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Perspective

The discovery of high-temperature superconductivity by Bednorz and Miiller
[BEDS86] in 1986 sparked the search for new materials with ever higher val-
ues of T.. The “early” compounds Las_,A,Cu0O4 with A = Sr, Ba and
YBayCuzO7_, as well as most other high-7,. materials discovered in subse-
quent years all share one common feature: They are built out of layered CuQOs
planes forming quasi-two-dimensional electron systems. It is one of the most
striking observations in the physics of cuprates that the same electrons can
experience superconductivity at finite doping and antiferromagnetic order in
the undoped (z = 0) system. It seems to be clear that these two phenomena
must be intimately related to each other; a full understanding of the proper-
ties of high-T, cuprates hence goes hand in hand with a better grasp of the
peculiar nature of the CuO; planes (for reviews see, e.g., [AND97, IMA9S)).

Manganites, on the other hand, have a much longer history to look back
upon than cuprates. In their perovskite form, i.e., Ry_, A, MnO3 where R
and A represent rare earth and divalent metal ions, respectively, they were al-
ready under investigation for the peculiar interplay between ferromagnetism
and metalicity in the early 1950’s: At certain doping levels, these compounds
were found to be in a ferromagnetic metallic state at low temperatures which
could be driven to a paramagnetic insulating one by raising the tempera-
ture [JONB0|. Recently, interest in manganites has been revitalized by the
discovery of colossal magnetoresistance [JIN94| and has since been further
stimulated by successive observations of a variety of interesting effects (for
reviews see, e.g., [RAM97, IMA9S]).

Both cuprates and manganites belong to the transition metal oxides. The
physics of these compounds is characterized by a dualism of local electron
interaction and itinerant charge motion. The former originates in the strong
repulsion between electrons in the d shells of transition metal ions, the latter
in the hybridization of these states with 2p orbitals of oxygen. In the undoped
parent compound of cuprates and of many manganites, correlations prevail as
an insulating and antiferromagnetically ordered Néel state is formed. Upon
doping the system can be turned metallic, but it is still reminiscent of its
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correlated nature. This effect is most pronounced in the cuprates: At low
doping, the metallic state exhibits local antiferromagnetic correlations which
signal the proximity to the spin-ordered Néel state. Furthermore, gaplike fea-
tures in the magnetic excitation spectrum become observable that manifest
local spin-singlet correlations which can be thought of as a precursor effect of
superconductivity. It is difficult if not impossible to reconcile these peculiar
features with a conventional theory of metals, and it is now widely recog-
nized that strong correlations must be the key ingredient of a comprehensive
understanding of cuprates. Correlation effects in manganites, on the other
hand, have for long been considered only in an indirect manner: Early work
which established the notion of double exchange [ZEN51, AND55, DEG60] is
based on the incidence of a strong Hund’s coupling stemming from the on-site
repulsion between d electrons. Recently, however, it has become clear that
one has to go beyond double exchange to explain the multitude of peculiar
features of manganites and that a more thorough treatment of correlation
effects in these compounds is needed.

In the following chapters, we address several key issues of metallic
cuprates and manganites. The work is based on the notion of spin and
orbital liquids: These represent elegant tools to handle the strongly corre-
lated nature of the metallic state in an efficient and transparent way. We
shortly introduce these concepts in Chapter 1 which gives an overview of
the methods and the relevant models employed throughout this work. In
Chapter 2, we analyze the peculiar magnetic response of metallic cuprates
upon impurity doping. We argue that the magnetic behavior can be well un-
derstood if one assumes the spins of the CuO, planes to form a spin liquid.
The subsequent Chapters 3 - 5 are devoted to the metallic state of mangan-
ites. Elaborating on the notion of an orbital liquid, we study the interplay
of electron correlations, orbital degeneracy, and double exchange. We assert
that several puzzling experimental observations can be resolved in a natural
way by adopting a strong-correlation picture of metallic manganites. In gen-
eral, the results on cuprates and manganites presented in this thesis closely
agree with experiment. We believe this to strongly support the validity of
our approach and to give new insight into the spectacular and sometimes
astonishing physics of transition metal oxides.



Chapter 1

From Cuprates to Manganites:
A Short Primer

1.1 Introduction

Cuprates and manganites both belong to the class of transition metal oxides.
It is therefore not surprising that the two compounds are of very similar
structure. Nevertheless, the physical behavior strongly deviates which is most
clearly manifested in the phase diagram (see Fig. 1.1): Both substances show
signs of antiferromagnetism at zero doping. Upon the insertion of holes the
behavior drifts apart. Roughly, cuprates can then be characterize as metals
with a pronounced instability towards superconductivity and manganites as
insulators with an instability towards metalicity and ferromagnetism. The
staggered spin structure of the parent compounds suggests an underlying
Mott-Hubbard system in both cases. Besides this basic similarity, the fol-
lowing key differences can be identified to be foremost responsible for the
distinct behavior at finite doping: (1) In cuprates only one 3d electron per
site is of physical relevance. In manganites, on the other hand, the 3d states
of the Mn ions provide an additional background of local S = % spins that
ferromagnetically interact with the itinerant electrons via Hund’s coupling.
This gives rise to double exchange which is absent in cuprates. (2) Only one
orbital per Cu site is active in cuprates. This differs from the case of mangan-
ites where the itinerant electrons can move within orbital doublets, yielding
an additional orbital degree of freedom. (3) The 3d electrons form small
S = % spins in cuprates which are subject to strong quantum fluctuations.
In contrast, the large S = 2 spins in manganites behave more classically.
(4) Electrons are essentially confined to two dimensions in cuprates but can
move in three dimensions in perovskite manganites.
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Figure 1.1: Phase diagram of Lag_;Sr: CuQOy (left) and Lay_, St MnQOs (right).
At zero doping, LaMnQOs is an A-type antiferromagnet with antiferromagnetic or-
der in ¢ direction and ferromagnetic order in ab planes [WOL55, GOO55]. The
phases on the right are denoted as follows: canted insulator (CI), ferromagnetic
insulator (FI), ferromagnetic metal (FM), paramagnetic metal (PM), and para-
magnetic insulator (PI). From [BIR89], [URU95].

In this chapter, we give a short overview of the physics relevant to cuprates
and manganites. The emphasis is on a comparison between the two sub-
stances and the introduction of concepts relevant for later chapters. Where
it is necessary to be specific we restrict ourselves to the two compounds that
are most closely related to each other: Las_,Sr,CuO4 and La;_,Sr,MnOg
to represent cuprates and manganites, respectively. We note that through-
out this work manganites are considered only in their perovskite form; the
layered compounds are discarded (for these see, e.g., [MOR9Y6]). In the fol-
lowing we discuss the crystal and electronic structure of the two substances
and expand on the orbital degeneracy encountered in the latter. We then
introduce the effective Hamiltonians that capture the relevant low-energy
physics of orbitally non-degenerate and degenerate Mott-Hubbard systems.
To describe the strongly correlated metallic state of cuprates, the notion of
a spin liquid is reviewed. This picture is finally extended to an orbital liquid
which accounts for correlation effects in metallic manganites.
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Figure 1.2: Change of the lattice parameter with doping in Lai_Sr. MnOs at
room temperature. From [URU95].

1.2 Crystal Structure

The crystal structure of cuprates varies within a broad range except for
one common feature shared by all compounds: a stacking structure of two
dimensional CuQOs planes. For illustration, we shortly review the structure of
Las_,Sr,CuO,4 here. Manganites, on the other hand, are frequently studied
in their layered and perovskite form. Here we restrict ourselves to the latter
one, choosing La;_,Sr,MnO3 as an example.

The basic building blocks of Las ,Sr,CuQOy4 as well as of La; ,Sr,MnOs3
are (Cu/Mn)Og octahedra surrounded by La/Sr atoms as shown in Fig.
1.3(a). In the cuprate compound these cells form well separated CuOq
planes. The crystal symmetry is orthorhombic at low doping concentrations
(x < 10%) and tetragonal at higher ones [see Fig. 1.3(b)]. The two-dimen-
sional character of Las_,Sr,CuQy4, which is implied by its layered structure,
is further enhanced by a Jahn-Teller distortion of the CuQOg octahedra per-
pendicular to the planes. The Cu-O distances in ab and ¢ directions, which
are 1.9 A and 2.4 A, respectively, hence deviate significantly [HAZ90]. In the
manganese oxide La;_,Sr,MnQOs, on the other hand, the MnOg octahedra
form a perovskite structure [see Fig. 1.3(c)]. At low doping concentrations
(x < 17.5%), the crystal is subject to a cooperative Jahn-Teller distortion
which reduces the symmetry to orthorhombic [KANGO]. At higher doping
levels, cubic symmetry is recovered. The change of lattice parameters with
doping is indicated in Fig. 1.2 [URU95]. Replacing La and Sr by other rare
earth and divalent metal ions leaves the crystal structure unaffected but in-
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duces a canting of Mn-O bonds which can be used as an experimental tool
to vary the bandwidth [HWAO95.

1.3 Electronic Structure

The key elements of the electronic structure of cuprates and manganites are
the partially filled 3d states. Depending upon the symmetry of the crystal
field, the degeneracy of these states is lifted (see Fig. 1.4). In a cubic envi-
ronment as in metallic manganites, the 3d states split into a lower-lying o,
triplet and a higher-lying e, doublet. This splitting is of the order of several
eV. In the tetragonal or orthorhombic structure of cuprates, the e, doublet
further splits up into a lower-lying ds.2_,2 and a higher-lying d,2_,» state.
These two states are separated by an energy of the order of one eV.

At zero doping the 3d states of cuprates and manganites are filled by 9
and 4 electrons, respectively. This follows from a valency of 3+ for La and
2— for O, which leaves Cu in 2+ and Mn in 34. Replacing La by Sr with a
valency of 2+ effectively reduces the 3d electron number by one per doped ion
(at zero doping, cuprates and manganites are charge-transfer insulators —
doped holes enter O 2p states, the remaining unpaired spins form Zhang-Rice
singlets with unpaired 3d electrons).

The 3d electrons, both in cuprates and manganites, are subject to a strong
mutual repulsive interaction which is significantly larger than the transfer
amplitude between sites (photoemission experiments yield an on-site repul-
sion of 5 - 10 eV [SHE87, FUJ89, SAI95, SAR96]). This has two important
consequences which follow from the urge of the system to reduce its ground-
state energy: (1) The number of 3d electrons per site is minimized; and (2)
multiple 3d electrons at one site try to form a high-spin state which promotes
a ferromagnetic Hund’s coupling between unpaired 3d electrons in different
orbitals.

Hund’s coupling plays no active role in cuprates — in the parent com-
pound all 3d states except one are filled, leaving only one unpaired 3d electron
per Cu site [see Fig. 1.5(a)]. This unpaired electron resides in the state of
highest energy which is an antibonding orbital formed of Cu 3d,2_,2 and O 2p
with predominantly d,2_,» character. Due to the hybridization with oxygen,
the dy2_,2 electrons can hop between nearest-neighbor Cu sites within the
two-dimensional CuQO; planes. The amplitude for tunneling between planes,
on the other hand, is only small. This anisotropy is reflected in the normal-
state resistivity: At finite doping cuprates are good metals along the planes
but almost insulating perpendicular to them [IYE90]. In manganites the 3d
states are filled by only 4 electrons which are subject to Hund’s rule: Three
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La/Sr Cu/Mn

Figure 1.3: (Cu/Mn)Ogs octahedra surrounded by La/Sr ions (a) are the
basic building block of (b) tetragonal Lap_,Sr, CuOy and (c) rhombohedral
Lay_;Sr, MnOs.
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Figure 1.5: (a) In cuprates the electronically active states are the singly occupied
dy2_,p orbitals. (b) In manganites half-filled tay triplets form local spins S = %,
interacting ferromagnetically with electrons in singly occupied e, doublets. Degen-
erate orbitals are encircled.

electrons enter the lower-lying t5, triplet, forming a localized spin S¢ = %,
the remaining one electron is placed in either one of the two degenerate
ey states [see Fig. 1.5(b)]. The latter form antibonding orbitals with O 2p
states and are predominantly of d,»_,» and ds,2_,» character. Due to this
hybridization, the e, electrons can hop between Cu sites in all three princi-
pal directions. In contrast to cuprates the resistivity of metallic manganites
shows no anisotropy [URU95].

The ferromagnetic Hund’s coupling between itinerant e, and localized
194 electrons is the origin of the peculiar interplay between conductivity and
magnetism observed in doped manganites. According to estimates from pho-
toemission experiments, the magnitude of this coupling is Jg ~ 2.5 eV in
La; ,Sr,MnQOsg, which is larger than the one-electron bandwidth W ~ 1.5 eV

[HWA9G]. In the ferromagnetic phase at T < T¢ this results in a split-
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teff = ¢ teff = tff = cos(®/2)t

Figure 1.6: Double-exchange model: The hopping amplitude reaches its maximum
if the core spins are aligned in parallel and vanishes in the case of an antiparallel
orientation. In general the hopping amplitude is modulated by a factor cos(®/2),
where ® is the angle between core spins.

ting of the conduction band into well separated spin-polarized bands. At
low enough energies, the physics of manganites is then fully captured by
the limit Jy — oo in which localized and itinerant 3d electrons together
form a large on-site spin S = 2. This limit is assumed by the double-
exchange model which in addition employs a classical treatment of spins
[ZEN51, AND55, DEG60]. The model relates charge mobility and ferromag-
netism as follows: The transfer amplitude of e, electrons depends on the
relative orientation of spins as described by (see Fig. 1.6)

off 1+m2 SZS
ot = ¢ 5 m:<52”>, (1.1)

where m is the normalized magnetization. Electron motion is hence unaf-
fected by Hund’s coupling if all core spins are aligned ferromagnetically, while
it is blocked if the core spins form an antiferromagnetic background. The ki-
netic energy is minimized in the former case which establishes a ferromagnetic
interaction between sites. On the other hand, a quenching of the magnetiza-
tion which can, e.g., be induced by raising the temperature, suppresses the
conductivity. Figure 1.7 shows experimental data on the interplay between
magnetization and resistivity in La; ,Ca,MnQOg3. For a detailed study of the
metal-insulator transition in manganites and the role played by lattice and
orbital degrees of freedom we refer to Chap. 5.

1.4 Orbital Degeneracy in Manganites

The degeneracy of e, states in manganites implies that the itinerant electrons
carry an orbital degree of freedom which is absent in cuprates. To keep track
of this orbital quantum number it is convenient to define an orbital isospin
operator T' = (T, T%) with T"/% = 1o%/?. The Pauli matrices 0/ act on the
orbital subspace for which one conventionally chooses the orthogonal orbitals
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Figure 1.7: Ezxperimental realization of double exchange in Lag.7sCag.o5 MnOs:
Magnetization (top) and resistivity (bottom). From [SCH95].

d3.2_p2 and dy2_,2 as a basis set. These orbitals correspond to isospin vectors
(T) = (0, %) and (0, —%), respectively. Generally, the isospin vector

(T)® = %(sin@,cos@) (1.2)

represents the orbital state

|©) = cos ( ) 1322 — 72) + sin (@> 2% — ?). (1.3)

Due to the cubic symmetry, a rotation in real space by 90° around the z, y, or
z axis changes the orientation but not the geometry of orbitals. For instance,
the orbital state |3z? — r?) pointing in the z direction can be mapped onto
1322 — 7?) pointing in the x direction by a rotation around the y axis. In
isospin space these transformations correspond to (successive) rotations by
O = 3 (see Fig. 1.8).

In an orbitally degenerate system the transfer amplitude of e, electrons
between Cu sites depends on the orbital orientation, i.e., the orbital quantum
number of the initial and the final state and the direction of the transfer.
Along the z direction, only the |32% —72) orbital has a finite overlap with the
2p states of neighboring oxygens — the overlap of |z — y?) with these states
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Figure 1.8: Orbital isospin vector (T)® = %(sin@, cos ©). The orthogonal pair
of orbitals |32% —r?) and |x? — y?) shown on the right is associated with angles in
isospin space © = 0, m, respectively. The rotated orbital pairs |3z —r?), |y? — 22)

and |3y? —r?), |2? — 22) correspond to © = %’r, £ and © = %ﬁ, 5{, respectively.

vanishes [KUGT3|. Hence, the transfer matrix in the z direction is simply

(see Fig. 1.9)
10
af _
t¢ t< 00 ) (1.4)

within orbital basis {|32% — r?),|z? — y?)}. The transfer matrices for bonds
along the = and y directions can be obtained by performing a rotation in
isospin space as discussed above, yielding

of 1/4  F3/4
tw/ﬁy—t<:F\/§/4 3/4 ) (1.5)

It is important to note that orbital pseudospin is not a conserved quantum
number in the present system. This follows from the fact that there is no
orbital basis set which would simultaneously diagonalize the three transfer
matrices 127, t;‘ﬁ , and 8. Consequently orbital states get mixed by inter-site
transfer processes.

The partially filled e, states of Mn in cubic manganese compounds are
Jahn-Teller active, i.e., the system can gain energy from a local deforma-
tion of the crystal which lifts the e, degeneracy. In the undoped compound
LaMnOj3 a strong distortion of MnOg octahedra ascribed to a cooperative
Jahn-Teller effect is observed below Tp = 780 K [KANGO]. This distor-
tion vanishes as the system becomes metallic at hole concentrations above
x = 17.5% [URU95]. Recently, static Jahn-Teller distortions have also been
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thh =t th =0 th =0 th =0

z

Figure 1.9: Along the z direction, electrons can hop only from |32% — r?) into
1322 — 72) orbitals. Transfer processes involving |x* — y*) orbitals are forbidden
due to the vanishing overlap with the in-between O 2p states (not shown).

observed to develop as the ferromagnetic metal turns into a paramagnetic in-
sulator at temperature above T [BIL96, KAP96, LOU97, BOO98, LAN9S|
(see Fig. 1.10). Due to the frustrating effect of holes, long-range Jahn-Teller
distortions are absent here and only local distortions can be observed.

In the cubic system two independent Jahn-Teller modes Q2 and ()3 exist
which lift the degeneracy of singly occupied e, orbitals [KUG82]. These
two modes correspond to a set of orthogonal vectors in isospin space for
which one conventionally chooses (T') = (%, 0) and (0, %), respectively. The
displacement of oxygen ions associated with these modes is indicated in Figs.
1.11(b) and 1.11(c). In addition to the two Jahn-Teller modes acting on singly
occupied sites, there exists a lattice breathing mode (), that couples to holes,
i.e., to sites with no e, electron. The corresponding displacement of oxygen
ions is show in Fig. 1.11(a). The Hamiltonian

K
Hapn=—) <91lei’1 + 92Q2i07 + gsQsio + ?Q?> (1.6)

(2

describes the interaction between electrons/holes and the three lattice modes
Qi = (Q1i, Q2. Qs:). Here, K is the lattice spring constant, g;/2/3 denote
the coupling constants, n!' is the number operator for holes, and the Pauli
matrices o*/% act on the orbital subspace with basis {322 — 2), |22 — y2)}.
Jahn-Teller and breathing mode distortions mediate an interaction be-
tween neighboring Mn sites. Here we discuss the coupling between two singly
occupied sites, first considering a bond along the z direction (see Fig. 1.12).
Integrating over oxygen displacements and noting that only the 3 but not

the Qo Jahn-Teller mode has a z component (see Fig. 1.11), we obtain from
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Figure 1.10: Local Mn-O bond-length distribution in Lay_,Ca,MnQOsz obtained
by X-ray-absorption fine-structure measurements. Static Jahn-Teller distortions
develop at the metal-insulator transition. The magnitude of distortions in the high-
temperature insulating phase is comparable to those in LaMnQOs. From [BOOYS].

Eq. (1.6) the following interaction Hamiltonian:
(i) =

with Jyp = ¢3/K = 2Ejp and 77 = 107. Equation (1.7) describes an

antiferro-type interaction between orbital pseudospins. The corresponding
expressions for bonds pointing along the x and y directions can be obtained
by a rotation in isospin space as discussed above, yielding the full Jahn-Teller

o ¥ o 1

- -« - - - -
o - o

1 i
(a) (b) (©)

Figure 1.11: Holes couple to the lattice via a breathing mode (a) Q1 and electrons
via two independent Jahn-Teller modes (b) Q2 and (c) Q3.
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Figure 1.12: Jahn-Teller mediated interaction between two Mn sites (black
hexagons): A displacement of the oxygen ion (white circle) shared by neighboring
MnQOg octahedra leads to an antiferro-type interaction between orbital pseudospins.

coupling Hamiltonian
Hyr = Jyr > 77’1, (1.8)
(ig)~

with bond indices v € {z,y, 2z} and orbital pseudospin operators

Tiz/y = —i (Uf + \/§0f> . TP = —-07. (1.9)

The characteristic Jahn-Teller energy Ejp is about 0.2 - 0.5 eV [DES98,
MIL98] which is considerably less than the bandwidth. Hence, the motion
of charge carriers in metallic manganites induces strong fluctuations in the
orbital subsector. The mixing between electronic and lattice degrees of free-
dom described by Hamiltonian (1.6) then implies the absence of static lattice
distortions. On the other hand, a breakdown of orbital fluctuations, e.g., by
the development of orbital order, leads to a distortion of the crystal struc-
ture. In fact, Jahn-Teller coupling can be the driving force behind orbital
order. This is the case in undoped LaMnOj3 which is subject to a coopera-
tive Jahn-Teller effect [KANGO]. X-ray resonant scattering actually shows an
antiferro-type orbital structure in this compound that complies with Hamil-
tonian (1.8) [MURO8, FABO8, ISH98]. However, Jahn-Teller effect is not
the exclusive mechanism behind orbital order. This can be seen from the
variety of orbital structures in manganites [MAE98a, MAE98b|. For in-
stance, the establishment of one- or two-dimensional orbital networks in a
ferro-type orbital orientation as shown in Fig. 1.13 allows for a reduction of
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Figure 1.13: A ferro-type orbital alignment allows for the formation of one- or
two-dimensional orbital networks that reduce the kinetic energy of electrons.

the kinetic energy by maximizing the inter-site transfer amplitude. Exper-
imentally, two-dimensional layered structures have recently been observed
in heavily doped manganites [KAW97, MOT98]. This interplay of kinetic
energy and Jahn-Teller effect in establishing correlations among neighboring
orbitals has important implications for the spin dynamics of ferromagnetic
manganites which are discussed in Chap. 4.

1.5 Effective Model Hamiltonians

Shortly after the discovery of high-Tx superconductivity in cuprates it was
suggested that this phenomenon should be discussed in terms of a doped
Mott-Hubbard insulator [AND87, ZHAS&8]. Since then much of our under-
standing of the physics of cuprates has come from the study of the Hubbard
model and its strong-coupling descendent, the t-J model. A first starting
point is the three-band Hubbard model that describes Cu dy2_,2 and O p,, p,
orbitals on a two-dimensional square lattice. Great simplification is achieved
by a mapping onto an effective low-energy one-band Hubbard model,

Huap = —1>_ ) (c;rscjs + H.c.) + UanTnf, (1.10)

(ij) s

which is widely believed to contain the relevant physics of cuprates. In the
strong-coupling limit U > ¢, the on-site interaction term forbids all but
virtual double occupancies of sites. Equation (1.10) can then be further
simplified by a projection onto the part of the Hilbert space that comprises
only empty and singly occupied sites (see, e.g., [FUL95|). This yields the ¢-J
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Figure 1.14: Spin dependence of superezchange: (a) In the conventional t-J
model the coupling is antiferromagnetic due to Pauli’s exclusion principle. (b) In
the orbitally degenerate model, Hund’s coupling promotes a ferromagnetic interac-
tion.

Hamiltonian

HtJ = —tzz (é;-rséjs + HC) + JSEZ (SZSJ - i) nin;, (111)
(i) s (ig)
with superexchange coupling constant Jsg = 4¢>/U and constrained electron
operators ¢, = cgs(l — n;) that create electrons on site i with spin index s
under the condition that the site is empty. The superexchange mechanism in
this conventional ¢-J model leads to an antiferromagnetic coupling between
spins. This is a consequence of Pauli’s exclusion principle which allows only
for exchange processes of electrons in a spin-singlet configuration [see Fig.
1.14(a)).
In manganites the physics is more involved as one has to take into account
the orbital degeneracy of e, electrons as well as the ferromagnetic Hund’s
coupling between 3d electrons. We use the following Hubbard Hamiltonian

Hyun, -> 3 t;"ﬂ (c;rsacjsg + H.C.) —Ju Y Sfs;
(ij)~ saf i
+ 3 Unipanipe + 3 3 (U = JuP) nianig.  (1.12)
i e i aZB

with P = (8085 + 2). The indices a/f and s stand for orbital and spin
quantum numbers of e, electrons, respectively; double counting is excluded
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from the primed sum. The spin operators s;, act on ey electrons in orbital o
and s; = Y, Siu; core-spin operators are denoted by S¢. The first term in Eq.
(1.12) describes the inter-site transfer of electrons within degenerate e, levels.
The interaction of these itinerant electrons with the localized core spins via
Hund’s coupling is captured by the second term. Finally, the last two terms
in Eq. (1.12) describe the intra- (inter-) orbital Coulomb interaction U (U’)
and the Hund’s coupling between e, electrons in doubly occupied states. In
analogy to the transformation from a conventional Hubbard to the t-J model,
Eq. (1.12) can be projected onto the part of the Hilbert space with no double
occupancies in the limit of strong on-site repulsions U, (U" — Jg) > t. Due
to the presence of Hund’s coupling, the energy level of doubly occupied sites
depends on the spin orientation of core and e, spins — a rich multiplet
structure follows [FEI99]. The problem considerably simplifies in the limit
of large Hund’s coupling Jy which we believe to be realistic to manganites:
Transitions to the lowest-lying intermediate state with energy U; = U’ — Jy
in which core and e, spins are in a high-spin configuration then dominate.
Doubly occupied sites with different spin structures lie higher by an energy
of the order of x Jy and can be neglected. We hence obtain the following
t-J Hamiltonian:

Hy = =3 5 17 (hatis + He)) = Jn 3 Sis

(ij)~ soB

1
—Jse Y (Z - TJT]> 1S5S, + S(S+ ] nimy,  (1.13)

(i)~

with coupling constant Jsg = (2¢2/U1)[S(2S + 1)]7'. Orbital pseudospin
operators 77 are defined in Eq. (1.9) and S; refers to the total 3d spin of site
with S; = Sf+s;. Equation (1.13) is the generalization of orbitally degenerate
superexchange models [KUG82, ISH96, ISHI7b, FEI99] for arbitrary values
of spin.

The first two terms of Eq. (1.13) describe the physics of double exchange
in the orbitally degenerate Mott-Hubbard system and the Hund’s coupling
to localized core spins. As in a conventional double-exchange picture, the
metallic motion of charge carriers mediates a ferromagnetic interaction be-
tween neighboring sites. Strong correlations and the orbital degeneracy are
expected to modulate the specific character of the magnetic exchange bonds.
Specifically this leads to a softening of magnon excitations which has lately
been observed in experiment [HWA9S8] (see Fig. 1.15). For a thorough study
of this problem we refer the reader to Chap. 4.

The third term of Eq. (1.13) describes the superexchange interaction be-
tween two singly occupied sites. We emphasize that in the present model
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Figure 1.15: Softening of magnon dispersion in Pry ¢3S19.37MnQOs. The solid line
is a fit to a nearest-neighbor Heisenberg model. From [HWA9S].

in which Jg is large this coupling is of ferromagnetic nature between spins
and of antiferro-type between orbital pseudospins. The physics behind this
term can be illustrated as follows: We write the superexchange term in the
general form

nt’
HJ = 77 Z Aorstpim (114)
L (i)

where spin and orbital dependencies have been grouped into Ay, and Bypin,
respectively, and 7 is a yet undefined constant. First we focus on the orbital
part A (see Fig. 1.16). For a given bond along the z axis, only ds.2_,2
electrons participate in superexchange processes, which is due to the vanish-
ing transfer amplitude of d,2_,2 electrons in the z direction. The presence
of a strong Hund’s coupling further implies that the transfer of an electron
into an already occupied orbital is forbidden. Hence, bonds in the z direc-
tion contribute to the superexchange mechanism only if exactly one of the
neighboring e, electrons is in a ds,2_,2 state. This requirement is enforced
by the function

z 1 z _z
orb — 2 (Z - T Tj) s (115)

which is equal to one if neighboring sites ¢ and j differ in orbital quantum
numbers and zero otherwise. A rotation in isospin space yields the cor-
responding expressions for bonds along the xz and y directions. Next we
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Figure 1.16: Orbital dependence of superexchange: On a given bond along the z
direction, only ds,2_,2 electrons can participate in superexchange processes. Bonds
with two ds,2_,2 electrons as in (b) are excluded by Hund’s rule.

turn to the spin part Bgpin [see Fig. 1.14(b)]. Since Equation (1.15) implies
that superexchange processes always involve e, electrons in distinct orbitals,
Pauli’s exclusion principle is inactive in the intermediate doubly occupied
state. Rather the spin structure is dictated by Hund’s coupling. We derive
the specific form of the inter-site spin interaction starting from the general
SU(2)-symmetric term
SZS Ji +
R

The constants « and [ can be determined from the following two limiting
cases: (1) The pair of spins at a given bond is in a high-spin configuration —
Hund’s coupling does not affect the exchange process; we set Bgpin = 1 with
(S;S;) = S?. (2) The pair of spins at a given bond is in a singlet config-
uration — Hund’s coupling completely blocks the exchange process; hence,
Bgpin = 0 with (S;S;) = —S(S+1). From these considerations o = S(S+1)
and 3 = S(25 + 1) follows. The overall constant n = —1 is finally obtained
from the above observation that the high-spin configuration minimizes the
kinetic energy and that only one e, electron per bond participates in the
exchange process.

We conclude that in an orbitally degenerate Mott-Hubbard system with
strong Hund’s coupling, double-exchange and superexchange processes both
promote a ferromagnetic interaction between neighboring sites. The ferro-
magnetism encountered here is of atomic origin and is a consequence of the
strong on-site repulsion between 3d electrons in distinct orbitals. In contrast
to a conventional Mott-Hubbard system which exhibits weak ferromagnetism
only for very special topologies and band fillings [KANG63], ferromagnetism is
a robust feature of the orbitally degenerate model. As can be seen from the

Bspin - (116)
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phase diagram of La;_,Sr,MnOj3 in Fig. 1.1, it survives even the breakdown
of metalicity at low doping concentrations. We note that antiferromagnetism
in these systems evolves if the orbital degeneracy is lifted, e.g., in an orbitally
ordered state. The electrons involved in the exchange process may then favor
to occupy a single rather than two distinct orbitals, provided that Hund’s
coupling is not larger than the e,-degeneracy splitting.

1.6 Spin Liquid in Cuprates

Taking the ¢-J model of Eq. (1.11) as the starting point for a description
of the physics of cuprates, the formidable task of dealing with the competi-
tion between the itinerant motion of electrons and the local constraint of no
double occupancy has to be approached. Since the two-dimensional system
is beyond the accessibility of an exact treatment and the sheer number of
electronic states puts severe limits on the system size that can be handled by
numerical methods, analytic approximations are necessary. The validity of
these approximations has to be checked by a comparison with experiment.

At zero doping cuprates are Mott-Hubbard insulators that turn metallic
as holes are inserted into the system. It is not surprising that this corre-
lated metallic state exhibits unconventional behavior which is most clearly
manifested at low doping concentrations close to the insulating state. First
to be noted is the appearance of a gap in the magnetic excitation spec-
trum at temperatures below a characteristic energy scale T* (for a concise
review see [LEE98|). This gap has the same d-wave symmetry as the su-
perconducting order parameter and is often referred to as pseudogap since
the weight of low-energy spin excitations vanishes by a power law. One can
observe this magnetic gap in the NMR relaxation rate [TAI91, IMI93], in the
magnetic susceptibility [JOH89, TAKS89, NAK94, BOU9G] (see Fig. 1.17),
and in the specific heat [LOR93]. Furthermore, gapped features are visible
in the c-axis conductivity [HOM93, TAE94], in photoemission experiments
[LOEY6, DIN96], and in tunneling measurements [REN98]. On the other
hand, the in-plane transport properties seem to be affected only little: For
instance, the coherent Drude weight of the optical-conductivity spectrum
remains mostly unaltered as the spin gap opens up [UCH96.

These observations indicate that magnetic and charge sectors in under-
doped cuprates are, to a certain degree, decoupled from each other. In the
language of quasiparticles, the electron effectively seems to split up into two
distinct entities, one carrying spin that determines the magnetic properties,
the other carrying charge which controls the electric properties (see Fig.
1.18). This scheme of spin-charge separation might govern the physics inside
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Figure 1.17: The uniform magnetic susceptibility of underdoped Lag_ ;S CuOy
declines as the temperature is lowered, reflecting the presence of a spin gap. From

[NAKYY).

the CuO, planes, but it is clear that only physical electrons can leave the
planes. Spin and charge quasiparticles then have to recombine to form an
electron which explains why a gap in the magnetic channel is also expressed
in photoemission and tunneling data.

We shortly note that there exist alternative approaches to explain the
above experimental observations based on the existence of pre-formed elec-
tron pairs [UEM91, EME95, MEL97|. Above T., superconductivity is
thought to be suppressed by strong phase fluctuations and/or the short coher-
ence length of the pairing state. These models predict that manifestations of
superconductivity, i.e., vanishing resistivity and diamagnetism, should be ob-
servable in short time/length-scale fluctuations even above T.. However, re-
cent high-frequency conductivity experiments show that the short-time phase
coherence of Cooper pairs vanishes already at temperatures much below 7™
[COR99, MIL99]. Furthermore, transport experiments seem to give no hint
on the existence of pairs with charge 2e above T, [LEE9S|.

From a technical point of view the notion of spin-charge separation rep-
resents a simple but powerful tool to deal with the no-double-occupancy
constraint in an approximate way. The idea is to replace the fermionic elec-
tron operator by a pair of quasiparticle operators, one being of fermionic, the
other of bosonic type. This can be done in two ways:

cly = fibi, =0l fi (1.17)
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Figure 1.18: Within the CuOsy planes, spin and charge degrees of freedom are
carried by separate quasiparticles.

In the first case spin is carried by a fermionic quasiparticle (spinon) and
charge by a “slave boson” (holon), while in the second case the spin qua-
siparticle is of bosonic nature and charge is assigned to a “slave fermion.”
In these representations the “slaved” particles take the role of counting the
number of vacancies. The local constraint, which in the terms of electrons is

n; < 1, now becomes
nf +nb=1. (1.18)

Equation (1.18) enforces each site to be either occupied by a spin or a hole.
Physically, electron and quasiparticle representations are equivalent to each
other as long as no approximations are made. However, the local nature
of the constraint generally prohibits an exact treatment and approximation
schemes have to be employed. The problem becomes much more accessible
if one allows for a relaxation of the local constraint to a global one — double
occupancies are then no longer strictly forbidden, but the impact of these
unphysical states should be kept as small as possible. At this point the
difference between electron and quasiparticle representations emerges: While
there is no straightforward way of relaxing the inequality n; < 1 without
discarding correlation effects altogether, Eq. (1.18) suggests to employ the
simple average

(nf) + (nl) = 1, (1.19)

which is enforced by introducing separate chemical potentials for fermions
and bosons. The fundamental property of the correlated state, namely the
distinction of empty and occupied sites, survives the relaxation of the con-
straint in this quasiparticle representation. The price to be paid is that
one has to deal with an additional “slaved” particle now. We note that
formally the above relaxation scheme coincides with a saddle-point approx-
imation in a path-integral formulation [REA83]. Fluctuations around this
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mean-field solution give rise to a coupling of spinons and holons via a gauge
field [BAS88, IOF89, IOF90, NAG90, LEE92].

Spin-charge separation is a natural consequence of the relaxation of the
local constraint: Separate quasiparticles controlling spin and charge degrees
of freedom emerge from this procedure. For illustration we present here the
two Hamiltonians that describe the dynamics of these spinons and holons.
Employing a “slave boson” representation, we neglect for the moment the
coupling between spins implied by the J term of Eq. (1.11). Introducing
mean-field parameters x = (b;-rbj>, where = denotes the concentration of holes,
and y = > f;; fjs), the spin and charge sectors of the Hilbert space can be
decoupled, yielding

Hy = —at> > (flf+He), (1.20)
(i) *

th = —th (bjbj + HC) . (121)
(ig)

In analogy to the Gutzwiller approach, the fermionic bandwidth gets
quenched by a factor proportional to the concentration of holes. We note
that the above mean-field equations describe the coherent motion of quasi-
particles. In addition, fluctuations around the mean-field parameters (b;r b;)
and Y ( f;s fjs) introduce scattering events between spinons and holons.
While “slave fermion” and “slave boson” representations would both give
identical results if the theory was solved exactly, they represent very differ-
ent approximation schemes as soon as the constraint is relaxed. Quantum
fluctuations are strong in the fermionic channel but weak in the bosonic
one which has a tendency towards condensation. A “slave fermion” theory
with its bosonic description of spins is therefore well suited to describe the
antiferromagnetic Néel state at half filling where spin fluctuations are weak
[AROS88, YOS89a, YOS89b|. On the other hand, a “slave boson” theory with
its fermionic description of spin can best be applied to the spin-liquid state of
underdoped cuprates which is subject to strong spin fluctuations [ANDST7].
We now turn to a discussion of the competition between hole mobility
and spin correlations associated with the ¢ and J term of Hamiltonian (1.11).
The system can gain energy of order ox xt by allowing holes to hop, but at
the same time it looses energy of order o« J due to a suppression of spin
correlations. In cuprates the transfer amplitude and coupling parameter
are approximately given by ¢t = 0.4 eV and J = t/3 = 0.13 eV. At large
doping concentrations = > J/t, the kinetic energy of holes dominates and
spin correlations become unimportant. At low but finite doping levels z <
J/t, the system has to accommodate the competition between hole kinetic
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energy and spin correlations. It was envisioned by Anderson [ANDS&7| that
a resonance valence bond (RVB) state in which spins form a liquid of spin
singlets and holes can move coherently would be a suitable choice.

The RVB state can be approximately described within mean-field theory.
For this the exchange term of Eq. (1.11) is expressed in terms of fermionic
spin operators using either one of the relations

S:S; = _%(fiTTij + fiTlfjl) (f;rszT + f;lle)
S (R = 2L (i = ) (1.22)

This suggests to introduce the following two mean-field parameters [BAS87,
AFF88al:

Xij = <fiTTij+fiTlfjl>,
Dy = (fufa— firfu)- (1.23)

At half filling, the two decoupling schemes are equivalent to each other which
follows from a local SU(2) symmetry originating in the equivalence of the
presence of an up-spin and the absence of a down-spin [AFF88b, WEN96].
Away from half filling this symmetry is broken and y;; and A;; become dis-
tinguished parameters. Furthermore, the local gauge invariance of electron
operators C:[S — exp(i@i)c;rs implies the mean-field parameters to carry a
phase. A priori, this phase is undefined and has to be chosen such as to
minimize the free energy and/or to most closely resemble the experimen-
tal situation. Various different choices have been discussed; the ones most
commonly used are: (1) Uniform phase — the bond parameter is real and
invariant under translation and rotation. (2) d-wave symmetric phase —
the bond parameter is real and invariant under translation but changes sign
under a rotation by 90°.

Within the present mean-field picture of cuprates the spin gap can be
considered as a precursor of superconductivity. The formation of spin sin-
glets establishes coherency in the spin sector, while coherency in the charge
sector is still lacking. The road to superconductivity can be described by a
three-step process [FUKS88, KOT88b, SUZ88, FUK92|: First, coherent mo-
tion of spinons is established as x;; # 0 with a uniform phase. Second, a
gap opens in the spinon spectrum as A;; # 0 which anticipates the d-wave
symmetry of the superconducting order parameter. Third, coherence in the
charge sector develops as holons undergo a Bose condensation, giving rise to
a non-vanishing amplitude of (b;). The simultaneous presence of A;; and (b;)
finally yields a finite pairing amplitude of real electrons (c;;¢j;) and hence
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Figure 1.19: Schematic mean-field phase diagram of cuprates. Below the dashed
line, spin-singlet correlations are finite as x;; # 0. Dotted and solid lines associ-
ated with mean-field parameters A;; and (b) divide this region into four sections:
(1) Fermi-liquid phase, (II) spin-gap phase, (III) strange-metal phase, and (IV)
superconducting phase.

superconductivity. Depending on the doping concentration, the above order
of steps may change; the complete mean-field phase diagram is schematically
shown in Fig. 1.19.

The strength of the RVB mean-field theory lies in the description of the
spin-liquid features of underdoped cuprates. The transition to a supercon-
ducting state by a Bose condensation of holons, however, is unsatisfactory
in many respects and remains an unsolved mystery. Since the mechanism
of high-T, superconductivity is believed to be intimately related to the un-
usual magnetic properties of the normal state, a better understanding of
the latter seems to be a natural approach to superconductivity. One of the
most challenging open problems in this respect is to reconcile the gaplike
features reminiscent of a spin liquid with the presence of antiferromagnetic
correlations that signal the closeness of the system to a spin-ordered Néel
state (see Fig. 1.20). Insight into the nature of these anomalous features can
be gained by NMR experiments that measure the effect of impurities in the
magnetically active CuO, planes. On the theoretical side, there is need for a
unifying picture of impurities with and without internal spin structure. To
cover the multifaceted nature of magnetism in cuprates, it is necessary to go
beyond a simple mean-field description in order to compensate for a severe
underestimation of local AF correlations in the RVB picture. For a detailed
study of these questions we refer the reader to Chap. 2.
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Figure 1.20: Change of the AF correlation length with doping in Las_, S, CuQOy.
From [BIRSS].

1.7 Orbital Liquid in Manganites

The strong on-site repulsion between 3d electrons has a pronounced effect
on the properties of the metallic state in cuprates as was discussed in the
previous section. It is interesting to see if the same holds true for the metallic
state of manganites. This is not obvious from the beginning for the following
reason: The ferromagnetic moment of metallic manganites is close to being
completely saturated at low temperatures. Electrons move within a fully
spin-polarized band and can effectively be considered as spinless fermions.
One could then be inclined to think that Pauli’s exclusion principle renders
the on-site Hubbard interaction ineffective by prohibiting all double occu-
pancies for quantum statistical reasons. The system should thus resemble a
simple, non-correlated spin-polarized metal. However, experiment indicates
this not to be the case: Asin cuprates, the metallic state of manganites seems
to be subject to strong correlations as will be discussed below. In order for
the on-site repulsion to become effective, some new degree of freedom has
to adopt the role of the strongly fluctuating spins in cuprates. Recently it
was suggested by Ishihara, Yamanaka, and Nagaosa [ISH97a, NAG9S| that
this degree of freedom could be found in the orbital degeneracy of mangan-
ites. An orbital-liquid state characterized by strong orbital fluctuations was
proposed as counterpart to the spin-liquid state of cuprates.
Experimentally there are clear indications that orbital fluctuations are
strong in metallic manganites: First, anisotropies are neither detected in the
conductivity nor in spin excitations which rules out a long-range orbitally
ordered state [ISH97al; analogously, cooperative distortions of oxygen ions
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Figure 1.21: Optical conductivity in Lag g25510.175MnOs: Drude peak (left) and
incoherent spectrum (right). Only the temperature-dependent part is shown on the
right. From [OKI97], [OKI95].

have not been observed by neutron scattering [ISH97a|. Second, local dis-
tortions of the MnQOg octahedra that show up in neutron and X-ray data
at temperatures above T vanish in the metallic state below T which rules
out distortions even on a local scale [BIL96, BOO98, LAN9S| (see Fig. 1.10).
The potential energy gain due to a lifting of the e, degeneracy hence seems
to be more than compensated by the loss of kinetic energy implied by the
constriction of charge motion in the non-degenerate system.

The metallic state of manganites exhibits several anomalous features that
carry the fingerprint of strong correlations. The most important ones are:
Photoemission spectra show only a small discontinuity at the Fermi level
[CHA93, SAT95, SAR96]. This indicates that electronic quasiparticles have
only a small weight. Particularly striking are recent measurements of the
optical conductivity [OKI95, OKI97| (see Fig. 1.21). These show a strong
suppression of the Drude weight accompanied by a broad incoherent spec-
trum extending up to ~ 1 eV. This contrasts the behavior of a conventional
metal in which the spectral weight accumulates mostly in the Drude peak at
low temperatures. The rather high energies to which the incoherent part of
the spectrum extends implies the presence of a scattering mechanism that
is of electronic, not phononic origin. Employing the above picture of an
orbital liquid, we are able to identify the interplay between orbital fluctua-
tions and strong on-site repulsion between 3d electrons as the cause for the
incoherent transport properties as is shown in Chap. 3. We further demon-
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strate that there is no conflict between a strong-correlation description of
manganites and the small values of specific heat observed experimentally
[OKI95, OKI97, WOO097, OKU9S|.

Technically, the orbital-liquid state is to be regarded as an analytical tool
to handle the strongly correlated nature of metallic manganites. In analogy
to our previous discussion on spin liquids, one replaces the electron operators
of the t-J model (1.13) by a set of auxiliary quasiparticle operators:

C:IL:S(X = f’LTS(Xbi'/ CIS(X = b:LrS(XfZ' (1'24)
In the former representation, spin and orbital indices s and « are carried
by a fermion and charge by a “slave boson,” while the order is reversed in
the latter “slave fermion” representation. The spin index can further be
separated from the orbital one by introducing Schwinger bosons d;

fho = fLdl, bl =0bl,dl (1.25)

with the spin representation [AUE94]

. 1
st =dldy, s;=dldy, si=<

and ddeiT + dZTldi | = 1. The no-double-occupancy constraint

nf +nt=1 (1.27)

enforces that each site is either occupied by an orbital-carrying quasiparticle
(orbiton) or by a charge-carrying one (holon). With the relaxation of the
local constraint to a global one an orbital-charge separation scheme emerges
(see Fig. 1.22). We illustrate this for the case of a “slave-boson” representa-
tion. For simplicity the ferromagnetic moment is assumed to be completely
saturated and all spin fluctuations are discarded — this allows to drop the
spin indeces altogether. Introducing mean-field parameters x = (blbﬁ for
the concentration of holes and x = t7'3,4 t?/g( f;ra fip), the following two
Hamiltonians for orbitons and holons are obtained:

Hopy = —2 3 57 (fl. 155+ He), (1.28)
(i5)~
Hh] = —th (bjbj + HC) . (129)

(i)

We note that the composite nature of the electron, i.e., the fact that two
quasiparticles together form an electron, induces strong scattering between
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Figure 1.22: Orbital and charge degrees of freedom are carried by separate qua-
stparticles.

holons and orbitons. To account for this effect it is necessary to go beyond
the mean-field theory presented here and to consider fluctuations in the pa-
rameters z = (b/b;) and xy = ¢~} Yap tg‘f@(filfjm. These scattering events
play an important role in the analysis presented in Chaps. 3 and 4.

To finish the discussion we shortly comment on the applicability of the two
types of representations introduced in Eq. (1.24): A fermionic representation
of the orbital sector is suitable for describing a disordered, strongly fluctuat-
ing orbital state, but the instability of orbitals to order (e.g., via Jahn-Teller
coupling) is ad hoc underestimated. On the other hand, a bosonic descrip-
tion of the orbital sector accounts well for an orbitally ordered state and the
low-energy orbital excitations around it. The inclination of bosons to con-
dense, however, now overestimates the robustness of the ordered state. The
picture of an orbital liquid, both in its “slave boson” and “slave fermion”
form, is extensively employed in Chaps. 3 - 5 to model various aspects of
metallic manganites.
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Chapter 2

Impurity-Induced Moments in
Underdoped Cuprates

2.1 Introduction

The simultaneous occurrence of a gap in the magnetic excitation spectrum
and the persistence of local antiferromagnetic correlations mark the scope
of magnetism in underdoped cuprates. Besides being interesting for their
own virtue, these anomalous properties of the normal state are believed to
be closely related to the mechanism of high-T, superconductivity. Experi-
mentally, the local magnetic structure of cuprates can be sensitively probed
by doping the CuO, planes with impurities and subsequently measuring the
response of the NMR, signal of nuclei coupled to the planes. In this chap-
ter, we present a theory of magnetic (S = 1) and non-magnetic (S = 0)
impurities in underdoped cuprates that unifies the existence of the spin gap
with the presence of antiferromagnetic (AF) correlations and accounts for
the peculiarities observed in NMR experiments.

When doping high-T,. cuprates with impurities, Cu (d°) with an effec-
tive in-plane spin of S = 1 is commonly replaced by Ni (d®) with S =1 or
Zn/Al (d*°) with S = 0. In the spin-gap phase at low hole concentrations,
either type of impurity is experimentally observed to induce S = % magnetic
moments [XIA87, FIN90, ALLI1, ISD93, ZHE93, MAN94, MEN94, RIS94,
ISD96, BOB97a, BOB97b, MEN99|. This is a very interesting observation
as it obviously shows that the magnetic behavior of impurities can be under-
stood only in connection with the magnetic response of CuO; planes: In the
case of non-magnetic impurities, the moments seen in experiment must be
contributed to by the host. Similarly, magnetic moments of the CuO planes

must be active in partially screening the S = 1 spin of magnetic impurities.
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Figure 2.1: Susceptibility of Lay g55710.15 CuOy: Pure and Al-doped (S = 0) system
(inset: impurity contribution only). From [ISDI6].

Figure 2.1 illustrates the formation of magnetic moments due to doping with
non-magnetic Al impurities: In the pure sample the static spin susceptibility
follows a thermally activated behavior, reflecting the spin-singlet nature of
the ground state. Doping with impurities adds a pronounced Curie com-
ponent. Another interesting experimental observation is that of the local
nature of impurity moments. Most convincingly this can be seen in the ap-
pearance of satellite peaks in the NMR signal, e.g., of Y in YBayCuzO7_,
(see Fig. 2.2). These satellites are associated with 89Y nuclei that lie close to
an impurity; the local field of the impurity-induced moments shifts the NMR,
resonance frequency, while nuclei at large distance remain unaffected. This
results in a splitting of the NMR signal into distinct lines.

Our study of impurities in cuprates is, to a large extent, motivated by
the following peculiar experimental findings: Superconducting quantum in-
terference device (SQUID) measurements of the macroscopic susceptibility
reveal an almost perfect T—! Curie behavior of the moments associated with
non-magnetic Zn and magnetic Ni impurities [MEN94]. This seems to be
in apparent contradiction to recent NMR measurements on 7O for the un-
derdoped compound YBayCuzOg¢ [BOBI7a, BOBI7Dh| [see Fig. 2.3(a)]. The
polarization of Cu spins in the presence of Zn or Ni leads to a broadening
of the NMR line. In contrast to the aforementioned SQUID measurement,
the linewidth displays a marked non-Curie behavior. To resolve this con-
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Figure 2.2: Non-magnetic Zn impurities in YBay Cug O7—y: The impurity (filled
circle in the right figure) induces moments predominantly on nearest-neighbor Cu
sites (arrows), leading to a splitting of the NMR signal of 3°Y (triangles) into a
main and two satellite peaks (left). From [MAN94] (left).
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Figure 2.3: Zn- (S =0) and Ni- (S = 1) doped YBA3CuzO7_y: (a) Impurity-
induced NMR line broadening. (b) Curie constant of the macroscopic susceptibility

by SQUID. From [BOBI97b], [MEN9/].
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tradiction one is led to adopt an inherent temperature dependence of the
polarizability of CuOy planes. Morr, Akimoto, Nakamur, et al. [MRR9S|
suggested to interpret this behavior of the polarizability in terms of a tem-
perature dependence of the AF correlation length. We will later elaborate on
this view. Still another interesting observation can be made by comparing
the two experiments: While the NMR study shows non-magnetic Zn to have
a more pronounced effect on the linewidth than Ni, the macroscopic suscepti-
bility reveals a reversed effect [see Fig. 2.3(b)]. Since the NMR experiment is
sensitive to a spatial variation of the spin polarization, a very different shape
of the spin density induced by the two types of impurities can be inferred.

In the following, we present a microscopic theory of moments induced by
magnetic and non-magnetic impurities in the spin-gap phase of underdoped
cuprates. We analyze the different nature of coupling between Cu and im-
purity spins and derive expressions for the local spin polarization of CuO,
planes. The presence of the spin gap and of short-range AF correlations is
shown to strongly modify the conventional Ruderman-Kittel-Kasiya-Yosida
(RKKY) picture. Finally, we derive expressions for the NMR, Knight shift
and line broadening which account well for the peculiarities of experimental
data.

2.2 Impurity Model

The relevant physics of the CuQO, planes of high-T, cuprates is believed to
be described by the large-U Hubbard or ¢-J model. The dualism between
itinerant charge motion and local electron interaction that is inherent to these
models can, in an approximate way, be captured by introducing separate
quasiparticles for spin and charge degrees of freedom (see Chap. 1). Within
this picture the normal state of underdoped cuprates is viewed as a phase
in which spins form singlet pairs while coherence between holes that would
eventually lead to superconductivity has not yet been established. We follow
this line of thinking but restrict ourselves to the magnetic sector of the Hilbert
space. Our starting point is the spin—% AF Heisenberg model on a square
lattice:

H = stisj- (21)

(ig)

Keeping in mind the presence of itinerant holes which prevent the system
from developing long-range magnetic order, we treat this Hamiltonian within
resonance valence bond (RVB) mean-field theory [ANDS87] — this accounts
well for the spin-liquid features of cuprates. Relaxing the local no-double-
occupancy constraint to a global one and introducing mean-field bond para-
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Figure 2.4: Symmetry of the bond-order parameter in the flux phase.

meters
Aij - A& Z fzs 3 (22)
the following mean-field Hamiltonian is obtained:
HRVB = — Z (Aijfjsfjs + HC) . (23)

(ig)s
The expectation value (...)" in Eq. (2.2) refers to Hamiltonian (2.1) of the
impurity-free system. Original spin operators s; have been expressed in terms
of fermionic operators by s; = % D eet Ossl f;; fis with Pauli matrix vector o =
(0%, 0Y,0%). We note that our approach considers the presence of holes only
in an implicit manner: The above fermionic representation of spin excitations
implies strong spin fluctuations. It is therefore not a suitable representation
of the spin-ordered ground state of the 2D Heisenberg model but rather of a
spin liquid. The latter is implied to be stabilized by the motion of holes in

the hole-doped system studied here.
The phase of the mean-field bond parameter in Eq. (2.2) is yet undeter-
mined and has to be chosen such as to resemble the experimental situation

most closely. An appropriate choice for the spin-gap regime is the flux phase
[AFF88a, SUZ88, KOT88a, MAS89, MAS99| (see Fig. 2.4):

Ay =iy, = A, (2.4)

Dividing the lattice into two sublattices A and B and going to the momentum
representation, Hamiltonian (2.3) can be diagonalized

Hgryp = Zf;c’f;cryfkm (2.5)
kv
with index v = +. The spectrum of spin excitations or spinons is

& = +2A (C082 k, + cos? ky> 2
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Figure 2.5: The spinon excitation spectrum has four nodes at (£5, £%) that lie
at the spinon chemical potential, yielding a V-shaped pseudogap in the density of
states of magnetic excitations.

It has nodes at (£%,=£7%). yielding a V-shaped pseudogap in the density of
states centered at the spinon chemical potential p; = 0 (see Fig. 2.5):

_ el

POw) = 7 (2.6)

The latter is defined per spin up/down state, and D = 2\/7A denotes the
spinon half bandwidth. We note that despite the fact that the mean-field
Hamiltonian (2.3) is a single-particle one, it incorporates important aspects
of a many-particle system: The pseudogap in the spin excitation spectrum
is a consequence of the inter-site coupling between neighboring spins, which
establishes a finite amplitude of singlet correlations across nearest-neighbor
bonds. The resonating structure of the bonds makes this a many-particle
effect.

To simulate first a non-magnetic impurity we introduce into Hamiltonian
(2.3) a local chemical potential V' acting on site R = 0, which by convention
lies on sublattice A. In the limit V' — oo, spinons are expelled from this site,
creating a vacancy. The Hamiltonian is then

Hzy = Hryvg + V') fgsf08|\/—>oo‘ (2.7)

To describe a magnetic Ni impurity, we insert into the empty site an impurity
spin Sy with S = 1 which is coupled antiferromagnetically to the surrounding
Cu spins ss. The corresponding Hamiltonian is

Hyi = Hrys + Vngsfoslvqoo +J'> " Soss. (2.8)
s )
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In the following we study the impact of impurities upon the proper-
ties of the spin-liquid state. Different theoretical aspects of non-magnetic
impurities in spin-gap systems have been investigated by several authors

[BAL95, NAG95, NAG96, MAR97, NAG97, PEPYS].

2.3 Local Magnetic Moments

Doping with static impurities breaks the translational invariance of the sys-
tem and induces scattering of spinons on the impurity sites. Without spin-
singlet correlations, the presence of an impurity would simply lead to a spa-
tial redistribution of the spinon density in the form of Friedel-like oscillations.
The situation is expected to change dramatically as singlet correlations be-
tween spins are taken into account and the spin gap opens. Intuitively, re-
moving one spin from a liquid of spin singlets leaves another spin unpaired.
Supposably this unpaired spin will modify the magnetic properties of the sys-
tem. In the first part of this section we show that a non-magnetic impurity
indeed alters the spin-singlet nature of the ground state by contributing a
Curie-like component to the spin susceptibility. We then extend our study to
a magnetic impurity. Here we observe a Kondo-like screening of the internal
impurity spin by moments on neighboring Cu sites, leading to a quenching
of the impurity moment.

2.3.1 Non-Magnetic Impurity

It is convenient to introduce propagators to describe the itinerant motion of
spinons. In the pure and impurity-doped system, respectively, these are

(i) = ~(TAOAON = T,
pwli) = —(T L) 0, (2.9

where we use the simplified notation A = (k,v) and Matsubara frequencies
iw = i(2n 4+ 1)7T with temperature 7" and integer numbers n. The propa-
gators of Eqs. (2.9) can be related by a scattering matrix Thy that describes
successive scattering of spinons on the impurity site (see Fig. 2.6):

g (w) = gio) (1w)oxn + gio) (iw)T,\,\/(iw)g/(\(,))(iw). (2.10)

In the limit of an infinitely large repulsive potential V' on the impurity site,
the scattering matrix is
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Figure 2.6: The scattering matriz (circle) describes successive scattering of free
spinons (single arrows) on a local potential (cross). The spinon propagator of the
impurity-doped system is denoted by a double arrow.

Vo 0w
T = 20— 0 2.11
M - VGO (jw) GO (iw) (2.11)

where GO (iw) = 3, ¢\” (iw) is the k-integrated Green’s function of the pure

system
21w

GO (iw) = — 5z (D/|w]). (2.12)
The important point is that G (iw) vanishes at zero frequency due to the
presence of a spin gap. The scattering matrix of Eq. (2.11) then acquires a
pole at w = 0. In the spinon density of states this pole is reflected by a ¢
function situated in the center of the pseudogap:

0pzn(w) = 6(w). (2.13)

The latter expression, which is valid for w < D, is calculated from

the impurity part of the k-integrated Green’s function O0G(iw) =

> v g/(\o) (iw)T,ng(?) (iw) given by

§Gon(iw) = ai,ln[c:@) ()] = L2 (D/lw]) (2.14)

iw w
Equation (2.14) is related to the impurity contribution to the spinon density
of states by dp(w) = —2Im[6G(iw — w + i07)]. Figure 2.7 schematically
shows the spectral densities pV(w) and p(w) = p@(w) + §p(w) of the pure
and the impurity-doped system.
As a consequence of the finite spectral weight induced inside the gap, the
static spin susceptibility x(7') = Y gr/(Tr & (7)sg (0))w=o no longer vanishes
as o< T at low temperatures. Rather, employing1

(T 4T/ Cosh2 x/QT) (2.15)

!Susceptibilities are corrected by a factor of 2 to compensate for an underestimation in
the present mean-field treatment. The use of a Majorana fermion representation [MTT81,
TSV92, KRI95] as employed in Ref. [KHA97b] makes this correction unnecessary.
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Figure 2.7: Schematic plot of the spinon density of states for the system with a
non-magnetic impurity (solid line) as compared to the pure system (dashed line).
The § function is artificially broadened.

=3 R <> R

Figure 2.8: Diagrammatic representation of the static spin susceptibility.

(see Fig. 2.8), a new term appears in the susceptibility; at T < D, this

impurity contribution resembles the behavior of a free spin—%:

1
AT

Instead of dissolving into the RVB ground state, the unpaired spin created
by the substitution of Cu by Zn is hence found to actively contribute to the
magnetic behavior of the system. We note that fluctuations of spin-singlet
correlations are strong in the RVB state. This tends to weaken the stabil-
ity of the localized spinon state by “smearing” its position: The resonating
structure of singlet pairs allows an unpaired spin to recombine with a new
partner, thus leaving its original partner without counterpart. Due to the
short-ranged nature of singlet correlations, this effect is not strong enough
to prevent the bound state from evolving. Yet, one can expect the impurity
moment to be rather broadly distributed over a large number of lattice sites.
In the following we analyze this question by studying the spatial distribution
of the impurity-induced moment.

First we investigate the impurity contribution to the local density of
states. The latter can be obtained from the impurity part of the local Green’s
function §GB(iw) = T\ gf\O)T,\,\/gg(})ei(k_k,)R which describes the propaga-
tion of a spinon starting from and returning to site R. In the impurity-doped
system this quantity depends upon the relative position of the impurity. This

Oxzn(T) (2.16)
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can be seen by expressing 6GE(iw) in terms of the inter-site Green’s function
of the pure system GO (iw, R) = —(T fos(7) f5,(0))?, which yields

G9(>iw, R) GV (iw, —R)
GO (iw)

SGEF (iw) = — : (2.17)
The denominator of Eq. (2.17) describes the propagation of a free spinon from
site R to site 0 and back to site R, while the nominator accounts for the
scattering of spinons on the impurity at site 0. At this point the sublattice
structure evolves [see Eqs. (2.4) and (2.5)]: The inter-site Green’s function
assumes different forms depending on whether it connects two points on the
same or on different sublattices. Explicitly,

21w
- g2|90A(R)K0(R|w|/D) for R €A,
GPiw, ) = (2.18)
21w
M myk (B/D) fr ReB.

with a modified Bessel functions of the second kind K, (x) and R # 0. The
angular dependence is determined by the phase factors
1

pa(R) = 5 (em%/z +emR*/2)7 (2.19)

pp(R) = 5 (RTe™/2 4 Rre™i /) (2.20)

1
2
with R* = R, + R, and R* = (R, +iR,)/R.

We are now in the position to evaluate the local Green’s function,
Eq. (2.17), using the above expressions for G (iw, R). From this we
then calculate the impurity part of the local density of states, §p(w) =
—1Im[§GR(iw — w +i07)]. The first important observation to be made
is that contributions from sublattice A are negligibly small; the impurity
induces moments predominantly on sublattice B which comprises, e.g., the
sites adjacent to the impurity. The spatial distribution of the moments on
this sublattice is described by the impurity contribution to the local density

of states
1 1 Pp(R)

SpR(w) = =

) = WD)
which is valid for R|w| < D. The phase factor is ®5(R) = |pp(R)|* =
s[1—(2R2/R*—1) cos(mR,)]. As expected from the above general arguments,

the moment is found to be broadly distributed over Cu sites, its density falling
off rather slowly as oc B2 with distance from the impurity. The peculiar

for R e B, (2.21)
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Figure 2.9: Schematic view of spin propagation in the RVB state via the exchange
of a singlet partner. The unpaired spin is denoted by an arrow, mearest-neighbor
RVB singlets by horizontal lines, and the impurity by a dot. Only one spatial
dimension is shown. Shaded and non-shaded sites belong to different sublattices.

sublattice structure encountered here follows from the specific mechanism by
which unpaired spins propagate through the RVB state: As mentioned above,
an unpaired spin can be absorbed into the RVB ground state by forming a
singlet with a new partner which simultaneously creates an unpaired spin
at a different site. Since nearest-neighbor singlet correlations dominate, this
mechanism preserves the sublattice label of the propagating spin to leading
order (see Fig. 2.9). We finally note that the logarithmic structure which ap-
pears in the local density of states is characteristic for a disordered spin-gap
system. The reason why it is not seen in the macroscopic spin susceptibility
of the bound state [see Eq. (2.16)] is that the latter is effectively decoupled
from the spinon system — to leading order, it behaves as a free spin—%. Log-
arithmic terms, however, do show up in higher-order corrections and, as seen
in Eq. (2.21), in the local structure of the moment. Similar logarithmic de-
pendencies are observable, e.g., in 1D spin-Peierls [FAB97] and two-leg ladder
systems [NAG96, SIG96, GOGI7, FUK96], where §p(w) o 1/[|w|In*(D/|w]|)].
To summarize the results for a non-magnetic impurity, we find a bound
state in the center of the pseudogap which implies a 7= Curie contribution
to the macroscopic susceptibility resembling a free spin—%. The moment is
carried by Cu sites over which it is broadly distributed, its density falling off
as B2 with distance from the impurity. The short-ranged nature of singlet
correlations implies the moment to reside predominantly on sublattice B.

2.3.2 Magnetic Impurity

We now turn to analyze an impurity with an internal S’ = 1 degree of freedom
embedded in a spin-gap system as described by Hamiltonian (2.8). Spinons
stemming from the initial Cu spin at site R = 0 are ejected by the local
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potential A\. The impurity spin, which is placed in the vacant site, is conve-
niently represented by two spins—%, ie., 8§ = 8,4+ Sp,. An infinitely strong
ferromagnetic interaction H. = —J.5,S), between these two spins is assumed.
Expressing S, and S in terms of new fermionic operators ay and b, respec-
tively, a mean-field decoupling of the exchange term Hj,,, = J'> 5 Soss can
be performed:

cal + bl
Hiwp = =) | A5 7 > fss + Hee. | — J.8.S. (2.22)
és

Rather than working with the impurity operators a; and by it is convenient
to introduce a new set of orthogonal operators fo, = (as + bs) /v/2 and d, =
(as — bs) /v/2. The impurity Hamiltonian then assumes a more intuitive form

Himp - - Z ( :Sf(;rsftSs + H-C-) - JcSefFSO, (2.23)
és

where the impurity spins sy and S.g are expressed in terms of the operators
fos and ds, respectively. Due to the first term in Eq. (2.23), the f spinons
on the impurity site hybridize with the ones on adjacent Cu sites. This
process is controlled by the local mean-field parameter Ay = J' 3 ( f;s fos)
which replaces Ag on bonds connecting to the impurity. A system of itinerant
spinons extending over the whole lattice including the impurity site is formed.
These itinerant spinons couple ferromagnetically to the localized spin Sg. In
the limit of low energies, this coupling becomes asymptotically small. This
follows from the fact that the rate at which spinons scatter on the localized
spin vanishes as o wln|w| in the spin-gap phase [KHA97a]. Restricting
ourselves to the low-energy fixed point, itinerant spinons and localized spin
Ses can hence be considered as being isolated from each other. Only in
the presence of a magnetic field the ferromagnetic coupling between the two
systems has to be reconsidered as it leads to a polarization of spinons; this
question is subject of Section 2.4.

In the remainder of the present section we analyze the properties of the
spinon system, discarding for now the presence of the localized spin Seg. To
begin with, we consider the special case of equal exchange interactions J' = J.
With regards to the spinon sector the impurity site becomes indistinguishable
from the rest of the system as A5 = As. The spin sy assumes the role of the
original Cu spin at R = 0 and a homogeneous spin liquid as described by
Hryp in Eq. (2.3) is formed. However, in general the two exchange integrals
differ, J' < J, which breaks the translational invariance of the spinon system.
The bond parameter then acquires an additional spatial dependence that has
to be treated self-consistently. To simplify the discussion we distinguish only
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Figure 2.10: Mean-field parameters Al and As are assigned to bonds that do
(dashed line) or do not (solid line) connect to the impurity denoted by a large dot.

between bonds that do or do not connect to the impurity (see Fig. 2.10),

Ao Al for i=0o0rj =0,
Yl As for 4,5 #0,

where Ag is the mean-field parameter of the impurity-free system. The two
parameters Ay and A are assumed to exhibit the same phase relation, but in
general their amplitudes differ. As a result, spinons scatter on the impurity
bonds. To study this effect, we write the spinon part of Hamiltonian (2.8) as

H¥ = Hevg + (1 - 2) Y (Asflofss + Hae.), (2.24)
és

where Hgryp represents the impurity-free system. The scattering amplitude
(1—2z) with x = |Af/As| is controlled by the ratio of J' to J. It vanishes for
J' = J, and has to be treated self-consistently for J' < .J. Approximately we
find z =~ J'/J.

As in the case of a non-magnetic impurity, the spinon propagators of the
pure and impurity-doped system given by Egs. (2.9) can be related by a
scattering matrix Thy (iw) [see Eq. (2.10)]. Tt describes successive scattering
of spinons on the four bonds that connect the Ni impurity site to its nearest
neighbors. We obtain the following expression for the 7" matrix:

t A\ (zw)

Ni _
T (iw) = —=5 (i0) + 72 (2.25)

with

taliw) = TGO i) i — ) — )

+1+%(22’w - f,\ - f,\/) —w.
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The k-integrated Green’s function of the pure system G©)(iw) is defined in
Eq. (2.12) and p? = 2?/(1 — 2?). Due to the presence of the spin gap, two
complex poles appear in the scattering matrix (as compared to one real pole
in the case of a non-magnetic impurity). These are determined by the roots
of

wGO (1w — w +i0") + p* = 0. (2.26)

One of the poles lies below the spinon chemical potential which signals the
formation of a spinon bound state with finite lifetime. In analogy to the
previously discussed case of a non-magnetic impurity, it describes a Cu spin
left unpaired after the replacement of Cu by the impurity. The important
difference is that in the case of a magnetic impurity the free Cu spins can
interact with the impurity moment as is discussed in the following.

Due to the fact that J' is finite, the poles of Eq. (2.26) do not lie in the
center of the pseudogap. This introduces an additional energy scale, namely
the characteristic binding energy wg of the bound state given by the real
part of the lower pole. Together with the width dx of the bound state, which
is associated with the inverse of the life time of the bound state, we find

T J T WK

=iy K1 (220

wK An(DJwx)’

which is valid for J' <« J. The two energy regions w < wg and w > wg
control the physics at large and small distance from the impurity, respectively,
as compared to Rxg = D/wk. These regions exhibit very different behavior:
In the former case the impurity spin and the Cu moments jointly form an
effective spin in what resembles an underscreened Kondo effect. At large
energies this entity breaks up — impurity spin and Cu moments decouple.
First we analyze the low-energy scale w < wg that applies to low tem-
peratures and large distances from the impurity. We calculate the impu-
rity contribution dp(w) to the density of states from the Green’s function

0G(iw) = D \w gg\o)(iw)T,\/\/(iw)gg\g) (iw). For w < D we obtain

0 2G) (iw)
6Gni(iw) = — In[iwGO(; 2] = 2.2
Ci(iw) Oiw nfiwG(iw) + p] iwGO) (iw) + p?’ (2.28)
which yields
5pNj((,U) = —wK5K 3 |w| . (2.29)
T (w? — wk)? + (2w dk)?

Figure 2.11 schematically shows the spinon density of states p(®(w) and
p(w) = pO(w) + dp(w) for the pure and impurity-doped system. The very
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Figure 2.11: Schematic plot of the spinon density of states for the system with
a magnetic impurity (solid line) as compared to the pure system (dashed line).

existence of a magnetic pseudogap is found to be unaffected by the presence
of the impurity — p(®(w) as well as p(w) vanish linearly in the limit w — 0.
As a consequence, the static spin susceptibility of Eq. (2.15) vanishes as o< T’
at low temperatures in analogy to the impurity-free system. This indicates
all spinons to participate in the formation of singlets. The spinon bound
state discussed above hence partially screens the impurity spin by forming a
Kondo singlet with sg. The local spin Seg, which is not part of the spinon
system and therefore remains unaffected, then constitutes an effective S = %
impurity spin. In this underscreened Kondo problem the spinon binding en-
ergy wr of Eq. (2.27) plays the role of the Kondo temperature Tx = wg. At
temperatures above Tk, the impurity spin decouples from the Cu moments,
while partial screening of the impurity moment occurs at temperatures be-
low Tx. We note that the Kondo temperature exhibits an unconventional
power-law dependence on the coupling parameter J' which is in contrast to
the conventional exponential behavior. This peculiarity is ascribed to the
fact that the impurity spin couples to bound spinons which are predomi-
nantly in localized rather than band-like states. To finish the discussion of
the low-energy behavior, we point out that while the impurity does not fill
the pseudogap it nevertheless renormalizes its slope. A low-energy expansion
of Eq. (2.29) yields an impurity contribution to the spinon density of states
that preserves the gapped structure:

dpni(w) = EP(O) (w), (2.30)
which is valid for J' < J.

We now shortly turn to the energy scale w > wg which controls the behav-
ior at large temperatures and/or small distances from the impurity site. In



46 CHAPTER 2. IMPURITY-INDUCED MOMENTS ...

T
7 I

| | _
(a) (b)

Figure 2.12: “Snapshot” of the low-energy fixed point of a RVB liquid state with
(a) a non-magnetic impurity and (b) a magnetic S = 1 impurity denoted by a dot.
In the former case the impurity induces moments that reside on Cu sites in the
proximity of the impurity. In the latter case the impurity spin is partially screened
by the Cu moments. Effectively a local impurity sp'm—% and a “healed” spin liquid
results.

this regime the impurity spin decouples from the Cu moments. The suscepti-
bility associated with the spinon bound state is then that of a free Spin—%, ie.,
X(T) = 1/(4T) if temperature is the leading parameter or x(7") = 1/(4wk)
otherwise; simultaneously, the original S = 1 impurity spin is recovered. The
spatial distribution of Cu moments follows the same pattern as in the case
of a non-magnetic impurity.

To summarize, non-magnetic Zn and magnetic Ni impurities in a gapped
spin liquid are both associated with S = % magnetic moments. These are,
however, of very different nature (see Fig. 2.12): In the former case the
impurity induces moments that are broadly distributed over Cu sites. In the
latter case the Cu moments partially screen the original S = 1 impurity spin
in analogy to an underscreened Kondo problem. One is then left with an

effective spin—% located at the impurity site.

2.4 Spin Polarization

The effective impurity moments discussed in the last section can be polar-
ized by applying an external magnetic field. In this section we analyze the
incidental local response of planar Cu spins. In the case of a non-magnetic
impurity, the magnetic field directly polarizes the magnetic moments induced
by the impurity on the Cu sites. In the case of a magnetic impurity, the ap-
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Figure 2.13: Diagrammatic representation of the polarizability of an impurity-
induced moment at site R in a uniform magnetic field.
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Figure 2.14: Diagrammatic representation of the polarizability of a Cu spin at
site R in a magnetic field acting on the localized moment Seg at site R' = 0.
Dashed and solid particle-hole convolution functions denote the susceptibility of the
effective impurity spin and of the CuOy plane, respectively. The vertex function
J.(iw) is represented by a circle.

plied field acts on a localized impurity spin—% ferromagnetically coupled to a

liquid of itinerant spinons. The latter respond via a RKKY-type interaction.

We first discuss the case of a non-magnetic impurity. Here the impurity-

induced moment is carried by the Cu spins which can therefore be directly po-

larized by the magnetic field. The static polarizability of the local moments is

given by Kzu(T, R) = Srl(Tsa(7)s7/(0))uzo — (Trs7(7)s3(0))—]. Eval-
uating the diagram in Fig. 2.13 we obtain
1 $(R) 1

Km(T,R) = — f B. 2.31
wR) = o~ o) ' BE (2:31)

Equation (2.31) is valid for R € B, while contributions from sublattice A
are negligibly small for reasons discussed in Section 2.3. The polarizability is
found to decay slowly as R~2 with distance from the impurity. This behavior
is reminiscent of the competition between spinon localization and spin-singlet
fluctuations — a bound state forms, but it is broadly distributed. This
marginal character of the Zn moment is further reflected in a logarithmic
suppression of the 77! Curie-like behavior of Eq. (2.31). This effect can
actually be observed experimentally as is shown in Section 2.6.

Next we turn to the slightly more involved case of a magnetic impu-
rity. Here the magnetic field acts only on the effective impurity moment
Ser as all other spins are in a singlet configuration. The Cu spins then
get polarized indirectly via the ferromagnetic coupling between spinons
and effective impurity spin. The static polarization to be calculated is
Kni(T, R) = (T:8%(7)S%(0))w—o. Expressed in terms of Green’s functions
(see Fig. 2.14) it becomes



48 CHAPTER 2. IMPURITY-INDUCED MOMENTS ...

Kni(T,R) = —T?Y Ty(ie') J.(ie — ie")lI4(ic, R), (2.32)

g,e’
with particle-hole convolution functions

y(ic) = D3*(ig),
Is(ic, R) = G(ie, —R)G(ic, R).

Here the impurity Green’s function is D(iw) = —(Tyd,(7)d(0))i = 1/(iw)
and the inter-site spinon Green’s function G(iw, R) = —(Tr fos(7) f1.(0))iw-
Operators d and f act on separated sectors of the Hilbert space. At site
R = 0, f spinons are polarized by the local spin Seg due to the ferromagnetic
interaction of bare strength J. — oo. This coupling is accounted for by the
vertex function J.(iw). Employing a ladder approximation yields

A |
AT T

J.(iw) (2.33)
with
HZ“’ = —TZ D(ie +iw)G(ie, R = 0).

Replacing the vertex function by its zero-frequency limit J(iw) — J(0), the
polarizability of Eq. (2.32) can be factorized. Within this approximation,
which is valid at low temperatures, one obtains

Kni(T, R) = Xett(T) Jo(0)x (T, R). (2.34)

The polarizability has thus been decomposed into the magnetic suscepti-
bility of the effectively free S = £ impurity spin xes(T) = 1/(4T), the
non-local magnetic susceptibility of CuO planes x,(7, R), and an effec-
tive coupling parameter J.(0). The susceptibilities are defined as xeg(T) =
(T, S2(7) Sg(0))umo = —T 3. Talie) and xpu(T, R) = (Tys3(7)57(0))uo =
—T'y.I(ie, R).

To further analyze the polarizability in Eq. (2.34), the expressions for
Je(0) and xpi(R) have to be evaluated. This requires the on-site and inter-
site spinon Green’s functions

2 0)(;
<3> _ GO o g
. z) wGO(iw) + p?

Ghi(iw, R) = (2.35)

1
- G9(%w,R) for R> Ry,
x

where GO (iw, R) is defined for the impurity-free system and is given by Egs.
(2.18) — the factor 1/ accounts for the renormalization of the pseudogap
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in the presence of the impurity. We are now in the position to calculate the
effective coupling parameter from the zero-frequency limit of Eq. (2.33) for
which we obtain

D for J =J,
Je(0) = { 2w for J < J.

Furthermore, the non-local spin susceptibility of CuO; planes in the presence
of the impurity is

(2.36)

3 1 ®R)

wlB) = - T

the latter being valid for R € B with R > Rg. Finally, combining these
results we obtain

for R e B, (2.37)

3 J.(0)P(R) 1
~T6m Jgﬂ) ;3 ) T for Re B. (2.38)
Equation (2.38) describes the polarizability of a Cu spin at site R responding
to a magnetic field that acts on the effective impurity spin Seg; contributions
from sublattice A are again negligibly small. The polarizability is found to fall
off as B3 with distance from the impurity which compares to a B2 behavior
in the case of Zn, reflecting the delocalized nature of the Zn moment. We note
that the T—! Curie behavior displayed by Eq. (2.38) stems solely from the
susceptibility x.s(7") of the effective impurity spin. Within the present mean-
field treatment, the planar susceptibility is independent of temperature, i.e.,
Xpl(Ta R) = Xpl(R)

In deriving Egs. (2.31) and (2.38) for the polarizability of Cu spins we
have, up to this point, built upon RVB mean-field theory. This picture ac-
counts well for the spin-liquid features of underdoped cuprates which includes
the presence of a magnetic pseudogap. Its strength lies on the description of
long-range properties controlled by low-energy excitations. The mean-field
treatment does, however, severely underestimate local AF correlations which
reflect the proximity of a critical instability towards AF spin ordering. As a
consequence, the above expressions contain no reference to the AF correlation
length which was suggested to introduce a temperature dependence beyond
the Curie behavior of free moments [MRR98|. Furthermore, mean-field the-
ory yields a polarizability of Cu spins on one sublattice only, underestimating
the staggered magnetization of spins on the opposite sublattice. This is in
disaccord with NMR measurements [BOB97b| that yield no overall shift of
the 170 line as would be expected from the polarization of only one sublattice
as well as with numerical studies [MAR97, LAU9S].

To compensate for these deficiencies of the mean-field treatment, we simu-
late the closeness of the spin system towards an antiferromagnetically ordered
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Figure 2.15: Diagrammatic representation of the RPA approximation for the
susceptibility of Cu spins. The vertex function Jq is denoted by a shaded dot.

state by performing a random phase approximation (RPA) in the magnetic
susceptibility. The approach is the same for magnetic and non-magnetic im-
purities. Here we illustrate the important points, using the case of a magnetic
impurity as an example. Performing a summation of RPA diagrams in mo-
mentum space (see Fig. 2.15), the susceptibility of planar Cu spins becomes

Xp NT,q) = xp(@)S(T, @), (2.39)
with the Stoner enhancement factor

S(T,q) = !

I+ JqXpl(T7 Q)’

(2.40)

where Jg = 2J(cos g, + cos q,). We closely follow the theory of a nearly AF
Fermi liquid [MON94, PIN97] which maps Eq. (2.39) onto a phenomenologi-
cal expression involving the AF correlation length £(7). Within this picture
X AT, q) is assumed to be controlled solely by the momentum region close
to the AF wave vector Q = (m, 7). We do take a slightly different point
of view in this respect: The momentum dependence of the bare susceptibil-
ity xpi(q) in Eq. (2.39), which describes the long-range characteristics of spin
correlations in the presence of a magnetic pseudogap, is explicitly kept. Only
the scaling function S(7T', @) which controls short-range AF correlations is ex-
panded around Q = (m, 7). Identifying Jxp(T, Q)/[1—4Jxm(T, Q)] = £X(T)
and 1/[Jxp(T, Q)] = a, Eq. (2.40) can be written in the phenomenological
form
ag?(T)

1+ (g —Q)*X(T)’
where o = 1 on a mean-field level. We note that the explicit form of &(T)
lies beyond the accessibility of a mean-field treatment and has to be chosen
according to general physical considerations.

We shortly recapitulate the essence of this new approach up to this point:
We factorize the “full” susceptibility x5 (T, q) into two terms, the “bare”
susceptibility xpi(7, @) and the scaling function S(T, q). Rather than map-
ping the “full” susceptibility onto a phenomenological form involving the AF
correlation length, we explicitly keep xpi(7, g) and only replace the scaling
function S(T,q). In this way we are able to preserve the spin-gap physics

S(T,q)

(2.41)
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contained in xp(7, ), while extending our theory to further account for the
presence of AF correlations.

To finish the discussion of AF correlations, we turn back to real space.
Here the non-local susceptibility is now

X NT,R)= > xu(R)S(T,R- R)). (2.42)

R'eB

For distances R > £(T") this expression can be approximated by

1
XEPAT.R) = Sxn(R)E(T), (243
where an interpolation formula for the A sublattice is used: xp(R € A) =
—(1/2) > 5 xpi(R + 8). Analogous expressions are obtained for the polariz-
ability of moments induced by a non-magnetic impurity. Combining these
results with Egs. (2.31) and (2.38) and performing an angular average over
phase factors ®(R) which yields a factor of %, one finally arrives at the fol-
lowing expressions for the polarizability of Cu spins in the impurity-doped
system:

11 &(T)

—cos(QR) —— (2.44)

K n T7 o Do 9
(T, B) 87 B2 Tn(D/T)

3 Je(0) 1 &(T)
64r Ja? RS T

These equations now hold for both sublattices R € {A, B}, the staggered
nature of spin correlations being manifested in the alternating sign implied
by cos(QR). Furthermore, the dependence upon the AF correlation length
&(T) is now explicitly accounted for.

Kni(T,R) = cos(QR) (2.45)

2.5 Implications for NMR

The impurity-induced polarization of Cu spins in a magnetic field affects the
energy levels of nuclear spins via (supertransferred) hyperfine interaction.
The coupling of a given nuclear spin I to electron spins s; on close-by Cu
sites is described by

th = %%Chfz SiI, (246)

where 7, and 7, denote the nuclear and electron gyromagnetic ratios, respec-
tively, and Cys is the (supertransferred) hyperfine coupling constant. On a
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mean-field level, s; can be replaced by its average value (s;) = K(T, R;)H
with external magnetic field Hy and polarizability K(7', R;). The coupling
Hamiltonian hence becomes

th = %%C’thoI Z K(T, R,L) (247)

In the following we derive expressions for the NMR Knight shift induced by
a non-magnetic impurity and for the NMR line broadening induced by both
magnetic and non-magnetic impurities. These expressions are compared to
experimental data in Section 2.6.

2.5.1 Knight Shift

In the presence of local magnetic moments the NMR resonance frequency is
A=y, Ho[l+0K(T)], (2.48)

where the dimensionless function 6 K (7') defines the Knight shift — it com-
prises the effect of the magnetically active environment. We restrict ourselves
to the Knight shift measured on the nucleus of a non-magnetic impurity
(i.e., Zn or Al). The effect of AF correlations can be neglected here since
the Knight shift depends predominantly on the local susceptibility of Cu mo-
ments  this quantity remains unaffected by the presence of AF correlations.

To first order the impurity nucleus is subject only to the local moments
on nearest neighbor Cu sites. From Eq. (2.47) and using expression (2.31)
for the local polarizability of Cu moments, one obtains in a straightforward
manner the following expression for the Knight shift:

2 1

OK(T) = ;’Yechf Wa (2.49)

which applies to the NMR signal of a non-magnetic impurity nucleus.

2.5.2 Line Broadening

In a system with randomly distributed impurities the superposition of local
fields induced by the multitude of impurities leads to a broadening of the
NMR line. We first calculate the lineshape for a system with finite concen-
tration of Zn or Ni impurities, employing the formalism of Ref. [WALT74].
From this we then deduce the linewidth of the NMR signal. Specifically we
are interested in the signal obtained from 7O nuclei. The presence of AF
correlations is explicitly taken into account here.
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Figure 2.16: Schematic cut through a CuOs plane, showing the position of O ions
(diamonds) placed between two Cu sites with staggered spin polarization (arrows).
The magnitude of the polarization falls off with distance from the impurity (circle)
as R™2 in the case of Zn and as R in the case of Ni.

The lineshape function g(v) is defined in Ref. [WAL74] as the Fourier
transform of the characteristic or free-induction function

f(t) =exp [ —cy (1 - eiw(R)t) ], (2.50)

where ¢ is the concentration of impurities and w(R) denotes the frequency
shift induced by an impurity at site R. Since each O nucleus lies symmet-
rically between two Cu sites that belong to different sublattices with spins
polarized in opposite directions, the impurity-induced energy shift partially
cancels (see Fig. 2.16). At large enough distance from the impurity, the shift
is effectively determined by the spatial derivative of the polarizability:
w 0s ¢, (2.51)
where ¢ denotes the angle enclosed by R and the z or y axis and k =
VYO8 Hy. The polarizability K (T, R) is given by Eqgs. (2.44) and (2.45)
for Zn and Ni, respectively. Inserting Eq. (2.51) into (2.50) and integrating
over lattice sites, one obtains

w(R) =k

—An 2/3’
) { “Amif (2.52)
with
2Brt 1 (1) s
Azn “T2(1/3) [’ig_ﬁTln(D/T)} ’

2y/671(3/4)
M= R

3 J.(0)E3(T)q1/2
64r Jx2 T ] ’
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Figure 2.17: Lineshape function g(v) obtained by performing a Fourier transfor-
mation of the characteristic function f(t) = exp[—Al[t|"] with n =  for Ni and
n = % for Zn. For comparison the Lorentzian lineshape of conventional RKKY
theory with n = 1 is indicated by a dashed line. Numerical values for the half width
at half height (HWHH) are given in the inset.

Figure 2.17 shows the different lineshapes induced by Zn and Ni impurities
as obtained by performing a Fourier transformation on f(t). Comparing to
the Lorentzian shape that results from In f(t) o< —|¢| in conventional RKKY
theory, one finds a marked difference in both shape and width. Using the
numerical values shown in the inset of Fig. 2.17, we finally arrive at the
following expressions for the full linewidth induced by non-magnetic and
magnetic impurities, respectively:

Avz, = 2x0.51(Az)*?, (2.53)
Avgi = 2x0.22(An)?. (2.54)

2.6 Comparison with Experiment

In this section we compare expression (2.49) for the Knight shift and ex-
pressions (2.53) and (2.54) for the line broadening with experimental data.
First we analyze 2"Al Knight-shift data by Ishida, Kitaoka, Yamazoe, et al.
[ISD96] obtained for Laj g5Sr0.15CuOy4 at an impurity concentration of 3%.
We employ Eq. (2.49) with the following parameters: The superexchange
parameter is set to J = 0.13 eV. The supertransferred coupling constant
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Figure 2.18: Inverse of the impurity-induced Knight shift for 2" Al. The solid line
is a fit of Eq. (2.49) to experimental data on Lay g5510.15CuQy [ISDI6] indicated
by circles. The zero-temperature offset of a linear fit (dashed line) indicates a
deviation from a pure T—' Curie behavior at low temperatures.

between the 27 Al nuclear spin and surrounding Cu electron spins is used as a
fitting parameter for which we obtain C{{*“" = 1.8 T/up. This compares well
to CiF“" = 1.6 T/pup found by Ishida et al. [ISD96]. Figure 2.18 shows the
inverse of the impurity-induced Knight shift as a function of temperature.?
The marginal character of the bound state leading to a logarithmic deviation
from a T~! Curie law becomes important at low temperatures. Due to the
onset of superconductivity, this region is not directly accessible by experi-
ment. However, the zero-temperature offset that would follow from a linear
fit of the experimental data (dashed line) suggests a pronounced deviation
from a T~! behavior which is correctly accounted for by our theory.

Next we compare the impurity-induced 17O NMR line broadening as de-
scribed by Eqs. (2.53) and (2.54) to experimental data of Bobroff, Alloul,
Yoshinari, et al. [BOB97b] obtained on YBayCuzOg6 doped with Zn/Ni at
a concentration of 1%. The following constants are chosen: The superex-
change parameters are specified by J = 0.13 eV for Cu-Cu interaction and
J' = J/2 for Cu-Ni.? A self-consistent treatment yields a scattering ampli-

2The theoretical curve in Fig. 2.18 is obtained from Eq. (2.49) with an additional factor
f(T)=[(D/T)K(T/D)])? = 1 that accounts for higher-order corrections discussed in Ref.
[KHA97h).

3The Ni** jon with spin 1 has two holes on the 3D shell in d,2_,2 and d3,2_, orbitals.
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tude (1 —z) = 0.5, where A = i has been used. The Kondo temperature is
obtained by numerically solving Eq. (2.26) which gives Tx = 560 K. Below
this temperature the Ni spin is partially screened and behaves as a spin—% fer-
romagnetically coupled to the CuO; plane. The effective coupling constant
of this interaction is J.(0) = 0.1 eV as follows from Eq. (2.36). The hyperfine
coupling constant between O nuclear and Cu electron spins is specified in
Ref. [MRR9S8] as O = 3.3 T/up. The magnetic field strength used in the
experiment is Hy = 7.5 T, the concentration of Ni and Zn impurities is 1%.
The effective impurity concentration within the CuOs planes is larger by a
factor of % which is due to the fact that the impurity ions predominantly
enter the CuQOy planes but not the one-dimensional CuO chains present in
YBasCuzOg6; hence ¢ = 1.5% follows. Finally, an expression for the AF
correlation length &(7°) has to be specified. It is argued in Ref. [STO97] that
below a critical temperature Ti, determined by &(7.,) =~ 2, the correlation

length assumes the form
1

&) = a+bT’
where a and b are fitting constants of the theory. Saturation of £(T) at low
temperatures is neglected here.

Figure 2.19 shows the impurity-induced line broadening A, scaled with
temperature. The curves are fitted to the experimental data by setting a =
0.07 and b = 0.0007 which corresponds to an AF correlation length of £ = 4.8
in units of lattice spacings at T" = 200 K. This compares well to & = 5.9
obtained in Ref. [BAR95]. No further fitting parameters are needed.

The theory correctly accounts for the peculiar experimental observation
of Zn having a more pronounced effect on the NMR signal than Ni — this
seems to be in contradiction to SQUID measurements on the macroscopic
susceptibility [MEN94]. We are able to ascribe this behavior to the differ-
ent spatial dependence of the polarizability: K (T, R) decays as R~ in the
case of Ni, but only as R 2 in the case of Zn. Averaging over all impurity
site this leads to an enhanced line broadening effect of Zn (see Fig. 2.17).
Our theory further correctly describes the anomalous non-Curie tempera-
ture dependence exhibited by the NMR linewidth — this seems to be in
disaccord with an almost perfect T~ behavior exhibited by the macroscopic
susceptibility [MEN94]. One can resolve this contradiction by assuming a
temperature dependence of the AF correlation length &(7") which enters the
polarizability of Cu spins. Good agreement with experiment is obtained by
employing &(T) of the form given in Eq. (2.55).

(2.55)

Since superexchange is mainly contributed to by the d,2_,2 orbital, one obtains J'/J =

1/2.

)
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Figure 2.19: Impurity-induced NMR line broadening Av;y,, multiplied by tem-
perature. The theoretical result is indicated by solid lines fitted to experimental
170 data for 1% Ni-doped (triangles) and 1% Zn-doped (diamonds) YBagCugOg.g
[BOBITY).

2.7 Conclusion

In summary, we have studied the local moments induced in underdoped
cuprates by substituting Cu with non-magnetic (S = 0) Zn or magnetic
(S = 1) Ni impurities. In the presence of a spin gap, both types of impuri-
ties are associated with S = % magnetic moments in the CuQOs planes. These
are, however, of very different nature. Zn as well as Ni disturb the spin lig-
uid formed by planar Cu spins, resulting in magnetic moments residing on
Cu sites in the proximity of the impurity. In the case of Zn the moments
are broadly distributed over Cu sites — macroscopically they resemble a
free Spin—%. In the case of Ni the Cu moments partially shield the internal
impurity spin below a critical temperature Tk in what resembles an under-
screened Kondo model; an effective impurity Spin—% results. Since predomi-
nantly localized rather than band-like states are involved in the screening of
the impurity spin, the Kondo temperature exhibits an unconventional power-
law dependence on the coupling constant. We have further investigated the
RKKY-type response of Cu spins in a magnetic field. The spin polarization
is found to decay as R~3 with distance from a Ni impurity, but only as B2 in
the case of Zn. This different behavior reflects the delocalized character of Zn

moments and explains why Zn has a stronger impact on the NMR linewidth
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than Ni. The broad distribution of the Zn moment is a manifestation of
the marginal character of the bound state which also leads to a logarithmic
deviation from a 7! behavior in the Knight shift. This agrees with exper-
imental data. Further, we can successfully describe the non-Curie behavior
of the impurity effect on the NMR linewidth by accounting for the presence
of temperature-dependent AF correlations. In general it can be concluded
that the anomalous impurity properties of underdoped cuprates are a clear
manifestation of the peculiar mixture of spin-singlet and antiferromagnetic
correlations present in these compounds.



Chapter 3

Anomalous Optical Spectra of
Ferromagnetic Manganites

3.1 Introduction

A nearly universal feature of perovskite manganites is the existence of a fer-
romagnetic metallic phase (see Fig. 3.1). The interplay between metallic
charge motion and ferromagnetism exhibited by the system was already un-
der investigation in the 1950’s: The double-exchange mechanism discussed
in Chap. 1 was identified as the link between the magnetic and the charge
sector [ZEN51, AND55, DEGG60]. The theory is based on the observation
of a strong Hund’s coupling acting between Mn 3d electrons which are in a
(t2g)3(ey)' configuration — the transfer amplitude of itinerant e, electrons
can be maximized by ferromagnetically aligning the S¢ = % core spins formed
out of localized t5, electrons. By now it has become widely recognized that
the physics of manganites is by far too rich to be explained in terms of double
exchange alone. Various efforts to improve on the theory have been under-
taken. Here an “inside-out” approach is followed: We believe the metallic
phase to be the pivot of the phase diagram of manganites; a deeper under-
standing of its peculiar properties is therefore of central interest for extending
the double-exchange mechanism beyond its original scope. We present here a
theory of the metallic state of manganites that comprises orbital degeneracy,
on-site interactions, and lattice effects. Good agreement with the anomalous
optical spectra observed experimentally validates our approach.

Hund’s rule coupling between itinerant e, electrons and local ¢, spins
is typically larger than the one-electron bandwidth in manganites. For
La;_,Sr,MnOs, e.g., these numbers roughly compare as 2.5 eV to 1.5 eV,
respectively [HWA96]. The eg-electron band therefore splits up into two well
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Figure 3.1: A ferromagnetic metallic phase (FM) is observable in a variety of
perovskite manganites. The other phases are denoted by: canted insulator (CI),
ferromagnetic insulator (FI), charge-ordered insulator (COI), antiferromagnetic
insulator (AFI), paramagnetic insulator (PI), and paramagnetic metal (PM). From
[IMAYS].

separated bands (see Fig. 3.2). Transitions between the two bands domi-
nate the optical spectrum in the paramagnetic phase at T' > T where they
show up in the high-energy region (1 - 3 eV). In the ferromagnetic phase at
T < Te the two bands become spin polarized. Optical inter-band transitions
are then no longer allowed, leading to a collapse of spectral weight onto the
low-energy region (0 - 1 eV). It is important to note that at T < T¢ the
ferromagnetic moment is fully saturated and the suppression of inter-band
transitions is complete. Surprisingly the e, electrons nevertheless do not be-
have as a conventional spin-polarized metal: Rather than accumulating into
a zero-frequency Drude peak, the spectral weight of manganites robustly ex-
tends up to &~ 1 eV even as zero temperature is approached. This effect is
remarkable not only for its energy scale that rules out a pure phononic origin
but also for the magnitude of incoherent spectral weight: At low tempera-
tures, the Drude weight accounts for only 20% of the total spectral weight,
while the remaining 80% are contained in the incoherent part of the spec-
trum.

The orbital degeneracy of e, electrons was proposed by several authors
[SHIO97, ISH97a] as one of the origins of the incoherency observed in the op-
tical spectrum. Experimental studies in fact show collective as well as local
lattice distortions to be absent in metallic manganites, suggesting orbital
fluctuations be strong [BIL96, BOO98, LAN98|. Based upon this observa-
tion, Shiba, Shiina, and Takahashi [SHI97] ascribe the excitations leading to
the incoherent structure of the optical conductivity to transitions between
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Figure 3.2: Optical conductivity spectrum of Lag gosST175 MnOs with To = 238 K:
Transitions between exchange-split bands constitute the high-energy part of the spec-
trum at T > To. Below T the bands are fully spin polarized which forbids optical
inter-band transitions; the spectral weight then shifts to low energies. See also Fig.
1.21. From [OKI95] (left).

two orbital bands within spin-polarized e, bands. While their model indi-
cates the role of orbital degeneracy, it neglects the on-site repulsion between
eq electrons. We believe this approximation to be not well justified for the
following reasons: (1) On-site interactions are strong as can be inferred from
the presence of a pronounced Hund’s coupling; and (2) due to the orbital
degeneracy, Pauli’s exclusion principle is ineffective in preventing double oc-
cupancies despite the fact that spins are aligned ferromagnetically. Hence,
electrons are expected to scatter strongly on each other. A more elaborate
treatment of both orbital degeneracy and on-site interactions was performed
by Ishihara, Yamanaka, and Nagaosa [ISH97a, NAG98|. Led by the ex-
perimental observation of only a small discontinuity at the Fermi level in
photoemission spectra [CHA93, SAI95, SAR96|, the authors suggested that
a conventional electronic description of metallic manganites would be insuffi-
cient. Rather, in analogy to the spin-charge separation in metallic cuprates,
orbital and charge degrees of freedom should be treated on separate footings.
This leads to the notion of an orbital liquid discussed in Chap. 1.

In this chapter we present the first microscopic theory of the optical con-
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ductivity of manganites which combines strong correlations and orbital de-
generacy. Based upon an orbital-liquid scheme, the transport properties
are shown to be highly incoherent even in the ferromagnetic metallic phase.
Strong scattering of charge carriers on dynamical orbital fluctuations is iden-
tified as the origin of the incoherency. This mechanism gives rise to a broad
optical absorption spectrum extending up to the bare bandwidth accompa-
nied by a pronounced suppression of the Drude weight. The theory is further
extended to account for phononic degrees of freedom which are shown to
play an important role in metallic manganites. Finally we argue that there
is no discrepancy between the small values of specific heat found experimen-
tally [OKI95, OKI97, WOO097, OKU98| and the strong-correlation picture
employed here.

3.2 Orbital-Liquid State

The starting point for our study of the metallic state of manganites is the
t-J model of an orbitally degenerate system subject to Hund’s coupling —
the model was introduced in Chap. 1 [see Eq. (1.13)]. Assuming complete
ferromagnetic saturation and treating spins on a classical level, §;S; can be
replaced by the expectation value (S;S;) = S?% spin indices may then be
dropped. We note that the classical treatment of spins is justified from the
fact that local S = 2 spins are large. Hence, we obtain a simplified ¢-J model
that depends only on orbital but not on spin quantum numbers:

Hy ==Y 3 (129,055 + He) +J 2 (TJT; - %) . (3.1)
(ij)y @B (i5)~

Here (ij), denotes nearest-neighbor bonds in spatial direction v € {z,y, z}
and the indices a, 3 act within the orbital subspace with pseudospin T=
1322 — r2), |= |22 — y2). Constrained operators é, = ¢l (1 — n;) create an

electron only under the condition that the site is empty.
The first term of Eq. (3.1) describes the transfer of electrons between
sites. In contrast to conventional spin models, the transfer-matrices are non-

diagonal in orbital pseudospin:

e A ) (i)

The second term in Eq. (3.1) couples pseudospins between neighboring sites.
The pseudospin operators are defined as

= 2 (oi £ V30T), 7 = g0t
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Figure 3.3: Quasiparticles of the theory: Two fermionic orbitons with pseudospin
T=ds.2_,2 and |=d,2_,2 and one bosonic holon.

with Pauli matrices oy and o} acting on the orbital subspace. The strength
of the pseudospin interaction in the above model is controlled by the super-
exchange coupling constant J = 2t2/U;, where U; is the on-site repul-
sion between spin-parallel e, electrons. We note that dynamic Jahn-Teller
distortions of MnQOg octahedra mediate an additional interaction between
pseudospins that is of the same form as the above superexchange term [see
Chap. 1, Eq. (1.8)]. The numerical value of J has to be chosen such as to
comprise both effects.

The main problem in dealing with the ¢-J Hamiltonian of Eq. (3.1) is to
correctly account for the constraint that forbids any sites from being doubly
occupied. Following the discussion of Chap. 1, we employ an orbital-charge
separation scheme that treats the constraint on average while preserving the
main features of the strongly correlated state. The first step is to replace
electron operators by two new quasiparticle operators:

Cga = fi.l-abi' (32)

Here f;a creates an orbiton that carries the electron’s orbital quantum num-
ber and b; destroys a holon that carries charge (see Fig. 3.3). These two
types of quasiparticles are associated with orbital and charge fluctuations,
respectively. At this point orbitons have to be assigned either fermionic or
bosonic statistics; the holon then becomes a boson or a fermion, respectively.
As we intend to describe a state in which orbital fluctuations are strong, a
fermionic representation of the orbital sector is chosen. From analogy to the
conventional ¢-J model, this scheme is expected to describe well an orbitally
disordered state far from critical instabilities towards ordering. It should be
noted, however, that short-range orbital correlations are not fully captured
in this picture.
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Orbitons and holons are subject to the local constraint nfc +n? =1 which
assures that each site is either occupied by a single orbiton or holon. The
major approximation step is to relax the local constraint to a global one, i.e.,
(n!y + (nb) = 1. The two types of quasiparticles can then be decoupled by

introducing mean-field parameters

—t‘lzt”‘ﬁ fifis), == (blby), (3.3)

where z is the concentration of holes in the system. This yields two separate
Hamiltonians that control the dynamics of orbitons and holons, respectively:

Hyp = —xztaﬁ (flfis+He), (3.4)
(ig)~
Hy = —xtY_ (blb;+He). (3.5)

(i)
Diagonalizing the above expressions in momentum space one obtains

Hon = Zék:fkyfktl; (36)
Hy = Zwkbkbkv (3.7)
with index v = + and dispersion functlons
G = (to+Jx)| - ek) £ /et (k) + (k).
1
wp = 6tx[1 — geo(k)},

where eo(k) = c, + ¢, + ¢, c1(k) = (cx +¢,)/2 — ¢, e2(k) = V3(cr —
¢y)/2 with ¢, = cosk,. We hence obtain two fermionic bands of width
Wor, = 6(tz + Jx) and one bosonic band of half width Wy = 12x¢; the
dispersions are shown in Fig. 3.4. The two-fold degeneracy of e, orbitals
implies the existence of two orbiton bands. These do not coincide as a result
of the non-diagonality of the transfer matrices tg‘ﬂ . We note that a similar
two-band structure was found by Shiba et al. for the case of free electrons
[SHI97|. The presence of the electron-electron interaction turns these free
bands into constrained Gutzwiller bands whose width is strongly quenched
and now roughly scales with the concentration of holes. A similar reduction
is also observable in the electronic quasiparticle weight in agreement with
photoemission experiments: On a mean-field level the electronic quasiparticle
weight scales with . This follows from the fact that the electron Green'’s
function Ge(iw, k) = —(Trcx(T)ch(0))iy and the orbiton Green’s function
G (iw, k) = —(Tr fx(7) f1(0))in are related by

GC(iw, k) ~ G (iw, k). (3.8)
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Figure 3.4: Dispersion of orbitons (left) and holons (right) along the follow-
ing direction in k space: M (mw,m,0) — X(0,7,0) — I'(0,0,0) — R(m, 7, 7) —
M(m,m,0)— I'(0,0,0).

3.3 Optical Conductivity

In this section we derive expressions for the optical conductivity of metal-
lic manganites that are based on the orbital-liquid scheme discussed above.
In calculating the optical conductivity, we choose to employ the memory-
function formalism [GOET72, FORT75]. While not rigorous, this method yields
exactly the leading terms of a high-energy expansion and is believed to give
reasonably accurate results over the whole frequency range if no critical low-
energy modes as in one-dimensional systems exist.

Within this framework, the optical conductivity o(w) is expressed via the
memory function M(w)

tXo
o(w)=—— M) (3.9)

where xo = (T, J(7)J(0));y—0+ denotes the zero-frequency current-current
correlation function. One of the advantages of the memory-function formal-
ism over conventional linear-response theory is that the form of Eq. (3.9)
resembles the classical Drude conductivity — the memory function M (w)
can be thought of as the quantum-mechanical counterpart of the classical re-
laxation rate. This suggests that the approximations necessary in calculating
the memory function M (w) preserve the overall shape of o(w). The memory
function is defined as

1
Mw) =——f(w) — f(O0)], 3.10
(@) = == [F() = f0) (3.10)
where f(w) = (T-F(7)F(0));w—wio+ is the correlation function of force op-
erators F'. These are given by the time derivative of the current operator
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F = [J, H|. This commutator can, in general, be calculated without approx-
imations, which is the second advantage of the memory-function formalism:
Being based on the force-force rather than the current-current correlation
function, higher order vertex corrections are automatically taken into account
that would have to be inserted “by hand” in conventional linear-response the-
ory.

The starting point of our calculation of the optical conductivity o(w) is
the current operator which we commute with the Hamiltonian to obtain the
force operator. Since the transport properties of metallic manganites are
isotropic, we are free to choose a projection of the current operator along
any spatial direction. For convenience we select the z direction in which the
transfer matrix is diagonal in orbital pseudospin numbers (1= ds,2_,2 and

lE dm2_y2):
J. = —iet > (élié; — Hee). (3.11)

Next, the force operator is calculated by commuting Eq. (3.11) with the ¢
term of Hamiltonian (3.1) — we drop the J term, assuming J < ¢ (for the
superexchange contribution J = 2¢2/U; this follows from the assumption that
U, is large). We thus obtain the following expression for the force operator:

F! = —% 2; gﬁ: (Riys = B) 157 (Biatl g Gigyn + Hoe) (3.12)
vy o
with
Bio = (2 = ni + 07) da1 + (0] — i0]) by,
where double occupancies of sites are excluded. We stress that the force
operator of Eq. (3.12) has been calculated in an exact manner, i.e., the
expression fully takes account of the local constraint. In a next step we
determine the force-force correlation function which now necessitates to relax
the constraint. For this we employ the orbital-liquid scheme introduced in
Section 3.2. We do not go into further details here but rather refer the reader
to Appendix A for the expressions obtained. At this place we only outline
our approach — Fig. 3.5 shows the diagrams considered.

The diagrams of Fig. 3.5 are calculated by condensing the holon opera-
tors, i.e., substituting b; ~ y/x, and accounting for fluctuations around this
mean-field value up to first order. Diagram (a) describes transitions between
the two Gutzwiller bands of the orbital-degenerate system — these transi-
tions are allowed due to the fact that the ¢ term of Hamiltonian (3.1) is
non-diagonal in orbital quantum numbers. Similar transitions were found
in Ref. [SHI97| using a free-band model. The presence of electron correla-
tions, however, strongly suppresses the spectral weight associated with this
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Figure 3.5: Contributions to the force-force correlation function. Solid, dashed,
and dot-dashed lines denote orbiton, holon, and pseudospin Green’s functions, re-
spectively.

(a) (b)

Figure 3.6: Self energies of (a), (b) orbitons and (c), (d) holons.

diagram and shifts its contribution to energies considerably lower than the
free bandwidth. Diagram (a) is therefore not sufficient to account for the
incoherency experimentally observed in the optical spectrum. Rather it is
necessary to go beyond a simple Gutzwiller approximation and to consider
correlation effects in a more thorough way. This is done in Diagrams (b)
and (c) which purely originate from correlations among electrons. They de-
scribe transitions between highly incoherent bands. In the former diagram
this incoherency stems from the composite nature of the electron, resulting
in scattering of orbitons on holon fluctuations. In the latter diagram the in-
coherency is a consequence of fluctuations in the orbital sector which charge
carriers scatter on. The contributions of Diagrams (b) and (c) to the optical
conductivity spectrum extend approximately up to the bare fermionic band-
width. They therefore play an essential role in explaining the incoherency
of the optical spectrum. We note that the orbiton and holon propagators of
Fig. 3.5 are “dressed,” i.e., they are calculated with the self-energy correc-
tions depicted in Fig. 3.6.
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3.4 Comparison with Experiment

The absorptive part of the optical conductivity measured in experiment cor-
responds to the real part of Eq. (3.9). It consists of a zero-frequency Drude
component

-1
op(w) = mxo [1 + Re <£M(w)>] d(w) (3.13)
Ow 0
and a regular part for finite frequencies
Oreg(w) = Re[o(w)]w>o0- (3.14)

We calculate the optical spectrum by evaluating the diagrams in Figs. 3.5
and 3.6. These contain several integrations over momentum space which
we solve numerically using a Monte Carlo algorithm. The zero-frequency
current-current correlation function xo of Egs. (3.9) and (3.10) is obtained
from the orbiton mean-field Hamiltonian as xo = 2zxte?. We choose a hole-
doping concentration of x = 17.5% and set J = 0.4¢t. The value of the
orbiton bond-order parameter is numerically determined to be y = 0.25, the
lattice constant is set to 3.9 A. The finite-frequency spectrum hence obtained
is shown in Fig. 3.7 indicated by a solid line. We compare our theoretical
result to experimental data of Okimoto, Katsufuji, Ishikawa, et al. [OKI95]
represented by a dashed line. The only free parameter which we use to fit
the theoretical to the experimental curve is the free fermionic bandwidth;
this we fix by setting ¢ = 0.36 eV consistent with band structure calculations
[PIC96].

Good agreement between experiment and theory is found for intermediate
and high frequencies. We stress that no additional fitting parameters are
needed to obtain the correct absolute values of oye(w). The total spectral
weight consisting of the Drude part op(w) and the incoherent part oyes(w) is
in agreement with experiment as can be seen from the effective charge-carrier
concentration defined as

2m0

Nag = =28 /0 dw[o (W) + Oreg(w)) (3.15)
where myq is the bare electron mass; theory and experiment [OKI95| both
yield Neg = 6%.

In the low-frequency region, the theoretical curve deviates from the ex-
perimental one as a pseudogap opens in the spectrum. As a consequence, our
theory does not completely account for the weight transferred to the incoher-

ent part of the spectrum: We obtain a ratio of Drude to incoherent weight
of 35% : 65% which compares to 20% : 80% found experimentally [OKI95].
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Figure 3.7: Incoherent part of the optical conductivity oreg(w) as a function of
the photon frequency w. The solid line represents the theoretical curve for x =
17.5% which is fitted to experimental data (dashed line) obtained by Okimoto et al.

[OK195] for Lay_,Sr.MnOs at T =9 K. The dot-dashed line corresponds to the
theory including lattice effects.

This discrepancy indicates an additional scattering mechanism to be active
at low energies which is not yet incorporated in our theory. We speculate
this mechanism to stem from the closeness of the real system to an orbitally
ordered, Jahn-Teller-distorted state: Scattering on low-lying orbital collec-
tive modes as well as on phonons will enhance the low-energy region of the
spectrum, thus filling the pseudogap. To make the latter point more explicit
we calculate the conductivity including electron-phonon effects. Coupling of
eq pseudospins to double-degenerate Jahn-Teller phonons and of charge to
the lattice breathing mode are described by (see Chap. 1):

HJT = —)\JT Z |:(a,1- + az)O',LZ + /L(aj - az)o-f:l, (316)

Hy = _)\chz (b + b;) (1 — ny), (3.17)

respectively. Here af and b} create Jahn-Teller and breathing-mode excita-
tions. For simplicity phonons are considered to have dispersionless energy
which we set to wg = 0.05 eV. Corrections to the force-force correlation func-
tion and to the fermionic self-energies are evaluated within a weak-coupling
scheme, assuming the dimensionless coupling constant ( = NN (ep)/wp to
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Figure 3.8: The density of states of orbitons exhibits a pseudogap centered around
the chemical potential at half filling.

be small below T, where N (ep) is the total e, density of states at the Fermi
level. The result is shown for (1 = (s = 0.3 by the dot-dashed line in Fig.
3.7. It suggests that lattice effects are present in the metallic ferromagnetic
phase of manganites.

We finally calculate the constant of T-linear specific heat v from the
orbiton mean-field Hamiltonian which yields

The orbiton density of states N(w) is shown in Fig. 3.8. For z = 17.5% we
find v = 7.2 mJ/(mol K?) as compared to experimental values 5 - 6 mJ/(mol
K?) [OKI95] and 3.3 mJ/(mol K?) [WOO97]. While being slightly too large,
our result still indicates that a strong-correlation description of the metallic
phase of manganites is not in disaccord with the small values of specific
heat observed experimentally. Our theory further correctly accounts for the
experimental observation of v being nearly independent of x. This follows
from the fact that N(w)(tz + Jx) has a pseudogap centered around the
chemical potential at half filling (see Fig. 3.8). At moderate hole-doping
concentrations, v is hence rather insensitive to changes in x. For z = 30%
we in fact obtain y = 7.1 mJ/(mol K?).
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3.5 Conclusion

In summary, we have calculated the optical absorption spectrum of ferromag-
netic manganites. It is argued that there are clear experimental indications
for the metallic state of manganites to be of strongly correlated nature. Em-
ploying an orbital-liquid picture to account for these correlation effects, we
can successfully explain the incoherency seen in the optical spectrum that
extends up to &~ 1 eV. The theory is further in agreement with the amount of
spectral weight shifted from zero to finite frequency accompanied by a strong
suppression of the Drude weight. Consistency between our theory and the
small values of T-linear specific heat obtained from experiment is achieved.
The fact that the anomalous transport properties in the ferromagnetic phase
are described well supports the validity of the orbital-liquid idea. The dis-
crepancy between theory and experiment in the low-frequency part of the
spectrum, namely the opening of a pseudogap, suggests that additional scat-
tering mechanisms must be active. We illustrate that a phononic mechanism
is capable of filling the low-frequency pseudogap, indicating the important
role of lattice degrees of freedom even in the metallic state of manganites.
In general it can be concluded that strong correlations play a crucial role in
explaining the peculiar features of the metallic state of manganites.
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Chapter 4

Magnon Softening in
Ferromagnetic Manganites

4.1 Introduction

The motion of charge carriers in the metallic phase of manganites establishes
a ferromagnetic interaction between spins on neighboring sites. According to
the conventional theory of double exchange [ZEN51, AND55, DEG60], the
spin dynamics of the ferromagnetic state that evolves at temperatures below
Tc is expected to be of nearest-neighbor Heisenberg type. This picture seems
to be indeed reasonably accurate for manganese oxides with high values of T,
i.e., for compounds whose ferromagnetic metallic phase sustains up to rather
high temperatures. However, recent experimental studies indicate marked
deviations from this canonical behavior in compounds with low values of T¢.
Quite prominent in this respect are measurements of the spin dynamics of
the ferromagnetic manganese oxide Prg3Srg37MnOs [HWA98]: While ex-
hibiting conventional Heisenberg behavior at small momenta, the dispersion
of magnetic excitations (magnons) shows curious softening at the boundary
of the Brillouin zone (see Fig. 4.1). This observation is of high importance
as it indicates that some specific feature of magnetism in manganites has yet
to be identified.

A comparison of the magnetic behavior of different manganese oxides
further highlights the shortcomings of double-exchange theory: Assuming
the magnon dispersion to be of Heisenberg type, a small-momentum fit to
a quadratic dispersion relation w = Dg? yields the spin-wave stiffness D;
in a conventional Heisenberg system the spin-wave stiffness scales with the
strength of magnetic bonds D o< J. Since the latter also controls the Curie
temperature T, the ratio of D and T is expected to be a universal con-
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Figure 4.1: Manganese oxides with high values of To (indicated by squares in
the magnon dispersion on the right) exhibit nearest-neighbor Heisenberg-like spin
dynamics. Compounds with low values of Te (indicated by circles on the right),
on the other hand, deviate from this behavior: The magnon dispersion softens at
the Brillouin zone boundary. Low-T¢o compounds further show an enhancement of
the ratio of spin-wave stiffness D and Curie temperature To. See also Fig. 1.15
and Table 4.1. From [HWA9S] (right).

stant that depends only on the spin number. Manganites, on the other
hand, exhibit a pronounced deviation from this behavior: As shown in Table
4.1, D/T¢ increases significantly as one goes from compounds with high to
compounds with low values of Tz [FER98|. The presence of an additional
mechanism that controls the magnetic behavior of manganites is to be in-
ferred.

In this chapter we propose a mechanism to explain the above peculiar
magnetic properties of ferromagnetic manganites. Our basic idea is the
following: The strength of the ferromagnetic interaction at a given bond
strongly depends on the orbital quantum number of e, electrons (see Fig.
4.2) — along the z direction, e.g., only electrons in ds,2 ,2 orbitals can hop
between sites and can hence participate in double-exchange processes; the
transfer of d,2_,» electrons is blocked due to the vanishing overlap with O 2p
orbitals located in-between two neighboring Mn sites. Temporal fluctuations
of e, orbitals thus modulate the magnetic exchange bonds (see Fig. 4.3),
thereby renormalizing the magnon dispersion. Short-wavelength magnons
are most sensitive to these local fluctuations and are affected most strongly.
Quantitatively the modulation of exchange bonds is controlled by the char-
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Manganite Tc D D/Te Ref.
P

K] [meVA?] [A?
Lag-SrosMnOs | 378 188 58 | [MATY6)

La0.7Pb0.3Mn03 395 134 4.4 [PERQG]
PI‘O.638T0.37MH03 301 165 6.4 [FERQS]
La0.67Ca0_33Mn03 250 170 7.9 [LYNQG]
NdojSI‘QgMDOg 198 165 9.7 [FERQS]

Table 4.1: The ratio of spin-wave stiffness D and Curie temperature To is en-
hanced in compounds with low values of Tc. From [FER9S].

o

%o

Figure 4.2: The ey-clectron transfer amplitude, which controls the double-
exchange interaction Jpg, strongly depends on the orbital orientation: Along the
z direction, e.g., ds,2_,2 electrons (bottom left) can hop into empty sites denoted
by a sphere, while the transfer of d,»_,» electrons (bottom right) is forbidden.

Figure 4.3: Fluctuation of magnetic exchange bonds: Full lines denote active
bonds, dashed lines inactive ones.
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acteristic time scale of orbital fluctuations: If the typical frequency of orbital
fluctuations is higher than of spins fluctuations, the magnon spectrum re-
mains mostly unrenormalized — the orbital state then effectively enters the
spin dynamics only on time average which restores the cubic symmetry of
exchange bonds. On the other hand, if orbitals fluctuate slower than spins,
the magnon spectrum gets strongly renormalized  the anisotropy imposed
upon the magnetic exchange bonds by the orbital degree of freedom now
comes into play (see Fig. 4.3). The presence of Jahn-Teller phonons en-
hances this effect by quenching the dynamics of orbitals. The suppression of
fluctuations becomes almost complete as orbitals begin to order, resulting in
a distinct softening of magnons which we interprete as a precursor effect of
static orbital order.

In the following we calculated the dispersion of one-magnon excitations
at zero temperature. We start from the orbitally degenerate Hubbard model
introduced in Chap. 1 which we treat in the limit of strong on-site repulsions.
The magnetic double-exchange bonds established by the metallic motion of
charge carriers are found to be further contributed to by virtual superex-
change processes. Both types of magnetic interaction are of ferromagnetic
nature in the orbitally degenerate system subject to a strong Hund’s cou-
pling. Employing a 1/S expansion of spin and an orbital-liquid scheme to
handle correlation effects, three different mechanisms are analyzed with re-
spect to their capability to renormalize the magnon spectrum: scattering of
magnons on orbital fluctuations, charge fluctuations, and phonons. Within
this picture we can successfully reproduce the experimentally observed soft-
ening of the magnon dispersion. Furthermore we predict the renormalization
effect to become dramatic as static order in the orbital-lattice sector is ap-
proached. Recently the renormalization of the magnetic excitation spectrum
by optical phonons has been investigated by Furukawa [FUR99].

4.2 Magnetic Exchange Bonds

The main aspects of the physics of manganites, i.e., the correlated motion
of itinerant e, electrons and the ferromagnetic interaction of e, spins with a
background of localized core spins, is captured by the orbitally degenerate
Hubbard model introduced in Chap. 1:

HHub = — Z Ztﬁﬁ (Cgsastg + H.C.) — JH Z SZCSZ

(ij)~ saB

+22UniTanila+ZZ/(Ul_JHp) NiaMig, (41)

i a#f
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with P = (SinSip + %) Here c:-rsa and n;., denote creation and number
operators of e, electrons with spin and orbital quantum numbers s and a/f3,
respectively. The spatial direction of bonds is specified by v € {z,y, z}, and
double counting is excluded from the primed sum. U and U’ represent the
intra- and inter-orbital Coulomb interaction between two e, electrons on the
same site and Jg is the strength of Hund’s coupling. The spin operator S7
acts on core states and s;, on e4 electrons in orbitals a, while s; = 3, sia.
One of the important features of the orbitally degenerate model is the non-

diagonal structure of the transfer matrices

where we have chosen a representation with respect to the orbital basis
{I32% — r?), |z — y*)}. Following the discussion of Chap. 1, we map Eq.
(4.1) onto an orbitally degenerate t-J model applicable to strong on-site re-
pulsions and large Hund’s coupling:

Hy = =3 597 (elutjop + He) = Ju > Sisy
(ij)~ sap i
1
~Jss 3 (3 -7 S8+ S(S + Dlminy. (43

(i5)~

The orbital pseudospin operators are defined as

Tf/y = —% (Uf + \/gaf) , T, =—=0;

with Pauli matrices o} /# acting on the orbital subspace. The superexchange
parameter is Jsg = (2t2/U7)[S(2S + 1)]7!, where S is the total on-site spin
of 3d electrons and U; = U’ — Jg is the energy of the lowest-lying doubly
occupied state reached by superexchange processes which is in a high-spin
configuration. The constrained electron operators &, = ¢l (1 —n;) in Eq.
(4.3) create electrons at empty sites only.

The first line of Hamiltonian (4.3) describes the itinerant motion of cor-
related e, electrons coupled ferromagnetically to the localized core spins.
Due to the double-exchange mechanism, this motion establishes a ferromag-
netic interaction between neighboring sites. Orbital degeneracy and the pres-
ence of on-site correlations strongly modify the conventional double-exchange
picture. The second line of Hamiltonian (4.3) accounts for superexchange
processes that involve virtual double occupancies of sites. As was discussed
in Chap. 1, superexchange is of ferromagnetic nature in the orbitally degener-
ate system subject to Hund’s coupling. The presence of a superexchange term
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Figure 4.4: The itinerant ey spin (arrow top left) interacts with the localized core
spins (bottom left) via Hund’s coupling. In the limit Jg — oo, the former can be
separated from the orbital and charge degrees of freedom of the ey electron (circle)
and be absorbed into the total spin (bottom right).

in Eq. (4.3) is a direct consequence of the strong on-site repulsion between
3d electrons — conventional double-exchange theory neglects correlation ef-
fects and hence discards this contribution. In the following the two types
of exchange interaction, which are jointly responsible for ferromagnetism in
manganites, are treated in more detail.

4.2.1 Double-Exchange Bonds
We begin by analyzing the kinetic term of Hamiltonian (4.3),

Hy == 3197 (el + Hee) = Ju > ST, (4.4)
(ij)y saf (

which comprises the physics of double exchange. Due to the strong Hund’s
coupling core spins S¢ and itinerant e, spins s are not independent of each
other but rather form a high-spin state with total on-site spin S = S¢ + %
This unification of band and local spin subspaces suggests to decompose the
e, electron into its spin and orbital/charge components. The e, spin can then
be absorbed into the total spin, allowing an independent treatment of spin
and orbital/charge degrees of freedom (see Fig. 4.4). The procedure of this
separation scheme is the following: In a first step we introduce Schwinger
bosons d;; and d;; (see, e.g., [AUE94]) to describe the e, spin

1
st=did;y, s, =dldy, 5= i(d;eriT —dl\dy), (4.5)
as well as Schwinger bosons DIT and D;r | to model the total on-site spin

1
St =DLD;y. S7=D]Dy, Si= §(DZTTDiT — D} Dyy). (4.6)
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These auxiliary particles are subject to the following constraint that depends
on the eg-electron occupation number n;:

dlidy +ddi = n, (4.7)
D}Diy; + D D;; = 25 —1+n, (4.8)

The creation and destruction operators for eg,-electrons can be expressed in
terms of spinless fermions ¢;, carrying charge as well as orbital pseudospin
and Schwinger bosons carrying spin:

Cisa = Ciadis- (49)

Rather than electrons the hopping term of Hamiltonian (4.4) now transfers
pairs of spinless fermions and Schwinger bosons:

Hy=— 3 5197 (el epdlydys + Hoe) = T Y Ses (4.10)

(ij)y saf

The Bose operators are subject to the constraint (4.7) that enforces the
operators d;, and dzs to act only on projected Hilbert spaces with one or
zero Schwinger bosons, respectively. Our aim is to absorb the e, spin into
the total spin, which requires to map the egs-spin operators d;; onto D;, for
the total spin. This is done by comparing the matrix elements of the two
types of operators. On the one hand, keeping in mind that Hund’s rule
enforces the on-site spins to be always in a total-spin-symmetric state, the
only non-vanishing matrix elements of the d;s operators are

S;m) = \J(S+m)/(29), (4.11)
Som) = /(S —m)/(29). (4.12)

<S—l m—%’dT

27

<S L m+%’dl

— 55

In deriving the above expressions we have used the Clebsch-Gordan coeffi-
cients (S¢ m¢ me|S,m) to decompose the total-spin state |S,m) into core-
and e -spin states |S¢, m¢m®) with m¢ =1 / |. These coefficients are given
by

(S—35m—4511[9m) = {(S;Snz;1>/(5;m>]l/2: [S;Sm]1/27

(S—1m+Li||Sm) — [(S;Sni11>/(sg—sm>]l/2:[S;Sm]1/2.

On the other hand, the matrix elements of the D;, operators are

Simy = /(S+m), (4.13)

<S— %,m— %‘DT
L S;m) = \J(S—m). (4.14)

<S—— m+%‘Dl
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All other matrix elements vanish due to the constraint of Eq. (4.8). By
comparing Eqs. (4.11), (4.12) with Eqgs. (4.13), (4.14) we find the mapping

1
—=D.
V2S

The kinetic-energy Hamiltonian (4.10) can hence be rewritten in terms of
total-spin operators Dj,:

diy = (4.15)

Hy = —5g > 3157 (elaés D], Djs + Hae) (4.16)

The Hund’s coupling term of Eq. (4.10) has been dropped here as its presence
is implied by the spin construction employed above.

At low temperatures the magnetic moment of ferromagnetic manganites
studied here is almost fully saturated. It is therefore reasonable to expand Eq.
(4.16) around a ferromagnetic groundstate. Technically this is done by con-
densing the spin-up Schwinger bosons (assuming the ferromagnetic moment
to point along this direction) and by treating spin-wave excitations around
this groundstate in leading order of 1/S. Introducing magnon operators b;,
the following relations hold:

1
b;.

D; =

This spin representation fixes the number of Schwinger bosons per site to
2S. The essence of the 1/S expansion is to consider the presence of a hole as
a small perturbation which changes the spin projection S* but not the spin
magnitude S. Employing magnon operators, the kinetic-energy Hamiltonian
(4.16) becomes

H = - Z Ztgﬁé::raéjﬂ

(ig)~ ap
! adt o (Lptp v Lptp _pip
+g<z>: Z/Bt'}/ Cm@'ﬂ(i i i+§ Vi — Yi j)
iJ)y &
1+ H.c. (4.17)

The first term of Eq. (4.18) describes the motion of strongly correlated fermi-
ons in a ferromagnetic background. The second term controls the dynamics
of spin excitations in the magnetic background and the interaction of these
excitations with the fermionic sector. At small magnon numbers, i.e., at low
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temperatures T < T¢, Eq. (4.17) can finally be mapped onto the following
expression for the magnetic double-exchange bonds:

%: Ztaﬁ%%[ + E (787 +8;87) ] +He. (4.18)

The important point to be noticed here is that the amplitude of double-
exchange bonds is a fluctuating complex quantity. Only when treating orbital
and charge sectors on average, i.e., when replacing fermion operators éiaézﬂ by
their mean-field value (¢} é3), an effective Heisenberg model as in a conven-
tional mean-treatment of double exchange is obtained: H = Jpg > (ij) 5SS
with Jpg = (25%)7" .5 t(jﬂ(cjacj@ In Section 4.3 we investigate in more
detail the modification of this mean-field picture by fluctuations in the bond
amplitude.

It is interesting to study Eq. (4.18) in the limiting case of classical spins.
Replacing the spin operators by their classical counterparts S* = S cos 6 and
S* = Ssin e, an effective fermionic model is obtained:

= > S0 ¢i5 + He. (4.19)
(i) af

This model exhibits an unconventional feature, namely a phase-dependent
hopping amplitude:

- 3 1 .
ti’y‘ﬂ = t;"ﬂ[z + 1 (sin 0; sin6; + sin6; sin Hje’(‘z’i"f’j)) ]
A similar result has been discussed in Refs. [MIL95, MUE96| in terms of a
Berry-phase effect.

4.2.2 Superexchange Bonds

At low doping the virtual charge transfer across the Hubbard gap becomes
of importance. These superexchange processes establish an inter-site inter-
action which in the limit of a strong Hunds coupling is described by [see Eq.

(4.3)]:

Hy=—J Y G _ ) S8, + S(S + 1) nan,. (4.20)

(ig)y
This term is discussed in detail in Chap. 1; here we only highlight the im-
portant features: First to be noted is the fact that Hund’s coupling forbids
any double occupancy of a single orbital. Pauli’s exclusion principle, which is
responsible for the antiferromagnetic nature of conventional superexchange,
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is therefore ineffective in dictating the spin structure of the virtual intermedi-
ate state. Rather, the spin orientation in the intermediate state is controlled
by Hund’s coupling which favors a ferromagnetic alignment of spins. Super-
exchange in the present model is therefore of ferromagnetic nature. Fur-
thermore, the amplitude of superexchange processes strongly depends on the
orbital state of the ey electrons involved  the factor (3 —7;/7}) accounts for
the specific non-diagonal structure of the transfer matrices t?;fg and ensures
that no double occupancy of a single orbital occurs which would be forbidden
by Pauli’s exclusion principle and the large Hund’s coupling.

For latter use we express the spin operators of Eq. (4.20) in terms of
magnon operators b;, yielding

1
H; = SJsg ), <Z — 7':7’;)

(if)~

1 1
x [(ibjb,- + 0t — bt + H.c.) _ 25+ 1)] . (4.21)

Equation (4.21) describes the interaction between magnons and orbital fluc-
tuations and represents the superexchange counterpart of Eq. (4.17) which
was derived for double-exchange bonds.

4.3 Magnon Dispersion

In the previous section the role of double-exchange and superexchange
processes in promoting ferromagnetic exchange bonds in manganites was dis-
cussed. At intermediate doping levels these exchange interactions induce a
ferromagnetic groundstate in a variety of manganese oxides. We now turn to
analyze the propagation of magnetic excitations in this ferromagnetic phase,
namely by deducing the dispersion relation of single-magnon excitations.

In a first step we derive the correct operator for creating a magnetic
excitation in hole-doped double-exchange systems. It has to account for the
fact that the total on-site spin depends on whether a hole or an e, electron is
present at that site: The spin number is S —% in the former and S in the latter
case. In general, a spin excitation is created by the operator S;. Expressing
this operator in terms of Schwinger bosons S;" = D;rTDi 1, condensing D;,
and mapping D;| onto the magnon operator b;, the following representation
is obtained:

gt { V2S5 b; for sites with e, electron,

4.22
V25 —1b; for sites with hole. ( )
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Assuming S to be the “natural” spin number of the system, the magnon
operator b; has to be rescaled by a factor [(25 — 1)/(25)]*/? when being
applied to hole sites:

b; for sites with e, electron,
P = (4.23)

\/(25 —1)/(2S) b; for sites with hole.

The general magnon operator that automatically probes the presence of an
ey electron can finally be written as

%(1 — ) by (4.24)
where n; is the number operator of e, electrons. B, represents the true
Goldstone operator of hole-doped double-exchange systems. Its composite
character comprises local and itinerant spin features which is a consequence
of the fact that static core and mobile e, electrons together form the total on-
site spin. While the itinerant part of B; is of order 1/S only, it nevertheless
is of crucial importance to ensure consistency of the spin dynamics with the
Goldstone theorem, i.e., to yield an excitation mode whose energy vanishes
at zero-momentum.

Having derived the correct magnon operator for doped double-exchange
systems, we now study the propagation of the magnetic excitations created by
this operator. The link between sites that allows a local excitation to spread
throughout the system is established by the exchange-bond Hamiltonians
(4.17) and (4.21). At low temperatures the dynamics of spin waves which
hence develop is captured by the single-magnon dispersion. The important
question we are interested in is: To which extent is the magnon spectrum
affected by fluctuations in the exchange bonds? Our approach to answer this
question is discussed in the following. We express the full magnon spectrum
wp in terms of the mean-field dispersion w, and the magnon self energy

Y(w, p):

Bi:bi[nﬁ— (1—711')] ~ b —

Op = wp + Re[X(wp, p)]. (4.25)

Fluctuation are considered only on average in the former but are explicitly
accounted for in the latter term. The mean-field dispersion w, as well as
the scattering vertices needed to construct X(w,p) can be derived by com-
muting the magnon operator B; with the Hamiltonian. To be specific we
explicitly perform this commutation, for now restricting ourselves to the
double-exchange Hamiltonian H; given by Eq. (4.17). In the momentum
representation we obtain

t o .
[Bp, Hi] = wpBp + 25 Z Z Apﬂ(k>cltacqu,ﬂ3p+q- (4.26)

q af
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The two terms on the r.h.s. of Eq. (4.26) are derived by expanding the fermi-
onic operators é}taéjfg around their average value:

C;racjﬂ - <C;rozcjﬁ> + 0 (szcj/@)
The mean-field magnon dispersion w,, in the first term of Eq. (4.26) is of
conventional nearest-neighbor Heisenberg form

wp = 2D(1 —7p), (4.27)

with the form factor v, = 27! S sexp(ipd), where z = 6, and the spin-
wave stiffness constant D = SJpg. Exchange-bond fluctuations enter the
coupling constant .Jpg only on average: Jpg = (25%)71 3,527 (&! &), The
second term in Eq. (4.26) is the scattering vertex needed to construct the
magnon self energy ¥(w,p). It describes the interaction between magnons
and orbital /charge fluctuations. The vertex function is

AP (k) = 7P — el

with form factors g7 = (2t)~! $5 197 exp(ikd).

Before we can engage in evaluating the magnon self energy associated with
the scattering vertex in Eq. (4.26), the problem of dealing with the correlated
nature of fermionic operators ¢, = ¢!_(1—n;) has to be addressed. To handle
the constraint that allows only for one e, electron per site, we employ the
orbital-liquid scheme introduced in Chap. 1: Orbital and charge degrees of
freedom of the e, electron are treated on separate footings by introducing
“orbiton” and “holon” quasiparticles. To describe an orbitally disordered
state in which orbitals fluctuate strongly, orbitons f; are assigned fermionic
and holons h; bosonic statistics. The original fermion operators are hence
reexpressed by

e =11 h. (4.28)
It is now possible to relax the local no-double-occupancy constraint to a
global one:
nf4ni=1 — (nf)+ @) =1

1

The main feature associated with the constrained nature of electrons, namely
the separation of energy scales of orbital and charge dynamics, sustains this
procedure due to the fact that two different types of quasiparticles are being
used. Introducing mean-field parameters

=Sl @ = o) (4.29)
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where x is the concentration of holes, orbitons and holons can be decoupled
as was shown in Chap. 1. We note that the two mean-field parameters in
Eq. (4.29) are approximately related by x = %(1 —x).

Employing representation (4.28), we reexpress the commutator of Eq.
(4.26) in terms of orbiton and holon operators. Further taking into account
the magnetic bonds stemming from superexchange processes as described by
Hjy in Eq. (4.21), we obtain

[Bp, H] = WPB
+25 >0 [wAaﬂ )+ fl?oBffﬂ(k; Q)] fl.crafk—q,ﬂBp+q

q af

ZC hkhk q Bpiq; (4.30)

where H = H; + Hjy and zp = 2xt/U;. Superexchange processes leave the
mean-field magnon dispersion w, qualitatively unaffected but enhance the
spin-wave stiffness which now becomes D = S(Jpg+ Jsg) = tx(z+x0)/(25).
Orbitons and holons have been decoupled in Eq. (4.30) by employing the
mean-field parameters of Eq. (4.29). This yields two different types of scat-
tering vertices, one describing the interaction between magnons and orbitons,
the other between magnons and holons. The vertex functions are defined as

AB(k) = 3 =l
Bgﬁ(k7 q) = 71(:6 + '7:&1 - V:Ep - Vggq—lﬂ
Cp(k) = T — Vk+p-

The two contributions to the magnon self energy corresponding to the
magnon-orbiton and magnon-holon scattering vertices of Eq. (4.30) are shown
in Figs. 4.5(a) and (b). These capture the renormalization of the magnon
spectrum due to orbital and charge fluctuations in the magnetic exchange
bonds, respectively. The expressions corresponding to the Feynman diagrams
in Fig. 4.5 are given in Appendix B.

An important piece of physics is still missed in the above considerations,
namely the coupling of orbitals to the lattice. As is discussed in Chap. 1, the
interaction between orbitals and two orthogonal Jahn-Teller lattice modes

Q2 and Q)3 is described by

Hyr ==Y (92Q2i07 + 93Q3i07) (4.31)

i

z/z

where the Pauli matrices o;’" again act on the orbital subspace and the

coupling constants g =~ ¢3. The crystal deformation energy including the
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(a) (b) ()

Figure 4.5: Magnon self energies describing the effect of magnon scattering on
(a) orbital fluctuations, (b) charge fluctuations, and (c) phonons. Solid, dashed,
dotted, and wiggled lines denote orbiton, holon, magnon, and phonon propagators,
respectively.

effect of inter-site correlations is

K

(i)~

with Q" = (Qsi = v3Q2)/2, QF = Qsi, and Q; = (Q2i, Qs:). Equation

(4.32) can be diagonalized in the momentum representation, yielding

Hy, = Zw}c’azyak,,, (4.33)

kv

with index v = 4+ and the phonon dispersions

1/2
Wi = wy </{1k + /K3 + H§k> . (4.34)

Here kg = 1+ ki(cp + ¢y + ¢2), Kok = kln,(cz), Kk = k:m,(cg) with k& = K3 /K
and n,(cz) = —/3(c, — c)/2, 77,(5’) =c, — %cm — %cy with ¢, = cosk,.

While there is no direct coupling between spins and phonons in the present
system, lattice modes nevertheless strongly affects the spin dynamics. The
link between spin and lattice is established via the orbital channel: The
coupling of orbitals to the lattice imposing low phononic frequencies onto
orbital fluctuations which enhances the modulation of magnetic exchange
bonds. Thereby the effect of phonons extends onto the spin sector. To study
this mechanism in more detail, we construct an effective spin-phonon coupling
Hamiltonian from which we then calculate the phononic contribution to the
magnon self energy. Combining the spin-orbital coupling term of the double-
exchange Hamiltonian (4.17) with the orbital-lattice Hamiltonian (4.31) we
obtain (see Fig. 4.6):

Hypn = — Z g;q(a:;u + aqU)B;thHq- (4.35)

pqv
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Figure 4.6: Effective spin-phonon coupling vertex. The dominant contribution
shown on the right stems from a combination of spin-orbital (filled dot x t) and
orbital-lattice (open dot x g2) coupling vertices. The orbital susceptibility depicted
by a bubble controls the coupling strength. Solid, dotted and wiggled lines represent
orbiton, magnon, and phonon propagators, respectively.

The coupling constants in Eq. (4.35) are

Eypa2uwo\ 2 [ wo \
JT W0 0 .
Uiy = ( 0 ) ( ) ()\S:I) cos Og — A2 sin Gq) :

B wi
- EJTagWO 12 Wo 2 (3) o 2)
9pq — T w—_ ()\pq Sin (")q + )\pq COs @q) s
q

with A = (0" — 0! — 1Y) and

. 1/2
R3q
cos®, = — |1+ —— ,
! V2 ( VK3q + ngq)
1/2
sin © ! 1 f59 sign(kaq)
in = —[1- ——2— ign(Kag).
! V2 \VE3q + Kig !

The strength of the spin-lattice interaction is controlled by the orbital
susceptibility (( f'T+z,T fit)(07))w which enters the parameter ay = t(z +

x0)(( fLZ,T fi1)(07))w=0; the zero-frequency limit is justified under the assump-
tion that the energy scale of orbital fluctuations exceeds that of phonons. The
phononic contribution to the magnon self energy that follows from Hamil-
tonian (4.35) is depicted in Fig. 4.5(c¢). The final expression for the self
energy is given in Appendix B.

4.4 Comparison with Experiment

We are now in the position to evaluate the self energies of Fig. 4.5. Charge
and orbital susceptibilities are calculated using mean-field Green’s functions
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in slave boson h; and fermion f; subspaces. For the spectral density of Jahn-
Teller phonons in Fig. 4.5(c) we employ the expression
1 w r

TwE(w—wi)?+T?

P (w, q) = (4.36)
which phenomenologically accounts for the damping I' of phonons due to
their coupling to orbital fluctuations. The phonon dispersion wqi is given by
Eq. (4.34).

The expressions obtained from the diagrams in Fig. 4.5 contain summa-
tions over momentum space which we perform numerically using a Monte-
Carlo algorithm. The result is shown in Fig. 4.7 by a solid line which we com-
pare to experimental data of Ref. [HWA98| marked by circles. Furthermore,
the bare mean-field dispersion wp and the one containing only charge effects
are shown by long-dashed and dashed lines, respectively. The following pa-
rameters are chosen: The hopping amplitude ¢ = 0.4 eV is adjusted to fit the
spin stiffness in Prgg3Sro37MnOs; further we use U; = 4 eV [FEI99]. The
phonon contribution depends on the quantity Eyra2 = (g2a0)?/2K. We set
Ejra3 = 0.004 eV, wy = 0.08 eV,2 T = 0.04 eV, and k; = —0.33.

The effect of charge fluctuations onto the magnon spectrum is found to
be quite featureless and moderate (see dashed line in Fig. 4.7). We attribute
this to the fact that the spectral density of charge fluctuations lies well above
the magnon band. On contrary, the fluctuations of the orbital (o< zt) and
lattice (x wh™) degrees of freedom are of rather low frequency and are hence
found to affect the spin-wave dispersion in a pronounced way, particularly
in (0,0,q) and (0, q,q) directions. A key observations is the crucial effect
of inter-site correlations of Jahn-Teller distortions — these are captured by
the phononic dispersion being controlled by the parameter k. In order to
explain the experimental data of Ref. [HWAO98|, we are forced to assume
these correlations to be of ferro-type, i.e., ky < 0. We interpret this sur-
prising result in the following way: Conventionally one would expect k1 > 0
associated with a tendency of the orbital/lattice sector to develop antiferro-
type order [KUG82|. In the hole-doped system this effect competes against
charge mobility which prefers a ferro-type orbital orientation. The latter al-
lows to minimize the kinetic energy by maximizing the transfer amplitude
between sites. While Jahn-Teller lattice effects prevail at low doping, we
believe the kinetic energy to dominate at large enough hole concentrations.
This competition between Jahn-Teller effect and kinetic energy can be simu-
lated by tuning the parameter k£;. We note that a layered ferro-type orbital

LA mean-field calculation gives ag ~ 0.1. Our fitting then implies a reasonable Jahn-
Teller binding energy Ejr =~ 0.4 eV.
2This number is consistent with optical reflectivity data in Ref. [OKI95].
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Figure 4.7: Magnon dispersion along (0,0,¢), (£,£,0), and (£,&,§) directions,
where & = 0.5 at the cubic zone boundary. Solid lines represent the theoretical

result obtained from a mearest-neighbor Hamiltonian including charge, orbital, and
lattice effects and are fitted to experimental data denoted by circles (from Ref.
[HWA9IS]). For comparison, the bare magnon dispersion and the one including
only charge effects are indicated by long-dashed and dashed lines, respectively.

order should be accompanied by a layered antiferromagnetic spin structure;
the latter is fact experimentally observed at doping levels of about z = 0.5
[KAW97, MOT98]. As an instability towards an orbital-lattice ordered state
is approached, exchange-bond fluctuations become very weak. In the magnon
spectrum this is reflected by a strong enhancement of the renormalization ef-
fect as is shown in Fig. 4.8 for k; — —%. We finally note that the softening
of magnons at the zone boundary leads to a reduction of 7. Remarkably,
the small-q spin stiffness D remains unaffected which explains the anomalous

enhancement of the D/T¢ ratio in low-T¢ manganites [FER9S].
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Figure 4.8: Magnon dispersion including charge, orbital, and lattice effects. Dif-
ferent values for ki controlling the phonon dispersion are used. The softening
enhances as k1 — —% corresponding to a ferro-type orbital-lattice order. We set
Ejpa3 = 0.006 eV.

4.5 Conclusion

In summary, we have presented a theory of the spin dynamics in ferromag-
netic manganites. Taking into account the orbital degeneracy and the corre-
lated nature of e, electrons, we analyzed the structure of magnetic exchange
bonds; these are established by the inter-site transfer of electrons in coherent
double-exchange and virtual superexchange processes. Orbital and charge
fluctuations are shown to strongly modulate the exchange bonds, leading to
a softening of the magnon excitation spectrum close to the Brillouin zone
boundary. The presence of Jahn-Teller phonons further enhances the effect.
This peculiar interplay between double-exchange physics and orbital-lattice
dynamics becomes dominant close to the instability towards an orbital-lattice
ordered state. The unusual magnon dispersion experimentally observed in
low-T manganites can hence be understood as a precursor effect of orbital-
lattice ordering. While the softening of magnons at the zone boundary is
responsible for reducing the value of T, the small-momentum spin dynam-
ics that enters the spin-wave stiffness D remains virtually unaffected. This
explains the enhancement of the ratio D/T¢ observed in low-T¢ compounds.
In general it can be concluded that strong correlations and orbital fluctu-
ations play a crucial role in explaining the peculiar magnetic properties of
manganites.



Chapter 5

Metal-Insulator Transition in
Manganites

5.1 Introduction

The doping dependence of the properties of manganese oxides poses some
of the most interesting open problems in the physics of these compounds.
First to be noticed is the peculiar asymmetry of the phase diagram that is
most pronounced in the charge sector (see Fig. 5.1): Regions of high (z >
0.5) and low (z < 0.5) concentration of holes are characterized by such
contrasting phenomena as charge ordering and metalicity, respectively. In
the latter region — which we wish to focus on — the metallic state can be
turned into an insulating one by raising the temperature above the Curie
temperature Te. Introducing the notion of double exchange which associates
the relative orientation of localized Mn 25, spins with the mobility of itinerant
eq electrons, early work has identified this transition to be controlled by the
loss of ferromagnetic order inherent to the metallic state [ZEN51, ANDS55,
DEGG60]. It is believed that lattice effects are also of crucial importance in
this transition. Within the lattice-polaron double-exchange picture [ROE9G6,
MIL96a, MIL9Y6h, MILY6¢|, the crossover from metallic to insulating behavior
is controlled by the ratio of polaron binding energy Fj to the kinetic energy
FEin of charge carriers (see Fig. 5.2):

Euin’
When forming a bound state with the lattice, charge carriers loose part of
their kinetic energy. Hence, polarons are stable only if this loss in energy

is more than compensated by the gain in binding energy, i.e., if A > 1. In
a double-exchange system, this critical coupling strength may be reached

A

(5.1)
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Figure 5.1: Phase diagram of Laj_,Ca, MnQOs. The phases are denoted by: anti-
ferromagnetic insulator (AFI), ferromagnetic insulator (FI), ferromagnetic metal
(FM), charge-ordered insulator (COI), and paramagnetic insulator (PI). From
[RAMIT].

Ekin
@ @ Eyin > By | Exin < Ep
A<l A>1
g E, Metal Insulator

Figure 5.2: Localization criterion in the lattice-polaron picture: Charge carriers
localize if the energy gain Ey due to polaron formation exceeds the loss in kinetic
enerqy Eyy,. In double-exchange systems, Ei, can be tuned by temperature.

by raising the temperature — the double-exchange mechanism then acts to
reduce the kinetic energy and hence to increase A. Spin disorder and spin-
polaron effects further enhance the carrier localization above T [VAR96].
The doping dependence of the metal-insulator transition, however, is not
fully captured in this picture. Namely the complete breakdown of metalicity
at hole concentrations below z.i =~ 0.15 - 0.2 that occurs despite the fact
that ferromagnetism is fully sustained remains an open problem which we
address in this chapter.

The effective coupling constant A in Eq. (5.1) has originally been intro-
duced for non-interacting electrons. The itinerant e, electrons in mangan-
ites, on the other hand, are subject to strong on-site repulsions which neces-
sitates to accommodate the definition of A. According to numerical studies
[CAP99a, CAP99b], the basic physics underlying Eq. (5.1) remains valid even
in correlated systems: As in the free-electron case, the metal-insulator transi-
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Orbital Disorder-Order Orbital-Polaron
Transition Scenario
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Figure 5.3: Possible mechanisms behind the doping dependence of the localiza-
tion process: (Left) Below a critical value of x, an orbital disorder-order transition
quenches the kinetic energy of holes, thereby enhancing the effective coupling con-
stant X. (Right) Holes polarize the orbital background and tend to form orbital-hole
bound states. The binding energy is largest at low x where orbital fluctuations are
weak.

tion is controlled by the competition between the polaron binding energy and
the kinetic energy of charge carriers. Nevertheless, correlation effects might
renormalize these two relevant energy scales, presumably introducing a dop-
ing dependence. In fact, the Gutzwiller bandwidth of correlated electrons
scales with the concentration of doped holes; one could therefore be inclined
to set Eyg, o< xt, where t denotes the hopping amplitude. But this approach
reaches too short: The Gutzwiller picture describes only the average kinetic
energy of the system. In contrast, the relevant quantity for localizing the
holes doped into a Mott-Hubbard system is the characteristic energy scale
of charge fluctuations which remains o ¢ [DAG94]. Pictorially this quan-
tity corresponds to the kinetic energy of a single hole. We thus conclude
that a more thorough treatment of correlation effects is needed in order to
explain the peculiar doping dependence of the metal-insulator transition in
manganites.

In this chapter we analyze two mechanisms that could drive the localiza-
tion of charge carriers at small hole concentrations z (see Fig. 5.3). First we
explore the possibility of the metal-insulator transition to be controlled by
a disorder-order crossover in the eg,-orbital sector. The idea is the following:
Orbital fluctuations are induced by the motion of holes and hence possess
an energy scale oc xt. At large x, orbitals fluctuate strongly and inter-site
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orbital correlations are weak. As the concentration of holes is reduced, fluctu-
ations slow down until a critical value of x has been reached — promoted by
Jahn-Teller and superexchange coupling, an orbital-lattice ordered state now
evolves. We analyze the extent to which this transition in the orbital-lattice
sector affects the itineracy of holes. Finding almost similar values for the ki-
netic energy of doped holes in orbitally ordered and disordered states we are
lead to conclude that the development of orbital-lattice order is not sufficient
to trigger the localization process. Next we turn to analyze a second scenario
of the metal-insulator transition for which we introduce the concept of or-
bital polarons. Similar to spin polarons in correlated spin systems, orbital
polarons are a natural consequence of strong electron correlations and the
double degeneracy of on-site levels — in manganites the latter follows from
the degeneracy of e, orbitals. We argue that holes polarize the orbital state
of e, electrons on neighboring sites: A splitting of orbital levels is evoked
by a displacement of oxygen ions and also by the Coulomb force exerted by
the positively charged holes. Being comparable in magnitude to the kinetic
energy of holes, the orbital-hole binding energy can be large enough for holes
and surrounding orbitals to form a bound state. The important point is that
the stability of these orbital polarons competes not only against the kinetic
energy of holes but also against the fluctuation rate oc xt of orbitals: The
faster the latter fluctuate, the less favorable it is to form a bound state in
which orbitals have to give up part of their fluctuation energy. Combining
this new orbital-polaron picture with that of conventional lattice polarons
we are able to explain well the phase diagram of manganites at low and
intermediate doping levels.

5.2 Orbital Disorder-Order Transition

In this section we analyze the impact of a disorder-order transition in the
orbital-lattice sector onto the itineracy of holes. Our motivation is that a
sudden freezing out of orbital fluctuations below a critical doping concen-
tration could significantly impede the motion of holes, hence initiating the
metal-insulator transition. By comparing the bandwidth of holes both in
orbitally ordered and disordered states, we are able to refute this idea: The
orbital sector is shown to have only little influence onto the charge mobility
in manganites.
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5.2.1 Disordered State

We begin by investigating the bandwidth of holes in a strongly fluctuating,
orbitally disordered state. Our starting point is the ¢-J model of double-
degenerate e, electrons which, via Hund’s coupling, interact ferromagnet-
ically with an array of localized S = 3/2 core spins (see Chap. 1). The
model accounts for the presence of strong on-site repulsions that forbids
more than one e, electron to occupy the same Mn site as well as for the
double-degeneracy of e, levels. At low temperatures and intermediate dop-
ing levels, the double-exchange mechanism induces a parallel alignment of
spins. Treating deviations from this ferromagnetic ground state only on a
mean-field level as is discussed below, the core spins can be discarded and
the spin indices of e, electrons may be dropped; the ¢-J Hamiltonian then
becomes (see Chap. 3)

Hy == (2%, + Hoe.) + e Yo T, (5.2)
(i)~ Z (g

with z = 6. Nearest-neighbor bonds along spatial directions v € {x,y, 2} are
denoted by (ij),. We use constrained operators ¢, = ¢, (1 — n;) which cre-
ate an e, electron at site ¢ in orbital o only under the condition that the site
is empty. The first term in Eq. (5.2) describes the inter-site transfer of con-
strained e, electrons. The transfer amplitude depends upon the orientation

of orbitals at a given bond as is reflected by the transfer matrices

(i o) =0 0);

a representation with respect to the orbital basis a € {|32%2—r?),|z2—y?)} has
been chosen here. Due to its non-diagonal structure, orbital quantum num-
bers are not conserved by Hamiltonian (5.2) — inter-site transfer processes in-
duce fluctuations in the orbital sector. The second term in Eq. (5.2) accounts
for processes involving the virtual occupation of sites by two e, electrons.
This superexchange mechanism establishes an inter-site coupling between
orbital pseudospins of overall strength J = zt?/U;, where U; is the on-site
repulsion between spin-parallel e, electrons. The pseudospin operators are

1
= (0" £ V), 7= o, (5.3)

& acting on the orbital subspace. Jahn-Teller phonons
mediate an additional interaction between orbital pseudospins which is of the
exact same form as the superexchange term (see Chap. 1). The numerical

with Pauli matrices o}
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value of J has to be chosen such as to comprise both effects. We finally note
that deviations from the ferromagnetic ground state underlying Hamiltonian
(5.2) are treated within conventional double-exchange theory. The transfer
amplitude ¢ then depends on the normalized magnetization m via [KUB72,

MIL95]
t =to\/(1+m?2)/2, (5.4)

where £y denotes the hopping amplitude between spin-parallel Mn sites.

To observe the strongly correlated nature of e, electrons, it is convenient
to introduce separate particles for charge and orbital degrees of freedom
[ISHO97a]. As was shown in the last two chapters, the metallic phase of man-
ganites can be well described within an orbital-liquid picture that accounts
for orbital fluctuations by employing a slave-boson representation of electron
operators:

CI& = fztxb7
Here orbital pseudospin is carried by fermionic orbitons f;, and charge by
bosonic holons b;. Introducing mean-field parameters y = ¢ ! >ap 2”( fiTa fig)
and z = (b:fbj>, where x is the concentration of holes and y ~ %, the two
types of quasiparticles can be decoupled:

2vJ
Horb = - (‘T + %) Z t:’tﬁ (szafJ/B + HC) ’ (55)
(ig)~
th = —th (b;rb] + HC) . (56)

(ig)
Diagonalizing the above expressions in the momentum representation one
obtains

Horb - Z&f;,,fku: th = Zwkb}-cbk7
kv k

with index v = 4+ and dispersion functions

g = (xt+%)[—eo(k)i (k) + (k).

W = 6)@5[1 - %eo(k)},

where €y(k) = c,+c,+c., e1(k) = (co+c,)/2—c., e2(k) = V/3(c.—c,) /2 with
¢y = cosk,. The essence of this slaved-particle mean-field treatment is that
orbital and charge fluctuations are assigned different energy scales. This is
reflected by the bandwidths of orbiton and holon quasiparticles, respectively:

Woy, = 63t + J, (5.7)
Ww = 6t (5.8)
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The former quantity Wy, sets the energy scale of orbital fluctuations — the
terms proportional to xt and J describe fluctuations induced by the motion
of holes and by the coupling between pseudospins, respectively. The latter
quantity Wy finally defines the itineracy of holes in the orbital-liquid state.
The variation of the holon bandwidth with the onset of orbital order is in
the focus of our interest in the remainder of this section.

5.2.2 Instability Toward Orbital Order

The above treatment of orbital and charge fluctuations is based upon the
notion of a strongly fluctuating orbital state that is far from any instability
towards orbital order. In real systems such instabilities do exist: Jahn-Teller
phonons and superexchange processes mediate a coupling between orbitals
on neighboring sites which introduces a bias towards orbital-lattice ordering
(see Chap. 1). Competing against the energy scale of orbital fluctuations
x xt, order in the orbital sector is expected to evolve below a critical doping
concentration x.. We investigate this instability of the orbital-liquid state
by introducing the inter-site coupling term

2J 0_0 iQ
)y

with z = 6 and 7; = (sin ©0¥ 4 cos Oc?) /2 acting on the orbital subspace. We
note that Eq. (5.9) is a simplification of the superexchange coupling term in
Hamiltonian (5.2) — internal frustration makes the latter difficult to handle.
For © = 7/2 and Q = (7, 7,0), the pseudospin interaction in Eq. (5.9) favors
a staggered-type orbital orientation

O)F = (I32° = %) £ 2" =) /V2 (5.10)

within zy planes repeating itself along the z direction; this closely resembles
the type of order observed experimentally in LaMnOs; [MURO98] (see Fig.
5.4). The breakdown of the orbitally disordered state, i.e., the development
of orbital order, is signaled by a singularity in the static orbital susceptibility
(0§0% g)w=0- Employing a random-phase approximation (see Fig. 5.5), the
latter can be expressed as

(0x0x>0Q

<U g >Q - 1+JQ<O'IO'I>OQ/2

(5.11)

with vertex function Jy = J (cosq, + cos g, — cosq,) /3 and the shorthand
notation (0%0%)q = (050" g)w—0- Bare orbital susceptibilities (...)? are eval-
uated using orbiton propagators associated with the mean-field Hamiltonian
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Figure 5.4: Experimentally a staggered type of orbital order is observed within
xy planes of LaMnQOs which repeats itself along the z direction [MUR9S].

Figure 5.5: Diagrammatic representation of the RPA expansion of the orbital
susceptibility <060§Q>w. The vertex function Jq is denoted by a circle.

(5.5). Numerically solving for the pole in Eq. (5.11), we find the following
expression for the critical doping concentration:

J

— 5.12
= (512

Lerit =
which is valid for z.; < 0.5. At concentrations below this critical value an
orbitally ordered state is to be expected. With J = 0.13 eV as estimated from
the structural phase transition observed in LaMnOj3 at 7' = 780 K [MUROS]
and t = 0.36 eV we obtain a critical doping concentration of z.iy = 9%.
This result indicates that the metallic state of manganites is indeed instable
towards orbital-lattice ordering at doping concentrations that are not too far
from those at which the system is observed to become insulating.

5.2.3 Ordered State

Up to this point we have studied the bandwidth of holes in an orbitally
disordered state and the instability of the system towards orbital-lattice or-
der. In the following we analyze to which extent the itineracy of holes is
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Figure 5.6: Coherent (a) and incoherent (b) hole motion in antiferro-type orbital

order. Incoherent processes involve the creation of an orbital excitation of energy
J.

affected by this disorder-order transition in the orbital sector. Namely we
are interested in the bandwidth of holes moving through an orbitally ordered
state; this quantity is then compared to our previous result of Eq. (5.8) for
an orbital liquid. Foremost an important difference between models with
orbital pseudospin and conventional spin is to be noticed here: In the latter
systems, spin is conserved when electrons hop between sites. This implies
that hole motion is constrained in a staggered spin background. In contrast,
the transfer Hamiltonian (5.2) of the orbital model is non-diagonal in or-
bital pseudospin — an orbital basis in which all three transfer matrices t&°,
t;‘ﬁ, and t2” are of diagonal structure does not exist. This allows holes to
move coherently even within an antiferro-type orbital arrangement [see Fig.
5.6(a)]. For this reason only a moderate suppression of the hole bandwidth is
to be expected in the presence of orbital order. We calculate the bandwidth
for the specific type of orbital order introduced in Eq. (5.10). Starting from
the transfer part of Hamiltonian (5.2) and keeping only the hopping matrix
elements that allow for a coherent movement of holes (i.e., projecting out all
orbitals which do not comply with the ordered state) we obtain

Weeh = 4t (5.13)

This result indicates a reduction of the holon bandwidth by ~ 30% as com-
pared to the disordered state [see Eq. (5.8)]. While not being dramatic, a
quenching of the bandwidth by one third should nevertheless be sufficient
to induce the localization process, e.g., via the formation of lattice polarons.
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However, it is important to note that Eq. (5.13) accounts solely for the co-
herent motion of holes; incoherent processes involving the creation and sub-
sequent absorption of orbital excitations are neglected [see Fig. 5.6(b)]. Only
if the ordered state is robust, i.e., if it costs a large amount of energy for
an electron to occupy an orbital that does not comply with the long-range
orbital alignment, these incoherent processes become negligible. This limit
does not apply to manganites where the orbital excitation energy is J < t
only. Before a conclusion about the role of orbital order in the metal-insulator
transition can be drawn, these incoherent processes have to be investigated
in more detail.

In the following we study the influence of incoherent processes onto the
motion of holes, employing an “orbital wave” approximation: Starting from
the assumption that long-range orbital order has developed and that fluctu-
ations around this ordered state are weak, we use a slave-fermion represen-
tation of the electron operators in the transfer Hamiltonian (5.2):

ch = bl i
Within this picture, the orbital pseudospin is assigned to bosonic orbitons and
charge to fermionic holons. The lattice is then divided into two sublattices
which are ascribed different preferred pseudospin directions [see Eq. (5.10)]:

T = (\322 —7r?) + |2® — y2>) /v/2  on sublattice A,
| = (1322 =% 2> —4%) /V2 on sublattice B.

In analogy to conventional spin-wave theory [AUE94|, excitations around this
ground state can be treated by employing the following mapping of orbiton
operators b;, onto “orbital-wave” operators (;:

b 1 sublattice A, ~_J Bi sublattice A,
71 B sublattice B, 471 1 sublattice B.

In the momentum representation the transfer Hamiltonian (5.2) then be-
comes

Hy =Y wnflfi+ 2 [wBh +espBp| fiSrusp. (5.14)
k kp

Here wy, = —t(c, + ¢, — 2¢.)/2 and y = t[(2 — v/3)c, + (2 +V3)e, + 2¢.]/2
with ¢, = cos k,. The first term in Eq. (5.14) describes the coherent motion
of holes within a band of width W = 4¢. The second term describes the
interaction of holes with excitations of the orbital background. The dynamics
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Figure 5.7: Born approrimation of the holon self energy: The double line de-
notes the “dressed” holon propagator with self-enerqy contributions, the dashed
line represents the “orbital-wave” Green’s function.

of the latter is controlled by the inter-site coupling Hamiltonian (5.9) which
in the momentum representation becomes

Hy=JY" 56k (5.15)
k

Hamiltonian (5.15) describes dispersionless, non-propagating orbital excita-
tions of energy J. The local nature of orbital excitations follows from the
absence of frustration effects in the inter-site orbital coupling term (5.9).

The interaction of holes with orbital degrees of freedom changes the char-
acter of the hole motion: Scattering on orbital excitations leads to a sup-
pression of the coherent quasiparticle weight and a simultaneous widening
of the holon band. In analogy to studies of spin systems [KAE89, MAZ91],
we analyze these effects by employing a self-consistent Born approximation
for the self energy of holes  within this method all non-crossing diagrams
of the self energy are summed up to infinite order while crossing diagrams
are neglected. Restricting ourselves to the case of a single hole moving at
the bottom of the band, we obtain the following expression for the holon self
energy (see Fig. 5.7):

S(iw) = 1*Y 7z Gliw — J, p). (5.16)

The Matsubara frequencies are defined as iw = i(2n+1)7T, where T denotes
temperature and n an integer number.

Our first aim is to study the loss of coherency in the hole motion. This
can be done by employing a dominant-pole approximation [KAFE89]: We split
the holon propagator in Eq. (5.16) into its coherent and incoherent parts,

Gliw, k) = — % 4 G (jw, k), (5.17)

W — W

where ag denotes the quasiparticle weight and @g the not-yet-known renor-
malized holon dispersion. Keeping only the coherent part and using ay =
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[1—(0/0w)Y (w)]™! with ¥/(w) = Re[X(iw — w +1i0")], the following recur-
sion relation for the quasiparticle weight is obtained:

ap

ag = [1 +t2§p:712, G )2]_1, (5.18)

Wg —wp — J

with ¢ = (0,0, ) at the bottom of the band. Equation (5.18) can be approx-
imately solved by expanding the integrand around ¢, which yields

1 t 1/2
1——(—) for J >t,

2m2 \J (5.19)

aq = T\ M4
V22 (;) for J <« t.

In the limit J/t — oo, orbitals become static and coherent hole motion with
ag = 1 is recovered. In the opposite limit J/t — 0, the holon quasiparticle
weight is completely lost, indicating strong scattering of holes on orbital
fluctuations.

Next we turn to study the renormalization of the holon bandwidth. In-
serting G(iw, k) = [iw — wr — X(iw)]™! into Eq. (5.16) leads to a recursion
relation for the holon self energy:

2
. 7,
Y(iw) =t L : 5.20
(i) zp:iw—wp—J—aZ(iw—J) (5.20)
The factor & = (2 — 1)/z partially accounts for the constraint that for-
bids more than one orbital excitation per site — the hole may there-

fore not return to a previously visited site unless to reabsorb an excita-
tion. We solve Eq. (5.20) numerically and determine the spectral function
pg(w) = —2Im[G(iw — w+i0%, )] at the bottom of the band. The result is
shown in Fig. 5.8. Different values of J/t are used. In the limit J/t — 0, the
spectrum is completely incoherent and extends down to wpy, = —3t corre-
sponding to a holon bandwidth of Wy = 2|wpyin| = 6¢.1 In this limit the hole
creates its own disorder and effectively moves within an orbital-liquid state
characterized by strong orbital fluctuations. In the opposite case J/t — oo,
all spectral weight accumulates in a quasiparticle peak (denoted by a vertical
line) at wqp = —2t which corresponds to a bandwidth of Wy, = 2|wqp| = 4t.
The orbital state is static here and excitations are completely suppressed.
At finite values of J/t, the total spectral weight is divided into coherent and

IThe factor & = (2 — 1)/z in Eq. (5.20) compensates only partially for the mean-field
treatment of the constraint that forbids more than one orbital excitation per site. The
bandwidth numerically obtained for J/t — 0 is therefore slightly larger than W, = 6t.
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Figure 5.8: Spectral function of a hole moving at the bottom of the band. Different
values of J/t are used: The spectrum is completely incoherent for J = 0, having
a lower bound at Wy, = —3t. With increasing values of J/t, spectral weight is
shifted from the incoherent part of the spectrum to a coherent quasiparticle peak
(denoted by a vertical line). In the limit J/t — oo, the quasiparticle peak is at
wqp = —2t and has accumulated all spectral weight.
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incoherent parts. The latter is separated from the quasiparticle peak by the
orbital excitation energy J. Processes in which the hole creates more than
one orbital excitation are reflected by a succession of peaks in the incoherent
spectrum. For J = t/3 which is realistic to manganites, the quasiparticle
peak accounts for &~ 65% of the spectral weight and the width of the holon
band is

Wm ~ 5.Tt. (5.21)

Comparing the above number with our previous result Wy, = 6t for the
orbital-liquid state, we find a reduction of about 5%. We therefore conclude
that a disorder-order crossover in the orbital sector has only a secondary
effect on the kinetic energy of charge carriers, ruling it out as a possible
driving mechanism to initiate the metal-insulator transition in manganites.

5.3 Orbital Polarons

In the preceeding section we have considered charge carriers to interact with
the orbital sector via the transfer part of Hamiltonian (5.2). While this
coupling was shown to be responsible for a shift of spectral weight from
the coherent to the incoherent part of the holon spectrum, the effect onto
the full bandwidth was found to be only small. In the following we point
out that in an orbitally degenerate Mott-Hubbard system there also exists
a direct coupling between holes and orbitals stemming from a polarization
of e, orbitals in the neighborhood of a hole. This coupling is strong enough
for holes to form a bound state with the surrounding orbitals at low doping
concentrations. Based upon this picture we show that a strong reduction of
the bandwidth comes into effect as orbital-hole bound states begin to form.

5.3.1 Polarization of Orbitals

The cubic symmetry of perovskite manganites is locally broken in the vicinity
of holes which results in a lifting of the e, degeneracy on sites adjacent to
a hole (see Fig. 5.9). Here we discuss two mechanisms that are foremost
responsible for this level splitting: (1) a displacement of oxygen ions that
move towards the empty site; and (2) the Stark splitting of e, states which is
induced by the Coulomb force between “positive” hole and negative electrons.
The magnitude of the degeneracy lifting A = AP" 4+ A ig estimated as
follows: The former phonon contribution AP" originates in the coupling of
holes to the lattice breathing mode @); and of e, electrons to two Jahn-Teller
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Figure 5.9: Polarization of e, levels on sites next to a hole: Phonons and
Coulomb interaction induce a splitting of energy A = APP 4 A,

modes @2 and Q3 (see Chap. 1):

K
Hoph = — ) (ngun? + 92Q2i07 + g3Q3i07 + ?Q?)v (5.22)

where n/ denotes the number operator for holes and the Pauli matrices o7/
act on the orbital subspace. The coupling constants are g; and g =~ g3 and
K is the lattice spring constant. Hamiltonian (5.22) mediates an interaction
between empty and occupied sites. The effective Hamiltonian describing this
coupling is obtained by integrating Eq. (5.22) over oxygen displacements
Qi = (Q1i,Q2,Q3). For a given bond along the z direction this yields
H? = —%Aph n?aj with

APP = g19:V2/(3K) & (g1/92) Eyr. (5.23)

A lower bound for this quantity is given by the Jahn-Teller energy, i.e.,
APE > B & 0.2 eV [DES98], assuming that coupling to the breathing mode
is at least as strong as coupling to the Jahn-Teller modes. Next we estimate
the contribution to the eg-level splitting that follows from the Coulomb inter-
action between a positively charged hole and an e, electron on a neighboring
site. The magnitude A" of this splitting is assessed by taking into account
the covalence of Mn 3d and O 2p orbitals, which gives

AT~ %mmm. (5.24)

The covalency factor v = t,4/A,q can be obtained from the transfer am-
plitude and the charge gap between Mn and O sites, t,4 ~ 1.8 eV and
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Figure 5.10: Orbital polaron in the strong-coupling limit: Siz e, states point
towards a central hole.

Ay =~ 4.5 eV [SAI95]. Together with a lattice spacing of Ryp—aym = 3.9 A
this leads to A® =~ 0.4 eV. In total the polarization of e, levels on sites
next to a hole yields an energy splitting A =~ 0.6 eV. Being comparable in
magnitude to the transfer amplitude ¢ this number strongly indicates a di-
rect coupling of charge and orbital degrees of freedom to be of importance
in manganites.

The splitting of e, levels effects all six sites surrounding a hole. From the
above Hamiltonian for a bond along the z axis, analogous expressions for x
and y directions are derived by a rotation in orbital isospin space (see Chap.
1). The complete Hamiltonian for the cubic system is then

Hepom, = =AY nl7], (5.25)
(i5)~

with orbital pseudospin operators given by Eq. (5.3). Hamiltonian (5.25) pro-
motes the formation of orbital polarons. For low enough hole concentrations
these consist of a bound state between a central hole and the surrounding e,
orbitals pointing towards the hole as is shown in Fig. 5.10. This configura-
tion also yields a large amplitude of virtual excursions of e, electrons onto the
empty site. Thus, besides minimizing the interaction energy of Hamiltonian
(5.25), it also allows to lower the kinetic energy. We note that these virtual
hopping processes locally enhance the magnetic moments of core and e, spins
via the double-exchange mechanism, providing a large effective spin of the
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Figure 5.11: (a) Orbital fluctuations with an energy scale < xt and (b) inter-site
correlations < J compete against the orbital-hole binding energy A.

orbital polaron. This naturally explains the development of ferromagnetic
clusters experimentally observed at temperatures above T [TER97].

5.3.2 Binding Energy

In conventional lattice-polaron theory, the binding energy is a function of
the coupling constant ¢ and the stiffness of the lattice which is controlled
by the spring constant K: The energy gain stemming from the interaction
between charge carriers and the lattice competes against the deformation
energy of the crystal. In the case of orbital polarons, the underlying picture
is very similar. Here the coupling constant is given by the orbital-charge
interaction energy A, while the energy scale Wy, = 6zt + J is a measure
of the “stiffness” of the orbital sector. These two quantities are expected to
determine the binding energy of the orbital polaron:

B = (A, We). (5.26)

The role of W™ can be illustrated as follows (see Fig. 5.11): In an orbital-
liquid state, orbitals have to give up part of their fluctuation energy in order
to form a bound state with a hole. As a consequence, polarons are stable only
if orbital fluctuations are weak. Furthermore, polarons have a frustrating ef-
fect on inter-site orbital correlations. The local orientation of orbitals favored
by Hamiltonian (5.25) does in general not comply with the orientation that
would minimize the Jahn-Teller and superexchange coupling between orbitals
on nearest- and next-nearest-neighbor sites of the hole. Thus, in order to form
a bound state orbitals have to give up part of their inter-site correlation en-
ergy J as well. The fact that the polaron binding energy is controlled by the
orbital energy scale W, = 62t + J has direct implications for the phase dia-
gram of manganites: Due to the doping dependence of W, orbital polarons
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are stable only at low hole concentrations where fluctuations are weak. The
tendency of the system to form polarons is therefore most pronounced in the
lower part of the phase diagram.

To derive an expression for the polaron binding energy, the following
approach is used: First we consider a static hole placed in an ordered state
without fluctuations. We then calculate the reduction of the total energy
due to the interaction Hamiltonian (5.25). All approximations made in the
following aim at discarding terms reminiscent of a specific type of orbital
order, while preserving the most general structure of the orbital-hole binding
energy. We focus on a single site located next to the hole in the z direction.
The orbital configuration at this site is determined by the coupling to the hole
described by Eq. (5.25) as well as by the orientation of neighboring orbitals
which couple via superexchange and Jahn-Teller effect; the latter interaction
is determined by Hamiltonian (5.9). Treating all orbitals except the one
explicitly considered here on a mean-field level, the following Hamiltonian is
obtained for the selected site:

Hi = — (Arj +J77). (5.27)
Here 72 = (sin ©c? + cos O0o7)/2 fixes the orbital orientation which would
minimize the interaction energy with the orbital background — for the type
of order used in Eq. (5.10), e.g., © = £7/2. In general, this orientation does
not coincide with the [32% — r?) configuration favored by the orbital polaron
which is described by the first term in brackets. The state actually chosen
by the system then depends on the ratio of A and J as well as on the angle
©. We determine the energy of this state and, since we are not interested in
any specific type of order, average over the angle ©. Finally subtracting the
A — 0 limit and multiplying with the number of bonds connecting the hole
to its surrounding, the following expression for the polaron binding energy is

obtained:
Byt =3[VAT+ 2 - J]. (5.28)

In the limit J/A — oo, the orbital state is very stiff and cannot be polarized
by the hole; the binding energy then vanishes as 3A%/(2J). On the other
hand, the polarization is complete in the limit J/A — 0, yielding a maximum
value Ep™ = 3A for the binding energy. A plot of ES™ is shown in Fig. 5.12
(upper curve). We note that the functional form of Eq. (5.28) differs from the
conventional lattice-polaron case where EP" = g2/(2K). This is due to the
fact that there exists an upper limit of the orbital polarization in which the
orbitals around a hole have been fully reoriented to point towards the empty
site (see Fig. 5.10); technically the existence of this upper bound is reflected
by the hard-core nature of the Pauli operators in Eq. (5.27). The familiar
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Figure 5.12: Polaron binding energy Eé”"b: The solid curve is a plot of Eq. (5.28)
for the orbitally ordered state as a function of J (upper axis), the dashed curve
corresponds to Eq. (5.34) for the orbital-liquid state and is plotted as a function of
Worp (lower axis).

form of the binding energy oc A?/J is recovered only for the weak-coupling
limit in which orbital distortions around the hole are small.

Next we consider a static hole placed in a strongly fluctuating orbital-
liquid state. Hamiltonian (5.25) imposes a splitting of e, levels on the sites
next to the hole. The orbiton quasiparticles of Sec. 5.2 scatter on these local
potentials, which may lead to the formation of an orbiton-hole bound state.
To calculate the polaron stabilization energy we again consider a single site
next to the hole in the z direction. The local potential imposed by the
close-by hole is of the form

H§ = —ATy5, (5.29)

where 77 = 107. We calculate the effect of successive scattering of orbitons

on the above potential employing a T-matrix formalism; interference between

different scattering centers is neglected here. The correction to the orbiton

Green’s function that seizes the effect of Hamiltonian (5.29) is given by
6Gom(iw; R, R) = GY,y (iw; R, §)Ts(iw) GOy (iw; 8, R), (5.30)

orb
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with the scattering matrix

0*A/2

Ts(iw) = — - .
o(iw) 1 —0*AGY, (iw)/2

Here GY, (iw; R, R') denotes the orbiton propagator of the system in the
absence of the scattering potential. The elements of this 2x2 matrix are
given by [G%, (iw; R, R)|*? = —(T, fRa fL,5>?w and are controlled by the
mean-field Hamiltonian (5.5). The on-site Green’s function is G°, (iw) =
STr[GY,, (iw; 0, 6)]. Integrating over lattice sites, Eq. (5.30) becomes

sa) =~ gt
X <1 - AGlO(iw)/2 T 1+ AGlO(@'w)/g> ; (5.31)

with 6Gom(iw) = £ 3 g Tr[6Gom(iw; R, R)]. The change in the total energy of
the system which is induced by the scattering potential can now be obtained
from Eq. (5.31) by employing

uw

SE =2 / dw (w — p) 5p(w), (5.32)
where dp(w) = —(1/7)Im[0G(iw — w + i07)] denotes the scattering con-
tribution to the density of states. The orbiton chemical potential is set to

i =0 in the following. We evaluate Eq. (5.32) by approximating the on-site
Green’s function by

GO (iw) ~ —

L, V”_Wc’rb/ﬂ. (5.33)

Worb " w + I/Vorb/2

This expression yields a constant density of states for the translationally
invariant system which resembles the result that can be obtained numerically
from the mean-field Hamiltonian (5.5). Approximately solving the integral in
Eq. (5.32) and multiplying the result with the number of nearest neighbors of
the hole, we finally arrive at the following expression for the polaron binding
energy:

yln2

y 4+ (m/2)7 ]
with y = W, /A. Equation (5.34) describes the polaron stabilization energy

in a strongly fluctuating orbital-liquid state. A plot of this function is shown
in Fig. 5.12 (lower curve). The binding energy reaches its maximum E¢™ =

E™ = 3A |y (cthy — 1) + (5.34)
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3A if orbital fluctuations are weak, while it vanishes as 31n2(A?/Wy,) in
the opposite limit where fluctuations are strong.

In the last two paragraphs we have calculated the polaron binding energy
in an orbitally ordered as well as in an orbital-liquid state. Although very
different approaches were used to describe these complementary cases, the
expressions obtained closely coincide: As can be seen in Fig. 5.12, the two
functions are almost indistinguishable if one identifies J in Eq. (5.28) with
vWorb in Eq. (5.34), where v = .72 is a numerical fitting factor. Motivated
by the observation that W, = 62t + J reduces to J in the limit of strong
orbital correlations J > xt, we discard the fitting factor in the following
by setting v = 1. We believe these two cases to be smoothly connected as
should come out in a more elaborate treatment of the problem. Based upon
these considerations, we conclude that Eq. (5.28) can be used to model the
polaron binding energy of both the fluctuating and the static orbital state:

B — 3(1 — 2) [\/A2 Wz, — Worb] , (5.35)

where Wy, = 62t 4+ J in former and Wy, = J in the latter case. We finally
note that in deriving expressions (5.28) and (5.34) for the binding energy,
all six sites surrounding the static hole were assumed to be occupied. Since
at finite doping the probability of a site being occupied is only (1 — ), we
renormalize Eq. (5.35) by this average occupation factor.

To summarize, E{™ in Eq. (5.35) represents the energy to be gained by
polarizing the orbital background around a static hole. This number depends
on the orbital energy scale Wy, = 62t + J, i.e., on orbital fluctuations and
inter-site orbital correlations which both tend to suppress the polaron binding
energy. Wy, is to be considered as the counterpart of the lattice stiffness K in
conventional polaron theory. The important difference is that W, explicitly
depends on x which has important consequences for the phase diagram of
manganites: Orbital polarons can form only at low doping concentrations
where orbital fluctuations are weak and the binding energy is consequently
large.

5.3.3 Polaron Bandwidth

The orbitally degenerate Mott-Hubbard system is instable towards the for-
mation of orbital-hole bound states at low doping concentrations. In this
small-polaron regime, holes are pinned by the binding potential and can
move only if being thermally activated. At low temperatures these processes
can be neglected; coherent charge motion is then possible solely due to quan-
tum tunneling. Since the polaron is a composite object consisting of a hole
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and several orbitals, the amplitude of these tunneling processes is expected
to be small as is indeed shown in this section.

Here we restrict ourselves to polarons moving in an orbitally ordered
state. Our analysis is based upon the following idea: By allowing a hole to
polarize the surrounding orbitals, the system reduces its ground state energy
by E¢™. This energy is mostly lost if the hole hops to another site since
the orbital sector cannot immediately adopt to the new position orbital
fluctuations are slow compared to those of holes. After a short time the
system returns to the ground state, most likely by transferring the hole back
to its original location. But there is also a small probability for the hole to
keep its new position while the orbital sector adapts to the relocation. This
is possible due to the non-orthogonality of configurations in which orbitals
point towards the old and the new location of the hole, respectively (see
Fig. 5.13). The polaron tunneling amplitude is then given by the transfer
amplitude ¢ of holes multiplied by the overlap between states with orbitals
pointing towards the old and new position of the hole, respectively. This
overlap is calculated as follows: We use Hamiltonian (5.27) to determine
the orientation of a single orbital next to the hole — all other orbitals are
treated on a mean-field level. As the hole hops, this orbital has to change
its orientation from pointing towards the hole to being aligned with the
background. The projection between these two states is

p= % l1 - ﬁ] 1/2. (5.36)

An average over the angle © specifying the type of orbital order in Eq.
(5.27) has been performed here. Other orbitals undergo the reversed process:
Originally being aligned with the background, they turn towards the hole as
the latter hops onto a neighboring site. In total there are 2(z — 1) = 2z
orbitals that have to reorient. The overlap between the initial and the final
state is then given by P = p?*, yielding

1 J -
P=— |14+ —| . 5.37
22 [ VA2 + JZ] (5:37)

We rewrite Eq. (5.37) as

b [ YRR Y
N 2V/AZ t J2

(5.38)

Q

3\/A2+J2—J
R Y ey SR
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Figure 5.13: Orbital polarons can move by tunneling. In state 1 the hole forms
a polaron with the surrounding orbitals encircled by a dashed line. When the hole
hops one site to the right configuration 2 is reached — this state is not favored
stnce orbitals no longer point towards the hole. However, there is a small but
finite overlap with state 8 in which hole and orbitals again form a polaron. In this
example a ferro-type alignment of |x? —y?) orbitals is assumed in the background.
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Figure 5.14: Ratio of polaron and holon bandwidth e=". The solid line is based
on the exponential form in Eq. (5.39), the dashed line represents Eq. (5.37). The
polaron bandwidth shrinks which decreasing values of J/A associated with an en-
hanced orbital polarizability.

where the exponential form becomes exact for large coordination number
which has been set to z = 6. The denominator in the exponent is identified
as the orbital binding energy given by Eq. (5.28). Hence we finally arrive at
the following compact expression for P = e™":

B E'l(;)rb
e =oxp [_ﬁ]

A plot of this function is shown in Fig. 5.14. The physical significance of e™"
is that it relates the holon to the polaron bandwidth:

(5.39)

Wpo1 =Wy e . (540)

As the system becomes critical towards the formation of orbital-hole bound
states, polarons replace holes as charge carriers. Our result shows that this
transition is accompanied by an exponential suppression of the bandwidth.
Strictly speaking the translationally invariant system remains a metal; in
reality, however, the small bandwidth makes polarons susceptible to localiza-
tion, e.g., by trapping in the random potential of impurities. The suppression
of the bandwidth is most pronounced if the polaron binding energy is large:
The orbitals around the hole are then strongly distorted, which necessitates a
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significant reorientation to allow the hole to hop. We note that the expression
in Eq. (5.39) is similar to the result obtained in conventional lattice-polaron
theory where e = exp (—E};h/wo) Here EP™ = ¢%/(2K) denotes the po-
laron binding energy and wy the phonon frequency; the latter corresponds to
(A% + J?)Y2 in our orbital-polaron theory.

Equation (5.39) has been derived for a static, non-fluctuating orbital
state. Following the discussion in deriving the polaron binding energy, we
generalize the result to account for orbital fluctuations as well. This is done
by replacing the inter-site correlation energy J by the more general orbital
energy scale Wo, = 62t + J. Hence we obtain

Eorb
—*] , (5.41)

A2+ W2

where the polaron binding energy F™ is now given by Eq. (5.35).

To summarize, the development of orbital polarons leads to a sharp reduc-
tion of the bandwidth. In this regime the orbital-hole bound state can move
only as an entity via quantum-tunneling processes. Since the polaron extends
over several lattice sites, the transfer amplitude is exponentially small. The
bandwidth reduction is controlled by the ratio Eg™ /[A2+ W2, ]'/2 which is a
measure of the orbital distortions around a hole. Strong orbital fluctuations
and inter-site orbital correlations weaken the polaron effect by suppressing
these distortions.

e T =exp

5.4 Metal-Insulator Transition

As was shown in the preceeding section, the formation of orbital-hole bound
states leads to an exponential suppression of the bandwidth which makes the
system prone to localization. In a double-exchange system, this crossover
from a free-carrier to a small-polaron picture can be initiated either by a
reduction of the doping concentration or by an increase in temperature; the
former acts via an enhancement of the polaron binding energy, the latter by
constricting the motion of holes via the double-exchange mechanism. In this
section we combine our orbital-polaron picture with the theory of conven-
tional lattice polarons to develop a scheme of the metal-insulator transition
in manganites.

The transition from a free-carrier to a small-polaron picture is governed
by the dimensionless coupling constant Ao, = E™ /Dy, where ES™ is the
polaron binding energy given by Eq. (5.35) and Dy = Wy /2 = 3t is the
half-bandwidth of holes. The lattice breathing mode of Eq. (5.22) adds an
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additional contribution A, = EP"/Dy with EP® = ¢2/(2K), which further
promotes the formation of polarons. The coupling constant thus becomes

_ B+ B

A
Dy

(5.42)

The critical value that separates free-carrier and small-polaron regimes is
A = 1. For A > 1 small polarons have fully developed and the bandwidth is
reduced by an exponential factor

Eorb Eph
e =exp |—v b + =2
A2 + W2 Wo

orb

, (5.43)

with v = 1. We note that interference effects between orbital and lattice
coupling are neglected in Eq. (5.43). For A < 1 the free-carrier picture is
recovered and holes move in a band of width Wy, = 6¢. This implies v = 0
in Eq. (5.43), yielding e = 1. To simulate the crossover between the two
regimes, we phenomenologically employ the function

In{A(1
v = A (5.44)
0 for A<1,

with 3 = [1 —1/A?]"/2. This function has been proposed for strongly coupled
electron-phonon systems (see, e.g., Ref. [ALE94]) and avoids an unphysical
sudden drop of the bandwidth as A = 1 is reached. The crossover hence
obtained for e™" is depicted in Fig. 5.15.

Up to this point we have mainly focused on the role of the orbital energy
scale Wy, in the formation of small polarons. We now turn to analyze in
more detail the effect of temperature. The latter controls the bandwidth Wy,
via the double-exchange mechanism: At low temperatures all spins are ferro-
magnetically aligned and the transfer amplitude reaches its maximum. With
increasing temperature the ferromagnetic moment weakens, constricting the
motion of charge carriers. Specifically, the transfer amplitude changes with
the normalized magnetization m as

t = toy/(1 +m2)/2. (5.45)

The magnetization depends on temperature via the self-consistent equation

385 Te

55 T (5.46)

m = Bg(am) with o=
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/A

orb

Figure 5.15: Crossover from the free-carrier to the small-polarons regime. At
A < 1 polarons are unstable and the bare holon bandwidth is recovered. At A > 1
orbital polarons form, leading to an exponential suppression of the bandwidth. To
avoid an abrupt drop of the bandwidth at A\ = 1, Eq. (5.44) is used to connect the

two regimes. Phonon contributions are neglected here by setting Eg’h = 0.

where

25 +1 25 +1 1 1
Bs(y) = =5 29 y] ~gg cth {ﬁ y]

denotes the Brillouin function. The average magnetic moment per site varies
with doping: The moments S¢ = 3/2 and s = 1/2 of core and e, spins
combine on average as

cth [

3 1
=S4+ -(1-2). A4
S 5 T 2( x) (5.47)
Finally, the Curie temperature T in Eq. (5.46) is controlled by the strength

Jegr of ferromagnetic exchange bonds via
Te = %S(S +1) Jeg (5.48)

The fitting parameter v compensates for an overestimation of T¢ in the
mean-field treatment. Double-exchange as well as superexchange processes
are responsible for establishing the ferromagnetic links between sites. The
magnitude of this coupling in the limit of large Hund’s coupling is (see Chaps.
1 and 4)

1 52X %3

(1 —x)xte ™+ (1 — )

Jug = ——
=952 U,

(5.49)
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The first term in squared brackets of Eq. (5.49) stems from the coherent
motion of holes/polarons and represents the conventional double-exchange
contribution to Tz. The factor e~ accounts for the rescaling of the coherent
bandwidth as the small-polaron regime is entered. The second term is due
to superexchange processes. It describes the high-energy virtual hopping of
ey electrons which is insensitive to a polaronic reduction of the bandwidth.
It is also noticed that superexchange in an orbitally degenerate system is of
ferromagnetic nature because of the large Hund’s coupling present in man-
ganites [MAE98a, END99, KHA99b|. Superexchange hence dominates the
ferromagnetic interaction in the small-polaron regime.

The system of equations presented above controls the electronic and mag-
netic behavior of manganites at low and intermediate doping levels. A critical
coupling A = 1 leading to the formation of polarons can be reached either
by lowering the doping concentration or by increasing the temperature —
the former enhances El?rb, the latter quenches Wy, The equations are in-
terrelated and have to be solved recursively. As a result of this self consis-
tency, the breakdown of the metallic bandwidth at A = 1 is expected to be
rather sharp: With the evolution of small polarons, the coherent band width
shrinks, thereby weakening the magnetic exchange links. Double exchange
then drives the system even farther towards the strong-coupling limit.

5.5 Comparison with Experiment

To illustrate the interplay between the system of equations presented in the
preceeding section, we numerically extract from them the T-x phase diagram.
While it is obvious that T" = T¢ is a suitable criterion to separate the low-
temperature ferromagnetic from the high-temperature paramagnetic state,
more care has to be taken to distinguish between metallic and insulating
behavior. Our theory describes the reduction of the bandwidth which follows
from the formation of small polarons. However, strictly speaking, the system
remains metallic even in the strong-coupling limit since polarons can still
move by tunneling. It is therefore necessary to define a critical value of the
bandwidth beyond which additional effects such as pinning to impurities are
implicitly assumed to set in and finally turn the system into an insulator. The
specific criterion used here is only of marginal importance, as feedback effects
discussed above induce a quick collapse of the bandwidth once a critical
coupling A = 1 is reached. For simplicity we define A < 1 to be a metal and
A > 1 to be an insulator.

The following parameters are chosen for calculating the phase diagram:
The orbital polarization energy is set to A = 0.55 eV, yielding a binding
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Figure 5.16: Magnetic and electronic phase diagram obtained within the present
theory. Dashed and dot-dashed lines represent magnetic and electronic transitions,
respectively, the simultaneous transition in both channels is denoted by a solid
line. The phases are: paramagnetic insulator (PI), paramagnetic metal (PM),
ferromagnetic metal (FM), and ferromagnetic insulator (FI).

energy comparable to the phononic one EJ % — (.45 eV; the phonon frequency
is wg = 0.05 eV, the interaction between orbitals J = 0.13 eV, the bare
transfer amplitude ¢y = 0.36 €V, and U; = 4.0 V. The fitting parameter v =
0.55 is adjusted 2 to reproduce the values of T observed for La;_,Sr,MnOs
[URU95]. The result is shown in Fig. 5.16. For comparison the experimental
phase diagram of La;_,Sr,MnOj is shown in Fig. 5.17.

Our most important observation is that the doping dependence of or-
bital polarons makes the system more insulating at low and more metallic
at high doping levels. Convincingly this is seen in the complete absence of
metalicity at £ < 0.15 and the appearance of a metallic phase above T¢ at
x > 0.4. The region 0.15 < x < 0.4 in which colossal magnetoresistance
is experimentally observed is characterized by a simultaneous magnetic and
electronic transition from a ferromagnetic metal to a paramagnetic insulator
[SCH95]|. The role of polarons in this transition is most pronounced at low
hole concentrations. This can be seen from the behavior of the magnetiza-

2This factor is partly attributed to the fluctuation correction v = 0.7 to the mean-field
value of Tz which follows from Eq. (5.4) in Ref. [RUS74].
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Figure 5.17: Experimental phase diagram of Lay_5SroMnOs. From [IMA9S].

tion as T¢ is approached from below (see Fig. 5.18): At low z, the polaron
binding energy is large and the system is close to localization. A small re-
duction of the bandwidth via double exchange is then sufficient to trigger
the formation of polarons, resulting in a sudden collapse of the magnetic
moment. Such a sharp drop signals the presence of a localization mecha-
nism beyond double exchange and is indeed seen experimentally (see, e.g.,
Refs. [SCH95, ZHO96, FRA99, CHE99]). On the other hand, at larger hole
concentrations the polaron binding energy is comparably small. Thus, a sig-
nificant suppression of the bandwidth via double exchange is needed before
polaron formation can set in. The magnetization curve now closely resembles
the one predicted by double-exchange theory.

Clearly beyond the grasp of conventional double-exchange theory lies the
emergence of ferromagnetism in the insulating phase at low doping. Mostly
responsible for this are superexchange processes which mediate a ferromag-
netic interaction even in the insulating phase. Ferromagnetism is further
promoted by the existence of orbital polarons: Charge fluctuations inside the
polaron provide a strong local ferromagnetic coupling between sites close to a
hole, hence establishing ferromagnetic clusters seen in experiment [TER97].
At sufficiently large hole densities these clusters start to interact, thereby
forming a ferromagnetic state.

As was discussed above, orbital fluctuations are predominantly induced
by the motion of holes. The loss of charge mobility in the insulating phase
should therefore trigger static orbital order. A long-range orbitally ordered
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Figure 5.18: Variation of the normalized magnetization m with temperature. At
low hole concentrations (upper curve), the system is close to a transition to the
small-polaron regime — a small increase in temperature then already sufficiently
mmpedes the hole motion for polarons to form, resulting in a sharp drop of the
magnetization. At large x (lower curve), the conventional double-exchange picture
1s recovered.

state has in fact been experimentally detected in the insulating regions of
Lag gsSro.1oMnO3 [END99]. However, in general such an ordered state is
expected to have orbital and Jahn-Teller glass features due to the presence
of quenched orbital polarons, thereby reducing the uniform component of
Jahn-Teller distortions. Finally it is worth to notice that the phase diagram
in this theory is highly sensitive to the transfer amplitude ¢, as this parameter
enters in the polaron binding energy.

5.6 Conclusion

In summary, we have shown that a spontaneous development of orbital-lattice
order is in general insufficient to trigger the localization process in mangan-
ites. Rather an additional mechanism was identified: Orbital polarons were
illustrated to represent an intrinsic feature of an orbitally degenerate Mott-
Hubbard system and to play an important role in the physics of manganites.
The binding energy of these orbital-hole bound states depends on the rate
of orbital fluctuations and hence on the concentration of doped holes: Po-
larons can form at low doping levels where orbitals fluctuate only weakly
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but they become unstable at higher levels of x. This scheme naturally intro-
duces the hole concentration as an additional variable into the localization
process. Most striking in this respect is the complete breakdown of metal-
icity observed below a critical hole concentration despite the fact that the
system remains ferromagnetically ordered. On the other hand, orbital po-
larons become negligible at larger doping levels where the theory presented
here converges onto a lattice-polaron double-exchange picture. Accounting
for both orbital and lattice effects we are finally able to reproduce well the
important aspects of the phase diagram of manganites. In general it can
be concluded that a direct coupling between holes and surrounding orbitals
is of crucial importance for the physics of manganites; its implications ex-
tend clearly beyond the metallic phase alone and can be expected to play an
important role throughout the whole phase diagram.



Summary and Outlook

The central interest of our research presented in this thesis lies on transition
metal oxides in which metalicity competes against a strong mutual repul-
sion between electrons. The groundstate of these correlated systems has to
accommodate the tendency of electrons to blur their position and the local
nature of the repulsive Coulomb potentials. This duality of itinerant and
local features of the electronic state puts clear imprints onto the properties
of these compounds. Throughout this thesis we have employed a simple yet
powerful tool which allows us to handle these correlation effects in a trans-
parent way: Electrons are decomposed into separate quasiparticles for spin,
charge, and orbital degrees of freedom which are then treated starting from
a mean-field level. While looking artificial at first sight, this theoretical ap-
proach has an analogue in the real world: Experiments indicate that spin and
charge channels in high-T, cuprates are, to a certain extent, decoupled from
each other. Beyond this direct correspondence, the decoupling scheme is
to be considered as an analytical instrument that makes correlated systems
accessible by simple methods while preserving their characteristic features
throughout the approximation procedure.

Specifically we have investigated the metallic state of high-T,. cuprates
and of perovskite manganese oxides. The former are experimentally known
to exhibit unconventional magnetic properties which are most pronounced at
low hole-doping concentrations. Seizing the notion of a spin liquid, we are
able to describe the different aspects of magnetism in the CuOs planes: (1)
Spins form local singlets which are subject to strong fluctuations; (2) low-
energy excitations are suppressed as a pseudogap opens in the spin sector;
and (3) antiferromagnetic correlations signal the closeness to an antiferro-
magnetically ordered Néel state. In order to establish a link with experiment,
we have studied the response of Cu spins to the insertion of impurities into
the planes. Both magnetic and non-magnetic impurities are found to induce
local magnetic moments in the proximity of the substitute ions. However, a
detailed investigation shows these to be of different nature. In deriving ex-
pressions for the impurity effect onto NMR measurements, we were thereby
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able to explain previously puzzling discrepancies in the behavior of magnetic
and non-magnetic impurities. Furthermore, a curious non-Curie behavior ex-
hibited by the impurity-induced NMR line broadening could be ascribed to
the presence of antiferromagnetic correlations. We understand these results
to clearly manifest the peculiar mixture of spin-singlet and antiferromag-
netic correlations present in underdoped cuprates. In summary, our analysis
shows that the magnetic properties of cuprates can be well described within
a spin-liquid picture. However, at its present stage the approach overstates
the separation of spin and charge. It therefore falls short in dealing with
the recent discovery of residual Fermi-surface pieces deep inside the spin-
gap regime. A theory that starts from spin-charge separation therefore has
to be extended to allow for a temporary recombination of the two types of
quasiparticles to form an electron. These very unconventional properties of
the Fermi surface surely represent one of the most important challenges for
future research on high-7, cuprates.

Manganese oxides, just as cuprates, are subject to a strong on-site re-
pulsion between itinerant electrons. However, the two systems differ in an
important aspect: Manganites are double-exchange active, i.e., spins are fer-
romagnetically aligned in the metallic state at low temperatures. Only due
to the double-degeneracy of orbital levels, two electrons can simultaneously
occupy a single site and can hence sense the local interaction. To describe
the strongly correlated nature of the metallic state of manganites, we are
therefore lead to build upon the notion of an orbital liquid: In analogy to
the separate treatment of spin and charge in a spin liquid, distinguished qua-
siparticles are assigned to orbital and charge degrees of freedom here. The
validity and utility of this scheme is demonstrated by the results presented
here which explain several peculiar aspects of metallic manganites that have
previously eluded convincing explanations.

Employing an orbital-liquid picture, we are able to successtully ascribe the
incoherency seen in the optical conductivity spectra of metallic manganites to
scattering processes between correlated electrons. These are shown to lead to
a strong suppression of the coherent Drude weight and to the appearance of a
broad incoherent spectral tail extending up to frequencies comparable to the
bare electronic bandwidth. Furthermore, we have estimated the constant of
T-linear specific heat. Close correspondence with experiment clearly shows
that this data does not rule out a correlated state as has been previously
conjectured. In conclusion, our results imply that strong correlations are an
important ingredient in the physics of manganites. Nevertheless, the multi-
faceted structure of the phase diagram alludes to a complex entanglement of
different mechanisms that lie beyond the grasp of strong correlations alone.
First to be noted in this respect is the important role of lattice modes: Due
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to the orbital degeneracy, manganites are Jahn-Teller active and are there-
fore subject to a strong electron-phonon coupling. The interplay between
correlated electrons and these lattice modes has important implications for
the physics of manganites and deserves deeper insight.

The magnetic properties of metallic manganites are controlled by the
double-exchange mechanism: The transfer of itinerant electrons interacting
with localized core spins establishes ferromagnetic exchange links between
neighboring sites. Strong correlations and orbital degeneracy superimpose
on this exchange mechanism, thereby altering the magnetic behavior of the
metallic state. FEmploying an orbital-liquid scheme, we have shown that
the peculiar softening of the magnon spectrum seen in experiment is in-
deed a clear manifestation of the strongly correlated nature of degenerate e,
electrons. The presence of Jahn-Teller phonons further enhances the effect,
which supports our previous assumption that lattice modes play an impor-
tant role even in the metallic state of manganites. This interplay between
double-exchange physics and orbital-lattice dynamics was found to become
dominant close to a transition to orbital-lattice order. We thus conclude that
the metallic state of manganites cannot be considered as being detached from
the rest of the phase diagram; rather, instabilities that signal the imminent
breakdown of metalicity intervene close to a phase transition. An important
aspect of our analysis is the necessity to assume an instability towards ferro-
type orbital-lattice ordering in order to fit the experimental data. This point
had to be treated on a phenomenological level as our theory only accounts
for antiferro-type orbital correlations mediated by Jahn-Teller and superex-
change processes. What is missed is the role of kinetic energy in aligning the
orbitals: A parallel orientation maximizes the inter-site transfer amplitude
and hence stabilizes ferro-type orbital correlations at finite doping levels. A
thorough study of the competition between Jahn-Teller effect and kinetic
energy in controlling the character of orbital correlations is an important
objective for future research in the field.

Finally, we have presented a theory of the metal-insulator transition in
manganites that does, for the first time, account for the doping dependence
of the phase diagram at low and intermediate hole concentrations. This work
introduces the picture of orbital polarons: In an orbitally degenerate Mott-
Hubbard system holes can polarize their orbital background. The metallic
state hence becomes instable towards the formation of orbital-hole bound
states below a critical doping level. This transition to a small-polaron regime
goes hand in hand with a sharp drop of the bandwidth, making the system
susceptible to localization. We study the interplay of polaron and double-
exchange physics, extending our scheme to further account for a coupling
between holes and lattice modes. Thereby we can successfully explain the
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complete breakdown of metalicity below a critical hole concentration and
the peculiar doping dependence of the Curie temperature in the colossal
magnetoresistance regime. Furthermore, the experimental observation that
ferromagnetism can prevail even in an insulating phase could be traced back
to virtual exchange processes which lie beyond the access of conventional
double-exchange theory. In summary, our results strongly suggest a direct
orbital-hole coupling to be an intrinsic feature of manganites. While having
elaborated on the implications for the phase diagram at low doping levels,
a theory that extends to larger hole concentrations is still at lack. Recent
experiments show an interrelation between orbital and charge structures in
the charge-ordered regime at concentrations above 50%. We believe this
observation to be closely related to the polarization effect underlying our
orbital-polaron theory. In general, extensive research on manganites is still
needed in order to gain deeper insight into the complex variation of the
behavior as the full doping range is passed through.



Appendix A

Force-Force Correlation Functions

In this appendix we present the expressions for the force-force correlation
functions that correspond to the Feynman diagrams in Fig. 3.5 of Chap.
3. Only the imaginary part is shown, the real part can be obtained by a
Kramers-Kronig transformation. The following definitions are being used:
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Magnon Self Energies

In this appendix we present the expressions for the magnon self energy that
correspond to the Feynman diagrams in Fig. 4.5 of Chap. 4. Only the imag-
inary part is shown, the real part can be obtained by a Kramers-Kronig
transformation. The same notations as in Appendix A are being used and in

addition
_ T+ x
W = 4

Wk

Zl’(w > Ovp) = T 1
16 kk’

{BhAUE &) + bhdu(& &)
HOHAL(EL &) + D2 Au (6, 66}

X

with

b11 = +a00+ + a19_ - a2¢+
bos = +aly —ar1l- + a2,
bia = +agp- — a1y — axl_

by = —app- — a19y — axf_



132 APPENDIX B

where
ei = UpUg’ + VE Uk
(f):t = UpUg + VU
a; = (v + zo)[ei(k) — €i(k + p)| + woei (k') — ei(K" — p)]
and
Ay(z,y) =0_,0,0(w — Wptk—i + T —Y).
...... ‘..:.................................:’......
(W >0,p) = oo (ww — wi)?0(w — o — k)
16 4
Y (w<0,p) = 0
with k' = k + p.

m
Yw>0,p) = —EEJTG(Q)WOZ
k

(At — o — i)

+frp g (w0 — wh — wy) }

Y(w<0,p) =0

with k' = k + p and the phonon dispersion

£ _ - [z2 | =2
Wp = Wo (Iiok £ \/ K, + /1%)



MAGNON SELF ENERGIES

133

where

Further

with

and

Finally

Kok = 1+ kleo(kﬁ)
Kk = k161 (k)
ng = kleg(k)

wo [+ “(2) . 2
Jin = w—i (A,(clg cos O + A,(fg sin Qk)
k
— Wo /(1) . $(2 2
Jep = o ()x,(cg sin O — >\§c;3 oS @k)

Mo = ei(k) — ei(p) — ei(k)

1/2
0 L ik
cosOp = — |1 - ———__
V2 \/ Rig + R

B 1/2
(1 + %) Sigll(ﬁlk)
\ Fik + Kaog

Af(w) = O: 8" (@, k) — b (—a. k).

Sin®, =



134




Bibliography

[AFF88a] 1. Affleck and J. Marston, Phys. Rev. B 37, 3774 (1988).

[AFF88b| 1. Affleck, Z. Zou, T. Hsu, and P. W. Anderson, Phys. Rev. B 38,

[ALEO4]

[ALL91]

[AND55)
[ANDS7
[ANDY7]

[AROSS]
[AUE94]

[BALOS]

[BAR9S)
[BASST]

[BASSS]
[BEDSG]

745 (1988).

A. S. Alexandrov, V. V. Kabanov, and D. K. Ray, Phys. Rev. B
49, 9915 (1994).

H. Alloul, P. Mendels, H. Casalta, J.-F. Marucco, and J. Arabski,
Phys. Rev. Lett. 67, 3140 (1991).

P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
P. W. Anderson, Science 235, 1196 (1987).

P. W. Anderson, The Theory of Superconductivity in the High-T,
Cuprates (Princeton University Press, Princeton, 1997).

D. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988).

A. Auerbach, Interacting FElectrons and Quantum Magnetism
(Springer-Verlag, New York, 1994).

A. V. Balatsky, M. I. Salkola, and A. Rosengren, Phys. Rev. B
51, 15547 (1995).

V. Barzykin and D. Pines, Phys. Rev. B 52, 13585 (1995).

G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Commun.
63, 973 (1987).

G. Baskaran and P. W. Anderson, Phys. Rev. B 37, 580 (1988).
J. G. Bednorz and K. A. Miiller, Z. Phys. B 64, 189 (1986).



136

BIBLIOGRAPHY

[BILYG]

[BIRSS]

[BIRSY]

[BOB9T7al

[BOBITH]

[BOOYS]

[BOUYG|

[CAP99a]

[CAP99D)
[CHA93]

[CHE9Y)
[CORYY]

[DAGY4]
[DEG60]
[DES9S]

S. J. L. Billinge, R. G. DiFrancesco, G. H. Kwei, J. J. Neumeier,
and J. D. Thompson, Phys. Rev. Lett. 77, 715 (1996).

R. J. Birgeneau, D. R. Gabbe, H. P. Jenssen, M. A. Kastner, P.
J. Picone, T. R. Thurston, G. Shirane, Y. Endoh, M. Sato, K.
Yamada, Y. Hidaka, M. Oda, Y. Enomoto, M. Suzuki, and T.
Murakami, Phys. Rev. B 38, 6614 (1988).

R. J. Birgeneau and G. Shirane, in Physical Properties of High
Temperature Superconductors, edited by D. M. Ginsberg (World
Scientific, Singapore, 1989), Vol. 1.

J. Bobroff, H. Alloul, Y. Yoshinari, A. Keren, P. Mendels, N.
Blanchard, G. Collin, and J.-F. Marucco, Phys. Rev. Lett. 79,
2117 (1997).

J. Bobroft, H. Alloul, Y. Yoshinari, P. Mendels, N. Blanchard, G.
Collin, and J.-F. Marucco, Physica C 282-287, 1389 (1997).

C. H. Booth, F. Bridges, G. H. Kwei, J. M. Lawrence, A. L.
Cornelius, and J. J. Neumeier, Phys. Rev. Lett. 80, 853 (1998).

P. Bourges, L. P. Regnault, Y. Sidis, and C. Vettier, Phys. Rev.
B 53, 876 (1996).

M. Capone, M. Grilli, and W. Stephan, J. Superconductivity 12,
75 (1999).

M. Capone, M. Grilli, and W. Stephan, cond-mat/9902317.

A. Chainani, M. Mathew, and D. D. Sarma, Phys. Rev. B 47,
15397 (1993).

S.-W. Cheong and H. Y. Hwang (unpublished).

J. Corson, R. Mallozzi, J. Orenstein, J. N. Eckstein, and 1. Bo-
zovic, Nature (London) 398, 221 (1999).

E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
P.-G. de Gennes, Phys. Rev. 118, 141 (1960).

D. S. Dessau and Z.-X. Shen, in Colossal Magnetoresistive Ozides,
edited by Y. Tokura (Gordon and Breach, 1998).



BIBLIOGRAPHY 137

[DINO6]

[END9Y]

[EMEY5]
[FABY7]
[FABYS]

[FEI99]
[FEROS]

[FINYO]

[FORT5)

[FRA99)]

[FUJ8Y

[FUKSS]

[FUK92]
[FUKO6]

[FULY5]

[FUR99)

H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Rande-
ria, M. R. Norman, T. Mochiku, K. Kadowaki, and J. Giapintza-
kis, Nature (London) 382, 51 (1996).

Y. Endoh, K. Hirota, S. Ishihara, S. Okamoto, Y. Murakami, A.
Nishizawa, T. Fukuda, H. Kimura, H. Nojiri, K. Kaneko, and S.
Maekawa, Phys. Rev. Lett. 82, 4328 (1999).

V. J. Emery and S. A. Kivelson, Nature (London) 374, 434 (1995).
M. Fabrizio and R. Mélin, Phys. Rev. Lett. 78, 3382 (1997).

M. Fabrizio, M. Altarelli, and M. Benfatto, Phys. Rev. Lett. 80,
3400 (1998).

L. F. Feiner and A. M. Oles, Phys. Rev. B 59, 3295 (1999).

J. A. Fernandez-Baca, P. Dai, H. Y. Hwang, C. Kloc, and S.-W.
Cheong, Phys. Rev. Lett. 80, 4012 (1998).

A. M. Finkelstein, V. E. Kataev, E. F. Kukovitskii, and G. B.
Teitelbaum, Physica C 168, 370 (1990).

D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and
Correlation Functions, (W. A. Benjamin, Reading, 1975).

J. P. Franck, 1. Isaac, W. Chen, J. Chrzanowski, J. C. Irwin, and
C. C. Homes, J. Superconductivity 12, 263 (1999).

A. Fujimori, S. Takekawa, E. Takayama-Muromachi, Y. Uchida,
A. Omno, T. Takahashi, Y. Okabe, and H. Katayama-Yoshida,
Phys. Rev. B 39, 2255 (1989).

H. Fukuyama, Y. Hasegawa, and Y. Suzumura, Physica C 153-
155, 1630 (1988).

H. Fukuyama, Prog. Theo. Phys. Suppl. 108, 287 (1992).

H. Fukuyama, N. Nagaosa, M. Saito, and T. Tanimoto, J. Phys.
Soc. Jpn. 65, 2377 (1996).

P. Fulde, Electron Correlations in Molecules and Solids, 3rd ed.
(Springer-Verlag, Berlin, 1995).

N. Furukawa, cond-mat/9905133.



138

BIBLIOGRAPHY

[GOET2]
(GOGYT]

[GOO55]

[HAZ90)]

[HOMO3]

[HWAO5]

[HWA96]

[HWA9S]

[IMAOg]

[IM193]

[TOFSY)
[TOF90]
[1SD93]

[1SDY6]

[ISHY6]
[ISHO7a]

W. Gotze and P. Wélfle, Phys. Rev. B 6, 1226 (1972).

A. O. Gogolin, A. A. Nersesyan, A. M. Tsvelik, and L. Yu, Nucl.
Phys. B 540, 705 (1999).

J. B. Goodenough, Phys. Rev. 100, 564 (1955).

R. M. Hazen, in Physical Properties of High Temperature Super-
conductors, edited by D. M. Ginsberg (World Scientific, Singa-
pore, 1990), Vol. 2.

C. C. Homes, C. T. Timusk, R. Liang, D. A. Bonn, and W. N.
Hardy, Phys. Rev. Lett. 71, 1645 (1993).

H. Y. Hwang, S.-W. Cheong, P. G. Radaelli, M. Marezio, and B.
Batlogg, Phys. Rev. Lett. 75, 914 (1995).

H. Y. Hwang, S.-W. Cheong, N. P. Ong, and B. Batlogg, Phys.
Rev. Lett. 77, 2041 (1996).

H. Y. Hwang, P. Dai, S.-W. Cheong, G. Aeppli, D. A. Tennant,
and H. A. Mook, Phys. Rev. Lett. 80, 1316 (1998).

M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039
(1998).

T. Imai, C. P. Slichter, K. Yoshimura, and K. Kosuge, Phys. Rev.
Lett. 70, 1002 (1993).

L. B. Toffe and A. Larkin, Phys. Rev. B 39, 8988 (1989).
L. B. Toffe and G. Kotliar, Phys. Rev. B 42, 10348 (1990).

K. Ishida, Y. Kitaoka, N. Ogata, T. Kamino, K. Asayama, J. R.
Cooper, and N. Athanassopoulou, J. Phys. Soc. Jpn. 62, 2803
(1993).

K. Ishida, Y. Kitaoka, K. Yamazoe, K. Asayama, and Y. Yamada,
Phys. Rev. Lett. 76, 531 (1996).

S. Ishihara, J. Inoue, and S. Maekawa, Physica C 263, 130 (1996).

S. Ishihara, M. Yamanaka, and N. Nagaosa, Phys. Rev. B 56, 686
(1997).



BIBLIOGRAPHY 139

[ISHO7D)

[ISHY8]

[IYE90]

[JINO4]

[JOHSY]
[JON50]

[KAES9]
[KANGO)
[KANG3|
[KAPYG|
[KAW97]
[KHA97a]
[KHAOTh]
[KHA99a]

[KHA99D)]

[KHA99(]
[KHA99d]

S. Ishihara, J. Inoue, and S. Maekawa, Phys. Rev. B 55, 8280
(1997).

S. Ishihara and S. Maekawa, Phys. Rev. Lett. 80, 3799 (1998).

Y. Iye, in Physical Properties of High Temperature Supercon-
ductors, edited by D. M. Ginsberg (World Scientific, Singapore,
1989), Vol. 3.

S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh,
and L. H. Chen, Science 264, 413 (1994).

D. C. Johnston, Phys. Rev. Lett. 62, 957 (1989).

G. H. Jonker and J. H. Van Santen, Physica (Utrecht) 16, 337
(1950).

C. L. Kane, P. A. Lee, and N. Read, Phys. Rev. B 39, 6880 (1989).
J. Kanamori, J. Appl. Phys. 31, 14S (1960).
J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).

S. G. Kaplan, M. Quijada, H. D. Drew, D. B. Tanner, G. C. Xiong,
R. Ramesh, C. Kwon, and T. Venkatesan, Phys. Rev. Lett. 77,
2081 (1996).

H. Kawano, R. Kajimoto, H. Yoshizawa, Y. Tomioka, H. Kuwa-
hara, and Y. Tokura, Phys. Rev. Lett. 78, 4253 (1997).

G. Khaliullin, S. Krivenko, R. Kilian, and P. Fulde, Physica C
282-287. 1749 (1997).

G. Khaliullin, R. Kilian, S. Krivenko, and P. Fulde, Phys. Rev. B
56, 11882 (1997).

G. Khaliullin, S. Krivenko, R. Kilian, and P. Fulde, Physica B
259-261, 504 (1999).

G. Khaliullin, R. Kilian, S. Krivenko, and P. Fulde, Physica C,
317 494 (1999).

G. Khaliullin and R. Kilian, cond-mat/9904316.

G. Khaliullin and R. Kilian, cond-mat/9904318.



140 BIBLIOGRAPHY

[KIL98]  R. Kilian and G. Khaliullin, Phys. Rev. B 58, R11841 (1998).

[KIL99a] R. Kilian, S. Krivenko, G. Khaliullin, and P. Fulde, Phys. Rev. B
59, 14432 (1999).

[KIL99b] R. Kilian and G. Khalinllin, Physica B 259-261, 805 (1999).

[KIL99¢] R. Kilian and G. Khaliullin, cond-mat/9904317 and cond-
mat /9906045.

[KOT88a] G. Kotliar, Phys. Rev. B 37, 3664 (1988).

[KOT88b| G. Kotliar and J. Liu, Phys. Rev. B 38, 5142 (1988).

[KRI95]  S. Krivenko and G. Khaliullin, Physica C 244, 83 (1995).

[KUB72] K. Kubo and N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1972).

[KUGT3] K. I. Kugel and D. I. Khomskii, Sov. Phys. JETP 37, 725 (1973).

[KUGS82] K. I. Kugel and D. I. Khomskii, Sov. Phys. Usp. 25, 231 (1982).

[LAN98] A. Lanzara, N. L. Saini, M. Brunelli, F. Natali, A. Bianconi, P.
G. Radaelli, and S.-W. Cheong, Phys. Rev. Lett. 81, 878 (1998).

[LAU98| M. Laukamp, G. B. Martins, C. Gazza, A. L. Malvezzi, E.
Dagotto, P. M. Hansen, A. C. Lopez, and J. Riera, Phys. Rev.
B 57, 10755 (1998).

[LEE92] P. A. Lee and N. Nagaosa, Phys. Rev. B 46, 5621 (1992).

[LEE9S] P. A. Lee, cond-mat/9812226.

[LOE96] A. G. Loeser, Z.-X. Chen, S. S. Dessau, D. S. Marshall, C. H.
Park, P. Fournier, and A. Kapitulnik, Science 273, 325 (1996).

[LOR93] J. W. Loram, K. Mirza, J. Cooper, and W. Y. Liang, Phys. Rev.
Lett. 71, 1740 (1993).

[LOU97] D. Louca, T. Egami, E. L. Brosha, H. Réder, and A. R. Bishop,
Phys. Rev. B 56, R8475 (1997).

[LYN96] J. W. Lynn, R. W. Erwin, J. A. Borchers, Q. Huang, A. Santoro,

J. L. Peng, and Z. Y. Li, Phys. Rev. Lett. 76, 4046 (1996).

[MAE98a] R. Maezono, S. Ishihara, and N. Nagaosa, Phys. Rev. B 58, 11583

(1998).



BIBLIOGRAPHY 141

[IMAE98b| R. Maezono, S. Ishihara, and N. Nagaosa, Phys. Rev. B 57,

[MAHO0]

[IMANOY]

[MAROY7]

[MASSY)
[MAS99)
[MATY6]

[MAZ91]
[MELO97]

[MEN94]

[MEN99)

[MIL95)

[MILY6a]

[MILIGb]

[MILI6c]

[MIL9S]
[MIL99)]

R13993 (1998).

G. D. Mahan, Many-Particle Physics (Plenum Press, New York,
1990).

A. V. Mahan, H. Alloul, G. Collin, and J.-F. Marucco, Phys. Rev.
Lett. 72, 3100 (1994).

G. B. Martins, M. Laukamp, J. Riera, and E. Dagotto, Phys. Rev.
Lett. 78, 3563 (1997).

J. B. Marston and 1. Affleck, Phys. Rev. B 39, 11538 (1989).
J. B. Marston, cond-mat/9904437.

M. C. Martin, G. Shirane, Y. Endoh, K. Hirota, Y. Moritomo,
and Y. Tokura, Phys. Rev. B 53, R14285 (1996).

G. Martinez and P. Horsch, Phys. Rev. B 44, 317 (1991).

C. A. R. Sa de Melo, M. Randeria, and J. R. Engelbrecht, Phys.
Rev. B 55, 15153 (1997).

P. Mendels, H. Alloul, G. Collin, N. Blanchard, J.-F. Marucco,
and J. Bobroff, Physica C 235-240, 1595 (1994).

P. Mendels, J. Bobroff, G. Collin, H. Alloul, M. Gabay, J.-F.
Marucco, N. Blanchard, and B. Grenier, cond-mat/9904295.

A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev.
Lett. 74, 5144 (1995).

A. J. Millis, B. Shraiman, and R. Mueller, Phys. Rev. Lett. 77,
175 (1996).

A. J. Millis, R. Mueller, and B. I. Shraiman, Phys. Rev. B 54,
5389 (1996).

A. J. Millis, R. Mueller, and B. I. Shraiman, Phys. Rev. B 54,
5405 (1996).

A. J. Millis, Nature (London) 392, 147 (1998).

A. J. Millis, Nature (London) 398, 193 (1999).



142

BIBLIOGRAPHY

[MONO4]
[MORY6]

[MOTOg]

[MRROS)]

[MTTS]

[MUEY6]

[MUROS]

[NAGY0]

[NAGO5]
INAG6]

[NAGOT]
INAGOS]

INAK94]

[OKI95]

[0KI97]

[OKU9S]

[PEPYS]

P. Monthoux and D. Pines, Phys. Rev. B 50, 16015 (1994).

Y. Morimoto, A. Asamitsu, H. Kuwahara, and Y. Tokura, Nature
(London) 380, 141 (1996).

Y. Moritomo, T. Akimoto, A. Nakamura, K. Ohoyama, and M.
Ohashi, Phys. Rev. B 58, 5544 (1998).

D. K. Morr, J. Schmalian, R. Stern, and C. P. Slichter, Phys. Rev.
B 58, 11193 (1998).

D. C. Mattis, The Theory of Magnetism (Springer-Verlag, Berlin,
1981), Vol. 1, p. 90.

E. Miiller-Hartmann and E. Dagotto, Phys. Rev. B 54, R6819
(1996).

Y. Murakami, J. P. Gill, D. Gibbs, M. Blume, [. Koyama, M.
Tanaka, H. Kawata, T. Arima, Y. Tokura, K. Hirota, and Y.
Endoh, Phys. Rev. Lett. 81, 582 (1998).

N. Nagaosa and P. A. Lee, Phys. Rev. Lett. 64, 2450 (1990).
N. Nagaosa and T. K. Ng, Phys. Rev. B 51, 15588 (1995).

N. Nagaosa, A. Furusaki, M. Sigrist, and H. Fukuyama, J. Phys.
Soc. Jpn. 65, 3724 (1996).

N. Nagaosa and P. A. Lee, Phys. Rev. Lett. 79, 3755 (1997).

N. Nagaosa, S. Murakami, and H. C. Lee, Phys. Rev. B 57, R6767
(1998).

T. Nakano, M. Oda, C. Manabe, N. Momono, Y. Miura, and M.
Ido, Phys. Rev. B 49, 16000 (1994).

Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima,
and Y. Tokura, Phys. Rev. Lett. 75, 109 (1995).

Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura,
Phys. Rev. B 55, 4206 (1997).

T. Okuda, A. Asamitsu, Y. Tomioka, T. Kimura, Y. Taguchi, and
Y. Tokura, Phys. Rev. Lett. 81, 3203 (1998).

C. Pépin and P. A. Lee, Phys. Rev. Lett. 81, 2779 (1998).



BIBLIOGRAPHY 143

[PER96)

[PICO6]
[PIN97]
[RAMOY7]
[REA83|
[RENOS]|

[RISO4]

[ROEY6]

[RUS74]

[SAT95]

[SAR96]

[SAR9S)]

[SCHYS]

[SHEST]

T. G. Perring, G. Aeppli, S. M. Hayden, S. A. Carter, J. P. Re-
meika, and S.-W. Cheong, Phys. Rev. Lett. 77, 711 (1996).

W. E. Pickett and D. J. Singh, Phys. Rev. B 53, 1146 (1996).
D. Pines, Z. Phys. B 103, 129 (1997).

A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).

N. Read and D. M. Newns, J. Phys. C 16, 3273 (1983).

C. Renner, B. Revaz, J. Y. Genoud, K. Dadowaki, and O. Fischer,
Phys. Rev. Lett. 80, 149 (1998).

R. M. Riseman, H. Alloul, A. V. Mahajan, P. Mendels, N. Blan-
chard, G. Collin, and J.-F. Marucco, Physica C 235-240, 1593
(1994).

H. Roder, J. Zang, and A. R. Bishop, Phys. Rev. Lett. 76, 1356
(1996).

G. S. Rushbrooke, G. A. Baker, and P. J. Wood, in Phase Tran-
sitions and Critical Phenomena, edited by C. Domb and M. S.
Green (Academic, New York, 1974).

S. Saitoh, A. E. Bocquet, T. Mizokawa, H. Namatame, A. Fuji-
mori, M. Abbate, Y. Takeda, and M. Takano, Phys. Rev. B 51,
13942 (1995).

D. D. Sarma, N. Shanthi, S. R. Krishnakumar, T. Saitoh, T.
Mizokawa, A. Sekiyama, K. Kobayashi, A. Fujimori, E. Weschke,
R. Meier, G. Kaindl, Y. Takeda, and M. Takano, Phys. Rev. B
53, 6873 (1996).

D. D. Sarma, A. Chainani, S. R. Krishnakumar, E. Vescovo, C.
Carbone, W. Eberhardt, O. Rader, Ch. Jung, Ch. Hellwig, W.
Gudat, H. Srikanth, and A. K. Raychaudhuri, Phys. Rev. Lett.
80, 4004 (1998).

P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev.
Lett. 75, 3336 (1995).

Z.-X. Shen, W. Allen, J. J. Yeh, J.-S. Kang, W. Ellis, W. Spicer,
. Lindau, M. B. Maple, Y. D. Dalichaouch, M. S. Torikachvili, J.
Z. Sun, and T. H. Geballe, Phys. Rev. B 36, 8414 (1987).



144 BIBLIOGRAPHY

[SHI97]  H. Shiba, R. Shiina, and A. Takahashi, J. Phys. Soc. Jpn. 66, 941
(1997).

[SIG96| M. Sigrist and A. Furusaki, J. Phys. Soc. Jpn. 65, 2385 (1996).

[STO97] B. P. Stojkovi¢ and D. Pines, Phys. Rev. B 56, 11931 (1997).

[SUZ88] Y. Suzumura, Y. Hasegawa, and H. Fukuyama, J. Phys. Soc. Jpn.
57, 2768 (1988).

[TAE94] K. Takenaka, K. Mizuhashi, H. Takagi, and S. Uchida, Phys. Rev.
B 50, 6534 (1994).

[TAI91] M. Takigawa, A. P. Reyes, P. C. Hammel, J. D. Thompson, R. H.
Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. B 43, 247 (1991).

[TAK89] H. Takagi, S. Uchida, and Y. Tokura, Phys. Rev. Lett. 62, 1197
(1989).

[TER97] J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C.
Marquina, J. Blasco, J. Garcia, A. del Moral, and Z. Arnold,
Nature (London) 386, 256 (1997).

[TSV92] A. M. Tsvelik, Phys. Rev. Lett. 69, 2142 (1992).

[UCH96] S. Uchida, K. Tamasaku, K. Takenaka, and Y. Fukuzumi, J. Low
Temp. Phys. 105, 723 (1996).

[UEMO91] Y. J. Uemura, L. P. Le, G. M. Luke, B. J. Sternlieb, W. D. W,
J. H. Brewer, T. M. Riseman, C. C. Seaman, M. B. Maple, M.
Ishikawa, D. G. Hinks, J. D. Jorgensen, G. Saito, and H. Yamochi,
Phys. Rev. Lett. 66, 2665 (1991).

[URU95] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido,
and Y. Tokura, Phys. Rev. B 51, 14103 (1995).

[VAR96] C. M. Varma, Phys. Rev. B 54, 7328 (1996).

[WAL74] R. Walstedt and L. R. Walker, Phys. Rev. B 9, 4857 (1974).

[WENO96|] X.-G. Wen and P. A. Lee, Phys. Rev. Lett. 76, 503 (1996).

[WOL55] E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).

[(WOO097] B. F. Woodfield, M. L. Wilson, and J. M. Byers, Phys. Rev. Lett.

78, 3201 (1997).



BIBLIOGRAPHY 145

[XTA87]  G. Xiao, F. H. Streitz, A. Gavrin, Y. W. Du, and C. L. Chien,
Phys. Rev. B 35, 8782 (1987).

[YOS89a] D. Yoshioka, J. Phys. Soc. Jpn. 58, 32 (1989).

[YOS89b] D. Yoshioka, J. Phys. Soc. Jpn. 58, 1516 (1989).

[ZEN51]  C. Zener, Phys. Rev. 82, 403 (1951).

[ZHAS88| F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

[ZHOY6] G. M. Zhao, K. Conder, H. Keller, and K. A. Miiller, Nature
(London) 381, 676 (1996).

[ZHE93]  G. Zheng, T. Odaguchi, T. Mito, Y. Kitaoka, K. Asayama, and
Y. Kodama, J. Phys. Soc. Jpn. 62, 2591 (1993).



146




List of Publications

R. Kilian, S. Krivenko, G. Khaliullin, and P. Fulde, “Impurity-induced
spin polarization and NMR line broadening in underdoped cuprates,”
Phys. Rev. B 59, 14432 (1999).

G. Khaliullin, S. Krivenko, R. Kilian, and P. Fulde, “Theory of
impurity-induced NMR line broadening in underdoped cuprates,”
Physica B 259, 504 (1999).

R. Kilian and G. Khaliullin, “Orbital liquid state in ferromagnetic man-
ganites,” Physica B 259-261, 805 (1999).

G. Khaliullin, R. Kilian, S. Krivenko, and P. Fulde, “Local spin polar-
ization in underdoped cuprates with impurities,” Physica C 317, 494
(1999).

R. Kilian and G. Khaliullin, “Orbital Polarons in the Metal-Insulator
Transition of Manganites,” cond-mat /9904317 and cond-mat /9906045
(1999).

G. Khaliullin and R. Kilian, “Orbital Dynamics: The Origin of
Anomalous Magnon Softening in Ferromagnetic Manganites,” cond-
mat/9904316 (1999).

G. Khaliullin and R. Kilian, “Orbital order out of spin disorder: How
to measure the orbital gap,” cond-mat/9904318 (1999).

R. Kilian and G. Khaliullin, “Orbital dynamics: The origin of the
anomalous optical spectra in ferromagnetic manganites,” Phys. Rev.
B 58, R11841 (1998).

G. Khaliullin, R. Kilian, S. Krivenko, and P. Fulde, “Impurity-induced
moments in underdoped cuprates,” Phys. Rev. B 56, 11882 (1997).

G. Khaliullin, S. Krivenko, R. Kilian, and P. Fulde, “Impurity effects
in spin liquids,” Physica C 282, 1749 (1997).



148




Zusammenfassung

Die vorliegende Arbeit behandelt den metallischen Zustand von Ubergangs-
metalloxid-Verbindungen, speziell von Kupfer- und Manganoxiden, den Ku-
praten und Manganiden. In Kupraten wurde 1986 die Hochtemperatur-Sup-
raleitung entdeckt, ein Phdnomen, dessen zugrundeliegender Mechanismus
bis heute nicht geklart ist. Kuprate weisen auch im normalleitenden Zustand
ungewohnliche Eigenschaften auf, von denen allgemein angenommen wird,
dass sie Riickschliisse auf den Paarungsmechanismus des supraleitenden Zu-
stands erlauben. Im Gegensatz zu den Kupraten waren Manganide schon sehr
frith Gegenstand intensiver Untersuchungen. Ausloser war der in den 50er
Jahren entdeckte Zusammenhang zwischen elektrischen und magnetischen
Eigenschaften: Metallisches Verhalten und Ferromagnetismus bedingen ein-
ander in diesen Materialien. Kern dieses Verhaltens ist die Doppelaustausch-
Wechselwirkung der Leitungselektronen, jedoch weist eine Vielzahl von Ex-
perimenten der letzten Jahre darauf hin, dass die Eigenschaften von Man-
ganiden durch weitere, bisher nur unzureichend verstandene Mechanismen
bestimmt sind.

Kuprate und Manganide gehoren zu den Ubergangsmetalloxiden. Diese
Verbindungen lassen sich allgemein durch die Anwesenheit einer starken, aber
lokal begrenzten AbstoBung zwischen den Leitungselektronen charakterisie-
ren. Das Gegenspiel zwischen dieser lokalen Wechselwirkung und der Ten-
denz der Leitungselektronen, einen delokalen Zustand einzunehmen, prégt
nachhaltig die physikalischen Eigenschaften dieser Materialien. Die Behand-
lung solcher Korrelationseffekte entzieht sich der konventionellen Theorie
schwach wechselwirkender Elektronen. In dieser Arbeit wird stattdessen eine
einfache und dennoch wirkungsvolle Methode angewendet, die den wesent-
lichen Aspekt korrelierter Metalle, die Dualitdt lokaler und delokaler Elek-
troneneigenschaften, erfasst. Dies wird durch die Aufteilung der Leitungs-
elektronen in getrennte Quasiteilchen erreicht, denen jeweils der Ladungs-,
Spin- und der orbitale Zustand eines Elektrons zugewiesen wird. Spinonen
und Orbitonen, die Quasiteilchen der Spin- und orbitalen Freiheitsgrade in
Kupraten bzw. Manganiden, verhalten sich in der metallischen Phase néhe-
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rungsweise als Fermionen und bilden eine Spin- bzw. orbitale Fliissigkeit.
Dieses Konzept liegt, in verschiedenen Abwandlungen, der vorliegenden Ar-
beit zugrunde. Die Einfithrung von Hilfsteilchen mag auf den ersten Blick
kiinstlich erscheinen, jedoch hat der theoretische Zugang ein Analogon in
der reellen Welt: Experimente weisen darauf hin, dass Spin- und Ladungs-
freiheitsgrade in Kupraten teilweise voneinander entkoppelt sind. Jenseits
dieser direkten Korrespondensz zwischen Theorie und Experiment ist die hier
vorgestellte Methode als ein theoretisches Werkzeug zu verstehen, das eine
transparente Behandlung der Korrelationseffekte ermdoglicht.

Gegenstand unserer Untersuchungen ist der metallische Zustand von Ku-
praten und Manganiden. Die ersteren zeigen ungewohnliche magnetische
Eigenschaften, die am deutlichsten bei niedrigen Lochdotierungen zutage
treten: (1) Die Spins der Leitungselektronen paaren sich zu Singuletts, die
starken rdumlichen Fluktuationen unterliegen. (2) Magnetische Anregungen
niedriger Energie sind durch die Ausbildung eines ,,Spin Gaps* unterdriickt.
(3) Antiferromagnetische Korrelationen deuten auf die unmittelbare Néhe
des antiferromagnetisch geordneten Néel Zustands hin. Wir beschreiben die-
ses breite Spektrum magnetischer Eigenschaften ausgehend vom Bild einer
Spinfliissigkeit. Um einen Vergleich dieses Zugangs mit experimentellen Er-
gebnissen zu erméglichen, untersuchen wir die Reaktion der Kupferspins auf
das Einbringen von Storstellen in die Kupferoxidschichten und die daraus
resultierenden Auswirkungen auf Kernspinresonanz-Messungen. Das Zusam-
menspiel der magnetischen Figenschaften der Storstellen und dem Magnetis-
mus der Kupferoxidebenen fithrt zu mehreren interessanten Beobachtungen,
die sich im Einklang mit experimentellen Ergebnissen befinden: Sowohl ma-
gnetisch aktive (S = 1) als auch inaktive (S = 0) Storstellen verhalten
sich in Kupraten wie effektive Spins S = 1/2. Diese Beobachtung stellt ein
starkes Indiz fiir die oben erwihnte Spinsingulett-Struktur der Kuprate dar.
Das Einbringen einer Storstelle entzieht einem der Singuletts seinen Part-
ner, womit ein ungepaarter Spin verbleibt. Im Fall einer nichtmagnetischen
Storstelle ist dieser Spin direkt beobachtbar. Anders verhélt es sich bei einer
magnetischen Storstelle: Hier wird das eingebrachte S = 1 Moment teilweise
durch den freien Kupferspin abgeschirmt, woraus ein effektiver Spin §' = 1/2
resultiert. Dieser unterschiedliche Mechanismus schlégt sich in der lokalen
Polarisierbarkeit der Kupferspins nieder und erklart das bisher als wider-
spriichlich erachtete Verhalten magnetischer und nichtmagnetischer Storstel-
len in Kernspinresonanz-Messungen. Desweiteren konnte in dieser Arbeit das
ungewohnliche Temperaturverhalten der Resonanz-Linienbreite, das deutlich
vom zu erwartenden Curie Gesetz abweicht, auf die Anwesenheit antiferro-
magnetischer Korrelationen zuriickgefiihrt werden. Zusammenfassend ist zu
betonen, dass die hier diskutierten Ergebnisse klar das ungewdéhnliche Zu-
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sammentreffen von Spinsingulett-Paarung und antiferromagnetischen Korre-
lationen in unterdotierten Kupraten aufzeigen.

In Manganide unterliegen die Leitungselektronen, dhnlich wie in den
Kuprate, einer starken lokalen AbstoBung. Dennoch unterscheiden sich
die zwei Substanzen in einem wesentlichen Punkt: Die Doppelaustausch-
Wechselwirkung in Manganiden bewirkt die fast vollstandig Polarisierung des
magnetischen Moments bei niedrigen Temperaturen. Das Pauli Prinzip ver-
bietet dann jede Doppelbesetzung eines einzelnen Orbitals. Nichtsdestotrotz
konnen auch in Manganiden zwei Elektronen gemeinsam einen Gitterplatz
besetzen und somit gegenseitig in Wechselwirkung treten. Dies liegt in der
Tatsache begriindet, dass sich die Leitungselektronen innerhalb eines orbita-
len Dubletts bewegen. Der orbital Freiheitsgrad ist somit wichtige Vorausset-
zung fiir Korrelationseffekte in metallischen Manganiden. Wir beschreiben
diese Korrelationen mit Hilfe des Konzeptes einer orbitalen Fliissigkeit: In
Analogie zu der Entkoppelung von Spin und Ladung in einer Spinfliissigkeit
werden unterschiedlich Quasiteilchen zur Beschreibung der orbitalen und der
Ladungsfreiheitsgrade eingefiihrt. Diese Quasiteilchen sind in erster Nihe-
rung entkoppelt. Eine genauere Betrachtung schliefit jedoch die Wechselwir-
kung zwischen den Teilchen mit ein, die in der Tatsache begriindet liegt, dass
jeweils zwei Quasiteilchen gemeinsam ein Elektron bilden. Die Berechtigung
fiir die hier eingeschlagene Vorgehensweise wird anschaulich demonstriert
anhand der hier prisentierten Ergebnisse. Diese weisen ein hohes Mafl an
Ubereinstimmung mit experimentellen Daten auf, die sich einer theoretischen
Beschreibung bisher entzogen haben.

Manganide zeigen in ihrer metallischen Phase ein stark inkohérentes opti-
sches Spektrum, das selbst bei Temperaturen nahe dem absoluten Nullpunkt
noch deutlich ausgeprigt ist. Dabei iiberrascht vorallem die Energieskala des
Spektrums, das bis etwa 1 eV reicht. Manganide weisen damit ein Verhalten
auf, das kontriar zu dem konventioneller Metalle steht: Bei letzteren akku-
muliert das spektrale Gewicht bei tiefen Temperaturen groBitenteils in einem
niederfrequenten ,,Drude Peak®“. Aufbauend auf dem Konzept einer orbita-
len Fliissigkeit ldsst sich dieses ungewohnliche Verhalten der Manganide auf
Korrelationen zwischen den Leitungselektronen zuriickfithren. Weiter konnte
durch eine Analyse der spezifischen Wérme der zuvor von verschiedenen Au-
toren geduferte Verdacht widerlegen werden, dass das Bild eines korrelierten
metallischen Zustands im Widerspruch zu den experimentellen Werten des
Wirmekoeffizienten stehe. Schliellich wurde die wichtige Rolle des Jahn-
Teller Effekts in Manganiden diskutiert, welcher der orbitalen Entartung des
Leitungsbandes entspringt. Die Anwesenheit dieses phononischen Effekts
konnte aus dem optischen Spektrum abgeleitet werden. Zusammenfassend
zeigen unsere Ergebnisse, dass Korrelationen zwischen den Leitungselektro-
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nen eine wichtige Rolle in der Physik der Manganide spielen und dass diese
zudem durch die Koppelung der Leitungselektronen an Gittermoden ergénzt
werden.

Die magnetischen Eigenschaften metallischer Manganide werden durch
die Doppelaustausch-Wechselwirkung bestimmt: Die Leitungselektronen be-
wegen sich vor dem Hintergrund lokalisierter Spins. Aufgrund der Hundschen
Kopplung an diese Spins iibertragen die Leitungseletronen bei ihrer Bewe-
gung eine ferromagnetische Wechselwirkung zwischen benachbarten Gitter-
platzen. Es ist zu erwarten, dass Korrelationseffekte die spezifische Aus-
pragung dieser Austauschwechselwirkung beeinflussen. In der Tat konnte
in dieser Arbeit mit Hilfe des Bildes einer orbitalen Fliissigkeit gezeigt wer-
den, dass sich die in einigen Manganiden zu beobachtende Abflachung des
magnetischen Anregungsspektrums auf Korrelationen zwischen orbital entar-
teten Leitungselektronen zuriickfiithren lasst. Dieser Mechanismus wird noch
verstirkt durch die Koppelung an Gittermoden, was unsere bereits zuvor
geduBlerte Annahme der Wichtigkeit des Jahn-Teller Effekts in Manganiden
unterstreicht. Das Zusammenwirken von Doppelaustausch-Wechselwirkung
und der Dynamik des Kristallgitters fithrt im Vorfeld der Ausbildung kollekti-
ver Gitterverzerrungen zu einer drastischen Renormierung des magnetischen
Spektrums. Die Rolle, die hierbei sowohl dem Jahn-Teller Effekt als auch der
Kinetik der Leitungselektronen zuféllt, wurde angerissen. Zusammenfassend
konnte der Einfluss von Korrelationseffekten und der orbitalen Entartung auf
das magnetische Verhalten von Manganiden herausgearbeitet werden. Zu be-
tonen ist dabei insbesondere der dominante Einfluss von Gittermoden, der
die immanente Tendenz der metallischen Phase zur Ausbildung kollektiver
Gitterverzerrungen zum Ausdruck bringt.

Abschliefend wurde in dieser Arbeit eine Theorie des Metall-Isolator
Ubergangs in Manganiden vorgestellt, die die bisher unerklirte Abhiingig-
keit des Phasendiagramms von der Lochdotierung einschlieft. Dazu wurde
das Konzept orbitaler Polaronen eingefiihrt: Locher kénnen in einem orbi-
tal entarteten Hubbardmodell ihre Umgebung polarisieren, d.h. sie kénnen
durch eine Verschiebung der Sauerstoffionen und durch die Coulombwech-
selwirkung mit ihrer Umgebung eine Authebung der orbitalen Entartung an
benachbarten Gitterplatzen hervorrufen. Dieser Effekt ist bei niedrigen Do-
tierungskonzentrationen besonders ausgepriagt und verschwindet bei hoher-
en Lochdichten. Der metallische Zustand entwickelt dadurch bei niedriger
Dotierung die Tendenz, gebundene Zustdnde zwischen Loéchern und den sie
umgebenden Orbitalen auszubilden. Dieser Ubergang, bei dem die freien La-
dungstriager effektiv durch Polaronen ersetzt werden, wird von einem scharfen
Einschnitt in der Bandbreite begleitet, was schliellich den Lokalisierungspro-
zess auslost. Die vorgestellte Theorie wird ergénzt durch die Moéglichkeit der
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Bildung von Gitterpolaronen. Durch die Beschreibung des Zusammenwirkens
von Doppelaustausch-Wechselwirkung und polaronischen Effekten konnten
somit erfolgreich die wesentlichen Aspekte des Phasendiagrams von Manga-
niden bei niedrigen und mittleren Lochkonzentrationen reproduziert werden.
Besonders zu erwihnen ist hierbei die vollstiandige Unterdriickung metalli-
schen Verhaltens unterhalb einer kritischen Lochkonzentation sowie das Auf-
treten von Ferromagnetismus in isolierenden Phasen. Diese im Experiment
zu beobachtenden Effekte entziehen sich einer Erklarung durch eine konven-
tionellen Theorie der Doppelaustausch-Wechselwirkung. Zusammenfassend
kann betont werden, dass die Polarisierung der Orbitale in der Umgebung
von Lochern wichtiger Bestandteil der Physik von Manganiden ist. Dieser
Effekt hat Auswirkungen auf das gesamte Phasendiagramm, die weit {iber die
hier aufgezeigte Rolle in der Lokalisierung der Ladungstriger hinausreichen.
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Thesen

e Korrelationen der Leitungselektronen beeinflussen nachhaltig das phy-
sikalische Verhalten von Kupraten und Manganiden. Diese stellen in
ihrem Grundzug Mott-Hubbard Systeme dar.

e Metallische Kuprate bilden bei niedriger Lochkonzentration eine Spin-
fliissigkeit. Dies steht im Einklang mit experimentellen Untersuchungen
an storstellendotierten Kupraten.

e Das Spinfliissigkeitsverhalten von Kupraten ist durch das Zusammen-
spiel von Spinsingulett-Paarung und antiferromagnetischen Korrelatio-
nen charakterisiert.

e Die orbitale Entartung der Leitungselektronen ist wesentliche Voraus-
setzung fiir Korrelationseffekte in metallischen Manganiden. Das Kon-
zept einer orbitale Fliissigkeit ist in der Lage, diese Effekte zu erfassen.

e Das experimentell zu beobachtende inkohérente optische Spektrum in
metallischen Manganiden ist auf Korrelationseffekte zuriickzufiihren.

e Ein Widerspruch zwischen Messergebnissen des Wiarmekoeffizienten in
Manganiden und dem Bild eines korrelierten Metalls besteht nicht.

e Die Doppelaustausch-Wechselwirkung wird durch Korrelationseffekte
und die orbitale Entartung beeinflusst. Dies bestimmt das ungewthn-
liche magnetische Anregungsspektrum metallischer Manganide.

e Der zusitzliche Einfluss von Gittermoden bewirkt eine dramatische
Verdnderung des magnetischen Anregungsspektrums in unmittelbarer
Néhe des Ubergangs zu einer orbital geordneten Phase.

e Die Polarisierung von Orbitalen in der Umgebung von Lochern ist im-
manenter Bestandteil des orbital entarteten Mott-Hubbard Modells.

e Die orbitalen Polarisierung ermoglicht die Bildung orbitaler Polaro-
nen. Diese spielen eine wichtige Rolle bei der Beschreibung des Metall-
Isolator Ubergangs in Manganiden.
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