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Abstract 
 

 

Sundarban Reserved Forest in Bangladesh is playing a significant role in local and 

national economy and is providing protection to the coastline as well as to the 

indigenous people. During the past decades and also in recent time this forest was 

heavily disturbed by human intervention in many aspects. As a consequence the 

resources of the forest are fragmenting, shrinking and declining, which in turn leads 

to an increasing failure of satisfying increasing demands both at local and national 

levels. Therefore accurate and continuously updated spatial information is needed for 

optimising forest management and environmental planning on both levels to support 

the fulfilment of urgent needs of sustainability of the development of the forest 

ecosystems. Considering the specific topography and the poor accessibility of the 

forest versus the task of collecting information, remote sensing is an attractive, if not 

the only means of obtaining sound full-coverage spatial information on forest cover of 

Sundarban. This research investigated the identification of the operational tools for 

mapping and monitoring the forest as well as on the examination of the reliability of 

the application of multitemporal satellite remote sensing data for building spatial 

databases on forest cover in Sundarban. Medium resolution geometrically and 

radiometrically corrected Landsat ETM data of November 2000 and Landsat TM data 

of January 1989 were used for the study. Based on the existing management plan of 

the forest as well as the spectral properties of Landsat ETM imagery a level III 

classification system was developed. This classification strategy was tested by 

applying several methods to achieve the classification result with the highest 

accuracy and thus to build the most reliable methodology for mapping forest cover in 

Sundarban. Forest cover change was assessed during an eleven years period using 

postclassification approach. Significant changes have been observed due to illegal 

removal of trees from the forest although a governmental moratorium on banning 

timber extraction exists since 1989. In order to track the changes and trends 

continuous monitoring is necessary for assessing spatial parameters of forest 

ecology and forest resources periodically and for planning decisions at local and 

national level. This research has developed an operational monitoring scheme by 

means of multitemporal satellite imagery analysis, which will allow concerned 

authorities to set up sustainable and appropriate monitoring of the Sundarban 

Reserved Forest. 
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Chapter 1 

Remote sensing for forest information 
 

 

1.1 Background  
 
Forests globally provide economically important and often irreplaceable products and 

services to humans and affect climate by acting as sources and sinks of heat 

trapping carbon dioxide. The forest actively contributes to the world’s environmental 

stability such as preventing soil degradation and erosion, protecting watersheds or 

stabilizing mountainous areas. Forests serve as natural habitats to almost two third of 

all Earth’s species, therefore acting as a stronghold to safeguard biodiversity. Forest 

also plays a cultural role in almost all societies, as mythical sceneries or historical 

backgrounds and as living habitats for about 60 million people worldwide. Despite the 

importance of forests, many reports around the world continue to indicate huge forest 

losses (FAO 1997). 

 
Mangrove forests are one of the most important coastal ecosystems in the world in 

terms of primary production and coastal environment protection. Mangroves are 

evergreen forests between the land and the sea occupying tracts along sheltered 

coasts, estuaries and deltas where they are influenced by tides, salinity and rainfall. 

Mangrove forest is found in the tropical and sub tropical region. They are possibly the 

simplest and best defined ecosystem among tropical forests (UNESCO 1981). These 

forests provide a complex and dynamic environment for a diverse marine, terrestrial 

flora and fauna and enhance water quality by trapping nutrients and heavy metals 

(Clark 1998, De Lacerda 1998, Tam and Wong 1999). They also support coastal and 

offshore fisheries by providing breeding grounds for many fish species. However, all 

over the world mangrove ecosystems are threatened with destruction through various 

forms of human pressure, in particular extraction, pollution and reclamation 

(Farnsworth and Ellison 1997). Also the species richness of mangroves in many 

geographical areas is decreasing over time (Hamilton and Snedaker 1984). The 

mangrove areas worldwide have dropped below 15 million hectares by the end of 

2000 down from an estimated 19.8 million hectares in 1980 (FAO 2003a). Yet, the 

unique coastal tropical forests are among the most threatened habitats in the world 

due to global warming and a rising sea level. They may be disappearing more quickly 

than inland tropical rainforests, and so far, with little public notice (UNDP 2002, SFR 

2001). 
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The world’s largest natural mangrove forest the Sundarban situated in Bangladesh 

along the Bay of Bengal covering an area of 601,700 hectare. This mangrove forest 

is declared as Reserve Forest1 in 1875. Three wildlife sanctuaries, which are about 

32,400 hectares area of the Sundarban have been acknowledged as World Heritage 

Site in 1999. This forest represents 4.07% of total landmass of the country and is 

managed by the Bangladesh Forest Department. Sundarban, unlike mangroves in 

many other countries in Asia, Africa and Latin America, supports a very rich and 

diverse flora and fauna. It plays an important role in the local and national economy. 

The forestry sector contributes about 5% of the total Gross Domestic Product (GDP) 

of Bangladesh (Forest Department web page) and the Sundarban alone is 

contributing 68% of it (McCarthy 2000). Also a quite large population depends 

directly or indirectly on the Sundarban. Ecologically this forest is particularly 

important for the region and acting as a barrier of cyclones and tidal surges. It is 

providing safeguard against coastal erosion and is also acting as a huge sink of 

carbon and other pollutants from air and water. Further more it is an attracting place 

for eco-tourism by the national and international tourists. 

 

1.2 Need for monitoring the Sundarban Reserve Forest 
 
Monitoring in the context of this research is understood as the repeated 

measurement of forest for the purpose of detecting qualitative and quantitative 

changes in the forest cover. Monitoring the forest over time in order to determine 

trends is essential in resource management because it provides essential information 

to decide whether the forest cover is stable, increasing, or decreasing as the result of 

management actions (Friederici 2003). Thus monitoring explores the status of the 

forest estate at regular intervals.  

 
The SRF has become increasingly threatened due to human intervention and also 

natural hazards in the last decades. Due to excessive exploitation of the natural 

forests, the Bangladesh Government imposed a moratorium on timber felling in 1989 

(excluding diseased Heritiara fomes and Excocaria agallocha). In spite of the 

existence of the moratorium there is huge illegal timber extraction taking place 

regularly. The extent of the Sundarban forest has not changed much but it is losing 

growing stock even though several forest policies, laws and management plans have 

been enacted to protect the forest (Iftekhar and Islam 2004).  

 
                                                 
1 Any land declared as forest under the purview of Forest Act by government or the competent authority 
of a country where every thing is strictly prohibited unless or otherwise permitted.  



 

 3

SRF was for the first time inventoried in 1933 by Curtis and thus in 1959 by Forestal, 

in 1983 by Overseas Development Authority (ODA) and in 1996 by Forest Resources 

Management Project (FRMP). Figure 1.1 indicates the declination in the growing 

stock (volume) of tree resources in SRF during last four decades. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Growing stock in Sundarban Reserved Forest (FAO 1999) 

 
 
There are many problems exist in the SRF. As Bangladesh is a densely populated 

country, overexploitation of forest resources to meet the growing requirement of the 

people is one of the main problems also in the SRF. This has resulted in depletion of 

economically valuable species, growing stock and productivity of the forest. Other 

problems in this forest are geomorphological changes, increased salinity, inadequate 

regeneration, top dying of Heritiera fomes, expanded shrimp farming in the 

surrounding of the forest etc. These problems frequently shift the SRF towards a 

state of unsustainability.  

 
Due to the current trends in terms of population growth, demand of the forest 

resources and the impact of human activities on forest change, monitoring of the 

forest resources is essential in providing data for making policy decisions and 

generating management plans for sustainable development. The tsunami has 

provided an opportunity to illustrate that healthy mangroves serve as a natural barrier 

against natural or man made disasters such as protecting infrastructure and saving 

lives. Sustainable development of the forest depends on the availability of accurate, 

timely and easy accessible spatial information on forest resources in order to trace 

the reasons of deforestation and forest losses for which there is an urgent need to 

develop operational monitoring of the remaining forests at a regular interval (FAO 
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1999). The most important difficulties in updating maps of the topography and the 

forest cover of SRF are: 

- Inaccessibility of most of the areas due to presence of innumerable rivers, 

creeks and water-bodies 

- Presence of anthropophagous tigers in the forest and occasional presence of 

crocodiles in the rivers 

- Excessive costs involved in detailed manual surveys 

- Particularly long duration of carrying out manual surveys in hostile environment. 

 

1.3 Satellite remote sensing for forest monitoring 
 
Remote sensing plays a crucial role in determining, enhancing and monitoring forest 

cover as well as its overall carrying capacity. In the last decade only, over 100 

satellites have been placed in orbit for the purpose of earth observation of land, 

oceans and atmosphere and for strengthening the scientific understanding of the 

driving forces behind global change (king and Herring 2000).  

 
Satellite Remote sensing technology is a potentially fast and efficient approach to 

mangrove management, mapping and monitoring, particularly in hostile forest 

environments decreased by limited accessibility, large spatial extension, and 

inefficiency of conventional means of ground survey is considered to have a great 

potential as an extremely valuable tool for detecting, assessing and analysing forest 

cover changes both qualitatively and qualitatively (Xiuwan et al. 1999, Turker and 

Derenyi 2000, Wyatt 2000, Held et al. 2003).  

 
Remote sensing offers an efficient and reliable means of collecting spatial 

information required for assessing forest cover. The spectral reflectance of forest 

surfaces always varies with respect to the phenology, species type, and health 

condition of tree stands. It can be well measured by multispectral sensor systems. 

The fundamental assumptions that govern the use of digital remote sensing for 

change assessment in forest ecosystems are (Coppin and Bauer 1996): 

 
(a) Phenomena, which are related to dynamics of changes of forest canopies cause 

significant changes in values of electromagnetic radiation being measured by 

remote sensing. These changes are related to changes in Electro Magnetic 

Radiation (EMR) caused by differences in atmospheric condition, illumination 

and background conditions over the same time interval. 
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(b) Any major variation over time in the remotely sensed values of EMR for a 

particular spot in a forest ecosystem can be associated to an alteration in its 

reflective/emissive characteristics, which are a manifestation of biophysical 

properties of the surface. 

 
Satellite data have several important advantages compared to ground observations 

and thus foster the integration of satellite remote sensing in forestry. These 

advantages are: 

- Synoptic view to achieve global observation (Franklin 2001, Nagendra 2001).  

- Repetitive coverage to obtain uniform and reproducible, periodical and 

continuous observation (Pathirana 1999, Wyatt 2000).  

- Multispectral data (Blaschke 2005, Peterson et al. 1999).  

- Low-cost data (White 1998, Lunetta et al. 2004).  

- Digital processing (Peterson et al. 1999).  

 
Owing to the versatility of remote sensing and scale, it is a valuable tool in all stages 

of forest management. Because of the synoptic and repetitive data acquisition 

capabilities, satellite based sensors hold the potential to detect, identify and map 

changes effectively (Coppin and Bauer 1996, Pathirana 1999, Turker and Derenyi 

2000, Wyatt 2000). Many exploratory investigations were instigated to determine the 

applicability of various remote sensing systems for mapping and monitoring the 

changes of the mangrove forest (Mas 1999, Berlanga-Robles and Ruiz-Luna 2002, 

Bauer et al. 2003, Cornejo et al. 2005, Muttitanon and Tripathi 2005). 

 
The concept of sustainable forest management continues to gain momentum all over 

the world. There need to update spatial information on the current state of the forest 

and the changes occurring in order to plan regulations are obvious. Timely 

acquisition of remotely sensed data for monitoring the forest condition can provide 

better understanding of the relationships and interactions between human impact and 

state of forests for making decisions and plans in timely manner. Various impacts on 

SRF have intensified and diversified and therefore needs for establishing a sound 

monitoring approach using satellite imagery.  

 
For the research eight compartments of SRF have been selected as study areas. 

The potential of satellite imagery for setting up an operational appropriate monitoring 

scheme of state and changes of SRF has to be critically analysed. Landsat TM 

imagery of January 1989 and Landsat ETM imagery of November 2000 were used to 
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assess the forest cover and its trends of changes in the respective study areas of 

SRF. 

 

1.4 Research objectives 
 
The general objective of the research is to 
 
Develop a monitoring scheme for operational use to allow assessment, mapping and 

evaluation of forest cover and its changes for sustainable management. 

 
In addition to the general objective, the research has formulated some specific 

objectives such as to 

 
(a). develop an appropriate classification system to represent the forest cover 

according to the existing management plan, 

 
(b). develop an appropriate methodology for forest cover assessment and 

mapping, 

 
(c). evaluate the forest cover change in study area for the period of 1989 – 2000. 
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1.5 Research approach 
 
The research is designed to critically investigate the potential of satellite remotely 

sensed data for temporal assessment and mapping of forest cover and its changes in 

the SRF. The general methodology followed for this research is presented below 

(figure 1.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: General methodology for the forest cover mapping and monitoring 
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1.6 Thesis structure 
 
The research has assessed and evaluated the forest cover and its changes in the 

study areas of SRF using multitemporal Landsat imagery of the years 1989 and 2000 

respectively. The PhD thesis comprises seven chapters. Chapter 1 introduces the 

research by focusing the background introduction on the concept of problems of the 

study area, different aspects of the topic and the concept of the monitoring approach 

in the study areas (SRF). Chapter 2 presents the study area (SRF) and describes its 

physical and geographical characteristics. Image acquisition of the study area is 

discussed along with the important characteristics of the Landsat sensor system. 

Chapter 3 includes the presentation of concept of atmospheric correction and 

discussion of the selected method applied in the research. This chapter describes the 

advanced image processing steps for information extraction. Also discusses the 

classification system and generated a level III classification system. Supervised 

classification approach is applied for the forest cover class’s extraction. Several 

classification methods of Landsat imagery is investigated for mapping the mangrove 

forest. Comparisons of the classified maps are analysed and the optimum 

classification for change assessment is determined. Chapter 4 discusses the 

methods of assessing the mapping accuracy and the selected assessment of the 

classification performance of the respective satellite data analysis. Overall 

classification accuracy and Kappa Coefficient statistics are derived. Factors affecting 

classification accuracy are also discussed. Chapter 5 describes the approaches of 

change detection. The postclassification comparison approach is used to derive 

forest cover change. The changes are identified and summary statistics of change 

are produced using maps, tables and change matrix. The factors influencing change 

are elaborated. Results of change assessment are affected by the positional and 

thematic errors are also discussed. Chapter 6 provides the outline of setting up and 

maintaining the appropriate monitoring scheme after analysing the actual situation. 

This monitoring scheme will allow Bangladesh Forest Department for proper 

execution of monitoring of Sundarban Reserved Forest based on satellite imagery. 

Chapter 7 presents the research findings, highlights the research limitations and 

provides recommendations for establishment and maintaining of monitoring effort 

using satellite imagery. 
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Chapter 2 

Study area and research data acquisition  
 

 

2.1 Location of the study area 
 
The study analyses the forest cover of an area of natural mangrove forest of 

Sundarban Reserved Forest located in the southwest part of Bangladesh. The north 

east part of SRF, which stands between latitude 22°30’25’’N and 22°15’35’’N, 

longitude 89°26’E and 89°46’E is selected as study area (figure 2.1). The human 

communities, their agriculture and commercial activities surround the north part of the 

study area. The other parts surrounded with forests and rivers. Study area represents 

8 compartments (25, 26, 27, 28, 30, 31, 32, 33) of the Chandpai and Khulna ranges 

and covered an area about 44,327 hectares of the SRF. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Location of study area in Sundarban Reserved Forest 
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Forest cover analysis requires detail information about the study area in order to 

interpret the remote sensing data and the results of changes that have occurred. The 

following sections describe the Sundarban as study area. 

 

2.2 Characteristics of the Sundarban Reserved Forest 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Sundarban Reserved Forest, Bangladesh 

 
 
2.2.1 Topography 
 
The Sundarban forms the southern most of the Ganges and Brahamaputra river 

deltas and is shaped by the complex drainage structure. Topographic variation within 

this delta is very low. The forest floor lies between 0.9 m to 2.1 m above sea level 

(Canonizado and Hossain 1998).  

 

2.2.2 Geology 
 
The SRF surface geology consists entirely of quaternary sedimentary layers of sand, 

silt and clay. Some studies in adjacent areas of Khulna and Barishal district 

confirmed earlier views that there was a sea level regression about 12000 years ago 

but there is now a trend in sea level rise, the effect of which may be exacerbated by 

relative stability to the west compared with active sedimentation accompanied by 

tectonic activity and ongoing subsistence to the east (Umitsu 1991).  
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The present delta is thought to be a combination of the Ganges delta, the old 

Brahmaputra-Megna delta and the Ganges-Jamuna-Meghna delta. It is difficult to 

determine the geomorphologic contacts of these deltas since these are obscured by 

deep sediments, which are overlain by very recent sediments. The Ganges is by far 

the greatest builder of the delta with estimates of 80% of the surface sedimentation 

coming from this source only (Khan 1991). 

 

2.2.3 Soil 
 
Soils of the SRF are derived from a mixture of deltaic floodplain deposits and tidal 

marine deposits. The surface soil is a silty clay loam overlying alternating layers of 

clay and sand. In general the soil fertility decreases from east to west and north to 

south. In the north and east portions of the SRF, relatively high fertility is maintained 

by annual silting (Canonizado and Hossain 1998, FAO 1998a). Silt appears to be the 

most common textural class and grain size is larger in the eastern forest than in the 

west. Pyrite may occur on localised depressions containing higher amount of organic 

matter. Presence of biotite, carbonates and feldspars may protect the soil from 

becoming acid sulphate where drainage is not impeded (FAO 1998a, Bhuiyan 1994).  

 
Pedologically, soils of the SRF are very young, very poorly drained and poorly 

oxygenated (FAO 1998a). The percentage of organic matter appears to be generally 

low. It varies in the range 0.8 to 3.3% in top layer and 0.2 to 2.9% in bottom layers 

(Bhuiyan 1994). The soil pH varies from 6.8 to 8.4. But most soils fall in the alkaline 

pH range between 7.0 – 8.0 throughout the SRF (FAO 1998a). 

 

2.2.4 Climate 
 
The climate of SRF is divided into three distinct seasons, which are heavy monsoon 

rains, a cool winter and a dry season. The monsoon normally starts in mid May and 

continues until October. This is a time when mean temperature reach as 35°C with a 

maximum of over 40°C and with a relative high humidity (above 80%). During this 

season, short duration thunderstorms over the landmasses and severe cyclonic 

storms generated in the Bay of Bengal. Nearly 80% of the major storms, which strike 

the SRF occur during these months (FAO 1998a). The monsoon declines with a 

change in wind direction in cool winters, which last until February. During this time 

rainfall, temperature and relative humidity remain low. The dry season is short which 

is from March to April. During this period gradual rise of temperature to levels often 
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above 35°C which introduces low pressure system and monsoonal conditions of the 

rains.  

 

2.2.5 Hydrology 
 
The open hydrological system of SRF encompasses global, regional and local factors 

due to shared catchments, shared access and global hydrological cycles. This 

holistic view of hydrology leave it inextricably linked to upstream water shades, 

shared drainage lines and natural and manmade processes in the Bay of Bengal and 

along the SRF’s long western boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Map displaying the rivers and the ecological zones within the SRF 
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The SRF drainage system has three sub systems to the east, centre and west, which 

formed the estuaries of Bangra, Kunga and Raimangal. The whole area is dissected 

by large tidal river, notably the Baleswar, Passur, Kobadak-Sibsha, Arpangasia and 

Raimangal with innumerable small channels and creeks (figure 2.3). 

 
Tides affecting the SRF are predominantly semi diurnal with a tidal period of about 12 

hours 25 minutes. It takes approximately 2.5 hours for the tide to traverse the SRF. 

From the coast the tide flows the main estuaries, the Raimangal, Jamuna, Malancha, 

Passur, Sibsa and Balewar rivers. From these main rivers, the tidal waves spread 

into the smaller tidal channels (FAO 1998a). Based on the river flows inside the SRF 

are classified by three different series. They are Raimangal-Sibsa series, Passur-

Sibsa series and Passur-Baleswar series. 

 

2.2.6 Ecological zone 
 
The relative site preferences of the various mangrove species are essentially passive 

in that they reflect differing degrees of tolerance of water logging and salinity (Chaffey 

et al. 1985). The proportion of salinity and the distribution of tree species composition 

define the zonation of SRF. These are the freshwater zone, moderately saltwater 

zone and saltwater zone (figure 2.3) (Chaffey et al. 1985). Sundri (Heritiera fomes) is 

the characteristic species of the freshwater zone. The zone provides good conditions 

for the abundance of sundri. The forest of the moderately saltwater zone is mixture of 

gewa (Excoecaria agallocha) and sundri with varying amounts of goran (Ceriops 

decandra) and other species. The forest in the saltwater zone is dominated by goran 

with a diapered overstorey of gewa (Excoecaria agallocha), passur (Xylocarpus 

mekongensis) and dhandal (Xylocarpus granatum).  

 

2.2.7 Vegetation 
 
The emergent stratum of east of SRF where the freshwater is available often 

occupied by sundri (Heritiera fomes) and interspersed with gewa (Excoecaria 

agallocha), kankra (Bruguiera gymnorrhiza), baen (Avecennia officinalis), passur 

(Xylocarpus mekongensis). Below to this, the stratum is either composed of pure 

sundri or a mixture of gewa and/or kakra. In this stratum, tree crowns of the canopy 

are usually tall and narrow and form a continuous layer. The next stratum consists of 

saplings of the canopy trees and medium sized trees and amur (Amorra cucullata) 

with occasional appearance of shingra (Cynometra ramiflora). Frequently, trees in 

the upper canopy have spreading branches while tree crowns in the lower strata are 
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mostly slender. Light demander species usually form pure stands such as keora 

(Sonneratia apetala) (FAO 1998a, IUCN 1994). The forest canopy with scattered 

dominants attaining a height of up to about 15 to 20m and stem diameters are 

generally less than 20cm at breast height. But the dbh can reach up to 45 cm in 

favourable site condition (Zabala 1990). Gewa is the dominant woody species in SRF 

south, which an area of moderate salinity. It is often mixed with sundri. The canopy 

height is generally less then 10m, although species such as sundri, passur, dhandal 

and baen may attain a greater height. It is also frequently associated with a dense 

understorey of goran and passur. SRF west, in areas, which support sparse gewa 

and dense stand of goran and discontinuous patches of hantal palm (Phoenix 

paludosa) on drier ground and riverbanks. The goran grows predominantly in saline 

areas and is generally reaches a height about 4m. 

 

2.2.8 Significance of the SRF 
 
SRF has a great significance from the economic and ecological context of 

Bangladesh. This forest is rich in biodiversity along with a great variety of wild life. 

Sundarban Forest contains a considerably high floral diversity. There are about 334 

plant species available in SRF. According to Seidensticker and Hai (1983) 62 

principal plant species of 53 genera were found in the Sundarban. This forest has 

been an important source of timber, fuelwood, pulpwood and many non-timber forest 

products like, thatching materials, honey, wax and fish. According to an Economic 

and Social Commission for Asia and the Pacific (ESCAP) survey, 500,000 to 600,000 

people depend directly on the Sundarban for their livelihood (ESCAP 1988). There 

are several commercial and industrial enterprises in the vicinity of the forest which 

dependent on the forest products. Furthermore, this forest is protecting and 

stabilizing the coastal areas and as well as serving as safeguard to the local peoples 

from cyclones, tidal surges are living around to the coastal areas.  

 
The more prominent and important tree species found in the SRF includes the sundri 

(Heritiera fomes), gewa (Exoecarea agallocha), keora (Sonneratia apetala), goran 

(Ceriops roxburghiana), singra (Cynometra ramifloral), garjan/jhana (Rhizopora 

mucronata), dhundal (Xylocarpus granatum), amur (Amoora cucullata), passur 

(Xylocarpus mekongenesis) and kankra (Bruguiera gymnorhiza). Sundri is a fairly 

sized tree species, which has a wood that is durable and good for poles, posts, 

rafters, masts, oar handles and planking. Gewa is a medium-sized tree, the wood of 

which is the main raw material of the paper mill and match factories in Khulna district. 

This tree is also suitable for box planking and dunnage in ships. Keora is a tall tree 
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and its timber is extensively used for baling boards in packing paper. It is also 

suitable for box planking, bobbins and centering in building construction. Goran is 

widely used for fuel wood as well as small house posts, cores of mud walls and 

fencing. Bark of this tree yields tannin. Singra is the most popular fuel wood in the 

Sundarban. Amur is much sought after for small house post. Garjan, dhundal, passur 

and kankra are rich in tannin.  

 
The more prominent and important palms available in the Sundarban Forest include 

golpatta (Nypa fruticans), hantal (Phoenix paludosa). Golpatta is widely gathered for 

thatching material. Hantal is used extensively in the construction of small huts as roof 

rafters and frame of walls. 

 
The important grasses exist in SRF are Sungrass (Imperata spp.), hogla (Typa 

elephantine), nalkhagra (Orundo karka). Sun grass is widely gathered for thatching in 

addition to being the main fodder species for deer’s in the wildlife sanctuaries. Hogla, 

a bulrush is gathered and split for cheap fencing. Nalkhagra grass is used 

extensively for making mats. 

 
The important shrubs available in SRF are hargoja (Acanthus ilicifolius), hodo 

(Acrostichum aureum), ora (Sonneratia acida/caseolaris). Hargoza, hodo together 

with ora are stream bank protection species by holding deposited silt and clay with 

their numerous roots. They are prominently growing along riverbanks in the interior 

areas of the wildlife sanctuaries.  

 
Like on floral diversity, SRF is rich also in faunal diversity. It possesses three wildlife 

sanctuaries; namely Sundarban south, Sundarban east and Sundarban south. 

Sundarban provides a habitat for more than 450 animal species: 40 mammal species 

including 5 species of whales and dolphins, more than 270 different species of birds, 

45 species of reptiles, 120 species of fish, including species of rare shark (Anon, 

2001). SRF is the unique natural habitat of the world famous Royal Bengal Tiger 

(Panthera tigris), spectacular spotted deer (Axix axix), jungle fowl (Gallus sp.) and 

rhesus monkey (Macaca mulata). Over 270 species of birds have been recorded in 

the Sundarban including 95 species of waterfowl. Common residents include 

Phalacrocorax niger, Anhinga melanogaster, Ardeola grayii, Bubulcus ibis, Butorides 

straiatus, Egretta gargetta, E. intermedia, E. alba, Esacus recurvirostris, Vanellus 

indicus, Gelochelidon nilotica and Sterna acuticauda. The area is also ecologically 

important as a staging and wintering area for migratory shore birds, gulls and terns 

(Rahman and Banu 2000). 
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Fishes, shrimps, lobsters, crabs, sea snakes, crocodiles and turtles (green and olive) 

are very profile in the entire sundarban. The water bodies of SRF support a very rich 

and diverse fish fauna of which 120 species are of commercial importance. The most 

important species are Eleutheronema tetradactylum, Polynemus paradiseus, Liza 

tada, Mystus gulio, Hilsa ilisha, Ilisha megaloptera, Coilia ranncarati, Lata calcarifer, 

Septipinna phasa, Thrysa purava, Harpodon nehereus etc (Rahman and Banu 2000). 
 
SRF has been for quite sometime a favourite eco-tourism area to foreign and local 

tourists as this forest have several unique and interesting attributes for domestic and 

international eco-tourism. During the winter and spring seasons in every year, 

tourists tour the SRF by boat, viewing from the boat the landscape, the vegetation, 

the birds, some mammals, sometimes a tiger, the mellifluous wide rivers, the dreary 

but dreadful narrow channels, partaking the cool, fresh and healthful breeze. 

 

2.2.9 Legal status  
 
There is a long and varied chronicle of legal status of the mangrove forest recorded 

as far back as the mughul period (1203-1538) when the area was leased to local 

kings (IUCN 1994). Records on reclamation, forest clearing and settlement stem from 

the late eighteenth century and the first management legislation was the charter of 

Indian Forests and Forest Act which declared the Sundarban as reserve forest by the 

government of British India in 1875-76 under the Forest Act of 1855. Subsequently 

the systematic management became official policy (FAO 1998a). Heinig (1892) in his 

working plan described important events in the legal background for establishing the 

Forest Act of 1927 that makes provision for reserved forests and their legal position. 

The boundaries of the reserved forest were all natural with minor exceptions. After 

the partition of India in 1947, the Pakistan portion of the Sundarban became a forest 

division, which later became a gazetted area of reserved forest under the 

Bangladesh Forest Department. 

 
In 1994, the National Forest Policy was formulated and provided the foundation for all 

future policy, acts and rules, which are used to govern the administration of the SRF. 

There are other 11 principal policies and legislation that also affect the integrated 

forest management in SRF. 

 

2.2.10 Management Units 
 
The basic management unit in the SRF is the compartment. All the management 

prescriptions are formulated on a compartment basis. There are 55 compartments in 
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the four forest ranges of SRF. Khulna, Chandpai, Sarankhola and Satkhira ranges 

are clearly demarcated by the natural features such as rivers, canals and creeks. 

Table 2.1 and the figure 2.4 are showing the distribution of compartments among the 

four ranges of SRF. 

 
Table 2.1: Ranges and distribution of compartments in SRF 
 

   

Name of the 
ranges 

Area of 
Ranges (ha) 

Compartment number 

   
   

Sarankhola 130,998 1,2,3,4,5,6,7,8,11,12b, 24, 45 

Chandpai 100,021 9,10,11,12a, 13, 14, 15, 21, 22, 25, 26, 27, 28, 29, 30, 

31, 

Khulna 161,345 16,17,18,19,20,32,33,34,35,36,37,38,39,40,43,44 

Satkhira 184,992 41,42,46,47,48,49,50a, 50b, 1a, 51b, 52, 53, 54, 55 

 
Source: Canonizado and Hossain (1998). 
 

 

The Forest Department maintains permanent offices throughout the SRF. These are 

range offices, field stations and patrol posts. Seasonal stations are set up during 

harvesting periods of Goran (Ceriops decandra) and Golpatta (Nypa fruticanns) 

resources.  

 

2.2.11 Existing forest management  
 
The present management plan was formulated for the SRF up to the year 2010, after 

the completion of the inventory in 1996. The main objectives of the management plan 

are sustainability, conservation and protection of the forest. Thus, different 

management prescriptions for the operations e.g. annual allowable cut, non-timber 

forest product extraction etc. have been suggested in order to meet the objectives of 

management plan. 

 
The forest management system of SRF is based on the division of the management 

unit into working circles, which have specific management objectives (Cannonizado 

and Hossain 1998). Prior to the latest management plan this consists of  

i) Sundri working circle – timber production 

ii) Gewa working circle – industrial wood production  

iii) Fuelwood working circle – production of fuel wood (Goran, Bhola, Singra and 

others) 

iv) Golpatta (palm) working circle – production of thatching materials 
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v) Wildlife and recreation working circle – recreation and tourism, game 

reserves, and preservation of biological diversity 

vi) Aquatic resource working circle – Covers the water body of Sundarban (Fish, 

Crustaceans, Mollusks and others 

vii) Keora working circle – timber production (indoor planks, furniture, boxes) 

viii) Miscellaneous working circle – other forest products (honey/bees wax, hantal 

(palm), grass, cane and other minor products).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Figure showing the ranges and the compartments within SRF 
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2.3 Previous remote sensing initiatives for the management of SRF  
 
The initial database of SRF was prepared based on the result of stereoscopic 

interpretation of black and white aerial photography of the year 1981 in scale 

1:30,000 for forest inventory and mapping and forest type map of 1985 in scale 

1:50,000 were produced under the project of Overseas Development Agency (ODA) 

of Bangladesh Forest Department. The land water boundary and rivers in the forest 

were mapped by the visual interpretation of multispectral SPOT satellite imagery of 

1989 (Chaffey et al. 1985). 

 
Later the database of SRF was updated using black and white aerial photograph of 

the year 1995 in scale 1:15,000 under the Forest Resources Management Project 

(FRMP) of Bangladesh Forest Department funded by World Bank. At that period a 

detailed inventory was conducted for the forest and the growing stocks was assessed 

to formulate a management plan. Also forest classification maps of 1995 in scale 

50,000 were derived from the field survey and stereoscopic interpretation results of 

aerial photography.  

 
The Resource Information Management System (RIMS) unit of Bangladesh Forest 

Department has been upgraded in 1995 under the World Bank project FRMP aiming 

to assist in forest management and planning of the forest resources. Accordingly the 

unit is equipped with Geographical Information System (GIS) and Remote Sensing 

(RS) hardware and software to solve the complex management problems. The unit 

built the digital database of SRF during 1996-98, which includes the detailed 

vegetation classes, their standing volume, detailed river networks, office locations, 

compartment, block and range boundaries, wildlife sanctuary boundary etc. 

Integrating forest inventories, photo interpretations and existed various map sources 

were the main inputs of the database (Runkel 1997). Further update of the RIMS 

database for the forest was not conducted, though the extraction of the forest 

resources legally or illegally is common all the year round.  

 

2.4 Spectral characteristics of vegetation (in satellite imagery) 
 
The launch of Landsat 1 in 1972 was the beginning of satellite based remote sensing 

for monitoring earth resources application (Coppin and Bauer 1996). The Landsat 

missions provided the longest period of Earth observation by a specific satellite 

system. More than 30 years since the launch of Landsat 1, 7. It is Landsat 7 with its 

ETM sensor system, which continues to provide multispectral imagery of the earth for 

applications in various fields of research (Goward and Masek 2001). The archives of 
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landsat imagery are also extensively using in the assessment of land cover change 

(Caccetta et al. 2000; Rechards and Furby 2002). 

 
Various vegetation types have different characteristic properties with respect to the 

response of the reflected energy (radiation). The reflectance characteristics of 

vegetation depend on the properties of the leaves including the orientation and the 

structure of the leaves canopy. The proportion of the radiation reflected in different 

parts of the spectrum depends on the leaf pigmentation, leaf thickness and structure 

(cell structure) and on the amount of water in the leaf tissue. In the visible portion of 

the spectrum the reflection of blue and red light is comparatively low since these 

portions are absorbed by leaf pigments in the plant, mainly by chlorophyll for 

photosynthesis and thus for biomass production. Vegetation reflects a relatively 

maximum of green light in the visible spectrum. The reflectance in the near infrared is 

highest but the amount depends on the leaf development and the cell structure of the 

leaves. In the middle infrared the reflectance is mainly determined by water stored in 

the leaves result is less reflectance. The reflectance is lower than in NIR, especially 

with two absorption bands of water in the ranges of approximately 1.4 and 1.9 mµ  

wavelength (figure 2.5) (Lillesand and Kiefer 2000). 

 
 

 

 

 

 

 

 

 

 

 

Figure 2.5: Spectral reflectance of different natural surfaces (Lillesand and Kiefer 

2000) 

 

 

Different species respond differently to electromagnetic radiation (Verbyla, 1995). 

The estimations of relationships between spectral values and species distributions is 

useful for the purpose of indicating areas of species diversity and can be applied over 

a large spatial extent. Remote sensing data of adequate spectral resolution are used 
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to distinguish between plants of different species. Digital approaches to satellite data 

interpretation rely upon the development of analysis techniques, which utilize the 

unique quantitative characteristics of the digital data.  

 

2.5 Data collection for study area 
 
2.5.1 Landsat Imagery  
 
Landsat ETM of 26th November of the year 2000 was obtained from RIMS unit of 

Bangladesh Forest Department. Landsat TM data of 12th January of the year 1989 

was acquired from the web based data archives of the Global Land Cover Facility 

(GLCF). This data is offered by the USGS and University of Maryland for natural 

resources research. Data specifications are described in table 2.2 and 2.3. 

 
Table 2.2: Satellite imagery and its specifications used for bi-temporal change 

detection of SRF 
 

Sensor 
mode 

Sensor Platform Date Path/row Band  Spatial 
resolution 

       

1-5, 7 28.5m Pan and 
MS 

ETM+ Landsat 7 26-11-2000 138/43 
6 59.5m 

     Pan 14.5m 
       

1-5, 7 28.5m MS TM Landsat 5 12-01-1989 138/43 
6 59.5m 

       

 

 

Table 2.3: Landsat specification 
 

 Spectral Resolution 
Band TM ETM 
1 (Blue 0.45-0.52 mµ  0.45-0.52 mµ  

2 (Green) 0.52-0.60 mµ  0.53-0.61 mµ  

3 (Red) 0.63-0.69 mµ  0.63-0.69 mµ  

4 (Near IR) 0.76-0.90 mµ  0.78-0.90 mµ  

5 (Middle IR) 1.55-1.75 mµ  1.55-1.75 mµ  

6 (Thermal IR) 10.4-12.5 mµ  10.4-12.5 mµ  

7 (Middle IR) 2.08-2.35 mµ  2.09-2.35 mµ  

8 (Panchromatic)  0.52-0.90 mµ  

Swat width of TM and ETM 185 km 
Revisit capability of TM and ETM 16 days 

 
Source: NOAA 2005 
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2.5.2 Geometric information of the data sets 
 
The images obtained for the study were rectified and geo-referenced to the World 

Geodetic System 1984 and projected to the Universal Transverse Mercator (UTM) 

map projection system (zone 46). The projection was changed to Bangladesh 

Transverse Mercator (BTM) system during research with the following specification  

 Spheroid     Everest 

 Datum     Indian (Bangladesh) 

 Scale factor at central meridian .9996 

 Longitude of central meridian  90 E 

 Latitude of origin of projection 00 N 

 False easting    500000m 

 False northing    -2000000m 

 

2.5.3 Ancillary data 
 
Table 2.4 presents the additional spatial databases acquired from Bangladesh Forest 

Department, which supported image analysis for the research. 

 
Table 2.4: Ancillary vector data available for the study 
 

   

Description of the vector data Format Purpose for this research 
   

1. Compartment boundary  Digital To subset the study area from satellite data  
   

2. Vegetation data layer of aerial 
photo interpretation of the year 
1995 

Digital To have an preliminary idea about the 
vegetation types of the SRF 

   

3. Office locations  Digital To place the offices into study area map 
   

4. Ecological zone boundary Digital To show the ecological zones into SRF map 
   

5. Range office boundary Digital To display the ranges into SRF map 
   

6. River networks Digital To prepare a map for SRF for viewing the 
rivers 

   

 

 

2.7 Summary 
 
The north-eastern part of the SRF was selected as study area because this section is 

subjected to considerable change in forest cover both in term of change in species 

distribution as well as deforestation during the last decade.  

 
Analysis of forest cover classes of remote sensing data requires good in-situ 

knowledge of the study area. In this regard, a brief description of the SRF ecosystem, 

its significance, management etc. has been provided in this chapter. Previous 
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initiatives to assess the forest cover of SRF have been taken place using the aerial 

photography of 1981 and 1995 under the frame of project by the Bangladesh Forest 

Department are also discussed.  

 
This study used multispectral satellite imagery to assess and monitor the study area 

of SRF. For this purpose geometrically and radiometrically corrected Landsat ETM 

and TM imagery was obtained for the study. Data specifications and spectral 

behaviour of vegetation are provided for an understanding of specific properties of 

the Landsat satellite imagery. 
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Chapter 3 

Image preparation, analysis and mangrove 
forest mapping 
 

 

3.1 Introduction 
 
Satellite data preparation is essential to establish a more direct linkage between the 

data and biophysical phenomena. It requires several processing steps for better 

identification of the image features. Image processing of remotely sensed data for 

feature identification relates to the range of image enhancement and information 

extraction procedures. The goal of image enhancement is to improve the 

interpretability of an image by increasing the apparent distinction between features 

(Lillesand and Kiefer 2000). A wide range of enhancement techniques is available 

from simple contrast stretching to transformation images as a precursor to 

subsequent digital image analysis. The ideas behind the transformation of remotely 

sensed image are  

- To reduce the number of information channels, 

- To attempt to transform the information content of interest into the reduced 

number of bands (Franklin 2001). 

 
The research takes consideration of the atmospheric correction of the data sets as 

several studies on the assessment of changes in land cover indicates any omission 

of atmospheric correction during temporal assessment will give unreliable results 

(Jensen 1996, Hadjimitsis et al. 2004). Within research study the processing 

techniques followed to the extent necessary to provide data of consistent quality 

suitable for land cover classes identification. Contrast stretching and formation of 

colour composite were performed as an aid in identification of the cover classes. The 

fusion techniques for Landsat ETM, Normalized Difference Vegetation Index for the 

Landsat ETM and TM imagery were examined in order to identify the classes 

investigated for the study area. 

 
Evaluation of the information content of remotely sensed data and its application to 

land cover mapping relies upon careful definition of the land cover classes. Remote 

sensing spectral properties combining with the ground information, a classification 

system was generated for the study area. Much attention has been directed towards 
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the development of signatures for the classes form training samples and spectral 

separability of the corresponding classes. Supervised classification was applied to 

several methods and investigated their reliability in identifying the level III classes 

from the Landsat ETM and TM imagery.  

 

3.2 Atmospheric correction 
 
Several factors independent of ground cover can significantly affect spectral 

reflectance as measured by the sensor. Electro Magnetic Radiation (EMR) used for 

remote sensing passes through atmosphere of the earth. The effects of the 

atmosphere on the signal are mainly caused by scattering and absorption. They vary 

with the path length, the atmospheric conditions and the wavelength. Atmospheric 

absorption results in the loss of energy to atmospheric constituents. Scattering, the 

redirection of electromagnetic energy by particles suspended in the atmosphere, is 

the reason why the radiation arriving at the sensor consists of the following 

components (Campbell 1996, Lillesand and Kiefer 2000):  

 
- radiance reflected from the earth’s surface 

- radiation scattered directly to the sensor without reaching the earth’s surface 

- radiation scattered to the ground (diffuse radiation, skylight) being reflected to the 

sensor 

- surface-reflected radiation, partly scattered both directly to the sensor and to the 

ground.  

 
Thus a sensor will receive not only the directly reflected or emitted radiation from a 

target, but also the scattered radiation from a target and the scattered radiation from 

the atmosphere, which is called path radiance (Lillesand and Kiefer 2000). 

 
De Haan et al. (1991), Cracknell and Hayes (1993), Campbell (1996), Jensen (1996) 

describe and attempt to categorise several atmospheric correction methods. There 

are two major categories, absolute correction and relative normalisation. Absolute 

corrections include image based atmospheric corrections, which have been 

performed for the Landsat imagery in this study. Many correction methods have been 

proposed in several studies to remove the atmospheric effects. Song et al. (2001) 

made evaluation of several correction methods based on land cover classification 

and change detection accuracies applied on a multitemporal dataset of seven 

Landsat TM images. They found that the best overall results with respect to their 

impacts on image classification and change detection accuracies were achieved 
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using the simpler DOS (Dark Object Subtraction) method, rather than the more 

complex atmospheric corrections that combine both atmospheric models and the 

Dark Pixel (DP) principle.  

 
DOS is perhaps the simplest and most widely used image based atmospheric 

correction approach for classification and change detection applications (Campbell 

1996, Schowengerdt 1997, Song et al. 2001). However, there is no commonly 

accepted correction for Landsat data for operational applications at regional scale. 

Thus in this study it has been decided to perform the DOS method for atmospheric 

correction.  

 

3.2.1 Dark Object Subtraction method 
 
Atmosphere has an additive effect on brightness to the overall image, resulting in 

higher Digital Number (DN) values reducing the contrast. For the correction of each 

band the minimum DN value is estimated as atmospheric contribution and subtracted 

from each band on a pixel-by-pixel basis resulting in left shifted histograms with 

minimum values of zero as shown in figure 3.1. This procedure is also known as 

haze removal method (Sabins 1987, Jensen 1996). 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Atmospheric Correction per band: (A) original histogram, (B) resulting 

change. 

 

 

This method has been applied in both Landsat TM and ETM images of the study 

area. Each band of a scene is shifted by the respective DN value, which finally 

produces a better quality images compared to the respective colour composite 

images (figures 3.2).  
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Figure 3.2: Subsets of atmospherically corrected images with the corresponding 

colour composites of study area 

 
 
3.3 Image analysis support functions 
 
3.3.1 Image fusion 
 
Image fusion can be considered as the combination of two or more different images 

to form a new image by using algorithms (Van Genderen and Pohl 1994). Data fusion 

techniques have emerged as key tools for visualisation as well as providing 

improvements in classification accuracy, image sharpening, data substitution, change 

detection, geometric correction and overcoming data gaps due to clouds (Solberg 

1999, Pohl and Van Genderen 1998). In general, image fusion methods can be 

grouped into two classes: (1) colour-related and (2) statistical/numerical methods 

Atmospherically corrected Landsat TM 
imagery (bands 4, 5, 3) (1989) 

Colour Composite of the study area 
compiled from Landsat TM bands (4, 
5, 3) (1989) 

Atmospherically corrected Landsat 
ETM imagery (bands 4, 5, 3) (2000) 

Colour Composite of the study area 
compiled from Landsat ETM bands 
(4, 5, 3) (2000) 
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(Pohl and Van Genderen 1998). This study attempts to use the colour-related 

Intensity Hue Saturation (IHS) and the statistical Principal Component Analysis 

(PCA) method for checking the performance in defining the various land cover 

classes of study area. Fusion techniques are implemented to monitoring coastal 

zones by means of remote sensing all over the world. Due to its spatial enhancement 

detailed land use distribution was performed with a good percentage of reliability and 

was then used for setting up new coastal zone plans (Guerra 2003). For this study 

higher resolution panchromatic band (14.5m) were merged with the respective 

multispectral bands (28.5m) of Landsat ETM in order to produce high resolution 

image, while the spectral resolution of medium resolution multispectral image is 

preserved in the final IHS and PCA fusion image.  

 

3.3.1.1 IHS fusion 
 
Intensity Hue Saturation (IHS) has become a standard procedure in image fusion 

(Chavez et al. 1991, Ehlers 1991, Shettigara 1992, Zhang 1999). This technique was 

successfully applied in several studies in forest cover mapping. Leckie (1990) used 

SAR and optical data together in a forest type discrimination study in northern 

Ontario that was aimed at separating general species classes, and got significant 

benefit in forest cover mapping. This technique was also used to combine 

multitemporal ERS-1 and mutispectral Landsat TM data and thus increased the 

classification accuracy of the Swedish land cover maps (Michelson et al. 2000). 

Pellerin et al. (2004) used Landsat TM data with Spot HRV pan data to establish a 

classification of river Tavares mangrove vegetation in Santa Catarina Island, Brazil 

and experienced minimal distortion of spectral visible characteristics of the fusion 

data, which offered more accurate mapping for the vegetation. Prasad et al. (2001) 

examined IHS method in identifying the forest classes as well as non forest areas of 

Pathri reserved forest in Uttaranchal, India and found distorted the spectral 

characteristics of the forest classes. 

 
IHS method transforms data from RGB space into their related intensity, hue, and 

saturation components, where intensity refers to brightness of colour, hue refers to 

the dominant or average wavelength of light contributing to a colour, and saturation 

specifies the purity of a colour (Jensen 1996, Sabins 1997, Pohl 1999).  

 
The IHS images can be expressed as described below. 
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where R G B stands for red green and blue respectively. 

 

During IHS transformation, bands 2,3,4 were used because these bands most 

closely covered the same portion of the electromagnetic spectrum as the 

panchromatic image (Ghassemian 2001). The steps followed to produce an IHS 

fusion image are highlighted in figure 3.3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Steps followed during IHS transformation 

 

 

3.3.1.2 PCA fusion 
 
PCA is the most widely used technique for reducing dimension. The purpose of PCA 

is to compress all of the information contained in original n (any number) band data 

set into fewer then n new bands. Components are computed by linear combinations 

of the original images. None of the components is linearly correlated with the others 

because these n components are orthogonal. The total variance of original images is 
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mapped onto new components. The first principal component (PC1) has the greatest 

percentage of the total variance and succeeding components (PC2, PC3,….,PCn) 

each contain a decreasing percentage of the total variance (Lillesand and Kiefer 

2000, Wald 2002).  

 
Several studies used PCA fusion and experienced the improvement of the 

classification accuracy of the natural vegetation as well as land cover types (Francis 

and Canisius 2003). Zhang (2002) found maximum increase in detail and minimum 

discrepancy of spectral properties of the land use types after PCA fusion. Prasad et 

al. (2001) used PCA fusion image for delineating the forest and non-forest areas of 

Pathri reserved forest in Uttaranchal, India and moreover used it successfully in 

determining the forest classes and canopy density. 

 
PCA was used in this research for two purposes; that is to reduce data dimension 

and to implement data fusion. PCA transforms the original Landsat ETM dataset 

(bands 1-5 and 7) into a new coordinate set to reduce the data dimension. The first 

principal component (PC1) is highlighting the overall brightness. It has the largest 

percentage of the overall data variance and contains most of the relevant information 

inherent to a scene. The following principal components, from component number 2 

to 6 contain a decreasing percentage of total data variation (Table 3.1). The higher 

components appeared noisy because they contained very little variance, much of 

which was due to noise in the original spectral data. 

 
Table 3.1: Eigenvector and Eigenvalue from Principal Component Analysis 
 

ETM bands Eigenvalue and % PC 
 Band1 Band2 Band3 Band4 Band5 Band7 Eig_val. % 

PC1 0.530 0.354 0.195 0.673 -0.136 -0.291 3478.83 88.21 
PC2 0.389 0.364 -0.026 -0.106 0.126 0.830 402.94 10.22 
PC3 0.322 0.481 -0.233 -0.616 0.117 -0.466 52.97 1.34 
PC4 0.584 -0.583 0.457 -0.318 -0.093 -0.030 6.65 0.17 
PC5 0.312 -0.392 -0.628 0.233 0.546 -0.047 1.32 0.03 
PC6 0.162 -0.131 -0.551 -0.025 -0.804 0.083 1.03 0.03 

 
 
The data fusion procedure based on the PCA approach integrated the Landsat ETM 

multispectral and the panchromatic band according to the following steps, which are 

also presented in figure 3.4: 

a) transforming Landsat ETM multispectral bands into six Principal Components 

b) re mapping the panchromatic image into the data range of PC1 

c) substituting the PC1 with the panchromatic image and  
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d) applying an inverse principal components transformation to the data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Flowchart of PCA image fusion (Zhang 2002) 

 

 

3.3.1.3 Fusion image performance 
 
Figure 3.5 compares the results of PCA and IHS data fusion with the original Landsat 

image data. The panchromatic image provided more detailed textural information due 

to its higher spatial resolution. Comparing the results of data fusion with the original 

Landsat ETM bands, it is clear that the river courses became smooth and also 

sharpened the edges of land and water boundary for the study area. 
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Figure 3.5: Landsat ETM composite bands, panchromatic band and IHS and PCA 

fusion images 

 

 

3.3.2 Normalized Difference Vegetation Index (NDVI) 
 
A Vegetation Index (VI) is a dimensionless, radiation based measurement computed 

from some spectral combination of remotely sensed data (Asner et al. 2003). As 

illustrated in figure 2.5 (chapter 2), healthy green vegetation generally reflects very 

little solar energy in the visible wavelengths (0.4 - 0.7 mµ ), with a sharp increase in 

reflectance in the near infrared wavelength region (0.7-1.1 mµ ). This unique spectral 

property is used in various indexes ranging in complexity from applying correlation 

Colour composite map of Landsat ETM 4, 
5, 3 as RGB of the original image (28.5m 
resolution) 

IHS fusion image of the multispectral 
bands (used band 4, 3, 2 as RGB) and the 
panchromatic band of the Landsat ETM  

PCA fusion image of the multispectral 
bands and the panchromatic band of 
the Landsat ETM  

Panchromatic band of Landsat ETM. 
(14.5m resolution) 
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coefficients to brightness values of a near infrared band to multi band rationing 

combined with complex algorithms (Jensen 1996).  

 
In order to derive valuable information on vegetation classes NDVI values have been 

extracted from both Landsat ETM and TM imagery for the study. The NDVI is a 

common and widely used transformation for the enhancement of vegetation 

information (Rouse et al. 1973, Tucker 1979, Tucker et al. 1985, Nogi et al. 1993, 

Riano et al. 2002). NDVI has been used to measure vegetation cover characteristics 

and incorporated into many forest assessment studies (Wulder 1998, Tole 2002, Roy 

and Joshi 2002, Levent and Scot 2003). It can be used for accurate description of 

land cover, vegetation classification and vegetation phenology (Tucker et al. 1982, 

Tarpley et al. 1984, Justice et al. 1985). In some cases, multi resolution imagery and 

integrated analysis method were included along with NDVI for land cover 

classification (Lambin and Ehrlich 1995, Cihlar et al. 1996, Laporte et al. 1998, 

Moody 1998). Temporal dynamics of the NDVI or adding a NDVI image with the 

multispectral image is also useful in differentiating the vegetation types (Hensen 

2000, Levent and Scot 2003).  

 
NDVI combines a multivariate data set of observations to a single index that is 

related to the amount of chlorophyll present in leaves of vegetation. It is an indicator 

of vegetation amount. NDVI computed as the difference of the Near Infra Red (NIR) 

and red band reflectance divided by the sum of reflectance for those same bands. 

The algorithm isolates the significant increase in reflectance from the visible red to 

near infrared wavelengths, and normalises it by dividing by the overall brightness of 

each pixel in those wavelengths. Specifically NDVI is: 
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−
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The result of this algorithm is a single band data with NDVI values ranging from -1 to 

1 (Sabins 1997, Jensen 1996). 

 
NDVI can highlight and enhance specific spectral differences, which cannot be 

observed in the display of the original colour bands. NDVI is less influenced by sun 

angle and illumination and thus provides relatively reliable information about 

vegetation discrimination (Gutman 1991). Generally, most vegetation indices 

eliminate shadowing effects through highlighting the difference in reflectance 
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between bands. Removal of shadow and albedo effects from vegetation indices can 

offer improvements in classification (Qi et al. 1995, Huemmrich 1996). 

 

3.4 Field visit and classification system generation 
 
Forest classes can be generated by explaining the forest according to the component 

species, floristic composition or by the canopy structure from remote sensing data 

(Franklin 2001). One of the objectives of this research is to investigate the application 

of medium resolution satellite data for the determination of forest cover classes by 

generating an appropriate classification system for the study area. The application of 

a standardised classification system provides a fundamental framework for the 

establishment of information for local and national purposes. 

 
The most widely utilised land use and land cover classification system was 

developed by USGS (Anderson et al. 1976) comprising of four levels (I, II, III, IV) and 

has found wide acceptance as the basis for digital classification using remote 

sensing (Jensen 2000). Application of the classification levels (table 3.2) depends on 

the characteristics of the available remote sensing data.  

 
Table 3.2: Example of forest classes and levels used in Landsat image classification 
 

    

Level I Level II Level III Level IV 

 General Species levels Crown density classes (4) 

Forest Land Deciduous forest  Red pine High (>60%) 

 Evergreen forest Black spruce Medium (40-60%) 

 Mixed forest  Mixed swamp conifer Low (25-40%) 

 Forested wetlands Northern white cedar Very low (10-25%) 

 
Source: Adopted from Anderson et al. (1976), North America - classification; Wolter et al. 
(1995), Northern Midwest U.S. - classification; Cihlar et al. (1997), Northern Saskatchewan, 
Canada - classification 
 

 

A range of studies (Martin et al. 1988, Trietz et al. 1992, Wolter et al. 1995) has 

derived level II information from medium resolution satellite data but in a few cases, 

level III classification has been reported using medium resolution imagery (Franklin 

1994, Wolter et al. 1995). The study takes consideration of the system due to its 

reliance on remote sensing data to determine the forest cover classes. However the 

success has been dependent upon the heterogeneity and contrast of spectral 

characteristics of different classes. 
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The classification system for the SRF as applied by Bangladesh Forest Department 

is explained in table 3.3 and 3.4. It was developed by the interpretation of aerial 

photography of the year 1981. Classification for the forest was based on dominancy 

of species and their composition with other species at stand level. The classification 

system was followed later in 1996 during mapping the forest using aerial 

photography. A new forest type Gewa Mathal (coppice) added with the others is 

described in table 3.3. It introduced another two non-forest types - water body and 

sandbars and excluded cultivation (Opena et al. 1995). 

 
Table 3.3: Forest types of SRF (stereoscopic interpretation of the aerial photography 

of 1981) 
 

Composition by species (%) Forest types 
Sundri Gewa Passur Kankra Baen Goran Keora 

Sundri >=75       
Sundri-Gewa 50 - 70 25 - 50      
Sundri-Passur 50 - 75  25 - 50     
Sundri-Passur-
Kankra 

25 - 50  20 - 40 20 - 40    

Gewa  >=75      
Gewa-Sundri 50 - 75 25 - 50      
Gewa-Garan  50 - 75    25 - 50  
Goran       >=75  
Goran-Gewa  25 - 50    50 - 75  
Passur-Kankra   40 - 60 40 - 60    
Passur-Kankra-baen   20 - 40 20 - 40 20 - 40   
Baen     >=90   
Keora       >=90 

 

Source: Chaffey et al. 1985 
 

Table 3.4: Non-forest types of SRF (stereoscopic interpretation of the aerial 

photography of 1981) 
 

Non Forest Type Description 

Scrub Height <5ft 
Tree plantation Principally Keora, ora grass, Kankra and Kalshi 
Cultivation Rice 
Grass & bare ground Vegetation cover <10% 

 
Source: Chaffey et al. 1985 
 

 

The management plans for SRF were formulated according to the working circle of 

the dominant species existing in the forest (detail in chapter 2). Therefore these 

detailed forest type maps were not usable on field level, as the forest types were not 

mapped according to the management plans. Accurate representation of the forest 

classes in maps according to their management plan is essential and urgent for 

planning and decision making.  



 

 36

The classification system of the study area is designed to utilise remotely sensed 

satellite data as the primary information source. Ancillary data, which were collected 

from the Bangladesh Forest Department, as well as the data collected during field 

visits were used in the understanding of image data for detailed interpretation at 

species level. Locating training sites was depending mainly on the easily accessible 

areas covered by the classes. Without the logistics provided by the Bangladesh 

Forest Department it would have been impossible to conduct the fieldwork. A small 

team of forest guard to protect safeguard, boatman and a responsible officer took 

part in the field visits. Due to the presence of anthropophagous tigers in SRF, 

shooting was a must before entering the forest. The forest floor near the rivers or 

creeks was often covered by deep mud especially during low tide. It was also 

covered by small to large aerial roots, seedlings, bushes and grasses, which made 

difficulties while walking inside the forest. The task of field verification of Landsat 

ETM data for classification system generation and for accumulating the training 

samples was very difficult as the area is large. Trawler was the only means to move 

around in the study area. It was therefore impossible to cover the whole area for 

collection of the training samples. Selected locations were visited during field visits 

(figure 3.6). GPS (Garmin 12) was used to identify the locations and also to check 

any differences in position of an object identified in the ground compared to the 

imagery. Three accessible water ponds (marked areas in figure 3.6) have been 

identified in the Landsat ETM image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Ground locations visited in the study area 
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The coordinates of the individual pond corners were collected and comparison with 

world in the geo-referenced image showed shifts about of ± 0.6 pixel. 

 
Depending on the characteristics of remote sensing data efforts has been made to 

produce usable maps for planning. A level III classification system has been 

developed in this study for mapping the classes according to existing management 

plan based on unique spectral reflectance of the multispectral Landsat ETM data. 

The classification system developed for the study area is illustrated in table 3.5. The 

classification is hierarchical with classes at level I, II and III in order to accommodate 

the various level of detail which can be extracted in the satellite data. The pixel size 

of Landsat offered adequate resolution to identify eight classes for ETM data inside 

the study area. Two types of grass layer have been identified in Landsat ETM due to 

their significant difference in reflectance characteristics. One was representative of 

marshy land and another comparatively drier land. Grass layers in the drier areas 

have been created after 1996, according to the aerial photo interpretation of 1996 as 

derived by the Bangladesh Forest Department. During field visit it was realised that 

the drier grass areas are increasing. The Bangladesh Forest Department initiated 

effort for management of these areas in the later part of 2000. The authority partially 

burned this grassland and planted exotic species. As the Landsat ETM image was 

acquired in the later part of 2000, it was possible to identify the whole drier grassland 

from the data. This grassland was actually a gap created after removal of trees from 

the forest. Drier grass areas classified separately as Bush land in the classification 

system for separate presentation of two grass layers in the classified map.  

 
Table 3.5: Land cover classification system developed for the study area 
 

Level I Level II Level III classes for Landsat ETM 
Forest land Mangrove Forest  Gewa 
  Sundri 
  Kankra 
  Keora 
 Shrub Shrub 
 Grassland Bush land 
  Marshy grassland 
Water Rivers, creeks, canals, ponds  

 
 
The representing colours for the classes were identified in colour composite Landsat 

ETM imagery (RGB = 4, 5, 3) shown in figure 3.7. Details of interpretation, training 

area acquisition and signature derivation from the training data for the classes are 

discussed in the following sections. 
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Figure 3.7: Subset samples representing the land cover classes according to the spectral radiance of Landsat ETM (RGB = 4,5,3) in the study 

area
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3.4.1 Building an interpretation key of forest cover classes 
 
The objective of an interpretation key is to ensure the interpretation quality in order to 

reproduction of the classification system and standardisation of the interpretation 

process. It is necessary to document the connection between the extracted 

signatures in satellite data and the appearance of the classes in-situ to make this 

classification system usable.  

 
The interpretation key is provided examples for the classes and descriptive rules for 

interpretation work. The following figure (figure 3.8) presented the resulting 

interpretation key.  

 
Class description Photographs 
Class: Sundri  
Local name of the species: Sundri 
Scientific name: Heritiera fomes 
Areas are dominated by sundri and mixed with gewa 
(Excoecaria agallocha), baen (Avecennia officinalis), 
kankra (Bruguiera gymnorrhiza), passur (Xylocarpus 
mekongensis), shingra (Cynometra ramiflora); dense 
canopy; understorey is characterising by the 
germination of the canopy species; ground is 
covered by dense phenumetophores (aerial roots). 

 

Class: Gewa 
Local name of the species: Gewa 
Scientific name: Excoecaria agallocha 
The areas are dominated by gewa and mixed with 
sundri (Heritiera fomes), kankra (Bruguiera 
gymnorrhiza), baen (Avecennia officinalis), keora 
(Sonneratia apetala); more or less close canopy; 
understorey covered by the sapling or seedling of 
the canopy species. 
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Class description Photograph 

Class: Keora 
Local name of the species: Keora 
Scientific name: Sonneratia apetala 
Pure keora; close canopy; usually occurs in 
small patches; grows in newly accreted land. 

 

 

 

 

Class: Kankra 
Local name of the species: Kankra 
Scientific name: Bruguiera gymnorrhiza 
Mostly kankra, some times mixed with gewa 
(Excoecaria agallocha), sundri (Heritiera 
fomes), keora (Sonneratia apetala), passur 
(Xylocarpus mekongensis); close canopy. 

 

Class: Shrub 
Area covered by perennial shrub less than 1m 
height; mainly bola (Hibiscus tiliacious) 
species. 

 

Class: Marshy grassland 
Areas are covered by grasses. They are 
nolkhagra (Eriochloea procera), 1.5 – 2m 
height; malia (Cyperus javanicas), <1m height 
and hargoja (Acanthus ilicifolius); they are 
growing independently or in mixture with each 
other in marshy areas; not all of them are 
included in the photograph. 

 

Class: Bush land 
Area covered by Hogla (Typha elephantia) 

1.5m height, nolkhagra (Eriochloea procera) 

1.5 – 2m height; they occur independently or in 

mixture. 
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Class description Photograph 

Class: Water 
This category includes any open water area 
larger than the minimum mapping unit or 
28.5*28.5m resolution. Rivers, canals, creeks 
and ponds are all included. 

 

 
Figure 3.8: Interpretation key of the SRF on Landsat ETM imagery 
 

 

3.4.2 Training area acquisition  
 
These classes mentioned above were used to derive the training areas based on 

ground data. They were used to examine the spectral characteristics of each class to 

achieve an optimal separability. It is crucial to get a unique signature for each class 

and thus carefully supervised the pixel categorisation process. 

 
The quality of the training data highly determines the classification effort and the 

value of generated results. Reliable training statistics depend upon inclusion of 

sufficient samples to provide an accurate measure of the target mean and 

covariance. Swain (1978) indicates that 10 n  pixels should be used, where n  is the 

number of spectral bands, and Richards (1993) recommends 100 n  as an 

appropriate number. Table 3.6 summarises the number of training pixel used to 

analysis the Landsat data for the study. According to Swain (1978) the minimum 

number of training pixels per class for Landsat TM is 60. Hildebrandt (1996) refers 

25-30 pixels for single areas and a minimum of 100 pixels in heterogeneous object 

classes.  

 
Training samples extracted for the ETM data was depended on the field data and 

observations of the study area. Acquisition of the training data was constrained by 

the area covered by each class. Comparatively larger training samples could be 

extracted for large area covering classes while small area covering classes allowed 

only for a small number of training samples to be extracted e.g. for Keora, shrub and 

marshy grassland types. A relatively low number of training samples have been 

extracted carefully from historical Landsat TM data. Because the experience gained 

from the field visits for ETM data were also used in selecting the training samples for 
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TM data (table 3.6). Training areas for both images were selected as small polygons, 

which had been delineated manually.  

 
Table 3.6: Number of training pixels for the classes used for derivation of training 

statistics for maximum likelihood classification 

 
   

Class Landsat TM Landsat ETM 
   
   

Gewa 248 859 
Sundri 330 1072 
Kankra 71 456 
Keora 24 43 
Shrub 32 81 
Marshy grassland 36 56 
Bush land  168 
Water 1300 2726 

   

 

 

3.4.3 Signature analysis for the training area 
 
Ground verified training areas for Landsat ETM data were used to develop signature 

for the classes. The uniqueness of extracted spectral signatures of the training data 

enabled identification of the target classes. Accurate extract of specific spectral 

characteristics and their documentation is needed to characterise each class, such 

as each pixel compared to a library of spectral signatures, should be allocated to the 

appropriate class (Jensen 1996). Figure 3.9 is representing the spectral properties 

extracted from the mean values of training samples for the classes of the study area 

based on ETM data. Steps followed to derive the unique spectral signatures with 

maximum separibility are: 

 
- identification of the informational classes in the satellite image, 

- locations of sample sites of the informational classes for extraction of training 

statistics, 

- identification and comparison of distinct spectral pattern of the informational 

class, 

- extraction of pixel groups as training sample, 

- extraction of training statistics from the satellite data for each informational class, 

- acceptance of the training sample or redefinition in order to achieve better 

statistics of the informational classes. 
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There are various means to control the quality of signature for the classes, such as 

scatter plots, coincident spectral plots, histogram of the training samples and the 

separability index. A contingency matrix was generated for the trainings in order to 

examine the separability among the classes.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Mean spectral radiance extracted for the land cover classes 

 

 

3.5 Information extraction from Landsat imagery 
 
In order to extract the appropriate information supervised method was applied, which 

involved the identification and labelling of the land cover classes. A separate 

classification was also performed for the water bodies to extract the smooth river 

course using visual interpretation of Landsat ETM bands. 

 

3.5.1 Supervised classification 
 
Classification is the most appropriate approach for predicting the categorical class 

membership (e.g. land cover classes) of an observation (pixel), based on its intrinsic 

traits (measurement vector of spectral band responses) (Franklin et al. 2003). 

Supervised classification requires prior knowledge about the spectral properties 

and/or the statistical nature of the categorical classes to be determined (Mather 

1987) or access to ancillary data, which can be used to build spectral statistics 

(Franklin et al. 2003). Knowledge about the spectral information is often derived from 

fieldwork, aerial photo interpretation or from the study of appropriate large scale 

maps. Supervised classification procedure provides an opportunity for the analyst to 

intervene and direct the classification process. A priori selection of categorical 
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classes, analyses of training site statistics, specification of sampling approaches and 

of training site geometry are possible during the supervised classification.  

 
The classification algorithm, which is based on the training sample information, is 

needed to classify the image. Algorithms like the parametric classifier require 

statistical information and are categorised as parallelepiped, minimum distance, and 

maximum likelihood approach. In this study the maximum likelihood algorithm has 

been applied. It is the most common approach and is frequently used in research and 

application (Jensen 1996, McGwire et al. 1996, Ediriwickrema and Khorram 1997, 

Richards and Xiuping 1999, Heikkonen and Varjo 2004). 

 

3.5.1.1 Theoretical approach 
 
The maximum likelihood algorithm assumes that pixels, which comprise target 

classes are normally distributed and that each class may be completely described by 

its mean vector and covariance matrix of all bands included in the data set (Lillesand 

and Kiefer 2000). A multivariate application of the normal probability distribution 

function is used to model the distribution of pixels to the available classes (Haralick 

and Fu 1983). Pixels are allocated to the class with the spectral distribution showing 

the greatest probability of membership.  

 
The multivariate application of the normal probability density function is derived from 

the univariate algorithm given below (Swain 1978): 
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Where  

( )ixp ω|  = Probability of a pixel at a location x being a member of class iω  

[ ]ii xE ωµ ≤  = Mean value of pixels in classes i  

( )[ ]iii xE ωµσ 22 −=  = Variance of pixels in class i  

 
Training samples are used to estimate the values of iµ and 2

iσ  from the remotely 

sensed data. It is important at this stage to define unimodal samples in line with the 

Gaussian assumption and to ensure that a sufficient number of samples are collected 

for parameter estimation (Swain 1978). 
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Remote sensed data, which require the implementation of a multivariate probability 

density function are collected from multispectral systems: 
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where  

X  = Measurement vector containing the value of the unknown pixel in each band 

iU  = Mean vector for class i   

i∑  = Covariance matrix for class i  

 
Equation 3.6 represents the multivariate probability density function ( )iXp ω| , which 

defines the probability of pixel X  being classified over n  bands into a class iω . This 

function relies upon the covariance matrix being non-singular and requires at least 

1+n  training sample pixels to be evaluated. 

 
Classification of pixel X  into class iω  occurs when the probability of belonging to 

this class is greater than the probability of belonging to all other classes as follows: 

 
ix ω∈    if ( ) ( )XpXp ji || ωω >   for all ij ≠     3.7 

Values of ( )Xp i |ω  are a posteriori probabilities and are not available, but may be 

estimated from the training data class probabilities - ( )iXp ω| : 

 

( )Xp i |ω  = 
( ) ( )

( )Xp
pXp ii ωω|

       3.8 

 
Where  

( )ip ω  = probability that class iω  occurs in the image 

( )Xp  = probability of finding a pixel from any class at location X  

 
The value ( )ip ω  is termed as a priori probability and takes a value of 1.00 for all 

classes if no other information regarding the distribution of classes is available. 

Incorporation of prior probabilities into equation 3.7 and removal of ( )Xp  as a 

common factor results in the classification rule as follows: 
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iX ω∈  if  ( ) ( ) ( ) ( )jjii pXppXp ωωωω || >  for all ij ≠   3.9 

 
The maximum likelihood decision rule may be stated in terms of discriminate 

functions for X  in the form: 

 
( )Xgi  = ( ) ( )[ ]XpXp iω|ln  

 = ( )iXp ω|ln  + ( )ip ωln  3.10 

 
Thus substituting the discriminate functions in equation 3.9 the maximum likelihood 

decision rule is stated as:  

 
iX ω∈  if  ( ) ( )XgXg ji >  for all ji ≠  3.11 

 
The multivariate probability density function defined in equation 3.6, when operated 

by the natural logarithm, is stated as: 

 
( ) =iXp ω|ln  ( ) ∑−− iln5.02ln5.0 π ( ) ( )∑−

−−−
15.0

i i
T

i UXUX  3.12 
 
The constant n5.0 ( )π2ln  may be ignored and for types of analysis with an 

assumption of equal prior probabilities for all classes, equation 3.11 is modified to 

provide the final form of the discriminate function for the maximum likelihood 

classification: 

 
( )Xgi  = ( ) ( )∑−

−−−∑−
1||ln

i i
T

ii UXUX  3.13 

 
Each pixel within an image will therefore be classified into one of the target classes 

for which training data have been defined, regardless of how small the actual 

probabilities of membership for any class are (Richards 1993, Richards and Jia 

1999). Classification accuracies of 100 percent are rarely achieved. Careful selection 

and redefinition of training samples can provide results of an acceptable standard.  

 

3.5.2 Classification results 
 
The process of developing a classification methodology using supervised 

approaches has been discussed in previous sections. The objective of this sub 

chapter is to present the classification results for Landsat TM and ETM data and to 

describe the specific considerations of the classifications. Steps followed to perform 



 

 47

supervised classification for the data sets of the study area in SRF are shown in 

figure 3.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Workflow of the classification procedure for the study area of SRF 

 

 

Georectified Landsat ETM data of 26 November 2000 and Landsat TM data of 12 

January 1989 were obtained for the study. Atmospheric correction has been applied 

for the data sets. In order to enhance the image features an IHS and a PCA fusion 

technique were applied by using the panchromatic and multispectral bands of 

Landsat ETM data. NDVI images for both years have also been extracted using the 

NIR and red bands of Landsat TM and ETM imagery for better interpretation of the 

forest cover information. 

Supervised 
classification 

Selection of training 
samples for the classes 

Field verification 
and preparation of classification 

system 

Landsat imagery 

Evaluation of signature 
separability by generating 
statistics

Refinement of the signature 
samples to achieve maximum 
separability 

Identification of spectral 
characteristics of different 

classes 
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Supervised classifications of all multispectral bands as well as NDVI layer, fusion 

images and the atmospherically corrected images for both years have been 

examined for Landsat ETM and TM data. Different image processing routines were 

designed (table 3.7) to perform classification in order to improve the classification 

accuracy as well as identify the most suitable method for the study area. 

 
Table 3.7: Image classification methods investigated in the study 
 

  

No. Methods 
  

1 Combination of 6 bands (excluding thermal band) 

2 Combination of 7 bands (all spectral bands) 

3 Combination of 7 bands (NDVI image and 6 spectral bands excluding thermal band) 

4 Combination of 8 bands (NDVI image and all spectral bands) 

5 Combination of 6 bands (atmospherically corrected image excluding thermal band) 

6 Combination of 7 bands (NDVI image and atmospherically corrected image) 

7 IHS fusion image based on multispectral bands (2,3,4) and panchromatic band 

8 PCA fusion image based on multispectral bands and panchromatic band 

 

 

All the methods were applied to Landsat ETM data and methods 1 to 6 were applied 

to Landsat TM data classification. Method 1, 2, 3, 4, 7 and 8 were used spectral data 

without atmospheric correction for both data sets. 

 
Signature developed for the classes was used as input to the maximum likelihood 

classification. Following the classification process all output files were statistically 

filtered using majority function filter in a 3*3 window size in order to remove speckle 

and smooth the classified images. Only one pass was applied in order to minimise 

the generalisation of details. Scattered classified Keora pixels were merged with the 

major area cover classes. Likewise pixels of classified river areas for tiny rivers have 

also been merged to other classes after filtering. 

 
Increasing the number of bands in the classification process has increased the 

accuracy of interpretation of classes. Adding the thermal band as well as NDVI band 

all together with multispectral bands was found effective in identifying the classes. 

The thermal band assisted to achieve more accuracy for the classes. Radiant energy 

emitted by the land cover classes is different, which probably helped to increase the 

accuracy of the classification. Herold et al. (2003) also found that Landsat ETM 

thermal band has greatly increased the accuracy in forest canopy classification.  
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In 1989 the study area was mainly covered by the two dominating classes Sundri and 

Gewa (figure 3.20), while, in 2000 Kankra class increased its area of coverage by 

partly replacing the two dominant classes (figure 3.16). An increase of grassland in 

the study area during 1989 to 2000 was identified. This is the result of illegal removal 

of Sundri and Gewa, which has been more accelerated due to drying of Bhola River 

and Kharma cannel near the forest boundary. 

 
Evaluation of the classification results of different methods was done by field 

observation (and experience) of the composite images of Landsat ETM. The choice 

of the most accurate method for monitoring the classes was dependent upon the 

accuracy of detecting the spatial distribution and the expansion of different classes in 

the study area. The results achieved for the methods are critically analysed and 

represented in the following sub chapters.  

 

3.5.2.1 Landsat ETM 
 
The classification results of the land cover classes based on table 3.7 of Landsat 

ETM data do not coincide at level III in quite a number of locations. Instead of 

presenting classification results for all methods for the whole study area, few subsets 

have been selected in order to present the dissimilarity of the classification results.  

 
Figure 3.11 represents the differences in identifying specific areas, as marked by 

circles. During field visits small areas of Keora were documented beside Kalabogi 

Station, which have been successfully classified by the method combination of 6 

bands (excluding thermal band) and combination of 8 bands (NDVI image and all 

spectral bands). Combination with 8 bands (NDVI image and all spectral bands) 

showed a reasonable representation of Keora and the marshy grassland around 

Kalabogi Station proving the significant increase of accuracy. 
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Figure 3.11: Subsets of classification results of several methods of the Landsat ETM 

 

 

Keora patches have been observed in the bend of the Sibsa river towards Kalabogi 

and beside Sibsa river during field visit. These patches have been identified in the 

classification result of the combination of 8 bands (NDVI image and all spectral 

bands) (figure 3.11 and 3.12) are conserving their shape as observed during field 

visit as well as colour composite of the original image. Other methods have not 

detected these features accordingly. 
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Atmospherically corrected imagery and its combination with NDVI image failed to 

detect the Keora during classification and misclassified these areas as water (figures 

3.11, 3.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Subsets of classification results of several methods of the Landsat ETM 

 

 

Figure 3.13 showed that the method combination of 6 bands (atmospherically 

corrected image) and combination of 7 bands (NDVI image and atmospherically 

corrected image) wrongly identified marshy grassland inside areas of Sundri. The low 
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performance of the atmospherically corrected image of the study area was 

unexpected as it was assumed that atmospheric corrections are critical components 

for the improvement of radiometric generalisation and will thus improve the 

classification accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Subsets of classification results of several methods of the Landsat ETM 
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Results of the classification of the fusion images  
 

IHS image 
 
The spatially enhanced IHS fusion image was not useful in identifying any of the 

classes properly (figure 3.14). It confused all defined spectral characteristics of the 

classes with each other. Bush land and Keora appears all over the image, Kankra 

was identified for less area. Gewa has been identified in more areas than in reality. 

The IHS fusion image was apparently affected by anomalies in spectral 

characteristics of the defined classes. The reason is probably the high distortion of 

the original spectral information during IHS transformation, which was present in the 

multispectral images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Subsets of classification results of the IHS fusion method (A, B, C, D, E, 

F areas of composite map are representing the subset areas respectively) 
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PCA image 
 
PCA fusion performance in defining the classes during classification process appears 

to be reliable for separating 7 classes. It identified Keora class along most of the river 

courses (figure 3.15). From experience and field observation it is known that Keora 

species naturally grows along the river ways and in newly accreted land. It is possible 

that the mixed pixel of water and Keora class may be identified as Keora in the 

classified image. If it is assumed that the horizontal extension of Keora areas and 

open river is about 7m within one mixed pixel then it is obvious that the detection of 

Keora along the river courses is inaccurate. For further use of the classification 

needs ground verification for this class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Subsets showing the classification result of the fusion image (A, B, C, D, 

E, F areas of composite map are representing the subset areas respectively) 
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Refinements of the training samples for Keora class could eventually improve the 

classification performance of PCA fusion image. A large amount of image pre-

possessing steps prior to fusion is needed and takes a huge amount of time. Also a 

large data volumes generated in image processing constitute a limitation. By 

comparing all the methods, combination of 8 bands (NDVI image and all spectral 

bands) for Landsat ETM performed well to maximize the reliability of the identification 

of the respective land cover classes (figure: 3.16). 

 

Classification of water bodies 
 
Separate classification was done by on screen interpretation and digitisation of the 

areas of all the main rivers including creeks, canals from the composite map of the 

original bands of the November 2000 of Landsat ETM in order to provide a smooth 

representation of the water bodies as vector layer. The separately classified river 

courses were combined with the final classification result of Landsat ETM data to 

improve its readability (figure 3.16). 
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Figure 3.16: Land use and land cover map of the study area in SRF, derived from Landsat ETM spectral bands and NDVI image of November 

2000 
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3.4.2.2 Landsat TM 
 
As with Landsat ETM data, the methods listed in table 3.7 were also applied for 

Landsat TM data. The level III classification scheme was also applied for supervised 

classification of all respective band combinations in order to find out the most reliable 

results for assessment of changes in the study area during the last decade. 

Evaluation of the classification results of the methods was made and demonstrates 

dissimilarities among each other. Subsets of some representative areas are 

presented in order to demonstrate these significant differences. 

 
The Gewa was classified using all methods, but the method combination of 8 bands 

(NDVI image and all spectral bands) detected the Gewa class adequately as it can 

be observed in the original composite image (figures 3.17, 3.18, 3.19). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Subsets of classification results of several methods of the Landsat TM 
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Shrubs are detected by all methods applied in Landsat TM data. But the method 

combination of 6 bands (atmospherically corrected image) and combination of 7 

bands (all spectral bands) misclassified shrub to a certain extent. As a result plenty of 

shrub areas are present in the classified image (circles in figure 3.17 and boxes in 

figure 3.18), which was not the case in reality as well as documented by the original 

RGB image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Subsets of classification results of several methods of the Landsat TM 
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The method of combination of 7 bands (NDVI image and 6 spectral bands excluding 

thermal band) as well as combination of 7 bands (NDVI image and atmospherically 

corrected image) misclassified a dry riverbed as a water body (boxes in figure 3.18). 

 
Kankra stands are identified by five methods (figure 3.19). The method combination 

of 7 bands (NDVI image and atmospherically corrected image) failed to detect 

Kankra areas and confused it with Keora. Other two methods combination of 6 bands 

(excluding thermal band) and combination of 6 bands (atmospherically corrected 

image) identified this class for comparatively more areas according to colour 

composite of the original bands of Landsat TM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19: Subsets of classification results of several methods of the Landsat TM 
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The method combination of 8 bands (NDVI image and all spectral bands) showed 

relatively acceptable results for mapping the classes of the study area (figure 3.20). 

Likewise Landsat ETM, integration of the NDVI image as an additional layer and as 

well as the thermal band with other multispectral bands for Landsat TM improved the 

accuracy in identifying the respective classes according to their shape and size as 

observed in the original image.  

 
The results are also explained in a table (table 3.9) briefly to clarify the dissimilarity 

among the methods for both data sets. Areas covered by the respective classes in 

classified imagery are shown in table 3.8. 

 

 
Table 3.8: Areas in classification of Landsat TM and ETM imagery (Combination of 8 

bands - NDVI image and all spectral bands) 

 
   

Land cover classes Areas of Landsat TM of 
January 1989 (hectare) 

Areas of Landsat ETM of 
November 2000 (hectare) 

   
   

Sundri 23027.77 19308.51 
Gewa 15184.45 15828.41 
Kankra 190.55 1906.06 
Keora 43.78 81.69 
Bush land  386.67 
Shrub 569.55 463.27 
Marshy grassland 558.67 772.24 
Water 4726.56 5580.98 
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Figure 3.20: Land use and land cover map of the study area in SRF, derived from Landsat TM spectral bands and NDVI image of January 

1989 
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Table 3.9: Descriptive results of the classification methods 

 

Results in the classified data of Landsat ETM Results in the classified data of Landsat TM Classification methods 
Description Field 

observation 
Description Visual 

evaluation 
Combination of 6 bands 
(excluding thermal band) 

Separation of all classes according to the 
classification scheme was possible. 
Problem occurs in detecting Keora and 
marshy grassland (e.g. figure 3.11, 3.12). 
 

Separation of all the land cover classes was 
possible. Interpretation of more area for 
Kankra during classification (e.g. figure 3.19). 
 

Combination of 7 bands 
(all spectral bands) 

All classes were identified, but Keora could 
not be detected in some areas (e.g. figure 
3.11, 3.12). 

Separation of all the classes was possible, 
but wrong identification of shrub all over the 
classified data (e.g. figure 3.17, 3.18). 
 

Combination of 7 bands 
(NDVI image and 
spectral bands excluding 
thermal band) 
 

Identification of all the classes was 
possible, but Keora was not identified in 
some areas (e.g. figure 3.11, 3.12). 

 
 
 
 
 
Considered 
as not 
reliable for 
change 
monitoring Separation of all the classes was possible but 

misinterpretation of a dry riverbed as water 
(e.g. figure 3.18). 
 

 
 
 
 
 
Considered 
as not 
reliable for 
change 
monitoring 

Combination of 8 bands 
(NDVI image and all 
spectral bands) 
 

Separation of all the land cover classes 
was possible. Representation for all the 
classes was satisfactory according to field 
observation and colour composite map 
(e.g. figure 3.11, 3.12, 3.13). 
 

 
Considered 
as reliable 
for change 
monitoring 

Identification of all the classes in classified 
data and satisfactory representation of all the 
classes were possible according to colour 
composite map (e.g. figure 3.17, 3.18, 3.19). 

 
Considered 
as reliable 
for change 
monitoring 

Combination of 6 bands 
(atmospherically 
corrected image) 

No detection of all the classes was 
possible. Misinterpretation of Keora class 
as water and wrong identification of marshy 
grassland inside Sundri areas (e.g. figure 
3.11, 3.12, 3.13 respectively).  

 
Considered 
as not 
reliable for 
change 
monitoring 

Detection of all the classes was derived. 
Misinterpretation of the shrub occurred (e.g. 
figure 3.17, 3.18) and over classified Kankra 
(e.g. figures 3.19). 
 

 
Considered 
as not 
reliable for 
change 
monitoring 
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Table 3.9: Descriptive results of the classification methods (continued) 

 

Results in the classified data of Landsat ETM Results in the classified data of Landsat TM Classification methods 
Description Field 

observation 
Description Visual 

evaluation 
Combination of 7 bands 
(NDVI image and 
atmospherically 
corrected image) 

No identification of all the classes was 
possible. Misinterpretation of Keora and 
marshy grassland (e.g. figure 3.11, 3.12, 
3.13). 

Separation of all the classes was not 
possible. Misidentification of Kankra as Keora 
(e.g. figure 3.19). As well as identified a dry 
riverbed as water (e.g. figure 3.18). 
 

Considered 
as not 
reliable for 
change 
monitoring 
 

IHS fusion method (for 
Landsat ETM data) 

Confusion occurred among all the classes 
during classification. It was not possible to 
correctly interpret any of the land cover 
classes (e.g. figure 3.14). 
 

  

PCA fusion method (for 
Landsat ETM data) 

Due to the spatial richness in the PCA 
fusion image it was possible to identify 7 
classes with sufficient accuracy (figure 
3.15). Identification of areas of Keora along 
the rivers would need specific ground 
verification for its further use. 
 

 
 
 
 
 
Considered 
as not 
reliable for 
change 
monitoring 
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3.5 Summary 
 
In this chapter the performance of advanced Image processing tasks has been 

examined in order to enhance the interpretability of the images by increasing the 

apparent distinction between features. An IHS and a PCA fusion image of Landsat 

ETM multispectral bands with the panchromatic band are produced. These spatially 

enhanced fusion image sharpened edges of land and water boundaries, smoothened 

the river course and image features. NDVI image have also been extracted for 

Landsat ETM and TM data using the NIR and red bands of the respective images for 

advanced extraction of the valuable spectral thematic information. Since atmospheric 

influences are particularly significant within multitemporal studies of land cover 

change, the DOS method has been applied for atmospheric correction. 

 
Furthermore investigated on the derivation of an appropriate classification system for 

the study area of SRF is done, which has been subject to significant change during 

the last decade. According to the spectral properties of satellite imagery as well as 

the existing management plan of SRF of Bangladesh Forest Department has been 

used to delineate a variety of land cover classes. A level III classification system was 

developed based on the widely accepted USGS classification structure. Descriptions 

of the classes for level III classification are also documented to explicitly focus on the 

spectral characteristics of the land cover. Training statistics are derived from 

extracted groups of pixels of the classes based on progressive sampling strategies.  

 
Supervised classification by maximum likelihood approach was applied to the 

Landsat ETM and TM data according to the classification system defined for the 

study area. Several classification methods are conducted by representative 

combinations of bands for the images in order to improve the classification accuracy. 

Classification is applied to the IHS and PCA fusion image of Landsat ETM 

separately. A separate classification of the water bodies is also undertaken by 

digitising the rivers, creeks and canals with the help of visual on screen interpretation 

of the Landsat ETM imagery. 

 
The analysis of the results has been assessed qualitatively by field observations and 

experiences as well as verified with colour composite maps of the respective 

imagery. Several dissimilarities were noticed among the classified results of the 

methods. Higher spatial resolution IHS data distorted the spectral properties of the 

land cover classes, which leading to lower classification accuracy. PCA fusion 

approach was improved classification accuracy of 7 classes excluding Keora as per 
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ground experience and onscreen visual interpretation. The integration of 

atmospherically corrected imagery for analysis was expected to improve the 

classification result but at the end accuracy decreased and identification of Keora 

explicitly failed for Landsat TM. NDVI images were used as an additional band with 

all the respective Landsat multispectral bands and improved the accuracy of 

classification. Different thermal response among different land cover classes may be 

improved the classification accuracy. The methods, which were applied only to the 

multispectral bands of Landsat TM and ETM imagery did not extend the accuracy up 

to satisfactory level for the classes.  

 
In order to find a most suitable operational method for classification and also in terms 

of benefit and cost evaluation the method combination of 8 bands (NDVI image and 

all spectral bands) is taken into consideration. Adding the NDVI and thermal band 

together with all the multispectral bands are found successful to improve the 

accuracy of classification. This classification method showed reliable accuracy in 

representing all the land cover classes according to the field observation as well as 

verification by visual interpretation. A significant improvement in extraction of spatial 

information on the classes from the two Landsat images is achieved using this 

method. This result is evaluated quantitatively in chapter 4. 
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Chapter 4 

Mapping accuracy assessment 
 

 

4.1 Introduction 
 
Accuracy assessment is the procedure of quantification of the reliability of a classified 

image. It allows the user to assess the data suitability for the particular application. 

Moreover it allows the producer to learn more about errors in data and to improve the 

process of classification. Integration of geographical information derived from remote 

sensing has led to the requirement for increased knowledge of errors and their 

contribution to the overall quality of the final map. During image processing and the 

process of classification remotely sensed data are affected by both positional and 

thematic errors. This chapter has focused on discussion of the assessment of 

thematic errors of the classified Landsat data, which occur due to the mislabelling of 

pixels into land cover classes.  

 
Classification differences between remotely sensed and reference data arise for a 

range of reasons (Davis and Simmonett 1991): 

(i) Misregistration of satellite data to the cartographic coordinate system 

(ii) Misregistration of reference data to the cartographic coordinate system 

(iii) Spectral confusion between information classes for training and test data 

(iv) Inappropriate classification algorithm 

(v) Poor definition of information class for training and test data 

(vi) Information classes containing several spectral classes 

(vii) Sub pixel variations causing mixed pixel and boundary effect. 

 
Understanding the above factors can lead to refinement of the classification 

approach and improvements in the quality of classification. Analysis of overall 

classification performance and analysis of performance by the classes will be used to 

evaluate the contribution of these factors. Accuracy analysis of this study is 

especially focusing towards a statement about the errors for individual cover classes. 

 
Statistically sound approaches to set up sample size and sampling design are 

required to perform valid assessments of classification accuracy for landscapes of 

varying spatial diversity (Congalton 1991). Considering the most recognised 

sampling approaches, random sampling was selected and implemented for 
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evaluation of the accuracy of land cover map derived from Landsat imagery (chapter 

3). 

 

4.2 Accuracy assessment approaches 
 
Precision is defined as the degree of detail in reporting of a measurement, which is 

often determined by the characteristics of the measuring equipment, while accuracy 

is defined as a measure of the difference between a measured value and a known or 

true value (McGwire and Goodchild 1997). From a thematic mapping perspective, 

precision is related to the level of detail (or generalisation) inherent in the thematic 

mapping classification system (Janssen and van der Wel 1994). In the context of 

thematic mapping accuracy relates to the agreement of the classified image with a 

source of reference data of greater accuracy than the primary remotely sensed 

information. It is often derived out of field investigations. 

 
Analysis in this study directed towards assessment of the accuracy of the method 

combination of 8 bands (NDVI image and all spectral bands) achieved by supervised 

classification of the Landsat satellite data (chapter 3). The level of the classification 

system as described in the previous chapter determines the detail of the 

classification. As the degree of detail increases from level I to level III, the possibility 

of errors also increases, which may lead to more and more uncertain results and 

logically lower classification accuracies (Janssen and van der wel 1994). 

 

4.2.1 Descriptive techniques 
 
The standardised land cover classification systems for remotely sensed data 

generated significant interest in approaches to assess classification accuracy. 

Application of a random sampling scheme (section 4.3) for the study area enabled 

the acquisition of representative samples of each class and provided relevant data 

for studying the error matrix (table 4.2). 

 
The overall classification accuracy is the percentage of correctly classified samples 

of an error matrix. It is computed by dividing the total number of correctly classified 

samples by the total number of reference samples. It can be expressed by 

 

Overall accuracy =  ∑
=

n

k
kka

N 1

1
       4.1 
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where,  a  = individual cell values 

 +ka  = row total 

 ka+  = column total  

 n  = total number of classes  

 N  = total number of samples 

 
The mapping accuracy of each class may be derived in two ways, either by 

producer’s accuracy or by user’s accuracy (Story and Congalton 1986, Congalton 

and Green 1999). Producer’s accuracy is calculated by the division of the number of 

accurate classified pixels in a category and the number of reference set pixels in that 

category. This is a measure for the probability of a reference data being correctly 

classified. The equation can be expressed as: 

 

Producer’s accuracy = 

∑
=

+

n

i
i

ii

a

a

1

       4.2 

where,  iia  is the number of samples correctly classified and  

ia+  is the column total for class i . 
 
User’s accuracy can be obtained by dividing the number of accurately classified 

pixels in each category by the row total. This indicates that the classified pixel 

actually represents the real condition on the ground. It can be expressed by the 

equation, 

 

User’s accuracy =  

∑
=

+

n

i
i

ii

a

a

1

       4.3  

where,  iia  is the number of samples correctly classified and  

+ia  is the row total for class i . 
 

The greatest significance may be attached to these separate measures of accuracy 

when the producer’s and user’s accuracies are dissimilar (Story and Congalton 

1986). The user’s accuracy is a measure of the reliability of the classification 

because it measures the proportion of pixels that are classified as one category, but 

actually belong to other categories. The producer’s accuracy gauges the proportion 

of pixels that actually belong to a category, but have been classified as other 

features. The user’s and producer’s accuracies also permit a more complete 
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understanding of the intra-class confusion for the purposes of signature refinement in 

supervised classification. 

 
Aronoff (1982) has integrated these values through statistical analysis for comparison 

of classifications with accuracy standards of thematic maps. The user’s accuracy 

specifies the probability that a map of unacceptable accuracy will pass the accuracy 

test, and the producer’s accuracy specifies the probability that a map of some 

acceptable accuracy will be rejected. Acceptable levels of accuracy for the user’s and 

producer’s accuracy have been defined in this study as a part of the analysis. 

 

4.2.2 Analytical techniques 
 
The error matrix was developed to evaluate classification accuracy of remotely 

sensed data. Normalisation of the error matrix facilitates comparison for the 

classification result both overall and by class. Conversion of pixel counts to 

percentages is possible, however uncertainty exists about whether the divisor should 

be the row or column total. An iterative procedure is available which normalises all 

rows and columns of the error matrix (Congalton 1991). Differences in the number of 

samples are eliminated and individual cells within the matrix are directly comparable. 

Determination of classification accuracy using other accuracy estimation approach 

also taken into consideration is described in this section. 

 
Accuracy assessments, which include all elements of the error matrix, may be 

undertaken using the Kappa coefficient of agreement (Cohen 1960). The Kappa 

Coefficient was developed for comparison of data according to nominal scales. The 

overall level of agreement for an error matrix (Kappa Coefficient) is based upon the 

deference between the actual agreement of the classification compared with the 

reference data (measured by the matrix diagonal) and the chance agreement, which 

is indicated by the product of the row and column margin values. 

 
The application of the Kappa Coefficient to the analysis of classifications of remotely 

sensed data was first proposed by Congalton et al. (1983), and has been widely 

reported (Rosenfeld and Fitzpatrick-Lins 1986, Fung and LeDrew 1988, Gong and 

Howarth 1990, Fitzgerald and Lees 1994, Lo and Watson 1998). The method may be 

used to evaluate an error matrix as a whole or for individual classes. 

 
The value of the overall Kappa Coefficient (K) is computed from (Congalton, 1991): 
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where,  r  = number of rows/columns in the error matrix 

  iix  = number of observations in row i  and column i  

  +ix  = total number of row i  

  ix+  = total number of column i  

  N = total number of observations 

 
The Kappa statistics provides a statistically valid assessment of the quality of 

classification and enables tests of significance between classifiers for determination 

of optimum algorithm performance (Fitzgerald and Lees 1994). The overall 

classification accuracy is considered to significantly overestimate classifier 

performance and has resulted in the general acceptance to the Kappa statistics 

(Congalton et al. 1983). Landis and Koch (1977) have used the qualitative descriptor 

shown in the table 4.1 to describe the strength of agreement based upon Kappa 

statistics. The values are mainly utilised in this study to evaluate classifier 

performance. 

 
Table 4.1: Qualitative descriptors for the strength of agreement for Kappa statistics  

 
  

Kappa statistics Strength of Agreement 

<0.00 Poor 

0.00-0.19 Slight 

0.20-0.39 Fair 

0.40-.059 Moderate 

0.6-0.79 Substantial 

0.80-1.00 Excellent 

 
Source: after Landis and Koch 1977 

 

 

4.3 Sampling design 
 
Assessment of the quantitative or qualitative aspects of map accuracy relies upon a 

sampling scheme with a common set of criteria based upon Ginevan (1979): 
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(i) a low probability of accepting a map of low accuracy 

(ii) a high probability of accepting a map of high accuracy 

(iii) requiring a minimum number of reference data samples. 

 
The sampling scheme must ensure statistical validity and provide a practical means 

of implementation. The sampling procedure employed and the adequate number of 

sample points will determine statistical validity.  

 
The sampling scheme generally follows a simple random or systematic selection 

protocol and utilises population, strata or cluster sampling structures. Experimental 

evaluation by Lo and Watson (1998) of each sampling design showed that the 

stratified random sampling is the most reliable approach for general application in 

classification accuracy assessment. This study utilised the stratified random sampling 

design for accuracy assessment of the classified Landsat TM and ETM data. In a 

stratified random sampling method each pixel within the population is assigned to a 

stratum prior to the application of simple random sampling within each stratum.  

 
Field verification of the reference samples for classification accuracy assessment 

was not possible. The aerial photo interpretation database available for the year 1996 

in Bangladesh Forest Department was not applicable as reference for the Landsat 

ETM classified data because the detailed classes of the database were found to be 

incompatible with the classes derived from satellite data. Therefore the method 

reported by Cohen et al. (1998) were utilised for developing reference data for 

building an error matrix for the study area. Reference pixels from classified images 

were displayed on-screen in composite (RGB = 4,5,3) imagery. Each pixel was then 

labelled according to its class by on-screen interpretation based on experience from 

field observations and expert knowledge both for Landsat ETM and TM data.  

 

4.4 Sample size 
 
Allocation of sample size for accuracy assessment of each land cover class was 

depended on the area covered by the respective class in the classified maps. Gewa 

and Sundri classes occupy large area in the classified Landsat TM and ETM imagery 

and adequate numbers of samples were selected for assessment. Kankra, Keora, 

marshy grassland, shrub, and bush land occupy relatively small areas for both 

images. As a result these classes were ignored in determining of required samples. 

Sampling was undertaken using automated sampling routines. For classified Landsat 
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TM imagery 273 pixels and for ETM 327 pixels were selected randomly to assess the 

accuracy.  

 

4.5 Classification accuracy assessment 
 
Results of supervised classification of TM and ETM imagery have been evaluated for 

the study area. Overall classification accuracy and Kappa Coefficient have been 

computed to provide measures of the accuracy of the classification. The user’s and 

producer’s accuracy as well as elements of the error matrix have been calculated to 

assess error patterns of the respective classification.  

 

4.5.1 Landsat TM 
 
Table 4.2 represents the result of supervised classification of Landsat TM data of the 

year 1989. The Kappa coefficient indicates substantial agreement with values of 66.8 

percent and the overall accuracy is 77.6 percent (table 4.2) for level III classification. 

Areas highlighting Gewa class appeared with a user’s accuracy of 87.8 percent and 

producer’s accuracy of 67.3 percent (table 4.3). The sample pixels showed high 

spectral variability, which created difficulties in separating the class from all other 

classes, except Keora. Sundri displayed high producer’s accuracy of 96.0 percent 

and user’s accuracy of 69.3 percent. The spectral reflectance of the Sundi training 

data was heterogeneous and thus problem in separating the Gewa was the major 

source of misclassification. Erroneous boundary delineation among these classes 

due to mixed pixels may be the main reason for this problem. Marshy grassland and 

Kankra showed low producer’s accuracy. Marshy grassland was confused by the 

spectral reflectance pattern of Sundri. Water and Kankra were confused by the 

similar reflectance pattern of Gewa.  
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Table 4.2: Error matrix of Landsat TM data 
 

Reference data Classified 
as 1 2 3 4 5 6 7 Training sample 
1 72 1 1  1 3 4 82 
2  5    1 1 7 
3 1  1     2 
4    4   1 5 
5 1 1  1 3   6 
6 33 4    97 6 140 
7  1     30 31 

Training 
sample 

107 12 2 5 4 101 42 273 

 
Overall accuracy = 77.6% 

       Overall Kappa Statistics = 66.8% 

 
 
Classification description 
 

Class no. Land cover classes 
1 Gewa  
2 Marshy grassland 
3 Kankra 
4 Keora 
5 Shrub 
6 Sundri 
7 Water 

 
Colours representing the land cover 
classes in the tables 
 

Table 4.3: Producer’s and user’s 
accuracy of the Landsat TM error matrix 
 

Classes 
 

Producer’s 
accuracy 

User’s 
accuracy 

1 67.3% 87.8% 
2 41. 7% 71.4% 
3 50.0% 50.0% 
4 80.0% 80.0% 
5 75.0% 50.0% 
6 96.0% 69.3% 
7 71.4% 96.8% 

 
 

 

 

4.5.2 Landsat ETM 
 
Table 4.4 represents the result of supervised classification of Landsat ETM data of 

the year 2000. The Kappa Coefficient indicates substantial agreement by a value of 

73.7 percent and overall accuracy with 81 percent (table 4.4) for level III 

classification. In this classification Sundri and Gewa have shown the balance 

producer’s and user’s accuracy (table 4.5) and also considerable misclassification of 

these classes. The error may be due to the presence of mixed pixels in the boundary 

region among these classes. Producer’s accuracy is relatively low for shrub and 

confusion may be result from the presence of low height Gewa stands in the forest as 

well as in the class boundaries. Water sample data appear to be well defined with a 

user’s accuracy of 100 percent but producer’s accuracy 79.5 percent indicates 

classification of water training samples into Gewa class as the main cause of errors.  
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Table 4.4: Error matrix of Landsat ETM data 
 

Reference data Classified 
as 1 2 3 4 5 6 7 8 Training sample 
1 93 1 2 2  12 2 6 118 
2  7     1  8 
3 7  10      17 
4 4   15     19 
5 1    5   1 7 
6 20     96  2 118 
7 1      4  5 
8        35 35 

Training 
sample 

126 8 12 17 5 108 7 44 327 

 
Overall accuracy = 81.0% 

Overall Kappa Statistics = 73.7% 
 
 
 
Classification description 
 
Class no. Land cover classes 

1 Gewa  
2 Marshy grassland 
3 Bush land 
4 Kankra 
5 Keora 
6 Sundri 
7 Shrub 
8 Water 

 
Colour representing the classes in the 
tables 

Table 4.5: Producer’s and user’s 
accuracy of the Landsat ETM error matrix 
 

Classes Producer’s 
accuracy 

User’s 
accuracy 

1 73.8% 78.8% 
2 87.5% 87.5% 
3 83.3% 58.8% 
4 88.2% 78.9% 
5 100.0% 71.4% 
6 88.9% 81.4% 
7 57.1% 80.0% 
8 79.5% 100.0% 

 
.

 

 

4.6 Factors contributing to classifier performance 
 
The 28.5m spatial resolution of Landsat ETM data has been used to analyse the land 

cover classes for the study area. The presented analysis of accuracy of classification 

provided an assessment of the performances of the supervised classifier for 

multispectral data at level III of classification detail. This section discusses the 

factors, which have contributed to the performance of the algorithm and represents 

important considerations relevant to the reliability of this research. 

 

Spectral resolution 
 
Consideration of spectral separation of the land cover classes is important to 

understand the classification patterns. The results of accuracy assessment of the 
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supervised classification as represented in tables 4.2 and 4.4 demonstrate difficulties 

in separating the classes marshy grassland, Kankra and Gewa in Landsat TM data 

and the classes Gewa and shrub in Landsat ETM data due to similar spectral 

properties of training samples.  

 
After comparing several methodologies (chapter 3), the method of combination of 8 

bands (NDVI and all spectral bands) improved the classification accuracy for the 

study area. Confusion among the land cover classes still exists in separating the 

classes within this method. This is probably due to the presence of plenty of mixed 

pixels within the imagery for heterogeneous patterns of structure and species 

composition within the study area. Mixed pixels may include spectral characteristics 

of a number of classes and reflection of a mixed pixel is not representative of a 

particular feature but rather a composite of other features within the representative 

pixel. As a result, these pixels are of low efficiency to give information about the 

association to any specific class. Sub-pixel analysis using spectral mixture models, 

which un-mix an image into different fractions has demonstrated effectiveness for 

improving classification accuracy. Spectral un-mixing provides a more realistic 

representation of the true nature of a surface compared with that provided by the 

assignment of a single dominant class to every pixel by statistical model  and is 

suitable to solve the mixture problem for medium to low spatial resolution data 

(Campbell 2002). This strategy requires a large amount of image processing work 

and time and is still not operationalised for appropriate use. Therefore this method 

was not investigated during this study.  

 
To improve the spectral separability among the classes initiatives were undertaken 

by decorrelating the Landsat ETM bands, as correlation between bands is also 

responsible for reduction of the spectral separability of specific classes. Reduced 

spectral correlation of multispectral bands by analysing and PCA combination with 

the panchromatic band showed improvement of the spectral separability (chapter 3). 

A considerable time and extended image pre-processing work was needed. Still this 

method apparently misclassified especially the Keora class. 

 
Though the study also investigated for improving the accuracy using the IHS and 

PCA fusion method, however, the intention was to find out an operational method as 

well as to achieve reliable results for the study area. The combination of 8 bands 

(NDVI image and all spectral bands) of Landsat imagery performed well for 

separating the representative classes. A further decrease of uncertainty for the 
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classes may be achieved through refinement of training data (chapter 3) and a better 

adjustment of spectral signatures. 

 

Spatial resolution  
 
Boundary effects in remotely sensed data are mainly related to the interpretation of 

mixed pixels, determination of class boundary locations and reference data 

verification error. When mixed pixels occur, pure spectral responses of specific 

features are confused with the pure responses of other features, leading to the 

problem of composite signatures. Incorporation of spatially enhanced PCA fusion 

method for classification using Landsat ETM multispectral bands with the 

panchromatic band reduced the number of mixed pixels, resulting in an improvement 

of the classification accuracy for the 7 classes except Keora. By using higher spatial 

resolution data such as IKONOS, the derivation of improved accuracy as well as 

proper boundary delineation would be possible. Acquiring very high resolution 

satellite data is costly and thus not reliable for appropriate use. 

 

Reference data  
 
It was not possible to perform ground checking for the reference samples of the 

classified data due to constraints as mentioned in chapter 3 for training data 

collection. Though compatible and reliable reference data lack, error matrices was 

generated using onscreen interpretation based on field observations and expert 

knowledge for detecting and describing sample points as reference against the 

classified Landsat ETM and TM imagery for accuracy assessment. The influence of 

the quality of reference data on the assessment of classification accuracy of the land 

cover classes depends on their thematic accuracy. Reference data are assumed to 

be free of error, however this is not the case even for data collected directly 

(Congalton 1991, Kalkhan et al. 1998). 

 

4.7 Summary 
 
Assessment of the classification accuracy of remotely sensed data is essential if a 

thorough evaluation of change detection is undertaken. Thus investigations in this 

chapter have been directed towards the evaluation of the reliability of the supervised 

classification approach in identifying land cover classes in Landsat ETM data by 

means of generation and discussion of an error matrix. This is a commonly used 

method for the assessment of accuracy of land cover classifications of remotely 

sensed space borne digital imagery. 
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Methods of descriptive and analytical accuracy assessment are available for the 

evaluation of classified data. Descriptive methods have been applied by calculating 

the overall classification accuracy and the user’s and producer’s accuracy. Analytical 

approaches such as the calculation of the Kappa Coefficient provide statistically 

sound algorithms, which summarise all elements of the error matrix and compute an 

accuracy value and its variance. The Kappa Coefficient is computed to provide a 

representation of the statistics of the accuracy assessment of the land use and land 

cover classes of the study area.  

 
A simple random sampling scheme was used in this study for error assessment of 

the classification. Sampling was undertaken using automated sampling routines. 

Selection of sample sizes for the land cover classes depended on their ground 

coverage. Classes covering large areas allowed for the selection of an adequate 

distribution of samples, but classes covering very small areas did not allow for a 

collection of a representative number of reference data (e.g. Keora, marshy 

grassland and shrub). 

 
The discussion of the assessment of classification accuracy also focused on 

detecting the reason for errors and analysing the factors contributing to the resulting 

classification accuracy. Due to the capability of supervised classification reliable 

results of classification of Landsat TM and ETM data at level III have been achieved. 

These outcomes have thus been used for the study of change assessment as 

discussed in chapter 5. 
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Chapter 5 

Evaluations of forest cover change 
 

 

5.1 Introduction 
 
Change in vegetation is defined as an alteration in the surface components of the 

vegetation cover (Coppin et al. 2004), or as a spectral/spatial movement of a 

vegetation entity over time (Lund 1983). Singh (1989) defines change detection as 

the process of identifying difference in the state of an object or phenomenon by 

observing it at different time. Detection of land cover change in satellite imagery is 

complicated due to adverse temporal factors. These include differences in band 

passes and spatial resolution, spatial misregistration, variations in the radiometric 

responses of the sensors, differences in the distribution of cloud and cloud shadow, 

variations in solar irradiance and solar angles, and differences in phenology (Yuan 

and Elvidge 1998). The preconditions in using remote sensing data for change 

detection the fact that changes in land cover must result in variations in radiance 

values and that variations in radiance due to land cover change must be significant 

large with respect to radiance variations caused by other system or environmental 

factors not related to land cover change (Mas 1999).  

 
Classified Landsat ETM and TM data were used to assess the changes. There are 

four aspects of change detection, which are considered particularly important when 

monitoring natural resources (Macleod and Congalton 1998): 

 - Detecting the changes 

 - Identifying the nature of change 

 - Measuring the extent of change 

 - Assessing the spatial pattern of change. 

 

5.2 Change detection approaches  
 
The remote sensing change detection approaches relies on per-pixel classifiers. 

Approaches of the analysis of change detection analysis approaches can be broadly 

divided into postclassification and preclassification detection of spectral change 

(Nelson 1983, Singh 1989). A variety of techniques of preclassification change 

detection have been developed over the last two decades. Comprehensive 

summaries of methods of digital change detection are documented (Howarth and 
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Wickware 1981, Nelson 1983, Singh 1989, Jensen 1996, Gong and Xu 2003). These 

include mainly composite analysis, image differencing, principal component analysis, 

change vector analysis and spectral analysis methods. Most of the approaches are 

frequently used for monitoring vegetation canopies (Coppin et al. 2004).  

 
Ridd and Liu (1998) used multitemporal Landsat TM data to determine patterns of 

land cover change in a near urban area by image differencing, image regression, 

Kauth-Thomas transformation and a 2X - transformation developed by the authors. 

They found none of the algorithms was clearly superior to the others and concluded 

that algorithm selection should be soundly based on environmental conditions and 

objective of application. Muttitanon and Tripathi (2005) used Landsat TM data to 

identify land use changes in the coastal areas of Ban Don Bay, Thailand. They used 

image differencing, vegetation index differencing and the vegetation index composite 

method to identify changes over a period of 10 years. They concluded that the 

method of image differencing method was performing better in identifying the 

changed areas. Mas (1999) used six change detection procedures for detecting 

areas of changes in the region of the Terminos Lagoon, a coastal zone of the State 

of Campeche, Mexico, using Landsat MSS imagery. Image differencing, vegetation 

index differencing, Selective Principal Components Analysis (SPCA), direct multi-

date unsupervised classification and postclassification comparison were applied. 

After evaluating the accuracy of the results obtained by each method the 

postclassification comparison was found to be the most accurate procedure 

presenting the advantage also indicating the direction of the changes. The 

postclassification method has also been successfully used by Cornejo et al. (2005) to 

assess the changes of mangrove forests in the Navachiste-San Ignacio-Macapule 

Lagoon Complex, Sinaloa, Mexico; by Bauer et al. (2003) to analyse the changes in 

land cover in the Twin Cities of Minnesota; by Berlanga-Robles and Ruiz-Luna 

(2002) to examine the land cover changes in a region north of Agua Brava, Mexico 

using Landsat data. 

 
Townshend and Justice (1988) as well as Coppin et al. (2004) considered that the 

ability to detect changes in land cover classes over time by remote sensing depends 

on the spatial, spectral, radiometric and temporal properties of the sensor system. 

Also the specific methodology implemented can profoundly affect the qualitative and 

quantitative estimates of the change (Colwell and Weber 1981). Even in the same 

environment in different approaches may yield different change result in detection 
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(Coppin et al. 2004). The selection of the appropriate method is therefore of 

considerable importance. 

 
All the preclassification methods are limited in identifying of change versus no-

change and do not offer any quantitative results. Therefore it was decided to apply an 

approach of postclassification change detection to identify the nature of change and 

to measure the areas of changes in order to provide sound statistics of land cover 

change for the study area. This approach detects transitions between any classes as 

highlighting on the respective classification process.  

 

5.2.1 Postclassification comparison 
 
Postclassification comparison is the most commonly used quantitative method of 

change detection (Jensen et al. 1993). It involves independently produced 

classification results from each end of the time interval of interest, followed by a pixel-

by-pixel or segment-by-segment comparison to detect changes in cover classes. It is 

possible to get a complete matrix of change and the change classes by adequately 

coding the classification results (Coppin and Bauer 1996, Coppin et al. 2004). 

Postclassification comparison provides the analyst with a significant degree of 

flexibility through selective grouping of classification results for presentation of 

customised change detection classes (Singh 1989). 

 
The most significant issue related to change detection derived from postclassification 

comparison is concerned with the estimation of the thematic accuracy of the final 

product. Some results of research suggest that because each image is subject to 

thematic classification errors change detection contains much larger errors than 

either one of the component images and may therefore be less accurate than any 

other change detection method (Quarmby and Cushnie 1989, Singh 1989, Coppin et 

al. 2004). Therefore during the classification of each image, care must be taken in 

the analysis to ensure consistency in the classification process in terms of class 

allocation, signature extraction and classification quality. 

 
Landsat TM and Landsat ETM data have been classified for the study area (chapter 

3) and analysed to evaluate forest cover changes between the year of 1989 and 

2000. Figure 5.1 highlighting the steps of postclassification were used to evaluate the 

changes for the study area. 
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Figure 5.1: Change evaluation using postclassification comparison 

 

 

5.3 Change statistics and presentation 
 
A variety of approaches is available for reporting the changes derived from remotely 

sensed data. These approaches can be categorised either as area based or pixel 

based and utilise image or statistical techniques of representation. Area based 

methods rely upon extraction of area statistics for the classes derived at each 

sensing period and on comparisons made regarding the change in the area of each 

class. Pixel based methods provide data derived from a pixel-by-pixel comparison of 

imagery and summarisation of the observed change. Change data of these 

approaches are discussed in the following section.  

 

5.3.1 Area change summaries 
 
Change summaries measure the variation in areas occupied by each class between 

sensing periods and provide class-by-class reports of changes by area and / or 

percentage (Howarth and Wickware 1981). This study traces the recent history of 

(1989-2000) Forest cover change in the study area of SRF and provides the 

description of the changes. Table 5.1 summarises the details of the extent of forest 

Change maps produced using ‘change 
detection matrix’ logic applied to classified 
Landsat ETM and TM maps 

Classified map  Classified map 

Geocoded Landsat ETM 
data, 26 November 2000

Geocoded Landsat TM 
data, 12 January 1989 
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change for each class. Areas are computed based on the classified imagery of 

Landsat TM and ETM and are showed as net change in area.  

 

Table 5.1: Statistics of changes in areas of forest cover classes between the year 

1989 and 2000 

 
    

classes 1989 2000 change 1989-2000 
    

 Hectares % Area Hectares % Area Hectare Net Gain-Loss % 
       

Sundri 23027.8 52.0 19308.5 43.6 -3719.3 -8.4 
       

Gewa 15184.4 34.3 15828.4 35.7 643.3 1.4 
       

Kankra 190.6 0.4 1906.1 4.3 1715.5 3.9 
       

Keora 43.8 0.1 81.7 0.2 37.9 0.1 
       

Bush land   386.7 0.9 386.7 0.9 
       

Shrub 569.5 1.3 463.3 1.0 -106.3 -0.2 
       

Marshy 
grassland  558.7 1.3 772.2 1.7 213.6 0.5 

       

Water 4726.6 10.7 5581.0 12.6 854.4 1.9 
       

 

 

Table 5.1 shows loss of 8.4% area of Sundri during the period from 1989 to 2000. Area 

of Kankra increased and bush land was introduced within this 11 years period. Almost 

all the rivers in the study area have increased their width within the respective period. 

Figure 5.2 representing the areas covered by the classes for the period. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Representation of areas covered by the classes on the year 1989 and 2000 

 
 
An alternative method of summarising changes by area is presented in table 5.2 and 

5.3. These data are calculated from the change image derived through a pixel-by-pixel 
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comparison of the classified images (Green et al. 1994). Consequently the data 

represent the summation of changes identified in individual pixels for each class and 

also the direction of change, which is recorded as gain or loss.  

 
Locations of change are not reflected in these simple figures. For example for the 

period 1989 to 2000 the area of Gewa class shows a net increase of 643.3 hectare 

(table 5.1), yet following table 5.2 Gewa increased by 5898.3 hectare and decreased 

by 5239.0 hectare. Minor differences between results in calculation of areas are 

caused by the fact that summaries of changes are computed using two methods. The 

values in table 5.1 are computed directly from the differences between areas identified 

in each classified image, but the gain/loss areas are derived from a cross tabulation 

matrix between dates. 

 
Table 5.2: Statistics of changes in area based on pixel-by-pixel comparison between 

1989 and 2000 
 

     

Forest cover class Area 1989 Gain Loss Unchanged 
     

 Hectare Hectare % Hectare % Hectare % 
        

Sundri 23004.5 3019.7 6.8 6715.7 15.2 16288.8 36.8 
        

Gewa 15159.8 5898.3 13.3 5239.0 11.8 9920.8 22.4 
        

Kankra 191.5 1726.7 3.9 10.9 0.0 180.6 0.4 
        

keora 44.1 69.2 0.2 24.8 0.1 19.3 0.0 
        

Bush land - 386.7 0.9 - - - - 
        

Shrub 569.3 210.2 0.5 316.3 0.7 252.9 0.6 
        

Marshy grassland 556.1 486.4 1.1 301.4 0.7 254.6 0.6 
        

Water 4695.1 1274.5 2.9 463.5 1.0 4231.6 9.6 
        

 
 
Table 5.3: Overall forest cover change from 1989 to 2000 in study area 
 

   

Status % of Study area Hectare 
   

No change 70.4% 31148.6 
   

Change 29.6% 13071.8 

 
 

This approach allows for the analysis of the direction of change in terms of gains and 

losses as well as of areas of change versus areas of no change. The method 

adequately describes the changes in area of each of the forest cover classes but it 

does not provide information regarding the spatial location of changes in area. Maps 

present the area of change regarding the representing specific forest cover classes. 
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5.3.2 Maps 
 
Maps are used extensively for representation of forest cover change and provide a 

convenient summary of the overall extent and distribution of change within specific 

areas (Laba et al. 1997, Riley et al. 1997). Change maps rely on the representation 

of all change classes and of related legends. 

 
Interpretation of the imagery at level III provides 56 change and no change classes 

overall, of which 49 classes are actually effected by change. The representation of 

change classes in one map with many colours or patterns including legends would 

produce a complex graphical visualisation. Therefore several maps have been 

provided to clearly visualise the change areas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5.3: Study area showing changed and unchanged areas during 1989-2000 

 
 
Figure 5.3 represents an overview of changed and unchanged areas throughout the 

study area. Figure 5.4 and 5.5 show the changed areas for the two largest forest 

cover classes Sundri and Gewa. Figure 5.4 shows that the area of other classes 

decreased and added to Sundri class in compartment 25, 26, 27 and 33, while 

decreased of most areas of Sundri to the classes Gewa, Kankra and bush land in 

compartments 25, 27, 28, 30 and 31 during the 11 years period of observation. 
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Figure 5.4: Representation of changed areas for Sundri during 1989-2000 

 
 
Figure 5.5 shows the areas of other classes converted to Gewa in compartment 

number 28, 30 and 31 and the areas of Gewa converted to other classes Sundri and 

Kankra with the compartment 25, 26, 27, 31 and 32 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Representation of changed areas for Gewa during 1989-2000 
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5.3.3 Change matrix  
 
Communication of information on forest cover change is complicated due to the large 

amount of detail available from the image analysis process. Where n  (any number) 

classes are interpreted at each sensing period, 2n  change classes result and require 

interpretation and representation. Change assessment implies analysis of temporal 

transition, therefore it is advantageous to present the outcome of the analysis in a 

manner that fully communicates the results of this process. A change detection 

matrix provides a convenient means of summarising all forest cover changes 

between sensing periods (Martin and Howarth 1989, Jakubauskas et al. 1990, 

Jensen et al. 1993). 

 
The following change detection matrix (table 5.4) represents 56 separate classes in 

the change matrix. The matrix arrangement permits assessment of change patterns 

amongst classes. It lists all classes from the first period on the left side and all 

classes from the second period across the top. Each element of the change matrix 

represents a transition sequence, the diagonals representing unchanged pixels and 

the off-diagonals representing pixels in transition. However the analysis is based 

upon pixel-by-pixel analysis rather than area based comparison so that recorded 

changes represent actual transitions from one class to another. 

 
Table 5.4 represents changes in Forest cover classes from 1989 to 2000 using the 

results of the Level III classification of Landsat TM and ETM. The magnitude of 

change in hectares for each class is recorded and it is possible to determine the main 

change trends, which include the represented shifts of areas of the Sundri to Gewa 

or Gewa to Kankra. The change matrix provides the opportunity to highlight the 

classes and explain the relationship using a legend structure.  
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Table 5.4: Change matrix 

 
  

Landsat Year 2000 (hectare) 
  

Year 1989 
 

Gewa Marshy 
grassland 

Kankra Keora 
 

Shrub Sundri Water Total 1989 
 

         

Gewa 9920.8 199.1 8.8 3.2 284.7 5238.9 163.6 15819.2 
         

Marshy grassland 117.5 254.6 0.0 0.2 21.9 95.6 251.3 741.0 
         

Kankra 1236.0 13.7 180.6 6.5 2.8 465.7 2.0 1907.3 
         

Keora 34.9 0.6 1.3 19.3 0.0 27.4 4.9 88.3 
         

Shrub 142.6 37.6 0.0 0.0 252.9 9.3 20.7 463.1 
         

Sundri 2988.3 7.1 0.5 0.7 3.0 16288.8 20.2 19308.5 
         

Water  578.4 42.3 0.3 14.3 2.8 636.5 4231.6 5506.1 
         

Bush land 141.3 1.1 0.0 0.0 1.2 242.3 0.8 386.7 
         
         

Total 2000 15159.8 556.1 191.5 44.1 569.3 23004.5 4695.1 44220.4 
         

 
  No change areas  Introduced between 1989 and 2000 
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5.4 Error influence on data sets 
 
All data within a GIS contain a certain amount of error due to measurement, 

classification, recoding, generalisation, interpolation or interpretation errors 

(Heuvelink 1998). Walsh et al. (1987) consider errors in spatial data to arise from 

inherent and operational sources. Heuvelink et al. (1989) describes operational 

errors in terms of processing and modelling errors, and inherent errors as source 

errors. From the results of image processing, Hord and Brooner (1976) suggest 

errors arise mainly from boundary location, map geometry and data classification. 

Aspinall and Hill (1997) regard theses errors to be mainly related to misidentification 

of classes, positional accuracy in boundary location and failure to recognise internal 

polygon heterogeneity. Chrisman (1987) described the factors as resulting in errors 

of identification (error in assigning the correct attribute) and discrimination (errors in 

separating adjacent classes). Lanter and Veregin (1992) considered error as to 

comprise the multiple dimensions of positional accuracy, thematic accuracy, lineage, 

logical consistency and completeness. This study only highlighted the aspect of 

errors related to positional and thematic accuracy, which influence the results of 

change detection. Understanding the nature of error in spatial data is necessary to 

ensure the development of relevant analysis techniques and provide confidence in 

the quality of outcomes (Chrisman 1991). 

 
Thematic error 

Thematic errors occur when there is mislabelling of areas observed on a map during 

the classification process. This error for a map can be assumed by the assessment 

of classification accuracy. Guidelines for the mapping accuracy of thematic classes 

have been proposed by Anderson et al. (1976) and vary between 80 and 90 percent 

accuracy. The Coast Watch Change Analysis Project (C-CAP) of USA established 

guidelines of 90 percent for thematic accuracy of all categories. However 

investigations by Jensen et al. (1993) recommended setting a value of 85 percent as 

better accuracies cannot be achieved when using Landsat TM data. 

 
No clear standard for values of thematic accuracy may be universally determined due 

to variation in the separability of different combinations of targets, even though they 

may be located on the same level of the classification scheme. The study achieved 

81 percent overall classification accuracy for the Landsat ETM and 79 percent for the 

Landsat TM imagery. Assessment of the thematic errors has been made and the 

factors influencing accuracy have been discussed in subchapters 4.5 and 4.6 

respectively. 
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Positional error 

The positional error is the difference of position (coordinates) between the ground 

location and map location is related to the process of image rectification. Welch 

(1985) provides specifications of ±  0.5 pixel for geodetic rectification. This value for 

georeferencing is also often reported as the standard (Labovitz and Marvin 1986). 

Hill and Aifadopoulou (1990) achieved similar result, but indicate that local 

misregistration may reach 1.0 – 1.5 pixel. Positional accuracy in change detection is 

a crucial concern (Ferguson et al. 1992, 1993). Townshend et al. (1992) indicate that 

geometric rectification for change assessment within 0.5 – 1.0 pixel accuracy is 

acceptable. Change data produced by postclassification comparison will 

conspicuously record positional errors of one pixel or more. This compounds the 

problem of recognising real changes in the extent of land cover classes, which 

furthermore tend to occur at class boundaries (Dobson et al. 1995, Anon 2005). In a 

study by Aspinall and Hill (1997) 20 percent of all changes that were observed 

between two land cover data were identified to be due to geometric limitations. Martin 

(1989) indicates that displacements between images of only 0.5 pixel can introduce 

unacceptable levels of error in change assessment. 

 
Landsat TM and ETM imagery collected for this study was already processed for 

geometric and radiometric correction. Positional error of Landsat ETM imagery was 

checked using GPS coordinates of ground locations, which were identified in the 

Landsat ETM imagery as well as in the study area. The positional error was 

determined as ±  0.6 pixel. This issue is addressed in chapter 3 of this study. 

Assessing the location error between the two images was not possible to measure as 

ponds is the only detectable features available for comparison identified in the 

Landsat ETM image were absent in the historical TM image. They had been 

constructed after 1989. 

 
As accuracy of the postclassification comparison is totally dependent on the accuracy 

of the individual classifications any changes reported must be considered in the 

context of thematic and positional accuracy as described in this section. 

 

5.5 Causes of change of forest cover 
 
During field visits a focus was laid on the identification of land cover classes as 

represented in the Landsat ETM imagery. Attention was also given to find out if there 

have been changes of forest cover in the study area and the reasons behind the 

changes. Various references have also been consulted in order to update 
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interpretations on possible reasons for the changes of forest (Canonizado and 

Hossain 1998, Chaffey et al. 1985, FAO 1998a, Ravila et al. 1998). Discussions were 

held with officials and staff members of the Sundarban Forest Division of Bangladesh 

Forest Department and to some extent with local inhabitants/people in the study area 

for exploring the reasons for changes of forest cover. The opinions/ideas and 

experience about the changes of forest in the study area have been gathered and 

integrated in this study. The causes identified as being responsible for changes of 

forest cover can be classified into two major groups – natural causes and man made 

causes (figure 5.4). Man made causes is tremendously affecting the sustainability of 

the use of forest products. The reasons that have been found responsible for 

changes are interlinked with each other and several interest groups are involved. The 

natural causes are also affecting the study area during the whole year. Flooding 

causes erosion along the banks of the courses of the river almost every year. From 

the records it is proven that cyclones also destroy a considerable amount of forest 

periodically. The loss of considerable amount of Sundri trees has also been reported 

due to the die back disease in some compartments of the study area. 

 
Most people living in the surrounding of the forest territory are mainly engaged with 

fishing. Some are involved in cultivation or shrimp farming. Seasonal collection of 

non-timber forest products like grass and honey also supplies a considerable amount 

of people. They frequently depend on the forest for their daily necessities. People 

have to collect regularly fuel wood, poles, posts for house construction and fencing, 

fish traps as well as boat building materials for their needs. They fulfil their needs 

through obtaining these materials from the forest illegally. Legal extraction of the non-

timber forest products is possible with the permission of Bangladesh Forest 

Department, but extraction of timber products is prohibited due to the existing 

moratorium. Some organised groups are involved in illegal extraction of timber from 

the forest and in supplying the local markets. These groups are continuously being 

supported or backed by the patrons (e.g. local politicians, businessmen, government 

officials etc.) of the area in their efforts of continuous removal of forest resources 

from SRF illegally. Due to patronising these illegal removals of forest resources by 

local influential persons, law enforcement agencies are reluctant to act against them. 

This indicates that corruption plays an important part in continuous illegal removal of 

forest products from SRF. Application of laws against the illegal removal of forest 

products is also inadequate. Huge population pressure coupled with a considerable 

number of unemployed population forces people to extract forest products illegally 
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from SRF, which is negatively affecting the ecological and economical sustainability 

of the resources. 

 
There has been considerable and continuous reduction in freshwater inflow from the 

upstream catchments especially from the Ganges-Gorai drainage due to the 

construction of the farakka dam in India. Widespread increase in sedimentation and 

resultant silting of waterways are the results. Drying out of the Bhola river and 

Kharma khal (canal) between the forest and adjacent settlements have accelerated 

the process of forest change in the study area. Reduction of fresh water in-flow 

induced inundation of more forested land by saltwater. Thus soils are affected by an 

increasing level of salinity which in turn negatively influences the natural regeneration 

of the forest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Causes of changes of forest in the study area of SRF 
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During field visits it was observed that areas near the forest boundary at Dhansagar 

and Kalamteji station of the study area already have lost the typical ecological 

characteristics of mangrove ecosystem due to the drying of the Bhola river and the 

Kharma khal. This problem became more prominent by the plantation of exotic 

species (such as Acacia spp.) at Dhansagar, which is threatening the insitu-

biodiversity of the mangrove forest. These plantations should be removed from the 

forest immediately. The Government of Bangladesh had raised a project to excavate 

the two water flows for about 16 km to restore the ecological condition for mangroves 

in the area, but the project has been stopped since the new government came to 

power in 2001. It was expected that the excavated rivers would increase high tide 

inflow of water in the forest areas. In order to restore the mangrove environments in 

the study area it is very much necessary to restart this project work. These activities 

would then help to protect the forest against illegal extraction by prohibiting frequent 

invasion of people inside the forest.  

 
Any disturbances like depletion of trees from the forest induce changes of forest 

structure and composition in local to landscape scales (Forman and Gordron 1989, 

Morrison and Swanson 1990). As a consequence changes in composition, structure 

and landscape pattern can influence ecological processes and functions, which 

indicate direct changes in biological diversity (Spies and Franklin 1996, Hemstrom et 

al. 1998). The existing management plan for SRF was formulated in 1998 after 

completion of a detailed inventory during 1996. Due to the moratorium the Forest 

Department could not follow the existing management plan and thus no management 

operations are executed in the forest. By now bringing the forest under planning and 

management is to some extent necessary for conservation of the biodiversity as well 

as of the sustainability of resources. 

 
As global warming and the green house effect causes climatic change which results 

in a rise of sea water level, the SRF will be seriously affected. It is urgent to protect 

the forest and around a million people settling in the region from probably upcoming 

natural disasters like tsunamis, cyclones or tornados. Lack of proper management of 

the mangrove forest resources results in serious consequences not only locally but 

also concerns Bangladesh as a whole.  

 
Among the causes of change natural ones cannot be controlled fully, while man 

made causes may be controlled more effectively. This would result in a decrease of 

change in forest in the course of time. The study proves that a significant activity of 

extraction of the tree resources continues although the moratorium exists. Efforts of 
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Bangladesh Forest Department have to be increased in order to reduce the rate of 

unauthorised/illegal extraction of forest resources from SRF for protect its resources. 

For the conservation of biological diversity and protection of the forest it is important 

to consider these factors in order to optimise the efforts for settling sustainable 

management, which supports production, income, employment and provides 

ecological service and safeguard to the coastal settlements. 

 
In order to effectively address and handle the problem of reduction of forest 

resources and changes of forest covers, Bangladesh Forest Department needs 

appropriate tools for periodical monitoring of the forest. Such a monitoring would 

assist detecting the specific causes for gradual changes of forest cover timely and in 

taking appropriate measures to control the causes of changes. Remote sensing 

provides a great potential to monitor the forest and has been applied to many 

management issues in tropical coastal environments. It also offers the possibility to 

monitor large regions and to study changes in the entire ecosystem over space and 

time. This study in chapter 6, attempts to formulate/illustrate a monitoring scheme for 

SRF, which would facilitate Bangladesh Forest Department in performing the needed 

tasks of monitoring of the forest.  

 

5.6 Summary 
 
Monitoring of the study area of SRF provides spatial information on its status in and 

in terms of the factor of change. Detection of change patterns of forest cover by 

means of remote sensing can be achieved in various ways depending on the 

characteristics of data sources and targets as well as the facilities of data processing. 

However this research analysed the trend of change over time and has been directed 

towards establishing an effective approach to detect change by postclassification 

comparison of multitemporal satellite data as well as by appropriate evaluation and 

presentation techniques. 

 
The interval for change assessment of 11 years allowed for the detection of 

significant change, which is related to increasing human intervention in the study 

area. Several techniques have been used to provide in-depth details on the extent 

and the spatial distribution of change identified by classifying Landsat satellite data. 

These include area-based change summaries, maps of the distribution of change 

classes and the analysis of a detailed change matrix, which provide information on 

areas of change and on transition sequences. The study also tries to comment on the 

causes of change of forest cover by highlighting the factors of impact and the 
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relations between these factors. It is also highlighted that human activities in the 

mangrove ecosystem of SRF increase the complexity of changes. 

 
Studying the patterns of error within the classifications and the process of change 

assessment provides an important diagnostic capability for understanding the 

influences of data quality on the achieved results of change detection. Identifying the 

sources of error facilitates the sound design of data collection and data analysis in 

order to minimise error. Analyses of thematic and positional errors are needed to 

highlight their influences in the classified and change assessment data.  
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Chapter 6 

Monitoring scheme using satellite imagery 
 

 

6.1 Introduction 
 
The SRF has been more and more threatened in the past decades. From the 

previous inventories it is clear that huge extraction of timber resources is affecting 

SRF although there is a moratorium existing since 1989. This study proves for a 

significant loss of trees from this forest. All the results indicate that the forest is under 

a gradual process of change since a long time. More over it can easily be realised 

that the dependency of the people on timber and non-timber forest products is also 

increasing and their interventions into this valuable mangrove ecosystem make the 

situation more critical day by day. The loss and degradation of this natural ecosystem 

will impact heavily on coastal communities - in economic, livelihood and social terms 

as well as the indigenous people will lose natural safeguard against future tidal 

waves like tsunami. Therefore it shows the importance to protect the mangrove 

forest. The Bangladesh Forest Department has to be more active in developing and 

implementing sustainable management of the mangrove forest resources for the use 

of the people and also for protecting the heritage site. 

 
Meeting the goals of sustainable forest and ecosystem management requires 

increasing monitoring efforts. Realising the importance of this forest at local and 

national level the Bangladesh Forest Department needs to convey the importance of 

monitoring to the Ministry of Environment and Forest (MOEF) or Implementation 

Monitoring and Evaluation Division (IMED) of Planning Commission via MOEF for 

policy decision and budget allocation, in so periodical monitoring could be ensured as 

a basis for decision making for the sustainable management of SRF. 

 
Remote sensing can effectively provide assessment and monitoring of forest cover 

change thus help in developing ecologically as well as economically sound forest 

planning. Consistent methodology and cost effectiveness could be enhanced by the 

development of a proper monitoring scheme using satellite remote sensing. Several 

studies revealed a widespread application of remote sensing in mapping and 

monitoring mangrove ecosystems along coastal regions of the world (Hurd et al. 

1992, Scavia et al. 1995, Green et al. 1996, Perez et al. 2002). The presented study 

provides the outlines of a monitoring scheme as a preliminary guide to derive suitable 
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and reliable spatial information on the mangrove forest cover periodically. There are 

several important aspects which have to consider by the responsible authorities of 

Bangladesh Forest Department, which needed to implement the monitoring scheme 

based on satellite remotely sensed data as discussed in the following sections. 

 

6.2 Scope and limitation in Bangladesh Forest Department for monitoring 
the SRF 

 
The Bangladesh Forest Department recognised remote sensing as a tool in obtaining 

data at the occasion of the Forest Resources Management Project (FRMP), funded 

by World Bank and hosted in the Resource Information Management System (RIMS) 

unit at Dhaka. This unit used aerial photography of the year 1995 for mapping and 

assessing the forest cover and prepared a detail database of the vegetation types, 

growing stocks, rivers, office locations, compartment boundaries etc. of SRF. In order 

to strengthen the spatial database for mapping of SRF, the Sundarban Biodiversity 

Conservation Project (SBCP) of the Forest Department established a GIS unit in the 

Sundarban Forest Division office at Khulna in 1999. Both units are equipped with 

remote sensing and GIS hardware and software, but these tools are not properly 

used due to lack of trained personnel. 

 
Some members of the Forest Department have undergone training to perform GIS 

related work and to maintain the software. But dealing with remotely sensed imagery 

is more or less unknown to the personnel. There is availability of GPS in all range 

offices of SRF and the staff knows GPS functionalities. There are some other factors 

which also have influence on the application of remote sensing and GIS in SRF, such 

as lack of financial resources, lack of training opportunities, poor access to data and 

information as well as to the Internet. 

 
The prescriptions and provisions of the existing management plan are not applied in 

the SRF due to moratorium. Besides, the Forest Department is not strictly taking into 

consideration the factors affecting the issue of the sustainability though these factors 

are clearly visible to all levels of officials. There is no built-in mechanism to monitor 

the forest resources as well as the impact of removal of timber. 

 

6.3 Forest cover monitoring considerations using remote sensing system  
 
A monitoring program of forest cover change for SRF using satellite remote sensing 

data needs to come out with several decisions on specific requirements has 

elaborated in figure 6.1. Meeting properly the requirements prior to monitoring will 
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help to produce acceptable results as described in the previous chapters. The 

chapters will guide through the presentation of a planning process in forest cover 

monitoring for SRF while choosing the suitable image classification system or change 

detection algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6.1: Change assessment requirements using satellite remote sensing 

(adopted from Klemas 2001 and Dobson et al. 1995) 
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easy to handle and low cost tools for monitoring, limited budgets for data acquisition 

and limited resources for data analysis, this study intends to being capable a 

monitoring scheme to track the changes within the forest in space & time. As the 

needed operational tools for forest assessment and forest monitoring are identified in 

the study, it is possible to start monitoring efforts from now onwards using a 

combined method of field observations and satellite image analysis. The periodical 

monitoring will depend on the availability of funding and the presence of trained 

experts at local and national level. Data with a slightly higher temporal resolution, 

such as 5 years, will certainly improve the reliability of analysing gradual process of 

change of the forest cover. Important aspects to immediately set up measures for 

protecting the forest as well as its sustainability may be detected more efficiently.  

 

6.4 Costs of monitoring 
 
For the research Landsat ETM and TM imagery of the study area of SRF have been 

collected from Bangladesh Forest Department and the archive of Global Land Cover 

Facility for free. But indirect costs associated with image processing and ground 

fieldwork must be appreciated. In general monitoring costs increase with larger 

spatial scale, higher level of detail and accuracy, and the frequency of data 

collection. Careful definition of remote sensing requirements will have a major impact 

on project cost and product quality (Klemas, 2001). 

 
Image processing and classification of satellite data is critical as being a time 

consuming step. Taking this study as an initial step to build an operational monitoring 

system for forest cover classes, thus involve building a sound database and allowing 

for mapping, running through the change detection process and for identifying and 

labelling changes. All these processes required 14 months for the study area. For the 

Bangladesh Forest Department building a database for SRF using remotely sensed 

data would require not more than 8 months beginning with data acquisition up to the 

level of planning. 

 
Ground verification is also dues significant costs. Remote sensing provides data 

about the ‘spectral landscape’, so costly ground verification has to relate the spectral 

data to land use cover classes. To generate spatial information from remotely sensed 

data for the SRF, the Forest Department has to conduct an extensive ground survey. 

Ground sampling of the remotely sensed features is needed to generate a proper 

classification scheme. The Forest Department already set out ground sampling work 

for past inventories based on aerial photo interpretation for the forest. Depending on 
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the objectives the Forest Department takes decision about the sampling scheme. 

During inventory of the forest resources in 1996 sampling plots were established in 

each one-minute grid interval throughout the SRF. The Forest Department could 

implement the same sampling approach for field verification of remotely sensed data. 

Data would then be directly comparable with the previous inventory databases 

concerning different parameters (e.g. growing stock, height etc.) accumulated from 

the field sampling. No extensive sampling is needed for generating a classification 

scheme and for change area calculation related to forest cover classes. Considerable 

time and financial budget is necessary for the field sampling in SRF, which could 

easily be realised based on the previous experience of the department. Cost 

associated with accuracy assessment of the generated results also needs to take 

into consideration. Allocation of time and budget for a monitoring task is quite 

variable and also depends upon the specifically formulated objectives. 

 

6.5 Monitoring Scheme for SRF  
 
Monitoring comprises a periodical process of planning, implementation, 

communication and follow-up activities. To organise the monitoring efforts for the 

SRF, a monitoring scheme is developed by the study which is illustrated below in 

figure 6.2. This will assist to the Bangladesh Forest Department to facilitate 

sustainable use of the limited resources.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Monitoring scheme for the SRF  
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The goal of setting up this monitoring scheme is to identify and evaluate the changes 

in forest cover of SRF periodically over time and space. Forest monitoring is often 

neglected in Bangladesh. Losses in forest cover are not surveyed or mapped and 

their exact sizes and locations are not conclusively determined, except for a periodic 

visual observation, which is appearing as the major difficulty for sustainable 

development of the forest resources (FAO 1998b). Presently the Monitoring and 

Evaluation Unit of Bangladesh Forest Department is responsible for monitoring the 

raising of seedlings and distribution, the export and import of forest logs and for 

evaluating the performances of different components of ongoing projects of the 

Forest Department. The unit should widely provide main activities of forest 

monitoring.  

 
The units involved in the scheduled monitoring scheme (figure 6.2) coincide with the 

existing units of the Bangladesh Forest Department at national and local level. The 

monitoring and Evaluation unit has given priority to the process of the forest 

resources assessment and monitoring. The units involved in the monitoring process 

should be interlinked with each other to organise successful networking under 

specific responsibilities, in the following way: 

 
Ministry of Environment and Forest 

- Decision making on policy level 

- Budget allocation for monitoring 

 
Monitoring and Evaluation unit 

- Problem identification on field level 

- Remote sensing data specification and requirements 

- Selection of the remote sensing data classification system 

- Frequency of data collection 

- Follow up the monitoring process 

- Determination of correct implementation management plan of achievement of 

desired results 

- Identification of the local level criteria of indicators of sustainable management 

and monitoring 

- Monitoring, evaluation reports and documentation 

 
Planning and Management unit  

- Problem synthesis 

- Identification of the information required for planning 
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- Monitoring project preparation and budget disbursement 

- Remote sensing data purchase and handover  

- Assistance in preparation of the management plan of the SRF 

 
GIS unit  

- Satellite image collection 

- Image processing 

- Field evaluation and preparation of classification scheme of forest types 

according to the management plan 

- Image analysis and information extraction 

- Preparation of map of forest cover classes 

- Change assessment of forest according to the planning requirement 

- Ground verification of the changes of forest types (area and species) 

- Provision of statistics and documents preparation of the for management plan  

- Setup and maintenance of an archive of GIS and remote sensing data for 

multitemporal data comparison (LUCC) 

 
Management and Working Plan Divisions of SRF  

- Identification of factors responsible for change of forest types and verification 

- Compilation of info/data for mapping and planning  

- Updates of the existing management plan with the information provided by the 

GIS unit after analysis of the satellite data 

- Keeping provision for modification or change wherever necessary to adjust with 

the existing situation 

- Identification of the local level criteria and indicators of sustainable management  

- Documentation of the archive database and report 

- Supervision and technical assistance for implementation of the management plan 

 
Field level management units (range offices and stations) of SRF  

- Execution of management plan  

- Maintenance of official documents and records 

- Observation 

- Feed back to the responsible authority 

 

6.6 Potential remote sensing platforms for SRF monitoring 
 
Over the past 25 year, many satellites have been placed in service. They carry 

sensors with capabilities salient to forest monitoring. These satellite sensors can be 
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categorised following the ground resolution of imagery (pixel size on ground level). 

They are the coarse resolution (pixel size >80m), medium resolution (pixel size 20 – 

80m), high Resolution (pixel size 5 – 20m) and very high resolution (pixel size 1 – 

5m). Each satellite sensor has its own characteristics in ground resolution, temporal 

resolution, spectral resolution, coverage swath and so on. Some of the potential 

platforms used are listed in table 6.1. Gathering data useful for forest monitoring has 

to take account the type of sensor, spectral and spatial resolutions and ground 

coverage. Using satellite imagery in forestry will be competitive in costs and benefit, if 

coverage of large areas is provided. 

 
Table 6.1: Specification of remote sensing sensors with potentials for use in forestry 

applications 
 

 
Sensor/ 
Platform 

 
Data 
Provider 

 
Spatial 
Resolution 
 

 
Spectral 
Bands 

 
Temporal 
resolution 

 
Swath  

 
Purpose 
 

Landsat 5 
 

USGS/ 
NASA 

30-60m 
(MS) 
 

7 MS 
bands 
(vis, NIR, 
MIR, TIR)  
 

16 days 185km* 
185km 
 

Land use/Land cover, 
global change Studies, 
large area mapping 
 

Landsat 7 USGS/ 
NASA 

15m (pan) 
30-60 m 
(MS) 

1 pan and  
7 MS 
bands 
(vis, NIR, 
MIR, TIR)  

16 days 183km* 
172km 

land cover state and 
change (eg vegetation 
type), used as 
multipurpose imagery 
for land applications 
 

IRS 
 

Euromap 5.8 m 
(Pan) 
23 m (MS) 
 

1 pan and 
3 MS 
bands 
(Vis, NIR, 
TIR)  

24 days 142km* 
142km 
(MS) 
70 km 
(pan) 
 

Natural resource 
planning, agriculture 
monitoring, natural 
disaster assessment 
 

SPOT 
vegetatio-
n  
 

SPOT 
Image 
Corporatio-
n 

1000 m  
(MS) 

4 MS 
bands 
(vis, NIR, 
SWIR)  
 

1 day 2,250 km Environmental 
monitoring, natural 
resource management 
 

IKONOS  
 

Space 
Image 
Corporatio-
n 

1 m (Pan) 
4 m (MS) 
 

1 Pan and 
4 MS 
bands 
(vis, NIR)  
 

3 days 11 km* 
11km 

Land use/Land cover, 
urban planning, 
agriculture monitoring 
and analysis, mapping 
 

NOAA 
AVHRR  

USGS/ 
NASA 

1100m 
(MS) 

5 MS 
bands 
(vis, NIR, 
MIR, TIR)  

3-4 days 3,000km
* 
6,000km 

Land cover, soil 
moisture, vegetation 
indices and vegetation 
monitoring 
 

TERRA 
Modis  
 

USGS/ 
NASA 

250-
1000m 
(MS) 

7 MS 
bands 
(vis, NIR, 
SWIR)  
 

1-2 days 2,330km
*10km 

Land use/Land cover, 
ocean monitoring 
 

 

Sources: Characteristics listed from the web pages of the respective sensors, 

February 2006, see reference 
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6.7 Requirements for successful monitoring of SRF 
 
Bangladesh Forest Department must invest considerable resources to set up its 

capability of acquiring spatial information on forest cover and changes by means of 

satellite imagery. Monitoring being a continuous process the Forest Department 

needs to extend its existing resources. Collecting and publishing data on forest cover 

on a regional level by mapping and statistics needs responsibilities, such as 

- Set up of a GIS 

- GIS support for the forest resource framework  

- Examination of forest stands by GPS technical support  

- Set up of a data archive 

 
The set up with equipments and software for processing geodata (GIS) and remotely 

sensed data are available in the local office of the Sundarban Forest Division, Khulna 

as well as in the head office at Dhaka. These needed to provide upgrading in order to 

meet the upcoming challenges.  

 
The effective application of remote sensing for monitoring the SRF will require 

capabilities of the Forest Department at national as well as local levels of 

management. The capabilities at national level for applying remote sensing require 

the integration of efficient activities for monitoring and mapping, such as 

- Training to efficiently perform the GIS and remote sensing tasks 

- Evaluation of new technologies 

- Development of applications 

- Technical support 

- Data acquisition 

 
For the development of an operational monitoring scheme based on remote sensing 

the creation of a network of activities and actors is necessary. This includes experts 

with the following skills and background:  

- Expertise in remote sensing including understanding of the capabilities of all 

forms of remote sensing of applying analysis is to forest cover classes and 

knowledge of algorithms, as well as knowledge of GIS, GPS, spatial statistics  

- Good navigational skills (mapping)  

- Knowledge and understanding of the economy of forest resources and related 

ecological processes 
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The GIS unit of Bangladesh Forest Department has to play an essential role in the 

implementation of activities of forest management. In order to set up a reliable 

database management for the SRF, training in GIS and remote sensing should be 

extended to more officials to allow for an accurate utilisation of the remote sensing 

and GIS for the improvement of management and planning strategies. 
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Chapter 7 

Conclusion and recommendation 
 

 

7.1 Major findings 
 
Bangladesh Forest Department previously attempted to assess and monitor the 

Sundarban Reserved Forest using aerial photography and prepared maps at a 

detailed level for the forest. These maps could not be used on field level as there is 

no management plan available fitting to the forest cover classes in the maps. Satellite 

remote sensing data, which are most suitable for mapping and monitoring in terms of 

benefit and cost relation has been used in this study to build an appropriate 

classification system of SRF. Based to the existing management plan as well as the 

spectral properties a level III classification system for the forest, which ensures its 

applicability for proper planning, was generated. 

 
For mapping land use classes at level III of the USGS classification system, several 

methods with various band combinations as well as data fusion techniques were 

examined to identify the most suitable methods of monitoring. Results indicate that 

IHS imagery with fused PAN data and thus with higher spatial resolution could not 

increase classification accuracy and showed a wide discrepancy of spectral 

characteristics of the classes. On the other hand PCA imagery improved the 

classification accuracy for specific classes. Pure combination of multispectral bands 

did not offer acceptable accuracies. However the combination of the NDVI layer and 

the thermal band with the multispectral bands performed well in identifying level III 

forest cover classes. Classification results were evaluated by field observations and 

achieved an overall accuracy of 81 and 77.6 percent and a Kappa coefficient of 66.8 

and 73.7 percent for eight forest cover classes for the Landsat ETM and TM imagery 

respectively. 

 
Forest cover changes were assessed during the 11 years period (1989-2000) using 

the approach of postclassification comparison. Significant change has been observed 

due to the removal of Sundri (Heritiara fomes) and Gewa (Excocaria agallocha) in the 

study area during this period. Human interventions as well as ecological impacts in 

this valuable mangrove forest were found responsible for the changes. For tracking 

the changes and trends continuous monitoring is necessary in order to assess spatial 

parameters of forest ecology and resources periodically and to plan decisions at local 
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and national level. The study has developed a periodical monitoring scheme, which 

will allow respective authorities to set up sustainable and appropriate monitoring of 

the Sundarban Reserved Forest with specific regard to the integration of satellite 

imagery. 

 

7.2 Study limitations 
 
There are some specific limitations in this study, which should be addressed as a 

means of improvement for further activities. The first limitation of the study is the gap 

between the date of remote sensing data acquisition and the dates of field visits. The 

first field visit under the study was conducted 3 years later than the date of image 

acquisition. This fact obviously created problems during the generation of the 

classification system as explained in chapter 3. Under reliable conditions of setting 

up monitoring in the future this limitation can easily be overcome by planning the field 

visits as close as possible to the image acquisition date. 

 
Training data for supporting the image classification have been acquired during the 

field visits. The areas visited for data collection have been discussed in chapter 3 and 

a strong bias with the proximity to river channels was demonstrated. It is due to the 

presence of anthropophagous tigers in the forest that difficulties arise in walking 

deeper into the forest without safeguard. For a small group supplied with limited 

logistics as provided by Bangladesh Forest Department, it was impossible to cover 

the full area. Nevertheless the respective reference data have not been used against 

the classified in order to estimate the classification accuracy. The reliability of the 

reference data is thus weak, as it could not be assessed in combination with ground 

truthing.  

 
Multispectral mapping by digital remote sensing techniques is characterised but not 

restricted by inherent limitations. The process of classifying the ground features into 

specific classes introduces thematic errors during the classification process that are 

specifically driven by reference data, mixed pixels or spectral confusions. However, 

these limitations could be addressed by several ways as discussed in chapter 4. It is 

also possible to overcome them by sound statistical analysis in order to produce 

accurate land use and land cover maps derived from multispectral satellite data. 

Strict rectification standards are required for accurate quantification of change 

detection. Landsat TM and ETM imagery collected for this study was already 

processed for geometric and radiometric correction. Positional error of Landsat ETM 

imagery was checked in the field by using GPS coordinates of ground locations of 
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ponds identifiable in the Landsat ETM imagery during field work. The position error 

was determined as ± 0.6 pixel. Assessing the location error between the two images 

was not possible as ponds being the only detectable features available for 

comparison did not yet exist at the time of the acquisition of the historical TM image. 

The causes are explained in chapter 5. The most important limitation associated with 

this research is the lack of a quantifiable assessment for change detection.  

 

7.3 Recommendations 
 
The supervised maximum likelihood algorithm was applied for the analysis of the 

remotely sensed data. The classification results achieved in this study were identified 

as providing substantial levels of agreement with the reference data, though some 

forest cover classes exhibit confusion with the spectral properties of other classes. 

Classification accuracy achieved by the study seems to be adequate for change 

assessment, but improved results are highly desirable.  

 
In-depth analysing of geometrical and thematic accuracies of classified data for 

sound analysis is required in order to completely understand the errors occurring 

within the results. Thus the variations of impacts of errors in classified data arise from 

image rectification and thematic classification. These errors should be investigated in 

further in-depth research. A further improvement of understanding quality issues of 

data and classification could significantly improve the reliability of spatial data 

management for SRF.  

 
The study has provided a consistent methodology for forest mapping and change 

assessment by a specifically adopted monitoring scheme. By providing the proper 

training samples, the findings settled in this research can be further applied in 

monitoring canopy density classes. Remote sensing can also play an important role 

in identifying the distribution of settlements around the SRF, which would help to 

support the forest guards for protection purposes. Identification of areas covered by 

Sundri trees affected by die back disease in the Sundarban Reserved Forest is 

possible in order to plan removal from the forest. Assessment of impact of natural 

disasters such as occurrence of wild fire could easily be identified using remote 

sensing. The utilisation of the combination of satellite data and ground truth data on 

silvicultural intervention parameters (e.g. felling of Gewa or diseased Sundri stands) 

can provide a suitable and cost-efficient inventory concept. Through interpretation of 

satellite data, a huge information potential on assessing the spatial distribution of 

felling areas could more or less immediately be provided to the local forest authority.  
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The whole range of historical imagery data is stored in archives and can be retrieved 

at specific demand for extended change analysis. The extended implementation of 

remote sensing and GIS technologies following the presented strategy will allow for a 

far wider range of alternative stratifications of land cover in general and of forest 

cover in particular.  
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