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I

SUMMARY

During cell communication, cells produce secreted signals termed morphogens,

which traffic through the tissue until they are received by target, responding

cells. Using the fruit fly Drosophila melanogaster as a model organism, I have

studied transforming growth factor-β (TGF-β) signal from the secreting to the

receiving cells in the developing wing epithelial cells and at the neuromuscular

junctions. Cell culture studies have suggested that cells modulate

morphogenetic signaling by expressing the receptors and secreting the ligand in

spatially defined areas of the cell. Indeed, I have found that TGF-β ligands,

receptors and R-Smads show a polarized distribution both in the epithelial cells

and at the synapses. My results indicate that the cellular junctions define a

signaling domain within the plasma membrane, to which TGF-β signaling

machinery is targeted.

In the context of epithelial cells, the junctions play a role in TGF-β signaling

regulation through their component β-cat. A complex forms between β-cat and

the R-Smad Mad, but the mechanism by which β-cat modulates signaling is not

yet understood.

At the synapse, the sub-cellular localization of TGF-β pathway components

indicates the occurrence of an anterograde signal. Moreover, my results suggest

a scenario in which TGF-β signaling is coupled with synaptic activity: quanta of

growth factor, released upon neurostimulation together with neurotransmitter

quanta, could modulate therefore the development and the function of the

synapse.
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INTRODUCTION

 
The development of an organism from a single cell to a multi-cellular ensemble

with a characteristic shape and size is the result of coordinated gene activities

that direct the developmental fate of individual cells. Cell proliferation, growth,

differentiation, migration, and death coordinate the precise behavior of single

cells to constitute functional organisms. Both factors acting cell-autonomously as

well as secreted signaling molecules functioning non-cell-autonomously guide

cells through distinct developmental paths. Secreted signals traffic through the

tissue until they are received by the responding target cells. Using the fruit fly

Drosophila melanogaster as a model organism, I have studied transforming

growth factor-β (TGF-β) signaling from secreting to receiving cells.

In polarized epithelia, the apical and baso-lateral plasma membrane domains are

characterized by different sets of membrane lipids, trans-membrane proteins and

associated cortical proteins. In Drosophila, studies of the lineage that gives rise to

the sensory organs suggested that, in non-signaling cells, the ligand Delta may

be segregated by the cell junctions to the baso-lateral membranes where it

cannot interact with its receptor Notch, found at the apical surface of the cells

(François Schweisguth, unpublished data). Consistently, cell culture studies have

showed that MDCK cells regulate TGF-β signaling by expressing the receptors

and secreting the ligand in spatially defined areas of the cell, separated by cell

junctions (Murphy et al., 2004).

I have analyzed the relevance for signal transduction of the sub-cellular

localization of the TGF-β pathway core components, in the context of two

communication processes: during morphogenetic signaling in the epithelial cells

of wing imaginal discs, and during synaptic transmission at the neuromuscular

junction. In the wing imaginal disc epithelia, the cellular junctions separate the

apical and baso-lateral plasma membrane domains. The junctional area ensures,

thus, a spatial barrier between the two domains. Consistently, the neuromuscular

junction provides a spatial separation between the pre- and postsynaptic

membranes. Drosophila motoneurons, with their somas in the ventral cord and

their axons extended to make synapses with the body wall muscles, are polarized
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cells as well. TGF-β signaling was studied and compared in the context of these

two types of polarized cell junctions.

TGF-β signaling in wing imaginal discs

Patterning wing imaginal discs in Drosophila

During pattern formation and morphogenesis, cells acquire positional information

and differentiate according to their locations into distinct functional structures

(Wolpert, 1969). “Positional information” is provided by signaling molecules

termed morphogens, which are secreted from a source, traffic across the target

field and form long-range concentration gradients. The receiving cells interpret

the gradients by activating target gene expression at discrete concentration

thresholds thereby acquiring positional information (Turing, 1952) (Wolpert,

1969).

An extensively studied model organism for identifying and analyzing morphogens

and their function during pattern formation and morphogenesis is Drosophila. The

Drosophila adult epidermis develops through the combined activity of different

morphogens in distinct sets of larval epidermal cells, known as imaginal discs.

They arise as pockets in the embryonic ectoderm and grow inside the body until

the larva becomes a pupa, at which point they turn inside out to form the body

wall and appendages. In a Drosophila larva there are 19 imaginal discs (Fig. 1).

Nine pairs form the head and the thorax, and a medial disc forms the genitalia.

The abdominal epidermis of the adult is derived from separate cell clusters called

histoblasts. Unlike discs, the histoblasts remain superficial during larval life,

staying integrated in the epidermis of the larva, and do not grow until the pupal

stage when they replace the epidermis of the larva.

Figure 1. Schematic representation of imaginal discs in third instar Drosophila larva: lbd
(labial disc), clb (clypeolabral disc/bud), pd (prothorax/humeral disc), wd (wing disc), ead (eye-
antennal disc), hd (haltere disc), pld (pro-thoracic leg disc), msld (meso-thoracic leg disc), mtld
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(meta-thoracic leg disc), gd (genital disc). Hib (abdominal histoblasts) are also depicted (modified
after Hartenstein, 1993)

The wing disc epithelium, like the rest of the discs, is a single cell epithelium that

forms a flattened hollow sac (Fig. 2). One side of the disc thickens into a

columnar epithelium that will secrete the adult cuticle of the mesothorax, while

most of the other side forms a squamous peripodial epithelium (Bryant, 1975).

Topologically, the wing imaginal disc can be subdivided into four compartments:

the anterior (A), posterior (P), dorsal (D) and ventral (V) compartments (Garcia-

Bellido et al., 1973) (Fig. 2).

Different morphogens specify the cell fates in the wing imaginal disc: Hedgehog

(Hh), Wingless (Wg) and TGF-β family member Decapentaplegic (Dpp) (Fig. 2).

Of them, Wg seems not to be a classical morphogen, since its concentration

gradient does not directly activate different genes above different concentration

thresholds, but maintains distinct gene expressions in a concentration-dependent

manner (Martinez Arias, 2003).

Hh is expressed by all the cells of the P compartment (Tabata and Kornberg,

1994) and activates dpp expression in the A compartment, as well as enhances

the expression of patched (ptc) (Maschat et al., 1998) (Strigini and Cohen, 1997)

(Vervoort et al., 1999) (Wang and Holmgren, 1999). Hh also activates engrailed

(en) in the late 3rd instar disc (Blair, 1992) (Guillen et al., 1995) (Sanicola et al.,

1995) (Tabata and Kornberg, 1994). Dpp, which is expressed in an anterior stripe

of cells adjacent to the A/P boundary, functions as well as a morphogen, inducing

in both compartments the expression of the target genes spalt (sal), optomotor-

blind (omb) and vestigial (vg) (Kim et al., 1995) (Kim et al., 1996) (Lecuit et al.,

1996) (Nellen et al., 1996).
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Figure 2. Schematic representation of morphogens patterning the wing imaginal disc. Hh is
expressed in the posterior compartment (P) from where induces the expression of dpp and en,
and enhances the expression of ptc in a concentration dependent manner in the anterior (A)
compartment. Dpp induces the expression of vg, omb and sal in a concentration dependent
manner along the A/P axis. Wg is expressed by cells at the ventral (V)/ dorsal (D) border and
maintains the expression of vg, dll and ac in a concentration dependent manner along the D/V
axis. PE- peripodial epithelium; CE- columnar epithelium

Wg expression is induced at the D/V border (Neumann and Cohen, 1996), where

it maintains the differential expression of target genes (Martinez Arias, 2003):

achaete (ac), distalless (dll) and vg (Cubas et al., 1991) (Diaz-Benjumea and

Cohen, 1995) (Kim et al., 1995) (Neumann and Cohen, 1996) (Skeath and

Carroll, 1992) (Zecca et al., 1996).

TGF-β signaling pathway

The mechanisms of morphogenetic TGF-β signal transduction are evolutionarily

conserved (Fig. 3). The mature TGF-β ligands are secreted as disulfide-linked

dimers that are derived from the carboxy-terminal region of precursor proteins

after the cleavage of a prodomain (Derynck et al., 1985) (Gentry et al., 1988).

The ligand dimer signals through serine/threonine kinase receptors termed type I

and type II (reviewed in Massague, 2000). Two general modes of ligand binding

have been observed (reviewed in Shi Y., 2003). One mode involves direct

binding of the ligand dimer to the type II receptor serine/threonine kinases and

subsequent interaction of this complex with the type I receptor at the cell surface.

The second binding mode is cooperative, involving type I and II receptors that

bind the ligand dimer with high affinity. After the ligand binds the receptors, the
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type II receptor phosphorylates the type I receptor kinase domain within a specific

domain termed GS (Glycine-Serine-rich) box located N-terminal to the kinase

domain (Wrana et al., 1994).  The type I receptors, then, propagate the signal

through phosphorylation of a subset of Smad transcription factors (see next).

There are three functional classes of Smad proteins: the receptor-regulated

Smads (R-Smads), the co-mediator Smads (co-Smads) and the inhibitory Smads

(i-Smads). R-Smads are directly phosphorylated and activated by the type I

receptor kinases and undergo formation of heteromeric complexes with the co-

Smad (Chacko et al., 2001) (Kretzschmar et al., 1997) (Macias-Silva et al., 1996).

The activated Smad complexes are then translocated into the nucleus and, in

conjunction with other nuclear cofactors, regulate the transcription of target genes

(Lagna et al., 1996). In the basal state the R-Smads are retained in the

cytoplasm, possibly by interaction with Smad anchor for receptor activation

(SARA). Receptor-mediated phosphorylation decreases their affinity for SARA

and also increases the affinity of R-Smads for the co-Smad (Xu et al., 2000). The

i-Smads negatively regulate TGF-β signaling by either binding to the activated

type I receptor and thus interfering with the phosphorylation of R-Smads (Kavsak

et al., 2000) (Suzuki et al., 2002) or by direct binding to the phosphorylated R-

Smads thereby competing with the co-Smad (Hata et al., 1998). The pathway is

also downregulated by targeting the R-Smads for degradation through Smurfs

(Smad ubiquitylation regulatory factors) (Zhu et al., 1999). The Smurfs, in

complex with i-Smads, also mediate ubiquitination of activated receptors, leading

to their degradation in the proteosome (Ebisawa et al., 2001) (Tajima et al.,

2003). i-Smads themselves undergo ubiquitination and degradation in this

process.
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Figure 3. Schematic representation of TGF-β signaling pathway in Drosophila. The BMP
ligands (Dpp, Gbb, Scw) act through the type I receptors Tkv or Sax, resulting in phosphorylation
of the R-Smad Mad, its association with the co-Smad Medea, translocation of the complex to the
nucleus, and regulation of the target genes expression together with different co-activators/
repressors. The type II receptors Put and Wit display dual specificity and function in both the BMP
and activin pathway. An activin pathway initiated by Activin-β or Alp23B signals through the type I
receptor Babo, triggering the phosphorylation of the R-Smad Smox. Both pathways are negatively
regulated by the i-Smad Dad and by the ubiquitin ligase Smurf. Green and red circles depict
phosphate and ubiquitin groups (modified after Shi Y., 2003)

The TGF-β family comprises two subfamilies: the bone morphogenetic proteins

(BMPs) and the activins. In Drosophila the BMP-like ligands Dpp (Spencer et al.,

1982), Screw (Scw) (Arora et al., 1994) and Glass bottom boat 60A (Gbb)

(Doctor et al., 1992) (Wharton et al., 1991) signal through Thick veins (Tkv) or

Saxophone (Sax) type I receptors, while the activin ligands dActivin-β (Kutty et

al., 1998) and Activin-like protein at 23B (Alp23B) (Faucheux et al., 2001) signal

through Baboon (Babo) type I receptor (Brummel et al., 1994) (Nellen et al.,

1994) (Penton et al., 1994) (Xie et al., 1994). Both subfamilies share the type II

receptors: Punt (Put) or Wishful thinking (Wit) (Aberle et al., 2002) (Letsou et al.,

1995) (Marques et al., 2002) (Ruberte et al., 1995). Two additional ligands have

been identified: Myoglianin (Myo) (Lo and Frasch, 1999) and Maverick (Mav)

(Nguyen et al., 2000). Their receptor specificity is not known and the phylogenetic

analysis and sequence comparison do not assign these ligands to a particular

pathway.
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All BMP ligands trigger the phosphorylation of the R-Smad Mothers against Dpp

(Mad) (Sekelsky et al., 1995), while the activins signal through Smad on X

(Smox) (Henderson and Andrew, 1998). Downstream of R-Smad, both pathways

share the same co-Smad: Medea (Raftery et al., 1995), and are negatively

regulated by the same i-Smad: Daughters against Dpp (Dad) (Tsuneizumi et al.,

1997). The contrast between the wide spectrum of cellular and developmental

responses attributed to TGF-β ligands and the fact that they signal through

relatively few (and shared) core components imply that there is an extensive

regulation controlling the different biological responses. The association with

various DNA-binding cofactors, activators or repressors (Fig. 3), tightly regulates

the stage and cell-type specificity of TGF-β family gene responses.

Dpp morphogenetic gradient

Dpp is a member of the TGF-β family of secreted signaling factors that control a

diverse set of cellular processes in species raging from flies to worms to

mammals. In Drosophila, among the processes that require Dpp signaling are:

oogenesis, specification of cell fates along the dorsal-ventral axis during

embryogenesis, subdivision of the dorsal mesoderm, dorsal closure, regional

identity of the gut visceral mesoderm and endoderm, development of the heart,

gastric caecae, salivary glands and trachea, growth and patterning of the wing

disc (reviewed in Parker et al., 2004).

According to the model of positional information, a morphogen is produced and

secreted from a restricted group of cells and spreads through the target field to

make a concentration gradient (Wolpert, 1969). The endogenous Dpp distribution

in the receiving tissue has not been detected in Drosophila, due to lack of

sensitive antibodies for immunofluorescence. To investigate the Dpp morphogen

gradient in the wing imaginal disc, functional GFP-tagged Dpp fusions were

generated (Entchev et al., 2000) (Teleman and Cohen, 2000). Driven by the dpp

wing enhancer, GFP-Dpp spreads beyond the Dpp expressing cells and is

detectable up to 40 cell diameters away from the source, forming a gradient of

concentration (Fig. 4). Gradient formation is very rapid: the Dpp gradient expands

initially at a rate of around five cell diameters per hour. The morphogen moves in

all directions. The gradient expands until a steady-state situation is reached at

about 6-8 hours after beginning of a GFP-Dpp expression pulse.
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Figure 4. Dpp gradient in Drosophila wing imaginal discs. GFP-Dpp (green) establishes a
concentration gradient in the receiving tissue, phalloidin (red) labels cell profiles. a) an apical XY
section (modified after Kruse et al., 2004); b) a cryostat XZ section (scale bars: 50µm) (genotype:
dpp-GAL4/ UAS-GFP-Dpp)

The mechanisms that control the movement and spreading of the morphogen

through the tissue regulate both the shape and the slope of the gradient. In

principle, several processes can account for the morphogen spreading through

the tissue: i) free diffusion through the extracellular space; ii) dilution of the

morphogen: the morphogen is retained in the cells which are displaced from the

source into the target tissue by successive rounds of cell division; iii) active cell

mediated processes like transport of the morphogen along cell extensions that

bring in contact the source and target (cytonemes), or planar transcytosis

(reviewed in González-Gaitán, 2003).

According to the planar transcytosis model of morphogen transport (Entchev et

al., 2000), Dpp is internalized by each cell via receptor-mediated endocytosis,

traffics through the endocytic pathway controlled by small GTPases of the Rab

(Ras-related in the brain) family, and it is released to signal in the next cells,

moving further into the target tissue. Therefore, the receiving cells determine the

shape of the gradient. Dpp localizes at the receiving cells in intracellular

punctuate structures mainly confined to the apical part of the columnar

epithelium, while some staining is also detected more baso-laterally (Fig. 4).

Apical Dpp in the receiving cells can be seen far away from the source, while in a

more basal position it is observed only in cells nearby the source (Fig. 4b). The

apical localization of the morphogen suggests a scenario in which the trafficking

of the growth factor at the receiving cells is confined to the apical side of the cell.

We wanted to study the relationship between the asymmetric apico-basal
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localization of Dpp and the apico-basal organization of the developing epithelial

wing cells, in which apical and baso-lateral plasma membrane domains,

separated by the junctions, are characterized by different sets of membrane

lipids, trans-membrane proteins and associated cortical proteins.

Apico-basal polarity and cell junctions

Epithelial cells are connected to one another by specialized junctions, which are

essential for epithelial integrity and the establishment of the apico-basal polarity.

Two major types of junctions are found in both vertebrates and invertebrates

cells: adherens junctions (AJs) and tight junctions (TJs).

Figure 5. Schematic representation of cell junctions in Drosophila. The adherens junctions
through the connected actin filaments play an active role in cell shape and polarity. The septate
junctions form an impermeable barrier between cell membranes. N- nucleus

AJs consist of an electron-dense cytoplasmic plaque, called the undercoat, which

is connected to an actin filament network (Fig. 5). They form a complete belt

around the cell at the level of the junctions. In both mammals and Drosophila, the

proteins concentrated at AJs include E-Cadherin (E-Cad), β-catenin (β-cat)

(named Armadillo (Arm) in Drosophila) and α-catenin (α-cat).
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E-Cad is a calcium-dependent homophilic cell adhesion trans-membrane protein.

It binds through its cytoplasmic domain to the catenins, which provide a link to the

cytoskeleton by binding to actin filaments (Tepass et al., 1996).

β-cat/Arm plays a dual role: one in cell adhesion at the AJs and the second one

in Wnt/Wg signaling. Mutational studies suggest that different functions are

mediated by different protein domains (Orsulic and Peifer, 1996). The β-cat/Arm

structure consists of acidic N and C termini, and a highly basic central region

containing twelve imperfect sequence repeats, known as Arm repeats. α-cat

binds to the acidic N terminus domain, which, together with the first six Arm

repeats are involved in the protein function in the junctions. The repeats provide

binding sites for APC, Axin (both involved in the degradation pathway of β-

cat/Arm), E-Cad and TCF (a co-factor in Wnt/Wg signaling), which bind

competitively to this region (Hulsken et al., 1994) (Omer et al., 1999). The C

terminus part is important in binding Teashirt, a Zinc-finger transcription factor

that helps mediating Wg signaling (Cox et al., 1999). This terminal domain also

regulates the protein stability and the intramolecular interactions. 70% of the

cellular β-cat/Arm is E-Cad-associated; when the cadherin binding sites are

saturated, the excess β-cat/Arm binds APC/Axin, which leads to its degradation.

The β-cat/Arm binding sites of APC are rapidly saturated, allowing TCF to

effectively compete for binding to β-cat/Arm (Cox et al., 1999). Formation of this

complex triggers nuclear translocation of β-cat/Arm and activation of Wnt/Wg

target genes (reviewed in Bienz, 2005).

Just above the AJs and just below the apical side of the cell lies the sub-apical

region (SAR), which has an organizing role in epithelial polarization. Studies in

Drosophila established that two protein complexes are localized to the SAR: the

Crumbs/ Patj/ Stardust complex and the Bazooka/ aPKC/ PAR-6 complex.

Proteins of the Bazooka complex associate with the SAR and the apical plasma

membrane and regulate early phases of AJs assembly (Wodarz et al., 2000).

Proteins from the Crumbs complex localize apical to the AJs and regulate later

phases of AJs maturation and stabilization (Bachmann et al., 2001).

TJs mediate cell-cell adhesion, maintain a diffusion barrier between apical and

baso-lateral surfaces of the epithelial sheet (‘gate’ function), and maintain a

barrier within the plane of plasma membrane to prevent diffusion of lipids and
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membrane-bound proteins between the apical and baso-lateral membrane

domains (‘fence’ function) (Lamb et al., 1998).

Unlike the vertebrates TJs, which are apical to the AJs, in Drosophila they form

basal to the AJs on the laterally plasma membrane of the epithelial cells (Fig. 5).

They are called septate junctions (SJs) because of the characteristic ladder-like

array of cross-bridges or septa that span the 15-20 nm inter-membranar space

between neighboring cells (Lane and Swales, 1982). SJs are analogous to TJs:

both have similar barrier and fence properties and homologous proteins

composition. Fly proteins like Discs large (Dlg), Coracle (Cora), Scribble (Scrib),

Discs lost (Dlt), Lethal giant larvae (Lgl) and Neurexin IV (NeurIV) have

vertebrate homologs in the TJs (reviewed in Knust and Bossinger, 2002).

The molecular composition of the septa is unknown. Of the known factors

associated to the SJs, only NeurIV is a trans-membrane protein. Mutations in

neurIV lead to loss of the septae, together with a mislocalization of Cora

(Baumgartner et al., 1996). However, the epithelial polarity and adhesion in the

embryo are not affected. NeurIV mutant embryos also show defective dorsal

closure, as seen in cora mutants. Consistently, NeurIV binds through its

cytoplasmic tail the amino terminal domain of Cora (Ward et al., 2001). Cora itself

is required for the maintenance of the SJs, since mutations of the protein result in

a breakdown of the barrier function, without affecting the apico-basal polarity of

the epithelium (Ward et al., 2001).

Scrib is a multi-PDZ cytoplasmic protein localized at the SJs. scrib mutants have

aberrant cell shapes and loose the monolayer organization of the epithelia (Bilder

and Perrimon, 2000). In a complex together with Dlg and Lgl, Scrib function in

restricting the apical membrane identity and correctly placing AJs.

Dlg is localized on the cytoplasmic face of the SJs and is required for their

maintenance, as well as for proper organization of the cytoskeleton and the

apico-basal polarity of epithelial cells (Woods et al., 1996). These functions are

mediated by different domains of the protein. Dlg has in the N terminus three

PDZ domains, which are likely to bind to an unknown trans-membrane partner

involved in SJ assembly, since mutations of these domains lead to loss of

epithelial structure. The C terminus contains a GUK (guanylate kinase-

homologous) domain, shown to mediate an unknown signaling pathway involved

in proliferation control (reviewed in Bryant, 1997). Mutations inactivating this
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domain cause excess cell proliferation, without affecting apical-baso polarity

(Woods and Bryant, 1991).

Do the cell junctions play a role in TGF-β signaling?

According to the model of Dpp gradient formation by planar transcytosis, the

morphogen secreted by the producing cells diffuses extracellulary only at short-

range, while long-range distribution requires Dpp internalization and re-secretion.

Dpp is internalized by receptor-mediated endocytosis into the cells of the target

tissue, traffics intracellularly through endosomal compartments and the non-

degraded ligand is released to signal in the neighboring cells. The rate of

transcytosis is dependent among other things on the rate of endocytosis, which is

determined not by the absolute number of receptors, but by their concentration.

Since a single molecule of Dpp travels very fast across a single cell (less than

two minutes) (Lander et al., 2002) (Bollenbach et al., 2005) (Kruse et al., 2004)

the rate of endocytosis must also be very fast to account for the transport by

planar transcytosis. A possible way by which a fast endocytosis rate could be

achieved is by concentrating the receptors to a specific area of the cells. This

scenario would imply that the ligand, while trafficking from one cell to the next,

should be secreted also at the same specific area of the cell where the receptors

are concentrated. Thus, the apical concentration of Dpp might reflect its secretion

in the junctional area. In order to study the role of cell junctions in TGF-β signal

transduction pathway I have performed experiments to address the following

questions:

Is the Dpp signaling machinery localized at the junctions?

If so, by which means the signal transduction components are retained at the

junctions?

Does this localization control the level of Dpp signaling read-out?
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TGF-β signaling at the neuromuscular junction

Epithelial cell junctions constituents like β-cat, Dlg and Scrib were found as well

localized at a specialized type of junction: the neuromuscular junction of

Drosophila, where they are involved in the maturation and the plasticity of the

glutamatergic synapses (Roche et al., 2002) (reviewed in Koh et al., 2000). On

the other hand, TGF-β was shown to be involved in synaptic growth and function

(reviewed in Keshishian and Kim, 2004). Do the TGF-β signaling pathway

components localize at the junction between the motoneurons and muscles, like

their function suggests?

Drosophila neuromuscular junction (NMJ)

The NMJ is a specialized synapse devoted to the communication between motor

neurons and muscles. This communication is essential for proper development

and function of the synapse.

Both the pattern of the muscles and the motoneurons in Drosophila larvae are

well characterized (reviewed in Bate et al., 1999) (Chiba, 1999). The body wall

musculature is organized in a stereotyped and segmentally repeated pattern of

multinucleated muscle cells. Each abdominal hemisegment from A2 to A7

contains 30 muscle fibers (Fig. 6). The pattern in A1 is slightly different, and there

are other specialized muscles in the more anterior and posterior segments. Each

muscle fiber has a characteristic position, orientation, morphology, size, body wall

insertion site and innervation pattern (Bate, 1990) (Johansen et al., 1989)

(Keshishian et al., 1996) (Hoang and Chiba, 2001).
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Figure 6. Schematic representation of the muscle pattern in an abdominal right half-
segment. Anterior is to the top, ventral to the left. Thirty muscles (1-30) are innervated through
six nerve branches: ISN, SNa, SNb, SNc, SNd and TN, components of motoneuronal axons of
the CNS (modified after Hoang and Chiba, 2001)

40 motoneurons innervate the 30 muscle fibers in each abdominal segment.

These motoneuron axons are grouped into six major nerve branches: ISN

(intersegmental nerve branch), SNa (segmental nerve branch a), SNb, SNc, SNd

and TN (transverse nerve) (Fig. 6). Their cell bodies are located within the central

nervous system (CNS) and they project in a stereotypic manner to the muscle

fibers, generating a precise and invariant innervation pattern (Broadie and Bate,

1993) (Halpern et al., 1991) (Sink and Whitington, 1991). Each motoneuron axon

can be identified based on its specific contacts on particular target muscles, the

degree of terminal branching, the bouton morphology and the neurotransmitters

contained (Johansen et al., 1989) (Hoang and Chiba, 2001). The entire

motoneuron population uses glutamate as the excitatory neurotransmitter (Jan

and Jan, 1976) (Johansen et al., 1989). Different motoneuron subsets express

co-transmitters including octopamine (Monastirioti et al., 1995) and the peptide

neurotransmitters proctolin (Anderson et al., 1988), insulin-like peptide (Gorczyca

et al., 1993) and leukokinin I-like peptide (Cantera et al., 1992).

The Drosophila body wall muscle fibers are poly-innervated. Some motoneurons

innervate only a single muscle fiber, whereas others project to muscle fiber pairs

or even to larger subsets of the body wall muscles. The axon endings can be

divided into three morphologically defined classes: type I, II and III (Fig. 7).
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Figure 7. Schematic representation of the motoneuron types (Ib, Is, II and III) and the
muscles innervated by them (1-30). The number of motoneurons that innervate a given muscle
varies from 1 to 4 (modified after Hoang and Chiba, 2001)

Type I boutons innervate all body wall muscles. The boutons are round in shape

and enclosed by a prominent subsynaptic reticulum (SSR): a postsynaptic

specialization made by the highly folded sarcolemma of the muscle (Fig. 8),

where many molecules required for neurotransmission and neurotransmitter

uptake are clustered (Atwood et al., 1993). Type I boutons are filled with synaptic

vesicles (SVs) that contain glutamate. Type I boutons are further subdivided

according to their size into I big (Ib) and I small (Is) (Budnik et al., 1996). Type Ib

boutons are 3 to 6 µm in diameter, whereas type Is boutons are 2 to 4 µm in

diameter. In addition, type Is boutons contain less SVs (sometimes with peptide

neurotransmitters) and are surrounded by less developed SSR than type Ib

boutons. The type Is terminals can be often longer and more elaborated than

those bearing type Ib boutons.

Figure 8. Type I synaptic bouton morphology.
The synaptic bouton is enveloped into the
subsynaptic reticulum (SSR) of the muscle. The
bouton is nearly filled with small clear synaptic
vesicles that contain glutamate. Vesicles with
neuropeptide are also observed (arrowheads).
Active zones of synaptic release are characterized
by an electron-dense T bar composed of a stem
associated with the presynaptic membrane and a
bar perpendicular to the distal end of the stem (star)
(m: mitochondria) (scale bar: 400nm) (modified after
Guichet et al., 2002)

Type II boutons are small (1-2µm) and the terminals bearing them are very long

and the most elaborate of all axon terminals. They are localized to superficial

grooves in the surface of the muscle fiber, with little or no surrounding SSR (Jia



Introduction 16

et al., 1993). These boutons contain both clear SVs with glutamate, as well as

dense core vesicles with octopamine (Jia et al., 1993).

Type III boutons are of medium size (2-3µm) and the terminals bearing them are

of medium length. Similar to type II endings, they have a superficial localization

on the muscle cell surface and almost lack SSR (Jia et al., 1993). In addition to

SVs with glutamate, they contain large round vesicles with a varying degree of

electron density filled with insulin-like peptide, a putative neural cotransmitter

(Gorczyca et al., 1993).

Control of synapse growth and function

The communication between motoneurons and the muscles is essential for

proper development and function of the synapse. Synaptogenesis starts about 13

hours after egg laying (AEL), as motor neuron growth cones begin to make

contact with their target muscles. Each growth cone extends filopodial processes

that explore the muscle fiber in search for the appropriate target muscle. The

embryonic synapses are formed at about 14.5 hours AEL and the superfluous

contacts are pruned back.

When the first instar larva hatches, the synapse is relatively rudimental,

comprising only a few boutons with no SSR. Larval motor synapses grow

progressively in size and strength as the innervated larval muscle expands in size

during development (Schuster et al., 1996). From the first to the third instar

larvae, the surface area of the muscles increases 100 folds. Concomitantly, the

nerve terminals also grow, with an increase of 10 fold of the number of synaptic

boutons and 10-fold increase of the active zones per bouton. The initial formation

of correctly positioned NMJs is an activity-independent process based on

molecular recognition cues and interactions between growth cones and target

(Broadie and Bate, 1993). However, the later synaptic flexibility of the synapses

is a dynamic, activity-dependent process involving lasting structural and

physiological alteration.

Several studies have identified a number of mediators of synaptic growth and

plasticity. These include the potassium channel proteins Eag and Shaker (Budnik

et al., 1990), cAMP pathway members (Zhong et al., 1992), cell adhesion

molecules: Fasciclin II (Schuster et al., 1996), Discs large (Budnik et al., 1996),

Scribble (Roche et al., 2002), the extracellular matrix adhesion molecule βPS
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Integrin (Beumer et al., 1999), the microtubule-associated protein Futsch (Roos

et al., 2000), the ubiquitin ligase Highwire (Wan et al., 2000), and the

deubiquitinating protease Fat Facets (DiAntonio et al., 2001).

Morphogens at the synapse

TGF-β signaling at the synapse

Activity-responsive retrograde signals from muscle were believed since a long

time to act via presynaptic receptors to regulate transmitter release, likely by

modulating genes and molecules that control functional properties of the motor

neuron. Recent reports provided evidence that the TGF-β pathway is involved in

a retrograde signal from the muscle that regulates synapse size and the

transmitter release from the neuron (Marques et al., 2002) (Aberle et al., 2002)

(Sweeney and Davis, 2002) (McCabe et al., 2003) (Rawson et al., 2003)

(McCabe et al., 2004). According to the current model (Fig. 9), at Drosophila

NMJ, the BMP ligand Gbb is secreted by the muscles and signals upon binding to

a neural receptor dimer formed by the type II receptor Wit and the type I

receptors Sax/Tkv. The activation of the receptors results in phosphorylation of

the transcription factor Mad. Phospho-Mad, together with the co-Smad Medea,

modulate the expression of unknown TGF-β-responsive genes in the neuron

somas, influencing the growth and strength of the motor synapses.

How is actually the signal from the synaptic boutons transmitted to the

motoneural soma, in the ventral cord? It seems that activation of BMP signaling is

dependent on axonal retrograde transport, which conveys the activated proteins

to the cell body. In a dominant-negative inhibitor of the dynein-dynactin complex

microtubule motor p150/glued (Δ-Gl) that disrupts retrograde axonal transport,

phospho-Mad accumulation in the motoneuron nuclei is lost (McCabe et al.,

2003).
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Figure 9. Schematic representation of TGF-β signaling components at the synapse. Muscle
secreted Gbb ligand binds to a presynaptic complex formed between type I (Tkv or Sax) and type
II (Wit) receptors. Upon phosphorylation by the type II receptor, the type I phosphorylates the
transcription factor Mad. Activated Mad binds to the co-Smad Medea, and through retrograde
transport, possibly via a signaling endosome, reaches the nucleus in the neural soma to modulate
transcription of specific genes. Down-regulation of signaling is achieved by ubiquitylation (by the
ubiquitin-ligase Highwire, Hiw) and proteosome-dependent degradation of Medea or targeting of
the signaling complex for lysosomal degradation (regulated by Spinster, not depicted)

Loss-of-function mutants of the TGF-β signaling pathway components (gbb, tkv,

sax, wit, mad, med) have reduced number of synaptic boutons, phenotype

accompanied by a reduction of transmitter release. Consistently, activation of the

pathway has opposite effects. Mutations in Dad, a negative regulator of TGF-β

pathway, as well as the expression in the neurons of a constitutively active form

of Tkv induce synaptic overgrowth (Sweeney and Davis, 2002) (Rawson et al.,

2003).

After receptor activation in the synaptic boutons, TGF-β signaling may be

prolonged by the transport of the receptors to signaling endosomes (Shi Y., 2003)

or limited by targeting them to degradative compartments via the endosomal

protein Spinster (Spin), a multipass transmembrane protein that localizes to the

late endosomal and lysosomal compartment (Sweeney and Davis, 2002). A

parallel degradative mechanism is suggested by the observation that the co-

Smad Medea can form a complex with Highwire (Hiw), a presynaptically enriched

ubiquitin-ligase (McCabe et al., 2004). Both loss-of-function mutations in spin and

hiw lead to greatly expanded synapses, the predicted consequence of enhanced

TGF-β signaling. These phenotypes are suppressed in a dose-dependent
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manner by TGF-β signaling mutants (med, mad, tkv, sax, wit), while the activation

of the pathway in the mutant background results in additional overgrowth

(Marques et al., 2002) (Aberle et al., 2002) (Sweeney and Davis, 2002) (McCabe

et al., 2003) (Rawson et al., 2003) (McCabe et al., 2004).

The reduced NMJ phenotype of gbb mutants is rescued by expressing Gbb in

muscles, suggesting that its presence there is important for normal NMJ

development (McCabe et al., 2003). Nevertheless, the phenotypic rescue

improves when Gbb is expressed both by muscles and neurons. This indicates

that normal NMJ development requires TGF-β activity both at the muscle and at

the neuron. Consistently, the spin mutant phenotype is fully rescued when a wild-

type transgene is expressed ubiquitously, but only partially rescued when the

transgene is expressed just in the neurons or muscles (Sweeney and Davis,

2002). These results suggest that an anterograde TGF-β signaling emanating

from the neuron is involved in synaptic growth and synaptic strength regulation, in

parallel with the documented retrograde signal. Alternatively, an autocrine

signaling event might occur at the muscle.

Retrograde Gbb signaling through a presynaptic receptor dimer was shown

recently to regulate the expression of the neuropeptide FMRFamide (FMRFa) in

peptidergic Tv neurons of the Drosophila CNS (Allan et al., 2003). The Tv

neurons express both Apterous, a LIM-domain transcription factor, and Squeeze,

a zinc-finger transcription factor (Allan et al., 2003) (Benveniste and Taghert,

1999). Both factors are found elsewhere in the CNS but their expression overlaps

in the Tv neurons. The coordinate expression of the two transcription factors

predeterminates the dependence of the cell on TGF-β signaling for FMRFa

expression. When the transcription factors are ectopically expressed in non-

FMRFa-positive neurons, the cells become competent for FMRFa expression.

However, the ectopic FMRFa expression occurs only in the presence of Gbb,

recapitulating the situation in Tv cells (Allan et al., 2003). This suggests a critical

role between combinatorial transcription factor codes and signal transduction

pathways in diversifying the response of the neurons to retrograde TGF-β

signaling. Given the large number of diverse cell types in the CNS, what may

appear to be an almost excessive complexity of combinatorial coding may be in

fact essential for high fidelity gene expression.
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Synaptic homeostasis seems to be not the only neuronal function of the TGF-β

pathway in Drosophila; recently, this signaling pathway was shown to be involved

also in neuronal differentiation and remodeling (Zheng et al., 2003). During

metamorphosis, the Kenyon cells in the mushroom body (MB, the olfactory

learning and memory center) are remodeled from their larval form, in which they

innervate both medial and dorsal lobes of the MB, to the adult form, in which they

innervate only the medial lobe. Larval axons retract from both lobes and then re-

grow into the medial γ lobe by a mechanism that involves regulation by the

steroid hormone ecdysone. In this process, TGF-β controls the expression of the

ecdysone receptor, rendering larval neurons responsive to the steroid that directs

axonal remodeling. Tzumin Lee’s group found that loss of the Activin/TGF-β

signaling components Babo, Wit/ Punt, Smox and Activin itself leads to the

persistence of the larval Kenyon cells morphology. Ecdysone receptor expression

is suppressed in the mutant neurons, but ectopic expression of the receptor

significantly rescues the remodeling defects, bypassing the requirement for TGF-

β signaling. Thus, the TGF-β/Activin pathway plays a permissive function in

upregulating the expression of ecdysone receptor that confers responsiveness to

ecdysone, a primary regulator of axonal remodeling (Zheng et al., 2003).

Wingless pathway at the synapse

Another morphogen, Wingless (Wg, a Drosophila Wnt), provides an essential cue

for the coordinated development of pre- and post-synaptic structures, possibly

through a combined anterograde and retrograde signal (Packard et al., 2002).

Both Wg and its receptor Frizzled2 (Fz2) are expressed at the glutamatergic

NMJ. Wg is secreted by the synaptic boutons and accumulates at the

postsynaptic side, being then uptaken by the muscle. Blocking Wg secretion by

using mutations in porcupine (porc, which encodes an endoplasmic reticulum

protein required for Wg processing and trafficking (Kadowaki et al., 1996) or a

thermosensitive allele wgts severely reduces muscle-dependent formation of new

synaptic boutons. In mammals, the Wnt pathway has been implicated in

cytoskeleton reorganization during growth-cone extension (Salinas and Hall,

1999). Activation of Wnt pathway results in inhibition of GSK-3β , which is

believed to destabilize microtubules through phosphorylation of the microtubule

associated protein MAP1B (Goold et al., 1999), which is the homologue of Futsch



Introduction 21

in Drosophila. Indeed, most of the wgts mutant boutons have splayed or

disintegrated microtubule filaments, suggesting that synaptic expansion is

arrested.

At the ultrastructural level, defective Wg function prevents formation of active

zones and postsynaptic structures (SSR is not present around the synapse) in

many boutons (Packard et al., 2002). Mutant boutons that develop active zones

exhibit dramatic defects in active zone shape and in postsynaptic area directly

apposed to the active zones. In wild-type boutons the T bars of the active zones

consist of a stem associated with the presynaptic membrane and a bar

perpendicular to the distal end of the stem. In wg mutants the T bars appear as

amorphous dense areas, or contain aberrantly shaped stems with little or no bar.

Opposing these modified active zones, the SSR detaches from the presynaptic

compartment, forming enlarged pockets.

Based on the study of the role of Wg at Drosophila NMJ, two models were

proposed to explain how the morphogen is involved in pre- and postsynaptic

differentiation (Fig. 10). The first model (Fig. 10a) assumes a parallel anterograde

and autocrine signaling. The Wg receptor, Fz2, is localized both pre- and

postsynaptically and interacts with Wg secreted by the synaptic bouton. This

triggers independent pre- and postsynaptic transduction cascades leading to the

proper positioning and morphology of active zones and to proper development of

the postsynaptic apparatus.

Figure 10. Schematic representation of Wg signaling at the NMJ. a) an anterograde/autocrine
Wg pathway versus b) an anterograde Wg signal and a retrograde unknown signal (red arrow)
(modified after Packard et al., 2002)

According to the second model (Fig. 10b) there is just an anterograde Wg signal.

Fz2 is located exclusively at the postsynaptic junctional region. The interaction of

Fz2 with Wg results in proper formation and positioning of the postsynaptic

apparatus and elicits an unidentified retrograde message that signals the proper
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formation and positioning of active zones. According to both models, secreted

Wg is removed from the membrane by endocytosis.

Goal of the project

TGF-β retrograde signaling is involved in synaptic development and function

(Marques et al., 2002) (Aberle et al., 2002) (Sweeney and Davis, 2002) (McCabe

et al., 2003) (Rawson et al., 2003) (McCabe et al., 2004). Nevertheless, the

mechanisms by which TGF-β modulates NMJ development and function are not

clarified yet. Previous reports (see above) suggest a parallel anterograde TGF-β

signal at the NMJ. In order to elucidate the means of TGF-β function at the

synapse, I have performed experiments to address the following questions:

Which is the sub-cellular localization of TGF-β signaling components at the

synapse?

Are they involved in an anterograde signal?
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MATERIALS AND METHODS

Fly stocks

The following fly stocks have been used: wild-type OreR, dppd12 (St Johnston et

al., 1990), dppd8 (St Johnston et al., 1990), mad12 (Sekelsky et al., 1995), madB1

(Wiersdorff et al., 1996), armXM19 (Perrimon and Mahowald, 1987), dlgm52 (Woods

and Bryant, 1991), cora5 (Lamb et al., 1998), scrib1 (Bilder and Perrimon, 2000),

shgIH (Tepass et al., 1996), shgIG29 (Tepass et al., 1996), UAS-GFPDpp (Entchev

et al., 2000), UAS-Dad (Tsuneizumi et al., 1997), UAS-GFPgpi (Greco et al.,

2001), UAS-GluRIIA-GFP and UAS-GluRIIA-mRFP (Stephan Sigrist, Max Planck

Institute, Göttingen Germany), UAS-GFP (Barry Dickson, Institute of Molecular

Pathology, Vienna  Austria).

Constructs and transgenic flies

UAS-TkvGFP flies were generated by subcloning the coding sequence of Tkv

(LD15534 of the fly genome project) into the poly-linker of the vector pUAST

containing EGFP downstream of the insertion. For the UAS-GFPMad flies, the

coding sequence of Mad (RE72705 of the fly genome project) was subcloned into

the poly-linker of the vector pUAST containing EGFP upstream of the insertion.

UAS-GFPActivin flies were generated by cloning the coding sequence of Activin

(RE37047 of the fly genome project) into the poly-linker of the vector pUAST

containing EGFP downstream of the insertion, the same for: UAS-GFPAlp23B

(GH14433 of the fly genome project), UAS-GFPGbb (with the difference that Scw

was amplified from genomic DNA) and UAS-GFPScw (Scw was amplified from

genomic DNA). For the UAS-HRPDpp flies, the HRP replaced GFP in the

pUAST-GFPDpp construct.

GAL4-mediated ectopic gene expression

For the selective ectopic expression of the above transgenic constructs in

different tissues of Drosophila, GAL4-mediated expression system (Brand and

Perrimon, 1993) was used. GAL4 is a yeast transcription factor, which activates

transcription in Drosophila (Fischer et al., 1988). For its expression, the GAL4
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gene is integrated at sites that are under temporal and spatial control of various

genomic enhancers. GAL4 can bind to an upstream activator sequence (UAS)

and initiate the transcription of target gene of interest present downstream of the

UAS sequence (Fig. 11). The targeted ectopic gene expression occurs in the

progeny of the cross between the transgenic line expressing GAL4 and the line

carrying the target gene downstream of

the UAS.                      

Figure 11. GAL4-mediated expression
system. Protein X expression is driven in the
progeny of flies carrying the GAL4 coding
sequence downstream a genomic enhancer
and flies carrying the Gene X coding sequence
downstream of an UAS  (upstream activator
s e q u e n c e ). In the cells containing both
transgenes, GAL4 binds to the UAS and
promotes the transcription of Gene X

Mosaic analysis: FLP-FRT mitotic recombination

Mutant homozygotic cells can be generated in heterozygotic flies by inducing

recombination between homologous chromosomes. Heat-shock-induced

expression of the site-specific recombinase FLP leads to the recombination

between Flipase Recombination Targets (FRTs) that have been inserted in

identical positions on both homologs. With the appropriate developmental time

point and level of heat-shock, mitotic recombination can produce a patch of cells

(clone) of mutant tissue (Fig. 12).

Figure 12. The FLP-FRT system. From a cell heterozygous for a certain mutation (*), through
mitotic recombination arise two daughter cells: a homozygous cell for the mutation (*/*) and a
homozygous cell for the wild type allele. If a marker (m) is present in the initial cell in trans and
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proximal to the mutation, on the sister chromatide, the daughter cell homozygous for the wild-type
allele will also be homozygous for the marker. The resulting daughter cells of this cell will form the
so called ‘twin spot’. The resulting daughters of the */* cell will produce a clone of mutant cells

The location of the mutant clone can be identified by the use of genetic (Ub-GFP,

tub-DsRed) or histological markers (PMyc epitope marker construct detected by

anti-Myc staining). To analyze the role of various adherens and septate junctions

components on Dpp signalling read-out, clones of Arm, E-Cad, Cora, Dlg and

Scrib were generated in the wing imaginal discs. Larvae of the following

genotypes were studied: Ub-GFP FRT101/armXM19 FRT101;;hs-FLP,  hs-

FLP/+;Ub-GFP FRTG13/shgIG29 FRTG13 or hs-FLP/+;hs-Pmyc FRTG13/shgIG29

FRTG13, hs-FLP/+;cora5 FRT43D/Pmyc FRT43D, FRT101 dlgm52/Ub-GFP

FRT101;;hs-FLP or FRT18A dlgm52/tub-DsRed FRT18A;;hs-FLP/+, hs-FLP/+;;

FRT82B scrib 1/tub-DsRed FRT82B. Three days old larvae (grown at RT) were

heat-shocked at 38ºC for 2hr, left 1hr at RT to recover and raised at 18ºC until

they reached the third instar stage. To induce PMyc transcription, the larvae were

heat shocked at 37ºC for 1hr followed by 1hr at RT to allow the translation of the

PMyc transcript prior to fixation.

GFP-Mad rescue

The GFP-Mad chimera was expressed in  madB1 mutant background and tested

for viability rescue. madB1/madB1; da-GAL4/UAS-GFPMad larvae and adults were

analyzed.

Dissection and mounting

Larval body wall preparation

Preparation of the larval body wall was performed as described (Estes et al.,

1996) with some modifications. Wandering third instar larvae were picked from

the food and dissected to expose body wall muscles and innervating

motoneurons. For dissection, larvae were placed in a drop of cold ice-cold Ca2+-

free normal saline (Jan and Jan, 1976) (130mM NaCl, 5mM KCl, 5mM HEPES,

2mM MgCl2, 2mM CaCl2, 36mM sucrose pH 7.3) in a 35mm diameter Petri dish

covered with a thin layer of transparent sylgard resine (RTV615A + RTV615B,

GE Bayer Silicones). The larval head and tail were pinned to the sylgard resine

using insect pins (Fine Science Tools), the body was stretched and dissected
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opened along the dorsal midline using a hypodermic needle (BD Microlance 3,

Becton Dickinson). The preparation was then pinned out flat to the sylgard resine

and internal organs were removed to expose the body wall muscles and the

innervating motoneurons. Analysis was restricted to synapses of muscles 6 and 7

in abdominal segments 2 to 4 (A2-A4).

Imaginal wing discs

Drosophila third instar larvae were collected in a glass dish. Dissection of wing

imaginal discs was performed in PEM (80mM Na-PIPES, 5mM EGTA, 1mM

MgCl2, pH 7.4); when submitted for E-Cad staining, larvae were dissected in PBS

buffer (137mM NaCl, 2.68mM KCl, 10.14mM Na2HPO4, 1.76mM KH2PO4, pH 7.4)

supplemented with 0.9mM CaCl2 and 0.5mM MgCl2. The larval cuticle was

inverted in such manner so that the attached imaginal discs are exposed to the

solution.

Antibodies

Antibodies generated

Rabbit anti-Drosophila SARA was generated against two peptides: H2N-

LSEESSPSREPETEMC-CONH2 and H2N-CQAESSTPSQDENPEI-CONH2,

dilution 1:1000. Rabbit anti-Drosophila Mad was generated against two peptides,

one corresponding to the linker and the other one to the MH2 domain (H2N-

PSEDGNSNNPNDGGQC-CONH2 and H2N-NRNSTIENTRRHIGKC-CONH2),

dilution 1:1000. The immune sera were affinity chromatography purified using the

corresponding peptides coupled to CNBr-activated Sepharose 4B (Amersham

Biosciences). The specificity of the antibodies was tested by pre-incubating the

purified antibody with 100 µg/ml of the respective peptide for 30 minutes at room

temperature and performing subsequently an antibody staining on wild-type

discs. No fluorescent signal was detected under these conditions.

Other antibodies used: rabbit anti-iTkv 1:1250 (Kruse et al., 2004), rabbit anti-

luminalTkv (eTkv) 1:10 (Kruse et al., 2004), mouse anti-Arm 1:100 (7A22,

Hybridoma Bank), guinea-pig anti-Cora 1:100 (Ward et al., 2001), mouse anti-Dlg

1:500 (4F3, Hybridoma Bank), rabbit anti-Mad 1:100 (Sutherland et al., 2003),

rabbit anti-PMad 1:1000 (Tanimoto et al., 2000), goat anti-GFP 1:10 (Kruse et al.,

2004), anti-Myc 1:250 (CalBiochem), mouse anti-CSP 1:100 (Zinsmaier et al.,

1994), mouse anti-nc82 1:100 (Heimbeck et al., 1999), rat anti-E-Cad 1:20 (Oda



Materials and methods 27

et al., 1994), mouse anti-βPSInt 1:1000 (CF.6G11, Hybridoma Bank), mouse

anti-Lamin 1:500  (ADL67.10, Hybridoma Bank). Corresponding secondary Alexa

488, 546, 633 (Molecular Probes) or Cy5 (Dianova)-conjugated antibodies were

used 1:500 diluted. Polyclonal primary and all secondary antibodies were

preabsorbed using an excess of fixed Drosophila embryos prior to use in order to

reduce the background. Preadsorbtion was performed by incubating the antibody

diluted 1:10 in BBT  (10mM Tris, 55mM NaCl, 40mM KCl, 7mM MgCl2, 5mM

CaCl2, 20mM glucose, 50mM sucrose, 10% bovine serum albumin (BSA), 0.1%

Tween20, pH 6.95) with 400 µl of fixed embryos ON at 4 ºC.

Immunocytochemistry

Larval preparation

Immunofluorescence of third instar larvae NMJs was performed as described

(Wucherpfennig et al., 2003). Briefly, larvae were dissected and fixed in 4%

paraformaldehyde (PFA) in PEM for 90-120 min at RT. The subsequent

incubation steps were performed on a rocking platform. The preparation was first

permeabilized at RT in PEM containing 0.1% IGEPAL (Sigma). The incubation

with the primary antibody was ON at 4°C, followed by incubation with the

secondary antibodies for 2h at RT (both primary and secondary antibodies diluted

in PEM containing 0.1% IGEPAL and 0.1% BSA). Specimens were embedded in

MOLWIOL anti-fade embedding medium (Bohringer).

Immunostaining of imaginal discs

Imaginal discs were subsequently fixed in 4 % PFA in PEM and permeabilized in

4% PFA in PEMT (PEM with 0.1-0.2% Triton X100) for 40 min each. The

dissected wing discs were washed twice with PEMT for 10 min, interrupted by a

wash with 50mM NH4Cl in PEM for 10 min to remove as well as to quench free

aldehydes. The tissue was then incubated in blocking solution (PEMT with

0.1%BSA) ON at 4 ºC. After blocking, the samples were incubated with primary

antibodies diluted in PEMT for 2hr at RT. Unbound primary antibodies were

removed by washes with PEMT. Subsequent incubation with the appropriate

secondary antibodies diluted in PEMT for 2hr at RT was followed by washes with

PEMT and PEM, respectively. Finally, the wing imaginal discs were removed

from the cuticle and mounted in MOLWIOL.
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Extracellular immunostaining of imaginal discs

Extracellular GFP-Dpp and cell-surface associated Tkv were detected by

incubating the dissected wing imaginal discs prior to fixation (Strigini and Cohen,

2000) with goat anti-GFP antibody and rabbit anti-eTkv, respectively. Third instar

larvae were dissected in Shields and Sang M3 Insect Medium (Sigma) and

incubated, on ice for two hours, with the primary antibody diluted in M3 medium.

The samples were then washed with M3 medium to remove the unbound

antibody, fixed in 4% PFA in PEM and permeabilized in 4% PFA in PEMT for

40 min each. Subsequent procedure was according to the intracellular

immunostaining (without blocking and primary antibody incubation).

Fluorescent phalloidin 488, 546 or 647 (Molecular Probes) staining was

sometimes performed after the secondary antibody step in order to monitor cell

profiles, and DAPI (Sigma) or Hoechst (Molecular Probes) were applied to

visualize the cells nuclei.

Electronmicroscopy

For electron microscopy, wing imaginal discs of UAS-HRPDpp; apt-GAL4/+ third

instar larvae grown at 29°C were used. After dissection, the preparations were

fixed in 1% glutaraldehyde in PBS for 2 min. The fixation was interrupted by brief

wash in PBS, and then the preps were permeabilized with PBST (PBS with 0.2%

Triton X100). The samples were saturated with DAB (Sigma, 1mg/ml). The

peroxidase reaction was developed by adding of H2O2 to final dilution of 0.003%

for 30 min. In order to stop the reaction, the preparations were washed with PBS.

The tissue was postfixed in 1% glutaraldehide in PBS at 4°C overnight. After brief

washes with PBS and distilled water, the samples were contrasted with 1% OsO4

in dH2O. For post-staining 1% uranylacetate in dH2O for 1h at 4°C was applied.

After several washes with dH2O, the samples were dehydrated by ethanol serial

washes (50%, 70%, 100%) and washed shortly with propylene oxide, followed by

incubation in mixture of propylene oxide/EPON 1:1, and then incubation in EPON

overnight at RT. The imaginal discs were dissected out and mounted in EPON in

flat embedding molds. The resin was polymerized at 65°C for 48 hr. Serial thin

sections were collected and analyzed on Phillips TEM.
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Immuno-electronmicroscopy

For immuno-EM wing imaginal disc preparations of third instar larvae of hh-

GAL4/ UAS-Tkv-GFP, tub-GAL4/ UAS-GFP-Mad and MS1096-GAL4/ UAS-GFP-

Dpp were fixed in 4% PFA and 0.05 or 0.2% glutaraldehyde, embedded in 10%

gelatine, and infiltrated in 2.3M sucrose. Specimens were quickly frozen in liquid

nitrogen and cryo-sectioned at a Leica ultracut UCT/FCS microtome at -105°C.

80nm cryosections were retrieved in 1% methylcellulose (Sigma-Aldrich)/1.3M

sucrose (Merck). Cryosections were incubated with anti-GFP antibody and 10 nm

gold-coupled secondary antibody. Subsequently, sections were postfixed in 1%

glutaraldehyde, contrasted in 0.3% uranylacetate/1.8% methylcellulose, and

imaged with a Morgagni electron microscope (FEI Co.).

Cryosectioning

Cryostat XZ-sections at Cryo-Star HM 560 (Microm) were performed with 4%

PFA-fixed wing discs incubated at 4ºC ON in 30% sucrose solution in PBS, after

immunostaining procedure, and mounted in Tissue-Tek (Sakura). This approach

confers a better XZ resolution than Z sections acquired by confocal microscopes

(see Fig. 13).

Figure 13. Cryostat XZ section of a wild-type disc. a) phalloidin staining (green) labels cell
profiles; b) lamin (red) labels the nuclear envelope; the pseudo-stratified aspect of the columnar
epithelium is due to the different levels occupied by its nuclei (scale bar: 20µm)

In vivo imaging

For in vivo imaging of the NMJ, third instar MHC-GAL4/ UAS-GFPMad larvae

were dissected and imaged in ice-cold Ca2+-free saline to prevent movement.

The GFP fluorescence at the synapse was imaged at a Zeiss confocal

microscope with a 40x/1.3 numerical aperture (NA) Plan-Apochromat water

objective. Stimulation was performed in high K+ saline (80mM NaCl, 60mM KCl,
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5mM HEPES, 2mM MgCl2, 2mM CaCl2, 36mM sucrose, pH 7.3) for 5 min. The

increased in fluorescence at the NMJ following stimulation was analyzed in

ImageJ, after normalization to the background.

For in vivo imaging of the wing imaginal discs, larvae were dissected in cold M3

medium, the discs were transferred to a chamber filled with M3 medium and

lypophillic dye FM4-64 (Molecular Probes, dilution 1:2000), and imaged at a

Zeiss confocal microscope with a 40x/1.3 numerical aperture (NA) Plan-

Apochromat water objective.

Quantifications

The postsynaptic localization of Tkv, Tkv-GFP, Mad, GFP-Mad and SARA was

confirmed by quantifying their immunofluorescence signal with LSM5 Image

Examiner, along diameters across 5-10 boutons (the diameter spans 0.5 µm

more on each side of the postsynaptic fluorescence, see figures), belonging to at

least 3 different preparations. CSP and Dlg immuno-fluorescence were used as

pre- and postsynaptic markers, respectively. The signal was normalized and

plotted as arbitrary fluorescence units across the bouton diameter.

The signal of PMad fluorescence was analyzed in at least 7 synapses belonging

to at least 3 preparations of WT, mad12/ mad12 and MHC-GAL4/ UAS-Dad. The

average intensity of the signal was measured in ImageJ and normalized to the

synapse area. The background fluorescence was extracted.

IEM pictures (2 to 4 cells per picture, 4 to 6 pictures per genotype) were analyzed

in order to quantify the density of the proteins in different areas of the cell. For the

plasma membrane-associated proteins quantification, gold particles found at 30

nm proximity on each side of the plasma membrane were counted. The number

was normalized then to the area (length of the plasma membrane multiplied by

60 nm). For the nuclei and cytoplasm (area of the mitochondria was substracted),

the number of gold particles was normalized to the area analyzed.

For all the graphs the standard errors are plotted. The statistical significance of

the data was analyzed with GraphPad InStat.

Reverse transcriptase-combined polymerase chain reaction (RT-PCR)

Third instar larvae were dissected as described for the flat preparation. The

brains together with the ventral cord were removed from the opened larvae and
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collected (30 brains/tube). The body walls- muscles plus epidermis- were also

collected (10 preparations/tube). From each sample RNA was purified with

RNeasy Mini Kit (Quiagen). RT-PCR was performed for detection of Activin-β,

Alp23B, Scw, Gbb, Dpp, Tkv, Babo, Put, Wit, Sax, Mad, Smox, SARA, and Rab5

as a control. The PCR primers were designed in such manner to amplify common

exons of eventually more isoforms of these proteins and also to distinguish

between amplicons derived from the target mRNA and contaminating genomic

DNA.

Immunoprecipitation

Klorix dechorionated embryos (15-17hr AEL) (50-100µl) were homogenized in

lysis buffer (50mM Tris-HCl, 50mM NaCl, 1% IGEPAL, inhibitor-mix tablet

(Roche), pH 8) in 1ml donce homogeniser (Wheaton). The homogenate was

centrifugated and the supernatant containing the proteic (and lipidic) fraction was

incubated with the appropriate antibody 3-4hr at 4°C (mouse anti-Arm 1.5:100,

rabbit anti-Mad 1:100). After incubation, Protein A-Agarose or Protein G-

Sepharose beads (Amersham Life Sciences) (previously equilibrated with lysis

buffer) were added, and mixed ON at 4°C. Next day the excess unbound proteins

and antibodies were washed with lysis buffer. The bound proteins were eluted

from the beads by boiling them in SDS-sample buffer and submitted to SDS-

PAGE.

Western blotting

The proteins from polyacrylamide matrixes were transferred to a polyvinylidine

difluoride (PVDF) membrane inside a semi-dry Western Blot apparatus (BioRad).

The PVDF membrane was then submerged with blocking solution (TBST buffer:

154mM Tris, 10mM NaCl, 0.05% Tween20, pH 7.4, with 5% milk) overnight at

4°C. The detection of membrane-bound proteins was carried out next day with an

enhanced-chemiluminescence (ECL) detection kit (Amersham Life Science)

using rabbit anti-Mad 1:1 000 and mouse anti-Arm 1:100. The membranes were

incubated with the primary antibody in blocking solution for 1.5hr. Subsequent

membrane washes with TBST buffer were followed by incubation with the

horseradish peroxidase (HRP)-coupled secondary antibody in blocking solution
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for 30min. The ECL reaction was visualized by placing an X-ray film (Biomax ML,

Kodak) onto the membrane.

GST pull-downs

GST-fusion protein expression

Arm-Myc and GFP-Mad were cloned into pGEX-3-6P vector. The pGEX-GST-

construct vectors were transformed in BL21 E.coli strain. A pre-culture was

prepared by picking a single colony incubated ON at 37°C in 5ml LB medium with

1mM Ampicillin. The day after, a main-culture was started (1l LB medium with

1mM Ampicillin and the 5ml of pre-culture) and incubated at 37°C while shaking

until OD600nm=0.8. When the right concentration was reached, 1mM IPTG (MBI

Fermentas)  for induction of GST-fusion expression was added and the cultures

were shaken at 20°C ON. The cultures were centrifuged the next day at 5000g

for 10min at 4°C and the supernatant discarded. The pellet was resuspended in

20ml lysis buffer (10 ml PBS, 1 mM DTT, 1 mM CLAAP protease inhibitor cocktail

(Sigma)), transferred to a 50 ml Falcon tube and shock-frozen with liquid

nitrogen. The sample was afterwards defrosted at 37°C and 20 ml lysis buffer

added. The bacteria were lysed at Emulsiflex (3 times), centrifuged at 13000g for

45 minutes at 4°C. Meanwhile Glutathione Sepharose beads (Amersham

Bioscience) were equilibrated with wash buffer (PBS and 0.5% BSA). The

supernatant, which contains the GST-fusion proteins, was added to the

equilibrated beads and incubated for 2hr at 4°C. The mixture was then

centrifuged at 500g for 5min at 4°C. The pellet representing the immobilized

GST-fusion proteins on the beads was then washed four times with wash buffer

and left ON at 4°C in 1ml wash buffer.

In vitro transcription/ translation

Arm-Myc and GFP-Mad were cloned into the pCRBlunt vector (which contains

the T7 promoter). The constructs were expressed in vitro using the TNT Coupled

Reticulocyte Lysate System (Promega) and a radioactive Easy Tag protein

labelling mix (Perkin Elmer).

GST pull-down assay

The hot proteins were incubated for 2hr at 4°C together with the GST-fusion

proteins immobilized on the beads. For the elution of the immobilized GST-fusion

proteins from the beads (together with bound hot proteins), elution buffer (10mM
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Glutathione in 50mM Tris, pH 8) was added for 20 minutes at 25°C. The mixture

was then shortly centrifuged at 13000g, the resulting supernatant containing the

GST-fusions plus complexed hot proteins being concentrated by acetone

precipitation. Proteins were re-suspended in sample buffer and run on a SDS-

PAGE gel. As a negative control just GST protein was used. The gel was

coloured in Coomassie Brilliant-Blue to detect the GST-fusions, fixed in a 20%

methanol/ 7% acetic acid solution and the signal was amplified by incubation in

Amplify (Amersham Biosciences). The gel was dried and the protein complexes

were detected by autoradiography.
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RESULTS

I have studied here the relevance of the sub-cellular localization of TGF-β

pathway core components for the signal transduction, in the context of two

communication processes in polarized cells: during morphogenetic signaling in

the epithelial cells of wing imaginal discs and during synaptic transmission at the

neuromuscular junction. For both processes, TGF-β ligands, receptors and R-

Smads show a polarized localization within the cells. My results indicate that the

junctional area between the secreting and the receiving cell functions as a

signaling domain. In the case of epithelial cells, the level of TGF-β signal is

regulated by β-cat, an AJs component, probably in a complex together with the

R-Smad Mad. At the neuromuscular junctions, an anterograde TGF-β signal

seems to be coupled with synaptic activity. The possibility of quanta of

neurotransmitter released simultaneously with quanta of growth factor might

explain, thus, the documented role of TGF-β signaling during synaptic function

and development.

TGF-β signaling at cell junctions in the Drosophila wing epithelium

Junctional confinement of TGF-β receptor

The localization of the type I receptor Tkv was monitored by immunodetection of

the endogenous protein and visualization of a Tkv-GFP chimera. Using an

antibody recognizing the cytoplasmic tail of TGF-β type I receptor Tkv (Kruse et

al., 2004), the receptor is detected in vesicular structures within the wing disc

cells (Fig. 14a, a’ circles). Tkv is enriched in an apical region of the epithelial

cells; moreover, it is associated with the junctional area of the plasma membrane

as monitored in double immunostainings with β-cat and Cora as markers of the

AJs and SJs, respectively (Fig. 14a’, arrowheads).
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Figure 14. Plasma membrane-associated TGF-β type I receptor Tkv is concentrated at cell
junctions. Cryostat XZ sections of wild-type discs. a) whole receptor population stained by the
intracellular antibody (green), β -cat (red) labels the AJs, Cora (blue) labels the SJs; a’)
magnification of the region boxed in a, Tkv vesicular structures are encircled, arrowheads point to
the Tkv population associated to the junctions; b) plasma membrane-associated receptor labeled
by the luminal antibody (green) according to the extracellular staining protocol, phalloidin (red)
marks the junctional cortical actin ring; arrowheads point to the plasma-membrane associated Tkv
present at the junctions (scale bars: a: 10µm, b: 5µm)

In order to distinguish the receptor found at the plasma membrane from the

internalized pool, an extracellular staining protocol (Strigini and Cohen, 2000)

(see Materials and Methods) was performed, making use of an antibody that

recognizes the luminal part of Tkv (Kruse et al., 2004). In short, the antibody was

applied without permeabilization and prior to fixation, at 4°C when no endocytosis

takes place. This way the antibody reaches only to the cell-surface receptors.

The receptor population detected through this protocol is confined to the apical

cell junctions (Fig. 14b, arrowheads).
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To confirm the specificity of the extracellular staining protocol, the Tkv antibody

recognizing the intracellular tail of the receptor was used as a negative control. In

this condition, no signal is detected (Fig. 15a). This result validates the exclusive

detection of cell-surface proteins by this method. The method allows the

detection of basal and apical plasma membrane associated proteins, too.

Integrins are transmembrane receptors involved in the interaction of the epithelial

cells with the extracellular matrix. They are distributed over the basal cell surface

of the wing disc (Brower et al., 1995) (Fig. 15b, arrows) and they are indeed

detected performing an extracellular staining with an antibody recognizing their

extracellular domain (Brower et al., 1995) (Fig. 15b’, arrow). Apical plasma

membrane associated proteins are as well detected performing the extracellular

staining protocol. To confirm this, the localization of a GFPgpi (glycophosphatidyl-

inositol) chimera (Greco et al., 2001) was analyzed. Gpi anchors target proteins

to the outer leaflet of the plasma membrane. In our hands, GFPgpi is targeted to

the apical surface of the developing wing cells. Indeed, the extracellular staining

protocol detected the apical localized GFPgpi (not shown).

Fig. 15. Extracellular staining allows detection of both apical and basal plasma membrane
associated proteins. a) Tkv (red) is not detected by the antibody generated against the
cytoplasmic tail when an extracellular protocol is performed (the faint basal signal represents
background), Tkv-GFP (green); b) conventional staining protocol: β-integrin (red) is associated
with the baso-lateral membranes of the wing disc cells (arrows), some staining is detected also
inside the cells; phalloidin (green) labels the apical actin ring; c) extracellular staining protocol
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detects surface-associated β-integrin (red) (arrow), phalloidin (green) (genotypes: a hh-GAL4/
UAS Tkv-GFP, b and c: WT) (scale bars: a: 20µm, b, c: 5µm)

The accumulation of cell-surface receptors was confirmed at the ultrastructural

level. For that, a C terminus Tkv-GFP fusion was generated. Functionality of the

chimera was confirmed by rescuing the lethality of tkv8/tkv7 mutants (Nellen et al.,

1994) (Penton et al., 1994) (Periklis Pantazis, personal communication). Like the

endogenous protein, the chimera is detected in association with the apical

junctional area at the confocal microscopy level (Fig. 16a, arrows). Immuno-

electronmicroscopy (IEM) studies revealed that inside the cells the receptor is

found in multivesicular structures (Fig.16d’, d’’), while at the plasma membrane

Tkv is associated with both septate and adherens junctions (Fig. 16b, c, stars).

AJs can be recognized morphologically at EM level by a cytoplasmic electron-

dense plaque on the sides of the two apposing membranes (Fig. 16b, arrow),

while the SJs are recognized by electron-dense material spanning the cleft

between two apposing membranes (Fig. 16c, arrows). Out of 19 junctions, 7 were

Tkv-positive. The plasma membrane associated receptors are concentrated by a

4-fold factor at the AJs and SJs, with respect to other plasma membrane domains

(i. e. microvilli) (Fig. 16e).

Figure 16. Ultrastructural characterization of Tkv localization. a) cryostat XZ section showing
that functional Tkv-GFP (green) chimera is associated with the AJs, monitored by β-cat
immunostaining (red); b) –d) IEM pictures where Tkv-GFP was stained with an anti-GFP
antibody. b) Tkv-GFP (stars) associated with the AJs (arrow); c) Tkv-GFP (stars) associated with
the SJs (arrows); d’), d’’) examples of Tkv-GFP-positive multivesicular bodies; e) IEM data: the
density of Tkv in different regions of the cell (normalized for the area of the plasma membrane),
numbers at the bottom of the columns represent number of EM pictures analyzed; *p< 0.05, **p<
0.001 (genotype: hh-GAL4/ UAS Tkv-GFP) (scale bars: a: 5µm, b-e: 100nm)



Results 38

To address if the association of Tkv with the cell junctions is ligand-dependent,

the localization of the receptor was monitored in dppd8/dppd12 mutant. This mutant

combination lacks Dpp expression in the wing imaginal disc (St Johnston et al.,

1990). The receptors are still preferentially associated with the junctions in the

absence of the ligand (Fig. 17a, a’ arrows), indicating that Tkv targeting to the

junctional area is independent of the signaling event.

Figure 17. Tkv junctional localization is ligand-independent. a) cryostat XZ section of a
dppd8/dppd12 wing imaginal disc stained for the whole Tkv population (green) and β-cat (red); a’)
magnification of the region boxed in a, arrows point to the Tkv associated with the AJs (scale bar:
15µm)

Junctional localization of the morphogen Dpp

The fact that the plasma membrane associated Tkv is concentrated at the

junctional area of the wing imaginal disc cells raises the possibility that its ligand

is targeted to the same area.

No antibody for Dpp immunofluorescence detection in the receiving cells is

currently available. Instead, a functional GFP-Dpp fusion protein (Entchev et al.,

2000) was used to study the localization of the ligand. Like the receptor, the GFP-
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Dpp chimera accumulates in the apical region of the cells (Fig. 18a, a’ arrows).

To distinguish the extracellular ligand pool from the internalized pool, an

extracellular staining (see above) was performed using an anti-GFP antibody

(Kruse et al., 2004). Like the receptor, the extracellular ligand is found in a

subapical region of the wing epithelium, at the level of the junctions (Fig. 18b).

Figure 18. The extracellular Dpp morphogen is confined to the junctions. Cryostat XZ
sections of imaginal wing discs expressing GFP-Dpp. a) GFP-Dpp (green) accumulates in an
apical region of the cell, β-cat (red) labels the AJs; a’) magnification of the region boxed in a, co-
localization of GFP-Dpp and β-cat marked by arrows; b) junctional localization of the extracellular
ligand detected by the extracellular staining protocol with an anti-GFP antibody (red), phalloidin
(blue), GFP-Dpp (green), lower limit of the junctions is marked by a dashed line (genotype: dpp-
GAL4/ UAS GFP-Dpp) (scale bars: a: 10µm, b: 5µm)

Dpp localization at the ultrastructural level was studied by monitoring GFP-Dpp

by IEM and HRP-Dpp by electron-microcopy (EM). In HRP-Dpp the horseradish

peroxidase (HRP) is inserted in the same position as GFP in GFP-Dpp. Both

chimeras were detected in close proximity to the junctions (Fig. 19a, b). In order

to detect the HRP, DAB (di-amino-benzidine) and H2O2 were added, leading to

DAB polymerization and formation of a precipitate visible at electron microscopy

level. This method provides a higher sensitivity, since the detection is not limited

just to the surface of the section, like it is in IEM. In the receiving cells, HRP-Dpp



Results 40

is detected internalized in endosomal structures, including multivesicular bodies

(Fig. 19a, arrowheads). At the plasma membrane, HRP-Dpp is detected

concentrated at the junctions (Fig. 19a’, arrow). This observation suggests that

Dpp is specifically targeted to a distinct region of the plasma membrane in the

junctional area, the same one where its receptor is concentrated.

Figure 19. Ultrastructural characterization of Dpp localization in wing imaginal disc cells. a)
EM picture showing HRP-Dpp (electron-dense precipitate) at the receiving tissue in endosomal
and multivesicular structures (arrowheads); a’) magnification of the region boxed in a showing
Dpp concentrated at the AJs (arrow); b) IEM picture for GFP-Dpp detected with an anti-GFP
antibody: Dpp (stars) is detected at the junctions (arrows) (genotypes: a: apt-GAL4/ UAS HRP-
Dpp, b: MS1096-GAL4/ UAS GFP-Dpp) (scale bars: 200nm)

Targeting of R-Smad Mad to the junctional area

The fact that both the TGF-β ligand and its receptor are found enriched at the

epithelial cells junctions raises the idea that the junctional area serves as a

signaling domain in the plasma membrane. To explore this possibility, the

localization of the R-Smad was studied. An antibody developed against the

Drosophila R-Smad Mad (Sutherland et al., 2003) detects the transcription factor

concentrated in the apical side of the epithelial disc cells, associated with the

plasma membrane (Fig. 20c). To study at ultrastructural level the Mad

localization, a GFP-chimera was generated. Functionality of GFP-Mad was

confirmed by rescuing lethality of madB1 mutants (Wiersdorff et al., 1996). At light

microscopy level, GFP-Mad is detected mainly in the nucleus (Fig. 20a N), but

also at the apical junctions of the wing imaginal disc cells (Fig. 20a arrows, b), in

a pattern similar to the TGF-β ligand and its receptor.
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Figure 20. The transcription factor Mad is associated with the plasma membrane at the
junctions. a) XZ section of a GFP-Mad (green) expressing disc, imaged in vivo, Hoechst (blue)
labels the cells nuclei, FM4-64 (red) labels the cells membrane; GFP-Mad is present in both
nuclei (N) and in an apical region of the plasma membrane (arrows); b) XY confocal section of a
GFP-Mad (green) expressing disc taken at the level of the junctions, labeled by β-cat (red), inset
shows a magnified region; c) XY confocal section at junctional level of a wild-type disc stained for
Mad (genotypes: a and b: tubGAL4/ UAS GFP-Mad, c: WT) (scale bars: a: 10µm, b, c: 15µm)

The localization of the protein to the junctions was confirmed at the ultrastructural

level (Fig. 21). Of 43 junctions, 26 were Mad-positive. IEM data substantiated

that, of the population associated with the plasma membrane, the fraction

associated with the AJs and SJs is more concentrated than the one found along

the basal membrane or at the apical microvilli (Fig. 21c).
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Figure 21. Plasma membrane associated Mad is enriched at the junctions. a) GFP-Mad
(stars) associated with AJs (arrow); b) GFP-Mad (stars) associated with the SJs (arrows); c)
quantification of Mad density associated with various regions of the wing disc cells (normalized to
the membrane area); numbers at the bottom of the columns represent number of EM pictures
analyzed; *p< 0.05, **p< 0.001 (genotype: tub-GAL4/ UAS GFP-Mad) (scale bars: 50nm)

The observation that the transcription factor is associated with the junctions

suggests that signaling occurs at the junctions. This prompts two questions: i)

how is Mad targeted to the junctions? and ii) how would the disruption of the

junctions affect Dpp signal transduction?

β-cat regulates Dpp signaling read-out

Mutants affecting the integrity of the AJs and SJs were used in order to study the

effect of junctional disruption on signal transduction. In shgIG29, shgIH, cora5,

dlgm52 and scrib1 mutant cells the seal of the junctions is compromised, while the

apico-basal polarity is not affected (Le Borgne et al., 2002) (Woods and Bryant,

1991) (Lamb et al., 1998) (Bilder and Perrimon, 2000). None of these mutant

conditions displayed defects in TGF-β signaling read-out (not shown).

The level of Dpp signaling is affected in armXM19, instead. In armXM19 mutants, β-

cat is truncated at the C terminus, which leads to a reduction in its levels of about

30% of the wild-type protein (Cox et al., 1999). This reduction compromises the

integrity of the AJs (Tolwinski and Wieschaus, 2001) (Tolwinski and Wieschaus,

2004). Dpp signal transduction is affected in the mutant cells: they display an

increased level of Mad phosphorylation (PMad) (Fig. 22).

The Dpp signaling read-out phenotype in β-cat mutants could be explained by the

involvement of β-cat at different steps of the pathway: i) β-cat could sequester the
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R-Smad to the junctions impairing its translocation to the nucleus, ii) β-cat could

bind to SARA, as a recent study suggests (Colland et al., 2004), impairing its

Smad anchoring function, iii) similar to Wg signaling, β-cat could be part of a

Smad complex that enters the nucleus and modulates Dpp target gene

expression, iv) the effect on Dpp signaling could be an indirect one due to β-cat

involvement in Wg signaling.

Figure 22. β-cat regulates Dpp signal transduction. Orthogonal projections of discs in which
armXM19 clones were induced. armXM19 clones show increased PMad levels (red); the clones are
labeled by the absence of GFP, as well as by the reduced β-cat staining (blue). a) a clone inside
the PMad domain; a’) magnification of the region boxed in a; b) a clone at the border of PMad
domain; b’) magnification of the region boxed in b (genotype: FRT101 UbGFP/armXM19 FRT101;
hsFLP/+) (scale bars: 40µm)
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Mad forms a complex with β-cat

Recent studies revealed physical interactions between TGF-β and Wnt signaling

components, involved in the transcriptional control of their target genes. In

Xenopus, β-cat and TCF (downstream components of the Wnt signaling cascade)

were shown to form a complex with Smad4 (Nishita et al., 2000). The complex

modulates the expression of the homeobox gene twin during formation of the

dorsal signaling center, the Spemann’s organizer. Moreover, in renal human cell

culture, β-cat was shown to associate to Smad3 and Smad4 upon TGF-β

signaling (Tian and Phillips, 2002), while in renal dysplastic tissues, a complex

formed by Smad1, β-cat and TCF binds to the Myc promoter. This complex

stimulates Myc transcription (Hu and Rosenblum, 2005), which does not happen

in normal renal tissues, since Smad1 alone binds to Myc promoter and does

inhibit the gene expression.

The cell culture studies and the fact that in the epithelial wing disc cells Mad is

associated to the junctions, where a pool of β-cat is localized, prompted the

possibility of an interaction between β-cat and Mad in Drosophila. Indeed, Mad

immunoprecipitates β-cat, confirming that the proteins form a complex in vivo

(Fig. 23a). Furthermore, this interaction is a direct one, as proved by in vitro pull-

down experiments (Fig. 23b).

Figure 23. The transcription factor Mad and the AJs component β-cat form a complex in
epithelial cells. a) The ubiquitous β-cat is pulled-down from an embryo extract by Mad; b)
S35GFP-Mad is pulled down by bacterial expressed GST-β-cat

It still remains to be shown which are the interacting domains of the two proteins

and by which mechanism the complex regulates Dpp signaling.
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TGF-β signaling at Drosophila NMJ

My results indicate that TGF-β signaling machinery is targeted to the epithelial

cell junctions. Moreover, TGF-β signaling read-out is regulated by a component

of the junctions, β-cat. Conversely, TGF-β signaling was shown to be involved in

the development and the plasticity of the neuromuscular junction (reviewed in

Keshishian and Kim, 2004), processes mediated also by cell adhesion molecules

like β-cat, Dlg and Scrib (Roche et al., 2002) (reviewed in Koh et al., 2000). To

compare the situation at the epithelial cells and the synapse, I have studied the

junctional localization of TGF-β signaling molecules at the NMJ.

Postsynaptic TGF-β signal transduction machinery

TGF-β signaling is involved in synaptic development and function. Mutants with

impaired TGF-β signaling are characterized at the level of the NMJ by reduced

number of synaptic boutons and decreased synaptic strength (Marques et al.,

2002) (Aberle et al., 2002) (Sweeney and Davis, 2002) (McCabe et al., 2003).

These phenotypes are due to altered morphology of the presynaptic SVs release

sites and postsynaptic defects of the SSR area opposed to the active zones. The

mechanisms by which TGF-β modulates NMJ development and function are,

however, not yet clarified. A retrograde TGF-β signaling occurs at the synapse,

but there are indications of an anterograde TGF-β signal as well.

In order to elucidate whether an anterograde TGF-β signal acts at the synapse,

the sub-cellular localization of TGF-β signaling components at the synapse was

studied. The expression of TGF-β pathway components in the CNS and muscles

was confirmed by RT-PCR. The TGF-β superfamily BMP-like ligands (Dpp, Gbb,

Scw) and activins (Activin-β, Alp23B), type II (Wit, Put) and type I receptors (Tkv,

Sax, Babo), R-Smads (Mad, Smox) and other transducing factors (SARA)

transcripts are localized both in the muscles and CNS (Fig. 24). Therefore, these
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proteins could in principle mediate TGF-β-like signaling during synaptic

development.

Figure 24. TGF-β superfamily ligands, receptors and transcription factors are expressed in
Drosophila brain and muscles.  RT-PCR of 3rd instar larval a) brains and b) muscles

Indeed, the type I receptor Tkv is present at the NMJ, mainly localized to the SSR

(Fig. 25a, a’’). Tkv is also detected at low levels inside the presynaptic boutons,

which are labeled by cystein string protein (CSP) immunostaining (Fig. 25a’

circles). CSP is commonly used as marker of the presynaptic side of the NMJ

(Zinsmaier et al., 1994) and they. Consistently, upon neuronal Tkv expression

with the elav-GAL4 driver, positive Tkv structures can be detected in the

presynaptic boutons (Fig. 25b, b’ arrowheads). Conversely, upon expression of

the functional Tkv-GFP transgene in the muscles using MHC-GAL4, the GFP-

chimera is specifically targeted to the SSR surrounding the presynaptic terminal

(Fig. 25c, c’’).
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Figure 25. TGF-β type I receptor Tkv is enriched at the postsynaptic side of Drosophila
larval NMJ. a) Tkv (green) is mainly localized around the synaptic bouton, labeled by CSP (red);
a’) magnification of the region boxed in a: presynaptic Tkv-positive structures are encircled; a’’)
postsynaptic Tkv localization, quantification of Tkv (green) and CSP (red) fluorescence across the
diameter of the boutons (arbitrary fluorescence units), n=5 (white/ grey circle marks the center of
the bouton); b) Tkv-GFP is targeted to presynaptic structures when expressed in the nervous
system, CSP (red); b’) magnification of the region boxed in b: presynaptic Tkv-positive structures
(arrowheads); c) Tkv-GFP (green) is targeted to the SSR when expressed in the muscles, CSP
(red); c’) magnification of the region boxed in c ; c’’) postsynaptic targeting of Tkv-GFP,
quantification of Tkv-GFP (green) and CSP (red) fluorescence across the diameter of the boutons
(arbitrary fluorescence units), n=10 (white/ grey circle marks the center of the bouton)
(genotypes: a: WT, b: elav-GAL4/ UAS Tkv-GFP, c: MHC-GAL4/ UAS Tkv-GFP) (scale bars:
5µm)

The presynaptic localization of the receptor is in accordance with a previously

reported retrograde TGF-β signaling event at the NMJ (Marques et al., 2002)

(Aberle et al., 2002) (Sweeney and Davis, 2002) (McCabe et al., 2003). The SSR

localization of Tkv raises, on the other hand, the possibility of an anterograde

signaling event. It is therefore possible that both antero- and retrograde signaling

take place at the synapse.
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Which of the TGF-β ligands mediates signaling at the NMJ? To address this

question, GFP-fusions of Dpp, Gbb, Scw, Activin-β and Alp23B have been

generated and the transgenes were expressed either in the CNS, or in the

muscles. If these ligands are responsible for the development/ function of the

NMJ, then they should be targeted to this location. When expressed in the

motoneurons, only the functional GFP-Alp23B and GFP-Activin-β  are targeted

down to the presynaptic boutons (Fig. 26), whereas GFP-Scw and GFP-Gbb

were not detected under our experimental conditions. Functionality of GFP-

Alp23B chimera was confirmed by rescuing lethality of alp22c2/Df(11) mutants

(Maximilian Fürthauer, personal communication).

Figure 26. Activins are targeted to the presynaptic boutons. a) Functional GFP-Alp23B
(green) is localized in presynaptic structures when expressed in the nervous system, CSP (red);
a’) magnification of the region boxed in a; b) GFP-Activin-β (green) is localized in presynaptic
structures when expressed in the nervous system, CSP (red) (genotype: a: elav-GAL4/ UAS-
GFP-Alp23B, b: elav-GAL4/ UAS-GFP-Activin-β; only a subset of the neurons expressed the
chimeric proteins) (scale bars: 5µm)

The facts that a TGF-β ligand can be specifically targeted to the presynaptic side

of the terminal and that the receptor is mainly found postsynaptically suggest that

an anterograde TGF-β signal may occur at the Drosophila NMJ. If anterograde

signaling takes place, the R-Smad should be recruited by the receptor to the

postsynaptic side of the NMJ. Fig. 27a, a’ shows that this is actually the case:
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Mad is localized in the nuclei of the muscles (N), as well as at the postsynaptic

side of the NMJ (inset), where Tkv is found, too.

Figure 27. The transcription factor Mad accumulates in the SSR, as well as in the nuclei of
the muscles. a) Mad (green) is localized at the postsynaptic side of the NMJ (inset with
magnification) and in the muscle nuclei, CSP (red) labels the presynaptic side of the NMJ; a’)
postsynaptic Mad localization, quantification of Mad (green) and CSP (red) fluorescence across
the diameter of the boutons (arbitrary fluorescence units), n=7 (white/ grey circle marks the center
of the bouton); b) GFP-Mad (green) accumulates postsynaptically, Dlg (red) labels the SSR
surrounding the synaptic boutons (arrows); b’) magnification of the region boxed in b, showing co-
localization of Mad and Dlg in the SSR; b’’) postsynaptic targeting of GFP-Mad, quantification of
GFP-Mad (green) and CSP (red) fluorescence across the diameter of the boutons (arbitrary
fluorescence units), n=8 (white/ grey circle marks the center of the bouton); c) postsynaptic GFP-
Mad (green) (arrows) and presynaptic CSP (red) (genotypes: a: WT, b and c: MHC-GAL4/ UAS
GFP-Mad) (scale bars: a, b’, c: 5µm, b: 10µm)

Consistently, a functional GFP-Mad chimera, when expressed in the muscles is

also targeted both to the nuclei and the subsynaptic region, as shown in fixed

material and in vivo (Fig. 27b, b’’, c).
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The fact that R-Smad, like the receptor, is targeted to the SSR facing the

presynaptic terminal raises the question whether the TGF-β-like ligand released

from the presynaptic bouton triggers the postsynaptic phosphorylation of Mad by

the receptors localized in the muscle.

R-Smad postsynaptic phosphorylation

An antibody recognizing the phosphorylated form of Mad, PMad (Tanimoto et al.,

2000), was used to address whether signal transduction occurs indeed in the

muscle. PMad is present at the synapse, in the SSR (Fig 28a), but it accumulates

in the muscle nuclei as well. Conversely, in a mad12 mutant background only

residual PMad staining is detected in the muscle nuclei (Fig. 28b) (WT: 5.4 ±

0.85; mad12: 0.3 ± 0.11 arbitrary units of fluorescence intensity). The Mad12

protein is truncated just before the conserved SSVS domain that is

phosphorylated by the type I receptor and, therefore, it cannot be

phosphorylated. Low levels of staining at NMJ (WT: 5.7 ± 0.58; mad12: 0.63 ±

0.42 arbitrary units of fluorescence intensity) are due to residual Mad maternal

protein, which allows survival of the mutants until the third instar larval stage

(Raftery et al., 1995). This result confirms that a TGF-β signal coming from the

NMJ is directed to the muscle nuclei and supports the idea of the transcription

factor being phosphorylated in the muscle.
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Figure 28. Phospho-Mad staining specificity. a) phospho-Mad (green) is detected
postsynaptically and in the muscle nuclei, CSP (red); b) phospho-Mad (green) is drastically
reduced at the synapse and in the muscle nuclei of mad12 mutants (see text for quantification
data), CSP (red) (N- muscle nucleus) (genotypes: a: WT, b: mad12/ mad12) (scale bars: 10µm)

In Drosophila, Dad has been shown to function as an inhibitory Smad

(Tsuneizumi et al., 1997). It represses Dpp activity by competing with Mad for

binding to Tkv (Inoue et al., 1998), and overexpression of Dad rescues to wild-

type the overgrowth caused by Mad overexpression (Tsuneizumi et al., 1997). In

order to address if Mad is indeed phosphorylated in the muscles, the levels of

PMad were monitored upon inhibiting TGF-β signaling. In the wing discs, clones

of cells overexpressing Dad have lower levels of PMad than the surrounding wild-

type cells (Fig. 29a). Consistently, at the NMJ Mad phosphorylation is impaired

by expression of Dad in the muscles, confirming that the transducing event

occurs postsynaptically (WT: 11.1 ± 2.66; MHC-GAL4/ UAS-Dad: 2.96 ± 0.43

arbitrary units of fluorescence intensity) (Fig. 29, compare b with b’).
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Figure 29. Mad is phosphorylated postsynaptically. a) wing disc clones expressing Dad
(labeled by the presence of GFP, green) have decreased levels of PMad (red), inset shows a
magnified region; b’) phosphorylation of Mad is reduced by postsynaptic expression of Dad with
respect to b) wild-type synapse (see text for quantification data) (genotypes:  a: yw-hsFlp; act >
CD2> GAL4; UAS-GFP/ UAS-Dad, b: WT, b’: MHC-GAL4/ UAS-Dad) (scale bars: a: 50µm, b, b’:
5µm)

While the total pool of protein appears diffuse in the SSR (Fig. 27a), the pool of

phosphorylated Mad concentrates in a punctate postsynaptic pattern (Fig. 29b).

This pattern coincides with the pattern of glutamate receptor clusters in the

muscle (Fig. 30a, a’). The postsynaptic glutamate receptor fields are juxtaposed

to the presynaptic active zones (reviewed in Broadie and Richmond, 2002).

Although the components of both secretion (the active zones) and reception units

(neurotransmitter receptors) assemble autonomously, their alignment on both

sides of the synaptic cleft requires intercellular signaling (Broadie and Bate,

1993) (Prokop et al., 1996). Consistently, PMad is detected opposite the active

zones, labeled by nc82 immunostaining (Fig. 30b, b’). The nc82 antibody

(Heimbeck et al., 1999) recognizes an antigen associated to the presynaptic

active zones as monitored by the postsynaptic localization of the glutamate

receptors at the active zones and the pattern of the centers of endocytosis

around the active zones (Wucherpfennig et al., 2003).
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Figure 30.   TGF-β  signal  transduction  takes  place opposite the synaptic release zones.
a) phospho-Mad (red) is present where the glutamate receptor clusters (GluRIIA-GFP) are
localized in the muscle (green); a’) magnification of the region boxed in a; b) phospho-Mad (red)
is detected postsynaptic facing the active zones labeled by nc82 (green); b’) magnification of the
region boxed in b ; c) SARA (green) is excluded from the areas where glutamate receptors
(GluRIIA-mRFP) cluster in the muscle (red); d) SARA (green) is localized post-synaptically, CSP
(red); d’) postsynaptic SARA localization, quantification of SARA (green) and CSP (red)
fluorescence across the diameter of the bouton (arbitrary fluorescence units), n=9 (white/ grey
circle marks the center of the bouton) (genotypes: a: MHC-GAL4/ UAS-GluRIIA-GFP, b: WT, c:
MHC-GAL4/ UAS-GluRIIA-mRFP, d: WT) (scale bars: 5µm)

SARA is an adaptor protein that recruits R-Smads to the TGF-β activated

receptors (Tsukazaki et al., 1998) (Hayes et al., 2002). The activated receptors

phosphorylate the R-Smads, decreasing thus their affinity for SARA and, as a

consequence, the adaptor protein is detached from phospho-Smads (Xu et al.,
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2000). At the NMJ, SARA is localized at the postsynaptic side of the terminal

(Fig. 30d, d’). Postsynaptic SARA accumulates in a network-like pattern,

excluded from the glutamate receptor clusters (Fig. 30c), where Mad is

phosphorylated (Fig. 30a’). The absence of SARA from the areas where signal

transduction occurs implies that, indeed, the phosphorylation of the transcription

factor opposite the active zones triggers the detachment of the adaptor protein.

R-Smad accumulation at the synapse depends on synaptic stimulation

GFP-Mad is targeted to the postsynaptic side of the NMJ (Fig. 27b, c). In order to

address whether such accumulation is synaptic activity-dependent, in vivo

imaging was performed. Upon stimulation with high K+ solution, which triggers the

release of SVs, increased fluorescence of GFP-Mad in the SSR is detected (Fig.

31, compare a, a’ with b, b’, arrowheads). Quantification of the GFP fluorescence

revealed that synaptic stimulation results in a 20-30% increase of GFP-Mad

recruitment to the postsynaptic side of the NMJ (Fig. 31c). This result is

consistent with a scenario where, during synaptic transmission, the transcription

factor Mad is recruited from the cytoplasm to the receptors, at the SSR.

Figure 31. Synaptic activity triggers Mad accumulation at the NMJ. In vivo imaging of GFP-
Mad at the synapse, a) before and b) after stimulation with high K+ solution. FM4-64 (red) labels
the postsynaptic side of the terminal; a’) and b’) magnifications of the regions boxed in a and b
(arrowheads point to two synaptic boutons); c) quantification of the fluorescence increase at the
NMJ (arbitrary units) after stimulation (numbers at the bottom of the columns represent the
number of synapses analyzed; *p< 0.05) (scale bars: 20µm)
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It remains to be addressed if the R-Smad nuclear import/ export rate depends on

synaptic activity and whether ligand release is dependent on synaptic activity, key

events in elucidating TGF-β role during synaptic development and function.
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DISCUSSION

TGF-β signaling at the epithelial cell junctions

In the first part of this work, I have studied whether TGF-β ligand Dpp and its

receptor Tkv are localized at a specific area of the epithelial wing imaginal disc

cells, namely the cellular junctions. Moreover, whether such localization is

relevant for Dpp signaling read-out. The model of Dpp gradient formation by

planar transcytosis implies that the morphogen is secreted by the producing cells

and diffuses extracellulary only at short-range. The long-range distribution

requires Dpp internalization and re-secretion at the cells of the target tissue. The

ligand internalization is receptor-mediated, and is followed by intracellular traffic

through endosomal compartments with the consequence that the non-degraded

ligand is released to signal in the neighboring cells. The rate of transcytosis is

dependent among other parameters on the rate of endocytosis, which is

determined not by the absolute number of receptors, but by their concentration.

Since a single molecule of Dpp travels very fast across a single cell, the rate of

endocytosis must also be very fast to account for the transport by planar

transcytosis. A possible scenario in which a fast endocytosis rate could be

achieved is by concentrating the receptors to a specific area of the cells. Thus the

ligand, while trafficking from one cell to the next, should be secreted also at the

same specific area of the cell where the receptors are concentrated.

My results show that, indeed, extracellular Dpp is targeted to a specific area of

the cell, the junctional area, where plasma membrane-associated Tkv is

localized. Mad is recruited to the same area, probably by the interaction with the

AJs component, β-cat.

Extracellular Dpp is targeted to the junctional area of receiving cells

The apical concentration of Dpp raised the possibility that the trafficking of the

growth factor to the receiving cells is confined to the apical side of the cell. My

results show that, indeed, Dpp is asymmetrically distributed along the apico-basal



Discussion 57

axis of the cells, concentrating in an area at the level of AJs (Fig. 18a). Dpp

localization at the junctions was confirmed by EM studies (Fig. 19). From the total

pool of the ligand, the extracellular one is found associated to the junctions (Fig.

18b). These observations indicate a specific targeting of Dpp to a restricted

region of the cell, the junctional area.

Cell-surface TGF-β type I receptor accumulates at the junctions

The fact that extracellular Dpp is targeted to the junctional region could imply that

its receptor is also localized in the same area. Indeed, cell-surface Tkv receptors

are localized at the junctions. The total Tkv population is enriched in an apical

region of the cell, where it associates with the junctional area of the plasma

membrane. Of the total pool of Tkv, the plasma membrane associated Tkv is

concentrated at the junctional level (Fig. 14). The junctional localization of the

TGF-β receptor was confirmed by EM studies: the surface receptors are six fold

concentrated at the junctions with respect to other plasma membrane domains (i.

e. microvilli) (Fig. 16).

These facts are in concordance with our model, according to which a fast

endocytosis rate of the morphogen into the receiving cells is dependent, among

other factors, on the concentration of the receiving proteins to one part of the cell.

Cell culture studies suggested that polarized cells regulate signaling by

expressing the receptors and secreting the ligand in spatially defined areas of the

cell. In adhering MDCK cells, the TGF-β ligand was found to be secreted from the

apical surface of the polarized cells (Murphy et al., 2004). Similarly, in a polarized

tissue, the wing imaginal disc, Dpp is apically secreted at the level of cell-cell

junctions. In MDCK cells, the TGF-β receptors are localized to the lateral

membranes, but adjacent to the zonula adherens (Murphy et al., 2004). In the

wing disc cells, plasma membrane associated Tkv receptors are associated with

the AJs. These findings imply a general feature of polarized cells in optimizing the

transport rate of the secreted signal.

Moreover, the association of Tkv with the cell junctions is ligand-independent. In

dppd8/dppd12 mutants that lack Dpp expression in the wing imaginal disc, the

receptors are still associated with the junctions (Fig. 17). This result implies that

the targeting of the receptors to the junctional area is not dependent of an initial

TGF-β signaling event.
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The R-Smad Mad is recruited to the junctional area

After binding the ligand, the TGF-β receptors propagate the signal through the

phosphorylation of R-Smads, which translocate to the nucleus to regulate the

transcription of target genes (Lagna et al., 1996). The R-Smad Mad is enriched in

the apical side of the wing disc cells, associated to the AJs (Fig. 20). The

junctional concentration of the Smad was confirmed by EM studies (Fig. 21).

From the population found at the plasma membrane, the one associated with the

junctions is 3-4 times more concentrated than the one found along the baso-

lateral membrane or at the microvilli.

The fact that both cell-surface Tkv and Mad are found enriched at the junctions

suggests that, upon ligand binding, Mad is phosphorylated by the receptor and

then targeted to the nucleus. By now, I have not detected phosphorylated Mad at

the junctions. The release of the activated Mad from the ligand/receptor complex

in the epithelial wing disc cells could be very rapid following its phosphorylation;

therefore, in a steady state situation the phospho-Mad pool still present at the

junctions might be under our current detection ability.

β-cat regulates Dpp signaling read-out

In armXM19 mutants, β-cat levels are low and the AJs are disrupted. Dpp signal

transduction is affected in these mutant cells: they display an increased level of

Mad phosphorylation (Fig. 22). The Dpp signaling read-out phenotype in β-cat

mutants could be explained by the involvement of β-cat at different steps of the

pathway: i) β-cat could sequester the R-Smad to the junctions impairing its

translocation to the nucleus, ii) β-cat could bind to SARA, impairing its function of

anchoring the Smads, iii) β-cat could be part of the Smad complex that enters the

nucleus and modulates Dpp target gene expression, iv) the effect on Dpp

signaling could be an indirect effect of the Wg signaling pathway.

Recent studies revealed physical interactions between TGF-β and Wnt signaling

components, involved in the transcriptional control of their target genes. In

Xenopus, β-cat and TCF (downstream components of the Wnt signaling cascade)

were shown to form a complex with Smad4 (Nishita et al., 2000). The complex

modulates the expression of the homeobox gene twin during formation of the

dorsal signaling center, the Spemann’s organizer. In renal human cell culture, β-
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cat was shown to become associated to Smad3 and Smad4 after TGF-β

stimulation (Tian and Phillips, 2002). In renal dysplastic tissues, a complex

formed by Smad1, β-cat and TCF binds to the Myc promoter, thus stimulating

Myc transcription (Hu and Rosenblum, 2005). The complex does not form in

normal renal tissues, since Smad1 alone binds to Myc promoter and does inhibit

the gene expression.

Indeed, Mad is directly interacting with β-cat in vivo (Fig. 23), forming a complex

that might be responsible for regulating Dpp signaling read-out. On the other

hand, if Dpp and Wg signaling networks are connected intracellularly, availability

of a limited pool of the possibly shared component β-cat could affect the efficacy

of one of the cascades. It still remains to be shown which are the interacting

domains of the two proteins (β-cat and Mad) and by which mechanism the

complex regulates Dpp signaling.

TGF-β signaling at the neuromuscular junction

In the second part of the work I have studied whether anterograde TGF-β

signaling occurs at the NMJ. Three results support this possibility: i) the

presynaptic localization of the ligand vs. the postsynaptic localization of the

receptor; ii) the postsynaptic phosphorylation of the R-Smad; iii) recruitment of

the R-Smad to the NMJ during synaptic transmission. Likewise, the specific sub-

cellular localization of the pathway components suggests a scenario in which

anterograde TGF-β signaling is coupled with synaptic transmission. Such a

scenario implies that within the synaptic terminal there are synaptic vesicles

containing both neurotransmitter and growth factors. During synaptic

transmission the terminal would release not just quanta of neurotransmitter, but

also quanta of growth factors that bind to the receptor present in the muscle.

These quanta of growth factor would then modulate the synaptic development in

an activity-dependent manner. Since the synaptic vesicles are released at the

active zones, signaling would occur through Smads phosphorylation in the area

opposed to the active zones, where also the glutamate receptors are clustered.

From here the signal would be targeted to the nuclei of the muscles, where the

activity of unknown genes involved in synaptic development and function would

be modulated.



Discussion 60

Presynaptic TGF-β localization

In accordance with the idea of an anterograde TGF-β signaling at the NMJ, TGF-

β ligands were found localized to the presynaptic boutons. In order to detect their

localization, I have generated GFP chimeras of TGF-β ligands, since no

functional antibodies for immunofluorescence are available. GFP-Alp23B and

GFP-Activin-β are targeted down to the presynaptic side of the NMJ when

expressed in the neurons (Fig. 26). None of the other TGF-β ligands (Gbb, Dpp,

Scw) were detected at the NMJ, when the GFP chimeras were expressed either

in the neurons, or in the muscles. However, when driven in the wing imaginal

disc, the chimeras are detected in the expressing cells. The fact that they are not

found at the NMJ could be due to low expression, under our current detection

level.

Postsynaptic pool of TGF-β type I receptor

The type I receptor Tkv is mainly localized to the SSR. Consistently, upon

expression of a functional Tkv-GFP transgene in the muscles, the GFP-chimera

is specifically targeted to the SSR surrounding the presynaptic terminal (Fig. 25).

Tkv can also be detected at low levels inside the presynaptic boutons. Likewise,

upon neuronal Tkv expression in the neurons, positive Tkv structures can be

detected in the presynaptic boutons (Fig. 25).

The presynaptic localization of the receptor is in accordance with a retrograde

TGF-β signaling event at the NMJ, as previously reported (Marques et al., 2002)

(Aberle et al., 2002) (Sweeney and Davis, 2002) (McCabe et al., 2003). The SSR

localization of Tkv, together with the fact that the ligand is detected

presynaptically, suggests the possibility of an anterograde signaling or an

autocrine event.

Why would activins signal through a BMP receptor? A cross-talk between the two

pathways could occur at the synapse, alternatively Tkv could signal in the activin

pathway as well. Our antibodies generated against Babo and Put or a

commercial Wit antibody (Hybridoma Bank) did not detect these receptors at the

NMJ, while they did detect the receptors in the wing imaginal disc cells. On the

other hand, I have found that a Babo-GFP chimeric protein is targeted to the

SSR, in the same manner like Tkv-GFP, when expressed in the muscles (not

shown).
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An anterograde TGF-β signal at the synapse

Evidence for the anterograde TGF-β signaling was supported by three results: i)

Mad is localized at the postsynaptic side of the terminal, ii) Mad is

phosphorylated in the muscle SSR, iii) phosphorylated Mad is translocated from

the SSR to the muscle nuclei.

Mad is detected in the nuclei of the muscles, as well as at the postsynaptic side

of the NMJ. Consistently, a functional GFP-Mad chimera, when expressed in the

muscles is also targeted both to the nuclei and the subsynaptic region (Fig. 27).

The active Mad is detected at the synapse, in the SSR, and in the muscle nuclei

(Fig 28a), suggesting that TGF-β signaling takes place at the muscle. Indeed,

Mad phosphorylation is impaired when TGF-β signaling is inhibited by the

expression of i-Smad Dad in the muscles (Fig. 29). The fact that the transducing

event occurs postsynaptically is supported also by the absence of the PMad in

the muscle nuclei of the mad12 mutant larvae (Fig. 28). The mutant protein cannot

be phosphorylated, but the mutants manage to survive until the third instar stage

on the account of residual Mad maternal protein. Low PMad levels of staining are

still detected at the NMJ, probably too low to allow detection also at the nuclei of

the muscles.

Sub-cellular localization of TGF-β components indicative of their role at the

synapse?

While the total pool of synaptic Mad appears diffuse in the SSR, the pool of

phosphorylated Mad concentrates in a punctate postsynaptic pattern. This

pattern coincides with the pattern of glutamate receptor clusters in the muscle,

opposite the active zones (Fig. 30). The fact that Mad phosphorylation takes

place where the glutamate receptors are clustered supports the idea of a synaptic

activity-dependent signal transduction event, according to which quanta of growth

factor are released to signal postsynaptically. Moreover, SARA, an adaptor

protein thought to recruit R-Smads to the TGF-β activated receptors, is localized

at the postsynaptic side (Fig. 30d) of the terminal in an interesting pattern: SARA

accumulates in a network-like pattern, excluded from the glutamate receptor

clusters, where Mad is phosphorylated (Fig. 30). The absence of SARA from the

areas where signal transduction occurs suggests that phosphorylation of the



Discussion 62

transcription factor opposite the active zones lowers the affinity of the adaptor

protein for the Smad and triggers its detachment.

R-Smad accumulation at the synapse is dependent on synaptic activity

The fact that Mad phosphorylation takes place where the glutamate receptors are

clustered suggests a synaptic activity-dependent signal transduction event.

Indeed, Mad accumulation to the postsynaptic side of the NMJ is synaptic

activity-dependent (Fig. 31). There is a 20-30% increase in Mad levels at the

SSR when the release of SVs is induced with high K+ solution. This result is

consistent with our model according to which, during synaptic transmission, the

ligand released from the synaptic bouton would bind to the postsynaptic receptor.

This event would then trigger the recruitment of Mad from the cytoplasm to the

receptors, at the SSR.

It remains still to be addressed if the R-Smad nuclear import/ export rate depends

on synaptic activity and whether ligand release is dependent on synaptic activity,

key events in elucidating TGF-β role during synaptic development and function.

In summary, in this study the relevance of the sub-cellular localization of the

TGF-β pathway core components for the signal transduction in the context of

communication processes in polarized cells was analyzed. In the epithelial cells

of wing imaginal discs, during morphogenetic signaling, and at the NMJ, during

synaptic transmission, TGF-β ligands, receptors and R-Smads show a polarized

localization. My results indicate that TGF-β signaling is confined to the junctional

area between the secreting and the receiving cell. In the context of epithelial

cells, the AJs seem to play a role in TGF-β signaling through their component β-

cat. A complex forms between β-cat and the R-Smad Mad, but the mechanism by

which β-cat modulates signaling is not yet understood. Further studies are

necessary in order to determine the interacting domains of the two molecules and

to address how the complex regulates Dpp signaling read-out. In the context of

NMJ, the sub-cellular localization of TGF-β pathway components indicates an

anterograde signal occurring at the synapse. The phosphorylation of the R-Smad

Mad opposite the active zones of neurotransmitter release suggests a

dependency of the signaling on synaptic activity. Quanta of growth factor,

released together with neurotransmitter quanta, might send signals to the muscle
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that would control the maturation and physiology of the synapse. The possibility

of a coupling between TGF-β signaling and synaptic transmission can be

addressed by FRAP (fluorescence recovery after photobleaching) experiments: a

faster recovery of the GFP-Mad fluorescence at photobleached synapses and

nuclei of the muscle should occur upon synaptic stimulation.
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ABBREVIATIONS

Additional abbreviations are introduced and explained in the text.
Symbols of multiples (e. g. µ, n, etc.) and SI units are not listed.

            act                  
AJ                  
Alp23B
arm
β-cat
Babo
Bmem
Cora
CSP
Dad
Dlg              
Dpp
E-Cad
E.coli
EM
FRT
Gbb
GFP
GluRIIA
GST
HRP
IEM
Int                 
IP
LB
µvilli
Mad
MHC            
NMJ             
PMad
Put              
Rab
RFP
RT
RT-PCR
SARA
Scw
Scrib
shg
SJ
Smox
SSR
SV
TGF
TJ              
Tkv
tub            
Wit
WT            

actin
adherens junction
Activin-like protein at 23B
Armadillo
β-catenin
Baboon
basal membrane
Coracle
Cystein string protein
Daughters against Dpp
Discs large
Decapentaplegic
E-Cadherin
Escherichia coli
electron microscopy
FLPase recombination target
Glass bottom boat 60A
green fluorescent protein
Glutamate receptor subunit IIA
glutathione-S-transferase
horseradish peroxidase
immuno-electron microscopy
Integrin
immunoprecipitation
Luria-Bertani medium
microvilli
Mothers against Dpp
myosin heavy chain
neuromuscular junction
phosphorylated Mad
Punt
Ras-related in the brain
red fluorescent protein
room temperature
reverse-transcriptase polymerase chain reaction
Smad anchor for receptor activation
Screw
Scribble
shot-gun
septate junction
Smad on X
subsynaptic reticulum
synaptic vesicle
transforming growth factor
tight junction
Thick veins
Tubulin
Wishful thinking
wild-type
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