employed in catalytic asymmetric 

transformations. 

 

The ligands are usually bidentate bearing two nitrogen donor sites and form chelate 

complexes with metal cations. They are derived from a wide variety of readily available 

optical active amino acids (ex-chiral-pool). This results in a great variability of bis(oxazoline) 

ligands thus allowing the optimization of the ligand with respect to a specific asymmetric 

process.206d The synthesis of the bis(oxazolines) is usually straight forward and the generally 

high stability allows an easy handling. Among the various bis(oxazoline) ligands, those where 

the two oxazoline rings are connected by a one carbon spacer are most frequently utilized for 

asymmetric induction during metal catalyzed reactions.  

 

For different applications, specific metal cations had to be employed. With the following 

examples it is not intended to give a comprehensive overview. Instead, the chosen 

applications should illustrate the versatility of bis(oxazoline) ligands.  

Ruthenium based bis(oxazoline) catalyst for example, have been employed in catalytic 

enantioselective cyclopropanation reactions.291 The same research group employed nickel 

                                            
291 (a) Nishiyama, H.; Aoki, K.; Itoh, H.; Iwamura, T.; Sakata, N.; Kurihara, O.; Motoyama, Y. Chem. Lett. 
1996, 1071-1072. (b) Park, S.-B.; Sakata, N.; Nishiyama, H. Chem. Eur. J. 1996, 2, 303-306. (c) Park, S.-B.; 
Murata, K.; Matsumoto, H.; Nishiyama, H. Tetrahedron: Asymmetry 1995, 6, 2487-2494. (d) Nishiyama, H.; 
Itoh, Y.; Matsumoto, H.; Aoki, Y.; Itoh, K. Bull. Chem. Soc. Jpn. 1995, 68, 1247-1262. (e) Nishiyama, H.; Itoh, 
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bis(oxazolines) complexes for asymmetric 1,3-dipolar cycloadditions.292 Another application 

of ruthenium in concert with bis(oxazoline) ligands was found in the asymmetric epoxidation 

of alkenes.293 Pfaltz et al. developed an asymmetric allylic substitution based on palladium 

and molybdenum bis(oxazoline) complexes.294 Iron295 and magnesium296 bis(oxazoline) 

complexes were utilized for catalytic asymmetric Diels-Alder and hetero Diels-Alder 

reactions. Rhodium bis(oxazoline) complexes have proofed to be useful catalysts for 

asymmetric hydrosilylations206b,297 and asymmetric conjugate reductions of α,β-unsaturated 

ketones and esters.298 As well they were employed for the enantioselective allylation of 

aldehydes.299  

 

However, far the greatest impact was achieved by copper(II) bis(oxazoline) complexes with 

its most dominant representative (S,S)-234a (Scheme 98, Table 26, ).206 Soon after its 

development, [Cu{(S,S)-t-Bu-box}](H2O)2(SbF6)2 [(S,S)-234a] proofed its potential for the 

asymmetric induction. Results of these efforts have been reviewed earlier.206 (S,S)-234a was 

employed for various pericyclic reactions, e.g. Diels-Alder206 and Hetero-Diels-Alder206 or 

carbonyl ene reactions,206 as well as for carbonyl reactions e.g. Michael additions206 and 

Mukaiyama-Aldol reactions.206 It could be applied to cycloadditions e.g. [2+2]-cycloadditions 

of silyl ketenes300 and for the asymmetric carbene or nitrene transfer to olefins.301 When 

                                                                                                                                        
Y.; Matsumoto, H.; Park, S.-B.; Itoh, K. J. Am. Chem. Soc. 1994, 116, 2223-2224. (f) Iwasa, S.; Tsushima, S.; 
Nishiyama, K.; Tsuchiya, Y.; Takezawa, F.; Nishiyama, H. Tetrahedron: Asymmetry 2003, 14, 855-865. 
292 Iwasa, S.; Maeda, H.; Nishiyama, K.; Tsushima, S.; Tsukamoto, Y.; Nishiyama, H. Tetrahedron 2002, 58, 
8281-8287. 
293 Tse, M. K.; Bhor, S.; Klawonn, M.; Anilkumar, G.; Jiao, H.; Döbler, C.; Spannenberg, A.; Mägerlein, W.; 
Hugl, H.; Beller, M. Chem. Eur. J. 2006, 12, 1855-1874. 
294 Palladium: (a) Müller, D.; Umbricht, G.; Weber, B; Pfaltz, A. Helv. Chim. Acta 1991, 74, 232-240. (b) von 
Matt, P.; Lloyds-Jones, G. C.; Minidis, A. B. E.; Pfaltz, A.; Macko, L.; Neuburger, M.; Zehnder, M.; Ruegger, 
H.; Pregosin, P. S. Helv. Chim. Acta 1995, 78, 265-284. (c) Mazet, C.; Köhler, V.; Pfaltz, A. Angew. Chem. 
2005, 117, 4966-4969; Ang. Chem., Int. Ed. 2005, 44, 4888-4891. Molybdenum: Glorius, F.; Pfaltz, A. Org. Lett. 
1999, 1, 141-144. For a review concerning allylic substitution reactions, see: Pfaltz, A.; Lautens, M. Compr. 
Asym. Catal. 1999, 2, 813-830. 
295 (a) Corey, E. J.; Imai, N.; Zhang, H. J. Am. Chem. Soc. 1991, 113, 728-729. (b) Takacs, J. M.; Weidner, J. J.; 
Takacs, B. E. Tetrahedron Lett. 1993, 34, 6219-6222. (c) Takacs, J. M.; Bioto, S. C. Tetrahedron Lett. 1995, 36, 
2941-2944. (d) Usuda, H.; Kuramochi, A.; Kanai, M.; Shibasaki, M. Org. Lett. 2004, 6, 4387-4390. (e) 
Kanemasa, S.; Adachi, K.; Yamamoto, H.; Wada, E. Bull. Chem. Soc. Jpn. 2000, 73, 681-687. 
296 (a) Corey, E. J.; Ishihara, K. Tetrahedron Lett. 1992, 33, 6807-6810. (b) Desimoni, G.; Faita, G.; Righetti, P. 
P.; Sardone, N. Tetrahedron 1996, 52, 12019-12030. (c) Sibi, M. P.; Matsunaga, H. Tetrahedron Lett. 2004, 45, 
5925-5929. 
297 (a) Nishiyama, H.; Yamaguchi, S.; Kondo, M.; Itoh, K. J. Org. Chem. 1992, 57, 4306-4309. (b) Nishiyama, 
H.; Yamaguchi, S.; Park, S.-B.; Itoh, K. Tetrahedron: Asymmetry 1993, 4, 143-150. (c) Nishiyama, H.; Park, S.-
B.; Itoh, K. Tetrahedron: Asymmetry 1992, 3, 1029-1034. 
298 Kanazawa, Y.; Tsuchiya, Y.; Kobayashi, K.; Shiomi, T.; Itoh, J.-i.; Kikuchi, M.; Yamamoto, Y.; Nishiyama, 
H. Chem. Eur. J. 2006, 12, 63-71. 
299 (a) Motoyama, Y.; Narusawa, H.; Nishiyama, H. Chem. Comm. 1999, 131-132. (b) Motoyama, Y.; Okano, 
M.; Narusawa, H.; Makihara, N.; Aoki, K.; Nishiyama, H. Organometallics 2001, 20, 1580-1589. 
300 Evans, D. A.; Janey, J. M. Org. Lett. 2001, 3, 2125-2128. 
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employed in the catalysis of the Henry reaction varying enantioselectivities were reported 

depending on the substrate structure and the reaction conditions.302 More recently it was 

shown that excellent enantioselectivities could be achieved when (S,S)-234a was applied to 

the Claisen rearrangement of 2-alkoxycarbonyl substituted allyl vinyl ethers202c,d and during 

Friedel-Crafts alkylation of pyrroles and indoles.303  

 
- [2+2] silyl ketene acetales
- cyclopropanation
- carbene nitrene

- Henry reaction
- Friedel-Crafts acylation

- Diels Alder reaction
- carbonyl ene reaction
- Claisen rearrangement

- Mukaiyama aldol reaction
- Mukaiyama Michael addition

N
Cu

N

OO

t-Bu t-BuOH2H2O

2 SbF6

2

(S,S)-234a  
Scheme 98: A selection of different reactions successfully employed for catalytic asymmetric variations using 

16b as catalyst. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                        
301 (a) Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.; Barnes, D. M. J. Am. Chem. Soc. 1993, 115, 
5328-5329. (b) Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc. 1991, 113, 726-
728. (c) Evans, D. A.; Woerpel, K. A.; Scott, M. J. Angew. Chem. 1992, 104, 439-441; Angew. Chem.; Int. Ed. 
Engl. 1992, 31, 430-432. (d) A new bis(oxazoline) ligand expanded by secondary binding site was employed 
recently for the cyclopropanation of furans: Schinnerl, M.; Böhm, C.; Seitz, M.; Reiser, O. Tetrahedron: 
Asymmetry 2003, 14, 765-771. 
302 Christensen, C.; Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2002, 67, 4875-4881. 
303 Palomo, C.; Oiarbide, M.; Kardak, B. G.; García, J. M.; Linden, A. J. Am. Chem. Soc. 2005, 127, 4154-4155. 
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Entry Reaction Substrate Reaction partner Product 

1 
Diels-Alder206 R N

O

O

O

 

R

 

R

N

O

O

O

 
2 

Hetero-Diels-

Alder206 
R

O
O

Y

 

X

 

O
Y

O

R

X

 
3 

Carbonyl ene206 OEt

O

O

H

  
OEt

O

 
4 

Claisen 

rearrangement202 
R1

O

ORO

R6

 

- 
R1

R6 O
OR

O

 

5 Mukaiyama 

aldol206 
MeO

O

O

 
X

OTMS

 
MeO

X

OHO

O  
6 

Mukaiyama-

Michael206 
MeO

O

OMe

O

R
 

X

OTMS

 MeO

O

X

OR

 

7 
[2+2] 

cycloaddition300 R1 CO2R'

O

 

O

 
O

O

R1

R'O2C  
8 Cyclopropanation

301 
N2 CO2R  Ph  Ph CO2R  

9 Carbene-Nitrene 

addition301 PhI NTs Ph
CO2R 

Ts
N

Ph CO2R 
10 

Friedel-Crafts 

acylation303 

O

R
OH

 

N
R'

 

O
OH

N

R

R'  
11 Henry-

Reaction302  R CO2Et

O

 
MeNO2  R CO2Et

OHO2N

 
Table 26: A selection of different reaction employed for catalytic asymmetric variations using (S,S)-234ab as 

catalyst. TMS= trimethylsilyl [SiMe3], Ts= para-toluene sulfonyl. 
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The common feature of all these very different reactions is the ability of the substrates to act 

as bidentate ligands. According to empirical data, the bidentate coordination is an essential 

feature to achieve high enantioselectivies.206 The variety of very different transformations that 

proceed in a catalytic enantioselective way in the presence of [(S,S)-234a] clearly illustrate 

the impressive success of this specific catalyst system.  

 

General features of the central cation in bis(oxazoline) complexes 

The electron configuration of elemental copper is [Ar]3d104s1. Consequently, for the 

copper(II) cation the electron configuration would be [Ar]3d94s0 (Scheme 99).  

 

Cu2+

Cu
3d104s1

3d94s0

 
Scheme 99: Valenz electron configuration of the copper atom and the copper(II) cation. 

 

CuII is known to act as a Lewis acid. According to the Irving-Williams order for divalent 

metal ions in the first transition series, copper(II) cations form the thermodynamically most 

stable complexes.304 This is an important feature with respect to the desired 

stereodifferentiation. The dissociation of the chiral ligand from the catalytically active center 

would cause the rescindment of the chiral environment and therefore, it needs to be prevented 

to achieve optimal enantioselectivities. Common coordination numbers of copper(II) ions are 

4 and 6. Due to the 3d9 valenz electron configuration of the copper(II) cation, octahedral 

complexes show a strong Jahn-Teller distortion with the apical ligands being more weakly 

bond to the central cation or even completely detached (Figure 21).  

 

                                            
304 Irving, H.; Williams, J. P. J. Chem. Soc. 1953, 3192-3210. 
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L
L

L

L
L

L

Cu L
L

L

L
L

L

Cu

2

2

 
Figure 21: Visualization of the Jahn-Teller distortion. The octahedral structure (symbolized by the dashed lines) 

appears to be elongated vertically. Due to the increased distance between the central ion and the apical ligands 

the latter are more weakly bond. 

 

In 4-coordinated complexes, the square-planar coordination geometry is commonly found. 305 

 

Features of the complex 

Copper(II) bis(oxazoline)-complexes are usually 4-coordinated and display a propensity to 

adopt square-planar geometry around the organizational center. The bidentate bis(oxazoline) 

ligand will occupy two of the four coordination sites (Figure 22).  

 

N
O

N
O

Cu
L L

[Cu{(S,S)-t-Bu-box}]L2

380

 
Figure 22: Square planar arrangement around the copper(II) coordination center. Two of the four coordination 

sites are occupied by the bidentate bis(oxazoline) ligand. (L= monodentate ligand). 

 

Replacement of the other two monodentate ligands by a bidentate substrate is entropically 

favoured. Complexation of two bidentate ligands results in a highly ordered situation around 

the complex center. As mentioned earlier, this appears to be a crucial criterion to achieve high 

enantioselectivities. An important feature of the bis(oxazoline) ligands is that the nitrogen 

donor sites are located at a spatially close position to the stereodifferantiating chiral carbon 

atoms. The C2-symmetry minimizes the number of possible transition states.  
                                            
305 Greenwood, N. N.; Earnshaw, A. Chemie der Elemente; VCH Weinheim, 1990.  
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Synthesis of the ligand 

The catalyst (S,S)-234a may be synthesized following a four step procedure starting from 

amino acid (S)-tert-leucine 381a (Scheme 100).306  

 

O

NH2
OH

381a

N N

O O

t-Bu t-Bu

(S,S)-374a

4 steps

 
Scheme 100: Synthesis of the ligand (S,S)-374a can be realized in four steps. 

 

Subsequent reaction with CuCl2 and AgSbF6 would provide the catalyst (S,S)-234a (Scheme 

101).  

N N

O O

t-Bu t-Bu

(S,S)-234a

N N

O O

t-Bu t-Bu
(S,S)-374a

Cu
H2O OH2

CuCl2, then AgSbF6
CH2Cl2, rt, 6 h 2 SbF6

2

 
Scheme 101 

 

The corresponding copper(II)-Ph-box catalyst (R,R)-234b may be synthesized analogue to the 

above procedure starting from R-phenylglycine (381b) (Scheme 102). 

 

N N

O O

Ph Ph

(R,R)-234b(R)-381b

Cu
H2O OH2

2 SbF6

2

5 steps
Ph

OH

O

NH2

 
Scheme 102 

 
Having discussed the theoretical background of the thermal and the catalytic asymmetric 

Claisen rearrangement as well as the involved copper(II)-bis(oxazoline) complex (S,S)-234a, 

the following chapter will cover results and perspectives of the synthetic effort toward (−)-

xeniolide F (2a). The underlying synthetic plan was outlined previously and - if required - the 

interested reader is kindly referred to chapter 10 (page 96) to recapitulate the intended 

strategy.

                                            
306 Evans, D. A.; Peterson, G. S.; Johnson, J. S.; Barnes, D. M.; Capos, K. R.; Woerpel, K. A. J. Org. Chem. 
1998, 63, 4541-4544. 
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13 Stereoselective Synthesis of the Allylic Alcohol 

 

The synthetic plan for the total synthesis of (−)-xeniolide F (2a) is founded on the 

accessibility of the allyl vinyl ether 10. For the generation of the allyl vinyl ether 10 a reliable 

and stereoselective synthetic route toward the Z-configured allylic alcohol 11 had to be 

developed (Scheme 103).  

 

OH

OBn
TBSO

O

TBSO

CO2Me

SiMe3

OBn

1011

?

 
Scheme 103: The synthesis of the AVE 10 requires a reliable and stereoselective access toward allylic alcohol 

11. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

13.1  Butyrolactone Route 

 

The initial approach was founded on the successful synthesis of β-hydroxybutyrolactones 384 

developed by Kraus et al.307  

 

n-Bu CO2TMS
n-Bu

O O

HO

LDA, THF, −78 °C, 30 min
then BrCH2CHO (383), 5 min

384 (90%)382  
Eq. 45 LDA= lithium diisopropylamide, TMS= trimethylsilyl [SiMe3]. 

 

We intended to utilize this strategy to synthesize β-hydroxybutyrolactone 386 with a protected 

hydroxyl group in the side chain. Mesylation, elimination and lacton cleavage was expected 

to afford α,β-unsaturated ester 387. After protection of the hydroxyl group and reduction of 

the ester functionality, the desired allylic alcohol 11 should be accessible. 

 

                                            
307 Kraus, G. A.; Gottschalk, P. J. Org. Chem. 1983, 48, 5356-5357. 



Stereoselective Synthesis of the Allylic Alcohol 145 
 

 
Ph.D. Thesis Annett Pollex 

OBnTMSO

O

OH

OBn
TBSO

OBn

O
O

HO

O

OBn
HO

RO

LDA, 383

385 386 387

11  
Scheme 104: Envisioned synthesis of the allylic alcohol 11 based on the formation of β-hydroxybutyrolactone 

386. Bn= benzyl, TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], LDA= lithium diisopropylamide, R= alkyl. 
 

Starting material 385 was generated by monoprotection of pentane-1,5-diol (388) and 

subsequent oxidation of the free hydroxyl group using a two step protocol (Scheme 105).308 A 

one-step variation using TEMPO for the direct transformation of the alcohol into the acid309 

furnished the desired acids with unsatisfying yields. 
 

HO OH PgO OH

2.5 eq 388

1.0 eq PMBCl, 1.1 eq NaH
0.05 eq n-Bu4NI

THF/DMSO, rt, 1 h
or

1.0 eq BnBr, 1.1 eq NaH
THF, rt, 1 h Pg= Bn   

Pg= PMB

1. 2.0 eq SO3·pyridine, 4.0 eq Et3N
    DMSO/CH2Cl2 4/1, rt, 2 h
2. 6.0 eq NaClO2, 2.0 eq NaH2PO4, t-BuOH
    2-methyl-2-butene, H2O, rt, 18 h

389a (82%)
389b (81%)

389a,b PgO OH

Pg= Bn   
Pg= PMB

390a (71%)
390b (90%)

O

 
Scheme 105: Synthesis of acids 390a and 390b. PMB= para-methoxybenzyl, Bn= benzyl. 

 

Aldehyde 383 was synthesized by ozonolysis of allyl bromide (391) (Eq. 46). After 

distillation it was obtained as solution in CH2Cl2.307 

 

Br
O

Br

O3, CH2Cl2, −78 °C, 1.5 h
1.0 eq PPh3, 0 °C, 3 h

383 (75%)391  
Eq. 46 

                                            
308 Parikh, J. P.; Doering, W. v. E. J. Am. Chem. Soc. 1967, 89, 5505-5507. 
309 De Luca, L.; Giacomelli, G.; Masala, S.; Porcheddu, A. J. Org. Chem. 2003, 68, 4999-5001. 



146 Stereoselective Synthesis of the Allylic Alcohol 
 

 
Ph.D. Thesis Annett Pollex 

For the formation of the β-hydroxybutyrolactones 386a,b, acids 390a,b were first transformed 

to the corresponding trimethylsilyl esters 385. Subsequent deprotonation and reaction with the 

aldehyde 383 afforded the β-hydroxybutyrolactones 386a,b in low yield (Scheme 106).  

 

PgO OH

O

PgO

O
O

OH

1. 1.0 eq TMSCl, 1.0 eq Et3N
    THF, 0 °C, 1 h
2. 1.1 eq LDA, −78 °C, 30 min
    then BrCH2CHO (383), 5 min

Pg= Bn
Pg= PMB

386a 33%
386b 33%

390a,b
 

Scheme 106 Formation of the β-hydroxybutyrolactones 386a,b. TMS= trimethylsilyl [SiMe3], LDA= lithium 

diisopropylamide, PMB= para-methoxybenzyl, Bn= benzyl.310 

 

The β-hydroxybutyrolactones 386a,b were then mesylated and subjected to basic conditions 

to induce β-elimination (Table 27). Utilization of tetramethyl guanidine resulted in slightly 

higher yields compared to DBU. However, the α,β-unsaturated lactones 392a,b were formed 

with low yields. 
 

OPg

O
O

HO

1. 1.2 eq MsCl, 1.2 eq Et3N
    CH2Cl2, 0 °C, 15 min
2. 3.0 eq base, THF, rt, 18 h

OPg

O
O

386a,b Pg= Bn 
Pg= PMB

392a
392b  

Entry Pg Base Yield [%] 

1 Bn DBU 30 

2 Bn tetramethyl guanidine 34 

3 PMB DBU 31 

4 PMB tetramethyl guanidine 43 
Table 27: The α,β-unsaturated lactones 391 were formed only with unsatisfying yields. PMB= para-

methoxybenzyl, Bn= benzyl, DBU=1,8-diazabicyclo[5.4.0]undec-7-ene. 

 

Initial experiments to induce lactone cleavage by treatment of 391a,b with sodium 

methanolate only led to the recovery of the starting materials. Attempts to trap a potentially 

                                            
310 Diastereoselectivity was not determined. Yields not optimized. 
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formed γ-hydroxyl ester 387a,b that could possibly relactonize under the reaction conditions 

proved to be unsuccessful (Scheme 107).311 

 

OPg

O
O O

OBn
HO

RO
different conditions

392a,b 387a
387b

Pg= Bn
Pg= PMB  

Scheme 107: Initial experiments for the lactone cleavage were unsuccessful. PMB= para-methoxybenzyl, Bn= 

benzyl. 

 

Therefore, and with respect to the low yields obtained for the previous steps, we turned our 

attention toward an alternative route employing a palladium(0)-catalyzed cross-coupling. 

 

13.2  Cross-Coupling Approach 

 

Palladium(0)-catalyzed cross-coupling reactions have evolved into fundamental synthetic 

tools for carbon-carbon bond formation. Highly efficient and exceptionally mild methods 

were introduced that now have a proven track of successful applications in natural product 

synthesis.312 Several variations have been developed with respect of the organometallic 

coupling partner 394. 

 

R1 X R2 M R1 R2Pd0-catalyst
+

393 394 395  
Eq. 47 M= metal (e.g. Sn, Zn, B, Mg), R1,R2= alkyl, alkenyl, aryl, alkynyl. 

 

Grignard reagents as nucleophiles for the cross-coupling reaction were first reported by 

Kumada and co-workers in 1972.313 Negishi et al. found zinc organyls versatile cross-

coupling partners.314 Only a short time later, organostannans were introduced as highly useful 

                                            
311 Reaction conditions not optmized. 
312 De Meijere, A.; Diederich, F. (Eds.) Metal-Catalyzed Cross-Coupling Reactions (2nd Edn.) 2004, Wiley-
VCH, Weinheim. 
313 Nickel-catalyzed: (a) Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374-4376. Palladium-catalyzed: (b) Hayashi, 
T.; Konishi, M.; Kumada, M. Tetrahedron Lett. 1979, 20, 1871-1874. 
314 Negishi, E.-i.; King, A. O.; Okukada, N. J. Org. Chem. 1977, 42, 1821-1823. For a review, see: Negishi, E.-i. 
Acc. Chem. Res. 1982, 15, 340-348.  
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cross-coupling partners by Migita and Stille.315 A less toxic alternative was found by the 

application of organo boron compounds.316 The reaction requires the presence of a base. 

Without the addition of the base, the highly covalent characteristic of the boron-carbon bond 

prevents the transmetallation step.  

Palladium(0)-catalyzed cross-couplings, that utilize alkenylcopper(I)-compounds are referred 

to as Normant-couplings.317 The successful application of organosilicon compounds was 

reported by Hiyama and co-workers.318 Another important variation is the so-called 

Sonogashira-coupling that employs alkynylcopper(I) compounds.319 

It is generally agreed that cross-couplings proceed via a catalytic cycle that involves the 

oxidative addition of the palladium(0) species into the carbon-halogen bond (alternatively a 

carbon-OTf bond), followed by transmetallation - the transfer of the organic group from the 

organometallic compound to the palladium - and finally the reductive elimination releasing 

the coupling product and at the same time regenerating the catalyst for another turnover 

(Scheme 108). Each of the steps involves further complicated processes, e.g. ligand 

exchanges. However, the presence of the intermediates 396 and 397 was verified by isolation 

and spectroscopic analysis.316a 

  

 

                                            
315 (a) Kosugi, M.; Sasazawa, K.; Shimizu, Y.; Migita, T. Chem. Lett. 1977, 301-302. (b) Milstein, D.; Stille, J. 
K. J. Am. Chem. Soc. 1978, 100, 3636-3638. For reviews see: (c) Farina, V.; Krishnamurthy, V.; Scott, W. J. 
Org. React. 1997, 50, 1-652. (d) Fugami, K.; Kosug, M. Top. Curr. Chem. 2002, 219, 87-130.  
316 Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437-3440. For reviews see: (a) Miyaura, 
N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483. (b) Suzuki, A. J. Organomet. Chem.1999, 576, 147-168. 
317 Alexakis, N. J. A.; Normant, J. F. Tetrahedron Lett. 1981, 22, 959-962. 
318 Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918-920. 
319 Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467-4470. 
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MX

Pd0Ln

R1-PdII-X

R2-M

R1-PdII-R2

R1-R2 R1X

oxidative addition

transmetallation

reductive elimination

396397

393

394

395

 
Scheme 108: Simplified catalytic cycle for palladium(0)-catalyzed cross-couplings. X= halogen or 

trifluoromethane sulfonyl (OTf), M= metal (e.g. B, Mg, Zn, Sn, Cu, Si), R1,R2= alkyl, alkenyl, aryl, alkynyl. 

 

13.2.1 Stille Cross-Coupling 

 

In 2001, Parrain et al. reported the synthesis of the monoprotected vinyl stannane 399 as 

intermediate during their efforts toward the synthesis of marine sesquiterpenes.320 

Reproduction of the two step procedure afforded vinylstannane 399 with improved isolated 

yields (lit. 64%320) (Eq. 48). 

 

OH
HO

TBSO SnBu3

OH

1. 1.05 eq HSnBu3
    0.5 mol% (Ph3P)2PdCl2
    THF, rt, 15 min
2. 1.0 eq TBSCl, 1.0 eq imidazole
    THF, 0 °C, 4 h

399 (77%)398  
Eq. 48 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2]. 

 

The palladium(0)-catalyzed hydropalladation is believed to proceed via the simplified 

mechanism illustrated in Scheme 109.321 

                                            
320 Commeiras, L.; Santelli, M.; Parrain, J.-L. Org. Lett. 2001, 3, 1713-1715. 
321 (a) Ichinose, Y.; Oda, H.; Oshima, K.; Utimoto, K. Bull. Chem. Jpn. Soc. 1987, 60, 3468-3470. (b) Kikukawa, 
K.; Umekawa, H.; Wada, F.; Matsuda, T. Chem. Lett. 1988, 881-884. (c) Zhang, H. X.; Guibé, F.; Balavoine, G. 
Tetrahedron Lett. 1988, 29, 619-622. (d) Guibé, F. Main Group Met. Chem. 1989, 12, 437-446. (e) Zhang, H. 
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Scheme 109: Model-mechanism for the palladium(0)-catalyzed hydrostannation of alkyne 398. 

 

Initially, the PdII hydrido stannyl complex 401 is formed by oxidative addition of the 

palladium(0) catalyst 400 into the hydrogen-tin-bond of HSnBu3. Cis-addition (either of Pd-H 

or Pd-Sn of 401) to the alkyne 398 and subsequent reductive elimination generates the desired 

(E)-vinylstannane 404. The steric demand of the trialkyl stannyl group in 404 allowed the 

selective protection of the less hindered hydroxyl group of 404.322 Therefore, 399 was formed 

exclusively.  

 

Structure 399 represents a prospective candidate for the formation of allylic alcohol 11. It 

possesses the correct double bond configuration and a stannyl functionality located at the 

desired position to allow regioselective cross-coupling.  

 

TBSO

OH

OBn TBSO SnBu3

OH

Br OBn+

11 399 405  
Scheme 110: Retrosynthetic analysis of 11 involving a Stille cross-coupling. TBS= tert-butyldimethylsilyl [Si(t-

Bu)Me2], Bn= benzyl. 

                                                                                                                                        
X.; Guibé, F.; Balavoine, G. J. Org. Chem. 1990, 55, 1857-1867. (f) Miyake, H.; Yamamura, K. Chem. Lett. 
1989, 981-984. (g) Cochran, J. C.; Bronk, B. S.; Terrence, K. M.; Phillips, H. K. Tetrahedron Lett. 1990, 31, 
6621-6624. (h) Lautens, M.; Smith, N. D.; Ostrovsky. D. J. Org. Chem. 1997, 62, 8970-8971. 
322 Barrett, A. G. M.; Barta, T. E.; Flygare, J. A. J. Org. Chem. 1989, 54, 4246-4249. 
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However, the trialkylstannyl group is part of a tri-substituted double bond. Stille cross-

couplings involving such starting materials are rarely found among the literature.323 

Moreover, the utilization of alkyl electrophiles is sometimes complicated.324 In 2003, Fu et al. 

reported reaction conditions, which were successfully utilized for the Stille cross-coupling 

with various alkyl bromides bearing β-hydrogen atoms.325 Therefore, encouraged by this 

report, the cross-coupling between 399 and 405 as possible route to 11 was investigated. 

Alkyl bromide 405 was synthesized in two steps starting from propane-1,3-diol (406) by 

monoprotection and redox condensation (Eq. 49).63 Using carbon tetrabromide instead of 

bromine resulted in reduced yields. 

 

HO OH

Br

OBn

406 (2.5 eq)

1. 1.1 eq NaH, 1.0 eq BnBr
    THF, 75 °C, 1 h
2. 1.1 eq Br2, 1.1 eq PPh3
      THF, 0 °C to rt, 3 h

405 (70%)  
Eq. 49 Bn= benzyl. 

 

Unfortunately, exposure of vinyl stannane 399 to 405 using the conditions described by Fu325 

led to the complete decomposition of the starting materials and the formation of unidentified 

side products (Eq. 50). 

 

TBSO SnBu3

OH Br

OBn
+

2.5 mol% [(π-allyl)PdCl]2
15 mol% P(t-Bu)2Me, 1.9 eq Me4NF
3 Å molecular sieves, THF, rt, 24 h

decomposition

399 405  
Eq. 50 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2]. 

 

However, none of the isolated products exhibited aromatic signals in the 1H NMR spectrum a 

result that could have been accounted as evidence for a successful coupling between stannane 

399 and the bromide 405.  

                                            
323 (a) Bellina, F.; Carpita, A.; De Santis, M.; Rossi, R. Tetrahedron 1994, 50, 12029-12046. (b) Burke, B.; 
Overman, L. E. J. Am. Chem. Soc. 2004, 126, 16829-16833. 
324 For difficulties concerned with the utilization of alkyl electctrophiles, see: (a) Cárdenas, D. J. Angew. Chem., 
Int. Ed. 2003, 42, 384-387; Angew. Chem. 2003, 115, 398-401. (b) Cárdenas, D. J. Angew. Chem., Int. Ed. 1999, 
38, 3018-3020; Angew. Chem. 1999, 111, 3201-3203. (c) Luh, T.-Y.; Leung, M.-k.; Wong, K.-T. Chem. Rev. 
2000, 100, 3187-3204. 
325 Menzel, K.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 3718-3719. 
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13.2.2 Negishi and Suzuki-Miyaura Cross-Coupling 

 

Since the efforts to generate 11 by Stille cross-coupling have not met the desired success, a 

different strategy with reversed reactivity of the coupling partners was attempted. As shown 

in Scheme 111 this strategy involves a C(sp3)-C(sp2) bond formation between the vinyl 

halogenid 248 and the metallated alkyl compound 407. Even though this variation is not as 

highly developed as its C(sp2)-C(sp2) counterparts, reliable procedures emerged over the past 

twenty years.326 Therefore, the B-alkyl-Suzuki-Miyaura327 and the Negishi314,328 cross-

couplings which have been shown to provide a well tried access to such carbon-carbon bond 

formations were chosen (Scheme 111). 

 

TBSO

OH

OBn TBSO I

OH M

OBn
+

40724811  
Scheme 111: Retrosynthetic analysis of allylic alcohol 11 based on the B-alkyl-Suzuki-Miyaura- (M= B) or 

Negishi- (M= Zn) cross-coupling. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl.  

 

Subjecting vinylstannane 399 to iodine resulted in a clean and almost quantitative conversion 

to the vinyl iodide 248 by iododestannation (Eq. 51).329 

 

TBSO SnBu3

OH

TBSO I

OH
1.2 eq I2, CH2Cl2, −78 °C

then rt, 15 min

248 (97%)399  
Eq. 51 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2]. 

 

The vinyl iodide 248 appears to be light sensitive and degenerates upon storing for prolonged 

times.330 

                                            
326 Tamao, K. Coupling Reactions Between sp3 and sp2 Carbon Centers, in Comprehensive Organic Synthesis, 
Vol. 3, Trost, B. M.; Fleming, I. (Eds.) 1991, Pergamon Press, Oxford. 
327 (a) See reference 222. For a review see: (b) Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew. Chem. 
2001, 113, 4676-4701; Angew. Chem., Int. Ed. 2001, 40, 4544-4568. 
328 (a) Kobayashi, M.; Negishi, E.-i. J. Org. Chem. 1980, 45, 5223-5225. (b) Negishi, E.-i.; Owczarczyk, Z. 
Tetrahedron Lett. 1991, 32, 6683-6686. (c) Williams, D. R.; Kissel, W. S. J. Am. Chem. Soc. 1998, 120, 11198-
11199. (d) Ohgiya, T.; Nishiyama, S. Tetrahedron Lett. 2004, 45, 8273-8275. 
329 Aoyagi, S.; Wang, T. C.; Kibayashi, C. J. Am. Chem. Soc. 1993, 115, 11393-11409. 
330 We found 248 being sufficiently stable for storing for about two weeks at 4 °C. 
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Motivated by the work of Nishiyama,328d we attempted a Negishi coupling of vinyl iodide 248 

with the corresponding zinc organyl derived from alkyl bromide 405. Halogen lithium 

exchange and addition of zinc chloride was expected to produce the zinc organyl ready for 

palladium(0)-catalyzed cross-coupling. Neither in diethyl ether nor in THF the reaction 

produced any cross coupling product 11 (Eq. 52). 

 

Br

OBn TBSO

OH

OBn

2.0 eq t-BuLi, 4.0 eq ZnCl2
diethyl ether, −78 °C
then add 248 (1.0 eq)

2 mol% (dppf)PdCl2, 85 °C, 16 h

reisolation of the starting material
405 11

 
Eq. 52 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

Therefore, the B-alkyl-Suzuki-Miyaura cross-coupling was addressed next.327 In this version 

of the Suzuki-Miyaura coupling,316 the originally employed aryl and alkenyl boron 

compounds were replaced by alkyl boron compounds.327 Trialkylboranes may be generated by 

transmetallation of alkyl lithium or Grignard compounds 408/410 (Scheme 112).331  

 

R I

R M
9-BBN-STIPS

BR
OMe

BR

t-BuLi 
then 9-BBN-OMe

408 409

410 411  
Scheme 112: Formation of trialkylboranes by transmetallation. BBN= borabicyclo[3.3.1]nonane, TIPS= 

triisopropylsilyl [Si(i-Pr)3], M= MgBr or Li.  

 

However, most often the facile transformation of alkene double bonds into alkyl boranes 

using hydroboration332 with catechol boran 413 (Scheme 113, top) or 9-

borabicyclo[3.3.1]nonane 9-BBN-H (Scheme 113, bottom) is employed for the generation of 

the starting material. The less reactive alkyl boronic acids derivatives 414 obtained by 
                                            
331 (a) Marshall, J. A.; Johns, B. A. J. Org. Chem. 1998, 63, 7885-7892. (b) Kalesse, M. ChemBioChem 2000, 1, 
171-175. (c) Soderquist, J. A.; Justo de Pomar, J. C. Tetrahedron Lett. 2000, 41, 3537-3539. (d) Matteson, D. S. 
Tetrahedron 1989, 45, 1859-1885. 
332 Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki, A. J. Am. Chem. Soc. 1989, 111, 
314-321. 
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hydroboration with catechol boran 413 usually required special conditions for the cross 

coupling. It was shown, that thallium salts (e.g. TlOH or Tl2CO3) are efficient bases to enable 

the transformation.333 However, their major drawback is the high toxicity. Therefore, 9-BBN-

H is the most commonly hydroboration agent for the generation of the starting materials 415 

of the B-alkyl-Suzuki-Miyaura cross-coupling. 

 

R

R
9-BBN-H

O
HB

O

O
B

OR

B
R

[RhCl(PPh3]

413

414

415

412

412  
Scheme 113: Formation of trialkylboranes 414/415 by hydroboration. 

 

The hydroboration step proceeds with high anti-Markovnikov selectivity. It is best suited for 

electron rich double bonds. Advantageously for the B-alkyl-Suzuki-Miyaura cross-coupling 

reactions are the different transfer tendencies of primary and secondary alkyl groups bound at 

the boron atom. Since primary alkyl groups are transferred preferentially, this prevents 

transmission of the secondary alkyl groups of 9-BBN. As priorly mentioned, the addition of a 

base is required. During their studies, Soderquist and Matos ascertained that the base is 

involved in various steps of the catalytic cycle (Scheme 114).334 The hydroxy group will bind 

to the Lewis acidic boron atom of the trialkylboran 416 affording a negatively charged 

boronate 417 which is believed to be the reactive species for the transformation. The oxygen 

atom of the hydroxy group of 417 enables coordination to the Lewis acidic palladium(II) 

intermediate 396 to form the π-complex 418. The base will as well facilitate the 

transmetallation step leading to the formation of 397 by replacing the alkyl moiety of 418 that 

is transferred to palladium. Finally, it was shown that addition of the base causes the 

hydrolysis of the primary formed product 396a (X= Hal/OTf) of the oxidative addition to the 

more reactive complex 396b (X= OH). 

 

                                            
333 Sato, M.; Miyaura, N.; Suzuki, A. Chem. Lett. 1999, 1405-1408. 
334 Matos, K.; Soderquist, J. A. J. Org. Chem. 1998, 63, 461-470. 
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B
R2

X

Pd0L2

R1PdL2XR1-PdII-R2

R1-R2 R1X

B
R2

OH
OH

B
R2

OH

R1PdL2

OH

B
HO

OH

400

396a,b

416417

418

419

397

395 393

 
Scheme 114: Mechanism of the B-alkyl-Suzuki-Miyaura cross-coupling. X= Hal/OTf or OH. 

 

The choice of the catalyst applied for the reaction is an important parameter to influence the 

cross-coupling. Although various catalysts have been successfully employed for the 

transformation (e.g. Pd(PPh3)4 and Pd2dba3), the most successful and frequently used 

palladium complex is the ferrocenyl complex (dppf)PdCl2.335 The success of this specific 

catalyst may be accounted to the following reasons: 

- As shown in Figure 23 the structure of the ligand enforces a cis-arrangement of R1 and R2 

which facilitates the reductive elimination. This is essential to avoid β-hydride elimination 

that has always been taken into consideration when substrates bearing β -hydrogen atoms are 

employed. 

- The voluminous iron atom causes a small bite angel resulting in a closer position of the 

residues that will be coupled what may as well facilitate the reductive elimination step of the 

coupling. 

 

PPh2

PPh2

Pd
R1

R2
Fe

420  
Figure 23: Representation of the palladium complex 420 prior to the reductive elimination step. 

 

Since the reaction takes place in an aquatic environment, it was expected that the unprotected 

hydroxyl group of vinyl iodide 248 would be tolerated by the reaction conditions.Initial 
                                            
335 Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.; Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 
158-163. 
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attempts with Pd(PPh3)4 (Table 28, entry 1) and Pd2dba3 (Table 28, entry 2) according to the 

procedures published by Kwochka336 and Shibasaki337 respectively have been unsuccessful. 

We next tested the palladium(II) ferrocenyl complex (dppf)PdCl2. With an aqueous solution 

of NaOH as base and THF or a mixture of THF and toluene (1/1) as solvent 11 was formed as 

minor product (Table 28, entry 3 and 4).338  

 

TBSO I

OH BnO

BBN TBSO

OH

OBn

+

catalyst
3.5 eq NaOH, sealed tube

110 °C, 48 h

248 247a 11  
Entry Catalyst Solvent Yield[%] 

1 20 mol% Pd(PPh3)4 THF 0 

2 20 mol% Pd2dba3 THF 0 

3 5 mol% (dppf)PdCl2 THF 7 

4 5 mol% (dppf)PdCl2 toluene/THF 3 
Table 28 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

We tested different protection groups of the allylic alcohol employed in the hydroboration 

step. Neither introduction of the THP-protecting group339 nor utilization of PMB-protected 

allylic alcohol340 resulted in the isolation of the desired coupling product. 

 

TBSO I

OH Pg1O

BBN
TBSO

OH

OPg1
+

2 mol% (dppf)PdCl2
3.5 eq 2M NaOH, toluene, THF

sealed tube, 110 °C, 16 h

248 247b,c 11b,c

b Pg= THP
c Pg= PMB

 
Scheme 115: TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], PMB= para-methoxybenzyl, THP= 

tetrahydropyranyl. 

 

                                            
336 Smith, B. B.; Kwochka, W. R.; Damrauer, R.; Swope, R. J.; Smyth, J. R. J. Org. Chem. 1997, 62, 8589-8590. 
337 Cho, S. Y.; Shibasaki, M. Tetrahedron: Asymmetry 1998, 9, 3751-3754. 
338 Kamatani, A.; Overman, L. E. J. Org. Chem. 1999, 64, 8743-8744. 
339 For a successful hydroboration of a THP-protected allylic alcohol, see: Mori, K.; Puapoomchareon, P. Liebigs 
Ann. Chem. 1990, 159-162. 
340 For the hydroboration of alkenes containing PMB-ethers, see: Meng, D.; Danishefsky, S. J. Angew. Chem. 
1999, 111, 1582-1585; Angew. Chem., Int. Ed. 1999, 38, 1485-1478. 
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TLC-control indicated that in the case of THP-protected allylic alcohol 247b already the 

hydroboration was problematic. Using PMB as protecting group resulted in the consumption 

of the starting material during the hydroboration step (followed by TLC). Nevertheless, the 

following cross-coupling reaction of 247c has not been successful. 

 

With the strong dependency of the B-alkyl-Suzuki-Miyaura cross-coupling from the base and 

the solvent in mind, we performed the reaction at several other reaction conditions which 

were successfully employed for other systems (Table 29).  

 

TBSO I

OH BnO

BBN TBSO

OH

OBn

+

2 mol% catalyst
3.5 eq base, sealed tube

110 °C, 16 h

248 247a 11  
Entry Catalyst Solvent Base Yield [%] 

1 Pd(PPh3)4 dioxane K3PO4 0a 

2 Pd2dba3 dioxane K3PO4 0a 

3 (dppf)PdCl2 dioxane K3PO4 21 

4 (dppf)PdCl2 DMF K3PO4 14 

5 (dppf)PdCl2 DMF CsCO3
b 20 

Table 29: a catalyst loading 20 mol% b 2 mol% AsPh3 were added in this attempt. TBS= tert-butyldimethylsilyl 

[Si(t-Bu)Me2], Bn= benzyl. 

 

K3PO4 in dioxane in combination with Pd(PPh3)4
341 (Table 29, entry 1) or Pd2dba3

337 (Table 

29, entry 2) did not furnish the desired coupling product. However, combination of K3PO4 

with the ferrocenyl complex (dppf)PdCl2 performed in dioxane342 (Table 29, entry 3) 

provided an improved access to the allylic alcohol 11. Performed in DMF (Table 29, entry 4) 

as reported by Mori et al.339 the reaction afforded 11 with lower yields while application of 

CsCO3 in combination with triphenylarsine343 (Table 29, entry 5) gave comparable results. 

However, the isolated yields remain unsatisfactory.  

 

In a next step, we protected the free hydroxyl group prior to the coupling (Table 30). While 

the PMB-protected vinyl iodide did not react (Table 30, entry 1), application of TES 

                                            
341 Ishiyama, T.; Miyaura, N.; Suzuki, A. Bull. Chem. Soc. Jpn. 1991, 64, 1999-2001. 
342 Oh-e, T.; Miyaura, N.; Suzuki, A. J. Org. Chem. 1993, 58, 2201-2208. 
343 Johnson, C. R.; Miller, M. W.; Golebiowski, A.; Sundram, H.; Ksebati, M. B. Tetrahedron Lett. 1994, 35, 
8991-8994. 
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protection group resulted in an inseparable product mixture (Table 30, entry 2). Using 

thallium salts for the desired reaction did not result in the formation of the coupling product 

(Table 30, entry 3 and 4). Employment of the trimethylsilyl protected vinyl iodide 421 

afforded fully protected allylic alcohol 422 (Table 30, entry 5) which was easily deprotected 

by treatment with K2CO3 in methanol. It should be emphasized at this point that the reaction 

of unprotected vinyl iodide 248 afforded 11 under comparable conditions only in trace 

amounts (Table 28, entry 4). With this pleasing result, we tested the reaction conditions that 

previously gave the best yields (Table 29, entry 3). Unluckily, for TMS-protected vinyl iodide 

421 unsatisfactory 11% of the mono deprotected allylic alcohol 11 were isolated after 

treatment of the raw product with K2CO3 (Table 30, entry 6). 

 

TBSO I

OR BnO

BBN TBSO

OR

OBn

+

2 mol% (dppf)PdCl2
base, sealed tube

110 °C, 16 h

421 247a 422/11  

Entry R Solvent Base 
Yield of 422  

(R= TMS) 

Yield of 11 after 

deprotection (R= H)a 

1 PMP THF/toluene 3.5 eq NaOH 
Reisolated 

starting material 
- 

2 TES THF/toluene 3.5 eq NaOH 
Inseparable 

product mixture 
-b 

3 TMS THF/toluene 1.5 eqTlCO3 0 - 

4 TMS THF/toluene 
3.0 eq TlOEt3  

2 mol% AsPh3 
0 - 

5 TMS toluene/THF 3.5 eq NaOH 66c 25 

6 TMS dioxane 3.5 eq K3PO4 43c 11 
Table 30 a After treatment with K2CO3 in MeOH for 30 minutes at room temperature. b The raw product was 

subjected to acetic acid in CH2Cl2 at 0 °C which immediately resulted in the cleavage of both silyl ethers. c 

Contaminated by a not identified unpolar by-product. PMB= para-methoxybenzyl, TMS= trimethylsilyl [SiMe3], 

Bn= benzyl, TBS= TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2]. 

 

In contrast to the reaction of vinyl iodide 248, TMS protected 421 afforded a new, with TLC 

clearly detectable product which appeared to have a higher Rf value than the other various by-

products of this rather grubby reaction. Cleavage of the TMS-ether was realized by the 

treatment with K2CO3 in methanol. Depending on the reaction conditions (bath temperature, 
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reaction time) we noticed that together with the fully protected allylic alcohol 422 varying 

amounts of monodeprotected allylic alcohol 11 were formed. Careful optimization of the 

reaction conditions guided us to the reaction conditions given below - the best result so far. 

 

TBSO I

OTMS BnO

BBN
TBSO

OR

OBn

+

1 mol% (dppf)PdCl2
3.5 eq NaOH, toluene, THF

H2O, reflux, 2 h

422 (R= TMS)
11   (R= H)      (60%)K2CO3, MeOH

421 247a

Eq. 53 tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl, TMS= trimethylsilyl [SiMe3]. 
 

In summary, allylic alcohol 11 can be synthesized in a four-step sequence with moderate yield 

as single double bond isomer. Routinely, about 8 g (~30 mmol) of 248 were used for the 

transformation to afford about 5 g (~20 mmol) of the allylic alcohol 11.  
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14 Stereoselective Synthesis of Allyl Vinyl Ethers via Horner-

Wadsworth-Emmons Olefination 

 

Since the discovery of the Claisen rearrangement the convenient synthesis of the allyl vinyl 

ether substrates has been a major concern. In our research group we have developed a strategy 

based on aldol condensation of an α-allyloxy substituted acetic acid ester 423 providing 2-

alkoxycarbonyl substituted allyl vinyl ethers 425 (Scheme 116).64 

 

base, R'CHO
O

ORester

OR

O

ORester

OR
R'

OH O

ORester

OR
R'

423 424 425  
Scheme 116: Synthesis of AVEs 425 based on the aldol condensation strategy. 

 

The aldol condensation provided mixtures of vinyl double bond isomers. The allyl vinyl 

ethers (E)- and (Z)-425 were easily separable by preparative HPLC in multigram scale. They 

were usually produced with low selectivity or slightly preferred Z-selectivity. However, our 

synthetic plan for (−)-xeniolide F (2a) requires a selective access to AVE 10 with an E-

configured vinyl ether double bond. Therefore, efforts were aimed at a new, selective access 

of such AVEs. We identified the inherently E-selective HWE reaction216 as potential solution 

to overcome this hurdle (Eq. 54).  

 
O

(RO)2P R R
R'

base, R'CHO

426 427  
Eq. 54 

 

Starting from an appropriately substituted phosphonate 245a deprotonation and subsequent 

reaction with aldehyde 244 should provide the AVE 10a with E-configured vinyl ether double 

bond. 
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(MeO)2P CO2Me
O

OBn
TBSO

O

SiMe3
O

TBSO

O

CO2Me

SiMe3

OBn

245a 10a

244

 
Scheme 117: Allyl vinyl ether 10a may be synthesized by a HWE olefination of phosphonate 245a with 

aldehyde 244. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

14.1  Rhodium-Catalyzed OH-Insertion 

 

Required for the successful implementation of the HWE is a reliable access to the 

phosphonate 245a. In our case, Rhodium catalysed OH-insertion217 should enable the 

formation of the phosphonate 245a starting from allylic alcohol 11 (Scheme 118). 

 

O

CO2Me(MeO)2P
O

OBn
TBSO

CO2Me(MeO)2P
O

N2

OH

TBSO
OBn

+

245 246 11  
Scheme 118: Access of the phoshonate 245 may be realized by rhodium catalyzed OH-insertion. TBS= tert-

butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

The rhodium(II)-catalyzed OH-insertion as preliminary step for the Horner-Wadsworth-

Emmons olefination was first published by Sinaÿ and co-workers.344  

 

                                            
344 See reference 218a,b. 
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OMe
BnO

O

CO2Me
(MeO)2P

O

AcO
OAc

OAc

OBn

OBn

O
BnO

BnO

OMe
BnO

O

CO2MeR

RCHO, NaH
THF, 0 °C, 1 h

R=

Rh2(OAc)4
(MeO)2P(O)CN2CO2Me

benzene, reflux, 2 h

429 (80%) 430 (85%)
 E/Z = 3/2

428

 
Scheme 119: The first example of a sequence of rhodium-catalyzed OH-insertion and HWE-olefination. Bn= 

benzyl, Ac= acetyl. 

 

Further successful applications of this two step strategy were realised independently by 

Ganem,219 and Berchtold.220 An intramolecular approach was developed by Moody and co-

workers.221,345 

The starting diazo carbonyl compounds 431 have been widely applied for various chemical 

transformations.346 The carbonyl group plays an essential role during the generation of the 

carbene.347 It was postulated, that the resonance stabilization of diazo carbonyl compounds 

between keto and enolate form delocalizes the negative charge away from the diazo group 

(Scheme 120). 348 Consequently, this would facilitate the nitrogen extrusion and therefore the 

formation of the carbene.  

 

R
O

R'
N
N

R
O

R'
N
N

R
O

R'
N
N

431 432 433  
Scheme 120: Resonance stabilization of diazo carbonyl compounds. 

 

With transition metals diazo carbonyl compounds form electrophilic carbenes. The reactivity 

of the carbenes may be visualized by its resonance structure 435 (Scheme 121).  

 

 

 

 

                                            
345 Davies, M. J.; Moody, C. J. Tetrahedron Lett. 1991, 32, 6947-6948. 
346 Ye, T.; McKervey, A. Chem. Rev. 1994, 94, 1091-1160. 
347 Cox, G. G.; Miller, D. J.; Moody, C. J.; Sie, E.-R. H. B. Tetrahedron 1994, 50, 3195-3212. 
348 Regitz, M.; Bartz, W. Chem. Ber. 1970, 103, 1477-1485. 
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MLn CR2 MLn CR2

434 435  
Scheme 121 M= metal (e.g. Rh, Cu). 

 

However, there has been considerable controversy concerning the exact nature of the carbene. 

Studies performed by Wang et al. provided some experimental evidence favouring the build-

up of a partial positive charge in the RhII-carbene.349 The results as well support the suggested 

mechanism of the metal catalysed decomposition of the diazo compounds (Scheme 122).350 

After complexation of the negatively polarized carbon atom of the diazo compound to the 

axial site of the RhII catalyst subsequent irreversible extrusion of nitrogen results in the 

formation of the rhodium(II) carbene intermediate 437. 

 

R
O

R'
N
N

R
O

R'
N
N

Rh2L4 Rh Rh
O

R'

RN
N

Rh Rh
R

R'
O

431 432 436 437  
Scheme 122: Exemplary formation of a carbene 437 with a binuclear rhodium(II)-complex as catalyst. In 

structures 436 and 437 the ligands are not depicted for concise reason and would be bound at the four remaining 

single bonds present at each of the rhodium atoms. L= bidentate ligand. 

 

 

Due to the electrophilic character, the metal carbene 437 reacts preferentially with electron 

rich substrates. Insertions (α,α-substitutions) into Het-H and Het-Het bonds, 

cyclopropanations, C-H-insertions, dipolar cycloaddition and sigmatropic rearrangements as 

result of ylide formations are the predominant examples.217 The most important catalyst for 

such transformations was found to be the binuclear complex Rh2(OAc)4 (Figure 24). Teyssié 

et al. was the first to discover the potential of Rh2(OAc)4 as catalyst in reactions with diazo 

compounds.351 Variation of the ligands both resulted in the basic understanding of carbenoid 

transformations and to the evolution of chiral catalysts for enantioselective transformations.352 

 

                                            
349 Qu, Z., Shi, W.; Wang, J. J. Org. Chem. 2001, 66, 8139-8144. 
350 Doyle, M.; P. Chem. Rev. 1986, 86, 919-939. 
351 Paulissen, R.; Hubert, A. J.; Teyssié, Ph. Tetrahedron Lett. 1972, 23, 1465-1466. 
352 Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911-935. 



164                                  Stereoselective Synthesis of Allyl Vinyl Ethers via HWE Olefination 

 
Ph.D. Thesis Annett Pollex 

O
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Figure 24 

 

Subjected to substrates possessing OH-groups, the reaction causes a formal insertion of the 

carbene into the OH-bond.353 Probably the most common example of the insertion of a 

carbene (derived from a diazo compound) into an OH-bond is the esterification of carboxylic 

acids with diazomethane.354 For the formation of ethers, the carbene insertion into the OH-

bond of alcohols has to be addressed. Phosphonate 245a - the starting material for a Horner-

Wadsworth-Emmons olefination - may be generated using diazophosphonoacetate 246 as the 

appropriated substrate. In contrast to diazo carbonyl compounds 431, diazophosphonoacetate 

246 often exhibited reduced reactivities and afford the application of the more reactive 

rhodium(II) trifluoroacetamide [Rh2(tfacm)4] to induce insertion reactions.355 Competing 

cyclopropanation reactions have to be considered if unsaturated alcohols are utilized as 

reaction partners. However, several experiments indicated that allylic alcohols (e.g. 11) show 

a high preference for OH-insertion over cyclopropanations.356 The presumed mechanism of 

the transformation is depicted in Scheme 123.  

 

                                            
353 Paulissen, R.; Reimlinger, H.; Hayez, E.; Hubert, A. J.; Teyssié, Ph. Tetrahedron Lett. 1973, 24, 2233-2236. 
354 For recent examples, see: (a) Hanessian, S.; Gauchet, C.; Charron, G.; Marin, J.; Nakache, P. J. Org. Chem. 
2006, 71, 2760-2778. (b) Kim, S.; Ko, H.; Lee, T.; Kim, D. J. Org. Chem. 2005, 70, 5756-5759. (c) Sohn, J.-H.; 
Waizumi, N.; Zhong, H. M.; Rawal, V. H. J. Am. Chem. Soc. 2005, 127, 7290-7291. 
355 Cox, G. G.; Kulagowski, J. J.; Moody, C. J.; Sie, E.-R. H. B. Synlett 1992, 975-976. 
356 Petiniot, N.; Anciaux, A. J.; Noels, A. F.; Hubert, A. J.; Teyssié, P. Tetrahedron Lett. 1978, 19, 1239-1242. 
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Scheme 123: Mechanism of the rhodium-catalyzed OH-insertion. 

 

The formation of the carbene 439 occurs with nitrogen extrusion. Formal OH-insertion of the 

carbene 439 into the OH-bond of the allylic alcohol 255 results in the formation of the 

phosphonate 440. The insertion may proceed either in a single step or by a stepwise 

mechanism (Scheme 124).  

 

Rh Rh
CO2Me
P(O)(OMe)2

Rh Rh
CO2Me
P(O)(OMe)2

(MeO)2P CO2Me
O

O

O
H

concerted?
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O
H

255
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440
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Scheme 124: Possible mechanism for the OH-insertion step. 

 

However, to the best of my knowledge, the mechanism of the OH-insertion process has not 

been revealed, yet. 
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14.1.1 Synthesis of the Phosphonates  
 

Different possibilities for the formation of diazo compounds are known and have been 

reviewed earlier.346 We utilized the standard procedure involving the diazo transfer reagent 

tosyl azide 444 in the presence of a base. This method was developed by Regitz and co-

workers.357  

Tosyl azide 444 was easily synthesized from p-toluene sulfonyl chloride 443 and sodium 

azide (Scheme 125). Treatment of commercially available trimethylphosphonoacetate 445a358 

with p-tosyl azide 444 afforded diazo phosphonate 246a in 75% yield. 
 

S
Cl

O O
S

N3

O O O
(MeO)2P

N2

CO2Me

1.0 eq 445a
1.2 eq NaH, THF
0 °C, 1 h, rt, 1 h

1.0 eq NaN3, acetone
H2O, 0 °C, 2 h

444 (98%) 246a (77%)443

O
(MeO)2P CO2Me

445a  
Scheme 125: Formation of the diazophosphonoacetate 246a.  

 

The related diazophosphonoacetates 246b-d were generated by a two step procedure 

involving Arbuzov reaction of halo acetic acids 446b-d with either trimethylphosphite (Table 

31, entry 2 and 3) or triethylphosphite (Table 31, entry 1) to afford the phosphonoacetates 

445a-c followed by the treatment with NaH and p-tosyl azide 444 (Table 31).359 
 

O

OR1

X

O
(R2O)2P CO2R1

O
(R2O)2P CO2R1

N2

a or b

1.0 eq p-Ts-N3 (444)
1.2 eq NaH, THF
0 °C, 1 h, rt, 1 h

446b-d 445b-d 246b-d  
Entry X R1 Conditions R2 Yield (445) [%] Yield (246) [%] Product 

1 Br Me aa Et 94 62 445/246b

2 Cl i-Pr bb Me 39c,d 89 445/246c 

3 Cl t-Bu bb Me 48c,d 87 445/246d
Table 31 a Reaction conditions: P(OEt)3, reflux with distillation off of the side products. b First step: NaI, 

acetone, rt. Second step: P(OMe)3, reflux with distillation off of the side products. c Contamined by small 

amounts of para-toluene sulfonyl amine. d Yields not optimized 

 
                                            
357 Regitz, M.; Anschiitz, W.; Liedhengener, A. Chem. Ber. 1968, 101, 3734-3743. 
358 Trimethylphophonoacetate 445a may be generated by Arbuzov reaction of chloro acetic acid methyl ester 
446a with trimethylphosphite (analogue to 445c,d (Table 31)). 
359 House, H. O.; Jones, V. K.; Frank, G. A. J. Org. Chem. 1964, 29, 3327-3333. 



Stereoselective Synthesis of Allyl Vinyl Ethers via HWE Olefination 167 
 

 
Ph.D. Thesis Annett Pollex 

14.1.2 Application of the Rhodium-Catalyzed OH-Insertion 

 

Initial experiments concerning the rhodium-catalyzed OH-insertion afforded the desired 

phosphonate 245a with good yields (Eq. 55, Table 32, entry 1).  

 

O
(MeO)2P

N2

CO2Me

OH

TBSO
OBn

O

TBSO
OBn

CO2Me(MeO)2P
O

+

5 mol% Rh2(OAc)4
benzene, reflux , 1 h

245a (85%)1.5 eq 246a 1.0 eq 11a (0.6 mol)  
Eq. 55 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl, Ac= acetyl. 

 

However, reproduction of the reaction under comparable conditions afforded 245a-d with 

strongly varying yields (Table 32, entry 2). Upscaling of the reaction size resulted in a 

significant reduction of the isolated yields (Table 32, entry 3). After some experimentation we 

found 1,2-dichloro ethane the best solution both according to isolated yields and 

reproducibility (Table 32, entry 4 and 5).  

 

Entry Reaction size [mmol] Solventa Yield [%] 

1 0.6 benzene 85 

2 0.8 benzene 17-67 

3 4.7 benzene 20 

4 0.5 1,2-dichloroethane 60 

5 3.5 1,2-dichloroethane 59 
Table 32: Results of the rhodium(II) catalyzed OH-insertion. a Reaction conditions: A solution of 1.5 eq 246a in 

1,2-dichloroethane or benzene was added dropwise within 15 min to a refluxing solution of 1.0 eq 11a and 5 

mol% of Rh2OAc4 in 1,2-dichloroethane or benzene. The reaction mixture was stirred at reflux for one our, 

cooled to rt and concentrated. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2] 

 

We found that 1.2 g (3.5 mmol) of 11a was the reaction size of choice affording the product 

in acceptable and reproducible yields. Upscaling was realized by running the reaction in 

parallel vessels each equipped with the above amount of the starting materials.360 After the 

completion of the reaction the raw materials were combined and purified as one single 
                                            
360 4.8 g (13.4 mmol) of the allyl alcohol 11 were converted at the same time by application of this procedure. 
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product. The raw material of the OH-insertion had to be purified immediately after the 

reaction. Storing of the raw product even at −32 °C resulted in the degradation of the 

phosphonate 245a and reduced isolated yields were observed. 

 

Phosphonates 245b-d were synthesized in analogy to the above procedure. Results are 

summarized in Table 33. 

 

O
(R1O)2P

N2

CO2R2

OH

R3O
OBn

O

R3O
OBn

CO2R2(R1O)2P
O

+

5 mol% Rh2(OAc)4
1,2-dichloro ethane

reflux , 1 h

1.5 eq 246a-d 1.0 eq 11a,b 245b-e  
Entry R1 R2 R3 Product Yield [%] 

1 Et Me TBS 245b 70 

2 Me i-Pr TBS 245c 46 

3 Me t-Bu TBS 245d 58 

4 Me Me TPS 245e 48 
Table 33 Synthesis of the phosphonates 245b-e. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], TPS= tert-

butyldiphenylsilyl [Si(t-Bu)Ph2], Bn= benzyl, Ac= acetyl. 

 

14.2  Horner-Wadsworth-Emmons Olefination 

 

Aldehyde 244 - required for the generation of AVE 10a by HWE olefination - was 

synthesized according to a procedure published by Overman et al.361 The starting 1-bromo-1-

vinyl trimethylsilane 449 is commercially available but for economic reasons it may be 

synthesized using a two step procedure starting from vinyl magnesium bromide 447 (Scheme 

126).362 Attempts to use the less expensive vinyl magnesium chloride instead of vinyl 

magnesium bromide 447 for the first step did not result in the formation of the desired vinyl 

trimethylsilane 448.  

 

                                            
361 Overman, L. E.; Thompson, A. S. J. Am. Chem. Soc. 1988, 110, 2248-2256. 
362 Boeckman, R. K., Jr.; Blum, D. M.; Ganem, B.; Halvey, N. Org. Synth. 1980, 58, 152-157. 
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MgBr SiMe3

448 (78%)

1.0 eq TMSCl
THF, reflux, 2 h

then rt, 18 h
SiMe3

Br
449 (57%)

1.2 eq Br2, −78 °C, 1 h
then add 6.7 eq Et2NH

reflux, 12 h

447  
Scheme 126: Formation of 1-bromo-1-vinyl trimethylsilane 449. TMS= trimethylsilyl [SiMe3]. 

 

Lithiation of 1-bromo-1-vinyl trimethylsilane 449 using t-BuLi and subsequent addition of 

trimethylene oxide 450 and boron trifluoride etherate afforded alcohol 451 (Scheme 127). 

After initial good results, the formation of a side product was observed several times during 

later experiments. This side produckt was difficult to remove and resulted in various problems 

during the following steps.363 However, careful flash chromatography enabled the separation 

of this side product. Oxidation using Parikh-Doering conditions308 resulted in the formation 

of aldehyde 244 in good yields (Scheme 127). 

 

SiMe3

Br

SiMe3

449
(1.05 eq)

451 (91%)

1.98 eq t-BuLi
BF3·OEt2, THF
−78 °C, 15 min

O+

450
(0.77 eq)

SiMe3

244 (84%)

2.0 eq SO3·pyridine
4.0 eq Et3N

0 °C to rt, 1.5 hHO O

 
Scheme 127: Formation of the aldehyde 244 according to Overman. 

 

The stereochemical result of the HWE is known to be affected by the steric demand of the 

substituents present at the phosphonate and by the base employed for the generation of the 

cation. Consequently, phosphonates 245 bearing ester residues with varying steric demands 

were tested.  

 

 

 

 

 

 

                                            
363 For details, see: Experimental Section. 
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TBSO

O

(R1O)2P CO2R2
O

OBn

SiMe3
O

TBSO

O

CO2R2

SiMe3

OBn

1.1 eq LiHMDS, THF, −78 °C, 15 min
then add 1.3 eq 244, −78 °C to rt

245a-d 10a-c

244

 
Entry R1 R2 n(245) [mmol] Product E/Z Yield [%] 

1 Me Me 0.4 10a 12/1 82 

2 Et Me 0.05 10a 3/1 61 

3 Me i-Pr 0.05 10b 8/1 72 

4 Me t-Bu 0.05 10c 7/1 50 
Table 34 Results of the HWE olefination of phosphonates 245a-d bearing phosphonate and ester residue with 

different steric demands. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl, LiHMDS= lithium 

hexamethyl disilazide {Li[N(SiMe3)2]}. 

 

Obviously, substituents at the ester residues had an influence on the selectivity (Table 34, 

entry 1,3 and 4) but the differences are rather small. In contrast, small variation of the 

phosphonate residue (methyl replaced by ethyl) significantly decreased the E-selectivity 

(Table 34, entry 2). 

 

We then checked the effect of different bases. Accordingly LDA, LiHMDS, KHMDS, 

NaHMDS and LiCl/TMG (Masamune Roush)364 were compared.  

(MeO)2P
O

OMe

O

OBn
TBSO

O SiMe3
O

TBSO

O

O

OMe

SiMe3

OBn

1.1 eq base, THF, −78 °C, 15 min
then add 1.3 eq 24, −78 °C to rt

245a 10a

24

 
 

 

 

 

 
                                            
364 Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S. S.; Roush, W. R.; Sakai, T. 
Tetrahedron Lett. 1984, 25, 2183-2186. 
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Entry n(245a) [mmol] Base t [h] E/Z Yield [%] 

1 0.9 LDA 0.5 9/1 78 

2 0.4 LiHMDS 0.5 12/1 82 

3 0.5 KHMDS 1 3/1 36 

4 0.1 NaHMDS 4 3/1 54 

5 0.5 LiCl/TMG 0.5 4/1 29 
Table 35 Results of the HWE olefination for the reaction of phosphonate 245a with aldehyde 244. TBS= tert-

butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl, LDA= lithium diisopropylamide, LiHMDS= lithium hexamethyl 

disilazide {Li[N(SiMe3)2]}, KHMDS= potassium hexamethyl disilazide {K[N(SiMe3)2}, NaHMDS= sodium 

hexamethyl disilazide {Na[N(SiMe3)2}, TMG= tetramethyl guanidine. 

 

LiHMDS resulted in enhanced diastereoselectivities compared with LDA (Table 35, entry 1 

and 2). KHMDS, NaHMDS and Masamune Roush conditions364 exhibited reduced reactivities 

and significantly decreased E-selectivities (Table 35, entry 3, 4 and 5).  

 

Surprisingly, when applied to TPS-protected phosphonate 245e reduced diastereoselectivities 

were observed as well (Eq. 56). 

 

(MeO)2P
O

OMe

O

OBn
TPSO

O SiMe3
O

TPSO

O

O

OMe

SiMe3

OBn

1.1 eq LDA, THF, −78 °C, 15 min
then add 1.3 eq 244, −78 °C to rt

245e (0.3 mmol) 10d (95%)
E/Z = 3/1

244

 
Eq. 56 TPS= tert-butyldiphenylsilyl [Si(t-Bu)Ph2], Bn= benzyl, LDA= lithium diisopropylamide. 

 

For economic reasons, I decided to employ LDA as method of choice for the further progress. 

However, later results (see chapter 15) revealed, that utilization of LiHMDS might be 

advantageously for the further development of the synthetic route. 
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15 Catalytic Asymmetric Claisen Rearrangement (CAC) 

 

The initial experiments were performed with the mixtures of double bond isomers of the AVE 

10a. When AVE 10a was subjected to the conditions of the thermal Claisen rearrangement we 

noticed incomplete conversion even after prolonged heating. This is in contrast to earlier 

results that ascertained the complete conversion of double bond mixtures under thermal 

conditions.202 Separation of the rearrangement products resulted in α-keto ester (±)-anti-233 

in moderate yields365 and the reisolation of the starting material that almost exclusively 

consisted of the Z-isomer (Z,Z)-10a. Apparently, the allyl vinyl ether (Z,Z)-10a did not 

rearrange under these conditions. 

 

TBSO

O

CO2Me

SiMe3

OBn

CO2Me

O
TBSO

SiMe3BnO

10a E/Z ~ 9/1

1,2 dichloroethane
sealed tube, 80 °C, 39 h

(±)-anti-233 (54%, >90% de)
+ (Z,Z)-10a (12%)  

Eq. 57 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

Separation of the α-keto ester enantiomers (2S,10R)-233 and (2R,10S)-233 was realized by 

chiral analytical HPLC (Figure 25).366 Even though the first peak appears to be slightly 

higher, integral sizes confirm that it is indeed a racemate with both enantiomers being in 1/1 

ratio. 

 

                                            
365 Yields not optimized. 
366 Analytical HPLC: Hewlett-Packard 1090, DAD detection at 210 and 220 nm, column: Chiracel OD 14025 
(4.6×255 mm, 10 μm), solvent: n-hexane/i-PrOH, 1 mL/min, 35 °C. For details, see: Experimental Section. 
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TBSO

O

CO2Me

SiMe3

OBn

CO2Me

O
TBSO

SiMe3BnO

10a E/Z ~ 9/1

1,2 dichloroethane
sealed tube, 80 °C, 39 h

(±)-anti-233

 
Figure 25: Chromatogram of the racemic product (±)-anti-233 of the thermal Claisen rearrangement. TBS= tert-

butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

We then attempted the catalytic asymmetric Claisen rearrangement. Initial experiments under 

standard conditions (5 mol% (S,S)-234a, 4 Å molecular sieves,367 CH2Cl2, rt, 24 h) did not 

result in the formation of α-keto ester 233 in considerable amounts. We assumed that the 

higher steric demand of the AVE 10a featuring a three substituted double bond may interfere 

with the highly ordered situation at the catalytic center of the t-Bu-box-catalyst (S,S)-234a. 

Therefore, we performed the same experiments with the less demanding Ph-box catalyst 

(R,R)-234b. Similarly, standard conditions did not result in the desired rearrangement. 

However, treatment of AVE 10a with equimolar amounts of (R,R)-234b resulted in the 

conversion to the α-keto ester 233 within 16 hours.368 However, if the enantiomers were 

separated by chiral, analytical HPLC the results were not very encouraging (Figure 26). There 

was almost no asymmetric induction if (R,R)-234b was used. 

 

                                            
367 Unless otherwise state, freshly activated, manually crushed 4 Å molecular sieves were used. For details, see: 
Experimental Section. 
368 Reaction time not optimized. 
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TBSO

O

CO2Me

SiMe3

OBn

CO2Me

O
TBSO

SiMe3BnO

10a E/Z ~ 9/1

100 mol% (R,R)-234b
4 Å mol sieves, CH2Cl2, rt, 16 h

anti-233 (42%, >90% de, <5% ee)

(R,R)-234b

N

O

Cu
N

O

Ph PhOH2H2O

2 SbF6

2

 
Figure 26: Chromatogram of the product anti-233 of the Claisen rearrangement ‘catalyzed’ by (R,R)-234b. 

TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl.  

 

Consequently, we tested ‘cationic’ copper(II)-complex (S,S)-234a next. Treatment of the 

AVE 10a with equimolar amounts of the (S,S)-234a afforded the rearrangement product 

(2S,10R)-233 within less than 2 h. In this case excellent enantioselectivities were observed 

(Figure 27).369  

TBSO

O

CO2Me

SiMe3

OBn

CO2Me

O
TBSO

SiMe3BnO

10a E/Z ~ 9/1

100 mol% (S,S)-234a
4A mol sieves, CH2Cl2, rt, 2 h

(2S,10R)-233 (71%)
>90% de, >98% ee

2
10

N

O

Cu
N

O

t-Bu t-BuOH2H2O

2 SbF6

2

(S,S)-234a

 
Figure 27: Chromatogram of the α-keto ester product (2S,10R)-233 of the Claisen rearrangement ‘catalyzed’ by 

(S,S)-234a. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl.370 

 

 

                                            
369 First implementations were analyzed by chiral HPLC (Hewlett-Packard 1090) with DAD detection. In these 
cases no second enantiomer was detectable. The old machine was later replaced by a modern Agilent 1100 series 
with DAD detetection. During the analysis of the rearrangement product with this newer HPLC the second 
enantiomer was within the limits of detectability exhibiting 98% ee. 
370 Identical chromatograms were obtained for experiments using 25 mol% (or less) of the catalyst (S,S)-234a. 
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To control that the minor peak was indeed the second enantiomer an artificial mixture of the 

product of the CAC and the thermal Claisen rearrangement was produced. Figure 28 

represents the resulting chromatogram that clearly shows an increased intensity of the first 

peak. 

 

CO2Me

OTBSO

SiMe3BnO

(2S,10R)-233 + ~ 10% (±)-anti-233

maU

 
Figure 28: Chromatogram of an artificial mixture of (2S,10R)-233 and (±)-anti-233. TBS= tert-

butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

We noticed that even with stochiometric amounts of the catalyst the reaction did not proceed 

to completion. Interestingly, as it was observed for the thermal Claisen rearrangement Z-

configured AVE 10a did not undergo the catalyzed Claisen rearrangement. If reisolated pure 

Z-AVE (Z,Z)-10a was subjected to stochiometric amounts of the catalyst (S,S)-234a no 

rearrangement at all occurred. Instead subsequent cleavage of the TBS ether was observed 

(Eq. 58).  

 

CO2Me

O

TBSO
OBn

SiMe3

(Z,Z)-10a

N N

OO

t-Bu t-Bu
Cu

H2O H2O

2

2 SbF6

(S,S)-234a

100 mol% (S,S)-234a
CH2Cl2, rt, 24 h CO2Me

O

HO
OBn

SiMe3

452 (33%)
+ (Z,Z)-10a (31%)  

Eq. 58 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 
 

A proposal of the stereochemical course of rearrangement may explain the different 

reactivities of (E,Z)-10a and (Z,Z)-10a (Scheme 128). 
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TBSO
OBn

SiMe3

2

10Re

2Si

2Si

10Si

2 SbF6

(S,S)-234a

syn-(2S,10S)-233 anti-(2S,10R)-233

Z-unlike
(Z,S,S,10Re)-topicity

E-like
(E,S,S,10Si)-topicity

(Z,Z)-10 (E,Z)-10

453 454

 
 

Scheme 128: The different reactivities of (E,Z)-10a and (Z,Z)-10a may be accounted to steric interactions that 

should be significantly stronger for intermediate 453 than for intermediate 454. TBS= tert-butyldimethylsilyl 

[Si(t-Bu)Me2], Bn= benzyl. 

 

Steric interactions between the vinylic side chain and the substituent at C2 should be more 

predominant in the complex 453. Consequently, (Z,Z)-10a is expected to be less prone to 

form this complex and/or adopt the reactive conformation that would lead to a Z-unlike 

transition state and consequently to the syn-diastereomer of 233 (Scheme 128, left). On the 

other hand, this pseudo-1,3-diaxial repulsion is expected to be significantly smaller if (E,Z)-

10a (vinyl-RE= H) is employed. Therefore, the activation barrier for the catalyzed (and for the 

thermal) Claisen rearrangement of (E,Z)-10a should be lower than for (Z,Z)-10a. 
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The presence of unreacted (Z,Z)-10a perturbed the reaction control via TLC since the 

complete conversion of (E,Z)-10a can not easily be detected. However, the different 

reactivities of the double bond isomers are not without advantage. No separation of the double 

bond isomers is required. Thus, the α-keto ester 233 will be formed as single diastereomer. 

The rearrangement product 233 is easily separable from unreacted starting material (Z,Z)-10a 

by flash chromatography. 

Subsequent optimization resulted in the reaction conditions given below. 25 mol% of (S,S)-

234a were found to be the minimum amount of catalyst to initiate the rearrangement of 10a if 

used as mixture of double bond isomers (Eq. 59).  

 

TBSO

O

CO2Me

SiMe3

OBn

BnO

O

CO2Me

SiMe3

TBSO

(2S,10R)-233 (64%) 
>90% de, >98% ee
+ (Z,Z)-10a (9%)

25 mol% (S,S)-234a
4 Å mol sieves, CH2Cl2, rt, 27 h

2
10

10a E/Z ~ 9/1
 

Eq. 59 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl 

 

Further reduction of the catalyst loading resulted in unacceptable long reaction times. After 48 

hours incomplete conversion of the starting material 10a was observed (Table 36).371 

 

TBSO

O

CO2Me

SiMe3

OBn

10a

BnO

O

CO2Me

SiMe3

TBSO

(2S,10R)-233

 (S,S)-234a
4 Å mol sieves, CH2Cl2, rt, 48 h

E/Z ~ 9/1

2
10

 
Entry Catalyst loadinga [mol%] Conversionb [%] 

1 20 81 

2 15 63 

3 10 ~10 
Table 36 a Reaction size: 25 mg (0.045mmol) 10a, 4 ml CH2Cl2. b Deduced from 1H NMR. TBS= tert-

butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl 

                                            
371 The term ‘incomplete conversion’ does not take into consideration that (Z,Z)-10a does not rearrange. It is 
used to express, that incomplete conversions was observed for the reactive AVE (E,Z)-10a. 
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The required substochiometric amount of the catalyst (turnover rate: 4) and the back isolation 

of (Z,Z)-10a guided us to the question whether or not the pure E-AVE (E,Z)-10a would 

rearrange with lower catalyst loading. Attempts to separate the double bond isomers by 

preparative HPLC have been successfully challenged.372 However, long retention times and 

lacking base line separation make the separation of the double bond isomers (Z,E)-10a and 

(Z,Z)-10a prior to the rearrangement an unreasonable option. However, results that were made 

with almost pure E-AVE 10a (E/Z = 43/1) were very promising (Table 37). Complete 

consumption of the starting material was detected within a few minutes if 25 mol% of (S,S)-

234a were employed. Furthermore, increased isolated yields of satisfying 80% were observed. 

Consequently, the reaction was performed with lower catalyst loading. We found that the 

minimum catalyst loading was 10 mol% what now fits in the description of the transformation 

as catalytic asymmetric Claisen rearrangement. The reaction was complete within 3.5 hours. 5 

mol% (S,S)-234a exhibited no significant acceleration of the Claisen rearrangement of 10a. 

 

TBSO

O

CO2Me

SiMe3

OBn

10a

BnO

O

CO2Me

SiMe3

TBSO

(2S,10R)-233

 (S,S)-234a
4 Å mol sieves, CH2Cl2, rt

E/Z ~ 43/1

2
10

 
Entry Catalyst loadinga [mol%] Reaction time Conversionb [%] Isolated yieldc [%] 

1 25 10 min 100 80 (100) 

2 10 3.5 h 100 70 (100) 

3 5 9 d ~5 - (100) 
Table 37 a Reaction size: 25 mg (0.045mmol) 10a, 4 ml CH2Cl2. b Deduced from 1H NMR. c After purification 

by column chromatography. Yields in parentheses are obtained after filtration of the reaction mixture through a 

plug of silica gel (0.5×2 cm). TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

The exact role of the molecular sieves remains still speculative. We assume that it is involved 

in the rate determining formation of the catalyst substrate complex by absorbing the water that 

is displaced by the substrate. This might however not be the only role. With this uncertainty in 

mind we performed a set of reactions with varying molecular sieve amounts. Without 

molecular sieves the reaction rate significantly decreases and various side products were 

                                            
372 For details, see: Experimental Section. 
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detected by TLC. Subsequent enhancement of the molecular sieves loading increased the 

reaction rate. At the same time, reduced side product formation was detected (Table 38). 

 

TBSO

O

CO2Me

SiMe3

OBn

10a

BnO

O

CO2Me

SiMe3

TBSO

(2S,10R)-233

 100 mol% (S,S)-234a
4 Å mol sieves, CH2Cl2, rt, 24 h

E/Z ~ 9/1

2
10

 
Entry 4 Å mol sievesa [mg/mmol 10a] Conversionb [%] Side product formationc 

1 - 50 Strong 

2 9 66 Significant 

3 18 >95 Little 

4 36 >95 Hardly detectable 
Table 38 a Reaction size: 25 mg (0.045mmol) 10a, 4 ml CH2Cl2. b Deduced from 1H NMR. c Detected by TLC 

control. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl.  

 

Since the reaction proceeded significantly faster with higher amounts of molecular sieves, the 

following reactions were performed with 25 mol% catalyst loading (Table 39). In all cases 

only small side product formation was observed. 

 

TBSO

O

CO2Me

SiMe3

OBn

10a

BnO

O

CO2Me

SiMe3

TBSO

(2S,10R)-233

 25 mol% (S,S)-234a
4 Å mol sieves, CH2Cl2, rt, 24 h

E/Z ~ 9/1

2
10

 

Entry 
4 Å molecular sievesa 

[mg/mmol 10a] 
Conversionb [%] 

1 50 70 

2 82 37 

3 164 18 
Table 39 a Reaction size: 25 mg (0.045mmol) 10a, 4 ml CH2Cl2. b Deduced from 1H NMR. TBS= tert-

butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

Apparently, there is an optimum amount of molecular sieves loading. 
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Routinely, we used freshly activated 4 Å molecular sieves that were manually pulverized.373 

Other commercially available molecular sieves (e.g. 4 Å molecular sieves beads or powder) 

may be used as well. Earlier observations in our research group revealed a correlation 

between particle size and conversion rate.374 Lowest conversion rates were found for 

molecular sieves powder (Table 40).  

 

O

CO2i-Pr

456
O

CO2i-Pr

5 mol% (S,S)-234a
1,2-dichloroethane

4 Å mol sieves, rt, 1 h

(Z)-455  
Entry Molecular sieves Conversion [%] 

1 beads 95 

2 manually crushed 50 

3 powder 3 

4 - 20 
Table 40: Different molecular sieves types have a strong influence on the conversion rate. 

 

For the rearrangement of 10a the following molecular sieves types were tested: Baker 3 Å 

molecular sieves beads (corn diameter 2.5-5 mm), Baker 4 Å molecular sieves beads (corn 

diameter 1.7-2.4 mm), ACROS 4 Å molecular sieves powder (particle size <5 µm).375 Similar 

to Julia’s results, increased reaction rates were observed if 4 Å molecular sieves beads were 

used (Table 41, entry 2 and 4). However, utilization of the 3 Å molecular sieves beads with 

further increased particle size resulted in lower reaction rates (Table 41, entry 3). For all cases 

a significantly higher side product formation was detected by TLC (Figure 29). Interestingly, 

lower catalyst loading was required (5 mol% (S,S)-234a). Complete conversion was observed 

within 48 hours (Table 41, entry 4). 

 

 

 

 

                                            
373 For details, see: Experimental Section. 
374 Rehbein, J., unpublished results. 
375 All molecular sieves were freshly activated before use. For details, see: Experimental Section. 
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O

OMe

SiMe3

OBn

10a

BnO

O

O

OMe

SiMe3

TBSO

(2S,10R)-233

 (S,S)-234a
 mol sieves beads, CH2Cl2, rt

E/Z ~ 9/1

2
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Entry 
Catalyst loadinga 

[mol%] 

Molecular sieves 

beads [Å] 

Reaction time 

[h] 
Yield [%]b Yield of 233 

[%] 

1 10 3 24 90 50 

2 10 4 24 100 55 

3 5 3 48 92c 28 

4 5 4 48 80 48 
Table 41 a Reaction size: 25 mg (0.045mmol) 10a, 4 ml CH2Cl2. b Obtained after filtration of the reaction 

mixture through a plug of silica gel (0.5×2 cm), unless otherwise stated conversion of (E,Z)-10a = 100%. c 

Conversion ~75%. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 
 

The other commercially available molecular sieves type (powder, particle size <5 µm) was 

tested next. Surprisingly and in contrast to earlier observations (Table 40) AVE 10a reacted 

with enhanced reaction rates if molecular sieves powder was used (Table 42, entry 1). In 

contrast to the uncrushed molecular sieves almost no side product formation was detected 

(Figure 29).  
 

starting material

(2S,10R)-233
(Z,Z)-10

u.s.p.
u.s.p.

deprotected 
starting material

10 (E/Z ~ 9/1)

A B C D  
Figure 29: TLC-control of the CAC using 3 Å molecular sieves beads of ~4 mm diameter (A), 4 Å molecular 

sieves beads of ~2 mm diameter (B), manually crushed molecular sieves (C) and molecular sieves powder (D). 

u.s.p.= unspecified side product. 
 

Catalyst loading was decreased next. Unexpectedly, there was hardly any reaction if only the 

catalyst loading was reduced leaving all other reaction conditions constant (Table 42, entry 2 

and 3). Reduction of both the catalyst loading and the amount of 4 Å molecular sieves powder 

in the same relation afforded the rearrangement product as expected (Table 42, entry 4 and 5). 

Using 10 mol% of the catalyst (S,S)-234a resulted in complete conversion of the starting 

material within 45 hours (Table 42, entry 4), the corresponding reaction with 5 mol% of (S,S)-
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234a resulted in about 90% conversion (Table 42, entry 5). If these reaction conditions were 

applied to the E-10 enriched fraction of the HPLC purification, the reaction was significantly 

faster (Table 42, entry 6 and 7). However, if 2.5 mol% (S,S)-234a were used, only 40% 

conversion could be detected even after 7 days (Table 42, entry 8). 
 

TBSO

O

CO2Me

SiMe3

OBn

42a

BnO

O

CO2Me

SiMe3

TBSO

(2S,10R)-233

 (S,S)-234a
4 Å mol sieves powder

CH2Cl2, rt

2
10

 

Entry E/Z 

Catalyst 

loadinga 

[mol%] 

Molecular 

sieves/catalyst 

[g/mmol] 

Reaction 

time 

[h] 

Conversionb 

[%] 

Yieldc 

[%] 

1 15/1 18 4.2 0.5 100 82 

2 9/1 10 10.2 95 ~5 n.i. 

3 9/1 5 20.2 95 ~5 n.i. 

4 9/1 10 4.1 45 100 60 

5 9/1 5 4.1 45 90 n.i. 

6 43/1 10 4.1 1.25 98 80 

7 43/1 5 4.1 3 95 85 

8 43/1 2.5 4.1 168 40 - 
Table 42 a Reaction size: 25 mg (0.045mmol) 10a, 4 ml CH2Cl2. b Deduced from 1H NMR. c After purification 

by column chromatography. All reaction proceeded with 100% yield after filtration through a silica gel plug 

(0.5×2 cm). n.i.: not isolated. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 
 

In summary, two results may be emphasized: 

- Using molecular sieves powder, lower catalyst loadings could be realized.  

- At least for this type of molecular sieves the relation between catalyst and molecular sieves 

amount has to be considered.  

However, if this finding was projected to the CAC using manually crushed molecular sieves, 

no significant reaction rates were observed if 5 mol% of the catalyst were utilized in concert 

with a reduced amount of molecular sieves (Table 43). 
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TBSO

O

CO2Me

SiMe3

OBn
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BnO

O

CO2Me

SiMe3
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(2S,10R)-233

 (S,S)-234a
4 Å mol sieves, CH2Cl2, rt

E/Z ~ 9/1

2
10

 

Entry 
Catalyst loading 

[mol%] 

Molecular sieves/catalyst 

[g/mmol] 

Reaction time 

[h] 

Conversion 

[%] 

1 25 4.1 48 100 

2 5 4.1 93 ~5 
Table 43 a Reaction size: 25 mg (0.045mmol) 10a, 4 ml CH2Cl2. b Deduced from 1H NMR. TBS= tert-

butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 
 

Upscaling experiments were performed based on the promising results illustrated in Table 42. 

At first we performed the reaction with 0.5 g 10a using a 0.1 mol/l concentration (Table 44, 

entry 1 and 2). Disappointingly, again an increased side product formation was observed. 

Even though the conversion was found to be 100% both for 5 and 10 mol% catalyst within 48 

hours only 41 and 48% yield of the rearrangement product 233 could be isolated respectively. 

Reproduction of the reaction with 10-fold dilution resulted in a faster transformation that at 

the same time produced less side products. The α-keto ester 233 was isolated with 63 and 

66% yield respectively. However, 100 ml solvent/mmol substrate appears to be a rather 

inappropriate dilution for routine synthesis. 
 

TBSO

O

CO2Me

SiMe3

OBn

10a

BnO

O

CO2Me

SiMe3

TBSO

(2S,10R)-233
E/Z ~ 9/1

2
10

 (S,S)-234a
4 Å mol sieves powder

CH2Cl2, rt

 

Entry 
Catalyst loadinga 

[mol%] 

Concentration 

[mol/l] 

Reaction time 

[h] 

Yieldb 

[%] 

1 5 0.1 48 41 (82) 

2 10 0.1 14 49 (94) 

3 5 0.01 24 63 (99) 

4 10 0.01 14 66 (100) 
Table 44 a Reaction size: 0.5 g (0.89 mmol) 10a. b After purification by column chromatography. Yields in 

parentheses: after filtration through a silica gel plug (1.5×3 cm). TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], 

Bn= benzyl. 
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In summary, even though lower catalyst loading could be realized by changing the molecular 

sieves type, the originally employed crushed molecular sieves still appears to give the best 

results. While the application of molecular sieves beads with increased diameter resulted in 

increased side product formation, application of molecular sieves powder required high 

dilutions to give optimal chemical yields. The reasons for this dependency remain still 

unclear. It is somehow a drawback that various parameters have to be optimized for each 

individual starting material of the catalytic asymmetric Claisen rearrangement without an 

appropriate rationalization of the different behaviour at hand. Nevertheless, it could be shown 

that the high potential of the CAC may be successfully applied for the generation of highly 

functionalized α-keto esters. 
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16 Side Chain Synthesis and Introduction 

 

Our synthetic plan involves a Wittig olefination for the introduction of the side chain at C11 

(Scheme 129).  

 

BnO

CO2Me

SiMe3

TBSO

O

Br
OH

Ph3P
235

457

BnO

CO2Me

SiMe3

TBSO
OH

233
Synthesis of the side chain?

Introduction by Wittig olefination possible?
E/Z-selectivity of the olefination?

11 11

12
12

 
Scheme 129: Envisioned introduction of the side chain by Wittig olefination between α-keto ester 233 and 

Wittig salt 235. 

 

Although not very frequently used, examples for Wittig olefinations employing Wittig salts 

with free hydroxyl groups have been reported and successfully applied for natural product 

syntheses.209 

A recent application of a Wittig salt very similar to 235 is depicted in Eq. 60.  

 

EtO2C
CHO

HO
PPh3

Br

KHMDS, THF
−78 °C to 0 °C, 6 h

EtO2C

OH
460 (46%)458

459

 
Eq. 60 KHMDS= potassium hexamethyl disilazide {K[N(SiMe3)2}. 

 

The Wittig reaction of α-keto esters (e.g. 233) is yet not developed as synthetic tool. An initial 

test reaction was performed with the simplest Wittig ylene Ph3P=CH2 (461).376 After some 

optimizations 462 was synthesized with promising 68% (Eq. 61). 

 

                                            
376 Formed in situ by treatment of methyl triphenyl phosphonium bromide with an appropriated base. For details, 
see: Experimental Section. 



186  Side Chain Synthesis and Introduction 

 
Ph.D. Thesis Annett Pollex 

BnO

O

OMe

SiMe3

TBSO

BnO

O

O

OMe

SiMe3

TBSO
462 (68%)

2.5 eq Ph3P=CH2 (461)
THF, 0 °C to rt, 2 h

233  
Eq. 61 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

Consequently, the synthesis of the side chain 235 was explored. The original plan was to take 

advantage of the preformed E-configured double bond present in fumaric acid esters 463. 

Reduction to the corresponding allylic alcohol, and a sequence of oxidation to an aldehyde, 

alkylation of this aldehyde, oxidation of the resulting secondary alcohol to the corresponding 

ketone and another alkylation might provide alcohol 464. Subsequent reduction of the other 

ester functionality of 464 might afford the alcohol 465 ready for functional group 

transformation (replacement of OH by a halogen) by Mitsunobu redox condensation.Fehler! 

Textmarke nicht definiert. Halogenide 466 might then be transformed to the Wittig salt 235.  

 

CO2R
RO2C

X
OH X

RO2C

OH

Ph3P
OH

HO
OH

463 464 465

466 235  
Scheme 130: Envisioned access of 235 starting from fumaric acid esters 463. R= alkyl, X= halogen. 

 

Unfortunately, the initial reduction step failed to give the desired allylic alcohol 467 (Eq. 62). 

At low temperatures incomplete conversion was observed. Increasing of the reaction 

temperature led to complex product mixtures. 

 

CO2Me
MeO2C DIBAl-H, CH2Cl2, −78 °C to rt, 24 h MeO2C OH

463 467  
Eq. 62 

 

Therefore, a strategy starting from 2-butyn-1,4-diol 398 was utilized. The diol 398 might be 

monoprotected, oxidized to the corresponding aldehyde and alkylated to afford alcohol 468. 

After oxidation to the corresponding ketone and another methylation protected alcohol 469 
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might be reduced to the corresponding alkene by E-selective reduction using LiAlH4 or Red-

Al.377 Deprotection and functional group transformation as described above should afford 

halogenide 466 ready for the formation of the Wittig salt 235 (Scheme 131). 

HO
OH

PgO
OH

X
OH X

Ph3P
OH

PgO
OH

398 468 469

466 235  
Scheme 131: Alternative route for the synthesis of the Wittig salt 235 involving E-selective reduction of the 

propargylic alcohol 469 (strategy A). Pg= protecting group, X= halogen.  

 

Instead, E-configured alkene 470 might be formed starting from 398 prior to the oxidation 

alkylation sequence (Scheme 132).  

 

HO
OH

HO
OH X

Ph3P
OH

398 470 235  
Scheme 132 Reversed order of E-selective reduction and the oxidation-/alkylation-sequence may as well lead to 

the desired Wittig salt 235 (strategy B). X= halogen. 

 

Both reaction paths were found to be feasible. However, the obtained yields are rather low 

and the procedure rather steppy.378  

 

HO
OH X

Ph3P
OHstrategy A or B

strategy A: 2.9% (9 steps)
strategy B: 1.5% (9 steps)

398 235

 
Scheme 133: Summarized results for the synthesis of 235 following strategy A or B. 

 

                                            
377 For mechanistic considerations, see: (a) Blunt, J. W.; Hartshorn, M. P.; Munro, M. H. G.; Soong, L. T.; 
Thompson, R. S.; Vaughan, J. J. Chem. Soc., Chem. Comm. 1980, 820-821. (b) Baldwin, J. E.; Black, K. A. J. 
Org. Chem. 1983, 48, 2778-2779. (c) Corey, E. J.; Katzenellenbogen, J. A.; Posner, G. H. J. Am. Chem. Soc. 
1967, 89, 4245-4247. For recent examples, see: (d) Bode, J. W.; Carreira, E. M. J. Org. Chem. 2001, 66, 6410-
6424. (e) Ahmed, A.; Hoegenauer, E. K.; Enev, V. S.; Hanbauer, M.; Kaehlig, H.; Ohler, E.; Mulzer, J. J. Org. 
Chem. 2003, 68, 3026-3042. (f) Trost, B. M.; Gunzner, J. L. J. Am. Chem. Soc. 2001, 123, 9449-9450. 
378 For details, see: Experimental section. 
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Consequently, a shorter sequence had to be revealed. A more efficient approach was 

stimulated by the work of Díez Martín et al.379 In this attempt propargylic alcohol 471 was 

conveniently protected as THP ether 472. Subsequent lithiation of the terminal alkyne carbon 

atom and addition of the alkynyl lithium compound to acetone afforded alcohol 496 (Scheme 

134).  

 

HO THPO THPO
OH

1.0 eq DHP
0.01 eq PPTS
CH2Cl2, rt, 1 h

1.1 eq n-BuLi, THF
−78 °C, 10 min

then 1.5 eq acetone
−78 °C 1 h

469 (92%)471 472  
Scheme 134: Synthesis of the protected propargyl alcohol 469 according to Díez Martín. DHP= dihydropyrane, 

PPTS= pyridinium para-toluenyl sulfonate, THP= tetrahydropyranyl. 

 

Attempts to reduce the alkyne 469 prior to the deprotection had only limited success. 

Therefore, 469 wos deprotected to provide diol 473 which in turn was subjected to the E-

selective reduction to afford the desired allylic alcohol 465 (Scheme 135).377  

 

THPO
OH

0.02 eq p-TSA
MeOH, rt, 1 h

HO
OH HO

OH

473 (100%) 465 (47%)

2.3 eq LiAlH4
THF, 0 °C, 30 min

60 °C, 5 min

469  
Scheme 135: Synthesis of allylic alcohol 465 was realized in two steps starting from 469. p-TSA= para-toluene 

sulfonic acid, THP= tetrahydropyranyl. 

 

With the alcohol 465 in hand, the functional group transformation was investigated. 

Mitsunobu redox condensation63 using CBr4 or bromine did not furnish the desired halogenide 

466. Therefore, a two-step protocol was utilized. Alcohol 465 was first subjected to methane 

sulfonyl chloride and triethylamine. To the reaction mixture acetone and excess of sodium 

halogenide was added. Short reaction times and low temperatures (0 °C) resulted in the 

predominant formation of the chloride. However, prolonged reaction times at room 

temperature afforded the desired halogenides 466c,d in moderate not optimized yields 

(Scheme 136). Allyl iodide 466d was found to be highly instable and degenerates within a 

                                            
379 Díez Martín, D.; Marcos, I. S.; Basabe, P.; Romero, R. E.; Moro, R. F.; Lumeras, W.; Rodríguez, L.; Urones, 
J. G. Synthesis 2001, 1013-1022. 
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short period of time. Furthermore, the reaction generates undesired mixtures of double bond 

isomers. Consequently, the efforts were concentrated on bromide 466c. 

 

HO
OH X

OH

1.2 eq MsCl, 1.3 eq Et3N
CH2Cl2, 0 °C, 5 min

then add 10.0 eq NaX, acetone, rt, 4 d

465 466c,d
466c (52%)
466d (52%)

X= Br 
 X= I  

Scheme 136: Formation of halogenides 466 was realized by a one-pot, two step procedure. 

 

The Wittig salt 235 was synthesized by treatment of 466c with triphenylphosphine in 

refluxing acetonitrile (Eq. 63).  

 

Br
OH Br

Ph3P
OH

466c 235 (80%)

PPh3, MeCN, reflux, 7 h

 
Eq. 63 

 

Attempts, to synthesize the protected Wittig salts 475a,b were unsuccessful. Utilization of 

protected halogenides 474a,b as starting materials resulted in the cleavage of the protection 

groups. Further trials to introduce the protection group after the formation of the Wittig salt 

235 have been unsuccessful too (Scheme 137). 

 

Br
OR

Br
Ph3P

OH

Br
Ph3P

OR

Br
Ph3P

OTMS

474a,b

PPh3, MeCN, reflux, 7 h

R= TMS  
R= TES

475a
475b

475a,b

235

TMSOTf, 2,6-lutidine
CH2Cl2, 0 °C to rt, 4 h

475a
 
Scheme 137: Unsuccessful trials to generate the protected Wittig salts 475a,b. TMS= trimethylsilyl [SiMe3], 

TES= triethylsilyl [SiEt3], Tf= trifluoromethyl sulfonyl [CF3SO2]. 

 

A number of conditions were tested for the Wittig olefination between 233 and 235 (Table 

45). None of them furnished the desired coupling product. 
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BnO

CO2Me

SiMe3

TBSO

O

Br
OH

Ph3P 235

457

BnO

CO2Me

SiMe3

TBSO
OH

233

THF, base

 

Entry base Reaction conditions 
Equivalents of the 

ylene 

1 NaH/DMSO DMSO, rt, overnight 1.7 

2 NaH/DMSO DMSO, −78 °C to rt, 48 h 5.0 

3 NaH/DMSO THF, −78 °C to rt, 48 h 5.0 

4 NaH THF, −78 °C to rt, 48 h 5.0 

5 n-BuLi THF, −78 °C to rt, 48 h 5.0 

6 LDA THF, −78 °C to rt, 48 h 5.0 

7 KHMDS THF, −78 °C to rt, 48 h 5.0 

8 LiHMDS THF, −78 °C to rt, 48 h 5.0 

9 KOt-Bu THF, −78 °C to rt, 48 h 5.0 

Table 45: Tested reaction conditions for the Wittig olefination of 233 with 235. DMSO= dimethylsulfoxide, 

LDA= lithium diisopropylamide, KHMDS= potassium hexamethyldisilazide {K[N(SiMe3)2]}, LiHMDS= 

lithium hexamethyldisilazide {Li[N(SiMe3)2]}. 

 

Therefore, a stepwise introduction of the side chain was considered. The presence of a 

halomethylen group should enable palladium catalyzed cross coupling (Scheme 138).  

 
BnO

CO2Me

SiMe3

TBSO

457

BnO

CO2Me

SiMe3

TBSO
OH

476

X

M

OH

Pd0

+

477  
Scheme 138: Alternative route toward 457 by palladium-catalyzed cross-coupling. TBS= tert-butyldimethylsilyl 

[Si(t-Bu)Me2], Bn= benzyl, X= halogen, M= metal. 
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The coupling partner 477 may be synthesized by hydrostannation of commercially available 

478a or 478b. Cis-selectivity hydrostannation (see chapter 13.2) is expected to provide 

479a,b as trans-olefins. 

 

OR OR

(n-Bu)3Sn

1.05 eq HSnBu3
0.01 eq (PPh3)2PdCl2

THF, rt, 2 h

R= H       479a   (45%) 
R= TMS  479b   (47%)

478a,b
 

Scheme 139: Formation of the vinyl stannanes 479a,b by hydrostannation.380 

 

Preliminary experiments for the synthesis of 476 have been performed with the commercially 

available Wittig salt 480a.381 The reaction of 233 with 480a furnished the desired olefination 

product 476a with 35% not optimized yield (Eq. 64).  

 
BnO

CO2Me

SiMe3

TBSO

O

BnO

CO2Me

SiMe3

TBSO

Cl

476a (35%, Z/E ~ 9/1)233

1.2 eq 480a
1.05 eq NaH, DMSO
THF, 0 °C to rt, 21 h

ClPh3P
Cl

480a

 
Eq. 64 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl, DMSO= dimethylsulfoxide. 

 

One of the two possible double bond isomers was preferentially formed. NOE experiments 

conducted for 476a revealed that indeed the required Z-isomer is the major product.382 The 

double bond isomers were found to be separable by careful flash chromatography. 

 

For the generation of the corresponding vinyl bromides and iodides 476b,c the bromine and 

iodine containing Wittig salts 480b,c were required. 480b,c may be prepared by the reaction 

of dihalomethanes 481a,b with PPh3 (Scheme 140).  

 

                                            
380 Yields not optimized. 
381 Frye, L. L.; Robinson, C. H. J. Org. Chem. 1990, 55, 1579-1584. 
382 For a more detailed analysis, see chapter 19. 
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X X
1.0 eq PPh3, reflux, 24 ha

XPh3P
X

X= Br
X= I

480b (10%)
480c (86%)

481b,c

a 481b in toluene, 481c in MeCN  
Scheme 140: Formation of the Wittig salts 480b383 and 480c. 

 

Various conditions were tested for the reaction of α-keto ester 233 with either of the Wittig 

salts 480b,c (Table 46). However, none of the tested procedures delivered the olefination 

product 476b,c. 

 

BnO

CO2Me

SiMe3

TBSO

O

BnO

CO2Me

SiMe3

TBSO

X

476b
476c

233

XPh3P
X

480b,c

X= Br
X= I  

Entry Base Reaction conditions 
Equivalents of the 

ylene 

1 NaHa DMSO, rt, overnight 1.1 

2 NaHb DMSO, rt, overnight 5.0 

3 NaHb DMSO, 80 °C, 12 h 5.0 

4 n-BuLi THF, 0 °C to rt, 48 h 1.1 

5 n-BuLib THF, 0 °C to rt, 48 h 5.0 

6 NaHMDSa THF, 0 °C to rt, 48 h 1.1 

7 NaHMDSb THF, 0 °C to rt, 12 h 5.0 

8 KOt-Bu THF, 0 °C to rt, 48 h 1.1 

9 KOt-Bub THF, 0 °C to rt, 48 h 5.0 
Table 46 Reaction conditions for the Wittig olefination of 233 with 480b,c. a Only applied to 480b. b Only 

applied to 480c. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl, DMSO= dimethylsulfoxide, 

NaHMDS= sodium hexamethyldisilazide {Na[N(SiMe3)2]}. 

 

                                            
383 Following the procedure published earlier: Rodríguez, J. G.; Martín-Villamil, R.; Lafuente, A. Tetrahedron 
2003, 59, 1021-1032. Yields not optimized. 
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Starting material 233 was reisolated in all cases except for the utilization of n-BuLi for the 

Wittig reaction with 480c (Table 46, entry 5). Under those conditions the reaction delivered 

dehalogenated Wittig olefination product 462 with 82% isolated yield (Eq. 65). 

 

BnO

CO2Me

SiMe3

TBSO

O

BnO

CO2Me

SiMe3

TBSO

462 (82%)233

IPh3P
I

480c

5.5 eq 480c, 5.0 eq n-BuLi
THF, 0 °C to rt, 48 h

 
Eq. 65 Bn= benzyl. 

 

Since the efforts to generate 476b,c have not been successful and consequently, common 

palladium-catalyzed cross-coupling could not be challenged, a different approach that 

involves the vinyl chloride 476a was envisioned. Castro-Stephens coupling might offer such 

an alternative.384 Two successful examples are depicted in Eq. 66384a and Eq. 67.384b 

 

ClTsN
OTBS TsN

OTBS

+

Pd(PPh3)4, BuNH2
CuI, benzene

484 (78%)482 483  
Eq. 66 Ts= para-toluene sulfonyl, TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2]. 

 

Cl OH OH+

(PPh3)2PdCl2
PrNH2, CuI, Et2O

487 (78%)

Cl

Cl

485 486  
Eq. 67 

 

Accordingly, 476a may be subjected to 478a,b in the presence of copper(I)-iodide, 

(PPh3)2PdCl2 and a primary amine (Scheme 141). The desired coupling product 488 may be 

reduced to the conjugated diene 457 by the above mentioned E-selective reduction of 

propargylic alcohols (see Scheme 135). 
                                            
384 Stephens, R. D.; Castro, C. E. J. Org. Chem. 1963, 24, 3313-3315. For recent examples involving vinyl 
chlorides instead of phenyl chlorides, see: (a) Basak, A.; Shain, J. C.; Khamrai, U. K.; Rudra, K. R.; Basak, A. J. 
Chem. Soc., Perkin Trans. 1 2000, 1955-1964. (b) Myers, A. G.; Dragovich, P. S.; Kuo, E. Y. J. Am. Chem. Soc. 
1992, 114, 9369-9386.  
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BnO

CO2Me

SiMe3

TBSO

OR

BnO

CO2Me

SiMe3

TBSO OR
R= H      488a
R= TMS 488b

233

478a,b

Pd0, CuI, R'-NH2

457

BnO

CO2Me

SiMe3

TBSO
OH

Cl

Scheme 141: Alternative introduction of the side chain by Castro-Stephens cross-coupling. TBS= tert-

butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl, TMS= trimethylsilyl [SiMe3], R’= alkyl. 

 

Even though a preliminary experiment for the coupling of 233 with 478a has not been 

successful this reaction offers further potential for optimization. 
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17 Preliminary Experiments for the Envisaged Nozaki-Hiyama-

Kishi Reaction 

 

The formation of the nine-membered ring of xeniolide F (represented by the fragment 489) by 

Nozki-Hiyama-Kishi reaction requires a vinyl iodide fragment as precursor of the vinyl anion 

and an aldehyde functionality as present in 490. The aldehyde might be generated from the 

benzyl protected hydroxyl group present in the Claisen rearrangement product 233 (Scheme 

142). As ‘masked’ vinyl iodide utilization of a vinyl trimethylsilane moiety was envisioned. 

 

SiMe3

OBn
TBSO

MeO2C

O

OH

NHK

O

233489 490  
Scheme 142: The vinyl anion and the aldehyde functionality of 490 required for a NHK coupling might be 

generated by iododesilylation and a deprotection-oxidation sequence. 

 

Iododesilylation has been reported frequently to provide a reasonable strategy to form vinyl 

iodides. Depending on the structure of the substrate, a variety of conditions for this 

transformation are known.385 Several iododesilylation conditions were screened (Table 47). 

Disappointingly, none of them afforded the desired vinyl iodide 491.  

 

 

 

 

 

                                            
385 (a) NIS in EtCN: Morit, R.; Shirakawa, E.; Tsuchimoto, K. Org. Biomol. Chem. 2005, 3, 1263-1268. (b) NIS 
in concert with ClCH2CN in MeCN: Stamos, D. P.; Taylor, A. G.; Kishi, Y. Tetrahedron Lett. 1996, 37, 8647-
8650. (c) NIS in MeCN: Durham, T. B.; Blanchard, N.; Savall, B. M.; Powell, N. A.; Roush, W. R. J. Am. Chem. 
Soc. 2004, 126, 9307-9317. (d) I2 in CH2Cl2: Chan, T.; Fleming, I. Synthesis 1979, 761-786. (e) ICl in DMSO: 
Chan, T. H.; Koumaglo, K. J. Organomet. Chem. 1985, 285, 109-119. (f) Py2IBF4 in CH2Cl2: Barluenga, J.; 
Alvarez-García, L. J.; González, J. M. Tetrahedron Lett. 1995, 36, 2153-2156. 
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BnO

O

CO2Me

SiMe3

TBSO

BnO

O

CO2Me

I

TBSO

conditions

decompsition
233 491

 
Entry Iodonium ion source Solvent 

1 NIS MeCN 

2 NIS ClCH2CN:MeCN (1/4) 

3 NIS EtCN 

4 I2 CH2Cl2 
Table 47: Screening of frequently used iododesilylation conditions. NIS= N-iodo succinimide. TBS= tert-

butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

All reaction conditions resulted in the decomposition of the starting material 233 into various 

unidentified side-products. In contrast, subjection of allyl vinyl ether 10a to N-iodo 

succinimide in acetonitrile gave reisolated starting material. Therefore, it might be concluded 

that the reactivity of the α-keto ester 233 interferes with iododesilylation conditions and the 

transformation has to be performed at a later stage of the total synthesis.  

 

Another preliminary experiment was performed for the debenzylation. In analogy to earlier 

results,65j,k hydrolytic cleavage of the benzyl ether was investigated. The reaction was 

carefully monitored using TLC and stopped as soon as TLC indicated the complete 

consumption of the starting material (~5 min). Disappointingly, the C7-C20 double bond was 

affected as well under those conditions. 

 

BnO

O

CO2Me

SiMe3

TBSO

HO

O

CO2Me

SiMe3

TBSO

H2, Pd/C, DMF, rt, 5 min

233 492

7

20

 
Eq. 68 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 
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18 Summary and Future Prospects 

 

In summary, a reliable strategy was developed for the generation of α-keto ester 233. 

Preliminary experiments were performed that showed that vinyl chloride 476a is in principle 

accessible by Wittig olefination. Expansion of this strategy to bromo- or iodo-analogues 

thereof has yet not met the desired success. If reaction conditions can be found to generate the 

required vinyl iodide or vinyl bromide 476b,c, palladium-catalyzed cross-coupling might 

provide a strategy to introduce the side chain. In case that only the vinyl chloride is accessible 

at this way, Castro-Stephens cross-coupling might be employed for the completion of the side 

chain. Even though the preliminary experiment for this route has been unsuccessful, 

variations are possible both concerning the reaction conditions and the protection groups of 

the reaction partners. 

As mentioned earlier, the iododesilylation might proof successful at a later stage of the 

synthesis. Alternatively, the vinyl iodide moiety could be formed at an earlier stage of the 

synthesis presupposed that it express reasonable stability. Utilization of a vinyl stannane 

instead of the vinyl silane is an additional option. 

As pointed out earlier, a possible intramolecular Michael-addition of the vinyl anion that 

would be formed intermediary during the Nozaki-Hiyama-Kishi coupling could prevent this 

strategy for the formation of the nine-membered ring. An alternative route that bypasses that 

difficulty is depicted in Scheme 143. This strategy involves a transannular Claisen 

rearrangement of the allyl vinyl ether 494. The Claisen rearrangement causes ring contraction 

to form the nine-membered carbocyclus of 493. For the synthesis of 494 a NHK coupling of 

495 is envisioned. 
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O

OTBS

OH
MeO2C

MeO2C

O

OPg

O

OBn

OTBS

SiMe3

MeO2C

O

OH

O

OH

O

OTBS

I

MeO2C

O

TBSO

transannular
CAC

(-)-xeniolide F (1)

2

10

10
2

NHK

493 494

495 10  
Scheme 143: Alternative strategy for the synthesis of (−)-xeniolide F involving a transannular catalytic 

asymmetric Claisen rearrangement CAC. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl, NHK= 

Nozaki-Hiyama-Kishi coupling. 

 

If the NHK-coupling fails to generate 494 an alternative route could be applied. Thus, 

analogue to the formation of phosphonate 245 (chapter 14.1.2) the rhodium(II)-catalyzed OH-

insertion employing the allylic alcohol 497 would provide 496 after deprotection and 

oxidation. Intramolecular HWE olefination might afford the desired ally vinyl ether 494 

(Scheme 144). 

O

OTBS

OPg
MeO2C

O P(OMe)2

OMeO2C

OPg6O

11
10

OTBS
11

10

HO

OPg6Pg10O

OTBS

O
P(OMe)2MeO2C

N219 19
19

11

10

494 496 497

246
HWE

 
Scheme 144: Alternative strategy for the generation of 494 involving an intramolecular Horner-Wadsworth-

Emmons olefination HWE. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Pg= unspecified protecting groups. 

 

An improvement of the synthesis might be achieved by using a different strategy for the 

synthesis of the allylic alcohol 11. The realized synthetic route is summarized in Scheme 

145.386 

                                            
386 For details, see chapter 13.2.2. 
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HO
OH

TBSO

OH

OBn
5 steps

11 (45%)398  
Scheme 145: Realized synthesis of allylic alcohol 11. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

The total synthesis of viridiofungin A (1a) involved the allylic alcohol 51 generated by a six-

step procedure in 56% yield (Scheme 146).387 

 

OH PMBO

OH

OTHP

6 steps

51 (56%)35  
Scheme 146: Synthetic route toward allylic alcohol 11. PMB= para-methoxybenzyl, THP= tetrahydropyranyl. 

 

Even though six steps are required instead of five steps in the present synthetic route, due to 

the higher yields this strategy appears to be an attractive alternative. Starting from 5-pentyn-1-

ol (498) an analogue route should provide allylic alcohol 11. 

 

TBSO

OH

OH

OBn

OBn
HO

OBn
I

TBSO

498 499 500

11  
Scheme 147: Application of the alternative strategy for the generation of allylic alcohol 11. TBS= tert-

butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

                                            
387 See chapter 2.3.4. 
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19 Verification of the Proposed Structure 

 

The most advanced compound during the attempted synthesis of (−)-xeniolide F (2a) that was 

realized during the thesis work is vinyl chloride 476a. 

 

BnO

CO2Me

SiMe3

TBSO

Cl
1

2
3

4

5
6 7

8

10
11

12

18

19

20

9

476a  
Figure 30 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

IR-analysis of 476a revealed signals between 3120 and 3050 cm−1 as well as between 2955 

and 2855 cm−1 indicating the presence of CH-vibrations of aromatic and aliphatic CH-groups. 

A strong signal at 1730 cm−1 shows the presence of at least one carbonyl group. 

Analysis of the 13C NMR spectrum of 476a shows signals of five non-hydrogen substituted 

carbon atoms at 166.6, 151.9, 148.4, 138.6 and 137.3 ppm. The signal at 166.6 ppm indicates 

the presence of an ester carbonyl group. HMBC experiments allowed the correlation of the 

four following signals to 7-C=, 3-C=, C-Ar, and 11-C=. The three signals of the five aromatic 

CH-groups are located at 128.3, 127.6 and 127.5 ppm. While the two signals of vinylic CH2-

groups at 124.2 and 111.1 ppm belong to 20-CH2= and 19-CH2= respectively, the signal at 

121.2 ppm can be attributed to 12-CH=. The downfield shift of the three CH2-signals at 72.9, 

70.2 and 64.0 ppm indicates the presence of an adjacent oxygen atom. COSY cross peaks 

allowed the assignment that the three signals belong to OCH2Ph, 6-CH2 and 1-CH2 (starting 

from higher ppm value). The following three signals which indicate the presence of CH- or 

CH3-groups were assigned to OCH3 (51.8 ppm) and the two stereogenic centers 2-CH (50.4 

ppm) and 10-CH (45.0 ppm). The four remaining CH2-group signals at 34.1, 32.4, 30.6 and 

27.7 ppm are attributed to 8-CH2, 4-CH2, 9-CH2 and 5-CH2. A CH3-signal with high intensity 

located at 25.9 ppm in concert with the signal of a non-hydrogen substituted carbon atom at 

18.2 is characteristic for the tert-butyl group of the TBS-protecting group. The upfield shift of 

the following three CH3-group signals (−1.5, −5.5 and −5.6 ppm) is in agreement with a 

silicon atom directly attached to them.  



Verification of the Proposed Structure  201 
 

 
Ph.D. Thesis Annett Pollex 

In addition to the aromatic signals between 7.35 and 7.25 ppm, five prominent singulets were 

detected between 6.20 and 4.83 ppm in the 1H NMR spectrum of 476a. Each of those signals 

was found to have an integral height of one proton. The chlorine atom bond to 12-CH= 

provoked the significant downfield shift (6.20 ppm) of the corresponding signal. The 

association of the following singulets (5.48 and 5.27 ppm) with 20-CH2= as well as the 

singulets at 4.88 and 4.83 ppm with 19-CH2= was achieved by the interpretation of the 

HMBC and HSQC data of 476a. The singulets at 4.48 and 3.79 ppm as well as the signals at 

3.63, 3.55 and 3.48 ppm show typical chemical shifts that indicate the presence of an adjacent 

oxygen atom. The exceeding down field shift of the first of these signals can be attributed to a 

neighbouring aryl group. Therefore, it was identified as the OCH2Ph signal – an assignment 

that is supported by the integral height indicating two protons. Consequently, the other 

singulet with an integral height of three protons belongs to the OCH3-group. Analysis of the 

HSQC- and the COSY spectrum of 476a allowed to correlation of the signals at 3.63 and 3.55 

ppm to 1-CH2 that exhibited an AB-system splitting. Consequently, the signal at 3.48 ppm 

origins from the 6-CH2-group. The following signal was assigned as 10-CH by its multiplicity 

(ddd). Between 2.20 and 1.24 ppm several multiplets can be identified. HSQC analysis 

allowed the correlation of the multiplets with 2-CH, 8-CH2, 4-CH2, 5-CH2 and 9-CH2. The 

signals of 8-CH2 and 9-CH2 are both split into two multiplets of one proton (integral size). 

The singulets of the silyl groups are located at 0.85 ppm (OSi(CCH3), 0.03 ppm (Si(CH3)3) 

and -0.03 ppm (OSi(CH3)2). 

The constitution of 476a was verified by the analysis of the COSY-spectrum. It could be 

approved that 4-CH2 is connected with a non-hydrogen substituted carbon atom and with 5-

CH2 which is connected with 6-CH2. Furthermore, it could be confirmed that there is a linear 

connection of 1-CH2, 2-CH, 10-CH, 9-CH2 and 8-CH2. 
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Figure 31: COSY spectrum of 476a: signals from left to right: Ph-H, 12-CH=, 20-CH2 (two singulets), 19-CH2 

(two singulets), OCH2Ph, OCH3, 1-CH2 (two separate dd), 6-CH2, 10-CH, 2-CH, 8-CH2 (one of two protons), 4-

CH2, 8-CH2 (one of two protons), 5-CH2, 9-CH2 (two multiplets), SiC(CH3)3, two further singulets of SiMe3 and 

Si(CH3)2 appear at upfield shift and are not included in the COSY. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], 

Bn= benzyl. 

 

The presumption of a Z-configured C11-C12 double bond was supported by NOESY-

spectroscopy. It was found that 12-CH= exhibits NOE-cross peaks with 1-CH2, 10-CH and 9-

CH2. No cross peaks was found between 12-H and the ester residue. 
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Scheme 148: Selected NOEs of 476a. The two structures represent different conformations that result from the 

rotation around the C-10-C11 bond. TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

To confirm the relative configuration of anti-(2S,10R)-233 lactone 501 was generated. 

Cleavage of the silyl ether protecting group of 462 caused in situ lactonization affording δ-

lactone 501. 

 

BnO

O

OMe

SiMe3

TBSO
501 (76%)

HF·pyridine, THF
0 °C to rt, 16 h

462

O

O

OBn

SiMe3

 
Eq. 69 TBS= tert-butyldimethylsilyl [Si(t-Bu)Me2], Bn= benzyl. 

 

Analysis of NOE data supports the assigned anti-configuration of the rearrangement product 

with respect to substituents at C-2 and C-10 (Scheme 149). 

 

O
H

HRe

HSi

O

H
H

H

Me3Si H H

OBn
1

2109

19

NOE:

 
Scheme 149: Selected NOEs for 501. Bn= benzyl. 

  

Due to the 1,2-relation between 10-H and 2-H, NOE correlations with 1-H have to be 

considered. The two diastereotopic protons at C-1 exhibit clearly separated signals. Analysis 
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of the NOE data allowed the assignment of the diasterotopic protons. The signal at 3.63 ppm 

has a prominent cross peak with 10-H but no cross peak with 9-H and it is therefore assigned 

as 1-HRe. Consequently, the 1-H signal at 3.55 ppm that does not exhibit a cross peak with 10-

H is assigned as 1HSi. NOE cross peaks were identified between 1-HSi and 9-H as well as 

between 1-HSi and 2-H. Even though the latter cross peak is a result of a 1,2-relation it should 

be mentioned because it exhibits a significantly higher intensity than the corresponding 1-

HRe/2-H cross peak. As well, a strong NOE cross peak was detected between the protons 9-H 

and 2-H. In contrast, no cross peak was visible for 1HRe/9-H. The latter results support the 

assumption of a spatial relation between 9-H, 2-H and 1-HSi.  

Neither 9-H/19-H nor 1-HSi/19H exhibited cross coupling peaks. In contrast, NOE cross peaks 

were prominent between 19-H and 10-H as well as between 19-H and 1-HRe.  
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Figure 32: NOESY spectrum of 501. Encircled are lacking NOE-cross peaks that further support the 

stereochemical assignment. 

 

In summary, good arguments can be found that strongly support the assumed anti-

configuration. However, the unambiguous verification of the relative configuration could not 

be assured. 
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20  Experimental Section388 

20.1  General Experimental Methods  

 

Nomenclature 

The nomenclature of the compounds is based on the characteristic, structural elements present 

in a specific molecule. For the atom numbering we followed the common numbering of the 

natural products as it was suggested in the literature. If 2D-NMR experiments allowed the 

unambiguous correlation between NMR-signals and the associated carbon or hydrogen atoms 

this numbering will be used to specify the signals in the reported data. 
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Figure 33 

 

Flash Chromatography 

Silica gel 60 (0.040-0.063, MERCK©) was used as stationary phase for flash chromatography 

and filtration. Depending on the amount of crude product, columns with diameters of 10-100 

mm were applied. Employed eluents are specified for each individual compound. The starting 

solvent should cause a Rf value of <0.5. Usually a gradient was utilized starting with a less 

polar mixture which composition was gradually changed toward the more polar solvent. If 

necessary, a manual air compressor was utilized to enable a reasonable flow rate. During my 

thesis work in our research group the heptane as solvent for flash chromatography was 

replaced by hexanes. 

 

Thin Layer Chromatography 

                                            
388 The total synthesis of viridiofungin triesters and preliminary results for the total synthesis of (−)-xeniolide F 
has been published previously (reference 65k and 202e respectively). Parts of the Supporting Informations of 
these papers have been taken over with minor changes for the present Experimental Section.  
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Analytical thin layer chromatography (TLC) was performed using pre-coated silica gel foils 

60 F254 (layer thickness: 0.2 mm, MERCK©). Routine reaction control was accomplished 

using plates 4 cm in length (maximum front length: 3.4 cm). Visualization was achieved by 

UV-light irradiation (λ = 254 nm) or by heating of the plates after immersion into an 

anisaldehyde based staining reagent (2.53 vol% of anisaldehyde, 0.096 vol% of acetic acid, 

93.06 vol% of ethanol, 0.034 vol% of conc. H2SO4). 

 

High Pressure Liquid Chromatography 

A) Normal phase HPLC 

- Preparative HPLC: WATERS System 3000; RI-Detection (KNAUER K2400); Column: 

Nucleosil 50-5 (32 × 250 mm, 5 µm); Eluent: n-heptane/ethyl acetate; Flow: 30 mL/min; 

Temperature: ambient temperature. Probe preparation: All substances were filtered through a 

plug of silica gel (20 mm, heptane/ethyl acetate) immediately before the separation and it was 

ensured that the substance was free of baseline pollutions (Rf = 0). The solvents were 

evaporated at reduced pressure and a solution (heptane/ethyl acetate) of the substance was 

prepared. In case of unsolved particles, the solution had to be filtered before the analysis is 

performed! Depending on the compound, mass concentrations between 0.2 and 0.5 g/mL 

could be employed. 

- Analytical HPLC: either Hewlett-Packard 1090; DAD-Detection at 210 and 220 nm; 

Column: Chiracel OD 14025 (4.6 × 255 mm, 10 μm); Eluent: n-hexane/i-PrOH, 1 mL/min; 

Temperature: 35 °C, or Agilent 1100 Series; DAD-Detection at 210 and 220 nm; Column: 

Chiracel OD 14025 (4.6 × 255 mm, 10 μm); Eluent: n-hexane/i-PrOH, 1 mL/min; 

Temperature: 35 °C. Probe preparation: all substances were filtered through a plug of silica 

gel (20 × 5 mm, hexanes/ethyl acetate) and it was ensured that the substance was free of 

baseline pollutions (Rf = 0). The solvents were evaporated at reduced pressure and a solution 

of the substance in n-hexane was prepared (1-10 mg/mL) and filled into a HPLC-probe vessel 

that was sealed with an aluminum foil cap. In case of unsolved particles, the solution had to 

be filtered before the analysis is performed! 

 

B) Reversed phase HPLC 

- Preparative HPLC: VARIAN Pro Star; ELDS detection (PL-ELS 1000, POLYMER 

LABORATORIES); Column: VYDAC 208TP1030 – C8 (30 × 250 mm, 10µm); Eluent: 

isocratic A/B (solvent A: H2O + 5 % CH3CN + 5 % CH3OH + 0.1 % TFA, solvent B: CH3CN 

+ 0.1 % TFA); Flow: 40 mL/min; Temperature: ambient temperature. Probe preparation: All 
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substances were filtered through a plug of silica gel (20 mm, ethyl acetate) immediately 

before the separation and it was ensured that the substance was free of baseline pollutions (Rf 

= 0). The solvents were evaporated at reduced pressure and a solution (MeCN) of the 

substance was prepared. The solution was drawn up into a syringe and pressed through a 5 μm 

PTFE filter into the probe vessel. Depending on the compound, mass concentrations between 

0.05 and 0.1 g/mL could be employed. 

- Analytical HPLC: AGILENT 1100 Series; DAD-Detection at 215, 260 and 280 nm; 

Column: ECLIPSE XDB-C8 (4.6 × 150 mm, 5µm); Eluent: isocratic A/B (solvent A: H2O + 

0.1 % TFA, solvent B: CH3CN + 0.1 % TFA); Flow: 1 mL/min; Temperature: 35 °C. Probe 

preparation: All substances were filtered through a plug of silica gel (20 mm, ethyl acetate) 

immediately before the separation and it was ensured that the substance was free of baseline 

pollutions (Rf = 0). The solvents were evaporated at reduced pressure and a solution (MeCN) 

of the substance was prepared. The solution was drawn up into a syringe and pressed through 

a 2 μm PTFE filter into the HPLC-probe vessel that was sealed with an aluminum foil cap. 

 

NMR-Spectroscopy 
1H NMR spectra were recorded either on an ASP-300 (BRUKER) at 300.13 MHz or on a 

DRX-500 (BRUKER) at 500.13 MHz and the data are listed as follows: chemical shift δ in 

ppm using tetramethylsilane as internal standard (δ 0 ppm), multiplicity (s = singlet, d = 

doublet, t = triplet, q = quartet, br = broad, quint = quintet, m = multiplet or overlap of non 

equivalent resonances), coupling constant (H-H or P-H) in Hz,389 integration. 13C NMR 

spectra were recorded either on an ASP-300 (BRUKER) at 75.48 MHz or on a DRX-500 

(BRUKER) at 125.77 MHz and the data are listed as follows: chemical shift δ in ppm using 

CDCl3 as internal standard (δ 72.2 ppm), coupling constant (only for P-C) in Hz, multiplicity 

with respect to proton (deduced from DEPT390 experiments). The assignments of atom 

connectivity and spatial relationships are exclusively based on 2D NMR correlation 

(NOESY391, 1H/1H-COSY392, 1H/13C-HMBC393 and 1H/13C-HSQC394). 

 

 

 
                                            
389 Deduced from the spectra using Win-NMR 1D (version 6.0). All unspecified coupling constants are H-H 
couplings, P-H couplings are specified. 
390 DEPT = Distortionless Enhancement by Polarization Transfer 
391 NOESY = Nuclear Overhauser Spectroscopy 
392 COSY = Correlated Spectroscopy 
393 HMBC = Heteronuclear Multiple Bond Coherence 
394 HSQC = Heteronuclear Single Quantum Coherence 



212  Experimental Section 
 

 
Ph.D. Thesis Annett Pollex 

FT-IR-Spectroscopy 

FT-IR-spectra were recorded on Nicolet 205 FT-IR spectrometer (NICKOLET©) as ATR 

(Attenuated Total Reflectance). Probe preparation was carried out on a KBr-disc. The 

utilization of a thin substance film between two KBr-discs for the measurement is reflected in 

the term ‘in substance’. 

 

Elemental Analysis 

Molecular formula assignment was confirmed by combustion elemental analysis using an 

Elemental Analyzer EA 1108 (CARLO ERBA INSTRUMENTS©) or Euro EA 3000 

(HEKATECH©). 

 

Optical Rotation Values 

Optical rotation values were recorded on polarimeter 341 LC (PERKIN ELMER©) with the 

solvent specified for the respective compound. In all cases a wave length of λ = 589 nm was 

applied. The actual temperature during the measurement will be reported as well. For the 

calculation of the specific optical rotation the following formula was employed. 

 

    α = measured optical rotation angle [°] 

    l = layer thickness [dm] 

    c = concentration [g/100 ml solvent]. 

 

Specification of Percentage Values 

Percentage values are used to describe the mass portion of a specific compound with respect 

to the total mass of the mixture. The ratios given for solvent mixtures refer to volume units. 

 

Amounts of Starting Materials and Reaction Products 

Mass, volume and mol amount values are rounded as following: >100 mmol: full numbers; 

0.1-99.9 mmol: one decimal place, <0.1 mmol: two decimal places; >0.5 g: one decimal 

place, <0.5 g: two decimal palces, <0.1g: amount given in mg; >20 mL. full numbers, 0.5-

19.9 mL: one decimal place, 0.10-0.49 mL: two decimal places, <0.1 mL: volume given in 

µL.  

 

All moisture-sensitive reactions were performed in flame-dried septum-sealed glassware 

under an atmosphere of argon. The argon stream was supplied to the flask by piercing a 

[ ]
cl

T

⋅
⋅

=
100αα λ
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needle connected with an argon source through the septum. Addition of solids was realized in 

a continuing argon stream. Liquids were added by cannula equipped syringes. Sealed tubes 

were obtained from SIGMA-ALDRICH© (Ace pressure tube, 35 ml, PTFE bushing, FETFE 

O-ring, type A). Polyethylene vials were not pre-heated but only filled with argon before use. 

 

 

Chemicals and Solvents 

Chemicals were obtained from ALDRICH, ACROS, MERCK, ABCR, FLUKA, FISCHER 

CHEMICALS, ROTH and J.T. BAKER. Unless otherwise noted, commercially available 

chemicals were used as received without further purification. Before use, solvents were 

refluxed over the appropriated drying agent and distilled under nitrogen: tetrahydrofurane 

from potassium, dichloromethane, 1,2-dichloroethane and triethylamine from CaH2; methanol 

from magnesium. DIBAL and n-BuLi was obtained in 1 L bottles. 100 mL portions were 

transferred into flame dried, argon filled and septum sealed vessels. The concentration of n-

BuLi and t-BuLi was determined employing 4-biphenylmethanol as indicator.395  

 

Molecular Sieves 

Molecular sieves were obtained from Baker (4 Å, Ø 1.7-2.4 mm and 3 Å, Ø 2.5-5.2 mm) and 

from Aldrich (4 Å, particle size <5 μm). For the making of ‘manually crushed’ molecular 

sieves, 4 Å mol sieves beads were pulverized in a ceramic mortar and the finely grinded 

material was stored under argon at 80 °C. Before use, all molecular sieves were freshly 

activated by heating them at high vacuum (0.05 mbar, 200 °C, 2 h), cooling at 0.05 mbar and 

venting of the storing flask with argon. 

 

Standard Workup Procedure 

Unless otherwise stated, the following workup procedure was employed. To quench a reaction 

approximately the same amount of an aqueous solution (specified in the procedures in the 

following section) is added at the appropriated temperature. The magnetic stir bar was 

removed and the reaction mixture was diluted with CH2Cl2 and transferred to a separation 

funnel. The phases were separated and the aqueous layer was extracted with CH2Cl2. The 

combined organic layers were dried over MgSO4. The solid was removed by filtration through 

a borsilicate stem frit (Por.4) at reduced pressure. The solvents were removed using a 

Rotavapor® evaporator (40 °C). After purification the product was filtered through a small 

                                            
395 Juaristi, E.; Martinez-Richa, A.; Garcia-Rivera, A.; Cruz-Sanchez, J. S. J. Org. Chem. 1983, 48, 2603-2606. 
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pipette stuffed with a small cotton pad using CH2Cl2 as solvent. The solvent was removed at 

reduced pressure and then non-volatile products were exposed to high vacuum.  

 

Ozonolysis 

For the production of ozone a Labor Ozonisator (SANDERS©) was used. 

 

Technical Gas 

Prefilled pressure bottles (MESSER-GRIESHEIM©) of argon (quality: 4.8) were utilized as 

argon supply. The argon was additionally predried by leading it through a U-tube filled with, 

P2O5, kieselgurTM and CaCl2. 

 

20.2   Viridiofungins 

20.2.1 Synthesis of the Eastern Half 

 

S(H2C)7 (CH2)6R
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R= n-Pr  70b
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R= n-Pr  69b

70a 69c 68c

R= Me    187a 
R= n-Pr  187b

R= Me    188a 
R= n-Pr  188b

R= Me    68a 
R= n-Pr  6b

(TMSOCH2)2 
(504)

 
Scheme 150: Synthesis of the eastern half (68a-c). 

 

 

HO IHO OH

185 502 (74%)

1.0 eq I2, 1.0 PPh3
2.0 imidazole, THF, rt, 3 h

 
7-Iodo-1-heptanol (502).388 To an ice cooled solution of 1,7-heptanediol (185) (6.0 g, 45.5 

mmol, 2.5 eq), imidazole (2.5 g, 36.3 mmol, 2.0 eq) and triphenylphosphine (4.8 g, 18.2 
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mmol, 1.0 eq) in THF (250 mL, 5 mL/mmol 185) was added a solution of iodine (4.6 g, 18.2 

mmol, 1.0 eq) in THF (45 mL, 1 mL/mmol 185) over a period of 1 h. After additional 3 h at 

rt, the mixture was quenched with saturated aq Na2S2O3. The aqueous layer was extracted 

with CH2Cl2 (3 × 50 mL). The combined organic phases were dried over MgSO4 and 

concentrated. Flash chromatography (heptane/ethyl acetate 2/1) afforded 502 (3.3 g, 13.4 

mmol, 74%) as pale yellow oil (Rf 0.24 heptane/ethyl acetate 1/1).  
1H NMR (300 MHz, CDCl3) δ 3.58 (t, J = 6.7 Hz, 2H), 3.12 (t, J = 7.0 Hz, 2H), 1.76 (dt, J 

= 14.3, 7.1 Hz, 2H), 1.51 (dt, J = 13.6, 6.7 Hz, 2H), 1.40-1.25 (m, 6H) no OH-resonance 

observed; 13C NMR (CDCl3, 75 MHz) δ 62.9 (CH2), 33.4 (CH2), 32.6 (CH2), 30.4 (CH2), 28.3 

(CH2), 25.5 (CH2), 7.2 (CH2). Anal. Calcd for C7H15IO: C, 34.73; H, 6.25; I, 52.42. 

 

TPSO IHO I

502 186 (96%)

1.05 eq TPSCl, 1.2 eq imidazole
THF, rt, 16 h

 
Iodide 186.388 To a solution of 7-iodo-1-heptanol (502) (3.2 g, 13.2 mmol, 1.0 eq) in THF 

(1.5 mL/mmol 502) was added imidazole (1.1 g, 15.9 mmol, 1.2 eq) and tert-

butyldiphenylchlorosilane TPSCl (3.8 g, 13.9 mmol, 1.05 eq) and stirred over night. The 

reaction mixture was quenched by the addition of saturated aq NaHCO3 and the aqueous layer 

was extracted with CH2Cl2 (3 × 50 mL). The combined organic phases were dried over 

MgSO4 and concentrated. Flash chromatography (heptane/ethyl acetate 20/1) afforded iodide 

186 (6.0 g, 12.5 mmol, 96%) as colorless oil (Rf 0.41 heptane/ethyl acetate 20/1).  
1H NMR (300 MHz, CDCl3) δ 7.69-7.64 (m, 4H), 7.47-7.33 (m, 6H), 3.65 (t, J = 6.3 Hz, 

2H), 3.17 (t, J = 7.0 Hz, 2H), 1.82 (dt, J = 14.3, 7.3 Hz, 2H), 1.62-1.50 (m, 2H), 1.43-1.22 (m, 

6H), 1.05 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 135.6 (4 × CH), 134.1 (2 × C), 129.5 (2 × 

CH), 127.6 (4 × CH), 63.8 (CH2), 33.5 (CH2), 32.4 (CH2), 30.5 (CH2), 28.2 (CH2), 26.9 (3 × 

CH3), 25.5 (CH2), 19.2 (CH2), 7.2 (CH2); IR (in substance) ν 3070-3050, 2930-2855 cm−1. 

Anal. Calcd for C23H33IOSi: C, 57.49; H, 6.92. Found: C, 57.65; H, 7.11. 

 

SSS S

182

1.05 eq n-BuLi, THF, −5 °C, 1 h
then add 1.01 eq 1-bromoheptane (183a)

−78 °C to rt, 3 h

184a (93%)  
Dithiane 184a.388 To a stirred solution of 1,3-dithiane (182) (0.8 g, 6.3 mmol, 1.0 eq) in 

THF (13 mL, 2 mL/mmol 182) was added n-BuLi (2.45 M in hexanes, 2.7 mL, 6.6 mmol, 
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1.05 eq) at –78 °C and stirred for 1 h at –5 °C. 1-Bromoheptane (183a) (1.0 ml, 6.4 mmol, 

1.01 eq) was added at –78 °C and the reaction mixture was allowed to warm to ambient 

temperature over 3 h. The reaction was quenched with water (5 mL) and extracted with 

CH2Cl2 (3 × 25 mL). The combined organic phases were dried over MgSO4 and concentrated. 

Flash chromatography (heptane) afforded dithiane 184a (1.3 g, 5.8 mmol, 93%) as a pale 

yellow oil (Rf 0.47 heptane/ethyl acetate 20/1). 
1H NMR (300 MHz, CDCl3) δ 4.03 (t, J = 7.0 Hz, 1H), 2.94-2.76 (m, 4H), 2.16-1.95 (m, 

1H), 1.87-1.63 (series of m, 3H), 1.53-1.42 (m, 2H), 1.32-1.20 (m, 8H), 0.87 (t, J = 6.7 Hz, 

3H); 13C NMR (75 MHz, CDCl3) δ 47.7 (CH), 35.5 (CH2), 31.7 (CH2), 30.5 (2 × CH2), 29.2 

(CH2), 29.0 (CH2), 26.6 (CH2), 26.1 (CH2), 22.6 (CH2), 14.1 (CH3); IR (in substance) ν 2925-

2855 cm−1. Anal. Calcd for C11H22S2: C, 60.49; H, 10.15; S, 29.36. Found: C, 60.26; H, 

10.17; S, 29.26. 

 

SSS S

182

1.05 eq n-BuLi, THF, −5 °C, 1 h
then add 1.01 eq 1-bromononane (183b)

−78 °C to rt, 3 h

184b (97%)  
Dithiane 184b.388 As described in the preceding paragraph, consecutive treatment of 1,3-

dithiane (182) (3.0 g, 25.0 mmol) with n-BuLi (2.36 M in hexane, 11.1 ml, 26.2 mmol) and 1-

bromononane 183b (5.3 g, 25.5 mmol) afforded the monoalkylated dithiane 184b (6.0 g, 24.2 

mmol, 97%) as a pale yellow oil (Rf 0.36 heptane/ethyl acetate 20/1). 
1H NMR (300 MHz, CDCl3) δ 4.03 (t, J = 6.8 Hz, 1H), 2.93-2.75 (m, 4H), 2.17-2.05 (m, 

1H), 1.93-1.66 (series of m, 3H), 1.57-1.41 (m, 2H), 1.35-1.17 (m, 12H), 0.87 (t, J = 7.0 Hz, 

3H); 13C NMR (75 MHz, CDCl3) δ 47.7 (CH), 35.5 (CH2), 31.9 (CH2), 30.5 (2 × CH2), 29.5 

(CH2), 29.4 (CH2), 29.2 (CH2), 29.2 (CH2), 26.6 (CH2), 26.1 (CH2), 22.6 (CH2), 14.1 (CH3); 

IR (in substance) ν 2920-2850 cm−1. Anal. Calcd for C13H26S2: C, 63.35; H, 10.63; S, 26.02. 

Found: C, 63.5; H, 11.03; S, 25.97. 

 

(CH2)6CH3

SS
HO(H2C)7 (CH2)6CH3

SS

1.5 eq 184a

1. 3.0 eq t-BuLi, 4.0 eq HMPA
    THF, −78 °C, 1 min 
   1.0 eq TPSOCH2(CH2)5CH2I (186)
    −78 °C, 1 h
2. 1.0 eq TBAF, THF, rt, 1 h

70a (92%)  
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C15-Alcohol 70a.388To a stirred solution of the monoalkylated dithiane 184a (1.3 g, 6.0 

mmol, 1.5 eq) in HMPA (2.9 mL, 16 mmol, 4.0 eq) and THF (22 mL, 7.5 mL/mmol 186) was 

added t-BuLi (1.5 M in pentane, 8.0 mL, 12.0 mmol, 3.0 eq) at –78 °C. Within 1 minute, a 

cooled solution (−78 °C) of iodide 186 (1.9 g, 4.0 mmol, 1.0 eq) in THF (5 mL) was added 

via cannula. The reaction mixture was stirred for 1 h at –78 °C and then quenched with 

saturated aq NH4Cl and extracted with CH2Cl2 (3 × 75 mL). The combined organic phases 

were dried over MgSO4 and concentrated.  

The resulting crude product was diluted with THF (15 mL, 5 mL/mmol 186) and solid 

tetrabutyl ammonium fluoride TBAF (1.3 g, 4.0 mmol, 1.0 eq) was added. After stirring for 1 

h at rt, the reaction was quenched with saturated aq NaHCO3 and extracted with CH2Cl2 (3 × 

75 mL). The combined organic phases were dried over MgSO4 and concentrated. Flash 

chromatography (heptane/ethyl acetate 10/1 to 5/1) afforded alcohol 70a (1.2 g, 3.7 mmol, 

92%) as a colorless oil (Rf 0.52 heptane/ethyl acetate 1/1). 
1H NMR (300 MHz, CDCl3) δ 3.63 (t, J = 6.5 Hz, 2H), 2.84-2.73 (m, 4H), 1.99-1.89 (m, 

2H), 1.89-1.79 (m, 4H), 1.63-1.20 (series of m, 20H), 0.87 (t, J = 6.7 Hz, 3H) no OH-

resonance observed; 13C NMR (75 MHz, CDCl3) δ 63.0 (CH2), 53.4 (C), 38.2 (2 × CH2), 32.8 

(CH2), 31.8 (CH2), 29.8 (2 × CH2), 29.3 (CH2), 29.2 (CH2), 26.0 (2 × CH2), 25.7 (CH2), 25.6 

(CH2), 24.1 (CH2), 24.0 (CH2), 22.6 (CH2), 14.1 (CH3); IR (in substance) ν 3345, 2925-2855 

cm−1. Anal Calcd for C18H36OS2: C, 65.00; H, 10.91; S, 19.28. Found: C, 65.28; H, 11.15; S, 

18.95. 

 

(CH2)8CH3

SS
HO(H2C)7 (CH2)8CH3

SS

1.5 eq 184b

1. 3.0 eq t-BuLi, 4.0 eq HMPA
    THF, −78 °C, 1 min 
   1.0 eq TPSOCH2(CH2)5CH2I (186)
    −78 °C, 1 h
2. 1.0 eq TBAF, THF, rt, 1 h

70a (86%)  
C17-Alcohol 70b.388 As described for C15-alcohol 70a, the monoalkylated dithiane 184b 

(1.1 g, 4.6 mmol) in HMPA (2.2 ml, 12.1 mmol) and THF was treated with t-BuLi (1.5 M in 

pentane, 6.0 ml, 9.0 mmol) and iodide 186 (1.46 g, 3.0 mmol). The crude product was 

subjected to tetrabutyl ammonium fluoride TBAF (1.0 g, 3.0 mmol). Flash chromatography 

(heptane/ethyl acetate 10/1 to 5/1) provided alcohol 70b (0.9 g, 2.6 mmol, 86%) as a colorless 

oil (Rf 0.49 heptane/ethyl acetate 1/1). 
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1H NMR (300 MHz, CDCl3) δ  3.56 (dt, J = 5.7, 5.7 Hz, 2H), 2.74-2.66 (m, 4H), 1.90-1.80 

(m, 2H), 1.79-1.70 (m, 4H), 1.53-1.09 (series of m, 24H), 0.79 (t, J = 6.7 Hz, 3H) no HO-

resonance observed; 13C NMR (75 MHz, CDCl3) δ 63.0 (CH2), 53.4 (C), 38.2 (CH2), 32.8 

(CH2), 31.9 (CH2), 29.81 (CH2), 29.78 (CH2), 29.54 (CH2), 29.47 (CH2), 29.3 (CH2), 26.0 

(CH2), 25.7 (CH2), 25.6 (CH2), 24.1 (CH2), 24.0 (CH2), 22.6 (CH2), 14.1 (CH3) (several 

overlapping signals between 38.2 and 22.7, total number (CH2): 18); IR (in substance) ν 3345, 

2925-2850 cm−1. Anal Calcd for C20H40OS2: C, 66.60; H, 11.18; S, 17.78. Found: C, 66.26; 

H, 11.38; S, 17.58. 

 

HO(H2C)7 (CH2)6CH3

SS
(CH2)7

SN
N

N N

Ph

(CH2)6CH3

SS

70a 69a (100%)

1.5 eq PT-SH, 1.3 eq DIAD
1.2 eq PPh3, THF, 0 °C, 10 min

 
Phenyl-1H-Tetrazole 69a.388 To an ice-cooled solution of the alcohol 70a (1.4 g, 4.3 

mmol, 1.0 eq) in THF (4 mL, 1 mL/mmol 70a) was added PPh3 (1.4 g, 5.2 mmol, 1.2 equiv), 

1-phenyl-1H-tetrazole-5-thiol PT-SH (1.3 g, 6.5 mmol, 1.5 eq) and diisopropyl 

azodicarboxylate DIAD (1.1 g, 5.6 mmol, 1.3 eq). After stirring for 10 min, saturated aq 

NaHCO3 (5 mL) was added and the aqueous layer was extracted with CH2Cl2 (3 × 20 ml). 

The combined organic phases were dried over MgSO4 and concentrated. Flash 

chromatography (heptane/ethyl acetate 10/1) afforded tetrazole 69a (2.1 g, 4.3 mmol, 100%) 

as a yellow oil (Rf 0.33 heptane/ethyl acetate 1/1). 
1H NMR (300 MHz, CDCl3) δ  7.63-7.50 (m, 5H), 3.39 (t, J = 7.5 Hz, 2H), 2.88-2.75 (m, 

4H), 1.99-1.89 (m, 2H), 1.88-1.78 (m, 6H), 1.67-1.17 (series of m, 18H), 0.87 (t, J = 7.0 Hz, 

3H); 13C NMR (75 MHz, CDCl3) δ 154.5 (C), 133.8 (C), 130.1 (CH), 129.8 (2 × CH), 123.9 

(2 × CH), 53.3 (C), 38.2 (CH2), 38.1 (CH2), 33.3 (CH2), 31.8 (CH2), 29.8 (CH2), 29.6 (CH2), 

29.2 (CH2), 29.1 (CH2), 29.0 (CH2), 28.9 (CH2), 28.6 (CH2), 26.0 (CH2), 25.6 (CH2), 24.1 

(CH2), 24.0 (CH2), 22.6 (CH2), 14.1 (CH3); IR (in substance) ν 3055, 2925-2855 cm−1. Anal. 

Calcd for C25H40N4S3: C, 60.93; H, 8.18; N, 11.37; S, 19.52. Found: C, 61.15; H, 8.40; N, 

11.63; S, 19.67. 

 

HO(H2C)7 (CH2)8CH3

SS
(CH2)7

SN
N

N N

Ph

(CH2)8CH3

SS

70b 69b (98%)

1.5 eq PT-SH, 1.3 eq DIAD
1.2 eq PPh3, THF, 0 °C, 10 min

 



Experimental Section  219 
 

 
Ph.D. Thesis Annett Pollex 

Phenyl-1H-Tetrazole 69b.388 As described for tetrazole 69a, alcohol 70b (0.9 g, 2.5 mmol) 

was treated with PPh3 (0.8 g, 3.0 mmol), 1-phenyl-1H-tetrazole-5-thiol PT-SH (0.7 g, 3.8 

mmol) and diisopropylazodicarboxylate DIAD (0.7 g, 3.3 mmol). Flash chromatography 

(heptane/ethyl acetate 5/1) provided the tetrazole 69b (1.3 g, 2.5 mmol, 98%) as a yellow oil 

(Rf 0.53 heptane/ethyl acetate 1/1). 
1H NMR (300 MHz, CDCl3) δ 7.60-7.50 (m, 5H), 3.38 (t, J = 7.3 Hz, 2H), 2.83-2.73 (m, 

4H), 1.98-1.88 (m, 2H), 1.87-1.76 (m, 6H), 1.52-1.18 (series of m, 22H), 0.87 (t, J = 6.7 Hz, 

3H); 13C NMR (CDCl3, 75 MHz) δ 154.4 (C), 142.6 (C), 130.0 (CH), 129.7 (2 × CH), 123.9 

(2 × CH), 53.4 (C), 38.3 (CH2), 38.2 (CH2), 33.3 (CH2), 31.9 (CH2), 29.8 (CH2), 29.6 (CH2), 

29.53 (CH2), 29.47 (CH2), 29.3 (CH2), 29.1 (CH2), 28.9 (CH2), 28.6 (CH2), 26.0 (2 × CH2), 

25.6 (CH2), 24.1 (CH2), 24.0 (CH2), 22.6 (CH2), 14.1 (CH3); IR (in substance) ν 2925-2850 

cm−1. Anal. Calcd for C27H44N4S3: C, 62.26; H, 8.51; N, 10.76; S, 18.47. Found: C, 62.32; H, 

8.59; N, 10.96; S, 18.45. 

 

SN
N

N N

Ph

70c 69c (99%)

1.5 eq PT-SH, 1.3 eq DIAD
1.2 eq PPh3, THF, 0 °C, 10 min

C14H29 OH C14H29

 
Phenyl-1H-Tetrazole 69c.388 As described for tetrazole 69a, pentadecanol 70c (0.9 g, 4.0 

mmol) was treated with PPh3 (1.3 g, 4.8 mmol), 1-phenyl-1H-tetrazole-5-thiol PT-SH (1.1 g, 

6.0 mmol) and diisopropyl azodicarboxylate DIAD (1.1 g, 5.2 mmol, 1.3 eq). Flash 

chromatography (heptane/ethyl acetate 5/1) afforded the corresponding phenyl-1H-tetrazole 

69c (1.6 g, 4.0 mmol, 99%) as a white solid (Rf 0.70 heptane/ethyl acetate 1/1). 
1H NMR (300 MHz, CDCl3) δ 7.61-7.51 (m, 5H), 3.38 (t, J = 7.3 Hz, 2H), 1.83 (td, J = 

15.2, 7.6 Hz, 2H), 1.48 – 1.37 (m, 2H), 1.36-1.19 (m, 22H), 0.87 (t, J = 7.0 Hz, 3H); 13C 

NMR (75 MHz, CDCl3) δ 154.5 (C), 133.9 (C), 130.0 (CH), 129.7 (2 × CH), 123.9 (2 × CH), 

33.4 (CH2), 31.9 (CH2), 29.59 (CH2), 29.56 (CH2), 29.5 (CH2), 29.4 (CH2), 29.3 (CH2), 29.1 

(CH2), 29.0 (CH2), 28.6 (CH2), 22.6 (CH2) (several overlapping signals between 33.5 and 

22.6, total number (CH2): 14), 14.0 (CH3); IR (in substance) ν 2970-2850 cm−1. Anal. Calcd 

for C22H36N4S: C, 67.69; H, 9.34; N, 14.48; S, 8.39. Found: C, 67.85; H, 9.26; N, 14.47; S, 

8.54. 
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(CH2)7
SN

N
N N

Ph

(CH2)6CH3

187a (86%)

2.0 eq CuCl2, 4.0 eq CuO
acetone, H2O, rt, 45 min

(CH2)7
SN

N
N N

Ph

(CH2)6CH3

SS

69a

O

 
Ketone 187a.388 To a solution of 1,3-dithiane 69a (1.0 g, 2.0 mmol, 1.0 eq) in 

acetone/water (99/1, 8 mL/mmol 69a) was added CuCl2 (0.5 g, 4.1 mmol, 2.0 eq) and CuO 

(0.6 g, 8.1 mmol, 4.0 eq). The mixture was stirred at rt for 45 min and filtered through a 

Celite pad. The pad was washed with Et2O and the combined organic phases were 

concentrated under reduced pressure. The residue was dissolved in CH2Cl2 (75 mL) and 

extracted with saturated aq NaHCO3 (10 mL). The aqueous layer was extracted with CH2Cl2 

(3 × 15 mL) and the combined organic phases were dried over MgSO4 and concentrated. 

Flash chromatography (heptane/ethyl acetate 10/1) afforded the corresponding ketone 187a 

(0.7 g, 1.7 mmol, 86%) as pale yellow oil (Rf 0.44 heptane/ethyl acetate 1/1). 
1H NMR (300 MHz, CDCl3) δ 7.62-7.48 (m, 5H), 3.38 (t, J = 7.3 Hz, 2H), 2.37 (t, J = 7.4 

Hz, 2H), 2.36 (t, J = 7.4 Hz, 2H), 1.83 (td, J = 14.8, 7.4 Hz, 2H), 1.64-1.18 (series of m, 18H), 

0.86 (t, J = 6.8 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 211.5 (C), 154.5 (C), 133.8 (C), 130.1 

(CH), 129.8 (2 × CH), 123.9 (2 × CH), 42.9 (CH2), 42.6 (CH2), 33.3 (CH2), 31.7 (CH2), 29.2 

(CH2), 29.1 (2 × CH2), 29.0 (CH2), 28.8 (CH2), 28.4 (CH2), 23.9 (CH2), 23.6 (CH2), 22.6 

(CH2), 14.0 (CH3); IR (in substance) ν 2930-2855, 1710 cm−1. Anal. Calcd for C22H34N4OS: 

C, 65.63; H, 8.51; N, 13.92; S, 7.96. Found: C, 65.60; H, 8.40; N, 13.44; S, 8.16. 

 

(CH2)7
SN

N
N N

Ph

(CH2)8CH3

187b (85%)

2.0 eq CuCl2, 4.0 eq CuO
acetone, H2O, rt, 45 min

(CH2)7
SN

N
N N

Ph

(CH2)8CH3

SS

69b

O

 
Ketone 187b.388 As described for the synthesis of ketone 187a in the preceding paragraph, 

1,3-dithiane 69b (1.2 g, 2.4 mmol) was treated with CuCl2 (0.6 g, 4.8 mmol) and CuO (0.8 g, 

9.2 mmol). Flash chromatography (heptane/ethyl acetate 10/1) provided the ketone 187b (0.9 

g, 2.0 mmol, 85%) as pale yellow oil (Rf 0.36 heptane/ethyl acetate 1/1). 
1H NMR (300 MHz, CDCl3) δ 7.60-7.50 (m, 5H), 3.37 (t, J = 7.3 Hz, 2H), 2.37 (t, J = 7.3 

Hz, 2H), 2.36 (t, J = 7.4 Hz, 2H), 1.83 (td, J = 15.0, 7.6 Hz, 2H), 1.60-1.19 (series of m, 22H), 

0.86 (t, J = 6.7 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 211.5 (C), 154.5 (C), 133.8 (C), 130.1 

(CH), 129.8 (2 × CH), 123.9 (2 × CH), 42.6 (CH2), 42.7 (CH2), 33.3 (CH2), 31.7 (CH2), 29.2 

(2 × CH2), 29.1 (2 × CH2), 29.0 (2 × CH2), 28.8 (CH2), 28.4 (CH2), 23.9 (CH2), 23.6 (CH2), 
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22.6 (CH2), 14.0 (CH3); IR (in substance) ν 2915-2850, 1700 cm−1. Anal. Calcd for 

C24H38N4OS: C, 66.94; H, 8.89; N, 13.01; S, 7.45. Found: C, 66.99; H, 8.82; N, 13.06; S, 

7.25. 

 

(CH2)7
SN

N
N N

Ph

(CH2)6CH3

188a (99%)

0.1 eq (NH4)6Mo7O24·H2O
10.0 eq H2O2

ethanol, H2O, rt, 24 h

(CH2)7
SN

N
N N

Ph

(CH2)6CH3

187a

OO OO

 
Sulfone 188a.388 To an ice-cooled solution of the ketone 187a (1.6 g, 4.1 mmol, 1.0 eq) in 

ethanol (40 mL, 10 mL/mmol 187a) a solution of (NH4)6Mo7O24
.H2O (0.5 g, 0.4 mmol, 0.1 

eq) in hydrogen peroxide (30% in H2O, 4.5 mL, 41 mmol, 10.0 eq) was added. The reaction 

mixture was stirred at ambient temperature for 24 h, then added to brine (30 mL) and 

extracted with CH2Cl2 (3 × 30 mL). The combined organic phases were dried over MgSO4 

and concentrated. Flash chromatography (heptane/ethyl acetate 3/1) afforded the sulfone 188a 

(1.7 g, 4.1 mmol, 99%) as pale yellow oil (Rf 0.29 heptane/ethyl acetate 1/1). 
1H NMR (300 MHz, CDCl3) δ 7.72-7.54 (m, 5H), 3.76-3.66 (m, 2H), 2.35 (t, J = 7.4 Hz, 

2H), 2.33 (t, J = 7.4 Hz, 2H), 2.00-1.88 (m, 2H), 1.61-1.20 (series of m, 18H), 0.87 (t, J = 6.7 

Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 211.3 (C), 153.5 (C), 133.0 (C), 131.5 (CH), 129.7 (2 

× CH), 125.1 (2 × CH), 56.0 (CH2), 42.9 (CH2), 42.5 (CH2), 31.7 (CH2), 29.2 (CH2), 29.1 

(CH2), 28.8 (CH2), 28.7 (CH2), 27.9 (CH2), 23.9 (CH2), 23.5 (CH2), 22.6 (CH2), 21.9 (CH2), 

14.0 (CH3); IR (in substance) ν 2925-2855, 1710 cm−1. Anal. Calcd for C22H34N4O3S: C, 

60.80; H, 7.89; N, 12.89; S, 7.38. Found: C, 60.92; H, 7.91; N, 12.91; S, 7.10. 

 

(CH2)7
SN

N
N N

Ph

(CH2)8CH3

O

(CH2)7
SN

N
N N

Ph OO

(CH2)8CH3

O

188b (85%)

0.1 eq (NH4)6Mo7O24·H2O
10.0 eq H2O2

ethanol, H2O, rt, 24 h

187b  
Sulfone 188b.388 According to the procedure for the preparation of sulfone 188a, the ketone 

187b (0.8 g, 1.9 mmol) was treated with (NH4)6Mo7O24
.H2O (0.25 g, 0.2 mmol) in hydrogen 

peroxide (30% in H2O, 2.30 mL, 20.3 mmol). Flash chromatography (heptane/ethyl acetate 

5/1) afforded the corresponding sulfone 188b (0.8 g, 1.7 mmol, 85%) as pale yellow oil (Rf 

0.56 heptane/ethyl acetate 1/1). 
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1H NMR (300 MHz, CDCl3) δ 7.71-7.55 (m, 5H), 3.75-3.67 (m, 2H), 2.38 (t, J = 7.3 Hz, 

2H), 2.37 (t, J = 7.5 Hz, 2H), 2.00-1.88 (m, 2H), 1.61-1.19 (series of m, 22H), 0.86 (t, J = 6.8 

Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 211.2 (C), 153.5 (C), 133.1 (C), 131.4 (CH), 129.7 (2 

× CH), 125.1 (2 × CH), 56.0 (CH2), 42.9 (CH2), 42.5 (CH2), 31.8 (CH2), 29.4 (2 × CH2), 29.2 

(2 × CH2), 28.8 (CH2), 28.7 (CH2), 27.9 (CH2), 23.9 (CH2), 23.5 (CH2), 22.6 (CH2), 21.9 

(CH2), 14.0 (CH3); IR (in substance) ν 2920-2850, 1700 cm−1. Anal. Calcd for C24H38N4O3S: 

C, 62.31; H, 8.28; N, 12.11; S, 6.93. Found: C, 62.46; H, 8.32; N, 12.06; S, 7.11. 

 

SN
N

N N

Ph
C14H29

68c (86%)

0.1 eq (NH4)6Mo7O24·H2O
10.0 eq H2O2

ethanol, H2O, rt, 24 hSN
N

N N

Ph
C14H29

69c

OO

 
Sulfone 68c.388 As described for the synthesis of sulfone 188a, tetrazole 69c (1.6 g, 4.0 

mmol) was treated with (NH4)6Mo7O24
.H2O (0.49 g, 0.4 mmol) and 30 % aq hydrogen 

peroxide (4.4 mL, 40.0 mmol) to provide sulfone 68c (1.4 g, 3.4 mmol, 86%) as a white solid 

(Rf 0.68 heptane/ethyl acetate 1/1). 
1H NMR (300 MHz, CDCl3) δ 7.71-7.57 (m, 5H), 3.76-3.69 (m, 2H), 2.00-1.88 (m, 2H), 

1.54-1.43 (m, 2H), 1.39–1.20 (m, 22H), 0.87 (t, J = 6.7 Hz, 3H); 13C NMR (75 MHz, CDCl3) 

δ 153.6 (C), 133.1 (C), 131.4 (CH), 129.7 (2 × CH), 125.1 (2 × CH), 56.0 (CH2), 31.9 (CH2), 

29.7 (CH2), 29.62 (CH2), 29.59 (CH2), 29.5 (CH2), 29.4 (CH2), 29.3 (CH2), 29.2 (CH2), 28.9 

(CH2), 28.1 (CH2), 22.6 (CH2), 21.9 (CH2), 14.1 (CH3) (several overlapping signals between 

31.9 and 22.0, total number (CH2): 14); IR (in substance) ν 2920-2850 cm−1. Anal. Calcd for 

C22H36N4O2S: C, 62.82; H, 8.63; N, 13.32; S, 7.62. Found: C, 63.12; H, 8.71; N, 13.43; S, 

7.61. 

 

HO
OH

503

TMSO
OTMS

2.5 eq TMSCl, 3.0 eq Et3N
CH2Cl2, rt, 30 min

504 (81%)  
Protected Diol 504.396 To a solution of 1,2-ethanediole (503) (1.8 g, 1.7 mL, 30.0 mmol, 

1.0 eq) in CH2Cl2 (5 mL/mmol 502) was added triethylamine (9.1 g, 8.9 mL, 90.0 mmol, 3.0 

eq) and trimethylchlorosilane TMSCl (8.2 g, 9.5 mL, 75.0 mmol, 2.5 eq). The reaction 

mixture was stirred for 30 min at rt. The precipitate was then removed by filtration and 

                                            
396 Compound 504 is commercially available from Aldrich. For an analogue synthesis, see: Mash, E. A.; 
Hemperly, S. B. J. Org. Chem. 1990, 55, 2055-2060. 
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washed with diethylether. The solvents were removed under reduced pressure to afford the 

protected diol 502 (5.01 g, 24.3 mmol, 81%) which was used without further purification. 
1H NMR (300 MHz, CDCl3) δ 3.52 (s, 4H), 0.01 (s, 18H). Anal. Calcd for C8H22O2Si2: C, 

46.55; H, 10.74.  
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N
N N

Ph

(CH2)6CH3

68a (98%)

3.0 eq (TMSOCH2)2 (504)
0.1 eq TMSOTf

CH2Cl2, −5 °C, 24 h

(CH2)7
SN

N
N N

Ph

(CH2)6CH3
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Ketale 68a.388 A solution of the sulfone 188a (1.7 g, 4.0 mmol, 1.0 eq) and 1,2-bis-

trimethylsilyloxyethane (504) (2.5 g, 12.0 mmol, 3.0 eq) in CH2Cl2 (8 mL, 2 mL/mmol 188a) 

was cooled to −5 °C and treated with TMSOTf (88 mg, 0.4 mmol, 0.1 eq). The mixture was 

stirred for 24 h at −5 °C. The reaction was then quenched by the addition of pyridine (4. mL, 

1 mL/mmol 188a) and added to saturated aq NaHCO3. The aqueous layer was extracted with 

CH2Cl2 (3 × 25 mL). The combined organic phases were dried over MgSO4 and concentrated. 

Flash chromatography (heptane/ethyl acetate 5/1) provided ketale 68a (1.9 g, 4.0 mmol, 98%) 

as a pale yellow oil (Rf 0.29 heptane/ethyl acetate 1/1).397 
1H NMR (300 MHz, CDCl3) δ 7.72-7.58 (m, 5H), 3.91 (s, 4H), 3.76-3.67 (m, 2H), 2.00-

1.88 (m, 2H), 1.62-1.20 (series of m, 22H), 0.88 (brt, J = 6.8 Hz, 3H); 13C NMR (75 MHz, 

CDCl3) δ 153.5 (C), 133.0 (C), 131.4 (CH), 129.7 (2 × CH), 125.0 (2 × CH), 111.7 (C), 64.9 

(2 × CH2), 56.0 (CH2), 37.2 (CH2), 37.0 (CH2), 31.8 (CH2), 29.9 (CH2), 29.4 (CH2), 29.3 

(CH2), 28.9 (CH2), 28.0 (CH2), 23.9 (CH2), 23.6 (CH2), 22.6 (CH2), 21.9 (CH2), 14.1 (CH3); 

IR (in substance) ν 2925-2855 cm−1. Anal. Calcd for C24H38N4O4S: C, 60.22; H, 8.00; N, 

11.71; S, 6.70. Found: C, 60.27; H, 8.13; N, 11.83; S, 6.38.  
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N
N N

Ph

(CH2)8CH3

68b (92%)

3.0 eq (TMSOCH2)2 (504)
0.1 eq TMSOTf

CH2Cl2, −5 °C, 24 h
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Ketale 68b.388 As described in the preceding paragraph, sulfone 188b (0.7 g, 1.4 mmol) 

was treated with 1,2-bis-trimethylsilanyloxy-ethane (504) (0.9 g, 4.3 mmol) and TMSOTf (32 

                                            
397 CDCl3 used for NMR probe preparation should be filtered through a plug of basic Alox to prevent cleavage of 
the ketal protecting group. 
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mg, 0.14 mmol). Flash chromatography (heptane/ethyl acetate 5/1) afforded ketale 68b (0.7 g, 

1.3 mmol, 92%) as pale yellow oil (Rf 0.61 heptane/ethyl acetate 1/1).397 
1H NMR (300 MHz, CDCl3)  δ 7.69-7.57 (m, 5H), 3.91 (s, 4H), 3.73-3.70 (m, 2H), 1.97-

1.91 (m, 2H), 1.59-1.22 (series of m, 26H), 0.86 (br t, J = 6.9 Hz, 3H); 13C NMR (75 MHz, 

CDCl3) δ 153.5 (C), 133.1 (C), 131.4 (CH), 129.7 (2 × CH), 125.1 (2 × CH), 111.8 (C), 64.9 

(2 × CH2), 56.0 (CH2), 37.2 (CH2), 37.0 (CH2), 31.9 (CH2), 29.9 (CH2), 29.6 (CH2), 29.5 

(CH2), 29.4 (CH2), 29.3 (CH2), 28.8 (CH2), 28.0 (CH2), 23.9 (CH2), 23.6 (CH2), 22.6 (CH2), 

21.9 (CH2), 14.1 (CH3); IR (in substance) ν 2925-2855, 1710 cm−1. Anal. Calcd for 

C26H42N4O4S: C, 61.63; H, 8.35; N, 11.06; S, 6.33. Found: C, 61.85; H, 8.15; N, 11.27; S, 

6.39. 

 

20.2.2 Synthesis of the Western Half 
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Scheme 151: Synthesis of 193 – the immediate precursor of the western half 67. 

 

 

HO

OH

BnO

OH

189 (92%)1.4 eq 505

1.0 eq NaH, THF, 0 °C, 1 h
1.4 eq BnBr, 75 °C, 18 h
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Benzyl Ether 189.398 To a stirred solution of cis-butene-1,4-diole (505) (19.8 g, 225 mmol, 

1.4 eq) in THF (45 mL, 0.2 mL/mmol of the diol) was carefully added sodium hydride (5.8 g, 

146 mmol, 1.0 eq) at 0 °C. After stirring for 1 h at rt benzyl bromide (25.1 mL, 209 mmol, 1.4 

eq) was added and the resulting mixture was stirred over night at 75 °C. The reaction was 

quenched at ambient temperature with saturated aq NH4Cl and extracted with CH2Cl2 (3 × 50 

mL). The combined organic phases were dried over MgSO4 and concentrated. Flash 

chromatography (heptane/ethyl acetate 10/1 to 5/1 to 1/1) afforded the protected diol 189 

(12.3 g, 69.2 mmol, 92%) as colorless oil (Rf 0.21 heptane/ethyl acetate 1/1). Small amounts 

of dibenzyl ether 190 (Rf 0.85 heptane/ethyl acetate 1/1) that are formed as side product of the 

monoprotection may be isolated as well.  
1H NMR (300 MHz, CDCl3) δ 7.36-7.27 (m, 5H), 5.87-5.67 (m, 2H), 4.53 (s, 2H), 4.18 (d, 

J = 5.88 Hz, 2H), 4.09 (d, J = 5.63 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 137.9 (C), 132.3 

(CH), 128.5 (2 × CH), 128.4 (CH), 127.84 (2 × CH), 127.80 (CH), 72.5 (CH2), 65.7 (CH2), 

58.8 (CH2). Anal. Calcd for C11H14O2: C, 74.13; H, 7.92. 

 

BnO

OH

BnO

O

CO2H

189 506 (95%)

1.0 eq n-BuLi, 1.05 eq ICH2CO2Na
THF, −78 °C to rt, 18 h

 

Acid 506.388 To a stirred solution of (Z)-4-benzyloxy-but-2-en-1-ol 189 (11.1 g, 62.2 mmol, 

1.0 eq) in THF (62 mL, 1 mL/mmol) was added n-BuLi (2.4 M in hexane, 25.9 mL, 62.2 

mmol, 1.0 eq) at −78 °C followed by the addition of solid iodoacetic acid sodium salt (13.6 g, 

65.3 mmol, 1.05 equiv). The cooling bath was removed and the suspension was stirred over 

night. The reaction was then quenched by the addition of aq 1 N KOH (90 mL). The phases 

were separated and the organic phase was extracted twice with aq 1 N KOH (30 mL). The 

aqueous phase was acidified by the addition of concd HCl (pH < 4) and extracted with 

CH2Cl2 (3 × 100 mL). The combined organic phases were dried over MgSO4 and the solvent 

was removed under reduced pressure. Purification by kugelrohr distillation (150 °C, 0.1 mbar) 

afforded (Z)-(4-benzyloxy-but-2-enyloxy)-acetic acid 506 (14.0 g, 59.3 mmol, 95%) as brown 

oil.  
1H NMR (300 MHz, CDCl3) δ 8.95 (br s, 1H), 7.39-7.28 (m, 5H), 5.91-5.80 (m, 1H), 5.80-

5.70 (m, 1 H), 4.52 (s, 2H), 4.17 (d, J = 5.8 Hz, 2H), 4.09 (d, J = 4.9 Hz, 2H), 4.09 (s, 2H); 

                                            
398 Compound 189 is commercially available from Aldrich. For an analogue synthesis, see: Schmidt, B.; Pohler, 
M.; Costisella, B. Tetrahedron 2002, 58, 7951-7958. 
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13C NMR (75 MHz, CDCl3) δ 173.9 (C), 137.9 (C), 130.7 (CH), 128.4 (2 × CH), 127.1 (CH), 

127.81 (2 × CH), 127.76 (CH), 72.4 (CH2), 67.1 (CH2), 66.8 (CH2), 65.5 (CH2); IR (in 

substance) ν 3250-3030, 2860, 1685 cm−1. Anal. Calcd for C13H16O4: C, 66.09; H, 6.83. 

Found: C, 66.27, H, 6.95. 

 

BnO

O

CO2H

BnO

O

CO2i-Pr

506 73 (94%)

1.1 eq DCC, 0.05 eq DMAP, 2.0 eq i-PrOH
CH2Cl2, 0 °C to rt, 30 min

 
Ester 73.399,388 To an ice cooled solution of the acid (7.1 g, 30.1 mmol, 1.0 equiv) in 

CH2Cl2 (2 ml/mmol of the acid) at 0 °C was added DMAP (0.18 g, 1.5 mmol, 0.05 equiv), 

DCC (6.8 g, 33.1 mmol, 1.1 equiv) and the iso-propanol (4.6 ml, 60.2 mmol, 2.0 equiv). The 

resulting suspension was stirred for 30 min at ambient temperature. The precipitate was then 

removed by filtration, washed with CH2Cl2 and the solvent was evaporated under reduced 

pressure. Flash chromatography (heptane/ethyl acetate 5/1) afforded the ester 73 (7.9 g, 28.4 

mmol, 94%) as yellow oil (Rf 0.65 heptane/ethyl acetate 1/1).  
1H NMR (300 MHz, CDCl3) δ 7.36-7.23 (m, 5H), 5.88-5.70 (m, 2H), 5.10 (sept, J = 6.3 Hz, 

1H), 4.50 (s, 2H), 4.15 (d, J = 5.7 Hz, 2H), 4.09 (d, J = 5.6 Hz, 2H), 4.01 (s, 2H), 1.25 (d, J = 

6.2 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 169.8 (C), 138.1 (C), 130.3 (CH), 128.6 (CH), 

128.4 (2 × CH), 127.8 (2 × CH), 127.7 (CH), 72.3 (CH2), 68.5 (CH2), 67.5 (CH2), 66.9 (CH), 

65.7 (CH2), 21.8 (2 × CH3); IR (in substance) ν 2980-2860, 1750 cm−1. Anal. Calcd for 

C16H22O4: C, 69.04; H, 7.97. Found: C, 69.06; H, 8.19. 

 

HO

OH

BnO

OBn

190 (90%)1.0 eq 505

2.1 eq NaH, THF, 0 °C, 1 h
3.0 eq BnBr, 75 °C, 18 h

 
Dibenzyl Ether 190.400 According to the procedure for the preparation of 189, Z-butene-

1,4-diol 505 (6.13 g, 69.6 mmol, 1.0 eq) was treated with sodium hydride (5.84 g, 146.1 

mmol, 2.1 eq) and benzyl bromide (25.1 ml, 208.7 mmol, 3.0 eq). Flash chromatography 

(heptane/ethyl acetate 20/1 to 5/1) afforded the dibenzyl ether 190 (16.81 g, 62.6 mmol, 90%) 

as a colorless oil (Rf 0.85 heptane/ethyl acetate 1/1). Small amounts of benzyl ether 189 (Rf 

                                            
399 Prepared analogue to: Hiersemann, M. Synthesis 2000, 1279-1290. 
400 Compound 190 is commercially available, e.g. from Aldrich. For an analogue synthesis, see reference 398. 
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0.21 heptane/ethyl acetate 1/1) that are formed as side product of the dibenzylation may be 

isolated as well.  
1H NMR (300 MHz, CDCl3) δ 7.36-7.27 (m, 10H), 5.81-5.75 (m, 2H), 4.49 (s, 4H), 4.06 (d, 

J = 4.7 Hz, 4H); 13C NMR (75 MHz, CDCl3) δ 138.2 (2 × C), 129.5 (2 × CH), 128.4 (4 × 

CH), 127.8 (4 × CH), 127.6 (2 × CH), 72.3 (2 × CH2), 65.8 (2 × CH2). Anal. Calcd for 

C18H20O2: C, 80.56; H, 7.51. 

BnO

O

BnO

OBn

190 72 (99%)

O3, CH2Cl2, MeOH, −78 °C, 4 h
4.0 eq Me2S, −78 °C to rt, 18 h

 
Aldehyde 72.401 Through a solution of 190 (8.9 g, 33.1 mmol, 1.0 eq) in CH2Cl2/MeOH 

(3/1, 80 mL, 2.5 mL/mmol of 190) at −78 °C was bubbled a stream of ozone until the color 

turned blue (~4 h). The excess ozone was removed by a nitrogen stream (disappearance of the 

blue color) and then dimethylsulfide (9.8 mL, 132.2 mmol, 4.0 eq) was added at −78 °C. The 

reaction mixture was warmed to ambient temperature and stirred over night. The solvents 

were removed under reduced pressure. Flash chromatography (heptane/ethyl acetate 1/1) 

afforded the aldehyde 72 (9.9 g, 65.6 mmol, 99%) as a colorless oil (Rf 0.52 heptane/ethyl 

acetate 1/1) that was immediately used after purification.  
1H NMR (300 MHz, CDCl3) δ 9.72 (s, 1H), 7.48-7.31 (m, 5H), 4.62 (s, 2H), 4.09 (s, 2H). 

Anal. Calcd for C9H10O2: C, 71.98; H, 6.71. 

 

BnO

O

CO2i-Pr

BnO

O

CO2i-Pr
OH

BnO

73 191 (82%, dr 55/45)

1.2 eq LDA, THF, −78 °C, 15 min
then add 1.2 eq 72, −78 °C, 30 min

 
β-Hydroxy Ester 191.399

,
388 To a stirred solution of LDA [prepared in situ from 

diisopropylamine (7.8 mL, 55.4 mmol, 1.3 eq) and n-BuLi (2.31 M in hexanes, 22.2 mL, 51.2 

mmol, 1.2 equiv)] in THF (43 mL, 1 mL/mmol 73) was added a cooled solution (−78 °C) of 

the ester 73 (11.9 g, 42.6 mmol, 1.0 eq) in THF (43 mL, 1 mL/mmol 73) at −78 °C. The 

solution was stirred for 15 min, and the freshly prepared aldehyde 72 (8.3 g, 55.4 mmol, 1.2 

equiv) was added as cooled solution (−78 °C) in THF (21 mL, 0.5 mL/mmol 73). The mixture 

                                            
401 Compound 72 is commercially available, e.g. from Aldrich. For an analogue synthesis, see: Daub, G. W.; 
Edwards, J. P.; Okada, C. R.; Allen, J. W.; Maxey, C. T.; Wells, M. S.; Goldstein, A. S.; Dibley, M. J.; Wang, C. 
J.; Ostercamp, D. P.; Chung, S.; Cunningham, P. S.; Berliner, M. A. J. Org. Chem. 1997, 62, 1976-1985. 
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was stirred 30 min at −78 °C and then quenched by the addition of saturated aq NH4Cl at −78 

°C. After dilution with H2O and CH2Cl2, the layers were separated and the aqueous phase was 

extracted with CH2Cl2 (3 × 100 ml). The combined organic phases were dried over MgSO4 

and concentrated. Flash chromatography (heptane/ethyl acetate 3/1 to 1/1) afforded the β-

hydroxy ester 191 [15.0 g, 34.9 mmol, 82%, mixture of diastereomers (dr 55/45)] as pale 

yellow oil (Rf 0.35 heptane/ethyl acetate 1/1). 
1H NMR (500 MHz, CDCl3), mixture of diastereomers δ 7.38-7.27 (m, 10H), 5.84-5.75 (m, 

1H), 5.73-5.67 (m, 1H), 5.08 (br sept, J = 6.3 Hz, 1H), 4.52 (dd, J = 8.2, 4.4 Hz, 2H), 4.48 (d, 

J = 1.6 Hz, 2H), 4.28 (dd, J = 12.5, 5.8 Hz, 1 Hminor), 4.21 (dd, J = 12.1, 6.2 Hz, 1 Hmajor), 

4.11-3.93 (m, 4H), 4.00 (d, J = 3.6 Hz, 1Hminor) 3.96 (d, J = 5.8 Hz, 1Hmajor), 3.64-3.53 (m, 

2H), 2.58 (d, J = 6.5 Hz, 1Hmajor), 2.46 (d, J = 7.5 Hz, 1Hminor), 1.28-1.16 (m, 6H); 13C NMR 

(75 MHz, CDCl3), mixture of diastereomers δ 170.3 (C-minor), 170.2 (C-major), 138.0 (C), 

137.8 (C), 130.33 (CH-major), 130.28 (CH-minor), 128.5 (2 × CH), 128.4 (4 × CH), 127.80 

(2 × CH), 127.76 (2 × CH), 127.7 (CH), 78.9 (CH-major), 77.8 (CH-minor), 73.45 (CH2-

major), 73.42 (CH2-minor), 72.4 (CH2), 71.2 (CH), 70.1 (CH2-minor), 70.0 (CH2-major), 

68.92 (CH-minor), 68.88 (CH-major), 66.43 (CH2-minor), 66.40 (CH2-major), 65.7 (CH2), 

21.8 (CH3), 21.7 (CH3); IR (in substance) ν 3550-3420, 2980-2875, 1730 cm−1. Anal. Calcd 

for C25H32O6: C, 70.07; H, 7.53. Found: C, 70.26, H, 7.83. 

 

BnO

O

CO2i-Pr
OH

BnO

BnO

O

CO2i-PrBnO

191 4 
(82%, (E,Z)/(Z,Z) = 50/50)

1. 1.2 MsCl, 1.3 Et3N
CH2Cl2, 0 °C to rt, 30 min
2. 3.0 eq DBU, THF, 0 °C to rt, 12 h

1
2

3

4
5

6

4'

 
Allyl Vinyl Ether 4.399,388 To a solution of the diastereomeric β-hydroxy ester 191 (15.0 g, 

35.1 mmol, 1.0 eq) in CH2Cl2 (105 mL, 3 mL/mmol 191) at 0 °C was added triethylamine 

(6.3 mL, 45.6 mmol, 1.3 eq) and methane sulfonyl chloride MsCl (3.3 mL, 42.1 mmol, 1.2 

eq). The reaction mixture was stirred for 30 min at ambient temperature, quenched with 

saturated aq NaHCO3 and extracted with CH2Cl2 (2 × 50 mL). The combined organic phases 

were dried over MgSO4 and concentrated under reduced pressure to afford the crude mesylate 

507 which was dissolved in THF (70 mL, 2 mL/mmol 191) and cooled to 0 °C. DBU (16.0 

mL, 105 mmol, 3.0 equiv) was added at 0 °C. The reaction mixture was stirred at ambient 

temperature until TLC indicated complete consumption of the starting material (about 12 h). 

The reaction was then quenched with H2O (70 mL) and extracted with CH2Cl2 (2 × 50 mL). 
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The combined organic phases were dried over MgSO4 and concentrated. Flash 

chromatography (heptane/ethyl acetate 10/1) afforded the allyl vinyl ether 4 (11.8 g, 28.8 

mmol, 82%) as mixture of double bond isomers [(E,Z)/(Z,Z) = 50/50] as pale yellow oil (Rf 

0.59 heptane/ethyl acetate 1/1). The double bond isomers were separated by preparative 

HPLC, column: 32 × 250 mm, Nucleosil 50-5, 5 µm, solvent: (heptane/ethyl acetate 4/1, flow: 

30 mL/min, rt (Z,Z-4) ~ 16 min, rt (E,Z-4) ~ 19 min, performance: ~ 1 g/h).  

(E,Z)-4. 1H NMR (500 MHz, CDCl3) δ 7.34-7.26 (m, 10H, CH-Ar), 5.81-5.79 (m, 2H, 4- 

and 5-CH=), 5.29 (t, J = 5.8 Hz, 1H, 2-CH=), 5.10 (sept, J = 6.3 Hz, 1H, -Oi-PrCH), 4.53 (s, 

2H, 1-CH2Ph), 4.51 (s, 2H, 4’-CH2Ph), 4.48 (d, J = 5.8 Hz, 2H, 1-CH2OBn), 4.34 (brd, J = 

3.7 Hz, 2H, 6-CH2), 4.10 (brd, J = 4.3 Hz, 2H, 4’-CH2OBn), 1.26 (d, J = 6.3 Hz, 6H, -Oi-

PrCH3); 13C NMR (126 MHz, CDCl3) δ 162.7 (3’-C), 145.4 (3-C=), 138.1 (C-Ar), 137.9 (C-

Ar), 129.8 (4-CH=), 128.41 (2 × CH-Ar), 128.39 (2 × CH-Ar), 127.83 (2 × CH-Ar), 127.77 (2 

× CH-Ar), 127.70 (CH-Ar), 127.67 (CH-Ar), 127.4 (5-CH=), 112.1 (2-CH=), 72.5 (1-CH2Ph), 

72.4 (4’-CH2Ph), 69.1 (-Oi-PrCH), 66.6 (1-CH2), 65.9 (4’-CH2), 64.7 (6-CH2), 21.7 (2 × -Oi-

PrCH3); IR (in substance) ν 3090-3030, 2980-2860, 1720 cm−1. Anal. Calcd for C25H30O5: C, 

73.15; H, 7.37. Found: C 73.31; H 7.64.  

(Z,Z)-4. 1H NMR (500 MHz, CDCl3) δ 7.34-7.28 (m, 10H, CH-Ar), 6.35 (t, J = 6.3 Hz, 1H, 

2-CH=), 5.80-5.73 (m, 2H, 4- and 5-CH=), 5.07 (sept, J = 6.3 Hz, 1H, -Oi-PrCH), 4.50 (s, 2H, 

1-CH2Ph), 4.47 (s, 2H, 4’-CH2Ph), 4.44 (d, J = 6.2 Hz, 2H, 6-CH2), 4.24 (d, J = 6.3 Hz, 2H, 

1-CH2), 4.06 (d, J = 6.4 Hz, 2H, 4’-CH2), 1.27 (d, J = 6.3 Hz, 6H, -Oi-PrCH3); 13C NMR (126 

MHz, CDCl3) δ 162.6 (3’-C), 145.7 (3-C=), 138.0 (C-Ar), 137.9 (C-Ar), 130.6 (4-CH=), 

128.43 (2 × CH-Ar), 128.41 (2 × CH-Ar), 127.9 (CH-Ar), 127.83 (2 × CH-Ar), 127.78 (CH-

Ar), 127.76 (2 × CH-Ar), 127.7 (5-CH=), 124.3 (2-CH=), 72.8 (1-CH2Ph), 72.4 (4’-CH2Ph), 

68.9 (-Oi-PrCH), 67.5 (6-CH2), 65.6 (4’-CH2), 64.5 (1-CH2), 21.8 (2 × -Oi-PrCH3); IR (in 

substance) ν 3090-3030, 2980-2860, 1720 cm−1. Anal Calcd for C25H30O5: C, 73.15; H, 7.37. 

Found: C, 73.03; H, 7.58. 

 

BnO

O

CO2i-PrBnO

BnO

OBn

CO2i-PrHO

(±)-syn-8 
(57%, syn/anti = 95/5)

(Z,Z)-4

1.2 eq LDA, THF
−78 °C to −10 °C, 16 h

1

2
3

4
5

6
4'

 
α-Hydroxyester (±)-syn-8.388 To a stirred solution of LDA [prepared in situ from 

diisopropylamine (1.7 mL, 12.0 mmol, 1.2 eq) and n-BuLi (2.3 M in hexanes, 4.6 mL, 10.5 

mmol, 1.05 eq)] in THF (40 mL, 4 mL/mmol 4) was added a cooled solution (−78 °C) of the 
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allyl vinyl ether (Z,Z)-4 (4.1 g, 10.0 mmol, 1.0 eq) in THF (20 mL, 2 mL/mmol 4) at –78 °C. 

The solution was allowed to warm to −10 °C over night, quenched with saturated aq NH4Cl 

and extracted with CH2Cl2 (3 × 30 mL). The combined organic phases were dried over 

MgSO4 and concentrated. Flash chromatography (heptane/ethyl acetate 20/1 to 10/1) afforded 

of the rearrangement product 8 (2.4 g, 5.7 mmol, 57%, syn/anti = 95/5) as pale yellow oil (Rf 

0.59 heptane/ethyl acetate 1/1).  
1H NMR (500 MHz, CDCl3) δ 7.37-7.24 (m, 10H), 6.71 (d, J = 12.7 Hz, 1H, 1-CH=), 5.84 

(ddd, J = 16.8, 10.5, 9.4 Hz, 1H, 5-CH=), 5.18 (d, J = 1.3 Hz, 1H, 4-CH2=), 5.15 (dd, J = 9.7, 

1.9 Hz, 1H, 4-CH2=), 4.99 (d, J = 12.5 Hz, 1H, 2-CH=), 4.99 (sept, J = 6.3 Hz, 1H, -Oi-

PrCH), 4.74 (dAB, J = 11.9 Hz, 1H, 1-CH2Ph), 4.70 (dAB, J = 12.0 Hz, 1H, 1-CH2Ph), 4.48 

(dAB, J = 11.9 Hz, 1H, 4’-CH2Ph), 4.42 (dAB, J = 11.7 Hz, 1H, 4’-CH2Ph), 3.71 (ddAB, J = 9.6, 

4.1 Hz, 1H, 4’-CH2OBn), 3.65 (s, 1H, OH), 3.57 (ddAB, J = 9.4, 7.5 Hz, 1H, 4’-CH2OBn), 

2.75-2.65 (m, 1H, 4-CH), 1.23 (d, J = 6.2 Hz, 3H, -Oi-Pr-CH3), 1.17 (d, J = 6.2 Hz, 3H, Oi-

PrCH3); 13C NMR (126 MHz, CDCl3) δ 174.0 (3’-C), 148.4 (1-CH=), 138.2 (C-Ar), 136.7 (C-

Ar), 135.2 (5-CH=), 128.5 (2 × CH-Ar), 128.3 (2 × CH-Ar), 127.9 (CH-Ar), 127.6 (2 × CH-

Ar), 127.5 (CH-Ar, ), 127.4 (2 × CH-Ar), 118.9 (4-CH2=), 105.3 (2-CH=), 77.1 (3-C), 73.2 

(1-CH2Ph), 71.6 (4’-CH2Ph), 70.0 (-Oi-PrCH), 69.8 (4’-CH2OBn), 51.6 (4-CH), 21.6 (2 × -

Oi-PrCH3); IR (in substance) ν 3500, 3070-3030, 2980-2870, 1720 cm−1. Anal. Calcd for 

C25H30O5: C, 73.15; H, 7.37. Found: C, 73.09; H, 7.80. 

 

BnO

OBn

CO2i-PrHO

O

OBn

CO2i-PrHO

(±)-syn-8 crude (±)-syn-508

1.5 eq 1.94 N HCl
THF, 0 °C to rt, 72 h

 
Aldehyde (±)-(syn)-508.402,388 To an ice-cooled solution of the benzyl enol ether 8 (2.4 g, 

5.8 mmol, 1.0 eq) in THF (3 mL, 0.5 mL/mmol 8) was added aq HCl (1.94 M, 4.3 mL, 8.4 

mmol, 1.5 eq) and stirred for 72 h at ambient temperature. The reaction mixture was then 

quenched with saturated aq NaHCO3 and extracted with CH2Cl2 (3 × 30 mL). The combined 

organic phases were dried over MgSO4 and concentrated under reduced pressure to afford the 

crude aldehyde (Rf 0.44 heptane/ethyl acetate 1/1) that was used without further purification. 

(analyzed as a mixture of crude (±)-syn-508 and benzyl alcohol). 
1H NMR (300 MHz, CDCl3) δ 9.53 (t, J = 1.6 Hz, 1H), 7.23-7.11 (m, 5H), 5.66 (ddd, J = 

16.9, 10.2 Hz, 1H), 5.04-4.95 (m, 2H), 4.88 (sept, J = 6.3 Hz, 1H), 4.38 (dAB, J = 12.0 Hz, 

                                            
402 Fully characterized after esterification. 
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1H), 4.32 (dAB, J = 12.0 Hz, 1H), 3.60 (ddAB, J = 9.7, 7.1 Hz, 1H), 3.42 (ddAB, J = 9.7, 5.2 Hz, 

1H), 2.85 (ddAB, J = 17.4, 1.8 Hz, 1H), 2.72 (ddAB, J = 17.2, 1.3 Hz, 1H), 2.57 (ddd, J = 9.7, 

7.2, 5.1 Hz, 1H), 1.06 (d, J = 6.3 Hz, 6H) no OH-resonance observed; 13C NMR (75 MHz, 

CDCl3) δ 199.9 (CH), 140.9 (C), 137.7 (C), 134.1 (CH), 128.6 (CH), 128.4 (CH), 127.8 (CH), 

127.7 (CH), 127.0 (CH), 119.3 (CH2), 75.7 (C), 73.4 (CH2), 70.2 (CH), 70.1 (CH2), 65.4 

(CH2), 52.2 (CH), 50.8 (CH2), 21.8 (2 × CH3). Anal. Calcd for C18H24O5: C, 67.48; H, 7.55. 

 

O

OBn

CO2i-PrHO

OBn

HO2C
CO2i-PrHO

crude (±)-syn-508 (±)-syn-192 (93%)

10.0 eq NaClO2, 7.0 eq NaH2PO4·H2O
t-BuOH, 2-methyl-2-butene, H2O, rt, 12 h

 

Acid (±)-syn-192.402,388 To a solution of the crude aldehyde 508 (5.8 mmol, 1.0 eq) in t-

BuOH (58 mL, 10 mL/mmol 508) and 2-methyl-2-butene (58 mL, 10 mL/mmol 508) was 

added a solution of NaClO2 (5.2 g, 57.5 mmol, 10.0 eq) and NaH2PO4·H2O (5.6 g, 40.2 mmol, 

7.0 eq) in water (120 mL, 20 mL/mmol 508). The reaction mixture was stirred at ambient 

temperature for 12 hours, diluted with water and extracted with CH2Cl2 (3 × 50 mL). The 

combined organic phases were dried over MgSO4 and concentrated. Purification by flash 

chromatography (heptane/ethyl acetate 10/1 to 1/2) provided the acid (±)-syn-192 (1.8 g, 5.3 

mmol, 93%) as pale yellow oil (Rf 0.09 heptane/ethyl acetate 1/1).403  
1H NMR (300 MHz, CDCl3) δ 7.40-7.22 (m, 5H), 5.81 (ddd, J = 16.3, 11.0, 9.7 Hz, 1H), 

5.18 (s, 1H), 5.15 (dd, J = 7.5, 1.6 Hz, 1H), 5.03 (sept, J  = 6.3 Hz, 1H), 4.53 (dAB, J = 11.7 

Hz, 1H), 4.46 (dAB, J = 11.7 Hz, 1H), 3.72 (ddAB, J = 9.7, 7.1 Hz, 1H), 3.56 (ddAB, J = 9.6, 5.0 

Hz, 1H), 3.00 (dAB, J = 16.3 Hz, 1H), 2.90 (dAB, J = 16.5 Hz, 1H), 2.71 (ddd, J = 9.7, 7.0, 5.0 

Hz, 1H), 1.23 (d, J = 6.2 Hz, 3H), 1.21 (d, J = 6.2 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 

174.3 (C), 173,0 (C), 137.8 (C), 134.2 (CH), 128.4 (2 × CH), 127.8 (2 ×CH), 127.0 (CH), 

119.2 (CH2), 76.5 (C), 73.5 (CH2), 70.1 (CH2), 70.1 (CH), 52.2 (CH), 42.1 (CH2), 21.7 (CH3), 

21.6 (CH3). Anal. Calcd for C18H24O6: C, 64.27; H, 7.19. 

 

OBn

HO2C
CO2i-PrHO

MeO2C

OBn

CO2i-PrHO

(±)-syn-192 (±)-syn-509 (81%)

1.1 eq DCC, 0.05 eq DMAP
2.0 eq MeOH, CH2Cl2, rt, 30 min

 
                                            
403 The benzyl alcohol (Rf 0.47 heptane/ethyl acetate 1/1, clearly detectable by UV irradation), cleaved in the 
previous step, had to be carefully removed from the acid to avoid undesired side reactions during the following 
esterification 
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Ester (±)-syn-509.388 To an ice cooled solution of the acid 192 (1.8 g, 5.3 mmol, 1.0 eq) in 

CH2Cl2 (21 mL, 4 mL/mmol 192) was added DMAP (32 mg, 0,3 mmol, 0.05 eq), DCC (1.21 

g, 5.9 mmol, 1.1 eq) and MeOH (1 ml, 15.9 mmol, 2.0 eq). The resulting suspension was 

stirred for 30 min at ambient temperature. The precipitate was then removed by filtration, 

washed with CH2Cl2 and the solvent was evaporated under reduced pressure. Flash 

chromatography (heptane/ethyl acetate 10/1 to 5/1) afforded of the ester (±)-syn-509 (1.5 g, 

4.3 mmol, 81%) as pale yellow oil (Rf 0.32 heptane/ethyl acetate 1/1). 
1H NMR (500 MHz, CDCl3) δ 7.34-7.24 (m, 5H), 5.77 (ddd, J = 16.8, 10.3, 10.3 Hz, 1H), 

5.15 (s, 1H), 5.13 (dd, J = 8.7, 1.6 Hz, 1H), 5.04 (sept, J = 6.3 Hz, 1H), 4.50 (dAB, J = 12.0 

Hz, 1H), 4.45 (dAB, J = 11.7 Hz, 1H), 4.00 (s, 1H), 3.70 (ddAB, J = 9.6, 6.5 Hz, 1H), 3.64 (s, 

3H), 3.52 (ddAB, J = 9.8, 5.4 Hz, 1H), 2.94 (dAB, J = 16.8 Hz, 1H), 2.86 (dAB, J = 16.1 Hz, 

1H), 2.67-2.61 (m, 1H), 1.29 (d, J = 6.0 Hz, 3H), 1.21 (d, J = 6.0 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 173.4 (C), 171.1 (C), 137.9 (C), 134.5 (CH), 128.3 (2 × CH), 127.7 (2 × CH), 

127.6 (CH), 119.0 (CH2), 76.1 (C), 73.3 (CH2), 69.9 (CH2), 52.4 (CH or CH3), 51.7 (CH or 

CH3), 42.4 (CH2), 21.7 (CH3), 21.6 (CH3); IR (in substance) ν 3480-2980, 2920-2835, 1740 

cm−1. Anal. Calcd for C19H26O6: C, 65.13; H, 7.48. Found: C, 65.17; H, 7.65. 

 

MeO2C

OBn

MeO2C

OBn

(±)-syn-509 (±)-syn-193 (97%)

3.0 eq TBSOTf, 4.0 eq 2,6-lutidine
CH2Cl2, 0 °C to rt, 3 h

CO2i-PrHO CO2i-PrTBSO

 
Silyl Ether (±)-syn-193.388 To an ice cooled solution of the ester 509 (1.1 g, 3.1 mmol, 1.0 

eq) in CH2Cl2 (15 mL, 5 mL/mmol 509) was added 2,6-lutidine (1.4 mL, 12.4 mmol, 4.0 eq) 

and TBSOTf (2.5 g, 9.3 mmol, 3.0 eq). The resulting mixture was stirred at ambient 

temperature until TLC indicated complete consumption of the starting material (~3 h). The 

reaction was quenched with saturated aq NaHCO3 and extracted with CH2Cl2 (3 x 10 mL). 

The combined organic layers were dried over MgSO4 and concentrated. Flash 

chromatography (heptane/ethyl acetate 20/1 to 10/1) afforded silyl ether (±)-syn-193 (1.4 g, 

3.0 mmol, 97%) as pale yellow oil (Rf 0.79 heptane/ethyl acetate 1/1). 
1H NMR (300 MHz, CDCl3) δ 7.21-7.04 (m, 5H), 5.61 (ddd, J = 16.9, 10.2, 10.2 Hz, 1H), 

4.97 (d, J = 1.9 Hz, 1H), 4.94 (dd, J = 10.2, 1.8 Hz, 1H), 4.80 (sept, J = 6.3 Hz, 1H), 4.30 (s, 

2H), 3.63 (ddAB, J = 5.4, 9.6 Hz, 1H), 3.44 (s, 3H), 3.28 (ddAB, J = 6.5, 9.7 Hz, 1H), 2.81 

(dAB, J = 15.3 Hz, 1H), 2.68 (dAB, J = 15.3 Hz, 1H), 2.61-2.51 (m, 1H), 1.06 (d, J = 6.5 Hz, 

3H), 1.02 (d, J = 6.5 Hz, 3H), 0.64 (s, 9H), 0.00 (s, 3H), −0.12 (s, 3H); 13C NMR (75 MHz, 
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CDCl3) δ 171.9 (C), 170.4 (C), 138.1 (C), 135.7 (CH), 128.3 (2 × CH), 127.7 (2 × CH), 127.6 

(CH), 118.5 (CH2), 79.8 (C), 73.1 (CH2), 69.5 (CH2), 69.1 (CH), 53.5 (CH or CH3), 51.5 (CH 

or CH3), 43.9 (CH2), 26.0 (3 × CH3), 21.8 (CH3), 21.7 (CH3), 18.9 (C), −2.5 (CH3), −2.9 

(CH3); IR (in substance) ν 2975-2855, 1745 cm−1. Anal. Calcd for C25H40O6Si: C, 64.62; H, 

8.68. Found: C, 64.68; H, 8.85. 
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20.2.3 Synthesis of the Viridiofungin A, A4, A2 Triesters 
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Scheme 152: Completion of the viridiofungin triester synthesis. 
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MeO2C

OBn

CO2i-PrTBSO
MeO2C

O

OBn

CO2i-PrTBSO

(±)-syn-193 crude (±)-syn-67

O3, CH2Cl2, MeOH, −78 °C, 10 min
8.0 eq Me2S, −78 °C to rt, 3 h

 

(CH2)7
SN

N
N N

Ph OO

C7H15

OO
MeO2C

OBn

CO2i-PrTBSO

(CH2)5 C7H15

OO

68a (±)-198a (84%)

1.05 eq KHMDS
THF, −78 °C, 30 min
then add (±)-syn-67

−78 °C to rt, 12 h
1 2

3
4

5
6

7

4'

13

 
Olefin (±)-198a.388 Through a solution of the terminal olefin (±)-syn-193 (0.23 g, 0.5 mmol, 

1.0 eq) in CH2Cl2 and MeOH (4/1, 10 mL, 20 mL/mmol 193) at −78 °C was bubbled a stream 

of ozone until the color of the reaction mixture turned blue (~10 min). The excess ozone was 

removed by a nitrogen stream (disappearance of the blue color) and then Me2S (0.3 mL, 4.0 

mmol, 8.0 eq) was added at −78 °C. The reaction mixture was allowed to warm to ambient 

temperature and stirred at this temperature until TLC indicated complete consumption of the 

ozonide (~ 3 h). The reaction mixture was then concentrated at reduced pressure to provide 

the crude aldehyde (±)-syn-67 (Rf 0.23 heptane/ethyl acetate 5/1) which was used without 

further purification. 

To a solution of the sulfon 68a (0.23 g, 0.5 mmol, 1.0 equiv) in THF (5 mL, 10 mL/mmol 

68a) at −78 °C was added KHMDS (0.5 M solution in THF, 0.9 mL, 0.5 mmol, 1.05 eq) and 

the resulting mixture was stirred for 30 min. A pre-cooled (−78 °C) solution of the aldehyde 

(±)-syn-67 (0.5 mmol, 1.0 eq) in THF (2.5 mL, 5 mL/mmol 67) was then added and the 

mixture was warmed to ambient temperature over night. The resulting slurry was diluted with 

water, the phases were separated and the organic layer was washed with brine (2 x 10 mL), 

dried over MgSO4 and then concentrated. Flash chromatography (heptane/ethyl acetate 20/1) 

afforded the olefin (±)-198a (0.29 g, 0.4 mmol, 84%) as a colorless oil (Rf 0.38 heptane/ethyl 

acetate 5/1).397  
1H NMR (500 MHz, CDCl3) δ 7.31-7.18 (m, 5H, CH-Ar), 5.44 (ddd, J = 15.0, 6.5, 6.5 Hz, 

1H, 6-CH=), 5.24 (ddd, J = 15.2, 9.6 Hz, 1H, 5-CH=), 4.91 (sept, J = 6.3 Hz, 1H, -Oi-PrCH), 

4.41 (s, 2H, 4’’-CH2Ph), 3.87 (s, 4H, 13’-CH2), 3.73 (ddAB, J = 9.6, 5.4 Hz, 1H, 4’-CH2), 3.56 

(s, 3H, CO2CH3), 3.32 (ddAB, J = 9.6, 6.3 Hz, 1H, 4’-CH2), 2.89 (dAB, J = 15.3 Hz, 1H, 2-

CH2), 2.80 (dAB, J = 15.3 Hz, 1H, 2-CH2), 2.68-2.57 (m, 1H, 4-CH), 1.98-1.86 (m, 2H, 7-

CH2), 1.58-1.46 (m, 4H, 12- and 14-CH2), 1.36–1.24 (m, 18H, 8-, 9-, 10-, 11- and 15-, 16-, 

17-, 18-, 19-CH2), 1.22 (d, J = 6.3 Hz, 3H, -Oi-PrCH3), 1.20 (d, J = 6.3 Hz, 3H, -Oi-PrCH3), 
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0.87 (t, J = 6.9 Hz, 3H, 20-CH3), 0.81 (s, 9H, SiC(CH3)3), 0.13 (s, 3H, SiCH3), 0.00 (s, 3H, 

SiCH3); 13C NMR (126 MHz, CDCl3) δ 172.0 (CO2i-Pr, 170.6 (CO2Me), 138.3 (C-Ar), 134.4 

(6-CH=), 128.3 (2 × CH-Ar), 127.7 (2 × CH-Ar), 127.5 (CH-Ar), 127.0 (5-CH=), 111.9 (13-

C), 80.3 (3-C), 73.0 (4’’-CH2), 70.0 (4’-CH2), 68.9 (-Oi-PrCH), 64.9 (2 × 13’-CH2), 52.2 (4-

CH), 51.4 (-OCH3), 44.0 (2-CH2), 37.1 (12- and 14-CH2), 32.6 (7-CH2), 31.8 (18-CH2), 29.9 

(CH2), 29.8 (CH2), 29.3 (CH2), 29.23 (CH2), 29.16 (CH2), 26.0 (3 × SiC(CH3)3), 23.84 (11- or 

15-CH2), 23.82 (11- or 15-CH2), 22.6 (CH2), 21.9 (-Oi-PrCH3), 21.7 (-Oi-PrCH3), 19.0 

(SiC(CH3)3), 14.1 (20-CH3), −2.4 (SiCH3), −2.9 (SiCH3); IR (in substance) ν 2930-2850, 

1745 cm−1. Anal. Calcd for C41H70O8Si: C, 68.48; H, 9.81. Found: C 68.63; H 9.98. 

 

MeO2C

OBn

CO2i-PrTBSO
MeO2C

O

OBn

CO2i-PrTBSO

1.05 eq (±)-syn-193 crude (±)-syn-67

O3, CH2Cl2, MeOH, −78 °C, 10 min
8.0 eq Me2S, −78 °C to rt, 3 h

 

(CH2)7
SN

N
N N

Ph OO

C9H19

OO
MeO2C

OBn

CO2i-PrTBSO

(CH2)5 C9H19

OO

1.05 eq 68b (±)-198b (71%)

1.0 eq KHMDS
THF, −78 °C, 30 min
then add (±)-syn-67

−78 °C to rt, 12 h

 
Olefin (±)-198b.388 As outlined for the preparation of olefin (±)-198a, sulfone 68b (0.18 g, 

0.36 mmol, 1.05 equiv) was treated with KHMDS (0.5 M solution in THF, 0.7 ml, 0.34 

mmol, 1.0 equiv) and the aldehyde (±)-syn-67 (0.36 mmol, 1.05 equiv). Flash 

chromatography afforded olefin (±)-198b (0.19 g, 0.3 mmol, 71%) as a colorless oil (Rf 0.35 

heptane/ethyl acetate 3/1).397 
1H NMR (300 MHz, CDCl3) δ 7.33-7.29 (m, 5H), 5.47 (ddd, J = 14.9, 6.6, 6.6 Hz, 1H), 

5.29 (dd, J = 15.4, 9.6 Hz, 1H) 4.96 (sept, J = 6.2 Hz, 1H), 4.47 (s, 2H), 3.92 (s, 4H), 3.78 

(ddAB, J = 9.6, 5.7 Hz, 1H), 3.62 (s, 3H), 3.38 (ddAB, J = 9.6, 6.2 Hz, 1H), 2.95 (dAB, J = 15.2 

Hz, 1H), 2.86 (dAB, J = 15.2 Hz, 1H), 2.72-2.64 (m, 1H), 1.97 (ddd, J = 6.6, 6.5, 6.5 Hz, 2H), 

1.61-1.55 (m, 4H), 1.38-1.13 (m, 22H), 1.23 (d, J = 6.1 Hz, 3H), 1.21 (d, J = 6.1 Hz, 3H), 

0.82 (s, 9H), 0.88 (t, J = 6.7 Hz, 3H), 0.18 (s, 3H), 0.05 (s, 3H); 13C NMR (75 MHz, CDCl3) 

δ 172.0 (C), 170.6 (C), 138.3 (C), 134.4 (CH), 128.3 (2 × CH), 127.7 (2 × CH), 127.5 (CH), 

127.0 (CH), 111.9 (C), 80.3 (C), 73.0 (CH2), 70.1 (CH2), 68.9 (CH), 64.9 (2 × CH2), 52.3 (CH 

or CH3), 51.3 (CH or CH3), 44.0 (CH2), 37.2 (2 × CH2), 34.1 (CH2), 32.6 (CH2), 31.9 (CH2), 

30.0 (CH2), 29.8 (CH2), 29.61 (CH2), 29.55 (CH2), 29.3 (CH2), 29.23 (CH2), 29.16 (CH2), 
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26.1 (3 × CH3), 23.8 (CH2), 22.7 (CH2), 21.8 (CH3), 21.7 (CH3), 19.0 (C), 14.1 (CH3), −2.4 

(CH3), −2.9 (CH3); IR (in substance) ν 2955-2855, 1745 cm−1. Anal. Calcd for C43H74O8Si: C, 

69.13; H, 9.98. Found: C, 69.37; H, 10.03. 

 

MeO2C

OBn

CO2i-PrTBSO
MeO2C

O

OBn

CO2i-PrTBSO

(±)-syn-193 crude (±)-syn-67

O3, CH2Cl2, MeOH, −78 °C, 10 min
8.0 eq Me2S, −78 °C to rt, 3 h

 

SN
N

N N

Ph OO
C14H29 MeO2C

OBn

CO2i-PrTBSO
C14H29

1.35 eq 68c (±)-198c (70%)

1.3 eq KHMDS
THF, −78 °C, 30 min
then add (±)-syn-67

−78 °C to rt, 12 h

 
Olefin (±)-(E)-198c.388 Analogous to the procedure for the preparation of olefin (±)-198a, 

sulfon 68c (0.28 g, 0.7 mmol, 1.35 eq) was treated with KHMDS (0.5 M solution in THF, 1.3 

ml, 0.7 mmol, 1.3 eq) and the aldehyde (±)-syn-67 (0.5 mmol, 1.0 eq). Flash chromatography 

afforded olefin (±)-(E)-198c (0.23 g, 0.35 mmol, 70%) as a colorless oil (Rf 0.56 

heptane/ethyl acetate 5/1). 
1H NMR (500 MHz, CDCl3) δ 7.34-7.23 (m, 5H), 5.50 (dt, J = 15.1, 6.2 Hz, 1H), 5.31 (dd, 

J = 15.3, 9.6 Hz, 1H), 4.95 (sept, J = 6.2 Hz, 1H), 4.46 (s, 2H), 3.79 (ddAB, J = 9.6, 5.8 Hz, 

1H), 3.61 (s, 3H), 3.39 (ddAB, J = 9.5, 6.3 Hz, 1H), 2.95 (dAB, J = 15.1 Hz, 1H), 2.86 (dAB, J = 

15.1 Hz, 1H), 2.69 (ddd, J = 9.7, 5.9 Hz, 1H), 1.97 (dt, J = 6.8, 6.8 Hz, 2H), 1.40-1.16 (m, 

30H), 0.88 (t, J = 6.9 Hz, 3H), 0.81 (s, 9H), 0.17 (s, 3H), 0.04 (s, 3H); 13C NMR (75 MHz, 

CDCl3) δ 171.9 (C), 170.5 (C), 138.4 (C), 134.4 (CH), 128.2 (2 × CH), 127.7 (2 × CH), 127.4 

(CH), 127.0 (CH), 80.3 (C), 73.0 (CH2), 70.2 (CH2), 68.9 (CH), 52.3 (CH or CH3), 51.2 (CH 

or CH3), 43.9 (CH2), 32.6 (CH2), 31.9 (CH2), 29.63 (CH2), 29.60 (CH2), 29.58 (CH2), 29.5 

(CH2), 29.3 (CH2), 29.2 (CH2), 26.1 (3 × CH3), 22.6 (CH2) (several overlapping signals 

between 44.0 and 22.7, total number (CH2): 16), 21.8 (CH3), 21.6 (CH3), 18.9 (C), 14.0 

(CH3), −2.5 (CH3), −2.9 (CH3); IR (in substance) ν 2925-2855, 1745 cm−1. Anal. Calcd for 

C39H68O6Si: C, 70.86; H, 10.37. Found: C, 70.63; H, 10.62. 

 

C14H29 Br

PPh3, MeCN
reflux, 12 h

C14H29 PPh3

Br

199 200 (97%)  
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Wittig Salt 200.404 To a solution of bromopentadecane (199) (0.6 mL, 2.0 mmol, 1.0 eq) in 

acetonitrile (20 mL, 10 mL/mmol) was added PPh3 (0.5 g, 2.1 mmol, 1.03 eq). The reaction 

mixture was refluxed for 12 h, cooled to rt and concentrated to yield about 2 mL of a solution 

of the crude product. To that solution diethyl ether was added dropwise until a little turbidity 

appeared in the solution. When considerable crystallization became apparent further diethyl 

ether (10 mL) were slowly added and the reaction flask was stored at 4 °C overnight. The 

precipitate was obtained by filtration and thoroughly washed with 10 mL diethyl ether. The 

mother liquor was concentrated to yield about 1 mL solution. Again, diethyl ether (3 mL) was 

slowly added and the precipitate was obtained as described above. The combined solids were 

dried at high vacuum to yield 200 (1.0 g, 1.9 mmol, 97%) as white solid (Rf 0.00 ethyl 

acetate). 
1H NMR (300 MHz, CDCl3) δ 8.32-7.45 (m, 15H), 3.91-3.79 (m, 2H), 1.70-1.16 (series of 

m, 26H), 0.88 (t, J = 6.9 Hz, 3H). Anal. Calcd for C33H46BrP: C, 71.60; H, 8.38; Br, 14.43. 

 

MeO2C

OBn

CO2i-PrTBSO
MeO2C

O

OBn

CO2i-PrTBSO

(±)-syn-193 crude (±)-syn-67

O3, CH2Cl2, MeOH, −78 °C, 10 min
8.0 eq Me2S, −78 °C to rt, 3 h

 

H29C14 PPh3

Br MeO2C

BnO

CO2i-PrTBSO

C14H29

1.1 eq KHMDS, toluene, 0 °C, 15 min
0 °C to −78 °C

then add (±)-syn-67, −78 °C to rt, 16 h

1.2 eq 200 (±)-(Z)-198c (17%)  
Olefin (±)-(Z)-198c. Through a solution of the terminal olefin (±)-syn-193 (20 mg, 0.05 

mmol, 1.0 eq) in CH2Cl2 and MeOH (4/1, 5 mL) at −78 °C was bubbled a stream of ozone 

until the color of the reaction mixture turned blue (~2 min). The excess ozone was removed 

by a nitrogen stream (disappearance of the blue color) and then Me2S (026 μL, 0.4 mmol, 8.0 

eq) was added at −78 °C. The reaction mixture was allowed to warm to ambient temperature 

and stirred at this temperature until TLC indicated complete consumption of the ozonide (~ 3 

h). The reaction mixture was then concentrated at reduced pressure to provide the crude 

aldehyde (±)-syn-67 (Rf 0.24 heptane/ethyl acetate 5/1) which was used without further 

purification. 

To a solution of the Wittig salt 200 (30 mg, 0.05 mmol, 1.2 equiv) in toluene (2 mL) was 

added KHMDS (0.5 M solution in THF, 0.1 mL, 0.05 mmol, 1.1 eq) at 0 °C and the resulting 

                                            
404 Kumar, V.; Dev, S. Tetrahedron 1987, 43, 5933-5948. 
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suspension was stirred for 15 min at 0 °C. The solution was cooled to −78 °C and a pre-

cooled (−78 °C) solution of the aldehyde (±)-syn-67 (0.05 mmol, 1.0 eq) in toluene (2 mL) 

was added. The reaction mixture was warmed to ambient temperature, stirred over night, 

quenched by the addition of saturated aq NH4Cl and extracted (3 × 3 mL). The combined 

organic layers were dried over MgSO4 and concentrated. Flash chromatography 

(heptane/ethyl acetate 20/1) afforded the olefin (±)-(Z)-198a (5.1 mg, 0.01 mmol, 17%) as a 

pale yellow oil (Rf 0.5 heptane/ethyl acetate 5/1). 
1H NMR (300 MHz, CDCl3) δ 7.28-7.22 (m, 5H), 7.45 (ddd, J = 11.3, 7.2, 7.2 Hz, 1H9, 

5.27 (dd, J = 10.7, 10.7 Hz, 1H), 4.90 (sept, J = 6.2 Hz, 1H), 4.41 (s, 2H), 3.73 (dd, J = 9.5, 

6.1 Hz, 1H), 3.56 (s, 3H), 3.24 (dd, J = 9.6, 5.8 Hz, 1H), 3.05-2.97 (m, 1H), 2.97 (dAB, J = 

15.3 Hz, 1H), 2.84 (dAB, J = 15.3 Hz, 1H), 2.11-1.84 (m, 2H), 1.27-1.18 (m, 24H), 1.17 (d, J 

= 6.6 Hz, 3H), 1.14 (d, J = 6.3 Hz, 3H), 0.82 (t, J = 7.1 Hz, 3H), 0.78 (s, 9H), 0.13 (s, 3H), 

0.00 (s, 3H); 13C NMR (147 MHz, CDCl3) δ 172.1 (C), 170.6 (C), 138.3 (C), 133.3 (CH), 

128.3 (2 × CH), 127.6 (2 × CH), 127.5 (CH), 79.8 (C), 73.1 (CH2), 70.4 (CH2), 69.0 (CH), 

51.4 (CH3), 46.8 (CH), 44.0 (CH2), 31.9 (CH2), 29.7 (CH2), 29.63 (CH2), 29.57 (CH2), 29.5 

(CH2), 29.4 (CH2), 27.9 (CH2), 26.0 (3 × CH3), 22.7 (CH2), 21.72 (CH3), 21.67 (CH3), 19.0 

(C), 14.1 (CH3), −2.5 (CH3), −2.8 (CH3); IR (in substance) ν 2925-2855, 1750 cm−1. Anal. 

Calcd for C39H68O6Si: C, 70.86; H, 10.37. Found: C, 70.93; H, 10.22.  

 

MeO2C

OBn

CO2i-PrTBSO OO

MeO2C

OH

CO2i-PrTBSO OO

O

1. H2, Pd/C, DMF, rt
2. 0.1 eq TPAP, 2.0 eq NMO, 4 Å mol sieves
    CH2Cl2, rt, 20 min
3. 10.0 eq NaClO2, 7.0 eq NaH2PO4·H2O
    t-BuOH, 2-methyl-2-butene, H2O, rt, 12 h

(±)-198a

(±)-205a (81%)  
Acid (±)-205a.388 To a solution of the olefin (±)-198a (0.19 g, 0.26 mmol, 1.0 eq) in DMF 

(5 mL, 20 mL/mmol 198a) was added palladium on activated carbon (Pd/C) (110 mg, 50 

mg/0.1 mmol). The flask was then equipped with a three way faucet connected to a hydrogen 
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balloon. The suspension was carefully degassed, recharged with hydrogen and vigorously 

stirred until TLC indicated complete consumption of the starting material (Rf 0.56 

heptane/ethyl acetate 1/1). The Pd/C-catalyst was removed by filtration and the solvents were 

evaporated under high vacuum at ambient temperature in order to avoid lactonization. The 

crude alcohol (±)-203a (Rf 0.38 heptane/ethyl acetate 1/1) was immediately used for the next 

reaction due to its susceptibility to lactonization.405 

To a solution of the crude alcohol (±)-203a in CH2Cl2 (5 mL, 20 mL/mmol 203a) was 

added freshly activated 4 Å molecular sieves (200 mg), N-methylmorpholine-N-oxide (NMO) 

(61 mg, 0.51 mmol, 2.0 eq) and tetrapropylammoniumperuthenate (TPAP) (12.7 mg, 0.03 

mmol, 0.1 equiv). The resulting black suspension was stirred for 20 min at rt and then filtrated 

through a plug of silica gel (washing with heptane/ethylacetate 20/1). The solvents were then 

evaporated under reduced pressure and the crude aldehyde (±)-510a (Rf 0.59 heptane/ethyl 

acetate 1/1) was dissolved in t-BuOH (5 mL, 20 mL/mmol 203a) and 2-methyl-2-butene (1 

mL, 4 mL/mmol 203a) to which a solution of NaClO2 (0.24 g, 2.6 mmol, 10.0 eq) and 

NaH2PO4·H2O (0.25 mg, 1.8 mmol, 7.0 eq) in water (1 mL, 4 mL/mmol 203a) was added. 

The reaction mixture was vigorously stirred at ambient temperature for 12 h, diluted with 

water and extracted with CH2Cl2 (3 × 20 mL). The combined extracts were dried over MgSO4 

and concentrated. Flash chromatography (heptane/ethylacetate 10/1 to 5/1 to 1/1) afforded the 

acid (±)-205a (0.13 g, 0.21 mmol, 81%) as pale yellow oil (Rf 0.29 heptane/ethyl acetate 1/1). 
1H NMR (500 MHz, CDCl3) δ 5.50-5.42 (m, 2H), 4.94 (sept, J = 6.2 Hz, 1H), 3.82 (s, 4H), 

3.55 (s, 3H), 3.36 (d, J = 8.3 Hz, 1H), 2.95 (dAB, J = 15.2 Hz, 1H), 2.72 (dAB, J = 15.2 Hz, 

1H), 1.91 (ddd, J = 7.0, 6.7, 6.7 Hz, 2H), 1.51-1.49 (m, 4H), 1.27-1.14 (m, 24H), 0.91 (t, J = 

6.6 Hz, 3H), 0.75 (s, 9H), 0.11 (s, 3H), 0.00 (s, 3H) no CO2H-resonance observed; 13C NMR 

(126 MHz, CDCl3) δ 175.0 (C), 170.7 (C), 170.1 (C), 137.1 (C), 122.7 (CH), 111.9 (C), 79.7 

(C), 69.7 (CH), 64.9 (2 × CH2), 58.3 (CH or CH3), 51.7 (CH or CH3), 43.4 (CH2), 37.14 

(CH2), 37.08 (CH2), 32.5 (CH2), 31.8 (CH2), 29.9 (CH2), 29.7 (CH2), 29.3 (CH2), 29.1 (CH2), 
                                            
405 For one representative lactone analytical data are presented below:  

OO

CO2i-PrTBSO O

204  
Lactone 204. 1H NMR (300 MHz, CDCl3) δ 5.62 (ddd, J = 15.3, 6.9, 6.9 Hz, 1H), 5.17 (dd, J = 15.3, 8.8 Hz, 
1H), 5.01 (sept, J = 6.3 Hz, 1H), 4.38 (dd, J = 11.4, 11.4 Hz, 1H), 4.16 (dd, J = 11.0, 5.5 Hz, 1H), 3.06 (d, J = 
17.9 Hz, 1H), 2.89 (ddd, J = 11.7, 8.6, 5.5 Hz, 1H), 2.70 (d, J = 18.2 Hz, 1H), 2.37 (dd, J = 7.5, 7.5 Hz, 4H), 
1.96 (ddd, J = 6.5, 6.5, 6.5 Hz, 2H), 1.60-1.47 (m, 2H), 1.33-1.20 (m, 20H), 0.89 (s, 9H), 0.87 (t, J = 7.3 Hz, 
3H), 0.20 (s, 3H), 0.10 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 211.6 (C), 171.1 (C), 168.3 (C), 137.2 (CH), 121.9 
(CH), 76.8 (C), 69.8 (CH), 69.2 (CH2), 45.6 (CH), 42.8 (CH2), 42.7 (CH2), 41.1 (CH2), 32.6 (CH2), 31.7 (CH2), 
29.7 (CH2), 29.2 (CH2), 29.1 (CH2), 28.9 (CH2), 28.8 (CH2), 25.9 (3 × CH3), 23.9 (CH2), 23.7 (CH2), 22.6 (CH2), 
21.9 (CH3), 21.8 (CH3), 18.7 (C), 14.1 (CH3), −3.0 (CH3), −3.1 (CH3); IR (in substance) ν 2925-2855, 1745, 
1715 cm−1. Anal. Calcd for C31H56O6Si: C, 66.87; H, 10.10. 
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28.8 (CH2), 25.9 (3 × CH3), 23.84 (CH2), 23.76 (CH2), 22.6 (CH2), 21.8 (CH3), 21.6 (CH3), 

18.8 (C), 14.1 (CH3), −2.7 (CH3), −2.9 (CH3); IR (in substance) ν 2930-2855, 1750, 1715 

cm−1. Anal. Calcd for C34H62O9Si: C, 63.52; H, 9.72. Found: C, 63.45; H, 9.41. 

 

MeO2C

OBn

CO2i-PrTBSO OO

MeO2C

OH

CO2i-PrTBSO OO

O

1. H2, Pd/C, DMF, rt
2. 0.1 eq TPAP, 2.0 eq NMO, 4 Å mol sieves
    CH2Cl2, rt, 20 min
3. 10.0 eq NaClO2, 7.0 eq NaH2PO4·H2O
    t-BuOH, 2-methyl-2-butene, H2O, rt, 12 h

(±)-198b

(±)-205b (69%)  
Acid (±)-205b.388 As described for the preparation of the acid (±)-205a, olefin (±)-198b (79 

mg, 0.11 mmol, Rf 0.67 heptane/ethyl acetate 1/1) was debenzylated to afford the 

corresponding alcohol (±)-203b (Rf 0.50 heptane/ethyl acetate 1/1). (±)-203b was then treated 

with NMO (25 mg, 0.21 mmol) and TPAP (4 mg, 0.01 mmol). The resulting crude aldehyde 

(±)-510b (Rf 0.62 heptane/ethyl acetate 1/1) was oxidized with NaClO2 (96 mg, 1.1 mmol) 

and NaH2PO4·H2O (101 mg, 0.7 mmol). Flash chromatography (heptane/ethylacetate 10/1 to 

1/1) afforded the acid (±)-205b (49 mg, 0.07 mmol, 69%) as pale yellow oil (Rf 0.38 

heptane/ethyl acetate 1/1). 
1H NMR (300 MHz, CDCl3) δ 5.58-5.54 (m, 2H), 5.02 (sept, J = 6.3 Hz, 1H), 3.90 (s, 4H), 

3.62 (s, 3H), 3.40 (d, J = 8.9 Hz, 1H), 3.04 (d, J = 15.2 Hz, 1H), 2.80 (d, J = 15.3 Hz, 1H) 

2.01-1.97 (m, 2H), 1.58-1.53 (m, 4H), 1.35-1.22 (m, 28H), 0.82 (s, 9H), 0.86 (t, J = 6.9 Hz, 

3H), 0.18 (s, 3H), 0.07 (s, 3H), no CO2H-resonance observed; 13C NMR (75 MHz, CDCl3) 

δ 175.2 (C), 170.7 (C), 170.1 (C), 137.1 (CH), 122.7 (CH), 111.9 (C), 79.7 (C), 69.7 (CH), 

64.9 (2 × CH2), 58.4 (CH or CH3), 51.6 (CH or CH3), 43.4 (CH2), 37.2 (CH2), 37.1 (CH2), 

32.5 (CH2), 31.9 (CH2), 30.0 (CH2), 29.7 (CH2), 29.5 (CH2), 29.4 (CH2), 29.3 (CH2), 29.1 

(CH2), 28.8 (CH2), 25.9 (3 × CH3), 23.8 (CH2), 23.7 (CH2), 22.7 (CH2), 21.8 (CH3), 21.6 

(CH3), 18.8 (C), 14.1 (CH3), −2.7 (CH3), −2.9 (CH3); IR (in substance) ν 2925-2855, 1745, 

1710 cm−1. Anal. Calcd for C36H66O9Si: C, 64.49; H, 9.92. Found: C, 64.18; H, 9.92. 
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MeO2C

OBn

CO2i-PrTBSO

MeO2C

OH

CO2i-PrTBSO

O

1. H2, Pd/C, DMF, rt
2. 0.1 eq TPAP, 2.0 eq NMO, 4 Å mol sieves
    CH2Cl2, rt, 20 min
3. 10.0 eq NaClO2, 7.0 eq NaH2PO4·H2O
    t-BuOH, 2-methyl-2-butene, H2O, rt, 12 h

(±)-198c

(±)-205c (70%)  
Acid (±)-205c.388 As described for the preparation of the acid (±)-205a, olefin (±)-syn-198c 

(0.35 g, 0.53 mmol) (Rf 0.71 heptane/ethyl acetate 1/1) was debenzylated to provide the 

corresponding alcohole (±)-203 (Rf 0.50 heptane/ethyl acetate 1/1) that was treated with NMO 

(0.13 g, 1.1 mmol) and TPAP (26 mg, 0.05 mmol). The resulting crude aldehyde (±)-510c (Rf 

0.59 heptane/ethyl acetate 1/1) was subjected to NaClO2 (0.16 g, 5.3 mmol) and 

NaH2PO4·H2O (0.13 g, 3.7 mmol). Flash chromatography (heptane/ethylacetate 10/1 to 1/1) 

afforded the acid 205c (0.22 g, 0.37 mmol, 70%) as a pale yellow oil (Rf 0.35 heptane/ethyl 

acetate 1/1). 
1H NMR (300 MHz, CDCl3) δ 5.70 (dt, J = 15.3, 6.8 Hz, 1H), 5.51 (dd, J = 15.3, 9.7 Hz, 

1H), 5.01 (sept, J = 6.2 Hz, 1H), 4.37 (br s, 1H), 3.67 (s, 3H), 3.34 (d, J = 9.8 Hz, 1H), 3.02 

(dAB, J = 16.1 Hz, 1H), 2.83 (dAB, J = 15.3 Hz, 1H), 2.02 (td, J = 6.6, 6.6 Hz, 2H), 1.29-1.21 

(m, 30H), 0.88 (t, J = 7.1 Hz, 3H), 0.84 (s, 9H), 0.20 (s, 3H), 0.09 (s, 3H), no CO2H-

resonance observed; 13C NMR (75 MHz, CDCl3) δ 174.1 (C), 170.6 (C), 170.0 (C), 137.3 

(CH), 122.6 (CH), 79.7 (C), 69.7 (CH), 58.2 (CH or CH3), 51.5 (CH or CH3), 43.4 (CH2), 

32.5 (CH2), 31.9 (CH2), 29.6 (CH2), 29.5 (CH2), 29.4 (CH2), 29.3 (CH2), 29.2 (CH2), 28.8 

(CH2), 25.9 (3 × CH3), 22.6 (CH2), (several overlapping signals between 43.4 and 22.6, total 

number of (CH2): 14) 21.7 (CH3), 21.6 (CH3), 18.8 (C), 14.0 (CH3), −2.7 (CH3), −2.9 (CH3); 

IR (in substance) ν 2980-2855, 1748, 1710 cm−1. Anal. Calcd for C32H60O7Si: C, 65.71; H, 

10.34. Found: C, 65.98; H, 10.53. 
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MeO2C

OH

CO2i-PrTBSO

MeO2C

OH

CO2i-PrHO

O

HF·pyridine, THF
0 °C to 45 °C, 16 h

(±)-205a

(±)-206a (51%)

OO

O

O

 
β-Hydroxy Acid (±)-206a.388 To a solution of the acid (±)-205a (60 mg, 0.09 mmol, 1.0 eq) 

in THF (4 mL, 4 mL/0.1 mmol 205a) was added HF·pyridine (0.15 mL, 0.15 mL/0.1 mmol 

205a) at 0 °C. The reaction mixture was stirred over night at 45 °C. If TLC indicates 

incomplete consumption of the starting material, additional HF·pyridine (0.15 mL, 0.15 

mL/0.1 mmol 205a) is added and stirring is continued for another 3 h at 45 °C. The reactions 

was quenched by the careful addition of saturated aq NaHCO3 and extracted with CH2Cl2 (3 x 

5 mL). The combined organic layers were dried over MgSO4 and concentrated. Flash 

chromatography (heptane/ethyl acetate 1/1 to ethyl acetate) afforded the β-hydroxy acid (±)-

206a (22 mg, 0.045 mmol, 51%) as colorless oil (Rf 0.21 ethyl acetate). 
1H NMR (300 MHz, CDCl3) δ 5.65 (ddd, J = 15.1, 6.6, 6.6 Hz, 1H), 5.52 (dd, J = 15.3, 9.6 

Hz, 1H), 5.08 (sept, J = 6.3 Hz, 1H), 4.25 (s, 1H), 3.66 (s, 3H), 3.32 (d, J = 9.6 Hz, 1H), 3.00 

(dAB, J = 16.3 Hz, 1H), 2.83 (dAB, J = 16.3 Hz, 1H), 2.37 (t, J = 7.5 Hz, 4H), 2.00 (ddd, J = 

6.9, 6.8, 6.8 Hz, 2H), 1.57-1.50 (m, 4H), 1.35-1.23 (m, 20H), 0.86 (t, J = 6.9 Hz, 3H), no 

CO2H-resonance observed; 13C NMR (75 MHz, CDCl3) δ 211.8 (C), 173.8 (C), 171.7 (C), 

170.3 (C), 138.1 (CH), 121.2 (CH), 75.7 (C), 70.8 (CH), 56.9 (CH or CH3), 51.9 (CH or CH3), 

42.8 (CH2), 42.7 (CH2), 41.6 (CH2), 32.4 (CH2), 31.7 (CH2), 29.2 (CH2), 29.1 (CH2), 29.0 

(CH2), 28.9 (CH2), 28.6 (CH2), 23.9 (CH2), 23.7 (CH2), 22.6 (CH2), 21.7 (CH3), 21.5 (CH3), 

14.1 (CH3); IR (in substance) ν 3495, 2930-2855, 1740, 1715 cm−1. Anal. Calcd for C26H44O8: 

C, 64.44; H, 9.15. Found: C, 64.50; H, 9.18. 
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MeO2C

OH

CO2i-PrTBSO

MeO2C

OH

CO2i-PrHO

O

HF·pyridine, THF
0 °C to 45 °C, 16 h

(±)-205b

(±)-206b (56%)

OO

O

O

 
β-Hydroxyacid (±)-206b.388 As described for the β-hydroxy acid (±)-206a, the acid (±)-

205b (55 mg, 0.08 mmol) was treated with HF·pyridine (0.12 ml). Flash chromatography 

(heptane/ethyl acetate 1/1 to ethyl acetate) afforded the β-hydroxy acid (±)-206b (23 mg, 0.45 

mmol, 56%) as a colorless oil (Rf 0.26 ethyl acetate). 
1H NMR (300 MHz, CDCl3) δ 5.70-5.51 (m, 2H), 5.10 (sept, J = 6.2 Hz, 1H), 4.23 (br s, 1H 

(OH)), 3.67 (s, 3H),  3.33 (d, J = 9.0 Hz, 1H), 3.02 (dAB, J = 16.2 Hz, 1H), 2.85 (dAB, J = 16.2 

Hz, 1H), 2.38 (t, J = 7.4 Hz, 4H), 2.02 (ddd, J = 6.6, 6.4, 6.4 Hz, 2H), 1.61-1.50 (m, 4H), 

1.31-1.24 (m, 24H), 0.88 (t, J = 6.6 Hz, 3H), no CO2H resonance observed; 13C NMR (75 

MHz, CDCl3) δ 211.7 (C), 174.5 (C), 171.8 (C), 170.4 (C), 137.9 (CH), 121.5 (CH), 75.8 (C), 

70.7 (CH), 57.0 (CH or CH3), 51.9 (CH or CH3), 42.8 (CH2), 42.7 (CH2), 41.6 (CH2), 32.4 

(CH2), 31.8 (CH2), 31.6 (CH2), 29.4 (CH2), 29.2 (CH2), 29.04 (CH2), 28.99 (CH2), 28.8 

(CH2), 28.6 (CH2), 23.9 (CH2), 23.7 (CH2), 22.6 (CH2), 21.7 (CH3), 21.5 (CH3), 14.0 (CH3); 

IR (in substance) ν 3480, 2925-2855, 1735, 1710 cm−1. Anal. Calcd for C28H48O8: C, 65.60; 

H, 9.44. Found: C, 65.70; H, 9.57. 

 

MeO2C

OH

CO2i-PrTBSO

MeO2C

OH

CO2i-PrHO

O

HF·pyridine, THF
0 °C to 45 °C, 16 h

(±)-205c

(±)-206c (76%)

O
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β-Hydroxy Acid (±)-206c.388 According to the procedure for the preparation of β-hydroxy 

acid (±)-206a, acid (±)-205c (50 mg, 0.09 mmol) was treated with HF·pyridine (0.13 ml). 

Flash chromatography (heptane/ethyl acetate 1/1 to ethyl acetate) afforded β-hydroxy acid 

(±)-206c (31 mg, 0.07 mmol, 76%) as colorless oil (Rf 0.23 ethyl acetate). 
1H NMR (300 MHz, CDCl3) δ 5.70 (ddd, J = 15.3, 6.8, 6.8 Hz, 1H), 5.51 (dd, J = 15.3, 9.7 

Hz, 1H), 5.01 (sept, J = 6.2 Hz, 1H), 4.37 (br s, 1H), 3.67 (s, 3H), 3.34 (d, J = 9.8 Hz, 1H), 

3.02 (dAB, J = 16.1 Hz, 1H), 2.83 (dAB, J = 16.1 Hz, 1H), 2.01 (td, J = 7.2, 7.2 Hz, 2H), 1.36-

1.17 (m, 30 H), 0.86 (t, J = 7.1 Hz, 3H) no CO2H-resonance observed; 13C NMR (75 MHz, 

CDCl3) δ 171.8 (C), 171.5 (C), 170.2 (C), 138.6 (CH), 120.6 (CH), 75.7 (C), 71.0 (CH), 56.7 

(CH or CH3), 52.0 (CH or CH3), 41.5 (CH2), 32.5 (CH2), 31.9 (CH2), 29.68 (CH2), 29.65 

(CH2), 29.6 (CH2), 29.43 (CH2), 29.36 (CH2), 29.1 (CH2), 28.8 (CH2), 22.7 (CH2), (several 

overlapping signals between 41.5 and 22.7, total number of (CH2): 14) 21.7 (CH3), 21.5 

(CH3), 14.1 (CH3); IR (in substance) ν 2980-2855, 1745 cm−1. Anal. Calcd for C26H46O7: C, 

66.35; H, 9.85. Found: C, 66.43; H, 9.69. 

 

MeO2C

OH

CO2i-PrHO

O

O

MeO2C

NH

CO2i-PrHO

C7H15

O

O

MeO2C

OH

MeO2C

NH

CO2i-PrHO

C7H15

O

O

MeO2C

OH

(±)-206a

(+)-207a(−)-65a

1. 1.5 eq  PyBOP, 4.4 eq NMM
    1.5 eq (S)-TyrMe, CH2Cl2, rt, 18 h (71%)
2. seperation of diastereomers by
    reversed phase HPLC

 
Viridiofungin A Ester (–)-65a and (+)-207a.388 To a solution of the β-hydroxy acid (±)-

206a (27 mg, 0.06 mmol, 1.0 eq) in CH2Cl2 (1 mL, 20 mL/mmol 206a) was added 

benzotriazol-1-yloxytripyrolidino-phosphonium-hexaflurophosphate (PyBOP) (44 mg, 0 08 

mmol, 1.5 eq), N-methylmorpholine (NMM) (27 µl, 0.24 mmol, 4.4 eq) and (S)-tyrosine 

methyl ester (16 mg, 0.08 mmol, 1.5 eq) at ambient temperature. The resulting mixture was 

stirred over night and then added to saturated aq NaHCO3. The aqueous layer was extracted 
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with CH2Cl2 (3 x 5 mL). The combined organic phases were dried over MgSO4 and 

concentrated. Flash chromatography (heptane/ethyl acetate 1/1 to ethyl acetate) afforded (–)-

65a and (+)-207a as a 1/1 mixture (26 mg, 0.04 mmol, 71%) as pale yellow oil (Rf 0.53 ethyl 

acetate). The diastereomers were separated by reversed-phase HPLC: Column: VYDAC 

208TP1030 – C8, 30 × 250 mm, 10µm; Eluent: isocratic A/B (solvent A: H2O + 5 % CH3CN 

+ 5 % CH3OH + 0.1 % TFA, solvent B: CH3CN + 0.1 % TFA, 40 ml/min). (–)-65a /(+)-207a: 

A/B 57/43 Rt (–)-65a: 58 min, Rt (+)-207a: 63 min. 

(–)-65a: 1H NMR (500 MHz, CDCl3) δ 6.95 (d, J = 8.4 Hz, 2H, 5’-CH-Ar), 6.76 (d, J = 8.5 

Hz, 2H, 6’-CH-Ar), 6.67 (d, J = 7.9 Hz, 1H, NH), 6.34 (s, 1H, Ph-OH), 5.63 (ddd, J = 15.2, 

6.6, 6.6 Hz, H, 6-CH=), 5.49 (dd, J = 15.3, 9.6 Hz, 1H, 5-CH=), 5.05 (sept, J = 6.3 Hz, 1H, 

CO2i-Pr-CH), 4.74 (ddd, J = 7.1, 7.0, 5.1 Hz, 1H, 2’-CH), 4.49 (s, 1H, 3-OH), 3.72 (s, 3H, 1’-

CO2CH3), 3.65 (s, 3H, 1-CO2CH3), 3.16 (d, J = 9.5 Hz, 1H, 4-CH), 3.09 (ddAB, J = 14.1, 4.9 

Hz, 1H, 3’-CH2), 3.00 (ddAB, J = 14.1, 6.8 Hz, 1H, 3’-CH2), 2.85 (dAB, J =16.0 Hz, 1H, 2-

CH2), 2.68 (dAB, J =16.0 Hz, 1H, 2-CH2), 2.42 (t, J = 7.2 Hz, 2H, 12- or 14-CH2), 2.41 (t, J = 

7.4 Hz, 2H, 12- or 14-CH2), 2.01-1.92 (m, 2H, 7-CH2), 1.59-1.48 (m, 4H, 11- and 15-CH2), 

1.34-1.18 (m, 20 H, Oi-Pr-CH3, 8-, 9-, 10-CH2 and 16-,17-,18-,19-CH2), 0.86 (t, J = 6.9 Hz, 

3H, 20-CH3); 13C NMR (CDCl3, 126 MHz) δ 213.4 (13-C=O), 172.2 (CO2i-Pr), 171.6 (1’-

CO2CH3), 170.6 (CONH), 170.5 (1-CO2CH3), 155.4 (7’-COH-Ar), 137.8 (6-CH=), 130.4 (2 × 

5’-CH-Ar), 127.3 (4’-C-Ar), 122.4 (5-CH=), 115.5 (2 × 6’-CH-Ar), 76.1 (3-C), 70.2 (-Oi-Pr-

CH), 57.6 (4-CH), 53.3 (2’-CH), 52.3 (CO2CH3), 51.8 (CO2CH3), 43.0 (12- or 14-CH2), 42.7 

(12- or 14-CH2), 41.6 (2-CH2), 36.6 (3’-CH2), 32.5 (7-CH2), 31.7 (18-CH2), 29.7 (CH2), 29.2 

(CH2), 29.0 (CH2), 28.9 (CH2), 28.5 (CH2), 23.9 (11- or 15-CH2), 23.5 (11- or 15-CH2), 22.6 

(19-CH2), 21.7 (-Oi-Pr-CH3), 21.6 (-Oi-Pr-CH3), 14.1 (20-CH3); IR (in substance) ν 3334, 

2926, 2464, 1743 cm−1. Anal. Calcd. for C36H55NO10: C, 65.33; H, 8.38. Found: C, 65.47; H, 

8.48. [α]25
D –6.6 (c 0.15, CHCl3), literature for trimethylester: [α]25

D –23.0 (c 0.47, MeOH). 

(+)-207a: 1H NMR (500 MHz, CDCl3) δ 7.05 (d, J = 7.7 Hz, 1H, NH), 7.01 (br s, 1H, Ph-

OH), 6.94 (d, J = 8.5 Hz, 2H, 5’-CH-Ar), 6.77 (d, J = 8.5 Hz, 2H, 6’-CH-Ar), 5.55 (ddd, J = 

15.2, 6.4, 6.4 Hz, 1H, 6-CH=), 5.23 (dd, J = 15.3, 9.6 Hz, 1H, 5-CH=), 5.03 (sept, J = 6.2 Hz, 

1H, -Oi-Pr-CH), 4.73 (ddd, J = 7.9, 7.9, 4.7 Hz, 1H, 2’-CH), 4.23 (s, 1H, 3-OH), 3.75 (s, 3H, 

1’-CO2CH3), 3.64 (s, 3H, 1-CO2CH3), 3.15-3.08 (m, 1H, 3’-CH2), 3.13 (d, J = 9.5 Hz, 1H, 4-

CH), 3.05 (d, J = 16.3 Hz, 1H, 2-CH2), 2.89 (d, J = 16.1 Hz, 1H, 2-CH2), 2.91-2.86 (m, 1H, 

3’-CH2) 2.45 (t, J = 7.0 Hz, 2H, 12- or 14-CH2), 2.43 (t, J = 7.5 Hz, 2H, 12- or 14-CH2), 1.92-

1.83 (m, 2H, 7-CH2), 1.62-1.48 (m, 4H, 11- and 15-CH2), 1.30-1.15 (m, 20H, -Oi-Pr-CH3, 8-, 

9-, 10-CH2 and 16-, 17-, 18-, 19-CH2), 0.86 (t, J = 6.9 Hz, 3H, 20-CH3); 13C NMR (CDCl3, 
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126 MHz) δ 214.3 (13-C=O), 172.3 (CO2i-Pr), 171.9 (1’-CO2CH3), 170.6 (1-CO2CH3), 170.4 

(CONH), 155.6 (7’-COH-Ar), 137.1 (6-CH=), 130.2 (2 × 5’-CH-Ar), 127.1 (4’-C-Ar), 121.6 

(5-CH=), 115.4 (2 × 6’-CH-Ar), 75.9 (3-C), 70.5 (-Oi-Pr-CH), 58.0 (4-CH), 53.2 (2’-CH), 

52.4 (CO2CH3), 51.8 (CO2CH3), 43.0 (12- or 14-CH2), 42.7 (12- or 14-CH2), 41.0 (2-CH2), 

36.5 (3’-CH2), 32.3 (7-CH2), 31.6 (18-CH2), 29.2 (CH2), 29.0 (CH2), 28.8 (CH2), 28.7 (CH2), 

28.0 (CH2), 23.9 (11- or 15-CH2), 23.4 (11- or 15-CH2), 22.6 (19-CH2), 21.8 (-Oi-Pr-CH3), 

21.5 (-Oi-Pr-CH3), 14.0 (20-CH3); IR (in substance) ν 3372, 2931, 2491, 1742 cm−1. Anal. 

Calcd. for C36H55NO10: C, 65.33; H, 8.38. Found: C, 65.06; H, 8.48. [α]25
D +52.9 (c 0.51, 

CHCl3). 

MeO2C

OH

CO2i-PrHO

O

O

MeO2C

NH

CO2i-PrHO

C9H19

O

O

MeO2C

OH

MeO2C

NH

CO2i-PrHO

C9H19

O

O

MeO2C

OH

(±)-206b

(+)-207b(−)-65b

1. 1.5 eq  PyBOP, 4.4 eq NMM
    1.5 eq (S)-TyrMe, CH2Cl2, rt, 18 h (90%)
2. seperation of diastereomers by
    reversed phase HPLC

 
Viridiofungin A4 Ester (–)-65b and (+)-207b.388 As described for the preparation of (–)-

65a and (+)-207a, β-hydroxy acid (±)-206b (22 mg, 0.045 mmol) was treated with PyBOP 

(36 mg, 0.07 mmol), NMM (23 µl, 0.2 mmol) and (S)-tyrosine methyl ester (13 mg, 0.07 

mmol). Flash chromatography (heptane/ethyl acetate 1/1 to ethyl acetate) afforded (–)-65b 

and (+)-207b as a 1/1-mixture (28 mg, 0.04 mmol, 90%) as pale yellow oil (Rf 0.38 ethyl 

acetate). The diastereomers were separated by reversed-phase HPLC: Column: VYDAC 

208TP1030 – C8, 30 × 250 mm, 10µm; Eluent: isocratic A/B (solvent A: H2O + 5 % CH3CN 

+ 5 % CH3OH + 0.1 % TFA, solvent B: CH3CN + 0.1 % TFA, 40 ml/min). (–)-65b/(+)-207b: 

A/B 46/54 Rt (–)-65b: 28 min, Rt (+)-207b: 30 min. 

(–)-65b: 1H NMR (500 MHz, CDCl3) δ 6.95 (d, J = 8.4 Hz, 2H, 5’-CH-Ar), 6.75 (d, J = 9.0 

Hz, 1H, NH), 6.74 (d, J = 8.5 Hz, 2H, 6’-CH-Ar), 5.62 (ddd, J = 15.2, 6.6, 6.6 Hz, 1H, 6-

CH=), 5.48 (dd, J = 15.3, 9.5 Hz, 1H, 5-CH=), 5.04 (sept, J = 6.3 Hz, 1H, CO2i-Pr-CH), 4.76 
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(ddd, J = 7.5, 7.4, 5.0 Hz, 1H, 2’-CH), 4.47 (s, 1H, 3-OH), 3.72 (s, 3 H, 1’-CO2CH3), 3.65 (s, 

3H, 1-CO2CH3), 3.15 (d, J = 9.5 Hz, 1H, 4-H), 3.09 (ddAB, J = 14.2, 4.9 Hz, 1H, 3’-CH2), 

2.98 (ddAB, J = 14.1, 6.8 Hz, 1H, 3’-CH2), 2.83 (dAB, J =16.0 Hz, 1H, 2-CH2), 2.62 (dAB, J 

=16.0 Hz, 1H, 2-CH2), 2.45 (t, J = 7.2 Hz, 2H, 12- or 14-CH2), 2.43 (t, J = 7.5 Hz, 2H, 12- or 

14-CH2), 1.98-1.92 (m, 2H, 7-CH2), 1.58-1.50 (m, 4H, 11- and 15-CH2), 1.29-1.20 (m, 24H, 

Oi-Pr-CH3, 8-,9-,10-CH2 and 16-,17-,18-,19-,20-,21-CH2), 0.86 (t, J = 6.9 Hz, 3H, 22-CH3) 

no signal detected for 7’-OH; 13C NMR (CDCl3, 126 MHz) δ 213.3 (13-C=O), 172.1 (CO2i-

Pr), 171.6 (1’-CO2CH3), 170.7 (CONH), 170.5 (1-CO2CH3), 155.5 (7’-COH-Ar), 137.8 (6-

CH=), 130.4 (2 × 5’-CH-Ar), 127.1 (4’-C-Ar), 122.3 (5-CH=), 115.5 (2 × 6’-CH-Ar), 76.1 (3-

C), 70.2 (Oi-Pr-CH), 57.6 (4-CH), 53.3 (2’-CH), 52.3 (CO2CH3), 51.8 (CO2CH3), 43.0 (12- or 

14-CH2), 42.7 (12- or 14-CH2), 41.5 (2-CH2), 36.7 (3’-CH2), 32.4 (7-CH2), 31.8 (20-CH2), 

29.40 (CH2), 29.36 (CH2), 29.24 (CH2), 29.20 (CH2), 28.9 (2 × CH2), 28.6 (CH2), 23.9 (11- or 

15-CH2), 23.5 (11- or 15-CH2), 22.6 (21-CH2), 21.7 (Oi-Pr-CH3), 21.5 (Oi-Pr-CH3), 14.1 (22-

CH3); IR (in substance) ν 3346, 2926, 2854, 1741 cm−1. Anal. Calcd for C38H59NO10: C, 

66.16; H, 8.62; N, 2.03. Found: C, 66.50; H, 8.78; N, 2.09. [α]25
D –5.1 (c 1.4, CHCl3).  

(+)-207b: 1H NMR (500 MHz, CDCl3) δ 7.06 (d, J = 7.7 Hz, 1H, NH), 6.93 (d, J = 8.4 Hz, 

2H, 5’-CH-Ar), 6.77 (d, J = 8.4 Hz, 2H, 6’-CH-Ar), 5.54 (ddd, J = 15.2, 6.4, 6.4 Hz, 1H, 6-

CH=), 5.23 (dd, J = 15.3, 9.6 Hz, 1H, 5-CH=), 5.03 (sept, J = 6.3 Hz, 1H, Oi-Pr-CH), 4.73 

(ddd, J = 7.8, 7.8, 4.7 Hz, 1H, 2’-H), 4.23 (s, 1H, 3-OH), 3.75 (s, 3H, 1’-CO2CH3), 3.64 (s, 

3H, 1-CO2CH3), 3.16 (ddAB, J = 14.3, 4.7 Hz, 1H, 3’-CH2), 3.13 (d, J = 9.6 Hz, 1H, 4-H), 

3.05 (dAB, J = 16.4 Hz, 1H, 2-CH2), 2.89 (dAB, J = 16.4 Hz, 1 H, 2-CH2), 2.88 (ddAB, J = 14.4, 

8.0 Hz, 1H, 3’-CH2) 2.45 (t, J = 7.0 Hz, 2H, 12- or 14-CH2), 2.42 (t, J = 7.6 Hz, 2H, 12- or 

14-CH2), 1.91-1.86 (m, 2H, 7-CH2), 1.59-1.52 (m, 4H, 11- and 15-CH2), 1.29-1.20 (m, 24H, 

Oi-Pr-CH3, 8-,9-,10-CH2 and 16-,17-,18-,19-,20-,21-CH2), 0.86 (t, J = 7.0 Hz, 3H, 22-CH3), 

no signal detected for 7’-OH; 13C NMR (CDCl3, 126 MHz) δ 214.2 (13-C=O), 172.3 (CO2i-

Pr), 171.9 (1’-CO2CH3), 170.6 (1-CO2CH3), 170.4 (CONH), 155.6 (7’-COH), 137.1 (6-CH), 

130.2 (2 × 5’-CH), 127.1 (4’-C), 121.6 (5-CH), 115.4 (2 × 6’-CH), 75.8 (3-C), 70.5 (Oi-Pr-

CH), 58.0 (4-CH), 53.2 (2’-CH), 52.4 (CO2CH3), 51.8 (CO2CH3), 43.0 (12- or 14-CH2), 42.7 

(12- or 14-CH2), 41.0 (2-CH2), 36.5 (3’-CH2), 32.3 (7-CH2), 31.8 (20-CH2), 29.4 (CH2), 29.3 

(CH2), 29.24 (CH2), 29.20 (CH2), 28.8 (CH2), 28.7 (CH2), 28.0 (CH2), 23.9 (11- or 15-CH2), 

23.4 (11- or 15-CH2), 22.6 (21-CH2), 21.7 (Oi-Pr-CH3), 21.5 (Oi-Pr-CH3), 14.1 (22-CH3); IR 

(in substance) ν 3354, 2926, 2490, 2854, 1741 cm−1. Anal. Calcd for C38H59NO10: C, 66.16; 

H, 8.62; N, 2.03. Found: C, 66.55; H, 8.62; N, 2.01. [α]25
D +22.9 (c 1.0, CHCl3). 
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MeO2C

OH

CO2i-PrHO

O

MeO2C

NH

CO2i-PrHO
C14H29

O

MeO2C

OH

MeO2C

NH

CO2i-PrHO
C14H29

O

MeO2C

OH

(±)-206c

(+)-207c(−)-65c

1. 1.5 eq  PyBOP, 4.4 eq NMM
    1.5 eq (S)-TyrMe, CH2Cl2, rt, 18 h (80%)
2. seperation of diastereomers by
    reversed phase HPLC

 
Viridiofungin A2 Ester (–)-65c and (+)-207c.388 As described for the preparation of (–)-

65a and (+)-207a, β-hydroxy acid (±)-206c (30 mg, 0.06 mmol) was treated with PyBOP (50 

mg, 0.10 mmol), NMM (31 µl, 0.28 mmol) and (S)-tyrosine methyl ester (19 mg, 0.10 mmol). 

Flash chromatography (heptane/ethyl acetate 1/1 to ethyl acetate) afforded (–)-65c and (+)-

207c as a 1/1 mixture (33 mg, 0.05 mmol, 80%) as pale yellow oil (Rf 0.38 ethyl acetate). The 

diastereomers were separated by reversed-phase HPLC: Column: VYDAC 208TP1030 – C8, 

30 × 250 mm, 10µm; Eluent: isocratic A/B (solvent A: H2O + 5 % CH3CN + 5 % CH3OH + 

0.1 % TFA, solvent B: CH3CN + 0.1 % TFA, 40 ml/min). (–)-65c/(+)-207c: A/B40/60 Rt (–)-

65c: 33 min, Rt (+)-207c: 35 min. 

(–)-65c: 1H NMR (500 MHz, CDCl3) δ 7.01 (d, J = 8.4 Hz, 2H, 5’-CH-Ar), 6.90 (d, J = 8.1 

Hz, 1H, NH), 6.71 (d, J = 8.5 Hz, 2H, 6’-CH-Ar), 5.63 (ddd, J = 15.3, 6.6, 6.6 Hz, 1H, 6-

CH=), 5.45 (dd, J = 15.1, 9.7 Hz, 1H, 5-CH=), 5.03 (sept, J = 6.5 Hz, 1H, CO2i-Pr-CH), 5.01 

(br s, 1H, 7’-OH), 4.80 (ddd, J = 7.8, 7.8, 5.3 Hz, 1H, 2’-CH), 4.29 (s, 1H, 3-OH), 3.71 (s, 

3H, 1’-CO2CH3), 3.66 (s, 3H, 1-CO2CH3), 3.13 (d, J = 9.4 Hz, 1H, 4-H), 3.11 (ddAB, J  = 

13.9, 5.7 Hz, 1H, 3’-CH2), 2.96 (ddAB, J = 14.1, 7.5 Hz, 1H, 3’-CH2), 2.81 (dAB, J =16.1 Hz, 

1H, 2-CH2), 2.52 (dAB, J =16.3 Hz, 1H, 2-CH2), 2.01-1.94 (m, 2H, 7-CH2), 1.27-1.21 (m, 

30H, -Oi-Pr-CH3, 8-,9-,10-,11-,12-,13-,14-,15-,16-,17-,18-,19-CH2), 0.87 (t, J = 6.9 Hz, 3H, 

20-CH3); 13C NMR (CDCl3, 126 MHz) δ 172.2 (CO2i-Pr), 171.8 (1’-CO2CH3), 170.5 (CONH 

or 1-CO2CH3), 170.4 (1-CO2CH3 or CONH), 154.8 (7’-COH-Ar), 137.8 (6-CH=), 130.5 (2 × 

5’-CH-Ar), 127.9 (4’-C-Ar), 122.0 (5-CH=), 115.5 (2 × 6’-CH-Ar), 75.9 (3-C), 70.4 (-Oi-Pr-

CH), 57.9 (4-CH), 53.3 (2’-CH), 52.3 (CO2CH3), 51.8 (CO2CH3), 41.3 (2-CH2), 37.0 (3’-

CH2), 32.6 (7-CH2), 31.9 (18-CH2), 29.69 (CH2), 29.65 (CH2), 29.6 (CH2), 29.5 (CH2), 29.4 
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(CH2), 29.2 (CH2), 29.0 (CH2) (several overlapping signals between 29.7 and 29.0, total 

number of (CH2): 15), 22.7 (19-CH2), 21.7 (-Oi-Pr-CH3), 21.5 (-Oi-Pr-CH3), 14.1 (20-CH3); 

IR (in substance) ν 3343, 2924, 2854, 1743 cm−1. Anal. Calcd for C36H57NO9: C, 66.74; H, 

8.87. Found: C, 65.47; H, 8.48. [α]25
D –3.9 (c 0.19, CHCl3). 

(+)-207c: 1H NMR (500 MHz, CDCl3) δ 7.06 (d, J = 7.9 Hz, 1H, NH), 6.96 (d, J = 8.5 Hz, 

2H, 5’-CH-Ar), 6.71 (d, J = 8.5 Hz, 2H, 6’-CH-Ar), 5.56 (ddd, J = 14.8, 6.6, 6.6 Hz, 1H, 6-

CH=), 5.31 (dd, J = 15.2, 9.6 Hz, 1H, 5-CH=), 5.04 (sept, J = 6.2 Hz, 1H, Oi-Pr-CH), 5.02 (br 

s, 1H, 7’-OH), 4.77 (ddd, J = 7.1, 7.1, 5.6 Hz, 1H, 2’-H), 4.24 (s, 1H, 3-OH), 3.73 (s, 3H, 1’-

CO2CH3), 3.63 (s, 3H, 1-CO2CH3), 3.14 (d, J = 9.6 Hz, 1H, 4-H), 3.08 (ddAB, J = 14.1, 5.4 

Hz, 1H, 3’-CH2), 2.98 (dAB, J = 16.3 Hz, 1H, 2-CH2), 2.97 (ddAB, J = 14.0, 7.0 Hz, 1H, 3’-

CH2), 2.87 (dAB, J = 16.3 Hz, 1H, 2-CH2), 1.96-1.91 (m, 2H, 7-CH2), 1.27-1.21 (m, 30H, Oi-

Pr-CH3, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21-CH2), 0.87 (t, J = 6.9 Hz, 

3H, 20-CH3); 13C NMR (CDCl3, 126 MHz) δ 172.3 (CO2i-Pr), 171.9 (1’-CO2CH3), 170.6 

(CONH or 1-CO2CH3), 170.5 (1-CO2CH3 or CONH), 154.8 (7’-COH), 137.5 (6-CH), 130.4 

(2 × 5’-CH), 127.8 (4’-C), 121.9 (5-CH), 115.4 (2 × 6’-CH), 75.9 (3-C), 70.5 (-Oi-Pr-CH), 

58.1 (4-CH), 53.1 (2’-CH), 52.3 (CO2CH3), 51.8 (CO2CH3), 41.1 (2-CH2), 36.7 (3’-CH2), 

32.6 (7-CH2), 31.9 (18-CH2), 29.69 (CH2), 29.65 (CH2), 29.6 (CH2), 29.5 (CH2), 29.4 (CH2), 

29.2 (CH2), 29.0 (CH2) (several overlapping signals between 29.7 and 29.0, total number of 

(CH2): 15), 22.7 (19-CH2), 21.8 (-Oi-Pr-CH3), 21.5 (-Oi-Pr-CH3), 14.1 (20-CH3); IR (in 

substance) ν 3343, 2925, 2853, 1743 cm−1. Anal. Calcd for C36H57NO9: C, 66.74; H, 8.87. 

Found: C, 66.35; H, 8.87. [α]25
D +20.7 (c 0.14, CHCl3). 
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20.3   (−)-Xeniolide F 

20.3.1 Stereoselective Synthesis of the Allylic Alcohol 

 

HO OH RO OH

R= Bn
R= PMB
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RO OH
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O
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R= Bn
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391 383

406 405511

R1= TBS, R2= TMS
R1= TPS, R2= TMS
R1= TBS, R2= PMB
R1= TBS, R2= TES
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421b
421c
421d
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R= TBS
R= TPS
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R1= TBS, R2= H
R1= TPS, R2= H

418b

11b  
Scheme 153: Synthesis of the allylic alcohol 11. 
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Butyrolactone Route 

 

HO OH BnO OH
2.5 eq 388

1.0 eq BnBr, 1.1 eq NaH
THF, 75 °C, 1 h

389a (82%)  
Protected Diol 389a.406 To an ice-cooled solution of pentane-1,5-diol (388) (10.4 g, 100.0 

mmol, 2.5 eq) in THF (50 ml, 0.5 mL/mmol) was carefully added sodium hydride (60% 

suspension in mineral oil, 1.8 g, 44.0 mmol, 1.1 eq). After stirring for 1 h at rt benzyl bromide 

(4.8 ml, 40.0 mmol, 1.0 eq) was added and the resulting mixture was stirred for 1 h at 75 °C. 

The reaction was quenched at ambient temperature with saturated aq NH4Cl and extracted 

with CH2Cl2 (3 × 20 ml). The combined organic phases were dried over MgSO4 and 

concentrated. Flash chromatography (heptane/ethyl acetate 1/1) afforded the protected diol 

389a (6.3 g, 32.8 mmol, 82%) as colorless oil. (Rf 0.24 heptane/ethyl acetate 1/2).  
1H NMR (300 MHz, CDCl3) δ 7.36-7.26 (m, 5H), 4.50 (s, 2H), 3.62 (t, J = 6.5 Hz, 2H), 

3.48 (t, J = 6.3 Hz, 2H), 1.68-1.38 (series of m, 6H), no OH-resonance observed. Anal. Calcd 

for C12H18O2: C, 74.19; H 9.34. 

 

HO OH PMBO OH

2.5 eq 388

1.0 eq PMBCl, 1.1 eq NaH
0.05 eq n-Bu4NI

THF, DMSO, rt, 1 h

389b (81%)  
Protected Diol 389b.407 To an ice-cooled solution of pentane-1,5-diol (388) (10.4 g, 100.0 

mmol, 2.5 eq) in THF/DMSO (3/1, 100 mL, 1 mL/mmol) was carefully added sodium hydride 

(60 % suspension in mineral oil, 1.8 g, 44.0 mmol, 1.1 eq). After stirring for 30 min at rt 

para-methoxybenzyl chloride (5.5 mL, 40.0 mmol, 1.0 eq) was added. The resulting mixture 

was stirred for 1 h at ambient temperature, quenched with saturated aq NH4Cl and extracted 

with CH2Cl2 (3 × 40 ml). The combined organic phases were dried over MgSO4 and 

concentrated. Flash chromatography (heptane/ethyl acetate 5/1 to 1/1) afforded the protected 

diol 389b (7.2 g, 32.4 mmol, 81%) as colorless oil. (Rf 0.15 heptane/ethyl acetate 1/2).  
1H NMR (300 MHz, CDCl3) δ 7.26 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 4.42 (s, 

2H), 3.80 (s, 3H), 3.63 (t, J = 3.6 Hz, 2H), 3.44 (t, J = 6.3 Hz, 2H), 1.70-1.37 (series of m, 

6H); 13C NMR (75 MHz, CDCl3) δ 159.1 (C), 130.6 (C), 129.2 (2 × CH), 113.7 (2 × CH), 

                                            
406 Compound 49a is commercially available (e.g. from Aldrich). For an analogue synthesis, see: Boerjesson, L.; 
Csoeregh, I.; Welch, C. J. J. Org. Chem. 1995, 60, 2989-2999. 
407 For an analogue synthesis, see: Zheng, T.; Narayan, R.; Schomaker, J. M.; Borhan, B. J. Am. Chem. Soc. 
2005, 127, 6946-6947. 
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72.6 (CH2), 70.0 (CH2), 62.8 (CH2), 55.2 (CH3), 32.5 (CH2), 29.4 (CH2), 22.4 (CH2); IR (in 

substance) ν 3360, 3020, 2935-2860 cm−1. Anal. Calcd for C13H20O3: C, 69.61; H 8.99. 

Found: C, 69.22; H, 8.96.  

 

BnO OH
BnO OH

O

1. 2.0 eq SO3·pyridine, 4.0 eqEt3N
    CH2Cl2, DMSO, rt, 2 h
2. 6.0 eq NaClO2, 2.0 eq NaH2PO4·H2O
    t-BuOH, 2-methyl-2-butene, H2O, rt, 18 h

390a (71%)389a  
Acid 390a.408 To a solution of protected diol 389a (6.1 g, 31.5 mmol, 1.0 eq) in 

CH2Cl2/DMSO (4/1, 300 mL, 10 mL/mmol) was added triethylamine (17.7 mL, 126.0 mmol, 

4.0 eq) and sulfur trioxide·pyridine complex (10.0 g, 63.0 mmol, 2.0 eq) at ambient 

temperature. The reaction mixture was stirred for 2 h at rt, quenched by the addition of water 

and extracted with CH2Cl2 (3 × 20 mL). The combined organic layers were dried over MgSO4 

and concentrated and the resulting crude aldehyde (Rf 0.68 heptane/ethyl acetate 1/2) was 

dissolved in t-BuOH (125 mL, 4 mL/mmol 389a) and 2-methyl-2-butene (63 mL, 2 mL/mmol 

389a) to which a solution of NaClO2 (17.1 g, 189 mmol, 6.0 eq) and NaH2PO4·H2O (8.6 g, 

63.0 mmol, 2.0 eq) in water (63 mL, 2 mL/mmol 389a) was added. The mixture was 

vigorously stirred at ambient temperature until TLC indicated the complete consumption of 

the starting material (~18 h), diluted with water (50 mL), and extracted with CH2Cl2 (3 × 20 

mL). The combined extracts were dried over MgSO4 and concentrated. Flash chromatography 

(heptane/ethyl acetate 5/1 to 1/1) afforded the acid 390a (4.7 g, 22.4 mmol, 71%) as pale 

yellow oil (Rf 0.38 heptane/ethyl acetate 1/2).  
1H NMR (300 MHz, CDCl3) δ 7.36-7.26 (m, 5H), 4.50 (s, 2H), 3.49 (t, J = 6.0 Hz, 2H), 

2.38 (t, J = 7.1 Hz, 2H), 1.80-1.61 (m, 4H), no CO2H-resonance observed; 13C NMR (75 

MHz, CDCl3) δ 179.3 (C), 138.4 (C), 128.4 (2 × CH), 127.6 (2 × CH), 127.5 (CH), 72.9 

(CH2), 69.7 (CH2), 33.7 (CH2), 29.0 (CH2), 21.5 (CH2); IR (in substance) ν 3090-3030, 2940-

2860, 1705 cm−1. Anal. Calcd for C12H16O3: C, 69.21; H 7.74. Found: C, 69.01; H, 7.63.  

 

PMBO OH
PMBO OH

O

390b (90%)389b

1. 2.0 eq SO3·pyridine, 4.0 eq Et3N
    CH2Cl2, DMSO, rt, 2 h
2. 6.0 eq NaClO2, 2.0 eq NaH2PO4·H2O
    t-BuOH, 2-methyl-2-butene, H2O, rt, 18 h

 
                                            
408 For reference data, see: Jacobi, P. A.; Li, Y. Org. Lett. 2003, 5, 701-704. 
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Acid 390b.408 As described for the preparation of the acid 390a, protected diol 389b (5.8 g, 

26.0 mmol) was oxidized with sulfur trioxide·pyridine complex (8.3 g, 52.0 mmol). The 

resulting crude aldehyde (Rf 0.41 heptane/ethyl acetate 1/2) was treated with NaClO2 (14.1 g, 

156 mmol) and NaH2PO4·H2O (7.1 g, 52.0 mmol). Flash chromatography (heptane/ethyl 

acetate 1/2) afforded the acid 390b (5.6 g, 23.4 mmol, 90%) as white solid (Rf 0.08 

heptane/ethyl acetate 1/2).  
1H NMR (300 MHz, CDCl3) δ 7.25 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 4.42 (s, 

2H), 3.80 (s, 3H), 3.46 (t, J = 6.0 Hz, 2H), 2.37 (t, J = 7.6 Hz, 2H), 1.79-1.60 (m, 4H), no 

CO2H-resonance observed; 13C NMR (75 MHz, CDCl3) δ 178.8 (C), 159.2 (C), 130.5 (C), 

129.2 (2 × CH), 113.8 (2 × CH), 72.6 (CH2), 69.4 (CH2), 55.3 (CH3), 33.6 (CH2), 29.0 (CH2), 

21.6 (CH2); IR (in substance) ν 3100-3030, 2940-2860, 1710 cm−1. Anal. Calcd for C13H18O4: 

C, 65.53; H 7.61. Found: C, 65.27; H, 7.56. 

 

Br
O

Br

O3, CH2Cl2, −78 °C, 1.5 h
1.0 eq PPh3, 0 °C, 3 h

383 (75%)391  
Aldehyde 383.409 Through a solution of allyl bromide (391) (3.5 mL, 40.0 mmol, 1.0 eq) in 

CH2Cl2 (60 mL, 1.5 mL/mmol) at −78 °C was bubbled a stream of ozone until the color 

turned blue (~1.5 h). The excess ozone was removed by a nitrogen stream (disappearance of 

the blue color) and then triphenylphosphine (10.5 g, 40.0 mmol, 1.0 eq) was added at −78 °C. 

The reaction mixture was warmed to 0 °C and stirred for 3 h. Dichloromethane was removed 

by distillation (120 mbar, 0 °C). The residue was then distilled into a receiving flask at −78 °C 

(1.3 mbar, 0-50 °C) and afforded the aldehyde 383 (3.7 g, 30.1 mmol, 75%) as solution in 

CH2Cl2 (383/CH2Cl2 1/1.5).410 1H NMR (300 MHz, CDCl3) δ 9.53 (t, J = 2.6 Hz, 1H), 3.84 

(d, J = 2.6 Hz, 2H). Anal. Calcd for C2H3BrO: C, 19.54; H, 2.46; Br, 64.99. 

 

BnO OH

O

BnO

O
O

OH

1. 1.0 eq TMSCl, 1.0 eq Et3N
    THF, 0 °C, 1 h
2. 1.1 eq LDA, −78 °C, 30 min
    then 1.1 eq BrCH2CHO (383), 5 min

386a (33%)390a  

                                            
409 Prepared analogue to: Jachak, M.; Mittelbach, M.; Junek, H. Org. Prep. 1993, 25, 469-473. For reference 
data, see: Kraus, G. A.; Gottschalk, P. J. Org. Chem. 1983, 48, 2111-2112.  
410 Deduced from 1H NMR spectrum of the mixture. 
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Hydroxybutyrolactone 386a.411 To an ice-cooled solution of the acid 390a (0.8 g, 4.0 

mmol, 1.0 eq) in THF (8 mL, 2 mL/mmol) was subsequently added trimethylamine (0.6 mL, 

4.0 mmol, 1.0 eq) and trimethylchlorosilane (0.5 mL, 4.0 mmol, 1.0 eq). After stirring for 1 h 

at 0 °C, the precipitate was removed by filtration and washed with diethylether. The solution 

was concentrated and afforded protected acid 385a which was used without further 

purification. To a solution of LDA [prepared in situ from diisopropyl amine (0.6 mL, 4.4 

mmol, 1.1 eq) and n-BuLi (2.1 M in hexanes, 2.1 mL, 4.4 mmol, 1.1 eq)] in THF (12 mL, 3.0 

mL/mmol) at −78 °C was added 385a (4.0 mmol, 1.0 eq). After 30 min the aldehyde 383 

(7.6% in CH2Cl2, 0.5 g, 4.4 mmol, 1.1 eq) was added and the reaction mixture was stirred 

until TLC indicated the complete consumption of the starting material (~10 min). The 

reaction was quenched by the addition of acetic acid (0.5 mL, 8.8 mmol, 2.2 eq) and saturated 

aq NaHCO3 at 0 °C, extracted with CH2Cl2 (3 x 10 mL) and concentrated. The crude product 

was dissolved in CH2Cl2 (4 mL, 1 mL/mmol) and treated with TBAF (1.0 M in THF, 0.5 mL, 

mmol, eq). The reaction was quenched by the addition of saturated aq NH4Cl, extracted with 

CH2Cl2 (3 x 5 mL) and concentrate. The crude product was purified by flash chromatography 

(heptane/ ethyl acetate 1/1) to afford the hydroxybutyrolactone 386a (0.33 g, 1.3 mmol, 33%) 

as pale yellow oil (Rf  0.06 heptane/ethyl acetate 1/1). 1H NMR δ 7.37-7.31 (m, 5H), 4.51 (s, 

2H), 4.40 (dd, J = 9.0, 6.5 Hz, 1H), 4.33 (dd, J = 12.0, 6.0 Hz, 1H), 3.97 (dd, J = 9.0, 5.4 Hz, 

1H), 3.60-3.56 (m, 2H), 2.59-2.53 (m, 1H), 2.04-1.60 (series of m, 4H); 13C NMR (75 MHz, 

CDCl3) δ 177.3 (C), 137.6 (C), 128.5 (2 × CH), 128.0 (2 × CH), 127.8 (CH), 73.3 (CH2), 

72.33 (CH), 72.27 (CH2), 70.3 (CH2), 47.8 (CH), 26.8 (CH2), 26.3 (CH2); IR (in substance) ν 

3435, 3030, 2925-2860 cm−1. Anal. Calcd for C14H18O4: C, 67.18; H, 7.25. 

 

PMBO OH

O

PMBO

O
O

OH

1. 1.0 eq TMSCl, 1.0 eq Et3N
    THF, 0 °C, 1 h
2. 1.1 eq LDA, −78 °C, 30 min
    then 1.1 BrCH2CHO (383), 5 min

386b (33%)390b  
Hydroxybutyrolactone 386b.411 As described in the preceding paragraph, acid 390b (4.3 

g, 18.0 mmol) was treated with triethylamine (2.5 mL, 18.0 mmol) and trimethylchlorosilane 

(2.3 mL, 18.0 mmol). The crude acid 385 was deprotonated and aldehyde 383 (19% in 

CH2Cl2, 12.8 g, 19.8 mmol) was added. After treatment with TBAF (1.0 M in THF, 9.0 mL, 

                                            
411 Not fully characterized. 386a/386b are part of a dead-end synthetic route. For that reason, the complete set of 
analytical data was not acquired. Yields not optimized. 
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4.5 mmol), flash chromatography (heptane/ethyl acetate 1/1) afforded hydroxybutyrolactone 

386b (1.8 g, 6.5 mmol, 33%) as pale yellow oil (Rf 0.47 ethyl acetate).  
1H NMR δ 7.25 (d, J = 9.4 Hz, 2H), 6.87 (dd, J = 8.9, 2.3 Hz, 2H), 4.45-4.41 (m, 2H), 4.37 

(dd, J = 9.1, 6.5 Hz, 1H), 4.26-4.22 (m, 1H), 3.95 (dd, J = 9.1, 5.5 Hz, 1H), 3.79 (s, 3H), 3.58-

3.50 (m, 2H), 2.57-2.41 (m, 1H), 2.06-1.75 (series of m, 4H). Anal. Calcd for C15H20O5: C, 

64.27; H, 7.19.  

 

OBn

O
O

HO OBn

O
O

1. 1.2 eq MsCl, 1.3 eq Et3N
    CH2Cl2, 0 °C, 15 min
2. 3.0 eq TMG, THF, rt, 18 h

386a 392a (34%)  
Lactone 392a.412 To an ice-cooled solution of hydroxybutyrolactone 386a (1.8 g, 6.5 

mmol, 1.0 eq) in CH2Cl2 (20 mL, 3 mL/mmol) at 0 °C was subsequently added triethylamine 

(1.2 mL, 8.5 mmol, 1.3 eq) and methane sulfonyl chloride MsCl (0.6 mL, 7.8 mmol, 1.2 eq). 

The reaction mixture was stirred for 15 min at 0 °C, quenched by the addition of saturated aq. 

NaHCO3 and extracted with CH2Cl2 (3 x 5 mL). The combined organic layers were dried over 

MgSO4 and concentrated. The crude product (3.3 mmol)413 was dissolved in THF (6.5 mL, 2 

mL/mmol 386a) and treated with tetramethylguanidine TMG (1.2 mL, 9.8 mmol, 3.0 eq) at 0 

°C. After stirring for 18 h at rt the reaction was quenched by the addition of water (7 mL, 2 

mL/mmol) and extracted with CH2Cl2 (3 x 5 mL). The combined extracts were dried over 

MgSO4 and concentrated. Flash chromatography (heptane/ethyl acetate 1/1) afforded the 

lactone 392a (0.29 g, 1.1 mmol, 34%) as pale yellow oil (Rf 0.41 ethyl acetate).  
1H NMR (300 MHz, CDCl3) δ 7.36-7.26 (m, 5H), 7.06 (t, J = 1.6 Hz, 1H), 4.73 (ddd, J = 

2.0, 2.0, 2.0 Hz, 2H), 4.49 (s, 2H), 3.50 (t, J = 6.2 Hz, 2H), 2.41 (td, J = 7.7, 1.7 Hz, 2H), 

1.94-1.83 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 174.3 (C), 144.5 (CH), 138.3 (C), 133.9 

(C), 128.4 (2 × CH), 127.7 (2 × CH), 127.6 (CH), 73.0 (CH2), 70.1 (CH2), 69.2 (CH2), 27.5 

(CH2), 22.3 (CH2); IR (in substance) ν 3080-3030, 2930-2860, 1745 cm−1. Anal. Calcd for 

C14H16O3: C, 72.39; H 6.94. 

 

                                            
412 Not fully characterized. Compounds 392a,b are part of a dead-end synthetic route. For that reason, the 
complete set of analytical data was not acquired. Yields not optimized. 
413 The crude product was divided into two parts with equal amount of the mesylate. Only one half was used for 
the conditions described above. The other half was treated with DBU and afforded lower yields. Yields not 
optimized. 
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OPMB

O
O

HO OPMB

O
O

1. 1.2 eq MsCl, 1.2 eq Et3N
    CH2Cl2, 0 °C, 15 min
2. 3.0 eq TMG, THF, rt, 18 h

385b 392b (43%)  
Lactone 392b.412 As described for lactone 392a, hydroxybutyrolactone 385b (1.1 g, 4.5 

mmol, 1.0 eq) was treated with triethylamine (0.8 mL, 5.8 mmmol) and methane sulfonyl 

chloride MsCl (0.41 mL, 5.4 mmol). Tetramethylguanidine (0.8 mL, 6.8 mmol) was then 

added to the resulting crude mesylate (2.3 mmol). Flash chromatography (heptane/ethyl 

acetate 1/1) afforded the lactone 392b (0.22 g, 1.0 mmol, 43%) as pale yellow oil (Rf 0.43 

ethyl acetate).  
1H NMR (300 MHz, CDCl3) δ 7.25 (d, J = 8.4 Hz, 2H), 7.06 (t, J = 1.5 Hz, 1H), 6.87 (d, J = 

8.8 Hz, 2H), ), 4.73 (ddd, J = 1.9, 1.9, 1.9 Hz, 2H), 4.42 (s, 2H), 3.80 (s, 3H), 3.47 (t, J = 6.2 

Hz, 2H), 2.39 (td, J = 7.6, 1.6 Hz, 2H), 1.91-1.81 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 

174.3 (C), 159.2 (C), 144.5 (CH), 133.9 (C), 130.4 (C), 129.3 (2 × CH), 113.8 (2 × CH), 72.6 

(CH2), 70.1 (CH2), 68.9 (CH2), 55.3 (CH3), 27.5 (CH2), 22.3 (CH2); IR (in substance) ν 3000-

2860, 1745 cm−1. Anal. Calcd for C15H18O4: C, 68.68; H 6.92. Found: C, 68.73; H, 6.99. 

 
Cross-Coupling Approach 
 

HO
OH

HO

OH

SnBu3

398 404 (87%)

0.5 mol% (PPh3)2PdCl2
1.05 eq HSnBu3
THF, rt, 15 min

 
Vinyl Stannane 404.414,388 To a solution of 2-butyne-1,4-diol (398) (3.4 g, 40.0 mmol, 1.0 

eq) and (PPh3)2PdCl2 (0.14 g, 0.2 mmol, 0.5 mol%) in THF (20 mL, 0.5 mL/mmol) at rt was 

slowly added a solution of tri-n-butyltin hydride HSnBu3 (11.3 mL, 42.0 mmol, 1.05 eq) in 

THF (30 mL, 0.7 mL/mmol). The color of the solution turned from light yellow to orange-

brown during the addition. The reaction mixture was stirred for 15 min at ambient 

temperature, concentrated and purified by column chromatography (hexanes/ethyl acetate 

10/1 to 2/1) to afford the vinyl stannane 404 (13.1 g, 35.3 mmol, 87%) as a yellow oil (Rf  

0.47 hexanes/ethyl acetate 3/1). 
1H NMR (300 MHz, CDCl3) δ 5.78 (tt, J = 5.9, 2.0 Hz, 1H), 4.39 (bd, J = 1.9 Hz, 2H), 4.19 

(bt, J = 4.8 Hz, 2H), 1.81 (bs, 1H), 1.65-1.57 (m, 1H), 1.54-1.43 (m, 6H), 1.36-1.24 (m, 6H), 
                                            
414 (a) Commeiras, L.; Valls, R.; Santelli, M.; Parrain, J.-L. Synlett 2003, 1719-1721. (b) Commeiras, L.; 
Santelli, M.; Parrain, J.-L. Org. Lett. 2001, 3, 1713-1715. 
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1.02-0.80 (m, 6H), 0.88 (t, J = 7.2 Hz, 9H); 13C NMR (75 MHz, CDCl3) δ 149.3 (C), 138.1 

(CH), 63.6 (CH2), 59.8 (CH2), 29.1 (3 × CH2), 27.4 (3 × CH2), 13.7 (3 × CH3), 10.0 (3 × 

CH2); IR (in substance) ν 3305, 2955-2855 cm−1. Anal. Calcd for C16H34O2Sn: C, 50.95; H 

9.09. Found: C, 50.95; H, 9.11. 

HO

OH

SnBu3 TBSO

OH

SnBu3

404 399a (88%)

1.0 eq TBSCl
1.0 eq imidazole
THF, 0 °C, 4 h

 
TBS-Protected Vinyl Stannane 399a.414,388 To an ice-cooled solution of the vinyl stannane 

404 (13.1 g, 35.3 mmol, 1.0 eq) in THF (35 mL, 1 mL/mmol) was added imidazole (2.4 g, 

35.3 mmol, 1.0 eq) and t-butyldimethylchlorosilane TBSCl (5.3 g, 35.3 mmol, 1.0 eq). After 4 

h at 0 °C, the reaction was quenched by the addition of saturated aq NH4Cl and extracted with 

CH2Cl2 (3 × 30 mL). The combined organic layers were dried and concentrated. The crude 

product was purified by column chromatography (hexanes/ethyl acetate 100/1 to 10/1) to 

afford the protected vinyl stannane 399a (15.2 g, 30.9 mmol, 88%) as a pale yellow oil (Rf 

0.26 hexanes/ethyl acetate 100/1). 
1H NMR (300 MHz, CDCl3) δ 5.63 (tt, J = 5.4, 2.0 Hz, 1H), 4.34 (d, J = 5.5 Hz, 2H), 4.22 

(d, J = 5.4 Hz, 2H), 1.82 (brt, J = 5.5 Hz, 1H), 1.57-1.38 (m, 6H), 1.30-1.26 (m, 6H), 0.91 (s, 

9H), 0.94-0.86 (m, 15H), 0.08 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 147.2 (C), 138.9 (CH), 

63.8 (CH2), 60.7 (CH2), 29.2 (3 × CH2), 27.4 (3 × CH2), 25.9 (3 × CH3), 18.3 (C), 13.7 (3 × 

CH3), 10.1 (3 × CH2), –5.1 (2 × CH3); IR (in substance) ν 3435, 2950-2855 cm−1. Anal. Calcd 

for C22H48O2SiSn: C, 53.77; H, 9.85. Found: C, 53.80; H, 9.92. 

 

HO

OH

SnBu3 TPSO

OH

SnBu3

404 399b (81%)

1.0 eq TPSCl
1.0 eq imidazole
THF, 0 °C, 4 h

 
TPS-Protected Vinyl Stannane 399b.415 As described in the preciding paragraph, 

consecutive treatment of vinyl stannane 9 (2.3 g, 6.1 mmol, 1.0 eq) in THF (6 mL, 1 

mL/mmol) with imidazole (0.42 g, 6.1 mmol, 1.0 eq) and t-butyldiphenylchlorosilane (1.7 g, 

1.6 mL, 6.1 mmol, 1.0 eq) afforded the protected vinyl stannane 404b (3.0 g, 4.9 mmol, 81%) 

as a pale yellow oil (Rf 0.50 hexanes/ethyl acetate 20/1). 

                                            
415 Prepared analogue to reference 414. 
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1H NMR (300 MHz, CDCl3) δ 7.69-7.66 (m, 4H), 7.43-7.34 (m, 6H), 5.74 (tt, J = 5.5, 2.1 

Hz, 1H), 4.23 (d, J = 5.6 Hz, 2H), 4.09 (brd, J = 3.8 Hz, 2H), 1.53-1.39 (m, 6H), 1.37-1.25 

(m, 6H), 1.03 (s, 9H), 0.87 (t, J = 7.2 Hz, 9H), 0.99-0.77 (m, 6H) no OH-resonance observed; 
13C NMR (126 MHz, CDCl3) δ 147.3 (C), 138.2 (CH), 135.6 (4 × CH), 133.7 (2 × C), 129.6 

(2 × CH), 127.6 (4 × CH), 63.5 (CH2), 61.3 (CH2), 29.2 (3 × CH2), 27.4 (3 × CH2), 26.8 (3 × 

CH3), 19.1 (C), 13.7 (3 × CH3), 10.0 (3 × CH2); IR (in substance) ν 3475, 3070-3055, 2955-

2855 cm−1. Anal. Calcd for C32H52O2SiSn: C, 62.44; H, 8.51. Found: C, 52.56; H, 8.65. 

 

HO OH BnO OH
2.5 eq 406

1.0 eq BnBr, 1.1 eq NaH
THF, 75 °C, 1 h

511 (75%)  
Protected Diol 511.416 To an ice-cooled solution of propane-1,3-diol (406) (2.8 mL, 50.0 

mmol, 2.5 eq) in THF (25 mL, 0.5 mL/mmol) was carefully added sodium hydride (60% 

suspension in mineral oil, 0.9 g, 22.0 mmol, 1.1 eq). After stirring for 1 h at rt benzyl bromide 

(2.4 mL, 20.0 mmol, 1.0 eq) was added and the resulting mixture was stirred for 1 h at 75 °C. 

The reaction was quenched at ambient temperature with saturated aq NH4Cl and extracted 

with CH2Cl2 (3 × 30 mL). The combined organic phases were dried over MgSO4 and 

concentrated. Flash chromatography (heptane/ethyl acetate 1/1) afforded the protected diol 

511 (2.5 g, 15.0 mmol, 75%) as colorless liquid (Rf 0.35 heptane/ethyl acetate 1/1).  
1H NMR (300 MHz, CDCl3) δ 7.38-7.29 (m, 5H), 4.53 (s, 2H), 3.79 (brt, J = 5.4 Hz, 2H), 

3.67 (t, J = 5.8 Hz, 2H), 2.26 (brs, 1H), 1.87 (quint, J = 5.7 Hz, 2H); 13C NMR (126 MHz, 

CDCl3) δ 138.1 (C), 128.4 (2 × CH), 127.7 (2 × CH), 127.6 (CH), 73.3 (CH2), 69.4 (CH2), 

61.9 (CH2), 32.1 (CH2); IR (in substance) ν 3370, 3090-3030, 2940-2865 cm−1. Anal. Calcd 

for C10H14O2: C, 72.26; H, 8.49. 

 

BnO OH

511
BnO Br

1.1 eq Br2, 1.1 eq PPh3
THF, 0 °C to rt, 3 h

405 (93%)  
Bromide 405.417 To an ice-cooled solution of the protected diol 511 (2.4 g, 14.4 mmol, 1.0 

eq) in THF (43 mL, 3 mL/mmol) was added triphenylphosphine (4.1 g, 15.8 mmol, 1.1 eq) 

and bromine (0.8 mL, 15.8 mmol, 1.1 eq). The reaction mixture was warmed to rt and stirred 

for 3 h at rt. The reaction was quenched by the addition of saturated aq NaS2O3 and extracted 
                                            
416 Compound 511 is commercially available (e.g. from ALDRICH). For an analogue synthesis, see: Schomaker, 
J. M.; Pulgam, V. R.; Borhan, B. J. Am. Chem. Soc. 2004, 126, 13600-13601. 
417 Compound 405 is commercially available (e.g. from ALDRICH). For reference data, see: Ziegler, F. E.; 
Klein, S. I.; Pati, U. K.; Wang, T. F. J. Am. Chem. Soc. 1985, 107, 2730-2737. 
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with CH2Cl2 (3 × 30 mL). The combined organic layers were dried and concentrated. Flash 

chromatography (heptane/ethyl acetate 10/1) afforded the bromide 405 (3.1 g, 13.5 mmol, 

93%) as colorless liquid (Rf 0.61 heptane/ethyl acetate 1/1).  
1H NMR (300 MHz, CDCl3) δ 7.36-7.31 (m, 5H), 4.52 (s, 2H), 3.61 (t, J = 5.4 Hz, 2H), 

3.54 (t, J = 6.6 Hz, 2H), 2.14 (quint, J = 6.4 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 138.2 (C), 

128.4 (2 × CH), 127.6 (3 × CH), 73.2 (CH2), 67.7 (CH2), 32.9 (CH2), 30.6 (CH2); IR (in 

substance) ν 3065-3030, 2940-2860 cm−1. Anal. Calcd for C10H13BrO: C, 52.42; H, 5.71. 

Found: C, 52.48; H, 5.49.  

 

TBSO

OH

SnBu3 TBSO

OH

I

399a 248a (97%)

1.2 eq I2, CH2Cl2
−78 °C to rt, 15 min

 
Vinyl Iodide 248a.418,388 To a solution of the protected vinyl stannane 399a (12.9 g, 26.2 

mmol, 1.0 eq) in CH2Cl2 (100 mL, 4 mL/mmol) was added iodine (8.0 g, 31.4 mmol, 1.2 eq) 

at –78 °C. The reaction mixture was warmed to rt, quenched by the addition of saturated aq 

Na2S2O3 and extracted with CH2Cl2 (3 × 70 mL). The combined organic layers were dried and 

concentrated. The crude product was purified by column chromatography (hexanes/ethyl 

acetate 10/1 to 3/1) to afford the light sensitive vinyl iodide 248a (8.3 g, 25.3 mmol, 97%) as 

a pale yellow oil (Rf 0.32 hexanes/ethyl acetate 20/1).419 
1H NMR (300 MHz, CDCl3) δ 6.44 (bt, J = 6.2 Hz, 1H), 4.27 (d, J = 6.4 Hz, 2H), 4.21 (d, J 

= 6.2 Hz, 2H), 2.51 (t, J = 6.7 Hz, 1H), 0.90 (s, 9H), 0.08 (s, 6H); 13C NMR (75 MHz, CDCl3) 

δ 141.6 (CH), 104.7 (C), 66.7 (CH2), 61.2 (CH2), 25.8 (3 × CH3), 18.2 (C), –5.3 (2 × CH3); IR 

(in substance) ν 3355, 2955-2855 cm−1. Anal. Calcd for C10H21IO2Si: C, 36.59; H, 6.45. 

Found: C, 36.76; H, 6.97. 

 

TPSO

OH

SnBu3 TPSO

OH

I

399b 248b (100%)

1.2 eq I2, CH2Cl2
−78 °C to rt, 15 min

 
Vinyl Iodide 248b.418 As described for the preparation of vinyl iodide 248a, TPS-protected 

vinyl stannane 399b (3.0 g, 4.9 mmol, 1.0 eq) was treated with iodine (1.48 g, 5.8 mmol, 1.2 

                                            
418 Prepared analogue to: Aoyagi, S.; Wang, T. C.; Kibayashi, C. J. Am. Chem. Soc. 1993, 105, 11393-11409. 
419 We found 248a stable for storing for about two weeks at 4 °C protected from light. 
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eq) to afford the light sensitive vinyl iodide 248b (2.2 g, 4.9 mmol, 100%) as a pale yellow oil 

(Rf 0.26 hexanes/ethyl acetate 10/1). 
1H NMR (300 MHz, CDCl3) δ 7.68-7.65 (m, 4H), 7.48-7.37 (m, 6H), 6.46 (t, J = 6.4 Hz, 

1H), 4.20 (d, J = 6.4 Hz, 2H), 4.03 (d, J = 6.2 Hz, 2H), 1.97 (t, J = 6.6 Hz, 1H), 1.05 (s, 9H); 
13C NMR (75 MHz, CDCl3) δ 141.4 (CH), 135.6 (4 × CH), 132.9 (2 × C), 129.9 (2 × CH), 

127.8 (4 × CH), 105.1 (C), 65.9 (CH2), 61.7 (CH2), 26.7 (3 × CH3), 19.1 (C); IR (in 

substance) ν 3375, 3070-3060, 2935-2855 cm−1. Anal. Calcd for C20H25IO2Si: C, 53.10; H, 

5.57. Found: C, 53.14; H, 5.63. 

 

MeO

OH

512

MeO

O CCl3

NH
1.0 eq Cl3CCN, 0.1 eq NaH

THF, rt, 4 h

513 (97%)  
Bundle’s Reagent (513).420 To a solution of sodium hydride (60% suspension in mineral 

oil, 0.24 g, 6.0 mmol, 0.1 eq) in THF (18 mL, 0.3 mL/mmol 512) was carefully added a 

solution of para-methoxy benzyl alcohol (513) (7.5 mL, 60.0 mmol, 1.0 eq) in THF (12 mL, 

0.2 mL/mmol) at ambient temperature. After stirring for 30 min the reaction mixture was 

cooled to 0 °C and trichloroacetonitrile (6.0 mL, 60.0 mmol, 1.0 eq) was slowly added 

whereupon the solution turned yellow. The reaction mixture was warmed to rt and stirred for 

4 h. During that time the color darkend and eventually became red. The reaction was diluted 

with pentane (18 mL, 0.3 mL/mmol) and methanol (0.24 mL, 4 μL/mmol) was added. The 

mixture was filtred through a plug of Celite and concentrated to afford Bundle’s reagent (513) 

(16.4 g, 58.0 mmol, 97%) as deep orange oil (Rf 0.74 heptanes/ethyl acetate 1/1).  
1H NMR (300 MHz, CDCl3) δ 8.35 (brs, 1H), 7.36 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.4 Hz, 

2H), 5.26 (s, 2H), 3.81 (s, 3H). Anal. Calcd for C10H10Cl3NO2: C 42.51; H 3.57; Cl, 37.64, N, 

4.96. 

 

TBSO

OH

I

MeO
O CCl3

NH

513

TBSO

OPMB

I

1.01 eq 513, 0.02 eq CSA
CH2Cl2, rt, 10 d

248a 421c (45%)

 

                                            
420 (a) Paquette, L. A.; Guevel, R.; Sakamoto, K.; In, H.; Crawford, J. J. Org. Chem. 2003, 68, 6069-6107. (b) 
Iversen, T.; Bundle, D. R. J. Chem. Soc., Chem. Comm. 1981, 1240-1241. 
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Fully Protected Vinyl Iodide 421c.421 To a solution of vinyl iodide 248a (0.16 g, 0.5 

mmol, 1.0 eq) in CH2Cl2 (2 mL, 4 mL/mmol) was added Bundle’s reagent (513) (0.14 g, 0.6 

mmol, 1.1 eq) and campher sulfonic acid CSA (2.3 mg, 0.01 mmol, 0.02 eq) at ambient 

temperature. The reaction was stirred in the dark for 10 d, quenched by the addition of 

saturated aq NaHCO3 and extracted with CH2Cl2 (3 × 3 mL). The combined organic phases 

were dried and concentrated. Flash chromatrography (hexanes/ethyl acetate 20/1) afforded the 

vinyl iodide 421c (0.10 g, 0.23 mmol, 45%) as light sensitive, pale yellow oil (Rf 0.59 

hexanes/ethyl acetate 3/1).  
1H NMR (300 MHz, CDCl3) δ 7.26 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.50 (t, J = 

6.2 Hz, 1H), 4.39 (s, 2H), 4.13-4.06 (m, 4H), 3.76 (s, 3H), 0.84 (s, 9H), 0.00 (s, 6H). Anal. 

Calcd for C18H29IO3Si: C, 48.21; H 6.52; I, 28.30. 

 

TBSO

OH

I TBSO

OTES

I

1.1 eq TESOTf, 1.3 eq 2,6-lutidine
CH2Cl2, 0 °C to rt, 1 h

248 421d (96%)  
Fully Protected Vinyl Iodide 421d.421 To an ice-cooled solution of vinyl iodide 248a (0.7 

g, 2.0 mmol, 1.0 eq) in CH2Cl2 (2 mL, 2 mL/mmol) was added 2,6-lutidine (0.3 mL, 2.6 

mmol, 1.3 eq) and triethylsilyl trifluoromethylsulfonate TESOTf (0.5 mL, 2.2 mmol, 1.1 eq). 

The reaction was warmed to rt, stirred at ambient temperature for 1 h in the dark, quenched by 

the addition of saturated aq NaHCO3 and extracted with CH2Cl2 (3 × 3 mL). The combined 

organic phases were dried and concentrated. Flash chromatrography (hexanes/ethyl acetate 

20/1 to 3/1) afforded the vinyl iodide 421d (0.9 g, 1.9 mmol, 96%) as light sensitive, pale 

yellow oil (Rf 0.62 hexanes/ethyl acetate 3/1).  
1H NMR (300 MHz, CDCl3) δ 6.32 (t, J = 6.2 Hz, 1H), 4.23-4.17 (m, 4H), 0.92 (t, J = 8.0 

Hz, 9H), 0.83 (s, 9H), 0.58 (quart, J = 7.9 Hz, 6H), 0.00 (s, 6H). Anal. Calcd for 

C16H35IO2Si2: C, 43.43; H 7.97; I, 28.68. 

 

HO BnO

2.0 eq 255 510a (92%)

1.0 eq BnBr, 1.3 eq NaH
THF, 75 °C, 1 h

 

                                            
421 Test substrate for the B-alkyl-Suzuki-Miyaura cross-coupling. Not fully characterised. Yields not optimized. 
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Allyl Benzyl Ether (510a).422,388 To an ice-cooled solution of the allylic alcohol 255 (5.5 

mL, 80.0 mmol, 2.0 eq) in THF (20 mL, 0.5 mL/mmol) was added sodium hydride (2.1 g, 

52.0 mmol, 1.3 eq). After 1 h at 0 °C, benzyl bromide (4.8 mL, 40.0 mmol 1.0 eq) was added 

and the reaction mixture was warmed to 75 °C for 1 h. The reaction was then quenched by the 

addition of saturated aq NH4Cl at rt and extracted with CH2Cl2 (3 × 30 mL). The combined 

organic layers were dried and concentrated. The crude product was purified by column 

chromatography (hexanes/ethyl acetate 20/1) to afford the ether 510a (5.4 g, 36.5 mmol, 

92%) as a colorless oil (Rf 0.73 hexanes/ethyl acetate 10/1). 
1H NMR (300 MHz, CDCl3) δ 7.36-7.28 (m, 5H), 5.96 (tdd, J = 17.2, 10.4, 5.6 Hz, 1H), 

5.31 (ddd, J = 17.2, 3.3, 1.6 Hz, 1H), 5.21 (ddd, J = 10.4, 2.9, 1.3 Hz, 1H), 4.53 (s, 2H), 4.03 

(td, J = 5.6, 1.4 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ 138.3 (C), 134.8 (CH), 128.4 (2 × 

CH), 127.7 (2 × CH), 127.6 (CH), 117.0 (CH2), 72.1 (CH2), 71.1 (CH2); IR (in substance) ν 

3375, 2955-2855 cm−1. Anal. Calcd for C10H12O: C 81.04; H 8.16. Found: C 80.87; H 8.07. 

 

HO THPO

510b (42%)255

1.1 eq DHP, 0.1 eq p-TSA
CH2Cl2, rt, 2 h

 
Allyl Tetrahydropyranyl Ether (510b).421 To a solution of the allylic alcohol 255 (0.7 

mL, 10.0 mmol, 1.0 eq) in CH2Cl2 (5 mL, 0.5 mL/mmol) was added 3,4-dihydro-2H-pyrane 

DHP (1.0 g, 11.0 mmol, 1.1 eq) and p-TSA (0.18 g, 1.0 mmol, 0.1 eq). The reaction was 

stirred until TLC indicated complete consumption of the starting material (~2 h), quenched by 

the addition of saturated aq NaHCO3 and extracted with CH2Cl2 (3 × 10 mL). The combined 

organic layers were dried and concentrated. The crude product was purified by column 

chromatography (hexanes/ethyl acetate 20/1) to afford the ether 510b (0.6 g, 4.2 mmol, 42%) 

as a colorless liquid (Rf 0.63 hexanes/ethyl acetate 1/1). 
1H NMR (300 MHz, CDCl3) δ 6.01-5.87 (m, 1H), 5.30 (dddd, J = 17.2, 1.7, 1.7, 1.7 Hz, 

1H), 5.17 (dd, J = 10.2, 1.8 Hz, 1H), 4.64 (t, J = 3.4 Hz, 2H), 4.25 (ddtAB, J = 13.0, 5.2, 1.5 

Hz, 1H), 3.98 (ddAB, J = 13.0, 6.2 Hz, 1H), 3.91-3.83 (m, 1H), 3.55-3.46 (m, 1H), 1.90-1.47 

(series of m, 6H). Anal. Calcd for C8H14O2: C, 67.57; H, 9.92.  

 

                                            
422 (a) Braun, J. V. Chem. Ber. 1910, 43, 1350-1352. (b) Beinhoff, M.; Karakaya, A.; Schlüter, A. D. Synthesis 
2003, 79-90. (c) Bo, Z.; Schlüter, A. D. J. Org. Chem. 2002, 67, 5327-5332. 
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HO PMBO

510c (87%)2.0 eq 255

1.1 eq NaH
1.05 eq PMBCl, 0.05 eq n-Bu4NI

THF, DMSO, rt, 16 h

 
Allyl p-Methoxybenzyl Ether (510c).421 To an ice-cooled solution of the allylic alcohol 

255 (0.7 mL, 10.0 mmol, 1.0 eq) and para-methoxybenzyl chloride PMBCl (1.4 mL, 10.5 

mmol, 1.05 eq) in THF/DMSO (2/1, 40 mL, 4 mL/mmol) was added sodium hydride (0.44 g, 

11.0 mmol, 1.1 eq) and n-Bu4NI (0.18 g, 0.5 mmol, 0.05 eq). The reaction mixture was 

warmed to ambient temperature and stirred overnight. The reaction was then quenched by the 

addition of saturated aq NH4Cl and extracted with CH2Cl2 (3 × 30 mL). The combined 

organic layers were dried and concentrated. The crude product was purified by flash 

chromatography (hexanes/ethyl acetate 20/1) to afford the ether 510c (1.5 g, 8.7 mmol, 87%) 

as a colorless liquid (Rf 0.51 hexanes/ethyl acetate 1/1). 
1H NMR (300 MHz, CDCl3) δ 7.21 (d, J = 9.1 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H) 5.94 (ddt, J 

= 17.1, 10.6, 5.7 Hz, 1H), 5.29 (dddd, J = 17.2, 1.8, 1.8, 1.8 Hz, 1H), 5.19 (dddd, J = 10.4, 

1.5, 1.5, 1.5 Hz, 1H), 4.45 (s, 2H), 4.01 (dt, J = 5.6, 1.3 Hz, 2H), 3.80 (s, 3H). Anal. Calcd for 

C11H14O2: C, 74.13; H, 7.92. 

 

BnO

B

ITBSO

OTMS

TBSO

OR

OBn

+

1 mol% (dppf)PdCl2
3.5 eq NaOH (2.0 M in H2O)

toluene, THF (~1:1)
100 °C, 1 h

1.0 eq 421a 1.05 eq 247a R= TMS  418a

R= H  11a   (60%)

1.0 eq K2CO3
MeOH, rt, 30 min

 
Allylic Alcohol 11a.388 To a solution of allyl benzyl ether (510a) (2.1 g, 14.0 mmol, 1.0 eq) 

in THF (28 mL, 2 mL/mmol) was added a solution of 9-BBN in THF (0.5 M, 29.3 mL, 1.05 

eq) at rt. The reaction mixture was stirred at ambient temperature until TLC control indicated 

complete consumption of the starting material (~48 h). The solution of the borane 247a422b,c 

was used without further purification. 

To an ice-cooled solution of the vinyl iodide 248a (4.4 g, 13.3 mmol, 1.0 eq) in CH2Cl2 (40 

mL, 3 mL/mmol) was added triethylamine (1.9 mL, 13.3 mmol, 1.0 eq) and 

trimethylchlorosilane (1.7 mL, 13.3 mmol, 1.0 eq). The reaction mixture was stirred in the 

dark for 30 min at 0 °C and then warmed to rt. The solvents were evaporated and the white 
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precipitate was removed by filtration and washed with diethyl ether. The ether was then 

evaporated and the fully protected vinyl iodide 421a (Rf 0.69 hexanes/ethyl acetate 20/1) was 

used without further purification. 

To the solution of the borane 247a in THF (0.47 M, 59.3 mL, 1.05 eq) was added the 

protected vinyl iodide 421a (13.3 mmol, 1.0 eq) in toluene (52 mL, 4 mL/mmol) and aq 

NaOH (2.0 M, 23.3 mL, 3.5 eq). The reaction mixture was carefully degassed under reduced 

pressure, recharged with argon and then (dppf)PdCl2 (0.11 g, 0.1 mmol, 1 mol%) was added. 

The orange solution was refluxed for 1 h at 100 °C and turned dark brown. The reaction 

mixture was then cooled to rt, washed with saturated aq NH4Cl (100 mL), water (100 mL) and 

brine (100 mL), and was then dried and concentrated. The crude product was purified by 

column chromatography (hexanes/ethyl acetate 20/1 to 3/1) to give a mixture of the fully 

protected diol 418a (Rf 0.65 hexanes/ethyl acetate 10/1) and a small amount of the 

monoprotected diol 11a (Rf 0.38 hexanes/ethyl acetate 10/1). The mixture was dissolved in 

MeOH (26.0 mL, 2.0 mL/mmol) and K2CO3 (1.8 g, 13.3 mmol, 1.0 eq) was added at rt. After 

30 min, the salts were removed by filtration and washed with CH2Cl2. The organic solvents 

were then evaporated and the crude product was purified by column chromatography 

(hexanes/ethyl acetate 10/1) to afford the allylic alcohol 11a (2.8 g, 8.0 mmol, 60%) as a 

brown oil (Rf 0.38 hexanes/ethyl acetate 10/1). 
1H NMR (300 MHz, CDCl3) δ 7.29-7.19 (m, 5H), 5.44 (t, J = 6.3 Hz, 1H), 4.41 (s, 2H), 

4.15 (d, J = 6.3 Hz, 2H), 4.02 (s, 2H), 3.42 (t, J = 6.3 Hz, 2H), 2.14 (t, J = 7.5 Hz, 2H), 1.75-

1.66 (m, 2H), 0.82 (s, 9H), 0.00 (s, 6H), no OH resonance observed; 13C NMR (75 MHz, 

CDCl3) δ 142.0 (C), 138.4 (C), 128.4 (2 × CH), 127.7 (2 × CH), 127.6 (CH), 127.1 (CH), 72.9 

(CH2), 69.9 (CH2), 61.0 (CH2), 59.5 (CH2), 32.6 (CH2), 28.1 (CH2), 25.9 (3 × CH3), 18.3 (C), 

–5.2 (2 × CH3); IR (in substance) ν 3395, 3030, 2955-2855 cm−1. Anal. Calcd for C20H34O3Si: 

C, 68.52; H, 9.78. Found: C, 68.72; H, 9.90. 

 

BnO

B

ITPSO

OTMS

TPSO

OR

OBn

+

1 mol% (dppf)PdCl2
3.5 eq NaOH (2.0 M in H2O)

toluene, THF (~1:1)
100 °C, 1 h

1.0 eq 421b 1.05 eq 247a R= TMS  418b

R= H  11b (24%)

1.0 eq K2CO3
MeOH, rt, 30 min
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Allylic Alcohol 11b.423 As described in the preceding paragraph, allyl benzyl ether (510a) 

(0.9 g, 6.0 mmol) was treated with 9-BBN (12.6 mL, 6.3 mmol). The vinyl iodide 248a (2.2 g, 

4.9 mmol) was treated with triethylamine (0.7 mL, 4.9 mmol) and trimethylchlorosilane (0.6 

mL, 4.9 mmol). 

To the solution of the borane 247a (6.0 mmol) was added the fully protected vinyl iodide 

421b (17.0 mmol, 1.0 eq) (Rf 0.79 hexanes/ethyl acetate 10/1) aq NaOH (2.0 M, 8.5 mL, 21.0 

mmol) and (dppf)PdCl2 (79 mg, 0.1 mmol). The crude mixture of fully protected diol 418b 

(Rf 0.58 hexanes/ethyl acetate 10/1) and a small amount of the monoprotected diol 11b (Rf 

0.10 hexanes/ethyl acetate 10/1) was treated with (0.7 g, 4.9 mmol). Flash chromatography 

(hexanes/ethyl acetate 10/1) afford the allylic alcohol 11b (0.5 g, 1.2 mmol, 24%) as a brown 

oil (Rf 0.12 hexanes/ethyl acetate 5/1).  
1H NMR (300 MHz, CDCl3) δ 7.70-7.66 (m, 4H), 7.45-7.26 (m, 6H), 5.53 (t, J = 6.4 Hz, 

1H), 4.48 (s, 2H), 4.25 (d, J = 6.5 Hz, 2H), 3.95 (s, 2H), 3.48 (t, J = 6.3 Hz, 2H), 2.19 (t, J = 

7.5 Hz, 2H), 1.80-1.71 (m, 2H), 1.04 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 141.5 (C), 138.4 

(C), 135.6 (4 × CH), 133.6 (2 × C), 129.7 (2 × CH), 128.4 (2 × CH), 127.7 (6 × C), 127.6 

(CH), 126.9 (CH), 73.0 (CH2), 69.9 (CH2), 60.8 (CH2), 60.3 (CH2), 32.1 (CH2), 28.1 (CH2), 

26.8 (3 × CH3), 19.1 (C); IR (in substance) ν 3390, 3075-3070, 2930-2855 cm−1. Anal. Calcd 

for C30H38O3Si: C, 75.90; H, 8.07. Found: C, 75.84; H, 8.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                            
423 Yields not optimized. 
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20.3.2 Synthesis of the Allyl Vinyl Ether, Synthesis of the 

 Catalyst, Claisen Rearrangement and Further Steps 

 toward (−)-Xeniolide F 

 

O
(R2O)2P CO2R1Cl CO2H X CO2R1

514 446bX= Cl, R1= i-Pr
X= Cl, R1= t-Bu
X= Br, R1= Me

446c
446d

445aR1= Me, R2= Me 
R1= Me, R2= Et
R1= i-Pr, R2= Me
R1= t-Bu, R2= Me

445b
445c
445d

SO2Cl SO2N3

O
(R2O)2P CO2R1

N2

443 444

246aR1= Me, R2= Me 
R1= Me, R2= Et
R1= i-Pr, R2= Me
R1= t-Bu, R2= Me

246b
246c
246d

R3O

OH

R3O

O

(R2O)2P CO2R1
O

OBn

OBn

245aR1= Me, R2= Me 
R1= Me, R2= Et
R1= i-Pr, R2= Me
R1= t-Bu, R2= Me

245b
245c
245d

R3= TBS
R3= TPS

11a
11b

246a-d

R3O

O

CO2R1

SiMe3

OBn

10aR1= Me, R3= TBS 
R1= i-Pr, R3= TBS
R1= t-Bu, R3= TBS
R1= Me, R3= TPS

10b
10c
10d

MgBr SiMe3 SiMe3

Br

SiMe3
HO

SiMe3
O

447 448 449 451 244

6

BnO

O

CO2Me

SiMe3

TBSO

BnO

CO2Me

SiMe3

TBSO

O

O

SiMe3 OBn

233 462 501

BnO

CO2Me

SiMe3

TBSO Cl

444

N N

OO

R R

(S,S)-234a
(R,R)-234b

N N

OO

R R

(S,S)-374a
(R,R)-374b

Cu
H2O OH2

2 SbF6

2

H
N

O

H
N

O

OH OH

R R

(S,S)-518a
(R,R)-518b

R

NH2

Cl

O

Cl

O

(S)-517a
(R)-517b

516

OH

HO

O

OH

O
515

R= t-Bu
R= Ph

R= t-Bu
R= Ph

R= t-Bu
R= Ph

R= t-Bu
R= Ph

39

476
HO

O

CO2Me

SiMe3

OBn

(Z,Z)-452

R CO2H

NH2

(S)-381a
(R)-381b

R= t-Bu
R= Ph

517a,b

(Z,Z)-10a

 
Scheme 154: Synthesis of the AVE, Claisen rearrangement, Wittig olefination, lactonization and synthesis of the 
catalyst. 
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Synthesis of the Allyl Vinyl Ether 

SO2Cl SO2N3

443 444 (94%)

1.0 eq NaN3
acetone, H2O (1/1)

0 °C, 2 h

 
Sulfonyl Azide 444.424,388 To an ice-cooled solution of p-toluolsulfonyl chloride (443) (8.0 

g, 42.0 mmol, 1.0 eq) in acetone/water (1/1, 240 mL, 6 mL/mmol) was added sodium azide 

(2.7 g, 42.0 mmol, 1.0 eq). The reaction mixture was stirred for 2 h at 0 °C and the acetone 

was then evaporated (30 °C, 150 mbar). The phases were separated and the aqueous layer was 

extracted with diethyl ether. The combined organic phases were dried and concentrated to 

afford p-toluolsulfonyl azide (444) (7.8 g, 39.4 mmol, 94%) as a pale yellow oil (Rf 0.76 

hexanes/ethyl acetate 1/1) which was stored at –32 °C. 
1H NMR (300 MHz, CDCl3) δ 7.84 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 2.74 (s, 

3H); 13C NMR (75 MHz, CDCl3) δ 146.2 (C), 135.6 (C), 130.3 (2 × CH), 127.5 (2 × CH), 

21.7 (CH3). Anal. Calcd for C7H7N3O2S: C. 42.63; H, 3.58; N, 21.31; S, 16.26. 

 

OH

O
Cl

514

Oi-Pr

O
Cl

1.1 eq DCC, 0.05 eq DMAP
2.0 eq i-PrOH, CH2Cl2, 0 °C to rt, 30 min

446b (29%)  
α-Chloroester 446b.425,426 To an ice-cooled solution of α-chloro acetic acid (514) (0.19 g, 

2.0 mmol, 1.0 eq) in CH2Cl2 was subsequently added dicyclohexyl carbodiimide DCC (0.45 

g, 2.2 mmol, 1.1 eq), 4-(N,N-dimethylamino)-pyridine DMAP (12.0 mg, 0.1 mmol, 0.05 eq) 

and 2-propanol (0.3 mL, 4.0 mmol, 2.0 eq). After stirring at rt for 30 min the white precipitate 

was removed by filtration and washed with ethyl acetate. Distillation (1 atm, 149 °C) afforded 

the α-chloroester 446b (80 mg, 0.6 mmol, 29%).427  
1H NMR (300 MHz, CDCl3) δ 5.09 (sept, J = 6.3 Hz, 1H), 4.02 (s, 2H), 1.29 (d, J = 6.2 Hz, 

6H). Anal. Calcd for C5H9ClO2: C, 43.97; H, 6.64; Cl, 25.96. 

 

                                            
424 McElwee-White, L.; Dougherty, D. A. J. Am. Chem. Soc. 1984, 106, 3466-3474. 
425 Compounds 446a-d are commercially available (e.g. from ACROS). Synthesis of 446b,c was performed 
analogue to the previously described procedure. See reference 64. Yields not optimized. 
426 Li, Y.-Q. Synth. Comm. 1999, 29, 3901-3903. 
427 According to the 1H NMR spectrum of the reaction product, 446b was obtained as 2:1 mixture with ethyl 
acetate. 
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OH

O
Cl

514

Ot-Bu

O
Cl

1.1 eq DCC, 0.05 eq DMAP
2.0 eq t-BuOH, CH2Cl2, 0 °C to rt, 30 min

446c (54%)  
α-Chloroester 446c.425,428 As described in the preceeding paragraph α-chloro acetic acid 

(514) (0.19 g, 2.0 mmol, 1.0 eq) was treated with DCC (0.45 g, 2.2 mmol, 1.1 eq), 4-(N,N-

dimethylamino)-pyridine DMAP (12.0 mg, 0.1 mmol, 0.05 eq) and tert-butanol (0.4 mL, 4.0 

mmol, 2.0 eq) to afford α-chloroester 446c (0.16 g, 1.1 mmol, 54%) after distillation (1 atm, 

157 °C).429  
1H NMR (300 MHz, CDCl3) δ 3.96 (s, 2H), 1.49 (s, 9H). Anal. Calcd for C6H11ClO2: C, 

47.85; H, 7.36; Cl, 23.54. 

 

Br
OMe

O
(EtO)2P CO2Me

O1.0 eq P(OEt)3, 120 to 200 °C

446d 445b (94%)  
Phosphonoacetate 445b.430 A mixture of bromo acetic acid 446d (25.0 mL, 263 mmol, 1.0 

eq) and triethyl phosphite (45.8 mL, 263 mmol, 1.0 eq) was slowly heated from 130 to 200 °C 

whereupon volatile by-products were distilled off. The resulting mixture was allowed to cool 

to 150 °C. The crude product was purified by distillation (0.25 mbar, 150 °C) to afford 

phosphonoacetate 445b (46.8 g, 245 mmol, 94%) as colorless oil.431  
1H NMR (300 MHz, CDCl3) δ 4.20-4.10 (m, 4H), 3.73 (s, 3H), 2.96 (d, J (P-H) = 21.6 Hz, 

2H), 1.33 (t, J = 7.0 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 166.2 (C), 62.74 (CH2), 62.66 

(CH2), 52.5 (CH3), 34.1 (d, J (P-C) = 134.8 Hz, CH2), 16.3 (CH3), 16.2 (CH3). Anal. Calcd for 

C7H15O5P: C, 40.00; H, 7.19; P, 14.74. 

 

Cl
Oi-Pr

O
(MeO)2P CO2i-Pr

O
1. 3.0 eq NaI, acetone, rt, 15 min
2. 1.5 eq P(OMe)3, benzene, reflux, 5 h

446b 445c (39%)  
Phosphonoacetate 445c.432 To a solution of α-chloroester 446b (76% in ethyl acetate, 53 

mg, 0.29 mmol, 1.0 eq) in acetone (3 mL, 1 mL/0.1 mmol) was added sodium iodide (0.13 g, 

                                            
428 Wiener, H.; Gilon, C. J. Mol. Catal. 1986, 37, 45-52. 
429 According to the 1H NMR spectrum of the reaction product 446c was obtained as 3:1 mixture with ethyl 
acetate. 
430 Commercially available from Aldrich. Prepared analogue to: House, H.; Jones, V. K.; Frank, G. A. J. Org. 
Chem. 1964, 29, 3327-3333. 
431 No Rf value determined. 
432 Reetz, M.; von Itzstein, M. J. Organomet. Chem. 1987, 334, 85-90. 
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0.9 mmol, 3.0 eq) at rt. After stirring for 15 min in the dark, the resulting mixture was 

partitioned between ether (10 mL) and water (2 mL). The organic layer was washed with 2-

mL portions of saturated aq Na2S2O3, water and brine, dried and concentrated in the dark. The 

crude product was immediately dissolved in benzene and freshly distilled trimethylphosphite 

(51 μL, 0.4 mmol, 1.5 eq) was added. The reaction mixture was heated for 5 h at reflux 

whereupon volatile by-products were distilled off, cooled to rt and concentrated. Removal of 

excess of trimethyl phosphite at high vacuum afforded phosphonoacetate 445c (22 mg, 0.1 

mmol, 39%) as colorless oil (Rf 0.26 ethyl acetate).  
1H NMR (300 MHz, CDCl3) δ 5.05 (sept, J = 6.3 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 2.94 

(d, J (P-H) = 21.7 Hz, 2H), 1.26 (d, J = 6.3 Hz, 6H). Anal. Calcd for C7H15O5P: C, 40.00; H, 

7.19; P, 14.74. 

 

Cl
Ot-Bu

O
(MeO)2P CO2t-Bu

O
1. 3.0 eq NaI, acetone, rt, 15 min
2. 1.5 eq P(OMe)3, benzene, reflux, 5 h

446c 445d (48%)  
Phosphonacetate 445d.433 As outlined for the preparation of phosponoacetate 445c α-

chloroester 446c (88% in ethyl acetate, 0.18 g, 1.1 mmol) was treated with sodium iodide 

(0.48 g, 3.3 mmol). Reaction of the crude product with trimethylphosphite (0.19 mL, 1.6 

mmol) afforded phosphonoacetate 445d (117 mg, 0.5 mmol, 48%) as colorless oil (Rf 0.29 

ethyl acetate).  
1H NMR (300 MHz, CDCl3) δ 3.82 (s, 3H), 3.78 (s, 3H), 2.89 (d, J (P-H) = 21.3 Hz, 2H), 

1.47 (s, 9H). Anal. Calcd for C8H17O5P: C, 42.86; H, 7.64; P, 13.82. 

 

SO2N3 O
(MeO)2P CO2Me

N2

1.2 eq 444 246a (77%)

1.2 eq NaH
1.0 eq (MeO)2P(O)CH2CO2Me (445a)

THF, 0 °C, 1 h, rt, 1 h

 
Diazaphosphonoacetate 246a.434,388 To a solution of sulfonyl azide 444 (7.8 g, 39.4 mmol, 

1.2 eq) in THF (200 mL, 5 mL/mmoL) at 0 °C was added sodium hydride (1.6 g, 39.4 mmol, 

1.2 eq) and then a solution of trimethylphosphonoacetate (445a) (5.3 mL, 33.0 mmol, 1.0 eq) 

in THF (40 mL, 1 mL/mmol). The reaction mixture was stirred for 1 h at 0 °C, 1 h at rt and 

then quenched by the addition of water (5 mL/mmol). The phases were separated and the 
                                            
433 Comercially available from Fluka. Prepared analogue to 445c. 
434 (a) Regitz, M.; Martin, R. Tetrahedron 1985, 41, 819-824. Prepared according to (b) Gois, P. M. P.; Afonso, 
C. A. M. Eur. J. Org. Chem. 2003, 3798-3810. 
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aqueous layer was extracted with diethyl ether. The combined organic phases were dried and 

concentrated. The crude product was purified by flash chromatography (hexanes/ethyl acetate 

1/1) to afford the diazophosphonoacetate 246a (5.3 g, 25.3 mmol, 77%) as a pale yellow oil 

(Rf 0.35 ethyl acetate). 
1H NMR (300 MHz, CDCl3) δ 3.77 (s, 3H), 3.73 (s, 3H), 3.72 (s, 3H); 13C NMR (75 MHz, 

CDCl3) δ 163.6 (C), 163.4 (C), 53.83 (CH3), 53.75 (CH3), 52.5 (CH3); IR (in substance) ν 

3015-2855, 2125, 1705 cm−1. Anal. Calcd for C5H9N2O5P: C, 28.86; H, 4.36; N, 13.46. 

Found: C, 28.93; H, 4.32; N, 13.27. 

 

SO2N3 O
(EtO)2P CO2Me

N2

1.2 eq 444 246b (62%)

1.2 eq NaH
1.0 eq (EtO)2P(O)CH2CO2Me (445b)

THF, 0 °C, 1 h, rt, 1 h

 
Diazaphosphonoacetate 246b.435 As described in the preceeding paragraph, reaction of p-

toluolsulfonyl azide (444) (4.7 g, 24.0 mmol) with sodium hydride (1.0 g, 24.0 mmol) and 

phosphonoacetate 445b (3.8 g, 20.0 mmol) afforded diazophosphonoacetate 246b (2.9 g, 12.3 

mmol, 62%) as pale yellow oil (Rf 0.32 ethyl acetate).  
1H NMR (300 MHz, CDCl3) δ 4.28-4.10 (m, 4H), 3.79 (s, 3H), 1.35 (t, J = 7.1 Hz, 6H). 

Anal. Calcd for C7H13N2O5P: C, 35.60; H, 5.55; N, 11.86; P, 13.12. 

 

SO2N3 O
(MeO)2P CO2i-Pr

N2

1.2 eq 444 246c (89%)

1.2 eq NaH
1.0 eq (MeO)2P(O)CH2CO2i-Pr (445c)

THF, 0 °C, 1 h, rt, 1 h

 
Diazaphosphonoacetate 246c.436 As outlined for the preparation of diazaphophonoacetate 

246a, sulfonyl azide 444 (0.7 g, 3.8 mmol) was treated with sodium hydride (0.15 g, 3.8 

mmol) and phosphonoacetate 445c (0.7 g, 3.2 mmol). Flash chromatography (hexanes/ethyl 

acetate 1/1) afforded diazophosphonoacetate 246c (0.7 g, 2.8 mmol, 89%) as pale yellow oil 

(Rf 0.36 ethyl acetate).  
1H NMR (300 MHz, CDCl3) δ 5.11 (sept, J = 6.3 Hz, 1H), 3.85 (s, 3H), 3.81 (s, 3H), 1.28 

(d, J = 6.3 Hz, 6H). Anal. Calcd for C7H13N2O5P: C, 35.60; H, 5.55; N, 11.86; P, 13.12. 

 
                                            
435 Khokhlov, P. S.; Kashemirov, B. A.; Mikityuk, A. D.; Strepikheev, Y. A.; Chimishkyan, A. L. Z. Obs. Khim. 
1984, 54, 2785-2787. 
436 Prepared analogue to 246a. See reference 434. 
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SO2N3 O
(MeO)2P CO2t-Bu

N2

1.2 eq 444 246d (87%)

1.2 eq NaH
1.0 eq (MeO)2P(O)CH2CO2t-Bu (445d)

THF, 0 °C, 1 h, rt, 1 h

 
Diazaphosphonoacetate 246d.437 Analogous to the procedure for the preparation of 

diazophosphonoacetate 246a, sulfonyl azide 444 (0.6 g, 2.6 mmol) was treated with sodium 

hydride (0.12 g, 3.1 mmol) and phosphonoacetate 445d (0.6 g, 2.6 mmol). Flash 

chromatography (hexanes/ethyl acetate 1/1) afforded diazophosphonoacetate 246d (0.6 g, 2.3 

mmol, 87%) as pale yellow oil (Rf 0.44 ethyl acetate).  
1H NMR (300 MHz, CDCl3) δ 3.84 (s, 3H), 3.81 (s, 3H), 1.50 (s, 9H). Anal. Calcd for 

C8H115N2O5P: C, 38.41; H, 6.04; N, 11.20; P, 12.38. 

TBSO

OH

OBn

(MeO)2P CO2Me
O

N2

TBSO

O

(MeO)2P CO2Me
O

OBn

11a 245a (62%)

4 mol% Rh2(OAc)4
1,2-dichloroethane

reflux, 1 h

1.5 eq 246a:

1
2

3
4

5
6

11

19

 
Phosphonate 245a.388 A solution of the allylic alcohol 11a (1.0 g, 2.8 mmol, 1.0 eq) in 1,2-

dichloroethane (21 mL, 7.5 mL/mmol) and Rh2(OAc)4 (49 mg, 0.1 mmol, 0.04 eq) was heated 

to reflux and the diazophosphonate 246a (0.9 g, 4.2 mmol, 1.5 eq) in 1,2-dichloroethane (21 

mL, 7.5 mL/mmol) was added dropwise. The reaction mixture was refluxed for 1 h, cooled to 

rt and then concentrated. The crude product was immediately purified by column 

chromatography438 (hexanes/ethyl acetate 1/1) to afford the phosphonate 245a (0.9 g, 1.7 

mmol, 62%) as a colorless oil (Rf 0.53 hexanes/ethyl acetate). 

1H NMR (500 MHz, CDCl3) δ 7.31-7.26 (m, 5H, Ar-CH), 5.59 (t, J = 6.2 Hz, 1H, 2-CH=), 

4.47 (s, 2H, -OCH2Ph), 4.34 (d, 2J (P-H) = 19.1 Hz, 1H, 11-CH), 4.21-4.18 (m, 3H, 1-CH2 

and 19-CH2), 4.07 (dAB, J = 11.4 Hz, 1H, 19-CH2), 3.811 (s, 3H, -OCH3), 3.806 (s, 3H, -

OCH3), 3.79 (s, 3H, -OCH3), 3.46 (t, J = 6.5 Hz, 2H, 6-CH2), 2.20-2.06 (m, 2H, 4-CH2), 1.78-

1.74 (m, 2H, 5-CH2), 0.88 (s, 9H, SiC(CH3)3), 0.04 (s, 6H, Si(CH3)2); 13C NMR (126 MHz, 

CDCl3) δ 167.7 (CO2Me), 138.5 (C-Ar), 135.0 (3-C), 131.3 (2-CH=), 128.3 (2 × CH-Ar), 

127.6 (2 × CH-Ar), 127.5 (CH-Ar), 74.6 (1J (P-C) = 158.7 Hz, 11-CH), 72.9 (-OCH2Ph), 69.8 

(6-CH2), 69.1 (3J (P-C) = 12.6 Hz, 19-CH2), 59.3 (1-CH2), 54.2 (2J (P-C) = 6.3 Hz, P-OCH3), 

                                            
437 Moore, J. D.; Sprott, K. T.; Hanson, P. R. J. Org. Chem. 2002, 67, 8123-8129. 
438 Storing of the crude product or the solution of the crude product even at –32 °C led to significant reduction of 
the isolated yields. 
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54.1 (2J (P-C) = 7.3 Hz, P-OCH3), 52.8 (-OCH3), 31.3 (4-CH2), 27.8 (5-CH2), 25.9 (3 × 

SiC(CH3)3), 18.3 (SiC(CH3)3), −5.2 (2 × Si(CH3)2); IR (in substance) ν 3330, 2980-2855, 

1750 cm−1. Anal. Calcd for C25H43O8PSi: C 56.58; H 8.17. Found: C 56.51; H 8.04. 

 

TBSO

OH

OBn

(EtO)2P CO2Me
O

N2

TBSO

O

(EtO)2P CO2Me
O

OBn

11a 245b (70%)

4 mol% Rh2(OAc)4
1,2-dichloroethane

reflux, 1 h

1.5 eq 246b:

 
Phosphonate 245b.439 As described for the preparation of phosphonate 245a, allylic 

alcohol 11a (0.18 g, 0.5 mmol) was treated with Rh2(OAc)4 (11 mg, 0.03 mmol) and 

diazophosphonoacetate 246b (0.18 g, 0.8 mmol). Flash chromatography (hexanes/ethyl 

acetate 3/1 to 1/1) afforded the phosphonate 245b (0.20 g, 0.4 mmol, 70%) as pale yellow oil 

(Rf 0.56 hexanes/ethyl acetate 2/1).  
1H NMR (300 MHz, CDCl3) δ 7.34-7.22 (m, 5H), 5.54 (t, J = 6.1 Hz, 1H), 4.43 (s, 2H), 

4.26 (d, J (P-H) = 19.1 Hz, 1H), 4.19-3.99 (m, 8H), 3.75 (s, 3H), 3.41 (t, J = 6.4 Hz, 2H), 

2.20-2.11 (m, 2H), 1.78-1.66 (m, 2H), 1.26 (t, J = 7.2 Hz, 6H), 0.83 (s, 9H), 0.00 (s, 6H); IR 

(in substance) ν 3350, 2930-2855, 1750 cm−1. Anal. Calcd for C27H47O8PSi: C, 58.04; H, 

8.48; P, 5.54. 

 

TBSO

OH

OBn

(MeO)2P CO2i-Pr
O

N2

TBSO

O

(MeO)2P CO2i-Pr
O

OBn

11a 245c (46%)

4 mol% Rh2(OAc)4
1,2-dichloroethane

reflux, 1 h

1.5 eq 246c:

 
Phosphonate 245c.439 Analogous to the synthesis of phosphonate 245a, allylic alcohol 11a 

(0.15 g, 0.4 mmol) was treated with Rh2(OAc)4 (8 mg, 0.02 mmol) and diazophosphonate 

246c (0.15 g, 0.6 mmol). Flash chromatography (hexanes/ethyl acetate 3/1 to 1/1) afforded 

the phosphonate 245c (0.11 g, 0.2 mmol, 46%) as pale yellow oil (Rf 0.58 hexanes/ethyl 

acetate 1/1).  
1H NMR (300 MHz, CDCl3) δ 7.30-7.22 (m, 5H), 5.54 (t, J = 6.3 Hz, 1H), 5.10 ( sept, J = 

6.3 Hz, 1H), 4.43 (s, 2H), 4.23 (d, 2J (P-H) = 18.8 Hz, 1H), 4.19-4.12 (m, 3H), 4.02 (dAB, J = 

                                            
439 Test substrate for the HWE olefination. Not fully characterized. 
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11.4 Hz, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 3.42 (t, J = 6.4 Hz, 2H), 2.16 (brt, J = 7.5 Hz, 2H), 

1.79-1.66 (m, 2H), 1.25 (d, J = 6.3 Hz, 3H), 1.24 (d, J = 6.3 Hz, 3H), 0.83 (s, 9H), 0.00 (s, 

6H); 13C NMR (75 MHz, CDCl3) δ 166.6 (C), 138.5 (C), 135.1 (C), 131.2 (CH), 128.3 (2 × 

CH), 127.6 (2 × CH), 127.5 (CH), 75.1 (J (P-C) = 158.2 Hz, CH), 72.9 (CH2), 69.9 (CH2), 

69.8 (CH), 69.0 (J (P-C) = 12.4 Hz, CH2), 59.4 (CH2), 54.0 (J (P-C) = 6.8 Hz, 2 × CH3), 31.3 

(CH2), 27.8 (CH2), 25.9 (3 × CH3), 21.7 (CH3), 21.5 (CH3), 18.3 (C), −5.1 (2 × CH3); IR (in 

substance) ν 3410, 2960-2850, 1730 cm−1. Anal. Calcd for C27H47O8PSi: C, 58.04; H, 8.48; P, 

5.54. 

 

TBSO

OH

OBn

(MeO)2P CO2t-Bu
O

N2

TBSO

O

(MeO)2P CO2t-Bu
O

OBn

11a 245d (58%)

4 mol% Rh2(OAc)4
1,2-dichloroethane

reflux, 1 h

1.5 eq 246d:

 
Phosphonate 245d.439 As described for phosphonate 245a, allylic alcohol 11a (0.14 g, 0.4 

mmol) was treated with Rh2(OAc)4 (7 mg, 0.02 mmol) and diazophophonate 246d (0.15 g, 

0.6 mmol). Flash chromatography (hexanes/ethyl acetate 3/1 to 1/1) afforded phosphonate 

245d (0.13 g, 0.2 mmol, 58%) as pale yellow oil (Rf 0.50 hexanes/ethyl acetate 2/1). 
1H NMR (300 MHz, CDCl3) δ 7.33-7.21 (m, 5H), 5.70 (t, J = 7.2 Hz, 1Hminor), 5.54 (t, J = 

6.4 Hz, 1Hmajor), 4.43 (s, 2H), 4.27-3.99 (m, 5H), 3.77 (s, 3H), 3.73 (s, 3H), 3.42 (brt, J = 

6.43, 2H), 2.15 (brt, J = 7.2 Hz, 2H), 1.78-1.64 (m, 2H), 1.45 (s, 9H), 0.85 (s, 9Hminor), 0.83 

(s, 9Hmajor), 0.04 (s, 6Hminor), 0.00 (s, 6 Hmajor); 13C NMR (126 MHz, CDCl3) δ 166.1 (C), 

138.5 (C), 135.1 (C), 131.1 (CH), 128.3 (2 × CH), 127.6 (2 × CH), 127.4 (CH), 83.0 (C), 75.2 

(J (P-C) = 157.4 Hz, CH), 72.8 (CH2), 69.8 (CH2), 68.9 (J (P-C) = 13.3 Hz, CH2), 59.4 (CH2), 

53.8 (J (P-C) = 6.1 Hz, CH2), 31.3 (CH2), 27.9 (3 × CH3), 27.8 (CH2), 25.9 (3 × CH3), 18.3 

(C), −3.6 (2 × CH3), −5.2 (3 × CH3); IR (in substance) ν 3345, 2955-2855, 1740 cm−1. Anal. 

Calcd for C28H49O8PSi: C, 58.72; H, 8.62; P, 5.41. 

 

TPSO

OH

OBn

(MeO)2P CO2Me
O

N2

TPSO

O

(MeO)2P CO2Me
O

OBn

11b 245e (48%)

4 mol% Rh2(OAc)4
1,2-dichloroethane

reflux, 1 h

1.5 eq 246a:

 



Experimental Section  275 
 

 
Ph.D. Thesis Annett Pollex 

Phosphonate 245e.439 As outlined for the preparation of 245a, allylic alcohol 11b (75 mg, 

0.2 mmol) was treated with Rh2(OAc)4 (3 mg, 0.01 mmol) and diazophosphonate 246a (52 

mg, 0.3 mmol). Flash chromatography (hexanes/ethyl acetate 2/1 to ethyl acetate) afforded 

phosphonated 245e (52 mg, 0.1 mmol, 48%) as bluegreen oil (Rf 0.67 ethyl acetate). 
1H NMR (500 MHz, CDCl3) δ 7.66-7.64 (m, 4H), 7.43-7.34 (m, 6H), 7.33-7.32 (m, 5H), 

5.66 (t, J = 6.3 Hz, 1H), 4.48 (s, 2H), 4.24-4.19 (m, 3H), 3.99 (dAB, J = 11.5 Hz, 1H), 3.86 

(dAB, J = 11.5 Hz, 1H), 3.74 (d, J (P-H) = 5.9 Hz, 3H), 3.72 (d, J (P-H) = 5.9 Hz, 3H), 3.67 (s, 

3H), 3.46 (t, J = 6.4 Hz, 2H), 2.18 (dd, J = 13.8, 6.2 Hz, 2H), 1.78-1.69 (m, 2H), 1.02 (s, 9H); 
13C NMR (126 MHz, CDCl3) δ 167.6 (J (P-C) = 2.4 Hz, C), 138.5 (C), 135.5 (4 × CH), 135.2 

(C), 133.6 (2 × C), 130.7 (CH), 129.7 (2 × CH), 128.3 (2 × CH), 127.7 (4 × CH), 127.6 (2 × 

CH), 127.5 (CH), 74.6 (J (P-C) = 158.6 Hz, CH), 72.9 (CH2), 69.8 (CH2), 69.0 (J (P-C) = 

13.3 Hz, CH2), 60.1 (CH2), 54.1 (J (P-C) = 7.3 Hz, CH3), 54.0 (J (P-C) = 6.1 Hz, CH3), 52.6 

(CH3), 31.2 (CH2), 27.7 (CH2), 26.7 (3 × CH3), 19.1 (C); IR (in substance) ν 3375, 3070-

3000, 2955-2855, 1745 cm−1. Anal. Calcd for C35H47O8PSi: C, 64.20; H, 7.23; P, 4.73. 

 

MgBr SiMe3

447 448 (78%)

1.0 eq TMSCl, THF, reflux, 2 h
then rt, 18 h

 
Vinyl Silane 448.362,388 A solution of vinylmagnesium bromide (447) in THF (1.0 M, 100.0 

mL, 100.0 mmol, 1.0 eq) was heated to reflux and trimethylchlorosilane (12.6 mL, 100 mmol, 

1.0 eq) in THF (10 mL, 0.1 mL/mmol) was added dropwise over 30 min. After heating to 

reflux for 2 h, the reaction mixture was cooled to rt and stirred for 18 h. The product was 

distilled from the reaction mixture (bp 60-66 °C, bath temperature 100-180 °C) and then 

washed with small amounts of water (20 × 5 mL) to remove the THF. The isolated vinyl 

silane 448 (7.8 g, 78.2 mmol, 78%) contained small amounts (<5%) of THF.440  
1H NMR (300 MHz, CDCl3) δ 6.09 (dd, J = 20.1, 14.6 Hz, 1H), 5.85 (dd, J = 16.7, 4.0 Hz, 

1H), 5.59 (dd, J = 20.2, 4.0 Hz, 1H), 0.00 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 140.3 (CH), 

130.8 (CH2), –1.7 (3 × CH3). Anal. Calcd for C5H12Si: C, 59.91; H, 12.07. 

 

SiMe3 SiMe3

Br
448 449 (57%)

1.2 eq Br2, −78 °C, 1 h
then 6.7 eq Et2NH, reflux, 12 h

 

                                            
440 Determined from the 300 MHz 1H NMR spectrum of 448. 
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Vinyl Bromide 449.362,388 To the vinyl silane 448 (3.1 g, 31.0 mmol, 1.0 eq) at –78 °C was 

added bromine (1.9 mL, 5.8 mmol, 1.2 eq) over 1 h. The reaction mixture was warmed to rt 

and recooled to 0 °C. Diethylamine (21.6 mL, 21.0 mmol, 6.7 eq) was added carefully and the 

reaction mixture was heated to reflux for 12 h. The white precipitate was removed by 

filtration and washed with diethyl ether. The combined organic phases were washed carefully 

with 2 N HCl until the pH value of the aqueous layer was <2. The organic phase was then 

washed with water (150 mL) and brine (150 mL), dried, concentrated and distilled to afford 

vinyl bromide 449 (4.3 g, 74% in Et2O,441 17.9 mmol, 57%) as a colorless liquid (bp.: 125 °C, 

1 atm).  
1H NMR (300 MHz, CDCl3) δ 6.27 (d, J = 1.6 Hz, 1H), 6.18 (d, J = 1.7 Hz, 1H), 0.19 (s, 

9H); 13C NMR (75 MHz, CDCl3) δ 138.9 (C), 129.3 (CH2), –2.2 (3 × CH3). Anal. Calcd for 

C5H11BrSi: C, 33.53; H, 6.19. 

 

SiMe3

Br

SiMe3
OH

1.05 eq 449 451 (91%)

1.98 eq t-BuLi, THF, −78 °C, 30 min
then 0.77 eq trimethylene oxide
1.0 eq BF3·OEt2, −78 °C, 15 min

 
Alcohol 451.361,388 To a solution of the vinyl bromide 449 (86% in Et2O, 3.1 g, 15 mmol, 

1.05 eq) in THF (45 mL, 3 mL/mmol) was added t-BuLi (1.5 M, 18.9 mL, 28.3 mmol, 1.98 

eq) at –78 °C and stirred for 30 min. Trimethylene oxide (0.7 mL, 11.0 mmol, 0.77 eq) and 

BF3·OEt2 (1.7 mL, 14.3 mmol, 1.0 eq) was added and the reaction mixture was stirred for 15 

min. The reaction was quenched by the addition of saturated aq NH4Cl and extracted with 

CH2Cl2 (3 × 30 mL). The combined organic layers were dried and concentrated. The crude 

product was purified by column chromatography (pentane/diethyl ether 10/1 to 1/1) to afford 

the alcohol 451 (1.6 g, 10.0 mmol, 91%) as a colorless liquid (Rf 0.35 hexanes/ethyl acetate 

3/1). The unspecified side product that was observed several times is detectable by TLC if 

longer heating times of the TLC plate (treated with the staining reagent) are employed. Rf (side 

product) 0.41 hexanes/ethyl acetate 3/1). The spot of the side product has a more bluish 

appearance than the spot of 451. 
1H NMR (300 MHz, CDCl3) δ 5.49 (dt, J = 2.9, 1.5 Hz, 1H), 5.25 (bd, 2.9 Hz, 1H), 3.57 (t, 

J = 6.5 Hz, 2H), 2.12 (t, J = 7.7 Hz, 2H), 1.66-1.60 (m, 2H), 0.00 (s, 9H); 13C NMR (75 MHz, 

CDCl3) δ 151.8 (C), 124.1 (CH2), 62.8 (CH2), 32.1 (CH2), 31.9 (CH2), −1.5 (3 × CH3). Anal. 

Calcd for C8H18OSi: C, 60.69; H, 11.46. 

                                            
441 Determined from the 300 MHz 1H NMR spectrum of 449. 
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SiMe3
OH

SiMe3
O

451 244 (84%)

2.0 eq SO3·pyridine
4.0 eq Et3N

0 °C to rt, 1.5 h

 
Aldehyde 244.361,388 To a solution of the alcohol 451 (0.4 g, 2.7 mmol, 1.0 eq) in 

CH2Cl2/DMSO (4/1, 20 mL, 8 mL/mmol) at 0 °C was added triethylamine (1.5 mL, 10.6 

mmol, 4.0 eq) and sulfur trioxide·pyridine complex (0.8 g, 5.3 mmol, 2.0 eq). The reaction 

mixture was stirred for 1.5 h at rt, quenched by the addition of water and extracted with 

CH2Cl2 (3 × 20 mL). The combined organic layers were dried and concentrated. The crude 

product was purified by column chromatography (pentane) to afford the aldehyde 244 (0.35 g, 

2.2 mmol, 84%) as a colorless liquid (Rf 0.32 hexanes/ethyl acetate 20/1). 
1H NMR (300 MHz, CDCl3) δ 9.68 (s, 1H), 5.45-5.42 (m, 1H), 5.28-5.26 (m, 1H), 2.51-

2.44 (m, 2H), 2.39-2.32 (m, 2H), 0.00 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 202.2 (C), 150.2 

(C), 124.2 (CH2), 42.6 (CH2), 27.5 (CH2), –1.7 (3 × CH3). Anal. Calcd for C8H16OSi: C, 

61.48; H, 10.32. 

TBSO

O

(MeO)2P CO2Me
O

OBn
SiMe3

O

TBSO

O

CO2Me

SiMe3

OBn

(E,Z)-10a/(Z,Z)-10a 9/1 (87%)245a

244

1.15 eq LDA, THF, −78 °C, 15 min
then 1.3 eq 244, −78 °C to rt

1
2

3
4

5
6

7
8

9 10

11

19

20

 
Allyl Vinyl Ether 10a.388 To a solution of the phosphonate 245a (1.1 g, 2.1 mmol, 1.0 eq) 

in THF (14 mL, 7 mL/mmol) was added a LDA solution [prepared from diisopropylamine 

(0.4 mL, 2.7 mmol, 1.3 eq) and n-BuLi (2.2 M in n-hexanes, 1.1 mL, 1.15 eq)] in THF (8 mL, 

4 mL/mmol of 245a) at –78 °C. After 15 min, a cooled (–78 °C) solution of the aldehyde 244 

(0.43 g, 2.7 mmol, 1.3 eq) in THF (8 mL, 4 mL/mmol of 245a) was added at –78 °C. The 

reaction mixture was stirred for 30 min at –78 °C, warmed to rt, quenched by the addition of 

saturated aq NH4Cl and extracted with CH2Cl2 (3 × 20 mL). The combined organic layers 

were dried and concentrated. The crude product was purified by column chromatography 

(hexanes/ethyl acetate 20/1) to afford the allyl vinyl ether 10a (1.0 g, 1.8 mmol, 87%) as 

mixture of double bond isomers (E,Z)-10a/(Z,Z)-10a 9/1 (Rf 0.24 hexanes/ethyl acetate 10/1). 

Allyl vinyl ether 10a was generally used as mixture of double bond isomers. However, the 
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double bond isomers may be separated by preparative HPLC: n-heptane/ethyl acetate 30/1, rt 

(Z,Z-10a) ~ 19 min, rt (E,Z-10a) ~ 20 min, no baseline separation under these conditions. 

(E,Z)-10a/(Z,Z)-10a 9/1: 1H NMR (500 MHz, CDCl3) δ 7.26-7.17 (m, 5H, CH-Ar), 6.17 (t, 

J = 7.3 Hz, 1Hminor, 10-CH=), 5.58-5.57 (m, 1H, 20-CH2=), 5.54 (t, J = 5.9 Hz, 1H, 2-CH=), 

5.35 (d, J = 1.8 Hz, 1H, 20-CH2=), 5.28 (t, J = 7.5 Hz, 1Hmajor, 10-CH=), 4.48 (s, 2H, 

OCH2Ph), 4.28-4.24 (m, 4Hminor, 19-CH2 and 1-CH2), 4.23-4.22 (m, 4Hmajor, 19-CH2 and 1-

CH2), 3.75 (s, 3H, -OCH3), 3.48 (t, J = 6.5 Hz, 2H, 6-CH2), 2.56 (dt, J = 15.3, 7.6 Hz, 2Hmajor, 

9-CH2), 2.36-2.32 (m, 2Hminor, 9-CH2), 2.28 (t, J = 7.0 Hz, 2Hminor, 4-CH2), 2.27-2.20 (m, 

2Hmajor, 4-CH2 and 2H, 8-CH2), 1.80-1.75 (m, 2H, 5-CH2), 0.89 (s, 9H, SiC(CH3)3), 0.08 (s, 

9H, Si(CH3)3), 0.05 (s, 6H, Si(CH3)2); 13C NMR (126 MHz, CDCl3) δ 164.3 (CO2Meminor), 

164.0 (CO2Memajor), 151.3 (7-C=major), 150.9 (7-C=minor), 144.6 (11-C=minor), 144.5 (11-

C=major), 138.6 (C-Ar), 135.8 (3-C=minor), 135.5 (3-C=major), 130.3 (2-CH=minor), 129.5 (2-

CH=major), 129.2 (10-CH=minor), 128.3 (2 × CH-Ar), 127.6 (2 × CH-Ar), 127.5 (CH-Ar), 124.4 

(20-CH2
major), 124.2 (20-CH2

minor), 117.7 (10-CH=major), 72.9 (-OCH2Ph), 69.9 (6-CH2), 69.3 

(19-CH2
minor), 66.9 (19-CH2

major), 59.6 (1-CH2), 51.8 (-OCH3
minor), 51.7 (-OCH3

major), 36.1 (8-

CH2
major), 34.3 (8-CH2

minor) 31.7 (4-CH2
minor), 31.5 (4-CH2

major), 27.9 (5-CH2), 26.1 (9-

CH2
major), 25.9 (3 × SiC(CH3)3), 24.9 (9-CH2

minor), 18.3 (SiC(CH3)3), −1.5 (3 × Si(CH3)3), 

−5.1 (2 × SiCH3); IR (in substance) ν 2955-2855, 1725 cm−1. Anal. Calcd for C31H52O5Si2: C, 

66.38; H, 9.34. Found: C, 66.07; H, 9.45. 

(E,Z)-10a: 1H NMR (300 MHz, CDCl3) δ 7.34-7.26 (m, 5H), 5.58-5.57 (m, 1H), 5.54 (t, J = 

5.9 Hz, 1H), 5.35 (d, J = 1.8 Hz, 1H), 5.28 (t, J = 7.5 Hz 1H), 4.49 (s, 2H), 4.24-4.21 (m, 4H), 

3.75 (s, 3H), 3.48 (t, J = 6.5 Hz, 2H), 2.57 (dt, J = 15.3, 7.6 Hz, 2H), 2.24-2.19 (m, 4H), 1.81-

1.74 (m, 2H), 0.89 (s, 9H), 0.08 (s, 9H), 0.05 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 164.1 

(C), 151.3 (C), 144.6 (C), 138.6 (C), 135.5 (C), 129.5 (CH), 128.3 (2 × CH), 127.6 (2 × CH), 

127.5 (CH), 124.5 (CH2), 117.8 (CH), 72.9 (CH2), 69.9 (CH2), 70.0 (CH2), 59.6 (CH2), 51.7 

(CH3), 36.1 (CH2), 31.6 (CH2), 28.0 (CH2), 26.1 (CH2), 25.9 (3 × CH3), 18.3 (C), –1.5 (3 × 

CH3), –5.1 (2 × CH3). 

(Z,Z)-10a: 1H NMR (500 MHz, CDCl3) δ 7.33-7.26 (m, 5H, CH-Ar), 6.25 (t, J = 7.3 Hz, 

1H, 10-CH=), 5.59-5.45 (m, 2H, 20-CH2= and 2-CH=), 5.35-5.33 (m, 1H, 20-CH2=), 4.49 (s, 

2H, -OCH2Ph), 4.28-4.25 (m, 4H, 19-CH2 and 1-CH2), 3.75 (s, 3H, -OCH3), 3.48 (t, J = 6.5 

Hz, 2H, 6-CH2), 2.37-2.31 (m, 2H, 9-CH2), 2.28 (t, J = 7.0 Hz, 2H, 4-CH2), 2.24-2.16 (m, 2H, 

8-CH2), 1.84-1.76 (m, 2H, 5-CH2), 0.88 (s, 9H, SiC(CH3)3), 0.07 (s, 9H, Si(CH3)3), 0.05 (s, 

6H, Si(CH3)2); 13C NMR (126 MHz, CDCl3) δ 164.3 (CO2Me), 150.9 (7-C=), 144.7 (11-C=), 

138.6 (C-Ar), 135.8 (3-C=), 130.3 (2-CH=), 129.2 (10-CH=) 128.3 (2 × CH-Ar), 127.6 (2 × 
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CH-Ar), 127.5 (CH-Ar), 124.2 (20-CH2), 72.9 (-OCH2Ph), 69.9 (6-CH2), 69.3 (19-CH2), 59.6 

(1-CH2), 51.8 (-OCH3), 34.3 (8-CH2), 31.7 (4-CH2), 27.9 (5-CH2), 25.9 (3 × SiC(CH3)3), 24.9 

(9-CH2), 18.3 (SiC(CH3)3), –1.6 (3 × Si(CH3)3), –5.1 (2 × SiCH3). 

TBSO

O

(MeO)2P CO2i-Pr
O

OBn

SiMe3

O

TBSO

O

CO2i-Pr

SiMe3

OBn

(E,Z)-10b/(Z,Z)-10b 9/1 (72%)245c

244

1.1 eq LiHMDS, THF, −78 °C, 15 min
then 1.3 eq 244, −78 °C to rt

 
Allyl Vinyl Ether 10b.442 To a solution of the phosphonate 245c (28 mg, 0.05 mmol, 1.1 

eq) in THF (2 mL, 4 mL/0.1 mmol 245c) was added a LiHMDS solution (1.0 M in hexanes, 

55 μl, 0.06 mmol, 1.1 eq) at −78 °C. After stirring for 30 min a pre-cooled (−78 °C) solution 

of the aldehyde 87 (10 mg, 0.07 mmol, 1.3 eq) in THF (2 mL, 4 mL/0.1 mmol 245c) was 

added. The reaction mixture was warmed to rt, quenched by the addition of saturated aq 

NH4Cl and extracted with CH2Cl2 (3 × 4 mL). The combined organic layers were dried and 

concentrated. Flash chromatography (hexanes/ethyl acetate 20/1) afforded allyl vinyl ether 

10b (21 mg, 0.04 mmol, 72%) as mixture of double bond isomers (E,Z)-10b/(Z,Z)-10b 9/1 as 

colorless oil (Rf 0.45 hexanes/ethyl acetate 10/1)   
1H NMR (300 MHz, CDCl3) δ 7.27-7.13 (m, 5H), 6.15 (t, J = 7.5 Hz, 1Hminor), 5.52-5.47 

(m, 1H), 5.45 (t, J = 6.1 Hz, 1H), 5.29-5.24 (m, 1H), 5.17 (t, J = 7.4 Hz, 1Hmajor), 5.01 (sept, J 

= 6.3 Hz, 1H), 4.40 (s, 2H), 4.21-4.17 (m, 4Hminor), 4.17-4.10 (m, 4Hmajor), 3.40 (t, J = 6.4 Hz, 

2H), 2.52-2.40 (m, 2H), 2.14 (t, J = 7.5 Hz, 2H), 1.77-1.65 (m, 2H), 1.19 (d, J = 6.3 Hz, 6H), 

0.82-0.78 (m, 9H), 0.02-(−0.01) (m, 9H), −0.01-(−0.04) (m, 6H); 13C NMR (75 MHz, CDCl3) 

δ 163.2 (C), 151.4 (C), 145.2 (C), 138.6 (C), 135.7 (C), 129.3 (CH), 128.3 (2 × CH), 127.6 (2 

× CH), 127.5 (CH), 124.2 (CH2), 117.3 (CH), 72.9 (CH2), 70.0 (CH2), 68.3 (CH), 67.0 (CH2) 

59.6 (CH2), 36.0 (CH2), 31.7 (CH2), 28.0 (CH2), 27.9 (CH2), 25.9 (3 × CH3), 21.8 (2 × CH3), 

18.3 (C), −1.5 (CH3), −1.6 (CH3), −5.1 (3 × CH3); IR (in substance) ν 2955-280, 1720 cm−1. 

Anal. Calcd for C33H56O5Si2: C, 67.30; H, 9.58. Found: C, 67.40; H, 9.44. 

 

                                            
442 Compounds 10b-d were not used for the further synthesis of xeniolide F. Therefore, the complete set of 
analytical data was not aquired. 



280  Experimental Section 
 

 
Ph.D. Thesis Annett Pollex 

TBSO

O

(MeO)2P CO2t-Bu
O

OBn

SiMe3

O

TBSO

O

CO2t-Bu

SiMe3

OBn

(E,Z)-10c/(Z,Z)-10c 9/1 (50%)245d

244

1.1 eq LiHMDS, THF, −78 °C, 15 min
then 1.3 eq 244, −78 °C to rt

 
Allyl Vinyl Ether 10c.442 To a solution of the phosphonate 245c (28 mg, 0.05 mmol, 1.1 

eq) in THF (2 mL, 4 mL/0.1 mmol 245c) was added a LiHMDS solution (1.0 M in hexanes, 

55 μl, 0.06 mmol, 1.1 eq) at −78 °C. After stirring for 30 min a pre-cooled (−78 °C) solution 

of the aldehyde 244 (10 mg, 0.07 mmol, 1.3 eq) in THF (2 mL, 4 mL/0.1 mmol 245c) was 

added. The reaction mixture was warmed to rt, quenched by the addition of saturated aq 

NH4Cl and extracted with CH2Cl2 (3 × 4 mL). The combined organic layers were dried and 

concentrated. Flash chromatography (hexanes/ethyl acetate 20/1) afforded allyl vinyl ether 

10b (21 mg, 0.04 mmol, 50%) as mixture of double bond isomers (E,Z)-10c/(Z,Z)-10c 9/1 as 

colorless oil (Rf 0.45 hexanes/ethyl acetate 10/1)   
1H NMR (300 MHz, CDCl3) δ 7.27-7.19 (m, 5H), 6.07 (t, J = 7.4 Hz, 1Hminor), 5.48 (brs, 

1H), 5.44 (t, J = 6.1 Hz, 1H), 5.26 (d, J = 2.6 Hz, 1H), 5.10 (t, J = 7.4 Hz, 1Hmajor), 4.41 (s, 

2H), 4.21-4.09 (m, 4H), 3.40 (t, J = 6.4 Hz, 2H), 2.48-2.38 (m, 2H), 2.27-2.08 (m, 2H), 2.14 

(t, J = 6.4 Hz, 2H), 1.77-1.65 (m, 2H), 1.41 (s, 9H), 0.80 (s, 9H), 0.00 (s, 9H), −0.03 (s, 6H); 
13C NMR (75 MHz, CDCl3) δ 162.9 (C), 151.4 (C), 146.0 (C), 138.6 (C), 135.7 (C), 129.2 

(CH), 128.3 (2 × CH), 127.6 (3 × CH), 127.5 (CH), 124.0 (CH2), 115.9 (CH), 72.9 (CH2), 

70.0 (CH2), 66.9 (CH2), 59.7 (CH2), 36.0 (CH2), 31.6 (CH2), 28.2 (3 × CH2), 28.0 (CH3), 25.9 

(3 × CH3 and 1 × CH2), 18.3 (C), −1.5 (2 × CH3), −5.1 (3 × CH3); IR (in substance) ν 2935-

2855, 1715 cm−1. Anal. Calcd for C34H58O5Si2: C, 67.72; H, 9.70.  

 

TPSO

O

(MeO)2P CO2Me
O

OBn
SiMe3

O

TPSO

O

CO2Me

SiMe3

OBn

(E,Z)-10d/(Z,Z)-10d 5/1 (95%)245e

244

1.05 eq LDA, THF, −78 °C, 15 min
then 1.15 eq 244, −78 °C to rt

 
Allyl Vinyl Ether 10d.442 As described for the synthesis of 10a, phosphonate 245e (0.25 g, 

0.3 mmol, 1.0 eq) was treated with LDA [prepared from diisopropylamine (62 μl, 0.4 mmol, 
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1.15 eq) and n-BuLi (0.16 mL, 0.4 mmol, 1.05 eq)] and aldehyde 244 (62 mg, 0.4 mmol, 1.15 

eq). Flash chromatography (hexanes/ethyl acetate 20/1) afforded the allyl vinyl ether 10d 

(0.22 g, 0.3 mmol, 95%) as mixture of double bond isomers (E,Z)-10d/(Z,Z)-10d 5/1 as pale 

yellow oil (Rf 0.27 hexanes/ethyl acetate 10/1).  
1H NMR (500 MHz, CDCl3) δ 7.68-7.64 (m, 4H), 7.41-7.35 (m, 6H), 7.34-7.33 (m, 5H), 

6.18 (t, J = 7.4 Hz, 1Hminor), 5.16 (t, J = 6.2 Hz, 1H), 5.55-5.53 (m, 1Hmajor), 5.50-5.48 (m, 

1Hminor), 5.33-5.31 (m, 1Hmajor), 5.30-5.29 (m, 1Hminor), 5.11 (t, J = 7.6 Hz, 1Hmajor), 4.49 (s, 

2H), 4.25 (d, J = 6.3 Hz, 2Hminor), 4.24 (d, J = 6.3 Hz, 2Hmajor), 4.07 (s, 2Hminor), 3.99 (s, 

2Hmajor), 3.66 (s, 3Hmajor), 3.60 (s, 3Hminor), 3.47 (t, J = 6.5 Hz, 2H), 2.51 (dt, J = 7.8, 7.5 Hz, 

2Hmajor), 2.28-2.22 (m, 2Hminor), 2.21-2.10 (m, 4H), 1.78-1.71 (m, 2H), 1.03 (s, 9H), 0.07 (s, 

9Hmajor), 0.05 (s, 9Hminor); 13C NMR (126 MHz, CDCl3) δ 164.3 (Cminor), 164.0 (Cmajor), 151.3 

(Cmajor), 150.8 (Cminor), 144.5 (Cminor), 144.4 (Cmajor), 138.6 (C), 136.0 (Cminor), 135.7 (Cmajor), 

135.6 (4 × CH), 133.72 (2 × Cminor), 133.68 (2 × Cmajor), 129.7 (CHminor), 129.62 (2 × CH), 

129.59 (CH), 129.1 (CHminor), 128.9 (2 × CHminor), 128.3 (2 × CHmajor), 127.7 (4 × CH), 127.6 

(2 × CH), 127.5 (CHmajor), 124.4 (CH2
major), 124.2 (CH2

minor), 117.4 (CHmajor), 72.9 (CH2), 

69.9 (CH2
major), 69.1 (CH2

minor), 66.6 (CH2), 60.4 (CH2), 51.7 (CH3
minor), 51.6 (CH3

major), 36.0 

(CH2
major), 34.2 (CH2

minor), 31.6 (CH2
minor), 31.4 (CH2

major), 27.89 (CH2
major), 27.86 (CH2

minor), 

26.8 (3 × CH3), 26.1 (CH2
major), 24.8 (CH2

minor), 19.1 (C), −1.5 (3 × CH3
major), −1.6 (3 × 

CH3
minor); IR (in substance) ν 3070-3020, 2955-2860, 1745 cm−1. Anal. Calcd for 

C41H56O5Si2: C, 71.88; H, 8.24.  

 

Catalyst 

 

CO2H

NH2 NH2
OH

2.4 eq NaBH4, 1.0 eq I2
THF, 0 °C to rt, 2 h, reflux, 19 h

(S)-517a (82%)(S)-381a  
Amino Alcohol (S)-517a.443 To an ice-cooled solution of (S)-tert-leucine ((S)-381a) (65.6 

g, 500 mmol, 1.0 eq) and sodium borhydride (45.4 g, 1200 mmol, 2.4 eq) in THF (500 mL, 1 

mL/mmol 381) was added a solution of iodine (126.9 g, 500 mmol, 1.0 eq) in THF (250 mL, 

0.5 mL/mmol 381) over 1.5 h. The reaction mixture was warmed to rt and stirred until the 

brown color had disappeared. Then, the reaction was brought to reflux for 19 h, cooled to 0 

°C and carefully treated with MeOH (150 mL, 0.3 mL/mmol 381). The solvents were 

                                            
443 Meyers, A. I.; McKennon, M. J. J. Org. Chem. 1993, 58, 3568-3571. 
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removed at reduced pressure and the crude product was dissolved in 20% aq. KOH (1 L, 2 

mL/mmol 381). After stirring for 6 h at ambient temperature, the reaction mixture was 

extracted with CH2Cl2 (3 × 800 mL). The combined organic extracts were dried and 

concentrated. Kugelrohr distillation (80 °C, 2.0 mbar) afforded (S)-tert-leucinol ((S)-517a) 

(47.9 g, 409 mmol, 82%) as colorless oil that solidified upon cooling to rt.  
1H NMR (300 MHz, CDCl3) δ 3.73 (dd, J = 10.3, 3.8 Hz, 1H), 3.21 (dd, J = 10.3, 10.3 Hz, 

1H), 2.51 (dd, J = 10.3, 3.8 Hz, 1H), 1.87 (brs, 3H), 0.94 (s, 9H); 13C NMR (75.5 MHz, 

CDCl3) δ 62.3 (CH2), 61.8 (CH), 33.2 (C), 26.3 (3 × CH3). Anal. Calcd for C6H15NO: C, 

61.49; H, 12.90; N, 11.95. [α]28
D +39.6° (c 0.75, CHCl3) (lit. tert-leucinol [α]25

D +36.5° (c 

1.22, EtOH).  

 

Ph CO2H

NH2

Ph

NH2
OH

2.4 eq NaBH4, 1.0 eq I2
THF, 0 °C to rt, 2 h, reflux, 19 h

(R)-517b (60%)(R)-381b  
Amino Alcohol (R)-517b.443 As described for the synthesis of amino alcohol (S)-517a, (R)-

phenyl glycine ((R)-381b) (14.0 g, 92.6 mmol) was treated with sodium borhydride (8.4 g, 

223 mmol) and iodine (23.5 g, 92.6 mmol). Distillation (140 °C, 0.1 mbar) yielded the amino 

alcohol (R)-517b (7.4 g, 55.7 mmol, 60%) as pale yellow oil that solidified upon standing at 

rt.  
1H NMR (300 MHz, CDCl3) δ 7.39-7.20 (m, 5H), 3.99 (dd, J = 8.1, 4.2 Hz, 1H), 3.68 (t, J = 

11.0, 4.2 Hz, 1H), 3.51 (dd, J = 10.9, 8.3 Hz, 1H), 2.78 (brs, 3H). Anal. Calcd for C8H11NO: 

C, 70.04; H, 8.08; N, 10.21. 

 

HO

O

OH

O

Cl

O

Cl

O

3.0 eq oxalyl chloride, 0.13 eq DMF
CH2Cl2, 0 °C to rt, 19 h

515 516 (92%)  
Malonyl Dichloride 516.444 To solution of dimethyl malonic acid 515 (6.0 g, 45.4 mmol, 

1.0 eq) and DMF (0.5 mL, 5.9 mmol, 0.13 eq) in CH2Cl2 (70 mL, 1.5 mL/mmol) was added 

oxalyl chloride (11.9 mL, 136 mmol, 3.0 eq) over 1 h at 0 °C. The reaction mixture was 

warmed to rt, stirred for 18 h at ambient temperature and concentrated. The crude product was 

purified by distillation (165 °C, 1 atm) to afford the malonyl dichloride 516 (7.1 g, 42.1 

mmol, 92%) as colorless liquid.  

                                            
444 Prepared according to reference 306. 
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1H NMR (300 MHz, CDCl3) δ 1.67 (s, 6H). Anal. Calcd for C5H6Cl2O2: C, 35.53; H, 3.58; 

Cl, 41.95. 

 

NH2
Cl

O

Cl

O

H
N

O

H
N

O

OH OH

2.0 eq (S)-517a 516

+

(S,S)-518a (91%)

5.0 eq Et3N, CH2Cl2
0 °C to rt, 35 min

OH

 
Bis(amide) (S,S)-518a.444 To an ice-cooled solution of (S)-tert-leucinol ((S)-517a) (9.7 g, 

82.8 mmol, 2.0 eq) in CH2Cl2 (100 mL, 2.5 mL/mmol of 517) was added triethylamine (28.8 

mL, 207 mmol, 5.0 eq) in one portion and a solution of dimethylmalonyl dichloride (7.0 g, 

41.4 mmol, 1.0 eq) in CH2Cl2 (40 mL, 1 mL/mmol of 517) over 20 min. The reaction mixture 

was warmed to rt, stirred for 35 min at ambient temperature and diluted with CH2Cl2 (300 

mL, 7.5 mL/mmol of 517). The organic layer was subsequently washed with aq 1N HCl (60 

mL), saturated aq NaHCO3 (60 mL), and brine (60 mL), dried over MgSO4 and concentrated. 

Recrystallisation of the crude product from ethyl acetate afforde the bis(amide) (S,S)-518a 

(12.4 g, 37.5 mmol, 91%) as white solid that is bench stable at rt.  
1H NMR (300 MHz, CDCl3) δ 6.44 (d, J = 9.5 Hz, 2H), 3.90-3.80 (m, 4H), 3.48-3.41 (m, 

2H), 1.50 (s, 6H), 0.92 (s, 18H), no OH-resonance observed. Anal. Calcd for C17H34N2O4: C, 

61.79; H, 10.37; N, 8.48. 

 

Ph

NH2
Cl

O

Cl

O

H
N

O

H
N

O

OH OH

Ph Ph

2.0 eq (R)-517b 516

+

(R,R)-518b (89%)

5.0 eq Et3N, CH2Cl2
0 °C to rt, 35 min

OH

 
Bis(amide) (R,R)-518b.445 As outlined in the preceding paragraph, amino alcohol (R)-517b 

(2.7 g, 20.7 mmol) was treated with triethylamine (6.5 mL, 46.6 mmol) and dimethylmalonyl 

dichloride (516) (1.8 g, 10.4 mmol). Recrystallation from ethyl acetate afforded bis(amide) 

(R,R)-518b (3.4 g, 9.3 mmol, 89%) as pale white-brown solid.  
1H NMR (300 MHz, CDCl3) δ 7.37-7.12 (m, 10H), 5.12 (ddd, J = 7.6, 7.6, 3.9 Hz, 2H), 

3.88 (dd, J = 11.7, 3.9 Hz, 2H), 3.73 (dd, J = 11.5, 7.6 Hz, 2H), 3.31 (brs, 2H) 1.48 (s, 6H), no 

OH-resonance observed. Anal. Calcd for C21H26N2O4: C, 68.09; H, 7.07; N, 7.56. 

 

                                            
445 Evans, D. A.; Miller, S. J.; Lectka, T.; Matt, P. v. J. Am. Chem. Soc. 1999, 121, 7559-7573. 
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H
N

O

H
N

O

OH OH

t-Bu t-Bu
N N

OO

t-Bu t-Bu
(S,S)-518a

2.0 eq p-TsCl, 4.4 eq Et3N
0.1 eq DMAP, CH2Cl2, 0 °C to rt, 4 d

(S,S)-374a (77%)  
Bis(oxazoline) (S,S)-374a.444 To a solution of the bis(amide) (S,S)-518a (2.0 g, 6.1 mmol, 

1.0 eq) and 4-(N,N-dimethylamino)-pyridine DMAP (74 mg, 0.6 mmol, 0.1 eq) in CH2Cl2 (25 

mL, 4 mL/mmol of 518) was added triethylamine (3.7 mL, 26.4 mmol, 4.4 eq) in one portion 

and a solution of para-toluene sulfonyl chloride (2.3 g, 12.1 mmol, 2.0 eq) in CH2Cl2 (12 mL, 

2 mL/mmol of 518) using water bath cooling to maintain the temperature during the addition. 

The reaction mixture was stirred for 4 d at ambient temperature, quenched with saturated aq. 

NH4Cl and extracted with CH2Cl2 (3 × 40 mL). The combined organic layers were dried and 

concentrated. Flash chromatography (heptane/ethyl acetate 10/1 to 1/1) yielded the 

bis(oxazoline) (S,S)-374 (1.4 g, 4.8 mmol, 77%) as white solid (Rf 0.15 hexanes/ethyl acetate 

1/1) which was immidiatly used for the synthesis of the catalyst (S,S)-234a.  
1H NMR (300 MHz, CDCl3) δ 4.12 (dd, J = 10.0, 8.7 Hz, 2H), 4.07 (dd, J = 8.6, 6.9 Hz, 

2H), 3.83 (dd, J = 10.0, 6.9 Hz, 2H), 1.50 (s, 6H), 0.86 (s, 18H). Anal. Calcd for C17H30N2O2: 

C, 69.35; H, 10.27; N, 9.51. [α]28
D +93.6° (c 1.75, CHCl3) (lit. 374a [α]25

D +113.2° (c 1.22, 

CH2Cl2).  

 

H
N

O

H
N

O

OH OH

Ph Ph
N N

OO

Ph Ph
(R,R)-518b

2.0 eq p-TsCl, 4.4 eq Et3N
0.1 eq DMAP, CH2Cl2, 0 °C to rt, 4 d

(R,R)-374b (62%) 
Bis(oxazoline) (R,R)-374b.445 To an ice-cooled solution of the bis(amide) (R,R)-518b (1.5 

g, 4.0 mmol, 1.0 eq) in CH2Cl2 (16 mL, 4 mL/mmol) were subsequently added triethylamine 

(1.9 mL, 13.3 mmol, 3.3 eq) and methane sulfonyl chloride MsCl (0.8 mL, 10.1 mmol, 2.5 

eq). The reaction mixture was stirred for 20 min at 0 °C, quenched with saturated aq. 

NaHCO3 and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were dried 

and concentrated. A sealed tube was charged with the crude product dissolved in 1,2-

dichloroethane (16 mL, 4 mL/mmol) and triethylamine (1.7 mL, 12.2 mmol, 3.0 eq). The tube 

was placed into an oil bath and heated for 3 d (bath temperature 90 °C). The reaction mixture 

was then cooled to rt, quenched with saturated aq. NH4Cl and extracted with CH2Cl2 (3 × 40 

mL). The combined organic layers were dried and concentrated. Flash chromatography (ethyl 

acetate CH2Cl2 4/1) yielded the bis(oxazoline) (R,R)-374b (0.9 g, 2.5 mmol, 62%) as white 
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solid (Rf 0.12 ethyl acetate) which was immidiatly used for the synthesis of the catalyst (R,R)-

234b.  
1H NMR (300 MHz, CDCl3) δ 7.37-7.22 (m, 10H), 5.23 (dd, J = 10.1, 7.5 Hz, 2H), 4.67 

(dd, J = 10.1, 8.4 Hz, 2H), 4.16 (dd, J = 8.0, 8.0 Hz, 2H), 1.68 (s, 6H). Anal. Calcd for 

C17H30N2O2: C, 69.35; H, 10.27; N, 9.51. 

 

N N

OO

t-Bu t-Bu

1.0 eq CuCl2, CH2Cl2, rt, 3.5 h
then add 2.0 eq AgSbF6, rt, 2 h

protected from light

(S,S)-234a (99%)

N N

OO

t-Bu t-Bu

(S,S)-374a

Cu
H2O OH2

2 SbF6

2

 
Catalyst (S,S)-234a. To a solution of bis(oxazoline) (S,S)-374a (1.2 g, 4.0 mmol, 1.0 eq) in 

CH2Cl2 (10 mL, 2.5 mL/mmol) was added CuCl2
446 (0.5 g, 4.0 mmol, 1.0 eq) at ambient 

temperature. The clear green solution was stirred for 3.5 h protected from light at rt. The 

solution was filtered through a cotton pad and diluted with CH2Cl2 (10 mL, 2.5 mL/mmol). 

To that solution AgSbF6
447 (2.7 g, 8.0 mmol, 2.0 eq) was added and the resulting blue 

suspension was stirred at ambient temperature for 2 h protected from light. The reaction 

mixture was filtered through a plug of Celite and concentrated. The residue was dissolved in 

CH2Cl2 (5 mL) and filtered through a 2 μm PTFE syringe filter to remove any remaining solid 

silver chloride. The clear blue green solution was slowly concentrated to afford (S,S)-234a 

(3.4 g, 4.0 mmol, 99%) as blue solid.  

IR (in substance) ν 3700-3000 (br, w, OH), 2970 (w, CH), 1740 (w), 1650 (w, N=C), 1480 

(w), 1370 (w), 1250 (w, C-O), 1140 (m, C-N), 1070 (w), 971 (w), 946 (w), 653 (s), 640 (s).448 

 

N N

OO

Ph Ph

1.0 eq CuCl2, CH2Cl2, rt, 3.5 h
then add 2.0 eq AgSbF6, rt, 2 h

protected from light

(R,R)-234b (78%)

N N

OO

Ph Ph

(R,R)-374b

Cu
H2O OH2

2 SbF6

2

 
Catalyst (R,R)-234b.449 As described for the preparation of (S,S)-234a bis(oxazoline) 

(R,R)-374b (0.10 g, 0.3 mmol, 1.0 eq) in CH2Cl2 (3 mL, 1 mL/0.1 mmol) was treated with 
                                            
446 CuCl2·H2O (99.999%, obtained from Aldrich), was dried at high vacuum (0.05 mmbar, 50 °C, 1 h). 
447 AgSbF6 (98%, obtained from ACROS) was stored protected from light. The substance was quickly weighed 
out at ambient athmosphere without using a glove box. 
448 A more detailed analysis of the IR spectrum is given for (S,S)-234a because we were unable to obtain single 
crystals of the catalyst for X-ray crystallography. Abbreviations are used as following: s= strong signal, m= 
signal of medium intensity, w= weak signal, br= broad signal. 
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CuCl2
446 (0.39 g, 0.3 mmol) and AgSbF6

447 (0.21 g, 0.6 mmol) to afford (R,R)-234b (0.22 g, 

0.2 mmol, 78%) as blue solid. 

 

TBSO

O

CO2Me

SiMe3

OBn

BnO

O

CO2Me

SiMe3

TBSO

10a (E,Z) ~ 9/1)
(2S,10R)-233a (64%) 
>90% de, >99% ee

+ (Z,Z)-10a (9%)

25 mol% (S,S)-234a
4 Å mol sieves
CH2Cl2, rt, 27 h

1

2
3

4
5
6

7

8
9

1019

20

 
α-Keto Ester (2S,10R)-233a.388 To a solution of [Cu{(S,S)-tert-Bu-box}](SbF6)2(H2O)2 

[(S,S)-234a] (0.23 g, 0.3 mmol, 0.25 eq) in CH2Cl2 (11 mL, 10 mL/mmol of 10a) was added 

pulverized and activated 4 Å molecular sieves (1.2 g 110 mg/0.1 mmol of 10a) at rt. After 5 

min, a solution of 10a (0.6 g, 1.1 mmol, 1.0 eq) in CH2Cl2 (11 mL, 10 mL/mmol) was added. 

The reaction mixture was stirred for 27 h at rt. The mol sieves were removed by filtration and 

the solution was then concentrated. The crude product was purified by column 

chromatography (hexanes/ethyl acetate 20/1) to afford the α-keto ester (2S,10R)-233a (0.38 g, 

0.7 mmol, 64%) as a pale yellow oil (Rf 0.35 hexane/ethyl acetate 10/1) and the allyl vinyl 

ether (Z,Z)-10a (56 mg, 0.1 mmol, 9%) as a colorless oil (Rf 0.24 hexanes/ethyl acetate 10/1). 

Only one diastereomer was detectable from the 1H NMR spectrum of the crude product 

mixture. 
1H NMR (500 MHz, CDCl3) δ 7.34-7.27 (m, 5H, CH-Ar), 5.45 (d, J = 1.8 Hz, 1H, 20-

CH2=), 5.26 (d, J = 1.8 Hz, 1H, 20-CH2=), 4.93 (s, 1H, 19-CH2=), 4.87 (s, 1H, 19-CH2=), 

4.50 (s, 2H, -OCH2Ph), 3.82 (s, 3H, -OCH3), 3.54-3.49 (m, 3H, 1-CH2 and 2-CH), 3.48 (t, J = 

6.3 Hz, 2H, 6-CH2), 2.53-2.51 (m, 1H, 10-CH), 2.06 (t, J = 7.7 Hz, 2H, 4-CH2), 1.93 (t, J = 

8.1 Hz, 2H, 8-CH2), 1.79-1.75 (m, 2H, 5-CH2), 1.76-1.52 (m, 2H, 9-CH2), 0.81 (s, 9H, 

SiC(CH3)3), 0.02 (s, 9H, Si(CH3)3), –0.03 (s, 3H, SiCH3), 0.04 (s, 3H, SiCH3); 13C NMR (126 

MHz, CDCl3) δ  195.9 (C=O), 161.3 (CO2Me), 151.5 (7-C=), 147.1 (3-C=), 138.5 (C-Ar), 

128.4 (2 × CH-Ar), 127.6 (2 × CH-Ar), 127.5 (CH-Ar), 124.7 (20-CH2=), 111.7 (19-CH2=), 

72,9 (-OCH2Ph), 69.8 (6-CH2), 66.4 (1-CH2), 53.4 (2-CH), 52.7 (-OCH3), 48.6 (10-CH), 33.8 

(8-CH2), 32.5 (4-CH2), 30.6 (9-CH2), 27.7 (5-CH2), 25.8 (3 × SiC(CH3)3), 18.5 (SiC(CH3)3), –

1.5 (3 × Si(CH3)3), –5.6 (Si(CH3)2), –5.8 (Si(CH3)2); IR (in substance) ν 2955-2855, 1725 

                                                                                                                                        
449 No analytical data have been obtained for (R,R)-234b. 
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cm−1. Anal. Calcd for C34H52O5Si2: C, 66.38; H, 9.34. Found: C, 66.46; H, 9.46. [α]25
D +22.1 

(c 1.0, CHCl3).  

 

TBSO

O

CO2Me

SiMe3

OBn

BnO

O

CO2Me

SiMe3

TBSO

10a (E/Z ~9/1)
(±)-anti-233a (54%, >90% de)

+ (Z,Z)-10a (12%)

1,2-dichloroethane
80 °C, sealed tube, 24 h

 
α-Keto Ester (±)-anti-233a.450 A solution of the allyl vinyl ether 4a (50 mg, 0.09 mmol) in 

1,2-dichlorethane (4 mL, 4 mL/ 0.1 mmol) was heated in a sealed tube (bath temperature 80 

°C). After 24 h, the solvents were evaporated and the crude product was purified by column 

chromatography (hexanes/ethyl acetate 20/1) to afford the α-keto ester (±)-anti-3a (27 mg, 

0.05 mmol, 54%) as a pale yellow oil (Rf 0.35 hexane/ethyl acetate 10/1) and the allyl vinyl 

ether (Z,Z)-10a (6 mg, 0.01 mmol, 12%) as a colorless oil (Rf 0.24 hexanes/ethyl acetate 

10/1). Only one diastereomer was detectable from the 1H NMR spectrum of the crude product 

mixture. Analytical data are identical with (2S,10R)-233a. 

 

HO

O

CO2Me

SiMe3

OBn

(Z,Z)-452 (33%)
+ (Z,Z)-10 (31%)

TBSO

O

CO2Me

SiMe3

OBn

(Z,Z)-10a

100 mol% (S,S)-234a
CH2Cl2, rt, 24 h

 
Deprotected Allyl Vinyl Ether (Z,Z)-452. To a solution of (Z,Z)-10a (25 mg, 0.05 mmol, 

1.0 eq) in CH2Cl2 (4 mL) was added (S,S)-234a (39 mg, 0.05 mmol, 1.0 eq) at rt. After stirring 

at ambient temperature for 24 h the reaction mixture was concentrated at reduced pressure. 

The crude product was purified by flash chromatography (hexanes/ethyl acetate 10/1) and 

afforded deprotected (Z,Z)-452 (7 mg, 0.02 mmol, 33%) as pale yellow oil (Rf 0.29 

hexanes/ethyl acetate 1/1) and unaffected starting material (Z,Z)-10a (8 mg, 0.01 mmol, 31%) 

as pale yellow oil (Rf 0.79 hexanes/ethyl acetate 1/1).  
1H NMR (300 MHz, CDCl3) δ 7.29-7.18 (m, 5H), 6.22 (t, J = 7.5 Hz, 1H), 5.64 (t, J = 7.4 

Hz, 1H), 5.51-5.49 (m, 1H), 5.30-5.28 (m, 1H), 4.43 (s, 2H), 4.25 (s, 2H), 4.11 (d, J = 7.4 Hz, 

                                            
450 Yields not optimized. 



288  Experimental Section 
 

 
Ph.D. Thesis Annett Pollex 

2H), 3.70 (s, 3H), 2.42 (t, J = 6.4 Hz, 2H), 2.34-2.10 (m, 6H), 1.80-1.67 (m, 2H), 0.00 (s, 9H). 

Anal. Calcd for C25H38O5Si: C, 67.23; H, 8.58. 

 

BnO

O

SiMe3

TBSO

CO2Me

BnO SiMe3

TBSO

CO2Me

(2S,10R)-462 (68%)(2S,10R)-233a

2.5 eq Ph3P=CH2
THF, 0 °C to rt, 2 h

 
α,β-Unsaturated Ester (2S,10R)-462.388 To a solution of methyl triphenylphosphonium 

bromide (96 mg, 0.3 mmol, 3.0 eq) in THF (2 mL, 2 mL/0.1 mmol of 3) at 0 °C was added a 

LiHMDS solution (1.0 M in THF, 0.23 mL, 0.2 mmol, 2.5 eq). After 1 h at 0 °C, a solution of 

the α-keto ester (2S,10R)-233a (50 mg, 0.09 mmol, 1.0 eq) in THF (2 mL, 2 mL/0.1 mmol) 

was added and the suspension was warmed to rt. When TLC indicated complete consumption 

of the starting material (~2 h), the reaction was quenched by the addition of saturated aq 

NH4Cl and extracted with CH2Cl2. The combined organic layers were dried and concentrated. 

The crude product was purified by column chromatography (hexanes/ethyl acetate 20/1) to 

afford the α,β-unsaturated ester (2S,10R)-462 (34 mg, 0.06 mmol, 68%) as a pale yellow oil 

(Rf 0.41 hexanes/ethyl acetate 10/1). 
1H NMR (300 MHz, CDCl3) δ 7.34-7.24 (m, 5H), 6.23 (d, J = 1.0 Hz, 1H), 5.54 (d, J = 1.0 

Hz, 1H), 5.46-5.43 (m, 1H), 5.23 (d, J = 3.0 Hz, 1H), 4.86 (s, 1H), 4.82 (s, 1H), 4.48 (s, 2H), 

3.72 (s, 3H), 3.51-3.44 (m, 4H), 2.63 (td, J = 10.8, 3.3 Hz, 1H), 2.38 (dt, J = 9.6, 5.7 Hz, 1H), 

2.11-1.49 (series of m, 8H), 0.81 (s, 9H), 0.00 (s, 9H), –0.07 (s, 3H), –0.08 (s, 3H); 13C NMR 

(75 MHz, CDCl3) δ 167.7 (C), 152.3 (C), 149.1 (C), 142.0 (C), 138.6 (C), 128.3 (2 × CH), 

127.6 (2 × CH), 127.5 (CH), 125.9 (CH2), 123.9 (CH2), 110.6 (CH2), 72.8 (CH2), 70.3 (CH2), 

64.7 (CH2), 52.0 (CH), 51.7 (CH3), 34.0 (CH2), 32.1 (CH2), 31.6 (CH2), 29.7 (CH), 27.6 

(CH2), 25.9 (3 × CH3), 18.2 (C), –1.5 (3 × CH3), –5.5 (CH3), –5.6 (CH3); IR (in substance) ν 

2950-2855, 1720 cm−1. Anal. Calcd for C32H54O4Si2: C, 68.76; H, 9.74. Found: C, 68.88; H, 

9.40. [α]25
D +9.1 (c 1.0, CHCl3).  
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BnO SiMe3

TBSO Cl

BnO

O

SiMe3

TBSO

(2S,10R)-476a (35%, E/Z ~ 1/9)(2S,10R)-233a

1.05 eq Ph3P=CHCl
THF, rt, 21 h

CO2Me CO2Me

 
Vinyl Chloride (2S,10R)-476a.451 An ice-cooled suspension of chloromethyl 

triphenylphosphonium chloride 480a (74 mg, 0.2 mmol, 1.2 eq) in THF (2 mL, 10 mL/mmol) 

was treated with n-BuLi (2.3 M, 80 μL, 0.2 mmol, 1.05 eq), warmed to rt and stirred for 2 h. 

To the yellow suspension was added a solution of the α-ketoester (2S,10R)-233a (0.10 g, 0.2 

mmol, 1.0 eq) in THF (2 mL, 10 mL/mmol). The reaction mixture was stirred for 21 h at 

ambient temperature, quenched with saturated aq NH4Cl and extracted with CH2Cl2 (3 × 5 

mL). The combined organic layers were dried and concentrated. Flash chromatography 

(hexanes/ethyl acetate 50/1) afforded the vinyl chloride (2S,10R)-476a (39 mg, 0.06 mmol, 

35%) as mixture of double bond isomers ((Z)-476a/(E)-476a ~ 9/1) as pale yellow oil (Rf 0.56 

hexanes/ethyl acetate 5/1). (Rf(α-keto ester) 0.59 hexanes/ethyl acetate 5/1). The double bond 

isomers may be separated by carefully performed flash chromatography. 
1H NMR (500 MHz, CDCl3) δ 7.35-7.25 (m, 5H, CH-Ar), 6.22 (s, 1Hmajor, 12-CH=), 6.20 

(s, 1Hminor, 12-CH=), 5.48 (s, 1H, 20-CH2), 5.27 (s, 1H, 20-CH2), 4.88 (s, 1H, 19-CH2), 4.83 

(s, 1H, 19-CH2), 4.48 (s, 2H, OCH2Ph), 3.79 (s, 3H, OCH3), 3.63 (ddAB, J = 10.1, 5.7 Hz, 1H, 

1-CH2), 3.55 (ddAB, J = 9.9, 3.3 Hz, 1H, 1-CH2), 3.48 (dd, J = 6.5, 6.5 Hz, 2H, 6-CH2), 2.54 

(ddd, J = 11.2, 11.2, 2.7 Hz, 1H, 10-CH2), 2.28-2.21 (m, 1H, 2-CH), 2.20-2.16 (m, 1H, 8-

CH2), 2.13-1.98 (m, 2H, 4-CH2), 1.92-1.84 (m, 1H, 8-CH2), 1.79-1.72 (m, 2H, 5-CH2), 1.67-

1.60 (m, 1H, 9-CH2), 1.34-1.24 (m, 1H, 9-CH2), 0.85 (s, 9H, SiC(CH3)3), 0.03 (s, 9H, 

Si(CH3)3), −0.03 (s, 6H, Si(CH3)2); 13C NMR (126 MHz, CDCl3) δ  166.6 (CO2Me), 151.9 (7-

C=), 148.4 (3-C=), 138.6 (C-Ar), 137.3 (11-C=), 128.3 (2 × CH-Ar), 127.6 (2 × CH-Ar), 

127.5 (CH-Ar), 124.2 (20-CH2=), 121.2 (12-CH=), 111.1 (19-CH2=), 72.9 (-OCH2Ph), 70.2 

(6-CH2), 64.0 (1-CH2), 51.8 (-OCH3), 50.4 (2-CH), 45.0 (10-CH), 34.1 (8-CH2), 32.4 (4-

CH2), 30.6 (9-CH2), 27.7 (5-CH2), 25.9 (3 × SiC(CH3)3), 18.2 (SiC(CH3)3), −1.5 (3 × 

Si(CH3)3, −5.5 (Si(CH3)2), −5.6 (Si(CH3)2); IR (in substance) ν 3080-3045, 2950-2855, 1730 

cm−1. Anal. Calcd for C32H53ClO4Si2: C, 64.77; H, 9.00; Cl, 5.97. Found: C, 64.86; H, 8.92; 

Cl, 5.74. [α]28
D −2.3° (c 0.48, CHCl3).  

 

                                            
451 Prepared according to: Frye, L. L.; Robinson, C. H. J. Org. Chem. 1990, 55, 1579-1584. 
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BnO

CO2Me

SiMe3

TBSO

O

O

SiMe3 OBn

(2S,10R)-462 (2S,10R)-501 (77%)

HF·pyridine, THF
0 °C to rt, 16 h

1
2

3 4
5

6

7

8

9 10

1111'

19

20

 
δ-Lacton (2S,10R)-501.388 To a solution of the α,β-unsaturated ester (2S,10R)-462 (11 mg, 

0.02 mmol, 1.0 eq) in THF (2 mL) at 0 °C was added HF·pyridine (30 µL, 0.15 mL/0.1 mmol 

of 462).452 After 12 h at rt, an additional portion of HF·pyridine (30 µL, 0.15 mL/0.1 mmol of 

462) was added and the reaction mixture was stirred until TLC indicated complete 

consumption of the starting material (~4 h). The reaction was then quenched by the careful 

addition of saturated aq NaHCO3 and extracted with CH2Cl2 (3 × 5 mL). The combined 

organic layers were dried and concentrated. The crude product was purified by column 

chromatography (hexanes/ethyl acetate 10/1) to afford the δ-lacton (2S,10R)-501 (6 mg, 0.014 

mmol, 77%) as a colorless oil (Rf 0.21 hexanes/ethyl acetate 10/1). 
1H NMR (500 MHz, CDCl3) δ 7.35-7.28 (m, 5H, CH-Ar), 6.37 (s, 1H, 11'-CH2=), 5.53 (s, 

1H, 11'-CH2=), 5.52 (d, J = 2.7 Hz, 1H, 20-CH2), 5.32 (d, J = 2.7 Hz, 1H, 20-CH2), 4.98 (s, 

1H, 19-CH2=), 4.95 (s, 1H, 19-CH2=), 4.49 (s, 2H, -OCH2Ph), 4.32 (ddAB, J = 11.4, 4.1 Hz, 

1H, 1-CH2), 4.14 (ddAB, J = 11.4, 7.6 Hz, 1H, 1-CH2), 3.48 (t, J = 6.3 Hz, 2H, 6-CH2), 2.75 

(ddd, J = 6.2, 6.2, 6.2 Hz, 1H, 10-CH), 2.41 (ddd, J = 7.2, 7.2, 4.1 Hz, 1H, 2-CH), 2.16-2.08 

(m, 4H, 4-CH2 and 8-CH2), 1.76 (quint, J = 6.3 Hz, 2H, 5-CH2), 1.72-1.67 (m, 1H, 9-CH2), 

1.63-1.59 (m, 1H, 9-CH2), 0.06 (s, 9H, Si(CH3)3); 13C NMR (126 MHz, CDCl3) δ  166.7 

(C=O), 151.3 (7-C), 146.2 (3-C), 138.3 (C-Ar), 137.9 (11-C), 128.4 (2 × CH-Ar), 128.1 (11'-

CH2=), 127.6 (3 × CH-Ar), 124.5 (20-CH2=), 112.4 (19-CH2=), 73.0 (-OCH2Ph), 69.7 (1-

CH2), 69.5 (6-CH2), 44.3 (2-CH), 41.6 (10-CH), 33.6 (9-CH2), 32.1 (8-CH2), 31.4 (4-CH2), 

28.0 (5-CH2), –1.5 (3 × SiCH3); IR (in substance) ν 2925-2850, 1730 cm−1. Anal. Calcd for 

C25H36O3Si: C, 72.77; H, 8.79. [α]25
D −29.7 (c 1.0, CHCl3).  

 

 

 

 

 

 

                                            
452 Performed in a polyethylene vial. 
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20.3.3 Side Chain Synthesis 

 

R OH
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Scheme 155: Synthesis of the Wittig salt 235. 
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HO
OH

HO
OH

2.5 eq 398

1.7 eq LiAlH4, THF, reflux, 18 h

470 (64%)  
(E)-2-Butene-1,4-diol (470).453 To a suspension of lithium aluminium hydride (9.7 g, 255 

mmol, 1.7 eq) in THF (130 mL, 0.5 mL/mmol) was slowly added a solution of 2-butyn-1,4-

diol (398) (10.0 g, 116 mmol, 1.0 eq) in THF (120 mL, 1 mL/mmol). To enable stirring of the 

resulting suspension a big magnetic stir barbell should be used. The reaction mixture war 

refluxed for 18 h, cooled to 0 °C and 2.5 g Celite were added. The reaction was then 

quenched by the careful addition of saturated aq NH4Cl (12.5 mL). The precipitates were 

removed by filtration and washed thoroughly with methanol. The filtrate was concentrated 

and purified by kugelrohr distillation (3 mbar, 120 °C) to afford (E)-butene-1,4-diol 470 (6.5 

g, 74.0 mmol, 64%) as colorless oil.  
1H NMR (DMSO-d6, 300 MHz) δ 5.69-5.65 (m, 2H), 4.67-4.61 (m, 2H), 3.92-3.83 (m, 4H). 

Anal. Calcd for C4H8O2: C, 54.53; H, 9.15. 

 

HO
OH

TBSO
OH

2.5 eq 398

1.0 eq TBSCl, 1.1 eq imidazole
THF, 0 °C to rt, 1h

519a (92%)  
Protected Diol 519a.454 To a solution of 2-butyn-1,4-diol 398 (4.3 g, 50.0 mmol, 2.5 eq) 

and imidazole (3.0 g, 22.0 mmol, 1.1 eq) in THF (40 mL, 0.8 mL/mmol) was added tert-

butyldimethylchlorosilane TBSCl (3.0 g, 20.0 mmol, 1.0 eq) at 0 °C. The reaction mixture 

was warmed to rt, stirred for 1 h at ambient temperature, quenched by the addition of 

saturated aq. NH4Cl and extracted with CH2Cl2 (3 × 20 mL). The combined organic phases 

were dried with MgSO4 and concentrated. Flash chromatography (hexanes/ethyl acetates 20/1 

to 2/1) afforded protected diol 519a (3.7 g, 18.5 mmol, 92%) as colorless oil (Rf 0.29 

hexanes/ethyl acetate 5/1). 
1H NMR (300 MHz, CDCl3) δ 4.23 (t, J = 1.8 Hz, 2H), 4.18 (t, J = 1.8 Hz, 2H), 0.79 (s, 

9H), 0.00 (s, 6H), no OH-resonance observed; 13H NMR (75 MHz, CDCl3) δ 84.5 (C), 83.0 

(C), 51.7 (CH2), 51.2 (CH2), 25.8 (3 × CH3), 18.3 (C), −5.2 (2 × CH3); IR (in substance) ν 

3375, 2955-2855 cm−1. Anal. Calcd for C10H20O2Si: C, 59.95; H, 10.06. 

 

                                            
453 Commercially available from Narchem. Synthesized analogue to: Zhao, L.; Lu, X.; Xu, W. J. Org. Chem. 
2005, 70, 4059-4063. 
454 Padwa, A.; Lipka, H.; Watterson, S. H.; Murphree, S. S. J. Org. Chem. 2003, 68, 6238-6250. 
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TBSO
OHHO

OH

2.0 eq 470

1.0 eq TBSCl, 1.1 eq imidazole
THF, 0 °C to rt, 1 h

519b (73%)  
Protected Diol 519b.455 As described in the preceding paragraph, 2-butene-1,4-diol (470) 

(1.8 g, 20.0 mmol) was treated with tert-butyldimethylchlorosilane TBSCl (1.5 g, 10.0 mmol) 

and imidazole (0.7 g, 11.0 mmol). Flash chromatography (hexanes/ethyl acetate 20/1 to 2/1) 

afforded the protected diol 519b (1.5 g, 7.3 mmol, 73%) as colorless oil (Rf 0.26 

hexanes/ethyl acetate 5/1).  
1H NMR (300 MHz, CDCl3) δ 5.85-5.68 (m, 2H), 4.13-4.07 (m, 4H), 0.84 (s, 9H), 0.00 (s, 

6H), no OH-resonance observed; 13H NMR (75 MHz, CDCl3) δ 131.0 (CH), 128.9 (CH), 63.2 

(CH2), 63.1 (CH2), 25.9 (3 × CH3), 18.4 (C), −5.3 (2 × CH3); IR (in substance) ν 3370, 2955-

2860 cm−1. Anal. Calcd for C10H22O2Si: C, 59.35; H, 10.96. 

 

TBSO
OH

TBSO O

519a

1.5 eq Dess-Martin periodinane
CH2Cl2, rt, 30 min

520a (85%)  
Aldehyde 520a.456 To a solution of the protected diol 519a (50 mg, 0.3 mmol, 1.0 eq) in 

CH2Cl2 (3 mL, 1 mL/0.1 mmol) was added Dess-Martin periodinane457 (0.2 mg, 0.4 mmol, 

1.5 eq) at ambient temperature. The reaction mixture was stirred for 30 min at rt, diluted with 

saturated aq. NaHCO3 and extracted with CH2Cl2 (3 × 3 mL). The combined organic layers 

were washed with aq Na2S2O5 (1M, 5 mL), dried over MgSO4, filtered trough a plug of Celite 

and concentrated. Flash chromatography (hexanes/ethyl acetate 50/1 to 20/1) afforded the 

aldehyde 520a (43 mg, 0.2 mmol, 85%) as colorless oil (Rf 0.56 hexanes/ethyl acetate 10/1).  
1H NMR (300 MHz, CDCl3) δ 9.10 (s, 1H), 4.37 (s, 2H), 0.78 (s, 9H), 0.00 (s, 6H); 13C 

NMR (75 MHz, CDCl3) δ 176.3 (CH), 94.8 (C), 84.2 (C), 51.5 (CH2), 25.7 (3 × CH3), 18.2 

(C), −5.3 (2 × CH3); IR (in substance) ν 2955-2855, 1675 cm−1. Anal. Calcd for C10H18O2Si: 

C, 60.56; H, 9.15. 

 

                                            
455 Pankett, C. S.; Byrne, P. W.; Teobald, B. J.; Rola, B.; Ozanne, A.; Hitchcock, P. B. Tetrahedron 2004, 60, 
2771-2784. 
456 Morrison, C. F.; Burnell, D. J. Tetrahedron Lett. 2001, 42, 7367-7369. 
457 Preparation of Dess-Martin periodinane (523) is described below.  
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TBSO
O

TBSO
OH

519b

1.5 eq Dess-Martin periodinane
CH2Cl2, rt, 30 min

520b (70%)  
Aldehyde 520b.458 As described for the synthesis of aldehyde 520a, protected diol 519b 

(50 mg, 0.3 mmol) was treated with Dess-Martin periodinane (0.16 g, 0.4 mmol). Flash 

chromatography afforded the aldehyde 520b (35 mg, 0.2 mmol, 70%) as colorless oil (Rf 0.44 

hexanes/ethyl acetate 10/1).  
1H NMR (300 MHz, CDCl3) δ 9.51 (d, J = 8.1 Hz, 1H), 6.82 (dt, J = 15.5, 3.3 Hz, 1H), 6.31 

(ddt, J = 15.4, 8.1, 2.1 Hz, 1H), 4.36 (dd, J = 3.2, 2.2 Hz, 2H), 0.83 (s, 9H), 0.00 (s, 6H); 13C 

NMR (75.5 MHz, CDCl3) δ 193.3 (CH), 156.3 (CH), 130.6 (CH), 62.2 (CH2), 61.7 (CH2), 

25.8 (3 × CH3), 18.3 (C), −5.5 (2 × CH3); IR (in substance) ν 2955-2855, 1690 cm−1. Anal. 

Calcd for C10H20O2Si: C, 59.95; H, 10.06. 

 

TBSO O TBSO

OH

520a

1.2 eq MeMgI, diethyl ether
−78 °C, 2 h

468a (44%)  
Alcohol 468a.459 To a solution of the aldehyde 520a (2.8 g, 14.3 mmol, 1.0 eq) in diethyl 

ether (28 mL, 2 mL/mmol) was added a solution of methyl magnesium iodide (2.3 M, 7.5 mL, 

17.2 mmol, 1.2 eq) [prepared in situ from magnesium (0.7 g, 30.0 mmol, 1.0 eq) and 

iodomethane (1.9 mL, 30.0 mmol, 1.0 eq)] at −78 °C. The reaction mixture was stirred for 2 h 

at −78 °C, quenched by the addition of saturated aq NH4Cl and extracted with CH2Cl2 (3 × 25 

mL). The combined organic phases were dried and concentrated. Flash chromatography 

(hexanes/ethyl acetate 10/1) afforded alcohol 468a (1.4 g, 6.3 mmol, 44%) as colorless oil (Rf 

0.18 hexanes/ethyl acetate 10/1).  
1H NMR (300 MHz, CDCl3) δ 4.44 (qt, J = 6.6, 1.7 Hz, 1H), 4.22 (d, J = 1.8 Hz, 2H), 1.33 

(d, J = 6.6 Hz, 3H), 0.79 (s, 9H), 0.00 (s, 6H), no OH-resonance observed; 13C NMR (75 

MHz, CDCl3) δ 86.6 (C), 82.7 (C), 58.4 (CH), 51.7 (CH2), 25.8 (3 × CH3), 24.2 (CH3), 18.3 

(C), −5.1 (2 × CH3); IR (in substance) ν 3400, 2955-2855 cm−1. Anal. Calcd for C11H22O2Si: 

C, 61.63; H, 10.34.  

 

                                            
458 Crilley, M. M. L.; Golding, B. T.; Pierpoint, C. J. Chem. Soc., Perkin Trans. 1 1988, 2061-2067. 
459 Wipf, P.; Rahman, L. T.; Rector, S. R. J. Org. Chem. 1998, 63, 7132-7133. 
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TBSO
OH

TBSO
O

520b

1.2 eq MeMgI, diethyl ether
−78 °C, 2 h

468b (97%)  
Alcohol 468b.460 Analogous to the procedure for the preparation of alcohol 468a, aldehyde 

520b (1.0 g, 4.9 mmol) was treated with a solution of methyl magnesium iodide (2.3 M, 2.6 

mL, 5.9 mmol). Flash chromatography (hexanes/ethyl acetate 10/1) afforded the alcohol 468b 

(1.0 g, 4.8 mmol, 97%) as colorless oil (Rf 0.21 hexanes/ethyl acetate 10/1).  
1H NMR (300 MHz, CDCl3) δ 5.70-5.64 (m, 2H), 4.31-4.21 (m, 1H), 4.10 (d, J = 2.9 Hz, 

2H), 1.20 (d, J = 6.6 Hz, 3H), 0.84 (s, 9H), 0.00 (s, 6H), no OH-resonance observed; 13C 

NMR (75 MHz, CDCl3) δ 134.0 (CH), 129.3 (CH), 68.3 (CH), 63.1 (CH2), 25.9 (3 × CH3), 

23.2 (CH3), 18.4 (C), −5.2 (2 × CH3); IR (in substance) ν 3345, 2955-2855 cm−1. Anal. Calcd 

for C11H24O2Si: C, 61.05; H, 11.18.  

 

TBSO

OH

TBSO

O

468a

1.0 eq Dess-Martin periodinane
CH2Cl2, 0 °C to rt, 3 h

521a (61%)  
Ketone 521a.461 To an ice-cooled solution of the alcohol 468a (1.4 g, 6.3 mmol, 1.0 eq) in 

CH2Cl2 (36 mL, 6 mL/mmol) was added Dess-Martin periodinane457 (2.7 g, 6.3 mmol, 1.0 

eq). The reaction mixture stirred for 1 h at 0 °C and 2 h at rt, diluted with saturated aq 

NaHCO3 and extracted with CH2Cl2 (3 × 3 mL). The combined organic layers were washed 

with aq Na2S2O5 (1M, 10 mL), dried over MgSO4, filtered trough a plug of Celite and 

concentrated. Flash chromatography (hexanes/ethyl acetate 20/1) afforded the ketone 521a 

(0.8 g, 3.8 mmol, 61%) as colorless oil (Rf 0.47 hexanes/ethyl acetate 10/1).  
1H NMR (300 MHz, CDCl3) δ 4.33 (s, 2H), 2.21 (s, 3H), 0.78 (s, 9H), 0.00 (s, 6H). Anal. 

Calcd for C11H20O2Si: C, 62.21; H, 9.49. 

 

TBSO
O

TBSO
OH

468b

1.0 eq Dess-Martin periodinane
CH2Cl2, 0 °C to rt, 3 h

521b (80%)  
Ketone 521b.461 As described for the preparation of ketone 521a, alcohol 468b (0.13 g, 0.6 

mmol) was treated with Dess-Martin periodinane457 (0.25 g, 0.6 mmol, 1.0 eq). Flash 

                                            
460 Belelie, J. L.; Chong, J. M. J. Org. Chem. 2002, 67, 3000-3006. 
461 Piggot, M. J.; Wege, D. Aust. J. Chem. 2003, 56, 691-702. 
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chromatography (hexanes/ethyl acetate 20/1) afforded the ketone 521b (0.10 g, 0.5 mmol, 

80%) as colorless oil (Rf 0.50 hexanes/ethyl acetate 10/1).  
1H NMR (300 MHz, CDCl3) δ 6.74 (dt, J = 15.8, 3.5 Hz, 1H), 6.25 (dt, J = 15.8, 2.2 Hz, 

1H), 4.28 (dd, J = 3.3, 2.2 Hz, 2H), 0.84 (s, 9H), 0.00 (s, 6H); Anal. Calcd for C11H22O2Si: C, 

61.63; H, 10.34. 

 

TBSO

O

TBSO

OH

521a

1.2 eq MeMgI, diethyl ether
−78 °C, 2 h

469a (74%)  
Alcohol 469a.462 To a solution of the ketone 521a (0.8 g, 3.9 mmol, 1.0 eq) in diethyl ether 

(8 mL, 2 mL/mmol) was added a solution of methyl magnesium iodide (1.5 M, 3.0 mL, 4.63 

mmol, 1.2 eq) [prepared in situ from magnesium (2.9 g, 12.0 mmol, 1.0 eq) and iodomethane 

(0.8 mL, 12.0 mmol, 1.0 eq)] at −78°C. The reaction mixture was stirred for 1 h at −78 °C and 

1 h at rt, quenched by the addition of saturated aq NH4Cl and extracted with CH2Cl2 (3 × 6 

mL). The combined organic phases were dried and concentrated. Flash chromatography 

(hexanes/ethyl acetate 5/1) afforded alcohol 469a (0.7 g, 2.9 mmol, 74%) as colorless oil (Rf 

0.35 hexanes/ethyl acetate 10/1).  
1H NMR (300 MHz, CDCl3) δ 4.21 (s, 2H), 1.49 (s, 6H), 0.79 (s, 9H), −0.01 (s, 6H), no 

OH-resonance observed; 13C NMR (75 MHz, CDCl3) δ 89.4 (C), 80.8 (C), 65.1 (C), 51.7 

(CH2), 31.3 (2 × CH3), 25.8 (3 × CH3), 18.3 (C), −5.1 (2 × CH3). Anal. Calcd for C12H24O2Si: 

C, 63.10; H, 10.59.  

 

TBSO
OH

TBSO
O

521b

1.2 eq MeMgI, diethyl ether
−78 °C, 2 h

469b (77%)  
Alcohol 469b.462 As outlined in the preceding paragraph, ketone 521b (0.8 g, 3.5 mmol) 

was treated with a solution of methyl magnesium iodide (1.5 M, 2.7 mL, 4.3 mmol). Flash 

chromatography (hexanes/ethyl acetate 5/1) afforded the alcohol 469b (0.6 g, 2.7 mmol, 77%) 

as colorless oil (Rf 0.26 hexanes/ethyl acetate 10/1).  
1H NMR (300 MHz, CDCl3) δ 5.75 (brd, J = 15.8 Hz, 1H), 5.67 (dt, J = 15.6, 4.5 Hz, 1H), 

4.11 (dd, J = 4.6, 1.3 Hz, 2H), 1.25 (s, 6H), 0.84 (s, 9H), 0.00 (s, 6H), no OH-resonance 

observed; 13C NMR (75 MHz, CDCl3) δ 137.9 (CH), 126.1 (CH), 70.5 (C), 63.4 (CH2), 29.7 

                                            
462 Trost, B. M.; Corte, J. R.; Gudiksen, M. S. Angew. Chem., Int. Ed. 1999, 38, 3662-3664. 
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(2 × CH3), 25.9 (3 × CH3), 18.4 (C), −5.2 (2 × CH3). Anal. Calcd for C12H26O2Si: C, 62.55; H, 

11.37.  

 

TBSO

OH
TBSO

OH

469a

2.0 eq Red-Al
THF, 0 °C, 20 min

469b (49%)  
Alcohol 469b.462 To an ice-cooled solution of alcohol 469a (40 mg, 0.2 mmol, 1.0 eq) in 

THF (2 mL, 10 mL/mmol) was added a solution of Red-Al (65% in toluene, 0.1 mL, 0.4 

mmol, 2.0 eq). The reaction mixture was stirred for 20 min at 0 °C, carefully quenched with 

saturated aq NH4Cl, extracted with CH2Cl2 (3 × 3 mL). The combined organic phases were 

dried and concentrated. Flash chromatography (hexanes/ethyl acetate 5/1) afforded alcohol 

469b (19 mg, 0.08 mmol, 49%) as colorless oil (Rf 0.26 hexanes/ethyl acetate 10/1).  
1H NMR (300 MHz, CDCl3) δ 5.75 (brd, J = 15.8 Hz, 1H), 5.67 (dt, J = 15.6, 4.5 Hz, 1H), 

4.11 (dd, J = 4.6, 1.3 Hz, 2H), 1.58, 1.25 (s, 6H), 0.84 (s, 9H), 0.00 (s, 6H), no OH-resonance 

observed; 13C NMR (75.5 MHz, CDCl3) δ 137.9 (CH), 126.1 (CH), 70.5 (C), 63.4 (CH2), 29.7 

(2 × CH3), 25.9 (3 × CH3), 18.4 (C), −5.2 (2 × CH3). Anal. Calcd for C12H26O2Si: C, 62.55; H, 

11.37.  

 

HO
OH

TBSO
OH

469b

1.5 eq TBAF
THF, 0 °C, 20 min

465 (100%)  
Diol 465.463 To an ice-cooled solution of the alcohol 469b (0.7 g, 3.2 mmol, 1.0 eq) in THF 

(10 mL, 3 mL/mmol) was added tetrabutyl ammonium fluoride (1.5 g, 4.8 mmol, 1.5 eq). 

After strirring for 3 h at 0 °C, solid NaHCO3 (~0.5 g, 6.2 mmol, 2.0 eq) was added.464 The 

reaction mixture was filtered and concentrated. Flash chromatography (hexanes/ethyl acetate 

1/1 to ethyl acetate) afforded the diol 465 (0.36 g, 3.2 mmol, 100%) as colorless oil (Rf 0.24 

ethyl acetate).  
1H NMR (300 MHz, CDCl3) δ 5.85-5.75 (m, 2H), 4.14 (d, J = 4.0 Hz, 2H), 1.73 (s, 2H), 

1.32 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 139.4 (CH), 125.8 (CH), 70.5 (C), 63.0 (CH2), 

29.6 (2 × CH3). Anal. Calcd for C6H12O2: C, 62.04; H, 10.41. 

 

                                            
463 Miller, R. B.; Al-Hassan, M. I. J. Org. Chem. 1983, 48, 4113-4116. 
464 Aqueous workup of the reaction led to decreased isolated yields due to the high polarity of the diol 465. 
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THPOHO

1.2 eq 471

1.0 eq DHP, 0.01 eq PPTS
CH2Cl2, rt, 1 h

472 (85%)  
Protected Propargylic Alcohol 472.465 To a solution of 2-propyn-1-ol (471) (10.0 mL, 171 

mmol, 1.2 eq) in CH2Cl2 (85 mL, 0.5 mL/mmol) was added 3,4-dihydro-2H-pyrane DHP 

(12.9 mL, 143 mmol, 1.0 eq) and pyridinium-para-toluenesulfonate PPTS (0.35 g, 0.01 

mmol, 0.01 eq) at ambient temperature. After stirring for 1 h at rt, the reaction was quenched 

with saturated aq NaHCO3 and extracted with CH2Cl2 (3 × 50 mL). The combined organic 

phases were dried and concentrated. Flash chromatography (hexanes/ethyl acetate 20/1 to 

10/1 to 3/1) afforded the protected alcohol 472 (17.0 g, 121 mmol, 85%) as colorless liquid 

(Rf 0.17 hexanes/ethyl acetate 20/1).  
1H NMR (300 MHz, CDCl3) δ 4.81 (t, J = 3.1 Hz, 1H), 4.29 (ddAB, J = 15.6, 2.4 Hz, 1H), 

4.22 (ddAB, J = 15.8, 2.6 Hz, 1H), 3.88-3.79 (m, 1H), 3.57-3.49 (m, 1H), 3.40 (d, J = 2.4 Hz, 

1H), 1.89-1.47 (series of m, 6H); 13C NMR (126 MHz, CDCl3) δ 96.8 (CH), 79.7 (C), 74.0 

(CH), 62.0 (CH2), 54.0 (CH2), 30.2 (CH2), 25.3 (CH2), 19.0 (CH2). Anal. Calcd for C8H12O2: 

C, 68.54, H, 8.63. 

 

THPO
THPO

OH
472 469c (92%)

1.1 eq n-BuLi, 1.5 eq acetone
THF, −78 °C, 1 h

 
Alcohol 469c.465 To a solution of the protected alcohol 472 (0.14 g, 1.0 mmol, 1.0 eq) in 

THF (2 mL, 2 mL/mmol) was slowly added n-BuLi (2.0 M, 0.6 mL, 1.1 mmol, 1.1 eq) at −78 

°C. After stirring for 10 min, acetone (0.1 mL, 1.5 mmol, 1.5 eq) was added at −78 °C. The 

reaction mixture was stirred until TLC indicated the complete consumption of the starting 

material (Rf 0.62 hexanes/ethyl acetate 5/1) (~1 h), quenched with saturated aq. NH4Cl at −78 

°C, diluted with CH2Cl2 and water, warmed to rt and extracted with CH2Cl2 (3 × 5 mL). The 

combined organic layers were dried and concentrated. Flash chromatography (hexanes/ethyl 

acetate 20/1 to 10/1 to 1/1) afforded alcohol 469c (0.18 g, 0.9 mmol, 92%) as colorless oil (Rf 

0.32 hexanes/ethyl acetate 5/1).  
1H NMR (500 MHz, CDCl3) δ 4.79 (t, J = 3.3 Hz, 1H), 4.32-4.21 (m, 2H), 3.85-3.79 (m, 

1H), 3.55-3.50 (m, 1H), 1.86-1.49 (series of m, 6H), 1.50 (s, 6H), no OH-resonance observed; 
13C NMR (126 MHz, CDCl3) δ 96.6 (CH), 90.7 (C), 77.8 (C), 65.0 (C), 61.9 (CH2), 54.2 

                                            
465 Díez Martín, D.; Marcos, I. S.; Basabe, P.; Romero, R. E.; Moro, R. F.; Lumeras, W.; Rodríguez, L.; Urones, 
J. G. Synthesis 2001, 1013-1022. 
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(CH2), 31.3 (2 × CH3), 30.2 (CH2), 25.3 (CH2), 18.9 (CH2). Anal. Calcd for C11H18O3: C, 

66.64; H, 9.15. 

 

HO

OH

THPO

OH
469c 473 (100%)

0.02 eq p-TSA
MeOH, rt, 1 h

 
Diol 473.466 To a solution of alcohol 469c (0.18, 0.9 mmol, 1.0 eq) in MeOH (9 mL, 10 

mL/mmol) was added para-toluene sulfonic acid PTSA (3.5 mg, 0.02 mmol, 0.02 eq) at 

ambient temperature. After stirring for 1 h at rt solid NaHCO3 (10 mg, 0.1 mmol, 0.1 eq) was 

added.464 The reaction mixture was stirred for 10 min, filtered and concentrated. Flash 

chromatography (hexanes/ethyl acetate 10/1 to 1/1) afforded the diol 473 (0.11 g, 0.9 mmol, 

100%) as colorless oil (Rf 0.26 hexanes/ethyl acetate 1/1).  
1H NMR (300 MHz, CDCl3) δ 4.27 (s, 2H), 2.79 (brs, 2H), 1.50 (s, 6H); 13C NMR (147 

MHz, CDCl3) δ 90.2 (C), 80.2 (C), 65.0 (C), 50.5 (CH2), 31.1 (2 × CH3). Anal. Calcd for 

C6H10O2: C, 63.14; H, 8.83. 

 

HO

OH

HO
OH

473

5.0 eq Red-Al
THF, 0 °C, 2 h

465 (83%)  
Diol 465.463 To an ice-cooled solution of the alcohol 473 (52 mg, 0.5 mmol, 1.0 eq) in THF 

(2 mL, 4 mL/mmol) was added a solution of Red-Al (65% in toluene, 0.7 mL, 4.8 mmol, 1.5 

eq). After strirring for 2 h at 0 °C, solid water (54 μL) and MgSO4 (~100 mg) was added.467 

The reaction mixture was filtered and concentrated. Flash chromatography (ethyl acetate) 

afforded the diol 465 (44 mg, 0.4 mmol, 83%) as colorless oil (Rf 0.24 ethyl acetate).  
1H NMR (300 MHz, CDCl3) δ 5.85-5.75 (m, 2H), 4.14 (d, J = 4.0 Hz, 2H), 1.73 (s, 2H), 

1.32 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 139.4 (CH), 125.8 (CH), 70.5 (C), 63.0 (CH2), 

29.6 (2 × CH3). Anal. Calcd for C6H12O2: C, 62.04; H, 10.41. 

 

Br
OH

HO
OH

465

1.2 eq MsCl, 1.3 eq Et3N
CH2Cl2, 0 °C, 5 min, then add
10.0 eq NaBr, acetone, rt, 48 h

466c (30%)  
                                            
466 Commercially available from Scientific Exchange. For reference data, see: reference 465. 
467 Usual aqueous workup with saturated aq NH4Cl and extraction with chloroform led to decreased isolated 
yields due to the high polarity of the diol 465. 
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Allylic Bromide 466c.468 To a stirred solution of the diol 465 (80 mg, 0.7 mmol, 1.0 eq) in 

CH2Cl2 (1.5 mL, 2 mL/mmol) were added Et3N (0.1 mL, 0.9 mmol, 1.2 eq) and methane 

sulfonyl chloride (70 μl, 0.9 mmol, 1.3 eq). After stirring for 5 min NaBr (0.7 g, 7.2 mmol, 

10.0 eq) and acetone (3 mL, 4 mL/mmol) were added. The reaction mixture was warmed to rt, 

stirred in the dark for 48 h at ambient temperature,469 filtered and concentrated. Flash 

chromatography (hexanes/ethyl acetate 10/1) afforded the allylic bromide 466c (37 mg, 0.2 

mmol, 30%) as pale yellow oil (Rf 0.41 hexanes/ethyl acetate 3/1).  
1H NMR (300 MHz, CDCl3) δ 5.91-5.86 (m, 2H), 3.97-3.93 (m, 2H), 1.59 (brs, 1H), 1.31 

(s, 6H); 13C NMR (126 MHz, CDCl3) δ 142.8 (CH), 123.2 (CH), 70.4 (C), 32.5 (CH2), 29.5 (2 

× CH3); IR (in substance) ν 3375, 2975-2865 cm−1. Anal. Calcd for C6H11BrO: C, 40.25; H, 

6.19; Cl, 44.63. 

 

Ph3P
OH

Br
OH

Br

466c

0.9 eq PPh3
MeCN, reflux, 8 h

235 (80%)  
Wittig Salt 235. To a solution of the allyl bromide 466c (0.25 g, 1.4 mmol, 1.0 eq) in 

acetonitrile (3 mL, 2 mL/mmol) was added triphenylphosphine (0.32 g, 1.2 mmol, 0.9 eq) at 

ambient temperature. The reaction mixture was refluxed for 8 h, cooled to rt and concentrated. 

The brown reaction product was suspended in ethyl acetate (70 mL) and heated to reflux for 2 

h. The solvent was removed by filtration and the solid was washed thoroughly with ethyl 

acetate to afford the Wittig salt 235 (0.44 g, 1.0 mmol, 80%) as white solid.  
1H NMR (300 MHz, CDCl3) δ 7.87-7.60 (m, 15H), 5.93 (dd, J = 15.1, 4.7 Hz, 1H), 5.68-

5.59 (m, 1H), 4.58-4.48 (m, 2H), 1.07 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 150.0 (J (P-C) 

= 12.1 Hz, CH), 134.9 (J (P-C) = 2.4 Hz, CH), 133.9 (J (P-C) = 9.7 Hz, 2 × CH), 130.3 (J (P-

C) = 13.3 Hz, 2 × CH), 117.9 (J (P-C) = 86.0 Hz, C), 110.6 (J (P-C) = 9.7 Hz, CH), 70.3 (J 

(P-C) = 2.4 Hz, C), 29.3 (J (P-C) = 2.4 Hz, 2 × CH3), 27.5 (J (P-C) = 49.7 Hz, CH2); IR (in 

substance) ν 3290, 3055-2780 cm−1. Anal. Calcd for C24H27BrO: C, 40.25; H, 6.19; Cl, 44.63. 

 

Br
Br Br Ph3P Br

2.0 eq 481a

1.0 eq PPh3
toluene, reflux, 24 h

480b (11%) 
                                            
468 Kawase, A. PCT Int. Appl. 1998. 
469 Shorter reaction times afforded mixtures of the bromide 466c and the corresponding chloride 466b (1H NMR 
(300 MHz, CDCl3) δ 5.94 (d, J = 15.4 Hz, 1H), 5.81 (dt, J = 5.4, 6.4 Hz, 1H), 4.06 (d, J = 6.3 Hz, 2H), 1.33 (s, 
6H); 13C NMR (126 MHz, CDCl3) δ 142.8 (CH), 123.2 (CH), 70.4 (C), 32.5 (CH2), 29.5 (2 × CH3); IR (in 
substance) ν 3400, 2975-2865 cm−1. Anal. Calcd for C6H11ClO: C, 53.54; H, 8.24; Cl, 26.34.) 
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Wittig Salt 480b.470 A solution of dibromomethane 481a (3.5 mL, 50.0 mmol, 2.0 eq) and 

triphenylphosphine (6.6 g, 25.0 mmol, 1.0 eq) in toluene (50 mL, 1 mL/mmol 481) was 

refluxed for 24 h and then cooled to 0 °C whereupon a white precipitate was formed. The 

solvent was removed by filtration and the solid was washed with toluene (3 × 3 mL) and dried 

under reduced pressure to afford the Wittig salt 480b (1.2 g, 2.7 mmol, 11%) as white solid.  
1H NMR (300 MHz, CDCl3) δ 7.91-7.58 (m, 15H), 5.71 (d, J = 5.7 Hz, 2H); 13C NMR (126 

MHz, CDCl3) δ 135.4 (J (P-C) = 3.4 Hz, 3 × CH), 134.1 (J (P-C) = 10.2 Hz, 6 × CH), 130.3 

(J (P-C) = 13.6 Hz, 6 × CH), 116.6 (J (P-C) = 89.3 Hz, 3 × C), 18.3 (J (P-C) = 54.3 Hz, CH2). 

Anal. Calcd for C19H17Br2P: C, 52.33; H, 3.83; Br, 36.64. 

 

481b

1.03 eq PPh3
MeCN, reflux, 18 h

480c (86 %)

Ph3P II I
I

 
Wittig Salt 480c.471 To a solution of diiodmethane 481b (2.0 mL, 24.8 mmol, 1.0 eq) in 

acetonitrile (25 mL, 1 mL/mmol) was added triphenylphosphine (6.7 g, 25.5 mmol, 1.03 eq) 

at rt. The reaction mixture was heated to reflux in the dark for 18 h, cooled to rt and diluted 

with diethyl ether whereupon a white solid was formed. The solvents were removed by 

filtration and the reaction product was washed with diethyl ether and dried under reduced 

pressure to afford the Wittig salt 480c (11.4 g, 21 mmol, 86%) as light sensitive white 

solid.472  
1H NMR (300 MHz, CDCl3) δ 7.95-7.68 (m, 15H), 5.23 (d, J = 7.2 Hz, 2H); IR (in 

substance) ν 3055-2740 cm−1. Anal. Calcd for C19H17I2P: C, 43.05; H, 3.23. Found: C, 43.06; 

H, 3.08. 

 

OH OH

Bu3Sn

478a

1.05 eq HSnBu3
0.01 eq (PPh3)2PdCl2

THF, rt, 2 h

479a (45%)  

                                            
470 Commercially available from Aldrich. Lawrence, N. J.; Liddle, J.; Jackson, D. J. Chem. Soc., Perkin Trans. 1 
2002, 2260-2267. Prepared analogue to: Rodriguez, J. G.; Martin-Villamil, R.; Lafuente, A. Tetrahedron 2003, 
59, 2021-1032. Yields not optimized. 
471 Commercially available from Aldrich. Vogt, H.; Lauritsen, K.; Riesel, L.; von Loewis, M.; Reck, G. Z. Z. 
Nat. B 1993, 48, 1760-1766. 
472 If stored without light protection, the solid became yellow. 
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Stannane 479a.473 To a solution of the alkyne 478a (0.2 mL, 2.0 mmol, 1.0 eq) in THF (2 

mL, 1 mL/mmol) were added (PPh3)2PdCl2 (14 mg, 0.02 mmol, 0.01 eq) and HSnBu3 (0.6 

mL, 2.1 mmol, 1.05 eq) at rt. The yellow solution was stirred for 2 h at ambient temperature 

and turned dark orange. The solvents were removed and the crude product was purified by 

flash chromatography to yield stannane 479a (0.34 g, 0.9 mmol, 45%) as pale yellow oil (Rf 

0.62 hexanes/ethyl acetate 5/1).  
1H NMR (300 MHz, CDCl3) δ 6.22-5.98 (m, 2H), 1.53-1.42 (m, 6H), 1.36-1.22 (m, 6H), 

1.29 (s, 6H), 1.00 (m, 6H), 0.88 (t, J = 7.4 Hz, 9H), no OH-resonance observed; 13C NMR 

(126 MHz, CDCl3) δ 155.2 (CH), 122.4 (CH), 72.4 (C), 29.4 (2 × CH3), 29.0 (3 × CH2), 27.2 

(3 × CH2), 13.7 (3 × CH3), 9.4 (3 × CH2); IR (in substance) ν 3350, 2955-2850 cm−1. Anal. 

Calcd for C17H36OSn: C, 54.42; H, 9.67. 

 

OTMS OTMS

Bu3Sn

478b

1.05 eq HSnBu3
0.01 eq (PPh3)2PdCl2

THF, rt, 2 h

479b (47%)  
Stannane 479b.474 As described for stannane 479a, alkyne 478b (0.4 mL, 2.0 mmol, 1.0 

eq) was treated with (PPh3)2PdCl2 (14 mg, 0.02 mmol, 0.01 eq) and HSnBu3 (0.6 mL, 2.1 

mmol, 1.05 eq). Flash chromatography (hexanes/ethyl acetate 100/1) afforded the stannane 

479b (0.42 g, 0.9 mmol, 47%) as pale yellow oil (Rf 0.35 hexanes/ethyl acetate 100/1).  
1H NMR (300 MHz, CDCl3) δ 6.10-5.97 (m, 2H), 1.55-1.42 (m, 6H), 1.34-1.26 (m, 12H), 

0.94-0.84 (m, 15H), 0.10 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 156.2 (CH), 122.5 (CH), 

75.3 (C), 30.1 (2 × CH3), 29.1 (3 × CH2), 27.3 (3 × CH2), 13.7 (3 × CH3), 9.4 (3 × CH2), 2.6 

(3 × CH3); IR (in substance) ν 2955-2855 cm−1. Anal. Calcd for C20H44OSiSn: C, 53.70; H, 

9.91. 

 

I

CO2H

1. 1.3 eq KBrO3, 3.0 eq H2SO4
    H2O, 68 °C, 4 h
2. 11.0 eq Ac2O, 0.2 eq p-TSA
    80 °C, 2.5 h

O
I

O

OAc
OAc

AcO

523 (24%)522  

                                            
473 Gallagher, W. P.; Terstiege, I.; Maleczka, R. E., Jr. J. Am. Chem. Soc. 2005, 123, 3194-3204.Yields not 
optimized. 
474 Lumb, J.-P.; Trauner, D. J. Am. Chem. Soc. 2005, 127, 2870-2871. Yields not optimized. 
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Dess-Martin Periodinane 523.475 A solution of 2-iodobenzoic acid (522) (30.0 g, 121 

mmol, 1.0 eq) in aq H2SO4 (0.73 M, 0.5 L, 365 mmol, 3.0 eq) was heated to 55 °C and KBrO3 

(26.3 g, 157 mmol, 1.3 eq) was slowly added within 30 min. The reaction mixture was stirred 

for 4 h at 68 °C whereupon gaseous bromine evolved, cooled to 0 °C and filtered. The solid 

was washed carefully with water/ethanol (1/1, 500 mL) and then with diethyl ether (200 mL). 

The white solid was dried at high vacuum (0.05 mmbar) and then dissolved in freshly distilled 

acetic anhydride (125 mL, 1331 mmol, 11.0 eq). To the reaction mixture para-toluene 

sulfonic acid (4.6 g, 24.2 mmol, 0.2 mmol) was added, the resulting reaction mixture was 

heated to 80 °C for 2.5 h, cooled to rt and filtered. The resulting white solid was thoroughly 

washed with diethyl ether (1 L) and dried at reduced pressure to afford Dess-Martin 

periodinane 523 (12.4 g, 29.3 mmol, 24%) as white solid that was stored at −32 °C protected 

from light.  
1H NMR (300 MHz, CDCl3) δ 8.37 (d, J = 8.1 Hz, 1H), 8.14-8.06 (m, 2H), 7.98-7.90 (m, 

1H), 2.20 (s, 3H), 1.91 (s, 6H). 

                                            
475 Dess, B. D.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277-7287. 
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21 Appendix 

List of Abbrevations 

 

Ǻ  angstrom, 1/10 of a nanometer 

abs.  absolute 

Ac  acetyl 

α  optical rotation 

aq  aqueous 

ATR  attenuate total reflectance 

AVE  allyl vinyl ether 

9-BBN-H borabicyclo[3.3.1]nonane 

Bn  benzyl 

BOC  tert-butyloxycarbonyl 

Box  bis(oxazoline) 

Bu  butyl 

CAC  catalytic asymmetric Claisen rearrangement 

cal  calory 

CoA  coenzyme A 

COSY  correlated spectroscopy 

conc  concentrated 

Cp  cyclopentadienyl 

CSA  camper sulfonic acid 

Cy  cyclohexyl 

d  days 

DBU  1,8-diazabicyclo[5.4.0]undec-7-ene 

DCC  N,N-dicyclohexylcarbodiimide 

DCE  1,2-dichloroethane 

DEPT  distortionless enhancement by polarization transfer 

DDQ  2,3-dichlor-5,6-dicyano-1,4-benzochinone 

Δ  heating 

DAD  diode array detector 

de  diastereomeric excess 

ΔG  free enthalpy 

DIBAl-H diisobutylaluminiumhydride 
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DIAD  diisopropylazodicarboxylate 

DHP  1,2-dihydro-2H-pyrane 

DMAP  4-(N,N-dimethylamino)pyridine 

DMAPP dimethylallylpyrophosphate 

DMF  N,N-dimethylformamide 

DMSO  dimethylsulfoxide 

dppf  1,1'-bis(diphenylphosphino)ferrocene 

dr  diastereomeric ratio 

E  energy 

EDCl  N-(3-dimethylaminopropyl)-N´-ethylcarbodiimide-hydrochloride 

ee  enantiomeric excess 

e.g.  for example 

ELSD  Evaporative Light Scattering Detector  

Eq  equation 

eq  equivalent 

Et  ethyl 

epi  epimeric 

FPP  farnesylpyrophosphate 

FT  Fourier transformation 

g  gram 

G  carbanion stabilizing group 

GPP  geranylpyrophosphate 

GGPP  geranylgeranyldiphosphate 

h  hours 

HCV  hepatitis C virus 

HIV  human immunodeficiency virus 

Hex  hexyl 

HMBC  heteronuclear multiple bond coherence 

HMDS  hexamethyldisilazide 

HMPA  N,N,N-hexamethylphosphoric acid triamide 

HPLC  high pressure liquid chromatography 

HSQC  heteronuclear single quantum coherence 

HWE  Horner-Wadsworth-Emmons 

Hz  Hertz 
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i  iso 

IC50  concentration of an inhibitor to induce 50% inhibition of an enzyme 

i.e.  id est (lat.) = that is 

IPP  isopentenylpyrophosphate 

IR  infrared spectroscopy 

L  ligand 

lat.  Latin 

LDA  lithium diisopropylamide 

LiDBB  lithium di-tert-butylbiphenyl 

lk  like 

M  metall 

MCPBA meta-chloroperbenzoic acid 

Me  methyl 

Mes  mesityl (2,4,6-trimethylphenyl) 

mL  milliliter 

mm  millimeter 

min  minute 

Ms  methanesulfonyl 

NADPH nicotinic amide-adenosine-dinucleotide-phosphate 

n.i.  not isoloated 

NIS  N-iodosuccinimide 

NHK  Nozaki-Hiyama-Kishi 

NMO  N-methylmorpholine-N-oxide 

NMM  N-methylmorpholine  

NMR  nuclear magnetic resonance spectroscopy 

NOE  nuclear Overhauser effect 

Ø  diameter 

OTf  triflate (trifluoromethanesulfonate) 

p  para 

ppm  parts per million 

Ph  phenyl 

Pr  propyl 

Pg  protection group 

Piv  pivaloyl 
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PMB  para-methoxybenzyl 

PP  pyrophosphate 

PPTS  pyridinium-p-toluenesulfonate 

PT-SH  1-phenyl-1H-tetrazole-5-thiole 

Py  pyridine 

PyBOP Benzotriazolyloxytris(pyrrolidine)phosphonium hexafluorophosphate 

quant.  quantitative 

r  distance between two atoms 

R  unspecified substituent 

Rf  ratio of front 

Rt  retention time 

rt  room temperature 

sp.  species 

SPT  serine palmitoyltransferase 

TBAF  tetrabutylammoniumfluoride 

TBS  tert-butyldimethylsilyl 

TES  triethylsilyl 

TFA  trifluoracetic acid 

THF  tetrahydrofuran 

THP  tetrahydropyranyl 

TIPS  triisopropylsilyl 

TMG  1,1,3,3-tetramethylguanidin 

TMS  trimethylsilyl 

TPAP  tetra-n-propylammoniumperruthenate 

TPS  tert-butyldiphenylsilyl 

p-TsOH para-Toluensulfonic acid 

Ts  tosyl (p-toluenesulfonyl) 

Tol  toluene 

TyrMe  tyrosine methyl ester 

VF  viridiofungin 

vol  volume 

vs  versus 

ul  unlike 
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Parts of this thesis work have been covered by recent publications 

Xeniolide F:   - Pollex, A.; Hiersemann, M. Org. Lett. 2005, 7, 5705-5708. 

Virdiofungins:  - Pollex, A.; Millet, A.; Müller, J, Hiersemann, M.; Abraham, L. J. Org. 

   Chem. 2005, 70, 5579-5591. 

   - Pollex, A.; Abraham, L.; Müller, J.; Hiersemann, M. Tetrahedron Lett. 

   2004, 45, 6915-6918. 
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