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Abbreviations 
 

abs.    absolute 

Ac   acetyl 

Ac2O   acetic anhydride 

Ans   anisole 

Boc   tert-butyloxycarbonyl 

Bn   benzyl 

Bu    butyl 

B. V. Ox.  Baeyer-Villiger oxidation 

Cp   cyclopentadienyl 

δ   chemical shift 

d   days 

DCC   N,N'-dicyclohexylcarbodiimide 

DDQ   2,3-dichloro-5,6-dicyano-1,4-benzoquinone 

DEPT    Distortionless Enhancement by Polarization Transfer 

DME    1,2-dimethoxyethane 

DMF    N,N-dimethylformamide 

DMPU   N,N’-dimethylpropyleneurea 

DMS   dimethyl sulphide 

DMSO   dimethyl sulfoxide 

DNPH   2,4-dinitro phenyl hydrazine 

drift    diffuse reflexion 

EtOAc   ethyl acetate  

eq.    equivalent 

h    hour  

λ    Wavelength 

Hz    Hertz 

HMDS   hexa methyl disilazane 

IR    Infrared spectra 

 



Abbreviations 2 

GC   gas chromatography 

GC-MS  gas chromatography- mass spectroscopy 

J    Coupling constant 

LDA   lithium diisopropylamide 

LHMDS  lithium hexamethyldisilazane 

mCPBA  3-chloroperoxybenzoic acid 

M    molar 

Me    methyl 

min    minute 

MMPP   magnesium mono perpthalate 

M.P.    melting point 

MS    Mass spectra 

n-BuLi   n-butyllithium 

NCS    N-chlorosuccinimide 

NMR    nuclear magnetic resonance 

ν   frequency 

PCC   pyridinium chlorochromate 

Pd/C   palladium on active carbon 

PDC   pyridinium dichromate 

Ph    phenyl 

r.t   room temperature 

R, R’    alkyl Rest 

Ra-Ni   Raney Nickel 

Rf    reflux 

Rf    retention factor 

S.M.   starting material 

T    temperature 

t    time 

TBAI   tetra-n-butylammonium iodide 

TBAHS  tetra-butylammonium hydrogen sulfate 

tert    tertiary 
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THF    tetrahydrofuran 

TLC   Thin layer chromatography  

TMS    trimethylsilyl 

Tos    tosyl 

Ts   4-toluenesulfonyl 

UV    Ultraviolet 

W    Watt 
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1 Introduction 

 

Polycyclic nitrogen containing heterocycles form the basic skeleton of numerous natural 

products and physiologically active drugs.1-3 Yohimbane and alloyohimbane are members 

of the Rauwolfia alkaloid family. Representative members of this family include 

reserpine, ajmalicine, and yohimbine (Figure 1). These alkaloids have a characteristic 

pentacyclic ring framework with an indole moiety comprising rings A and B. Much of 

the stereochemical and functional group complexity resides on the E-ring. 
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These alkaloids possess a wide range of interesting biological activities, including 

antihypertensive and antipsychotic properties.4 Receptor-binding studies have 

demonstrated that several subtypes exist for α-adrenoceptor types, depending on species 

and tissue.5 In addition to genetic coding, pharmacological response to agonists and 

antagonists determine the classifications depending on their binding potency to the 

receptors. The most common probes used in these studies are agonists, such as clonidine, 

and antagonists: yohimbine and yohimbine-like compounds such as rauwolscine or 

corynanthine. Each of these compounds has various binding affinities for the α-

adrenoceptors types. Some, such as yohimbine, exhibit weak binding to α1-adrenoceptors 

as well as high affinity for the α 2-adrenoceptors. 

 

Considered a sympatholytic, yohimbine has been used in herbal medicine for centuries. 

Yohimbine is one example of a large family of indole alkaloids called yohimbanes. 

Indole alkaloids are naturally-occurring heterocyclic amines derived from botanical 

sources. Yohimbine is the principal alkaloid found in extracts from the bark of the 

Pausinystlia yohimbe tree which grows in tropical West Africa and the Congo. It is 

structurally similar to reserpine and can also be isolated from the roots of Rauwolfia. 

Typical of many alkaloids, the yohimbanes have diverse pharmacological properties. 

 

The yohimbine molecular structure contains five asymmetric carbons; yohimbine is one 

of 32 isomers within this family. The yohimbane alkaloids include antagonists that are 

selective for the α-adrenoceptor. The selectivity of the various yohimbane alkaloids 

depends on the stereochemical configuration of the five carbon centres. The shape and 

position of the various components of the compound determines their interaction with the 

receptors and potency of their response. Not only do they have differential activity at the 

α-adrenoceptor types (α1 versus α2), but also within the subtypes.5,6 Recently, yohimbine 

has been promoted as a dietary supplement to enhance athletic performance and fat loss. 

Clinically, yohimbine has been administered to induce anxiety in psychiatric patients, 

orthostatic hypotension and other autonomic failure conditions, adjunct therapy for opiate 

withdrawal, and male organic impotence.6,7 It is widely used by veterinarians to reverse 
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sedation or anaesthesia in animals. Other therapeutic applications currently under 

research are the use as a glucose-dispersal agent for the treatment of non-insulin 

dependent diabetes and to treat adverse effects of anti-depressants.  

 

Ajmalicine (also called raubasine and δ-yohimbine), a member of the general family of 

heteroyohimbane alkaloids, is prescribed widely in the treatment of cardiovascular 

diseases. It is a potent peripheral vasodilating muscle calibre for short periods.8 

Ajmalicine also reduces platelet aggregation in patients at risk due to complications of 

atherosclerosis,9 and has also been prescribed for the treatment of Raynaud’s disease.10 

Ajmalicine exhibits few side effects and does not cause acute hypotension even at 

relatively high doses (2 mg/kg).8,11 The isolation of ajmalicine from the roots of 

commercially grown Catharanthus roseus has been highly optimised and recent attention 

directed toward the production of ajmalicine by cell culture techniques.12,13 

Heteroyohimbane alkaloids related to ajmalicine are selective α-adrenoreceptor blocking 

agents.14 
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Gambirtannine (10) and dihydrogambirtannine (9) are aromatized yohimbane alkaloids 

(Figure 2) isolated from extracts of the leaves and stems of the Rubiacea Uncaria 

gambier (Ourouparia gambir), a tree growing in Southeast Asia.15 Demethoxycarbonyl 

dihydrogambirtannine (8) was first isolated from the leaves of Ochrosia lifuana and 

Ochrosia miana (Apocynaceae).16 Subsequently, it was found that 8 represents the main 

alkaloid of the fruits of Strychnos usambarensis, a plant of the family Loganiaceae found 

in Africa.17 The consumption of these fruits was reported to cause poisoning. Recently, 

3,14-didehydro-19-methylnormalindine (11), an indolopyridonaphthyridine alkaloid was 

isolated from the aerial parts of Ophiorrhiza rosacea Ridley (Rubiaceae).18 

 

In the light of these interesting biological activities and the difficulty in obtaining large 

quantities of these alkaloids from their natural sources, they have piqued the interest of 

synthetic organic chemists for decades. This is both due to their challenging and intricate 

structures and their prominence as medicinal agents and pharmacological tools. 

 

The historic total synthesis of reserpine by Woodward19,20 in 1956 stands as a milestone 

because of its tactical elegance and timely achievement and is frequently cited as a model 

strategy in preparative organic chemistry; the first total synthesis of yohimbine by van 

Tamelen21 displays a similar level of accomplishment. Since then, construction of the 

core indolo[2,3-a]quinolizidine skeleton found in yohimbine has presented a formidable 

challenge to synthetic organic chemistry, and several elegant methods have been 

developed to achieve this goal.2-4,22,23 Key synthetic elements in some of these 

approaches have included Diels-Alder cycloaddition,24
 radical cyclization,25

 Oxy-Cope26
 

and amino-Claisen rearrangements,27
 and photocyclization.28 

 

The most common synthetic entry to the yohimbane and heteroyohimbane alkaloids is 

based on a ABDE → ABCDE construction in which the C-ring is formed late in the 

synthesis. This approach requires the initial preparation of various DE bicycles, followed 

by their attachment to a suitable tryptophyl synthon, and stereoselective formation of the 

C ring. 
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In an unified approach to the yohimbane and other classes of indole alkaloids, Knölker 

and Cämmerer developed recently a general method that features the synthesis of the 

pentacyclic nucleus via an ABC → ABCDE approach.29  

 

In a key reaction, the iron-mediated [2+2+1] cycloaddition of 1,2-

bis(trimethylsilylpropargyl)-1,2,3,4-tetrahydro-β-carboline, generated by C-alkylation of 

3,4-dihydro-β-carboline (12) followed by N-alkylation, delivered the iron complex 13 

having a pentacyclic nucleus characteristic of yohimbane alkaloids. The iron complex 13 

was transformed into racemic demethoxycarbonyldihydrogambirtannine (8), completing 

a highly efficient total synthesis that required only six steps from 3,4-diydro-β-carboline 

and gave a 49% overall yield (Scheme 1). 

 

Scheme 1 
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This had demonstrated for the first time that the iron-mediated [2+2+1] cycloaddition of 

diynes can be applied to the construction of pentacyclic frameworks and the total 

synthesis of biologically active yohimbane and related indole alkaloids. We were 

specifically interested in using the iron-mediated [2+2+1] cycloaddition chemistry as a 

key strategy for the total synthesis of yohimbane, heteroyohimbane and aromatized 

yohimbane alkaloids. 

 

Transition metals effecting [2+2+1] cycloadditions 

 

The transition metal-mediated [2+2+1] cycloaddition of two alkynes to 

cyclopentadienones represents a simple and direct method for the synthesis of substituted 
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cyclopentadienones. A variety of transition metals have been shown to be quite effective 

in inducing this transformation. 

 

Negishi reported a zirconium-promoted intramolecular [2+2+1] cycloaddition involving a 

zirconabicyclic intermediate.30 Carbonylation occurs under an atmosphere of CO to 

afford the cyclopentenone in good yields. Nickel(0) has been shown to effect the 

intramolecular cyclization of enynes with isocyanides to form the 1-imino-2-

cyclopentenes.31 This product is subsequently hydrolyzed to afford a cyclopentenone. 

Later, a carbonylative Ni(CO)4-mediated intermolecular cycloaddition between 

acetylenes and allylic halides was reported by Moreto that affords the cyclopentenone 

directly.32 Molybdenum carbonyl species also effect the intra- and intermolecular 

[2+2+1] cycloaddition process. Hanaoka has shown that bis(cyclopentadienyl) 

tetracarbonyldimolybdenum-alkyne complexes also give cyclopentenones.33 Jeong 

reported that molybdenum hexacarbonyl effects the cycloaddition in the presence of 

DMSO.34 Hoye has demonstrated that tungsten carbonyl species promote the 

intramolecular [2+2+1] cycloaddition.35 A THF solution of the hexacarbonyl tungsten is 

photolyzed to form W(CO)5·THF which effects the cyclization of enynes in good yields.  

 

The use of alternative metals has been most effective in the development of a catalytic 

version of the [2+2+1] cycloaddition. Buchwald has extended his titanocene 

methodology to a catalytic version for the synthesis of both 1-imino-2-cyclopentenes36 

and cyclopentanones.37 Buchwald has also reported a nickel(0)-catalyzed synthesis of 1-

imino-2-cyclopentenes.38 

 

Catalytic versions of the cycloaddition have also been reported using later transition 

metals. Murai39 and Mitsudo40 simultaneously reported that Ru3(CO)12 catalyzes the 

intramolecular cycloaddition of enynes in good yields. Likewise, the laboratories of 

Narasaka41 and Jeong42 both reported the catalysis of the intramolecular cycloaddition of 

enynes using rhodium carbonyl metal species. Recently, Wender43 reported the first 

example of a rhodium(I)-catalyzed [2+2+1] cycloaddition reaction involving a diene, an 

alkene, and CO. 
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Cobalt remains the metal of choice in effecting the formal [2+2+1] cycloaddition process 

involved in the Pauson-Khand (P-K) reaction. The P-K reaction is a cycloaddition of an 

alkene, an alkyne and carbon monoxide to generate a cyclopentenone. It was discovered 

by Khand and Pauson in the early seventies.44 In general, alkynes react with Co2(CO)8 to 

generate the thermally stable, readily characterized complexes. These complexes then 

react with alkenes to generate cyclopentenones in satisfactory yields (Scheme 2). The P-

K reaction usually gives good regio- and stereoselectivity. 

 

Scheme 2 

R1 R2

R3

R4

R5

R6

Co2(CO)8
+

O

R5

R6

R3
R4R2

R1

14 15 16  
 

A well accepted mechanistic understanding is based on the observations of regio- and 

stereochemistry in a large number of examples and the direct evidence that the alkyne 

cobalt complex is involved at the first stage of the process. The dicobalt octacarbonyl 

complexes to the alkyne first to form an alkyne cobalt complex, subsequently, the 

oxidative addition of the alkene π-bond into one of the cobalt-carbon bonds of the alkyne 

complex occurs, followed by carbon monoxide insertion to the resulting cobalt 

metallacycle. Reductive elimination followed by decomplexation of the Co2(CO)6 

fragment affords the P-K reaction product, a cyclopentenone. 

 

The most satisfactory results are obtained with acetylene and simple terminal alkynes, 

while internal alkynes give lower yields of cyclopentenones. Initially, the scope of the 

reaction with respect to the alkene was somewhat limited. While strained cyclic alkenes 

are good substrates, usually delivering yields above 50%, sterically hindered alkenes 

reduce the efficiency of this reaction considerably. The P-K reaction is compatible with a 

wide range of functionalities, including alcohols, ethers, ketones, ketals, esters, tertiary 

amines and amides, thioethers, aromatic and heteroaromatic rings. 
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Schore45 improved the efficiency and reliability of this reaction by tethering the alkene 

and alkyne moieties together, which also resulted in excellent regio- and stereo control of 

the products. The intramolecular P-K reaction has been the most extensively studied. The 

products of the cycloaddition, e.g. bicyclo[3.3.0]oct-1-en-3-ones, are very useful 

intermediates in the synthesis of cyclopentane-based polycyclic compounds. 

Intramolecularity permits satisfactory results with terminal, internal, and even 

trisubstituted alkenes, although reactions of trisubstituted alkenes are limited to terminal 

alkynes due to steric hindrance. Substitution at C-4 has no stereochemical consequences, 

but improves the yields and may shorten the reaction time (Schemes 3 and 4). 

 

Scheme 3 

Co2(CO)8
O
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(31%)
17 18  

 

Scheme 4 

H3C
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The Pauson-Khand cycloaddition has been successfully used as a key step in many 

syntheses of natural products, including methylenomycin B, cyclomethylenomycin A, 

cyclosarkomycin, and Japanese hop ether.46 The intramolecular Pauson-Khand 

preparation of bicyclo[3.3.0]oct-1-en-3-ones was first applied to the synthesis of complex 

natural products by Magnus.47 He has shown that larger substituents give greater 

stereoselectivity (Scheme 5).48 The bicyclo[3.3.0]oct-1-en-3-one shown has been used by 

Magnus in synthesis of coriolin, hirsutic acid, and quadrone respectively. 
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Scheme 5 
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A stereoselective synthesis of optically pure carbocycline analogs has achieved by the 

intramolecular cycloaddition of enynes derived from D-(+)-ribonolactone (Scheme 6)49 

as well as nonracemic glyceraldehyde derivatives. Bicyclo[3.3.0]oct-1-ene-3-ones have 

also been used for syntheses of pentalenene and pentalenolactone E methyl ester.50 

Scheme 6 
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Moreover, Brummond has demonstrated that allenes can be used in place of olefins in the 

P-K reaction.51 

 

Although discovered very early52 the iron-mediated [2+2+1] cycloaddition has found 

only few and limited applications and has not been exploited for organic synthesis. The 

studies of the Knölker group towards the application of tricarbonyliron-diene complexes 

to organic synthesis, investigated the synthetic utility of [2+2+1] cycloaddition 
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reactions.53 The development of this chemistry based on iron, instead of cobalt and other 

metals, has profound financial benefits. 

 

The reaction of two equivalents of trimethylsilylacetylene with pentacarbonyliron at 

140°C, in a sealed tube, exclusively provides the 2,5-bistrimethylsilyl-substituted 

tricarbonyl(η4-cyclopentadienone) iron-complex 26 as a single regioisomer in 69% yield 

(Scheme 7, Table 1). 

 

Scheme 7 
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Generality of this transformation was further demonstrated by the cycloaddition of 

methoxytrimethylsilylacetylene and methyl trimethylsilylpropyonate on reaction with 

pentacarbonyliron to the corresponding tricarbonyliron-complexed cyclopentadienones 

(entries 2 and 3). 

Table 1 

Entry R Yield [%] 

1 H 69 

2 OMe 42 

3 COOMe 28 

 

 

Weissberger54 has proposed the mechanism by which pentacarbonyliron(0) photolytically 

or thermally couples olefins to carbon monoxide (Scheme 8).  
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Scheme 8 
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The iron mediated [2+2+1] cycloaddition is assumed to be initiated by sequential 

replacement of two CO ligands by two alkynes which generates the tricarbonyl[bis-(η2-

alkyne)]iron complex 29. Oxidative coupling of the two alkyne units at the transition metal 

center provides the intermediate ferracyclopentadiene 30. Insertion of CO into the metal-

carbon bond of 30 and reductive elimination of the ferracyclohexadienone 31 afford the 

tricarbonyliron-complexed cyclopentadienone 32. 

 

The reaction of the bistrimethylsilyl-substituted terminal diyne 33 with pentacarbonyliron 

under standard conditions offers easy access to the bicyclic tricarbonyliron complex 34 in 

high yield (Scheme 9). By variation of the linkage, a broad range of carbo- and 

heterobicyclic ring systems are available using this method (Table 2).55 

Scheme 9 
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140°C, 20h
X n(H2C)

TMS
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33 34  
 

 



Introduction 15

Table 2 

Entry X Yield ] [%

1 CH2 78 

2 (CH )2 2

(C 2 3

(CH3OOC)2C 84 

6 S 76 

82 

3 H ) 15 

4 

5 O 85 

7 C6H5CH2N 86 

 

 

Pearson  h56 as also reported a high-yielding procedure for the intramolecular 

carbonylative coupling of α,ω-diynes to give tricarbonyl(cyclopentadienone)iron 

complexes (Scheme 10). 

Scheme 10 

Fe(CO)5, CO (100 psi)

toluene, 130°C, 24h
X n(H2C)
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O

(OC)3Fe
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Eaton57,58 has discovered the catalytic iron-mediated [4+1] cycloaddition of diallenes 

ith carbon monoxide to give 2,5-dialkylidenecyclopentenones (Scheme 11). In addition, 

 iron-mediated [4+1] cycloaddition reaction did not require the extremes of 

thermal and/or photochemical activation that usually accompanies the use of Fe(CO)5. 

 

w
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Scheme 11 
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In another interesting example, Narasaka59 has reported a intramolecular allene-alkyne 

coupling reaction in the presence of Fe(CO)4(NMe3) under photoirradiation conditions to 

provide various bicyclic dienones (Scheme 12). 

cheme 12 S

Fe(CO)4(NMe3), hν

THF, r.t., 0.5 h

MeS SMe

O

(50%)  
 

 

Demetalation 
 

Tricarbonyl (η4-1,3-diene)iron complexes are a useful class of organometallic compounds 

with versatile applications to organic synthesis. The coordination of the conjugated diene 

to the transition metal fragment leads to a significant alteration of its reactivity. 

Therefore, the tricarbonyliron fragment has been used for the stabilization of labil  

hydrocarbons and as a protecting group for dienes. After the desired transformations at 

the ligand of the tricarbonyl(η

e

a ge reaction, in general with a phosphine.64 Recently, Knölker described a mild and 

 very efficient procedure for the demetalation of tricarbonyliron-diene complexes using 

ally induced exchange of the carbonyl ligands by acetonitrile at low 

temperature and subsequent demetalation on bubbling air through the solution (Scheme 

3).65 

4-1,3-diene)iron complex a demetalation is required to 

provide the free diene. This decomplexation of tricarbonyliron complexes is usually 

achieved under strong oxidizing reaction conditions, for example with ferric chloride,60 

ceric ammonium nitrate,61 trimethylamine N-oxide (TMANO),62 cupric chloride,63 or 

hydrogen peroxide / sodium hydroxide. Another possibility is to liberate the ligand by an 

exch n

a

a photolytic

1
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Scheme 13 
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This procedure involves the photolysis of 35 in acetonitrile at –30°C affording 37 in 76% 

yield, which on injection of argon into the solution during photolysis provides the 

triacetonitrile complex 38 (Scheme 13). The addition of the third acetonitrile ligand is 

reversible even at –30°C. Therefore, the complexes 37 or 38 can be prepared selectively. 

On injection of air into the solution of 38 in acetonitrile at –30°C the free ligand 39 is 

stirring the solution of complex 37 in the air at roomobtained in excellent yield and  

temperature also led the formation of the free ligand 39 quantitatively. 

 

Another novel procedure developeded in our group for the demetalation of 

tricarbonyl(η4-cyclopentadienone)iron complexes involves ligand exchange initiated by 

sodium hydroxide.66 
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Scheme 14 
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Reaction of complex 35 with aqueous NaOH in THF leads to an equilibrium of the 

corresponding hydrido complexes 40 and 41 in a ratio of about 13:1 (Scheme 14). 

Addition of H3PO4 affords 40 in 94% yield, while reaction with NaH shifts the 

equilibrium towards the salt 41. Reaction of the hydrido complex 40 with 1-iodopentane 

provides the iodo complex 43. The addition of 1-iodopentane after the reaction of 35 with 

NaOH affords an equilibrium of the iodo complexes 43 and 42 that can be shifted again 

by addition of H3PO4 or NaH respectively.  

 

Stirring a solution of 40 in diethyl ether for 5 h in the air leads to demetalation and 

provides the free ligand 39 in 80% yield based on 35. However, stirring a solution of 43 

in the air with exposure to daylight leads to a highly selective demetalation within 3 h and 

provides the free cyclopentadienone 39 in 95% yield based on complex 35. 
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2 Objectives 
 

The first project involves the application of the iron-mediated [2+2+1] cycloaddition for 

the total synthesis of racemic alloyohimbane and 3-epialloyohimbane. This cycloaddition 

appears to be useful for the construction of pentacyclic ring systems as found in 

yohimbane alkaloids. Following the successful total synthesis of alloyohimbane, the iron-

mediated [2+2+1] cycloaddition should be applied to the synthesis of rauniticine. It was 

of interest to study a similar protocol for the generation of aromatized yohimbane 

alkaloids. The formation of a pyrrole containing polycyclic ring system during our efforts 

in preparing aromatized yohimbane alkaloids has opened up a new area of research for 

investigations. The possibility of preparing a range of substituted pyrroles via a silver(I)-

promoted oxidative cyclization of homopropargylamines was also explored. Based on 

these results, the next project involves the total synthesis of harmicine. Following the 

development of this novel methodology, the total synthesis of crispine A and the 

synthesis of 1,2,3,5,6,10b-hexahydropyrrolo[2,1-a] isoquinoline were studied, in order to 

demonstrate the applicability of the silver(I)-promoted oxidative cyclization for the 

synthesis of pyrroles in the total synthesis of biologically active polycyclic compounds. 
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3 Results and Discussions 

 

3.1 Total synthesis of Alloyohimbane and 3-Epialloyohimbane 

 

3.1.1 Retrosynthetic analysis of Alloyohimbane (2) and 3-Epialloyohimbane (3) 

 

The retrosynthetic analysis of alloyohimbane (2) and 3-epialloyohimbane (3) is based on 

the iron-mediated [2+2+1] cycloaddition as the key step for the construction of the 

pentacyclic ring system having an indolo[2,3-a]quinolizidine skeleton as found in 

yohimbane alkaloids (Scheme 15). This strategy has already been applied to the total 

synthesis of an aromatized yohimbane alkaloid.29 
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The key intermediate iron-complex 13 can be prepared in high yields by complexation of 

the bis-TMS-diyne 46 which in turn is conveniently obtained by the C-alkylation of 3,4-

dihydro-β-carboline (12) followed by N-alkylation.  

 

Demetalation of the iron-complex 13 followed by hydrogenation should give the 

completely saturated cyclopentanone (44 or 45) having the stereochemistry cis and/or 

trans with respect to C3 as found in alloyohimbane and 3-epialloyohimbane. The relative 

stereochemistry drawn is assumed and primarily based on the fact that the cis-ring 

junction is lower in energy according to molecular mechanics calculations.67 

 

Alloyohimbane (2) is accessible by E-ring enlargement of the cis-cyclopentanone 44 

followed by Wolff-Kishner reduction. Accordingly, 3-Epialloyohimbane (3) is accessible 

by E-ring enlargement of the trans-cyclopentanone 45 followed by Wolff-Kishner 

reduction. 
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3.1.2 Synthesis of the noryohimbane derivative (53) 

 

The required starting material, 3,4-dihydro-β-carboline (12), was easily synthesized from 

commercially available tryptamine.68 Tryptamine 47 was first converted to N-formyl-

tryptamine 48 by refluxing with an excess of ethyl formate. N-Formyl-tryptamine 48 was 

then cyclised under Bischler-Napieralski reaction conditions by reacting with POCl3 

(Scheme 16). Thus, 3,4-dihydro-β-carboline (12) was available from tryptamine in 94% 

overall yield in large quantities. 

 

Scheme 16 
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The alkylation of 3,4-dihydro-β-carboline (12) with trimethylsilylpropargylmagnesium 

bromide was achieved by using the procedure of Nakagawa.69 Addition of Grignard 

reagent was carried out in the presence of BF3-etherate for the activation of the C=N 

double bond. A solution of 3,4-dihydro-β-carboline (12) in dry THF was treated with 

BF3-etherate at –23oC to obtain the BF3-iminium salt 49. Subsequent addition of 

trimethylsilylpropargylmagnesium bromide gave 1-(3-trimethylsilylprop-2-ynyl)-2,3,4,9-

tetrahydro-1H-β-carboline (50) in 52% yield along with 1-(1-trimethylsilyl-propa-1,2-

dienyl)-2,3,4,9-tetrahydro-1H-β-carboline (51) in 8% yield (Scheme 17). 
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The allene 51 was unequivocally identified by its 1H and 13C NMR spectra. In particular 

the resonance of the central allenic carbon atom at δ = 210.12 ppm is diagnostic. Allenic 

hydrocarbons and heterocycles are useful precursors for organic synthesis.70,71 

Scheme 17 
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A number of different organometallic reagents was also tested for this transformation. 

Thus, the alkylation of 3,4-dihydro-β-carboline (12) using organolithium, organocopper 

and organozinc reagents was investigated and the results are summarized in Table 3. 

 

The use of Grignard reagent at –23°C, gave compound 50 in 52% yield along with allene 

 yield (entry 1). By lowering or increasing the reaction temperature, no 

significant change in terms of yield was observed using the same reagent (entries 2 and 

3). A similar reaction with the corresponding lithium reagent provid % yield 

along with 51 in 8% yield (entry 4). We also tested zinc72 and copper-zinc73 r . 

However, the use of organozinc reagent afforded 50 in a moderate yield of 14% (entry 5), 

while the organocopperzinc reagent led to only 8% yield of 50 (e  6). The fo ation 

of 1-(1-trimethylsilylpropa-1,2-dienyl)-2,3,4,9-tetrahydro-1H-β-car ine (51) was not 

observed in either case. Hence, after using various organometallic reagents, it was found 

that the Grignard reagent was best in te s of yield and experimen onvenience

 

51 in 8%

ed 50 in 42

eagents

ntry rm

bol

rm tal c . 
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Table 3 

Yield [%] 
Entry Reagent 

50 51 
Temp 

1 TMS
MgBr

 –23°C 52 8 

MgBr2 TMS  –30°C 48 4 

3 TMS
MgBr

 –10 oC 43 6 

4 TMS
Li

 –23°C 42 8 

5 TMS
ZnBr

 –23°C 14 - 

TMS
Cu(CN)ZnBr

 6 –23°C 8 - 

 

 

Notably, this transformation was very efficient on large scale and thus demonstrating its 

viability in total synthesis.  

 

The next step in the synthesis involved N-alkylation of the compound 50 to afford the 

ne 46. This transformation has been previously achieved in our laboratory74 

in 99% yield using 3-(trimethylsilyl)propargyl iodide, as alkylating agent, which in turn 

was synthesized from 3-(trimethylsilyl)propargyl bromide in 80% yield. 

 

We were gratified to discover that this transformation using commercially available 3-

(trimethylsilyl)propargyl bromide as alkylating agent in presence of catalytic amounts of 

trabutylammonium iodide under in situ Finkelstein reaction conditions afforded 1,2-

is(3-trimethylsilylprop-2-ynyl)-2,3,4,9-tetrahydro-1H-β-carboline (46) in 94% yield 

(Scheme 18). Thus, the modified procedure afforded compound 46 in one step with 

improved overall yields. 

bis-TMS-diy

te

b
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Scheme 18 
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In another reaction, an attempt was made to synthesize 1,2-bis(3-trimethylsilylprop-2-

ynyl)-2,3,4,9-tetrahydro-1H-β-carboline (46) directly from 3,4-dihydro-β-carboline (12) 

in one step (Scheme 19). 

 

Scheme 19 
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Thus, a solution of 3,4-dihydro-β-carboline (12) in dry THF was treated with 

trimethylsilylpropargyl bromide, followed by the addition of 

trimethylsilylpropargylmagnesium bromide. This resulted in formation of the bis-TMS-

iyne 46 in moderate yield of 9% along with uncharacterized products.  

n of the 

iyne for the construction of the pentacyclic ring system. The iron-mediated [2+2+1] 

cycloaddition of trimethylsilylacetylenes and pentacarbonyliron for the synthesis of 

d

 

Low yields of the bis-TMS-diyne 46 were observed indicating that both the C- and N-

alkylation could occur in the same reaction pot. Nevertheless, the yield of this double 

alkylation (9%) was too low for any practical application of this method.  

 

The key-step in our synthetic route is the iron-mediated [2+2+1] cycloadditio

d
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cyclopentadienones has already been demonstrated in our laboratory as a novel 

methodology for organic synthesis.53,55 

 

Using optimized reaction conditions, the bis-TMS-diyne 46 was successfully converted 

to the iron complex 13 (Scheme 20). Thus, heating of diyne 46 with two equivalents of 

pentacarbonyliron in dry dimethoxyethane at 140oC for 24 h in a sealed tube afforded 

almost quantitatively the tricarbonyliron-complexed cyclopentadienone 13 as a mixture 

f two diastereoisomers in a ratio of 2:1, anti-13 as the major and syn-13 as the minor o

isomer. The major isomer could be separated by recrystallizing in diethyl ether. 

 

Scheme 20 
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A trans conformation of the indolo[2,3-a]quinolizidine ring system was confirmed by the 

presence of Bohlmann bands75 in the IR spectrum at ν = 2849 cm–1 and 2799 cm–1. 

 

The expected structure and stereochemical outcome (preferential approach of the 

tricarbonyliron group from the less hindered face) was additionally confirmed by an X-

ray crystal structure analysis of syn-13 (Figure 3). 
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. 

Figure 3 : ORTEP plot of the molecular structure of compound syn-13 in the crystal. 

 

This successful result encouraged us to explore the iron-mediated [2+2+1] cycloaddition 

of the yne-allene. Therefore, we synthesized the yne-allene 52 in 84% yield from allene 

51, employing standard N-alkylation conditions (Scheme 21). Allene 51 was obtained as 

a by-product during addition of the Grignard reagent to the 3,4-dihydro-β-carboline. 

Unfortunately, exposure of 52 and pentacarbonyliron to the reaction conditions for 

[2+2+1] cycloaddition resulted in complete decomposition

 

Scheme 21 
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or the application of the iron-mediated [2+2+1] cycloaddition to organic synthesis it is F

crucial to achieve a selective demetalation of the tricarbonyliron complexes to the 

corresponding stable cyclopentadienones. A novel procedure recently developed in our 
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laboratory for the demetalation of tricarbonyl(η4-cyclopentadienone)iron complexes 

involves photolytically induced successive exchange of CO ligands by acetonitrile to give 

the intermediate triacetonitrile(η4-cyclopentadienone)iron complex and subsequent 

demetalation in air.65 Application of this method to the demetalation of the iron complex 

13 afforded the free ligand 53 in 95% yield (Scheme 22). 

 

Scheme 22 
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The transformation was achieved in a typica pyrex glass photo reactor. A three neck 120 

gon. An 

fficient stirring of the flask contents was essential to avoid deposition of iron complex 

on the walls of the flask, which would reduce the light intensity. After 2.5 h of 

minutes at –40°C. An 

crease in time for bubbling air through the reaction mixture from 20 minutes to 40 

l 

mL Pyrex flask equipped with an inner jacket which was cooled continuously by 

circulating oil with the help of cryostat, was charged with the iron complex and 

acetonitrile under argon atmosphere. The stirred reaction mixture was irradiated by a 150 

W middle pressure Hg lamp at –40°C for 2.5 h with continuous purging of ar

e

irradiation, air was bubbled into the reaction mixture for 40 

in

minutes enhanced the yield to 95% (Table 4). 

 

Table 4 

Entry Air bubbling time Yield [%] 

1 20 min 89 

2 40 min 95 
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The adaptability of this protocol to a large scale process was also investigated. Complete 

conversion of the iron complex 13 on a 1.5 g scale was achieved in a pyrex glass photo 

reactor charged with 750 mL of acetonitrile, by irradiation using a 150 W middle 

ressure Hg lamp at –40°C for 5 h and afforded the free ligand 53 in 80% yield. 

3.1.3 Hydrogenation studies on nor-yohimbane derivatives 

 

In order to assemble a defined stereochemistry as found in target alkaloids, an extensive 

study of hydrogenation of nor-yohimbane derivatives was carried out in the presence of 

various catalysts under different reaction conditions.76  

 

We initially decided to perform a hydrogenation of the bis-TMS-dienone 53 with 

 on carbon as hydrogenation catalyst. In our hands, this catalyst gave very poor 

esults, with the formation of 54 in only 10% yield (Scheme 23, Table 5). Ruthenium on 

alox was next used as hydrogenati  T  t

showed two spots along with starting ma al. Careful iso ion afforded c pounds 54 

and 55 in moderate yields of 4% each along with the recovery of starting m

2). While rhodium on alox as hydrogenation catalyst afforded 55 in only 5% yield (entry 

3). 

p

 

ruthenium

r

on catalyst. The LC analysis of he reaction mixture 

teri lat om

aterial (entry 
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Table 5 

Entry Catalyst 54, Yield [%] 55, Yield [%] % SM recov. 

 

1 Ru/C 10 - - 

2 Ru/Alox 4 4 74  

3 Rh/Alox - 5 55 

 

 

The 1H NMR spectrum of compound 54 showed singlets at 5.71 ppm and 6.48 ppm due 

to olefinic  protons in the 16-position and 20-position. Compound 55 showed a singlet at 

.20 ppm due to an olefinic proton in the 20-position. 

oderate yield of 28% and identified as compound 

6 (Scheme 24, Table 6). 

 

cheme 24 

6

 

Due to the poor results obtained, we next decided to examine the effect of palladium as 

hydrogenation catalyst. Thus, the treatment of 53 with a catalytic amount of 5% 

palladium on BaSO4 in methanol under hydrogen atmosphere resulted in formation of one 

major compound. It was isolated in a m

5

S

N
H

N
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TMS

TMS

Catalyst

MeOH, H2, r.t.H
N
H

N

O
5

H

3 5  

o our surprise hydrogenation led to 1,4-addition of hydrogen and, under the reaction 

 

6

 

T

conditions, the resulting deconjugated cyclopentenone was protodesilylated, leading 

selectively to compound 56. 
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Compound  as 

rbon as catalyst 

aterial 

was confirm

conversion.

 

Table 6 
 

56 was obtained in 68% yield when 10% palladium on carbon was used

catalyst (entry 2). Finally, to our delight, employing 30% palladium on ca

provided compound 56 in almost quantitative yield (entry 3). The purity of the m

ed by 1H and 13C NMR and this provided evidence of quantitative 

 

Entry Catalyst 56, Yield [%] 

1 5% Pd/BaSO4 28 

2 10% Pd/C 68 

3 30% Pd/C 98 

 

 

The X-ray analysis of single crystals of 56 unequivocally established the 1,4-addition of 

ydrogen leading to a deconjugated cyclopentenone (Figure 4). 

 plausible reaction mechanism could be that the bis-TMS-cyclopentadienone 57 upon 

hydrogenation afforded 58 as an intermediate due to addition of hydrogen to the 

h

 
Figure 4 : ORTEP plot of the molecular structure of compound 56 in the crystal. 

 

A
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conjugated diene by 1,4-addition and the resulting allylsilane underwent 

protodesilylation under the reaction conditions to afford 59 (Scheme 25). Ian Fleming77 

has demonstrated that allylsilanes are prone to protodesilylation. 

 

Scheme 25 
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There is no literature precedence, to our knowledge, for this type of addition of hydrogen 

 conjugated dienes by 1,4-addition in the presence of a carbonyl functionality and to

therefore, we wanted to generalize this reaction. We have chosen compound 39 as model 

compound which was synthesized in our laboratory.78 The structure of this model 

compound 39 was confirmed by X-ray crystal structure determination (Appendix). 

 

Scheme 26 
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Thus, on subjecting compound 39 to the hydrogenation conditions as described above, a 

mixture of products was obtained, one of which was found to be compound 60 in 10% 

yield (Scheme 26). The other products could not be isolated and characterized due to 

their volatile nature. Since these compounds were expected to be ketones, we tried to 

isolate them as their corresponding 2,4-dinitrophenylhydrazones. 

 

Therefore, in a further attempt compound 39 was hydrogenated in the presence of 

palladium on carbon as catalyst under hydrogen atmosphere at room temperature for 2.5 

 



Results and Discussions 33

h and the crude product was treated with a solution of 2,4-dinitrophenylhydrazine in 

conc. sulphuric acid and ethanol. The TLC analysis showed three spots and careful 

isolation of these products gave compounds 61, 62, and 63 in 35%, 20% and 9% yields 

respectively (Scheme 27). 

 

Scheme 27 

O

TMS

TMS

N NH NO2

TMS

N NH NO2

N NH NO2

+

+

(35%)

(9%)

10 % Pd/C, H2, EtOH, 2.5 hi)

DNPH, EtOH, H2SO4, H2Oii)

O2N

(20%)

O2N

O2N

39 61

63  
 

The structures of all compounds were assigned on the basis of their spectral and 

analytical data. The structure assignment of compound 61 made earlier based solely on 

the 1H and 13C NMR spectra, was unequivocally confirmed by X-ray crystal structure 

determination (Figure 5). 

 

62
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Figure 5 : ORTEP plot of the molecular structure of compound 61 in the crystal. 

 

Although the exact pathway of this transformation is not clear, the plausible scenarios 

ould be suggested on the basis of experimental results. We assume that in this 

 concluded that during our model studies clean formation of product with 1,4-

ddition of hydrogen was not observed, as found during the conversion of bis-TMS-

dienone 53 to deconjugated cyclopentenone 56. Further investigations with model 

compounds were beyond the scope of our studies. 

 

Continuing with our synthesis, in order to generate a fully saturated E-ring, we employed 

the more reactive Adam’s catalyst for hydrogenation of the bis-TMS-dienone 53, which 

c

transformation, 1,4-addition of hydrogen takes place during hydrogenation over Pd/C 

leading to a deconjugated cyclopentenone. Upon acid treatment while formation of 2,4-

dinitrophenylhydrazones, the double bond between the two rings isomerizes to form the 

conjugated cyclopentenone. It is assumed that in this case the isomerization is faster than 

the protodesilylation and hence led to the formation of the mono-TMS conjugated 

cyclopentenone 61 as a major product. Protodesilylation led to 63 while hydrogenation 

afforded 62. 

 

Hence, it is

a
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gave different products under different reaction conditions (Scheme 28, Table 7). After 3 

h of hydrogenation with Adam’s catalyst in methanol, the deconjugated cyclopentenone 

56 was obtained in 68% yield (entry 1). While, on increasing the reaction time to 6 h, the 

deconjugated cyclopentenone 56 and the cis-cyclopentanone 44 were formed in 37% and 

20% yields, respectively, along with a trace amount of the cis-carbinol 64 (entry 2). The 

spectral and analytical data of these compounds are in agreement with the assigned 

structures. 

 

Scheme 28 
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able 7 T
 

Entry Reaction time 56, Yield [%] 44, Yield [%] 64, Yield [%] 

1 3 h 68 - - 

2 6 h 37 20 Trace 

3 14 h - 42 22 

4 3 days - 19 45 

 

 



Total Synthesis of Alloyohimbane and 3-Epialloyohimbane 36 

Further increase of the hydrogenation time to 14 h gave the cis-cyclopentanone 44 in 

42% yield and the carbinol 64 in 22% yield (entry 3). Finally, to better understand the 

stereoselectivity and reaction behaviour, we extended the reaction time to 3 days. This 

esulted in formation of the cis-cyclopentanone 44 and the cis-carbinol 64 in 19% and 

 

 

d 

 

 
igure 6 : ORTEP plot of the molecular structure of compound cis-44 in the crystal. 

 which is further hydrogenated stereoselectively to give 

e cis-cyclopentanone 44 and the cis-carbinol 64. 

 

r

45% yields, respectively (entry 4). Despite the fact that mixtures of products were

obtained, careful chromatography enabled separation of all the products.  

The structure assignment and stereochemistry of the cis-cyclopentanone 44 is confirme

by an X-ray analysis of a single crystal (Figure 6). The relative stereochemistry of the cis-

carbinol 64 is assumed as a result of stereoselective hydrogenation. 

F

 

Use of Adam’s catalyst resulted in stereoselective hydrogenation, with all hydrogen 

atoms delivered from the same face, thus giving rise to the observed ‘cis’ 

stereochemistry. The reaction pathway is assumed to proceed via the formation of the 

deconjugated cyclopentenone 56

th

 



Results and Discussions 37

It was already noted before that hydrogenation of the bis-TMS-cyclopentadienone 53 

with Adam’s catalyst proceeded with low chemoselectivity, since formation of the cis-

cyclopentanone 44 was always accompanied with carbinol 64. In order to get more 

material of the required cis-cyclopentanone 44, the carbinol 64 was subjected to 

oxidation (Scheme 29, Table 8). 

 

Scheme 29 
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Attempted oxidation of carbinol 64 with TPAP79 and PCC80,81 as oxidizing agent under 

standard re conditio fortunately mposit he cis-

cyclopentanone 44 in low yields, perhaps due to t that carbinol adily 

soluble in solvents like CH2Cl

 

Table 8 

Entry Reagent Solvent 44, Yield [%] 

 

action ns led un  to deco ion providing t

 the fac 64 is not re

2 and DMF (entries 1-3). 

1 TPAP CH2Cl2 8  

2 PCC CH2Cl2 Trace 

3 PCC DMF Trace  

4 DCC/H3PO4 DMSO 74  

 

 

Albright and Goldman82 have described the Moffatt-Pfitzner83 oxidation as a mild 

oxidative condition for the conversion of hydroxyl groups in indole alkaloids to carbonyl 

derivatives using N,N'-dicyclohexylcarbodiimide (DCC), crystalline ortho-phosphoric 
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acid, and dimethyl sulfoxide (DMSO). Eventually, it was found that oxidation of carbinol 

etalation of tricarbonyliron-diene complexes 

y complete hydrogenation with Raney-nickel. Thus, treatment of iron-complex 13 with 

ney-nickel in ethanol at room temperature afforded the cis-cyclopentanone 

44 and the cis-carbinol 64 in moderate yields of 18% and 5% respectively (Scheme 30). It 

is assumed that demetalation of the iron-complex takes place upon its treatment with 

Raney-nickel followed by stereoselective hydrogenation, giving rise to the cis-

cyclopentanone 44 and the cis-carbinol 64. 

 

Scheme 30 

64 under these conditions gave the cis-cyclopentanone 44 in 74% yield (entry 4). 

 

On the basis of this result we propose a cis-stereochemical orientation of the carbinol 64. 

The oxidation of the cis-carbinol 64 back to the cis-cyclopentanone 44 had also improved 

the overall efficiency of our synthetic route. 

 

Raney-nickel has become an enormously valuable reagent for inducing chemical 

transformations in the research laboratory as well as on commercial scale.84 

The cis-cyclopentanone 44 can also be obtained using a novel method reported by 

Franck-Neumann,85 which describes the dem

b

activated Ra

N
H

N
Raney Ni, r.t.

EtOH, 24 h
H

H

H

H
OH

N
H

N

O

TMS

TMS

Fe(CO)3
N
H

N

O

H H

H

+H

13 44  (18%) 64  (5%)
 

Treatment of the cyclopentadienone 53 with an excess of activated Raney-nickel in 

ethanol afforded the cis-carbinol 64 as the only isolated product in a moderate yield of 

24% (Scheme 31). As proven by TLC analysis, a trace amount of cis-cyclopentanone 44 

was also present in the reaction mixture. 
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Scheme 31 

N
H

N

O

TMS

TMS

N
H

N
Raney Ni, H2

EtOH, 14 hH H

H

H

H
OH

(24%)

53 64  
 

These results led us t o the conclusion that, Raney-nickel leads to stereoselective 

ydrogenation. 

Next, we examined the reduction of the double bond of the deconjugated cyclopentenone 

56 under various hydrogenation conditions, using different catalysts (Scheme 32, Table 

9). It is known that among double bonds the most difficult to hydrogenate are those 

common to two rings.86 

 

Scheme 32 
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Table 9 

Entry Catalyst Reaction 
time 

44, Yield 
[%] 

45, Yield 
[%] 

64, Yield 
[%] 

% SM 
recovered 

1 10% Pd/C 7 days - - - 100 

2 30% Pd/C 7 days trace - - 98 

3 5% Rh/Alox 18 h - - - 100 

4 PtO2 4 h 11 3 trace 39 

5 PtO2 14 h 29 6 38 - 

 

 

Catalytic hydrogenation of the deconjugated cyclopentenone 56 was attempted using 

10% or 30% Pd/C, however, only starting material was recovered (entries 1 and 2). 

Moreover, no transformation was observed, when 5% Rh/Alox was used as 

hydrogenation catalyst (entry 3).  

 

In contrast, hydrogenation of deconjugated cyclopentenone 56 with Adam’s catalyst 

yielded different products under different reaction conditions. Thus, hydrogenation of the 

deconjugated cyclopentenone 56 with PtO2 for 4 h afforded cis-cyclopentanone 44 in 11 

% yield, trans-cyclopentanone 45 in 3% yield and cis-carbinol 64 in trace amount along 

ith recovery of 39% of starting material (entry 4). It is assumed that, probably under the 

eaction conditions, isomerization of the double bond might have occurred, whose 

entanone 45. After 14 h of hydrogenation with 

2 complete consumption of starting material was observed on analysis by TLC. 

w

r

hydrogenation resulted in the trans-cyclop

PtO

However, careful isolation of three close products revealed the formation of cis-

cyclopentanone 44 in 29% yield, trans-cyclopentanone 45 in 6% yield and cis-carbinol 

64 in 38% yield (entry 5). 
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3.1.4 Synthesis of Alloyohimbane (2) 

 

Having considerable amounts of the cis-cyclopentanone 44, the ring expansion of ring E 

constitutes the final task in our synthesis. The most effective approach is obviously the 

direct insertion of a methylene unit from diazomethane to carbonyl substrates.87 

However, this reaction has severe experimental limitations. The most serious of which 

clude low reactivity, multiple homologations, and oxirane formation, depending on the 

 

 1994 Yamamoto et al.91 demonstrated a new technique for single ring expansion of 

h 

imethylsilyldiazomethane, where the homologated cyclohexanone was successfully 

trapped as its trimethylsilyl enol ether.  

in

nature of the alkyl substituents of carbonyl substrates, apart from the fact that 

diazomethane is a highly toxic and explosive gas and should be manipulated with great 

care. The diazomethane ring expansion is generally unsatisfactory with cyclopentanones 

because the initially formed cyclohexanone is more reactive than the starting material and 

reacts preferentially with diazomethane. Thus, cyclopentanones and diazomethane mixed 

in equimolar amounts yield a mixture containing cyclopentanones, cycloheptanones, and 

very little cyclohexanone.88

 

However, the problem of multiple ring expansion can be minimized if substituted 

diazomethanes are used in place of diazomethane itself. Shioiri89,90 and coworkers 

reported the use of trimethylsilyldiazomethane as a stable and safe diazomethane 

substitute, for the homologation of ketones. They have found that 

trimethylsilyldiazomethane easily reacts with various ketones in the presence of boron 

trifluoride etherate in methylene chloride solution, to give homologated ketones in 

moderate to good yields.  

 

In

carbonyl compounds promoted by organoaluminium reagents. He reported that certain 

bulky, oxygenophilic organoaluminium reagents are useful for single homologation or 

ring expansion of carbonyl substrates with diazoalkane because of their carbonyl 

activation ability without affecting the interaction of diazoalkane. He found that the 

trimethylaluminium-promoted single expansion of cyclopentanone can be affected wit

tr
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We investigated the scope of the above-mentioned trimethylaluminium-promoted ring 

expansion of carbonyl compounds using trimethylsilyldiazomethane with the cis-

cyclopentanone 44. The expansion of ring E using the reagents and conditions as 

described by Yamamoto resulted in satisfactory yields (Scheme 33, Table 10). Our 

attempts to optimize the reaction under various conditions are summarized in Table 10. 

 

Scheme 33 
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Using 1.1 equivalent of trimethylsilyldiazomethane and 1.2 equivalents of trimethyl-

aluminium, the desired regio isomers 65a and 65b were formed in a moderate yield of 

10% with the recovery of 48% starting material (entry 1). The two regio isomers were 

formed in a ratio of about 2:1. The data show that the best result was obtained by the use 

of 8.0 equivalents of trimethylsilyldiazomethane and 1.2 equivalents of 

trimethylaluminium, which resulted in a combined yield of 31% of the ketones 65a and 

65b with a recovery of 18% of starting material (entry 6). Apart from the desired product 

mixture, a small amount of multiple homologated products were also formed. An increase 

of the reaction time and a slight increase of the amount of trimethylsilyldiazomethane led 

 no significant difference of the obtained yields (entries 2-4). By using 3.0 equivalents 

ylsilyldiazomethane and 1.2 equivalents of trimethylaluminium the desired 

mixture of 65a and 65b was isolated in 23% yield with recovery of 28% of starting 

al se o  zome d

65b in a combined yield of 17% along with multiple ring homologation products. We 

also invest he use o e minium ut this res d 

in almost complete decomposition (entry 9).  

to

of trimeth

materi  (entry 5). U f 18 equivalents of trimethylsilyldia thane afforde  65a and 

igated t f BF3-etherat instead of trimethylalu , b ulte
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Table 10 

Entry TMSCHN2 L  65a + 65b, 
yield*[%] 

% SM 
recovered 

ewis acid Temp. (time) 

1 1.1 eq      
(

–7
o

10 48 Me3Al    
 1.2 eq) 

8oC (1h) to –20oC 
(1h) to 0 C (1h) 

2 1.1 eq      
( o

10 45 

3 1.1 eq      
( o

13 36 

4 2.0 eq      
(

–  
o

13 23 

5 3.0 eq      –  
o

23 28 

6 8.0 eq       
( 1.2 eq) (1.5h) to 0oC (1.5h) 

31 18 

3Al         
( 2.0 eq) 

–78oC (1h) to –20oC 
(1.5h) to 0oC (1.5h) 

28 20 

8 18.0 eq Me Al         –78oC (1h) to –20oC 17 21 

Me3Al    
 1.2 eq) 

Me

–78oC (3h) to –20oC 
(3h) to 0 C (3h) 

–783Al    
 1.2 eq) 

Me

oC (1h) to –20oC 
(1.5h) to 0 C (1.5h) 

783Al    
 1.2 eq) 

Me

oC (0.5h) to –20oC
(2h) to 0 C (1h) 

783Al    
( 1.2 eq) 

Me

oC (1.5h) to –20oC
(1.5h) to 0 C (1.5h) 

–783Al   oC (1h) to –20oC 

7 8.0 eq Me

3
( 1.2 eq) (1.5h) to 0oC (1.5h) 

9 8.0 eq BF3.Et2O     
(3.0 eq) 

–78oC (1h) to –20oC 
(1.5h) to 0oC (1.5h) 

Trace - 

 

* Combined yield of 65a and 65b 

nfortunately, 18-ketoalloyohimbane 65a and alloyohimbone 65b have very similar Rf 

 

 

U

values, so that a straightforward chromatographic separation was not possible and only a 

small amount of pure 18-ketoalloyohimbane 65a could be isolated essentially as a single 

isomer.  
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Analysis of HMQC, HMBC, and COSY experiments allowed a full assignment of the 

he carbonyl group to a methylene 

roup. Recently, Chandrasekhar et al.94 applied the polymethylhydrosiloxane (PMHS)–

rophenyl)borane combination for direct and rapid conversion of carbonyl 

groups to methylene groups under very mild conditions. In this reaction tris- 

(pentafluorophenyl)borane has been used as a non-conventional Lewis acid catalyst to 

activate PMHS. It was found that both aromatic and aliphatic carbonyl compounds were 

effectively reduced to give alkanes in good yields. Application of this protocol to our 

system led to the recovery of 76% of starting material. 

 

cheme 34 

proton and carbon resonances for the 18-ketoalloyohimbane 65a. 

 

Recently, Ogasawara92 has demonstrated the potential of 18-ketopseudoyohimbane as a 

precursor for the construction of corynanthe type indole alkaloids, by its transformation 

to (–)-isocorynantheol, isolated from Cinchona ledgeriana.93 However, further 

investigations in this direction were beyond the scope of our studies. 

 

The last step of our synthetic route is the reduction of t

g

tris(pentafluo
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Godleski95 reported the transformation of alloyohimbone 65b to alloyohimbane 2 using 

lassical Wolff-Kishner reduction conditions as described by Huang-Minlon.96 Treatment 

alloyohimbane [(±)-2] in 62% yield (Scheme 34). The spectral and analytical data of our 

c

of the mixture of 18-ketoalloyohimbane 65a and alloyohimbone 65b with potassium 

hydroxide and hydrazine hydrate in diethylene glycol, at 100°C to 195°C gave (±)-
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product were in complete agreement with those reported in the literature.97-100 Analysis of 

HMQC, HMBC, and COSY experiments performed on synthetic [(±)-(2)] allowed a full 

assignment of the proton and carbon resonances. 

 

Thus, the stereoselective synthesis of racemic alloyohimbane (2) was accomplished via a 

linear eight-step sequence in 7% overall yield (Scheme 35). It was demonstrated that the 

iron-mediated [2+2+1] cycloaddition of diynes can be applied to the synthesis of indole 

alkaloids with pentacyclic frameworks. 
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STEREOSELECTIVE TOTAL SYNTHESIS OF (±)-ALLOYOHIMBANE 

 

Scheme 35 
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3.1.5 Studies towards the total synthesis of (±)-3-Epialloyohimbane 
 

The successful synthesis of alloyohimbane (2) by E-ring expansion prompted us to apply 

this method to the preparation of the alkaloid 3-epialloyohimbane (3) (Figure 7). 

 

 

N
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N
H

H

H
N
H

N
H H

H

3-Epialloyohimbane (3)Alloyohimbane (2)  
Figure 7 

 

 

For this purpose, isomerization of the double bond of 56 was attempted by treatment with 

rhodium (III) chloride trihydrate in hot ethanol.101 This led to the formation of a mixture 

of products. Ninomiya102 observed the isomerization of a deconjugated enone into the 

conjugated enone upon treatment with silica gel at the 17-ketoalloyohimbane framework. 

A similar type of double bond migration was reported by Okamura and Yamada103 in the 

presence of pyridine. The double bond migration was found to be effective by heating a 

mixture of deconjugated cyclopentenone 56 with silica gel in methanol affording a 

mixture of trans-66a and cis-66b in 72% yield (Scheme 36). Its 1H NMR spectrum 

showed a singlet at 5.83 ppm for the olefinic proton at the 16-position. A separation of 

the mixture of diastereoisomers was unsuccessful by column chromatography. The ratio 

of trans-66a to cis-66b was found to be 3:4 and was determined by a 1H NMR spectrum 

of the crude product. A migration of the double bond was also observed at room 

temperature but the conversion was found to be very slow and after 30 days a mixture of 

trans-66a and cis-66b was formed in 69% isolated yield.  
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Scheme 36 
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Since a chromatographic separation of trans-66a and cis-66b proved to be very difficult, 

the crude mixture was hydrogenated to the corresponding mixture of cyclopentanones 45 

and 44 (Scheme 36). These products were readily separated by column chromatography. 

The isolated yields, 35% of 45 and 46% of 44, were in good agreement with the initial 

product ratio of trans-66a and cis-66b. 

 

Single crystals of trans-66a were obtained from an ethyl acetate solution of the 66a and 

66b-mixture. Subsequent X-ray crystallographic studies confirmed the structure and 

stereochemical assignment (Figure 8). 
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Figure 8 : ORTEP plot of the molecular structure of compound trans-66a in the crystal. 

 

Catalytic hydrogenation of pure trans-66a with 30% palladium on charcoal afforded the 

trans-cyclopentanone 45 in quantitative yield (Scheme 37). 

 

Scheme 37 
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The crystal structure determination of compound 45 allowed us to define unambiguously 

its relative stereochemistry (Figure 9). 
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Figure 9 : ORTEP plot of the molecular structure of compound 45 in the crystal. 

 

The structure and stereochemical assignment of cis-66b was confirmed by its conversion 

to cis-44. 
 

Additionally trans-45 could also be obtained from the bis-TMS-dienone 53. The 

treatment of 53 with Raney-nickel in boiling acetone afforded a mixture of 

diastereoisomers with the trans-cyclopentanone 45 as major and the cis-cyclopentanone 

44 as minor isomer in 37-43% and 24-32% yields, respectively (Scheme 38). It is known 

that the activity of Raney nickel decreases in acetone. Due to the reduced activity of 

Raney nickel no carbinol was observed. However, the same reaction in ethanol resulted 

in formation of carbinol (see scheme 31). 
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With compound trans-45 in hand, all that remained to complete the synthesis was an E-

ring expansion followed by Wolff-Kishner reduction. The optimized conditions for the E-

ring expansion were applied to trans-45 using trimethylsilyldiazomethane (Scheme 39, 

Table 11). 
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It was found that the use of 8.0 equivalents of trimethylsilyldiazomethane and 2.0 

equivalents of trimethylaluminium, an intermediate mixture of desired two regio isomers 

67a and 67b was obtained in 36% yield with recovery of 43% of starting material (entry 

5). The intermediate reaction mixture was analyzed by GC-MS. No significant difference 

in terms of yield was observed by little variation in equivalents of trimethylsilyl-

diazomethane. We also attempted the reaction using a trimethylsilyldiazomethane 
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solution in diethyl ether, instead of its solution in hexane, but this resulted only in 

moderate yield (entry 4). The use of 16 equivalents of trimethylsilyldiazomethane, gave 

30% yield with a recovery of 30% of starting material, along with small amounts of 

cycloheptanone, cyclooctanone and cyclononanone.  

 

Table 11 

 

Entry TMSCHN2 Me3Al Temp. (time) 67a + 67b 
Yield [%]* 

% SM 
recovered 

1 1.5 eq             
(soln. in hexane) 

1.5 eq –78oC (2h) to –20oC (2h) 
to 0oC (2h) 

16  50 

2 8.0 eq            
(soln. in hexane) 

2.0 eq –78oC (5h) to –20oC (5h) 
to 0oC (12h) 

24 18 

3 8.0 eq            
(soln. in hexane) 

2.0 eq –78oC (2h) to –20oC (2h) 
to 0oC (2h) 

34 38 

4 8.0 eq            
(soln. in Et2O) 

2.0 eq –78oC (2h) to –20oC (2h) 
to 0oC (2h) 

16 51 

5 8.0 eq            
(soln. in hexane) 

2.0 eq –78oC (2h) to –20oC 
(3.5h) to 0oC (3.5h) 

36 43 

6 12.0 eq           
(soln. in hexane) 

2.0 eq –78oC (2h) to –20oC 
(3.5h) to 0oC (3.5h) 

29 37 

7 10.0 eq          
(soln. in hexane) 

2.0 eq –78oC (2h) to –20oC 
(3.5h) to 0oC (3.5h) 

29 43 

8 16.0 eq          
(soln. in hexane) 

2.0 eq –78oC (5h) to –20oC (5h) 
to 0oC (12h) 

30 30 

 
*ratio of yields to SM recovered is calculated as per GC-MS of crude product 
 

All attempts to separate the individual regioisomers and the unreacted starting material 

were unsuccessful and hence, we decided to subject the crude product to the next 

transformation since both of these regioisomers should be reduced to afford a single 

product. 
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Thus, employing standard Wolff-Kishner conditions, the reaction of crude mixture from 

above mentioned transformation with potassium hydroxide and hydrazine hydrate in 

diethylene glycol gave a mixture of 3-epialloyohimbane 3 and nor-3-epialloyohimbane 

68 as a chromatographically inseparable mixture (Scheme 39). 

 

Though NMR spectra of the mixture of 3-epialloyohimbane 3 and nor-3-

epialloyohimbane 68 contains all the signals for 3-epialloyohimbane 3, trans-45 was 

converted to nor-3-epialloyohimbane 68 under standard Wolff-Kishner conditions to 

assign the signals (Scheme 40). 

 

Scheme 40 
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Comparison of the NMR spectra of pure nor-3-epialloyohimbane 68 and of the mixture 

of 3-epialloyohimbane 3 and nor-3-epialloyohimbane 68 reveals the presence of the 

signals of 3-epialloyohimbane 3.98,100 MS, IR and UVspectra of our synthesized product 

were in good agreement with those reported.104  

 

 

In conclusion, the utility of the iron-mediated [2+2+1] cycloaddition of diynes for the 

synthesis of (±)-3-epialloyohimbane has been demonstrated and also an alternative route 

for the total synthesis of (±)-alloyohimbane has been accomplished in nine-steps with 5% 

overall yield based on 3,4-dihydro-β-carboline (Scheme 41). The chemistry described 

demonstrates that the iron-mediated [2+2+1] cycloaddition of diynes can be applied to 

the total synthesis of complex biologically active natural products. 
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TOTAL SYNTHESIS OF (±)-ALLOYOHIMBANE (2) AND (±)-3-EPIALLOYOHIMBANE (3) 

Scheme 41 
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3.1.6 Attempted alternative approach towards the synthesis of Alloyohimbane 

 

An alternative approach to the synthesis of yohimbane alkaloids is based on the Diels-

Alder cycloaddition of the bis-TMS-dienone 53 with appropriate dienophiles, for the 

construction of the E-ring. We envisioned that the bis-TMS-dienone 53 and dimethyl 

maleate would readily undergo a Diels-Alder cycloaddition to form the six membered E-

ring (Scheme 42). Decarbonylation of the resulting cycloadduct 69 followed by 

hydrolysis and decarboxylation should provide Alloyohimbane.  
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Cyclopentadienones are highly reactive in Diels-Alder cycloadditions. They can function 

as dienes and dienophiles and dimerize if no bulky substituents are present in the 

molecule105. It has been already demonstrated in our laboratory106 that annulated 2,5-

bis(trimethylsilyl)cyclopentadienones are stable towards dimerization for steric reasons 

and show no tendency to react as dienophiles. However, they represent useful dienes for 

Diels-Alder105 cycloaddition reactions in presence of appropriate dienophiles. Heating 

equimolar amounts of diethyl maleate and the bis-TMS-dienone 53 in benzene at 80°C 

resulted in formation of the Diels-Alder product 69 in 68% yield (Scheme 43). This 

reaction exhibited the typical endo selectivity. 
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Scheme 43 
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This Diels-Alder reaction has been investigated under different conditions and the results 

are summarized in Table 12. 

 

Table 12 

 

Entry Conditions 69, Yield [%] % SM recovered 

1 r.t., benzene, 4 h - 80 

2 reflux, benzene, 14 h 68 - 

3 reflux, benzene, 56 h 50 - 

 

 

In order to achieve the decarbonylation, we heated the Diels-Alder product 69 in xylene 

at reflux for 6 h (Scheme 44). 
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Scheme 44 
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This reaction did not gave any expected decarbonylated product 70. However, a retro-

Diels-Alder reaction gave the bis-TMS-dienone 53 in moderate yield of 18%. This 

condition proved to be harsh for this transformation and hence, 69 was heated in toluene 

at reflux for 6 h to afford the bis-TMS-dienone 53 in a trace amount without any 

formation of the decarbonylated product 70. 

 

Due to the above observation the synthetic route towards a total synthesis of 

alloyohimbane by Diels-Alder cycloaddition was abandoned. 
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3.2 Synthetic approach towards Rauniticine 

 

3.2.1 Retrosynthetic analysis of Rauniticine (6) 

 

We wanted to demonstrate that the iron-mediated [2+2+1] cycloaddition could provide 

the pentacyclic indolo[2,3-a]quinolizidine skeleton found in hetero-yohimbane alkaloids 

(Scheme 45). 
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The retrosynthesis of rauniticine begins with compound 71 which represents a formal 

total synthesis, since it has been previously converted to compounds like rauniticine, 

ajmalicine and 19-epi-ajmalicine via a known procedure.107,108 

 

The key intermediate iron-complexes 73 or 13 can be prepared in high yields by 

cycloaddition of the diyne 74 or 46 respectively, which in turn is conveniently obtained 

by the C-alkylation of 3,4-dihydro-β-carboline (12) followed by N-alkylation. 

 

Demetalation of the iron-complex followed by hydrogenation should provide the fully 

saturated cyclopentanone 72. We predict a cis arrangement of the hydrogen atoms as 

found in rauniticine based on an addition of all hydrogen atoms from the same side. 

 

The lactone 71 could be accessible by Baeyer-Villiger oxidation of the cyclopentanone 

72. Finally, rauniticine should be obtained from lactone 71 by a known procedure.  
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3.2.2 Synthesis of iron-complex (73) 

 

The 1-(3-trimethylsilylprop-2-ynyl)-2,3,4,9-tetrahydro-1H-β-carboline (50) has been 

previously used as a precursor in our iron-mediated total synthesis of yohimbane 

alkaloids (Section 3.1). Subsequent N-alkylation of 50 led to the 2-but-2-ynyl-1-(3-

trimethylsilylprop-2-ynyl)-2,3,4,9-tetrahydro-1H-β-carboline (74) (Scheme 46). 
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This transformation has been previously achieved in our laboratory74 in 74% yield using 

1-iodo-2-butyne as alkylating agent, which in turn was synthesized from 1-bromo-2-

butyne in 50% yield. We performed the N-alkylation of 50 directly from commercially 

available 1-bromo-2-butyne in the presence of a catalytic amount of tetrabutyl-

ammonium iodide (TBAI), under in-situ Finkelstein reaction conditions to afford diyne 

74 in 87% yield. Thus, our modified procedure proved to be highly efficient and diyne 74 

is obtained in one step with improved overall yield. 

 

The key-step in our synthetic route is the iron-mediated [2+2+1] cycloaddition for the 

construction of the pentacyclic ring system. This procedure has already been used for the 

total synthesis of yohimbane alkaloids.  

 

Thus, under optimized reaction conditions, heating of the mono-TMS-diyne 74 with two 

equivalents of pentacarbonyliron in dry dimethoxyethane at 140oC for 24 h in a sealed 

tube afforded almost quantitatively the tricarbonyliron-complexed cyclopentadienone 73 

as a mixture of two diastereoisomers in a ratio of 3:1 (Scheme 47). 
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Scheme 47 
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This result emphasized that using our optimized reaction conditions the iron-mediated 

[2+2+1] cycloaddition of diynes is a very efficient process. 

 

A trans conformation of the indolo[2,3-a]quinolizidine ring system was confirmed by the 

presence of Bohlmann’s bands75 in the IR spectrum at ν = 2800 cm–1 and 2750 cm–1. 

 

Cämmerer74,109 had demonstrated that demetalation of  the tricarbonyliron-complexed 

cyclopentadienone 73 afforded via dimerization compound 75 (Scheme 48). 
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3.2.3 Attempt of introduction of the methyl group  

 

The cyclopentadienone moiety is anti-aromatic, hence quite reactive. In fact, 

cyclopentadienones have been shown to dimerize upon standing, unless stabilized by 

bulky substituents.105 Coordination to a metal also affords temporary stabilization of the 
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reactive anti-aromatic system.105,110 To this end, we thought of trimethylsilyl groups as 

substituents to afford a stable demetalated product. 

 

We then envisioned another possible pathway via demetalation of the bis-TMS 

substituted iron-complex 13 to the corresponding free ligand. As described in section 3.1, 

the demetalation of iron-complex 13 afforded free ligand 53 in high yield (Scheme 49). 

The mono protodesilylation of 53 was achieved using trimethylamine N-oxide to afford 

55 in moderate yield of 42%. A number of different reaction conditions including 

variation in reaction time and temperature were attempted, but without any significant 

success in terms of yield. 
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Reetz111 reported a mild method for the α-methylation of ketones in which manganese 

enolates react with the equivalent amount of methyl iodide to provide the α-methylated 

product which is essentially free of undesired polyalkylated by-products. Unfortunately, 

employing this procedure on compound 55 gave intractable mixtures (Scheme 49).  

 

During the course of related model study, it was found that acid treatment of the free 

ligand led to the double protodesilylation.78 Unfortunately, standard methods using 

 



Results and Discussions 63

various acids and solvent mixtures (e.g., MeOH/HCl, THF/HCl/H2O) were ineffective 

leading to decomposition or mixtures. While on treatment with boiling trifluoroacetic 

acid, compound 53 underwent dimerization to afford 77 in 46% yield (Scheme 50). It was 

apparent at this point that another route to rauniticine was needed. 
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3.2.4 Demetalation of the Iron-complex followed by hydrogenation  

 

Recently, Franck-Neumann85 developed a novel method for demetalation of 

tricarbonyliron diene complexes by hydrogenation with Raney nickel. Application of this 

strategy in our synthetic route seemed to be attractive because demetalation of iron-

complex 73 leads to Diels-Alder dimerization. We subjected the iron-complex 73 to 

Raney nickel in order to achieve demetalation and hydrogenation. Thus, treatment of 

iron-complex 73 with excess of activated Raney nickel in ethanol resulted in a series of 

products (Scheme 51, Table 13). 

Reaction of iron-complex 73 with highly activated Raney nickel in ethanol at room 

temperature for 14 h provided chemo- and stereoselectively the cyclopentanone 72 in 

39% yield. Besides the cyclopentanone 72, the deconjugated cyclopentenone 78 and the 

carbinol 79 were obtained in 12% and 5% yields, respectively. TLC analysis indicated 

also the presence of a trace amount of Diels-Alder dimerized product 75. Despite the fact 

that mixtures of products were obtained, careful chromatography enabled separation of 

all the products. On extension of the reaction time to 8 days, the cyclopentanone 72 was 

obtained in 17% yield along with the deconjugated cyclopentenone 78 in 6% and the 
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carbinol 79 in 11% yield. In another reaction, this transformation was performed in 

boiling acetone instead of ethanol. This, to our surprise, resulted in formation of the 

deconjugated cyclopentenone 78 in 30% yield as major product along with a trace 

amount of cyclopentanone 72 (entry 3). After 8 days of reflux in acetone, the 

cyclopentanone 72 was formed in 17% yield along with different diastereoisomers 

isolation of which was not possible using standard chromatographic techniques (entry 4). 
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Table 13 

 

Entry Conditions 72, Yield [%] 78, Yield [%] 79, Yield [%] 

1 r.t., ethanol, 14 h 39 12 5 

2 r.t., ethanol, 8 days 17 6 11 

3 reflux, acetone, 14 h trace 30 - 

4 reflux, acetone, 8 days 17 - - 
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It noteworthy that this demetalation followed by hydrogenation constructed the three 

contiguous stereogenic centers required for the synthesis of rauniticine in one-step. The 
1H NMR and 13C NMR spectra revealed that the products 72 and 79 were obtained 

essentially as single isomers with four and five stereogenic centers respectively (Figure 

10).  
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Figure 10 

 

In an analogous experiment the tricarbonyliron-complexed bis-TMS-cyclopentadienone 

13 was shown previously to afford the cis-cyclopentanone 44 on treatment with Raney 

nickel in ethanol. The relative stereochemistry of the cis-cyclopentanone 44 was 

unambiguously demonstrated by crystallographic studies of single crystals. Based on this 

observation we propose a cis arrangement of all the hydrogen atoms of 72. This 

transformation shows that the treatment of the iron-complex 73 with Raney nickel shows 

a high stereoselectivity. 

 

The present transformation is attractive because it afforded product 72 directly as a single 

diastereoisomer. The elegance of this one-pot conversion of iron complex 73 to the 

cyclopentanone 72 is shown by comparison with the original five-step sequence which 

we envisioned via the bis-TMS route (Figure 11). 
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Figure 11 

 

The mechanism by which the heterogeneous hydrogenation proceeds is complex and 

difficult to study as the reaction takes place on the surface of the catalyst onto which 

hydrogen is dissociatively adsorbed.112,113 It is assumed that the olefin is adsorbed onto 

the surface of the catalyst and the addition of all hydrogen atoms takes place from the 

same side. This explains the syn mode of hydrogen addition. 

 

It has been demonstrated that the demetalation of the iron-complex followed by 

hydrogenation to the reduced free ligand can be achieved using Raney nickel. 
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3.2.5 Baeyer-Villiger oxidation  

 

Having prepared enough ketone 72, the next crucial step for the synthesis of rauniticine 

was the regioselective transformation of the cyclopentanone 72 to the lactone 71 via a 

Baeyer-Villiger oxidation.114,115 
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A number of different reagents are available for this purpose.115 We initially decided to 

use mCPBA as reagent for the projected Baeyer-Villiger oxidation. Although this 

transformation appeared fairly straightforward, it proved to be rather difficult. Reaction 

of cyclopentanone 72 with mCPBA did not provide the desired lactone 71 (Scheme 52, 

Table 14). Instead only complex mixtures that included solid, intractable material were 

obtained along with some unreacted 72. A number of acid- and base-catalyzed Baeyer-

Villiger oxidations using mCPBA were also tried without any success. Similar results 

were obtained even when a large excess of mCPBA was used. Several conditions were 

tested for Baeyer-Villiger oxidation of 72 using mCPBA, but all attempts led to 

decomposition. 

 

Efforts to convert the cyclopentanone 72 to the lactone 71 using various reagents 

including MMPP,116 trifluoroperacetic acid,117 and bis(trimethylsilyl)peroxide118 were 

also unsuccessful. 
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Table 14 

Entry Conditions % Yield / remarks 

1 1.5 eq mCPBA, NaHCO3, r.t., 16 h 45% SM recovered 

2 2.0 eq mCPBA, NaHCO3, r.t., 60 h 25% SM recovered 

3 1.5 eq mCPBA, TsOH, r.t., 60 h 24% SM recovered 

4 5.0 eq mCPBA, NaHCO3, r.t., 20 h Decomp. 

5 5.0 eq mCPBA, r.t., 16 h Decomp. 

6 MMPP/NaHCO3 , r.t., 20 h Decomp. 

7 5.0 eq mCPBA, 1 eq conc. HCl, r.t., 16 h Decomp. 

8 5.0 eq (CF3CO)2O, 35% H2O2, r.t., 16 h Decomp. 

9 1.2 eq TMS-O-O-TMS, TMSOTf, –40° to –
25°C, 20 h 

100% SM recovered 

10 4 eq TMS-O-O-TMS, TMSOTf, –40° to 0°C, 
20 h 

76% SM recovered 

 

 

One possible explanation is that the presence of the basic nitrogen interfers with the 

Baeyer-Villiger oxidation conditions. Only very few examples of Baeyer-Villiger 

oxidation in the presence of a basic nitrogen are known.115 

 

The introduction and removal of protecting groups are among the most common 

transformations during the synthesis of polyfunctional molecules.119 We wanted to 

investigate if a protecting group at the indole nitrogen would be helpful for the Baeyer-

Villiger oxidation.  

 

Thus, compound 72 was protected as the corresponding tert-butyl carbamate.104 

Treatment of compound 72 with di-tert-butyl carbonate [(Boc)2O], sodium hydroxide and 

TBAHS in toluene afforded the N-Boc derivative 80 in 59% yield (Scheme 53). 
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Scheme 53 
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An attempted Baeyer-Villiger oxidation of the N-Boc-cyclopentanone 80 using mCPBA 

was also unsuccessful and led to decomposition. 

 

 

 

3.2.6 An alternative approach for construction of the oxygen-containing E-ring 

 

At this stage of our investigations, we decided to study an alternative way to obtain an 

oxygen-containing E-ring (Scheme 54). Our aim was to perform ozonolysis of 82 

followed by reductive workup, which should provide 71. The enol ether 82 should be 

easily accessible from 72. 
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Scheme 54 
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It is known in the literature that O-alkylation of enolates is achieved using potassium tert-

butoxide and dimethyl sulfate in DMSO.120 However, the reaction of cyclopentanone 72 

under these conditions was found to undergo N-methylation to 83 in 42% yield, instead 

of the desired methyl enol ether 82 (Scheme 55). 
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In light of the above observation, we decided to use an N-Boc protection. Treatment of N-

Boc cyclopentanone 80 under standard conditions for enol formation using potassium 

tert-butoxide and dimethyl sulfate resulted in a complex mixture. 

 

 

In a further attempt using a procedure described in the literature,121 the cyclopentanone 

72 was treated with trimethyl ortho-formate in dry methanol and pyridinium p-toluene-

sulfonate (PPTS) at room temperature. Unfortunately, no reaction was observed under 

these conditions. Next, we decided to synthesize the enol acetate 85. Thus, the enolate 

formed by proton abstraction with LDA at 0°C was quenched with excess acetic 

anhydride, but afforded the undesired kinetically controlled enol acetate 84 in 55% yield 

(Scheme 56). 
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In a further attempt the reaction of cyclopentanone 72 with acetic anhydride in the 

presence of trifluoroacetic acid led only to recovery of starting material (Scheme 57). The 

reaction of cyclopentanone 72 with acetic anhydride in the presence of perchloric acid122 

gave the acetyl derivative 86 in 60% yield.  
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Scheme 57 
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For the synthesis of the methyl enol ether 82, it was thought to transform the 

cyclopentanone 72 to ketal the 87, which was expected to be easily converted to 82. 

Using the protocol described by Winterfeldt,123 treatment of 72 with trimethyl ortho-

formate in the presence of p-toluenesulfonic acid in boiling methanol, led cleanly to the 

formation of ketal 87 in 84% yield (Scheme 58). 
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Surprisingly, the formation of methyl enol ether 82 from ketal 87 proved to be difficult. 

No reaction was observed using trimethyl ortho-formate and dry benzene in the presence 

of p-toluene sulfonic acid (Scheme 58). 

 

In conclusion, the synthetic approach towards the total synthesis of rauniticine was 

stopped.  

 

It is worth mentioning that the 18-methyl-17-ketonoralloyohimbane (72) has been 

synthesized using the iron-mediated [2+2+1] cycloaddition in 4 steps and 21% overall 

yield based on 3,4-dihydro-β-carboline (Scheme 59).  
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18-methyl-17-ketonoralloyohimbane could be employed as key synthetic building block 

for biologically important natural and unnatural products possessing this framework. The 

biological activity of compound 72 is under investigation. 
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3.3 Synthetic approach towards aromatized yohimbane alkaloids 
 

3.3.1 Optimized Synthesis of (±)-demethoxycarbonyldihydrogambirtannine [(±)-
(8)] 
 

N
H

N

H

8  
 

 

Demethoxycarbonyldihydrogambirtannine (8) is an aromatized yohimbane alkaloid first 

isolated from the leaves of Ochrosia lifuana and Ochrosia miana (Apocynaceae).16 

Subsequently it was found that 8 represents the main alkaloid of the fruits of Strychnos 

usambarensis, a plant of the family Loganiaceae found in Africa.17 The consumption of 

these fruits was reported to cause poisoning. 

 

Our group has a continuous program directed towards the development of novel 

methodologies for organic synthesis using tricarbonyliron-diene complexes.124 Knölker 

and Cämmerer have reported a highly efficient total synthesis of (±)-

demethoxycarbonyldihydrogambirtannine [(±)-(8)] in six steps and 49% overall yield.29 

In the course of our studies on the iron-mediated [2+2+1] cycloaddition for the synthesis 

of indole alkaloids, we were able to optimize this synthesis further. 

 

As described earlier, addition of the Grignard reagent to the preformed BF3–iminium salt 

of 3,4-dihydro-β-carboline (12) afforded 1-(3-trimethylsilylpropargyl)-1,2,3,4-tetrahydro-

β-carboline (50) (Scheme 60). Subsequent N-alkylation of 50 led to the 1,2-bis(3-

trimethylsilylprop-2-ynyl)-2,3,4,9-tetrahydro-β-carboline (46) (67% yield over both 

steps). Heating the bis-TMS-diyne 46 with two equivalents of pentacarbonyliron in 

dimethoxyethane at 140°C for 20 h in a sealed tube afforded quantitatively the 
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tricarbonyliron-complexed cyclopentadienone 13 as a mixture of two diastereoisomers in 

a ratio of 2:1 (syn : anti). The expected structure and stereochemical outcome was 

additionally confirmed by X-ray crystallographic studies of syn-13. 
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The conversion of complex 13 to the free ligand 53 was achieved by a photolytically 

induced ligand exchange reaction to the intermediate triacetonitrile(η4-cyclo-

pentadienone)iron complex and subsequent demetalation in the air.65 Cämmerer has 

reported a 89% yield for this transformation. Extension of the time for bubbling of air 
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from 20 minutes to 40 minutes led to complete conversion to the product 53 in 95% 

yield.  

 

The Diels-Alder cycloaddition of the cyclopentadienone 53 and norbornadiene in toluene 

at reflux with concomitant extrusion of carbon monoxide and cyclopentadiene afforded 

16,19-bis(trimethylsilyl)-15,16,17,18,19,20-hexadehydroyohimbane (88) in 96% yield. 

This reaction was highly reproducible. Finally, double protodesilylation of 88 using 

trifluoroacetic acid at reflux provided (±)-demethoxycarbonyldihydrogambirtannine [(±)-

(8)] quantitatively, although Cämmerer has reported 89% yield for this transformation. 

The spectral data of compound 8 are in good agreement with those reported in the 

literature.16,17,29 

 

 

In conclusion, the iron-mediated [2+2+1] cycloaddition of diynes has been efficiently 

applied to the synthesis of (±)-demethoxycarbonyldihydrogambirtannine. Optimized 

reaction conditions for the demetalation and double protodesilylation afforded the title 

compound in six steps and 60% overall yield based on 3,4-dihydro-β-carboline. 
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3.3.2 Synthetic approach towards the total synthesis of (±)-Dihydrogambirtannine 

[(±)-9] 

 

N
H

N

H

MeOOC

9  
 
Dihydrogambirtannine is one of several yohimboid constituents of the tanning material 

gambir, isolated from Uncaria gambier Roxb.,15 and coincidentally the enantiomer of a 

degradation product of the natural base deserpideine.125 This alkaloid has been the target 

of various synthetic approaches.2 

 

In continuation of our studies on the synthesis of indole alkaloids by the iron-mediated 

[2+2+1] cycloaddition a synthesis of dihydrogambirtannine (9) was projected. 

 

Scheme 61 
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The retrosynthetic analysis of dihydrogambirtannine (9) has been outlined in Scheme 61. 

It is based on the iron-mediated [2+2+1] cycloaddition to provide the pentacyclic ring 

system of the core indolo[2,3-a]quinolizidine skeleton as found in aromatized yohimbane 

alkaloids. 
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We were interested to introduce the ester functionality of dihydrogambirtannine from the 

beginning of the synthesis. We therefore envisioned to prepare 4-bromo-2-butynoate 91 

from commercial 3-bromopropyne (90). The ester 91 should be added to the C=N 

functionality of 3,4-dihydro-β-carboline (12). 

 

We attempted the synthesis of 4-bromo-2-butynoate 91 (Scheme 62). However, reaction 

of 3-bromo-propyne with methylchloroformate and sodium hydride afforded a mixture of 

products. 

 

Scheme 62 
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Earl and Townsend126 had similar trouble with this transformation and addressed the 

problem to isolate the product to its tendency to undergo rearrangement to allenic 

compounds or to react further with bases present in the reaction mixture. 

 

We decided to introduce the ester functionality in a stepwise manner. Thus, compound 50 

was protodesilylated using TBAF to provide 1-propargyl-1,2,3,4-tetrahydro-β-carboline 

(92) in 98% yield (Scheme 63). 

 

Scheme 63 
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The introduction of the ester functionality was attempted under different reaction 

conditions (Scheme 64, Table 15). Treatment of compound 92 with LDA at −78°C 

followed by addition of methylchloroformate resulted in formation of a complex mixture 
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(entry 1). Next, we examined this transformation with methyllithium and dry ice followed 

by esterification with methanol and sulfuric acid. Again a mixture of products was 

formed (entry 2). Use of a large excess of methyllithium also failed (entry 3).  

 

Scheme 64 
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Table 15 

Entry Conditions Yield [%]/ Remarks 

1 i) LDA (1eq), –78°C, dry THF 

ii) ClCOOMe, –78°C to r.t. 

Mix. of products  

2 i) MeLi (1eq), 0°C to r.t., dry THF 

ii) Dry Ice 

iii) MeOH/H2SO4, 14 h 

Mix. of products + 34% SM 

3 i) MeLi (3eq), 0°C to r.t., dry THF 

ii) Dry Ice 

iii) MeOH/H2SO4, 14 h 

Mix. of products  

 

 

Winterfeldt and coworkers127 have reported a synthesis of 93, but they have isolated and 

characterized this compound as the corresponding N-acetyl derivative in moderate yield. 

 

The synthetic approach towards the total synthesis of (±)-dihydrogambirtannine [(±)-9] 

was stopped due to the problems to obtain a methoxycarbonyl-containing precursor. 
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3.3.3 Synthetic approach towards the total synthesis of (±)-3,14-didehydro-19-

methylnormalindine [(±)-11] 

 

N
H

N

N

Me
Me

11  
 

3,14-Didehydro-19-methylnormalindine (11) has been recently extracted from the aerial 

parts of Ophiorrhiza rosacea Ridley (Rubiaceae).18 Ophiorrhiza rosacea is a small 

herbaceous shrub growing in Indonesia and exhibits a characteristic red colour on 

maceration with methanol. No traditional medicinal value has been reported for this 

plant. 

 

Scheme 65 
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The retrosynthetic analysis of (±)-3,14-didehydro-19-methylnormalindine (11) based on 

the iron-mediated [2+2+1] cycloaddition as the key step is shown in Scheme 65. 
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The iron complex can be prepared by cycloaddition of the diyne 95 which should derive 

from the C-alkylation of 3,4-dihydro-β-carboline (12) followed by N-alkylation with the 

alkyl chain. The alkaloid 11 could be accessible via Beckmann rearrangement of the free 

ligand followed by further transformation. 

 

3,14-Didehydro-19-methylnormalindine has a gem-dimethyl group at the 19-position of 

the pentacyclic ring system. The reaction of cobalt-complexed propargylic alcohols with 

HBF4 or BF3-etherate developed by Nicholas128,129 appeared attractive since a cobalt-

stabilized carbocation can react with a variety of nucleophiles to provide alkylated 

products. 

 

Reaction of 50 with propargylic alcohol dicobalt hexacarbonyl in the presence of BF3-

etherate resulted in decomposition to complex mixtures (Scheme 66). A number of 

different reaction conditions including variation in reaction time and temperature were 

attempted, but without any success. 
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Several conditions were tested for N-alkylation using various reagents and conditions, but 

all attempts failed (Scheme 67, Table 16). It is assumed that steric hindrance due to the 

gem-dimethyl group on the alkyl chain hinders the N-alkylation. 
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Scheme 67 
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Table 16 

Entry Reagent / Conditions Yield [%]/ Remarks 

1 TMS Cl
 

Na2CO3, TBAI, DMF, 
reflux, 40h 

Decomp. + SM 

2 TMS OH
 

TFA, –25°C to 0°C Decomp. 

3 TMS Cl
 

CuCl, Et2O, r.t Decomp. + SM 

4 TMS Br
 

CuBr(cat.), MeCN, r.t. 
to reflux 

Decomp. 

 

 

 

In the presence of silver acetate compound 50 was treated with 3,3-dimethyl-

trimethylsilylpropargyl bromide (Scheme 68).  
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Scheme 68 
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The reaction was monitored by TLC and only one spot was observed. On careful 

isolation, to our surprise, the product from this reaction was found to be the 

dihydroindolizino[8,7-b]indole 96 (Scheme 68). 

 

The dihydroindolizino[8,7-b]indole 96 could be employed as a useful precursor for 

biologically important natural and unnatural products. In addition, represents a novel 

pyrrole synthesis. 

 

The synthetic approach towards 3,14-didehydro-19-methylnormalindine was given up. 

 

 



Results and Discussions 85

 

3.4 A novel pyrrole synthesis  
 

 

The formation of the dihydropyrrolo[2,1-a]isoquinoline 96 provides an example of a 

novel pyrrole annulation at 3,4-dihydro-β-carboline. We were interested to extend this 

methodology to the synthesis of a variety of substituted pyrroles. 

 

3.4.1 General introduction to pyrroles 
 

The pyrrole ring is probably the most important of the five-membered heteroaromatic 

ring systems. It was discovered by Runge in 1834. Pyrrole moieties and their derivatives 

are found in a range of biologically active natural and unnatural compounds.130 Pyrroles 

also form the backbone of several important pharmaceuticals including the blockbuster 

drug Atorvastatin Calcium,131 as well as important antiinflammatants,132 antitumor 

agents,133 and immunosuppressants.134 Similarly, polypyrroles are of growing relevance 

in the material science as conjugated polymers.135 

 

The pyrrole ring system is incorporated as a basic structural unit in prophyrins: porphin 

(haem) and chlorine (chlorophyll) and corrins (vitamin B12).136 Apart from these, the 

pyrrole ring is also a structural unit in many other natural products of plant and marine 

origin such as ningalins,137 polycitone, storniamides, lukianols138 and lamellarins139 

(Figure 12). Porphobilinogen (PBG) is a trisubstituted pyrrole which contains only alkyl 

substituents. PBG is used in the biosynthesis of tetrapyrrolic pigments. The tetrapyrrolic 

pigments such as heme, chlorophyll and vitamine B12 play an important role for central 

processes of life. They are universally distributed and therefore, have been named 

“pigments of life”.  
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Figure 12 

 

 

Crispine A140 and Harmicine141 are biologically important recently isolated natural 

products containing a tricyclic and tetracyclic ring system respectively. These natural 

products have a fused aromatic heterocyclic system containing a saturated pyrrole ring. 

 

The lamellarins are a rapidly growing class of marine natural products. More than thirty 

lamellarins have been identified since their first isolation139 from the prosobranch 

mollusk Lamellaria species in 1985. The lamellarins are polyaromatic pyrrole alkaloids 

isolated from diverse marine organisms, mainly but not exclusively ascidians and 

sponges. Inhibition of HIV-1 integrase by lamellarin α20-sulfate and human 

topoisomerase I by lamellarin D and Molluscum contagiosum virus topoisomerase by 

lamellarin H, along with other effects on nuclear proteins, provide an experimental basis 

indicating that DNA manipulating enzymes are important targets for the lamellarins. 
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Some of these marine compounds exhibit cytotoxic activities against tumor cells in vitro 

and are insensitive to Pgp-mediated drug efflux.142 

 

The synthesis and functionalization of pyrrole and its derivatives has been the subject of 

research for over hundred years. Therefore, it is not surprising that the wide array of 

classical established and practical pyrrole syntheses such as Hantzsch, Knorr and Paal-

Knorr is continuously supplemented by novel methods to prepare substituted and 

functionalized pyrroles, in particular those that are not readily available by classical 

approaches. Pyrroles are synthesized using the classical Paal-Knorr143,144 reaction from 

ammonia or a primary amine and a 1,4-dicarbonyl compound (Scheme 69). 
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The methods reported for the synthesis of substituted and functionalized pyrroles are too 

many to be included in a brief introduction and therefore, attention is drawn to reviews on 

a comprehensive coverage of this class of compounds.136,145-147 Novel recent pyrrole 

syntheses include the reductive ring contraction of pyridazines,148 the Cu(I)-assisted 1,5-

cyclization of alkynyl imines,149 the palladium-catalyzed cyclization of α-propargyl-β-

iminophosphanoxides,150 cyclization of 4-aminobut-2-en-1-ones,151 4-amino-3-hydroxy-

ketones,152 and of δ-enaminoesters with N-bromosuccinimide.153 

 

Transition-metal compounds such as Pd(0 or II),154 Hg(II),155 and organo-lanthanides156 

have been reported to be effective for cyclization reactions. The first reaction belonging 

to silver(I)-mediated cyclization category was developed by Claesson157 in 1979. The 

silver(I)-catalyzed/mediated reaction includes cyclization of 4-allenylazetinones to ∆1-
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carbapenems,158 1,2,3,4-tetrahydroisoquinoline to pyrrole-dihydroisoquinoline,159 and 

very recently Dovey160,161 has reported a silver-mediated reaction for the synthesis of 

functionalized pyrroles. 

 

We investigated whether homopropargylamines can be cyclized to substituted pyrroles 

using a transition-metal based system. Homopropargylamines are readily available by 

addition of a propargyl Grignard reagent to Schiff bases. Thus, a new general method for 

the synthesis of pyrroles was developed. The scope and limitations of this methodology is 

described in the present section. 

 

We have chosen 3,4-dihydroisoquinoline (98) as substrate for our studies. The 

tetrahydroisoquinoline skeleton is widely represented in many plant families and provides 

a challenging target for synthesis.162,163 

 

 

3.4.2 Oxidative annelation of a pyrrole ring at 3,4-dihydroisoquinoline 
 
The required model compound for our studies, 3,4-dihydroisoquinoline (98) was easily 

synthesized from commercially available 1,2,3,4-tetrahydroisoquinoline (97).164 1,2,3,4-

Tetrahydroisoquinoline (97) was oxidized with N-bromosuccinimide followed by 

treatment with sodium hydroxide to afford 3,4-dihydroisoquinoline (98) as a colourless 

oil, which turns into white crystals on cooling (Scheme 70). Thus, 3,4-

dihydroisoquinoline was available in 94% yield in large quantities. 

 

Scheme 70 
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The addition of 3-trimethylsilylpropargylmagnesium bromide (99) to 3,4-

dihydroisoquinoline (98) using Nakagawa's procedure (formation of a BF3–imine 
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complex prior to Grignard addition) afforded 1-(3-trimethylsilylpropargyl)-1,2,3,4-

tetrahydroisoquinoline (100) in 80% yield along with 1-(1-trimethylsilylpropa-1,2-

dienyl)-1,2,3,4-tetrahydroisoquinoline (101) in 11% yield (Scheme 71). 
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Silver(I) salts are known to provide stable π-complexes with terminal acetylenes.165 

Therefore, we expected that the observed activation of the acetylene may be utilized for 

cyclization reactions by intramolecular nucleophilic attack onto the acetylene. Silver(I) 

salts have been reported to be effective catalysts for cyclization reactions.154,157,159,161,166 

 

Compound 100 was treated with silver acetate in dichloromethane solution at room 

temperature. After 14 h the TLC analysis indicated that the dihydropyrrolo[2,1-

a]isoquinoline 102 was the sole product (Scheme 72).167 During the reaction the 

deposition of metallic silver is observed. Although, dichloromethane was found to be the 

most effective solvent, acetone could also be employed as an alternative. 
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An extensive variation of the metal salt and its stoichiometry has been investigated 

(Table 17).167 It was found that the reaction works best using 1.1 equivalents of silver 

acetate (entry 1). Application of a larger excess of the silver(I) salt does not improve the 

yield (entry 2) and since the reaction represents an oxidative cyclization, it is not catalytic 

in silver  and resulted in only 5% yield on loading 0.1 equivalents of silver acetate (entry 

3). The results presented in Table 17 indicate the important role of the oxidation potential 

of the metal ion. Remarkably, cuprous acetate afforded a 56% yield of 102, in contrast to 

cupric acetate which led only to recovery of starting material (entries 4 and 5). 

Palladium(II) acetate gave a moderate yield of 18% of the anellated pyrrole 102 (entry 6). 

Salts of noble metals, like PtCl2, resulted in complete decomposition, while AuCl gave 

only a trace amount of 102 (entries 7 and 8). Another salt of gold, Ph3PAuCl, led to the 

complete recovery of starting material (entry 9). 

 

Table 17 

Entry Metal salt Equivalents 102, Yield [%] 

1 AgOAc 1.1 eq 72 

2 AgOAc 2.1 eq 66 

3 AgOAc 0.1 eq 5 

4 CuOAc 1.1 eq 56 

5 Cu(OAc)2 1.1 eq - 

6 Pd(OAc)2 1.1 eq 18 

7 PtCl2 1.1 eq - 

8 AuCl 1.1 eq trace 

9 Ph3PAuCl 1.1 eq - 
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A tentative plausible mechanism for the formation of pyrroles by the silver(I)-promoted 

oxidative cyclization of homopropargylamines is depicted in Scheme 73. The 

coordination of the alkyne to the silver cation 103 initiates a nucleophilic attack of the 

amine at the alkyne leading to intermediate 104. Protonation of 104 affords the iminium 

ion 105, which on subsequent β-hydride elimination generates the pyrrylium ion 106 and 

metallic silver. Finally, proton loss of 106 provides the pyrrole 107. For trimethylsilyl-

substituted homopropargylamines 103 (R3 = TMS), the 1,2,5-trisubstituted pyrrole 107 

(R3 = TMS) formed initially is protodesilylated by acetic acid to a 1,2-disubstituted 

pyrrole 107 (R3 = H). 
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The formation of the dihydropyrrolo[2,1-a]isoquinoline 102 provides an example of a 

novel pyrrole synthesis involving a silver(I)-promoted oxidative cyclization of a 

homopropargylamine. In addition, this cyclization to pyrroles could be utilized as key-

step for the construction of structurally diverse heterocyclic compounds and for the 

framework of several classes of alkaloids. 
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Allenes serve as extremely useful precursors in organic synthesis.70 The ability of allenes 

to undergo either inter- or intramolecular cyclization reactions with a variety of reagents 

is known for decades.168 Substituted allenes are known to undergo cyclization to 2,5-

dihydropyrroles in the presence of silver(I) salts.169 

 

The allene 101, obtained as a by-product during the addition of the propargyl Grignard 

reagent to the 3,4-dihydro-isoquinoline, also underwent smooth silver(I)-promoted 

oxidative cyclization to the dihydropyrrolo[2,1-a]isoquinoline 102 in 56% yield (Scheme 

74). 

Scheme 74 
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Table 18 

Entry Conditions 102, Yield [%] / 
Remarks 

1 CH2Cl2, r.t., 14 h 90% SM recov. 

2 Acetone, reflux, 14 h 56 

 

 

Although, the overnight treatment of 101 with silver acetate in dichloromethane at room 

temperature led only to recovered starting material (Table 18, entry 1), the reaction in 

boiling acetone was found to be effective for the transformation (entry 2). Thus, the 

silver(I)-promoted oxidative cyclization reaction is also effective for allenes as substrates. 

 

We also explored the oxidative cyclization of homopropargylamines to pyrroles for 

terminally unprotected alkynes. We synthesized the unprotected alkyne 108 by 

protodesilylation of compound 100. Treatment of compound 100 with TBAF in THF at 
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room temperature led to 1-propargyl-1,2,3,4-tetrahydroisoquinoline (108) in 87% yield. 

Subsequent treatment with silver acetate using our optimized conditions gave the 

dihydropyrrolo[2,1-a]isoquinoline 102 in 71% yield (Scheme 75). 
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Thus, it was demonstrated that the oxidative cyclization of homopropargylamines to 

pyrroles works even for terminal alkynes. 

  

To broaden the utility of this reaction, we decided to synthesize 1,2,3- or 1,2,5-

trisubstituted pyrroles and to investigate the regioselectivity of systems with alkyl or aryl 

substituents at the alkyne.  

 

It was therefore decided to prepare methyl- and phenyl-substituted internal alkynes. The 

addition of 3-methylpropargylmagnesium bromide to 3,4-dihydroisoquinoline in the 

presence of BF3-etherate gave a mixture of 1-(1-methylpropa-1,2-dienyl)-1,2,3,4-

tetrahydroisoquinoline (109) and 1-but-2-ynyl-1,2,3,4-tetrahydroisoquinoline (110) in 

66% yield (Scheme 76). The ratio of 109 and 110 was found to be 10:1. 
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On reaction with silver acetate a mixture of 109 and 110 underwent smooth cyclization to 

the corresponding mixture of 111 and 112 in 34% yield (Scheme 77). The regio isomeric 

ratio of the starting material was maintained during the transformation. 
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A very careful column chromatography enabled us to isolate compound 109 in pure form. 

Silver(I)-promoted oxidative cyclization of compound 109 resulted in formation of the 

pyrroles 111 and 112 as a 10:1 mixture in 34% yield (Scheme 78).  

 

Scheme 78 

NH

Me

AgOAc
N

CH2Cl2, r.t, 14 h
N

Me

Me
+

(34%)

10 : 1
109 111 112

 
 

 

The careful column chromatography enabled us to get also compound 110 in pure form. 

Treatment of 110 with silver acetate afforded the pyrroles 111 and 112 as a 1:10 mixture 

in 38% yield (Scheme 79).  
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Scheme 79 
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The above studies indicated that the silver(I)-promoted oxidative cyclization of the 

homopropargylamine 110 favors the formation of the 5-substituted pyrrole 112, while the 

allene 109 favors the formation of the 3-substituted pyrrole 111. However, a complete 

regio selectivity was not observed during this transformation. 

 

The addition of 3-phenylpropargylmagnesium bromide to 3,4-dihydroisoquinoline in the 

presence of BF3-etherare afforded a mixture of 1-(1-phenylpropa-1,2-dienyl)-1,2,3,4-

tetrahydroisoquinoline (113) and 1-(3-phenylprop-2-ynyl-1,2,3,4-tetrahydroisoquinoline 

(114) in 19% yield (Scheme 80). The ratio of 113 and 114 was found to be 1.5:1. 
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The propargyl bromide 116 was obtained from the commercially available alcohol 115 by 

reaction with CBr4 and Ph3P in nearly quantitative yield (Scheme 81).170 
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Scheme 81 

Ph
OH Ph3P, CBr4

Benzene, 0°C
Ph

Br

115 116  
 

The separation of the two products 113 and 114 by chromatographic procedures proved 

to be very difficult. Thus, the mixture of 113 and 114 was converted to the corresponding 

substituted pyrroles 117 and 118 in 47% yield by treatment with silver acetate in 

dichloromethane at room temperature (Scheme 82). The regio isomeric ratio of the 

starting material was also found in product. 
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By column chromatography we were able to isolate compound 113 in pure form. 

Silver(I)-promoted oxidative cyclization of compound 113 resulted in formation of the 

pyrrole 117 in 36% yield (Scheme 83).  
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The structure of 117 was unambiguously assigned by extensive 2D-NMR investigations. 

A closer inspection revealed that the regio isomer 118 was also formed in trace 

quantities. 

 

These studies demonstrate that silver acetate mediates the cyclization process for the 

synthesis of 1,2-disubstituted and 1,2,3- or 1,2,5-trisubstituted pyrroles. 

 

The 13C NMR spectra provide an excellent tool for the structural analysis of allenes. In 

general the central sp-hybridized carbon of allenes is found at extremely low field, in the 

range of 201 - 220 ppm. 

 

 

3.4.3 Synthesis of monocyclic pyrroles 
 

These successful results encouraged us to examine the applicability of our method to 

monocyclic pyrroles. Schiff bases, generated from simple arylaldehydes, were reacted 

with trimethylsilylpropargylmagnesium bromide (99) in the presence of BF3-etherate to 

give the corresponding homopropargylamines 120a - 120e in 68 - 88% yields (Scheme 

84, Table 19). 

 

Scheme 84 

N

R2 H

R1

TMS

BrMg

1. BF3-Et2O, THF, −23°C

2. Et2O, −23°C, 15 h+

NR1
H

R2

TMS

AgOAc

CH2Cl2, r.t., 4 d NR2

R1

119 99

120 121  
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Table 19 

Entry R1 R2 120, 
Yield 
(%) 

Conditions 

(from 120 to 121) 

121, 
Yield 
(%) 

1(a) 4-MeOC6H4 C6H5 78 CH2Cl2, 

r.t, 14 h 

35 

2    C2H4Cl2, 

reflux, 2 d 

59 

3    CH2Cl2, 

r.t, 4 d 

99 

4(b) 4-MeC6H4 4-MeOC6H4 80 CH2Cl2, 

r.t, 4 d 

85 

5    CH2Cl2, 

r.t, 6 d 

72 

6(c) C6H5CH2 C6H5 68 CH2Cl2, 

r.t, 14 h 

25 

7    CH2Cl2, 

r.t, 3.5 d, 2 h reflux 

20 

8(d) 4-MeOC6H4CH2 4-MeOC6H4 68 CH2Cl2, 

r.t, 14 h 

20 

9    CH2Cl2, 

r.t, 4 d, 1 d reflux 

20 

10(e) 4-MeOC6H4 C6H5CH=CH 88 CH2Cl2, 

r.t, 14 h 

42 

11    CH2Cl2, 

r.t, 4 d 

78 
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In the course of a detailed investigation of the silver(I)-promoted oxidative cyclization of 

the homopropargylamine 120a we found that treatment with silver acetate in 

dichloromethane at room temperature overnight resulted in formation of 121a in 

moderate yield of 35% (entry 1). On heating the reaction mixture in dichloroethane a 

slight increase in the yield of 121a was observed (entry 2). An almost quantitative yield 

of 121a was obtained by extending the reaction time to 4 days in dichloromethane at 

room temperature (entry 3).167 The N-Anisyl group constitutes a pyrrole protecting group 

which could be easily removed to afford the free pyrrole for broader application in 

organic synthesis.171 

 

Treatment of compound 120b with silver acetate in dichloromethane solution at room 

temperature for 4 days resulted in formation of pyrrole 121b in 85% yield along with a 

little starting material (Table 22, entry 4).167 On extending the reaction time to 6 days, 

pyrrole 121b was obtained in 72% (entry 5). 

 

In order to have an easily removable group on nitrogen, we decided to synthesize N-

benzyl substituted pyrroles. Treatment of the homopropargylamine 120c with silver 

acetate in dichloromethane at room temperature for 14 h afforded the pyrrole 121c in low 

yield (25%) along with formation of an uncharacterized by-product (entry 6). Extension 

of the reaction time at elevated temperature gave similar results (entry 7). 

 

The homopropargylamine 120d gave the pyrrole 121d on treatment with silver acetate in 

a yield of 20% along with the formation of an uncharacterized by-product (entry 8). 

Extension of the reaction time and increasing the temperature led to similar results (entry 

9). 

 

These results indicate that one limitation of our method is the low yield of N-

benzylpyrroles. 
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An attempt to obtain a homopropargylamine from an imine prepared from p-anisaldehyde 

and N,N-dimethylhydrazine failed. Variation of reaction temperature or stoichiometry of 

BF3-etherate was ineffective and unreacted starting material was recovered. 

 

As a further demonstration of the functional group tolerance of this new pyrrole synthesis 

the homopropargylamine 120e was successfully converted to the corresponding pyrrole 

121e. The imine 119e, easily prepared from cinnamaldehyde and p-anisidine,172 was 

transformed to the corresponding homopropargylamine 120e in 88% yield (entry 10).167 

Subsequent treatment of 120e with silver acetate in dichloromethane at room temperature 

for 4 days resulted in smooth formation to 121e in 78% yield (entry 11). It is noteworthy 

that conjugated double bonds of α,β-unsaturated imines are tolerated in this reaction. 

 

Isolation and characterization of these pyrroles was difficult due to their instability. The 

electron-rich pyrroles undergo cycloaddition with molecular oxygen (air) and other 

oxidative processes leading to decomposition. 

 

The structures of the pyrroles were assigned on the basis of their 1H and 13C NMR, Mass, 

IR and UV spectroscopic data. The pyrrole protons appeared as doublets or singlets 

between δ = 5.9 - 6.5 ppm in the 1H NMR spectrum. 

 

In conclusion, we have developed a novel two-step procedure for the synthesis of 

pyrroles by addition of a propargyl Grignard reagent to a Schiff base and subsequent 

silver(I)-promoted oxidative cyclization of the resulting homopropargylamine. This 

reaction proved to be general in scope with the exception of N-benzyl-substituted 

pyrroles, which gave poor yields. 

 

The versatility of this methodology should allow application to the synthesis of 

biologically important and naturally occurring pyrrole derivatives. This cyclization could 

be utilized as a key-step for the construction of structurally diverse heterocyclic 

compounds. 
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3.5 Total synthesis of (±)-Harmicine [(±)-(122)] 

 

 

N
H

N

H

122  
 

Nineteen different alkaloids have been isolated from the ethanol extract of the leaves of 

the Malaysian plant Kopsia griffithii.141 The strong anti-leishmania activity found on 

preliminary screening was ascribed to the basic fraction of the leaf extract, which draws 

the attention to the alkaloids. One of the novel alkaloid obtained from Kopsia griffithii 

was harmicine (122), an optically active natural product. Harmicine (122) has an 

indolizidino[8,7-b]indole framework. 

 

The only total synthesis of harmicine was reported recently by Ohsawa.173,174 He has 

synthesized ent-harmicine and assigned the absolute configuration of the natural product 

as R. The total synthesis used an asymmetric synthesis of 1-allyl-1,2,3,4-tetrahydro-β-

carboline and was accomplished via a seven-step sequence from β-carboline. 

 

Before the isolation from nature by Kam and Sim in 1998, racemic 2,3,5,6,11,11b-

hexahydro-1H-indolizino[8,7-b]indole [(±)-122] was already prepared by synthesis175-179 

and used as a precursor en route to indole alkaloids like (±)-tubifoline, (±)-condyfoline, 

(±)-geissoschizoline, (±)-fluorocurarine, and others180-184. 

 

We envisaged a short and direct total synthesis of harmicine (122) by using a novel 

pyrrole synthesis recently developed by us.167 
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3.5.1 Retrosynthetic analysis of Harmicine  
 

We envisioned that harmicine could be obtained using a silver(I)-promoted oxidative 

cyclization167 as a key step from the readily available 3,4-dihydro-β-carboline (12) and 3-

trimethylsilylpropargylmagnesium bromide (99) (Scheme 85). 

 

 

Scheme 85 

N
H

N
N
H

N
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BrMg

+
H

122 12 99  
 

 

3.5.2 Silver(I)-promoted oxidative cyclization 

 

Compound 50 served already as precursor in our iron-mediated synthesis of yohimbane 

alkaloids (Sections 3.1, 3.2 and 3.3). Having all the carbon atoms present required for a 

total synthesis of harmicine (122), we thought about a method for cyclization of 50 

generating a pyrrole ring. Silver(I) salts are known to provide stable π-complexes with 

terminal acetylenes.165 We anticipated that the observed activation of the acetylene may 

be exploited for a nucleophilic attack onto the acetylene. In case of an intramolecular 

nucleophile being present, as for compound 50, the interaction of the silver(I) ion with 

the acetylene should lead to a silver(I)-promoted cyclization reaction. 

 

Silver(I)-promoted cyclization of substituted allenes to heterocyclic ring systems 

including 2,5-dihydropyrroles were reported previously.157,158,169 
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Scheme 86 

N
H
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TMS

AgOAc

CH2Cl2, r.t, 14 h N
H

N

(77%)50 96  
 

 

Treatment of 50 with silver acetate in dichloromethane solution at room temperature 

overnight resulted in complete consumption of the starting material (Scheme 86).167,185 

The only product from this reaction was the dihydroindolizino[8,7-b]indole 96 in 77% 

yield. Although dichloromethane was found to be the most effective solvent, acetone 

could also be employed as an alternative. 

 

The pyrrole 96 showed evidence of decomposition during flash chromatography, even 

when silica gel was pre treated with triethylamine. Isolation and characterization of these 

pyrroles was difficult due to their instability. The electron-rich pyrroles undergo 

cycloaddition with molecular oxygen (air) and other oxidative processes leading to 

decomposition. 

 

The successful formation of the dihydroindolizino[8,7-b]indole 96 is unambiguously 

supported by 1H NMR, 13C NMR, IR and MS spectroscopy and additionally, it is 

corroborated by 2D NOESY experiments.  

 

At this stage of our investigations we decided to study the influence of different metals 

on the oxidative cyclization to the pyrroles. In particular, we were interested to know 

whether metals like copper and palladium would also affect the cyclization. Therefore, 

we subjected compound 96 to these metal salts. An optimization of reaction conditions 

has not been carried out for each case. However, the following results demonstrate that 

50 underwent an oxidative cyclization analogous to that with silver (Table 20). 
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Table 20 

Entry Metal salt 96, Yield [%] 

1 Pd(OAc)2 10 

2 CuOAc 13 

 

The ability of allenes to undergo either inter- or intramolecular cyclization reactions with 

a variety of reagents is known for decades.168 The allene 51, obtained as a side product 

during the addition of the propargyl Grignard reagent to the 3,4-dihydro-β-carboline, also 

underwent smooth silver(I)-promoted oxidative cyclization to the dihydroindolizino[8,7-

b]indole 96 in 75% yield (Scheme 87).  

 

Scheme 87 
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Although, the treatment of 51 with silver acetate in dichloromethane solution overnight at 

room temperature led only to the starting material (Table 21, entry 1), the reaction in 

boiling acetone was found to be effective for this transformation (entry 2). 

 

Table 21 

Entry Conditions 96, Yield [%] / Remarks 

1 CH2Cl2, r.t., 14 h 100% SM recov. 

2 Acetone, reflux, 14 h 75 
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This result demonstrates that the silver(I)-promoted oxidative cyclization reaction can 

also be performed with allenes as substrates. 

 

It is noteworthy mentioning that both products (50 and 51) obtained as a result of 

addition of trimethylsilylpropargylmagnesium bromide to 3,4-dihydro-β-carboline 

underwent smooth oxidative cyclization with silver acetate to afford the 

dihydroindolizino[8,7-b]indole 96 in high yields. The formation of compound 96 

provides another example of the novel pyrrole synthesis by silver(I)-promoted oxidative 

cyclization.  

 

3.5.3 Hydrogenation of dihydroindolizino[8,7-b]indole 
 

The final step of the total synthesis of harmicine is the hydrogenation of the pyrrole ring 

(Scheme 88, Table 22). Pyrroles can be chemoselectively hydrogenated at atmospheric 

pressure in the presence of other aromatic ring systems.186,187 

 

Scheme 88 

N
H

N
N
H

N

H

'Catalyst'

H2, MeOH, r.t.

96 122  
 

A number of standard catalysts for the hydrogenation of 96 including PtO2 and Rh/Alox 

were attempted without any success (entries 1 and 2). Hydrogenation of the pyrrole ring 

in the case of cephalotaxine alkaloids has been successfully carried out using Rhodium 

on charcoal.186 Thus, we decided to examine Rh/C as hydrogenation catalyst in methanol. 

Recovery of starting material was observed even after 8 days of heating (entry 4). 
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Table 22 

Entry Catalyst / Conditions 122, Yield [%]/ Remarks 

1 PtO2, MeOH, 8 days, r.t. SM recov. 

2 Rh/Alox, MeOH, 17 days, r.t. - 

3 Rh/C, MeOH, 8 days, r.t. Trace + SM 

4 Rh/C, MeOH, 8 days, reflux SM recov. 

5 Rh/C, MeOH + CH3COOH, 18 h, r.t. SM recov. 

6 Rh/C, MeOH + CH3COOH, 8 days, r.t. 88 

 
 

Finally, a chemoselective hydrogenation of the pyrrole ring of 96 using 5% rhodium on 

activated charcoal as catalyst in methanol/acetic acid (1:1) at room temperature provided 

directly (±)-harmicine [(±)-122], without any further purification, in excellent yield of 

88% (entry 6).185  

 

The spectroscopic data (IR, 1H NMR, 13C NMR, MS) of our synthetic harmicine are in 

full agreement with those reported for the natural product. The observation of 

Bohlmann’s bands in the IR spectrum (2780 and 2835 cm–1) suggests that the C/D ring 

junction is trans. 

 

In conclusion, we developed a straightforward synthesis providing (±)-harmicine [(±)-

122] in three steps and 41% overall yield from 3,4-dihydro-β-carboline (12) (Scheme 

89).185 The efficiency and the economy of steps of this sequence are noteworthy. 

 

The application of the silver(I)-promoted cyclization to the total synthesis of (±)-

harmicine has shown the value of this reaction for organic chemistry. 
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Scheme 89 
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3.6 Synthesis of 1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline (123) and 

total synthesis of crispine A (124) 

 

N N

MeO

MeO
N

MeO

MeO
+ Cl-

123 124 125  
 

Pyrrolidinoisoquinoline alkaloids and their derivatives are found in a variety of natural 

products and other pharmacologically important compounds. 1,2,3,5,6,10b-

hexahydropyrrolo[2,1-a]isoquinoline (123) is an unnatural bioactive compound. The 

pyrrolidinoisoquinoline 123 was first obtained by the degradative reduction of the 

alkaloid norsecurinone during its structural elucidation.188 Derivatives of this compound 

are known to show antidepressant activities.189 Recently, it has been discovered that the 

pyrrolidinoisoquinoline 123 shows a strong affinity towards α2-adrenoceptors.190 α2-

Adrenoceptors are potentially useful in the treatment of disease states such as depression, 

age-dependent memory impairment, impotence and sexual dysfunction, and a variety of 

vascular disorders. Due to these important and interesting biological activities the 

pyrrolidinoisoquinoline 123 has been a target of various synthetic approaches.191-194 

 

Crispine A (124) and B (125) are among the four novel isoquinoline alkaloids isolated 

from the extracts of Carduus crispus.140 Carduus crispus L. has been used in Chinese folk 

medicine for the treatment of cold, stomach ache and rheumatism. Moreover, a screening 

test revealed that the extracts in vitro inhibit the growth of some human cancer lines and 

exhibit a significant cytotoxic activity. Before the isolation from nature in 2002, racemic 

8,9-dimethoxy-1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline (±)-124 was already 

prepared by synthesis.195,196 
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Recently we developed a novel, general and efficient method for the construction of the 

pyrrole ring and fused aromatic pyrroloheterocycles via silver(I)-promoted oxidative 

cyclization of homopropargylamines.167 The synthetic utility of this novel method was 

demonstrated by the shortest synthesis of (±)-harmicine (three steps and 42% overall 

yield).185 Our interest in the above mentioned isoquinoline alkaloids was prompted by the 

desire to explore the silver(I)-promoted oxidative cyclization as a key strategy for the 

assembly of these compounds. 

 

 

3.6.1 Retrosynthetic analysis of 1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline 

and crispine A 

 

The retrosynthetic analysis of 1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline (123) 

and crispine A (124) based on the silver(I)-promoted oxidative cyclization for the 

construction of the pyrrolo[2,1-a]isoquinoline framework leads to 3,4-

dihydroisoquinoline (98), 6,7-dimethoxy-3,4-dihydroisoquinoline (125), and 3-

trimethylsilylpropargylmagnesium bromide (99) (Scheme 90). 
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3.6.2 Silver(I)-promoted oxidative cyclization 
 

6,7-Dimethoxy-3,4-dihydroisoquinoline (125) was readily prepared by Bischler-

Napieralski cyclization of the N-formylphenylethylamine (127), which in turn is obtained 

from the commercially available amine 126 (Scheme 91).197 

 

Scheme 91 
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The alkylation of 6,7-dimethoxy-3,4-dihydroisoquinoline (125) with 3-

trimethylsilylpropargylmagnesium bromide in the presence of BF3-etherate provided 6,7-

dimethoxy-1-(3-trimethylsilylpropargyl)-1,2,3,4-tetrahydroisoquinoline (128) in 61% 

yield along with 6,7-dimethoxy-1-(3-trimethylsilylpropa-1,2-dienyl)-1,2,3,4-tetrahydro-

isoquinoline (129) in 2% yield (Scheme 92).198 

 

Scheme 92 
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Compound 128 was successfully transformed to the dihydropyrrolo[2,1-a]isoquinoline 

130 in 58% yield upon its treatment with silver acetate in dry dichloromethane (Scheme 

93).198 
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Scheme 93 
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The above results clearly demonstrate that our silver(I)-promoted oxidative cyclization is 

a simple, straightforward and highly efficient process for the synthesis of pyrroles. 

 

Our model studies already revealed that allenes also undergo a silver(I)-promoted 

oxidative cyclization to afford the corresponding pyrroles. The treatment of allene 129 

with silver acetate in boiling acetone for 14 h resulted in smooth oxidative cyclization 

forming the dihydropyrrolo[2,1-a]isoquinoline 130 in 43% yield (Scheme 94). 

 

Scheme 94 
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3.6.3 Hydrogenation of the dihydropyrrolo[2,1-a]isoquinoline 

 

The final step to achieve the total syntheses of 1,2,3,5,6,10b-hexahydropyrrolo[2,1-

a]isoquinoline (123) and crispine A (124) is the chemoselective hydrogenation of the 

pyrrole ring. It is already known that pyrroles can be chemoselectively hydrogenated at 

atmospheric pressure in the presence of benzene rings.186,187 
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Scheme 95 
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The synthesis of the dihydropyrrolo[2,1-a]isoquinoline 102 has been described during 

our model studies in Section 3.4. A chemoselective hydrogenation of the pyrrole ring of 

102 using 5% rhodium on activated charcoal as a catalyst in methanol/acetic acid (1:1) at 

room temperature provided directly (±)1,2,3,5,6,10b-hexahydropyrrolo[2,1-

a]isoquinoline [(±)-123] in an excellent yield of 91% (Scheme 95). Under the same 

conditions the catalytic hydrogenation of 130 afforded (±)-crispine A [(±)-124] in 66% 

yield.198 

 

The spectroscopic data (IR, 1H NMR, 13C NMR, and MS) of our synthetic crispine A are 

in full agreement with those reported for the natural product.140 

 

For the transformation of crispine A to crispine B several conditions were tested [(a) I2, 

KOAc, EtOH, reflux, 15 min; (b) DDQ, reflux, 12 h; (c) MnO2, benzene, reflux)], but all 

attempts led to decomposition of the starting material. 

 

In another attempt crispine A was heated in benzene in the presence of a catalytic amount 

of palladium on charcoal. This experiment afforded the dihydropyrrolo[2,1-

a]isoquinoline 130 in 88% yield (Scheme 96).198 
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In conclusion, a highly efficient synthesis of the biologically active 1,2,3,5,6,10b-

hexahydropyrrolo[2,1-a]isoquinoline (123) and the total synthesis of the antitumor active 

alkaloid (±)-crispine A (124) have been achieved in a three-step sequence with 58% and 

24% overall yields using the silver(I)-promoted oxidative cyclization as the key strategy 

(Scheme 97).198 This strategy represents a conceptually novel and highly expeditious 

route towards certain polycyclic alkaloid skeletons. Moreover, our approach can be easily 

applied to the synthesis of a wide range of synthetic analogues for structure-activity 

studies. 
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4 Conclusion 

 

A general strategy for the concise syntheses of various members of the yohimbane 

alkaloid family has been developed. The key strategic element for the formation of the 

pentacyclic ring system is the highly efficient iron-mediated [2+2+1] cycloaddition of a 

diyne. The iron-complex 13 has been prepared in high yield by cycloaddition of the bis-

TMS-diyne 46 which in turn is conveniently obtained by the C-alkylation of 3,4-dihydro-

β-carboline (12) followed by N-alkylation. Demetalation of the iron-complex 13 

followed by hydrogenation of the free ligand 53 with 30% Pd/C as hydrogenation 

catalyst provided 56. There is no literature precedence, to our knowledge, for this type of 

1,4-addition of hydrogen to a conjugated diene in the presence of a carbonyl 

functionality. Stereoselective hydrogenation of 56 with Adams’s catalyst provided the 

cis-cyclopentanone 44. E-Ring expansion of 44 with trimethylsilyldiazomethane 

followed by Wolff-Kishner reduction afforded (±)-alloyohimbane [(±)-2]. The total 

synthesis of the biologically active alkaloid alloyohimbane 2 has been achieved by a 

convergent and highly modular approach in eight steps and 7% overall yield based on 

3,4-dihydro-β-carboline. Isomerization of the deconjugated enone 56 on treatment with 

silica gel afforded a mixture of the conjugated enones 66a and 66b. Hydrogenation of 

66a afforded the trans-cyclopentanone 45. E-Ring expansion of 45 and Wolff-Kishner 

reduction provided 3-epialloyohimbane 3 and nor-3-epialloyohimbane 68. This method 

can serve as a short and efficient approach towards polycyclic alkaloids. In an attempt of 

a total synthesis of rauniticine the diyne 74 was successfully transformed to the iron-

complex 73. The iron-mediated cycloaddition proved to be a powerful synthetic method. 

Demetalation of the iron-complex 73 followed by hydrogenation provided the ketone 72 

as a single isomer with all hydrogen atoms at stereogenic centers on the same face. All 

attempts of Baeyer-Villiger oxidation of 72 failed. A novel procedure for pyrrole 

annulations by silver(I)-promoted oxidative cyclization of homopropargylamines has 

been developed. It was shown that a broad variety of substituted monocyclic pyrroles can 

be prepared by this novel methodology. The formation of the dihydropyrrolo[2,1-

 



Conclusion 116 

a]isoquinoline 96 via the silver(I)-promoted cyclization of the homopropargylamine 50 

has been used for a synthesis of (±)-harmicine [(±)-122]. The total synthesis of harmicine 

has been achieved in three-steps and 41% overall yield. The silver(I)-promoted oxidative 

cyclization has been successfully applied to the total synthesis of the antitumor active 

pyrrole[2,1-a]isoquinoline alkaloid (±)-crispine A [(±)-124] (three steps and 24% overall 

yield) and for the biologically active 1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline 

(123) (three steps and 58% overall yield). 
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5 Experimental section  
 

5.1 General Methods 
 

All reactions were carried out under Argon in flame-dried glassware using standard 

Schlenck-line and glove box techniques unless otherwise indicated. 

 

Tetrahydrofuran (THF) and diethyl ether were freshly distilled from sodium/ 

benzophenone under argon. Other solvents used for reactions were purified according to 

standard procedures. 

 

Thin layer chromatography (TLC) was performed on Merck precoated silica gel F254 

aluminium foil. Visualization was accomplished with UV light and / or phosphomolybdic 

acid solution followed by heating. Flash chromatography was performed using Merck 

flash silica gel 60 (40µm). 

 

Melting points were measured with an apparatus Heiztischmikroskop H600 and are 

uncorrected. 

 

UV spectra were obtained on a Perkin Elmer Lambda UV/Vis spectrometer. The 

wavelengths are reported in nm. 

 

IR spectra were obtained on an Avatar 360 FT-IR spectrometer and were measured by 

ATR method. The wavelengths are reported in cm–1. 

 

NMR spectra were obtained on a Bruker advance DRX 500. 1H NMR shifts were 

obtained in CDCl3 and reported in ppm relative to the solvent shift of residual chloroform 

of δ = 7.26. Chemical shift values δ (ppm) are based on the signal of residual deuterated 

solvent. 13C NMR shifts were obtained in CDCl3 and reported in ppm relative to CDCl3 
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77.0. Chemical shift values δ (ppm) are based on the signal of residual deuterated 

solvent. 

 

Mass spectra and HRMS measurements were performed on a TGA 100 from Leybold 

AG; ionization potential: 70 eV. 

GC-MS spectra were obtained at an ionization potential of 70 eV on HP 5890/5891 series 

GC/MSD 

 

Elemental analysis was obtained on a Euro Vector CHNS-O elemental analyzer. 

 

X-ray analyses: The data were collected on a STOE STADI-4 diffractometer using Mo-

Kα radiation. The program SCHAKAL-92 was used for the graphical representation of 

the crystal structures. All ORTEP diagrams were produced with the Ortep3 software 

package. 
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5.2 Experimental procedure and spectral data 
 

5.2.1 Referring to Section 3.1 
 

3,4-Dihydro-β-carboline (12) 

 

A solution of tryptamine 47 (10 g, 62.5 mmol) in ethyl formate 

(200 mL) was refluxed for 8 h and then the solvent was removed 

under reduced pressure to afford N-formyl-tryptamine. The crude 

N-formyl-tryptamine thus obtained was treated with phosphoryl chloride (50 mL) and 

stirred for 3 h at room temperature. The reaction mixture was poured onto crushed Ice. 

The aqueous solution was filtered and neutralized with NaOH solution and further 

basified with ammonia solution (200 mL). The precipitated 3,4-dihydro-β-carboline 12 

was filtered, washed with water and dried. 

N
H

N

 

Yield: 10 g (94%); pale yellow crystals 

 

M.P.:  124 - 126°C 

 

UV (MeOH): λ = 206, 318 nm. 

 

IR (drift): ν = 3394, 3058, 2918, 2834, 2731, 1623, 1570, 1548, 1450, 1375, 1323, 1303, 

1224, 1163, 1114, 1041, 1009, 983, 949, 869, 738, 659, 620, 593, 574, 555 cm–1. 

 
1H-NMR (500 MHz, MeOD): δ = 2.95 (t, J = 8.49 Hz, 4H), 3.88 - 3.92 (m, 1H), 7.12 - 

7.15 (m, 1H), 7.28 - 7.31 (m, 1H), 7.44 (d, J = 8.3 Hz, 1H), 7.62 (d, J = 8.06 Hz, 1H), 

8.38 (m, 1H). 

 
13C-NMR and DEPT (125 MHz, MeOD): δ = 19.98 (CH2), 48.90 (CH2), 113.32 (CH), 

117.22 (C), 120.88 (CH), 121.07 (CH), 125.71 (CH), 126.27 (C), 129.36 (C), 139.17 (C), 

154.13 (CH). 
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MS (150°C): m/z (%) = 170 (78, M+), 169 (100), 142 (14), 115 (10), 18 (11). 

 

HRMS: C11H10N2  Calculated: 170.0844  found: 170.0853. 

 

 

1-(3-Trimethylsilylprop-2-ynyl)-2,3,4,9-tetrahydro-1H-β-carboline (50) and 1-(1-

Trimethylsilylpropa-1,2-dienyl)-2,3,4,9-tetrahydro-1H-β-carboline (51) 

 

To a solution of 3,4-dihydro-β-carboline 12 (2.1 g, 

12.35 mmol) in dry THF (50 mL) was added drop 

wise BF3·OEt2 (1.6 mL, 12.35 mmol) at –23oC. After 

stirring for 0.5 h, a solution of trimethylsilylpropargyl 

magnesium bromide (37.05 mmol) in dry diethyl 

ether (20 mL) was added drop wise to this suspension. After stirring for 60 h at –23oC, 

the reaction mixture was quenched with saturated aqueous solution of NH4Cl (100 mL) 

and extracted with EtOAc (4 × 100 mL). The combined organic layers were washed with 

H2O (50 mL) and dried with Na2SO4. Evaporation of the solvent in vacuo and flash 

chromatography of the residue on silica gel (Hexane/EtOAc 1:1) afforded in the sequence 

of increasing polarity the compounds 51 as yellow crystals, yield: 274 mg (8%), 50 as 

light yellow crystals, yield: 1.8 g (52%). 

N
H

NH

TMS

 

 

Spectroscopic data for compound 50 

 

M.P.:  111 - 114°C  

 

Elemental Analysis:   Calculated: C: 72.29 H: 7.85 N: 9.92 

     Found:  C: 72.24 H: 8.15 N: 9.75. 

 

For further spectroscopic data see reference109 
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1-(1-Trimethylsilylpropa-1,2-dienyl)-2,3,4,9-tetrahydro-1H-β-carboline (51) 

 

N
H

NH

TMS

M.P.:  86°C  

 

UV (MeOH): λ = 193, 226, 283, 290 nm. 

 

IR (drift): ν = 3411, 3345, 3138, 3053, 2928, 2840, 

2755, 1924, 1879, 1756, 1642, 1622, 1587, 1505, 1470, 1445, 1345, 1324, 1308,  1297, 

1244, 1225, 1195, 1155, 1144, 1092, 1052, 1008, 973, 849, 783, 735, 716, 696, 639, 

614 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.12 (s, 9H), 1.69 (s, 1H), 2.69 - 2.74 (m, 1H), 2.76 - 

2.82 (m, 1H), 3.02 (hept., J = 4.3 Hz, 1H), 3.32 - 3.36 (m, 1H), 4.46 - 4.50 (m, 2H), 4.78 

(t, J = 1.65 Hz, 1H), 7.08 (dt, J = 7.5, 1.0 Hz, 1H), 7.14 (dt, J = 7.5, 1.2 Hz, 1H), 7.31 (d, 

J = 7.5 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H), 7.73 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = –0.67 (3CH3), 22.54 (CH2), 42.85 (CH2), 

55.53 (CH), 70.47 (CH2), 97.93 (C), 109.21 (C), 110.72 (CH), 118.13 (CH), 119.20 

(CH), 121.37 (CH), 127.57 (C), 135.21 (C), 135.51 (C), 210.13 (C). 

 

MS (80°C): m/z (%) = 282 (1, M+), 172 (11), 171 (100), 170 (2), 169 (5), 156 (1), 144 

(4), 73 (4). 

 

HRMS: C17H22N2Si  Calculated: 282.1552  found: 282.1546. 

 

Elemental Analysis:   Calculated: C: 72.34 H: 7.80 N: 9.92 

     Found:  C: 71.97 H: 7.72 N: 9.88. 
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1,2-Bis-(3-Trimethylsilyl-prop-2-ynyl)-2,3,4,9-tetrahydro-1H-β-carboline (46) 

 

A solution of 3-(trimethylsilyl)-propargyl bromide 

(407 mg, 2.12 mmol) in dry THF (10 mL) was 

added to a mixture of compound 50 (500 mg, 1.77 

mmol), Na2CO3 (940 mg, 8.85 mmol), TBAI (50 

mg) and dry THF (40 mL) and stirred at r.t for 60 h 

under argon atmosphere. The reaction mixture was 

poured into saturated aqueous solution of NH4Cl (50 mL), extracted with EtOAc (4 × 100 

mL) and dried over anhydrous Na2SO4 and subsequently concentrated in vacuo. The 

residue was subjected to flash chromatography on silica gel (Hexane/EtOAc 15:1) to 

afford the product 46 as yellow solid. 

N
H

N

TMS

TMS

 

Yield: 653 mg (94%); yellow solid. 

 

M.P.: 64 - 67°C 

 

Elemental Analysis:  Calculated C: 70.41% H: 8.16% N: 7.14% 

    Found  C: 71.16% H: 7.91% N: 7.65% 

 

For further spectroscopic data see reference74 

 

 

Tricarbonyl [η4-16,18-bis(trimethylsilyl)-15,18-diene-17-keto-nor-yohimbane]iron 

(13) 

 

N
H

N

O

TMS

TMS

Fe(CO)3H

A solution of compound 46 (1.15 g, 2.93 mmol) and 

pentacarbonyliron (1.15 g, 5.88 mmol) in 1,2-

dimethoxyethane (40 mL) was prepared in a glass 

ampoule inside the glove box. Ampoule was sealed 

and heated at 140oC for 24 h. Then the solvent was 
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removed in vacuo and flash chromatography of the residue on silica gel (Hexane/EtOAc 

3:1) provided the tricarbonyl[η4-cyclopentadienone]iron complex 13. 

 

Yield: 1.56 g (95%); Yellowish Orange Crystal. 

 

M.P.: 198°C 

 

For further spectroscopic data see reference74 

 

 

N
H

N

O

TMS

TMS

Fe(CO)3H

Spectroscopic data for anti-13 

 

M.P.: 206°C 

 

UV (MeOH):  λ = 196, 224, 290 nm. 

 

IR (KBr): ν = 3302, 3049, 2951, 2903, 2849, 2799, 2071, 2018, 1999, 1591, 1494, 1457, 

1457, 1408, 1363, 1332, 1322, 1278, 1254, 1159, 1137, 1102, 1070, 1049, 1006, 988, 

969, 845, 803, 768, 744, 695, 616 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.30 (s, 9H), 0.32 (s, 9H), 2.78 - 2.87 (m, 3H), 2.95 - 

3.03 (m, 2H), 3.21 (dd, J = 10.78, 4.9 Hz, 1H), 3.64 (d, J = 15.35 Hz, 1H), 3.78 (d, J = 

10.9 Hz, 1H), 3.96 (d, J = 15.36 Hz, 1H), 7.13 - 7.16 (m, 1H), 7.19 - 7.22 (m, 1H), 7.38 

(d, J = 8.0 Hz, 1H), 7.52 (d, J = 7.73 Hz, 1H), 7.75 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = –0.43 (CH3), –0.33 (CH3), 21.42 (CH2), 

32.72 (CH2), 52.07 (CH2), 53.31 (CH2), 55.16 (CH), 70.91 (C), 71.33 (C), 108.42 (C), 

109.27 (C), 109.44 (C), 110.96 (CH), 118.42 (CH), 119.89 (CH), 122.23 (CH), 126.88 

(C), 132.39 (C), 136.48 (C), 180.72 (CO), 208.77 (CO). 
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MS (210°C): m/z (%) = 560 (1, M+), 545 (2), 532 (22), 506 (8), 505 (27), 504 (61), 478 

(11), 477 (32), 476 (100), 460 (11), 403 (9), 387 (6), 238 (9), 170 (9), 73 (15), 58 (19), 57 

(12), 43 (51). 

 

HRMS: C27H32FeN2Si2O4  Calculated: 560.1250  found: 560.1245.  

 

Elemental Analysis:  Calculated C: 57.85% H: 5.75% N: 5.00% 

    Found  C: 57.43% H: 5.82% N: 4.88% 

 

 

1-(1-Trimethylsilylpropa-1,2-dienyl)-2-(3-trimethylsilanyl-prop-2-ynyl)-2,3,4,9-

tetrahydro-1H-β-carboline (52) 

 

A solution of 3-(trimethylsilyl)-propargyl 

bromide (194 mg, 1.02 mmol) in dry THF (10 

mL) was added to a mixture of compound 51 

(220 mg, 0.78 mmol), Na2CO3 (414 mg, 3.91 

mmol), TBAI (30 mg) and dry THF (40 mL) 

and heated at 50°C for 48 h under argon atmosphere. The reaction mixture was quenched 

with saturated aqueous solution of NH4Cl (25 mL), extracted with EtOAc (4 × 50 mL) 

and dried over anhydrous Na2SO4 and subsequently concentrated in vacuo. The residue 

was subjected to flash chromatography on silica gel (Hexane/EtOAc 15:1) to afford the 

product 52. 

N
H

N

TMS TMS

 

Yield: 256 mg (84%); light yellow solid. 

 

M.P.: 120°C 

 

UV (MeOH): λ = 198, 226, 284, 292 nm. 
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IR (KBr): ν = 3459, 2952, 2899, 2847, 2822, 2784, 2160, 1928, 1458, 1452, 1441, 1373, 

1357, 1320, 1303, 1267, 1243, 1201, 1161, 1113, 1095, 1069, 1042, 1009, 974, 941, 914, 

838, 759, 749, 697, 679, 628, 603, 577 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = – 0.05 (s, 9H), 0.17 (s, 9H), 2.76 - 2.90 (m, 3H), 3.15 - 

3.17 (m, 1H), 3.53 (d, J = 17 Hz, 1H), 3.65 (d, J = 17 Hz, 1H), 4.55 (m, 3H), 7.08 - 7.16 

(m, 4H), 7.31 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.68 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = –0.80 (3CH3), 0.08 (3CH3), 21.29 (CH2), 

44.74 (CH2), 49.40 (CH2), 61.33 (CH), 69.44 (CH2), 90.10 (C), 96.59 (C), 101.19 (C), 

108.52 (C), 110.68 (CH), 118.13 (CH), 119.24 (CH), 121.31 (CH), 127.26 (C), 134.36 

(C), 135.88 (C), 211.49 (C). 

 

MS (75°C): m/z (%) = 392 (1, M+), 377 (4), 283 (11), 282 (47), 281 (100), 169 (23), 73 

(7). 

 

HRMS: C23H32N2Si2  Calculated: 392.2104  found: 392.2105. 

 

Elemental Analysis:  Calculated C: 70.35% H: 8.21% N: 7.13% 

    Found  C: 69.53% H: 8.28% N: 6.67% 

 

 

16,18-bis(trimethylsilyl)-15,18-diene-17-keto-nor-yohimbane (53) 

 

A three neck 120 mL Pyrex flask equipped with an 

inner jacket which is cooled continuously by 

circulating oil with the help of cryostat, is flushed with 

argon and charged with iron-complex 13 (500 mg, 

0.89 mmol) and acetonitrile (120 mL). The stirred 

reaction mixture is irradiated by a 150 W middle 

pressure Hg lamp at –40°C for 2.5 h with continuous purging of argon. A suitable lamp 

N
H

N

O

TMS

TMS
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circuit, constructed to avoid contact of the circulating oil with the lamp, is made with 

quartz tube. Efficient stirring of the flask contents is essential to avoid deposition of Iron 

complex on the walls of the flask, which will reduce light intensity. After 2.5 h of 

irradiation, air is bubbled into the reaction mixture for 40 minutes and finally filtered 

over a bed of celite-577 and rinsed thoroughly with EtOAc, the solvent was evaporated, 

and the residue was subjected to flash chromatography on silica gel (Hexane/EtOAc 

10:1) to afford the product 53. 

 

Yield: 355 mg (95%); bright orange crystals 

 

M.P.: 158 - 162°C. 

 

Elemental Analysis:   Calculated C: 68.52% H: 7.67% N: 6.66% 

    Found  C: 68.76% H: 7.81% N: 6.56% 

 

 

For further spectroscopic data see reference74 

 

 

15,19-diene-17-keto-nor-yohimbane (54) 

 

A solution of 53 (158 mg, 0.376 mmol) in methanol (20 

mL) was vigorously stirred in presence of Ruthenium on 

carbon (10% by wt., 16 mg) in the hydrogen atmosphere 

at room temperature for 20 h. The catalyst was filtered off 

over a bed of celite, which was subsequently rinsed with 

methanol and the filtrate was concentrated. The residue 

was subjected to flash chromatography on silica gel (EtOAc) to provide the compound 

54. 

N
H

N

O

 

Yield: 10 mg (10%); light yellow crystals. 
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M.P. 136 - 138oC 

 

UV (MeOH): λ = 196, 223, 272, 397 nm. 

 

IR (drift): ν = 3270, 2916, 2848, 1744, 1617, 1540, 1452, 1376, 1322, 1301, 1268, 1246, 

1178, 1146, 1089, 1054, 1008, 990, 933, 846, 743, 689 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 2.80 (m, 2H), 2.96 (m, 3H), 3.33 (m, 2H), 3.58 (m, 

1H), 4.46 (m, 1H), 5.71 (s, 1H), 6.48 (s, 1H), 7.12 (m, 2H), 7.36 (d, J = 8.0 Hz, 1H), 7.50 

(d, J = 8.0 Hz, 1H), 8.23 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 22.48 (CH2), 32.53 (CH2), 38.80 (CH2), 

51.44 (CH2), 53.77 (CH), 109.48 (C), 111.20 (C), 111.55 (CH), 118.70 (CH), 120.33 

(CH), 120.42 (CH), 122.69 (CH), 127.12 (C), 132.34 (C), 136.71 (C), 136.82 (CH), 

168.24 (C), 206.52 (CO). 

 

MS (120°C): m/z (%) = 276 (100, M+), 275 (49), 247 (16), 169 (13), 58 (13), 43 (36). 

 

HRMS: C18H16N2O  Calculated: 276.1262  found: 276.1257 

 

 

15,19-Dehydro-17-keto-nor-yohimbane (56) 

 

A solution of 53 (96 mg, 0.229 mmol) in methanol (10 

mL) was vigorously stirred in presence of 30% Pd/C 

(15% by wt., 15 mg) in the hydrogen atmosphere at room 

temperature for 14 h at 20oC. The catalyst was filtered off 

over a bed of celite, which was subsequently rinsed with 

methanol and the filtrate was concentrated. The residue 

N
H

N

O

H
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was subjected to flash chromatography on silica gel (EtOAc) to provide the compound 

56. 

 

Yield: 62 mg (98%); colourless crystals 

 

M.P. 203oC 

 

UV (MeOH): λ = 224, 281 nm. 

 

IR (drift): ν = 3365, 3053, 2893, 2848, 2788, 2757, 1750, 1690, 1625, 1593, 1494, 1473, 

1453, 1426, 1388, 1360, 1342, 1325, 1311, 1273, 1262, 1237, 1221, 1209, 1186, 1168, 

1154, 1144, 1125, 1096, 1060, 1043, 1007, 965, 945, 917, 878, 840, 811, 797, 759, 737, 

683, 674, 626 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 2.37 (dt, J = 12.5, 2.0 Hz, 1H), 2.55 (br d, J = 16.52 

Hz, 1H), 2.72 - 2.81 (m, 2H), 2.89 - 2.93 (m, 3H), 2.98 - 3.06 (m, 2H), 3.17 - 3.25 (m, 

2H), 3.49 (br d, J = 15.43 Hz, 1H), 3.70 (dd, J = 9.6, 1.8 Hz, 1H), 7.09 - 7.18 (m, 2H), 

7.31 (d, J = 7.95 Hz, 1H), 7.50 (d, J = 7.69 Hz, 1H), 7.77 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 21.53 (CH2), 31.93 (CH2), 44.49 (CH2), 

45.64 (CH2), 52.23 (CH2), 54.44 (CH2), 55.76 (CH), 108.74 (C), 110.71 (CH), 118.22 

(CH), 119.53 (CH), 121.66 (CH), 127.02 (C), 130.34 (C), 131.71 (C), 134.01 (C), 136.20 

(C), 214.56 (CO). 

 

MS (130°C): m/z (%) = 278 (90, M+), 277 (23), 185 (21), 170 (100), 169 (92), 158 (60), 

86 (19), 84 (42), 73 (25). 

 

HRMS: C18H18N2O   Calculated: 278.1419  found: 278.1402 

 

Elemental Analysis:   Calculated: C: 77.67 H: 6.52 N: 10.06 

     Found:  C: 77.10 H: 6.60 N: 10.13 
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3-Trimethylsilyl-1,4,5,6,7,7a-hexahydro-inden-2-one (60) 

 

A solution of compound 39 (235 mg, 0.845 mmol) in methanol (20 

mL) was vigorously stirred in the presence of 10% Palladium on 

carbon (15% by wt., 35 mg) in the hydrogen atmosphere at room 

temperature for 4 h. The catalyst was filtered off over a bed of 

celite, which was subsequently rinsed with methanol and the filtrate was concentrated. 

The residue was subjected to flash chromatography on silica gel (Hexane/EtOAc 25:1) to 

provide the product 60 as colourless oil. 

O

TMS

 

Yield: 17 mg (10%); colourless oil. 

 

IR (ATR): ν = 2930, 2855, 1686, 1589, 1445, 1408, 1344, 1311, 1264, 1245, 1163, 1125,  

1092, 940, 935, 908, 887, 837, 759, 695, 633, 573 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.19 (s, 9H), 1.05 (dq, J = 12.78, 3.6 Hz, 1H), 1.32 - 

1.38 (m, 1H), 1.45 - 1.51 (m, 1H), 1.78 - 1.82 (m, 1H), 1.87 (dd, J = 18.37, 2.01 Hz, 1H), 

1.97 - 2.01 (m, 1H), 2.12 - 2.19 (m, 2H), 2.45 (dd, J = 18.38, 6.90 Hz, 1H), 2.53 - 2.58 

(m, 1H), 2.96 - 3.00 (m, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = –0.35 (3CH3), 25.41 (CH2), 27.49 (CH2), 

31.64 (CH2), 35.55 (CH2), 42.82 (CH2), 43.56 (CH), 136.11 (C), 191.80 (C), 213.03 (C). 

 

MS (150°C): m/z (%) = 208 (19, M+), 207 (26), 193 (27), 192 (100), 191 (32), 190 (10), 

180 (10), 74 (42), 73 (19). 

 

HRMS: C12H20OSi  Calculated: 208.1283  found: 208.1279 
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N-(2,4-Dinitro-phenyl)-N´-(3-trimethylsiyl-1,4,5,6,7,7a-hexahydro-inden-2-ylidene) –

hydrazine (61) 

 

A solution of compound 39 (105 mg, 0.378 mmol) in ethanol (10 mL) was vigorously 

stirred in the presence of Palladium on carbon (15% by wt., 15 mg) in the hydrogen 

atmosphere at room temperature for 2.5 h. The catalyst was filtered off over a bed of 

celite, which was subsequently rinsed with ethanol (80 mL). To this, a solution of 2,4-

dinitrophenylhydrazine (225 mg, 1.136 mmol) in conc. sulphuric acid (2 mL) / water (3 

mL) was added and stirred for 0.5 h. The reaction mixture was poured into saturated 

aqueous solution of NaHCO3 (25 mL), the organic layers are extracted with CH2Cl2 (4 × 

50 mL) and dried over anhydrous Na2SO4. Evaporation of the solvent in vacuo and flash 

chromatography of the residue on silica gel (Hexane/EtOAc 15:1) afforded the 

compounds 61, 62 and 63. 

 

 

Spectroscopic data for N-(2,4-Dinitro-phenyl)-N´-(3-trimethylsianyl-1,4,5,6,7,7a-

hexahydro-inden-2-ylidene)-hydrazine (61) 

 

N NH NO2

O2N

TMS

Yield: 51 mg (35%); red crystals. 

 

M.P.: 196 - 197°C 

 

UV (MeOH): λ = 217, 258, 290, 389 nm. 

 

IR (ATR): ν = 3287, 3112, 2936, 2860, 1615, 1586, 1564, 1537, 1513, 1433, 1410, 1368, 

1326, 1294, 1244, 1215, 1126, 1087, 1072, 1049,  959, 918, 887, 831, 758, 740, 693, 664, 

597 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.32 (s, 9H), 1.08 (dq, J = 12.6, 3.5 Hz, 1H), 1.27 (tq, 

J = 13.0, 3.8 Hz, 1H), 1.46 (tq, J = 13.0, 3.4 Hz, 1H), 1.82 (br d, J = 13.38 Hz, 1H), 1.97 

(dd, J = 7.5, 2.5 Hz, 1H), 2.11 (dd, J = 13.5, 5.0 Hz, 1H), 2.15 - 2.21 (m, 2H), 2.70 - 2.75 
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(m, 1H), 2.85 (dd, J = 17.3, 7.4 Hz, 1H), 2.95 (br d, J = 13.73 Hz, 1H), 7.82 (d, J = 9.63 

Hz, 1H), 8.26 (dd, J = 9.67, 2.5 Hz, 1H), 9.11 (d, J = 2.55 Hz, 1H), 10.85 (br s,1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 0.41 (3CH3), 25.45 (CH2), 27.57 (CH2), 

30.82 (CH2), 33.48 (CH2), 35.75 (CH2), 46.41 (CH), 116.21 (CH), 123.77 (CH), 128.54 

(C), 129.98 (CH), 131.88 (C), 137.04 (C), 144.92 (C), 172.38 (C), 177.99 (C). 

 

MS (25°C): m/z (%) = 388 (100, M+), 373 (8), 337 (12), 240 (6), 206 (5), 193 (9), 75 (7), 

73 (23). 

 

HRMS: C18H24N4O4Si  Calculated: 388.1567  found: 388.1572 

 

Elemental Analysis:  Calculated C: 55.65% H: 6.23% N: 14.42% 

    Found  C: 55.80% H: 6.11% N: 13.82% 

 

 

Spectroscopic data for N-(2,4-Dinitro-phenyl)-N´-(1,4,5,6,7,7a-hexahydro-inden-2-

ylidene)-hydrazine (63) 

 

N NH NO2

O2NYield: 11 mg (9%); red crystals. 

 

M.P.: 190 - 191°C 

 

UV (MeOH): λ = 212, 255, 289, 385 nm. 

 

IR (ATR): ν = 3287, 3108, 3056, 2925, 2866, 2846, 1613, 1588, 1531, 1511, 1495, 1423, 

1374, 1352, 1327, 1307, 1264, 1219, 1188, 1133, 1071, 977, 946, 917, 875, 860, 827, 

775,761, 740, 699, 684, 594, 535 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 1.07 (dq, J = 12.5, 3.3 Hz, 1H), 1.28 (tq, J = 13.1, 3.8 

Hz, 1H), 1.43 (tq, J = 13.3, 3.3 Hz, 1H), 1.83 (dd, J = 13.56, 1.2 Hz, 1H), 1.96 - 2.00 (m, 
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1 H), 2.16 - 2.23 (m, 2H), 2.26 (d, J = 2.4 Hz, 1H), 2.72 - 2.78 (m, 2H), 2.90 (dd, J = 

17.0, 7.0 Hz, 1H), 6.02 (s, 1H), 7.88 (d, J = 9.6 Hz, 1H), 8.24 (dd, J = 9.6, 2.5 Hz, 1H), 

9.10 (d, J = 2.56 Hz, 1H), 10.82 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 25.33 (CH2), 27.14 (CH2), 30.26 (CH2), 

33.36 (CH2), 35.25 (CH2), 44.09 (CH), 116.23 (CH), 122.29 (CH), 123.71 (CH), 129.86 

(CH), 129.95 (C), 137.24 (C), 144.80 (C), 167.45 (C), 169.37 (C). 

 

MS (150°C): m/z (%) = 316 (100, M+), 282 (15), 281 (18), 252 (11), 137 (26), 91 (12), 

79 (10). 

 

HRMS: C15H16N24O4  Calculated: 316.1171  found: 316.1168. 

 

Elemental Analysis:  Calculated C: 55.96% H: 5.10% N: 17.17% 

    Found  C: 56.28% H: 5.12% N: 17.54% 

 

 

Spectroscopic data for N-(2,4-Dinitro-phenyl)-N´-(octahydro-inden-2-ylidene)-

hydrazine (62) 

 

N NH NO2

O2N
Yield: 24 mg (20%); red crystals. 

 

M.P.: 129 - 131°C 

 

UV (MeOH): λ = 229, 362 nm. 

 

IR (ATR): ν = 3305, 3110,  2923, 2853, 1612, 1585, 1534, 1502, 1446, 1409, 1361, 

1331, 1306, 1261, 1216, 1125, 1065, 916, 864, 831, 761, 740, 697, 643, 567 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 1.23 - 1.41 (m, 2H), 1.42 - 1.67 (m, 6H), 2.17 - 2.24 

(m, 1H), 2.31 (dd, J = 7.3, 2.0 Hz, 1H), 2.34 - 2.40 (m, 1H), 2.46 (dd, J = 17.0, 5.0 Hz, 
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2H), 2.57 (dd, J = 17.4, 7.0 Hz, 1H), 7.89 (br d, J = 9.6 Hz, 1H), 8.25 (dd, J = 9.65, 2.5 

Hz, 1H), 9.10 (d, J = 2.56 Hz, 1H), 10.80 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 22.01 (CH2), 22.82 (CH2), 26.93 (CH2), 

27.12 (CH2), 32.22 (CH2), 36.76(CH), 36.88 (CH), 38.22 (CH2), 116.22 (CH), 123.58 

(CH), 128.72 (C), 129.93 (CH), 137.49 (C), 144.93 (C), 167.80 (C). 

 

MS (150°C): m/z (%) = 318 (100, M+), 281 (45), 193 (12), 152 (13), 139 (18), 121 (13), 

95 (19), 79 (13), 67 (12). 

 

HRMS: C15H18N4O4   Calculated: 318.1328  found: 318.1343. 

 

Elemental Analysis:  Calculated C: 56.60% H: 5.70% N: 17.60% 

    Found  C: 56.23% H: 5.73% N: 17.29% 

 

 

17-Keto-nor-alloyohimbane (44) 

 

A solution of compound 53 (150 mg, 0.357 mmol) in 

methanol (15 mL) was vigorously stirred in presence of PtO2 

(15% by wt., 23 mg) under hydrogen atmosphere at room 

temperature for 14 h. The catalyst was filtered off over a bed 

of celite, which was subsequently rinsed with methanol and 

the filtrate was concentrated. The residue was subjected to 

flash chromatography on silica gel with EtOAc as eluent to provide the product 44 and 

64. 

N
H

N

O

H

H

H

 

Spectroscopic data for compound 44. 

 

Yield: 42 mg (42%); light yellow crystals. 
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M.P. 189 - 190oC 

 

UV (MeOH): λ = 195, 225, 281, 289, 426 nm. 

 

IR (drift): ν = 3346, 3059, 2952, 2925, 2916, 2850, 2818, 2783, 2754, 1727, 1624, 1570, 

1491, 1472, 1457, 1436, 1400, 1387, 1375, 1358, 1339, 1321, 1302, 1277, 1266, 1251, 

1211, 1193, 1167, 1143, 1129, 1102, 1070, 1042, 1007, 961, 932, 904, 870, 842, 816, 

766, 743, 696, 668, 626 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 1.35 (q, J = 11.94 Hz, 1H), 2.02 - 2.05 (m, 1H), 2.09 

(d, J = 18.0 Hz, 1H), 2.21 (dd, J = 18.7, 7.8 Hz, 1H), 2.40 (d, J = 7 Hz, 1H), 2.42 - 2.51 

(m, 2H), 2.60 - 2.77 (m, 4H), 2.91 - 3.05 (m, 3H), 3.26 (dd, J = 11.56, 1.54 Hz, 1H), 7.06 

- 7.14 (m, 2H), 7.28 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.73 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 21.64 (CH2), 32.90 (CH2), 34.36 (CH), 

36.01 (CH), 39.38 (CH2), 46.76 (CH2), 53.09 (CH2), 56.24 (CH2), 58.50 (CH), 108.65 

(C), 110.73 (CH), 118.13 (CH), 119.49 (CH), 121.49 (CH), 127.22 (C), 134.25 (C), 

136.02 (C), 219.21 (CO). 

 

MS (120°C): m/z (%) = 280 (100, M+), 279 (86), 266 (34), 265 (42), 211 (44), 170 (18), 

169 (33), 156 (9), 43 (26). 

 

HRMS: C18H20N2O  Calculated: 280.1575  found: 280.1570 

 

 

Spectroscopic data for 17-Hydroxy-nor-alloyohimbane (64) 

 

N
H

N

H

H

H

H
OH

Yield: 22 mg (22%); white solid. 

 

M.P.:  255 - 256°C 
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UV (CHCl3): λ = 229, 280 nm. 

 

IR (drift): ν = 3439, 3198, 3052, 2947, 2931, 2913, 2885, 2833, 2764, 1624, 1499, 1475, 

1455, 1437, 1392, 1376, 1358, 1340, 1323, 1297, 1273, 1232, 1211, 1172, 1141, 1096, 

1072, 1040, 1008, 994, 969, 959, 932, 901, 886, 822, 804, 770, 741, 658 cm–1. 

 
1H-NMR (500 MHz, DMSO): δ = 1.30 (dd, J = 13.0, 1.75 Hz, 1H), 1.61 (q, J = 12.0 Hz, 

1H), 1.87 - 2.05 (m, 5H), 2.12 (dd, J = 12.9, 2.7 Hz, 1H), 2.40 (dt, J = 11.4, 4.0 Hz, 1H), 

2.59 (br d, J = 13.46 Hz, 1H), 2.75 - 2.78 (m, 1H), 2.88 (br d, J = 11.56 Hz, 2H), 2.92 

(dd, J = 11.1, 5.3 Hz, 1H), 3.03 (br d, J = 11.2 Hz, 1H), 4.20 (d, J = 6.0 Hz, 1H), 4.49 (br 

s, 1H), 6.91 (t, J = 7.4 Hz, 1H), 6.98 (t, J = 7.4 Hz, 1H), 7.26 (d, J = 7.97 Hz, 1H), 7.34 

(d, J = 7.70 Hz, 1H), 10.69 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, DMSO): δ = 22.05 (CH2), 33.44 (CH2), 36.82 (CH), 

37.92 (CH2), 39.09 (CH), 42.51 (CH2), 53.39 (CH2), 56.58 (CH2), 59.92 (CH), 71.58 

(CH), 106.64 (C), 111.35 (CH), 117.83 (CH), 118.68 (CH), 120.68 (CH), 127.10 (C), 

136.43 (C), 136.47 (C).  

 

MS (120°C): m/z (%) = 282 (6, M+), 281 (7), 221 (2), 177 (7), 133 (24), 89 (51), 87 (19), 

73 (8), 45 (100), 43 (11). 

 

HRMS: C18H22N2O  Calculated: 282.1732  found: 282.1740. 

 

 

17-Keto-nor-alloyohimbane (44) 

 

To a solution of compound 64 (65 mg, 0.23 mmol) and DCC (143 mg, 0.693 mmol) in 

dry DMSO (8 mL) was added crystalline orthophosphoric acid (34 mg, 0.347 mmol). 

This mixture was allowed to stir for 17 h at r.t and poured into 10 mL of methanol-water 

(3:2). After standing at r.t for 30 min. the solid was removed by filtration and washed 

with aqueous methanol and aqueous acetic acid. The filtrate was made basic with 
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aqueous Na2CO3 solution. The basic filtrate was extracted with CH2Cl2 (4 × 50 mL); the 

extracts were washed with water and concentrated in vacuo. The residue was subjected to 

flash chromatography on silica gel with EtOAc to afford the product 44 as colourless 

crystals. 

 

Yield: 48 mg (74%, correcting for residual N,N'-dicyclohexylurea by NMR). 

 

Spectroscopic data for compound 44 see above 

 

 

18-Keto Alloyohimbane (65a) 

 

To a solution of trimethylaluminium (2M soln. in 

Heptane) (0.17 mL, 0.343 mmol) in dry CH2Cl2 (8 mL) 

was added solution of compound 44 (80 mg, 0.286 mmol) 

in dry CH2Cl2 (7 mL) at –78°C, followed by addition of 

trimethylsilyldiazomethane (2M soln. in Hexane) (1.14 

mL, 2.286 mmol). The reaction mixture was stirred at –

78°C for 1 h, at –20°C for 1.5 h and then 0°C for 1.5 h and quenched with 1N HCl (15 

mL) and neutralized with a saturated solution of Na2CO3. The aqueous layer was 

extracted with CH2Cl2 (4 × 50 mL) and dried over anhydrous Na2SO4, and the solvent 

was evaporated in vacuo. The residue was subjected to flash chromatography on silica gel 

(Hexane/EtOAc 1:1) to afford the product mixture 65a and 65b. 

N
H

N

O

H

H

H

 

Yield: 26 mg (31%); light yellow crystals. 

 

Spectroscopic data for 65a 

 

M.P. 121 - 123oC 

 

UV (MeOH): λ = 224, 282, 290, 358 nm. 
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IR (ATR): ν = 3371, 3332, 3051, 2919, 2850, 2799, 2757, 1700, 1646, 1491, 1450, 1374, 

1360, 1341, 1319, 1277, 1258, 1235, 1214, 1176, 1156, 1140, 1106, 1068, 1050, 1009, 

955, 924, 890, 840, 773, 737, 678, 643, 614, 584, 568, 547, 531 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 1.85 (td, J = 12.26, 3.58 Hz, 1H), 1.91 - 2.00 (m, 1H), 

2.03-2.06 (m, 1H), 2.08 - 2.12 (m, 2H), 2.17 - 2.22 (m, 3H), 2.27 - 2.34 (m, 1H), 2.57 - 

2.72 (m, 4H), 2.89 - 2.97 (m, 2H), 3.03 (t, J = 15.39 Hz, 1H), 3.33 (dd, J = 11.0, 2.05 Hz, 

1H), 7.05 (dt, J = 7.86, 1.18 Hz, 1H), 7.09 (dt, J = 8.13, 1.31 Hz, 1H), 7.27 (d, J = 7.93 

Hz, 1H), 7.44 (d, J = 7.69 Hz, 1H), 7.73 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 21.75 (CH2), 30.00 (CH2), 30.93 (CH2), 

33.32 (CH), 36.57 (CH2), 38.02 (CH), 42.68 (CH2), 52.98 (CH2),  59.67(CH), 59.94 

(CH2), 108.61 (C), 110.73 (CH), 118.20 (CH), 119.57 (CH), 121.54 (CH), 127.30 (C), 

134.60 (C), 136.02 (C), 212.81 (CO). 

 

MS (150°C): m/z (%) = 294 (40, M+), 293 (52), 281 (11), 266 (13), 265 (20), 211 (8), 

170 (10), 169 (12), 73 (11), 72 (44), 69 (12), 60 (10), 59 (100), 57 (19), 557 (12). 

 

HRMS: C19H22N2O  Calculated: 294.1732  found: 294.1748. 

 

 

Alloyohimbane (2) 

 

A mixture of regio isomers 65a and 65b (40 mg, 0.136 

mmol), diethylene glycol (5 mL), potassium hydroxide (26 

mg, 0.476 mmol), and 85% hydrazine hydrate (680 mg, 

13.6 mmol) was heated to 100°C for 1 h and the condenser 

was then removed to allow the aqueous liquor to evaporate 

and the temperature of reaction mixture to rise to 195°C. 

After heating at this temperature for 1.25 h, the reaction mixture was cooled, and added a 

N
H

N
H

H

H
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drop of conc.HCl to neutralize. The reaction mixture was quenched with NH4Cl solution 

(25 mL), the organic layers are extracted with CH2Cl2 (4 × 50 mL) and dried over 

anhydrous Na2SO4 and subsequently concentrated in vacuo. The residue was subjected to 

flash chromatography on silica gel (Hexane/EtOAc 1:1) (1% Et3N) to afford the product 

2 as colourless crystals. 

 

Yield: 23.5 mg (62%); colourless crystals. 

 

M.P. 160oC 

 

UV (MeOH): λ = 226, 282, 290 nm. 

 

IR (ATR): ν = 3416, 3255, 3054, 2921, 2854, 2797, 2751, 1450, 1376, 1341, 1320, 1259, 

1200, 1160, 1145, 1123, 1060, 1009, 795, 736, 574 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 1.22 - 1.97 (series of m, 12H), 2.47 - 2.54 (m, 2H), 

2.66 (dd, J = 12, 4 Hz, 1H), 2.76 (dd, J = 11.2, 1 Hz, 1H), 2.93 – 2.99 (m, 2H), 3.19 (br s, 

1H), 7.05 (t, J = 7 Hz, 1H), 7.09 (t, J = 7 Hz, 1H), 7.28 (d, J = 8 Hz, 1H), 7.45 (d, J = 8 

Hz, 1H), 7.71 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 20.84 (CH2), 21.73 (CH2), 26.49 (CH2), 

26.49 (CH2), 30.50 (CH2), 31.58 (CH2), 34.76 (CH), 36.64 (CH), 53.41 (CH2), 60.49 

(CH), 62.00 (CH2), 108.15 (C), 110.66 (CH), 118.06 (CH), 119.33 (CH), 121.17 (CH), 

127.49 (C), 135.49 (C), 135.91 (C). 

 

MS (200°C): m/z (%) = 280 (69, M+), 279 (100), 277 (11), 169 (11). 

 

HRMS: C19H24N2   Calculated: 280.1939  found: 280.1941 
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15-ene-17-keto-nor-yohimbane (66a) 

 

A mixture of compound 56 (45 mg, 0.162 mmol) and silica 

gel (ca. 1.5) and methanol (10 mL) was heated at reflux for 

48 h. The solvent was removed from reaction mixture 

under reduced pressure and the residue was subjected to 

flash chromatography (EtOAc) on silica gel column to 

afford the product mixture 66a and 66b as light yellow 

crystals. 

N
H

N

O

HH

 

Yield: 32 mg (72%); light yellow crystals. 

 

Spectroscopic data for 66a 

 

M.P.:  266°C 

 

UV (MeOH): λ = 228, 229, 274, 289 nm. 

 

IR (ATR): ν = 3347, 3044, 2938, 2900, 2849, 2787, 2761, 1700, 1738, 1674, 1617, 1467, 

1427, 1379, 1346, 1321, 1298, 1280,1262, 1213, 1198, 1156, 1128, 1059, 1035, 1006, 

971, 947, 895, 882, 844, 807, 786, 759, 739, 680, 659, 610, 585, 555 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 2.02 (dd, J = 18.6, 2.4 Hz, 1H), 2.25 (t, J = 11.05 Hz, 

1H), 2.56 - 2.64 (m, 2H), 2.70 (dd, J = 11.1, 4.2 Hz, 1H), 2.75 - 2.80 (m, 1H), 2.99 - 3.05 

(m, 1H), 3.12 - 3.18 (m, 2H), 3.20 (dd, J = 13.0, 3.0 Hz, 1H), 3.41 - 3.44 (m, 2H), 6.02 (s, 

1H), 7.10 (dt, J = 8.0, 1.0 Hz, 1H), 7.15 (dt, J = 8.0, 1.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 

1H), 7.49 (d, J = 7.74 Hz, 1H), 7.76 (br s, 1H). 

  
13C-NMR and DEPT (125 MHz, CDCl3): δ = 21.82 (CH2), 35.32 (CH2), 39.17 (CH2), 

40.89 (CH), 52.41 (CH2), 59.47 (CH), 62.13 (CH2), 109.04 (C), 110.86 (CH), 118.35 
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(CH), 119.76 (CH), 121.95 (CH), 127.04 (C), 128.04 (CH), 133.20 (C), 136.16 (C), 

179.57 (C), 207.90 (CO). 

 

MS (150°C): m/z (%) = 278 (69, M+), 277 (100), 183 (15), 182 (26), 170 (8), 169 (23), 

71 (10), 57 (11). 

 

HRMS: C18H18N2O  Calculated: 278.1419  found: 278.1390 

 

 

17-Keto-nor-3-Epialloyohimbane (45) 

 

10% Palladium on carbon (25% by wt., 4 mg) was added 

to a solution of the 66a (15 mg, 0.054 mmol) in methanol 

(15 mL) and vigorously stirred under H2 atmosphere 

(800-900 Torr) until no further H2 uptake was detected. 

The reaction mixture was filtered over a short path of 

celite (which was subsequently washed with methanol) 

and the solvent was evaporated. The residue was subjected to flash chromatography 

(EtOAc) on silica gel column to afford the product 45. 

N
H

N

O

H H

H

 

Yield: 15 mg (99%); light yellow crystals 

 

M.P. 170oC 

 

UV (MeOH): λ = 201, 225, 282 nm. 

 

IR (ATR): ν = 3323, 2930, 2914, 2856, 2821, 2766, 2737, 1719, 1622, 1590, 1492, 1452, 

1384, 1357, 1339, 1323, 1292, 1271, 1256, 1231, 1192, 1170, 1149, 1130, 1171, 1050, 

1008, 988, 924, 879, 829, 788, 741, 671, 620, 602, 580, 555, 542 cm–1. 
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1H-NMR (500 MHz, CDCl3): δ = 1.94 (td, J = 13.2, 5.0 Hz, 1H), 2.04 (d, J = 18.5 Hz, 

1H), 2.16 - 2.23 (m, 2H), 2.28 (dd, J = 18.8, 8.7 Hz, 1H), 2.38 - 2.44 (m, 2H), 2.62 (td, J 

= 11.0, 4.3 Hz, 1H), 2.68 - 2.76 (m, 3H), 2.91 (dd, J = 11.9, 5.6 Hz, 1H), 2.97 - 3.04 (m, 

1H), 3.06 (dd, J = 11.19, 5.9 Hz, 1H), 3.44 (d, J = 11.7 Hz, 1H), 7.08 - 7.16 (m, 2H), 7.29 

(d, J = 8.0 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.75 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 21.51 (CH2), 31.13 (CH2), 33.38 (CH), 

34.96 (CH), 38.98 (CH2), 44.10 (CH2),  53.34 (CH2), 53.69 (CH), 56.41 (CH2), 108.83 

(C), 110.72 (CH), 118.12 (CH), 119.50 (CH), 121.52 (CH), 127.29 (C), 133.99 (C), 

136.06 (C), 218.38 (CO). 

 

MS (150°C): m/z (%) = 280 (97, M+), 279 (100), 211 (50), 178 (13), 170 (13), 169 (20), 

149 (13), 125 (14), 123 (13), 111 (23), 109 (15), 99 (11), 97 (32), 95 (20), 85 (30), 83 

(30), 81 (20), 71 (42), 70 (13), 69 (21), 67 (11), 59 (18), 57 (60), 56 (14), 55 (32). 

 

HRMS: C18H20N2O   Calculated: 280.1576  found: 280.1557 

 

 

Nor-3-Epi-Alloyohimbane (68) 

 

A mixture of compound 45 (40 mg, 0.136 mmol), 

diethylene glycol (5 mL), potassium hydroxide (26 mg, 

0.476 mmol), and 85% hydrazine hydrate (680 mg, 13.6 

mmol) was heated to 100°C for 1 h and the condenser was 

then removed to allow the aqueous liquor to evaporate and 

the temperature of reaction mixture to rise to 195°C. After heating at this temperature for 

1.25 h, the reaction mixture was cooled, and added a drop of conc.HCl to neutralize. The 

reaction mixture is poured in saturated aqueous solution of NH4Cl (25 mL), the organic 

layers are extracted with CH2Cl2 (4 × 50 mL) and dried over anhydrous Na2SO4 and 

subsequently concentrated in vacuo. The residue was subjected to flash chromatography 

on silica gel (Hexane/EtOAc 1:1) (1% Et3N) to afford the product 68. 

N
H

N
H H

H
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Yield: 25 mg (66%); white solid 

 

M.P. 132°C - 134.5oC 

 

UV (MeOH): λ = 225, 279, 287. 

 

IR (ATR): ν = 3409, 3226, 3053, 2944, 2870, 2810, 2762, 2448, 1709, 1622, 1592, 1468, 

1451, 1355, 1323, 1291, 1272, 1224, 1177, 1157, 1119, 1100, 1076,1054, 1008, 981, 908, 

787, 737, 646, 614, 587 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 1.23 - 1.26 (m, 1H), 1.34 - 1.40 (m, 1H), 1.61 - 1.78 

(m, 4H), 1.87 - 1.93 (m, 1H), 2.08 - 2.21 (m, 3H), 2.32 - 2.38 (m, 1H), 2.56 - 2.61 (m, 

1H), 2.69 - 2.77 (m, 2H), 2.97 - 3.07 (m, 2H), 3.36 (d, J = 11.17 Hz, 1H), 7.06 (dt, J = 

7.5, 1.0 Hz, 1H), 7.10 (dt, J = 7.5, 1.2 Hz, 1H), 7.27 (d, J = 7.87 Hz, 1H), 7.45 (d, J = 

7.65 Hz, 1H), 7.69 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 21.56 (CH2), 22.52 (CH2), 27.13 (CH2), 

29.30 (CH2), 31.27 (CH2), 37.54 (CH), 38.06 (CH), 53.55 (CH2), 54.66 (CH), 57.41 

(CH2), 108.43 (C), 110.65 (CH), 118.03 (CH), 119.32 (CH), 121.23 (CH), 127.44 (C), 

135.22 (C), 136.02 (C). 

 

MS (120°C): m/z (%) = 266 (64, M+), 265 (100), 170 (17), 169 (27). 

 

HRMS: C18H22N2  Calculated: 266.1783  found: 266.1777 
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3-Epialloyohimbane (3) 

 

To a solution of trimethylaluminium (2M soln. in 

Heptane) (0.43 mL, 0.786 mmol) in dry CH2Cl2 (8 mL) 

was added solution of compound 45 (110 mg, 0.393 

mmol) in dry CH2Cl2 (7 mL) at –78°C, followed by 

addition of trimethylsilyldiazomethane (2M soln. in 

Hexane) (1.57 mL, 3.14 mmol). The reaction mixture was stirred at –78°C for 2 h, at –

20°C for 3.5 h and then 0°C for 3.5 h and quenched with 1N HCl (15 mL) and 

neutralized with a saturated solution of Na2CO3. The aqueous layer was extracted with 

CH2Cl2 (4 × 50 mL) and dried over anhydrous Na2SO4, and the solvent was evaporated in 

vacuo.  

N
H

N
H H

H

The crude product mixture, diethylene glycol (5 mL), potassium hydroxide (53 mg, 0.946 

mmol), and 85% hydrazine hydrate (1.36 g, 27.2 mmol) was heated to 100°C for 1 h and 

further for 1.25 h at 195°C. The reaction mixture was cooled to r.t. and added a drop of 

conc.HCl and quenched with saturated aqueous solution of NH4Cl (25 mL), the organic 

layers are extracted with CH2Cl2 (4 × 50 mL) and dried over anhydrous Na2SO4 and 

subsequently concentrated in vacuo. The residue was subjected to flash chromatography 

on silica gel (Hexane/EtOAc 1:1) (1%Et3N) to afford the mixture of compounds 3 and 

68. 

 

Yield: 18 mg (18%); white solid. 

 

Spectroscopic data for 3 

 

M.P. 174 - 177 oC 

 

UV (MeOH): λ = 229, 280, 287 nm. 
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IR (ATR): ν = 3327, 3049, 2921, 2857, 2820, 2773, 1466, 1450, 1363, 1319, 1292, 1261, 

1239, 1183, 1156, 1097, 1078, 1045, 1008, 982, 966, 920, 794, 759, 735, 682, 627, 613, 

581, 555 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 1.24 - 2.04 (series of m, 11H), 2.11 (m, 1H), 2.57 - 

2.787 (m, 4H), 2.98 – 3.10 (m, 2H), 3.50 (br s, 1H), 7.08 (t, J = 8 Hz, 1H), 7.10 (t, J = 8 

Hz, 1H), 7.28 (d, J = 8 Hz, 1H), 7.45 (d, J = 7.3 Hz, 1H), 7.70 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 21.51 (CH2), 22.53 (CH2), 27.15 (CH2), 

27.15 (CH2), 29.64 (CH2), 31.21 (CH2), 33.80 (CH), 34.66 (CH), 53.36 (CH2), 54.45 

(CH), 57.31 (CH2), 108.32 (C), 110.66 (CH), 118.05 (CH), 119.34 (CH), 121.24 (CH), 

127.51 (C), 135.12 (C), 135.94 (C). 

 

MS (150°C): m/z (%) = 280 (82, M+), 279 (100), 266 (54), 265 (63), 170(15), 169 (20), 

18 (5). 

 

HRMS: C19H24N2   Calculated: 280.1939  found: 280.1926 

 

 

Compound 69 

 

A mixture of compound 53 (100 mg, 0.238 

mmol) and diethyl maleate (41 mg, 0.238 

mmol) in dry benzene (15 mL) was refluxed for 

14 h. The solvent was evaporated and the 

residue was subjected to flash chromatography 

on silica gel (Hexane/EtOAc 15:1) to provide 

the product 69.  

N
H

N O

TMS

TMS
O

O OC2H5

OC2H5

 

Yield: 96 mg (68%); orange crystalline solid. 
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M.P.:  134 - 135°C 

 

UV (MeOH): λ = 279, 289, 234 nm. 

 

IR (ATR): ν = 3595, 3466, 3392, 2977, 2955, 2902, 2847, 2804, 1739, 1627, 1452, 1371, 

1323, 1248, 1189, 1138, 1099, 1044, 1008, 977, 904, 834, 794, 736, 693, 624, 547, 

530 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.16 (s, 9H), 0.18 (s, 9H), 1.21 - 1.30 (m, 6H), 2.43 - 

2.49 (m, 1H), 2.70 - 2.75 (m, 2H), 2.99 - 3.07 (m, 2H), 3.18 - 3.21 (m, 1H), 3.48 - 3.52 

(m, 3H), 3.57 (dd, J = 15.6, 1.6 Hz, 1H), 3.74 (d, J = 9.93 Hz, 1H), 3.98 - 4.13 (m, 4H), 

7.06 - 7.14 (m, 2H), 7.29 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.94 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = –1.83 (3CH3), –1.74 (3CH3), 21.40 

(CH2), 32.88 (CH2), 48.24 (CH), 48.53 (CH), 51.79 (C), 52.15 (CH2), 52.25 (C), 55.29 

(CH), 55.76 (CH2), 60.73 (CH2), 60.86 (CH2), 108.35 (C), 110.66 (CH), 118.09 (CH), 

119.24 (CH), 121.31 (CH), 127.17 (C), 134.58 (C), 136.20 (C), 136.75 (C), 136.87 (C), 

171.14 (CO), 171.24 (CO), 198.93 (CO). 

 

MS (150°C): m/z (%) = 592 (18, M+), 491 (13), 422 (24), 420 (62), 170 (38), 169 (22), 

149 (25), 148 (26), 147 (100), 131 (15), 127 (32), 99 (88), 97 (14), 86 (21), 85 (18), 84 

(35), 83 (17). 

 

HRMS: C32H44Si2N2O5  Calculated: 592.2789  found: 592.2796 

 

Elemental Analysis:  Calculated C: 64.83% H: 7.48% N: 4.73% 

    Found  C: 62.23% H: 7.56% N: 4.22% 
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5.2.2 Referring to Section 3.2 
 

2-But-2-ynyl-1-(3-trimethylsilylprop-2-ynyl)-2,3,4,9-tertahydro-1H-β-carboline (74) 

 

A solution of 1-bromo-2-butyne (613 mg, 4.61 mmol) 

in dry THF (10 mL) was added to a mixture of 

compound 50 (970 mg, 3.447 mmol), Na2CO3 (1.79 

g, 16.92 mmol), TBAI (82 mg) and dry THF (40 mL) 

and stirred at r.t for 60 h under argon atmosphere. The 

reaction mixture was quenched with saturated 

aqueous solution of NH4Cl (50 mL), extracted with EtOAc (4 × 100 mL) and dried over 

anhydrous Na2SO4 and subsequently concentrated in vacuo. The residue was subjected to 

flash chromatography on silica gel (Hexane/EtOAc 10:1) to afford the product 74. 

N
H

N

TMS

 

Yield: 1.0 g (87%); colourless oil. 

 

For further spectroscopic data see reference109 

 

 

Tricarbonyl[η4-16-trimethylsilyl-18-methyl-15,18-diene-17-keto-nor-yohimbane] 

Iron (73) 

 

To a solution of diyne 74 (500 mg, 1.5 mmol) in dry 

1,2-dimethoxyethane (25 mL) was added 

pentacarbonyliron (587 mg, 3.0 mmol) under argon 

atmosphere in glove box. The reaction mixture was 

then heated in a sealed tube for 24 h at 140oC. After 

this time the solvent was removed in vacuo. Flash 

chromatography of the residue on silica gel (Hexane/EtOAc/MeOH 3:1:0.1) provided the 

tricarbonyl[η4-cyclopentadienone]iron complex 73. 

N
H

N

O

Me

TMS

Fe(CO)3
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Yield: 691 mg (92%); orange crystals. 

 

For further spectroscopic data see reference109 

 

 

Spectroscopic data for anti-73 

N
H

N

O

Me

TMS

Fe(CO)3H

 

M.P. 186 - 188oC 

 

UV (MeOH): λ = 196, 223, 272, 397 nm. 

 

IR (ATR):  ν = 3367, 2942, 2908, 2799, 2737, 

2059, 2015, 1993, 1601, 1495, 1454, 1409, 1391, 1369, 1341, 1324, 1271, 1248, 1208, 

1162, 1138, 1082, 1024, 1004, 975, 957, 921,839, 814, 760, 739, 722, 694, 637, 611, 590, 

572 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.30 (s, 9H), 1.74 (s, 3H), 2.72 (dd, J = 16.0, 10.7 Hz, 

1H), 2.79 - 2.86 (m, 2H), 2.91 (dd, J = 16.0, 3.1 Hz, 1H), 2.98 - 3.05 (m, 1H), 3.22 - 3.25 

(m, 1H), 3.60 (d, J = 15.29 Hz, 1H), 3.80 (d, J = 10.47 Hz, 1H), 3.91 (d, J = 15.53 Hz, 

1H), 7.12 (dt, J = 8.0, 1.0 Hz, 1H), 7.18 (dt, J = 8.0, 1.0 Hz, 1H), 7.36 (d, J = 8.01 Hz, 

1H), 7.51 (d, J = 7.74 Hz, 1H), 7.84 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = –0.32 (CH3), 8.62 (CH3), 21.45 (CH2), 

32.18 (CH2), 50.84 (CH2), 52.08 (CH2), 55.29 (CH), 67.51 (C), 80.50 (C), 103.91 (C), 

104.03 (C), 109.23 (C), 110.97 (CH), 118.41 (CH), 119.87 (CH), 122.21 (CH), 126.85 

(C), 132.34 (C), 136.48 (C), 175.75 (CO), 208.91 (CO). 

 

MS (150°C): m/z (%) = 502 (1, M+), 474 (27), 446 (61), 418 (100), 402 (20), 362 (54), 

344 (13), 170 (13), 169 (24), 73 (12). 
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HRMS: C25H26N2SiO4Fe  Calculated: 502.1011  found: 502.1024 

 

Elemental Analysis:  Calculated C: 59.77% H: 5.22% N: 5.58% 

    Found  C: 59.41% H: 5.26% N: 5.04% 

 

 

16-trimethylsilyl-15,19-diene-17-keto-nor-yohimbane (55) 

 

A solution of compound 53 (100 mg, 0.238 mmol) in 

acetone (10 mL) was added to a suspension of 

Me3NO·2H2O (53 mg, 0.476 mmol) in acetone (10 mL) at 

10oC. After stirring for 1.5 h, the reaction mixture is 

filtered over silica gel and the solvent was evaporated in 

vacuo. The residue was subjected to flash chromatography 

on silica gel (Hexane/EtOAc 1:1) to provide the product 55. 

N
H

N

OTMS

 

Yield: 35 mg (42%); orange crystals. 

 

For further spectroscopic data see reference74 

 

 

Compound 77 

 

A mixture of compound 53 (95 

mg, 0.226 mmol) and 

trifluoroacetic acid (15 mL) was 

refluxed with stirring for 1 h and 

than cooled to room temperature. 

The mixture was quenched with 

ice and neutralized with a 

saturated solution of Na2CO3. The aqueous layer was extracted with CH2Cl2 (4 × 50 mL) 

N
H

N O

TMS

N

TMSO

N
H

H
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and dried over anhydrous Na2SO4, and the solvent was evaporated in vacuo. The residue 

was subjected to flash chromatography on silica gel (Hexane/EtOAc 5:1) to afford the 

product 77. 

 

Yield: 36 mg (46%); colourless crystals. 

 

M.P. 199 oC 

 

IR (ATR): ν = 3377, 3053, 2950, 2903, 2844, 2803, 2741, 1759, 1691, 1593, 1455, 1375, 

1312, 1250, 1161, 1125, 1101, 1041, 1007, 953, 907, 843, 792, 741, 630, 587, 580, 551 

cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.25 (s, 9H), 0.28 (s, 9H), 1.96 (t, J = 12.30 Hz, 2H), 

2.25 (dd, J = 2.112, 10.99 Hz, 2H), 2.45 - 2.51 (m, 1H), 2.63 - 2.69 (m, 1H), 2.72 - 2.89 

(m, 3H), 2.94 - 3.10 (m, 3H), 3.16 - 3.21 (m, 2H), 3.33 - 3.37 (m, 3H), 3.52 (d, J = 16.46 

Hz, 1H), 3.93 (d, J = 11.55 Hz, 1H), 4.09 - 4.11 (m, 1H), 7.10 - 7.11 (m, 2H), 7.14 - 7.17 

(m, 2H), 7.30 - 7.32 (m, 2H), 7.47 - 7.49 (m, 2H), 7.60 (br s, 1H), 7.96 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = –1.77 (CH3), 0.18 (CH3), 21.38 (CH2), 

21.80 (CH2) 31.26 (CH2), 37.53 (CH2), 51.64 (CH2), 52.34 (C), 52.41 (CH2), 52.94 (C), 

54.64 (CH2), 55.51 (CH), 56.18 (CH2), 56.25 (CH), 56.52 (CH), 57.23 (CH), 60.39 (C), 

108.53 (C), 109.12 (C), 110.71 (CH), 110.99 (CH), 118.14 (CH), 118.38 (CH), 119.60 

(CH), 119.70 (CH), 121.83 (CH), 126.97 (C), 127.06 (C), 131.63 (C), 132.79 (C), 133.37 

(C), 136.14 (C), 136.26 (C), 137.77 (C), 145.21 (C), 179.52 (C), 199.76 (CO), 208.54 

(CO). 

 

 

For further spectroscopic data see reference74 

 

 

 

 



Experimental Section 150 

 

18-methyl-17-keto-nor-yohimbane (72) 

 

A mixture of Raney nickel (ca. 5 g), iron-complex 73 

(100 mg, 0.199 mmol) and ethanol (30 mL) was 

stirred at room temperature for 14 h. The mixture was 

filtered through celite and the filter cake washed 

thoroughly with methanol. Concentration of the 

filtrate in vacuo and flash chromatography 

(Hexane/EtOAc 1:1) on silica gel column afforded the products 72, 78 and 79. 

N
H

N

O

H

H

H
Me
H

 

Spectroscopic data for 72 

 

Yield: 23 mg (39%); light yellow crystals 

 

M.P. 100oC 

 

UV (MeOH): λ = 219, 229, 281, 438 nm 

 

IR (ATR): ν = 3365, 3051, 2923, 2852, 2804, 2754, 1727, 1557, 1453, 1374, 1343, 1319, 

1271, 1206, 1180, 1167, 1123, 1098, 1072, 1025, 1009, 893, 871, 850, 775, 734, 666, 

562 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 1.09 (d, J = 6.95 Hz, 3H), 1.39 (q, J = 12.3 Hz, 1H), 

1.92 - 1.94 (m, 1H), 2.06 - 2.10 (m, 1H), 2.13 (br d, J = 19.3 Hz, 1H), 2.38 (dd, J = 18.39, 

7.7 Hz, 1H), 2.45 - 2.50 (m, 1H), 2.61 - 2.73 (m, 4H), 2.92 - 2.98 (m, 1H), 3.0 (dd, J = 

11.0, 5.6 Hz, 1H), 3.07 (br d, J = 12.0 Hz, 1H), 3.28 (dd, J = 11.58, 1.67 Hz, 1H), 7.06 

(dt, J = 7.8, 1.1 Hz, 1H), 7.11 (dt, J = 7.2, 1.1 Hz, 1H), 7.28 (d, J = 7.95 Hz, 1H), 7.45 (d, 

J = 7.66 Hz, 1H), 7.67 (br s, 1H). 
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13C-NMR and DEPT (125 MHz, CDCl3): δ = 12.71 (CH3), 21.61 (CH2), 32.53 (CH), 

33.68 (CH2), 43.03 (CH), 43.92 (CH), 44.98 (CH2), 53.23 (CH2), 55.25 (CH2), 58.80 

(CH), 108.63 (C), 110.73 (CH), 118.14 (CH), 119.51 (CH), 121.52 (CH), 127.26 (C), 

136.04 (C), 220.80 (CO). 

 

MS (150°C): m/z (%) = 294 (93, M+), 293 (100), 225 (26), 169 (13), 43 (11). 

 

HRMS: C19H22N2O   Calculated: 294.1732  found: 294.1702 

 

 

15,19-Dehydro-18-methyl-17-keto-nor-yohimbane (

 

78) 

ield: 7 mg (12%); light yellow crystals 

.P. 157 C 

: λ = 205, 226, 283, 290, 312, 358 nm. 

R (ATR): ν = 3331, 3051, 2918, 2850, 2749, 1692, 1654, 1553, 1494, 1453, 1372, 1319, 

H-NMR (500 MHz, CDCl3): δ = 1.25 (d, J = 5.6 Hz, 3H), 1.41 (q, J = 11.94 Hz, 1H),  

3C-NMR and DEPT (125 MHz, CDCl3): δ = 7.90 (CH3), 21.59 (CH2), 37.25 (CH2), 

136.10 (C), 167.26 (C), 208.38 (CO). 

N
H

N

O

H
Me

Y
 

oM
 

V (MeOH)U
 

I

1270, 1227, 1176, 1160, 1069, 1046, 1003, 969, 942, 910, 835, 779, 739, 673, 587, 

564 cm–1. 

 
1

2.04 (s, 1H), 2.17 (d, J = 6.2 Hz, 1H), 2.50 (ddd, J = 12.4, 5.6, 2.0 Hz, 1H), 2.62 (d, J = 

3.43 Hz, 1H), 2.76 - 2.84 (m, 2H), 2.97 - 3.04 (m, 1H), 3.19 - 3.23 (m, 2H), 3.62 (br d, J 

= 10.67 Hz, 1H), 4.02 - 4.07 (m, 1H), 7.07 (dt, J = 7.4, 0.7 Hz, 1H), 7.12 (dt, J = 8.0, 0.8 

Hz, 1H), 7.29 (d, J = 7.98 Hz, 1H), 7.46 (d, J = 7.71 Hz, 1H), 7.73 (br s, 1H). 

 
1

38.42 (CH), 40.47 (CH2), 53.06 (CH2), 54.52 (CH2), 58.88 (CH), 108.39 (C), 110.82 

(CH), 118.21 (CH), 119.54 (CH), 121.69 (CH), 127.11 (C), 133.30 (C), 134.74 (C), 
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MS (150°C): m/z (%) = 292 (94, M+), 291 (91), 170 (10), 169 (29), 156 (26), 101 (15), 

3 (23), 60 (15), 59 (100), 58 (11), 43 (55), 41 (11). 

measured: 292.1561 

pectroscopic data for 79 

r-yohimbane (79) 

λ = 219, 223, 227, 281, 289, 353. 

23, 276

066, 784, 737, 567, 528 cm–1. 

δ = 0.97 (d, J = 6.62 Hz, 3H), 1.15 - 1.23 (m, 1H), 1.40 - 

.56 (m, 2H), 1.97 - 2.05 (m, 2H), 2.11 - 2.21 (m, 2H), 2.39 - 2.63 (m, 1H), 2.74 - 2.80 

(CH3), 21.53 (CH2), 34.62 (CH2), 

5.73 (CH), 40.16 (CH2), 41.62 (CH), 45.16 (CH), 53.01 (CH2), 54.61 (CH2), 59.50 

 

8

 

HRMS: C19H20N2O   Calculated: 292.1576  

 

 

S

 

18-methyl-17-hydroxy-no

 

N
H

N
H

H

H

H

H
OH

Me

Yield: 3 mg (5%); white solid. 
 

M.P.:  250°C 

 

UV (MeOH): 

 

IR (ATR): ν = 3226, 3094, 2941, 2913, 2866, 28 0, 1455, 1373, 1342, 1319, 1296, 

1

 
1H-NMR (500 MHz, DMSO): 

1

(m, 1H), 2.89 - 2.96 (m, 2H), 3.03 (d, J = 10.79 Hz, 1H), 3.30 - 3.38 (m, 1H), 3.58 - 3.63 

(m, 1H), 4.53 (d, J = 5.26 Hz, 1H), 6.91 - 6.94 (m, 1H), 6.98 - 7.01 (m, 1H), 7.26 (d, J = 

8.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 10.68 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, DMSO): δ = 16.52 

3

(CH), 78.98 (CH), 106.16 (C), 110.90 (CH), 117.38 (CH), 118.21 (CH), 120.22 (CH), 

126.62 (C), 135.93 (C), 135.98 (C). 
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MS (150°C) : m/z (%) = 296 (89, M+), 295 (100), 294 (18), 293(18), 225 (18), 223 (10), 

184 (9), 170 (17), 169 (22), 166 (9), 156 (10), 144 (10), 97 (8), 85 (10), 83 (9), 71 (15), 

9 (11), 57 (20), 55 (12). 

lemental Analysis:   Calculated: C: 76.99 H: 8.16 N: 9.45 

-N-Boc-18-methyl-17-keto-nor-yohimbane (80) 

0% NaOH (5 mL) was added to the solution of 

L), 

nd then tetrabutylammonium hydrogen sulphate (30 

with CH2Cl2 (4 × 50 mL), dried 

d in vacuo. The residue was 

.P. 169oC 

V (MeOH): λ = 228, 267 nm. 

6

 

HRMS: C19H24N2O  Calculated: 296.1889  found: 296.1887 

 

E

     Found:  C: 76.03 H: 8.00 N: 9.20. 

 

 

 

1

 

N
N

O

H
MeBoc

5

compound 72 (85 mg, 0.289 mmol) in toluene (15 m

a

mg, 0.088 mmol). The two phase system was stirred 

under argon atmosphere for 30 minutes. Di-t-butyl 

dicarbonate [(Boc)2O] (127 mg, 0.578 mmol) in toluene 

(2 mL) was added during 10 min and stirring was contin

layer was separated and the aqueous layer was extracted 

over anhydrous Na

ued for further 1 h. The organic 

2SO4 and subsequently concentrate

subjected to flash chromatography on silica gel (Hexane/EtOAc 1:1) (1% Et3N) to yield 

pure compound 80. 

 

Yield: 67 mg (59%); light yellow crystals 

 

M

 

U
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IR (ATR): ν = 2973, 2917, 2800, 2761, 1726, 1477, 1455, 1407, 1392, 1367, 1357, 1328, 

145, 1127, 1116, 1063, 1027, 1013, 979, 941, 920, 860, 

45, 787, 763, 745, 702, 665, 578 cm–1. 

, 1H), 2.22 - 2.26 (m, 1H), 2.34 - 2.41 (m, 1H), 

.49 - 2.55 (m, 1H), 2.58 - 2.65 (m, 2H), 2.70 - 2.75 (m, 1H), 2.81 - 2.92 (m, 3H), 3.03 

 43.87 (CH), 44.98 (CH2), 51.24 (CH2), 55.54(CH2), 

0.41 (CH), 83.65 (C), 115.30 (CH), 117.32 (C), 117.94 (CH), 122.64(CH), 123.91 (CH), 

85 (15), 83 (12), 70 (10), 

9 (48), 57 (100), 56 (23), 55 (15), 44 (26), 43 (25), 41 (33), 32 (11), 29 (12). 

 solution of ketone 72 (100 mg, 0.34 mmol) and 

MSO (15 mL) was heated at 50°C under argon 

 dried over anhydrous Na2SO4 and 

1313, 1271, 1256, 1218, 1157, 1

8

 
1H-NMR (500 MHz, CDCl3): δ = 1.08 (d, J = 6.97 Hz, 3H), 1.17 - 1.26 (m, 1H), 1.66 (s, 

9H), 1.79 - 1.90 (m, 1H), 2.03 - 2.07 (m

2

(d, J = 12 Hz, 1H), 3.69 (dd, J = 1.66, 1.63 Hz, 1H), 7.14 - 7.26 (m, 2H), 7.38 (m, 1H), 

7.99 (d, J = 8 Hz, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 12.67 (CH3), 22.58 (CH2), 28.24 (CH3), 

33.25 (CH), 35.01(CH2), 43.22 (CH),

6

129.13 (C), 136.48 (C), 136.95 (C), 150.47 (CO), 220.79 (CO). 

 

MS (150°C): m/z (%) = 394(1, M+), 338 (17), 337 (39), 295 (11), 294 (53), 293 (61), 281 

(38), 225 (18), 208 (22), 180 (18), 169 (14), 131 (17), 114 (12), 

5

 

HRMS: C24H30N2O3  Calculated: 394.2256  found: 394.2279 

 

 

1-N-Methyl-18-methyl-17-keto-nor-yohimbane (83) 

 

A

potassium tert-butoxide (154 mg, 1.37 mmol) in dry 

D

atmosphere for 30 minutes. Then, dimethyl sulphate 

(88 mg, 0.70 mmol) was then added to the reaction 

mixture and further heated at 100°C for 1.5 h. The coole

water (50 mL), extracted with CH

N
N

O

H
MeMe

d reaction mixture was poured in 

2Cl2 (4 × 50 mL) and
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subsequently concentrated in vacuo. The residue was subjected to flash chromatography 

on silica gel (Hexane/EtOAc 5:1) to afford the product 83. 

 

Yield: 44 mg (42%); colourless oil 

 

UV (MeOH): λ = 277, 283, 291 nm. 

R (ATR): ν = 3052, 2922, 2800, 2744, 1735, 1468, 1375, 1340, 1307, 1272, 1205, 1182, 

, 739, 570, 555 cm–1. 

 - 2.70 (m, 3H), 2.86 - 2.95 

m, 3H), 3.07 (dd, J = 11.18, 1 Hz, 1H), 3.42 (d, J = 11.10 Hz, 1H), 3.67 (s, 3H), 7.06 - 

5 

H2), 58.94 (CH), 108.75 (CH), 109.15 (C), 118.04 (CH), 119.03 (CH), 121.14 (CH), 

 

I

1143, 1063, 1039, 1012, 911, 835, 767

 
1H-NMR (500 MHz, CDCl3): δ = 1.10 (d, J = 6.97 Hz, 3H), 1.23 - 1.26 (m, 1H), 1.36 - 

1.92 (m, 1H), 2.28 - 2.32 (m, 1H), 2.49 - 2.54 (m, 1H), 2.63

(

7.09 (m, 1H), 7.15 - 7.18 (m, 1H), 7.23 (d, J = 8.12 Hz, 1H), 7.46 (d, J = 7.79 Hz, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 12.67 (CH3), 22.37 (CH2), 31.49 (CH), 

33.22 (CH), 34.65 (CH2), 43.27 (CH), 43.78 (CH3), 44.99 (CH2), 52.60 (CH2), 55.6

(C

126.51 (C), 136.02 (C), 138.04 (C), 220.97 (CO). 

 

MS (150°C): m/z (%) = 308 (100, M+), 307 (71), 239 (44), 198 (18), 184 (16), 183 (11), 

168 (12), 86 (14), 84 (21). 

 

HRMS: C20H24N2O  Calculated: 308.1888  found: 308.1896 
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16,17-Dehydro-17-Acetoxy-18-methyl-nor-yohimbane (84) 

ithium diisopropyl amide (LDA) was prepared by 

ol) to a 

ropyl amine (41 mg, 0.408 mmol) in 

ry THF (5 mL) at 0°C. After 1 h, a solution of 

, 2758, 2359, 2344, 1766, 1735, 1703, 1653, 1624, 1458, 

368, 1347, 1319, 1207, 1178, 1114, 1098, 1048, 1008, 907, 834, 773, 742, 581 cm–1. 

), 

.84 - 1.89 (m, 1H), 2.10 - 2.21 (m, 4H), 2.29 - 2.36 (m, 1H), 2.51 - 2.74 (m, 4H), 2.71 - 

, CDCl3): δ = 12.67 (CH3), 22.37 (CH2), 31.49 (CH), 

3.22 (CH), 34.65(CH2), 43.27 (CH), 43.78 (CH3), 44.99 (CH2), 52.60 (CH2), 55.65 

 

 

L

drop wise addition of BuLi (22 mg, 0.340 mm

solution of diisop

d

compound 72 (40 mg, 0.136 mmol) in dry THF (5 

mL) was added via cannula. The bath temperature 

was maintained at 0°C and stirring was continued for 2 h. Then, acetic anhydride (31 mg, 

0.286 mmol) was added to the reaction mixture and stirred for another 2 h at the same 

temperature. Then the solution was concentrated at reduced pressure and the residue was 

subjected to flash chromatography on silica gel (Hexane/EtOAc 5:1) to afford the product 

84. 

 

Yield: 25 mg (55%); light yellow oil 

N
H

N

OCOCH3

Me

 

UV (MeOH): λ = 224, 287 nm. 

 

IR (ATR): ν = 3357, 2918, 2798

1

 
1H-NMR (500 MHz, CDCl3): δ = 1.02 (d, J = 6.78 Hz, 3H), 1.34 (q, J = 12.50 Hz, 1H

1

3.11 (m, 4H), 5.63 (t, J = 2.40 Hz, 1H ), 7.04 - 7.12 (m, 2H), 7.26 - 7.28 (m, 1H), 7.44 (d, 

J = 7.60 Hz, 1H), 7.68 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz

3

(CH2), 58.94 (CH), 108.75 (CH), 109.15 (C), 118.04 (CH), 119.03(CH), 121.14 (CH), 

126.51 (C), 136.02 (C), 138.04 (C), 220.97 (CO). 
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MS (150°C): m/z (%) = 336 (68, M+), 335 (51), 294 (19), 293 (84), 277 (15), 184 (17), 

169 (13), 156 (17), 44 (10), 43 (100). 

 

HRMS: C21H24N2O2  Calculated: 336.1837  found: 336.1829 

 

 

10-Acetyl-18-methyl-17-keto-nor-yohimbane (86) 

 

To a solution of ketone 72 (50 mg, 0.17 mmol) in 

e 

g, 0.773 mmol) and HClO4 (70%, 99 mg, 

.69 mmol) and stirred at room temperature for 6 

: λ = 255, 287 nm. 

, 2800, 2752, 1734, 1656, 1620, 1587, 1567, 1479, 1457, 

392, 1359, 1307, 1324, 1276, 1248, 1207, 1180, 1166, 1120, 1099, 1034, 949, 893, 811, 

, CDCl3): δ = 1.09 (d, J = 6.96 Hz, 3H), 1.38 (q, J = 12.39 Hz, 1H), 

.92 - 1.96 (m, 1H), 2.05 - 2.10 (m, 1H), 2.12 (d, J = 18.27 Hz, 1H), 2.38 - 2.50 (m, 2H), 

dry CH2Cl2 (10 mL) was added acetic anhydrid

(82 m

0

h. The reaction mixture was poured in Ice (50 

mL), and neutralized with saturated solution of 

sodium carbonate (25 mL), extracted with CH2Cl2 

(4 × 50 mL), dried over anhydrous Na2SO4 and subsequently concentrated in vacuo. The 

residue was subjected to flash chromatography on silica gel (Hexane/EtOAc 4:1) to 

afford the product 86. 

 

Yield: 34 mg (60%); light yellow crystals. 

N
H

N

O

Me

Me

O

 

M.P. 101oC 

 

UV (MeOH)

 

IR (ATR): ν = 3330, 2929, 2912

1

775, 731, 641 cm–1. 

 
1H-NMR (500 MHz

1
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2.60 - 2.76 (m, 7H), 2.92 - 3.09 (m, 3H), 3.27 (dd, J = 9.71, 1.96 Hz, 1H), 7.28 (d, J = 

8.52 Hz, 1H), 7.78 - 7.98 (m, 1H), 8.13 (br s, 1H), 8.14 (s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 12.73 (CH3), 21.55 (CH2), 26.69 (CH), 

2.50 (CH), 33.55 (CH2), 42.99 (CH), 43.86 (CH3), 44.99 (CH2), 53.00 (CH2), 55.20 

4 (15), 293 (19), 292 (13), 291 (11), 

67 (50), 265 (11), 226 (11), 211 (14), 43 (100). 

4  found: 336.1838 

7-Dimethoxy-18-methyl-nor-yohimbane (87) 

l) in 

ry methanol (10 mL) was added methyl ortho-

ubjected to flash chromatography 

3

(CH2), 58.59 (CH), 110.49 (CH), 120.14 (CH), 122.19 (CH), 126.96 (C), 129.65 (C), 

135.95 (C), 138.79 (C), 198.39 (CO), 220.97 (CO). 

 

MS (150°C): m/z (%) = 336 (100, M+), 335 (94), 29

2

 

HRMS: C21H24N2O2  Calculated: 336.182

 

 

 

1

 

To a solution of ketone 72 (60 mg, 0.204 mmo

d

formate (217 mg, 2.04 mmol) and a catalytic amount 

of p-toluenesulfonic acid. After 6 h at reflux the 

reaction mixture was cooled and quenched with 

sodium bicarbonate solution (25 mL). The aqueous 

layers were extracted with CH2Cl2 (4 × 50 mL) and dri

the solvent was evaporated in vacuo. The residue was s

on silica gel (Hexane/EtOAc 2:1) to afford the product 87. 

 

Yield: 58 mg (84%); light yellow crystals 

N
H

N

Me

OMe
OMe

ed over anhydrous Na2SO4, and 

 

M.P. 70 - 72oC 
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UV (MeOH): λ = 225, 281, 286 nm. 

2, 2793, 2756, 1452, 1434, 1381, 1342, 1320, 1293, 

263, 1236, 1204, 1137, 1107, 1073, 1027, 1008, 1001, 975, 932,  896, 866, 842, 824, 

 (d, J = 6.90 Hz, 3H), 1.25 (m, 1H), 1.70 - 1.77 

m, 2H), 1.82 - 1.85 (m, 1H), 2.05 - 2.11 (m, 2H), 2.47 - 2.57 (m, 3H), 2.67 - 2.71 (m, 

30 (CH3), 21.65 (CH2), 32.47 (CH2), 

5.43 (CH), 40.23 (CH), 42.97 (CH2), 46.90 (CH3), 48.52 (CH), 48.67 (CH3), 53.44 

(21), 294 (20), 293 (85), 

23 (10), 87 (10), 86 (62), 83 (100), 47 (12), 43 (10). 

found: 340.2138 

 

IR (ATR): ν = 3311, 2934, 2910, 283

1

777, 734, 701, 681, 638, 589, 567 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 1.02

(

1H), 2.94 - 3.01 (m, 3H), 3.10 (s, 3H), 3.21 (s, 3H), 7.06 - 7.13 (m, 2H), 7.26 (d, J = 7.73 

Hz, 1H), 7.46 (d, J = 7.53 Hz, 1H), 7.78 (br s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 14.

3

(CH2), 55.13 (CH2), 59.31 (CH), 108.13 (C), 110.46 (C), 110.71 (CH), 117.99 (CH), 

119.29 (CH), 121.18 (CH), 127.32 (C), 135.25 (C), 135.93 (C). 

 

MS (150°C): m/z (%) = 340 (1, M+), 309 (12), 308 (30), 307 

2

 

HRMS: C21H28N2O2  Calculated: 340.2151  

 

 



Experimental Section 160 

 

5.2.3 Referring to Section 3.3 
 

15,18-Bis(trimethylsilyl)yohimban-15,17,19-triene (88) 

 

N
H

N

H TMS

TMS

A mixture of compound 53 (100 mg, 0.238 mmol) 

and norbonadiene (1500 mg, 16 mmol) in toluene (10 

mL) was refluxed with stirring for 12 h. The solvent 

was evaporated and the residue was subjected to 

flash chromatography on silica gel (Hexane/EtOAc 

15:1) to provide the product 88.  

 

Yield: 99 mg (100%); white crystals. 

 

M.P. : 179 - 180 °C 

 

For further spectroscopic data see literature74 

 

 

Demethoxycarbonyldihydrogambirtannine (8) 

 

A mixture of compound 88 (100 mg, 0.239 mmol) and 

trifluoroacetic acid (15 mL) was refluxed with stirring for 1 

h and then cooled to room temperature. The mixture was 

quenched with ice and neutralized with a saturated solution 

of Na2CO3. The aqueous layer was extracted with EtOAc (4 

× 50 mL) and dried over anhydrous Na2SO4, and the 

solvent was evaporated in vacuo. The residue was subjected to flash chromatography on 

silica gel (Hexane/EtOAc 5:1) to afford the product 8. 

N
H

N

H

 

Yield: 65 mg (100%); white crystals 
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M.P. : 196 - 197 °C 

 

For further spectroscopic data see literature16,17,74 

 

 

1-Prop-2-ynl-2,3,4,9-tetrahydro-1H-β-carboline (92) 

 

To a solution of the compound 50 (250 mg, 0.89 mmol) in 

THF (12 mL) was added drop wise TBAF (1M soln. in THF) 

(1.0 mL, 0.98 mmol) and stirred for 3 h at room temperature. 

The reaction was quenched with brine solution (25 mL). The 

aqueous layers were extracted with CH2Cl2 (4 × 50 mL) and 

dried over anhydrous Na2SO4, and the solvent was evaporated in vacuo. The residue was 

subjected to flash chromatography on silica gel (Hexane/EtOAc 1:2) to afford the product 

92. 

N
H

NH

 

Yield: 182 mg (98%); light yellow crystals. 

 

M.P.: 123 - 125°C  

 

UV (MeOH): λ = 223, 282, 290 nm. 

 

IR (ATR): ν = 3402, 3283, 3193, 3054, 2925, 2849, 2740, 1715, 1656, 1619, 1550, 1451, 

1317, 1302, 1287, 1246, 1156, 1111, 1043, 1009, 989, 908, 838, 742, 643, 586, 569, 

554 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 1.82 (br s, 1H), 2.22 (t, J = 2.66 Hz, 1 H), 2.58 (ddd, J 

= 16.5, 8.35, 2.67 Hz, 1H), 2.66 (dd, J = 5.56, 2.73 Hz, 1H), 2.69 - 2.81 (m, 2H), 3.05 - 

3.10 (m, 1H), 3.28 - 3.33 (m, 1H), 4.27 - 4.29 (m, 1H), 7.08 (dt, J = 7.5, 1 Hz, 1H), 7.14 
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(dt, J = 8.04, 1.2 Hz, 1H), 7.32 (br d, J = 8 Hz, 1H), 7.48 (br d, J = 7.8 Hz, 1H),8.31 (br s, 

1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 22.49 (CH2), 25.46 (CH2), 42.40 (CH2), 

51.73(CH), 71.31 (CH), 81.94 (C), 109.49 (C), 110.89 (CH), 118.19 (CH), 119.40 (CH), 

121.84 (CH), 126.99 (C), 134.85 (C), 135.59 (C). 

 

MS (150°C): m/z (%) = 210 (13, M+), 209 (6), 180 (5), 172 (11), 171 (100), 170 (8), 169 

(11), 154 (7), 144 (7), 143 (3), 142 (3), 86 (4), 85 (8), 59 (5), 43 (9), 18 (66), 17 (13). 

 

HRMS: C14H14N2  Calculated: 210.1157  found: 210.1169. 

 

Elemental Analysis:   Calculated: C: 79.97 H: 6.71 N: 13.32 

     Found:  C: 79.96 H: 6.60 N: 13.06. 
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5.2.4 Referring to Section 3.4 
 

General procedure for the addition of propargyl Grignard to the 3,4-dihydro-

isoquinoline  

To a solution of 3,4-dihydro-isoquinoline 98 (1.0 eq.) in dry THF (50 mL) was added 

drop wise BF3·OEt2 (1.0 eq.) at –23°C. After stirring for 0.5 h, a solution of 

trimethylsilylpropargyl magnesium bromide (3.0 eq.) dry in diethyl ether (20 mL) was 

added drop wise to this suspension. After stirring for 15 h at –23oC, the reaction mixture 

was poured into a saturated aqueous solution of NH4Cl (100 mL) and extracted with 

EtOAc. The combined organic layers were washed with H2O and dried with Na2SO4. 

Evaporation of the solvent in vacuo and flash chromatography of the residue on silica gel 

(Hexane/EtOAc 1:1) afforded the homopropargylamines 100, 110 or 114 and allene 101, 

109 or 113. 

 

 

1-(3-trimethylsilylprop-2-ynyl)-1,2,3,4-tetrahydroisoquinoline (100) 

 

Yield: 80% light yellow oil 

 

UV (MeOH): λ = 265, 272, 349 nm. 

 

IR (ATR): ν = 3063, 3020, 2957, 2925, 2808, 2171, 1493, 

1454, 1426, 1377, 1315, 1249, 1125, 1038, 1007, 959, 838, 758, 738, 718, 699, 649, 629, 

600, 566 cm–1. 

NH

TMS

 
1H-NMR (500 MHz, CDCl3): δ = 0.15 (s, 9H), 2.26 (br s, 1H), 2.61 (dd, J = 16.87, 9.37 

Hz, 1 H), 2.74 (dd, J =16.92, 4.0 Hz, 1H), 2.80 - 2.83 (m, 1H), 2.99 (quint., J = 6.1 Hz, 

1H), 3.20 (quint., J = 5.49 Hz, 1H), 4.14 (dd, J = 9.2, 3.9 Hz, 1H), 7.08 - 7.15 (m, 4H).  
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13C-NMR and DEPT (125 MHz, CDCl3): δ = 0.05 (3CH3), 27.94 (CH2), 29.86 (CH2), 

40.36 (CH2), 54.68 (CH), 87.05 (C), 104.50 (C), 125.74 (CH), 126.21 (CH), 126.35 

(CH), 129.20 (CH), 135.30 (C), 137.39 (C). 

 

MS (25°C): m/z (%) = 244 (3, [M+1]+), 228 (6), 133 (30), 132 (100), 131 (4), 130 (13), 

117 (15), 105 (10), 103 (3), 97 (2), 96 (3), 83 (2), 77 (4), 73 (5). 

 

HRMS: C15H22NSi [M+1]+  Calculated: 244.1522  found: 244.1498  

 

 

1-(1-Trmethylsilyl-propa-1,2-dienyl)-1,2,3,4-tetrahydroisoquinoline (101) 

 

NH

TMS

Yield: 11% light yellow oil 

 

UV (MeOH): λ = 196 nm. 

 

IR (ATR): ν = 3069, 3020, 2952, 2896, 2794, 1927, 1603, 1533, 1491, 1453, 1428, 

1367, 1317, 1292, 1244, 1194, 1125, 1076, 1041, 1007, 991, 941, 836, 808, 771, 741, 

719, 691, 666, 640, 619, 590, 555 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.11 (s, 9H), 2.08 (br s, 1H), 2.71 (td, J = 16.2, 5.0 

Hz, 1H), 2.87 - 2.93 (m, 1H), 3.0 - 3.05 (m, 1H), 3.25 - 3.30 (m, 1H), 4.39 (t, J = 1.57 

Hz, 2H), 4.75 (br s, 1H), 7.07 - 7.15 (m, 4H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 0.65 (3CH3), 29.49 (CH2), 41.45 (CH2), 

59.37 (CH), 69.42 (CH2), 99.40 (C), 125.13 (CH), 125.90 (CH), 127.44 (CH), 128.70 

(CH), 134.86 (C), 138.10 (C), 211.02 (C). 

 

MS (80°C): m/z (%) = 244 (6, [M+1]+), 228 (9), 133 (36), 132 (100), 130 (11), 117 (15), 

115 (7), 105 (10), 73 (10). 
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HRMS: C15H21NSi  Calculated: 243.1443  found: 243.1412. 

 

 

1-(1-Methylpropa-1,2-dienyl)-1,2,3,4-tetrahydroisoquinoline (109) 

 

NH

Me

Yield: 66% light yellow oil (as mixture of 109 and 110) 

 

UV (MeOH): λ = 198, 203, 264, 273 nm. 

 

IR (ATR): ν = 3057, 3019, 2922, 2830, 1957, 1492, 1453, 1428, 1366, 1292, 1209, 

1124, 1057, 1037, 990, 940, 846, 796, 742, 642, 579, 565 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 1.66 (t, J = 3.09 Hz, 3H), 2.42 (br s, 1H), 2.70 (dt, J = 

16.2, 4.6 Hz, 1H), 2.87 - 2.93 (m, 1H), 3.01 - 3.06 (m, 1H), 3.25 - 3.29 (m, 1H), 4.60 (s, 

1H), 4.63 - 4.66 (m, 2H), 7.07 - 7.10 (m, 1H), 7.12 - 7.16 (m, 3H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 14.59 (CH3), 29.40 (CH2), 41.80 (CH2), 

60.72 (CH), 74.31 (CH2), 100.64 (C), 125.51 (CH), 126.30 (CH), 127.08 (CH), 128.88 

(CH), 135.43 (C), 136.29 (C), 208.15 (C). 

 

MS (25°C): m/z (%) = 185 (8, M+), 170 (12), 169 (17), 141 (12), 133 (80), 132 (100), 

131 (16), 130 (48), 117 (58), 115 (23), 105 (34), 103 (14), 77 (14). 

 

HRMS: C13H15N  Calculated: 185.1204  found: 185.1198. 

 

 

NH

Me

1-But-2-ynyl-1,2,3,4-tetrahydroisoquinoline (110) 

 

UV (MeOH): λ= 283, 361, 403 nm. 

 

IR (ATR): ν = 3057, 3019, 2917, 2832, 2732, 1626, 1578, 1492, 1454, 
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1428, 1377, 1316, 1210, 1125, 1033, 961, 878, 819, 792, 741, 712, 693, 625, 591, 

557 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 1.80 (t, J = 2.5 Hz, 3H), 2.05 (br s, 1H), 2.52 - 2.58 

(m, 1H), 2.66 - 2.84 (m, 3H), 2.99 - 3.04 (m, 1H), 3.20 (quint., J = 6.0 Hz, 1 H), 4.07 (dd, 

J = 9.5, 3.7 Hz, 1H), 7.07 - 7.16 (m, 4H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 3.62 (CH3), 26.61 (CH2), 29.85 (CH2), 

40.46 (CH2), 54.99 (CH), 76.46 (C), 77.87 (C), 125.78 (CH), 126.11 (CH), 126.31 (CH), 

129.23 (CH), 135.29 (C), 137.68 (C). 

 

MS (25°C): m/z (%) = 185 (1, M+), 184 (3), 133 (12), 132 (100), 131 (7), 130 (12), 117 

(10), 105 (8), 103 (4), 77 (4). 

 

HRMS: C13H15N  Calculated: 185.1204  found: 185.1201. 

 

 

1-(1-Phenylpropa-1,2-dienyl)-1,2,3,4-tetrahydroisoquinoline (113) 

 

NH

Ph

Yield: 19% light yellow oil (as mixture of 113 and 114) 

 

UV (MeOH): λ = 201, 249 nm. 

 

IR (ATR): ν = 3055, 3021, 2916, 2832, 1936, 1596, 1492, 1449, 1426, 1290, 1180, 

1156, 1113, 1060, 1032, 912, 847, 738, 692, 669, 612, 592, 565 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 2.5 (br s, 1H), 2.87 - 2.89 (m, 2H), 3.05 (quint, J = 5.8 

Hz, 1H), 3.27 (quint, J = 5.8 Hz, 1H), 4.92 (dd, J = 8.0, 1.2 Hz, 2H), 5.22 (s, 1H), 7.10 (t, 

J = 2.7, 3H), 7.13 - 7.17 (m, 1H), 7.20 (t, J = 7.3 Hz, 1H), 7.3 (t, J = 7.9 Hz, 2H), 7.47 (d, 

J = 7.6 Hz, 2H). 
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13C-NMR and DEPT (125 MHz, CDCl3): δ = 28.95 (CH2), 40.65 (CH2), 57.29 (CH), 

79.07 (CH2), 108.06 (C), 125.67 (CH), 126.55 (CH), 126.91 (2CH), 127.07 (CH), 127.76 

(CH), 128.65 (2CH), 128.93 (CH), 134.70 (C), 134.85 (C), 136.2 (C), 210.24 (C). 

 

MS (25°C): m/z (%) = 247 (8, M+), 246 (14), 133 (9), 132 (100), 130 (6), 117 (7), 115 

(6). 

 

HRMS: C18H17N  Calculated: 247.1361  found: 247.1364. 

 

 

1-(3-Phenylprop-2-ynyl)-1,2,3,4-tetrahydroisoquinoline (114) 

 

NH

Ph

UV (MeOH): λ= 240, 250 nm. 

 

IR (ATR): ν = 3060, 3020, 2929, 2226, 1628, 1598, 1490, 1452, 

1426, 1315, 1210, 1156, 1121, 1070, 1031, 908, 848, 727, 691, 

641, 590, 556 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 2.73 (t, J = 7.8, 2H), 2.84 - 2.89 (m, 2H), 2.97 (d, J = 

4.1, 1H), 3.74 (dt, J = 8.0, 2.2 Hz, 1H), 4.27 (dd, J = 8.9, 4.1 Hz, 1H), 7.07 - 7.49 (series 

of m, 9H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 29.25 (CH2), 29.50 (CH2), 40.43 (CH2), 

54.75 (CH), 82.80 (C), 87.07 (C), 125.45 (CH), 126.17 (CH), 126.30 (2CH), 127.00 

(CH), 127.71 (CH), 128.16 (2CH), 128.88 (CH), 136.75 (C), 136.94 (C). 

 

MS (25°C): m/z (%) = 247 (3, M+), 204 (13), 133 (10), 132 (100), 130 (9), 117 (7), 115 

(7). 

 

HRMS: C18H17N  Calculated: 247.1361  found: 247.1357. 
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1-Prop-2-ynyl-1,2,3,4-tertahydro-isoquinoline (108) 

 

To a solution of the compound 100 (547 mg, 2.25 mmol) in THF 

(15 mL) was added drop wise TBAF (1M soln. in THF) (2.25 mL, 

2.25 mmol) and stirred for 3 h at room temperature. The reaction 

was quenched with brine solution (25 mL). The aqueous layer was 

extracted with CH2Cl2 (4 × 50 mL) and dried over anhydrous 

Na2SO4, and the solvent was evaporated in vacuo. The residue was subjected to flash 

chromatography on silica gel (Hexane/EtOAc 1:2) to afford the product 108. 

NH

 

Yield: 333 mg (87%); light orange oil 

 

IR (ATR): ν = 3402, 3283, 3193, 3054, 2925, 2849, 2740, 1715, 1656, 1619, 1550, 

1451, 1317, 1302, 1287, 1246, 1156, 1111, 1043, 1009, 989, 908, 838, 742, 643, 586, 

569, 554 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 2.05 (t, J = 2.67 Hz, 1 H), 2.21 (br s, 1H), 2.58 (ddd, J 

= 16.8, 9.2, 2.65 Hz, 1H), 2.69 - 2.70 (m, 1H), 2.72 - 2.86 (m, 2H), 2.98 - 3.03 (m, 1H), 

3.18 - 3.23 (m, 1H), 4.12 (dd, J = 9.1, 3.8, 1H), 7.05 - 7.18 (m, 4H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 26.01 (CH2), 29.49 (CH2), 40.20 (CH2), 

54.32 (CH), 70.21 (CH), 81.66 (C), 125.51 (CH), 125.72 (CH), 126.12 (CH), 128.99 

(CH), 135.01 (C), 137.07 (C). 

 

MS (25°C): m/z (%) = 171 (2, M+), 133 (23), 132(100), 130 (16), 117 (20), 115 (10), 105 

(14), 103 (7), 77 (7). 

 

HRMS: C12H13N  Calculated: 171.1048  found: 171.1037. 
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General procedure for the silver(I)-promoted oxidative cyclization of 

homopropargylamine derivatives of isoquinoline 

 

Silver(I) acetate (1.1 eq.) was added to a solution of the homopropargylamine 100, 101, 

108, 109, 110, 113 or 114 (1.0 eq.) in anhydrous CH2Cl2 or acetone. In the absence of 

light, the solution was stirred at room temperature under an argon atmosphere for 14 h 

(compounds 100, 108, 109, 110, 113 and 114) or acetone reflux for 14 h (compound 

101). Filtration over a short path of neutral alumina (Hexane/EtOAc 1:1) and removal of 

the solvent provided the pyrroles 102, 111, 112, 117 or 118. 

 

5,6-Dihydro-pyrrolo[2,l-a]isoquinoline (102) 

N

 

Yield: 72% light yellow oil 

 

UV (MeOH): λ = 293, 303 (sh) nm. 

 

IR (ATR):  ν = 2927, 2879, 1689, 1606, 1577, 1550, 1494, 1460, 1427, 1413, 1334, 

1316, 1245, 1230, 1200, 1167, 1102, 1070, 1045, 751, 706, 689, 673, 605 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 3.08 (t, J = 6.6 Hz, 2H), 4.09 (t, J = 6.6 Hz, 2H), 6.24 

(dd, J = 3.5, 2.7 Hz, 1H), 6.53 (dd, J = 3.5, 1.5 Hz, 1H), 6.69 (m, 1H), 7.11 (dt, J = 1.1, 

7.4 Hz, 1H), 7.18 (dd, J = 7.4, 0.4 Hz, 1H), 7.24 (m, 1H), 7.54 (dd, J = 7.4, 0.4 Hz, 1H).  

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 29.45 (CH2), 44.08 (CH2), 103.59 (CH), 

108.53 (CH), 120.79 (CH), 122.36 (CH), 125.49 (CH), 127.07 (CH), 127.90 (CH), 

129.56 (C), 129.79 (C), 130.27 (C).  

 

MS (25°C): m/z (%) = 169 (100, M+), 168 (67), 167 (25), 166 (4), 154 (5), 141 (5), 84 

(9). 

 

HRMS: C12H11N  Calculated: 169.0891  found: 169.0888. 
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3-Methyl-5,6-dihydropyrrolo[2,1-a]isoquinoline (112) 

N Me

 

Yield: 34% orange crystals (as mixture of 112 and 113) 

 

M.P. : 67°C 

 

UV (MeOH): λ = 305 nm. 

 

IR (ATR):  ν = 2924, 2887, 2854, 1656, 1603, 1578, 1511, 1476, 1453, 1407, 1338, 

1318, 1255, 1195, 1181, 1071, 1048, 1023, 952, 899, 869, 837, 785, 749, 683, 659, 617, 

587, 563 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 2.27 (s, 3H), 3.03 (t, J = 6.0 Hz, 2H), 3.93 (t, J = 6.6 

Hz, 2H), 5.95 (d, J = 3.44 Hz, 1H), 6.44 (d, J = 3.58 Hz, 1H), 7.04 (dt, J = 1.1, 7.4 Hz, 

1H), 7.15 (dd, J = 7.3, 0.4 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.48 (dd, J = 7.7, 0.4 Hz, 

1H).  

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 11.89 (CH3), 29.28 (CH2), 40.55 (CH2), 

102.80 (CH), 107.20 (CH), 122.03 (CH), 125.03 (CH), 127.02 (CH), 127.75 (CH), 

128.76 (C), 129.10 (C), 129.64 (C), 129.97 (C).  

 

MS (25°C): m/z (%) = 183 (100, M+), 182 (97), 181 (13), 180 (29), 167 (55). 

 

HRMS: C13H13N  Calculated: 183.1048  found: 183.1043. 
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1-Methyl-5,6-dihydropyrrolo[2,1-a]isoquinoline (111) 

N

Me

 

UV (MeOH): λ = 197, 298 nm. 

 

IR (ATR):  ν = 2939, 2866, 1684, 1603, 1577, 1555, 1494, 1478, 1454, 1429, 1381, 

1327, 1264, 1220, 1192, 1159, 1118, 1052, 1030, 1008, 969, 938, 909, 867, 782, 759, 

732, 713, 671, 617, 600, 557 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 2.43 (s, 3H), 3.03 (t, J = 6.0 Hz, 2H), 4.04 (t, J = 6.0 

Hz, 2H), 6.07 (d, J = 2.5 Hz, 1H), 6.60 (d, J = 2.5 Hz, 1H), 7.09 (dt, J = 1.1, 7.4 Hz, 1H), 

7.20 (dd, J = 7.0, 0.6 Hz, 1H), 7.27 (m, 1H), 7.61 (dd, J = 7.8, 0.4 Hz, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 13.98 (CH3), 30.36 (CH2), 44.41 (CH2), 

110.70 (CH), 116.08 (C), 119.16 (CH), 123.10 (CH), 124.71 (CH), 125.16 (C), 126.92 

(CH), 127.95 (CH), 130.70 (C), 131.37 (C). 

 

MS (25°C): m/z (%) = 183 (100, M+), 182 (82), 180 (12), 167 (20), 147 (22), 146 (13), 

118 (16). 

 

HRMS: C13H13N  Calculated: 183.1048  found: 183.1045. 

 

 

1-Phenyl-5,6-dihydropyrrolo[2,1-a]isoquinoline (117) 

N

Ph

 

Yield: 46% orange oil (as mixture of 117 and 118) 

 

UV (MeOH): λ = 241, 256, 309 nm. 

 

IR (ATR): ν = 3029, 3053, 2952, 2879, 1736, 1697, 1603, 1498, 1471, 1458, 1445, 1397, 

1329, 1263, 1213, 1188, 1072, 1015, 942, 911, 761, 730, 699, 650, 623, 580, 552 cm–1. 
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1H-NMR (500 MHz, CDCl3): δ = 3.08 (t, J = 6.4 Hz, 2H), 4.05 (t, J = 6.4 Hz, 2H), 6.23 

(d, J = 2.6 Hz, 1H), 6.72 (d, J = 2.6 Hz, 1H), 6.97 (dt, J = 1.2, 7.5 Hz, 1H), 7.03 (dt, J = 

1.3, 7.4 Hz, 1H), 7.17 (d, J = 7.3 Hz, 1H), 7.26 (dt, J = 1.5, 7.4 Hz, 1H), 7.32 - 7.37 (m, 

3H), 7.48 - 7.50 (m, 2H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 30.22 (CH2), 44.67 (CH2), 110.47 (CH), 

120.26 (CH), 122.48 (C), 123.98 (CH), 124.81 (C), 125.56 (CH), 126.08 (CH), 126.59 

(CH), 127.92 (CH), 128.38 (2CH), 128.98 (2CH), 129.70 (C), 131.88 (C), 137.66 (C). 

 

MS (25°C): m/z (%) = 245 (100, M+), 244 (81), 243 (34), 242 (20), 241 (18), 194 (12). 

 

HRMS: C18H15N  Calculated: 245.1204  found: 245.1209. 

 

 

3-Phenyl-5,6-dihydropyrrolo[2,1-a]isoquinoline (118) 

N Ph
 

UV (MeOH): λ = 314 nm. 

 

IR (ATR): ν = 3058, 2924, 1699, 1652, 1602, 1577, 1556, 1493, 1481, 1455, 1406, 1329, 

1263, 1186, 1157, 1119, 1072, 1029, 1015, 979, 910, 754, 730, 699, 649, 621, 573, 

555 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 3.01 (t, J = 6.4 Hz, 2H), 4.14 (t, J = 6.4 Hz, 2H), 6.32 

(d, J = 3.7 Hz, 1H), 6.60 (d, J = 3.7 Hz, 1H), 6.98 - 7.69 (series of m, 9H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 29.65 (CH2), 42.09 (CH2), 104.22 (CH), 

109.38 (CH), 122.47 (C), 122.61 (CH), 125.60 (CH), 127.19 (C), 127.73 (CH), 128.44 

(2CH), 128.57 (2CH), 129.89 (C), 132.05 (C), 132.13 (C). 

 

MS (25°C): m/z (%) = 245 (100, M+), 244 (54), 243 (19). 
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HRMS: C18H15N  cal.: 245.1204,  found: 245.1233. 

 

 

 

General procedure for the synthesis of homopropargylamines 

 

To a solution of Schiff base 119a-e (1.0 eq.) in dry THF was added drop wise BF3·OEt2 

(1.0 eq.) at –23°C. After stirring for 0.5 h, a solution of trimethylsilylpropargyl 

magnesium bromide 99 (3.0 eq.) in dry diethyl ether was added drop wise to this 

suspension. After stirring for 15 h at –23oC (compounds 119a-d) or 0°C (compound 

119e), the reaction mixture was poured into a saturated aqueous solution of NH4Cl (100 

ml) and extracted with EtOAc. The combined organic layers were washed with H2O and 

dried with Na2SO4. Evaporation of the solvent in vacuo and flash chromatography of the 

residue on silica gel (Hexane/EtOAc 5:1) afforded the homopropargylamines 120a-e. 

 

 

(4-Methoxy-phenyl)-(1-phenyl-4-trimethylsilyl-but-3ynyl)amine (120a) 

 

Yield: 78% light yellow oil 

H
NMeO

TMS

 

IR (ATR): ν = 3393, 3063, 3029, 2956, 2899, 2831, 

2174, 1927, 1620, 1509, 1453, 1408, 1354, 1295, 1237, 

1179, 1121, 1038, 839, 818, 757, 699, 641, 575 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.30 (s, 9H), 2.72 (dd, J = 16.9, 7.3 Hz, 1H), 2.81 (dd, 

J = 16.9, 5.4 Hz, 1H), 3.76 (s, 3H), 4.36 (br s, 1H), 4.52 (t, J = 6.1 Hz, 1H), 6.6 - 6.68 (m, 

2H), 6.79 - 6.83 (m, 2H), 7.33 - 7.36 (m, 1H), 7.40 (t, J = 7.8 Hz, 2H), 7.49 (d, J = 7.79 

Hz, 2H). 
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13C-NMR and DEPT (125 MHz, CDCl3): δ = – 0.12 (3CH3), 29.56 (CH2), 55.36 (CH3), 

57.42 (CH), 87.95 (C), 102.95 (C), 114.54 (CH), 114.95 (CH), 126.29 (CH), 127.17 

(CH), 128.34 (CH), 141.30 (C), 142.46 (C), 152.11 (C). 

 

MS (25°C) : m/z (%) = 323 (5, M+), 213 (14), 212 (100), 180 (10), 179 (46), 179 (5), 128 

(17), 112 (11), 107 (79), 97 (5), 79 (20), 77 (10), 75 (22), 73 (43), 43 (6), 29 (6). 

 

HRMS: C20H25NOSi  Calculated: 323.1705  found: 323.1695. 

 

 

[1-(4-Methoxyphenyl)-4-trimethylsilyl-but-3-ynyl]-p-totyl-amine (120b) 

 

Yield: 80% pale yellow solid 

H
NMe

TMS

OMe
 

M.P. : 69 - 70°C 

 

UV (MeOH): λ = 227, 247 nm. 

 

IR (ATR): ν = 3408, 3002, 2961, 2903, 2862, 2171, 1613, 1584, 1509, 1458, 1441, 

1420, 1403, 1317, 1301, 1245, 1212, 1168,1128, 1113, 1096, 1055, 1033, 1010, 834, 808, 

761, 726, 703, 645, 602, 573 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.16 (s, 9H), 2.20 (s, 1H), 2.60 (dd, J = 16.9, 7.24 Hz, 

1H), 2.70 (dd, J = 16.97, 5.37 Hz, 1H), 3.79 (s, 3H), 4.32 (br s, 1H), 4.41 (t, J = 5.9 Hz, 

1H), 6.46 (d, J = 8.3 Hz, 1H), 6.85 (d, J = 8.6 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 7.30 (d, 

J = 8.6 Hz, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = – 0.12 (3CH3), 20.34 (CH), 29.85 (CH2), 

55.20 (CH), 56.38 (CH), 88.10 (C), 103.02 (C), 113.86 (2CH), 113.92 (2CH), 126.85 (C), 

127.41 (2CH), 129.55 (2CH), 134.62 (C), 145.05 (C), 158.77 (C). 
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MS (25°C) : m/z (%) = 337 (20, M+), 322 (5), 228 (8), 227 (77), 226 (100), 225 (5), 224 

(7), 211 (4), 182 (8),164 (5), 118 (18), 91 (20), 73 (23). 

 

HRMS: C21H27NOSi  Calculated: 337.1862  found: 337.1845. 

 

Elemental Analysis:   Calculated: C: 74.73 H: 8.06 N: 4.15 

     Found:  C: 73.82 H: 8.50 N: 4.09 

 

 

Benzyl-(1-phenyl-4-trimethylsilyl-but-3-ynyl)-amine (

 

120c) 

ield: 68% colourless oil 

V (MeOH): λ = 252, 258, 264 nm. 

R (ATR): ν = 3062, 3027, 2958, 2900, 2838, 2173, 

H
N

TMS

Y

 

U

 

I

1602, 1494, 1453, 1421, 1354, 1328, 1249, 1201, 1117, 1074, 1028, 1012, 911, 837, 757, 

732, 696, 649, 627, 598 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.26 (s, 9H), 2.28 (br s, 1H), 2.62 (d, J = 6.77 Hz, 

2H), 3.63 (d, J = 13.5 Hz, 1H), 3.82 (d, J = 13.5 Hz, 1H), 3.92 (t, J = 6.8 Hz, 1H), 7.31 - 

7.44 (m, 8H), 7.46 (d, J = 7.5 Hz, 2 H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = – 0.03 (3CH3), 29.73 (CH2), 51.19 (CH2), 

60.52 (CH), 86.99 (C), 104.21 (C), 126.78 (CH), 127.10 (CH), 127.36 (CH), 127.95 

(CH), 128.28 (CH), 128.33 (CH), 140.28 (C), 142.52 (C). 

 

MS (25°C) : m/z (%) = 308 (25, [M+1]+1), 307 (1, M+), 197 (7), 196 (51), 92 (6), 91 

(100), 73 (21). 

 

HRMS: C20H25NSi  Calculated: 307.1756  found: 307.1770. 

 



Experimental Section 176 

 

(4-Methoxybenzyl)-[1-(4-methoxy-phenyl)-4-trimethylsilyl-but-3-ynyl]-amine (120d) 

 

Yield: 68% yellow oil 

 

UV (MeOH): λ = 225, 275, 282 nm. 

 

IR (ATR): ν = 2999, 2956, 2834, 2173, 1698, 

1610, 1579, 1509, 1463, 1442, 1421, 1301, 1243, 1171, 1160, 1107, 1033, 830, 781, 758, 

698, 641, 596 cm–1. 

H
N

MeO
OMe

TMS

 
1H-NMR (500 MHz, CDCl3): δ = 0.14 (s, 9H), 2.12 (br s, 1H), 2.49 (d, J = 6.6 Hz, 2H), 

3.45 (d, J = 13.22 Hz, 1H), 3.64 (d, J = 13.22 Hz, 1H), 3.79 (s, 3H), 3.80 (s, 3H), 3.88 (s, 

1H), 6.83 - 6.89 (m, 4H), 7.17 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 0.00 (3CH3), 29.84 (CH2), 50.54 (CH2), 

55.20 (2CH3), 59.80 (CH), 86.96 (C), 104.42 (C), 113.73 (4CH), 128.19 (2CH), 129.18 

(2CH), 132.49 (C), 134.62 (C), 158.51 (C), 158.87 (C). 

 

MS (25°C): m/z (%) = 368 (1, [M+1]+), 257 (12), 256 (79), 137 (51), 135 (12), 121 

(100). 

 

HRMS: C22H30NO2Si [M+1]+  Calculated: 368.2046  found: 368.2037. 

 

 

(4-Methoxyphenyl)-(1-styryl-4-trimethylsilyl-but-3-ynyl)-amine (120e) 

 
H
N OMe

TMS

Yield: 88% light yellow oil 

 

UV (MeOH): λ = 250, 285, 292 nm. 
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IR (ATR): ν = 3028, 2957, 2899, 2831, 2173, 1509, 1464, 1448, 1408, 1294, 1238, 

1179, 1123, 1072, 1037, 965, 838, 817, 747, 693, 639, 565 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.17 (s, 9H), 2.62 (d, J = 5.8 Hz, 1H), 3.74 (s, 3H), 

3.83 (br s, 1H), 4.08 - 4.15 (m, 1H), 6.24 (ddd, J = 15.2, 6.3, 1.4 Hz, 1H), 6.64 - 6.68 (m, 

3H), 6.76 (d, J = 1.5 Hz, 1H), 7.21 - 7.26 (m, 1H), 7.29 (t, J = 7.8 Hz, 2H), 7.36 (d, J = 

7.9 Hz, 2H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 0.06 (3CH3), 27.13 (CH2), 55.25 (CH), 

55.71 (CH3), 88.04 (C), 102.92 (C), 114.80 (2CH), 115.61 (2CH), 126.41 (2CH), 127.50 

(CH), 128.50 (2CH), 130.57 (CH), 131.00 (CH), 136.77 (C), 141.20 (C), 152.53 (C). 

 

MS (25°C) : m/z (%) =  349 (1, M+), 153 (8), 134 (10), 133 (100), 115 (17), 105 (6), 103 

(6), 77 (9), 75 (14), 73 (16). 

 

HRMS: C22H27NOSi  Calculated: 323.1862  found: 349.1883. 

 

 

General procedure for the silver(I)-promoted oxidative cyclization of 

homopropargylamines 

 

Silver(I) acetate (1.1 eq.) was added to a solution of the homopropargylamine 120a-e (1.0 

eq.) in dry CH2Cl2. In the absence of light, the solution was stirred at room temperature 

under an argon atmosphere for 4 d. Filtration over a short path of neutral alumina 

(Hexane/EtOAc 1:1) and removal of the solvent provided the pyrroles, 121a–e. 

 

N

OMe

 

1-(4-Methoxyphenyl)-2-phenyl-1H-pyrrole (121a) 

 

Yield: 99% light yellow oil 
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UV (MeOH): λ = 225, 277 nm. 

 

IR (ATR): ν = 1603, 1511, 1493, 1464, 1442, 1299, 1245, 1180, 1169, 1105, 1073, 

1060, 1039, 946, 907, 884, 833, 798, 757, 725, 696, 664, 646, 617, 607 cm–1 

 
1H-NMR (500 MHz, CDCl3): δ = 3.82 (s, 3H), 6.38 (m, 1H), 6.47 (dd, J = 3.5, 1.8 Hz, 

1H), 6.87 (d, J = 8.9 Hz, 2H), 6.92 (m, 1H), 7.13 (d, J = 8.9 Hz, 2H), 7.16 - 7.19 (m, 3H), 

7.22 - 7.25 (m, 2H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 55.34 (CH3), 108.81 (CH), 110.05 (CH), 

114.06 (2 CH), 124.47 (CH), 126.08 (CH), 126.87 (2CH), 127.97 (2CH), 128.15 (2CH), 

132.98 (C), 133.66 (C), 133.82 (C), 158.13 (C). 

 

MS (25°C): m/z (%) = 249 (100, M+), 234 (47), 206 (5), 204 (5), 179 (6) 

 

HRMS: C17H15NO  Calculated: 249.1154  found: 249.1182. 

 

 

2-(4-Methoxyphenyl)-1-p-tolyl-1H-pyrrole (121b) 

N

Me

OMe 

Yield: 85% light yellow oil 

 

UV (MeOH): λ = 226 (sh), 270 nm.  

 

IR (ATR): ν = 2924, 1675, 1598, 1510, 1460, 1420, 1366, 1304, 1246, 1168, 1109, 1024, 

965, 902, 814, 714, 693, 632, 604 cm–1.  

 
1H NMR (500 MHz, CDCl3): δ = 2.35 (s, 3H), 3.77 (s, 3H), 6.33 (m, 1H), 6.34 (dd, J = 

3.5, 1.9 Hz, 1H), 6.76 (d, J = 8.8 Hz, 2H), 6.88 (dd, J = 2.6, 1.9 Hz, 1H), 7.03 - 7.08 (m, 

4H), 7.11 (d, J = 8.4 Hz, 2H).  
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13C NMR and DEPT (125 MHz, CDCl3): δ = 20.99 (CH3), 55.15 (CH3), 108.79 (CH), 

109.52 (CH), 113.48 (2CH), 123.72 (CH), 125.52 (2 CH), 125.78 (C), 129.52 (2CH), 

129.56 (2CH), 133.60 (C), 136.24 (C), 138.10 (C), 158.13 (C).  

 

MS (25°C): m/z (%) = 263 (100, M+), 248 (57), 220 (5), 189 (8), 135 (12).  

 

HRMS: C18H17NO  Calculated: 263.1310  found: 263.1313. 

 

 

1-Benzyl-2-phenyl-1H-pyrrole (121c) 

N

 

Yield: 25% colourless oil 

 

UV (MeOH): λ = 277 nm. 

 

IR (ATR): ν = 3060, 3027, 2939, 2798, 1602, 1493, 1472, 1452, 1417, 1356, 1310, 

1275, 1177, 1138, 1073, 1028, 989, 913, 804, 755, 719, 695, 675, 645, 622, 581, 

554 cm−1. 

 
1H-NMR (500 MHz, CDCl3): δ = 5.23 (s, 2H), 6.38 (dd, J = 2.6, 1.6 Hz, 1H), 6.53 (d, J 

= 1.9 Hz, 1H), 6.84 (dd, J = 2.0, 1.1 Hz, 1H), 7.10 - 7.16 (m, 3H), 7.24 - 7.50 (m, 6H), 

7.58 (m, 1H). 

 

MS (25°C): m/z (%) = 233 (100, M+), 232 (5), 142 (7), 115 (6), 92 (6), 91 (98), 65 (5). 

 

HRMS: C17H15N  Calculated: 233.1204  found: 233.1207. 
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1-(4-Methoxybenzyl)-2-(4-methoxy-phenyl)-1H-pyrrole (121d) 

 

Yield: 20% light yellow oil 

 

UV (MeOH): λ = 225, 274 nm. 

 

IR (ATR): ν = 2953, 1610, 1585, 1509, 1463, 1440, 1356, 1289, 

1242, 1173, 1138, 1106, 1033, 909, 886, 832, 761, 727, 633, 605, 576 cm–1. 

N
OMe

OMe

 
1H-NMR (500 MHz, CDCl3): δ = 3.82 (s, 3H), 3.82 (s, 3H), 5.04 (s, 2H), 6.19 (dd, J = 

3.5, 1.8 Hz, 1H), 6.24 (d, J = 3.0 Hz, 1H), 6.30 (d, J = 1.8 Hz, 1H), 6.70 - 6.73 (m, 2H), 

6.81 - 6.98 (m, 3H), 7.24 - 7.30 (m, 2H), 7.38 - 7.40 (m, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 51.50 (CH2), 55.22 (2CH3), 108.11 (CH), 

108.23 (CH), 112.75 (2CH), 113.61 (2CH), 120.45 (CH), 126.19 (C), 128.57 (2CH), 

129.99 (2CH), 134.61 (C), 137.19 (C), 158.04 (C), 158.31 (C). 

 

MS (25°C): m/z (%) = 293 (75, M+), 210 (17), 209 (99), 121 (100), 73 (25). 

 

HRMS: C19H19NO2  Calculated: 293.1416  found: 293.1433. 

 

 

 

1-(4-Methoxyphenyl)-2-styryl-1H-pyrrole (121e) 

N

OMe

 

Yield: 78% orange oil 

 

UV (MeOH): λ = 228, 334 nm. 

 

IR (ATR): ν = 1629, 1598, 1512, 1459, 1418, 1298, 1248, 
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1180, 1147, 1106, 1040, 956, 893, 835, 801, 784, 747, 714, 692, 634, 613 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 3.88 (s, 3H), 6.32 (m, 1H), 6.64 (dd, J = 3.5, 1.6 Hz, 

1H), 6.78 (d, J = 16.3 Hz, 1H), 6.84 (dd, J = 2.7, 1.6 Hz, 1H), 6.86 (d, J = 16.3 Hz, 1H), 

6.99 (d, J = 8.9 Hz, 2H), 7.17 (tt, J = 7.2, 1.2 Hz, 1H), 7.25 - 7.29 (m, 2H), 7.28 (d, J = 

8.9 Hz, 2H), 7.33 (m, 2H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 55.54 (CH3), 106.91 (CH), 109.29 (CH), 

114.29 (2 CH), 118.04 (CH), 123.68 (CH), 125.94 (3 CH), 126.88 (CH), 127.49 (2 CH), 

128.53 (2 CH), 132.47 (C), 132.66 (C), 137.78 (C), 158.75 (C). 

 

MS (25°C): m/z (%) = 275 (76, M+), 274 (26), 260 (14), 201 (49), 167 (13), 158 (12), 

108 (56), 106 (85), 105 (89), 78 (27), 77 (100). 

 

HRMS: C19H17NO  Calculated: 275.1310  found: 275.1310. 
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5.2.5 Referring to Section 3.5 
 

 

6,11-Dihydro-5H-indolizino[8,7-b] indole (96) 

 

a) To a solution of compound 50 (100 mg, 0.35 mmol) in dry 

CH2Cl2 (20 mL), AgOAc (65 mg, 0.39 mmol) was added under 

argon atmosphere. The solution was then stirred at room 

temperature for 14 h, during which time the flask was 

prevented from light. The crude mixture was filtered over short path of neutral alumina 

(Hexane/EtOAc 1:1) to provide the product 96 as light green powder, yield: 52 mg 

(71%). 

N
N
H

 

b) To a solution of compound 51 (100 mg, 0.35 mmol) in dry Acetone (20 mL), AgOAc 

(65 mg, 0.39 mmol) was added under argon atmosphere. The solution was then heated at 

reflux for 14 h, during which time the flask was prevented from light. The crude mixture 

was filtered over short path of neutral alumina (Hexane/EtOAc 1:1) to provide the 

product 96 as light green powder, yield: 55 mg (75%).  

 

M.P.:  161 - 163°C 

 

UV (MeOH): λ = 194, 224, 281 nm. 

 

IR (drift): ν = 3425, 3383, 3101, 3053, 2963, 1921, 1624, 1603, 1575, 1479, 1438, 1369, 

1352, 1331, 1320, 1307, 1272, 1244, 1234, 1188, 1137, 1110, 1069, 1008, 996, 925, 844, 

746, 711, 693, 684, 628, 603 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 3.18 (t, J = 7.0 Hz, 2H), 4.22 (t, J = 7.0 Hz, 2H), 6.26 

(dd, J = 3.4, 2.7 Hz, 1H), 6.33 (dd, J = 3.4, 1.4 Hz, 1H), 6.80 (dd, J = 2.7, 1.4 Hz, 1H), 

7.18 (m, 2H), 7.39 (m, 1H), 7.54 (m, 1H), 8.10 (br s, 1H). 
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13C-NMR (125 MHz, CDCl3): δ = 21.25 (CH2), 45.35 (CH2), 101.87 (CH), 105.16 (C), 

108.14 (CH), 110.92 (CH), 117.80 (CH), 119.93 (CH), 121.43 (CH), 121.76 (CH), 

124.62 (C), 127.12 (C), 128.95 (C), 136.37 (C). 

 

MS (65°C): m/z (%) = 208 (100, M+), 207 (67), 206 (17), 205 (3), 115 (4), 104 (2), 71 

(2), 43 (2). 

 

HRMS: C14H12N2   Calculated: 208.1000  found: 208.0994. 

 

 

Harmicine (2,3,5,6,11,11b-Hexahydro-1H-indolizino[8,7-b] indole) (122) 

 

To a solution of 96 (40 mg, 0.189 mmol) in methanol (5 mL) 

and glacial acetic acid (5 mL) was added 5% Rhodium on 

carbon (22 mg). The mixture was then vigorously stirred under 

a hydrogen atmosphere (800-900 Torr) at room temperature 

until no further hydrogen uptake was detected (8 days). The reaction mixture was filtered 

over a short path of celite (which was subsequently washed with methanol) and the 

solvent was evaporated. The residue was neutralized with saturated solution of sodium 

carbonate, extracted with CH2Cl2 (4 × 50 mL), dried over anhydrous Na2SO4 and 

concentrated in vacuo to afford the product 122 as light yellow powder.  

N
H

N

H

 

Yield: 36 mg (88%); light yellow powder 

 

M.P.:  106-108 °C 

 

IR (ATR):  ν = 3185, 3059, 2925, 2853, 1610, 1558, 1519, 1450, 1384, 1302, 1233, 

1147, 1059, 1008, 923, 738 cm–1. 
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1H-NMR (500 MHz, CDCl3): δ = 1.77 - 1.87 (m, 1H), 1.88 - 1.97 (m, 2H), 2.28 - 2.36 

(m, 1H), 2.69 - 2.74 (m, 1H), 2.89 - 2.97 (m, 2H), 2.99 - 3.03 (m, 1H), 3.10 - 3.16 (m, 

1H), 3.31 (ddd, J = 12.9, 5.0, 2.3 Hz, 1H), 4.41 (m, 1H), 7.07 (dt, J = 1.0, 7.5 Hz, 1H), 

7.12 (dt, J = 1.2, 7.5 Hz, 1H), 7.31 (br d, J = 7.5 Hz, 1H), 7.45 (br d, J = 7.5 Hz, 1H), 

8.73 (br s, 1H). 

 
13C-NMR (125 MHz, CDCl3): δ = 17.38 (CH2), 23.14 (CH2), 29.50 (CH2), 45.63 (CH2), 

49.06 (CH2), 56.98 (CH), 107.03 (C), 110.95 (CH), 117.98 (CH), 119.30 (CH), 121.50 

(CH), 126.90 (C), 133.96 (C), 136.20 (C). 

 

MS (150°C): m/z (%) = 212 (62, M+), 211 (100), 184 (21), 183 (9), 170 (7), 169 (6), 168 

(7), 156 (12), 106 (6), 105 (5), 97 (4), 91 (4), 84 (11), 71 (6), 69 (5), 60 (5), 57 (8), 45 (8), 

43 (16). 

 

HRMS: C14H16N2  Calculated: 212.1313  found: 212.1332. 
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5.2.6 Referring to Section 3.6 
 

6,7-Dimethoxy-1-(3-trimethylsilyl-prop-2-ynyl)-1,2,3,4-tetrahydroisoquinoline (128) 

and 6,7-Dimethoxy-1-(1-trimethylsilyl-prop-2-dienyl)-1,2,3,4-tetrahydro-

isoquinoline (129) 

 

To a solution of 3,4-dihydro-6,7-dimethoxyisoquinoline 

125 (1.5 g, 7.85 mmol) in dry THF (40 mL) was added 

drop wise BF3·OEt2 (1.0 mL, 7.85 mmol) at –23oC. After 

stirring for 0.5 h, a solution of trimethylsilylpropargyl 

magnesium bromide (5.06 g, 23.54 mmol) in dry diethyl 

ether (20 mL) was added drop wise to this suspension. 

After stirring for 15 h at –23oC, the reaction mixture was quenched with saturated 

aqueous solution of NH4Cl (100 mL) and extracted with EtOAc (4 × 100 mL). The 

combined organic layers were washed with H2O (50 mL) and dried with Na2SO4. 

Evaporation of the solvent in vacuo and flash chromatography of the residue on silica gel 

(Hexane/EtOAc 1:1) afforded in the sequence of increasing polarity the compounds 129 

as yellow oil, yield: 55 mg (2%) and 128 as light yellow crystals, yield: 1.44 g (61%). 

NH

TMS

MeO

MeO

 

Spectroscopic data for compound 128 

 

M.P.:  59 - 69°C  

 

UV (MeOH): λ = 206, 232, 285 nm. 

 

IR (ATR): ν = 2998, 2955, 2905, 2832, 2170, 1610, 1515, 1464, 1376, 1354, 1326, 

1301, 1250, 1224, 1113, 1036, 982, 841, 760, 700, 643, 571 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.15 (s, 9H), 1.78 (br s, 1H), 2.60 (dd, J = 17.0, 8.8 

Hz, 1H), 2.70 (d, J = 4.3 Hz, 1H), 2.72 (t, J = 5.0 Hz, 2H), 2.97 (quint., J = 6.0 Hz, 1H), 
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3.17 (quint., J = 6.0 Hz, 1H), 3.83 (s, 3H), 3.84 (s, 3H), 4.08 - 4.10 (m, 1H), 6.57 (s, 1H), 

6.65 (s, 1H).  

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 0.11 (3CH3), 28.18 (CH2), 29.40 (CH2), 

40.42 (CH2), 54.54 (CH), 55.83 (CH3), 55.96 (CH3), 87.03 (C), 104.64 (C), 109.26 (CH), 

111.65 (CH), 127.37 (C), 129.39 (C), 147.16 (C), 147.61(C). 

 

MS (25°C) : m/z (%) = 304 (5, [M+1]+), 288 (7), 193 (68), 192 (100), 190 (6), 177 (14), 

176 (39), 148 (18), 147 (10), 131 (9), 118 (6), 73 (7). 

 

HRMS: C17H25NO2Si   Calculated: 303.1655  found: 303.1653 

 

Elemental Analysis:   Calculated C: 67.28 H: 8.30 N: 4.62 

     Found  C: 67.07 H: 8.31 N: 4.79. 

 

 

Spectroscopic data for compound 129 

NH

TMS

MeO

MeO

 

 

UV (MeOH): λ = 209, 227, 282, 328 nm. 

 

IR (ATR): ν = 2999, 2951, 2905, 2831, 1927, 1609, 1558, 1514, 1464, 1355, 1325, 

1249, 1222, 1119, 1031, 840, 761, 698, 643, 615, 566 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 0.06 (s, 9H), 1.59 (br s, 1H), 2.59 (td, J = 16.0, 4.6 

Hz, 1H), 2.74 - 2.80 (m, 1H), 2.93 - 2.98 (m, 1H), 3.18 - 3.22 (m, 1H), 3.81 (s, 3H), 3.84 

(s, 3H), 4.35 (d, J = 1.1 Hz, 2H), 4.62 (br s, 1H), 6.54 (s, 1H), 6.57 (s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = –0.57 (3CH3), 29.20 (CH2), 41.72 (CH2), 

55.71 (CH3), 55.86 (CH3), 59.15 (CH), 69.56 (CH2), 99.64 (C), 110.59 (CH), 111.23 

(CH), 127.12 (CH), 130.25 (CH), 146.62 (C), 147.27 (C), 210.90 (C). 
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MS (25°C): m/z (%) = 304 (7, [M+1]+), 288 (9), 194 (8), 193 (69), 192 (100), 191 (6), 

190 (7), 177 (17), 176 (41), 148 (21), 147 (12), 131 (10), 118 (6), 73 (8). 

 

HRMS: C17H26NO2Si [M+1]+ Calculated: 304.1733  found: 304.1724 

 

 

8,9-Dimethoxy-5,6-dihydro-pyrrolo[2,1-a]isoquinoline (130) 

 

a) To a solution of compound 128 (140 mg, 0.46 mmol) in dry CH2Cl2 (12 mL), AgOAc 

(85 mg, 0.51 mmol) was added under argon atmosphere. The solution was then stirred at 

room temperature for 14 h, during which time the flask was prevented from light. The 

crude mixture was filtered over short path of neutral alumina (Hexane/EtOAc 1:1) to 

provide the product 130 as light yellow crystals, yield: 61 mg (58%). 

 

b) To a solution of compound 129 (40 mg, 0.132 mmol) in dry Acetone (12 mL), AgOAc 

(25 mg, 0.15 mmol) was added under argon atmosphere. The solution was then heated at 

reflux for 6 h, during which time the flask was prevented from light. The crude mixture 

was filtered over short path of neutral alumina (Hexane/EtOAc 1:1) to provide the 

product 130 as light yellow crystals, yield: 13 mg (43%).  

 

N

MeO

MeO

M.P.: 110 - 112 °C 

 

UV (MeOH): λ = 293, 308 (sh), 314 nm. 

 

IR (ATR): ν = 2935, 1611, 1553, 1506, 1464, 1441, 1333, 1266, 1226, 1210, 1166, 1131, 

1070, 1050, 1015, 859, 791, 711 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 2.99 (t, J = 6.6 Hz, 2H), 3.88 (s, 3H), 3.91 (s, 3H), 

4.05 (t, J = 6.6 Hz, 2H), 6.19 (br s, 1H), 6.38 (br d, J = 2.3 Hz, 1H), 6.64 (br s, 1H), 6.69 

(s, 1H), 7.01 (s, 1H). 
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13C-NMR and DEPT (125 MHz, CDCl3): δ = 29.05 (CH2), 44.25 (CH2), 56.00 (CH3), 

56.01 (CH3), 102.22 (CH), 105.91 (CH), 108.30 (CH), 111.29 (CH), 120.36 (CH), 122.57 

(C), 122.75 (C), 129.91 (C), 147.20 (C), 148.22 (C). 

 

MS (25°C): m/z (%) = 229 (100, M+), 214 (46), 186 (19), 185 (6), 171 (7). 

 

HRMS: C14H15NO2  Calculated: 229.1103,  found: 229.1105. 

 

Elemental Analysis:   Calculated C: 73.34 H: 6.59 N: 6.11 

    Found  C: 73.37 H  6.88  N: 6.05. 

 

 

Crispine A (124) 

 

To a solution of 130 (90 mg, 0.393 mmol) in methanol (5 mL) 

and glacial acetic acid (5 mL) was added 5% Rhodium on 

carbon (25% by wt., 23 mg). The mixture was then vigorously 

stirred under a hydrogen atmosphere (800-900 Torr) at room 

temperature until no further hydrogen uptake was detected (8 days). The reaction mixture 

was filtered over a short path of celite (which was subsequently washed with methanol) 

and the solvent was evaporated. The residue was neutralized with 2 N sodium hydroxide 

solution, extracted with CH2Cl2 (4 × 50 mL), dried over anhydrous Na2SO4 and 

concentrated in vacuo. to afford the product 124. 

N

MeO

MeO

 

Yield: 60 mg (66%); colourless crystals 

 

M.P.: 76 - 78 °C 

 

IR (ATR): ν = 2921, 2801, 1607, 1517, 1466, 1409, 1376, 1359, 1323, 1312, 1250, 1228, 

1211, 1198, 1159, 1135, 1111, 1086, 1012, 850, 811, 762, 721 cm–1. 
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1H-NMR (500 MHz, CDCl3): δ = 1.71 (m, 1H), 1.86 (m, 1H), 1.92 (m, 1H), 2.31 (m, 

1H), 2.55 (br q, J = 8.5 Hz, 1H), 2.63 (dt, J = 10.8, 4.6 Hz, 1H), 2.72 (br dt, J = 16.4, 3.5 

Hz, 1H), 3.01 (m, 1H), 3.07 (dt, J = 8.7, 3.7 Hz, 1H), 3.17 (ddd, J = 11.3, 6.2, 2.9 Hz, 

1H), 3.41 (br t, J = 8.0 Hz, 1H), 3.83 (s, 3H), 3.84 (s, 3H), 6.56 (s, 1H), 6.60 (s, 1H). 

 
13C-NMR and DEPT (125 MHz, CDCl3): δ = 22.21 (CH2), 28.03 (CH2), 30.47 (CH2), 

48.35 (CH2), 53.14 (CH2), 55.87 (CH3), 55.98 (CH3), 62.94 (CH), 108.81 (CH), 111.30 

(CH), 126.20 (C), 130.94 (C), 147.19 (C), 147.31 (C). 

 

MS (25°C): m/z (%) = 233 (63, M+), 232 (100), 218 (6), 216 (7), 205 (49), 190 (28), 

177 (5). 

 

HRMS: C14H19NO2  Calculated: 233.1416,  found: 233.1391. 

 

 

1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline (123) 

 

To a solution of 102 (86 mg, 0.51 mmol) in methanol (5 mL) and 

glacial acetic acid (5 mL) was added 5% Rhodium on carbon (25% 

by wt., 22 mg). The mixture was then vigorously stirred under a 

hydrogen atmosphere (800-900 Torr) at room temperature until no 

further hydrogen uptake was detected (8 days). The reaction mixture was filtered over a 

short path of celite (which was subsequently washed with methanol) and the solvent was 

evaporated. The residue was neutralised with 2 N sodium hydroxide solution, extracted 

with CH2Cl2 (4 × 50 mL), dried over anhydrous Na2SO4 and concentrated in vacuo to 

afford the product 123.  

N

 

Yield: 80 mg (91%); light yellow oil. 
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IR (ATR): ν = 2922, 2872, 2783, 1578, 1493, 1452, 1377, 1351, 1325, 1285, 1255, 1218, 

1182, 1162, 1136, 1116, 1082, 1040, 1013, 932, 913, 740 cm–1. 

 
1H-NMR (500 MHz, CDCl3): δ = 1.71 - 1.78 (m, 1H), 1.82 - 1.98 (m, 2H), 2.37 (m, 1 

H), 2.62 (q, J = 8.1 Hz, 1H), 2.70 (ddd, J = 14.8, 10.1, 4.7 Hz, 1H), 2.84 (dt, J = 16.6, 4.0 

Hz, 1H), 3.14 - 3.12 (m, 2H), 3.14 - 3.20 (m, 1H), 3.53 (t, J = 8.3 Hz, 1H), 7.06 - 7.16 

(m, 4H). 

 
13C-NMR (125 MHz, CDCl3): δ = 17.38 (CH2), 23.14 (CH2), 29.50 (CH2), 45.63 (CH2), 

49.06 (CH2), 56.98 (CH), 107.03 (C), 110.95 (CH), 117.98 (CH), 119.30 (CH), 121.50 

(CH), 126.90 (C), 133.96 (C), 136.20 (C). 

 

MS (25°C): m/z (%) = 173 (46, M+), 172 (100), 170 (11), 145 (36), 117 (18). 

 

HRMS: C12H15N  Calculated: 173.1204,  found: 173.1206. 
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6 Appendix 
 

6.1 X-Ray crystallographic data 
 

 

Table 1. Crystal data and structure refinement for compound 56 
 
Empirical formula  C18H18N2O 
Formula weight  278.34 
Temperature  198(2) K 
Wavelength  0.71073 Å 
Crystal system  Rhombohedral 
Space group  R-3 
Unit cell dimensions a = 31.474(3) Å α= 90°. 
 b = 31.474(3) Å β= 90°. 
 c = 7.6323(10) Å γ = 120°. 
Volume 6547.7(12) Å3 

Z 18 
Density (calculated) 1.271 Mg/m3 

Absorption coefficient 0.080 mm-1 

F(000) 2664 
Crystal size 0.3 x 0.2 x 0.2 mm3 

Diffractometer type Nonius-CCD  
Theta range for data collection 4.95 to 22.00°. 
Index ranges -33<=h<=33, -27<=k<=33, -8<=l<=7 
Reflections collected 3865 
Independent reflections 1721 [R(int) = 0.0495] 
Completeness to theta = 22.00° 96.7 %  
Absorption correction None 
Structure solution direct method 
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 1721 / 0 / 209 
Goodness-of-fit on F2 1.168 
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Final R indices [I>2sigma(I)] R1 = 0.0440, wR2 = 0.0902 
R indices (all data) R1 = 0.0708, wR2 = 0.1067 
Extinction coefficient 0.0011(4) 
Largest diff. peak and hole 0.133 and -0.200 e.Å-3 

Treatment of H-atoms H-atom were found in peak list and were refined 
in 'riding positions' with free iso. U's in the last 
cycles. 

 
Used programs Collect (Nonius BV, 1997-2000), DirAx (A.J.K. 

Duisenberg), SHELXS-97 (Sheldrick, 1990), 
SHELXL-97 (Sheldrick, 1997), Schakal-99 
(E.Keller 1999) 

 
 
Table 2.  Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 
103) for 56. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
 

 
 x y z U(eq) 

 
O(1) 10006(1) 5371(1) 2150(3) 82(1) 
C(1) 9590(1) 5290(1) 1912(4) 53(1) 
C(2) 9439(1) 5671(1) 1850(4) 49(1) 
C(3) 8906(1) 5381(1) 1426(3) 39(1) 
C(4) 8749(1) 4906(1) 1297(3) 39(1) 
C(5) 9150(1) 4793(1) 1604(4) 50(1) 
C(6) 8580(1) 5589(1) 1170(3) 42(1) 
C(7) 8101(1) 5209(1) 314(3) 39(1) 
N(8) 7904(1) 4734(1) 1213(2) 39(1) 
C(9) 8231(1) 4534(1) 927(3) 44(1) 
C(10) 7723(1) 5359(1) 352(3) 41(1) 
C(11) 7241(1) 5067(1) 720(3) 43(1) 
C(12) 7035(1) 4536(1) 1107(3) 49(1) 
C(13) 7407(1) 4385(1) 589(3) 48(1) 
N(14) 7821(1) 5829(1) -18(3) 48(1) 
C(15) 7389(1) 5840(1) 107(3) 47(1) 
C(16) 7301(1) 6222(1) -176(4) 64(1) 
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C(17) 6825(1) 6123(2) -19(4) 70(1) 
C(18) 6449(1) 5660(2) 436(4) 70(1) 
C(19) 6538(1) 5282(1) 752(4) 58(1) 
C(20) 7016(1) 5365(1) 575(3) 47(1) 

 
 
 
 
 
Table 3. Bond lengths [Å] and angles [°] for 56. 

 
O(1)-C(1)  1.215(3) 
C(1)-C(2)  1.498(4) 
C(1)-C(5)  1.502(4) 
C(2)-C(3)  1.489(4) 
C(3)-C(4)  1.325(3) 
C(3)-C(6)  1.480(4) 
C(4)-C(9)  1.483(4) 
C(4)-C(5)  1.490(4) 
C(6)-C(7)  1.524(3) 
C(7)-N(8)  1.472(3) 
C(7)-C(10)  1.485(4) 
N(8)-C(9)  1.466(3) 
N(8)-C(13)  1.469(3) 
C(10)-C(11)  1.354(3) 
C(10)-N(14)  1.380(3) 
C(11)-C(20)  1.435(4) 
C(11)-C(12)  1.489(4) 
C(12)-C(13)  1.520(4) 
N(14)-C(15)  1.378(3) 
C(15)-C(16)  1.378(4) 
C(15)-C(20)  1.409(4) 
C(16)-C(17)  1.375(4) 
C(17)-C(18)  1.387(5) 
C(18)-C(19)  1.373(5) 
C(19)-C(20)  1.400(4) 

O(1)-C(1)-C(2) 125.2(3) 
O(1)-C(1)-C(5) 125.3(3) 
C(2)-C(1)-C(5) 109.5(2) 
C(3)-C(2)-C(1) 103.1(2) 
C(4)-C(3)-C(6) 122.6(2) 
C(4)-C(3)-C(2) 112.3(2) 
C(6)-C(3)-C(2) 125.1(2) 
C(3)-C(4)-C(9) 123.1(2) 
C(3)-C(4)-C(5) 112.1(2) 
C(9)-C(4)-C(5) 124.7(2) 
C(4)-C(5)-C(1) 103.0(2) 
C(3)-C(6)-C(7) 110.1(2) 
N(8)-C(7)-C(10) 108.4(2) 
N(8)-C(7)-C(6) 110.3(2) 
C(10)-C(7)-C(6) 112.2(2) 
C(9)-N(8)-C(13) 110.2(2) 
C(9)-N(8)-C(7) 109.67(19) 
C(13)-N(8)-C(7) 111.0(2) 
N(8)-C(9)-C(4) 111.4(2) 
C(11)-C(10)-N(14) 110.1(2) 
C(11)-C(10)-C(7) 126.4(2) 
N(14)-C(10)-C(7) 123.5(2) 
C(10)-C(11)-C(20) 106.9(2) 
C(10)-C(11)-C(12) 120.9(3) 
C(20)-C(11)-C(12) 132.1(2) 
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C(11)-C(12)-C(13) 109.2(2) C(16)-C(17)-C(18) 121.3(3) 
N(8)-C(13)-C(12) 112.4(2) C(19)-C(18)-C(17) 121.2(3) 
C(15)-N(14)-C(10) 108.5(2) C(18)-C(19)-C(20) 119.1(3) 
C(16)-C(15)-N(14) 129.9(3) C(19)-C(20)-C(15) 118.2(3) 
C(16)-C(15)-C(20) 122.6(3) C(19)-C(20)-C(11) 134.9(3) 
N(14)-C(15)-C(20) 107.5(2) 
C(17)-C(16)-C(15) 117.5(3) 

C(15)-C(20)-C(11) 106.9(2) 
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Table 4. Anisotropic displacement parameters (Å2 x 103) for 56. The anisotropic 
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
 

 
 U11 U22 U33 U23 U13 U12 

 
O(1) 53(2)  86(2) 116(2)  4(1) -14(1)  41(1) 
C(1) 47(2)  64(2) 53(2)  5(2) 0(1)  31(2) 
C(2) 38(2)  49(2) 56(2)  -1(2) -3(1)  20(2) 
C(3) 34(2)  42(2) 38(2)  2(1) 3(1)  17(1) 
C(4) 41(2)  42(2) 32(1)  2(1) 4(1)  19(1) 
C(5) 59(2)  50(2) 48(2)  3(1) 5(1)  31(2) 
C(6) 36(2)  39(2) 46(2)  7(1) 4(1)  15(1) 
C(7) 37(2)  44(2) 31(2)  2(1) 2(1)  15(1) 
N(8) 35(1)  36(1) 34(1)  2(1) 3(1)  10(1) 
C(9) 51(2)  42(2) 37(2)  -2(1) 5(1)  21(2) 
C(10) 36(2)  48(2) 30(1)  3(1) 1(1)  15(1) 
C(11) 34(2)  56(2) 28(1)  -4(1) -1(1)  14(2) 
C(12) 35(2)  55(2) 35(2)  -8(1) 1(1)  7(1) 
C(13) 42(2)  45(2) 39(2)  -6(1) 0(1)  8(1) 
N(14) 36(2)  55(2) 49(1)  11(1) 3(1)  18(1) 
C(15) 40(2)  66(2) 37(2)  3(1) -2(1)  27(2) 
C(16) 56(2)  82(3) 57(2)  10(2) -1(2)  38(2) 
C(17) 69(3)  100(3) 61(2)  -2(2) -7(2)  58(2) 
C(18) 53(2)  111(3) 56(2)  -18(2) -7(2)  49(2) 
C(19) 41(2)  85(3) 41(2)  -15(2) -2(1)  27(2) 
C(20) 34(2)  73(2) 29(1)  -8(1) -4(1)  24(2) 
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Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 103) 
for 56. 

 
 x  y  z  U(eq) 

 
H(21) 9508 5846 2959 71(10) 
H(22) 9647 5932 1004 66(9) 
H(51) 9200 4637 597 62(9) 
H(52) 9096 4596 2676 55(8) 
H(61) 8732 5884 473 45(7) 
H(62) 8512 5682 2310 50(8) 
H(7) 8173 5164 -984 41(7) 
H(91) 8206 4422 -326 43(7) 
H(92) 8132 4241 1732 38(6) 
H(121) 6938 4460 2355 55(8) 
H(122) 6730 4324 410 49(7) 
H(131) 7403 4350 -719 38(6) 
H(132) 7329 4063 1082 49(8) 
H(14) 8102 6092 -257 64(10) 
H(16) 7570 6522 -463 64(9) 
H(17) 6758 6393 -253 81(11) 
H(18) 6102 5596 535 93(11) 
H(19) 6294 4954 1131 73(10) 
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Table 6.  Torsion angles [°] for 56. 

 
O(1)-C(1)-C(2)-C(3) 176.8(3) 
C(5)-C(1)-C(2)-C(3) -2.3(3) 
C(1)-C(2)-C(3)-C(4) 1.6(3) 
C(1)-C(2)-C(3)-C(6) -178.4(2) 
C(6)-C(3)-C(4)-C(9) -1.5(4) 
C(2)-C(3)-C(4)-C(9) 178.5(2) 
C(6)-C(3)-C(4)-C(5) 179.7(2) 
C(2)-C(3)-C(4)-C(5) -0.3(3) 
C(3)-C(4)-C(5)-C(1) -1.2(3) 
C(9)-C(4)-C(5)-C(1) -179.9(2) 
O(1)-C(1)-C(5)-C(4) -177.0(3) 
C(2)-C(1)-C(5)-C(4) 2.1(3) 
C(4)-C(3)-C(6)-C(7) -14.3(3) 
C(2)-C(3)-C(6)-C(7) 165.7(2) 
C(3)-C(6)-C(7)-N(8) 47.5(3) 
C(3)-C(6)-C(7)-C(10) 168.5(2) 
C(10)-C(7)-N(8)-C(9) 169.97(19) 
C(6)-C(7)-N(8)-C(9) -66.8(2) 
C(10)-C(7)-N(8)-C(13) 48.0(3) 
C(6)-C(7)-N(8)-C(13) 171.2(2) 
C(13)-N(8)-C(9)-C(4) 171.6(2) 
C(7)-N(8)-C(9)-C(4) 49.0(3) 
C(3)-C(4)-C(9)-N(8) -15.9(3) 
C(5)-C(4)-C(9)-N(8) 162.7(2) 
N(8)-C(7)-C(10)-C(11) -15.8(3) 
C(6)-C(7)-C(10)-C(11) -137.8(3) 
N(8)-C(7)-C(10)-N(14) 165.1(2) 
C(6)-C(7)-C(10)-N(14) 43.1(3) 
N(14)-C(10)-C(11)-C(20) 0.1(3) 

C(7)-C(10)-C(11)-C(20) -179.1(2) 
N(14)-C(10)-C(11)-C(12) 178.0(2) 
C(7)-C(10)-C(11)-C(12) -1.2(4) 
C(10)-C(11)-C(12)-C(13) -13.4(3) 
C(20)-C(11)-C(12)-C(13) 163.8(3) 
C(9)-N(8)-C(13)-C(12) 171.0(2) 
C(7)-N(8)-C(13)-C(12) -67.2(3) 
C(11)-C(12)-C(13)-N(8) 46.4(3) 
C(11)-C(10)-N(14)-C(15) -0.2(3) 
C(7)-C(10)-N(14)-C(15) 179.0(2) 
C(10)-N(14)-C(15)-C(16) -178.7(3) 
C(10)-N(14)-C(15)-C(20) 0.3(3) 
N(14)-C(15)-C(16)-C(17) 177.5(3) 
C(20)-C(15)-C(16)-C(17) -1.2(4) 
C(15)-C(16)-C(17)-C(18) 1.1(5) 
C(16)-C(17)-C(18)-C(19) 0.2(5) 
C(17)-C(18)-C(19)-C(20) -1.3(4) 
C(18)-C(19)-C(20)-C(15) 1.2(4) 
C(18)-C(19)-C(20)-C(11) -177.1(3) 
C(16)-C(15)-C(20)-C(19) 0.1(4) 
N(14)-C(15)-C(20)-C(19) -178.9(2) 
C(16)-C(15)-C(20)-C(11) 178.8(2) 
N(14)-C(15)-C(20)-C(11) -0.2(3) 
C(10)-C(11)-C(20)-C(19) 178.5(3) 
C(12)-C(11)-C(20)-C(19) 0.9(5) 
C(10)-C(11)-C(20)-C(15) 0.1(3) 
C(12)-C(11)-C(20)-C(15) -177.4(2) 

 
 
 

 



Appendix 198 

 
Table 1. Crystal data and structure refinement for compound syn-13 
 
Empirical formula  C27H34FeN2O5Si2

Formula weight  578.59 
Temperature  198(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 10.970(1) Å α= 64.564(5)°. 
 b = 12.243(1) Å β= 76.539(6)°. 
 c = 12.792(2) Å γ = 66.796(4)°. 
Volume 1421.8(3) Å3 

Z 2 
Density (calculated) 1.352 Mg/m3 

Absorption coefficient 0.653 mm-1 

F(000) 608 
Crystal size 0.4 x 0.2 x 0.2 mm3 

Diffractometer type Nonius-CCD  
Theta range for data collection 4.82 to 27.50°. 
Index ranges -14<=h<=14, -15<=k<=15, -15<=l<=14 
Reflections collected 16978 
Independent reflections 5892 [R(int) = 0.0523] 
Completeness to theta = 27.50° 90.2 %  
Absorption correction None 
Structure solution direct method 
Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5892 / 0 / 341 
Goodness-of-fit on F2 1.049 
Final R indices [I>2sigma(I)] R1 = 0.0392, wR2 = 0.0946 
R indices (all data) R1 = 0.0512, wR2 = 0.1041 
Largest diff. peak and hole 0.513 and -0.637 e.Å-3 

Treatment of H-atoms H-atom were found in peak list and were refined in   
'riding positions' with free iso. U's in the last cycles. 
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Used programs Collect (Nonius BV, 1997-2000), DirAx (A.J.K. 
Duisenberg), SHELXS-97 (Sheldrick, 1990), 
SHELXL-97 (Sheldrick, 1997), Schakal-99 (E.Keller 
1999) 

 
 
Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) 
for syn-13. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

 
 x y z U(eq) 

 
Fe(1) -6587(1) -5638(1) -2754(1) 23(1) 
Si(1) -4445(1) -7893(1) -467(1) 22(1) 
O(1) -7655(2) -7092(1) -40(1) 28(1) 
C(1) -7180(2) -7111(2) -1016(2) 21(1) 
Si(2) -9794(1) -6083(1) -1906(1) 30(1) 
O(2) -1746(2) -1194(2) -2121(2) 47(1) 
C(2) -5761(2) -7435(2) -1438(2) 20(1) 
C(3) -5677(2) -7568(2) -2517(2) 19(1) 
C(4) -6979(2) -7103(2) -2883(2) 20(1) 
C(5) -7926(2) -6681(2) -2028(2) 22(1) 
C(6) -4498(2) -8196(2) -3181(2) 21(1) 
C(7) -4949(1) -8555(1) -3991(1) 20(1) 
N(8) -5991(1) -7449(1) -4683(1) 21(1) 
C(9) -7215(1) -7209(1) -3935(1) 25(1) 
C(10) -3831(2) -8998(2) -4797(2) 22(1) 
C(11) -3851(2) -8603(2) -5960(2) 22(1) 
C(12) -5079(2) -7691(2) -6569(2) 26(1) 
C(13) -6256(2) -7640(2) -5659(2) 26(1) 
N(14) -2615(2) -9880(2) -4427(2) 24(1) 
C(15) -1828(2) -10069(2) -5385(2) 24(1) 
C(16) -532(2) -10883(2) -5455(2) 31(1) 
C(17) 29(2) -10887(2) -6538(2) 35(1) 
C(18) -677(2) -10098(2) -7532(2) 34(1) 
C(19) -1957(2) -9285(2) -7462(2) 29(1) 
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C(20) -2566(2) -9272(2) -6373(2) 23(1) 
O(21) -3997(2) -5308(2) -3623(2) 55(1) 
C(21) -5025(3) -5388(2) -3321(2) 35(1) 
C(22) -7453(3) -4465(2) -4005(2) 38(1) 
O(22) -8053(2) -3721(2) -4769(2) 64(1) 
C(23) -7168(3) -4614(2) -1928(2) 33(1) 
O(23) -7537(2) -3980(2) -1410(2) 51(1) 
C(111) -4652(3) -6501(2) -121(3) 41(1) 
C(112) -2759(3) -8445(3) -1155(3) 48(1) 
C(113) -4665(3) -9225(2) 901(2) 40(1) 
C(211) -10313(3) -7326(3) -624(3) 52(1) 
C(212) -10423(3) -4540(3) -1693(3) 55(1) 
C(213) -10461(3) -5836(3) -3232(3) 46(1) 

 
 
 
 
 
 
 
Table 3. Bond lengths [Å] and angles [°] for syn-13. 

 
Fe(1)-C(22)  1.784(3) 
Fe(1)-C(21)  1.788(3) 
Fe(1)-C(23)  1.814(2) 
Fe(1)-C(4)  2.080(2) 
Fe(1)-C(3)  2.0834(18) 
Fe(1)-C(2)  2.1107(19) 
Fe(1)-C(5)  2.116(2) 
Fe(1)-C(1)  2.330(2) 
Si(1)-C(112)  1.850(3) 
Si(1)-C(113)  1.855(2) 
Si(1)-C(111)  1.857(2) 
Si(1)-C(2)  1.882(2) 
O(1)-C(1)  1.243(3) 

C(1)-C(2)  1.476(3) 
C(1)-C(5)  1.480(3) 
Si(2)-C(211)  1.852(3) 
Si(2)-C(212)  1.856(3) 
Si(2)-C(213)  1.862(3) 
Si(2)-C(5)  1.877(2) 
C(2)-C(3)  1.435(3) 
C(3)-C(4)  1.423(3) 
C(3)-C(6)  1.500(3) 
C(4)-C(5)  1.441(3) 
C(4)-C(9)  1.494(2) 
C(6)-C(7)  1.522(2) 
C(7)-N(8)  1.4644 
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C(7)-C(10)  1.492(2) 
N(8)-C(9)  1.4630 
N(8)-C(13)  1.473(2) 
C(10)-C(11)  1.355(3) 
C(10)-N(14)  1.374(3) 
C(11)-C(20)  1.433(3) 
C(11)-C(12)  1.491(3) 
C(12)-C(13)  1.524(3) 
N(14)-C(15)  1.376(3) 
C(15)-C(16)  1.387(3) 
C(15)-C(20)  1.414(3) 
C(16)-C(17)  1.3800 
C(17)-C(18)  1.401(3) 
C(18)-C(19)  1.373(3) 
C(19)-C(20)  1.402(3) 
O(21)-C(21)  1.132(3) 
C(22)-O(22)  1.132(3) 
C(23)-O(23)  1.128(3) 
 
C(22)-Fe(1)-C(21) 95.59(12) 
C(22)-Fe(1)-C(23) 95.71(11) 
C(21)-Fe(1)-C(23) 97.56(12) 
C(22)-Fe(1)-C(4) 92.27(11) 
C(21)-Fe(1)-C(4) 120.45(9) 
C(23)-Fe(1)-C(4) 140.15(10) 
C(22)-Fe(1)-C(3) 122.66(10) 
C(21)-Fe(1)-C(3) 89.69(9) 
C(23)-Fe(1)-C(3) 140.12(10) 
C(4)-Fe(1)-C(3) 39.98(8) 
C(22)-Fe(1)-C(2) 159.91(11) 
C(21)-Fe(1)-C(2) 94.45(10) 
C(23)-Fe(1)-C(2) 100.16(10) 
C(4)-Fe(1)-C(2) 67.65(8) 
C(3)-Fe(1)-C(2) 40.02(8) 
C(22)-Fe(1)-C(5) 97.36(11) 

C(21)-Fe(1)-C(5) 156.95(9) 
C(23)-Fe(1)-C(5) 100.01(10) 
C(4)-Fe(1)-C(5) 40.16(8) 
C(3)-Fe(1)-C(5) 67.27(8) 
C(2)-Fe(1)-C(5) 67.88(8) 
C(22)-Fe(1)-C(1) 133.47(11) 
C(21)-Fe(1)-C(1) 130.82(10) 
C(23)-Fe(1)-C(1) 82.89(9) 
C(4)-Fe(1)-C(1) 63.89(8) 
C(3)-Fe(1)-C(1) 63.51(7) 
C(2)-Fe(1)-C(1) 38.42(7) 
C(5)-Fe(1)-C(1) 38.52(8) 
C(112)-Si(1)-C(113) 108.65(15) 
C(112)-Si(1)-C(111) 110.36(14) 
C(113)-Si(1)-C(111) 108.85(13) 
C(112)-Si(1)-C(2) 111.08(12) 
C(113)-Si(1)-C(2) 108.24(11) 
C(111)-Si(1)-C(2) 109.60(10) 
O(1)-C(1)-C(2) 126.8(2) 
O(1)-C(1)-C(5) 126.95(19) 
C(2)-C(1)-C(5) 105.96(17) 
O(1)-C(1)-Fe(1) 134.61(14) 
C(2)-C(1)-Fe(1) 62.72(10) 
C(5)-C(1)-Fe(1) 62.91(11) 
C(211)-Si(2)-C(212) 110.31(16) 
C(211)-Si(2)-C(213) 110.12(15) 
C(212)-Si(2)-C(213) 109.00(15) 
C(211)-Si(2)-C(5) 106.43(12) 
C(212)-Si(2)-C(5) 109.68(13) 
C(213)-Si(2)-C(5) 111.28(11) 
C(3)-C(2)-C(1) 106.48(18) 
C(3)-C(2)-Si(1) 131.61(15) 
C(1)-C(2)-Si(1) 120.66(15) 
C(3)-C(2)-Fe(1) 68.97(11) 
C(1)-C(2)-Fe(1) 78.86(11) 
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C(7)-N(8)-C(13) 112.50(9) Si(1)-C(2)-Fe(1) 127.70(10) 
N(8)-C(9)-C(4) 111.44(9) C(4)-C(3)-C(2) 109.40(17) 
C(11)-C(10)-N(14) 111.00(18) C(4)-C(3)-C(6) 120.22(19) 
C(11)-C(10)-C(7) 126.21(18) C(2)-C(3)-C(6) 130.12(19) 
N(14)-C(10)-C(7) 122.78(17) C(4)-C(3)-Fe(1) 69.89(11) 
C(10)-C(11)-C(20) 106.89(19) C(2)-C(3)-Fe(1) 71.01(10) 
C(10)-C(11)-C(12) 121.55(18) C(6)-C(3)-Fe(1) 129.75(14) 
C(20)-C(11)-C(12) 131.5(2) C(3)-C(4)-C(5) 108.61(19) 
C(11)-C(12)-C(13) 108.12(18) C(3)-C(4)-C(9) 121.65(16) 
N(8)-C(13)-C(12) 111.82(18) C(5)-C(4)-C(9) 129.45(18) 
C(10)-N(14)-C(15) 107.49(18) C(3)-C(4)-Fe(1) 70.13(12) 
N(14)-C(15)-C(16) 129.3(2) C(5)-C(4)-Fe(1) 71.26(12) 
N(14)-C(15)-C(20) 108.56(18) C(9)-C(4)-Fe(1) 129.14(12) 
C(16)-C(15)-C(20) 122.15(18) C(4)-C(5)-C(1) 106.64(17) 
C(17)-C(16)-C(15) 117.44(12) C(4)-C(5)-Si(2) 131.18(17) 
C(16)-C(17)-C(18) 121.52(11) C(1)-C(5)-Si(2) 120.58(15) 
C(19)-C(18)-C(17) 121.0(2) C(4)-C(5)-Fe(1) 68.57(12) 
C(18)-C(19)-C(20) 119.0(2) C(1)-C(5)-Fe(1) 78.58(12) 
C(19)-C(20)-C(15) 118.9(2) Si(2)-C(5)-Fe(1) 129.69(10) 
C(19)-C(20)-C(11) 135.1(2) C(3)-C(6)-C(7) 110.35(16) 
C(15)-C(20)-C(11) 106.05(18) N(8)-C(7)-C(10) 108.59(9) 
O(21)-C(21)-Fe(1) 175.3(2) N(8)-C(7)-C(6) 110.02(8) 
O(22)-C(22)-Fe(1) 177.0(3) C(10)-C(7)-C(6) 112.04(14) 

C(9)-N(8)-C(7) 109.2 
C(9)-N(8)-C(13) 109.28(10) 

O(23)-C(23)-Fe(1) 179.5(3) 
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Table 4. Anisotropic displacement parameters (Å2 x 103)for syn-13. The anisotropic 
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 

 
 U11 U22 U33 U23 U13 U12 

 
Fe(1) 33(1)  14(1) 15(1)  -6(1) 1(1)  -4(1) 
Si(1) 30(1)  19(1) 18(1)  -9(1) -2(1)  -8(1) 
O(1) 35(1)  29(1) 16(1)  -10(1) 5(1)  -9(1) 
C(1) 30(1)  14(1) 18(1)  -7(1) 2(1)  -7(1) 
Si(2) 25(1)  34(1) 26(1)  -17(1) 0(1)  -1(1) 
O(2) 60(1)  43(1) 28(1)  6(1) -12(1)  -23(1) 
C(2) 28(1)  13(1) 15(1)  -5(1) 2(1)  -6(1) 
C(3) 27(1)  12(1) 14(1)  -6(1) -2(1)  -4(1) 
C(4) 27(1)  15(1) 16(1)  -7(1) -2(1)  -3(1) 
C(5) 27(1)  18(1) 18(1)  -9(1) 0(1)  -4(1) 
C(6) 24(1)  18(1) 17(1)  -9(1) 0(1)  -3(1) 
C(7) 26(1)  18(1) 14(1)  -7(1) -1(1)  -3(1) 
N(8) 26(1)  19(1) 14(1)  -9(1) -3(1)  -1(1) 
C(9) 27(1)  28(1) 17(1)  -13(1) -3(1)  -1(1) 
C(10) 26(1)  16(1) 19(1)  -9(1) 0(1)  -2(1) 
C(11) 30(1)  19(1) 16(1)  -9(1) 0(1)  -5(1) 
C(12) 34(1)  27(1) 13(1)  -11(1) -4(1)  -2(1) 
C(13) 30(1)  28(1) 18(1)  -13(1) -5(1)  -3(1) 
N(14) 27(1)  22(1) 16(1)  -9(1) -3(1)  0(1) 
C(15) 29(1)  23(1) 19(1)  -12(1) 1(1)  -6(1) 
C(16) 29(1)  28(1) 29(1)  -12(1) 0(1)  -2(1) 
C(17) 29(1)  34(1) 35(1)  -19(1) 7(1)  -2(1) 
C(18) 37(1)  35(1) 26(1)  -17(1) 11(1)  -10(1) 
C(19) 37(1)  30(1) 19(1)  -13(1) 3(1)  -10(1) 
C(20) 29(1)  21(1) 18(1)  -11(1) 2(1)  -7(1) 
O(21) 51(1)  38(1) 68(2)  -18(1) 22(1)  -24(1) 
C(21) 47(2)  17(1) 32(1)  -8(1) 7(1)  -10(1) 
C(22) 49(2)  24(1) 26(1)  -8(1) 0(1)  0(1) 
O(22) 76(2)  42(1) 33(1)  -2(1) -16(1)  14(1) 
C(23) 45(1)  21(1) 30(1)  -10(1) 2(1)  -10(1) 
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O(23) 70(1)  39(1) 52(1)  -35(1) 6(1)  -13(1) 
C(111) 61(2)  28(1) 42(2)  -17(1) -18(1)  -11(1) 
C(112) 30(1)  72(2) 51(2)  -40(2) 1(1)  -10(1) 
C(113) 59(2)  33(1) 27(1)  2(1) -18(1)  -20(1) 
C(211) 40(2)  73(2) 40(2)  -17(1) 6(1)  -27(2) 
C(212) 45(2)  53(2) 67(2)  -43(2) 1(2)  4(1) 
C(213) 31(1)  61(2) 41(2)  -27(1) -7(1)  0(1) 

 
 
 
Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) 
for syn-13. 

 
 x  y  z  U(eq) 

 
H(21) -1919 -1729 -1526 53(10) 
H(22) -1067 -1166 -2170 91(18) 
H(61) -4009 -7708 -3633 26(6) 
H(62) -3890 -8966 -2643 28(7) 
H(7) -5306 -9200 -3542 27(6) 
H(91) -7642 -7911 -3631 34(7) 
H(92) -7849 -6507 -4408 39(8) 
H(122) -5010 -6846 -6988 34(7) 
H(121) -5217 -7989 -7090 34(7) 
H(131) -6496 -8430 -5370 39(8) 
H(132) -7000 -6907 -6041 30(7) 
H(14) -2386 -10297 -3710 26(6) 
H(16) -40 -11458 -4721 34(7) 
H(17) 851 -11397 -6598 45(8) 
H(18) -278 -10040 -8278 34(7) 
H(19) -2422 -8776 -8156 34(7) 
H(111) -5547 -6222 246 61 
H(112) -4528 -5795 -837 61 
H(113) -3990 -6752 412 61 
H(114) -2641 -7760 -1894 72 
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H(115) -2649 -9205 -1298 72 
H(116) -2093 -8663 -639 72 
H(117) -5554 -8943 1277 60 
H(118) -3991 -9474 1422 60 
H(119) -4566 -9962 727 60 
H(211) -9961 -7445 69 78 
H(212) -9966 -8137 -744 78 
H(213) -11286 -7052 -520 78 
H(214) -10235 -3867 -2411 83 
H(215) -9981 -4632 -1063 83 
H(216) -11385 -4307 -1494 83 
H(217) -10195 -5166 -3901 69 
H(218) -11434 -5573 -3125 69 
H(219) -10105 -6639 -3366 69 

 
 
 
 
Table 6. Torsion angles [°] for syn-13.

 
C(22)-Fe(1)-C(1)-O(1) -91.5(3) 
C(21)-Fe(1)-C(1)-O(1) 93.5(2) 
C(23)-Fe(1)-C(1)-O(1) -0.4(2) 
C(4)-Fe(1)-C(1)-O(1) -157.7(3) 
C(3)-Fe(1)-C(1)-O(1) 157.5(3) 
C(2)-Fe(1)-C(1)-O(1) 116.0(3) 
C(5)-Fe(1)-C(1)-O(1) -116.3(3) 
C(22)-Fe(1)-C(1)-C(2) 152.53(15) 
C(21)-Fe(1)-C(1)-C(2) -22.46(17) 
C(23)-Fe(1)-C(1)-C(2) -116.33(14) 
C(4)-Fe(1)-C(1)-C(2) 86.35(13) 
C(3)-Fe(1)-C(1)-C(2) 41.53(12) 
C(5)-Fe(1)-C(1)-C(2) 127.68(16) 
C(22)-Fe(1)-C(1)-C(5) 24.85(17) 
C(21)-Fe(1)-C(1)-C(5) -150.14(14) 

C(23)-Fe(1)-C(1)-C(5) 115.99(14) 
C(4)-Fe(1)-C(1)-C(5) -41.33(11) 
C(3)-Fe(1)-C(1)-C(5) -86.16(12) 
C(2)-Fe(1)-C(1)-C(5) -127.68(16) 
O(1)-C(1)-C(2)-C(3) 169.14(19) 
C(5)-C(1)-C(2)-C(3) -16.8(2) 
Fe(1)-C(1)-C(2)-C(3) -63.92(12) 
O(1)-C(1)-C(2)-Si(1) 0.5(3) 
C(5)-C(1)-C(2)-Si(1) 174.56(13) 
Fe(1)-C(1)-C(2)-Si(1) 127.44(14) 
O(1)-C(1)-C(2)-Fe(1) -126.9(2) 
C(5)-C(1)-C(2)-Fe(1) 47.12(13) 
C(112)-Si(1)-C(2)-C(3) 7.4(2) 
C(113)-Si(1)-C(2)-C(3) -111.8(2) 
C(111)-Si(1)-C(2)-C(3) 129.6(2) 
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C(112)-Si(1)-C(2)-C(1) 172.77(17) 
C(113)-Si(1)-C(2)-C(1) 53.57(18) 
C(111)-Si(1)-C(2)-C(1) -65.01(19) 
C(112)-Si(1)-C(2)-Fe(1) -87.18(16) 
C(113)-Si(1)-C(2)-Fe(1) 153.61(14) 
C(111)-Si(1)-C(2)-Fe(1) 35.04(17) 
C(22)-Fe(1)-C(2)-C(3) 35.6(3) 
C(21)-Fe(1)-C(2)-C(3) -84.19(14) 
C(23)-Fe(1)-C(2)-C(3) 177.30(14) 
C(4)-Fe(1)-C(2)-C(3) 36.98(12) 
C(5)-Fe(1)-C(2)-C(3) 80.53(13) 
C(1)-Fe(1)-C(2)-C(3) 112.67(17) 
C(22)-Fe(1)-C(2)-C(1) -77.0(3) 
C(21)-Fe(1)-C(2)-C(1) 163.14(14) 
C(23)-Fe(1)-C(2)-C(1) 64.63(14) 
C(4)-Fe(1)-C(2)-C(1) -75.69(12) 
C(3)-Fe(1)-C(2)-C(1) -112.67(17) 
C(5)-Fe(1)-C(2)-C(1) -32.14(11) 
C(22)-Fe(1)-C(2)-Si(1) 162.6(2) 
C(21)-Fe(1)-C(2)-Si(1) 42.83(15) 
C(23)-Fe(1)-C(2)-Si(1) -55.69(15) 
C(4)-Fe(1)-C(2)-Si(1) 164.00(15) 
C(3)-Fe(1)-C(2)-Si(1) 127.01(19) 
C(5)-Fe(1)-C(2)-Si(1) -152.46(15) 
C(1)-Fe(1)-C(2)-Si(1) -120.32(18) 
C(1)-C(2)-C(3)-C(4) 11.2(2) 
Si(1)-C(2)-C(3)-C(4) 178.11(15) 
Fe(1)-C(2)-C(3)-C(4) -59.56(13) 
C(1)-C(2)-C(3)-C(6) -162.78(19) 
Si(1)-C(2)-C(3)-C(6) 4.1(3) 
Fe(1)-C(2)-C(3)-C(6) 126.5(2) 
C(1)-C(2)-C(3)-Fe(1) 70.76(13) 
Si(1)-C(2)-C(3)-Fe(1) -122.33(17) 
C(22)-Fe(1)-C(3)-C(4) -46.25(17) 
C(21)-Fe(1)-C(3)-C(4) -142.69(14) 

C(23)-Fe(1)-C(3)-C(4) 115.85(18) 
C(2)-Fe(1)-C(3)-C(4) 120.00(17) 
C(5)-Fe(1)-C(3)-C(4) 37.81(12) 
C(1)-Fe(1)-C(3)-C(4) 80.16(13) 
C(22)-Fe(1)-C(3)-C(2) -166.25(14) 
C(21)-Fe(1)-C(3)-C(2) 97.31(14) 
C(23)-Fe(1)-C(3)-C(2) -4.1(2) 
C(4)-Fe(1)-C(3)-C(2) -120.00(17) 
C(5)-Fe(1)-C(3)-C(2) -82.19(13) 
C(1)-Fe(1)-C(3)-C(2) -39.84(12) 
C(22)-Fe(1)-C(3)-C(6) 66.9(2) 
C(21)-Fe(1)-C(3)-C(6) -29.6(2) 
C(23)-Fe(1)-C(3)-C(6) -131.0(2) 
C(4)-Fe(1)-C(3)-C(6) 113.1(2) 
C(2)-Fe(1)-C(3)-C(6) -126.9(3) 
C(5)-Fe(1)-C(3)-C(6) 150.9(2) 
C(1)-Fe(1)-C(3)-C(6) -166.7(2) 
C(2)-C(3)-C(4)-C(5) -0.9(2) 
C(6)-C(3)-C(4)-C(5) 173.74(17) 
Fe(1)-C(3)-C(4)-C(5) -61.18(14) 
C(2)-C(3)-C(4)-C(9) -175.30(15) 
C(6)-C(3)-C(4)-C(9) -0.6(3) 
Fe(1)-C(3)-C(4)-C(9) 124.45(17) 
C(2)-C(3)-C(4)-Fe(1) 60.25(13) 
C(6)-C(3)-C(4)-Fe(1) -125.08(18) 
C(22)-Fe(1)-C(4)-C(3) 142.52(14) 
C(21)-Fe(1)-C(4)-C(3) 44.68(16) 
C(23)-Fe(1)-C(4)-C(3) -115.79(17) 
C(2)-Fe(1)-C(4)-C(3) -37.02(12) 
C(5)-Fe(1)-C(4)-C(3) -118.74(17) 
C(1)-Fe(1)-C(4)-C(3) -79.13(12) 
C(22)-Fe(1)-C(4)-C(5) -98.74(14) 
C(21)-Fe(1)-C(4)-C(5) 163.43(14) 
C(23)-Fe(1)-C(4)-C(5) 3.0(2) 
C(3)-Fe(1)-C(4)-C(5) 118.74(17) 
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C(2)-Fe(1)-C(4)-C(5) 81.72(12) 
C(1)-Fe(1)-C(4)-C(5) 39.62(11) 
C(22)-Fe(1)-C(4)-C(9) 27.35(18) 
C(21)-Fe(1)-C(4)-C(9) -70.48(19) 
C(23)-Fe(1)-C(4)-C(9) 129.05(18) 
C(3)-Fe(1)-C(4)-C(9) -115.2(2) 
C(2)-Fe(1)-C(4)-C(9) -152.19(18) 
C(5)-Fe(1)-C(4)-C(9) 126.1(2) 
C(1)-Fe(1)-C(4)-C(9) 165.71(19) 
C(3)-C(4)-C(5)-C(1) -9.7(2) 
C(9)-C(4)-C(5)-C(1) 164.09(17) 
Fe(1)-C(4)-C(5)-C(1) -70.17(14) 
C(3)-C(4)-C(5)-Si(2) -174.91(15) 
C(9)-C(4)-C(5)-Si(2) -1.1(3) 
Fe(1)-C(4)-C(5)-Si(2) 124.63(18) 
C(3)-C(4)-C(5)-Fe(1) 60.47(14) 
C(9)-C(4)-C(5)-Fe(1) -125.74(19) 
O(1)-C(1)-C(5)-C(4) -169.67(19) 
C(2)-C(1)-C(5)-C(4) 16.3(2) 
Fe(1)-C(1)-C(5)-C(4) 63.30(13) 
O(1)-C(1)-C(5)-Si(2) -2.6(3) 
C(2)-C(1)-C(5)-Si(2) -176.62(13) 
Fe(1)-C(1)-C(5)-Si(2) -129.60(15) 
O(1)-C(1)-C(5)-Fe(1) 127.0(2) 
C(2)-C(1)-C(5)-Fe(1) -47.02(13) 
C(211)-Si(2)-C(5)-C(4) 111.8(2) 
C(212)-Si(2)-C(5)-C(4) -128.9(2) 
C(213)-Si(2)-C(5)-C(4) -8.2(2) 
C(211)-Si(2)-C(5)-C(1) -51.7(2) 
C(212)-Si(2)-C(5)-C(1) 67.6(2) 
C(213)-Si(2)-C(5)-C(1) -171.68(17) 
C(211)-Si(2)-C(5)-Fe(1)-152.73(17) 
C(212)-Si(2)-C(5)-Fe(1) -33.4(2) 
C(213)-Si(2)-C(5)-Fe(1) 87.28(18) 
C(22)-Fe(1)-C(5)-C(4) 84.76(14) 

C(21)-Fe(1)-C(5)-C(4) -38.9(3) 
C(23)-Fe(1)-C(5)-C(4) -178.08(13) 
C(3)-Fe(1)-C(5)-C(4) -37.64(12) 
C(2)-Fe(1)-C(5)-C(4) -81.09(12) 
C(1)-Fe(1)-C(5)-C(4) -113.15(16) 
C(22)-Fe(1)-C(5)-C(1) -162.09(12) 
C(21)-Fe(1)-C(5)-C(1) 74.2(3) 
C(23)-Fe(1)-C(5)-C(1) -64.93(13) 
C(4)-Fe(1)-C(5)-C(1) 113.15(16) 
C(3)-Fe(1)-C(5)-C(1) 75.51(12) 
C(2)-Fe(1)-C(5)-C(1) 32.06(11) 
C(22)-Fe(1)-C(5)-Si(2) -41.64(16) 
C(21)-Fe(1)-C(5)-Si(2) -165.3(2) 
C(23)-Fe(1)-C(5)-Si(2) 55.52(16) 
C(4)-Fe(1)-C(5)-Si(2) -126.4(2) 
C(3)-Fe(1)-C(5)-Si(2) -164.04(17) 
C(2)-Fe(1)-C(5)-Si(2) 152.51(16) 
C(1)-Fe(1)-C(5)-Si(2) 120.45(19) 
C(4)-C(3)-C(6)-C(7) -15.4(2) 
C(2)-C(3)-C(6)-C(7) 158.04(18) 
Fe(1)-C(3)-C(6)-C(7) -103.49(19) 
C(3)-C(6)-C(7)-N(8) 50.40(15) 
C(3)-C(6)-C(7)-C(10) 171.30(14) 
C(10)-C(7)-N(8)-C(9) 165.65(10) 
C(6)-C(7)-N(8)-C(9) -71.39(9) 
C(10)-C(7)-N(8)-C(13) 44.16(14) 
C(6)-C(7)-N(8)-C(13) 167.11(16) 
C(7)-N(8)-C(9)-C(4) 52.44(9) 
C(13)-N(8)-C(9)-C(4) 175.87(15) 
C(3)-C(4)-C(9)-N(8) -17.59(19) 
C(5)-C(4)-C(9)-N(8) 169.33(17) 
Fe(1)-C(4)-C(9)-N(8) 71.66(15) 
N(8)-C(7)-C(10)-C(11) -10.5(2) 
C(6)-C(7)-C(10)-C(11) -132.2(2) 
N(8)-C(7)-C(10)-N(14) 169.05(16) 
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C(10)-C(11)-C(20)-C(19)-179.4(2) C(6)-C(7)-C(10)-N(14) 47.3(2) 
C(12)-C(11)-C(20)-C(19) 4.0(4) N(14)-C(10)-C(11)-C(20) 0.0(3) 
C(10)-C(11)-C(20)-C(15) 0.5(2) C(7)-C(10)-C(11)-C(20) 179.57(18) 
C(12)-C(11)-C(20)-C(15)-176.2(2) N(14)-C(10)-C(11)-C(12)177.08(19) 
C(22)-Fe(1)-C(21)-O(21) -162(3) C(7)-C(10)-C(11)-C(12) -3.4(3) 
C(23)-Fe(1)-C(21)-O(21) 102(3) C(10)-C(11)-C(12)-C(13) -15.5(3) 
C(4)-Fe(1)-C(21)-O(21) -66(3) C(20)-C(11)-C(12)-C(13) 160.8(2) 
C(3)-Fe(1)-C(21)-O(21) -39(3) C(9)-N(8)-C(13)-C(12) 171.30(13) 
C(2)-Fe(1)-C(21)-O(21) 1(3) C(7)-N(8)-C(13)-C(12) -67.27(17) 
C(5)-Fe(1)-C(21)-O(21) -38(3) C(11)-C(12)-C(13)-N(8) 48.8(2) 
C(1)-Fe(1)-C(21)-O(21) 14(3) C(11)-C(10)-N(14)-C(15) -0.5(3) 
C(21)-Fe(1)-C(22)-O(22) -161(6) C(7)-C(10)-N(14)-C(15)179.87(18) 
C(23)-Fe(1)-C(22)-O(22) -63(6) C(10)-N(14)-C(15)-C(16)-178.7(2) 
C(4)-Fe(1)-C(22)-O(22) 78(6) C(10)-N(14)-C(15)-C(20) 0.9(2) 
C(3)-Fe(1)-C(22)-O(22) 105(5) N(14)-C(15)-C(16)-C(17)179.80(18) 
C(2)-Fe(1)-C(22)-O(22) 79(6) C(20)-C(15)-C(16)-C(17) 0.3(2) 
C(5)-Fe(1)-C(22)-O(22) 38(6) C(15)-C(16)-C(17)-C(18) 0.30(16) 
C(1)-Fe(1)-C(22)-O(22) 22(6) C(16)-C(17)-C(18)-C(19) 0.2(3) 
C(22)-Fe(1)-C(23)-O(23) 93(31) C(17)-C(18)-C(19)-C(20) -1.3(4) 
C(21)-Fe(1)-C(23)-O(23)-171(100) C(18)-C(19)-C(20)-C(15) 1.8(3) 
C(4)-Fe(1)-C(23)-O(23) -8(31) C(18)-C(19)-C(20)-C(11)-178.3(2) 
C(3)-Fe(1)-C(23)-O(23) -72(31) N(14)-C(15)-C(20)-C(19)179.0(2) 
C(2)-Fe(1)-C(23)-O(23) -75(31) C(16)-C(15)-C(20)-C(19) -1.4(3) 
C(5)-Fe(1)-C(23)-O(23) -6(31) N(14)-C(15)-C(20)-C(11) -0.9(2) 
C(1)-Fe(1)-C(23)-O(23) -41(31) C(16)-C(15)-C(20)-C(11)178.72(19) 
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Table 1. Crystal data and structure refinement for compound 66a 
 

Empirical formula  C18H18N2O 

Formula weight  278.34 

Temperature  198(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 9.109(1) Å α=83.48(1)°. 

 b = 9.231(1) Å β= 63.36(1)°. 

 c = 9.777(1) Å γ = 70.93(1)°. 

Volume 693.97(13) Å3 

Z 2 

Density (calculated) 1.332 Mg/m3 

Absorption coefficient 0.084 mm-1 

F(000) 296 

Crystal size 0.61 x 0.20 x 0.10 mm3 

Diffractometer type Nonius-CCD  

Theta range for data collection 5.14 to 24.99°. 

Index ranges -10<=h<=10, -10<=k<=10, -11<=l<=11 

Reflections collected 8909 

Independent reflections 2416 [R(int) = 0.0702] 

Completeness to theta = 24.99° 99.0 %  

Absorption correction None 

Structure solution direct method 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2416 / 0 / 209 

Goodness-of-fit on F2 1.063 

Final R indices [I>2sigma(I)] R1 = 0.0500, wR2 = 0.0952 

R indices (all data) R1 = 0.0885, wR2 = 0.1097 

Extinction coefficient 0.018(7) 

Largest diff. peak and hole 0.257 and -0.187 e.Å-3 
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Treatment of H-atoms were found in peak list and refined in riding 

positions in last cycles with isotropic temperature 
factors. 

Used programs Collect (Nonius BV, 1997-2000), DirAx (A.J.K. 
Duisenberg), SHELXS-97 (Sheldrick, 1990), 
SHELXL-97 (Sheldrick, 1997), Schakal-99 (E.Keller 
1999) 

 

Table 2.  Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 
103) for 66a. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

 
 x y z U(eq) 

 
O(1) 3869(2) 1369(2) 2188(2) 44(1) 

C(1) 4357(3) 46(2) 2533(2) 33(1) 

C(2) 4059(3) -493(2) 4064(2) 33(1) 

C(3) 4925(2) -1986(2) 4000(2) 27(1) 

C(4) 5753(3) -2678(2) 2428(2) 34(1) 

C(5) 5462(3) -1318(2) 1428(3) 41(1) 

C(6) 5205(2) -2962(2) 5232(2) 27(1) 

C(7) 7135(3) -3896(2) 4626(2) 27(1) 

N(8) 7678(2) -4723(2) 3198(2) 27(1) 

C(9) 7626(3) -3631(2) 2000(2) 33(1) 

C(10) 7489(2) -5023(2) 5737(2) 27(1) 

C(11) 8450(2) -6525(2) 5401(2) 28(1) 

C(12) 9302(3) -7182(2) 3817(2) 34(1) 

C(13) 9385(3) -5889(2) 2701(2) 35(1) 

N(14) 6847(2) -4692(2) 7279(2) 30(1) 

C(15) 7438(3) -6005(2) 7955(2) 30(1) 

C(16) 7175(3) -6248(3) 9461(3) 36(1) 

C(17) 7924(3) -7706(3) 9821(3) 43(1) 

C(18) 8908(3) -8891(3) 8696(3) 44(1) 

C(19) 9166(3) -8643(2) 7213(3) 39(1) 

C(20) 8432(2) -7177(2) 6806(2) 30(1) 
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Table 3. Bond lengths [Å] and angles [°] for 66a. 

O(1)-C(1)  1.221(2) 

C(1)-C(2)  1.454(3) 

C(1)-C(5)  1.507(3) 

C(2)-C(3)  1.338(3) 

C(3)-C(6)  1.486(3) 

C(3)-C(4)  1.485(3) 

C(4)-C(9)  1.524(3) 

C(4)-C(5)  1.529(3) 

C(6)-C(7)  1.541(3) 

C(7)-N(8)  1.468(3) 

C(7)-C(10)  1.485(3) 

N(8)-C(9)  1.462(2) 

N(8)-C(13)  1.470(2) 

C(10)-C(11)  1.360(3) 

C(10)-N(14)  1.380(3) 

C(11)-C(20)  1.430(3) 

C(11)-C(12)  1.483(3) 

C(12)-C(13)  1.519(3) 

N(14)-C(15)  1.380(3) 

C(15)-C(16)  1.386(3) 

C(15)-C(20)  1.406(3) 

C(16)-C(17)  1.381(3) 

C(17)-C(18)  1.399(3) 

C(18)-C(19)  1.365(3) 

C(19)-C(20)  1.401(3) 

O(1)-C(1)-C(2) 126.6(2) 

O(1)-C(1)-C(5) 125.7(2) 

C(2)-C(1)-C(5) 107.60(18) 

C(3)-C(2)-C(1) 110.38(19) 

C(2)-C(3)-C(6) 129.25(19) 

C(2)-C(3)-C(4) 112.08(18) 

C(6)-C(3)-C(4) 118.60(17) 

C(3)-C(4)-C(9) 110.32(18) 

C(3)-C(4)-C(5) 104.54(17) 

C(9)-C(4)-C(5) 116.29(18) 

C(1)-C(5)-C(4) 104.95(18) 

C(3)-C(6)-C(7) 109.03(16) 

N(8)-C(7)-C(10) 108.78(16) 

N(8)-C(7)-C(6) 108.89(16) 

C(10)-C(7)-C(6) 112.21(16) 

C(9)-N(8)-C(7) 109.80(15) 

C(9)-N(8)-C(13) 111.27(15) 

C(7)-N(8)-C(13) 112.85(16) 

N(8)-C(9)-C(4) 108.82(16) 

C(11)-C(10)-N(14) 110.19(18) 

C(11)-C(10)-C(7) 125.49(19) 

N(14)-C(10)-C(7) 124.31(17) 

C(10)-C(11)-C(20) 106.54(18) 

C(10)-C(11)-C(12) 121.31(19) 

C(20)-C(11)-C(12) 132.15(18) 

C(11)-C(12)-C(13) 109.32(17) 

N(8)-C(13)-C(12) 110.12(16) 

C(15)-N(14)-C(10) 108.46(17) 

N(14)-C(15)-C(16) 130.3(2) 

N(14)-C(15)-C(20) 107.32(18) 

C(16)-C(15)-C(20) 122.41(19) 

C(17)-C(16)-C(15) 117.7(2) 

C(16)-C(17)-C(18) 120.8(2) 

C(19)-C(18)-C(17) 121.2(2) 

C(18)-C(19)-C(20) 119.6(2) 
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C(19)-C(20)-C(15) 118.3(2) C(15)-C(20)-C(11) 107.49(17) 

C(19)-C(20)-C(11) 134.2(2) 

 
 
 
Table 4. Anisotropic displacement parameters (Å2 x 103)for 66a. The anisotropic 
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 

 
 U11 U22 U33 U23 U13 U12 

 
O(1) 65(1)  24(1) 51(1)  9(1) -36(1)  -9(1) 

C(1) 37(1)  27(1) 42(1)  4(1) -25(1)  -10(1) 

C(2) 37(1)  27(1) 33(1)  -1(1) -17(1)  -4(1) 

C(3) 29(1)  23(1) 32(1)  3(1) -17(1)  -10(1) 

C(4) 41(1)  26(1) 33(1)  3(1) -17(1)  -5(1) 

C(5) 54(2)  32(1) 35(1)  5(1) -23(1)  -7(1) 

C(6) 29(1)  21(1) 29(1)  1(1) -14(1)  -5(1) 

C(7) 30(1)  20(1) 33(1)  3(1) -15(1)  -9(1) 

N(8) 28(1)  23(1) 28(1)  3(1) -11(1)  -6(1) 

C(9) 36(1)  29(1) 30(1)  1(1) -10(1)  -12(1) 

C(10) 24(1)  23(1) 35(1)  1(1) -14(1)  -8(1) 

C(11) 25(1)  22(1) 39(1)  3(1) -16(1)  -7(1) 

C(12) 25(1)  24(1) 43(1)  -2(1) -12(1)  -1(1) 

C(13) 24(1)  31(1) 38(1)  0(1) -7(1)  -4(1) 

N(14) 36(1)  21(1) 36(1)  0(1) -20(1)  -6(1) 

C(15) 29(1)  25(1) 41(1)  7(1) -21(1)  -9(1) 

C(16) 37(1)  34(1) 43(1)  4(1) -23(1)  -9(1) 

C(17) 45(1)  47(2) 46(2)  17(1) -30(1)  -16(1) 

C(18) 47(1)  33(1) 58(2)  16(1) -32(1)  -11(1) 

C(19) 36(1)  26(1) 53(2)  6(1) -23(1)  -5(1) 

C(20) 26(1)  22(1) 44(1)  4(1) -18(1)  -7(1) 
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Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2 x 103) 
for 66a. 

 
 x  y  z  U(eq) 

 
H(2) 3454 175 4957 33(6) 

H(4) 5111 -3448 2441 58(7) 

H(51) 6551 -1185 709 47(7) 

H(52) 4953 -1458 754 58(8) 

H(61) 4873 -2346 6150 23(5) 

H(62) 4511 -3720 5519 36(6) 

H(7) 7789 -3172 4427 33(6) 

H(91) 8302 -2913 1880 39(6) 

H(92) 8154 -4216 1021 31(5) 

H(121) 10501 -7817 3536 37(6) 

H(122) 8684 -7841 3667 41(6) 

H(131) 10257 -5400 2633 41(6) 

H(132) 9710 -6287 1618 32(5) 

H(14) 6415 -3740 7707 36(6) 

H(16) 6502 -5423 10215 30(6) 

H(17) 7730 -7906 10877 50(7) 

H(18) 9450 -9957 8967 61(7) 

H(19) 9839 -9445 6425 48(7) 

 
 

 

Table 6. Torsion angles [°] for 66a. 

 
O(1)-C(1)-C(2)-C(3) -173.8(2) 

C(5)-C(1)-C(2)-C(3) 3.5(2) 

C(1)-C(2)-C(3)-C(6) 170.49(19) 

C(1)-C(2)-C(3)-C(4) -6.6(2) 

C(2)-C(3)-C(4)-C(9) 132.57(19) 

C(6)-C(3)-C(4)-C(9) -44.9(2) 
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C(2)-C(3)-C(4)-C(5) 6.8(2) C(7)-C(10)-C(11)-C(12) 1.7(3) 

C(6)-C(3)-C(4)-C(5) -170.58(18) C(10)-C(11)-C(12)-C(13) 17.2(3) 

O(1)-C(1)-C(5)-C(4) 178.1(2) C(20)-C(11)-C(12)-C(13) -161.4(2) 

C(2)-C(1)-C(5)-C(4) 0.8(2) C(9)-N(8)-C(13)-C(12) -168.51(17) 

C(3)-C(4)-C(5)-C(1) -4.3(2) C(7)-N(8)-C(13)-C(12) 67.5(2) 

C(9)-C(4)-C(5)-C(1) -126.2(2) C(11)-C(12)-C(13)-N(8) -49.6(2) 

C(2)-C(3)-C(6)-C(7) -132.1(2) C(11)-C(10)-N(14)-C(15) 1.4(2) 

C(4)-C(3)-C(6)-C(7) 44.9(2) C(7)-C(10)-N(14)-C(15) -179.93(17) 

C(3)-C(6)-C(7)-N(8) -53.5(2) C(10)-N(14)-C(15)-C(16) 178.8(2) 

C(10)-N(14)-C(15)-C(20) -1.5(2) C(3)-C(6)-C(7)-C(10) -173.93(16) 

N(14)-C(15)-C(16)-C(17) 179.4(2) C(10)-C(7)-N(8)-C(9) -170.16(15) 

C(6)-C(7)-N(8)-C(9) 67.27(19) C(20)-C(15)-C(16)-C(17) -0.2(3) 

C(10)-C(7)-N(8)-C(13) -45.4(2) C(15)-C(16)-C(17)-C(18) -0.2(3) 

C(16)-C(17)-C(18)-C(19) 0.4(3) C(6)-C(7)-N(8)-C(13) -167.96(15) 

C(7)-N(8)-C(9)-C(4) -66.6(2) C(17)-C(18)-C(19)-C(20) -0.2(3) 

C(13)-N(8)-C(9)-C(4) 167.71(17) C(18)-C(19)-C(20)-C(15) -0.3(3) 

C(3)-C(4)-C(9)-N(8) 52.8(2) C(18)-C(19)-C(20)-C(11) 179.3(2) 

C(5)-C(4)-C(9)-N(8) 171.57(18) N(14)-C(15)-C(20)-C(19) -179.24(17) 

N(8)-C(7)-C(10)-C(11) 11.6(3) C(16)-C(15)-C(20)-C(19) 0.5(3) 

C(6)-C(7)-C(10)-C(11) 132.1(2) N(14)-C(15)-C(20)-C(11) 1.1(2) 

C(16)-C(15)-C(20)-C(11) -179.21(18) N(8)-C(7)-C(10)-N(14) -166.91(17) 

C(6)-C(7)-C(10)-N(14) -46.4(3) C(10)-C(11)-C(20)-C(19) -179.9(2) 

N(14)-C(10)-C(11)-C(20) -0.7(2) C(12)-C(11)-C(20)-C(19) -1.1(4) 

C(10)-C(11)-C(20)-C(15) -0.3(2) C(7)-C(10)-C(11)-C(20) -179.35(18) 

C(12)-C(11)-C(20)-C(15) 178.5(2) N(14)-C(10)-C(11)-C(12) -179.64(18) 

 
 

 



Appendix 215

Table 1. Crystal data and structure refinement for compound 44 
 
Empirical formula  C18H20N2O 
Formula weight  280.36 
Temperature  198(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/c 
Unit cell dimensions a = 11.615(3) Å α= 90°. 
 b = 10.570(2) Å β= 103.94(1)°. 
 c = 12.157(2) Å γ = 90°. 
Volume 1448.6(5) Å3 

Z 4 
Density (calculated) 1.286 Mg/m3 

Absorption coefficient 0.080 mm-1 

F(000) 600 
Crystal size 0.30 x 0.20 x 0.20 mm3 

Diffractometer type Nonius-CCD  
Theta range for data collection 5.18 to 23.00°. 
Index ranges -12<=h<=12, -11<=k<=11, -13<=l<=13 
Reflections collected 9304 
Independent reflections 1997 [R(int) = 0.0804] 
Completeness to theta = 23.00° 98.9 %  
Structure solution direct method 
Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1997 / 0 / 211 
Goodness-of-fit on F2 1.094 
Final R indices [I>2sigma(I)] R1 = 0.0460, wR2 = 0.0812 
R indices (all data) R1 = 0.0806, wR2 = 0.0955 
Extinction coefficient 0.0021(12) 
Largest diff. peak and hole 0.145 and -0.183 e.Å-3 

Treatment of H-atoms were found in peak list and refined in riding 
positions in last cycles with isotropic temperature 
factors. 

 



Appendix 216 

Used programs Collect (Nonius BV, 1997-2000), DirAx (A.J.K. 
Duisenberg), SHELXS-97 (Sheldrick, 1990), 
SHELXL-97 (Sheldrick, 1997), Schakal-99 (E.Keller 
1999) 

 
 
Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) 
for 44. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

 
 x y z U(eq) 

 
O(1) 2346(2) -599(2) 5507(1) 46(1) 
C(1) 2814(2) 336(3) 6015(2) 32(1) 
C(2) 3263(2) 1454(2) 5482(2) 33(1) 
C(3) 4256(2) 1958(2) 6448(2) 30(1) 
C(4) 3747(2) 1789(2) 7493(2) 32(1) 
C(5) 3092(2) 523(3) 7281(2) 36(1) 
C(7) 6261(2) 1352(2) 7698(2) 28(1) 
C(6) 5378(2) 1170(2) 6561(2) 30(1) 
N(8) 5682(2) 1034(2) 8618(2) 28(1) 
C(9) 4698(2) 1898(2) 8591(2) 32(1) 
C(10) 7329(2) 517(2) 7843(2) 26(1) 
C(11) 7861(2) -102(2) 8810(2) 27(1) 
C(12) 7446(2) 28(2) 9878(2) 32(1) 
N(14) 7883(2) 226(2) 6988(2) 29(1) 
C(14) 6538(2) 1093(2) 9737(2) 32(1) 
C(15) 8795(2) -615(2) 7417(2) 30(1) 
C(16) 9597(2) -1195(3) 6894(2) 40(1) 
C(17) 10376(2) -2048(3) 7521(2) 48(1) 
C(18) 10386(2) -2305(3) 8653(2) 47(1) 
C(19) 9622(2) -1707(2) 9186(2) 37(1) 
C(20) 8802(2) -845(2) 8566(2) 29(1) 
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Table 3. Bond lengths [Å] and angles [°] for 44. 

 
O(1)-C(1)  1.221(3) 
C(1)-C(2)  1.500(3) 
C(1)-C(5)  1.507(3) 
C(2)-C(3)  1.530(3) 
C(3)-C(6)  1.525(3) 
C(3)-C(4)  1.535(3) 
C(4)-C(9)  1.519(3) 
C(4)-C(5)  1.531(3) 
C(7)-N(8)  1.476(3) 
C(7)-C(10)  1.498(3) 
C(7)-C(6)  1.522(3) 
N(8)-C(9)  1.457(3) 
N(8)-C(14)  1.480(3) 
C(10)-C(11)  1.357(3) 
C(10)-N(14)  1.384(3) 
C(11)-C(20)  1.433(3) 
C(11)-C(12)  1.496(3) 
C(12)-C(14)  1.524(3) 
N(14)-C(15)  1.385(3) 
C(15)-C(16)  1.390(3) 
C(15)-C(20)  1.416(3) 
C(16)-C(17)  1.372(4) 
C(17)-C(18)  1.400(4) 
C(18)-C(19)  1.372(3) 
C(19)-C(20)  1.401(3) 
O(1)-C(1)-C(2) 125.3(2) 
O(1)-C(1)-C(5) 125.6(2) 
C(2)-C(1)-C(5) 109.1(2) 
C(1)-C(2)-C(3) 102.67(19) 
C(6)-C(3)-C(2) 110.4(2) 
C(6)-C(3)-C(4) 110.70(19) 
C(2)-C(3)-C(4) 102.98(18) 

C(9)-C(4)-C(5) 116.2(2) 
C(9)-C(4)-C(3) 112.01(19) 
C(5)-C(4)-C(3) 103.74(18) 
C(1)-C(5)-C(4) 105.17(19) 
N(8)-C(7)-C(10) 106.95(18) 
N(8)-C(7)-C(6) 109.28(18) 
C(10)-C(7)-C(6) 112.98(19) 
C(7)-C(6)-C(3) 112.76(19) 
C(9)-N(8)-C(7) 109.76(18) 
C(9)-N(8)-C(14) 110.13(18) 
C(7)-N(8)-C(14) 111.10(17) 
N(8)-C(9)-C(4) 111.93(19) 
C(11)-C(10)-N(14) 110.2(2) 
C(11)-C(10)-C(7) 125.3(2) 
N(14)-C(10)-C(7) 124.4(2) 
C(10)-C(11)-C(20) 107.23(19) 
C(10)-C(11)-C(12) 122.2(2) 
C(20)-C(11)-C(12) 130.6(2) 
C(11)-C(12)-C(14) 109.24(19) 
C(10)-N(14)-C(15) 108.17(18) 
N(8)-C(14)-C(12) 111.44(19) 
N(14)-C(15)-C(16) 130.3(2) 
N(14)-C(15)-C(20) 107.69(19) 
C(16)-C(15)-C(20) 122.0(2) 
C(17)-C(16)-C(15) 117.5(2) 
C(16)-C(17)-C(18) 121.4(2) 
C(19)-C(18)-C(17) 121.5(3) 
C(18)-C(19)-C(20) 118.6(2) 
C(19)-C(20)-C(15) 119.0(2) 
C(19)-C(20)-C(11) 134.3(2) 
C(15)-C(20)-C(11) 106.7(2)

 

 



Appendix 218 

 
Table 4. Anisotropic displacement parameters (Å2 x 103) for 44. The anisotropic 
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12] 

 
 U11 U22 U33 U23 U13 U12 

 
O(1) 62(1)  40(1) 36(1)  0(1) 9(1)  -14(1) 
C(1) 30(1)  33(2) 33(2)  2(1) 8(1)  1(1) 
C(2) 35(2)  33(2) 30(1)  5(1) 8(1)  1(1) 
C(3) 33(1)  22(2) 34(1)  4(1) 8(1)  2(1) 
C(4) 30(1)  33(2) 35(1)  -3(1) 9(1)  7(1) 
C(5) 34(2)  45(2) 30(1)  2(1) 13(1)  -6(1) 
C(7) 33(1)  25(2) 28(1)  2(1) 10(1)  -1(1) 
C(6) 36(1)  29(2) 26(1)  7(1) 12(1)  1(1) 
N(8) 30(1)  31(1) 25(1)  0(1) 9(1)  4(1) 
C(9) 34(2)  31(2) 33(1)  -3(1) 14(1)  3(1) 
C(10) 28(1)  25(1) 27(1)  -2(1) 10(1)  -4(1) 
C(11) 26(1)  28(2) 27(1)  -1(1) 4(1)  -3(1) 
C(12) 37(1)  31(2) 27(1)  1(1) 7(1)  -4(1) 
N(14) 29(1)  35(1) 25(1)  3(1) 8(1)  3(1) 
C(14) 35(1)  34(2) 26(1)  -5(1) 6(1)  -1(1) 
C(15) 28(1)  27(2) 34(1)  -3(1) 6(1)  0(1) 
C(16) 37(2)  47(2) 37(2)  -6(1) 8(1)  8(1) 
C(17) 39(2)  52(2) 54(2)  -10(2) 10(2)  14(2) 
C(18) 40(2)  44(2) 50(2)  -1(1) -2(2)  16(2) 
C(19) 37(2)  34(2) 36(2)  0(1) 5(1)  -3(1) 
C(20) 28(1)  25(2) 31(1)  -1(1) 3(1)  -2(1) 
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Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) 
for 44. 

 
 x  y  z  U(eq) 

 
H(21) 3513 1231 4798 35(7) 
H(22) 2571 2088 5271 47(7) 
H(3) 4433 2817 6328 27(6) 
H(4) 3196 2474 7503 26(6) 
H(51) 2375 496 7534 34(6) 
H(52) 3610 -213 7656 48(8) 
H(7) 6522 2264 7757 30(6) 
H(61) 5164 243 6499 29(6) 
H(62) 5754 1385 5952 30(6) 
H(91) 4366 1699 9259 31(6) 
H(92) 4983 2833 8649 45(7) 
H(122) 8149 231 10566 34(6) 
H(121) 7059 -776 10038 37(7) 
H(14) 7693 480 6245 37(7) 
H(141) 6972 1941 9851 31(6) 
H(142) 6030 1030 10327 34(6) 
H(16) 9557 -1006 6101 35(7) 
H(17) 10940 -2468 7201 52(8) 
H(18) 10938 -2906 9040 62(9) 
H(19) 9665 -1864 10004 37(7) 
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Table 6. Torsion angles [°] for 44. 

 
O(1)-C(1)-C(2)-C(3) -152.3(2) 
C(5)-C(1)-C(2)-C(3) 24.8(2) 
C(1)-C(2)-C(3)-C(6) 79.5(2) 
C(1)-C(2)-C(3)-C(4) -38.7(2) 
C(6)-C(3)-C(4)-C(9) 46.6(3) 
C(2)-C(3)-C(4)-C(9) 164.7(2) 
C(6)-C(3)-C(4)-C(5) -79.4(2) 
C(2)-C(3)-C(4)-C(5) 38.6(2) 
O(1)-C(1)-C(5)-C(4) 176.1(2) 
C(2)-C(1)-C(5)-C(4) -1.0(3) 
C(9)-C(4)-C(5)-C(1) -146.6(2) 
C(3)-C(4)-C(5)-C(1) -23.2(2) 
N(8)-C(7)-C(6)-C(3) 57.3(3) 
C(10)-C(7)-C(6)-C(3) 176.21(19) 
C(2)-C(3)-C(6)-C(7) -162.54(19) 
C(4)-C(3)-C(6)-C(7) -49.2(3) 
C(10)-C(7)-N(8)-C(9) 174.61(18) 
C(6)-C(7)-N(8)-C(9) -62.8(2) 
C(10)-C(7)-N(8)-C(14) 52.6(2) 
C(6)-C(7)-N(8)-C(14) 175.18(19) 
C(7)-N(8)-C(9)-C(4) 62.1(2) 
C(14)-N(8)-C(9)-C(4) -175.24(19) 
C(5)-C(4)-C(9)-N(8) 64.9(3) 
C(3)-C(4)-C(9)-N(8) -54.1(3) 
N(8)-C(7)-C(10)-C(11) -18.7(3) 
C(6)-C(7)-C(10)-C(11) -139.0(2) 
N(8)-C(7)-C(10)-N(14) 158.4(2) 
C(6)-C(7)-C(10)-N(14) 38.1(3) 
N(14)-C(10)-C(11)-C(20) -0.7(3) 

C(7)-C(10)-C(11)-C(20) 176.8(2) 
N(14)-C(10)-C(11)-C(12) -179.7(2) 
C(7)-C(10)-C(11)-C(12) -2.3(4) 
C(10)-C(11)-C(12)-C(14) -9.8(3) 
C(20)-C(11)-C(12)-C(14) 171.3(2) 
C(11)-C(10)-N(14)-C(15) 0.5(3) 
C(7)-C(10)-N(14)-C(15) -177.0(2) 
C(9)-N(8)-C(14)-C(12) 168.93(19) 
C(7)-N(8)-C(14)-C(12) -69.2(2) 
C(11)-C(12)-C(14)-N(8) 43.6(3) 
C(10)-N(14)-C(15)-C(16) 179.2(3) 
C(10)-N(14)-C(15)-C(20) -0.1(3) 
N(14)-C(15)-C(16)-C(17) -176.6(3) 
C(20)-C(15)-C(16)-C(17) 2.6(4) 
C(15)-C(16)-C(17)-C(18) -1.5(4) 
C(16)-C(17)-C(18)-C(19) -0.5(4) 
C(17)-C(18)-C(19)-C(20) 1.5(4) 
C(18)-C(19)-C(20)-C(15) -0.4(4) 
C(18)-C(19)-C(20)-C(11) 177.0(3) 
N(14)-C(15)-C(20)-C(19) 177.7(2) 
C(16)-C(15)-C(20)-C(19) -1.7(4) 
N(14)-C(15)-C(20)-C(11) -0.3(3) 
C(16)-C(15)-C(20)-C(11) -179.7(2) 
C(10)-C(11)-C(20)-C(19) -177.0(3) 
C(12)-C(11)-C(20)-C(19) 2.0(5) 
C(10)-C(11)-C(20)-C(15) 0.6(3) 
C(12)-C(11)-C(20)-C(15) 179.6(2) 
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Table 1. Crystal data and structure refinement for compound 39 
 
Empirical formula  C15H26OSi2

Formula weight  278.54 
Temperature  198(2) K 
Wavelength  0.71073 Å 
Crystal system  Orthorhombic 
Space group  Pna2

(1) 
Unit cell dimensions a = 10.534(1) Å α= 90°. 
 b = 11.647(1) Å β= 90°. 
 c = 13.797(1) Å γ = 90°. 
Volume 1692.7(2) Å3 

Z 4 
Density (calculated) 1.093 Mg/m3 

Absorption coefficient 0.199 mm-1 

F(000) 608 
Crystal size 0.52 x 0.23 x 0.20 mm3 

Diffractometer type Nonius-CCD  
Theta range for data collection 4.87 to 25.00°. 
Index ranges -12<=h<=10, -13<=k<=12, -13<=l<=16 
Reflections collected 6646 
Independent reflections 2573 [R(int) = 0.0467] 
Completeness to theta = 25.00° 98.5 %  
Absorption correction None 
Max. and min. transmission 0.9604 and 0.9032 
Structure solution direct method 
Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2573 / 1 / 170 
Goodness-of-fit on F2 1.109 
Final R indices [I>2sigma(I)] R1 = 0.0439, wR2 = 0.0849 
R indices (all data) R1 = 0.0622, wR2 = 0.0936 
Absolute structure parameter 0.01(18) 
Largest diff. peak and hole 0.214 and -0.230 e.Å-3 
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Treatment of H-atoms were found in peak list and refined in riding positions in last 
cycles with isotropic temperature factors. 

Used programs Collect (Nonius BV, 1997-2000), DirAx (A.J.K. 
Duisenberg), SHELXS-97 (Sheldrick, 1990), SHELXL-97 
(Sheldrick, 1997), Schakal-99 (E.Keller 1999) 

 
 
 
Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 10

3
) for 39. 

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

 
 x y z U(eq) 

 
Si(1) 5435(1) 3920(1) 2748(1) 33(1) 
C(1) 4112(3) 1379(3) 822(2) 26(1) 
Si(2) 4979(1) -920(1) 1460(1) 30(1) 
C(2) 3334(4) 1107(3) -51(3) 39(1) 
C(5) 3544(4) 3546(3) 652(3) 42(1) 
C(6) 4233(3) 2606(3) 1172(2) 26(1) 
C(7) 4965(3) 2665(3) 1971(2) 28(1) 
O(8) 5948(2) 1107(2) 2875(2) 44(1) 
C(8) 5331(3) 1436(3) 2182(3) 28(1) 
C(9) 4764(3) 671(2) 1412(3) 27(1) 
C(11) 4204(4) 4148(4) 3693(3) 58(1) 
C(12) 7012(4) 3648(3) 3313(3) 45(1) 
C(13) 5576(4) 5241(3) 1998(3) 55(1) 
C(21) 6712(4) -1250(3) 1506(4) 62(1) 
C(22) 4223(5) -1649(3) 408(3) 58(1) 
C(23) 4240(3) -1438(3) 2585(3) 44(1) 
C(31) 2379(11) 2030(11) -304(8) 48(2) 
C(41) 3074(12) 3181(13) -356(9) 47(2) 
C(32) 2973(10) 2151(9) -646(7) 48(2) 
C(42) 2557(11) 3171(11) -18(8) 47(2) 
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Table 3. Bond lengths [Å] and angles [°] for 39. 

 
Si(1)-C(11)  1.858(4) 
Si(1)-C(13)  1.861(4) 
Si(1)-C(12)  1.862(4) 
Si(1)-C(7)  1.879(3) 
C(1)-C(9)  1.346(5) 
C(1)-C(2)  1.491(5) 
C(1)-C(6)  1.514(4) 
Si(2)-C(23)  1.839(4) 
Si(2)-C(22)  1.860(4) 
Si(2)-C(21)  1.866(4) 
Si(2)-C(9)  1.868(3) 
C(2)-C(31)  1.513(12) 
C(2)-C(32)  1.516(10) 
C(5)-C(42)  1.459(13) 
C(5)-C(6)  1.497(5) 
C(5)-C(41)  1.537(14) 
C(6)-C(7)  1.346(4) 
C(7)-C(8)  1.510(5) 
O(8)-C(8)  1.219(4) 
C(8)-C(9)  1.510(5) 
C(31)-C(41)  1.53(2) 
C(32)-C(42)  1.534(15) 
C(11)-Si(1)-C(13) 109.1(2) 
C(11)-Si(1)-C(12) 110.67(19) 
C(13)-Si(1)-C(12) 107.59(19) 
C(11)-Si(1)-C(7) 109.13(17) 
C(13)-Si(1)-C(7) 110.32(18) 
C(12)-Si(1)-C(7) 110.00(17) 
C(9)-C(1)-C(2) 129.7(3) 
C(9)-C(1)-C(6) 110.0(3) 

C(2)-C(1)-C(6) 120.3(3) 
C(23)-Si(2)-C(22) 109.08(18) 
C(23)-Si(2)-C(21) 108.6(2) 
C(22)-Si(2)-C(21) 110.6(2) 
C(23)-Si(2)-C(9) 107.73(17) 
C(22)-Si(2)-C(9) 111.89(18) 
C(21)-Si(2)-C(9) 108.94(15) 
C(1)-C(2)-C(31) 113.6(5) 
C(1)-C(2)-C(32) 113.9(5) 
C(31)-C(2)-C(32) 30.5(4) 
C(42)-C(5)-C(6) 115.5(6) 
C(42)-C(5)-C(41) 27.5(5) 
C(6)-C(5)-C(41) 112.8(6) 
C(7)-C(6)-C(5) 129.2(3) 
C(7)-C(6)-C(1) 110.9(3) 
C(5)-C(6)-C(1) 119.8(3) 
C(6)-C(7)-C(8) 104.8(3) 
C(6)-C(7)-Si(1) 131.1(3) 
C(8)-C(7)-Si(1) 124.0(3) 
O(8)-C(8)-C(7) 125.9(3) 
O(8)-C(8)-C(9) 125.3(3) 
C(7)-C(8)-C(9) 108.8(3) 
C(1)-C(9)-C(8) 105.4(3) 
C(1)-C(9)-Si(2) 133.7(3) 
C(8)-C(9)-Si(2) 120.8(2) 
C(2)-C(31)-C(41) 108.4(9) 
C(31)-C(41)-C(5) 110.8(9) 
C(2)-C(32)-C(42) 112.7(7) 
C(5)-C(42)-C(32) 112.7(8) 
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Table 4. Anisotropic displacement parameters (Å2 x 10

3
) for 39. The anisotropic displacement 

factor exponent takes the form: -2π2[h2a*2U11 + ... + 2 h k a* b* U12] 

 
 U11 U22 U33 U23 U13 U12 

 
Si(1) 31(1)  25(1) 43(1)  -7(1) -1(1)  0(1) 
C(1) 31(2)  22(2) 26(2)  -1(2) 5(2)  -4(1) 
Si(2) 37(1)  20(1) 34(1)  0(1) 3(1)  -1(1) 
C(2) 48(2)  39(2) 30(2)  1(2) -4(2)  -3(2) 
C(5) 57(2)  27(2) 44(2)  2(2) -3(2)  9(2) 
C(6) 28(2)  24(2) 28(2)  3(1) 4(2)  3(1) 
C(7) 29(2)  22(2) 34(2)  -1(2) 4(2)  4(1) 
O(8) 55(2)  31(1) 44(2)  2(1) -20(2)  8(1) 
C(8) 29(2)  23(2) 33(2)  -1(2) 2(2)  4(1) 
C(9) 28(2)  23(2) 29(2)  -3(2) 1(2)  -1(1) 
C(11) 39(2)  68(3) 66(3)  -33(3) 4(2)  -5(2) 
C(12) 40(2)  39(2) 57(3)  -9(2) -4(2)  -6(2) 
C(13) 63(3)  26(2) 77(3)  2(2) -11(2)  -9(2) 
C(21) 48(2)  30(2) 108(4)  7(3) 23(3)  8(2) 
C(22) 104(4)  29(2) 40(2)  -5(2) -2(3)  -14(2) 
C(23) 44(2)  41(2) 48(3)  8(2) 2(2)  -4(2) 
C(31) 57(6)  56(4) 30(6)  -1(4) -7(3)  18(5) 
C(41) 65(8)  48(3) 28(7)  4(5) -5(4)  19(6) 
C(32) 57(6)  56(4) 30(6)  -1(4) -7(3)  18(5) 
C(42) 65(8)  48(3) 28(7)  4(5) -5(4)  19(6) 

 
 
Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 10

3
) for 39. 

 
 x  y  z  U(eq) 

 
H(22) 2875 407 59 47 
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H(21) 3870 797 -549 47 
H(51) 4142 4155 549 51 
H(52) 3087 3926 1162 51 
H(111) 3381 4321 3434 87 
H(112) 4576 4744 4081 87 
H(113) 4186 3411 4006 87 
H(121) 7185 4277 3743 68 
H(122) 6758 2911 3558 68 
H(123) 7605 3362 2843 68 
H(131) 4754 5463 1764 83 
H(132) 5922 5885 2343 83 
H(133) 6196 5086 1505 83 
H(211) 7059 -1097 876 93 
H(212) 6716 -2068 1418 93 
H(213) 7118 -800 1999 93 
H(221) 3318 -1574 465 86 
H(222) 4718 -1417 -142 86 
H(223) 4322 -2433 611 86 
H(231) 4327 -2237 2742 66 
H(232) 3563 -1331 2670 66 
H(233) 4485 -1010 3149 66 
H(311) 1706 2062 196 57 
H(312) 1977 1857 -936 57 
H(411) 2493 3774 -616 57 
H(412) 3806 3114 -802 57 
H(321) 2273 1943 -1091 57 
H(322) 3710 2385 -1046 57 
H(421) 2322 3820 -445 57 
H(422) 1793 2950 356 57 
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Table 6. Torsion angles [°] for 39. 

 
C(9)-C(1)-C(2)-C(31) 158.8(6) 
C(6)-C(1)-C(2)-C(31) -20.0(7) 
C(9)-C(1)-C(2)-C(32) -167.8(5) 
C(6)-C(1)-C(2)-C(32) 13.4(6) 
C(42)-C(5)-C(6)-C(7) -163.4(5) 
C(41)-C(5)-C(6)-C(7) 166.5(6) 
C(42)-C(5)-C(6)-C(1) 14.3(6) 
C(41)-C(5)-C(6)-C(1) -15.8(6) 
C(9)-C(1)-C(6)-C(7) 0.5(4) 
C(2)-C(1)-C(6)-C(7) 179.5(3) 
C(9)-C(1)-C(6)-C(5) -177.6(3) 
C(2)-C(1)-C(6)-C(5) 1.5(5) 
C(5)-C(6)-C(7)-C(8) 176.7(3) 
C(1)-C(6)-C(7)-C(8) -1.1(4) 
C(5)-C(6)-C(7)-Si(1) -0.7(6) 
C(1)-C(6)-C(7)-Si(1) -178.5(3) 
C(11)-Si(1)-C(7)-C(6) 87.3(4) 
C(13)-Si(1)-C(7)-C(6) -32.5(4) 
C(12)-Si(1)-C(7)-C(6) -151.1(3) 
C(11)-Si(1)-C(7)-C(8) -89.6(3) 
C(13)-Si(1)-C(7)-C(8) 150.5(3) 
C(12)-Si(1)-C(7)-C(8) 32.0(3) 
C(6)-C(7)-C(8)-O(8) -176.5(4) 
Si(1)-C(7)-C(8)-O(8) 1.1(5) 
C(6)-C(7)-C(8)-C(9) 1.4(4) 
Si(1)-C(7)-C(8)-C(9) 179.0(2) 

C(2)-C(1)-C(9)-C(8) -178.5(3) 
C(6)-C(1)-C(9)-C(8) 0.4(4) 
C(2)-C(1)-C(9)-Si(2) -2.0(6) 
C(6)-C(1)-C(9)-Si(2) 176.9(3) 
O(8)-C(8)-C(9)-C(1) 176.8(4) 
C(7)-C(8)-C(9)-C(1) -1.1(4) 
O(8)-C(8)-C(9)-Si(2) -0.2(5) 
C(7)-C(8)-C(9)-Si(2) -178.1(2) 
C(23)-Si(2)-C(9)-C(1) -114.4(4) 
C(22)-Si(2)-C(9)-C(1) 5.5(4) 
C(21)-Si(2)-C(9)-C(1) 128.0(4) 
C(23)-Si(2)-C(9)-C(8) 61.6(3) 
C(22)-Si(2)-C(9)-C(8) -178.5(3) 
C(21)-Si(2)-C(9)-C(8) -55.9(3) 
C(1)-C(2)-C(31)-C(41) 51.8(9) 
C(32)-C(2)-C(31)-C(41) -45.6(12) 
C(2)-C(31)-C(41)-C(5) -67.6(10) 
C(42)-C(5)-C(41)-C(31) -53.0(17) 
C(6)-C(5)-C(41)-C(31) 48.7(10) 
C(1)-C(2)-C(32)-C(42) -42.7(9) 
C(31)-C(2)-C(32)-C(42) 53.7(12) 
C(6)-C(5)-C(42)-C(32) -43.8(9) 
C(41)-C(5)-C(42)-C(32) 47.0(16) 
C(2)-C(32)-C(42)-C(5) 59.5(11) 
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Table 1. Crystal data and structure refinement for compound 45 
 
Empirical formula  C18H20N2O 
Formula weight  280.36 
Temperature  198(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 9.936(2) Å α= 86.60(2)°. 
 b = 10.721(3) Å β= 88.93(2)°. 
 c = 13.607(4) Å γ = 84.08(2)°. 
Volume 1439.1(6) Å3 

Z 2 
Density (calculated) 1.294 Mg/m3 

Absorption coefficient 0.081 mm-1 

F(000) 600 
Crystal size 0.39 x 0.28 x 0.13 mm3 

Diffractometer type Nonius-CCD  
Theta range for data collection 4.83 to 23.00°. 
Index ranges -10<=h<=10, -11<=k<=11, -14<=l<=14 
Reflections collected 15847 
Independent reflections 3945 [R(int) = 0.2083] 
Completeness to theta = 23.00° 98.8 %  
Structure solution direct method 
Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3945 / 0 / 379 
Goodness-of-fit on F2 1.126 
Final R indices [I>2sigma(I)] R1 = 0.1372, wR2 = 0.3182 
R indices (all data) R1 = 0.2044, wR2 = 0.3731 
Largest diff. peak and hole 0.828 and -0.412 e.Å-3 

Treatment of H-atoms were found in peak list and refined in riding 
positions in last cycles with isotropic temperature 
factors. 
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Used programs Collect (Nonius BV, 1997-2000), DirAx (A.J.K. 
Duisenberg), SHELXS-97 (Sheldrick, 1990), 
SHELXL-97 (Sheldrick, 1997), Schakal-99 (E.Keller 
1999) 
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Table 1. Crystal data and structure refinement for compound 61 
 
Empirical formula  C18H24N4O4Si 
Formula weight  388.50 
Temperature  293(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P21 /(c) 
Unit cell dimensions a = 15.993(1) Å α= 90°. 
 b = 7.936(2) Å β= 107.57(5)°. 
 c = 16.301(7) Å γ = 90°. 
Volume 1972.4(18) Å3 

Z 4 
Density (calculated) 1.308 Mg/m3 

Absorption coefficient 0.150 mm-1 

F(000) 824 
Crystal size 0.49 x 39 x 16 mm3 

Diffractometer type Nonius-CCD  
Theta range for data collection 4.82 to 25.01°. 
Index ranges -18<=h<=19, -9<=k<=9, -16<=l<=19 
Reflections collected 5731 
Independent reflections 1378 [R(int) = 0.0804] 
Completeness to theta = 25.01° 39.5 %  
Structure solution direct method 
Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1378 / 0 / 245 
Goodness-of-fit on F2 1.211 
Final R indices [I>2sigma(I)] R1 = 0.0583, wR2 = 0.1102 
R indices (all data) R1 = 0.0856, wR2 = 0.1219 
Extinction coefficient 0.0015(10) 
Largest diff. peak and hole 0.137 and -0.146 e.Å-3 
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Treatment of H-atoms were found in peak list and refined in riding 
positions in last cycles with isotropic temperature 
factors. 

Used programs Collect (Nonius BV, 1997-2000), DirAx (A.J.K. 
Duisenberg), SHELXS-97 (Sheldrick, 1990), 
SHELXL-97 (Sheldrick, 1997), Schakal-99 (E.Keller 
1999) 

 
 
Table 2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) 
for 61. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

 
 x y z U(eq) 

 
Si(1) 2988(1) 591(3) 4613(1) 32(1) 
N(1) 1279(3) 1360(5) 5348(3) 31(1) 
O(1) -49(3) 1936(7) 6982(3) 67(2) 
C(1) 2739(4) 139(8) 5651(4) 29(2) 
O(2) -1239(3) 3363(8) 6819(3) 72(2) 
N(2) 620(3) 1734(6) 5715(3) 36(1) 
C(2) 1959(4) 639(7) 5884(3) 29(1) 
O(3) -3017(4) 5288(8) 4123(4) 59(2) 
C(3) 2065(4) 203(8) 6815(4) 37(2) 
N(3) -672(4) 2778(8) 6538(4) 49(2) 
O(4) -2499(4) 5410(7) 3022(3) 60(2) 
C(4) 2955(4) -671(8) 7126(4) 32(1) 
N(4) -2437(4) 5012(8) 3775(5) 45(2) 
C(5) 3611(4) 171(8) 7900(3) 41(2) 
C(6) 4524(4) -572(8) 8073(4) 46(2) 
C(7) 4831(4) -483(8) 7277(4) 45(2) 
C(8) 4187(4) -1308(8) 6487(4) 43(2) 
C(9) 3289(4) -615(7) 6359(3) 32(1) 
C(10) -110(5) 2546(8) 5258(4) 30(2) 
C(11) -761(4) 3040(9) 5627(4) 36(2) 
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C(12) -1525(4) 3858(7) 5135(4) 37(1) 
C(13) -1639(4) 4193(7) 4286(4) 33(1) 
C(14) -998(4) 3732(7) 3901(4) 36(1) 
C(15) -261(5) 2925(8) 4375(4) 36(2) 
C(16) 3243(5) -1408(8) 4139(4) 51(2) 
C(17) 3965(4) 1988(8) 4840(4) 48(2) 
C(18) 2037(4) 1624(9) 3803(4) 47(2) 

 
 
 
 
Table 3. Bond lengths [Å] and angles [°] for 61. 

 
Si(1)-C(17)  1.860(7) 
Si(1)-C(16)  1.863(6) 
Si(1)-C(18)  1.875(6) 
Si(1)-C(1)  1.886(7) 
N(1)-C(2)  1.304(7) 
N(1)-N(2)  1.390(6) 
O(1)-N(3)  1.236(7) 
C(1)-C(9)  1.360(8) 
C(1)-C(2)  1.464(8) 
O(2)-N(3)  1.224(7) 
N(2)-C(10)  1.345(8) 
C(2)-C(3)  1.515(8) 
O(3)-N(4)  1.243(7) 
C(3)-C(4)  1.526(8) 
N(3)-C(11)  1.463(7) 
O(4)-N(4)  1.243(7) 
C(4)-C(9)  1.500(7) 
C(4)-C(5)  1.530(8) 
N(4)-C(13)  1.450(8) 
C(5)-C(6)  1.520(8) 

C(6)-C(7)  1.522(8) 
C(7)-C(8)  1.532(8) 
C(8)-C(9)  1.492(8) 
C(10)-C(11)  1.407(8) 
C(10)-C(15)  1.419(7) 
C(11)-C(12)  1.402(9) 
C(12)-C(13)  1.367(8) 
C(13)-C(14)  1.403(8) 
C(14)-C(15)  1.359(9) 
C(17)-Si(1)-C(16) 108.3(3) 
C(17)-Si(1)-C(18) 109.5(3) 
C(16)-Si(1)-C(18) 108.2(3) 
C(17)-Si(1)-C(1) 109.1(3) 
C(16)-Si(1)-C(1) 110.0(3) 
C(18)-Si(1)-C(1) 111.6(3) 
C(2)-N(1)-N(2) 113.1(4) 
C(9)-C(1)-C(2) 106.4(5) 
C(9)-C(1)-Si(1) 126.0(5) 
C(2)-C(1)-Si(1) 127.5(5) 
C(10)-N(2)-N(1) 120.6(5) 
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N(1)-C(2)-C(1) 123.3(5) 
N(1)-C(2)-C(3) 126.1(5) 
C(1)-C(2)-C(3) 110.6(6) 
C(2)-C(3)-C(4) 104.3(5) 
O(2)-N(3)-O(1) 123.0(6) 
O(2)-N(3)-C(11) 118.0(6) 
O(1)-N(3)-C(11) 119.0(5) 
C(9)-C(4)-C(3) 103.9(5) 
C(9)-C(4)-C(5) 110.3(5) 
C(3)-C(4)-C(5) 114.4(5) 
O(3)-N(4)-O(4) 123.9(7) 
O(3)-N(4)-C(13) 117.8(7) 
O(4)-N(4)-C(13) 118.3(6) 
C(6)-C(5)-C(4) 111.3(5) 
C(5)-C(6)-C(7) 111.3(5) 
C(6)-C(7)-C(8) 112.9(5) 
C(9)-C(8)-C(7) 109.5(5) 
C(1)-C(9)-C(8) 129.0(5) 
C(1)-C(9)-C(4) 114.8(5) 
C(8)-C(9)-C(4) 116.2(5) 
N(2)-C(10)-C(11) 121.9(6) 
N(2)-C(10)-C(15) 121.1(6) 
C(11)-C(10)-C(15) 117.0(6) 
C(12)-C(11)-C(10) 120.9(6) 
C(12)-C(11)-N(3) 116.6(5) 
C(10)-C(11)-N(3) 122.4(6) 
C(13)-C(12)-C(11) 119.8(5) 
C(12)-C(13)-C(14) 120.6(6) 
C(12)-C(13)-N(4) 119.6(5) 
C(14)-C(13)-N(4) 119.7(5) 
C(15)-C(14)-C(13) 119.7(6) 
C(14)-C(15)-C(10) 122.0(6) 
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Table 4. Anisotropic displacement parameters (Å2 x 103)for 61. The anisotropic 
displacement factor exponent takes the form: -2π2[h2a*2U11 + ... + 2 h k a* b* U12] 

 
 U11 U22 U33 U23 U13 U12 

 
Si(1) 35(1)  40(1) 25(1)  0(1) 15(1)  7(1) 
N(1) 34(3)  34(3) 30(3)  -1(2) 16(2)  4(2) 
O(1) 49(3)  118(5) 39(3)  13(3) 21(3)  28(3) 
C(1) 30(4)  32(4) 27(4)  -1(3) 13(3)  1(3) 
O(2) 50(3)  128(5) 47(3)  -11(3) 31(3)  21(3) 
N(2) 33(3)  49(3) 31(3)  0(2) 18(2)  3(2) 
C(2) 41(4)  24(3) 25(3)  -7(2) 17(3)  -6(3) 
O(3) 43(3)  77(4) 61(4)  3(3) 23(3)  18(3) 
C(3) 37(4)  45(4) 31(4)  -6(3) 13(3)  -10(3) 
N(3) 35(3)  71(5) 46(4)  -7(3) 22(3)  -4(3) 
O(4) 55(4)  70(4) 50(3)  16(3) 9(3)  16(3) 
C(4) 46(4)  24(3) 28(3)  0(3) 13(3)  -1(3) 
N(4) 44(4)  40(4) 52(4)  -8(3) 16(4)  3(3) 
C(5) 55(4)  44(4) 24(3)  -5(3) 13(3)  -5(3) 
C(6) 49(4)  50(4) 33(3)  6(3) 2(3)  -5(3) 
C(7) 39(4)  43(4) 48(4)  10(3) 9(3)  0(3) 
C(8) 40(4)  44(4) 44(4)  8(3) 12(3)  11(3) 
C(9) 41(3)  28(3) 27(3)  -4(2) 13(3)  -3(3) 
C(10) 32(4)  24(4) 37(4)  -3(3) 15(3)  -5(3) 
C(11) 30(4)  44(4) 34(4)  -12(3) 13(3)  -9(3) 
C(12) 33(3)  38(4) 45(4)  -11(3) 22(3)  -3(3) 
C(13) 33(3)  24(3) 42(3)  -8(3) 11(3)  0(3) 
C(14) 42(4)  32(3) 34(3)  -4(3) 15(3)  -7(3) 
C(15) 36(4)  41(5) 38(4)  -4(3) 22(3)  -6(3) 
C(16) 66(5)  57(5) 35(4)  -10(3) 25(3)  13(4) 
C(17) 46(4)  50(4) 56(4)  6(3) 27(3)  2(3) 
C(18) 47(4)  71(5) 29(3)  15(3) 17(3)  15(4) 
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Table 5. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 103) 
for 61. 

 
 x  y  z  U(eq) 

 
H(2) 757 1617 6351 43 
H(3A) 1601 -543 6859 44 
H(3B) 2058 1213 7149 44 
H(4A) 2872 -1847 7266 38 
H(5A) 3631 1370 7793 49 
H(5B) 3417 23 8405 49 
H(6A) 4519 -1738 8250 55 
H(6B) 4931 41 8540 55 
H(7A) 5395 -1038 7398 53 
H(7B) 4909 688 7148 53 
H(8A) 4369 -1087 5981 52 
H(8B) 4182 -2519 6569 52 
H(12A) -1952 4173 5386 44 
H(14A) -1077 3978 3325 43 
H(15A) 157 2613 4112 43 
H(16A) 2714 -2051 3914 76 
H(16B) 3659 -2049 4575 76 
H(16C) 3486 -1153 3682 76 
H(17A) 4134 2122 4326 72 
H(17B) 4440 1495 5283 72 
H(17C) 3825 3070 5027 72 
H(18A) 1866 2611 4053 71 
H(18B) 1554 851 3636 71 
H(18C) 2205 1938 3307 71 
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Table 6. Torsion angles [°] for 61. 

 
C(17)-Si(1)-C(1)-C(9) -59.5(6) 
C(16)-Si(1)-C(1)-C(9) 59.2(6) 
C(18)-Si(1)-C(1)-C(9) 179.4(5) 
C(17)-Si(1)-C(1)-C(2) 115.1(6) 
C(16)-Si(1)-C(1)-C(2) -126.2(6) 
C(18)-Si(1)-C(1)-C(2) -6.1(7) 
C(2)-N(1)-N(2)-C(10) 177.2(6) 
N(2)-N(1)-C(2)-C(1) -179.4(5) 
N(2)-N(1)-C(2)-C(3) 0.4(8) 
C(9)-C(1)-C(2)-N(1) -178.0(5) 
Si(1)-C(1)-C(2)-N(1) 6.6(9) 
C(9)-C(1)-C(2)-C(3) 2.1(7) 
Si(1)-C(1)-C(2)-C(3) -173.3(4) 
N(1)-C(2)-C(3)-C(4) 177.8(6) 
C(1)-C(2)-C(3)-C(4) -2.3(7) 
C(2)-C(3)-C(4)-C(9) 1.6(6) 
C(2)-C(3)-C(4)-C(5) 121.9(6) 
C(9)-C(4)-C(5)-C(6) -53.2(7) 
C(3)-C(4)-C(5)-C(6) -169.9(5) 
C(4)-C(5)-C(6)-C(7) 54.9(7) 
C(5)-C(6)-C(7)-C(8) -54.7(7) 
C(6)-C(7)-C(8)-C(9) 51.7(7) 
C(2)-C(1)-C(9)-C(8) -177.8(6) 
Si(1)-C(1)-C(9)-C(8) -2.3(10) 
C(2)-C(1)-C(9)-C(4) -1.1(7) 
Si(1)-C(1)-C(9)-C(4) 174.4(4) 
C(7)-C(8)-C(9)-C(1) 124.4(7) 
C(7)-C(8)-C(9)-C(4) -52.3(7) 
C(3)-C(4)-C(9)-C(1) -0.3(7) 
C(5)-C(4)-C(9)-C(1) -123.5(6) 
C(3)-C(4)-C(9)-C(8) 176.8(5) 
C(5)-C(4)-C(9)-C(8) 53.7(7) 
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N(1)-N(2)-C(10)-C(11) -175.8(5) 
N(1)-N(2)-C(10)-C(15) 4.9(9) 
N(2)-C(10)-C(11)-C(12) -178.9(6) 
C(15)-C(10)-C(11)-C(12) 0.5(10) 
N(2)-C(10)-C(11)-N(3) 2.9(10) 
C(15)-C(10)-C(11)-N(3) -177.8(6) 
O(2)-N(3)-C(11)-C(12) -3.9(8) 
O(1)-N(3)-C(11)-C(12) 173.9(7) 
O(2)-N(3)-C(11)-C(10) 174.4(7) 
O(1)-N(3)-C(11)-C(10) -7.8(9) 
C(10)-C(11)-C(12)-C(13) -0.4(9) 
N(3)-C(11)-C(12)-C(13) 178.0(5) 
C(11)-C(12)-C(13)-C(14) -0.3(9) 
C(11)-C(12)-C(13)-N(4) 178.8(6) 
O(3)-N(4)-C(13)-C(12) -4.3(9) 
O(4)-N(4)-C(13)-C(12) 174.9(6) 
O(3)-N(4)-C(13)-C(14) 174.8(6) 
O(4)-N(4)-C(13)-C(14) -5.9(9) 
C(12)-C(13)-C(14)-C(15) 0.9(9) 
N(4)-C(13)-C(14)-C(15) -178.3(6) 
C(13)-C(14)-C(15)-C(10) -0.8(9) 
N(2)-C(10)-C(15)-C(14) 179.5(6) 
C(11)-C(10)-C(15)-C(14) 0.1(10) 
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