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1 Introduction

One of the most powerful extensions of classical formal language and au-
tomata theory is the consideration of weights, costs, or multiplicities. This
line of research was initiated by Schützenberger [Sch61b] and Eilenberg
[Eil74]. Most naturally, this generalization arises if we consider the num-
ber of successful runs of a finite automaton on a word and not only the
existence of such a run. Most surprisingly, an enormous amount of differ-
ent weight models all can be described by one algebraic structure: the
semiring. Last but not least because of their importance in theoreti-
cal computer science the algebraic study of semirings intensified and was
summarized, see e.g. the textbooks of Golan [Gol99] and Hebisch and
Weinert [HW99]. Since the paper of Schützenberger [Sch61b], a tremen-
dous amount of literature was published within the area of weighted au-
tomata over words. For an overview see [SS78, BR88, KS86, Kui97b].
Last but not least, the increasing application of weighted automata in lan-
guage recognition (cf. [Moh97, MPR00]) and image compression (cf. [CK93,
CK97, Haf99, Kat01]) as well as the work of the Max-Plus-community
(cf. [GP97, CGQ99, Gun98, BCOQ92]) are responsible for the renaissance
of weighted automata within the last years. Especially, weighted automata
over other structures than words, like trees and Mazurkiewicz traces, have
received a lot of attraction. It is the aim of this dissertation to investigate
weighted automata over structures incorporating concurrency.

In order to model semantics of concurrent processes a variety of mod-
els have been proposed, e.g. the information systems of Scott [Sco82] or
the event structures of Winskel [Win87]. Models closer to formal lan-
guage theory are Mazurkiewicz traces [Maz87, DR95], the automata with
concurrency relations of Droste [Dro92], or the asynchronous cellular au-
tomata introduced by Zielonka [Zie87, Zie89] for traces and extended to
pomsets without auto-concurrency by Droste, Gastin, and Kuske [DGK00].
For an overview see also [NW95]. Another line of research was initi-
ated by Grabowski [Gra81], Pratt [Pra86], and Gischer [Gis88]. They



1 Introduction

extended previous ideas by Kleene [Kle56] on sequential systems built by
non-deterministic choice, sequential composition and iteration, and, in ad-
dition, proposed a parallel composition in order to model distributed sys-
tems. It turned out that sequential-parallel posets1 are ideally suited to
describe executions of such systems. However, sequential-parallel posets
have one significant weakness: they can model a hierarchy of parallel pro-
cesses only, but no passing of messages. On the other hand, they allow
auto-concurrency. This, for instance, is a difference to Mazurkiewicz traces.
Later on, Lodaya and Weil [LW00] proposed a finite-state device capable
of accepting languages of sequential-parallel posets which was extended by
Kuske [Kus03] to infinite sequential-parallel posets. These automata model
parallelism by branching – hence the name “branching automata”. Runs
of branching automata are built of atomic runs by two compositions: a
sequential one, as in the case of words, and a parallel one. Suppose we
wanted to calculate the minimal duration of a run in a system constructed
by sequential and parallel composition. The execution time of a sequen-
tial composition is the sum of the durations of the sub-runs. Whereas the
execution time of a parallel composition is the maximum of the durations
of the sub-runs, possibly increased by some time for the necessary forking
and joining of the processes. This is natural because the system has to
wait till the last sub-process is finished. Thus, the two operations for cal-
culating the durations of sequential and parallel compositions are different.
If the system is non-deterministic a given sequential-parallel poset can be
executed in different ways and we should consider the minimal duration of
all possible executions. Thus, our driving example of calculating minimal
duration times requires three operations on the underlying weight struc-
ture: addition for sequential composition, maximum for the parallel one,
and minimum to handle non-determinism.

In weighted automata over words, sequential composition is modeled
by the multiplication of the underlying semiring, and non-determinism by
the addition of the semiring. In order to accompany the situation de-
scribed above, we introduce a second multiplication to deal with parallel
composition. This multiplication should be commutative because parallel

1The term “poset” stands for “partially ordered set”. Gischer [Gis88] called these
posets “series-parallel pomsets” (partially ordered marked sets), and Lodaya and
Weil [LW00] “series-parallel posets”. To avoid any confusion with the notion “series”,
used here for formal power series, we will call them “sequential-parallel posets”.

2



1 Introduction

composition is so. This observation results in the notion of bisemirings,
i.e. structures consisting of two semirings on a joint domain with the same
additive operation. Weights of executions in our model of weighted branch-
ing automata are then evaluated in such bisemirings and the behavior of
a weighted branching automaton is a function that associates with every
sequential-parallel poset an element from the bisemiring.

It is the aim of this dissertation to characterize those functions that are
associated with weighted branching automata, to examine closure proper-
ties of them, and to explore the connections to languages of sequential-
parallel posets as considered by Lodaya and Weil [LW00, LW01]. A part
of the results was already published in [KM03].

After introducing sequential-parallel posets and bisemirings in Chap-
ter 2, we define the model of weighted branching automata in Chapter 3.
A weighted branching automaton is a finite-state device with three differ-
ent types of transitions. Sequential transitions are defined as in classical
weighted automata: they transform a state into another one by executing
an action from the alphabet, and they carry a weight from the bisemiring.
On the other hand, fork and join transitions are responsible for branching.
A fork transition forks from one state into several other states, whereas a
join transition joins a number of states to one state. Certainly, fork and
join transitions also carry weights from the underlying bisemiring. Fur-
thermore, weighted branching automata have an initial and a final weight
function which determine at which states and by which weights the system
is allowed to be entered and left. In a weighted branching automaton, the
parallel composition of n runs is realized as follows: in one state a fork
transition branches into n states, from these n states the n runs are ex-
ecuted, and, finally, the n terminating states of these runs are joined by
a join transition to one state. Hence, parallel runs are balanced in the
sense that they start with a fork and end with a join transition. This is
quite different to tree automata. Depending on the kind of runs which
are allowed to be composed in parallel, two possible running modes of a
weighted branching automaton are defined. The cascade branching mode
is closer to the machine level. Here, the branching into several parallel
sub-processes can be done in cascades. On the other hand, the maximally
branching mode is closer to the algebraic structure of sequential-parallel
posets. When branching, a process branches at once into all possible sub-
processes. These two different notions of runs result in two kinds of be-

3



1 Introduction

haviors: the cascade branching behavior, or C-behavior for short, and the
maximally branching behavior, or M-behavior. The C-runs are the runs
Lodaya and Weil [LW00] defined for their branching automata. They did
not consider something like the M-mode. Nevertheless, the M-runs resem-
ble the runs they define for branching automata over term algebras with
an additional series operation [LW01].

We want to characterize the behaviors of weighted branching automata
in the style of Kleene’s theorem [Kle56] stating the equivalence of recogniz-
able and rational sets of words. Weighted automata over words generate
functions from the free monoid of all finite words into the semiring in con-
sideration. To develop a concept of rationality for those functions it turned
out to be convenient to consider these functions as formal power series in
non-commuting variables. This allowed Schützenberger [Sch61b] to show
that a formal power series is rational if and only if it is the behavior of
a weighted word automaton. We follow these lines and introduce in Sec-
tion 3.2 formal power series over sequential-parallel posets with values in
a bisemiring which we call sequential-parallel series or sp-series. Moreover,
we define rational operations; this results in the classes of rational and of
sequential-rational sp-series. The rational operations comprise sum, scalar
products, sequential product and iteration, and parallel product and itera-
tion, whereas the sequential-rational operations exclude the parallel itera-
tion. When Lodaya and Weil considered languages accepted by branching
automata, they observed that unbounded parallelism cannot be captured
completely by rational operations. Their main results hold for languages of
bounded width [LW00] where the number of parallel actions is bounded for
all elements of the language uniformly. Since in a parallel system the width
corresponds to the number of independent processes, this restriction seems
natural to us. Therefore, a lot of our results hold for weighted branching
automata generating sp-series with support of bounded width. However,
in [LW98] Lodaya and Weil gave another notion of rationality replacing par-
allel iteration by ξ-substitution and a restricted ξ-exponentiation borrowed
from the generalized rational expressions of Thatcher and Wright [TW68].
In [LW01], they refined the restriction of the ξ-exponentiation again and
could prove the coincidence of these generalized rational languages with
those languages accepted by branching automata. However, this notion of
rationality – closer to rationality of tree series – is beyond the scope of this
dissertation.

4



1 Introduction

Chapters 4, 5, and 6 are devoted to the proof of a theorem in the spirit of
Kleene and Schützenberger. In Chapter 4, the closure of regular sp-series,
i.e. those recognized by a weighted branching automaton, under rational
operations is shown. Except for parallel product and iteration these clo-
sure properties hold true both for cascade and maximally branching mode.
In addition, a result is given stating that every weighted branching au-
tomaton can be turned into a normalized one with the same behavior.
Normalized automata can be entered in one state by weight 1 only, and
dually for final states. All proofs given for normalization and closure under
rational operations are constructive. The concluding result of Chapter 4
states that every rational sp-series is C-regular. To prove the converse of
this statement we restrict ourselves to series of bounded width as indicated
above. The property of bounded width is one of the series and not of the
automaton. However, in order to show that regular sp-series of bounded
width are sequential-rational we have to construct a sequential-rational
expression from the given weighted branching automaton. For this, a hi-
erarchy of the parallel sub-processes is necessary. This hierarchy can be
described by a depth of a run, a notion due to Kuske [Kus03] developed
in the context of sp-languages. If the depths of all runs of a weighted
branching automaton are uniformly bounded then the automaton is said
to be of bounded depth. It turns out that the notion of bounded depth
reflects the bounded width of the behavior, i.e. every regular sp-series of
bounded width can be recognized by a weighted branching automaton of
bounded depth. This was already shown for sequential-parallel languages
by Kuske [Kus03]. However, for sp-series over bisemirings which allow a
non-trivial additive composition of zero the construction of Kuske does not
succeed. We give a much more involved construction to prove the result
for arbitrary bisemirings. Next, the equivalence of the concepts of bounded
depth and fork acyclicity is shown. Fork acyclic automata were introduced
by Lodaya and Weil [LW00]. Last but not least, we prove the decidability
of empty support and of bounded width for regular sp-languages in case the
bisemiring is positive, i.e. the bisemiring does not allow a non-trivial de-
composition of zero, neither additive nor multiplicative. All this is subject
of Chapter 5. Now, we can prove the coincidence of sequential-rational sp-
series and C-behaviors of weighted branching automata of bounded depth.
This is done in Chapter 6. Moreover, every sequential-rational sp-series is
the C-behavior of some weighted branching automaton of bounded depth
which is normalized and forks always into two branches only. By these

5
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results the Kleene-like characterization given by Lodaya and Weil for sp-
languages [LW00] is generalized to sp-series over arbitrary bisemirings.

In Chapter 7 we discuss the two different notions of C- and M-regularity.
It is easy to see that M- and C-regular sp-series do not coincide for un-
bounded width. Again, we restrict ourselves to sp-series of bounded width.
Firstly, we give a construction turning a weighted branching automaton A
of bounded depth into another one A′ such that the C-behavior of A′ is
the same as the M-behavior of A. Hence, in the case of bounded width
every M-behavior, which is closer to the algebraic structure of sequential-
parallel posets, can be realized as a C-behavior, closer to the machine level.
The other way round, i.e. to simulate C-behaviors by M-behaviors, more
difficulties arise. An example is given showing that this is not possible in
general. Restrictions have to be imposed on the bisemiring. Two classes of
bisemirings are considered: doubled semirings, where sequential and par-
allel product coincide, and distributive bisemirings, where the sequential
product distributes over the parallel one. For both classes we show that
every sequential-rational sp-series is M-regular, and, therefore, M-regular
and C-regular sp-series of bounded width coincide for these bisemirings. En
passant, we prove that over distributive bisemirings each weighted branch-
ing automaton of bounded depth allows an equivalent automaton with the
same behavior where all fork and join transitions have weight 1 only.

The M-behavior plays a prominent role in Chapter 8. This chapter is con-
cerned with the closure of regular sp-series under the sequential Hadamard
product. The Hadamard product of two series is defined as a pointwise
product and is the generalization of the intersection of two languages. Lo-
daya and Weil [LW00, Thm. 4.6] noted for regular sp-languages that the
closure under intersection can be shown by the classical construction. This
works when considering the product algebra of the recognizing finite sp-
algebras, i.e. by turning to an algebraic characterization. However, not
every regular sp-language is recognizable, as already noted by Lodaya and
Weil [LW00]. But in order to recognize the Hadamard product by an au-
tomaton we would have to construct a product automaton simulating two
automata simultaneously. As we will show this construction cannot be
generalized straightforwardly in the C-running mode. This is because the
branching structure of the automaton does not reflect the associativity of
the parallel product. Therefore, we have to consider the M-running mode.
For the product automaton recognizing the Hadamard product it is nec-

6
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essary to shift weights over fork and join transitions away to the different
depth levels of the automaton. Therefore, it is obvious that sequential
and parallel multiplication of the bisemiring cannot be absolutely inde-
pendent of each other. We show the closure of M-regular sp-series under
Hadamard product in the case of idempotent commutative doubled semi-
rings. The commutativity is not surprising because it is already necessary
in the case of words. However, idempotency seems to come as a surprise.
As we will see, it is due to auto-concurrency. When we restrict ourselves to
sp-posets which do not allow a direct auto-concurrency we can drop this re-
striction. For idempotent, commutative, distributive bisemirings M-regular
sp-series are not closed under Hadamard product anymore. Nevertheless,
we explore the behavior of the product automaton over the bisemiring
(
�
∪ {+∞}, min, +, max, +∞, 0) which is of this type. In this case, the

behavior of the product automaton is less than or equal to the Hadamard
product.

The last chapter is concerned with some basic connections between se-
ries and languages, especially with characteristic series and supports. A
first result states that the support of a regular sp-series is regular if the
underlying bisemiring is positive. Then we give an example of a regu-
lar sp-language whose characteristic series is not regular over the doubled
semiring of the natural numbers. This differs completely from the situa-
tion of word series where the characteristic series of a regular language is
always regular [BR88, Prop. 2.1]. But if we choose the bisemiring idempo-
tent and impose another small restriction, characteristic series of regular
sp-languages are regular. Last but not least, regular series over idempotent
bisemirings stay regular when restricted to regular languages.

As we already noted above, a rich field of research concerning series over
other structures than words was opened over the last years. One sub-
ject very close to ours are the series over Mazurkiewicz traces examined
by Droste and Gastin [DG99, DG00]. Last but not least, traces are an
important model for concurrency which is determined by a global inde-
pendence relation on the alphabet. Droste and Gastin considered trace
series with values in a semiring. The automata they used are weighted
word automata with an additional I-diamond property which ensures that
equivalent words, with respect to the independence relation, have the same
weight. Naturally, this way the weight operations for sequential and parallel
composition cannot be handled differently. In [DG99], Droste and Gastin

7
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proved a Schützenberger theorem for commutative semirings. Moreover,
they also considered aperiodic formal power series over traces [DG00].

A tremendous amount of literature was published on tree series. Berstel
and Reutenauer [BR82] showed that recognizable formal tree series over
fields arise as components of unique solutions of certain systems of equa-
tions over polynomials. Later on, Bozapalidis et al. [BLB83, BA89, Boz91]
gave a characterization of recognizable formal tree series over fields by ma-
trix representation and their syntactic algebra following a line of research
initiated by Reutenauer [Reu80, BR88] for word series. Later on, Bozapa-
lidis [Boz94] gave a characterization of representable tree series by finitely
generated stable semimodules for an arbitrary semiring �. Kuich [Kui97a]
proved a Kleene-like theorem for recognizable formal tree series by using
fixed point theory on complete partial orders. Therefore, the underlying
semiring has to be commutative, complete, naturally ordered, and contin-
uous. Recently, a generalization of Kuich’s result was achieved by Bloom
and Ésik [BÉ03] who showed a Kleene-theorem for commutative Conway-
semirings. Kuich [Kui00] also showed a Kleene-like theorem for series over
Σ-algebras. On the other hand, Droste, Vogler, and Pech [DPV04] proved
by elementary automata constructions a Kleene-type result for tree series
over commutative semirings. Pech [Pec03a, Pec03b] proposed for tree se-
ries over commutative semirings a new technique of proving the Kleene-type
theorem on another higher semantic level and by transforming this result
later on back to the level of formal tree series by a natural abstraction map.
The higher semantic level is modeled by weighted tree languages, these are
multisets of trees whose nodes are equipped with weights from the semiring.
As already indicated, runs in weighted tree automata are different from
those of branching automata because they are built by top-catenation of
runs by a transition. If e.g. the function symbol is binary, the correspond-
ing operation takes three arguments: two runs and the transition. The
weights of these three arguments are multiplied to get the weight of the
extended run. Since sequential-parallel posets can be seen as terms mod-
ulo associativity and commutativity of the parallel product we could try to
transfer the top-catenation composition of runs to automata on sp-posets.
But this would yield a model where parallel and sequential composition are
dealt with in a uniform manner which we consider inappropriate. However,
in [Kui97a] Kuich introduced distributive multioperator monoids or DM-
monoids for short. A DM-monoid is a commutative monoid with additional

8
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operations which distribute over the monoid operation. Moreover, the unit
of the monoid is annihilating for the other operations. Kuich noticed that
the distributive operations of the DM-monoid can be lifted to series over
trees with values in a DM-monoid. In [Kui99], he considered automata
on DM-monoids and showed that behaviors of those automata and the
least solutions of linear systems of equations are equivalent mechanisms
if the underlying DM-monoid is continuous. Bisemirings can be seen as
DM-monoids even if not necessarily as continuous DM-monoids. However,
the automata of Kuich [Kui99] resemble top-down tree automata. Even if
we would consider sp-posets as terms and bisemirings as DM-monoids it
is by far not understood how our branching automata compare to those
automata of Kuich. It may be interesting to explore this connection fur-
thermore.

By combining the phenomena of weights and concurrency by the model
of weighted branching automata we hope both to enrich the area of con-
currency and to popularize the idea of composing weights differently with
respect to the underlying composition of actions.

9





2 Sequential-Parallel Posets and

Bisemirings

2.1 Sequential-Parallel Posets

Words, i.e. elements of the free monoid Σ? over a finite alphabet Σ, are
used to model the executions of a sequential system. Words can also be
seen as linearly ordered sets. In order to cover concurrency one can turn
to partial orders instead of linear ones.

A partially ordered set (V,≤), or poset for short, is a set V equipped
with an ordering relation ≤, i.e. a reflexive, antisymmetric, and transitive
binary relation on V . The empty poset (Ø, Ø) is denoted by ε. A set A ⊆ V
is an anti-chain of (V,≤) if the elements of A are mutually incomparable.
From now on, any poset is assumed to be finite. Then the width of a poset
t = (V,≤) is the maximal cardinality of an anti-chain in t, i.e. wd(t) =
max{|A| | A ⊆ V anti-chain}.

Now let Σ be a finite alphabet. A Σ-labeled poset (V,≤, τ ) is a finite poset
(V,≤) equipped with a labeling function τ : V −→ Σ. Again, ε = (Ø, Ø, Ø)
is the empty Σ-labeled poset. Now, we define the sequential and the parallel
product of two Σ-labeled posets t1 = (V1,≤1, τ1) and t2 = (V2,≤2, τ2)
(cf. Figure 2.1). We assume V1 ∩ V2 = Ø (otherwise take disjoint copies of
V1 and V2, respectively). The sequential product t1·t2 of t1 and t2 is the
Σ-labeled poset

(V1 ∪ V2,≤1 ∪ (V1 × V2) ∪ ≤2, τ1 ∪ τ2).

Hence, in t1·t2 every element of V1 is less than every element of V2. Graph-
ically, t2 is put on top of t1. The parallel product t1 ‖ t2 is defined as

(V1 ∪ V2,≤1 ∪ ≤2, τ1 ∪ τ2),
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a

b

t1

a a

b

t2

a

b

a a

b

t1·t2

a

b

a a

b

t1 ‖ t2

Figure 2.1: Sequential and parallel product.

i.e. the two partial orders are put side by side. Thus, every element of V1

is incomparable to every element of V2. Obviously, both the sequential and
the parallel product are associative. Moreover, the parallel product is also
commutative. Note that there is no connection between both products. In
the sequel, we will not further mention the condition V1 ∩ V2 = Ø when
applying one of the two products. In fact we consider isomorphism classes
of Σ-labeled posets, also called pomsets in the literature [Gis88].

SP(Σ) denotes the least class of Σ-labeled posets containing all labeled
singletons and closed under the application of the sequential and the par-
allel product. Its elements are called sequential-parallel posets1 over Σ or
sp-posets for short. Thus, any sp-poset can be obtained from the singletons
by applying the sequential and parallel product a finite number of times.
Hence, any sp-poset is finite. We write SP instead of SP(Σ) if Σ is clear
from the context. Note that SP does not comprise the empty poset ε. We
put SP1 = SP∪{ε}. But from now on, we usually consider non-empty
posets only.

The sp-posets may be characterized by a forbidden sub-structure. Con-
sider the poset (N,≤N ) shown in Figure 2.2. A poset (V,≤) is N-free if
(N,≤N ) cannot be embedded in (V,≤), i.e. there is no order-isomorphism
from (N,≤N ) to a subposet of (V,≤).

Lemma 2.1 ([Gra81, Gis88]). A Σ-labeled poset (V,≤, τ ) is an sp-poset if
and only if (V,≤) is N-free.

1Called “series-parallel posets” in [LW00].

12



2.1 Sequential-Parallel Posets

x1 y1

x2 y2

Figure 2.2: The poset (N,≤N ).

Note that this characterization is independent of the concrete labeling
τ of the poset. The poset (N,≤N ) models some kind of message passing.
Once more, consider Figure 2.2. Indeed, x1 ≤ x2 and y1 ≤ y2 may be seen
as two parallel processes between which a message is passed from y1 to
x2. Thus, y1 ≤ x2. In the introduction we already noted that this type of
concurrency is not covered by sp-posets.

(SP(Σ), ·, ‖ ) is an algebra in the sense of universal algebra (see [Wec92]
for an overview). Naturally, it may be generalized to the notion of an sp-
algebra as already observed by Lodaya and Weil [LW00]. An sp-algebra
(S, ·, ‖ ) is a set S with two binary associative operations, called sequential
and parallel product, where ‖ is also commutative. Clearly, (SP(Σ), ·, ‖ )
is an sp-algebra. It is isomorphic to the free sp-algebra over the set Σ in
the variety of sp-algebras [LW00].

An element e ∈ S is an identity (or a neutral element) if it acts as a unit
both for the sequential and the parallel product, i.e. s·e = e·s = s ‖ e = s
for all s ∈ S. Existence assumed it is unique and usually denoted by 1.
If S has an identity we call S an sp-algebra with identity. For instance,
(SP1(Σ), ·, ‖ ) is the sp-algebra with identity of all (even empty) sp-posets
labeled by elements of Σ with identity being the empty poset ε. According
to [Gra81] and [BÉ96], sp-algebras with identity are also called double
monoids or bimonoids, respectively.

A homomorphism ϕ from an sp-algebra S to an sp-algebra T is a map-
ping ϕ : S → T preserving both products, i.e. ϕ(x·y) = ϕ(x)·ϕ(y) and
ϕ(x ‖ y) = ϕ(x) ‖ϕ(y) for all x, y ∈ S. A congruence on an sp-algebra S is
an equivalence relation ∼ on S compatible with both products, i.e. x ∼ y
implies x·z ∼ y·z, z·x ∼ z·y, and x ‖ z ∼ y ‖ z for all x, y, z ∈ S. Obvi-
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2 Sequential-Parallel Posets and Bisemirings

ously, the quotient S /∼ is equipped with the structure of an sp-algebra by
defining the products of the congruence classes representative-like.

Since SP(Σ) is freely generated, we can define two decompositions of an
sp-poset. The sp-poset t is sequential if there are no u, v ∈ SP such that
t = u ‖ v, i.e. t cannot be written as a parallel product. Dually, t is parallel
if it cannot be written as a sequential product t = u·v for some u, v ∈ SP.
The only sp-posets that are both sequential and parallel are the singleton
posets which are identified with the elements of Σ. Every t ∈ SP not being
a singleton is either sequential or parallel. Since SP(Σ) is free over Σ, the
semigroup (SP(Σ), ·) is freely generated by the parallel sp-posets, and the
commutative semigroup (SP(Σ), ‖ ) is freely generated by the sequential
sp-posets. Note that in both cases the set of generators is infinite. More
precisely, every t ∈ SP(Σ) admits a factorization t = t1· . . . ·tm where m ≥ 1
and each ti ∈ SP (i = 1, . . . , m) is parallel. This factorization is unique
up to associativity of the sequential product and is called the sequential
decomposition of t. Similarly, each t ∈ SP(Σ) admits a factorization t =
t1 ‖ . . . ‖ tn with n ≥ 1 and ti ∈ SP (i = 1, . . . , n) being sequential. Again,
this factorization is unique up to associativity and commutativity of ‖ and
is referred to as the parallel decomposition of t. The number of factors in
the decomposition is the length of the decomposition.

Let t = (V,≤, τ ) be an sp-poset. We call |t| = |V | the size of t. Now,
assume t 6= a ∈ Σ. Then either t = t1· . . . ·tm with m ≥ 2 or t = t1 ‖ . . . ‖ tn
with n ≥ 2. Clearly, |ti| < |t| for every factor ti either in the sequential
or in the parallel decomposition. Now each factor of the decomposition
not being a letter may be factorized again. Since the size of the factors
decreases strictly this process of decomposing cannot go on forever: after
a finite number of steps a factorization having only letters as factors is
reached. Consequently, one proves a property P for all sp-posets t ∈ SP(Σ)
using the following induction on the structure of t:

• one shows that P holds true for all letters of Σ;

• one shows that if P holds for all the factors of the sequential or parallel
decomposition of the sequential or parallel sp-poset t, respectively,
then it also holds true for t.

Hence, for instance the width of t can be computed by an induction process:

14



2.1 Sequential-Parallel Posets

• if t = a ∈ Σ then wd(t) = 1,

• if t = t1· . . . ·tm then wd(t) = max{wd(t1), . . . , wd(tm)},

• if t = t1 ‖ . . . ‖ tn then wd(t) =
∑n

i=1 wd(ti).

Remark 2.2. A semiring (K,⊕, ◦, 0, 1) is a set K equipped with two
binary operations ⊕ and ◦, called addition and multiplication, such that
(K,⊕, 0) is a commutative monoid, (K, ◦, 1) is a monoid, ◦ distributes over
⊕, and 0 is absorbing for the multiplication, i.e. 0 ◦ k = k ◦ 0 = 0 for all
k ∈ K. If the multiplication is commutative we speak of a commutative
semiring. Thus (K, ◦,⊕) is an sp-algebra for every semiring (K,⊕, ◦, 0, 1),
and (K,⊕, ◦) is an sp-algebra for every commutative semiring. Hence, one
can define the width of sp-posets also by a homomorphism from (SP, ·, ‖ ) to
the polar semiring (

�
, max, +) by mapping each letter to 1. If we consider

an sp-algebra homomorphism from (SP, ·, ‖ ) into (
�
, +, max) with a 7→ 1

for all a ∈ Σ one gets the height of an sp-poset t, i.e. the cardinality of the
longest chain in t.

A subset L ⊆ SP is called a language of sp-posets, or an sp-language for
short. An sp-language L is of bounded width (or width-bounded) if there is
some n ∈

�
such that wd(t) ≤ n for all t ∈ L.

Example 2.3. The set of all sp-posets not using the parallel product at all
is an sp-language that can be identified with the free semigroup Σ+ over Σ.
Obviously, Σ+ is of bounded width with a uniform bound of 1. Dually, the
set of all sp-posets not using the sequential product may be identified with
the free commutative semigroup Σ�. This sp-language is not of bounded
width. Now let Σ = {a, b}. We define two sp-languages L1 and L2 as being
the least sets such that

• a ∈ L1 and if t ∈ L1 then a·(a ‖ t)·b ∈ L1,

• a ∈ L2 and if t ∈ L2 then a·t·(b ‖ b) ∈ L2.

Whereas L1 is not of bounded width, L2 is width-bounded.

Remark 2.4. In terms of computer science one can think of wd(t) as the
minimal number of processors necessary to realize t. Hence, an sp-language
of bounded width can be executed by a finite number of processors. On the
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2 Sequential-Parallel Posets and Bisemirings

contrary, languages of unbounded width cannot be realized with a finite
number of processors only.

2.2 Bisemirings

The natural numbers
�

= {0, 1, 2, . . . } together with addition and multi-
plication are one of the oldest algebraic structures we are used to. This
structure is a semiring, informally a ring lacking the inverse elements
with respect to addition (cf. Remark 2.2). But semiring theory was not
a very prominent subject of mathematics for a long time. Only in the last
decades an algebraic theory of semirings was developed, for an overview
and introduction see [HW99, Gol99]. Last but not least, theoretical com-
puter science put semirings on the agenda again. As it was noticed by
Schützenberger [Sch61b] and Eilenberg [Eil74], semirings are ideally suited
for introducing quite a number of models for weights (or costs, or multipli-
cities) in finite automata, and to describe the behaviors of such machines.
In weighted finite automata, weights are multiplied by semiring multipli-
cation along a run and then the weights of all runs with the same label are
summed up using semiring addition.

Because we want to model concurrency we will introduce systems with
a sequential and a parallel composition later on. If weights should be
considered in those systems multiplication of weights may depend on the
kind of composition used. Therefore, we need a structure equipped with
two multiplications instead of only one as in semirings. This leads to the
following definition.

Definition 2.5. A bisemiring � = (K,⊕, ◦, 3, 0, 1) is a set K equipped
with three binary operations called addition ⊕, sequential multiplication ◦,
and parallel multiplication 3 such that:

1. (K,⊕, 0) is a commutative monoid,

2. (K, ◦, 1) is a monoid,

3. (K, 3) is a commutative semigroup,
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2.2 Bisemirings

4. both ◦ and 3 distribute over ⊕, i.e. for all k, l, m ∈ K and ∗ ∈ {◦, 3}

k ∗ (l ⊕m) = (k ∗ l)⊕ (k ∗m) and

(l ⊕m) ∗ k = (l ∗ k)⊕ (m ∗ k),

5. 0 is absorbing for ◦ and 3, i.e. k ◦ 0 = 0 ◦ k = k30 = 0 for all k ∈ K.

Thus, a bisemiring is built from two semiring structures having the same
domain K and the same additive structure. More precisely, (K,⊕, ◦, 0, 1)
is a semiring, and (K,⊕, 3, 0) is almost a semiring, only the parallel mul-
tiplication 3 does not have to admit a unit. Note that the parallel mul-
tiplication of a bisemiring is always commutative, namely to model the
composition of weights of two concurrent processes.2

A bisemiring is commutative if the sequential multiplication ◦ is com-
mutative. It is idempotent if the addition is idempotent, i.e. k ⊕ k = k
for all k ∈ K. In general there is no connection between the two products
of a bisemiring. But if the sequential multiplication distributes over the
parallel one, i.e. k◦(l3m) = (k◦ l)3(k◦m) and (l3m)◦k = (l◦k)3(m◦k)
for all k, l, m ∈ K, we call the bisemiring distributive.

Let � = (K,⊕, ◦, 0, 1) be a semiring and define k3l = 0 for all k, l ∈ K.
Then (K,⊕, ◦, 3, 0, 1) is a bisemiring, even a distributive one. If the
semiring � is commutative, the structure (K,⊕, ◦, ◦, 0, 1) also is a bisemi-
ring. Here, sequential and parallel multiplication coincide. Especially, the
Boolean bisemiring �= ({0, 1},∨,∧,∧, 0, 1) with 1 ∨ 1 = 1 is of this form.

A bisemiring homomorphism is a mapping h : � → �′ between two
bisemirings � and �′ such that h(k ∗ l) = h(k) ∗ h(l) for ∗ ∈ {⊕, ◦, 3},
h(0) = 0, and h(1) = 1.

Below we collect some examples of bisemirings.

Example 2.6. The structure �= (
�
∪ {+∞}, min, +, max, +∞, 0) is the

bisemiring that we referred to in the introduction. It is called the tropical
bisemiring3. Here, 0 is the unit for the sequential multiplication + and

2The notion “bisemiring” was first used in [KM03]. Recently, Sen, Ghosh, and
Ghosh [SGG04] used it in a different meaning. There, an algebraic structure
(S, +, ·,×) is a bisemiring if (S, +, ·) and (S, ·,×) are semirings, i.e. the operation ·
plays one time the role of multiplication and the other time the role of addition.

3This notion goes back to the tropical semiring (�∪{+∞},min, +,+∞, 0). According
to I. Simon the name was suggested by Ch. Choffrut.
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2 Sequential-Parallel Posets and Bisemirings

+∞ is the absorbing zero. The parallel multiplication max admits also a
unit, namely 0. � is idempotent, commutative, and distributive.

Let a ∈ Σ. We interpret a as some action and assume a has a du-
ration of time(a). Let time(a) = +∞ if a cannot be performed. For
any t = t1· . . . ·tm ∈ SP we put time(t) = time(t1) + . . . + time(tm), and
for t = t1 ‖ . . . ‖ tn ∈ SP we put time(t) = max{time(t1), . . . , time(tn)}.
Hence, time : (SP, ·, ‖ )→ (

�
∪ {+∞}, +, max) is an sp-algebra homomor-

phism and can be interpreted as the duration time of an sp-poset t. In
Example 3.4, we will present an automaton that computes the minimal
execution time of an sp-poset using the semiring �.

If we extend the domain of the bisemiring � to �, �, or � (united with
+∞) we obtain three other bisemirings �Z , �Q, and �R which we refer to
as the �-, �-, and �-tropical bisemiring, respectively. Another descendant
is the bisemiring �R≥0 = (�≥0 ∪ {+∞}, min, +, max, +∞, 0)4. One may
also extend � to (

�
∪ {−∞, +∞}, min, +, max, +∞, 0) where we have to

put (−∞)+ (+∞) = +∞ (recall that +∞ is absorbing with respect to +).
Now, the parallel multiplication max allows the unit −∞.

Example 2.7. We define a binary operation nax for k, l ∈
�
∪ {−∞} as

follows:

nax(k, l) =

{
max(k, l) if k, l 6= −∞,

−∞ otherwise.

The bisemiring � = (
�
∪ {−∞}, max, +, nax,−∞, 0) is called the polar

bisemiring. It is idempotent, commutative, and distributive. Also �may
be used to compute the duration time of an sp-poset t. But as we will see
in Example 3.4, this time the maximal execution time of t in an automaton
would be computed. As in Example 2.6 one may also consider the �-, �-,
and �-polar bisemirings.

Example 2.8. �= (�∪ {−∞, +∞}, max, min, +,−∞, +∞) is called the
flow rate or capacity bisemiring. Here (−∞) + (+∞) = −∞. � is idempo-
tent, commutative, but not distributive.

Let a ∈ Σ be interpreted as a channel or pipe with some capacity cap(a).
Let cap(a) = −∞ if a is blocked and there is no throughput at all. Then
any t ∈ SP may be seen as a sequential-parallel channel system. For

4Here �≥0 = {x ∈ � | x ≥ 0}.
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2.2 Bisemirings

t = t1· . . . ·tm ∈ SP we define cap(t) = min{cap(t1), . . . , cap(tm)}, i.e.
the capacity of a sequence of channels is determined by a sub-channel
of minimal capacity. For any t = t1 ‖ . . . ‖ tn ∈ SP we put cap(t) =
cap(t1)+· · ·+cap(tn), i.e. the flow rates of several channels used in parallel
are summed up. Thus, cap : (SP, ·, ‖ ) → (�∪ {−∞, +∞}, min, +) is an
sp-algebra homomorphism and cap(t) determines the capacity of channel
system t.

Example 2.9. Very similar to the last example is the environmental
bisemiring �= (�≥0 ∪ {+∞}, min, max, +, +∞, 0). Suppose a ∈ Σ stands
for a production step in a fabrication process and poll(a) is the pollu-
tion (or the noise etc.) caused by a. If a cannot be performed we put
poll(a) = +∞. For t = t1· . . . ·tm ∈ SP we are interested in the maxi-
mal threshold of the pollution caused by this sequence of production steps.
Thus, poll(t) = max{poll(t1), . . . , poll(tm)}. For t = t1 ‖ . . . ‖ tn ∈ SP the
reached threshold is the sum of the single thresholds. Hence, poll(t) =
poll(t1) + · · · + poll(tn). Thus, poll : (SP, ·, ‖ ) → (�≥0 ∪ {+∞}, max, +)
yields the maximal threshold reached by the fabrication process t. If in a
finite-state system several executions of t are possible, then we would gain
the minimal pollution threshold that may be caused by t.

For the next two examples we do not have such an intuitive interpretation
as for the ones given above.

Example 2.10. (�>0 ∪{+∞}, min, ·, +, +∞, 1) where · denotes the usual
multiplication is an idempotent, commutative, and distributive bisemiring
that does not allow a unit for the parallel multiplication.

Example 2.11. Let M be a set and P(M) the power set of M . Then
(P(M),∪,∩, 3, Ø, M) is a bisemiring if we define for A, B ⊆M :

A3B =

{
A ∪B if A, B 6= Ø,

Ø otherwise.

Similarly, (P(M),∩,∪, ∗, M, Ø) with

A ∗B =

{
A ∩B if A, B 6= M,

M otherwise

is a bisemiring.
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2 Sequential-Parallel Posets and Bisemirings

It is not surprising that the sequential and parallel product of sp-posets
lifted to sp-languages give again rise to a bisemiring.

Example 2.12. Let Σ be a finite alphabet and SP1 = SP∪{ε}. Then
the set of non-proper sp-languages (P(SP1),∪, ·, ‖ , Ø, {ε}) constitutes a
bisemiring. Here the multiplications · and ‖ are defined elementwise, i.e.
L1·L2 = {t1·t2 | t1 ∈ L1, t2 ∈ L2} and similar for L1 ‖L2. Note that this
bisemiring is neither commutative nor distributive, but idempotent. The
parallel multiplication ‖ admits the same unit {ε} as the sequential one.

The next example gives a quite general construction of bisemirings.

Example 2.13. Let (L,∨,∧) be a lattice and (L, ·, 1) a monoid such that

a · (b ∨ c) = (a · b) ∨ (a · c)

(a ∨ b) · c = (a · c) ∨ (b · c)

for all a, b, c ∈ L. Then L is called a lattice-ordered monoid or l-monoid
for short (cf. [Bir73, Chap. XIV,§ 4]). A zero of an l-monoid L is an
element 0 ∈ L such that 0 ≤ a (where ≤ is the order of the lattice) and
0 ·a = a ·0 = 0 for all a ∈ L (cf. [Bir73, Chap. XIV,§ 1]). Now, assume L to
be a distributive lattice. Then (L,∨, ·,∧, 0, 1) is an idempotent bisemiring.

We give two instances of such l-monoid bisemirings. Let (M, ·, 1) be an
arbitrary monoid. Then (P(M),∪, ·,∩, Ø, {1}) is a bisemiring where the
sequential product is the monoid operation lifted to subsets of M .

Let (R, +, ·, 0, 1) be a ring and UR the collection of all additive subgroups
of R. For X, Y ∈ UR we define X ∨ Y = 〈X ∪ Y 〉+ as the least additive
subgroup of R containing X ∪ Y , and

X · Y =

{
n∑

i=1

xiyi

∣∣∣∣∣ xi ∈ X, yi ∈ Y, n ∈
�>0

}
.

Obviously, X ∨ Y , X · Y , and X ∩ Y are additive subgroups of R. Then
(UR,∨,∩) is a distribute lattice with {0} as zero. Moreover, the additive
subgroup 〈1〉+ generated by 1 is neutral for subgroup multiplication, and
subgroup multiplication distributes over ∨. We omit the technical details
of the proof. Hence, (UR,∨, ·,∩, {0}, 〈1〉+) is a bisemiring.
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2.2 Bisemirings

The following example of matrices over a distributive lattice is due
to [SGG04].

Example 2.14. Let (L,∨,∧) be a distributive lattice with least element
0 and greatest element 1, and let Mn(L) be the set of all n × n-matrices
over L. Define for any A = (aij), B = (bij) ∈Mn(L)

A ∨B = (aij ∨ bij) ,

A ∧B = (aij ∧ bij) ,

A ·B =

(
n∨

k=1

(aik ∧ bkj)

)
.

Furthermore, let 0 = (0ij) and 1 =
(

1 0
�

0 1

)
. Then (Mn(L),∨, ·,∧,0,1) is

an idempotent bisemiring.

We may generalize this example even to matrices over commutative semi-
rings. Let (R, +, ·, 0, 1) be a commutative semiring, i.e. a semiring with a
commutative multiplication. Let ⊕ and � be the pointwise addition and
multiplication of matrices, and let ◦ be the usual matrix multiplication.
With matrices 0 and 1 defined as above, the structure (Mn(R),⊕, ◦,�,0,1)
is a bisemiring.

Another quite general example of a bisemiring is that of binary relations.

Example 2.15. Let M be a set and RM the set of binary relations on M .
Let ◦ denote the usual relational product, i.e. for A, B ∈ RM

A ◦B = {(a, b) ∈M2 | ∃ c ∈M : (a, c) ∈ A and (c, b) ∈ B} .

By ∆ we denote the diagonal relation: ∆ = {(a, a) | a ∈ M}. Then
(RM ,∪, ◦,∩, Ø, ∆) is an idempotent bisemiring. Note that for M a fi-
nite set with n elements and L the Boolean lattice with two elements,
the bisemiring (Mn(L),∨, ·,∧,0,1) from Example 2.14 is isomorphic to
(RM ,∪, ◦,∩, Ø, ∆).

We give an interpretation of the bisemiring of binary relations. Let Σ
be a finite set of atomic situations or conditions, and M an arbitrary set
of ports or agents. Then a binary relation R ⊆M ×M states which ports
are connected such that, e.g., messages or signals could be passed. Next,
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2 Sequential-Parallel Posets and Bisemirings

a condition a ∈ Σ allows certain connections link(a) ⊆ M ×M between
ports. Now, some conditions may emerge sequentially and others at the
same time. Hence, any t ∈ SP can be understood as a complex condition or
situation. For t = t1· . . . ·tm we put link(t) = link(t1)◦· · ·◦ link(tm). Hence,
link(t) gives us the connected ports after a sequence of conditions occurred.
On the other hand, if t = t1 ‖ . . . ‖ tn then link(t) = link(t1)∩· · ·∩ link(tn),
i.e. only those port connections are still enabled that satisfy all conditions
t1, . . . , tn simultaneously. Thus, link : (SP, ·, ‖ ) → (RM , ◦,∩) is an sp-
algebra homomorphism determining the set of connected ports after the
occurrence of a complex condition t.

The last two examples will present a non-idempotent bisemiring and a
finite bisemiring.

Example 2.16. Let m, n ∈
�

with m 6= 0. We define two binary opera-
tions ·m and ·n on � for all x, y ∈ �by

x ·m y = m · x · y, and

x ·n y = n · x · y

where · denotes the usual multiplication. Both operations are associative
and commutative. Moreover, they distribute over the usual addition:

x ·m (y + z) = m · x · (y + z)

= m · x · y + m · x · z

= (x ·m y) + (x ·m z).

Thus, (�, +, ·m, ·n, 0, 1
m

) is a bisemiring. It is commutative, but neither
idempotent nor distributive.

Example 2.17. Let n ∈
�

with n ≥ 1 and put [n] = {0, . . . , n}. The
structure ([n], min, †, max, n, 0) with

x † y =

{
x + y if a + b ≤ n,

n otherwise

is an idempotent, commutative, distributive, and finite bisemiring.

We conclude this section by stating two constructions by which new
bisemirings can be obtained from given ones. Since bisemirings are defined
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2.2 Bisemirings

by universally quantified equations they constitute a variety in the sense of
universal algebra (cf. [Wec92]). By Birkhoff’s characterization, the class of
bisemirings is closed under subalgebras, homomorphic images, and direct
products. These closure properties imply the following two lemmata.

Lemma 2.18. Let I be an index set and
(
(Ki,⊕i, ◦i, 3i, 0i, 1i)

)

i∈I
a fam-

ily of, not necessarily different, bisemirings, and let K =
∏

i∈I Ki be the
product set of the set family (Ki)i∈I .
The structure � = (K,⊕, ◦, 3, 0, 1) is defined componentwise:

• for all k = (ki)i∈I , l = (li)i∈I ∈ K and ∗ ∈ {⊕, ◦, 3}:

a ∗ b = (ai ∗i bi)i∈I ,

• 0 = (0i)i∈I , 1 = (1i)i∈I .

Then � is a bisemiring called the direct product of the bisemirings �i

(i ∈ I).

Let � be a bisemiring. An equivalence relation ∼ on � which is com-
patible with the three operations of � is a congruence relation of �. More
precisely, any congruence ∼ satisfies for all k, l, m ∈ K:

• k ∼ l implies (k ⊕m) ∼ (l ⊕m),

• k ∼ l implies (k ◦m) ∼ (l ◦m) and (m ◦ k) ∼ (m ◦ l), and

• k ∼ l implies (k3m) ∼ (l3m).

We denote the congruence class of some k ∈ K by [k]∼. Let K /∼ be the
set of all congruence classes and define [k]∼ ∗∼ [l]∼ = [k∗ l]∼ for all k, l ∈ K
and ∗ ∈ {⊕, ◦, 3}.

Lemma 2.19. Let ∼ be a congruence on the bisemiring �. Then �/∼
= (K /∼,⊕∼, ◦∼, 3∼, [0]∼, [1]∼) is a bisemiring, and is called the quotient
bisemiring of � with respect to ∼.

Example 2.20. Consider the tropical bisemiring � from Example 2.6. Let
n ∈

�
with n ≥ 1. We define ∼ as follows: for m < n we put [m]∼ = {m},

23



2 Sequential-Parallel Posets and Bisemirings

for m ≥ n and m = +∞ we define [m]∼ = {k | k ≥ n or k = +∞}. It is an
easy exercise to check that ∼ is a congruence on the tropical bisemiring.
Now �/∼ is isomorphic to the bisemiring of Example 2.17.

In Chapter 3 we will see another construction to obtain a bisemiring
from a given one �: the formal power series over SP1 and �.

Last but not least, we will mention a negative result. Let � be a bisemi-
ring and n ∈

�
with n ≥ 2. Consider the structure (Mn(K),⊕, ◦, 3,0,1) of

n×n-matrices with entries from K. Here, ⊕ is defined elementwise, ◦ and
3 are defined as usual matrix multiplications (by the underlying sequential
or parallel multiplication of �, respectively), 0 is the zero matrix, and 1

the unit matrix. Unfortunately, in general this structure is not a bisemiring
because it lacks the commutativity of the parallel multiplication.
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3 Weighted Branching Automata and

Formal Series

3.1 Weighted Branching Automata and their

Behavior

In classical automata theory, finite-state devices were introduced to rec-
ognize word languages, i.e. subsets of the free monoid Σ? over a finite
alphabet Σ (for an overview see [HMU00, KN01]). Later on, weighted au-
tomata over words with weights from a semiring were considered ([SS78,
KS86, BR88, Kui97b]). On the other hand, Lodaya and Weil [LW00] pre-
sented finite-state devices to recognize languages of sp-posets. With the
following model of weighted branching automata we will fuse the concepts
of classical weighted automata and of the branching automata of Lodaya
and Weil.

We fix a finite alphabet Σ and a bisemiring �. If Q is a set and m ∈
�
,

we denote by Pm(Q) the collection of all subsets of Q with cardinality m.

Definition 3.1. A weighted branching automaton1, or a wba for short,
over the alphabet Σ and with weights from the bisemiring � is a sextuple
A = (Q, µseq, µfork, µjoin, λ, γ) where

• Q is a finite set of states,

• µseq : Q× Σ×Q −→ � is the sequential transition function,

• µfork = {µm
fork : Q×Pm(Q) −→ � | m = 2, . . . , |Q|} is the family of fork

transition functions,

1In [KM03] the notion “branching automaton with costs” was used. However, the
notion “weighted automaton” is much more common and, therefore, we use the
latter term.
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• µjoin = {µm
join : Pm(Q)×Q −→ � | m = 2, . . . , |Q|} is the family of join

transition functions,

• λ, γ : Q −→ � are the initial and the final weight function, respectively.

Definition 3.2. A weighted binary branching automaton (wbba for short)
is a wba A = (Q, µseq, µfork, µjoin, λ, γ) such that for m > 2 the functions
µm

fork and µm
join are identical zero, i.e. are mapping every argument to 0 ∈ K.

Notation. Usually, in classical automata theory we speak of transitions in-
stead of transition functions. Here, we will do so only if the weight of
the transition is distinct from zero. More precisely, we write p

a
−→k q if

µseq(p, a, q) = k 6= 0 and call it a sequential transition from p to q with ac-
tion a and weight k; if it only matters that the weight is distinct from 0, we
write p

a
−→ q. Similarly, we write p→k {p1, . . . , pm} and p→ {p1, . . . , pm}

if µm
fork(p, {p1, . . . , pm}) = k 6= 0. In the same way, {q1, . . . , qm} →l q and

{q1, . . . , qm} → q mean µm
join({q1, . . . , qm}, q) = l 6= 0. In these cases we

speak of a fork transition from p to {p1, . . . , pm} with weight k and of a
join transition from {q1, . . . , qm} to q with weight l, respectively. The in-
teger m is called the arity of the fork and the join transition, respectively.
A state q ∈ Q is an initial state if λ(q) 6= 0. Dually, q is a final state if
γ(q) 6= 0.

Intuitively, if in classical automata theory there is no transition p
a
−→ q

we put here µseq(p, a, q) = 0, and similarly for fork and join transitions.
Once again, if we speak of a transition in our setting it has always a weight
distinct from 0. The initial and final weights may be interpreted as the
price for entering and leaving the automaton.

There are two differences between our wba and the branching automata
as defined by Lodaya and Weil [LW00]. Firstly, we allow weights for tran-
sitions, for initial and final states. Secondly, Lodaya and Weil allowed a
forking into and a joining from multisets of states. We favorite sets instead
of multisets. We do this mainly for technical reasons. We will point out
this later on.

Notation. A weighted branching automaton A = (Q, µseq, µfork, µjoin, λ, γ)
can be graphically represented by a labeled graph2 G(A) as follows (cf. Fig-
ure 3.1):

2Here we do not speak of a graph in the strong sense of mathematical graph theory
but more in the sense of a drawing.
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Figure 3.1: Graphical representation of wba.

• the set of vertices of G(A) is Q,

• for every letter a ∈ Σ and every pair (p, q) of vertices in Q with
µseq(p, a, q) 6= 0 there is an oriented edge in G(A) going from p to q
and labeled by the pair a/µseq(p, a, q) ∈ Σ×K,3

• for every p ∈ Q and P ⊆ Q with µ
|P |
fork(p, P ) 6= 0 there are oriented

edges (p, pi) for all pi ∈ P (with no label) and a semi-circle connecting

these edges labeled by µ
|P |
fork(p, P ) ∈ K,

• for every p ∈ Q and P ⊆ Q with µ
|P |
join(P, p) 6= 0 there are oriented

edges (pi, p) for all pi ∈ P and a semi-circle connecting these edges

labeled by µ
|P |
join(P, p) ∈ K,

• for every p ∈ Q with λ(p) 6= 0 there is an in-going arrow to p labeled
by λ(p) ∈ K,

• for every p ∈ Q with γ(p) 6= 0 there is an out-going arrow of p labeled
by γ(p) ∈ K.

3Sometimes we will put the weight of the transition not beside the action but under
the arrow because of lack of space, cf. Figure 3.5.
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In Figure 3.1 the states p and p3 are initial with entry weights of 1 and
2, respectively, as r and q3 are final with weights 2 and 1. There are four
sequential transitions, e.g. from p1 to q1 with label a and weight 1, one
fork transition p→1 {p1, p2, p3}, and one join transition {q1, q2, q3} →2 q.

3.1.1 The Behavior of Weighted Branching Automata

In order to describe the behavior of a wba, i.e. to calculate the weight
of an sp-poset t in a wba A, we have to introduce the notion of a run.
Two kinds of runs will be defined: one does and the other does not allow
a branching in cascades. The first one is closer to the machine level, the
second one closer to the maximal decompositions of sp-posets. From these
two notions of runs two, possibly different, behaviors of a wba will result.
In Chapter 7, we will see that the expressive power of these two concepts
is in general not the same.

Recall that in classical word automata a run is a sequence of transitions
(ti)i such that ti+1 starts in the state in which ti is terminating. This
sequence can be seen as a very particular graph with source and sink,
and in which vertices are labeled with states and edges are labeled with
elements of the alphabet Σ. We generalize those graphs to cover our setting
as follows: we consider a set of labeled graphs and define two compositions
on them, then we define runs as a subset of this set of graphs demanding
the containment of atomic runs and closure under the defined compositions.
More formally, we proceed as follows:

LetA = (Q, µseq, µfork, µjoin, λ, γ) be a wba over Σ and �. Now let G(Q, Σ)
be the set of all labeled directed graphs G = (V, E, ν, η) with |V | ≥ 2,
E ⊆ V 2, with a unique source src(G), a unique sink sk(G), and with
ν : V → Q a total and η : E−→Σ a partial function. Now we specify two
constructions yielding a new element of G(Q, Σ) from given ones.

Let Gi = (Vi, Ei, νi, ηi) ∈ G(Q, Σ) for i = 1, 2. If the label of the sink
of G1 is the same as the label of the source of G2, i.e. ν1(sk(G1)) =
ν2(src(G2)), we define the sequential product G = G1·G2 of G1 and G2 as
follows (cf. Figure 3.2): G is the disjoint union of both graphs, but the sink
of G1 and the source of G2 are fused to one vertex with the same label as
before.
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Figure 3.2: Sequential product of G1 and G2.

Let Gi = (Vi, Ei, νi, ηi) ∈ G(Q, Σ) and let pi = νi(src(Gi)) and qi =
νi(sk(Gi)) for i = 1, . . . , m. If p → {p1, . . . , pm} is a fork and
{q1, . . . , qm} → q a join transition of A then

‖ p,q(G1, . . . , Gm) = (V, E, ν, η) ∈ G(Q, Σ)

is defined as follows (cf. Figure 3.3):

• V = V1 ∪̇ . . . ∪̇ Vm ∪̇ {u, w},4

• E = E1 ∪̇ . . . ∪̇ Em ∪̇ {(u, src(Gi)), (sk(Gi), w) | i = 1, . . . , m},

• for v ∈ Vi put ν(v) = νi(v) (i = 1, . . . , m), and, furthermore, ν(u) =
p, ν(w) = q, and

• η = η1 ∪̇ . . . ∪̇ ηm.

This construction is called the p-q-parallel product of G1, . . . , Gm.

Note that the sequential product is associative and every p-q-parallel
product satisfies a kind of commutativity, i.e. for every permutation α of
the symmetric group Sm:

‖ p,q(G1, . . . , Gm) = ‖ p,q(Gα(1), . . . , Gα(m))

in case one side of the equation is defined. But the p-q-parallel products
are not associative.

4The symbol ∪̇ denotes the disjoint union.
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Figure 3.3: The p-q-parallel product of G1 and G2.

Now we are ready to define the two notions of runs of a wbaA. The graph
G with V = {v1, v2}, E = {(v1, v2)}, ν(vi) = pi (i = 1, 2) and η(v1, v2) = a

such that p1
a
−→ p2 is a sequential transition of A is an element of G(Q, Σ).

We refer to such a graph as an atomic run of A.

The set of all cascade branching runs RC(A) is the smallest subset of
G(Q, Σ):

• containing all atomic runs, and

• that is closed under sequential product and under all p-q-parallel
products for all p, q ∈ Q.

The set of all maximally branching runs RM (A) is the smallest subset
of G(Q, Σ):

• containing all atomic runs,

• closed under sequential product, and

• if G1, . . . , Gm ∈ RM (A) are such that Gi is either atomic or a se-
quential product for all i = 1, . . . , m, then, in case of existence,
‖ p,q(G1, . . . , Gm) ∈ RM (A) for any p, q ∈ Q.

A run from RC(A) will be called a C-run for short, a run from RM (A) an
M-run.
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3.1 Weighted Branching Automata and their Behavior

The difference between the two notions of a run is the restriction for
maximally branching runs under which parallel composition is allowed.
Whereas for cascade branching runs the factors of a parallel product may
be parallel products as well, for maximally branching runs this is forbid-
den. This is illustrated by Figure 3.4. Here runs are not depicted exactly as
they were defined but in the same manner as wba. This way the drawings
are easier to understand. But opposed to wba, now states may occur sev-
eral times. Whereas both graphs are cascade branching runs (assumed all
transitions depicted do exist), only the right one is a maximally branching
run. Clearly, every maximally branching run is also a cascade branching
run but in general not vice versa.
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Figure 3.4: Cascade branching and maximally branching run.

The following definitions are both valid for cascade and maximally
branching runs. Therefore, we just speak of a run. A run G is sequen-
tial if G cannot be written as a p-q-parallel product for some p, q ∈ Q.
Dually, G is parallel if it is not a sequential product. Every atomic run
is both sequential and parallel. Similar to sp-posets every run G admits a
unique sequential decomposition G = G1· . . . ·Gm for some m ≥ 1 such that
every Gi is a parallel run (i = 1, . . . , m). On the other hand, every run G
has also a unique parallel decomposition meaning either G is sequential or
G = ‖ p,q(G1, . . . , Gn) for some p, q ∈ Q and n ≥ 2. If G is a maximally
branching run, then each of the Gi is a sequential run. For G being a
cascade branching run the Gi may be sequential or parallel.

By these decompositions we define two functions lab : R(A) −→ SP(Σ)
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and wgt : R(A) −→ �. In the case of classical automata these functions
correspond to those which associate to a computation sequence its word
and its weight, respectively.

For an atomic run G : p
a
−→ q we put lab(G) = a and wgt(G) =

µseq(p, a, q). If G = G1· . . . ·Gm is the sequential decomposition of G then

lab(G) = lab(G1)· . . . · lab(Gm),

wgt(G) = wgt(G1) ◦ . . . ◦wgt(Gm).

Now let G = ‖ p,q(G1, . . . , Gn) (n ≥ 2) be the parallel decomposition of G
with pi = νi(src(Gi)) and qi = νi(sk(Gi)) for i = 1, . . . , n. Then

lab(G) = lab(G1) ‖ . . . ‖ lab(Gn),

wgt(G) = µn
fork(p, {p1, . . . , pn}) ◦

[
wgt(G1)3 . . .3wgt(Gn)

]

◦ µn
join({q1, . . . , qn}, q).

The weight (or cost) of such a parallel run can be interpreted as follows.
Firstly, a weight for branching the process emerges, then the weights for
the n sub-processes, and, finally, the weight for joining the sub-processes.
These weights occur one after the other and, therefore, are multiplied se-
quentially. On the other hand, the weights of the n sub-processes are
multiplied in parallel.

If a run G has label t we say that G is a run on t. If G is a run on t from

p to q (t ∈ SP, p, q ∈ Q) then we write G : p
t
−→ q.

From now on, we will often sum up over a set of runs or states. We
define the sum to equal zero if the set over which we sum up is empty.

Note that for any t ∈ SP there are only finitely many runs G of A with
label t. The weight of some t ∈ SP from p to q in A is given by summing
up the weights of all possible runs from p to q with label t:

wgtC(p, t, q) =
⊕

G:p
t
−→q

G∈RC(A)

wgt(G),

wgtM (p, t, q) =
⊕

G:p
t
−→q

G∈RM (A)

wgt(G).
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The weight of t ∈ SP in A in cascade and maximally branching mode,
respectively, is defined as

(SC(A), t) =
⊕

p,q∈Q

λ(p) ◦wgtC(p, t, q) ◦ γ(q),

(SM (A), t) =
⊕

p,q∈Q

λ(p) ◦wgtM (p, t, q) ◦ γ(q).

Then SC(A) : SP −→ � and SM (A) : SP −→ � are called the cas-
cade branching behavior of A, or C-behavior for short, and the maximally
branching behavior of A, or M-behavior for short. A function S : SP −→ �
is C-regular or M-regular if there is a wba A such that S = SC(A)
or S = SM (A), respectively. Equivalently, we say S is C-recognized or
M-recognized by A.

Remark 3.3. For � = � the transition functions of a wba A take values
in {0, 1} only. Remember that every transition has a weight distinct from
0. Hence, all transitions have weight 1. Similarly, p ∈ Q is initial (final) iff5

λ(p) = 1 (γ(p) = 1), respectively. Remember that sequential and parallel
multiplication in �are conjunction whereas addition is disjunction. Thus,
a run has weight 1 iff all transitions of the run have weight 1. Moreover,

(SC(A), t) = 1 iff there is a run G : p
t
−→ q ∈ RC(A) such that p is initial

and q final (and similar for SM (A)). Consequently, wba are a generaliza-
tion of a sub-class of the branching automata by Lodaya and Weil [LW00]
(remember that we use sets instead of multisets for fork and join transi-
tions). Nevertheless, for languages of bounded width wba over the Boolean
bisemiring have the same expressive power as the branching automata by
Lodaya and Weil. In Chapter 6, we will see that the behaviors of both au-
tomata models coincide with the class of sequential-rational sp-languages
(cf. Corollary 6.4).

Note that Lodaya and Weil do not define something like an M-behavior
for sp-languages. Nevertheless, maximally branching runs have some sim-
ilarity to runs defined by Lodaya and Weil in [LW01] for branching au-
tomata over term algebras with an additional series operation, i.e. the
parallel product ‖ is understood as a binary term operation. In our no-
tion of M-behavior we consider the maximal parallel decomposition of an
sp-poset t, i.e. we understand ‖ as a family of m-ary operations for m ≥ 2.

5This term stands for “if and only if”.
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In Chapter 8, we will make use of the M-behavior of wba, and, in Chap-
ter 7, we will give a comparison of the different notions of regularity. For
now we usually deal with C-behaviors of wba. Next, we will give some
examples of wba.

3.1.2 Examples of Weighted Branching Automata

Example 3.4. In this example we define a wbba A whose C-behavior
measures the height of an sp-poset t, i.e. (SC(A), t) = height(t) for
any sp-poset t. To make this work, we use the tropical bisemiring (

�
∪

{+∞}, min, +, max, +∞, 0) from Example 2.6. The automaton has just
three states p0, p1, p2. Any of these states can fork into the other states at
weight 0; similarly, any two distinct of these states can be joined into the
remaining one at weight 0:

µ2
fork(pi, {pj , pk}) =

{
+∞ if |{i, j, k}| < 3,

0 otherwise,

µ2
join({pj , pk}, pi) =

{
+∞ if |{i, j, k}| < 3,

0 otherwise.

Furthermore, in any state we can execute any action at weight 1 without
changing the state:

µseq(pi, a, pj) =

{
1 if i = j,

+∞ otherwise.

Any state is initial and final with λ(pi) = γ(pi) = 0 for i = 0, 1, 2.

Figure 3.5 depicts a run of A on the sp-poset t = (aa ‖ b)(a ‖ bb).6 The
weight of this run is evaluated as follows: the run is the sequential product
of two “bubbles” whose weights we calculate first. The first “bubble” is
the parallel product of an atomic b-run and the sequential aa-run. Since
the join and fork transitions involved in this product have weight 0, the

6Here (aa ‖ b)(a ‖ bb) abbreviates ((a·a) ‖ b)·(a ‖ (b·b)). That is we drop the sign · to
denote the sequential product and agree that the sequential product ties stronger
than the parallel one.
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Figure 3.5: A run measuring height and width.

weight of a “bubble” is 0 + max(1 + 1, 1) + 0 = 2. Since this holds for both
“bubbles”, the total weight is 2 + 2 = 4 which equals the height of the
poset (aa ‖ b)(a ‖ bb). Any permutation of Q gives another run of the same
weight, and no further runs on t exist. Hence, (SC(A), t) = 4 = height(t).

Assumed all the actions to be executed in an sp-poset require one time
unit, the automaton given above calculates the execution time. The ex-
ample can be modified easily to cover the following situation: there is
some system in which the execution times of atomic actions depend on
the state in which they are executed. One can then construct a wba that
calculates the minimal execution time of an sp-poset. If, instead of work-
ing in (

�
∪ {+∞}, min, +, max, +∞, 0), we work in the polar bisemiring

(
�
∪ {−∞}, max, +, nax,−∞, 0) of Example 2.7, this automaton would

compute the maximal execution time.

Example 3.5. In this example, we present a wbba that measures the width
of an sp-poset, i.e. (SC(A), t) = wd(t) for any t ∈ SP. To this end we
take the environmental bisemiring �= (�≥0 ∪ {+∞}, min, max, +, +∞, 0)
from Example 2.9 and use the automaton from Example 3.4. Consider
Figure 3.5 that depicts a run on the sp-poset (aa ‖ b)(a ‖ bb). But this
time, the weight of the aa-run is evaluated by max(1, 1) = 1. Hence, the
weight of the first “bubble” is max(0, 1 + 1, 0) = 2 and similarly for the
second “bubble”. Thus, the total weight is max(2, 2) = 2 which equals the
width of the poset in question.

Example 3.6. For a Σ-labeled poset t = (V,≤, λ) let Lin(t) denote the set
of all words in Σ∗ that label a maximal linearly ordered subset of V . For
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instance, we have Lin
(
(aa ‖ b)(a ‖ bb)

)
= {aaa, aabb, ba, bbb}. Next letW =

(Q, T, ι, F ) be a non-deterministic finite automaton7 that accepts some
language L ⊆ Σ∗. We want to construct a wbba A such that (SC(A), t)
allows us to calculate Lin(t) ∩ L for any sp-poset t (without looking at t
again). To make this work, we use the following bisemiring � of subsets
of Σ∗: Let K = P(Σ∗) ∪̇ {0} where 0 acts as unit with respect to ⊕
and absorbing with respect to 3 and ◦. For A, B ⊆ Σ∗ we then define
A⊕B = A3B = A∪B, A◦B = {u ·v | u ∈ A, v ∈ B}. Then {ε} is neutral
with respect to sequential multiplication. Now set Q′ = Q ∪̇ {⊥0,⊥1} and
consider the following transition functions:

µseq(p, a, q) =





{a} if (p, a, q) ∈ T,

Ø if p = q = ⊥i (i = 0, 1),

0 otherwise,

µ2
fork

(p, {q, r}) =





{ε} if p ∈ Q, {q, r} = {p,⊥0},

Ø if p ∈ {⊥0,⊥1} = {q, r},

0 otherwise,

µ2
join({q, r}, p) =





{ε} if p ∈ Q, {q, r} = {p,⊥0},

Ø if p ∈ {⊥0,⊥1} = {q, r},

0 otherwise,

λ(q) =

{
{ε} if q = ι,

0 otherwise,

γ(q) =

{
{ε} if q ∈ F,

0 otherwise.

We claim that for t ∈ SP with Lin(t)∩L 6= Ø, we get (SC(A), t) = Lin(t)∩L,
and otherwise (SC(A), t) = 0.

The formal proof of this claim is quite tedious. Here we will present the
main idea of how A works only(cf. Figure 3.6). A simulates the automaton

7Recall that T ⊆ Q × Σ × Q is the set of transitions, ι ∈ Q the unique initial state,
and F ⊆ Q the set of final states.
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Figure 3.6: A run of A on (aa ‖ b)(a ‖ bb) with weight {aabb}.

W by its sequential transitions: if w ∈ SP is actually a word, i.e. wd(w) =
1, then w has a run in W from p to q iff there is the same run in A from
p to q with label w and weight {w}. Moreover, for every w ∈ Σ+ there
is a run in A from ⊥0 to ⊥0 and from ⊥1 to ⊥1 with weight Ø. Now let
t ∈ SP. A starts to run on t at the unique initial state ι. Let t = t1· . . . ·tm
(m ≥ 1) be the sequential decomposition of t and let ti be the first factor
in this decomposition which is not atomic but a parallel product. When A
starts to run at ti then A has to branch from some state p ∈ Q. By the
definition of µfork, it branches into p and ⊥0 with neutral weight {ε}. Now
A can continue in state p with one of the parallel factors of ti. Altogether
this means A guesses one branch in every fork and continues to simulate
W in this branch. It does the same with every fork. In the branches not
simulating W the definition of the transition functions guarantees that A
may execute any sp-poset with weight Ø. Hence, a run of A on t has either
a weight {w} with w ∈ Lin(t) (if the chosen simulated run is indeed a
run of W) or has weight 0 (otherwise). Moreover, a run on t is successful,
i.e. going from ι to some q ∈ F and having weight {w} distinct from 0 iff
w ∈ L. Because A may guess all w ∈ Lin(t) and the sum of the bisemiring
is mainly identical to the union, A calculates all w ∈ Lin(t) that are in L.
Hence,

(SC(A), t) =

{
Lin(t) ∩ L if Lin(t) ∩ L 6= Ø,

0 otherwise

for all t ∈ SP.

As an example consider Figure 3.6. Here Σ = {a, b}. The automaton
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W is depicted on the left hand side. Its recognized language is L = {au |
u ∈ Σ?}. On the right hand side, a successful run of the associated wbba
A on t = (aa ‖ b)(a ‖ bb) is depicted. The guessed run of W is on the word
aabb. Hence, the weight of t at this run is {aabb}. Moreover, SC(A, t) =
{aabb, aaa}.

Since Σ? is a regular word language there is a wbba A with (SC(A), t) =
Lin(t) for all t ∈ SP.

3.2 Formal Power Series over Sequential-Parallel

Posets

To characterize the possible behaviors of wba, we introduce the notion of
formal power series over sp-posets with values in a bisemiring. This concept
is both a generalization of the well known formal power series over words
(cf. [SS78]) and of sp-languages as introduced by Lodaya and Weil [LW00].

A formal power series over SP with values in the bisemiring �, or an
sp-series for short, is a function S : SP −→ �. With (S, t) = S(t) it is
written as a formal sum:

S =
∑

t∈SP

(S, t) t.

The value (S, t) is referred to as the coefficient of t in S. The terminology of
an sp-series underlines that we are interested in various operations similar
to those as defined for series in analysis. The power series is called “formal”
because we are not interested in summing up series. The support of S is
supp S := {t ∈ SP | (S, t) 6= 0}. Formal power series with finite support are
called polynomials, those whose support is a letter are called monomials.
The set of all formal power series over SP with values in � is denoted by
�〈〈SP〉〉, the set of all polynomials is denoted by �〈SP〉.

Similarly, we can consider formal power series over SP1 with values in
a bisemiring �, i.e. functions S : SP1 −→ �. All the above definitions
apply also to sp-series over SP1. We abbreviate the set of all sp-series over
SP1 by �〈〈SP1〉〉, and the set of all polynomials by �〈SP1〉. Obviously, any
series from S ∈ �〈〈SP〉〉 can be understood as a series from �〈〈SP1〉〉 by
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3.2 Formal Power Series over Sequential-Parallel Posets

putting (S, ε) = 0. Vice versa, every series S ∈ �〈〈SP1〉〉 with (S, ε) = 0
can be seen as a series of �〈〈SP〉〉.

Now we introduce some operations for sp-series. Let S, T ∈ �〈〈SP1〉〉.
We define for all t ∈ SP1:

• the sum S + T by

(S + T, t) := (S, t)⊕ (T, t),

• the scalar products k·S and S·k for k ∈ � by

(k·S, t) := k ◦ (S, t) and (S·k, t) := (S, t) ◦ k,

• the sequential product S·T by

(S·T, t) :=
⊕

t=u·v
(S, u) ◦ (T, v)

where the sum is taken over all sequential factorizations t = u·v with
u, v ∈ SP1,

• the parallel product S ‖T by

(S ‖T, t) :=
⊕

(u,v) : t=u ‖ v

(S, u)3(T, v)

where we add over all pairs (u, v) such that t = u ‖ v with u, v ∈ SP1

(because of the commutativity of ‖ in SP1 both (S, u)3(T, v) and
(S, v)3(T, u) contribute to the sum).

Sum, scalar products, sequential and parallel product are defined likewise
for S, T ∈ �〈〈SP〉〉.
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3 Weighted Branching Automata and Formal Series

For the next two operations let S ∈ �〈〈SP〉〉. Then we define for all
t ∈ SP:

• the sequential iteration S+ of an sp-series S by

(S+, t) :=
⊕

1≤m≤|t|

⊕

t=u1·...·um

(S, u1) ◦ . . . ◦ (S, um)

where we sum up over all possible sequential factorizations of t,

• the parallel iteration S� by

(S�, t) :=
⊕

1≤n≤|t|

⊕

(u1,...,un):

t=u1 ‖ ... ‖ un

(S, u1)3 . . .3(S, un)

where the sum extends over all parallel factorizations and any order
of the factors.

Collectively, we refer to the defined operations as the rational operations.
Moreover, all rational operations without the parallel iteration are referred
to as the sequential-rational operations.

Remark 3.7. If (SP1, ·) is viewed as the free monoid over the infinite
alphabet of all parallel posets, then S·T is the usual definition of a Cauchy
product (cf. [SS78]). The same holds true for S ‖T if (SP1, ‖ ) is seen as
the free commutative monoid over the infinite alphabet of all sequential
sp-posets.

The series � is defined by (�, t) = 0 for all t ∈ SP1, the series �ε by
�ε(ε) = 1 and �ε(t) = 0 for any t 6= ε.

Lemma 3.8. (�〈〈SP1〉〉, +, ·, ‖ , �, �ε) and (�〈SP1〉, +, ·, ‖ , �, �ε) are bi-
semirings.

Proof. Because of Remark 3.7 the proof of associativity for +, ·, and ‖ is
by standard arguments. It is clear that + is commutative. For the sake
of completeness we include the argument for commutativity of ‖ . For
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3.2 Formal Power Series over Sequential-Parallel Posets

S, T ∈ �〈〈SP1〉〉 and t ∈ SP1 we have:

(S ‖T, t) =
⊕

(u,v) : t=u ‖ v

(S, u)3(T, v)

=
⊕

(u,v) : t=u ‖ v

(T, v)3(S, u)

=
⊕

(v,u) : t=v ‖ u

(T, v)3(S, u)

= (T ‖S, t).

It is easy to check that · and ‖ distribute over +. Clearly, �+ S = S,
�·S = S·� = S ‖ � = � and �ε·S = S·�ε for all S ∈ �〈〈SP1〉〉. Hence,
(�〈〈SP1〉〉, +, ·, ‖ , �, �ε) is a bisemiring. Since +, ·, and ‖ preserve finite
supports, (�〈SP1〉, +, ·, ‖ , �, �ε) is also a bisemiring.

Note. �〈〈SP〉〉 and �〈SP〉 do not carry the structure of a bisemiring because
the unit �ε of the sequential product is missing.

Remark 3.9. In Definition 3.1 of a wba A and in the definition of the
behavior of A we have allowed neither ε-transitions nor a run of A on ε.
Therefore, the behavior of a wba A is always an element of �〈〈SP〉〉. Hence,
we deal with �〈〈SP〉〉 in the sequel.

Definition 3.10. (a) The class �s−rat〈〈SP〉〉 of sequential-rational
sp-series8 over Σ with values in � is the smallest class C of �〈〈SP〉〉
such that

• all monomials are in C, and

• C is closed under all sequential-rational operations.

(b) The class �rat〈〈SP〉〉 of rational sp-series over Σ with values in � is
the smallest class D of �〈〈SP〉〉 such that

• all monomials are in D, and

• D is closed under all rational operations.

8Called “series-rational” in [KM03].
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3 Weighted Branching Automata and Formal Series

Another way to define rational and sequential-rational sp-series is by
rational and sequential-rational expressions. They and their associated
sp-series are defined inductively as follows:

1. if a ∈ Σ then a is a rational and a sequential-rational expression and
[[ a ]] = S with (S, a) = 1 and (S, t) = 0 otherwise;

2. if E is a rational (sequential-rational) expression and k ∈ � then k·E
and E·k are rational (sequential-rational) expressions, and [[ k·E ]] =
k·[[ E ]], [[ E·k ]] = [[ E ]]·k;

3. if E1, E2 are rational (sequential-rational) expressions then E1 + E2,
E1·E2, and E1 ‖E2 are rational (sequential-rational) expressions, and
[[ E1 + E2 ]] = [[ E1 ]] + [[ E2 ]], [[ E1·E2 ]] = [[ E1 ]]·[[ E2 ]], [[ E1 ‖E2 ]] =
[[ E1 ]] ‖ [[ E2 ]];

4. if E is a rational (sequential-rational) expression then E+ is a rational
(sequential-rational) expression, and [[E+ ]] = [[ E ]]+;

5. if E is a rational expression then E� is a rational expression, and
[[ E� ]] = [[ E ]]�.

Now, an sp-series S is rational (sequential-rational) if [[E ]] = S for some
rational (sequential-rational) expression E.

Note. Already in the theory of sp-languages the parallel iteration causes
severe problems [LW00]. Smoother results are obtained if one does not
allow the parallel iteration [LW00]. This restriction seems natural to us
because of the boundedness of the number of independent processes in a
parallel system.

Remark 3.11. Σ+ can be identified with those sp-posets of SP(Σ) built
of singletons by the use of sequential product only. If � = (K,⊕, ◦, 3, 0, 1),
then �′ = (K,⊕, ◦, 0, 1) is a semiring. Thus, a formal power series
S′ : Σ+ → �′ may be identified with the series S : SP(Σ)→ � where

(S, t) =

{
(S′, t) if t ∈ Σ+,

0 otherwise.

The rational formal power series over Σ+ and �′ are the smallest class of
all formal power series containing the monomials and closed under sum,
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sequential product and sequential iteration. It is denoted by �′rat〈〈Σ+〉〉.
Hence, �s−rat〈〈SP(Σ)〉〉 is a generalization of �′rat〈〈Σ+〉〉.9

Let � and �′ be bisemirings, h : � → �′ a bisemiring homomorphism
and f : SP(Σ1) → SP(Σ2) an homomorphism of sp-algebras. Further,
let S ∈ �〈〈SP(Σ1)〉〉. We define the sp-series h(S) ∈ �′〈〈SP(Σ1)〉〉 by
(h(S), t) = h(S, t) for any t ∈ SP(Σ1). Further, we define the sp-series
←−
f (S) ∈ �〈〈SP(Σ2)〉〉 for any t ∈ SP(Σ2) by (

←−
f (S), t) =

⊕
s∈f−1(t)(S, s).

Note that the last sum is finite because f is non-erasing, i.e. |t| ≤ |f(t)|
for all t ∈ SP(Σ1) because ε /∈ SP(Σ2).

Proposition 3.12. Let h : � → �′ be a bisemiring homomorphism and
f : SP(Σ1) → SP(Σ2) an sp-algebra homomorphism. For any k ∈ � and
S ∈ �〈〈SP(Σ1)〉〉, h(k·S) = h(k)·h(S), and h(S·k) = h(S)·h(k). Further,

h commutes with all other rational operations, and
←−
f commutes with all

rational operations. In particular, h and
←−
f preserve sequential-rationality

and rationality.

Proof. The proof for h is straightforward. Obviously,
←−
f commutes with

sum and scalar products. Because of Remark 3.7 it is folklore to show that
←−
f commutes with the sequential product. We include the argument for
the sake of completeness. Let t ∈ SP(Σ2), and S, T ∈ �〈〈SP(Σ1)〉〉. Then
we have:

(
←−
f (S·T ), t) =

⊕

s∈f−1(t)

(S·T, s) =
⊕

s∈f−1(t)

⊕

u,v: u·v=s

(S, u) ◦ (T, v)

=
⊕

u,v: f(u·v)=t

(S, u) ◦ (T, v).

On the other hand:

(
←−
f (S)·

←−
f (T ), t) =

⊕

u′,v′: u′·v′=t

(
←−
f (S), u′) ◦ (

←−
f (T ), v′)

=
⊕

u′,v′: u′·v′=t

[ ⊕

u∈f−1(u′)

(S, u)
]
◦
[ ⊕

v∈f−1(v′)

(T, v)
]

9Usually, �′〈〈Σ?〉〉 and �′rat〈〈Σ?〉〉 are considered. Then �〈〈SP1〉〉 and �s−rat〈〈SP1〉〉
would be the appropriate generalizations. But we restrict ourselves to SP as noticed
above.
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=
⊕

u′,v′: u′·v′=t

⊕

u∈f−1(u′)

v∈f−1(v′)

(S, u) ◦ (T, v)

=
⊕

u,v: f(u)·f(v)=t

(S, u) ◦ (T, v).

Since f : SP(Σ1) → SP(Σ2) is a homomorphism, {(u, v) | f(u·v) = t} =

{(u, v) | f(u)·f(v) = t}. Thus,
←−
f commutes with the sequential prod-

uct. Similarly, one shows that
←−
f commutes with the parallel product, the

sequential iteration, and the parallel iteration.

We consider as a special case the Boolean bisemiring �. An sp-language
L is a subset of SP(Σ). Any sp-language L ⊆ SP can be identified with
its characteristic series �L over �where �L : SP → � and (�L, t) = 1 iff
t ∈ L. Hence, supp �L = L. The operations introduced above can now be
seen as operations of sp-languages. Let L, L′ ⊆ SP. We define:

• union or sum: L ∪ L′,

• sequential product: L·L′ := {t·t′ | t ∈ L, t′ ∈ L′},

• parallel product: L ‖L′ := {t ‖ t′ | t ∈ L, t′ ∈ L′},

• sequential iteration: L+ := {t1· . . . ·tm | m > 0, ti ∈ L},

• parallel iteration: L� := {t1 ‖ . . . ‖ tn | n > 0, ti ∈ L}.

Then char : P(SP)→ �〈〈SP〉〉 : L 7→ �L and supp : �〈〈SP〉〉 → P(SP) : S 7→
supp(S) are bijections preserving the operations defined above. Therefore,
the theory of sp-series is a generalization of the theory of sp-languages as
investigated by Lodaya and Weil [LW00]. This bijection maps the class
�s−rat〈〈SP〉〉 to the class of sequential-rational sp-languages10 SPs−rat(Σ),
i.e. the least class C of subsets of SP(Σ) such that

• Ø and all singletons are in C, and

• C is closed under union, sequential and parallel product, and under
sequential iteration.

10Called “series-rational languages” in [LW00].
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Since the iteration of the parallel product is not allowed in the construc-
tion of a sequential-rational sp-language we have immediately that any
L ∈ SPs−rat is width-bounded [LW00]. For cardinality reasons there are
width-bounded sp-languages which are not sequential-rational. Or consider
any non-regular word language like L = {anbn | n ≥ 1} which has uniform
width of 1 but which is not sequential-rational.

We call an sp-series S ∈ �〈〈SP〉〉 width-bounded if supp S has bounded
width.

Proposition 3.13. Any sequential-rational sp-series has bounded width.

Proof. Note the following relations for S, T ∈ �〈〈SP〉〉 and k ∈ �:

• supp(S + T ) ⊆ supp S ∪ supp T ,

• supp(k·S) ⊆ supp S and supp(S·k) ⊆ supp S,

• supp(S·T ) ⊆ (suppS)·(supp T ),

• supp(S ‖T ) ⊆ (supp S) ‖ (suppT ), and

• supp(S+) ⊆
(
supp S

)+
.

Now, let S ∈ �〈〈SP〉〉 be sequential-rational. Due to the relations given
above there is a sequential-rational language L ⊆ SP with supp S ⊆ L.
Since L is of bounded width, supp S is of bounded width.

As for sp-languages the converse of Proposition 3.13 is not true.
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4 First Closure Properties of Regular

Sequential-Parallel Series

In this chapter, we show the closure of C-regular sp-series under rational
operations. Most of these closure properties are also valid for M-regular sp-
series. The main theorem of this chapter states that every rational sp-series
is C-regular.

Notation. In the sequel, many proofs are the same for C-regular and M-
regular sp-series. Therefore, we speak in these proofs just of “a run” and of
“the behavior”. If we do so we mean either uniformly C-runs, C-behavior
etc. or M-runs, M-behavior etc. The point is that the argument remains
the same in cascade branching and maximally branching mode.

4.1 Closure under Sum and Scalar Products

Proposition 4.1. Let S1, S2 ∈ �〈〈SP〉〉 be C-regular (or M-regular) sp-
series. Then S1 + S2 is again a C-regular (or M-regular) sp-series.

Proof. Let Si be recognized by the wba Ai (i = 1, 2). We define the disjoint
union A = (Q1 ∪̇ Q2, µseq, µfork, µjoin, λ, γ) of A1 and A2 by

µseq(p, a, q) =

{
µiseq(p, a, q) if p, q ∈ Qi (i = 1, 2),

0 otherwise,

and similarly for µfork, µjoin, λ, γ.

Then a run of A is either completely in A1 or in A2. Thus, A recognizes
S1 + S2.

Proposition 4.2. Let S ∈ �〈〈SP〉〉 be a C-regular (M-regular) sp-series
and k ∈ �. Then both k·S and S·k are C-regular (M-regular),respectively.
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Proof. Let S be recognized by the wba A = (Q, µseq, µfork, µjoin, λ, γ). We
define A′ being equal to A with the exception of the initial weight function
which we put

λ′(p) = k ◦ λ(p)

for all p ∈ Q. Then A′ recognizes the sp-series k·S.

A similar proof holds for the series S·k changing the final weights instead
of the initial ones.

Since the constructions in the proofs of Proposition 4.1 and 4.2 do not
introduce fork or join transitions of new arity we get:

Corollary 4.3. Let S, S1, S2 ∈ �〈〈SP〉〉 be C-recognized (M-recognized) by
some wbba and let k ∈ �. Then k·S, S·k, and S1 + S2 are C-recognized
(M-recognized) by a wbba.

4.2 Normalization

In the sequel, we will use branching automata with restricted possibilities
to enter and to leave the automaton. A wba A = (Q, µseq, µfork, µjoin, λ, γ)
is called initial-state-normalized if there is one unique initial state i only
with λ(i) = 1, µseq(p, a, i) = 0, and

µm
join({p1, . . . , pm}, i) = µm

fork(p1, {i, p2, . . . , pm}) = 0

for all m = 2, . . . , |Q|, p, p1, . . . , pm ∈ Q and a ∈ Σ. The wba A is final-
state-normalized if there is one unique final state f only with γ(f) = 1,
µseq(f, a, q) = 0, and

µm
fork(f, {q1, . . . , qm}) = µm

join({f, q2, . . . , qm}, q) = 0

for all m = 2, . . . , |Q|, q, q1, . . . , qm ∈ Q and a ∈ Σ. If A is both initial-
and final-state-normalized then A is said to be normalized.

Proposition 4.4. Let A be a wba over Σ with weights from �. Then there
is a normalized wba with the same behavior as A.
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Proof. We show how to transform A = (Q, µseq, µfork, µjoin, λ, γ) into an
initial-state-normalized wba. The wba AI = (QI , µI seq, µI fork, µI join, λI , γI)
is defined as follows:

• QI = Q ∪̇ {i},

• µI seq(p, a, q) =





µseq(p, a, q) if p, q ∈ Q,⊕
r∈Q

[λ(r) ◦ µseq(r, a, q)] if p = i, q ∈ Q,

0 otherwise,

• for any m ∈ {2, . . . , |QI |}:

µI
m
fork(p, {p1, . . . , pm})

=





µm
fork(p, {p1, . . . , pm}) if p, p1, . . . , pm ∈ Q,⊕

r∈Q
[λ(r) ◦ µm

fork(r, {p1, . . . , pm})] if p = i, p1, . . . , pm ∈ Q,

0 otherwise,

• for any m ∈ {2, . . . , |QI |}:

µI
m
join({q1, . . . , qm}, q)

=

{
µm

join({q1, . . . , qm}, q) if q1, . . . , qm, q ∈ Q,

0 otherwise,

• λI(p) =

{
1 if p = i,

0 if p ∈ Q,
and γI(q) =

{
0 if q = i,

γ(q) if q ∈ Q.

Clearly, AI is initial-state-normalized with i as its unique initial state. Now
we show S(AI) = S(A). For a run G = (V, E, ν, η) of A we define G′ =
(V, E, ν′, η) by ν′(src(G′)) = i and ν′(v) = ν(v) for all v ∈ V \ {src(G′)}.
If G′ is a run of AI , we put g(G) = G′; otherwise g(G) is undefined.

Any run G of A starts either with a sequential transition p
a
−→ q or

with a fork transition p → {p1, . . . , pm}. Note that g(G) is undefined iff
µI seq(i, a, q) = 0 or µI

m
fork(i, {p1, . . . , pm}) = 0, respectively.
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Clearly, in case g(G) is defined, lab(g(G)) = lab(G) and every run of
AI whose source is labeled with i is in the image of g. If G′ is a run of AI

starting with initial state i then we have

wgt(G′) =
⊕

G∈g−1(G′)

λ(ν(src(G))) ◦wgt(G).

Let R0
t (A) be the collection of all runs of A with label t whose image

under g is undefined. Let H ∈ R0
t (A) and let [H] be the collection of

all runs of A that differ from H in the label of their source only. Then
H ∈ R0

t (A) and H̃ ∈ [H] imply H̃ ∈ R0
t (A) by the definition of g. We

fix a run H ∈ R0
t (A) and assume H starts with a sequential transition.

Thus, H = H1·H2 where H1 = p
a
−→ q for some p, q ∈ Q and a ∈ Σ. Since

H ∈ R0
t (A) we get by definition of g and AI

0 = µI seq(i, a, q) =
⊕

r∈Q

[λ(r) ◦ µseq(r, a, q)] .

Hence, we have

⊕

H̃∈[H]

λ(ν(src(H̃))) ◦wgt(H̃) =
⊕

r∈Q

[λ(r) ◦ µseq(r, a, q) ◦wgt(H2)]

=

[⊕

r∈Q

λ(r) ◦ µseq(r, a, q)

]
◦wgt(H2)

= 0 .

Similarly, we get the same result if H starts with a fork transition. Now,
note that for H ∈ R0

t (A) the classes [H] define a partition of R0
t (A). Thus:

⊕

H∈R0
t (A)

λ(ν(src(H))) ◦wgt(H) = 0.

Therefore, it is sufficient for calculating (S(A), t) to sum up only over the
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runs G with g(G) ∈ R(AI). Hence, we get for any t ∈ SP

(S(AI), t) =
⊕

q∈Q

[( ⊕

G′:i
t
−→q

wgt(G′)

)
◦ γI(q)

]

=
⊕

q∈Q

[( ⊕

G∈g−1(G′)

λ(ν(src(G))) ◦wgt(G)

)
◦ γ(q)

]

=
⊕

r,q∈Q

λ(r) ◦wgt(r, t, q) ◦ γ(q)

= (S(A), t).

Note that AI does not have additional final states because γI(i) = 0. We
can now perform a similar transformation to obtain from AI a final-state-
normalized automaton. Since this transformation will not introduce any
new initial states and transitions into i, the resulting wba will be normalized
and have the same behavior as A.

Since the construction in the proof given above does not introduce any
fork or join transitions of an arity not already existent in the original wba
A we have:

Corollary 4.5. For any wbba A there is a normalized wbba A′ with the
same behavior as A.

4.3 Closure under Parallel Product and Iteration

Next, we construct from two wba A1 and A2 a wba A with the C-behavior
SC(A) = SC(A1) ‖SC(A2). At first sight, we would try to take A the
disjoint union of A1 and A2, adding two states i and f as initial and final
state, and, moreover, adding fork transitions i→ {p1, p2} where pi is initial
in Ai, and, similarly, adding join transitions {q1, q2} → f where qi is final
in Ai for i = 1, 2. But this construction fails in general. We cannot
concentrate the old initial weights of A1 and A2 in the new fork transitions
i → {p1, p2} or in the initial weight of i because then the initial weights
of A1 and A2 would not be multiplied in parallel anymore. But this is
necessary for the desired behavior of A. The construction can only be
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successful if all initial and final weights of A1 and A2 are either 1 or 0.
Therefore, we assume in the proof of the next proposition the automata to
be normalized. This can be done due to Proposition 4.4.

Proposition 4.6. Let S1 and S2 be C-regular sp-series over Σ and �.
Then S1 ‖S2 is C-regular.

Proof. We give only a sketch of the proof. Let Ai be a normalized wba
with SC(Ai) = Si for i = 1, 2. Moreover, let ii and fi be the unique initial
and final state of Ai, respectively. We construct a new automaton A by
taking the disjoint union of A1 and A2, adding two new states i and f and,
moreover, a fork i→1 {i1, i2} and a join {f1, f2} →1 f. We put λ(i) = 1 and
γ(f) = 1. All other initial and final weights are equal to 0. Every run G in
A from i to f is of the form G = G1 ‖ i,fG2 where Gi is a run in Ai from
ii to fi for i = 1, 2. By distributivity of 3 over ⊕, it is an easy exercise to
show that (SC(A), t) = (S1 ‖S2, t) for all t ∈ SP.

Note. The above proof cannot be imitated for M-regular sp-series. Both in
A1 and A2 there may be parallel non-atomic runs from i1 to f1 and from i2
to f2, respectively. Then the i-f-parallel product of these runs is a cascade
branching run but no maximally branching run. Thus, these runs would
not contribute to the M-behavior of A, and, hence, the M-behavior of A
is not S1 ‖S2 anymore. We will come back to the closure of M-regular
sp-series under parallel product in Chapter 7.

Again by analyzing the proof of Proposition 4.6 and considering Corol-
lary 4.5 we get:

Corollary 4.7. If S1 and S2 are C-recognized by some wbba A1 and A2,
respectively, then S1 ‖S2 is C-recognized by some wbba A.

To show the closure under parallel iteration we also have to use normal-
ization of the wba involved.

Proposition 4.8. If S ∈ �〈〈SP〉〉 is C-regular, then S� is C-regular.

Proof. Let A = (Q, µseq, µfork, µjoin, λ, γ) be a wba C-recognizing S. Due
to Proposition 4.4 we assume A to be normalized. Let Ā be a copy of A.
We define A′ as follows:
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4.3 Closure under Parallel Product and Iteration

• Q′ = Q ∪̇ Q̄ ∪̇ {̂i, f̂},

• µ′
seq(p, a, q) =





µseq(p, a, q) if p, q ∈ Q,

µ̄seq(p, a, q) if p, q ∈ Q̄,

0 otherwise,

• for all m ∈ {2, . . . , |Q′|}:

µ′m
fork

(
p, {p1, . . . , pm}

)

=





µm
fork

(
p, {p1, . . . , pm}

)
if p, p1, . . . , pm ∈ Q,

µ̄m
fork

(
p, {p1, . . . , pm}

)
if p, p1, . . . , pm ∈ Q̄,

1 if p = î, m = 2 and

{p1, p2} = {̂i, ī},

1 if p = î, m = 2 and

{p1, p2} = {i, ī},

0 otherwise,

• for all m ∈ {2, . . . , |Q′|}:

µ′m
join

(
{p1, . . . , pm}, p

)

=





µm
join

(
{p1, . . . , pm}, p

)
if p1, . . . , pm, p ∈ Q,

µ̄m
join

(
{p1, . . . , pm}, p

)
if p1, . . . , pm, p ∈ Q̄,

1 if p = f̂, m = 2 and

{p1, p2} = {̂f, f̄},

1 if p = f̂, m = 2 and

{p1, p2} = {f, f̄},

0 otherwise,

• λ′(p) =





λ(p) if p ∈ Q,

1 if p = î,

0 otherwise,

and γ′(p) =





γ(p) if p ∈ Q,

1 if p = f̂,

0 otherwise.
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4 First Closure Properties of Regular Sequential-Parallel Series

Claim 1. Let G′ : p′ −→ q′ be a run of A′. Then one of the following cases
holds true:

• G′ is a run in A,

• G′ is a run in Ā, or

• G′ is a run from î to f̂.

Indeed, for G′ atomic Claim 1 holds by the definition of µ′
seq. Next, let

G′ = G′
1· . . . ·G

′
m allow a sequential decomposition for m ≥ 2. Assume

G′
1 : p′0 −→ p′1 with p′0 ∈ Q. By induction G′

1 is a run in A, and, especially,
p′1 ∈ Q which is the starting state of G′

2. Repeating the argument along the
sequence G′

1, G
′
2, . . . , G

′
m then G′ is a run in A. For p′0 ∈ Q̄ we get similarly

that G′ is a run in Ā. Now assume p′0 = î. By induction p′1 = f̂. Thus, G′
2

has to start in state f̂. But there is neither a sequential nor a fork transition
of A′ starting in f̂. Hence, p′0 = î yields a contradiction. So Claim 1 is true
for G′ = G′

1· . . . ·G
′
m. Finally, we assume G = ‖ p′,q′(G′

1, . . . , G
′
n) with

p′, q′ ∈ Q′ and n ≥ 2. Let G′
i : p′i −→ q′i for i = 1, . . . , n. If p′ ∈ Q then

p′1, . . . , p
′
n ∈ Q. By induction G′

1, . . . , G
′
n are runs in A. Hence, q′ ∈ Q

and G′ is a run in A. Reasoning by analogy p′ ∈ Q̄ implies q′ ∈ Q̄ and,
hence, G′ is a run in Ā. For p = î, G′ starts either with the fork transition
î→ {̂i, ī} or with î→ {i, ī}. In the first case let G1 : î −→ q′1 and G2 : ī −→ q′2.

By induction q′1 = f̂ and G2 is a run in Ā. Since G′ is a run, we get q′2 = f̄

and q = f̂. For the second case, q = f̂ follows similarly. This proves Claim 1.

Now we consider runs G′ in A′ from an initial to a final state. By Claim 1
either G′ : i −→ f being a run in A or G′ : î −→ f̂.

Claim 2. Let G′ : î −→ f̂ be a run in A′. Then there is some n ≥ 2 and runs
G1, . . . , Gn−1 in Ā, and a run Gn in A such that for

H1 = ‖
î,̂f

(Gn−1, Gn) and

Hi = ‖
î,̂f

(Gn−i, Hi−1) for i = 2, . . . , n− 1

we get G′ = Hn−1.

We abbreviate the iterated product Hn−1 of Claim 2 by 2(G1, . . . , Gn).
To prove Claim 2 we distinguish what transition G′ is starting with. For
G′ starting with î → {i, ī} we get by Claim 1 and by definition of µ′

join

54



4.3 Closure under Parallel Product and Iteration

that G′ = ‖
î,̂f

(G1, G2) with G1 : i −→ f a run in A and G2 : ī −→ f̄ a

run in Ā. Hence, G′ is of the desired form with n = 2. Now suppose
G′ starts with î → {̂i, ī}. Again by Claim 1 and definition of µ′

join we
get: G′ = ‖

î,̂f
(G1, H) with G1 : ī −→ f̄ a run in Ā and H a run from

î to f̂. By induction there is an integer m ≥ 2 and runs H1, . . . , Hm−1

in Ā and a run Hm in A such that H = 2(H1, . . . , Hm). This implies
G′ = 2(G1, H1, . . . , Hm) which proves Claim 2.

Let G′ = 2(G1, . . . , Gn) for some n ≥ 2. Then we have:

lab(G′) = lab(G1) ‖ . . . ‖ lab(Gn) .

Since the weight of the fork and join transitions with î or f̂ involved is 1,
we also get:

wgt(G′) = wgt(G1)3 . . .3wgt(Gn) . (?)

Now we have for every t ∈ SP:

(SC(A′), t)

=
⊕

p′,q′∈Q′

⊕

G′:p′
t
−→q′

λ′(p′) ◦wgt(G′) ◦ γ′(q′)

=

[
⊕

G′:i
t
−→f

wgt(G′)

]
⊕

[
⊕

G′ :̂i
t
−→ f̂

wgt(G′)

]

(by definition of λ′ and γ′)

=(SC(A), t)⊕

[
⊕

2≤n≤wd(t)

⊕

(t1,...,tn):

t=t1 ‖ ... ‖ tn

⊕

G′=2(G1,...,Gn)
lab(Gi)=ti

wgt(G′)

]

(by Claim 1, normalization of A and Claim 2)
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4 First Closure Properties of Regular Sequential-Parallel Series

=(SC(A), t)⊕

[
⊕

2≤n≤wd(t)

⊕

(t1,...,tn):

t=t1 ‖ ... ‖ tn

⊕

G′=2(G1,...,Gn)
lab(Gi)=ti

(
wgt(G1)3 . . .3wgt(Gn)

)]

(by Equation (?))

=(SC(A), t)⊕

[
⊕

2≤n≤wd(t)

⊕

(t1,...,tn):

t=t1 ‖ ... ‖ tn

(
(SC(A), t1)3 . . .

. . .3(SC(A), tn)

)]

(by distributivity of 3 over ⊕ and commutativity of ⊕)

=
⊕

1≤n≤wd(t)

⊕

(t1,...,tn):

t=t1 ‖ ... ‖ tn

[
(S, t1)3 . . .3(S, tn)

]

(since A C-recognizes S)

=(S�, t).

Hence, A′ C-recognizes S�.

Analyzing the proof given above we get:

Corollary 4.9. If S is C-recognized by some wbba then S� is also
C-recognized by some wbba.

Note. As for the parallel product the proof of Proposition 4.8 cannot be
adopted to M-regular sp-series because we introduced cascade branching
runs to realize the parallel iteration.
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4.4 Closure under Sequential Product and Iteration

Moreover, the M-regular sp-series are not closed under parallel iteration
as the following example shows.

Example 4.10. We work in the setting of the Boolean bisemiring, i.e. in
the case of sp-languages. Let a ∈ Σ. Obviously, L = {a} is M-regular.
Then

L� = {a ‖ . . . ‖ a︸ ︷︷ ︸
n

| n ≥ 1}.

Assumed L� is M-recognizable by some wba A with finite-state set Q,
there has to be an M-run Gn for every n ≥ 1 from an initial state i to a
final state f on

a ‖ . . . ‖ a︸ ︷︷ ︸
n

.

Since Gn is an M-run it is of the form Gn = ‖ i,f(H1, . . . , Hn) with
lab(Hi) = a for i = 1, . . . , n. Hence, the opening fork and the closing
join transition of Gn have arity n. But by definition of a wba the arity of
fork and join transitions is bounded by |Q|. Hence, L� is not M-regular.1

4.4 Closure under Sequential Product and

Iteration

Now we turn to the closure of the class of regular sp-series under sequential
product and sequential iteration. There are well-known counterparts of
these closure properties in the theory of non-deterministic finite automata.
Therefore, it is tempting to believe that constructions familiar from that
theory work here as well. But, as already observed for sp-languages by
Lodaya and Weil, this is not the case. The following example shows that
the obvious variant of the classical construction for the sequential product
does not yield the correct result.

1Lodaya and Weil [LW00] allow in their definition of branching automata fork and join
transitions of arbitrary arity. As already noted we have to work with sets instead of
multisets when branching. Thus, the arity of our wba is automatically bounded by
|Q|. But assumed a finite set of transitions, also the arity of fork and join transitions
in the branching automata of Lodaya and Weil has to be uniformly bounded. Hence,
a similar argument as ours would apply in Example 4.10.
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4 First Closure Properties of Regular Sequential-Parallel Series

We call a run successful if it is a run from an initial to a final state with
weight distinct from 0.

Example 4.11. We work with the Boolean bisemiring �, i.e. in the set-
ting of sp-languages. Suppose that the wba A1 consists of the following
transitions: a fork transition i1 →1 {p1, p2}, and sequential transitions

p1
a
−→1 f1 and p2

a
−→1 f1. Further, i1 is the unique initial state and f1 the

unique final state. The wba A2 consists of the following transitions: a join
transition {q1, q2} →1 f2, and sequential transitions i2

a
−→1 q1 and i2

a
−→1 q2.

The unique initial state is i2 while f2 is the only accepting state. Then
the classical construction suggests to consider the wba consisting of all the
transitions mentioned so far and, in addition, in particular sequential tran-
sitions p1

a
−→1 i2 and p2

a
−→1 i2. Figure 4.1 gives one successful run of the

resulting wba, its label is (aa) ‖ (aa). Since the language of both A1 and A2

is empty, the composition should not allow any successful run whatsoever.

i1

p2

p1

f2

q2

q1

i2

i2
a

a

a

a

Figure 4.1: A problematic run in the classical product construction.

The problem in the example above is that the newly constructed au-
tomaton can switch in parallel sub-runs independently from A1 into A2.
Lodaya and Weil showed that this problem does not arise when one re-
stricts to “behaved automata”. Then they show that one can transform
any branching automaton into an equivalent behaved one. We proceed
differently giving a direct construction for the sequential product. More
precisely, we “send a signal” from the initial state along the run. In fork
transitions, this signal is propagated along one branch only. In order not to
duplicate runs, the signal is sent to the “smallest” of the states that arise
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4.4 Closure under Sequential Product and Iteration

from the fork transition.2 Further, the newly constructed wba can only
switch from A1 into A2 in the presence of this signal, and in any successful
run, the signal has to be present at the final state.

Proposition 4.12. Let S1, S2 ∈ �〈〈SP〉〉 be two C-regular (M-regular) sp-
series. Then S1·S2 is C-regular (M-regular), respectively.

Proof. Let Ai = (Qi, µiseq, µifork, µijoin, λi, γi) be wba with S(Ai) = Si for
i = 1, 2. We fix an arbitrary linear order ≤ on the state set Q1 of A1. For
P ⊆ Q we denote by min≤ P the least state of P with respect to ≤. The
construction of a wba A recognizing S1·S2 is done in two steps. Firstly, we
construct an automaton A′ with S(A′) = S(A1) as follows:

• Q′ = Q1 × {0, 1},

• µ′
seq((p, x), a, (q, y)) =

{
µ1seq(p, a, q) if x = y,

0 otherwise,

• for all m ∈ {2, . . . , |Q′|}:

µ′m
fork

(
(p, x),

{
(p1, x1), . . . , (pm, xm)

})

=





µ1
m
fork(p, {p1, . . . , pm}) if p1 = min≤{p1, . . . , pm},

x1 = x, and xi = 0

for i = 2, . . . , m,

0 otherwise,

• for all m ∈ {2, . . . , |Q′|}:

µ′m
join

({
(q1, x1), . . . , (qm, xm)

}
, (q, x)

)

=





µ1
m
join({q1, . . . , qm}, q) if x = x1 and xi = 0

for i = 2, . . . , m,

0 otherwise,

2This is actually the reason why we have to assume that these states are different, i.e.

that we work with sets in the definition of fork and join transitions and not with
multisets as Lodaya and Weil do.
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4 First Closure Properties of Regular Sequential-Parallel Series

• λ′(p, x) =

{
λ1(p) if x = 1,

0 otherwise,
γ′(q, x) =

{
γ1(q) if x = 1,

0 otherwise.

In the sequel, we refer to the second component of a state of A′ as a signal.
It is either 0 or 1.

Claim 1. If G′ : (p, x)
t
−→ (q, y) is a run of A′ then x = y. Moreover, if

(r, z) is a state of G′ then z ≤ x.

We prove this claim by structural induction. If G′ : (p, x)
t
−→ (q, y)

is atomic then x = y by the definition of µ′
seq. For G′ = G′

1· . . . ·G
′
m

being sequential with G′
i : (pi, xi)

ti−→ (pi+1, xi+1) (i = 1, . . . , m) we have
xi = xi+1 for all i = 1, . . . , m, and every signal of a state of G′

i is smaller
than or equal to xi by induction hypothesis. Hence, x = y and Claim 1 is
true for G′. Now let G′ = ‖ (p,x),(q,y)(G

′
1, . . . , G

′
n) be a parallel run with

G′
i : (pi, xi)

ti−→ (qi, yi) for i = 1, . . . , n. Let p1 = min≤{p1, . . . , pn}. Then
x1 = x and xi = 0 for all i = 2, . . . , n by definition of µ′

fork. Hence, y1 = x1

and yi = 0 for all i = 2, . . . , n by induction hypothesis. Moreover, all
signals of states occurring in G′

1, . . . , G
′
n are smaller than or equal to x.

Now by definition of µ′
join we get y = y1 = x1 = x. This proves Claim 1.

We define the following sets of runs:

• Rp,q(A1) is the set of runs from p to q in A1,

• R0
p,q(A

′) and R1
p,q(A

′) are the sets of runs in A′ from (p, 0) to (q, 0)
and from (p, 1) to (q, 1), respectively.

We define g0 : R0
p,q(A

′)→ Rp,q(A1) by dropping the signals of the states of

a run G′ ∈ R0
p,q(A

′). Due to Claim 1 all states of such a run G′ have signal
0. Thus, g0 is a bijective mapping preserving labels and weights. Next, we
define g1 : R1

p,q(A
′)→Rp,q(A1) also by dropping the signals of the states.

Note that runs from R1
p,q(A

′) can well contain states with signal 0. This
is caused by possible branching. Thus, in order to show that g1 is bijective
and preserves labels and weights, one uses the corresponding result on g0.
Considering that all initial and final states of A′ have signal 1 it is clear by
the definition of λ′ and γ′ that S(A′) = S(A1).
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4.4 Closure under Sequential Product and Iteration

Due to Proposition 4.4 we may assume both A1 and A2 to be normalized.
Then A′ is also normalized by definition. Now we construct a wba A that
realizes S1·S2 as follows. We take the disjoint union of A′ and A2 but
replace the unique final state (f1, 1) of A′ by the unique initial state i2 of
A2, and call it s. We copy transitions and their weights from A′ and A2 to
A as far as the state s is not involved. All transitions ending in (f1, 1) turn
to transitions with same weight ending in s, and dually for the transitions
starting in i2. We put λ(s) = γ(s) = 0. The initial state of A is the unique
initial state (i1, 1) of A′, the final state of A is the state f2 of A2 where
initial and final weights carry over, respectively.

Claim 2. Let p′ ∈ Q′ and q ∈ Q2 with p′, q 6= s. Then G : p′ −→ q is a run
of A from p′ to q iff G = G′·G′′ with G′ : p′ −→ s a run in A′ only and
G′′ : s −→ q a run in A2 only.

The “if-part” of Claim 2 is trivial. Vice versa, let G : p′ −→ q be a run inA
with p′ ∈ Q′, q ∈ Q2, and p′, q 6= s. G cannot be atomic because otherwise
p = s or q = s. If G = G1· . . . ·Gm allows a sequential decomposition then
there is an i ∈ {1, . . . , m} such that G1· . . . ·Gi is a run in A′ from p′ to
(f1, 1) = s and Gi+1· . . . ·Gm is a run from s = i2 to q in A2. Otherwise,
there would have to be either a run from some r2 ∈ Q2 to some r′ ∈ Q′

contradicting the definition of A. Hence, there would be p̃ ∈ Q′ and q̃ ∈ Q2

and a j ∈ {1, . . . , m} such that Gj = ‖ p̃,q̃(H1, . . . , Hn) for some runs
H1, . . . , Hn in A. But then Hi : p̃i −→ q̃i for p̃i = (pi, xi) ∈ Q′ and
q̃i ∈ Q2 for i = 1, . . . , n. By induction there would be a factorization
Hi = H ′

i·H
′′
i with H ′

i : p̃i −→ s in A′ and H ′′
i : s −→ q̃i in A2 for i = 1, . . . , n.

Assume p1 = min≤{p1, . . . , pn}. Then xi = 0 for i = 2, . . . , n. But this
contradicts Claim 1 because H ′

i : (pi, xi) −→ (f1, 1) has to be a run for
i = 2, . . . , n.

Assumed the run G allows for some n ≥ 2 a parallel decomposition
G = ‖ p′,q(G1, . . . , Gn), again by induction there would be a j ∈ {1, . . . , n}
such that Gj starts in some (pj , 0) ∈ Q′, ends in qj ∈ Q2, and crosses s,
i.e. Gj = G′

j ·G
′′
j with G′

j : (pj , 0) −→ s. This implies the existence of a run
from (pj , 0) to (f1, 1) in A′ contradicting Claim 1. Thus, G cannot allow
a parallel decomposition. Hence, every run G from p′ to q decomposes
sequentially in the manner affirmed in Claim 2.

Using normalization, commutativity of ⊕ and distributivity of ◦ over ⊕,
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we get for all t ∈ SP:

(S(A), t) =
⊕

G:(i1,1)
t
−→f2

wgt(G)

=
⊕

t=t1·t2
G1:(i1,1)

t1−→s

G2:s
t2−→f2

wgt(G1) ◦wgt(G2)

=
⊕

t=t1·t2

( ⊕

G1:(i1,1)
t1−→s

wgt(G1)

)
◦

( ⊕

G2:s
t2−→f2

wgt(G2)

)

=
⊕

t=t1·t2

(S(A1), t1) ◦ (S(A2), t2)

=(S1·S2, t).

This concludes the proof.

Starting in the preceding proof with wbba instead of wba we get:

Corollary 4.13. Let S1, S2 be two regular series recognized by wbba A1

and A2, respectively. Then S1·S2 is also recognized by a wbba.

Similar to the sequential composition, the classical construction for the
sequential iteration suggests itself – and yields an incorrect result as the
following example shows.

Example 4.14. We work with the Boolean bisemiring �, i.e. in the set-
ting of sp-languages. Consider the wba from Figure 4.2 (left) where we
omitted the weights; any transition depicted has weight 1 and no further
transitions have non-zero weight. The support of the recognized sp-series
is {a ‖ b, dae}. The classical construction for the sequential iteration tells

us to add, among other transitions, one of the form q1
e
→ i since there is a

sequential transition q1
e
→ f in the wba in consideration. But then we get

the run depicted in Figure 4.2 (right) whose label is (aeda) ‖ b which does
not belong to the sequential iteration of the sp-language generated by the
wba we started with.
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i

p1

p2

q1

q2

f

a

b

ed

i

p2

p1

f

q2

q1q1a ie
p1d a

b

Figure 4.2: An unwanted run in the classical iteration construction.

Now it is not sufficient anymore to send just one signal as done in the last
proof. There, we switched frome one wba into another one. Hence, it was
sufficient to prevent A1 switching to A2 in at least one parallel sub-run.
Now we have to ensure in any of the parallel sub-runs that the automaton
does not switch from the parallel sub-run to the higher level the run has
started at.

Lodaya and Weil’s solution is, again, to use behaved automata3. Our
direct construction sends not just one, but two signals. These two signals
travel along different ways: whenever they can separate in a fork transition,
they do so. Then the newly constructed automaton is allowed to jump
from the final state to the initial state only in case both signals have to be
present. As before, in any successful run, both signals are present in the
first and the last state.

We introduce a notion needed in the next proof. Let G be a run of some
wba A and G = G1· . . . ·Gm the sequential decomposition of G. If a state
p is the label of the source or the sink of one of the Gi (i = 1, . . . , m) then
we say p occurs on the upper level of G.

Proposition 4.15. If S ∈ �〈〈SP〉〉 is C-regular (M-regular), then the se-
quential iteration S+ is C-regular (M-regular), respectively.

3The notion of “behaved automata” is determined by the restrictions forced by the
construction for sequential iteration. As we have indicated these are stronger than
those for the sequential product. The notion of “behavedness” originally defined
in [LW00] was too weak. In [LW01] Lodaya and Weil used the stronger notion of
“behavedness” working for sequential product and iteration.
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Proof. Let A = (Q, µseq, µfork, µjoin, λ, γ) be a wba recognizing S. We as-
sume an arbitrary but fixed linear order ≤ on Q. For P ⊆ Q we denote
by min≤ P the least element and by max≤ P the greatest element of P .
Again we construct a wba recognizing S+ in two steps. Firstly, we build
an automaton A′ with the same behavior as A similar to the construction
in the last proof, but this time with two signals for the state:

• Q′ = Q× {0, 1}2,

• µ′
seq

(
(p, x, x′), a, (q, y, y′)

)
=

{
µseq(p, a, q) if x = y, x′ = y′,

0 otherwise,

• for all m ∈ {2, . . . , |Q′|}:

µ′m
fork

(
(p, x, x′),

{
(p1, x1, x

′
1), . . . , (pm, xm, x′

m)
})

=





µm
fork(p, {p1, . . . , pm}) if p1 = min≤{p1, . . . , pm},

pm = max≤{p1, . . . , pm},

x1 = x, x′
1 = 0, xm = 0,

x′
m = x′, and xi = x′

i = 0

for all i = 2, . . . , m− 1,

0 otherwise,

• for all m ∈ {2, . . . , |Q′|}:

µ′m
join

({
(q1, x1, x

′
1), . . . , (qm, xm, x′

m)
}
, (q, x, x′)

)

=





µm
join({q1, . . . , qm}, q) if x1 = x, x′

1 = 0, xm = 0,

x′
m = x′, and xi = x′

i = 0

for all i = 2, . . . , m− 1,

0 otherwise,

• λ′(p, x, x′) =

{
λ(p) if x = x′ = 1,

0 otherwise,
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• γ′(q, x, x′) =

{
γ(q) if x = x′ = 1,

0 otherwise.

We refer to the second and third component of a state as the signals of
this state. A run in A′ is between states with same signals only:

Claim 1. If G′ : (p, x, x′) −→ (q, y, y′) is a run of A′ then x = y and x′ = y′.
Moreover, if (r, z, z′) is a state occurring in G′ then z ≤ x and z′ ≤ x′.

Indeed, Claim 1 is obvious for atomic runs. Let G′ = G′
1· . . . ·G

′
m be

the sequential decomposition of G′ with m ≥ 2. By induction Claim 1
holds true for G′

1 : (p, x, x′) −→ (p1, x1, x
′
1). Hence, x1 = x, x′

1 = x′,
and all signals of states of G′

1 are smaller or equal (x, x′). Repeating the
argument along the sequence G′

1, . . . , G
′
m we get Claim 1 for G′. Now let

G′ = ‖ p′,q′(G′
1, . . . , G

′
n) with p′ = (p, x, x′), q′ = (q, y, y′), and n ≥ 2.

Further let G′
i : (pi, xi, x

′
i) −→ (qi, yi, y

′
i) for i = 1, . . . , n. We suppose p1 =

min≤{p1, . . . , pn} and pn = max≤{p1, . . . , pn}. By definition of µ′
fork we

have x = x1, x′ = x′
n, xi = 0 for i = 2, . . . , n, and x′

j = 0 for j = 1, . . . , n−1.
Hence, xi ≤ x and x′

i ≤ x′ for i = 1, . . . , n. By induction, y1 = x1 = x,
y′

n = x′
n = x′, yi = 0 for i = 2, . . . , n, and y′

j = 0 for j = 1, . . . , n − 1.
By definition of µ′

join this implies y = y1 = x and y′ = y′
n = x′. This

proves Claim 1.

By Claim 1 one shows S(A′) = S(A) along the same lines as in the proof
of Proposition 4.12.

Due to Proposition 4.4 A can be assumed to be normalized. Then A′

is normalized too. Let i and f denote the unique initial and final state of
A, respectively. Then i′ = (i, 1, 1) and f′ = (f, 1, 1) are the unique initial
and final state of A′, respectively. Now we construct from A′ a wba A+

as follows. The states of A+ are the same as those of A′. Moreover, every
transition of A′ is also a transition of A+. Now we add for every sequential
transition p′

a
−→k f′ of A′ a transition p′

a
−→k i′ in A+, and for every join

transition {q′1, . . . , q
′
m} →l f′ of A′ a further join {q′1, . . . , q

′
m} →l i′ in A+.

The initial and final weights remain the same. Therefore, A+ has still the
unique initial state i′ and the unique final state f′.

Now, let Ri′,i′(A
+) be the set of all runs in A+ from i′ to i′ such that i′

does not appear in between. By Ri′,f′(A
′) we denote the set of all runs in

A′ going from i′ to f′. The mapping g : Ri′,i′(A
+) → Ri′,f′(A

′) is defined
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as follows. It maps G ∈ Ri′,i′(A
+) to G′ ∈ Ri′,f′(A

′) by labeling the sink of
G with f′ instead of i′. We show that g is well defined. Indeed, since i′ does
appear in G as the label of the source and the sink only all but the last
transition of G are also transitions in A′. The last transition is either of the
form p′

a
−→k i′ or is a join {q′1, . . . , q

′
m} →l i′ for some states p′, q′1, . . . , q

′
m and

k, l ∈ �. But then p′
a
−→k f′ respectively {q′1, . . . , q

′
m} →l f′ are transitions

of A′ by definition of A+. Hence, g(G) = G′ is well defined.

Now, by definition of A+ and g it follows immediately that g is bijective
and preserves labels and weights.

Claim 2. G : i′ −→ f′ is a run in A+ iff there is some m ≥ 1 and
Gj ∈ Ri′,i′(A

+) for j = 1, . . . , m − 1 and Gm ∈ Ri′,f′(A
′) such that

G = G1· . . . ·Gm.

Let G : i′ −→ f′ be a run in A+. Either state i′ appears only once and
then G is also a run in A′. Then G is of the desired form of Claim 2 with
m = 1. Otherwise, i′ appears more than once in G. Let G = G1· . . . ·Gm

(m ≥ 1) be the sequential decomposition of G. Assumed one Gi is not
atomic, i.e. Gi = ‖ p′,q′(H1, . . . , Hn) for some n ≥ 2 starting with fork

transition p′ → {p′1, . . . , p
′
n}. By definition of µ+

fork none of the p′j carries
signal (1, 1) for j = 1, . . . , n. It is obvious that Claim 1 holds true also
for A+. Thus, we get that none of the states in H1, . . . , Hn carries signal
(1, 1). Especially, i′ cannot occur in H1, . . . , Hn. Hence, i′ appears at the
upper level of G only. But then, obviously, G allows the decomposition
given by Claim 2. Vice versa, every run of this form is clearly a run from
i′ to f′ in A+.

Now we get for any sp-poset t ∈ SP:

(S(A+), t) =
⊕

G:i′
t
−→f′

wgt(G)

=
⊕

G=G1·...·Gm:

i′
t1−→i′

t2−→...
tm−−→f′

wgt(G1) ◦ . . . ◦wgt(Gm)

=
⊕

m≥1

⊕

t=t1·...·tm

⊕

G1:i
′

t1−→i′

···

Gm:i′
tm−−→f′

wgt(G1) ◦ . . . ◦wgt(Gm)
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=
⊕

m≥1

⊕

t=t1·...·tm

⊕

G1:i
′

t1−→i′

···

Gm:i′
tm−−→f′

wgt(g(G1)) ◦ . . .

. . . ◦wgt(g(Gm−1)) ◦wgt(Gm)

=
⊕

m≥1

⊕

t=t1·...·tm

(S(A′), t1) ◦ . . . ◦ (S(A′), tm)

=(S+, t).

The step before the last one is due to distributivity of ◦ over ⊕ and the
normalization of A′. Hence, A+ recognizes the sequential iteration S+.

Again the above construction for sequential iteration turns a wbba into
a wbba.

Corollary 4.16. Let S ∈ �〈〈SP〉〉 be recognized by a wbba. Then S+ is
recognized by a wbba.

4.5 From Rationality to Regularity

Now we can state the main theorem of this chapter.

Theorem 4.17. Let � be an arbitrary bisemiring. Every rational sp-
series S ∈ �〈〈SP〉〉 is C-regular. Moreover, any rational sp-series S can be
C-recognized by a normalized wbba.

Proof. All monomials are obviously C-regular because their support is a
letter only. By Propositions 4.1, 4.2, 4.6, 4.8, 4.12, and 4.15 the C-regular
sp-series are closed under sum, scalar products, parallel product and itera-
tion, and sequential product and iteration. Hence, every rational sp-series
is C-regular.

Clearly, all monomials are C-recognized by a wbba. By Corollaries 4.3,
4.7, 4.9, 4.13, and 4.16 sp-series C-recognized by a wbba are closed under
all rational operations. Thus, every rational sp-series is C-recognized by a
wbba. This wbba can be normalized due to Corollary 4.5.

67



4 First Closure Properties of Regular Sequential-Parallel Series

Corollary 4.18. Every sequential-rational sp-series S ∈ �〈〈SP〉〉 is
C-regular.

Remark 4.19. All constructions done in Propositions 4.1, 4.2, 4.4, 4.6,
4.8, 4.12, and 4.15 are effective. Given a rational expression for some
rational sp-series S we are able to construct a wba (and even a wbba) A
that recognizes S. Naturally, effectiveness is restricted to the assumption
that the bisemiring � is given in an effective way. Especially, we have to
calculate in � when constructing normalized wba and wba realizing closure
under scalar products.

68
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In Chapter 6 we will show that regular sp-series of bounded width are
sequential-rational. In order to construct a sequential-rational expression
from a given wba we will need a hierarchy of the fork and join transitions of
the automaton. This hierarchy can be enforced if the sp-series recognized
by the wba is of bounded width. In this chapter we show how the bounded
width property of a regular sp-series S can be reflected in the structure of
a wba recognizing S. For this we introduce the notion of “bounded depth”.

Let A be a wba over an alphabet Σ and a bisemiring �. We define a
depth function dp : R(A)→

�
as follows:

• Every atomic run G is of depth 0.

• If G = G1· . . . ·Gm is the sequential decomposition of G, then
dp(G) = max{dp(Gi) | i = 1, . . . , m}.

• If G = ‖ p,q(G1, . . . , Gn) for some p, q ∈ Q, then dp(G) = 1 +
max{dp(Gi) | i = 1, . . . , n}.

Hence, the depth of a run measures the nesting of branchings within a run.
A wba A is of bounded C-depth (bounded M-depth) if there is a d ∈

�
with

dp(G) ≤ d for any C-run (M-run) G of A, respectively.

Since every M-run is a C-run, any wba A of bounded C-depth is also
of bounded M-depth. The following conclusions are valid both for cascade
branching and maximally branching mode. Therefore, we speak again of
“bounded depth”, “behavior” and so on, and agree that the running mode
used is fixed.

Proposition 5.1. Let A be a wba of bounded depth. Then S(A) is of
bounded width.



5 Bounded Width and Bounded Depth

Proof. Let d ∈
�

with dp(G) ≤ d for all G ∈ R(A). Moreover, let B
denote the highest of all arities of fork and join transitions of A. We get
for G = ‖ p,q(G1, . . . , Gn) with p, q ∈ Q:

wd(lab(G)) ≤ B ·max{wd(lab(Gi)) | i = 1, . . . , n}

where dp(G) > dp(Gi) for i = 1, . . . , n. If G = G1· . . . ·Gm then
wd(lab(G)) = max{wd(lab(Gi)) | i = 1, . . . , n}. Hence, for any G ∈
R(A):

wd(lab(G)) ≤ Bd .

Thus, the support of S(A) is of bounded width with a bound of Bd.

Now, the converse implication remains to be shown: any regular sp-
series of bounded width can be accepted by a wba of bounded depth. The
corresponding statement for sp-languages was shown by Kuske [Kus03] by
counting and thereby limiting the depth of a run. That proof can be ex-
tended to wba over bisemirings that do not allow an additive decomposition
of 0. We include this construction even if it does not yield the desired result
for arbitrary bisemirings. But we will make use of it later on in the proof
of Lemma 7.3.

Construction 5.2. Let A = (Q, µseq, µfork, µjoin, λ, γ) be a wba over Σ and
�, and let d ∈

�
. Then A|d = (Q′, µ′

seq, µ
′
fork, µ

′
join, λ

′, γ′) is defined as
follows:

• Q′ = Q× {0, 1, . . . , d},

• µ′
seq((p, x), a, (q, y)) =

{
µseq(p, a, q) if x = y,

0 otherwise,

• for all m ∈ {2, . . . , |Q′|}:

µ′m
fork

(
(p, x),

{
(p1, x1), . . . , (pm, xm)

})

=

{
µm

fork(p, {p1, . . . , pm}) if x1 = · · · = xm = x + 1,

0 otherwise,

70
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• for all m ∈ {2, . . . , |Q′|}:

µ′m
join

({
(q1, y1), . . . , (qm, ym)

}
, (q, y)

)

=

{
µm

join({q1, . . . , qm}, q) if y1 = · · · = ym = y + 1,

0 otherwise,

• λ′(p, x) =

{
λ(p) if x = 0,

0 otherwise,
and γ′(q, y) =

{
γ(q) if y = 0,

0 otherwise.

A|d is called the d-depth counter wba of A.

The states of A|d have two components. A|d simulates A in the first
component and counts the nesting of fork and join transitions in the second
one.

Proposition 5.3. For any wba A and any d ∈
�

the wba A|d is of bounded
depth.

Proof. As any fork transition of A|d increments the depth counter in the
second component of the states and since the counter is bounded by d, any
run of A|d has depth at most d. Hence, A|d is of bounded depth.

A bisemiring � is called zero-sum-free if its addition is zero-sum-free,
i.e. k ⊕ k′ = 0 implies k = k′ = 0 for all k, k′ ∈ �. In particular, all
bisemirings with an idempotent addition are zero-sum-free.

Lemma 5.4. Let A be a wba over Σ and a zero-sum-free bisemiring �.
Moreover, let S(A) have bounded width. For

d = sup{wd(t) | t ∈ suppS(A)} − 1

we get S(A|d) = S(A).

Proof. Let A and A|d be as in Construction 5.2. Let p ∈ Q be initial, q ∈ Q
final, and let t ∈ SP. Furthermore, let R(p,t,q)(A|d) be the set of all runs
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of A|d going from state (p, 0) to state (q, 0) with label t ∈ SP and weight
distinct from zero. Similarly, let R(p,t,q)(A) denote the set of all runs of A
from p to q with label t and weight distinct from zero. Then we define for
all t ∈ SP a mapping g(p,t,q) : R(p,t,q)(A|d) → R(p,t,q)(A) by deleting the
second component of each state. It is clear from the definition that g(p,t,q)

preserves the weight of a run. Moreover, g(p,t,q) is injective because the
second component of a state in a run ofR(p,t,q)(A|d) is uniquely determined
by the first component and the branching structure of the run. Now let
G ∈ R(p,t,q)(A). By definition, wgt(G) 6= 0. Since � is zero-sum-free, p is
initial, and q is final, we have t ∈ suppS(A). By induction on the structure
of G and t, respectively, we get dp(G) < wd(t). Since wd(t) ≤ d+1 we get
dp(G) ≤ d. Hence, there is a run G′ ∈ R(p,t,q)(A|d) with g(p,t,q)(G

′) = G.
Therefore, for all initial states p ∈ Q, all final states q ∈ Q, and all t ∈ SP
the function g(p,t,q) is bijective and preserves weights . Note that (p, x) is
initial in A|d iff x = 0 and p is initial in A. Similarly, (q, y) is final in A|d iff
y = 0 and q is final in A. Furthermore, λ′(p, 0) = λ(p) and γ′(q, 0) = γ(q).
Thus, we get for all t ∈ SP:

(S(A|d), t) =
⊕

p,q∈Q

⊕

G′:(p,0)
t
−→(q,0)

λ′(p, 0) ◦wgt(G′) ◦ γ′(q, 0)

=
⊕

p,q∈Q
p initial
q final

⊕

g(p,t,q)(G′):p
t
−→q

λ(p) ◦wgt(g(G′)) ◦ γ(q)

=
⊕

p,q∈Q

⊕

G:p
t
−→q

λ(p) ◦wgt(G) ◦ γ(q)

= (S(A), t) .

Remark 5.5. Let A be a wba of bounded depth with depth bound d.
Then S(A|d) = S(A).

Remark 5.6. If A is a wbba and d ∈
�
, then A|d is a wbba.

Lemma 5.4 shows that any regular width-bounded sp-series over a zero-
sum-free bisemiring can be recognized by a wba of bounded depth. The
following example makes clear that the depth counter construction does
not yield the same result for arbitrary bisemirings.

72



5 Bounded Width and Bounded Depth

pi

1
p′i

1

1

1

1

1

1

1

1

1

a

a

a

a

1 1

Figure 5.1: A run on a ‖ a ‖ a ‖ a of depth 2 and weight 1.

Example 5.7. We consider the bisemiring (�, +, ·, ·, 0, 1). Then there
exists a wba A with wd

(
suppS(A)

)
= 3 such that the only runs labeled by

t = a ‖ a ‖ a ‖ a are those depicted in Figures 5.1 and 5.2. The first of them
has weight 1, the second −1, hence their weights sum up to 0. Further, the
depth of the first run is 2 while the depth of the second one is 3. Applying
the depth counter construction with d = 2 as in Lemma 5.4 would disallow
the second run only. Hence, it results in a wba A|d with (S(A|d), t) =
1 6= (S(A), t). Since this problem does not arise if we chose d = 3, it is
tempting to use Construction 5.2 with some d ≥ wd(supp(S(A))).

We only sketch the idea why this cannot work either. Let A be a
wba that has (among others) states pi, p

′
i, qi, q

′
i for 0 ≤ i ≤ 2 (the re-

maining states correspond to the unlabeled nodes in Figures 5.1 and 5.2).
Apart from the non-zero transitions in the figures, A can fork from pi

into {p(i+1) mod 3, p(i+2) mod 3} and from qi into {q(i+1) mod 3, q(i+2) mod 3}
at weight 1. Dually, it can join the states p′(i+1) mod 3 and p′(i+2) mod 3 into

p′i and the states q′(i+1) mod 3 and q′(i+2) mod 3 into q′i at weight 1. We set

λ(r) =





1 if r = pi,

−1 if r = qi,

0 otherwise,
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qi

1
q′i

1

1 1

1 1

1

1

1

1

a

a

a

a

−1 1

Figure 5.2: A run on a ‖ a ‖ a ‖ a of depth 3 and weight −1.

γ(r) =

{
1 if r = p′i or r = q′i,

0 otherwise.

To compute the weight of an sp- poset t in S(A), it suffices to consider
runs that start in pi or qi. A run starting in pi will firstly fork into several
copies of the states p0, p1, and p2. Then it will perform the run from
Figure 5.1 before it joins the states p′0, p′1, and p′2 in a cascade into state
p′i. The weight of this run will be 1. Such a run is only possible if t is
an anti-chain of 4k a-labeled nodes (for some k ∈

�
) which we denote by

ak. Then the run has depth at most k + 1. Similarly, a run starting in qi

will first fork into several copies of the states q0, q1, and q2. Then it will
perform the run from Figure 5.2 before it joins the states q′0, q′1, and q′2 in
a cascade into state q′i. The weight of this run will be −1. Again, it is only
possible if t = ak. But now, the run can have depth k + 2. Since there is
a bijection between the runs starting in pi and those starting in qi, we get
(S(A), t) = 0 for all t ∈ SP. Especially, S(A) is of bounded width.

Now perform the depth counter construction with d = k + 1. Then
the run on ak starting in q0 with depth k + 2 is missing, but its “partner”
starting in p0 with depth k+1 is still present. This implies (S(A|d), ak) > 0.
Hence, there is no d ∈

�
such that the d-depth counter wba of A has the

same behavior as A.

For a wba A with width-bounded behavior, Example 5.7 has shown that

74



5 Bounded Width and Bounded Depth

it does not suffice to restrict the depth of runs in A uniformly to get a wba
of bounded depth with the same behavior as A. To overcome this problem,
we will keep track of the actual width of a poset (and not just the depth
of a run). This is achieved by a stack where the widths encountered up to
the last fork transition are stored. More precisely: let G be a run and x a
node in G. We describe the content of the stack that the new automaton
assumes at the node x. Firstly, the stack at x contains all elements already
on the stack at the source src(G). If x is at same depth level as src(G),
then only the topmost element of the stack may be changed. Now, as many
elements as the difference between the depth level of x and that of src(G)
are put on the stack additionally. Those fork transitions between src(G)
and x that are unmatched before x (i.e. not closed by a join transition)
form a sequence. Two consecutive such forks either follow each other in
a cascade immediately, or they limit a sub-run of G consisting of all the
nodes in between them. For each of those forks an element is pushed onto
the stack which equals the width of the enclosed sub-run , or equals 1 if
the consecutive forks form a cascade. The topmost element of the stack
determines the width of the sub-run between the last unmatched fork and
x. If there is no unmatched fork, i.e. x is at the same depth level as
src(G), then the topmost element is the maximum of the topmost element
at src(G) and the width of the sub-run between src(G) and x. In order to
limit the successful runs to those with label of width at most n, we limit
the size of the stack as well as the numbers to be stored therein to n. This
allows to perform the construction within the realm of finite-state systems.

Here are some definitions needed from now on. If G = G1· . . . ·Gm then
Gi is a direct sub-run of G for each i = 1, . . . , m. Similarly, for G =
‖ p,q(G1, . . . , Gn) the runs G1, . . . , Gn are direct sub-runs of G. We write
H < G if H is a direct sub-run of G. The reflexive and transitive closure
of < is denoted by �. If H � G we say H is a sub-run of G. If H � G and
H 6= G we call H a proper sub-run of G. By S|n we denote the restriction
of S to the sp-posets of width less than or equal to n, i.e.

(S|n, t) =

{
(S, t) if wd(t) ≤ n,

0 otherwise.

Lemma 5.8. Let � be an arbitrary bisemiring, S ∈ �〈〈SP〉〉 and n ∈
�

with n ≥ 1. If S is regular then S|n can be recognized by a depth-bounded
wba.
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Proof. Let A = (Q, µseq, µfork, µjoin, λ, γ) be a wba recognizing S. We put
[n] := {1, . . . , n}, and [n]? denotes the set of all finite words over [n] and
[n]+ the set of non-empty words over [n]. From A we construct a new
automaton A′ with state set Q′ = {(p, w) ∈ Q× [n]+ | |w| ≤ n} such that
A′ simulates A in the first component and counts the nesting of fork and
join transitions in the second component that we think of as a stack. More
detailed, the height of the stack counts the depth of the run and the values
stored within this stack keep track of the width of the label of the run.

• A sequential transition does not change the width of the label, hence
the stack is left untouched:

µ′
seq((p, u), a, (q, v)) =

{
µseq(p, a, q) if u = v,

0 otherwise.

• A fork transition increases the depth of a run, hence it pushes a new
value onto the stack. Since there are no parallel actions after the fork
yet, this value is 1. Hence, for all m ∈ {2, . . . , |Q|}:

µ′m
fork

(
(p, u),

{
(p1, u1), . . . , (pm, um)

})

=

{
µm

fork(p, {p1, . . . , pm}) if u1 = · · · = um = u1, 1

0 otherwise.

If m > |Q| then µ′m
fork equals constantly zero.

• Since a join transition results in a node of smaller depth, it decreases
the size of the stack. The width of the sub-run2 since the matching
fork transition f is the sum of the widths of its parallel sub-runs, i.e.
of the top stack elements at the nodes joined. The width of the sub-
run since the previous unmatched fork transition f ′ is the maximum
of this sum and the width of the sub-run between these two fork
transitions f ′ and f . Since the fork f ′ is now the last unmatched
one, this maximum is pushed onto the stack.

1Here u1 denotes the word from [n]? concatenated of u and the letter 1 ∈ [n].
2By the “width of a sub-run” we mean the width of the label of the sub-run.
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Hence, for any m ∈ {2, . . . , |Q|}:

µ′m
join

({
(q1, v1), . . . , (qm, vm)

}
, (q, v)

)
= µm

join
({q1, . . . , qm}, q)

if there are w ∈ [n]? and x, y1, . . . , ym, z ∈ [n] such that vi = wxyi

for i = 1, . . . , m, and v = wz with z = max{x, y1 + · · ·+ ym}.

Otherwise, µ′m
join

({
(q1, v1), . . . , (qm, vm)

}
, (q, v)

)
= 0, also for

m > |Q|.

• At the source of a successful run, no parallel actions have been exe-
cuted. Hence, the stack contains just the number 1:

λ′(p, u) =

{
λ(p) if u = 1,

0 otherwise.

A successful run does not contain any unmatched fork transitions,
hence the stack contains just one element:

γ′(q, v) =

{
γ(q) if |v| = 1,

0 otherwise.

As any fork transition increments the height of the stack and since the
height is bounded by n, any run of A′ has depth at most n− 1. Hence, A′

is of bounded depth. We will show that A′ recognizes S|n. To this aim,
we show firstly that a run in A′ changes at most the topmost element of
the stack. This happens only if the width of the label is larger than the
topmost element before starting the run in which case it gets replaced.

Claim 1. Let G : (p, u)
t
−→ (q, v) be a run of A′ with wd(t) ≤ n. Then

u = wx, v = wy with w ∈ [n]?, x, y ∈ [n], and y = max{x, wd(t)}.

Let G = (p, u)
t
−→ (q, v) be atomic. Then t ∈ Σ and wd(t) = 1. Hence,

Claim 1 follows immediately from the definition of µ′
seq. If G = G1· . . . ·Gm

is the sequential decomposition of G with lab(Gi) = ti,
lab(G) = t and wd(t) ≤ n we have wd(t) = max{wd(ti) | i = 1, . . . , m}.
By structural induction we get Claim 1 for the run G. Now let G =
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‖ (p,u),(q,v)(G1, . . . , Gm) with Gi = (pi, ui)
ti−→ (qi, vi) for i = 1, . . . , m.

For t = lab(G) we have wd(t) ≤ n by assumption and t = t1 ‖ . . . ‖ tm.
Hence, wd(ti) < n. By the definition of fork transitions in A′ we have
u1 = · · · = um = u1. By induction there are xi ∈ [n] such that vi = uxi

and xi = wd(ti) for i = 1, . . . , m. Let u = wx for w ∈ [n]? and x ∈ [n].
Thus, by the definition of a join transition in A′ we get v = wy for y =
max{x, x1 + · · ·+ xm} = max{x, wd(t1) + · · ·+ wd(tm)} = max{x, wd(t)}.
This is Claim 1.

Now consider t ∈ SP with wd(t) > n and suppose H is a run in A′

with label t. By decomposition of H there is a sub-run G of H with
wd(lab(G)) > n and G = ‖ p′,q′(G1, . . . , Gm) such that wd(lab(Gi)) ≤ n
for i = 1, . . . , m. Let p′ = (p, u) and q′ = (q, v). For G1, . . . , Gm we can
apply Claim 1. If u = wx with w ∈ [n]? and x ∈ [n] then v = wy with
y = max{x, wd(t)} > n by definition of µ′

fork and µ′
join. Since y ≤ n by

definition, a run G with wd(lab(G)) > n cannot exist. Hence, for all t ∈ SP
with wd(t) > n we have t /∈ suppS(A′).

Let r ∈ Q be an initial and s ∈ Q a final state of A. Now we consider
the following sets of runs:

• Rr,s(≤n)(A) is the set of all runs from r to s in A whose labels have
width at most n, and

• Rr′,s′(∀α)(A
′) is the set of all runs from r′ = (r, 1) to some s′ = (s, α)

in A′ where α ∈ [n].

For any run G′ of A′ we define g(G′) by just forgetting the second compo-
nent (i.e. the word) of the states of run G′. By definition of A′ the map-
ping g is well defined and preserves labels and weights of a run. Now let
gr,s : Rr′,s′(∀α)(A

′)→Rr,s(≤n)(A) be the restriction of g to Rr′,s′(∀α)(A
′).

Then gr,s is injective because the second component of the states of a run
G′ ∈ Rr′,s′(∀α)(A

′) is determined by gr,s(G
′) and r′. Our next aim is to

show that any run of A can be simulated by a run of A′ provided the width
of the label is at most n, i.e. we want to show surjectivity of gr,s. We prove
this by induction on the depth of the run. The following claim forms the
inductive argument:

Claim 2. Let G : p
t
−→ q be a run in A with wd(t) ≤ n and dp(G) = d.
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Furthermore, let u ∈ [n]+ with |u|+ d ≤ n. Then there are v ∈ [n]+ and a

run G′ = (p, u)
t
−→ (q, v) in A′ such that g(G′) = G.

For any atomic run G the depth of G is 0 and Claim 2 is obvious.
Next, let G = G1· . . . ·Gm allow a sequential decomposition. Note that
dp(G) = max{dp(Gi) | i = 1, . . . , m}. By structural induction, Claim 2 is
true for G1. Considering Claim 1 and applying induction to G2, . . . , Gm,
Claim 2 holds true for G too. Now, let G = ‖ p,q(G1, . . . , Gm) have a
parallel decomposition. Let Gi : pi −→ qi for i = 1, . . . , m. We construct G′

as follows: It starts in (p, u) with a fork simulating the first fork in G. This
is possible because |u|+d ≤ n. This fork branches into states whose second
component is u1. Note that dp(Gi) ≤ d− 1 for i = 1, . . . , m. Applying the
induction hypothesis for G1, . . . , Gm we get runs G′

1, . . . , G
′
m with g(G′

i) =
Gi. By Claim 1, for i = 1, . . . , m the run G′

i ends in a state whose second
component is uxi where xi = max{1, wd(lab(G′

i))} = wd(lab(G′
i)). Since

x1 + · · · + xm = wd(lab(G′
1)) + · · · + wd(lab(G′

m)) = wd(lab(G)) ≤ n
there is the required join transition simulating the last join in G. Then
g(G′) = G is obvious by construction. This proves Claim 2.

Now we return to the mapping gr,s. Any run G fromRr,s(≤n)(A) satisfies
the prerequisites of Claim 2. By Claims 2 and 1, there is G′ ∈ Rr′,s′(∀α)(A

′)
with gr,s(G

′) = G. Hence, gr,s is surjective. Thus, there is a bijective
mapping gr,s : Rr′,s′(∀α)(A

′)→ Rr,s(≤n)(A) preserving labels and weights
for all pairs (r, s) of an initial state r and a final state s of A.

Considering the initial and final states of A′ and t /∈ supp(S(A′)) for any
t ∈ SP with wd(t) > n, we get immediately S(A′) = S|n.

As a consequence of the last result we get:

Corollary 5.9. Let S be a regular sp-series. Then S is of bounded width
iff it can be recognized by a wba of bounded depth.

Proof. Let S be of bounded width, and let n = max(wd(suppS)). Hence,
S = S|n. By Lemma 5.8, S can be recognized by a wba of bounded depth.
On the other hand, if S is recognized by a wba of bounded depth d, then
S is of bounded width by Proposition 5.1.

Since the construction in the proof of Lemma 5.8 does not change the
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maximal arity of fork and join transitions of the wba in consideration, we
have:

Corollary 5.10. Let S be recognized by a wbba. Then S is of bounded
width iff S is recognized by a wbba of bounded depth.

Corollary 5.11. Every sequential-rational sp-series S is C-recognized by
a wba, and even a wbba, of bounded depth.

Proof. By Corollary 4.18, every sequential-rational sp-series S is C-regular.
Due to Proposition 3.13, S has bounded width. Therefore, by Corollary 5.9,
S is C-recognized by a wba of bounded depth. Applying Theorem 4.17 and
Corollary 5.10, S is even C-recognized by a wbba of bounded depth.

Remark 5.12. Construction 5.2 of the d-depth counter wba A|d of a wba
A and the construction in the proof of Lemma 5.8 for the restriction S|n

are effective.

Note. LetA be a wba recognizing S. Suppose we know that S is of bounded
width. The construction from the proof of Lemma 5.8 can only be used
to get a wba of bounded depth recognizing S if we know a uniform upper
bound for the width of the support of S.

Next, we present a concept equivalent to the property of bounded depth.
Let A be a wba and G = ‖ p,q(G1, . . . , Gn) a C-run (M-run) in A. Let f
denote the starting fork transition of G and j the finishing join transition of
G. Then we say that (f, j) is a matching pair in the C-mode (M-mode) and
that G is limited by (f, j). For two matching pairs (f, j) and (f ′, j′) we put
(f, j) ≺ (f ′, j′) if there exists a parallel C-run (M-run) G limited by (f ′, j′)
that contains a proper sub-run limited by (f, j). If the relation ≺ on the
set of all matching pairs in the C-mode (M-mode) of A is irreflexive, then
A is called C-fork acyclic (M-fork acyclic)3. The relation ≺ is called the
nesting relation. Note that every C-fork acyclic wba is also M-fork acyclic.
But there are M-fork acyclic automata which are not C-fork acyclic, cf. the
wba presented in Figure 7.1. A run where a matching pair is nested within
itself is called a cyclic run. The following lemma is true for both running
modi.
3The notion of fork acyclicity was introduced by Lodaya and Weil [LW00]. There,

they forbid the nesting of matching pairs within itself for successful runs only. But
in [LW01] they also defined this notion considering all runs.
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Lemma 5.13. Let A be a wba. A is fork acyclic iff A is of bounded depth.

Proof. Let A be fork acyclic. Assume A is not of bounded depth. Hence,
for every d ∈

�
there is a run of depth greater than d. Let B be the number

of matching pairs of A. Note that B is finite because there are only finitely
many fork and join transitions. Choose d > B, and let G be a run of depth
at least d. Then G contains a sequence (Gi)i=1,...,d of d mutually different
sub-runs such that

• Gi+1 is a proper sub-run of Gi for i = 1, . . . , d− 1, and

• Gi is a parallel run limited by a matching pair (fi, ji) for i = 1, . . . , d.

Since d > B there are i1 6= i2 ∈ {1, . . . , d} with (fi1 , ji1) = (fi2 , ji2). This
contradicts ≺ being irreflexive. Hence, A is of bounded depth.

Vice versa, assume ≺ is not irreflexive, i.e. there is a matching pair
(f, j) and a cyclic run G limited by (f, j) where G has a proper sub-run
H also limited by (f, j). Hence, dp(G) > dp(H). We construct an infinite
sequence of cyclic runs in A which all contain H as a proper sub-run as
follows:

• G0 = G,

• if Gi is given, then we get Gi+1 by substituting4 the sub-run H of Gi

by the run G.

Since H and G are limited by the same matching pair, each Gi is a run
of A for i ∈

�
.5 Moreover, dp(Gi+1) > dp(Gi) for almost all i because of

dp(G) > dp(H). Hence, A is not of bounded depth.

We conclude this chapter by discussing decidability of bounded depth
and bounded width. For this, we adapt results by Lodaya and Weil [LW01]

4We omit the formal details of this substitution. The sub-graph H of Gi is replaced
by the graph G and all arrows going to the source of H now go to the source of G,
and dually for the sink of H.

5Note that Gi+1 is an M-run if Gi is an M-run.
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for series-Σ-languages6 and the respective branching automata. We restrict
the bisemirings considered to the class of positive bisemirings. A bisemiring
� is positive if k ∗ l = 0 implies k = 0 or l = 0 for ∗ ∈ {⊕, ◦, 3} and
all k, l ∈ �. That means � is zero-sum-free and zero-divisor-free for both
products. Before discussing decidability of bounded width we state a result
on the decidability of empty support needed in the sequel.

Lemma 5.14. Let � be a positive bisemiring and A a wba over �. It is
decidable whether SC(A) and SM (A) have empty support or not.

The idea of the proof is due to Lodaya and Weil [LW01, Prop. 2.4].

Proof. Let A = (Q, µseq, µfork, µjoin, λ, γ). We define three different sets of
pairs of states from Q:

• C is the set of all pairs (p, q) with p, q ∈ Q such that there is a C-run
from p to q on some sp-poset t,

• M is the set of all pairs (p, q) such that there is an M-run from p to
q on some t ∈ SP, and

• M is the set of all pairs (p, q) such that there is a sequential M-run
from p to q on some t ∈ SP.

Since � is positive, it suffices to decide whether C and M , respectively,
contain a pair (i, f) with i an initial and f a final state. If so, then the
support is not empty, otherwise it is.

We show how to compute C and M . For any R ⊆ Q×Q let R+ denote
the transitive closure of R, let R2 = R ◦ R, R3 = R2 ◦ R where ◦ is the
usual relation product. Let T be the set of all pairs (p, q) such that there
is an a ∈ Σ with µseq(p, a, q) 6= 0. We put C0 = M0 = M0 = T+. Now,
let Ck, Mk, and Mk for some k ∈

�
be constructed. Let RC

k and RM
k ,

respectively, be the set of all pairs (p, q) such that there is a fork transi-
tion p → {p1, . . . , pm}, a join transition {q1, . . . , qm} → q, a permutation

6A series-Σ-algebra is a Σ-algebra equipped with an extra binary, associative operation
◦, called the sequential product. A series-Σ-language is a subset of the free series-Σ-
algebra SΣ(A) over an alphabet A.
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α ∈ Sm
7 such that (pi, qα(i)) ∈ Ck and (pi, qα(i)) ∈ Mk, respectively, for

all i = 1, . . . , m. Then we put Ck+1 = (Ck ∪RC
k )+, Mk+1 = (Mk ∪RM

k )+,
and Mk+1 = (T ∪M2

k+1 ∪M3
k+1)

+. By induction on k, one shows easily
that

• Ck is the set of all pairs (p, q) such that there is a C-run from p to q
of depth at most k,

• Mk is the set of all pairs (p, q) such that there is an M-run from p to
q of depth at most k, and

• Mk is the set of all pairs (p, q) such that there is a sequential M-run
from p to q of depth at most k.

By definition Ck+1 ⊇ Ck and Mk+1 ⊇ Mk. Moreover, if Ck+1 = Ck then
Cn = Ck for all n ≥ k. Similarly, Mk+1 = Mk implies Mk+1 = Mk, and
hence Mn = Mk for all n ≥ k. Thus, C and M are computable, and the
problem of empty support is decidable.

Fork acyclicity and bounded depth are properties of the set of runs of
a given wba A only. It is not necessary to evaluate the weights of the
runs, and, thus, to consider the behavior of A to decide these properties.
Therefore, no restrictions are imposed on the bisemiring in the following
lemma.

Lemma 5.15. Let A be a wba over an arbitrary bisemiring �. It is de-
cidable whether A is C-fork and M-fork acyclic or not.

The proof enhances an idea of Lodaya and Weil [LW01, Prop. 6.12].

Proof. Let C, M , and M be like in the proof of Lemma 5.14. We have
shown in this proof that C, M , and M are computable. We construct
a set BC ⊆ C as follows. Let (p, q) ∈ C. If there is a fork transition
p→ {p1, . . . , pm}, a join transition {q1, . . . , qm} → q, an α ∈ Sm such that
(pi, qα(i)) ∈ C for i = 1, . . . , m, then put (p, q) ∈ BC . Hence, (p, q) ∈ BC

iff there is a parallel non-atomic C-run between p and q. Similarly, we

7Here, Sm denotes the symmetric group on m elements.
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construct by using M and M a set BM ⊆ M with (p, q) ∈ BM iff there is
a parallel non-atomic M-run between p and q.

Now, we build a directed graph ΓC with vertex set C and two kinds
of directed edges as follows. For all (p̃, q̃) ∈ BC , fork transitions p̃ →
{p1, . . . , pm}, join transitions {q1, . . . , qm} → q̃, α ∈ Sm with (pi, qα(i)) ∈ C
for i = 1, . . . , m we add a red arrow from (p̃, q̃) to (pi, qα(i)) for every
i = 1, . . . , m. Furthermore, for every (p, q) ∈ C and every (p̃, q̃) ∈ BC we
put a blue arrow from (p, q) to (p̃, q̃) if

• p = p̃ and (q̃, q) ∈ C, or

• q = q̃ and (p, p̃) ∈ C, or

• (p, p̃) ∈ C and (q̃, q) ∈ C.

Claim 1. A is C-fork acyclic iff ΓC has no cycle with a red arrow.

Indeed, if A is not C-fork acyclic it follows immediately from the con-
struction of ΓC that a cycle with a red arrow exists. Vice versa, suppose
there is a cycle in ΓC with a red arrow from (p, q) to (p′, q′). By definition
of red arrows, (p, q) ∈ BC and there is a run G = ‖ p,q(G1, . . . , Gm) from
p to q such that Gi is a run from p′ to q′ for some i. Since there is a
path from (p′, q′) to (p, q) in ΓC , there is a run H from p′ to q′ with a

sub-run H̃ from p to q. Hence, substitution of H̃ by G in H yields a run
H ′ from p′ to q′. Now substituting H ′ for Gi in G implies the existence of
a run G′ = ‖ p,q(G1, . . . , Gi−1, H

′, Gi+1, . . . , Gm) where a matching pair is
nested within itself. Hence, A is not C-fork acyclic.

Since it is decidable whether ΓC has a cycle with a red edge or not,
C-fork acyclicity of A is decidable.

Decidability of M-fork acyclicity is shown in a similar way, constructing
a graph ΓM with vertex set M .

Opposed to the notion of fork acyclicity or bounded depth, we have
to calculate weights in order to decide whether a regular sp-series is of
bounded width. As we have seen in Example 5.7 a wba of unbounded
depth may recognize a series of bounded width. Therefore, we turn to
positive bisemirings now.
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Theorem 5.16. Let � be a positive bisemiring and S a C-regular or
M-regular sp-series. It is decidable whether S is of bounded width.

Proof. Let A be a wba recognizing S. Let C and M be as in the last
two proofs. By Lemma 5.15 we can decide whether A is fork acyclic or
not. But moreover, we can even compute the set ZC ⊆ C, and ZM ⊆ M
respectively, with (p, q) ∈ ZC iff there is a C-run from p to q in which a
matching pair is nested within itself, and similarly for ZM . We compute
ZC as follows. Firstly, we compute all the elements of all cycles of ΓC that
have at least one red arrow. Obviously, every such element belongs to ZC .
Next, we compute all pairs (p, q) ∈ C such that there is a path from (p, q)
to an element of a cycle with a red arrow. All these pairs also belong to ZC

because there is a run from p to q that contains a cyclic run as a sub-run.
Obviously, no other pair of states belongs to ZC . The set ZM is calculated
similarly.

Finally, we look for all pairs (i, f) ∈ ZC , and (i, f) ∈ ZM respectively,
where i is initial and f is final, and denote this set by W . Since � is
positive, S = S(A) is of bounded width iff W = Ø. Indeed, W = Ø implies
that there is no successful cyclic run. Hence, the depth of all successful
runs is uniformly bounded, and, therefore, also the width of S. On the
other hand, suppose W 6= Ø. Then there are successful runs of arbitrary
depth. Positiveness of � implies the existence of sp-posets of arbitrary
width in the support of S. Hence, S is not of bounded width.

Remark 5.17. It is an open question if emptiness and bounded width of
the support of regular sp-series are decidable for non-positive underlying
bisemirings. For classical weighted automata over words, Eilenberg [Eil74,
Thm. 8.1] showed the decidability of the equality problem (and, hence,
of the problem of empty support) for regular series in case the underlying
semiring is a sub-semiring of a field F . This includes �which is not positive.
It is not clear if one may carry over that result to branching automata.

85
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In this chapter we prove the converse of Corollary 4.18 for sp-series of
bounded width. Moreover, we will show the coincidence of the class of
sequential-rational sp-series with the class of C-regular sp-series recognized
by a wba of bounded depth.

Theorem 6.1. Let A be a wba of bounded depth over an arbitrary bisemi-
ring �. Then both SC(A) and SM (A) are sequential-rational sp-series.

Proof. For this proof, f denotes a fork and j a join transition. By M we
denote the set of all matching pairs. Let G = G1· . . . ·Gm be a run of A in
its sequential decomposition (m ≥ 1). Then we say that a matching pair
(f, j) is used at the upper level of G if there is a Gi (i ∈ {1, . . . , m}) limited
by (f, j).

Firstly, we prove Theorem 6.1 for the C-running mode. By Lemma 5.13,
A is fork acyclic, i.e. the nesting relation≺ on M is irreflexive. Substituting
sub-runs it is easy to see that ≺ is transitive. Let � be the reflexive
closure of ≺. Then � is anti-symmetric. Indeed, for (f, j) � (f ′, j′) and
(f ′, j′) � (f, j) either (f, j) = (f ′, j′) or (f, j) ≺ (f ′, j′) and (f ′, j′) ≺ (f, j).
The latter case implies (f, j) ≺ (f, j) in contradiction to ≺ being irreflexive.
Hence, (f, j) = (f ′, j′). Thus, � is a partial order and can be extended to
a linear one.

We fix an arbitrary linear extension v of the partial order � on the set
of matching pairs M and consider the linearly ordered set (M,v). Let
J ⊆M and p, q be states of A. We denote by SJ

p,q the series with

(SJ

p,q, t) =
⊕

G:p
t
−→q

wgt(G)

where t ∈ SP and the runs G, over which the sum extends, are such that
only matching pairs of J are used in G. We will show that SJ

p,q is sequential-
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rational for any initial segment J = {(f ′, j′) | (f ′, j′) v (f, j)} for some
(f, j) ∈M . We proceed by induction over |J |.

Firstly, let |J | = 0, i.e. no forks and joins are used. Then SØ
p,q is a regular

sp-series where the parallel product is not used, i.e. it can be identified with
a regular word series with values from the semiring (K,⊕, ◦, 0, 1) as pointed
out in Remark 3.11. By a result of Schützenberger [Sch61b] we know that
SØ

p,q is rational as a word series and, therefore, also sequential-rational
as an sp-series. Now we assume J = {(f ′, j′) | (f ′, j′) v (f, j)} with
f : r →k {r1, . . . , rn} and j : {s1, . . . , sn} →l s. We define the sp-series
S(f, j) for every t ∈ SP by

(
S(f, j), t

)
=

⊕

G:r
t
−→s

G limited by (f, j)

wgt(G) (6.1)

where the sum ranges over all parallel runs G = ‖ r,s(H1, . . . , Hn) limited
by (f, j) and having label t. But then H1, . . . , Hn contain only matching
pairs from J ′ = J \ {(f, j)} by fork acyclicity of A and the definition of v.
Note that J ′ ⊂ J , and that J ′ is also an initial segment of (M,v). Let Sn

denote the permutation group on {1, . . . , n}. Thus, we have:

S(f, j) = k·

(
∑

π∈Sn

[
SJ′

r1,sπ(1)
‖ . . . ‖SJ′

rn,sπ(n)

])
·l (6.2)

and the sp-series SJ′

ri,sπ(i)
with i ∈ {1, . . . , n} and π ∈ Sn are sequential-

rational by induction hypothesis. Hence, S(f, j) is sequential-rational.

Now, consider the sp-series SJ

p,q again. Since A is fork acyclic, all runs
from p to q with matching pairs from J only use the maximal element (f, j)
of J at the upper level only. Thus, SJ

p,q can be built from S(f, j) and SJ′

p′,q′

for some p′, q′ ∈ Q using sequential-rational operations. Unfortunately, we
have to distinguish eight cases. Here, we deal in detail with two cases only.

We get for p 6= r, s 6= q and r = s:

SJ

p,q = SJ′

p,q+SJ′

p,r·S(f, j)+·SJ′

s,q+SJ′

p,r·S(f, j)+·

(
SJ′

s,r·S(f, j)+
)+

·SJ′

s,q (6.3)

where the first sp-series SJ′

p,q of this sum covers all runs that do not use
(f, j) at the upper level. The second one covers all runs G1·G2·G3 such
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that G2 is a sequence of consecutive “bubbles” from S(f, j), but neither in
G1 nor in G3 (f, j) appears as a matching pair. Note that S(f, j) can be
iterated because of r = s. The third series covers all runs where we have
more than one such sequence of consecutive “bubbles” from S(f, j).

Similarly, we get for p 6= r, q 6= s and r 6= s:

SJ

p,q = SJ′

p,q + SJ′

p,r·S(f, j)·SJ′

s,q + SJ′

p,r·S(f, j)·

(
SJ′

s,r·S(f, j)

)+

·SJ′

s,q (6.4)

for which the argumentation is almost the same as that for Equation (6.3)
despite the fact that this time S(f, j) is not iterated because r 6= s.1

The sp-series S(f, j) is sequential-rational as seen before. All other sp-
series appearing on the right hand side of Equations (6.3) and (6.4) (and
of those equations we omitted) are sequential-rational by the induction hy-
pothesis because J ′ is an initial segment properly contained in J . There-
fore, SJ

p,q is sequential-rational itself. M is an initial segment of (M,v).
Thus, SM

p,q is sequential-rational for all p, q ∈ Q. Hence,

SC(A) =
∑

p,q∈Q

λ(p)·SM

p,q·γ(q)

is sequential-rational.

The proof for SM (A) is more involved because Equation (6.2) is not true
anymore. In Equation (6.2) the sp-series SJ′

ri,sπ(i)
have to be replaced by

sp-series that sum up over sequential runs between ri and sπ(i) only. To
cover this situation we introduce the sp-series T J

p,q with

(T J

p,q, t) =
⊕

G:p
t
−→q

G sequential

wgt(G)

where t ∈ SP, and where the sum extends over all sequential M-runs G from
p to q with label t that use matching pairs from J only. In particular, the
support of T J

p,q contains sequential sp-posets only. Note that SØ
p,q = TØ

p,q.
The sp-series S(f, j) is defined as in Equation (6.1). But this time we sum

1The other cases require some more addends like SJ′

p,r·S(f, j)+ in case r = s = q.
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up over M-runs of course. With the same notation as given above we get
this time

S(f, j) = k·

(
∑

π∈Sn

[
T J′

r1,sπ(1)
‖ . . . ‖T J′

rn,sπ(n)

])
·l (6.5)

where the sp-series T J′

ri,sπ(i)
are sequential-rational by induction hypothesis.

Now we proceed as for C-running behavior showing that SJ

p,q is sequential-
rational for all p, q ∈ Q. But, moreover, we have to show that T J

p,q is
sequential-rational too. Again, we have to distinguish some cases. Here,
we state only the case dual to Equation (6.3). For p 6= r, q 6= s, and r = s
we have

T J

p,q = T J′

p,q+SJ′

p,r·S(f, j)+·SJ′

s,q+SJ′

p,r·S(f, j)+·

(
SJ′

s,r·S(f, j)+
)+

·SJ′

s,q (6.6)

which is almost equivalent to Equation (6.3). Only the first addend differs
because no parallel product is allowed. In the same way as for SJ

p,q we get
that T J

p,q is sequential-rational which serves as the induction hypothesis for
Equation (6.5). Now we conclude as shown above that SM (A) is sequential-
rational.

The special case � = �was shown by Lodaya and Weil [LW00]. Their
proof uses a nested induction which we simplified to just one induction
along the linear order of matching pairs.

Note. The characterization of the behavior of general wba by rational op-
erations, as defined here, is not successful even in the case of the Boolean
bisemiring. The obvious idea to allow in addition the parallel iteration
does not give the desired result. Lodaya and Weil [LW00, Section 5] give
an example of a regular sp-language not being rational, in fact the least
language L containing letter c and where x ∈ L implies a ‖ (bx) ∈ L. The
problem arises from the fact that for a rational sp-series S there is an n ∈

�

with the following property: if t ∈ SP is in the support of S, then t can
be constructed using at most n alternations of · and ‖ . But, as it can be
seen by means of the sp-language L given above, there are regular sp-series
whose support allows an unbounded alternation of · and ‖ .

In [LW01], Lodaya and Weil define another notion of rationality for sp-
languages. This notion of rationality uses ξ-substitution and a restricted
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ξ-exponentiation following Thatcher’s and Wright’s definition of rational-
ity for tree languages [TW68]. With this stronger concept of rationality
they are able to show the equivalence of regular and rational sp-languages.
However, it is not clear how to generalize these notions for sp-series over
bisemirings. This is due to the problem of defining a useful ξ-substitution.
One may succeed if the underlying bisemiring is actually a semiring. This is
subject of further research and is discussed more precisely in the conclusion
of this thesis.

Now we can prove the main theorem about regular and sequential-
rational sp-series.

Theorem 6.2. Let � be an arbitrary bisemiring and S ∈ �〈〈SP〉〉. The
following are equivalent:

1. S is sequential-rational.

2. S is C-recognized by a wba of bounded depth.

3. S is C-regular and has bounded width.

Proof. Due to Corollary 4.18 and Proposition 3.13 (1) implies (3). By
Corollary 5.9, (3) and (2) are equivalent. (2) implies (1) by Theorem 6.1.

Moreover, every sequential-rational sp-series is C-recognized by a wba of
certain kind.

Theorem 6.3. Let � be a bisemiring. Every sequential-rational sp-series
S ∈ �〈〈SP〉〉 is C-recognized by a normalized wbba of bounded depth.

Proof. By Corollary 5.11, S is C-recognized by a wbba of bounded depth.
It is obvious that the normalization construction in the proof of Propo-
sition 4.4 does not affect the bounded depth property of A. Applying
Corollary 4.5 we get the claim.

By putting � = �we get as a consequence of Theorem 6.2 the result of
Lodaya and Weil [LW00, Thm. 4.12].
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6 The Fundamental Theorem

Corollary 6.4. Let L ⊆ SP be a language of finite sp-posets. Then the
following are equivalent:

1. L is a sequential-rational language.

2. L is recognized by a fork acyclic branching automaton.

3. L is regular and has bounded width.
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7 The Different Concepts of Regularity

In this chapter we compare the two concepts of regularity defined for wba,
i.e. the cascade branching and the maximally branching running mode.

In Example 4.10 we have considered the sp-language L = {a} and have
shown that

L� = {a ‖ . . . ‖ a︸ ︷︷ ︸
n

| n ≥ 1}

is not M-regular. But L� is C-regular. For instance, it is C-recognized by
the automaton A depicted in Figure 7.1. Thus, in the case of unbounded
width there are C-regular sp-series that are not M-regular.

a

a

Figure 7.1: A branching automaton A C-recognizing {a}�.

Firstly, we show that every M-regular sp-series of bounded width is
C-regular.

Proposition 7.1. Let A be a wba of bounded depth over the bisemiring �.
Then there is another wba A′ with SM (A) = SM (A′) = SC(A′).

The main idea of the following proof is to “destroy” the runs of A that
are C-runs only. Note that in the M-running mode a direct sub-run of a
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parallel run has to be an atomic or a sequential run. Therefore, either no
fork and join transitions occur in this direct sub-run or there are at least
three states at the upper level of this sub-run (cf. Figure 3.4). We will
control these conditions in the new automaton A′ by keeping track of the
occurrence of join transitions and by counting the states of the same depth
up to three.

Proof. Let d be the maximal depth of an M-run in the automaton A =
(Q, µseq, µfork, µjoin, λ, γ). We put [3] = {1, 2, 3}, [3]? denotes the set of all
finite words over [3], and [3]+ the set of all non-empty finite words over [3].
We define the new automaton A′ as follows:

• Q′ = {(p, u, i) ∈ Q× [3]+ × {0, 1} | |u| ≤ d + 1},

• µ′
seq

(
(p, u, i), a, (q, v, j)

)
= µseq(p, a, q) if j = 0 and there are w ∈ [3]?

and x, y ∈ [3] such that u = wx, v = wy, y = min{x+1, 3}, otherwise
µ′

seq

(
(p, u, i), a, (q, v, j)

)
= 0,

• for m ∈ {2, . . . , |Q|} we put

µ′m
fork

(
(p, u, i), {(p1, u1, i1), . . . , (pm, um, im)}

)

=µm
fork(p, {p1, . . . , pm})

if u1 = · · · = um = u1 and i1 = · · · = im = 0, otherwise

µ′m
fork

(
(p, u, i), {(p1, u1, i1), . . . , (pm, um, im)}

)
= 0,

• for m ∈ {2, . . . , |Q|} we put

µ′m
join

(
{(q1, v1, j1), . . . , (qm, vm, jm)}, (q, v, j)}

)

=µm
join({q1, . . . , qm}, q)

if j = 1, and there are x1, . . . , xm, z ∈ [3], w ∈ [3]? such that vi =
wzxi for i = 1, . . . , m, and v = wz′ with z′ = min{3, z + 1}, and,
moreover, ji = 1 implies xi = 3 for i = 1, . . . , m, otherwise

µ′m
join

(
{(q1, v1, j1), . . . , (qm, vm, jm)}, (q, v, j)}

)
= 0,

• λ′
(
(p, u, i)

)
=

{
λ(p) if u = 1 and i = 0,

0 otherwise,
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• γ′
(
(q, v, j)

)
=

{
γ(q) if |v| = 1,

0 otherwise.

The wba A′ works as follows: In the first component it simulates A. In
the second component A′ counts the states of each depth level up to 3 by a
stack. Since A is of bounded depth, the size of this stack can be bounded.
Moreover, we keep control of the occurrence of join transitions by the third
component. It is 1 for ending states of join transitions, and 0 otherwise.
Thus, by a comparison of the second and third component we can control
if the automaton is allowed to join again.

We will show that SC(A′) = SM (A). For this, we need some information
about the features of C-runs of A′.

Claim 1. Let G : p′
t
−→ q′ be a C-run of A′ with p′ = (p, u, i) and q′ =

(q, v, j). Then there are w ∈ [3]?, x, y ∈ [3] with u = wx, v = wy, x ≤ y.

Indeed, for every atomic run the claim holds true by definition of µ′
seq.

Let G = G1· . . . ·Gm (m ≥ 2) admit a sequential decomposition. By induc-
tion hypothesis, the claim is true for G1. We proceed by induction along
the factors of the sequential product and get Claim 1 for G. Finally, let
G = ‖ p′,q′(G1, . . . , Gn) with n ≥ 2 and u = wx for w ∈ [3]?, x ∈ [3]. Let
p′k = (pk, uk, ik) be the ending states of the opening fork transition of G,
and q′k = (qk, vk, jk) the starting states of the terminating join transition
of G (k = 1, . . . , n). By definition of µ′

fork, u1 = · · · = un = wx1. Thus,
vk = wxyk with yk ∈ [3] (k = 1, . . . , n) by induction hypothesis. Consider-
ing the definition of µ′

join, we conclude v = wy with y = min{3, x+1} ≥ x.
This shows Claim 1.

Claim 2. Let G : p′
t
−→ q′ be a C-run of A′ with p′ = (p, u, i), q′ = (q, v, j),

and u = w1 for some w ∈ [3]?.

i. If G is parallel and not atomic, then j = 1 and v = w2.

ii. If G is atomic or sequential then j = 0 or v = w3.

For part i, we get j = 1 immediately from the definition of µ′
join. Because

G = ‖ p′,q′(G1, . . . , Gn) with n ≥ 2, there is a fork p′ → {p′1, . . . , p
′
n} and

a join {q′1, . . . , q
′
n} → q with p′k = (pk, uk, ik) and q′k = (qk, vk, jk) for

k = 1, . . . , n. Thus, ik = 0 and uk = u1 = w11 for k = 1, . . . , n by
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definition of µ′
fork. By Claim 1, we conclude vk = w1xk with xk ∈ [3] for

k = 1, . . . , n. Hence, v = w2 by the definition of µ′
join.

To show part ii, firstly, let G be atomic. Then j = 0 by definition of
µ′

seq. Now, let G = G1· . . . ·Gm (m ≥ 2) be the sequential decomposition of

G. G1 : p′
t1−→ p′1 is either atomic or parallel. By the definition of µ′

seq and
part i, respectively, we get in both cases u1 = w2. Arguing similarly as in
the proof of part i for G2 we get u2 = w3. Proceeding along the sub-runs
Gi (i = 3, . . . , m) we get finally v = w3.

Now, we can show that for A′ the C- and M-running mode do not differ
from one another.

Claim 3. If G : (p, u, i)
t
−→ (q, v, j) is a C-run of A′ then G is also an M-run

of A′. Hence, SC(A′) = SM (A′).

If there would be a C-run H of A′ which is not an M-run then there
is a sub-run G of H with the same feature such that all proper sub-
runs of G are M-runs. This run G has to be a parallel run, i.e. G =
‖ p′,q′(G1, . . . , Gn) with n ≥ 2 and p′ = (p, u, i), q′ = (q, v, j). Moreover,
there is an opening fork transition p′ → {p′1, . . . , p

′
n} and a closing join

transition {q′1, . . . , q
′
n} → q of G. Because G is not an M-run, one of the

direct sub-runs, say G1 : p′1
t1−→ q′1, has to be a parallel non-atomic run.

Let p′k = (pk, uk, ik) and q′k = (qk, vk, jk) for k = 1, . . . , n. Then we have
u1 = u1 and i1 = 0. By Claim 2, part i, we get v1 = u2 and j1 = 1.
Thus, by definition of µ′

join, the join transition {q′1, . . . , q
′
m} → q′ cannot

exist. This contradicts the containment of {q′1, . . . , q
′
m} → q′ in the C-run

G. Hence, G is also an M-run. Now, we get SC(A′) = SM (A′) immediately
and Claim 3 is proven.

Now, SM (A′) = SM (A) remains to be shown. For this, let RM (A) and
RM (A′) be the sets of all M-runs of A and A′, respectively. Moreover,
let R1,0

M (A′) be the set of all M-runs of A′ starting in a state (p, 1, 0) with
p ∈ Q. We define a mapping g : RM (A′) → RM (A) by replacing every
state (p, u, i) ∈ Q′ of a run G′ ∈ RM (A′) by the state p ∈ Q. This mapping
is well defined because of the definition of the three transition functions of
A′. Moreover, g preserves the label and the weight of G, as it can be seen
easily. Next, we show the following.
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Claim 4. Let G : p
t
−→ q be an M-run of A, u ∈ [3]+ with |u| + dp(G) ≤

d + 1, and i ∈ {0, 1}. Then there are v ∈ [3]+, j ∈ {0, 1}, and an M-run

G′ : (p, u, i)
t
−→ (q, v, j) in A′ with g(G′) = G.

Indeed, for any atomic run G the claim is obvious by the definition of
µ′

seq. Next, let G = G1· . . . ·Gm (m ≥ 2) be a sequential run. Since
dp(G1) ≤ dp(G) there is an M-run G′

1 in A′ with g(G′
1) = G1 by in-

duction hypothesis. Suppose G′
1 : (p1, u1, i1) −→ (p2, u2, i2). By Claim 1,

|u2| = |u1| = |u|. Hence, |u2| + dp(G2) ≤ d + 1. Hence, there is an
M-run G′

2 with g(G′
2) = G2. Repeating this argument along the se-

quence G1, . . . , Gm, we get M-runs G′
1, . . . , G

′
m in A′ with g(G′

k) = Gk

for k = 1, . . . , m such that G′ = G′
1· . . . ·G

′
m is an M-run of A′. Hence,

g(G′) = G. Finally, let G = ‖ p,q(G1, . . . , Gn) (n ≥ 2) be a parallel run.
We construct a run G′ as follows. The opening fork p→ {p1, . . . , pn} is re-
placed by (p, u, i) → {(p1, u1, 0), . . . , (pn, u1, 0)}. This is possible because
of |u|+ dp(G) ≤ d+1. Furthermore, dp(Gk) ≤ dp(G)− 1 for k = 1, . . . , n.
Thus, there are G′

1, . . . , G
′
n ∈ RM (A′) with g(G′

k) = Gk for k = 1, . . . , n

by induction hypothesis. Then G′
k : p′k

tk−→ q′k with q′k = (qk, vk, jk) for
k = 1, . . . , n. By Claim 1 there are yk ∈ [3] such that vk = uyk for
k = 1, . . . , n. Since G is an M-run of A, neither G1, . . . , Gn nor G′

1, . . . , G
′
n

are parallel non-atomic runs. Hence, by Claim 2, part ii, jk = 0 or yk = 3
for k = 1, . . . , n. Therefore, there are v ∈ [3]+ and j ∈ {0, 1} such that the
join transition {(q1, v1, j1), . . . , (qn, vn, jn)} → (q, v, j) exists in A′. Hence,
we put G′ = ‖ p′,q′(G′

1, . . . , G
′
n) and have g(G′) = G. This proves Claim 4.

Claim 5. g : R1,0
M (A′) −→ RM (A) is a bijective mapping preserving labels

and weights.

We have nothing more to show but g to be bijective. It is clear by the
definition of the transition functions of A′ that every run G′ ∈ R1,0

M (A′)
is uniquely determined by g(G′) and the state G′ is starting with. Hence,
g : R1,0

M (A′) −→ RM (A) is injective. From Claim 4 we can deduce surjec-
tivity immediately.

Claim 5 and the definition of λ′ and γ′ imply SM (A′) = SM (A). Thus,
we get SC(A′) = SM (A) by Claim 3.

Note. The proof of Proposition 7.1 does not work for unbounded depth. In
this case, the size of the stack, being the second component of states of A,
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would grow up to infinity. Hence, we would leave the frame of finite-state
automata.

Now, we turn to the question under which conditions C-regular sp-series
of bounded width are also M-regular. The next example will show that
restrictions on the underlying bisemiring have to be imposed.

Example 7.2. We consider a slightly changed version of the bisemiring of
non-proper sp-languages from Example 2.12 with another parallel multi-
plication. Let � = (P(SP1),∪, ·, 3, Ø, {ε}) where · denotes the sequential
product of sp-posets lifted to languages. We put for L, L′ ⊆ SP1:

L3L′ =
(
L \ {ε}

)
‖
(
L′ \ {ε}

)

where ‖ denotes the usual parallel product lifted to languages. Obviously,
3 is associative and commutative. Also distributivity of 3 over ∪ is easy
to verify. Note that {ε}3L = Ø for all L ⊆ SP1.

Consider the following sp-series S:

(S, t) =

{{
e
(
(d(a ‖ b)d) ‖ c

)
e
}

if t = a ‖ b ‖ c,

Ø otherwise.

Obviously, S is of bounded width and is C-regular as the wba of Figure 7.2
shows.

Suppose S is M-recognizable by a wba A = (Q, µseq, µfork, µjoin, λ, γ).

Since (S, a ‖ b ‖ c) is a singleton, there has to be an M-run G : p
a ‖ b ‖ c
−−−−−→ q

with λ(p)·wgt(G)·γ(q) =
{
e
(
(d(a ‖ b)d) ‖ c

)
e
}
. Moreover, G has to start

with a fork transition of arity 3 and to end with a join transition of arity 3
because G is an M-run. Thus, there are kf , kj , ka, kb, kc 6= Ø from � with
wgt(G) = kf ·(ka3kb3kc)·kj . Keeping in mind initial and final weights,
there are k, l, ka, kb, kc 6= Ø from � with

{
e
(
(d(a ‖ b)d) ‖ c

)
e
}

= k·(ka3kb3·kc)·l.

Note that kj 6= {ε} for j = a, b, c because otherwise ka3kb3kc = Ø,
and, hence, k·(ka3kb3kc)·l = Ø. Therefore, ka3kb3kc is a parallel sp-
poset with at least three parallel factors. The sp-poset e

(
(d(a ‖ b)d) ‖ c

)
e
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{e}

{d} {d}

{e}

a/{a}

b/{b}

c/{c}

{ε} {ε}

Figure 7.2: A wba C-recognizing S from Example 7.2.

decomposes sequentially in three factors. Since ka3kb3kc yields a paral-
lel sp-poset, we get k = l = {e} and ka3kb3kc = {(d(a ‖ b)d) ‖ c}. But
(d(a ‖ b)d) ‖ c allows a parallel decomposition of length 2 only which con-
tradicts ka3kb3kc having a parallel decomposition of length at least 3.
Hence, S cannot be M-regular.

The bisemiring used in this example is idempotent. Moreover, we could
have chosen the sequential multiplication commutative. This would not
have changed our argumentation. Thus, there is an idempotent and com-
mutative bisemiring � and a C-regular sp-series S over � of bounded width
which is not M-regular.

One problem in Example 7.2 is that the two multiplications of the bisemi-
ring are absolutely independent of each other. Consider Figure 7.2 once
again. There, the weight of a ‖ b ‖ c is realized by a parallel multiplication
of two runs, the run on a ‖ b and that on c. But the weight of the run on
a ‖ b is a sequential product because the weights of the opening fork and
join transition have to be considered. So the weights of the “inner” fork
and join transitions are nested within a parallel product of the weights of
the “outer” run. To construct an M-run on a ‖ b ‖ c with the same weight,
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these weights have to be summarized in weights for one fork and one join
transition, and have to be sequentially multiplied with the parallel product
of the weights of the sub-runs. Hence, we may succeed if there is some con-
nection between the sequential and the parallel multiplication. Therefore,
we consider in the sequel distributive bisemirings and bisemirings where
sequential and parallel multiplication coincide.

Recall that a bisemiring is distributive if the sequential multiplication
distributes over the parallel one. Firstly, we show that for distributive
bisemirings every regular sp-series of bounded width can be recognized by
a wba where fork and join transitions have weight 1 only. We call a wba
0-1-branching if the fork and join transition functions take values in {0, 1}
only. Here, 0 is the zero of � and 1 the sequential unit.

Lemma 7.3. Let A be a wba of bounded depth over a distributive bisemi-
ring �. There is a 0-1-branching wba A′ of bounded depth with SC(A′) =
SC(A) and SM (A′) = SM (A).

Proof. Again, in this proof we speak of runs, behavior etc. instead of
C-runs, C-behaviors (M-runs, M-behaviors) because the proof is the same
for C- and M-running mode.

Let d be the maximal depth of a run in A. Then we can apply the depth
counter construction of Construction 5.2 and get the automaton A|d. From
now on, we refer to the second component of the states of A|d as the level
of this state, denoted by lv(p) for a state p. By Construction 5.2, the level
function has the following properties:

• if p is initial or final, then lv(p) = 0,

• if p → {p1, . . . , pm} is a fork transition, then lv(p) + 1 = lv(p1) =
· · · = lv(pm), and, dually, for any join transition {q1, . . . , qm} → q
we have lv(q) + 1 = lv(q1) = · · · = lv(qm),

• if p
a
−→ q is a sequential transition, then lv(p) = lv(q).

If a wba can be provided with a level function fulfilling these three proper-

ties, we speak of a level wba. It is clear that for a run G : p
t
−→ q in a level

wba we have lv(p) = lv(q). Since S(A|d) = S(A) by Remark 5.5, A can be
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assumed to be a level wba with lv(p) ∈ {0, . . . , d} for all p ∈ Q. Moreover,
we speak of a fork transition p → {p1, . . . , pm} of level i if lv(p) = i − 1.
Dually, {q1, . . . , qm} → q is a join transition of level i if lv(q) = i− 1.

The proof will be as follows:

• Firstly, we construct another level wba A1 with S(A1) = S(A) such
that all fork and join transitions of level 1 have weight 1.1

• We continue the construction along the levels of the wba, i.e. build
automata Ai with the same behavior as A such that all fork and join
transitions up to level i (i = 1, . . . , d) have weight 1 only.

• The wba Ad is the 0-1-branching wba we searched for.

We start with the construction of A1. From now on, f denotes a fork
transition of A, and j a join transition of A. Let F1 be the set of all fork
transitions of level 1 in A, and J1 the set of all join transitions of level 1 in
A. We define the state set Q1 as follows: Firstly, let Q ⊆ Q1. Furthermore,
if f : p → {p1, . . . , pm} is a fork transition of level 1, then we define new

states pf
1 , . . . , pf

m ∈ Q1. Dually, for any join transition j : {q1, . . . , qm} → q

of level 1 we put qj
1, . . . , q

j
m ∈ Q1. Since there are a finite number of fork

and join transitions only, the set Q1 is finite. Additionally, we define the
new level function lv1 by

lv1(p
′) =





lv(p′) if p′ ∈ Q,

lv(p) if p′ = pf for p ∈ Q, f ∈ F1,

lv(p) if p′ = pj for p ∈ Q, j ∈ J1.

Now we “move” the weights of the fork and join transitions of level 1 in A
to the next higher level. For this, we define the transition functions of A1

1Remember that we do not speak of a “transition” if the weight is 0.
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as follows:

µ1seq(p
′, a, q′)

=





µseq(p
′, a, q′) if p′, q′ ∈ Q,

µfork(f) ◦ µseq(p, a, q′) if p′ = pf and q′ ∈ Q

(p ∈ Q, f ∈ F1),

µseq(p
′, a, q) ◦ µjoin(j) if p′ ∈ Q and q′ = qj

(q ∈ Q, j ∈ J1),

µfork(f) ◦ µseq(p, a, q) ◦ µjoin(j) if p′ = pf and q′ = qj

(p, q ∈ Q, f ∈ F1, j ∈ J1).

For f : p→ {p1, . . . , pm} in A with f ∈ F1 we put

µ1
m
fork(p, {pf

1 , . . . , pf
m}) = 1.

Dually, for j : {q1, . . . , qm} → q in A with j ∈ J1 we put

µ1
m
join({q

j
1, . . . , q

j
m}, q) = 1.

Apart from that, there are no other fork and join transitions of level 1 in
A1. All fork and join transitions of A of higher level than 1 remain fork
and join transitions of A1 with the same weights. Moreover, we define the
following new fork transitions: If pf ∈ Q1 for some p ∈ Q, f ∈ F1 and if
p→k {p1, . . . , pm} is a fork transition of level 2 in A, then we put

µ1
m
fork(p

f , {p1, . . . , pm}) = µfork(f) ◦ k .

Dually, for qj ∈ Q1 with q ∈ Q, j ∈ J1 and {q1, . . . , qm} →l q being a join
transition of level 2 in A, we put

µ1
m
join({q1, . . . , qm}, q

j) = l ◦ µjoin(j) .

Finally, the initial and final weight functions remain the same:

λ1(p) =

{
λ(p) if p ∈ Q,

0 otherwise,
γ1(q) =

{
γ(q) if q ∈ Q,

0 otherwise.
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By definition, A1 together with lv1 is a level wba. Moreover, all fork and
join transitions of level 1 have weight 1 in A1. Obviously, A1 is of bounded
depth with depth bound d.

Now, we show S(A1) = S(A). Let g : R(A1) → R(A) be as follows: g
maps a run G of A1 to a run g(G) of A by replacing all state labels pf and
qj (p, q ∈ Q, f ∈ F1, j ∈ J1) in G by p and q, respectively. By definition
of A1, g is well defined. Firstly, we show that every run in A with weight
distinct from 0 has a pre-image under g.

Claim 1. Let G : p
t
−→ q be a run in A with wgt(G) 6= 0.

i. There is a run G′ : p
t
−→ q in A1 with g(G′) = G.

ii. Suppose there are f ∈ F1, j ∈ J1 such that pf , qj ∈ Q1. Then we
have:

• If µfork(f) ◦ wgt(G) 6= 0, then there is a run G′ : pf t
−→ q with

g(G′) = G.

• If wgt(G) ◦ µjoin(j) 6= 0, then there is a run G′ : p
t
−→ qj with

g(G′) = G.

• If µfork(f)◦wgt(G)◦µjoin(j) 6= 0, then there is a run G′ : pf t
−→ qj

with g(G′) = G.

We prove Claim 1 by induction on the structure of runs of A. Let the
run G : p

a
−→ q be atomic. Then part (i) is clear by definition of µ1seq.

Assume pf ∈ Q1 for some f ∈ F1 and µfork(f) ◦ wgt(G) 6= 0. Hence,

µfork(f) ◦ µseq(p, a, q) = µ1seq(p
f , a, q) 6= 0. Thus, G′ : pf a

−→ q is a run of
A1 with g(G′) = G. The remainder of part (ii) follows similarly. Now let

G = G1· . . . ·Gm (m ≥ 2) be sequentially decomposed with Gi : pi
ti−→ pi+1

for i = 1, . . . , m with p1 = p and pm+1 = q. Since wgt(G) 6= 0, we get
wgt(Gi) 6= 0 for i = 1, . . . , m. By induction hypothesis there are runs

G′
i : pi

ti−→ pi+1 with g(G′
i) = Gi for i = 1, . . . , m. Hence, G′ = G′

1· . . . ·G
′
m

is a run of A1 with g(G′) = G. For part (ii) we assume pf ∈ Q1 for
some f ∈ F1 and µfork(f) ◦ wgt(G) 6= 0. Hence, µfork(f) ◦ wgt(G1) 6= 0.

By induction hypothesis there is a run G′
1 : pf t1−→ p2 with g(G′

1) = G1.
Concluding similarly as for part (i) we get G′ = G′

1· . . . ·G
′
m with g(G′) = G.

Again, the other statements of part (ii) follow similarly.
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Finally, let G = ‖ p,q(G1, . . . , Gn) have a parallel decomposition with
n ≥ 2. Let G be limited by the fork transtion f : p→ {p1, . . . , pn} and the

join transition j : {q1, . . . , qn} → q, and let Gi : pi
ti−→ qi for i = 1, . . . , n.

Firstly, we suppose lv(p) = lv(q) = 0. Hence, f ∈ F1 and j ∈ J1. Then
we have to show part (i) only, because pf ′

and qj′

cannot exist for any

f ′ ∈ F1, j
′ ∈ J1. By definition of A1, there are p →1 {p

f
1 , . . . , pf

n} and

{qj
1, . . . , q

j
n} →1 q. Since

µfork(f) ◦
[
wgt(G1)3 . . .3wgt(Gn)

]
◦ µjoin(j) = wgt(G) 6= 0

we get µfork(f) ◦ wgt(Gi) ◦ µjoin(j) 6= 0 for i = 1, . . . , n by distributivity

of �. By induction hypothesis there are G′
i : pf

i

ti−→ qj
i with g(G′

i) = Gi

for i = 1, . . . , n. We put G′ = ‖ p,q(G
′
1, . . . , G

′
n). Obviously, g(G′) = G.

This shows Claim 1 in the first case. Now, we assume lv(p) and lv(q)
are greater than 0. Thus, f and j are also transitions in A1. Moreover,
wgt(G) 6= 0 implies wgt(Gi) 6= 0 for i = 1, . . . , n. Hence, there are runs

G′
i : pi

ti−→ qi in A1 with g(G′
i) = Gi. Thus, for G′ = ‖ p,q(G

′
1, . . . , G

′
n)

we have g(G′) = G which shows part (i). Now let f̄ ∈ F1 such that
pf̄ ∈ Q1 and µfork(f̄) ◦wgt(G) 6= 0. Hence, µfork(f̄) ◦ µfork(f) 6= 0. Thus,
pf̄ → {p1, . . . , pn} is a fork transition in A1. Let G′

1, . . . , G
′
n be as given

above. Hence, G′ = ‖ pf̄ ,q(G
′
1, . . . , G

′
n) is a run in A1 with g(G′) = G. The

remainder of part (ii) follows similarly. Altogether this proves Claim 1.

Let R0(A1) be the set of all runs of A1 starting at a state of level 0. Let
g0 be the restriction of g to R0(A1).

Claim 2. Let G : p
t
−→ q be a run in A with lv(p) = lv(q) = 0 and

wgt(G) 6= 0. Then there is a run G′ : p
t
−→ q in A1 with g0(G

′) = G.

This follows from Claim 1 immediately because g preserves the level of
each state label.

Clearly, both g and g0 preserve the label of a run.

Claim 3. The mapping g0 : R0(A1)→R(A) is injective.

Let us assume there are runs G′
1 6= G′

2 ∈ R0(A1) with g0(G
′
1) = g0(G

′
2) =

G. We write G′
i = (Vi, Ei, νi, ηi). By definition of g and g0, G′

1 and G′
2 can

differ in the state labeling only. More precisely, there is a vertex v of G′
1

and G′
2 such that without loss of generality:
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1. ν1(v) = p ∈ Q and ν2(v) = pf for some f ∈ F1, or

2. ν1(v) = p ∈ Q and ν2(v) = pj for some j ∈ J1, or

3. ν1(v) = pf and ν2(v) = pj for some f ∈ F1, j ∈ J1.

In the first case, the fork transition f of level 1 is used in G = g0(G
′
2).

Hence, there would be a fork transition of level 1 in G′
1 whose one branch

terminates in p ∈ Q. But this is impossible by the definition of µ1fork. The
second case yields a contradiction in a similar way. Now, consider the third
case. The state pf can be reached by some fork transition only. Moreover,
a run from R0(A1) cannot start in pf because lv1(p

f ) 6= 0. Dually, pj can
be leaved by a join transtion only, and no run from R0(A1) can terminate
in pj . Hence, in G′

1 and G′
2 there is a node in which a fork transition

terminates and a join transition starts. But then G′
1 and G′

2 cannot be
runs. Thus, g0 is injective.

Claim 4. Let G′ : p′
t
−→ q′ be a run of A1.

• If p′, q′ ∈ Q, then wgt(G′) = wgt(g(G′)).

• If p′ = pf for some p ∈ Q, f ∈ F1 and q′ ∈ Q, then wgt(G′) =
µfork(f) ◦wgt(g(G′)).

• If p′ ∈ Q and q′ = qj for some q ∈ Q, j ∈ J1, then wgt(G′) =
wgt(g(G′)) ◦ µjoin(j).

• If p′ = pf and q′ = qj for some p, q ∈ Q, f ∈ F1, j ∈ J1, then
wgt(G′) = µfork(f) ◦wgt(g(G′)) ◦ µjoin(j).

For atomic runs Claim 4 is obvious by the definition of µ1seq. Let G′ =
G′

1· . . . ·G
′
m (m ≥ 2) admit a sequential decomposition. Note that G′

i : p′i −→
p′i+1 is such that p′i ∈ Q for i = 2, . . . , m because the states of Q are the
only ones in A1 that allow in-going sequential and join transitions as well as
out-going sequential and fork transitions. By the induction hypothesis and
a simple case distinction for G′

1 and G′
m, Claim 4 follows for G′. Now, let

G′ = ‖ p′,q′(G′
1, . . . , G

′
n) for n ≥ 2. If lv1(p

′) = lv1(q
′) ≥ 2, then p′, q′ ∈ Q.

Then G′ starts with a fork transition f : p′ → {p1, . . . , pn} and ends with
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a join transition j : {q1, . . . , qn} → q′ where pi, qi ∈ Q for i = 1, . . . , n.
Hence, we get

wgt(G′) = µ1fork(f) ◦
[
wgt(G′

1)3 . . .3wgt(G′
n)
]
◦ µ1join(j)

= µfork(f) ◦
[
wgt(g(G′

1))3 . . .3wgt(g(G′
n))
]
◦ µjoin(j)

= wgt(g(G′)).

Now, suppose lv1(p
′) = lv1(q

′) = 1. For p′, q′ ∈ Q we proceed the same
way as in the last case. Next, let p′ = pf̄ for some p ∈ Q, f̄ ∈ F1 and
let q′ ∈ Q. Then G′ starts with a fork transition f : pf̄ → {p1, . . . , pn}
and ends with a join transition j : {q1, . . . , qn} → q′ with pi, qi ∈ Q for
i = 1, . . . , n. Hence, we have

wgt(G′) = µ1fork(f) ◦
[
wgt(G′

1)3 . . .3wgt(G′
n)
]
◦ µ1join(j)

= µfork(f̄) ◦ µfork(p, {p1, . . . , pn}) ◦[
wgt(g(G′

1))3 . . .3wgt(g(G′
n))
]
◦ µjoin(j)

= µfork(f̄) ◦wgt(g(G′)).

The other cases follow similarly. Finally, we assume lv1(p
′) = lv1(q

′) = 0.

Hence, p′, q′ ∈ Q and G′ is limited by a fork transition p′ →1 {p
f
1 , . . . , pf

n}

for some f ∈ F1 and a join transition {qj
1, . . . , q

j
n} →1 q′ for some j ∈ J1.

Now, we get by induction hypothesis and distributivity of �:

wgt(G′) = 1 ◦
[
wgt(G′

1)3 . . .3wgt(G′
n)
]
◦ 1

=
[(

µfork(f) ◦wgt(g(G′
1)) ◦ µjoin(j)

)
3

. . .3
(
µfork(f) ◦wgt(g(G′

n)) ◦ µjoin(j)
)]

= µfork(f) ◦
[
wgt(g(G′

1))3 . . .3wgt(g(G′
n))
]
◦ µjoin(j)

= wgt(g(G′)).

This proves Claim 4.

Claim 4 implies that g0 preserves the weight of a run. Let R 6=0
0 (A) and

R6=0
0 (A1) be the sets of runs of A and A1, respectively, starting at a state

of level 0 and having weight distinct from zero. By Claims 2, 3, and 4 we
get that g0 : R 6=0

0 (A1) → R
6=0
0 (A) is a bijective mapping preserving labels

and weights. Considering initial and final weights, we get immediately
S(A1) = S(A).
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Now, suppose we have constructed a wba Ai with i < d and the following
properties:

• Ai is a level automaton of bounded depth with depth bound d,

• all fork and join transitions up to level i have weight 1, and

• S(Ai) = S(A).

We will indicate the construction of Ai+1 only. It will be clear from the
construction that Ai+1 is a level wba of bounded depth, and that all fork
and join transitions up to level i+1 have weight 1. The proof of S(Ai+1) =
S(Ai) follows the same lines as this for S(A1) = S(A) with some obvious
adaptions. Ai+1 is constructed as follows: Qi+1 contains all states of Qi.
If f : p → {p1, . . . , pm} is a fork transition of level i + 1 in Ai, then

pf
1 , . . . , pf

m ∈ Qi+1. Dually, for any join transition j : {q1, . . . , qm} → q of

level i + 1 in Ai, we put qj
1, . . . , q

j
m ∈ Qi+1. Let Fi and Ji denote the sets

of all fork and join transitions of level i in Ai, respectively. The new level
function is given by:

lvi+1(p
′) =





lvi(p
′) if p′ ∈ Qi,

lvi(p) if p′ = pf for some p ∈ Qi, f ∈ Fi,

lvi(p) if p′ = pj for some p ∈ Qi, j ∈ Ji.

The sequential, fork and join transitions are defined in an analogue manner
as for A1. But now, we transfer the weights of the fork and join transitions
of level i + 1 to the next higher level. Again, the initial and final weights
remain unchanged, and all states from Qi+1 \ Qi are neither initial nor
final.

Now suppose Ad has been constructed. Since there are no fork and join
transitions of higher level than d, Ad has the following properties:

• Ad is 0-1-branching,

• Ad is a level wba of bounded depth, and

• S(Ad) = S(A).

This shows Lemma 7.3.
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Proposition 7.4. Let S be a C-regular (M-regular) sp-series of bounded
width over a distributive bisemiring �. Then S can be C-recognized (M-
recognized) by a normalized 0-1-branching wba of bounded depth.

Proof. By Corollary 5.9, S can be recognized by a wba of bounded depth.
Moreover, this wba can be normalized due to Proposition 4.4. Note that
the normalization construction does not affect the bounded depth property.
By Lemma 7.3, this normalized wba can be turned into a 0-1-branching
wba of bounded depth. A short analysis of the proof of Lemma 7.3 shows
that the construction given there preserves normalization.

From now on, we call a bisemiring � = (K,⊕, ◦, ◦, 0, 1) where sequential
and parallel multiplication coincide a doubled semiring. Note that any
doubled semiring is a commutative bisemiring.

Proposition 7.5. Let � be a distributive bisemiring or a doubled semiring.
Then every sequential-rational sp-series over � is M-regular.

Proof. Obviously, all monomials are M-regular. By Propositions 4.1, 4.2,
4.12, and 4.15 M-regular sp-series are closed under sum, scalar products,
sequential product, and sequential iteration. It remains to show the closure
under parallel product.

Firstly, let � be a distributive bisemiring. Let S1 and S2 be two M-
regular sp-series of bounded width over �. By Proposition 7.4, both S1

and S2 can be M-recognized by normalized 0-1-branching wba A1 and A2

of bounded depth. We denote the unique initial state of Ai by ii and the
unique final one by fi for i = 1, 2. We define the wba A as follows:

• Q = Q1 ∪̇ Q2 ∪̇ {i, f},

• µseq(p, a, q) =





µ1seq(p, a, q) if p, q ∈ Q1,

µ2seq(p, a, q) if p, q ∈ Q2,

0 otherwise,
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• for m ∈ {2, . . . , |Q|} we put:2

µm
fork(p, {p1, . . . , pm})

=





µ1
m
fork(p, {p1, . . . , pm}) if p, p1, . . . , pm ∈ Q1,

µ2
m
fork(p, {p1, . . . , pm}) if p, p1, . . . , pm ∈ Q2,

1 if p = i and ∃j ∈ {2, . . . , m− 2} :

µ1
j
fork(i1, {p1, . . . , pj}) = 1,

µ2
m−j
fork (i2, {pj+1, . . . , pm}) = 1,

1 if p = i, p1 = i1 and

µ2
m−1
fork (i2, {p2, . . . , pm}) = 1,

1 if p = i, pm = i2 and

µ1
m−1
fork (i1, {p1, . . . , pm−1}) = 1,

1 if p = i, {p1, . . . , pm} = {i1, i2},

0 otherwise,

• for m ∈ {2, . . . , |Q|} we put:

µm
join({q1, . . . , qm}, q)

=





µ1
m
join({q1, . . . , qm}, q) if q, q1, . . . , qm ∈ Q1,

µ2
m
join({q1, . . . , qm}, q) if q, q1, . . . , qm ∈ Q2,

1 if q = f and ∃j ∈ {2, . . . , m− 2} :

µ1
j
join({q1, . . . , qj}, f1) = 1,

µ2
m−j
join ({qj+1, . . . , qm}, f2) = 1,

1 if q = f, q1 = f1 and

µ2
m−1
join ({q2, . . . , qm}, f2) = 1,

1 if q = f, qm = f2 and

µ1
m−1
join ({q1, . . . , qm−1}, f1) = 1,

1 if q = f, {q1, . . . , qm} = {f1, f2},

0 otherwise,

2In this proof, we write a subset P of Q1 ∪̇ Q2 in such a way that all states from Q1

in P proceed the states from Q2 in P .
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• λ(p) =

{
1 if p = i,

0 otherwise,
γ(q) =

{
1 if q = f,

0 otherwise.

We will show that SM (A) = SM (A1) ‖SM (A2). For this, we define a
mapping from pairs of successful runs in A1 and A2 to successful runs of A.
LetRsc

M (A) be the set of all M-runs in A from i to f, and, similarly, Rsc
M (Ai)

the set of all runs inAi from ii to fi for i = 1, 2. Now, we define the mapping
g : Rsc

M (A1) × R
sc
M (A2) → R

sc
M (A). Let G1 ∈ R

sc
M (A1), G2 ∈ R

sc
M (A2),

and let G1 = ‖ i1,f1
(G11, . . . , G1m) and G2 = ‖ i2,f2

(G21, . . . , G2n) with
m, n ≥ 1 be the parallel decomposition of G1 and G2, respectively. Note
that for m = 1 the run G1 is sequential, and likewise for n = 1 and G2.
Furthermore, since G1 and G2 are M-runs, all the runs G1i for i = 1, . . . , m
and G2j for j = 1, . . . , n are sequential runs. We define g(G1, G2) by

g(G1, G2) = ‖ i,f(G11, . . . , G1m, G21, . . . , G2n).

By definition of A, g(G1, G2) is an M-run of A. Moreover, we get immedi-
ately

lab[g(G1, G2)] = lab(G1) ‖ lab(G2).

Claim 1. For G1 ∈ R
sc
M (A1), G2 ∈ R

sc
M (A2) we have

wgt[g(G1, G2)] = wgt(G1)3wgt(G2).

Indeed, for G1 and G2 being sequential the claim is obvious. Now, as-
sume G1 is sequential but G2 is not. Hence, G2 = ‖ i2,f2

(G21, . . . , G2n)
with n ≥ 2 and G2i : p2i −→ q2i for i = 1, . . . , n. Then we get

wgt(g(G1, G2)) = µn+1
fork (i, {i1, p21, . . . , p2n}) ◦

[
wgt(G1)3wgt(G21)3

. . . 3wgt(G2n)
]
◦ µn+1

join ({f1, q21, . . . , q2n}, f)

= wgt(G1)3
[
wgt(G21)3 . . .3wgt(G2n)

]

= wgt(G1)3wgt(G2)

because A2 is 0-1-branching. For the other cases we conclude similarly.
This proves Claim 1.

Obviously, g is injective. Now, let G ∈ Rsc
M (A). By definition of A,

G cannot be atomic. Suppose G = G1· . . . ·Gm. Since the only out-going
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transitions of i are fork transitions, G1 starts with a fork transition i →
{p1, . . . , pm}. Then there are i 6= j ∈ {1, . . . , m} with pi ∈ Q1 and pj ∈ Q2.
It is an easy exercise to show that each run of A starting in a state of Q1

also ends in a state of Q1, and, dually, for Q2. Thus, G1 terminates with a
join transition joining states both from Q1 and Q2. By definition of µjoin,
G1 ends in state f. Since f admits no out-going transitions, we get G = G1,
i.e. G is of the form G = ‖ i,f(H1, . . . , Hn) with H1, . . . , Hj ∈ R

sc
M (A1)

and Hj+1, . . . , Hn ∈ R
sc
M (A2) for some j ∈ {1, . . . , n}. We put G1 =

‖ i1,f1
(H1, . . . , Hj) and G2 = ‖ i2,f2

(Hj+1, . . . , Hn). These are well defined
M-runs of A1 and A2, respectively. Moreover, we get g(G1, G2) = G. This
shows surjectivity of g, and, hence, bijectivity. Now we get for any t ∈ SP:

(
SM (A1) ‖SM (A2), t

)

=
⊕

(t1,t2):

t=t1 ‖ t2

[
(SM (A1), t1)3(SM (A2), t2)

]

=
⊕

(t1,t2):

t=t1 ‖ t2

[( ⊕

G1∈Rsc
M (A1)

lab(G1)=t1

wgt(G1)
)
3

( ⊕

G2∈Rsc
M (A2)

lab(G2)=t2

wgt(G2)
)]

=
⊕

(t1,t2):

t=t1 ‖ t2

[
⊕

G1:i1
t1−→f1

G2:i2
t2−→f2

(
wgt(G1)3wgt(G2)

)]

=
⊕

G1:i1
t1−→f1

G2:i2
t2−→f2

t=t1 ‖ t2

(
wgt(G1)3wgt(G2)

)

=
⊕

G1:i1
t1−→f1

G2:i2
t2−→f2

t=t1 ‖ t2

wgt(g(G1, G2))

111



7 The Different Concepts of Regularity

=
⊕

G:i
t
−→f

wgt(G)

=(SM (A), t).

This shows the closure of M-regular sp-series of bounded width over a
distributive bisemiring under parallel product.

Now, let � be a doubled semiring, and let S1, S2 be two M-regular sp-
series of bounded width over �. Then both S1 and S2 can be M-recognized
by normalized wba A1 and A2 of bounded depth. Again, let ii and fi
denote the unique initial and final state of Ai for i = 1, 2. The wba A M-
recognizing S1 ‖S2 is constructed almost in the same way as for distributive
bisemirings. Only the weights of the fork and join transitions differ. With
Q = Q1 ∪̇ Q2 ∪̇ {i, f} we put:

• for m ∈ {2, . . . , |Q|}

µm
fork(p, {p1, . . . , pm})

=





µ1
m
fork(p, {p1, . . . , pm}) if p, p1, . . . , pm ∈ Q1,

µ2
m
fork(p, {p1, . . . , pm}) if p, p1, . . . , pm ∈ Q2,

µ1
j
fork(i1, {p1, . . . , pj})◦

µ2
m−j
fork (i2, {pj+1, . . . , pm}) if p = i and ∃j ∈ {2, . . . , m− 2} :

p1, . . . , pj ∈ Q1,

pj+1, . . . , pm ∈ Q2,

µ1
m−1
fork (i1, {p1, . . . , pm−1}) if p = i, p1, . . . , pm−1 ∈ Q1,

pm = i2,

µ2
m−1
fork (i2, {p2, . . . , pm}) if p = i, p1 = i1,

p2, . . . , pm ∈ Q2,

1 if p = i, {p1, . . . , pm} = {i1, i2},

0 otherwise,
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• for m ∈ {2, . . . , |Q|}

µm
join({q1, . . . , qm}, q)

=





µ1
m
join({q1, . . . , qm}, q) if q, q1, . . . , qm ∈ Q1,

µ2
m
join({q1, . . . , qm}, q) if q, q1, . . . , qm ∈ Q2,

µ1
j
join({q1, . . . , qj}, f1)◦

µ2
m−j
join ({qj+1, . . . , qm}, f2) if q = f and ∃j ∈ {2, . . . , m− 2} :

q1, . . . , qj ∈ Q1,

qj+1, . . . , qm ∈ Q2,

µ1
m−1
join ({q1, . . . , qm−1}, f1) if q = f, q1, . . . , qm−1 ∈ Q1,

qm = f2,

µ2
m−1
join ({q2, . . . , qm}, f2) if q = f, q1 = f1,

q2, . . . , qm ∈ Q2,

1 if q = f, {q1, . . . , qm} = {f1, f2},

0 otherwise.

The proof of SM (A) = SM (A1) ‖SM (A2) follows the same lines as that for
distributive bisemirings. But now, the proof of the equivalent to Claim 1
does not use 0-1-branching automata but the coincidence of sequential and
parallel multiplication. We omit the details.

Hence, M-regular sp-series of bounded width over doubled semirings are
closed under parallel product.

Now we can state the main result about C- and M-regularity.

Theorem 7.6. Let � be an arbitrary bisemiring and S ∈ �〈〈SP〉〉 an sp-
series of bounded width.

1. If S is M-regular, then S is also C-regular.

2. If � is distributive or a doubled semiring and S is C-regular, then S
is M-regular.

Proof. Since S is M-regular and of bounded width, by Corollary 5.9, it
can be M-recognized by a wba of bounded depth. Then S is C-regular by
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Proposition 7.1. Vice versa, every C-regular sp-series S of bounded width
is sequential-rational by Theorem 6.2. If � is distributive or a doubled
semiring, this implies M-regularity of S by Proposition 7.5.

For distributive bisemirings and doubled semirings we get another result
in the spirit of Kleene and Schützenberger.

Theorem 7.7. Let � be distributive or a doubled semiring. The following
are equivalent for S ∈ �〈〈SP〉〉:

1. S is sequential-rational.

2. S is M-regular and of bounded width.

3. S is M-recognized by a wba of bounded depth.

Proof. Apply Theorems 6.2 and 7.6, and Corollary 5.9.
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8 The Hadamard Product for SP-Series

The generalization of the intersection of languages to series is the Hadamard
product. It is no Cauchy product where both supports and weights are
multiplied but the usual pointwise product of two functions. Within the
scope of sp-series it is possible to define a sequential and parallel Hadamard
product because the bisemiring admits two multiplications. Here, we are
interested in the closure of regular sp-series under Hadamard product. In
a wba the sequential multiplication “dominates” the parallel one. More
precisely, any run of a wba is first of all a sequence of sequential, fork and
join transitions, and several sets of sub-runs where the sub-runs of every
set are composed in parallel. Moreover, we will see that nice results in this
chapter can be achieved for doubled semirings only. Thus, it does not mat-
ter which of both products we consider. Therefore, we study the sequential
Hadamard product only.

Let S and T be two sp-series over Σ and �. The sequential Hadamard
product S � T of S and T is defined by:

S � T =
∑

t∈SP

(
(S, t) ◦ (T, t)

)
t.

Hence, supp(S�T ) ⊆ supp(S)∩ supp(T ). From now on, we will speak just
of the Hadamard product instead of the sequential Hadamard product.

For word series over a semiring there are two main ways to prove the
closure of regular series under Hadamard product. Either the product au-
tomaton simulating two automata simultaneously is constructed [SS78], or
one exploits algebraic characterizations using finitely generated semimod-
ules [BR88]. We have to follow the first way which has the advantage
of being constructive. Such a construction should be based on the usual
product automaton from formal language theory. There the state set is
taken as the direct product of the two state sets of the automata involved.
However, this construction cannot be generalized straightforwardly for the
C-running mode as the following example shows.
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Example 8.1. We work with the Boolean bisemiring �, i.e. within the
setting of sp-languages. The language L = {a ‖ b ‖ c} is C-recognized both
by A1 and A2 as shown in Figure 8.1. In a product automaton A of A1 and
A2 there would be the following sequential transitions: (p2, q4)

a
−→ (p8, q6),

(p4, q5)
b
−→ (p6, q7), and (p5, q3)

c
−→ (p7, q9). Moreover, (p1, q1) would be the

unique initial state. How should we define the new fork transitions starting
in (p1, q1)? From a permissive point of view, we could allow two fork
transitions (p1, q1) → {(p2, q2), (p3, q3)} and (p1, q1) → {(p2, q3), (p3, q2)}
in A. Similarly, there may be fork transitions (p3, q2)→ {(p4, q4), (p5, q5)}
and (p3, q2)→ {(p4, q5), (p5, q4)}. But even with these four fork transitions
we cannot fork into the states (p2, q4) and (p5, q3) where two of the three
sequential transitions start. Therefore, the language C-recognized by A
would be empty in contradiction to L(A1) ∩ L(A2) = {a ‖ b ‖ c}.

A1

p1

p2

p3

p5

p4 p6

p7

p9

p8

p10

a

b

c

A2

q1

q2

q3

q5

q4 q6

q7

q8

q9

q10

a

b

c

Figure 8.1: Two wba C-recognizing {a ‖ b ‖ c}.

The main problem in Example 8.1 is the different branching structure
of the two automata. Whereas A1 forks firstly into runs with labels a and
(b ‖ c), A2 forks firstly into runs with labels (a ‖ b) and c. These two differ-
ent realizations cannot be captured by a local definition of new fork and
join transitions. However, the situation would be different if we consider
M-regular sp-series because in an M-run a parallel product of length n is
realized by fork and join transitions of arity n. Therefore, we concentrate
on the closure of M-regular sp-series under Hadamard product.

The Hadamard product of two regular sp-series can be interpreted as

116



8.1 The Hadamard Product for Doubled Semirings

follows: For an arbitrary sp-poset t the automata A1 and A2 run on t one
after the other and their results, i.e. the weights, are multiplied sequentially.
To show that the Hadamard product of the behaviors of A1 and A2 is
regular, the two runs of the automata on t have to be fused to one run on
t in a product automaton A still to be defined. For this, the weights both
of A1 and A2 have to be fused on the local level of sequential transitions.
Therefore, even for word series over semirings, the sequential multiplication
has to be commutative. Furthermore, now we have to shift the weights
over the fork and join transitions away to the different depth levels of
the automaton. Hence, it is not surprising that we have to impose heavy
restrictions on the underlying bisemiring to get a positive result.

8.1 The Hadamard Product for Doubled

Semirings

Firstly, we give the construction of the product automaton for an arbitrary
bisemiring �.

Construction 8.2. Let A1 and A2 be two wba over Σ and � with
Ai = (Qi, µiseq, µifork, µijoin, λi, γi) for i = 1, 2. We define the product wba
A1 ×A2 = (Q, µseq, µfork, µjoin, λ, γ) of A1 and A2 as follows:1

• Q = Q1 ×Q2,

• µseq

((
p1

p2

)
, a,
(

q1

q2

))
= µ1seq(p

1, a, q1) ◦ µ2seq(p
2, a, q2),

• for m ∈ {2, . . . , |Q|}:2

µm
fork

((
p1

p2

)
,
{(

p1
1

p2
1

)
, . . . ,

(
p1

m

p2
m

)})

= µ1
m
fork(p

1, {p1
1, . . . , p

1
m}) ◦ µ2

m
fork(p

2, {p2
1, . . . , p

2
m}),

1Here, we indicate by an upper index to which wba a state belongs to, e.g. p1 ∈ Q1.
2For |Q| ≥ m > |Q1| we assume µ1fork to be identically zero, and similarly for µ2fork.

This assumption also applies to the join transition functions.
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p1

p2

p3

1

p5

p4

p6

1

a/2, b/1

a/2, b/3

a/1, b/2

a/3, b/2

1 1

Figure 8.2: A wba A with auto-concurrency.

• for m ∈ {2, . . . , |Q|}:

µm
join

({(
p1
1

p2
1

)
, . . . ,

(
p1

m

p2
m

)}
,
(

p1

p2

))

= µ1
m
join({p

1
1, . . . , p

1
m}, p

1) ◦ µ2
m
join({p

2
1, . . . , p

2
m}, p

2),

• λ
(

p1

p2

)
= λ1(p

1) ◦ λ2(p
2), and γ

(
p1

p2

)
= γ1(p

1) ◦ γ2(p
2).

Note that a doubled semiring � = (K,⊕, ◦, ◦, 0, 1) is always a com-
mutative bisemiring. However, the next example shows that the product
wba construction does not M-recognize the Hadamard product of two M-
regular sp-series over arbitrary doubled semirings. We will see that auto-
concurrency causes severe problems.

Example 8.3. Let A be the wba of Figure 8.2. The weights are taken
from the doubled semiring of natural numbers with the usual addition
and multiplication. Then SM (A) = 16(a ‖ b) + 7(a ‖ a) + 7(b ‖ b). Hence,
SM (A) � SM (A) = 256(a ‖ b) + 49(a ‖a) + 49(b ‖ b). If we apply Con-
struction 8.2 of the product automaton, we get the wba A × A with fork
transitions ( p1

p1 )→1 {(
p2
p2 ) , ( p3

p3 )} and ( p1
p1 )→1 {(

p2
p3 ) , ( p3

p2 )}, and join tran-
sitions {( p4

p4 ) , ( p5
p5 )} →1 ( p6

p6 ), {( p4
p5 ) , ( p5

p4 )} →1 ( p6
p6 ). Therefore, we get

for a ‖ a eight successful runs in A × A as shown in Figure 8.3. Hence,
(SM (A × A), a ‖a) = 98 6= 49. The problem arises from the following
situation: In A there are only two successful runs on a ‖ a. Suppose A�
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( p1
p1 )

( p2
p2 )

( p3
p3 )

1

( p5
p4 )

( p4
p5 )

( p6
p6 )

1

a/2

a/6

a/2

a/6

1 1

( p1
p1 )

( p2
p2 )

( p3
p3 )

1

( p5
p5 )

( p4
p4 )

( p6
p6 )

1

a/4

a/4

a/1

a/9

1 1

( p1
p1 )

( p2
p3 )

( p3
p2 )

1

( p5
p4 )

( p4
p5 )

( p6
p6 )

1

a/4

a/4

a/3

a/3

1 1

( p1
p1 )

( p2
p3 )

( p3
p2 )

1

( p5
p5 )

( p4
p4 )

( p6
p6 )

1

a/6

a/2

a/2

a/6

1 1

Figure 8.3: Eight successful runs on a ‖ a in the product automaton A×A.

is a wba M-recognizing SM (A) � SM (A). Hence, A� should have only
four instead of eight successful runs on a ‖ a. But on the other hand, the
sp-poset a ‖ b has four successful runs in A, and should, therefore, have 16
successful runs in A�. But the number of successful runs has to be realized
by the branching structure of that automaton. If we would allow the fork
( p1

p1 )→1 {(
p2
p2 ) , ( p3

p3 )} only (or, dually, the join {( p4
p4 ) , ( p5

p5 )} →1 ( p6
p6 ) only),

we would get four successful runs on a ‖ b only and would make a mistake
for the weight of this sp-poset. Construction 8.2 realizes the right number
of successful runs for the sp-poset a ‖ b which has no auto-concurrency. As
a consequence we get too many runs for sp-posets with auto-concurrency
as we have seen above.

The next lemma gives a description of the behavior of the product au-
tomaton over doubled semirings. Let n ∈

�
. We abbreviate a sum of n

equal elements k ∈ � as follows:

n.k = k ⊕ k ⊕ . . .⊕ k︸ ︷︷ ︸
n

.
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Lemma 8.4. Let A1 and A2 be two wba over the doubled semiring �, and
let t ∈ SP. Then there is c(t) ∈

�
>0, depending on t only, such that:

(
SM (A1 ×A2), t

)
= c(t).

[(
SM (A1)� SM (A2), t

)]
.

Proof. Let Ai be a wba with SM (Ai) = Si for i = 1, 2. Let A = A1 ×A2

be the product wba as given in Construction 8.2. Firstly, we prove the
following:

Claim 1. For every t ∈ SP there is a c(t) ∈
�>0 such that for every

p1, q1 ∈ Q1, p2, q2 ∈ Q2 we have:

wgtM

((
p1

p2

)
, t,
(

q1

q2

))
= c(t).

[
wgt1

M (p1, t, q1) ◦wgt2
M (p2, t, q2)

]
.

We proceed by structural induction on t ∈ SP. Indeed, for t = a ∈ Σ
we get Claim 1 immediately by the definition of A. Especially, c(a) = 1.
Now, let t = t1· . . . ·tm (m ≥ 2) be a sequential sp-poset with its maximal
sequential decomposition. Then we get:

wgtM

((
p1

p2

)
, t,
(

q1

q2

))
=

⊕

G:

„

p1

p2

«

t
−→
„

q1

q2

«

wgt(G)

=
⊕

G1,...,Gm:
G=G1·...·Gm,
lab(Gi)=ti

wgt(G1) ◦ . . . ◦wgt(Gm)

and then by commutativity of ⊕ and distributivity of ◦ over ⊕

=
⊕

"

„

r1
1

r2
1

«

,...,

 

r1
m−1

r2
m−1

!#

∈Qm−1

wgtM

((
p1

p2

)
, t1,

(
r1
1

r2
1

))
◦ . . .

◦wgtM

((
r1

m−1

r2
m−1

)
, tm,

(
q1

q2

))
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and now by induction hypothesis

=
⊕

"

„

r1
1

r2
1

«

,...,

 

r1
m−1

r2
m−1

!#

∈Qm−1

(
c(t1).[wgt1

M (p1, t1, r
1
1) ◦wgt2

M (p2, t1, r
2
1)]

◦ . . . ◦ c(tm).[wgt1
M (r1

m−1, tm, q1) ◦wgt2
M (r2

m−1, tm, q2)]

)

and then by distributivity of ◦ over ⊕ and commutativity of ◦ 3

=
⊕

"

„

r1
1

r2
1

«

,...,

 

r1
m−1

r2
m−1

!#

∈Qm−1

(
c(t1)c(t2) . . . c(tm)

)
.

(
wgt1

M (p1, t1, r
1
1) ◦ . . .

◦wgt1
M (r1

m−1, tm, q1) ◦wgt2
M (p2, t1, r

2
1) ◦ . . . ◦wgt2

M (r2
m−1, tm, q2)

)

and, finally, by distributivity of ◦ over ⊕ and commutativity of ⊕

=
(
c(t1)c(t2) . . . c(tm)

)
.







⊕

(r1
1,...,r1

m−1)∈Q
m−1
1

[
wgt1

M (p1, t1, r
1
1) ◦ . . . ◦wgt1

M (r1
m−1, tm, q1)

]



◦




⊕

(r2
1,...,r2

m−1)∈Qm−1
2

[
wgt2

M (p2, t1, r
2
1) ◦ . . . ◦wgt2

M (r2
m−1, tm, q2)

]






=
(
c(t1)c(t2) . . . c(tm)

)
.

(
wgt1

M (p1, t, q1) ◦wgt2
M (p2, t, q2)

)

which shows the claim for a sequential sp-poset t. Note, that c(t) =
c(t1)c(t2) . . . c(tm) depends on t only because c(ti) depends on ti only for
i = 1, . . . , m.

3In the next equation, c(t1)c(t2) . . . c(tm) denotes the usual product of
c(t1), c(t2), . . . , c(tm) in �.
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Finally, we consider a parallel sp-poset t = t1 ‖ . . . ‖ tm (m ≥ 2) given
in its maximal parallel decomposition. Since the wba considered are in
M-running mode, we know that a run on t starts with a fork transition
of arity m and ends with a join transition of arity m. Let Sm denote
the permutation group of m elements. We calculate the weight of t from
p1 to q1 ∈ Q1 in A1: Firstly, we add over all possible fork transitions
p1 → {r1

1, . . . , r
1
m} starting in p1 and all join transitions {s1

1, . . . , s
1
m} → q1

terminating in q1. If the fork and join transition are fixed we have to add
up over all possible executions of t = t1 ‖ . . . ‖ tm between the state sets
{r1

1, . . . , r
1
m} and {s1

1, . . . , s
1
m}. These executions are determined by the

starting and ending state of a run on ti for all i = 1, . . . , m. The number of
executions depends on the “rate of auto-concurrency” of t, i.e. the classes
of equal factors in t1 ‖ . . . ‖ tm. Let ker(t) ⊆ Sm be the subgroup of Sm

consisting of all those permutations σ ∈ Sm such that ti = tσ(i) for all
i = 1, . . . , m. Let π1, π2, %1, %2 ∈ Sm. On one hand, we fix the starting state
of the runs on ti by r1

π1(i)
and the ending state by s1

%1(i)
for i = 1, . . . , m.

This yields the execution X1(t) = {(r1
π1(i)

, ti, s
1
%1(i)

) | i = 1, . . . , m}. On

the other hand, we get another execution X2(t) = {(r1
π2(i)

, ti, s
1
%2(i)

) | i =

1, . . . , m} which makes use of the permutations π2 and %2. Now, we have:

Claim 2. X1(t) = X2(t) iff there is a σ ∈ ker(t) with π2 = π1 ◦ σ and
%2 = %1 ◦ σ.4

Indeed, if π2 = π1 ◦ σ and %2 = %1 ◦ σ for some σ ∈ ker(t) then
(r1

π1(i)
, ti, s

1
%1(i)

) = (r1
π2(j)

, tj , s
1
%2(j)

) for i = σ(j) and j = 1, . . . , m. Vice

versa, X1(t) = X2(t) implies the existence of some σ ∈ Sm with
(r1

π2(i)
, ti, s

1
%2(i)

) = (r1
π1(σ(i)), tσ(i), s

1
%1(σ(i))) for i = 1, . . . , m. Hence, π2 =

π1 ◦ σ and %2 = %1 ◦ σ. Moreover, ti = tσ(i) for i = 1, . . . , m. Therefore,
σ ∈ ker(t).

Let Um be a system of representatives for the left cosets π ker(t) where
π ∈ Sm. We put Xπ,%(t) = {(r1

π(i), ti, s
1
%(i)) | i = 1, . . . , m}. Let π1, π2 ∈

Sm and %1, %2 ∈ Um. Then Xπ1,%1
(t) = Xπ2,%2

(t) iff π1 = π2 and %1 = %2.
Indeed, by Claim 2 Xπ1,%1

(t) = Xπ2,%2
(t) implies π2 = π1◦σ and %2 = %1◦σ

for some σ ∈ ker(t). Hence, %1 and %2 would be in the same left coset of
ker(t). Thus, %1 = %2. This implies π1 = π2.

4Here, π1 ◦ σ means: firstly, apply σ and then π1.
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Moreover, for π, % ∈ Sm there are π′ ∈ Sm, %′ ∈ Um with Xπ,%(t) =
Xπ′,%′(t). We just choose %′ as the representative from Um which is in the
same coset as %. Hence, there is σ ∈ ker(t) with %′ = % ◦ σ ∈ Um, and then
we put π′ = π ◦ σ. Hence, to obtain the weight of t = t1 ‖ . . . ‖ tm we have
to add over all π ∈ Sm and all % ∈ Um. Thus, we get:

wgt1
M (p1, t, q1)

=
⊕

{r1
1,...,r1

m}∈P
m

(Q1)

{s1
1,...,s1

m}∈P
m

(Q1)
π∈Sm,%∈Um

[
µ1

m
fork(p

1, {r1
1, . . . , r

1
m}) ◦wgt1

M (r1
π(1), t1, s

1
%(1))◦

. . . ◦wgt1
M (r1

π(m), tm, s1
%(m)) ◦ µ1

m
join({s

1
1, . . . , s

1
m}, q

1)
]

(8.1)

To calculate wgt2
M (p2, t, q2) we do the same as for wba A1. But this time

we let both permutations range over all Sm. But then, by Claim 2, every
execution of t = t1 ‖ . . . ‖ tm is generated | ker(t)| times. Let e(t) = | ker(t)|.
Then we get for the wba A2:

e(t).wgt2
M (p2, t, q2)

=
⊕

{r2
1,...,r2

m}∈P
m

(Q2)

{s2
1,...,s2

m}∈P
m

(Q2)
τ,η∈Sm

[
µ2

m
fork(p

2, {r2
1, . . . , r

2
m}) ◦wgt2

M (r2
τ(1), t1, s

2
η(1))◦

. . . ◦wgt2
M (r2

τ(m), tm, s2
η(m)) ◦ µ2

m
join

({s2
1, . . . , s

2
m}, q

2)
]

(8.2)
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8 The Hadamard Product for SP-Series

For A we argue as for A1 and get:

wgtM

((
p1

p2

)
, t,
(

q1

q2

))

=
⊕

{
„

p1
1

p2
1

«

,...,

„

p1
m

p2
m

«

}
∈P

m
(Q)

⊕
{
„

q1
1

q2
1

«

,...,

„

q1
m

q2
m

«

}
∈P

m
(Q)

⊕

α∈Sm,β∈Um

[
µm

fork

((
p1

p2

)
,
{(

p1
1

p2
1

)
, . . . ,

(
p1

m

p2
m

)})
◦wgtM

((
p1

α(1)

p2
α(1)

)
, t1,

(
q1

β(1)

q2
β(1)

))
◦ . . .

◦wgtM

((
p1

α(m)

p2
α(m)

)
, tm,

(
q1

β(m)

q2
β(m)

))
◦ µm

join

({(
q1
1

q2
1

)
, . . . ,

(
q1

m

q2
m

)}
,
(

q1

q2

))]

(8.3)

In the next step, we want to add over pairs of m-sets5 instead over m-sets

of pairs. In Equation (8.3), the starting states of the runs on ti are

(
p1

α(i)

p2
α(i)

)

where α ∈ Sm. There, firstly we choose a set of m pairs and consider for
such a choice all possible permutations. Note, that we can restrict the
choice of the m pairs as follows: the sets {p1

1, . . . , p
1
m} and {p2

1, . . . , p
2
m}

should both contain m mutually different elements because otherwise

µm
fork

((
p1

p2

)
,
{(

p1
1

p2
1

)
, . . . ,

(
p1

m

p2
m

)})
= 0.

Hence, we choose the m-sets {p1
1, . . . , p

1
m} and {p2

1, . . . , p
2
m}, fix the pairs,

and permute them. We have m! possibilities to fix the pairs because we
can fix the order of the states of the first component, and consider all
possible permutations of the states of the second component. Therefore,
we may permute each m-set independently of the other one by permutations
π, τ ∈ Sm to get all pairs in any order. The same is true for the ending

states

(
q1

β(m)

q2
β(m)

)
. But this time β ∈ Um. To obtain all pairs in any order

5By an m-set we denote a set of cardinality m.
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8.1 The Hadamard Product for Doubled Semirings

determined by a permutation of Um we do the following: we permute the
states of the first component by all % ∈ Um (which gives the order), and
the states of the second component by all η ∈ Sm (which gives all pairs).
Hence, we can continue Equation (8.3) as follows:

=
⊕

(
{r1

1,...,r1
m},{r2

1 ,...,r2
m}
)
,(

{s1
1,...,s1

m},{s2
1,...,s2

m}
)

∈P
m

(Q1)×P
m

(Q2)

⊕

π,τ,η∈Sm

%∈Um

[
µ1

m
fork(p

1, {r1
1, . . . , r

1
m}) ◦ µ2

m
fork(p

2, {r2
1, . . . , r

2
m})

◦wgtM

((
r1

π(1)

r2
τ(1)

)
, t1,

(
s1

%(1)

s2
η(1)

))
◦ . . . ◦wgtM

((
r1

π(m)

r2
τ(m)

)
, tm,

(
s1

%(m)

s2
η(m)

))

◦µ1
m
join({s

1
1, . . . , s

1
m}, q

1) ◦ µ2
m
join({s

2
1, . . . , s

2
m}, q

2)

]
(8.4)

By induction hypothesis we get next:

=
⊕

(
{r1

1,...,r1
m},{r2

1 ,...,r2
m}
)
,(

{s1
1,...,s1

m},{s2
1,...,s2

m}
)

∈P
m

(Q1)×P
m

(Q2)

⊕

π,τ,η∈Sm

%∈Um

[
µ1

m
fork(p

1, {r1
1, . . . , r

1
m}) ◦ µ2

m
fork(p

2, {r2
1, . . . , r

2
m})

◦
[
c(t1).[wgt1

M (r1
π(1), t1, s

1
%(1)) ◦wgt2

M (r2
τ(1), t1, s

2
η(1))]

]

...

◦
[
c(tm).[wgt1

M (r1
π(m), tm, s1

%(m)) ◦wgt2
M (r2

τ(m), tm, s2
η(m))]

]

◦µ1
m
join({s

1
1, . . . , s

1
m}, q

1) ◦ µ2
m
join({s

2
1, . . . , s

2
m}, q

2)

]
(8.5)
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8 The Hadamard Product for SP-Series

Now, we apply distributivity of ◦ over ⊕:

=
⊕

(
{r1

1,...,r1
m},{r2

1 ,...,r2
m}
)
,(

{s1
1,...,s1

m},{s2
1,...,s2

m}
)

∈P
m

(Q1)×P
m

(Q2)

⊕

π,τ,η∈Sm

%∈Um

[
µ1

m
fork(p

1, {r1
1, . . . , r

1
m}) ◦ µ2

m
fork(p

2, {r2
1, . . . , r

2
m})

◦
(
c(t1)c(t2) . . . c(tm)

)
.

[
wgt1

M (r1
π(1), t1, s

1
%(1)) ◦wgt2

M (r2
τ(1), t1, s

2
η(1))

...

◦wgt1
M (r1

π(m), tm, s1
%(m)) ◦wgt2

M (r2
τ(m), tm, s2

η(m))
]

◦µ1
m
join({s

1
1, . . . , s

1
m}, q

1) ◦ µ2
m
join({s

2
1, . . . , s

2
m}, q

2)

]
(8.6)

By commutativity of ◦ and distributivity of ◦ over ⊕ we get:

=
(
c(t1)c(t2) . . . c(tm)

)
.

[
⊕

(
{r1

1,...,r1
m},{r2

1,...,r2
m}
)
,(

{s1
1,...,s1

m},{s2
1,...,s2

m}
)

∈P
m

(Q1)×P
m

(Q2)

⊕

π,τ,η∈Sm

%∈Um

[
µ1

m
fork(p

1, {r1
1, . . . , r

1
m}) ◦ µ2

m
fork(p

2, {r2
1, . . . , r

2
m})

◦wgt1
M (r1

π(1), t1, s
1
%(1)) ◦ . . . ◦wgt1

M (r1
π(m), tm, s1

%(m))

◦wgt2
M (r2

τ(1), t1, s
2
η(1)) ◦ . . . ◦wgt2

M (r2
τ(m), tm, s2

η(m))

◦µ1
m
join

({s1
1, . . . , s

1
m}, q

1) ◦ µ2
m
join

({s2
1, . . . , s

2
m}, q

2)

]]
(8.7)

Finally, we apply Equations (8.1) and (8.2) and get:

=
(
c(t1)c(t2) . . . c(tm)

)
.

[
wgt1

M (p1, t, q1) ◦
(
e(t).wgt2

M (p2, t, q2)
)]

(8.8)
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8.1 The Hadamard Product for Doubled Semirings

Summarizing Equations (8.3) to (8.8) and applying distributivity of ◦ over
⊕, we get

wgtM

((
p1

p2

)
, t,
(

q1

q2

))

=
(
c(t1)c(t2) . . . c(tm)e(t)

)
.
[
wgt1

M (p1, t, q1) ◦wgt2
M (p2, t, q2)

]
(8.9)

Since e(t) depends on t and c(ti) on ti only, the factor c(t1)c(t2) . . . c(tm)e(t)
depends on t only. This proves Claim 1.

Now we can calculate the weight of t ∈ SP in A:

(
S(A), t

)
=

⊕
„

p1

p2

«

,

„

q1

q2

«

∈Q

λ
(

p1

p2

)
◦wgtM

((
p1

p2

)
, t,
(

q1

q2

))
◦ γ
(

q1

q2

)

=
⊕

„

p1

p2

«

,

„

q1

q2

«

∈Q

λ
(

p1

p2

)
◦

(
c(t).

[
wgt1

M (p1, t, q1)

◦wgt2
M (p2, t, q2)

])
◦ γ
(

q1

q2

)

= c(t).

[ ⊕

p1,q1∈Q1

p2,q2∈Q2

λ1(p
1) ◦wgt1

M (p1, t, q1) ◦ γ1(q
1)

◦λ2(p
2) ◦wgt2

M (p2, t, q2) ◦ γ2(q
2)

]

= c(t).

[[ ⊕

p1,q1∈Q1

λ1(p
1) ◦wgt1

M (p1, t, q1) ◦ γ1(q
1)
]

◦
[ ⊕

p2,q2∈Q2

λ2(p
2) ◦wgt2

M (p2, t, q2) ◦ γ2(q
2)
]]

= c(t).

[(
SM (A1), t

)
◦
(
SM (A2), t

)]

= c(t).

[(
SM (A1)� SM (A2), t

)]

This shows our assertion.
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8 The Hadamard Product for SP-Series

Remark 8.5. The factor c(t) for t ∈ SP used in Lemma 8.4 can be com-
puted by the decomposition of t. More precisely, we have:

• If t = a ∈ Σ then c(t) = 1.

• If t = t1· . . . ·tm (m ≥ 2) is sequentially decomposed then c(t) =
c(t1) . . . c(tm).

• Let t = t1 ‖ . . . ‖ tm (m ≥ 2) admit a parallel decomposition. More-
over, let e1, . . . , en ∈

�>0 with n ≤ m be such that for each i =
1, . . . , n ei factors of t are equal but no other factor is equal to one
of them. Then

c(t) = (e1! . . . en!)c(t1) . . . c(tm).

Example 8.6. Let t = a
(
b ‖ b ‖

(
a(a ‖ b)

))(
a ‖ a ‖ b ‖ b

)
. Then we get:

c(t) =c(a) c
(
b ‖ b ‖

(
a(a ‖ b)

))
c(a ‖ a ‖ b ‖ b)

=2! c(b) c(b) c
(
a(a ‖ b)

)
2! 2! c(a) c(a) c(b) c(b)

=(2!)3 c(a) c(a ‖ b) = (2!)3 c(a) c(b)

=23 = 8.

Lemma 8.4 has an immediate consequence for the supports of M-regular
sp-series. We call a bisemiring � torsion-free if (K,⊕) is torsion-free, i.e.
n.k 6= 0 for all n ≥ 1 and k ∈ K with k 6= 0.

Corollary 8.7. Let � be a torsion-free doubled semiring, and let A1,A2

be two wba over �. Then

supp
[
SM (A1 ×A2)

]
= supp

[
SM (A1)� SM (A2)

]
.

Corollary 8.7 is especially true for all zero-sum-free doubled semirings.

The problem of a multiplication of successful runs for sp-posets with
auto-concurrency can be compensated by idempotency of the underlying
doubled semiring. Remember that � is idempotent if k ⊕ k = k for all
k ∈ �.
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8.1 The Hadamard Product for Doubled Semirings

Theorem 8.8. Let S1 and S2 be two M-regular sp-series over an idem-
potent doubled semiring �. Then the Hadamard product S1 � S2 is again
M-regular.

Proof. Let Ai be a wba M-recognizing Si for i = 1, 2. Moreover, let A =
A1 × A2. By Lemma 8.4, for every t ∈ SP there is a c(t) ∈

�
>0 with

(SM (A), t) = c(t).
[
(SM (A1) � SM (A2), t)

]
. Since � is idempotent, the

wba A M-recognizes S1 � S2.

Corollary 8.9. Let � be an idempotent doubled semiring, and let S1, S2 ∈
�〈〈SP〉〉 two C-regular sp-series of bounded width. Then S1 � S2 is C-
regular.

Proof. By Theorem 7.6, S1 and S2 are M-regular. Hence, S1 � S2 is M-
regular by Theorem 8.8. Since S1 � S2 is of bounded width again, S1 � S2

is C-regular by Theorem 7.6.

Since the Boolean bisemiring � is an idempotent doubled semiring we
get:

Corollary 8.10. M-regular sp-languages are closed under intersection.
C-regular sp-languages of bounded width are closed under intersection.

The regular sp-languages as defined by Lodaya and Weil [LW00] are C-
regular languages in our sense. In [LW00, Thm. 2.6], they noted that the
recognizable sp-languages6 are closed under intersection. But not every
regular sp-language is recognizable. In [LW00, Thm. 4.6], they stated that
regular languages are closed under intersection and refer to the classical
construction. As we have seen in Example 8.1, this construction cannot
be generalized straightforwardly in the C-running mode. Later on, they
showed in [LW01, Thm. 5.8] that an sp-language L is regular iff L is the
image of a recognizable subset of the series-Σ-algebra SΣ(A) under the
natural projection π. In SΣ(A) the parallel multiplication is understood
as a binary term operation. Again, the recognizable languages of SΣ(A)
are closed under intersection. But the projection of the intersection of two
SΣ(A)-languages is in general not the intersection of the two projections.

6Here, recognizable sp-languages are those which are recognized by a morphism into a
finite sp-algebra.
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8 The Hadamard Product for SP-Series

Thus, Corollary 8.10 seems to be the most general result for the closure
of regular sp-languages under intersection known so far. It is an open
question if the intersection of two C-regular sp-languages is C-regular also
for unbounded width.

In the remainder of this section we will discuss the prerequisite of idem-
potency in Theorem 8.8. Idempotency was imposed on the bisemiring
because of auto-concurrency. We could think of overcoming this problem
by constructing wba where we know the “rate of auto-concurrency” when
branching, i.e. the fork transitions would have a certain “type” of auto-
concurrency. Then fork transitions of the same type only would be fused
in a Hadamard product automaton. But how to fix the type of a fork
transition with concern to auto-concurrency? If some parallel sp-poset
t = t1 ‖ . . . ‖ tn (n ≥ 2) is given, the number of sequential factors of each
ti (i = 1, . . . , n) is finite but may be arbitrary large. Thus, to decide the
right type of auto-concurrency it would be necessary to encode all the pos-
sible future of a state within this state. But this is impossible within the
frame of finite-state systems. Such a construction would be possible only
if there is an N ∈

�
such that for every parallel sp-poset t = t1 ‖ . . . ‖ tn

the number of sequential factors of each ti is bounded by N . This would
be a rather strong restriction and is not worked out any further.

However, if the supports of the sp-series SM (A1) and SM (A2) of two
wba A1 and A2 do not contain sp-posets with a “direct concurrency”, then
the product automaton will M-recognize the Hadamard product SM (A1)�
SM (A2) even if the underlying doubled semiring � is not idempotent. More
precisely, we define the set of sp-posets without direct auto-concurrency
SP∦(Σ) as follows:

• a ∈ SP∦(Σ) for every a ∈ Σ,

• if t1, t2 ∈ SP∦(Σ), then t1·t2 ∈ SP∦(Σ),

• if t1, t2 ∈ SP∦(Σ) where t1 = t11 ‖ . . . ‖ t1m and t2 = t21 ‖ . . . ‖ t2n

with m, n ≥ 1 are the maximal parallel decompositions of t1 and t2,
respectively, and t1i 6= t2j for i = 1, . . . , m and j = 1, . . . , n, then
t1 ‖ t2 ∈ SP∦(Σ),

• SP∦(Σ) is the least subset of SP(Σ) satisfying the three properties
given above.
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8.1 The Hadamard Product for Doubled Semirings

Hence, an sp-poset t is in SP∦(Σ) if in the composition of t two equal
posets are never multiplied in parallel. For an sp-series S ∈ �〈〈SP〉〉 we put
S ∈ �〈〈SP∦〉〉 if suppS ⊆ SP∦(Σ). Then we get:

Theorem 8.11. Let S1 ∈ �〈〈SP∦〉〉, S2 ∈ �〈〈SP〉〉 be M-regular sp-series
over the doubled semiring �. Then S1 � S2 is M-regular.

Proof. Let Ai be a wba M-recognizing Si for i = 1, 2, and let A = A1×A2.
Then we get:

Claim 1. For every t ∈ SP∦ and every p1, q1 ∈ Q1, p2, q2 ∈ Q2 we have:

wgtM

((
p1

p2

)
, t,
(

q1

q2

))
= wgt1

M (p1, t, q1) ◦wgt2
M (p2, t, q2).

We refer to the proof of Claim 1 in the proof of Lemma 8.4. There,
a factor c(t) had to be considered additionally. We have c(t) = 1 for
t = a ∈ Σ. For t = t1· . . . ·tm we get c(t) = c(t1) . . . c(tm). Hence, c(t) = 1
if c(ti) = 1 for i = 1, . . . , m. For t = t1 ‖ . . . ‖ tm Equation (8.9) implied
c(t) = c(t1) . . . c(tm)e(t) where e(t) = | ker(t)|. Since t ∈ SP∦, all factors ti
(i = 1, . . . , m) are mutually different. Hence, ker(t) contains the identity
only and e(t) = 1. By induction hypothesis c(ti) = 1 for i = 1, . . . , m.
Therefore, c(t) = 1. This proves Claim 1.

By Claim 1 we get immediately (SM (A), t) = (S1�S2, t) for all t ∈ SP∦.
Now, let t ∈ SP \ SP∦. Then t /∈ supp S1, and, therefore, t /∈ supp(S1�S2).
By Lemma 8.4, there is a c(t) ∈

�>0 with

(SM (A), t) = c(t).[(S1 � S2, t)] = c(t).0 = 0.

Hence, t /∈ suppSM (A). This proves SM (A) = S1 � S2.

Last but not least, the prerequisite of Theorem 8.11 is decidable assumed
� is positive.

Lemma 8.12. Let � be a positive doubled semiring, and let A be a wba
with weights from �. It is decidable whether SM (A) ∈ �〈〈SP∦〉〉.

Proof. Since � is positive, SM (A) ∈ �〈〈SP∦〉〉 if and only if there is no
successful run with a parallel sub-run G = ‖ p,q(G1, . . . , Gm) such that
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8 The Hadamard Product for SP-Series

there are i 6= j ∈ {1, . . . , m} with lab(Gi) = lab(Gj). The idea is to
compute the set P of all those pairs (p, q) such that there is a parallel non-
atomic M-run from p to q as a sub-run of a successful run. Then we test
whether lab(Gi) = lab(Gj) by building appropriate product automata,
using Corollary 8.7 and deciding empty support of weighted automata over
the positive bisemiring �.

Firstly, we show how to compute P . Let M be the set of all pairs (p, q)
with p, q ∈ Q such that there is an M-run from p to q, and let M ⊆M be the
set of those pairs such that there is a sequential run between the two states.
Both M and M are computable as shown in the proof of Lemma 5.14.

Let BM ⊆M contain only those pairs (p, q) such that there is a parallel
non-atomic M-run between p and q. Since there are finitely many fork and
join transitions only and M is computable, also BM is computable.

We recall the construction of the directed graph ΓM with vertex set
M and two kinds of directed edges from the proof of Lemma 5.14. For
all (p, q) ∈ BM , fork transitions p → {p1, . . . , pm}, and join transitions
{q1, . . . , qm} → q, α ∈ Sm with (pi, qα(i)) ∈ M for i = 1, . . . , m we add a
red arrow from (p, q) to (pi, qα(i)) for every i = 1, . . . , m. Furthermore, for
every (p, q) ∈M and every (p̃, q̃) ∈ BM we put a blue arrow from (p, q) to
(p̃, q̃) if

• p = p̃ and (q̃, q) ∈M , or

• q = q̃ and (p, p̃) ∈M , or

• (p, p̃) ∈M and (q̃, q) ∈M .

Now (p̃, q̃) ∈ BM is in P if and only if there is a cycle-free path in ΓM

from some (i, f) ∈M with i initial and f final to (p̃, q̃) such that the path is
either empty, or consists of red and blue edges in turn ending with a blue
edge. Hence, P is computable.

Now let (p, q) ∈ P . Then any M-run from p to q is a sub-run of some
successful M-run. Let f : p → {p1, . . . , pm} be any fork starting in p, and
j : {q1, . . . , qm} → q a matching join to f ending in q. For any α ∈ Sm

with (pi, qα(i)) ∈ M for all i = 1, . . . , m, we test whether there are runs

pi
t
−→ qα(i) and pj

t
−→ qα(j) for i 6= j with the same label t as follows:
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For i = 1, . . . , m let A(pi, qα(i)) be the wba with the same states and
transitions as A, but pi the only initial and qα(i) the only final state both
with initial and final weight 1, respectively. Since � is positive, we have
by Corollary 8.7

supp
[
SM

(
A(pi, qα(i))×A(pj , qα(j))

)]

= supp
[
SM

(
A(pi, qα(i))

)
� SM

(
A(pj , qα(j))

)]

= supp
[
SM

(
A(pi, qα(i))

)]
∩ supp

[
SM

(
A(pj , qα(j))

)]
.

Hence, there is no t ∈ SP with pi
t
−→ qα(i) and pj

t
−→ qα(j) if and only if

supp
[
SM

(
A(pi, qα(i))×A(pj, qα(j))

)]
= Ø. So we construct for all i 6= j ∈

{1, . . . , m} the product automaton Ai,j = A(pi, qα(i)) × A(pj , qα(j)). By
Lemma 5.14 empty support is decidable. Hence, we can decide whether

there are i 6= j and t ∈ SP with pi
t
−→ qα(i) and pj

t
−→ qα(j). Continuing

this procedure for all matching pairs (f, j) such that f starts in p, and j
ends in q for some (p, q) ∈ P , and for all suitable permutations α ∈ Sm

(2 ≤ m ≤ |Q|), we can decide whether SM (A) ∈ �〈〈SP∦〉〉.

8.2 The Hadamard Product for Distributive

Bisemirings

In this section, we will see that the situation concerning the closure of M-
regular sp-series under Hadamard product is not as favorable for distribu-
tive bisemirings as it was for doubled semirings. The following example
shows that the product automaton does not yield the correct result.

Example 8.13. In this example, we consider the tropical bisemiring �=
(
�
∪{+∞}, min, +, max, +∞, 0). Note that � is idempotent, commutative,

and distributive. Now, two wba A1 and A2 over � are given as shown in
Figure 8.4. We have SM (A1) = 5[b ‖ c ‖ (ca)] and SM (A2) = 4[b ‖ c ‖ (ca)].
Thus, SM (A1)� SM (A2) = 9[b ‖ c ‖ (ca)].

But if we apply the product automaton construction as given by Con-
struction 8.2 we would get as the only run of A = A1×A2 on b ‖ c ‖ (ca) the
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8 The Hadamard Product for SP-Series

A1

p1

p2

p3

p4

1

p6

p7

p8

p9

2

b/2

c/1

p5

c/1 a/0

0 0

A2

q1

q2

q3

q4

0

q6

q7

q8

q9

1

b/1

c/0

q5

c/1 a/1

1 0

Figure 8.4: Two wba M-recognizing b ‖ c ‖ (ca) with different weights.

( p1
q1 )

( p2
q2 )

( p3
q3 )

( p4
q4 )

1

( p6
q6 )

( p7
q7 )

( p8
q8 )

( p9
q9 )

3

b/3

c/1

( p5
q5 )

c/2 a/1

1 0

Figure 8.5: The only run on b ‖ c ‖ (ca) in the product automaton A1×A2.

one indicated in Figure 8.5. Hence, (SM (A), b ‖ c ‖ (ca)) = 8 ≤ 9. What
is the problem right here? The parallel sp-poset b ‖ c ‖ (ca) is one sequen-
tial step in the automaton. This step has without considering the weights
for fork and join transitions the weight 2 both in A1 and A2. Therefore,
this sequential step must have weight 2 + 2 = 4 in an automaton rec-
ognizing the Hadamard product. But unfortunately, the weight of this
sequential step is realized in A1 and A2 in different sub-runs. In A1 the
weight arises from the sub-run executing b, but in A2 from the sub-run
executing (ca). In the construction of the product automaton the respec-
tive weights of the single transitions are multiplied, i.e. in � added by
the usual addition. Thus, none of the sub-runs with label b, c, and (ca)
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8.2 The Hadamard Product for Distributive Bisemirings

has weight 4, but a weight less than 4 (cf. Figure 8.5). Consequently,(
SM (A), b ‖ c ‖ (ca)

)
≤
(
SM (A1)� SM (A2), b ‖ c ‖ (ca)

)
.

The following lemma states that the situation noted in the last example
can be generalized. The lemma is formulated for the family of tropical
bisemirings. Later on, we discuss that this result may be generalized to
bisemirings which are commutative, idempotent, distributive, and carry an
order which is compatible with the operations of the bisemiring.

Lemma 8.14. Let A1 and A2 be two wba over the
�
-, �-, �-, or �-tropical

bisemiring, and let A = A1×A2. Further on, let ≤ be the usual order on �
with r ≤ +∞ for all r ∈ �. Then supp[SM (A)] = supp[SM (A1)�SM (A2)]
and (SM (A), t) ≤ (SM (A1)� SM (A2), t) for all t ∈ SP.

Proof. We put S = SM (A) and Si = SM (Ai) for i = 1, 2.

By structural induction on t ∈ SP we show the following:

Claim 1. For every t ∈ SP, p1, q1 ∈ Q1, and p2, q2 ∈ Q2:

1. wgtM

((
p1

p2

)
, t,
(

q1

q2

))
≤ wgt1

M (p1, t, q1) + wgt2
M (p2, t, q2), and

2. if wgt1
M (p1, t, q1) or wgt2

M (p2, t, q2) equals +∞, then

wgtM

((
p1

p2

)
, t,
(

q1

q2

))
= +∞.

The second part of Claim 1 is clear. If wgt1
M (p1, t, q1) = +∞, there is no

run on t from p1 to q1 in A1. Hence, there is no run on t in A from
(

p1

q2

)
to

(
q1

q2

)
where p2, q2 are arbitrary states of A2. This is because a transition in

A is defined only if the projections of this transition are defined in A1 and

A2. Therefore, wgtM

((
p1

q2

)
, t,
(

q1

q2

))
= +∞. For wgt2

M (p1, t, q1) = +∞

the claim follows similarly.

Now, we prove the first part of Claim 1. Let t = a ∈ Σ. Then the
claim follows by the definition of A immediately. In this case we get even
equality. Now, assume t = t1· . . . ·tm (m ≥ 2) is sequential with its maximal
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8 The Hadamard Product for SP-Series

sequential decomposition. We get:

wgtM

((
p1

p2

)
, t,
(

q1

q2

))

=min

{
wgtM (G)

∣∣∣∣∣ G :
(

p1

p2

)
t
−→
(

q1

q2

)}

=min

{
wgtM (G1) + · · ·+ wgtM (Gm)

∣∣∣∣∣ G = G1· . . . ·Gm,

lab(Gi) = ti for i = 1, . . . , m

}

=min

{
wgtM

((
p1

p2

)
, t1,

(
r1
1

r2
1

))
+ · · ·+ wgtM

((
r1

m−1

r2
m−1

)
, tm,

(
q1

q2

))∣∣∣∣∣[(
r1
1

r2
1

)
, . . . ,

(
r1

m−1

r2
m−1

)]
∈ (Q1 ×Q2)

m−1

}

(by distributivity of + over min)

≤min

{
wgt1

M (p1, t1, r
1
1) + · · ·+ wgt1

M (r1
m−1, tm, q1)

+wgt2
M (p2, t1, r

2
1) + · · · +wgt2

M (r2
m−1, tm, q2)

∣∣∣∣∣[(
r1
1

r2
1

)
, . . . ,

(
r1

m−1

r2
m−1

)]
∈ (Q1 ×Q2)

m−1

}

(by induction hypothesis)

=min

{
wgt1

M (p1, t1, r
1
1) + · · ·+ wgt1

M (r1
m−1, tm, q1)

∣∣∣∣∣

(r1
1, . . . , r

1
m−1) ∈ Qm−1

1

}

+ min

{
wgt2

M (p2, t1, r
2
1) + · · ·+ wgt2

M (r2
m−1, tm, q2)

∣∣∣∣∣

(r2
1, . . . , r

2
m−1) ∈ Qm−1

2

}

(by distributivity of + over min)
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8.2 The Hadamard Product for Distributive Bisemirings

=wgt1
M (p1, t, q1) + wgt2

M (p2, t, q2).

Now, let t = t1 ‖ . . . ‖ tm (m ≥ 2) be a parallel sp-poset with its maximal
parallel decomposition. We refer to the proof of Lemma 8.4 for most of the
details of the following calculation. Here, we only point out the differences
to the calculations of the mentioned proof. Firstly, we stress the following
two differences to the proof of Lemma 8.4: the induction hypothesis is an
inequality instead of an equality, and sequential and parallel multiplication
are not the same, but the sequential multiplication + distributes over the
parallel multiplication max.

Let Um be a system of representatives of the left cosets π ker(t) with
π ∈ Sm as defined in the proof of Lemma 8.4. In order to calculate

wgtM

((
p1

p2

)
, t,
(

q1

q2

))
we take the minimum of all possible runs on t from

state
(

p1

p2

)
to state

(
q1

q2

)
. Thus, we get:

wgtM

((
p1

p2

)
, t,
(

q1

q2

))

= min{
„

p1
1

p2
1

«

,...,

„

p1
m

p2
m

«

}
∈P

m
(Q)

min{
„

q1
1

q2
1

«

,...,

„

q1
m

q2
m

«

}
∈P

m
(Q)

min
α∈Sm,β∈Um

{
µm

fork

((
p1

p2

)
,

{(
p1
1

p2
1

)
, . . . ,

(
p1

m

p2
m

)})

+ max
i=1,...,m

{
wgtM

((
p1

α(i)

p2
α(i)

)
, ti,

(
q1

β(i)

q2
β(i)

))}

+µm
join

({(
q1
1

q2
1

)
, . . . ,

(
q1

m

q2
m

)}
,
(

q1

q2

))}
(8.10)

We refer to the proof of Lemma 8.4 for the correctness of this calculation.
Now, we proceed by replacing m-sets of states from Q by pairs of m-sets
of states from Q1 and Q2, respectively. In return we have to establish new
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permutations. As in the proof of Lemma 8.4 we conclude:

= min(
{r1

1,...,r1
m},{r2

1 ,...,r2
m}
)
,(

{s1
1,...,s1

m},{s2
1,...,s2

m}
)

∈P
m

(Q1)×P
m

(Q2)

min
π,τ,η∈Sm

%∈Um

{
µ1

m
fork(p

1, {r1
1, . . . , r

1
m}) + µ2

m
fork(p

2, {r2
1, . . . , r

2
m})

+ max
i=1,...,m

{
wgtM

((
r1

π(i)

r2
τ(i)

)
, ti,

(
s1

%(i)

s2
η(i)

))}

+µ1
m
join({s

1
1, . . . , s

1
m}, q

1) + µ2
m
join({s

2
1, . . . , s

2
m}, q

2)

}
(8.11)

Note that the order ≤ is compatible with all bisemiring operations, i.e.
k ≤ k′ and l ≤ l′ imply k ∗ l ≤ k′ ∗ l′ for ∗ ∈ {min, +, max}. By this and
the induction hypothesis we get:

≤ min(
{r1

1,...,r1
m},{r2

1 ,...,r2
m}
)
,(

{s1
1,...,s1

m},{s2
1,...,s2

m}
)

∈P
m

(Q1)×P
m

(Q2)

min
π,τ,η∈Sm

%∈Um

{
µ1

m
fork(p

1, {r1
1, . . . , r

1
m}) + µ2

m
fork(p

2, {r2
1, . . . , r

2
m})

+ max
i=1,...,m

{
wgt1

M (r1
π(i), ti, s

1
%(i)) + wgt2

M (r2
τ(i), ti, s

2
η(i))

}

+µ1
m
join({s

1
1, . . . , s

1
m}, q

1) + µ2
m
join({s

2
1, . . . , s

2
m}, q

2)

}
(8.12)

Next, we extend the set of values over which the maximum is taken, using
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8.2 The Hadamard Product for Distributive Bisemirings

the relation max(k, l) ≤ max(k, l, h) for k, l, h ∈ �∪ {+∞}:

≤ min(
{r1

1,...,r1
m},{r2

1 ,...,r2
m}
)
,(

{s1
1,...,s1

m},{s2
1,...,s2

m}
)

∈P
m

(Q1)×P
m

(Q2)

min
π,τ,η∈Sm

%∈Um

{
µ1

m
fork

(p1, {r1
1, . . . , r

1
m}) + µ2

m
fork

(p2, {r2
1, . . . , r

2
m})

+ max
i=1,...,m
j=1,...,m

{
wgt1

M (r1
π(i), ti, s

1
%(i)) + wgt2

M (r2
τ(j), tj , s

2
η(j))

}

+µ1
m
join({s

1
1, . . . , s

1
m}, q

1) + µ2
m
join({s

2
1, . . . , s

2
m}, q

2)

}
(8.13)

Now, by distributivity of + over max we get:

= min(
{r1

1,...,r1
m},{r2

1 ,...,r2
m}
)
,(

{s1
1,...,s1

m},{s2
1,...,s2

m}
)

∈P
m

(Q1)×P
m

(Q2)

min
π,τ,η∈Sm

%∈Um

{
µ1

m
fork(p

1, {r1
1, . . . , r

1
m}) + µ2

m
fork(p

2, {r2
1, . . . , r

2
m})

+ max
i=1,...,m

{
wgt1

M (r1
π(i), ti, s

1
%(i)) + max

j=1,...,m

{
wgt2

M (r2
τ(j), tj , s

2
η(j))

}}

+µ1
m
join({s

1
1, . . . , s

1
m}, q

1) + µ2
m
join({s

2
1, . . . , s

2
m}, q

2)

}
(8.14)
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We apply distributivity of + over max once more, and get:

= min(
{r1

1,...,r1
m},{r2

1 ,...,r2
m}
)
,(

{s1
1,...,s1

m},{s2
1,...,s2

m}
)

∈P
m

(Q1)×P
m

(Q2)

min
π,τ,η∈Sm

%∈Um

{
µ1

m
fork(p

1, {r1
1, . . . , r

1
m}) + µ2

m
fork(p

2, {r2
1, . . . , r

2
m})

+ max
i=1,...,m

{
wgt1

M (r1
π(i), ti, s

1
%(i))

}
+ max

j=1,...,m

{
wgt2

M (r2
τ(j), tj , s

2
η(j))

}

+µ1
m
join({s

1
1, . . . , s

1
m}, q

1) + µ2
m
join({s

2
1, . . . , s

2
m}, q

2)

}
(8.15)

By commutativity of + we get:

= min
{r1

1,...,r1
m},{s1

1,...,s1
m}

∈P
m

(Q1)

min
{r2

1,...,r2
m},{s2

1,...,s2
m}

∈P
m

(Q2)

min
π,τ,η∈Sm

%∈Um

{
µ1

m
fork(p

1, {r1
1, . . . , r

1
m}) + max

i=1,...,m

{
wgt1

M (r1
π(i), ti, s

1
%(i))

}

+ µ1
m
join({s

1
1, . . . , s

1
m}, q

1)

+ µ2
m
fork(p

2, {r2
1, . . . , r

2
m}) + max

j=1,...,m

{
wgt2

M (r2
τ(j), tj , s

2
η(j))

}

+ µ2
m
join

({s2
1, . . . , s

2
m}, q

2)

}
(8.16)

By distributivity of the sequential multiplication + over the addition min
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we get:

= min
{r1

1,...,r1
m},{s1

1,...,s1
m}

∈P
m

(Q1)

min
π∈Sm,%∈Um

{
µ1

m
fork(p

1, {r1
1, . . . , r

1
m})

+ max
i=1,...,m

{
wgt1

M (r1
π(i), ti, s

1
%(i))

}
+ µ1

m
join({s

1
1, . . . , s

1
m}, q

1)

}

+ min
{r2

1,...,r2
m},{s2

1,...,s2
m}

∈P
m

(Q2)

min
τ,η∈Sm

{
µ2

m
fork(p

2, {r2
1, . . . , r

2
m})

+ max
j=1,...,m

{
wgt2

M (r2
τ(j), tj , s

2
η(j))

}
+ µ2

m
join({s

2
1, . . . , s

2
m}, q

2)

}
(8.17)

With a similar argument as for Equations (8.1) and (8.2) in the proof of
Lemma 8.4 and by idempotency of min we get:

wgtM

((
p1

p2

)
, t,
(

q1

q2

))
≤ wgt1

M (p1, t, q1) + wgt2
M (p2, t, q2). (8.18)

This proves Claim 1. By this we get for every t ∈ SP and S = SM (A):

(S, t) = min
„

p1

p2

«

,

„

q1

q2

«

∈Q

(
λ
(

p1

p2

)
+ wgtM

((
p1

p2

)
, t,
(

q1

q2

))
+ γ

(
q1

q2

))

(8.19)

≤ min
p1,q1∈Q1

p2,q2∈Q2

(
λ1(p

1) + wgt1
M (p1, t, q1) + γ1(q

1)

+ λ2(p
2) + wgt2

M (p2, t, q2) + γ2(q
2)

) (8.20)
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= min
p1,q1∈Q1

(
λ1(p

1) + wgt1
M (p1, t, q1) + γ1(q

1)

)

+ min
p2,q2∈Q2

(
λ2(p

2) + wgt2
M (p2, t, q2) + γ2(q

2)

) (8.21)

= (SM (A1), t) + (SM (A2), t) (8.22)

= (S1 � S2, t) (8.23)

Finally, we show suppSM (A) = supp(SM (A1) � SM (A2)). Since (S, t) ≤
(S1 � S2, t) for all t ∈ SP and r ≤ +∞ for all r ∈ �, t ∈ supp(S1 � S2)

implies t ∈ supp S. Vice versa, if t ∈ suppS then there are
(

p1

p2

)
,
(

q1

q2

)
∈ Q

such that

λ
(

p1

p2

)
+ wgtM

((
p1

p2

)
, t,
(

q1

q2

))
+ γ

(
q1

q2

)
< +∞. (8.24)

Hence, wgtM

((
p1

p2

)
, t,
(

q1

q2

))
< +∞, and, by Claim 1, also

wgt1
M (p1, t, q1) < +∞ and wgt2

M (p2, t, q2) < +∞. Moreover, Equa-
tion (8.24) implies λi(p

i), γi(qi) < +∞ for i = 1, 2. Hence, t ∈ supp(Si)
for i = 1, 2. This implies t ∈ supp(S1 � S2) because the sequential multi-
plication + is zero-divisor-free.

A careful analysis of the last proof shows that we have used the following
properties of the underlying bisemiring � = (K,⊕, ◦, 3, 0, 1):

1. � is idempotent, commutative, and distributive,

2. the sequential multiplication is zero-divisor-free,

3. the order ≤ on � is compatible with all three operations of �,

4. k ≤ k3l for all k, l ∈ �, and

5. k ≤ 0 for all k ∈ �.

Another example of a bisemiring having all these properties is the one
of Example 2.10 (�>0 ∪ {+∞}, min, ·, +, +∞, 1) together with the usual
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A1

0 0

a/1

b/0

0 0

A2

0 0

a/0

b/1

0 0

Figure 8.6: Two wba M-recognizing S1 and S2 from Example 8.15.

order on the reals and r ≤ +∞ for all r ∈ �>0. Note that we used
condition (5) “k ≤ 0 for all k ∈ �” only to show that t ∈ supp(S1 � S2)
implies t ∈ supp S. We will see later on that this implication can be shown
for positive bisemirings without using condition (5). Thus, Lemma 8.14
is also valid for the polar bisemiring (

�
∪ {−∞}, max, +, nax,−∞, 0) from

Example 2.7 with the usual order and −∞ ≤ n for all n ∈
�
.

We will close this section with an example showing that M-regular sp-
series over idempotent, commutative, and distributive bisemirings are in
general not closed under Hadamard product.

Example 8.15. We work with the polar bisemiring
�= (

�
∪ {−∞}, max, +, nax,−∞, 0) from Example 2.7 where nax(k, l) =

max(k, l) if k, l 6= −∞ and equal to −∞ otherwise. Recall that � is
idempotent, commutative, and distributive. We define two sp-series S1, S2

over �by:

(S1, t) =

{
m if t = am ‖ bn (m, n ≥ 1),

−∞ otherwise,

(S2, t) =

{
n if t = am ‖ bn (m, n ≥ 1),

−∞ otherwise.

Clearly, S1 and S2 are M-regular (cf. Figure 8.6) and of bounded width.
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8 The Hadamard Product for SP-Series

Moreover, we have

(S1 � S2, t) =

{
m + n if t = am ‖ bn (m, n ≥ 1),

−∞ otherwise.

We will show that S1�S2 is not M-regular, and, hence, also not C-regular
by Theorem 7.6.

Assume S1 � S2 is M-regular. Then there is a wba A with SM (A) =
S1�S2. By Proposition 7.4, A can be chosen as a normalized 0-1-branching
wba. Let Q be the state set of A, and let W be the maximal weight
sequential transitions take in A. We put t = am ‖ bn where m > W · |Q|
and n > (W − 1) · m. By assumption (SM (A), t) = m + n. Since the

addition of � is max and A is normalized, there is a run G : p
t
−→ q with

p initial, q final, and wgtM (G) = m + n. G starts with a fork transition
p →0 {p1, p2} and ends with a join transition {q1, q2} →0 q because A is

0-1-branching. Moreover, G′ : p1
am

−−→ q1 and G′′ : p2
bn

−→ q2 are runs of A.
We get:

m + n = nax(wgtM (G′),wgtM (G′′)) = max(wgtM (G′),wgtM (G′′)).

Now, n > (W−1)·m implies m·W < m+n. But wgtM (G′) ≤ m·W because
G′ is composed of m sequential transitions. Hence, wgtM (G′′) = m + n.
The run G′′ is a sequence of n sequential transitions. Now, we will show
that G′′ contains a cycle whose weight is greater than its length.

Claim 1. G′′ contains a sub-run C : r
bl

−→ r with wgtM (C) > l ≥ 1.

We assume G′′ does not contain such a sub-run C, i.e. for all sub-runs

C:r
bl

−→ r (r ∈ Q) of G′′ we have wgtM (C) ≤ l. We can give a decomposi-
tion of G′′ by

G′′ = C0·H1·C1·H2 . . . ·Ck−1·Hk · Ck (8.25)

where H1· . . . ·Hk is a run of A from r0 = p2 to rk = q2 , and where
Ci : ri −→ ri is a run of A for i = 0, . . . , k. Moreover, we may assume that
no state used in H1· . . . ·Hk occurs twice. Indeed, we choose C0 maximal
so that r0 does not occur in the remaining of the run, then H1 is a single
transition from r0 to r1, and we proceed for C1, . . . , Ck similarly. Note
that both H1· . . . ·Hk and the Ci can be the empty run εri

at ri, i.e. the
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graph with one vertex labeled by ri but no edges.7 This decomposition is
illustrated by Figure 8.7.

r0 r1 rk−1 rk

H1 H2 Hk−1 Hk. . .

C0 C1 Ck−1 Ck

Figure 8.7: A decomposition of run G′′.

Hence, H1·H2· . . . ·Hk is composed of less than |Q| sequential transitions.
Hence, wgtM (H1· . . . ·Hk) < W · |Q|. Since the weight of each cycle is
assumed to be less than or equal to the number of its transitions and
m > W · |Q|, we get

wgtM (G′′) =

k∑

i=0

wgtM (Ci) + wgtM (H1· . . . ·Hk)

<n + W · |Q|

<n + m

in contradiction to wgtM (G′′) = m+n. Hence, there is a sub-run C:r
bl

−→ r
of G′′ with l ≥ 1 and wgtM (C) > l. This proves Claim 1.

By Claim 1, G′′ may be decomposed as follows: G′′ = H·C·H ′ where

C : r
bl

−→ r with wgtM (C) > l and H, H ′ runs or empty runs of A. We put
G∗ = H·C·C·H ′ and G̃ = ‖ p,q(G

′, G∗). Then wgtM (G∗) > wgtM (G′′)+l,
and we get:

lab(G̃) = lab(G′) ‖ lab(G∗) = am ‖ bn+l, and

wgtM (G̃) = max(wgtM (G′),wgtM (G∗)) = wgtM (G∗) > m + n + l.

Hence, there is a successful run G̃ on am ‖ bn+l with wgtM (G′) > m+n+l.
But then

(
SM (A), am ‖ bn+l

)
> m + n + l =

(
S1 � S2, a

m ‖ bn+l
)
. Hence,

S1 � S2 is not M-regular.

7The sequential product of runs can be extended to empty runs in a natural way. If
G : p −→ q, then εp·G = G = G·εq .
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8 The Hadamard Product for SP-Series

Thus, we showed that M-regular sp-series (even of bounded width) over
idempotent, commutative, and distributive bisemirings are not closed un-
der Hadamard product.
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9 Series and Languages

In this chapter, we investigate the relations between regular sp-series and
sp-languages, especially characteristic series and supports. We will show
that there are regular sp-languages with a non-regular characteristic series.
But for a restricted class of idempotent bisemirings the characteristic se-
ries of a regular language will be regular. The last result states that the
restriction of M-regular sp-series to M-regular languages is regular.

An sp-language L is C-regular or M-regular if there is a wba A over the
Boolean bisemiring �with suppSC(A) = L or suppSM (A) = L, respec-
tively. The class of sequential-rational sp-languages was already introduced
in Section 3.2.

Let �, �′ be bisemirings, h : �→ �′ a bisemiring homomorphism, and
S ∈ �〈〈SP〉〉. The sp-series h̄(S) ∈ �′〈〈SP〉〉 is defined by (h̄(S), t) = h(S, t)
for any t ∈ SP.

Proposition 9.1. Let h : � → �′ be a bisemiring homomorphism. If
S ∈ �〈〈SP〉〉 is C-regular (M-regular), then h̄(S) ∈ �′〈〈SP〉〉 is C-regular
(M-regular).

Proof. Let A = (Q, µseq, µfork, µjoin, λ, γ) be a wba over � recognizing S.
Obviously, h̄A = (Q, h ◦µseq, h ◦µfork, h ◦µjoin, h ◦ λ, h ◦ γ) is a wba over �′

recognizing h̄(S) because h is a bisemiring homomorphism.

Remember that a bisemiring � is positive if it is zero-sum-free and zero-
divisor-free for both products. For a positive bisemiring � the mapping
h� : �→ �with

h�(k) =

{
1 if k 6= 0,

0 if k = 0

is a bisemiring homomorphism.
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Lemma 9.2. Let � be a positive bisemiring. L ⊆ SP is C-regular
(M-regular) iff L = supp S for some C-regular (M-regular) sp-series S ∈
�〈〈SP〉〉.

Proof. Suppose L is regular. Then there is a wba A over �with support
suppS(A) = L. We consider the same wba A as a wba A� over �. This
means if there is a transition in A there is a transition in A� with weight
1, and there are no other transitions in A�. Moreover, initial and final
states are the same as in A, again with weight 1. Since � is positive,
(S(A�), t) 6= 0 iff (S(A), t) 6= 0. Hence, suppS(A�) = L.

Vice versa, let S ∈ �〈〈SP〉〉 be a regular sp-series with supp S = L. As
noted above h� : � → � is a bisemiring homomorphism. By Proposi-
tion 9.1, h�(S) ∈ �〈〈SP〉〉 is regular, and supp h�(S) = supp S = L. Hence,
L is a regular sp-language.

With Theorem 6.2 and Corollary 6.4 we get immediately:

Corollary 9.3. Let � be a positive bisemiring. L ⊆ SP is sequential-
rational iff L = supp S for some sequential-rational sp-series S ∈ �〈〈SP〉〉.

Next, we state a result about the support of the product automaton
already indicated in Chapter 8.

Lemma 9.4. Let � be a positive bisemiring, A1,A2 two wba over �, and
A = A1 ×A2. Then

suppSM (A) = supp[SM (A1)] ∩ supp[SM (A2)].

Proof. Let Si = SM (Ai) for i = 1, 2 and S = SM (A). Now, we put
Ti = h�(Si) for i = 1, 2 and T = h�(S). T1, T2 and T are sp-series over the
idempotent doubled semiring �. Moreover, Ti is M-recognized by the wba
h�Ai for i = 1, 2, and T by h�A = h�A1 × h�A2. By Corollary 8.7,

supp T = supp(T1 � T2) = supp T1 ∩ supp T2.

Clearly, supp S = supp T and supp Si = supp Ti for i = 1, 2 because � is
positive. Hence, supp S = supp S1 ∩ supp S2.

148



9 Series and Languages

The reversed concept to the support is the characteristic series of an
sp-language. Let L ⊆ SP. The characteristic series �L : SP→ � of L over
� is defined by

(�L, t) =

{
1 if t ∈ L,

0 otherwise.

The next example is concerned with a characteristic series over the doubled
semiring

�
. It shows that the characteristic series �L of a regular language

L does not have to be regular.

Example 9.5. Let Σ be a finite alphabet, and
�

= (
�
, +, ·, ·, 0, 1) the

doubled semiring of the natural numbers with the usual addition and
multiplication. L = (Σ+) ‖ (Σ+) is a regular sp-language because it is
sequential-rational. Let �L be the characteristic series of L over

�
. As-

sume there is a wba A over
�

recognizing �L. Consider the infinite set
W = {w ‖w | w ∈ Σ+} ⊆ L. Hence, each w ‖w ∈ L has a successful run
in A limited by some matching pair. For a fixed matching pair (f, j) with
f : p → {p1, p2} and j : {q1, q2} → q, there are two possibilities for the

sub-runs on w: either G1 : p1
w
−→ q1, G2 : p2

w
−→ q2, or G1 : p1

w
−→ q2,

G2 : p2
w
−→ q1. Hence, the set of matching pairs and of the possibilities for

sub-runs on w is finite. But since W is infinite, there are u, v ∈ Σ+ with
u 6= v such that

• there is a matching pair (f, j) with f : p→ {p1, p2}, j : {q1, q2} → q,
p initial, q final, and

• there are runs Gi : pi
u
−→ qi and Hi : pi

v
−→ qi in A for i = 1, 2.

But then F = ‖ p,q(G1, H2) and F ′ = ‖ p,q(G2, H1) are two different suc-
cessful runs of A on u ‖ v. Hence,

(S(A), u ‖ v) ≥ wgt(F ) + wgt(F ′)

≥ 2

> (�L, u ‖ v)

because
�

is zero-sum-free. Thus, A does not recognize �L.

Nevertheless, for a certain class of idempotent bisemirings characteristic
series of regular languages are regular.
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Theorem 9.6. Let L ⊆ SP be C-regular (M-regular), and � an idempotent
bisemiring with 131 = 1. Then �L over � is C-regular (M-regular).

Proof. There is a wba A over �with suppS(A) = L. Let h : �→ � be
the mapping with 0� 7→ 0� and 1� 7→ 1�. We have:

• h(1�⊕ 1�) = h(1�) = 1� = 1� ⊕ 1� = h(1�) ⊕ h(1�) because � is
idempotent,

• h(1�◦ 1�) = 1� = h(1�) ◦ h(1�), and

• h(1�31�) = 1� = 1�31� = h(1�)3h(1�).

Hence, h is a bisemiring homomorphism. By Proposition 9.1, �L = h̄(S(A))
is regular.

The restriction S|L ∈ �〈〈SP〉〉 of an sp-series S ∈ �〈〈SP〉〉 to some sp-
language L is defined by

(S|L, t) =

{
(S, t) if t ∈ L,

0 otherwise.

Theorem 9.7. Let � be an idempotent bisemiring, S ∈ �〈〈SP〉〉
M-regular, and L an M-regular sp-language. Then S|L is M-regular.

Proof. Let A1 be a wba M-recognizing S, and AL a wba over � with
suppSM (AL) = L. Let h : �→ � be the mapping with 0� 7→ 0� and
1� 7→ 1�. We put A2 = h̄AL.1 Let A = A1 ×A2.

Now, we proceed similarly as in the proof of Lemma 8.4.

Claim 1. Let p1, q1 ∈ Q1, p2, q2 ∈ Q2, and t ∈ SP. Then

wgtM

((
p1

p2

)
, t,
(

q1

q2

))

=

{
wgt1

M (p1, t, q1) if wgtM (p2, t, q2) = 1� in AL,

0� otherwise.

1Note that h is not necessarily a homomorphism and, therefore, in general not
SM (A2) = �L.
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9 Series and Languages

For t = a ∈ Σ, Claim 1 follows immediately from the definition of A.
Let t = t1· . . . ·tm (m ≥ 2) be sequential in its sequential decomposition.
Then we get:

wgtM

((
p1

p2

)
, t,
(

q1

q2

))

=
⊕

G1,...,Gm:
G=G1·...·Gm,
lab(Gi)=ti

wgt(G1) ◦ . . . ◦wgt(Gm)

=
⊕

"

„

r1
1

r2
1

«

,...,

 

r1
m−1

r2
m−1

!#

∈Qm−1

wgtM

((
p1

p2

)
, t1,

(
r1
1

r2
1

))
◦ . . .

◦wgtM

((
r1

m−1

r2
m−1

)
, tm,

(
q1

q2

))

We put ri
0 = pi and ri

m = qi for i = 1, 2. By induction hypothesis, we get:

wgtM

((
r1

i

r2
i

)
, ti+1,

(
r1

i+1

r2
i+1

))

=

{
wgt1

M (r1
i , ti+1, r

1
i+1) if wgtM (r2

i , ti+1, r
2
i+1) = 1� in AL,

0� otherwise

for i = 0, . . . , m− 1. By idempotency of �, we conclude

wgtM

((
p1

p2

)
, t,
(

q1

q2

))

=
⊕

(r1
1,...,r1

m−1)∈Q
m−1
q

wgt1
M (p1, t1, r

1
1) ◦ . . . ◦wgt1

M (r1
m−1, tm, q1)

if there are (r2
1, . . . , r

2
m−1) ∈ Qm−1

L such that there is a run p2 t1−→ r2
1

t2−→

. . .
tm−−→ q2, i.e. wgtM (p2, t, q2) = 1� in AL. On the other hand, if

wgtM (p2, t, q2) = 0� in AL, then such a run does not exist and

wgtM

((
r1

i

r2
i

)
, ti+1,

(
r1

i+1

r2
i+1

))
= 0�
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for some i ∈ {0, . . . , m − 1}. In this case, wgtM

((
p1

p2

)
, t,
(

q1

q2

))
= 0�.

This shows Claim 1 for t = t1· . . . ·tm.

For t = t1 ‖ . . . ‖ tm (m ≥ 2) we proceed similarly but use Equations
(8.1), (8.3), and (8.4) from the proof of Lemma 8.4. We omit the details.

Now we have:

(
S(A), t

)
=

⊕
„

p1

p2

«

,

„

q1

q2

«

∈Q

λ
(

p1

p2

)
◦wgtM

((
p1

p2

)
, t,
(

q1

q2

))
◦ γ
(

q1

q2

)
.

By Claim 1 and the construction of A we conclude

λ
(

p1

p2

)
◦wgtM

((
p1

p2

)
, t,
(

q1

q2

))
◦ γ
(

q1

q2

)

=





⊕

p1,q1∈Q1

λ1(p
1) ◦wgt1

M (p1, t, q1) ◦ γ1(q
1) if p2 initial, q2 final, and

wgtM (p2, t, q2) = 1�

in AL,

0� otherwise.

Hence, by idempotency of �:

(SM (A), t) =

{
(SM (A1), t) if t ∈ L,

0� otherwise.

Therefore, S|L is M-regular.
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10 Conclusion

Maybe the most fascinating aspect about Schützenberger’s theorem on the
coincidence of regular and rational formal power series over words [Sch61b]
is its universal validity. It holds true for every underlying semiring. There-
fore, we are gratified that our corresponding result for series over sp-posets
and bisemirings is of the same universality. Moreover, it could be obtained
by elementary constructions true to the original spirit of Kleene. No doubt,
we paid a price by using sometimes rather sophisticated constructions and
quite technical proofs. In the literature other proofs of Schützenberger’s
result than combinatorial ones can be found. Mainly, they base on a ma-
trix representation of weighted automata [SS78, BR88, KS86]. If � is the
underlying semiring and Q the state set of the automaton then a matrix
µ(a) ∈ �Q×Q can be associated to every a ∈ Σ. This mapping is extended
to a monoid homomorphism µ : Σ? → �Q×Q. Combined with the initial
and final weight function, a weighted automaton can be seen as a finitely
generated semimodule together with a linear form. The initial state vector
λ ∈ �Q is a fixed element m0 of the semimodule on which an endomor-
phism µ(w) is acting, resulting in another element m = µ(w)(m0). Finally,
the linear form γ ∈ �Q, given by the final weights, is applied to m and
yields an element of �. Thus, Berstel and Reutenauer [BR88] use stable
finitely generated submodules to prove Schützenberger’s theorem. For �
a commutative ring, Reutenauer defines even an analogue to the syntac-
tic monoid of a formal language: the syntactic algebra [Reu80]. For � a
field, these results are used to determine a reduced linear representation
of a regular series which is the analogue to the minimal automaton of a
formal language. The reduced linear representation of a rational series
was already studied by Schützenberger [Sch61b, Sch61a]. This raises the
question which other methods could have been applied to studying rational
series over sp-posets and bisemirings than pure combinatorial ones. Unfor-
tunately, no straightforward generalization of the matrix representation of
word series is possible.
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Certainly, a weighted branching automaton can also be understood as
a finitely generated �-semimodule where the scalar multiplication is the
sequential multiplication. This is because initial and final weights are mul-
tiplied sequentially. Every a ∈ Σ determines µseq(a) ∈ �Q×Q which can be
seen as an endomorphism of the �-semimodule. Sequential composition of
letters translates into the usual composition of endomorphisms. But what
about parallel composition? The first problem arises from the fact that the
cascade branching mode does not reflect the associativity of the parallel
product. But even when overcoming this problem by considering the maxi-
mally branching mode, what kind of endomorphism is, for example, defined
by a ‖ b? Firstly, a ‖ b acts actually on two states instead of one. Hence, we
had to switch to a higher dimensional semimodule by the fork transitions,
let a ‖ b act in this higher dimensional semimodule, and come back to the
original semimodule by join transitions. The acting of a ‖ b could be seen
as the Kronecker product of µseq(a) and µseq(b) but this time with respect
to the parallel product. Hence, we switch to a semimodule with another
scalar operation. For semirings there is a theory of semimodules and linear
mappings. This theory is even more powerful when the semiring is actually
a ring or a field. Then all the apparatus of ring and field theory and their
linear spaces is at our disposal. This is different with bisemirings because
now we have to deal with two products. Possibly, an approach of “linked
semimodules” as indicated above, could be successful. Here, it may also
be of interest to explore the work done by Bozapalidis et al. for tree series.
In [BA89] a matrix representation for tree series S : TΣ → � where � is
a field was defined and the equivalence of the notions of representable and
recognizable tree series was shown. This is not true for arbitrary semirings.
Nevertheless, in [Boz94] a characterization of representable tree series by
finitely generated stable submodules was reached for arbitrary semirings.
The notion of representable tree series may be of interest for sp-series be-
cause multilinear functions were used. However, the problem of two scalar
multiplications arising from a bisemiring remains. A more algebraic un-
derstanding of regular sp-series is subject of further research. Altogether,
the basic combinatorial approach we have chosen seems to be the most
self-evident so far.

Another approach of giving a Myhill-Nerode-like characterization of reg-
ular series over words and trees is by using congruences. This was done
for instance by Mohri [Moh97] for word series and Borchardt [Bor03] for
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tree series. However, those approaches use deterministic devices. The con-
cept of determinism is not really explored even for branching automata
without weights. In [LW01, Rem. 3.6] Lodaya and Weil consider the free
Σ-algebra with an additional associative operation over some alphabet A,
called a series-Σ-algebra SΣ(A). There, they note that the construction of
an appropriate branching automaton out of a finite series-Σ-algebra yields
something like a deterministic complete device, in the sense that for every
element x ∈ SΣ(A) the automaton has one and only one run on x starting
at every state. But this global condition does not translate into a local
one for branching automata over sp-posets. This is due to the commuta-
tivity of the parallel product. As we have seen in Example 9.5 the regular
sp-language (Σ+) ‖ (Σ+) is not recognized by an unambiguous branching
automaton. So far it is not understood what concept of determinism could
be useful for branching automata over sp-posets.

Obviously, our results are generalizations of those achieved by Lodaya
and Weil for sp-languages of bounded width [LW00]. Further on, any
semiring may be seen as a bisemiring by adding a trivial parallel mul-
tiplication which is identical zero. By considering a weighted branching
automaton over such a semiring without any fork and join transitions we
get almost a classical weighted automaton over words, but not entirely.
Usually, weighted word automata may contain the empty word ε within
their support. If λ, γ ∈ �Q are the initial and final weight functions the
weight of ε is obtained by

⊕

p,q∈Q

λ(p) ◦ γ(q).

The iteration and the Kleene star operation are then restricted to proper
series, i.e. those without ε in their support, in order to be well-defined.
Since we excluded ε from our considerations, our results are not full gen-
eralizations of the word case and, especially, of Schützenberger’s theorem.
However, there are good reasons to consider proper sp-series only. If ε is
allowed in the support we would implicitly include a parallel scalar mul-
tiplication by parallel Cauchy product. Therefore, we would have also to
show closure of regular sp-series under parallel scalar products. This could
be fairly done by ε-transitions only which would make the whole model as
well as the proofs much more complicated. Another alternative would be
the restriction of the parallel product to proper sp-series. Hence, we prefer
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to study only proper sp-series from the very beginning.

Our main result, Theorem 6.2, holds for sp-series of bounded width. Lo-
daya and Weil [LW98, LW01] gave a rational characterization of regular
sp-languages in general without a boundedness assumption for the width
of the language. For this, they applied another concept of generalized
rationality closer to that of tree languages and elsewhere also known as
equationally defined languages. Instead of a parallel iteration they consid-
ered ξ-substitution and ξ-exponentiation. To ensure the closure of regular
sp-languages under ξ-exponentiation they had to restrict the application
of the exponentiation. They succeeded in [LW01] with such a characteri-
zation which there was considered for languages of term algebras with an
additional associative operation. Afterwards, this result was “projected”
to sp-languages. Is this concept of generalized rationality also suitable for
arbitrary regular sp-series over bisemirings? Not in general, as it seems.
The main obstacle is to define ξ-substitution for sp-series. Obviously, it is
no problem to substitute the support of one series into that of another one.
But what about weights? Having in mind that we want to show the closure
of regular sp-series under ξ-substitution we would plug in one automaton
at all places of the other one where a sequential transition labeled by ξ oc-
curs. But then the behavior of the resulting automaton very much depends
on the place where ξ appears because the way the weight of some t ∈ SP
is calculated reflects the structure of t. Therefore, it does not make sense
to define substitution for instance by multiplying sequentially all weights
involved. Nevertheless, we could succeed if the bisemiring is actually a
doubled commutative semiring because then the calculation can be done
in any order with one multiplication only. For bisemirings in general one
could perhaps show a Kleene-like result for “weighted sp-languages” simi-
lar to weighted tree languages as introduced by Pech [Pec03a]. There, the
nodes of a tree are labeled with weights instead of computing one weight
for the whole tree. However, this does not yet solve the problem of defining
a suitable substitution for sp-series. Nevertheless, this is a promising line
of further research.

As already noted, it would be fine to get a more algebraic characteri-
zation for rational and regular sp-series. It may be convenient firstly to
confine to the case of two associative operations and forgetting about com-
mutativity even if this way we leave the subject of concurrency. Ésik and
Németh [ÉN02b, ÉN02a] and Hashigushi et al. [HIJ00] explored languages
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of biposets that are built of singletons by two independent associative op-
erations. Ésik and Németh defined finite-state devices for accepting those
languages. These so-called parenthesizing automata are composed mainly
of two classical finite-state automata linked by parenthesizing transitions.
Among other results, for the class of languages of bounded alternation
depth Ésik and Németh also get the equivalence of birationality and reg-
ularity. Their concept of birationality corresponds to our concept of ra-
tionality. Moreover, they obtain similar results as Lodaya and Weil for
series-rational and parallel-rational languages where the application of the
parallel iteration, and the sequential iteration respectively, is forbidden.
Since the model of parenthesizing automata is more balanced and in our
opinion closer to classical finite automata than that of branching automata,
an enrichment of parenthesizing automata with weights may deepen the
understanding of models of weighted automata with several compositions.

Another way of broadening our results is the extension to infinite sp-
posets. Here, Kuske [Kus03] introduced branching Büchi-automata and
extended the results of Lodaya and Weil to languages of infinite sp-posets.
When adding weights to these automata the problem arises that infinite
products of weights must be handled. Then either one has to demand
completeness properties for the bisemiring or one makes use of a deflation
parameter. The latter one guarantees that the further an event is in the fu-
ture the less its weight counts. This was done by Droste and Kuske [DK03]
for weighted Büchi automata over words with values in the real max-plus
semiring. In a different approach, Ésik and Kuich [ÉK03a, ÉK03b] used
complete semirings with infinitary sum and product operations to over-
come this problem. Something similar could be investigated for weighted
Büchi automata over infinite sp-posets.

The basic idea of this work was that different compositions of processes
may give rise to different compositions of their weights. This situation can-
not be handled by one semiring alone. Therefore, we introduced bisemirings
which arise naturally when considering sp-posets. We achieved first results
for finite-state devices over sp-posets with weights from bisemirings, the
weighted branching automata. However, as we hope to have indicated in
this conclusion, such systems are by far not fully understood, especially
in an algebraic sense. This may initiate more fruitful research within this
area.
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