Existenzbereiche und physikalische Eigenschaften metallreicher Perowskite $(SE_3X)M$

(*SE* = Seltenerd-Metall; *X* = N, O; *M* = Al, Ga, In, Sn) Mit Ergänzungen zu den ternären Systemen *EA*–In–N (*EA* = Ca, Sr, Ba)

DISSERTATION

zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt

der Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden

von

Dipl.-Chem. Martin Kirchner geb. 03.03.1976 in Stuttgart

Gutachter:

Prof. Dr. Rüdiger Kniep Prof. Dr. Michael Ruck Prof. Dr. Herbert Jacobs Eingereicht: 19.12.2005 Tag der Verteidigung: 11.04.2006

Diese Arbeit wurde von Februar 2002 bis Dezember 2005 am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden (MPI CPFS) unter Betreuung von Herrn Prof. Dr. Rüdiger Kniep und unter Anleitung von Herrn Prof. Dr. Rainer Niewa angefertigt.

Mein ganz besonderer Dank gilt Herrn Prof. Dr. Rüdiger Kniep, der mir die Möglichkeit gab, dieses Thema selbst zu gestalten und seine schützende Hand über dieses Projekt legte.

Herrn Prof. Dr. Rainer Niewa war mein Mentor. Ihm danke ich für unzählige Diskussionen, sein reges Interesse, seine geduldigen Erklärungen und die Betreuung dieser Arbeit.

Besonderer Dank gebührt den Kompetenzgruppen Analytik (Dr. Gudrun Auffermann, Dipl.-Chem. Ulrike Schmidt, Anja Völzke und Britta Baier) und Struktur (Dr. Horst Borrmann, Dr. Yuri Prot's, Dr. Huang Zhang, Dr. Raúl Cardoso, Steffen Hückmann) des MPI CPfS. Auf ihren weit über tausend Messungen schultert diese Arbeit.

Ohne Herrn Dr. Walter Schnelle und Herrn R. Koban würde ich nicht über die physikalischen Messungen (Magnetismus, Leitfähigkeit) verfügen. Herrn Dr. Walter Schnelle danke ich darüber hinaus für anregende Diskussionen und seine Geduld, mich in die Physik einzuführen.

Eine lichtgeschwindigkeitsnahe Bereitstellung von Literatur, die mitunter äußerst verborgen war, habe ich unserer Bibliothekarin Frau Ina Wanschura zu verdanken.

Die Herren Dipl.-Chem. Markus Buffe, Dipl.-Chem. Frank Gäbler und Herbert Samson, die ich in zwei Praktika betreuen durfte verdanke ich Teile der hier vorgestellten experimentellen Arbeiten.

Herrn Dr. Reiner Ramlau, Frau Petra Scheppan sowie Frau Katja Schulze danke ich für REM- und EDX-Untersuchungen. Die Messungen waren sehr umfangreich und haben für mein eigenes Verständnis der Chemie der hier behandelten Proben einen großen Beitrag geleistet.

Herrn Dr. Frank R. Wagner danke ich für begleitende Bandstrukturrechnungen und zahlreiche Diskussionsbeiträge auf dem Gebiet der ternären Erdalkali-Metall-Nitride. Heftige und fruchtbare Debatten verdanke ich auch Herrn Dr. Wilder Carrillo-Cabrera.

Herr Dr. Ulrich Burkhardt und Frau Monika Eckert haben mich in die praktische Metallographie eingeführt und für mich metallografische Schliffe angefertigt. Vielen Dank!

Frau Susann Müller danke ich für ihre hilfreiche Arbeit bei der Durchführung der thermischen Analysen.

Meinen Doktorandenkollegen C. Göbel, R. Giedigkeit und H. Tlatlik danke ich für diverse Mittagessen und moralische Unterstützung. Meinem Bürokollegen C. Kudla danke ich für gegenseitigen Respekt und Hilfe.

Allen Mitarbeitern des Max-Planck-Instituts für Chemische Physik fester Stoffe (MPI CPfS) danke ich, da sie eine hervorragende Arbeitsatmosphäre geschaffen haben, in der diese Dissertation entstehen konnte.

Veröffentlichungen

M. Kirchner, W. Schnelle, F. R. Wagner und R. Niewa;

Preparation, Crystal Structure and Physical Properties of Ternary Compounds $(R_3N)In$, R = Rare-Earth Metal;

Solid State Sci. 5, 2003, 1247 – 1257.

F. Gäbler, M. Kirchner, W. Schnelle, U. Schwarz, M. Schmitt, H. Rosner und R. Niewa; (Sr₃N)E and (Ba₃N)E (E = Sb, Bi): Synthesis, Crystal Structure, and Physical Properties;
Z. Anorg. Allg. Chem., 630, 2004, 2292 – 2298.

R. Niewa, D. A. Zherebtsov, M. Kirchner, M. Schmidt und W. Schnelle; *New Ways to High-Quality Bulk Scandium Nitride*; Chem. Mater. **16** (2004) 5445 – 5451.

F. Gäbler, M. Kirchner, W. Schnelle, M. Schmitt, H. Rosner und R. Niewa; $(Sr_3N_x)E$ and $(Ba_3N_x)E$ (E = Sn, Pb): Preparation, Crystal Structures, Physical Properties and Electronic Structures;

Z. Anorg. Allg. Chem. 631 (2005) 397 – 402.

R. Niewa, M. Kirchner, H. Zhang, W. Schnelle und Yu. Grin; *Metallic barrelane: crystal structure, physical properties and bonding analysis of La₁₆Al₁₃*;
Z. Kristallogr., 220, 2005, 115 – 121.

M. Kirchner, W. Schnelle, F. R. Wagner, R. Kniep und R. Niewa;

 $(A_{19}N_7)[In_4]_2$ (A = Ca, Sr) and $(Ca_4N)[In_2]$: Synthesis, Crystal Structures, Physical Properties, and Chemical Bonding;

Z. Anorg. Allg. Chem., 631, 2005, 1477 – 1486.

M. Kirchner, F. Gäbler, W. Schnelle, F. R. Wagner und R. Niewa; $(La_3Z_x)Al$ and $(Ce_3Z_x)Al$ with Z = C, N, O: Preparation, Physical Properties and Chemical

Bonding of Metal-rich Perovskites;

Z. Kristallogr. im Druck.

M. Kirchner, W. Schnelle und R. Niewa;

Inverse Perovskites (Eu_3O)E with E = Sn, In: Preparation, Crystal Structures and Physical Properties;

Z. Anorg. Allg. Chem. im Druck.

Tagungsbeiträge

GDCh-Tagung Nichtstöchiometrische Festkörper – Grundlagen und Anwendungen
24. – 26. September 2002, Technische Universität Dresden, Deutschland.
M. Kirchner, R. Niewa, W. Schnelle, F. R. Wagner, D. Walther und R. Kniep;
Seltenerdnitride des Indiums (R₃N)In;
Z. Anorg. Allg. Chem., 628, 2002, 2202.

Euregionale 2003, *JCH-Frühjahrssymposium*27. Februar – 01. März 2003, Technische Universität Dresden, Deutschland.
M. Kirchner, W. Schnelle, F. R. Wagner und R. Niewa;
Synthesis and physical properties of rare-earth nitrides (R₃N)In.

12. Jahrestagung der *Deutschen Gesellschaft für Kristallographie* (DGK)
15. – 19. März 2004, Universität Jena, Deutschland.
M. Kirchner, H. Zhang und R. Niewa; *Die Kristallstruktur von La₁₆Al₁₃*;
Z. Kristallogr. Suppl. 21, 2004, 167.

GDCh-Tagung Struktur-Eigenschafts-Beziehungen

13. – 15. September **2004**, Philipps-Universität Marburg, Deutschland: F. Gäbler, M. Kirchner, W. Schnelle, H. Rosner und R. Niewa; *Perowskit-Nitride* $(A_3N_x)E$ *mit* A = Sr, *Ba und* E = Sb, *Bi* (x = 1), E = Sn, *Pb* (x < 1); Z. Anorg. Allg. Chem. 630, **2004**, 1723.

M. Kirchner, F. R. Wagner, W. Schnelle und R. Niewa; *Beiträge zur Verbindungsbildung im System Ca–In–N*; Z. Anorg. Allg. Chem. *630*, **2004**, 1735.

ECSSCX, 10th European Conference on Solid State Chemistry
29. August - 01. September 2005, University of Sheffield, GB.
M. Kirchner, F. R. Wagner, W. Schnelle, R. Niewa
Ternary compounds (Ce₃Z)Al (Z = C, N, O) and the polymorphism of Ce₃Al.

Berichte

Jahrbuch der Max-Planck-Gesellschaft 2002, Aktuelle Forschungsschwerpunkte:

R. Niewa, W. Schnelle, F. R. Wagner, Z.-L. Huang, J. Klatyk, M. Kirchner, G. Auffermann,Yu. Prots', M. Kohout, U. Schmidt, M. Baenitz, S. Bühler-Paschen, A. Bentien, R. Kniep,P. Novák, P. Gütlich, R. Schlögel und S. F. Parker;

Metallreiche Stickstoffverbindungen: Zwischen Valenzverbindungen und metallischen Systemen.

HMI/BENSC Experimental Report 2002, Structure – Chemical Structure

G. Auffermann, R. Kniep, R. Niewa, M. Kirchner, J. Hernandez-Velasco, N. Stüßer und D. Többens.

New Nitrogen Compounds: Magnetic Order of $(Ce_3N_{0.9})$ In.

Wissenschaftlicher Bericht des MPI CPfS, Dresden, 2003 Selected research reports:

M. Kirchner, R. Niewa, W. Schnelle, F. R. Wagner und R. Kniep.

Preparation and Properties of Ternary Rare-earth Nitrides of Indium (R₃N)In.

HMI/BENSC Experimental Report 2003, Structure - Chemical Structure

G. Auffermann, R. Kniep, R. Niewa, M. Kirchner, J. Hernandez-Velasco und N. Stüßer; New Nitrogen Compounds: Metamagnetism of $(Ce_3N_{0.9})In$.

Abkürzungsverzeichnis:

A, B, C		variable Elemente (z.B. As)
SE	Seltenerd-Metall	La – Lu
EA	Erdalkali-Metall	Ca, Sr, Ba
D	<i>d</i> -Block-Metall	z.B. Ti, Mn, Re
М	Hauptgruppen-Metall	z.B. Al, Ga, In, Sn, Bi
Х	Nichtmetall	z.B. C, N, O
x	Stoffmengenanteil	\equiv atom %
w	Massenanteil	≡ masse %
β	Heizrate	K/min
d	Durchmesser	m, cm, mm
l	Länge	m, cm, mm
w	Wanddicke	m, cm, mm
Т	Temperatur	°C; K
a, b, c	Gitterparameter	pm
α, β, γ	Gitterparameter	0
MM	Molmasse	g/mol
Äq.	molares Äquivalent	
χ	molare magnetische Volumensuszeptibilität	emu/mol
μ_0	Permeabilität des Vakuums	dimensionslos
$\mu_{ m B}$	Bohrsches Magneton	$9,27402 \cdot 10^{-24} \text{ J T}^{-1}$
$N_{\rm A}$	Avogadrokonstante	$6,022 \cdot 10^{23} \text{ mol}^{-1}$
k _B	Bolzmannfaktor	$1,38066 \cdot 10^{-23} \text{ J K}^{-1}$

Bei Messungen der magnetischen Suszeptibilität wurde auf das CGS-Einheiten-System zurückgegriffen. Alle anderen Einheiten sind dem "Système Internationale" (SI) entnommen.

Inhaltsverzeichnis

1.	Ein	leitung und Problemstellung	1
2.	Allg	gemeine Grundlagen	5
4	2.1.	Die Perowskitstruktur	5
4	2.2.	Metallreiche Perowskite	7
4	2.3.	Seltenerd-Metalle	8
4	2.4.	Binäre intermetallische Phasen	8
3.	Präj	paration und Untersuchungsmethoden	9
	3.1.	Präparation	9
	3.2.	Untersuchungsmethoden	12
4.	Bin	äre Nitride	17
2	4.1.	Erdalkali-Metall- und Seltenerd-Metall-Nitride	17
2	4.2.	Reaktivität von Legierungen Sc– M (M = Ga, In, Sn) gegenüber N ₂	19
5.	Unt	ersuchungen zu $(SE_3\Box)M$, $SE = La$, Ce; $M = Al$, In	21
4	5.1.	Die neuen Phasen La ₁₆ Al ₁₃ und (La ₃ O)Al	21
4	5.2.	$(La_3X)In (X = O, N, C)$ als Auffüllungsvarianten von $(La_3\Box)In$	
4	5.3.	Polymorphie von Ce ₃ Al und (Ce ₃ X)Al, $X = O$, N, C	
4	5.4.	$(Ce_3X)In (X = O, N, C)$ als Auffüllungsvarianten von $(Ce_3\Box)In$	67
4	5.5.	Zusammenfassung und Diskussion	
6.	(SE	$_{3}X)M$ mit $SE = La - Lu, M = Al, Ga, In, Sn; X = O, N$	
(5.1.	Verbindungen (SE_3X)Al ($X = \Box$, O, N)	
(5.2.	Verbindungen (SE_3X)Ga ($X = \Box$, O, N)	
(6.3.	Verbindungen (SE_3X)In ($X = \Box$, O, N)	95
(5.4.	Verbindnungen (SE_3X)Sn ($X = \Box$, O, N)	
(6.5.	Zusammenfassung (SE_3X) M mit $SE = La - Lu$, $M = Al$, Ga, In, Sn; $X = O$, N 109
7.	Sys	teme EA -In-N; EA = Ca, Sr, Ba	
-	7.1.	Synthese und Charakterisierung von $Ca_{19}In_8N_7 \equiv (Ca_{19}N_7)[In_4]_2$	114
-	7.2.	Synthese und Charakterisierung von $Sr_{19}In_8N_7 \equiv (Sr_{19}N_7)[In_4]_2$	
-	7.3.	Syntheseversuche zu $Ba_{19}In_8N_7 \equiv (Ba_{19}N_7)[In_4]_2$	
-	7.4.	Synthese und Charakterisierung von $Ca_4In_2N \equiv (Ca_4N)[In]_2$	
-	7.5.	Ergebnisse zu den ternären Systemen EA –In–N (EA = Ca, Sr, Ba)	
8.	Zus	ammenfassung und Ausblick	129
9.	Lite	praturverzeichnis	
10.	A	nhang	159

10.1.	Binäre Phasen SE-Al	160
10.2.	(<i>SE</i> ₃ O)Al	
10.3.	(<i>SE</i> ₃ N)Al	194
10.4.	(<i>SE</i> ₃ C)A1	
10.5.	(<i>SE</i> ₃ □)Ga	
10.6.	(SE ₃ N)Ga	
10.7.	$(SE_3\Box)$ In	
10.8.	(<i>SE</i> ₃ O)In	
10.9.	(<i>SE</i> ₃ N)In	
10.10.	(<i>SE</i> ₃ C)In	
10.11.	$(SE_3\Box)$ Sn	
10.12.	(SE_3N) Sn	
10.13.	$(EA_{19}N_7)[In_4]_2 EA = Ca, Sr, Ba$	
11. Ph	asediagramme (Literaturdaten)	

1. Einleitung und Problemstellung

Perowskite [1] faszinieren in der Festkörperchemie. Einerseits realisiert der kubische Perowskit eine einfache Kristallstruktur. Im Aristotyp (SrTiO₃) füllt eine einzige Formeleinheit mit fünf Atomen die Elementarzelle (Raumgruppe $Pm\overline{3}m$, Nr. 221). Andererseits ist dieses Strukturmuster leicht abwandelbar. Durch die Wahl der chemischen Elemente und der Präparationsbedingungen können Verzerrungs- und Fehlstellenvarianten erzeugt werden. Sowohl graduelle als auch sprunghafte Änderungen der Kristallstruktur innerhalb dieser Verbindungsklasse werden beobachtet. Diese Veränderungen, durch chemischen Zusammensetzung, erlauben wiederum Variation der Trends des Periodensystems zu verfolgen oder gezielt Eigenschaften einzustellen. Mit der Änderung der Struktur können Änderungen der physikalischen Eigenschaften verfolgt werden. Perowskite eignen sich somit für die Untersuchung von Struktur-Eigenschafts-Beziehungen. Die klassischen oxidischen Perowskite ABO₃ sind auf diese Weise eingehend untersucht worden und gehören zum Standardwissen der Lehrbücher der Anorganischen Chemie.

Seit etwa 1935 sind auch Verbindungen ([2]: (Fe₃N)Fe, [3]: (Fe₃C)Al) bekannt, die nach 1950 als sogenannte (metallreiche) anti-Perowskite beschrieben wurden ([4] s.a. Kap. 2.1, S. 5). Diese Substanzen kristallisieren mit derselben Anordnung der Atome des kubischen Perowskits SrTiO₃. Der Sauerstoff wird durch ein Metallatom (*M*) und Titan (Ti) durch ein Nichtmetall (*X*) – wie Kohlenstoff (C), Stickstoff (N) oder Sauerstoff (O) – ersetzt. Die Sr-Lage bleibt mit einem Metallatom besetzt.

Die klassischen oxidischen Perowskite sind strukturell weitestgehend verstanden und mit Hilfe eines Radienkonzeptes harter Kugeln beschreibbar [5]. Dieses Konzept baut auf einem ionischen Bild im Festkörper auf. Die metallreichen Perowskite zeigen ähnliche strukturelle Entwicklungen – zum Beispiel Verzerrungen wie in (Ca₃N)As [6]. Im Falle der Seltenerd-Metalle (*SE*) verringert sich der Ionenradius (*SE*³⁺) von La bis Lu mit steigender Ordnungszahl in kontinuierlicher Weise (Lanthanidenkontraktion¹). In der Sichtweise starrer Kugeln, besteht deshalb bei den Verbindungen (*SE*₃*X*)*M* die Möglichkeit, strukturelle Veränderungen zu beobachten: Wenn eine Verzerrung der Struktur des kubischen Perowskits durch Radienänderungen verursacht wird, dann sollte dies bei den Seltenerd-Metall-reichen Perowskiten durch die Lanthanidenkontraktion in kontinuierlicher Weise zu

¹ [7]:,,In der Lanthan–Lanthaniden-Reihe wird mit steigender Kernladungszahl eine regelmäßige Verminderung der Strukturdimension beobachtet; auf die Zunahme der Gitterdimensionen von Yttrium zu Lanthan folgt eine Abnahme der Gitterdimensionen von Lanthan bis Cassiopeium. Die Abnahme von Lanthan bis Cassiopeium [= *Lutetium*] ist größer als die Zunahme von Yttrium bis Lanthan."

beobachten sein. Die Erdalkali-Metalle (*EA*) stellen bei einer solchen Radienbetrachtung (Koordinationszahl = 6) [8] eine Erweiterung der Seltenerd-Metalle dar. Calcium $(r(Ca^{2+}) = 100 \text{ pm})$ ordnet sich zwischen Praseodym $(r(Pr^{3+}) = 99 \text{ pm})$ und Cer $(r(Ce^{3+}) = 101 \text{ pm})$ ein. Die Ionenradien von Sr²⁺ (r = 118 pm) und Ba²⁺ (r = 135 pm) sind deutlich größer als die des Lanthans ($r(La^{3+} = 103, 2 \text{ pm})$).

Die metallreichen Perowskite (SE_3X)In (X = N, C) wurden bereits ausführlich untersucht [9 – 11]. Das isotype (Ca₃N)Tl ist bekannt [12]. Die Frage nach den entsprechenden Verbindungen (EA_3N)In mit EA = Ca, Sr, Ba war deshalb Ausgangspunkt zur Untersuchung der ternären Systeme EA–In–N (EA = Ca, Ba, Sr). In dieser Arbeit werden ternäre EA-Nitride mit direkten In–In-Kontakten beobachtet ((Ca₄N)In; (Ca₁₉N₇)[In₄]₂); (Sr₁₉N₇)[In₄]₂); (Ba₁₉N₇)[In₄]₂). Dies mag ein erster Hinweis darauf sein, dass das Konzept harter Kugeln zu einfach ist und vielmehr kovalente Bindungsanteile berücksichtigt werden müssen.

Bei einer Betrachtung der elektronischen Situation kann die Gruppe der Verbindungen $(EA_3N)M$ (EA = Ca, M = Au, Tl, Sb, Bi; EA = Sr, Ba M = Sb; Literatur: s. Kap. 2.2) nur noch schwer mit einem ionischen Konzept unter Beibehaltung der (8-N)-Regel verstanden werden. Alle diese Verbindungen kristallisieren im Strukturtyp des kubischen Perowskits. In derselben Struktur werden verschiedene elektronische Grenzsituationen verwirklicht: In einem ionischen Bild ergibt sich für $(Ca_3N)Au$ $(3 \cdot Ca^{2+} + Au^- + N^{3-} + 2 \cdot e^-)$ ein Elektronenüberschuss, Elektronenuterschuss in $(Ca_3N)Tl$ $(3 \cdot Ca^{2+} + Tl^{5-} + N^{3-})$ und eine elektronisch formal ausgeglichene Verbindung $(Ca_3N)Sb$ $(3 \cdot Ca^{2+} + Sb^{3-} + N^{3-})$.

In den Verbindungen (*SE*₃*X*)*M* können ähnliche Situationen verwirklicht werden. Der Unterschied zwischen Erdalkali- und Seltenerd-Metall im ionischen Bild besteht zunächst in der Ladung der Kationen (Seltenerd-Metalle in der Regel *SE*³⁺ gegenüber *EA*²⁺). Formal stellen die Seltenerd-Metalle somit ihren Bindungspartnern mehr Elektronen zu Verfügung als die Erdalkali-Metalle. Darüber hinaus sind die Elektronegativitäten der Seltenerd-Metalle geringer, als die der Erdalkali-Metalle. Beim Gang von den Erdalkali-Metallverbindungen zu den Seltenerd-Metallverbindungen ist deshalb ein Wechsel von eher ionisch geprägten zu mehr kovalenten Bindungsanteilen zu erwarten. In den Verbindungen (*SE*₃*X*)*M* sollte wegen der hohen formalen Ladungen zudem eine klare ionische Trennung in *SE*³⁺, *M*^{x-} und *X*^{x-} – wie z. B. in (*SE*₃N)In nach $3 \cdot SE^{3+} \equiv In^{5-} + N^{3-} + 1 e^{-}$ – unwahrscheinlich sein. Vielmehr sollte die Bindungssituation von dieser einfachen Zählregel abweichen, bei der diese extreme Ladungstrennung aufgehoben wird.

Ein ähnlicher Gegensatz wie zwischen Seltenerd- und Erdalkali- Metallen ergibt sich bei der Betrachtung des Nichtmetallatoms X (X = C, N, O) in den Verbindungen (SE_3X)M. Wie

beim Gang von Erdalkali-Metall EA^{2+} zum Seltenerd-Metall SE^{3+} die positive Ladung ändert sich die negative von Sauerstoff über Stickstoff nach Kohlenstoff (O²⁻, N³⁻, C⁴⁻), allerdings vergrößert eine solche Aufnahme negativer Ladung die Polarisierbarkeit der Atome. Nach dem HSAB-Konzept wären Kohlenstoff und die Seltenerdmetalle wegen ihrer Größe als relativ weich gegenüber den harten kleineren Erdalkali-Metallen, Stickstoff sowie insbesondere Sauerstoff zu betrachten. In diese Richtung weist ein Vergleich der bisher bekannten Verbindungen (SE_3X)M und (EA_3X)M: Ternäre Carbide (EA_3C)M sind im Gegensatz zu (EA_3O)M und (EA_3N)M unbekannt, während die Verbindungen (SE_3C)Mausführlich untersucht wurden. Ternäre Nitride (SE_3N)M sind zwar bekannt, bei den entsprechenden ternären Oxiden (SE_3O)M wurde jedoch bisher einzig (La₃O)In beschrieben [13]. Der Vergleich von Verbindungen (SE_3X)M mit konstantem SE und M, sollte somit ein Übergang von einer mehr ionischen zu einer eher kovalenten Bindung beobachtet werden, denn die Elektronegativität und damit ionische Bindungsanteile nehmen von C über N nach O zu.

Für die Untersuchungen der Phasen (SE_3X)M wurden die Hauptgruppenmetalle Al, Ga, In und Sn ausgewählt, weil bereits ternäre Nitride (SE_3N)M (SE = Nd, [10]), sowie Carbiden (SE_3C)M (SE = La – Lu, [11]) berichtet wurden. Darüber hinaus sind zahlreiche binäre Phasen SE_3M im Cu₃Au-Typ bekannt [14]. Diese binären Phasen SE_3M würden eine interessante Ergänzung zu den Verbindungen (SE_3X)M ergeben, zumal an einigen bemerkenswerte Eigenschaften beobachtet wurden (z. B. Supraleitung in La₃Sn, La₃Al und La₃In [15]). Allerdings variieren die Angaben zu den Gitterparametern einer Verbindung SE_3M erheblich und die Existenz ist mitunter umstritten. In der hier vorliegenden Arbeit wurden deshalb auch exemplarisch binäre Phasendiagramme in der Umgebung der binären Phasen SE_3M untersucht. Im Falle des Systems La–Al wurde so eine neue Phase La₁₆Al₁₃ identifiziert. Darüberhinaus existieren die kubischen Phasen β -Ce₃Al und La₃Sn nicht so, wie in der Literatur beschrieben.

Eine Betrachtung der binären Verbindungen SE_3M als Unterstruktur, der ternären Verbindungen (SE_3X)M, mündet in der Frage nach Phasenbreiten im Sinne von (SE_3X_{1-y})M. Dabei kann die elektronische Struktur von SE_3M durch den Einbau einer dritten Komponente X verändert werden und es ergibt sich die Idee einer elektronischen Feinabstimmung. Um diese Fragestellungen zu untersuchen, wurden Gehaltschnitte in den Systemen La₃Al–(La₃N)Al, Ce₃Al–(Ce₃O)Al, Ce₃Al–(Ce₃N)Al, Ce₃Al–(Ce₃C)Al, La₃In–(La₃O)In, La₃In–(La₃N)In, La₃In–(La₃C)In, Ce₃In–(Ce₃N)In und Ce₃In–(Ce₃C)In untersucht.

Für die Untersuchung der elektronischen Struktur eignen sich Seltenerd-Metalle darüber hinaus besonders, weil der Magnetismus der Seltenerd-Metalle sehr reichhaltig ist und ein Spiegelbild der elektronischen Situation darstellt. Bei der Betrachtung physikalischer Eigenschaften, wie der magnetische Suszeptibilität χ , muss die Besetzung der 4*f*-Elektronen der Seltenen Erden berücksichtigt werden. Die Elektronenstruktur und somit χ hängen von der chemischen Umgebung und der Kristallstruktur des betrachteten Materials ab. Umgekehrt lässt die magnetische Suszeptibilität Rückschlüsse auf die chemische Bindung zu.

Diese Arbeit soll die "Existenzbereiche und physikalische Eigenschaften metallreicher Perowskite (SE_3X)M (SE = Seltenerd-Metall, X = N, O; M = Al, Ga, In, Sn)" weiter ausloten und die Kenntnisse zu den ternären Systemen EA-In-N (EA = Ca, Sr, Ba) erweitern. Die Synthese neuer und eine genauere Charakterisierung bereits bekannter Phasen (SE_3X)M ist ein Hauptaspekt dieser Arbeit. Sie soll neue Anhaltspunkte für einen umfassenden Vergleich der Verbindungen (SE_3X)M geben.

2. Allgemeine Grundlagen

2.1. Die Perowskitstruktur

Das Mineral Perowskit² (CaTiO₃ \equiv (O₃Ti)Ca) wurde erstmals von G. Rose 1839 beschrieben [16]. Die erste Röntgenstrukturanalyse erfolgte durch T. Barth [17]. Der Begriff des Perowskits wurde im Laufe der Zeit auf Verbindungen ausgeweitet, die strukturell mit diesem Mineral verwandt sind und auch von der allgemeinen Zusammensetzung $(A_3B)C$ abweichen. Ein Grund für diese Erweiterung des Begriffs "Perowskit" liegt im Mineral "Perowskit" selbst, das durch diadochen Ersatz in der Natur in zahlreichen Varietäten vorkommt. Strukturelle Verzerrungen sind je nach Entstehung und Zusammensetzung möglich. Der Begriff des "Strukurtyps" in Bezug auf das Mineral "Perowskit" kann deshalb irreführend sein, denn unter "Perowskit" werden verschiedene Strukturen und Zusammensetzungen zusammengefasst. Neben einem kubischen ist auch ein hexagonaler Perowskit beschrieben. Kristallografisch lassen sich diese beiden Strukturtypen nicht über einen Symmetriestammbaum verknüpfen. Beide Strukturen können aber als unterschiedliche Stapelvarianten gleicher Motive einer dichtesten Kugelpackung aufgefasst werden [1]. Zwei Beschreibungen der kubischen Struktur sind gebräuchlich. In der ersten Beschreibung bilden die Atome A und C eine geordnete kubisch dichteste Kugelpackung (Cu₃Au-Strukturtyp). Die ausschließlich von A-Atomen gebildeten Oktaederlücken werden mit B-Atomen besetzt. (s. Abbildung 2.1).

Abbildung 2.1: Elementarzelle der kubischen Perowskitstruktur $(A_3B)C$ (schwarze Kugeln (A), hell-graue Kugel (B), dunkel-graue Kugeln (C).

² Das Mineral wurde zu Ehren des russischen Grafen L. A. Perowsky benannt. Aus der Umschrift des Namens dürfe auch die im englischen geänderte Schreibweise "perovskite" herrühren.

Dieses Bild eignet sich besonders für die Beschreibung einer Unterbesetzung auf der Lage des *B*-Atoms der metallreichen Perowskite (s. Kap 2.2). Eine andere Darstellung beschreibt die Perowskitstruktur ausgehend vom Strukturtyp des ReO₃. Mit Re (*B*) gefüllte Oktaeder aus Sauerstoff (*A*) bilden ein eckenverknüpftes Netzwerk. In diesem Netzwerk werden kuboktaedrische Lücken aus *B* mit dem *C*-Atom aufgefüllt. Auch diese Strukturbeschreibung eignet sich für Fehl-/Teilbesetzungen wie z.B. der Wolframbronze im Sinne von (A_{3B})C_{1-x}, sowie zur Beschreibung von Verzerrungsvarianten des kubischen Perowskits.

Abbildung 2.2: Ausschnitt aus der Kristallstruktur des kubischen Perowskits $(A_3B)C$: Oktaeder aus A (schwarze Kugeln) um B bilden ein Netzwerk, in dem kuboktaedrische Lücken mit C (graue Kugeln) aufgefüllt sind.

Klassische Perowskite sind häufig schlechte elektronische Leiter und weisen in erster Näherung eine klar gegliederte Ladungsbilanz von Anionen und Kationen auf. V. M. Goldschmidt [5] führte einen Toleranzfaktor (*t*) ein, der eine grobe Abschätzung erlaubt, ob ein Perowskit einer gewählten Zusammensetzung kubisch oder in einer verzerrten Variante vorliegt. Dieser Toleranzfaktor basiert auf einem Modell starrer Kugeln und deren Radienverhältnissen.

$$t = \frac{r(A) + r(B)}{\sqrt{2}(r(C) + r(B))}$$

Für t > 1 ist eine hexagonale [18] und für 0,89 < t < 1 eine kubische Stapelfolge wahrscheinlich [5]. Zwischen 0,89 < t < 0,8 werden Verzerrungen der kubischen Variante beobachtet und für t < 0,8 wird der Ilmenitstrukturtyp bevorzugt [1]. Einige kubische Varianten der metallreichen Perowskite sind bereits beschrieben worden (s. Kap 2.2). Eine Anwendung des *t*-Faktors scheitert nicht nur aus Mangel an Datenmaterial sondern auch an

Modellen für Metalle, wie sie bei der Beschreibung von ionischen Festkörpern im Modell der harten Kugeln ausgearbeitet wurden.

Der Einbau eines Nichtmetall-Atoms *B* – wie Kohlenstoff, Stickstoff oder Sauerstoff – in die Oktaederlücken einer kubisch dichtesten Kugelpackung aus Metallatomen (*A*₃*C*), wird in der Literatur ab den späten 1920er Jahren (s. Kap. 2.2) diskutiert. Diese Strukturen werden später auch als "anti-Perowskite" beschrieben, weil Kationen und Anionen in diesen Verbindungen formal ausgetauscht sind (z. B. (O₃Ca)Ti \equiv 3 O²⁻; Ca²⁺; Ti⁴⁺ vs. (Sr₃O)Sn \equiv 3 Sr²⁺; O²⁻; Sn⁴⁻ [19]). Anderen Vertreter dieser metallatomreichen Verbindungen weisen in der ionischen Beschreibung eine unausgeglichene Ladungsbilanz auf (z.B. (Ca₃N)Au \equiv 3 · Ca²⁺; N³⁻; Au⁻; 2 · e⁻ [20]). Dem Begriff der "metallreichen Perowskite" wird in dieser Arbeit der Vorzug gegeben.

2.2. Metallreiche Perowskite

Erste Hinweise auf metallreiche Perowskite stammen aus den Anfängen der röntgenografischen Strukturbestimmungen Eisenverbindungen von $([2]: (Fe_3N)Fe_3)$ [3]: (Fe₃C_{1- ν})Al); [21]: (Fe₃X_{1- ν})Ni). Die Autoren bezeichnen diese Verbindungen noch nicht als Perowskite, doch in den Veröffentlichungen werden geordnete Gitter des Cu₃Au-Strukturtyps dargestellt, deren Oktaederplätze teilweise mit C oder N besetzt sind. E. Scheil und L. Hütter berichten über eine ternäre, kubisch-flächenzentrierte Phase im Nickel-reichen Gebiet des ternären Systems Ni–Mg–C (x(Ni) > 23 %, x(C) < 10 %, 370 pm < a < 385 pm) [22]. R. G. Butters und H. P. Myers beschreiben 1955 die metallreiche Verbindung (Mn₃C)Zn in der Perowskitstruktur [4]. Ternäre Nitride und Carbide mit *d*-Block-Metallen (D) der Zusammensetzung $(D_3N)D'$ oder $(D_3N)M$ mit kubischer Perowskitstruktur wurden in den darauffolgenden zwei Jahrzehnten untersucht (Eine Auswahl: [23-33]). Auch die ersten metallreichen kubischen Perowskite mit Seltenerd-Metallen wurden berichtet [10, 34 – 38], gefolgt von den ersten Erdalkali-Metall-reichen kubischen Oxiden ((Sr₃O)Sn, [19]) und Nitriden ((Ca₃N)*M*: M = Bi, Ge, Sn, Pb [6]) und dem ersten hexagonalen metallreichen anti-Perowskit NaBa₃N [39]. In der Verbindungsklasse kubischer Erdalkali-Metall-reicher Perowskite sind inzwischen zahlreiche Vertreter bekannt. ((Ca_3N)M: M = Au [20], Tl [12]; $(EA_{3}O)M$ (EA = Ca, Sr, Ba, Eu; M = Sn, Pb[40]// EA = Ca, Sr, Yb; M = Ge, Sn, Pb [41]; (Ca₃O)Ge[42]). Das Hauptgruppenmetall *M* wurde in einigen Verbindungen auch durch ein Nichtmetall (E) ersetzt: $(Ca_3N)E$, E = P, As, [6]; $(EA_3O)Si$, EA = Ca, Sr; Yb [41].

2.3. Seltenerd-Metalle

Die Elemente des Periodensystems mit den Ordnungszahlen 57 (La) bis 71 (Lu) werden in der Literatur unterschiedlich bezeichnet: Lanthanoide, Lanthanide, *f*-Elemente, Seltenerd-Metall, seltene Erdmetalle oder Seltene Erden. In dieser Arbeit wird der Begriff Seltenerd-Metalle verwendet. Die Seltenerd-Metalle werden in der Literatur noch weiter in "frühe" und "späte" oder auch "leichte" und "schwere" Seltenerd-Metalle unterteilt. In dieser Arbeit wird letztere Einteilung verwendet, weil sie sich am Atomgewicht orientiert. Versuche mit radioaktivem Pm ($t_{1/2}(_{61}^{145}Pm) = 17,7$ a [46]) wurden nicht durchgeführt. Nach Versuchen zu (Eu₃N)In in einer vorangegangen Arbeit [9], wurden Experimente mit Eu und Yb hier nicht durchgeführt.

2.4. Binäre intermetallische Phasen

Im Folgenden werden ternären Phasen vorgestellt. Die Synthese erfolgt aus binären intermetallischen Edukten. Deren Synthese beruht auf der Kenntnis der jeweiligen binären Phasendiagramme. Im Anhang (Kap. 11) sind diejenigen Phasendiagramme aufgeführt, die bei der Synthese berücksichtigt wurden. Explizit werden Bereiche binärer Phasendiagramme La–Al (s. S. 21ff.), Ce–Al (s. S. 52ff.), La–In (s. S. 35ff.) und Ce–In (s. S. 67ff.) diskutiert. Wie Edshammar [44] feststellte erscheint die Bildung von binären Legierungen der Hauptgruppenmetalle mit Seltenerd-Metallen oder Erdalkali-Metallen im Lichtbogen unter einer verstärkten Lichterscheinung. Mitunter schreitet die Reaktion auch nach Unterbrechung des Lichtbogens fort. Aus thermodynamischen Untersuchungen sind zum Teil stark negative Bildungsenthalpien für intermetallische Phasen bekannt ([45 – 52]).

3. Präparation und Untersuchungsmethoden

3.1. Präparation

Arbeiten unter inerten Bedingungen

Seltenerd-, Erdalkalimetalle und die in dieser Arbeit synthetisierten Produkte sind luft- und feuchtigkeitsempfindlich. Die Arbeiten erfordern deshalb inerte Bedingungen und wurden in Handschuhkästen (Ar, $c(O_2) < 1$ ppm, $c(H_2O) < 1$ ppm) durchgeführt.

Edukte

Stickstoff (Messer-Griesheim, 5.0) für die Synthese wurde über Molekularsieb und BKS-Katalysator gereinigt. Die Erdalkali-Metalle (*EA*; Alfa Aesar, 99,9 % auf Metallbasis) wurden aus evakuierten Glasampullen entnommen, die im Handschuhkasten geöffnet wurden. Die verwendeten Seltenerd-Metalle (Chempur/Lambrecht, 99,9 % auf Metallbasis) wiesen zum Teil augenscheinliche Sauerstoffverunreinigungen in Form einer weißen Oxidschicht auf. Die leichteren Seltenerd-Metalle (La – Nd) wurden wie beschrieben [9] gereinigt. Das Metall wird in einem Tiegel aus Molybdän- oder Tantalfolie im Hochfrequenzofen unter Vakuum ($p < 10^{-5}$ mbar) aufgeschmolzen und sammelt sich am Boden des Tiegels. Das Oxid reichert sich wegen der geringeren Dichte auf der Oberfläche der Schmelze als Schlacke an. Aus einem Loch am Tiegelboden tropft das flüssige, gereinigte Metall auf eine Kupferkokille und erstarrt zu einer dünnen Scheibe. Diese kann leicht mit einem Seitenschneider zerteilt werden.

Die Metalle Al, Ga, In und Sn (Chempur, 99,999 Metallbasis) wurden in den üblichen Handelsformen (Granalien: Al, Ga; Barren: In, Sn) bezogen. Für die Synthese der ternären Carbide wurde amorpher Grafitkohlenstoff für die ternären Oxide verschiedene Seltenerd-Metall-Oxide (Chempur, 99,9 % Metallbasis) verwendet. La₂O₃ und Nd₂O₃ wurden im HF-Ofen vier Stunden bei 1200 °C im dynamischen Vakuum gehalten. CeO₂, Pr₂O₃ und Sm₂O₃ wurden ohne weitere Vorbehandlung verwendet. Eine termische Behandlung, wie im Falle von La₂O₃, ergäbe Gemische verschiedener Seltenerd-Metall-Oxide, mit einem schwer zu charakterisierenden Sauerstoffgehalt [53]. Binäre Nitride der Erdalkali- und Seltenerd-Metalle werden gesondert in Kap. 4 behandelt.

Lichtbogen und Ampullen aus Ta, Nb und Ni

Für sehr hohe Temperaturen (T > 2000 °C) wurde ein Lichtbogenofen verwendet³. Zwischen zwei Messingstücke ist ein zylindrisches Kieselglasrohr ($d_{außen} = 10$ cm; $d_{innen} = 9.7$ cm; l = 5 cm) eingespannt. Von unten wird eine Kupferkokille (d = 7 cm) eingeschoben, von oben eine Wolframspitze (negativer Pol). Die gesamte Apparatur ist in einen Handschuhkasten integriert. Die Kupferkokille wurde in drei verschiedenen Ausführungen verwendet. Die erste Ausführung besteht aus einer einzigen Pfanne, deren Durchmesser demjenigen der Kokille selbst entspricht. In der zweiten Ausführung sind drei kleine Pfannen (d = 1 cm) sternförmig nebeneinander angebracht. Die dritte Ausführung dient zum Verschweißen von Ampullen. Hierbei befindet sich in der Mitte der Kokille ein konisches Loch, in das die Ampulle (Ta, Nb, Ni) mit zwei Backeneinsätze aus Kupfer eingespannt wird. Diese Backeneinsätze bilden einen zylindrischen Hohlraum, der dem jeweiligen Durchmesser der Ampulle angepasst wird. Je nach Element und Verfügbarkeit wurden Ampullen für die Synthese aus Nickel (Ba, Sr, Ca-Proben), Niob oder Tantal verwendet. Die Bemaßung variierte zwischen einem Innendurchmesser von 8 mm (Ta) bzw. 10 mm (Ta, Nb, Ni) und Wandstärken von 1 mm (Ta, Nb) bzw. 2 mm (Ni). Vor einer Wärmebehandlung wurden diese Ampullen, nachdem sie im Lichtbogen zugeschweißt worden waren, bei vermindertem Druck (1 • 10^{-5} mbar mbar) in Kieselglas eingeschmolzen.Spezielle Ampullen aus Niob wurden bei der dynamischen Differenz-Kaloriemetrie (DSC)⁴ eingesetzt. Hierzu wurde ein halbseitig offenes Rohr (d = 0.5 cm; l = 1.5 cm) mit 50 -100 mg Probe befüllt. Das offene Ende wurde mit einer Zange auf einer Höhe von etwa

0,5 cm zusammengedrückt und davon das obere Ende etwa 1 mm mit einem Seitenschneider abgetrennt, um einen sehr feinen Grat zu formen. Diese Ampulle wurde im Lichtbogen unter möglichst geringer Erwärmung der Probe zugeschmolzen.

Edukte, die bei den angewandten Temperaturen für die Synthese erhöhte Dampf- oder Zersetzungsdrücke aufweisen, wurden in Ampullen eingeschweißt. Ebenso wurde bei Proben verfahren, bei denen eine schnelle Abkühlrate (Abschrecken in Wasser) erforderlich war. Ersteres traf auf Proben mit Erdalkali-Metallen, Samarium oder schwereren Seltenerd-Metallen ab Gd zu, letzteres bei der Untersuchung der Gehaltschnitte Ce_3M –(Ce_3X)M und La₃M–(La₃X)M (M = Al, In). Das Ampullenmaterial wurde vor der Verwendung mit Aceton, dann mit Ethanol im Ultraschallbad entfettet und anschließend 15 min mit 10 %iger

³ Firma CENTORR Vacuum Industries, eine detaillierte Beschreibung der Apparatur findet sich in [9].

 $^{^{4} \}equiv engl.$ Difference Scanning Calorimetry = DSC.

Essigsäure im Ultraschallbad behandelt. Danach zeigten alle behandelten Metalle eine metallisch glänzende Oberfläche.

Hochfrequenz-Induktionsofen (HF-Ofen), Röhren- und Kammeröfen

- Reaktionen mit N₂ und Wärmebehandlung

Für Reaktionen mit N2, zum kurzzeitigen Erhitzen von Proben über 1200 °C und zum Aufschmelzen der leichteren Seltenerd-Metalle wurde ein Hochfrequenzofen⁵ verwendet. Längere Reaktionen (t > 4 h) erfolgten in vertikalen Röhrenöfen oder in horizontalen Kammeröfen. Für Reaktionen unter konstantem Gasdruck (Ar, N2) oder dynamischem Vakuum, kamen Röhrenöfen (detaillierte Beschreibung s. [9]) zum Einsatz. Die Probe wurde in einen geeigneten Tiegel (Ta, W, Nb, Al₂O₃) gebracht, dieser in ein halbseitig zugeschweißtes Eisenrohr gegeben und das Eisenrohr in ein halbseitig geschlossenes Kieselglasrohr (l = 40 cm, d = 4 cm) gestellt. Zwischen dem Boden des Kieselglasrohres und dem Eisenrohr lag ein Al₂O₃-Tiegel, um einen direkten Metall-Kieselglas-Kontakt zu vermeiden. Ohne diese Vorkehrung hätte der direkte Metall-Glaskontakt zu einer verstärkten Kristallisation des Glases geführt und in deren Folge einen Bruch des Reaktors verursacht. Der wesentliche Vorteil dieser Versuchsanordnung ist die Temperaturpräzision ($\Delta T = 3$ K), die durch die Verwendung des Eisenrohres erreicht wird. Das obere Ende des Kieselglasrohres ist mit einem Schliff NS14 versehen, auf den eine Schliffkappe gesetzt wurde, an der zwei Ausgänge mit je einem Hahn angebracht waren. Kammeröfen wurden für Proben verwendet, die schnell abgekühlt werden sollten.

⁵ TIG 5/300 Kurt Hüttinger GmbH Mittelbügweg 90 D-90571 Schwaig bei Nürnberg

3.2. Untersuchungsmethoden

Röntgenbeugung am Pulver und Rietveldmethode

Standardmethode zur Analyse der hergestellten Proben war die Röntgenbeugung an Pulvern. Die Messungen erfolgte im Allgemeinen in Guinier-Transmissions-Geometrie⁶ an Flachbettprobenträgern. Für Cu- $K\alpha_1$ -Strahlung fand ein auf (111) geschliffener Ge-Kristall als Monochromator Verwendung, für Co- $K\alpha_1$ -Strahlung Quarz (1011). Die Aufzeichnung erfolgte mit Bildplatten. Je nach Strahlung dauerte die Belichtung sechs (Cu) bis acht (Co) Mal 15 Minuten über einen Winkelbereich von $3 \le 2\Theta \le 100^\circ$. Für die Probenvorbereitung wurde über einen Aluminiumträger mit einem Al-Ring und einer Gummidichtung eine Polvimid-Folie⁷ gespannt. Eine Lösung von Vaseline in Hexan wurde auf die Polvimid-Folie verteilt, das Hexan verdampfte und ein homogener Film aus Vaseline entsteht. Repräsentative Stücke der Probe wurden in einem Wolframcarbid-Mörser oder einer Achat-Reibschalen zu Pulver verrieben. Das Pulver wurde auf den Film aufgebracht und durch Hin- und Herklopfen des Probenträgers auf einer Teflonhalterung gleichmäßig verteilt. Danach wurde der Aluminiumring entfernt, eine zweite Folie passgenau über die erste gelegt und beide Folien zusammen mit dem Aluminiumring erneut über die Aluminiumhalterung gespannt. Die Messungen von Proben für die Rietveldverfeinerung erfolgte in Glaskapillaren⁸. Die Probe befindet sich hierbei in Debye-Scherrer-Geometrie, während die Optik des einfallenden Röntgenstrahls wie bei der Guinier-Technik (Monochromator: Ge-Kristall (111)) angeordnet ist. Die Messzeiten und -winkel sind individuell von der Art der Probe abhängig, die Aufzeichnung der Daten erfolgte ebenfalls mit Bildplatten. Einige binäre intermetallische Legierungen waren makroskopisch duktil und hart. Diese Kombination der Materialeigenschaft ließ ein Zerstoßen zu Pulver nicht zu. In diesen Fällen wurden Feilen mit Carborund oder Diamant als Abbrasivmaterial eingesetzt. Das Abbrasivmaterial ist in einigen Röntgenpulverdiffraktogrammen erkennbar. Die Auswertung der Röntgenpulverdiffraktogramme erfolgte mit dem Programmpaket "STOE, Win XPOW 1.2" [P 1]. Die Auswertung der Ergebnisse von Messungen mit internem Standard (Silicium, NIST SRM 640c, a = 543,12 pm) erfolgte mit dem Programmpaket CSD [P 2]. Für die

⁶ Gerätetyp: Huber G 670; Firma: HUBER Diffraktionstechnik GmbH & Co. KG; Sommerstrasse 4; D-83253 Rimsting

⁷ Polyimidfolie ist weitläufig unter der Bezeichnung Kapton®–Folie bekannt. Der Hersteller der hier verwendeten Folie: Chemplex[®]Industries, Inc; 2820 SW 42nd Avenue; Palm City, Fl 34990; USA

⁸ Gerätetyp: STOE–Stadi-mp; Firma: STOE & CIE GmbH, Hilpertstr. 10, D 64295 Darmstadt

Rietveldanalysen an Röntgenpulverdaten wurde das Programmpaket Fullprof [P 3] verwendet.

Röntgenbeugung am Einkristall

Für die Einkristalluntersuchung an La₁₆Al₁₃ wurden Kristalle in eine Glaskapillare $(d_{aussen} = 0,3 \text{ mm}, d_{innen} = 0,2 \text{ mm})$ überführt, mit Silikonfett fixiert und die Glaskapillare außerhalb des Handschuhkastens zugeschmolzen. Eine Messinghülse dient zur Befestigung der Glaskapillare auf dem Goniometerkopf. Der Kristall wurde auf einem Vierkreisdiffraktometer⁹ mit Mo-K α_1 -Strahlung untersucht. Die Auswertung erfolgt mit dem Programmpaket SHELX97 [P 3].

Neutronenbeugung am Pulver

Pulver von $(Ca_{19}N_7)[In_4]_2$ (s. S.114) wurde für die Messung am Diffraktometer E9 am BERII, HMI Berlin¹⁰ in gas-dichte Vanadiumzylinder (d = 6 mm; l = 51 mm; Wanddicke w = 0,15 mm) eingefüllt.

Thermische Analysen

Im Verlauf der Arbeiten wurden Differenz-Thermo-Analysen (DTA), dynamische Differenz-Kaloriemetrie (DSC) und Thermo-Gravimetrie (TG) durchgeführt (technischen Parameter der verschiedenen Gerätetypen s. Tabelle 3.1). Die verwendete STA 449 war vollständig in einen Handschuhkasten integriert. Für Proben und Referenz dienten meist Al₂O₃-Tiegeln. Bei DSC-Messungen (DTA 404) und ausgewählten Problemstellungen kamen Nb-Tiegel zum Einsatz, die gegebenenfalls zugeschweißt werden konnten. Die Auswertung der Experimente erfolgte mit dem Programmpaket NETSCH–Proteus-Thermal Analysis, Version 4.3 [P 5].

Gerät	Heizelement	Thermoelement	Gase	Kalibrierstandards
STA 449	Platin-Mäander	Pt-Pt/Rh Typ S	N ₂ , Ar	In, Bi, Ag, Au, Ni
STA 409	SiC	Pt-Pt/Rh Typ S	N ₂ , Ar	In, Bi, Ag, Au, Ni
DSC 404	Rhodium	Pt-Pt/Rh Typ S	Ar	In, Bi, Ag, Au, Ni

Tabelle 3.1: technische Daten der verwendeten DTA/TG-Geräte¹¹

⁹ Rigaku/MSC R-axis Rapid

¹⁰ HMI-Außenstelle c/o BESSY, Albert-Einstein-Straße 15, D-12489 Berlin

¹¹ Netsch-Gerätebau; Wittelsbacherstr. 42, 95100, Selb/Bayern

Röntgenabsorbtionsspektroskopie

Röntgenabsorbtionsspektren (XAS = X-ray absorption spectroscopy) wurden an den Messstrecken E4 und A1 am DESY (HASYLAB)¹² mit Synchrotronstrahlung aufgenommen. Die Spektren ergänzen die Messungen der magnetischen Suszeptibilität, da Informationen über die Elektronenkonfiguration erhalten werden. Für die Messungen wurden etwa 12,5 mg Probe mit etwa 80 mg B₄C in einer Achatreibschale fein verrieben und in Stahlkapseln mit Be-Fenster gefüllt. In-Drähte zwischen Be-Fenster und Stahlzylinder dichteten den Innenraum von der Umgebung ab, so dass diese Anordnung an Luft gehandhabt werden konnte.

Messung der magnetischen Suszeptibilität

Messungen der magnetischen Suszeptibilität erfolgten an einem SQUID-Magnetometer¹³. Die Proben wurden hierfür in ein Kieselglasrohr (d = 3 mm) unter 400 mbar Heliumatmosphäre eingeschmolzen. Die Magnetisierung wurde bei verschiedenen Feldern (10 Oe – 70 kOe) und verschiedenen Temperaturen (1,8 K $\leq T \leq$ 400 K) bestimmt. Proben mit großen paramagnetischen Anteilen wurde mit einem Stück Baumwollwatte fixiert um Levitationen während der Messung zu verhindern. Die Baumwolle war zuvor in Aceton gewaschen und eine Woche bei 110 °C getrocknet worden.

Messung des elektrischen Widerstandes

Der elektrische Widerstand wurde je nach Zustand der Probe auf verschiedene Weise gemessen. Pulver wurden in einer Saphirmatrizenzelle mit der van-der-Pauw Methode zwischen $3,8 \text{ K} \le T \le 320 \text{ K}$ untersucht. Die Kontakte wurden mit kleinen Pt-Kugeln hergestellt, die in die Probe gedrückt wurden. Kompakte Stücke wurden in geeigneter Größe (1 x 1 x 8 mm) zugeschnitten und mit der Gleichstrom-vier-Punkt Methode zwischen $5 \text{ K} \le T \le 320 \text{ K}$ untersucht.

Elementaranalysen

Der Gehalt an Sauerstoff, Stickstoff und Wasserstoff wurde mit der Trägergas-Heizextraktions-Methode (TGH), der Gehalt an Kohlenstoff durch Verbrennungstechnik bestimmt. Je nach Analyseziel (s. Tabelle 3.2) wurden drei Proben zwischen 10 bis 150 mg in Zinnkapseln (V = 0.4 ml; $m_{\text{leer}} \approx 165$ mg) eingewogen und verschlossen. Wasserstoff,

¹² Notkestr. 85, D-22603 Hamburg

¹³ Superconducting Quantum Interference Device; MPMS-XL-7, Fa. Quantum Design

Stickstoff	und	Sauerstoff	wurden	simultan	bestimmt	(LECO	436 DR:	0, N;	LECO	ТСН
600: O, N,	H).	Für die Ana	lyse wu	rde eine be	efüllte Zini	nkapsel	in einen N	i-Tieg	el gegeł	ven,

Tabelle 3.2:Einwaagen und Nachweisgrenzen für die Analysen von H, C, O und N.

Nachweisgrenze	<i>w</i> (H) / ppm	w(C) / %	w(N) / %	w(O) / %
Einwaage / mg				
10	160	0,30	0,05	0,25
20	80	0,15	0,02	0,10
50	32	0,06	0,01	0,05
100	16	0,03	0,005	0,025

darauf ein Stück Zinn gelegt und in einen zuvor ausgeheizten Grafittiegel gebracht, der von He als Trägergas umströmt wurde. In einem Induktionsofen wurde die Probe auf ca. 2500 °C aufgeheizt. Unter diesen Bedingungen wird Wasserstoff zu H₂, Sauerstoff zu CO₂ und Stickstoff zu N₂ umgesetzt. H₂ und N₂ wurden chromatographisch getrennt und durch Wärmeleitfähigkeitsmessungen quantifiziert, CO₂ wurde IR-spektroskopisch gemessen. Vor der Detektion von H₂ und N₂ wurden die übrigen Gase – mit Ausnahme des Trägergases – durch Absorbtionskolonnen aufgefangen. Kohlenstoffanalysen wurden an einem Kohlenstoffanalysegerät (LECO C200) durchgeführt. Hier wurden zusätzlich Eisen und Kupfer in den Ni-Tiegel gegeben. Statt eines Graphit- wurde ein Korundtiegel eingesetzt. Als Trägergas diente Sauerstoff, die Bestimmung erfolgte als CO₂.

Der Gehalt von In und La in Proben La–In–N und von In und *EA* (EA = Ca, Sr) in EA–In–N wurde mit Atomemissionsspektroskopie bestimmt. Je vier gepulverte Proben à 8 – 15 mg wurden in einen Erlenmeyerkolben eingewogen und mit Salzsäure aufgeschlossen. Die erhaltenen Lösungen wurden auf 100 ml verdünnt und ein pH = 1 eingestellt. Die Kalibrierung erfolgte mit Standardlösungen.

Metallografie

Auch die metallografischen Untersuchungen wurden in einem Handschuhkasten durchgeführt. Die Proben wurden hierfür entweder mit einer Diamantfadensäge oder mit Zangen vorproportioniert und mit grobem Schleifpapier (120er Körnung) eingeebnet. Grundsätzlich wurde trocken geschliffen, da kein geeignetes Suspensionsmittel für das Arbeiten in Argon-Handschuhkästen bekannt ist. Folgende Schleifpapiere wurden der Reihe nach angewendet: 320, 500, 2400, 4000. Zum Schluss wurde mit einem Tuch ($^{1}/_{4}$ µm Körnung) poliert.

Rasterelektonenmikroskopie (REM) und Energiedispersive Röntgenanalyse (EDXS¹⁴)

Metallografische Schliffe wurden mit energiedispersiver Röntgenanalyse auf die Zusammensetzung der vorhandenen Phasen untersucht. Dabei wurde ein Rasterelektronenmikroskop (REM, PHILIPS XL30) mit kombinierter EDXS-Analyseeinheit verwendet (Beschleunigerspannung 25 kV, Messzeit 150 s, LaB₆-Filament, Si(Li)-Detektor).

¹⁴ EDXS electron dispersive x-ray spectroscopy

4. Binäre Nitride

4.1. Erdalkali-Metall- und Seltenerd-Metall-Nitride

Die Kenntnis der binären Systeme EA–N ist für die Analyse der Ergebnisse über die ternären Verbindungen EA–M–N (s.S. 112, Kap. 6) notwendig. Die bekannten Erdalkali-Metall–Stickstoffverbindungen sind in Tabelle 4.1 aufgeführt. Eine zusammenfassende Darstellung der bis 1980 bekannten Erdalkali-Metall-Stickstoffverbindungen wird in [56] gegeben. Weitergehend wurde das System Sr–N untersucht (Sr₂N [57], SrN₂ [58 – 60].

Tabelle 4.1:Beschriebene Erdalkali-Metall-Stickstoffverbindungen nach [56 – 66].

Be	Mg	Ca	Sr	Ba
			SrN ₂	BaN ₂
			SrN	
			Sr ₄ N ₃	
Be_3N_2	Mg ₃ N ₂	α -Ca ₃ N ₂	Sr ₃ N ₂	Ba ₃ N ₂
		Ca ₂ N	Sr ₂ N	Ba ₂ N
				Ba ₃ N

Im System Ba–N wurden die Verbindungen BaN₂ [61], Ba₂N [56, 62] und Ba₃N [63] beschrieben. Ba₂N kristallisiert, wie Sr₂N, im CdCl₂-Strukturtyp. Die experimentell ermittelten Gitterparameter für *c* und *a* variieren deutlich mit den Versuchsbedingungen. Möglicherweise liegt ein Gemisch verschiedener Phasen Ba₂N_{1+x} ($0 \le x \le 2$) mit einer variablen Besetzung der von Ba gebildeten Oktaederlücken durch N vor. Für eine Auswertung der eigenen experimentellen Daten wurden für Ba₂N die Gitterparameter *a* = 402,5 pm und *c* = 2247,7 pm angenommen [64]. Die Existenz von Ba₃N₂ ist in der Literatur umstritten (s. a. [56]). In eigenen Experimenten wurde Ba mit Stickstoff bei 750 °C umgesetzt¹⁵. Die reproduzierbaren Diffraktogramme (s. Abbildung 4.1) zeigen Reflexe von Ba₂N_{1+x}. Die Elementaranalyse auf Stickstoff ergibt eine Zusammensetzung in der Nähe von "Ba₃N₂" (*w*(N) = 6,42 ± 0,02 %; *w*_{theo}(N/Ba₃N₂) = 6,37 %), Sauerstoff konnte nicht nachgewiesen (*w*(O) ≤ 0,10 %).

¹⁵ Exemplarische Versuchsvorschrift zur Darstellung von "Ba₃N₂": Zwei W-Tiegel – der untere mit 4 g Ba, der obere als Sauerstofffänger mit 0,2 g Ba – werden in dem auf S. 11 beschriebenen Röhrenreaktor mit Stickstoff umgesetzt (0. 20 °C; 1. 100 °C/h; 2. 650 °C, 2 h; 3. 100 °C/h; 4. 750 °C, 1 h; 5. –120°C/h; 6. 20 °C).

Abbildung 4.1: Röntgenpulverdiffraktogramm (Cu-Kα₁-Strahlung) einer Probe der nominellen "Ba₃N₂", hergestellt aus Ba und N₂ bei 750 °C. Daneben sind ein berechnete Diffraktogramm von Ba₂N [64] und die Reflexlagen von Ba₃N₂ gemäß [65] dargestellt.

<i>d</i> / Å	3,71	3,31	2,93	2,08	2,00	1,91	1,86	1,75
$I / {I_0}^{16}$	F	F	TF	mF	F	F	mF	F

Die beschriebenen Reflexlagen von Ba_3N_2 (s. Tabelle 4.2, [65]) stimmen für größere Werte von 2Θ nicht mit dem gemessenen Röntgenpulverdiffraktogramm (s. Abbildung 4.1) überein. Das Diffraktogramm zeigt weitere Reflexe, die keiner bekannten Phase des Systems Ba–N (Ba₃N, BaN₂) zugeordnet werden können. Seltenerd-Metall-Nitride dienten als Ausgangsverbindungen bei der Synthese der Verbindungen (*SE*₃N)*M*. Die Synthesen sind bereits umfangreich beschrieben worden [66]. Die in dieser Arbeit eingesetzten Nitride wurden nach [9] aus den Seltenerd-Metallen und N₂ hergestellt.

¹⁶ Die Bezeichnung nach [65]: F 80 % Intensität; TF 100 % Intensität; mF 70 % Intensität; Messung wurde mit Cu-Strahlung durchgeführt.

4.2. Reaktivität von Legierungen Sc–M (M = Ga, In, Sn) gegenüber N₂

In [9] wurde untersucht, ob (SE_3N) In (SE = La, Dy) durch direkte Nitridierung einer binären Legierung "SE₇₅In₂₅" zu erhalten ist. Unter den angewandten Bedingungen reagierten die Legierungen unterhalb des Schmelzpunkts von SE glatt zu SEN und In. Hohe Temperaturen können zu Verunreinigungen der Seltenerd-Metalle durch das Tiegelmaterial führen [54]. Eine Methode zur Synthese von Seltenerd-Metall-Nitriden bei moderateren Bedingungen wäre wünschenswert. Exemplarisch wurde Sc wegen seines hohen Schmelzpunkts $(T_{\text{Smp.}} = 1373 \text{ °C}; [67])$ ausgewählt. Dabei wurden die Systeme Sc-M (M = Ga, In, Sn) genauer auf ihre Reaktivität gegenüber N2 untersucht. Die Ergebnisse wurden bereits an anderer Stelle umfassend dargestellt [68] und sollen hier nur noch zusammengefasst werden. ScN bildet sich aus Legierungen von Sc und In ab 900 °C. Bei dieser Temperatur setzt auch die Reaktion von Stickstoff mit reinem Scandium ein, die Reaktion schreitet in der Legierung allerdings deutlicher schneller fort. Während für eine vollständige Umsetzung von reinem Sc Temperaturen bis 1400 °C notwendig sind, ist eine vollständige Reaktion einer Legierung Sc-In mit N2 in ScN und In bei 1000 °C abgeschlossen. Dies mag mit der Bildung einer kontinuierlichen In-Sc-Schmelze zusammenhängen, die eine Passivierung wie bei reinem Sc, verhindert. ScIn₃ ist in einigen Experimenten bis zur Zersetzung gegenüber N₂ inert. Das Prinzip der Darstellung von reinem ScN beruht, nach der Reaktion einer intermetallischen Phase Sc-M in ScN und elementares M, auf der Abtrennung der Metallkomponente (Ga, In, Sn). Dies kann durch Destillation erfolgen, beansprucht das Material thermisch aber sehr und widerspricht der Zielsetzung, ScN bei Temperaturen unterhalb von 1400 °C herzustellen. Eine weitere Methode zur Abtrennung des Metalls M (In) besteht darin, die Probe mit der entsprechenden Menge Iod zu MI_z (InI₃) umzusetzen. MI_z (InI₃) kann mit organischen Lösungsmitteln – wie Toluol – extrahiert oder durch Sublimation bei milden Temperaturen abgetrennt werden [68]. Die Systeme Sc-Ga und Sc-Sn werden in [68] nicht diskutiert. Die Bildung von ScN verläuft, wie im Falle der Sc-In-Legierungen unter Einfluss der Metallschmelze des Hauptgruppenmetalls beschleunigt ab. Reaktionsprodukte von Sc-Ga oder Sc-Sn-Legierungen mit N₂ zeigen im Unterschied zu Sc-In-Legierungen in den Röntgenpulverdiffraktogrammen immer Reflexe von binären hauptgruppen-metall-reichen Phasen Sc-M (Sc-Ga: ScGa₃; Sc-Sn: ScSn und ScSn₂). Die Phasen ScGa₃ und ScSn reagieren nach DTA/TG-Messungen erst oberhalb der jeweiligen Zersetzungspunkte (ScGa₃: 1030 °C; ScSn: 945 °C) mit N₂. Für eine vollständige Umsetzung der Legierungen Sc-Ga und Sc-Sn mit N2 sind somit höhere Temperaturen

notwendig, als im Falle von Sc-In-Legierungen. Sc-In-Legierungen eignen sich am besten für die Darstellung von ScN nach der beschriebenen Methode.

5. Untersuchungen zu $(SE_3\Box)M$, SE = La, Ce; M = AI, In Ergänzungen zu den Phasendiagrammen La–AI und Ce–AI

5.1. Die neuen Phasen La₁₆Al₁₃ und (La₃O)Al

Das Phasendiagramm La–Al im Bereich 50 % $\leq x(La) \leq 75$ %

Das System La-Al ist bereits mehrfach untersucht worden. In der ersten Untersuchung zum System La-Al wurden thermische Analysen durchgeführt [69]. Die Ergebnisse wurden mit der Phase LaAl (peritektische Bildung bei 859 °C) und einem Eutektikum bei w(La) = 95.5 % (x(La) = 80 %, T = 542°C) interpretiert. LaAl wurde strukturell eindeutig charakterisiert ([70 - 73]. Die Phase La₃Al wurde erstmals mit kubischer Symmetrie im Cu₃Au-Strukturtyp beschrieben (a = 509,3 pm [74]). Aus Röntgenbeugungsexperimenten an einem polierten Schliff wurde La₃Al dem hexagonalen Mg₃Cd-Typ¹⁷ zugeordnet [70]. Aus temperaturabhängigen Röntgenbeugungsexperimenten an Pulvern wurde abgeleitet, dass La₃Al sich peritektisch bei 550 °C bildet und ein Eutektikum bei 547 °C mit 20 % < x(La) < 25 % existient (s. Abbildung 5.1 (rechts). Nach neueren Ergebnissen [75] hat La₃Al nur einen eingeschränkten Existenzbereich zwischen ~400 °C und ~520 °C (s. Abbildung 5.2). Oberhalb dieser Temperatur zersetzt sich La₃Al im festen Zustand in unmittelbarer Nähe der eutektischen Temperatur (x(La) = 23%, 530 °C). Die ersten zusammenfassenden Darstellungen der Phasendiagramme [77 – 79] weisen darauf hin, dass das System La–Al zwischen 50 % < x(La) < 75 % unzureichend bestimmt ist. Ergänzend existieren Berichte über weitere Phase in diesem Bereich des Phasendiagramms: Aus einer Untersuchung des Phasendiagramms La-Al (s. Abbildung 5.1, links) wird die Phase La₃Al₂ als inkongruent schmelzend (T = 700 °C) beschrieben [80]. Die Existenz der Phase La₃Al₂ wird in einer späteren Arbeit bestätigt und eine hexagonale Metrik berichtet (a = 926 pm; c = 1120 pm [81]). Bezug nehmend auf die Phase La₃Al₂ wird die Phase "La₅Al₄" beschrieben. Eine Lösung für die Struktur wird durch Rietveldverfeinerung am Pulver vorgeschlagen [82, 83] Die Metrik von "La₅Al₄" (hexagonal; a = 916, 28(7) pm; c = 1123,09(7) pm) ähnelt sehr der von La₃Al₂. Gleichzeitig sind große strukturelle

¹⁷ Der Mg₃Cd-Strukturtyp [76] – auch als Ni₃Sn-Strukturtyp bezeichnet – realisiert eine geordnete hexagonale Struktur zweier Elemente A und B im Verhältnis drei zu eins (A_3B). Die Atome B sind in einer Schicht symmetrisch von sechs Atome A umgeben, dieses Motiv baut aneinander gereiht eine dichteste Schicht (A_3B) auf, ohne dass die Atome B darin einen direkten Kontakt haben. In der hexagonalen Packung des Mg₃Cd-Strukturtyps werden diese Schichten so angeordnet, dass über drei Atomen A in der nächsten Schicht ein Atom B zu liegen kommt. Nach zwei Schichten ist die Identität erreicht.

Ähnlichkeiten mit der unten beschriebenen Verbindungen $La_{16}Al_{13}$ festzustellen (s. a. Tabelle 5.3 S. 30).

Abbildung 5.1: Phasendiagramm La-Al nach [80] (links) und [70] (rechts).

Abbildung 5.2: Ausschnitt des Phasendiagramms La-Al nach [75]

Synthese von mikrokristallinen Pulvern und Einkristallen der Verbindung La₁₆Al₁₃ Für mikrokristalline Pulver wurde La und Al in den molaren Verhältnissen 16 zu 13 im Lichtbogen zusammengeschmolzen, in Ta eingeschweißt, in eine Kieselglasampulle eingeschmolzen und zwei Mal bei 490 ± 10 °C zwei Wochen wärmebehandelt. Zwischen den beiden Wärmebehandlungen wurde die Probe im Achatmörser verrieben und zu einer Tablette verpresst. Das erhaltene mikrokristalline Pulver wurde mit Röntgenbeugung, Elementaranalyse und DSC charakterisiert. Einkristalle bildeten sich der an Berührungsfläche zwischen der Ta-Ampulle und dem Pulverpressling aus La, Al und La₂O₃ mit Zielzusammensetzung "La₃AlO" 700 ± 10 °C. der bei das Röntgenpulverdiffraktogramm einer solchen Probe zeigt die Reflexe der Hauptphase $(La_3O)Al$ (s. S.31), neben denen von La_2O_3 und $La_{16}Al_{13}$.

Ergebnisse der Einkristallstrukturanalyse von La₁₆Al₁₃

Die bei der röntgenografischen Untersuchung des Einkristalls beobachteten Reflexe lassen sich auf der Basis einer hexagonalen Elementarzelle indizieren (a = 918,3(2) pm;c = 1123,8(3) pm). Ausgezeichnete Reflexionsbedingungen wurden nicht beobachtet und eine Lösung in einer trigonalen oder hexagonalen Laueklassen $\overline{3}$, $\overline{3}m$, $\overline{3}m1$, $\overline{3}1m$, 6/m und 6/mmm erscheint wahrscheinlich. Somit ergeben sich P3, P $\overline{3}$, P321, P3m1, P $\overline{3}m1$, P312, P31m, $P\overline{3}1m$, $P\overline{6}$, P6, P6/m, P6mmm, $P\overline{6}2m$, P622, $P\overline{6}m2$ und P6mm als mögliche Raumgruppen [84]. Die Verfeinerung führte nur in $P\overline{6}2m$ (Nr. 189) zu befriedigenden Ergebnissen. Lösungen in P3, $P\overline{6}$, P321 und P31*m* waren gleichwertig mit derjenigen in $P\overline{6}2m$. Aus der Differenzfourieranalyse ergab sich kein Hinweis auf zusätzliche Elektronendichte, die einem Sauerstoff- oder Stickstoffatom zugeordnet werden könnte. Die Verfeinerung der Besetzungsparameter in $P\overline{6}2m$ ergab keine Hinweise auf eine Fehlordnung oder Unterbesetzung der Lagen. Der Flack-Parameter von 0,03(3) unterstreicht die Zuordnung zu einer azentrischen Raumgruppe (Details der Verfeinerung Die enthält s. Anhang, S.160). Kristallstruktur zwei charakteristische Motive (s. Abbildung 5.3). Ein elfgliedriger Käfig, der als Al-Analogon eines [3, 3,3] Tricyclobarrelans¹⁸ aufgefaßt werden kann, und ein Edshammar-Polyeder¹⁹, in dem ein Al-Atom von elf La-Atomen umgeben ist.

¹⁸ Barrelan von engl. barrel = Fass

¹⁹ Nach L.-E. Edshammar benanntes Polyeder ¹¹E [44]. Der Edshammar-Polyeder wird häufig zur Beschreibung der Koordinationszahl 11 herangezogen. (Fortsetzung Fussnote nächste Seite)

Abbildung 5.3: Charakteristische Strukturmotive in La₁₆Al₁₃ (Schwingungsellipsoide mit 90 % Aufenthaltswahrscheinlichkeit der Elektronendichte links: käfigartige Anordnung von elf Al-Atomen (Barrelan).
 rechts: Edshammarpolyeder Al(1)-Atom umgeben von elf La-Atomen.

Die zwischen Al₁₁-Käfig Bindungslängen den Al-Atomen im liegen mit d(Al(3)-Al(4)) = 266 pm und d(Al(2)-Al(4)) = 269 pm im Bereich von Abständen Al-Al-Einfachbindungen in Al-Clustern ([85]: d(Al-Al) = 266 pmin Tetrakis[bis(trimethylsilyl)methyl]dialan). Gleichzeitig beträgt der Bindungsabstand etwa das Doppelte des Kovalenzradius von Aluminium ($r_{kov} = 130 \text{ pm}$ [86]). Im Edshammar-Polyeder wird ein Al-Atom von elf La-Atomen $(2 \cdot La(1), 2 \cdot La(3), 2 \cdot La(4))$ koordiniert. Der gemittelte Al-Al-Abstand beträgt 348,1 pm. Die Al-La-Abstände (s. Tabelle 5.2) liegen innerhalb des Bereichs bekannter binärer La-Al-Phasen (vgl. Tabelle 5.1).

Tabelle 5.1 Abstände *d*(Al–La) von Al in ausgewählten binären Phasen La–Al.

Phase	d_1 (Al–La) / pm	d_2 (Al–La) / pm	Lit.
LaAl ₄	340,6	343,6	[70]
LaAl	323,4	359,0	[73]
La ₃ Al, hex.	344,7	-	[70]

In seiner ursprünglichen Bedeutung beschreibt der Edshammarpolyeder– wie in diesem Falle – das Kondensat zweier entkappter und danach miteinander verschmolzener Würfel. Dieser geometrische Körper besitzt an seiner Oberfläche ausschließlich Dreiecksflächen. In Abbildung 5.3 sind der Übersicht halber nicht alle Dreiecksflächen eingezeichnet. Später wurde das Konzept der Edshammar-Polyeder auf das Verschmelzen mehrerer hochsymmetrischer Körper erweitert [87]. Allgemein wurde hier allerdings das Konzept nur für solche Verbindungen diskutiert, in denen die Edshammar-Polyeder eine dichte Packung aufbauen und nicht lediglich eine Koordinationssphäre darstellen.

Abbildung 5.4: Ausschnitt aus der Kristallstruktur von La₁₆Al₁₃ (Al: weiß; La: dunkelgrau). Darstellung einer Al-reichen Schicht ${}^{2}_{\infty}$ [La_{6/2}Al₁₁] entlang [001] betrachtet; in einem Al₁₁-Käfig liegen drei La(2)-Atome (rechts oben).

In Abbildung 5.4 ist ein Ausschnitt der Kristallstruktur von La₁₆Al₁₃ mit Blickrichtung entlang [001] dargestellt. Vier Barrelan-Käfige (Al11) sind darin mit fünf La(2)-Atomen zu Schichten ${}^2_{\infty}$ [La_{6/2}Al₁₁] verknüpft. Die Al₁₁-Käfige spannen Taschen auf, über denen je ein La(2)-Atom liegt. Der Abstand der drei La(2)-Atomen innerhalb einer Barrelan-Einheit beträgt d(La-La) = 366,58(8) pm. Jedes La(2)-Atom verbrückt darüber hinaus zu einem Al(3)-Atom eines Ringglieds eines benachbarten Al₁₁-Käfigs. Nebeneinander liegende Barrelan-Einheiten sind entlang der c-Achse um 60° zueinander verdreht angeordnet. Die Schwerpunkte der Al₁₁-Käfige bilden die Eckpunkte der von a_1 und a_2 aufgespannten Grundfläche der Elementarzelle. Die Edshammarpolyeder sind über gemeinsame Dreiecksflächen zu einem zweidimensionalen Netz verknüpft (s. Abbildung 5.5, links). Eine ähnliche Abfolge von Edshammarpolyedern liegt auch in den Verbindungen Na₃As [88] (s. Abbildung 5.5, rechts) und IrAl₃ [44] vor. Mit diesen beiden Verbindungen sind auch die einzigen weiteren Vertreter genannt, in denen der Edshammarpolyeder von ausschließlich einer Atomsorte gebildet werden. Die Al-reiche Schicht aus Al₁₁-Barrelan-Einheiten $(^2_{\infty}$ $[La_{6/2}Al_{11}])$ und die La-reiche Schicht aus Edshammar-Polyedern $\begin{bmatrix} 2 \\ \infty \end{bmatrix}$ (AlLa_2La_{9/2})_2 sind alternierend entlang [001] gestapelt (s. Abbildung 5.6). Über den Lücken im Netz der Edshammar-Polyederschichten befinden sich die Barrelaneinheiten.

Verl	bindu	ng L	$a_{16}Al_{13}.$				
La(1) –A	.l(4)	$2 \times$	326,8(1)	La(3)	-Al(3)	3×	329,67(6)
-A	l(1)	$2 \times$	344,41(6)		-Al(4)	3×	334,6(1)
-A	l(2)	$2 \times$	357,3(2)		-La(4)	3×	345,89(5)
-L	a(4)	$4 \times$	363,06(5)		-La(3)		366,0(1)
–L	a(4)	$2 \times$	373,34(7)		-Al(1)	$2 \times$	379,9(1)
–L	a(1)	2×	414,36(9)		-La(3)	$3 \times$	405,76(6)
La(2) –A	.l(3)		320,2(2)	La(4)	-Al(4)	$2 \times$	335,0(1)
-A	.l(3)	$2 \times$	335,1(2)		-Al(1)	$2 \times$	339,33(5)
-A	.l(4)	$4 \times$	337,3(1)		-La(3)	$2 \times$	345,89(5)
-A	l(2)	$2 \times$	364,3(2)		-Al(4)	$2 \times$	348,55(8)
–L	a(2)	$2 \times$	366,58(8)		-La(1)	$2 \times$	363,06(5)
–L	a(4)	$2 \times$	403,87(9)		-Al(2)		363,41(8)
–L	a(3)	$4 \times$	405,76(6)		-La(4)		368,1(1)
					-La(1)		373,34(7)
Al(1) –L	a(4)	6×	339,33(5)	Al(2)	-Al(4)	3×	269,2(2)
–L	a(1)	$3 \times$	344,41(6)		-La(1)	3×	357,3(2)
–L	a(3)	$2 \times$	379,9(1)		-La(4)	3×	363,41(8)
					-La(2)	3×	364,3(2)
Al(3) –A	.l(4)	$2 \times$	266,6(2)	Al(4)	-Al(3)		266,6(2)
–L	a(2)		320,2(2)		-Al(2)		269,2(2)
–L	a(3)	$4 \times$	329,67(6)		-La(1)		326,8(1)
–L	a(2)	$2 \times$	335,1(2)		-La(4)		333,5(1)
–L	a(4)	$2 \times$	417,6(1)		-La(3)	$2 \times$	334,6(1)
					-La(2)	$2 \times$	337,3(1)
					$I_{2}(2)$	$2 \times$	348 55(8)

Abbildung 5.5 Ausschnitte von Kristallstrukturen, in denen Edshammar-Polyeder über gemeinsame Dreiecksflächen miteinander zu Schichten verknüpft sind – Blickrichtung entlang [001]. In Na₃As (links) bilden Edshammar-Polyeder eine geschlossene Schicht: Na (grau) umschließt As (weiß). In La₁₆Al₁₃ (rechts) bilden Edshammar-Polyeder ein 6³-Netz [²_∞(AlLa₂La_{9/2})₂] (La: grau, Al weiß).

Abbildung 5.6: Darstellung der Schichtabfolge in der Kristallstruktur von La₁₆Al₁₃ (La: dunkel-grau; Al: weiß). Eine Al-reiche Schicht aus Al₁₁-Barrelan-Käfigen (²_∞[La_{6/2}Al₁₁]) und eine La-reiche Schicht aus kondensierten Edshammar-Polyedern (²_∞[(AlLa₂La_{9/2})₂]) alternieren entlang [001].

Analysen und Untersuchungen mikrokristalliner Pulvern von La₁₆Al₁₃

Die aus der Synthese erhaltenen mikrokristallinen Pulver von $La_{16}Al_{13}$ zeigen im Röntgenpulverdiffraktogramm (s. Abbildung 5.7), neben den Reflexen der Hauptphase $La_{16}Al_{13}$, Reflexe von LaAl und (La_3N)Al.

Abbildung 5.7: Röntgendiffraktogramm (Cu- $K\alpha_1$ -Strahlung) von mikrokristalinem Pulver der Brutto-Zusammensetzung La₁₆Al₁₃O_{0,18 ± 0,02}N_{0,22 ± 0,06} (w(O) = 0,11 ± 0,01 %; w(N) = 0,12 ± 0,03 %). Hauptphase: La₁₆Al₁₃ (schwarz), Nebenphase: LaAl (blau), (La₃N)Al (grüne Pfeile).

Unter der Annahme eines molaren Verhältnisses von La zu Al von 16 zu 13 aus der Einwaage und der Elementaranalyse auf 0 und N $(w(O) = 0.11 \pm 0.01 \%)$; $w(N) = 0.12 \pm 0.03$ %) ergibt sich die Summenformel La₁₆Al₁₃O_{0.18 \pm 0.02}N_{0.22 \pm 0.06}. Wenn O und N vollständig zur Bildung von (La₃N)Al beziehungsweise (La₃O)Al beitragen und diese ternären Verbindungen einen engen Homogenitätsbereich besitzen, ergibt sich für den binären Phasenanteil La-Al in der Probe eine korrigierte Zusammensetzung La_{16-1,20}Al_{13-0,40} $(+ 0,18 (La_3O)Al + 0,22 (La_3N)Al)$. Besitzt La₁₆Al₁₃ keine Phasenbreite zur Al-reichen Seite, dann liegt der korrigierte Stoffmengenanteil des binären Phasenanteils La-Al x(Al) =46 % im Zweiphasengebiet zwischen LaAl (x(Al) = 50 %) und La₁₆Al₁₃ (x(Al) = 45 %). La₁₆Al₁₃ und LaAl liegen nach diesen Annahmen im molaren Verhältnis 4 : 1 in der Probe vor. Im DSC-Experiment (s. Abbildung 5.8) an La₁₆Al₁₃O_{0,18 ± 0,02}N_{0,22 ± 0,06} wurden vier thermische Effekte beobachtet. Bis auf $T_{Peak} = 705$ °C stimmen alle Signale mit dem Phasendiagramm La–Al [75] überein: Der erste schwache thermische Effekt bei $T_{Peak} = 545$ °C ist mit La₃Al oder dem benachbarten Eutektikum in Zusammenhang zu bringen. Das Integral dieses Signals ist sehr klein und wird einem Schmelzpunkt oder Eutektikum zugeordnet und repräsentiert somit nur einen sehr geringen Anteil der Probe.²⁰ Der thermische Effekt bei etwa 855 °C wird als peritektische Zersetzung von LaAl interpretiert, an die sich das Durchlaufen des Liquidusbereichs ($T_{Peak} = 885$ °C) anschließt. Das Signal bei 705 °C wird der Hauptphase La₁₆Al₁₃ zugeordnet. Dieser thermische Effekt zeigt in Abbildung 5.8 einen sehr breiten Verlauf unterhalb des Liquidusbereichs und lässt deshalb eine peritektische Reaktion vermuten. Einkristalle von La₁₆Al₁₃ bilden sich noch bei 700 ± 10 °C (s. S.23). Somit zerfällt La₁₆Al₁₃ bei 705 ± 10 °C peritektisch.

Abbildung 5.8: DSC-Messung (Nb-Ampulle, $T_{max} = 1000$ °C) an einer Probe mit der Brutto-Zusammensetzung La₁₆Al₁₃O_{0,18 ± 0,02}N_{0,22 ± 0,06} und einem molaren Verhältnis La₁₆Al₁₃ und LaAl im 4 : 1 (s.o.).

²⁰ Diese Interpretation erfolgt gemäß der Regel, dass Schmelzenthalpien – repräsentiert durch das Integral des Signals – hohe molare Werte annehmen.

Die berichteten Verbindungen La₅Al₄ und La₃Al₂ zeigen zahlreiche Ähnlichkeiten mit $La_{16}Al_{13}$ (s. Tabelle 5.3): Die Molmasse (MM = 26,98 g/mol) von Al beträgt nur ein fünftel der Molmasse von La (MM = 138.91 g/mol). Somit liegen die betrachteten Verbindungen alle in einem sehr engen Bereich bezogen auf den Massenanteil La $(86,37 \% \le w(La) \le 88,54 \%)$. Die Metrik von La₃Al₂ [81], La₅Al₄ [83] und La₁₆Al₁₃ stimmen überein. Sowohl La₅Al₄ als auch La₁₆Al₁₃ lassen sich am besten in der Raumgruppe $P\overline{6} 2m$ (Nr. 189) beschreiben. Für die Zersetzungstemperatur von La₃Al₂ und La₁₆Al₁₃ wurden identische Werte erhalten ([80]: T = 700 °C, diese Arbeit: 705 °C).

Tabelle 5.3:VergleichvonGitterparameternundZusammensetzung(StoffmengenanteilLa in %)derVerbindungenLa3Al2,La5Al4undLa16Al13.

Summenformel	<i>x</i> (La) / %	w(La) / %	<i>a</i> / pm	<i>c</i> / pm	Literatur
$La_{16}Al_{13}$	55,17	86,37	916,6(1)	1122,4(3)	Pulverdaten
La_5Al_4	55,55	86,55	916,28(7)	1123,09(7)	[82], [83]
La_3Al_2	60,00	88,54	926	1120	[81]

Der Bericht über La₃Al₂ [80] basiert auf einem einzigen thermischen Experiment und einer metallografische Untersuchung (s. Kreuze in Abbildung 5.1, links). In einer ausführlicheren Untersuchung des Phasendiagramms wird La₃Al₂ nicht beobachtet [70]. Auch die ausführliche Suche nach La₃Al₂ bleibt negativ [83]. Die Strukturlösung [83] von La₅Al₄ erfolgte am Pulver und die Autoren benennen die neue Phase mit "La₅Al₄". In dem dabei vorgeschlagenen Strukturmodell werden zwei Atomlagen zu 95 % mit Al und zu 5 % mit La besetzt ungewöhnlich kurze La–Al Abstände sind die Folge.

Messungen des elektrische Widerstands und der magnetischen Suszeptibilität sind in Abbildung 5.9 dargestellt. Die Probe zeigt in den Messungen der magnetischen Suszeptibilität temperaturunabhängigen Pauli-Paramagnetismus. Bei 300 K weist die Suszeptibilität einen Wert von $\chi_0 = 839(6) \cdot 10^{-6}$ emu/mol auf. Bei Berücksichtigung der diamagnetischen Inkremente ([89]: $16 \cdot La^{3+}$: $20 \cdot 10^{-6}$ emu/mol; $13 \cdot Al^{3+}$: $2 \cdot 10^{-6}$ emu/mol; Summe: $346 \cdot 10^{-6}$ emu/mol) ergibt sich ein korrigierter Wert des Pauliparamagnetismus von $\chi_P \approx 1.2 \cdot 10^{-3}$ emu/mol und eine Zustandsdichte von $N(E_f) = 37/eV$ an der Fermikante²¹. Die Ergebnisse der Messung des elektrischen Widerstands sind

²¹ $\chi_{\rm P} = 32,329 \cdot 10^{-6} \cdot N(E_{\rm F}) \cdot {\rm eV} \cdot {\rm emu} \cdot {\rm mol}^{-1}$

charakteristisch für einen schlechten elektrischen Leiter ($\rho_{300 \text{ K}} = 150 \,\mu\Omega\text{cm}$; $\rho_{0 \text{ K}} = 25 \,\mu\Omega\text{cm}$; s. Einschub Abbildung 5.9).

In dieser Arbeit wurde die Phase La₁₆Al₁₃ an Einkristallen kristallografisch charakterisiert. An mikrokristallinem Pulver wurden DSC-Messungen durchgeführt. Die bisher unbekannte Phase im binären Phasendiagramm La–Al zersetzt sich peritektisch bei 705 °C eine Verwandtschaft zu den in der Literatur beschriebenen Phasen ist La₅Al₄ und La₃Al₂ ist offensichtlich. Messungen der magnetischen Suszeptibilität und der elektrischen Leitfähigkeit zeigen, dass die Verbindung ein schlechtes Metall ist.

(La₃O)Al

(La₃O)Al wurde aus La, La₂O₃ und Al hergestellt (x(La) : x(Al) : x(O) = 3 : 1 : 1; s. a. Anhang S. 168). Hierzu wurden La₂O₃, La und Al in den molaren Mengen (x(La) = 0,6; x(Al) =0,2; x(O) = 0,2) im Lichtbogen zusammengeschmolzen. Die dabei erhaltene Schmelzkugel wurde mehrfach bei 500 °C wärmebehandelt. Zwischen den einzelnen Wärmebehandlungen wurde die Probe in einer Achatreibschale verrieben und zu einer Tablette gepresst. In den Röntgenpulverdiffraktogrammen wurde eine kubische Phase (a = 503,21(2) pm) mit einer flächenzentrierten Anordnung aus La und Al im Sinne des Cu₃Au-Typs beobachtet. Während nach den ersten beiden Wärmebehandlungen der Anteil dieser kubischen Phase zugenommen hatte wurde nach der dritten Wärmebehandlung ein Zustand erreicht, in dem die Reflexe der kubischen Phase neben solchen von La₂O₃ und La₁₆Al₁₃ vorlagen. Versuche, durch intensives Homogenisieren und Abschrecken von 700 °C die kubische Phase allein zu erhalten, erbrachten keine Veränderung im Röntgenpulverdiffraktogramm. Sauerstoffanalysen der Produkte ergaben durchweg Werte unterhalb der Einwaage und wurden als wenig aussagekräftig erachtet²². In Analogie zu anderen Phasen (*SE*₃O)Al wird für die kubische Phase die Zusammensetzung (La₃O)Al angenommen.

Untersuchung des Gehaltschnitts La₃Al–(La₃N)Al

Die Verbindung (La₃N)Al wurde bereits in der Literatur beschrieben [90]. Im Folgenden sollen Ergebnisse zweier Proben auf dem Gehaltschnitt La₃Al-(La₃N)Al vorgestellt werden. La, Al und LaN wurden in den entsprechenden molaren Mengen (La₃AlN_{0.6}; La₃AlN) im Lichtbogen zu einer homogenen Kugel zusammengeschmolzen, in Ta-Ampullen eingeschweißt und bei 500 °C (La₃AlN_{0.6}) bzw. 700 °C (La₃AlN) eine Woche wärmebehandelt. Die anschließende Elementaranalyse auf O und N (s. Tabelle 5.4) ergab die Zusammensetzung La₃AlN_{0,64 ± 0,02} und La₃AlN_{0,98 ± 0,04}O_{0,04 ± 0,01}. Die erhaltenen mikrokristallinen Pulver wurden mit Röntgendiffraktometrie und DSC-Messungen charakterisiert. Die Röntgenpulverdiffraktogramme sind in Abbildung 5.10 dargestellt. Reflexen $La_3AIN_{0.64 \pm 0.02}$ zeigt neben von $(La_3N)Al$ solche von La₃Al. La₃AlN_{0.98±0.04}O_{0.04±0.01} zeigt hingegen zusätzliche Reflexe von LaN neben denen von (La₃N)Al.

²² Wie bei (Ce₃O)Al festgestellt wurde, scheint die Bildung besonders stabiler Oxide – vermutlich Al₂O₃ – die Bestimmung des Sauerstoffwertes stark zu verfälschen.

Abbildung 5.10: Röntgenpulverdiffraktogramme (Cu- $K\alpha_1$ -Strahlung) von Proben La₃AlN_{1-y} und berechnete Reflexlagen von (La₃N)Al (schwarze Striche) und LaN (grüne Punkte).

Tabelle 5.4:Ergebnisse der Röntgenpulverdiffraktogramme und der Elementaranalysen
von Proben auf dem Gehaltschnitt La₃Al–(La₃N)Al. Das molare Verhältnis
La : Al wird der Einwaage entsprechend 3 : 1 angenommen.

	w(N) / %	w(O) / %	Summenformel	a(La ₃ N)Al	Phasenanalyse
1	$1,97 \pm 0,05$	≤ 0,25	$La_{3}AlN_{0,64 \pm 0,02}$	509,19(5) pm	(La ₃ N)Al, La ₃ Al
2	$2,99 \pm 0,01$	$0,15 \pm 0,05$	$La_{3}AlN_{0,98\pm0,04}O_{0,04\pm0,01}$	509,46(4) pm	(La ₃ N)Al, LaN, La

Die DSC-Messung an La₃AlN_{0,64±0,02} (s. Abbildung 5.12) zeigt während des Aufheizens mehrere überlappende thermische Effekte zwischen 530 und 600 °C (siehe Ausschnitt) $(T_{10nset} = 535 \text{ °C}; T_{1Peak} = 540 \text{ °C}; T_{2Peak} = 555 \text{ °C}; T_{3Peak} = 580 \text{ °C})$. Diese Signale lassen sich mit den bekannten Phasendiagrammen deuten (vgl. Abbildung 5.1, [70]: T_1 : Eutektikum La–La₃Al, 547 °C; T_2 : Peritektikum La₃Al, 550 °C; T_3 : Liquidus, $\approx 575 \text{ °C};$ vgl. Abbildung 5.2 [75]: T_1 : Zerfall La₃Al $\approx 520 \text{ °C}; T_2$: Eutektikum La–LaAl 530 °C; T_3 : Liquidus $\approx 580 \text{ °C}$). Die Probe La₃AlN_{0,98±0,04}O_{0,04±0,01} zeigt während des Aufheizens ein Signal bei $T_{Onset} = 785 \text{ °C} (T_{Peak} = 795 \text{ °C})$, das nicht eindeutig zugeordnet werden kann.

Abbildung 5.11: DSC-Messungen (Nb-Ampulle; $T_{max} = 1250$ °C) von Proben der Zusammensetzung La₃AlN_{0,64 ± 0,02} (gestrichelte Line) und La₃AlN_{0,98 ± 0,04} (durchgezogene Linie) beim Aufheizen.

Beide Proben zeigen im DSC-Experiment beim Aufheizen denselben thermischen Effekt bei $T_{\text{Onset}} = 1070 \pm 5 \text{ °C}$ ($T_{\text{Peak}} = 1100 \text{ °C}$). Beim Abkühlen werden für beide Proben ähnliche Ergebnisse erhalten. In beiden Experimenten (s Abbildung 5.12) wird ein Signal zwischen 1100 °C und 1000 °C beobachtet, das (La₃N)Al zugeordnet wird. Zwischen 600 °C und 400 °C werden mehrere überlappende thermische Effekte beobachtet, die charakteristisch für eine Schmelze der Zusammensetzung La₃Al sind. Nach dem DSC-Experiment waren beide Proben im Nb-Tiegel augenscheinlich aufgeschmolzen. Die Röntgenpulverdiffraktogramme beider Proben zeigen nach den DSC-Experimenten ausschließlich Reflexe von (La₃N)Al und LaN. Während des Schmelzprozesses hat sich somit LaN auch in La₃AlN_{0,64 ± 0,02} gebildet. Das Signal $T_{\text{Onset}} = 1070 \pm 5$ °C beim Aufheizen wird deshalb einer peritektischen Zersetzung von (La₃N)Al zugeordnet.

(La₃N)Al zersetzt sich nach den hier gemachten Beobachtungen bei $1070 \pm 5 \text{ °C}$ peritektisch. Nach Röntgenpulverdiffraktogrammen und der DSC-Messung besteht die Probe La₃AlN_{0,64 \pm 0,02} auf dem Gehaltschnitt La₃Al–(La₃N)Al aus La₃Al und (La₃N)Al. Somit ist die Phasenbreite von (La₃N)Al im Sinne (La₃N_{1-v})Al kleiner als y = 0,36.

Abbildung 5.12: DSC-Messungen (Nb-Ampulle; $T_{max} = 1250$ °C) an Proben der Zusammensetzung La₃AlN_{0,64 ± 0,02} (gestrichelte Line) und La₃AlN_{0,98 ± 0,04} (durchgezogene Linie) beim Abkühlen.

5.2. $(La_3X)In (X = O, N, C)$ als Auffüllungsvarianten von $(La_3\Box)In$

(La₃□)In

Für (La₃ \Box)In wird Supraleitung berichtet (9,0 K < T_c < 10,5 K ([13, 15, 91, 93 – 102]. Eine zusammenfassende Darstellung des Phasendiagramms La-In ist in [103] gegeben. An den dabei untersuchten Proben erfolgte keine ausführliche kristallografische Charakterisierung. Aus Röntgenpulverdaten wurden kubische Gitterparameter bestimmt ([15]: a = 507,0(5) pm - [13]: 508,9(3)pm s. a. [104, 105]). Die angegebenen Standardabweichungen sind auffällig groß. Die Verfeinerung der Gitterparameter erfolgte unter kritikloser Annahme des Cu₃Au-Strukturtyp, obwohl eine Unterscheidung zwischen einer geordneten und ungeordneten kubisch dichtesten Anordnung aus La und In aus Röntgenbeugungsdaten am Pulver schwer möglich ist. Abbildung 5.13 (s. u.) zeigt berechnete Röntgenpulverdiffraktogramme (Cu- $K\alpha_1$ -Strahlung) von La₃In auf der Grundlage des Cu₃Au-Strukturtyp ($Fm\overline{3}m$, schwarz) und einer ungeordneten kubisch Anordnung der Atome ($Pm\overline{3}m$, kdp, rot) mit gleichem Gitterparameter (a = 505 pm).

Abbildung 5.13: Berechnete Röntgenpulverdiffraktogramme (Cu- $K\alpha_1$ -Strahlung) von La₃In, unter Annahme einer geordneten (Cu₃Au-Strukurtyp, oben) und einer ungeordneten Struktur (kdp, unten).

Zusätzliche Reflexe im Falle der Cu₃Au-Struktur von La₃In sind um den Faktor 300 kleiner als der Reflexe (111) mit maximaler Intensität. In experimentellen Röntgenpulverdiffraktogrammen können diese Reflexe geringer Intensität deshalb nicht beobachtet werden (s. Abbildung 5.14). Zum Vergleich der Gitterparameter der ternären Phasen (La₃X)In (X = C, N, O) wurde La₃In synthetisiert (s. Anhang S. 257*f* und Tabelle 5.5) und mit chemischen, thermischen sowie physikalischen Methoden untersucht. Die Ergebnisse der Röntgenbeugung am Pulver sind in Abbildung 5.14 dargestellt.

Tabelle 5.5:Ergebnisse der chemischen Analysen, der Röntgenbeugung am Pulver und
der Messungen der magnetischen Suszeptibilität an Proben der
Zusammensetzung La₃In.

<i>T</i> *	w(O) / %	w(N) / %	w(H) / %	Bruttoformel	<i>a</i> / pm	<i>T_c</i> / K		
300 °C	-	-	-	-	506,2(3)	-		
500 °C	< 0,10	$0,083 \pm 0,005$	< 0,008	$La_{3}InN_{0,03\pm0,02}$	507,2(3)	$9{,}53 \pm 0{,}02$		
700 °C	< 0,10	$0,12 \pm 0,04$	< 0,008	$La_{3}InN_{0,05\pm0,02}$	506,3(3)	$9,\!43 \pm 0,\!02$		
T*Wärmebehandlung, 13 Monate								

Abbildung 5.14: Röntgenpulverdiffraktogramme (Cu- $K\alpha_1$ -Strahlung) von La₃In.

Alle Proben sind zäh und duktil, so dass Pulver nur durch Feilen erhalten wurde. Die beobachteten Reflexe sind sehr breit. Breite Reflexe in Röntgenpulverdiffraktogrammen sind entweder auf Gitterverzerrung (Eigenspannung) und Stapelfehler oder auf sehr kleinen kohärenten Gitterbereichen zurückzuführen [106]. Die Präparation der Pulver bedeutet eine hohe mechanische Belastung für das Material. Verzerrungen und eine erhöhte Eigenspannung sind die Folge. Stapelfehler und Eigenspannung treten aber auch schon im Material ohne mechanische Bearbeitung auf, insbesondere bei dichtesten Atomanordnungen wie im Falle von La₃In. Letztendlich kann auch nicht ausgeschlossen werden, dass die kohärenten Gitterbereiche in La₃In sehr klein sind. Die beobachteten Reflexe lassen sich kubisch indizieren (Tabelle 5.5 506,2(3) pm - 507,2(3) pm)) und die Intensitäten stimmen mit einer kubisch dichtesten Anordnung aus In- und La-Atomen überein. Aus den erhaltenen Röntgenpulverdiffraktogrammen ist nicht abzuleiten, ob eine geordnete Struktur (La₃ \square)In im Sinne des Cu₃Au-typs oder eine ungeordnetes kubisch dichteste Packung aus La und In Atomen vorliegt (s. o.). Die erhaltenen Gitterparameter sind innerhalb des experimentellen Fehlers unabhängig von der Wärmebehandlung. An einer Probe (500 °C, 13 Monate) wurde eine DSC-Messung durchgeführt ($T_{max} = 1250$ °C; 10 K/min s. Abbildung 5.15).

Die Aufheizkurve der DSC-Messung zeigt zwei thermische Effekte, die der peritektischen Temperatur von La₃In ($T_{1Onset} = 800 \pm 5^{\circ}$ C, $T_{1Peak} = 820 \pm 5^{\circ}$ C) und dem Liquidus ($T_{2Peak} = 910 \pm 5$ K) zugeordnet werden ([94]: $T_1 = 816^{\circ}$ C, $T_2 = 920^{\circ}$ C;

s. a. Abbildung 5.16). Die Abkühlkurve zeigt fünf thermische Effekte, die mit dem Erstarren einer Schmelze der Zusammensetzung La₃In übereinstimmen (s. rote Pfeile in Abbildung 5.16, und Tabelle 5.6). Die Proben weisen weiter keine signifikanten Verunreinigungen durch H, O und N auf (s. Tabelle 5.5).

Abbildung 5.15: DSC-Messung ($T_{max} = 1250^{\circ}$ C; $\beta = 10$ K/min, Nb-Ampulle) an La₃In (La und In im Lichtbogen zusammengeschmolzen und wärmebehandelt; 500 °C, 13 Monate). Die thermischen Effekte der Abkühlkurve sind in erläutert.

Tabelle 5.6:Thermische Effekte einer DSC-Messung an La₃In beim Abkühlen $(\beta = -10 \text{ K/min } T_{max} = 1200 \text{ °C}, \text{ Nb-Tiegel})$

thermischer Effekt	$T_{\text{Onset}} / ^{\circ}\text{C}$	$T_{\text{Peak}} / °C$	Zuordnung	$T_{[94]} / °C$
1	1085 ± 5	1075 ± 5	kongruentes Erstarren von LaIn	1125
2	885 ± 5	880 ± 5	peritektische Bildung von La2In	955
3	-	805 ± 5	peritektische Bildung von La ₃ In	816
4		735 ± 5	Eutektikum La ₃ In/ <i>7</i> -La	742
5	690 ± 5	690 ± 5	γ -La $\rightarrow \beta$ -La	702
	1			

Abbildung 5.16: Ausschnitt des Phasendiagramms La–In nach [94], die Pfeile symbolisieren den Verlauf der DSC-Messung (s. Abbildung 5.15) an La₃In.

Nach den Messungen der magnetischen Suszeptibilität beträgt der Flussausstoß in allen Proben ohne Geometriekorrektur 150 - 160 %. Somit wird das gesamte Volumen der Probe durch die beobachtete Supraleitung abgeschirmt. T_c an den untersuchten Proben ist innerhalb des experimentellen Fehlers konstant und liegt mit etwa 9,5 K im Bereich der Literaturwerte. Der Meissner-Ochsenfeldeffekt ist mit 1,5 – 1,6 % extrem klein. Für eine ideale Probe würde ein Wert im Bereich des Flussausstoßes (≈ 100 %) erwartet werden. Die Abweichung könnte auf ein sehr starkes Pinning der Flussschläuche zurückzuführen sein, das durch paramagnetische Verunreinigungen oder Fehlordnung verursacht wird. Die Fehlordnung kann aus einer Phasenbreite in La₃In, wie für Ce₃In beschrieben [107], herrühren und/oder die Beschreibung von La₃In im Cu₃Au-Typ ist nicht zutreffend. Somit läge eine nur teilweise geordnete kubische Struktur aus La- und In-Atomen vor. Aus den Messungen der magnetischen Suszeptibilität (s. Abbildung 5.18) ist ersichtlich, dass die Messungen bei unterschiedlichen Feldern nahezu aufeinander liegen. Dies bedeutet, dass die Proben nur sehr geringe Mengen an ferromagnetischen Verunreinigungen besitzten (Probe bei 500 °C wärmebehandelt: 2 ppm Äquivalente ferromagnetischen Eisens; Probe bei 700 °C wärmebehandelt: 4,3 ppm Äquivalente ferromagnetischen Eisens). Eine grafische Anpassung ergibt für χ_0 in beiden Fällen Werte, aus denen sich etwa 10 elektronische Zuständen/eV am Ferminiveau ableiten ($\chi_P = 32,329 \cdot 10^{-6} \cdot N(E_F) \cdot eV \cdot emu \cdot mol^{-1}$).

Abbildung 5.17: Flussausstoß zweier La₃In Proben, die bei unterschiedlichen Temperaturen 13 Monate wärmebehandelt wurden.

Abbildung 5.18: Messung der magnetischen Suszeptibilität an verschiedenen Proben La₃In, bei verschiedenen Feldern.

(La₃O)In und der Gehaltschnitt La₃In–(La₃O)In

Für die Untersuchung der Phasenbreite von (La₃O)In wurden Proben (La₃O_{1-y})In mit variablem y ($0 \le y \le 1$) hergestellt (s. Tabelle 5.7). Der jeweiligen Zusammensetzung entsprechend, wurde La, In und La₂O₃ im Lichtbogen zusammengeschmolzen, in Mo-Folie gewickelt, in Kieselglas eingeschmolzen und wärmebehandelt (700 °C, fünf Monate). Am Ende der Wärmebehandlung wurden die Ampullen in Wasser abgeschreckt.

Der N und O-Gehalt der Proben wurde analysiert (s. Tabelle 5.7). Die Duktilität und Zähigkeit steigt mit abnehmendem O-Gehalt. Keine der Proben konnte einphasig erhalten werden (s. Abbildung 5.20). Bei einem Sauerstoffgehalt nahe der Zusammensetzung (La₃O_{1,0})In wurde im Röntgenpulverdiffraktogramm neben einer Hauptphase (Zuordung: (La₃O)In a = 507,1 pm; s.u.)) auch Reflexe von La₂O₃ identifiziert. In der Probe La₃InO_{0,52±0,03}N_{0,022±0,001} wurden im Röntgenpulverdiffraktogramm zwei kubische Phasen identifiziert. Die Probe La₃InO_{0,040±0,007}N_{0,015±0,004} zeigt im Röntgenpulverdiffraktogramm sehr breite Reflexe. Ein metallografischer Anschliff von dieser Probe ist in Abbildung 5.19 dargestellt. Die anschließende Untersuchung mit der Mikrosonde bestätigt das Vorliegen mehrerer Phasen, die alle ein molares Verhältnis La zu In von 3 : 1 aufweisen.

Tabelle 5.7:Ergebnisse aus Elementaranalysen und Röntgenbeugung an Pulvern der
Proben La₃InO_{1-v}In mit y = [0; 1].

<i>w</i> (O)	<i>w</i> (N)	Summenformel	<i>a</i> / pm
< 0,10	$0,083 \pm 0,005$	$La_{3}InN_{0,03 \pm 0,02}$	507,2(3)
$0,\!12\pm0,\!02$	$0,04 \pm 0,01$	$La_{3}InO_{0,040\pm0,007}N_{0,015\pm0,004}$	507,3(2)
1,55 ± 0,09	0,058 ± 0,003	$La_{3}InO_{0,52\pm0,03}N_{0,022\pm0,001}$	508,0(1) 506,71(3)*
$2,88 \pm 0,15$	$0,079 \pm 0,006$	$La_{3}InO_{0,99\pm0,05}N_{0,030\pm0,002}$	507,08(2)
$3,\!28 \pm 0,\!01$	$0,10 \pm 0,01$	$La_{3}InO_{1,13\pm0,03}N_{0,038\pm0,004}$	507,24(4)

* Die Reflexe des Diffraktogramms zu hohen Winkeln 2Θ zeigen ein asymmetrisches Profil (s. Abbildung 5.20), das durch zwei kubischen Gitterparametern besser angepasst wird.

Abbildung 5.19: Metallografischer Anschliff einer Probe mit der Zusammensetzung La₃InO_{0,040 ± 0,007}N_{0,015 ± 0,004}, Hellfeld, 5 x Objektiv. Das Gefüge ist mehrphasig, eine EDX-Analyse ergibt für jede Phasen die Zusammensetzung x(La) : x(In) = 3 : 1.

Der Gitterparameter von (La₃O)In (a = 507,08(2) pm) weicht signifikant von bereits berichteten Werten (518,7 pm – 520,9 pm [13]) ab, ist aber in der Reihe mit den später diskutierten homotypen Verbindungen (*SE*₃O)In (s. Kap. 6) wesentlich plausibler. In [13] wird (La₃O)In aus Pulverpresslingen von LaH_x, In und La₂O₃ synthetisiert. Diese werden in Ta-Ampullen bei 500 °C im Vakuum erhitzt. Das Hydrid soll sich unter diesen Bedingungen vollständig zersetzen und H₂ durch die Ta-Wand entweichen. Von den Autoren wurden verschiedene Versuche bezüglich des Ausgangsgehalts an Sauerstoff im Sinne von (La₃O_{1-y})In (y = 0,7; 0,3; 0 und –0,5) durchgeführt. Für y > 0 wurde ein fast phasenreines Produkt erhalten, für y < 1,0 gelingt die Synthese nicht. Aus der beschriebenen Synthese von (La₃O)In [13] ergibt sich hydridischer Wasserstoff als mögliche Ursache für die unterschiedlichen Gitterparameter. Dabei kann Wasserstoff nicht nur auf der Sauerstofflage (1/2, 1/2, 1/2) im kubischen Perowskit, sondern auch im Sinne von (*SE*₃O_{1-y}H_y)InH_x eingebaut werden. Ähnlichen Verbindungen wie Ca₃*M*H₂ und Yb₃*M*H₂ (M = Sn, Pb) wurden bereits beschrieben [108].

Abbildung 5.20: Röntgenpulverdiffraktogramme (Cu- $K\alpha_1$ -Strahlung) von Proben der Bruttoformel La₃InO_{1-y}.

Untersuchung des Gehaltschnitts (La₃N)In–La₃In

Mikrokristalline Pulver La₃InN_{1-y} ($0 \le y \le 0,66$) wurden hergestellt, um den Gehaltschnitt La₃In–(La₃N)In zu untersuchen. La, In und LaN wurden der gewünschten Zusammensetzung (La₃InN_{1-y}; y = 0; 0,25; 0,3; 0,4; 0,6) entsprechend eingewogen. Die Edukte wurden zunächst im Lichtbogen zusammengeschmolzen, in Mo-Folie gewickelt und in Kieselglas eingeschmolzen und dann wärmebehandelt (s. Fussnoten Tabelle 5.8). Proben mit einem Stickstoffgehalt von $y \ge 0,6$ waren nach der Wärmebehandlung augenscheinlich aufgeschmolzen. Nach der Wärmebehandlung wurden die mirkrokristallinen Pulver mit Heissgasextraktion auf O- und N-Gehalt analysiert (s. Tabelle 5.8) und mit Röntgenbeugung (Cu- $K\alpha_1$ -Strahlung) charakterisiert (s. Abbildung 5.21 und 5.22).

Tabelle 5.8:Ergebnisse der Elementaranalysen auf N, O, La und In sowie die aus den
Röntgenbeugungsdaten an Pulvern erhaltenen Gitterparameter.

w(N) / %	w(O) / %	Zusammensetzung*	<i>a</i> / pm	
2,441 ± 0,005	0,16 ± 0,01	$La_{3,0\pm0,1}In_{1,01\pm0,04}N_{1,03\pm0,02}O_{0,026\pm0,0001}\ddagger$	512,92(4)	Α
$1,94 \pm 0,03$	$0,16 \pm 0,02$	$La_{3}InN_{0,75\pm0,01}O_{0,05\pm0,01}$	512,74(7)	В
$1,8 \pm 0,1$	$0,14 \pm 0,04$	$La_{3}InN_{0,70\pm0,04}O_{0,05\pm0,01}$	512,57(7)	C
$1,77\pm0,10$	≤0,10	$La_{3}InN_{0,68\pm0,04}$	512,45(9)	C
$1,\!61 \pm 0,\!07$	≤ 0,25	$La_{3}InN_{0,62\pm0,03}$	512,90(5)	D
$1,013 \pm 0,006$	$0,117 \pm 0,005$	$La_{3}InN_{0,389\pm0,002}O_{0,039\pm0,002}$	512,8(1)†	C
$0,\!89\pm0,\!08$	$0,11 \pm 0,03$	$La_{3}InN_{0,34\pm0,03}O_{0,04\pm0,01}$	513,1(1)†	C
$0,083 \pm 0,005$	< 0,10	$La_{3}InN_{0,03 \pm 0,02}$	507,2(3)	Е

* Die Berechnung erfolgte unter der Annahme, die Differenz zwischen den bestimmten Gehalten an N und O und eins entspräche dem Gehalt an "La₃In" in der Probe.

‡ Analysen auf La und In ergaben: $w(La) = 83,59 \pm 0,99$; $w(In) = 23,54 \pm 0,36$

† Die Diffraktogramme zeigen Reflexe von Wolframcarbid. Die Reflexe weisen eine einheitliche Asymmetrie zu höheren Winkeln auf. Als Ursache kommen starke mechanische Beanspruchung der Probe im Wolframcarbid Mörser und eine zweite kubische Phase (La₃In) in Frage.

A: 6 h auf 950 °C, 130 h 950 °C, 6 h auf Raumtemperatur abgekühlt

B: 12 h auf 950 °C, 170 950 °C, 12 h auf Raumtemperatur abgekühlt, die Proben waren anschließend aufgeschmolzen.

C: 700 °C, fünf Monate, am Ende der Wärmebehandlung in Wasser abgeschreckt

D: 800 °C, acht Monate, am Ende der Wärmebehandlung in Wasser abgeschreckt

E: 500 °C, 13 Monate

Die Röntgenpulverdiffraktogramme (s. Abbildung 5.21 und 5.22) zeigen alle die Reflexe einer Phase, die in Lage und Intensität mit (La₃N_{1,0})In [128] übereinstimmen. Die berechneten kubischen Gitterparameter (a = 512, 5 - 513 pm) weichen nur unwesentlich von (La₃N_{1,0})In ([128]: 512,75(2) pm) ab.

Abbildung 5.21: Röntgenpulverdiffraktogramme von Proben La₃InN_{1-y} ($0 \le y \le 0,32$), Cu-K α_1 -Strahlung.

Abbildung 5.22: Röntgenpulverdiffraktogramme verschiedener Proben La₃InN_{1-y} ($0,32 \le y \le 0,66$), Cu-K α_1 -Strahlung, die Pfeile weisen auf Reflexe von Wolframcarbid (WC).

Duktilität und Zähigkeit der Proben nehmen mit abnehmendem N-Gehalt zu. Dies erschwert die Herstellung von geeignetem Pulver für die Röntgenpulverdiffraktogramme: In Diffraktogrammen von Proben mit geringen Stickstoffgehalt ($y \le 0.61$) werden einzelne Reflexe beobachtet, die Wolframcarbid (WC) aus dem verwendeten Hartmetallmörser zugeordnet werden können (s. Pfeile in Abbildung 5.22). Darüber hinaus weisen die Reflexe dieser Diffraktogramme breitere und asymmetrische Profile auf, als solche von Proben mit höherem Stickstoffgehalt. Wie bei La₃In (s. S. 35) bereits ausgeführt, kommen für die Verbreiterung der Reflexe einer definierten Verbindung Gitterverzerrungen und die Größe der kohärenten Gitterbereiche in Betracht. Beide Effekte können der Probe intrinsisch sein oder sind bei der Herstellung des Pulvers durch mechanische Verformung entstanden. Eine weitere Erklärung der asymmetrischen Reflexprofile ergibt sich, wenn die erhaltenen Diffraktogramme ein mehrphasiges Gemisch aus (La₃N)In und La₃In repräsentieren. La₃In zeigt sehr breite Reflexe (s. S. 37). Beide Verbindungen kristallisieren in einer kubisch dichtesten Packung aus La und In-Atomen. Der Gitterparameter von La₃In (a = 507,2(3) pm) ist nur geringfügig kleiner als derjenige von (La₃N)In (a = 512,92(3) pm). Die Elektronendichte von N (7 e⁻) ist gegenüber La (57 e⁻) und In (49 e⁻)zu gering, um im Röntgenpulverdiffraktogramm signifikante Unterschiede zwischen (La₃□)In und (La₃N)In zu erzeugen. Eine starke Überlappung der Reflexe beider Verbindungen beruht somit auf der großen Reflexbreite von La₃In und dem geringen Unterschied der Gitterparameter.

Aus den Röntgenpulverdiffraktogrammen der Proben der Zusammensetzung La₃InN_{1-y} $(0 \le y \le 0,66)$ ergibt sich folgendes Modell zur Beschreibung des Gehaltschnitts La₃In-La₃InN. In den gemessenen Röntgenpulverdiffraktogrammen wird ausschließlich (La₃N)In mit einer geringen Variation der Gitterparameter (a = 512, 5 - 513 pm) beobachtet. Die asymmetrischen Reflexprofile ab y > 0,6 werden als zweiphasiges Produkt aus La₃In und (La₃N)In interpretiert. In den Röntgenpulverdiffraktogrammen mikrokristalliner Pulvern La₃InN_{1-y} (y < 0,6) wurde La₃In nicht beobachtet, weil in La₃In sehr kleine kohärente Gitterbereiche oder eine große Anzahl an Stapelfehlern vorliegen. Erst bei einem hinreichend großen Anteil von y > 0,6 wird die Phase im Röntgenpulverdiffraktogrammer erkennbar. Somit besitzt (La₃N)In wie (Ce₃N)In (s. S. 72) eine geringe Phasenbreite im Sinne von (La₃N_{1-y})In.

Abbildung 5.23: Ergebnisse der DTA-Messung an einer Probe der Zusammensetzung La₃InN_{0,75 ± 0,01}O_{0,05 ± 0,01} ($T_{max} = 1100$ °C, $\beta = 10$ K/min)

Ein weiterer Anhaltspunkt für eine geringe Phasenbreite von $(La_3N)In$ im Sinne von $(La_3N_{1-y})In$ ist die Aufheizkurve einer DTA-Messung an mikrokristallinem Pulver von $La_3InN_{0,75 \pm 0,01}O_{0,05 \pm 0,01}$ (s. Abbildung 5.23).In dieser DTA-Messung wird nur ein

thermischer Effekt ($T_{\text{Peak}} = 820 \text{ °C}$) beobachtet, der gut mit der peritektischen Zersetzung von La₃In ($T_{\text{Lit}} = 816 \text{ °C}$ [94], T = 800 °C, s. S.38) übereinstimmt. Diese Probe mit y = 0,25 befindet sich somit im Zweiphasengebiet von (La₃N_{1-y})In und La₃In und die Phasenbreite von (La₃N_{1-y})In ist kleiner als y = 0,25.

Die kubischen Gitterparameter verschiedener mikrokristalliner Pulver La₃InN_{1-y} ($0 \le y \le 0,66$) variieren nur unerheblich (a = 512,5 - 513 pm). In Proben mit y > 0,4 werden in den Röntgenpulverdiffraktogrammen Hinweise auf La₃In beobachtet. In einer Probe der Zusammensetzung La₃InN_{0,75 ± 0,01}O_{0,05 ± 0,01} wird beim Aufheizen ein thermischer Effekt bei 820 °C beobachtet, der der peritektischen Zersetzung von La₃In zugeordnet wird. Wie für die homotype Verbindung (Ce₃N)In beobachtet, sprechen die Ergebnisse für eine geringe Phasenbreite von (La₃N)In im Sinne von (La₃N_{1-y})In mit y < 0,25.

(La₃C)In

Im Gehaltschnitt La₃In–La₃InC wurden vier Proben La₃InC_{1-y} aus den Elementen hergestellt. Dabei wurden die Elemente der gewünschten Zusammensetzung La₃InC_{1-y} (y = 0; 0,5; 0,8) entsprechend eingewogen. Für y = 0,2; 0,5 wurden La und C im Lichtbogen zusammengeschmolzen. Anschließend wurde In hinzugeschmolzen. Die Proben wurden in Ta-Folie eingewickelt, unter vermindertem Druck in Kieselglasampullen eingeschmolzen und wärmebehandelt ($\beta = 4,64$ °C/h, 168 h, 800 °C)). Danach erfolgte die Charakterisierung mit Röntgenbeugung am Pulver (s. Abbildung 5.24); Si wurde als interner Standard verwendet. Für zwei weitere Proben mit y = 0 wurde zuerst La und In sowie anschließend C im Lichtbogen zusammengeschmolzen. Die Schmelzkugel wurde in Mo-Folie gewickelt und in Kieselglas eingeschmolzen. Nach einer Wärmebehandelung (T = 700 °C/800 °C, 1008 h/336 h, abgeschreckt) wurden die Produkte mit Röntgenbeugung (s. Abbildung 5.24) charakterisiert. Alle Proben wurden auf den Gehalt an C, N und O analysiert (s. Tabelle 5.9).

Tabelle 5.9:	Ergebnisse d	er Elementarana	lysen an Proben	$(La_3C_{1-y})In$	(y = 0; 0, 5; 0, 8).
--------------	--------------	-----------------	-----------------	-------------------	----------------------

.

У	<i>w</i> (C)	<i>w</i> (N)	w(O)	Resultierende Zusammensetzung
0,78	$0,50 \pm 0,03$	$0,08 \pm 0,02$	0,11 ± 0,01	$La_{3}InC_{0,22\pm0,01}N_{0,03\pm0,01}O_{0,04\pm0,003}$
0,42	$1,30 \pm 0,03$	$0,08 \pm 0,02$	≤0,10	$La_{3}InC_{0,58\pm0,01}N_{0,03\pm0,01}$
0	$2,02 \pm 0,06$	$0,048 \pm 0,002$	≤0,10	$La_{3}InC_{0,91\pm0,03}N_{0,019\pm0,001}$
0	$2,22 \pm 0,02$	$0,12 \pm 0,04$	≤ 0,25	$La_{3}InC_{1,006\pm0,009}N_{0,047\pm0,016}$

Abbildung 5.24: Röntgenpulverdiffraktogramme (Cu- $K\alpha_1$ -Strahlung, Si: interner Standard, Pfeile) von Proben der Zusammensetzung (La₃C_{1-y})In, ($0 \le y \ 0,42$). Die Linie über alle Diagramme markiert den Reflex (200) und verdeutlicht die Verschiebung des Gitterparameters in Abhängigkeit des Kohlenstoffgehalts.

Für La₃InC_{0,58 ± 0,01}N_{0,03 ± 0,01} (y = 0,42) wurde ein röntgenografisch phasenreines Produkt erhalten. Die Reflexlagen und -intensitäten stimmen mit einem geordneten La₃In-Gitter im Cu₃Au-Strukturtyp überein (a = 516,86(2) pm).

Die Probe La₃InC_{0,22±0,01}N_{0,03±0,01}O_{0,04±0,003} (y = 0,78) zeigt Reflexe, die mit zwei kubischen Phasen indiziert werden können ($a_1 = 509,55(7)$ pm; $a_2 = 515,94(7)$ pm). Das Verhältnis der gemessenen Intensitäten stimmt in beiden Fällen mit einer kubisch flächenzentrierten Anordnung von La- und In-Atomen überein. Diese beiden Gitterparameter liegen nahe an denjenigen von La₃In (a = 506 - 507 pm s. S. 35) bzw. (La₃C_{0,58})In (s.o.).

Die Probe mit y = 0 (La₃InC_{1,006 ± 0,009}N_{0,047 ± 0,016}) ergab röntgenografisch kein phasenreines Produkt. Neben starken Reflexen, die kubisch indizieren werden (a = 519,96(6) pm) können, liegen noch zahlreiche weitere schwache Reflexe vor, die keiner bekannten Phase im ternären System La–In–C zugeordnet werden können. Das Muster dieser Fremdreflexe ähnelt demjenigen, welches bei Proben der Zusammensetzung (Ce₃C_{1-y})Al ($0 \le y \le 0,3$) beobachtet wurde. Die Differenz aus gemessenen und berechneten Reflexlagen ($2\Theta_{gem}-2\Theta_{ber}$; s. Tabelle A. 101) der kubischen Indizierung der Reflexe ergeben keine Hinweise auf eine Abweichung von der kubischen Symmetrie (Verzerrung).

Im untersuchten Temperaturregime (Wärmebehandlung bei 700 °C und langsames von einer Woche) existiert eine Mischungslücke zwischen Abkühlen einer kohlenstoffreichen Phase (La₃C_{1-v})In und La₃In. Die Phase La₃In löst nur sehr wenig Kohlenstoff. Die Grenzen des Existenzbereichs der kohlenstoffreichen Phase (La₃C_{1-v})In liegen zwischen den nominellen Zusammensetzungen (La₃C_{0,22})In und (La₃C_{0,91})In. Der kubische Gitterparameter der röntgenografisch phasenreinen Proben $La_{3}InC_{0.58\,\pm\,0.01}N_{0.03\,\pm\,0.01}$ ist kleiner als derjenige der Probe mit v = 0 $(La_3InC_{1,006 \pm 0,009}N_{0,047 \pm 0,016})$. Dieser Befund weist auf eine Korrelation zwischen Gitterparameter und Kohlenstoffgehalt. Für einen endgültigen Beweis eines Verhalten nach Vegard, wie bei die Verbindungen (Ce₃C_{1- ν})In (s. S. 77), muss ein engeres Raster mit Proben $(La_3C_{1-y})In$ $(0,42 \le y \le 0)$ untersucht werden. Die zusätzlichen Reflexe im Röntgenpulverdiffraktogramm der Probe (La₃C_{1.0})In müssen noch untersucht werden. Hierbei kommen zwei Möglichkeiten in Betracht: Entweder eine Verzerrung oder eine weitere, bisher unbekannte, ternäre Phase im System La-In-C. Ein möglicher Kandidat wäre La₅In₃C_x in Analogie zu den bekannten Verbindungen La₅Sn₃O [109] und La₅Pb₃O [110]. Die erhaltenen Gitterparameter der kubischen Phasen $(La_3C_{1-\nu})$ In variieren zwischen 516 pm und 519 pm und stimmen mit neueren Ergebnissen zu (La₃C)In überein (a = 519,7 pm [13]). Andere Literaturwerte des Gitterparameters sind signifikant niedriger (a = 512,1(1) pm [11]; a = 514 pm [37]). Drei mögliche Ursachen für diese Unterschiede kommen hierfür in Betracht. 1. Eine Mischbesetzung mit anderen Nichtmetallatomen wie O und N auf der Kohlenstofflage könnte eine geringere Aufweitung der La₃In-Struktur bewirken. 2. Die Auflösung der Röntgenpulverdiffraktogramme zum damaligen Zeitpunkt war zu gering, so dass zweiphasige Produkte aus La₃In und (La₃C_{1-y})In nicht als solche erkannt werden konnten. Ein gemittelter und somit kleinerer Gitterparameter als (La₃C_{1-y})In wäre die Folge. 3. Die Phasenbreiten und Gitterparameter hängen von der Wärmebehandlung ab. In diese Richtung weisen auch die Experimenten zu (Ce₃C_{1-y})In (s. S. 77).

5.3. Polymorphie von Ce₃Al und (Ce₃X)Al, X = O, N, C

(Ce₃□)Al

Die Mehrzahl der Veröffentlichungen zu Ce₃Al behandelt physikalische Eigenschaften dieser binären Phase. Die kristallografische Charakterisierung der Proben ist dabei zum Teil nur unzureichend. Eine ausführliche Diskussion des Phasendiagramms Ce–Al und der physikalischen Eigenschaften von Ce₃Al ist im Anhang (s. S. 162) dargestellt. Drei Modifikationen von Ce₃Al sind bereits beschrieben (s. a. Tabelle 5.10).

	α-Ce ₃ Al [111]	β-Ce ₃ Al [74]	γ-Ce ₃ Al [112]
Strukturtyp	Mg ₃ Cd	Cu ₃ Au	monoklin
Gitterparameter	<i>a</i> = 703 pm	<i>a</i> = 501,3 pm [113]	a = 628,4(1) pm
	<i>c</i> = 544 pm	<i>a</i> = 498,5 pm [111]	<i>b</i> = 1245,8(2) pm
		<i>a</i> = 498 pm [74]	c = 533,6(1) pm
		<i>a</i> = 495,8 pm [114]	$\gamma = 89,69(2)^{\circ}$
Existenzbereich	$> -170 - 250 \ ^{\circ}\mathrm{C}$	250 – 680 °C	<-170 °C

Tabelle 5.10: Literaturdaten der beschriebenen Modifikationen von Ce₃Al.

 β -Ce₃Al wird häufig als Verunreinigung neben anderen Phasen im Systems Ce–Al beobachtet. So wird bei der Darstellung von α -Ce₃Al über einen konstanten Phasenanteil von β -Ce₃Al (5 %) vor und nach der Wärmebehandlung (200 °C, 3 Wochen) berichtet [115]. Ebenso erscheint die Synthese von β -Ce₃Al unklar: α -Ce₃Al wird im Lichtbogen erhalten, während β -Ce₃Al erst bei Wärmebehandlung in Kieselglasampullen (550 – 600 °C, 1 Woche) entsteht [116]. Dies widerspricht den berichteten Gleichgewichtsuntersuchungen [75, 111]. Die Phasenumwandlung α -Ce₃Al $\rightarrow \beta$ -Ce₃Al wird in der Literatur in DTA-Experimenten als "deutlich" beschrieben [117]. Zweifel über die Existenz der Phase β -Ce₃Al bleiben jedoch (s. Anhang S. 162). Eigene DTA/DSC-Messungen an Ce₃Al (s. Anhang) ergaben keine Hinweise auf eine Phasenumwandlung von α -Ce₃Al zu β -Ce₃Al

Untersuchung des Gehaltschnitts Ce₃Al–(Ce₃O)Al

Im System Ce–Al–O wurde der Gehaltschnitt Ce₃Al–Ce₃AlO bei T = 600 °C untersucht. Hierzu wurden aus Ce, Al und CeO₂ im Lichtbogen Proben der nominellen Zusammensetzung Ce₃AlO_{0,2}, Ce₃AlO_{0,4}, Ce₃AlO_{0,6}, Ce₃AlO_{0,8} und Ce₃AlO zusammengeschmolzen. Nach einer Woche Wärmebehandlung bei 600 °C in Ta-Ampullen wurden die Proben in Wasser abgeschreckt. Von den danach erhaltenen mikrokristallinen Pulvern wurden Röntgenpulverdiffraktogramme sowie Elementaranalysen auf O und N angefertigt. Die O und N-Analysen sind nur qualitativ. Die Bildung von sehr stabilen Oxiden – vermutliche Al₂O₃ – verhindert bei der Heißgasextraktion eine vollständige Umsetzung des Sauerstoffs zu CO/CO₂. Daraus folgt ein zu niedriger analytischer Wert bei der Bestimmung des Sauerstoffgehalts. Diese Abweichung verstärkt sich mit größerem O-Gehalt. Für die Analysen bedeutet dies: Je höher der Sauerstoffwert in der Probe, desto höher die Abweichung vom Realwert bzw. der vorgegebenen Einwaage. Aus diesem Grunde wird den Einwaagen ein größeres Vertrauen entgegen gebracht als den analytischen Werten.

Tabelle 5.11:Ergebnisse der Röntgenbeugung an Pulvern von Proben (Ce₃O_{1-y})Al (Für
detaillierte Angaben s. Tabelle A. 16, S. 177)

	(Ce ₃ O)Al	α-Ce	e ₃ Al*
	<i>a</i> / pm	<i>a</i> / pm	<i>c</i> / pm
(Ce ₃ O _{0,2})Al	495,89(5)	zwei Reflex	ke erkennbar
(Ce ₃ O _{0,4})Al	495,70(4)	701,53	545,64
(Ce ₃ O _{0,6})Al	495,56(4)	703,19	543,28
(Ce ₃ O _{0,8})Al	495,47(3)	704,84	544,62
(Ce ₃ O)Al	495,34(5)		-

 Die Gitterparameter wurden aus weniger als fünf Reflexen bestimmt, daher wird keine Standardabweichung angegeben.

Die Ergebnisse der Röntgenbeugungsexperimente an Pulvern sowie die Ergebnisse der Elementaranalysen sind in Tabelle 5.11 zusammengefasst und in Abbildung 5.25 (rechts) dargestellt. DTA-Messungen sind in Abbildung 5.25 (links) dargestellt. Entgegen der Vermutung von [118] existiert eine Phase mit der Zusammensetzung (Ce₃O)Al ($Pm\overline{3}m$, a = 495,74(1) pm, Ce₃Al-Metallgerüst im Sinne des Cu₃Au-Strukturtyps).

Die Röntgenpulverdiffraktogramme der Proben (Ce₃O_{1-y})Al mit y < 0 zeigen hexagonales α -Ce₃Al neben (Ce₃O)Al. Die Proben wurden bei 600 °C wärmebehandelt und liegen somit im Existenzbereich der vermeintlichen kubischen Phase β -Ce₃Al. Die Gitterparameter von (Ce₃O)Al variieren nur unerheblich. Dies spricht für eine sehr geringe Phasenbreite im Sinne von (Ce₃O_{1-y})Al bei T = 600 °C.

Abbildung 5.25: DTA-Messungen (Nb-Tiegel; $\beta = 10$ K/min; $T_{max} = 1100$ °C; links) und Röntgenpulverdiffraktogramme (Cu- $K\alpha_1$ -Strahlung; rechts) von Proben (Ce₃O_{1-y})Al.

Die DTA-Messungen lassen sich in analoger Weise interpretieren: In Proben mit geringem O-Gehalt wird ein Signal beobachtet, das dem Schmelzpunkt von Ce₃Al (≈ 650 °C) zugeordnet wird. Mit Zunahme des O-Gehalts der Probe verringert sich dieser thermische Effekt bis zum Verschwinden. Gegenläufig dazu erscheint mit steigendem O-Gehalt ein Signal (≈ 740 °C), das nicht dem binären Phasendiagramm Ce–Al zugeordnet werden kann. Dieser thermische Effekt wird in Analogie zu (Ce₃N)Al einer peritektischen Zersetzung von (Ce₃O)Al zugeordnet. Nach den hier vorliegenden Ergebnissen existiert das kubische β -Ce₃Al nicht.

Untersuchung des Gehaltschnitts Ce₃Al–(Ce₃N)Al

Im Gegensatz zu (Ce₃O)Al wurde (Ce₃N)Al bereits in der Literatur beschrieben [90]. Im Rahmen dieser Arbeit wurde ein Gehaltschnitt Ce₃Al–(Ce₃N)Al mit Proben der nominellen Zusammensetzung (Ce₃N_{1- ν})Al (y = 0; 0,2; 0,4; 0,6; 0,8) untersucht.

Für die Proben wurden Ce, Al und CeO₂ im Lichtbogen zu einer homogenen Kugel zusammengeschmolzen, in eine Ta-Ampulle eingeschweißt und bei vermindertem Druck in Kieselglas eingeschmolzen. Alle Proben wurden eine Woche bei 600 °C wärmebehandelt und anschließend abgeschreckt. Anschließend erfolgte die Charakterisierung mit Röntgenbeugung am Pulver und chemischer Analyse auf O und N. Die Ergebnisse sind in Tabelle 5.12 und Abbildung 5.26 zusammengefasst. Die wärmebehandelten Proben wurden DTA-Experimenten unterzogen (s. Abbildung 5.26).

	w(N) / %	w(O) / %	Zusammensetzung aus der	Einwaage
			Analyse auf N und O	
1	$0,89 \pm 0,03$	0,13 ± 0,01	$Ce_{3}AlN_{0,29\pm0,01}O_{0,037\pm0,003}$	Ce ₃ AlN _{0,2}
2	$1,62 \pm 0,02$	$0,12 \pm 0,01$	$Ce_{3}AlN_{0,527\pm0,007}O_{0,034\pm0,003}$	Ce ₃ AlN _{0,4}
3	2,08 ± 0,15	≤ 0,10	$Ce_{3}AlN_{0,68 \pm 0,05}$	Ce ₃ AlN _{0,6}
4	$2,71 \pm 0,02$	$0,15 \pm 0,02$	$Ce_{3}AlN_{0,891 \pm 0,007}$	Ce ₃ AlN _{0,8}
5	$2,88 \pm 0,05$	≤ 0,10	$Ce_{3}AlN_{0,95\pm0,02}O_{0,001\pm0,029}$	Ce ₃ AlN
6	$3,05 \pm 0,03$	≤ 0,25	$Ce_{3}AlN_{1,01 \pm 0,01}$	Ce ₃ AlN

Tabelle 5.12:	Ergebnisse der	Elementaranalysen	\mathbf{i} auf O und N	von Proben Ce ₃ AlN _{1-y}
---------------	----------------	-------------------	--------------------------	---

Proben nahe der Zusammensetzung (Ce₃N_{1,0})Al wurden röntgenografisch phasenrein erhalten. Bei allen Proben, die einen geringeren Stickstoffgehalt aufwiesen, wurden Reflexe von hexagonalem α -Ce₃Al beobachtet. Die Mengenanteile der Phasen von α -Ce₃Al zu (Ce₃N)Al korrelieren mit dem Stickstoffgehalt. Mit fallendem N-Gehalt nehmen die Reflexintensitäten von α -Ce₃Al zu. Der Gitterparameter von (Ce₃N)Al variiert nur unwesentlich (s. Tabelle 5.13, $a \approx 501$ pm) und stimmt im Rahmen des experimentellen Fehlers mit dem Literaturwert ([90]: 500,8 pm) überein. Zusätzliche Reflexe, die Hinweise auf kubisches β -Ce₃Al geben könnten, wurden nicht beobachtet. Die DTA-Messungen an diesen Proben zeigen zwei konkurrierende Signale ($T_1 = 650$ °C, $T_2 = 1030$ °C), die abhängig vom N-Gehalt der Probe sind. Je höher der N-Gehalt, desto geringer der thermische Effekt bei 650 °C, welcher für y = 0 nicht zu detektieren ist. Umgekehrt nimmt der Anteil des Signals bei 1030 °C mit steigendem N-Gehalt zu. Die Proben wurden bei 600 °C wärmebehandelt und abgeschreckt. Weder in den Röntgenpulverdiffraktogrammen noch in den DTA-Messungen konnten Hinweise auf das vorliegen von β -Ce₃Al gefunden werden²³.

Abbildung 5.26: DTA-Messungen (Nb-Tiegel; $\beta = 10$ K/min; $T_{max} = 1100$ °C; links) und Röntgenpulverdiffraktogramme (Cu- $K\alpha_1$ -Strahlung; rechts) von Proben der nominellen Zusammensetzung (Ce₃N_{1-y})Al.

 β -Ce₃Al existiert nicht im System Ce₃Al–Ce₃AlN unterhalb von 600 °C. Die Röntgenpulverdiffraktogramme zeigen, dass (Ce₃N)Al sehr gut kristallisiert. Die binäre Phase Ce₃Al ist zwar deutlich zu erkennen. Die Reflexe maximaler Intensitäten sind allerdings auch bei einer nominellen Zusammensetzung Ce₃AlN_{0,2} schwächer ausgeprägt als diejenigen von (Ce₃N)Al. Qualitativ betrachtet sind die Halbwertsbreiten der Reflexe von α -Ce₃Al, größer als diejenigen von (Ce₃N)Al. Diese Beobachtung wurde auch bei der

²³ Wie bei den ternären Oxiden wird weder beim Aufheizen noch beim Abkühlen das aus der Literatur beschrieben Signal der Phasenumwandlung Ce₃Al_{hex}, TT \rightarrow Ce₃Al_{kub}, HT bei 250 °C beobachtet,

Untersuchung der Gehaltschnitte Ce₃Al–(Ce₃X)Al (X = C, O) gemacht. Geringe Mengen an kubischem (Ce₃X)Al könnten somit erklären, warum in der Literatur eine kubische Phase β -Ce₃Al postuliert wurde. (Ce₃N)Al weist nur eine sehr geringe Phasenbreite im Sinne von (Ce₃N_{1-y})Al auf. Dies ergibt sich aus den Röntgenpulverdiffraktogrammen: Mikrokristalline Pulver mit geringem Unterschuss an Stickstoff wie Ce₃AlN_{0,891±0,007} zeigen im Röntgenpulverdiffraktogramm Reflexe von α -Ce₃Al neben solchen von (Ce₃N)Al. Die DTA-Messungen unterstreichen dies: Neben dem deutlichen Signal der Zersetzung von (Ce₃N)Al (1050 °C) ist in Ce₃AlN_{0,891±0,007} noch ein thermischer Effekt bei 650 °C zu erkennen, der binärem Ce₃Al zugeordnet wird.

Tabelle 5.13:Ergebnisse der Röntgenbeugung am Pulver Ce_3AlN_{1-y} mit y = 0; 0,2; 0,4;
0,6; 0,8.

	(Ce ₃ N)Al	Reflexe	$\Delta 2 \Theta$	FOM	α-Ce₃Al		Reflexe	Programm
	<i>a</i> / pm				<i>a</i> / pm	<i>c</i> / pm		
1	501,2(1)	6			704	544	2	CSD*
2	500,77(2)	17	-0,0404	89,1	703,72	544,27	4**	STOE
	501,26(5)	13			702,5(8)	545(1)	6	CSD, Si
3	500,94(2)	19	-0,0448	102,0	703,53	544,85	4**	STOE
	501,29(3)	19			705,0(9)	543,5(9)	6	CSD, Si
4	501,04(3)	20	-0,178	72,6				STOE
	501,35(3)	18			704	545	2	CSD, Si
5	501,12(2)	20	-0,0340	99,3				STOE
	501,53(2)	17			-	-	-	CSD, Si
6	500,92(1)	21	-0,0378	191,3				STOE

* Probe makroskopisch hart und duktil, Präparation des Pulvers mit Kieselglas.

** Indizierung basiert auf vier Reflexe. Eine Verfeinerung der Parameter wurde auf Grund der geringen Datenmenge nicht vorgenommen. Die Reflexe (002) und (021) sind diejenigen mit der stärksten Intensität.

Die beiden thermischen Effekte, die in den DTA-Messungen beobachtet wurden, werden Ce₃Al und (Ce₃N)Al zugeordnet. Das Signal bei 650 °C ist in guter Übereinstimmung mit den Literaturwerten des Schmelzpunktes von Ce₃Al bzw. eines Eutektikums Ce₃Al–CeAl [75], [111]. Das zweite Signal kann mit dem binären Phasendiagramm Ce–Al nicht erklärt werden und tritt ausschließlich bei den röntgenografisch phasenreinen Proben von (Ce₃N)Al auf. Die Probe zersetzt sich peritektisch in Schmelze Ce–Al und CeN. In den Abkühlkurven wird ein Signal bei 1000 °C beobachtet, dass auf eine Rückbildung von (Ce₃N)Al schließen

lässt. Das Erstarren von Ce₃Al oder eines benachbarten Eutektikums wird erneut bei 650 °C beobachtet. (Ce₃N)Al besitzt somit bei 600 °C eine sehr kleine Phasenbreite im Sinne von (Ce₃N_{1-y})Al (y < 0,11), da in Ce₃AlN_{0,891±0,007} sowohl im Röntgenpulverdiffraktogramm als auch in der DSC-Messung die binäre Verbindungen Ce₃Al beobachtet wurden. Aus den Röntgenpulverdiffraktogrammen ist ersichtlich, dass im Gehaltschnitt Ce₃Al–Ce₃AlN bei 600 °C das hexagonale α -Ce₃Al und nicht das kubische β -Ce₃Al stabil ist, wie aus dem binären Phasendiagramm Ce–Al zu erwarten wäre.

Untersuchung des Gehaltschnitts Ce₃AI–(Ce₃C)AI

(Ce₃C)Al ist bereits beschrieben worden ($Pm\overline{3}m$; [118]: a = 500,7 pm; [11]: a = 502,9(1) pm). Die Auftragung nach A. Iandelli [119], d. h. der Gitterparameter a ((SE_3C)Al) als Funktion der Ionenradien SE^{3+} (KZ = 6, [8]), ist in Abbildung 5.27 dargestellt. Der Lanthanidenkontraktion entsprechend folgen die Gitterparameter etwa einem linearen Verlauf.

Abbildung 5.27: Gitterparameter *a* metallreicher Perowskite (SE_3C)Al ([11]) als Funktion des Ionenradius ([8], sechsfache Koordination von SE^{3+}). *a*(Ce₃C)Al weicht signifikant von einem linearen Verlauf der Gitterparameter ab.

Der Gitterparameter der Ce-Verbindung weicht allerdings signifikant zu niedrigeren Werten ab. Th. Gesing, K. H. Wachtmann und W. Jeitschko [11] vermuten einem Anteil an Ce⁴⁺

 $(4f^{0})$ – der Ionenradius von Ce⁴⁺ ist kleiner als derjenige von Ce³⁺. S. Rosen und P. G. Sprang [34] vermuten eine Phasenbreite bzw. einem Defizit an C im Sinne von Ce₃AlC_{1-y}, wie für das System Ce₃InC–Ce₃In diskutiert (s. S. 77).

Ce₃AlC_{1-y} wurde mit unterschiedlichen C-Gehalten hergestellt (y = 0, 0,1; 0,2; 0,3; 0,35; 0,4; 0,6; 0,8; s. a. Anhang S. 231), mit Röntgenbeugung am Pulver (Si, interner Standard) charakterisiert und die Gehalte an C, N und O mit chemischer Analyse bestimmt. Die Ergebnisse sind in Tabelle 5.14 und 5.14 zusammengefasst.

Tabelle 5.14:Ergebnisse der Elementaranalysen von Proben des Gehaltschnittes Ce₃Al-
Ce₃AlC. Proben die einer zusätzlichen Homogenisierung und einer
zweiten Wärmebehandlung unterzogen wurden, sind mit ' gekennzeichnet.

Nr.	Ergebnis	se der chemisch	ne Analysen	Zusammensetzung der
	w(C) / %	w(N) / %	w(O) / %	Probe aus der chemischen Analyse
1	$0,59 \pm 0,08$	0,073 ± 0,001	0,10 ± 0,02	$Ce_{3}AlC_{0,22\pm0,030}N_{0,0235\pm0,0003}O_{0,028\pm0,003}$
2	$1,07 \pm 0,01$	$0,\!29\pm0,\!07$	$0,\!10\pm0,\!02$	$Ce_{3}AlC_{0,404\pm0,004}N_{0,09\pm0,02}O_{0,028\pm0,003}$
3	$1,56 \pm 0,01$	$0,\!08\pm0,\!03$	$\leq 0,10$	$Ce_{3}AlC_{0,591\pm0,004}N_{0,03\pm0,01}$
4	$1,72 \pm 0,04$	$0,\!042\pm0,\!009$	$\leq 0,10$	$Ce_{3}AlC_{0,65\pm0,02}N_{0,014\pm0,003} (w(H) \le 0,008 \%)$
5	$1,83 \pm 0,08$	$0,13 \pm 0,01$	$0,12 \pm 0,02$	$Ce_{3}AlC_{0,70\pm0,03}N_{0,042\pm0,003}O_{0,034\pm0,003}$
6	$1,\!87\pm0,\!06$	$0,\!42 \pm 0,\!06$	$\leq 0,10$	$Ce_{3}AlC_{0,71\pm0,02}N_{0,14\pm0,02}$
7	$2,14 \pm 0,05$	$0,\!35\pm0,\!05$	$0,101 \pm 0,003$	$Ce_{3}AlC_{0,82\pm0,02}N_{0,12\pm0,02}O_{0,029\pm0,001}$
8	$2,15 \pm 0,01$	$0,11 \pm 0,01$	$\leq 0,10$	$Ce_{3}AlC_{0,820\pm0,004}N_{0,036\pm0,003}$
8'	$2,12 \pm 0,04$	$0,15\pm0,01$	$0,15 \pm 0,01$	$Ce_{3}AlC_{0,809\pm0,015}N_{0,049\pm0,003}O_{0,043\pm0,0016}$
9	$2,31 \pm 0,04$	$0,\!09\pm0,\!01$	$\leq 0,10$	$Ce_{3}AlC_{0,882\pm0,015}N_{0,029\pm0,003}$
9'	$2,\!28 \pm 0,\!01$	$0,12 \pm 0,01$	$0,\!15 \pm 0,\!04$	$Ce_{3}AlC_{0,871\pm0,004}N_{0,039\pm0,003}O_{0,043\pm0,0066}$
10	$2,\!67\pm0,\!03$	$0,\!09\pm0,\!01$	$\leq 0,10$	$Ce_{3}AlC_{1,024\pm0,012}N_{0,030\pm0,001}$
10'	$2,60 \pm 0,05$	0,13 ± 0,01	0,12 ± 0,01	$Ce_{3}AlC_{0,997\pm0,019}N_{0,043\pm0,003}O_{0,035\pm0,00}$

Proben Ce₃AlC_{1-y} mit y = 0, 0,2; 0,3; 0,4; 0,6; 0,8 wurden DTA-Messungen unterzogen (Nb-Tiegel, $T_{max} = 1200$ °C; $\beta = 10$ K/min). Die Röntgenpulverdiffraktogramme (s. Abbildung 5.28) lassen den Gehaltsschnitt Ce₃Al–Ce₃AlC in zwei Bereiche untergliedern. In Proben Ce₃AlC_{1-y} mit y > 0,3 wird die Phase α -Ce₃Al beobachtet, deren Phasenanteil mit abnehmendem C-Gehalt zunimmt. Daneben werden Reflexe zweier kubischer Phasen beobachtet, deren Gitterparameter sich nur geringfügig unterscheiden (a = 503 - 505 pm). Die Intensitätsverhältnisse der Reflexe beider Phasen stimmen jeweils mit einer geordneten kubischen Struktur aus Ce und Al-Atomen (Cu₃Au-Strukturtyp) überein. Die Reflexe werden sowohl bei Messungen zwischen Polyimidfolien als auch bei Messungen in Glaskapillaren beobachtet. Die Reflexe des internen Standards Si zeigen keine signifikanten Asymmetrien. Das asymmetrische Profil der Reflexe in den Proben Ce₃AlC_{1-y} basiert somit auf der Zusammensetzung der Probe und nicht auf Faktoren, die aus der Messung des Röntgenpulverdiffraktogramms herrühren.

Proben mit $y \approx 0,3$ (Ce₃AlC_{0,7}) zeigen ausschließlich die Reflexe der beiden kubischen Phasen. Auch Ce₃AlC_{0,65 ± 0,02}N_{0,014 ± 0,003} (*w*(H) \leq 0,008 und *w*(O) \leq 0,01) zeigt diese beiden Phasen mit kubischem Ce₃Al-Grundgerüst.

Abbildung 5.28: DTA-Messungen (Nb-Tiegel; $\beta = 10$ K/min; $T_{max} = 1100$ °C; links) und Röntgenpulverdiffraktogramme (Cu- $K\alpha_1$ -Strahlung; rechts) von Proben der Zusammensetzung Ce₃AlC_{1-y}.
Proben mit y < 0.3 zeigen ebenfalls die beiden kubischen (Ce₃X)Al-Phasen aber kein α -Ce₃Al. Allerdings werden zusätzliche Reflexe beobachtet. Die Halbwertsbreiten dieser Reflexe stimmen nicht mit denjenigen der kubischen Phase überein und gehören somit zu einer anderen Phase. Nach einer zweiten Wärmebehandlung wurde keine signifikante Veränderung in den Röntgenpulverdiffraktogrammen dieser Proben beobachtet. Die DTA-und DSC-Messungen an den Proben Ce₃AlC_{1-y} unterscheiden sich von denjenigen Proben mit der Zusammensetzung Ce₃AlO_{1-y} und Ce₃Al_{1-y}. Die Messungen sind in Abbildung 5.28 dargestellt und in Tabelle 5.16 zusammengefasst. Bis zu einer Zusammensetzung y > 0.4 ist ein Signal zu erkennen, das dem binären Ce₃Al zugeordnet wird ($T \approx 650$ °C). Für die quaternäre Probe Ce₃AlC_{0.82±0.02}N_{0.12±0.02}O_{0.029±0.001} werden zwei klar aufgelöste Signale erhalten ($T_{\text{Onset}} = 700$ °C und $T_{\text{Onset}} = 850$ °C). Die Probe mit der Zusammensetzung Ce₃AlC_{0.71±0.02}N_{0.13±0.02} zeigt nur ein sehr breites Signal bei etwa 700 °C.

Tabelle 5.15:Auswertung (CSD [P 2]) von Röntgenpulverbeugungsdaten (Cu- $K\alpha_1$ -
Strahlung an Proben der Zusammensetzung Ce3AlC1-y. Anzahl der Reflexe
für die Verfeinerung der Gitterparameters in Klammern.

Nr.	У	kubische Ph	α -Ce ₃ A	l, soweit a	uswertbar	
		a_1 / pm	a_2 / pm (Reflexe)	<i>a</i> / pm	<i>c</i> / pm	(Reflexe)
		(Reflexe)				
1	0,78	495,9(1)(6)	505,30(5) (9)	702,1(6)	544,8(4)	(5)
2	0,596	502,0(3) (13)	504,2(1) (12)	701,4(2)	546,9(1)	(4)
3	0,409	502,17(5)(13)	504,44(4) (15)			
4	0,35	503,5(2) (16)	505,16(8) (16) [P 1]			
5	0,3	503,40(2)(18)	504,52(9) (19)			
6	0,29	a = 50	03,82(4)pm,			
7	0,18	503,79(4) (21)	505,445(8) (21)	**		
8	0,18	503,93(4)(17)	505,51(7)(17)	**		
8'	0,191	503,84(2) (20)	505,29(3) (20)	**		
9	0,118	503,80(3)(16)	505,39(5) (16)	**		
9'	0,129	503,68(2) (20)	505,21(3) (20)	**		
10	-0,024	504,4(1)(17)	505,0(1) (18)	**		
10'	0,003	504,11(7)(10)	505,18(5)(14)	**		

** unbekannte Fremdphase wie in allen Proben mit einem Gehalt an C von 1-y > 0,7

Tabelle 5.16:Ergebnisse der DTA/DSC an Proben der nominellen Zusammensetzung
(Ce_3C_{1-y})Al beim Heizen(1) und Abkühlen(2) ($T_{max} = 950$ °C; 10 K/min,
Onset-Temperaturen in Klammer).

Nr.	$T_1 / °C$	$T_2 / ^{\circ}\mathrm{C}$	$T_3 / ^{\circ}\mathrm{C}$	$T_4 / °C$	T-Modus
1	655 (650)		750	-	1
2	660 (650)	700	770	-	1
3	650	710-720 ^I	780	850	1
6	-	720 (700)	-	860 (850)	1
9	-	725 (705)	-	-	1
	<i>T</i> ₁ / °C	T_5 /	°C	<i>T</i> ₆ / °C	<i>T</i> -modus
1	$T_1 / °C$ 640^{II}	T ₅ /	°C	<i>T</i> ₆ / °C	<i>T</i> -modus 2
1 2		- 670 (6	°C 575)	<i>T</i> ₆ / °C	T-modus 2 2
1 2 3	T ₁ / °C 640 ^{II} 640 640	T ₅ / - 670 (6 675 (6	°C 575) 580)	<i>T</i> ₆ / °C	T-modus 2 2 2 2 2
1 2 3 6	$ T_1 / °C 640 II 640 640 640 645 $	T ₅ / - 670 (6 675 (6 675 (6	°C 575) 580) 580)	<i>T</i> ₆ / °C - - 735, 750, 775 [™]	T-modus 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

I komplexes, sehr breites Signal mit mindestens zwei Maxima.

II Signal zeigt bei hohen Temperaturen noch eine Schulter

III Signal zu tiefen Temperaturen ausgezogen.

IV Signal sehr schwach, in mindestens drei Signale zu untergliedern.

Nach den hier erhaltenen Ergebnissen existiert (Ce₃C_{1.0})Al bei 600 °C nicht. Auch konnte kein röntgenografisch phasenreines Produkt mit einem niedrigeren Kohlenstoffgehalt als (Ce₃C_{1,0})Al dargestellt werden. In allen Proben wurden stattdessen Reflexe von zwei Phasen mit kubischem Ce₃Al-Grundgerüst beobachtet, deren Gitterparameter sehr nahe beieinander Reflexmuster wird Homogenisieren liegen. Dieses nach und einer zweiten Wärmebehandlung reproduziert. Für eine Zusammensetzung (Ce₃C_{0.65})Al wurde ein Produkt erhalten, das ausschließlich dieses Muster zeigt. Aus den Ergebnissen der chemischen Analyse (w (H) ≤ 0.008 %; w (N) = 0.042 ± 0.009 ; w (O) ≤ 0.10 %) kann eine quaternäre Phase mit signifikanten Anteilen an H, N oder O ausgeschlossen werden. Beide Phasen besitzen eine ähnliche Dichte und weder in lichtmikroskopischer noch in elektronenrastermikroskopischer Betrachtung kann ein ausreichender Kontrast erzeugt werden, um die beiden Phasen voneinander zu unterscheiden. Sollte dieser Gehaltschnitt als quasi-binäres System aufgefaßt werden können, und stünde er im thermodynamischen Gleichgewicht, so wären nach der Gibbsschen Phasenregel maximal drei Phasen des Schnittes zu erwarten, wenn Temperatur (600 °C) und Druck konstant sind. Nach der bisherigen Interpretation sind allerdings drei Phasen identifiziert. Eine alternative Interpretation der beobachteten Reflexmuster der beiden kubischen Phasen mit Ce₃Al-Strukturmotiv wäre eine Verbindung mit komplizierterer Überstruktur und deutlich größerem Gitterparameter, deren Zusammensetzung nahe (Ce₃C_{0,65})Al liegt.

Erste Erkenntnisse über das quaternäre System Ce–Al–C–N ergeben sich aus der Probe 5 (Ce₃AlC_{0,714±0,023}N_{0,137±0,020}). Hier wurde ein röntgenografisch phasenreines Produkt erhalten, das für eine stickstofffreie Probe mit ähnlichem Kohlenstoffgehalt nicht möglich war. Auch wird keine Verdopplung der Reflexe beobachtet, wie das bei anderen untersuchten Proben (z. B. (Ce₃C_{0,65})Al) der Fall ist. Die für die kubischen Phasen bestimmten Gitterparameter von (Ce₃C_{0,65})Al sind größer als die Literarturwerte (a = 500,7 pm [118] bzw. a = 502,9(1) pm [11]). Diese kleineren Literaturwerte könnten durch eine geringere Aufweitung des Ce₃Al-Strukturmotivs bei einer teilweisen Substitution von C durch O oder N verursacht sein. Aus den DTA-Experimenten wird in analoger Weise wie für (Ce₃O)Al eine Zersetzung unterhalb von 700 °C beobachtet.

Vergleichende Untersuchungen an (Ce₃X)AI (X = O, N, C)

An ausgewählten Proben (Ce₃X)Al wurde Röntgenabsorbtionsspektroskopie (Ce- L_{III} -Kante) durchgeführt und die magnetische Suszeptibilität sowie der elektrische Widerstand gemessen. Die Röntgenabsorbtionsspektren sind in Abbildung 5.31 mit simultan gemessenem CeO₂ als Energiereferenz dargestellt. Die Spektren zeigen für alle Proben einen identischen Verlauf. Der erste Wendepunkt liegt bei allen Proben bei derselben Energie (5725 eV) und ist mit einem reinen Ce- f^1 -Zustand in Einklang zu bringen. Im Falle von Ce⁴⁺ (Ce f^0 -Zustand) hätte das Spektrum mit demjenigen von CeO₂ in der Lage der Energie und der Anzahl der erlaubten Übergänge übereinstimmen müssen.

Die Ergebnisse der Messungen der magnetischen Suszeptibilitäten an verschiedenen Proben (Ce₃X)Al sind in Abbildung 5.30 dargestellt. Die Auswertung der ermittelten Daten ist in Tabelle 5.17 zusammengefasst. In allen Proben führen Kristallfeldeffekte zu deutlichen Abweichungen von einem linearen Curie-Weiss-Verhalten. Dies kann eine Erklärung sein, warum die lineare Anpassung der Messdaten im Intervall T = [100; 400] K etwas erhöhte Werte für die magnetischen Momente ergibt, als für Ce f^1 zu erwarten wäre. Aus den magnetischen Messungen ergeben sich somit keine Hinweise auf Ce- f^0 . Das Tieftemperaturverhalten der Proben zeichnet sich durch anti-ferromagnetischen Ordnung in (Ce₃O)Al ($T_N = 9$ K) und (Ce₃N)Al ($T_N = 6$ K) aus. In den carbidischen Proben wurde bis T = 1,8 K kein Hinweis auf eine magnetische Ordnung gefunden.

Die Messungen des elektrischen Widerstands sind in Abbildung 5.29 dargestellt. Das Nitrid (Ce₃N)Al ($\rho_{0 \text{ K}}/\rho_{300 \text{ K}} = 3,8$) zeigt ein Verhalten, das einem schlechten Metall entspricht. Der Widerstand nimmt mit steigender Temperatur nahezu linear zu. Der elektrische Widerstand von Ce₃AlC_{0,82}N_{0,12}O_{0,03} zeigt beim Durchlaufen der Temperatur ein Minimum bei T = 55 K.

Tabelle 5.17:Ergebnisse der Messungen der magnetischen Suszeptibilität an $(Ce_3X_{1-y})Al$ (T = [100; 400] K; Curie-Weiss-Verhalten).

Probe	$\mu_{\rm eff}$ / Ce	$\Theta_{\rm P}$ / K	$T_{\rm N}$ / K
Ce ₃ AlO _{0,952} N _{0,023}	2,74	-116	9
Ce ₃ AlN _{0,95} O _{0,001}	2,46	-32	6
$Ce_{3}AlC_{0,82}N_{0,12}O_{0,03}$	2,60	-69	-

Abbildung 5.29: Messungen des elektrischen Widerstands von Verbindungen (Ce₃X)Al als Funktion der Temperatur.

Abbildung 5.30: Messungen der magnetischen Suszeptibilität an Verbindungen (Ce₃X)Al.

Abbildung 5.31: XAS-Messungen an Proben $(Ce_3X_{1-y})Al$ mit CeO₂ als Referenz. Die Normierung erfolgte auf den Durchstoßpunkt.

In Abbildung 5.32 sind die Ergebnisse von DSC-Messungen (Nb-Ampullen, $\beta = 10$ K/min) an (Ce₃O_{1,09}N_{0,11})Al (rot), (Ce₃N_{0,95}O_{0,01})Al (grün) und (Ce₃C_{0,71}N_{0,14})Al (blau) dargestellt. Die charakteristischen Signale sind in Tabelle 5.18 zusammengefasst.

(Ce ₃ O _{1,09} N _{0,11})Al	$(Ce_3N_{0,95}O_{0,01})Al$	$(Ce_3C_{0,71}N_{0,14})Al$
745 ± °C	$1040 \pm ^{\circ}\mathrm{C}$	$720 \pm 5^{\circ}C$

Tabelle 5.18: Zersetzungstemperaturen von $(Ce_3X^1X^2)AI(X=O, N, C)$.

(Ce₃O)Al und (Ce₃C_{0,71})Al zeigen in den DSC-Messungen ein ähnliches Verhalten. Zunächst ein größeren thermischer Effekt bei etwa 730 °C und anschließend ein identisches Signal bei 860 °C, das mit dem peritektische Punkt von CeAl ([111]: T = 845 °C) in Zusammenhang gebracht werden kann. Das Oxid und das Carbid zersetzen sich bei niedrigeren Temperaturen als das Nitrid. Die Ursache für dieses chemische Verhalten ist noch unklar. Eine Analogie zu den binären Systemen Ce–X ist erkennbar: Carbide und Oxide des Cers bilden verschiedene Phasen und unterschiedlichen Oxidationsstufen des Cers (Ce³⁺ und Ce⁴⁺). Im System Cer-Stickstoff ist lediglich die Verbindung CeN bekannt.

Abbildung 5.32: DSC-Messungen an (Ce₃O)Al, (Ce₃N)Al und (Ce₃C_x)Al.

5.4. (Ce₃X)ln (X = O, N, C) als Auffüllungsvarianten von (Ce₃ \Box)ln

Nachdem die Verbindungen (*SE*₃C)In und (*SE*₃N)In bereits in der Literatur hinreichend dokumentiert wurden und nun umfangreiches Datenmaterial zu (*SE*₃O)In vorliegt (s. S. 95f), soll ein Gehaltschnitt zwischen den binären Phasen (Ce₃ \Box)In und den ternären Phasen (Ce₃X)In (X = O, N, C) untersucht werden. Dabei soll untersucht werden, inwieweit eine binäre intermetallische Phase (hier: (Ce₃ \Box)In) in der Lage ist, ein Nichtmetallatom X (X = O, N, C) in die Struktur aufzunehmen. Eine solche Untersuchung wurde bereits für das System (La₃ \Box)In–(La₃X)In (X = O, N, C, B) durchgeführt [13]. Von intermetallischen Cer-Verbindungen existieren sowohl gemischtvalente – Ce³⁺ neben Ce⁴⁺ – als auch zwischenvalente (Ce^{4-y}; 0 < y < 1). Die umfangreiche Literatur zu Ce₃In ist im Anhang zusammengefasst (s. S. 259ff). Im Folgenden werden Ergebnisse zu den Phasen Ce₃In und (Ce₃O)In sowie den Gehaltschnitten (Ce₃N)In–(Ce₃ \Box)In und (Ce₃C)In–(Ce₃ \Box)In vorgestellt.

(Ce₃□)In

 $(Ce_3\Box)$ In wurde wie auch $(La_3\Box)$ In in zahlreichen Publikationen diskutiert (s. Anhang S. 259). Die Phasendiagramme Ce–In und kristallografischen Eigenschaften von $(Ce_3\Box)$ In wurden völlig unabhängig von physikalischen Eigenschaften untersucht. Metallografisch ist die Existenz dieser Phase abgesichert. Bei der Bestimmung physikalischer Eigenschaften fehlt aber eine ausreichende Charakterisierung der Proben. Wie bei anderen Verbindungen SE_3 In existieren lediglich Angaben zu den Gitterparametern aus Pulverdaten. Die Gitterparameter von Ce₃In aus Pulvern weisen große Standardabweichungen auf.

Im Rahmen dieser Arbeit wurde eine Probe Ce₃In dargestellt und charakterisiert (s. Anhang, S. 261). Das Material zeichnet sich durch Zähigkeit und hohe Duktilität aus. Die Röntgenpulverdiffraktogramme sind von sehr schlechter Qualität, die einzelnen Reflexe sehr breit. Wie bei La₃In bereits ausgeführt (s. S. 35ff) sind breite Reflexe in Röntgenpulverdiffraktogrammen entweder auf Gitterverzerrung (Eigenspannung) oder auf sehr kleine kohärente Gitterbereiche zurückzuführen [106]. Die Präparation der Pulver durch Feilen bedeutet eine hohe mechanische Belastung für das Material. Verzerrungen und eine erhöhte Eigenspannung sind die Folge. Stapelfehler und Eigenspannung treten aber auch schon im Material ohne mechanische Bearbeitung auf, insbesondere bei dichtesten Atomanordnungen wie im Falle von La₃In oder Ce₃In. Die breiten Reflexprofile in den Röntgenpulverdiffraktogrammen sind deshalb entweder auf die Präparation des Pulvers zurückzuführen oder aber eine Eigenschaft der Verbindung selbst. Aus den hier gemessenen Daten kann nicht zwischen einer primitiven oder einer flächenzentrierten kubischen Elementarzelle unterschieden werden. Der erhaltene Gitterparameter liegt mit a = 496,6(8) pm im unteren Bereich der Literaturwerte (496 – 506 pm, s. Anhang 259ff). Messungen der magnetischen Suszeptibilität (s. Abbildung 5.33) geben keine Hinweise auf eine antiferromagnetische Ordnung oberhalb von 1,8 K. Eine deutliche Abweichung von Curie-Weiss-Verhalten, auch oberhalb von 100 K, wird linearem auf starke Kristallfeldeffekte zurückgeführt. Eine lineare Anpassung der Messwerte im Intervall T = [100 K; 350 K] ergibt eine Curie-Temperatur $\Theta_P = -63,0(9) \text{ K}$. Θ_P ist deutlich kleiner als in der Literatur berichtet ([120]: $\Theta_P = 1$ K). Das erhaltene magnetisches Moment für Ce von 2,58 $\mu_{\rm B}$ liegt im Bereich von Ce(4 f^1) (freies Ce³⁺-Ion, 4 f^1 , $\mu_{\rm eff} = 2,535 \,\mu_{\rm B}$). Die Röntgenabsorbtionsspektroskopie (s. Abbildung 5.34) gibt im Rahmen der Auflösung ebenfalls keinen Hinweis auf das Vorliegen von $Ce(4f^0)$ -Anteile.

Abbildung 5.33: Messung der magnetischen Suszeptibilität von Ce₃In bei H = 10 kOe. Rote Linie: Anpassung nach dem Curie-Weiss-Gesetz.

Abbildung 5.34 Röntgenabsorbtionsspektren von Ce₃In und CeO₂ (Referenz).

Synthese und Charakterisierung von (Ce₃O)In

Für die Synthese von (Ce₃O)In wurde im Lichtbogen zunächst eine homogene Kugel aus Ce und CeO₂ (x(Ce) : x(O) = 3 : 1) hergestellt. Durch mehrfaches Aufschmelzen und Wenden im Lichtbogen sollte eine maximale Homogenisierung erreicht werden. Anschließend wurde In (x(In): x(Ce): x(O) = 1:3:1) in gleicher Weise zu diesem Produkt "Ce₃O" hinzugeschmolzen. Die Probe wurde danach in Mo-Folie gewickelt, in Kieselglas eingeschmolzen und wärmebehandelt (170 h, 825 °C, $\beta = 72$ h). Danach wurde ein röntgenografisch phasenreines Pulver erhalten ($Pm\overline{3}m$; Nr. 221; a = 499.68(3) pm s. a. Anhang, S. 272). Die Verhältnisse der Reflexintensitäten stimmen mit dem Model einer Anordnung der Ce- und In-Atome im Cu₃Au-Strukurtyp überein. Aus der Elementaranalyse $(w(O) = 2.53 \pm 0.02 \%; w(N) \le 0.005 \%)$ und unter der Annahme eines molaren Verhältnisses x(Ce): x(In) = 3: 1 resultiert die Summenformel Ce₃InO_{0.87 ± 0.07}. Der elektrische Widerstand (s. Abbildung 5.35) nimmt mit steigender Temperatur zu und weicht unterhalb von 70 K signifikant von linearem Verhalten ab und liegt bei Raumtemperatur mit 58 $\mu\Omega$ cm im Bereich eines schlechten Metalls. Das hohe Restwiderstandsverhältnis von 72,5 $(\rho_{298K}/\rho_{3.8K} = 58 \ \mu\Omega \text{ cm}/0.8 \ \mu\Omega \text{ cm})$ ist ein Indiz für eine gut kristallisierte, einheitliche Probe.

Abbildung 5.35: Messung des elektrischen Widerstands von $Ce_3InO_{0,87 \pm 0,07}$ (a = 499,68(3) pm).

Abbildung 5.36: Messung der magnetischen Suszeptibilität von Ce₃InO_{0,87 ± 0,07} (a = 499,68(3) pm).

Messungen der magnetischen Suszeptibilität (s. Abbildung 5.36) zeigen, dass (Ce₃O)In unterhalb 10 K antiferromagnetisch ordnet. Eine erste schwache Ausordnung der magnetischen Momente erfolgt bei 7.9 ± 0.1 K, eine zweite stärkere magnetische Ordnung wird bei $3,4 \pm 0,1$ K beobachtet (s. Ausschnitt Abbildung 5.36). Die Anpassung von Messdaten (H = 10 Oe; T = [100 K; 400 K]) unter Annahme von Curie-Weiss Verhalten ergibt $\Theta_P = -8,0$ K und ein magnetisches Moment von 2,65 μ_B / Ce. Für ein freies Ce³⁺-Ion in der Gasphase (4f¹-Zustand) wäre 2,535 $\mu_{\rm B}$ zu erwarten. Damit können Anteile von Ce(4f⁰) ausgeschlossen werden. Feldabhängige Messungen bei 1,8 K zeigen, dass (Ce₃O)In Verhalten besitzt (s. Abbildung 5.36). metamagnetisches Bei den angewandten Magnetfeldern sind zwei Übergänge in andere magnetische Strukturen zu erkennen. Die Größenordnung der Magnetisierung der Übergänge ($0,3 \mu B/mol$) ist jedoch klein gegenüber der magnetischen Sättigung der Probe (3 • Ce: 3 • 2,143 μ B/mol) und weitere Übergänge bei höheren Feldern müssen vermutet werden.

Abbildung 5.37: Ce₃InO_{0,87±0,07} (a = 499,68(3) pm): Messungen der magnetischen Suszeptibilität: Magnetisierung M, in Abhängigkeit des magnetischen Feldes bei T = 1,8 K.

Untersuchung zum Gehaltschnitt Ce₃In–(Ce₃N)In

Für die Untersuchung eines Gehaltschnitts Ce₃In–(Ce₃N)In im ternären System Ce–In–N wurden Proben mit Zusammensetzungen Ce₃InN_{1–y} (y = 0,12; 0,14; 0,4; 0,48; 0,8; Analysen s. Tabelle 5.19) hergestellt.

Tabelle 5.19:	Ce_3InN_{1-y} : Synthese und Ergebnisse der Elementaranlysen (O, N) sowie
	der Röntgenbeugung am Pulver.

Wärmebehandlung	<i>w</i> (N)	w(O)	У	Zusammensetzung	<i>a</i> / pm
Α	$2,25 \pm 0,33$	≤ 0,25	0,12	$Ce_{3}InN_{0,88 \pm 0,13}$	504,89(7)
В	$1,34 \pm 0,02$	≤ 0,25	0,48	$Ce_{3}InN_{0,52 \pm 0,13}$	504,63(4)
С	$2,19 \pm 0,02$	$0,18 \pm 0,06$	0,14	$Ce_{3}InN_{0,86\pm0,02}O_{0,06\pm0,02}$	504,64(6)
С	-	-	0,4	Ce ₃ InN _{0,6} **	504,62(3)
С	-	-	0,8	Ce ₃ InN _{0,2} **	*

A: 1. $\beta = 113 \text{ °C/h}$; 2. 48 h, 700 °C; 3. $\beta = 90 \text{ °C/h}$; 4. 880 °C, 168 h; 5. $\beta = -72 \text{ °C/h}$, 6. 20 °C

B: 4,5 Monate, 700 °C, in Wasser abgeschreckt

C: 672 h, 900 °C, in Wasser abgeschreckt, Proben wurden anschließend einer metallografischen Untersuchung unterworfen.

* Probe zu hart um Pulver ausreichender Qualität herzustellen.

** Zusammensetzung aus der Einwaage.

Ce, CeN und In wurden im Lichtbogen in den erforderlichen molaren Verhältissen mehrmals aufgeschmolzen, um eine maximale Homogenisierung zu erzielen. Die Schmelzkugeln wurden in Ta-Ampullen eingeschweißt, in Kieselglas eingeschmolzen und wärmebehandelt (s. Tabelle 5.19). Anschließend wurden die Produkte auf den N- und O-Gehalt analysiert sowie mit Röntgenbeugung am Pulver charakterisiert (s. Tabelle 5.19, Abbildung 5.21). Zähigkeit und Duktilität nehmen mit sinkendem N-Gehalt der Probe zu. Metallografische Schliffe wurden an Proben der Zusammensetzung Ce₃InN_{0,86 ± 0,02}O_{0,06 ± 0,02} (y = 0,14), Ce₃InN_{0,6} (y = 0,4) und Ce₃InN_{0,2} (y = 0,8) angefertigt.

Das Schmelzverhalten dieser Proben während der Wärmebehandlung (900 °C) korreliert mit dem N-Gehalt. Die Schmelzkugel aus dem Lichtbogen mit der nominellen Zusammensetzung Ce₃InN_{0,2} war nach der Wärmebehandlung aufgeschmolzen. Im Falle von Ce₃InN_{0,6} war das ursprüngliche sphärische Erscheinungsbild noch erkennbar, allerdings war die Kugel deformiert. Ce₃InN_{0,86 ± 0,02}O_{0,06 ± 0,02} zeigte keine Veränderung des äußeren Erscheinungsbilds durch die Wärmebehandlung. Alle metallografischen Schliffe zeigen ähnliche mehrphasige Gefüge. Als Beispiel sind Schliffe der Probe Ce₃InN_{0,2} in Abbildung 5.38 – 5.40 dargestellt. In der Hellfeldaufnahme (Abbildung 5.38) ist eine helle Phase 1 neben einer dunklen Matrix zu erkennen. Phase 1 wird aus konkav gewölbten Körnern gebildet. Dies ist ein Indiz, dass Phase 1 einen höheren Schmelzpunkt aufweisst als die dunklere Matrix. Die globale Betrachtung der Gefüge der metallografischen Schliffe zeigt für Ce₃InN_{0,86 ± 0,02}O_{0,06 ± 0,02} eine homogene Verteilung aller Phasen über die gesamte Probe, die helle Phase 1 ist dabei vorherrschend. Der Anteil an Phase 1 verringert sich über die Proben mit der Zusammensetzung Ce₃InN_{0,6} und Ce₃InN_{0,2}. Gleichzeitig ist in der Probe Ce₃InN_{0,6} und verstärkt in Ce₃InN_{0,2} ein Gradient der Phasenverteilung über die gesamte Probe zu beobachten (s. a. Abbildung 5.38). Dieser Gradient korreliert mit dem beobachteten Schmelzverhalten der Probe und läßt auf eine erhöhte Mobilität der Phasenpartikel innerhalb der Probe schließen.

Abbildung 5.38 Metallografischer Schliff von Ce₃InN_{0.2}, Hellfeldaufnahme, 5 x Objektiv.

In den vergrößerten Ausschnitten der metallografischen Aufnahmen in Abbildung 5.39 und Abbildung 5.40 ist zu erkennen, dass die dunklere Matrix aus mehreren Phasen zu bestehen scheint. Bereiche, die etwas heller sind als Phase 1 wechseln mit dunklen Einsprenkelungen ab. Diese dunklen Bereiche richten sich bei der Präparation des Schliffs nach der Schleifrichtung aus. Dies ist ein Indiz für Schleifmaterial (SiC/Diamant), dass in eine duktile oder sehr weiche Probe gedrückt wurde. Die EDX-Analysen zeigen bei allen Proben in allen Phasen ein molares Ce–In-Verhältnis von 3 : 1. Stickstoff kann durch EDX-Messungen nicht quantifiziert werden.

Abbildung 5.39 Metallografischer Schliff von $Ce_3InN_{0,2}$, Hellfeldaufnahme, 10 x Objektiv.

Abbildung 5.40 Metallografischer Schliff von Ce₃InN_{0,2}, Hellfeldaufnahme, 5 x Objektiv.

Abbildung 5.41: Röntgenpulverdiffraktogramme (Cu- $K\alpha_1$ -Strahlung) von (Ce₃N)In [9] und (Ce₃N_{1-y})In (s. Tabelle 5.19). Die Pfeile weisen auf Reflexe von Si hin (interner Standard).

Alle Röntgenpulverdiffraktogramme (s. Abbildung 5.41) zeigen neben Si ausschließlich Reflexe einer kubischen Phase. Die ermittelten Gitterparameter sind innerhalb des experimentellen Fehlers konstant (s. Tabelle 5.19: a = 504,89(2) - 504,62(3) pm) und weichen nicht signifikant von dem für (Ce₃N)In bestimmten Wert ab ([9]: a = 504,89(2) pm). Alle Reflexprofile im Röntgenpulverdiffraktogramm der Probe Ce₃InN_{0,52±0,01} (s. Abbildung 5.41) sind asymmetrisch und weichen dabei zu höheren Winkeln von einer symmetrischen Form ab.

Aus den metallografischen Gefügen ist ersichtlich, dass bei 900 °C mindestens zwei Phasen existieren: (Ce₃N)In (Phase 1) und Ce₃In (Gefüge wahrscheinlich durch Schleifmaterial verfälscht). Aus der EDX-Analyse ergibt sich für beide Phasen ein molares Verhältnis Ce : In von 3 : 1. (Ce₃N)In besitzt den höheren Schmelzpunkt/Zersetzungspunkt (T > 1100 °C [9]) als Ce₃In ($T = 910 \pm 10$ °C [107, 121]) und sollte deshalb auch die kugelförmigen Körner im Gefüge bilden. Der Anteil von Phase 1 ((Ce₃N)In) verringert sich mit fallendem N-Gehalt, derjenige der dunklen Matrix nimmt dementsprechend zu. Ce₃In ist duktil (s. S.67), wohingegen, (Ce₃N)In ein sprödes Material ist [9]. Dies ist vermutlich auch der Grund, warum in den Röntgenpulverdiffraktogrammen Ce₃In in einem Gemisch mit (Ce₃N)In erst bei realtiv hohen Phasenanteilen (y = 0,48) beobachtet wird: Die asymmetrischen Reflexprofile im Röntgenpulverdiffraktogramm von Ce₃InN_{0,52±0,01} (s. Abbildung 5.41) werden als eine Überlappung der Reflexe der beiden kubischen Phasen (Ce₃N)In (512,9 pm) und Ce₃In (496 pm) interpretiert.

Die Röntgenpulverdaten zeigen ab einer Zusammensetzung Ce₃InN_{0,52±0,01} deutlich asymmetrische Reflexprofile, die als ein Gemenge aus Ce₃In und (Ce₃N)In interpretiert werden. Metallografische Schliffe zeigen zweiphasige Gefüge von Proben mit Zusammensetzungen zwischen Ce₃InN_{0,86} und Ce₃InN_{0,20}. Das Verhältnis der beiden Phasen korreliert dabei mit dem N-Gehalt. Diese Ergebnisse begründen die Annahme, dass Gehaltschnitt des Systems Ce₃In–Ce₃InN eine Mischungslücke existiert. Die Phasenbreiten der beiden Randphasen Ce₃In und (Ce₃N)In auf diesem Gehaltschnitt ist gering. Die Grenzzusammensetzungen für einphasige Proben (Ce₃N_{1-y})In und Ce₃In (+N) liegen außerhalb des untersuchten Intervalls Ce₃InN_{1-y} y = [0,2; 0,88]. Untersuchung des Gehaltschnitts Ce₃In–(Ce₃C)In

Für (Ce₃C)In (a = 510 pm) wird in der Literatur eine Unterbesetzung der Kohlenstofflage diskutiert [122]. Bei einer Auftragung der kubischen Gitterparameter der Verbindungen (*SE*₃C)In gegen die Ionenradien *SE*³⁺ nach Shannon [8] ergibt sich ein linearer Verlauf in von dem die Ce-Verbindung nur geringfügig abweicht (s. Abbildung 5.42).

Abbildung 5.42: Gitterparameter *a* metallreicher Perowskite (SE_3C)In ([11]) als Funktion des Ionenradius ([8], sechsfache Koordination von SE^{3+}). *a* von (Ce₃C)Al weicht signifikant von einem linearen Verlauf der Gitterparameter ab.

Im Verlauf dieser Arbeit wurden mikrokristalline Pulver verschiedener Zusammensetzung Ce₃InC_{1-y} dargestellt und charakterisiert. Dabei sollte der Gehaltschnitt Ce₃In–(Ce₃C)In untersucht werden und die Fragen der genauen Zusammensetzung von (Ce₃C)In geklärt werden. Die Synthese der Proben erfolgte aus den Elementen. Zunächst wurden Ce, C und In im Lichtbogen zusammengeschmolzen und dann einer Wärmebehandlung unterworfen (s. Tabelle 5.20). Anschließend wurden die Proben auf Gehalte an C, N und O analysiert (s. Tabelle 5.20) und mit Röntgenbeugung an Pulvern charakterisiert (s. Abbildung 5.43). An röntgenografisch phasenreinen Proben erfolgte die Messung der magnetische Suszeptibilität (s. Abbildung 5.44 und Tabelle 5.21). An Ce₃InC_{0,934±0,003}N_{0,025±0,001} wurde darüber hinaus der elektrische Widerstand in Abhängigkeit der Temperatur gemessen (s. Abbildung 5.45).

	У	w(C) / %	w(N) / %	w(O) / %	Zusammensetzung	T(t)
1	0,85	$0,34 \pm 0,05$	$0,057 \pm 0,009$	n. d. \leq 0,25	$Ce_{3}InC_{0,152\pm0,022}N_{0,022\pm0,004}$	A
2	0,8	$0,\!45 \pm 0,\!010$	$0,044 \pm 0,003$	n. d. \leq 0,10	$Ce_{3}InC_{0,201\pm0,005}N_{0,016\pm0,001}$	В
3	0,55	0,99 ± 0,01	$0,078 \pm 0,007$	n. d. \leq 0,25	$Ce_{3}InC_{0,446\pm0,005}N_{0,030\pm0,003}$	А
4	0,58	$0,94 \pm 0,06$	$0,092 \pm 0,008$	n. d. \leq 0,25	$Ce_{3}InC_{0,423\pm0,003}N_{0,036\pm0,003}$	С
5	0,32	$1,50 \pm 0,02$	$0,\!10 \pm 0,\!01$	n. d. \leq 0,25	$Ce_{3}InC_{0,679\pm0,009}N_{0,039\pm0,003}$	А
6	0,07	$2,052 \pm 0,007$	$0,065 \pm 0,003$	n. d. \leq 0,25	$Ce_{3}InC_{0,934\pm0,003}N_{0,025\pm0,001}$	2 • C

Tabelle 5.20: Elementaranalysen an Proben der Zusammensetzung $(Ce_3C_{1-y})In$.

T(*t*): Programm der Wärmebehandlung:

A: 12h auf 900 °C 168h halten, 336h abkühlen.

B: 10h von RT auf 900 °C; 300 h halten; 10 h auf Raumtemperatur; danach 5 Monate bei 300 °C.

C: Präparation in Ta-Ampullen, dann in den Gruppenofen bei 900 °C, abschrecken nach 449 h durch Zerschlagen der schützenden Kieselglasampulle in Wasser.

Aus den Röntgenpulverdiffraktogrammen ist ersichtlich, dass zwischen Ce₃In und (Ce₃C)In eine Mischungslücke existiert. Zwischen den Zusammensetzungen 'Ce₃InC_{0,15}' und etwa 'Ce₃InC_{0.4}' werden ausschließlich zweiphasige Produkte erhalten. Die kubischen Gitterparameter dieser zwei Phasen streuen in einem engen Bereich (a = 496 - 507 pm, s. Tabelle 5.21). Der kleinere Gitterparameter (a = 498 - 497 pm) liegt im Bereich der binären Phase Ce₃In (a = 496,6(8) pm s. S. 67ff). Der größere Gitterparameter schwankt in Abhängigkeit von der Wärmebehandlung. Das Verhältnis der Reflexintensitäten beider Phasen entspricht einer dichtesten Packung aus Ce und In-Atomen. Die Phase mit dem größeren Gitterparameter im Röntgenpulverdiffraktogramm wird (Ce₃C_{1-y})In zugeordnet. Eine deutliche Abhängigkeit der Phasenbreite von der Wärmebehandlung ergibt sich auch aus den Ergebnissen zu den Proben der Zusammensetzung $Ce_3InC_{0,446\pm0,005}N_{0,030\pm0,003}$ und $Ce_3InC_{0.423 \pm 0.003}N_{0.036 \pm 0.003}$ (3, 4 s. Tabelle 5.20): (4) wurde nach dem Abschrecken aus 900 °C röntgenografisch phasenrein erhalten, während (3) nach langsamen Abkühlen im Röntgenpulverdiffraktogramm zwei Phasen zeigte, obgleich für die Probe ein höherer C-Gehalt bestimmt wurde (s. a. Abbildung 5.46, S. 84). Im Bereich zwischen den Zusammensetzungen 'Ce₃InC_{0,4}' und 'Ce₃InC_{0,93}' wurde röntgenografisch einphasiges Produkt erhalten. Die Probe $Ce_3InC_{0.934 \pm 0.003}N_{0.025 \pm 0.001}$ ist ein Beleg für eine nahezu vollständige Besetzung der C-Position nach der Formel (Ce₃C_{1.0})In. Der Gitterparameter von $(Ce_3C_{1-\nu})$ In steigt von 504,14(2) pm (4) über 509,94(1) pm (5) zu 512,19(3) pm (6) an und lässt ein Verhalten nach der Vegard'schen Regel vermuten (s. a. Abbildung 5.46). Die magnetischen Messungen (s. Abbildung 5.44) zeigen für phasenreine ternäre Carbide (Ce_3C_{1-y}) In eine antiferromagnetische Ordnung unterhalb von 10 K. T_N korreliert mit dem

Kohlenstoffgehalt und dem Gitterparameter *a*. Die Néel-Temperatur sinkt zusammen mit dem Gitterparameter *a* und dem C-Gehalt in der Probe. Der als Funktion der Temperatur gemessene elektrische Widerstand (s. Abbildung 5.45) von Ce₃InC_{0,934±0,003}N_{0,025±0,001} entspricht nicht dem eines idealen Metalls. Zwar sinkt der Widerstand mit fallender Temperatur, nicht jedoch linear. Der Widerstand bei ρ_{298} liegt mit 160 $\mu\Omega$ cm im Grenzbereich ($\approx 100 \ \mu\Omega$ cm) zwischen einem schlechtem Metall und einem Halbleiter.

Tabelle 5.21:Gitterparameter der kubischen Phasen $(Ce_3C_{1-y})In$. Für zweiphasigeProdukte wurden beide Gitterparameter angegeben. Weiter sind dieErgebnisse der magnetischen Messungen an röntgenografisch einphasigenProben aufgeführt.

	Zusammensetzung	a_1 / pm	<i>a</i> ₂ / pm	$T_{\rm N}$ / K	$\Theta_{\rm P}$ / K	$\mu_{ m eff}/\mu_{ m B}$
1	$Ce_{3}InC_{0,152\pm0,022}N_{0,022\pm0,004}$	507,50(3)	498,33(4)	-	-	-
2	$Ce_{3}InC_{0,201\pm0,005}N_{0,016\pm0,001}$	507,4(1)	497(3)	-	-	-
3	$Ce_{3}InC_{0,446\pm0,005}N_{0,030\pm0,003}$	502,31(2)	497,2(3)	-	-	-
4	$Ce_{3}InC_{0,423\pm0,003}N_{0,036\pm0,003}$	504,14(2)		$2,5 \pm 0,5$	-42,65	2,61
5	$Ce_{3}InC_{0,679\pm0,009}N_{0,039\pm0,003}$	509,94(1)		$2,8 \pm 0,3$	-46,16	2,82
6	$Ce_{3}InC_{0,934\pm0,003}N_{0,025\pm0,001}$	512,19(3)		$4,8 \pm 0,3$	-32,40	2,50

Abbildung 5.43: Röntgenpulverdiffraktogramme (Cu- $K\alpha_1$ -Strahlung) von (Ce₃N_{1-y})In (s. Tabelle 5.21). Die Pfeile kennzeichnen die Reflexe von Si (interner Standard).

Abbildung 5.44: Messungen der magnetischen Suszeptibilität an röntgenografisch phasenreinen Proben $(Ce_3C_{1-y})In$.

Abbildung 5.45: Messung des elektrischen Widerstands als Funktion der Temperatur an $Ce_3 In C_{0,934\,\pm\,0,003} N_{0,025\,\pm\,0,001}.$

5.5. Zusammenfassung und Diskussion

In den vorangegangenen Kapiteln 5.1 – 5.4 wurde Ergebnisse zu den binären Phasen SE_3M und den ternären Verbindungen (SE_3X)M (SE = La, Ce; M = Al, In) vorgestellt.

Dabei wurde $La_{16}Al_{13}$ erstmalig an Einkristallen als neue binäre Verbindung identifiziert und an mikrokristallinem Pulver charakterisiert. $La_{16}Al_{13}$ kristallisiert in der Raumgruppe $P\overline{6} 2m$ (Nr. 189). Diese Phase repräsentiert einen bisher unbekannten Kristallstrukturtyp, der im Wesentlichen aus elf-gliedrigen Barrelankäfigen Al_{11} und Edshammar-Polyedern $AlLa_{11}$ aufgebaut wird. Die Phase ist ein schlechter metallischer Leiter und zersetzt sich oberhalb 700 °C. Die Existenz von $La_{16}Al_{13}$ macht eine eingehendere Untersuchung des bisher bekannten Phasendiagramms La–Al in diesem Bereich erforderlich.

Die neuen Verbindungen (La₃O)Al (a = 503,21(2) pm), (Ce₃O)Al (a = 495,34(5) pm) und (Ce₃O)In (a = 499,68(3) pm) wurden erstmals identifiziert und charakterisiert. Das bereits beschrieben Oxid (La₃O)In wurde ebenfalls dargestellt. Der ermittelte Gitterparameter (a = 507,08(2) pm) weicht signifikant vom Literaturwert ab, ordnet sich allerdings mühelos in die Reihe der anderen Verbindungen (*SE*₃O)In ein (s. Kap. 0 S. 95ff). Die Verbindungen kristallisieren im Strukturtyp des kubischen Perowskits. Sauerstoff kann somit wie Stickstoff und Kohlenstoff eine kubische Teilstruktur aus *SE*₃Al bzw. *SE*₃In (Cu₃Au-Strukturtyp) stabilisieren. Die Aufweitung des Gitters *SE*₃*M* ist entsprechend einem ionischen Konzept ($r(O^{2^-}) < r(N^{3^-}) < r(C^{4^-})$) geringer als bei den analogen Nitriden und Carbiden. Die gemessenen elektrischen Widerstände von Ce₃AlN_{0,95}O_{0,001}, Ce₃AlC_{0,82}N_{0,12}O_{0,03}, Ce₃InO_{0,87±0,07} und Ce₃InC_{0,934±0,003}N_{0,025±0,001} weisen die Verbindungen (*SE*₃*X*)Al und (*SE*₃*X*)In als schlechte metallische Leiter aus. Messungen der magnetischen Suszeptibilität und XAS-Spektroskopie zeigen, dass in allen Verbindungen ein elektronischer Zustand 4 f^{-1} (Ce³⁺) verwirklicht ist.

Unter den hier angewandten Bedingungen (T = 600 °C) konnte sowohl in binären Ce–Al-Proben als auch in ternären Proben Ce–Al–X (X = C, N, O) kein kubisches β -Ce₃Al nachgewiesen werden. Vielmehr wurde auch bei 600 °C ausschließlich α -Ce₃Al beobachtet. Dies steht im Widerspruch zu der in der Literatur aus DTA-Messsungen als "deutlich sichtbar" beschriebenen Phasenumwandlung (α -Ce₃Al/ β -Ce₃Al; T = 230 °C). Wie bereits vermutet [111] ist das Radienverhältnis von Ce und Al zu unterschiedlich, um eine rein binäre Struktur im Cu₃Au-Strukturtyp zu realisieren. Stattdessen wurden die ternären Phasen (Ce₃N)Al und (Ce₃O)Al identifiziert. Der Gehaltschnitt Ce₃AlC_{0,0} bis Ce₃AlC_{0,6} ist in den Röntgenpulverdiffraktogrammen α -Ce₃Al zu erkennen. Daneben werden Reflexe beobachtet, die zwei dicht nebeneinander liegenden kubischen Phasen zugeordnet werden. Proben mit einer Zusammensetzung (Ce₃C_{1- ν})Al ($\gamma < 0,3$) zeigen Reflexe einer bisher unbekannten ternären Phase im System Ce-Al-C. Mögliche Verbindungen sind Ce₅Al₃C_x oder ein bisher unbekanntes Carboaluminat. Letzteres wird in Analogie zu den Nitridoaluminaten Ca₃Al₂N₄ [123], Sr₃Al₂N₄ [124] und Ca₆Al₂N₆ [125] vermutet. Der Gehaltschnitt La₃Al-(La₃N)Al weist große Ähnlichkeiten zum System Ce₃Al-(Ce₃N)Al auf. In der Probe der Zusammensetzung $La_3AlN_{0.64\pm0.02}$ wurde sowohl in der Röntgenbeugung als auch in der DSC-Messung die binäre Phase La₃Al (Mg₃Cd-Strukturtyp) beobachtet. Im Rahmen des experimentellen Fehlers sind die Gitterparameter von (La₃N)Al in allen Proben identisch. Diese beiden Beobachtungen sprechen für eine sehr geringe Phasenbreite (La₃ $N_{1-\nu}$)Al. Die Synthese von phasenreinen Produkten gelang bisher nicht. Die Synthese der ternären Phasen (La₃X)Al (X = C, N, O) wird – im Gegensatz zu (Ce₃X)Al (X = C, N, O) – vermutlich durch die Verhältnisse im Bereich des Phasendiagramms La–Al mit 50 % < x(La) < 75 % erschwert. Die Kenntnis über die bisher unbekannte Phase La₁₆Al₁₃ lässt einen anderen Verlauf des Phasendiagramms erwarten als derzeit in der Literatur beschrieben ist. Aus den Röntgenbeugungsexperimenten an den Phasen Ce₃In und La₃In kann zwischen einer ungeordneten (kfz, $Fm\overline{3}m$) und einer geordneten (Cu₃Au-Strukturtyp, $Pm\overline{3}m$) Struktur nicht unterschieden werden. Die Verbindungen (SE₃ \square)In als Gastverbindung für das Nichtmetallatom X zu beschreiben ist somit schwierig. Eine sehr spekulative Interpretation der Situation zur Struktur der Phasen SE₃In ergibt sich in Analogie zur Phase Cu₃Au. In Cu₃Au ordnen die Cu- und Au-Atome erst deutlich unterhalb der Liquiduskurve (910 °C) bei 390 °C aus [126]. Oberhalb dieser Temperatur liegt völlige Mischbarkeit der beiden Elemente vor und die Verbindungen kristallisieren in kubisch dichtesten Packungen mit statistischer Unordnung der Atome. Wegen der niedrigen Ausordnungstemperatur und der damit verbundenen verringerten Diffusion können beim Abkühlen metastabile Domänen entstehen, die lokal geordnet das SE oder In im Überschuss bezogen auf die Zusammensetzung SE₃In aufweisen. Die kohärenten Gitterbereiche sind klein und die Variation der Atomabstände groß. Dies ergibt breite Reflexe im Röntgenbeugungsexperiment, die auch bei den binären Phasen SE_3 In erhalten wurden. Im Falle der Stickstoff- und der Kohlenstoffverbindungen konnte keine kontinuierliche Mischungsreihe SE_3 In–(SE_3X)In (SE = La, Ce; X = N, C) gefunden werden. Vielmehr liegt in beiden Fällen eine Mischungslücke vor. Abbildung 5.46 veranschaulicht diese Beobachtung.

Abbildung 5.46: Gitterparameter als Funktion des Nichtmetallgehalts (1-y) aus der chemischen Analyse (C, N) von Proben des Gehaltschnitts $SE_3In-(SE_3X)In$ (SE = La, Ce; X = N (oben), C (unten; für zwei Proben (rote Pfeile) ist die Wärmebehandlung angegeben)).

In Abbildung 5.46 sind die kubischen Gitterparameter verschiedener Probe aus den Gehaltschnitten $SE_3In-(SE_3X)In \equiv (SE_3X_{1-y})In$ (SE = La, Ce; X = N, C) als Funktion des Nichtmetall-Gehalts, (1-y) aus der chemischen Analyse (C, N), dargestellt. Aus der Grafik ist ersichtlich, dass die Werte der Gitterparameter bei allen Zusammensetzungen der ternären Nitride innerhalb des experimentellen Fehlers konstant sind. Aus den ergänzenden DTA-Messungen und metallografischen Schliffen ist bekannt, dass diese Proben zweiphasig sind. Lediglich die ternäre Phasen (SE_3N)In werden im Röntgenpulverdiffraktogramm beobachtet, weil die Verbindungen SE_3In schlecht kristallisieren. Dem gegenüber lassen die abnehmenden Gitterparameter der ternären Carbide (SE_3C_{1-y})In bei abnehmendem C-Gehalt eine deutliche Phasenbreite und ein Verhalten nach der Vergard'schen Regel bis zu einem Grenzwert vermuten. Oberhalb dieses Grenzwertes von y liegt ein Zweiphasengebiet aus SE_3In und (SE_3C_{1-y})In vor. Proben mit ähnlicher Zusammensetzung Ce_3InC_{1-y} ($y \approx 0,6$) zeigen im Röntgenpulverdiffraktogramm einmal einphasiges Produkt, einmal mehrphasiges Produkt, je nach Wärmebehandlung. Dies weißt auf eine deutliche Temperaturabhängigkeit der Phasenbreite hin.

6. $(SE_3X)M$ mit SE = La – Lu, M = Al, Ga, In, Sn; X = O, N

Erste Untersuchungen zu den Verbindungen (SE_3X)M stammen aus den Jahren 1965 bis 1970 (s.a. Kap. 2.2 s. S. 7). Der Schwerpunkt lag dabei vornehmlich bei den Carbiden (SE_3C)M (M = Al, Ga, In, Tl, Sn, Pb) [10, 11, 34 – 38].

Im Vergleich dazu ist die Kenntnis über ternäre Nitride der Zusammensetzung (SE_3N)M stückhaft: Untersuchungen zu den Systemen Nd–M–N (M = Al, Ga, In, Tl, Sn, Pb) erbrachten Hinweise auf L_1 2-Phasen (anti-Perowskit) der Zusammensetzung Nd₃MN. Darüber hinaus existieren Belege für ternären Nitride (SE_3N)Al (SE = La, Ce, Pr, Nd, Sm) [90] und Hinweise für die Phase (Ce₃N)Sn [127] (s. Fußnote 25, S. 100). Die Verbindungen (SE_3N)In wurden phasenrein dargestellt und charakterisiert [9].

Sauerstoff wurde zwar als strukturstabilisierendes Element in den Phasen $(SE_3\Box)M$ (Cu₃Au-Strukturtyp) diskutiert [11, 118], lediglich (La₃O)In [13] wurde aber bisher charakterisiert. Zahlreiche Verbindungen der Zusammensetzung $(SE_3\Box)M$ (M = Al, Ga, In, Sn; Cu₃Au-Strukturtyp) sind berichtet worden. Die Angaben zur Existenz dieser Phasen mit M = Al, Ga, Sn sind widersprüchlich und eine Stabilisierung durch ein drittes Element erscheint möglich [11, 118].

Der Schwerpunkt der meisten Arbeiten zu ternären Verbindungen (SE_3X)M liegt auf der Bestimmung der Gitterparameter der kubischen Elementarzelle. Die Möglichkeit einer Unterbesetzung auf der Lage des Nichtmetall-Atoms wird zwar erwähnt [11, 34], experimentel bewiesen wurde eine Vollbesetzung jedoch nur für die Verbindungen ($SE_3N_{1,0}$)In [9, 128]. Eine Kombination aus röntgenografisch phasenreinen Proben mit Messungen physikalischer Eigenschaften, wie des elektrischen Widerstands und der magnetischen Suszeptibilität, wurden bisher nur in zwei Arbeiten beschrieben [9, 128].

In den folgenden Unterkapiteln werden die Verbindungen (SE_3X)M an Hand des Hauptgruppen-Metalls M in der Reihe der Seltenerd-Metalle (La – Lu) beschrieben. Bisher unbekannte Verbindungen (SE_3X)M (X = O, N; M = AI, Ga, In, Sn) werden charakterisiert und zusammen mit Messungen der magnetischen Suszeptibilität und des elektrischen Widerstands sowie der Röntgenabsorbtionsspektroskopie an röntgenografisch phasenreinen Proben diskutiert. Neben Fragen nach dem elektronischen Zustand der Seltenerd-Metalle und der Leitfähigkeit der Verbindungen wird dabei weiteren Hinweisen für die Stabilisierung vermeintlich binärer Phasen SE_3M durch Nichtmetallatome O und N nachgegangen. Langfristiges Ziel dieser Untersuchungen ist ein tieferes Verständnis der metallischen Bindung durch den Vergleich einer aus *SE* dominierten Metallunterstruktur bei gleichzeitiger Variation mindestens einer Komponente *M* oder *X* in den Verbindungen $(SE_3X)M$.

6.1. Verbindungen (SE_3X)Al ($X = \Box$, O, N)

Die Verbindungen (SE_3X)Al (SE = La und Ce) wurden bereits ausführlich diskutiert (s. S. 21ff). Die in der Literatur beschrieben kubischen Phasen ($SE_3\Box$)Al (Cu₃Au-Strukturtyp) wurden auf den Einbau eines stabilisierenden Nichtmetallatoms wie O, N und C zurückgeführt. Darüber hinaus wurden kubische Phasen ($SE_3\Box$)Al mit SE = Pr, und Sm beschrieben [74] (s. a. Tabelle 6.1). Die Existenz von (Sm₃ \Box)Al ist allerdings umstritten [129, 130]. Im System Nd–Al ist nur eine hexagonale Phase (Mg₃Cd-Strukturtyp) der Zusammensetzung Nd₃Al bekannt. Nitride der Zusammensetzung (SE_3 N)Al wurden in zwei Arbeiten [10, 90] berichtet. Die Gitterparameter der kubischen Elementarzellen der darin beschriebenen Verbindungen sind in Tabelle 6.1 zusammengefasst. Kubische Perowskite (SE_3 N)Al wurden bisher nur für SE = La, Ce, Pr, Nd und Sm beobachtet. Ternäre Oxide der Zusammensetzung (SE_3 O)Al sind bisher nicht beschrieben worden.

Tabelle 6.1:Kristallstrukturdaten zu Verbindungen der Zusammensetzung SE_3A1
(SE = Pr, Nd) nach Literaturangaben und Gitterparameter von Phasen
 $(SE_3N)A1$ nach [90].

Verbindung	Strukturtyp	<i>a</i> / pm	<i>c</i> / pm	Literatur	Verbindung	<i>a</i> / pm
Pr ₃ Al	Cu ₃ Au	500,7	-	[74]	(La ₃ N)Al	529
Pr ₃ Al	Cu ₃ Au	495,0(1)	-	[117]	(Ce ₃ N)Al	500,8
Pr ₃ Al	Mg ₃ Cd	699,1	542,6	[117]	(Pr ₃ N)Al	497,7
Pr ₃ Al	Mg ₃ Cd	700,22	542,5	[131]	(Nd ₃ N)Al	493,9
Nd ₃ Al	Mg ₃ Cd	696,8	540,7	[132]	(Sm ₃ N)Al	486,19
Sm ₃ Al	Cu ₃ Au	490,1	-	[74]		

In dieser Arbeit wurden Versuche zur Synthese von (SE_3X) Al (X = O, N; SE = La - Lu)durchgeführt. Die Synthese der Proben variiert in Abhängigkeit von den verwendeten Edukten, insbesondere dem Seltenerd-Metall. Details zur Synthese sind im Anhang dargestellt. Allgemein wurde für die Synthese Seltenerd-Metall und Aluminium sowie *SE*N als Stickstoffquelle und die entsprechenden Seltenerd-Oxide als Sauerstoffquelle verwendet. Die Einwaagen der Elemente und Nichtmetallkomponenten entsprachen den Zielzusammensetzungen SE₃AlN und SE₃AlO. Bei der Synthese mit leichteren Seltenerd-Metallen wurden die Edukte im Lichtbogen durch Aufschmelzen homogenisiert, bei den schwereren Seltenerd-Metallen wurde zunächst eine der Nichtmetallkomponente entsprechende Legierung aus SE und Al (SEN: "SE₂Al"; SE₂O₃: "SE₇M₃", CeO₂: "Ce₅M₂") im Lichtbogen hergestellt, zu Pulver verrieben, mit der Nichtmetallkomponente gemischt und zu einer Tablette verpresst. Alle Proben wurden nach diesen Vorbereitungen in Ta-Ampullen eingeschweißt, in Kieselglasampullen eingeschmolzen und einer Wärmebehandlung nach Seltenerd-Metall unterworfen. Je folgte eine erneute Homogenisierung der Probe durch Aufmahlen in einer Achatreibschale und eine oder weitere Wärmebehandlung(en). Die erhaltenen Proben wurden nach der Synthese mit Röntgenbeugung am Pulver und Elementaranalysen auf Sauerstoff und Stickstoff – zum Teil auch auf Wasserstoff - charakterisiert (s. Tabelle 6.2). Weiter wurden DSC-Messungen angefertigt. An röntgenografisch phasenreinen Proben wurden der elektrische Widerstand und die magnetische Suszeptibilität in Abhängigkeit von der Temperatur gemessen. Die Ergebnisse der Röntgenbeugung an Pulvern und die DSC-Messungen sind ausführlich im Anhang dokumentiert und in der Tabelle 6.2 und 6.3 zusammengefasst. Die Reflexe der Röntgenpulverdiffraktogramme der beschriebenen Verbindungen lassen sich ausnahmslos kubisch indizieren. Das Verhältnis der Reflexintensitäten stimmt mit einer geordneten kubischen dichtesten Packung SE₃Al im Sinne des Cu₃Au-Strukturtyps überein. Hinweise auf eine Abweichung von der kubischen Symmetrie (Verzerrung) wurden nicht beobachtet. Die Gitterparameter der ternären Verbindungen (SE_3N)Al mit SE = La, Ce, Pr, Nd und Sm aus eigenen Versuchen waren innerhalb des experimentellen Fehlers mit den Literaturdaten [90] identisch. Darüber hinaus gelang die Synthese von $(SE_3N)A1$ mit SE = Tb und Gd in Form phasenreiner Produkte. Die Diffraktogramme von Proben mit *SE* = Dy und Ho zeigten Reflexe von SEN neben (SE₃N)Al. Im Unterschied zu den Arbeiten von J. C. Schuster [90] wurde SEN anstelle von AlN als Stickstoffquelle verwendet. Während in [90] Temperaturen

zwischen 600 und 800 °C angewandt wurden, gelang die erfolgreiche Synthese der ternären Verbindungen SE = Gd, Tb, Dy und Ho oberhalb 800 °C. Syntheseversuche der analogen Verbindung mit SE = Er und Tm ergaben bei 920 °C SEN und SE₂Al als Hauptphasen. Daneben wurden Reflexe einer Phase beobachtet, die in Lage und Intensität mit einer geordneten kubischen Struktur SE₃Al im Sinne des Cu₃Au-Strukturtyps übereinstimmen. Syntheseversuche einer analogen Lu-Verbindung bei 700 °C, bei 900 °C und bei 1100 °C waren nicht erfolgreich. Bei 1100 °C schmolz eine Lu-Probe trotz langsamen Aufheizens auf. Nach den hier vorliegenden experimentellen Ergebnissen ist eine Lu-Phase (*SE*₃N)Al auf diesem Wege nicht zugänglich. Weiter gelang die Synthese ternärer Oxide der Zusammensetzung (*SE*₃O)Al mit *SE* = La, Ce, Pr, Nd, Sm. Bei Versuchen zu einer analogen Gd-Verbindung wurden nach mehrwöchigen Wärmebehandlungen sowohl bei 800 °C als auch bei 500 °C ausschließlich binäre Phasen der Systeme Gd–O und Gd–In erhalten (s. Anhang, S. 191). Die Synthese ternärer Oxide (*SE*₃O)Al erwies sich als sehr aufwendig, da die Verbindungen lediglich durch Festkörperreaktionen zugänglich sind. Bei höheren Temperaturen zersetzen sich die Phasen in das binäre Seltenerd-Oxid und binäre Phasen *SE*– Al (*SE*₂Al, *SE*₂Al₃).

Tabelle 6.2:Gitterparameter, Zersetzungstemperaturen von Verbindungen (SE3N)Al
und Ergebnisse der chemischen Analysen der dazugehörigen Präparate mit
der Ausgangszusammensetzung SE3AlN (Für Details s. Anhang S. 168ff).

Verbindung	<i>a</i> / pm	$w(N)_{\text{theo}} / \%$	w(N) / %	w(O) / %	$T_{\text{Zersetzung}} / ^{\circ}\text{C}$	
(La ₃ N)Al	509,46(4)	3,06	2,99 ± 0,01	$0,15 \pm 0,05$	1070 ± 5	
(Ce ₃ N)Al	501,12(2)	3,04	$2,\!88\pm0,\!05$	≤ 0,1	1035 ± 5	
(Pr ₃ N)Al	497,12(6)	3,02	$2,\!97 \pm 0,\!01$	$0,21 \pm 0,03$	1185 ± 10	
(Nd ₃ N)Al*	494,07(6)	2,96	$1,50 \pm 0,18$	$0,12 \pm 0,01$	1150 – 1210 ?	
(Sm ₃ N)Al**	487,49(4)	2,85	$3,33 \pm 0,11$	≤0,1	?	
(Gd ₃ N)Al	482,17(1)	2,73	$2,\!47\pm0,\!01$	$0,32 \pm 0,10$	1160 ± 40	
(Tb ₃ N)Al	478,22(3)	2,71	$2,\!55\pm0,\!01$	$0,171 \pm 0,005$		
(Dy ₃ N)Al**	475,08(4)	2,65	$2,73\pm0,06$	$0,14 \pm 0,01$		
(Ho ₃ N)Al**	472,45(4)	2,61	$2,54 \pm 0,05$	0,21 ± 0,01		
(Er ₃ N)Al**	469,77(7)	erste Hinweise auf die Existenz dieser Phasen				
(Tm ₃ N)Al**	467,65(8)	ergeben sich aus den Röntgenpulverdiffraktogrammen				

* Probe enthielt zusätzliche Reflexe von Nd₃Al

** Röntgenpulverdiffraktogramm zeigt Reflexe von SEN

Die quantitative Analyse des Sauerstoffgehalts stellt für die Verbindungen (SE_3O)Al eine Herausforderung dar. Vermutlich führt die Bildung von Aluminiumoxiden im Laufe des Aufheizprozesses bei der Heissgasextraktion zu zu niedrigen und stark streuenden Sauerstoffwerten.

Eine Verunreinigung durch X = C, N, O in einer binären Verbindung SE_3Al (Mg₃Cd-Strukturtyp, SE = La, Ce, Pr, Nd) ergibt ein zweiphasiges Gemenge aus der binären Verbindung SE_3Al und einem metallreichen Perowskit (SE_3X)Al. Wie im Zusammenhang mit Verbindungen (La₃X)Al und (Ce₃X)Al gezeigt (s. Kap. 5.1 S. 21ff und Kap. 5.3 s. S. 52ff), kristallisieren die ternären Verbindungen (SE_3X)Al (SE = O, N) deutlich besser als die binären Verbindungen La₃Al und Ce₃Al. Im Röntgenpulverdiffraktogramm der binären Verbindung SE_3 Al ist der metallreiche Perowskit (SE_3X)Al unverhältnismäßig deutlich sichtbar und täuscht nicht nur ein falsches Verhältnis der in der Probe enthaltenen Verbindungen vor, sondern auch eine weitere vermeintliche binäre Verbindunge ($SE_3\Box$)Al im Cu₃Au-Strukturtyp.

Abbildung 6.1: Gitterparameter *a* von Verbindungen (*SE*₃*X*)Al (*X* = C [11]; *X* = N, O, eigene Werte) in Abgängigkeit des Ionenradius SE^{3+} (KZ = 6, [8]).

In Abbildung 6.1 sind die Gitterparameter *a* der Verbindungen (*SE*₃*X*)Al (*X* = C, N, O) gegen den Ionenradius $r(SE^{3+})$ aufgetragen. Im Allgemeinen folgen die Gitterparameter der Verbindungen (*SE*₃*X*)Al bei konstantem *X* in Abhängigkeit von $r(SE^{3+})$ einem linearen Verlauf. Von La zu Lu nehmen die Gitterparameter ab. Dies steht in Einklang mit der Lanthanidenkontraktion. Lediglich der Gitterparameter der Verbindung (Ce₃C)Al weicht davon ab: Der signifikant zu niedrige Gitterparameter von (Ce₃C)Al ist auf eine Unterbesetzung der C-Lage zurückzuführen (s. S. 58ff). Die analogen Ce-Verbindungen mit (Ce₃N)Al und (Ce₃O)Al ordnen sich hingegen mühelos in das lineare Verhalten der Reihen (*SE*₃N)Al und (*SE*₃O)Al ein und bestätigen somit einen Ce f^1 -Zustand (Ce³⁺) sowie eine Vollbesetzung der O/N-Lage in diesen Verbindungen. In Röntgenpulverdiffraktogrammen

aus Präparaten zur Synthese von (*SE*₃N)Al mit *SE* = Er und Tm (s. Anhang S. 223) wurden neben den binären Verbindungen $\text{Er}_2\text{Al}/\text{Tm}_3\text{Al}_2$ und *SE*N Reflexe einer kubischen Phase (Er: *a* = 469,77(7) pm; Tm: *a* = 467,65(8) pm) beobachtet. Diese kubischen Gitterparameter ordnen sich gleichfalls als Verlängerung auf der Geraden der Verbindungen (*SE*₃N)Al in Abbildung 6.1 ein. Somit existieren auch die Phasen (Er₃N)Al und (Tm₃N)Al.

Bei einer Betrachtung der erhaltenen Geraden für unterschiedliche Elemente *X* werden nahezu identische Steigungen erhalten. In der Reihe von C über N nach O nehmen die Gitterparameter bei konstantem *SE* ab. Dies korreliert mit den Anionenradien des Nichtmetallatoms ($r(C^{4-}) > r(N^{3-}) > r(O^{2-})$).

Tabelle 6.3:Gitterparameter a (Röntgenpulverdaten), Elementaranalysen und DTA-
Effekte an Verbindungen der Zielzusammensetzung (SE3O)Al.

Verbindung	<i>a</i> / pm	$w_{\text{theo}}(O) / \%$	w(O) / %	w(N) / %	$T_{\text{Zersetzung}} / ^{\circ}\text{C}$
(La ₃ O)Al	503,21(2)	3,48	$2,98 \pm 0,17$	$0,038 \pm 0,001$	600 -700
(Ce ₃ O)Al	495,34(5)	3,45	3,29 ± 0,01	$0,07 \pm 0,01$	740 ± 10
(Pr ₃ O)Al	491,95(6)	3,44	$3,53 \pm 0,04$	$0,070 \pm 0,002$?
(Nd ₃ O)Al	489,03(5)	3,36	3,26 ± 0,02	$0,04 \pm 0,01$	845 ± 5
(Sm ₃ O)Al	482,67(4)	3,24	$3,62 \pm 0,03$	$0,09 \pm 0,03$?

Die derzeitigen experimentellen Befunde zu den Verbindungen (SE_3N)Al stellen sich somit folgendermaßen dar: Kohlenstoff kann ein Untergitter ($SE_3\square$)Al über den gesamten Bereich der Seltenerd-Metalle von La bis Lu stabilisieren [11], Stickstoff von La bis Tm und Sauerstoff nur von La bis Sm.

Thermodynamische Daten zu den binären Verbindungen in den Phasendiagrammen *SE*–Al sind sehr widersprüchlich und lückenhaft und eigenen sich deshalb nur schwer für eine quantitative Diskussion. Aus der Literatur lässt sich für alle binären Systeme *SE*–Al folgender Trend ablesen: $\Delta H_{\rm f}$ nimmt in den Phasendiagrammen *SE*–Al – ausgehend von reinem *SE* – bis zu einem Wert von etwa x(SE) = 0,5 zu, durchläuft dann ein Plateau, um bei reinem Aluminium wieder auf Null zurückzugehen. Die Bildungsenthalpien $\Delta H_{\rm f}$, ^{298 K} für die intermetallischen binären Verbindungen *SE*–Al liegen in einer Größenordnung von 30 – 60 kJ/mol at. ([114, 133 – 135]). Die binären Oxide der Seltenerd-Metalle werden als die thermisch stabilsten Verbindungen überhaupt erachtet: Nach [53] sind die Oxide bei einer Betrachtung der Elektronenkonfiguration und der Größe der Lanthanoidanionen die

thermisch stabilsten von allen bekannten Verbindungen²⁴. Trotzdem wird die Bildung von ternären Verbindungen aus diesen binären Oxiden beobachtet. Ein qualitativer Vergleich der Bildungsenthalpien der binären Nichtmetallverbindungen der Seltenerd-Metalle SEC2, SEN und SE₂O₃ zeigt, dass die Carbide nur eine sehr geringe Bildungsenthalpie aufweisen. Die binären Nitride besitzen deutlich negativ Werte für $\Delta H_{\rm f}$ (160 – 180 kJ/mol at), ohne dass eine Abhängigkeit durch die Lanthanidenkontraktion zu erkennen ist [136]. Für die Bildungsenthalpien der Seltenerd-Oxide ist ein solcher Trend hingegen ausreichend dokumentiert. $\Delta H_{f, 298 \text{ K}}$ der Seltenerdoxide SE_2O_3 nimmt ausgehend von La₂O₃ ($\Delta H_{f, 298 \text{ K}}$ = $1794 \pm 4 \text{ kJ/mol} \equiv 359 \text{ kJ/mol}$ at) $(\Delta H_{\rm f, 298 K} = 1870 \pm 20 \text{ kJ/mol}$ nach Lu_2O_3 = 374 kJ/mol at) kontinuierlich zu [137]. Unter Vernachlässigung des Entropieterms, der im Festkörper hinreichend klein sein sollte, ergibt sich für die thermodynamische Stabilität folgendes Bild. Die ternären Oxide konnten für die leichteren Seltenerd-Metalle von La bis Sm synthetisiert werden. Unter der Annahme, dass dies thermodynamisch bedingt ist, nimmt die thermodynamische Stabilität der ternären Verbindungen (SE₃O)Al/(SE₃N)Al gegenüber den Edukten (SE₂O₃/SEN//SE-Al) in der Reihe der Seltenerd-Metalle von La nach Lu ab. Von einem gewissen Punkt/Seltenerd-Metall an weisen die Edukte eine höhere Bildungsenthalpie auf. Dieser Punkt ist für die Oxide bei SE = Gd, für die Nitride ab SE =Lu erreicht. Sowohl die binären Seltenerd-Metall-Carbide als auch die binären Seltenerd-Metall-Aluminium Verbindungen weisen geringere thermodynamische Stabilitäten auf. Die Bildung der ternären Verbindungen in den Systemen SE-Al-C ist für alle Seltenerd-Metalle thermodynamisch begünstigt. Auf Radien basierende (ionische) Konzepte können die Reihen dieser Verbindungen nur teilweise erklären- wie im Falle der Aufweitung des Gitterparameters des SE3Al-Grundgerüsts. Gleichzeitig lassen sich die experimentellen Befunde gut mit den thermodynamischen Stabilitäten möglicher binärer Edukte erklären. Somit müssen andere, z. B. kovalente Bindungsanteile die energetische Stabilisierung bewirken.

²⁴ [53]: From the combination of electronic configuration and the size of the lanthanoid atoms, their oxides become the most thermally stable of all known compounds.

6.2. Verbindungen (SE_3X)Ga ($X = \Box$, O, N)

Die Angaben über die binären Phasen ($SE_3\Box$)Ga in der Literatur sind widersprüchlich. Wie aus Tabelle 6.4 ersichtlich, sind Verbindungen ($SE_3\Box$)Ga mit SE = La, Ce, Pr, Nd und Sm berichtet. Die angegebenen Gitterparameter schwanken im Vergleich zu den binären Verbindungen ($SE_3\Box$)In erheblich. Über die Verbindung Ce₃Ga existieren widersprüchliche Angaben: Im Phasendiagramm ist (Ce₃ \Box)Ga (a = 511,5 pm) dargestellt [113], nach [138, 139] existiert diese Verbindung nicht. Eigene Untersuchungen (s. Anhang S. 232*f*) mit Röntgenbeugung, Metallografie, EDX-Messungen und DSC-Untersuchung bestätigen ein Zweiphasengebiet für *x*(Ce) = 0,75 ("Ce₃Ga").

Tabelle 6.4:Kristallografische Daten, Synthese und thermisches Verhalten der
Verbindungen ($SE_3\Box$)Ga (SE = La, Ce, Pr, Nd, Sm) nach Literaturdaten.

Verbindung	<i>a</i> / pm	Strukturtyp; Synthese; thermisches Verhalten	Lit.
(La₃□)Ga	561 ± 1	-; Lichtbogen, 200 °C; -	[15]
(La₃□)Ga	566	Cu ₃ Au-Typ; -; inkongruentes Schmelzen bei 615 °C	[140]
(Ce ₃ □)Ga	540	Cu ₃ Au-Typ; ;inkongruentes Schmelzen bei 557 °C	[140]
(Ce ₃ □)Ga	511,5	Cu ₃ Au-Typ; - ; -	[113]
(Pr ₃ □)Ga	551	Cu ₃ Au-Typ; - ; inkongruentes Schmelzen bei 720 °C	[140]
(Pr ₃ □)Ga		metallografisch dokumentiert	[141]
(Nd ₃ □)Ga	543	Cu ₃ Au-Typ; - ; inkongruentes Schmelzen bei 795 °C	[140]
(Nd ₃ □)Ga	$467,6 \pm 0,8$	Cu ₃ Au-Typ; - ; peritektische Bildung bei 786 °C	[142]
(Sm ₃ □)Ga	539	Cu ₃ Au-Typ; - ;inkongruentes Schmelzen bei 873 °C	[140]

Bezüglich der Nitride (SE₃N)Ga ist bisher nur eine Veröffentlichung bekannt, in der $(Nd_3N)Ga$ ($a = 506_{,3}$ pm) berichtet wird [10]. Die hier durchgeführten Experimente (s. Anhang S. 238) geben weitere Erkenntnisse zu dieser Verbindungsklasse (SE₃N)Ga: röntgenografisch erhalten. Die Elementaranalyse (Pr₃N)Ga wurde einphasig $w(O) = 0.43 \pm 0.06$ $(w(N) = 2,55 \pm 0,02;$ ergibt mit der Summenformel Pr₃GaN_{0,924±0,007}O_{0,14±0,02} eine Zusammensetzung nahe dem Idealwert einer Vollbesetzung (Pr₃N₁₀)Ga. Wie auch die Aluminide zersetzt sich (Pr₃N)Ga (DSC) bei etwa 1025 °C. Weiter wurden Hinweise auf die Existenz der Verbindung (SE_3N)Ga mit SE = Ce, Sm, Gd und Tb erhalten. Neben binären Verbindungen SE-Ga und SEN lässt sich in den Röntgenpulverdiffraktogrammen eine Gruppe von Reflexe kubisch indizieren. Die Intensitätsverhältnisse dieser Reflexe stimmen mit einer geordneten Struktur SE₃Ga überein.

Die erhaltenen Gitterparameter sind in Tabelle 6.5 zusammengefasst. In Abbildung 6.2 sind die Gitterparameter der Verbindungen (*SE*₃N)Ga in Abhängigkeit des Ionenradius *SE*³⁺ (KZ = 6, nach [8]) aufgetragen. Die Gitterparameter der Verbindungen (*SE*₃N)Ga nehmen innerhalb der Reihe von Ce nach Tb kontinuierlich ab. Dies ist im Sinne der Lanthanidenkontraktion zu erwarten. Der Gitterparameter der Cer-Verbindung ordnet sich hierbei in die Reihe der Verbindungen (*SE*₃N)Ga ein. Die Kenntnis der röntgenografisch phasenreinen Probe (Pr₃N)Ga zusammen mit dem linearen Verlauf der Gitterparameter begründet zwei Hypothesen. Wie in (Pr₃N)Ga ist der Stickstoffgehalt in den Verbindungen sehr ähnlich im Sinne (*SE*₃N_{1-y})Ga mit *y* < 0,08. Zum anderen weist Cer in der Verbindung (Ce₃N)Ga einen Zustand Ce [Xe] 6s⁰5d⁰4f¹ auf. Wie bereits allgemein diskutiert [11] und hier für *SE*₃Ga (*SE* = Ce) speziell gezeigt, existieren die Phasen der Zusammensetzung *SE*₃Ga nicht. Vielmehr sind die beobachteten kubischen Phasen *SE*₃Ga entweder auf die Existenz kubischer Modifikationen der Seltenerd-Metalle [138] oder aber auf die kubischen Verbindungen (*SE*₃C)Ga oder (*SE*₃N)Ga zurückzuführen.

Abbildung 6.2: Kubische Gitterparameter *a* von Verbindungen von (SE_3N)Ga als Funktion der Ionenradius von SE^{3+} (KZ = 6, nach [8]).

Tabelle 6.5:Gitterparameter, Ergebnisse der chemischen Analysen und Phasenanalyse
(Röntgenbeugung) der Verbindungen (SE3N)Ga

Verbindung	<i>a</i> / pm	$w_{\text{theo}}(N) / \%$	w(N) / %	w(O) / %	Nebenphasen
(Ce ₃ N)Ga	498,17(2)	2,78	2,76 ± 0,12	0,10 ± 0,01	CeN
(Pr ₃ N)Ga	494,17(6)	2,77	$2,55 \pm 0,02$	$0,\!43 \pm 0,\!06$	-
(Sm ₃ N)Ga	484,55(5)	2,62	$2,59 \pm 0,23$ %;	$0,11 \pm 0,03$	
(Gd ₃ N)Ga	480(1)	2,52	-	-	Gd ₅ Ga ₃ /GdN
(Tb ₃ N)Ga	475,50(1)	2,50	-	-	Tb5Ga3/TbN
		I I I		1	1

6.3. Verbindungen (SE_3X)In ($X = \Box$, O, N)

In den bekannten Phasendiagrammen sind binäre Phasen ($SE_3\Box$)In mit SE = La, Ce, Pr, Nd und Sm charakterisiert [143, 144]. Darüber hinaus sind Phasen SE_3 In mit SE = Gd, Dy und Er ohne Strukturdaten berichtet [145]. Die für Dy₃In berichtete CuTi₃-Struktur [146] wurde als ein Gemisch aus Dy₂In und Dy identifiziert [9]. Für die Phasen SE_3 In und SE_2 In sind hohe Bildungswärmen berichtet [121]. Eigene Ergebnisse zu den Phasen La₃In und Ce₃In sind in vorangegangenen Kapiteln bereits diskutiert worden (La₃In: s. 35ff und Ce₃In: s. 67ff).

Tabelle 6.6:Gitterparameter und magnetische Eigenschaften von $(SE_3\Box)$ In mit SE =Pr, Nd (Literaturdaten).

Verbindung	<i>a</i> / pm	Bemerkung	Lit.
(Pr ₃ □)In	490	$T_{\rm C} = 62 \text{ K}, \ \mu_{\rm eff}/\text{Pr} = 3.5 \ \mu_{\rm B}; \ \Theta_{\rm P} = 9.3 \text{ K}$	[145]
(Nd ₃ □)In	493	$T_{\rm C} = 114 \text{ K}, \ \mu_{\rm eff}/\text{Nd} = 3,4 \ \mu_{\rm B}; \ \Theta_{\rm P} = 10 \text{ K}$	[145]

Die ternären Nitride der Zusammensetzung (SE_3 N)In wurden bereits ausführlich beschrieben und charakterisiert [9, 128]. Weiter wurden die Verbindungen (La₃N)In und (Y₃N)In beschrieben [13]. Insbesondere wurde durch Neutronenbeugungsexperimente an Pulvern von (Ce₃N)In gezeigt, dass die ausschließlich von Seltenerd-Metallatomen gebildeten Oktaederlücken mit Stickstoff besetzt sind und nahezu Vollbesetzung im Sinne von ($SE_3N_{1,0}$)In vorliegt. Außerdem wurden Hinweise für eine Substitution von N durch O auf diesen Lücken gefunden.

Im Zuge dieser Arbeit wurde die Möglichkeit der Bildung von Verbindungen (SE_3O)In genauer untersucht. In der Literatur ist bisher lediglich (La₃O)In beschrieben [13]. Die

Syntheseversuche richten sich im Einzelnen nach dem Seltenerd-Metall (für Details s. Anhang). Im Allgemeinen wurde zunächst eine Legierung aus Seltenerd-Metall und Indium im Lichtbogen hergestellt, diese in einer Achatreibschale zermahlen und mit dem Seltenerd-Oxid verrieben. Die Einwaage der verschiedenen Komponenten erfolgte hierbei der Zielzusammensetzung SE₃InO entsprechend, unter der Annahme sauerstofffreier Seltenerd-Metalle, sowie einer exakten Zusammensetzung der Seltenerd-Oxide SE₂O₃ (SE = La, Pr, Nd) und CeO₂. Das Gemenge wurde zu einer Tablette gepresst, in ein Ta-Rohr eingeschweißt und bei vermindertem Druck in Kieselglas eingeschmolzen. Die anschließende Wärmebehandlung wurde durch das Seltenerd-Metall bestimmt (s. Anhang). Nach der Synthese wurden die Produkte mit Röntgenbeugung an Pulvern und Elementaranalysen auf O und N analysiert. Im Laufe der Arbeit gelang neben der Synthese der bekannten Phase (La₃O)In die Synthese neuer Phasen (SE_3O)In mit SE = Ce, Pr und Nd. Diese Verbindungen stellen die ersten bekannten Verbindungen in den jeweiligen ternären Systemen SE-In-O dar. Die Ergebnisse zu (La₃O)In und (Ce₃O)In wurden bereits ausführlich diskutiert (s. Kap. 5.2, S. 41ff und Kap. 5.4, S. 69ff). Weitere Experimente mit den schwereren Seltenerd-Metallen wurden bisher noch nicht durchgeführt, so dass keine Aussagen über die mögliche Existenz weiterer Phasen (SE₃O)In gemacht werden können. Die erhaltenen Röntgenpulverdiffraktogramme zeigen eine Phase, die gut mit einer kubisch dichtesten Packung aus In und SE-Atomen übereinstimmt (s. Tabelle 6.7). (Ce₃O)In wurde röntgenografisch phasenrein erhalten. Alle anderen Diffraktogramme zeigen zusätzliche Reflexe schwacher Intensität, die binären Oxiden SE₂O₃ in verschiedenen Modifikationen zugeordnet werden. Damit in Einklang steht die Sauerstoffanalyse, die für diese Proben einen höheren Sauerstoffgehalt ergeben als die Formel ($SE_3O_{1,0}$)In zulässt (s. Tabelle 6.7).

Verbindung	<i>a /</i> pm	w(O) / %	w(N) / %	$w(O)_{\text{theo}} / \%$			
(La ₃ O)In	507,24(4)	$3,28 \pm 0,01$	0,10 ± 0,01	2,92			
(Ce ₃ O)In	499,68(3)	$2,53 \pm 0,02$	≤ 0,005	2,90			
(Pr ₃ O)In	496,05(3)	$3,25 \pm 0,15$	$0,061 \pm 0,001$	2,89			
(Nd ₃ O)In*	493,4(1)	3,01 ± 0,06	$0,05 \pm 0,10$	2,84			
* (ID < 0.002.0/							

Tabelle 6.7: Gitterparameter und Elementaranalysen von Präparaten (SE_3O)N ($Pm\overline{3}m$)

 $*w(H) \le 0,008 \%$

In Abbildung 6.3 sind die Gitterparameter der Verbindungen (SE_3X)In ($X = \Box$, O, N, C) als Funktion des Ionenradius SE^{3+} (KZ = 6, nach [8]) aufgetragen. Wie nach der Lanthanidenkontraktion zu erwarten, folgen die Gitterparameter einer Reihe (SE_3X)In (X
konstant) einem linearen Verlauf. Der Gitterparameter der Cer-Verbindungen ordnet sich ein. Cer wird somit am besten mit der Elektronenkonfiguration $6s^{0}5d^{1}4f^{0}$ beschrieben. Beim Vergleich der Reihen mit unterschiedlichen Nichtmetallatome O, N, und C resultiert eine Zunahme der Gitterparameter von $a((SE_{3}O)In)$ über $a((SE_{3}N)In)$ zu $a((SE_{3}C)In)$. Dies stimmt mit einem ionischen Bild $r(O^{2-}) < r(N^{3-}) < r(C^{4-})$ überein.

Abbildung 6.3: Gitterparameter *a* von Verbindungen (*SE*₃*X*)In mit *X* = \Box , N [9], C [11], und *X* = O (eigene Werte) als Funktion der Ionenradien *SE*³⁺ nach [8].

Tabelle 6.8:GitterparameterderVerbindungen SE_3 In $(Fm\overline{3}m)$ auseigenenExperimenten im Vergleich mit Literaturwerten (Lit.).

Verbindung	<i>a</i> / pm	w(O) / %	w(N) / %	w(H) / %	$a_{\rm Lit}$ / pm	Lit.
La ₃ In	507,2(3)	$0,083 \pm 0,005$	< 0,008	< 0,10	507	[93]
Ce ₃ In	496,6(8)	$0,066 \pm 0,003$	$0,045 \pm 0,005$	-	496,10(5)	[147]
Nd ₃ In	493,4(3)	≤ 0,10	$0,11 \pm 0,02$	≤ 0,008	493	[145]

Die Gitterparameter der ternären Phasen (SE_3O)In SE = La und Nd liegen sehr nahe an denjenigen der binären Verbindungen SE_3 In. Dies trifft nur bedingt für Pr zu und die Abweichung im Falle von Ce ist signifikant. Eigene Versuche bestätigten die niedrigsten in der Literatur berichteten Gitterparameter der binären Phasen ($SE_3\Box$)In (s. Tabelle 6.8). Die binären Verbindungen ($SE_3\Box$)In unterscheiden sich von den ternären Verbindungen

 (SE_3O) In allerdings in der Duktilität. Die Verbindungen (SE_3O) In sind nach mehrfacher Wärmebehandlung gut zu Pulver zu verarbeiten und die Reflexe in den Röntgenpulverdiffraktogrammen sind scharf. Proben der Zusammensetzung $(SE_3\Box)$ In lassen sich auch nach längeren Wärmehandlungen nur mit Feilen zu Pulver verarbeiten. Die erhaltenen Röntgenpulverdiffraktogramme zeigen sehr breite Reflexe, die zu ungenau zu bestimmenden Gitterparametern führen.

6.4. Verbindungen (SE_3X)Sn ($X = \Box$, O, N)

Die binären Phasendiagramme SE-Sn scheinen auf den ersten Blick gut untersucht zu sein [148]. Bisher wurden nur La₃Sn, Ce₃Sn, Pr₃Sn [105, 149] und Gd₃Sn [150] als binäre Phasen SE₃Sn berichtet. In den binären Phasendiagrammen aller anderen Seltenerd-Metalle mit Zinn sind im Bereich von x(SE) = 75 % Zweiphasengebiete aus dem Seltenerd-Metall und SE_5Sn_3 eingezeichnet. Die Existenz der Phasen SE_3Sn ist umstritten (s. Anhang, S. 293). Die Gitterparameter variieren stark (La₃Sn: 498 – 512 pm; Ce₃Sn: 492,9 – 507,1 pm; s. a. Tabelle A. 103). Wie alle anderen in dieser Arbeit behandelten binären Legierungen der Zusammensetzung " SE_3M " sind Zähigkeit und hohe Duktilität eine Herausforderung für die Charakterisierung der Proben. Dies erschwert die Präparation für röntgenografische Untersuchungen an Pulvern. Darüber hinaus weisen die betrachteten Elemente SE und Sn einen zu geringen Unterschied in der Anzahl der Elektronen auf. Eine definitive Aussage zu Ordnung und Unordnung der SE-M Struktur ist daher mit den Methoden der Röntgenbeugung schwierig. Eigene Versuche (s. Anhang, S. 295) konnten unter den angewandten Bedingungen (480 °C, sechs Monate) die Existenz der Phase "(La₃□)Sn" nicht bestätigen. Vielmehr stimmen die Ergebnisse gut mit einem Zweiphasengebiet aus La₅Sn₃ und La überein. Die in [15] und [96] bestimmten Werte von $T_c = 6.2$ K stimmen mit denjenigen des elementaren Lanthans ($T_c = 5 - 6 \text{ K}$ [151, 144]) sehr gut überein. Auch die eigenen Ergebnisse an (La₃N)Sn (s.u.) lassen auf La als supraleitende Komponente schließen. Unter den ternären Verbindungen sind die Carbide (SE₃C)Sn am umfassendsten in der Literatur beschrieben. Zu den Nitriden (SE_3N)Sn existieren zwei Berichte (SE = Ce[127]; Nd [10]). Die Werte für die Gitterparameter aus der Literatur sind in Tabelle 6.9 zusammengefasst.

In eigenen Versuchen wurden Proben der Zusammensetzung (*SE*₃N)Sn *SE* = La, Ce, Pr, Nd und Sm erstmals dargestellt und charakterisiert. Wie bei den bereits diskutierten Al, Ga und In-Verbindungen variiert die Synthese im Detail in Abhängigkeit vom Seltenerd-Metall. Die Synthese erfolgte im Allgemeinen aus *SE*N, *SE* und Sn, die in den entsprechenden molaren Verhältnissen (x(SE): x(Sn) : x(SEN) = 2 : 1 : 1) eingewogen wurden. Alle Edukte (*SE*, Sn, *SE*N) wurden entweder nacheinander im Lichtbogen zu einer homogenen Schmelzkugel verarbeitet oder eine im Lichtbogen hergestellte Legierung "*SE*₂Sn" wurde mit *SE*N vermengt und zu einer Tablette verpresst. Die so hergestellten Proben wurden anschließend in Ta-Ampullen eingeschweißt, in Kieselglas eingeschmolzen und wärmebehandelt (T = 700 - 900 °C, s. Anhang S. 298ff). Die Cer-Verbindung wurde aus einer Ce-reichen Schmelze hergestellt, welche anschließend durch eine Zentrifuge abgetrennt wurde

Verbindung	<i>a</i> / pm	Lit.	<i>a</i> / pm	Lit.	<i>a</i> / pm	Lit.
(La ₃ C)Sn	513	[10]	518	[93]	513,3	[36]
(Ce ₃ C)Sn	510,1	[10, 122]			509,0*	[149]
(Pr ₃ C)Sn	506	[105]			502,3*	[149]
(Nd ₃ C)Sn	502,8	[10, 36]				
(Sm ₃ C)Sn	497,9	[10, 35]			498,4*	[149]
(Gd ₃ C)Sn	493,0	[10, 35]				
(Tb ₃ C)Sn	488,6	[10, 35]				
(Dy ₃ C)Sn	485	[10]	485,3(1)	[11]		
(Ho ₃ C)Sn	482,9	[10, 35]			483,5*	[149]
(Er ₃ C)Sn	480,6	[10, 35]				
(Tm ₃ C)Sn	477,2	[10, 35]				
(Yb ₃ C)Sn	484,3	[10, 35]			484,5*	[149]
(Lu ₃ C)Sn	473,3(1)	[11]				
(Ce ₃ N)Sn ²⁵	502	[127]				
(Nd ₃ N)Sn	505,7	[10]				

Verbindungen $(La_3N)Sn$, (Ce₃N)Sn (Pr₃N)Sn röntgenografisch phasenrein dargestellt werden.

Literaturdaten der Gitterparameter der Verbindungen (SE_3X)Sn (X = C, N).

und

konnten

* Die Autoren vermuten einen von eins abweichenden Kohlenstoffgehalt im Sinne von $(SE_3C_{1-\nu})$ Sn.

Die dabei erhaltenen Röntgenpulverdiffraktogramme zeigen zum Teil den sehr schwachen Reflex (100), der für eine geordnete Struktur aus SE und Sn im Sinne der kubisch dichtesten Packung keine Intensität zeigen sollte. Daraus kann auf eine zumindest teilgeordnete Struktur im Sinne des Cu₃Au-Strukturtyps geschlossen werden. Analysen der Verbindungen (SE_3N) Sn (SE = La, Ce, Pr) auf Stickstoff ergeben Zusammensetzungen nahe der Summenformel $SE_3SnN_{1,0}$ (s. Tabelle 6.10). Die Röntgenpulverdiffraktogramme, die nach

(s. Anhang).

Tabelle 6.9:

Die

²⁵ In [127] werden Experimente beschrieben, in denen Legierungen der Zusammensetzung "SE₃Sn" mit Stickstoff zur Reaktion gebracht werden. Eine Analyse der Reaktionsprodukte erfolgt durch Mössbauerspektroskopie, DSC und Röntgenbeugung. Im Falle von SE = Ce beobachten die Autoren eine Reaktion von Ce₃Sn mit N₂ zu CeN und CeSn₃ zwischen 580 °C und 620 °C. Ähnliche Ergebnisse wurden für SE = Pr und Sm erhalten. Weiter ließen die Autoren eine Legierung Ce₃Sn mit N₂ bei 950 °C für 7 Tage reagieren. Die Röntgenbeugungsdaten zeigen in einem zweiphasigen Produkt kubisch flächenzentrierte Gitterparameter von a = 502 pm und a = 512 pm an. Aus den parallel angefertigten Mössbauerspektren vermuten die Autoren, dass die Verbindung Ce₃SnN_x existiere. Weitere Versuche der Autoren zu Verbindungen der Zusammensetzung SE3SnN zu gelangen schlugen fehl. Daraus vermuten die Autoren die Existenz von Verbindungen der Zusammensetzung SE2SnN mit kubischer Symmetrie.

Versuchen zu (Nd₃N)Sn und (Sm₃N)Sn erhalten wurden, zeigten neben den Hauptphasen (*SE*₃N)Sn nur Reflexe von bekannten Phasen *SE*N oder *SE*₅Sn₃N_x. Damit in Einklang ergeben die Analysen auf Stickstoff einen Wert der etwas größer als eins in Bezug auf die Formel *SE*₃SnN_{1,0} ist. DSC-Experimente an Verbindungen (*SE*₃N)Sn geben keine Hinweise auf eine Zersetzung, wie sie bei den ternären Phasen (*SE*₃N)Al beobachtet wurde. Die Röntgenpulverdiffraktogramme vor und nach dem DSC-Experiment sind identisch. Versuche zur analogen Gd-Phase wurden bei verschiedenen Temperaturen (500 °C, 600 °C, 700 °C, 800 °C, 950 °C, 1150 °C, 1250 °C) mit verschiedenen Heiz- und Abkühlraten durchgeführt und waren nicht erfolgreich. Die erhaltenen Röntgenpulverdiffraktogramme zeigen immer die Reflexe von GdN und Gd₅Sn₃, in einigen Fällen konnten auch Reflexe beobachtet werden die elementares Gd vermuten lassen. Ähnliche Ergebnisse wurden mit *SE* = Tb und Lu erhalten. Die Synthesenversuche der einzelnen Verbindungen und die Ergebnisse der DSC-Messungen sind im Anhang dokumentiert. Die Gitterparameter der erhaltenen Phasen (*SE*₃N)Sn sind in Tabelle 6.10 zusammengefasst und grafisch in Abbildung 6.4 dargestellt.

Tabelle 6.10:	Gitterparameter	und Elementarana	lysen von Phasen	$(SE_3N)Sn.$
---------------	-----------------	------------------	------------------	--------------

Verbindung	<i>a</i> / pm	w(N) / %	w(O) / %	$w_{\text{theo}}(N) / \%$
(La ₃ N)Sn	509,49(5)	$2,38 \pm 0,01$	0,12 ± 0,01	2,54
(Ce ₃ N)Sn	501,10(4)	$2,31 \pm 0,02$	$0,\!24 \pm 0,\!02$	2,53
(Pr ₃ N)Sn	497,5(1)	$2,27 \pm 0,01$	$0,14 \pm 0,02$	2,52
(Nd ₃ N)Sn	494,70(5)	2,45 ± 0,03**	$0,\!28\pm0,\!02$	2,48
(Sm ₃ N)Sn	488,35(9)	2,62 ± 0,04**	$0,13 \pm 0,05$	2,40

* bezogen auf die Formel (*SE*₃N)Sn

** Die Probe zeigt zusätzliche Reflexe von SEN

Abbildung 6.4 verdeutlicht, dass die Stickstoffverbindungen (SE_3N)Sn grundsätzlich kleinere Gitterparameter aufweisen, als die analogen Carbide (SE_3C)Sn. Alle Verbindungen einschließlich der Cer-Verbindungen ordnen sich entlang einer Geraden. In diesen Punkten ähneln die Stannide den analogen Galliden (SE_3X)Ga und Indiden (SE_3X)In. Die thermische Stabilität der Verbindungen (SE_3N)Sn, wie aus den DSC-Experimenten (s. Anhang, S. 298ff) ermittelt wurde, ist größer als die der übrigen Verbindungen (SE_3N)M.

Abbildung 6.4: Gitterparameter *a* von Verbindungen (SE_3X)Sn mit X = C [10] und N als Funktion des Ionenradius SE^{3+} (KZ = 6 nach [8]).

Der experimentell bestimmte Gitterparameter von (La₃N)Sn (a = 509,49(5) pm) und die Literaturwerten von (La₃ \Box)Sn ([36]: a = 512,5 pm; [15]: $a = 510,2 \pm 0,6$ pm) sind nahezu identisch. Erste Messungen der magnetischen Suszeptibilität an einer kompakten Probe aus röntgenografisch phasenreinem (La₃N)Sn ergaben Hinweise auf Supraleitung in der Probe unterhalb von $T_c = 5.6$ K. Die Probe wurde vollständig vom magnetischen Feld abgeschirmt (s. Abbildung 6.5, offene Kreise; Entmagnetisierungsfaktoren nicht berücksichtigt). Der Meissner-Ochsenfeldeffekt nahm relativ zum Abschirmeffekt sehr kleine Werte an. Eine DSC-Messung an dieser Probe (s. Anhang, S. 300) zeigte ein sehr schwaches Signal bei T = 740 °C, das dem Schmelzpunkt von La(Sn) zugeordnet wird. Eine zweite Messung der magnetische Suszeptibilität, bei der die Probe zuvor fein vermahlen wurde (s. Abbildung 6.5, geschlossene Dreiecke), zeigte eine stark verringerte Abschirmung und einen deutlich geringeren Flussausstoß. Diese Ergebnisse lassen Spuren von La - in Form eines geschlossenen Netzwerks entlang den Korngrenzen – als Quelle für das supraleitende Verhalten der Probe annehmen. Die Elementaranalyse auf O und N ist damit gut in Einklang bringen, die einen etwas zu niedrigen N-Gehalt $(w(N) 2,38 \pm 0,01 \%,$ zu $w(O) = 0.12 \pm 0.01)$ bezogen auf die Zusammensetzung La₃SnN_{1.0} ($w_{\text{theo}}(N) = 2.54 \%$) ergibt. Unter Berücksichtigung der Erkenntnisse über die Legierung La–Sn mit x(La) = 0.75

(s. Anhang) wird die als supraleitend erachteten Phase (La₃□)Sn als ein Gemenge aus schlecht kristallisiertem La (supraleitend) und (La₃N)Sn, oder einen partiell durch O und C substituierten multinären metallreichen Perowskit (La₃X)Sn (X = O, N, C) interpretiert. Die untersuchte Probe (La₃N)Sn zeigt durch paramagnetische Verunreinigungen eine Feldabhängigkeit der Magnetisierung (s. Abbildung 6.6). Die Bestimmung der Zustandsdichte erfolgt deshalb nur halbquantitativ: Bei 300 K weist die Suszeptibilität einen Wert von $\chi_0 = 138 \cdot 10^{-6}$ emu/mol auf. Die Berücksichtigung der diamagnetischen Inkremente²⁶ ergibt korrigierten Wert einen des Pauliparamagnetismus von $\chi_{\rm P} = 227 \cdot 10^{-6}$ emu/mol. Daraus errechnet sich eine Zustandsdichte $N(E_f) = 7$ Zuständen/eV an der Fermikante. Die Probe ist mit großer Wahrscheinlichkeit ein metallischer Leiter. Dieser Befund wird durch die Messung des spezifischen elektrischen Widerstandes (s. Abbildung 6.9) bestätigt. Der Widerstand nimmt mit steigender Temperatur linear zu. Das Restwiderstandsverhältnis liegt mit 5,45 im Bereich eines guten metallischen Leiters.

Abbildung 6.5: Flussausstoß einer kompakten und einer fein vermahlenen Probe von (La₃N)Sn mit geringen Anteilen La als Funktion der Temperatur.

 $^{^{26}}$ [89]: 3 · La³⁺: 20 · 10⁻⁶ emu/mol; Sn⁴⁺: 16 · 10⁻⁶ emu/mol; N³⁻ [153]: 13 · 10⁻⁶ emu/mol; Summe: 89 · 10⁻⁶ emu/mol; N³⁻ [153]: 13 · 10⁻⁶ emu/mol; Summe: 89 · 10⁻⁶ emu/mol; N³⁻ [153]: 13 · 10⁻⁶ emu/mol; Summe: 89 · 10⁻⁶ emu/mol; N³⁻ [153]: 13 · 10⁻⁶ emu/mol; Summe: 89 · 10⁻⁶ emu/mol; N³⁻ [153]: 13 · 10⁻⁶ emu/mol; Summe: 89 · 10⁻⁶ emu/mol; Summe: 89 · 10⁻⁶ emu/mol; N³⁻ [153]: 13 · 10⁻⁶ emu/mol; Summe: 89 · 10⁻⁶ emu/mol; S

Abbildung 6.6: Magnetische Suszeptibilität einer Probe von (La₃N)Sn mit geringen Anteilen La als Funktion der Temperatur.

Der Gitterparameter der hier dargestellten Phase (Ce₃N)Sn (a = 501,10(4) pm) stimmt – im Rahmen der Fehlergenauigkeit – mit dem Gitterparameter der in der Literatur [127] beschriebenen Phase im ternären System Ce–Sn–N (502 pm) überein. Der Wert ist größer als derjenige der geordneten binären Phase (Ce₃D)Sn (492 – 495 pm; s. a. Tabelle A. 103). Die Messung der magnetischen Suszeptibilität ist in Abbildung 6.7 dargestellt. Die Probe weist bei $T_N = 6,8 \pm 0,2$ K eine scharfe antiferromagnetische Ordnung auf. Die Auftragung von 1/ χ gegen die Temperatur ergibt nur annährend eine Gerade für T > 100 K. Deutliche Kristallfeldeffekte führen zu dieser Abweichung von einem strengen Curie-Weiss-Verhalten. Eine lineare Anpassung dieser Daten im Intervall T = [100 K; 400 K] ergibt $\mu_{eff}/Ce = 2,46 \mu_B$. Dieser Wert stimmt gut mit einem 4 f^1 -Zustand des Cers in dieser Verbindung überein²⁷. Feldabhängige Messungen zeigen, dass die Probe metamagnetisches Verhalten aufweist. Bei H = 35 kOe erfolgt ein (erster) metamagnetischer Übergang (s. Abbildung 6.8).

²⁷ Experimentelle Werte für Ce³⁺ sind mit 2,3-2,5 $\mu_{\rm B}$ tabelliert.

Abbildung 6.7: Messung der magnetische Suszeptibilität von (Ce₃N)Sn als Funktion der Temperatur, bei verschiedenen Feldern.

Abbildung 6.8: Feldabhängige Messung der magnetischen Suszeptibilität von (Ce₃N)Sn bei T = 1,8 K. Bei etwa 35 kOe ist ein metamagnetischer Übergang zu erkennen.

Abbildung 6.9: Spezifischer elektrischer Widerstand von (La₃N)Sn und (Pr₃N)Sn (Striche).

Der Gitterparameter von (Pr_3N)Sn (a = 497,5(1) pm) stimmt gut mit demjenigen der binären Verbindung (Pr₃□)Sn (497,4 – 499 pm; s. a. Tabelle A. 103) überein. Ob, wie im Falle der La-Verbindung, (Pr₃N)Sn anstelle von (Pr₃D)Sn beobachtet wurde, muss eine erneute Untersuchung des binären Phasendiagramms Pr-Sn zeigen. Die Messungen der magnetischen Suszeptibilität sind in Abbildung 6.11 und Abbildung 6.12 dargestellt. (Pr_3N) Sn zeigt antiferromagnetische Ordnung bei 49,5 ± 0,5 K. Unterhalb von 100 K führen Kristallfeldeffekte zu signifikanten Abweichungen von linearem Curie-Weiss-Verhalten. Dies steht in Zusammenhang mit dem effektiven magnetischen Moment von 3,65 $\mu_{\rm B}/{\rm Pr}$ -Atom, das etwas zu groß für einen Pr $4f^2$ Zustand ist $(3,4-3,6 \mu_B)$. Wie viele der Verbindungen $(SE_3X)M$, zeigt auch dieses Material metamagnetisches Verhalten (s. Abbildung 6.10). Der Metamagnetismus ist allerdings deutlich schwächer ausgeprägt als in (Ce₃N)Sn. Das Ergebnis der Messung des elektrischen Widerstands ist in Abbildung 6.9 dargestellt. Die antiferromagnetische Ordnung korreliert dabei mit einem Anstieg des Widerstandes. Im Vergleich zu (La₃N)Sn weist dieses Material ein geringeres Restwiderstandsverhältnis von 3,60 auf. Der Gitterparameter von (Nd₃N)Sn ist deutlich geringer als der in [10] angegebene Wert. Dieser Umstand ist bereits für andere (Nd₃N)M-Phasen beobachtet worden (s.u. und [9]).

Abbildung 6.10: Feldabhängige Messung der magnetischen Suszeptibilität von $(Pr_3N)Sn$ bei T = 2 K (gefüllte Quadrate). Zu erkennen ist ein metamagnetischer Übergang (schwarze Pfeile).

Abbildung 6.11: Magnetische Suszeptibilität von (Pr₃N)Sn als Funktion der Temperatur bei verschiedenen Feldern.

Abbildung 6.12: Reziproke magnetische Suszeptibilität von $(Pr_3N)Sn$ als Funktion der Temperatur bei H = 70 kOe.

6.5. Zusammenfassung (SE_3X)M mit SE = La – Lu, M = Al, Ga, In, Sn; X = O, N

Die Verbindungen (SE_3C)M mit M = Al, Ga, In, Sn sind bereits bekannt [11]. Hier wurde die Existenz von weiteren ternären Nitriden (SE_3N)M nachgewiesen. Insbesondere wurden die Reihe der ternären Aluminide (SE_3N)Al von den bekannten Verbindungen mit SE = La, Ce, Nd, Pr und Sm um diejenigen mit SE = Gd, Tb, Dy, Er, Ho und Tm erweitert. Ternäre Gallide (SE_3N)Ga mit SE = Ce, Pr, Gd und wurden erstmals beschrieben. Die Reihe der ternären Stannide (SE_3N)Sn wurde umfassend untersucht. Diese Phasen scheinen nach den bisher gemachten Beobachtungen nur für SE = La, Ce, Pr, Nd und Sm zu existieren.

Alle hier dargestellten Verbindungen erweisen sich als luft- und feuchtigkeitsempfindlich. Die in dieser Arbeit beschriebenen Carbide zersetzen sich mit Säuren häufig unter Feuererscheinung, wobei der typische "Carbidgeruch" auftritt. Die Nitride reagieren mit der Luftfeuchtigkeit unter der Freisetzung von Ammoniak.

In dieser Arbeit wurden Trends der Seltenerd-Metalle beobachtet. Die Bildung von $(SE_3X)M$ (X = O, N) mit leichteren Seltenerd-Metallen wird bevorzugt beobachten, mit schwereren Seltenerd-Metallen wird die Synthese aufwendiger oder unmöglich. Die ternären Verbindungen $(SE_3X)M$ existieren nicht nur mit X = C, sondern auch mit X = N und zum Teil auch mit X = O. Die Stabilitätsbereiche dieser Phasen scheinen begrenzt zu sein. Im Unterschied zu den Verbindungen $(EA_3N/O)M$ geben die bisher vorliegenden Ergebnisse keine Hinweise für eine Verzerrung der kubischen Elementarzelle.

In Abbildung 6.13 sind die Gitterparameter der Verbindungen $(SE_3N)M$ (M = Al, In und Sn) als Funktion des Ionenradius SE^{3+} aufgetragen. Da die Komponenten SE und N in den Reihen dieser Verbindungen gleich sind, ermöglicht diese Auftragung Aussagen über die Raumerfüllung bzw. das Radienverhältnis der verschiedenen Komponenten. Aus Abbildung 6.13 ergibt sich somit: $r(Ga) < r(AI) \approx r(Sn) < r(In)$. Die Verhältnisse innerhalb der 13. Gruppe korrelieren mit den Atomradien [156] r_a (r_a (Ga = 135 pm) < r_a (Al = 143 pm) $< r_{a}$ (In = 167 pm) und nicht mit den Metallradien [159] r_{m} (r_{m} (Al = 143,2 pm) $< r_{\rm m}$ (Ga = 144,1 pm) $< r_{\rm m}$ (In = 166,6 pm). Die Auftragung zeigt weiter, dass in der Struktur (SE₃N)M Al eine ähnliche Raumerfüllung besitzt wie Sn, obwohl der allgemeine Trend über das Atomvolumen und für Kationen innerhalb des Periodensystems eine deutliche Zunahme von Al nach Sn erwarten ließe $(r_a(Al = 143 \text{ pm}) < r_a(Sn = 154 \text{ pm}))$ und $r_i(Al^{3+} = 53,5 \text{ pm}) < r_i(Sn^{4+} = 69,0 \text{ pm}))$. Wie für die Elemente der 13. Gruppe bereits diskutiert [154], kann das Hauptgruppenmetall M heteropolare Bindungsanteile ausbilden. Mit anderen Worten die M-Atome lokalisieren in einer noch näher zu klärenden Art und Weise negative Ladung. In einer identischen Umgebung (SE_3N) mit starkem Elektronenüberschuss, kann ein kleineres weniger polarisierbares Al-Atom somit eine ähnliche Raumerfüllung erlangen, wie ein größeres stärker polarisierbares Sn-Atom. Raumerfüllung ist allerdings nicht das einzige Kriterium für die Existenz der Verbindungen. Wie aus Abbildung 6.13 ersichtlich, ordnen sich die Verbindungen (SE₃N)Sn zwischen die Reihe der Verbindungen (SE₃N)In und (SE₃N)Ga ein. Der Existenzbereich der Verbindungen (SE₃N)Sn ist, wie die hier gemachten Experimente zeigen, eingeschränkter mit SE = La, Ce, Pr, Nd, Sm als für die Ga oder In-Verbindungen. Weitere elektronische Faktoren müssen also eine Rolle spielen. Beim Gang der seltenen Erden von La zu Lu nimmt die Elektronegativität ab, damit steigen in einer identischen Umgebung die kovalenten Bindungsanteile. Für alle leichten Seltenerdmetalle sind Verbindungen $(SE_3X)M$ (X = C, N, O; M = Al, Ga, In, Sn) beschrieben. Je schwerer das Seltenerd-Metall desto unwahrscheinlicher wird die Bildung einer Verbindung $(SE_3X)M$. Besonders ist dies bei den den Aluminiumverbindungen. Zinn-Verbindungen ausgeprägt, gefolgt von Die Verbindungen (SE3X)In scheinen den größten Ausdehnungsbereich zu besitzten. In der Reihe In, Al, Sn nehmen somit kovalente Bindungsanteile in den Verbindungen $(SE_3X)M$ zu. Die Verbindungen (SE₃X)Ga können der Zeit noch nicht eingeordnet werden, da noch keine vollständige Untersuchung erfolgt ist.

Abbildung 6.13: Gitterparameter *a* von Verbindungen (*SE*₃N)*M* mit *M* = Al (blau), In (grün; [9]) und Sn (rot) als Funktion des Ionenradius SE^{3+} (KZ = 6 nach [8]).

Abbildung 6.13 lässt noch Aussagen über die Verbindungen $(Nd_3N)M$ (M = Al, Ga, In, Sn) zu: Die hier bestimmten Gitterparameter der Nd-Verbindungen weichen signifikant von den in [10] berichteten Werten ab (s. Tabelle 6.11). Allerdings ordnen sich die hier erhaltenen Werte der Gitterparameter der Nd-Verbindungen innerhalb der Reihen (*SE*₃N)*M* ein. Aus diesem Umstand ist zu vermuten, dass experimentelle Unwägbarkeiten, wie die Reinheit der Seltenerd-Metalle, zu den Gitterparametern in [10] geführt haben.

Tabelle 6.11:Vergleich der Gitterparameter der Phasen $(Nd_3N)M$ (M = Al, Ga, In, Sn)aus dieser Arbeit mit denen aus der Literatur [10].

Phase	<i>a</i> / pm eigene Werte	<i>a</i> / pm [10]	Differenz / pm
(Nd ₃ N)Al	494,07(6)	491,0	3,07
(Nd ₃ N)In	497,96(2)	494,7	3,26
(Nd ₃ N)Sn	494,70(5)	505,7	11

7. Systeme EA-In-N; EA = Ca, Sr, Ba

In den Systemen EA-M-N wurden in den letzten Jahren zahlreiche Phasen entdeckt und an Einkristallen charakterisiert [155]. Diese Verbindungen werden in zwei Klassen eingeteilt [158]: Solche mit vorwiegend kovalenten M-N Bindungen werden als Nitridometallate bezeichnet. M ist dabei – häufig tetraedrisch – von N umgeben und die Phasen sind Nreicher. In der zweiten Verbindungsklasse - den metallreichen Nitriden - ist der N-Anteil geringer. N- und EA-Atom bilden in der Regel ein Netzwerk aus verknüpften, oktaedrischen EA₆N-Baueinheiten ohne direkten M-N-Kontakt. Welche Verbindungsklasse bevorzugt wird, hängt vom Hauptgruppenmetall M ab. Al und Si bilden bevorzugt EA-Nitridometallate. In einem Übergangsbereich (M = Ga, Ge) werden sowohl Nitridometallate, als auch metallreiche Nitride beobachtet. Elemente mit hoher Polarisierbarkeit (M = In, Tl, Sn, Pb, P, As, Sb, Bi) bilden ausschließlich metallreiche Nitride. In dieser Arbeit waren zunächst Verbindungen (EA_3N)In mit EA = Ca, Sr und Ba Ziel der Synthesen. Zum einen sind metallreiche Perowskite (EA₃N)M wie z. B. (Ca₃N)Tl bereits bekannt (s. Kap. 2.2), zum anderen würden diese Verbindungen eine interessante Erweiterung im Rahmen des Radienkonzeptes nach Shannon bedeuten, das bereits auf die Reihen der Verbindungen (SE_3X) In angewandt wurde [9]. Der Ionenradius von $(r(Ca^{2+}) = 100 \text{ pm})$ ordnet sich zwischen diejenigen von Praseodym ($r(Pr^{3+}) = 99 \text{ pm}$) und Cer ($r(Ce^{3+}) = 101 \text{ pm}$) ein. Im Gegensatz zu den Prund Ce-Verbindungen wäre temperarturunabhängiger Pauliparamagnetismus bei den Ca-Verbindungen zu erwarten. Die Ionenradien von Sr Ba $(r(Ba^{2+}) = 135 \text{ pm})$ sind $(r(\mathrm{Sr}^{2+}) = 118 \mathrm{pm})$ und größer als die La von $(r(La^{3+}) = 103,2 \text{ pm})$. Sr und Ba stellen in Bezug auf die Radienverhältnisse der Kationen somit eine Erweiterung der Seltenerd-Metalle dar. Im Gegensatz dazu sind unterschiedliche elektronische Eigenschaften zu erwarten. Die Seltenerd-Metalle können drei Elektronen, die Erdalkali-Metalle nur zwei Elektronen bis zum Erreichen der Edelgaskonfiguration abgeben. Unter Beibehaltung eines streng ionischen Bildes müssten Erdalkali-Metall-reiche Perowskite eine andere Ladungsbilanz aufweisen. Dies wiederum sollte in den physikalischen Eigenschaften zu beobachten sein. Bei Versuchen, einphasige Produkte der Zusammensetzung (EA_3N)In zu erhalten, wurden in den Systemen EA-In-N (EA = Ca, Sr, Ba) neue Phasen beobachtet, die dem chemischen und elektronischen Unterschied zwischen den Erdalkali-Metallen und den Seltenerd-Metallen Rechnung zu tragen zu scheinen.

Unter den bekannten ternären Phasen des Systems Ca–In–N (Ca₂InN [159], Ca₄In₂N [160], Ca_{18,5}In₈N₇ [161], (Ca₇N₄)[In_{1,08}] [162]); s. Abbildung 7.1) variiert der Ca-Gehalt (50 % $\leq x$ (Ca) % ≤ 60 %) weniger als der In- (8,33 % $\leq x$ (In) $\leq 28,57$ %) und der N-Gehalt (14,29 % $\leq x$ (N) $\leq 33,34$ %).

Abbildung 7.1: Temperaturunabhängige Projektion des ternären Phasendiagramms Ca–In–N. Angaben der Bestandteile x(Ca), x(In) und x(N) in %.

Gemeinsam ist diesen Verbindungen ein Netzwerk aus verknüpften Ca₆N-Oktaedern, in das In-Atome mit unterschiedlichen strukturellen Motiven eingebettet sind. Die bisherigen Untersuchungen basierten auf der Analyse von Einkristalldaten.

Im System Sr–In–N wurden bisher lediglich Einkristallstrukturdaten von $(Sr_4N)[In_2]$ als Sr₄In₂N veröffentlicht [160]. Diese Verbindung kristallisiert im gleichen Strukturtyp wie $(Ca_4N)[In_2]$ (*I*4₁/*amd*; Nr. 141; *a* = 524,0(2) pm, *c* = 3067,0(7) pm).

Im ternären System Ba–In–N wurden in jüngster Zeit mehrere Verbindungen veröffentlicht: (Ba₁₉In₉N₉ [163], (Ba₆N)[In₅] [164] und Ba₆In_{4,78}N_{2,72} [165]. In diesen Verbindungen liegen (Ba₆N)-Oktaeder neben isolierten In-Clustern vor.

7.1. Synthese und Charakterisierung von $Ca_{19}In_8N_7 \equiv (Ca_{19}N_7)[In_4]_2$

In einem Konferenzbeitrag wurde über die Phase $(Ca_{18,5}N_7)[In_4]_2$ berichtet $(Fm\overline{3}m, a = 1474(7) \text{ pm})$ [161]. Nach dieser Zusammensetzung lässt sich die Verbindung gemäß der Zintl-Regel als ein Netzwerk von eckenverknüpften (Ca_6N) -Oktaedern und $[In_4]^{8-}$ -Clustern $(18,5 \cdot Ca^{2+} \equiv 7 \cdot N^{3-} + 2 \cdot [In_4]^{8-})$ mit einer ausgeglichenen Ladungsbilanz beschreiben. Eine isotype Phase wurde mit der Zusammensetzung $(Ca_{19}N_7)[Ag_4]_2$ beschrieben, die Verfeinerung der Struktur erfolgte am Einkristall [166]. Hier soll der Fragestellung nach der korrekten Zusammensetzung der Ca-In-Phase nachgegangen werden.

Ein röntgenografisch phasenreines Produkt wurde durch zweifache Nitridierung einer Legierung aus Ca und In (x(Ca) : x(In) = 19 : 8) bei 950 °C und einer Woche Reaktionszeit erhalten. Dabei bilden sich auch Kristalle, deren Qualität jedoch für eine Strukturbestimmung nicht Die ausreichend war. Elementaranalysen $(w(Ca) = 41,46 \pm 0,35 \%; w(In) = 49,99 \pm 0,05 \%; w(N) 5,27 \pm 0,07 \%; w(O) \le 0,10 \%;$ $w(H) \le 0.002$ %; $w(Na, K) \le 0.05$ %; $Ca_{19}In_8N_7$: $w(Ca)_{theo} = 42.83$ %; $w(In)_{theo} = 51.66$ %; $w(N)_{\text{theo}} = 5,51 \text{ \%}$) ergeben die Formel Ca_{19,0±0,2}In_{7,954±0,007}N_{6,87±0,09}. Eine Stabilisierung der Phase (Ca₁₉N₇)[In₄]₂ mit einer ausgeglichenen Ladungsbilanz im Sinne des Zintl-Konzepts kann auf Grund der Elementaranlysen ausgeschlossen werden: 1) Der Anteil an H für ein hypothetisches $((Ca^{2+})_{19}(N^{3-})_7)[In_4]^{8-}_2H^{-4}$ wäre w(H) = 540 ppm. 2) Eine partielle Substitution von N³⁻ durch C⁴⁻ würde einen Anteil von w(C) = 0.7 % erfordern, der bestimmte C-Gehalt ($w(C) = 0.045 \pm 0.001$ %) liegt jedoch deutlich darunter. 3) Auch eine Substitution von Ca^{2+} durch Na^+ oder K^+ im Sinne von $((Ca^{2+})_{18}K^+/Na^+)(N^{3-})_7)[In_4]^8$ -kann durch die Elementaranalyse ausgeschlossen werden. Hierzu wären w(K) = 2,20 % bzw. w(Na) = 1.31 % notwendig. Die Probe wurde mit Röntgen- (Cu- $K\alpha_1$) und Neutronenbeugung Die $(\lambda = 179, 78(1) \text{ pm})$ untersucht. erhaltenen Messdaten (s. Abbildung 7.2) wurden in einer gemeinsamen Verfeinerung der Struktur ausgewertet (s. Tabelle A. 114 – 117). $(Ca_{19}N_7)[In_4]_2$ kristallisiert isotyp zu $(Ca_{19}N_7)[Ag_4]_2$ [166]. Aus der Neutronenbeugung ergibt sich eine Vollbesetzung der von Ca gebildeten Oktaederlücken mit N, keine Hinweise auf signifikante Defekte, Substitutionen durch weitere Elemente oder interstitiell eingebaute Spezies.

Abbildung 7.2: Röntgen- (oben) und Neutronenbeugung am Pulver von (Ca₁₉N₇)[In₄]₂ zusammen dargestellt mit den Ergebnissen der Rietveld-Verfeinerung (experimentelle Daten: schwarze Punkte, berechnetes Diffraktogramm: rot, Differenz: blau, mögliche Reflexlagen: grün).

Abbildung 7.3: Kristallstruktur von $(EA_{19}N_7)[In_4]_2$ (EA = Ca, Sr): Tetraeder $[In_4]$ (In: violette Kugeln) sind in ein Netzwerk aus kanten- und spitzenverknüpften (Ca_6N) -Oktaedern (grün) eingebettet.

Abbildung 7.4: Die "Superoktaeder" ($EA_{19}N_6$; rot: EA = Ca, Sr) in der Kristallstruktur von $(EA_{19}N_7)[In_4]_2$: Sechs ecken- und kantenverknüpfte (EA_6N)-Oktaeder (grün) bilden Einheiten ($EA_{19}N_6$). Je sechs solcher Einheiten werden durch ein weiteres (EA_6N)-Oktaeder dreidimensional verknüpft – hier sind vier Superoktaeder um das zentrale (EA_6N)-Oktaeder dargestellt.

Die Kristallstruktur von (Ca₁₉N₇)[In₄]₂ – wie auch die des isotypen (Sr₁₉N₇)[In₄]₂ – besteht aus einem offenen Netzwerk von ecken- und kantenverknüpften Oktaedern (EA₆N), in das reguläre [In₄]-Tetraeder eingelagert sind (s. Abbildung 7.3). Die Umgebung von In wird durch neun EA-Atome vervollständigt. In Abbildung 7.5 ist ein sogenanntes Superoktaeder dargestellt: Sechs Oktaeder (Ca_6N) sind jeweils über eine Ecke und vier Kanten miteinander verknüpft und bilden so um ein zentrales Ca-Atom (Ca1) ein sogenanntes "Superoktaeder" (EA19N6). Sechs terminale EA-Atome dieses "Superoktaeders" sind über eine weiteres N-Atom (N1) miteinander verknüpft (s. a. Abbildung 7.4) und bauen das dreidimensionale Netzwerk auf. Ähnliche Superoktaeder sind aus Oxometallaten bekannt, die isolierte komplexe Anionen $[D_6O_{19}]$ enthalten (z. B. D = Nb, Ta, Mo, W z. B. $K_8Ta_6O_{19} \cdot 16 H_2O$ oder K₇NaTa₆O₁₉ • 14 H₂O [167]). Der Unterschied zu den hier beschriebenen Nitriden besteht darin, dass das N³⁻-Ion die Position des Übergangsmetall-Kations einnimmt. In beiden Struktureinheiten $[D_6O_{19}]$ und $(EA_{19}N_6)$ weichen die EA_6N/DO_6 -Einheiten von der idealen Oktaeder-Geometrie ab (s. Abbildung 7.5): Der Bindungsabstand zwischen N(2) und dem zentralen Ca(1)-Atom des Superoktaeders (d(N(2)-Ca(1)) = 257,4(8) pm) in $(Ca_{19}N_7)[In_4]_2$ ist deutlich größer als der gegenüberliegende Bindungsabstand d(N(2)-Ca(2)) = 236(1) pm.

Abbildung 7.5: Das "Superoktaeder" (Ca₁₉N₆) aus der Kristallstruktur von (Ca₁₉N₇)[In₄]₂
 (Ca: weiß; N: grün) verbunden mit einem weiteren Ca₆N-Oktaeder (Abstände in pm).

Die Bindungsabstände in $(Ca_{19}N_7)[In_4]_2$ liegen in der gleichen Größenordnung wie diejenigen im isotypen $(Ca_{19}N_7)[Ag_4]_2$. Die Ca–N-Abstände (s. Tabelle 7.1) stimmen in etwa mit denjenigen in Ca₂N (d(Ca-N) = 244,26(4) pm [168]) überein. Eine alternative Beschreibung der Kristallstruktur von ($EA_{19}N_7$)[In₄]₂ geht von einer geordneten kubisch dichtesten Kugelpackung von Ca und In-Atomen aus. Die Stickstoffatome füllen die ausschließlich von Ca gebildeten Oktaederlücken, während die In-Atome [In₄]-Tetraeder bilden. Der In–In-Abstand beträgt d(In–In) = 311,6(3) pm. Eine ähnliche tetraedrische Anordnung der In-Atomen ist aus der intermetallischen Phase Na₂In \equiv Na₈[In₄] bekannt, die – dem Zintl-Konzept entsprechend – verzerrte [In₄]^{8–}-Tetraeder enthält (d(In–In) = 307 - 315 pm) [169].

Abbildung 7.6: Messung der magnetische Suszeptibilität von $(Ca_{19}N_7)[In_4]_2$ bei einem äußeren Feld von H = 70 kOe (rot, gefüllte Kreise) und Extrapolation nach $1/H \rightarrow \infty$ (rote offenen Kreise; angepasste Daten: grüne Linien). Einschub: Elektrischer Widerstand (rote durchgezogene Linie) als Funktion der Temperatur.

Die Messungen der magnetischen Suszeptibilität (s. Abbildung 7.6) zeigen diamagnetisches Verhalten der Probe ($\chi_0 = -190(40) \cdot 10^{-6}$ emu/mol). Nach Abzug der diamagnetischen Inkremente²⁸ ergibt sich ein korrigierter Wert ($\chi_0 - \chi_{Kern}$) = 205(40) emu/mol. Dies

²⁸ [89]: Ca²⁺: 8 • 10⁻⁶ emu/mol; In³⁺: 19 • 10⁻⁶ emu/mol N³⁻[153]: 13 • 10⁻⁶ emu/mol

entspricht 6,3 Zuständen/eV am Ferminiveau²⁹ und ist ein Hinweis auf metallisches Verhalten der Probe. Der elektrische Widerstand steigt mit zunehmender Temperatur (s. Abbildung 7.6) und unterstreicht die metallischen Eigenschaften dieser Verbindung. Elementaranalysen, Messungen der magnetischen Suszeptibilität und des elektrischen Widerstands sowie die Ergebnisse der Neutronenbeugung am Pulver ergeben Ca₁₉In₈N₇ als die korrekte Zusammensetzung.

7.2. Synthese und Charakterisierung von $Sr_{19}In_8N_7 \equiv (Sr_{19}N_7)[In_4]_2$

Die Synthese des zu $(Ca_{19}N_7)[In_4]_2$ isotypen $(Sr_{19}N_7)[In_4]_2$ erfolgt aus Schmelzkugeln der Zusammensetzung "Sr₁₉In₈" bei 650 °C unter Stickstoffatmosphäre. Die Elementaranalyse ergab $w(Sr) = 61 \pm 2$ %, $w(In) = 33,5 \pm 0,5$ %, $w(N) 3,47 \pm 0,07$ %, $w(O) = 0,30 \pm 0,01$ %, $w(Na, K) \le 0,05$ %; Sr₁₉In₈N₇: $w(Sr)_{theo} = 62,09$ %; $w(In)_{theo} = 34,26$ %; $w(N)_{theo} = 3,66$ %; Sr_{19,0±0,3}In_{7,9±0,1}N_{6,73±0,10}O_{0,51±0,20}). Wie bei $(Ca_{19}N_7)[In_4]_2$ kann für $(Sr_{19}N_7)[In_4]_2$ eine Stabilisierung durch Alkalimetalle Na⁺ und K⁺ (Substitution A^+ vs. Sr²⁺) im Sinne des Zintl-Konzepts (ausgeglichene Ladungsbilanz) ausgeschlossen werden.

Abbildung 7.7: Röntgenbeugung am Pulver von (Sr₁₉N₇)[In₄]₂ zusammen dargestellt mit den Ergebnissen der Rietveld-Verfeinerung (experimentelle Daten: schwarze Punkte, berechnetes Diffraktogramm: rot, Differenz: blau, mögliche Reflexlagen: grün).

 $^{29} \chi_{\rm P} = 32,329 \cdot 10^{-6} \cdot N(E_{\rm F}) \cdot {\rm eV} \cdot {\rm emu} \cdot {\rm mol}^{-1}$

Die Rietveld-Verfeinerung an Röntgenpulverdaten von $Sr_{19,0\pm0.3}In_{7,9\pm0.1}N_{6,73\pm0.1}O_{0,51\pm0,2}$ bestätigt das Sr–In-Teilgitter ($Fm\overline{3}m$; a = 1563,3(2) pm; Ergebnisse der Verfeinerung sind in Tabelle A. 116 und 118 zusammengefasst und in Abbildung 7.7 dargestellt). Die In–In-Bindungslängen in ($Sr_{19}N_7$)[In₄]₂ sind mit d(In-In) = 309,7(3) pm nur unwesentlich kleiner als in der isotypen Ca-Verbindung (d(In-In) = 311,6(3) pm (s. Tabelle 7.1). Im Gegensatz zu den In–In-Bindungsabständen in den Kristallstrukturen von (EA_4N)[In]₂ (EA = Ca, Sr; In-Ketten) bleiben somit die In₄-Tetraeder unbeeinflusst vom EA–N-Baueinheiten, das sich, entsprechend dem größeren Gitterparameterm von Sr, auch in ($Sr_{19}N_7$)[In₄]₂ aufweitet. Genauso sind die EA–In-Abstände in ($Sr_{19}N_7$)[In₄]₂ größer als in ($Ca_{19}N_7$)[In₄]₂. Die [In₄]-Tetraeder scheinen – anders als bei den Phasen (EA_4N)[In]₂ (EA = Ca, Sr) – in diesen Verbindungen ähnliche Bindungsverhältnisse aufzuweisen, die unabhängig vom EA–N-Gerüst sind.

Tabelle 7.1:	Ausgewählte	Bindungslängen	und	Kristallstrukturdaten	$(EA_{19}N_7)[In_4]_2$
	(EA = Ca, Sr)	in pm.			

Abstände		EA = Ca	EA = Sr	Abstände		EA = Ca	EA = Sr
In–In	3 ×	311,6(3)	309,7(3)	EA(1)– $EA(3)$	$12 \times$	342,3(3)	363,1(3)
In-EA(2)	3 ×	365,2(6)	397,8(5)	EA(2)– $EA(2)$	$4 \times$	342,8(9)	264,3(7)
In-EA(3)	6 ×	350,2(5)	372,5(4)	EA(2)– $EA(3)$	$4 \times$	349,3(7)	261(4)
N(2)– <i>EA</i> (1)	1 ×	257,4(8)	363,1(3)	EA(3)– $EA(3)$	$4 \times$	342,3(5)	256(4)
N(2)– <i>EA</i> (2)	1 ×	236(1)	373,8(7)	<i>EA</i> (1)– <i>EA</i> (1)	6 ×	242,4(9)	256,8(3)
N(2)– <i>EA</i> (3)	4 ×	242,5(5)	365,5(5)				

Die Messungen der magnetischen Suszeptibilität (s. Abbildung 7.6) ergeben $\chi_0 = -230(30) \cdot 10^{-6}$ emu/mol und nach Abzug der diamagnetischen Kerninkremente³⁰ ($\chi_0 - \chi_{Kern}$) $\approx 297(30) \cdot 10^{-6}$ emu/mol. Daraus leiten sich neun maximale elektronische Zustände/eV am Ferminiveau ab. Der Widerstand (s. Abbildung 7.8) fällt – wie von einem Metall zu erwarten – zunächst mit sinkender Temperatur, durchläuft bei etwa 90 K ein lokales Minium, um zu tieferen Temperaturen wieder anzusteigen. Der Restwiderstand beträgt wenige m Ω . Größenordnung und Temperaturabhängigkeit des elektrischen Widerstands sind somit charakteristisch für einen stark dotierten Halbleiter.

 $^{^{30}}$ Sr²⁺: 18 • 10⁻⁶ emu/mol; In³⁺: 19 • 10⁻⁶ emu/mol [89] N³⁻: 13 • 10⁻⁶ emu/mol [153]

Abbildung 7.8: $(Sr_{19}N_7)[In_4]_2$ (Pulver): Magnetische Suszeptibilität gemessen bei einem äußeren Feld von H = 70 kOe (rot, gefüllte Kreise) und Extrapolation nach $1/H \rightarrow \infty$ (rote offenen Kreise; angepasste Daten: grüne Linien). Oben rechts: Elektrischer Widerstand (rote durchgezogene Linie).

7.3. Syntheseversuche zu $Ba_{19}In_8N_7 \equiv (Ba_{19}N_7)[In_4]_2$

In Analogie zu den leichteren homologen Ca und Sr wurde auch die Existenz von $(Ba_{19}N_7)[In_4]_2$ überprüft. Hinweise auf die Phase $(Ba_{19}N_7)[In_4]_2$ wurden bei einer Festkörpersynthese mit der Zielzusammensetzung "Ba₃InN" erhalten.

Feine Pulver einer Legierung von "Ba1.5In" und "Ba1.5N" wurden zu Tabletten gepreßt und sechs Monate bei 600 °C in einer Ni-Ampulle wärmebehandelt. Im anschließend gemessenen Röntgenpulverdiffraktogramm (s. Abbildung 7.9) können zwei Hauptphasen identifiziert Zehn Reflexe werden. können kubisch indiziert $(a = 3 \cdot 558,09(8) \text{ pm} = 1674,27 \text{ pm}, \text{ s. Tabelle A. 119})$, eine zweite Phase wird nach [56] und [64] Ba_2N_{1+x} zugeordnet. Daneben sind wenige Reflexe geringer Intensität weiterer Phasen vorhanden. Die Reflexe der kubischen Phase stimmen in Lage und Intensität sehr gut mit einer kubisch dichtesten Kugelpackung aus Ba und In-Atomen überein, wie sie auch in (Ba₁₉N₇)[In₄]₂ realisiert ist. Allerdings sind die Streubeiträge von Ba (56 e⁻) und In (49 e⁻) sehr ähnlich. Deshalb ist keine Aussage über die Ordnung dieser Atome möglich. Der Streubeitrag von N (7 e⁻) ist zu klein gegenüber den Schwerstreuern Ba und In, um die Intensitäten im Diffraktogramm zu beieinflussen. Reflexe, die eindeutig die Anordnung der Ba und In Atome im Sinne von $(Ba_{19}N_7)[In_4]_2$ bestätigen, weisen im Röntgenpulverdiffraktogramm (s. berechnetes Diffraktogramm Abbildung 7.9) eine zu geringe Intensiät auf, um sich vom Untergrund abzuheben. Eine andere Anordnung von Ba und In mit einer kubisch dichtesten Kugelpackung wäre möglich. Für (Ba₃N)In als kubischem Perowskit wird, unter Anwendung des Ionenradienkonzepts nach Shannon und den für die Verbindungen (SE₃N)In gewonnen Gitterparametern, ein Wert von etwa a = 590 pm extrapoliert. Die Elementaranalyse auf N nach der Synthese ergibt $w(N) = 2,6(1) \% (w_{\text{theo}}(Ba_3InN) = 2,6\%; w_{\text{theo}}((Ba_{19}N_7)[In_4]_2) = 2,7\%)$. Der Gitterparameter stimmt auch nicht mit kubischem Ba₆In_{4,78}N_{2,72} (*Fd* $\overline{3}m$, Nr. 229, a = 1521,6(1) pm) überein [165]. In weiteren Experimenten wurden zwei analog präparierte Pulverproben der Zusammensetzung Ba3InN bei 500 °C sechs Monate bzw. eine Woche bei 700°°C wärmebehandelt. Bei 500 °C wurden dieselben Ergebnisse wie zuvor bei der bei 600 °C erhaltenen. Bei der Wärmebehandlungen bei T = 700 °C schmolz die Ausgangsmischung auf.

Abbildung 7.9: Röntgenpulverdiffraktogramm (Cu- $K\alpha_1$ -Strahlung) aus Ba₃N₂, Ba und In mit der nominellen Zusammensetzung "Ba₃InN" (6 Monate, 600 °C, Ta-Ampulle), zusammen dargestellt mit einem berechneten Diffraktogramm von Ba₂N [64] und (Ba₁₉N₇)[In₄]₂ ($a = 3 \cdot 558,09(8)$ pm = 1674,27 pm).

7.4. Synthese und Charakterisierung von $Ca_4 In_2 N \equiv (Ca_4 N)[In]_2$

Die Synthese von Einkristallen und die Kristallstruktur von $(Ca_4N)[In]_2$ wurden bereits beschrieben [160]. Schichten aus unendlichen In-zick-zack-Ketten wechseln hierbei mit eckenverknüpften (Ca₆N)-Oktaedern ($_{x}^{2}(Ca_2Ca_{4/2}N)$ ab (s. Abbildung 7.10). Die Abstände innerhalb einer In-Kette (d(In-In) = 316,3 pm) wären ein Hinweis für $[In]^{3-}$ -Ketten gemäß der Zintl-Regel in Analogie zu Ketten in flüssigem Schwefel. Dem widerspricht eine unausgeglichene Elektronenbilanz nach der ionischen Grenzformel (Ca²⁺)₄(N³⁻)[(In^{2,5-})₂]. Ähnlich wie die oben beschriebene Phase (Ca₁₉N₇)[In₄]₂ kann die Struktur auch als geordnete kubisch dichteste Kugelpackung von In und Ca-Atomen betrachtet werden, deren ausschließlich von Ca gebildeten Oktaederlücken mit N besetzt sind. Im Folgenden wird erstmals die Synthese von röntgenografisch phasenreinen Pulvern (Ca₄N)[In]₂ vorgestellt. An diesen Pulvern wurden Messungen der elektrischen Leitfähigkeit und der magnetischen Suszeptibilität durchgeführt, um die elektronischen Eigenschaften dieser Verbindung zu untersuchen.

Die Synthese phasenreinen Pulvers von (Ca₄N)[In₂] auf dem Wege der direkten Nitridierung bei Temperaturen unterhalb von 1000 °C gelingt nicht. In homogenen Metallgemischen von Ca und In mit $x(Ca) \ge 66,67$ % bildet sich bis etwa 500 °C (Ca₇N₄)[In_{1.03}] als Hauptphase aus homogenen Metallgemischen, oberhalb von 550 °C ist die Phase Ca19In8N7 vorherrschend. Eine Festköpersynthese aus einer Legierung "Ca₅In₄" und Ca₃N₂ $(\Sigma: Ca_8In_4N_2 = Ca_4In_2N)$ ist ebenfalls nicht erfolgreich. Die Schmelzkugel "Ca₅In₄" aus Ca und In, hergestellt im Lichtbogen, zeigt im Querschnitt bereits zwei Bereiche mit unterschiedlichem metallischen Glanz: In der Mitte ein duktiler Kern und außen eine spröde Hülle. Nach dem Vermahlen der Probe liegt deshalb ein feines Pulver neben einer ausgedengelten Folie vor. Intensives Verreiben wiederum begünstigt den selektiven Verlust somit eine signifikante der spröderen Anteile und Abweichung von der Ausgangszusammensetzung. Die Synthese eines röntgenografisch einphasigen Produkts gelang mit folgender Methode: Ca und In wurden im molaren Verhältnis 4:2 im Lichtbogen zusammengeschmolzen. Die Schmelzkugel wurde im Röhrenreaktor bei 550 °C eine Woche unter Stickstoff zur Reaktion gebracht. Anschließend war die gesamte Schmelzkugel versprödet und ließ sich ohne große Mühe in einer Achatreibschale zu feinem Pulver verarbeiten. Der Stickstoffgehalt dieser Probe lag bei $w(N) = 5,34 \pm 0,10$ % $(w(O) \le 0.25 \%)$, das Röntgenpulverdiffraktogramm zeigt Reflexe von Ca₁₉In₈N₇ und Ca₃N₂. Bezogen auf die Einwaagen an Metall (x(Ca) : x(In) = 4 : 2) ergibt sich daraus eine

Summenformel des Produkts "Ca4In2N1,57". Zur besseren Homogenisierung wurde die Umsetzung mit Stickstoff an diesem gepulverten Produkt unter denselben Bedingungen wiederholt. Das Röntgenpulverdiffraktogramm änderte sich nur unwesentlich der Stickstoffgehalt nahm leicht zu ($w(N) = 5,82 \pm 0,06$ %; $w(O) \le 0,10$ %; Ca₄In₂N_{1,721 \pm 0,018}). Dieses Produkt wurde bei 800 °C unter konstantem Argondruck eine Woche wärmebehandelt. Das danach gemessene Röntgenpulverdiffraktogramm (s. Abbildung 7.11) zeigt phasenreines (Ca₄N)[In]₂ (a = 491,14(4) pm; c = 2907,7(3) pm). Die Analyse auf N, O, Ca und In ergibt die Summenformel $Ca_{3,872 \pm 0,008}In_{1,92 \pm 0,03}N_{1,00 \pm 0,02}O_{0,032 \pm 0,004}$ $(w(N) = 3,50 \pm 0,07 \%;$ $w(O) = 0.13 \pm 0.02$ %; $w(Ca) = 38,78 \pm 0,14 \% \%;$ $w(In) = 55,10 \pm 0,47$ %).

Abbildung 7.10: Ausschnitt der Kristallstruktur von (Ca₄N)[In₂]: Schichten aus eckenverknüpften Oktaedern (Ca₂Ca_{4/2}N) wechseln mit Schichten aus parallel orientierten zick-zack- Ketten ¹_∞[In] (schwarze Kugeln) ab.

Die Ergebnisse der Elementaranalyse – mit vernachlässigbarem Sauerstoffgehalt – zeigen, dass eine alternative Strukturbeschreibung mit "(Ca₄O)[In]₂", welche in Übereinstimmung mit dem ionischen Bild der Zintl-Regel und ${}^{1}_{\infty}$ [In]³⁻-Baueinheiten wäre, für diese Phase nicht

sinnvoll ist. Beim Gang von (Ca₄N)[In₂] zum isotypen (Sr₄N)[In₂] [160] nimmt der bereits lange Bindungsabstand In–In ebenso zu (Ca: d(In-In) = 316,3 pm; relativ Sr: d(In-In) = 331.8 pm;[160]), wie der zwischen Abstand den Ketten (Ca: d(In-In) = 491,5 pm; Sr: d(In-In) = 524,0 pm; [160]). Diese Abstände sind durch die Bindungslängen EA-N in den eher rigiden ${}^{2}_{\infty}(EA_{2}EA_{4/2}N)$ -Schichten vorgeben, da der Abstand zwischen zwei In-In-Ketten demjenigen zweier Oktaederzentren entspricht. Ebenfalls nehmen die In-In-Abstände innerhalb einer Kette beim Gang von Ca nach Sr zu, wohingegen die Bindungswinkel mit 103° etwa konstant bleiben. Vermutlich sind diese In-In-Bindungen in den Phasen (EA₄N)[In₂] weniger bedeutsam, als das Bild von stark kovalenten Bindungen, wie in $\frac{1}{\infty}$ [In]³⁻ formuliert, erwarten lassen würde.

Abbildung 7.11: (Ca₄N)[In]₂: Vergleich von experimentellen (oben, schwarz, Cu- $K\alpha_1$ -Strahlung, Glaskapillare, $d_{in} = 0,01 \text{ mm } d_{aus} = 0,02 \text{ mm}$) und berechneten (unten, rot: $I4_1/amd$; a = 491,14 pm; c = 2907,7 pm; Atomlagen nach [160]) Röntgenpulverdiffraktogrammen.

Die Messungen der magnetischen Suszeptibilität (s. Abbildung 7.12) von $(Ca_4N)[In]_2$ belegen diamagnetisches Verhalten. Eine Anpassung der magnetischen Suszeptibilität nach dem Curie-Weiss-Gesetz (extrapoliert für $1/H \rightarrow \infty$) ergibt geringe temperaturabhängige paramagnetische Anteile ($\mu_{eff} = 0,06 \ \mu_B$), die auf Verunreinigungen zurückzuführen sind (etwa 0,1 % Spin 1/2 Spezies) und eine magnetische Suszeptibilität $\chi_0 = -20 \pm 5 \cdot 10^{-6}$ emu/mol. Nach Abzug der diamagnetischen Kerninkremente³¹ wird $(\chi_0 - \chi_{Kern}) \approx 63 \cdot 10^{-6}$ emu/mol erhalten. Dieser Wert stimmt mit einer geringen temperaturunabhängigen paramagnetischen Suszeptibilität überein. Daraus leiten sich 1,9 maximale elektronische Zustände/eV am Ferminiveau ab, die als Hinweis auf metallisches Verhalten der Probe gewertet werden. Mit Zunahme der Temperatur steigt der elektrische Widerstand (s. Ausschnitt Abbildung 7.12). Der Restwiderstand $\rho_0 \approx 350 \ \mu\Omega$ cm (extrapoliert bei T = 4 K) und der Widerstand bei Raumtemperatur $\rho_{298} = 680 \ \mu\Omega$ cm charakterisieren ein schlechtes Metall.

Abbildung 7.12: (Ca₄N)[In]₂ (Pulver): Messungen der magnetischen Suszeptibilität bei verschiedenen Feldern (rote und grüne Punkte) sowie einer Extrapolation für 1/H → ∞ (schwarz Punkte) als Funktion der Temperatur.
Oben rechts: Messung des elektrischen Widerstands als Funktion der Temperatur.

 $^{^{31} \}text{ Ca}^{2+}: 8 \bullet 10^{-6} \text{ emu/mol}; \text{ In}^{3+}: 19 \bullet 10^{-6} \text{ emu/mol} \text{ [89] } \text{N}^{3-}: 13 \bullet 10^{-6} \text{ emu/mol} \text{ [153]}$

7.5. Ergebnisse in den ternären Systemen EA–In–N (EA = Ca, Sr, Ba)

In den Kristallstrukturen von Phasen der ternären Systeme EA–In–N (EA = Ca, Sr, Ba) sind Baueinheiten mit direkten In–In-Kontakten in Strukturen aus verknüpften (EA_6 N)-Oktaedern eingebettet: Im Falle von (Ca₄N)[In]₂ wechseln Schichten aus zick-zack-Ketten von In-Atomen, mit Oktaeder-Schichten $\frac{2}{\infty}$ (Ca₂Ca_{4/2}N) ab. Bei (EA_{19} N₇)[In₄]₂ (EA = Ca, Sr, Ba) liegen isolierte In₄-Tetraeder in einem dreidimensionalen Netzwerk aus ecken- und kantenverknüpften (Ca₆N)-Oktaedern vor.

Für (Ca₄N)[In]₂ wurde eine Methode zur Darstellung von röntgenografisch einphasigem Pulver (*I*4₁/*amd*; *a* = 491,14(4) pm; *c* = 2907,7(3) pm) entwickelt. Die Verbindung wurde durch Elementaranalysen auf N, O, Ca und In charakterisiert. Aus der Zusammensetzung Ca_{3,872±0,008}In_{1,92±0,03}N_{1,00±0,02}O_{0,032±0,004} kann eine alternative Beschreibung der Phase als metallreiches Oxid und Zintl-ähnliche Verbindung (Ca²⁺₄O²⁻)[${}^{1}_{\infty}$ In³⁻]₂ ausgeschlossen werden. Damit in Einklang stehen die Messungen der magnetischen Suszeptibilität und des elektrischen Widerstand, die dieser Verbindung metallischen Charakter zuweisen.

An Einkristallen wurde bereits die Kristallstruktur der Verbindung (Ca_{18.5}N₇)[In₄]₂ beschrieben ($Fm\overline{3}m$; a = 1474(7) pm) [161]. Erstmals wurde ein röntgenografisch phasenreines Pulver mit ähnlicher Kristallstruktur erhalten ($Fm\overline{3}m$; a = 1473, 14(9) pm). Nach den Ergebnissen der Elementaranalysen ergibt sich die Summenformel $Ca_{19,0\pm0.2}In_{7,954\pm0.007}N_{6,87\pm0.09}$ Die Beschreibung der Verbindung als $(Ca_{19}N_7)[In_4]_2$ wird durch eine gemeinsame Verfeinerung von Datensätzen aus Neutronen- und Röntgenbeugung am Pulver bestätigt. Messungen der magnetischen Suszeptibilität und des elektrischen Widerstands, weisen dieser Verbindung metallischen Charakter zu, wie aus einer elektronisch ausgeglichenen Grenzformel $(Ca^{2+}_{18.5}N^{3-}_{7})[In_4^{8-}]_2$ nicht zu erwarten wäre. Darüber hinaus wurde eine isotype Ag-Verbindung (Ca₁₉N₇)[Ag₄]₂ beschrieben [166]. Hier gelang die Synthese röntgenografisch einphasigen Pulvers einer isotypen Sr-Verbindung $(Sr_{19}N_7)[In_4]_2$ (*Fm* $\overline{3}m$; a = 1563,3(2) pm). Erste Hinweise auf eine isotype Ba-Verbindung $(Ba_{19}N_7)[In_4]_2$ $a = 3 \cdot 558,09(8) \text{ pm} = 1674,27 \text{ pm}$ ergaben sich aus Pulvern der Zusammensetzung Ba₃InN. In den Strukturtypen $(EA_4N)[In]_2$ und $(EA_{19}N_7)[In_4]_2$ nehmen die Volumina der Elementarzellen von Ca nach Sr zu. Die In-In-Abstände variieren von (Ca₁₉N₇)[In₄]₂ zu (Sr₁₉N₇)[In₄]₂ aber kaum, während sich die In-zick-zack-Ketten in $(EA_4N)[In]_2$ (EA = Ca (diese Arbeit), Sr [160]) dem Gerüst der Oktaederschichten ∞^{2} (Ca₂Ca_{4/2}N) anpassen. Die erhaltenen Strukturdaten geben somit Hinweise auf unterschiedliche In-In-Bindungsverhältnisse.

8. Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurde die Existenz ternärer Phasen der Zusammensetzung $(SE_3X)M$ (SE = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Er, Ho, Tm, Lu; X=O, N; M = Al, Ga, In, Sn) untersucht. Dabei wurden bisher unbekannte Verbindungen mit Röntgenbeugung am Pulver und Elementaranalysen auf O und N charakterisiert. An röntgenografisch phasenreinen Produkten erfolgten Messungen der magnetischen Suszeptibilität und des elektrische Widerstands als Funktion der Temperatur. Von Verbindungen (Ce₃X)M wurden darüber hinaus Röntgenabsorbtionsspektren aufgenommen.

Erstmals gelang die Synthese der Verbindungen (*SE*₃O)Al mit *SE* = La, Ce, Pr, Nd und Sm und (*SE*₃O)In mit *SE* = Ce, Pr und Nd. Die metallreichen Oxide (*SE*₃O)In mit *SE* = Ce, Pr und Nd stellen die ersten bekannten Verbindungen in den jeweiligen ternären Systemen *SE*– In–O dar. Die Reihe der bekannten metallreichen Perowskite (*SE*₃N)Al mit *SE* = La – Sm [90] wurde um die Seltenerd-Metalle *SE* = Gd, Tb, Dy, Ho, Er und Tm erweitert. Die Verbindungen (*SE*₃N)Sn (*SE* = La, Ce, Pr, Nd, Sm) und (*SE*₃N)Ga (*SE* = Ce, Pr, Nd, Sm, Gd, Tb) wurden erstmals synthetisiert.

Die Ergebnisse der Elementaranalyse auf O und N der Verbindungen (SE_3X)M (X = N, O) sprechen für eine Zusammensetzung nahe der Vollbesetzung der X-Lage im Sinne von ($SE_3X_{1,0}$)M. Die Verbindungen (SE_3X)M kristallisieren ausnahmslos im Strukturtyp des kubischen Perowskits. In Röntgenpulverdiffraktogrammen der untersuchten Verbindungen wurden keine Abweichungen von der kubischen Symmetrie im Sinne einer Verzerrung beobachtet. Eine Änderung der Zusammensetzung innerhalb der Perowskitstruktur (SE_3X)M von O nach N oder eine Veränderung des Seltenerd-Metalls führt sprunghaft zur Frage nach der Existenz der jeweiligen Verbindung: In der Reihe (SE_3 O)Al und (SE_3 N)Sn konnten die Verbindungen mit La, Ce, Pr, Nd und Sm dargestellt werden. Die Synthese der Gd-Verbindungen gelang unter den angewandten Bedingungen nicht. Generell bilden sich metallreiche Perowskite (SE_3X)M bei konstantem (M=Al, Ga, In, Sn) wahrscheinlicher mit leichteren als mit schwereren Seltenerd-Metallen. Erfolgreiche Synthesen von (SE_3X)M mit schwereren Seltenerd-Metallen erfordern höhere Temperaturen, längere Wärmehandlungen oder zusätzliche Homogenisierungsschritte.

Die Gitterparameter der metallreichen Perowskite (SE_3X)M nehmen bei konstantem X und M mit steigender Ordnungszahl von SE ab und verhalten sich somit der Lanthanidenkontraktion entsprechend. Die Aufweitung des SE_3M -Grundgerüsts innerhalb einer homologer Reihen (SE_3O)M, (SE_3N)M und (SE_3C)M erfolgt kontinuierlich vom Oxid

über das Nitrid zum Carbid und korreliert sowohl mit der Größe der Anionradien r_i : $r_i(C^{4-}) > r_i(N^{3-}) > r_i(O^{2-})$ als auch der Atomradien $r_a(C) > r_a(N) > r_a(O)$.

Messungen der magnetischen Suszeptibilität und der L_{III}-Absorbtionskanten an röntgenografisch phasenreinen Produkten sind Einklang mit in einer SE^{3+} . Elektronenkonfiguration Die gemessenen elektrischen Widerstände sind charakteristisch für schlechte metallische Leiter.

Die thermische Stabilität (DSC) der Phasen (SE_3X)M ist für die Nitride allgemein am höchsten. Die ternären Nitride (SE_3 N)Al und (SE_3 N)Ga zersetzen zwischen 1000 und 1200 °C in SEN und eine intermetallische Phase. Die analogen Stannide bleiben bis 1250 °C thermisch stabil. Die Oxide und Carbide (SE_3X)Al hingegen zersetzen sich schon bei niedrigeren Temperaturen (600 – 800 °C).

Gut untersuchte binäre Phasendiagramme SE-M vereinfachen die Planung der Wärmebehandlung ternärer Verbindungen $(SE_3X)M$. Daraus ergab sich in dieser Arbeit die Notwendigkeit, einzelne Aspekte der binären Phasendiagramme SE-M näher zu untersuchen. Im System La-Al wurde die neue Phase La₁₆Al₁₃ beobachtet und an Einkristallen sowie an Pulvern charakterisiert ($P\overline{6}2m$; Nr. 189; a = 918,3(2) pm; c = 1123,8(3) pm). Diese Kristallstruktur baut sich aus zwei Strukturmotiven auf: Einem Edshammar-Polyeder, bei dem sich um ein zentrales Al-Atom elf La-Atome anordnen (AlLa₁₁) und eine käfigartige Al₁₁-Barrelaneinheit. Für die Phase Ce₃Al wurde gezeigt, dass das in der Literatur beschrieben kubische Polymorph (Cu₃Au-Strukturtyp, [111]) auf einen ternären bzw. multinären metallreichen Perowskit $(Ce_3X_{1-y}^1X_y^2)Al$ (X=C, N, O)zurückzuführen ist. Gleiches gilt vermutlich auch für die in der Literatur beschriebenen Verbindungen Ce₃Ga und La₃Sn. In den Röntgenpulverdiffraktogramme der Phasen SE₃In werden breite Reflexe beobachtet, die sich kubisch indizieren lassen aber eine Zuordnung der Struktur zum Cu₃Au-Strukturtyp nicht erlauben. Die Untersuchungen von Gehaltschnitten SE_3Al-SE_3AlX und SE_3In-SE_3InX (SE = La, Ce; X = C, N, O) ergeben für Sauerstoff und Stickstoff nur sehr geringe Phasenbreiten im Sinne von $(SE_3X_{1-\nu})$ Al und $(SE_3X_{1-\nu})$ In. Die Ergebnisse zu den Gehaltschnitten mit ternären Carbiden hingegen weisen den Verbindungen signifikante Phasenbreiten (($SE_3C_{1-\nu}$)In: $\nu > 0,5$) zu und/oder geben Hinweise auf eine intrinsische Unterbesetzung der Kohlenstofflage (Ce₃C_{0,65})Al).

Bei einer Betrachtung der Ionenradien nach Shannon [8] stellen die Erdalkali-Metalle (EA^{2+} ; EA = Ca, Sr, Ba) eine Erweiterung der Seltenerd-Metalle (SE^{3+}) dar. Bei Versuchen in den Systemen EA–In–N gelang erstmals die Synthese röntgenografisch phasenreiner Produkte von (Ca₄N)[In]₂ ($I4_1/amd$; a = 491,14(4) pm; c = 2907,7(3) pm) und ($EA_{19}N_7$)[In₄]₂ ($Fm\overline{3}m$;

EA = Ca: a = 1473,14(9) pm; EA = Sr: a = 1563,3(2) pm). Durch die Ergebnisse aus Elementaranlysen von H, C, N, O, EA und In sowie Neutronenbeugung am Pulver von $(Ca_{19}N_7)[In_4]_2$ können alternative Zusammensetzungen mit einer ausgeglichenen Ladungsbilanz im Sinne des Zintl-Konzepts für diese Phasen ausgeschlossen werden. Messungen der magnetischen Suszeptibilität und des elektrischen Widerstands ergänzen dieses Bild: Die untersuchten Ca-Nitride zeigen metallisches Verhalten. Wie die Perowskite $(Ca_3N)M (M = Tl, Sn, Pb, Au) [6, 12, 20]$ werden in den Verbindungen der Systeme EA–In– N die ausschließlich von EA gebildeten Oktaederlücken mit N besetzt. Anders jedoch liegt In nicht isoliert in der Kristallstruktur vor, sondern bildet in $(Ca_4N)[In]_2$ unendliche Ketten $\frac{1}{\alpha}[In]$ und in $(EA_{19}N_7)[In_4]_2 [In_4]$ -Cluster.

Wie im Zuge dieser Arbeit gezeigt wurde, bedürfen die Seltenerd-Metall-reichen Bereiche der binären Phasendiagramme einer erneuten Untersuchung. Die bisher unbekannte Verbindung La₁₆Al₁₃ ist ins Phasendiagramm einzuordnen. Der Existenzbereich von La₃Al wurde widersprüchlich beschrieben [70, 75]. Die berichteten vermeintlich binären, kubischen Verbindungen La₃Sn [15] und β -Ce₃Al [111] sind auf ternäre metallreicher Perowskite zurückzuführen. Möglicherweise ist die Beobachtung auch anderer Phasen *SE*₃*M* im Cu₃Au-Strukturtyp wie Pr₃Al [75], Ce₃Ga [113] oder Pr₃Sn [211] auf ternäre Verbindungen der Zusammensetzung (*SE*₃*X*)*M* begründet.

Nach der Untersuchung der Nitride (*SE*₃N)*M* steht bei den Seltenerd-Metall-reichen Perowskiten die Untersuchung der ternären Oxide (*SE*₃O)*M* und Carbide (*SE*₃C)*M* an. Insbesondere die Frage nach Verbindungen (*SE*₃O)In bedarf einer genaueren Analyse. Nach den Ergebnissen in Gehaltschnitten Ce₃*M*–Ce₃*M*C (*M* = Al, In) sollten die ternären Carbide (*SE*₃C)*M* auf Unterbesetzung der Kohlenstofflage und Verzerrungen von der kubischen Struktur untersucht werden. Insbesondere die Ga-Verbindungen (*SE*₃C)Ga weisen widersprüchliche Gitterparameter beim Gang von *SE* = La nach *SE* = Lu auf. Letztendlich stellt sich dann die Frage nach quaternären Verbindungen im Sinne von (*SE*₃*X*¹_{1-y}*X*²_y)*M*, um die elektronischen Eigenschaften zu Untersuchen oder (*SE*¹_{3-y}*SE*²_y*X*)M insbesondere für *M* = Sn *X* = N und *SE* = Sm und Gd, um die Grenzen eines metallischen Radienkonzeptes genauer zu lokalisieren.

9. Literaturverzeichnis

[1]	U. Müller;
	Kap. 16.4 <i>Perowskite</i> S. 250 – 262.
	In: Anorganische Strukturchemie, 3. Aufl., Teubner-Verlag, Stuttgart, 1996.
[2]	R. Brill;
	Das Kristallgitter des Fe_4N ;
	Z. Kristallogr., 68, 1928 , 379 – 384.
[3]	F. R. Morral;
	The Constitution of Iron-Rich Fe-Al-C Alloys;
	J. Iron Steel I., 130, 1934 , 419 – 427.
[4]	R. G. Butters und H. P. Myers;
	The Structure and Magnetic Properties of the Alloy Mn ₃ AlC;
	Phil. Mag., 46, 1955 , 895 – 902.
[5]	V. M. Goldschmidt, T. Barth, G. Lunde und W. Zachariasen;
	Geochemische Verteilungsgesetze der Elemente: VII. Die Gesetze der
	Krystallochemie;
	Skrifter utgit av det Norske Videnskaps-Akademi I Oslo: I. Matem.Naturvid. Klasse,
	<i>2</i> , 1926 , 1-117.
[6]	M. Y. Chern;
	Synthesis, Structure, and Properties of New Ternary Calcium Nitrides;
	Dissertation, Cornell University, 1991.
	M. Y. Chern, D. A. Vennos und F. J. DiSalvo;
	Synthesis, Structure, and Properties of Anti-perovskite Nitrides Ca_3MN , $M = P$, As, Bi,
	Ge, Sn, and Pb;
	J. Solid State Chem. 96, 1992 , 415 – 425.
[7]	V. M. Goldschmidt, T. Barth und G. Lunde;
	Geochemische Verteilungsgesetze der Elemente: V. Isomorphie und Polymorphie der

Sesquioxide. Die Lanthaniden-Kontraktion und ihre Konsequenzen;
Skrifter utgit av det Norske Videnskaps-Akademi I Oslo I. Matem. Naturvid. Klasse,
7, 1925, 1 – 59.
- [8] R. D. Shannon und C. T. Prewitt;
 Effective Ionic Radii in Oxides and Fluorides;
 Acta Crystallogr. 11, 1968, 925 945.
- [9] M. Kirchner;
 Hauptgruppen-Metall-Stickstoff-Verbindungen der Seltenen Erden R₃MN;
 Diplomarbeit, Friedrich-Schiller-Universität Jena, 2001;
- [10] H. Haschke, H. Nowotny und F. Benesovsky; *Neodym-Perowskitcarbide und -nitride*; Monatsh. Chem., 98, 1967, 2157 – 2163. H. Nowotny; *Complex Rare Earth Metal Carbides and Nitrides*; 7th Rare Earth Research Conference, 1968, USA. National Technical Information Service, Springfield/VA; Proc. Rare Earth Res. Conf., 7, 1969, S. 309 – 320.
- T. M. Gesing, K. H. Wachtmann und W. Jeitschko; *The Perovskite Carbides A₃BC (A = Sc, Y, La-Nd, Sm, Gd-Lu)*; Z. Naturforsch. B, *52*, **1997**, 176 – 182.
- [12] R. Niewa, W. Schnelle und F. Wagner;
 Synthesis, Crystal Structure, and Physical Properties of Ca₃TlN;
 Z. Anorg. Allg. Chem., 627, 2000, 365 370.
- [13] J.-T. Zhao, Z.-C. Dong, J. T. Vaughey, J. E. Ostenson und J. D. Corbett; *Synthesis, structures of cubic R₃In and R₃InZ (R = Y, La; Z = B, C, N, O)*; J. Alloy. Compd., 230, 1995, 1 – 12.
- [14] Pauling file, Binaries Edition, Version 1.0, Release 2002/1;
 Hrsg. P. Villars, K. Cenzual, J. C. L. Daams, F. Hulliger, H. Okamoto, K. Osaki, A. Prince, 2002, Material Phases Data System & Crystal Impact.
- [15] C. S. Garde, J. Ray und G. Chandra; Resistivity and thermopower studies on La_3X (X = Al, Sn, In, Ru, Ir, Co, Ni, Ge, Ga) systems;

J. Alloy. Compd., 198, 1993, 165 – 172.

[16]	G. Rose; Ueber einige neue Mineralien des Urals;
	Ann. d. Physik u. Chem., 124, 1839, 459 – 468.
[17]	T. Barth; <i>Die Kristallstruktur von Perowskit und verwandten Verbindungen</i> ; Norsk Geolog. Tidsskr., <i>8</i> , 1925 , 201 – 216.
[18]	D. Babel; <i>Die Kristallstruktur der hexagonalen Fluorperowskite</i> ; Z. Anorg. Allg. Chem., <i>369</i> , 1969 , 117 – 130.
[19]	 A. Widera und H. Schäfer; <i>Das Zustandsdiagramm Sr-Sn und die Verbindung Sr₃SnO</i>; J. Less-Common Met., 77, 1981, 29 – 36.
[20]	J. Jäger, D. Stahl, P. C. Schmidt und R. Kniep; <i>Ca₃AuN: Ein Calciumauridsubnitrid</i> ; Angew. Chem., <i>105</i> , 1993 , 738 – 739. <i>Ca₃AuN: A Calcium Auride Subnitride</i> ; Angew. Chem. Int. Ed., <i>32</i> , 1993 , 709 – 710.
[21]	F. Wever; <i>Ueber den Einfluss der Elemente auf den Polymorphismus des Eisens</i> ; Arch. Eisenhüttenwesen, 2, 1929 , 739 – 748.
[22]	E. Scheil und L. Hütter; Zur Kenntnis des Systems Nickel-Kohlenstoff-Eisen; Z. Metallkd., 44, 1953 , 387 – 389.
[23]	L. J. Huetter und H. H. Stadelmaier; <i>Ternary Carbides of Transition Metals with Aluminum and Magnesium</i> ; Acta Metall. Mater., <i>6</i> , 1958 , 367 – 370.
[24]	 H. H. Stadelmaier und T. S. Yun; Stickstofflegierungen der T-Metalle Mangan, Eisen, Kobalt und Nickel mit Magnesium, Aluminium, Zink und Kadmium; Z. Metallkd., 52, 1961, 477 – 480.

- [25] H. H. Stadelmaier;
 Über ternäre Verbindungen von Übergangsmetall, B- Metall und Metalloid;
 Z. Metallkd., 52, 1961, 758 762.
- [26] H. H. Stadelmaier und A. C. Fraker; *Stickstofflegierungen der T-Metalle Mangan, Eisen, Kobalt und Nickel mit Gallium, Germanium, Indium und Zinn*; Z. Metallkd., 53, 1962, 48 – 51.
- [27] R. G. Butters und H. P. Myers; *The Structure and Properties of Some Ternary Alloys of Manganese, Zinc and Carbon*; Phil. Mag., 46, 1955, 132 – 143.
- [28] C. Samson, J.-P. Bouchaud und R. Fruchart; *Quatre nouveaux nitrures à structure perovskite: Mn₃CuN, Mn₃AgN, Mn₃GaN, Cr₃GaN*; C. R. Acad. Sci. C Chim., 259, 1964, 392 – 393.
- [29] W. Jeitschko, H. Nowotny und F. Benesovsky;
 *Die Kristallstruktur von Ti*₃*InC*, *Ti*₃*InN*, *Ti*₃*TlC Ti*₃*TlN*;
 Monatsh. Chem., 15, **1964**, 436 438.
- [30] H. Nowotny, W. Jeitschko und F. Benesovsky;
 Symposium sur la métallurgie des poudres; Paris, 15. 17. Juni 1964:
 Reaktionen von Carbiden und Nitriden der Übergangsmetalle mit B-Elementen und Aufbau der gebildeten Komplexverbindungen;
 Hrsg. La Société Française de Métallurgie, Éditions Métaux, Saint-Germain-en-Laye, 1964, s. S. 239 259.

[31] R. Madar, L. Gilles, A. Rouault, J.-P. Bouchaud, E. Fruchart, G. Lorthioir und R. Fruchart;
Six nouveaux nitrures ternaires du manganèse. Études des transitions du premier ordre dans les nitrures et carbures complexe de structure perovskite;
C. R. Acad. Sci. C Chim., 264, 1967, 308 – 311.

- [32] M. Nardin, G. Lorthioir, M. Barberon, R Madar, E. Fruchart und R. Fruchart; *Étude de cinq nouveaux nitrures MCr₃N de type perovskite*; C. R. Acad. Sci. C Chim., 274, 1972, 2168 – 2171.
- [33] H. Nowotny;
 - Kristallchemie von Komplexcarbiden und verwandten Verbindungen; Angew. Chem., 84, **1972**, 973 – 982. *Crystal Chemistry of Complex Carbides and Related Compounds*; Angew. Chem. Int. Ed., 9, **1972**, 906 – 915.
- [34] S. Rosen und P. G. Sprang;
 13th American Conference of Application of X-ray Analysis, Denver, 1965:
 Ternary Carbide Phases Formed by Scandium-Group Elements with Aluminum and Carbon;
 Conference Proceeding Bd. 1, s. S. 91 102.
- [35] H. Haschke, H. Nowotny und F. Benesovsky; *Perowskit-Carbide mit S.E.-Metallen*; Monatsh. Chem., 97, 1966, 1469 – 1471.
- [36] H. Haschke, H. Nowotny und F. Benesovsky; *Perowskit-Carbide mit S.E.-Metallen*; Monatsh. Chem., 97, 1966, 1045.
- [37] H. Haschke, H. Nowotny und F. Benesovsky; *Neue Perowskitcarbide*; Monatsh. Chem. 98, 1967, 273 – 275.
- [38] H. H. Stadelmaier;
 In: AIME Publication: Developments in the Structural Chemistry of Alloy Phases;
 Metal-Rich Metal-Metalloid Phases;
 Hrsg. B. C. Giessen, Plenum Press, New York, 1969, S. 141 180.
- [39] P. E. Rauch und A. Simon;
 Das neue Subnitrid NaBa₃N eine Erweiterung der Alkalimetallsuboxid-Chemie;
 Angew. Chem., 104, 1992, 1505 1506.
 The New Subnitride NaBa₃N; an Extension of Alkali Metal Suboxide Chemistry;
 Angew. Chem. Int. Ed., 31, 1992, 1519 1521.

[40]	R. Türck; Untersuchungen an inversen Perowskiten M_3SiO , M_3GeO , Eu_3YO ($M = Ca$, Sr , Ba , Eu ; $Y = Sn$, Pb und an neuen ternären Alkalimetallzinkpniktiden MZn_4Y_3 und $K_2Zn_5Y_4$ ($M = Na$, K , Rb , Cs ; $Y = P$, As); Dissertation Universität Stuttgart 1994
[41]	 A. Velden und M. Jansen; <i>Zur Kenntnis der inversen Perowskite M₃TO</i>; Z. Anorg. Allg. Chem., 630, 2004, 234 – 238.
[42]	 C. Röhr; <i>Crystal structure of calcium germanide oxide, Ca₃GeO</i>; Z. Kristallogr., <i>210</i>, 1995, 781.
[43]	B. Bröcker; dtV-Atlas zur Atomphysik; 4. Aufl., dtV, München, 1989 .
[44]	LE. Edshammar; <i>X-Ray Studies on Binary Alloys of Aluminum with Platinum Metals</i> ; Dissertation, Universität Stockholm, 1969 .
[45]	 A. P. Bayanov; <i>Thermodynamics of the Interaction of the Lanthanides with Other Elements</i>; Russ. Chem. Rev., 44, 1975, 122 – 137. Übersetzung des russ. Originals: Usp. Khim., 44, 1975, 236 – 259.
[46]	R. Guadagno, M. J. Pool, S. S. Shen und P. J. Spencer; <i>Heats of Solution and Heats of Formation in the Lanthanum-Tin System</i> ; Trans. Metall. Soc. AIME, <i>242</i> , 1968 , 2013 – 2014.
[47]	J. N. Pratt und A. W. H. Morris; <i>Heats of Formation of Some Rare-Earth Elements in Liquid Tin</i> ; J. Less-Common Met., 10, 1966 , 91 – 97.
[48]	 G. Borzone, A. Borsese und R. Ferro; On the Alloying Behaviour of Cerium with Tin; J. Less-Common Met., 85, 1982, 195 – 203.

- [49] A. Percheron, J. C. Mathieu und F. Trombe; *Calorimetry of Heat of Solution of Samarium in Tin. Enthalpy of Formation of Compounds from Tin-Samarium System*;
 C. R. Acad. Sci. C Chim., 266, 1968, 848 851.
- [50] A. Borsese, A. Calabretta, S. Delfino und R. Ferro; *Measurements of Heats of Formation in the Lanthanum-Indium System*;
 J. Less-Common Met., 51, 1977, 45 49.
- [51] C. Colinet, A. Pasturel und K. H. J. Buschow; *Molar enthalpies of formation of LnAl₂ compounds*;
 J. Chem. Thermodyn., 17, 1985, 1133 1139.
- [52] C. Colinet, A. Pasturel, A. Percheron-Guégan und J. C. Achard; *Experimental and Calculated Enthalpies of Formation of Rare Earth-Tin Alloys*;
 J. Less-Common Met., *102*, **1984**, 167 177.
- [53] G. Adachi und I. Nobuhito; *The Binary Rare Earth Oxides*;
 Chem. Soc. Rev., 98, 1998, 1479 1514.
- [54] D. H. Dennison, M. J. Tschetter und K. A. Gschneidner Jr.; *The Solubility of Tantalum in Eight Liquid Rare Earth Metals*; J. Less-Common Met., 108, 1966, 108 – 115.
- [55] R. Niewa, D. A. Zherebtsov, W. Schnelle und F. R. Wagner;
 Metal–Metal Bonding in ScTaN₂. A New Compound in the System ScN–TaN;
 Inorg. Chem., 43, 2004, 6188 6194.
- [56] H.-T. Künzel; *Metallreiche Bariumnitride*; Dissertation, Universität Stuttgart, 1980.
- [57] N. E. Brese und M. O'Keeffe;
 Synthesis, crystal structure, and physical properties of Sr₂N;
 J. Solid State Chem., 87, 1990, 134 140.

- [58] Y. Prots', G. Auffermann, M. Tovar und R. Kniep;
 Sr₄N₃: ein bisher fehlendes Glied in der Stickstoff-Druck-Reaktionsreihe Sr₂N → Sr₄N₃
 → SrN → SrN₂;
 Angew. Chem., 114, 2002, 2392 2394.
 Sr₄N₃: A Hitherto Missing Member in the Nitrogen Pressure Reaction Series Sr₂N → Sr₄N₃ → SrN → SrN₂;
 Angew. Chem., 41, 2002, 2288 2290.
- [59] G. Auffermann, Y. Prots' und R. Kniep;
 SrN und SrN₂: Diazenide durch Synthese unter hohen N₂-Drücken;
 Angew. Chem., 113, 2001, 565 567.
 SrN and SrN₂: Diazenides by Synthesis under High N₂-Pressure;
 Angew. Chem. Int. Ed., 40, 2001, 547 549.
- [60] G. Auffermann, U. Schmidt, B. Bayer, Y. Prots' und R. Kniep; Speciation of nitrogen - $[N^{3-}]$ and $[N_2^{2-}]$ - in binary compounds; Anal. Bioanal. Chem., 373, 2002, 880 – 882.
- [61] G. V. Vajenine, G. Auffermann, Y. Prots', W. Schnelle, R. K. Kremer, A. Simon und R. Kniep;
 Preparation, Crystal Structure, and Properties of Barium Pernitride, BaN₂;
 Inorg. Chem., 40, 2001, 4866 4870.
- [62] G. V. Vajenine, A. Grzechnik, K. Syassen, I. Loa, M. Hanfland und A. Simon; *Interplay of metallic and ionic bonding in layered subnitrides AE₂N (AE = Ca, Sr or Ba) under high pressure*; C. R. Chimie, 8, 2005, 1897 – 1905.
- [63] U. Steinbrenner und A. Simon;
 Ba₃N A New binary Nitride of an Alkaline Earth Metal;
 Z. Anorg. Allg. Chem., 624, 1998, 228 232.
- [64] Y. Prots', G. Auffermann; persönliche Mitteilung.
- [65] J. Gaudé und J. Lang;
 Sur les préparations de Ba₃N₂ et d'une phase de type BaSiN₂;
 C. R. Acad. Sci. C Chim., 274, 1972, 521 523.

- [66] R. C. Brown und N. J. Clark; *Composition Limits and Vaporization Behavior of Rare Earth Nitrides*;
 J. Inorg. Nucl. Chem. 36, 1974, 2507 2517.
- [67] K. A. Gschneidner Jr.;
 Kapitel 4: *Physical Properties of the Rare Earth Metals*;
 In: *CRC Handbook of Chemistry and Physics*; 78. Aufl.; Hrsg. D. L. Lide; CRC Press, Boca Raton, **1998**, s. S. 112 129.
- [68] R. Niewa, D. A. Zherebtsov, M. Kirchner, M. Schmidt und W. Schnelle; *New Ways to High-Quality Bulk Scandium Nitride*; Chem. Mater. 16, 2004, 5445 – 5451.
- [69] G. Canneri; *Le leghe tra lantanio e alluminio*;
 Metall. italia., 24, 1932, 3 7.
- [70] K. H. J. Buschow; *The Lanthanum-Aluminum System*;
 Philips Res. Rep., 20, 1965, 337 348.
- [71] K. H. J. Buschow; *Rare Earth-Aluminum Intermetallic Compounds of the Form RAl and R₃Al₂*;
 J. Less-Common Met., *8*, **1965**, 209 265.
- [72] C. Becle und R. Lemaire;
 Structures cristallines des composés DyAl et CeAl et des autres composés équiatomiques de l'Aluminium avec les Métaux des Terres Rares.
 Acta Crystallogr., 23, 1967, 840 845.
- [73] A. Leineweber und H. Jacobs; *Preparation of single crystals of LaAl and X-ray structure determination*;
 J. Alloy. Compd., 278, 1998, L10 L12.

- [74] A. Iandelli; Intermetallic Compounds of the Rare Earth Metals; Symposium on Physics, Chemistry of Metallic Solutions and Intermetallic Compounds, 04.-06.06. 1958, National Physical Laboratory, Teddington; Chemical Publishing Co., New York, **1960**; Proceedings of the Symposium on Physics, Chemistry of Metallic Solutions and Intermetallic Compounds s. S. 3F.2 – 3F.11. A. Saccone, A. M. Cardinale, S. Delfino und R. Ferro; [75] Phase Equilibra in the Rare Earth Metals (R)-Rich Regions of the R-Al Systems (R =La, Ce, Pr, Nd); Z. Metallkd., 87, 1996, 82 - 87. [76] U. Dehlinger; *Röntgenographische Untersuchungen am System Cd-Mg*; Z. Anorg. Allg. Chem., 194, 1930, 223 – 238. M. Hansen [77] Al-La. Aluminium-Lanthan; In: Der Aufbau der Zweistofflegierungen – eine kritische Zusammenfassung, Springer-Verlag, Berlin, 1936, 119 – 120. K. A. Gschneidner Jr.; [78] Binary Alloy Systems of a Rare Earth Metal with a Non-Rare Earth Element; In: Rare Earth Alloys – A Critical Review of the Alloy Systems of Rare Earth, Scandium and Yttrium Metals. D. Van Nostrand Company, Inc., New Jersey, 1961, 99 – 110. R. P. Elliott; [79] *Al-La Aluminum-Lanthanum*; In: Constitution of Binary Alloys, First Supplement, McGraw-Hill, New York, **1965**, 41 – 42.
- [80] R. Vogel und T. Heumann;
 Beiträge zur Kenntnis der Metalle und Legierungen der seltenen Erden;
 Z. Metallkd., 35, 1943, 29 46³².

³² Fehler des Setzers bei der Drucklegung, so dass die Ausgabe unter der Bezeichnung 33, **1945**, 29 – 46 zu

- [81] N. F. Chaban und Yu. B. Kuz'ma;
 X-Ray Investigation of the Systems {Yttrium, Lanthanum, Cerium}-{Aluminum, Silicon}-Boron;
 Dokl. Akad. Nauk. Ukr. SSR Ser. A, 11, 1971, 1048 1050.
- [82] N. M. Belyavina, V. Ya. Markiv und V. V. Zavodanny; *Crystal Structure of La₅Al₄ Compound*. VIIIth International Conference on Crystal Chemistry of Intermetallic Compounds, 25. – 28.09.2002, Lviv, Ukraine. Konferenzband s. S. 85.
- [83] N. M. Belyavina, V. Ya. Markiv und V. V. Zavodanny; *Crystal Structure of the "La₅Al₄" Compound*; J. Alloy. Compd., 367, 2004, 132 – 136.
- [84] A. J. C. Wilson (Hrsg.);
 International Tables for Crystallography, repr. w. corr., Bd. C,
 Kluwer Academic Publisher, 1995, s. S. 391 399.
- [85] W. Uhl; *Tetrakis[bi(trimethylsilyl)methyl]dialan(4), eine Verbindung mit Aluminium- Aluminium-Bindung*; Z. Naturforsch. B, 43, 1988, 1113 – 1118.
- [86] J. E. Huheey, E. Keiter und R. Keiter; *Anorganische Chemie*;
 2. Aufl., S. 335, Walter de Gruyter; Berlin, N.Y. 1995.
- [87] S. Lidin, Th. Popp, M. Somer und H. G. von Schnering; Verallgemeinerte Edshammar-Polyeder zur Beschreibung einer Familie von Festkörperstrukturen; Angew. Chem., 104, 1992, 936 – 939. Generalized Edshammar Polyhedra for the Description of a Family of Solid-State Structures; Angew. Chem. Int. Ed., 31, 1992, 924 – 927.

- [88] P. Hafner und K. J. Range;
 Na₃As revisited: High pressure synthesis and structure refinement;
 J. Alloy. Compd., 216, 1994, 7 10.
- [89] Nach: Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik; Neue Serie, Gruppe II: Atom und Molekularphysik, Bd. 2, Magnetische Eigenschaften der Koordinations- und metallorganischen Verbindungen der Übergangselemente, Springer, Berlin 1966.
- [90] J. C. Schuster;
 Über die Verbreitung ternärer Komplexnitride mit Perowskitstruktur in SE-Al-N-Systemen (SE = La, C, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu);
 J. Less-Common Met. 105, 1985, 327 – 332.
- [91] T. F. Smith und H. L. Luo; Superconductivity of Lanthanum and Lanthanum Compounds at Zero and High Pressure; J. Phys. Chem. Solids, 28, 1967, 269 – 576.
- [92] J. E. Crow, R. P. Guertin und R. D. Parks;
 Superconductivity in Presence of Magnetic Exchange Fields;
 Phys. Rev. Lett., 19, 1967, 77 81.
- [93] F. Heiniger, E. Bucher, J. P. Maita und P. Descouts;
 Superconducting and Other Electronic Properties of La₃In, La₃Tl, and Some Related Phases;
 Phys. Rev. B, 8, 1973, 3194 3205.
- [94] O. D. McMasters und K. A. Gschneidner Jr.; *The Lanthanum-Indium System*;
 J. Less-Common Met., 38, 1974, 137 – 148.
- [95] F. Heiniger, E. Bucher, J. P. Maita und L. D. Longinotti; *Thermodynamic Properties of Superconductors containing impurities in a crystal-field singlet ground state*; Phys. Rev. B, 12, 1975, 1778 – 1789.

- [96] K. A. Gschneidner Jr., O. D. McMasters und J. E. Ostenson; *Effect of Alloying on the Superconducting Temperature of La₃In*; 10th Rare Earth Research Conference, 30.04.-03.05. Mai 1973, in Carefree, USA. Hrgs. C. I. Kevane und T. Moeller; National Technical Information Service, Springfield, VA. Proc. Rare Earth Res. Conf., 10, 1973, 721 – 727.
- [97] B. T. Matthias, V. B. Compton und E. Corenzwit; Some new superconducting compounds;
 J. Phys. Chem. Solids, 19, 1961, 130 – 133.
- [98] J. E. Crow, R. D. Parks;
 Transition Temperature of Superconductors with Paramagnetic Impurities;
 Phys. Lett. 21, 1966, 378 379.
- [99] M. B. Maple und K.-S. Kim;
 Pressure Dependent Pair Breaking in Superconducting La_{3-x}Ce_xIn Alloys;
 Phys. Rev. Lett., 23, 1969, 118 120.
- [100] H. Jones, Ø. Fischer, G. Bongi und A. Treyvaud;
 Superconducting and Magnetic Properties of La_{3-x}InCe_x;
 Solid State Commun., 10, 1972, 927 931.
- [101] P. Descouts, B. Perrin, A. Dupanloup und A. Treyvaud;
 Nuclear Magnetic Resonance Study of La₃X Compounds and related phases;
 J. Phys. Chem. Solids, *39*, **1978**, 161 166.
- [102] K. A. Gschneidner Jr., O. D. McMasters und J. E. Ostenson;
 Influence of Alloying on the Superconducting Transition Temperature of La₃In;
 J. Less-Common Met., 62, 1978, 167 177.
- [103] A. Palenzona und S. Cirafici; *The In-La (Indium-Lanthanum) System*; Bull. Alloy Phase Diagrams, 10, 1989, 580 – 588, ISSN: 0197-0216; Fortsetzung: J. Phase Equilibria.
- [104] J. L. Moriarty, R. O. Gordon, N. C. Baenziger und J. E. Humphreys;
 X-ray examination of some rare-earth-containing binary alloy systems;
 Acta Crystallogr., 21, 1966, 840 841.

- [105] H. Haschke, H. Nowotny und F. Benesovsky; *Perowskit-Carbide mit seltenen Erdmetallen*; Monatsh. Chem., 97, 1966, 716 – 717.
- [106] Richard Glocker;
 Kap. 26. Verbreiterung von Röntgeninterferenzen S. 402 422.
 In: Materialprüfung mit Röntgenstrahlen, 5. Aufl., Springer-Verlag, Berlin Heidelberg, New York, 1971.
- [107] S. Delfino, A. Saccone und R. Ferro; *Phase Equilibra in the Cerium-Indium and Cerium-Thallium Systems*;
 Z. Metallkd., 71, 1980, 165 171.
- [108] B. Huang und John D. Corbett; *Intermetallic Hydrides as Zintl Phases: A*₃*TtH*₂ *Compounds (A = Ca, Yb; Tt = Sn, Pb) and their Structural Relationship to Corresponding Oxides;*Inorg. Chem., 36, 1997, 3730 3734.
- [109] Y.-U. Kwon, M. A. Rzeznki, A. M. Guloy und J. D. Corbett; *Impurity Stabilization of Phases with the Mn₅Si₃-Type Structure Questions Regarding La₅Sn₃ and Zr₅Si₃;
 Chem. Mater., 2, 1990, 546 550.*
- [110] M. A. Guloy und John D. Corbett; *The Synthesis and Structure of La₅Pb₃Z Z = N, O. Interstitial Derivatives of Cr₅B₃- Type Structure*; Z. Anorg. Allg. Chem., 616, 1992, 61 - 66.
- [111] J. H. N. van Vucht;
 Beitrag zur Kenntnis des Systems Cer-Aluminium;
 Z. Metallkd., 48, 1957, 253 258.
- [112] A. C. Lawson, J. M. Lawrence, J. D. Thompson und A. Williams; *Low Temperature Crystal Structure of Ce₃Al*; Physica B, 163, 1990, 587 – 590.

- [113] L. Colombo, G. L. Olcese und G. B. Bonino;
 - Sul comportamento magnetico del Cerio nei composti intermetallici. III. I sistemi Ce-Al, Ce-Ga, Ce-In, Ce-Tl; Atti Accad. Naz. Lin., 35, **1963**, 53 – 57.
- [114] G. Borzone, G. Cacciamani und R. Ferro; Heats of Formation of Aluminum Cerium Intermetallic Compounds; Metall. Trans. A, 22A, 1991, 2119 – 2123.
- [115] J. D. Thompson, Z. Fisk, Y. Y. Chen und J. M. Lawrence;
 Pressure Investigation of New Kondo Lattice Systems Ce₃Sn, Ce₃In Ce₃Al;
 J. Less-Common Met., 127, 1987, 385 390.
- [116] M. Sera, T. Satoh und T. Kasuya;
 Magnetic and Transport-Properties of Kondo Compound α-Ce₃Al;
 J. Magn. Magn. Mater., 63&64, 1987, 82 84.
- [117] K. H. J. Buschow und J. H. N. van Vucht;
 Das binäre System Cer-Aluminium und Praseodym-Aluminium;
 Z. Metallkd., 57, 1966, 162 166.
- K. H. J. Buschow und J. H. N. Vucht; Systematic Arrangement of the Binary Rare-Earth-Aluminum Systems; Philips Res. Rep. 22, 1967, 233 – 245.
- [119] A. Iandelli;
 Sui composti di formula MX formati dalle Terre rare con P, As, Sb, Bi, S, Se, Te;
 Composti del Tulio e del Lutezio;
 Atti Accad. Naz. Lin., 37, 1964, 160 164.
- [120] Y. Y. Chen, Y. D. Yao, S. U. Jen und J. M. Lawrence; *Effect of Thermal Treatment on the Electrical and Magnetic Properties of Ce₃In*; In: Proceedings of 7th International Symposium on Magnetic Anisotropy & *Coercitivity in Rare-Earth-Transition-Metal Alloys, Canberra, Juli, 1992, 2. Sitzung* Hrgs.: Rare Earth Information Centre, Ames, Iowa, **1993**, s. S. 79 – 84.

- [121] S. Delfino, A. Saccone, R. Capelli und R. Ferro;
 Proc. 12th Rare Earth Research Conf.;
 Binary Alloys of Rare Earths: Phase Equilibria of Cerium-Indium and Neodymium-Indium;
 Hrgs: E. Lundin, Denver Research Institute, Denver, CO, Bd. 1; 12, 1976, 504 – 511.
- [122] W. Jeitschko, H. Nowotny und F. Benesovsky; *Phasen mit Cu₃Au-, bzw. aufgefülltem Cu₃Au-Typ*;
 Monatsh. Chem., 95, 1964, 1040 1043.
- [123] M. Ludwig, J. Jager, R. Niewa und R. Kniep;
 Crystal Structures of two Polymorphs Ca₃[Al₂N₄];
 Inorg. Chem. 39, 2000, 5909 5911.
- [124] W. Blase, G. Cordier, M. Ludwig und R. Kniep;
 Sr₃[Al₂N₄]: Ein Nitridoaluminat mit gewellten Tetraederketten ¹_∞[AlN ³⁻_{4/2}];
 Z. Naturforsch. B, 49b, 1994, 501 505.
- [125] M. Ludwig, R. Niewa und R. Kniep;
 Dimers [Al₂N₆]^{12−} and chains ¹_∞[AlN ^{3−}_{4/2}] in the crystal structures of Ca₆[Al₂N₆] and Ba₃[Al₂N₄];
 Z. Naturforsch. B, 54b, 1999, 461 465.
- [126] H. Okamoto, D. J. Chakrabarti, D. E. Laughlin und T. B. Massalski; *Binary Alloy Phase Diagrams*, 2. Aufl., Hrsg.: T. B. Massalski, ASM International, Materials Park Ohio, 1990;
 Band *1*, S. 358 – 362.
- T. Gibb, N. N. Greenwood, B. Mortimer und I. J. McColm;
 Mössbauer Spectroscopy of Lanthanon-Tin and Iron-Tin Phases and Their Reaction Products with Carbon and Tin;
 J. inorg. nucl. Chem., 33, 1971, 2819 – 2827.
- [128] M. Kirchner, W. Schnelle, F. R. Wagner und R. Niewa;
 Preparation, crystal structure and physical properties of ternary compounds (R₃N)In,
 R = rare-earth metal;
 Solid State Sci., 5, 2003, 1247 1257.

- [129] K. H. J. Buschow und J. H. N. van Vucht;
 On the Intermediate Phases in the System Samarium Aluminum;
 Philips Res. Rep, 20, 1965, 15 22.
- [130] A. Saccone, G. Cacciamani, D. Macciò, G. Borzone und R. Ferro;
 Contribution to the study of the alloys and intermetallic compounds of aluminum with the rare-earth metals;
 Intermetallics, 6, 1998, 201 215.
- [131] T. Sakurai, Y. Murashita und H. Fujiwara;
 Pressure studies of magnetic and electrical properties of Pr₃Al;
 J. Magn. Magn. Mater., 115, 1992, 250 254.
- [132] K. H. J. Buschow;
 Phase Relations and Intermetallic Compounds in the Systems Neodymium-Aluminum and Gadolinium-Aluminum;
 J. Less-Common Met., 9, 1965, 452 – 456.
- [133] C. Colinet; *The thermodynamic properties of rare earth metallic systems*; J. Alloy. Compd., 225, 1995, 409 – 422.
- [134] G. Borzone, A. M. Cardinale, G. Cacciamani und R. Ferro; On the Thermochemistry of Nd-Al Alloys;
 Z. Metallkd., 84, 1993, 635 – 640.
- [135] G. Borzone, R. Raggio und R. Ferro; *Thermochemistry and reactivity of rare earth metals*; Phys. Chem. Chem. Phys., 1, 1999, 1487 – 1500.
- [136] R. Niewa

Contributions to Metal-rich Ternary Nitrides and Nitridometalates – Synthesis, Crystal structures, Chemical and Physical Properties, Chemical Bonding; Habilitationsschrift, Dresden, **2005**.

- [137] M. S. Chandrasekharaiah und K. A. Gingerich; *Chap. 86: Thermodynamic Properties of Gaseous Species*; In: *Handbook of the Physics and Chemistry of Rare Earths*; Hrgs. K. A. Gschneidner Jr., L. Eyring; North Holland, Amsterdam, New York, Tokyo, **1989**, Bd. *12*, S. 409 – 355.
- [138] D. Dayan, J. Pelleg und R. Guissier; *The Cerium-Gallium System*;
 J. Less-Common Met., 68, 1979, 199 – 205.
- [139] Yu. N. Grin, P. Rogl, B. Chevalier, A. A. Fedorchuk und I. A. Gryniv; *Physical Properties of Binary Cerium Gallides and Ternary Cerium-Germanium Gallides*; J. Less-Common Met., 167, 1991, 365 – 371.
- [140] S. P. Yatsenko, A. A. Semyannikov, B. G. Semenov und K. A. Chuntonov; *Phase Diagrams of Rare Earth Metals with Gallium*; J. Less-Common Met., *64*, **1979**, 185 – 199.
- [141] A. Iandelli;*Le leghe fra praseodimio e gallio*;Gazz. Chim. Ital., *79*, **1949**, 70 79.
- [142] R. Manory, J. Pelleg und A. Grill; *The Neodymium-Gallium System*;
 J. Less-Common Met., *61*, **1978**, 293 – 299.
- [143] S. P. Yatsenko, A. A. Semyannikov, H. O. Shakarov und E. G. Fedorova; *Phase Diagrams of Binary Rare Earth Metal-Indium Systems*; J. Less-Common Met., 90, **1983**, 95 – 108.
- [144] S. Delfino, A. Saccone und R. Ferro; *Alloying Behavior of Indium with Rare Earths*;
 J. Alloy. Compd., *102*, **1984**, 289 310.
- [145] R. D. Hutchens, W. E. Wallace und N. Nereson; *Magnetic Properties of Ln₃In Intermetallic Compounds*;
 J. Solid State Chem., 9, 1974, 152 154.

- [146] N. C. Baenziger und R. O. Gordon;
 Gadolinium and Dysprosium Intermetallic Phases. II. Laves Phases and Other Structure Types;
 Acta Crystallogr., 21, 1961, 840 – 841.
- [147] M. Dariel;
 The structure of the intermetallic compound Ce₃In;
 Acta Crystallogr., 20, **1966**, 586.
- [148] H. Okamoto, D. J. Chakrabarti, D. E. Laughlin und T. B. Massalski; *Binary Alloy Phase Diagrams*, 2. Aufl. Hrgs.: T. B. Massalski, ASM International, Materials Park Ohio, **1990**La–Sn: *3*, 2426 – 2428
 Ce–Sn: *2*, 1112 – 1115
 Pr–Sn: *3*, 3099 – 3102
 Nd–Sn: *3*, 2809 – 2810
 Sm–Sn: *3*, 3385 – 3386
 Gd–Sn: *3*, 1927 – 1930.
- [149] J. McColm, N. J. Clark und B. Mortimer; *The Lanthanon-Tin-Carbon Systems*;
 J. inorg. nucl. Chem., 33, 1971, 49 – 61.
- [150] J.-Q. Liu, Jian-Xuan Zheng und C. S. Cheng;
 Phase Diagram of the Alloys in Gd-Sn Binary System; (in Mandarin)
 Acta Phys. Sinica, 33, 1984, 1155 1159.
- [151] D. K. Finnemore, D. L. Johnson, J. E. Ostenson, F. H. Spedding und B. J. Beaudry; *Supraconductivity in Pure La and La-Gd*; Phys. Rev., 137, 1965, A550 – A556.
- [152] B. J. Beaudry und P. E. Palmer; *The Lattice Parameters of La, Ce, Pr, Nd, Sm, Eu and Yb*; J. Less-Common Met., 34, 1974, 225 – 231.

- [153] S. Leoni, R. Niewa, L. Akselrud, Y. Prots, W. Schnelle, T. Göksuc, M. Cetinkol, M. Somer und R. Kniep
 Novel Barium Beryllates Ba[Be₂N₂] and Ba₃[Be₅O₈]: Syntheses, Crystal Structures and Bonding Properties;
 Z. Anorg. Allg. Chem., 631, 2005, 1818 1824.
- [154] S. Valentiner;*Die Legierungen des Indium*;Z. Metallkd., 46, 1955, 442 449.
- [155] R. Niewa und F. J. DiSalvo; *Recent developments in nitride chemistry*; Chem. Mater., 10, 1998, 2733 – 2752.
- [156] U. Müller;
 Kap. 5.2 Atomradien in Metallen S. 42 43.
 In: Anorganische Strukturchemie, 3. Aufl., Teubner-Verlag, Stuttgart, 1996.
- [157] M. Trömel;
 Metallradien, Ionenradien und Wertigkeit fester metallischer Elemente;
 Z. Naturforsch., 55b, 2000, 243 247.
- [158] R. Kniep;
 Ternary and Quaternary Metal Nitrides: A New Challenge for Solid Chemistry;
 Pure Appl. Chem., 69, 1997, 185 191
- [159] M. S. Bailey und F. J. DiSalvo; *The synthesis and structure of Ca₂InN, a novel ternary indium nitride*; J. Alloy. Compd., *353*, **2003**, 146 – 152.
- [160] G. Cordier und S. Rönninger;
 Darstellung und Kristallstrukturen von Ca₄In₂N und Sr₄In₂N;
 Z. Naturforsch., 42b, 1987, 825 827.
- [161] G. Cordier und S. Rönninger;
 Zur Strukturchemie der Erdalkali-Nitrido-Gallate und -Indate;
 Z. Kristallogr. Suppl., 182, 1988, 60 61.

- [162] P. Höhn, R. Ramlau, H. Rosner, W. Schnelle und R. Kniep; $(Ca_7N_4)M_x \ (M = Ag, Ga, In, Tl) \ Subnitride \ und \ Metallketten: {}_{\infty}^1M_x$ Z. Anorg. Allg. Chem. 630, 2004, 1704
- [163] H. Yamane, S. Sasaki, T. Kajiwara, T. Yamada und M. Shimada;
 Ba₁₉In₉N₉, a subnitride containing isolated [In₅]⁵⁻ and [In₈]¹²⁻ Zintl anions;
 Acta Crystallogr. E, 60, 2004, i120 i123.
- [164] A. Schlechte, Yu. Prots und R. Niewa; *Crystal structure of hexabarium mononitride pentaindide, (Ba₆N)[In₅]*;
 Z. Kristallogr. NCS, 219, 2004, 349 350.
- [165] M. S. Bailey, D. Y. Shen, M. A. McGuire, D. C. Frederickson, B. H. Toby, F. J. DiSalvo, H. Yamane, S. Sasaki und M. Shimada *The Indium Subnitrides* $Ae_6In_4(In_xLi_y)N_{1-z}$ (Ae = Sr and Ba); Inorg. Chem., 44, **2005**, 6680 – 6690.
- [166] O. Reckeweg, T. P. Braun, F. J. DiSalvo und H. J. Meyer;
 Ag₈Ca₁₉N₇ Nitrogen bridged Ca₁₉N₇ superoctahedra surrounded by silver tetrahedra;
 Z. Anorg. Allg. Chem., 627, 2000, 62 67.
- [167] F. Pickhard und Hartl, H.; *The crystal structures of K₈Ta₆O₁₉ • 16 H₂O and K₇NaTa₆O₁₉ • 14 H₂O;* Z. Anorg. Allg. Chem., 623, 1997, 1311 – 1316 und dort angegebene Literatur.
- [168] D. H. Gregory, A. Bowman, C. F. Baker und D. P. Weston; Dicalcium nitride, Ca₂N – a 2D "excess electron" compound; synthetic routes and crystal chemistry;
 J. Mater. Chem. 10, 2000, 1635 – 1641.
- [169] S. C. Sevov und J. C. Corbett;
 Synthesis, Characterization, and Bonding of Indium Cluster Phases Na₁₅In_{27.4}, a Network of In₁₆ and In₁₁ Clusters Na₂In with Isolated Indium Tetrahedra;
 J. Solid State Chem., 103, 1993, 114 130.
- [170] J. H. N. van Vucht; *Ternary System Th-Ce-Al*; Philips Res. Rep, 16, 1961, 1 – 40.

- [171] J. Sakurai, Y. Murashita, Y. Aoki, T. Fujita, T. Takabakate und H. Fujii;
 A New Phase-Transition of α-Ce₃Al Due to the Spin Fluctuation? the Partial Substitution of La and Y for Ce;
 J. Phys. Soc. Jpn., 58, 1989, 4078 4085.
- [172] A. N. Medina, M. A. Hayashi, L. P. Cardoso, S. Gama und F. G. Gandra; *Effect of volume variation on properties of Kondo system(La_{1-x}Ce_x)₃Al;* Phys. Rev. B, 57, 1997, 5900 – 5905.
- [173] M. Faucher, J. Pannetier, Y. Charreire und P. Caro;
 Refinement of the Nd₂O₃ and Nd₂O₂S structures at 4 K;
 Acta Crystallogr. B 38, 1982, 344 346.
- [174] K. H. J. Buschow; *Phase Relations and Intermetallic Compounds in the Systems Neodymium-Aluminum and Gadolinium-Aluminum*;
 J. Less-Comm. Met.; 9, 1965, 452 456.
- [175] T. Atou, K. Kusaba, K. Fukuoka, M. Kikuchi und Y. Syono;
 Shock-Induced Phase Transition of M₂O₃ (M = Sc, Y, Sm, Gd, and In)-Type Compounds;
 J. Solid State Chem., 89, 1990, 378 384.
- [176] E. Best, G. Kirschstein, D. Koschel, H. Lehl und U. Vetter; Oxide von Scandium, Yttrium, Lanthan und den Lanthaniden; In: Seltenerdelemente, Teil C1 Sc, Y, La und Lanthanide, Kap. 2; Aus: Gmelin, Handbuch der Anorganischen Chemie, Springer, Berlin, Heidelberg, New York, s. S. 85 – 436, 1974.
- [177] V. S. Rudenko und A. G. Boganov;
 Stoichiometry and Phase Transitions in Rare Earth Oxides;
 Inorg. Mater., 6, 1970, 1893 1898.
- [178] K. H. J. Buschow und A. S. van der Goot; *The crystal structure of rare-earth aluminum compounds R₂Al*; J. Less Common Met., *24*, **1971**, 117 – 120.

- [179] A. Saccone, A. M. Cardinale, S. Delfino und R. Ferro;
 Gd-Al and Dy-Al Systems: Phase Equilibria in the 0 to 66.7 at. % Al Composition Range;
 Z. Metallkd., 91, 2000, 17 23.
- [180] A. Meyer;
 Das System Aluminium-Holmium;
 J. Less-Common Met., *10*, **1966**, 121 129.
- [181] A. E. Miller und A. H. Daane; *The High Temperature Allotropy of Some Heavy Rare Earth Metals*;
 T. Metall. Soc. AIEM, 230, 1964, 568 572
- [182] A. E. Curzon und H. G. Chlebek; *The observation of face centered cubic Gd, Tb, Dy, Ho, Er and Tm in form of thin films and their oxidation*; J. Phys. F: Met. Phys., *3*, 1973, 1 – 5.
- [183] S. Cirafici und E. Franceschi; *The Praseodymium-Gallium System from 0 to 50 at.% Gallium*; J. Less-Common Met., *66*, **1979**, 137 – 143.
- [184] J.-T. Zhao und J. D. Corbett; *R*₅*Ga*₃ *compounds of Selected Rare Earth Metals R: structure and properties*;
 J. Alloy. Compd., *210*, **1994**, 1 7.
- [185] R. Vogel und H. Klose;
 Über die Zustandsbilder Cer-Lanthan, Cer-Antimon und Cer-Indium;
 Z. Metallkd., 45, 1954, 633 638.
- [186] C. Y. Lee, J. M. Lawrence und J. D. Thompson;
 Susceptibility and Resistivity of Ce₃Al, Ce₃Sn and Ce₃In;
 B. Am. Phys. Soc., 31, 1986, 500.
- [187] Y. Y. Chen, J. M. Lawrence, J. D. Thompson und J. O. Willis; *Thermodynamic behavior of the heavy-fermion compounds Ce₃X (X = Al, In, Sn)*; Phys. Rev. B, 40, **1989**, 10766 – 10767.

- [188] C. S. Garde, J. Ray und G. Chandra; *Thermopower studies and resistive anomalies in Ce*₃*In and Ce*₃*In*_{0.9}*M*_{0.1} *alloys (M = Al, Ga, Sn, Ge)*;
 Phys. Rev. B, 40, **1989**, 5274 5275.
- [189] J. G. Sereni, G. L. Nieva, G. L. Olcese, A. Herr und J. P. Kappler; *Ce₃In: A Cerium concentrated heavy fermion*; Physica B, 171, 1991, 335 – 339.
- [190] R. Wolf und R. Hoppe; *Eine Notiz zum A-Typ der Lanthanoxide: Über Pr₂O₃*;
 Z. Anorg. Allg. Chem., *529*, **1985**, 61 64.
- [191] O. Greis, R. Ziel, B. Breidenstein, A. Haase und T. Petzel; *The crystal structure of low-temperature A-Type modification of Pr₂O₃ from X-ray powder and electron single crystal diffraction*; J. Alloy. Compd., 216, 1994, 255 – 258.
- [192] A. F. Andreeva, I. Ya. Gil'man, M. Ya. Gamarnik und V. I. Dekhtyaruk; *Structure and Optical Absorption of Praseodymium Oxides*; Inorg. Mater., 22, 1986, 1155 – 1160.
- [193] U. Croatto und M. Bruno; *Edifici cristallini con disordine reticolare. Esistenza e struttura di cristalli misti anomali tra biossidi e sesquiossidi di terre rare.*XIth International Congress of Pure and Applied Chemistry, 17.-24. Juli 1947, London, Großbritannien. *Proc. Intern. Congre. Pure and Applied Chem.* 1947, 69 74 (Bd. 1).
- [194] V. I. Larchev und S. V. Popova;
 Synthesis of the cubic phase of La₃Sn at high pressures and temperatures;
 Sov. Phys. Sol. State, 19, 1977, 852.
- [195] G. Borzone, A. Borsese und R. Ferro; *A Contribution to the Study of the Alloying Behaviour of the Rare Earths with Tin*;
 Z. Anorg. Allg. Chem., 501, 1983, 199 208.

- [196] V. N. Eremenko, M. V. Bulanova, P. S. Martsenyuk, V. S. Listovnichii; *Phase Equilibria in the Lanthanum-Tin System*; Soviet Powder Metall. Metal Ceram., 28, 1989, 145 – 154.
- [197] E. A. Franceschi und G. A. Costa; *The Phase Diagram of the Ce-Sn System up to 50 at% Sn*;
 J. Therm. Anal., *34*, **1988**, 451 456.
- [198] F. Weitzer, K. Hiebl und P. Rogl;
 Magnetism and crystal chemistry of cerium stannides;
 J. Less-Common Met., 175, 1991, 331 338.
- [199] R. Marazza, P. Riani, D. Mazzone, G. Zanicchi und R. Ferro; *The isostructural section at 400 °C of the phase diagram Ce-Cu-Sn in the region between CeCu₂-Ce₃Sn₇-Ce*; Intermetallics, 4, 1996, 131 – 138.
- [200] Magnus Boström;
 Crystal Structure and Phase Equilibria in the Mn-Ga System;
 Dissertation, Stockholm, 2002.
- [201] A. Palenzona und F. Merlo;
 Sui composti di formula M₅X₃ formati dalle terre rare con lo Sn;
 Atti. Accad. Naz. Lincei, Rend., Cl. Fis. Mat. Nat., 60, 1966, 617 622.
- [202] B. J. Beaudry und K. A. Gschneidner Jr.; *Preparation and basic properties of the rare earth metals*; In: *Handbook of Physics and Chemistry of Rare Earths*, Band 1: *Metals*; Hrsg.: K. A. Gschneidner Jr., L. R. Eyring; North-Holland Publishing Company; Amsterdam, New York, Oxford; 1978, s. S. 173 -232.

- [203] H. Okamoto, D. J. Chakrabarti, D. E. Laughlin und T. B. Massalski; *Binary Alloy Phase Diagrams*, 2. Aufl., Hrsg.: T. B. Massalski, ASM International, Materials Park Ohio, **1990**, Ce–C, Bd. 2, s. S. 833 – 835; Tb–Al Bd. 1, s. S. 220 – 221; Tm–Al Bd. 1, s. S. 229 – 230; Lu–Al Bd. 1, s. S 169.
- [204] K. H. J. Buschow und J. H. N. van Vucht;
 Das System Erbium-Aluminium und ein Vergleich mit dem System Yttrium-Aluminium;
 Z. Metallkd., 56, 1965, 9 13.
- [205] A. Palenzona, P. Manfrinetti und R. Palenzona; *A reinvestigation of the Sc-In system and related (Tm, Lu)-In compounds*;
 J. Alloy. Compd., 243, 1996, 182 185.
- [206] S. Delfino, A. Saccone und R. Ferro; *Phase Equilibria in the Praseodymium-Indium System*;
 J. Less-Comm. Met., 65, 1979, 181 190.
- [207] A. Saccone, S. Delfino und R. Ferro; *Phase Equilibria in the Sm-In System*;
 J. Less-Comm. Met.,84, 1982, 281 289.
- [208] S. Delfino, A. Saccone und R. Ferro; *Phase Equilibria in the Gd-In and Gd-Tl Systems*;
 Z. Metallkd., 74, 1983, 674 679.
- [209] A. Palenzona und P. Manfrinetti; *The phase diagrams of Sc-Sn and Sc-Pb Systems*; J. Alloy. Compd., 220, 1995, 157 – 160.
- [210] V. N. Eremenko; M. V. Bulanova; P. S. Martsenyuk, V. E. Listovnichy; *Phase Equilibria in the Lanthanum-Tin System*; J. Therm. Anal.; *34*, **1988**, 451 – 456.
- [211] V. N. Eremenko, M. V. Bulanova, V. E. Listovnichy und V. M. Petyukh; *Phase-Equilibria in the Praseodymium-Tin System*; Ukr. Khim. Zh., 54, 1988, 787 – 795.

- [212] A. Saccone; D. Maccio; R. Ferro; *Phase Equilibria in the Nd-Sn System in 55-80 at.% Sn range*;
 J. Alloy. Compd.; 201, 1993, L9 L11.
- [213] A. Percheron;Études du système Samarium-Étain;Coll. Inter. CNRS., 180, 1970, 165 172.
- [P 1] STOE Win XPOW 1.2 Version vom 27. Juli 2001, c STOE und Cie GmbH, Hilpertstraße 10, D 64295, Darmstadt.
- [P 2] WinCSD Version 2000, United Cell Parameters, Least Squares,L. Akselrud, Yu. Gryn, V. Pecharsky und P. Zavalij; 2000.
- [P 3] FULLPROF2k, Version 2.45, Juli 2003.
 - J. Rodriguez-Carvajal;

Abstract of the satellite meeting on powder diffraction. In: Congress of the International Union of Crystallography; Toulouse, Frankreich, **1990**, S. 127.

[P 4] SHELX97,

G. M. Sheldrick,

Programm zur Kristallstrukturverfeinerung, Universität Göttingen, 1997.

[P 5] NETSCH–Proteus, Thermal Analysis, Version 4.3; NETSCH-Gerätebau, Wittelsbacherstaße 42, D 95100, Selb/Bayern.

10. Anhang

Synthesen, Röntgenpulverdiffraktogramme, DSC/DTA/TG-Messungen, Elementaranalysen, Tabellen.

Dieser Anhang listet systematisch die in dieser Arbeit vorgestellten Verbindungen auf. Erstes Ordnungsprinzip ist die Reihe der Hauptgruppenmetalle Al, Ga, In und Sn. Innerhalb einer Ordnungsgruppe werden dann zunächst binäre intermetallische Verbindungen, Phasen und Legierungen diskutiert und dann der Reihenfolge nach Verbindungen mit O, N und C. Die dritte Ordungsebene folgt der Ordnungszahl der Seltenerdmetalle von La bis Lu. Am Ende sind die Ergebnisse zu den Systemen *EA*–In–N aufgeführt. Dabei werden Synthesen und Analysenergebnisse vorgestellt, soweit sie nicht schon im Hauptteil erwähnt sind. Der Schwerpunkt liegt auf der Präsentation der einzelnen Messungen sowie der Tabellen zur Indizierung der Röntgenpulverdaten. Winkelangaben 2Θ erfolgen in ° (Grad), die Netzebenenabstände *d* sind in 10^{-2} pm bzw. Å angegeben.

10.1. Binäre Phasen SE-Al

$La_{16}AI_{13}$

Atom	Lage	x	У	Z	$U_{\rm eq}$ *
La(1)	3 <i>f</i>	0,26053(4)	0	0	0,01315(6)
La(2)	3g	0,23049(3)	x	1/2	0,00953(5)
La(3)	4h	1/3	2/3	0,66197(2)	0,01009(5)
La(4)	6 <i>i</i>	0,38572(3)	x	0,16376(2)	0,01327(5)
Al(1)	2 <i>c</i>	1/3	2/3	0	0,0113(4)
Al(2)	2 <i>e</i>	0	0	0,2362(2)	0,0121(4)
Al(3)	3g	0,4208(2)	0	1/2	0,0105(3)
Al(4)	6 <i>i</i>	0,2856(2)	0	0,29005(9)	0,0107(2)

 Tabelle A. 1:
 Atomkoordinaten und isotrope Auslenkungsparameter von La₁₆Al₁₃.

* U_{eq} (10⁴ pm²) ist definiert als ein drittel der Spur des orthogonalisierten Tensors U_{ij} .

Tabelle A. 2: Anisotrope Auslenkungsparameter (10^4 pm^2) von La₁₆Al₁₃.

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
La(1)	0,0139(1)	0,0114(1)	0,01330(9)	1/2 U ₂₂	0	0
La(2)	0,00966(8)	U_{11}	0,01042(8)	0,00570(9)	0	0
La(3)	0,00946(6)	U_{11}	0,01133(7)	1/2 U ₁₁	0	0
La(4)	0,01324(7)	U_{11}	0,01165(7)	0,00535(8)	-0,00021(5)	U_{13}
Al(1)	0,0111(6)	U_{11}	0,0148(7)	1/2 U ₁₁	0	0
Al(2)	0,0107(5)	U_{11}	0,0151(8)	1/2 U ₁₁	0	0
Al(3)	0,0095(5)	0,0099(7)	0,0122(5)	1/2 U22	0	0
Al(4)	0,0108(4)	0,0122(5)	0,0097(3)	1/2 U22	-0,00004(3)	0

Formelmasse (g mol ⁻¹)	2573,25
Kristallgröße (mm ³)	$0,2 \times 0,1 \times 0,03$
Farbe	silbrig metallisch
Kristallsystem	hexagonal
Raumgruppe	<i>P</i> 6 2 <i>m</i> (Nr. 189)
Gitterparameter (pm) aus Pulverdaten	a = 916,6(1); c = 1122,4(3)
Zellvolumen (10^6 pm^3); Z	816,7(2); 1
$\rho_{\rm röntgenografisch}$ (g cm ⁻³); μ (mm ⁻¹)	5,232; 20,64
Diffraktometer	MSC-Rigaku CCD
Abstand der Bildplatte (mm)	127,4
φ Bereich (°); $\Delta \varphi$ (°)	60° – 180°; 5°
Absorptionskorrektur	Multiscan
Temperatur (K)	295
2Θ Bereich (°)	3,6 < 2 <i>0</i> < 98,3
hkl Bereiche	$-13 \le h \le 19; -18 \le k \le 14; -23 \le l \le 23$
Anzahl der gemessenen Reflexe; R _{int}	18553; 0,0441
Anzahl der unabhängigen Reflexe	2807
Anzahl der verfeinerten Parameter	34
verwendetes Programm	SHELX97 [27]
$R_{\rm gt}(F); R_{\rm all}(F)$	0,029; 0,030
$wR(F^2)$	0,062
GooF	1,296
Flack-Parameter	0,03(3)
Extinktionskoeffizient	0,0051(3)
Globale Extrema der Elektronendichte-	2,59; -2,24
differenzkarte $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (10^{-6} \text{ pm}^{-3})$	

Tabelle A. 3:Kristallografische Daten zur Strukturbestimmung von La16Al13.

Ce₃Al

Literaturübersicht zu Ce₃Al

Die älteste Arbeit zum System Ce-Al berichtet Ce₂Al und Ce₃Al₂ als einzige Phasen im Cereichen Gebiet (x(Ce) > 50 %) des Phasendiagramms [80]. Umfangreichere Untersuchungen wurden von K. H. J. Buschow und J. H. N. van Vucht durchgeführt [111, 118, 118]: Darin wurde die Existenz von Ce₂Al und Ce₃Al₂ negiert und stattdessen die Phase Ce₃Al in zwei allotropen Modifikationen beschrieben. Ce₃Al schmilzt kongruent ($T_{\text{Smp.}} = 655 \text{ °C}$) und bildet zwei Eutektika mit den Nachbarphasen Ce (580 °C, x(AI) = 11 %) und CeAl (645 °C, x(AI) = 29.5 %). Die Tieftemperaturmodifikation (α -Ce₃AI) kristallisiert hexagonal $(a = 704,3 \pm 0,2 \text{ pm}; c = 545,1 \pm 0,2 \text{ pm}; 44 \text{ Reflexe}, \text{Röntgenbeugung am Pulver})$ im Hochtemperaturmodifikation Mg₃Cd-Strukturtyp. Die $(\beta$ -Ce₃Al) weißt immer Beimengungen α -Ce₃Al auf und kristallisiert Cu₃Au-Strukturtyp von im $(a = 498,5 \pm 0,1 \text{ pm})$. Aus DTA-Experimenten wird zur Phasenumwandlung α -Ce₃Al $\rightarrow \beta$ -Ce₃Al bemerkt: "Der Übergang α -Ce₃Al $\rightarrow \beta$ -Ce₃Al war unerwartet gut zu beobachten, obwohl manchmal Verzögerungen (Unterkühlung oder Verzerrung dieses Effekts über ein großes Intervall) auftraten". B-Ce₃Al soll durch eine Wärmebehandlung oberhalb von 230 °C entstehen. Weiter wurde die Bildung von α -Ce₃Al auch durch feilen von β -Ce₃Al³³ beschrieben. Mechanische Verformung sei für die Phasenumwandlung mitverantwortlich³⁴. Ce₃Al ist schwierig zu Pulver zu verarbeiten. Für Röntgenbeugungsexperimente wurde Pulver mit einer Diamantschleifmaschine unter N2-Atmosphäre hergestellt. Als Schmiermittel wurde Toluol eingesetzt. Geprüft wurde, ob *β*-Ce₃Al durch O, N oder C – eventuell geringste Mengen – stabilisiert sei³⁵. Versuche mit C ergaben einen größeren Gitterparameter der kubischen Phase ($a(Ce_3AlC_x) = 500,7 \text{ pm}$). Der Einbau von N gelang nicht. Daraus wurde gefolgert, dass auch ein Einbau von O nicht möglich wäre³⁶.

³³ [111]: "Dabei stellte sich heraus, dass eine bei 500° abgeschreckte, zweiphasige Probe durch schwaches Feilen bei Zimmertemperatur einphasig wurde."

^{34 [111]: &}quot;Diese Umwandlung scheint durch mechanische Verformung gefördert zu werden."

 $^{^{35}}$ [118]: "It seems likely that the cubic modification of R₃Al compounds may be stabilized by incorporating the foreign atoms mentioned, even when only a very small fraction of the octahedral holes are filled."

³⁶ [118] "(...). Similar attempts to stabilize the cubic phase R₃Al by incorporated nitrogen atoms were unsuccessful. It is to be expected that the elements C, N and O, when incorporated in these alloys, take on effectively a metallic character and that this is more easily achieved by carbon atoms than by nitrogen atoms. Especially for oxygen atoms this behaviour does not agree with their chemical nature. From the experimental fact that even nitrogen does not succeed in stabilizing the cubic form of R₃Al it may be inferred that the phase transformation observed for Ce₃Al and Pr₃Al are properties belonging to the pure binary compounds, i.e. they are not due to any stabilization of the cubic form by oxygen incorporation. (...)"

Eine neuere Untersuchung des Phasendiagramms [75] bestätigt diese Ergebnisse im Wesentlichen. Ce₃Al existiere ebenfalls in zwei allotropen Modifiktionen (α -Ce₃Al: hexagonal, a = 701,7 pm; c = 543,2 pm// β -Ce₃Al: kubisch, a = 499,6 pm) und schmelze kongruent bei 685 °C. Die Eutektika lägen bei x(Al) = 14 % (600 °C) und x(Al) = 27,5 % (660 °C).

Neben der α und der β -Modifikation existieren Berichte über eine dritte (monokline) Ce₃Al (γ -Ce₃Al): Tieftemperaturmodifikation von Zum wurde einen eine Volumenkontraktion zwischen 80 K und 100 K mit der Existenz zweier hexagonaler Phasen in Zusammenhang gebracht [171]. Zum anderen wurde bei Neutronenbeugungsexperimenten am Pulver eine neue Phase beschrieben [112]. Die untersuchte Probe zeigte bei Raumtemperatur Reflexe von α -Ce₃Al (\approx 95 % Vol.), kfz α -Ce (≈ 1 % Vol.) und β -Ce₃Al (≈ 4 % Vol.). Zwischen 135 K und 50 K verschwinden die Reflexe von α -Ce₃Al und neue wurden beobachtet. Die Reflexe von α -Ce und β -Ce₃Al bleiben unverändert. Die Reflexe dieser neuen Phase wurden in der Raumgruppe $P2_1/m$ (Nr. 11) indiziert und ein Strukturvorschlag vorgestellt. In Tabelle A. 4 und A. 5 sind die Gitterparameter von α -Ce₃Al und β -Ce₃Al aus der Literatur zusammengefasst.

Tabelle A. 4: Gitterparameter von β -Ce₃Al (Literaturangaben).

<i>a</i> / pm	Bemerkungen	Lit.
501,3	von 800 °C abgeschreckt	[113]
498,5(1)	von 500 °C abgeschreckt	[117], [111], [170]
498,0		[74]
495,8	in Al ₂ O ₃ -Tiegel aufgeschmolzen,	[114]
	8 <i>d</i> , 500 °C	

Tabelle A. 5:	Gitterparameter vo	n α -Ce ₃ Al	(Literaturangal	oen)
	1		· ·	

<i>a</i> / pm	<i>c</i> / pm	Bemerkungen	Lit.
703	544	500 °C, 3 <i>d</i> ; 200 °C, 3 Wochen	[187]
704,0	545,0	200 °C, 14 <i>d</i> , Mg ₃ Cd-Typ	[113]
704,43(2)	545,1(2)	8 h 200 °C, Hochvakuumofen	[117], [111], [170]
703	543	Lichtbogen, 3 Wochen bei	[172]
		500 °C, 1 Wochen bei 200 °C	

Eigene Versuche zur Darstellung von Ce₃AI

Proben verschiedener Zusammensetzungen in der Nähe der Zusammensetzung "Ce₃Al" wurden hergestellt, um die Existenz von β-Ce₃Al zu untersuchen. Ce und Al wurden im Lichtbogen in entsprechenden Mengen zusammengeschmolzen, in Ta-Ampullen eingeschweißt und diese in Kieselglas eingeschmolzen. Nach der Wärmebehandlung wurden thermische Analysen durchgeführt und der Gehalt an O und N sowie teilweise an H und C bestimmt. Die Präparationsbedingungen und Ergebnisse der Analysen sind in Tabelle A. 6 zusammengefasst. Eine mögliche Erklärung für das in der Literatur berichtete deutlich DTA-Signal bei 250 °C [111] könnte eine Reaktion des Tiegelmaterials (Korund) mit der Probe sein. DTA-Experimente in Nb- und Korundtiegeln sollten dies klären.

Abbildung A. 1: DTA-Messungen (β = +10 K/min, T_{min} = 25 °C, T_{max} = 1000 °C) an einer Probe der Zusammensetzung Ce₆₀Al₄₀ (168 h, 675 °C).

Die Ergebnisse der DTA/DSC-Experimenten werden folgendermaßen interpretiert: Die in der neuesten Literatur beschriebenen Schmelztemperaturen der Ce-reichen (x(Ce) = 0,5) Eutektika stimmen im Rahmen des experimentellen Fehlers mit den eigenen Experimenten überein. Unter den angewandten Bedingungen wurde keine weitere Phase im Bereich zwischen den Phasen Ce₃Al und CeAl beobachtet. Bei keinem der durchgeführten DTA/DSC-Experimente wurde ein Hinweis auf das in der Literatur beschriebene deutliche Signal bei 250 °C der Phasenumwandlung von α -Ce₃Al zu β -Ce₃Al gefunden. In den Röntgenpulverdiffraktogrammen wurden keine Reflexe beobachtet, die die Existenz von β -Ce₃Al belegen.

Tabelle A. 6:Versuchbedingungen und Analysen zur Bestimmung charakteristischerPunkte im Phasendiagramm Ce–Al im Bereich der Phase Ce₃Al.

Einwaage	Ce ₅₅ Al ₄₅	$Ce_{60}Al_{40}$	Ce ₇₅ Al ₂₅	Ce ₇₅ Al ₂₅
Präparation	500 °C, 5 d	1) in 12 h 420 °C	Lichtbogen	500 °C, 14 d
		2) in 168 h auf 645 °C		
		3) abschrecken		
Messmethode	DTA	DTA	DSC	DSC
Tiegelmaterial	Та	Та	Nb	Nb
$T_{\rm max}$ / °C	1100	1100	1100	1100
w(O) / %	$0,14 \pm 0,01$	n.d. NWG $\leq 0,1\%$	$0,\!20\pm0,\!03$	$0,11 \pm 0,02$
w(N) / %	$0,12 \pm 0,02$	0,07 - 0,45	$0,10 \pm 0,01$	$0,\!04 \pm 0,\!01$
w(H) / %				≤ 0,0008
<i>w</i> (Ce) _{korr} / %*	58,17	54,07	75	75
Phasenanalyse aus der	Röntgenbeugung	g am Pulver		
α -Ce (kfz)	-	-	-	Ja
α-Ce ₃ Al	Ja	Ja	Ja	Ja
CeAl	Ja	-	-	-
β-Ce ₃ Al	-	-	-	-
Thermische Signale				
Eutektikum Ce – Ce ₃ A	Al $T_{[75]} = 600 ^{\circ}\text{C}$			
T_{Onset}	-	-	-	595 ± 5
T_{Peak}	-	-	-	$600\pm5^{\ast\ast}$
Eutektikum Ce ₃ Al – C	$eAl T_{[75]} = 660 \circ 0$	C		
T _{Onset}	640 ± 5	650 ± 5	655 ± 5	-
T_{Peak}	645 ± 5	655 ± 5	660 ± 5	-
CeAl				
	865 ± 5	865 ± 5	815 ± 40	-

* Die Berechnung eines korrigierten Cer-Gehalts erfolgt unter der Annahme der Bildung von (Ce₃X)Al mit X = N, O.

** Das Signal ist nur als sehr breite Schulter ausgeprägt. Deshalb wurde nur das Maximum gewählt.

Abbildung A. 2: DTA-Messungen ($\beta = -10 \text{ K/min}$, $T_{\text{min}} = 25 \text{ °C}$, $T_{\text{max}} = 1000 \text{ °C}$) an einer Legierung der Zielzusammensetzung Ce₆₀Al₄₀ (168 h, 675 °C).

Tabelle A. 7: DTA-Effekte (Nb-Tiegel, $T_{max} = 1000 \text{ °C}$, 10 K/min, $T_{min} = 200 \text{ °C}$) an einer Legierung der Zusammensetzung Ce₆₀Al₄₀ (168 h bei 675 °C wärmebehandelt).

Signal	$T_{\text{Peak}}/$ °C	$T_{\text{Onset}} / ^{\circ}\text{C}$	Zuordnung nach [75]	Heizphase
1	655 ± 5	650 ± 5	Smp. Ce ₃ Al oder Eutektikum Ce ₃ Al/CeAl	Auf
2		870 ± 5	Zersetzung von CeAl	
3	835 ± 5		Peritektische Bildung von CeAl	Ab
4	650 ± 5		Smp. Ce ₃ Al oder Eutektikum Ce ₃ Al/CeAl	

Tabelle A. 8:Ergebnisse der DTA-Messung (Korund-Tiegel, $T_{max} = 1000$ °C, $T_{min} = 200$ °C, 10 K/min) an einer Legierung der Zusammensetzung
Ce₆₀Al₄₀ (168 h bei 675 °C wärmebehandelt).

Signal	$T_{\text{Peak}} / \circ C$	$T_{\text{Onset}} / ^{\circ}\text{C}$	Zuordnung nach [75]	Heizphase
1	660 ± 5	650 ± 5	Smp. Ce ₃ Al oder Eutektikum Ce ₃ Al/CeAl	Auf
2		850 ± 5	Zersetzung von CeAl	
3		875 ± 5	Liquidus	
4	845 ± 5	850 ± 5	Peritektische Bildung von CeAl	Ab
5	645 ± 5	650 ± 5	Smp. Ce ₃ Al oder Eutektikum Ce ₃ Al/CeAl	

10.2. (SE₃O)Al

(La₃O)AI (*MM* = 459,71 g/mol)

La₂O₃ und La wurden im Lichtbogen zusammengeschmolzen. Beide Komponenten reagierten miteinander. La₂O₃ wurde von flüssigem La aufgenommen. In gleicher Weise wurde anschließend Al zugeschmolzen. Die Reaktion mit Aluminium verläuft sehr bereitwillig: Das aufgeschmolzene Aluminium reagiert mit der Schmelzkugel aus La und La₂O₃ so heftig, dass eine Reaktion ohne weitere Energiezufuhr des Lichtbogens unter kurzzeitigem Erhalt bzw. Intensivierung der Lichtintensität der Probe fortschreitet. Je nach Wärmebehandlung wurde die Probe in Mo- oder Ta-Folie (langsames Abkühlen) eingewickelt oder in Ta-Ampulle (Abschrecken) eingeschweißt. Die so vorbereitete Probe wurde bei vermindertem Druck in Kieselglas eingeschmolzen. Nacheinander wurden an der Probe mehrere Wärmebehandlungen (1a - 1f, s. Tabelle A. 9) durchgeführt. Zwischen jeder Wärmebehandlung wurde die Probe in einer Achatreibschale oder einem Wolframcarbid-Mörser innig verrieben und homogenisiert. Aus dem erhaltenen Gemenge wurde eine Tablette gepreßt und wie zuvor beschrieben für die Wärmebehandlung vorbereitet.

Tabelle A. 9:Wärmebehandlungen von Proben mit der Zielsetzung, die Phase (La₃O)Al
zu erhalten.

Probe	$eta_{ m l}$ / °C/h	$T_1 / °C$	<i>t</i> _{H1} / h	eta_2 / °C/h	$T_2 / °C$	<i>t</i> _{H2} / h	eta_3 / °C/h	$T_3 / °C$
1 <i>a</i>	6,6 (72 h)	500	168	-1,8 (168 h)	200	-	-8 (24 h)	20
1 <i>b</i>	*	800	168	*	*	*	*	20
1 <i>c</i>	9,4 (48 h)	450	48	1,49 (168 h)	700	168	-57 (12 h)	20
1 <i>d</i>	*	500	1344	*	*	*	*	20
1 <i>e</i>	*	500	336	*	*	*	*	20
1 <i>f</i> **	*	500	336	*	*	*	*	20

 β : Heizrate, $t_{\rm H}$: Haltezeit,

* Probe wurde in einem Röhrenofen wärmebehandelt, anschließend wurde die Kieselglasampulle in Wasser zerschlagen.

** Probe wurde vor der Wärmebehandlung 1 h in einer Kugelmühle gemahlen.

Nach jeder Wärmebehandlung wurde ein Röntgenpulverdiffraktogramm aufgenommen. Ausschnitte der Röntgenpulverdiffraktogramme 1a - 1f sind in Abbildung A. 3 dargestellt. Generell gilt, dass die Anteile der kubischen Hauptphase zunehmen, die Reflexe von La₂O₃ und der binären Verbindung La₁₆Al₁₃ abnehmen. Von 1*b* nach 1*c* wird eine Zunahme der Reflexe von La₂O₃ beobachtet. Dieser Befund ist noch unverstanden. Nach der
Wärmebehandlung 1*c* wurden Einkristalle von La₁₆Al₁₃ isoliert (s. S. Kap. 5.1). Aus der DSC-Messung (s. u.) wird eine Zersetzung von La₂O₃ zwischen 650 °C und 700 °C erwartet. Die Zunahme der Reflexintensitäten wäre demnach auf einen langsamen Zerfalls von (La₃O)Al bei gleichzeitiger Bildung von La₂O₃ und La₁₆Al₁₃ zurückzuführen sein. Die Bildung von (La₃O)Al wurde allerdings auch bei 800 °C beobachtet (1*b*).

Abbildung A. 3: Ausschnitt der Röntgenpulverdiffraktogramme (Cu- $K\alpha_1$ -Strahlung, untergrundkorrigiert, normiert auf die Intensität des Reflex (111) von (La₃O)Al)) von Proben mit dem Ziel (La₃O)Al darzustellen (1*a* – 1*f*: Wärmebehandlungen s. Tabelle A. 9).

Tabelle A. 10: Ergebnisse der Röntgenbeugung am Pulver zu (La₃O)Al nach den jeweiligen Wärmebehandlungen.

Probe	<i>a</i> / pm	N(Reflexe)	Nebenphasen
1 <i>a</i>	502,80(2)	19	$La_2O_3, La_{16}Al_{13}$
1 <i>b</i>	502,91(2)	21	$La_2O_3, La_{16}Al_{13}$
1 <i>c</i>	503,17(2)	19	$La_2O_3, La_{16}Al_{13}$
1d	503,21(2)	22	$La_2O_3, La_{16}Al_{13}$
1 <i>e</i>	503,28(2)	20	$La_2O_3, La_{16}Al_{13}$
lf	503,54(1)	20	

Ebenfalls noch unverstanden ist die kontinuierliche Zunahme der Gitterparameter von (La₃O)In von der ersten (1a) zur fünften Wärmebehandlung (1f; s. Tabelle A. 10). In Abbildung A. 5 ist das vollständige Röntgenpulverdiffraktogramm der Probe nach der Wärmebehandlung 1d dargestellt. Elementaranalysen auf O und N ergaben für 1b $w(O) = 2,98 \pm 0,17$ %; $w(N) = 0,038 \pm 0,001$ % (= La₃AlO_{0,85 \pm 0,05}N_{0,0124\pm0,0003}) bzw. von 1f $w(O) = 2,36 \pm 0,10\%$; $w(N) = 0,16 \pm 0,01\%$ (= La₃AlO_{0.67 \pm 0.03}N_{0.052 \pm 0.003}). Die hier bestimmten Sauerstoffwerte sind wenig sinnvoll, weil sie signifikant von der Einwaage abweichen und ein Verlust an Sauerstoff während der Präparation ausgeschlossen werden kann. Wie bei (Ce₃O)Al festgestellt wurde, scheint die Bildung besonders stabiler Oxide vermutlich Al₂O₃ - die Bestimmung des Sauerstoffwertes stark zu verfälschen. Von der angefertigt (Nb-Ampulle, Probe 1f wurde eine DSC-Messung $\beta = 10$ K/min, $T_{\rm max} = 1000 \,^{\circ}{\rm C}$).

Abbildung A. 4: DSC-Messung an der Probe 1*e* (Nb-Ampulle, $\beta = 10$ K/min, $T_{\text{max}} = 1000$ °C).

Die Messung zeigt zahlreiche thermische Effekte, die nicht alle verstanden sind. Einzelheiten sind in Tabelle A. 11 zusammengefasst. Die Messung ist in Abbildung A. 4 dargestellt und zeigt ein Signal zwischen 535 °C und 550 °C. Das darauf folgende breite Signal ähnelt demjenigen der Zersetzung von (Ce₃O)Al. Das nach dem Experiment gemessene Röntgenpulverdiffraktogramm zeigt die Phasen LaAl, La₂O₃, deren Reflexe an Intensität stark zugenommen haben. An Stelle der kubischen Phase (La₃O)Al wird eine Aufspaltung der Reflexe beobachtet. Diese Aufspaltung ist nicht auf experimentelle Fehler bei der Messung des Diffraktogramms zurückzuführen, da benachtbarte Reflexe von LaAl oder La₂O₃ diese Aufspaltung nicht zeigen. Eine grobe Abschätzung der kubischen Gitterparameter ergibt $a_1 = 503$ pm bzw. $a_2 = 505$ pm. Neben diesen Reflexen werden noch etwa zehn Reflexe schwacher Intensität beobachtet, die keiner der oben genannten Phasen zugeordnet werden können.

Abbildung A. 5: Röntgenpulverdiffraktogramm (Cu-Kα₁-Strahlung) einer Probe mit dem Ziel (La₃O)Al darzustellen (nach der Wärmebehandlung 1d s. Tabelle A. 9).

Signal	$T_{\text{Peak}} / ^{\circ}\text{C}$	$T_{\text{Onset}} / ^{\circ}\text{C}$	Zuordnung	Heizphase
1	535	530	Eutektikum La/La ₃ Al und	Auf
2	550	-	Zersetzung von La ₃ Al?	
3	650	615	Zersetzung von (La ₃ O)Al in	
			Analogie zu (Ce ₃ O)Al?	
4	710	-	Zersetzung von La ₁₆ Al ₁₃	
5	840	-	β -La $\rightarrow \alpha$ -La oder Zersetzung von	
6	850	-	LaAl?	
7	705	715	Rückbildung von La ₁₆ Al ₁₃ ?	Ab
8	610	615	Bildung von (La ₃ O)Al?	
9	565	-	Eutektikum von La/-La ₃ Al und	
10	540	550	Bildung von La ₃ Al?	

Tabelle A. 11: DSC-Messung (Nb-Ampulle, $\beta = 10$ K/min, $T_{max} = 1000$ °C) an (La₃O)Al (Probe 1*e*).

Tabelle A. 12: (La₃O)Al: Vergleich der gemessenen ($2\Theta_{gem.}$) und berechneten ($2\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] hergestellt aus La, La₂O₃ und Al (x(La) : x(Al) : x(O) = 3 : 1 : 1) nach der Wärmebehandlung 1*e* (s. Tabelle A. 9).

	$2\Theta_{\rm gem.}$	h	k	1	$2\Theta_{\rm ber.}$	er. $2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$ Intensität $d_{\text{gem.}}$		$d_{\text{gem.}}$	$d_{\rm ber.}$
1	17,607	1	0	0	17,61	-0,0036	47,1	5,0332	5,0322
2	25,001	1	1	0	25,005	-0,0038	28,7	3,5588	3,5583
3	30,749	1	1	1	30,75	-0,0013	100	2,9054	2,9053
4	35,663	2	0	0	35,655	0,0084	65,8	2,5155	2,5161
5	40,025	2	1	0	40,032	-0,0079	26	2,2509	2,2505
6	44,046	2	1	1	44,043	0,0026	18,7	2,0543	2,0544
7	51,298	2	2	0	51,311	-0,0138	43,1	1,7796	1,7791
8	54,671	3	0	0	54,674	-0,0031	18,4	1,6775	1,6774
9	57,904	3	1	0	57,903	0,0011	15,9	1,5913	1,5913
10	61,012	3	1	1	61,021	-0,0087	41,4	1,5175	1,5173
11	64,051	2	2	2	64,047	0,0042	21,8	1,4526	1,4527
12	67,008	3	2	0	66,998	0,0105	15,2	1,3955	1,3957
13	69,903	3	2	1	69,885	0,0179	15,5	1,3446	1,3449
14	75,505	4	0	0	75,512	-0,0067	17,3	1,2581	1,258
15	78,271	4	1	0	78,269	0,0019	15,6	1,2205	1,2205
16	81,006	3	3	0	80,999	0,0007	14,5	1,186	1,1861
17	83,71	3	3	1	83,709	0,0015	22,9	1,1544	1,1545
18	86,403	4	2	0	86,404	-0,0015	100	1,1252	1,1252
19	89,125	4	2	1	89,091	0,0331	65,3	1,0978	1,0981
20	91,774	3	3	2	91,777	-0,0032	61,5	1,0729	1,0729
21	97,145	4	2	2	97,166	-0,0206	87,3	1,0273	1,0272
22	99,867	5	0	0	99,881	-0,0014	63,2	1,0065	1,0064
		1	1	1	I	I	1	l .	l .

Pm $\overline{3}m$; Nr. 221; a = 503,21(2) pm; $V = 127,428(7) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,0287^\circ$ (fixiert); $\Delta 2\Theta_{\text{max}} = 0,033^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,008^\circ$; FOM(22) = 124,8 (0,008; 22); Cu-*K* α_1 -Strahlung.

(Ce₃O)AI (*MM* = 463,34 g/mol)

Die Synthese wurde im Detail bereits im Hauptteil beschrieben; Hier sollen tabellarisch die ausführlichen Ergebnisse aus Röntgenbeugung und Elementaranalyse dargestellt werden.

Tabelle A. 13: Ergebnisse der Röntgenbeugung am Pulver und der Elementaranalysen an Proben der nominellen Zusammensetzung (Ce₃O_{1-y})Al mit y = 0; 0,2; 0,4; 0,6; 0,8 vor der thermischen Analyse. Die Auswertung erfolgte mit Si als internem Standard. Für die Auswertung wurde in diesem Falle das Programm CSD [P 2] verwendet. Zum Vergleich wurden die Gitterparameter auch mit dem Programmpaket von STOE [P 1] ausgewertet. Zum einen ist die Anzahl der beobachteten Reflexe gering, zum anderen sind diese sehr breit. Ersteres bedingt, dass die Angabe der Standardabweichung nur wenig sinnvoll und mit [P 1] unmöglich ist, letzteres resultiert in stark schwankenden Gitterparametern von α -Ce₃Al.

Programm		[P 2]		[P 1]				
Einwaage	<i>a /</i> pm*	<i>a /</i> pm**	<i>c</i> / pm**	<i>a /</i> pm*	<i>a /</i> pm**	<i>c</i> / pm**		
(Ce ₃ O _{0,2})Al	496,45(3)	703,8(2)	544,2(1)	495,89(5)	-	F		
(Ce ₃ O _{0,4})Al	496,22(6)	705(1)	543,2(7)	495,70(4)	701,53	545,64		
(Ce ₃ O _{0,6})Al	o	o	0	495,56(4)	703,19	543,28		
(Ce ₃ O _{0,8})Al	495,95(3)	700(10)	538(5)	495,47(3)	704,84	544,62		
(Ce ₃ O)Al	495,74(1)	+	+	495,34(5)	+	+		
* kubische Pl	hase (Ce ₃ O)A	1						

** α-Ce₃Al,

° keine Messung mit Si durchgeführt

+ Reflexe konnten nicht angepasst werden

++ röntgenografisch phasenreine Probe

Einwaage	w(O) / %	w(N) / %	berechnete Zusammensetzung*
(Ce ₃ O _{0,2})Al	$0,78 \pm 0,04$	$0,12 \pm 0,02$	$Ce_{3}AlO_{0,22\pm0,01}N_{0,039\pm0,006}$
$(Ce_3O_{0,4})Al$	$1,45 \pm 0,01$	$0,18 \pm 0,01$	$Ce_{3}AlO_{0,412\pm0,003}N_{0,058\pm0,003}$
(Ce ₃ O _{0,6})Al	$2,19 \pm 0,02$	$0,320 \pm 0,009$	$Ce_{3}AlO_{0,628\pm0,006}N_{0,105\pm0,003}$
$(Ce_3O_{0,8})Al$	$2,75 \pm 0,07$	$0,20 \pm 0,01$	$Ce_{3}AlO_{0,792\pm0,020}N_{0,066\pm0,003}$
(Ce ₃ O)Al	$3,29 \pm 0,01$	$0,07 \pm 0,01$	$Ce_{3}AlO_{0,952\pm0,003}N_{0,023\pm0,003}$

*Die Berechnung erfolgte unter der Annahme, dass x(Ce) : x(Al) = 3 : 1 und $w(Ce_3Al) = 1 - w(N) - w(O)$.

Tabelle A. 15: (Ce₃O)Al: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] hergestellt aus Ce, CeO₂ und Al (x(Ce) : x(Al) : x(O) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$l \mid 2\Theta_{\text{ber.}} \mid 2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}} \mid \text{Intensität} \mid a$		$d_{\text{gem.}}$	$d_{\rm ber.}$	
1	17,891	1	0	0	17,893	-0,0019	42,9	4,9539	4,9534
2	25,405	1	1	0	25,409	-0,0004	26,5	3,5031	3,5026
3	31,254	1	1	1	31,251	0,0027	100	2,8596	2,8599
4	36,247	2	0	0	36,241	0,006	61,9	2,4763	2,4767
5	40,699	2	1	0	40,697	0,0026	21,6	2,2151	2,2152
6	44,777	2	1	1	44,781	-0,0043	14	2,0224	2,0222
7	52,184	2	2	0	52,188	-0,0038	39,8	1,7514	1,7513
8	55,63	3	0	0	55,618	0,0115	13,8	1,6508	1,6511
9	58,895	3	1	0	58,913	-0,0183	11	1,5668	1,5664
10	62,094	3	1	1	62,097	-0,0035	38,8	1,4936	1,4935
11	65,191	2	2	2	65,19	0,0001	17	1,4299	1,4299
12	68,204	3	2	0	68,208	-0,0042	10,4	1,3739	1,3738
13	71,159	3	2	1	71,163	-0,0041	10,7	1,3239	1,3239
14	76,942	4	0	0	76,93	0,0012	13	1,2382	1,2384
15	79,778	4	1	0	79,76	0,0183	11,1	1,2011	1,2014
16	82,597	3	3	0	82,564	0,0322	9,9	1,1672	1,1675
17	85,37	3	3	1	85,351	0,0019	18,7	1,1362	1,1364
18	88,126	4	2	0	88,127	-0,0001	21,6	1,1076	1,1076
19	90,901	4	2	1	90,899	0,0021	10,5	1,0809	1,0809
20	93,631	3	3	2	93,672	-0,0411	8,4	1,0564	1,0561
21	99,264	4	2	2	99,252	0,0114	16,8	1,011	1,0111
		1		1	1				

 $Pm\overline{3}m; \text{ Nr. } 221; \quad a = 495,34(5) \text{ pm}; \quad V = 121,54 \quad (2) \bullet 10^6 \text{ pm}^3; \quad \Delta 2\Theta = -0,024(8)^\circ;$ $\Delta 2\Theta_{\text{max}} = 0,041^\circ; \quad \Delta 2\Theta_{\text{mitt}} = 0,010^\circ; \text{ FOM}(21) = 97,8 \quad (0,010; 22); \quad \text{Cu-}K\alpha_1\text{-Strahlung}.$

(Pr₃O)Al (*MM* = 465,70 g/mol)

Pr₂O₃, Pr und Al wurden im Lichtbogen zusammengeschmolzen, danach in eine Ta-Ampulle eingeschweißt, in Kieselglas eingeschmolzen und wärmebehandelt (0. 20 °C; 1. 50 °C/h; 2. 48 h 630 °C; 3. 2,4 °C/h; 4. 800 °C, 168 h; 5. -67 °C/h; 6. 20 °C). Anschließend wurde ein Röntgenpulverdiffraktogramm und eine Elementaranalyse angefertigt. Das Röntgenpulverdiffraktogramm (s. Abbildung A. 6) zeigt eine kubische Hauptphase deren Intensitäten mit einer geordneten kubisch dichtesten Packung aus Pr und Al-Atomen übereinstimmen (a = 491,79(3) pm). Daneben sind Pr₂O₃ (A-Typ), PrAl und einige weitere Reflexe schwacher Intensität zu festzustellen. Die Elementaranalyse auf O sowie N ($w(O) = 3,53 \pm 0,04$ % und $w(N) = 0,070 \pm 0,002$ %; $w_{theo}(O) = 3,44$ %)) ergibt unter der Annahme eines molaren Verhältnisses $x(Pr) : x(Al) = 3 : 1 Pr_3AlO_{1,03 \pm 0,01}N_{0,0233 \pm 0,0001}$. Das Röntgenpulverdiffraktogramm änderte sich nach einer weiteren Wärmebehandlung (750 °C, 1 Woche, Abschrecken in Wasser) der Probe nicht.

Abbildung A. 6: Röntgenpulverbeugung (Cu-Kα₁-Strahlung) an einer Probe mit der Zielzusammensetzung (Pr₃O)Al; hergestellt aus Pr, Pr₂O₃ und Al im Lichtbogen, mit anschließendem Wärmebehandlung (0. 20 °C; 1. 50 °C/h; 2. 48 h 630 °C; 3. 2,4 °C/h; 4. 800 °C, 168 h; 5. -67 °C/h; 6. 20 °C).

Tabelle A. 16: (Pr₃O)Al: Vergleich der gemessenen ($2\Theta_{gem.}$) und berechneten ($2\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms (Nebenphasen: PrAl und Pr₂O₃) von mikrokristallinem Pulver [P 1] hergestellt aus Pr, Pr₂O₃ und Al (x(Pr) : x(Al) : x(O) = 3 : 1 : 1) nach der Wärmebehandlung.

-

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	18,010	1	0	0	18,017	-0,0071	29,0	4,9215	4,9195
2	25,567	1	1	0	25,587	-0,0202	14,4	3,4813	3,4786
3	31,459	1	1	1	31,472	-0,0131	100,0	2,8414	2,8403
4	36,503	2	0	0	36,499	0,0035	52,2	2,4595	2,4598
5	40,987	2	1	0	40,990	-0,0029	13,2	2,2002	2,2001
6	45,108	2	1	1	45,106	0,0013	4,9	2,0083	2,0084
7	52,573	2	2	0	52,575	-0,0017	34,3	1,7394	1,7393
8	56,045	3	0	0	56,035	0,0108	4,7	1,6396	1,6398
9	59,364	3	1	0	59,359	0,0048	2,4	1,5556	1,5557
10	62,583	3	1	1	62,573	0,0103	30,9	1,4831	1,4833
11	65,712	2	2	2	65,695	0,0163	9,4	1,4198	1,4201
12	68,760	3	2	0	68,743	0,0167	1,9	1,3641	1,3644
13	71,742	3	2	1	71,728	0,0137	2,0	1,3146	1,3148
14	77,572	4	0	0	77,558	0,0137	5,3	1,2297	1,2299
15	80,444	4	1	0	80,420	0,0239	2,2	1,1929	1,1932
16	83,262	3	3	0	83,259	0,0035	0,8	1,1595	1,1595
17	86,048	3	3	1	86,081	-0,0333	11,0	1,1290	1,1286
18	88,869	4	2	0	88,893	-0,0240	11,6	1,1003	1,1000
19	91,687	4	2	1	91,703	-0,0160	2,0	1,0737	1,0735
		1	1	1	1	1		1	

Pm $\overline{3}m$; Nr. 221; a = 491,95(6) pm; $V = 119,06(3) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,01(1)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,033^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,012^\circ$; FOM(19) = 76,2 (0,012; 20); Cu-*K* α_1 -Strahlung.

Pr₂O₃ (hexagonalen A-Typ, Tieftemperaturmodifikation): Vergleich der Tabelle A. 17: gemessenen $(2\Theta_{gem})$ und berechneten $(2\Theta_{ber})$ Reflexe (hkl) sowie der Gitterabstände (dgem., dber.); Auswertung eines Röntgendiffraktogramms PrAl (Hauptphase: (Pr₃O)Al; Nebenphasen: und Pr_2O_3) von und mikrokristallinem Pulver [P 1] Pr, Pr₂O₃ Al aus (x(Pr) : x(Al) : x(O) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	1	$2 \Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	26,667	1	0	0	26,670	-0,0032	3,3	3,3402	3,3398
2	29,661	0	0	2	29,674	-0,0130	2,4	3,0094	3,0081
3	30,576	1	0	1	30,591	-0,0151	11,2	2,9214	2,9200
4	40,326	1	0	2	40,318	0,0075	2,2	2,2347	2,2351
5	47,092	1	1	0	47,092	-0,0004	2,6	1,9282	1,9282
6	53,276	1	0	3	53,235	0,0407	1,2	1,7181	1,7193
7	57,195	2	0	1	57,205	-0,0093	1,2	1,6093	1,6091
8	73,785	2	0	3	73,779	0,0062	0,8	1,2832	1,2832
9	77,164	2	1	1	77,147	0,0172	1,1	1,2352	1,2354
10	80,990	1	1	4	81,012	-0,0217	0,3	1,1862	1,1859
11	92,274	2	1	3	92,283	-0,0090	0,9	1,0684	1,0683

 $P\overline{3}m1; \quad \text{Nr. 164;} \quad a = 385,6(1) \text{ pm;} \quad c = 601,6(2) \text{ pm;} \quad V = 77,49(5) \cdot 10^6 \text{ pm}^3;$ $\Delta 2 \Theta = -0,02(2)^\circ; \quad \Delta 2 \Theta_{\text{max}} = 0,041^\circ; \quad \Delta 2 \Theta_{\text{mitt}} = 0,013^\circ; \quad \text{FOM}(11) = 31,3 \quad (0,013,27);$ $\text{Cu-}K\alpha_1\text{-Strahlung.}$

Tabelle A. 18: PrAI: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung [P 1] eines Röntgendiffraktogramms (Hauptphase: (Pr₃O)AI; Nebenphasen: PrAI und Pr₂O₃) von mikrokristallinem Pulver aus Pr, Pr₂O₃ und AI (x(Pr) : x(AI) : x(O) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	2 Øber.	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	d _{gem.}	d _{ber.}
1	19,183	2	0	0	19,231	-0,0473	1,4	4,6229	4,6116
2	21,676	1	1	1	21,681	-0,0053	1,5	4,0967	4,0957
3	23,275	0	2	0	23,265	0,0091	1,4	3,8187	3,8202
4	28,065	0	2	1	28,089	-0,0234	3,5	3,1768	3,1742
5	34,248	2	2	1	34,267	-0,0194	4,0	2,6161	2,6147
6	34,953	1	1	2	34,930	0,0239	1,0	2,5649	2,5666
7	35,167	3	1	1	35,149	0,0180	5,6	2,5498	2,5511
8	44,917	3	1	2	44,907	0,0104	0,9	2,0164	2,0168
9	46,300	3	3	0	46,252	0,0479	0,9	1,9594	1,9613
10	50.240	0	4	1	50,337	0,0123	2.0	1 0 1 0 0	1,8113
11	50,349	1	1	3	50,392	-0,0432	2,0	1,8109	1,8094
12	53,519	5	1	1	53,526	-0,0072	0,3	1,7108	1,7106
13	53,826	0	2	3	53,808	0,0177	1,5	1,7018	1,7023
14	54,417	2	4	1	54,375	0,0413	1,2	1,6847	1,6859
15	56,957	3	3	2	56,933	0,0248	1,9	1,6155	1,6161
16	57,685	2	2	3	57,677	0,0074	0,4	1,5968	1,5970
17	58,213	3	1	3	58,269	-0,0560	0,9	1,5836	1,5822
18	60,984	5	1	2	60,984	-0,0004	1,1	1,5181	1,5181
19	71 710	3	1	4	74,296	-0,0482	0.6	1 2762	1,2756
20	/4,248	6	2	2	74,299	-0,0510	0,0	1,2703	1,2755
21	74,404	0	6	0	74,445	-0,0415	0,4	1,2740	1,2734
22	02 075	8	0	0	83,846	0,0187	0.5	1 1507	1,1529
23	83,803	5	5	1	83,883	-0,0177	0,5	1,1527	1,1525
	-					1			

Cmcm; Nr. 63; a = 922,3(6) pm; b = 764,0(4) pm; c = 570,5(3) pm; $V = 402.0(6) \cdot 10^{6}$ pm³; $\Delta 2\Theta = -0,04(2)$; $\Delta 2\Theta_{\text{max}} = 0,056^{\circ}$; $\Delta 2\Theta_{\text{mitt}} = 0,024^{\circ}$; FOM(23) = 9,4 (0,024; 89), Cu-*K* α_1 -Strahlung.

(Nd₃O)AI (*MM* = 475,70 g/mol)

Nd₂O₃, Nd und Al wurden im Lichtbogen zusammengeschmolzen, danach in eine Ta-Ampulle eingeschweißt, in Kieselglas eingeschmolzen und wärmebehandelt (2 • 168 h, 500 °C, 1 • 168 h, 780 °C). Nach zweimaliger Wärmebehandlung bei 500 °C zeigt das Röntgenpulverdiffraktogramm Reflexe von Nd₂O₃, Nd₂Al und eine kubisch zu indizierende Phase (a = 488,6(1) pm). An diesem Produkt wurde eine DSC-Messung durchgeführt (s. Abbildung A. 7). Nicht alle der beobachteten Signal können mit den bekannten binären Phasendiagramm (Nd–O oder Nd–Al [14]) interpretiert werden. Bei 810 °C wird ein endothermes Signal beobachtet, dass Nd₃Al zugeordnet werden kann (inkongruentes Schmelzen und Bildung von Nd₂Al bei T = 795 °C [132]), anschließend wird ein exothermer Effekt beobachtet (820 °C – 840 °C). Dies kann als eine beschleunigte Reaktion in der Schmelze interpretiert werden. Ab 840 °C wird ein endothermes Signal beobachtet, das auf mindestens zwei Effekte zurückzuführen ist. Eine möglicher Effekt in Analogie zu (Ce₃O)Al wäre eine Zersetzung von (Nd₃O)Al.

Abbildung A. 7: Ergebnisse von DSC-Messungen an mikrokristallinem Pulver der Zusammensetzung Nd₃AlO nach verschiedenen Wärmebehandlungen $(T_{max} = 1250 \text{ °C}, \beta = +10 \text{ K/min}).$

Den Ergebnissen der ersten DSC-Messung folgend, bildet sich (Nd₃O)Al ab 810 °C beschleunigt und zersetzt sich ab 840 °C. Die dritte Wärmebehandlung wurde bei 780 °C

etwas unterhalb der peritektischen Zersetzung von Nd₃Al (T = 795 °C [132]) durchgeführt, um eine maximale Reaktionsgeschwindigkeit ohne Aufschmelzen des Ausgangsgemenges zu erreichen.

Das nach der Wärmbehandlung erhaltene Röntgenpulverdiffraktogramm (s. Abbildung A. 8) zeigt eine Hauptphase, deren Reflexe kubisch indiziert werden können (a = 489,03(5) pm). Die Intensitätverhältnisse dieser Reflexe stimmen mit einer geordneten kubischen Struktur aus Nd₃Al im Sinne des Cu₃Au-Typs überein. Daneben sind schwache Reflexe der Edukte Nd₂O₃ (a = 383,1(3) pm, c = 600,8(5) pm; [173]: a = 382,72 pm c = 599,10 pm) und NdAl (*Pbcm*; Nr. 57; a = 595(2) pm; b = 1171(2) pm; c = 572,5(5) pm; [174]: a = 594,0 pm; b = 1172,8 pm; c = 572,9 pm) zu erkennen. Die Elementaranalyse auf H, N und O ergaben $w(H) \le 0,008$ %; $w(N) = 0,04 \pm 0,01$ %; $w(O) = 3,26 \pm 0,02$ %; $w_{theo}(O) = 3,36$ %.

Abbildung A. 8: Röntgenpulverdiffraktogramm (Cu-Kα₁-Strahlung) an (Nd₃O)Al, hergestellt aus Nd, Nd₂O₃ und Al im Lichtbogen, mit anschließendem Wärmebehandlung (2 • 168 h bei 500 °C, 1 • 168 h 780 °C).

Auch von dieser Probe wurde eine DSC-Messung durchgeführt (s. Abbildung A. 7). Unterhalb von 850 °C ist kein Signal erkennbar. Erst bei $T_{\text{Peak}} = 870$ °C erscheint wieder ein Signal, das im vorangegangenen DSC-Experiment mit der Zersetzung von (Nd₃O)Al in Zusammenhang gebracht worden war. Die Abkühlkurven beider DSC-Messungen (s. Abbildung A. 9) sind in etwa identisch. Sie zeigen ein breites Signal bei 830 °C, das einer Rückbildung von (Nd₃O)Al aus den Zersetzungsprodukten zugeordnet wird und das anschließende Erstarren des sich peritektisch bildenden Nd₂Al.

Abbildung A. 9: DSC-Messungen an Proben der Zielzusammensetzung (Nd₃O)Al nach verschiedenen Wärmebehandlungen ($T_{max} = 1250$ °C, $\beta = -10$ K/min).

Tabelle A. 19: (Nd₃O)Al: Vergleich der gemessenen ($2\Theta_{gem.}$) und berechneten ($2\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms (Nebenphasen: NdAl und Nd₂O₃) von mikrokristallinem Pulver [P 1] hergestellt aus Nd, Nd₂O₃ und Al (x(Nd) : x(Al) : x(O) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2 \Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	18,124	1	0	0	18,126	-0,0021	24,4	4,8908	4,8903
2	25,735	1	1	0	25,743	-0,0073	13,0	3,4589	3,4579
3	31,666	1	1	1	31,665	0,0010	100,0	2,8233	2,8234
4	36,724	2	0	0	36,726	-0,0019	60,5	2,4453	2,4451
5	41,257	2	1	0	41,246	0,0105	13,6	2,1865	2,1870
6	45,395	2	1	1	45,391	0,0032	5,7	1,9963	1,9964
7	52,916	2	2	0	52,914	0,0017	38,1	1,7289	1,7290
8	56,412	3	0	0	56,400	0,0116	5,8	1,6298	1,6301
9	59,748	3	1	0	59,750	-0,0025	2,6	1,5465	1,5464
10	62,991	3	1	1	62,990	0,0009	36,6	1,4745	1,4745
11	66,143	2	2	2	66,139	0,0044	11,8	1,4116	1,4117
12	69,212	3	2	0	69,213	-0,0008	2,2	1,3563	1,3563
13	72,221	3	2	1	72,225	-0,0041	2,4	1,3070	1,3070
14	78,098	4	0	0	78,110	-0,0126	5,3	1,2227	1,2226
15	81,001	4	1	0	81,002	-0,0010	2,6	1,1861	1,1861
16	83,842	3	3	0	83,870	-0,0280	1,1	1,1530	1,1526
17	86,723	3	3	1	86,723	-0,0005	12,7	1,1219	1,1219
18	89,569	4	2	0	89,568	0,0012	13,3	1,0935	1,0935
19	92,450	4	2	1	92,412	0,0380	2,6	1,0668	1,0671
20	95,251	3	3	2	95,262	-0,0110	0,6	1,0427	1,0426

Pm $\overline{3}m$; Nr. 221; a = 489,03(5) pm; $V = 116,95(2) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,005(7)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,038^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,007^\circ$; FOM(19) = 132,0 (0,007; 21); Cu-*K* α_1 -Strahlung.

Tabelle A. 20: NdAl: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung [P 1] eines Röntgendiffraktogramms (Hauptphase: (Nd₃O)Al; Nebenphasen: NdAl und Nd₂O₃) von mikrokristallinem Pulver aus Nd, Nd₂O₃ und Al (x(Nd) : x(Al) : x(O) = 3 : 1 : 1) nach der Wärmebehandlung.

	2 Q _{gem.}	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}$ – $2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	21,262	2	1	0	21,265	-0,0030	1,4	4,1754	4,1748
2	21,705	2	0	1	21,695	0,0102	0,8	4,0912	4,0931
3	22,815	3	0	0	22,768	0,0468	1,1	3,8947	3,9026
		1	1	1	22,827	-0,0119			3,8927
4	26,417	2	1	1	26,400	0,0165	0,9	3,3712	3,3733
5	34,069	4	1	0	34,104	-0,0347	1,4	2,6294	2,6268
6	34,361	4	0	1	34,384	-0,0229	1,0	2,6078	2,6061
7	34,830	1	2	1	34,784	0,0468	2,9	2,5737	2,5771
		2	0	2	34,859	-0,0286			2,5717
8	38,062	2	1	2	38,084	-0,0226	1,2	2,3623	2,3610
9	44,471	5	1	1	44,447	0,0241	0,7	2,0356	2,0366
		1	2	2	44,544	-0,0733			2,0324
10	46,432	6	0	0	46,503	-0,0705	0,7	1,9541	1,9513
11	46,935	4	1	2	46,905	0,0299	0,6	1,9343	1,9355
12	55,715	3	1	3	55,750	-0,0349	0,7	1,6485	1,6475
13	57,626	4	0	3	57,611	0,0148	0,5	1,5983	1,5987
<i>Pbcm</i> ; Nr. 57; <i>a</i> =	= 595(2) j	pm;	b	= 1	171(2) pı	n; $c = 572, 5(5)$) pm; $V = \frac{1}{2}$	400(2) • 1	$10^{6} \text{ pm}^{3};$
$\Delta 2\Theta = -0,01(5);$	$\Delta 2 \Theta_{\rm max}$ =	= 0,	071	•,	$\Delta 2 \Theta_{\rm mitt}$	$= 0,025^{\circ};$ FO	DM(13) = 6	,8 (0,0	25; 77);

Cu- $K\alpha_1$ -Strahlung.

Tabelle A. 21:Nd2O3 (hexagonalen A-Typ, Tieftemperaturmodifikation): Vergleich der
gemessenen ($2\Theta_{gem.}$) und berechneten ($2\Theta_{ber.}$) Reflexe (*hkl*) sowie der
Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung eines Röntgendiffraktogramms
(Hauptphase: (Nd3O)Al; Nebenphasen: NdAl und Nd2O3) von
mikrokristallinem Pulver [P 1] hergestellt aus Nd, Nd2O3 und Al
(x(Nd): x(Al): x(O) = 3: 1: 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	1	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	$\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$ Intensität		$d_{\rm ber.}$
1	26,667	1	0	0	26,670	-0,0032	3,3	3,3402	3,3398
2	29,661	0	0	2	29,674	-0,0130	2,4	3,0094	3,0081
3	30,576	1	0	1	30,591	-0,0151	11,2	2,9214	2,9200
4	40,326	1	0	2	40,318	0,0075	2,2	2,2347	2,2351
5	47,092	1	1	0	47,092	-0,0004 2,6		1,9282	1,9282
6	53,276	1	0	3	53,235	0,0407	1,2	1,7181	1,7193
7	57,195	2	0	1	57,205	-0,0093	1,2	1,6093	1,6091
8	73,785	2	0	3	73,779	0,0062	0,8	1,2832	1,2832
9	77,164	2	1	1	77,147	0,0172	1,1	1,2352	1,2354
10	80,990	1	1	4	81,012	-0,0217	0,3	1,1862	1,1859
11	92,274	2	1	3	92,283	-0,0090	0,9	1,0684	1,0683

*P*3*m*1; Nr. 164; *a* = 383,1(3) pm; *c* = 600,8(5) pm; *V* = 76,4(1) • 10⁶ pm³; Δ2*Θ* = -0,04(3); Δ2*Θ*_{max} = 0,017°; Δ2*Θ*_{mitt} = 0,009°; FOM(11) = 61,7 (0,009; 11); Cu-*Kα*₁-Strahlung.

Tabelle A. 22:	Thermische	Effekte	in	der	DSC-Messungen	an	einer	Prob	e der
	Zielzusamme	ensetzung	(N	(d ₃ O).	A1. $T_{\text{max}} = 1250 \text{ °C}$, β	= 10 K	/min.	Probe
	nach einer zw	veifachen	Wä	rmeb	ehandlung bei 500 °	C à	168 h.		

Signal	$T_{\text{Peak}} / \ ^{\circ}\text{C}$	T_{Onset}	Zuordnung nach [132] und [75]	Heizphase	
		°C			
1	435 ± 5	-	?		Auf
2	810 ± 5	800 ± 5	Zersetzung von Nd ₂ Al	[132]: 795 °C	
3	855 ± 20	-	?		
4	875 ± 10	-	Zersetzung von (Nd ₃ O)Al?		
5	975	-	Zersetzung von NdAl	[132]: 940°C	
6	850 ± 5	830 ± 5	Rückbildung von (Nd ₃ O)Al?		Ab
8	795 ± 5	-	peritektische Bildung von Nd ₂ Al	[132]: 795 °C	

Probe nach einer weiteren Wärmebehandlung bei 780 °C (168 h)

Signal	$T_{\text{Peak}}/$ °C	$T_{\text{Onset}} / ^{\circ}\text{C}$	Zuordnung nach [132] und [75]	Heizphase
1	870 ± 5	845 ± 5	Zersetzung von (Nd ₃ O)Al ?	Auf
2	920	-		
3	990	-		
4	825 ± 5	850 ± 5	Bildung von (Nd ₃ O)Al	Ab
5	795 ± 5	-	peritektische Bildung von Nd ₂ Al; [132]: 795 °C	

(Sm₃O)AI (*MM* = 494,06 g/mol)

Sm₂O₃, Sm und Al wurden im Lichtbogen zusammengeschmolzen, in eine Ta-Ampulle eingeschweißt, in Kieselglas eingeschmolzen und wärmebehandelt (2 • 68 h bei 500 °C, 1 • 168 h 720 °C). Das Röntgenpulverdiffraktogramm (s. Abbildung A. 8) zeigt eine Hauptphase, deren Reflexe kubisch indiziert werden können (a = 482,67(4) pm). Die Intensitätverhältnisse der Reflexe stimmen mit einem geordneten kubischen Gitter aus Sm₃Al im Sinne des Cu₃Au-Typs überein. Daneben sind das Edukt Sm₂O₃ (a = 1093,3(3) pm; [193]: a = 1078,1 pm,) und Reflexe von Sm₂Al ([178]: *Pnma*, Nr. 62, a = 664,50 pm; b = 519,30 pm; c = 963,20 pm) zu erkennen. Die Elementaranalyse auf H, N und O ergab: $w(H) \le 0,008$ %; $w(N) = 0,09 \pm 0,03$ %; $w(O) = 3,62 \pm 0,03$ %; $w_{theo}(O) = 3,24$ %. Unter der Annahme x(Sm) : x(Al) = 3 : 1 ergibt sich Sm₃AlO_{1,12 ± 0,01}N_{0,03 ± 0,01}.

Abbildung A. 10 Röntgenpulverdiffraktogramm (Cu-Kα₁-Strahlung) von (Sm₃O)Al, hergestellt aus Sm, Sm₂O₃ und Al (Lichtbogen; 2 • 168 h, 500 °C; 1 • 168 h 720 °C).

Tabelle A. 23: (Sm₃O)Al: Vergleich der gemessenen (2 $\Theta_{gem.}$) und berechneten (2 $\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms (Nebenphasen: Sm₂Al und Sm₂O₃) von mikrokristallinem Pulver [P 1] hergestellt aus Sm, Sm₂O₃ und Al (x(Sm) : x(Al) : x(O) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	18,365	1	0	0	18,366	-0,0009	24,5	4,8269	4,8267
2	26,088	1	1	0	26,087	0,0009	14,6	3,4129	3,4130
3	32,094	1	1	1	32,093	0,0008	100,0	2,7866	2,7867
4	37,229	2	0	0	37,227	0,0020	55,6	2,4132	2,4134
5	41,813	2	1	0	41,814	-0,0013	13,3	2,1586	2,1586
6	46,012	2	1	1	46,023	-0,0107	6,3	1,9709	1,9705
7	53,666	2	2	0	53,666	-0,0002	37,6	1,7065	1,7065
8	57,210	3	0	0	57,210	-0,0007	6,9	1,6089	1,6089
9	60,635	3	1	0	60,619	0,0158	2,5	1,5260	1,5263
10	63,918	3	1	1	63,917	0,0015	37,5	1,4553	1,4553
11	67,121	2	2	2	67,124	-0,0026	12,1	1,3934	1,3934
12	70,273	3	2	0	70,257	0,0163	2,1	1,3384	1,3387
13	73,334	3	2	1	73,330	0,0048	3,2	1,2899	1,2900
14	79,335	4	0	0	79,340	-0,0040	5,2	1,2067	1,2067
15	82,284	4	1	0	82,296	-0,0121	2,8	1,1708	1,1707
16	85,205	3	3	0	85,233	-0,0277	1,3	1,1380	1,1377
17	88,149	3	3	1	88,156	-0,0077	14,6	1,1074	1,1073
18	91,073	4	2	0	91,075	-0,0025	15,2	1,0793	1,0793
19	94,022	4	2	1	93,997	0,0248	2,4	1,0531	1,0533
20	96,932	3	3	2	96,929	0,0034	0,9	1,0290	1,0291

Pm $\overline{3}m$; Nr. 221; a = 482,67(4) pm; $V = 116,95(2) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,054(6)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,028^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,007^\circ$; FOM(19) = 142,2 (0,007; 20); Cu-*K* α_1 -Strahlung.

Tabelle A. 24: Sm_2O_3 (kubischer *B*-Typ): Vergleich der gemessenen ($2\Theta_{gem.}$) und
berechneten ($2\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$);
Auswertung eines Röntgendiffraktogramms (Hauptphase: (Sm_3O)Al;
Nebenphasen: Sm_2Al und Sm_2O_3) von mikrokristallinem Pulver [P 1] aus
Sm, Sm_2O_3 und Al (x(Sm): x(Al): x(O) = 3: 1: 1) nach der
Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	19,862	2	1	1	19,876	-0,0142	0,9	4,4665	4,4634
2	28,238	2	2	2	28,254	-0,0159	18,0	3,1578	3,1561
3	32,724	4	0	0	32,738	-0,0147	5,1	2,7344	2,7332
4	34,795	4	1	1	34,786	0,0095	1,0	2,5762	2,5769
5	42,117	4	3	1	42,109	0,0078	0,6	2,1438	2,1441
6	46,992	4	4	0	46,977	0,0158	8,1	1,9321	1,9327
7	54,343	5	4	1	54,337	0,0059	0,6	1,6868	1,6870
8	55,742	6	2	2	55,725	0,0166	6,6	1,6478	1,6482
9	58,462	4	4	4	58,436	0,0259	1,1	1,5774	1,5780
10	67,405	6	5	1	67,390	0,0150	0,4	1,3882	1,3885
11	68,576	8	0	0	68,617	-0,0410	0,6	1,3673	1,3666
12	78,149	8	4	0	78,127	0,0218	1,3	1,2221	1,2223
13	81,562	9	2	1	81,595	-0,0323	0,4	1,1793	1,1789
							1		

Ia $\overline{\mathbf{3}}$; Nr. 206; a = 1093,3(3) pm; $V = 1306,8(6) \cdot 10^6$ pm³; $\Delta 2 \Theta = -0,01(2)$; $\Delta 2 \Theta_{\text{max}} = 0,041^\circ$; $\Delta 2 \Theta_{\text{mitt}} = 0,018^\circ$; FOM(13) = 14,9 (0,018; 48); Cu-*K* α_1 -Strahlung.

Die DSC-Messung ($T_{\text{max}} = 1250 \text{ °C}, \beta = 10 \text{ K/min}$) ist in Abbildung A. 11 dargestellt. Aufund Abkühlkurve unterscheiden sich deutlich voneinander. Beim Aufheizen sind mindestens drei sehr breite Signale zu erkennen $(T_{1Peak} = 905 \pm 20 \text{ °C}; T_{2Peak} = 945 \pm 20 \text{ °C};$ $T_{3Onset} = 1015 \pm 10$ °C, $T_{3Peak} = 1025 \pm 20$ °C). Während des Abkühlens wird zunächst ein breiteres Signal bei $T_{\text{Onset}} = 920 \pm 20 \text{ °C}$ ($T_{\text{Peak}} = 900 \pm 10 \text{ °C}$) und anschließend zwischen 875 °C und 850 °C eine Gruppe von stark überlagernden scharfen Signalen beobachtet. Im Phasendiagramm Sm–Al [130] sind im Bereich der binären Verbindungen mit $x(Sm) \ge 33 \%$ folgende charakteristische Temperaturen verzeichnet. Sm₂Al zersetzt sich peritektisch bei T = 860 °C; SmAl bei 980 °C, SmAl₂ schmilzt kongruent bei 1480 °C. Für T = 780 °C wird x(Sm) = 20 %Eutektikum berichtet. mit ein aus Sm_2Al und Sm

Röntgenpulverdiffraktogramm und die Elementaranalyse zeigen, dass die Probe erheblich Phasenanteile an Sm₂O₃ aufweist. Aus diesem Grunde kann eine Phasenumwandlung von Sm₂O₃ oder die Bildung einer sauerstoffreicheren ternären Phase nicht ausgeschlossen werden. Aus den Ergebnissen dieser Messungen können keine eindeutigen Schlüsse über eine Zersetzung der Phase (Sm₃O)Al gemacht werden.

Abbildung A. 11 DSC-Messungen ($T_{max} = 1250$ °C, $\beta = 10$ K/min) an Proben mit der Zielzusammensetzung (Sm₃O)Al.

Tabelle A. 25: Themische Effekt der DSC-Messung an einer Probe der Zielzusammensetzung (Sm₃O)Al mit einer kubischen Phase, Sm₂Al und Sm₂O₃.

Signal	$T_{\text{Peak}}/$ °C	$T_{\text{Onset}} / ^{\circ}\text{C}$	Zuordnung	<i>T</i> _[130]	Heizphase
1	905 ± 20	-	Zersetzung von Sm ₂ Al?	860	Auf
2	945 ± 20	-	Zersertzung von SmAl?	960	
	1025 ± 10	1015 ± 10	?		
3	900 ± 10	920 ± 20	peritektische Bildung	960	Ab
			von SmAl ?		
4	870	-	peritektische Bildung	860	
5	865	-	von Sm ₂ Al ?		

Versuche zur Darstellung von (SE₃O)Al mit SE = Gd

Wie die übrigen metallreichen Oxide (*SE*₃O)Al wurde eine Probe aus Gd₂O₃, Gd und Al im Lichtbogen zu einer homogenen Kugel zusammengeschmolzen. Diese wurde in ein Ta-Rohr eingeschweisst, in Kieselglas eingeschmolzen und verschiedenen Wärmebehandlungen unterzogen (s. Tabelle A. 26). Bei keinem der Experimente konnte eine Phase identifiziert werden, die mit einem hypothetischen "(Gd₃O)Al" in Einklang hätte gebracht werden können. Unter Berücksichtigung der bereits bekannten Verbindungen (*SE*₃O)Al mit *SE* = La, Ce, Pr, Nd und Sm und der Annahme eines linearen Verlaufs des Gitterparameters als Funktion des Ionenradius *SE*³⁺, ergäbe sich für "(Gd₃O)Al" ein Gitterparameter von $a \approx 475 \pm 2$ pm.

Tabelle A. 26:Verschiedene Wärmebehandlungen mit der Zielzusammensetzung einer
Phase $(SE_3O)Al, SE = Gd.$

Heizphase	Haltetemperatur	Haltezeit	Abkühlphase
24 h	850 °C	336 h	24 h
0 h	800 °C	9 Monate	0 h
0 h	600 °C	500 h	0 h
0 h	500 °C	1000 h	0 h

Die nach den Wärmebehandlungen erhaltenen Röntgenpulverdiffraktogramme ähneln einander und zeigen ausnahmslos die Phasen Gd₂O₃, Gd₃Al₂ und Gd; eine Zusammensetzung die aus der Einwaage erwartet werden wird, wenn keine Reaktion eintritt (2 "Gd₃AlO" = Gd₃Al₂ + Gd₂O₃ + Gd). Die bei 800 °C wärmebehandelte Probe wurde einem DSC-Experiment in einer abgeschmolzenen Nb-Ampulle unterworfen (β = 10 K/min, T_{max} = 1100 °C). Die Ergebnisse sind in Tabelle A. 27 zusammengefaßt und in Abbildung A. 12 dargestellt. Im Experiment sind keine Signale erkennbar, die auf die Bildung oder Zersetzung einer ternären Phase hindeuten, wie dies bei (Nd₃O)Al beobachtet wurde. Vielmehr stimmen Aufheiz- und Abkühlphase mit dem bekannten Phasendiagramm Gd–Al [132] überein. Einzig ein schwaches Signal bei T = 650 °C lässt sich daraus nicht zuordnen. Eine Wärmebehandlung der Probe unterhalb von 650 °C ergab nicht "(Gd₃O)Al". Aus dem Phasendiagramm Gd–Al würde diese Temperatur dem Eutektikum Al/GdAl₃ zugeordnet werden, wären freies Aluminium und eine intermetallische Al-reiche Phase in der ansonsten Gd-reichen Probe vorhanden. Mithin wäre die Probe nicht im termodynamischen Gleichgewicht und weitere Al-reiche Phase des Systems Gd–Al sollten im Röntgenpulverdiffraktogramm erkennbar sein. Eine andere Zuordnung des thermischen Effekts wäre die Phasenumwandlungen von $Gd_2O_3^{37}$. Die niedrigste experimentell belegte Umwandlungstemperatur für reines Gd_2O_3 ist mit T = 1200 °C angegeben [175], der neueste Übersichtsartikel [53] nennt 800 °C, ohne Referenz. Gd_2O_3 kristallisiert bei Raumtemperatur im *C*-Typ ($Ia\overline{3}$, kubisch). Der Phasenübergang für Gd_2O_3 ist noch nich vollständig verstanden [176]. Insbesondere wird der *C*-Typ von manchen Autoren als metastabil angesehen. Die Phasenumwandlung bei den Seltenerd-Oxiden kann unter reduzierenden Bedingungen (H₂) erheblich gesenkt werden [177]. In ähnlicher Weise könnte die Zulegierung von Gd (reduzierende Bedingungen) zu Gd₂O₃ die Umwandlungstemperatur herabsenken und das fragliche Signal bei 650 °C verursachen. Die Phasenumwandlung verläuft möglicherweise sehr rasch, denn die Umwandlung ist displaziv. Die HT-Phase wäre dann nicht durch Abschrecken zu erhalten. In den Röntgenpulverdiffraktogrammen wurde immer die Raumtemperaturmodifikation (*C*-Typ) beobachtet.

Tabelle A. 27:Thermische Effekte der DSC-Messung an einer Probe der nominellenZusammensetzung "Gd₃AlO" hergestellt aus Gd, Al und Gd₃O₂.

Signal	$T_{\text{Peak}}/$ °C	$T_{\text{Onset}} / ^{\circ}\text{C}$	Zuordnung	LitWerte/ °C	Heizphase
1	655	645	Eutektikum Al/GdAl ₃ //	650//800/1340	Auf
			$\alpha\text{-}\mathrm{Gd}_2\mathrm{O}_3 \to \beta\text{-}\mathrm{Gd}_2\mathrm{O}_3$		
2	850	840	Eutektikum Gd ₂ Al/Gd	880	
3	895	-	Zersetzung von Gd ₂ Al	940	
4	900	-			
5	1005	995	Zersetzung von Gd ₃ Al ₂	980	
7	961	-	Liquidus?		Ab
8	920	925	Bildung von Gd ₃ Al ₂	940	
9	855	860	Eutektikum Gd ₂ Al/Gd	880	
10	635	630	Eutektikum Al/GdAl ₃ //	650//800/1340	
			$\alpha\text{-}\mathrm{Gd}_2\mathrm{O}_3 \to \beta\text{-}\mathrm{Gd}_2\mathrm{O}_3$		

³⁷ Bei den Seltenerd-Oxiden werden im allgemeinen drei Polymorphe beobachtet, die die Bezeichnungen A (hexagonal, P63/mmm), B (monoklin, C2/m) und C (kubisch, $Ia\overline{3}$) tragen. Meist wird eine Phasenumwandlung von C nach A oder von C nach B mit steigender Temperatur beobachtet, wobei ein Phasenübergang von C nach B nach A denkbar wäre.

Abbildung A. 12:DSC-Messung der nominellen Zusammensetzung "Gd₃AlO". Die Probe wurde mehrere Wochen bei 800 °C – 850°C wärmehehandelt. Im Röntgenpulverdiffraktogramm sind vor dem Experiment die Phasen C-Gd₂O₃, Gd und Gd₃Al₂ identifiziert worden.

10.3. (SE₃N)Al

(La₃N)AI (*MM* = 457,70 g/mol)

Tabelle A. 28:(La_3N)Al: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms (La_3Al + (La_3N)Al) von mikrokristallinemPulver [P 1] der Zusammensetzung La_3AlN_{0,64±0,02} nach derWärmebehandlung (0. Lichtbogen; 1. 700 °C, 168 h Ta-Ampulle).

	2 Q _{gem.}	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	17,375	1	0	0	17,402	-0,0269	32,5	5,0997	5,0919
2	24,686	1	1	0	24,707	-0,0212	14,6	3,6035	3,6005
3	30,363	1	1	1	30,380	-0,0170	100,0	2,9414	2,9398
4	35,217	2	0	0	35,223	-0,0059	54,3	2,5464	2,5459
5	39,540	2	1	0	39,543	-0,0034	11,5	2,2773	2,2772
6	43,510	2	1	1	43,500	0,0094	4,4	2,0783	2,0788
7	50,667	2	2	0	50,667	0,0004	28,2	1,8002	1,8003
8	53,984	3	0	0	53,981	0,0032	3,9	1,6972	1,6973
9	57,165	3	1	0	57,160	0,0049	1,7	1,6101	1,6102
10	60,229	3	1	1	60,230	-0,0009	25,2	1,5353	1,5353
11	63,214	2	2	2	63,208	0,0054	7,2	1,4698	1,4699
12	66,066	3	2	0	66,110	-0,0440	1,2	1,4131	1,4122
13	68,971	3	2	1	68,949	0,0225	1,6	1,3605	1,3609
14	74,475	4	0	0	74,475	0,0002	3,6	1,2730	1,2730
15	77,196	4	1	0	77,180	0,0163	1,8	1,2347	1,2350
16	79,839	3	3	0	79,856	-0,0171	0,5	1,2004	1,2002
17	82,506	3	3	1	82,510	-0,0047	6,9	1,1682	1,1682
18	85,137	4	2	0	85,148	-0,0115	7,3	1,1387	1,1386
19	87,782	4	2	1	87,776	0,0062	0,9	1,1111	1,1111
20	95,645	4	2	2	95,653	-0,0082	5,6	1,0394	1,0394

Pm $\overline{3}m$; Nr. 221; a = 509,19(5) pm; $V = 132,02(2) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,035(8)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,044^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,011^\circ$; FOM(20) = 79,2 (0,011; 22); Cu-*K* α_1 -Strahlung.

Tabelle A. 29: (La₃N)Al: Vergleich der gemessenen (2Θ_{gem.}) und berechneten (2Θ_{ber.}) Reflexe (*hkl*) sowie der Gitterabstände (*d*_{gem.}, *d*_{ber.}); Auswertung eines Röntgendiffraktogramms (La₃Al + (La₃N)Al) von mikrokristallinem Pulver [P 1] der Zusammensetzung La₃AlN_{0,98±0,04} nach der Wärmebehandlung (0. Lichtbogen; 1. 500 °C, 11 Monate; 2. 700 °C, 168 h Ta-Ampulle).

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	d _{gem.}	$d_{\rm ber.}$
1	17,395	1	0	0	17,393	0,0022	26,9	5,0939	5,0946
2	24,686	1	1	0	24,694	-0,0074	12,2	3,6035	3,6024
3	30,361	1	1	1	30,364	-0,0029	100,0	2,9416	2,9414
4	35,202	2	0	0	35,204	-0,0020	52,9	2,5474	2,5473
5	39,530	2	1	0	39,522	0,0084	10,8	2,2779	2,2784
6	43,477	2	1	1	43,476	0,0010	4,1	2,0798	2,0798
7	50,636	2	2	0	50,638	-0,0020	26,6	1,8013	1,8012
8	53,948	3	0	0	53,950	-0,0015	3,8	1,6982	1,6982
9	57,148	3	1	0	57,128	0,0207	2,3	1,6105	1,6110
10	60,197	3	1	1	60,195	0,0018	25,7	1,5360	1,5361
11	63,167	2	2	2	63,171	-0,0043	8,1	1,4708	1,4707
12	66,076	3	2	0	66,071	0,0054	0,7	1,4129	1,4130
13	68,887	3	2	1	68,907	-0,0199	1,5	1,3619	1,3616
14	74,432	4	0	0	74,429	0,0032	3,2	1,2736	1,2736
15	77,149	4	1	0	77,132	0,0169	1,7	1,2354	1,2356
16	79,789	3	3	0	79,806	-0,0168	0,6	1,2010	1,2008
17	82,440	3	3	1	82,457	-0,0172	7,3	1,1690	1,1688
18	85,087	4	2	0	85,093	-0,0060	7,6	1,1392	1,1392
19	87,734	4	2	1	87,718	0,0164	1,6	1,1116	1,1117
20	95,590	4	2	2	95,587	0,0038	5,2	1,0399	1,0399

Pm $\overline{3}m$; Nr. 221; a = 509,46(4) pm; $V = 132,23(2) \cdot 10^6 \text{ pm}^3$; $\Delta 2\Theta = -0,042(6)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,021^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,008^\circ$; FOM(20) = 119,2 (0,008; 21); Cu-*K* α_1 -Strahlung.

$(Ce_3N)AI$ (*MM* = 461,35 g/mol)

CeN, Ce und Al wurden im Lichtbogen zusammengeschmolzen. Die erhaltene Kugel wurde in Ta-Rohr eingeschweißt, bei vermindertem Druck ($p < 10^{-4}$ mbar) in Kieselglas eingeschmolzen und eine Woche bei 600 °C wärmebehandelt und danach in Wasser abgeschreckt. Um eine maximale Abkühlrate zu erzielen, wurde die Kieselglasampulle im Wasser zerschlagen.

Tabelle A. 30:	Thermische	Effekte	der	DTA/DSC	an	Proben	der	nominellen
	Zusammense	tzung (Ce	₃ N _{1-y})	Al mit $y = 0$;	0,2;	0,4; 0,6; 0),8 bei	m Heizen(1)
	und Abkühle	n (2).						

Zielzusammen-	$T_{\text{Onset}} / \circ \mathbf{C},$	$T_{\text{Peak}}/$ °C,	$T_{\text{Onset}} / ^{\circ}\text{C},$	$T_{\text{Peak}}/ \circ C$,	Heiz-
setzung	1. Effekt	1. Effekt	2. Effekt	2. Effekt	modus
(Ce ₃ N _{0,2})Al	645	650	-	1020	1
(Ce ₃ N _{0,4})Al	645	650	-	1030	1
(Ce ₃ N _{0,6})Al	650	655	-	1035	1
(Ce ₃ N _{0,8})Al	645	650	1025	1040	1
(Ce ₃ N _{1,0})Al	-	-	1030	1040	1
(Ce ₃ N _{0,2})Al	655	650	-	*	2
(Ce ₃ N _{0,4})Al	655	650	-	945**	2
(Ce ₃ N _{0,6})Al	650	645	980	965	2
(Ce ₃ N _{0,8})Al	650	645***	995	980	2
(Ce ₃ N _{1,0})Al	655	650	1000	990****	2

* Ein zusätzliches breites Signal bei $T_{\text{Peak}} = 715 \text{ °C}$ ** Ein zusätzliches breites Signal bei $T_{\text{Peak}} = 760 \text{ °C}$

*** Das Signal ist mit einem weiteren Signal überlagert: $T_{\text{Peak}} \approx 675 \text{ °C}$

**** Weiteres Signal mit $T_{\text{Peak}} = 730 \text{ °C}, T_{\text{Onset}} = 740 \text{ °C}$

(Pr₃N)AI, (*MM* = 463,71 g/mol)

Pr und PrN wurden im Lichtbogen zusammengeschmolzen. Dabei wurde eine verstärkte Lichtintensität des Lichtbogens beobachtet. Danach wurde die erforderliche Menge Al im Lichtbogen zugeschmolzen. Auch bei diesem Prozeß wurde ein heller Lichtschein beobachten. Die erhaltene Kugel wurde anschließend mehrmals umgeschmolzen, in Mo-Folie gewickelt, in eine evakuierte Kieselglasampulle eingeschmolzen und zweimal wärmebehandelt (I: 0. 20 °C; 1. 50 K/h auf 630 °C; 2. 48 h, 630 °C; 3. 14 K/min (12 h) auf 800 °C; 4. 120 h, 800 °C; 5. -65 °C/h (12 h) auf 20 °C; II: 0. 20 °C; 1. 77,5 °C/h auf 950 °C; 3. 950 °C, 168 h; 4. -77,5 °C/h auf 20 °C). Zwischen beiden Wärmebehandlungen wurde die Probe in einer Achatreibschale verrieben und zu einer Tablette gepreßt. Nach der ersten Wärmebehandlung zeigte das Diffraktogramm neben Reflexen einer kubisch zu indizierenden Phase noch Reflexe von PrN und Pr₂Al. Nach der zweiten Wärmebehandlung zeigte das Röntgenpulverdiffraktogramm (s. Abbildung A. 13) nur noch Reflexe einer Phase, die kubisch indiziert werden kann (s. Tabelle A. 31). Das Verhältnis der Intensitäten dieser Phase stimmt mit einem geordneten Gitter aus Pr und Al-Atomen, die im Cu₃Au-Strukturtyp kristallisieren, überein. Aus der Elementaranalyse $(w(N) = 2,97 \pm 0,01 \%; w(O) = 0,21 \pm 0,03 \%)$ und der Einwaage von Pr und Al wird die Zusammensetzung $Pr_3AlN_{0,985 \pm 0,003}O_{0,061 \pm 0,006}$ berechnet. Von dieser Probe wurde eine DSC-Messung angefertigt ($\beta = 10$ K/min, $T_{max} = 1250$ °C, s. a. Abbildung A. 14 und Tabelle A. 32). Beim Aufheizen wird ein stark exothermes Signal bei $T_{\text{Onset}} = 1185 \text{ }^{\circ}\text{C}$ beobachtet. Dieses Signal erscheint in etwas schwächerer Form beim Abkühlen bei $T_{\text{Peak}} = 1160 \text{ °C}$. Während beim Aufheizen nur ein schwaches Signal bei $T_{\text{Onset}} = 670 \text{ °C}$ beobachtet wird, tritt beim Abkühlen ein deutliches und scharfes Signal bei $T_{\text{Onset}} = 745 \text{ }^{\circ}\text{C}$ auf. Letzteres wird mit der peritektischen Bildung von Pr₂Al in Zusammenhang gebracht. Das Signal bei 680 °C wird der Zersetzung von Pr₃Al zugeordnet [75]. Allerdings wird kein Signal bei 330 °C beobachtet, wie für Pr₃Al (Umwandlung α -Pr₃Al $\rightarrow \beta$ -Pr₃Al) berichtet ist. Die in der DSC behandelte Probe wurde mit Röntgenbeugung am Pulver analysiert. Die beobachteten Reflexe konnten ausschließlich den Phasen Pr_3AlN (a = 496,94(3) pm, $\Delta 2\Theta = -0.055(5)^{\circ}$; FOM(20) = 141.4) und PrN (a = 515.54(6) pm; $\Delta 2\Theta = -0.042(9)^{\circ}$; FOM(9) = 66.6) zugeordnet werden. Aus diesen Ergebnissen ergibt sich, dass sich Pr₃AlN bei 1190 °C peritektisch in Schmelze und PrN zersetzt.

Abbildung A. 13: Röntgenpulverdiffraktogramm (Cu-Kα₁-Strahlung) von (Pr₃N)Al, hergestellt aus Pr, PrN und Al (Lichtbogen; I: 0. 20 °C; 1. 50 K/h auf 630 °C; 2. 48 h, 630 °C; 3. 14 K/min (12 h) auf 800 °C; 4. 120 h, 800 °C; 5. -65 °C/h (12 h) auf 20 °C; II: 0. 20 °C; 1. 77,5 °C/h auf 950 °C; 3. 950 °C, 168 h; 4. -77,5 °C/h auf 20 °C).

Tabelle A. 31: (Pr₃N)Al: Vergleich der gemessenen ($2\Theta_{gem.}$) und berechneten ($2\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] hergestellt aus Pr, PrN und Al (x(Pr) : x(Al) : x(N) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	1	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}-2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	17,836	1	0	0	17,828	0,0075	48,6	4,9691	4,9712
2	25,311	1	1	0	25,317	-0,0053	29,4	3,5159	3,5152
3	31,142	1	1	1	31,136	0,0057	100,0	2,8696	2,8701
4	36,114	2	0	0	36,107	0,0069	60,6	2,4851	2,4856
5	40,548	2	1	0	40,545	0,0035	21,3	2,2230	2,2232
6	44,623	2	1	1	44,612	0,0106	15,4	2,0290	2,0295
7	51,978	2	2	0	51,987	-0,0089	34,7	1,7579	1,7576
8	55,402	3	0	0	55,402	0,0001	13,9	1,6571	1,6571
9	58,664	3	1	0	58,681	-0,0170	12,0	1,5724	1,5720
10	61,846	3	1	1	61,850	-0,0042	33,7	1,4990	1,4989
11	64,917	2	2	2	64,928	-0,0116	17,2	1,4353	1,4351
12	67,932	3	2	0	67,930	0,0014	11,2	1,3787	1,3788
13	70,845	3	2	1	70,870	-0,0248	11,5	1,3290	1,3286
14	76,624	4	0	0	76,604	0,0196	13,2	1,2425	1,2428
15	79,420	4	1	0	79,417	0,0024	11,7	1,2057	1,2057
16	82,207	3	3	0	82,205	0,0025	11,0	1,1717	1,1717
17	84,961	3	3	1	84,974	-0,0132	17,1	1,1406	1,1405
18	87,743	4	2	0	87,731	0,0123	17,3	1,1115	1,1116
19	90,525	4	2	1	90,483	0,0416	11,1	1,0844	1,0848
20	93,203	3	3	2	93,236	-0,0334	10,5	1,0602	1,0599
21	98,776	4	2	2	98,771	0,0044	15,3	1,0147	1,0147

 $Pm\overline{3}m; \quad \text{Nr. 221}, \quad a = 497,12(6) \text{ pm}; \quad V = 112,096(5) \cdot 10^6 \text{ pm}^3; \quad \Delta 2 \,\Theta = -0,29(9)^\circ;$ $\Delta 2 \,\Theta_{\text{max}} = 0,042^\circ; \,\Delta 2 \,\Theta_{\text{mitt}} = 0,011^\circ; \text{FOM}(19) = 84,5 \ (0,011; \ 22); \text{ Cu-}K\alpha_1\text{-Strahlung}.$

Signal	$T_{\text{Peak}} / \circ C$	$T_{\text{Onset}} / ^{\circ}\text{C}$	Zuordnung nach [75]und [118]	Heizphase
1	680 ± 5	670 ± 5	inkongruentes Schmelzen von	Auf
			Pr ₃ Al, Bildung von Pr ₂ Al ([75]:	
			685 °C)	
2	1195 ± 5	1185 ± 5	Zersetzung von (Pr ₃ N)Al?	
3	1160 ± 5	-	Bildung von (Pr ₃ N)Al?	Ab
4	740 ± 5	745 ± 5	peritktische Bildnung von Pr ₂ Al:	
			$T_{[118]} = 740 \text{ °C}, T_{[75]} = 735 \text{ °C}$	
5	685 ± 5	690 ± 5	Bildung von Pr ₃ Al	

Tabelle A. 32: Thermische Effekte der DSC-Messung an (Pr₃N)Al ($\beta = 10$ K/min, $T_{\text{max}} = 1250$ °C).

Abbildung A. 14: DSC-Messung an (Pr₃N)Al ($\beta = 10$ K/min, $T_{max} = 1250$ °C).

Abbildung A. 15: Röntgenpulverdiffraktogramm (Cu- $K\alpha_1$ -Strahlung) von (Pr₃N)Al, nach dem DSC-Experiment ($\beta = 10$ K/min, $T_{max} = 1250$ °C).

(Nd₃N)AI (*MM* = 473,71 g/mol)

NdN, Nd und Al (Folie) wurden nacheinander im Lichtbogen zusammengeschmolzen (x(Nd): x(Al): x(N) = 3: 1: 0,6). Die Probe wurde danach in Ta-Rohr eingeschweißt, in (700 °C, Kieselglas eingeschmolzen und wärmebehandelt 336 h). Nach der Das Wärmebehandlung wurde die Probe abgeschreckt. erhaltene Röntgenpulverdiffraktogramm ist in Abbildung A. 16 dargestellt. Das Diffraktogramm zeigt zwei Phasen. Eine kubische Phase mit einem geordneten Gitter aus Nd und Al-Atomen im Sinne des Cu₃Au-Strukturtyps (a = 494,07(6) pm) und Nd₃Al (Mg₃Cd-Typ, [132]: c = 540,7 pm). Die Elementaranalyse $(w(N) = 1,50 \pm 0,18 \%)$ a = 696.8 pm;und $w(O) = 0.12 \pm 0.01$ %) ergibt unter Berücksichtigung der Einwaage von Nd und Al die Summenformel $Nd_3AlN_{0.50 \pm 0.06}O_{0.035 \pm 0.003}$. Von dieser Probe wurde eine DSC-Messung angefertigt (s. Tabelle A. 34, Abbildung A. 17).

Abbildung A. 16: Röntgenpulverdiffraktogramm (Cu- $K\alpha_1$ -Strahlung) einer Probe der Zusammensetzung "Nd₃AlN_{0,50 ± 0,06}O_{0,035 ± 0,003}", hergestellt aus Nd, NdN und Al (Lichtbogen; 700°C, 336 h).

Tabelle A. 33: (Nd₃N)Al: Vergleich der gemessenen (2 $\Theta_{gem.}$) und berechneten (2 $\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms (Nd₃Al + (Nd₃N)Al) von mikrokristallinem Pulver [P 1] der Zusammensetzung Nd₃AlN_{0,50 ± 0,06}N_{0,035 ± 0,003} nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	2 Ober.	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	17,923	1	0	0	17,939	-0,0166	31,9	4,9452	4,9407
2	25,463	1	1	0	25,476	-0,0125	16,3	3,4953	3,4936
3	31,326	1	1	1	31,334	-0,0075	100,0	2,8532	2,8525
4	36,340	2	0	0	36,338	0,0018	53,6	2,4702	2,4703
5	40,810	2	1	0	40,807	0,0031	10,4	2,2094	2,2095
6	44,916	2	1	1	44,903	0,0135	6,2	2,0164	2,0170
7	52,330	2	2	0	52,333	-0,0026	27,0	1,7469	1,7468
8	55,784	3	0	0	55,774	0,0099	4,3	1,6466	1,6469
9	59,094	3	1	0	59,080	0,0139	1,6	1,5620	1,5624
10	62,286	3	1	1	62,275	0,0104	22,9	1,4894	1,4897
11	65,396	2	2	2	65,379	0,0171	6,1	1,4259	1,4262
12	71,370	3	2	1	71,375	-0,0044	1,7	1,3205	1,3204
13	77,191	4	0	0	77,165	0,0261	3,7	1,2348	1,2352
14	79,972	4	1	0	80,007	-0,0348	1,7	1,1987	1,1983
15	85,623	3	3	1	85,624	-0,0011	7,4	1,1335	1,1335
16	88,406	4	2	0	88,414	-0,0075	7,2	1,1048	1,1048
17	91,191	4	2	1	91,200	-0,0088	0,7	1,0782	1,0781

$Pm\overline{3}m;$	Nr. 221;	a = 494,07(6) pm;	$V = 120,60(3) \cdot 10^{6} \text{ pm}^{3};$	$\Delta 2\Theta = -0,046(9)^{\circ};$
$\Delta 2 \Theta_{\rm max} =$	= 0,035°; Δ20	$\Theta_{\text{mitt}} = 0,011^\circ; \text{FOM}(1)$	7) = 79,4 (0,011; 19); Cu- <i>K</i> α	1-Strahlung.

Die Ergebnisse der DSC-Messung (s. Abbildung A. 17) geben Hinweise auf erhebliche Mengen an Nd. (Phasenumwandlung α -Nd(Al) $\rightarrow \beta$ -Nd(Al), Eutektikum Nd₃Al/Nd x(Nd) = 0,19). Das Signal bei 800 °C wird der Phase Nd₃Al zugeordnet. Der Temperaturbreich für T > 1000 °C kann mit dem binären Phasendiagramm Nd–Al ([75], [132]) nicht interpretiert werden. Dieser thermische Effekt wird (Nd₃N)Al zugeordnet. Das Signals bei $T_{\text{Peak}} = 1210$ °C ähnelt in der Form den thermischen Effekten die bei der Zersetzungen von (SE_3N) Al SE = La, Ce, Pr beobachtet wurden. Um zu klären, ob dieses Signal der Zersetzung von (Nd₃N)Al zuzuordnen ist, müsste eine phasenreine Probe (Nd₃N)Al untersucht werden.

Tabelle A. 34: Thermische Effekte einer DSC-Messung (Nb-Ampulle, $\beta = 10$ K/min, $T_{\text{max}} = 1250 \text{ °C}$) an der Probe mit der Zusammensetzung Nd₃AlN_{0,50 ± 0,06}N_{0,035 ± 0,003}, hergestellt aus Nd, NdN und Al (Lichtbogen; 700°C, 336 h). Das Röntgenpulverdiffraktogramm zeigt ausschließlich Reflexe von (Nd₃N)Al und Nd₃Al.

Signal	$T_{\text{Peak}}/$ °C	$T_{\text{Onset}} / \ ^{\circ}\text{C}$	Zuordnung nach [75]	$T_{[75]} / {}^{\circ}\mathrm{C}$	Heizphase
1	435 ± 5	430 ± 5	Umwandlung:	400 - 600	Auf
			$\alpha \text{-Nd}(\text{Al}) \rightarrow \beta \text{-Nd}(\text{Al})$		
2	695 ± 5	680 ± 5	Eutektikum:	690	
			$Nd_3Al/Nd x(Nd) = 0,19$		
3	800 ± 5	-	Zersetzung von Nd ₃ Al	780	
4	1210 ± 5	-	Zersetzung von (Nd ₃ N)Al		
5	1150 ± 5	1155 ± 5			Ab
6	790 ± 5	790 ± 5	peritektische Bildung von	780	
			Nd ₃ Al		
7	690 ± 5	695 ± 5	Eutektikum	690	
			$Nd_3Al/Nd x(Nd) = 0,19$		

Abbildung A. 17: DSC-Messung (Nb-Ampulle, 10 K/min, $T_{max} = 1250$ °C)an der Probe mit der Zusammensetzung Nd₃AlN_{0,50 ± 0,06}N_{0,035 ± 0,003} ((Nd₃N)Al und Nd₃Al).

(Sm₃N)AI (*MM* = 492,07 g/mol)

Sm und Al wurden im Lichtbogen im molaren Verhälniss 2 : 1 zusammengeschmolzen. Die erhaltene Schmelzkugel wurde im Wolframcarbid-Mörser zu Pulver zerstoßen und anschließend mit SmN in einer Achatreibschale verrieben. Das Gemenge wurde zu einer Tablette verpreßt und zwei mal bei 700 °C insgesammt drei Wochen wärmebehandelt. Dazwischen wurde die Probe erneut aufgemahlen und zu einer Tablette verpreßt. In Abbildung A. 18 ist das Röntgenpulverdiffraktorgramm, das nach der zweiten Wärmebehandlung erhalten wurde dargestellt. Die Probe zeigt Reflexe einer Phase, deren Intensitäten und Reflexlagen mit einem geordneten, kubischen Gitter aus Sm und Al-Atomen im Sinne des Cu₃Au-Strukturtyps übereinstimmen (s. Tabelle A. 35). Daneben sind Reflexe von nicht umgesetztem Sm₂Al und SmN zu erkennen. Die Elementaranalyse auf H, O und N ergab $w(H) \le 0,0008$ %, $w(O) \le 0,1$ % und $w(N) = 3,33 \pm 0,11$ %. Unter der Annahme x(Sm) : x(Al) = 3 : 1 in der Probe ergibt sich Sm₃AlN_{1,176 \pm 0,004}.

Abbildung A. 18: Röntgenpulverdiffraktogramm (Cu- $K\alpha_1$ -Strahlung) einer Probe der Zusammensetzung Sm₃AlN_{1,176±0,004}, ((Sm₃N)Al, SmN, Sm₂Al), hergestellt aus Sm, SmN und Al im Lichtbogen, mit anschließender Wärmebehandlung (3 Wochen, 700 °C).

Tabelle A. 35: (Sm₃N)Al: Vergleich der gemessenen ($2\Theta_{gem.}$) und berechneten ($2\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms (Nebenphasen: Sm₂Al und SmN) von mikrokristallinem Pulver [P 1] hergestellt aus Sm, SmN und Al (x(Sm) : x(Al) : x(N) = 3 : 1 : 1) nach der Wärmebehandlung.

	2 Q _{gem.}	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	d _{gem.}	d _{ber.}
1	18,176	1	0	0	18,183	-0,0075	66,7	4,8769	4,8749
2	25,824	1	1	0	25,825	-0,0015	48,6	3,4473	3,4471
3	31,764	1	1	1	31,768	-0,0031	100,0	2,8148	2,8145
4	36,845	2	0	0	36,846	-0,0009	69,8	2,4375	2,4374
5	41,382	2	1	0	41,382	0,0004	39,0	2,1801	2,1801
6	45,554	2	1	1	45,542	0,0112	33,7	1,9897	1,9902
7	53,094	2	2	0	53,094	0,0004	51,8	1,7235	1,7235
8	56,585	3	0	0	56,594	-0,0083	32,5	1,6252	1,6250
9	59,952	3	1	0	59,958	-0,0054	30,2	1,5417	1,5416
10	63,216	3	1	1	63,211	0,0049	51,3	1,4697	1,4698
11	66,381	2	2	2	66,374	0,0069	35,3	1,4071	1,4073
12	69,469	3	2	0	69,462	0,0067	29,4	1,3519	1,3521
13	72,517	3	2	1	72,489	0,0277	30,0	1,3024	1,3029
14	78,403	4	0	0	78,404	-0,0006	32,3	1,2187	1,2187
15	81,286	4	1	0	81,310	-0,0241	30,7	1,1826	1,1823
16	84,198	3	3	0	84,195	0,0035	29,9	1,1490	1,1490
17	87,056	3	3	1	87,065	-0,0088	37,5	1,1185	1,1184
18	89,922	4	2	0	89,927	-0,0049	38,9	1,0901	1,0901
19	92,787	4	2	1	92,789	-0,0021	31,3	1,0638	1,0638
20	95,665	3	3	2	95,659	0,0060	30,2	1,0393	1,0393

Pm $\overline{3}m$; Nr. 221; a = 487,49(4) pm; $V = 115,85(2) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,036(6)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,028^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,007^\circ$; FOM(20) = 148,3 (0,007; 20); Cu-*K* α_1 -Strahlung.

Tabelle A. 36: SmN: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms (Hauptphase: (Sm₃N)Al; Nebenphasen: Sm₂Al und SmN) von mikrokristallinem Pulver [P 1] hergestellt aus Sm, SmN und Al (x(Sm) : x(Al) : x(N) = 3 : 1 : 1) nach der Wärmebehandlung

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	30,687	1	1	1	30,692	-0,0044	100,0	2,9111	2,9107
2	35,596	2	0	0	35,587	0,0090	90,6	2,5201	2,5207
3	51,191	2	2	0	51,210	-0,0189	78,6	1,7830	1,7824
4	60,901	3	1	1	60,896	0,0056	77,9	1,5199	1,5201
5	63,926	2	2	2	63,915	0,0116	74,2	1,4551	1,4554
6	83,528	3	3	1	83,519	0,0090	74,7	1,1565	1,1566
7	86,194	4	2	0	86,205	-0,0116	76,4	1,1274	1,1273
8	96,925	4	2	2	96,926	-0,0003	77,7	1,0291	1,0291

Fm $\overline{3}m$; Nr. 225; a = 504,15(7) pm; $V = 128,14(3) \cdot 10^6 \text{ pm}^3$; $\Delta 2\Theta = -0,040(1)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,019^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,009^\circ$; FOM(20) = 100,9 (0,009; 9); Cu-*K* α_1 -Strahlung.

(Gd₃N)AI (*MM* = 512,74 g/mol)

Aus Gd und Al wurde im Lichtbogen eine Legierung der nominellen Zusammensetzung "Gd₂Al" hergestellt, im Wolframcarbidmörser sehr fein verrieben und mit GdN vermischt. Das Gemenge wurde zu einer Tablette verpreßt, in eine Ta-Ampulle eingeschweißt und letztere bei vermindertem Druck ($p < 10^{-4}$ bar) in Kieselglas eingeschmolzen. Die Probe wurde zwei mal wärmebehandelt (0. 20 °C; 1. 90 K/h; 2. 168 h, 950 °C; 3. -90 K/h; 4. 20 °C). Danach wurde ein röntgenografisch einphasiges Pulver erhalten (s. Abbildung A. 19). Aus der Elementaranalyse $(w(N) = 2,47 \pm 0,01 \%);$ ergibt sich unter der Annahme eines molaren Verhältnis $w(O) = 0.32 \pm 0.01 \%$ x(Gd): x(Al) von 3 : 1 die Zusammensetzung Gd₃AlN_{0.905 \pm 0.004}O_{0.103 \pm 0.003}. Dieses Ergebnis an einer röntgengrafisch phasenreinen Probe ist ein Hinweis auf Vollbesetzung der Oktaerderlücken, bei gleichzeitiger Mischbesetzung durch O und N.

Abbildung A. 19: Röntgenpulverdiffraktogramm (Co- $K\alpha_1$ -Strahlung) einer Probe der Zusammensetzung Gd₃AlN_{0.905 ± 0.004}O_{0.103 ± 0.003}.

Tabelle A. 37: (Gd₃N)Al: Vergleich der gemessenen (2 $\Theta_{gem.}$) und berechneten (2 $\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] hergestellt aus Gd, GdN und Al (x(Gd) : x(Al) : x(N) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	18,389	1	0	0	18,386	0,0031	31,1	4,8209	4,8217
2	26,111	1	1	0	26,115	-0,0042	17,3	3,4100	3,4094
3	32,137	1	1	1	32,128	0,0092	100,0	2,7830	2,7838
4	37,269	2	0	0	37,267	0,0018	55,9	2,4107	2,4108
5	41,866	2	1	0	41,860	0,0054	13,0	2,1560	2,1563
6	46,078	2	1	1	46,074	0,0042	6,0	1,9683	1,9684
7	53,718	2	2	0	53,727	-0,0090	31,4	1,7050	1,7047
8	57,270	3	0	0	57,276	-0,0055	5,0	1,6074	1,6072
9	60,696	3	1	0	60,689	0,0066	2,6	1,5246	1,5247
10	63,985	3	1	1	63,992	-0,0060	32,3	1,4539	1,4538
11	67,201	2	2	2	67,204	-0,0027	9,6	1,3919	1,3919
12	70,341	3	2	0	70,341	-0,0009	2,0	1,3373	1,3373
13	73,422	3	2	1	73,419	0,0027	2,8	1,2886	1,2886
14	79,419	4	0	0	79,439	-0,0198	5,3	1,2057	1,2054
15	82,389	4	1	0	82,401	-0,0123	3,0	1,1696	1,1694
16	85,342	3	3	0	85,343	-0,0008	1,3	1,1365	1,1365
17	88,275	3	3	1	88,273	0,0025	11,1	1,1061	1,1062
18	91,217	4	2	0	91,198	0,0192	10,0	1,0780	1,0782
19	94,132	4	2	1	94,126	0,0067	2,0	1,0521	1,0522

Pm $\overline{3}m$; Nr. 221; a = 482,17(1) pm; $V = 112,096(5) \cdot 10^6 \text{ pm}^3$; $\Delta 2\Theta = -0,014(4)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,045^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,009^\circ$; FOM(19) = 100,8 (0,009; 20); Co-*K* α_1 -Strahlung.

Eine DSC-Messung an $(Gd_3N_{0.905 \pm 0.004}O_{0.103 \pm 0.003})Al$ (Nb-Ampulle, $\beta = 10$ K/min, $T_{\text{max}} = 1200$ °C, s. a. Abbildung A. 20) ergab beim Aufheizen kein charakteristisches Signal. Beim Abkühlen hingegen wird ein scharfes endothermes Signal beobachtet ($T_{\text{Onset}} = 930 \text{ °C}$, $T_{\text{Peak}} = 925 \text{ °C}$). Dieser Befund, zusammen mit der Tatsache, dass die Probe ohne Zersetzung bei 950 °C hergestellt wurde, lassen eine sehr breites Signal zwischen 1120 °C und 1200 °C beim Aufheizen als Zersetzung interpretieren. In der Abkühlkurve ist ebenfalls ein schwaches breites Signal zwischen 1050 °C und 1100 °C zu erkennen, welches als Rückreaktion interpretiert wird. Die Hypothese einer Zersetzung wird mit dem Röntgenpulverdiffraktogramm belegt, das am Produkt der thermischen Messung angefertigt wurde. Neben $(Gd_3N)Al$ als Hauptphase (a = 482, 41(2) pm;) $\Delta 2\Theta = -0.043(6);$ FOM(5) = 113,2) sind die Reflexe von Gd₂Al (*Pnma*, Nr. 62: a = 950,1(3); b = 660,5(4) pm; c = 514,4(2) pm. FOM(12) = 12,6) und GdN erkennbar. Wie bei (Gd₃N)Ga weicht der Gitterparameter von GdN stark von Literaturwerten ab (a = 495,92(5) pm; $\Delta 2\Theta = -0,05(3)$; FOM(5) = 59.5). Eine mögliche Ursache wäre die Substitution von Gd durch Al oder von N durch O.

Abbildung A. 20: DSC-Messung (Nb-Ampulle, $\beta = 10 \text{ K/min}$, $T_{\text{max}} = 1200 \text{ °C}$) an Gd₃AlN_{0,905 ± 0,004}O_{0,103 ± 0,003}.

Abbildung A. 21: Röntgenpulverdiffraktogramm (Co- $K\alpha_1$ -Strahlung, schwarz) von (Gd₃N)Al nach einem DSC-Experiment (Nb-Ampulle, = 10 K/min, $T_{\text{max}} = 1200 \text{ °C}$). Weiter sind die Reflexlagen von (Gd₃N)Al (rot), sowie die berechneten Diffraktorgramme von Gd₂Al (grün, nach [178]) und GdN (blau, a = 495,93 pm) dargestellt.

Tabelle A. 38: $Gd_{1-y}Al_yN_{1-z}O_z$?: Vergleich der gemessenen (2 $\Theta_{gem.}$) und berechneten (2 $\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung eines Röntgendiffraktogramms (Hauptphase: (Gd₃N)Al; Nebenphasen: Gd₂Al und GdN) von mikrokristallinem Pulver [P 1] nach einem DSC-Experiment ($\beta = 10$ K/min; $T_{max} = 1250$ °C) an (Gd₃N)Al.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	d _{gem.}	d _{ber.}
1	36,413	1	1	1	36,407	0,0059	100,0	2,8628	2,8633
2	42,289	2	0	0	42,289	0,0003	83,9	2,4797	2,4797
3	61,337	2	2	0	61,345	-0,0077	69,9	1,7536	1,7534
4	73,465	3	1	1	73,480	-0,0143	68,6	1,4955	1,4953
5	77,346	2	2	2	77,332	0,0135	61,7	1,4314	1,4316
6	92,348	4	0	0	92,346	0,0024	59,7	1,2398	1,2398

Fm $\overline{3}m$; Nr. 225; a = 495,93(9) pm; $V = 121,98(4) \cdot 10^6$ pm³; $\Delta 2 \Theta = -0,05(2)^\circ$; $\Delta 2 \Theta_{\text{max}} = 0,014^\circ$; $\Delta 2 \Theta_{\text{mitt}} = 0,007^\circ$; FOM(6) = 136,3 (0,007; 6); Co-*K* α_1 -Strahlung.

(Tb₃N)AI (*MM* = 517,76 g/mol)

Tb und Al wurden im Lichtbogen unter heftigem Aufblitzen und Rauchentwicklung zusammengeschmolzen. Nach der Bildung einer Kugel wurde keine weitere Rauchentwicklung mehr beobachtet. TbN wurde mühelos in kleinen Portionen zur dieser Kugel zugeschmolzen. Das Produkt wurde im Wolframcarbid-Mörser zerstoßen und ein Röntgenpulverdiffraktogramm gemessen. Neben Tb₂Al (orthorhombisch: a = 942,6(6) pm; b = 656,4(5) pm, c = 511,0(4) pm, FOM(15) = 13,7 $\Delta 2\Theta = -0,02(2)$; [178]: *Pnma*, Nr. 62, a = 695,2 pm; b = 511,3 pm; c = 944 pm) und TbN wird eine Phase beobachtet, deren Reflexe kubisch indiziert werden können (a = 478,22(3) pm s. Tabelle A. 39). Die Probe wurde wärmebehandelt (0. 20 °C; 1. 12 °C/h; 2. 950 °C, 168 h; 3. -12 °C/h; 4. 20 °C). Das sehr spröde Produkt zeigt im Röntgenpulverdiffraktogramm nur eine Phase. Das Verhältnis der Reflexintensitäten stimmt mit einer geordneten Struktur aus Tb und Al-Atomen im Sinne des Cu₃Au-Strukturtyps überein. Aus der Elementaranalyse ($w(N) = 2,55 \pm 0,01$ %; $w(O) = 0,171 \pm 0,005$ %) ergibt sich unter Annahme eines molaren Verhältnisses x(Tb) : x(Al) von 3 : 1 Tb₃AlN_{0,943 \pm 0,004}O_{0,055 \pm 0,002}.

Abbildung A. 22: Röntgenpulverdiffraktogramm von Tb₃AlN_{0,943 ± 0,004}O_{0,055 ± 0,002} (Cu- $K\alpha_1$ -Strahlung).

Tabelle A. 39: (Tb₃N)Al: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] hergestellt aus Tb, TbN und Al (x(Tb) : x(Al) : x(N) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	18,546	1	0	0	18,539	0,0068	45,2	4,7804	4,7822
2	26,328	1	1	0	26,335	-0,0072	29,6	3,3824	3,3815
3	32,400	1	1	1	32,400	-0,0006	100,0	2,7610	2,7610
4	37,585	2	0	0	37,587	-0,0016	65,3	2,3912	2,3911
5	42,221	2	1	0	42,223	-0,0021	25,6	2,1387	2,1386
6	46,478	2	1	1	46,477	0,0014	19,1	1,9523	1,9523
7	54,202	2	2	0	54,207	-0,0044	45,2	1,6909	1,6907
8	57,782	3	0	0	57,794	-0,0118	19,2	1,5943	1,5941
9	61,254	3	1	0	61,244	0,0094	17,0	1,5120	1,5122
10	64,585	3	1	1	64,584	0,0009	46,7	1,4419	1,4419
11	67,840	2	2	2	67,834	0,0058	24,0	1,3804	1,3805
12	71,030	3	2	0	71,010	0,0201	16,0	1,3260	1,3263
13	74,125	3	2	1	74,127	-0,0021	16,7	1,2781	1,2781
14	80,226	4	0	0	80,228	-0,0025	19,2	1,1956	1,1955
15	83,222	4	1	0	83,233	-0,0112	17,2	1,1600	1,1598
16	86,215	3	3	0	86,219	-0,0041	16,7	1,1272	1,1272
17	89,196	3	3	1	89,195	0,0013	26,0	1,0971	1,0971
18	92,168	4	2	0	92,169	-0,0007	27,3	1,0693	1,0693
19	95,151	4	2	1	95,148	0,0025	17,9	1,0435	1,0436
		1	1		1			1	1

Pm $\overline{3}m$; Nr. 221; a = 478,22(3) pm; $V = 109,6(1) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,029(4)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,020^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,005^\circ$; FOM(19) = 178,0 (0,005; 21); Cu-*K* α_1 -Strahlung.

$(Dy_3N)AI (MM = 528,49 \text{ g/mol})$

Dy, DyN und Al wurden im Lichtbogen mehrmals zusammengeschmolzen, um eine maximale Homogenisierung der Probe zu erzielen. Dabei wurde Rauchentwicklung beobachtet, die mit einem signifikanten Masseverlusten einherging. Zum Ausgleich wurde Dy in entsprechenden Mengen zugeschmolzen. Die Probe wurde in Ta-Rohr eingeschweißt, in Kieselglas eingeschmolzen und bei 920 °C eine Woche wärmebehandelt. Das erhaltene Röntgenpulverdiffraktorgramm zeigt Reflexe von DyN, Dy₂Al und einer Phase, die in Lage und Intensität mit einer geordneten, kubischen dichtetesten Packung aus Dy und Al-Atomen im Sinne des Cu₃Au-Strukturtyps übereinstimmen. Das Produkt dieser Umsetzung wurde in einer Achatreibschale fein vermahlen, zu einer Tablette gepreßt, und wie zuvor wärmebehandelt. Das von der Probe danach erhaltene Röntgenpulverdiffraktorgramm zeigt nur noch Reflexe von DyN und der kubischen Phase (a = 475,4(4) pm, s. Abbildung A. 23).

Abbildung A. 23: Röntgenpulverdiffraktogramm von $Dy_3AlN_{1,03 \pm 0,02}O_{0,046 \pm 0,003}$ (Cu-K 1-Strahlung). Das Diffraktogramm zeigt Reflexe von (Dy₃N)Al und DyN.

Tabelle A. 40: $(Dy_3N)Al$: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms (Nebenphase: DyN) von mikrokristallinemPulver [P 1] hergestellt aus Dy, DyN und Al(x(Dy): x(Al): x(N) = 3: 1: 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	18,641	1	0	0	18,662	-0,0210	29,6	4,7561	4,7508
2	26,509	1	1	0	26,512	-0,0028	13,9	3,3597	3,3593
3	32,611	1	1	1	32,620	-0,0097	100,0	2,7437	2,7429
4	37,841	2	0	0	37,844	-0,0036	52,5	2,3756	2,3754
5	42,516	2	1	0	42,515	0,0016	11,9	2,1245	2,1246
6	46,818	2	1	1	46,802	0,0160	4,9	1,9389	1,9395
7	54,597	2	2	0	54,594	0,0031	30,7	1,6796	1,6797
8	58,206	3	0	0	58,212	-0,0060	4,4	1,5837	1,5836
9	61,708	3	1	0	61,692	0,0160	2,2	1,5020	1,5023
10	65,074	3	1	1	65,063	0,0108	30,6	1,4322	1,4324
11	68,359	2	2	2	68,343	0,0154	8,6	1,3712	1,3714
12	71,564	3	2	0	71,551	0,0131	1,4	1,3174	1,3176
13	74,697	3	2	1	74,699	-0,0021	2,0	1,2697	1,2697
14	80,860	4	0	0	80,867	-0,0065	4,2	1,1878	1,1877
15	83,916	4	1	0	83,907	0,0091	2,1	1,1521	1,1522
16	86,916	3	3	0	86,929	-0,0136	0,8	1,1199	1,1198
17	89,941	3	3	1	89,943	-0,0023	9,9	1,0899	1,0899
18	92,962	4	2	0	92,957	0,0049	11,1	1,0623	1,0623
19	95,957	4	2	1	95,979	-0,0225	1,5	1,0369	1,0367

Pm $\overline{3}m$; Nr. 221; a = 475,08(4) pm; $V = 107,23(2) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,021(7)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,023^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,009^\circ$; FOM(19) = 100,1 (0,009; 20); Cu-*K* α_1 -Strahlung.

Die Elementaranalyse auf H, N und O ($w(H) \le 0,008$ %; $w(O) = 0,14 \pm 0,01$ %; $w(N) = 2,73 \pm 0,06$ %, Dy₃AlN: $w(N)_{\text{theo}} = 2,65$ %) ergibt unter der Annahme eines molaren Verhältnisses von x(Dy) : x(Al) von 3 : 1 Dy₃AlN_{1,03 \pm 0,02}O_{0,046 \pm 0,003} (d. h. (Dy₃N)Al + DyN). Dies entspricht dem Röntgenpulverdiffraktogramm in dem zusätzliche Reflexe von DyN (s. Tabelle A. 41) beobachtet werden und ist somit ein weiteres Indiz für die Existenz der Phase (Dy₃N)Al. Ursache für den zu hohen Stickstoffgehalt können Massenverluste an Dy durch Sublimation im Lichtbogen und der Ampulle sein. Weiter sind Verluste von Dy durch die Einwaage bedingt; der in Dy bereits als Verunreinigung vorhandene Sauerstoff und Stickstoff wurde als Dy gewogen.

Tabelle A. 41:DyN: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe
(*hkl*) sowie der Gitterabstände $(d_{gem.}, d_{ber.})$; Auswertung eines
Röntgendiffraktogramms (Hauptphase: (Dy₃N)Al; Nebenphase: DyN) von
mikrokristallinem Pulver [P 1] hergestellt aus Dy, DyN und Al
(x(Dy): x(Al): x(N) = 3: 1: 1) nach der Wärmebehandlung.

	2 $\Theta_{\text{gem.}}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	31,600	1	1	1	31,601	-0,0007	4,7	2,8291	2,8290
2	36,656	2	0	0	36,650	0,0058	3,2	2,4496	2,4500
3	52,802	2	2	0	52,801	0,0012	1,3	1,7324	1,7324
4	62,844	3	1	1	62,851	-0,0068	1,5	1,4775	1,4774
5	65,986	2	2	2	65,991	-0,0052	0,4	1,4146	1,4145
6	86,518	3	3	1	86,509	0,0089	0,5	1,1240	1,1241
7	89,340	4	2	0	89,343	-0,0033	0,6	1,0957	1,0957

Fm $\overline{3}m$; a = 490,00(4) pm; $V = 117,65(2) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,019(7)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,009^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,007^\circ$; FOM(7) = 90.5 (0,005; 17); Cu-*K* α_1 -Strahlung.

Von der Probe wurde nach der zweiten Wärmebehandlung eine DSC-Messung (Nb-Ampulle, $\beta = 10$ K/min, $T_{max} = 1250$ °C) angefertigt. Das Ergebnis ist in Abbildung A. 24 dargestellt und in Tabelle A. 42 zusammengefaßt. Die DSC-Kurve zeigt beim Aufheizen nur zwei sehr schwache Signale bei $T_{Peak} = 1010$ °C und 1025 °C. Beim Abkühlen wird ein deutliches Signal bei 1005 °C beobachtet. Die Werte stimmen in etwa mit dem Phasendiagramm Dy-Al überein eine genaue Zuordnung ist schwer. Aus diesen Daten kann keine Aussage über eine Zersetzung der Phase (Dy₃N)Al bei hohen Temperaturen gemacht werden. Das nach der Messung angefertigte Röntgenpulverdiffraktogramm der Probe zeigt Dy₂Al, DyN und (Dy₃N)Al.

Abbildung A. 24: Ergebnisse der DSC-Messung (Nb-Ampulle, = 10 K/min, $T_{max} = 1250 \text{ °C}$) an Dy₃AlN_{1,03 ± 0,02}O_{0,046 ± 0,003} (Röntgenpulverdiffraktorgramm: (Dy₃N)Al und DyN).

Tabelle A. 42:Zusammenfassung der thermischen Effekte der DSC-Messung (Nb-
Ampulle, = 10 K/min, $T_{max} = 1250$ °C) an Dy₃AlN_{1,03 ± 0,02}O_{0,046 ± 0,003}.
Das Röntgenpulverdiffraktogramm zeigt Reflexe von (Dy₃N)Al und DyN.

	$T_{\text{Peak}} / ^{\circ}\text{C}$	$T_{\text{Onset}} / ^{\circ}\text{C}$	Zuordnung	<i>T</i> [179]	Sequenz
1	1010 ± 5	-	Zersetzung von Dy ₂ Al	990	Auf
2	1025	-	Zersetzung von Dy ₃ Al ₂	1025	
3	1005 ± 5	1005 ± 5	?		Ab

(Ho₃N)AI (*MM* = 535,78 g/mol)

Die Synthese und Analyse erfolgte in analoger Weise wie bei (Dy₃N)Al (s. o.). Das Röntgenpulverdiffraktorgramm (s. Abbildung A. 25) nach der zweiten Wärmebehandlung zeigt neben HoN Reflexe einer Phase, die in Lage und Intensität mit einer geordneten, kubischen dichtetesten Packung aus Ho und Al-Atomen im Sinne einer Cu₃Au-Struktur übereinstimmen (a = 472,45(4) pm, s. a Tabelle A. 43). Die Elementaranalyse von H, N und Ο $(w(H) \le 0,008 \%;$ $w(O) = 0.21 \pm 0.01$ %; $w(N) = 2,54 \pm 0,05$ %; $(Ho_3N)Al$: $w(N)_{\text{theo}} = 2,61 \text{ \%}$) ergibt einen N-Gehalt, der nahe dem theoretischen Wert liegt, trotzdem wurden zusätzliche Reflexe von HoN beobachtet. Im Röntgenpulverdiffraktogramm wurden keine Hinweise auf Ho₂O₃ gefunden. Der hohe Sauerstoffgehalt der Probe ist ein Indiz für eine Mischbesetzung von O und N, entweder im Sinne von (Ho₃N_{1-v}O_v)Al oder/und im Sinne von HoN_{1- ν}O_{ν}. Unter der Annahme eines molaren Verhältnisses x(Ho) : x(Al) von 3 : 1 ergibt sich Ho₃AlN_{0.97 \pm 0.02O_{0.070 \pm 0.003.}}

Abbildung A. 25: Röntgenpulverdiffraktogramm (Cu- $K\alpha_1$ -Strahlung) einer Probe der Zusammensetzung Ho₃AlN_{0,97 ± 0,02}O_{0,070 ± 0,003}; das Diffraktogramm zeigt Reflexe von (Ho₃N)Al und HoN.

Tabelle A. 43:(Ho_3N)Al: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms (Nebenphase: HoN) von mikrokristallinemPulver [P 1] hergestellt aus Ho, HoN und Al(x(Ho) : x(Al) : x(N) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	18,742	1	0	0	18,767	-0,0252	29,1	4,7308	4,7245
2	26,659	1	1	0	26,662	-0,0031	12,7	3,3411	3,3407
3	32,8	1	1	1	32,807	-0,0071	100	2,7283	2,7277
4	38,061	2	0	0	38,063	-0,0002	52,2	2,3624	2,3622
5	42,771	2	1	0	42,763	0,0075	10,8	2,1125	2,1129
6	47,101	2	1	1	47,078	0,0229	4,2	1,9279	1,9288
7	54,93	2	2	0	54,924	0,0059	30,5	1,6702	1,6704
8	58,567	3	0	0	58,567	-0,0004	3,8	1,5748	1,5748
9	62,081	3	1	0	62,074	0,0069	1,6	1,4939	1,494
10	65,482	3	1	1	65,47	0,0113	25,8	1,4243	1,4245
11	68,792	2	2	2	68,777	0,0154	7,6	1,3636	1,3638
12	72,01	3	2	0	72,011	-0,0015	1,1	1,3104	1,3103
13	75,179	3	2	1	75,187	-0,0077	1,3	1,2628	1,2627
14	81,411	4	0	0	81,412	-0,0011	3,1	1,1811	1,1811
15	84,474	4	1	0	84,482	-0,008	1,3	1,1459	1,1459
16	87,533	3	3	0	87,536	-0,0025	0,5	1,1136	1,1136
17	90,582	3	3	1	90,583	-0,0004	7,7	1,0839	1,0839
18	93,628	4	2	0	93,631	-0,0036	8,6	1,0565	1,0564
19	96,683	4	2	1	96,69	-0,0075	1	1,031	1,031

*Pm*3*m*; Nr. 221; a = 472,45(4) pm; $V = 105,45(1) \cdot 10^{6}$ pm³; $\Delta 2\Theta = -0,029(6)^{\circ}$; $\Delta 2\Theta_{max} = 0,025^{\circ}$; $\Delta 2\Theta_{mitt} = 0,007^{\circ}$; FOM(19) = 153,7 (0,007; 19); Cu-*K*α₁-Strahlung. Von der zweimal wärmebehandelten Probe wurde eine DSC-Messung (Nb-Ampulle, $\beta = 10$ K/min, $T_{max} = 1250$ °C) angefertigt. Die Ergebnisse sind in Abbildung A. 26

dargestellt. Ein schwächeres Signal ($T_{\text{Peak}} = 1050 \text{ °C}$) beim Aufheizen und ein scharfes Signal beim Abkühlen ($T_{\text{Onset}} = 1035 \text{ °C}$, $T_{\text{Peak}} = 1035 \text{ °C}$) stimmen vom Betrag mit dem berichteten kongruenten Schmelzpunkt von Ho₂Al (1038 °C [180]) gut überein. Die gesammte Messung ähnelt im Aussehen aber auch derjenigen, die an mikrokristallinen Pulvern der Zusammensetzung Dy₃AlN_{1,03 ± 0,02}O_{0,046 ± 0,003} beobachtet wurde. Die Unterschiede zwischen beiden Probe liegen in den Temperaturen der beobachteten Signale. Für Ho sind die beobachteten Temperaturen etwas höher. Dies ist ein Indiz, dass in beiden Proben ein ähnliches Gemenge aus *SE*–Al, *SE*N und (*SE*₃N)Al vorliegt. Das Röntgenpulverdiffraktogramm, das nach der DSC-Messung angefertigt wurde, zeigt eine Zunahme der relativen Reflexintensitäten von Ho₂Al und HoN bezogen auf die Hauptphase (Ho₃N)Al. (Ho₃N)Al zersetzt sich oberhalb von 900 °C vermutlich in die binären Verbindungen HoN und Ho₂Al.

Abbildung A. 26: Thermische Effekte der DSC-Messung (Nb-Ampulle, $\beta = 10$ K/min, $T_{\text{max}} = 1250$ °C) an Ho₃AlN_{0,97 \pm 0,02}O_{0,070 \pm 0,003} (Röntgenpulverdiffraktorgramm: (Ho₃N)Al und HoN).

Tabelle A. 44: Zusammenfassung der thermischen Effekte der DSC-Messung (Nb-Ampulle, $\beta = 10$ K/min, $T_{max} = 1250$ °C) an Ho₃AlN_{0,97 ± 0,02}O_{0,070 ± 0,003}. (Röntgenpulverdiffraktogramm: (Ho₃N)Al, HoN.

	$T_{\text{Peak}} / \text{°C}$	$T_{\text{Onset}} / ^{\circ}\text{C}$	Zuordnung	$T_{[180]}$	Sequenz
1	1050 ± 5	-	Smp. Ho ₂ Al	1038	Auf
2	1035 ± 5	1035 ± 5	Smp. Ho ₂ Al	1038	Ab

Versuche zur Darstellung der Verbindung (SE_3N)Al mit SE = Er

Wie bei der Synthese von (Dy₃N)Al beschrieben, wurde eine Probe mit *SE* = Er vorbereitet und wärmebehandelt (920 °C, 168 h, abschrecken in Wasser). Das erhaltene Röntgenpulverdiffraktogramm zeigt Er₂Al (*Pnma*; a = 649,7(3) pm, b = 503,1 (1) pm, c = 929,8(3) pm; [178]: *Pnma*; a = 654,30 pm; b = 507,50 pm; c = 939,70 pm) und ErN (s. Tabelle A. 46 und Tabelle A. 45). Wie bei Versuchen zu (*SE*₃N)Al mit *SE* = Tm, werden weitere Reflexe beobachtet, die kubisch indiziert werden können (a = 469,77(7) pm, s. Abbildung A. 47). Diese Reflexe stimmen in den Intensitäten mit derjenigen einer hypothetischen Verbindung (Er₃N)Al überein.

Abbildung A. 27:Röntgenpulverdiffraktogramm(Cu- $K\alpha_1$ -Strahlung)einesReaktionsprodukts aus Er, ErN und Al (molares Verhältnis Er : Al : Nvon 3 : 1 : 1)nach einer Wärmebehandlung (Lichtbogen, dann 168 h,920 °C).Drei Phasen: ErN (schwarze Striche), eine weitere kubischePhase ((Er₃N)Al ?) und Er₂Al wurden identifiziert.

Tabelle A. 45: Er_2Al : Vergleich der gemessenen $(2 \Theta_{gem.})$ und berechneten $(2 \Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms (Hauptphase: Er_2Al ; Nebenphase: ErN, $(Er_3N)Al$) von mikrokristallinem Pulver [P 1] hergestellt aus Er, ErN undAl (x(Er) : x(Al) : x(N) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	16,599	1	1	0	16,633	-0,0339	0,4	5,3363	5,3255
2	20,032	1	0	1	20,051	-0,0193	6,5	4,4289	4,4247
3	23,493	2	1	0	23,513	-0,0200	8,9	3,7838	3,7806
4	24,307	1	1	1	24,319	-0,0116	18,7	3,6588	3,6571
5	29,528	2	1	1	29,531	-0,0031	11,8	3,0227	3,0224
6	32,807	0	2	1	32,791	0,0156	13,1	2,7277	2,729
7	33,63	2	2	0	33,631	-0,0010	13,4	2,6628	2,6627
8	33,956	3	0	1	33,946	0,0099	30	2,638	2,6387
9	34,225	1	2	1	34,216	0,0093	26,4	2,6178	2,6185
10	35,68	0	0	2	35,664	0,016	14,4	2,5144	2,5155
11	36,753	3	1	1	36,731	0,0211	1,1	2,4434	2,4448
12	40,18	3	2	0	40,183	-0,0031	3,9	2,2425	2,2424
13	41,225	4	1	0	41,215	0,0099	1,8	2,1881	2,1886
14	43,146	2	1	2	43,162	-0,0157	4,1	2,095	2,0943
15	45,152	4	1	1	45,142	0,0100	1,3	2,0065	2,0069
16	48,072	4	2	0	48,095	-0,0230	1	1,8912	1,8903
17	48,671	3	1	2	48,64	0,0307	2,1	1,8693	1,8704
10	10.961	2	3	1	49,822	0,0387	60	1 0774	1,8288
10	49,001	2	2	2	49,828	0,0326	0,2	1,0274	1,8286
19	51,059	5	1	0	51,047	0,0125	1,9	1,7873	1,7877
20	54,448	5	1	1	54,423	0,0253	0,9	1,6838	1,6845
21	54,845	3	2	2	54,799	0,0461	3	1,6726	1,6739
22	55 (5 0	4	1	2	55,619	0,0330	1.5	1 (500	1,6511
22	55,652	1	0	3	55,647	0,0054	1,5	1,6502	1,6504
23	56,936	1	3	2	56,929	0,0073	2,2	1,616	1,6162
24	57 500	1	4	0	57,56	0,0304		1 5000	1,6000
24	37,390	1	1	3	57,576	0,0140	2,3	1,3992	1,5996

		2	4	0	60,315	0,0034			1,5333
25	60,318	2	1	3	60,331	-0,0125	1,8	1,5332	1,5329
		4	3	1	61,287	0,0143			1,5113
26	61,301	4	2	2	61,292	0,0091	3,3	1,511	1,5112
27	63,106	1	2	3	63,139	-0,0325	4,4	1,472	1,4714
28	64,459	6	1	1	64,482	-0,0225	1,2	1,4444	1,4439
29	69,708	6	2	1	69,73	-0,0221	1,5	1,3479	1,3475
• •		1	5	1	76,32	0,0083			1,2467
30	76,329	1	0	4	76,344	-0,0155	0,3	1,2466	1,2464
31	83,07	8	0	0	83,026	0,0438	0,4	1,1617	1,1622
		8	0	1	85,726	-0,0141			1,1324
32	85,712	7	3	0	85,739	-0,0278	0,7	1,1325	1,1322

Pnma; Nr. 62; a = 929,8(3) pm; b = 649,7(3) pm; c = 503,1(1) pm; $V = 103,67(3) \cdot 10^{6}$ pm³; $\Delta 2 \Theta = -0,03(1)^{\circ}$; $\Delta 2 \Theta_{max} = 0,027^{\circ}$; $\Delta 2 \Theta_{mitt} = 0,010^{\circ}$; FOM(10) = 55,1(0,010; 18); Cu-*K* α_1 -Strahlung.

Tabelle A. 46:ErN: Vergleich der gemessenen $(2 \Theta_{gem.})$ und berechneten $(2 \Theta_{ber.})$ Reflexe
(*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines
Röntgendiffraktogramms (Hauptphase: Er₂Al, Nebenphase: ErN,
(Er₃N)Al) von mikrokristallinem Pulver [P 1] hergestellt aus Er, ErN und
Al (x(Er) : x(Al) : x(N) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	32,021	1	1	1	32,028	-0,0071	100	2,7929	2,7923
2	37,151	2	0	0	37,15	0,0005	64,8	2,4181	2,4182
3	53,553	2	2	0	53,551	0,0029	34	1,7098	1,7099
4	63,787	3	1	1	63,775	0,0128	30,4	1,4579	1,4582
5	66,977	2	2	2	66,973	0,0040	9,9	1,3961	1,3961
6	79,136	4	0	0	79,151	-0,0146	4,3	1,2093	1,2091
7	87,931	3	3	1	87,936	-0,0052	9,3	1,1096	1,1095
8	90,85	4	2	0	90,843	0,0069	11,5	1,0814	1,0814

Fm $\overline{3}m$; Nr. 225; a = 483,63(6) pm; V = 113,12 (2) • 10⁶ pm³; $\Delta 2\Theta = -0,04(1)^{\circ}$; $\Delta 2\Theta_{\text{max}} = 0,015^{\circ}$; $\Delta 2\Theta_{\text{mitt}} = 0,007^{\circ}$; FOM(8) = 148,0 (0,007; 8); Cu-*K* α_1 -Strahlung.

Tabelle A. 47:kubische Phase ((Er₃N)Al): ErN: Vergleich der gemessenen (2 $\Theta_{gem.}$) und
berechneten (2 $\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$);
Auswertung eines Röntgendiffraktogramms (Hauptphase: Er₂Al,
Nebenphase: ErN, (Er₃N)Al) von mikrokristallinem Pulver [P 1]
hergestellt aus Er, ErN und Al (x(Er) : x(Al) : x(N) = 3 : 1 : 1) nach der
Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	d _{gem.}	d _{ber.}
1	18,856	1	0	0	18,875	-0,0189	4,6	4,7024	4,6977
2	26,816	1	1	0	26,817	-0,0016	2,1	3,322	3,3218
3	33,004	1	1	1	32,999	0,0049	12,9	2,7118	2,7122
4	38,293	2	0	0	38,288	0,0045	7,8	2,3486	2,3489
5	47,38	2	1	1	47,363	0,0173	0,7	1,9172	1,9178
6	55,263	2	2	0	55,264	-0,0002	3,7	1,6609	1,6609
7	65,898	3	1	1	65,891	0,0074	2,6	1,4163	1,4164
8	69,221	2	2	2	69,225	-0,0032	1,6	1,3562	1,3561
9	91,218	3	3	1	91,245	-0,0265	1,4	1,078	1,0777
10	94,346	4	2	0	94,33	0,0163	1,1	1,0503	1,0504
6 7 8 9 10	55,263 65,898 69,221 91,218 94,346	2 3 2 3 4	2 1 2 3 2	0 1 2 1 0	55,264 65,891 69,225 91,245 94,33	-0,0002 0,0074 -0,0032 -0,0265 0,0163	3,7 2,6 1,6 1,4 1,1	1,6609 1,4163 1,3562 1,078 1,0503	1,660 1,416 1,356 1,077 1,050

Pm $\overline{3}m$; Nr. 221; a = 469,77(7) pm; $V = 103,67(3) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,05(1)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,046^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,017^\circ$; FOM(30) = 14,0 (0,016; 130); Cu-*K* α_1 -Strahlung.

Versuche zur Darstellung der Verbindung (SE₃N)Al mit SE = Tm

Tm und Al wurden in den molaren Verhältniss 2:1 bei möglichst geringem Arbeitsstrom des Lichtbogens (I = 7 A) zusammengeschmolzen³⁸. Die erhaltene Schmelzkugel wurde in einer Achatreibschale mit TmN verrieben, zu einer Tablette verpreßt, in ein Ta-Rohr eingeschweißt und in Kieselglas eingeschmolzen. Vor und nach einer Wärmebehandlung 2.950 °C, 168 h; (0. 20 °C; 1.90 K/h; 3. –90 K/h; 4.20 °C) wurde ein Röntgenpulverdiffraktogramm aufgenommen (s. Abbildung A. 28). Beide Diffraktogramme zeigen Reflexe von TmN und Tm₃Al₂. Im Diffraktogramm, das nach der Wärmebehandlung aufgenommen wurde, werden zusätzliche Reflexe schwacher Intensität beobachtet, die kubisch indizieren lassen (a = 467, 65(8) pm) und in den Intensitäten einer geordneten Struktur aus Tm und Al-Atomen im Sinne des Cu₃Au-Strukturtyps entsprechen. Mögliche andere kubische Phasen wurden ausgeschlossen: Tm_2O_3 ($Ia\overline{3}$, a = 1052(2) pm [7]); Tm (W-Strukturtyp, *a* = 392,2(2) pm [181]); Tm (Cu-Strukturtyp, *a* = 506 pm [182]).

Abbildung A. 28: Röntgenpulverdiffraktogramme (Cu-*Kα*₁-Strahlung) einer Probe aus TmN und der Legierung "Tm₂Al" vor und nach einer Wärmebehandlung (950 °C, 168 h).

³⁸ Mit dem Lichtbogen wird nur Al aufgeschmolzen und vermieden, den Lichtbogen direkt auf das elementare Tm zu richten. Die Reaktion zwischen den Metallen setzt ein, sobald Al Tm benetzt hat und ist durch hefige Lichtblitze und eine kurze Rauchentwicklung begleitet. Nach Bildung einer homogene Schmelzkugel verringert sich die Rauchentwicklung merklich.

Tabelle A. 48:kubische Phase ((Tm₃N)Al): TmN: Vergleich der gemessenen (2 $\Theta_{gem.}$) und
berechneten (2 $\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$);
Auswertung eines Röntgendiffraktogramms (Hauptphase: Tm₃Al₂,
Nebenphase: TmN, (Tm₃N)Al) von mikrokristallinem Pulver [P 1]
hergestellt aus Tm, TmN und Al (x(Tm) : x(Al) : x(N) = 3 : 1 : 1) nach der
Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}$ – $2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	18,963	1	0	0	18,962	0,0012	9,3	4,6762	4,6765
2	26,921	1	1	0	26,941	-0,0197	4,7	3,3091	3,3068
3	33,162	1	1	1	33,153	0,0089	27,2	2,6993	2,7
4	38,48	2	0	0	38,469	0,0011	16,8	2,3376	2,3382
5	43,225	2	1	0	43,224	0,0008	4,1	2,0914	2,0914
6	47,596	2	1	1	47,591	0,0046	1,5	1,909	1,9092
7	55,544	2	2	0	55,536	0,0083	9,1	1,6532	1,6534
8	59,235	3	0	0	59,228	0,0075	1,2	1,5586	1,5588
9	66,236	3	1	1	66,228	0,0008	8,3	1,4099	1,41
10	69,545	2	2	2	69,584	-0,0390	3,8	1,3506	1,35
11	76,117	3	2	1	76,095	0,0222	1,6	1,2495	1,2498
12	82,397	4	0	0	82,428	-0,0303	0,9	1,1695	1,1691
13	91,776	3	3	1	91,777	-0,0014	4,7	1,0729	1,0729
14	94,91	4	2	0	94,892	0,0181	2,7	1,0455	1,0457

Pm $\overline{3}m$; Nr. 221; a = 467,65(8) pm; $V = 102,27(3) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,03(1)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,039^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,013^\circ$; FOM(30) = 57,1 (0,013; 19); Cu-*K* α_1 -Strahlung.

Versuche zur Darstellung der Verbindung (SE₃N)Al mit SE = Lu

Eine Legierung der Zusammensetzung "Lu₂Al" wurde aus den Elementen im Lichtbogen hergestellt, wärmebehandelt (168 h, 920 C), in einer Achatreibschale mit LuN verrieben und verpreßt. Die erhaltene Tablette wurde in eine Ta-Ampulle eingeschweißt, in Kieselglas eingeschmolzen und verschiedenene Wärmebehandlungen unterworfen (s. Tabelle A. 49).

	β_1 / °C/h	$T_1 / °C$	<i>t</i> ₁ / h	β_2 / °C/h	$T_2 / ^{\circ}\mathrm{C}$
1	90 K/h	1100 °C	168 h	-90 K/h	20 °C
2	*	920 °C	1344 h	*	20 °C
3	*	800 °C	168 h	*	20 °C
4	*	700 °C	168 h	*	20 °C
5	*	600 °C	168 h	*	20 °C
6	*	500 °C	168 h	*	20 °C

Tabelle A. 49: Wärmebehandlungen für die Synthese einer Verbindung (SE_3N)Al mit SE = Lu.

Proben, direkt in den Ofen gelegt und am Ende der Wärmebehandlung in Wasser abgeschreckt

Die Proben 2 – 6 zeigen LuN und binäre Phasen Lu₃Al₂ und Lu₂Al. Die Probe 1 war nach dem Experiment aufgeschmolzen. Das Eutektikum Lu–Lu₂Al ist bei T = 1000 °C berichtet. "Lu₂Al" bildet sich peritektisch bei 1040 °C aus der Schmelze und Lu₃Al₂, letzteres schmilzt kongruent bei 1145 °C [203]³⁹. Eine erfolgreiche Synthese von (*SE*₃N)Al mit *SE* = Lu scheint nur im Intervall *T* = [920; 1050] möglich zu sein.

³⁹ [203]: "The Al-Lu diagram was drawn by [Moffat] presuming similarity to other Al-Rare Earth systems (except for the divalent Eu and Yb) suggested by [67Bus]. (...)"; mit anderen Worten das Phasendiagramm ist nie exakt bestimmt worden.

10.4. (SE₃C)Al

Literaturzusammenfassung zu Verbindungen (SE₃C)AI

Tabelle A. 50:	Verbindungen	der	Zusammensetzung	$(SE_3C)Al$	soweit	in	der	Literatur	
	beschrieben.								

Verbindung	<i>a</i> / pm	Lit.	Verbindung	<i>a</i> / pm	Lit.
(Sc ₃ C)Al	449,8	[11]	(Sc ₃ C)Al	448	[34]
(La ₃ C)Al	510,9	[11]	(La ₃ C)Al	512	[93]
(Ce ₃ C)Al	502,9(1)	[11]	$(Ce_3C_x)Al$	500,7	[118]
$(Pr_3C_x)Al$	505,4(2)	[11]	$(\Pr_3 C_x)Al$	504,0	[118]
(Nd ₃ C)Al	502,5(2)	[11]	$(Nd_3C_x)Al$	500,3	[118]
			(Nd ₃ C _{0,9})Al	496	[34]
(Sm ₃ C)Al	496,8(4)	[11]	$(Sm_3C_x)Al$	494,0	[118]
$(\mathrm{Gd}_3\mathrm{C}_{0,9})\mathrm{Al}$	490	[34]	$(Gd_3C_x)Al$	489,1	[118]
(Tb ₃ C)Al	487,6	[37]	$(Tb_3C_x)Al$	486,4	[118]
(Dy ₃ C _{0,7})Al	485	[34]	$(Dy_3C_x)Al$	484,2	[118]
(Ho ₃ C _{0,7})Al	481	[34]	$(Ho_3C_x)Al$	480,9	[118]
(Er ₃ C)Al	479,2	[37]	$(\mathrm{Er}_{3}\mathrm{C}_{x})\mathrm{Al}$	478,3	[118]
$(Y_3C_x)Al$	489	[34]	$(Y_3C_x)Al$	485,4	[118]
(Tm ₃ C)Al	477,6	[37]			
(Yb ₃ C)Al	475,7(1)	[11]			
(Lu ₃ C)Al	473,4(1)	[11]			

$(Ce_3C_{1-y})AI$

Für Proben der Zusammensetzung (Ce₃C_{1- ν})Al (y = 0, 0,1; 0,2; 0,3; 0,35; 0,4; 0,6; 0,8) wurden Ce und Graphit im Lichtbogen zu einer homogenen Schmelzkugel aufgeschmolzen. Der Lichtbogen wurde mit sehr hohen Stromstärken betrieben und die Schmelzkugel zehn mal aufgeschmolzen, um eine gute Homogenisierung der Probe zu erhalten. Anschließend wurde Al zugeschmolzen. Für geringere Kohlenstoffgehalte (y > 0,3) wurde die Probe hintereinander Aufgeschmolzen und erneut zehn mal gewendet. Bei hohen Kohlenstoffgehalten platzten, nach dem zweiten oder dritten Umschmelzen, beim Abkühlen größere Stücke von der Probe ab. Die Bruchstücke haben ein augenscheinlich homogenes und vergleichbares Aussehen. In der Probe bilden sich offensichtlich beim Abkühlen große makroskopische Spannungen. Derartige Proben wurden im folgenden nur ein bis zweimal aufgeschmolzen. Alle Proben wurden in Ta-Ampullen eingeschweißt, diese in Kieselglasampullen eingeschmolzen und bei 600 °C sieben bis neun Tage wärmebehandelt. Die Kieselglasampullen wurden anschließend unter Wasser zerschlagen, um eine maximale Abkühlrate zu erzielen. Einige Proben mit hohem Kohlenstoffgehalt wurden zu feinem Pulver vermahlen, zu Tabletten verpreßt und erneut wärmebehandelt. Die Ergebnisse sind im Hauptteil ausführlich dargestellt und werden dort diskutiert (s. Kap. 5.3, S. 58ff).

10.5. (SE₃□)Ga

Untersuchungen zur Existenz der Phase ($SE_3\Box$)Ga, SE = Ce

Die Literatur zur Phase ($Ce_3\Box$)Ga ist widersprüchlich:

Nach [113] kristallisiert (Ce₃ \Box)Ga im Cu₃Au-Struktutyp (a = 511,5 pm) und in Messungen der magnetischen Suszeptibilität ($-200 \,^{\circ}C < T < 200 \,^{\circ}C$) wurde Curie-Weiss-Verhalten von dreiwertigem Cer beobachtet. Die Phase ist im Phasendiagramm [140] beschrieben (peritektische Bildung $T = 557 \,^{\circ}C$, Cu₃Au-Strukturtyp, a = 540 pm, s. Abbildung A. 29, links). Eine andere Untersuchung des Phasendiagramms Ce–Ga (DTA, EDX, Röntgenbeugung am Pulver, Metallografie, s. Abbildung A. 29, rechts) [138] negiert allerdings die Existenz von Ce₃Ga und Ce₅Ga₃ und berichtet als einzig existierende Phase Ce₃Ga₂ (peritektekisch Bildung bei $850 \pm 3 \,^{\circ}C$). Daneben existiert ein Eutektikum aus δ -Ce und Ce₃Ga₂ ($T = 495 \pm 3 \,^{\circ}C$, $w(Ga) = 18,3 \,^{\circ}$). Die Existenz der Phase Ce₃Ga₂ wurde in einer späteren Arbeit bestätigt [139].

Abbildung A. 29: Phasendiagramm Ce–Ga nach [140] (links) und [138] (rechts).

Die möglichen Phasen (Ce₃X)Ga (X = O, N, C) wären Auffüllungsvarianten von (Ce₃ \Box)Ga. Um die Existenz dieser binären Phase zu überprüfen, wurden zusätzliche Experimente durchgeführt. Ce und Ga wurde im molaren Verhältniss 75 : 25 im Lichtbogen zusammengeschmolzen. Die Probe wurde in Ta-Rohr eingeschweisst, in Kieselglas eingeschmolzen und vier Monate bei 480 ± 10 °C wärmebehandelt. Vor und nach der Wärmebehandlung wurde eine DSC-Messung angefertigt. Von der wärmebehandelte Probe wurde der H, C, N und O-Gehalt analysiert, ein metallografischer Schliff angefertigt und dieser im Rasterelektronenmikroskop untersucht.

Die erhaltenen Proben sind zu hart, um in einer Achatreibschale oder im Wolframcarbid-Mörser zu Pulver verarbeitet zu werden. Pulver für Diffraktorgramme wurden durch Abfeilen an einer Fläche aus dem Querschnitt der Schmelzkugel hergestellt. Die erhaltenen Röntgenpulverdiffraktogramme (z.B. Abbildung A. 30) zeigen nur wenige, zum Teil sehr breite Reflexe mit unterschiedlichen Halbwertsbreiten. Einige Reflexe können kubisch mit a = 515 pm indiziert werden. Die verbleibenden Reflexe können keiner bekannten Phase im System Ce–Ga zugeordnet werden. Wie in [138] bemerkt besitzt auch kfz- δ -Ce einen Gitterparameter von a = 516,5 pm und kommt für die beobachtete kubische Phase in Frage.

Abbildung A. 30 Röntgenpulverdiffraktogramm (Cu- $K\alpha_1$ -Strahlung) einer Legierung Ce₇₅Ga₂₅ (vier Monate, 480 °C wärmebehandelt).

Die $(w(H) \le 0,008 \%;$ $w(C) \le 0.015$ %; $w(N) = 0.11 \pm 0.01$ %; Elementaranalyse $w(O) = 0.11 \pm 0.01$ %) ergibt unter Berücksichtigung der Einwaage von Cer und Gallium eine Zusammensetzung von $Ce_{75}Ga_{25}O_{0.84 \pm 0.08}N_{0.96 \pm 0.09}$ (= $Ce_3GaO_{0.0068 \pm 0.0006}N_{0.0078 \pm 0.0007}$). Grössere Anteile an binären oder ternären Phasen mit H, C, N und O in der Probe können somit ausgeschlossen werden. Die Ergebnisse der DSC-Messung einer Probe vor der Wärmebehandlung Tabelle A. 51 sind in Abbildung A. 31 dargestellt und in

zusammengefaßt. Während der Aufheizphase sind bis 600 °C drei thermische Signale zu erkennen. Bei 700 °C wird ein weiteres sehr breites Signal beobachtet. Während des Abkühlens werden zwei thermische Effekte beobachtet. Die Aufheizkurve ist mit dem bekannten Phasendiagramm nicht in Einklang zu bringen. Die Probe ist nach dem Experiment in der Nb-Ampulle aufgeschmolzen, löst sich aber problemlos vom Tiegelmaterial.

Abbildung A. 31 DSC Experiment an einer Legierung der Zusammensetzung "Ce₃Ga", hergestellt im Lichtbogen aus den Elementen.

Die DSC-Messung an der wärmebehandelten Probe (s. Abbildung A. 32 und Tabelle A. 52) zeigt zwei Signale beim Aufheizen und beim Abkühlen. Die Abkühlkurven der DSC-Messungen der beiden Proben vor und nach der Wärmebehandlung sind identisch. Die Aufheizkurven unterscheiden sich jedoch deutlich. Die Probe vor der Wärmebehandlung ist somit nicht im thermodynamischen Gleichgewicht und kann nur schwer mit dem Phasendiagramm verglichen werden. Die Wärmebehandlung hat großen Einfluss auf die Phasenzusammensetzung. Die Aufheizkkurve der wärmebehandelten Probe sind mit den in [140] und [138] veröffentlichten Daten des Phasendiagramms in Übereinstimmung (s. Abbildung A. 29). Das erste Signal ($T_{\text{Onset}} = 495 \text{ °C}$) charakterisiert ein Eutektikum. Das $(T_{\text{Peak}} = 550 \text{ °C})$ ist beiden Phasendiagrammen zweite Signal in verzeichnet (s. Abbildung A. 29). Während in [140] die peritektische Bildung von Ce₃Ga (T = 557 °C)

angenommen wird, sind in [138] Punkte im Phasendiagramm verzeichnet, die nicht weiter kommentiert werden.

Abbildung A. 32 DSC-Messung (Nb-Ampulle, $\beta = 10$ K/min $T_{max} = 900$ °C, Haltezeit zwischen Heiz- und Abkühlphase: 10 min) der Legierung Ce₇₅Ga₂₅ (wärmebehandelt 480 ± 10 °C, vier Monate).

Tabelle A. 51: Themische Effekte der DSC-Messung ($\beta = 10$ K/min $T_{max} = 900$ °C, Haltezeit zwischen Heiz- und Abkühlphase: 10 min) an einer Legierung der Zusammensetzung "Ce₇₅Ga₂₅", hergestellt im Lichtbogen aus den Elementen.

Effekt	$T_{\text{Peak}}/$ °C	$T_{\text{Onset}} / ^{\circ}\text{C}$	Zuordnung nach [138]	<i>T</i> _[138] / °C	Heizphase
1	485 ± 5	-	Eutektikum Ce/Ce ₅ Ga ₃ //Ce ₃ Ga	495	Auf
2	495 ± 5	500 ± 5			
3	555 ± 5	560 ± 5	Ce ₃ Ga??	557	
4	700 ± 10	-			
5	685 ± 5	685 ± 5		798	Ab
6	490 ± 5	495 ± 5		726	

Tabelle A. 52: Thermische Effekte der DSC-Messung (Nb-Ampulle, $\beta = 10$ K/min $T_{\text{max}} = 900$ °C, Haltezeit zwischen Heiz- und Abkühlphase: 10 min) an einer Legierung der Zusammensetzung "Ce₃Ga", hergestellt im Lichtbogen aus den Elementen und wärmebehandelt (500 °C).

Effekt	$T_{\text{Peak}} / ^{\circ}\text{C}$	$T_{\text{Onset}} / ^{\circ}\text{C}$	Zuordnung nach [138]	<i>T</i> _[138] / °C	Heizphase
1	500 ± 5	495 ± 5	Eutektikum Ce/Ce ₅ Ga ₃ //Ce ₃ Ga	495	Auf
2	550 ± 5	-	?	-	
3	685 ± 5	685 ± 5		798	Ab
4	490 ± 5	495 ± 5		726	

Die Präparation des metallografischen Schiffes der wärmebehandelten Probe erfolgte unter inerten Bedingungen und wurde durch mindestens eine weiche Phase erschwert. Ein verschmieren des Gefüges ist die Folge und schmälert die Aussagekraft der anschließend durchgeführten EDX-Messungen. Der metallographische Schliff (s. Abbildung A. 33) zeigt mindestens zwei Phasen. In der EDXS-Analyse werden drei Phasen beobachtet: Zwei Phasen bestehen nahezu vollständig aus Ce. Bei der ersten heben sich in der EDXS-Analyse Signale vom Untergrund ab, die Ga zugeordnet werden können. Die Ga-Signale sind für eine quantitative Aussage zu schwach. In der zweiten Ce-haltigen Probe wurde ein erhöhter Sauerstoffwert festgestellt, der mit EDXS nicht quantifiziert werden kann. Signifikante Mengen an binären Ce-Oxiden sind nach der Elementaranalyse (s. o.) in der Probe nicht vorhanden. Sauerstoff aus der Atmosphäre hat somit bereits an der Oberfläche mit der Cehaltigen Phase reagiert. Die Hauptphase hat die Zusammensetzung Ce_{68,5}Ga_{31,5} und liegt zwischen Ce_{4,8}Ga_{3,2} [139] (= Ce₆₀Ga₄₀) und Ce₃Ga (= Ce₇₅Ga₂₅).

Zusammenfassend konnte in den hier durchgeführten Experimenten keine Ce–Ga-Phase mit dem molaren Verhältnis x(Ce) : x(Ga) von 3 : 1 nachgewiesen werden. Die thermischen Effekte, die in der Literatur gegeben sind, wurden in den DSC-Messungen bestätigt. Der metallografische Schliff zeigt ein zweiphasiges Produkt. Ce, das geringe Mengen an Ga gelöst hat und eine zweite Phase, die im Rahmen des experimentellen Fehlers mit keiner bekannten Ce–Ga-Phase übereinstimmt. Diese Phase zersetzt sich bei 550 °C. Das Phasendiagramm Ce–Ga bedarf einer intensiven Neu-Untersuchung im Bereich zwischen x(Ce) = 0,75 und x(Ce) = 0,6.

Abbildung A. 33Metallografischer Schliff einer wärmebehandelten (vier Monate,
480 °C)Legierung
Ce75Ga25Ce75Ga25(oben: 20 x Objektiv; unten:
50 x Objektiv; jeweils Hellfeld; Weitere Erklärungen im Text.

10.6. (SE₃N)Ga

$(Ce_3N)Ga (MM = 504,08 g/mol)$

Ce und CeN wurden im Lichtbogen aufgeschmolzen und Ga hinzugeschmolzen. Die Schmelzkugel aus dem Lichtbogen war trotz mehrfachem Aufschmelzens makroskopisch inhomogen: Ein innerer Kern war von einem äusseren Mantel umgeben. Die Probe wurde in eine Ta-Ampulle eingeschweißt, in Kieselglas eingeschmolzen und mehrfach wärmebehandelt. Zwischen jeder Wärmebehandlung, wurde die Probe intensiv in einer Achatreibschale homogenisiert und einer Tablette verpreßt. zu Nach jeder Wärmebehandlung wurde ein Röntgenpulverdiffraktogramm gemessen, an ausgewählten Proben wurde eine Elementaranalyse auf O und N angefertigt. Die Ergebnisse sind in Tabelle A. 54 zusammengefasst. Nach der zweiten Wärmebehandlung wurde im Röntgenpulverdiffraktogramm eine Phase beobachtet, deren Reflexe und Intensitäten mit einer geordneten kubischen Struktur aus Ce und Ga-Atomen im Sinne der Cu₃Au-Strukturtyps übereinstimmen (a = 498,63(5) pm). Auch nach mehreren Wärmebehandlungen wurden Reflexe von CeN beobachtet. Weitere Reflexe schwacher Intensität konnten keiner der beiden Phasen zugeordnet werden. Nach der fünfen Wärmebehandlung wurde eine DSC-Messung ($\beta = 10$ K/min $T_{max} = 1200$ °C, Nb-Ampulle, Tabelle A. 55). Die Probe war nach dem DSC-Experiment vollständig aufgeschmolzen. Die DSC-Messung zeigt einen sehr schwachen thermischen Effekt unterhalb von 800 °C und ein sehr starkes Signal bei $T_{\text{Onset}} = 880 \pm 10$ °C. Letzteres kann mit dem System Ce–Ga nicht in Zusammenhang gebracht werden und wird der Zersetzung von (Ce3N)Ga zugeordnet. Beim Abkühlen werden thermische Effekte des binären Phasendiagramms Ce-Ga beobachtet.

	$\beta_1 / °C/h$	$T_1 / °C$	t_1 / h	β_2 / °C/h	$T_2 / °C$	<i>t</i> ₃ / h	β_3 / °C/h	$T_3 / °C$
1	*	400	1344	*	-	-	-	-
2	36	450	48	1,5	700	168	-57	20
3**	73	900	168	-73	-	-	-	-
4	*	800	1344	*	-	-	-	-
5	*	800	168	*	-	-	-	-

Tabelle A. 53:Wärmebehandlungen für die Synthese von (Ce₃N)Ga.

* Ofen bereits auf Betriebstemperatur, am Ende in Wasser abgeschreckt.

** Dieses Programm wurde vier mal hintereinander angewandt, ohne die Probe aus dem Ofen zu holen

Tabelle A. 54:Ergebnisse der Röntgenbeugung und der Elementaranalyse an einer
Probe aus Ce, CeN und Ga (x(Ce) : x(Ga) : x(N) = 3 : 1 : 1) mit der
Zielsetzung $(Ce_3N)Ga (w(N)_{theo} = 2,78 \%)$ zu synthetisieren.

	<i>a /</i> pm	Nebenphasen	w(N) / %	w(O) / %
1	-	CeGa ₂ , CeN, CeGa	2,16 ± 0,02	\leq 0,10 %
2	498,17(2)	CeN	-	-
3	498,16(2)	CeN	-	-
4	498,27(3)	CeN	$2,76 \pm 0,12$	$0,\!10 \pm 0,\!01$
5	498,63(5)	CeN	$2,90 \pm 0,04$	$0,30 \pm 0,04$

Abbildung A. 34: Röntgenpulverdiffraktogramm (Cu- $K\alpha_1$ -Strahlung) eines Produkts aus Ce, CeN und Ga (x(Ce) : x(Ga) : x(N) = 3 : 1 : 1) nach fünf Wärmebehandlungen ($T_{max} = 950$ °C, $t_{min} = 168$ h).

Abbildung A. 35: DSC-Messung (Nb-Ampulle, $\beta = 10$ K/min $T_{max} = 1200$ °C) an (Ce₃N)Ga aus Ce, CeN und Ga (molares Verhältnis Ce : Ga : N von 3:1:1) nach fünfmaliger Wärmebehandlung ($T_{max} = 950$ °C, $t_{min} = 168$ h).

Tabelle A. 55:DSC-Messung ($\beta = 10$ K/min $T_{max} = 1200$ °C, Nb-Ampulle) einerProbe (Ce₃N)Ga nach der fünften Wärmebehandlung.

Effekt	$T_{\text{Onset}} / ^{\circ}\text{C}$	$T_{\text{Peak}} / ^{\circ}\text{C}$	Zuordnung	<i>T</i> _[138] / °C	Modus
1	880 ± 10	900 ± 5	Zersetzung von (Ce ₃ N)Ga?	-	Auf
2	-	830	Peritektische Bildung von	850	Ab
3	795	800	Ce ₅ Ga ₃ //Ce _{4,8} Ga _{3,2}	-	
4	485	480	Eutektikum Ce/Ce ₅ Ga ₃ //Ce ₃ Ga	495	
Tabelle A. 56: (Ce₃N)Ga: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms (Nebenphase: CeN) von mikrokristallinem Pulver [P 1] aus Ce, CeN und Ga (x(Ce) : x(Ga) : x(N) = 3 : 1 : 1) nach fünfmaliger Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}$ - $2\Theta_{\text{ber.}}$	Intensität	d _{gem.}	$d_{\rm ber.}$
1	17,788	1	0	0	17,774	0,0138	13,6	4,9824	4,9863
2	25,24	1	1	0	25,239	0,0009	6,9	3,5257	3,5258
3	31,047	1	1	1	31,04	0,0072	100	2,8782	2,8788
4	35,997	2	0	0	35,994	0,0029	61	2,4929	2,4931
5	40,416	2	1	0	40,417	-0,0001	5,3	2,2300	2,2299
6	51,814	2	2	0	51,819	-0,0048	31,5	1,7631	1,7629
7	55,193	3	0	0	55,22	-0,0272	2,1	1,6628	1,6621
8	61,649	3	1	1	61,643	0,0062	28	1,5033	1,5034
9	64,705	2	2	2	64,708	-0,0027	8,4	1,4395	1,4394
10	76,32	4	0	0	76,331	-0,0112	3,7	1,2467	1,2466
11	84,662	3	3	1	84,657	0,0047	8	1,1439	1,1439
12	87,393	4	2	0	87,399	-0,0064	8,8	1,115	1,115
13	98,386	4	2	2	98,369	0,0176	4,1	1,0177	1,0178
1		1	1	1	1	1	1	1	1

Pm $\overline{3}m$; Nr. 221; a = 498,63(5) pm; $V = 123,97(2) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,034(7)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,027^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,008^\circ$; FOM(13) = 72,0 (0,08; 22); Cu-*K* α_1 -Strahlung.

$(Pr_3N)Ga (MM = 506,45 g/mol)$

In analoger Weise zu den Versuchen zu (Ce₃N)Ga wurde eine Probe mit *SE* = Pr vorbereitet. Die erhaltene Schmelzkugel wurde in Mo-Folie gewickelt, in Kieselglas eingeschmolzen und wärmebehandelt. (1. 20 °C; 2. 23 °C/h; 3. 580 °C, 48 h; 4. 5 °C/h; 5. 700 °C, 120 h; 6. -20 °C/h; 7. 460 °C, 168 h; 8. an Luft abgeschreckt).

Die erhaltene Probe war partiell aufgeschmolzen und wies matt-metallisches Aussehen auf. Ein Volumenverlust während der Wärmebehandlung war an tiefen Kerben der Schmelzkugel zu erkennen. Das Röntgenpulverdiffraktogramm (s. Abbildung A. 36) zeigt nur eine Phase, deren Reflexe in Lage und Intensität mit einer geordneten kubischen Struktur aus Pr und Ga-Atomen übereinstimmen (s. Tabelle A. 47). Unter Berücksichtigung der Elementaranalyse ($w(N) = 2,55 \pm 0,02\%$; $w(O) = 0,43 \pm 0,06\%$) und der Annahme x(Pr): x(Ga) = 3: 1 ergibt sich $Pr_3GaN_{0.924 \pm 0.007}O_{0.14 \pm 0.02}$. Die DSC-Messung (Nb-Ampulle, $\beta = 10$ K/min, $T_{\text{max}} = 1200$ °C, s. Abbildung A. 37) zeigt beim Aufheizen einen schwachen thermischen Effekt bei $T_{\text{Onset}} = 580 \pm 10 \text{ °C}$ (Eutektikum Pr/Pr₂Ga) und ein sehr deutliches Signal bei $T_{\text{Onset}} = 1075 \pm 10$ °C. Letzteres kann nicht mit dem binären Phasendiagramm Pr-Ga [140, 182] erklärt werden. Die Abkühlkurve zeigt einen breiten thermischen Effekt bei $T_{\text{Onset}} = 1025 \pm 10 \text{ °C}$ und wird als Rückreaktion zu $T_{\text{Onset}} = 1075 \pm 10 \text{ °C}$ beim Aufheizen interpretiert. Weitere Signale bei tieferer Temperatur lassen sich mit dem binären Phasendiagramm Pr-Ga interpretieren (s. Tabelle A. 57). Das Röntgenpulverdiffraktogramm, das nach dem DSC-Experiment aufgenommen wurde, zeigt Wesentlichen die Phasen (Pr₃N)Ga (a = 494, 17(6) pm) $\Delta 2\Theta = -0.040(9);$ im FOM(17) = 77,4) und PrN (a = 515,30(5) pm, $\Delta 2\Theta = -0,027(7)$; FOM(7) = 70,0). Keine Reflexe bekannter binärer Pr-Ga-Phasen (Pr₃Ga, Pr₂Ga, Pr₅Ga₃, PrGa₂, PrGa₆) wurden beobachtet. (Pr₃N)Ga zersetzt sich bei $T = 1075 \pm 10$ °C.

Abbildung A. 36: Röntgenpulverdiffraktogramm (Cu- $K\alpha_1$ -Strahlung) von (Pr₃N)Ga, hergestellt aus Pr, PrN und Ga (molares Verhältnis Pr : Ga : N von 3 : 1 : 1) nach einer Wärmebehandlung ($T_{max} = 700$ °C, $t_{min} = 120$ h).

Tabelle A. 57: (Pr₃N)Ga: Vergleich der gemessenen ($2\Theta_{gem.}$) und berechneten ($2\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] aus Pr, PrN und Ga (x(Pr) : x(Ga) : x(N) = 3 : 1 : 1) nach einer Wärmebehandlung ($T_{max} = 700$ °C, $t_{min} = 120$ h).

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}$ - $2\Theta_{\text{ber.}}$	Intensität	d _{gem.}	$d_{\rm ber.}$
1	17,952	1	0	0	17,937	0,0152	31,8	4,9371	4,9413
2	25,471	1	1	0	25,472	-0,0015	21,2	3,4942	3,494
3	31,346	1	1	1	31,33	0,0166	100	2,8514	2,8528
4	36,343	2	0	0	36,333	0,0103	55,8	2,47	2,4706
5	40,815	2	1	0	40,801	0,0142	15,8	2,2091	2,2098
6	44,875	2	1	1	44,897	-0,0218	12,7	2,0182	2,0173
7	52,32	2	2	0	52,326	-0,0061	34,6	1,7472	1,747
8	55,745	3	0	0	55,767	-0,0021	12,1	1,6477	1,6471
9	59,093	3	1	0	59,072	0,0209	11,2	1,5621	1,5626
10	62,259	3	1	1	62,267	-0,0079	33,9	1,49	1,4899
11	65,36	2	2	2	65,37	-0,0105	16,4	1,4266	1,4264
12	68,423	3	2	0	68,398	0,0246	10,9	1,37	1,3705
13	71,377	3	2	1	71,364	0,0127	10,6	1,3204	1,3206
14	77,15	4	0	0	77,153	-0,0038	13,8	1,2354	1,2353
15	79,995	4	1	0	79,995	0,0004	11,2	1,1984	1,1984
16	82,829	3	3	0	82,812	0,0178	10,9	1,1645	1,1647
17	85,598	3	3	1	85,611	-0,0131	17,6	1,1337	1,1336
18	88,396	4	2	0	88,4	-0,0041	18,2	1,1049	1,1049
19	91,229	4	2	1	91,185	0,0444	11,4	1,0779	1,0783
20	94,016	3	3	2	93,973	0,0435	11	1,0531	1,0535
21	99,571	4	2	2	99,584	-0,0129	15,9	1,0087	1,0086

Pm $\overline{3}m$; Nr. 221; a = 494,13(2) pm; $V = 120,648(9) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,0387^\circ$; $\Delta 2\Theta_{\text{max}} = 0,044^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,015^\circ$; FOM(21) = 64,9 (0,015; 21); Cu-*K* α_1 -Strahlung.

Auf
Ab

Tabelle A. 58: Thermische Effekte der DSC-Messung ($\beta = 10 \text{ K/min } T_{\text{max}} = 1200 \text{ °C}$, Nb-Ampulle) einer Probe (Pr₃N)Ga.

Abbildung A. 37: DSC-Messung (Nb-Ampulle, $\beta = 10$ K/min $T_{max} = 1200$ °C) an (Pr₃N)Ga aus Pr, PrN und Ga (molares Verhältnis Pr : Ga : N von 3:1:1) nach einer Wärmebehandlung ($T_{max} = 700$ °C, $t_{min} = 120$ h).

(Sm₃N)Ga (*MM* = 534,81 g/mol)

Sm und Ga wurden im Lichtbogen zu einer homogenen Schmelzkugel umgesetzt (x(Sm) : x(Ga) = 2 : 1). Anschließend wurde das Produkt in einer Achatreibschale zerstossen und mit der entsprechenden Menge SmN verrieben (x(Sm) : x(Ga) : x(SmN) = 2 : 1 : 1). Das Gemenge wurde zu einer Tablette gepreßt und zwei mal (1.700 °C, 336 h; 2.700 °C, 1344 °C) in Ta-Ampullen wärmebehandelt.

Das erhaltene Röntgenpulverdiffraktogramm zeigt nur wenige Reflexe schwacher Intensität, die keiner kubischen Phase zugeordnet werden können (s. Abbildung A. 38). Aus der Elementaranalyse ($w(H) \le 0,008$ %; $w(N) = 2,59 \pm 0,23$ %; $w(O) = 0,11 \pm 0,03$ %) ergibt sich die Zusammensetzung Sm₃SnN_{0,99 \pm 0,09}O_{0,037 \pm 0,01}.

Abbildung A. 38: Röntgenbeugung (Cu- $K\alpha_1$ -Strahlung) an mikrokristallinem Pulver der Zusammensetzung Sm₃SnN_{0,99±0,09}O_{0,04±0,01}, hergestellt aus Sm, SmN und Ga nach zweimaliger Wärmebehandlung.

Tabelle A. 59: (Sm₃N)Ga: Vergleich der gemessenen ($2\Theta_{gem.}$) und berechneten ($2\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] aus Sm, SmN und Ga (x(Sm) : x(Ga) : x(N) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	2 Øber.	$2\Theta_{\text{gem.}}$ – $2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	18,296	1	0	0	18,294	0,0020	9,8	4,8450	4,8455
2	25,989	1	1	0	25,985	0,0046	6,4	3,4257	3,4263
3	31,959	1	1	1	31,965	-0,0064	100,0	2,7981	2,7976
4	37,073	2	0	0	37,077	-0,0046	56,5	2,4230	2,4228
5	41,645	2	1	0	41,645	0,0000	6,3	2,1670	2,1670
6	45,844	2	1	1	45,834	0,0094	2,0	1,9778	1,9782
7	53,435	2	2	0	53,441	-0,0065	34,6	1,7133	1,7131
8	56,970	3	0	0	56,968	0,0022	2,0	1,6151	1,6152
9	60,368	3	1	0	60,359	0,0087	1,3	1,5321	1,5323
10	63,635	3	1	1	63,640	-0,0048	37,2	1,4611	1,4610
11	66,821	2	2	2	66,829	-0,0086	10,4	1,3989	1,3988
12	69,957	3	2	0	69,945	0,0121	0,5	1,3437	1,3439
13	73,003	3	2	1	72,999	0,0038	1,1	1,2950	1,2950
14	78,964	4	0	0	78,972	-0,0080	5,0	1,2115	1,2114
15	81,883	4	1	0	81,909	-0,0260	1,3	1,1755	1,1752
16	87,721	3	3	1	87,727	-0,0054	13,5	1,1117	1,1116
17	90,648	4	2	0	90,623	0,0249	13,7	1,0833	1,0835
18	93,544	4	2	1	93,521	0,0229	1,6	1,0572	1,0574
19	96,408	3	3	2	96,429	-0,0204	0,5	1,0332	1,0331

Pm $\overline{3}m$; Nr. 221; a = 484,55(5) pm; $V = 113,77(2) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,033(8)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,026^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,010^\circ$; FOM(19) = 99,6 (0,010; 20); Cu-*K* α_1 -Strahlung.

(Gd₃N)Ga (*MM* = 555,48 g/mol)

Wie bei der Synthese von (Sm₃N)Ga wurde eine Tablette aus "Gd₂Ga" und GdN hergestellt. Diese wurde anschließend im Lichtbogen kurz aufgeschmolzen und mehrmals wärmebehandelt (s. Tabelle A. 60). Dazwischen wurde die Probe im Wolframcarbid-Mörser oder Achatreibschalen gut verrieben und erneut zu Tabletten verpreßt. Nach jeder Wärmebehandlung wurde ein Röntgenpulverdiffraktogramm gemessen. Mikrokristalline Pulver der hier dargestellten Gd-Verbindungen wurden bevorzugt mit Co- $K\alpha_1$ -Strahlung untersucht⁴⁰. Nach der ersten Wärmebehandlung sind im Röntgenpulverdiffraktogramm keine Reflexe von (Gd₃N)Ga zu erkennen. Nach der zweiten Wärmebehandlung stellt (Gd₃N)Ga die Hauptphase dar. Die Bestimmung des Gitterparameters von (Gd₃N)Ga wird durch starke Überlappung der Reflexe von Gd₅Ga₃ und (Gd₃N)Ga erschwert. Die Reflexe (100) und (210) von (Gd₃N)Ga (s. Abbildung A. 40) sind gut zu erkennen und erlauben eine Zuordnung der Struktur der Elementarzelle zu einem primitiven Gitter. Im Gegensatz zu Verbindungen (SE₃X)In oder (SE₃X)Sn kann die Raumgruppe $Fm\overline{3}m$ ausgeschlossen werden. Gd und Ga-Atome ordnen sich in der Struktur somit dem Cu₃Au-Strukturtyp entsprechend ($Pm\overline{3}m$). Erst nach der dritten Wärmebehandlung sind die Reflexe ausreichend aufgelöst um einen Gitterparameter zu bestimmen.

Tabelle A. 60:Wärmebehandlungen einerProbe aus Gd, GdN und Ga(x(Gd) : x(Ga) : x(N) = 3 : 1 : 1).

	β_1 / °C/h	$T_1 / °C$	<i>t</i> ₁ / h	β_2 / °C/h	$T_2 / °C$	<i>t</i> ₃ / h	$\beta_3 / °C/h$	$T_3 / °C$	<i>t</i> ₃ / h	β_4 / °C/h
1	37	900	168	-37	20	-	-	-	-	-
2	*	600	1344	**	*	-	-	-	-	-
3	97	700	0	1,2	900	0	100	740	2900	**
4	600	1100	0	-600	200	-	-	-	-	-

* Ofen befand sich bereits vor der Wärmebehandlung auf T_1

** Ta-Ampulle durch zerschlagen der Kieselglasampulle in Wasser abgeschreckt.

Nach der Wärmebehandlung 3 wurde eine DSC-Messung durchgeführt (Nb-Ampulle, $\beta = 10$ K/min; $T_{max} = 1200$ °C). Nach der Messung war die Probe augenscheinlich aufgeschmolzen. Ein für (Gd₃N)Ga charakteristischer thermischer Effekt wurde nicht

⁴⁰ Die Energien der Absorbtionskante Gd- L_1 (8376 eV) und Gd- L_2 -kante (7930 eV) liegen – ähnlich wie die Eu- L_1 -kante (8052 eV) – nahe der Energie der Cu- $K_{\alpha 1}$ -Strahlung (λ (Cu- $K_{\alpha 1}$) = 0,154877 nm = E = 8047,78 eV). Eine erhöhte spezifische Absorbtion der Probe ist die Folge. Bei Co-Strahlung (λ (Co- $K_{\alpha 1}$) = 0,179849 nm = E =6930,32 eV) ist dieser Absortionseffekt geringer. Andererseits werden mit Co- $K_{\alpha 1}$ -Strahlung eine geringere Anzahl von Reflexen beobachtet.

beobachtet, vielmehr sind alle Signale binären Phasen des Systems Gd–Ga zuzuordnen (s. Tabelle A. 63).

Tabelle A. 61:Auswertung der Röntgenbeugung an mikrokristallinen Pulvern, hergestellt
aus Gd, GdN und Ga (x(Gd) : x(Ga) : x(N) = 3 : 1 : 1) nach verschiedenen
Wärmebehandlungen. Die Lagen der Reflexe von (Gd₃N)Ga sind ungenau
bestimmt.

	Strahlung	Enthaltene Phasen	$a(Gd_3GaN) / pm$	<i>a</i> (GdN) / pm
1	Cu- $K\alpha_1$	GdN, $Gd_5Ga_3^{[184]}$	-	497,96(4)
2	Cu- $K\alpha_1$	GdN, Gd ₅ Ga ₃ , Gd ₃ GaN//*	≈ 480(1)	≈ 497(2)
		Gd ₃ GaN Hauptphase		
3	Co- $K\alpha_1$	GdN, Gd5Ga3, Gd3GaN//	480,38(8)	495,90(8)
		Gd ₃ GaN Hauptphase		
4	Co- $K\alpha_1$	GdN, Gd ₅ Ga ₃ , Gd ₃ GaN//	Auswertung nic	ht möglich, zu
		Gd ₃ GaN Hauptphase	starke Reflexüberl	appung

Wie bei (Gd₃N)Al weicht der Gitterparameter von GdN (a = 495,90(8) pm), der aus dem Röntgenpulverdiffraktogramm nach der DSC-Messung an (Gd₃N)Ga bestimmt wurde, signifikant von reinem GdN (a = 499,70(1) pm) ab. Dies kann ein Hinweis auf eine Phasenbreite mit einem oder mehreren im System befindlichen Komponenten einschließlich Sauerstoff als Verunreinigung sein: z.B. GdN_{1-y}, Gd_{1-y}Ga_yN, GdN_{1-y}O_y. Eigene Experimente lassen eine Abnahme des Gitterparameters durch den Einbau von Sauerstoff vermuten (s. Tabelle A. 62).

Tabelle A. 62:Ergebnisse der chemischen Analysen verschiedener Proben von
Gadoliniumnitrid, hergestellt aus N2 und Gd (GdN: $w(N)_{theo} = 8,18$ %):
Gitterparameter aus Röntgenbeugungsdaten am Pulver, O und N-Gehalt
aus der Elementaranalyse.

w(N) / %	w(O) / %	<i>a</i> / pm	$\Delta 2\Theta/\circ$	Anzahl der Reflexe	FOM
$7,24 \pm 0,10$	< 0,10	499,70(1)	0,0284	9	101,6
$6{,}33\pm0{,}12$	$0{,}28\pm0{,}08$	499,45(3)	0,0069	9	41,0
$7,\!64\pm0,\!02$	$0,\!28\pm0,\!03$	498,39(2)	-0,0124	9	60,3
$7,\!64 \pm 0,\!01$	$0,\!38\pm0,\!02$	498,05(2)	0,0083	9	53,6

Tabelle A. 63: einer Probe Gd, GdN **DSC-Messung** an aus und Ga (x(Gd) : x(Ga) : x(N) = 3 : 1 : 1; $\beta = 10$ K/min, $T_{\rm max} = 1100 \ ^{\circ}{\rm C},$ Nb-Ampulle). Das Röntgenpulverdiffraktogramm zeigt die Phasen GdN, Gd₅Ga₃, Gd₃GaN (Hauptphase, s. Abbildung A. 40).

Effekt	$T_{\text{Onset}} / ^{\circ}\text{C}$	$T_{\text{Peak}} / °C$	Zuordnung	$T^{[184]} / ^{\circ}\mathrm{C}$	Heizmodus
1	840	850	Eutektikum Gd5Ga3/Gd	850	Auf
2	-	1045	Zersetzung Gd ₃ Ga ₂	1010	
3	-	1060	Liquidus		
4	1055	1045	Liquidus		
5	-	1020	Zersetzung Gd ₃ Ga ₂	1010	Ab
6	835	835	Eutektikum Gd ₅ Ga ₃ /Gd	850	

Abbildung A. 39: DSC-Messung (Nb-Ampulle, $\beta = 10$ K/min $T_{max} = 1100$ °C) von (Gd₃N)Ga hergestellt aus Ga, GdN und Ga (molares Verhältnis Gd : Ga : N von 3 : 1 : 1). Das Röntgenpulverdiffraktogramm zeigt die Phasen GdN, Gd₅Ga₃, Gd₃GaN (Hauptphase).

Tabelle A. 64: (Gd₃N)Ga: Vergleich der gemessenen ($2\Theta_{gem.}$) und berechneten ($2\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] (Hauptphase: (Gd₃N)Ga ; Nebenphasen: GdN, Gd₅Ga₃) nach der Wärmebehandlung; hergestellt aus Gd, GdN und Ga (x(Gd) : x(Ga) : x(N) = 3 : 1 : 1).

	$2\Theta_{\text{gem.}}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}$ – $2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	21,456	1	0	0	21,462	-0,0065	12,6	4,8053	4,8038
2	37,627	1	1	1	37,63	-0,0025	100	2,7737	2,7735
3	43,725	2	0	0	43,728	-0,0026	62,5	2,4021	2,4019
4	49,209	2	1	0	49,21	-0,0009	4,6	2,1484	2,1483
5	63,561	2	2	0	63,56	0,0009	29,8	1,6984	1,6984
6	67,911	3	0	0	67,919	-0,0082	1,5	1,6014	1,6013
7	72,182	3	1	0	72,147	0,0352	0,8	1,5185	1,5191
8	76,289	3	1	1	76,277	0,0122	27,7	1,4482	1,4484
9	80,32	2	2	2	80,335	-0,0144	8,6	1,387	1,3867
10	96,272	4	0	0	96,285	-0,0128	3,7	1,2011	1,201
$Pm\overline{3}m;$	$Pm\overline{3}m;$ Nr. 221; $a = 480,38(8) \text{ pm};$				m; $V = 110,86($	$(3) \cdot 10^6 \text{ pm}^3$	³ ; Δ2 <i>0</i>	9 = -0,02(1)	

 $\Delta 2 \Theta_{\text{max}} = 0,035^{\circ}; \Delta 2 \Theta_{\text{mitt}} = 0,010^{\circ}; \text{FOM}(10) = 99,6 \ (0,010; \ 15); \text{Co-}K\alpha_1\text{-Strahlung}.$

Tabelle A. 65:GdN: Vergleich der gemessenen $(2 \Theta_{gem.})$ und berechneten $(2 \Theta_{ber.})$ Reflexe
(*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung eines
Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] (Hauptphase:
(Gd₃N)Ga ; Nebenphasen: GdN, Gd₅Ga₃) nach der Wärmebehandlung;
hergestellt aus Gd, GdN und Ga (x(Gd) : x(Ga) : x(N) = 3 : 1 : 1).

)°;

_		$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	d _{gem.}	d _{ber.}
-	1	36,415	1	1	1	36,411	0,0043	37,5	2,8627	2,8631
	2	42,298	2	0	0	42,293	0,0046	26,1	2,4792	2,4795
	3	61,349	2	2	0	61,352	-0,0033	14,8	1,7533	1,7533
	4	73,481	3	1	1	73,488	-0,0078	12,6	1,4953	1,4952
	5	77,332	2	2	2	77,342	-0,0097	5,6	1,4317	1,4315
	6	92,37	4	0	0	92,358	0,0117	2,3	1,2396	1,2397
Fm3n	n;	Nr. 225	•	a =	- 49	5,90(8) p	V = 121,95($(3) \cdot 10^6 \text{ pm}^3$	$\beta; \Delta 2 c$	$9 = -0,06(1)^{\circ};$
					~					

 $\Delta 2\Theta_{\text{max}} = 0,012^{\circ}; \Delta 2\Theta_{\text{mitt}} = 0,006^{\circ}; \text{FOM}(10) = 145,0 \ (0,007; 6); \text{Co-}K\alpha_1\text{-Strahlung}.$

Abbildung A. 40: Röntgenpulverdiffraktogramm (schwarz, Co- $K\alpha_1$ -Strahlung) einer Probe aus Gd, GdN und Ga (x(Gd) : x(Ga) : x(N) = 3 : 1 : 1) Zusammen mit den berechneten Diffraktogrammen von Gd₅Ga₃ [184] (grün) und GdN (blau) sowie Reflexlagen und berechnetes Diffraktogramm von (Gd₃N)Ga (rot). Die Reflexe (100) und (210) (rote Ovale) von (Gd₃N)Ga sind hervorgehoben und ermöglichen die Zuordnung der Phase zur Raumgruppe $Pm\overline{3}m$.

Tabelle A. 66: Gd_5Ga_3 : Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] (Hauptphase:(Gd_3N)Ga ; Nebenphasen: GdN, Gd_5Ga_3) nach der Wärmebehandlung;hergestellt aus Gd, GdN und Ga (x(Sm) : x(Ga) : x(N) = 3 : 1 : 1).

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}$ – $2\Theta_{\text{ber.}}$	Intensität	d _{gem.}	d _{ber.}
1	30,579	2	0	2	30,619	-0,0396	5,7	3,3921	3,3878
2	30,96	2	1	1	30,975	-0,0157	4	3,3514	3,3497
3	34,989	1	1	4	34,971	0,0018	4	2,9756	2,977
4	37,45	2	1	3	37,434	0,0016	47,7	2,7863	2,7874
5	38,341	2	2	0	38,327	0,0142	5,9	2,7239	2,7249
6	40,062	2	0	4	40,042	0,0199	14,5	2,6114	2,6126
7	43,067	3	1	0	43,062	0,0049	14,6	2,437	2,4372
8	48,144	2	1	5	48,135	0,0091	1,5	2,193	2,1934
9	50,056	3	2	1	50,068	-0,0124	1,2	2,1143	2,1138
10	57,717	4	1	1	57,716	0,0018	2,1	1,8533	1,8533
11	58,989	3	3	0	58,996	-0,0074	1	1,8168	1,8166
12	61,919	4	1	3	61,915	0,0038	3,5	1,7388	1,7389
13	62,545	4	2	0	62,534	0,0109	1,4	1,7231	1,7234
14	63,503	3	1	6	63,539	-0,0356	2,5	1,6998	1,6989
15	67,156	3	3	4	67,144	0,0123	2,5	1,6173	1,6176

P4/ncc; Nr. 130; a = 770,7(3) pm; c = 1421,7(8) pm; $V = 884,5(9) \cdot 10^{6}$ pm³; $\Delta 2 \Theta = -0,02(2)^{\circ}; \Delta 2 \Theta_{max} = 0,040^{\circ}; \Delta 2 \Theta_{mitt} = 0,015^{\circ};$ FOM(15) = 19,5 (0,015; 52); Co-*K* α_1 -Strahlung.

$(Tb_3N)Ga (MM = 560,51 \text{ g/mol})$

Für mikrokristalline Pulver von (Tb₃N)Ga wurden vor der Wärmebehandlung Tb, TbN und Ga im Lichtbogen zusammensgeschmolzen. Die Probe wurde in Mo-Folie gewickelt und mehrfach wärmebehandelt (s. Tabelle A. 67). Die nach den Wärmebehandlungen aufgenommenen Röntgenbeugungsdiagramme der Probe ähneln einander sehr. TbN liegt neben Tb₅Ga₃ und einer weiteren Phase vor. Die Reflexe dieser unbekannten Phase stimmen in Lage und Intensität mit einem geordneten kubischen Struktur aus Tb und Ga-Atomen im Sinne des Cu₃Au-Strukturtyps überein. Die Elementaranalyse ($w(N) = 2,48 \pm 0,03$ %;

 $w(O) = 0,14 \pm 0,01$ %; Tb₃GaN: $w(N)_{\text{theo}} = 2,50$ %) ergibt unter Berücksichtigung eines molares Verhältnisses von x(Tb) : x(Ga) von 3 : 1 Tb₃GaN_{0,994±0,012}O_{0,049±0,004}. Kombinierte Metallografie mit REM-Untersuchungen ergänzen das Bild. Das Gefüge zeigt drei Phasen (s. Abbildung A. 41).

100 um BSE2 25 kV 20 nA

Abbildung A. 41:Das metallografische Gefüge einer Probe der Zusammensetzung Tb₃GaN_{0,994±0,012}O_{0,049±0,004} (Hellfeld, 20 x Objektiv) zeigt mindestens drei Phasen (oben). Im Rasterelektronenmikroskop sind hingegen nur zwei Phasen eindeutig zu erkennen (unten).

Eine dieser Phasen weist einen Kontrastierungswechsel im polarisierten Licht auf. Diese Phase wird Tb₅Ga₃ als einziger nicht-kubischer Phase im System zugeordnet. Die anderen beiden Phasen (Tb(N) und (Tb₃N)Ga) zeigen diesen Effekt nicht. In den REM-Aufnahmen wird der seltene Fall beobachtet, dass nur zwei statt drei Phasen in der Metallografie beobachtet werden. Die EDX-Analyse ergibt für die Hauptphase eine Zusammensetzung von Tb : Ga von 3 : 1 (x(Tb) = 76 %, x(Ga) = 24 %)) und wird (Tb₃N)Ga zugeordnet. Für die zweite Phase wird eine Zusammensetzung x(Tb) = 64 % und x(Ga) = 36 % erhalten. Diese Phase wird Tb₅Ga₃ (x(Tb) = 62,5 %, x(Ga) = 37,5 %) zugeordnet. In einzelnen Bereichen ergibt die EDX-Analyse aussschließlich ein Signal für Tb (TbN).

Tabelle A. 67:Wärmebehandlungen einer Probe aus Tb, TbN und Ga mit der Zielsetzung,
(Tb₃N)Ga darzustellen.

	$\beta_1 / °C/h$	$T_1 / °C$	<i>t</i> ₁ / h	$\beta_2 / °C/h$	$T_2 / °C$	<i>t</i> ₃ / h	β_3 / °C/h	$T_3 / °C$
1	65	800	0	26,7	950	340	-77,5	20
2	77,5	950	336	-77,5	20	-	-	-
3	77,5	950	336	-77,5	20	-	-	-

Tabelle A. 68:Gitterparameter aus der Verfeinerung von Röntgenpulverdaten (Cu- $K\alpha_1$ -
Strahlung) von (Tb₃GaN).

	<i>a</i> / pm	$\Delta 2\Theta/\circ$	Reflexe	FOM
1	475,69(2)	-0,0293	14	113,3
2	475,50(1)	-0,0405	14	163,5
3	475,67(3)	-0,0253	14	56,5

Versuche zu (SE₃N)Ga, SE = Er

Er und Ga wurden im Lichtbogen zusammengeschmolzen, im Wolframcarbid-Mörser zu Pulver zerstoßen, mit der entsprechenden Menge ErN vermengt, zu Tabletten gepreßt und wärmebehandelt (800 °C, 336 h, Abschrecken in Wasser). Das anschließend gemessenen Röntgenpulverdiffraktogramm zeigt nur die Phasen Er₃Ga₂, Er₅Ga₃ und ErN. Die Elementaranalyse ergab $w(O) = 0,22 \pm 0,01$ % und $w(N) = 2,28 \pm 0,02$ %. Unter der Annahme x(Er) : x(Ga) = 3 : 1 ergibt sich die Summenformel Er₃GaN_{0,954±0,008}O_{0,081±0,004}. (Er₃NGa: $w(N)_{theo} = 2,39$ %). Diese Versuche ergaben keine Hinweise auf die Existenz der Er-Verbindung (*SE*₃N)Ga

10.7. (*SE*₃□)In

Literaturübersicht zu La₃In

Erstmals wurde La₃In 1958 von A. Iandelli auf einer Konferenz vorgestellt $[74]^{41}$. Supraleitung an La₃In wurde 1961 [97] berichtet.

Die Bildung von La₃InO_y als eine irgendwie geartete interstitielle Verbindung wird erwogen, ohne dass ein Gitterparameter für die Verbindung angegeben wird. Ebenso werden B und Si für eine Auffüllung der Oktaederlücken in einer kubisch dichtesten Struktur aus La und In-Atomen in Betracht gezogen. Die Zugabe von C erniedrigt T_c merklich [96].

In [93] wird La₃In sehr ausführlich untersucht: die thermodynamischen und magnetischen Eigenschaften, Kerneigenschaften (In¹¹⁵-NMR) sowie die Zulegierung von C und Metallen im Sinne von La₃In_{1-x} M_x mit M = Al, Ga, Cd, Sn und Tl werden untersucht. Aus den Ergebnissen dieser Untersuchung wird La₃In als stark koppelnder Supraleiter beschrieben, dessen Stabilität durch eine Substitution auf der In-Lage nur wenig beeinflusst wird. Eine Auffüllung der Oktaederlücken des La mit C im Sinne eines anti-Perowskit hingegen führt zur Unterdrückung der Supraleitung, da die C-Atome offensichtlich die elektronische Situation drastisch ändern.

Bereits in [102] werden verschiedene Substitutionen von La und In in La₃In untersucht. La₃In, aus den Elementen im Lichtbogen hergestellt, zeigt unabhängig von In-Gehalt dieselben Wert für T_c . Bezüglich wärmebehandelter Proben beobachten die Autoren bei Zusammensetzungen mit x(La) > 75 % einen etwas niedrigeren Wert für T_c ($T_c = 9,54$ K) als bei Proben mit exakter Zusammensetzung La₃In ($T_c = 9,72$ K) oder In-reicheren Proben (x(In) > 25 %, $T_c = 9,68$ K). Aus diesem Ergebnis schließen die Autoren auf eine Phasenbreite für Proben mit x(La) > 75 %, was eine Unordnung auf den La und In Lagen zur Folge haben müsse. T_c korreliert mit der Temperatur der Wärmebehandlung. Je tiefer die Temperatur desto höher T_c . Die Beobachtung wird mit einer stärkeren Ordnung von La und In bei tiefen Temperaturen in Zusammenhang gebracht. Weiter wurden die mechanischen Eigenschaften quantifiziert: Die Zugspannung wurde für eine langsam abgekühlte Probe bestimmt (19,7 kg/mm⁻²). Nach Aussage der Autoren ist dieser Wert vergleichbar mit einem schwach C-dotierten Stahl. Das Material weist also eine nicht zu vernachlässigende Härte auf. Dabei wird gleichzeitig die Reduktion der Querschnittsfläche bestimmt – die ein Maß für die Duktilität darstellt. Der erhaltene Wert von 4 % wird als sehr gut für eine

⁴¹ Im Entsprechenden Dokument [74] heißt es lapidar: "M₃Ga and M₃In compounds also crystallise in this structure" wobei M = La, Ce, Pr, Nd, Sm und "this structure" auf den Cu₃Au-Strukturtyp Bezug nimmt. Diese Literatur wird von Matthias et al. [97] als ursprüngliche Literatur zitiert.

intermetallische Verbindung bezeichnet. Die Autoren untersuchen den Einbau von Elementen (H, B, N, C, O, Si) im Sinne eines metallreichen Perowskits. Bis auf C und Si wird kein Einfluss auf T_c festgestellt. Die Autoren bemerken allerdings nicht sicher zu sein, ob die erwähnten Elemente auch tatsächlich eingebaut wurden⁴². Die Analysenmethoden sind Messungen der magnetischen Suszeptibilität und Röntgenbeugung an Pulvern. Die Autoren machen keine weiteren Angaben über die Ergebnisse der Charakterisierung ihrer Produkte. Interessant ist die Anmerkung, dass bei der Verbindung von La mit einem Metall M die Abstände La–La um 3,4–4,2 % im Vergleich zum Metall sinken, wohingegen das verfügbare Volumen der Metalle M um 20–70 pm³ größer ist als im reinen Metall M. Dies bedeutet, dass La zu Gunsten des Metalls M schrumpft. Grob gesprochen kann dies als Ladungstransfer von La auf M interpretiert werden.

⁴² An attempt was made to insert small interstitial atoms (H, B, C, N, O and Si) into the body centered site of La₃In, but only C and Si had any effect on T_c . Either the other elements were insoluble in La₃In or if they did dissolve they did not change T_c .

$La_{3}ln (MM = 531,55 g/mol)$

Von La₃In wurden verschiedene Proben hergestellt. Hierzu wurden La und In im molaren Verhältniss 3 : 1 im Lichtbogen zusammengeschmolzen, in Ta-Folie gewickelt, in Kieselglasampullen eingeschweißt und wärmebehandelt. Details zu Synthese und Analyse sind in Tabelle A. 69.

Tabelle A. 69:Ergebnisse der chemischen Analysen an Verbindungen der
Zusammensetzung "La $_3$ In"; die Wärmebehandlung T_w dauerte, wenn nicht
anders vermerkt, 13 Monate.

$T_{\rm w}$	w(O) / %	w(N) / %	w(H) / %	Bruttoformel	<i>a</i> / pm	$T_c / °C$
300 °C	-	-	-	-	506,2(3)	-
500 °C	< 0,10	$0,083 \pm 0,005$	< 0,008	$La_{3}InN_{0,03 \pm 0,02}$	507,2(3)	$9,53 \pm 0,02$
700 °C	< 0,10	$0,12 \pm 0,04$	< 0,008	$La_{3}InN_{0,05 \pm 0,02}$	506,3(3)	9,43 ± 0,02

Tabelle A. 70: (La₃ \Box)In: Vergleich der gemessenen (2 $\Theta_{gem.}$) und berechneten (2 $\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 2] der Zusammensetzung La₃InN_{0,03 ± 0,02} nach der Wärmebehandlung (500 °C, 13 Monate).

	$2\Theta_{\rm gem.}$	h	k	1	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	30,473	1	1	1	30,461	0,011	100,0	2,9310	2,9321
2	35,267	0	0	2	35,325	-0,058	29,1	2,5428	2,5388
3	50,907	0	2	2	50,840	0,067	28,2	1,7923	1,7945
4	60,439	1	1	3	60,453	-0,013	29,0	1,5304	1,5301
5	63,49	2	2	2	63,447	0,043	8,8	1,4640	1,4649
6	74,656	0	0	4	74,781	-0,125	2,4	1,2703	1,2685
7	82,902	1	3	3	82,870	0,032	17,5	1,1636	1,1640
8	85,575	0	2	4	85,527	0,048	13,7	1,1340	1,1345
9	96,107	2	2	4	96,118	-0,011	28,6	1,0356	1,0356
			1	1					

 $Fm\overline{3}m$; Nr. 225; a = 506,3(3) pm; $V = 129,7 \cdot 10^6$ pm³; Nullverschiebung: LD = $-0,1(2)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,125^\circ$; Cu- $K\alpha_1$ -Strahlung.

Tabelle A. 71: (La₃ \Box)In: Vergleich der gemessenen (2 $\Theta_{gem.}$) und berechneten (2 $\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 2] der Zusammensetzung La₃InN_{0,05 ± 0,02} nach der Wärmebehandlung (700 °C, 13 Monate).

	$2\Theta_{\rm gem.}$	h	k	l	$2 \Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	30,506	1	1	1	30,41	0,096	100,0	2,9310	2,9321
2	35,268	0	0	2	35,285	-0,017	37,5	2,5428	2,5388
3	50,889	0	2	2	50,839	0,05	23,9	1,7923	1,7945
4	60,472	1	1	3	60,478	-0,006	30,4	1,5304	1,5301
5	63,485	2	2	2	63,482	0,003	9,4	1,4640	1,4649
6	74,807	0	0	4	74,852	-0,045	4,1	1,2703	1,2685
7	82,975	1	3	3	82,972	0,003	12,8	1,1636	1,1640
8	85,532	0	2	4	85,64	-0,108	11,5	1,1340	1,1345
9	96,378	2	2	4	96,277	0,101	11,5	1,0356	1,0356
		1		1					1

Fm $\overline{3}m$; Nr. 225; a = 507,2(3) pm; $V = 130,5 \cdot 10^6$ pm³; Nullverschiebung: LD = $-0,3(2)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,108^\circ$; Cu-*K* α_1 -Strahlung.

Tabelle A. 72: $(La_3\Box)In$: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 2] der Zusammensetzung La₇₅In₂₅ nach der Wärmebehandlung (300 °C, 13 Monate).

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	30,480	1	1	1	30,444	0,036	100,0	2,9310	2,9321
2	35,285	0	0	2	35,319	-0,034	25,3	2,5428	2,5388
3	50,95	0	2	2	50,872	0,078	21,7	1,7923	1,7945
4	60,485	1	1	3	60,512	-0,027	24,2	1,5304	1,5301
5	63,517	2	2	2	63,515	0,002	7,3	1,4640	1,4649
6	74,835	0	0	4	74,885	-0,005	4,0	1,2703	1,2685
7	83,052	1	3	3	83,004	0,048	13,6	1,1636	1,1640
8	85,598	0	2	4	85,672	-0,073	11,1	1,1340	1,1345
9	96,355	2	2	4	96,309	0,046	4,3	1,0356	1,0356
				1	1		1	1	1

 $Fm\overline{3}m$, Nr. 225, a = 506,2(3) pm, $V = 129,7 \cdot 10^6$ pm³; Nullverschiebung: LD = $-0,3(1)^\circ$ $\Delta 2\Theta_{\text{max}} = 0,073^\circ$; Cu- $K\alpha_1$ -Strahlung.

 $Ce_3 ln (MM = 535, 18 g/mol)$

Literaturübersicht zu Ce₃In

Erstmals wurde Ce₃In von R. Vogel metallografisch dokumentiert [185]. Die bisher präziseste Dokumentation über die Darstellung und Charakterisierung von Ce₃In wurde von M. Dariel [147] durchgeführt. Der Gitterparameter wurde hierbei aus Pulverdaten zu a = 496,10(5) pm bestimmt. Nachfolgend wurde von J. L. Moriarty et al. [104] ein deutlich größerer Gitterparameter von a = 500,06(7) pm erhalten.

Das Phasendiagramm Ce–In wurde von A. Saccone et al. untersucht [107, 121]. Ce₃In bildet sich peritektisch bei 910 ± 10 °C aus Ce₂In und Ce(In)-Schmelze. Die Verbindung weist eine Phasenbreite zwischen 23 % < x(In) < 27 % und Dimorphie auf. Eine Hochtemperaturmodifikation (a = 501 - 502 pm) und eine Tieftemperaturmodifikation (a = 496 pm). Die Gitterparameter diskutieren die Autoren aus zwei verschiedenen Sichtweisen: Einerseits wird der größere Gitterparameter einer ungeordneten kubisch dichtesten Packung, der kleinere einer geordneten Variante im Sinne des Cu₃Au-Strukturtyps zugeordnet. Andererseits wird auch die Möglichkeit des Einbaus von Verunreinigungen im Sinne der von W. Jeitschko et al. [122] bereits diskutierten Carbide in Erwägung gezogen.

Obwohl die Phase somit letztendlich unzureichend verstanden und kristallografisch charakterisiert ist, wurden - ab etwa 1985 verstärkt - bemerkenswerte physikalische Eigenschaften beobachtet: Im Intervall T = [-200 °C; 200 °C] wurde Curie-Weiss Verhalten berichtet, das mit dreiwertigem Cer in Einklang zu bringen ist [113]. Die Verbindung wurde als Kondogitter mit niedriger Kondotemperatur ($T_{\rm K} > 20$ K) beschrieben [115], [186]. Dabei wurde die elektrische Leitfähigkeit der Verbindung in Abhängigkeit von Temperatur (1 K < T < 300 K) und Druck (0 kbar gemessen. Der elektrischeWiderstand steigt mit steigendem Druck und durchläuft bis zum Erreichen der niedrigsten Messtemperatur ein lokales Maximum. Dieses lokale Maximum wird mit steigendem Druck deutlicher. Beim Durchlaufen verschiedener Druckregime wurden Hysteresen beobachtet, die als Phasenumwandlung interpretiert wurden. Weitergehend [187] wurde die magnetische Suszeptibilität und der elektrische Widerstandes als Funktion der Temperatur gemessen. Die Tieftemperatureigenschaften ($T \le 20$ K) hängen stark von der Probenpräparation und der Zusammensetzung (Ce_{2 844}In – Ce_{3 161}In) ab. Die magnetische Suszeptibilität der Proben bei 1,8 K fällt mit steigendem Ce-Gehalt der Probe. Alle bestimmten Gitterparameter sind nicht größer als a = 496 pm, obwohl die Proben bei hohen Temperaturen wärmebehandelt wurden. Diese Ergebnisse werden in [120] nochmals mit den gleichen Abbildungen veröffentlicht. Dabei wird Anhand der Messungen des elektrischen Widerstands die schwere Fermioneneigenschaft dieses Materials bekräftigt. Die magnetische Suszeptibilität zeigt Curie-Weiss Verhalten für T > 100 K. Der magnetische Zustand wird zu J = 5/2 $(\equiv 4f^1; \Theta_P = 1 \text{ K}; \gamma = 700 \text{ mJ/mol Ce K}^2)$ bestimmt.

Der Einfluss der Substitution von In durch ein anderes Hauptgruppenmetall M (M = Al, Ga, Sn und Ge) wurde mit Messungen des elektrischen Widerstand als Funktion der Temperatur sowie Messungen der thermischen Leitfähigkeit untersucht [188]. Neben einem lokalen Maximum in der Leitfähigkeit bei etwa 10 K wird eine Unstetigkeitsstelle beobachtet, die in Abhängigkeit vom verwendeten Metall bei etwa 3 – 5 K liegt.

Zusammensetzung	<i>a</i> / pm	Bemerkungen	Lit.
Ce ₃ In	506	Levitationsofen, 700 °C, 168 h, Cu ₃ Au-Typ	[189]
Ce ₃ In	496	500 °C, 2 Wochen	[187]
Ce ₃ In	506,1		[113]
Ce ₃ In	502,3	Cu ₃ Au-Strukurtyp, 500 h, 600 °C	[122]
Ce ₃ In	496,10(5)	Cu ₃ Au-Strukurtyp	[147]
Ce ₃ In	500,06(7)	Cu ₃ Au-Strukurtyp	[104]
Ce ₃ In	496	Cu ₃ Au-Strukurtyp, langsames Abkühlen	[107]
Ce ₇₇ In ₂₃ -Ce ₇₃ In ₂₇	501 - 502	ungeordnete kfz-Struktur bei einer	[107]
		abgeschreckten Probe bei $T = 750-700$ °C	

Tabelle A. 73: In der Literatur angegebene Gitterparameter von $(Ce_3\Box)In$.

Darstellung und Charakterisierung von Ce₃In

Cer und Indium wurden im molaren Verhältnis x(Ce) : x(In) = 3 : 1 im Lichtbogen zusammengeschmolzen, in Mo-Folie gewickelt, bei vermindertem Druck in Kieselglas eingeschmolzen und wärmebehandelt (0. 20 °C; 1. 100 °C/h; 3. 750 °C, 168 h; 4. -8,5 °C/h; 5. 140 °C, 24 h; 6. -5 °C/h; 7. 20 °C). Nach der Wärmebehandlung wurde Pulver für ein Röntgenpulverdiffraktogramm mit einer Diamantfeile und einer Carborundfeile von der Probenoberfläche hergestellt. Das Röntgenpulverdiffraktogramm (s. Abbildung A. 42) zeigt sehr breite Reflexe, die sich kubisch indizieren lassen (a = 496,6(8) pm). Eine Aussage, ob Ce und In im Sinne des Cu₃Au-Strukturtyps ausgeordnet sind, ist nicht möglich. Die Elementaranalyse ergab $w(N) = 0,045 \pm 0,005$ % sowie $w(O) = 0,066 \pm 0,003$ % und somit die Zusammensetzung Ce₃InN_{0,017 ± 0,002}O_{0,022 ± 0,001}.

Abbildung A. 42: Röntgenpulverdiffraktogramme (Cu- $K\alpha_1$ -Strahlung) von Proben der Zusammensetzung Ce₃InN_{0,017±0,002}O_{0,022±0,001} nach der Wärmebehandlung. Die Pulver wurden mit verschiedenen Feilen hergestellt. Die Pfeile zeigen Reflexe von Diamant an.

Tabelle A. 74:(Ce3 \Box)In: Vergleich der gemessenen (2 $\Theta_{gem.}$) und berechneten (2 $\Theta_{ber.}$)Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 2] derZusammensetzungCe3InN0,017 ± 0,002O0,022 ± 0,001Märmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}$ – $2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$	
1	31,159	1	1	1	31,130	0,030	100	2,8680	2,8706	
2	36,037	2	0	0	36,105	-0,068	73,5	2,4902	2,4857	
3	52,066	2	2	0	52,004	0,062	59,9	1,7551	1,7570	
4	61,852	3	1	1	61,879	-0,027	58,3	1,4988	1,4982	
5	64,964	2	2	2	64,961	0,003	55,2	1,4343	1,4344	
		1	1	1						

 $Fm\overline{3}m$; Nr. 225; a = 496,6(8) pm; $V = 122,5 \cdot 10^6$ pm³; Nullverschiebung: LD = 0,0(1)°; $\Delta 2\Theta_{\text{max}} = 0,068^\circ$; Cu- $K\alpha_1$ -Strahlung.

(Nd₃□)In (*MM* = 547,54 g/mol)

In wurden im molaren Verhältnis Nd und drei zu eins im Lichtbogen zusammengeschmolzen in Mo-Folie eingewickelt, bei vermindertem Druck ($p < 10^{-4}$ mbar) in Kieselglas eingeschmolzen, wärmebehandelt (700 °C, 14 Monate) und in Wasser abgeschreckt. Pulver für das Röntgenpulverdiffraktogramm wurde mit einer Carborundfeile von der Probe abgefeilt. Die Reflexe des Diffraktogramms sind sehr breit. Dies kann intrinsisch auf die Probe oder aber die Präparation des Pulvers zurückzuführen sein. Die so erzeugten Diffraktogramme wurden mit dem Programmpaket CSD [P 2] ausgewertet (s. Tabelle A. 75). Der Vergleich des berechneten mit dem gemessenen Röntgenpulverdiffraktogramm zeigt, dass keine Aussagen über die Ausordnung der Nd- und In-Atome im Sinne des Cu₃Au-Strukturtyps mit dieser Methode getroffen werden kann. Die für eine primitive Zelle charakteristischen Reflexe sind zu schwach, um vom Untergrund unterschieden zu werden. Metallographisch betrachtet erweist sich die Probe als einphasig. Von der Probe wurde eine DSC gemessen (Nb-Ampulle, $\beta = 10$ K/min, $T_{max} = 1050$ °C, s. Abbildung A. 44). Beim Aufheizen wird ein einziger thermischer Effekt beobachtet $T_{\text{Onset}} = 940 \pm 15 \text{ °C}$ ($T_{\text{max}} = 960 \pm 5 \text{ °C}$), der im Bereich peritektische Bildung von Nd₃In legt (932 °C [143]; 935 °C [144]). Beim Abkühlen werden mehrere Signale beobachtet die charakteristisch sind für eine Schmelze der Zusammensetzung Nd₃In (s. Tabelle A. 76). Mit der Elementaranalyse ($w(N) = 0.11 \pm 0.02\%$; $w(O) \le 0.10\%$; $w(H) \le 0.008\%$) ergibt unter der Annahme x(Nd) : x(In) = 3 : 1 die Zusammensetzung Nd₃InN_{0.07 ± 0.01}.

Abbildung A. 43: Röntgenpulverdiffraktogramm (Cu- $K\alpha_1$ -Strahlung) einer Probe der Zusammensetzung Nd₃InN_{0,07 ± 0,01}.

Tabelle A. 75: $(Nd_3\Box)In$: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 2] derZusammensetzung Nd_3InN_{0,07 ± 0,01} nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	31,269	1	1	1	31,206	0,063	100,0	2,8582	2,8638
2	36,145	0	0	2	36,220	-0,075	26,7	2,4830	2,4780
3	52,307	0	2	2	52,248	0,059	23,3	1,7476	1,7494
4	62,205	1	1	3	62,214	-0,008	23,8	1,4911	1,4909
5	65,282	2	2	2	65,326	-0,044	8,2	1,4281	1,4272
6	85,671	1	3	3	85,631	0,040	8,5	1,1329	1,1334
7	88,406	0	2	4	88,431	-0,024	9,8	1,1048	1,1046
I	1				1		1	1	1

 $Fm\overline{3}m$, Nr. 225, a = 493,4(3) pm, $V = 122,5 \cdot 10^{6}$ pm³, Nullverschiebung: LD = $-0,4(1)^{\circ}$ $\Delta 2\Theta_{max} = 0,075^{\circ}$; Cu- $K\alpha_1$ -Strahlung.

Abbildung A. 44: DSC-Messung ($\beta = 10$ K/min; $T_{\text{max}} = 1050$ °C) an Nd₃InN_{0,07 ± 0,01}.

Tabelle A. 76:	Thermische	Effekte	einer	DSC-Messung	an	Nd ₃ In	beim	Abkühlen
	$(\beta = 10 \text{ K/m})$	in $T_{\text{max}} =$	1050 °	C, Nb-Tiegel)				

thermischer Effekt	$T_{\text{Onset}} / °C$	$T_{\text{Peak}} / °C$	Zuordnung	<i>T</i> _[143] / °C
1	1015 ± 10	1005 ± 5	peritektische Bildung von Nd ₂ In,	1070
			unterkühlte	
2	940 ± 5	935 ± 5	peritektische Bildung von Nd ₃ In	930
3	860±10	860±10	Eutektische Reaktion Nd ₃ In/ <i>β</i> -La	880
4	730 ± 5	730 ± 5	Eutektoide Reaktion	740
			β -Nd $\rightarrow \alpha$ -Nd	

10.8. (SE₃O)In

(La₃O)In (*MM* = 547,54 g/ mol)

Tabelle A. 77:(La₃O)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung La₃InO_{0,040 ± 0,007}N_{0,015 ± 0,004}.

	$2\Theta_{\rm gem.}$	h	k	l	$2 \Theta_{\text{ber.}}$	$2\Theta_{\text{gem.}}$ – $2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	30,501	1	1	1	30,495	0,0066	100	2,9284	2,929
2	35,248	2	0	0	35,356	-0,1087	29,6	2,5442	2,5366
3	50,888	2	2	0	50,866	0,0224	17	1,7929	1,7937
4	60,428	3	1	1	60,474	-0,0461	16,2	1,5307	1,5296
5	63,52	2	2	2	63,468	0,0524	5,4	1,4634	1,4645
6	82,975	3	3	1	82,88	0,0949	4,6	1,1628	1,1639
7	85,591	4	2	0	85,536	0,055	3,6	1,1338	1,1344
8	96,013	4	2	2	96,119	-0,1058	3,1	1,0364	1,0356
Pm3m;	Nr. 22	21;	ı a	u = 5	507,3(2) pm	; $V = 130,57(8)$	s) • 10^6 pm^3 ;	$\Delta 2\Theta$ =	=-0,002(5)°;

 $\Delta 2 \Theta_{\text{max}} = 0,11^{\circ}; \Delta 2 \Theta_{\text{mitt}} = 0,06^{\circ}; \text{FOM}(10) = 6,5 (0,061; 20); \text{Cu-}K\alpha_1\text{-Strahlung}.$

Tabelle A. 78:(La₃O)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung La₃InO_{0,52 ± 0,03}N_{0,022 ± 0,001}.

_		$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	d _{gem.}	d _{ber.}
	1	17,496	1	0	0	17,488	0,0085	1,1	5,0647	5,0671
	2	30,527	1	1	1	30,533	-0,0054	100	2,926	2,9255
	3	35,401	2	0	0	35,401	-0,0001	58,9	2,5336	2,5336
	4	50,93	2	2	0	50,932	-0,0025	34,5	1,7916	1,7915
	5	60,549	3	1	1	60,555	-0,0064	31,1	1,5279	1,5278
	6	63,562	2	2	2	63,554	0,0081	7,8	1,4626	1,4627
	7	74,894	4	0	0	74,901	-0,0073	4,3	1,2669	1,2668
	8	82,999	3	3	1	83,003	-0,0036	9,2	1,1625	1,1625
	9	85,668	4	2	0	85,664	0,0041	8,8	1,133	1,133
	10	96,278	4	2	2	96,274	0,0046	5,3	1,0343	1,0343
Pm ∃ m	;	Nr. 221	•	a =	= 50	6,71(3) p	m; $V = 130,10($	1) • 10^6 pm^3	³ ; Δ2 <i>e</i>	$9 = -0,002(5)^{\circ};$

 $\Delta 2 \Theta_{\text{max}} = 0,008^{\circ}; \Delta 2 \Theta_{\text{mitt}} = 0,005^{\circ}; \text{FOM}(10) = 90,1 (0,005; 22); \text{Cu-}K\alpha_1\text{-Strahlung}.$

Tabelle A. 79:(La₃O)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung La₃InO_{0,52 ± 0,03}N_{0,022 ± 0,001}.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}	
1	17,446	1	0	0	17,444	0,0022	1,4	5,0792	5,0799	
2	30,452	1	1	1	30,454	-0,0025	67,7	2,9331	2,9329	
3	35,321	2	0	0	35,309	0,0117	32,1	2,5391	2,5399	
4	50,779	2	2	0	50,795	-0,0164	11,4	1,7965	1,796	
5	60,385	3	1	1	60,388	-0,0024	9,9	1,5317	1,5316	
6	63,41	2	2	2	63,375	0,0349	3,7	1,4657	1,4664	
7	74,659	4	0	0	74,681	-0,0219	0,9	1,2703	1,2700	
8	82,721	3	3	1	82,749	-0,0274	2,9	1,1657	1,1654	
9	85,393	4	2	0	85,398	-0,0044	3,1	1,1359	1,1359	
10	95,979	4	2	2	95,953	0,0262	2,4	1,0367	1,0369	
$Pm\overline{3}m;$	Nr. 221;		a = 508,0(1) pm;		8,0(1) pn	n; $V = 130,385$	$V = 130,385(7) \cdot 10^6 \mathrm{pm}$		³ ; $\Delta 2 \Theta = -0.04(2)^\circ$;	

 $\Delta 2 \Theta_{\text{max}} = 0.035^{\circ}; \Delta 2 \Theta_{\text{mitt}} = 0.015^{\circ}; \text{FOM}(10) = 30.3 \ (0.015; 22); \text{Cu-}K\alpha_1\text{-Strahlung}.$

Tabelle A. 80:(La₃O)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung La₃InO_{0.99±0.05}N_{0.030±0.002} (Nebenphase: La₂O₃).

	$2 \Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	17,472	1	0	0	17,475	-0,0026	12,5	5,0716	5,0708
2	30,516	1	1	1	30,51	0,0063	100	2,927	2,9276
3	35,386	2	0	0	35,374	0,0115	60,4	2,5346	2,5354
4	50,886	2	2	0	50,892	-0,0067	35,3	1,793	1,7928
5	60,502	3	1	1	60,507	-0,0043	33,6	1,529	1,5289
6	63,496	2	2	2	63,502	-0,0058	14,9	1,4639	1,4638
7	74,83	4	0	0	74,837	-0,0078	10,6	1,2678	1,2677
8	82,927	3	3	1	82,929	-0,0022	15,1	1,1633	1,1633
9	85,591	4	2	0	85,587	0,0044	15,1	1,1338	1,1339
10	96,188	4	2	2	96,181	0,0074	12	1,035	1,0351
					1			1	1

Pm $\overline{3}m$; Nr. 221; a = 507,08(2) pm; $V = 130,385(7) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,026(6)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,012^\circ$; $\Delta 2\Theta_{\text{mitt.}} = 0,006^\circ$; FOM(10) = 80,6 (0,006; 21); Cu-*K* α_1 -Strahlung.

Tabelle A. 81:(La₃O)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung La₃InO_{1,13 ± 0,03}N_{0,038 ± 0,004} (Nebenphase: La₂O₃).

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	d _{gem.}	$d_{\rm ber.}$
1	17,468	1	0	0	17,469	-0,0001	1,3	5,0727	5,0724
2	30,488	1	1	1	30,500	-0,0119	100	2,9297	2,9286
3	35,363	2	0	0	35,362	0,0009	56,7	2,5362	2,5362
4	50,877	2	2	0	50,875	0,0024	31,4	1,7933	1,7934
5	60,488	3	1	1	60,485	0,0028	28,8	1,5293	1,5294
6	63,486	2	2	2	63,479	0,0007	8,1	1,4641	1,4643
7	74,818	4	0	0	74,809	0,0084	3,5	1,268	1,2681
8	82,899	3	3	1	82,896	0,0028	8,1	1,1637	1,1637
9	85,553	4	2	0	85,553	0,0005	8,1	1,1342	1,1342
10	96,127	4	2	2	96,139	-0,0121	5,3	1,0355	1,0354
10	96,127	4	2	2	96,139	-0,0121	5,3	1,0355	1,035

 $Pm\overline{3}m; \text{ Nr. 221; } a = 507,24(4) \text{ pm}; V = 130,51(2) \cdot 10^6 \text{ pm}^3; \Delta 2\Theta = -0,026(6)^\circ;$ $\Delta 2\Theta_{\text{max}} = 0,009^\circ; \Delta 2\Theta_{\text{mitt}} = 0,005^\circ; \text{ FOM}(10) = 95,5 (0,005;21); \text{ Cu-}K\alpha_1\text{-Strahlung}.$ Tabelle A. 82:La2O3 (hexagonaler A-Typ): Vergleich der gemessenen $(2\Theta_{gem.})$ und
berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$);
Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver
[P 1] der Zusammensetzung La3InO1,13±0,03N0,038±0,004 (Hauptphase:
(La3O)In)

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	26,122	1	0	0	26,124	-0,0029	39,6	3,4086	3,4083
2	29,119	0	0	2	29,135	-0,0161	13,5	3,0643	3,0626
3	29,965	1	0	1	29,979	-0,0137	100	2,9796	2,9782
4	39,56	1	0	2	39,528	0,0319	35,4	2,2763	2,278
5	46,091	1	1	0	46,091	0,0006	32,3	1,9677	1,9678
6	52,186	1	0	3	52,181	0,0046	15,6	1,7514	1,7515
7	55,465	1	1	2	55,459	0,0055	16,7	1,6553	1,6555
8	55,968	2	0	1	55,963	0,0053	14,6	1,6416	1,6418
9	72,127	2	0	3	72,141	-0,0132	9,4	1,3085	1,3083
10	73,448	2	1	0	73,449	-0,0003	5,2	1,2882	1,2882
11	75,329	2	1	1	75,33	-0,0017	10,4	1,2606	1,2606

 $P\overline{3}m1$; Nr. 164; a = 393,6(1) pm; c = 612,5(2) pm; $V = 82,16(6) \cdot 10^{6}$ pm³; $\Delta 2\Theta = -0,01(1)$; $\Delta 2\Theta_{\text{max}} = 0,032^{\circ}$; $\Delta 2\Theta_{\text{mitt}} = 0,009^{\circ}$; FOM(11) = 66,4 (0,09; 19); Cu- $K\alpha_1$ -Strahlung.

(Ce₃O)In (*MM* = 551,18 g/ mol)

Die erfolgreiche Synthese von (Ce₃O)In wurde in Kap. 5.4 (s. S. 69) beschrieben. Das nach der Synthese erhaltene Röntgenpulverdiffraktogramm des röntgenografisch phasenreinen Produkts ist in Abbildung A. 45 dargestellt.

Abbildung A. 45: Röntgenpulverdiffraktogramm (Cu-Kα₁-Strahlung) von Ce₃InO_{0,87±0,07}, hergestellt aus Ce, CeO₂ und In im Lichtbogen mit anschließender Wärmebehandlung (170 h, 825 °C).
Berechnetes Röntgenpuverdiffraktogramm von (Ce₃O)In (rot).

Tabelle A. 83: (Ce₃O)OIn: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] hergestellt aus Ce, CeO₂ und In (x(Ce) : x(In) : x(O) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}$ – $2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	17,745	1	0	0	17,736	0,0095	1,2	4,9942	4,9968
2	30,975	1	1	1	30,973	0,0024	100,0	2,8847	2,8849
3	35,914	2	0	0	35,916	-0,0013	57,0	2,4985	2,4984
4	40,312	2	1	0	40,328	-0,0156	1,1	2,2355	2,2346
5	51,700	2	2	0	51,701	-0,0014	31,7	1,7667	1,7666
6	61,500	3	1	1	61,499	0,0014	31,7	1,5066	1,5066
7	64,550	2	2	2	64,555	-0,0053	9,8	1,4426	1,4425
8	76,149	4	0	0	76,141	0,0082	4,3	1,2491	1,2492
9	84,441	3	3	1	84,437	0,0040	11,1	1,1463	1,1463
10	87,171	4	2	0	87,168	0,0035	11,2	1,1173	1,1173
11	98,083	4	2	2	98,089	-0,0053	8,1	1,0200	1,0200

Pm $\overline{3}m$; Nr. 221; a = 499,68(3) pm; $V = 124,76(2) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,034(5)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,016^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,005^\circ$; FOM(11) = 99,6 (0,005; 21); Cu-*K* α_1 -Strahlung.

(Pr₃O)In (*MM* = 553,54 g/mol)

Pr₂O₃ wurde zu einer Tablette gepresst und nacheinander Pr und In im Lichtbogen zugeschmolzen. Die Probe wurde in Ta-Folie gewickelt, in Kieselglas unter vermindertem Druck ($p < 10^{-4}$ mbar) eingeschmolzen und wärmebehandelt ($\beta = 38,75$ °C/h; 950 °C, 168 h; $\beta = -38,75$ °C/h).

Abbildung A. 46: Röntgenpulverdiffraktogramm (schwarz, Cu-Kα₁-Strahlung) von Pr₃InO_{1,13±0,05}N_{0,0243±0,0002} (hergestellt aus Pr, Pr₂O₃ und In; Lichtbogen; 144 h, 950 °C), berechnetes Röntgenpuverdiffraktogramm von (Pr₃O)In (rot), von Pr₂O₃ im hexagonalen *A*-Typ (grün) [190] und im kubischen *C*-Typ (blau) [192].

Das nach der Wärmebehandlung erhaltene Röntgenpulverdiffraktogramm ist in Abbildung A. 46 dargestellt. Die Reflexe können durch drei Phasen erklärt werden. Die Reflexe der Hauptphase stimmen in Lage und Intensitäten mit einer geordneten, kubisch, dichtesten Packung aus Pr und In-Atomen im Sinne der geordneten Cu₃Au-Struktur überein (a = 496,05(3) pm). Daneben sind Reflexe zweier Praseodymoxide mit schwacher Intensität zu erkennen: Hexagonales Pr₂O₃ (A-Typ, a = 385,3(4) pm, c = 600,7(5) pm) und kubisches Pr_2O_3 (C-Typ, $a = 558,4(4) \text{ pm})^{43}$. Reflexe von elementarem Pr, In oder einer Phase des Systems Pr-In werden nicht beobachtet. Eine zweite Wärmebehandlung nach vorheriger Homogenisierung der Ausgangsprobe keine Veränderung ergab im Röngtenpulverdiffraktogramm. $(w(O) = 3,25 \pm 0,15 \%);$ Aus der Elementaranalyse $w(N) = 0.061 \pm 0.001$ %) und unter Annahme von x(Pr) : x(In) = 3 : 1 ergibt sich $Pr_{3}InO_{1,13 \pm 0.05}N_{0,0243 \pm 0.0002}$.

Tabelle A. 84: (Pr₃O)In: Vergleich der gemessenen ($2\Theta_{gem.}$) und berechneten ($2\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms (Nebenphasen: Pr₂O₃; A-Typ und C-Typ) von mikrokristallinem Pulver [P 1] Zusammensetzung der $Pr_{3}InO_{1,13 \pm 0.05}N_{0,0243 \pm 0.0002}$; hergestellt aus Pr. und Pr_2O_3 Al (x(Pr) : x(Al) : x(O) = 3 : 1 : 1) nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}$ – $2\Theta_{\text{ber.}}$	Intensität	d _{gem.}	d _{ber.}
1	17,877	1	0	0	17,867	0,0104	1,4	4,9576	4,9605
2	31,200	1	1	1	31,205	-0,0050	100,0	2,8644	2,8639
3	36,185	2	0	0	36,188	-0,0024	49,6	2,4804	2,4803
4	40,631	2	1	0	40,636	-0,0048	0,5	2,2187	2,2184
5	52,103	2	2	0	52,108	-0,0053	30,0	1,7540	1,7538
6	62,002	3	1	1	61,999	0,0037	29,4	1,4956	1,4956
7	65,092	2	2	2	65,085	0,0069	8,8	1,4318	1,4320
8	76,796	4	0	0	76,800	-0,0037	3,4	1,2402	1,2401
9	85,197	3	3	1	85,200	-0,0037	10,7	1,1381	1,1380
10	87,969	4	2	0	87,969	0,0000	11,6	1,1092	1,1092
11	99,064	4	2	2	99,060	0,0039	9,2	1,0125	1,0126

Pm $\overline{3}m$; Nr. 221; a = 496,05(3) pm; $V = 122,06(1) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,032(4)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,010^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,005^\circ$; FOM(11) = 115,9 (0,005; 21); Cu-*K* α_1 -Strahlung.

⁴³ Der *A*-Typ wird in der Literatur als Tieftemperaturmodifikation beschrieben ([190]: a = 385,77(3) pm, c = 601,20(6) pm und [191]: a = 385,89(1) pm, c = 601,31(2) pm), der *C*-Typ als Hochtemperarutmodifikation ([192] a = 1111,45 pm $V = 2 \cdot 555,725$ pm)

(Nd₃O)In (*MM* = 563,54 g/mol)

Eine Probe der nominellen Zusammensetzung Nd₃InO wurde in analoger Weise wie bei der Synthese von (Pr₃O)In vorbereitet und wärmebehandelt (500 °C, 504 h und 336 h). Zwischen beiden Wärmebehandlungen wurde die Probe in einer Achatreibschale homogenisiert, zu einer Tablette verpresst und erneut in Ta-Rohr eingeschweißt. Das Röntgenpulverdiffraktogramm nach der zweiten Wärmebehandlung ist in Abbildung A. 47 dargestellt. Neben einer Hauptphase liegt Nd₂O₃ (*A*-Typ, *a* = 382,6(2) pm; *c* = 599,6(3) pm) vor. Die Reflexe der Hauptphase stimmen in Lage und Intensität mit einer geordneten, kubisch dichtesten Packung aus Nd und In-Atomen im Cu₃Au-Strukturtyp überein (*a* = 493,4(1) pm). Die Elementaranalyse auf H, O und N (*w*(O) = 3,01 ± 0,06 %; *w*(N) = 0,05 ± 0,10 %; *w*(H) ≤ 0,008 %) ergibt unter Annahme von *x*(Nd) : *x*(In) = 3 : 1 eins Nd₃InO_{1,06 ± 0,02}N_{0,020 ± 0,004}.

Abbildung A. 47: Röntgenpulverdiffraktogramm (schwarz, Cu- $K\alpha_1$ -Strahlung) von Nd₃InO_{1,06±0,02}N_{0,020±0,004}, berechnetes Röntgenpuverdiffraktogramm von (Nd₃O)In (rot; Gitterparameter aus der Verfeinerung der Reflexlagen).
Tabelle A. 85: $(Nd_3O)Al$: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms (Nebenphase: Nd_2O_3) von mikrokristallinemPulver [P 1] der Zusammensetzung $Nd_3InO_{1,06 \pm 0,02}N_{0,020 \pm 0,004}$; hergestelltaus Nd, Nd_2O_3 und In (x(Nd) : x(In) : x(O) = 3 : 1 : 1) nach derWärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}$ – $2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	31,370	1	1	1	31,379	-0,0086	100,0	2,8492	2,8485
2	36,388	2	0	0	36,391	-0,0033	55,3	2,4671	2,4669
3	52,415	2	2	0	52,412	0,0029	30,3	1,7442	1,7443
4	62,375	3	1	1	62,373	0,0020	28,9	1,4875	1,4876
5	65,501	2	2	2	65,483	0,0179	8,3	1,4239	1,4242
6	88,560	4	2	0	88,571	-0,0109	14,1	1,1033	1,1032

Pm $\overline{3}m$; Nr. 221; a = 493,4(1) pm; $V = 120,09(4) \cdot 10^6$ pm³; $\Delta 2 \Theta = -0,01(1)$; Cu-*K* α_1 -Strahlung; $\Delta 2 \Theta_{max} = 0,018^\circ$; $\Delta 2 \Theta_{mitt} = 0,008^\circ$; FOM(11) = 43,9 (0,008, 18)

Tabelle A. 86: Nd₂O₃ (hexagonalen A-Typ, Tieftemperaturmodifikation): Vergleich der gemessenen $(2\Theta_{gem})$ und berechneten $(2\Theta_{ber})$ Reflexe (*hkl*) sowie der Gitterabstände $d_{\text{ber.}}$); Auswertung eines $(d_{\text{gem.}},$ Röntgendiffraktogramms (Hauptphase: (Nd₃O)Al; Nebenphase: Nd₂O₃) von mikrokristallinem Pulver [P 1] der Zusammensetzung $Nd_{3}InO_{1,06\,\pm\,0,02}N_{0,020\,\pm\,0,004} \quad hergestellt \quad aus \quad Nd, \quad Nd_{2}O_{3} \quad und \quad Al$ (x(Nd) : x(Al) : x(O) = 3 : 1 : 1) nach der Wärmebehandlung.

$a_{\rm ber.}$
3,3137
2,9982
2,9003
2,2233
,9132
,7116
,6128
, , , , , , , , , , , , , , , , , , ,

 $P\overline{3}m1$; Nr. 164; a = 382,6(2) pm; c = 599,6(3) pm; $V = 76,03(9) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,03(2)$; $\Delta 2\Theta_{max} = 0,019^\circ$; $\Delta 2\Theta_{mitt} = 0,006^\circ$; FOM(7) = 153,9 (0,006, 8); Cu-*K*α₁-Strahlung.

10.9. (SE₃N)In

$(La_3N)In (MM = 545,54 g/mol)$

Tabelle A. 87:(La_3N)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzungLa_{3,0 \pm 0,1}In_{1,01 \pm 0,04}N_{1,03 \pm 0,02}O_{0,026 \pm 0,001} nach derWärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	1	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	d _{gem.}	$d_{\rm ber.}$
1	17,267	1	0	0	17,275	-0,0079	1,1	5,1315	5,1292
2	30,159	1	1	1	30,154	0,0046	100,0	2,9609	2,9614
3	34,953	2	0	0	34,958	-0,0051	48,4	2,5650	2,5646
4	39,249	2	1	0	39,244	0,0050	0,8	2,2936	2,2939
5	50,274	2	2	0	50,272	0,0023	34,0	1,8134	1,8135
6	59,741	3	1	1	59,747	-0,0056	35,7	1,5467	1,5465
7	62,701	2	2	2	62,696	0,0052	10,4	1,4806	1,4807
8	73,856	4	0	0	73,842	0,0139	5,1	1,2821	1,2823
9	81,775	3	3	1	81,781	-0,0058	12,3	1,1768	1,1767
10	84,381	4	2	0	84,384	-0,0034	12,4	1,1470	1,1469
11	94,733	4	2	2	94,736	-0,0035	9,2	1,0470	1,0470

Pm $\overline{3}m$; Nr. 221; a = 512,92(4) pm; $V = 134,94(2) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,031(5)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,014^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,006^\circ$; FOM(11) = 84,4 (0,006; 22); Cu-*K* α_1 -Strahlung.

Tabelle A. 88:(La_3N)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung La_3InN_{0,75 ± 0,01}O_{0,05 ± 0,01} nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	2 $\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	17,270	1	0	0	17,281	-0,0114	1,4	5,1307	5,1274
2	30,163	1	1	1	30,165	-0,0026	100,0	2,9605	2,9603
3	34,964	2	0	0	34,971	-0,0069	55,5	2,5642	2,5637
4	39,291	2	1	0	39,258	0,0327	0,7	2,2912	2,2930
5	50,285	2	2	0	50,292	-0,0069	28,9	1,8130	1,8128
6	59,761	3	1	1	59,771	-0,0094	28,5	1,5462	1,5460
7	62,722	2	2	2	62,721	0,0010	7,9	1,4801	1,4801
8	73,886	4	0	0	73,873	0,0125	3,5	1,2817	1,2818
9	81,808	3	3	1	81,817	-0,0084	8,1	1,1764	1,1763
10	84,425	4	2	0	84,422	0,0030	8,3	1,1465	1,1465
		1		1	1				

Pm $\overline{3}m$; Nr. 221; a = 512,74(7) pm; $V = 134,80(3) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,05(1)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,033^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,009^\circ$; FOM(11) = 55,9 (0,009; 23); Cu-*K* α_1 -Strahlung. Tabelle A. 89:(La_3N)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung La_3InN_{0,70±0,04}O_{0,05±0,01} nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2 \Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	17,296	1	0	0	17,287	0,0094	1,4	5,1229	5,1257
2	30,185	1	1	1	30,175	0,0001	100	2,9584	2,9593
3	34,998	2	0	0	34,983	0,0149	53,2	2,5618	2,5628
4	39,246	2	1	0	39,272	-0,0253	0,7	2,2937	2,2923
5	50,309	2	2	0	50,309	0,0000	31,2	1,8122	1,8122
6	59,786	3	1	1	59,792	-0,006	28,7	1,5456	1,5455
7	62,738	2	2	2	62,744	-0,006	8,9	1,4798	1,4797
8	73,894	4	0	0	73,902	-0,0071	3,8	1,2815	1,2814
9	81,84	3	3	1	81,849	-0,0092	8,6	1,176	1,1759
10	84,458	4	2	0	84,456	0,0019	8,2	1,1461	1,1461
11	94,84	4	2	2	94,822	0,0172	4,5	1,0461	1,0463

Pm $\overline{3}m$; Nr. 221; a = 512,57(7) pm; $V = 134,63(3) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,01(1)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,025^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,010^\circ$; FOM(11) = 51,3 (0,010; 22); Cu-*K* α_1 -Strahlung.

Tabelle A. 90:(La_3N)In: Vergleich der gemessenen $(2 \Theta_{gem.})$ und berechneten $(2 \Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P1] derZusammensetzung La_3InN_{0,68±0,04} nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2 \Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	30,180	1	1	1	30,182	-0,0026	80,5	2,9589	2,9586
2	35,001	2	0	0	34,991	0,0097	43,7	2,5616	2,5622
3	50,327	2	2	0	50,322	0,0055	23,7	1,8116	1,8118
4	59,808	3	1	1	59,808	0,0000	22,5	1,5451	1,5451
5	62,760	2	2	2	62,760	-0,0002	6,0	1,4793	1,4793
6	73,918	4	0	0	73,922	-0,0033	2,6	1,2812	1,2811
7	81,851	3	3	1	81,872	-0,0215	6,6	1,1759	1,1756
8	84,464	4	2	0	84,480	-0,0157	6,6	1,1460	1,1459
9	94,879	4	2	2	94,851	0,0281	5,8	1,0458	1,0460

Pm $\overline{3}m$; Nr. 221; a = 512,45(9) pm; $V = 134,57(4) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,08(2)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,028^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,010^\circ$; FOM(9) = 49,2 (0,010; 19); Cu-*K* α_1 -Strahlung.

Tabelle A. 91:(La_3N)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung La_3InN_{0,62±0,03} nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	17,267	1	0	0	17,275	-0,0079	1,1	5,1315	5,1292
2	30,159	1	1	1	30,154	0,0046	100,0	2,9609	2,9614
3	34,953	2	0	0	34,958	-0,0051	48,4	2,5650	2,5646
4	39,249	2	1	0	39,244	0,0050	0,8	2,2936	2,2939
5	50,274	2	2	0	50,272	0,0023	34,0	1,8134	1,8135
6	59,741	3	1	1	59,747	-0,0056	35,7	1,5467	1,5465
7	62,701	2	2	2	62,696	0,0052	10,4	1,4806	1,4807
8	73,856	4	0	0	73,842	0,0139	5,1	1,2821	1,2823
9	81,775	3	3	1	81,781	-0,0058	12,3	1,1768	1,1767
10	84,381	4	2	0	84,384	-0,0034	12,4	1,1470	1,1469
		1	1	1	1	1	1	1	1

Pm $\overline{3}m$; Nr. 221; a = 512,90(5) pm; $V = 134,93(2) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,002(7)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,007^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,006^\circ$; FOM(10) = 65,0 (0,007; 22); Cu-*K* α_1 -Strahlung.

Tabelle A. 92:(La_3N)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung La_3InN_{0.389±0.002}O_{0.039±0.002} nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}$ - $2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	17,308	1	0	0	17,278	0,0304	2,8	5,1194	5,1283
2	30,129	1	1	1	30,159	-0,0306	100,0	2,9638	2,9608
3	34,958	2	0	0	34,965	-0,0069	57,4	2,5646	2,5642
4	50,273	2	2	0	50,282	-0,0087	25,8	1,8134	1,8131
5	59,760	3	1	1	59,759	0,0012	24,4	1,5462	1,5462
6	62,720	2	2	2	62,708	0,0122	6,7	1,4802	1,4804
7	81,808	3	3	1	81,798	0,0100	6,9	1,1764	1,1765
8	84,395	4	2	0	84,403	-0,0076	7,1	1,1468	1,1467

 $Pm\overline{3}m; \quad \text{Nr. 221}; \quad a = 512,8(1) \text{ pm}; \quad V = 134,87(6) \cdot 10^6 \text{ pm}^3; \quad \Delta 2\Theta = -0,003(2)^\circ;$ $\Delta 2\Theta_{\text{max}} = 0,031^\circ; \quad \Delta 2\Theta_{\text{mitt}} = 0,013^\circ; \quad \text{FOM}(8) = 31,4 \ (0,013; \ 19); \quad \text{Cu-}K\alpha_1\text{-Strahlung}.$

Tabelle A. 93:(La_3N)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung La_3InN_{0,34±0,03}O_{0,04±0,01} nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	d _{gem.}	d _{ber.}
1	30,151	1	1	1	30,145	0,0062	100,0	2,9617	2,9623
2	34,939	2	0	0	34,947	-0,0078	55,5	2,5659	2,5654
3	50,246	2	2	0	50,256	-0,0101	17,5	1,8143	1,8140
4	59,738	3	1	1	59,727	0,0114	22,8	1,5467	1,5470
5	62,679	2	2	2	62,675	0,0043	6,8	1,4810	1,4811
6	84,349	4	2	0	84,353	-0,0040	7,3	1,1473	1,1473

 $Pm\overline{3}m; \quad \text{Nr. 221}; \quad a = 513,1(1) \text{ pm}; \quad V = 134,94(2) \cdot 10^6 \text{ pm}^3; \quad \Delta 2 \,\Theta = -0,02(1)^\circ;$ $\Delta 2 \,\Theta_{\text{max}} = 0,011^\circ; \,\Delta 2 \,\Theta_{\text{mitt}} = 0,007^\circ; \text{FOM}(6) = 48,3 \ (0,007; \ 17); \text{Cu-}K\alpha_1\text{-Strahlung}.$

(Ce₃N)In (*MM* = 549,19 g/ mol)

Synthese und Röntgenpulverdiffraktogramme wurden bereits im Hauptteil dargestellt. Hier werden lediglich die Ergebnisse der Verfeinerungen der Gitterparameter der verschiedenen Proben aufgelistet.

Tabelle A. 94:(Ce3N)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung Ce3InN_{0.88 ± 0,13} nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	17,556	1	0	0	17,551	0,0047	13,6	5,0476	5,0489
2	30,637	1	1	1	30,645	-0,0081	100	2,9157	2,915
3	35,534	2	0	0	35,533	0,0013	63,4	2,5244	2,5245
4	39,910	2	1	0	39,894	0,0159	8,1	2,2571	2,2579
5	51,116	2	2	0	51,129	-0,0125	36,8	1,7855	1,7851
6	60,802	3	1	1	60,797	0,0052	37,8	1,5222	1,5223
7	63,796	2	2	2	63,809	-0,0132	15,9	1,4578	1,4575
8	75,223	4	0	0	75,218	0,0055	11,1	1,2622	1,2622
9	83,363	3	3	1	83,369	-0,0053	17,1	1,1584	1,1583
10	86,05	4	2	0	86,048	0,0023	16,9	1,1289	1,129
11	96,74	4	2	2	96,735	0,0044	14,3	1,0306	1,0306

 $Pm\overline{3}m$, Nr. 221, a = 504,89(2) pm, $V = 128,705(8) \cdot 10^6 \text{ pm}^3$; $\Delta 2\Theta = -0,0311^\circ$; $\Delta 2\Theta_{\text{max}} = 0,016^\circ, \Delta 2\Theta_{\text{mitt}} = 0,007^\circ$; FOM(11) = 73,6; (0,007; 21); Cu- $K\alpha_1$ -Strahlung.

Tabelle A. 95:(Ce3N)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung Ce3InN_{0.86 ± 0.02}O_{0.06 ± 0.02} nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	30,666	1	1	1	30,661	0,0053	100,0	2,9131	2,9136
2	35,559	2	0	0	35,551	0,0080	58,6	2,5227	2,5232
3	51,143	2	2	0	51,156	-0,0131	39,4	1,7846	1,7842
4	60,843	3	1	1	60,830	0,0131	40,1	1,5213	1,5216
5	63,833	2	2	2	63,845	-0,0118	18,6	1,4570	1,4568
6	75,258	4	0	0	75,262	-0,0038	13,8	1,2617	1,2616
7	83,415	3	3	1	83,419	-0,0045	19,4	1,1578	1,1577
8	86,094	4	2	0	86,100	-0,0062	100,0	1,1285	1,1284
9	96,812	4	2	2	96,799	0,0131	93,6	1,0300	1,0301

Pm $\overline{3}m$; Nr. 221; a = 504,64(6) pm; $V = 128,51(3) \cdot 10^6$ pm³; $2\Delta \Theta = -0,03(1)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,013^\circ, \Delta 2\Theta_{\text{mitt}} = 0,009^\circ$; FOM(9) = 54,0; (0,009; 19); Cu-*K* α_1 -Strahlung.

Tabelle A. 96:(Ce₃N)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung Ce₃InN_{0,60} nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	30,664	1	1	1	30,662	0,0018	100	2,9132	2,9134
2	35,55	2	0	0	35,553	-0,0028	59,8	2,5233	2,5231
3	51,157	2	2	0	51,159	-0,0017	42,9	1,7841	1,7841
4	60,831	3	1	1	60,833	-0,0023	41,3	1,5215	1,5215
5	63,852	2	2	2	63,849	0,0036	26	1,4566	1,4567
6	75,267	4	0	0	75,266	0,0003	22,3	1,2615	1,2615
7	83,419	3	3	1	83,424	-0,0051	27,4	1,1577	1,1577
8	86,118	4	2	0	86,106	0,0124	100	1,1282	1,1284
9	96,8	4	2	2	96,806	-0,0062	96,8	1,0301	1,03

 $Pm\overline{3}m; \quad \text{Nr. 221;} \quad a = 504,62(3) \text{ pm}; \quad V = 138,56 \cdot 10^6 \text{ pm}^3; \quad \Delta \Theta = -0,028(1)^\circ;$ $\Delta 2 \Theta_{\text{max}} = 0,012^\circ; \quad \Delta 2 \Theta_{\text{mitt}} = 0,004^\circ; \text{ FOM}(9) = 117,7; \quad (0,004; 19); \quad \text{Cu-}K\alpha_1\text{-Strahlung}.$

Tabelle A. 97:(Ce3N)In: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung Ce3InN $_{0.52 \pm 0.01}$ nach der Wärmebehandlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	30,667	1	1	1	30,661	0,0056	100	2,913	2,9135
2	35,561	2	0	0	35,551	0,0101	62,2	2,5225	2,5232
3	51,143	2	2	0	51,157	-0,0136	34,8	1,7846	1,7841
4	60,831	3	1	1	60,831	0,0004	32,6	1,5215	1,5215
5	63,863	2	2	2	63,846	0,0166	20,1	1,4564	1,4567
6	75,309	4	0	0	75,263	0,0455	16,8	1,2609	1,2616
7	83,411	3	3	1	83,421	-0,0099	20	1,1578	1,1577

 $Pm\overline{3}m$; Nr. 221; a = 504,63(4) pm; $V = 138,56 \cdot 10^6$ pm³; $\Delta \Theta = -0,0319^\circ$; $\Delta 2\Theta_{max} = 0,045^\circ$; $\Delta 2\Theta_{mitt} = 0,015^\circ$; FOM(7) = 30,1; (0,015; 16); Cu- $K\alpha_1$ -Strahlung.

$(La_{3}C)ln (MM = 543,55 g/mol)$

Synthese und Röntgenpulverdiffraktogramme wurden bereits in Kap. 5.2 (s. S. 48) dargestellt. Hier werden lediglich die Ergebnisse der Verfeinerungen der Gitterparameter der verschiedenen Proben angegeben. Die Auswertung der erhaltenen Röntgenbeugungsdaten an Pulvern erfolgte zum einen mit CSD [P 2] und vergleichend mit STOE [P 1].

Tabelle A. 98:Vergleich der gemessenen $(2 \Theta_{gem.})$ und berechneten $(2 \Theta_{ber.})$ Reflexe (*hkl*)
sowie der Gitterabstände ($d_{gem.}, d_{ber.}$);Auswertung eines
Röntgendiffraktogramms von mikrokristallinem Pulver [P 2] der
Zusammensetzung La₃InC_{0,22±0,01}N_{0,03±0,01}O_{0,040±0,003}. Zwei kubische
Phasen sind im Diffraktogramm zu erkennen.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	30,350	1	1	1	30,357	-0,024	100,0	2,9426	2,9419
2	35,181	0	0	2	35,196	-0,043	48,2	2,5488	2,5478
3	50,648	0	2	2	50,626	-0,032	32,8	1,8008	1,8016
4	60,221	1	1	3	60,181	-0,022	38,7	1,5354	1,5364
5	63,203	2	2	2	63,156	-0,016	10,9	1,4700	1,4710
6	74,490	0	0	4	74,41	0,016	3,8	1,2727	1,2739
7	85,151	0	2	4	85,07	0,024	10,1	1,1385	1,1394

a) kleinerer kubischer Gitterparameter a; CSD, internen Standard: Si

 $Pm\overline{3}m$; Nr. 221; a = 509,5(5) pm; $V = 132,3 \cdot 10^6$ pm³; $\Delta 2\Theta_{max} = 0,043^\circ \Delta 2\Theta_{mitt} = 0,025^\circ$; Cu- $K\alpha_1$ -Strahlung.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	29,970	1	1	1	29,973	-0,019	100,0	2,9790	2,9788
2	34,739	0	0	2	34,746	-0,034	58,8	2,5802	2,5797
3	50,002	0	2	2	49,957	-0,007	40,8	1,8226	1,8241
4	59,419	1	1	3	59,361	-0,002	50,5	1,5542	1,5556
5	62,365	2	2	2	62,286	0,016	14,6	1,4877	1,4894

b) größerer kubischer Gitterparameter a; CSD, internen Standard: Si.

 $Pm\overline{3}m$; Nr. 221; a = 515,94(7) pm; $V = 137,3 \cdot 10^6$ pm³; $\Delta 2 \Theta_{max} = 0,034^\circ$; $\Delta 2 \Theta_{mitt} = 0,016^\circ$; Cu- $K\alpha_1$ -Strahlung.

Tabelle A. 99:Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*)
sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung eines
Röntgendiffraktogramms von mikrokristallinem Pulver ([P 2], internem
Standard: Si) der Zusammensetzung La₃InC_{0,58 ± 0,01}N_{0,03 ± 0,01}.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	17,108	0	0	1	17,122	-0,023	0,6	5,1787	5,1745
2	29,883	1	1	1	29,883	-0,021	100,0	2,9875	2,9875
3	34,656	0	0	2	34,641	-0,010	49,1	2,5862	2,5873
4	38,899	0	1	2	38,885	-0,015	0,3	2,3133	2,3141
5	49,825	0	2	2	49,800	-0,018	32,1	1,8286	1,8295
6	59,214	1	1	3	59,169	-0,010	39,3	1,5591	1,5602
7	62,135	2	2	2	62,083	-0,007	10,9	1,4927	1,4938
8	73,152	0	0	4	73,087	-0,010	4,9	1,2927	1,2936
9	80,998	1	3	3	80,911	-0,002	16,2	1,1861	1,1871
10	83,577	0	2	4	83,474	0,010	15,7	1,1559	1,1571
11	93,775	2	2	4	93,648	0,016	12,4	1,0552	1,0563

 $Pm\overline{3}m$, Nr. 221; a = 517,46(2) pm; $V = 138,56 \cdot 10^6 \text{ pm}^3$; $\Delta 2 \Theta_{\text{max}} = 0,023^\circ$; $\Delta 2 \Theta_{\text{mitt}} = 0,013^\circ$; Cu- $K\alpha_1$ -Strahlung.

Tabelle A. 100:Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*)sowie der Gitterabstände ($d_{gem.}, d_{ber.}$);Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver ([P 1] ohneinternen Standard) der Zusammensetzung La₃InC_{0,58 ± 0,01}N_{0,03 ± 0,01}.

	$2 \Theta_{\rm gem.}$	h	k	l	$2 \Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	17,155	1	0	0	17,142	0,0136	11,7	5,1646	5,1686
2	29,904	1	1	1	29,919	-0,0145	100	2,9855	2,9841
3	34,681	2	0	0	34,683	-0,0019	56	2,5845	2,5843
4	38,943	2	1	0	38,932	0,0109	6	2,3109	2,3115
5	49,851	2	2	0	49,862	-0,0109	32,6	1,8278	1,8274
6	59,241	3	1	1	59,245	-0,0046	35,2	1,5585	1,5584
7	62,165	2	2	2	62,164	0,0012	12,6	1,492	1,4921
8	73,185	4	0	0	73,187	-0,0014	7,4	1,2922	1,2922
9	81,018	3	3	1	81,026	-0,0079	13,7	1,1859	1,1858
10	83,613	4	2	0	83,594	0,0185	12,9	1,1555	1,1557
11	93,788	4	2	2	93,791	-0,0029	10,1	1,0551	1,055

Pm $\overline{3}m$; Nr. 221; a = 516,86(2) pm; $V = 138,08(1) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,0341^\circ$; $\Delta 2\Theta_{\text{max}} = 0,018^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,008^\circ$; FOM(11) = 65,3 (0,008; 21); Cu-*K* α_1 -Strahlung.

Tabelle A. 101:Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*)sowiederGitterabstände($d_{gem.}, d_{ber.}$);AuswertungeinesRöntgendiffraktogrammsvonmikrokristallinemPulverPulver([P 1]ohneinternenStandard)derZusammensetzungLa3InC1,006 ± 0,009N0,05 ± 0,02.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	29,739	1	1	1	29,736	0,0029	100	3,0017	3,002
2	34,47	2	0	0	34,47	-0,0006	55,5	2,5998	2,5998
3	49,551	2	2	0	49,546	0,0049	37,9	1,8382	1,8383
4	58,864	3	1	1	58,858	0,0063	41,9	1,5676	1,5677
5	61,749	2	2	2	61,754	-0,0046	15	1,5011	1,501
6	72,674	4	0	0	72,681	-0,0071	10	1,3	1,2999
7	80,43	3	3	1	80,445	-0,0146	16,5	1,193	1,1929
8	82,984	4	2	0	82,986	-0,0021	16,5	1,1627	1,1627
9	93,08	4	2	2	93,065	0,0151	12,6	1,0612	1,0614
				1	1				

Pm $\overline{3}m$; Nr. 221; a = 519,96(6) pm; $V = 140,57(3) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,048(9)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,015^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,006^\circ$; FOM(9) = 73,1 (0,006; 19); Cu-*K* α_1 -Strahlung.

Tabelle A. 102:Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*)sowie der Gitterabstände ($d_{gem.}, d_{ber.}$);Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver ([P 1] ohneinternen Standard) der Zusammensetzung La₃InC_{1,009±0,003}N_{0,019±0,001}.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	29,732	1	1	1	29,731	0,0013	100	3,0024	3,0025
2	34,464	2	0	0	34,464	0,0000	58,3	2,6002	2,6003
3	49,538	2	2	0	49,536	0,0022	24,2	1,8386	1,8387
4	58,84	3	1	1	58,847	-0,0067	35,7	1,5682	1,568
5	61,744	2	2	2	61,742	0,0029	8,8	1,5012	1,5013
6	72,666	4	0	0	72,666	-0,0008	3,7	1,3001	1,3001
7	80,427	3	3	1	80,427	-0,0003	9,7	1,1931	1,1931
8	82,968	4	2	0	82,968	-0,0005	8,2	1,1629	1,1629
9	93,046	4	2	2	93,044	0,0019	6,2	1,0615	1,0615
			1		1				

Pm $\overline{3}m$; Nr. 221; a = 520,05(2) pm; $V = 140,649(9) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,008(3)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,007^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,002^\circ$; FOM(9) = 243,4 (0,002; 20); Cu-*K* α_1 -Strahlung.

10.11. (*SE*₃□)Sn

Literaturübersicht zu Phasen SE₃Sn

La₃Sn wird erstmals mit dem Vermerk "Zusammensetzung unsicher" beschrieben [36]. Spätere Untersuchungen können keine Belege für eine Phase La₃Sn finden [149]. Nach [194] ist La₃Sn nur unter Druck und erhöhten Temperaturen (75 kbar, 500 – 1300 °C, 2 h) erhältlich. Der Gitterparameter ($a = 498 \pm 2$ pm) liegt deutlich unterhalb der sonst für diese Phase berichteten Werte ([15]: $a = 510,2 \pm 0,6$; [36]: a = 512,5 pm). Bei einer Untersuchungen der Lösungsenthalpien der Systeme La–Sn und Y–Sn [195] wird La₃Sn beobachtet. Röntgenografische Daten können nicht ausgewertet werden, da die Röntgenpulverdiffraktogramme von schlechter Qualität seien⁴⁴. Weiter wird berichtet, die Struktur von La₃Sn weise eine niedrigere als die kubische Symmetrie auf [102]. La₃Sn wurde mehrfach als supraleitend berichtet ([92]: $T_c = 5,91$ K; [15], [102]: $T_c = 6,2$ K). Demgegenüber ist die Phase La₃Sn in keinem Phasendiagramm verzeichnet. Vielmehr wird La₃Sn als nicht-existent betrachtet [196].

Ce₃Sn ist in der Literatur mehrfach beschrieben worden. Nach dem Phasendiagramm [197] bildet sich diese Phase peritektisch aus Ce₅Sn₃ und Ce-reicher Schmelze bei 940 °C. Ohne weitere Angaben berichten die Autoren über eine geordnete ($Pm\overline{3}m$, Cu₃Au-Strukturtyp) und eine ungeordnete Modifikation ($Fm\overline{3}m$, Cu-Typ). Letztere weise einen höheren Gitterparameter von a = 501(1) pm auf. Diese Angaben sind in Einklang mit mehreren anderen Arbeiten (s. Tabelle A. 103). Der Gitterparameter für die geordnete Modifikation ist mit etwa 493 pm anzunehmen. Unklar bleibt allerdings, worauf das daraus Ordungs-Unordnungsphänomen basiert: In [197] wird eine peritektische Temperatur für die geordnete Phase angegeben, da keine Umwandlungstemperatur beobachtet werden konnte und die Reflexe der ungeordneten Phase zu schwach gewesen seien. In [48] wird angegeben, dass beide Phasen für x(Sn) = 27 - 28 % nebeneinander vorgelegen haben. In [198] wird der Bereich um x(Sn) = 25 % mit vier Zusammensetzungen dokumentiert: Ce₃Sn stellt im geordneten Cu₃Au-Strukturtyp eine Strichphase dar, während die ungeordnete Variante eine Phasenbreite aufweißt (15 % < x(Sn) < 35 %). Eine Probe mit x(Sn) = 25 % zeigt nach dem Aufschmelzen im Lichtbogen ausschließlich die ungeordnete Phase. Nach Wärmebehandlung bei 800 °C wird ein Phasengemisch aus geordneter und ungeordneter

⁴⁴ Zitat: "For the La₃Sn alloy poor quality of the x-ray powder photographs prevented us from having significant data."

Modifikation erhalten. Die Bildungsenthalpie für Ce₃Sn wird mit $-11,8 \pm 0,5$ kcal/g atom bestimmt [48].

Wie Ce₃Al (s. S. 52) und Ce₃In (s. S. 63) wird Ce₃Sn als Kondogitter oder schweres Fermionensystem beschrieben [115, 187]. Einlagerungen können dabei die strukturellen und alle anderen Eigenschaften beeinflussen⁴⁵. Die Verbindung zeigt Curie-Weiss Verhalten oberhalb 100 K. Das magnetische Moment von Ce wurde mit J = 5/2 (\equiv Ce 4 f^{-1} ; Ce³⁺) bestimmt ($\Theta = 10$ K).

Phase	<i>a</i> / pm	Raumgruppe	Lit.	T Reaktion
La ₃ Sn	512,5	Pm3m	[36]*	
	-		[96]	$T_{\rm c} = 5,61 {\rm K}$
	$510,2 \pm 0,6$	m 3 m	[15]	$T_{\rm c} = 6,2 {\rm K}$
	$510,2 \pm 0,6$	Fm 3 m	[15]	Lichtbogen (?)
	498 ± 2	Pm3m	[194]	
Ce ₃ Sn	492,9	$Pm\overline{3}m$	[122]	600 °C°
	504,3	Fm 3 m	[149]	
	493 – 494	Pm 3 m	[48]	
	505	$Fm\overline{3}m$	[48]	x(Sn) = 27 - 28%
	492,7(4)	Pm 3 m	[197]	
	494,79(1)	$Pm\overline{3}m$	[198]	
	507,1(1) -504,5(1)°°	$Fm\overline{3}m$	[198]	
	492,6	Pm 3 m	[199]**	400 °C
	492,3	Pm3m	[199]***	400 °C
$Ce_{2,9}Sn - Ce_{3,15}Sn$	492-495	Pm 3 m	[187]	700°C, 2 Wochen
Pr ₃ Sn	497,4	kfz-Gitter	[149]	Lichtbogen
	499	$Pm\overline{3}m$	[105]	850 °C, 210 h

Tabelle A. 103:	In der Literatur	angegebene	Gitterparameter für	Verbindungen.	SE ₃ Sn"
				,,	y = y =

* Autor gibt an: "Zusammensetzung unsicher"

** Gitterparameter aus zweiphasigem Produkt bestehend aus Ce₃Sn und CeCu₂

*** Gitterparameter aus dreiphasigem Produkt bestehend aus Ce₃Sn und Ce₅Sn₃ und CeCu₂

° Angabe aus der Originalliteratur nach [198] T < 490 °C

°° Phasenbreite postuliert

⁴⁵ [187]: Finally, we note that the presence of interstitials has a strong effect on the structural phase transition reported in the following. This can be seen by comparing the resistivities for less pure samples, which were reported earlier, to those reported in the following. The magnitude of the discontinuities, the temperature, and the pressure dependence of the transitions are all affected.

(La₃□)Sn

La und Sn wurden im molaren Verhältniss 3 : 1 im Lichtbogen mehrmals aufgeschmolzen. Bei einer Rückwägung der Schmelzkugel wurden keine Masseverluste beobachtet. Die Gesamtmasse der Probe betrug 1 g. Die Schmelzkugel wurde in Mo-Folie gewickelt, in Kieselglasampullen bei vermindertem Druck ($p > 7 \cdot 10^{-4}$ mbar) eingeschmolzen und wärmebehandelt (17 Monate, 480 °C). Pulver für ein Röntgenpulverdiffraktogramm wurde mit einer Diamantfeile von der Probe abgefeilt. Das erhaltene Diffraktogramm (s. Abbildung A. 48) zeigt Reflexe von La₅Sn₃ (nach [109]), La (dhdp, La-Typ) und weitere Reflexe, die keiner kubischen Phase zugeordnet werden können. Die Elementaranalysen ergeben $w(O) = 0,004 \pm 0,001$ %, $w(N) = 0,11 \pm 0,07$ %, $w(H) \le 0,003$ %. Unter der Annahme von x(La) : x(Sn) von 3 : 1 ergibt sich La₃SnN_{0,042 \pm 0,027}O_{0,0013 \pm 0,0003}.

Abbildung A. 48: Röntgenpulverdiffraktogramm (schwarz, Cu-Kα₁-Strahlung) einer Legierung La₇₅Sn₂₅ nach mehrmonatiger Wärmebehandlung bei 480 °C; darunter berechnete Röntgenpulverdiffratogramme von La₅Sn₃ (rot, nach [109]) und La (grün, La-Typ, dhdp nach [152]).

Abbildung A. 49: Metallografischer Schliff einer Legierung der Zusammensetzung La₇₅Sn₂₅, 10-faches Objektiv, polarisiertes Licht.

Abbildung A. 50: Metallografische Schliff einer Legierung der Zusammensetzung La₇₅Sn₂₅, 10-faches Objektiv, Hellfeld.

Die metallografischen Schliffe sind in Abbildung A. 49 und Abbildung A. 50 dargestellt. Das Gefüge wird durch mindestens zwei Phasen charakterisiert. Dabei ist eine dentritische Hauptphase (s. Abbildung A. 50, hell) zu erkennen, die in eine eutekoid erscheinende Phase eingebettet ist. Die dentritische Phase zeigt im polarisierten Licht variable Farbmuster und besitzt somit keine kubische Symetrie. Die rasterelektronisch mikroskopische Untersuchung bestätigt dieses Bild. Die Analyse der Hauptphase mit der Mikrosonde ergibt La_{62,1}Sn_{37,9} und entspricht im Rahmen des Fehlers der Zusammensetzung La₅Sn₃ (≡La_{62.5}Sn_{37.5}). Die Zusammensetzung der eutektischen Phase kann mit der Mikrosonde nicht bestimmt werden, weil die Bereiche zu klein sind. Die Ergebnisse einer DSC-Messung an dieser Probe sind in Abbildung A. 51 dargestellt. Beim Aufheizen wie beim Abkühlen wird ein sehr deutliches Signal (endotherm beim Aufheizen: $T_{\text{Onset}} = 765 \pm 5^{\circ}\text{C}$, $T_{\text{Peak}} = 770 \pm 5^{\circ}\text{C}$, exotherm beim Abkühlen $T_{\text{Onset}} = 765 \pm 5^{\circ}\text{C}$, $T_{\text{Peak}} = 760 \pm 5^{\circ}\text{C}$) beobachtet. Die metallografischen Schliffe zeigen zwei Phasen, der in der DSC-Messung beobachtete thermische Effekt stimmt gut mit dem Eutektikum La(Sn)/La₅Sn₃ überein. Somit befindet sich eine Legierung La-Sn mit x(La) = 75 % in einem zwei-Phasen-Gebiet, wie dies auch in [196] dargelegt wurde. Dort wurde eine Eutektikum für x(La) = 11,4 % mit einem Schmelzpunkt $T_{Smp} = 747$ °C beobachtet.

Abbildung A. 51: DSC-Messung an einer Legierung der Zusammensetzung La₇₅Sn₂₅ (17 Monate, 480 °C).

$(La_3N)Sn (MM = 549,41 \text{ g/ mol})$

La und LaN (x(La) : x(N) = 3 : 1) wurden im Lichtbogen mehrfach aufgeschmolzen. Anschließend wurde 1 Äq. Sn zugeschmolzen. Dabei wurde eine heftiger Lichtblitz beobachtet, sobald Sn mit der La-N-Schmelzkugel in Kontakt kam. Das danach gemessene Röntgenpulverdiffraktogramm zeigt als Hauptphase bereits Reflexe von (La₃N)Sn (a = 509,49 pm) neben solchen von La₅Sn₃X⁴⁶.

Abbildung A. 52: Röntgenpulverdiffraktogramm (Cu-Kα₁-Strahlung) einer Probe aus 2 Äq.
La, 1 Äq. LaN und 1 Äq. Sn (im Lichtbogen aufgeschmolzen).

Eine DSC-Messung (Nb-Ampulle, $T_{\text{max}} = 1100 \text{ °C}$, 10 K/min) an diesem Produkt zeigt keinen signifikanten thermischen Effekt und somit keine Hinweise auf eine chemische Reaktion oder eine binäre Phase des Systems La–Sn. Im anschließend angefertigten Röntgenpulverdiffraktogramm hat sich das Reflexverhältnis zu Gunsten von (La₃N)Sn gegenüber La₅Sn₃X verschoben. Nach zweimaliger Wärmebehandlung (900 °C, 500 h) wurde ein röntgenografisch phasenreines Produkt von (La₃N)Sn erhalten. Von der Probe wurde eine weitere DSC gemessen (s. Abbildung A. 54; Nb-Ampulle, $\beta = 10$ K/min,

⁴⁶ In [109] sind Verbindungen La₅Sn₃X (X=C, O) beschrieben. Die Autoren leiten daraus die mögliche Existenz von La₅Sn₃N ab, ohne Angaben zu einer charakterisierten Probe.

 $T_{\text{max}} = 1200 \text{ °C}$), um die thermische Stabilität der Probe zu untersuchen: Ein sehr schwaches Signal bei T = 740 °C ist auf Spuren von freiem La(Sn) zurückgeführt. Bis 1200 °C wurden keine weiteren Signale beobachtet, die Probe war nach diesem Experiment nicht aufgeschmolzen. Mit der Elementaranalyse auf O, N ($w(N) = 2,38 \pm 0,01$; $w(O) = 0,12 \pm 0,01$) und unter der Annahme eines molaren Verhältniss x(La) : x(Sn) = 3 : 1ergibt sich die Summenformel La₃SnN_{0,933 ± 0,004}O_{0,041 ± 0,003}.

Tabelle A. 104: (La₃N)Sn: Vergleich der gemessenen ($2\Theta_{gem.}$) und berechneten ($2\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] der Zusammensetzung La₃SnN_{0,933 ± 0,004}O_{0,041 ± 0,003}.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	17,387	1	0	0	17,392	-0,0045	22,2	5,0962	5,0949
2	30,367	1	1	1	30,362	0,0048	100,0	2,9411	2,9415
3	35,213	2	0	0	35,201	0,0118	59,5	2,5466	2,5474
4	50,631	2	2	0	50,635	-0,0034	43,0	1,8014	1,8013
5	60,174	3	1	1	60,191	-0,0166	39,2	1,5365	1,5362
6	63,160	2	2	2	63,167	-0,0066	18,0	1,4709	1,4708
7	74,433	4	0	0	74,424	0,0099	11,3	1,2736	1,2737
8	82,447	3	3	1	82,451	-0,0043	19,9	1,1689	1,1688
9	85,101	4	2	0	85,086	0,0143	21,8	1,1391	1,1393
10	95,573	4	2	2	95,579	-0,0054	17,2	1,0400	1,0400

Pm $\overline{3}m$; Nr. 221; a = 509,49(5) pm; $V = 132,25(2) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,043(8)$; $\Delta 2\Theta_{\text{max}} = 0,017^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,008^\circ$; FOM(10) = 58,3 (0,008; 21); Cu-*K* α_1 -Strahlung.

Abbildung A. 53: Röntgenpulverdiffraktogramm (Cu- $K\alpha_1$ -Strahlung) einer Probe der Zusammensetzung La₃SnN_{0,933 ± 0,004}O_{0,041 ± 0,003}.

Abbildung A. 54: DSC-Messung an La₃SnN_{0,933 ± 0,004}O_{0,041 ± 0,003}, (Nb-Ampulle, $\beta = 10$ K/min, $T_{max} = 1200$ °C).

$(Ce_3N)Sn (MM = 555,06 g/mol)$

CeN, Ce und Sn wurden im Lichtbogen nacheinander zusammengeschmolzen. Dabei wurde ein doppelter Überschuß an Cer bezüglich der Zielzusammensetzung "Ce₃SnN" eingewogen. Die erhaltene Schmelzkugel wurde in eine Ta-Ampulle eingeschweißt, in Kieselglas eingeschmolzen, wärmebehandelt (168 h, 900 °C), in Wasser abgeschreckt und der N- und O-Gehalt analysiert ($w(O) = 0,16 \pm 0,02$ %; $w(N) = 2,08 \pm 0,04$ %; (Ce₃N_{1,0})Sn: $w_{theo}(N) = 2,53$ %). Überschüssiges Ce(Sn) wurde abzentrifugiert [200]. Dazu wurde die Probe in ein Ta-Rohr eingeschweisst, das aus zwei Kammern besteht. Beide Kammern sind durch ein Ta-Blech mit fünf Löchern voneinander getrennt. Die Probe befindet sich in einer dieser Kammern. In Kieselglas eingeschweißt wird die Ta-Ampulle auf 950 °C erhitzt und dann in die Zentrifuge gebracht. Die Zentrifugalkraft drückt das flüssige Cer durch das Sieb. Cer und Feststoff ((Ce₃N)Sn) werden so voneinander getrennt. Dieser Reinigungsschritt wurde zwei mal angewandt. Das danach erhaltene Röntgenpulverdiffraktogramm (s. Abbildung A. 55) zeigt nur Reflexe einer Phase (kubisch, a = 501,10(4) pm).

Abbildung A. 55: Röntgenpulverdiffraktogramm (Cu-*Kα*₁-Strahlung) von (Ce₃N)Sn (Ce₃SnN_{0,912±0,008}O_{0,08±0,01}; aus Ce, CeN und Sn; Lichtbogen, 900 °C, 500 h; Zentrifuge).

Aus der Elementaranalyse ($w(O) = 0.24 \pm 0.02 \%$ und $w(N) = 2.31 \pm 0.02 \%$ und $w(H) \le 0.008 \%$) und der Annahme eines molaren Verhältnisses Ce zu Sn von 3 : 1 ergibt

sich Ce₃SnN_{0,912±0,008}O_{0,08±0,01}. Von dieser Probe wurde eine DSC-Messung angefertigt (Nb-Tiegel, $T_{\text{max}} = 1200 \text{ °C}$, $\beta = 10 \text{ K/min}$). Diese zeigt drei sehr schwache endotherme Signale beim Aufheizen (s. Abbildung A. 56 und Tabelle A. 105), die sich beim Abkühlen versetzt zu tieferen Temperaturen wiederholen.

Tabelle A. 105: Thermische Effekte der DSC-Messung (Nb-Tiegel, $T_{\text{max}} = 1200 \text{ °C}$, $\beta = 10 \text{ K/min}$) an einer Probe Ce₃SnN_{0,912 ± 0,008}O_{0,08 ± 0,01}.

	$T_{\text{Peak}} / °C$	$T_{\text{Onset}} / °C$	Zuordnung	[197]	Heizmodus
1	705 ± 5	705 ± 5	β -Ce in δ -Ce	690	Auf
2	735 ± 5	-	Eutektikum Ce-Ce ₃ Sn	725	
3	750 ± 5	-	Durchlaufen der Liquiduskurve		
4	730 ± 5	730 ± 5	Eutektikum Ce-Ce ₃ Sn	725	Ab
5	705 ± 5	-	δ -Ce β-Ce in	690	

Abbildung A. 56: DSC-Messung (Nb-Ampulle, $\beta = 10 \text{ K/min}$, $T_{\text{max}} = 1250 \text{ °C}$) an Ce₃SnN_{0,912 ± 0,008}O_{0,08 ± 0,01}.

Die Interpretation der thermischen Effekte der DSC-Messung erfolgt unter der Annahme, dass lediglich das binäres System Ce–Sn [197] für die Signale verantwortlich ist, da CeN im Unterschuß eingesetzt wurde und vollständig zu (Ce₃N)Sn reagiert hat. Weiter wird angenommen, dass die Verbindung (Ce₃N)Sn das System binäre System Ce–Sn nicht signifikant beeinflusst. Die beobachteten Änderungen werden der Umwandlung β -Ce \rightarrow δ -Ce (690 °C), dem Eutektikum Ce/Ce₃Sn (725 °C) und dem Durchlaufen der Liquidus zugeordnet. Da der Liquidus bei einer vom Eutektikum nur wenig entfernten Temperatur durchlaufen wird ist die Gesamtzusammensetzung des binären Ce–Sn-Anteils der Probe nahe dem Eutektikum (97,2 % < x(Ce) < 94,8 %). Die Probe zeigt nach dem Experiment keine Spuren eines Aufschmelzens. Das vorhandene Cer/Ce₃Sn ist vermutlich – wie bei das La in (La₃N)Sn – fein in der Probe verteilt, denn das anschliessend angefertigte Röntgenpulverdiffraktogramm zeigt nur Reflexe von (Ce₃N)Sn. Die DSC-Messungen geben keine Hinweise auf eine Zersetzung der Probe unterhalb von 1200 °C.

Tabelle A. 106:(Ce3N)Sn: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung Ce3SnN0,912 ± 0,008O0,08 ± 0,01.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	17,672	1	0	0	17,685	-0,0131	0,6	5,0147	5,0110
2	30,882	1	1	1	30,883	-0,0010	100,0	2,8932	2,8931
3	35,817	2	0	0	35,810	0,0066	56,8	2,5051	2,5055
4	40,227	2	1	0	40,209	0,0186	0,8	2,2400	2,2410
5	51,541	2	2	0	51,544	-0,0028	38,6	1,7717	1,7717
6	61,304	3	1	1	61,306	-0,0023	34,5	1,5109	1,5109
7	64,341	2	2	2	64,350	-0,0085	8,7	1,4467	1,4466
8	70,225	3	2	1	70,223	0,0011	0,4	1,3392	1,3392
9	75,889	4	0	0	75,887	0,0018	4,8	1,2527	1,2528
10	84,140	3	3	1	84,143	-0,0027	11,9	1,1496	1,1496
11	86,864	4	2	0	86,859	0,0044	11,3	1,1205	1,1205
12	97,713	4	2	2	97,715	-0,0022	8,4	1,0229	1,0229
		1	1	1	1	1	1		1

Pm $\overline{3}m$; Nr. 221; a = 501,10(4) pm; $V = 125,828(17) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,03(1)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,019^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,005^\circ$; FOM(10) = 105,7 (0,005; 21); Cu-*K* α_1 -Strahlung.

$(Pr_3N)Sn (MM = 555,42 \text{ g/ mol})$

Pr, PrN und Sn wurden wie bei der Synthese von (La₃N)Sn beschrieben im Lichtbogen zu einer Schmelzkugel verarbeitet. Die Probe wurde in Ta-Ampullen, danach in Kieselglas eingeschmolzen waren und dreimal wärmbehandelt (1. 900 °C, 336 h; 2. 800 °C, 168 h; 3. 900 °C, 1344 h). Danach wurde ein röntgenografisch phasenreines Produkt erhalten. Mit $(w(O) = 0.14 \pm 0.02 \%;$ $w(N) = 2,27 \pm 0,01$ %; der О, N-Analyse $(Pr_3N_{1,0})Sn$: $w_{\text{theo}}(N) = 2,52 \%$ und x(Pr) : x(Sn) = 3 : 1ergibt der Annahme sich Pr₃SnN_{0.899±0.004}O_{0.049±0.007}. Eine DSC-Messung an dieser Probe zeigt bis 1200 °C keine thermischen Effekte. Das anschließend gemessenen Röntgenpulverdiffraktogramm weisst einzig die Reflexe von Pr₃SnN auf. Darüberhinaus sind schwache Reflexe, die für ein geordnetes Struktur aus Pr und Sn-Atomen im Sinne des geordneten Cu₃Au-Strukturtyps erforderlich sind, zu erkennen.

Abbildung A. 57: Röntgenpulverdiffraktogramme (Cu-Kα₁-Strahlung) von (Pr₃N)Sn: schwarz: Nach der Synthese, hergestellt aus Pr, PrN und Sn (Lichtbogen; 900 °C)
blau: nach einem DSC-Experiment rot: berechnetes Diffraktogramm von (Pr₃N)Sn.

Tabelle A. 107: (Pr₃N)Sn: Vergleich der gemessenen ($2\Theta_{gem.}$) und berechneten ($2\Theta_{ber.}$) Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] der Zusammensetzung Pr₃SnN_{0,899±0,004}O_{0,049±0,007}, nach der Synthese (Pr, PrN und Sn; Lichtbogen, 900 °C).

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\mathrm{ber.}}$
1	17,809	1	0	0	17,813	-0,0040	19,3	4,9763	4,9752
2	31,125	1	1	1	31,111	0,0150	100,0	2,8711	2,8725
3	36,097	2	0	0	36,077	0,0202	60,0	2,4863	2,4876
4	40,472	2	1	0	40,510	-0,0380	10,3	2,2270	2,2250
5	51,940	2	2	0	51,942	-0,0020	35,8	1,7591	1,7590
6	61,799	3	1	1	61,795	0,0044	33,3	1,5000	1,5001
7	64,869	2	2	2	64,869	0,0003	16,5	1,4362	1,4362
8	76,543	4	0	0	76,531	0,0119	11,9	1,2436	1,2438
9	84,886	3	3	1	84,889	-0,0027	16,8	1,1414	1,1414
10	87,637	4	2	0	87,642	-0,0050	17,3	1,1125	1,1125
					1	1			

Pm $\overline{3}m$; Nr. 221; a = 497,5(1) pm; $V = 123,15(4) \cdot 10^6 \text{ pm}^3$; $\Delta 2 \Theta = -0,03(1)^\circ$; $\Delta 2 \Theta_{\text{max}} = 0,038^\circ$; $\Delta 2 \Theta_{\text{mitt}} = 0,010^\circ$; FOM(10) = 50,9 (0,010; 19); Cu-*K* α_1 -Strahlung.

Abbildung A. 58: DSC-Experiment an (Pr₃N)Sn (Nb-Ampulle, $T_{\text{max}} = 1200 \text{ °C}$, $\beta = 10 \text{ K/min}, T_{\text{min}} = 200 \text{ °C}$)

Tabelle A. 108: $(\Pr_3N)Sn$: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] derZusammensetzung $\Pr_3SnN_{0,899 \pm 0,004}O_{0,049 \pm 0,007}$, nach dem DSC-
Experiment.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	d _{gem.}	d _{ber.}
1	17,830	1	0	0	17,814	0,0155	28,2	4,9708	4,9751
2	31,118	1	1	1	31,112	0,0064	100,0	2,8718	2,8724
3	36,085	2	0	0	36,078	0,0070	71,4	2,4871	2,4875
4	40,483	2	1	0	40,512	-0,0291	14,6	2,2264	2,2249
5	51,939	2	2	0	51,944	-0,0050	43,8	1,7591	1,7590
6	61,789	3	1	1	61,797	-0,0082	44,3	1,5002	1,5000
7	64,865	2	2	2	64,871	-0,0069	20,5	1,4363	1,4362
8	76,555	4	0	0	76,534	0,0214	16,8	1,2435	1,2438
9	84,894	3	3	1	84,892	0,0019	23,6	1,1413	1,1414
10	87,641	4	2	0	87,645	-0,0048	23,5	1,1125	1,1125
11	98,669	4	2	2	98,667	0,0016	21,5	1,0155	1,0155

Pm $\overline{3}m$, Nr. 221; a = 497,51(6) pm; $V = 123,14(3) \cdot 10^6 \text{ pm}^3$; $\Delta 2\Theta = -0,04(1)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,029^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,010^\circ$; FOM(10) = 53,4 (0,010; 21); Cu-*K* α_1 -Strahlung.

$(Nd_3N)Sn (MM = 565,42 \text{ g/mol})$

2 Äq. Nd und 1 Äq. Sn wurden im Lichtbogen zu einer homogenen Kugel zusammengeschmolzen, in einer Achatreibschale zu feinem Pulver verarbeitet und mit 1 Äq. NdN (Pulver) vermengt. Das Gemenge wurde zu einer Tablette gepreßt und in Ta-Rohr eingeschweißt. Die dabei erhaltenen Ta-Ampulle wurde in Kieselglas eingeschmolzen und zwei mal wärmebehandelt (800 °C, 168 h; 900 °C, 168 h; Abschrecken in Wasser). Anschließend wurde das mirkokristalline Pulver mit Röntgenbeugung charakterisiert und auf den Gehalt an Ο und Ν analysiert. Die stärksten Reflexe des sich mit einer kubischen Zelle Röntgenpulverdiffraktogramms lassen indizieren (a = 494,70(5) pm). Die Intensitäten stimmen mit einer kubisch dichtesten Packung aus Nd und Sn-Atomen überein. Die verbleibenden Reflexe werden NdN und Nd₅Sn₃ zugeordnet. Mit der Elementaranalyse ($w(O) = 0.28 \pm 0.02\%$, $w(N) = 2.45 \pm 0.03\%$, $w(H) \le 0.02\%$) und ein molares Verhältnis x(Nd) : x(Sn) = 3 : 1bezogen auf ergibt sich $Nd_3SnN_{0.98 \pm 0.01}O_{0.10 \pm 0.01}$. Die DSC-Messung zeigt keine thermischen Effekte unterhalb von 1250 °C.

Abbildung A. 59: Röntgenpulverdiffraktogramm (Cu- $K\alpha_1$ -Strahlung) einer Probe der Zusammensetzung Nd₃SnN_{0,98±0,01}O_{0,10±0,01}.

Tabelle A. 109: $(Nd_3N)Sn$: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] (Hauptphase: $(Nd_3N)Sn$; Nebenphase: NdN und Nd₅Sn₃) der Zusammensetzung $Nd_3SnN_{0,98 \pm 0,01}O_{0,10 \pm 0,01}$.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}} - 2\Theta_{\text{ber.}}$	Intensität	d _{gem.}	d _{ber.}
1	17,902	1	0	0	17,916	-0,0137	1,1	4,9507	4,9470
2	31,296	1	1	1	31,293	0,0035	100,0	2,8558	2,8562
3	36,296	2	0	0	36,290	0,0058	57,3	2,4731	2,4735
4	52,260	2	2	0	52,261	-0,0006	32,7	1,7490	1,7490
5	62,187	3	1	1	62,187	0,0000	32,4	1,4916	1,4916
6	65,290	2	2	2	65,285	0,0044	8,8	1,4280	1,4281
7	77,055	4	0	0	77,048	0,0072	3,7	1,2367	1,2368
8	85,481	3	3	1	85,488	-0,0076	10,7	1,1350	1,1349
9	88,285	4	2	0	88,271	0,0143	11,4	1,1060	1,1062
10	99,414	4	2	2	99,427	-0,0136	9,2	1,0099	1,0098

Pm $\overline{3}m$; Nr. 221; a = 494,70(5) pm; $V = 121,07(2) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,057(8)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,014^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,007^\circ$; FOM(10) = 67,3 (0,007; 21); Cu-*K* α_1 -Strahlung.

Abbildung A. 60: DSC-Messung (Nb- Ampulle, $\beta = 10$ K/min, $T_{max} = 1250$ °C) einer Probe der Zusammensetzung Nd₃SnN_{0,98 ± 0,01}O_{0,10 ± 0,01} (Röntgenpulverdiffraktogramm: (Nd₃N)Sn (Hauptphase), Nd₅Sn₃X_x, NdN).

Tabelle A. 110:Nd_5Sn_3:Vergleich der gemessenen $(2 \Theta_{gem.})$ und berechneten $(2 \Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$);Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1] (Hauptphase:
(Nd_3N)Sn;Nebenphase:NdN und Nd_5Sn_3) der Zusammensetzung
Nd_3SnN_{0,98 \pm 0,01}O_{0,10 \pm 0,01}.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	28,859	1	0	2	28,854	0,0051	12,4	3,0912	3,0918
2	29,751	2	1	0	29,751	-0,0001	21,0	3,0005	3,0005
3	32,658	2	1	1	32,663	-0,0048	100,0	2,7398	2,7394
4	33,048	1	1	2	33,050	-0,0020	53,3	2,7083	2,7082
5	33,842	3	0	0	33,847	-0,0056	30,1	2,6466	2,6462
6	41,609	2	2	1	41,608	0,0004	6,3	2,1688	2,1688
7	43,236	3	1	1	43,208	0,0279	14,5	2,0908	2,0921
8	48,030	2	2	2	48,032	-0,0022	7,5	1,8927	1,8927
9	52,785	4	1	0	52,803	-0,0181	6,6	1,7329	1,7323
10	53,593	4	0	2	53,602	-0,0088	7,8	1,7087	1,7084
11	58,055	5	0	0	58,046	0,0085	4,9	1,5875	1,5877
12	60,031	4	1	2	60,050	-0,0190	4,5	1,5399	1,5394
13	64,937	5	0	2	64,918	0,0189	16,0	1,4349	1,4353

*P*6₃/*mcm*; Nr. 193; a = 916,7(4) pm; c = 671,4(4) pm; $V = 488,6(5) \cdot 10^6 \text{ pm}^3$; $\Delta 2 \Theta = -0,03(2)^\circ$; $\Delta 2 \Theta_{\text{max}} = 0,028^\circ$; $\Delta 2 \Theta_{\text{mitt}} = 0,009^\circ$; FOM(13) = 36,6 (0,009; 38); Cu-*K* α_1 -Strahlung.

(Sm₃N)Sn (*MM* = 583,78 g/mol)

Mirkokristallines Pulver von (Sm₃N)Sn wurden wie bei der Synthese von (Nd₃N)Sn aus Sm, Sn und SmN vorbereitet. Anschließend wurde die Probe drei mal wärmebehandelt (I. und II.: 800 °C, 168 h, Abschrecken in Wasser, III.: 900 °C, 168 h). Das danach erhaltene Röntgenpulverdiffraktogramm ist in Abbildung A. 61 dargestellt. und zeigt eine kubische Hauptphase sowie SmN und Sm₅Sn₃ als Nebenphasen. Die Elementaranalyse ergibt $w(O) = 0.13 \pm 0.05$ %, $w(N) = 2.62 \pm 0.04$ % und $w(H) \le 0.0008$ %. Unter Berücksichtigung der Einwaage von Sm und Sn entspricht dies einer Zusammensetzung $Sm_3SnN_{1,10\,\pm\,0,02}O_{0,05\,\pm\,0,02.}$

Abbildung A. 61: Röntgepulverdiffraktogramm (Cu- $K\alpha_1$ -Strahlung) der Probe Sm₃SnN_{1,10 ± 0,02}O_{0,05 ± 0,02} (Sm, SmN und Sn; Lichtbogen, 2 · 800 °C, 1 · 900 °C).
Tabelle A. 111: $(Sm_3N)Sn$: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1](Nebenphasen SmN und Sm₅Sn₃ [201]) der ZusammensetzungSm₃SnN_{1,10 ± 0,02}O_{0,05 ± 0,02}, nach dem DSC-Experiment.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	18,120	1	0	0	18,151	-0,0305	1,4	4,8917	4,8835
2	31,718	1	1	1	31,710	0,0075	100,0	2,8188	2,8195
3	36,789	2	0	0	36,778	0,0106	53,1	2,4411	2,4418
4	53,002	2	2	0	52,993	0,0091	31,6	1,7263	1,7266
5	63,104	3	1	1	63,087	0,0173	32,5	1,4721	1,4724
6	66,254	2	2	2	66,242	0,0121	9,3	1,4095	1,4097
7	78,231	4	0	0	78,239	-0,0084	4,4	1,2210	1,2209
8	86,860	3	3	1	86,873	-0,0127	10,7	1,1205	1,1204
9	89,721	4	2	0	89,726	-0,0049	11,0	1,0920	1,0920
				1					

$Pm\overline{3}m;$	Nr. 221;	a = 488,35(9) pr	m; $V = 116,46(4) \cdot 10^6 \text{ pm}^3$;	$\Delta 2\Theta = -0,07(1)^{\circ};$
$\Delta 2 \Theta_{\rm max} =$	0,031°;	$\Delta 2 \Theta_{\text{mitt}} = 0,013^{\circ};$	FOM(10) = 39,8 (0,013; 18);	Cu- $K\alpha_1$ -Strahlung.

Tabelle A. 112: Sm_5Sn_3 : Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung einesRöntgendiffraktogramms von mikrokristallinem Pulver [P 1](Nebenphasen SmN und Sm_5Sn_3 [201]) der Zusammensetzung $Sm_3SnN_{1,10 \pm 0,02}O_{0,05 \pm 0,02}$, nach dem DSC-Experiment.

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
1	26,808	0	0	2	26,816	-0,0078	2,3	3,3229	3,3220
2	29,152	1	0	2	29,159	-0,0066	2,2	3,0608	3,0601
3	30,044	2	1	0	30,039	0,0047	6,2	2,9720	2,9724
4	32,988	2	1	1	32,987	0,0015	21,9	2,7131	2,7132
5	33,405	1	1	2	33,395	0,0103	9,6	2,6802	2,6810
6	34,210	3	0	0	34,177	0,0331	4,8	2,6189	2,6214
7	35,352	2	0	2	35,342	0,0100	1,1	2,5369	2,5376
8	39,661	2	2	0	39,669	-0,0085	0,6	2,2707	2,2702
9	40,695	2	1	2	40,699	-0,0037	0,5	2,2153	2,2151
10	42,071	2	2	1	42,025	0,0460	2,4	2,1460	2,1483

*P*6₃/*mcm*; Nr. 193; a = 908(1) pm; c = 664,4(4) pm; $V = 474(1) \cdot 10^{6}$ pm³; $\Delta 2\Theta = -0,04(3)$; $\Delta 2\Theta_{\text{max}} = 0,046^{\circ}$; $\Delta 2\Theta_{\text{mitt}} = 0,013^{\circ}$; FOM(13) = 63,0 (0,013; 12); Cu-*K* α_1 -Strahlung.

Abbildung A. 62: DSC-Messung (Nb- Ampulle, $\beta = 10$ K/min, $T_{max} = 1250$ °C) an einer Probe der Zusammensetzung Sm₃SnN_{1,10 ± 0,02}O_{0,05 ± 0,02} (Röntgenpulverdiffraktogramm: (Sm₃N)Sn (Hauptphase), Sm₅Sn₃X_x, SmN).

Versuche zu $(SE_3N)Sn$, SE = Gd

Versuche, (SE_3N) Sn mit SE = Gd darzustellen, verliefen nicht erfolgreich. Hier werden die Experimente dargestellt, die unternommen wurden, diese Phase zu erhalten. Wie bei der Synthese von (La₃N)Sn wurde eine Schmelzkugel aus 2 Äq. Gd, 1 Äq. GdN und 1 Äq. Sn hergestellt und verschiedenen Wärmebehandlungen unterzogen (s. Tabelle A. 113). Die Verhältnisse der Reflexintensitäten der verschiedenen Phasen (Gd₅Sn₃, GdN, Gd) ändern sich durch keine Wärmebehandlung. Als Anschauungsbeispiel ist in Abbildung A. 63 das Röntgenpulverdiffraktogramm der Probe dargestellt, die bei 700 °C wärmebehandelt wurde. Das Röntgenpulverdiffraktogramm kann folgendermaßen erklärt werden: Gd₅Sn₃ (*P*6₃/*mcm*; Nr. 193, a = 900,6(1) pm; c = 658,40(7) pm; [201]: a = 902 pm; c = 656,8 pm) und GdN (a = 496,71(4)) bilden die Hauptphasen. Weiter können Reflexe von Gd [202] und einer vierten Phase identifiziert werden, die kubisch indiziert werden kann (a = 486,4(3) pm (FOM(4) = 56,7; $\Delta 2\Theta$ = -0,04(3)). Dieser Wert ist größer als für die hypothetische Verbindung (Gd₃N)Sn zu erwarten wäre $(a = 481 \text{ pm})^{47}$. Die Probe konnte nur im Lichtbogen aufgeschmolzen werden. Dies ist auf den hohen Schmelzpunkt der beiden Hauptphasen Gd₅Sn₃ und GdN zurückzuführen. Die Elementaranalyse auf H, N und O ergab $= 0.13 \pm 0.05 \%$ und $w(N) = 2,62 \pm 0,04 \%$ und $w(H) \le 0,0008$ %. w(O)Unter Berücksichtigung der Einwaage von Gd und Sn ergibt sich $Gd_3SnN_{0.86\pm0.07}O_{0.09\pm0.02}$.

⁴⁷ Extrapolation aus den bekannten Phasen (SE₃N)Sn.

T / °C	Dauer	Methode	Phasenanalyse
500	2 Wochen	Ofen	Gd ₅ Sn ₃ , GdN, Gd
600	2 Wochen	Ofen	Gd ₅ Sn ₃ , GdN, Gd
700	4 Wochen	Ofen	Gd ₅ Sn ₃ , GdN, Gd
800	2 Wochen	Ofen	Gd ₅ Sn ₃ , GdN, Gd
950	8 Wochen	Ofen	Gd ₅ Sn ₃ , GdN, Gd
1150	1 Wochen	Hochtemperaturofen	Gd ₅ Sn ₃ , GdN, Gd
1250	1 Woche	Hochtemperaturofen	Gd ₅ Sn ₃ , GdN, Gd
Weissglut $T > 1200$ °C	2 min	Hochfrequenzofen	Gd ₅ Sn ₃ , GdN, Gd
Schmelze	1 min	Lichtbogen	Gd ₅ Sn ₃ , GdN, Gd

Tabelle A. 113:VersuchsbedingungenPräparaten (Gd_3N)Sn.

gen und Phasenanalyse (Röntgenbeugung) von

Abbildung A. 63: Röntgenpulverdiffraktogramm (Co- $K\alpha_1$ -Strahlung) einer Probe der Zusammensetzung Gd₃SnN_{0,86 ± 0,07}O_{0,09 ± 0,02} (700 °C; 168 h).

10.13. $(EA_{19}N_7)[In_4]_2 EA = Ca, Sr, Ba$

	Neutronen	Röntgen	Röntgen
Verbinnung	(Ca ₁₉ N	$(Sr_{19}N_7)[In_4]_2$	
Gitterparameter <i>a</i> (pm)			
Rietveld	1472	2,52(5)	1562,2(1)
STOE		1473,14(9)	1563,3(2)
Volumen $V(10^6 \text{ pm}^3)$		3192,9	3812,5
Anzahl der Formeleinheiten, Z		2	2
Wellenlänge λ (pm)	179,78(1)*	$Cu-K\alpha_1$	$Cu-K\alpha_1$
Messbereich $\Theta_{\min}, \ \Theta_{\max} \ / \ ^{\circ}$	7, 157,8	10, 120	5,1,110
Messpunkte	1930	5500	5240
Anzahl der freigegebene Parameter		35	22
Anzahl der verfeinerten		0	
Strukturparameter		8	8
Programm	Fullprof, 2k	Version, 2,45 – Ju	ıly 2003 – LLB
		JRC	
Reflexprofil	Pseudo-	Pseudo-Voigt	Pseudo-Voigt
	Voigt		
$R_{\rm F}/R_{\rm Bragg}$ (%)	5,96/7,95	13,0/8,47	10,3/10,8

*während der Verfeinerung frei gegeben

Tabelle A. 115:Lageparameter und isotrope Temperaturparameter B von $(Ca_{19}N_7)[In_4]_2$ in
der Raumgruppe $Fm\overline{3}m$ aus der gemeinsamen Rietveld-Verfeinerung von
Datensätzen der Neutronenbeugung und Röntgenbeugung an Pulvern.

Atom	Lage	x	У	Ζ	$B [10^4 \mathrm{pm}^2]$	
In	32 <i>f</i>	0,1752(1)	x	x	1,03(6)	
Ca(1)	4 <i>b</i>	1/2	1/2	1/2	1,15(7)	
Ca(2)	24 <i>e</i>	0,8354(6)	0	0	<i>B</i> (Ca(1))	
Ca(3)	48 <i>i</i>	1/2	0,8356(3)	У	<i>B</i> (Ca(1))	
N(1)	4 <i>a</i>	0	0	0	0,8(1)	
N(2)	24 <i>e</i>	0,6748(6)	0	0	<i>B</i> (N(1))	

Tabelle A. 116: Lage- und isotrope Temperaturparameter B von $(Sr_{19}N_7)[In_4]_2$ in der Raumgruppe $Fm\overline{3}m$ aus der Rietveld-Verfeinerung eines Datensatzes aus Röntgenbeugung an Pulvern.

Atom	Lage	x	У	Z	$B [10^4 \mathrm{pm^2}]$
In	32 <i>f</i>	0,1799(2)	x	x	1,2(1)
Sr(1)	4 <i>b</i>	1/2	1/2	1/2	1,22(9)
Sr(2)	24 <i>e</i>	0,8308(4)	0	0	<i>B</i> (Sr(1))
Sr(3)	48 <i>i</i>	1/2	0,8357(2)	У	<i>B</i> (Sr(1))
N(1)	4 <i>a</i>	0	0	0	1^{48}
N(2)	24 <i>e</i>	0,667(2)	0	0	1 48
	1	1		1	

Bei der Rietveldverfeinerung wurden die B-Werte der Stickstofflagen nicht verfeinert⁴⁸

⁴⁸ Die Streulänge von N(EZ = 7) wurde als zu unbedeutend bezüglich der Streulängen von Sr (EZ = 38) und In (EZ = 49) erachtet.

Tabelle A. 117: $(Ca_{19}N_7)[In_4]_2$: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] (Messung in Glaskapillaren).

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	11,989	2	0	0	12,006	-0,0017	19,9	7,3761	7,3657
2	16,995	2	2	0	17,01	-0,0151	15,4	5,2129	5,2083
3	20,848	2	2	2	20,872	-0,0241	6,5	4,2574	4,2526
4	26,338	3	3	1	26,35	-0,0116	16,8	3,3811	3,3796
5	31,518	5	1	1	31,532	-0,0013	100	2,8362	2,8351
6	36,039	5	3	1	36,04	-0,0014	7	2,4901	2,4901
7	36,56	6	0	0	36,569	-0,0089	62,4	2,4558	2,4552
8	38,616	6	2	0	38,624	-0,0079	4,8	2,3297	2,3292
9	40,099	5	3	3	40,106	-0,0066	15,9	2,2469	2,2465
10	40,58	6	2	2	40,59	-0,0095	2,6	2,2213	2,2208
11	43,891	7	1	1	43,854	0,0369	1,2	2,0612	2,0628
12	47,353	7	3	1	47,362	-0,0088	7,2	1,9182	1,9179
13	49,465	8	0	0	49,457	0,0078	3	1,8411	1,8414
14	51,084	8	2	0	51,086	-0,0002	4,8	1,7865	1,7864
15	52,676	6	6	0	52,679	-0,0036	45,2	1,7362	1,7361
16	53,878	7	5	1	53,852	0,0026	1,1	1,7003	1,701
17	54,247	6	6	2	54,239	0,0072	2	1,6896	1,6898
18	57,257	8	4	2	57,272	-0,0146	0,8	1,6077	1,6073
19	59,852	9	3	1	59,843	0,0089	2,2	1,5441	1,5443
20	62,704	7	7	1	62,702	0,0022	39,7	1,4805	1,4806
21	63,066	10	0	0	63,054	0,0125	4,5	1,4729	1,4731
22	64,448	10	2	0	64,451	-0,0029	4,6	1,4446	1,4445
23	65,492	9	5	1	65,488	0,0034	1,5	1,4241	1,4241
24	65,841	10	2	2	65,832	0,0089	13,4	1,4174	1,4175
25	68,231	9	5	3	68,215	0,016	5,2	1,3734	1,3737
26	72,537	8	8	0	72,54	-0,0025	1,6	1,3021	1,3021
27	73,539	11	3	1	73,523	0,0159	3,4	1,2868	1,2871
28	73,853	8	8	2	73,849	0,0039	1,4	1,2821	1,2822

10. Anhang

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
29	75,147	10	6	0	75,15	-0,0027	2	1,2632	1,2632
	76,134	11	3	3	76,12	0,0137	3,8	1,2493	1,2495
30	77,734	12	0	0	77,728	0,0006	5,6	1,2275	1,2276
31	81,239	11	5	3	81,234	0,0005	4,6	1,1832	1,1833
32	84,071	10	8	0	84,078	-0,0069	2,1	1,1504	1,1503
33	86,287	13	1	1	86,279	0,0077	14,5	1,1265	1,1265
34	89,115	12	6	0	89,101	0,0138	14,8	1,0979	1,098
35	90,397	12	6	2	90,355	0,0427	0,4	1,0856	1,086
36	91,299	13	3	3	91,295	0,0004	0,9	1,0772	1,0773
37	94,16	14	0	0	94,118	0,0422	0,6	1,0519	1,0522
38	95,416	14	2	0	95,376	0,0403	1,3	1,0413	1,0417
39	96,36	11	9	1	96,321	0,0393	1,7	1,0336	1,0339
40	98,864	11	9	3	98,849	0,015	3,7	1,014	1,0141
41	99,216	14	4	0	99,167	0,0494	1,1	1,0114	1,0118
42	100,45	14	4	2	100,439	0,0113	11,5	1,0023	1,0023
43	103,98	15	1	1	103,965	0,0148	2,7	0,9777	0,9778
44	105,618	14	6	0	105,585	0,0329	1,6	0,967	0,9672
45	106,911	14	6	2	106,891	0,0201	1,8	0,9588	0,9589
46	109,227	11	11	1	109,198	0,0297	10,6	0,9448	0,945
47	111,898	15	5	1	111,875	0,0239	2,6	0,9297	0,9298
48	114,64	15	5	3	114,603	0,0371	0,9	0,9152	0,9154
49	114,954	16	2	0	114,948	0,0066	2	0,9136	0,9136
50	116,36	16	2	2	116,338	0,0218	1,7	0,9065	0,9067
51	117,712	14	6	6	117,745	-0,0326	1,1	0,9	0,8999
52	119,178	16	4	0	119,171	0,0073	0,6	0,8932	0,8932
53	11,989	2	0	0	12,006	-0,017	19,9	7,3761	7,3657

Fm $\overline{3}m$; a = 1473, 14(9) pm; $V = 3196, 9(3) \cdot 10^6$ m³; $\Delta 2 \Theta = -0,011(5)^\circ$; $\Delta 2 \Theta_{\text{max}} = 0,049^\circ$; $\Delta 2 \Theta_{\text{mitt}} = 0,016^\circ$; FOM(30) = 60,7 (0,011; 47); Cu-*K* α_1 -Strahlung.

Tabelle A. 118:	$(Sr_{19}N_7)[In_4]_2$: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$
	Reflexe (<i>hkl</i>) sowie der Gitterabstände ($d_{gem.}$, $d_{ber.}$); Auswertung eines
	Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] (Messung in
	Glaskapillaren).

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
1	11,278	2	0	0	11,311	-0,0332	5,5	7,8395	7,8166
2	15,994	2	2	0	16,022	-0,0285	7,8	5,5369	5,5271
3	18,728	3	1	1	18,811	-0,0834	1,0	4,7344	4,7136
4	19,624	2	2	2	19,656	-0,0313	3,3	4,5200	4,5129
5	22,677	4	0	0	22,734	-0,0566	0,6	3,9179	3,9083
6	24,793	3	3	1	24,805	-0,0121	0,6	3,5882	3,5865
7	27,921	4	2	2	27,937	-0,0160	1,3	3,1929	3,1911
8	29,655	5	1	1	29,670	-0,0145	100,0	3,0100	3,0086
9	32,398	4	4	0	32,369	0,0286	0,6	2,7612	2,7636
10	33,911	5	3	1	33,896	0,0151	2,2	2,6413	2,6425
11	34,383	6	0	0	34,392	-0,0090	49,1	2,6062	2,6055
12	36,317	6	2	0	36,315	0,0022	0,5	2,4717	2,4718
13	37,692	5	3	3	37,702	-0,0102	5,2	2,3846	2,3840
14	38,148	6	2	2	38,155	-0,0069	1,4	2,3572	2,3568
15	39,943	4	4	4	39,922	0,0216	0,2	2,2553	2,2564
16	41,185	7	1	1	41,205	-0,0200	1,6	2,1901	2,1891
17	41,603	6	4	0	41,626	-0,0224	0,7	2,1690	2,1679
18	44,474	7	3	1	44,479	-0,0042	3,8	2,0354	2,0353
19	46,463	8	0	0	46,431	0,0325	0,7	1,9528	1,9541
20	47,593	7	3	3	47,572	0,0213	0,4	1,9091	1,9099
21	47,959	8	2	0	47,948	0,0113	1,2	1,8954	1,8958
22	49,431	6	6	0	49,429	0,0017	22,8	1,8423	1,8424
23	50,520	7	5	1	50,519	0,0008	2,3	1,8051	1,8052
24	53,339	9	1	1	53,347	-0,0079	0,7	1,7162	1,7160
25	53,731	8	4	2	53,693	0,0388	0,8	1,7046	1,7057
26	55,034	6	6	4	55,062	-0,0281	0,2	1,6673	1,6665
27	58,721	7	7	1	58,716	0,0049	17,5	1,5711	1,5712
28	59,082	10	0	0	59,041	0,0405	1,3	1,5623	1,5633

10. Anhang

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}$ – $2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	d _{ber.}
29	60,328	10	2	0	60,330	-0,0017	1,4	1,5330	1,5330
30	61,613	10	2	2	61,603	0,0101	5,9	1,5041	1,5043
31	63,843	9	5	3	63,795	0,0488	0,5	1,4568	1,4578
32	64,098	10	4	0	64,104	-0,0060	0,1	1,4516	1,4515
33	65,349	10	4	2	65,335	0,0139	0,4	1,4268	1,4271
34	66,242	11	1	1	66,250	-0,0088	0,5	1,4098	1,4096
35	67,795	8	8	0	67,761	0,0333	0,3	1,3812	1,3818
36	68,686	11	3	1	68,660	0,0253	0,6	1,3654	1,3659
37	68,952	8	8	2	68,959	-0,0070	0,5	1,3608	1,3607
38	70,182	10	6	0	70,146	0,0356	0,6	1,3399	1,3405
39	71,077	11	3	3	71,031	0,0452	1,1	1,3253	1,3260
40	71,409	10	6	2	71,325	0,0835	0,3	1,3199	1,3212
41	72,588	12	0	0	72,496	0,0923	1,2	1,3013	1,3028
42	73,427	11	5	1	73,369	0,0578	0,3	1,2885	1,2894
43	74,891	12	2	2	74,816	0,0756	0,2	1,2669	1,2680
44	75,693	11	5	3	75,679	0,0145	0,8	1,2555	1,2557
45	78,259	10	8	0	78,249	0,0098	0,6	1,2206	1,2207
46	79,426	10	8	2	79,384	0,0419	0,7	1,2056	1,2061
47	80,263	13	1	1	80,232	0,0309	4,6	1,1951	1,1955
48	81,610	12	4	4	81,640	-0,0306	0,1	1,1788	1,1784
49	82,535	13	3	1	82,483	0,0522	1,0	1,1679	1,1685
50	82,804	12	6	0	82,764	0,0401	3,3	1,1648	1,1652
51	88,416	14	2	0	88,347	0,0696	0,3	1,1047	1,1054
52	89,259	11	9	1	89,182	0,0771	0,6	1,0965	1,0972
53	91,490	11	9	3	91,408	0,0820	0,3	1,0755	1,0762
54	92,823	14	4	2	92,800	0,0233	2,0	1,0635	1,0637
55	93,678	13	7	1	93,636	0,0419	0,6	1,0560	1,0564
56	95,782	15	1	1	95,869	-0,0876	0,2	1,0383	1,0376
57	96,139	14	4	4	96,149	-0,0095	0,5	1,0354	1,0353
58	97,836	15	3	0	97,831	0,0055	0,1	1,0219	1,0220
59	98,488	14	6	2	98,393	0,0947	0,2	1,0169	1,0176
60	102,713	15	5	1	102,638	0,0749	0,4	0,9862	0,9868

	$2\Theta_{\rm gem.}$	h	k	1	$2\Theta_{\rm ber.}$	$2\Theta_{\text{gem.}}-2\Theta_{\text{ber.}}$	Intensität	$d_{\text{gem.}}$	$d_{\rm ber.}$
61	104,885	15	5	3	104,930	-0,0447	0,2	0,9717	0,9714
62	105,315	16	2	0	105,218	0,0971	0,5	0,9689	0,9695
63	106,430	16	2	2	106,375	0,0555	0,4	0,9618	0,9622
64	107,269	11	11	5	107,247	0,0222	0,2	0,9566	0,9567
65	109,802	16	4	2	109,888	-0,0862	0,2	0,9415	0,9410

Fm $\overline{3}m$; a = 1563,3(2) pm; $V = 3820,7(9) \cdot 10^6 \text{ m}^3$; $\Delta 2\Theta = -0,05(1)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,097^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,034^\circ$; FOM(30) = 16,2 (0,021; 90); Cu-*K* α_1 -Strahlung.

Tabelle A. 119: $(Ba_{19}N_7)[In_4]_2$: Vergleich der gemessenen $(2\Theta_{gem.})$ und berechneten $(2\Theta_{ber.})$ Reflexe (*hkl*) sowie der Gitterabstände ($d_{gem.}, d_{ber.}$); Auswertung eines Röntgendiffraktogramms von mikrokristallinem Pulver [P 1] (Messung in Glaskapillaren).

	$2\Theta_{\rm gem.}$	h	k	l	$2\Theta_{\rm ber.}$	$2 \Theta_{\text{gem.}} - 2 \Theta_{\text{ber.}}$	Intensität	d _{gem.}	d _{ber.}
1	27,662	1	1	1	27,663	-0,0004	100	3,2222	3,2221
2	32,059	2	0	0	32,049	0,0099	56	2,7896	2,7905
3	45,967	2	2	0	45,958	0,0095	41,9	1,9728	1,9731
4	54,477	3	1	1	54,487	-0,0104	36,7	1,6830	1,6827
5	57,127	2	2	2	57,127	0,0001	19,1	1,6111	1,6111
6	67,021	4	0	0	67,022	-0,0009	13,1	1,3952	1,3952
7	73,958	3	3	1	73,974	-0,0158	19,9	1,2806	1,2803
8	76,218	4	2	0	76,233	-0,0144	19,1	1,2481	1,2479
9	85,098	4	2	2	85,091	0,0064	14,3	1,1391	1,1392
10	91,662	5	1	1	91,646	0,0016	14,7	1,0739	1,074

Fm $\overline{3}m$; Nr. 225; a = 558,09(8) pm; $V = 173,83(4) \cdot 10^6$ pm³; $\Delta 2\Theta = -0,02(1)^\circ$; $\Delta 2\Theta_{\text{max}} = 0,002^\circ$; $\Delta 2\Theta_{\text{mitt}} = 0,008^\circ$; FOM(10) = 108,3 (0,008; 11); Cu-*K* α_1 -Strahlung.

11. Phasendiagramme (Literaturdaten)

SE-AI

La-Al

Phasendiagramm La-Al nach [80] (links) und [70] (links).

Phasendiagramm La-Al nach [75].

Phasendiagramm Ce-Al [80] (links) und (rechts) [111].

Phasendiagramm Ce-Al nach [75].

Phasendiagramm Pr-Al nach [80]

Phasendiagramm Pr-Al nach [75].

Phasendiagramm Nd-Al nach [132].

Phasendiagramm Nd-Al nach [75].

Nd-Al

Phasendiagramm Sm-Al nach [118].

Gd-Al

Phasendiagramm Gd-Al nach [132] (rechts) und [179] (links)256.

Phasendiagramm Tb-Al nach [203].

Dy-Al

Phasendiagramm Dy-Al nach [179].

Ho-Al

Phasendiagramm Ho-Al nach [180].

Er-Al

Phasendiagramm Er-Al nach [204].

Phasendiagramm Tm-Al nach [203].

Phasendiagramm Lu-Al nach [203].

SE-Ga

Sc-Ga

Phasendiagramm Sc-Ga nach [140].

La-Ga

Phasendiagramm La-Ga nach [140].

Phasendiagramm Ce–Ga nach [140] (rechts) und [138] (links).

Pr-Ga

Phasendiagramm Pr-Ga nach [140].

Phasendiagramm Nd-Ga nach [140].

Sm-Ga

Phasendiagramm Sm-Ga nach [140].

Phasendiagramm Gd-Ga nach [140].

Tb-Ga

Phasendiagramm Tb-Ga nach [140].

SE-In

Sc-In

Phasendiagramm Sc-In nach [143] (links) und [205] (rechts).

La-In

Phasendiagramm La-In nach [94].

Phasendiagramm Ce-In nach [185].

Phasendiagramm von Ce-In nach [107].

Phasendiagramm Pr-In nach [206].

Nd-In

Phasendiagramm Nd-In nach [143].

Sm-In

Phasendiagramm von Sm-In nach [207] (rechts) und nach [143] (links).

Gd-In

Phasendiagramm Gd–In nach [208] (links) und nach [143] (rechts).

SE-Sn

Sc-Sn

Phasendiagramm von Sc-Sn nach [209].

La–Sn

Phasendiagramm von La-Sn [196]. Angaben der Autoren im Text: 1: DTA - aufheizen; 2: DTA: Abkühlen; 3 - 5: Daten anderer Autoren

Phasendiagramm von Ce-Sn nach [210].

Angaben der Autoren im Text: geschlossene Dreiecke (oben): thermische Effekte beim aufheizen; geschlossene Dreiecke (unten): thermische Effekte, beim Abkühlen; offene Dreiecke(unten): schwache thermisch Signale beim Abkühlen; gefüllte Kreise: thermische Effekte beim aufheizen und abkühlen.

Phasendiagramm von Pr-Sn nach [211].

Nd–Sn

Phasendiagramm von Nd–Sn nach [212]

Phasendiagramm von Sm-Sn nach [213].

Die	Phasendiagramme	Gd–Sn	und	Lu–Sn	sind	nur	unzureichend	bekannt.
-----	-----------------	-------	-----	-------	------	-----	--------------	----------

Sm–Sn

Curriculum Vitae

Persönliche Daten

Name:	Martin Kirchner
Geburtstag:	03.03.1976
Geburtsort:	Stuttgart
Nationalität:	Deutsch, Österreichisch
Familienstand:	ledig

Ausbildung

1982 - 1986	Grund- und Hauptschule Gäufelden-Nebringen
1986 - 1995	Schickhardt Gymnasium Herrenberg, Abitur

- 1995 1996 Zivildienst beim Grünflächenamt der Stadt Leinfelden-Echterdingen
- 1996 1998 Grundstudium der Chemie an der Universität Stuttgart, Vordiplom
- 1998 2001 Hauptstudium der Chemie an der Friedrich-Schiller-Universität Jena, Diplom
- 1999 2000 ERASMUS-Studium an der École Nationale Supérieur de Chimie de Montpellier (ENSCM)
- 2001 2002 Diplomarbeit am Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden unter der Anleitung von Herrn Prof. Dr. D. Walter und Herrn Prof. Dr. R. Kniep
- seit 2002 Beginn der Dissertation am Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden.unter der Leitung von Herrn Prof. Dr. R. Kniep

Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Die vorliegende Dissertation wurde unter der Betreuung von Herrn Prof. Dr. Rüdiger Kniep in der Zeit von Januar 2002 bis Dezember 2005 am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden angefertigt.

Es haben keine früheren erfolglosen Promotionsverfahren stattgefunden.

Ich erkenne die Promotionsordnung der Fakultät Mathematik und Naturwissenschaften der TU Dresden vom 16. April 2003 in vollem Umfang an.

Dresden, den

(Martin Kirchner)