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Preface

This thesis investigates charge properties of undoped cuprate compounds. Cup-

rates are strongly correlated electron systems. Therefore, they have several un-

usual and interesting properties. In particular, upon doping many of these com-

pounds become superconducting at surprisingly high temperatures. This phe-

nomenon is still not well understood. By trying to understand the charge prop-

erties of undoped cuprates one also hopes to shed some light on the (unknown)

mechanism of superconductivity. Fortunately, several excellent experimental in-

vestigations of charge excitations in undoped cuprates are available. Some of

these experimental results will be used to test the theoretical approaches devel-

oped in the present work.

The thesis is organized in three parts. Part I consists of an introduction into

the �eld of research, both from the view of experiment ( Chap. 1), and theory

(Chap. 2). Charge properties pertain to the ground state as well as to excitations.

Consequently, Parts II and III deal with ground-state properties and excitations,

respectively. In Part II we develop a new analytical approach to the approxima-

tion of ground-state charge properties (Chap. 3) and apply it to the geometries

found in the cuprates (Chap. 4). With the additional help of numerical methods

(Projector Quantum Monte Carlo) we analyze the in
uence of the dimensionality

on the ground state properties (Chap. 5). The topic of Part III are charge exci-

tations, especially Cu 2p3=2 core-level X-ray photoemission spectroscopy (XPS).

Low dimensional systems are treated with exactly solvable models, which allow

a good description of experimental data (Chap. 6). For systems of higher di-

mensionality an approximation scheme using projection technique is presented

(Chap. 7). The results are compared to several experimental spectra (Chap. 8).

As in Part II, the analysis centers around the question: How does the dimension-

ality of the compound in
uence its charge properties?

v
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Chapter 1

Motivation, materials, and

measurements

In this chapter we formulate the basic questions that this thesis will try to clar-

ify. After a few general motivating remarks in Sec. 1.1, some important physical

properties of the materials are described in Sec. 1.2. A schematic view of the

experimental technique (core-level photoemission spectroscopy) is developed in

Sec. 1.3. In this section we also explain why these experiments provide infor-

mation about the electronic properties of the materials. Finally, in Sec. 1.4 we

present the experimental results that will be analyzed in this thesis.

1.1 Motivation

Since the discovery of high-temperature superconductivity in ceramic copper ox-

ide compounds in 1986 [11], there has been a large number of publications start-

ing with the words 'Since the discovery of high-temperature superconductivity...'.

Nevertheless, in spite of concentrated world-wide e�orts, these compounds con-

tinue to puzzle solid-state physicists for by now almost 15 years. Among the

works on high-temperature superconductivity there are excellent review articles

[22] and [18], which describe experimental �ndings as well as theoretical propos-

als. Therefore, to give a motivation for the present thesis, we restrict ourselves

to a few general remarks and refer the interested reader to the above articles and

references cited therein.

The interest in high-temperature superconducting (high-Tc) compounds has

three basic reasons. Experimentally, these materials have many unusual and in-

teresting properties, also above the critical temperature Tc. Theoretically, strong

correlations in high-Tc compounds call for the use of many-body models { a

3



4 CHAPTER 1. MOTIVATION, MATERIALS, AND MEASUREMENTS

notoriously challenging �eld of research. And, �nally, these materials o�er the

possibility of industrial applications.

The common structural feature of all cuprates are CuO2 planes which are

separated by layers of other atoms. Typical examples for these cuprates are

La2CuO4 and YBa2Cu3O6. These materials may be doped, for example by in-

troducing strontium (La2�xSrxCuO4), or oxygen (YBa2Cu3O6+x). Upon doping,

the cuprates become superconducting below a critical temperature Tc. This tem-

perature is called \high" if it exceeds approximately 30 K. For La1:85Sr0:15CuO4

the critical temperature is 39 K. In the case of YBa2Cu3O7 one observes Tc = 92

K. Currently, there is no generally accepted explanation for superconductivity

at high temperatures. It is, however, widely believed that superconductivity is

related to physical properties of the CuO2 planes. The other layers of ions mainly

seem to provide charge carriers for these planes. For this reason most of the re-

search in the �eld is dedicated to the investigation of CuO2 planes. It turns out

that already the undoped \parent" compounds have interesting spin- and charge

properties. By understanding these properties one also hopes to shed some light

on the superconducting mechanism. In this respect, the low dimensionality of

CuO2 planes is of special interest. How strongly, one might ask, do the electronic

properties of Cu-O structures depend on their dimensionality? Fortunately, there

are substances (\model cuprates") that contain Cu-O structures of even lower di-

mensionality than the CuO2 planes (see Sec. 1.2). Thus, experimental answers

to the above question can be obtained, for example using X-ray photoemission

spectroscopy (see Secs. 1.3 and 1.4). In the following, we shall try to understand

the results of these experiments from a theoretical point of view.

Summarizing, the topic of the present thesis is the theoretical description

of charge excitations in low-dimensional undoped model cuprates. One of the

questions we shall try to clarify is to which extent the charge properties of CuO

structures do depend on their dimensionality.

Figure 1.1: The CuO4 plaquette: the basic building element of the cuprates.
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1.2 Crystal structure and other properties

The materials that we shall investigate in this thesis are the cuprates Bi2CuO4,

Li2CuO2, Sr2CuO3, and Sr2CuO2 Cl2. In general, the lattice structure of all these

model cuprates is orthorhombic or tetragonal, as is the lattice structure of the

high-Tc parent compounds. The basic building element of the cuprates are CuO4

plaquettes, i.e. Cu ions surrounded by O ions (see Fig. 1.1). There are, however,

some important di�erences in the arrangement of the CuO4 plaquettes in these

materials.

Figure 1.2: Lattice structure of Bi2CuO4 (after [2]).

Figure 1.2 shows the lattice structure of Bi2CuO4. In this tetragonal struc-

ture, CuO4 plaquettes are stacked above each other. Notice that the Cu ions are

not bridged by other ions. Thus, one might assume that electronically the CuO4

plaquettes in Bi2CuO4 are rather isolated as well. This assumption will be dis-

cussed later (Sec. 6.3). Magnetically, however, the CuO4 plaquettes in Bi2CuO4

cannot be regarded as isolated since band structure calculations show that they

are connected by a small (0.1 eV) but rather isotropic transfer integral [85]. In

addition, the Cu ions order antiferromagnetically at about 50 K (see below).
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Figure 1.3: Lattice structure of Li2CuO2 (after [86]).

Figure 1.4: Lattice structure of Sr2CuO3 (after [4]).



1.2. CRYSTAL STRUCTURE AND OTHER PROPERTIES 7

Figure 1.5: Lattice structure of Sr2CuO2Cl2 (after [67]).

The next two cuprates contain chain-like Cu-O structures. The orthorhom-

bic lattice structure of Li2CuO2 is shown in Fig. 1.3. The Cu-O structures in

this compound form chains of edge-sharing plaquettes. Figure 1.4 shows the or-

thorhombic lattice structure of Sr2 CuO3. In contrast to the edge-sharing chains

in Li2CuO2, the CuO4 plaquettes in Sr2CuO3 form corner-sharing chains.

Finally, in Fig. 1.5 we show the lattice structure of Sr2CuO2Cl2. This material

has a body centered tetragonal symmetry. It is isostructural to La2CuO4, with

Sr instead of La ions, and with Cl ions replacing the apex O. In contrast to

La2CuO4 , which undergoes an orthorhombic distortion below a temperature of

530 K, Sr2CuO2Cl2 remains undistorted for temperatures between 10 and 300 K

(see Ref. [101]). Furthermore, Sr2CuO2Cl2 apparently cannot be doped [67].

The Cu-O sub-structures of the four cuprates discussed above may be schemat-

ically displayed as in Fig.1.6. There are Cu-O networks of di�erent dimension-

ality: (a) the \zero-dimensional" isolated plaquettes in Bi2CuO4, (b) the one-

dimensional chains in Li2CuO2 and (c) in Sr2CuO3, and (d) the two-dimensional

planes in Sr2CuO2Cl2. Below, an analysis of the electronic structure will show

that the edge-sharing chains in Li2CuO2 should rather be regarded as consisting

of isolated plaquettes. In this sense, Li2CuO2 may be called a \zero-dimensional"

cuprate as well. Of course, a structural analysis alone cannot answer the question
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Figure 1.6: Cu-O sub-structures of the model cuprates: (a) Bi2CuO4, (b)

Li2CuO2, (c) Sr2CuO3, (d) Sr2CuO2Cl2. Cu 3dx2�y2 orbitals are shown in black,

O 2px(y) orbitals in white.

if it is possible to describe charge excitations in the cuprates by considering only

the Cu-O sub-structures while neglecting all other ions in the materials. This

problem will be addressed in chapters 6 and 8.

In Table 1.1 we show the lattice constants, the Cu-O distance, and other

typical distances. These distances have been determined at room temperature

(except for Sr2CuO3 where values for 11 K are shown). All distances are in

Angstrom. O? denotes the out-of chain O site in Sr2CuO3 (see Fig.1.6(c)). The

Cu-O distances in all compounds are of the same order of magnitude. Notice,

a b c Cu-O other distances reference

Bi2CuO4 8:50 5:82 1:94 Cu-Cu: 2:91 [78]

Li2CuO2 2:86 9:39 3:66 1:96 [86]

Sr2CuO3 3:91 3:49 12:69 1:95 Cu-O?: 1:96 [4]

Sr2CuO2Cl2 3:97 15:61 1:99 Cu-Cl: 2:86 [67]

La1:85Sr0:15CuO4 3:80 13:19 1:90 Cu-Oapex: 2:41 [67]

Table 1.1: Lattice constants and typical distances (�A) in the model cuprates.
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though, that the Cu-O distances in the model cuprates are consistently larger

than in La1:85Sr0:15CuO4. The largest separation between Cu and O is found in

Sr2CuO2Cl2. This cuprate has also the largest lattice constant of the materials

discussed here. It is 18% longer than c in the La compound.

The basic electronic properties of the cuprates are similar. In an ionic picture,

all these compounds have a simple Cu valency of 2+. Since a Cu atom has a

[Ar] 3d104s1 electron con�guration, this implies a 3d9 con�guration for the Cu

ions. On the other hand, the O ions, which have an atomic [He] 2s22p4 electron

con�guration, have a valency of 2�. Thus, the O ions have a completely �lled 2p6

shell. For this reason it is appropriate to use the hole notation, with one hole per

Cu-O unit cell. In the 3d shell, the hole occupies an orbital with 3dx2�y2 character

(see also Sec. 2.1). Furthermore, there is a strong hybridization between the Cu

3dx2�y2 orbital and the O 2px(y). Therefore, the hole occupies not only the Cu

3dx2�y2 orbital but also, to a certain degree, the O 2px(y) orbitals. As shown in

Fig. 1.6 for (c) the CuO3 chain and (d) the CuO2 plane, two neighbouring Cu

3dx2�y2 orbitals hybridize with the same O 2p orbital. This allows the hole in

the unit cell of these compounds to delocalize onto the neighbouring Cu site. For

the CuO2 chain con�guration, on the other hand, the Cu orbitals hybridize with

di�erent O 2p orbitals (see Fig. 1.6(b)). For this reason, the hole in the unit cell

of Li2CuO2 cannot easily delocalize onto the neighbouring Cu site. The same

conclusion can be drawn from band-structure calculations [85],[110]. As a �rst

approximation, Li2CuO2 may consequently be regarded as consisting of isolated

plaquettes rather than of chains with nearest-neighbour delocalization.

Since there is one hole per Cu site, one would expect the undoped cuprates to

be metallic in the absence of correlations. This is, in fact, also the result of LDA

band-structure calculations. For example, in the case of La2CuO4 a paramagnetic

ground state is predicted [51]. However, experimentally all of these compounds

are insulators. This is a consequence of strong correlations due to Coulomb

interaction which are not adequately taken into account in the LDA calculations.

These correlations make double occupancies of holes on Cu sites (and, to a smaller

degree, double occupancies of O sites) energetically unfavoured.

Finally, we shortly discuss some magnetic properties of the (undoped) mate-

rials presented in this section. All of them order antiferromagnetically below a

N�eel temperature TN : (The in-chain order of the CuO2 chains in Li2CuO2 is fer-

romagnetic.) As shown in Table 1.2, the value of TN di�ers strongly for di�erent

compounds. The fact that TN is very small for Sr2CuO3, Li2CuO2, and relatively

small for Bi2CuO4, underscores the low dimensionality of these compounds.

Summing up, all materials presented in this section are strongly correlated

systems with one hole per Cu site. This hole occupies a state dominated by
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TN (K) ordered Cu moment (�B) reference

Bi2CuO4 ' 50 0:56 [78]

Li2CuO2 8:3 0:96 [86]

Sr2CuO3 5 0:06 [55],[4],[57]

Sr2CuO2Cl2 256 0:34 [41],[101]

La2CuO4 ' 300 0:60 [101]

Table 1.2: Magnetic properties of the model cuprates.

a Cu 3dx2�y2 orbital which hybridizes with O 2px(y) orbitals. At low temper-

atures the spins on the Cu sites order antiferromagnetically. The Cu-O struc-

tures in the materials have di�erent dimensionality: Bi2CuO4 and Li2CuO2 may

be roughly described as consisting of single CuO4 plaquettes; Sr2CuO3 contains

one-dimensional CuO3 chains, and Sr2CuO2Cl2 consists of two-dimensional CuO2

planes.

1.3 Schematic view of core-level XPS

In the �eld of experimental solid-state physics, PhotoEmission Spectroscopy

(PES) is a method of fundamental importance [60]. For a review of PES in

the �eld of high-temperature superconductors see Ref. [91]. Figure 1.7 shows a

sketch of a typical experimental setup.

ϕθ

Photon source Electron
detector

EAEphot elec

Sample

Figure 1.7: Setup of a photoemission experiment (after [49]).

Photons with an energy of Ephot and a polarization A are emitted from a light

source, and strike the sample under an angle � with respect to the surface. Due
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to the photoelectric e�ect, the sample emits electrons which are analyzed with

respect to their kinetic energy Eelec and their emission angle ' with the surface.

Thus, the measured quantity is the intensity I (Ephot;A;�; Eelec; ') of the emitted

electrons as a function of all experimental parameters. The light source may

be a gas discharge lamp, an X-ray tube, or a synchrotron radiation source. A

(crystal) monochromator �lters incoming light of the desired energy Ephot, and

an (electrostatic) energy analyzer does the same for the kinetic energy Eelec of

the outcoming photo electrons. For low emission rates the signal is enhanced by

an electron ampli�er. Finally, the photo electrons are detected using an electron

collector.

The so-called three-step model [49] describes the photoemission process as

follows: A photon strikes the sample and excites an electron (step 1). The excited

electron approaches the surface of the sample (step 2). Finally, the electron

escapes the sample by overcoming the surface-work function � (step 3). Of

course, in reality the photoemission is a single quantum-mechanical process. The

basic assumption of the three-step model is that this process can be approximately

separated into the three isolated steps described above. Furthermore, one assumes

that steps 2 and 3 in
uence the spectra only in a simple way. Step 2 is supposed

simply to lead to a background due to the scattering of electrons from other parts

of the crystal during the emission. In the analysis of the spectra, this background

may then be subtracted properly. The escape from the sample surface in step

3 is assumed to lead to a simple energy shift in the spectra. Due to energy

conservation, the following equation holds for the kinetic energy of the photo

electrons

Eelec = Ephot � �� j!j , (1.1)

where the work function � is measured from the Fermi level to the spectrometer

level, and where ! is the so-called binding energy. The work function � is a

spectrometer constant which has to be calibrated with a well known sample such

as Au or Cu. The binding energy !, on the other hand, is an excitation energy

which contains important physical information. Usually, ! is measured from the

Fermi level down to lower energies, and it is given as a positive number. In

Sec. 2.2 we will see that ! may be interpreted as the energy di�erence between

the ground state of a N -electron system and the eigenstates of a (N � 1)-electron

system.

There are some principle experimental restrictions connected with PES. The

most important property of PES is its surface sensitivity. According to the so-

called \universal curve" [49] the electron escape depth lies between about 3 �A

and 20 �A for Eelec between 10 eV and 1500 eV. Therefore, PES allows to obtain
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2s 2p1=2 2p3=2 3s 3p1=2 3p3=2

1096:7 952:5 932:5 122:5 77:2 75:2

Table 1.3: Binding energies of core levels in free Cu atoms (all energies in eV).

information only about a relatively thin volume on the surface of the sample. On

the one hand, this makes PES the method of choice for the analysis of surface

properties. On the other hand, it may be di�cult to extract bulk properties of

the sample from PES spectra. In fact, some of the early photoemission data

from the high-temperature superconductors were discredited due to their surface

problems [91]. Thus, surface quality of the samples is of crucial importance.

One way to estimate the bulk contribution to the spectrum is an analysis of the

dependence on the incident angle � of the photons. Since the electron escape

depth decreases for smaller �, the variation of � allows to reduce or enlarge the

surface contribution to the spectra. Thus, if the spectra show no or only small

change with � one may assume that surface contributions are small. Fortunately,

the compounds discussed in Sec. 1.2 turn out to have good cleavage leading to

high surface quality [14]. In Sr2CuO2Cl2, for instance, the �rst CuO2 plane lies

well below the surface. An additional experimental complication in PES is the

necessity to use ultra-high vacuum to preserve good surfaces. Furthermore, since

during a PES measurement the sample is continuously losing electrons, one has

to take account of charging e�ects. These are especially important for insulating

materials, like the undoped cuprates.

Since the kinetic energy Eelec of the photo electrons has to be positive, accord-

ing to Eq.(1.1) the energy Ephot of the incoming light determines the maximal

excitation energies in the PES. If one is interested only in the emission of valence

electrons, photo energies in the hard UV or soft X-ray range between 3 eV and

100 eV are su�cient. These experiments are called Ultraviolet Photoemission

Spectroscopy (UPS). For excitations from core levels, on the other hand, high

energy X-rays are required. This can be inferred from Table 1.3, which shows

the binding energies of the core levels in free Cu atoms (after[49]). Notice that

the strong spin-orbit coupling leads to a splitting of 2p1=2 and 2p3=2 states. In

view of these binding energies one needs photo energies Ephot of more than 1000

eV for the investigation of core-level excitations. In this case one speaks of X-ray

Photoemission Spectroscopy (XPS). Note that Ephot restricts only the maximum

excitation energy. Therefore, low-energy excitations from valence states are ob-

served in XPS as well.

In this thesis we shall be concerned exclusively with Cu 2p3=2 core-level XPS

spectra, i.e. Ephot > 1000 eV. To be precise, the energy used in the experiments
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Cu 2p

Cu 3d
O 2px,y

x  -y2 2

3/2

photon

photo electron
Fermi level

Figure 1.8: Schematic view of the Cu 2p3=2 photoemission process.

shown in Sec. 1.4 is Ephot = 1486:6 eV [16]. We shall not consider the dependence

of the spectrum on the polarization vector A of the incoming light, and the

emission angle ' of the photo electrons. These are important parameters for

a di�erent kind of measurement, the so-called Angle-Resolved PhotoEmission

Spectroscopy (ARPES). Furthermore, we will not analyze the dependence of the

intensity on the incident angle � of the X-rays. Therefore, the experimental

quantity that we will try to describe in the following is the spectral intensity

I (!) as a function of binding energy !.

Summarizing, we may give the following schematic view of Cu 2p3=2 core-

level XPS in cuprate compounds, see Fig. 1.8. An incident X-ray photon hits

an electron in the 2p3=2 core level of one of the Cu ions. This electron is emit-

ted from the crystal and detected by the electron collector. In atomic Cu, the

resulting spectrum ideally consists of a single sharp peak at the binding energy

of 932:5 eV, because the system cannot convert the energy of the incoming pho-

ton into inner excitations. In this case the photoemission measures occupation

probabilities of one-electron states, essentially mirroring the density of states of

the electrons. However, in the cuprates there is a strong interaction between the

Cu 2p3=2 core hole created during the photoemission, and the valence holes at

and near the Cu core-hole site. Therefore, one observes additional spectral lines

which correspond to di�erent inner excitations of the system. These excitations

are often called \screening processes", as one can imagine them as a screening

response of the valence holes to the perturbation created by the Cu 2p3=2 core

hole. Consequently, the binding energies that are observed in the cuprates are

more than simple atomic binding energies, since they also contain the energies of

additional excitations in the crystal.

The importance of Cu 2p3=2 core-level XPS in cuprate compounds is, therefore,

that they allow to extract information about the valence system. We shall try

to give a more concise microscopical picture of the Cu 2p3=2 core-level emission
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process in Chap. 2. Before, let us have a �rst look at the experimental results in

the next section.

1.4 Experimental results

The experiments that we analyze theoretically in this thesis were performed by

T. B�oske and coworkers from the group of J. Fink at the IFW Dresden [15],

[16]. Of course, these are not the only Cu 2p3=2 core-level XPS measurements

available for the cuprates presented in Sec. 1.2, and we shall discuss some other

results in Sec. 2.3. However, the work by B�oske and coworkers represents the

�rst systematic study using single crystals and high-resolution XPS (for details

about the sample preparation and experiment see [15], [16]). Therefore, it is an

ideal starting point to investigate the in
uence of the Cu-O network geometry on

charge excitations in undoped cuprates.
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Figure 1.9: Cu 2p3=2 core-level spectra of the model cuprates (from Ref.[16]).

Figure 1.9 shows the Cu 2p3=2 core-level spectra of Bi2CuO4, Li2CuO2, Sr2CuO3,

and Sr2CuO2Cl2 in the binding-energy range from 930 eV to 946 eV [16]. An in-

tegral background has been subtracted, and the spectra are normalized to the

leading peak. Thus, the intensities can only be given in arbitrary units. The
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Compound Is=Im

Bi2CuO4 � 0:58

Li2CuO2 0:56

Sr2CuO3 0:37

Sr2CuO2Cl2 0:52

Table 1.4: Experimental intensity ratios Is=Im between satellite and main line.

energy resolution is about 0:4 eV. Due to charging e�ects, the accuracy of the

absolute energy values is estimated to be �0:3 eV [16]. All spectra basically

consist of two regions with non-vanishing spectral weight: the so-called satellite

between 940 eV to 945 eV binding energy, and the main line between about 932

eV and 936 eV binding energy. The satellite is more or less similar for all materi-

als. The main line, on the other hand, di�ers strongly from one compound to the

other. For the \zero-dimensional" cuprates Bi2CuO4 and Li2CuO2 one observes

a comparatively narrow and symmetric main line. In contrast, the main line of

the one-dimensional Sr2CuO3 has a clearly resolved shoulder at higher binding

energies. For the two-dimensional Sr2CuO2Cl2 the main line contains even more

substructure. An analysis using Voigt functions shows that at least three fea-

tures are needed to obtain a reasonable �t [15]. Thus, these experiments suggest

a strong dependence of the form of the Cu 2p3=2 main line on the Cu-O geometry

of the compound. In particular it seems that the number of features of the main

line increases with increasing dimensionality of the Cu-O structure. It is one of

the aims of this thesis to check the validity of these hypotheses.

We �nally note that further valuable information contained in the spectra

shown in Fig. 1.9 is the ratio between the intensity of the satellite Is and the

main line Im. The experimental values from Ref. [16] are shown in Table 1.4.

Since in Bi2CuO4 an emission from the Bi 4s core level contributes at about 940

eV, the value 0:58 for Is=Im is only an upper estimate [16].
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Chapter 2

Microscopic Description

After the more phenomenological discussion in Chap. 1, we now develop a micro-

scopic picture of the Cu 2p core-level XPS. In Sec. 2.1, Hamiltonians are intro-

duced to describe the electronic valence system of the compounds from Sec. 1.2,

and the interaction between core holes and this valence system. In Sec. 2.2, the

intensity of the XPS is expressed by means of a correlation function. This cor-

relation function will be evaluated in the following chapters. It turns out that

this evaluation requires the solution of two problems. First, one has to �nd an

approximation for the ground state of the Hamiltonian before the creation of the

core hole. This problem will be addressed in Part II of this thesis. Second, given

the ground state, one has to solve the dynamics of the system after the creation of

the core hole. This problem will be discussed in Part III. Before we are going to

tackle these two problems, the present chapter is concluded with Sec. 2.2, where

we give an overview of results by other groups.

2.1 Hamiltonians

We now construct a Hamiltonian HXPS for the description of the Cu 2p3=2 core-

level XPS. This operator contains a partH which describes the essential electronic

valence structure of the cuprates discussed in Sec. 1.2. Furthermore, there is a

part Hc that takes account of the interaction with the core holes created in the

photoemission process

HXPS = H +Hc . (2.1)

First, we discuss the part H, i.e. the operator of the electronic system in absence

of core holes. The �rst simplifying assumption is to take one single CuO structure

as representative for the whole crystal, and to neglect all other constituents of

17
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the material. This should be justi�ed if the CuO structures are reasonably well

separated from each other and from the other ions in the crystal. As we have seen

from the crystal structures in Sec. 1.2, there is some reason to assume that this

approach is justi�ed. Nevertheless, one cannot take this assumption for granted,

and its validity will be discussed in chapters 6 and 8. The next simplifying

assumption is to neglect all �lled orbitals of the Cu and O ions. These are the Cu

1s, 2s, 2p, 3s, and 3p orbitals, and the O 1s and 2s orbitals. This approximation

is justi�ed as long as the in
uence of the �lled orbitals on the electronic structure

can be neglected or at least absorbed into remaining parameters of the model.

For instance, there is theoretical evidence that the s orbitals in Sr2CuO3 lead to

an enlarged e�ective hybridization between Cu and O sites [85]. Thus, in the

Hamiltonian H only the Cu 3d and the O 2p orbital are taken into account. Due

to its small spin-orbit coupling (order of magnitude 0:1 eV [71]), the states in

these orbitals may be classi�ed according to crystal symmetry. There are ten Cu

states: 3d�
x2�y2

, 3d�
xy
, 3d�

xz
, 3d�

yz
, and 3d�

z2�r2
(with � = �1=2), and six O states:

2p�
x
, 2p�

y
, and 2p�

z
. From all these states we only take account of the states with

highest energy, because these are the states that the valence holes of the CuO

structure will predominantly occupy. Furthermore, we restrict ourselves to the

states that hybridize most, i.e. the states 3dx2�y2 for Cu, and 2px, 2py for O.

For the geometry of a two-dimensional CuO2 plane, in which each unit cell

contains one Cu 3d and two O 2p orbitals, we are thus led to the well-known three-

band Hubbard or Emery model [29]. On the other hand, in a one-dimensional

CuO3 chain, each unit cell contains four orbitals. Therefore, strictly speaking,

this model should be called \four-band Hubbard model". To avoid confusion,

we will use the term \multi-band Hubbard model", independent of the geometry

under consideration. Due to the atomic 3d92p6 con�guration, it is appropriate to

use the hole notation, with one hole per unit cell (the so-called case of half-�lling).

The Hamiltonian H consists of an atomic part H0 and a hopping part H1

H = H0 +H1 , (2.2)

H0 = �
X
j�

n
p

j�
+ Ud

X
i

n
d

i"
n
d

i#
+ Up

X
j

n
p

j"
n
p

j#

+Vpd
X
hiji��0

n
d

i�
n
p

j�0
, (2.3)

H1 = tpd

X
hiji�

�
ij

pd

�
p
y

j�
di� + h.c.

�
+ tpp

X
hjj0i�

�
jj0

pp
p
y

j�
pj0� . (2.4)

The indices i and j denote Cu and O sites, respectively. � is the spin-index

(with values �1=2). dy
i�
(p

y

j�
) create a hole with spin � in the i-th Cu 3d orbital

(j-th O 2p orbital), and nd
i�
(n

p

j�
) are the corresponding number operators. The
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Figure 2.1: De�nition of the phase factors �
ij

pd
and �jj

0

pp
in the case of the CuO2

plane. Cu sites are represented by squares, O sites by circles.

�rst term in the atomic part H0 denotes the charge-transfer energy contribution.

The charge-transfer energy � is the di�erence between the on-site energies of O

and Cu sites. To obtain this form, we have subtracted a constant energy that

consists of all Cu on-site energies �d
i
. The second and the third term on the r.h.s.

of Eq.(2.3) describe the on-site Coulomb repulsions on Cu sites (parameter Ud)

and on O sites (Up). The last term in H0 is the inter-site Coulomb repulsion (Vpd)

between holes on neighbouring Cu and O sites, where hiji denotes summation
over nearest-neighbour pairs. The hopping part H1 consists of two terms. First,

there is the hybridization between neighbouring Cu 3d and O 2p orbitals (hopping

strength tpd), and, second, there is the hybridization between neighbouring O 2p

orbitals (hopping strength tpp). The factors �
ij

pd
and �

jj
0

pp
in Eq.(2.4) give the

correct sign for the hopping processes. They are de�ned in Fig. 2.1.

Using band-structure calculations for La2CuO4 [66], [51],[40], the following

parameter values for model (2.2) have been obtained (all values are in eV)

� Ud Up Vpd tpd tpp

3:6 10:5 4 1:2 1:3 0:65
(2.5)

Oxygen occupancies are expected to be smaller than copper occupancies, because

the positive value of the charge-transfer energetically favours copper sites, and

because there are at least two oxygen sites per hole (two dimensions: two O

sites per hole; one dimension: three O sites per hole). Therefore, the most

important parameters in model (2.2) are �, Ud, and tpd. For the same reason,

the parameters Up, Vpd, and tpp are frequently neglected. Reference [74] contains

a discussion of the in
uence of Up and Vpd on the Cu 2p3=2 spectra of �nite CuO3

chain clusters. The authors concluded that the spectra are rather insensitive to

these parameters. In the present thesis we will follow this line of reasoning, but



20 CHAPTER 2. MICROSCOPIC DESCRIPTION

we will take account of the O-O hopping tpp. Thus, we set Up = Vpd = 0, and use

the following simpli�ed form of Hamiltonian (2.2)

H = H0 +H1 , (2.6)

H0 = �
X
j�

n
p

j�
+ Ud

X
i

n
d

i"
n
d

i#
, (2.7)

H1 = tpd

X
hiji�

�
ij

pd

�
p
y

j�
di� + h.c.

�
+ tpp

X
hjj0i�

�
jj

0

pp
p
y

j�
pj0� . (2.8)

As standard set of parameters for Hamiltonian (2.6) we use [104] (again all values

are in eV)

� Ud tpd tpp

3:5 8:8 1:3 0:65
(2.9)

We now turn to the second term Hc in Eq.(2.1). Hc describes the interaction

between the core and the valence holes. Since in experiments the best syn-

chrotron 
ux is about 1012 photons per second while typical process times are

10�16 seconds, it is safe to assume that the core holes do not in
uence each other.

Therefore, it su�ces if Hc describes the interaction with a single core hole. We

will include two contributions to Hc. First, there is a Coulomb repulsion Udc

between the Cu 2p3=2 core hole and the 3d valence holes on the core-hole site.

Without loss of generality we may assume that this core-hole site is Cu site i = 0.

Second, there is the interaction that leads to multiplet splitting. This interaction

will be described by a Heisenberg-exchange term with an exchange constant Idc.

Thus, Hc reads

Hc = Udc

X
��

n
d

0�n
c

0� + Idc S
d

0�Jc0 . (2.10)

n
c

0� and Jc0 are the number operator and the pseudo-spin 3=2 operator of the

Cu 2p3=2 core hole, with � = �3=2; �1=2 (see Sec. 6.2). Sd0 is the spin 1=2

operator of the Cu 3d valence hole. Notice that the on-site energy �core of the

core hole, which is a constant, has been subtracted. In passing we note that

the Cu 2p1=2 spectrum could be described by an analogous Hamiltonian, if Jc0
and n

c

0� are replaced by the appropriate spin-1=2 quantities. In Eq.(2.10) the

interaction between the core hole and the valence holes is described in a rather

simple fashion. The multiplet splitting, for example, could be modelled in a more

realistic way (see the references in Sec. 2.3). Furthermore, the Coulomb repulsion

between core hole and valence holes will in reality not be restricted to the Cu

site alone. Thus, an intersite Coulomb term Upc between the core hole and the
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neighbouring O valence holes might be added to Hc. However, the in
uence of

Upc on the Cu 2p3=2 spectra of �nite CuO3 chain clusters has been found to be

rather small [74]. Therefore, Eq.(2.10) incorporates the essentials of the core

hole - valence hole interaction. Furthermore, it has the advantage to describe

valence-hole delocalization and multiplet splitting within one framework.

Summing up, in the hole notation the Hamilton operator that will be used in

this thesis has the form (2.1)

HXPS = H +Hc .

H is multi-band model (2.6) which describes the valence holes of the CuO struc-

tures in absence of core holes, and at half �lling (one valence hole per unit cell)

H = H0 +H1 ,

H0 = �
X
j�

n
p

j�
+ Ud

X
i

n
d

i"
n
d

i#
,

H1 = tpd

X
hiji�

�
ij

pd

�
p
y

j�
di� + h.c.

�
+ tpp

X
hjj0i�

�
jj

0

pp
p
y

j�
pj0� .

As de�ned in Eq.(2.10), the term Hc describes the interaction between a Cu 2p3=2

core hole and valence holes on the same site i = 0

Hc = Udc

X
��

n
d

0�n
c

0� + Idc S
d

0�Jc0 .

To obtain this form, a constant energy "c has been subtracted that consists of

the on-site energy �core of the core-hole and the sum of all Cu on-site energies �d
i

"c = �core +
X
i

�
d

i
. (2.11)

This energy "c corresponds to a global shift of the calculated spectra. HXPS

contains six free parameters: the four parameters from H with standard values

(2.9) in eV

� Ud tpd tpp

3:5 8:8 1:3 0:65

and the two parameters Udc and Idc from Hc. These last two parameters will be

obtained from the experiment in chapters 6 and 8. Finally, we note that HXPS de-

scribes valence-hole delocalization and multiplet splitting within one framework.
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2.2 Core-hole correlation function

Which microscopic quantity corresponds to the experimentally observed inten-

sity? Within the Born approximation, the intensity I (!), as a function of binding

energy !, is proportional to the Fourier transform of the time correlation function

of core-hole creation and annihilation operators c
y

0�, c0�, i.e.

I (!) �
X
�

Re

Z
1

0

dt e
i(!+i�)t h	j c0� cy0� (�t) j	i . (2.12)

The expression i� symbolizes a limit � ! 0 which ensures convergence of the

Fourier transform. c
y

0� creates a core hole at Cu site i = 0 with pseudo-spin 3=2

index � (see Sec. 2.1), where � = �1=2;�3=2. j	i is the ground state before

the creation of the core hole, that is the ground state of Hamiltonian HXPS from

Eq.(2.1) with ground-state energy EG

HXPS j	i = (H +Hc) j	i = EG j	i . (2.13)

Notice that j	i describes the system in the absence of core holes. Therefore,

j	i is an eigenstate of the core-hole part Hc from Eq.(2.10) with eigenvalue zero:

Hc j	i = 0. Consequently, j	i is the ground state of the valence part H from

Eq.(2.6) as well

H j	i = EG j	i . (2.14)

In Eq.(2.12) we may use the same index � for both the core-hole creation and

annihilation operator because the ground state j	i is an eigenstate of the total

number operator N� of valence holes with spin orientation �. Thus, if a di�er-

ent core-hole pseudo spin �0 is annihilated in Eq.(2.12) the resulting state does

not belong to the same eigenspace of N� as the ground state, and the matrix

element vanishes. Since the experiment does not allow to determine absolute

intensities (see Fig. 1.9), we do not need to specify the proportionality factor in

Eq.(2.12). In view of the fact that XPS measurements are usually carried out at

room temperature, the use of the ground-state expectation value in Eq.(2.12) has

to be motivated. The assumption that has been made here is that the di�erence

between T = 0 K and T = 300 K should be insigni�cant in view of the typical

width of the spectral features (Fig. 1.9) of the order 1 eV, i.e. 10000 K. Further-

more, as Cu 2p core-hole screening is a very local process (see Chap. 8), only the

electronic con�guration in the vicinity of the core-hole site is relevant. This local

con�guration should be roughly similar above and below the N�eel temperature.
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Next, Eq.(2.12) is reformulated in two di�erent ways. First, we need the

completeness relation in the (N � 1)-electron subspace with one core hole

1(N�1) =
X
�

j�i h�j ,

where j�i are eigenstates of HXPS (with eigenvalues E�) after the creation of the

core hole

HXPS j�i = E� j�i .

When this completeness relation is inserted, Eq.(2.12) leads to

I (!) �
X
�

Re

Z
1

0

dt e
i(!+i�)t h	j c0� cy0� (�t) j	i

=
X
�

Re

Z
1

0

dt e
i(!+i�)t h	j c0� e�itHXPS c

y

0� e
itHXPS j	i

=
X
�

Re

Z
1

0

dt e
i(!+i�)t

X
�

h	j c0� e�itHXPS j�i h�j cy0� eitHXPS j	i

=
X
�

Re
X
�

h	j c0� j�i h�j cy0� j	i
Z

1

0

dt e
i(!+i��E�+EG)t

=
X
�

Re
X
�

i

���h�j cy0� j	i���2
! + i� � (E� � EG)

=
X
�

X
�

���h�j cy0� j	i���2 �

[! � (E� � EG)]
2
+ �2

,

where EG is the ground-state energy of j	i. Using

lim
�!0

�

x2 + �2
= � � (x) ,

and absorbing � into the proportionality factor we obtain

I (!) �
X
�

X
�

���h�j cy0� j	i���2 � [! � (E� � EG)] . (2.15)

Thus, the binding energy ! may be interpreted as the energy di�erence between

the ground state j	i of a N -electron system and the eigenstates j�i of a (N � 1)-

electron system. Equation (2.15) is especially useful when the eigenvectors j�i
are known (see Chap. 6).
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Another way to reformulate Eq.(2.12) consists in rewriting the core-hole cre-

ation operator in the Heisenberg picture

c
y

0� (�t) = e
�itHXPS c

y

0� e
itHXPS (2.16)

= e
�itLXPS c

y

0� ,

where LXPS is the Liouville operator. It is de�ned for arbitrary operators A by

LXPSA = [HXPS; A] . (2.17)

Equation (2.16) can be easily proved using the corresponding equations of motion

(that is, deriving both sides of Eq.(2.16) with respect to t). Using the Liouville

operator we formally carry out the integration in Eq.(2.12) to obtain

I (!) �
X
�

Re

Z
1

0

dt e
i(!+i�)t h	j c0� cy0� (�t) j	i

=
X
�

Re

Z
1

0

dt h	j c0� eit(!+i��LXPS) cy0� j	i

=
X
�

Re h	j c0�
i

! + i� � LXPS

c
y

0� j	i

= �
X
�

Im h	j c0�
1

! + i� � LXPS

c
y

0� j	i .

Thus, the intensity is proportional to the imaginary part of the single core hole

correlation function G
�

00

I (!) � �
X
�

Im
h
G
�

00 (! + i�)
i
, (2.18)

G
�

00 (! + i�) = h	j c0�
1

! + i� � LXPS

c
y

0� j	i . (2.19)

The poles of G
�

00 (as a function of !) correspond to the excitation energies of the

system, the pole weights determine their contributions to the intensity. Equa-

tions (2.18) and (2.19) will be used for the calculation of XPS spectra in in�nite

systems (see Chap. 8). It follows from the structure of G
�

00 that the calculation

of the intensity involves the solution of two problems. First, one has to �nd an

approximation for the ground state j	i of Hamiltonian HXPS, i.e. the ground

state of the system before the creation of the core hole. As discussed above, j	i
is also ground state of Hamiltonian H from Eq.(2.6). This problem will be ad-

dressed in Part II of this thesis. Second, given j	i one has to solve the dynamics
(! � LXPS)

�1
after the creation of the core hole. This will be discussed in Part

III. Before we proceed to solve these two problems, we shall give an overview of

results obtained by other groups in the next section.
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2.3 Previous results

The analysis of ground-state properties, as well as the investigation of Cu core-

level XPS have been the subject of many publications, especially since the dis-

covery of high-temperature superconductivity. In the following we try to give

an overview of the works previously carried out by other groups on ground-state

properties of Hamiltonian (2.2), and on Cu 2p core-level XPS in cuprates. With

the present section we intend to o�er the interested reader a brief chronological

guide through the literature on the topics of this thesis. It can be skipped in a

�rst reading.

2.3.1 Ground state

Due to its relevance for the high-Tc materials, model (2.2) has been studied

mostly on CuO2 planes. We begin by a short list of analytical approaches. In

1989, using a Hartree-Fock approximation and a Gutzwiller ansatz, Oles and Za-

anen [77] calculated the Cu occupation number and the Cu magnetic moment as

a function of the charge-transfer energy and the hole-doping. The doping depen-

dence of these quantities has also been studied by Fedro and coworkers [33] in

1992. Using a mean-�eld approximation, they calculated the density of states,

and compared their results to Quantum Monte Carlo calculations from Refs. [24]

and [87]. In 1993, Luo and Bickers [62] used the 
uctuation-exchange approxi-

mation (FLEX) to obtain the doping dependence of occupation numbers and the

N�eel temperature for the three-band model. Two years later, in 1995, Beatrici

and Gusm~ao [7] obtained the density of states from perturbation theory around

the atomic limit. Furthermore, they calculated the dependence of the magne-

tization on the doping concentration. In 1998, Sugihara, Ikeda, and Entel [93]

analyzed the three-band model using a random-phase approximation. In quali-

tative agreement with experimental results [3], they found an asymmetry of the

magnetic phase diagram with regard to electron vs. hole-doping. However, the

theoretical N�eel temperature was found to have its maximum at non-vanishing

electron-doping. Recently, Maier and coworkers [65] investigated magnetic prop-

erties of the three-band model using dynamical mean-�eld theory. Again, the

magnetic phase diagram was found to be asymmetric. Quantitatively, however,

these results are still not satisfying, because the N�eel temperature has its maxi-

mum at non-vanishing hole-doping, and its absolute value is too large.

Numerically, mostly exact diagonalization calculations and Quantum Monte

Carlo simulations have been used to study model (2.2). In 1989, Stephan, von der

Linden, and Horsch [92] performed exact diagonalizations of planar clusters con-
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sisting of 2�2 plaquettes. In this way, occupation numbers and nearest-neighbour
correlation functions were obtained. Quantum Monte Carlo simulations (using a

grand-canonical ensemble) have been applied to a 4� 4 plaquette system in 1990

by Dopf, Muramatsu, and Hanke [24]. They calculated occupation numbers, the

magnetic structure factor, and other correlation functions. In 1991, Scalettar

and coworkers [87] performed both exact diagonalization calculations (on a 2� 2

plaquette cluster) and Quantum Monte Carlo simulations (4 � 4 plaquettes) to

obtain occupation numbers as a function of doping and of the charge-transfer

energy, as well as the magnetic structure factor and several susceptibilities. The

spectral density for the three-band Hubbard model has been calculated in 1992

by Dopf and coworkers [25], using Quantum Monte Carlo for a system consisting

of 4� 4 plaquettes. In 1993, Bhattacharya and Wang [13] analyzed ground-state

properties of Hamiltonian (2.2) on CuO2 lattices using �nite-temperature Monte

Carlo and variational Monte Carlo. They analyzed the dependence of occupation

numbers and the magnetic structure factor on the parameters tpp, Up, and Vpd,

and on hole- and electron-doping. Finally, ground-state properties of Hamilton

operator (2.2) on CuO3 chain-clusters consisting of four plaquettes have been

studied in 1997 by Drechsler, M�alek, and Eschrig [27], using numerical exact

diagonalization.

2.3.2 Cu 2p core-level XPS

In addition to the dominant main line, the Cu 2p core-level spectrum of many

formally divalent Cu compounds { like CuF2, CuCl2, CuBr2 [102], the high-Tc

cuprates [36], [90], or CuO [90], [38] { shows a pronounced satellite structure. In

analogy to an approach for metals by Kotani and Toyozawa in 1973 [58], Larsson

and Braga [61], in 1977, assigned this satellite structure to a (\poorly screened")

�nal state (denoted 3d9) in which the valence hole largely remains on the Cu site.

In this way, the structure of the satellite could be explained by multiplet splitting

due to the remaining d-hole. The main line was interpreted as originating from a

�nal state in which the hole resides in the neighbouring ligands (denoted 3d10L).

Subsequently, in 1981 van der Laan and coworkers [102] corroborated this

interpretation by an analysis based on a cluster approach in which the ground

state is approximated by a superposition of the two states 3d9 and 3d10L. Models

of this kind have been used by many other groups as well. For instance, Fujimori,

Minami, and Sugano [35] in 1984, and Zaanen, Westra, and Sawatzky [112] in

1986 applied a cluster model to the valence-band photoemission of Ni compounds.

In 1987, Shen and coworkers [90] used a cluster model to describe the spectra of

several cuprates. In 1988, a cluster model has also been successfully applied to
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CuO by Ghijsen and coworkers [38]. Furthermore, they showed that { in contrast

to the divalent compounds { the closed-shell compound Cu2O has no satellite and

can be adequately described by one-electron band structure calculations.

Meanwhile, in 1984 Kakehashi, Becker, and Fulde [52] presented a purely

theoretical analysis of core-level spectroscopy. In their model, valence electrons

were described by one band, and exchange splitting was included in the form of

a Heisenberg term. The spectra were calculated using Mori-Zwanzig projection

technique (see Chap. 7). Later, in 1990, this method was applied by Becker,

Brenig, and Fulde [10] to the valence band spectrum of the three-band model.

Another very popular model for the description of core-level spectroscopy is

the single-site Anderson impurity model. In 1983 Gunnarsson and Sch�onhammer

[42] [43] introduced this model for the study of Ce compounds, and applied it to

calculate XPS, XAS (X-ray absorption spectroscopy), and BIS (bremsstrahlung

isochromat spectroscopy). In 1989, using an impurity model with �ve �lled bands,

Okada and Kotani [71] analyzed the Cu 2p multiplet structure and its depen-

dence on the hybridization in the spectra of La2CuO4 (measured by N�ucker and

coworkers [70]), and compounds from Ref.[102]. Later, in 1991, Tanaka, Okada,

and Kotani [96] applied this model to other forms of spectroscopy, like X-ray

emission spectroscopy (XES) and XAS. The doping dependence of the spectral

weight in the high-Tc cuprates has been analyzed in 1991 by Eskes and Sawatzky

[32] using an analogous model. In 1990, Eskes, Tjeng, and Sawatzky [31] had used

this model to describe the spectrum of CuO. Furthermore, from their analysis

these authors concluded that the in
uence of out-of-plane apex oxygens should

be small. In contrast, Parmigiani and coworkers [81] showed in 1992 that the

Cu 2p main line in copper oxides without apex-oxygen site (CuO, Nd2CuO4)

is narrower than in compounds with one apex oxygen (Bi2Sr2CaCu2O8) or two

apex oxygens (La2CuO4) per copper site. They attributed the additional spectral

width to excitations into non-planar orbitals.

In particular, it is interesting to note that, in 1991, Parmigiani and coworkers

[80] identi�ed three substructures in the main line of the Cu 2p3=2 spectrum

of Bi2Sr2CaCu2O8. An analogous substructure has been found in 1997 in the

spectrum of Sr2CuO2Cl2 [15], [16] (which will be analyzed in this thesis, see

Secs. 8.2 and 8.3). In 1991, Tranquada and coworkers [99] measured the Cu 2p3=2

spectra of several compounds, including Bi2CuO4, and compared their results

to unrestricted Hartree-Fock calculations for CuO6 and CuO12 clusters. Both

theoretically and experimentally, they found a positive correlation between the

energy of the main line and the satellite to main-line intensity ratio Is=Im. The

importance of the Cu valency for the strength of the satellite and the width of

the main line was further underscored in 1992 by Karlsson, Gunnarsson, and
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Jepsen [53] by means of a calculation within an impurity Anderson model. In

1994, Goldoni and coworkers [39] measured the Cu 2p3=2 spectrum of Bi2CuO4,

and analyzed it in terms of an impurity cluster model. Another application of

this model to the core-level spectra of high-Tc cuprates has been carried out by

Chiaia and coworkers [19] in 1995.

Before 1993, the main line in the Cu 2p3=2 spectra had been attributed to

a local 3d10L excitation. However, this interpretation does not account for the

asymmetry and the large width of the main line, which cannot be explained

by experimental resolution or lifetime e�ects alone. Usually, this width had

been associated with the oxygen bandwidth [43],[112]. Another proposal was a


uctuating charge state in which the bandwidth would be due to the superposition

of several main lines, as suggested for CuO by Parmigiani and Samoggia [79] in

1988. It was the merit of van Veenendaal, Eskes, and Sawatzky [103],[104] to point

out an alternative explanation in 1993. Using numerical exact diagonalization of

a Cu3O10 cluster (i.e. a chain of three plaquettes), these authors showed that

the valence hole could delocalize further in the crystal. This leads to a lowest

eigenstate of 3d10 character, in which the hole is mainly pushed out onto the

neighbouring CuO4 units, forming a Zhang-Rice singlet [113]. Furthermore, this

approach led to more consistent values for the charge-transfer energy [104]. In

1994, van Veenendaal and Sawatzky [105] applied their model to a Cu2O7 cluster,

including multiplet e�ects. An analogous approach was used by Tanaka and Jo

[97] in 1997 to calculate the core level spectrum of a Cu3O10 chain cluster.

Obviously, a screening due to surrounding CuO4 units may lead to a depen-

dence of the spectra on the geometry of the CuO network. This suggests the

possibility of �nite-size e�ects in cluster calculations. In fact, Okada and Kotani

[72] showed in 1995 that there are di�erences between the spectra obtained by

diagonalizing a Cu5O16 chain cluster compared to a Cu3O10 chain cluster. Fur-

thermore, Ref. [72] contains cluster calculations for a planar Cu5O16 cross-like

cluster (see also Refs. [15] and [75]), and a short discussion of the in
uence of

the (non-planar) Cu 3d3z2�r2 orbital in the presence of apical oxygens. In 1996,

Okada and coworkers [73] measured the Cu 2p XPS of Sr2CuO3, and analyzed it

using exact diagonalization of chain clusters with lengths of up to seven plaque-

ttes (Cu7O21). The calculation for the largest cluster was found to be converged

with respect to the system size. Okada and coworkers obtained a satisfactory

agreement with the experimental results for a charge-transfer energy � = 2:5

eV. The shoulder structure on the higher binding energy side of the main line

was interpreted as being due to a �nal state of the following character: one half

of the hole density pushed out from the core-hole site is transferred to the O

sites just above and below the core-hole site, and the other half spreads over the
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cluster. Consequently, the broad main-peak of Sr2CuO3 was attributed entirely

to non-local screening.

In 1997, an analysis of spectral data for Sr2CuO3 by Maiti and coworkers

[63],[64] using a con�guration interaction model of a CuO4 cluster resulted in an

unusually small value for � ' 0:5 eV. In the same year, Okada and Kotani [75]

discussed the Cu 2p XPS of Bi2CuO4, Sr2CuO3, Sr2CuO2Cl2, and other cuprates.

They used exact diagonalization of edge-sharing chain clusters (Cu5O12), corner-

sharing chain clusters (Cu5O16) and a Cu5O16 cross-like cluster. More details

about the chain calculations are given in a 1998 paper by the same authors [76].

These calculations will be compared with our results in chapters 6 and 8. Another

paper by Okada and Kotani [74] from 1997 investigated the in
uence of intersite-

Coulomb interactions Vpd and Vpc (see Sec. 2.1) on the spectrum of a Cu4O12 chain

cluster. They concluded that the in
uence of these parameters is small, especially

as their e�ects seem to cancel each other out. Experimental work by Parmigiani

and coworkers [82] in 1997 showed that the main line in the Cu 2p spectrum of

CuGeO3 consists of a single peak, similar to the one of Bi2CuO4 and Li2CuO2

(cf. Fig. 1.9). Also in 1997, Rosner and et al. [84] performed LDA band-structure

calculations for Sr2CuO3 and Ca2CuO3. A �t of the result for Sr2CuO3 using

an extended one-band Hubbard model resulted in a nearest-neighbour Cu-Cu

hopping t1 = 0:55 eV. Furthermore, magnetic properties of the two compounds

were analyzed by means of an anisotropic Heisenberg model. Generally, the one-

dimensional Heisenberg model has been successfully used to describe magnetic

properties of Sr2CuO3 like, for instance, midinfrared optical absorption spectra

(Suzuura and coworkers [94]), magnetic susceptibility (Motoyama, Eisaki, and

Uchida [69]), or nuclear magnetic resonance (NMR) (Takigawa and coworkers

[95]). For a discussion of exchange integrals in this compound see also the 1996

paper by Drechsler and coworkers [26].

The two publications by B�oske et al. on the Cu 2p3=2 XPS of Sr2CuO2Cl2

[15] and other model cuprates [16] have already been mentioned in Sec. 1.4, and

in the following chapters we shall focus our attention on their results. These

measurements have also been the topic of a recent theoretical study by Karlsson,

Gunnarsson, and Jepsen [54] in which the Anderson impurity model has been

used. Their conclusions will be discussed and compared to our results in chapters

6 and 8.
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Part II

Ground state
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Chapter 3

Basic ideas

In this chapter we describe the main properties of our approach towards the

ground state j	i of the multi-band Hamiltonian H from Eq.(2.6) at half-�lling.

This method has been published in Ref. [107]. A preliminary version can be found

in Ref. [83]. In Sec. 3.1 we outline the general framework of the approach. It may

be interpreted as a variational transformation of an approximate ground state

j 0i within the space spanned by certain 
uctuation operators F�. Thereby,

variational parameters �� are used. As a demonstration, in Sec. 3.2 this formal-

ism is applied to the (exactly solvable) problem of one hole on a single CuO4

plaquette. This structure is the basic building block of all Cu-O networks that

will be considered in the following (see Fig. 1.6). In Sec. 3.3 the relation between

our approach and the cumulant formalism is discussed. Some advantages of the

approach are presented in Sec. 3.4. One important result is that our formalism

leads to exact solutions even in cases where naive perturbation theory would

diverge.

3.1 General formalism for ground states

The formalism for ground states that we shall develop in the following consists

of three basic ingredients. First, we need a state j 0i that serves as a �rst

approximation to the full ground state j	i. Second, we introduce 
uctuation

operators F� that approximately transform j 0i into the full ground state j	i.
Third, there are 
uctuation strengths �� corresponding to the operators F�.

These parameters �� will be determined from the condition that the resulting

33
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state has to be an eigenstate of the Hamiltonian H of Eq.(2.6)

H = H0 +H1 ,

H0 = �
X
j�

n
p

j�
+ Ud

X
i

n
d

i"
n
d

i#
,

H1 = tpd

X
hiji�

�
ij

pd

�
p
y

j�
di� + h.c.

�
+ tpp

X
hjj0i�

�
jj

0

pp
p
y

j�
pj0� .

Thus, the approach may be interpreted as a variational transformation of state

j 0i within the space spanned by the 
uctuation operators F�, using variational

parameters ��.

Our main assumption about the ground state of H at half-�lling is that each

hole is localized within a small spatial region. This assumption is justi�ed if

the hopping part H1 of Hamiltonian H is small compared to the atomic part

H0. It is, however, di�cult to determine a priori under which circumstances

H1 is small enough to guarantee the local nature of the ground state. A local

approach will be favoured if hopping parameters are small compared to on-site

energy di�erences or Coulomb repulsions. Nevertheless, a perturbative treatment

of the hopping may break down if it is based on a state in which the localization

region of the holes is too small. This will be shown in Sec. 3.4 for the case of a

single CuO4 plaquette. For this reason we shall treat all 
uctuations due to the

hopping in a non-perturbative approximation. Fluctuations that lead beyond a

certain spatial range will be neglected. Both the non-perturbative approximation

and the neglect of far-reaching 
uctuations will be justi�ed a posteriori.

Since the ground state is predominantly of local character, we shall formulate

the approach in position space. A natural choice for state j 0i is the N�eel-ordered
ground state j 0i of H0

j 0i =
Y
i

d
y

i;�(i)
j0i . (3.1)

j0i is the 'vacuum' state (no holes), and d
y

i;�(i)
creates a hole on Cu site i, with

spin � (i), depending on the site. Thus, in j 0i every Cu site is singly occupied

(with alternating spin direction) and all O sites are empty. As long as there

are strong antiferromagnetic correlations a N�eel-ordered state is a good starting

point even if, like in the case of one dimension, the ground state does not possess

long-range antiferromagnetic order [17].

For a non-vanishing hopping part of the Hamiltonian, j 0i cannot be the full
ground state because it does not contain charge 
uctuations. These 
uctuations

are described by 
uctuation operators F�. For di�erent geometries one needs

di�erent operators F�. Therefore, we shall �rst outline the general way in which
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the F� enter the calculation, while their actual de�nition will be given later (see

Secs. 3.2, 4.1, and Appendix A). Under quite general conditions it can be shown

(see Sec. 3.3) that the transformation leading from j 0i to the full ground state

j	i has to be of exponential form

j	i = exp

 X
�

��F�

!
j 0i . (3.2)

From Eq.(3.2) all ground-state properties can be evaluated using

hAi = h	jA j	i
h	 j 	i . (3.3)

The ground-state energy, for instance, is calculated from Eq.(3.3) with A = H.

The 
uctuation strengths �� in Eq.(3.2) are determined using the following set

of equations

0 = h	j
�
H;F

y

�

�
j	i , � = 1; 2; : : : . (3.4)

The r.h.s. of Eq.(3.4) depends on the 
uctuation strengths ��, because they enter

j	i according to Eq.(3.2). Equation (3.4) follows from the condition that j	i is
an eigenstate of Hamiltonian H. If only a �nite set of 
uctuation operators

F� is used, Eq.(3.2) is only an approximate eigenstate of H. Compared to other

conditions, Eq.(3.4) has several important advantages. This will be demonstrated

not only for the evaluation of ground-state properties (Sec. 3.4), but also for the

calculation of excitations (Sec. 7.3).

Due to the commutator on the r.h.s. of Eq.(3.4), only those contributions

enter for which the F� do not commute with the Hamiltonian. Thus, for 
uc-

tuation operators F� that act on a limited spatial region all contributions from

outside this region cancel. In a diagrammatic description this would correspond

to the elimination of unconnected diagrams. It will guarantee that approximated

extensive quantities (like the ground-state energy) still scale with system size,

a property called size consistency. Furthermore, for the same reason the whole

approach presented can equivalently be formulated in terms of cumulants. This

relation to the cumulant formalism will be discussed in Sec. 3.3. Before, we shall

apply the approach presented above to the (exactly solvable) problem of one hole

on a single CuO4 plaquette.

3.2 Application to a CuO4 plaquette

In this section we use a one-particle problem { one hole on a single CuO4 pla-

quette { to illustrate some features of the ground-state formalism that has been
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Figure 3.1: De�nition of the phase factors �
0j
pd
and �jj

0

pp
for the CuO4 plaquette.

introduced in Sec. 3.1. When applied to this system, the multi-band Hamiltonian

(2.6) has the form H = H0 +H1, where

H0 = �
X
j

n
p

j
,

H1 = tpd

X
j

�
0j
pd

�
p
y

j
d0 + h:c

�
+ tpp

X
hjj0i

�
jj0

pp
p
y

j
pj0 .

The Cu site is denoted by i = 0 while j and j 0 are the four O sites. There is only

one hole, therefore the spin index has been suppressed. The phase factors �
0j
pd

and �jj
0

pp
are shown in Fig. 3.1.

The eigenvalue problem can be solved exactly. Since there are �ve sites, the

system has �ve eigenstates. They are shown in Table 3.1. jdi is the state in which
the hole is on the Cu site i = 0, and jpji are the states in which the hole is on O

site j

jdi = d
y

0 j0i ,

jpji = p
y

j
j0i .

As always j0i denotes the \vacuum" state without holes. Furthermore jpi =
1
2
(jp1i+ jp2i � jp3i � jp4i), and

E� =
1

2

�
�� 2tpp �

q
(�� 2tpp)

2
+ (4tpd)

2

�
. (3.5)

Eigenstate Norm Eigenenergy

jE�i = 2tpd jdi � E� jpi 4t2
pd
+ (E�)

2
E�

jE+i = 2tpd jdi � E+ jpi 4t2
pd
+ (E+)

2
E+

jO1i = jp1i � jp2i+ jp3i � jp4i 4 �

jO2i = jp1i+ jp2i+ jp3i+ jp4i 4 �

jO3i = jp1i � jp2i � jp3i+ jp4i 4 � + 2tpp

Table 3.1: Eigenstates and eigenenergies of the single-plaquette system.
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E� is the ground-state energy of the system. Notice that E� contains only a

reduced e�ective charge-transfer energy �� 2tpp.

Let us now apply the formalism from Sec. 3.1 to this problem. The ground

state (3.1) of H0 is in this case just the state with pure Cu occupancy

j 0i = jdi .

The 
uctuations that transform this atomic ground state into the full ground

state j	i are charge 
uctuations from the Cu to the four O sites. Since the

ground state should have the same symmetry as the Hamiltonian, we may use a

single 
uctuation operator F1 to describe these 
uctuations, cf. Fig. 3.1

F1 = �
X
j

�
0j
pd
p
y

j
d0 . (3.6)

The minus sign in Eq.(3.6) has been introduced to guarantee a non-negative

value of the 
uctuation parameter �1 (see Eq.(3.10) and Sec. 4.1). According to

Eq.(3.2), the full ground state of one hole on a single plaquette is given by

j	i = exp (�1F1) j 0i . (3.7)

The 
uctuation strength �1 is determined from condition (3.4)

0 = h	j
h
H;F

y

1

i
j	i . (3.8)

Since applying F1 twice onto a singly occupied Cu site leads to zero, only terms

up to order �21 contribute in Eq.(3.8)

h	j
h
H;F

y

1

i
j	i = h 0j exp

�
�1F

y

1

� h
H;F

y

1

i
exp (�1F1) j 0i

= h 0j
�
1 + �1F

y

1

� h
H;F

y

1

i
(1 + �1F1) j 0i .

The �rst term
�
HF

y

1

�
of the commutator contributes only in order �21. It de-

scribes a process in which the hole �rst 
uctuates from Cu to O and back via

F
y

1F1. Then, the hole 
uctuates a second time via F
y

1H. Since there are four O

sites, there are 16 di�erent possibilities for this double 
uctuation

h 0j
�
1 + �1F

y

1

�
HF

y

1 (1 + �1F1) j 0i = �
2
1 h 0jF y

1HF
y

1F1 j 0i
= �16tpd�21 .

The second part
�
�F y

1H

�
of the commutator describes several processes. Either

the hole 
uctuates from Cu to O and back via F
y

1H (four possibilities), or from
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�1

� = 1:3 0:500

� = 1:5 0:481

� = 2:5 0:398

� = 3:5 0:331

� = 4:5 0:279

Table 3.2: Fluctuation parameter �1 for the CuO4 plaquette as a function of �.

Cu to O to another O and back via F
y

1HF1 (eight possibilities). In addition, there

is a third process in which the hole moves from Cu to O { where H 'measures'

the on-site energy � { and back via F
y

1HF1 (four possibilities)

�h 0j
�
1 + �1F

y

1

�
F
y

1H (1 + �1F1) j 0i = �h 0jF y

1H (1 + �1F1) j 0i
= 4tpd + 8tpp�1 � 4��1 .

If all terms are summed up, condition (3.8) assumes the form of a quadratic

equation in �1

0 = tpd � (�� 2tpp)�1 � 4tpd�
2
1 . (3.9)

The positive solution is

�1 =
(�� 2tpp)�

q
(�� 2tpp)

2
+ (4tpd)

2

�8tpd
. (3.10)

If we use parameter set (2.9) with several di�erent values for �, we obtain the

�1-values in Table 3.2.

Equation (3.7), together with Eq.(3.10), is the exact ground state. This will be

demonstrated by calculating the ground-state energy EG and the Cu-occupation

number hnCui. First we need the norm of state (3.7)

h	 j 	i = h 0j exp
�
�1F

y

1

�
exp (�1F1) j 0i

= h 0j
�
1 + �1F

y

1

�
(1 + �1F1) j 0i

= 1 + 4�21 . (3.11)
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The ground-state energy is

EG =
h	jH j	i
h	 j 	i

=
h 0j

�
1 + �1F

y

1

�
H (1 + �1F1) j 0i

1 + 4�21

= 4�1
(�� 2tpp)�1 � 2tpd

1 + 4�21
.

Using Eq.(3.9) this expression can be transformed to give

EG = 4�1
tpd � 4tpd�

2
1 � 2tpd

1 + 4�21
= �4tpd�1 . (3.12)

Together with Eq.(3.10) this gives the exact ground-state energy E� (see Eq.(3.5));

the negative solution for �1 gives E+. Notice that we could have obtained this

result more easily using the \mixed average"

EG =
h 0jH j	i
h 0 j 	i

(3.13)

instead of Eq.(3.3). In fact

EG =
h 0jH j	i
h 0 j 	i

= �1 h 0jHF1 j 0i = �4tpd�1 .

However, in general the \shortcut" Eq.(3.13) leads to the same value for the

ground-state energy as Eq.(3.3) only if j	i is the exact ground state. On the other
hand, as demonstrated above, Eq.(3.13) is much easier to evaluate. Therefore,

in the following we will calculate ground-state energies using Eq.(3.13) instead of

Eq.(3.3), even if j	i is not the exact ground state.

The Cu occupation number hnCui is the probability of �nding the hole on the

Cu site

hnCui =
h	jnd j	i
h	 j 	i

=
h 0j

�
1 + �1F

y

1

�
nd (1 + �1F1) j 0i

h	 j 	i
=

1

h	 j 	i
=

1

1 + 4�21
, (3.14)
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which is again the exact result.

Summarizing, the application to the problem of a single CuO4 plaquette shows

that the formalism of Sec. 3.1 is an e�cient tool for the calculation of ground-state

properties. Further properties of the approach will be discussed in the following

two sections.

3.3 Relation to the cumulant formalism

There is a close relation between the approach described in Sec. 3.1 and the cumu-

lant formalism [8]. First, let us brie
y repeat the basic concepts and statements

of the cumulant formalism. The cumulant expectation value [59] of a product of

operators Ai, with i = 1; : : : N , for two states j'i and j�i is de�ned by

h'jA1 � � �AN j�ic =
@

@�1

� � � @

@�N
ln h'j e�1A1 : : : e�NAN j�i

����
�1=:::=�N=0

.

Here and in the following we always assume that the states involved in a cumulant

have non-vanishing overlap, i.e. h' j �i 6= 0. For N = 1 the cumulant is just the

usual expectation value divided by h' j �i. For N > 1 the cumulant is a linear

combination of di�erent factorizations of this expectation value. For example,

for N = 2

h'jA1A2 j�ic =
h'jA1A2 j�i
h' j �i � h'jA1 j�i h'jA2 j�i

h' j �i2
.

When writing down a cumulant expression one has to determine which of the

operators are subjected to the factorization process. In the following, if not

indicated otherwise, all operators appearing within a cumulant are treated as

separate entities with respect to the cumulant ordering. These operators are

called prime operators, as opposed to composite operators which are products of

prime operators [88]. The following identity [56] holds for any prime operator F

and any (prime or composite) operator A

h'j eF y

Ae
F j�ic =



e
F
'

��A ��eF��c . (3.15)

This equation allows to remove the exponential functions from the cumulant

ordering and apply them directly onto the states. Finally, we note that one of

the attractive features of cumulants is that they preserve size consistency [89].

The cumulant formalism for the calculation of ground-state properties may

now be formulated as follows. By application of a (composite) operator 
 within

the cumulant ordering, an approximate ground state j 0i can be mapped onto the
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full ground state j	i. Notice that in general 
 depends on j 0i. If one assumes
that 
 can be represented by a universal analytic function of a prime operator,

it follows [88] that 
 is of exponential form

j	ic = 
 j 0ic = exp

 X
�

��F�

!
j 0ic . (3.16)

Here, the exponential function should be understood in terms of a series expansion

in which the �rst term (unity) is not subjected to the cumulant ordering. From

Eq.(3.16) ground state properties can be calculated using

hAi = h'jA
 j 0ic , (3.17)

with an arbitrary state j'i. The parameters �� in Eq.(3.16) are determined using
the following set of equations [88]

0 = h'jF y

�
H
 j 0ic (3.18)

for all �. Equation (3.18) follows [56] from the condition that 
 j 0ic is an

eigenstate of H.

Next we demonstrate the relation between the above equations and Eqs.(3.2),

(3.3), and (3.4). If we choose j'i = 
 j 0i and use Eq.(3.15) we can directly

transform Eq.(3.16) into Eq.(3.2), as well as Eq.(3.17) into Eq.(3.3). On the

other hand, Eq.(3.4) is equivalent to a linear combination of Eq.(3.18) and its

analogue with F� instead of F y

�

0 = h'jF�H
 j 0ic . (3.19)

Notice that, if 
 j 0ic is an exact eigenstate of H, Eqs.(3.18) and (3.19) are equiv-

alent. If, however, 
 j 0ic is an approximate eigenstate of H it is possible that

only one set of equations is ful�lled. This means that one may �nd (slightly)

di�erent values for the parameters �� if one uses Eq.(3.18) or Eq.(3.19) or some

linear combination of both. In other words, the approximate ground state de-

pends on the form of the equations for the determination of the ��. We now

choose j'i = 
 j 0i in Eqs.(3.18) and (3.19), and we use Eq.(3.15) to obtain

0 = h
 0jF y

�
H j
 0ic ,

0 = h
 0jF�H j
 0ic .

Subtracting the �rst equation from the complex conjugate of the second equation

leads to Eq.(3.4)

0 = h
 0jHF y

�
j
 0ic � h
 0jF y

�
H j
 0ic

= h
 0j
�
H;F

y

�

�
j
 0i ,
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where we have assumed that j
 0i is normalized. Since a commutator is always
a prime operator within the cumulant ordering [56], the last expression is a sim-

ple expectation value. Note that the factorizing terms are now removed by the

commutator, instead of the cumulant, which guarantees size consistency.

Summing up, the approach presented in Sec. 3.1 is a speci�c version of the

cumulant formalism. In the next section we shall discuss some of its advantages.

3.4 Advantages

As we have seen in the preceding section, within the cumulant formalism the

approach presented in Sec. 3.1 amounts to the following procedure. One applies

the operator 
 onto both the bra- and ket-vector, transfers 
 out of the cumulant

ordering with Eq.(3.15), and determines the values of the 
uctuation parameters

using a linear combination of Eqs.(3.18) and (3.19).

What di�erence does this make in comparison to other possible versions of

Eqs.(3.16), (3.17), and (3.18)? For instance, one might choose j'i = j 0i, or, if
j'i = 
 j 0i, one might leave the operator 
 within the cumulant ordering.

To answer this question, let us �rst apply the cumulant formalism with j'i =
j 0i to the problem of a single CuO4 plaquette from Sec. 3.2. In this case,

Eq.(3.18) leads to the same quadratic equation (3.9), and to the same (exact)

formula (3.12) for the ground-state energy as the approach from Sec. 3.1. This

is due to the fact that the operator 
 appears only once in each expression,

which leads to a truncation of the exponential function in �1. However, since

j'i = j 0i, Eq.(3.17) gives an incorrect result for the Cu occupation number:

hnCui = 1, independent of �1. The reason for this failure is that there are no

operators to the left of nd which could remove the 
uctuations created by 
.

Therefore, the in
uence of 
uctuations on hnCui is completely neglected.

This problem does not occur if j'i = 
 j 0i, because in this case the operator

 appears twice in the cumulant

hnCui = h 0j
y
nd
 j 0ic .

Now, however, the exponential functions in �1 do not truncate. Instead, when

the cumulants are evaluated the following in�nite power series results

hnCui = 1� 4�21 + 16�41 � 64�61 � : : : .

This is just the series expansion of the exact result (3.14)

hnCui =
1

1 + 4�21
.
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The expansion diverges for �1 � 0:5 (that is, for values of �1 that are still smaller

than 1). This demonstrates that a perturbative treatment of F1 
uctuations (i.e.

an expansion in �1) is in general not possible. This should apply not only to the

case of a single plaquette but also to in�nite systems, in which charge 
uctuations

are even stronger (see Sec. 4.4). Notice that, typically, �1 is of the order 1=2 (see

Table 3.2).

Thus, the transfer of operator 
 from the cumulant ordering into the state

using Eq.(3.15) amounts to a summation of all orders in �1. In this sense the

approach of Sec. 3.1 goes beyond the cumulant formalism as it is applicable even if

{ for the given state j 0i { the operator 
 does not exist in the cumulant ordering,

like in the case above for �1 � 0:5. The divergence of the series expansion for

�1 = 0:5 may now be interpreted as follows. Condition �1 = 0:5 is equivalent to

a vanishing e�ective charge-transfer energy �� 2tpp = 0, cf. Eqs.(3.5) and (3.9).

Therefore, the series diverges when the O sites (e�ectively) become energetically

equal to the Cu site. This can also be seen from the fact that the Cu-occupation

number drops to 1=2 precisely when �1 reaches the value 0:5. The divergence in

�1 has been observed previously [10], although its origin was unclear at that time.

From a more formal point of view the divergence occurs when the condition [89]

jh 0 j 	ij > 1=2

is violated. All these equivalent conditions describe the same phenomenon: state

j 0i ceases to be a good approximation of j	i. These di�culties do not occur

in the approach of Sec. 3.1 in which independent of state j 0i all orders in �1 are
exactly summed up. Further advantages of this approach will become clear when

we approximate ground states of in�nite systems in the following chapter.
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Chapter 4

In�nite systems

In the following we apply the formalism of chapter 3 to in�nite systems. The

model system that we shall consider throughout this chapter is an in�nite, half-

�lled CuO2 plane. The CuO3 chain is discussed in Appendices A and B. The

CuO2 plane has been chosen as an example because it has a high symmetry which

will make our calculations more transparent. In addition, this system is of great

interest in itself because CuO2 planes are the essential structural part of all high-

Tc superconducting compounds. In Sec. 4.1 we de�ne the 
uctuation operators F�

for the CuO2 geometry. They allow for a multitude of so-called many-body e�ects

which make an exact evaluation of expectation values impossible. Therefore,

it is necessary to make approximations. They are introduced in Sec. 4.2, and

used to calculate several expectation values in Sec. 4.3. Finally, the 
uctuation

parameters �� are determined in Sec. 4.4. The �� are found to decrease rapidly

with increasing length of the 
uctuation process.

4.1 Fluctuation operators

In this section we de�ne the 
uctuation operators for an in�nite CuO2 plane.

First, operator F1 from Eq.(3.6) is generalized to all N Cu sites i

Fi;1 = �
X
j�

�
ij

pd
p
y

j�
di� , (4.1)

where the sum is again over the four O sites that surround the Cu site i (see

also Fig. 4.1). The remaining operators are constructed in accordance with the

following principles: (i) All operators describe delocalizations of a hole initially

located at Cu site i. (ii) The �nal site in the process is reached via the shortest

path accessible by Cu-O hopping processes. (iii) A summation over all equivalent

�nal sites is made. (iv) The signs of the hopping processes are chosen to be the

45
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Figure 4.1: Final sites reached by 
uctuation operators Fi;�, with � = 1; : : : 7.

For reasons of symmetry only one quarter of the allowed 
uctuation range is

shown.

negative of the phases �
ij

pd
in the multi-band Hamiltonian (2.6). The point of

this last principle is to allow for an easy determination of the sign with which a

given process contributes to an expectation value (see Sec. 4.4). In addition, one

is led to non-negative values for the 
uctuation strengths ��. The summation

over equivalent �nal sites, together with the phase convention (iv), generates a

ground state which has the same symmetry as the Hamiltonian. Figure 4.1 shows

�nal sites reached by 
uctuation operators Fi;�, with � = 1; : : : 7. For reasons

of symmetry only one quarter of the allowed 
uctuation range is shown. The


uctuation operators are de�ned as follows

Fi;2 = �
X
jk�

d
y

k�

�
1� n

p

j�

�
di� , (4.2)

Fi;3 =
X
jkl�

�
kl

pd
p
y

l�

�
1� n

d

k�

� �
1� n

p

j�

�
di� , (4.3)

Fi;4 =
X
jkm�

�
km

pd
p
y

m�

�
1� n

d

k�

� �
1� n

p

j�

�
di� . (4.4)

j denotes the O sites between the two Cu sites i and k. The indices l , m

label O sites on the nearest neighbour plaquettes (see Fig. 4.2). The expressions

in brackets { e.g.
�
1� n

p

j�

�
{ make sure that the way to the �nal site of the


uctuation is not blocked by a hole with the same spin direction. Notice that

the general phase factor for a nearest-neighbour Cu-Cu hopping is independent

of the direction: �
kj

pd
�
ij

pd
= �1 (cf. Fig. 4.2).

Final states with doubly occupied Cu sites di�er by the Coulomb energy Ud
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Figure 4.2: Labelling of Cu and O sites.

from states with singly occupied Cu sites. Since Ud is large, we have to distinguish

between these two cases. Therefore, we further split Fi;2 into two operators that

describe a process leading to a singly or a doubly occupied Cu site k, respectively

(s stands for singly occupied, d for doubly occupied)

Fi;2s = �
X
jk�

�
1� n

d

k�

�
d
y

k�

�
1� n

p

j�

�
di� , (4.5)

Fi;2d = �
X
jk�

n
d

k�
d
y

k�

�
1� n

p

j�

�
di� , (4.6)

where � is ��. Note that it is not necessary to introduce a 
uctuation operator

that leads to the nearest neighbor Cu sites in diagonal direction (e.g. the Cu site

without a label in Fig. 4.1.). Due to the Pauli principle, 
uctuations to these

sites are largely suppressed because of antiferromagnetic order. The neglect of


uctuations that lead beyond the range shown in Fig. 4.1. will be justi�ed a

posteriori. In Sec. 4.4 we will show that the 
uctuation strengths �� decrease

rapidly with increasing length of the 
uctuation processes. Therefore, the range

covered by the operators Fi;1; : : : Fi;4 de�ned above is already su�ciently large for

a good description of delocalization e�ects in the ground state. To demonstrate

this, in Sec. 4.4 and Appendix A we will use 
uctuation operators that have a

range even beyond the next-nearest neighbour plaquette

Fi;5 =
X
jkmf�

d
y

f�
(1� n

p

m�
)
�
1� n

d

k�

� �
1� n

p

j�

�
di� , (4.7)

Fi;6 = �
X

jkmfg�

�
fg

pd
p
y

g�

�
1� n

d

f�

�
(1� n

p

m�
)

�
1� n

d

k�

� �
1� n

p

j�

�
di� , (4.8)
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Fi;7 = �
X

jkmfh�

�
fh

pd
p
y

h�

�
1� n

d

f�

�
(1� n

p

m�
)

�
1� n

d

k�

� �
1� n

p

j�

�
di� . (4.9)

Here, f denotes the next-nearest Cu sites, and g and h are O sites on the next-

nearest plaquettes (see Fig. 4.2). The general phase factor for a next-nearest

neighbour Cu-Cu hopping again does not depend on the direction

�
fm

pd
�
km

pd
�
kj

pd
�
ij

pd
= 1 .

Next, the operators Fi;� are applied onto the state j 0i from Eq.(3.1). This

requires several approximations which will be discussed in the following section.

4.2 Approximations

In this section we approximate the ground state of a half-�lled, in�nite CuO2

plane using the 
uctuation operators Fi� that have been de�ned in Sec. 4.1.

Following the reasoning of Sec. 3.1, our ground-state ansatz has an exponential

form

j	i = exp

 X
i�

��Fi�

!
j 0i , (4.10)

cf. Eq.(3.2). The sum in Eq.(4.10) is over all Cu sites i and all 
uctuation

operators �. j 0i is the N�eel-ordered ground state of H0

j 0i =
Y
i

d
y

i;�(i)
j0i . (4.11)

j 0i is shown in Fig. 4.3. Due to translational symmetry the 
uctuation strengths
�� in Eq.(4.10) do not depend on the Cu-site index i. The values of the �� are

determined using Eq.(3.4) for an arbitrary site i = 0

0 = h	j
h
H;F

y

0;�

i
j	i , � = 1; 2; : : : . (4.12)

Unfortunately, Eq.(4.10) is far too complicated to allow for the exact calculation

of expectation values like those in Eq.(4.12). Therefore, further approximations

are necessary. All following approximations are based on the assumption that

the strengths of far-reaching 
uctuations Fi;�>0 from Eqs.(4.2)-(4.9) are small

compared to the strength of the on-plaquette 
uctuation Fi;1 from Eq.(4.1). This

means we assume that the ground state is of mainly local nature. To simplify
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Figure 4.3: The N�eel-ordered ground state j 0i.

Eq.(4.10) we approximately factorize the exponential function with respect to


uctuations Fi� (� > 1) and Fi0;1

j	i = exp

 X
i;�>1

��Fi�

!
exp

 X
i0

�1Fi0;1

!
j 0i . (4.13)

This approximation amounts to the assumption that far-reaching 
uctuations

Fi;�>1 occur on the background of Fi;1-
uctuations, which in turn are in
uenced

only indirectly (i.e. via �1) by the former. The second exponential function in

Eq.(4.13) can be exactly rewritten as a product with respect to i0

j	i = exp

 X
i;�>1

��Fi�

!Y
i0

(1 + �1Fi0;1) j 0i . (4.14)

Here we have used the fact that the Fi;1-
uctuations, when applied to j 0i, cannot
create double occupancies on Cu sites. Thus, they do not lead to correlation

e�ects. Moreover, due to the N�eel-order of state j 0i, the ranges on which holes

with equal spin delocalize via Fi;1-
uctuations do not overlap. Therefore, it does

not matter in which order the Fi;1-
uctuations take place. Then, the exponential

function in Eq.(4.13) is equivalent to the product in Eq.(4.14). As in the case of

the single CuO4 plaquette (Sec. 3.2), only terms up to order �21 contribute, since

applying F1 twice onto a singly occupied Cu site leads to zero.

In Eq.(4.14) every hole may 
uctuate over a total range of �ve plaquettes (or

even nine plaquettes, if we include 
uctuation operators with � > 4). Notice

that all holes 
uctuate simultaneously. This leads to a multitude of many-body

e�ects
1. Basically there are three types of many-body e�ects. They are exempli-

1In this thesis we mean by a many-body e�ect the case when the 
uctuation of a hole is

in
uenced by the con�guration of other holes.
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Figure 4.4: Examples for many-body e�ects. There are three types of e�ects: (a)

processes that are excluded by the Pauli principle, (b) site-changing processes,

and (c) correlations due to the Hubbard Ud on doubly occupied Cu sites.

�ed in Fig. 4.4. First, due to the Pauli principle the 
uctuation of a hole may

be blocked by the presence of other holes with the same spin, as in the 
uctua-

tion process labelled (a) in Fig. 4.4. Second, there are processes in which holes

with the same spin direction change their place, cf. process (b). In the follow-

ing we will call these processes site-changing processes. Third, there are strong

correlations due to the Hubbard Ud on doubly occupied Cu sites, as in process

(c). One common feature of all these many-body e�ects is that they suppress


uctuations (see Sec. 4.3). This multitude of many-body e�ects makes an exact

evaluation of expectation values using Eq.(4.14) impossible. Further approxima-

tions are therefore necessary. Let us consider processes in which two or more

holes simultaneously leave their original plaquette. The 
uctuation strengths ��

for such far-reaching 
uctuations turn out to be small compared to �1. Therefore,

it should be possible to neglect the many-body e�ects arising in these processes

(except for site-changing processes in diagonal direction, see below). Let us take

the case of Fi;2d 
uctuations as an example. For these 
uctuations we neglect the

possibility that the O site j between the starting and �nal Cu sites i and k (see

Fig. 4.2) may already be occupied by a hole with the same spin. This amounts

to the following simpli�cation

Fi;2d = �
X
jk�

n
d

k�
d
y

k�
di� ,

instead of Eq.(4.6). In this way all of the aforementioned processes are included,

some of them however only in a simpli�ed way (i.e. by neglecting some of the

many-body e�ects). Notice that the neglect of many-body e�ects allows for
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unphysical 
uctuations that may decrease the calculated ground-state energy

below the exact value. Thus, no upper limit to the exact ground-state energy is

guaranteed (see Sec. 5.3). Furthermore, no spin-
ip e�ects are included, as these

occur only in processes in which two holes (with opposite spins) simultaneously

leave their original plaquette. Thus, we cannot expect our approach to give a

detailed description of magnetic properties.

In addition to all many-body e�ects that are due to processes where only one

hole leaves its original plaquette, we take account of all site-changing processes

in diagonal direction. One of these processes is shown in Fig. 4.4(b). It is not

necessary to introduce a special 
uctuation operator for this process, because

it can be described by the operators F1and F3. In Sec. 4.4 the suppression of

charge 
uctuations due to the diagonal sites will be shown to be important. On

the other hand, site-changing processes involving next-nearest Cu neighbours in

horizontal or vertical direction (Cu sites i and f in Fig. 4.2) can be neglected.

This has the following reason: During these processes the paths of the holes have

to cross at the intermediate O sites (sites j and m in Fig. 4.2). However, since

the holes have the same spin, they have to avoid each other due to the Pauli

principle. Site-changing processes in horizontal or vertical direction are therefore

unlikely.

4.3 Calculation of expectation values

The approximations described in Sec. 4.2 may be summarized in short: We ne-

glect many-body e�ects arising in processes for which two or more holes simulta-

neously leave their original plaquette. Following this reasoning we now evaluate

expectation values. Our �rst example is the calculation of the norm h	 j 	i of
state (4.14)

h	 j 	i =
 
1 +

X
�

z�p��
2
�

!N

= �
N . (4.15)

A derivation of this result will be given below. N is the number of holes (which

is at half �lling equal to the number of Cu sites). z� is the number of equivalent

�nal sites of the given process (see Fig. 4.1)

z1 = 4 , z2s = 4 ,

z2d = 4 , z3 = 8 , z4 = 4 . (4.16)
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p� is the probability that the con�guration of the other holes makes the process

possible. This probability is de�ned by

p� =
h	jPi;� j	i
h	 j 	i , (4.17)

where Pi;� is a projection operator on all con�gurations that allow for process �.

For example, Pi;2s projects on states in which the target Cu site of 
uctuation

Fi;2s (site k in Fig. 4.2) is empty, whereas Pi;2d is the projector on states with

a singly occupied �nal site. Due to translational symmetry, the probabilities p�

do not depend on the site index i. Obviously, Eqs.(4.15) and (4.17) have to be

solved self-consistently since j	i in Eq.(4.17) depends on the parameters ��. In

particular, one obtains

p1 = 1 , p2s = 1� 1=� , p2d = 1=�

p3 = 1� 2�21=� , p4 = 1� �
2
1=� . (4.18)

The interpretation of the probabilities in Eq.(4.18) is straightforward. p1 = 1

holds since we assume that far-reaching 
uctuations occur on the background of

Fi;1-
uctuations. Remember that Fi;1-
uctuations alone do not lead to correlation

e�ects (see Sec. 4.2). 1=� is the probability of �nding a given hole at its original

Cu site (cf. Eq.(3.14)). p2d is, therefore, the probability that a target Cu site is

singly occupied. p2s, on the other hand, is the probability that a target Cu site

is empty, as required for 
uctuation process F2s. The probability of �nding a

given hole at a speci�c O site on its original plaquette is �21=�. Thus, p4 is the

probability that the target O site of 
uctuation F4 is not blocked by the hole of

same spin which resides on the neighbouring Cu site, as shown in Fig. 4.4(a).

Analogously, p3 is the probability that the target O site of 
uctuation F3 is not

blocked. The additional factor 2 in p3 (as compared to p4) is due to site-changing

processes. This is illustrated in Fig. 4.5. There are two processes that both

contribute a term ��21=� to p3. The �rst process is shown in Fig. 4.5(a). This

process is excluded by the Pauli principle. Therefore, its contribution has to be

subtracted. This leads to a correction ��21=� which is analogous to the one in p4.

The second process is shown in Fig.4.5(b). The contribution of this site-changing

process is the same as for the one in Fig. 4.5(a). The negative sign in process (b),

however, is due to the fact that in its �nal state two fermions have changed places

(i.e. Cu sites). Thus, strictly speaking it is not possible to distinguish between

hole i and the surrounding holes. Nevertheless, the contribution of process (b)

can be formally included into the probabilities p� which otherwise describe the

con�guration of surrounding holes. Notice that both the Pauli principle and
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Figure 4.5: Two contributions to p3. Process (a) is excluded by the Pauli princi-

ple. Process (b) is a site-changing process.

exchange processes reduce the probability for 
uctuation processes, and that the

amount of this reduction is the same in both cases.

Let us now derive Eq.(4.15). We start by factorizing all operators in Eq.(4.14)

with respect to � as well as i. This means

h	 j 	i = h 0j
Y
i

 
1 +

X
�

�
2
�
F
y

i;�
Fi;�

!
j 0i

=

 
1 +

X
�

h 0jF y

i0;�
Fi0;� j 0i �2�

!N

, (4.19)

where, due to translational symmetry, Cu site i0 is arbitrary. The matrix elements

with state j 0i are easy to evaluate. The result is

h	 j 	i =
 
1 +

X
�

z��
2
�

!N

. (4.20)

This is a generalization of Eq.(3.11) for the single plaquette. Notice that, in

contrast to Eq.(4.15), Eq.(4.19) does not yet contain the probabilities p�. All

holes 
uctuate independently of the con�guration of the other holes. This shows

that in Eq.(4.20) all many-body e�ects have been neglected. We now improve

the approximation by treating the many-body e�ects in a mean-�eld way. This

means we replace j 0i in Eq.(4.20) by the normalized full ground state j	i

h	 j 	i =
 
1 +

X
�

h	jF y

i0;�
Fi0;� j	i

h	 j 	i �
2
�

!N

. (4.21)

The denominator on the r.h.s. is necessary, because { in contrast to j 0i { state

j	i is not normalized. This is already the �nal result of Eq.(4.15), if we de�ne
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the projectors Pi0;� by

Pi0;� =
1

z�
F
y

i0;�
Fi0;� .

Equation (4.21) describes a state in which the movement of a given hole does not

directly depend on the con�guration of the surrounding holes. However, there is

an indirect in
uence of the surrounding holes in the form of probability factors

attached to the 
uctuation parameters ��. As discussed above, these factors

describe the probability that the con�guration of the surrounding holes makes a

given process possible. Since this probability itself depends on the full ground

state j	i, the problem has to be solved self-consistently.

The explicit form of the probabilities p� is obtained in an analogous way as

the norm. For instance, for p2s we obtain

p2s =
h	jPi0;2s j	i

�N

=
1

�

X
�

z�p��
2
�

= 1� 1=� .

We now calculate other ground-state properties using state (4.14). The ground-

state energy per Cu site has the same form as in the case (3.12) of a single

plaquette

EG =
h 0jH j	i
h 0 j 	i

= �4tpd�1 . (4.22)

Notice that in contrast to the single plaquette �1 is now strongly renormalized.

This is due to far-reaching 
uctuations, as we will see in Sec. 4.4. The Cu-

occupation number is

hnCui =
h	jnd

i
j	i

h	 j 	i =
1

�

�
1 + 4�22sp2s + 4�22dp2d

�
. (4.23)

For vanishing long-range 
uctuations (� > 1) this result reduces to Eq.(3.14)

for the single plaquette. All terms in Eq.(4.23) have a clear interpretation. The

�rst term (1=�) is due to processes in which the hole remains on its original Cu

site. The second term (4�22sp2s=�) describes processes in which this hole leaves its

original Cu site which in turn is occupied by one of the nearest-neighbour holes.

Finally, the last term (4�22dp2d=�) in Eq.(4.23) is associated with processes in

which the hole remains on its original Cu site where one of the nearest-neighbour

holes creates a double occupancy.
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For the O-occupation number one �nds

hnOi =
h	jnp

i
j	i

h	 j 	i =
2

�

�
�
2
1 + 2�23p3 + �

2
4p4

�
. (4.24)

The number of holes is conserved, i.e. hnCui+2 hnOi = 1. The double occupancies

of Cu and O sites are

hdCui =
h	jnd

i"
n
d

i#
j	i

h	 j 	i =
1

�

�
4�22dp2d

�
, (4.25)

and

hdOi =
h	jnp

i"
n
p

i#
j	i

h	 j 	i =
1

4
hnOi2 . (4.26)

The last relation holds because there is no Hubbard-U on O sites in model (2.6).

Therefore, the expectation value factorizes

h	jnp
"
n
p

#
j	i

h	 j 	i =
h	jnp

"
j	i

h	 j 	i
h	jnp

#
j	i

h	 j 	i

=
h	jnp j	i
2 h	 j 	i

h	jnp j	i
2 h	 j 	i

=
1

4

�h	jnp j	i
h	 j 	i

�2

.

Notice that Eqs.(4.23) to (4.26) depend on the 
uctuation parameters ��. Their

values will be determined in the next section.

4.4 Determination of 
uctuation strengths

To evaluate the 
uctuation parameters �� we use Eq.(3.4) for an arbitrary site

i = 0

0 = h	j
h
H;F

y

0;�

i
j	i , � = 1; 2; : : : .

For reasons of clearness we will �rst present the whole system of equations explic-

itly, and discuss details of the calculation afterwards. For the �rst �ve 
uctuation
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operators one obtains the following nonlinear system of equations

0 = (EG ��+ 2tpp)�1 + tpd + tpd�2sp2s

+tpd�2dp2d + 2tpp�3p3 � 2tpp�
2
1�3=� , (4.27)

0 = EG�2s + 4tpd�2d�1=� + tpd�1p2s

+2tpd�3p3p2s + tpd�4p4p2s , (4.28)

0 = (2EG � Ud)�2d + 4tpd�2s�1

+tpd�1 + 2tpd�3p3 + tpd�4p4 , (4.29)

0 = (EG ��+ tpp)�3p3 + tpp�1p3 + tpd�2sp2sp3

+tpd�2dp2dp3 + tpp�4p3 � (tpd + 2tpp�1)�1�3=� , (4.30)

0 = (EG ��)�4p4 + tpd�2sp2sp4 + tpd�2dp2dp4

+2tpp�3p3 � (tpd + 2tpp�1)�1�4=� . (4.31)

EG = �4tpd�1 is the ground-state energy per Cu site from Eq.(4.22). This system

of equations, together with Eqs.(4.15) and (4.18) can be solved self-consistently

for all ��, and for �. The solution with the lowest value of EG is then used in

Eq.(4.14) for the ground state. Due to the choice of the phase factors for the


uctuation operators (Sec. 4.1), this solution turns out to be one where all ��

are positive. The best practical way to obtain a solution is to linearize the above

equations by replacing some of the variables �1 and � by constants, which are

then tuned until self-consistency is obtained.

Let us �rst discuss some general features of Eqs.(4.27) to (4.31). In every

equation there is a term EG�� that results form the �rst part of the commutatorh
H;F

y

0;�

i
in Eq.(3.4). All other contributions are due to the second part of

the commutator, except the last term � (tpd + 2tpp�1)�1�3=� in Eq.(4.30) and

� (tpd + 2tpp�1)�1�4=� in (4.31). These two expressions describe processes in

which H acts on other holes than the one from site i = 0. In addition to these

two terms and to the ones with � and Ud, there is one more expression with a

negative sign. This is the last term in Eq.(4.27) which describes a site-changing

processes (see below).

Generally, expressions with a positive sign lead to an enhancement of 
uctu-

ations while terms with a negative sign suppress 
uctuations. The contribution

of the phase factors �
ij

pd
to the sign of a given term is easy to determine accord-

ing to the following rule. If the motion of the holes in the process is exclusively

due to 
uctuation operators the sign remains unchanged. If, on the other hand,

one of the hoppings is caused by the Hamiltonian the phases contribute a factor

�1. This rule is a consequence of the way in which the signs of the 
uctuation

operators have been de�ned in Sec. 4.1.
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λ

λ

λ

Figure 4.6: A site-changing process that contributes to Eq.(4.27).

As an illustration we now explicitly discuss Eq.(4.27) in some detail. First

we note that, for the sake of clarity, all equations have been multiplied by � and

divided by the number of equivalent sites. In the case of �� = 0 for all � > 1

Eq.(4.27) reduces to Eq.(3.9) for the single plaquette. The additional terms in

Eq.(4.27) describe the coupling between �1 and far-reaching 
uctuations. Term

(tpd�2sp2s), for instance, is due to a process in which the hole from site i = 0 �rst


uctuates onto one of its nearest-neighbour Cu sites k using �2s (see Fig. 4.2). p2s

is the probability that this site k has been empty before the 
uctuation. Next,

with tpd the hole hops back onto the O site j between the two Cu sites. Finally,

F
y

1 brings the hole back onto its original Cu site. The last term (�2tpp�21�3=�) in
Eq.(4.27) is associated with a site-changing process in diagonal direction which

is shown in Fig. 4.6. First, using �3 the hole from Cu site i 
uctuates onto O site

l while the hole from Cu site i0 
uctuates onto O site l0 using �1. Then, H moves

the hole from O site l0 to O site j (contribution tpp). Finally, using F
y

1 this hole

is transferred from O site j to Cu site i while the hole from O site l moves to Cu

site i0 using �1.

Let us now discuss the results for the parameters ��: How does the 
uctuation

strength depend on the length of the 
uctuation process? Table 4.1 shows the

values for � and for the �� using parameter set (2.9) for di�erent values for �.

The comparison with Table 4.2 shows that the parameter �1 is larger by at least

10% as compared to the case of a single plaquette (Sec. 3.2).

For all used values of � the 
uctuation parameters decrease rapidly with

increasing distance. Parameter �4 is always at least �ve times smaller than �1.

Notice, furthermore, that physical properties like occupation numbers, Eqs.(4.23)

to (4.26), depend on the square of the ��. This suggests that contributions from


uctuations beyond the range of Fi;4 can be neglected.

To check this hypothesis, we now introduce 
uctuations that lead beyond

the range of operators F1; : : : ; F4. When the 
uctuations F5 and F6 are added,

Eqs.(4.27) to (4.30) remain unchanged. However, two additional terms contribute
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� �1 �2s �2d �3 �4

� = 1:5 2:828 0:568 0:320 0:148 0:179 0:110

� = 2:5 2:166 0:464 0:268 0:118 0:128 0:076

� = 3:5 1:719 0:377 0:210 0:090 0:087 0:048

� = 4:5 1:455 0:309 0:159 0:069 0:059 0:030

Table 4.1: Decrease of 
uctuation strength with distance in the CuO2 plane: �

and �� for di�erent �.

�1(plaquette)

� = 1:5 0:481

� = 2:5 0:398

� = 3:5 0:331

� = 4:5 0:279

Table 4.2: �1 as a function of � for the single-plaquette system.

to Eq.(4.31) which now reads

0 = (EG ��)�4p4 + tpd�2sp2sp4 + tpd�2dp2dp4 + 2tpp�3p3

+tpd�5p5 + 2tpp�6p6 � (tpd + 2tpp�1)�1�4=� . (4.32)

Furthermore, there are two new equations for the parameters �5 and �6

0 = EG�5p5 + tpd�4p5 + 2tpd�6p6

� (3tpd + 2tpp�1)�1�5=� , (4.33)

0 = (EG ��)�6p6 + tpp�4p6 + tpd�5p6

�2 (tpd + tpp�1)�1�6=� , (4.34)

with the probabilities

p5 = 1�
�
1 + �

2
1

�
=� , p6 = 1�

�
1 + 2�21

�
=� . (4.35)

It turns out that the change in the parameter values due to these two new 
uc-

tuations is small. In Table 4.3 we show a comparison between the results with 5

and with 7 
uctuation operators using parameter set (2.9).

It is found that �, as well as the parameters �1 to �4 show only a small

increase when the long-range parameters �5 and �6 are included. These results

retrospectively justify the neglect of far-reaching 
uctuations and many-body

e�ects. The same conclusion can be drawn for the CuO3 chain, see Appendix

A. As a consequence of the decrease of 
uctuation strength with distance the
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� �1 �2s �2d �3 �4 �5 �6

5 operators 1:719 0:377 0:210 0:090 0:087 0:048 0 0

7 operators 1:724 0:377 0:211 0:091 0:087 0:051 0:016 0:007

Table 4.3: In
uence of far-reaching 
uctuations in the CuO2 plane: � and �� for

5 and 7 
uctuation operators.

holes in the ground state are found to be rather localized. Figure 4.7 shows the

delocalization probability p��
2
�
=� of a given hole summed over equivalent �nal

sites as a function of 
uctuation length for parameter set (2.9). The probability

of �nding the hole on its original plaquette is 74:5% + 16:5% = 91:0%. The

delocalization to nearest-neighbour plaquettes has a probability of 8:4%+0:57% =

8:97%. The contribution of more far-reaching 
uctuations amounts to less than

0:1 percent.
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Figure 4.7: Delocalization probability as a function of 
uctuation length. The

graph shows the delocalization probability of a hole which originates from Cu

site i. The probability is summed over the sites displayed beneath the bars, and

over all equivalent �nal sites. The hole is found to remain predominantly on

its original plaquette. Delocalization beyond the nearest-neighbour plaquette is

negligible small.
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� �1 �2s �2d �3 �4

with diag. Cu sites 1:719 0:377 0:210 0:090 0:087 0:048

without diag. Cu sites 1:873 0:393 0:255 0:108 0:108 0:064

Table 4.4: In
uence of diagonal Cu sites in the CuO2 plane: � and �� with and

without taking account of the diagonal Cu sites.

Thus, ground state (4.14) may be visualized as a superposition of mutually

correlated but localized \hole clouds" (like the one shown in Fig. 4.7) around the

Cu sites.

Finally, we discuss the suppression of 
uctuations due to site-changing pro-

cesses with the diagonal Cu sites. This e�ect is illustrated in Table 4.4 by com-

paring the �� obtained for parameter set (2.9) with or without taking account of

the diagonal Cu sites.

If the diagonal Cu sites are neglected the parameters �2s to �4 are found to

increase by at least 20%. Consequently, the probability to �nd a hole outside of

its original plaquette raises from 0:09 to 0:14. This shows that the diagonal sites

play an important role in the suppression of 
uctuations in the CuO2 plane.

In Appendices A and B the formalism outlined above is applied to the geom-

etry of a CuO3 chain. More properties of the ground state will be discussed in

Chap. 5.



Chapter 5

Ground-state properties

In this chapter we analyze ground-state properties of Hamiltonian (2.6) for half-

�lled CuO3 chains and CuO2 planes obtained within the formalism outlined in

Chap. 4 and Appendix A. In order to compare with other methods we �rst employ

a numerical approach, the Projector Quantum Monte Carlo (PQMC) method.

The principles of the PQMC are explained in Appendix C. In Secs. 5.1 and 5.2

we investigate �nite-size e�ects as well as the convergence of the results with

respect to other parameters. Furthermore, we compare the PQMC results with

exact diagonalization calculations. In Sec. 5.3 we compare our analytical results

with those of the numerical simulations. We �nd good agreement for a wide range

of model parameters, from small to very large charge 
uctuations. Similarities

and di�erences between Cu-O networks of varying dimensionality are discussed.

In Sec. 5.4 we investigate properties of the analytical ground state in several

special parameter ranges. Finally, the chapter is concluded with an outlook.

5.1 Numerical results for CuO3 chains

The Projector Quantum Monte Carlo method (PQMC) is a numerical approach

that can be used to calculate ground-state properties of �nite clusters. For an

introduction to this method see Appendix C. In the PQMC the ground state j	i
is projected out from a suitable trial state j triali. Since this projection is not

exact, it has to be investigated whether the results are converged with respect to

the projection parameter �. Furthermore, since in the PQMC �nite clusters are

used to draw conclusions about in�nite systems, one has to check the numerical

results for �nite-size e�ects.

In the present work, a mean-�eld version of the analytical ground state (3.2)

has been used as trial state j triali in the PQMC for CuO3 chains as well as for

61
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cluster # Cu sites # O? sites # Ok sites total # sites

1� 4 4 8 4 16

1� 6 6 12 6 24

1� 8 8 16 8 32

1� 10 10 20 10 40

1� 12 12 24 12 48

1� 14 14 28 14 56

1� 16 16 32 16 64

Table 5.1: Size of CuO3 chain clusters used in the QMC simulations.

CuO2 planes. For this purpose we have constructed a state in the form of a Slater

determinant using the delocalization probabilities p��
2
�
=� from Appendix A and

Sec. 4.4 in Eq.(C.3). It turns out that the results of the PQMC do not depend

on the details of the test state. No sign problem occurred.

We have investigated ground-state properties of Hamiltonian (2.6 ) for 7 dif-

ferent half-�lled CuO3 chain clusters with periodic boundary conditions. The

cluster size ranges from a chain of 4 plaquettes to a chain of 16 plaquettes, as

shown in Table 5.1. O? and Ok are the O sites out of chain direction, and in

chain direction (see Fig. A.1). In Fig. 5.1 we show the convergence with respect

to the projection parameter � for a chain of length 1�4. For parameter set (2.9)

with � = 2:5 the ground-state energy per Cu site EG, the Cu occupancy hnCui,
the Cu-double occupancy hdCui, and the in-chain O-double occupancy

D
d
k

O

E
are

shown as a function of 1=�. Thereby m = 64 for � = 2, m = 128 for � = 4; 8,

and m = 256 for � = 12. The crosses denote the exact values that have been

calculated using numerical exact diagonalization (ED) by S.-L. Drechsler [28].

In general, the results of the PQMC are in excellent agreement with the exact

results. For � = 8 and larger most of the exact results lie within the error bars

of the PQMC. The number of holes is conserved within the statistical error. We

�nd an analogous agreement between PQMC and ED for a chain of length 1� 6,

see also Fig. 5.2. Therefore, it is safe to conclude that the results of the PQMC

for CuO3 chains are converged for � � 8.

The CuO3 chain clusters have interesting �nite-size e�ects. In Fig. 5.2 we

show the ground-state energies and several occupancies for chains from length

1 � 4 up to 1 � 16 as a function of 1=L2 , where L is the system length. The

model parameters are those of set (2.9) with � = 2:5, the parameters of the

PQMC are � = 12 and m = 256. The exact results for the 1 � 4 and 1 � 6

systems [28] are shown as crosses.
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Figure 5.1: 1 � 4 system: Convergence with respect to �. Crosses denote the

exact results from Ref. [28].
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Figure 5.2: Convergence with respect to system length L. Dashed lines connect

open shell con�gurations, solid lines closed shell con�gurations.
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Figure 5.3: Ground-state energy: Convergence with respect to system size for

vanishing and non-vanishing Ud.

It is found that the values for chains of length 1�(4n), n = 1; : : : 4 (connected

by broken lines) show a completely di�erent scaling behaviour than the values for

chains of length 1� (4n+ 2), n = 1; : : : 3 (connected by solid lines). The 1� (4n)

results approach the limit L ! 1 from a more localized regime with higher

ground-state energy and Cu occupancy, and smaller O- and double occupancies.

The 1� (4n+ 2) results, on the other hand, lie in a more delocalized regime

with lower ground-state energy etc. This phenomenon can be explained by an

analysis of the same systems with Ud = 0. In this case one deals with uncorrelated

holes, and the many-hole problem is reduced to a single-hole problem (in the

sense of a Fermi sea). Therefore, the exact solution for all clusters can be easily

obtained numerically. The results for the ground-state energy are compared to

those for Ud = 8:8 in Fig. 5.3. Again, one observes a di�erent behaviour for

1 � (4n) systems and 1 � (4n + 2) systems. Notice that for Ud = 0 and for

Ud = 8:8 intervals of the same length are displayed on the y-axes. Thus, Fig. 5.3

shows that for Ud = 0 the di�erence is even more pronounced than for Ud = 8:8.

This di�erence is caused by di�erent symmetry properties of the distribution of

holes in the Brillouin zone at half �lling. For the 1 � (4n) systems the states

at the Fermi level are only partly occupied (\open shell"). For the 1� (4n+ 2)
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ππ
ππ

ππ π

π

Figure 5.4: Open shell / closed shell e�ect: Brillouin zones of a 4-site chain and

a 6-site chain at half �lling.

systems, on the other hand, all states at the Fermi level are occupied (\closed

shell").

This has the following mathematical reason. In contrast to the \open shell"

case, for the \closed shell" con�guration the number (4n+ 2) =2 is odd. There-

fore, these states are distributed symmetrically around the state with zero mo-

mentum. This fact is illustrated in Fig. 5.4 where we show the Brillouin zones

of a 4-site chain (open shell) and a 6-site chain (closed shell) at half �lling. For

simplicity, the O sites have been neglected. The Fermi momentum for the 4-site

chain is kF = �=2. At half �lling, only two holes are available for the 4 states with

momentum �kF on the \surface" of the Brillouin zone. Therefore, the ground

state of the system is degenerate. The situation is di�erent for the 6-site chain.

In this case, at half �lling there are 4 holes which occupy the 4 states with mo-

mentum �kF (= ��=3). Consequently, the ground state is non-degenerate, and

has a lower ground-state energy. As the system size increases the states in the

\volume" of the Brillouin zone outnumber the states at the \surface", and the

e�ect disappears. Qualitatively, the same phenomenon remains visible for �nite

Ud, although the resulting correlations tend to localize the holes. This leads to a

quantitative reduction of �nite-size e�ects. Furthermore, the degeneracy of the

open-shell ground state leads to error bars that are consistently larger than in

the closed-shell case (see Fig. 5.2).

Summarizing, there are some lessons to be learned from (apparently trivial)
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Figure 5.5: Finite-size e�ects: A naive linear extrapolation (dotted line) of the

exact results for small system size (crosses) leads to a value for the Cu occupancy

that is far o� the correct result. The PQMC results are shown as error bars

connected by dashed and solid lines.

systems with Ud = 0. These systems allow to investigate geometric properties of

�nite clusters without the additional complication of correlation e�ects. Thus,

for instance, the results for Ud = 0 in Fig. 5.3 show that 1=L2 is indeed the correct

scaling behaviour for CuO3 chains. For non-vanishing correlations information of

this kind is more di�cult to obtain since the results are approximations and/or

the size of the clusters is very limited (see also Sec. 5.2). Notice, also, that a naive

linear extrapolation of the exact values for the 1� 4 and 1� 6 systems leads to

incorrect results, as exempli�ed for the Cu occupancy with Ud = 8:8 in Fig. 5.5.

Already the solutions for Ud = 0, on the other hand, show that extrapolated

values should lie between those of the 1� 4 and 1� 6 system.

Finally, returning to the question of convergence with system size, from

Fig. 5.2 we may conclude that convergence is obtained for the 1 � 12 chain

system.
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5.2 Numerical results for CuO2 planes

Two di�erent clusters with periodic boundary conditions have been used for the

simulation of half-�lled CuO2 planes. They are shown in Table 5.2.

cluster # Cu sites # O sites total # sites

4� 4 16 32 48

6� 6 36 72 108

Table 5.2: Size of CuO2 plane clusters used in the QMC simulations.

Notice that clusters with an odd number of Cu sites have a non-vanishing total

spin (which might distort the results), and have therefore not been investigated.

The smallest cluster that we consider is a 4�4 system. With 48 sites this system

has the same size as a 1� 12 CuO3 chain. Unfortunately, even the 4� 4 system

is far too large to allow for numerical exact diagonalization. The next-largest

system is a cluster of 6� 6 plaquettes. This system is the largest cluster that is

still accessible to the PQMC within acceptable computation time. Notice that

all clusters of the form n�n with even n have an \open shell" con�guration (see

Sec. 5.1).
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Figure 5.6: Convergence with respect to � and linear system size L. Solid error

bars denote the results for � = 4, dotted error bars the results for � = 8.
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Figure 5.7: Ground-state energy: Convergence with respect to system size for

vanishing and non-vanishing Ud. Solid error bars denote the results for � = 4,

dotted error bars the results for � = 8.

In view of the small number of di�erent clusters and the restrictions imposed

on the PQMC by limited computation time it is more di�cult to analyze the

convergence of the results in the two-dimensional than in the one-dimensional

case. Figure 5.6 shows the convergence with respect to � and system size. For

parameter set (2.9) the ground-state energy and several occupation numbers are

plotted against 1=L, where L is the linear size of the system (i.e. L = 4; 6). Solid

error bars denote the results for � = 4, dotted error bars the results for � = 8. In

both cases m = 128. Notice that the intervals displayed on the y-axes of Fig. 5.6

are (upper row) twice, and (lower row) four times as large as in Figs. 5.1 and 5.2.

The results of the 4 � 4 system seem to be converged with respect to � for

� = 4. On the other hand, the results of the 6� 6 system are apparently not yet

fully converged with respect to �. Unfortunately, it is not possible to investigate

the 6�6 system for larger values of � and m within acceptable computation time

using present-day hardware (IBM RS-6000 workstation). Therefore, we may only

make a rough estimate of �nite size e�ects. Figure 5.7 shows a comparison of

the ground-state energies for Ud = 0 and Ud = 8:8. In the former case the exact

results for clusters of 4� 4, 6� 6, 8� 8, and 10� 10 plaquettes are shown. The
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fact that the exact ground-state energies lie on a straight line justi�es the choice

of 1=L as scaling parameter (in contrast to 1=L2 in the one-dimensional case, see

Sec. 5.1). Notice that intervals of the same length are displayed on the y-axes of

Figs. 5.7 and 5.3. It seems sensible to assume that, like in the one-dimensional

case, the results for Ud = 0 give an upper estimate for �nite size e�ects in the

case Ud = 8:8. Therefore we estimate that the errors due to �nite size e�ects for

the 4� 4 system are of the same order as the error bars. Consequently, we may

conclude that the results of the 4� 4 system for Ud = 8:8 are already reasonably

well converged with respect to system size.

5.3 Numerical vs. analytical results

We now compare the numerically calculated ground-state energies and several

occupation numbers with the analytical predictions from Sec. 4.3 and Appendix

A. According to the analysis of the PQMC results in Secs. 5.1 and 5.2, the

following con�gurations will be used. For the CuO3 chain we use a 1� 16 cluster

(periodic boundary conditions), with parameters � = 12 and m = 256. For

the CuO2 plane, on the other hand, we use a 4 � 4 cluster (periodic boundary

conditions), with parameters � = 4 and m = 128. Using parameter set (2.9) we

vary the charge-transfer energy � between 1:5 and 4:5 eV, in order to cover the

range of very large to fairly small charge 
uctuations.

In Fig. 5.8 we show the ground-state energies per Cu site EG as a function of

�. For both geometries EG is found to increase with increasing �. This is due

to the suppression of 
uctuations for larger values of the charge-transfer energy.

Interestingly, the values of EG for the CuO2 plane are found to lie only about

5 percent below those for the CuO3 chain, although the holes in the plane may

delocalize into twice as many directions as in the chain. This can be interpreted

as an e�ect of the locality of Hamiltonian (2.6) in which on-plaquette 
uctuations

dominate the ground-state energy, see also Sec. 5.4. Furthermore, in the plane

there are diagonal Cu neighbour sites which suppress 
uctuations, see Fig. 4.5

and Sec. 4.4. The relatively small reduction of ground-state energy per site

with increasing dimension (5% reduction from one to two dimensions) may be

compared to the case of the Heisenberg model

HHeisenberg = J

X
hi;ji

SiSj . (5.1)

For one dimension, the exact ground-state energy per site has been calculated for

(5.1) by Hulth�en [50] seven years after the derivation of the exact ground state
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Figure 5.8: Ground-state energies per Cu site as a function of �: Analytical

results (solid lines) vs. PQMC simulations (error bars, connected by broken lines).

by Bethe [12]

E
1d
Heisenberg = J (� ln (2) + 1=4) = �0:443 J .

For two dimensions, on the other hand, the ground-state energy of the Heisen-

berg model is not exactly known. The value that is currently favoured by both

numerical and analytical methods [111] is

E
2d
Heisenberg = �0:669 J .

Thus, in the Heisenberg model the ground state energy per site for two dimensions

lies about 50% below the value for one dimension.

Returning to the multi-band model (2.6) we notice that the agreement be-

tween the analytical and numerical results is generally very good, especially in

the case of the CuO2 plane for larger values of �. For smaller � the analytical

ground-state energy is smaller than the PQMC result. This can be explained by

the neglect of many-body e�ects in the analytical approach (see Sec. 4.2) which

allows for more unphysical 
uctuations when � becomes smaller.
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Figure 5.9: Cu occupancy as a function of �: Analytical results (solid lines) vs.

PQMC simulations (error bars, connected by broken lines).
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Figure 5.10: O occupancy as a function of �: Analytical results (solid lines) vs.

PQMC simulations (error bars, connected by broken lines).
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Figure 5.11: Cu double occupancy as a function of �: Analytical results (solid

lines) vs. PQMC simulations (error bars, connected by broken lines).
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Figure 5.12: O double occupancy as a function of �: Analytical results (solid

lines) vs. PQMC simulations (error bars, connected by broken lines).
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Figure 5.9 shows the Cu occupancy hnCui as a function of �. For both ge-

ometries, the suppression of 
uctuations for larger charge-transfer energies leads

to an increase of hnCui with increasing �. As in the case of the ground-state en-

ergies there are only minor di�erences between the Cu occupancies of the chain

and the plane system for the same value of � . This can again be attributed to

the locality of the model and to the in
uence of diagonal Cu neighbour sites in

the case of the CuO2 plane. As compared to the numerical results, the analytical

predictions slightly overestimate hnCui. Since the number of holes is conserved,
the O occupancies (which are shown in Fig. 5.10) are linear functions of hnCui.
Therefore, the only new information which Fig. 5.10 contains compared to Fig. 5.9

is the ratio between inner
D
n
k

O

E
and outer



n
?

O

�
O-site occupancies in the chain.

The agreement between analytical and numerical results is again good.

In Fig. 5.11 we show the Cu double occupancy hdCui as a function of �.

The analytical predictions agree well with the numerical results. In contrast to

the curves in Figs. 5.8 to 5.10, hdCui depends non-monotonically on �. This is

due to the �nite value of Ud which suppresses double occupancies on Cu sites.

Thus, for small � the holes avoid double occupancies on Cu sites, and occupy

O sites instead. For large �, on the other hand, the holes become localized on

their own Cu sites, which again leads to a reduction of Cu double occupancies.

There is a region of intermediate values of � in which both these e�ects are

simultaneously minimized. In this region hdCui has a maximum. These results

agree with Quantum Monte Carlo simulations of CuO2 clusters by Scalettar and

coworkers [87], and Bhattacharya and coworkers [13].

Figure 5.12 shows the O double occupancies
D
d
k?

O

E
,


d
?

O

�
(chain), and hdOi

(plane) as a function of �. Like in the case of single occupancies the agreement

between analytical and numerical results is somewhat better for two than for one

dimension. However, in both cases the di�erences are rather small. All double

occupancies increase monotonously with decreasing �. This is a consequence

of the fact that model (2.6) contains no Hubbard-U on the O sites. Thus, in

contrast to the Cu sites there is no e�ect that reduces the hdOi for small �. The
relation hdi = hni2 =4 (see Eqs.(4.26) and (A.25)) is ful�lled by the PQMC data

within the statistical error for hdOi, and with high accuracy for
D
d
k

O

E
. Only the

values for


d
?

O

�
show deviations from this rule. For larger values of � the decrease

of hdOi with increasing � is about two times as large as the decrease of hdCui
(see Fig. 5.11). The reason for this weaker dependence of hdCui on � is that an

increase in the charge-transfer energy a�ects hdCui only indirectly by reducing

the e�ective Cu-Cu hopping, while { in contrast to hdOi { the on-site energy of

the �nal site is not changed.
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Summing up, the comparison with PQMC simulations shows that the ana-

lytical expressions from Chap. 4 and Appendix A give a reliable description of

charge properties in Cu-O networks. We �nd good agreement for a wide range

of model parameters, from small to very large charge 
uctuations. One and

two-dimensional networks are found to have very similar charge properties. This

result can be explained by the in
uence of the diagonal Cu sites which suppress

charge 
uctuations in the plane. Generally, the agreement between analytical

and numerical results is somewhat better for the CuO2 plane. In the next section

we investigate other properties of the analytical ground state for several limiting

cases of parameter values.

5.4 Limiting cases

In this section we discuss properties of Eq.(A.11) to Eq.(A.16) for chains, and

Eq.(4.27) to Eq.(4.31) for planes in special parameter ranges.

5.4.1 Limit of vanishing O-O hopping: tpp = 0

In Sec. 3.2, when investigating the problem of a single CuO4 plaquette, we have

noticed that �1 is a function of a reduced e�ective charge-transfer energy ��2tpp,
see Eq.(3.5). Since all ground-state properties of this system depend exclusively

on �1, the only in
uence of the parameter tpp is to renormalize the charge-transfer

energy. Therefore, we get the same results for a plaquette with parameter values

(�; tpp) as for a plaquette with reduced charge-transfer energy and vanishing O-O

hopping (�� 2tpp; 0). On the other hand, for in�nite systems the O-O hopping

makes additional delocalization processes possible. Therefore, it should have

an in
uence that goes beyond a simple renormalization of �. Nevertheless, if

one is interested in purely local properties, a system with renormalized charge-

transfer energy and vanishing O-O hopping (�� 2tpp; 0) still represents a �rst

�1 (�; tpp) �1 (�� 2tpp; 0) rel. di�erence

� = 1:5 0:568 0:524 0:08

� = 2:5 0:464 0:429 0:08

� = 3:5 0:377 0:353 0:07

� = 4:5 0:309 0:294 0:05

Table 5.3: �1: Comparison between a system with non-vanishing O-O hopping

(�; tpp) and a system with vanishing O-O hopping and renormalized charge-

transfer energy (�� 2tpp; 0).
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�4 (�; tpp) �4 (�� 2tpp; 0) rel. di�erence

� = 1:5 0:110 0:071 0:55

� = 2:5 0:076 0:046 0:65

� = 3:5 0:048 0:029 0:66

� = 4:5 0:030 0:018 0:67

Table 5.4: �4: Comparison between a system with non-vanishing O-O hopping

(�; tpp) and a system with vanishing O-O hopping and renormalized charge-

transfer energy (�� 2tpp; 0).

approximation to a system with non-vanishing hopping (�; tpp). In Table 5.3 this

is demonstrated by the solution of Eq.(4.27) to Eq.(4.31) for a CuO2 plane with

parameter set (2.9) for di�erent values of �. The relative di�erence in the last

column of Table 5.3 is de�ned by (�1 (�; tpp)� �1 (�� 2tpp; 0)) =�1 (�; tpp). We

�nd that the �1-values of the plane with renormalized charge-transfer energy and

vanishing O-O hopping (�� 2tpp; 0) di�er by less than 10% from the �1-values

of the plane with parameters (�; tpp). The di�erence decreases with increasing

� (i.e. with increasing localization).

However, as shown in Table 5.4, the non-local properties of the plane with

(�; tpp) are grossly underestimated by the plane with (�� 2tpp; 0). The relative

di�erence between the �4 is large, and it increases with increasing �.

5.4.2 Local limit: tpd � �

If the charge-transfer energy � is large compared to the hopping strength the

system becomes localized. In this local limit the Cu occupancy approaches 1 (see

Fig. 5.9), and the O and double occupancies vanish (Figs. 5.10 to 5.12). Many-

hole 
uctuations are suppressed, and the ground-state energy is dominated by

one-hole on-plaquette 
uctuations.

EG E� (EG � E�) =E�

� = 1 �1:938 �1:562 0:24

� = 2 �1:346 �1:236 0:09

� = 4 �0:875 �0:828 0:06

� = 10 �0:395 �0:385 0:03

� = 100 �0:040 �0:040 0:00

Table 5.5: Local limit: comparison between the ground-state energies of the plane

EG and the single plaquette E� with increasing �.
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This is illustrated in Table 5.5 by the solution of Eq.(4.27) to Eq.(4.31) for a

CuO2 plane with the parameter set tpd = 1, tpp = 0, and Ud = 4, for increasing

values of �. As � increases, the ground-state energy of the plane EG approaches

the ground-state energy of a single plaquette E� from Eq.(3.5). In the local limit,

E� is dominated by the term �4t2
pd
=�.

5.4.3 Heisenberg limit with small repulsion: tpd; Ud� �

As we have seen in the previous subsection, for tpd � � the ground-state energy is

dominated by one-hole 
uctuations. We now discuss the contribution of two-hole


uctuations in this local limit. For simplicity we set tpp = 0. If � is the largest

parameter in Hamiltonian (2.6), �nal states with O occupation are improbable.

Thus, Hamiltonian (2.6) should become equivalent to a model that contains only

Cu sites coupled by an e�ective hopping strength

te� = t
2
pd
=� . (5.2)

This is a one-band Hubbard model [47]

H1�band = �te�
X
hi;i0i�

�
d
y

i�
di0� + h:c:

�
+ Ud

X
i

n
d

i"
n
d

i#
. (5.3)

In this subsection we assume that the Coulomb repulsion Ud is small: Ud '
tpd. Notice, however, that for large � the parameter Ud is nevertheless large

compared to the e�ective hopping: te� � Ud. In this case, H1�band maps onto

the Heisenberg model [44]

H1�band ! J1

0
@X

hi;ji

SiSj �
b

4

1
A , (5.4)

where S is the spin operator on the Cu sites.

EG � E� J1 (J1 � jEG � E�j) =J1
� = 4 �0:4693� 10�1 0:6250� 10�1 0:25

� = 10 �0:9398� 10�2 0:1000� 10�1 0:06

� = 100 �0:9992� 10�4 0:1000� 10�3 0:00

Table 5.6: Heisenberg limit in the plane: with increasing � the di�erence EG�E�

approaches J1.
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EG � E� J1=2 (J1 � 2 jEG � E�j) =J1
� = 4 �0:2357� 10�1 0:3125� 10�1 0:25

� = 10 �0:4699� 10�2 0:5000� 10�2 0:06

� = 100 �0:4996� 10�4 0:5000� 10�4 0:00

Table 5.7: Heisenberg limit in the chain: with increasing � the di�erence EG�E�

approaches J1=2.

In Eq.(5.4), the exchange parameter is

J1 =
4t2e�
Ud

=
4t4

pd

�2Ud
, (5.5)

and b is the number of bonds, i.e. b = N in one dimension, and b = 2N in two

dimensions. The expectation value of this Hamiltonian in the N�eel state j 0i is

h 0jJ1

0
@X

hi;ji

SiSj �
b

4

1
A j 0i = �J1

b

2

= �N J1

�
1
2
� � � 1 dimension

1 � � � 2 dimensions : (5.6)

Since we have neglected spin-
ip e�ects in our approximations (see Sec. 4.2), in

the local limit our ground state is reduced to the N�eel state (3.1). Therefore,

the two-hole contribution to the ground-state energy (i.e. EG � E�) approaches

the expectation value (5.6) of the Heisenberg Hamiltonian in the N�eel state. In

Table 5.6 this is shown by solving Eq.(4.27) to Eq.(4.31) for the CuO2 plane with

parameter set tpd = 1, tpp = 0, and Ud = 4, for increasing values of �.

The same result is obtained in one dimension by solving Eq.(A.11) to Eq.(A.16)

for the CuO3 chain with the same parameter values, as shown in Table 5.7.

5.4.4 Heisenberg limit with large repulsion: tpd � �; Ud

If the Coulomb repulsion Ud is not smaller than the charge-transfer energy �,

one has to take account of terms in order (1=�3) as well. Again, we set tpp = 0.

Up to order (1=�3) in perturbation theory Hamiltonian (2.6) has the form [48]

He� =
�4t2

pd

�

X
i

n
d

i
+
16t4

pd

�3

X
i

n
d

i
+
2t4

pd

�3

X
hi;ji

n
d

i
n
d

j

+
4t4

pd

�2

�
1

Ud
+

1

�

�X
hi;ji

 
SiSj �

n
d

i
n
d

j

4

!
, (5.7)
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EG � E� J1 (J1 � jEG � E�j) =J1
Ud = 10 �0:3997� 10�4 0:4000� 10�4 0:0008

Ud = 100 �0:3998� 10�5 0:4000� 10�5 0:0005

Table 5.8: Heisenberg limit: with increasing Ud the di�erence EG�E� approaches

J1.

where S is again the spin operator on the Cu sites. The �rst two terms on the

r.h.s. of Eq.(5.7) are one-hole terms that describe the (repeated) hopping of a

hole from its Cu site onto the surrounding four O sites and back. These terms

are contributions from the single-plaquette energy E�, see Eq.(3.5). The third

term in Eq.(5.7) is a two-hole term. It describes a process in which a hole hops

onto an O site and back, to be followed by a neighbouring hole which hops onto

the same O site and back. The last term in Eq.(5.7) has the form of a Heisenberg

Hamiltonian with the exchange parameter [30]

J2 =
4t4

pd

�2

�
1

Ud
+

1

�

�
. (5.8)

Note that Ref.[113] gives an incorrect value for J2. If � is large compared to

Ud, the exchange parameter J2 reduces to J1 from Eq.(5.5). As in the previous

subsection we now calculate the expectation value of Hamiltonian (5.7) in the

N�eel state j 0i, and subtract N times the energy E� of the single plaquette,

where N is the number of Cu sites. Up to order (1=�3) this gives

h 0jHe� j 0i �N E� =
2t4

pd

�3
b� J2

b

2

= �
4t4

pd

�2Ud

b

2

= �J1
b

2
,

where b is again the number of bonds. Thus, interestingly, in the expectation

value with the N�eel state the terms of order (1=�3) cancel exactly. This is also

seen from the solution of Eq.(4.27) to Eq.(4.31) for CuO2 planes (b = 2N). In

Table 5.8 we show the results using the parameters tpd = 1, tpp = 0, � = 100 for

increasing Ud.

5.4.5 Mott-Hubbard limit: Ud � tpd

After having discussed several localized parameter regimes we conclude this sec-

tion with a look at a delocalized case: the case of vanishing Coulomb repulsion.
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�1 �2s �2d (�2s � �2d) =�2d

Ud = 4 0:22 0:10 0:06 0:67

Ud = 1 0:25 0:27 0:21 0:29

Ud = 0:5 0:26 0:36 0:32 0:13

Ud = 0:1 0:28 0:45 0:44 0:02

Ud = 0 0:29 0:47 0:47 0:00

Table 5.9: Mott-Hubbard limit: behaviour of several 
uctuation parameters with

decreasing Ud.

As Ud becomes small compared to tpd, the ground state of model (2.6) should

change from an insulating (localized) to a metallic (delocalized) state. Since all

our approximations are based on the assumption of locality (see Chap. 3), we

cannot expect correct results in this limit. Nevertheless, the behaviour of our

ground state is interesting from a formal point of view. In Table 5.9 we show the

results for �1, �2s, and �2d in the case of a CuO2 plane with tpd = 1, tpp = 0,

� = 4, and decreasing Ud.

As Ud becomes smaller than tpd, the parameters �2s and �2d exceed �1. Fur-

thermore, �2d approaches the value of �2s. For Ud = 0 both parameters �2d and

�2s are exactly equal. Of course, already for �2s ' �1 the system is so delocal-

ized that the results of our ground state are expected to di�er strongly from the

correct values.

5.5 Outlook

In Chaps. 3 and 4 we have developed an approximate analytical ground state for

the multi-band Hamiltonian (2.6). The comparison with numerical simulations

has shown that this approximation reliably describes charge properties of the

ground state for di�erent geometries and in a wide range of model parameters.

In principle, there are three ways to proceed from this point. First, one may try

to improve the results presented in this thesis. Obviously, a crude approximation

has been made with regard to the magnetic properties of the ground state. Since

spin-
ip processes have been neglected (Sec. 4.2), the approximation describes

spin properties only by means of a N�eel con�guration. Thus, a better treatment

of magnetic properties is clearly a worthy goal, especially in one dimension. There

is also room for improvement in the description of charge properties. For instance,

it would be fascinating to obtain a clearer picture of the limit of small Ud, i.e.

the Mott-Hubbard transition (Sec. 5.4).

The second possible way for a further development of the ideas presented here
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is the investigation of more complicated Hamiltonians than (2.6). According

to Sec. 2.1, one might introduce a Coulomb repulsion Up on O sites, and/or

an intersite-Coulomb repulsion Vpd between neighbouring Cu and O sites (see

Eq.(2.2)). In both cases, an additional di�culty will be the fact that now already

�1-
uctuations lead to many-body e�ects.

Finally, the third way to proceed would be to allow for hole numbers away

from half-�lling. An analysis of the doping behaviour of Hamiltonian (2.6) might

be a step towards a better understanding of high-temperature superconductivity

(Sec. 1.1). For instance, experimentally, the antiferromagnetic order is more

stable in electron-doped than in hole-doped cuprates [3]. Using dynamical mean-

�eld theory [65], random phase approximation [93], and a slave-boson approach

[6] it has been argued that this result can be explained by an asymmetry of

Hamiltonian (2.6) with respect to electron or hole doping [1]. An analysis using

the formalism presented here might help to clarify this matter.
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Chapter 6

CuO4 plaquette

In this chapter we investigate the Cu 2p3=2 core-level XPS for a hole on a single

CuO4 plaquette (see Sec. 3.2), using Hamiltonian (2.1). It turns out that this

simple system already allows for a principal interpretation of the experimentally

observed structures. For reasons of simplicity, in Sec. 6.1 we �rst discuss the

case of vanishing exchange splitting: Idc = 0. The generalization to �nite ex-

change splitting is presented in Sec. 6.2. Although the single-plaquette system is

a one-particle problem which can be easily solved exactly, it may nevertheless be

compared successfully with experimental results for Bi2CuO4 and Li2CuO2. This

is shown in Sec. 6.3. Results of this chapter have been published in Refs. [5],

[108], and [109].

6.1 Basic features

Since the problem of a hole on a single CuO4 plaquette can be readily solved

exactly, it is appropriate to use the form (2.15) for the calculation of the spectral

intensity I (!)

I (!) �
X
�

��h�j cy jE�i
��2 � [! � (E� � E�)] . (6.1)

jE�i is the ground state of the full Hamiltonian HXPS from Eq.(2.1) before the

creation of the core hole on the Cu site. As explained in Sec. 2.2, jE�i is also
the ground state of Hamilton operator H from Eq.(2.6). In the case of a CuO4

plaquette, the ground state jE�i and the ground-state energy E� are (see Sec. 3.2)

jE�i = 2tpd jdi � E� jpi ,

E� =
1

2

�
�� 2tpp �

q
(�� 2tpp)

2
+ (4tpd)

2

�
.
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Eigenstate Norm Eigenenergy��Ec

�

�
= c

y

�
2tpd jdi+

�
Udc � E

c

�

�
jpi
�

4t2
pd
+
�
Udc � E

c

�

�2
E
c

���Ec

+

�
= c

y

�
2tpd jdi+

�
Udc � E

c

+

�
jpi
�

4t2
pd
+
�
Udc � E

c

+

�2
E
c

+

jOc

1i = c
y (jp1i � jp2i+ jp3i � jp4i) 4 �

jOc

2i = c
y (jp1i+ jp2i+ jp3i+ jp4i) 4 �

jOc

3i = c
y (jp1i � jp2i � jp3i+ jp4i) 4 � + 2tpp

Table 6.1: Eigenstates and eigenenergies of the single-plaquette system with core

hole.

The norm of jE�i is 4t2pd + (E�)
2
.

The vectors j�i in Eq.(6.1), on the other hand, are the �ve excited eigenstates

ofHXPS after the creation of the core hole. These states will be determined below.

In Eq.(6.1), the pseudo-spin index � of the core hole has been suppressed because,

for the moment, we restrict ourselves to the case of Idc = 0. This means that

the resulting states are 4-fold degenerate with respect to �, and 2-fold degenerate

with respect to the spin � of the valence hole. Non-vanishing exchange splitting

will be discussed in the next section.

We already know the ground-state jE�i. Thus, for the calculation of I (!)

we only need to determine the �nal states j�i of the system after the creation of

the core hole. In the presence of a core hole, the valence hole on the Cu site feels

the additional Coulomb repulsion Udc. Formally, this e�ect is equivalent to an

enhanced Cu on-site energy. Therefore, the vectors j�i have the same structure as
the eigenvectors before the creation of the core hole (Sec. 3.2). The only di�erence

is an additional Cu on-site energy Udc. The eigenstates and eigenenergies are

shown in Table 6.1. State
��Ec

�

�
is the ground state of the system with core hole.

The eigenenergies Ec

�
are obtained from the energies E� of Eq.(3.5) by formally

adding Udc to the Cu on-site energy

E
c

�
=

1

2

�
�� 2tpp + Udc �

q
(�� 2tpp � Udc)

2
+ (4tpd)

2

�
.

The eigenstates jOc

1i, jOc

2i, and jOc

3i have pure O character. Consequently, they

remain una�ected by the creation of the core hole, and they are orthogonal to

c
y jE�i. However, in Eq.(6.1) only states j�i with a non-vanishing matrix element
h�j cy jE�i contribute to I (!). Thus, only the two states

��Ec

�

�
lead to a non-
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Figure 6.1: Single plaquette spectrum with vanishing exchange interaction. The

lower part shows the two �nal states which correspond to the two peaks in the

spectrum. Larger dots symbolize a larger valence hole density.

vanishing spectral intensity

I (!) �
X
�

��
Ec

�

�� cy jE�i
��2 � �! � �Ec

�
� E�

��

=
X
�

��4t2
pd
�
�
Udc � E

c

�

�
E�

��2�
4t2

pd
+ (Udc � Ec

�
)
2
� �
4t2

pd
+ (E�)

2
� � �! � �Ec

�
� E�

��
.

In Fig. 6.1 we show the resulting spectrum I (!) for parameter set (2.9) and

Udc = 8 eV. The spectral lines have been convoluted with a Gaussian function

of width � = 1:8 eV. One observes two peaks that correspond to the two �nal

states
��Ec

�

�
. The peak at lower binding energy (2:92 eV) is due to an excitation

into the �nal state
��Ec

�

�
. This state has a Cu weight of only 13%, as compared
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to 69% in the ground state without core hole jE�i. On the other hand, the �nal

state
��Ec

+

�
, which leads to the peak at higher binding energy (10:71 eV), has a

Cu weight of 87%. Thus, the Coulomb repulsion Udc leads to a more pronounced

distribution of Cu weight in the two �nal states. The valence hole distribution in

the �nal states is shown in the lower part of Fig. 6.1, where larger dots symbolize

a larger density. The analysis of the Cu weight in the �nal states allows for

a simple interpretation of the energetic positions in the spectrum. In the �nal

state
��Ec

�

�
the valence hole is predominantly on the O sites. Thus, the Coulomb

repulsion Udc is largely avoided at the cost of the charge-transfer energy �. On

the other hand, in the �nal state
��Ec

+

�
the valence hole remains on the Cu site

where it is exposed to the Coulomb repulsion Udc. Consequently, the excitation

that corresponds to
��Ec

+

�
is found at higher binding energies. It is separated from

the
��Ec

�

�
-excitation by the energy di�erence

E
c

+ � E
c

�
=

q
(�� 2tpp � Udc)

2
+ (4tpd)

2
. (6.2)

For small hopping parameters tpd and tpp this di�erence scales as Udc��. In the

following chapters it will become transparent that this characterization remains

valid for other CuO structures as well: the excitations at higher (lower) binding

energy are due to �nal states with a high (low) valence-hole density at the core-

hole site. It turns out that this is also the basic explanation of the experimentally

observed structures at higher binding energy (the satellite), and at lower binding

energy (the main line), as discovered by Larsson and Braga [61].

The dependence of the spectrum on the value of the charge-transfer energy

� is shown in Fig. 6.2. Again, we use parameter set (2.9) and Udc = 8 eV. With

increasing � peak (a) shifts to lower binding energies, and peak (b) to higher

binding energies. Consequently, the separation between the two peaks decreases

as described by Eq.(6.2). Furthermore, the intensity ratio Ia=Ib increases with

increasing �. This e�ect may be interpreted as follows. With increasing � the

Cu weight in the ground state jE�i grows. Thus, in Eq.(6.1) the overlap with

the �nal state
��Ec

+

�
increases, and the intensity of peak (a) becomes larger. This

leads to a larger value for Ia=Ib.

For the comparison with experimental spectra it is useful to change parameter

values in such a way that the intensity ratio Ia=Ib is in
uenced, while the separa-

tion between (a) and (b) remains constant. This can be achieved if � is varied,

while the di�erence Udc � � is kept constant. For Udc � � = 4:5 the resulting

spectra are shown in Fig. 6.3. Peak (b) is found to behave as in Fig. 6.2. Peak

(a), on the other hand, shifts to higher binding energies. Since larger values of Udc

lead to a more pronounced distribution of Cu weight in the �nal states, the ratio
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Ia=Ib is in
uenced even stronger than in Fig. 6.2. The results of Figs. 6.2 and

6.3 agree with the positive correlation between the energy of the main line and

the satellite to main-line intensity ratio Is=Im found by Tranquada and coworkers

[99] both experimentally and theoretically. Later, we will determine the value of

� by comparing Ia=Ib with the experimental value of the satellite to main line

intensity ratio (see Sec. 6.3).
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Figure 6.2: �-dependence of the single plaquette spectrum.
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Figure 6.3: �- and Udc-dependence of the single plaquette spectrum.
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Figure 6.4: tpd-dependence of the single plaquette spectrum.

In Fig. 6.4 we show the in
uence of the hopping tpd on the spectrum. The

parameters are those of set (2.9), with Udc = 8 eV. With decreasing tpd the

intensity ratio Ia=Ib between peak (a) and (b) increases. Again, the reason for

this increase in Ia=Ib is the increase of the Cu weight in the ground state with

decreasing tpd. However, in contrast to Figs. 6.2 and 6.3, the value of tpd has

almost no in
uence on the position of feature (b).

6.2 Exchange splitting

We now investigate XPS for non-vanishing exchange coupling: Idc 6= 0. In this

case, the spectral intensity I (!) has the form (2.15)

I (!) �
X
�

X
�;�

���h� (�; �)j cy� jE� (�)i
���2 � h! � �E�;�

�
� E�

�i
. (6.3)

In Eq.(6.3) the ground state jE� (�)i, with energy E�, and the �nal states

j� (�; �)i, with energies E
�;�

�
, depend on the spin index � and the pseudo-spin

index �. We have assumed that both spin orientations � and �� in the ground

state have equal probability. Again, the problem is solved if all �nal states after

the creation of the core hole are determined. If all (pseudo-) spin degrees of free-

dom are taken into account, the single CuO4 plaquette has 40 eigenstates after

the creation of a Cu 2p3=2 core hole: (5 sites) � (2 values for �) � (4 values for �).

Obviously, all eigenstates of the problem with Idc = 0 that have zero Cu weight
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Eigenstate Norm Eigenenergy

jOc

1 (�; �)i = c
y

�
(jp�1 i � jp�2 i+ jp�3 i � jp�4 i) 4 �

jOc

2 (�; �)i = c
y

�
(jp�1i+ jp�2 i+ jp�3 i+ jp�4 i) 4 �

jOc

3 (�; �)i = c
y

�
(jp�1 i � jp�2 i � jp�3 i+ jp�4 i) 4 � + 2tpp

Table 6.2: Eigenstates and eigenenergies with vanishing Cu weight.

are eigenstates of the problem with Idc 6= 0 as well. This gives 24 eigenstates

with pure O character: (3 states) � (2 values for �) � (4 values for �). They are

shown in Table 6.2. However, in analogy to the case Idc = 0, these states do not

contribute to the spectral intensity of the XPS in Eq.(6.3).

The remaining 16 eigenstates have non-vanishing Cu weight. Therefore, these

states have to be eigenstates of the exchange term in Hamilton operator HXPS

from Eq.(2.1). They can be found by decomposing the exchange term

Sd � Jc = S
z

d
J
z

c
+
1

2

�
S
+
d
J
�

c
+ S

�

d
J
+
c

�
,

with

S
z

d
=

1

2

�
n
d

"
� n

d

#

�
,

S
+
d

= d
y

"
d# ,

S
�

d
= d

y

#
d" ,

and

J
z

c
=

3

2

�
n
c

3=2 � n
c

�3=2

�
+
1

2

�
n
c

1=2 � n
c

�1=2

�
,

J
+
c

=
p
3
�
c
y

3=2
c1=2

�
+ 2

�
c
y

1=2
c�1=2

�
+
p
3
�
c
y

�1=2
c�3=2

�
,

J
�

c
=

p
3
�
c
y

1=2
c3=2

�
+ 2

�
c
y

�1=2
c1=2

�
+
p
3
�
c
y

�3=2
c�1=2

�
.

The factors in these expressions can be calculated using the general formula for

ladder operators J� with total angular momentum s and z-component m

�
J
�
�s�m js;�si =

s
(2s)! (s�m)!

(s�m)!
js;mi .

Generally, the addition of an angular momentum 3=2 and an angular momentum

1=2 gives three triplet states (total momentum 1, z-values f�1; 0g, S�J eigenvalue
�5=4) and �ve quintet states (total momentum 2, z-values f�2;�1; 0g, S � J
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eigenvalue 3=4). Thus, the remaining 16 eigenstates of HXPS have to consist of

triplet or quintet Cu and O states. The Cu states with triplet symmetry are��T d

1

�
=

1

2
c
y

1=2
jd"i �

p
3

2
c
y

3=2
jd#i ,

��T d

0

�
=

1p
2
c
y

�1=2
jd"i �

1p
2
c
y

1=2
jd#i ,

��T d

�1

�
=

p
3

2
c
y

�3=2
jd"i �

1

2
c
y

�1=2
jd#i .

The quintet Cu states are��Qd

2

�
= c

y

3=2
jd"i ,

��Qd

1

�
=

p
3

2
c
y

1=2
jd"i+

1

2
c
y

3=2
jd#i ,

��Qd

0

�
=

1p
2
c
y

�1=2
jd"i+

1p
2
c
y

1=2
jd#i ,

��Qd

�1

�
=

1

2
c
y

�3=2
jd"i+

p
3

2
c
y

�1=2
jd#i ,��Qd

�2

�
= c

y

�3=2
jd#i .

The O states with triplet and quintet symmetry, jT p

m
i and jQp

m
i, are obtained

from the above expressions by replacing the vector jd�i with jp�i = jp�1 i+ jp�2 i �
jp�3i � jp�4i. Thus,

jT p

1 i =
1

2
c
y

1=2
jp"i �

p
3

2
c
y

3=2
jp#i ,

and so on. All these states are mutually orthogonal, and they are eigenstates

of the exchange term Sd � Jc in HXPS. Therefore, they can be used to construct

the remaining 16 eigenstates of HXPS in analogy to the case Idc = 0. This

gives six triplet states jT�

m
i with m = f�1; 0;+1g, and ten quintet states jQ�

m
i

with m = f�2;�1; 0; 1;+2g. They are shown in Table 6.3. The norms of the

eigenstates from Table 6.3 are

N
T

�
= 4t2

pd
+
�
Udc � 5=4Idc � E

T

�

�2
,

N
Q

�
= 4t2

pd
+
�
Udc + 3=4Idc � E

Q

�

�2
,

and the eigenenergies are

E
T

�
=

1

2

2
4�� 2tpp + Udc �

5Idc

4
�
s�

�� 2tpp � Udc +
5Idc

4

�2

+ (4tpd)
2

3
5 ,

E
Q

�
=

1

2

2
4�� 2tpp + Udc +

3Idc

4
�
s�

�� 2tpp � Udc �
3Idc

4

�2

+ (4tpd)
2

3
5 .
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Eigenstate Norm Eigenenergy

jT�

m
i = 2tpd

��T d

m

�
+
�
Udc � 5=4Idc � E

T

�

�
jT p

m
i N

T

�
E
T

�

jT+
m
i = 2tpd

��T d

m

�
+
�
Udc � 5=4Idc � E

T

+

�
jT p

m
i N

T

+ E
T

+

jQ�

m
i = 2tpd

��Qd

m

�
+
�
Udc + 3=4Idc � E

Q

�

�
jQp

m
i N

Q

�
E
Q

�

jQ+
m
i = 2tpd

��Qd

m

�
+
�
Udc + 3=4Idc � E

Q

+

�
jQp

m
i N

Q

+ E
Q

+

Table 6.3: Eigenstates and eigenenergies with non-vanishing Cu weight.

With these �nal states, the spectral intensity from Eq.(6.3) becomes

I (!) �
X
�

�
�
! �

�
E
T

�
� E�

�� X
m;�;�

���
T�

m

�� cy
�
jE� (�)i

���2

+
X
�

�

h
! �

�
E
Q

�
� E�

�i X
m;�;�

���
Q�

m

�� cy
�
jE� (�)i

���2 .

The matrix elements in this expression can be evaluated



T
�

m

�� cy
�
jE� (�)i = 4t2

pd



T
d

m

�� cy
�
jd�i

N
T
�

�
4t2

pd
+ (E�)

2
�

+
�
Udc � 5=4Idc � E

T

�

�
E�

hT p

m
j cy

�
jp�i

NT
�

�
4t2

pd
+ (E�)

2
�

=
�
4t2

pd
+
�
Udc � 5=4Idc � E

T

�

�
E�

� 

T
d

m

�� cy
�
jd�i

N
T
�

�
4t2

pd
+ (E�)

2
� ,

where we have used

hT p

m
j cy

�
jp�i =



T
d

m

�� cy
�
jd�i .

The quintet-matrix element has an analogous form. WithX
m;�;�

���
T d

m

�� cy
�
jd�i

���2 = 3 ,

X
m;�;�

���
Qd

m

�� cy
�
jd�i

���2 = 5 ,

this �nally leads to

I (!) �
X
�

3
�
4t2

pd
+
�
Udc � 5=4Idc � E

T

�

�
E�

�2
N

T
�

�
4t2

pd
+ (E�)

2
� �

�
! �

�
E
T

�
� E�

��

+
X
�

5
h
4t2

pd
+
�
Udc + 3=4Idc � E

Q

�

�
E�

i2
N

Q

�

�
4t2

pd
+ (E�)

2
� �

h
! �

�
E
Q

�
� E�

�i
.
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Figure 6.5: Single plaquette spectrum with non-vanishing exchange interaction.

The same spectrum is shown with two di�erent line widths: � = 1:8 eV (solid

line), and � = 0:2 eV (dashed line). The lower part shows the �nal states which

correspond to the peaks in the spectrum. Larger dots symbolize a larger valence

hole density.

The structure of this expression allows for at most four di�erent excitations in

the spectrum. In Fig. 6.5 we show I (!) for parameter set (2.9) and Udc = 8 eV,

Idc = �1:5 eV. The spectral lines have been convoluted with a Gaussian function

of width � = 1:8 eV (solid line), and � = 0:2 eV (dashed line). For larger

broadening the spectrum consists of a low-energy peak (b), and a high-energy

double peak structure (a).

The valence hole distribution in the �nal states is shown in the lower part of

Fig. 6.5. Comparison with Fig. 6.1 shows that the �nal states which correspond

to structures (a) and (b) have the same characteristics for Idc 6= 0 as for Idc = 0 .

For � = 1:8 eV, peak (b) in Fig. 6.5 has practically the same form and position
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as peak (b) in Fig. 6.1. Furthermore, the intensity ratio between (a) and (b) is

almost the same for Idc = 0 and for Idc 6= 0. However, the non-vanishing exchange

Idc a�ects the form of peak (a), which formerly had been located at 10:71 eV (see

Fig. 6.1). Now, this peak is split antisymmetrically (by �0:95 eV and +1:69 eV)

into two sub-peaks at 9:76 eV and 12:40 eV binding energy. These correspond to

the (+)-quintet and (+)-triplet excitations, with an energy separation

E
T

+ � E
Q

+ = �Idc +
1

2

s�
�� 2tpp � Udc +

5Idc

4

�2

+ (4tpd)
2

�1

2

s�
�� 2tpp � Udc �

3Idc

4

�2

+ (4tpd)
2
. (6.4)

For small hopping parameter tpd this separation is approximately equal to the

'atomic' triplet-quintet separation (5=4 + 3=4) jIdcj = 2 jIdcj���ET

+ � E
Q

+

��� ' 2 jIdcj .

There is an analogous splitting of the structure (b) as well. However, for small

hopping parameters this splitting vanishes approximately���ET

�
� E

Q

�

��� ' 0 .

Therefore, it is only visible for small broadening (dashed line in Fig. 6.5). This

fact has an obvious physical interpretation. Since structure (b) is associated

with a �nal state with small Cu weight, there is only a small exchange splitting

due to the interaction with the core hole. On the other hand, the large Cu

weight in the �nal states of structure (a) leads to a sizable exchange splitting

in the spectrum. We �nally note that, compared to the Cu 2p3=2 spectrum, the

exchange splitting for small tpd in the Cu 2p1=2 spectrum turns out to be half as

large: (3=4 + 1=4) jIdcj : This agrees with the experimental observation that the

splitting in the Cu 2p1=2 spectra is smaller than in the Cu 2p3=2 spectra (see, for

example, Refs. [90] and [71]).

Summing up, the Cu 2p3=2 core-level spectrum of a single CuO4 plaquette

generally consists of two features: (a) a higher energy structure which is due to a

�nal state with high Cu weight, and (b) a lower energy feature with a �nal state

with small Cu weight. For exchange coupling Idc 6= 0 the form of feature (b),

and the intensity ratio between (a) and (b) are almost the same as for Idc = 0.

Non-vanishing exchange coupling does, however, lead to an asymmetric splitting

of structure (a) with a separation of approximately 2 jIdcj. The two sub-peaks

correspond to a quintet and a triplet excitation. The fact that structure (a)
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splits asymmetrically is important for the comparison with the experiment: If

the exchange splitting is neglected (as in Fig. 6.1), the positioning of the single

peak (a) with respect to the broad experimental satellite structure is problematic.

For Idc 6= 0 this problem is avoided, as will be shown in the next section.

6.3 Comparison with experiments

Although the model of a single CuO4 plaquette is very simple, it can nevertheless

be compared successfully with experimental results of Bi2CuO4 and Li2CuO2.

At this point it is useful to count the degrees of freedom in the experimental

spectra and in the theoretical model. The Cu 2p3=2 XPS spectra of Bi2CuO4

and Li2CuO2 consist of a symmetric main line and a broader, essentially double-

peaked, satellite structure (see Fig. 1.9). Thus, each spectrum has at least six

degrees of freedom: the energy position of the main line, the energy di�erence

between main line and satellite, the splitting of the two satellite features, the

intensity ratio between main line and satellite, the intensity ratio between the

two satellite sub-features, and the width of all spectral peaks. On the other hand,

the theoretical CuO4 plaquette model (see Sec. 2.1) has at �rst glance seven free

parameters: the �ve parameters �, tpd, tpp, Udc, and Idc from Hamiltonian HXPS,

the global energy shift "c of the spectrum, and the arti�cial line width � that de-

scribes �nite resolution and lifetime e�ects. However, as described in Sec. 3.2, �

and tpp contribute only in the form of an e�ective charge-transfer energy: ��2tpp.
Therefore, they have to be considered as a single free parameter. In addition, it

has to be stressed that two or more of the free parameters may have the same

in
uence on the theoretical spectra. Thus, di�erent free parameters are not nec-

essarily independent degrees of freedom for the description of the experiment. A

successful description of six experimental degrees of freedom using a model with

six free parameters is, therefore, in general a non-trivial achievement. Neverthe-

less, it is desirable to remove as much arbitrariness from the model as possible.

Our strategy in doing this will be twofold. First, if available, we will try to use

standard values for the parameters, for instance those of set (2.9). Second, we

will try to describe as many di�erent experimental results as possible with the

same parameter values. Thus, from the spectrum of Bi2CuO4 we determine the

value of the global energy shift "c, the arti�cial line width �, and the exchange

parameter Idc. These parameters should be rather independent of the actual ma-

terial. Therefore, the same values will then be used for the spectra of Li2CuO2

(present section), Sr2CuO3 (Sec. 8.1), and Sr2CuO2Cl2(Sec. 8.2).

Figure 6.6 shows a comparison of the theoretical spectrum with the experi-
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mental result for Bi2CuO4 from Ref. [16]. The parameter values for the charge-

transfer energy and the hopping amplitudes are those of set (2.9): � = 3:5 eV,

tpd = 1:3 eV, and tpp = 0:65 eV. Since there is only one hole, the parameter Ud

does not contribute. The values for the core-hole parameters have been adjusted

to the experiment: Udc = 8:5 eV and Idc = �1:5 eV. The energy shift "c has been
set equal to 931:1 eV, and the line width is � = 1:8 eV. The last three parameter

values will be used in the remainder of this thesis (all values are in eV)

Idc "c �

�1:5 931:1 1:8
(6.5)

As can be seen from Fig. 6.6, the agreement between theory and experiment is

excellent. The calculated ratio Is=Im of the satellite to the main line intensity is

0:56, which compares well to the experimental upper estimate of 0:58 (see Table

1.4). Only in two regions there is a slight mismatch. Region one is between 942

eV and 943 eV binding energy, where the detailed form of the satellite structure

is not reproduced correctly. This is due to the rather simple structure of the

exchange term in HXPS from Eq.(2.1). A better description of the satellite can be

obtained if all spin-orbit and exchange contributions are taken into account, as

demonstrated by Goldoni and coworkers [39]. Region two is between 936 eV and

940 eV binding energy, where the theoretical intensity is too small. However, this

is explained by the emission from the Bi 4s core level which contributes around

940 eV [16]. Since we use a model that consists only of Cu and O sites, this

emission is not included in the theoretical spectrum. At this point it should be

noted that Karlsson, Gunnarsson, and Jepsen [54] have interpreted the somewhat

broader main structure of Bi2CuO4 (as compared with Li2CuO2) as an e�ect of

the in
uence of the Bi ions.

The interpretation of the spectral features in Fig. 6.6 has already been given

in Sec. 6.2 (see Fig. 6.5). The main line corresponds to a �nal state with small Cu

weight and small exchange splitting. The satellite structure, on the other hand,

is due to a �nal state with large Cu weight and large exchange splitting. These

results support the assumption that the CuO4 plaquettes in Bi2CuO4 are rather

isolated with respect to their electronic properties.

An analogous conclusion can be drawn for the electronic structure of Li2

CuO2, as shown in Fig. 6.7. Using the same parameter values as for Bi2CuO4

{ that is, sets (2.9) and (6.5), as well as Udc = 8:5 eV { we obtain again a

very good agreement between theory and experiment. The theoretical intensity

ratio Is=Im = 0:56 is identical to the experimental one (see Table 1.4). Only

the detailed form of the satellite structure, and the line width of the main peak

di�er somewhat from the theoretical result. Thus, the hypothesis that the CuO4
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Figure 6.6: Comparison of the theoretical spectrum (solid line) with the experi-

mental result for Bi2CuO4 (dots) from Ref. [16].

subunits in Li2CuO2 (see Fig. 1.6(b)) are electronically separated seems to be

justi�ed. This is supported by exact diagonalization calculations on chain clusters

of �ve edge-sharing plaquettes, where only small �nite-size e�ects have been found

[75],[76].

So far we have tried to restrict the number of free parameters in our model

by choosing standard values. However, the values of set (2.9) have been deter-

mined from LDA band-structure calculations for La2CuO4. Although the atomic

distances in this compound are more or less similar to those of Li2CuO2 (see

Sec. 1.2), the values of the parameters may di�er from material to material. As

mentioned above, another approach is to describe as much experimental infor-

mation as possible using one single (not necessarily standard-) parameter set.

Of course, these parameter values still have to remain within certain accept-

able bounds. We have applied this strategy to the electron-energy loss spectrum

(EELS) of Li2CuO2 [5]. (For an introduction to this experimental method see

[34].) It turns out that both the Cu 2p3=2 XPS and the EELS of Li2CuO2 can be

described by the CuO4 plaquette model with one single parameter set: � = 2:97

eV, tpd = 1:28 eV, tpp = 0:47 eV, together with set (6.5) and Udc = 8:31 for the

core hole. Notice that this set di�ers only slightly from the one used in Fig. 6.7.

There is only a small di�erence between the e�ective charge-transfer energy used

in Fig. 6.7 (� � 2tpp = 2:2 eV), and the above parameter set: (� � 2tpp = 2:03

eV). Thus, the additional information of the EELS has essentially removed the



6.3. COMPARISON WITH EXPERIMENTS 97

946 944 942 940 938 936 934 932 930
Binding energy ω (eV)

0

In
te

ns
ity

 I
(ω

) 
(a

rb
. u

ni
ts

) Li2CuO2

Theory

Figure 6.7: Comparison of the theoretical spectrum (solid line) with the experi-

mental result for Li2CuO2 (dots) from Ref. [16].

arbitrariness of the individual values for � and tpp. Although the calculated ratio

Is=Im = 0:52 for the XPS is somewhat smaller than the experimental one, this

result is a strong argument for the locality of the electronic properties of Li2CuO2

[5].
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Chapter 7

Projection technique

In this chapter we present an analytical method, the Mori-Zwanzig projection

technique, which allows to approximately calculate correlation functions in in�-

nite systems. Section 7.1 sketches the basic principles of this method. In Sec. 7.2

we specify the dynamic variables that will be needed for the application of the

projection technique to the calculation of Cu core level spectra. The correspond-

ing matrix elements are evaluated in Secs. 7.3 and 7.4. We conclude with a short

discussion of the convergence of the method for the case of the CuO3 chain in

Sec. 7.5.

7.1 General

In Quantum Mechanics, dynamic physical quantities can be written in the form

of a correlation function

GAB (z) =

�
A

1

z � LB
�

. (7.1)

A and B are operators, and z = ! + i�. The brackets symbolize the expectation

value. L is the Liouville operator. For arbitrary operators A, L is de�ned by

LA = [H;A] , (7.2)

where H is the Hamilton operator of the system. One example for a correlation

function of the form (7.1) is the single core hole correlation function G
�

00 from

Eq.(2.19)

G
�

00 (z) = h	j c0�
1

z � LXPS

c
y

0� j	i ,

which determines the intensity of the Cu 2p3=2 XPS via Eq.(2.18).

99
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The Mori-Zwanzig projection technique [68][114] allows to evaluate (approxi-

mately) correlation functions of the form (7.1). The basic concept of this method

is to separate the Hilbert space H of the system into the orthogonal direct sum

of a \relevant" part P and the \rest" Q

H = P �Q .

Subsequently, the part of the problem which belongs to the subspace P will

be solved exactly, while the contribution of Q will be treated in some form of

approximation. This approach encompasses, for instance, several variants of per-

turbation theory, if P is identi�ed with the eigenspace of the unperturbed part of

the Hamiltonian [37]. The concept of the projection technique is, however, more

general, as it may be applied even if there is no obvious \small parameter" in the

Hamiltonian. There are orthogonal projection operators P and Q projecting on

the subspaces P and Q, with

Q = 1� P: (7.3)

One now generates a set of vectors that span the relevant subspace P. This is

achieved by applying operators Di, the so-called dynamic variables, onto a state

j	i. Later, we will choose state j	i to be the ground state (3.2) of the multi-band
Hamiltonian (2.6). The explicit form of the dynamic variables Di will be given

in Sec. 7.2. For the moment, however, the discussion remains completely general.

We only assume that the operators A and B from the correlation function (7.1),

which we want to evaluate, are contained in the set of dynamic variables. The

vectors D� j	i are required to be mutually linear independent, but not necessarily
orthogonal

X



h	jDy

�
D
 j	i�1 h	jDy



D� j	i = ��� . (7.4)

The projector P can be written in the form

P =
X
�;�

D� j	i h	jDy

�
D� j	i�1 h	jDy

�
. (7.5)

Using Eq.(7.4) it is easy to show that P is indeed idempotent. We de�ne the

action of the Liouville operator L on P as

LP =
X
�;�

(LD�) j	i h	jDy

�
D� j	i�1 h	jDy

�
. (7.6)
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With these expressions, correlation functions of the form (7.1) can be rewritten�
D
y

�

1

z � LD�

�
=

1

z



D
y

�
D�

�
+
X

;�

�
D
y

�

1

z � LQLD


�

�


D
y



D�

�
�1

�
D
y

�

1

z � LD�

�
, (7.7)

where h: : : i is a shorthand for h	j : : : j	i which will be used in the following

derivation. Equation (7.7) can be veri�ed by use of the following operator identity

1

z � L =
1

z � LQ (z � LQ) 1

z � L
=

1

z � LQ (z � L+ LP ) 1

z � L

=
1

z � LQ

�
1 + LP 1

z � L

�
.

Using Eq.(7.6) and�
D
y

�

1

z � LQD�

�
=

1

z

�
D
y

�

�
1 +

1

z
LQ+ : : :

�
D�

�

=
1

z



D
y

�
D�

�
one obtains Eq.(7.7).

Equation (7.7) can be rewritten in a more convenient form. Notice that�
D
y

�

1

z � LQLD


�
=

1

z

�
D
y

�

z

z � LQLD


�

=
1

z

�
D
y

�

z � LQ+ LQ
z � LQ LD


�

=
1

z



D
y

�
LD


�
+
1

z

�
D
y

�
LQ 1

z � LQLD


�

=
1

z



D
y

�
LD


�
+
1

z

�
D
y

�
LQ 1

z �QLQQLD


�
,

where we have used the fact that the projector Q is idempotent. Inserting this

expression in Eq.(7.7), and multiplying with z leads to

z

�
D
y

�

1

z � LD�

�
=


D
y

�
D�

�
+
X

;�

�

D
y

�
LD


�
+

�
D
y

�
LQ 1

z �QLQQLD


��

�


D
y



D�

�
�1

�
D
y

�

1

z � LD�

�
,
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or, in matrix notation

zG = �+ (
 + �)��1G . (7.8)

G is the matrix of correlation functions

G�� (z) = h	jDy

�

1

z � LD� j	i , (7.9)

� is the so-called susceptibility matrix

��� = h	jDy

�
D� j	i , (7.10)


 is called frequency matrix


�� = h	jDy

�
LD� j	i , (7.11)

and � is the self-energy matrix

��� (z) = h	jDy

�
LQ 1

z �QLQQLD� j	i . (7.12)

Formally, Eq.(7.8) can be solved for G by inversion

G =
�
z � (
 + �)��1

�
�1
� . (7.13)

This equation is the starting point for the projection technique. Remember that

the operators A and B from Eq.(7.1) belong to the set of dynamic variables D�.

Therefore, one of the matrix elements of G is the correlation function (7.1). How-

ever, to obtain this matrix element, one has to solve the whole matrix equation

(7.13). Note that on the r.h.s. of Eq.(7.13) the contributions from the two sub-

spaces P and Q are neatly separated. Only the self-energy matrix � contains

the projection operator Q. All other quantities pertain to subspace P. There-

fore, � and 
 describe the dynamics in the \relevant" subspace P, whereas �
is the coupling to the \rest" subspace Q. Furthermore, � and 
 contain no

operator fractions. Consequently, the susceptibility and frequency matrix can

be calculated exactly, if j	i and the dynamic variables D� are known. Since,

by assumption, P contains the most important parts of the Hilbert space, the

contribution of � should be small. In this case it is justi�ed to replace � by

some approximate expression which can be calculated explicitly. There are many

possibilities to obtain an approximation for the self-energy matrix [37]. For in-

stance, one approach uses the fact that � has the same structure as G. Thus, we

can repeat the procedure that has led to Eq.(7.13), by applying it to �. In this

way, a new self-energy matrix is generated which can again be subjected to the
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above procedure, and so on. Thus, one obtains a continued fraction which can

be approximately truncated at some point.

In the present thesis a di�erent approach will be used. It follows from Eq.(7.3)

that, the larger subspace P is chosen, the smaller is subspace Q (and, conse-

quently, the smaller is �). We assume that the set of dynamic variables D� (and,

therefore, P) is su�ciently large so that the self-energy matrix can be completely
neglected. In this case, Eq.(7.13) reduces to

G =
�
z � 
��1

�
�1
� . (7.14)

By solving Eq.(7.14) one obtains the exact solution of the problem in the subspace

P. The quality of this approximation can be systematically improved by enlarging
the set of dynamic variables until the results have converged. Equation (7.14) is

most easily solved by diagonalizing 
��1 using a unitary transformation matrix

U

G =
�
z � 
��1

�
�1
�

= U
y
U
�
z � 
��1

�
�1
U
y
U�

= U
y
�
z � U
��1U y

�
�1
U� .

This leads to

G�� (z) =
X

;�

U
y

�


1

z � !

U
���� ,

or

G�� (z) =
X



W�� (
)

z � !

, (7.15)

with z = ! + i�. !
 are the diagonal elements of U
�
�1
U
y, and

W�� (
) = U
y

�


X
�

U
���� . (7.16)

W�� (
) is the spectral weight of the excitation 
, with energy !
. Note the

similarity between the imaginary part of Eq.(7.15) and Eq.(2.15). In analogy

to Eq.(2.15), W�� (
) can be interpreted as an overlap between the state j	i
and �nal states with index 
. Since the transformation matrix U consists of the

eigenvectors of [z � 
��1], we can determine the contribution of variable D� to

the �nal state with index 
 by

contr
 (D�) = jU
�j2 . (7.17)
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7.2 Dynamic variables

We now use Eq.(7.14) to calculate the Cu 2p3=2 core-level spectra. According to

Eqs.(2.18) and (2.19), the intensity I (!) is proportional to the imaginary part of

the single core hole correlation function

I (!) � �
X
�

Im
h
G
�

00 (! + i0)
i
,

G
�

00 (! + i0) = h	j c0�
1

! + i0� LXPS

c
y

0� j	i .

j	i is the ground state of Hamiltonian (2.6), and c
y

0� creates a core-hole with

pseudo-spin � (see Chap. 2). For the projection technique, we need an appropriate

set of dynamic variables D�. Since we want G
�

00 to be one of the matrix elements

of the matrix of correlation functions G in Eq.(7.14), the set of dynamic variables

has to include the core-hole creation operator c
y

0�. Thus,

D0� = c
y

0� . (7.18)

Additional dynamic variables may be mechanically generated by repeatedly ap-

plying LXPS onto c
y

0�. However, it is more illustrative to derive the D� by physical

reasoning. In the case of core-level XPS, the role of the dynamic variables in the

projection technique is to describe the reaction of the valence holes to the creation

of the core hole. Let us for the moment again neglect the exchange interaction

in Hamiltonian HXPS from Eq.(2.1), i.e.: Idc = 0. Then, the core hole a�ects

valence holes only due to the Coulomb repulsion Udc in HXPS. Therefore, the

dynamic reaction of the valence system will mainly consist in a delocalization of

the valence hole that had previously occupied the core-hole Cu site i = 0. This

(\dynamic") delocalization due to Udc is a process that is forced upon the system

from outside, in contrast to the (\static") delocalization during the 
uctuation

processes in the ground state. Nevertheless, both forms of delocalization occur

in the Cu-O structures by means of the hopping factors tpd and tpp. Thus, it

should be possible to describe the dynamic delocalization processes within the

same framework as the static delocalization processes. Formally, this means that

the dynamic variables D� can be constructed using the ground-state 
uctuation

operators F� from Sec. 4.1, and Appendices A and B

D�� = F0;�c
y

0� , � > 0 . (7.19)

Physically, the D�� describe the creation of a core hole with pseudo spin � at

Cu site i = 0, and the subsequent delocalization of the valence hole from the
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same site (via F0;�). For instance, for variable D1� the valence hole reacts to the

creation of the core hole by hopping from Cu site i onto the four neighbouring O

sites j

D1� = �
X
j�

�
0j
pd
p
y

j�
d0�c

y

0� .

In the F0;�, a summation over all equivalent �nal sites is made (see Sec. 4.1).

Therefore, the D�� generate only excitations that have the same symmetry with

respect to site i = 0 as the multi-band Hamiltonian H. This is justi�ed, because

the core-hole Hamiltonian Hc does not break this symmetry. In Sec. 7.3 we will

show that already the set fD0; D1g gives the exact solution for the XPS spectrum
of a hole on a single CuO4 plaquette with Idc = 0.

In the case Idc 6= 0, an additional kind of excitation becomes possible: Due

to the non-vanishing exchange interaction, the spins of the valence hole and the

core hole may be 
ipped. Thus, one needs a dynamic variable that describes spin


ips

D
0

0� =
X
�

d
y

0;��d0;�c
y

0;�+2� . (7.20)

c
y

0;�+2� is only de�ned for j� + 2�j � 3=2. Otherwise, the core-hole pseudo spin

and the valence hole spin are maximally aligned and no spin-
ip process is pos-

sible. In this case, no variables have to be added to Eqs.(7.18) and (7.19). In

analogy to Eq.(7.19), additional dynamic variables describe the delocalization of

the valence hole after the spin-
ip process

D
0

��
= F0;�

X
�

d
y

0;��d0;�c
y

0;�+2� . (7.21)

Again, these variables are only necessary for j� + 2�j � 3=2. In Sec. 7.4 we

shall show that a set of fourteen variables gives the exact solution for the XPS

spectrum of a hole on a single CuO4 plaquette.

7.3 Calculation of matrix elements: Idc = 0

According to Eqs.(7.10) and (7.11), the determination of the susceptibility ma-

trix and the frequency matrix involves the evaluation of expectation values. In

principle, it has already been demonstrated in Sec. 4.3 how expectation values

are calculated within the ground-state formalism of part II. Therefore, in this

and the following section we may restrict ourselves to a few examples.
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To illustrate the usefulness of the dynamic variables from Eqs.(7.18) and

(7.19), we �rst show that the set fD0; D1g gives the exact XPS spectrum of

a hole on a single CuO4 plaquette with Idc = 0 (see Sec. 6.1). In this case, the

Cu site index i, and the pseudo-spin index � can be suppressed. Using the exact

ground state j	i from Eq.(3.7), we obtain the susceptibility matrix

� =
1

h	 j 	i

 
h	jDy

0D0 j	i h	jDy

0D1 j	i
h	jDy

1D0 j	i h	jDy

1D1 j	i

!

=
1

h	 j 	i

 
h	j ccy j	i h	j cF1c

y j	i
h	j cF y

1 c
y j	i h	j cF y

1F1c
y j	i

!

=
1

1 + 4�21

�
1 + 4�21 4�1

4�1 4

�
, (7.22)

where we have used Eq.(3.11), together with the fact that F1 and F
y

1 commute

with c and c
y. To calculate the frequency matrix, we have to evaluate some

commutators. Using
�
n
c
; c

y

�
= c

y we obtain

LXPSc
y = LHc

y + LHc
c
y

= LHc
c
y

= Udcn
d
c
y .

Furthermore,
�
n
d
; d
�
= �d implies

LHc
F1c

y = Udc

�
F1ndc

y � F1c
y � F1c

y
nc

�
.

Since in the present system F1nd j	i = F1 j	i, and cync j	i = 0, one obtains

LHc
F1c

y j	i = 0 .

Therefore,

LXPSF1c
y = LHF1c

y + LHc
F1c

y

= (LHF1) c
y .
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Consequently, the frequency matrix is


 =
1

h	 j 	i

 
h	jDy

0LXPSD0 j	i h	jDy

0LXPSD1 j	i
h	jDy

1LXPSD0 j	i h	jDy

1LXPSD1 j	i

!

=
1

h	 j 	i

 
h	j cLXPSc

y j	i h	j cLXPSF1c
y j	i

h	j cF y

1LXPSc
y j	i h	j cF y

1LXPSF1c
y j	i

!

=
1

h	 j 	i

 
Udc h	j cndcy j	i Udc h	j cLHF1c

y j	i
Udc h	j cF y

1n
d
c
y j	i h	j cF y

1LHF1c
y j	i

!

=
1

h	 j 	i

 
Udc Udc h	j LHF1 j	i
0 h	jF y

1LHF1 j	i

!
. (7.23)

Expectation values like those in the second column of the last matrix have already

been calculated in Sec. 3.2. In fact, the upper left matrix element is just the neg-

ative complex conjugate of the expression (3.8), which determines �1. Therefore,

this matrix element vanishes

h	j LHF1 j	i = h	j (LHF1)
y j	i�

= h	j (HF1 � F1H)
y j	i�

= h	j
�
F
y

1H �HF
y

1

�
j	i�

= �h	j LHF
y

1 j	i�

= 0 ,

where the star symbolizes complex conjugation. On the other hand, the lower

right matrix element in Eq.(7.23) can be evaluated in analogy to the calculations

in Sec. 3.2, with the result


 =
1

1 + 4�21

�
Udc 0

0 4 (�� 2tpp � EG)

�
, (7.24)

where

EG = �4tpd�1 .

By inserting the susceptibility and the frequency matrix from Eqs.(7.22) and

(7.24) into the projection equation Eq.(7.14), one obtains the exact solution for

the XPS spectrum of a hole on a single CuO4 plaquette with Idc = 0. A look at

Fig. 6.1 illustrates why the small set fD0; D1g is su�cient for the exact solution:
Since the spectrum consists of only two lines, one only needs a set of two dynamic

variables.
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Some features of Eqs.(7.22) and (7.24) are also found in the �- and 
-matrices

of larger systems. The �rst element is for all systems

�00 = 1 . (7.25)

The other elements in the �rst row (or the �rst column) of the susceptibility

matrix are

�0� =
z�p���

h	 j 	i , (7.26)

where z� is the number of equivalent �nal sites, and p� is the probability of the

process (see Sec. 4.3). The diagonal matrix elements of � (except �00 = 1) are

��� =
z�p�

h	 j 	i . (7.27)

All other elements of the susceptibility matrix vanish. On the other hand, the

�rst element of the frequency matrix is


00 =
Udc

h	 j 	i
�
1 + 2z2d�

2
2dp2d + z2s�

2
2sp2s

�
. (7.28)

The next element is


01 =
Udcz1z2s�2s�1�2d

h	 j 	i2
. (7.29)

There is a close relationship between the remaining elements of the frequency

matrix and the equations for the determination of the 
uctuation strengths ��.

The diagonal elements 
�� (except 
00) are the terms proportional to �� in the

�th equation, multiplied by (�z�) = (�� h	 j 	i) (compare Eqs.(4.27) to (4.31)).
For instance, in the case of a CuO2 plane, the comparison with Eqs.(4.27) and

(4.28) gives


11 =
4 (�� 2tpp � EG)

h	 j 	i +
8tpp�1�3

h	 j 	i2
, (7.30)


2s;2s =
�4EG

h	 j 	i , (7.31)

and so on. The o�-diagonal elements of the frequency matrix (besides 
01) can

be obtained in a similar fashion. Element 
��0 is the term proportional to ��0

in the �th equation, multiplied by (�z�) = (��0 h	 j 	i) (compare Eqs.(4.27) to



7.4. CALCULATION OF MATRIX ELEMENTS: IDC 6= 0 109

(4.31)). If there is no such term, the corresponding matrix element vanishes.

Thus, again for the example of the CuO2 plane one �nds


1;2s =
�4tpdp2s
h	 j 	i , (7.32)


2s;3 =
�8tpdp3p2s
h	 j 	i , (7.33)

and so on.

Summarizing, it turns out that the condition (3.4) for the determination of

the 
uctuation strengths has additional advantages beyond those which have

been discussed in Part II: All matrix elements for the projection technique (for

Idc = 0) have e�ectively already been calculated in Sec. 4.3. Notice, furthermore,

that the vanishing lower left elements of the frequency matrix are zero because

F
y

�
nd j	i = 0 (see Eq.(7.23)). In contrast, the vanishing upper right elements of


 are zero due to condition (3.4), as we have already seen in Eq.(7.23). Therefore,

condition (3.4) ensures that the frequency matrix is Hermitian (and, consequently,

that its eigenvalues are real). This is a non-trivial property, if an approximate

ground state is used for the calculation of the matrix elements: Let j'i be an

approximate eigenstate of H. Then, in general

h'jHX j'i 6= h'jXH j'i ,

for an operator X which is not Hermitian. However, this implies

h'jAyLHB j'i = h'jAy
HB j'i � h'jAy

BH j'i
= h'jBy

HA j'i� � h'jHBy
A j'i�

6= h'jBy
HA j'i� � h'jBy

AH j'i� ,

and, therefore,

h'jAyLHB j'i 6= h'jByLHA j'i� .

This means that, if j'i is only an approximate eigenstate of H, the matrix

h'jDy

�
LHD� j'i is in general not Hermitian. This problem is avoided in the

present approach due to condition (3.4).

7.4 Calculation of matrix elements: Idc 6= 0

For a non-vanishing exchange interaction Idc 6= 0, the set of dynamic variables

includes D
0

0� and D
0

��
from Eqs.(7.20) and (7.21). Remember that one needs
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these variables only if the spin directions of the core- and the valence hole make

a spin 
ip possible, i.e. if j� + 2�j � 3=2. Thus, if � = 3=2 and � = 1=2, or

if � = �3=2 and � = �1=2, no additional dynamic variables are necessary to

solve the problem with non-vanishing exchange interaction. In this case, the

susceptibility matrix is the same as for Idc = 0 (see Sec. 7.3). The frequency

matrix also remains almost unchanged. Only in the elements 
00 and 
01 appear

additional Ising-contributions proportional to Idc


00 =
Udc + Idc��

h	 j 	i +
2Udcz2d�

2
2dp2d

h	 j 	i +
(Udc � Idc��) z2s�

2
2sp2s

h	 j 	i , (7.34)


01 =
(Udc � Idc��) z1z2s�2s�1�2d

h	 j 	i2
. (7.35)

Next, we consider the case j� + 2�j � 3=2. For simplicity, we assume that in

the ground state the spin of the valence hole at the core-hole Cu site is � =

1=2. Then, we only have to take account of the values � = �3=2;�1=2; 1=2 of

the core-hole pseudo spin. As in the preceding section, we start by giving the

exact solution for one hole on a single CuO4 plaquette in the formulation of the

projection technique. Since the core-hole Hamiltonian Hc does not in
uence the

susceptibility matrix, the elements of � without spin-
ip remain unchanged (cf.

Eq.(7.22)). Furthermore, due to spin conservation, the subsets fDg and fD0g of
dynamic variables do not couple in the susceptibility matrix. New non-vanishing

matrix elements appear only within the block of the variables with spin 
ip

� =
1

1 + 4�21

0
BBB@

1 + 4�21 4�1 0 0

4�1 4 0 0

0 0 h	jD0
y

0�D
0

0� j	i h	jD0
y

0�D
0

1� j	i
0 0 h	jD0

y

1�D
0

0� j	i h	jD0
y

1�D
0

1� j	i

1
CCCA .

In contrast to D0�, the variable D
0

0� requires that the Cu site is occupied. On the

other hand, D
0
y

1� gives a non-vanishing contribution only if applied to an empty

Cu site (otherwise, F
y

1 creates a doubly occupied Cu site, which makes a spin-
ip

impossible). Therefore, the o�-diagonal elements in the spin-
ip block vanish,

and one obtains

� =
1

1 + 4�21

0
BBB@

1 + 4�21 4�1 0 0

4�1 4 0 0

0 0 1 0

0 0 0 4

1
CCCA . (7.36)

The �rst two elements of the frequency matrix have already been given in Eqs.(7.34)

and (7.35). Besides these two elements, the sub-block with no spin 
ip, denoted
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by 
n, remains unchanged


n =
1

h	 j 	i

 
h	jDy

0LXPSD0 j	i h	jDy

0LXPSD1 j	i
h	jDy

1LXPSD0 j	i h	jDy

1LXPSD1 j	i

!

=
1

1 + 4�21

�
Udc + Idc�� 0

0 4 (�� 2tpp � EG)

�
.

On the other hand, the spin-
ip sub-block 
f is


f =
1

h	 j 	i

 
h	jD0

y

0 LXPSD
0

0 j	i h	jD0
y

0 LXPSD
0

1 j	i
h	jD0

y

1 LXPSD
0

0 j	i h	jD0
y

1 LXPSD
0

1 j	i

!

=
1

1 + 4�21

�
Udc � Idc (� + 2�)� � EG �4tpd

�4tpd 4 (�� 2tpp � EG)

�
.

The coupling between these two blocks occurs only through the matrix element


000 = h	jDy

0LXPSD
0

0 j	i


 =

0
BBB@


n

Idcg�

1+4�2
1

0

0 0
Idcg�

1+4�2
1

0

0 0

f

1
CCCA . (7.37)

g� is 1=2 times the factor of the pseudo-spin operator (see Sec. 6.2)

g� =

� p
3=2 for � = �3=2; 1=2
1 for � = �1=2 . (7.38)

Summarizing, fourteen dynamic variables are su�cient for the exact solution

on a single CuO4 plaquette. These variables are D0�, D1�, D
0

0�, D
0

1� for � =

�3=2;�1=2; 1=2, and D0�, D1� for � = 3=2. Due to degeneracy, only four peaks

appear in the spectrum (see Fig. 6.5).

Again, some of the considerations that led to Eqs.(7.36) and (7.37) remain

valid for the �- and 
-matrices of larger systems. In the susceptibility matrix,

dynamic variables without spin 
ip do not couple to variables with spin 
ip,

because of spin conservation. The block of matrix elements that contains variables

without spin 
ip is the same as in the case Idc = 0. The �rst element in the block

with spin 
ip is

�0000 =
1

h	 j 	i . (7.39)

All o�-diagonal elements of this block vanish. The diagonal elements have the

same form as the diagonal elements in the block without spin 
ip (see Eq.(7.27)).
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However, the probability factors are di�erent, since it is now a hole with a 
ipped

spin which delocalizes in an antiferromagnetic surrounding. For example

�1010 =
z1p4

h	 j 	i , (7.40)

�2s0;2s0 =
z2p5

h	 j 	i , (7.41)

and so on. Note that it is not necessary to include the spin-
ip variable D
0

2d;�:

Since the dynamic variables are applied to state j	i, which is antiferromagneti-

cally ordered, the Pauli principle prevents a 
ipped valence spin to create a double

occupancy on a neighbouring Cu site. The �rst two elements of the frequency

matrix have already been given in Eqs.(7.34) and (7.35). Besides these two ele-

ments, the block with no spin 
ip in the frequency matrix remains unchanged.

The coupling between this block and the block with spin 
ips occurs only through

the element 
000


000 =
Idcg�

h	 j 	i . (7.42)

All other matrix elements outside the two blocks vanish due to spin conservation.

The elements of the spin-
ip block can be calculated in analogy to the elements

in the block without spin 
ip. The only di�erence is that the hole that delocalizes

in this case has a 
ipped spin.

7.5 Convergence

As described in Sec. 7.1 we assume that our set of dynamic variables is su�-

ciently large so that the self-energy matrix in Eq.(7.13) can be neglected. This

assumption can be checked by comparing the spectra obtained with di�erent sets

of dynamic variables. If a set is large enough, the inclusion of additional dynamic

variables should have no large in
uence on the resulting spectra. In this sense we

may talk about the convergence of the projection technique with respect to the

number of dynamic variables.

In the present section we will use the case of the CuO3 chain as an example.

These spectra will be discussed in detail in Sec. 8.1 . For the moment, we are

only interested in the overall change of the spectrum with increasing number of

variables. Figure 7.1 shows the Cu 2p3=2 XPS spectra of the in�nite CuO3 chain

calculated using the projection technique. The parameters are those of set (2.9),

with � = 2:7 eV, Udc = 7:7 eV, and Idc = �1:5 eV. Solid lines are broadened with
a Gaussian function of width � = 1:8 eV, dashed lines with � = 0:2 eV. Figure
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Figure 7.1: Convergence of the projection technique. The spectra for an in�nite

CuO3 chain are shown with a line width of � = 1:8 eV (solid lines), and � = 0:2

eV (broken lines). (a) and (b) show the result with 40 and 70 dynamic variables,

respectively.

7.1(a) shows the result with 40 dynamic variables, which allow for a delocalization

to the nearest-neighbour plaquette. In Fig. 7.1(b) we show the spectrum with

additional dynamic variables of the type D5, D6, and D7. These variables make

a delocalization to the next nearest neighbour plaquette possible. Altogether 70

dynamic variables have been used to calculate the spectrum in Fig. 7.1(b). The

inclusion of the additional variables leads to a small redistribution of spectral

weight around 935 eV binding energy. This change is only visible when a small

line width � is used for the convolution of the line spectrum. For larger line

width the spectrum remains unchanged. Convergence of similar good quality is

observed for the case of the CuO2 plane.

In conclusion we observe excellent convergence of the calculated spectra with

respect to the number of dynamic variables. Strictly speaking, convergence alone

does not completely prove the validity of the results. Convergence of the projec-

tion technique contains no information about the quality of the ground state used

for the calculation of the expectation values. Furthermore, it might be conceiv-
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able that the spectra could change upon inclusion of additional dynamic variables

of a di�erent kind than those discussed above. However, in view of the agree-

ment with numerical simulations (Sec. 5.3), and the physical reasoning presented

above, the convergence observed in Fig. 7.1 strongly supports the viability of the

theoretical results.



Chapter 8

In�nite structures

In this chapter we calculate the Cu 2p3=2 XPS spectra of the in�nite CuO3 chain

and the in�nite CuO2 plane. For this purpose we use the approach for the ap-

proximation of the ground state from Part II, and the projection technique for

the calculation of the excitations from Chap. 7. The present chapter is organized

as follows: In Sec. 8.1 we calculate the spectrum of the CuO3 chain, and compare

the result to experimental data for Sr2CuO3, as well as to some other theoreti-

cal works. Excellent agreement between theory and experiment is obtained. We

discuss the in
uence of several model parameters, as well as the dependence on

anisotropy. Section 8.1 is concluded with some remarks on the interplay of spin

and charge degrees of freedom. In Sec. 8.2 the calculated spectra for the CuO2

plane are compared to the experimental result for Sr2 CuO2Cl2. The agreement

between theory and experiment turns out to be less satisfactory than in the case

of the other cuprates. In Sec. 8.3 we discuss how the dimensionality in
uences

charge excitations in the cuprates. Finally, an outlook concludes the Chapter.

Some results of this chapter have been published in Refs. [108] and [109].

8.1 CuO3 chain

The projection technique from Chap. 7 is now used to calculate the Cu 2p3=2

XPS spectrum of the in�nite CuO3 chain. We use up to 70 dynamic variables,

and obtain excellent convergence (see Sec. 7.5). The theoretical result is then

compared to the experimental spectrum of Sr2CuO3. For the determination of

the parameter values we employ the strategy that has been explained in Sec. 6.3.

This means we use the standard values from sets (2.9) and (6.5), which have

been deduced from band-structure calculations and from the comparison with

the spectra of Bi2CuO4 and Li2CuO2 (see Sec. 6.3), respectively.

115
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Figure 8.1: Comparison between the CuO3 chain spectrum and the experimental

result for Sr2CuO3 from Ref. [16]. The same theoretical spectrum is shown with

two di�erent line widths: � = 1:8 eV (solid line), and � = 0:2 eV (dashed line).

The parameter values are � = 2:7 eV and Udc = 7:7 eV. All other values are given

in sets (2.9) and (6.5). The lower part shows the �nal states that correspond to

the peaks in the spectrum. Larger dots symbolize a larger valence hole density.

Thereby we allow for a general energy shift of �0:3 eV for the whole spectrum

which is the experimental accuracy of the absolute energy values [16]. We vary

the charge-transfer energy � until the theoretical value for the satellite to main-

line intensity ratio is equal to the experimental one Is=Im = 0:37 (see Table

1.4). While doing so we keep the di�erence Udc � � = 5 eV constant. Thus,

we e�ectively use only one single free parameter. In Fig. 8.1 the theoretical

result is compared to the experimental spectrum of Sr2CuO3 from Ref. [16]. For

� = 2:7 eV we obtain excellent agreement between the experiment (dots) and

the theoretical result with a broadening of � = 1:8 eV (solid line). The same

theoretical result is shown with a smaller broadening � = 0:2 eV as well (dashed
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line). This smaller line width allows to distinguish the di�erent contributions

to the theoretical spectrum. The corresponding valence hole distribution in the

�nal states is shown in the lower part of Fig. 8.1. It has been determined using

Eq.(7.17). The high-energy satellite feature (a) is found to be due to a highly

local �nal state with a large weight at the core hole site (which is the central site

in the chain fragments shown in the lower part of Fig. 8.1). This �nal state (a)

is completely analogous to the one found for the satellite feature of the single-

plaquette spectrum (Fig. 6.5). Due to the large weight at the core hole site, state

(a) shows a large exchange splitting into a quintet and a triplet component (cf.

Sec. 6.2).

The main line in Fig. 8.1 is found to consist of essentially two contributions.

There is a higher energy shoulder (b) and a dominant lower energy feature (c).

The shoulder (b) is associated with a rather local �nal state in which the valence

hole from the core-hole Cu site has moved to the surrounding O sites. Again,

this state is rather similar to the �nal state (b) of the single-plaquette spectrum

(Fig. 6.5). The main di�erence is that the distribution of O weight in Fig. 8.1(b)

is asymmetric, with a larger weight on the out-of chain O sites. An analogous

asymmetry has been found in exact diagonalization calculations by Okada and

Kotani [75]. However, in their work the in-chain part of the weight was found to

move away from the central plaquette. This property is not reproduced in the

present calculation, where �nal state (b) turns out to be essentially local. Thus,

features (a) and (b) in the CuO3 chain spectrum (Fig. 8.1) are found to be very

similar to the excitations in the single-plaquette spectrum (Fig. 6.5). In contrast,

peak (c) in Fig. 8.1 is associated with an excitation which is impossible in the

single-plaquette system. As shown in the lower part of Fig. 8.1, in the �nal state

(c) the valence hole delocalizes onto the nearest neighbour plaquettes. Since these

plaquettes are already occupied by a hole of opposite spin direction, one might

interpret this excitation as the formation of a Zhang-Rice singlet [113]. This

conclusion is in principal agreement with several theoretical analyses, following

the seminal work by Veenendaal, Eskes and Sawatzky [103][104] (see Sec. 2.3).

The Zhang-Rice singlet in state (c) is found to be asymmetric, with more weight

near the core-hole site. There are also �nal states that are more delocalized than

state (c). One of them is connected with a delocalization to the next-nearest

neighbour plaquette. This state leads to a small peak at 936 eV binding energy

(visible in the dashed line in Fig. 8.1). However, these delocalized states have no

signi�cant in
uence on the overall spectrum, as already noticed in Sec. 7.5.

Summing up, the dominant peak (c) of the main line in the spectrum of

Sr2CuO3 is found to be associated with a Zhang-Rice singlet-like delocalization

process. While other spectral features are similar to those found in Bi2CuO4 and
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Li2CuO2, this excitation is only possible in a geometry with a dimensionality

larger than zero. In agreement with previous works [73] the value � = 2:7 eV

for the charge-transfer energy is found to be smaller than in Bi2CuO4, Li2CuO2,

and other cuprates.
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∆= 2.5 eV, Udc= 7 eV:  Is/Im= 0.30
∆= 3.5 eV, Udc= 8 eV:  Is/Im= 0.44
∆= 4.5 eV, Udc= 9 eV:  Is/Im= 0.59

Figure 8.2: �- and Udc-dependence of the CuO3 chain spectrum.
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Figure 8.3: tpd-dependence of the CuO3 chain spectrum.
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Figure 8.4: Ud-dependence of the CuO3 chain spectrum.

Next, we discuss the parameter dependence of the CuO3 chain spectrum.

Figure 8.2 shows the �-dependence of the spectrum, where the di�erence Udc �
� = 5 is kept constant. The exchange parameter is Idc = �1:5 eV, and all

other parameters are those from set (2.9). Like in the case of a single plaquette

(Fig. 6.3), with increasing � the intensity of the satellite Is increases relative to

the intensity of the main line Im. The explanation for this behaviour remains the

same as in the case of the single plaquette: a larger value of � leads to a larger

Cu weight in the ground state, and, consequently, to a larger overlap with the

�nal state of the satellite. With increasing � both sub-peaks of the main line

{ the higher-energy \local" peak (b) and the lower-energy \Zhang-Rice" peak

(c) { lose intensity to the satellite. However, the intensity of the \Zhang-Rice"

peak decreases much stronger. This is due to the fact that the corresponding

�nal state is more delocalized, and, therefore, is much stronger suppressed with

increasing �. As in the case of a single plaquette (Fig. 6.3), with increasing �

the whole spectrum shifts towards larger binding energies.

The in
uence of tpd is shown in Fig. 8.3. The parameters for the calculation

are the same as for Fig. 8.2, with � = 3:5 eV, and Udc = 8 eV. Since a smaller

tpd means a larger Cu weight in the ground state, the ratio Is=Im is observed to

increase with decreasing tpd. The in
uence of tpd on the main line is, however,

less dramatic than that of � (see Fig. 8.2). The \Zhang-Rice" peak loses some

intensity with respect to the higher-energy \local" peak, but the energy positions

of the two main-line features remain essentially unchanged. Again, this is in

analogy to the results for the single plaquette (Fig. 6.4). The two sub-peaks of
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the satellite (the quintet and the triplet) behave similar in both Figs. 8.2 and 8.3.

Figure 8.4 shows how the spectrum depends on the Coulomb repulsion Ud.

The parameters are again the same as in Figs. 8.2 and 8.3. The satellite struc-

ture as well as the \local" shoulder of the main line are found to be practically

independent of Ud. This is easy to understand: the corresponding �nal states do

not contain any Cu double occupancies. On the other hand, states with doubly

occupied Cu sites contribute to the Zhang-Rice singlet. Consequently, one �nds

that the intensity of the lowest energy line in Fig. 8.4 depends on Ud. Overall it

can be concluded that the spectrum depends most sensitively on � (and Udc), as

shown in Fig. 8.2. There is also some dependence on tpd (see Fig. 8.3). In con-

trast, the in
uence of Ud is small. Therefore, a comparison with the experiment

will help to determine � and tpd, while we cannot expect to deduce precise values

for Ud from Cu 2p3=2 XPS spectra.

We now discuss the in
uence of anisotropy on the core-level spectra. Band-

structure calculations [85] suggest that Sr2CuO3 is anisotropic with respect to the

O sites out of chain direction (?) and in chain direction (k). This means that its
electronic structure should be modelled using two di�erent charge transfer ener-

gies �? and �k, and two di�erent Cu-O hopping strengths t?
pd
and t

k

pd
. According

to Ref. [85]: �? > �k and t
?

pd
> t

k

pd
. Therefore, one might ask: Is it possible to

deduce this anisotropy from the Cu 2p3=2 XPS spectrum? Some generalizations

of our formalism are necessary to answer this question. They are explained in

Appendix B. Figure 8.5 shows the in
uence of anisotropic charge-transfer energies

on the spectrum. All other parameters are as given in the previous �gures.

As �k increases with respect to �?, the Zhang-Rice singlet-like delocaliza-

tion is suppressed. Consequently, the shoulder structure of the main line gains

intensity. However, the form of the satellite and all energy positions remain prac-

tically una�ected. A similar result is found for the dependence on tpd (Fig. 8.6).

With decreasing t
k

pd
(with decreasing delocalization) the shoulder structure of the

main line grows in intensity. Again, the satellite and the energy positions remain

essentially unchanged.

The results from Figs. 8.5 and 8.6 show that increasing �? leads to the

opposite result as increasing t?
pd
. Thus, for a simultaneous increase in �? and

t
?

pd
, the e�ects should cancel each other, without any relevant in
uence on the

spectrum. This is shown in Fig. 8.7, where again all other parameters are like

in the previous �gures. A simultaneous increase in �? and t?
pd

leads only to a

small overall shift, but it does not a�ect the form of the spectrum. Thus, we may

conclude that the Cu 2p3=2 XPS spectra are not sensitive to a possible electronic

anisotropy in Sr2 CuO3 of the kind suggested in Ref. [85].
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Figure 8.5: In
uence of anisotropic charge transfer � on the CuO3 chain spec-

trum.
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uence of anisotropic Cu-O hopping tpd on the CuO3 chain spec-

trum.
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Figure 8.7: The simultaneous in
uences of anisotropic � and tpd on the CuO3

chain spectrum nearly cancel each other.

We conclude this section by a discussion of the relationship between local

antiferromagnetic correlations (that is, spin degrees of freedom) and the form

of the core-level spectra (charge degrees of freedom). In Fig. 8.8 we compare

di�erent theoretical results with an arti�cial line width � = 0:2 eV. The model

parameters are those of set (2.9), with � = 2:5 eV, and Udc = 7:7 eV. For

simplicity, no exchange splitting has been included (Idc = 0).

The dashed line in Fig. 8.8(a) shows the spectrum obtained by an exact di-

agonalization calculation of a Cu3O10 cluster (open boundary conditions), that

is a system of 3 valence holes on 3 plaquettes, where the central Cu site is the

core-hole site. The solid line in Fig. 8.8(a) is the solution in the presence of an-

tiferromagnetic order which has been imposed by restricting the two holes with

the same spin to the two outer plaquettes. One �nds that the introduction of

spin order leads to an enhancement of the shoulder structure of the main line,

and to an increase of spectral weight of the satellite structure. An analogous

e�ect results when the spin order is imposed by applying a staggered �eld to

the Cu sites. The same behaviour is also observed for larger systems. Figure

8.8(b) shows a comparison of the spectrum obtained by exact diagonalization of

a Cu7O21 cluster, taken from Ref.[73] (dashed line), with the result of the pro-

jection technique for an in�nite chain (solid line). Since the projection technique

starts from a N�eel-ordered state, it overestimates antiferromagnetic correlations.

Again, this leads to a relative enhancement of the shoulder structure and the

satellite, while other excitations are suppressed. However, due to its small N�eel
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Figure 8.8: In
uence of antiferromagnetic correlations for chains of di�erent

length. (a) shows the exact diagonalization of a CuO3 cluster without (dashed

line) and with (solid lines) antiferromagnetic order. (b) compares the exact di-

agonalization of a Cu7O21 cluster from Ref.[73] (dashed line) with the result of

the projection technique for an in�nite chain (solid line).

temperature of 5 K it is not plausible to assume that these e�ects can actually

be observed in the experimental spectrum of Sr2CuO3. The detailed form of the

main line may rather be determined by polarization e�ects due to the presence

of the core hole (see Ref. [74]).

8.2 CuO2 plane

Since the CuO2 plane has a higher symmetry than the CuO3 chain, one needs

less dynamic variables for the calculation of the Cu 2p3=2 XPS spectrum. We

have found that 33 variables are su�cient for an excellent convergence of the

spectrum. However, it turns out that a �t using the charge-transfer energy � like

in Sec. 8.1 does not lead to a satisfying agreement with the experimental spectrum

of Sr2CuO2Cl2 from Ref.[16]. This is shown in Fig. 8.9. For parameter sets (2.9)

and (6.5), with � = 3:5 eV and Udc = 7:7 eV (dashed line in Fig. 8.9), the
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Figure 8.9: Comparison of theoretical CuO2 plane spectra for di�erent values of

� and Udc (solid line, dashed line) with the experimental spectrum of Sr2CuO2Cl2

(dots) from Ref. [16].

calculated intensity ratio Is=Im = 0:4 is too small compared to the experimental

value Is=Im = 0:52 (see Table 1.4). As for the single plaquette (Fig. 6.3) and

the CuO3 chain (Fig. 8.2), with increasing � the relative intensity of both the

satellite and the shoulder structure around 935 eV binding energy increases. (All

other parameter dependencies are analogous to the case of the CuO3 chain as

well. Therefore, they are not discussed in more detail.) For � = 4:25 eV and

Udc = 8:45 eV (solid line in Fig. 8.9), the calculated ratio Is=Im is equal to the

experimental one. However, the form of the main line is not reproduced correctly.

The intensity of the shoulder structure is grossly overestimated, and a line seems

to be missing around 934 eV binding energy.

In order to obtain a better �t we have varied tpd and Udc instead of � and

Udc. As shown in Fig. 8.10 this leads to a better agreement with the spectrum of

Sr2CuO2Cl2. For � = 3:5 eV the experimental ratio Is=Im = 0:52 is reproduced

for tpd = 1:15 eV and Udc = 8:1 eV. The delocalization properties of the most

important �nal states are shown in the lower part of Fig. 8.10. They have been

determined using Eq.(7.17).
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Figure 8.10: Comparison between the CuO2 plane spectrum and the experimental

result for Sr2CuO2Cl2 from Ref. [16]. The same theoretical spectrum is shown

with two di�erent line widths: � = 1:8 eV (solid line), and � = 0:2 eV (dashed

line). The parameter values are tpd = 1:15 eV and Udc = 8:1 eV. All other values

are given in sets (2.9) and (6.5). The lower part shows the �nal states that

correspond to the peaks in the spectrum. Larger dots symbolize a larger valence

hole density.

In contrast to the zero- and one-dimensional cases, the valence hole from the

core-hole site may now delocalize in two dimensions. Nevertheless, the �nal states

obtained for a CuO2 plane are rather similar to those of the lower dimensional

systems. For state (a) this is easy to explain by the local nature of the satellite

peak. The fact that the delocalization in states (b) and (c) is not signi�cantly

larger in two dimensions than in one dimension is, on the other hand, somewhat

surprising. Key element in the explanation of this e�ect are again the four Cu

sites which are the diagonal nearest neighbours of the core-hole site (cf. the lower

part of Fig. 8.10). In Sec. 4.4 it was already pointed out that these diagonal sites
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Figure 8.11: In
uence of diagonal Cu sites: Comparison between the spectrum

obtained by exact diagonalization of a Cu5O16 cross from Ref. [15] (dots), and

the result of the projection technique for an in�nite CuO2 plane (solid line).

suppress charge 
uctuations: Due to antiferromagnetic correlations these sites are

predominantly occupied by valence holes which have the same spin direction as

the valence hole on the core-hole site. Therefore, because of the Pauli principle,

the holes from the diagonal Cu sites suppress 
uctuations of the valence hole

from the core-hole site. The increase of charge 
uctuations due to the higher

dimensionality is largely compensated by this suppression.

It is interesting to compare the results of the projection technique to exact

diagonalization calculations (without multiplet splitting) of a Cu5O16 cluster from

Ref. [15]. This cluster contains �ve plaquettes in a cross-like con�guration where

the central Cu site is the core-hole site. Notice that the Cu5O16 system does not

contain the diagonal Cu sites which, as discussed above, suppress 
uctuations

from the central Cu site. Therefore, one expects this system to display features

of arti�cially strong delocalization like, for instance, a reduced ratio Is=Im. This

is shown in Fig. 8.11, where the Cu5O16 cross spectrum from Ref. [15] is compared

to the result of the projection technique. The parameters are those of set (2.9),

with Idc = 0, Udc = 7:7 eV, and � = 1:4 eV. While the diagonalization shows

a similar shoulder structure as the projection technique, the intensity of this

shoulder, its separation from the lowest-energy line as well as the ratio Is=Im are

smaller.

The slightly reduced value tpd = 1:15 eV for the Cu-O hopping parameter
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which leads to the spectrum shown in Fig. 8.10 may be explained by the larger

Cu-O distance in Sr2CuO2Cl2 compared to other cuprates (see Sec. 1.2). However,

from band structure calculations a value of tpd = 1:33 eV has been obtained [85].

In any case the agreement of the theoretical result with the experimental spectrum

is still not satisfactory. The calculated main line is dominated by two features,

and at least one excitation seems to be missing in the region around 934 eV

binding energy. The same problem has been encountered in the single-impurity

approach by Karlsson, Gunnarsson, and Jepsen [54]. These results suggest the

conclusion that Hamiltonian HXPS from Eq.(2.1) still does not include all degrees

of freedom that are necessary for a detailed description of the main line in the Cu

2p3=2 spectrum of Sr2CuO2Cl2. Since all e�ects of the Cu-O network geometry

are already included in HXPS, we expect the missing third main-line feature to be

a material-speci�c e�ect. This assumption, together with our conclusions about

the in
uence of the dimensionality on the spectra, will be discussed in the next

section.

8.3 Role of dimensionality

How does the dimensionality in
uence the electronic properties of the cuprates?

We are now in the position to provide some answers to this question. Let us

begin by recalling some of the results obtained for ground-state properties. As

we have seen in Sec. 4.4, the step from zero dimension to higher dimensions is

associated with a signi�cant increase in ground-state 
uctuations (see Tables 4.1

and 4.2). On the other hand, only small di�erences have been found between

ground-state 
uctuations in one and two dimensions. For example, the reduction

of the ground-state energy from one to two dimensions amounts to only about 5%

(see Fig. 5.8). It has been shown that the reason for this unexpected suppression

of charge 
uctuations in two dimensions are the diagonal Cu sites which are

missing in the one-dimensional CuO3 chain (see Table 4.4).

An analogous conclusion can be drawn for the in
uence of the dimensional-

ity on the excitations. We observe qualitative di�erences between the Cu 2p3=2

core-level spectra of zero- and one-dimensional structures, but only quantita-

tive changes between one- and two-dimensional structures. This is illustrated

in Fig. 8.12 which shows the results of the projection technique for zero-, one-

and two-dimensional Cu-O networks. Since the same parameter set (2.9), with

Udc = 8:5 eV and Idc = �1:5 eV, has been used for all geometries, all changes in

the spectra are exclusively due to dimensionality e�ects.

The most important e�ect is that for the one- and two-dimensional system
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Figure 8.12: E�ects of the Cu-O network dimensionality. Since the spectra of the

three di�erent Cu-O networks are shown using the same set of parameter values,

all di�erences are exclusively due to dimensionality e�ects.

an additional excitation appears at lower binding energies. As discussed above

the �nal states of this excitation are delocalized and rather similar for both the

one- and the two-dimensional structure (see Figs. 8.1(c) and 8.9(c)). Overall,

there is only a quantitative change from one to two dimensions, in contrast to

the qualitative change observed between zero and higher dimensions. The peak

around 934 eV binding energy in Fig. 8.12 that dominates the main line in the

case of zero dimension becomes a shoulder structure which decreases in intensity

and shifts towards higher binding energies as the dimensionality increases. Nev-

ertheless, the �nal state associated with this peak preserves its main properties (a

large valence-hole density at the O sites around the core-hole site) with changing

dimensionality (see states (a) in Figs. 6.5, 8.1, and 8.9). As the dimensionality

increases the delocalization in the Cu-O network increases as well. Therefore, one

observes a monotonic decrease in the ratio Is=Im for increasing dimensions. Since

this trend is not observed experimentally, the actual value of Is=Im has to depend

mainly on material-speci�c properties. In our calculations these properties are

re
ected by the values of the model parameters. For all dimensions the theoreti-

cal spectra depend in a similar way on these parameters. For decreasing charge
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uctuations (larger values of �, smaller values of tpd, tpp) the satellite structure

gains intensity. In the case of one and two dimensions the intensity of the \lo-

cal" excitation (b) increases furthermore with respect to the \Zhang-Rice singlet"

excitation (c). All spectra depend only weakly on the Coulomb interaction Ud.

Finally, we want to make some suggestions for the possible origin of the miss-

ing line around 934 eV binding energy in the theoretical CuO2 result, as compared

to the spectrum of Sr2CuO2Cl2 (see Fig. 8.10). As mentioned before we infer

from this discrepancy that the missing third main-line feature is due to a material-

speci�c e�ect. Orbitals that are not yet taken into account in Hamiltonian HXPS

from Eq.(2.1) are, for instance, the non-bonding O 2px(y) orbitals. Choi and

coworkers [20] attributed a feature in their optical spectra of Sr2CuO2Cl2 to ex-

citations into these orbitals. Non-planar orbitals in the CuO2 system, like the

Cu 3dz2�r2 orbital, are neglected in HXPS as well. However, in view of the good

agreement with the experiment shown in Figs. 6.6, 6.7, and 8.1, these orbitals

do not seem necessary for the description of Bi2CuO4, Li2CuO2, and Sr2CuO3.

It may also be possible that sites that do not belong to the CuO2 plane (like

the Cl apex site) contribute to the screening in Sr2CuO2Cl2. However, both the

large spatial distance between Cl and the CuO2 plane (see Sec. 1.2), and the

large energy di�erence between the Cl-3p and the Cu-3d-O-2p line in the valence

photoelectron spectrum [16] suggest that screening from Cl sites should be small.

8.4 Outlook

There are many ways to proceed from here. The discussion in the last section has

shown that it would be worthwhile to study systematically how the ions that do

not (directly) belong to the Cu-O networks in
uence the Cu 2p3=2 core-level spec-

tra. The example of the apex Cl ion in Sr2CuO2Cl2 has already been mentioned,

other examples are the O apex ions in several other cuprates (like La2CuO4).

Furthermore, the importance of non-bonding orbitals should be checked. An-

other interesting problem is the calculation of Cu 2p1=2 spectra using the same

model (and, hopefully, the same parameter values). The formalism presented in

this work should be applicable to all these problems without principal obstacles.

More generalizations in the theoretical framework will be necessary to describe

the doping dependence of Cu 2p3=2 core-level spectra. From the experimental

point of view, however, measurements on polycrystalline Nd2�xCexCuO4 suggest

that there is little change in the Cu 2p XPS as a function of doping [21]. An

even more challenging task is to generalize the formalism developed in this the-

sis to the calculation of valence band photoemission spectra of cuprates, using a
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multi-band model. This would allow a direct study of the interplay between spin

and charge degrees of freedom which, as many physicists believe, should be the

cornerstone of a possible explanation of high-temperature superconductivity.



Appendix A: Ground state of the

CuO3 chain

In this Appendix we derive an approximate ground state of the multi-band Hub-

bard Hamiltonian (2.6) at half-�lling for the CuO3 chain. A generalization to

anisotropic Cu-O hopping and anisotropic Cu-O charge transfer is given in Ap-

pendix B. We use the approach that has been discussed in detail in chapters

3 and 4. Therefore, we consider only the new features that appear because of

geometrical di�erences. The resulting equations are very similar to the case of

the CuO2 plane. The main di�erences are due to the reduced symmetry and the

smaller number of neighbouring sites. In a CuO3 chain, O sites which are located

perpendicular to the chain direction have only one nearest-neighbour Cu site and

two nearest-neighbour O sites (see Fig. A.1). Therefore, they are topologically

di�erent from the O sites that lie in chain direction (with two nearest-neighbour

Cu sites and four nearest-neighbour O sites). To account for this asymmetry, we

split the 
uctuation operator F1 from Eq.(4.1) into two parts F1k and F1?

Fi;1k = �
X
j(k)�

�
ij

pd
p
y

j�
di� , (A.1)

Fi;1? = �
X
j(?)�

�
ij

pd
p
y

j�
di� . (A.2)

||

||

||

Figure A.1: Final sites reached by 
uctuation operators. For reasons of symmetry

only one half of the allowed 
uctuation range is shown.
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Figure A.2: The N�eel-ordered ground state j 0i.

The sums are over the two O sites in chain direction and perpendicular to the

chain direction, respectively (see Fig. A.1). All other 
uctuation operators are

de�ned as in the case of a CuO2 plane, cf. Eqs.(4.3) to (4.9). The only di�erence

is that for a CuO3 chain the sums in these expressions contain a smaller number

of �nal sites. These �nal sites are shown in Fig. A.1. For reasons of symmetry

only one half of the allowed 
uctuation range is shown starting from site i.

Like in Sec. 4.2 we use the 
uctuation operators F� in our ansatz for the

ground state of an in�nite CuO3 chain

j	i = exp

 X
i�

��Fi�

!
j 0i . (A.3)

j 0i is the N�eel-ordered ground state of H0

j 0i =
Y
i

d
y

i;�(i)
j0i . (A.4)

This state is shown in Fig. A.2. Next, we apply the approximations that have

been discussed in Sects. 4.2 and 4.3. Thus, Eq.(A.3) is transformed

j	i = exp

 X
i;�>1

��Fi�

!Y
i0

�
1 + �1iFi0;1k + �1?Fi0;1?

�
j 0i . (A.5)

In analogy to Eq.(4.15) the norm of this state is h	 j 	i = �
N , where N is the

number of Cu sites and

� = 1 +
X
�

z�p��
2
�
. (A.6)

z� is again the number of equivalent �nal sites of the given process

z1k = 2 , z1? = 2 , z2s = 2 , z2d = 2 ,

z3 = 4 , z4 = 2 , z5 = 2 , z6 = 4 , z7 = 2 . (A.7)

The probabilities p� are de�ned as in Sec. 4.3

p1k = 1 , p1? = 1 , p2s = 1� 1=� , p2d = 1=� ,

p3 = 1 , p4 = 1� �
2
=� , p5 = 1�

�
1 + �

2
�
=� ,

p6 = 1�
�
1 + 2�2

�
=� , p7 = 1�

�
1 + 2�2

�
=� , (A.8)
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where � is a mean on-plaquette 
uctuation parameter

� =
�1k + �1?

2
. (A.9)

The values of the parameters �� are determined from Eq.(3.4) for an arbitrary

site i = 0

0 = h	j
h
H;F

y

0;�

i
j	i , � = 1; 2; : : : . (A.10)

One obtains the following nonlinear system of equations for �1?; : : : ; �4

0 = (EG ��)�1? + 2tpp�1k + tpd , (A.11)

0 = (EG ��)�1k + 2tpp�1? + tpd + tpd�2sp2s

+tpd�2dp2d + 2tpp�3p3 , (A.12)

0 = EG�2s + 4tpd�2d�=� + tpd�1kp2s

+2tpd�3p2s + tpd�4p4p2s , (A.13)

0 = (2EG � Ud)�2d + 4tpd�2s�

+tpd�1k + 2tpd�3 + tpd�4p4 , (A.14)

0 = (EG ��)�3 + tpp�1k + tpd�2sp2s

+tpd�2dp2d + tpp�4p4 , (A.15)

0 = (EG ��)�4p4 + tpd�2sp2sp4 + tpd�2dp2dp4 + 2tpp�3p4

+tpd�5p5 + 2tpp�6p6 � (tpd + 2tpp�)��4=� . (A.16)

The equations for the \far-reaching" parameters �5; : : : ; �7 are

0 = EG�5p5 + tpd�4p5 + 2tpd�6p6 + tpd�7p7

� (3tpd + 2tpp�)��5=� , (A.17)

0 = (EG ��)�6p6 + tpp�4p6 + tpd�5p6 + tpp�
2
�7=�

�2 (tpd + tpp�)��6=� , (A.18)

0 = (EG ��)�7p7 + tpd�5p7 + 2tpp�
2
�6=�

�2 (tpd + 2tpp�)��7=� . (A.19)

This system of equations, together with Eqs.(A.6) and (A.8), can be solved self-

consistently for all �� and for �. The solution with the lowest value of the

ground-state energy per Cu site EG is then used for the ground state. Like in

Sec. 4.4, the ground-state energy EG is

EG =
h 0jH j	i
h 0 j 	i

= �4tpd� . (A.20)
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� �1k �1? �2s �2d �3 �4 �5 �6 �7

� = 1:5 2:63 0:60 0:48 0:40 0:18 0:21 0:15 0:06 0:03 0:01

� = 2:5 1:97 0:48 0:40 0:30 0:13 0:13 0:09 0:03 0:01 0:01

� = 3:5 1:59 0:38 0:33 0:21 0:09 0:09 0:05 0:02 0:01 <

� = 4:5 1:38 0:31 0:28 0:16 0:07 0:06 0:03 0:01 < <

Table A.1: Decrease of 
uctuation strength with distance: � and �� for di�erent

�. < symbolizes values smaller than 0:005.

Note that there are only few di�erences between the above system of equations

and that for the CuO2 plane. The reduced symmetry of the CuO3 chain has led

to a splitting of Eq.(4.27) into two Eqs.(A.11) and (A.12). Since the out-of chain

O site has less neighbours, the parameter �1? couples only to �1k. For the same

reason no tpp-contribution in the �rst term of Eq.(A.15) appears as compared

to Eq.(4.30). All other changes are caused by the absence of diagonal Cu sites.

Thus, p3 is equal to 1 and the negative terms from Eqs.(4.27) and (4.30) are

missing in Eqs.(A.12) and (A.15). We �nally note that the last positive term in

Eqs.(A.18) and (A.19) has been slightly simpli�ed.

Table A.1 shows � and the �� that are obtained from Eqs.(A.11) to (A.19)

for parameter set (2.9) with several di�erent values for �. Like in the case of a

CuO2 plane (Sec. 4.4) we observe a rapid decrease of the 
uctuation strengths

with increasing distance. This means that the neglect of far-reaching 
uctuations

and many-body e�ects is justi�ed in the case of a CuO3 chain as well. Therefore,

we will usually neglect 
uctuations beyond F4.

Ground-state properties of the CuO3 chain may now be calculated in analogy

to the case of the CuO2 plane, Eqs.(4.23) to (4.26). The Cu-occupation number

is

hnCui =
h	jnd

i
j	i

h	 j 	i =
1

�

�
1 + 2�22sp2s + 2�22dp2d

�
. (A.21)

The O-occupation numbers are



n
?

O

�
=
h	jnp?

i
j	i

h	 j 	i =
1

�

�
�
2
1? + 2�23

�
(A.22)

and

D
n
k

O

E
=
h	jnpk

i
j	i

h	 j 	i =
2

�

�
�
2
1k + �

2
4p4

�
. (A.23)

As in the case of the CuO2 plane the number of holes is conserved, i.e. hnCui +
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2


n
?

O

�
+
D
n
k

O

E
= 1. The double occupancies of Cu and O sites are

hdCui =
h	jnd

i"
n
d

i#
j	i

h	 j 	i =
1

�

�
2�22dp2d

�
, (A.24)

and



d
?
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�
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h	jnp?
i"
n
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h	 j 	i =
1

4
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O
i2 , (A.25)

D
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k

O

E2
. (A.26)
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Appendix B: Ground state of the

anisotropic CuO3 chain

Band-structure calculations [85] suggest that Sr2CuO3 is anisotropic with re-

spect to the O sites out of chain direction (?) and in chain direction (k). This
means that its electronic structure should be modelled using two di�erent charge-

transfer energies �? and �k and two di�erent Cu-O hopping strengths t?
pd

and

t
k

pd
. Therefore, it is interesting to investigate the ground-state properties of an

anisotropic CuO3 chain, also in view of a possible importance of the anisotropy

for the calculation of core-level photoemission spectra.

Only a small number of changes is necessary to describe the ground state

of the anisotropic CuO3 chain. We use the same 
uctuation operators as in

Appendix A. The equations (A.5) to (A.9) for the ground state j	i, its norm �
N ,

and the probabilities p� remain unchanged. Again, we use a mean on-plaquette


uctuation parameter �

� =
�1k + �1?

2
.

For reasons of simplicity we introduce a mean hopping strength t

t =
t
k

pd
+ t

?

pd

2
.

Furthermore we assume that the ground-state energy EG is given by

EG = �4t� .

137



138APPENDIX B: GROUND STATE OF THE ANISOTROPIC CUO3 CHAIN

Equation (3.4) leads to the following equations for the determination of �1o; : : : ; �4

0 = (EG ��?)�1? + 2tpp�1k + t
?

pd
, (B.1)

0 =
�
EG ��k

�
�1k + 2tpp�1? + t

k

pd
+ t

k

pd
�2sp2s

+t
k

pd
�2dp2d + 2tpp�3p3 , (B.2)

0 = EG�2s + 4t�2d�=� + t
k

pd
�1kp2s

+2t?
pd
�3p2s + t

k

pd
�4p4p2s , (B.3)

0 = (2EG � Ud)�2d + 4t�2s�

+t
k

pd
�1k + 2t?

pd
�3 + t

k

pd
�4p4 , (B.4)

0 = (EG ��?)�3 + tpp�1k + t
?

pd
�2sp2s

+t?
pd
�2dp2d + tpp�4p4 , (B.5)

0 =
�
EG ��k

�
�4p4 + t

k

pd
�2sp2sp4 + t

k

pd
�2dp2dp4 + 2tpp�3p4

+t
k

pd
�5p5 + 2tpp�6p6 � (t + 2tpp�)��4=� . (B.6)

The equations for the \far-reaching" parameters �5; : : : ; �7 are

0 = EG�5p5 + t
k

pd
�4p5 + 2t?

pd
�6p6 + t

k

pd
�7p7

� (3t+ 2tpp�)��5=� , (B.7)

0 = (EG ��?)�6p6 + tpp�4p6 + t
?

pd
�5p6 + tpp�

2
�7=�

�2 (t+ tpp�)��6=� , (B.8)

0 =
�
EG ��k

�
�7p7 + t

k

pd
�5p7 + 2tpp�

2
�6=�

�2 (t+ 2tpp�)��7=� . (B.9)

The equations for the occupation numbers and double occupancies are the same

as in the isotropic case, see Eqs.(A.21) to (A.26).



Appendix C: Projector Quantum

Monte Carlo

The Projector Quantum Monte Carlo (PQMC) method is a numerical approach

which allows to calculate approximately ground-state properties of �nite clusters.

For reviews of this method see Refs. [106] and [45]. In the PQMC approach, the

ground state j	i of a �nite cluster is projected out from a suitable trial state

j triali by applying an exponential projection operator

j	i = lim
�!1

e
��H j trialip

h trialj e�2�H j triali
. (C.1)

Here, � is a projection parameter and not the inverse physical temperature.

Ground-state expectation values are calculated from

hAi = lim
�!1

h trialj e��HAe��H j triali
h trialj e�2�H j triali

. (C.2)

The trial state j triali has to have a non-zero overlap with the real ground state.

A convenient choice for j triali is a linear combination of one-particle functions

in form of a Slater determinant, for example in position space

j triali =
��� "trialE
 ��� #trialE , (C.3)

j �

triali =

N�Y
�=1

 
LX
i=1

�
�

�;i
c
y

i;�

!
j0i .

N� is the number of particles with spin �, and L is the number of sites in the

cluster. c
y

i;�
creates a particle with spin � on site i. The coe�cient ��

�;i
is the prob-

ability to �nd particle � at site i. ��
�;i

is a non-singular matrix (Pauli principle).

In principle, the formalism described above is exact. However, for a numerical

implementation one faces three problems which will make approximations neces-

sary.

The �rst problem is that only �nite values of the parameter � are accessi-

ble. Therefore, the limit � !1 in Eq.(C.1) cannot be carried out numerically.
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Nevertheless, a reasonable approximation should be obtained for large, but �-

nite, values of � (in our case, we use values up to � = 12). The quality of this

approximation can be judged from the convergence of the results with respect to

�.

The second problem is that we (usually) do not know the eigenstates of H

since it is neither diagonal in position space nor in momentum space. Generally, if

(A)
ij
is a diagonal matrix,

�
e
A
�
ij
is a diagonal matrix as well, with

�
e
A
�
ij
= e

Aij .

However, if A is not diagonal, then e
A is an in�nite series of matrices which

cannot be handled numerically. One way to circumvent this problem is to split

H into a part K which is diagonal in momentum space, and a part V which is

diagonal in position space. Then, e��H may be approximately factorized using

the symmetric Trotter-Suzuki formula [100]

e
��(K+V ) =

�
e
��

2m
K
e
��

m
V
e
��

2m
K

�m
+O

�
�
3
=m

2
�
, (C.4)

where m is the number of the so-called Trotter slices. The operator e
��

2m
K can be

evaluated by diagonalizing the hopping part of the Hamiltonian. The operator

e
��

m
V , on the other hand, is already diagonal in position space. The approximate

factorization of Eq.(C.4) becomes better when larger numbers of Trotter slices m

are used (in our case we use values up to m = 256). Furthermore, since the error

in Eq.(C.4) is of the order (�3=m2), larger values of � have to be compensated

by larger values of m.

At this point one has to overcome a technical obstacle. The operator e
��

2m
K is

the exponential of a one-particle operator. Therefore, it maps a Slater determi-

nant of the form (C.3) back onto a single Slater determinant [98]. The operator

e
��

m
V , on the other hand, creates states that are linear combinations of Slater

determinants. This is due to terms in V that are quadratic in the densities.

Thus, in order to keep the formalism transparent, it is useful to factorize these

terms. This can be achieved exactly, using the discrete Hubbard-Stratonovich

transformation (for positive U) of Hirsch [46]

exp

 
��
m
U

X
i;�

n
�

i
n
�

i

!
=
Y
i

1

2

X
�=�1

Y
�

exp

��
2��� � �

m
U

�
n
�

i

�
. (C.5)

� is de�ned by

cosh (2�) = exp

�
�

m
U

�
.

In this way one always maps Slater determinants back onto Slater determinants.

However, one now has to evaluate sums over auxiliary variables �

e
��H j triali =

X
�

j (�)i .
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Here, � is a m-dimensional con�guration vector which represents a set of values

of the �. j (�)i is the contribution of con�guration � to the ground state.

Finally, the third (and most fundamental) problem is the extremely high

dimensionality of the con�guration space, even for relatively small clusters. For-

mally, this high dimensionality is re
ected by the enormous number of sums over

� which one has to evaluate. For every Trotter slice in Eq.(C.4) which is applied

onto the trial state j triali, the resulting state \spreads" into the vast con�gura-

tion space. The way in which this problem is handled in the PQMC is to evaluate

the sums over � statistically. Thus, instead of calculating all sums, one creates a

su�ciently large number of con�gurations (�; �0), i.e. di�erent sets of values of

the � for both bra h (�)j and ket vectors j (�0)i. The �nal expectation value hAi
is then the mean value of the expectation values hA (�; �0)i in each con�guration

hAi =
P

�;�0
hA (�; �0)i g (�; �0)P
�;�0

g (�; �0)
, (C.6)

where

hA (�; �0)i = h (�)jA j (�0)i
h (�) j  (�0)i .

The weight g in Eq.(C.6) is used to improve the convergence of the calculation

(in the sense of an importance sampling). It is de�ned by

g (�; �0) = h (�) j  (�0)i .

Technically, the con�gurations (�; �0) are created as follows. One starts with a

randomly selected con�guration (1; 10). A new random con�guration (2; 20) is

accepted with probability

p =

�
1 � � � jg (2; 20)j > jg (1; 10)j

jg (2; 20) =g (1; 10)j � � � otherwise
.

In this way one creates a Markov chain of con�gurations which approximates

the distribution jgj with increasing length. In our case we use several thousand

con�gurations. In contrast to the former two approximations (which involve

the parameters � and m), the error that is made in the third approximation is

statistical. It is usually displayed in the form of an error bar.

Summing up, PQMC is a powerful numerical tool to calculate ground-state

properties of �nite clusters. Its inherent approximations can be systematically

improved by enlarging the projection parameter �, the number of Trotter slices

m, and the number of con�gurations used in the statistical evaluation of the sums
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over �. In certain cases the quality of the statistical results can deteriorate when

the denominator in Eq.(C.6) becomes too small. This is the so-called sign problem

[23] which originates from the fact that g (�; �0) is a complex number, and that,

therefore, di�erent contributions in the denominator of Eq.(C.6) may cancel each

other. Finally, since in the PQMC results for �nite clusters are extrapolated to

in�nite systems, one has to carefully check the numerical results for �nite-size

e�ects.
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