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Introduction

Coalgebras have been investigated in mathematics as well as in computer science.
First studies of coalgebras appeared in the area of mathematics, ranging back even
to 1966 ([Fre66]). Nevertheless, there are only comparatively few papers dealing
with the concept of coalgebras in mathematics. The structures considered here
arise as duals of universal algebras. They consist of an underlying set A equipped
with cofunctions f : A — AY" that map A to the n-th disjoint union of itself.
Thus, research in this area was mostly driven by a more theoretical interest —
finding dual versions of definitions and results of universal algebra in the world
of such coalgebras.

Computer science followed a very different path in investigating coalgebras,
namely from the categorical point of view turning the approach of cofunctions
into a special case. For a given functor F': C — C, an F-coalgebra is an object S
of C equipped with a morphism o : S — F(5). Particularly in the 90ies, coalgebra
theory has experienced a fast development in this area. A major reason is the
fact that coalgebras are suitable models to specify a wide range of systems. Thus,
they constitute an excellent opportunity for a unified view on all of these systems.

The present thesis reflects this state-of-the-art of research. Its first part deals
with “classical” coalgebras as duals of universal algebras and investigates their
algebraic aspects. The second part is devoted to the more general coalgebras
that are treated in theoretical computer science. In particular, we consider them
under the aspect of specification purposes.

Coalgebras and Clone Theory

Systems of operations are at the heart of universal algebra. They have been
considered from various aspects. One of them is the so-called clone theory. Clones
of functions are sets of functions on a fixed set that are closed under composition
and contain all projections. They naturally occur as clones of operations of
universal algebras where they are generated by the corresponding fundamental
operations. Apart from applications in universal algebra itself, they are, for
instance, used to model the behaviour of switching circuits (see e.g. [P6sK79]).
Clones of functions are externally characterized as Galois closed sets w.r.t. the
Galois connection between functions and relations. This Galois connection is
induced by the property of a function to preserve a relation. It has been widely
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investigated in universal algebra (see e.g. [P6s79, P6sK79, Ros77, Szen86]). On
the other hand, the Galois closed sets of relations turn out to be exactly the
clones of relations, i.e. sets of relations containing all trivial relations and closed
under general superposition of relations.

Coalgebras as duals of universal algebras (i.e. sets equipped with cofunctions)
have played a comparatively minor role in universal algebra. Mainly from a
theoretical point of view, definitions and results known from universal algebra
were dualized to this setting. (Quasi-)covarieties, for instance, are investigated
in [Drb71, Mar85]. In [Csd85], B. Csdkany introduces clones of cofunctions and
characterizes them over a two-element set. Maximal clones of cofunctions are
investigated in [Szék89] by Z. Székely. B. Csdkany also draws a relationship
between clones of cofunctions and “ordinary” clones, i.e. clones of functions.
It turns out that clones of cofunctions are in one-to-one correspondence with
clones of certain algebras — so-called regular selective algebras (see [Csa84]). An
excellent overview on the theory of cofunctions is presented by D. Masulovic:
his Ph.D. thesis [Mas99] is devoted to clones of cofunctions and their lattices.
Among other results, he describes maximal and minimal clones in these lattices.
In particular, he characterizes the lattice of clones of cofunctions for a three-
element base set.

The notion of a coalgebra is also used in ring theory where coalgebras denote
certain modules over a commutative ring (cf. [Jac89]).

Immediate from the article [Csa85] by B. Csdkéany is the question whether
there is a dual version of the Galois theory between functions and relations that
externally characterizes clones of cofunctions. For answering this question one
first has to find the concept of a corelation and a suitable notion of preservation.
These and other definitions are introduced in Chapter 1 of this thesis.

In [P6sR97] it is directly proved that this setting leads to the desired Galois
connection where the Galois closed sets of cofunctions are exactly the clones of
cofunctions. Here we choose a different way via a unified general Galois theory.
Another outcome of dualizing universal algebra to coalgebras is a deeper insight
into the theory on both sides. For instance, the Galois theories between functions
and relations on one hand and cofunctions and corelations on the other hand are
very similar. They seem to follow a common thread. That leads to the question
whether there is a general model behind them such that both Galois theories
become special cases of it. The notion of an abstract clone (cf. [Tay73]) gives the
idea to view clones of functions (respectively cofunctions) as subalgebras of some
fixed heterogeneous algebra with suitable operations that represent e.g. projec-
tions and the superposition of functions. Moreover, different kinds of “relational”
clones are also viewed as heterogeneous algebras where the operations are defined
on relations (see e.g. [B6r88]). This results in an abstract general Galois theory
which is presented in Chapter 2.

Chapter 3 shows that this abstract setting can be applied to cofunctions and
corelations. Thus, we obtain an external characterization of clones of cofunctions
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and of corelations via a Galois connection between cofunctions and corelations.
These characterization results can then be applied to solving concrete character-
ization problems. This is also done in Chapter 3.

There are a number of well-established Galois connections in universal al-
gebra that yield similar characterizations of the corresponding Galois closed
sets. Examples are the Galois connections between unary functions and rela-
tions (cf. [Kra38, Kra66]), partial functions and relations (cf. [Bor88, Ros83]),
and multivalued functions and relations (cf. [Bor88]). All these Galois connec-
tions are based on a suitable notion of preservation. Chapter 4 shows that all
these Galois theories are also instances of the above mentioned abstract general
Galois theory. That gives a uniform, canonical, and short way to characterize
their Galois closed sets. Moreover, one obtains a deeper insight into how these
Galois theories are related to each other. It also becomes clear what ingredients
are actually necessary to put up such a Galois theory, that is to say what is
needed to characterize certain kinds of clones by the corresponding Galois closed
sets.

Specifying with Coalgebras

Theoretical computer science investigates coalgebras from a categorical perspec-
tive. Standard concepts as, for instance, homomorphisms and bisimulation rela-
tions can be expressed in a neat way (cf. Definitions 5.1.1 and 5.1.4) and thus,
also be handled easily. Many reasons led to the rapid development of coalgebra
theory in this area. Probably the most important one is that coalgebras model
a great variety of dynamic systems (such as automata, transition systems, data
structures, or objects). Therefore coalgebra theory is in relation with many other
areas in theoretical computer science.

For instance, coalgebras serve as models for the theory of non-wellfounded
sets (see e.g. [Acz88, BarM96]). In [Acz88] P. Aczel also introduces a coinduction
proof principle called strong extensionality which is based on the notion of bisim-
ulation (cf. e.g. [Mil80]). In the same way as coalgebras are the duals of algebras,
coinductive definition and proof methods are the duals of inductive definition and
proof methods, respectively (see e.g. [RutT98, Rut98, Hen99]).

Another major point that pushed coalgebra theory forward is the use of termi-
nal coalgebras. Their significance is comparable with the role that initial algebras
(i.e. term algebras) play in universal algebra. For instance, they provide a canon-
ical way for describing the semantics of dynamic systems. Also, their existence
enables the use of coinductive definitions and proofs.

Thus, several approaches aim at constructing or proving the existence of termi-
nal coalgebras (see e.g. [Pau97]). J. Rutten and D. Turi ([RutT98]) use canonical
solutions of domain equations to construct terminal coalgebras. Other authors
(e.g. [AczM89, BarM96]) do so by exploiting an anti foundation axiom in non-
wellfounded set theory. Another way to show the existence of terminal coalgebras
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of certain functors is to apply the special adjoint functor theorem as demonstrated
in [Bar93]. Various examples of terminal coalgebras of functors on the category
Set can be found in [JacR97]. A functional construction of the terminal coalgebra
of the functor F: S+ [, (B; + C; x §)* is given in [Jac96] which is used for
describing the semantics of object systems. Many other approaches use terminal
coalgebras for a similar purpose, for instance in [Bald00], [HecE97], and [Rei95].
The relation between terminal coalgebra semantics and initial algebra semantics
is investigated in [RutT94].

Since coalgebras are very suitable for a unified view on dynamic systems they
are of great importance for specification purposes. This brings languages for
them into focus. In [HenR95] and [Jac95], equations are used to describe coal-
gebras. In [Cor97] A. Corradini introduces an equational calculus for coalgebras
of certain polynomial functors. H.P. Gumm ([Gum98]) and A. Kurz ([Kur98a})
prove that covarieties can be characterized by some kind of co-equations which
constitutes a dual version of Birkhoft’s theorem. L. Moss first shows that the
shape of a coalgebra, given by the corresponding functor, determines in a canon-
ical way a generalized modal language. In [Mos97] he derives a coalgebraic logic
for coalgebras of a large class of functors and shows that this language is expres-
sive enough to distinguish elements up to bisimilarity. For uniform functors he
gives characterizing formulas that uniquely determine the “future behaviour” of
an element, i.e. each such formula corresponds uniquely to some element of the
terminal coalgebra. A. Baltag follows these ideas in [Balt00] where he defines
infinitary modal logics to capture simulation and bisimulation. This leads to a
new perspective on games that are used in logic.

A. Kurz ([Kur98b]) first presents a modal logic for coalgebras (of certain poly-
nomial functors) using nexttime-operators and atomic propositions. He shows its
relevance for specification purposes and also gives a complete axiomatization.
A similar language is presented in [R6B98] for polynomial functors and is gen-
eralized in [R6899a] to datafunctors. Both papers also introduce a complete
axiomatization. B. Jacobs ([Jac99]) first uses also lasttime-operators in addi-
tion to nexttime-operators. He investigates coalgebras that also allow to model
nondeterministic systems and relates them to Galois algebras.

Part II of the present thesis discusses coalgebras in theoretical computer sci-
ence. In particular, it investigates their role in regard to the specification of
dynamic systems.

Terminal (final) coalgebras are very much in the scope of this matter. As al-
ready mentioned above they give a standard semantics when specifying systems.
A better understanding of them could therefore give means for better understand-
ing the behaviour of systems. Moreover, constructing a terminal coalgebra may
be of use when checking a coalgebraic specification. Such a specification consists
of a coalgebraic “signature” (i.e. the specification of the corresponding functor F')
and some axioms. Thus, a coalgebraic specification describes a certain class K
of coalgebras: all those F-coalgebras that satisfy the given axioms. Of particular

10
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interest is the terminal coalgebra in this class K (provided it exists): its elements
represent all possible “future” behaviours that elements of members of K may
have. (If there are no axioms in the specification we obtain the terminal coalge-
bra (Z,ayz) of all F-coalgebras.) Constructing this terminal coalgebra w.r.t. X
gives means to check the corresponding specification: does it contain all those
behaviours that are intended to be specified? As outlined in [Jac95, Jac96], the
terminal coalgebra w.r.t. K can be constructed from (7, az) by first taking the
subset £ C 7 induced by the axioms. In a second step one still needs to carve
out the greatest invariant £ in F, that is to say, the greatest subset of F closed
under coalgebraic operations.

Chapter 6 shows how to explicitly construct the terminal F'-coalgebra (7, az)
for a large class of functors F', so-called datafunctors. They are inductively con-
structed from constant functors and projection functors using product, coproduct,
exponentiation by an object, and the initial algebra and terminal coalgebra car-
rier functor. Coalgebras of datafunctors model a great variety of deterministic
systems. We first give a syntactical characterization of these functors on the
category Set using the idea of syntax trees (cf. [R6898]). This gives much insight
into the intrinsic structure of these functors. As a corollary we then obtain an
explicit description of the terminal coalgebra of a datafunctor.

So far we have not mentioned how the axioms in a coalgebraic specification
are formulated. Of course, there needs to be a language to state them. Modal and
temporal languages have proved to be suitable for describing coalgebras because
of their dynamic structure.

Chapter 7 demonstrates how to canonically derive a modal language for F'-
coalgebras that only depends on the functor F'. It turns out that a multisorted
modal setting is best suitable for that purpose where the sorts are indexed by
the subfunctors of F'. We shall restrict ourselves to so-called Kripke-polynomial
functors F. Such functors are inductively constructed from constant functors and
the identity functor using product, coproduct, exponentiation by a set, and the
power set functor. Thus, non-deterministic systems are also covered. A special
case are Kripke-structures.

The main part of Chapter 7 investigates properties of the introduced modal
language. First we consider a restricted language that still has the same ex-
pressiveness. It turns out that, for the case of Kripke-structures, the obtained
language is equivalent to the “usual” modal logic for these structures. Hence this
approach actually constitutes a bridge between modal languages for coalgebras
and the modal logic for Kripke-structures. A well-known result from modal logic
can be transfered to our setting: for so-called image-finite coalgebras bisimilar-
ity coincides with logical equivalence. Finally, we present a sound and complete
deduction calculus in case the constants in I are finite.

11
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1. Preliminaries

This part of the thesis deals with Galois theories, in particular with the Galois
theory of cofunctions and corelations. There are already quite a number of simi-
lar Galois connections established in universal algebra. Probably the best known
and mostly investigated is the Galois connection between functions and relations.
This Galois connection is based on the property of a function to preserve a rela-
tion. It served as a starting point to develop many other Galois connections, also
the one between cofunctions and corelations. Therefore, Section 1.1 is devoted to
giving the main ideas and basic notions of the Galois connection between func-
tions and relations. In particular, we state the two most important results: the
characterization of the corresponding Galois closed sets.

Section 1.2 shows how the introduced concepts dualize to the case of cofunc-
tions and corelations. Dualizing basically means here to “turn arrows around”.
For instance, while functions on some set A are mappings from some n-ary prod-
uct A" to A, cofunctions on A are defined to be mappings from A to the n-
ary coproduct A" (cf. e.g. [Csa85]). Thus, we can canonically derive the no-
tion of a corelation. Elements of an m-ary relation on A are mappings from
m :={l,...,m} to A. Consequently, elements of an m-ary corelation are de-
fined to be mappings from A to m. Therefore, a corelation is nothing but a
subset of m# (cf. Definition 1.2.1). We shall show that all concepts that play a
key role for the “classical” Galois connection between functions and relations can
be dualized similarly.

1.1. The “Classical’ Case: Functions and
Relations

This section gives a short introduction into the Galois theory of functions and
relations. All definitions and results presented here can, for instance, be found

in [P6sK79, Pos79)].

1.1.1. Functions and relations. Throughout the remainder of this section, let
A be an arbitrary set with |A| > 2. For n > 1, we put n :={1,... ,n}.

An n-ary function on A is a mapping f : A" — A. Given a set F' (or a
sequence (fi)ier) of functions on A, we say that (A, F') (or (A, (fi)ier)) is an

15



1. Preliminaries

algebra.

An m-ary relation on A is a subset of A™. Thus, an element r of an m-ary
relation is nothing but a mapping r : m — A.

We now can define

0 = {f]|f:A" = A} and
RYY = {glqCAm}

to be the set of all n-ary functions and all m-ary relations, respectively. Moreover,
we put

04 = U O(;) and Ry := U R(Am).

n>1 m>1

1.1.2. The Galois connection Pol —Inv. For the components of some x € A™
we write x(j) where 7 € m (i.e. @ = (2(J))jem). Then a function f € O(;)
(m)

preserves a relation ¢ € R}, if, for all r1,... ,r, € ¢, we have

flri,.oo ) = (f(rl(]), ’r”(j))>jem € q.

This notion of preservation induces a Galois connection between the subsets of
04 and Ry which is given by the operators

Pol ' := {q€ R4 |Vf€EF:[preserves q},
InvQ = {f€04|VqgeQ: [ preserves q}

where ' C O4 and Q) C Ry.

The Galois connection Pol — Inv has been studied to a great extent in universal
algebra (see e.g. [BodK69, Gei68, P6s79, Sza78]). The following operators play a

crucial role for the characterization of the corresponding Galois closed sets.

1.1.3. Local closure operators. For ' C O4 and ) C R4, we define the
following local closure operators:

Loc F = {f € O | n > 1,V finite BC A" 3g € F: f|B = g]B}.

That means a function f belongs to Loc F' if f agrees, on every finite subset of
A", with some g € F. Therefore Loc F' coincides with £ if A is finite. We define

LOCQ ={ge R4 |Vinite BCqd¢d € Q:BCq¢ Cq}.
Hence we have that LOCQ = @ if A is finite.

1.1.4. Clone of functions. A set F' C O4 is a clone of functions if the following
conditions hold:

16



1.1. The “Classical” Case: Functions and Relations

(i) F' contains all projections p? : A" — A : (a1,...,a,) — a; (where n >
1,7 €n) and

(ii) whenever f € F'N O(;) and ¢1,...,9, € F'N O(:) then their superposition
h e O defined by

hlay, ... a;) = f(gl(al,... ks e Gn(ar, ... ,ak)>
1s an element of F.

Given some F' C Oy4, the clone of functions generated by F'is denoted by (F')o,.

1.1.5. Clone of relations. A set () C Ry is called a clone of relations if the
following conditions hold:

(i) @ contains the empty relation {) and all diagonal relations 6™ C A™ where
m > 1 and 7 is an equivalence relation on m such that

577_n = {(Cl17... ,Clm) € A" | (Z,]) CET=da;, = Cl]‘},

(ii) @ is closed under general superposition: whenever [ is some index set, o is
some ordinal number, ¢; € Q N R(flmi) foriel,and m:m, o, m:m — «
are mappings with m > 1 then the relation /\?W,) (¢i)ier is in @) where

i€l

/\Erm)ief(qi)iEI = /\Erm)(%) = {TF T | T C Aav Viel:m-re€ Qi}'*
Given some ) C Ry, the clone of relations generated by @ is denoted by [Q]r,-
Now the Galois closed sets w.r.t. Pol — Inv are characterized as follows:

1.1.6. Galois closed sets of functions ([BodK69, Gei68, P6s79]). For F' C Oy,
we have

PolInv F' = Loc(F')o,.

1.1.7. Galois closed sets of relations ([Gei68, Sza78, Pos79, PosK79]). For
Q) C R4, we have
Inv Pol @ = LOC[Q]r,-

There are many other results connected with the Galois theory for functions
and relations. For instance, this theory can be used to solve concrete charac-
terization problems (cf. e.g. [P6s79]). For further details the reader is refered to
[BodK69, Gei68, P6s79, PosKT79, Ros77, Szen86].

*By f-g we mean the composition of mappings: (f - g)(z) := g(f(»)).

17



1. Preliminaries

1.2. Cofunctions and Corelations

Setting up the scene, in this section we shall introduce the necessary terminology
for cofunctions and corelations. Dualizing the algebraic case, we give, in partic-
ular, the notion of a corelation and define a coalgebraic counterpart cPol-clnv to
the Galois connection Pol-Inv.

The contents of this section is a joint work with R. Poschel and can also be

found in [P6sRI7].

1.2.1. Definition (cofunctions and corelations). Throughout this section,
we assume A to be a fixed (possibly infinite) non-empty set. For each n > 1,
we denote the n-th copower (i.e. the union of n disjoint copies) of A by A"",
i.e. we define AY" := n x A where n := {1,...,n}. Then (i,a) € A" denotes
the element « in the i-th copy of A. An n-ary cofunction (co-operation) is a
mapping f : A — A"". Then each n-ary cofunction f is uniquely determined
by a pair of mappings <f,]:> where f : A = nand [ : A — A are given by
fla) = (i(a),i(a)) € A" (cf. [Csa85]). We call [ and [ the labelling and the
mapping of f, respectively. Given a set F' (or a sequence (f;);er) of cofunctions
on A, we say that (A, F') (or (A, (fi)icr)) is a coalgebra.

We define an m-ary corelation (or colouring set) on A to be a subset of m*.
Thus, each element of an m-ary corelation is nothing but a colouring of A with
colours taken from the set m = {1,...,m}.

For a fixed set A, we now can define

O = {f|f:A— A"} and
RV = {q| ¢ C m"}

to be the set of all n-ary cofunctions and all m-ary corelations on A, respectively.
Furthermore, let

cOy = UCO(;) and cRy4 = U CR(Am).

n>1 m>1

1.2.2. Remark. Coalgebras can also be introduced in a categorical way (cf. Def-
inition 5.1.1): Let F' : Set — Set be a functor on the category of (small) sets.
Then a coalgebra is a pair (5, o) where S is a set and o : S — F'(.S) is a mapping.

This notion subsumes the above one: given a coalgebra (A, (fi)ics) as defined
in 1.2.1, we can easily transform it into the categorical setting: Let each f; be
ni-ary. We define a functor F' : Set — Set : S — [[,.; 5" where the image
of a mapping f : S — 5" under F is canonically given by F(f) : [[,c; ™™ —
[Le: S (Riyai)ier w (Kiy f(ai))ier (where k; € n;). Then the coalgebra
(A, (fi)ier) is uniquely determined by (A, a4) where ay : A — F(A) : a —
(fi(a)%e[ and vice versa. Sometimes, we shall refer to coalgebras in the sense of
Definition 1.2.1 as “classical” coalgebras.

18



1.2.  Cofunctions and Corelations

1.2.3. Definition. For mappings hq,...,h, : A = X from A to some set X, let
[~1, ..., hy] be the mapping

[Ai, .y ] 2 AV — X2 (4, a) v hy(a).

By the following definition we relate cofunctions and corelations to each other.
This notion will play a crucial role in the sequel.

1.2.4. Definition (“f preserves ¢”). Let [ € CO(;) and ry,...,7, € m?. The
composition of f and ry,...,r, is defined to be the mapping

felr, ] i A—>m:a— ri(a)<i(a)>

as shown below:

1

Bi

o

S~

C e C o
/

Let f € cO(;) and g € cR(Am). We say that ¢ is invariant for f or that [ preserves
qif f-[r1,...,rn] belongs to ¢ whenever rq,....7, € q.

1.2.5. Remark. In the framework of cofunctions, the concept that a cofunction
preserves “something” has been introduced in different ways. For instance, in
[Csd85] a cofunction f is defined to preserve a partition m of A if f is constant on
each equivalence class of 7 and f maps equivalence classes to equivalence classes.
In other words, we have f(a) :Nf(a’) and f(a) =; f(a') whenever a =, ' where
=, is the equivalence relation associated with 7.” This means exactly that 7
is a bisimulation equivalence on (A, {f}) (see Definition 3.2.3). One can show
that this is also equivalent to saying that the corelation (in the sense of 1.2.1)
{re2t|a=,d = r(a) = r(a')} consisting of all characteristic functions of
blocks of 7 is invariant for f.

In [Szék89] families M of subsets of A fulfilling certain conditions are consid-
ered and a cofunction f is defined to preserve such an M if f is constant on each
member of M and f maps members of M into members of M. This concept can
also be translated into our case, i.e. for each such M there exists a corelation ¢y
such that a cofunction f preserves M iff ¢y; is invariant for f.

1.2.6. Definition (cPol —clnv). For ' C cO4 and @ C cRy4, we introduce the
following notations:

cPol@ :={f € c04 | Vg€ Q: [ preserves g},
clnv F1:={q € cR4 | Vf € F: [ preserves ¢}.

19



1. Preliminaries

1.2.7. Proposition. The operators cPol and clnv constitute a Galois connection
between the subsets of cO4 and cRy. ]

1.2.8. Local closure operators. For F' C cO4 and Q C cRy4, we define the
following local closure operators:

Loc Fl:={f € CO(;) | n>1,YVm>1VYr,...,r,€m?*dgc I:
Flr,eenra]l =g [, ral b

That means a cofunction f € CO(;) belongs to Loc F'if f cannot be distinguished
from some g € F using finitely many colours for each copy of A in AY". Therefore
Loc F' coincides with F' whenever A is finite. We define

LOCQ :={¢qecRy|Viinite BCq:3¢ € Q:BCq¢ Cq}

to be the set of all corelations ¢ such that for every finite B C ¢ there exists a
member ¢ of () that agrees with ¢ on B and is contained in ¢. Thus, we have

LOCQ = @Q if A is finite.

Dualizing the notion of a clone of functions (cf. 1.1.4) we get the following

definition which is due to B. Csdkany ([Csa85]):

1.2.9. Definition (clone of cofunctions). A set F' C cO,4 is called a clone of
cofunctions on A if the following conditions are satisfied:

(i) F' contains all injections (coprojections) (? (where n > 1,1 € n) defined
by
A= AV ra s (1, a);

(ii) If f € FﬂcO(;) and g1,...,9, € FﬂcO(:) (for n,k > 1) then the cofunction
(cf. 1.2.3)

f : [glv ---vgn] t A — Auk La = <Qf(a)<J:(a)> ) gim)(f(a)))
also belongs to F'. We call f+[¢1, ..., g,] the superposition of f and ¢y, ..., g,.
Given some F' C cO4, the clone generated by F' is denoted by (F')co,.

1.2.10. Example. Let A be a three-element set and f, g, € CO(AZ) as below.

f g1

o] o]

o] o]

o] o] o] o]
o] o]

o] o] o] o]

\O o]

o] o]
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1.2.  Cofunctions and Corelations

Then the superposition f - [g1,¢%] is the cofunction as follows:

/ [glabﬂ I [91%%]

o o o

o o o

0 0 N
o — o

o o o o o

\ [e] [e] [e]

o o o

As in the case of clones of cofunctions, it is also possible to dualize the concept
of clones of relations though at first sight it is less clear what a clone of corelations
is. The given definition was derived by simply dualizing the notion of a clone of
relations as presented in [P6s79], cf. 1.1.5.

1.2.11. Definition (clone of corelations). A set () C cR4 is called a clone
of corelations on A if

(i) Q contains all trivial corelations § := B4 C m* wherem > 1and B C m
(note that here the elements r : A — B of B4 are regarded as mappings to
m using the embedding B C m),

(ii) @ is closed under general superposition, i.e. the following holds: Let I be
an index set, ¢; € QﬂcR(Am") (tel),and let m: @ = m and m; : @ — m; be
mappings where m > 1 and « is some ordinal number. Then the corelation

/\Erm)iej(%’)ie[ defined by

/\Erm)iel(qi)iEI = /\Erm)(ql) = {T - | re aAv Viel:r-mée Qi}
belongs to ().

For @ C cRy, the clone of corelations generated by @ is denoted by [@]cr,-

On our way to dualize the Galois connection Pol-Inv (see Section 1.1) we have
already done the most important step: we have defined the corresponding notions
for coalgebras. Showing the characterization results for the Galois closed sets of
cofunctions and corelations can be done directly (see [P6sR97]). Here we choose a
different way. Another benefit from dualizing the Galois theory for functions and
relations to a coalgebraic setting is a very general view on both of them. In fact,
these theories are amazingly similar to each other. This suggests a unified model
that generalizes both theories. Therefore, in the following chapter we develop
a unified Galois theory. Special cases are the Galois theories for functions and
relations and for cofunctions and corelations (cf. Chapters 2 and 3, respectively).
It turns out that this general setting also covers other well-known Galois theories
which is shown in Chapter 4.
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2. A Unified General Galois Theory

This chapter presents a “metatheory” that generalizes a number of well-known
Galois theories. We start from heterogeneous structures €' and R such that
“functional” clones become exactly the subalgebras of €' and “relational” clones
are exactly the subalgebras of B. Their sorts shall be indexed by positive integers,
i.e. the indexing sets are subsets of N*. We require each sort R,, of R to be the
power set P(A,,) of some set A,,. For capturing the notion of preservation we
first define mappings 7 : Cp, X (Rp,)" — R,, where C,, is a sort of C and R, is a
sort of B. These mappings are required to satisfy certain axioms. This eventually
leads to a general notion of preservation. We call the induced Galois connection
POL —INV.

Let C' and R be the union of all sorts of C' and of R, respectively. Then the
first main result is that, for each F' C C', we have

POLINV F = Loc(F)¢

where (F')¢ is the subalgebra of C generated by F' and Loc is a local closure
operator on C (cf. Theorem 2.2.6). The other main result states that, for each
Q C R, we have

INVPOL @ = LOC|Q]r

where [Q]g is the subalgebra of R generated by @) and LOC is some local closure
operator (cf. Theorem 2.2.10).
In Section 2.1 we define a general setting. The main results are then proved

in Section 2.2.
The contents of this chapter is also presented in [R6899¢c, R6699d].

2.1. A Unifying Setting

Here we present a setting that generalizes some Galois theories known from uni-
versal algebra. For that purpose, we first introduce a heterogeneous algebra '
whose subalgebras are exactly the kind of “functional” clones that we want to
model in each case.

2.1.1. Definition. Let I C N* be some non-empty index set. We define
Q = <(Cn)n€b (e?)nEI,iEQy COmp>

to be a heterogeneous algebra such that
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2. A Unified General Galois Theory

o cach e} is a nullary operation with e € C,, and
o Comp consists of some operations of the form
comp : C), X HC;% — Oy
=1

where k as well as the operation comp itself are uniquely determined by

n,kl,... ,kn.

Whenever f € C, and ¢; € Cy, (where ¢ € n) we denote comp(f,q1,...,9,) € Ck
by f(g1,.-. ,9n). U F CC:=J,c; Cn then (F)¢ shall denote the subalgebra of
C generated by F. When writing (f)¢ for f € C' we mean ({f})c. Moreover,
g € (F')¢ means that g is contained in one of the sorts of (F')¢.

Throughout the remainder of the present section we shall use the Galois con-
nection between functions and relations (see Section 1.1) as a running example
in order to illustrate the introduced theory at work.

2.1.2. Example (cf. 1.1.4). For the Galois theory of functions and relations
on a given set A we set

Q = <(O(An))71217 (p?)nZl,iEﬂv (compZ)n,k21>
where
o pl: A" — A:(ay,...,a,) — a; is the i-th n-ary projection and
(n) (k)

o comp} : 0, X (OA )n — O(:) denotes the superposition of functions.

Then one immediately obtains that some set F' C O4 of functions on A is a clone
(i.e. contains all projections and is closed under superposition) if and only if it
forms a subalgebra of C'.

We continue formulating the “relational” pendant by defining a heterogeneous
structure B whose elements shall be regarded as relations, corelations etc.

2.1.3. Definition. Let J C N* be a non-empty index set. We define

E = <(Rm)m€J7 (Qm)mer (ﬂm)meJ, Op>

to be a heterogeneous structure where, for each m € J,

e R, = P(A,) is the power set of some non-empty set A,, (frequently, we
shall refer to the lattice structure of R,, and use [ J, [, and C in the usual

way),
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2.1. A Unifying Setting

e (),, € R, denotes the empty set,
e (), is a family of |K|-ary operations ﬂf; defined by

Nt (R = B (ge)kerc = Nierct

with arbitrary index sets K where |K| < |R,,|,

and Op is a set of operations on (R, )mes. Given some Q C R := ], .; Ry, the
subalgebra of R generated by @) is denoted by [Q]g.

Note that, for each m € J, we automatically obtain the nullary operation A,,
in R. It arises as an intersection indexed by the empty set.

In fact, what is actually needed in the theory is that each R, bears the
structure of an atomistic complete lattice (R,,, <) with the following property:
whenever p = sup ) for some () C R, and @ < p is an atom below p then there
exists some g € () with a < g. However, assuming this is equivalent to the above
definition.

Note that requiring the index sets I and J to be subsets of NT is not really
necessary, one could use arbitrary index sets instead. Then one would use a fixed
“arity” mapping A : I — N7 such that elements of C'omp become of the form
comp : C), X Hf:(q) Cr, = Ch.

2.1.4. Example (cf. 1.1.5). For the “classical” Galois theory of functions and
relations on a given set A we put

B = (Rt 01, (AL)

where R(Am) = P(A™) is the set of all m-ary relations on A and the operations
/\?m‘) are defined as in 1.1.5. The intersections () = (with m > 1) are a special

instance of the operator /\?m): for a given index set K we have that mg(Qk)kej( =

/\E?Zln_rn)(Qk)kej(. On the other hand, the diagonal relations 6™ (cf. 1.1.5) can be

generated using the operations /\( ) (see [P6sK79]). Therefore, whenever @) C
Ra, we get that [Qlr, =[]z

In the following we say what it means to apply an element f € C, to some
q€ R,.

2.1.5. Definition. For all n € [ and m € J, let mappings
on : Cy X (Ry)" — Ry,

be given. For f € C, and qi,...,¢, € R,,, we shall denote ¢ (f,q1,...,qs)
by flai,.--qa]- Wry,... r, € A, then we also use f[ry,...,r,] instead of
THrit, .o o {rn}]. We say that f € C, preserves some ¢ € R,, if the following
holds:

Vro, oo s €q: flr,. .o, Cq.

25



2. A Unified General Galois Theory

2.1.6. Example (cf. 1.1.2). Again, we consider the Galois theory of functions
and relations. For all n,m > 1, we set

s O (RE) o R |
(f7q17"'7Qn) = {f(rlv"'7rn)|VZEQ:riEqi}

where f(ry,...,r,) denotes the m-tuple (f(r1(j),... ,7(J)))jem. We obtain that
some [ € O(;) preserves some ¢ € R(Am) in the sense of Definition 2.1.5 if, for all
T1ye vy Ty € q, it holds that flry,...,r,] = {f(rl,... ,rn)} C ¢g. Hence this

definition captures exactly the “classical” notion of preservation, cf. 1.1.2.

So far we have gathered all ingredients to set up a Galois connection between
the subsets of C' =, ;

the following operators.

C, and R = J,,c; Rn. For that purpose we introduce

2.1.7. Definition. For ' C C' = (J,;Cn and Q C R = |J,,c; B we use the

following notations:

POLQ := {feC|VqeQ: [ preserves ¢},
INVFE = {gqe R|VYf€LF: [ preserves ¢}.

2.1.8. Example (cf. 1.1.2). As we have seen in Example 2.1.6, the notion of
preservation for functions and relations in the sense of Definition 2.1.5 coincides
with the notion of preservation introduced in [BodK69, Gei68, Pos79, Sza78],
cf. 1.1.2. Therefore the Galois connection Pol — Inv is the same as POL — INV.

2.1.9. Proposition. The operators POL and INV constitute a Galois connection
between the subsets of C' and R. 0

Of course, the mappings ¢! given in Definition 2.1.5 must not be arbitrary
mappings. In order to build up a theory similar to the Galois theory between
functions and relations we have to impose certain requirements on them. These
are formulated in Axioms (A1)-(A6) below. These Axioms basically express that
the mappings ¢, are compatible with the structure of C' and R.

2.1.10. Definition. The mappings ¢!, given in Definition 2.1.5 are required to
satisfy the following axioms:

(Al) whenevern € I, € n, and rq,... ,rp, 7 € A,, then we have
erlry, o ] Co{r, .o rp b and €, ] = {r},

(A2) for every comp : C,, X [[im; Cr;, — Cj we have, for f € Cy, gi € Cy, (with
i € n), and ri,...,r, € Ay, that there exist ri,... 7. € {ry,... ) for
1 € n with

f(glv"' 7gn)[r17"' ,Tk] g f[(gl[rllv 77“;%])2'6@]7
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2.1. A Unifying Setting

(A3) whenever f € C,, g € Cy,, and 7}, ... 7%@' € A, (with ¢ € n) then k :=
“_ ki € I and there exist ¢! € (g;)c N C,, (with ¢ € n) and some comp :
Cp x [1=, Cn; = Cj such that
f[(gi[ri,...,r};i])ieﬁ] C flg,--- ,g;)[r%,...,r,lﬂ,... ,r?,...,rzn],
(A4) for f € C, and ¢1,... ,q, € R, we have
f[qlv SR 7(]71] = U{f[rlv ...,Tn] | Vi € n:r € QZ}v

(A5) each op € Op maps invariants to invariants, i.e. whenever f € C,, op € Op
with op : [[,cx B, — R, and qp € R;, NINV{f} (for k € K') then we have
0]9((%)%1«') c INV{f},

(A6) whenever @ C R with @ = [Q]g and ry,...,r,,r € A, such that, for
each g € Q N R, with ry,... .7, € ¢, we have that r € g then there exist
... rp €4ry, ..., } and some f € POLQ N C; with r € f[r],... .

The element r in Axiom (A6) expresses a certain closure of those members
of @ that contain rq,...,r,. Axiom (A6) states that this closure can also be
obtained constructively by applying members of POL ().

2.1.11. Remark. Often we deal with a heterogeneous algebra

Q = <(Cn)n217 (e?)nZI,iEQv (compZ)n,k21>

where comp} : Cp, X (Cy)" — Ck. In this case we shall also consider the following
conditions:

(Cl) whenevern > 1,i €n, and ry,...,r, € A, then €[r,... 1] ={r},
(C2) whenever f € Cp, g1,... ,90 € Ck, and r1,... .75 € A,, then we have
f(glv"' 7gn)[r17"' 7rk] = f[(gi[rlv"' 7rk])ieﬁ]‘

Then Axioms (Al) and (A2) are immediate from Conditions (C1) and (C2),
respectively. For Axiom (A3) we set ¢ := gi(ei_l_l, o 7€Z+ki) where [; := 0 and
l; == E;;ll k; for 2 <1 <n. Then we get, by Conditions (C2) and (C1), that

gz{[riv"' 7r]1§17“‘ ,T?,... 77“Zn]
- gi[('ei,{_][ri,'... 7r11§17 7747117 7rkn])j€&]
:gi[rllv ,T}%]

Hence we have

f[(gl [Ti, 77“21.])2@1]
= f[(gz’[r}, .. 7r11§17 7T 7rkn])2€71]
= f(gi7 7g7/’]‘)|:r%7 7r]1§17 77,.717‘7 774277(]

by another application of Condition (C2).
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2. A Unified General Galois Theory

2.1.12. Example (cf. Section 1.1). In case of the Galois theory of functions
and relations we can apply Remark 2.1.11. Therefore it suffices to check Condi-
tions (C1) and (C2) instead of Axioms (A1)-(A3). These conditions as well as
Axioms (A4) and (Ab) follow immediately from the definitions. In order to prove
Axiom (A6) we show the following:

Claim. Let ry,... ,r, € A™ and Q C R4. Then we have

{J(riceeo ) | f € Pl QN OY) € [Qlg,.
PROOF. For each ¢ € @, we set [, := {(r},...,r0) | ¥i,....r, € q}. Let
lg = U,eq I Whenever i = (r},...,r) € I, C Ig, let ¢; := q and m; be
determined by ¢; € R(Am"). Let a := |A™"| and v : A" — « be a fixed bijection.
We define mappings 7 : m — a : j — ’y(rl(j),... ,Tn(])> and m; :m; = a g

’y(r’l(]), ,T%(])) where ¢ = (r],...,r.). Then we get that ¢ := /\?m)(%) =
{m-r|reA*,Viely:m r € q} € [Qr, In the following we show that
qd ={f(ri,....m) | [ € PolQﬂO(;)}:

“C”: Whenever 7 -1 € ¢ then v -r € O(;) preserves (): for ¢ € ) and

..., € q,let 1 = (rf,...,r). Then we obtain that (y-r)(ry,...,r,) =
TiTE€qi=q.

“D”: For f € Pol@nN O(;) we set r:= "t f. Ifi = (r],...,r) € I, then
mi-r=f(r],...,r)) € ¢ =¢q. Hence f(rq,... ,rp)=m-1€{. UJ
Now assume Q C Ry with Q@ = [@Q]r, and ry,... ,r,,r € A™ such that, for
each ¢ € @ N R(Am) with r,...,7r, € g, we have r € ¢g. Obviously it holds
that the projections p! are in Pol() for each ¢+ € n. Therefore r,...,7r, €

{f(ri,...,r) | [ € Pol@nN O(;)} € [Q]r, = @ and, by the assumption, we
obtain some f € PolQ N O(;) with r = f(ry,...,r,) which shows Axiom (A6).

It still remains to define suitable local closure operators.
2.1.13. Definition. For ' C C', we define the local closure of F' as

LocF:={feC,|nel,Yme€JVry...,ro,r € Ay i1 € flri,..., 7] =
Jeelary,....rp€{r,...,ro}g € FNCy:r€glry,... ,r]}

For () C R, we define the local closure of () as
LOCQ :={gqe R, |me JVinite BCqgd¢d e QNR,,: BCq Cq}.

The definition of Loc I is very general. For the setting of Remark 2.1.11 we
obtain the following somewhat simpler closure operators:
2.1.14. Lemma. Let C = <(Cn)n21, (€ )n>1,ien, (compZ)n7k21> be as in Remark
2.1.11 and assume Conditions (C1) and (C2). Let FF C C with F = (F)¢. Then
the following hold:
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(a) LocF={feC,|nel,Yme JVry,... ,ry,r € A, :
re flr,... ] =39 FNC,:r€glr,....rl},

(b) if, for each f € C,, and for all ry,... ,r, € A, there exists some r € A,
with f[r1,...,r,] C {r} then

LocF={feC,|nel,YmeJVr,...,r,€ A,dge FNC,:
f[rlv"' 7rn] gg[rlv"' 7rn]}7

(c) if, for each f € C, and for all r1,... ,r, € A,,, there exists some r € A,
with f[r,...,r,] = {r} then

LocF={feC,|nel,YmeJVr,...,r,€ A,dge FNC,:
flriy - sral = glr, .oyl b

PROOF. (a). We only show the “C”-direction, the other one is immediate. Let
f€lockFNC, and rq,...,r,,r € A, with r € f[r,...,r,]. Definition 2.1.13
vields k € I, ri,... r, € {ri,... ,rn}, and g € F'N Cy with r € g[r],... 1]
In other words, we have, for j € k, that r; = r;, with i; € n. We set ¢’ :=
gler,... el ) and obtain

glri,...sra] = g[(d’é [r1, ... ,Tn])jeg] by Condition (C2)
= glri,-o o] by Condition (C1)
= glris--. 1]

Thus, r € ¢'[r1,... ,ra] and ¢ € F N C, since F' = (F)¢.
(b). We shall only prove the “C”-direction using (a). Let f € Loc F' and

T1yeoo Ty € Ay, First, assume that f[rq,...,r,] = {r} for some r € A,,. That
yields some g € FNC, with f[ry,... ,r,] Cg[r1,...,r,]. Incase f[ry,... ,r,] =0
we consider some ¢ € F' = (I)¢ and obtain ) C e€?[rq, ... ,r,].

(c) follows directly from (b). O

2.1.15. Example (cf. 1.1.3). In the case of functions and relations, the local
closure of some F' C C with F' = (F)o, in the sense of Definition 2.1.13 is

Loc FF={f € O(;) In>1,YVm >1Vry,...,r, € A™:
dg € FﬂO(;) s flr, o) =g(r, .o yra)}
which follows from Lemma 2.1.14 (¢). But this is exactly the definition of the

local closure of some F' C O4 as in 1.1.3. Moreover, the definition of LOC Q) for
some () C Ry in 2.1.13 trivially coincides with the one given in 1.1.3.
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2. A Unified General Galois Theory

2.2. Characterizing the Galois Closed Sets

Here we show how the two main results, the characterization of the respective

Galois closed subsets of C' =, C, and R = J,,; R, is obtained.

2.2.1. Proposition. Let () C R. Then POL @) forms a subalgebra of C.

Proor. Let ¢ € Q N R,,. Consider some € and let ry,... ,r, € g. Then, by
Axiom (A1), we have e'[ry,... ,r,] C{ri,...,m} Cq.

Now, let comp : C,, X [, Cr. — Ck, f € C,NPOLQ, g; € Cr, N POLQ
(for 7 € n), and ry,... .7, € ¢. By Axiom (A2) we obtain 7¢,. .. ,r};i € ¢ (where

i € n) such that

Flgry e sga)lre, ..o, ri] C f[(gz[rll, 77“21.])2'6@]

ooy QUT Vi € nirf € gl o)) Ca

because, for each ¢ € n, we have that r. € ¢ (since g; € POL Q) and therefore we
get flry,...,r] C q (since f € POLQ). O

' n

As an immediate consequence of Axiom (A4) we get the following:

2.2.2. Lemma. Let f € C, and ¢; C ¢, € R, for i € n. Then we have

2.2.3. Definition. For ' C (' and ¢ € R,,, we define
Cr() = Ul red [0 € 1 € (F)en Corrno o o1 € q).
2.2.4. Proposition. For each q € R,,, we have ¢ C I'p(q) € INV F.

ProOOF. First, consider some arbitrary e?. For each r € ¢, we have, by Axiom

(A1), that e?[r,... ,r] = {r} and therefore ¢ C I'r(q).

Now, let f € FNC, and ry,...,r, € I'r(q). Thus, for each i € n, we get
some g; € (F)c N Cy, and ri,... 1, € ¢ with r; € g[r},...,r},]. By Lemma
2.2.2 we have

flr1y - yra] C f[(gi[rll, . ,r}%])ieﬁ].

An application of Axiom (A3) yields ¢! € {(g;)c N C,, and some comp : C,, X
H?:l Cn, — Ck with k& := Z?:l kZ such that

f[(gz[rll, 77“21.])2'6@] C flgrs-- s g)ris--- ,r}ﬂ,... ST ,rzn]
€ I'r(q)
since f(¢g7,...,4,) € (F)c and by the Definition of I'r(q). O
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2.2.5. Proposition. Let F' C C. Then we have
INV F' = INV(F)c = INV Loc(F')¢.

PROOF. The “O”-direction is immediate since F' C (F)¢ C Loc(F)¢ and INV is
order-reversing.

For the converse, let ¢ € INV F'. By Proposition 2.2.1 we have that (F)c C
POLINV F. Now Proposition 2.1.9 gives

INV(F)e D INVPOLINV F = INV F.

It remains to prove that ¢ € INV Loc(F)¢. Let f € Loc(F)cNCy and ry,... 1y, €
g. In order to show f[ry,...,r,] C ¢ we consider some r € f[r,...,r,]. By
Definition 2.1.13 there exist k € I, r},... ,rp € {r1,...,rn}, and g € (F)e N Cy,
with r € g[r],...,r;]. By assumption we have ¢ € INV F' = INV(F)¢ and thus ¢
preserves ¢q. Hence we get r € g[r],... ,r.] Cq. O

2.2.6. Theorem. Let I C (. Then we have that
POLINV F' = Loc(F)¢.
ProOOF. “D7: An application of Propositions 2.1.9 and 2.2.5 immediately yields
Loc(F)c € POLINV Loc(F)c = POLINV F.

“C”: Let f € POLINVFNC, and ry,... ,r,,r € A, with r € f[r,... 1]
By Proposition 2.2.4, f preserves ['p(q) where ¢ := {ry,...,r,}. We also have
q C I'r(q) and thus flry,... ,r,] C T'r(q). Now Definition 2.2.3 gives some k € [,
oo,y €{r, ooyt and g € (F)e N Cy with r € glry, ..., 1. O

Note that for proving the above theorem we only need to assume Axioms

(A1)-(A4) (cf. Definition 2.1.10).

2.2.7. Example (cf. 1.1.6). As we have shown in the previous section, this
general setting applies to the Galois theory of functions and relations. Therefore,
the characterization of the Galois closed sets of functions in 1.1.6 is also a corollary

of Theorem 2.2.6.

In order to prove the dual result for subsets of R we need to show the following
two lemmas first.

2.2.8. Lemma. Let F' C (. Then INV F' forms a subalgebra of R.

PROOF. Obviously, INV F' contains @,, for each m € J and is closed under
the intersections (), (where m € J). Moreover, INV F is also closed under the

operations in Op which follows from Axiom (A5). O
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2.2.9. Lemma. Let () C R. Then we have
POL @ = POL[Q]r = POL LOC[Q]k.

PROOF. “D”: Since ) C [@]r C LOC[Q]r the above sets form a decreasing chain
(from left to right).
“C”: By Proposition 2.1.9 and Lemma 2.2.8 we have

POLQ = POLINV POL Q = POL[INV POL Q] C POL[Q]x.

Now, let f € POL[Q]gr. In order to verify that f € POLLOC[Q]r let ¢ € LOC[Q]r
and rq,...,r, € q. By Definition 2.1.13, there exists some ¢ € [Q]r with
{ri,...,rn} € ¢ Cq. Hence f[ry,... ,r,] € ¢ C g and we are done. O

Now we can give characterization of the Galois closed subsets of R.
2.2.10. Theorem. Let () C R. Then we have that
INV POL @ = LOC[Q]k.
Proor. “D7: By Proposition 2.1.9 and Lemma 2.2.9 we have
LOC[Q]r C INVPOLLOC[Q]gr = INVPOLQ.

“C”: Let ¢ € INVPOLQ N R,, and assume that ¢ ¢ LOC[Q]g. We shall
distinguish the cases B = () and |B| = n > 0 (cf. Definition 2.1.13). First,
assume that we have ¢’ € ¢ for each ¢’ € [Q]r N R, This leads immediately to
a contradiction since @, € [Q]r N K.

Now assume that there exist ry,...,r, € ¢ such that, for each ¢ € [Q]rN R,
with ri,...,r, € ¢, we have ¢ € ¢q. We construct ¢ := [ _{¢ € [QrN
Ry | riy... . € ¢'}. By Definition 2.1.3, we have ¢ € [Q]gr. Moreover, by
construction it holds that ry,...,r, € . Hence § € ¢ and we find some r € A,,
with € ¢\ ¢g. Axiom (A6) yields some f € POL[Q]gr N C; for some [ € [ and
..o, € {ry,... 1} such that » € f[ry,...,r]]. Since r € q we get ¢ ¢
INV{/f} but on the other hand we have ¢ € INV POL Q) by assumption. Therefore
f € POLQ =POL[Q]r (cf. Lemma 2.2.9) which yields a contradiction. O

Note that, for showing Theorem 2.2.10, we only needed Axioms (A4)-(A6).

2.2.11. Example (cf. 1.1.7). In the case of functions and relations we obtain
that the characterization of the Galois closed sets of relations in Section 1.1 is a
corollary of Theorem 2.2.10.

In Chapter 4 we shall show that the above general setting unifies many other
Galois theories that are well-known in universal algebra.
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3. A General Galois Theory for
Cofunctions and Corelations

This chapter investigates the Galois connection between cofunctions and corela-
tions. Section 1.2 already introduced the necessary notions and terminology. For
instance, we recalled the definition of clones of cofunctions from [Csd85] and gave
a definition of clones of corelations. All these notions are very analogous to the
case of functions and relations. However, does the coalgebraic setting give rise
to a general Galois theory for cofunctions and corelations similar to the one for
functions and relations? The answer is “yes” and is given in the present chapter
in detail. The fact that clones of cofunctions are also abstract clones (cf. [Tay73])
raises hope to make use of the unified general Galois theory presented in the
previous chapter: it suffices to check whether the corresponding definitions for
cofunctions and corelations fit into this general approach. We shall do this in
Section 3.1.

In the algebraic case for functions and relations, the characterization of the
Galois closed sets can be used to solve concrete characterization problems. For
instance, given a set A and a set {R; | ¢ € I} of equivalence relations on A, does
there exist an algebra (A, F') such that {R; | ¢ € I} is the set of all congruence
relations on (A, F')? This one and many other such problems are treated e.g. in
[P6sT79]. Hence the question emerges whether one can solve similar problems for
cofunctions and corelations using the corresponding Galois theory. Section 3.2
shows how this can be done. In particular, we investigate the following problem:
Given a set A and a set {R; | ¢ € I} of reflexive binary relations on A, does there
exist a coalgebra (A, F') such that {R; | i € I} is exactly the set of all strong
bisimulation relations on (A, F')? Theorem 3.2.2 visualizes how such problems
can be solved in general.

3.1. Characterizing Clones of Cofunctions and
Corelations

Here the two main results of this chapter are stated — the characterization of the
Galois closed subsets of cO4 and cR4. As an easy conclusion, the question will be
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3. A General Galois Theory for Cofunctions and Corelations

answered under which conditions sets F' C cO4 and ) C cR4 are representable
as cPol ()" and clnv I, respectively.

The results presented here are partially also contained in [P6sR97, R6699c¢,
R6699d].

First, we denote how the structures C' and R (cf. Definitions 2.1.1 and 2.1.3)
look like in the case of cofunctions and corelations. Similarly to Example 2.1.2,

we define
n

C = (O st ((F Vst iens (comp} ) i)

where some ¢! denotes the i-th n-ary injection and

compy; : O x (O = 0¥ (f,01,-. ,90) = [ [91,--- 9]

denotes the superposition of cofunctions (cf. Definition 1.2.9). Then a subset F
of cOy4 is a clone of cofunctions if and only if it forms a subalgebra of (.
In analogy to Example 2.1.4 we set

B = (R )z, B)mz1: (AG)))
(m)

where cRY"”’ = P(m*) is the set of all m-ary corelations on A and the operations
(s, are defined as in 1.2.11 (ii). Note that the intersections ([7,,) are a special
case of the operator /\Zr ) Also, each trivial corelation 0 can be derived using

U

winpg

the operator /\?m‘) since 05 = N0 (m?) where a := |B|, ¢ : @ — B is some

bijection, and ing : B < m denotes the embedding of B into m.

(m)

Applying some f € CO(;) to qi,...,q, € cR}y"’ is given by

flars - squ) :=4f [r1,-- ] | Vi€En:r € ¢}

Now Definition 2.1.5 captures exactly the notion of preservation as in Definition
1.2.4. This immediately implies that the Galois connection cPol — clnv (cf. Defi-
nition 1.2.6) is the same as POL — INV for the present case.

Conditions (C1) and (C2) as well as Axioms (A4) and (A5) are an immediate
consequence of the corresponding definitions. For verifying Axiom (A6) we state
the following (cf. Example 2.1.12):

3.1.1. Lemma. Let ry,...,r, € m* and Q C cRy. Then we have
{FTris-eeoral | F € Pl QN O} € [Qler,-
PROOF. For each g € Q, we define [, := {(r},... ,rl) | ri,... ,rl € ¢} and set

lg == Ujeoly- i = (r,... ) € 1y C Ig let ¢ := q and m; be given by
qi € CR(Am"). Let o := |A""| and v : @ — A" be a fixed bijection. Furthermore,
let 7 : @ — m be given by 7 := v - [r1,...,r,] and m; : @ — m; be given by

mi=-[rl,...,r.] where ¢ = (r],... ,r7). Then we get that

q = /\Erm)(%) ={r-m|reat,Vicly:r m€q}€[Qr,.
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3.1.  Characterizing Clones of Cofunctions and Corelations

Now we prove that ¢' = {f - [r1,...,r.] | f € cPol@ N CO(;)} :

“C’:Ifr-me ¢ thenr-y € CO(;) is a cofunction that preserves (): whenever
g € Q and rj,...,r, € g then (r-~)-[r},...,7] = r-m € ¢ = q where
i=(ry,...,r) €1,

“D7: Let f € cPol@ N CO(;). We define r := f-~7!. Whenever i =

(rllv"'vr;z) € [q then rem = f'7_1 Y [rllv"'vr;z] = f [rllv"'vr;z] € g

Hence f-[ri,...,ru]=r -7 € 4. O
Now, in order to check Axiom (A6), assume @) C cR4 with @ = [Q]r, and
Ti,... 7,7 € m? such that, for each ¢ € QN CR(Am) with ry,... ,r, € ¢, we have
r € g. Since the coprojections ¢ : A — A" : a — (1,a) are in cPol () for each
ien,wegetry,...,ry, €{f [r1,...,mn] | f € cPol@N cO(;)}. The assumption
eventually yields some f € cPol @ N CO(;) such that r = f-[rq,... 7]

By applying Lemma 2.1.14 (¢) we immediately get that the local closure of
some F' C cO4 with F' = (F)co, in Definition 2.1.13 is the same as in Definition
1.2.8. Moreover, for () C cRy4, the definition of LOC Q) in 1.2.8 obviously coincides
with the one in 2.1.13. Therefore, we can apply Theorems 2.2.6 and 2.2.10 and,
thus, obtain the following:

3.1.2. Theorem (Galois closed sets of cofunctions). Let F' C cO,4. Then
we have

cPolclnv F' = Loc(F)co, -

3.1.3. Theorem (Galois closed sets of corelations). Let ) C cR4. Then
we have

clnv cPol @ = LOC[Q]cr,,-

Theorems 3.1.2 and 3.1.3 enable us to characterize those subsets F' C cOy4
and ) C cR4 which can be represented as cPol Q' and clnv F” for some )’ C cR4
and F' C cOy, respectively.

3.1.4. Corollary. For F' C cOy4, the following are equivalent:
(i) F'=(F)co, and F' = Loc F,
(ii) F' = cPolclnv F,
(iii) 3Q C cRy : F = cPol Q.
PRrROOF. (i) = (ii) by Theorem 3.1.2.
(ii) = (iii) is obvious.
(iii) = (i) by Proposition 2.2.1 and since Loc cPol ) = cPol Q. O

3.1.5. Corollary. For () C cR4, the following are equivalent:
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3. A General Galois Theory for Cofunctions and Corelations

(i) @ =[Q]cr, and Q@ = LOCQ,
(ii) @ = clnvcPol @,
(iii) IF CcO04: Q =clnv F.

PRrROOF. (i) = (ii) by Theorem 3.1.3.
(ii) = (iii) is obvious.
(iii) = (i) by Lemma 2.2.8 and since LOCclnv F' = clnv F. O

3.2. Concrete Characterization Problems

This section is devoted to giving some ideas of how to apply the characterization
results from Section 3.1. Its contents is a joint work with R. Poschel and is also
contained in [P6sR97].

As in the algebraic case (cf. e.g. [P6s79]), the following general question arises:

3.2.1. Concrete Characterization Problem. Given a set A and ); C F; C
cR4 (for ¢ € I), does there exist a coalgebra (A, F') such that ); = F; Nclnv F?

As a solution, we can transform the corresponding theorem in [P6s79]:

3.2.2. Theorem. Let Q; C F; C cRy (fori € I) and Q := |J;c; Qs. Then the

tollowing are equivalent:

(i) there exists some ' C cO4 such that Q; = E; Nclnv F for each i € 1,
(ii) for each i € I, we have Q); = E; N LOC[Q]cr,-

PROOF. (i) = (ii): Assume that there exists some F' C cO4 such that Q; =
E;Nclnv F for each 1 € I. Since @); C clnv ' we have () C clnv F' and therefore
LOC[Q]r, C LOC[clnv F|cr, = clnv F' by Corollary 3.1.5. Thus, we get F; N
LOC[Q]CRA Q EZ Nclnv £ = Qz Q EZ N LOC[Q]CRA since Qz Q EZ N Q

(ii) = (i): We set F' := cPol@. Then it follows from Theorem 3.1.3 that @); =
E;NLOC[Q]r, = F;NclnvcPol @ = E; Nclnv F. O

Now Theorem 3.2.2 can be used for finding answers to more concrete ques-
tions. The following example may help to illustrate this method. For that pur-
pose, we need to introduce the notion of a bisimulation. This definition is a
special case of Definition 5.1.4 (cf. Remark 1.2.2).

3.2.3. Definition. Let (A, F') be a coalgebra and R C A x A. We say that R is
a bisimulation on (A, F) if we have f(a) = f(b) and (i(a),i(b)) € R whenever
(a,b) € Rand f € F.

We say that a bisimulation R C Ax Aisstrong if Ay :={(a,a) |a € A} CR. A
bisimulation R C A x A which is an equivalence relation is called a bisimulation
equivalence.
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Thus, here a bisimulation describes whether certain pairs of members of A
behave in a similar way under members of F'.

3.2.4. Concrete Characterization Problem (Strong Bisimulation). Given
a set A and binary relations R; C Ax A with A4 C R; (for j € J), does there exist
a coalgebra (A, F') such that {R; | 7 € J} is the set of all strong bisimulations
on (A, F)?

Essential for the solution of this problem is to express the property of “being
a strong bisimulation” in the context of the Galois connection cPol-clnv, i.e. we
need to encode the binary relations R; in terms of corelations.

3.2.5. Definition. Let A be a set and R C A x A with Ay C R. We define R

to be the corelation

.R::{TC7BE§A|C7BQA7 VCEC: (C,b)EijEB}

3 ifaeC,
where rop(a) = ¢2 ifae B\C,
1 else.

3.2.6. Lemma. Let (A, F) be a coalgebra and Ay C R C A x A. Then the

tollowing are equivalent:
(i) R is a strong bisimulation on (A, F),
(ii) R € clnv F.

Proor. (i) = (ii): Let f € FnN CO(;) and r¢, B,,-.s 7,8, € R. We set
r:=f-[re,.Byysronp,], C:i={a € A|r(a) =3}, and B:={a € A|r(a) =
2YU{a € A| Jc € C:(c,a) € R}. Using Definition 3.2.3 one can easily show
that then B C {a € A | r(a) = 2} U C and that therefore we have r = r¢ 5 € R.

(ii) = (i): Let f € F'N CO(;) and (a,b) € R. For j € n, we define

— {T{ﬂa)},Bf if j = f(a),
J

.0 else

where B := {b' € A | (i(a),b’) € R}. By assumption there exist ', B C A such
that we have re g = f - [r1,...,m] € ‘R € clnv F. Therefore we obtain b € B
since (a,b) € R and a € C. By construction of the r;’s we get f(a) = f(b)
since ropg(b) # 1. If rc g(b) = 3 then we have f(a) = f(b) and we are done
since Ay C R. The case that r¢p(b) = 2 yielérs f(b) € B’ and we also get
(]Nf(a), i(b)) € R by the definition of B’ ” O

Using 3.2.6 and 3.2.2 it is now straightforward to prove the following:
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3.2.7. Proposition. Let A be a set and let R; C A x A (for j € J) such that
A4 C R; for each j € J. Then the following are equivalent:

(i) there exists a coalgebra (A, F') such that {R; | j € J} is the set of all strong
bisimulations on (A, F'),

(i) {Rj|j€J}={R|AACRC Ax A}NLOC[{R; | j € J}]. O
Other problems which may be solved using similar arguments are for instance:

3.2.8. Concrete Characterization Problem (Bisimulation Equivalence).
Given a set A and equivalence relations R; C Ax A (for j € J), does there exist a
coalgebra (A, F') such that {R; | 7 € J} is the set of all bisimulation equivalences
on (A, F)?

3.2.9. Concrete Characterization Problem (Automorphism Group). Gi-
ven a set A and a subgroup G of the full symmetric group on A, does there exist
a coalgebra (A, F') such that Aut(A, F) = G? Here the automorphism group
Aut(A, F') is given by

Aut(A, F) := {h : A — A h is bijective and
VieF,Yaec A: f(a) = i(h(a)) and i(h(a)) = h(i(a))}

Of course, the method demonstrated above for strong bisimulations can also
be used to find a simultaneous solution for several of the given problems.

3.3. Conclusion

Coalgebras (A, F') as in Definition 1.2.1 are scarcely of relevance for theoretical
computer science since viewed in a categorical context (cf. Remark 1.2.2) they
model only a small number of dynamic systems, see also Section 5.2. That implies
the question whether the Galois theory between cofunctions and corelations can
be generalized to this categorical level. However, a simple generalization does
not exist: the unifying setting in Chapter 2 shows which requirements need to be
fulfilled in order to derive similar results for a Galois theory of a similar kind.
Still, Proposition 3.2.7 suggests to use the method of solving concrete char-
acterization problems for specification purposes. In practice, that usually cannot
be applied since computing [Q]cr, for some ) C cRy4 can, in general, not be done
efficiently. Moreover, giving a set F' of cofunctions such that {R; | j € J} is the
set of all strong bisimulations of the coalgebra (A, F) means to determine the
kind of system described with the “signature” of F' rather than its behaviour.
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4. Other Galois Theories

Universal algebra investigates many Galois connections that are based on a suit-
able notion of preservation. For instance, the Galois connection mPol — Inv be-
tween multivalued functions (i.e. functions f : A" — P(A)) and relations yields
a characterization of clones of multivalued functions and of certain clones of
relations (cf. [Bor88]). Similar results are obtained for the Galois connection
pPol — Inv between partial functions and relations (cf. [Bor88, Ros83]). Moreover,
clones of unary functions and special clones of relations (weak Krasner-clones)
are the respective Galois closed sets of the Galois connection End — Inv between
unary functions and relations.

Chapter 2 introduces a unified general Galois theory by defining heterogeneous
structures €' and R such that the corresponding clones of e.g. functions and
relations are exactly the respective substructures of €' and R. Mappings ¢} :
Cn X (Rn)" — Ry, relate the sorts of C' and R to each other which leads to a
notion of preservation. The characterization of the Galois closed sets w.r.t. the
induced Galois connection requires to assume some axioms (cf. Definition 2.1.10).
Moreover, suitable notions of local closure operators Loc and LOC on the subsets
of ' and R, respectively, are needed. The Galois theories for functions and
relations and for cofunctions and corelations then turn out to be instances of this
unified Galois theory (cf. Sections 2.1 and 3.1).

Naturally, that leads to the question whether other well-known Galois con-
nections are covered by this unified Galois theory as well. For answering this
question one has to perform the following for a given Galois theory:

I. determine the sorts and operations of (' such that its subalgebras capture
exactly the corresponding “functional” clones,

II. similarly determine the structure R such that its subalgebras are exactly
the corresponding “relational” clones,

ITI. define the mappings 7 : C,, X (R,,)" — R, such that the resulting Galois
connection POL — INV coincides with the corresponding Galois connection

for the present case,

IV. check Axioms (A1)-(A6), and
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V. verify that the definitions of the local closure operators Loc and LOC in
Definition 2.1.13 represent the corresponding definitions for the current
case.

As a result, one obtains the characterization of the Galois closed sets for the
current example as corollaries from Theorems 2.2.6 and 2.2.10. Sections 4.1, 4.2,
and 4.3 show that the above mentioned Galois theories for multivalued functions
and relations, partial functions and relations, and unary functions and relations,
respectively, are instances of the unified Galois theory given in Chapter 2.

The contents of this chapter can also be found in [R6899¢, R6699d].

4.1. Multivalued Functions and Relations

In his Ph.D. thesis [Bor88] F. Borner investigates the Galois connection between
multivalued functions (i.e. functions f : A* — P(A)) and relations. Thus, here
the sets €' and R are given by

C: =m0, := UnZImO(;) and R:=Ry= UmZIR(Am)

where mO(;) denotes the set of all n-ary multivalued functions f : A" — P(A)
and R(Am) denotes the set of all m-ary relations.

4.1.1. Clones of multivalued functions are subsets of mO4 that contain all pro-
jections (cf. 1.1.4) and are closed under superposition which is defined as follows:
whenever f € mO(;) and ¢g1,...,q9, € mO(:) then their superposition is the mul-
tivalued function h € mO(:) such that

hlay,...,a) = U{f(a’l, yal )| Vien:al € gilay,...  ax)}.

Hence we set
C = (MO )1, (P} )zt siens (cOmP} )izt

where mO(;) denotes the set of all n-ary multivalued functions, each p? is the
usual 2-th n-ary projection and compj : mO(;) X (mO(:))” — mO(:) denotes the
superposition of multivalued functions. Consequently, clones of multivalued func-
tions are exactly the subalgebras of C.

4.1.I1. In [Bo6r88] the corresponding “relational” clones are weak clones of re-
lations. They are defined to be subsets of R4 that contain the empty relation and
are closed under arbitrary intersections and all covariant substitution operators
W (where s : n — m and n,m > 1) that are defined as

W RY = R g {re A | s-r e gl
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4.1.  Multivalued Functions and Relations

Thus, we set

E — <(R(Am))m217 (Qm)mZh (ﬂm)mZh (Ws)szgﬁm,n,m21>

where {),,, is the m-ary empty relation, () denotes the family of m-ary intersec-

tion operators on R(Am) (cf. Definition 2.1.3), and each W is a covariant substitu-
tion operator as defined above.

4.1.IT1. A multivalued function f € mO(;) is said to preserve a relation ¢ € R(Am)

if, for all r{,... ,r, € g, we have

m

f@(ry, ... ) = Hf(rl(j), ,Tn(])> Cq.

J=1

Hence we define the mappings ¢ to be given on A™ by

flrs o ora) = f@0re, oo )

and then to be continued according to Axiom (A4). Therefore the induced Galois
connection mPol — Inv is the same as POL — INV for the present case.

4.1.IV. Conditions (C1) and (C2) and Axioms (A4) and (A5) follow directly
from the definitions. In order to check Axiom (A6), let @ C R4 with Q = [Q]r
and ry,...,r,,r € A” such that whenever ¢ € QHR(Am) and ry,...,r, € g then we

have r € g. Each multivalued function f € mO(;) can be identified with a subset
f* C A" x A where (ay,... ,an,a) € f*if and only if @ € f(a1,...,a,). Thus,
let f € mO(;) be given by f* := {(ri(y),...,m.(J),7(y)) | j € m}. It follows

directly that then r € f ® (ry,...,r,). Thus, it remains to show f € mPol Q.
Let ¢ € @ N R(Am), ..., € q, and ' € f @ (rf,...,r.). That means,

for each k& € m/, we have (r’l(k), r! (k),r’(k)) € f*. Hence there exists a

' n
mapping s : m’ — m such that v’ = s-r and r. = s-r; for © € n. We obtain
Fyeo. 7 € Ws(q). Therefore we get, by the assumption, that r € Wy(q) which
finally gives v’ = s-r € q.

4.1.V. In [Bor88] the local closure operator Loc is defined as
Loc F'={f € mO(;) In>1,Vhe mO(;) :
h* C f* and h* finite = 3dg € F:h* C g*}.

In order to show that, for clones of multivalued functions, it coincides with Defi-
nition 2.1.13 we apply Lemma 2.1.14 (a) and show the following:

Lemma. Let FF C ] ., mO(;). Then we have
{fEmO(;) |n>1,Vm>1Vry, ... ,r,,r € A™:
re fa(ry,...,rp) =39 € F:r€g(ry,... ,ra)}

= {fem0P | n>1VhemO:
h* C f* and h* finite = dg € F': h* C g*}.
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PrRooOF. “C7: Assume some h* C f* with h* finite, that is to say, h* =
{(a%, ceakat), o (af L a” am)}. We define

7 'nY 2 Y
.,a) fori €nand r:=(a',...,a™).

Then we get r € f@(ry,...,r,) since h* C f*. That yields some g € F' such that

r € g@(ry,...,r,) which finally gives h* C g¢°.

“D7: Let rq,... ,rp,r € A™ with r € f@(r1,... ,7rn). We define h € mO(;)
such that, for all a,...,a,,a € A, we have

(alv"' 7an7a) € h* = EI] cm: (Cll,... ,an,a) = <T1(j),... ,rn(]),r(])>

We get that h* C f* and therefore we obtain some g € F' with h* C ¢*. But this
means that r € g@(ry,... ,r,). O

Eventually, for some () C R4, the definition of LOC @) is already given in 1.1.3
and coincides with the one in 2.1.13.

Therefore, the characterization of the Galois closed sets of multivalued func-
tions and relations w.r.t. mPol — Inv in [B6r88] is a corollary from Theorems 2.2.6

and 2.2.10:
Theorem ([Bor88]). Let ¥ C mO4. Then we have that

mPol Inv ' = Loc(F')c.

Theorem ([Bor88]). Let () C R4. Then we have that

Inv mPol @ = LOC[Q]g.

4.2. Partial Functions and Relations

The Galois theory for partial functions and relations is investigated e.g. in [Bor88]

and [Ros83]. Here the sets C' and R are as follows:

C:=p0, =, pO®™ and R:=R, = Unsi R(™

with pO(;) being the set of all n-ary partial functions on some non-empty set A

and R(Am) being the set of all m-ary relations on A.

4.2.1. A set of partial functions is a clone if it contains all projections (cf. 1.1.4)

and is closed under superposition. The superposition h € pO(:) of f € pO(;)
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and ¢1,... ,0, € pO(:) is defined as in 1.1.4 where the domain of h consists of
all those (ai,...,a;) € A* that are members of domg; (for i € n) such that
(gl(al, cee @)y ey Gnlag, ... ,ak)> is in the domain of f. Thus, we set

C= <(PO(;))n21, (p?)n217i€E7 (compZ)n7k21>

where each comp? : pO(;) X (pO(:))” — pO(:) denotes the superposition of partial
functions.

4.2.11. Here the “relational” clones are weak clones of relations with identity.
They are subsets of R4 that contain the empty relation and the diagonal relation
Ay = {(a,a) | a € A} and are closed under arbitrary intersections and the
covariant substitution operators W where s : n — m and n,m > 1 (cf. 4.1.11).
Consequently, we define

R={(RY )51, (0 )1+ (Mo )mzts (W) siamsmmms 15 A ).

4.2.I11. Some f € pO(;) preserves a relation ¢ € R(Am) if, for all ry,... ,r, € ¢, we
have that whenever (rl(j), o ,Tn(])> € dom f for all j € m then f(rq,...,r,) €

q. Therefore we set

Flrte.e ] o= {{f(rl,... ,rn)p ifVyEm: (rl(j),... ,rn(])> € dom f,

0, else.

Then the mappings ¢, are given by Axiom (A4). Hence the induced Galois con-
nection pPol — Inv coincides with POL — INV for the present case.

4.2.IV. Verifying Conditions (C1) and (C2) and Axioms (A4) and (Ab) is
straightforward. For checking Axiom (A6), we assume ) C Ry with @ = [Q]r
and ry,...,r,,r € A™ such that whenever ¢ € @) N R(Am) and ry,...,r, € g then
also r € ¢ holds. Similarly to 4.1.1V, we define f € pO(;) where dom(f) :=

{(rl(j),... ra(J) | g € m} and f(r1(j),...,r(7)) := r(j). We have to check
that f is well-defined: whenever there are ji, jo € m with (r1(j1),... ,r(j1)) =
(r1(j2), ... ,7rn(J2)) then we have ry,... ,r, € Ws(A4) where s : 2 = m : 1 — j;.
The assumption gives r € W (A4) and therefore r(j;) = r(j2). Showing that
f € pPol @) is now analogous to 4.1.1V.

4.2.V. For F C pO,, the local closure Loc F' is given by

LocF:{prO(;” n > 1,V finite BC A"dg € F: dom f|B C domyg[B
and f[(BNdom f) =g[(BNdom f)}.

It follows from Lemma 2.1.14 (b) that this coincides with the local closure of F
given in Definition 2.1.13 provided F = (F)¢. The local closure operator LOC is
as in 1.1.3.
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Finally we obtain that the characterization of the Galois closed sets w.r.t.
pPol — Inv in [Ros83] (cf. also [Bor88]) can also be derived from Theorems 2.2.6
and 2.2.10:

Theorem ([Ros83]). Let F' C pO,. Then we have that

pPolInv F' = Loc(F)¢.

Theorem ([Ros83]). Let ) C R4. Then we have that

Inv pPol @ = LOC[Q]g.

4.3. Unary Functions and Relations

The Galois theory of unary functions and relations is due to M. Krasner ([Kra38,
Kra66]), R. Poschel ([P6s79]), and L. Szabo ([Sza78]). Here we consider C' := O(Al)
and R:=Rs =/ R(Am).

m>1
4.3.1. A subset F' C O(Al) is a clone if it is a monoid i.e. if it contains the iden-
tity mapping pi and is closed under composition of functions. Thus, we define
C = <O(1),p%7 o) where o : O(Al) X O(Al) — O(Al) denotes the composition of unary

functions.

4.3.I1. The corresponding “relational” clones are weak Krasner-clones and de-
noted by [Q]r, (where @ C Ry). They are sets of relations that contain the empty
relation and all diagonal relations 67" (see 1.1.5) and which are closed under gen-
eral superposition of relations (see 1.1.5) and finite union of relations. Hence
the “relational” clones here are defined as in 2.1.4 except from an additional
operation that expresses the union of relations. We define

R = ((RY )zt (B )mz1s (Afry)s (Un st

where the operations /\Zrm) are defined as in 1.1.5 and, for m > 1, we have
Un, (R(Am))2 - R(Am) @, 2) = @ U g
4.3.IT1. The notion of preservation is as for functions and relations (see Def-
inition 1.1.2). Hence we define the mappings !, : O(Al) X R(Am) — R(Am) as in
Example 2.1.6 and therefore the Galois connection End — Inv for unary functions
and relations coincides with POL — INV.

4.3.IV. Checking Axioms (Al)-(Ab) is straightforward. For verifying Axiom
(A6) assume Q C Ry with @ = [Q]r, and ry,... 7, r € A™ such that if
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g e Qn R(Am) and ry,...,r, € g then r € ¢q. From Example 2.1.12 we know
that then, for each 7 € n,

g :=1{f(r:) | f € EndQ} € [Q]r,.

Moreover, we also have ry,...,r, € UL, ¢ € [Q]r,. Thus, r = f(r;) for some
1 € n and we are done.

4.3.V. The local closure Loc I of some F' C O(Al) is defined to be
Loc " = {f € OV |V finite BC Adg e F': f]|B = g| B}

which obviously coincides with Definition 2.1.13. Also, the local closure of sets
of relations is as in Definition 1.1.3.

As a corollary we obtain that the characterization of the Galois closed sets
w.r.t. the Galois connection End — Inv follows from Theorems 2.2.6 and 2.2.10:

Theorem ([Kra66, P6s79, Sza78]). Let F' C O(Al). Then we have that

EndInv F' = Loc(F)c.

Theorem ([Kra66, P6s79, Sza78]). Let () C R4. Then we have that

Inv End Q = LOC[Q]r/,.

4.4. Conclusion

Defining a unified Galois theory that generalizes many other ones is like find-
ing a common “socket” where all the other Galois theories can be plugged in.
Therefore, any such generalization has to be a compromise: it must be general
enough to be the “socket” for many instances of it and instantiating this unified
Galois theory has to be easy — the interface of the “socket” has to be simple. The
present approach seems to meet both requirements. Possibly, there are a number
of other Galois theories that also fit onto this “socket” which are not mentioned
here. For instance, it probably might, with some alterations, be used for the Ga-
lois connection between (uniformly) delayed functions and polyrelations which
has, so far, been investigated only for finite base sets (see [HikR98] for a survey).

Compared with the unified characterization of “functional” clones, the char-
acterization of “relational” clones works on a more general level: on the “func-
tional” side, the operations of C as well as the corresponding Axioms (Al)-(A3)
are specified in detail whereas, on the “relational” side, the operations of R are
only assumed to satisfy some general requirements given in Axioms (A5) and
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(A6). This is not surprising since there are many different kinds of operations
applied to relations that occur in different “relational” clones.

Of course, showing that some Galois connections are instances of a unified
approach does not give new results for these Galois connections in the first place.
However, it provides a general view on them that shows which requirements are
actually necessary for the characterization of the respective Galois closed sets.
Moreover, relating Galois connections to each other in this way may give ideas
how to transfer results from one to the other. Furthermore, such a unified Galois
theory also helps when setting up a new Galois theory that is intended to be
designed in a similar way.

In many cases results as Theorem 2.2.10 are used to solve concrete character-
ization problems (cf. e.g. [Bor88, Pos79] and Section 3.2). It might be a subject
of future research whether this can be done in a uniform way, too. Moreover,
other results that are connected with such Galois theories might be generalized
similarly.
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Part II.

Terminal Coalgebras and Modal
Logic
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5. Coalgebras Categorically

Applications in computer science usually need to reflect the “real world” in great
detail. For instance, the specification of a system has to exactly represent certain
properties of it. Often, universal algebras or their duals, “classical” coalgebras
(cf. Definition 1.2.1) do not provide enough structure for this purpose. Thus, a
more general level is needed: algebras and coalgebras are defined on the basis of
categories (see Definition 5.1.1 below). As a result, even complex data structures
as lists or streams can be modelled easily. The “classical” cases — universal
algebras and coalgebras — turn out to be instances of this approach.

When dealing with algebras and coalgebras in a categorical setting certain
functors become of particular interest. They are inductively constructed from
some basic functors using some construction principles. Thus, we distinguish
several classes of functors according to which “ingredients” are used to construct
them.

These and other preliminary notions are introduced in Section 5.1. Section 5.2
gives a few examples how coalgebras model dynamic systems. Some of them shall
be used in the preceding chapters in order to illustrate the introduced theory.

5.1. Coalgebras and Their Functors
5.1.1. Definition. Let C be a category and F' : C — C a functor.
(i) An F-algebra is a pair (5,3) where S € C and § : F(S) — S is a

morphism. A homomorphism £ : (S, 3) — (5, 3') between F-algebras is
a morphism h : S — S’ such that the following diagram commutes:

F(S) 2 psny
ﬁ‘ \‘ﬁ'
§——

The category of all F-algebras is denoted by C*".
(ii) An F'-coalgebra is a pair (5, a) where S € C and o : S — F(S5) is a

morphism. A homomorphism & : (S,a) — (57, a’) between F-coalgebras
is a morphism h : S — 5 such that the following diagram commutes:
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§——

O
i

O

F(h)

F(S)—=F(5)
The category of all F-coalgebras is denoted by Cr.

5.1.2. Remark. The main goal of Part II of the present thesis is to support the
specification of systems. We show how to construct terminal coalgebras and how
to derive (specification) languages for coalgebras. Very often, the specification of
systems is done on the basis of an underlying set (cf. e.g. [Abr96]). Therefore, in
the sequel we shall assume the category C to be the category Set of (small) sets.

Another reason for using the category Set is that, in Chapter 7, we present
a modal logic for coalgebras. In general, models of modal languages consist of a
set equipped with some structure on it. The semantics of these languages is then
in fact given elementwise.

Coalgebraic approaches that use a more general category C instead of Set usu-
ally impose certain assumptions on C. For instance, often C has to have products
and coproducts or even initial algebras and terminal coalgebras w.r.t. certain
functors. Frequently, the underlying category C bears in fact a set-like structure
(cf. e.g. [Jay96, Wor98]). The present approach can probably be generalized to
such a level.

5.1.3. Remark. The functor F' in Definition 5.1.1 determines the structure of
the respective algebras and coalgebras. Remark 1.2.2 illustrates this for the case
of “classical” coalgebras. The same applies to their duals, universal algebras: Let
Q0 = (n;)ier be a signature for universal algebras. Then let F' : Set — Set
be the functor given by F(S5) = >, ;5™ where ) denotes the coproduct
(disjoint union) of the products (cartesian powers) S™. More precisely, let
F(S) := U;e {7} x S™. The image of a mapping f : S — S” under F' is then
defined componentwise as follows: F(f) : F(S) — F(5') : (i, (S1y... ,Sni)> >
(i, (f(s1),... ,f(snl))> We obtain that every universal algebra (A, (fi)ics) of
type ) corresponds to an F-algebra (A, ) where 8 : F(A) — A is given by
ﬁ(i, (aq,. .. ,ani)> = filay, ... ,a,,). Conversely, each F-algebra (A, ) can also
be regarded as a universal algebra of type () whose operations f; are then de-
fined as above. Moreover, a mapping h : A — A’ is a homomorphism between
F-algebras (A, 3) and (A’, ') if and only if it is a homomorphism between the
corresponding Q-algebras (A, (fi)icr) and (A", (f))icr) in the “classical” sense.

The concept of bisimulation plays a crucial role in theoretical computer sci-
ence. There are a number of different definitions of it. One of the best-known
and mostly used is the one of behavioural equivalence. Expressed in terms of
coalgebras this amounts to the following definition:
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5.1.4. Definition ([AczM89]). Let (5, a) and (57,a’) be F-coalgebras. A re-
lation R C S x 5" is called a bisimulation between (5, «) and (57, ') if there
exists a morphism ap : R — F(R) such that the projections g : R — S and
s« R — S are homomorphisms. Elements s € S and s’ € S’ are called
bisimilar if there exists a bisimulation R such that (s,s’) € R.

Note that Definition 3.2.3 is an instance of the above one which follows from
Remark 1.2.2.

For modelling more complex structures as, for instance, lists and streams we
need to allow for the construction of fixed points in the functor. They are given
by the following definition which can also be found e.g. in [HenJ97].

5.1.5. Definition. Let 7" : Set"*! — Set be a functor.

The initial algebra carrier ¢ X.T(—, X) : Set” — Set is a functor that maps a
sequence of objects S € Set” to the carrier uX.T'(S, X) € Set of the initial algebra
fs : T(S,/JX.T(S,X)) =5 uX.T(S,X) in the category of algebras w.r.t. the
functor T(S,—) : Set — Set. A sequence of morphisms f : S — S’ in Set” is
mapped to the unique homomorphism of algebras pX.T'(f, X) : pX.7T(S, X) —
pX.T(S', X) given in the following diagram:

T(idg,uX.T(£,X))

T(S,uX.T(S, X)) - - — LoD ~T(S, uX.T(S', X))
| Tt s )
Bs | = (S, uX.T(S, X))
| > | B
UXT(S, X)— - — - WXTEX) (s, X

The terminal coalgebra carrier v.X.T(—, X) : Set” — Set is defined in a dual
way.

Note that the above defined functors uX.T(—, X) and v X.T(—, X) do not
necessarily exist for arbitrary functors 7.

In the following we shall use some basic constructions in the category Set,
like products, coproducts, and exponents (regarded as products). More precisely,
the product of two sets S; and S; is denoted by S; x S, with projections ; :
S1 x Sy — S; (for ¢ = 1,2). The coproduct (disjoint union, sum) of S; and
Sy is written as Sy + Sz with coprojections x; : S; — 51 + 52 (for ¢ = 1,2).
Finally, the exponent of 57 and .53 is given by S;=-57 or Sf2 with an evaluation
mapping ev : (92=51) x Sz — S1. In particular, we shall consider mappings
s 1 (S2=51) = 51 (for s € S3) where m4(t) := ev(t, s).

Most of the functors that occur in coalgebraic approaches and which are
relevant for coalgebraic specifications are constructed inductively from the con-
struction principles given below. An explicit definition of most of these functors

can be found in [Rut97].
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5.1.6. Definition. Consider functors F': Set” — Set that are inductively built
from the following construction principles:

(i)  — projection functors II? : Set”™ — Set : (Sy,...,5,) — S5,
in particular the identity functor Id =TI} : Set — Set : S +— S,

— constant functors Fg : Set” — Set : (51,...,5,) — C where C is a
fixed non-empty set,

— the product functor x : Set? — Set : (51, 52) = S x Sy,
— the coproduct functor + : Set? — Set : (51,52) = S1+ 52,

— exponent functors (EF=—) : Set — Set : S — (E=-S5) where E is a
fixed non-empty set,

(ii) composition U o (Ty,...,T,) : Set” — Set where U : Set™ — Set and
T; : Set” — Set for 1 € m,

(iii)  — the initial algebra carrier uX.T(—, X) : Set” — Set where T :Set"™" —
Set,

— the terminal coalgebra carrier vX.T'(—, X) : Set” — Set where T' :
Set" ™! — Set.

(iv)  — the (covariant) power set functor P(T') : Set” — Set : (S1,...,5,) —
P( (St S0) ) where T : Set” — Set,

(v) the r-bounded (covariant) power set functor P.(T) : Set” — Set :
(S1y.-,9,) = {S CT(S1,...,5) | |S] < k} where T': Set” — Set

and & is a cardinal.

We say that a functor F' : Set” — Set is polynomial if [V is only constructed
from (i) and (ii). Moreover, we call F' Kripke-polynomial if it is additionally
constructed from (iv). A functor F': Set” — Set is called a datafunctor if it is
built using (i), (ii), and (iii).

We call ¢ a subfunctor of F' if G occurs as a functor during the inductive
construction of F.*

The above definition of polynomial functors coincides with the one in [Rut97,
R6898]. However, it does not equal to the one in [Jac99]: the notion of polynomial
functors there is the same as of Kripke-polynomial functors here. Datafunctors
are also investigated e.g. in [Hen99, HenJ97].

*This notion differs from the notion of a subfunctor used in category theory: there a functor
G 1s a subfunctor of a functor F if it is a subobject in the functor category.
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5.1.7. Remark. A similar notion of a datafunctor is given by B. Jay in [Jay96]:
under certain assumptions on the category C, a unary datafunctor is defined to
be a functor F' : C — C equipped with a cartesian transformation data : F' =
(P e —) into a position functor where P is called its object of positions. That
means, for each S € C, datag is a morphism from F(.5) to the exponential object
P=-(5S 4+ 1) where 1 denotes the terminal object in C and, for each morphism
f:8—= 5 the following diagram commutes and is a pullback square:

F(S) datag . P-e} S
F(f) Pef
v N datags v
F(5") - P S

If C is the category Set then, for some S € Set, datag maps F/(S5) to the set
P> 5 of all partial mappings from P to S.

The basic idea is to separate the shape and the data of F/(.S). All possible
shapes are given by F'(1). Thus, for S € C, we obtain the following diagram:

F(S) datag . P-e}S
F(!S)\ Pelg
F(1)—=2 __pai

where g denotes the terminal morphism of 5.

If F'is a datafunctor on Set then F(!s) and datas map an element of F'(5) to
its shape and its data, respectively. The image of F'(S) under datag is a partial
mapping from the set P to the set 5. Remark 6.2.9 gives an explicit description
of this situation. In particular, the elements of F'(1) are characterized explicitly.

More generally, n-ary datafunctors in [Jay96] are equipped with a cartesian
transformation data : ¥ = [[i_, (P e —).

Examples of datafunctors can, for instance, be found in [HenJ97]. Here we
recall a few which are given there.

5.1.8. Example. Using the polynomial functor Ty : Set® — Set : (S, Sy) +
(C x (81 x S2)) + {*} we can construct the following two datafunctors:

(1) The functor List(C' x —) := uX.Te(—,X) : Set — Set maps a set S
to the carrier of the initial T (5, —)-algebra List(C' x S). The elements of
List(C' x S) can be regarded as finite sequences of pairs (¢, s) € C' xS which
shall be illustrated in Example 6.1.2, c¢f. Theorem 6.2.8.

(2) The functor Colist(C' x —) := v X.T(—, X) : Set — Set maps a set S to
the carrier of the terminal T¢ (.S, —)-coalgebra Colist(C' x S). The elements
of Colist(C' x ) are exactly represented by all finite and infinite sequences
of pairs (¢,s) € C' x S, cf. Theorem 6.2.8.
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5.2. Coalgebras Model Dynamic Systems

One major benefit from coalgebra theory is a unified view on many dynamic
systems which, for instance, allows to compare them. On the other hand, this
is also the reason why coalgebras are very useful for the specification of such
systems. The corresponding functor determines the kind of system. In [Rut97]
J. Rutten presents a great variety of examples how coalgebras model, for instance,
transition systems, automata, trees, or transducers. Here we only consider a few
examples that shall be used later for illustrating the theory at work.

In general, the output of a system is modelled by a constant set in the functor
F such that this constant set contains all possible output values. On the other
hand, sets of possible input values are modelled as exponents. Note that the
coproduct functor also yields some implicit “output” information (i.e. observable
information) since Id + Id 2 Id x 2.

5.2.1. Example (Kripke-structures, cf. e.g. [Kri59, Kri63]). Kripke-struc-
tures are models of modal languages. These languages contain a set AtProp of
atomic propositions and are closed under boolean connectives and some (unary)
modal operators indexed by a set I. The corresponding Kripke-structures are
then defined to be triples (S, R, V) where S is a set, R = (R;)iez is a family of
binary relations on S and V : AtProp — P(5) is a mapping.

Often, the investigated modal language is closed w.r.t. just one modal opera-
tor, i.e. I is a singleton set. Then R consists of only one binary relation R. In the
remainder of this example we shall consider this case for the sake of simplicity.

Originally, Kripke-structures were considered in philosophy where the ele-
ments of S denote some possible worlds and s Rt if the world ¢ is accessible from s.
The mapping V' assigns to each atomic proposition p those worlds (i.e. elements
of S) in which p holds.

In computer science Kripke-structures have become of growing importance
since they represent transition systems. Here the relation R represents the tran-
sition structure on 5. Labelled transition systems correspond to the more general
case of several modal operators, then the labels are given by the elements of [.
Kripke-structures also occur in other areas, for instance, as graphs, partial orders,
or automata.

A given Kripke-structure (5, R, V') can also be regarded as an F-coalgebra
(S, a) for the functor F = P(Id) x {0, 1}A*FrP where AtProp denotes the set of
atomic propositions: for each world s € 5, a(s) gives the set of worlds accessible
from s in its first component and the set of atomic propositions that hold in s in
its second component. Conversely, each F-coalgebra (5, a) uniquely determines

a Kripke-structure (5, R, V).

5.2.2. Example (alternating automata). Let BY(S) denote the set of all
positive Boolean formulas over S (i.e. Boolean formulas built from elements of
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S using A and V) including the formulas T and L. Then an alternating Biichi
word automaton ([Var97]) is a tuple (X,5,s% o, Fin) where ¥ is a finite non-
empty alphabet, S is a finite non-empty set of states, s° € S is an initial state,
Fin C S'is a set of accepting states, and p : Sx ¥ — BT(S) is a partial transition
function. Given a word w = aga; ... over X, a run of such an automaton on w is
an S-labeled tree with root s° such that for each node x of depth 7 we have that
if o(s,a;) = 0 and @ has children x4,... , ) then the set of labels of {xy,... x4}
satisfies . For instance, if o(s%, ag) = (51 V s2) A (53 V s4) then the nodes of the
run tree at level 1 contain the label s; or the label s, and also contain the label
s3 or the label s;. Each such automaton (X, S, s% o, Fiin) can be regarded as an
F-coalgebra for

= ((P(P(d) + {(+)7) x {0,111

Suppose, for each s € S and each a € ¥ we write o(s,a) (if it is defined) in
a disjoint normal form \/,c;a /\jejq s5¢.. Then the automaton (3,5, s, 0, Fin)

corresponds to an F-coalgebra (5, ) with
o8 <(E(S,G>)a€2,bi,bf>

where 9(s,a) := /il({{sij}]‘ejla}iela> if o(s,a) is defined and 9(s,a) := Ka(*)
otherwise. The elements b;,by € {0,1} indicate whether s is an initial and an
accepting state, respectively. This is an “underspecification” because, conversely,
not each such F-coalgebra is in fact an alternating Biichi word automaton: for
instance, it does not necessarily have a unique initial state.

5.2.3. Example (transition systems, cf. [Rut97]). Deterministic transition
systems with output alphabet ¥ are represented by coalgebras (5, ) of the func-
tor F' = (¥ x Id) 4+ {*}. In each state s, such a transition system can either
perform a transition s — s’ or terminates. That corresponds to the cases
a: s kri(a,s’) and o s — ke(*), respectively.

5.2.4. Example (5.1.8. continued). Coalgebras also serve to model objects
and their methods (cf. [Jac95, Jac96]): consider an object with one method Self —
List(C' x Self). Then instances of this object can be regarded as F-coalgebras of
the functor F' = List(C' x —) as introduced in Example 5.1.8.

35



5. Coalgebras Categorically

56



6. Terminal Coalgebras

Section 5.2 gives examples how coalgebras model a great variety of dynamic
systems. In order to use them for specification purposes, one has to analyze the
intrinsic structure of these systems, that is to say the underlying functors of the
corresponding coalgebras. This knowledge about the functors can, for instance,
be used to construct terminal coalgebras or to derive languages.

Syntax trees are a useful tool to obtain a deeper insight into the structure of a
functor. This chapter develops a syntactical characterization of datafunctors. In
Section 6.1 we define elementary trees that represent the structure of an element
of FI(S) where F is a given datafunctor and S is a set. In Section 6.2 we define
sets F(S) consisting of pairs of elementary trees w.r.t. F' and certain labelling
mappings. This eventually leads to a functor F. As one main result, we shall
prove that [ is naturally isomorphic to F (see Theorem 6.2.8). Then, as a
corollary, this yields an explicit description of the terminal coalgebra of a given
datafunctor, cf. Section 6.3.

The contents of this chapter is, in a slightly different way, also presented in
[R6B99a.

6.1. Syntax Trees

Here we shall investigate the intrinsic structure of datafunctors on the category
Set. Note that on Set these functors are well-defined which follows from Lemmas
6.2.6 and 6.2.7. First, we give the definition of elementary trees w.r.t. some
datafunctor F. They are subtrees of the syntax tree w.r.t. F' and represent the
structure of an element of F(5) where S is some set.

This section assumes some basic knowledge in graph theory, mainly concerning
trees. More detailed information about that can also be found e.g. in [Wes96]. In
the following we shall consider certain node and edge labelled trees. For the sake
of simplicity, we shall identify nodes with their labels. Subtrees of a given tree tr
are defined to be induced connected subgraphs of tr where trees are regarded as
graphs. A subtree of tr is called full if it contains with each node also all of its
children in tr. Paths in a tree tr are defined graph theoretically such that their
source coincides with the root of tr. Branches are maximal paths.
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6.1.1. Definition. For a given datafunctor F' : Set” — Set, we define the set
Tr(F) of elementary trees w.r.t. F according to the inductive structure of F' where
(¢ denotes a subfunctor of F.. Members of Tr(() are given as follows:

G =117 :
G:Fci
G=x:

G =+
G=(F=-):

X;

7N

Xo

Xi

G:UO(Th...,Tm)l

G=upuXT(—,X):

38

or

trV

_|_

where ¢ € (',

&

Xo

where F = {e,... €'},

tr

where tr¥ € Tr(U) and each leaf
X; in tr¥ is replaced by some
trli € Te(T;) (for 1 € m).

(Recall that 7' : Set"™' — Set.)
Fach leaf X, 11 in sometr € Tr(T)
is replaced by some tr' € Tr(T)
and this process is repeated up to
a finite depth such that the re-
sulting tree has no leaves X, ;.
(Note that, however, the result-
ing tree may be of infinite depth
if one of the elementary subtrees
w.r.t. T in it is already of infinite

depth.)
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G=vXT(-,X): Fach leaf X, 11 in sometr € Tr(T)
tr is replaced by some tr' € Tr(T)
and this process is repeated (pos-

sibly infinitely often) such that
/
tr the resulting tree has no leaves
n+1 Xn_|_1.

6.1.2. Example (5.1.8. continued). Elementary trees w.r.t. the functor T¢ :
Set® — Set : (51,5,) — (C x (51 x S3)) + {*} are of the following form:

+ +
XV &*
- - or
Ve \X
o e
X, Xy

where ¢ € C. Thus, an elementary tree w.r.t. List(C' x —) = uX.Tc(—, X) :
Set — Set is, for instance, of the following form:

_|_

&
VAN
XV \g—l-
1
>
Czy &X
2
X, +
Y

%

6.1.3. Definition. Let F': Set” — Set be a datafunctor. Then we define the
syntax tree syntr; of I inductively for subfunctors G of I as follows:

G=1I": X;
G:Fci C
G:X: X

N\

X1 X
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G =4 +
X1 X
G=(F=-): - where F = {e,... €'},
X1 X1
G=Uo(Ty,...,T,): each leaf X; in syntr;, is replaced
syntr,) by syntry. (for i € m).
syntrr. syntrp,
G=upuXT(—,X): (Recall that T : Set"t' — Set.)
syntry Each leaf X,y in syntry is re-
placed by syntr; and this process
ﬁtr e is repeated infinitely often.
T
n+1
G=vXT(-,X): Each leaf X,y; in syntry is re-
syntry placed by syntr; and this process

is repeated infinitely often.

ﬁtrT
n+1

6.1.4. Example (5.1.8. continued). The syntax tree syntry, for the functor
Te : (51,52) — (C X (57 X 52)> + {*} is given as follows:

_I_
2\
A
%
X X

Therefore, the syntax tree w.r.t. List(C' x —) = uX.Te(—, X) is of the following
form:
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7
S
Xj/ \g—l-
7N
Y
N

6.1.5. Definition. Let tr be a tree as given in Definition 6.1.1 or 6.1.3. In
analogy to [Jac99], we define Paths(tr) to be the set of all branches in tr. Given
some label Z, we denote the set of all branches in tr with a leaf (labelled with)
Z by Pathsg(tr).

For the sake of simplicity, we shall identify branches with their labellings since
each branch is uniquely determined by its labelling.

6.1.6. Remark. Let F' be a datafunctor. Every elementary tree tr € Tr(F') is a
subtree of syntry with the same root as syntry if we replace each leaf ¢ € C' in tr
by the constant (' itself. Conversely, for polynomial functors F', a given subtree

tr of syntry arises from an elementary tree w.r.t. I if the following conditions are
satisfied:

(i) tr contains the root of syntry,
(ii) tr contains, with each x-node, also both of its children in syntrg,
(iii) tr contains, with each +-node, exactly one of its children in syntrg,

(iv) tr contains, with each (E=-—)-node, also all of its children in syntr.

This characterization result follows directly from Definition 6.1.1. In case F
involves fixed points, more technical details are needed but a similar characteri-
zation can be given too (see [R6899a]). The above characterization can also be
formulated in terms of branches of syntry, cf. [R6898, R6B99a].

6.2. Characterizing Datafunctors

This section presents, for a given datafunctor F, a functor F that is defined
using the notion of elementary trees. The main result of this section states that
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the functors F' and F are naturally isomorphic. Thus, we obtain a syntactical
characterization of F'in terms of trees.

Q.2.1. Definition. Let F': Set™ — Set be a datafunctor. We define a functor
F': Set™ — Set as follows:

e whenever Sq,...,5, € Set then F(Sl, vy 55) is the set of all pairs (tr, L)
where tr € Tr(F) and L = (l;)ien is a family of labelling mappings [; :
Pathsy, (tr) — 5,

e whenever f; : S; — S! (with ¢ € n) then F(fl, vy fn) is defined as

F(fioooo o fa) : F(S1,....S,) — F(SI,....8")
(tr, (L)ien) = (tr (L fi)ien)

In other words, the mapping F(fl, .oy fn) simply replaces each label s; € S;
of a leaf X in tr by fi(s;) € S

It is immediate from this definition that I in fact constitutes a functor from
Set” to Set. An element (tr, L) of F(S) can be pictured as follows where the
respective label of some leaf X; is given in brackets below of it:

syntr

the elementary tree tr

(s

6.2.2. Example (5.1.8. continued). Let S € Set. Let us have a closer look
at F'(S) where F' = List(C' x —). For instance, an element of F'(5) might be

represented as follows:

_|_

e
N

C1 X

XV \g—l-

() 5
X

Czy %X
N
X1 +
(s2) e

%
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Here the underlying tree is an elementary tree w.r.t. F' (cf. Example 6.1.2). The
mapping /; sends the branches rymym; and kymymerymam to s; € S and s € 5,
respectively, as depicted at the respective leaves. Thus, this tree corresponds to

the list ((01,31), (02,32)> € List(C x 9) of length 2.

6.2.3. The goal of this section is to show that a given datafunctor F': Set™ — Set
is naturally isomorphic to F. Proving this consists of the following steps:

(1) defining mappings 7& : F(S) — F(S) for all S € Set”,
(2) showing that each such 7&" is a bijection, and

(3) verifying that, for all mappings f : S — S’ in Set”, the following diagram

commutes:
F

F(S) =~ F(s)

The following Definition constitutes step (1):

6.2.4. Definition. Let F' be a datafunctor. We inductively define the mappings
7§ G(S) — G(S) where ¢ : Set” — Set is a subfunctor of F' and S € Set”.
(The label of some leaf X; is given in brackets below of it.)

G=17: m$ 8 = G(S) s f(g ,

G=Feg: 78 C = G(S) e e,

X

G=x: 7§ S x Sy — G(Sh, Sa) ¢ (81,5) — y &
X X3
(s1) (s2)

_I_
G=+4: Tg:51+52—>é(51,52) 3/ii(3i)'_> "
X;
(s
E=—
G=(Bom)i 1§55 5 G): (s 7 e
X1 Xl
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G=Uo(T,... . Tn) : 7—SG = U(Tglv e 7Tgm) ’ T([é;l(s),...,Tm(S)) 0s

where the mapping ds : U(Tl(S), o ,Tm(S)> — (/(8) takes some
(trY, (1Y)iem) with 17 : Pathsy, (tr) — Ti(S) to (tr%, (I¥);en))
where tr“ arises from tr¥ by replacing its leaves X; by the corre-
sponding label trees given as images of [ and ZJG is determined by
the labels of the images of (I¥);c,n. In other words, the mapping

dg can be illustrated as follows:

trV
X —X;
trli T, X X,
X (sk) (s1)

G=puXT(—X): 7§ := ides),
G=vXT(—,X): 7§ = 1dgs)-

Of course, the correctness of the above definition still needs to be verified.
The image-objects of the fixed point functor G = pX.T(—,X) (resp. G =
vX.T(—,X)) above are only defined up to isomorphism. As shown in Lemma
6.2.6 (resp. 6.2.7), the set CN?(S) bears in fact an initial algebra structure (resp. a
terminal coalgebra structure). Thus, we define these fixed point functors to
choose these particular corresponding sets as representatives of the correspond-
ing isomorphism classes.

6.2.5. Lemma. Let G = U o (Ty,...,T,) be a datafunctor and § be as in
Definition 6.2.4.

(a) For each S € Set", dg is a bijection.

(b) For eachf:S — §', the following diagram commutes:
~ U((Ti(f))iem)

U((Ti(s))iem> - U((Ti(sl))iem>
é(s) o - G(9) .

6.2.6. Lemma. Let T : Set"*! — Set be a datafunctor such that 77 : T=T is
a natural isomorphism and let G = pX.T(—, X).

(a) For each S € Set”, we have that (/(S) is the carrier of an initial algebra
(G/(S), Bs) in Set™S7),
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(b) For eachf:S — §', the following diagram commutes:

T(ds,G(f))

(S, G(S)) -T(S.G(8))
|T(Fides)
Bs T(S',G(S")
| \,ﬁs/
i(s) “0 - (s

PROOF. (a). Let S € Set”. We define a mapping
Vs - T(S, é(S)) — G(S)

that takes some (trT,(l»T)iew> € T(S,G(S)) to (trG,(liG)ieE) where tr¢ arises

from tr” by replacing the leaves X, ,; of tr’ by the trees of the corresponding
labels and where the labelling mappings (I¥);c, are determined by (I1);c, if the
arguments are branches of tr’ and by the labels of the images of {1, | otherwise.

[lustrated in terms of trees, the mapping 7s is defined as follows:

trl IE T

tr
n+1 Xn—l—l /j
(/l)- .. (/l) /& .. tr//
tr’ tr!’ X; X;
X, X, (s) )

(i) (s5)

It is immediate from this definition that vg is a bijection. We set g := TSTG(S)'VS :
T(S, G(S)) — (/(8) and, thus, (G(S), 3s) becomes a T'(S, —)-algebra. It remains
to show that this algebra is initial in Set”57). We shall apply induction on
elements of G/(S).

Recall that P := Pathsy, (syntry) denotes the set of all branches with leaf
Xnt1 in the syntax tree syntry. Let us consider the set P~ of all finite words
over P (including the empty word). Assume (tr, (li)i€Q> and (tr’, (l;)@) € G(S).
We write (tr’,(lg)ieﬁ < (tr, (li)ieg> if there exists some w € P* such that w
determines a path in tr and (tr’, (lg)Z'eE) is the full subtree of (tr, (li)ieg> rooted at

the target of w (in particular, on tr’, the respective labels of tr’ and tr coincide).
That means we have the following:

tr

w € P*
tr’
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where tr and tr’ have the same labels for leaves of tr’. The relation < is in fact a
partial order on CN?(S) (in particular, it is reflexive since the empty word is in P*).
Moreover, < is Noetherian since the construction of elementary trees w.r.t. GG
from elementary trees w.r.t. T' is only allowed up to a finite depth (cf. Definition
6.1.1).

Let (B,) be a T(S,—)-algebra. We define a mapping h : CN?(S) — B as

follows:

1. Tf (tr, L) is minimal in (G(S), <) then tr € Tr(T) and Pathsy,,, (tr) = 0.
Therefore we have vg'(tr, L) € T(S, B). Thus, we set

h(tr, L) := (’ygl . (7_ST7B)—1 -ﬁ)(tr, L).

2. For (tr, L) being non-minimal, let & be defined for all (tr', L) < (tr, L). We

put (tr, ([;)ient1) := 75 (tr, L). It follows that, for all p € Pathsy,,, (tr), we
have Zn+1(p) < (tr, L). Hence we set

hitr, L) == (vg' - T(ids, h) - (rd.5)" - B)(tr, L).

Using induction on the partial order on T(S, CN?(S)) induced by v5' one can easily
verify that the following diagram commutes and that & is in fact the only homo-

morphism from (G(S),ﬁ@ to (B, ).

7(S,G(S)) — =1 (s, B)
|CSas)™ |Sp)7
7(S,G(S)) — =178, B)
Bs B
5 Y L ¥
a(S) B

(b) First, observe that, for f : 8 — S’ in Set”, we have g - G/(f) = T(f, G(f)) .
~vs: which follows from the definition of 4. Therefore, the following diagram
commutes:

T(£.G(f)

Vst
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6.2.7. Lemma. Let T : Set"*! — Set be a datafunctor such that 77 : T=T is
a natural isomorphism and let G = v X.T'(—, X).

(a) For each S € Set”, we have that (/(S) is the carrier of a terminal coalgebra
<G(S), Ozs> in SetT(&_).

(b) For eachf:S — S', the diagram below commutes:

a(s) o - ()
T(S,G(S)) g
T(f,idé(s))\
T(S/, é(S)) T(idgs,G(f)) N T(S/, G(S/)>

PROOF. (a). Let vs: T(S, é(S)) — CN?(S) be defined in the same way as in the
proof of Lemma 6.2.6. We set

ag 1= ’ys_l . (TST,G(S))_I : CN?(S) — T(S, G(S))
which makes (é(S), as> a T(S, —)-coalgebra. In order to show that (é(S), as>
is terminal assume that (A,a) € Setys ). We define a mapping h : A —

CN?(S) as follows: for each a € A, let h(a) = (trh(“),(lf(a))Z'eE) € CN?(S) be given
by the “future” of a, i.e. h(a) is constructed in an iterated way: the first step
gives TSTA (oz(a)) =: (tr', L'). Then each leaf X, of tr' is replaced by the tree
corresponding to its label and so forth. More precisely, h(a) is defined as follows:
The tree tr*(®) is given by its set of paths. Possible (labellings of ) paths (i.e. paths
of syntr,) are of the form p;...p,p where py,...,p, € Pathsx . (syntry) and p

is a path in syntry. Such a path py...p,p is in tr"(®) if

o there exist ay,a9,...,a,11 € A with @y = a such that, for each & € m,
we have p; € PatthnH(trk) and l§+1(pk) = ajy1 where (trk,(lf)iew> =

T§A<a(ak)> and
e pis a path in tr*™! where (trm"'l, (W“)iew) = T§A (oz(am_|_1)>.

We define the labelling mappings (lh(a

: ))iEQ as follows: Let p' € Pathsy, (tr"(®).
Then p' = py...p,p with p; € Pathsy,  (syntr;) and p € Pathsy,(syntr;). We
(uniquely) determine elements as, . .. , @n41 as above and put lf(a)(p’) = [T (p).
It is straightforward to check that we actually have (tr(®), (lf(a))ieﬁ) € G(S) Ver-
ifying that h is a homomorphism amounts to showing that the diagram below

commutes which follows from the definition of A.
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A " - G/(S)
T(SvA) WS_1
(S, A) — = (s Gi(s))

In order to prove the uniqueness of & we assume ¢ : A — CN?(S) to be a homomor-

phism. Therefore, the following diagram commutes since ag is a bijection:
g

A - G(S)
T(SvA) WS_1

o Tlids,g) /e~
T(S, A) ——==T(S,G(S))

Assume that there exists some a € A such that (tr™®) L)) = h(a) # g(a) =
(tr?(®) L9y, That means there exist py,...,pn, € Pathsy, ., (syntry) such that
the path p; ... p, is both in tr® and tr*(®) but h(a) and g(«) differ in some path
p1 ... pmp with p being a path of syntry or in the label of some branch py ...p,,p’
where p’ € Pathsy, (syntry). By the definition of h, there exist az,... ,ami1 € A
such that, for each & € m, p, € Pathsy  (tr ) and %, (py) = apyr where
(tr (1% )Z€@> = T§A< (ak)>. The commutativity of the lower diagram yields
that, for each k& € m, the full subtree (tro(®s+1) [9(sk+1)) of (£r9(®) [9(2)) rooted
at the target of p;...py represents exactly g(axt1). Hence the full subtree
(trolamr) | [o(amt1)) of (£r9(0) [9(2)) rooted at the target of p;...p, corresponds
t0 g(@my1). Similarly, the full subtree (tr™(em+1) [Mamt1)) of (trh(@) [M@)) rooted
at the target of p;...p, represents h(a,11). The assumption states that the
images of (tr*(@m+1) [Memt1)) and (trolem+1) | [9(@m+1)) under g differ in their tree
component or their first n labelling mappings. But the commutativity of the two
diagrams above gives

s (Alamyr)) = (et (174 iy, 1y, ) and
751<9(am+1)> = <trm+17(l;m+1)i€nali+1>

where TSTA (oz(am_H)) = (trm"'l, (l;n""l)iew) and ZZ_H and [, are some labelling
mappings. But this contradicts with the assumption.

(b) Similar to the proof of Lemma 6.2.6 (b) we have, for f : S — S in Set”,
that G(f) - vg' = 75" - T(f,G(f)). Therefore, the following diagram commutes:
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I(£.G(f)) O

Now we have gathered all pieces to state the main theorem of this section:

6.2.8. Theorem. Let I' be a datafunctor on the category Set and I be con-
structed as in Definition 6.2.1. Then the functors I' and F' are naturally isomor-
phic.

ProOOF. By induction on the subfunctors GG of F', we simultaneously show steps
(2) and (3) of 6.2.3. The cases that G € {II?, F¢, x,+, E=—} follow directly
from the definitions. If G = Uo(Ty,...,T,,) where T; : Set” — Set then it follows
from the induction hypothesis and Lemma 6.2.5 that 7§ is a bijection for each
S € Set”. Moreover, whenever f : S — S’ the diagram below commutes:

U ((TH(S))sem) — ) 17 (1(S) i)

G(S) - (/(S)
The cases G = pX.T(—,X) and G = v X.T(—, X) follow from Lemmas 6.2.6 and
6.2.7, respectively. O

6.2.9. Remark. Given a datafunctor F' : Set — Set, the elements of F(1)
are exactly represented by the set Tr(F') of all elementary trees w.r.t. F. By
setting P := Pathsy, (syntr;) we now can express datafunctors as defined in 5.1.6
in the form (F, P,data) as mentioned in Remark 5.1.7. Then F(!s) maps an
element of F'(5) represented by (tr,[;) to tr and the image of datag is [; : P -
S. The relationship to general datafunctors in the sense of [Jay96] (i.e. n-ary
datafunctors) is of a similar kind.
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6.3. Terminal Coalgebras

In computer science terminal coalgebras play a similar role as term algebras
(i.e. initial algebras) in universal algebra. Let us consider an F'-coalgebra (.5, a)
where F'is a functor that preserves weak pullbacks. If there exists a terminal
(final) F-coalgebra (Z,ayz) then the terminal homomorphism !(g.) : (5, a) —
(Z,az) gives the “future behaviour” (or “observable behaviour”, cf. [Rut97]) of
each s € 5. That means two elements s, s’ € S are bisimilar if !5,y maps them to
one and the same element in Z. Hence constructing the terminal coalgebra gives
means to check bisimilarity. In this way, the terminal coalgebra canonically yields
a “final semantics” (cf. [RutT98]). Furthermore, the existence of the terminal
homomorphism gives rise for coinductive definitions. The uniqueness of this
homomorphism gives access to coinductive proofs (cf. [Rut98, Rut99]).

Theorem 6.2.8 provides an easy way to explicitly characterize the terminal
coalgebra of a given datafunctor:

6.3.1. Corollary. Let T : Set — Set be a datafunctor. Then there exists a
terminal coalgebra of Sety on the set F' (constant functor) where F := v X.T(X).

A similar functional description of the terminal coalgebra for functors of the
form F: S [],(B: + C; x S)% is given by B. Jacobs in [Jac96]. A gener-
alization of it to polynomial functors can be found in [R6898]. The latter result
is mainly based on the internal characterization of elementary trees using their
paths. It explicitly describes the elements of the terminal coalgebra and does not
require an inductive construction of them. This is also possible for datafunctors:
[R6BI9a] gives a corresponding characterization. However, since there are fixed
points involved in the functor, the technical details are rather complicated and
therefore we omit outlining this result here.

6.4. Conclusion

Coalgebras of datafunctors only represent deterministic dynamic systems. Allow-
ing for non-determinism means to include the power set functor as a construction
principle for the functor. That rises the question whether the characterization
result of the present chapter can still be carried to this larger class of functors.
Of course, for F' = P(—) being the power set functor itself there does not exist a
terminal F'-coalgebra because of cardinality reasons. This calamity can be omit-
ted by using bounded functors (see [Rut97]). Hence one could use some bounded
power set functor P, for some cardinality « instead of P itself. The most common
way is to use the finite power set functor Py, := Py,. Assume that G = Py, (T)
for some functor 7" and that the set Tr(T') of elementary trees w.r.t. T' is already
constructed. Elementary trees for (G could now, for instance, be built as
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or P

where tr!, ... tr" € Tr(T') are pairwise distinct. The tree consisting of the single
node P represents the empty set. A tree representation of G now requires to con-
sider equivalence classes of trees. That means, these trees are only distinguished
up to permutation of children of P-nodes. Theorem 6.2.8 could probably still be
shown for this more general setting. However, accessing leaves via branches in
equivalence classes of trees is rather complicated which makes this approach hard
to handle and, thus, bounded power set functors were omitted as construction
principles here.
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The kind of system that is modelled by an F-coalgebra only depends on the un-
derlying functor F'. Therefore, a language to describe an F'-coalgebra should only
depend on F itself. That means, in order to state a language w.r.t. F'-coalgebras
one needs to analyze the functor. Of particular interest and relevance are func-
tors that are inductively built from certain construction principles as introduced
in Definition 5.1.6. Therefore, the design of a language for F-coalgebras has to
involve the inductive structure of F'. The fact that coalgebras bear a (discrete)
dynamic structure suggests to use a logic that stepwise describes the dynamic be-
haviour of systems. Often, dynamic systems are modelled using Kripke-structures
(cf. Example 5.2.1). Their corresponding language is (the usual) modal logic. But
they can also be regarded as coalgebras for a certain functor. This implies that
a suitable generalization of (the usual) modal logic could be an appropriate lan-
guage to describe coalgebras.

The previous chapter provides a characterization of datafunctors. This is the
starting point to develop a language for the corresponding coalgebras. Section
7.1 discusses possible alternatives for doing that.

In Section 7.2 we then give a language for coalgebras of Kripke-polynomial
functors on the basis of a multisorted modal logic. Here the sorts are given by the
subfunctors of F'. Still, this leads to a rather complex logic. Therefore, Section
7.3 introduces a fragment of it that still has the same expressiveness for a slightly
restricted class of functors. We show that, for the case of Kripke-structures, this
fragment is equivalent to the “usual” modal logic. Section 7.4 investigates the
expressiveness of the introduced language with regard to bisimilarity. It turns out
that a well-known result from modal logic generalized to our setting: for so-called
image-finite coalgebras, bisimilarity coincides with logical equivalence. Section
7.5 is devoted to stating a complete calculus. Eventually, Section 7.6 concludes
with discussing the present approach and makes, in particular, suggestions how
to continue and extend it.

The contents of this chapter is also presented in [R6800].
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7.1. The Idea: From Syntax Trees to Modal
Languages

This section discusses how to apply the tree characterization of datafunctors
(cf. Theorem 6.2.8) in order to generate modal languages for the correspond-
ing coalgebras. Theorem 6.2.8 is given for n-ary datafunctors. For the sake of
simplicity, we shall restrict ourselves to the unary case in the remainder of this
chapter.

Branches are Formulas

In general, a multimodal language £ contains a set of atomic propositions AtProp
and is closed under boolean connectives and a set of unary modal operators [i]
indexed by some set [ (cf. Example 5.2.1). That means £ is given by

pu=Llp = |p]|l]e

where p € AtProp and ¢ € I. Models of such a language are Kripke-structures
(S,R,V) where S is a set, R = (R;):er a family of binary relations on S, and V :
AtProp — P(S) a mapping, cf. Example 5.2.1. The semantics is, as usual, defined
by induction on the structure of formulas. Furthermore, it is given pointwise,
i.e. for elements s € S. Let (S, R, V) be a Kripke-structure and s € S. Then an
atomic proposition p € AtProp holds in s if s € V(p). Now, for [i] being a modal
operator and ¢ € L, the formula [i]¢ is satisfied in s if ¢ holds in all ¢ € S with
(s,t) € Ry, i.e. in all i-successor states of s. For more details concerning modal
logic see e.g. [Gol87, Gol93, Pop94].

As mentioned in Example 5.2.1, Kripke-structures can also be regarded as
transition systems where R determines the transition relation. A coalgebra (.5, «)
has a similar structure: a transition step is given by an application of the mapping
a to some s € 5. Theorem 6.2.8 shows that, for datafunctors F': Set — Set, the
result is a (possibly rather complex) tree tr with some labels in S: the branches
Pathsy, (tr) give access to the respective labels of their leaves. These labels can
be seen as the “next states” of s. Hence, in a modal logic, they need to be
distinguished according to their corresponding branches. This suggests to index
the set of modal operators by Pathsx, (syntr;). Still, observations need to be
expressed in the logic. In the above mentioned tree tr, they are accessed via
branches with leaf ¢ where ¢ € C' and C' is a constant occuring in F'. Therefore,
for each constant C' in F', we add all elements of Pathsc(syntrz) x C' as atomic
propositions to the logic. Together with boolean connectives, this yields a modal
language L, see [R6B98, RoB99%a, RoBIIb]. The corresponding semantics is now
immediate from Theorem 6.2.8: Let p € Pathsy, (syntry). Then, for a formula
¢ € LT we shall define that (p)¢ holds in s if the path p fits in the tree belonging
to «a(s) such that the satisfaction relation is preserved:
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tr

syntrg

(@5 (p)

satisfies ¢

where TSF<oz(3)> = (tr,[1). In other words, (p)¢ holds in s if p is a branch in tr

and ¢ holds in l1(p) € S. The semantics of atomic propositions is similar: let
(p,c) € Pathsg(syntry) x C where C is a constant in F. Then we shall define
that (p,¢) holds in s if p is a branch in tr and its leaf is ¢. In other words, we
have the following:

tr

syntrg

That yields a straightforward way to define the syntax and the semantics of a
language for coalgebras of datafunctors, cf. [R6B899a]. However, it is also possible
to give the same definitions inductively following the structure of ' which is more
intuitive. This method is chosen for the present approach.

Coalgebraic Logic

In his influential paper [Mos97] L. Moss first introduces some modal logic like
language CLp for F-coalgebras. This theoretic approach covers a large variety
of functors F' that are not constructed explicitly. They are only assumed to sat-
isfy some very basic requirements. L. Moss shows that for the language CLp
bisimilarity coincides with logical equivalence. For certain functors, he derives
characterizing formulas that uniquely determine an element of the terminal coal-
gebra, i.e. uniquely characterize elements up to bisimilarity.

7.1.1. Definition ([Mos97]). Let F': SET — SET be a functor on the category
SET of classes and set-continuous functions such that [ is set-based, standard,
and preserves weak pullbacks. Then the language CLp is defined to be the least
class X such that the following hold:

(i) if ® C X is a set then AP € X,
(i) if ¢ € F(X) then ¢ € X.

7.1.2. Definition ([Mo0s97]). Let F': SET — SET be a functor as in Definition
7.1.1 and (S,a) be an F-coalgebra. The satisfaction relation FF'C S x CLr is
defined to be the least class R C .5 x CLg such that the following hold:

(i) if (s,) € R for all ¢ € & with ® a set then (s, A ®) € R,
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(ii) if there is some @ € F(R) such that F(r§)(x) = a(s) and F(af: )(z) = ¢
then (s,¢) € R.

7.1.3. Example (5.1.8. continued). Consider the functor F' := List(C' x —).
Up to conjunctions, CLp consists of finite lists with entries in C' x CLp. For
instance, ¢ 1= ((cl, T),(c2, T), (e, ni|)> is an element of CLp since T = A and
nil (the empty list) are. Given an F-coalgebra (5, «) and some s € S, we have
that ¢ holds in s w.r.t. E" if and only if a(s) = ((0’1,31), (c, 82), (05,33» is also
a list of length 3, ¢; = ¢ for each ¢t = 1,2,3, and a(s3) = nil.

This example shows that, for datafunctors F', the language CLr is of a simpler
form. We can replace Condition (ii) of Definition 7.1.1 by

(ii") if p € F(X) then ¢ € X.

That means, up to conjunctions, the formulas in CLp are of the form (tr,{;) €

F(C/:F), i.e. [y maps the set Pathsx, (tr) to CLp:

p € Pathsx, (tr) tr

syntrg
(h(p) €CLP)

Now the semantics is very straightforward. Let (5, ) be an F-coalgebra, s € 5,
and 78 (a(s)) = (tr*,1;). Consider a formula ¢ = (tr*, 1Y) € F(CLp). Then
we have that s satisfies ¢ w.r.t. FX if tr® = tr¥ and for each p € Pathsy, (tr®) =
Pathsy, (tr¥) we have that lll/’(p) holds in [§(p). In other words, the trees belonging
to a(s) and ¢ fit onto each other such that the satisfaction relation is respected:

tr’ = tr¥

p € Pathsx, (tr*)
syntrg

1
7 (p) satisfies lf}(p)
for each p € Pathsx, (tr®)

This illustrates the similarity of the languages £!" and CLr: modalities of CLp
are simply obtained by “clustering” modalities of £F'. This provides an easy way
to translate these languages from one to the other. Concrete translations from
LY to CLE and vice versa are given in [R6B99a] in case I is a datafunctor.

Coalgebras as Kripke-structures

Above we sketched a modal language £ that describes F'-coalgebras where F is a
datafunctor. Immediately several (standard) questions arise: Do homomorphisms
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7.2.  The Language and its Semantics

preserve formulas? How expressiveis £'7 In particular, does bisimilarity coincide
with logical equivalence? Is there a complete calculus for £F7?

These are well-investigated problems in modal logic. For Kripke-structures,
the answers are well-established results. This suggests to view coalgebras as
Kripke-structures which could possibly give a way of transfering these result to
coalgebras. In fact, £ constitutes a multimodal language whose modal operators
are indexed by Pathsy, (syntr;) and whose atomic propositions consist of all sets
Pathsc (syntry) x C' where (' is a constant in F.

It is possible to define a functor sk from Sety to the category K of Kripke-
structures w.r.t. the above multimodal language £ such that the satisfaction
relation is preserved (cf. [Kur98b, R6899a]). However, not each Kripke-structure
in K is the image of an F'-coalgebra. Those Kripke-structure that correspond to
an F-coalgebra can be determined using the characterization of elementary trees
(see Remark 6.1.6). This leads to a full subcategory K" of K. Furthermore,
there exists a functor ks from K* to Sety such that sk o ks = idgr.

The functors sk and ks give means to transfer results from modal logic to
coalgebra theory. In particular, a complete axiomatization can be derived un-
der certain conditions (cf. [Kur98b, R6699a]). The given axioms do nothing but
to distinguish those Kripke-structures that are in K. The advantage of this
method is the opportunity to directly use results from modal logic for the coal-
gebraic setting. However, it requires a rather complex technical preparation. For
instance, Theorem 6.2.8 is needed for the complete axiomatization. Moreover,
this technical overhead distracts from a deeper insight in how the theory actually
works. Also, modelling non-deterministic systems is so far not possible since the
syntax tree approach gives only access to deterministic coalgebras (i.e. the corre-
sponding functors do not have the power set functor as construction principle).
Last but not least, Kripke-structures are special coalgebras (cf. Example 5.2.1)
and therefore it would be more natural to start from a modal language for Kripke-
structures and generalize it to coalgebras. The following sections introduce such
an approach: instead of translating the corresponding results from modal logic
we directly develop them for coalgebras. For that purpose, we take a detour via
multisorted modal languages.

7.2. The Language and its Semantics

This section defines a language for F-coalgebras and gives the corresponding
semantics. Moreover, we show that homomorphisms preserve formulas.

In the remainder of this chapter we shall only consider functors F' that are
Kripke-polynomial: for the sake of simplicity, fixed points as construction prin-
ciples are not allowed for building F'. However, they could probably be added
without difficulty. We always assume F' to be unary and also non-trivial, i.e. the
identity functor Id is required to be a subfunctor of F.
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We write G < F'if (G is a subfunctor of F. Moreover, for subfunctors T" and
G of F' we write T' < (G to mean that (G is constructed in the next step after T,
i.e. if we have G € {T} x Ty, Ty + Ty, E=T1, P(Ty)} with T € {11, T }.

For a given set X, let B(X) denote the set of all boolean formulas over X,
i.e. boolean formulas built from elements of X and L using —.

Whenever we have a mapping f : X — Y and X' C X, Y’ C VY, then
f(X') and f~1(Y”) denote the sets {f(x) | # € X'} and {x € X | f(z) € Y'},

respectively.

7.2.1. Remark. A multisorted modal setting proves to be suitable for defining
a language for F-coalgebras, following [Ven99]. However, there are only rather
few approaches that deal with multisorted modal languages (cf. e.g. [MonR97,
Ven98]) and there does not exist a standard reference for it. Usually, models in a
multisorted setting are based on Kripke-frames <(SZ')Z'€[7 (Rij)i7j€1> where [ is an
indexing set, S; denotes the i-th sort, and R;; C 5; x 5 for all 7,5 € 1. A family
of languages (L;);cr is defined by a simultaneous induction. Fach £; is given by

i =L [ oi = @i | pi | (17)e;

where p; is a variable of sort ¢+ and ¢; € £;. Now a model is a frame F =
<(SZ')Z'€[, (Rij)iJeI) equipped with a valuation V that takes each variable p; of
sort ¢ to a subset of S;. The semantics (F,C 5; X L;);er is defined sortwise by
induction on formulas. For s; € 5;, we have

(F,V),s: i pi & s, € V(p) and
(F,V),s:F: (ig)p; & Is; € S5 with (si,5;) € Ry and (F, V), s; Fj ;.

A family of complete calculi (F;);cs for the family (L£;);er of languages is then
defined by a simultaneous induction on all sorts ¢ € I. For all 7,5 € I, we have

(Taut); all substitution instances of boolean tautologies in £;,

Fi iy Fioi =
(Mp); Digi oozt

(K)ij lialles = ¢5) = (ligles = liglb)),
WA
U i
where [17]p; abbreviates =(ij)—p;.

In the following we shall use a similar approach to define a language for F-
coalgebras. The sorts shall be indexed by subfunctors of F'. Connections between
the sorts shall be given by “neighbourhood”, that is to say we shall relate only
those sorts with each other that are indexed by subfunctors G and T of F' with
T < . Moreover, we also shall relate the sort Id with the sort F'.
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7.2.  The Language and its Semantics

7.2.2. Definition. Let F' be a Kripke-polynomial functor. We define a family
(,Cg)GSF of languages by a simultaneous induction as follows:

G=Fg: pu=1L]p—¢l|ec wherece C,
G=Id: pu=1]p— ¢l {a)) where ¢ € Lp,
G=TixTy: pu=1]p—= ]|

w0 where i = 1,2 and ¢ € Ly,

(0
G=Ti+Ty: ou=1]p—¢| (k) wherei=1,2 and ¢ € Ly,
(0

(
(
(
G=(E=T): gu=L1]e—=¢[(m)
G="P(T): pu=1]p—¢| (P where ) € Lr.

We use T, =, A, V, and ¢ as defined as usual from L and —. Also, let Vi) be
an abbreviation for (¢ V 1) A =(¢ A ). For each operator (o), we shall use [o]t
to abbreviate —(o)—t).

where ¢ € K and ¢ € L,

For visualizing the connections between the sorts of our models, one can view
them as a directed graph whose nodes are given by the sorts. We draw an edge
from sort GG to sort T' if and only if T" < G or T' = F and G = Id. These
edges are then labeled with the corresponding modal operators. For instance, for

the functor F' = P(Id) x {0, 1}AFrP (cf. Example 5.2.1) we obtain the following
directed graph:

Frony

(m2)

The above construction of modal operators “along mappings” is akin to the
construction of the generic model in [Rei98]. This approach uses nested sketches
to canonically describe models and their languages on a high level of abstraction.

Note that the mappings m;, 7., and k; in the definition below are the corre-
sponding projections and injections of the respective products and coproducts,
cf. Section 5.1.

7.2.3. Definition. Let (5, ) be an F-coalgebra. The semantics for the lan-
guages (L )a<r 1s defined following the inductive structure of formulas. When-
ever G < I and ¢ € Lg we define the subset ||¢]|2 € G(S) containing all
elements of G(9) that satisfy ¢ as follows (the semantics of boolean connectives
is omitted here for the sake of simplicity):

79



7. Modal Logic for Coalgebras

G=Fc: lellz. = {ct},

G=1d: )iy == a7 (2 117),

G =T x Ty : [(m) )7, 5r, =77 (12117,),
G=T+Ty: (k)7 11, = mi(ll0)7,),

G=(E=T): [(m)dlltpery = (10117),
G=P(T): [(PWlpq ={t € P(T(S)) |Fuet:uc|¢l7}

For G < F and t € G(S5), we write (S,a),t Eg ¢ to mean that ¢t € ||p]2.
Moreover, (S, a) Fg ¢ expresses that (S, a),t Fg ¢ for each t € G(S5) (i.e. ||o||2 =
G/(S5)) and Fg ¢ denotes that (5, «) Eg ¢ for each F-coalgebra (5, «).

Let (S,a) and (57,¢’) be F-coalgebras and G < F. We say that elements
t € G(S)and t' € G(S5") are logically equivalent w.r.t. L if they satisfy exactly
the same formulas of Lg.

Note that, for the case G = P(T') < F in the above definition, we have, in
particular, that [[[PJY[|3) = P([[¥]17).

If one views the semantlcs in the context of Remark 7.2.1 then the relations
between the sorts of a model are given by the graphs of the mappings a : S —
F(S), m (T x T3)(S) = T;(S), me : (E=T)(S) — T(S) and the inverse graphs
of the mappings ; : Ti(S) — (T1 + T3)(5).

The following proposition checks a basic property of (Lg)a<r — that homo-
morphisms preserve formulas:

7.2.4. Proposition. Let h: (S, o) — (5,a’) be a homomorphism, G < F, and

¢ € Lg. Then we have
lellz = G~ (llell).

PrRoOF. By induction on the structure of formulas. For boolean connectives,
the proof is straightforward. Apart from them, we have the following for some

subfunctor & of F"
G=rlc: lellz. = {e} = idg' ({e}) = Fo(h)~" (llellF,),
G=Id: () llig= [4]13) = o (F(R)~ (lV]1F))

a™!(
=h- 1(0/ ! ||;/)||F ) since h is a homomorphism
=h7(

[ [Ii),

G =Ty xTy: [{m)llF, o, = 7 ' ( ) (T
= (11 x T5)( ( - | )
= (11 x Ty)(h) " (|[{ms) ¢||T1xT2>

7))
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G=T+ T ()l oz, = ri > ffz< Ti(h) 7))
= (T1y + T5)( 1( | )
= (T1y + T5)( 1( |(ri @Z’HTH-TQ)

G = (E=T) ¢ |[(me ) lfpmry= - (19117) = 72 (T(A) ([0 [17))
= (E=T)(h)~ (x'([4117)
= (E=T)(h) ™ (I{m )¢ 1 Fpm )

G =P(T): it is sufficient to show the above claim for ¢ = [Py € Lp 1)
P17 zy= PIeN7) = P(T (h)/_l(||¢||T/)> /
—7’( BT PNT)) = PO R) TIP3 )

O

7.3. Simplifying the Language

The previous section introduced the languages (L)a<r to describe F-coalgebras
for Kripke-polynomial functors F'. Actually, we are only interested in the lan-
guage Lig. However, this language seems to be rather complex since, for each
G < F, Lg features boolean connectives. For most subfunctors, this can be
omitted without loosing expressiveness for the language Li4. The present sec-
tion introduces a family (,Cg)G<F of languages where each L is a fragment of
L¢. We shall show that L4 still embeds into £q provided we have the following:
whenever there 1s a constant functor fr with Fo < T+ 1% < F such that we do
not have Foo < P(T) < Ty + T, then the constant set C' is finite.

7.3.1. Definition. Let F' be a Kripke-polynomial functor. For each subfunctor
G of F, we define the fragment Le of Lg as follows:

G=Fg: ¢ := ¢ where c € C,

G=Id: pu=L o= ¢l {a) where € Lp,
G=TixTy: pu=(m)) wherei=1,2and ¢ € L,
G=Ti+Ty: = (x)) wherei=1,2and ¢ € L1,
G=(E=T): pu={(r)) wheree € F and ¢ € L7,
G=P(T): ¢:u=[Pl where ¢ € B(Lr),

i.e. we first close L7 under boolean connectives and then apply
[P] to the resulting formulas.

7.3.2. Remark. Let F' be a polynomial functor. Up to boolean connectives, the
language L4 consists of formulas which are either of the form
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o (a)(o1)...{0,)p where p € Lig and o, ..., represents a branch in syntr,
i.e. an element of Pathsx, (syntr;) (cf. Definition 6.1.5) or

o (a)(o1)...{o,)cwherec € C for Fo < Fand oy ...0, represents an element
of Pathsc(syntry).

For these formulas, we obtain exactly the semantics described in Section 7.1:
Let (S,a) be an F-coalgebra, s € S, and TSF<oz(3)> = (tr,ly). A formula
{aM{a1)...{0,)p € Lig holds in s if the branch p:= oy ...0, is in tr and ¢ holds
in [1(p). Furthermore, a formula (a){oy) ... (o, )c is satisfied in s if p:=0y...0,
1s a branch in tr and its leaf is c.

Note that, for polynomial functors I, the languages for F-coalgebras given
in [RoB98] and [RoB99a] as well as the language Lyq are all equivalent. Moreover,
for those functors considered in [Kur98b], the language Ly is also equivalent to
the corresponding language introduced in [Kur98b].

7.3.3. Example (5.2.1. continued). For F-coalgebras with F' = P(ld) x
{0, 1}AProP we obtain a language Liq given by

p =Ll =@ [ {a)(m)[Ple | (o) {m)(m)0 | (a)(ma)(m,)1

where p € AtProp. Let (S5, a) be an F-coalgebra and s € S such that a(s) =
(57, Vs) where S” C S and V; : AtProp — {0,1}. Then a formula (a){m)[P]e
holds in s if ¢ holds in all s € 5. Moreover, (a)(my)(m,)1 holds in s if for the
atomic proposition p we have Vi(p) = 1, that is to say if the atomic proposition
p holds in s. The formula (a)(m2)(m,)0 expresses that p does not hold in s.

Let us consider the usual finitary (mono-)modal logic £ for Kripke-structures
which is given by

pu=Lle—=wlplOe

where p € AtProp, cf. Example 5.2.1. Thus, we obtain that L4 is equivalent to
L where a corresponding translation T': L, — L is given by

T:{a){m)[Ply = OT(p),
T (a)(ma)(mp)0 = —p,
o=

T : (o) (ma)(m, .

7.3.4. Example (5.2.2. continued). Assume we deal with alternating au-
tomata that are represented by coalgebras of the functor F' = ((73(73(|d)) +
{+})¥) x {0,1}1%F}. Then we obtain the following language Ca:

@=L ] = | (a)(m){(m.)(r1)[Pl where ¢» € B(Lp(a))
Y)Yz | {adma)(mdO | () {ma)ima)1
ma) (0 | () (m){m)L.
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Now, let (S, a) be a given F-coalgebra. Consider some s € S such that a(s) =
<(E(S,G>)a€2,bi,bf> where 9(s,a) = /il({{sij}]‘ejla}iela> if o(s,a) is defined and
0(s,a) = ka(*) otherwise. Then the formulas (a)({m2)(m; )1 and {(a){m2){m ;)1 indi-
cate whether s is an initial and a final state, respectively, in other words, whether
we have b; = 1 and by = 1, respectively. For some given ¢ € ¥, the formula
(@) (m1){mq){r2)* expresses that o(a, s) is not defined. Now, let ¢ € B(Lpq)) be,
for instance, of the form [P]e — [P]0. Then the formula (a){m){m,){k1)[P]t is
satisfied if, for all + € I, we have that, whenever o holds for all s?, with j € J¢

[

then also § holds for all s¢, with j € J¢. Note that the formulas in B¥(S) given

by o(s,a) do not have anything to do with the language Ly since a model of
B*(S) is the set of all children of some node in a run tree whereas models of L4
are ['-coalgebras.

7.3.5. Example (5.2.3. continued). Let us consider F-coalgebras of the func-
tor F' = (X xId)+{*} that represent deterministic transition systems with output
alphabet Y. The language L4 is given by

pu=Llo =@l {a)r){m)a| () {r1)(m)e | (a){r)*
where a € Y. Let (5, ) be an F-coalgebra and s € S. A formula {(a)(r1)(m)a
holds in s if a(s) = k1(a,s’) for some s’ € S, in other words, if (9, a) does not
terminate in s yielding an output a. The formula (a){k1){ms)¢ expresses that

(S, ) performs a transition in s such that ¢ holds in the successor state. Finally,
{a)(ka)* is satisfied if a(s) = k2(*), that means if (9, ) terminates in s.

The remainder of this section discusses how L4 embeds into £4.

7.3.6. Definition. For the following subfunctors T' and & of F' we define an
embedding emb,y that maps B(Lr) into B(Lg). We distinguish the following

cases:

(a) G=Tyx Ty, T =T, 0 = m;,

b) G=T\+ T, T =T, 0 = r,,

(c) G=(E=1"),T=1"06=m. (where e € E),

(d) G=Ild, T=F, 0 =q.
The embedding emby,y is given by emb,y : ¢ = (o)p for ¢ € L7 and then
continued on B(Lr) in the canonical way (in case L1 # B(Lr)). In other words,

emb,y : B(L7) — B(Ls) is defined as follows:

if T'=1d: embyy : p = (o) and
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if T'# 1d: embggy : L — L,
emb<0> : (S‘Q — ¢) = <embk)(g‘o) — emb(a)(¢)>7

emb,y 1 @ = (o) if ¢ € Lr.

If 7" # Id, the embedding emb,y does nothing but to take a boolean connection
of formulas in L7 and put (o) in front of each modal operator that occurs in it.
Thus, the mapping emb,y “pushes” the boolean connection part of a formula in
B(Lr) one level further to the “next” subfunctor G of F. It is now immediate
that the semantics is preserved (note that B(Lr) is a fragment of Lr):

7.3.7. Lemma. Let (5,a) be an F-coalgebra and let T', (i, and o be as in one
of the cases (a), (c), or (d) of Definition 7.3.6. Then, for every ¢ € B(Lr), we
have that

lembey(2)12 = [[{e)ell 2
In case (b) of Definition 7.3.6 we have that

lembyey(2)I17, 17, N i (T:(S)) = [(i)llF, o7,

ProOOF. In case that T" = Id the claim is trivial. If 7" # Id the proof is straight-
forward using induction on the structure of . O

Obviously, the language L4 is at least as expressive as Lig since L4 is a
fragment of L4. In order to show that the converse also holds we need to restrict
the functor F': throughout the remainder of this section we assume the following:
whenever there is a constant functor Fp with o < 17 + 1% < F such that we
do not have F. < P(T) < Ty 4 T: then the constant set ' is finite. That means
if we regard F'-coalgebras as transition systems then some of its sets of output
values are required to be finite.

In order to define a translation from L4 to L£1q4 we need to find a formula of
ZT1_|_T2 that expresses (k)T € Lg, 41, in case Ty + Ty < F. For that purpose, we
first define a formula Ag € B(Lg) with ||Ag||2 = G(S):

7.3.8. Definition. Let G be a subfunctor of F' such that whenever iz < G and
we do not have F_c < P(T) < G then the constant set C is finite. We define a
formula A € B(Lg) as follows:

G=Feo: Are =V oo €

G=Id: Ay =T,

G=TyxTy: Arxr, :=embi(Ar),

G=T1+1;: AT1-|—T2 = emb(m)(ATl) \% emb<ﬁ2>(AT2),

G=(E=T): Agor) = emb<7reE>(AT) for some fixed ep € F,
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7.3.9. Lemma. Let (S,a) be an F-coalgebra and Ty + Ty < F. Then we have
lembgsy (AT, IS“1+T2 = /ii<T¢(S)>.

PROOF. Assume (G to be a subfunctor of F' as in Definition 7.3.8. Then it is
straightforward to show by induction on the structure of F' that ||Ag||2 = G(S5)
using Lemma 7.3.7.

In case T; = Id we have emby, (A7) = (k;) T and we are done. If T; # Id, the

formula Ar, is of the form \/'_, ¥; with ; € L7, and we have that Uiz Nl g =
T;(S). Thus, by Definition 7.3.6, we get
lemb (AT )17, 47, = Ui, ||</fi>¢j||§q+T2 = U millell7,)
= ri( Uiz 104017,) = mi(T3(S)). m

7.3.10. Definition. For each subfunctor G of F', we define a translation Tg :
Ls — B(Lg) by a simultaneous induction as follows (we only give T¢ explicitly
for the non-boolean-connection-part of L5 and then assume T4 to be continued
in the canonical way):

G:Fci TF

L CHr o,

G=1d: Tia : ()t > embyay (Tr(1))),

G=TixTy: Trxr, : (T = emby (T (4)),

G=Ti+ Tz Tryr, : (k)0 = embiy (T, (v)) A embyy (Ar,),
G = (BE=T): Tor : (r) = embi (Tr(v)),

G=P(T): Tpmry: Py =[P]=Tr(e).

Now it follows immediately from Lemmas 7.3.7 and 7.3.9 that T4 indeed
embeds L4 into B(Li4) = Lig:

7.3.11. Proposition. Let I’ be a Kripke-polynomial functor such that whenever
Fo <Ti+ T, < F and we do not have Fo. < P(T) < Ty +T, then the constant C

is finite. Let (S, «) be an F-coalgebra. Then, for each G < F and each ¢ € L,
we have that

lellz = Ta(e)1Z: 0
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7.4. Expressiveness

In order to distinguish elements of F-coalgebras up to bisimilarity we do not need
the full expressiveness of L4: 1t is sufficient to consider a fragment of it. Thus,
we define a restricted family (/jg)GSF of languages and prove that /de is powerful
enough to distinguish elements up to bisimilarity for so-called image-finite F'-
coalgebras.

7.4.1. Definition. Let F' be a Kripke-polynomial functor. For each subfunctor
G of F, we define a fragment L of L4 as follows:

G:Fci

::= ¢ where ¢ € C,

G=Id: c= 1@ — | (o) where ¢ € L,

¥
¥
G=T xTy: pu=(m) wherei1=1,2 and ¢ € L.,
G=Ti+T: o
¥

{
= (k) where i = 1,2 and + € Lr,,
{

G=(E=T): ¢ = {(n.) where ¢ € F and ¢ € Lr,

G=P(T): ¢:=(P\N® | [P]V® where ® C Ly, ® finite.

The languages (/jg)GSF are usually less expressive than (Lg)a<p. For in-
stance, let F' = Id x P(F¢) where C' is a countable set. Then we cannot
give a formula ¢ € /jp(pc) such that ¢ holds for any F-coalgebra (S5, «a) in all
t e (P(F@)(S) = P(C) since t might be empty or countable. On the other
hand, [P]T € Lp(r,) satisfies this property.

In the following we prove that the family (/jg)GSF is in fact expressive enough
to distinguish elements up to bisimilarity. That requires an equivalent definition
of bisimulation (see Definition 5.1.4) by induction on subfunctors of F. The
following definition is equivalent to the notion of the lifting of a relation given in

[Jac95].

7.4.2. Definition. Let R C S x S’. For (¢ < F we define Rg C G(S5) x G(57)

as follows:
G=Fo: tRFCt/ &t = t/,
G=1Id: tRgt" & (R,

G=1T,x1,: tRTlXTQt/ & Vi = 1,2 : Wi(t)RTiTri(t/),

G=Ti4+Ty: tRrypt & Vi=1,2: ift € r;(T}(5)) then t' € r;(T:(5"))
and w7 () Ry r7H (),

*Note that ; is an injective mapping and therefore x; ' is a partial mapping from (7} +75)(S)
to T;(S) with its domain being «;(7;(S5)).
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G=(FE=T): tRp=mt' & Vee E: m.(t)Rym(t),

G="P(T): tRpryt' & Vret:dyet xRy and
Vyet :Jxe et:xRry.

7.4.3. Lemma. Let (S,a) and (57, a') be F-coalgebras and R C S x S'. Then
R is a bisimulation between (S5, «) and (S, ') if and only if, for all (s,s') € R,
we have a(s)Rpo/(s').

PrROOF. “=: Let R be a bisimulation relation equipped with the correspond-
ing coalgebra mapping ar : R — F(R), i.e. the projections 7¢ : R — 5 and
g : R — 5" are homomorphisms. Assume there exists some (s,s') € R with
a(s)Rpa(s'). First, consider ¢ < F with G ¢ {ld, Fr} and t € G(R) with
G(ms)(t) RaG(ms)(t). Then it is straightforward to show that there exist T' < (¢
and v € T(R) with T(7ws)(u) Ry T (7ws)(uw). Applying this in an iterated way to
ar(s,s’) yields one of the following cases:

e there exist Fir < F' and some ¢ € Fo(R) = C such that
Fo(ns)(c) Ry, Fo(ms )(c) which yields a contradiction,

e for Id < F, there exists some (3,3) € Id(R) = R such that 3R,45', that

means (3,5) ¢ R. This also gives a contradiction.

“c”: Let R C S x S’. By induction on the subfunctors GG of F' we define a
mapping fa : Re — G(R) as follows:

G=Fc: fr. :{(c,e)|ceC} = C:(c,c) —e,
G=Id: fu:R—= R:(s,8)—(s,8),

G=T xTy: frxr, : (Th x Ty)(S) x (T1 x Ty)(S") = (T1 x T3)(R)

(T
<t17t2 ’ tlvt/ ) <fT1(t17t/1)7fT2(t27t/2)>

G=Ti +Ty: froer : (T + To)(S) x (Ti + T)(S") — (T1 + T)(R)
<’ii(t)7 ’ii(t/» = Ki(fTi(’ii_l(t)v ’iz’_l(t/))%

G = (E=T): fasr : (T(S)7 x (T(5))" = (T(R)"
<(t6 BEEv(t/e)eeE> = <fT(t67t/e)>e€Ev

G =P(T): foay: P(T(S)) x P(T(S") = P(T(R))
(X,Y) = {fr(z,y) |z € X,y €Y, (v,y) € Rr}.

It is immediate from Definition 7.4.2 that the mappings fo are well-defined.
Moreover, for each G < F', the following diagram commutes:
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Rq
TG(S) fo TG(s!)
CS) g GUR) ——— G(S)

Now we define a coalgebra structure on R by ap : R — F(R) : (s,s') —
fF<a(5),a’(5’)>. Then the mappings 7s : R — S and 7gs : R — S’ are ho-

momorphism and we are done. O

Similarly as for Kripke-structures, we obtain that bisimilarity coincides with
logical equivalence for so-called image-finite structures. Here this concept is de-
fined as follows:

7.4.4. Definition. Let F' be a Kripke-polynomial functor and S be a set. An
element ¢ € F(5) is called image-finite if we have t € F'(S) where F is the
functor that is constructed as F' but only using the finite power set functor Py,
instead of the power set functor P. An F-coalgebra (9, a) is called image-finite
if, for each s € S, a(s) € F(9) is image-finite.

Lemma 7.4.7 requires a formula Ag(t) € Le that can be constructed for
G < F and some image-finite t € G/(S) such that (5, a),t Fo Ag(t).

7.4.5. Definition. Let G < " and t € G(S) be imagefinite. We define the
formula Ag(t) € L as follows:

G = Fg Ap.(t):=teC,

G=1d: Au(t):=T,

G=TixTy: Apxn(t) = (m)Ar (m1(t)),

G=Ti+Ty: Agir,(t) = (kA7 (k7'(2)) where t € r;(Ty(S)),

G=(FE=T): Awgsn(t):= <7T6E>AT<7T6E(t)> for some fixed e € F,
G=P(T): Apm(t) =[PV, Ar(x;) where t = {xy,... ,2,}.

7.4.6. Lemma. Let (S, «) be an F-coalgebra, G < F, andt € (i(S) image-finite.
Then we have

(S, oz),t ':G Ag(t).

PROOF. By induction on the structure of Ag(t). O

Assume we have image-finite ['-coalgebras (S, a) and (57, a’). The following
lemma constructs a formula (¢, t') € Lg for some G < F that distinguishes

elements ¢t € G(5) and ' € G(S5') with ¢ aofg t" (cf. Definition 7.4.2) where
~ C S x 5 denotes logical equivalence w.r.t. Lyg.
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7.4.7. Lemma. Let (S,a) and (S5',a') be image-finite F-coalgebras and let
~ C S x S denote logical equivalence w.r.t. Lig. Let G < F and t € G(5),
t' € G(S") with t % t'. Then there exists a formula 0 (t,1') € L¢ such that

(S, oz),t ':G eg(t,t/) and (S/,O/),t/#(; eg(t,t/).
ProoOF. By induction on subfunctors GG of F"
G = Fc: Weset 05(t,t') =t e C.

G =1d: By assumption there exists some ¢ € L4 such that (S,a),t E ¢ and
(57, a),t' ¥ ¢ since Lig is closed under negation. We set 05(1,t') := .

G =Ty x Ty : There is some ¢ € {1,2} with m;(¢) %1, m(t'). We set 05(t, 1) =
<7Ti>(9T,' <7Ti(t),7'f'i(t/)>.

G=T,+1T,: Let t € /<;¢<TZ'(S)>. If ¢ ¢ lii<TZ’(S/)> then we set 0g(t,t') =
Ag(t). By Lemma 7.4.6 we automatically get that (5, ), Fe 0g(t,t') and
(S, ), t" Ba 0g(t,t'). In case t’ € /ii<TZ'(S/)> we have &7 (t) %7, k7' (). The
induction hypothesis yields some 07, </<Ji_1(t), li;l(t/» and we put 0g(t,t') =
(ri)0r, (k7 (1), k7).

G = (E=T) : There exists some e € E with m.(t) %7 7.(t') and thus we set
Oa(t, 1) := <7T6>(9T<7T6(t),71'6(t/)>.

G'=P(T): Assume that there is some x € ¢ such that, for all y;, € ¢ =
{y1,-..,yn}, we have x ¢ y;. Hence, for each ¢ € n, we obtain some
Op(x,y;) with (S,a),x Fr Op(x,y;) and (S, '), y; Fr Or(x,y;). We define
O (t, 1) == (PYN—, Or(z,y;). In the dual case there exists some y € ¢’ such

that, for all #; € t = {x1,... , 2, }, we have x; %7 y. Thus, we obtain formu-
las 07 (xj,y) with (S,«a),z; Fr 0r(x;,y) and (5, '),y Er Or(x;,y). We put
GG(tvt/) = [/P]\/;n:1 GT(xjv y)‘ [

7.4.8. Proposition. Let (5, «a) and (5',¢) be image-finite F-coalgebras. Then
the largest bisimulation relation ~ C S x S" between (5, a) and (S',a’) and the
logical equivalence relation =~ C S x S" w.r.t. Lq coincide.

PrROOF. “C7: Assume s € S and s" € S with s ~ s’. The corresponding projec-
tions mg and mg of the bisimulation relation ~ are homomorphisms. Therefore,
by Proposition 7.2.4, we have s & s'.

“D”: Assume that & is not a bisimulation relation. Hence, by Lemma
7.4.3, there exist some s € S and & € 5" with s = s and a(s) #p o'(s).
Lemma 7.4.7 yields some 0p (a(s), o/(s’)) € L such that we have (S,a),a(s) Fp
(9F<oz(5),o/(5’)> and (5, a'),a'(s") Ep 0F<a(5),a’(5’)>. Therefore the formula
()0 (a(s), o/(s’)) € Ly distinguishes s and s’ which contradicts with s & s'. [

It is not surprising that we need to assume the coalgebras in Proposition 7.4.8
to be image-finite. This restriction is already needed for the analogous result in
the case of Kripke-structures.
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7.5. A Complete Calculus

This section presents a complete calculus that is defined — as to be expected — by
a simultaneous induction on the subfunctors of F'.

We shall state this calculus for the language L4 instead of L£i4. The reason is
that the language L4 is more complex than necessary: Section 7.2 shows that, for
most functors, its fragment L4 is as expressive as L4. Moreover, the “classical”
special case of the (usual) modal logic for Kripke-structures is, syntactically, an
instance of Lq (cf. Example 7.3.3).

Defining a complete calculus for L4, however, would be rather straightforward
using Remark 7.2.1. For each G < F, one would have (Taut)g and (MP)q as well
as (K)rg and (N)pg where T' < G or T'= F and ¢ = Id. Furthermore, some
additional axioms would be needed to capture the local structure of the functor
(cf. Definition 7.5.1). That would yield a family of calculi indexed by subfunctors
of F' such that the G-th calculus is complete w.r.t. L.

The family (Fa)a<r of calculi that shall actually be defined here is somewhat
simpler but not complete w.r.t. every G < F. As we are aiming at a description
language for F-coalgebras (i.e. at L) it is only necessary to make the calculus
Fig complete w.r.t. £,4. This shall be outlined in the remainder of the present
section.

Similarly to Section 7.3 we assume all constant sets C' that occur in F' to be
finite in the remainder of this section. This restriction is not surprising as it is
also required in [Kur98b, R6B98] in order to define a complete calculus.

7.5.1. Definition. We define a family (¢)g<r of calculi for <B(ZG)>G<F by a
simultaneous induction on all subfunctors G of F': B

G =Fc: (Det) kg, vcecc,

G'=1d: (Taut) all substitution instances of boolean tautologies in Lid,

Fid @, Fiap — @
(MP) Fia ¥ ’

I—F kR
N
N Ee@re
(Det) |_T1><T2 <7T2>g0 e [7‘[‘2]99 Hid=1T;, <1 x TQ,
|_T1-|—T2 embw.)(ATi) — (</€Z>g0 e [/iz]c,o) Hid=1T, <1, + TQ,
FE=t) (Te)e o [me)e if1d =17 < (E=T),
Fia (@) < [a]e ifld=F,

ifld =T, < Ty x Ty,

(K) |_T1><T2 <7T2> Y — ¢) ¥ >77Z))
w — </<JZ>77/)) ifld="1T; <1+ T,

( — (i)

FT1+T2 (ri)(o =) = ((ri)
e (7o) S () = (1)) i ld = T < (E=T),
"ld (a >(<,9 — ) = ((ayp — (a)) if ld=F,
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l_T‘ SO .
: it =12
|_T1><T2 emb(m‘)(g‘o) ort T

I_Tl-I-Tz emb(m)(ATl )vemb(ﬁz) (AT2)7

l_T‘ SO .
i for i =1.2
147, embiay (A7) — emby () L T

|_T1-|—T2 </<;Z'>g0 — emb<,ﬂ>(ATi) for 1 = 1,2,

€E,
|‘(E:>T) emb(we)(@ ore

all substitution instances of boolean tautologies in B(Lr),
Fr ¥ Fr Y — 77Z)

For ’
Py [Pl = o) = ([Pl = [Pl),

Fre
Frry [Ple

Recall from Lemma 7.3.9 that, in case G = T} + T, the formula emby,.y(A7,)

stands for (k;)T.

7.5.2. Example (5.2.1. continued). In case our models are Kripke-structures
we deal with a functor F' = P(ld) x {0, 1}*FP. Hence we obtain the following
axioms and rules for the subfunctors G of I:

G=1Id: (Taut) all substitution instances of boolean tautologies in Lid,
Fa @, Fla o =
(MP) Fig 2 ’
l_
N F @
N R
G=P(d): (K)  Fpuy [Plle =)= ([Plp = [Pl¥),
N) e
Fpaay [Py’
G = F{OJ} . (Det) l_F{O,l} 0\/17
G = (AtProp=Fp1y): (N) "oy ¥ for p € AtProp
! F(AtProp=Fyq 1y) €Mb(r, )¢ ’

F =P(1d) x {0, 1}APp ; (N) 2002

That means, for G = |

Fr embm)c,o’
l_{OJ}AtProp S«Q
Fr emb<7r2><,o'

d, the calculus Fi4 is given as follows:
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(Taut) all substitution instances of boolean tautologies in L4,

Fid @, Fiap — @
(MP) Fia ¥ ’

Fid @
N ey
(K) ki {@)(@m)[P)(e = ¢) = ((a)(m)[Ple = (a)(m)[Pl),
(Det)  Fig () (mo){m,) LV {a)(ma)(m,)0.

Up to the last clause, this is exactly the complete calculus for £ (cf. Example
7.3.3) known from modal logic for Kripke-structures (cf. e.g. [Gol87, Pop94])
modulo the translation given in Example 7.3.3. The last axiom states that
{a){m3)(m,)0 does not contribute to the expressiveness of L4 and therefore we
can also dispense with this formula. Hence this restricted language is even syn-
tactically equivalent to L.

7.5.3. Proposition (Soundness). Whenever ¢ < F' and ¢ € B(Lg) then we
have

l_G © — ':G w.
ProoF. By induction on the length of the proof. O

7.5.4. Definition. For each subfunctor GG of F', we define a syntactical calculus
IFo that extends the calculus g for formulas in B(Zg) as follows:

l_

(Taut) all substitution instances of boolean tautologies in B(Ls),

H’G ©, H’G O — 77/)
(MP) = .

Note that only for ' = Id and for G = T with P(T') < F, the calculi ¢ and
IF& coincide. In the following we introduce the notion of a canonical F-coalgebra
which is — as usual — constructed on maximal consistent sets of formulas.

7.5.5. Definition. Let @ be a subfunctor of F'. A subset ® of B(Ls) is consis-
tent if there are no formulas ¢q,... ,p, € ® such that

lFo o1 Ao A, — L.

A subset ® of B(Lg) is called maximal if it is consistent and for every ¢ € B(Ls)
we have
p € dorped.

We set Sg := {® C B(Lg) | ® is maximal}.
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7.5.6. Lemma.

(a) Whenever Ty x Ty < F, 1 € {1,2}, and ¢ € B(Lr,) then IFr. ¢ implies
H—T1><T2 embm.)(c,o).

(b) Whenever Ty + T, < F, i € {1,2}, and ¢ € B(Lr,) then IFr, o implies
IF 741, embgey (A7) — emby,.y ().

(c) Whenever (E=T) < F, e € E, and p € B(Lr) then IFr ¢ implies IF(E=T)
emb(ﬂ'e)(g‘o)

(d) Whenever ¢ € B(Lr) then b ¢ implies I emb.y(¢).

PROOF. Depending on the definition of emb,y, the claim is immediate from
Definition 7.3.6 or can be shown easily by induction on the length of the proof.
O

7.5.7. Lemma. Let G be a subfunctor of I' and I' € Sg. Then we have, for the
following cases:

G=F¢: there is exactly one ¢ € C such that ¢ € T,
G=Id: we have I,y := emb<_a1>(F) € Sr,

G=T xTy: fori=1,2, we have I'(r;y := emb<_7r1i>(F) € St,,

G =Ty +1T; : there is exactly one i € {1,2} such that emby, \(Ar,) € I'. More-
over, then we have ',y 1= emb(;>(r) € S,

G = (E=T): for each e € I, we have I,y := emb<_7re>(F) € St

ProoOF.
G'= F¢ : By Axiom (Det).

G =Id : First, let F' =1d. Then we have ',y = {p € Lr | {(a)p € I'}. Assume
that there exist ¢y,... ¢, € I'y with IFp oy AL A, — L. Using (Taut)
and (MP) we conclude Fg 1A . .Ap, — L. By applying Rule (N) and Axiom
(K), we obtain IFig ()1 A ... A{a)p, — (a)L. Now Axiom (Det) yields
—(a)T € I' which contradicts with (a)T € I'. Now assume @, ¢ & ['y.
Thus, (a)e, (a)7p € T' and therefore ={a)p, 7{a)-p € I'. We finally get a
contradiction by ~(a)e, (a)¢ € I' using Axiom (Det). This proves I'¢,y € Sp.

In case F' # Id the maximality of I'(,y follows from Lemma 7.5.6 (d) and
Definition 7.3.6.

G =T, x Ty : In analogy to the case G = Id, it is straightforward to show that
L'¢ry € S, by distinguishing the cases 7; = Id and 7; # Id.
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G =Ty 4+ T, : Axiom (Copr) ensures that there is exactly one ¢ € {1,2} with
emb.\(Ar,) € I'. Now, for emb,. (Ar,) € I', the maximality of ', is
proved as in the case G = Id.

G = (E=T) : In analogy to the case GG = Id. O

7.5.8. Definition. Following the structure of F', we define, for each G < F'| a
mapping a¢ : S¢ — G(SF) as follows:

G=F¢: ap. ' = cwith ce T,
G=1Id: ayg : I'—= oy,
G=TyxTy: apxp:['— (ole(F<7rl>),ozT2(F<7r2>)>,

G=Ty+Ty,: oapq4n: = /ii<ozTi(F<H.

7

y)) where emb,. (A7) €T,
G={FE=T): ap=n:T'— (O‘T(F(We)»eeE’

G=P(T): apry: I'= {ar(I") |I" € St and V¢ € B(ZT) :
Pl el = el'}.

We define (Sr, ar) to be the canonical F-coalgebra.

Lemma 7.5.7 guarantees that (S, ar) is indeed well-defined. The following
lemma contains two standard results (cf. e.g. [Pop94]) and is not proved here.

7.5.9. Lemma. Let L be a language containing boolean connectives and let = be
a syntactical calculus for £ including substitution instances of boolean tautologies
and modus ponens. Let ® be a consistent subset of L, i.e. there are no members
Oly.e o of @ withb @y Ao . Ap, — L. Then there exists a maximal subset I’
of L (i.e. I is consistent and ¢ € I' or = € I for each ¢ € L) such that ® CT.
Moreover, whenever W C L and 1 € L, the following are equivalent:

(i) Fp1,eoc by €V i AL AY, =,
(ii) VI' C £ with I’ maximal: ¥ CT' = ¢ €I
7.5.10. Lemma. Whenever G < F,T' € Sg, and ¢ € B(L) then we have that
ac(l) € [lllef = ¢ el
ProOOF. By a simultaneous induction on all G < [ following the structure

of ¢. The case that ¢ is a boolean connection is obvious. For the rest we shall
distinguish the following cases:
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G = Iy : By Definition 7.5.8 and Lemma 7.5.7 we have, for ¢ = ¢ € Lp,., that

ar.(I') € ||c||}§£ Sap.(I)=cecel.

G = Id : Using the induction hypothesis we get, for » = (a)y» € L4, that

aa(l) € [{a)v e = ar' (1¢1F)
= aF<a|d(F)> = OéF( ) € H@Z)H;F
&P ey

& embo) () = ()¢ € I

G=TyxTy: Bl’ Definition 7.5.8 and by the induction hypothesis we have, for
SO = <7TZ>77Z) E £T1XT27 that

oty 1, (D) € [[{mi)ol| ¥, = 77t SF)
< 7T2<aT1XT2(F)> - aT( ) € ||77Z)||
& el

= embm)(;/)) = <7T2>77/) crl.

G =Ty, 4+ Ty : Again, by Definition 7.5.8, by the induction hypothesis, and by
Axiom (In), we have, for ¢ = {k;)) € Lr,47,, that

a1, (T) € (k1754 z, = wi([0117)

& embyy(Ag) € T and ar,(Tey) € |05
A=+ emb (k) (A l) € 'and ¢ € F(Hi>

& emb.y(¢) = (ki) € T

G'= (E=T) : Analogous to the case G = Ty x Th.

G=P(T): “=": Let ¢ = [Pl € Lpry and ap(r)(T') € H[P]@Z’H%?T) Whenever
I € Sy with I'ipy := {0 € B(Lr) | [P]0 € I'} C I” then we have ap(1”) €
||;/)||7st By the induction hypothesis, the latter is equivalent to ¢» € I''. Now
Lemma 7.5.9 gives 0,,...,0, € I'p; with

Fr 00 AL A D, — .

We conclude b7 61 A ... A8, — ¢ by (Taut) and (MP) for k¢ and, thus,
we get Fpery [P](0L A ... A0, — ) by Rule (N). Axiom (K) finally yields
IFpery [PlOy A ... A[P]0, — [Pty which proves [P]y € T

“<=": Let [Pl € Lp(ry and assume that [P]i) € . Then ¢ € I'jp; and, for
all I € St, we have I'ip) C [' = ¢ € I". The induction hypothesis now gives

VIV € Sy : Uy C IV = ar(Y) € |15

which eventually proves Oép(T)(F) € H[PM’H%?T) O
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7.5.11. Theorem. Let F' be a Kripke-polynomial functor such that Id is a
subfunctor of F' and all constant sets that occur in F' are finite. Then, for every
¢ € L4, the following are equivalent:

(i) Fia e,
(ii) Fua ¢,
(111) (SF,OéF) ':Id P.

PRrROOF. (i)=(ii). By Proposition 7.5.3.

(ii)=-(iii). Obvious.

(iii)=(i). Observe that {—¢} is not consistent (otherwise there existed some
I' € Sig with m¢ € T' by Lemma 7.5.9 and hence (S, ar), aq(l') Fig =g by
Lemma 7.5.10). Therefore we get 14 7o — L which proves k4 ¢. O

7.6. Conclusion

The present approach shows how to generalize both modal logic for Kripke-
structures (see e.g. [Gol87, Pop94]) and modal languages for coalgebras that
represent deterministic systems (cf. [Kur98b, R6898]). We introduced a language
L4 that, for a given Kripke-polynomial functor F', describes the corresponding
F-coalgebras. For a slightly restricted class of functors, the fragment Lig of L4
turned out to be as expressive as Lig. In case P(T) < F', formulas of L4 might
still become rather complex since then we have [Py € Zp(T) where ¢ € B(Lr).
Using a still simpler language (cf. [Jac99]) could possibly be of greater interest for
specifying and verifying systems. But then one would have to pay the price of a
reduced expressiveness: bisimilarity would probably not equal logical equivalence
for image-finite systems.

For application purposes, it might be of interest to build different languages,
e.g. for modelling the methods of an object by one single modal operator. The
multisorted structure makes that rather easy. For instance, in cases G = T} X
Ty, and G = T7 + T5 in Definition 7.2.2, one could additionally use formulas

<7T177T2>(9917992) € ZTI X1 and <’£17K2>(9917992) € ZTl-I-T27 respectively, where w1 €

L7, and ¢y € L7,. The corresponding semantics would then be given by

{71, m2) (e1. 02) |7, w1,

g <7T1>991||/JS—'1XT2 m ||<7T2>992||/JS—'1XT2 and
[{r1, £2) (01, 02)|| 7y 41, = |5

I
||< 1>991||IS—'1+T2 U ||<li2>g‘92||7511+T2

Similarly, for a subfunctor (E=T) of F' one could consider formulas (7g)¢ with

(7 i) ellimsry == () 1{me)ellizsr):
eels
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7.6.  Conclusion

Another opportunity is to build modal operators capturing the whole structure
of F: this would then correspond to the coalgebraic logic presented in [Mos97].

It might also be of interest whether a (possibly simpler) language can dis-
tinguish elements up to similarity (cf. [Balt00]). Another option of altering the
language is to add always- and pasttime-operators (cf. [Jac99]) in order to gain
more expressiveness. Even more general, one could add arbitrary fixed points to
the language as done in the modal p-calculus (cf. [Sti96]) and possibly derive a
generalization of the modal u-calculus for a coalgebraic setting.
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