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Aim of the work 
Cytochrome c oxidase (COX) is the terminal enzyme of the eukaryotic respiratory 

chain, reducing oxygen to water and generating a proton gradient, that drives ATP 

synthesis. In the yeast, Saccharomyces (S.) cerevisiae it is composed of 11 subunits, three 

of which are encoded by mitochondrial DNA. The latter form the catalytic core of COX 

including two hemes, a magnesium ion, a zinc ion and three copper ions. Since free 

copper is not available in the cells a chaperone system is necessary to deliver copper to 

the mitochondria and COX. It has been postulated that Cox17p transfers copper to the 

proteins of the Sco-protein-family which are involved in copper insertion into the 

binuclear CuA site in Cox2p subunit. Recently it was demonstrated that Cox11p, a protein 

essential for respiratory growth, is implicated in the assembly of CuB site of COX. 

However little is still known about the mechanisms of both processes. Interestingly, the 

genome of the fission yeast Schizosaccharomyces (S.) pombe contains two almost 

identical versions of cox11+ gene: cox11+and cox11b+. Both proteins contain a large N-

terminal extension that is homologous to S. cerevisiae Rsm22p, a protein of the small 

subunit of mitochondrial ribosome. The reason for existence of such a fusion remains 

unclear. 

 It is proposed to characterize the proteins involved in copper insertion into COX 

using methods of molecular genetics and biochemistry, with special emphasis on 

Cox11p. The functional complementation of Cox11p family members in the heterologous 

yeast systems will be analyzed. Topogenesis and topological properties of Cox11p from 

S. cerevisiae as well as from S. pombe will be characterized. In order to get a clue how 

the CuB is formed, interactions of Cox11p with proteins involved in COX assembly will 

be analyzed. The question why fission yeast require two versions of cox11+ and if both 

version might be functional and necessary for the S. pombe cells, will be addressed. 
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Chapter 1 

Introduction 
1.1 Copper and its trafficking in the cell 

Copper is a transition metal that has the ability to cycle between two redox states, 

oxidized Cu2+ and reduced Cu+. It is an essential nutrient required for the activity of a 

number of enzymes with diverse biological roles. Virtually all organisms require copper 

as a catalytical cofactor for a number of biological processes including respiration, iron 

transport, oxidative stress protection, pigmentation, blood clotting and normal cell growth 

and development (for review see Harris 2000; Puig and Thiele, 2002). Copper as well as 

the most of the other metals are not freely available within the cells (Rae et al., 1999; 

Outten and O’Halloran, 2001). Meanwhile it seems clear that metal ions cannot simply 

diffuse to the respective compartment to be inserted into molecular structures. As free 

copper is chemically active, a strigent control system for Cu homeostasis must exist to 

protect the cell from the toxic effects caused by the redox properties of this element. To 

avoid the oxidative damage of proteins, lipids and nucleic acids caused by the damaging 

hydroxyl radicals thar are formed from oxygen in the presence of free copper (Halliwell 

and Gutteridge, 1992), specific pathways for Cu trafficking and delivery into the various 

cellular compartments have evolved (Bartnikas and Gitlin, 2001). A number of proteins 

were identified that can bind copper, thus protecting it from the intracellular chelation, 

and deliver it to the respective targets. Most of the data about copper homeostasis in 

eucaryotic sells has emerged from the studies on Saccharomyces (S.) cerevisiae, although 

the mechanisms of Cu metabolism in the cell are believed to be highly conserved. Known 

copper trafficking routes are shown in Figure 1. Copper can be aquired by the cell via 

either high- or low-affinity transporter. In the first case, Cu2+ from the cell environment is 

reduced to Cu+ by Fre1p and Fre2p cell surface reducatses (Anderson et al., 1994; 

Georgatsou et al., 1997; Martins et al., 1998; De Freitas et al., 2003) and transported 

across the plasma membrane by Ctr1p and Ctr3p high affinity transporters. Expression of 

both of genes encoding these proteins as well as FRE1 is under control of the 

transcriptional activator Mac1p (Labbe et al., 1997; Yamaguchi-Iwai et al., 1997).  

 10
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Figure 1. Distribution of copper ions in the living cell. A schematic that shows major 

distribution pathways for copper in the living cell (modified from Puig and Thiele, 2002). 

 

Interestingly in Schizosaccharomyces (S.) pombe Ctr1p and Ctr3p are represented by only 

one protein – SpCtr4p that has similarity to both ScCtr1p and ScCtr3p (Labbe et al., 

1999). Low-affinity Cu transport is provided by Fet4p that can transport both iron and 

copper ions, and Ctr2p, a protein similar to the Ctr-family which is presumably involved 

in the mobilization of intracellular Cu pools (Puig and Thiele, 2002; Rees et al., 2004). 

Following acquisition, copper ions can be routed on three different ways: to the secretory 

pathway, to cytosolic Cu,Zn-superoxide dismutase (SOD) and to mitochondria (Fig.1). It 

is still a point of discussion if cytosolic Cu pool exists (Finney and O’Halloran, 2003). 

One class of proteins that may be involved in Cu-storage are metallothioneins, small 

cysteine-rich proteins with high Cu-binding capacity, that are found in eukaryotes 

(Dameron and Harrison, 1998). In S. cerevisiae two isoforms are described, Cup1p and 

Crs5p. Expression of these two factors has been shown to depend on Cu concentration 

and is controlled by the Cu-containing transcription factor Ace1p, that also controls 

expression of Sod1p (Huibregtse et al., 1989; Evans et al., 1990; Culotta et al., 1994; De 

Freitas et al., 2003). 
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So far two types of proteins that represent copper delivery to the secretory pathway were 

identified, namely Atx1p (also known as Atox1p or Hah1p in other organisms) and the 

Cu-transporting P-type ATPase Ccc2p (also known as Atp7ap, Atp7bp, or Menkes and 

Wilson disease proteins). Atx1p can obtain copper directly from Ctr1p in vitro, however, 

it is believed that another pathways exists in vivo (Finney and O’Halloran, 2003). Hereby 

copper is transferred from Atx1p to its target protein Ccc2p, that delivers Cu ions into a 

trans-Golgi compartment. Delivered copper is utilized by a multi-copper oxidase Fet3p 

(ceruloplasmin in mammals) and other Cu-containing enzymes (Finney and O’Halloran, 

2003). Another route of copper shuttling in the cytosol is represented by CCSp (Ccs1p),  

a metallochaperone required for the direct insertion of copper into the SOD (Sod1p) (Rae 

et al., 1999; Puig and Thiele, 2002; Finney and O’Halloran, 2003).  

The third compartment that requires copper ions for normal function is the 

mitochondrion. Especially copper-requiring is cytochrome c oxidase (COX), one of the 

complex enzymes that form the respiratory chain, and together with ATPase complex, an 

OXPHOS system, where oxidative phosphorylation, the energy generating pathway 

(Rosamond, 1982) is located. The delivery of copper ions to mitochondria (mt) and their 

further distribution will be discussed in more details below. 

 

1.2. Cytochrome c oxidase and its organization 

Cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase, EC 1.9.3.1) is the 

terminal enzyme of the eukaryotic respiratory chain. The membrane-embedded complex, 

which acts as a dimer (Frey, 1994; Tsukihara et al., 1995), faces both the mt 

intermembrane space (IMS) and the mt matrix, slightly more emerging to the IMS side 

(Tsukihara et al., 1995; Carr and Winge 2003). COX plays a key role in the electron 

transport chain; it catalyzes the reduction of molecular oxygen to water and 

concomitantly the oxidation of reduced cytochrome c, and couples this redox reaction 

with the electrogenic transfer of protons across the inner mitochondrial membrane 

(IMM). Some bacterial COX homologues act as quinol oxidases and use quinol or 

ubiquinol as a substrate. Based on similarities of the primary structure between these 

quinol oxidases and COX both groups of enzymes are classified as the superfamily of 
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heme-copper terminal oxidases (reviewed by Ferguson-Miller and Babcock, 1996; 

Michel et al., 1998).  

High-resolution structures of aa3-type COX purified from bovine heart (Tsukihara et al., 

1995; 1996; Yoshikawa et al., 1998), of bacterial homologues from Paracoccus 

denitrificans (Iwata et al., 1995; Ostermeier et al., 1997), and of ba3-type COX 

(possessing heme b instead of heme a) from Thermus thermophilus (Williams et al., 

1999; Soulimane et al., 2000) have been described. These data in combination with the 

data emerging from the genetic, immunological and biochemical studies provide a good 

basis for understanding the details of COX organization and function. 

 

1.2.1. COX subunits 

Eukaryotic COX exist as high molecular weight complexes composed of 11 (S. 

cerevisiae) to 13 (mammals) subunits that are present in equimolar amounts in the 

assembled enzyme. The three largest proteins (Cox1p, Cox2p and Cox3p), which are 

encoded by the mt DNA, form the active core of the enzyme and represent the major part 

of the complex (Poyton and McEwen, 1996; Carr and Winge, 2003). The other subunits 

are encoded by the nuclear genome, translated on cytosolic ribosomes and transported 

into mitochondria, where assembly takes place. Figure 2A presents a simplified 

schematic version of mammalian COX, showing only subunits that contain cofactors or 

are engaged in early assembly steps of the enzyme. The crystal structure of the entire 

bovine enzyme is shown in Fig.2B.  

Prokaryotic oxidases usually consist of 3 subunits (Capaldi, 1990), that share significant 

homology with the mt synthesized subunits (Keightley et al., 1995; Poyton and McEwen, 

1996). Subunit Cox1p of both prokaryotic and eukaryotic COX coordinates heme a and a 

fused binuclear heme a3-CuB redox center. It also ligates a sodium ion by a site which 

also possesses affinity for Ca ions (Tsukihara et al., 1995; Kirichenko et al., 1998; Lee et 

al., 2002). The organization and function of these cofactors will be discussed later. The 

highly conserved Cox1p is the biggest (55-57 kDa) (Capaldi, 1990) and most 

hydrophobic protein of the core subunits. It spans the IMM with 12 transmembrane (TM) 

helices, which form hydrophobic pockets (Carr and Winge, 2003). Cox1p appears to be 

the key subunit both for assembly and function of COX. It is involved in proton pumping 

 13



Introduction______________________________________________________________ 

by means of two proton translocating pores, the D- and K-channel. These are formed by 

hydrophilic residues which appear to be linked by a network of water molecules. The D-

channel routes from the matrix side to a conserved glutamate residue, whereas the K-

channel connects the matrix side with the CuB center (Rich et al., 1998; Wikstrom et al., 

1998; Gennis, 1998). Studies in yeast have shown that the absence of Cox1p has a 

deleterious effect on the assembly of the other two core-forming subunits, as well as of 

subunit Cox4p (Lemaire et al., 1998), which acts in the early steps of COX assembly 

(Nijtmans et al., 1998). Subunit Cox2p chelates the binuclear mixed valent CuA center, 

which is exposed to the IMS. Cox2p is the smallest (26-27 kDa) and least hydrophobic 

core subunit with two TM domains. Cox2p participates in the docking of cytochrome c 

via the CuA center (Poyton and McEwen, 1996). In human COX, subunit 2 together with 

Cox1p is necessary for the binding of heme a3 (Rahman et al., 1999). In S. cerevisiae 

cox2 mutants Cox3p and Cox4p are not detectable, indicating that their accumulation  

 

A  B

       
 

Figure 2. Organization of COX. (A) A schematic of selected mammalian Cox subunits. Only 

subunits containing cofactors or engaged in early assembly steps are shown. (B) Structure of the 

bovine COX (taken in part from Carr and Winge, 2003). 

 

depends on the presence of Cox2p (Lemaire et al., 1998). Subunit Cox3p is a 

hydrophobic protein of about 30 kDa that spans the IMM 7 times. Its role in COX 

function remains to be clarified. It was proposed to be involved in the folding, action 
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and/or stability of COX (Lemaire et al., 1998; Meunier and Taanman, 2002), but it is not 

engaged in proton translocation (Capaldi 1990; Haltia et al., 1991; Poyton and McEwen, 

1996). Based on studies of the Rhodobacter sphaeroides (Rs) COX homologue it was 

also concluded that Cox3p is not required for the binding of metal centers (Bratton et al., 

2000). Originally, isolated active forms of S. cerevisiae COX were reported to contain 9 

subunits. Table 1 summarizes the subunit composition of yeast and mammalian COX and 

the respective genes. The nuclearly encoded subunits of the yeast enzyme are Cox4p, one 

of the Cox5p isoforms (Cox5ap/Cox5bp), Cox6p, Cox7p, Cox7ap and Cox8p (Power et 

al., 1984; Capaldi, 1990; Poyton and McEwen, 1996). A more complex yeast enzyme 

consisting of 11 subunits can be purified. It contains two additional subunits, Cox6ap and 

Cox6bp (Geier et al., 1995). However, these subunits appear not to have an effect on the 

catalytic activity, since the originally reported preparations with nine COX subunit are 

equally active (Burke and Poyton, 1998). Cox6ap is believed to carry the ATP-binding 

site. This feature appears to be important for modulation of the COX activity by ATP in 

response to the external ionic strength (Beauvoit et al., 1999; Beauvoit and Rigoulet, 

2001). As deletion of COX6a results in respiratory deficiency, either this modulation of 

COX activity is essential in vivo, or Cox6ap fulfills an additional function in COX 

formation. As already stated above, all subunits are present in equimolar amounts in the 

assembled COX. This is also true for the mammalian oxidase, whose composition is 

similar to that of the yeast enzyme, except for the presence of two additional nuclearly 

encoded subunits: Cox7bp and Cox8p (not homologous to yeast Cox8p) (Capaldi, 1990). 

Notably, some subunits (Cox6ap; Cox7ap; Cox8p) are represented by different tissue-

specific isoforms that are expressed in heart and skeletal muscle (“H-type” isoforms) or 

in liver (“L-type” isoforms). However, the number of isoforms sharing sequence 

identities of 50-65% varies between different mammalian species. Interestingly, their 

expression levels have been shown to differ during the developmental stages (Poyton and 

McEwen, 1996). All nuclearly encoded subunits are relatively small compared to the mt 

encoded proteins, with molecular masses ranging form 5.4 kDa to 14.9 kDa in yeast and 

from 5 kDa to 17.1 kDa in mammals (Capaldi, 1990). Several of them, represented 

merely by a single TM domain, are firmly attached to the core complex, whereas the 

others are extrinsic to the lipid bilayer (yeast Cox4p and Cox6p) (Tsukihara et al., 1995; 
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Glerum and Tzagoloff, 1997; Carr and Winge, 2003). Despite of the fact that the 

nuclearly encoded subunits rather play an auxiliary role in the catalytic function of COX, 

most of them are indispensable for the formation of the enzyme. S. cerevisiae cox4, cox5a 

and cox5b, cox6a, cox7 and cox9 deletion mutants are respiratory deficient and show 

COX deficiency accompanied by loss of hemes a and a3 (Carr and Winge, 2003). 

Mammalian Cox4p has been reported to act in an early stage of the COX assembly and to 

play an important role in the modulation of holoenzyme assembly (Nijtmans et al., 1998). 

A similar function can be attributed to subunits Cox6p, Cox7p, Cox7ap, since the 

respective yeast deletion mutants show a similar phenotype as the yeast cox4∆ mutant, in 

that Cox2p and Cox3p are instable. In the case of cox7∆ mutation this effect appears to 

be even more severe resulting in the gross reduction of Cox1p levels (Calder and 

McEwen, 1991). In contrast the yeast cox8∆ mutation has only a modest effect on COX 

function. Cox8p appears to participate in the formation of the active COX dimer, 

contributing to the low-affinity electron transfer reaction (reviewed by Poyton and 

McEwen, 1996). The role of the Cox5p subunit isoforms, which exhibit 66 % sequence 

identity, has been studied extensively in yeast. Cox5ap is expressed during normal 

aerobic growth, whereas the Cox5bp isoform appears under low oxygen conditions. The 

turnover numbers of COX carrying the Cox5a isoform is low compared to the Cox5b-

bearing COX. The function of Cox5p is to modulate the catalytic functions of Cox1p by 

affecting the ligand binding around the binuclear reaction center and by altering the 

environment around heme a3. So far no oxygen-regulated isoforms of the nuclearly 

encoded subunits were reported for the mammalian COX. On the other hand there is 

suggestive evidence hinting at the existence of a hypoxic form of Cox4p (corresponding 

to yeast Cox5p) (Poyton and McEwen, 1996, Burke and Poyton, 1998). Analysis of a 

yeast cox6a∆ mutant demonstrated that the COX complex can be formed regardless of 

the presence of this protein (Taanman and Capaldi, 1993), but it seems to be important 

for mediating the effect of ATP on the enzyme activity (Beauvoit et al., 1999; Beauvoit 

and Rigoulet, 2001). Several studies on the yeast enzyme led to the conclusion that some 

of the nuclearly encoded subunits (Cox4p, Cox5ap, Cox6p and Cox9p) can assemble 

independently of the COX core subunits (Gavin et al., 2002; Carr and Winge, 2003). 
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However, these data could also reflect a high stability of these proteins against proteolytic 

degradation. 

 

1.2.2. Functional/catalytic centers of COX 

The catalytic centers of all heme-copper oxidases including COX are highly conserved at 

the structural level (Ludwig et al., 2001). The electron flow through COX is 

schematically depicted in Fig. 3.  

 

 
 

Figure 3. Electron flow through the COX. Schematic of the electron flow through COX. The 

IMM and the metal centers involved in electron transfer reactions are shown. 

 

1.2.2.1. CuA center 

The CuA center, which is located in the COX domain projecting to the outside of the 

IMM, is the entry point of the electrons from cytochrome c. This heme-containing 

soluble protein docks to a conserved domain in Cox2p adjacent to the CuA site (Hill, 

1991; Brzezinski et al., 1995; Zhen et al.,1999). The function of the CuA center is to 

shuttle the electrons to the other redox centers located in Cox1p (Ramirez et al., 1995). 

Bacterial quinol oxidases lack a CuA site, however it is possible to artificially engineer it 

there (so called “blue copper site”) (Malmström and Aasa, 1993). Analysis of this 

construct by EPR spectroscopy revealed that CuA exists as a [Cu2+/Cu1+] complex of 

mixed valence. The unpaired electron is completely delocalized over the two copper 

nuclei consistent with Cu1.5+-Cu1.5+ (Kroneck et al., 1988; Malmström and Aasa, 1993; 
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Fee et al., 1995). The structure of the CuA center of different COX homologues reveals 

that the binuclear copper center is coordinated by the HxnCxExCGx2Hx2M motif, i.e. two 

cysteines, two histidines, one methionine and a carbonyl oxygen from the peptide 

backbone (Iwata et al., 1995; Tsukihara et al.,1995). According to the studies on P. 

denitrificans COX the cysteine residues appear to be most important for CuA 

coordination as they are bridging ligands (Zickermann et al., 1997). Interestingly, the 

visible spectra of the CuA site is recordable only in preparations of the soluble domain, 

while it is completely camouflaged by the heme absorptions in the entire COX (Ramirez 

et al., 1995). The study of the CuA center of yeast COX confirmed the importance of the 

conserved aa residues bridging CuA and demonstrated that the precise coordination 

environment is essential for the proper assembly and function of COX (Speno et al., 

1995). Interestingly, one of the conserved glutamic acid residues that was shown to be 

important for the proper folding of the CuA site is also involved in coordination of the 

Mg2+ ion. 

 

1.2.2.2. CuB center 

The CuB site is a complex dimetallic motif formed by heme a3 and copper moieties. It 

represents the oxygen binding site of COX. The copper atom, which is ligated by the 

imidazole nitrogens of three highly conserved histidines, is located 4.5 Ǻ away from 

heme a3. This myoglobin-type iron center is coordinated by another two histidine 

residues of the Hx3Yx44HH motif (Shapleigh et al., 1992; Tsukihara et al., 1996; 

Yoshikawa et al., 1998). One of the distal histidines forms a covalent bond to the ortho 

carbon of the aromatic hydroxyl group of the adjacent tyrosine residue. This pair is 

believed to play an important role in the enzymatic action of COX (Yoshikawa et al., 

1998). The tyrosine hydroxyl might also be involved in hydrogen bonding of the 

dioxygen molecule captured by heme a3, and in the formation of water chains in the K-

channel that supplies a proton to the CuB center (Naruta et al., 2001; Cukier, 2005). The 

heme-copper site also appears to bind molecules other than dioxygen and water (e.g. a 

chloride ion), that might be involved in catalysis (Fabian et al., 2004 a,b). As already 

pointed above, the association of Cox1p and Cox2p subunits is necessary for the 

coordination of heme a3 in the mammalian COX (Rahman et al., 1999). A similar 
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prediction can be made on the basis of the enzyme structure: the farnesyl group of heme 

a3 has been shown to be located at the interface of Cox1p and Cox2p (Tsukihara et al., 

1995). It should be noted that in contrast to the IMS-exposed CuA site, the heme a3-CuB 

center is submerged 13 Ǻ below the IMM surface (Tsukihara et al., 1995). It is still an 

open question how the copper ion reaches that position. This issue will be addressed 

below. 

 

1.2.2.3. Hemes 

The two heme a moieties of the COX complex, heme a (the low-spin heme) and heme a3 

(the high-spin heme), have already been described in part above. Heme a is a prosthetic 

group that is typical for eukaryotic and some bacterial COX. In general, most bacterial 

oxidases are of the ba3 type and possess heme b (iron protoporphyrin IX or protoheme) 

which is ancestral to heme a. In heme a the vinyl group is replaced by hydroxyfarnesyl 

and the methyl group is substituted by a formyl group (Caughey et al., 1975). The 

farnesylation of heme may be important for the protein folding and packing (Carr and 

Winge, 2003). The low-spin heme a is coordinated by pyrrol nitrogens of two histidine 

residues (Trumpower and Gennis, 1994; Yoshikava et al., 1998 b). Heme a functions as 

the transition point in the transfer of the electron to the a3-CuB center. The electron is 

routed from the CuA site by a combination of hydrogen-bonds and peptide backbone 

(Tsukihara et al., 1995; Ramirez et al., 1995). Heme a is located 19 Ǻ away from the CuA 

center and 14 Ǻ from the iron atom of heme a3. (Yoshikava et al., 1998). The properties 

and coordination of heme a3 have been discussed above. The angle between two heme 

planes is 104° and they both are located in such a way that the hydroxyethylfarnesyl 

groups and the vinyl groups extend towards the matrix side, whereas the propionate 

moieties extend towards the IMS side (Yoshikava et al., 1998 b). The fully extended 

farnesyl group of heme a is tightly packed inside an α-helical bundle of Cox1p, while the 

U-shaped hydroxyethylfarnesyl of heme a3 is sandwiched between Cox1p and Cox2p 

(Tsukihara et al., 1995; Yoshikava et al., 1998 b).  

The finding that instability of yeast Cox1p is associated with the absence of heme 

a may indicate that heme is required for correct insertion and/or stability of this subunit 

(Nobrega et al., 1990). However, the absence of heme a could also be secondary to 
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Cox1p instability. In human fibroblasts deficient in heme a biosynthesis early COX 

assembly intermediates were not detected (Williams et al., 2004). In contrast, studies of 

COX from R. sphaeroides demonstrated that heme a is not essential for the insertion and 

association of the COX core complex subunits (Hiser and Hosler, 2001). 

 

1.2.3. Other components 

Besides the structurally and functionally well characterized components, COX 

encompasses several elements whose roles in the catalytic activity are less evident. The 

Mg2+ ion resides at the interface of Cox1p and Cox2p on the IMS side in close proximity 

to the propionate group of heme a3. Mg2+ is coordinated by conserved histidine and 

glutamic acid residues of Cox1p, a further glutamic acid of Cox2p, and a water molecule 

(Tsukihara et al., 1995). As already mentioned, the glutamic acid of Cox1p is also an 

important ligand for the CuA site. Mg2+ lies on the bottom of the proposed water channel 

(Tsukihara et al., 1996; Ostermeier et al., 1997). Bound Mg2+ can easily be substituted by 

Mn2+ without any changes in catalytic activity (Witt et al., 1997; Florens et al., 2001). 

This finding may hint at its direct involvement in the catalytic process.  

Cox1p also coordinates one Na+ ion, which is bound to the peripheral side of the 

protein (Tsukihara et al., 1995). The role of sodium in COX function remains unclear. 

The Na+-ion can easily be displaced by calcium (Kirichenko et al., 1998), which causes 

distortion of the heme a spectrum (Lee et al., 2002). It can be speculated that these metals 

may have a modulating function, however, so far the significance of both ions is not 

clear. The structure analysis of bovine COX revealed one zinc ion coordinated at the 

matrix side of subunit Cox5bp (corresponding to yeast Cox4p) (Tsukihara et al., 1995). 

The role of zinc in COX function remains to be clarified. 

 

1.3. Assembly of COX  

The assembly of COX is a sequential process that involves a number of accessory 

proteins (Nijtmans et al., 1998) (Table 1). Prior to assembly the mt-translated subunits 

need to be processed and inserted into the lipid bilayer of IMM. The nuclearly encoded 

subunits must be translocated to the site of assembly in the IMM. Only after these 

processes are successfully accomplished can assembly occur. 
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1.3.1. Assembly of mitochondrially encoded subunits 

The three mt encoded subunits are synthesized on mt ribosomes which are associated 

with the IMM (Green-Willms et al., 2001; Jia et al., 2003; Szyrach et al., 2003). Indeed, it 

is important for the organelle to keep the newly synthesized highly hydrophobic mt 

proteins in close proximity to the lipid bilayer. Based on the observation that the soluble 

mt protein Var1p is also synthesized next to the IMM, Fox and co-workers proposed the 

existence of distinct sites of assembly for mt ribosomes and cytochrome c oxidase (Fiori 

et al., 2003). 

A couple of proteins with different functions have been shown to be involved in 

positioning translationally active mitoribosomes in proximity to the IMM. These proteins 

include translational activator proteins and factors involved in translocation of mt-

encoded COX subunits. The mt mRNAs are recruited to the IMM by a set of specific 

membrane-bound translational activators that in yeast interact with the 5’ untranslated 

region (UTR) of COX transcripts (Naithani et al., 2003). Translation of COX1 mRNA is 

activated by Mss51p and Pet309p (Perez-Martinez et al., 2003; Manthey and McEwen, 

1995), COX2 by Pet111p (Mulero and Fox, 1993 a,b) and COX3 by Pet54p, Pet122p, and 

Pet494p (Costanzo and Fox, 1988; Brown et al.,1994). Studies on translational activators 

have been mainly confined to fungi; their existence in other eukaryotic organisms 

remains to be analysed. In case of Pet111p only fungal homologues have been identified 

(Green-Willms et al., 2001; Carr and Winge, 2003).  

Upon or during synthesis the mt translated proteins undergo the translocation/insertion 

step to attain their proper orientation in the IMM. This process involves the export of 

protein segments across the membrane. Translocation of all mt synthezised Cox subunits 

requires the function of Oxa1p, that transiently interacts with the nascent polypetides 

during their translation (Hell et al., 2001). However, only Cox2p export strictly depends 

on Oxa1p. The other subunits can be inserted into the IMM in the absence of Oxa1p,  
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Table 1. Proteins involved in yeast COX biogenesis*.  

 
Protein    Description 
 
Pet309p Translational activator of COX1 mRNA 
Pet111p Translational activator of COX2 mRNA 
Pet54p  Translational activator of COX3 mRNA 
Pet122p Translational activator of COX3 mRNA 
Pet494p Translational activator of COX3 mRNA 
Mss51p  Involved in Cox1p translation and insertion  
Cox14p  Required for Cox1p expression and assembly 
Cox16p  Required for COX assembly, exact role is not clear 
Pet100p Assembly facilitating protein, facilitates the formation of COX complex 
Pet117p Required for COX assembly, exact role is not clear 
Pet191p Required for COX assembly, exact role is not clear 
Oxa1p  IMM translocase, mediates insertion of mt Cox subunits 
Mba1p  Involved in translocation of mt Cox subunis 
Cox18p Required for translocation of the C-terminal part of Cox2p precursor protein 
Pnt1p  Required for translocation of Cox2p precursor 
Mss2p  Required for translocation of Cox2p precursor 
Cox10p Farnesyltransferase, catalyzes the first step of heme a biosynthesis 
Cox15p  Heme a synthase, catalyzes the second step of heme a biosynthesis 
Yah1p  Ferredoxin, required for heme a biosynthesis 
Arh1p  Ferredoxin reductase, required for heme a biosynthesis 
Shy1p  Facilitates insertion of heme a into Cox1p 
Yfh1p Frataxin, regulates mt iron accumulation, heme a biosynthesis and insertion 
Cox17p  Metallochaperone, involved in copper transfer to COX 
Cox19p  Metallochaperone, required for COX assembly 
Cox23p Required for COX assembly, may be involved in mt copper metabolism 
Sco1p  Metallochaperone, presumably provides copper for Cox2p 
Sco2p  Similar to Sco1p and may have a redundant function 
Cox11p  Metallochaperone, presumably provides copper for Cox1p 
Mia40p Essential IMS metal-binding protein, involved in import and assembly of IMS 

proteins 
 
* Proteins mutations in which are known to cause pleotropic defects are not considered. 
 

albeit with a much lower efficiency (Hell et al., 2001; Herrmann and Neupert, 2003). 

Obviously translocation of these subunits is only partially dependent on Oxa1p function 

(Stuart, 2002). The exact way of the translocation of Cox1p and Cox3p still has to be 

clarified.  

Cox2p is an integral membrane protein which spans the IMM two times and 

possesses an Nout-Cout topology. It is synthesized as a precursor (pCox2p) with an 

extended N-terminal part that represents a cleavable presequence. Successful insertion of 

the pCox2p into the IMM has been shown to depend on the presence of mt membrane 
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potential (Herrmann et al., 1995; Stuart, 2002). Whereas both the N- and C-terminal part 

of pCox2p are translocated with the help of Oxa1p (Hell et al., 1997; He and Fox, 1997), 

translocation of its C-terminal part in addition depends on Cox18p (Saracco and Fox, 

2002), Pnt1p (He and Fox, 1999) and Mss2p (Broadley et al., 2001). Cox18p (= Oxa2p) 

is a distant homologue of Oxa1p. It possesses a similar topology and acts as a post-

translational translocase in contrast to the co-translationally acting Oxa1p (Saracco and 

Fox, 2002; Preuss et al., 2005). Cox18p associates with Pnt1p and Mss2p, possibly 

cooperating in translocation of pCox2p. Also Mba1p, a protein believed to represent 

Oxa1p-independent insertion route may be involved in translocation of Cox subunits. 

However, its role remains elusive (Preuss et al., 2001). 

Upon emerging in the IMS, the N-terminus of pCox2p is processed yielding the 

mature form of Cox2p that can be inserted into COX (Hell et al., 2000; Stuart, 2002). The 

cleavage step is performed by Imp1p/Imp2p protease residing on the outer surface of 

IMM (Nunnari et al., 1993; Stuart, 2002; Gakh et al., 2002). Interestingly, the 

unprocessed form of Cox2p does not assemble into the COX complex. Following 

translocation pCox2p associates with Cox20p, a membrane-bound chaperone required for 

processing (Hell et al., 2000). In contrast to yeast, in mammalian cells there is no 

precursor form of Cox2p in mammalian cells. This possibly implies that Cox2p insertion 

in mammalian mitochondria involves an alternative pathway. On the other hand, Oxa1p 

and Cox18p homologues are conserved among eukaryotes (Carr and Winge, 2003). Also 

the mammalian Imp1p/Imp2p homologues were identified recently (Petek et al., 2001, 

Gakh et al., 2002).  

Cox1p insertion appears to depend on the function of Mss51p, a protein originally 

described as translation activator (Decoster et al., 1990; Siep et al., 2000). It interacts 

with the nascent polypeptide chain and is thought to facilitate the Cox1p insertion (Perez-

Martinez et al., 2003). Recently, it has been shown that both Cox1p and Mss51p interact 

with Cox14p, a protein required for stability of Cox1p (Glerum et al., 1995). The 

Cox1p/Mss51p/Cox14p complex is important for Cox1p assembly (Barrientos et al., 

2004). The same authors proposed that Shy1p, which is necessary for COX assembly 

(Mashkevich et al., 1997) may cooperate with the Cox1p/Mss51p/Cox14p complex 

during Cox1p insertion, but it seems not to interact with the latter. Homologues of 
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Mss51p and Cox14p were found only in fungi (Fiori et al., 2000; Barrientos et al., 2004), 

whereas Shy1p shows high degree of conservation between eukaryotes (Zhu et al., 1998; 

Poyau et al., 1999). Therefore it is not clear whether the same mechanism holds true for 

mammalian Cox1p. Only very few data are available concerning the assembly of the core 

subunits. It is still debatable whether assembly occurs near the sites of TOM/TIM 

translocation complexes, where assembly intermediates may be accessible to the 

imported nuclearly encoded subunits, or whether the site of assembly is located 

elsewhere along or within the IMM boundary (Carr and Winge, 2003). Nijtmans and co-

workers (1998) have shown that assembly of mammalian COX initiates with the 

association of Cox1p with the nuclearly encoded Cox4p. This is in agreement with the 

structure of COX, where these two subunits are in tight contact. A similar situation was 

reported for the yeast homologues (Lemaire et al., 1998). The association may enhance 

the stability of Cox1p (Nakai et al., 1994). In the next step assembly of Cox2p and Cox3p 

as well as of most of nuclearly encoded subunits occurs. 

 

1.3.2. Assembly of nuclearly encoded subunits 

The nuclearly encoded COX subunits are imported into the mitochondria in the same way 

as most of the other mt proteins of nuclear origin. The proteins are targeted to 

mitochondria by their N-terminal presequences, or less defined internal targeting signals 

that bind to the receptor subunits of the translocase of outer membrane (TOM) complex. 

The other components of TOM facilitate the transport of precursor proteins across the 

OMM. In the IMS, targeting sequences interact with TIM22 or TIM23 (TIM, for 

translocase of inner membrane) complex (for review see Neupert and Brunner, 2002, 

Truscott et al., 2003). Proteins following the membrane potential-dependent TIM23 

pathway are inserted into the IMM, their presequences are removed by intramembrane 

protease Imp1p/Imp2p (Gakh et al, 2002). This allows the proteins to obtain the folding 

state, that is necessary for assembly and function. Usually the assistance of different 

molecular chaperones is required. The mature proteins may be arrested in the TIM23 

complex and move laterally in the lipid bilayer to the site of COX assembly (so-called 

“stop transfer” mechanism). Some presequence-containing proteins undergo the 

“conservative sorting” pathway, which leads to the insertion of the protein from the 
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matrix side of IMM. This pathway involves an additional export step, sometimes 

involving a further cleavage by mt processing peptidase (MPP, Poyton et al., 1992; Gakh 

et al, 2002). The alternative route involving the TIM22 complex facilitates the insertion 

of proteins without N-terminal presequences (Sirrenberg et al., 1996; Koehler et al., 

1998). In mammals, as already noted, the first nuclearly encoded subunit in the sequential 

assembly steps of COX is subunit Cox4p. Most of the other nuclear-born subunits, 

among them Cox5ap, Cox5bp, Cox6bp, Cox6cp, Cox7cp and Cox8p, are attached to the 

Cox1p/Cox4p sub-complex, likely concomitantly with subunits Cox2p and Cox3p. 

Cox6ap, Cox7ap and Cox7bp appear to be the last incorporated subunits of the complex 

(Nijtmans et al., 1998). As pointed above, in yeast Cox4p, Cox5a, Cox6p and Cox9p can 

form a complex independent of the COX core (Gavin et al., 2002; Carr and Winge 2003). 

Cox6ap has been reported to be dispensable for the assembly of the remaining COX 

complex (Taanman and Capaldi, 1993). Interestingly, a sub-complex containing Cox7p, 

Cox7ap and Cox8p can be formed, and is believed to be incorporated into the holo-COX 

by means of Pet100p, a membrane-anchored chaperone indispensable for COX assembly 

(Church et al., 1996; Forsha et al., 2001; Church et al., 2005).  

Several additional chaperones with less evident functions have been described as 

“assembly facilitators”. Among them are Pet117p, Pet191p (McEwen et al., 1993, Poyton 

and McEwewn, 1996) and Cox16p (Carlson et al., 2003), however, their role in COX 

assembly is still unclear.  

 

1.3.3. Formation and assembly of heme a 

Heme a is generated by the sequential conversion of protoheme (heme b). The conversion 

begins with a farnesylation step of the C2 vinyl group of the porphyrin ring. This process 

is catalyzed by Cox10p, a membrane-bound farnesyltransferase that displays a high 

degree of conservation between eukaryotes and some bacteria (Nobrega et al., 1990; 

Tzagoloff et al., 1993; Glerum and Tzagoloff, 1994). The farnesylation reaction yields 

heme o (Saiki et al., 1993), a biosynthesis intermediate (Mogi et al., 1994), that is also 

found as a final cofactor in some bacterial oxidases (Puustinen and Wikstrom., 1991). In 

the next step, the C8 methyl group of heme o is oxidized to aldehyde, resulting in heme a. 

The complex oxidation process involves two discrete monooxygenase steps (Brown et 
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al., 2002) that are catalyzed by Cox15p, a membrane-anchored heme a synthase, mt 

ferredoxin Yah1p and ferredoxin reductase Arh1p (Glerum et al., 1997; Barros et al., 

2001; Barros et al., 2002). Yah1p and Arh1p are presumably involved in the electron 

supply to Cox15p. Interestingly, these two proteins are also involved in the assembly of 

iron-sulfur clusters (Mühlenhoff et al., 2003; Alves et al., 2004).  

Cox15p homologues were reported in other fungi as well as in mammals 

(Petruzzella et al., 1998; Barros et al., 2001). The involvement of Yah1p in Cox15p 

catalysis became apparent by the finding that S. pombe Cox15p homologue is fused to the 

Yah1p-like counterpart (Barros et al., 2001; Bureik et al., 2002). Such fusions have been 

proposed to hint at possible interacting partners in the other species (Sali et al., 1999; 

Enright and Ouzounis, 2001).  

Little is known about the insertion of heme a. It appears that newly synthesized 

heme a is inserted into Cox1p at an early assembly step, perhaps prior to association with 

Cox2p and Cox3p (Nijtmans et al., 1998). Possibly the insertion occurs in a co-

translational manner (Carr and Winge, 2003). Up to now no specific protein required for 

the insertion step has been identified. The synthesis of heme a is believed to be regulated 

either by subunit assembly or by assembly of COX sub-complexes, since distortion of a 

number of assembly factors results in loss of the heme a spectrum (Barros and Tzagoloff, 

2002, Carr and Winge 2003). Recently, a link between insertion of heme a3 and Surf1p 

(homologue to yeast Shy1p), a protein required for COX assembly, became evident: R. 

sphaeroides Surf1p was shown to facilitate the insertion of heme a3 into the heme a3-CuB 

center (Smith et al., 2005). As Shy1p cooperates with the above mentioned factors 

required for the insertion of Cox1p, this observation may hint at a co-translational mode 

of heme a insertion. Smith et al. (2005) proposed that the formation of the bimetallic 

center may be one of the limiting steps in association of Cox1p and Cox2p. 

 

1.3.4. Delivery of metal ions and formation of metal centers 

The delivery and insertion of metals into COX is still not well understood despite of 

many available data. During the past decade a number of mt proteins, that are able to bind 

metals have been identified (Fig. 4). Depletion of most of them results in respiratory 

deficiency and often in misassembly of Cox subunits. These data imply that the 
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successful delivery of metals to the site of COX assembly and their proper insertion are 

important steps in the complex formation. 

 

           
 

Figure 4. Overviw of the factors involved in mitochondrial copper metabolism. A schematic 

of IMS-located factors involved in mitochondrial copper metabolism and COX metallation. 

 

1.3.4.1. Delivery and insertion of copper 

The mt copper-binding proteins involved in COX assembly and their properties were 

studied most extensively. It has to be noted that the amount of free cellular copper is 

extremely low in living cells (Rae et al., 1999). Cu ions are mainly present in the cell as 

reduced Cu+, bound either to proteins or to low-molecular weight water-soluble peptides 

(Harris, 2000; Puig and Thiele, 2002). A number of proteins engaged in mt copper 

metabolism have been identified. We will focus on those proteins engaged in COX 

formation that are either exclusively localized to mitochondria or possess a dual 

localization in the cytosol and mt IMS.  
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1.3.4.1.1. Cox17p 

Yeast COX17 was originally identified as one of the PET genes, whose depletion causes 

respiratory deficiency (Glerum et al., 1996). cox17 mutants lack heme a, but the Cox 

subunits are stable, though Cox2p level is decreased (Glerum et al., 1996; Punter and 

Glerum, 2003). Suprisingly, the phenotype of cox17∆ can be partially rescued by the 

addition of exogenous copper (Glerum et al., 1996). Cox17p is a small (8 kDa) 

hydrophilic protein with dual localization in the cytosol and the mt IMS (Beers et al., 

1997). Homologues were found in eukaryotes, but not in prokaryotes (Amaravadi et al., 

1997; Horvath et al., 2000; Arnesano et al., 2005). Recently, however, a Cu+-binding 

protein found in some bacteria was suggested to be the bacterial Cox17p ortholog (Banci 

et al., 2005). Site-directed mutagenesis and spectroscopy of Cox17p have demonstrated 

that Cu+ is ligated by the CCxC motif. The Cu+ ion is bound in a labile cuprous-thiolate 

polycopper cluster. This coordination is achieved by oligomerization of the protein, 

presumably involving the CCxC motif (Sirinivasan et al., 1998; Heaton et al., 2000; 

2001). Oligomerization is necessary for protein function. Mutant Cox17p proteins 

affected in copper-binding are not mislocalized (Heaton et al., 2000; 2001).  

Different stochiometries of bound Cu+ were reported for Cox17p. The recombinant yeast 

protein can bind two (Beers et al., 1997) or three (Heaton et al., 2000) copper ions. 

Recently, purified native mammalian Cox17p was reported to coordinate four Cu+ ions 

(Palumaa et al., 2004). Only a small subset of random mutations introduced into yeast 

COX17 leads to respiratory deficient mutants. Based on this finding it was concluded that 

Cox17p may be an intrinsically unstructured protein (Punter and Glerum, 2003). The 

solution structure of yeast Cox17p revealed two antiparallel α-helices following the 

extensive unstructured N-terminal part, thus confirming that it is intrinsically unfolded 

(Abajian et al., 2004).  

On the basis of NMR studies it was predicted that one copper ion is ligated by the 

flanking cysteines of the CCxC motif in a two-coordinate complex. Interestingly, the 

copper-binding segments become more structured in Cu-loaded Cox17p (Abajian et al., 

2004). The finding of the dual localization of Cox17p led to the suggestion that it acts as 

a copper shuttle between the cytosol and the mt IMS, where it could cooperate with 

downstream acting Cu-binding proteins (Beers et al., 1997). In view of the recent result 
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that tethering of Cox17p to the IMM does not cause any respiration defect (Maxfield et 

al., 2004), this proposal probably has to be revised. In addition, cox17∆ mutants show no 

decrease in mt Cu levels (Carr and Winge, 2003; Cobine et al., 2004). Nevertheless, 

Cox17p remains one of the key players in copper delivery to COX, possibly acquiring 

copper ions in the IMS. Kako and co-workers (2004) have shown that binding of copper 

to mammalian Cox17p is a stringently regulated process that is important for COX 

activation. Very recently Arnesano et al. (2005 b) demonstrated the existence of at least 

two different copper-bearing conformers of yeast Cox17p: the Cu1-Cox17p conformer, 

that is formed via the disulfide isomerization and the polycopper form of Cox17p that 

binds a copper cluster stably coordinated in an oligomeric structure. These two forms 

may fulfill different functions in copper distribution (Cu1-Cox17p) or in IMS Cu-storage 

(polycuprous-Cox17p) (Arnesano et al., 2005 b). NMR studies reveal that the C-terminal 

part of apo-Cox17p possesses a twin Cx9C motif stabilized by intramolecular disulfide 

bonds. This structural motif is also found in several other IMS proteins involved in COX 

assembly, namely Cox19p, Cox23p and Mia40p (see below). Interestingly, this specific 

fold is also found in Cox6bp which docks to Cox2p close to the CuA site-forming stretch 

(Arnesano et al., 2005 b). 

 

1.3.4.1.2. Cox19p and Cox23p 

Cox19p (11.1 kDa) is another soluble protein that exhibits features similar to those of 

Cox17p (Nobrega et al., 2002). Cox19p also possesses a dual localization in the cytosol 

and the IMS and shares significant sequence similarity in its C-terminal part with 

Cox17p. Deletion of COX19 results in the absence of heme a and COX-deficiency, but 

this phenotype cannot be rescued by addition of exogenous copper (Nobrega et al., 2002). 

Although Cox19p lacks the CCxC motif, its recombinant form was reported to bind 

copper (Cobine et al., 2004). Interestingly, there is no decrease in mt Cu content in either 

cox19∆ mutant or cox17∆ cox19∆ double mutant (Cobine et al., 2004). As noted above 

Cox19p as well as Cox23p possesses a twin Cx9C motif and may form oligomers like 

Cox17p. Therefore, copper transfer in the IMS may involve the formation of hetero-

dimers between these two proteins and Cox17p or other coiled-coil proteins like Cox6bp 

or Mia40p (Arnesano et al., 2005 b). 
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A second Cox17p-like protein, Cox23p, has been identified very recently (Barros 

et al., 2004). The small soluble Cox23p is localized both to the cytosol and the IMS. 

Homologues are found in fungi, mammals and plants. Its C-terminal part shares sequence 

similarity with the respective Cox17p counterpart. Interestingly, there is no sequence 

similarity between Cox23p and Cox19p. Like cox17∆ and cox19∆ mutants, cox23∆ 

mutants are COX deficient. cox23∆ mutants can be rescued by the addition of exogenous 

copper, albeit only with concomitant COX17 overexpression. These findings suggest that 

Cox17p acts downstream of Cox23p, whereas Cox19p may represent another part of the 

Cu+ distribution pathway (Barros et al., 2004).  

 

1.3.4.1.3. Sod1p and the matrix copper pool 

A small fraction of Cu/Zn superoxide dismutase (Sod1p) and of its specific 

metallochaperone Ccs1p is located in the IMS (Sturtz et al., 2001). Translocation to the 

IMS of the mainly cytosolic enzyme occurs in its unloaded apo-form and its uptake 

depends on Ccs1p. This implies that the metallation steps may occur in the IMS. This 

suggestion appears to be quite reasonable in the light of the recent finding that yeast mt 

matrix contains a non-proteinaceous copper pool (Cobine et al., 2004). The bulk of this 

mt copper is present as soluble, anionic, low molecular weight complexes. Neither 

proteins nor mt DNA contribute to the chelating of copper. Possibly Cu+ is ligated by 

small peptides or organic molecules. A possible candidate for such a chelator may be a 

representative of the chalkophore group, that was recently described in methane-

oxidizing bacteria (Kim et al., 2004; 2005; D. R. Winge, personal communication). The 

copper pool was shown to be labile and dynamic and to respond to changes in the 

exogenous copper content (Cobine et al., 2004). So far it is not clear how copper ions 

enter the matrix and can be eventually recruited later to the IMS. It appears that neither 

Cox17p nor Cox19p contribute to these processes (Cobine et al., 2004).  

 

1.3.4.1.4. The Sco protein family 

The mt copper binding protein Sco1p (Schulze and Rödel, 1988; 1989) appears to 

cooperate with Cox17p in the COX assembly process. Deletion of the SCO1 gene results 

in loss of the heme a spectrum and rapid degradation of newly synthesized Cox1p and 
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Cox2p subunits (Schulze and Rödel, 1988; Krummeck and Rödel, 1990) The mature 

Sco1p is a 28.7 kDa membrane protein with Nin-Cout topology, anchored in the IMM by 

one TM domain in the N-terminal part (Buchwald et al., 1991; Beers et al., 1997; Beers et 

al., 2002). On the basis of the observation that SCO1 is the high-copy suppressor of a 

cox17 missense mutation, it was suggested that Sco1p may be involved in the copper 

transfer to COX and to act downstream of Cox17p (Glerum et al., 1996b). This idea was 

supported by the identification of the metal-binding CxxxC motif in the C-terminal part 

of the protein. This motif is essential for protein function, mutations of any of the 

conserved cysteines result in respiratory deficiency (Rentzsch et al., 1999). Nittis et al. 

(2001) demonstrated that the purified soluble part of Sco1p binds copper, involving the 

CxxxC motif. Extended X-ray absorption fine structure (EXAFS) analysis indicates that 

Cu+ is coordinated by the two sulfurs of the cysteines of the CxxxC motif and by the 

nitrogen of the adjacent conserved histidine residue. Mutations in any of these residues 

impair copper binding and cause COX deficiency. The solution structure of the Bacillus 

subtilis apo-Sco1p homologue (Balatri et al., 2003) reveals that the copper ligands are 

derived from two flexible loop regions of the protein. Very recently Horng et al. (2004) 

demonstrated by in vitro experiments and a yeast cytosolic expression system, that 

Cox17p can directly transfer copper to Sco1p. However, a stable interaction of both 

proteins was not detected. Several lines of evidence argue that Sco1p determines the 

formation of the CuA site in Cox2p. Biochemical and genetic studies on yeast Sco1p 

demonstrated its ability to directly interact with Cox2p (Lode et al., 2000; Dickinson et 

al., 2000). In addition, the CxxxC motif also constitutes the copper-binding site in Cox2p 

(Coruzzi and Tzagoloff, 1979). As an alternative function of Sco1p it was proposed that it 

might be involved in the reduction of the CxxxC cysteines in Cox2p thus allowing Cu+ 

incorporation. This proposal is based on the similarity of Sco1p with the peroxiredoxin 

protein family (Chinenov, 2000). In favour of the idea of a possible redox role of Sco1p 

in the formation of CuA center are the data of Ye and co-workers (2005) reporting a redox 

switch effect in B. subtilis Sco1p. Depending on the oxidized or reduced state of protein, 

the local conformation in the vicinity of the CxxxC motif-containing loop changes. 

Similarly, the human Sco1p homologue has been proposed to act as a redox sensor in the 

IMS (Williams et al., 2005). Gene neighborhood analysis of prokaryotic genomes 
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revealed that Sco1p homologues can be linked to the variety of the cuproenzymes, 

distinct from COX. Therefore Sco1p may act as a functional linker connecting a number 

of biological processes (Arnesano et al., 2005). Combining these data it is still not 

possible to give a clear answer as to the exact role of Sco1p in the mt copper distribution 

and insertion. Maybe Sco1p is one of the key players in COX assembly fulfilling both 

proposed functions. Sco1p belongs to a conserved protein family with pro- and 

eukaryotic members. In S. cerevisiae a second member (Sco2p) with 53.8% identity to 

Sco1p was identified. The exact role of Sco2p is unclear. In contrast to sco1 mutations, 

deletion of SCO2 does not affect respiratory growth (Lode et al., 2002). Sco2p is 

anchored in the membrane by a single TM domain in the N-terminal part, and 

presumably possesses the same topology as Sco1p (Glerum et al., 1996b). 

Overexpression of SCO2 cannot substitute for the function of Sco1p (Glerum et al., 

1996b), but can rescue the respiratory deficiency of a cox17 mutant, albeit less efficiently 

and only in the presence of higher concentrations of exogenous copper. The C-terminal 

part of Sco1p can be replaced by the respective Sco2p portion, the resulting chimeric 

proteins are functional and able to overcome the respiratory defect of sco1∆ (Rentzsch et 

al., 1999). Overall, the function of Sco2p remains to be elucidated, however the finding 

that it is indispensable for the presence of residual levels of Cox2p in sco1∆ strain (Lode 

et al., 2002) suggests a role in COX assembly or in COX subunits stabilization.  

Sco homologues are detected in mammals and prokaryotes, often in more than 

one copy (Arnesano et al., 2005). Interestingly, in S. pombe only one SCO homologue 

has been found. In human cells, two homologues were identified. Due to the almost 

identical degree of identity to the yeast Sco proteins, it is hard to assign the human 

homologues to either SCO1 or SCO2. Contrary to the situation in S. cerevisiae, both 

genes are important for COX function. Mutations of the human homologue, which was 

designated HsSCO1 (Petruzzella et al., 1998), result in lactic acidosis and severe liver 

failure as a consequence of COX deficiency (Valnot et al., 2000; Paret et al., 2000; 

Horvath et al., 2000; Hamza and Gitlin, 2002). Hssco1-deficient fibroblasts were reported 

to accumulate an early COX assembly intermediate containing Cox1p, Cox4p and 

Cox5ap subunits (Williams et al., 2004). Biochemical characterization of HsSco1p was 
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performed. Like its yeast counterpart it is an integral membrane protein with Nin-Cout 

topology that can form a dimer (Paret et al., 1999; Leary et al., 2004).  

Mutations in HsSCO2 appear to be more frequent than in HsSCO1. They result in 

various tissue-specific clinical features, associated with COX misassembly and selective 

degradation of mt Cox subunits (Papadopoulou et al., 1999; Jaksch et al., 2000, 2001; 

Hamza and Gitlin, 2002). Jaksch et al. (2001) have shown that HsSco2p-deficient 

fibroblasts exhibit a dramatic increase in copper uptake, and COX activity can be 

completely restored by the addition of exogenous Cu-histidinate. However, it is not clear 

whether the excess of copper can overcome the mutation or is required for direct loading 

of Cox2p. Foltopoulou et al. (2004) reported that recombinant mutant forms of HsSco2p 

are affected in copper binding accompanied by disturbance of the conformational state of 

the Cu-ligating protein stretch. 

Recently, Leary and co-workers (2004) proposed that HsSco1p and HsSco2p have 

independent cooperative functions in Cu delivery to mammalian COX. According to the 

model of the authors, HsSco2p plays the key role in the CuA formation, whereas HsSco1p 

assists HsSco2p function.  

 

1.3.4.1.5. Cox11p 

Another important member of the mt copper transfer pathway is the 28 kDa copper-

binding protein Cox11p (Tzagoloff et al., 1990). It appears to be required for Cu+ supply 

of Cox1p. Yeast COX11 was originally identified as a PET gene, important for 

respiration and normal COX activity (Tzagoloff et al., 1990). cox11∆ mutants are 

characterized by impaired COX activity due to the degradation of Cox1p subunit and 

unstable heme a (Tzagoloff et al., 1990). Interestingly, the cox11 including cox11∆ 

mutations confer high sensitivity to N-nitrosodiethylamine (NDEA) and 8-

hydroxyquinoline (8HQ). These chemicals are metabolized via redox cycling, thereby 

yielding hydroxialamine radicals and reactive oxygen species (Pungartnik et al., 1999; 

2002). This observation may hint at an additional role of Cox11p in oxidative stress 

response. Curiously, the COX11 gene was identified in two independent screens 

indicating an involvement of Cox11p in cell wall biosynthesis (Lussier et al., 1997; Tong 

et al., 2004). A link between mt function and cell wall biogenesis has also been reported 
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for some other mt proteins with distinct functions (Lussier et al., 1997; Zhong et al., 

2005). The molecular basis of this observation is presently unclear. 

Similarly to Sco1p, Cox11p possesses an Nin-Cout topology and spans the IMM by 

a single TM helix located in the N-terminal part of the protein (Tzagoloff et al., 1990; 

Khalimonchuk et al., 2005; Carr et al., 2005). The understanding of Cox11p function 

emerged from studies of the R. sphaeroides counterpart. Rscox11 null mutants lack CuB, 

but not CuA and have an impaired Mg2+/Mn2+ site. In addition it was reported that the 

environment of heme a3, but not heme a is disturbed (Hiser et al., 2000). These findings 

led to the conclusion that RsCox11p is important for the formation of the CuB site. More 

recently, a recombinant soluble truncated form of yeast Cox11p was shown to bind 

copper (Carr et al., 2002). Cox11p acts as a dimer and binds one Cu+ per monomer via a 

CxC motif located in the IMS-exposed C-terminal part of protein. A third conserved 

cysteine near the IMS-side of TM helix, not engaged in copper binding, may be involved 

in dimer formation. EXAFS data indicate that each Cu+ is ligated by three sulfurs of 

conserved cysteine residues, and the Cu-Cu distance is 2.71 Å (Carr et al., 2002; Carr and 

Winge, 2003). The solution structure of the soluble part of the Cox11p homologue dimer 

from Sinorhizobium meliloti suggests that two ligands for a single Cu+ derive from the 

CxC motif, and the third ligand is donated by the conserved cysteine of the CxC motif of 

the other monomer (Banci et al., 2004). Interestingly, the metal-binding motif resides in 

an immunoglobulin-like ß-barrel structure, which might also mediate interaction(s) with 

the other proteins (Banci et al., 2004). Replacement of any of the conserved cysteines 

precludes copper binding and results in COX deficiency (Carr et al., 2002). As for Sco1p, 

the direct transfer of copper from Cox17p to Cox11p was shown recently (Horng et al., 

2004). However, as in the case of Sco1p, physical interaction between these proteins 

could not be detected. Guo et al. (2005) identified in a two-hybrid screen rat Cox11p as 

an interacting partner of ACDP4, a member of the ancient conserved domain protein 

family (Wang et al., 2003). Ectopic expression of both genes in HEK293 cells results in 

metal ion toxicity, suggesting a functional coupling between these proteins. Contrary to 

earlier reports linking the yeast ACDP4 homologue, a Mg2+-binding protein (Mam3p) to 

mitochondria, it was recently shown that it resides in the vacuolar membrane and has a 
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function unrelated to mitochondria (Yang et al., 2005). Therefore the significance of the 

observed interaction appears to be less clear in yeast.  

Cox11p homologues were described and characterized in a number of eukaryotes 

and prokaryotes (Cao et al., 1992; Petruzzella et al., 1998; Hiser et al., 2000; Leary et al., 

2004; Bengtsson et al., 2004; Arnesano et al., 2005). In prokaryotic genomes proteins 

engaged in the same overall process are often encoded in a common operon. The 

detection of genes next to each other by genome neighboring analysis can provide clues 

to the function of these proteins. Such an analysis of bacterial genomes revealed that the 

function of Cox11p seems to be solely confined to the COX assembly process (Arnesano 

et al., 2005). Two COX11 homologues have been detected in the human genome 

(HsCOX11), one of which, however, is predicted to be a pseudogene (Petruzella et al. 

1998). So far no diseases associated with mutations in HsCOX11 were reported. 

Interestingly, in the protozoon Reclinomonas americana the COX11 homologue is 

encoded by the mt genome (Lang et al., 1997; Gray et al., 1998).  

The genome sequence of the fission yeast S. pombe also revealed the presence of 

two homologues of COX11 (cox11+, cox11b+) (Khalimonchuk et al., 2005). Both S. 

pombe proteins (SpCox11p, SpCox11bp) contain long N-terminal extensions of more 

than 500 aa, that exhibit a significant degree of identity to S. cerevisiae Rsm22p (Carr 

and Winge, 2003; Carr et al., 2005). This protein is a component of the small subunit of 

the mt ribosome and necessary for respiratory growth (Saveanu et al. 2001; Gan et al. 

2002). Carr et al. (2005) showed recently that an artificial COX11-RSM22 fusion in S. 

cerevisiae mimicking the situation in S. pombe is able to rescue deletion mutants lacking 

COX11 or RSM22. The link between Cox11p and a ribosomal protein may hint at a co-

translational manner of Cu insertion into Cox1p and thus explain how the metal can be 

transfered to a site located 13Å below the IMM surface. 

Therefore, as outlined above, topogenesis and topological properties of Cox11p from S. 

cerevisiae as well as from S. pombe will be characterized in order to get a clue how the 

CuB site is formed. 
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Chapter 2 

Materials and Methods 
2.1 Equipment  
2.1.1 Consumables and equipment 

Pipets (P1000, P200, P20, P10)   Gilson 

Pipet tips (1000 µl, 200 µl, 10 µl)   TPP 

Reaction tubes (0.5 ml, 1.5 ml, 2.0 ml)  Böttger 

Reaction tubes (15 ml, 50 ml)   Greiner or TPP 

Centrifuge tubes (5 ml, 50 ml, 500 ml)  Beckman  

Erlenmeyer flasks (50 ml, 100 ml, 250 ml, 

500 ml, 1L, 2L, 3L, 5L)    Schott or Simax 

X-ray films      GE Healthcare or Kodak 

Gel blotting paper     Schleicher & Schuell 

Immobilon™-P PVDF Membranes   Millipore 

Dialysis membranes (0.025 µm, VS type)  Millipore 

Petri dishes      Greiner 

Dounce homogeniser     Wheaton 

Glass beads      Roth 

 

2.1.2 Devices 

Centrifuges: 

Biofuge pico      Haereus 

Biofuge fresco     Haereus 

Centrifuge 5417R     Eppendorf 

Sigma 3K30      Sigma 

Avanti™ J25      Beckman 

Optima ™ MAX Ultracentrifuge   Beckman 

Thermo cyclers: 

Primus       MWG-Biotech 

Cyclone 96      PeqLab 
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LI-COR DNA sequencer 4000/4200   MWG-Biotech 

Water bath      GFL 

Incubators      Binder or Heraeus 

Ultrospec 3000     Pharmacia Biotech 

Gradient maker     Hoefer 

Concentrator 5301     Eppendorf 

Gene Pulser® II     Bio-Rad 

Heating blocks     Eppendorf or Kleinfeld 

Vortexer      IKA-Works Inc. 

Blotter       Biometra 

Power supplies     Bio-Rad or Pharmacia Biotech 

DNA/Protein gel chambers    PeqLab/Hoefer 

Gel-Doc system     MWG-Biotech 

 

2.2 Reagents 
2.2.1 Chemicals and reagents 

Tris base      Roth or Merck 

Raffinose      Fluka 

EDTA       Roth 

PMSF       Roth 

AEBSF      AppliChem 

Dextrose      Roth 

Yeast nitrogen base  

(with or without Ammonium sulphate)  Invitrogen 

Glycerol      Roth 

Agarose      BioZym 

Digitonin      Sigma 

TEMED      Roth 

Tween 20      Roth 

Dithiohtreitol (DTT)     Roth 

Protease inhibitors, EDTA-free   Roche 
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Water (HPLC grade)     Roth 

Essential amino acids (salts)    Roth or Sigma 

Yeast extract      Roth 

Agar       Roth 

Sodim chloride (NaCl)    Roth 

Peptone/Tryptone     Roth 

Sodium dodecyl sulphate (SDS)   Merck 

ß-mercaptoethanol      Sigma or Roth 

Ethanol      Roth 

Acetone      Roth 

Ampicillin      Roth 

Geneticin      Gibco-BRL 

Ammonium persulphate (APS)   Merck 

Mannitol      Roth 

Sucrose      Merck 

Magnesium sulphate (MgSO4)   Sigma or Merck 

HEPES      Serva 

Acrylamide/Bisacrylamide    Roth 

Glycine      Roth 

Methanol      Roth 

Coomassie® Brilliant blue G250   Merck 

Rnase-OFF™      AppliChem 

Ponceau S      Roth 

Acetic acid      Roth 

λ phage DNA      Invitrogen 

Herring sperm DNA     Invitrogen 

dNTP’s      Invitrogen 

Ammonium sulphate     Merck or Roth 

Boric acid      Roth 

Bromphenol blue     Serva 

Skimmed milk powder    Lasana 
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ATP       Sigma 

BenchMark™ Prestained Protein Ladder  Invitrogen 

Iodine resublimed     Merck  

NADH       Sigma 

Valinomycin      Sigma 

Creatine phosphate     Sigma 

Ethidiumbromide     Sigma 

Primers      MWG 

5’-IRD 800 labeled primers     MWG 

Imidazol      Roth 

Sorbitol      Roth 

Calcium chloride (CaCl2)    Merck 

IgG matrix       Sigma 

Calmodulin matrix      Stratagene 

Anti-HA Affinity Matrix     Roche 

6-aminocaproic acid     Fluka 

Sodium carbonate (Na2CO3)    Sigma 

Hydrochloric acid (HCl)    Roth 

Potassium hydroxide (KOH)    Roth 

Sodium hydroxide (NaOH)    Roth 

Malt extract      Merck 

Biotin       Merck 

PEG-3350      Merck 

Litium acetate (LiOAc)    ICN 

Potassium acetate (KOAc)    Roth 

Sodium acetate (NaOAc)    Roth 

Magnesium acetate (MgOAc)   Merck 

Trichloroacetic acid (TCA)    Roth 

Manganese chloride (MnCl2)    Merck 

Lactic acid      AppliChem 

Triton X-100      Roche or Roth 
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Isopropanol      Roth 

Puromycin      Sigma 

Chloramphenicol     Roth 

EGTA       Sigma 

MOPS       Roth 

BSA       Serva 

Potassium chloride (KCl)    Merck 

Potassium dihydrogenphosphate (KH2PO4)  Merck 

Phenol/chlrophorm/isoamyl alcohol   Roth 

Spermidin      Sigma 

 

2.2.2 Kit systems 

Jetquick PCR Purification Spin Kit   Genomed 

Nucleospin® Extract Kit    Macherey-Nagel 

Nucleospin® Plasmid Quick Pure Kit  Macherey-Nagel 

Wizard® SV Gel and PCR Clean-Up Kit  Promega 

Thermo Sequenase fluorescent labeled primer  

cycle sequencing kit with 7-deaza-dGTP   Amersham Biosciences 

ECL-Plus Kit™      Amersham Biosciences  

High-molecular-weight Gel-filtration  

Calibration Kit     Amersham Biosciences 

DC Protein Assay     Bio-Rad 

 

2.2.3 Enzymes 

Restriction enzymes     Invitrogen or MBI Fermentas 

CombiZyme polymerase    Invitek 

Pfx-Platinum polymerase    Invitrogen 

T4 DNA ligase     Promega 

Rnasin       Promega 

RNase Out      Invitrogen 

Proteinase K      Roth 
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RNase A      Roth 

Zymolyase 20T     ICN  

Lysing enzymes     Sigma 

TEV protease       Invitrogen 

SP6 polymerase     Promega 

Creatine kinase     Sigma 

 

2.2.4 Antibodies 

For Western blot analysis the antibodies were diluted as indicated in TBS-T buffer 

(section 2.2.5.2) containing 5% (w/v) skimmed milk powder. All listed antibodies were 

raised against respective yeast proteins unless otherwise specified. 

Primary antibodies: 

Mouse-anti-HA (Roche)       1:5000 

Mouse-anti-cMyc (Roche)       1:5000 

Mouse-anti-Cox2p (Molecular Probes)     1:500 

Mouse-anti-Cox3p (Molecular Probes)     1:1000 

Mouse-anti-EcAtp5p (Molecular Probes)     1:1000 

Rabbit-anti-TAP (Open Biosystems)      1:2000 

Rabbit-anti-Aco1p (kind gift of R. Lill, Marburg)    1:2000 

Rabbit-anti-MrpL36p (kindly provided by J.M. Herrmann, Munich)   1:250 

Rabbit-anti-Oxa1p (kindly provided by J.M. Herrmann, Munich)  1:100 

Rabbit-anti-Tim50p (kindly gifted by D. Mokranjac, Munich)  1:500 

Rabbit-anti-Pet123p (kind gift of T.D. Fox, Ithaca, NY)   1:600 

Rabbit-anti-Sco1p (Buchwald et al., 1991)     1:3000 

Rabbit-anti-Adh1p (kindly gifted by C. Walch-Solimena, Dresden) 1:5000 

 

Secondary antibodies: 

Sheep-anti-mouse IgG-HRP-coupled (Amersham Biosciences)  1:5000 

Donkey-anti-rabbit IgG-HRP-coupled (Amersham Biosciences)  1:5000 
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2.2.5 Buffers 

2.2.5.1 Commercial buffers and stocks 

Buffers for restriction enzymes   Invitrogen or Fermentas 

Ligation buffer (2x)     Promega 

PCR buffer, Mg2+ free (10x)    Invitek 

PCR buffer, Mg2+ free (10x)    Invitrogen 

MgCl2 stock [50 mM]     Invitek 

MgSO4 stock [50 mM]    Invitrogen 

 

2.2.5.2 Standard buffers 

TBE (10x): 0.9 M Tris base, 0.9 M Boric acid, 25 mM EDTA 

 

TBS (10x): 0.2 M Tris-HCl (pH 7.4), 1.37 M NaCl 

 

TBS-T:   TBS-buffer (x1), 0.1% (v/v) Tween 20 

 

Breaking buffer for isolation of genomic/plasmid DNA from yeast: 

10 mM Tris-HCl (pH 8.0), 100 mM NaCl, 1mM EDTA, 1% (w/v) SDS, 2% (v/v) Triton 

X-100 

 

TE:   10 mM Tris-HCl (pH 8.0), 1 mM EDTA (pH 8.0) 

 

Yeast transformation buffer: 0.1 M LiOAc, 10 mM Tris-HCl (pH 5.5), 1 mM EDTA (pH 

8.0), 40% PEG 3350 

 

DNA loading buffer (x6): 0.25% (w/v) Bromophenol blue, 30% (w/v) Glycerol 

 

TES:  1.5 M sorbitol, 20 mM Tris-HCl (pH 7.5), 10 mM EDTA. 
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2.2.5.3 Buffers for preparation of mitochondria 

2.2.5.3.1 from S. cerevisiae 

MTE: 0.65 M Mannitol, 20 mM Tris-HCl (pH 7.1), 1 mM EDTA, 1 mM PMSF or 

AEBSF (freshly added) 

 

Buffer A: 0.1 M Tris-H2SO4 (pH 9.4), 1.54 mg DTT/ml Buffer A (freshly added) 

 

Buffer B: 1.2 M Sorbitol, 20 mM KH2PO4 (pH 7.4), 0.3 mg Zymolyase 20T/ml 

Buffer B (freshly added) 

Buffer C: 1.2 M Sorbitol 

 

Buffer D: 0.65 M Mannitol, 10 mM Tris-HCl (pH 7.4), 1 mM PMSF or AEBSF 

(freshly added), Protease inhibitors mix EDTA-free (1x) 

 

2.2.5.3.2 from S. pombe 

Washing buffer 1: 0.1 M Tris-HCl (pH 9.3), 0.5 M ß-mercaptoethanol (freshly added) 

 

Washing buffer 2: 0.5 M KCl, 10 mM Tris-HCl (pH 7.0) 

 

Cell lysis buffer: 1.35 M Sorbitol, 1 mM EGTA, 10 mM citrate/phosphate (pH 5.8), 

2 mg Zymolyase 20T/ml Lysis buffer (freshly added), 2 mg Lysing enzymes/ml lysis 

buffer (freshly added) 

 

Washing buffer 3: 0.75 M Sorbitol, 0.4 M Mannitol, 10 mM MOPS (pH 6.8),  

0.1% (w/v) BSA, 1 mM PMSF /AEBSF (freshly added), Protease inhibitors mix EDTA-

free (1x) (freshly added) 

 

Washing buffer 4: 0.65 M Mannitol, 2 mM EGTA, 10 mM MOPS (pH 6.8),  

0.5% (w/v) BSA, 1 mM PMSF /AEBSF (freshly added), Protease inhibitors mix EDTA-

free (1x) (freshly added) 
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2.2.5.4 Buffers for in vitro transcription 

TC stock (10 x):          400 mM Hepes-KOH (pH 7.4), 60 mM MgOAc,  

20 mM Spermidin 

 

Premix:  TC stock (1x), 0.01% (v/v) BSA, 10 mM DTT, 0.5 mM ATP,  

0.5 mM CTP, 0.5 mM GTP, 0.5 mM UTP 

 

2.2.5.5 Buffers for work with mitochondria 

2.2.5.5.1 Buffers for breakage of mitochondria 

Lysis buffer:  20 mM Tris-HCl (pH 7.2), 10 mM MgSO4, 1% (v/v) Digitonin,  

4 mM AEBSF (freshly added), Protease inhibitors mix EDTA-free (1x) (freshly added) 

 

Sucrose gradient: 20 mM Tris-HCl (pH 7.2), 0.1% Digitonin, 10 mM MgSO4,  

20 mM DTT (freshly added), 4 mM AEBSF (freshly added), Protease inhibitors mix 

EDTA-free (1x) (freshly added) 

 

Lysis buffer (TAP): 0.6 M Sorbitol, 30 mM MgSO4, 20% (w/v) Glycerol,  

20 mM HEPES-KOH (pH 7.4), 1% (v/v) Digitonin, 40 units of RNase Out inhibitor,  

4 mM AEBSF (freshly added), Protease inhibitors mix EDTA-free (1x) (freshly added) 

 

Cleavage buffer (TAP): Lysis buffer, 1 mM DTT (freshly added), 2 mM CaCl2,  

1 mM Imidazole, 10 mM β-mercaptoethanol (freshly added) 

 

Lysis buffer (for Blue Native-PAGE): 50 mM NaCl, 5 mM 6-aminocaproic acid,  

50 mM Imidazol-HCl (pH 7.0), 1% (v/v) Digitonin, 1 mM AEBSF (freshly added), 40 

units of RNase Out inhibitor 

 

2.2.5.5.2 Buffers for mitochondrial import 

Import buffer:     3% BSA (fatty acids free), 0.5 M Sorbitol; 80 mM KCl, 10 mM 

MgOAc, 2 mM KH2PO4 (pH 7.4), 2.5 mM MnCl2,  
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H buffer: 20 mM HEPES (pH 7.4) 

SH buffer: 0.6 M Sorbitol, 20 mM HEPES (pH 7.4) 

SHKCl buffer:       0.6 M Sorbitol, 20 mM HEPES (pH 7.4), 80 mM KCl 

 

MPP-processing buffer: 20 mM HEPES-NaOH (pH 7.3), 100 mM NaCl 

 

2.2.5.6 Buffers for separation of proteins 

Separating gel: 375 mM Tris-HCl (pH 8.8), 12% or 16% (w/v) Acrylamide,  

0.32% or 0.4% (w/v) Bisacrylamide, 0.1% (w/v) SDS, 0.1% (w/v) APS,  

0.1% (v/v) TEMED 

 

Stacking gel: 125 mM Tris-HCl (pH 6.8), 4% (w/v) Acrylamide,  

0.1% (w/v) Bisacrylamide, 0.1% (w/v) SDS, 0.1% (w/v) APS, 0.1% (v/v) TEMED 

 

Running buffer: 25 mM Tris-base, 192 mM Glycine,  0.1% (w/v) SDS 

 

Protein loading buffer (6x): 300 mM Tris-HCl (pH 6.8), 30% (w/v) Glycerol,  

10% (w/v) SDS, 0.1% (w/v) Bromophenol blue, 600 mM DTT or  

5% (v/v) β-mercaptoethanol (freshly added) 

 

Coomassie staining buffer: 42% (v/v) Methanol, 17% (v/v) Acetic acid,  

0.1% (w/v) Coomassie brilliant blue G250 

 

Destaining buffer: 30% (v/v) Methanol, 7% (v/v) Acetic acid 

 

Transfer buffer (Western Blot): 192 mM Glycine, 25 mM Tris-base,  

5% (v/v) Methanol, 0.1% (w/v) SDS 

 

Ponceau S staining solution:    0.2% (w/v) Ponceau S, 3% (w/v) TCA 
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2.2.6 Media 

2.2.6.1 E. coli media 

LB:      1.0% (w/v) Peptone / Tryptone 

      0.5% (w/v) Yeast extract 

      0.5% (w/v) NaCl 

      2.0% (w/v) Agar (for solid LB) 

      100 mg/L Ampicillin (for selection) 

SOC:      2.0% (w/v) Peptone / Tryptone 

      0.5% (w/v) Yeast extract 

      10 mM NaCl 

      2.5 mM KCl 

      10 mM MgCl2 x 6H2O 

      10 mM MgSO4 x 7H2O 

      20 mM Glucose / Dextrose 

 

2.2.6.2 S. cerevisiae media 

YP:      1.0% (w/v) Yeast extract 

2.0% (w/v) Peptone / Tryptone 

      2.0% (w/v) Agar (for solid YP) 

 

YPD:      YP 

      2.0% (w/v) Dextrose / Glucose 

 

YPG:      YP 

      3.0% (w/v) Glycerol 

YPGG:      YP 

      3.0% (v/v) Glycerol 

      0.1% (w/v) Dextrose / Glucose 

 

YPEG:      YP 

      3.0% (w/v) Glycerol 
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      1.0% (v/v) Ethanol 

 

YPGalG:     YP 

      3.0% (v/v) Galactose 

      0.1% (w/v) Dextrose / Glucose 

 

Lactate medium:    2.00% lactic acid 

      0.10% (w/v) Dextrose / Glucose 

      0.30% (w/v) Yeast extract 

      0.10% (w/v) KH2PO4

      0.10% (w/v) NH4Cl 

      0.05% (w/v) CaCl2 x 2H2O 

      0.06% (w/v) MgCl2 x 2H2O 

      0.05% (w/v) NaCl 

      Adjust the pH to 5.5 with NaOH 

 

Minimal medium (WO):   0.17% (w/v) Yeast nitrogen base 

      0.50% (w/v) Ammonium sulphate 

      2.00% (w/v) Agar (for solid WO) 

 

WOG:      WO 

      2.0% (w/v) Dextrose / Glucose 

 

WOGG:     WO 

      3.0% (v/v) Glycerol 

      0.1% (w/v) Dextrose / Glucose 

 

WORaff:     WO 

      2% (w/v) Raffinose 

Sterile minimal media were supplemented with the appropriate amino acids by addition 

of the respective stock solutions. 
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Adenine (100x):    6 g/L Adenine 

Uracil (100x):     3 g/L Uracil 

L-Histidine (100x):    6 g/L L-Histidine 

L-Tryptophane (100x):   8 g/L L- Tryptophane 

L-Arginine (100x):    2 g/L L-Arginine 

L-Methionine (100x):    2 g/L L-Methionine 

L-Leucine (100x):    8 g/L L-Leucine 

L-Lysine (100x):    3 g/L L-lysine 

 

Sporulation medium (SM):   1% (w/v) KOAc 

      2% (w/v) Agar (for solid SM) 

2.2.6.3 S. pombe media 

Sporulation medium (MEA):   3% (w/v) Malt extract 

      100 mg/L L-Histidine 

      100 mg/L Uracil 

      50 mg/L Proline 

      50 mg/L L-Lysine 

      50 mg/L L-Leucine 

      75 mg/L Adenine 

      2% (w/v) Agar (for solid MMA) 

      Adjust the pH to 6.5 with NaOH 

 

Solution A1(1000x):    8.09 mM H3BO4

      160 µM CuSO4 x 5H2O 

      602 µM KI 

      740 µM FeCl3 x 6H2O 

      2.37 mM MnSO4 x H2O 

      247 µM H2MoO x 2H2O 

      1.39 mM ZnCl2 

 

Solution A2 (10x):    Solution A1 (10x) 
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      73 mM KH2PO4

      5.00 g/L MgSO4 x 7H2O 

1.0 g/L NaCl 

5 mM CaCl2 x 2H2O 

50.00 g/L (NH4)2SO4

 

Solution A3a (1000x):   4.20 mM Calcium pantothenate 

      81.2 mM Nicotinamide 

      55.5 mM Meso-inositol 

 

Solution A3b (1000x):   40.8 µM Biotin 

      50% (v/v) Ethanol 

 

YEA:      3.0% (w/v) Dextrose / Glucose 

      0.5% (w/v) Yeast extract 

      Solution A3a (1x) 

      Solution A3b (1x) 

      50 mg/L Uracil 

      50 mg/L L-Proline 

      50 mg/L L-Leucine 

      50 mg/L L-Lysine 

      2.0% (w/v) Agar (for solid YEA) 

      Adjust the pH to 6.5 with NaOH 

      100 mg/L Geneticin (for selection)  

 

Minimal medium (MM):   Solution A2 (1x) 

      Solution A3a (1x) 

      Solution A3b (1x) 

      2.5% (w/v) Agar (for solid MM) 

      Adjust the pH to 6.5 with NaOH 
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MMG:      MM 

      1% (w/v) Dextrose / Glucose 

 

MMGG:     MM 

      3% (v/v) Glycerol 

      0.5% (w/v) Dextrose / Glucose 

Sterile minimal media were supplemented with the appropriate amino acids by addition 

of the respective stock solutions. 

Adenine:    10 ml/L Adenine (100x) 

Uracil:     10 ml /L Uracil (100x) 

L-Leucine:    10 ml /L L-Leucine (100x) 

 

2.2.7 Strains  

2.2.7.1 E. coli strains  

 

Strain     Genotype       Reference/Source 
DH5α  recA1, endA1, gyrA96, thi-1, hsdR17 (rK

- mK
+),      Hanahan (1983)/BRL 

         supE44, relA1, deoR, ∆(lacZYA-argF)U169   
XL1-Blue recA1, endA1, gyrA96, thi, hsdR17 (rK

- mK
+),     Stratagene 

       supE44, relA1 [F’::Tn10 proA+B+ laclq ∆(lacZ)M15] 
 

2.2.7.2 S. cerevisiae strains  

 

Strain     Genotype     Reference/Source 

BY4741      MATa, his3∆1, leu2∆0, met15∆0, ura3∆0, [rho+]   EUROSCARF 
W303-1A    MATa, ade2-1, his3-1,15, leu 2,3,112, trp1-1, ura3-1, [rho+]   Muroff and  

                Tzagoloff (1990) 
IL 933-5c     MATα, ilv5, [rho0]      Wolf et al. (1973) 
KL14-4a     MATa, his1, trp2, [rho0]       Wolf et al. (1973) 
Y06479       MATa, his3∆1, leu2∆0, met15∆0, ura3∆0,    EUROSCARF 

        cox11::kanMX4, [rho+] 
Y15005       MATα, his3∆1, leu2∆0, lys2∆0, ura3∆0,     EUROSCARF 

        rsm22::kanMX4, [rho-] 
Y35005       MATa/α, his3∆1/his3∆1, leu2∆0/leu2∆0,     EUROSCARF 

        lys2∆0/LYS2, MET15/met15∆0, ura3∆0/ura3∆0,  
        rsm22::kanMX4/rsm22::kanMX4, [rho-] 

OK-R22      MATa/α, his3∆1/his3∆1, leu2∆0/leu2∆0,     This work 
        lys2∆0/LYS2, MET15/met15∆0, ura3∆0/ura3∆0, 

         rsm22::kanMX4/RSM22, [rho+] 
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SC1069      MATa, ade2, arg4, leu2-3,112, trp1-289, ura3-52,     CellZome AG 
        MRP4::(MRP4-TAP-tag-URA3), [rho+] 

YPH                MATa, ura3-52, lys2-801amber, ade2-101ochre,    Szyrach et al.(2003) 
499MO           trp1∆63, his3∆200, leu2∆1, oxa1::(OXA11-317

∆C-3HA-HIS3),  
            [rho+] 

YSC1070-       MATα, his3∆1, leu2∆0, met15∆0,      Open Biosystems 
662427            COX11::(COX11-3HA-HIS3), [rho+] 
YSC1178-       MATa, his3∆1, leu2∆0, met15∆0, ura3∆0,    Open Biosystems 
 7501494 RSM22:: (RSM22-TAP-tag-HIS3), [rho+] 
 
2.2.7.2 S. pombe strains 

 

Strain     Genotype               Reference/Source 
L972          h-S        Gutz et al. (1974) 
HE620       h+S, leu1-32, ura4-D18       K. Ostermann, 

      Dresden 
HE665          h+N, leu1-32, ura4-D18,  ade6-M210    K. Ostermann, 

      Dresden 
HE639          h-S, leu1-32, ura4-D18, ade6-M216     K. Ostermann, 

      Dresden 
OK2n-1     h+N/h-S, leu1-32/leu1-32, ura4-D18/ura4-D18,   This work 
                  ade6-M210/ade6-M216, cox11/cox11::ura4+

OK2n-2    h+N/h-S, leu1-32/leu1-32, ura4-D18/ura4-D18,   This work 
       ade6-M210/ade6-M216, cox11b+/cox11b::ura4+

OK1          h-S, leu1-32, ura4-D18, ade6-M216, cox11::ura4+   This work 
OK2          h-S, leu1-32, ura4-D18, ade6-M216, cox11b::ura4+   This work 
OK2n-3    h+N/h-S, leu1-32/leu1-32, ura4-D18/ura4-D18,   This work 

      ade6-M210/ade6-M216, cox11+/cox11::ura4+,  
      cox11b+/cox11b::kanMX4 
 
 

2.2.8 Oligonucleotides 

The melting and annealing temperature (Tm and Ta) of oligonucleotides were calculated 

using the formula provided by the supplier (MWG): 

Tm = 69.3°C + 0.41 x (GC-content %)- 650 / primer length 

Ta = Tm – 5°C 

Primers used in this study are summarized in the table below. Sequences of the respective 

restriction enzymes are underlined. Overlapping sequences are shown in bold. Introduced 

mutations and deletion sites are depicted in red. 5’-IRD 800 labeled primers are marked 

by an asterisk. 
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No. 

 

                                Sequence (5’ to 3’) 

 

Direction 

Introduced 
restriction 
      site 

   1  TAT TTA GGA TCC ATG ATA AGA ATA TGT CCC ATT G  Forward     BamHI 

   2  TAT TTA CTC GAG TTA ATT TGA GTT GTC TTT CCT TG  Reverse     XhoI 

   3  ACA AGG AAA GAC AAC TCA AAT CTG GTT CCG CGT GGA  Forward      ----- 

   4  TCC ACG CGG AAC CAG ATT TGA GTT GTC TTT CCT TGT  Reverse      ----- 

   5  TAT TTA TCT AGA ATG ATA AGA ATA TGT CCC ATT GTT 

AGA TCT AAG GTT 
 Forward     XbaI 

   6  TAT TTA CTC GAG CTA TTA GCG GCC GCA CTG AGC AGC  Reverse     XhoI 

   7  TCT TAT TTC TTC AAC GCC ATT TGT GCT CGT  Forward      ----- 

   8  ACG AGC ACA AAT GGC GTT GAA GAA ATA AGA  Reverse      ----- 

   9  TAT TTA TCT AGA ATG CTG AAG TTG TCA AGA AGT  Forward     XbaI 

 10  GGC AAT CTT TTA ACT AAA CTC AAC  CTG GTT CCG CGT 

GGA 
 Forward      ----- 

 11  TCC ACG CGG AAC CAG GTT GAG TTT AGT TTA AAG ATT 

GCC 
 Reverse      ----- 

 12  TAT TTA CTC GAG ATG CCC ATT CTA ACA TGC AGA TAT 

AAA ATT CTG 
 Forward     XhoI 

 13  ATT ATT CCA TGG CTA TTA GCG GCC GCA CTG AGC AGC  Reverse     NcoI 

 14  TAT TTA GGA TCC ATG ATG AAA AGA TGC TTC AGT ATC 

CTA CCA 
 Forward     BamHI 

 15  TAT TTA CTC GAG CTA TTT TCT ATT TAC ATG TTG TAA 

AAA ATC GTT GCC 
 Reverse     XhoI 

 16  TAT TTA GGA TCC ATG CCC ATT CTA ACA TGC AG  Forward     BamHI 

 17  TAT TTA CTC GAG TCA GTT GAG TTT AGT TAA AAG ATT G  Reverse     XhoI 

 18  TAT TTA GGA TCC ATG GAG GGC AAA GTT CAA AGT ACT 

TCT CCA 
 Forward     BamHI 

 19  TAT TTA CTC GAG TCA GCC CTC TAA CGG AAA CAA GTC  Reverse     XhoI 

 20  ACT GCT AAG AAT ACG TCC GAC CAT GAC  Forward      ----- 

 21  GTC ATG GTC GGA CGT ATT CTT AGC AGT  Reverse      ----- 

 22  GAT GCT CAT GAA GAA GTA GAC TTG CCT  Forward     ----- 
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 23  AGG CAA GTC TAC TTC TTC ATG AGC ATC  Reverse     ----- 

 24  GAT GCT CAT GAA AAA GTA GAC ATG CCT GTG  Forward     ----- 

 25  CAC AGG CAT GTC TAC TTT TTC ATG AGC ATC  Reverse     ----- 

 26  GAT GCT CAT GAA GAA GTA GAC ATG CCT  Forward     ----- 

 27  AGG CAT GTC TAC TTC TTC ATG AGC ATC  Reverse     ----- 

 28  GTA CCA CTC TAT AGA CTT TTC TGT TCG  Forward     ----- 

 29  CGA ACA GAA AAG TCT ATA GAG TGG TAC  Reverse     ----- 

 30  CCG TGG AAA TTC GTT CCC CAG CAG CGT GAA  Forward     ----- 

 31  TTC ACG CTG CTG GGG AAC GAA TTT CCA CGG  Reverse     ----- 

 32  ACC ATA ATG AGC TCT AAA AAA AGT ATA GCT  Forward     ----- 

 33  AGC TAT ACT TTT TTT AGA GCT CAT TAT GGT  Reverse     ----- 

 34  GTC CCT GAG AGG CGG GTG G  Forward     ----- 

 35  ATG GAA TTA AGC TGA ACC CAT GCC TGC  Reverse     ----- 

 36  TAT TAT AGA TCT ATG GGA GGG CTC TGG CGT CC  Forward     BglII 

 37  TAT TAT CTC GAG TCA ATT ATA TCC TGG AAC TGG CAA 

CTT GTG C 
 Reverse     XhoI 

 38  ACA AGG AAA GAC AAC TCA AAT GTC CCA AGA GTA ATC  Forward     ----- 

 39  GAT TAC TCT TGG GAC ATT TGA GTT GTC TTT CCT TGT  Reverse     ----- 

 40  TAT TTA CTC GAG TCA ATT CAA GTC TTC TTC TGA  Reverse     XhoI 

 41  CAT ACA TTT GAT ATT TCA AAA TTT AAA GAT CGT  Forward     ----- 

 42  ACG ATC TTT AAA TTT TGA AAT ATC AAA TGT ATG  Reverse     ----- 

 43  TAT TCA GTG AAC AGC AAA TTT AAA GAT CGT ACG  Forward     ----- 

 44  CGT ACG ATC TTT AAA TTT GCT GTT CAC TGA ATA  Reverse     ----- 

 45  GAG AGA AAA TTT AAA GAT CGT GCC ATT GCT CTA TTC  Forward     ----- 

 46  GAA TAG AGC AAT GGC ACG ATC TTT AAA TTT TCT CTC  Reverse     ----- 

 47  TAT GCA GCG GCC CCA CTC TAT AGA  Forward     ----- 

 48  TCT ATA GAG TGG GGC CGC TGC ATA  Reverse     ----- 

 49  GCA GCG GTA GCC CTC TAT AGA  Forward     ----- 

 50  TCT ATA GAG GGC TAC CGC TGC  Reverse     ----- 

 51  TAT TTA GCA TGC ATG ATA AGA ATA TGT CCC ATT GTT  Forward     SphI 

 53



Materials and methods_____________________________________________________ 

 52  TAT TTA GGA TCC TTA ATT TGA GTT GTC TTT CCT TGT  Reverse     BamHI 

 53  TAT TTA GCA TGC TTA ATT TGA GTT GTC TTT CCT TGT  Reverse     SphI 

 54  TAT TTA GAA TTC TCA GTT GAG TTT AGT TAA AAG ATT G  Reverse     EcoRI 

 55  TAT TTA GAA TTC ATG CCC ATT CTA ACA TGC AGA TAT 

AAA ATT 
 Forward     EcoRI 

 56  TAT TTA GGA TCC TCA GTT GAG TTT AGT TAA AAG ATT G  Reverse     BamHI 

 57  GGT GTT TTG AGC ACA T CCC ACT GGC TAT ATG TAT G  Forward     ----- 

 58  C ATA CAT ATA GCC AGT GGG ATG TGC TGC TCA AAA 

ACA CC 
 Reverse     ----- 

 59  GTC AGA AGG CAT TTA G ATA AAA ATT AAG GGA CTA C  Forward     ----- 

 60  GTA GTC CCT TAA TTT TTA AT CTA AAT GCC TTC TGA C  Reverse     ----- 

 61  GTT AAC AAG GAA TGT TTC GTA AAT CGA AG  Forward     ----- 

 62  CTC TAT TTC ATT TCG TTA CTT TCA TGA C  Reverse     ----- 

 63  GTA ACA CCA TCT GCG GCC AC  Forward     ----- 

 64  CAT CCC CTC AGC TCT AGC TG  Reverse     ----- 

 65  GGT GTT TTG AGC ACA GCT TCG TAC GCT GCA  Forward     ----- 

 66  TGC AGC GTA CGA AGC TGT GCT CAA AAC ACC   Reverse     ----- 

 67  CGA ATT CAT CGA TGA TAT CAG ATC CAT AAA AAT TAA 

GGG ACT AC 
 Forward     ----- 

 68  GTA GTC CCT TAA TTT TTA TGG ATC TGA TAT CAT CGA 

TGA ATT CG 
 Reverse     ----- 

 69  GTC GGA AGA GGC ATA AAT TCC GTC  Reverse     ----- 

 70  CCC AAA GTT GAA AGA AAT ACA ACT GCA GAT CC  Forward     ----- 

71*  TTT ACC CGT CAA CTT CGC CG  Forward     ----- 

72*  TCC ACT GAA GGG AGA TGG AC  Forward     ----- 

73*  TTC CCG CAT CTA AGG AAT ATG ACC TC  Forward     ----- 

74*  TCA CTG GGT  GAT GAC ACG CAA AAT TC  Forward     ----- 

75*  GCT ATA CCA AGC ATA CAA TC  Forward     ----- 

76*  GGA GGG CGT GAA TGT AAG CG  Reverse     ----- 

77*  GAC GGT AGG TAT TGA TTG TAA TTC TG  Forward     ----- 

78*  AGG AAT CCT GGC ATA TCA TC  Forward     ----- 
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79*  TGC AGC TTG AAT GGG CTT CC  Reverse     ----- 

80*  GAT TTA GGT GAC ACT ATA G  Forward     ----- 

81*  TAA TAC GAC TCA CTA TAG GG  Forward     ----- 

 

2.2.9 Vectors and plasmids 

2.2.9.1 Vectors  

 

Vector   Genetic markers         Reference/Source 

p415ADH      Ampr, LEU2, CEN6/ARSH4,         Mumberg et al. (1995) 
           ADH-promoter/MCS/CYC1-terminator 

p416ADH      Ampr, URA3, CEN6/ARSH4,         Mumberg et al. (1995) 
           ADH-promoter/MCS/CYC1-terminator 

p425GPD       Ampr, LEU2, 2µ,           Mumberg et al. (1995) 
           GPD-promoter/MCS/CYC1-terminator 

p426GPD       Ampr, URA3, 2µ,           Mumberg et al. (1995) 
           GPD-promoter/MCS/CYC1-terminator 

pJR1-3XL      Ampr, LEU2, f1 ori, ars1,          Moreno et al. (2000) 
           nmt1-promoter (3X)/MCS/nmt1- terminator 

pJR1-41XL    Ampr, LEU2, f1 ori, ars1,          Moreno et al. (2000) 
           nmt1-promoter (41X)/MCS/nmt1-terminator 

pGEM®-3Z    Ampr, lacZ’, T7-promoter/MSC/SP6-promoter    Promega 
pGEM®-4Z    Ampr, lacZ’, SP6-promoter/MSC/T7-promoter    Promega 
 

2.2.9.2 Constructed plasmids 

 

   Plasmid    Vector               Template     Insert Primers Sequencing 
primers 

p416ScCOX11 p416ADH ScCOX11, S. 
cerevisiae genomic 
DNA 

ScCox11p #1, #2 #75*, #76* 

p416SpCOX11 p416ADH SpCox11+, S. pombe 
genomic DNA 

SpCox11p #16, #17 #71*, #72*, 
#75*, #76*  

p425ScCOX11 p425GPD ScCOX11, 
p416ScCOX11 

ScCox11p #1, #2 #76*, #77* 

p426ScCOX11 p426GPD ScCOX11, 
p416ScCOX11 

ScCox11p #1, #2 #76*, #77* 

p425SpCOX11 p425GPD SpCox11+, 
p416SpCOX11 

SpCox11p #16, #17 #71*, #72*, 
#76*, #77 

p426SpCOX11 p426GPD SpCox11+, 
p416SpCOX11 

SpCox11p #16, #17 #71*, #72*, 
#76*, #77 
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p425ScRSM22 p425GPD ScRSM22, S. 
cerevisiae genomic 
DNA 

ScRsm22p #14, #15 #73*, #74*, 
#76*, #77 

p416ScRSM22 p416ADH ScRSM22, 
p425ScRSM22 

ScRsm22p #14, #15 #73*, #74*, 
#75*, #76* 

p416SpCOX11C-
term 

p416ADH SpCox11+, S. pombe 
genomic DNA 

SpCOX11p 
C-terminus  

#17, #18 #75*, #76* 

p426SpCOX11bC-
term 

p426GPD SpCox11b+, S. pombe 
genomic DNA 

SpCOX11bp 
C-terminus  

#17, #18 #76*, #77* 

p425SpCOX11N-
term 

p425GPD SpCox11+, S. pombe 
genomic DNA 

SpCOX11p 
N-terminus  

#16, #19 #71*, #72*, 
#76*, #77* 

p416ch1 p416ADH ScCOX11/Spcox11+, 
p416ScCOX11/ 
p416SpCOX11 

chimeric 
Sc/SpCox11
p (CPC) 

#1, #2, 
#30, #31, 
#32, #33 

#75*, #76* 

p416ch2 p416ADH ScCOX11/SpCox11+, 
p416ScCOX11/ 
p416SpCOX11 

chimeric 
Sc/SpCox11
p (CP) 

#1, #17, 
#30, #31 

#75*, #76* 

p416ch3 p416ADH ScCOX11/SpCox11+, 
p416ScCOX11/ 
p416SpCOX11 

chimeric 
Sc/SpCox11
p (CPp) 

#1, #17, 
#28, #29 

#75*, #76* 

p416SpCOX11b p416ADH SpCox11b+, S. pombe 
genomic DNA 

SpCox11bp #16, #17 #71*, #72*, 
#75*, #76* 

p416HsCOX11 (L) p416ADH HsCOX11, liver 
cDNA library 

HsCox11p #34, #35, 
#36, #37 

#75*, #76* 

p416HsCOX11 
(HeLa) 

p416ADH HsCOX11, HeLa 
HCT116 cDNA 
library 

HsCox11p #34, #35, 
#36, #37 

#75*, #76* 

p416ScCOX11HA p416ADH ScCOX11, 
p416ScCOX11 

ScCox11p, 
HA-tagged 

#3, #4, 
#5, #6 

#75*, #76* 

pJR1-
3XLSpCOX11bHA 

pJR1-3XL Spcox11b+, S. pombe 
genomic DNA 

SpCox11bp 
HA-tagged 

#10, #11, 
#12, #13 

#71*, #72*, 
#78*, #79* 

pJR1-
41XLSpCOX11bHA 

pJR1-
41XL 

Spcox11b+, S. pombe 
genomic DNA 

SpCox11bp 
HA-tagged 

#10, #11, 
#12, #13 

#71*, #72*, 
#78*, #79* 

pJR1-3XL 
SpCOX11HA 

pJR1-3XL Spcox11+, S. pombe 
genomic DNA 

SpCox11p 
HA-tagged 

#10, #11, 
#12, #13 

#71*, #72*, 
#78*, #79* 

p416ch1E1992K 
(E664K) 

p416ADH ScCOX11/Spcox11+, 
p416ch1 

chimeric 
Sc/SpCox11
p (CPC) with 
point 
mutation 

#1, #2, 
#20, #21 

#75*, #76* 

p416ch1K2118E 
(K706E) 

p416ADH ScCOX11/Spcox11+, 
p416ch1 

chimeric 
Sc/SpCox11
p (CPC) with 
point 
mutation 

#1, #2, 
#22, #23 

#75*, #76* 
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p416ch1L2127M 
(L709M) 

p416ADH ScCOX11/Spcox11+, 
p416ch1 

chimeric 
Sc/SpCox11
p (CPC) with 
point 
mutation 

#1, #2, 
#24, #25 

#75*, #76* 

p416ch1K2118E-
L2127M 
(K706E, L709M) 

p416ADH ScCOX11/Spcox11+, 
p416ch1 

chimeric 
Sc/SpCox11
p (CPC) with 
point 
mutations 

#1, #2, 
#26, #27 

#75*, #76* 

p416SCO1N-
COX11CHA 

p416ADH ScSCO1/ScCOX11, 
pJR1-3XLScSco1/ 
p416ScCOX11HA 

chimeric 
ScSco1/ScC
ox11p HA-
tagged 

#6, #7, 
#8, #9 

#75*, #76* 

p415SCO1N-
COX11CHA 

p415ADH ScSCO1/ScCOX11, 
p416SCO1N-
COX11CHA 

chimeric 
ScSco1/ScC
ox11p HA-
tagged 

#6, #7, 
#8, #9 

#75*, #76* 

p416ScCOX11Myc p416ADH ScCOX11, 
p416ScCOX11 

ScCox11p, 
Myc-tagged 

#5, #38, 
#39, #40 

#75*, #76* 

p415ScCOX11Myc p415ADH ScCOX11, 
p416ScCOX11Myc 

ScCox11p, 
Myc-tagged 

#5, #38, 
#39, #40 

#75*, #76* 

p416ScCOX11∆59-

78Myc 
p416ADH ScCOX11, 

p416ScCOX11Myc 
ScCox11p, 
Myc-tagged 
with deletion 
in the N-
terminal part 

#5, #40, 
#41, #42 

#75*, #76* 

p416ScCOX11∆49-

78Myc 
p416ADH ScCOX11, 

p416ScCOX11Myc 
ScCox11p, 
Myc-tagged 
with deletion 
in the N-
terminal part 

#5, #40, 
#43, #44 

#75*, #76* 

p415ScCOX11TMSco1
Myc 

p415ADH ScCOX11, 
p416ScCOX11Myc 

ScCox11p, 
Myc-tagged 
with the TM 
segment 
derived from 
ScSco1p 

#5, #7, 
#8, #40, 
#45, #46 

#75*, #76* 

p416ScCOX11V104A 
Myc 

p416ADH ScCOX11, 
p416ScCOX11Myc 

ScCox11p, 
Myc-tagged 
with point 
mutation 

#5, #40, 
#47, #48 

#75*, #76* 

p415ScCOX11P105A 
Myc 

p415ADH ScCOX11, 
p416ScCOX11Myc 

ScCox11p, 
Myc-tagged 
with point 
mutation 

#5, #40, 
#49, #50 

#75*, #76* 
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pGEM3ScCOX11 pGEM3 ScCOX11, 
p416SpCOX11 

ScCox11p #51, #52 #81* 

pGEM4ScCOX11 pGEM4 ScCOX11, 
p416SpCOX11 

ScCox11p #1, #53 #80* 

pGEM3SpCOX11 pGEM3 Spcox11+, 
p416SpCOX11 

SpCox11p #16, #54 #81*, #71*, 
#72* 

pGEM4SpCOX11 pGEM4 Spcox11+, 
p416SpCOX11 

SpCox11p #55, #56 #80*, #71*, 
#72* 

 
2.2.9.3 Other plasmids 

 

   Plasmid    Vector                 Insert     Reference/Source 

pJR1-3XLScSco1  pJR1-3XL  S. cerevisiae SCO1 ORF K. Ostermann, Dresden 

 
 
2.3 Methods 
2.3.1 Genetic methods 

2.3.1.1 Crossing of the yeast strains and tetrad analysis 

2.3.1.1.1 Crossing and tetrad analysis of S. cerevisiae strains 

Cells of two different strains with different mating types (MATa and MATα) were mixed 

on a YPD plate (section 2.2.6.2) and after 2 days of incubation at 30°C transferred to 

sporulation medium (section 2.2.6.2). After 5 days at 30°C a sample of cell material was 

resuspended in 25 µl of sterile distilled water containing Zymolyase 20T and incubated 

for 30 min at 30°C to lyse the asci. The suspension was placed onto a fresh YPD plate, 

incubated for 4 h at 30°C and tetrads were dissected with the help of a micromanipulator 

(Singer). 

 

2.3.1.1.2 Crossing and tetrad analysis of S. pombe strains 

Crossing procedures were the same as for S. cerevisiae. Two different strains with 

different mating types (h+S and h-S) were mixed on a YEA plate (section 2.2.6.3) and after 

2 days of incubation at 30°C transferred to MEA medium (section 2.2.6.3). After 4 days 

at 30°C a sample of cell material was streaked out on a fresh YEA plate. In this case asci 

are self-lysed by incubation at 30° C for 30 min on the YEA plate. Tetrads were dissected 

with the help of micromanipulator (Singer). 
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2.3.1.2 Pet–test 

One of the reasons for non-complementation of the respective null-mutant by the certain 

construct and inability to grow on non-fermentable carbon sources may be the loss of 

mtDNA integrity due to the mutation. To test this possibility crosses with the respective 

rho0 PET tester strain (IL933-5c or KL14-4A) were performed. If the mtDNA of the 

transformant is intact, the resulting diploid is able to grow on non-fermentable carbon 

sources (section 2.2.6.2). 

 

2.3.2 Molecular biology methods 

2.3.2.1 Isolation of genomic DNA from yeast cells 

2.3.2.1.1 Isolation of genomic DNA from S. cerevisiae 

10 ml of S. cerevisiae culture were harvested at 3,500 x g for 5 min at RT and the cell 

pellet was resuspended in 200 µl of breaking buffer (section 2.2.5.2). 0.3 g of glass beads 

(Ø 0.45 mm) and 200 µl of phenol/chlrophorm/isoamyl alcohol (25:24:1) were added to 

the suspension. After vortexing for 3-4 min and addition of 200 µl TE buffer the mixture 

was centrifuged at 18,000 x g for 5 min (4°C). The upper phase was transferred to a new 

tube and 1/10 volume of 3M sodium acetate and 2 volumes of 99.8% ethanol were added 

and carefully mixed. The mixture was incubated at –20°C for 30 min to allow DNA 

precipitation. Precipitated genomic DNA was pelleted by centrifugation at 18,000 x g for 

10 min at 4°C and washed with 70% ethanol, sedimented again (18,000 x g for 5 min at 

4°C), air-dried and resuspended in 50 µl TE buffer containing 10 µl/ml RNase (DNase 

free). The mixture was incubated for 10-30 min at 37°C and DNA reprecipitated with 

sodium acetate and ethanol as described above in order to inactivate the enzyme. 

 

2.3.2.1.2 Isolation of genomic DNA from S. pombe 

Isolation of genomic DNA from S. pombe was performed according to Wright et al. 

(1986) with slight modifications. To obtain the protoplasts Lysing enzymes were used 

instead of Zymolyase 20T. Enzymatic treatment was performed in TES buffer (section 

2.2.5.2).  
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2.3.2.2 Polymerase chain reaction (PCR) 

DNA fragments were amplified by 30 cycles reaction in total volumes of 50 µl or 100 µl. 

Standard reaction mixture contained: 

500-800 µM dNTPs mix 

1-100 ng of template DNA 

150 pM forward and reverse primers 

PCR-buffer (1x) 

2.5 mM MgCl2 or 1.5 mM MgSO4 (depending on the enzyme) 

2.5 U polymerase (CombiZyme or Pfx Platinum) 

For creation of modified DNA fragments overlap extension PCR was applied as 

described (Pogulis et al., 1996). 

 

2.3.2.3 Separation of DNA by agarose gel electrophoresis and its extraction from the 

gel 

DNA fragments were separated by gel electrophoresis in horizontal 1.5-2% (w/v) agarose 

gels in TBE buffer (section 2.2.5.2) at 80-120 V. For visualization of DNA 0.1 µg/ml of 

ethidum bromide was added to the gel. Length of DNA fragments was estimated with 

regard to the standard ladder obtained after treatment of λ phage DNA with EcoRI and 

BamHI restrictases.  

Following separation the fragments of interest were excised from the gel under UV light 

(wavelength 310 nm). DNA from the excised gel fragment was extracted using the 

Jetquick PCR Purification Spin Kit (Genomed) or Nucleospin® Extract Kit (Macherey-

Nagel) or Wizard® SV Gel and PCR Clean-Up Kit (Promega) according to the manual 

provided by the manufacturer. 

 

2.3.2.4 Enzymatic digestion of DNA 

For enzymatic digestion DNA was mixed with sterile bi-distilled water, respective 

reaction buffer stock solution and appropriate enzyme(s) (1 U/µg DNA). Reaction 

mixture was incubated for 1.5-2.5 h at 37°C. 
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2.3.2.5 Ligation of DNA fragments 

For ligation reaction the respective DNA fragment was mixed with vector DNA (molar 

ratio 3:1), ligase buffer and sterile bi-distilled water. 2-3 U of T4 DNA ligase were added 

and the reaction mixture was incubated overnight at 10°C or 15°C. 

 

2.3.2.6 Transformation of E. coli cells 

2.3.2.6.1 Preparation of competent E. coli cells 

An E. coli overnight culture was diluted 1:100 by fresh LB medium (section 2.2.6.1). 

When the culture reached an OD600 of 0.5-0.8 it was chilled on ice for 15 min and cells 

were harvested by centrifugation at 4,000 x g for 15 min at 4°C. Pelleted cells were 

washed twice with ice-cold sterile distilled water and once with sterile 10% (v/v) 

glycerol. After centrifugation cells were resuspended in 2 ml 10% Glycerol, aliquoted (40 

µl), frozen and stored at –80°C. 

 

2.3.2.6.2 Electroporation  

6.5-7 µl of ligation mixture were dialysed on dialysis membrane (Millipore) against 

sterile distilled water for 10-15 min and gently mixed with 40 µl of E. coli 

electrocompetent cells and transferred to the chilled electroporation cuvette (2 mm gap). 

Parameters of electroporation were 25 µV, 200 Ω and 2.5 kV. Immediately after the pulse 

the transformation mixture was diluted in 1 ml of SOC medium (section 2.2.6.1) and 

incubated for 1 h at 37°C. The incubated mixture was suspended by centrifugation at 

4,000 x g for 7 min at RT. Cells were resuspended in 100 µl and plated onto LB plates 

containing ampiciline (section 2.2.6.1) to screen for transformed cells. Plates were 

incubated overnight at 37°C. 

 

2.3.2.7 Isolation of plasmid DNA from E. coli cells 

Plasmid DNA from the transformed E. coli cells were prepared by the alkaline lysis 

method as described (Birnboim and Doly, 1979) from 2-5 ml of overnight culture. To 

obtain plasmid DNA of higher purity required for sequencing reaction Nucleospin® 

Plasmid Quick Pure Kit (Macherey-Nagel) was used according to the manual of the 

manufacturer. 
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2.3.2.8 DNA sequencing 

DNA sequencing was done using the dideoxy-chain termination method (Sanger et al., 

1977) with 5’-IRD 800 labeled primers (MWG) and the "Thermo Sequenase fluorescent 

labeled primer cycle sequencing kit with 7-deaza-dGTP" (Amersham Biosciences). 

 

2.3.2.9 Transformation of yeast cells 

Yeast cells were transformed by the lithium acetate procedure according to Schiestl and 

Gietz (1989) with slight modifications. Cell material from 14-24 h-old culture (YPD 

plate) was picked and resuspended in 10 µl of carrier DNA (2 mg/ml herring sperm 

DNA). After addition of 5-9 µl DNA and 500 µl PEG/LiOAc, the mixture was vortexed 

and incubated for 15 min at 30°C. Incubation was followed by a heat-shock at 42°C for 

10 min. Cells were centrifuged at 3,000 x g for 5 min at RT, resuspended in sterile 

distilled water and plated onto a selective minimal medium that contained respective 

supplements (section 2.2.6.2). 

 

2.3.2.10 Replacement of cox11+ and cox11b+ genes in S. pombe 

A replacement cassette consisting of the ura4+  gene, flanked on both sides with the 5’- 

and 3’-sequences of the SpCOX11 reading frame was created to generate a cox11+ knock-

out mutant. Primers #57, #58, #59, #60, #61 and #62 were used. For the replacement a 

diploid strain was created by crossing S. pombe strains HE665 and HE639, diploids were 

selected and transformed with the respective construct. Uracil-positive clones were 

screened for the presence of the replacement cassette by means of PCR. To figure out 

which of the two cox11+ versions was knocked-out a direct sequencing of the DNA 

stretches encompassing the divergent region were PCR-amplified. A second replacement 

cassette carrying the KanMX4 gene (primers #61, #62, #65, #66, #67 and #68) was 

introduced into a diploid strain in which one of the genes is replaced by the ura4+-

cassette in order to exclude a possibility of a lethal effect of the deletion of both cox11 

genes. Candidate clones were selected by screening for both markers (uracil-prototrophy 

and G418-resistance. Transformants were sporulated and tetrad analysis performed. 
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2.3.3 Biochemical methods 

2.3.3.1 Isolation of S. cerevisiae mitochondria 

2.3.3.1.1 Large-scale isolation of mitochondria 

Yeast cells were grown at 30°C to the early stationary phase and mitochondria were 

prepared as described (Daum et al., 1982). 

 

2.3.3.1.2 Small-scale isolation of mitochondria 

50 ml of yeast culture was grown at 30°C and the cells were harvested by centrifugation 

at 3,500 x g (RT) for 5 min. Pelleted cells were washed in distilled water and resuspended 

in 500 µl of ice-cold MTE buffer containing respective protease inhibitors (section 

2.2.5.3.1). 400-500 µl of sterile glass beads (Ø 0.2-0.45 mm) were added to the cell 

suspension and the cells were broken by extensive vortexing for 5 min. After 

sedimentation of the glass beads, the supernatant was placed into a new tube and the 

beads were washed with another 500 µl of ice-cold MTE buffer containing protease 

inhibitors. Upon combining the washing solutions intact cells and cell debris were 

removed by a short centrifugation step (4,000 x g (2°C) for 3 min). The cleared extract 

was centrifuged at 20,000 x g (2°C) for 15 min in order to pellet mitochondria. The 

cytosolic fraction (supernatant) was removed and the pellet resuspended in 50-100 µl of 

MTE buffer with protease inhibitors for further applications.  

 

2.3.3.2 Isolation of S. pombe mitochondria 

S. pombe mitochondria were prepared according to Moore et al. (1992) with slight 

modifications. Cells grown in a rich medium to the late exponential phase were harvested 

by centrifugation at 2,000 x g (RT) for 5 min and washed twice in distilled water. 

Pelleted cells were incubated at 0.5 g/ml in washing buffer 1 (section 2.2.5.3.2) for 10 

min at 30°C and centrifuged at 2,000 x g (RT) for 5 min. After centrifugation cells were 

washed three times in washing buffer 2 (section 2.2.5.3.2) and resuspended in cell lysis 

buffer (section 2.2.5.3.2). Spheroplasts were generated in two steps: first, 2 mg/ml 

Zymolyase 20T were added and cells were incubated for 15 min at 30°C. Then Lysing 

enzymes (Sigma) were added to 2 mg/ml and the mixture incubated for 10-15 min at 

30°C. Spheroplasts were collected by centrifugation at 400 x g for 10 min at 2°C and 
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washed twice in washing buffer 3 (section 2.2.5.3.2). The washed spheroplasts were 

resuspended at 0.15 g/ml in washing buffer 4 containing protease inhibitors (section 

2.2.5.3.2) and gently broken in a loose-fitting glass homgenizer. Unlysed cells and cell 

debris were removed by centrifugation at 1,000 x g for 10 min at 2°C. The mitochondrial 

pellet was obtained by centrifugation at 17,700 x g for 10 min (2°C) and resuspended in 

30-40 ml of washing buffer 4 containing protease inhibitors. Residual contaminants were 

removed by additional centrifugation at 1,000 x g for 10 min at 2°C and mitochondria 

were harvested by centrifugation at 12,000 x g for 10 min (2°C), resuspended in 100-500 

µl of washing buffer 4 with protease inhibitors, and shock-frozen in liquid nitrogen. 

 

2.3.3.3 Determination of protein concentrations 

Protein concentrations were determined using the Lowry-based DC protein assay system 

(Bio-Rad) according to the manual provided by the manufacturer. 

 

2.3.3.4 Determination of cytochrome c oxidase activity 

COX activities were determined spectroscopically as described (Tzagoloff et al., 1975). 

Commercial cytochrome c (Sigma) was reduced with sodium dithionite and oxidation of 

reduced cytochrome was measured spectrophotometrically. Reaction was started by the 

addition of cytochrome c to a concentration of 32 µM, then 100 µg of mt protein were 

added and the rate of oxidation was determined by following the decrease in absorbance 

at 550 nm. Activities were expressed in terms of the first-order velocity constant k 

calculated by the following formula: k=ln(∆E0-∆E1), where ∆E0 is the absorption 

difference between start and endpoints, and ∆E1 is the absorption difference between start 

and time point 1 min. Obtained k values were then compared. The k value obtained for wt 

was set as 100%. 

 

2.3.3.5 Separation of proteins by SDS-polyacrylamide gel electrophoresis (SDS-

PAGE) 

Separation of proteins by SDS-PAGE was performed as described by Laemmli (1970). A 

typical gel consisted of 12% or 16% separating gel and 4% stacking gel (section 2.2.5.6).  
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Gels with separated proteins were stained or subjected to electro-transfer procedure and 

then stained in Coomassie staining solution (section 2.2.5.6) for 20-60 min at RT and 

washed with the destaining solution (section 2.2.5.6) until the protein bands became 

visible. 

 

2.3.3.6 Western blot analysis 

Separation of the proteins by SDS-PAGE was followed by their electro-transfer to a 

PVDF or nitrocellulose membrane in Transfer buffer (section 2.2.5.6) by means of either 

semi-dry (1.5 mA/cm2 for 1.5 h at RT) or tank-blot (3 mA/cm2 for 30 min at 10°C) 

techniques. Transferred proteins were visualised by staining of the membrane in Ponceau 

S solution. Membranes were blocked in the TBS-T buffer containing 5% (w/v) fat-free 

skimmed milk overnight at 4°C or for 1 h at RT. Blocked membranes were incubated 

with the respective mono- or polyclonal antibodies or antisera for 1-2 h at RT. After 

intensive washing bound antibodies were detected for 30 min (RT) with horseradish 

peroxidase(HRP)-conjugated secondary antibodies raised against the immunoglobulines 

of host organism that generated the primary antibodies. Membranes were washed in TBS-

T and detected proteins were visualized with the ECLplus chemiluminescence-based 

system according to the manufacturer’s manual. 

 

2.3.3.7 Carbonate extraction of mitochondrial proteins 

Alkaline extraction of proteins was performed according to Fujiki et al. (1982) with slight 

modifications. 300-500 µg of mitochondrial protein were resuspended in 500 µl of 0.1 M 

sodium carbonate solution (pH 11.5), incubated on ice for 30 min and centrifuged at 

165,000 x g for 1 h at 2°C. The supernatant and the pellet, which was resuspended in 1 

ml of 10 mM Tris-HCl (pH 7.5) were precipitated with 10% trichloroacetic acid (TCA), 

washed twice with ice-cold 80% acetone, dissolved in SDS-sample buffer, subjected to 

SDS-PAGE and analysed by immunoblotting. 

 

2.3.3.8 Proteinase K protection assay 

Mitochondria were resuspended in MTE buffer (section 2.2.5.3.1), diluted with 20 mM 

Tris-HCl (pH 7.5), 1 mM EDTA to a final manitol concentration of 0.1 M and incubated 
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on ice for 25 min. The resulting mitoplasts were spinned down at 12,000 x g for 10 min at 

2°C, resuspended in 0.65 M manitol, 20 mM Tris-HCl, pH 7.5, 1 mM EDTA, and 100 µg 

aliquots were used for Proteinase K treatment. 

1-200 µg of Proteinase K were added to mitoplasts in the presence or absence of 20 mM 

EDTA, pH 8.0 or 100 mM DTT. Addition of EDTA or DTT was immediately before 

Proteinase K treatment. 

Samples were incubated on ice for 20 min and the reaction was stopped by addition of 4 

mM PMSF or AEBSF. The pellets obtained after centrifugation at 20,000 x g for 10 min 

at 2oC were dissolved in SDS-sample buffer, subjected to SDS-PAGE and analysed by 

immunoblotting. 

 

2.3.3.9 Sucrose gradient centrifugation 

The analysis was performed according to Szyrach et al. (2003) with slight modifications. 

500-1,500 µg of mitochondrial proteins were lysed in 1% digitonin, 20 mM Tris-HCl, pH 

7.2, for 15 min at 4oC in the presence of 10 mM MgSO4. The extracts were cleared by 

centrifugation for 10 min at 18,000 x g at 2oC, loaded onto continuous 20-40% sucrose 

gradients (5 ml) containing 20 mM Tris-HCl, pH 7.2, 0.1% digitonin, 20 mM DTT, 4 

mM AEBSF and 10 mM MgSO4, and centrifuged at 148.000 x g for either 1 h or 4 h at 

2oC. 19 fractions of 270 µl were collected, 4 µl aliquots of each fraction were taken to 

determine the absorption at 260 nm to establish the mitoribosomal profile. The proteins 

were precipitated by 10% TCA and subjected to SDS-PAGE and Western blot analysis. 

 

2.3.3.10 Co-immunoprecipitation 

300 µg of mitochondrial proteins were isolated from the cox11∆ strain Y06479 

transformed with p416ScCOX11HA and lysed with 1% digitonin, 20 mM Tris-HCl, pH 

7.2, for 15 min at 4oC in the presence of 10 mM MgSO4. The extract was cleared by 

centrifugation for 10 min at 18,000 x g at 2oC and incubated with an anti-HA Affinity 

Matrix (Roche) for either 1 h or overnight on a rotator at 4oC. The beads were washed 

according to the protocol of the manufacturer, resuspended in SDS-sample buffer, boiled, 

spinned down and the supernatant was subjected to SDS-PAGE and analysed by Western 

blotting. 

 66



Materials and methods_____________________________________________________ 

2.3.3.11 Tandem affinity purification 

The tandem affinity purification (TAP) was performed as described previously (Rigaut et 

al., 1999; Krause-Buchholz et al., 2004). 500-1,000 µg of total mt protein were lysed for 

1 h in 1% digitonin, 30 mM MgSO4, 20% glycerol, 0.6 M sorbitol, 20 mM Hepes-KOH, 

pH 7.4, 40 units of RNase Out inhibitor. Lysis was performed in the presence or absence 

of 400 µM puromycin. Insoluble material was removed by centrifugation for 10 min at 

18,000 x g at 2°C and the cleared lysate was incubated with IgG matrix (Sigma) for 2 h at 

4°C. Cleavage with recombinant TEV-protease was done in lysis buffer with 1 mM DTT 

for 1 h at 23°C. CaCl2 and imidazole (2 mM and 1 mM, respectively) as well as 10 mM 

β-mercaptoethanol were added to the supernatant prior to the incubation with a 

calmodulin matrix at 4°C in the presence of 0.1% digitonin for 1 h. Aliquots from each 

step of the TAP procedure were collected and subjected to SDS-PAGE and Western blot 

analysis. 

 

2.3.3.12 Blue native polyacrylamide gel electrophoresis 

Blue native polyacrylamide gel electrophoresis (BN-PAGE) was performed as described 

(Schägger 2001; Krause-Buchholz et al. 2004). Briefly, 200 µg of mt protein were lysed 

in 1% digitonin (detergent:protein ratio is 4:1), 50 mM NaCl, 5 mM 6-aminocaproic acid, 

50 mM imidazol-HCl, pH 7.0, 1 mM AEBSF, with 40 units of RNase Out inhibitor 

added. The extract was cleared by centrifugation for 20 min at 20,000 x g at 2°C. 4 µl of 

a non-denaturing loading buffer (10% glycerol, 0.01% Ponceau S) were added. The 

samples were loaded onto 3–13% gradient gel. To determine the apparent molecular 

weights we used a high-molecular-weight gel-filtration calibration kit. Gel stripes were 

cut out and run in a second dimension in regular SDS-gel and analyzed by Western blot. 

 

2.3.3.13 In vitro synthesis of [35S]-labelled proteins 

For synthesis of [35S]-labelled proteins, the respective genes were cloned into pGEM-3Z 

or pGEM-4Z plasmid and transcribed by SP6-RNA polymerase. For that purpose 30 µl of 

Premix, 2.5 µl of 2.5 mM m7G(5’)ppp(5’)G and 15 µl of plasmid DNA (300 ng/ml) were 

mixed, filled to 200 µl by sterile H2O, and 1 µl RNasin (40 U/µl) und 1 µl SP6 RNA-

polymerase (25 U/µl) added. The reaction mixture was incubated for 1 h at 37°C. The 
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resulting RNA was precipitated by addition of 5 µl of 10 M LiCl and 150 µl of ice-cold 

ethanol and incubation for 15 min. at –20°C followed by the centrifugation for 30 min. at 

35000 x g (4°C). The resulting pellet was washed with ice-cold 70% ethanol and air-dried 

at RT. Obtained mRNA was dissolved in 30 µl of water containing 0,75 U/µl RNasin.  

Next the respective mRNA was in vitro translated in the rabbit reticulocytes lysate 

system. The mixture containing 140 µl of rabbit reticulocytes lysate, 4 µl RNasin, 8 µl of 

amino acids mix (all protein-forming amino acids except methionine, 1 mM each), 16 µl 

[35S]-methionine and 30 µl mRNA was incubated for 60 min. at 30°C. Then lysate was 

centrifugated for 30 min at 100,000 g (2°C), the clarified lysate was aliquoted, frozen in 

liquid N2 and stored at –80°C. 

 

2.3.3.14 Protein import into isolated mitochondria  

Import of [35S]-labelled precursor proteins into isolated mitochondria was performed 

essentially as described previously (Hell, 1998). The import reaction contained 15-50 µg 

of mitochondria in a final volume of 300 µl. 2 mM NADH, 2 mM ATP, and an ATP-

regenerating system containing 2.5 mM malate, 2.5 mM succinate, 1 mM creatine 

phosphate and 0.1 mg/ml creatine kinase was added during the import reaction to warrant 

a highly energized state of the mitochondria. 2% (v/v) of lysate were added and reaction 

performed for the indicated time at 25°C. The reaction was stopped by dilution (1:10) of 

reaction mixture by ice-cold SH (isotonic)or H (hypotonic) buffer. Non-imported 

precursor protein was removed by incubation with proteinase K (100 µg/ml) for 30 min 

on ice. The protease was inactivated by addition of 2 mM PMSF. Treated mitochondria 

were sedimented for 15 min. at 25,000 x g (4°), washed with SHKCl buffer, resuspended 

in protein loading buffer and subjected to SDS-PAGE. 

 

2.3.4 Bioinformatics 

Alignments were performed using the programs “MultAlign” (Corpet, 1988) and 

“BoxShade 3.21” (http://www.ch.embnet.org/software/BOX_form.html). pI values of the 

protein stretches were calculated using “Compute pI/Mw tool” software 

(http://us.expasy.org/tools/pi_tool.html). Organization of ScCox11p and SpCox11p was 

predicted by the program SMART program (Letunic et al., 2002). The charge distribution 
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in the protein sequences were predicted using “Helix Draw v1.00” program 

(http://www.bioinf.man.ac.uk/~gibson/ HelixDraw/helixdraw.html). 
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Chapter 3 

Results 
3.1 Organization of Cox11p 
S. cerevisiae Cox11p was originally identified by Tzagoloff et al. (1990) as a product of a 

PET gene, whose mutation results in respiratory deficiency. It has been described as 28 

kDa protein, however, the molecular mass calculated from the DNA sequence of the 

respective open reading frame (ORF) is 34 kDa. Bioinformatic analysis reveals a number 

of Cox11p homologues in different organisms from prokaryotes (here also known as 

CtaG) to higher eukaryotes. The C-terminal part of the protein demonstrates high 

conservation between different organisms (Appendix, Fig. 41). The highest degree of 

conservation is observed in the part (aa 158-258, S. cerevisiae numbering) which harbors 

the highly conserved CFC-motif involved in copper binding (Carr et al., 2000). The N-

terminal part of the protein is less conserved. Cox11p is described as a mt protein, 

however the import presequence can not be easily defined. SMART analysis program 

(Letunic et al., 2002) reveals the presence of a single, relatively long TM domain 

(residues 85-105, S. cerevisiae numbering) in all Cox11p homologues. The C-terminal 

part of the TM segment is evolutionary well conserved.  

Analysis of the S. pombe genome reveals the presence of two ORFs encoding Cox11p 

homologues (SpCox11p): cox11+ and cox11b+. Each ORF is part of a 5.7 kb duplicated 

region on chromosome 1. The distance between the duplicated regions is about 3637 kb. 

(The Sanger Institute, Cambridge, UK). Interestingly, the only difference between these 

two regions is inside the cox11+ ORF, three nucleotides in positions 1659-1661, that give 

rise to two different aa residues (positions 553-554): NI in SpCox11p and KY in 

SpCox11bp, respectively. Carr et al. (2000) observed that SpCox11 proteins contain large 

N-terminal extensions of about 470 aa that share 25% identity with S. cerevisiae Rsm22p, 

a constituent of a small mitoribosomal subunit, that is required for the respiratory growth. 

No homologues of Rsm22p have been identified in bacteria (Saveanu et al., 2001). 

Interestingly, the Cox11p homologues from Mycobacterium and Corynebacerium species 

also possess long N-terminal extensions (Bengtsson et al., 2004), however these 

encompass multiple predicted TM domains and show no similarity to Rsm22p. 
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3.2 Complementation studies of COX11 

3.2.1 Complementation of S. cerevisiae cox11∆ mutants  

COX11 genes from different organisms and their derivates were tested for their ability to 

complement the cox11∆ mutant of S. cerevisiae. As a positive control S. cerevisiae 

COX11 (ScCOX11) was used in the complementation analysis. The ORF of ScCOX11 

was PCR amplified from genomic DNA of the respiratory-competent strain BY4741 and 

cloned into the expression vector p416 under the control of the ADH1 promoter that 

provides moderate level of expression (Mumberg et al., 1995). The resulting construct 

was transformed into the cox11∆ strain Y06479. Transformants expressing ScCOX11 are 

able to grow on non-fermentable carbon source (YPG, YPEG or YPGG) at all 

temperatures tested (23°C, 30°C and 37°C) (Fig. 5).  

The ORF of the S. pombe homologue Spcox11+ was PCR amplified using genomic DNA 

of the S. pombe strain L972 as a template. Because the two SpCOX11 ORFs are part of 

5.7 kb DNA duplication and the only difference between them is inside the cox11+ ORF 

(three nucleotides in positions 1659-1661), direct sequencing of the PCR products was 

applied to prove the presence of both versions (Fig. 5). The same PCR products were 

used for the random cloning of Spcox11+ or Spcox11b+ gene into p416ADH, p425 or 

p426 vectors under control of the strong GPD1 promoter. None of these constructs is able 

to restore respiration of strain Y06479 (Fig. 7). The mtDNA of transformants was proven 

to be intact by analysing the diploids obtained by crossing with the rho0 strain IL933-5c 

(see Materials and methods, pet-test). To check whether the overexpresison of either 

Spcox11+ or Spcox11b+ causes a dominant-negative effect, each protein was expressed 

under control of the GPD1 promoter in the respiratory competent strain BY4741. The 

results of replica-plating of the respective transformants on a media with non-fermentable 

carbon source did not reveal any obvious change in respiratory growth when compared to 

untransformed cells (Fig. 6). 
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Figure 5. Two versions of cox11+ are present in the genome of S. pombe. Direct sequencing 

reveals the polymorphism corresponding to the differences in the DNA sequences of Spcox11+ 

and Spcox11b+.  

 

 
 

Figure 6. Overexpression of Spcox11+ or Spcox11b+ in S. cerevisiae BY4741 has no 

dominant-negative effect on respiratory growth. Strain BY4741 was transformed with high-

expression plasmids encoding either SpCox11p or SpCox11bp. The transformants were replica-

plated onto glycerol medium and grown for 3 days at 23°C, 30°C or 37°C. 

 

In order to clarify if the N- or C-terminal part of SpCox11p can substitute for ScCox11p 

shortened versions of the S. pombe protein were created. Part of Spcox11+ ORF 

corresponding to the highly homologous C-terminal part of SpCox11p (aa residues 467-

753) was amplified by PCR from genomic DNA and cloned into p416ADH or p426GPD 
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vectors. Sequence analysis of the picked clone revealed that the fragment cloned into 

p426GPD represented the C-terminal part of Spcox11+. Similarly, a DNA fragment 

representing the N-terminal part of SpCox11p (aa residues 1-467) was obtained and 

cloned into the p425GPD vector.  

Functional complementation of the S. cerevisiae cox11 null mutant strain Y06479 was 

ng the commercial cDNA 

AST search reveals a highly conserved region of about 100 aa between S. 

cerevis

checked with all constructs. In no case complementation was observed. Deficiency of mt 

DNA could be excluded by pet-test (Fig. 7). These results show that neither the C- nor 

the N-terminal part of SpCox11p can substitute for ScCox11p. 

Next a human homologue of the COX11 gene was isolated usi

libraries from liver and HeLa HCT116 cell line, by means of nested PCR, and cloned into 

p416ADH vector. The second version of HsCOX11 was not of interest for this study 

since it is described as a pseudogene (Petruzella et al., 1998). Upon transformation of 

p416HsCOX11 into strain Y06479, respiratory growth was tested. The construct failed to 

substitute for ScCox11p at all temperatures tested. Deletion of mtDNA could be excluded 

(Fig. 7). 

BL

iae and S. pombe Cox11p. Due to the inability of the above described constructs to 

substitute for ScCox11p, a set of chimeras was created in order to identify a functionally 

conserved region of Cox11p. The first chimera consists of the highly conserved part of 

SpCox11p (aa 643-738) that harbours a predicted transmembrane (TM) domain and the 

copper-binding motif, flanked on both sides by sequences representing N- (aa 1-158) and 

C-terminal (aa 258-300) parts of ScCox11p. The second chimera was created by fusing 

the sequence representing the N-terminal part of ScCox11p (aa 1-158) and the C-terminal 

part of its S. pombe counterpart encompassing the highly conserved region (aa 643-753). 

The segment of ScCox11p adjacent to the TM domain possess a highly conserved 

cysteine residue (C111). In order to find out the reason for non-complementation of cox11 

null mutant by chimera 2, chimera 3 encompassing the native cysteine of SpCox11p 

(C595) was created (Fig. 9). 
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Figure 7. Complementation of S. cerevisiae cox11∆ mutant by different constructs. 

Schematic view of Cox11p from different organisms, their derivatives and ScRsm22p. The 

constructs were expressed in S. cerevisiae cox11 knock-out strain Y06479 under control of the 

promoter that provides either moderate (ADH1, thin arrows) or high (GPD1, thick arrows) level 

of expression. Respiratory growth of the respective transformants was checked on glycerol-

containing media (YPG, YPEG or YPGG) at 23°C, 30°C and 37°C. “+” indicates growth, “-“ – 

its absence. The integrity of mtDNA was checked in pet-tests (“+”- intact mtDNA, “-“-integrity is 

affected). 

 

Chimera 3 differs from chimera 2 in that the C-terminal SpCox11p-derived part is longer 

(aa 109-753) and starts immediately after the TM segment of the ScCox11p part (aa 

residues 1-109). The constructs were cloned into p416 expression vector under control of 

moderate ADH1 promoter and transformed into S. cerevisiae strain Y06479. Surprisingly, 

the expression of neither of the chimeric proteins was able to confer respiratory growth to 

the cox11 null mutant. The pet-tests indicate that mtDNA is intact (Fig. 9). The ability of 
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chimera 1 to substitute for Cox11p upon overexpression (GPD1 promoter) was tested. 

The respective construct also failed to complement the cox11 null mutant (data not 

shown). 

 

 
 

Figure 8. Complementation of S. cerevisiae cox11∆ mutant by chimeric constructs. 

Schematic view of Cox11p chimeras. The constructs were expressed in S. cerevisiae cox11 

knock-out strain Y06479 under control of the promoter that provides moderate (ADH1, thin 

arrows) level of expression. Respiratory growth of the respective transformants was checked on 

glycerol-containing media (YPG, YPEG or YPGG) at 23°C, 30°C and 37°C. “+” indicates 

growth, “-“ – its absence. The integrity of mtDNA was checked in pet-tests (“+”- intact mtDNA, 

“-“-integrity is affected). 

 

As already pointed above, the C-terminal part of Cox11p contains a stretch of about 100 

aa that shows high degree of conservation between different organisms. Nevertheless 

there are a few positions within this region, that differ significantly. As the chimeric 

genes composed of S. cerevisiae and S. pombe COX11 are not able to complement the S. 

cerevisiae cox11-null mutant, another set of constructs, based on chimera 1 was created 

by means of PCR-driven directed mutagenesis. As residues of the S. pombe segment that 
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differ significantly in their physicochemical properties from those in the respective S. 

cerevisiae counterpart may affect the function of chimeric protein in S. cerevisiae cells. 

In order to test this possibility the respective residues were replaced by those that 

correspond to the S. cerevisiae stretch. Thus, chimera 1 (E664K), chimera 1 (K706E), 

chimera 1 (L709M) and chimera 1 (K706E, L709M) were created, cloned into p416 

expression vector under control of moderate ADH1 promoter, and transformed into strain 

Y06479. Surprisingly, expression of none of these constructs can confer the  

 

 
 

Figure 9. Complementation of S. cerevisiae cox11∆ mutant by modified chimeric constructs. 

Schematic view of mutated Cox11p chimeras The constructs were expressed in S. cerevisiae 

cox11 knock-out strain Y06479 under control of the ADH1 promoter. Respiratory growth of the 

respective transformants was checked on glycerol-containing media (YPG, YPEG or YPGG) at 

23°C, 30°C and 37°C. “+” indicates growth, “-“ – its absence. The integrity of mtDNA was 

checked in pet-tests (“+”- intact mtDNA). 
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respiratory competence to the cox11 null mutant. The transformants were proven to be 

rho+ in pet-tests (Fig. 9). 

 

3.2.2 Complementation of S. cerevisiae rsm22∆ mutants 

As already mentioned above, the N-terminal part of both versions of SpCox11p shows 

significant sequence identity (25%) to S. cerevisiae Rsm22p, a constituent of small 

subunit of mt ribosome. Interestingly, BLAST searches revealed that no other protein 

with significant homology to ScRsm22p is present in the proteome of S. pombe. In order 

to test whether SpCox11p is able to complement rsm22 null mutant expression plasmids 

that provide different levels of expression and bear cox11+ or cox11b+ were transformed 

into the S. cerevisiae rsm22 knock-out strain Y15005, and respiratory growth of the 

transformants was tested. Obviously SpCox11p is not able to functionally substitute for 

ScRsm22p. This inability is not a consequence of inadequate expression of the proteins 

(Fig. 10). Identical results were obtained when the N-terminal part of SpCox11p alone 

was introduced into strain Y15005 (Fig. 10).  

ScRSM22 gene was cloned under control of either ADH1 or GPD1 promoter and used as 

a control in the complemenation studies. As expected, over-expression of ScRSM22 does 

not restore the respiration of S. cerevisiae cox11-null mutant (Fig. 6). Unexpectedly, 

however, the plasmid was also not able to complement the S. cerevisiae ∆rsm22 strain 

(Fig. 10). pet-tests provided evidence that the mtDNA of these transformants as well as of 

strain Y15005 is not intact. The likely explanation of this finding is the well-known 

observation that mutants affected in mt translation easily loose their mtDNA (Myers et 

al., 1985). 

Similar results were obtained using spores from homozygous diploid strain Y35005 or 

from the heterozygous strain OK-R22 obtained by crossing strains Y15005 and BY4741. 

In no case a spore bearing the kanamycine resistance marker proved to harbour intact 

mtDNA as shown by pet-tests.  
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Figure 10. Complementation of S. cerevisiae rsm22∆ mutant by different constructs. 

Schematic view of Rsm22p, Cox11p from different organisms and derivatives. The constructs 

were expressed in S. cerevisiae rsm22 knock-out strain Y15005 under control of promoters that 

provide either moderate (ADH1, thin arrows) or high (GPD1, thick arrows) level of expression. 

Respiratory growth of the respective transformants was checked on glycerol-containing media 

(YPG, YPEG or YPGG) at 23°C, 30°C and 37°C. “+” indicates growth, “-“ – its absence. The 

integrity of mtDNA was checked in pet-tests (“-“-integrity is affected). 

 

3.3 Biochemical studies of Cox11p 
3.3.1Topological studies of Cox11p 

As outlined in the Introduction, Cox11p has been reported to be firmly associated with 

the inner mt membrane (Tzagoloff et al., 1990). In line with this observation the structure 

of the S. meliloti Cox11p homologue revealed the presence of a TM domain (Banci et al., 

2004). Bioinformatic analysis of ScCox11p predicts a single TM helix at the position of 

aa 85-105. The method of alkaline extraction (Fujiki et al., 1982, see Material and 
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Methods) was applied to define whether Cox11p is an integral membrane protein or 

loosely associated with the membrane. Mitochondria of strain YSC1070-662427 

expressing Cox11p-3HA from its authentic promoter were treated with 0.1 M sodium 

carbonate and separated in a soluble and insoluble protein fraction by centrifugation.. The 

mt matrix protein aconitase (Aco1p), which served as a soluble control protein, is 

exclusively present in the supernatant (Fig. 11, middle panel), whereas the integral 

membrane protein Sco1p was exclusively detected in the pellet fraction (Fig. 11, lower 

panel). Similarly, Cox11p is detected in the pellet fraction (Fig. 11, upper panel). The 

presence of a tiny amount of the protein in the soluble fraction has also been reported for 

the human Cox11p homologue (Leary et al., 2004). These results unequivocally 

demonstrate that Cox11p is an integral membrane protein.  

A Proteinase K protection assay was performed to experimentally prove the 

predicted Nin-Cout topology (see Introduction). Mitochondria were purified from strain 

YSC1070-662427, converted to mitoplasts and treated with increasing amounts of 

Proteinase K as described in Materials and Methods. Even the lowest amount of 

Proteinase K added (1 µg per 1 mg mt protein) was sufficient to significantly reduce the 

signal intensity of Cox11p-3HA compared to untreated mitoplasts (Fig. 12A, upper 

panel). A similar profile was observed for Sco1p which is known to possess an Nin-Cout 

topology (Krummeck, 1992; Beers et al., 1997) (Fig. 12A, lower panel).  

 

 
 

Figure 11. Cox11p-3HA is an integral membrane protein. Mitochondria (M) isolated from 

strain YSC1070-662427 expressing Cox11p-3HA were treated with 0.1 M Na2CO3. Pellet (P) and 

supernatant (S) fractions were collected after centrifugation. Western blot analysis was performed 

with antibodies directed against the HA-epitope, the soluble matrix protein aconitase (Aco1p) and 

the integral membrane protein Sco1p. 
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Figure 12. The C-terminal domain of Cox11p-3HA is exposed to the IMS. Mitochondria 

isolated from strain YSC1070-662427 expressing Cox11p-3HA were subjected to hypo-osmotic 

treatment and then treated with increasing amounts of Proteinase K (A). In addition the same 

treatment was applied in the presence of 100 mM DTT (B) or 20 mM EDTA (C). Aliquots were 

subjected to SDS-PAGE and analyzed by Western blot using antibodies directed against HA-

epitope, the matrix protein aconitase (Aco1p) and the integral membrane protein Sco1p. 

 
In contrast, aconitase (Aco1p) remained protected even in the presence of up to 

100 µg per 1 mg mt protein of Proteinase K (Fig. 12A, middle panel). These results prove 

the Nin-Cout topology of Cox11p and show that the C-terminal copper-binding site is 

exposed to the IMS. 

In order to clarify whether the accessibility for Proteinase K of Cox11p-3HA is 

influenced by bound copper the Proteinase K protection assay was performed in the 

presence of either 100 mM DTT or 20 mM EDTA. The results were identical to that 

obtained in the absence of DTT (Fig. 12B) or EDTA (Fig. 12C). Thus Proteinase K 

sensitivity of Cox11p-3HA is not affected by the bound copper. 
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3.3.2 Cox11p co-fractionates with mitochondrial ribosomes in sucrose gradients 

The mechanism of how Cox11p can transfer the Cu(I) ion into the CuB site of COX, 

which is buried within the IMM, is not clear. As mentioned in the Introduction, the fusion 

of Cox11p in S. pombe with a protein bearing significant homology to S. cerevisiae 

Rsm22p (Saveanu et al., 2001, Carr et al., 2002) may hint at a link between the 

translation of Cox1p and its loading with copper by Cox11p (Sali, 1999, Carr and Winge, 

2003). To clarify the potential association of ScCox11p with the mt protein-synthesizing 

machinery we separated mt ribosomes by ultra-centrifugation in continuous sucrose 

gradients and tested Cox11p for co-sedimentation with mitoribosomal proteins. 

Mitochondria were isolated from strain Y06479 expressing Cox11p-3HA, lysed with 

digitonin in the presence of 10 mM MgSO4 (thus favouring the assembled forms of 

ribosomes), and the cleared lysate was subjected to high velocity centrifugation in a 

sucrose gradient. 270 µl fractions of the gradient were analysed by measuring the 

absorption at 260 nm and by imunoblotting (Fig. 13 A). The distribution of 

mitoribosomes was followed by detection of the small mitoribosomal subunit protein 

Pet123p (McMullin et al., 1990) and of the large mitoribosomal subunit protein MrpL36p 

(Williams et al., 2004). The distribution of the matrix protein Aco1p and of the 

membrane protein Cox2p served as controls (Fig.13 A). 

Aconitase (Aco1p) was mainly detected in the low density top fractions, whereas 

the membrane protein Cox2p was mainly present in fractions of higher density. The 

highest concentration of Cox2p was observed in fraction 5, which may reflect the 

assembled COX. MrpL36p and Pet123p were detected in fractions of low and 

intermediate density (fractions 2-4, 7-9) as well as of the highest density (fractions 16-

18). The distribution probably reflects the free proteins (top fractions) as well as 

disassembled (intermediate fractions) and assembled ribosomes (bottom fractions), 

indicating that the conditions used do not allow to clearly differentiate between fully 

assembled ribosomes and the subunits. 
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Figure 13. Cox11p-3HA partly co-sedimen
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The finding of a fraction of Cox11p co-migrating with mitoribosomes suggests a direct or 

indirect interaction of the copper chaperone with the translation machinery.  

 

3.3.3 Co-immunoprecipitation of Cox11p and MrpL36p 

To test the interaction of Cox11p with mt ribosomes we performed a co-

immunoprecipitation experiment with mt lysate from strain Y06479 expressing Cox11p-

3HA. Immunoprecipitation was performed with the HA-specific antibodies covalently 

bound to agarose beads. These antibodies recognize no proteins in the mt lysate of the 
parental strain that does not express Cox11p-3HA (data not shown). The result of the 

immunoprecipitation is presented in Figure 14.  

Cox11p-3HA can be detected in the lysate, unbound material after incubation with the 

matrix and in the precipitated fraction (upper panel, lanes 2,3 and 7), but not in the 

negative control (non-incubated beads, lane 1). Antibodies directed against aconitase 

(Aco1p), Cox2p and Cox3p were used as controls. Apparently none of these proteins 

interacts with Cox11p, because in no case a signal could be detected in lane 7. Incubation 

with antibodies directed against MrpL36p, however, yielded a faint signal of the 

respective molecular weight (20 kDa) in lane 7. A stronger signal was obtained after 

overnight incubation (Fig.14, right panel). The detection of Pet123p yielded an extremely 

weak signal detectable only upon long-time exposure (data not shown). The result is in 

favour of the proposal that Cox11p interacts directly or indirectly with the mt protein 

synthesis machinery. 
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Figure 14. Co-immunoprecipitation of Cox11p with mitoribosomal proteins. Mitochondrial 

lysate of strain Y06479 expressing Cox11p-3HA was incubated with Anti-HA Affinity Matrix 

(AM) for 1 h (left) or overnight (right), and analyzed in a Western blot with antibodies against the 

HA-epitope, MrpL136p, Aco1p, Cox2p and Cox3p. Lane 1, non-incubated AM (negative 

control); lane 2, mitochondrial lysate applied to AM; lane 3, unbound material; lanes 4-6, 

washing steps; lane 7, immunoprecipitated proteins. The faint protein band in panel 2 

corresponding to MrpL36p is marked by an asterisk.  

 

3.3.4 Cox11p is associated with mt ribosomes 

Despite of the observed interaction of Cox11p with the large mitoribosomal subunit 

protein MrpL36p, proof for an interaction with the entire mitoribosome is missing. To 

clarify this issue we applied a TAP procedure (Rigaut et al., 1999). Unfortunately, fusion 

of the TAP-tag to Cox11p interferes with the protein´s function. Instead Cox11p-3HA 

was expressed in strain SC1069 carrying TAP-tagged version of Mrp4p, a constituent of 

the small mitoribosomal subunit (Davis et al. 1992; Gan et al. 2002). Isolated 

mitochondria were lysed with digitonin under conditions favoring the assembled forms of 

mitoribosomes, and cleared lysate was used for subsequent affinity purification steps on 

IgG and Calmodulin (Cal) resins. Mrp4p-TAP is detectable in the lysate and after the first 

step of purification (IgG beads), but not in the last step (calmodulin beads) due to 

processing of the TAP-tag (Fig. 15A). Detection of MrpL36p and Pet123p, a constituent 

of small ribosomal subunit (McMullin et al., 1990) in the final eluate (Cal) indicates the 
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successful purification of the mitoribosomes. The failure to detect Cox2p in the IgG and 

Cal fractions excludes contamination by membrane fragments. Part of Cox11p-3HA can 

be detected in eluate (Fig. 15A), similar to Oxa1p that is known to be associated with 

mitoribosomes (Szyrach et al., 2003).  
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Next the effect of puromycin on the association of Cox11p with the mitoribosomes was 

analysed. This antibiotic causes release of the nascent polypeptide chains from the 

ribosomes. Therefore, a TAP with Mrp4p-TAP as a bait was performed in the presence of 

400 µM puromycin. Interestingly, part of Cox11p-3HA remains associated with 

mitoribosomes (Fig. 15A, lower panel). The partial loss of Cox11p-3HA in the Cal eluate 

may hint that Cox11p is not permanently and directly associated with mitoribosomes, but 

rather associates with the components that are transiently bound to the mt ribosome 

during the translation process. 

The results of the Co-IP study were confirmed by sucrose gradient centrifugation 

of the mt lysate from the strain SC1069 expressing Cox11p-3HA (Fig. 15B). The 

distribution of Cox11p-3HA as well as the control proteins is very similar to that obtained 

in the experiments shown in Fig. 13. 

 

3.3.5 Cox11p is present in high molecular weight complexes 

Recently Krause-Buchholz et al. (2004) described a modification of the blue-native (BN)-

PAGE conditions, where mitoribosomes can be resolved in toto as high molecular weight 

complexes. We applied this method to gain a further line of evidence for the association 

of Cox11p with mt ribosomes. Mitochondria of strain Y06479 expressing Cox11p-3HA 

was lysed in 1% digitonin and the cleared lysate was subjected to the BN-PAGE. Taking 

into account the observation that the complexes with the molecular weight higher than 

1,500 kDa are not able to enter the separating gel (Nijtmans et al. 2002), both the 

stacking and separating gel was used for the Western blot analysis. 

Cox3p (or Cox2p) that is detected in two subpopulations reflecting assembled COX 

(around 400 kDa) and COX supracomplex (in the range of 1,000-1,300 kDa), 

respectively, as well as Atp2p, detected in the two distinct forms corresponding to the 

monomer (500 kDa) and dimer (1,000 kDa) of ATPase complex were used as molecular 

weight markers (Fig 16 A). Antibodies directed against MrpL36p and Pet123p revealed 

that the mitoribosomal proteins are present in high molecular weight complexes of 1,300 

kDa and more, possibly reflecting assembled ribosomes. Detection of Cox11p-3HA  
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Figure 16. Part of Cox11p is detected in high molecular weight complexes. Mitochondria 

isolated from strain Y06479 expressing Cox11p-3HA (A), strain SC1069 co-expressing Mrp4-

TAP and Cox11p-3HA (B), or strain YSC1178-7501494 expressing Cox11p-3HA (C) were lysed 

and analyzed by BN-PAGE at conditions maintaining the assembled forms of mitoribosomes. 

Western blot analysis was performed using the antibodies raised against HA-epitope, TAP-tag, 

MrpL36p, Pet123, Oxa1p, Cox2p or Cox3p, E. coli Atp5p (cross-reacts with yeast Atp2p), and 

Sco1p. 
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demonstrates a continuous tale-shaped signal with relatively high intensity in the range 

similar to that of the mitoribosomal subunits. Notably Oxa1p can also be detected in 

complexes of similar sizes (Fig.16 A, marked by the asterisks). Interestingly, Sco1p also 

migrates in high molecular weight complexes, however their size is smaller, compared to 

these ones observed for Cox11p.  

Similar results were obtained with mitochondria isolated from strains SC1069 and 

YSC1178-7501494, respectively, both expressing Cox11p-3HA (Fig. 16 B, C). These 

results confirm the finding that Cox11p is associated with mitoribosomes similarly to the 

Oxa1p. 

 

3.3.6 S. cerevisiae Cox11p is processed during its import into mitochondria 

Most proteins that are imported into mt undergo a proteolytic processing step that 

removes the N-terminal targeting sequence. To test whether Cox11p is processed during 

its import an in vitro import analysis was performed. Radiolabeled Cox11p was produced 

by in vitro translation of RNA-transcripts that were generated by in vitro transcription of 

expression plasmids pGEM3 or pGEM4 carrying COX11 ORF as an insert. Cox11p was 

added to MPP buffer with (+) or without (-) recombinant S. cerevisiae MPP. Upon 

incubation with MPP two bands of about 28 kDa and 5 kDa appear, probably reflecting 

the mature form and the processed presequence of Cox11p (Fig. 17, left panel). 

Processing of radiolabeled Oxa1p, a well studied process, was used to control the MPP 

activity (Fig. 17, right panel). As expected the Oxa1p precursor was processed in the 

presence of MPP thereby yielding the mature form of Oxa1p with a molecular weight of 

about 40 kDa. 

Radiolabeled Cox11p precursor was also incubated with mt isolated from strain W303-

1A as described in Materials and Methods, and the samples were taken at different time 

points for analysis. Part of the samples was treated with Proteinase K (PK) in order to 

remove non-imported protein, and the other part was converted to mitoplasts and treated 

with PK in order to degrade IMS-located or IMS-exposed proteins. Clearly a PK-resistant 

band corresponding to the mature form of Cox11p (around 28 kDa) can be detected, that 

does not appear when import is blocked by the addition of 2 µM valinomycin (Fig. 18). 

The lower bands probably represent degradation products that appear due to 
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compromised integrity of mitochondria during the import. When the mitochondria are 

swollen and IMS becomes accessible for PK, the band corresponding to the mature form 

of Cox11p is degraded, as expected from the topological studies (see section 3.3.1). 

Interestingly, in the course of the membrane potential-dependent import an additional 

band of slightly higher molecular weight appears that might represent an import 

intermediate. This band can also be seen upon treatment with PK suggesting that this 

protein has entered the mt matrix. 

 

    
 

Figure 17. Cox11p is processed by the recombinant MPP similarly to Oxa1p. Radiolabeled 

lysates (total 40%, T) containing either Cox11p (left panel) or Oxa1p (right panel) precursor 

proteins were incubated with purified recombinant MPP expressed in E. coli cells. After 

incubation samples were resolved by SDS-PAGE and analysed by autoradiography. 
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Figure 18. Cox11p is processed during import into mitochondria. Radiolabeled lysate (50% 

of total) containing Cox11p precursor protein was incubated with isolated mitochondria from S. 

cerevisiae strain W303-1A as described in Material and Methods. Samples were taken after 5, 10 

and 30 min., treated with PK and analysed by SDS-PAGE and autoradiography. 

 

3.4 Studies on modified forms of Cox11p 
3.4.1 Replacement of the N-terminal part of Cox11p  

The N-terminal part of Cox11p possesses a highly charged amino acid stretch adjacent to 

the TM helix (Fig. 19 A). Such stretches have been reported previously to participate in 

protein-protein interactions, particularly with mitoribosomes (Szyrach et al., 2003). To 

test whether this is also true for Cox11p, the N-terminal moiety of Cox11p including the 

TM domain was replaced by the respective Sco1p counterpart (Fig. 19 B). The resulting 

construct was placed under control of the ADH1 promoter and transformed into strain 

Y06479. The cox11∆ transformants that express this chimeric protein (Sco1N-Cox11Cp-

3HA) are respiratory deficient at all temperatures tested (23°C, 30°C and 37°C), 

demonstrating that the N-terminal part of Cox11p is important for function (Fig. 19 C and 

data not shown). To check whether the inability of Sco1N-Cox11Cp-3HA to complement 

the cox11∆ mutation might be due to defective mt import we analyzed the intracellular 

distribution of Sco1N-Cox11Cp-3HA. The protein is predominantly present in 

mitochondria and not in the cytosolic fraction, thus excluding that mislocalization can be 
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the reason for the inability to complement (Fig. 19 D). The presence of the protein in the 

mt membrane was assessed by alkaline extraction. Aco1p, that served as a soluble control 

protein, is exclusively present in the supernatant (Fig. 19 E, middle panel), whereas the 

integral membrane protein Sco1p is exclusively detected in the pellet fraction (Fig. 19 E, 

lower panel). Similarly, Sco1N-Cox11Cp-3HA is present in the pellet fraction (Fig. 19 E, 

upper panel), demonstrating that the N-terminally modified Cox11p is an integral mt 

membrane protein.  

Results of sucrose gradient centrifugation show that the distribution profile of the 

Sco1N-Cox11Cp-3HA differs from that of the native Cox11p in that it does not co-

migrate with mitoribosomes. The distribution profile of mitoribosomal proteins 

(MrpL36p and Pet123p), Oxa1p, Cox2p and Aco1p is similar to that obtained in a 

previous experiments (Fig. 20 A).  

In order to get further evidence for the inability of Sco1N-Cox11Cp-3HA to 

associate with mitoribosomes the TAP procedure was performed using strain SC1069 

expressing Sco1N-Cox11Cp-3HA. In contrast to Cox11p, Sco1N-Cox11Cp-3HA can not 

be detected in final eluate (Fig. 20 B), while the Mrp4-TAP, Mrpl36p, Pet123p, Cox2p 

and Oxa1p demonstrate the same distribution as in TAP procedures described above. 

Thus, either the N-terminal part, or the TM domain, of Cox11p, or both are important for 

its function. These results are in line with the idea that the N-terminal part of Cox11p, 

including TM segment, defines a site which is crucial for the observed association with 

mitoribosomes.  
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Figure 20. Sco1N-Cox11Cp-3HA does not associate with mitoribosomes. (A) Mitochondria 

isolated from the cox11∆ strain Y06479 expressing Sco1N-Cox11Cp-3HA were lysed and 

applied to a continuous sucrose gradient as described above. Following centrifugation for 4 h at 

148.000 x g, 19 aliquot fractions were collected and analysed as described in Fig. 13. (B) 

Mitochondria isolated from strain SC1069 co-expressing Mrp4p-TAP and Sco1N-Cox11Cp-

3HA. were lysed and subjected to the TAP procedure as described above. The cleared extract 

(lane 1, 2% of total), proteins bound to the IgG (lane 2, 10% of total) and calmodulin (lane 3) 

resins were analyzed by Western blot with antibodies directed against TAP-tag, HA-epitope, 

MrpL36p, Pet123p, Oxa1p and Cox2p. 

 

Distribution of Sco1N-Cox11Cp-3HA was also analyzed by BN-PAGE and subsequent 

Western blot. The distribution of Cox2p, Atp2p, Mrpl36p, Pet123p and Oxa1p is similar 

to that observed in previous BN-PAGEs. Surprisingly, part of Sco1N-Cox11Cp-3HA is still 

detected in high molecular weight complexes of sizes comparable with mitoribosomes 

(Fig. 21). This unexpected result may be explained by the finding that the calculated pI 

values for the replaced charged stretch adjacent to the TM domain of Cox11p and the 

replacing Sco1p counterpart are both very basic and almost identical (Fig. 21, right 

block). This issue will be discussed more detailed in the Discussion chapter. 
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pI (Cox1149-78) = 10.51 
 
pI (Sco144-75) = 10.55 

 

 

 

 

 

Figure 21. Sco1N-Cox11Cp-3HA is present in high molecular weight complexes. 

Mitochondria isolated from strain Y06479 expressing Sco1N-Cox11Cp-3HA were lysed and 

analyzed by BN-PAGE under conditions favoring the assembled forms of mitoribosomes. 

Western blot analysis was performed as described in Fig. 16. Calculated pI values for the charged 

stretches adjacent to the TM of Cox11p and Sco1p, resepctively, are shown on the right hand 

side. 

 

3.4.2. The N-terminal part of Cox11p excluding the TM is dispensable for function 

and association with ribosomes. 

As outlined above, the N-terminal part of Cox11p possesses a highly charged stretch of 

aa adjacent to the TM domain. Interestingly, BLAST analysis reveals that this stretch 

includes a motif which is highly similar to a sequence in a probable translation elongation 

factor of S. pombe (Fig. 22, right panel). A similar conserved motif has been reported 

recently to define a site of interaction of the two signal recognition particles (SRPs), 

cpSRP43 and cpSRP45, in Arabidopsis thaliana chloroplasts (Funke et al., 2005). 

However, Carr et al. (2005) showed that a large portion of the Cox11p N-terminal part 

(residues 55-75) can be replaced by the respective Sco1p part without affecting Cox11p 

function. To clarify which part of Cox11p is required for association with ribosomes a set 

of Cox11p derivatives with different modifications in the N-terminal part was created 

(Fig. 22, left panel). Cox11∆59-78p-5Myc and Cox11∆49-78p-5Myc contain deletions of 19 

and 29 aa, respectively, of the charged stretch of the matrix-protruding portion of the 
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protein. Surprisingly, cox11∆ transformants expressing Cox11∆59-78p-5Myc or Cox11∆49-

78p-5Myc are respiratory competent, albeit their growth on non-fermentable carbon 

sources is less efficient compared to that of transformants expressing Cox11p-5Myc (Fig. 

23). This observation holds true for all temperatures tested (23°C, 30°C and 37°C) (data 

not shown).  

 

 
 

Figure 22. Modular structure of S. cerevisiae Cox11p and its modifications. Scheme of yeast 

Cox11p. The copper-binding motif CFC as well as conserved aa residues in the C-terminal part of 

Myc-tagged Cox11p are indicated. Position and sequence of a charged aa stretch adjacent to the 

TM helix are shown. Positively charged residues are underlined, negatively charged aa are shown 

in italics. Sequences that were either deleted (∆19 aa or ∆29 aa) or replaced (TM(Sco1p)) are 

given in the lower part. Consensus sequence revealed by BLAST alignment of the charged stretch 

of ScCox11p and the homologous sequence of the S. pombe ORF SPAC 3C7.08 is given in the 

right part. 

 

Transformants expressing the mutant proteins were grown on supplemented raffinose 

minimal medium and used for preparation of mitochondria. Both Cox11p mutant proteins 

are efficiently imported into mitochondria (Fig. 24 A, 25 A) and - as shown by their 

resistance to carbonate extraction - inserted into the mt membrane. Similarly, both 

Cox11∆59-78p-5Myc and Cox11∆49-78p-5Myc are present in the pellet fraction, 

demonstrating that the deletions in the N-terminal part have no effect on membrane 

anchoring (Fig. 24 B, 25 B). Next, a co-sedimentation analysis using mitochondria 

prepared from strain Y06479 expressing Cox11∆59-78p-5Myc or Cox11∆49-78p-5Myc, 

respectively, was performed. Mitochondria were lysed with digitonin, and the lysate was 

applied onto a continuous sucrose gradient and fractionated upon high velocity 
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centrifugation. The distribution of Cox11∆59-78p-5Myc, Cox11∆49-78p-5Myc, MrpL36p, 

Pet123p, Oxa1p, Cox2p and Aco1p was assessed by immunoblotting (Fig. 24 C, 25 C).  

 

          
 

Figure 23. Complementation analysis of S. cerevisiae cox11∆ mutant. Cells of the cox11∆ 

strain Y06479 bearing an empty vector or the indicated plasmids were serially diluted and growth 

was followed for 3 days on selective media containing glucose or glycerol as the sole carbon 

source. Cells of wild-type BY4147 and of untransformed cox11∆ strain Y06479 were used as 

positive and negative controls, respectively.  

 

The results obtained were in line with the previously reported data. Aco1p is exclusively 

present in the top fractions of low density, whereas Cox2p is present in the top fractions 

of low and the higher density. MrpL36p and Pet123p are detected in the upper fractions 

of low density as well as in the lower high-density fractions. Such a distribution is in 

agreement with the A 260 peaks. The distribution of Oxa1p and of the modified forms of 

Cox11p is very similar to that of MrpL36p and Pet123p, with the majority of the protein 

present in the top fractions and a significant portion in the bottom fractions. Thus, the N-

terminal part of Cox11p appears to be dispensable for Cox11p function and its 

association with mitoribosomes.  
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Figure 25. Cox11∆49-78p-5Myc is localized to the mt membrane and co-sediments with 

mitoribosomes. Mitochondrial (M) and cytosolic (Cyt) fractions were isolated from the cox11∆ 

strain Y06479 expressing Cox11TMSco1p-5Myc, and analysed as described in the legend to Fig.24.  

 

3.4.3 Cox11p association with mitoribosomes is mediated by its TM domain 

Recently it was reported that a modified version of Cox11p in which aa residues 85-103 

replaced by the TM domain of Sco1p failed to rescue cox11∆ mutation (Carr et al., 

2005). A similar construct (Cox11TMSco1p-5Myc), was created and its ability to confer 

respiratory competence to a cox11 null mutant tested. As shown in Fig. 23, the respective 

transformants were respiratory deficient confirming the observation of Carr et al. (2005). 

Crosses with a rho0 tester strain resulted in respiratory competent diploid cells, thus 

excluding that the failure to grow on non-fermentable carbon sources results from the 

deletion of mtDNA (data not shown). 
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Cox11TMSco1p-5Myc is exclusively present in the mt fraction (Fig. 26 A). Within 

mitochondria Cox11TMSco1p-5Myc is anchored in the membrane as documented by 

alkaline treatment with sodium carbonate, which does not release the protein from the 

membrane (Fig. 26 B). Thus the inability of Cox11TMSco1p-5Myc to complement the 

cox11∆ mutation cannot be due to intracellular or intramitochondrial mislocalization of 

the protein. 

The distribution profile of Cox11TMSco1p-5Myc in sucrose gradients differs from that 

observed for Cox11∆59-78p-5Myc and Cox11∆49-78p-5Myc (Fig. 26 C). While Aco1p, 

Cox2p, MrpL36p and Pet123p show the same distribution as in the gradients described 

above, Cox11TMSco1p-5Myc no longer co-migrates with mitoribosomes and Oxa1p (Fig. 

26 C).  

This result indicates that the TM helix is the part of Cox11p that defines the association 

with mitoribosomes. 
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Figure 26. Cox11TMSco1p-5Myc is localized to the mt membrane and does not co-sediment 

with mitoribosomes. Mitochondrial (M) and cytosolic (Cyt) fractions were isolated from the 

cox11∆ strain Y06479 expressing Cox11TMSco1p-5Myc, and analysed as described in the legend to 

Fig. 24.  

 

3.4.4 Site-directed mutagenesis of conserved amino acids in the TM of Cox11p  

The segment of Cox11p TM domain that appears to be crucial for its interaction with 

mitoribosomes demonstrates a high degree of conservation between different organisms, 

in particular a conserved proline (P105) and valine (V104) residue (Fig. 27). In order to 

check whether these conserved residues are important for the association of Cox11p with 

mt ribosomes a C-terminally Myc-tagged Cox11p carrying a point mutation (P105A or 

V104A) was created. cox11∆ transformants expressing Cox11P105A-5Myc or Cox11V104A-
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5Myc are respiratory competent when grow at 30°C or 37°C, however their growth on 

non-fermentable carbon sources is less efficient compared to that of transformants 

expressing Cox11p-5Myc (Fig. 28 A, C). Surprisingly, expression of Cox11P105A-5Myc 

results in a very faint complementation of cox11-null mutant at 23°C (compared to that 

one at 30°C and 37°C). By contrast, transformation with Cox11V104A-5Myc results in a 

slightly affected growth that shows no temperature dependence (Fig. 28 E). The growth 

characteristics correlate well with the measured COX activities. Enzymatic activity of 

mitochondria purified from strain BY4741 (wt) and cox11∆ strain Y06479 remains 

unchanged at all temperatures tested. COX activity in mt from strain Y06479 expressing 

 
 

Figure 27. Evolutionary conservation of the Cox11p TM domain. In the upper part a 

schematic drawing of a phylogenetic tree is shown. Data are according to Hedges (2002). Lengths 

of the horizontal lines are not drawn to scale. In the lower part the TM sequence, including 

flanking aa of S. cerevisiae Cox11p is aligned with the respective aa stretches of the indicated 

organisms.  
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Figure 28. Complementation analysis of S. cerevisiae cox11∆ mutant and COX activities. 

Cells of the cox11∆ strain Y06479 bearing an empty vector or the indicated plasmids were 

serially diluted and growth was followed for 3 days (left panel) and for additional 7 days in the 

case of Cox11(P105A)p-5Myc and Cox11(V104A)p-5Myc (right lower panel) on selective media 

containing glucose or glycerol as the sole carbon source. Cells of wild-type BY4147 and of 

untransformed cox11∆ strain Y06479 were used as positive and negative controls, respectively. 

Growth characteristics and COX activites were tested at 30°C (A, B), 37°C (C, D) and 23°C (E, 

F). 
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Cox11p-5Myc is slightly higher than that of the wild-type at 30°C (Fig. 28 B) and 23°C 

(Fig. 28 F) and same as the wt activity at 37°C (Fig. 28 D). The faint increase of COX-

activity may be explained by the slightly higher expression level due to the ADH1 

promoter compared to that provided by the native COX11 promoter. Enzymatic activities 

of mt from strain Y06479 expressing Cox11(V104A)p-5Myc are about of 92% at 30°C 

(Fig. 28 B) and 23°C (Fig. 28 F). When mt were isolated from cells grown at 37°C, COX 

activity drops down to 61% of that of the wt (Fig. 28 D). Mitochondria isolated from 

strain Y06479 expressing Cox11(P105A)p-5Myc demonstrate COX activity of about of 

96% at 30°C (Fig. 28 B). Activity is even lower at 37°C, near 67% of that of the wt (Fig. 

28 D). Surprisingly, COX activity is extremely low in mt obtained from the 

Cox11(P105A)p-5Myc expressing cells grown at 23°C: they exhibit only 46% of the wt 

COX activity (Fig. 28 F). The results demonstrate that COX function is compromised 

when the conserved V104 or P105 is substituted by another unpolar residue. This effect 

appears to be more drastic in the case of P105 replacement at 23°C. 

Both mutated proteins are efficiently imported into the mt (Fig. 29). As both V104 and 

P105 reside at the end of TM segment, their substitution may result in disturbed membrane 

anchoring of Cox11p. To clarify this issue carbonate extractions of the respective mutant 

proteins were performed. As growth characteristics and COX activities at 30°C and 37°C 

are relatively similar, mt were isolated for that purpose from strain Y06479 expressing 

either Cox11(V104A)p-5Myc or Cox11(P105A)p-5Myc upon growth at 30°C and 23°C. 

Aco1p, that served as a soluble control protein, is exclusively present in the supernatant 

(Fig. 30, middle panel), whereas the integral membrane protein Tim50p is exclusively 

detected in the pellet fraction (Fig. 30, lower panel) in both mt preparations. Similarly, 

Cox11(V104A)p-5Myc or Cox11(P105A)p-5Myc expressed at either 23°C (Fig. 30 A, 

upper panel) or 30°C (Fig. 30 B, upper panel) are present in the pellet fraction. Thus, 

mutant Cox11p carrying V104A or P105A mutation in the C-terminal end of TM segment is 

still an integral mt membrane protein.  
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Figure 29. Cox11(V104A)p-5Myc or Cox11(P105A)p-5Myc are imported into the 

mitochondria. Mitochondria (M) and cytosolic (Cyt) fractions were isolated from the strain 

Y06479 expressing either Cox11(V104A)p-5Myc (A) or Cox11(P105A)p-5Myc (B), subjected to 

SDS-PAGE and analyzed by Western blot with antibodies raised against the HA-epitope, the mt 

protein Aco1p and the cytosolic protein Adh1p. 
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of Cox11p with mitoribosomes in strains expressing either wild-type Oxa1p or Oxa1∆Cp, 

a non-functional truncated version which is no longer able to associate with 

mitoribosomes (Szyrach et al., 2003). Sucrose gradients were run with mt lysates from 

the respiratory competent strain Y06479 expressing Cox11p-5Myc (Fig. 31 A), or from 

the respiratory deficient strain YPH499MO expressing Cox11p-5Myc (Fig. 31 B). 

Isolated mitochondria were lysed and lysate was applied onto the continuous sucrose 

gradient and subjected to the velocity centrifugation.  
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Pet123p are like those observed in the gradients described above. The distribution of 

Cox11p-5Myc is similar to that of Cox11∆59-78p-5Myc and Cox11∆49-78p-5Myc (Fig. 31). 

Oxa1p migrates like MrpL36p and Pet123p, with the majority of the protein present in 

the top fractions and a significant portion in the bottom fractions (Fig. 31 A). However, 

co-sedimentation of Oxa1p with mitoribosomes is no longer detectable when its C-

terminal part is deleted (Fig. 31 B). This observation is in agreement with the reported 

inability of Oxa1∆Cp-3HA to associate with mitoribosomes (Szyrach et al., 2003). 

Nevertheless a portion of Cox11p is detected in the high-density fractions.  

Next, BN-PAGE followed by Western blot analysis was performed as described above 

using the oxa1 mutant strain YPH499MO expressing Cox11p-5Myc. Distribution of 

Cox2p, Atp2p, mitoribosomal proteins MrpL36p and Pet123p is similar to that observed 

in the previous experiments using  other strains. Detection of Cox11p-5Myc also 

demonstrates the already described continuous tale-shaped signal with relatively high 

intensity in the range similar to that of the mitoribosomal subunits (Fig. 32). By contrast, 

distribution of Oxa1∆Cp-3HA differs in that the mutant form of Oxa1p is not detected in 

high molecular weight complexes of the size of mitoribosomes. 

These results suggest that Cox11p association with mitoribosomes appears not to be 

mediated by Oxa1p. Obviously factor(s) other than Oxa1p are involved in linking 

Cox11p to the mt translation machinery.  
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Figure 32. Detection of Cox11p in high molecular weight complexes does not depend on 

Oxa1p. Mitochondria isolated from strain YPH499MO expressing Cox11p-5Myc were lysed and 

analyzed by BN-PAGE at conditions maintaining the assembled forms of mitoribosomes. 

Western blot analysis was performed as described in Fig. 16.  

 

3.5 Disruption of S. pombe cox11+ genes  
3.5.1 Disruption of either S. pombe cox11+  or cox11b+ 

A replacement cassette consisting of the S. pombe ura4+  gene including its regulatory 

sequences (1411 bp), flanked on both sides by the 5’- (450 bp) and 3’-(226 bp) sequences 

of the cox11+ reading frame was created to generate a Spcox11+ knock-out mutant. The 

long flanking sequences were introduced to facilitate the recombination process which is 

less efficient than in S. cerevisiae. For the replacement a diploid strain was created by 

crossing S. pombe strains HE665 (h+N, ade6-M210) and HE639 (h-S, ade6-M216). To 

maintain the diploid state of the resulting S. pombe cells, the intragenic complementation 

of the two ade6 alleles was used as described (Gutz, 1963). The resulting diploid strain 

was transformed with the replacement cassette. Uracil-positive clones (strains OK2n-1 

and OK2n-2) were selected on supplemented minimal medium lacking uracil, sporulated 

on the sporulation medium, and spores obtained by tetrad dissection were screened for 

haploid cox11 knock-out mutants. The presence of the replacement cassette was checked 

by PCR (Fig. 33 A). To figure out which of the two cox11+ alleles was knocked-out a 

DNA stretch encompassing the divergent region was PCR-amplified and subjected to 
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direct sequence analysis. As already outlined the only difference between the two cox11+ 

alleles are three nucleotides in positions 1659-1661, that result in polymorphic bands in 

the respective sequencing pattern.  

 

  

A B

                    

C 

D 

Figure 33. Replacement of either cox11+ or cox11b+ in S. pombe. The presence of ura4+-

replacement cassette in the spores of two tetrads was checked by PCR (A). Direct sequencing of 

the PCR products of the spores from tetrad A11-5 as well as spore from tetrad A11-2 was 

performed (B). Cells of the respective strains were serially diluted and growth on media with 

glucose, galactose or glycerol as the sole carbon source was followed for 6 days (C). The 

respective strains were grown in YPGG liquid medium and COX activities were determined (D). 
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Upon deletion of one of the two cox11+ genes the polymorphic bands are replaced by an 

unambiguous sequencing ladder of the remaining cox11 allele.  

Sequence analysis showed that in 2 of the spores from tetrad A11-5 cox11+ was replaced, 

whereas in 2 spores from tetrad A11-2 the cox11b+ gene was deleted (Fig. 33 B). 

Surprisingly, the mutants were respiratory competent irrespective of which of the two 

cox11+ alleles was deleted. However, growth on YPGG medium is slightly impaired in 

cox11∆ and more severely affected in the cox11b knock-out mutant (Fig. 33 C). This 

finding is consistent with the COX activities, which are 94% and 64% of the wt enzyme 

activity for cox11 ∆ and cox11b∆, respectively (Fig. 33 C).  

 

3.5.2 Generation of the double deletion (cox11::ura4+, cox11b::KanMX4) in S. pombe  

A second replacement cassette carrying the KanMX4 gene (1522 bp) flanked on both 

sides with the 5’- (450 bp) and 3’-(226 bp) sequences of the cox11+ was introduced into 

the diploid strain OK2n-1 in which cox11 gene is replaced by the ura4+ replacement 

cassette. This diploid strain was used because of the possibility of a lethal effect of the 

deletion of both cox11+ genes. Clones bearing both markers (uracil-prototroph and G418-

resistant) were selected. 

Four of the obtained transformants were initially analysed by tetrad dissection (36 

tetrads), and a clone exhibiting two single spore colonies per tetrad was further analysed. 

40 tetrads of this clone were dissected. If the deletion of both genes on the same 

chromosome is lethal only two of the four spores of a tetrad will form colonies. 

Interestingly, a 2:0 segregation on YEA was observed for 9 tetrads and 1:0 segregation 

for 17 tetrads, respectively (Fig. 34 A). 14 tetrads did not give rise to visible colonies. 

Taken together these results suggest that the deletion of both cox11 alleles is either lethal 

or affects spore germination. The presence of the replacement cassette was checked by 

PCR using both the diploid strain OK2n-1 and spores obtained in the tetrad dissection 

(Fig. 34 A). PCR of OK2n-1 cells detected the presence of ura4+- and KanMX4-

replacement cassettes, both are integrated into the correct chromosomal locus, as well as 

wt cox11+ Fig. 34 B, left panel). At the same time PCR of the haploid spores yields only 

a positive signal for cox11+, but not for the replacement cassettes (Fig. 34 B, right panel). 

Unexpectedly, one of the spores of a 1:0 segregating tetrads showed a weak KanMX4 
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signal (data not shown). Either a secondary integration or recombination events in the 

diploid cell may account for this observation. 

In S. cerevisiae rsm22 null mutant spore viability or germination is affected 

(Deutschbauer et al., 2002). Because a 1:0 segregation was observed in addition to the 

expected 2:0 segregation in S. pombe (see above), the cox11 knock-out may severely 

affect spore viability in S. pombe. Therefore, spore viability was tested as described in 

Material and Methods. In the parental diploid strain (obtained by crossing of  

 

 
 

Figure 34. Generation of the double deletion (cox11::ura4+, cox11b::KanMX4) in S. pombe. 

S. pombe strain OK2n-2 was sporulated on a minimal sporulation medium (MMA) for 4 days, 

and the obtained tetrads were dissected. Spores were grown on complete medium (YEA) for 3 

days (A). The presence of ura4+-replacement cassette in the spores of two picked tetrads was 

checked by PCR (B). Spore viability of the single mutants as well as double cox11∆ cox11b∆ 

mutant was assessed (C). 
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HE665 and HE639 strains), which served as a positive control, about of 90% of the 

spores form colonies. The spore viability of OK2n-1 and OK2n-2 is significantly 

decreased to about 36%, and even lower in OK2n-3 (14%) (Fig. 34 C). These results 

indicate that the disruption of S. pombe cox11 gene(s) affects spore viability. 

 

3.6 Biochemical characterization of SpCox11p  
3.6.1 The SpCox11p precursor is a fusion protein that is cleaved during its import 

into two mature protein species 

As single cox11-null mutants of S. pombe are respiratory competent and double cox11 

knock-outs appear to be inviable, a C-terminally 3 x HA-tagged version of either 

SpCox11p or SpCox11bp under control of the strong thiamine-repressible nmt1+ 

promoter was transformed into the respiratory competent S. pombe strain HE620 to check 

whether the respective protein will be processed. A similar experiment has been reported 

by Bureik et al. (2002) in the study of the S. pombe Yah1p-Cox15p fusion protein. 

Transformants were grown on selective minimal medium and cell lysates and 

mitochondria were prepared for Western blot analysis with HA-antibodies. Detection of a 

product with a molecular weight of about 25 kDa (Fig. 35) hints at processing of the 

putative SpCox11p precursor (around 87 kDa) that could not be detected in numerous  

 

          

A B

 

Figure 35. In vivo processing of S. pombe Cox11p. Mitochondria were prepared from cells of S. 

pombe strain HE620 (A and B, left lanes) and strain HE620 expressing either SpCox11p-3HA (A, 

right lane) or SpCox11bp-3HA (B, right lane). Total mt protein was separated by SDS-PAGE and 

subjected to Western blot analysis using HA-antibodies. 
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experiments. Less intense bands of lower molecular weight presumably reflect 

degradation products. As the bands were not detected in the untransformed strain, the 

observed signals are specific for the HA-tagged protein (Fig. 35A). The same result was 

obtained when SpCox11bp-3HA was expressed (Fig. 35B). A possible time point at 

which processing of the SpCox11p precursor might occur, is the mt import. To address 

this issue radiolabeled SpCox11p was produced by in vitro translation of the RNA-

transcript obtained from in vitro transcription of plasmid pGEM3 or pGEM4 carrying 

cox11+ ORF as an insert. Interestingly, radiolabeled SpCox11p precursor has an unusual 

migration behaviour in the SDS-PAGE. Instead of the expected 87 kDa band, a band of 

about 67 kDa is detected (Fig. 36A). This unusual migration behaviour may be due to the 

limited retention of the structure of the precursor protein, that decreases the sieving 

effects of the gel. SpCox11p radiolabeled precursor was used for in vitro import into 

isolated mitochondria of S. pombe strain L972 as described in Materials and Methods. 

The samples were taken at different time points of the import assay. Part of the samples 

was treated with PK to remove unbound and non-imported protein, or coverted to 

mitoplasts and then PK-treated. SpCox11p precursor protein is efficiently imported and 

cleaved in two sequential processing steps to give rise to three polypeptides that are 

resistant to PK treatment: a small fragment of around 14 kDa possibly reflecting the 

cleaved off N-terminal presequence, a mature fragment that likely corresponds to the 

Rsm22p segment (around 46 kDa), and a second mature fragment possibly corresponding 

to Cox11p protein (around 24 kDa). In addition a number of labeled protein bands of 

intermediate size (between 28 and 35 kDa) that persist PK treatment can be detected. It 

remains open whether these proteins reflect true processing intermediates or degradation 

products. Notably, the band assigned to processed Cox11p disappears when mitoplasts 

are PK-treated, while the protein assigned to Rsm22p remains protected, i.e. reaches the 

matrix (Fig. 36 A). These results are in agreement with the intraorganellar localization of 

both Cox11p and Rsm22p known from S. cerevisiae.  

In vitro imported SpCox11p precursor protein was subjected to alkaline extraction and 

analysed by Western blot. As expected, the processed Rsm22p part is found in the 

supernatant, while the protein assigned to the Cox11p part is detected in the pellet (Fig. 

36 B). Similar results were obtained upon detection of the processed parts of the Cox11p 
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isoforms, corresponding to SpCox11p and SpCox11bp, after alkaline extraction (data not 

shown). The results show that the tandem organisation of the SpCox11p precursor is not 

maintained in vivo, but distinct Rsm22p- and Cox11p-like moieties are present in S. 

pombe as in other species, in which these proteins are encoded by two different genes. 

 

Figu

Radi

isola

topo

poin

analy

 

A

 

 

 
B
* 

 

 

 

 

 

 

 

 

 

 

re 36. Processing of SpCox11p during its in vitro import into S. pombe m

olabeled lysate (total 50%) containing SpCox11p precursor protein was incuba

ted mitochondria from S. pombe strain L972 to assess either the import kin

logical properties of the mature proteins (B). Samples were taken after the d

ts and treated as described. After incubation samples were resolved by SDS

sed by autoradiography.  
?

itochondria. 

ted with the 

etics (A) or 

epicted time 

-PAGE and 

113



Results________________________________________________________________ 
 

 

3.6.2 Prediction of the cleavage site between the Rsm22p-Cox11p moieties in the 

SpCox11p precursor protein. 

So far no mt protease cleaving fusion proteins in S. pombe has been identified. Because 

proteolytical cleavage of SpCox11p precursor occurs concomitantly or upon import, a 

possible candidate to mediate or to perform cleavage is the S. pombe homologue of MPP. 

In that case the cleavage site should show the characteristics of a classical mt 

presequence (von Heijne et al., 1989; Chaumont et al., 1990).  

In order to define the cleavage site between the Rsm22p and Cox11p moieties of 

SpCox11p or SpCox11bp fusion, radiolabeled truncated versions of the protein were 

created by means of in vitro translation. For that purpose, DNA encoding the cox11+ 

ORF was cut by the restriction enzymes that recognise unique sequences in the region 

between the two protein parts that demonstrate a charge distribution similar to 

presequence cleavage sites (Fig. 37 B). Plasmid pGEM4SpCox11 was cut with ScaI, PstI 

and KpnI restriction enzymes, respectively, and the resulting mixtures were transcribed in 

vitro. The RNAs were translated and the resulting proteins were used for in vitro import 

into the mt prepared from S. pombe strain L972. Following import mt were converted to 

mitoplasts, treated with PK and analysed by autoradiography. Clearly, a band of lower 

molecular weight, compared to the normally processed Rsm22p-mature part is observed 

in the case of translation product obtained from ScaI-treated DNA (Fig. 37 A). The minor 

band comparable in size with the control presumably arises from the incompletely 

digested DNA. In the case when PstI-digested cox11+ ORF was used as a template for in 

vitro transcription/translation, a band of slightly lower molecular weight, compared to the 

control, is observed (Fig. 37 A). However, in the case of the product obtained upon 

import of the precursor resulting from transcription/translation of the KpnI-digested 

template, no difference in size compared to the control mature protein is observed (Fig. 

37 A). These results suggest that the proteolytic cleavage must occur in the immediate 

vicinity of the sequence defined by the KpnI site. The aa stretch (residues 541-568) 

encompassing the KpnI site on DNA level was scanned using Helix Draw v1.00 program 

that allows to define the presequence-like motifs. A segment of 9 aa (positions 549-560) 

shows a charge distribution that is typical for mt presequences (Fig. 37 C). Interestingly, 

this region also harbours the aa residues that differ in SpCox11p and SpCox11bp (Fig. 37 
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C, lower panels). The significance of this, however, is not clear and will be discussed 

later. 
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Chapter 4 

Discussion 
4.1 Complementation analysis in S. cerevisiae 

4.1.1 Complementation analysis of S. cerevisiae cox11∆ mutant 

The ability of Cox11p homologues from different organisms, namely S. pombe and 

human, as well as S. cerevisiae Rsm22p, a possibly functionally related protein, to 

complement the respiratory deficient phenotype of S. cerevisiae cox11∆ strain Y06479 

was tested. The results suggest that despite of the high degree of similarity, these proteins 

can not substitute for ScCox11p. This also holds true if the respective proteins are 

overexpressed. Overexpression of either SpCox11p or SpCox11bp in the wt strain 

BY4741 causes no dominant-negative effect.  

In the case of SpCox11p and SpCox11bp, two almost identical proteins, the presence of a 

long N-terminal extension with a significant degree of similarity to Rsm22p might be the 

reason for non-complementation of S. cerevisiae cox11 null mutant. Such fusion protein 

may be less stable or characterized by improper topogenesis in S. cerevisiae mt. 

Preliminary results suggest that radiolabeled SpCox11p precursor protein is cleaved 

incorrectly upon in vitro import into S. cerevisiae mt (data not shown). In order to 

exclude this possibility, complementation analysis with truncated versions of SpCox11p 

containing only the C- or N-terminal part, respectively, were performed. As expected, the 

N-terminal Rsm22p-like part was not able to substitute for ScCox11p. The C-terminal 

part, however, also was not able to complement S. cerevisiae cox11∆ mutant. As inability 

of the mentioned constructs to complement S. cerevisiae cox11 null mutant may be due to 

the differences in the recognition of the imported protein by the mt import machinery, a 

set of chimeras (Fig. 8) carrying N-terminal part of ScCox11p was created. These 

chimeras were also not able to restore the respiratory competence of strain Y06479. 

When ScCox11p is compared with SpCox11p or SpCox11bp, it is apparent that some aa 

residues within the 100 aa stretch that otherwise shows a high degree of conservation, 

significantly differ in their physical-chemical properties. It should be pointed that both 

SpCox11p, in contrast to most Cox11p homologues, contain a leucine residue instead of a 

conserved methionine (M224, S. cerevisiae numbering). A similar situation is observed in 
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the Caenorhabditis elegans homologue. This residue is also believed to be implicated in 

copper binding (Carr et al., 2002). Interestingly, such a change in ScCox11p causes a 

decrease in copper binding by the modified protein when it is purified in form of a 

truncated version. However, this change does not impair the respiratory competence of 

the S. cerevisiae cox11∆ transformants (Carr et al., 2002). These residues may affect the 

function of chimeric protein in S. cerevisae cells. To exclude that possibility the 

respective modifications were created (Fig. 9). All tested chimeras also failed to 

complement strain Y06479.  

These data imply that ScCox11p - despite of its high degree of conservation - possesses 

some specific features that can not be covered by the other homologues. The reason for 

non-complementation may be the presence of specific topogenic signals (Stuart and 

Neupert, 1996), e.g. short, mostly hydrophobic segments that are important not only for 

the protein sorting but also define the proper orientation and insertion of the protein into 

the IMM. Indeed, the fact that SpCox11p are synthesized as fusion proteins may suggest 

a different processing/insertion mechanism for the respective proteins. If such topogenic 

signals would be located in the SpCox11p-derived C-terminal part, this also might be the 

reason for non-functionality of the created chimeras. It is rather unlikely that topogenic 

signals may reside at the short C-terminal extention of about 37 aa, present in ScCox11p, 

as Carr et al. (2005) have shown that this segment is not important for the protein 

function. Another reason for non-functionality of the created chimeras may be the 

presence of the short specific region between the TM segment and the Cu-binding CFC 

motif that is crucial for the protein function, as it is described for Sco proteins (Lode, 

2001; Paret, 2001).  

The failure of HsCox11p to substitute for ScCox11p may be due to the same reasons as 

described above. Similar results were recently obtained by Carr et al. (2005). 

Complementation of S. cerevisiae cox11∆ mutant by the chimera consisting of the N-

terminal part of ScCox11p including its TM domain and the C-terminal part derived from 

HsCox11p failed (Carr et al., 2005). Non-complementation has been already 

demonstrated for another protein involved in COX assembly, HsCox10p that substitutes 

its S. cerevisiae counterpart extremely poorly (Glerum and Tzagoloff, 1994).  
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In the case of functional complementation of yeast mutants by the respective human 

genes yeast can be successfully used as a model to study the human mutations, e.g. the 

pathogenic nature of P174L mutation in Sco1p (Paret et al., 2000). Due to the non-

complementation of HsCOX11, the yeast system can not be efficiently used to study the 

mutations in the respective gene, although no mutations in HsCOX11 were reported so far 

(Sacconi et al., 2003; Horwath et al., 2005).  

 

4.1.2 Complementation analysis of S. cerevisiae rsm22∆ mutant 

The ability of Cox11p homologues to complement S. cerevisiae rsm22∆ mutation was 

also tested. As expected, ScCox11p can not substitute for ScRsm22p. However, 

SpCox11p proteins both representing fusions of Rsm22p-Cox11p-like proteins also failed 

to confer respiratory competence to the rsm22∆ strain Y15005, even upon 

overexpression. However it is impossible to decide if the inability is due to the non-

complementation of the proteins or whether it reflects extensive rho- formation due to the 

rsm22∆ background. This aspect became evident when ScRsm22p also failed to confer 

the respiratory competence of strain Y15005. Further studies with the diploid strains 

Y35005 and OK-R22 transformed with the plasmid that allows overexpression of 

ScRsm22p have shown that the haploid cells obtained by sporulation from the respective 

diploid transformants become very rapidly rho-, even in the presence of plasmid-borne 

ScRsm22p. ScRsm22p is a protein of the small subunit of mt ribosomes (Saveanu et al., 

2001; Gan et al., 2002). Deletion of RSM22 causes respiratory deficiency. On the other 

hand it is known that that deletion of most of the genes whose products are part of the mt 

translation apparatus, in particular of mitoribosomes results in the loss of mtDNA 

(Graack and Wittmann-Liebold, 1998). These results are in line with the recently 

published data of Carr et al. (2005). These authors, by using a different approach, 

succeeded to obtain a haploid rsm22∆ mutant with intact mtDNA: they introduced a 

plasmid expressing ScRsm22p into a wt strain, that subsequently was used to disrupt the 

chromosomal copy of RSM22. In addition they demonstrated that the introduction of an 

artificial fusion protein consisting of ScRsm22p and ScCox11p, thus mimicking 

SpCox11p, can substitute for ScRsm22p. However, it is not clear if this holds true for 

native SpCox11p as its ability to complement rsm22∆ mutant was not checked.  
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4.2 The Cu-binding C-terminal domain of ScCox11p is exposed to IMS 

Results of PK digestion of mitoplasts demonstrate that Cox11p has an Nin-Cout topology 

in the IMM. This result confirms the prediction of Carr et al. (2002) that the copper-

binding site in the C-terminal part of Cox11p protrudes into the IMS. Recent data by 

Horng et al. (2004), which were obtained by in vitro experiments and a yeast cytosolic 

expression system, strongly suggest that the primary copper donator of Cox11p is 

Cox17p. This copper-binding protein is partly present in the IMS and has been shown to 

be functional even when anchored in the IMM (Maxfield et al., 2004). Therefore it seems 

likely that a direct interaction between Cox17p and Cox11p in the IMS mediates the 

copper transfer. However, Horng et al. (2004) were not able to detect a stable interaction 

of these proteins. Possibly these interactions exist only transiently and require cross-

linking in order to be detected.  

Cox11p exhibits a number of similarities with Sco1p, which is engaged in the 

formation of the CuA site. Like Sco1p, Cox11p exhibits an Nin-Cout topology. Both 

proteins are anchored by a single TM domain in the inner mt membrane and form 

homodimers (Nittis et al., 2001; Carr et al., 2002). Both Cox11p and Sco1p possess a 

copper-binding site in the IMS-exposed C-terminal part and receive the copper ions from 

Cox17p. However, the inability of crosswise complementation and the observation that 

both proteins seem not to interact with each other led to the conclusion that formation of 

CuA and CuB centres are mechanistically independent (Leary et al., 2004).  

 

4.3 Processing of S. cerevisiae Cox11p precursor protein 

Originally Cox11p has been described by Tzagoloff et al. (1990) as 28 kDa protein, 

however, the molecular weight calculated from the DNA sequence is 34 kDa. This 

difference may indicate that Cox11p undergoes a proteolytical processing step during 

import into mitochondria as it described for most of the mt proteins of nuclear origin 

(Neupert and Brunner, 2002; Gakh et al., 2002). However inspection of the primary 

sequence of Cox11p does not reveal a typical mt targeting presequence, i.e. an aa stretch 

rich in hydroxylated and positively charged aa residues that forms an amphipathic α-

helix. In order to clarify this issue, processing was tested by in vitro incubation of 

Cox11p with purified recombinant S. cerevisiae MPP, as well as by in vitro import of 

 119



Discussion_______________________________________________________________  

radiolabelled Cox11p into isolated wild type mt. As expected, in vitro translated Cox11p 

has a molecular weight of about 34 kDa. Results of both in vitro processing and mt 

import show that the 34 kDa-form of Cox11p disappears, concomitantly  with the 

appearance of a 28 kDa band that probably reflects the processed form of protein. 

Cox11p import depends on the mt membrane potential as no band corresponding to the 

processed form is observed when mt are treated with valinomycine, a de-energizing 

agent. A band of about 5 kDa that is observed upon MPP tretament is likely to 

correspond to the cleaved-off presequence. The exact cleavage site of the presequence in 

the Cox11p precursor is not yet defined, but Carr et al. (2005) have demonstrated that 

removal of the N-terminal 60 codons abolishes mt localization of Cox11p. The results 

obtained by in vitro MPP-processing and import studies suggest that the mt-targeting 

signal encompasses about 45 aa residues. Thus, the length of predicted presequence is in 

the range of typical mt-targeting presequences (10-80 aa residues) (von Heijne et al., 

1989).  

 

4.4 Association of ScCox11p with mitoribosomes 

4.4.1 ScCox11p is associated with mitoribosomes 

How does Cox11p mediate insertion of Cu(I) into the CuB site of COX, which is deeply 

buried in the IM? One possibility is that the incorporation of copper into the CuB site may 

occur during synthesis of Cox1p. The observation that the S. pombe homologues contain 

N-terminal extensions with significant homology to the S. cerevisiae mitoribosomal 

protein Rsm22p may hint at a link between mt translation and formation of the CuB site. 

Fusion of two genes to yield a fusion protein with the activities of both single proteins is 

not without precedent in S. pombe and can hint at a cooperative action of the two 

proteins: for example, Cox15p, which is involved in the biosynthesis of heme a, is fused 

to Yah1p, an enzyme engaged in electron transfer in mitochondria (Barros et al., 2001; 

Bureik et al., 2002). The functional link between both proteins became evident by the 

finding that Yah1p acts as the electron acceptor for Cox15p in the course of heme O 

oxidation (Barros et al., 2002; Carr and Winge, 2003). 

The obtained results hint at an association of Cox11p with mitoribosomes. It was 

observed that part of Cox11p co-fractionates with the fraction of assembled 
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mitoribosomes in sucrose gradients. It seems unlikely that Cox11p is part of a distinct 

high-molecular weight complex of similar size as mitoribosomes. The detection of 

Cox11p but not Cox2p in the bottom fractions of the gradient clearly demonstrates that 

the presence of Cox11p is not due to membrane fragments. The different fractionation 

profiles of Cox2p and Cox11p indicate that Cox11p is not associated with the assembled 

COX complex. 

A second line of evidence for an association of Cox11p with mitoribosomes comes from 

our finding of co-immunoprecipitation of Cox11p and MrpL36p, a constituent of the 

large mitoribosomal subunit. It remains to be clarified whether the large subunit alone or 

the entire ribosome is required for this interaction. A recent proteomic approach to 

identify components of the mitoribosomes by mass-spectrometry failed to identify 

Cox11p (Gan et al., 2002). Interestingly, other ribosome-associated proteins like Oxa1p 

(Jia et al., 2003; Szyrach et al., 2003) or translational activator proteins (Krause-Buchholz 

et al., 2004; 2005) were also not identified in this study, presumably due to the stringent 

purification conditions. Another observation in favour of an association of Cox11p with 

mt ribosomes is the finding that the expression profiles of Cox11p upon different 

conditions correlate well with those of some mitoribosomal proteins, Mrp10p 

(Sudarsanam et al., 2000), Mrp7p (Travers et al., 2000), MrpL15p (Roberts et al., 2000), 

Mrp49p, MrpL44p (Huang et al., 2004), MrpL38p, Mrp13p, Mrp17p (Yoshimoto et al., 

2002) and Mrp4p and YPL183w-A (Haugen et al., 2004). Interestingly, most of these 

proteins are constituents of the large mt ribosomal subunit. 

Obviously the conditions for the isolation and purification of mitoribosomes used in co-

sedimentation analysis were too stringent to maintain the association with peripherally 

associated proteins. It seems likely that the interaction of Cox11p with mitoribosomes is 

weak and possibly indirect and mediated by additional components. Cox11p possesses 

only a short N-terminal part protruding into the mt matrix. The site of potential 

interactions with the mt ribosome or “linker” proteins is therefore limited to this region, 

or – in case of a membrane protein as a “linker” – to the TM segment.  

The association of Cox11p with mitoribosomes could allow the formation of the CuB site 

in close proximity to the process of translation and membrane insertion of Cox1p. 

Integration of nascent Cox1p into the IMM is dependent on the Oxa1p complex (Stuart, 
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2002). This mt protein translocation machinery plays a pivotal role in the integration of 

both nascent mt polypeptides and of some imported proteins into the IMM (Stuart and 

Neupert, 1996; Stuart, 2002; Jia et al., 2003; Szyrach et al., 2003). The C-terminal part of 

Oxa1p has been shown to be associated with mitoribosomes. A cross-linking approach 

revealed that Oxa1p interacts with Mrp20p, a protein of the large mitoribosomal subunit 

(Jia et al., 2003). Interestingly, Mrp20p has been shown by tandem affinity purification to 

interact with MrpL36p, the mitoribosomal protein which we used in our study (Gavin et 

al., 2002). Therefore, the association of Cox11p with mt ribosomes could be indirectly 

mediated by Oxa1p. Co-operation of Cox11p and Oxa1p might allow the insertion of the 

copper ion to the nascent Cox1p during translocation. However, as discussed later, this is 

not the case. 

Association of Cox11p with mitoribosomes was also documented by its purification with 

mitoribosomal proteins in the TAP procedure. Interestingly, active translation seems to 

be required for this interaction, as part of Cox11p is lost in the presence of puromycin 

that prematurely terminates translation and leads to a disassembly of RNA, nascent 

protein and mitoribosomal subunits. This may hint that Cox11p is not permanently and 

directly associates with mitoribosomes. These data are compatible with the model 

proposed below. Another line of evidence for association of Cox11p with the mt 

translation apparatus is the finding that Cox11p can be detected in high molecular weight 

complexes when separated by the BN-PAGE. Interestingly, its profile is similar to that of 

Oxa1p, whose mitoribosomal association has clearly been demonstrated (Jia et al., 2003; 

Szyrach et al., 2003). Notably, the association of Oxa1p with the ribosomes was reported 

to be independent on the presence of nascent polypeptide chains (Szyrach et al., 2003). 

Based on the finding that ScCox11p is directly or indirectly associated with mt 

ribosomes, a model of the CuB site formation is proposed (Fig. 38). According to it, the 

CuB site is formed by a transient interaction of the C-terminal part of Cox11p with an 

IMS-exposed domain of Cox1p in the course of Oxa1p-mediated translocation process. 

Upon transfer of a Cu ion the nascent Cox1p is pushed further into the IMM and the CuB 

site moves into the lipid bilayer of the IMM. The dimeric state of Cox11p might be 

disrupted during the interaction accompanied by the formation of a Cox11p-nascent 

Cox1p heterodimer. As functional COX acts as a dimer (Tsukihara et al., 1996), the 
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second Cu+ ion of the Cox11p dimer could concomitantly be inserted into another 

nascent Cox1p. It has to be stressed, however, that it is still not clear whether Cox11p is 

directly involved in the formation of the CuB site. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Model of co-translational insertion of Cu ions into Cox1p. (A) Cox1p is translated 

on a ribosome. The nascent polypeptide chain is held in proximity to the IM by Oxa1p (and 

eventually also by Cox11p) and inserted by the Oxa1p complex into the lipid bilayer. (B) While a 

stretch of the partially inserted Cox1p is exposed to the IMS, the CuB site is formed. Upon 

transient interaction of the C-terminal part of the Cox11p dimer Cu(I) is loaded onto Cox1p. (C) 

While membrane insertion of Cox1p continues the CuB-site moves into the lipid bilayer. 

 

4.4.2 Identification of amino acid stretches of ScCox11p that define its association with 

mitoribosomes 

Obviously the interaction of Cox11p with mitoribosomes should be mediated by its 

matrix-protruding part. In order to test this, the entire N-terminal matrix-exposed stretch 
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including the TM domain was replaced by the Sco1p-derived counterpart. As both Sco1p 

and Cox11p possess Nin-Cout topology the resulting chimeric protein (Sco1N-Cox11Cp-

3HA) should be imported into mt and anchored in the mt membrane. Although Sco1N-

Cox11Cp-3HA fulfills both criteria, it is not able to substitute for the endogeneous 

Cox11p. At the same time it is no longer associated with mitoribosomes as shown by co-

sedimentation analysis. Also Sco1N-Cox11Cp-3HA can no longer be co-purified with mt 

ribosomes in TAP procedure. These results suggest that either the N-terminal part of 

Cox11p and /or its TM domain mediates the association to mt ribosomes. However, BN-

PAGE analysis demonstrates that a significant portion of the chimeric protein can still be 

found in high molecular weight complexes, similar to those observed for unmodified 

Cox11p. A possible explanation for this unexpected finding may be provided by the 

calculated pI values of the matrix-protruding moieties of Cox11p and Sco1p, 

respectively. In both cases the pI values are high and almost identical. The highly charged 

N-terminal stretches of both proteins may play a docking function to facilitate the various 

interactions. In line with this is the observation of Carr et al. (2005) that the replacement 

of part of the Cox11p matrix domain (aa 55-75) by the respective Sco1p-derived stretch 

yields a functional protein. An alternative explanation for the presence of Sco1N-

Cox11Cp-3HA in a high molecular mass complex may come from the misassembly of 

COX due to the copper depleted Cox1p in cox11 null mutants. Such a sub-complex, 

possibly associated with the chimeric protein, may be bound by prohibitins (Phb1p and 

Phb2p) and stay stablilized for a certain time. These proteins are known to prevent the 

components of COX assembly process from degradation by forming a high molecular 

weight complexes (Nijtmans et al., 2000).  

Which part of Cox11p is responsible for the observed interaction with mitoribosomes? 

Inspection of the primary sequence revealed a stretch of charged aa conserved in a 

probable translation elongation factor of S. pombe and in two SRPs of A. thaliana, where 

it is involved in protein-protein interactions (Funke et al., 2005). The previously reported 

finding of Carr et al. (2005) that replacement of the Cox11p matrix-exposed N-terminal 

stretch by its Sco1p counterpart yields a functional, albeit poorly effective protein, is not 

in contradiction with the assumption that the charged stretch could be responsible for 

Cox11p association with mitoribosomes. However, inspection of the respective stretch of 
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Sco1p reveals very similar physico-chemical properties which could account for the 

observed functional substitution. Both stretches in Cox11p and Sco1p exhibit a high 

concentration of charged amino acid residues and an almost identical pI value. Therefore 

the significance of this stretch for Cox11p function was directly tested by creating two 

deletion mutations in the N-terminal part of Cox11p, both removing the charged stretch. 

Interestingly, both deletions did not impair the respiratory growth of mutants. Thus it can 

be concluded that this charged stretch plays no crucial role for the protein’s function. 

However, it cannot be excluded that it may be important for docking of the interacting 

partner protein(s) as it is described for number of charged stretches (Pool, 2005). For 

further studies it would be interesting to check the behavior of the respective 

modifications in the gradient gel under non-denaturing conditions.  

Another candidate region for conferring interaction with mitoribosomes is the TM 

domain of Cox11p. The essential role of the TM helix has recently been shown by Carr et 

al. (2005), who reported that a chimeric Cox11 protein whose authentic TM was replaced 

by the Sco1p TM is non-functional. Sco1p and Cox11p have a similar topology in the 

IMM. A similar chimeric protein (Cox11TMSco1p-5Myc), in which the Cox11p TM 

domain was replaced by the TM segment of Sco1p was created in this work. Its failure to 

confer respiratory competence to the cox11 null mutant confirms the data of Carr et al. 

(2005).  

In order to test whether non-functionality of this chimeric protein is accompanied by a 

disturbed interaction with mitoribosomes, its distibution in a sucrose gradient upon high 

velocity centrifugation was determined. The results clearly show that the mutant protein 

can no longer be detected in the fraction that contain the assembled mitoribosomes. Thus 

the TM domain seems to be crucial for the association of Cox11p with mt translational 

machinery. Interestingly, the BLAST search reveals that the seven C-terminal aa of the 

Cox11p TM domain are highly conserved between pro- and eukaryotic Cox11p 

homologues.  

The high conservation of the TM domain is rather unusual as is the presence of a highly 

conserved proline (P105) residue on its end. In order to test the significance of this 

conservation, point mutations were introduced, that change two of the conserved residues 

(V104 or P105) to alanine residues. This hydophobic aa should not affect the function of the 
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TM domain as a mere membrane anchor. Indeed, the results of carbonate extraction show 

that both mutant proteins are anchored in the mt membrane. Expression of Cox11V104A-

5Myc or Cox11P105A-5Myc in a cox11 null mutant strain (Y06479) confers respiratory 

growth, although it is less efficient and temperature-sensitive compared to the wt strain or 

strain Y06479 expressing Cox11p-5Myc. The respiratory growth is in line with 

determined COX activities of mt prepared from the transformants at the respective 

temperatures. Expression of cox11P105A affects aerobic growth at 37°C and - more 

severely - at 23°C, while cox11V104A transformants show  moderate impairment at both 

temperatures.  

Interestingly, the COX activity of mt from strain Y06479 that express Cox11p-5Myc is 

slightly higher at 30°C and 23°C than that one of the wt-mitochondria, presumably due to 

the higher level of expression provided by an ADH1 promoter (Mumberg et al., 1995). 

This may hint at Cox11p as a limiting factor in COX formation at these temperatures. 

Proline is known to bend the protein structure. Its high conservation and its position at the 

end of TM segment suggests that it may be either involved in a specific protein folding 

and/or in protein-protein interactions. As the effect of the P105A mutation is most  

deleterious at lower temperature it may be speculated that the introduction of the 

hydrophobic alanine residue at the IMM/IMS interface that is covered by polar head 

groups of phospholipids, leads to a local rearrangement of the lipid bilayer. This in turn 

may lead to a perturbed folding of Cox11p and its dysfunction. Alternatively, P105 may be 

one of the crucial residues that define Cox11p interaction with the compound(s) 

mediating association with mt ribosomes and such interaction can no longer be conferred 

by the other residues of conserved stretch at 23°C.  

Taken together, the obtained results could suggest that association of Cox11p with 

mitoribosomes is neither mediated unspecifically by lipid compounds nor by proteins that 

are exclusively present in fungi. Instead, they could hint at an evolutionary conserved 

protein as the interacting partner of Cox11p which links copper insertion to translation. 

As already mentioned above, Oxa1p is a candidate for such a conserved protein. This 

important component of the mt translocation machinery has been discussed as being 

involved in tethering the mitoribosomes to the IMM (Szyrach et al., 2003). To clarify if 

Oxa1p might be responsible for Cox11p association with mitoribosomes the distribution 
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of Cox11p in a mutant strain bearing a C-terminal deletion of OXA1 was analyzed. This 

mutation affects the association of Oxa1p with mitoribosomes (Szyrach et al., 2003). 

Nevertheless, the distribution profile of Cox11p remains unchanged. In addition the 

distribution of Cox11p and of the mutant Oxa1p was analyzed by BN-PAGE. The results 

clearly demonstrate that the interaction of Cox11p with mt ribosomes is not mediated by 

Oxa1p.  

Which other proteins engaged in COX biogenesis could function in mediating 

Cox11p/mitoribosome association? A component engaged in Cox1p formation that has 

been discussed as a putative interacting partner of Cox11p is Pet309p (Carr et al., 2005). 

This COX1 translational activator with multiple TM domains has been shown to be 

associated with the translational activators of COX2- and COX3-mRNA (Naithani et al., 

2003). Of these, only Pet122p, one of the Cox3p translational activators so far has been 

reported to directly interact with mitoribosomes (McMullin et al., 1990).  

Another putative candidate to cooperate with Cox11p and mediating its binding to the 

ribosomes is Cox14p, a membrane-anchored chaperone required for Cox1p expression 

(Glerum et al., 1995). Both nascent Cox1p and Mss51p, a protein required for Cox1p 

expression and insertion (Perez-Martinez et al., 2003; Siep et al., 2000), have been 

reported to interact with Cox14p. The Cox1p/Mss51p/Cox14p complex is important for 

Cox1p assembly (Barrientos et al., 2004; Herrmann and Funes, 2005). The authors 

proposed that Shy1p, which is required for COX assembly and presumably involved in 

heme a insertion (Mashkevich et al., 1997; Smith et al., 2005), may cooperate with the 

Cox1p/Mss51p/Cox14p complex during Cox1p assembly, but it seems not to interact 

with the latter (Barrientos et al., 2004). Since Shy1p is a membrane-anchored protein it is 

also a candidate to mediate Cox11p/ribosome interaction. It has to be noted that 

orthologues of Pet309p, Mss51p and Cox14p have so far only been reported in fungi 

(Barrientos et al., 2004; Carr and Winge, 2003), whereas Shy1p shows a high degree of 

conservation in eukaryotes (Zhu et al., 1998; Poyau et al., 1999). If the evolutionary 

conservation of the TMD part is indeed indicative for a conserved interaction partner 

protein, Shy1p appears to be a prime candidate. It can be speculated that the insertion of 

the heme(s) into Cox1p also occurs in a co-translational manner, and that the CuB site, a 

complex dimetallic motif formed by heme a3 and copper moieties, is formed 
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simultaneously by the cooperative action of Cox11p and Shy1p. The findings that cox11 

mutation can be partially rescued by the addition of exogenous heme a (Church et al., 

1996) and that the expression levels of Cox11p and Shy1p are similar when cells are 

treated with arsenic (Haugen et al., 2004) are compatible with the idea of a cooperate 

insertion of heme and Cu ions. Alternatively, Shy1p may simply facilitate insertion of 

heme, as it has been shown that heme a can be self-inserted in a de novo designed four 

helix bundle protein, mimicking the hydrophobic pockets of Cox1p (Gibney et al., 2000). 

Another possible candidate to mediate the association of Cox11p with mt ribosomes is 

the product of YGR150c, a protein with unknown function that exhibits weak similarity to 

the mitoribosomal protein Mrps5p. Ygr150cp is predicted to possess a TM segment and 

might be involved in tethering of the ribosome to the IMM and in mediating 

Cox11p/mitoribosomal association. 

 

4.5. Replacement of cox11+/cox11b+ genes in S. pombe 

Despite of the fact that the genome of S. pombe is less redundant than that of S. 

cerevisiae (Wixon, 2002) the overall number of duplicated genes is higher in the fission 

yeast (Wood et al., 2002). The presence of two copies of cox11+ in the S. pombe genome 

raises the question if both versions are functional. In the case of the two identified human 

COX11 alleles it was shown that one of them is a non-functional pseudogene (Petruzella 

et al., 1998). Expression profiles obtained for cox11+ and cox11b+ at different stress 

conditions appear to be quite similar (Fig. 39; Chen et al., 2003), however, it is almost 

impossible to attribute a signal to one or two genes. To clarify if both cox11+ genes are 

functionally important ura4+- and KanMX4-based disruption cassettes carrying flanking 

sequences with homology to 5’- and 3’-regions of cox11+ (as pointed above, both cox11+ 

genes are part of large 5.7 kb identical duplicated region) were created. Based on the 

results of tetrad analysis and direct sequencing, single cox11∆ and single cox11b∆ 

haploid mutants were obtained in the first round by using the ura4+-based replacement 

cassette. Both mutants were viable and respiratory competent at all temperatures tested. 

These results show that the disruption of either cox11+ or cox11b+ does not affect 

essential cell functions. However, when the respiratory growth on glycerol medium was 

tested the deletion mutants showed differences with cox11b∆ having a more severe 
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defect. This effect may be due to the differences in steady-state levels of the remaining 

SpCox11p isoform as discussed below. Interestingly, further phenotypic analysis of 

diploids carrying cox11∆ or cox11b∆ allele revealed that both are characterized by 

reduced (up to 36%) spore viability compared to the parental strain bearing intact 

versions of cox11+. 

 

       
 

Figure 39. Expression profiles of S. pombe cox11+/cox11b+ under different stress conditions. 

Changes in expression of cox11+ and cox11b+ in S. pombe cells in response to the indicated stress 

conditions (modified from Chen et al., 2003). 

 

To obtain haploid cells with deletion of both cox11 genes, the KanMX4-based 

replacement cassette was applied in diploid strains that bear deletion of a single cox11 

allele. Results of tetrad analysis of the respective transformants suggest that haploid 

double cox11∆ cox11b∆ mutants are non-viable. Moreover, analysis of diploids carrying 

heterozygous cox11∆ and cox11b∆ mutations indicates a dramatic decrease in spore 

viability compared to the wt or the single deletion mutants. As S. pombe is a “petite-

negative” yeast (Wolf et al., 1976; Seitz-Mayr and Wolf, 1982; Schäfer, 2003), depletion 

of the gene(s) important for mtDNA maintenance normally will result in lethality. As 
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both versions of SpCox11p with their ScRsm22p-like moieties appear to be the only 

Rsm22 homlogues in S. pombe, and Rsm22p is important for proper functionnig of 

mtDNA in S. cerevisiae (Saveanu et al., 2000; Carr et al., 2005), the lethal phenotype of 

cox11 double deletion mutants is expected. However, dysfunction of the ScCox11p-like 

part may also contribute to the lethal effect as it was reported for deletion of the S. pombe 

oxa1+ alleles (Bonnefoy et al., 2000). Taken together, the results show that both cox11+ 

and cox11b+ can fulfill the function of SpCox11p in respiration. Interestingly, S. pombe 

also possesses two distinct oxa1+ orthologues and double inactivation is also lethal 

(Bonnefoy et al., 2000). However, in this case only one gene has been shown to be 

essential for respiration. Similar results were obtained, for instance, when the msp1+ 

gene, whose product is important for maintenance of mt dynamics and mtDNA integrity, 

was deleted (Guillou et al., 2005). Decreased spore viability can be a rather unspecific 

effect and was described for a number of knock-outs in S. pombe (Muris et al., 1997; 

Grishchuk and Kohli, 2003). On the other hand, as it was pointed above, S. cerevisiae 

rsm22∆ mutants are also characterized by decreased spore viability (Deutschbauer et al., 

2002). 

 

4.6 Processing of S. pombe Cox11p 

The sequencing of S. pombe genome revealed the presence of several genes encoding 

fusion proteins, several of which are predicted to be mt components (Fig. 40). These gene 

products contain classical mt targeting signals at their N-termini followed by a sequence 

which represents the homologues of two mt proteins arranged in tandem. It is unclear 

whether these tandem proteins are proteolytically processed or remain as fusion proteins 

in mitochondria of S. pombe. Both variants are possible as in diatom Phaeodactylum 

tricornutum triosephosphat isomerase (TPI)-glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) fusion protein is imported without proteolytical separation of the tandem parts 

(Liaud et al., 2000), on the other hand for Cox15p-Yah1p fusion in S. pombe (Bureik et 

al., 2002) or rice succinate dehydrogenase subunit B-mt ribosomal protein S14 fusion 

(Oshima et al., 2005) it was reported that the tandem precursor protein undergoes a 

processing step during the import.  
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As ScRsm22p is a constituent of mt ribosome in S. cerevisiae (Saveanu et al., 2001), it 

was speculated that the expression of Cox11p as a tandem protein with a ribosomal 

subunit in S. pombe might covalently tie Cox11p to the mitochondrial ribosome (Carr and 

Winge, 2003). In favour of this idea Carr et al. (2005), using the unprocessed fusion of 

ScRsm22p-ScCox11p that mimics SpRsm22p-Cox11p tandem, have demonstated that 

such a construct can rescue both S. cerevisiae rsm22 and cox11-null mutants.  

Results of import of radiolabeled Rsm22p-Cox11p precursor into S. pombe mt indicate 

that this fusion protein is efficiently imported and cleaved in two sequential processing 

steps to give rise to three polypeptides: The N-terminal presequence, a mature fragment  

 

 
 

Figure 40. Tandem mitochondrially-localized proteins in S. pombe. Schematic view of the 

proteins predicted to localize to S. pombe mitochondria. The respetive S. cerevisiae counterparts 

as well as presequences and TM domains are indicated.  

 

presumably corresponding to the matrix-located soluble Rsm22p segment and the 

membrane-embedded part assigned to Cox11p protein. In line with that are results 

obtained in in vivo studies, however in that case only HA-tagged Cox11p-corresponding 

part has been detected. Numerous attempts aiming to detect the precursor form were not 

successful. Obviously in vivo uptake into mt and processing of the precursor protein 

seems to be a fast process that does not allow to detect the precursor form. In order to 

prove that MPP is responsible for that cleavage it would be helpful to have a ts-allele of 

MPP subunit or to apply the specific inhibitors during in vitro import. However there is 

 131



Discussion_______________________________________________________________  

an indication that standard procedures using o-phenantroline are inefficient in S. pombe 

mt (preliminary results, data not shown). 

Results of import experiments using different radiolabeled truncates containing only the 

Rsm22p-like part plus putative linker part demonstrate that the cleavage between both 

mature proteins occurs in a region that shows the characteristics of a classical mt 

presequence (von Heijne et al., 1989; Chaumont et al., 1990). Interestingly, the divergent 

region between SpCox11p and SpCox11bp is located inside the stretch predicted to be 

the cleavage site between the two parts of tandem. The significance of that is not clear, as 

both versions of protein appear to be functional and processed. As both SpCox11p 

precursor proteins are cleaved in a similar way, this divergent amino acids obviously has 

no impact on the cleavage. On the other hand if the cleavage occurs within the divergent 

region, the resulting processed forms of SpCox11 and SpCox11b will differ in the N-

terminal aa residue that may result in difference of the protein stability, similarly as it is 

described for cytosolic proteins.  

Thus, the tandem organisation of this protein is not maintained in the endogenous protein, 

but Rsm22p and Cox11p are present in S. pombe as in other species as distinct 

polypeptides. The tandem organisation of mt proteins in S. pombe might be used to 

coordinate expression levels of proteins and/or to improve the efficiency of their mt 

import.  

The importance of Rsm22p-Cox11p fusion in S. pombe is still puzzling and less clear as, 

for example, in the case of the Cox15p-Yah1p tandem: in this case the Cox15p 

homologue is directly involved heme a biosynthesis, while Yah1p acts as electron 

supplier for the Cox15 partner protein (Glerum et al., 1997; Barros et al., 2001; 2002; 

Carr and Winge, 2003). Why these fusion proteins appeared and persisted in evolution 

remains unclear. It is possible that the genomic rearrangements which resulted in the 

expression of these fusion proteins were physiologically neutral since the processing sites 

in the tandem proteins allowed their proteolytic separation in the matrix. However the 

effects of the tandem organisation might have several reasons: (1) The processing of one 

fusion protein warrants equal expression levels two proteins. (2) The separation of the 

tandem protein in the matrix ensures that both proteins emerge at the same entry site in 

the mitochondrion which might help the partnering of cooperating proteins. (3) 
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Noteworthy, in some of the tandem proteins in the S. pombe genome, one part represents 

a hydrophobic membrane protein. It is conceivable that the tethering to a hydrophilic 

polypeptide helps to increase the solubility of mitochondrial membrane proteins thereby 

improving the efficiency of their post-translational import into the organelle. Whatever 

the molecular basis for the benefit is, it most likely is not generally advantageous as only 

few examples of such tandem proteins are present in the genomes that were so far 

sequenced. 

It should be also noted that if tandem organization should warrant a similar concentration 

of both parts, this is rather not the case for Rsm22p-Cox11p fusion, where the Rsm22p 

moiety should be required in higher concentrations than the Cox11p part. However it may 

also be possible that the final in vivo stoichiometry of both protein parts may differ due to 

different proteolytic sensitivities of the two moieties. 

Another curious thing is that Rsm22p homologues were found so far only in fungi 

(Saveanu et al., 2001). Moreover, the aforementioned results indicate that Cox11p 

interaction with mt ribosomes and thus Rsm22p is rather indirect. It is not clear if 

expression of ScCox11p and ScRsm22p coincides. However, a possible hint for the 

significance of Cox11p/Rsm22p relation may come from the finding that in S. cerevisiae 

expression levels of Cox11p and Mrp4p, a ribosomal protein that directly interacts with 

Rsm22p (Gavin et al., 2002) are very similar (Haugen et al., 2004).  
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Chapter 5 

Summary 
Cytochrome c oxidase (COX) is so far the only known Cu-containing enzyme in 

mitochondria. Delivery and insertion of copper into the enzyme are very complex 

processes that require multiple steps and involve a large number of assembly factors. 

Many of these factors are involved in the mt copper shuttling and homeostasis. One of the 

involved components is Cox11p, a copper binding protein, that is conserved from 

prokaryotes to eukaryotes. Cox11p is essential for respiratory growth and implicated in 

the assembly of the CuB site located in subunit Cox1p of COX. Interestingly, in 

Schizosaccharomyces (S.) pombe Cox11p is fused to a protein homologous to ScRsm22p, 

a constituent of small subunit of mt ribosome, and this finding may link Cox11p function 

to the translation of the mt encoded subunit Cox1p. The role of Cox11p in COX assembly 

was studied in this work using two model organisms: the budding yeast Saccharomyces 

(S.) cerevisiae and the fission yeast S. pombe.  

The presence of two COX11 versions (Spcox11+ and Spcox11b+) in the S. pombe 

genome was proven by direct sequencing of isolated DNA fragments. Neither of both 

versions nor their isolated N- and C-terminal parts are able to substitute for ScCox11p. 

Introduction of the Spcox11+ under control of a high-effective promoter in a respiratory 

competent S. cerevisiae strain has no dominant-negative effect. Also the human 

homologue of ScCOX11 (hCOX11), isolated from a liver cDNA, does not complement S. 

cerevisiae cox11 null mutation. A set of chimeric genes composed of portions from the S. 

cervisiae and S. pombe COX11 genes, was created. Surprisingly, none of them was able 

to complement the S. cerevisiae cox11∆ strain.  

Overexpression of ScRSM22, the putative homologue of the gene fused to the COX11 

part in both versions of Spcox11+ also does not complement the S. cerevisiae cox11∆ 

mutation. Notably, in the S. cerevisiae rsm22-null mutant strain stability of the mt 

genome is apparently affected already in the spore germination stage. 

S. pombe cox11+ and cox11b+ knock-out mutants were constructed. Cells lacking only 

one of the cox11+ copies remain respiratory competent. Replacement of both S. pombe 
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cox11+ alleles appears to result in either spore lethality or in severe decrease of spores 

viability. Thus, both versions of SpCox11p are functional and important. 

The topology of ScCox11p was determined by biochemical assays: it was 

demonstrated that it is an integral membrane protein with Nin-Cout topology. ScCox11p is 

proteolytically processed during its import into mitochondria. Co-immunoprecipitation 

data showed that ScCox11p interacts with MrpL36p, a constituent of the large 

mitoribosomal subunit. Results of sucrose gradient centrifugations, TAP-co-purification 

and BN-PAGE provide clear evidence that ScCox11p is associated with mitoribosomes. 

Taken together, these data hint at a link between the formation of CuB site of COX and 

the mt translation machinery. A model for the formation of CuB center of COX is 

proposed, according to that the insertion of copper ion(s) may occur co-translationally 

while the nascent Cox1p is inserted into the lipid bilayer.  

Replacement of the N-terminal part of ScCox11p including the single TM segment by its 

ScSco1p counterpart results in respiratory deficiency and inability to interact with 

mitoribosomes. Mutational studies demonstrate that the highly charged N-terminal part of 

ScCox11p adjacent to the TM helix is dispensable for the function of protein and its 

association with mitoribosomes. Instead, the evolutionary conserved ScCox11p TM 

segment was shown to be crucial for the association of ScCox11p with mitoribosomes. 

Point mutations in the conserved stretch of the TM segment affect respiratory growth: 

Replacement of the highly conserved P105 residue that might be involved in protein-

protein interactions, results in an almost complete abolishment of respiratory growth at 

23°C. On the basis of these data it is proposed that ScCox11p interaction with mt 

ribosomes is indirect and is mediated by another conserved membrane protein(s). Clearly 

the mt translocase ScOxa1p can be excluded as a mediator protein. Possibly factors 

involved in the heme a3 insertion into ScCox1p are involved in this process and allow 

concomitant insertion of the Cu ion and heme a3. 

Results of both in vitro and in vivo studies demonstrate that S. pombe Cox11p 

tandem precursor protein is cleaved during its import into two mature protein species 

corresponding to Rsm22p- and Cox11p-like moieties. Possibly the tandem organisation 

of some nuclear genes encoding mitochondrial proteins in S. pombe is used to coordinate 

expression levels of proteins and to improve the efficiency of their mitochondrial import. 
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Appendix 
 

S.cerevisiae    1 ------------------------------------------------------------ 
S.pombe         1 MPILTCRYKILFLYNLRNCFTFQNQRCLIPYGTTTTIRWYNANFQAVQNNFSDYKNELIS 
H.sapiens       1 ------------------------------------------------------------ 
C.elegans       1 ------------------------------------------------------------ 
R.americana     1 ------------------------------------------------------------ 
R.prowazekii    1 ------------------------------------------------------------ 
 
S.cerevisiae    1 ------------------------------------------------------------ 
S.pombe        61 SHRPEASSLLDFLVKDQKKSGDISLHTKFNLYVDDLLKKSEKGQIKKFINDIKKDLATES 
H.sapiens       1 ------------------------------------------------------------ 
C.elegans       1 ------------------------------------------------------------ 
R.americana     1 ------------------------------------------------------------ 
R.prowazekii    1 ------------------------------------------------------------ 
 
S.cerevisiae    1 ------------------------------------------------------------ 
S.pombe       121 QLPLSAPFKDESTRTMTDPQVLAYIHQSMPYQYASLYSVLTDLKIVNSDVSCKSQHILDC 
H.sapiens       1 ------------------------------------------------------------ 
C.elegans       1 ------------------------------------------------------------ 
R.americana     1 ------------------------------------------------------------ 
R.prowazekii    1 ------------------------------------------------------------ 
 
S.cerevisiae    1 ------------------------------------------------------------ 
S.pombe       181 GKGPGIGALASYSVFPTPNSVSIVEENPFLKKIIYDIHHNIYPSTSPNPTSPVTLNRLPL 
H.sapiens       1 ------------------------------------------------------------ 
C.elegans       1 ------------------------------------------------------------ 
R.americana     1 ------------------------------------------------------------ 
R.prowazekii    1 ------------------------------------------------------------ 
 
S.cerevisiae    1 ------------------------------------------------------------ 
S.pombe       241 GKKDSYTLVIASNKLLEMKSEKELFDYLRSLWSLVSNDGGLLVLCERGTKRGFSLIQRAR 
H.sapiens       1 ------------------------------------------------------------ 
C.elegans       1 ------------------------------------------------------------ 
R.americana     1 ------------------------------------------------------------ 
R.prowazekii    1 ------------------------------------------------------------ 
 
S.cerevisiae    1 ------------------------------------------------------------ 
S.pombe       301 TFLLQKSKNTSDKQFNAHIVAPCPHDGRCPIDIENGVRANICSFKQHFFLSPFSRLYVPR 
H.sapiens       1 ------------------------------------------------------------ 
C.elegans       1 ------------------------------------------------------------ 
R.americana     1 ------------------------------------------------------------ 
R.prowazekii    1 ------------------------------------------------------------ 
 
S.cerevisiae    1 ------------------------------------------------------------ 
S.pombe       361 SHRRSSDRSHYSYVVIQKGITRPLNNTTQRFKNDEDLLENVNVTSPTLKNWPRIIRPPLK 
H.sapiens       1 ------------------------------------------------------------ 
C.elegans       1 ------------------------------------------------------------ 
R.americana     1 ------------------------------------------------------------ 
R.prowazekii    1 ------------------------------------------------------------ 
 
S.cerevisiae    1 -----------------------------------------------------------M 
S.pombe       421 RDGHVIIDVCDSDARLRRNIVPKSQGKLAYRLARKSAWGDLFPLEGKVQSTSPSSKITKH 
H.sapiens       1 ----------------------------------------------MGGLWRPGWRCVPF 
C.elegans       1 ------------------------------------------------------------ 
R.americana     1 ------------------------------------------------------------ 
R.prowazekii    1 ------------------------------------------------------------ 
 
S.cerevisiae    2 IRICPIVRSKVPLLGTFLRSDSWLAPHALALRRAICKNVALRSYSVNSEQPKHTFDI--- 
S.pombe       481 LKDASSTYSINPPSYNKPKVERNTTADPIFVGKRFYSTNRHKAFSRFADFNSHRFPCIFT 
H.sapiens      15 CGWRWI--HPGSPTRAAERVEPFLRPEWSGTGGAERGLRWLGTWKRCSLRARHPALQPPR 
C.elegans       1 ------------------------------------------------------------ 
R.americana     1 ------------------------------------------------------------ 
R.prowazekii    1 ------------------------------------------------------------ 
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S.cerevisiae   59 SKLTRNEIQQLRELKRARERK---FKDRTVAFYFSSVAVLFLGLAYAAVPLYRAICARTG 
S.pombe       541 SFSCYNCISGTRKYSRQYSRDKFHYNQRTTIYYLVAISIFALGLTYAAVPLYRLFCSKTG 
H.sapiens      73 RPKSSNPFTRAQEEERRRQ-------NKTTLTYVAAVAVGMLGASYAAVPLYRLYCQTTG 
C.elegans       1 ----------------------------------MSLVIVAIGCTFAAIPAYRIFCEQTS 
R.americana     1 ----------------------MFKNRKSIAILIAAVSITMIGFSYGSVPLYRIFCQVTG 
R.prowazekii    1 ---------------------MSKKSNKNLAFSLLGLMMSMVLLSFASVPIYNLFCKVTG 
 
S.cerevisiae  116 FGGIPITDRRKFTDDKLI-PVDTEKRIRISFTSEVSQILPWKFVPQQREVYVLPGETALA 
S.pombe       601 YGGTLNTDQSRMNAERMV-PRKDNKRIRVTFNGDVAGNLSWKLWPQQREIYVLPGETALG 
H.sapiens     126 LGGSAVAGHASDKIENMV-PVKD-RIIKISFNADVHASLQWNFRPQQTEIYVVPGETALA 
C.elegans      27 FGGLTQVAKDFDKIANMK-KCED-RLIRVQFNSDVPSSMRWEFKPQQHEIYVHPGETALA 
R.americana    39 FGGTTQVADLESDILTLKDEQQENRIITVRFNGDVSDTMPWKFHPIQQEIKVMVGETALA 
R.prowazekii   40 YGGTTI-----KETVSVYSKVKGTKAIIIEFDANVDPNLPWHFIPRQKRVQIVPGQNTLV 
 
S.cerevisiae  175 FYKAKNYSDKDIIGMATYSIAPGEAAQYFNKIQCFCFEEQKLAAGEEIDMPVFFFIDPDF 
S.pombe       660 FYTAENTSDHDIVGVATYNIVPGQAAVYFSKVACFCFEEQKLDAHEKVDLPVFFFIDPEF 
H.sapiens     184 FYRAKNPTDKPVIGISTYNIVPFEAGQYFNKIQCFCFEEQRLNPQEEVDMPVFFYIDPEF 
C.elegans      85 FYTARNPTDKPIIGISSYNLTPFQAAYYFNKIQCFCFEEQILNPGEQVDLPVFFYIDPDY 
R.americana    99 FYSAENPTDSSIIGISTYNVNPQQAGIYFNKIQCFCFEEQRLKPHETIDMPVFFFIDPAI 
R.prowazekii   95 FYEAENLSNKDIIGTSIYNVTPNKAGKYFVKIHCFCFEEQLLKAREKVLMPVTFYIDNDF 
 
S.cerevisiae  235 ASDPAMRNIDDIILHYTFFRAHYGDGTAVS-DSKKEPEMNADEKAASLANAAILSPEVID 
S.pombe       720 ADDPNMKDIDDILLSYTFFEARYDTNGNLL-TKLN------------------------- 
H.sapiens     244 AEDPRMIKVDLITLSYTFFEAKEGHKLPVP-GYN-------------------------- 
C.elegans     145 VNDPALEYLDSILLSYTFFEAKSGLKLPDPFDPKNRPSIAPSPDKVPEATK--------- 
R.americana   159 LDDPKMSDIDSITLSYTFFNVEDL------------------------------------ 
R.prowazekii  155 ERDPEMENIKVITLSYSFFKIREL------------------------------------ 
 
S.cerevisiae  294 TRKDNSN 
S.pombe           ------- 
H.sapiens         ------- 
C.elegans         ------- 
R.americana       ------- 
R.prowazekii      ------- 
 
 

 
Figure 41. Alignment of Cox11p from different organisms. S. cerevisiae Cox11p is aligned 

with the respective amino acid sequences of the indicated organisms.  
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SpCox11p     1 MPILTCRYKILFLYNLRNCFTFQNQRCLIPYGTTTTIRWYNANFQAVQNNFSDYKNELIS 
SpCox11bp    1 MPILTCRYKILFLYNLRNCFTFQNQRCLIPYGTTTTIRWYNANFQAVQNNFSDYKNELIS 
 
SpCox11p    61 SHRPEASSLLDFLVKDQKKSGDISLHTKFNLYVDDLLKKSEKGQIKKFINDIKKDLATES 
SpCox11bp   61 SHRPEASSLLDFLVKDQKKSGDISLHTKFNLYVDDLLKKSEKGQIKKFINDIKKDLATES 
 
SpCox11p   121 QLPLSAPFKDESTRTMTDPQVLAYIHQSMPYQYASLYSVLTDLKIVNSDVSCKSQHILDC 
SpCox11bp  121 QLPLSAPFKDESTRTMTDPQVLAYIHQSMPYQYASLYSVLTDLKIVNSDVSCKSQHILDC 
 
SpCox11p   181 GKGPGIGALASYSVFPTPNSVSIVEENPFLKKIIYDIHHNIYPSTSPNPTSPVTLNRLPL 
SpCox11bp  181 GKGPGIGALASYSVFPTPNSVSIVEENPFLKKIIYDIHHNIYPSTSPNPTSPVTLNRLPL 
 
SpCox11p   241 GKKDSYTLVIASNKLLEMKSEKELFDYLRSLWSLVSNDGGLLVLCERGTKRGFSLIQRAR 
SpCox11bp  241 GKKDSYTLVIASNKLLEMKSEKELFDYLRSLWSLVSNDGGLLVLCERGTKRGFSLIQRAR 
 
SpCox11p   301 TFLLQKSKNTSDKQFNAHIVAPCPHDGRCPIDIENGVRANICSFKQHFFLSPFSRLYVPR 
SpCox11bp  301 TFLLQKSKNTSDKQFNAHIVAPCPHDGRCPIDIENGVRANICSFKQHFFLSPFSRLYVPR 
 
SpCox11p   361 SHRRSSDRSHYSYVVIQKGITRPLNNTTQRFKNDEDLLENVNVTSPTLKNWPRIIRPPLK 
SpCox11bp  361 SHRRSSDRSHYSYVVIQKGITRPLNNTTQRFKNDEDLLENVNVTSPTLKNWPRIIRPPLK 
 
SpCox11p   421 RDGHVIIDVCDSDARLRRNIVPKSQGKLAYRLARKSAWGDLFPLEGKVQSTSPSSKITKH 
SpCox11bp  421 RDGHVIIDVCDSDARLRRNIVPKSQGKLAYRLARKSAWGDLFPLEGKVQSTSPSSKITKH 
 
SpCox11p   481 LKDASSTYSINPPSYNKPKVERNTTADPIFVGKRFYSTNRHKAFSRFADFNSHRFPCIFT 
SpCox11bp  481 LKDASSTYSINPPSYNKPKVERNTTADPIFVGKRFYSTNRHKAFSRFADFNSHRFPCIFT 
 
SpCox11p   541 SFSCYNCISGTRNISRQYSRDKFHYNQRTTIYYLVAISIFALGLTYAAVPLYRLFCSKTG 
SpCox11bp  541 SFSCYNCISGTRKYSRQYSRDKFHYNQRTTIYYLVAISIFALGLTYAAVPLYRLFCSKTG 
 
SpCox11p   601 YGGTLNTDQSRMNAERMVPRKDNKRIRVTFNGDVAGNLSWKLWPQQREIYVLPGETALGF 
SpCox11bp  601 YGGTLNTDQSRMNAERMVPRKDNKRIRVTFNGDVAGNLSWKLWPQQREIYVLPGETALGF 
 
SpCox11p   661 YTAENTSDHDIVGVATYNIVPGQAAVYFSKVACFCFEEQKLDAHEKVDLPVFFFIDPEFA 
SpCox11bp  661 YTAENTSDHDIVGVATYNIVPGQAAVYFSKVACFCFEEQKLDAHEKVDLPVFFFIDPEFA 
 
SpCox11p   721 DDPNMKDIDDILLSYTFFEARYDTNGNLLTKLN 
SpCox11bp  721 DDPNMKDIDDILLSYTFFEARYDTNGNLLTKLN 
 

 

Figure 42. Alignment of S. pombe Cox11p and Cox11bp. SpCox11p is aligned with the 

SpCox11bp, a second version of the respective protein in S. pombe. 
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ScRsm22p       1 ------MMKRCFSILPQNV-RFSSKFTSLNLPKLDLADFIDSNKRGI-NVLPSYRDETAS 
SpCox11p(N)    1 MPILTCRYKILFLYNLRNCFTFQNQRCLIPYGTTTTIRWYNANFQAVQNNFSDYKNELIS 
 
ScRsm22p      53 TTQATNSKELRLLSKTLQGQ---SYRDQLELN-PDVSKAINNNIMAVHIPNNLRRVATNY 
SpCox11p(N)   61 SHRPEASSLLDFLVKDQKKSGDISLHTKFNLYVDDLLKKSEKGQIKKFINDIKKDLATES 
 
ScRsm22p     109 YKEIQEP-NSLHRPCRTKMEVDAHIASIFLQNYGSIFQSLKELQKRVGPDNFKPQRILDV 
SpCox11p(N)  121 QLPLSAPFKDESTRTMTDPQVLAYIHQSMPYQYASLYSVLTDLKIVNSDVSCKSQHILDC 
 
ScRsm22p     168 GYGPATGIVALNDILGPNYRPDLKDAVILGNAEMQERAKIILSRQLNEVVDTVEENVSTE 
SpCox11p(N)  181 GKGPGIGALASYSVF-----------------------------PTPNSVSIVEENPFLK 
 
ScRsm22p     228 KEQETDRRNKNFQEDEHIGEVMTKKINIMTNLRSSIPASKEYDLIILTHQLLHDGNQFPI 
SpCox11p(N)  212 KIIYDIHHNI-------YPSTSPNPTSPVTLNRLPLGKKDSYTLVIASNKLLEMKSEKEL 
 
ScRsm22p     288 QVDENIEHYLNILAPGGHIVIIERGNPMGFEIIARARQITLRPENFPDEFGKIPRPWSRG 
SpCox11p(N)  265 -FDYLRSLWSLVSNDGGLLVLCERGTKRGFSLIQRARTFLLQKSKNTSD----------- 
 
ScRsm22p     348 VTVRGKKDAELGNISSNYFLKVIAPCPHQRKCPLQVGNPNFYTHKEGKDLKFCNFQKSIK 
SpCox11p(N)  313 ---------------KQFNAHIVAPCPHDGRCPIDIEN--------GVRANICSFKQHFF 
 
ScRsm22p     408 RPKFSIELKKGKLLATSWDGSQGNASRLKGTGRRNGRDYEILNYSYLIFERSHKDENTLK 
SpCox11p(N)  350 LSPFS---------------------RLY-VPRSHRRSSDRSHYSYVVIQKGITRPLNNT 
 
ScRsm22p     468 EIKKLRNENVNGKYDIGSLGDDTQNSWPRIINDPVKRKGHVMMDLCAPSGELEKWTVSRS 
SpCox11p(N)  388 TQRFKNDEDLLENVNVTS---PTLKNWPRIIRPPLKRDGHVIIDVCDSDARLRRNIVPKS 
 
ScRsm22p     528 FSKQIYHDARKSKKGDLWASAAKTQIKGLGDLNVKKFHKLEKERIKQLKKEERQKARKAM 
SpCox11p(N)  445 QGKLAYRLARKSAWGDLFPLEGKVQSTSPSSKITKHLKDASSTYSINPPSYNKPKVERNT 
 
ScRsm22p     588 ESYNELEDSLQFDDHQFSNFEVMKKLSTFHGNDFLQHVNRK--- 
SpCox11p(N)  505 TADPIFVGKRFYSTNRHKAFSRFADFNSHRFPCIFTSFSCYNCI 
 

 

Figure 43. Alignment of S. cerevisae Rsm22p and the N-terminal part of S. pombe Cox11p. 

S. cerevisiae Rsm22p is aligned with the amino acid sequence of the N-terminal part of S. pombe 

Cox11p. 
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