
Categorical semantics and composition
of

tree transducers

Dissertation

zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der

Technischen Universität Dresden
Fakultät Informatik

eingereicht von

Diplom-Mathematiker Claus Jürgensen

geboren am 05. Mai 1966 in Kappeln an der Schlei

Gutachter:

Prof. Dr.-Ing. habil. Heiko Vogler, Technische Universität Dresden
Prof. Dr. rer. nat. habil. Horst Reichel, Technische Universität Dresden

Prof. Dr. Zoltán Fülöp, Universität Szeged, Ungarn

Tag der Verteidigung: 30.01.2004

Dresden im Oktober 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236363831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Acknowledgments

This dissertation would not have been written without the support from
many people.

I am grateful to Heiko Vogler for accepting the supervision of this thesis
and for providing ideal conditions for doing research. I am obliged to Zoltán
Fülöp and Horst Reichel for accepting to be referees.

Life in Dresden would not be fun without a number of people. My office-
mates Lutz Straßburger, Björn Borchardt and Igor Tarasyuk somehow put
up with me for some years. I am particularly thankful to Janis Voigtländer,
the most critical reader of my papers: His discerning remarks have always
been very helpful to me. I have also been fortunate to share Dresden with
Armin Kühnemann, Enrico Bormann, Alexandre Scalzitti, Andreas Maletti,
and Kai Brünnler.

This thesis would not exist without the support of Gwendoline Blandin.
During all the time she has been a continuous source of love and inspiration.

This PhD thesis has been written with the financial support of the post-
graduate program Specification of discrete processes and systems of processes
by operational models and logics (GRK 334) of the German Research Com-
munity (DFG).

Claus Jürgensen
October, 2003

iii

iv

Contents

1 Introduction 1
1.1 Short cut fusion . 2

1.2 Syntactic composition of tree transducers 4

1.3 The initial algebra approach . 6

1.4 The free monad approach . 8

1.5 Structure of the thesis . 10

2 Preliminaries 13
2.1 General notions . 13

2.1.1 Sets and classes . 13

2.1.2 Functions and arrows . 13

2.2 Universal algebra . 14

2.2.1 Trees, terms and substitution . 14

2.2.2 Algebras . 16

2.3 Basic notions of category theory . 17

I Introduction to tree transducers and category theory 19

3 Tree transducers 21
3.1 Syntax . 21

3.1.1 Top-down tree transducers . 21

3.1.2 Macro tree transducers . 22

3.2 Semantics . 22

3.2.1 Operational semantics . 22

3.2.2 Denotational semantics . 23

3.3 Composition of tree transducers . 25

3.3.1 Composition of individual tree transducers 25

3.3.2 Composition of classes of tree transformations 27

4 Category theory 29
4.1 Basic Definitions and Theorems . 29

4.1.1 Categories . 29

4.1.2 Functors . 32

v

Contents

4.1.3 Natural transformations . 35

4.1.4 Initial and final objects . 39

4.1.5 (Co-)products . 41

4.1.6 Exponents . 46

4.1.7 Initial algebras and catamorphisms 47

4.2 Concrete categories and constructs . 51

4.2.1 Concrete categories and concrete functors 51

4.3 Adjoint functors and adjunctions . 54

4.3.1 Free objects . 54

4.3.2 Varietors . 55

4.3.3 Adjoint functors . 56

4.3.4 Adjunctions . 56

4.4 Monads . 58

4.4.1 Monads and Kleisli triples . 59

4.4.2 Monad morphisms . 60

4.4.3 Free monads . 61

4.4.4 Monads versus Adjunctions . 61

II Tree transducer composition in category theory 63

5 The initial algebra approach 65
5.1 Algebra Transformers . 65

5.1.1 Characterization of concrete algebra transformers 65

5.1.2 Construction of algebra transformers 66

5.2 Generalized acid rain theorems . 67

5.2.1 The acid rain theorem . 67

5.2.2 Generalized acid rain theorems . 68

5.3 Algebraic transducers . 70

5.3.1 Syntax of algebraic transducers . 70

5.3.2 Composition of algebraic transducers 70

5.3.3 Denotational semantics of algebraic transducers 71

5.3.4 Algebraic transducer homomorphisms 74

5.3.5 Top-down algebraic transducers . 77

5.4 Relating transducers . 79

5.4.1 Category of forests . 79

5.4.2 Relating the semantics . 81

5.4.3 Relating syntactic composition and fusion 89

6 The free monad approach 95
6.1 Tree transducers as functional programs 96

6.1.1 Terms, types, and functors . 96

6.1.2 Syntax and semantics of tree transducers 98

vi

Contents

6.1.3 The rule of a tree transducer . 102
6.2 Monads and Monad transformers . 105

6.2.1 Tree monads and free monads . 105
6.2.2 Monad transformers . 106
6.2.3 Monad transformers from adjunctions 106
6.2.4 Monad transformers from coproducts of monads 111

6.3 Monadic transducers . 113
6.3.1 Syntax and semantics of monadic transducers 114
6.3.2 Fusion of monadic transducers . 115
6.3.3 Monadic transducer homomorphisms 118
6.3.4 Algebraic transducers versus Monadic transducers 120

6.4 Tree transducers as monadic transducers 121
6.4.1 Homomorphism tree transducers as monadic transducers 121
6.4.2 Top-down tree transducers as monadic transducers 121
6.4.3 Simple basic macro tree transducers as monadic transducers 123
6.4.4 Basic macro tree transducers as monadic transducers 126
6.4.5 Macro tree transducers as monadic transducers 126

6.5 Fusion of tree transducers . 128
6.5.1 Fusion of particular functional programs 128
6.5.2 Fusion of classes of tree transformations 129

7 Open problems and future work 135
7.1 Generalized monadic transducers . 135

7.1.1 Generalized monadic transducers 135
7.1.2 Internal functions . 135
7.1.3 Tree to tree-series transducers . 135

7.2 High-level tree transducers as monadic transducers 137
7.3 Bottom-up tree transducers as comonadic transducers 137
7.4 Efficiency improvement . 138
7.5 Implementation . 138

Bibliography 139

Index 147

vii

viii

1 Introduction

This thesis is on a program transformation of functional programs called fusion. Consider

three types A, B, and C and two recursive programs f and g with typing1 C
f
←−− B

g
←−−

A. We call a program h : C ← A a fusion of the consumer f and the producer g if
two conditions are satisfied:

(i) [[f]] · [[g]] = [[h]], and

(ii) the intermediate data-structure B does not occur in h.

The condition (i) is the correctness of the fusion w.r.t. the denotational seman-
tics [[�]]. If the semantics is compositional it can be trivially satisfied setting
h = f · g = λ x→ f(g x). The essential point is condition (ii): the elimination of the
intermediate data-structure (which excludes the trivial solution).

An important application of fusion is the deforestation of functional programs, i.e. a
program transformation to eliminate intermediate tree-like data structures, hoping to
improve the runtime behavior of the program.

Various fusion techniques are known: deforestation [Wad90], short cut fusion [GLP93,
TM95, Gil96, Joh01], or syntactic composition of tree transducers (and attribute gram-
mars) [Eng75, Eng80, Fül81, CF82, EV85, Gie88, CDPR97b, CDPR97a, Küh98, FV98,
VK01].

The objectives of this thesis are

(i) to model tree transducers, semantics of tree transducers, and composition of tree
transducers in category theory,

(ii) to compare tree transducer composition with short cut fusion, and

(iii) to compose syntactic classes of tree transducers without doing tedious induction
proofs.

We can use results from (i) for (ii), because short cut fusion can be described in category
theory in form of the acid rain theorem [TM95]. A nice definition and proof principle used
in category is the concept of universal properties. The latter make it possible to avoid
detailed induction proofs, and thus results from (i) can also be used for (iii). However,
for (i) we discovered two independent and completely different solutions: the initial

1Please forgive us for drawing all arrows from right to left. In Subsection 2.1.2 we explain why we prefer
it this way. However, in program examples we follow the Haskell [PH99] syntax and use arrows from
left to right.

1

1 Introduction

algebra approach (Section 1.3 and Chapter 5) and the free monad approach (Section 1.4
and Chapter 6).

Let us start with a closer look on short cut fusion (Section 1.1), the composition of
tree transducers (Section 1.2 and Chapter 3), and on the two aforementioned different
approaches to model tree transducers in category theory:

1.1 Short cut fusion

Short cut fusion is a fusion technique which uses a single, local transformation rule
called the cata/build-rule [GLP93, Gil96]. Consider the Haskell program:

data Tree = Alpha | Sigma(Tree, Tree)
data List = N |A List | B List

zig :: Tree → List
zag :: Tree → List
zig Alpha = N
zag Alpha = N
zig (Sigma(x1, x2)) = A(zag x1)
zag (Sigma(x1, x2)) = B(zig x2)

bin :: List → Tree
bin N = Alpha
bin (A x) = Sigma(bin x , bin x)
bin (B x) = Sigma(bin x , bin x)

binzig :: Tree → Tree
binzig = bin · zig

binzag :: Tree → Tree
binzag = bin · zag

We will deforest the function binzig : In order to use the cata/build-rule to fuse the
functions bin and zig we have to express zig as a build and bin as a cata (which is a
shorthand for catamorphism). The build for the List data structure is defined by

build :: (forall c. c → (c → c) → (c → c) → d → c) → (d → List)
build g = g N A B

where the semantics of build is to apply its argument to the List-constructors. Then
we can write

zig = build zig ′

zag = build zag ′

2

1.1 Short cut fusion

zig ′ :: c → (c → c) → (c → c) → Tree → c
zag ′ :: c → (c → c) → (c → c) → Tree → c
zig ′ n a b Alpha = n
zag ′ n a b Alpha = n
zig ′ n a b (Sigma(x1, x2)) = a(zag ′ n a b x1)
zag ′ n a b (Sigma(x1, x2)) = b(zig ′ n a b x2)

where zig ′ and zag ′ are zig and zag , respectively, in which we have abstracted from
the List-constructors. The second ingredient — the catamorphism for the List data
structure — is given by

cata n a b N = n
cata n a b (A x) = a(cata n a b x)
cata n a b (B x) = b(cata n a b x)

where the semantics of cata is to substitute the List-constructors N , A, and B by the
functions n, a, and b, respectively, e.g. cata n a b (B(A(B N))) = b(a(b n)). It is easy
to see that we can express the function bin as a cata in the following way:

bin = cata Alpha (λ x → Sigma x x) (λ x → Sigma x x)

Now we can apply the cata/build-rule

g :: c → (c → c)→ (c → c)→ d → c

cata n a b · build g = g n a b

which leads to

binzig = bin · zig
= cata Alpha (λ x → Sigma x x) (λ x → Sigma x x) · build zig ′

= zig ′ Alpha (λ x → Sigma x x) (λ x → Sigma x x)

and similarly for binzag . Finally, by applying binzig (and binzag) to every possible
input pattern, we obtain the program

binzig Alpha = Alpha
binzag Alpha = Alpha
binzig (Sigma(x1, x2)) = Sigma((binzag x1), (binzag x1))
binzag (Sigma(x1, x2)) = Sigma((binzig x2), (binzig x2))

Notice that the List data structure has been eliminated.

Originally, short cut fusion and the cata/build-rule were defined only for the list data
type. This restricted transformation has also been implemented in the GHC (Glasgow

3

1 Introduction

Haskell Compiler) [PTH01]. For arbitrary regular data types of the polymorphic λ-
calculus PolyFix (but not for Haskell) a proof for the correctness of short cut fusion is
given in [Joh01]. It is also possible to prove an abstract version in terms of category
theory of the cata/build-rule which is known as the acid rain theorem [TM95]. We will
prove the following version:

H : (CF, | � |F)← (CG, | � |G)

([ϕ])G · ([HinG])F = ([Hϕ])F

where ([ϕ])G is the category theory notation for the catamorphism, which is the unique
solution of the equation ([ϕ])G · inG = ϕ · G([ϕ])G, G is an endofunctor, ϕ is a G-algebra,
and inG is an initial G-algebra. The rôle of the build is taken by a concrete functor H.
Other generalizations of short cut fusion can e.g. be found in [LS95] and [HIT96].

We also prove a generalization (Proposition 5.2.2.1):

H : (CF, | � |F)← (CG,U · | � |G)

U([ϕ])G · ([HinG])F = ([Hϕ])F

where U is an arbitrary faithful endofunctor. The additional functor U makes it possible
to conveniently describe mutual recursive functions.

Our above version of the acid rain theorem is true in any category for any endofunctors
F, G, and U such that F and G have initial algebras and U is faithful. The traditional
approach to prove the correctness of short cut fusion for a specific programming language
uses the free theorems [Wad89] or relies on the existence of a parametric model for that
language [Joh01]. We will use our new acid rain theorem to prove correctness of short cut
fusion for the language of top-down tree transducers (which can be viewed as a syntactic
fragment of a functional programming language) directly without free theorems or a
parametric model. This new approach promises new possibilities for correctness proofs
of short cut fusion and its generalizations for functional programming languages.

Notice that in our version of the acid rain theorem both functions are given as cata-
morphisms. In fact we can state a symmetric version (Theorem 5.2.2.2) where fusion
turns out to be the composition in some category. Since the composition of a category
is associative we can see immediately that the order of successive fusions is irrelevant,
which can be of use for implementations.

1.2 Syntactic composition of tree transducers

The concept of top-down tree transducers has been introduced by [Rou68, Rou70]
and [Tha70]. Roughly speaking, such a transducer T = (Q,Σ,∆, q0, R) is a deterministic
finite-state top-down tree automaton (with state set Q) which reads a given input tree
(over some ranked alphabet Σ) starting from the root, stepping towards the leaves, and
thereby producing an output tree (over some ranked alphabet ∆). The behavior of the

4

1.2 Syntactic composition of tree transducers

transducer is determined by a finite set R of term rewrite rules, as e.g.

zig α → N
zag α → N
zig(σ(x1, x2)) → A(zag x1)
zag(σ(x1, x2)) → B(zig x2)

where zig and zag are states of rank 1, σ and α are input symbols of rank 2 and 0,
respectively, A, B, and N are output symbols of rank 1, 1, and 0, respectively, and x1

and x2 are term rewrite variables. By applying the usual term rewrite semantics, for
every input tree t, the unique normal form of zig(t) is a monadic tree A(B(A . . .N . . .))
which shows the zig-zag path through t. Thus, in general, the semantics of a tree
transducer is a tree transformation, i.e. a function mapping trees onto trees.

A top-down tree transducer can be viewed as a functional program by turning states
into functions and rewrite rules into defining equations (cf. the functional program from
above). Clearly, only particular functional programs are related to top-down tree trans-
ducers. Roughly speaking, a top-down tree transducer is a primitive-recursion scheme
with mutual recursion (cf. [EV91, FHVV93, NV01] for the computational power of tree
transducers).

Let us denote the fact that a top-down tree transducer T has input alphabet Σ and

output alphabet ∆ by ∆
T
←−− Σ. The semantics of T is a tree transformation T∆∅

[[T]]
←−−−

TΣ∅ where TΣ∅ and T∆∅ are the sets of trees over Σ and ∆, respectively. For two given

top-down tree transducers Γ
T2←−−− ∆

T1←−−− Σ with semantics TΓ∅
[[T2]]
←−−−− T∆∅

[[T1]]
←−−−− TΣ∅

we can construct a new top-down tree transducer Γ
T2 · T1←−−−−−− Σ such that the following

composition result holds:

[[T2]] · [[T1]] = [[T2 · T1]] (∗)

and thus the intermediate ∆-trees are eliminated. The basic idea for the construction of
T2 ·T1 is to run a slightly modified version of T2 on the right hand sides of the rules of T1

to obtain the right hand sides of the rules of T2 · T1. Then T2 · T1 is called the syntactic
composition of T1 and T2. In order to illustrate this fusion technique let us consider the
top-down tree transducer T1 as shown above and the following top-down tree transducer
T2:

bin N → α
bin(Ax1) → σ(bin x1, bin x1)
bin(B x1) → σ(bin x1, bin x1)

which also corresponds to a part of our example Haskell-program. If we apply the
syntactic composition to these two tree transducers, then we obtain the top-down tree

5

1 Introduction

transducer T2 · T1:

(bin, zig)α → α
(bin, zag)α → α
(bin, zig)(σ(x1, x2)) → σ((bin, zag)x1, (bin, zag)x1)
(bin, zag)(σ(x1, x2)) → σ((bin, zig)x2, (bin, zig)x2).

And this corresponds to the equations of the functional program that we have calculated
for binzig (and binzag) using short cut fusion.

The syntactic composition of top-down tree transducers has been introduced and
thoroughly studied in [Eng75, Eng77, Bak79, Eng82]. Further investigations of com-
position of semantically larger classes of transducers can be found in [Fül81, Gie88,
Küh98, CDPR97b, CDPR97a] for attributed tree transducers, in [Eng80, CF82, EV85]
for macro tree transducers (or for primitive-recursive program schemes with parame-
ters), and in [EV88] for high-level tree transducers (also cf. the survey articles and
monographs [GS84, GS97, FV98]). In [Küh99, KV01] the composition of tree transduc-
ers has been compared with the deforestation method for functional programs [Wad90]
in a syntactical framework.

1.3 The initial algebra approach

An obvious question is: What is the relationship between the two fusion techniques
introduced in the last two sections?

In order to compare them we will introduce the notion of an algebraic transducer
which is a generalization of a catamorphism, and we will show a respective fusion result
which is a generalization of the acid rain theorem. Then — described in the language
of category theory — both fusion techniques are instances of this generalization. The
following diagram gives a rough illustration of this generalization process:

tree transducer ? short cut fusion
syntactic composition ←→ cata/build-rule

universal algebra polymorphic λ-calculi

↓ generalization ↓ generalization

algebraic transducer functorial short cut fusion

composition ⊆ generalized acid rain theorem
category theory ←− category theory

Let us explain now a bit more the notion of an algebraic transducer and the con-
sequences of the generalized acid rain theorem. (We assure those readers who are not

6

1.3 The initial algebra approach

familiar with notions from category theory that we will develop later all the needed tech-
niques in quite some detail.) The main idea is to reinvent tree transducers on the abstract
level of category theory, where we have the following intuition how the ingredients of a
top-down algebraic transducer are related to those of a top-down tree transducer:

top-down tree transducer ↔ top-down algebraic transducer over Set

T = (Q,Σ,∆, q0, R) ↔ C = (H,U, π) : G← F

finite set of states Q ↔ U : Set ← Set faithful endofunctor
ranked input-alphabet Σ ↔ F : Set ← Set endofunctor
ranked output-alphabet ∆ ↔ G : Set ← Set endofunctor
initial state q0 ∈ Q ↔ π : Id

.← U natural transformation
finite set of rules R ↔ HinG where H is a concrete functor

H : (SetF, | � |F)← (SetG,U · | � |G)

set of Σ-trees TΣ∅ ↔ µF least fixed point of F

set of ∆-trees T∆∅ ↔ µG least fixed point of G

tree transformation [[T]] : T∆∅ ← TΣ∅ ↔ [[C]] = π · ([H inG])F : µG← µF

We will also formalize this relationship and call the top-down tree transducer T and
the top-down algebraic transducer C related and write T ≈ C. Moreover we will define
a function R which maps a given top-down tree transducer T to a related top-down
algebraic transducer T ≈ RT .

The concrete functor H plays a particular rôle in our formalization. Intuitively H de-
scribes a ‘rule-pattern’ in which the parameters can be substituted by particular ‘output-
functions’, such that we obtain the ‘rules’ of C if we substitute the parameters by the
‘output-symbols’ of C. The initial G-algebra inG stands for the ‘output-symbols’ of C
and thus H inG describes the ‘rules’ of C. Finally, the catamorphism ([H inG])F yields
the fixed point of the ‘rules’ by induction and the natural transformation π selects the
value of the ‘initial state’. We show that all algebraic transducers over some category C
are the morphisms of a category (denoted by ATC), where the composition is defined
as follows:

(H2,U2, π2) · (H1,U1, π1) = (H1 · H2,U1 · U2, π1 ∗ π2),

and the category td -ATC of all top-down algebraic transducers is its subcategory. The
crucial point is the composition H1·H2 where the ‘rules’ of the second algebraic transducer
(H2,U2, π2) are used as ‘output-symbols’ for the first algebraic transducer (H1,U1, π1).
The reader should compare this idea with the cata/build-rule on page 3.

The amazing coincidence is that this composition which comes natural with the def-
inition of an algebraic transducer turns out to be a generalization of short cut fusion
in the following sense: With the functorial acid rain theorem (Theorem 5.2.2.2) we can
prove that the semantics [[�]] of algebraic transducers over C is a functor [[�]] : C ← ATC,
i.e.

[[(H2,U2, π2)]] · [[(H1,U1, π1)]] = [[(H1 · H2,U1 · U2, π1 ∗ π2)]].

7

1 Introduction

On the other hand we prove that top-down tree transducers (modulo isomorphism)
with syntactic composition form a category td -T t and that R : td -ATSet ← td -T t is an
embedding functor (Theorem 5.4.3.5).
This functor respects the semantics (Corollary 5.4.2.11), i.e.:

[[�]]︸︷︷︸
on tdtt

= [[�]]︸︷︷︸
on td -AT

· R.

Then the syntactic composition of top-down tree transducers (cf. statement (∗): [[T2]] ·
[[T1]] = [[T2 ·T1]] on page 5) is short cut fusion of the corresponding algebraic transducers
(Theorem 5.4.3.5):

RT2 · RT1 = R(T2 · T1).

Note that this equation compares the result of the syntactic composition T2 · T1 of top-
down tree transducers T1 and T2 with the short cut fusion RT2 ·RT1 of the corresponding
algebraic transducers RT1 and RT2 on a syntactic level, i.e., the two fusion techniques
are structurally the same. Clearly, as a consequence on the semantical level, we obtain:

[[RT2]] · [[RT1]] = [[R(T2 · T1)]]

i.e.

[[T2]] · [[T1]] = [[(T2 · T1]].

1.4 The free monad approach

Short cut fusion is based on the cata/build-rule [GLP93], cata/augment-rule [Gil96], or
acid rain theorem [TM95]. Therefore it is necessary to represent the consumer as a
catamorphism. A catamorphism is a generalization of the well known list-function foldr
for arbitrary regular types. In terms of category theory a catamorphism is the unique
algebra morphism from an initial algebra.

We have invented a new fusion technique using monads: instead of a catamorphism
we use the unique monad morphism from a free monad.

Consider the small Haskell program:

data Nat = Zero | Succ Nat
data Bool = False| True

even Zero = True
even (Succ n) = odd n
odd Zero = False
odd (Succ n) = even n

8

1.4 The free monad approach

The latter four equations define the two mutually recursive functions even and odd . We
can view this system of equations as a function:

%X : T∆(QX)← Q(ΣX),

True ←[even Zero,

odd n←[even(Succ n),

False ←[odd Zero,

even n←[odd(Succ n)

where X = {n} is the set of variables. The endofunctors Σ, ∆, and Q

describe the application of ranked symbols2 from {Zero(0),Succ(1)},
{True(0),False(0)}, and {even(1), odd (1)}, respectively, to a set (e.g. ΣX =
{Zero} ∪ {Succ x|x ∈ X}). The functor T∆ constructs all ∆-trees over a set X:
T∆X ∼= µ(∆ +X).

It is now possible to show (Proposition 6.1.3.1) that the function %X is natural in X
and thus we have a natural transformation:

% : T∆ · Q
.← Q · Σ

which we call the rule of the functional program. Thus we opened the door to the realm
of category theory.

Using some category theory magic (like the relation of adjoint functors and monads)
we can equivalently transform this rule into the form:

%] : |H∆?| .← Σ

where ∆? = (T∆, η, µ) denotes the free monad over ∆, H is an endofunctor, and | � | the
forgetful functor mapping a monad onto its underlying endofunctor. A rule in the latter
form is the main ingredient of a so called monadic transducer which we introduce in
Definition 6.3.1.1.

Using the universal property of a free monad (Definition 4.4.3.1) we can define a
denotational semantics for monadic transducers. Moreover, we have proved a new fusion
theorem for monadic transducers (Theorem 6.3.2.5) w.r.t. this semantics. In particular
we can prove the condition (ii), i.e. the elimination of the intermediate data-structure.

Our construction depends on the syntactic structure of the functional programs f and
g which we want to compose. We use syntactic classes of tree transducers to describe
sufficient syntactic forms of the functional programs. A tree transducer is a finite tree
automaton with in- and output. Its integral part is a set of rules. Some classes of tree
transducers can be viewed as syntactic fragments of functional programming languages.
Our example Haskell program is a top-down tree transducer which has the two states
even and odd .

2Sometimes we annotate a symbol with its rank (as a superscript in parenthesis).

9

1 Introduction

The composition of top-down tree transducers is an instance of short cut fusion. But
for more complicated tree transducers we have not been able to apply short cut fusion,
and that is why we invented the monadic transducer.

Moreover, we are interested in the question, whether syntactic classes of tree transduc-
ers are closed under fusion. This question has been answered (positively or negatively)
for many classes of tree transducers. The constructions and proofs of the classical results
differ depending on the specific class of tree transducers investigated. Using our monadic
transducer we can describe many kinds of tree transducers in a uniform way. Once mod-
eled as a monadic transducer, it is easy to do a fusion and then inspect whether the
result is a tree transducer of a specific class.

We will show how to compose homomorphism top-down, top-down, simple basic macro,
basic macro, macro with our new approach. And we will outline how to extend our new
approach to the fusion of top-down tree to tree-series transducers and bottom-up tree
transducers. Even though we use some esoteric category theory, our results will be
down-to-earth constructions which are applicable to transform real functional programs
(Figure 6.3).

1.5 Structure of the thesis

Our main results are:

• A new variant of the acid rain theorem for mutually recursive functions where the
semantics of the build is described by a concrete functor (Proposition 5.2.2.1).

• A symmetric form (i.e. consumer and producer have the same syntactic form) of
our new acid rain theorem where fusion is composition in a category and thus in
particular associative (Theorem 5.2.2.2).

• Applying short cut fusion (using the acid rain theorem) to compose top-down tree
transducers yields the same result (on a syntactic level) as the classical top-down
tree transducer composition (Theorem 5.4.3.2).

• A fusion theorem for monadic transducers (Theorem 6.3.2.5).

• We prove that homomorphic monadic transducers are semantically equivalent
(Theorem 6.3.3.2). This makes it possible (using Corollary 6.3.3.3) to compose
syntactic classes of tree transducers (or functional programs) by simply composing
endofunctors
(Subsection 6.5.2).

The structure of the thesis is as follows:

• We start with some preliminaries where we introduce symbols and notations, that
we will use for universal algebra and category theory.

• In Part I we give a brief introduction to the theory of tree transducers and we
collect all the notions and theorems of category theory that we will need. Most of

10

1.5 Structure of the thesis

this can be found in standard text books. However, we give a presentation focused
on our needs and use a uniform notation.

• In Part II we generalize tree transducers in category theory:

– In Chapter 5 we start with an initial algebra approach: This approach follows
the ideas of short cut fusion and the acid rain theorem.

– In Chapter 6 we develop a free monad approach: In the same way as monoids
are used in automata theory, we use monads in the theory of tree transducers.

11

12

2 Preliminaries

2.1 General notions

The set of natural numbers starting from one is denoted by N and the set of natural
numbers starting from zero is denoted by N0.

2.1.1 Sets and classes

The set of all sets does not exist for set theoretical reasons. But it is possible to define
the notion of classes and in particular the class of all sets. That is why a category is made
up of a class of objects together with a class of morphisms, so it is possible to define the
category Set of all sets. For similar reasons the class of all classes does not exist. But
it is possible to define the notion of conglomerates and in particular the conglomerate
of all classes. And thus we can define the meta-category CAT of all categories. Notice,
that the axioms for a category and for a meta-category are equal with the only exception
that we use classes in the first case and conglomerates in the second. Hence all notions
and theorems from category theory, as long as they do not refer to essential properties
of classes, can be lifted immediately to meta-category theory.

2.1.2 Functions and arrows

We denote the fact that a function f maps to a set A from a set B by B = dom f and
A = cod f or by the relation f : A← B. We will use this notation for a morphism f to
an object A from an object B as well. A function is nothing else than a morphism in the
category Set . In order to avoid parentheses we will use the conventions fx = f(x) and
Ffx = (Ff)x for function applications. The composition f · g : A← C of two functions
f : A ← B and g : B ← C is defined by ∀x ∈ C. (f · g)x = f(gx). This is the reason
why the arrows point to the left1:

A B C
f g

f · g

We assume that function application binds stronger than function composition and the
latter binds stronger than any other binary operation. Super and subscripts have the
highest precedence, e.g. Σ? + H∆? = (Σ?) +

(
H(∆?)

)

1Arrows pointing to the right are consistent with the commuted composition g ; f = f · g.

13

2 Preliminaries

For some functions we use an infix, outfix, or superscript notation. In order to write
down such a function in a point free style, we use the symbol ‘ � ’ as a placeholder for
the argument: e.g. (A+ �) : A+B ←[B, | � | : |T|←[T, or (�)? : Σ? ←[Σ. Then we can
write expressions like | � | · (�)? for the function |Σ?|←[Σ, i.e.

(
| � | · (�)?

)
Σ = |Σ?|.

2.2 Universal algebra

The universal algebra that we need can be found in standard textbooks like [Ihr88,
Wec92].

2.2.1 Trees, terms and substitution

2.2.1.1 Definition (ranked alphabet). Σ = (Σ, rankΣ) where Σ is a finite set and
rankΣ : N0 ← Σ is a function is called a ranked alphabet. For every r ∈ N0 we define
the set Σ(r) =

{
σ ∈ Σ

∣∣ rankΣ = r
}
. If Σ = Σ(1), then Σ is called unary. If #Σ(0) = 1

and Σ(k) = ∅ for every natural number k > 2, then Σ is called monadic2.

Sometimes we write Σ = {σ
(r1)
1 , . . . , σ

(rk)
k } to indicate that Σ = (Σ, rankΣ) is a ranked

alphabet with Σ = {σ1, . . . , σk} and rankΣ σi = ri. �

2.2.1.2 Definition (term, tree). Let Σ be a ranked alphabet and X be a set. The
set TΣX of all X-indexed Σ-terms (or Σ-trees3) is the smallest set such that

x ∈ X

’x ∈ TΣX
and

r ∈ N0 σ ∈ Σ(r) t1, . . . , tr ∈ TΣX

σt1 · · · tr ∈ TΣX
.

The set of variables occurring in a term t ∈ TΣX is denoted by varX t. The function
varX : Pot X ← TΣX is defined by

x ∈ X

varX(’x) = {x}
and

r ∈ N0 σ ∈ Σ(r) t1, . . . , tr ∈ TΣX

varX(σt1 · · · tr) =
⋃r
i=1(varX ti)

.

A Σ-term is called monadic if Σ is monadic. A term t ∈ TΣX is called linear if every
variable x ∈ X occurs at most once in t. The set of all linear terms Tlin

Σ X is the smallest
set such that

x ∈ X

’x ∈ Tlin
Σ
X

and
r ∈ N0 σ ∈ Σ(r) ti ∈ Tlin

Σ Xi Xi ⊆ X ∀ i 6= j. Xi ∩Xj = ∅

σt1 · · · tr ∈ Tlin
Σ
X

.

2This is not related to monads (see Note 4.4.1.2).
3More precisely a tree would be a labeled graph representing a term. We will not use the graph-theoretic

notion of a tree. The ‘X-indexed Σ-trees’ are sometimes also called the ‘X-incomplete Σ-branching
trees’.

14

2.2 Universal algebra

Moreover we define the set of all (Σ, X)-contexts by Tctx
Σ X =

{
t ∈ Tlin

Σ X
∣∣ varX t =

X
}
.

Obviously Tctx
Σ X ⊆ Tlin

Σ X ⊆ TΣX.

Attention: In Chapter 5 we prefer to write a term σ t1 · · · tk in the form σ(t1, . . . , tk),
because we will identify every symbol σ of rank k with the k-ary function TΣX ←
(TΣX)k : σ t1 · · · tk ←[(t1, . . . , tk). Moreover, we will omit the quote preceding a variable
whenever it is obvious whether a symbol is intended to be a variable or a tree.

In Chapter 5 we prefer to write ranked alphabets as Σ and the set of terms as TΣ∅.
In Chapter 6 we write Σ and TΣ to emphasize that these are (or induce) functors. �

2.2.1.3 Definition (substitution). Let Σ be a ranked alphabet. Let s ∈ TΣX and
y ∈ X.

(i) The substitution function [s/y] : TΣX ← TΣX is defined by

[s/y](’x) =

{
s if x = y,

’x otherwise,

[s/y](σt1 · · · tr) = σ
(
[s/x]t1

)
· · ·

(
[s/x]tr

)
.

The function [s/y] substitutes all occurrences of the variable y by the term s. This
can be generalized straightforwardly to finitely many simultaneous substitutions:

(ii) The following function [s1/y1, . . . , sk/yk] = [si/yi]
k
i=1 substitutes the variables

y1, . . . , yk by the terms s1, . . . , sk, respectively.

[si/yi]
k
i=1(’x) =

{
si if x = yi,

’x otherwise

[si/yi]
k
i=1(σt1 · · · tr) = σ

(
[si/yi]

k
i=1t1

)
· · ·

(
[si/yi]

k
i=1tr

)
.

(iii) Finally we define the substitution of arbitrary many variables: For every function
f : TΣY ← X we define f † by

f †(’x) = fx,

f †(σt1 · · · tr) = σ(f †t1) · · · (f
†tr).

The substitution function f † substitutes every variable from X by the terms
determined by the interpretation function f . The function (�)† is called Kleisli
extension (see Definition and Lemma 4.4.1.3).

Notice, that in the particular case {x1, . . . , xk} ⊆ X = Y where f is defined
using some t1, . . . , tk ∈ TΣX by fxj = tj (and fy = y otherwise) we have f † =
[t1/x1, . . . , tk/xk]. �

15

2 Preliminaries

2.2.2 Σ-algebras

2.2.2.1 Definition (algebra). Let Σ = {σ
(r1)
1 , . . . , σ

(rm)
m } be a ranked alphabet. A

tuple A = (|A|; f1, . . . , fm), where |A| is a set and the fi are functions, is called a Σ-
algebra provided that ∀ i. fi : |A| ← |A|ri . We call |A| the carrier-set of A, fi the
function belonging to the function-symbol σi, and ri the arity of fi. Functions with
arity 1 are called unary and those with arity 2 are called binary functions. In general,
a function with arity k ∈ N0 is called a k-ary function. �

2.2.2.2 Definition (algebra homomorphism). Let Σ = {σ
(r1)
1 , . . . , σ

(rm)
m } be a

ranked alphabet and A = (|A|; f1, . . . , fm) and B = (|B|; g1, . . . , gm) be Σ-algebras.
A function h : |A|← |B| such that

∀ i. ∀ ξ1, . . . , ξri ∈ |B|. h
(
gi(ξ1, . . . , ξri)

)
= fi(hξ1, . . . , hξri)

is called a Σ-algebra homomorphism. We denote this fact by

h : A← B.

To emphasize the difference between the Σ-algebra homomorphism h and its underlying
function, we sometimes denote this function by |h| : |A|← |B|. �

2.2.2.3 Definition (free algebra). Let Σ be a ranked alphabet, A be a Σ-algebra
and X ⊆ |A| a set. The Σ-algebra A is called free over the set X provided that for
every Σ-algebra B and every function f : |B| ← X there exists a unique Σ-algebra
homomorphism f ′ : B ← A such that ∀x ∈ X. |f ′|x = fx. �

2.2.2.4 Definition (term algebra). Let Σ = (Σ, rankΣ) be a ranked alphabet. If we
identify an element σ ∈ Σ with the following function:

σ : TΣA← (TΣA)rankΣ σ : σ(t1, . . . , trankΣ σ)←[(t1, . . . , trankΣ σ) ∀ t1, . . . , trankΣ σ ∈ TΣA,

then it is easy to see that (TΣA;σ1, . . . , σm), where Σ = {σ1, . . . , σm}, is a Σ-algebra,
which we call the Σ-term algebra over A. Usually is denoted just by TΣA. Finally
TΣ∅ is called the initial Σ-term algebra.

Notice that we have identified function-symbols of rank k with k-ary functions, in
order to avoid extra notation. �

2.2.2.5 Theorem (essential uniqueness of free algebras). Let Σ be a ranked al-
phabet and X a set disjoint with Σ.

(i) A free Σ-algebra over X is uniquely determined up to isomorphism.

(ii) The Σ-term algebra TΣX is free over X. �

16

2.3 Basic notions of category theory

2.2.2.6 Definition (2nd order substitution). Let Σ be a ranked alphabet and A be
a free Σ-algebra over X ⊆ |A|.

(i) For every k ∈ N0 and a1, . . . , ak ∈ |A| and pairwise distinct x1, . . . , xk ∈ X we
define the substitution operator

[aj/xj]
k
j=1 = [a1/x1, . . . , ak/xk] : |A|← |A|

by [aj/xj]
k
j=1 = |f | where f : A← A is the unique Σ-algebra homomorphism with

∀ j ∈ {1, . . . , k}. |f |xj = aj and ∀x ∈ X \ {x1, . . . , xk}. |f |x = x. Notice that in
the case A = TΣX this is the common term substitution.

(ii) Let Σ = {σ1, . . . , σn} and X = {x1, . . . , xk}. For every ϕ1, . . . , ϕn such that B =
(|B|;ϕ1, . . . , ϕn) is a Σ-algebra we define the 2nd order substitution operator

[ϕi/σi]
n
i=1 = [ϕ1/σ1, . . . , ϕn/σn] : |B||B|k ← |A|

for every a ∈ A and every (bj)
k
j=1 ∈ |B|k by [ϕi/σi]

n
i=1a (bj)

k
j=1 = |g|a where g :

B ← A is the unique Σ-algebra homomorphism with ∀ j ∈ {1, . . . , k}. |g|xj = bj .�

2.3 Basic notions of category theory

In this section we give just a short overview over the category theory that we will need.
A reader who is unfamiliar with category theory can find all the necessary details in
Chapter 4.

We will use the following notions from category-theory: (bi/endo)functor, natural
transformation, vertical composition, initial/final object, (co)product, projection, injec-
tion, exponent, evaluation morphism, (initial) F-algebra, universal arrow, concrete cat-
egory, construct, free object, adjunction, monad (morphism), and varietor.

Adjunctions and monads will only be needed in Chapter 6 and not in Chapter 5.
If possible and appropriate we will use the following fonts: A,B,C, . . . for objects;

f, g, h, . . . for morphisms; F,G,H, . . . for functors; σ, τ, ϕ, . . . for natural transforma-
tions; C,D,E, . . . for categories; and T,T′, . . . for monads.

We refer to objects and morphisms of some category C as C-objects and C-morphisms
and denote the classes of all objects and all morphisms of C by Ob C and Mor C. The
subclass of all C-morphisms to A from B is denoted by C(A,B).4

We denote the meta-category of all categories (with functors as morphisms) by CAT
and the meta-category of all functors to C from D (with natural transformations as
morphisms) by CD (called functor category). We will almost always omit the word meta
since it will make no difference for what we are doing. For the endofunctor category we
use the abbreviations EndC = CC and End2 C = End(EndC).

4Notice, that this is more often denoted by C(B, A) or HomC(B, A). Our notation is consistent with
arrows pointing to the left which we use.

17

For every object A we denote the identity morphism by idA or just id. The composition
in a category is usually denoted by f ·g or

⊙
i fi. The only exception will be the vertical

composition of natural transformations denoted by σ∗τ (Definition and Lemma 4.1.3.7)
in order to distinguish it from the horizontal composition σ · τ . Moreover, we define the
kth power of a morphism f by fk =

⊙k
i=1 f .

We denote coproducts by A+B or
∐
iAi, products by A×B or

∏
iAi, and exponents

by A⇐ B or AB and the according evaluation morphism by ev : A ← AB × B. The
symbols for (co)products and exponents will also be used for the related functors (e.g.⇐ :
C ← C×Cop) where we write the bifunctors +, ×, and ⇐ as infix binary operators. We
will denote the pointwise lifting of these bifunctors to the functor category by the same
symbol (e.g. (F + G)f = Ff + Gf).

For every category C we denote the identity functor by IdC or just Id. For every object
A we denote the constant functor which maps onto idA by A.

18

Part I

Introduction to tree transducers
and category theory

19

20

3 Tree transducers

The concept of top-down tree transducers was introduced by [Rou68, Rou70]
and [Tha70]. A tree transducer is a tree automaton with output. Its semantics is a
function mapping terms onto terms. The syntax of a tree transducer is a system of
equations (called rules) , describing how to read single symbols from the input term and
how to produce a part of the output term. Moreover, a tree transducer may have states,
context arguments, etc. A tree transducer can also be regarded as a syntacticly restricted
functional program.

3.1 Syntax

Let X = {x1, x2 . . . } be a countable infinite set of variables. We will use this set X and
for every k ∈ N0 the set Xk = {x1, . . . , xk} (X0 = ∅) throughout the thesis.

The syntax of a tree transducer is mainly given as a set of rules. We distinguish several
classes of tree transducers:

3.1.1 Top-down tree transducers

3.1.1.1 Definition (top-down tree transducer). A top-down tree transducer
T = (Q,Σ,∆, q0, R) consists of a unary ranked alphabet Q of so called states, ranked
alphabets Σ and ∆ called the input and output alphabet, respectively, an element
q0 ∈ Q called the initial state, and a relation R ⊆

⋃
k∈N0

Q(ΣXk)×T∆(QXk) such that

∀ q ∈ Q. ∀ k ∈ N0. ∀σ ∈ Σ(k).

∃! rhsR,σ q ∈ T∆(QXk).
(
q(σ(x1, . . . , xk)), rhsR,σ q

)
∈ R

and no other elements are in R. The elements of R are called rules and we will write
them as q(σ(x1, . . . , xk))→ rhsR,σ q rather than

(
q(σ(x1, . . . , xk)), rhsR,σ q

)
. Notice that

for every σ ∈ Σ we have rhsR,σ : T∆(QXrankΣ σ)← Q is a function. We denote the class
of all top-down tree transducers by tdtt and the subclass of all top-down tree transducers
with output alphabet ∆ and input alphabet Σ by tdtt(∆,Σ). �

3.1.1.2 Example (top-down tree transducer). We define the top-down tree trans-
ducer Tzigzag = (Q,Σ,∆, zig , R) where Q = {zig , zag}; Σ = {α(0), σ(2)}; ∆ =

21

3 Tree transducers

{N (0), A(1), B(1)} and

R = { zig α → N,
zag α → N,
zig(σ(x1, x2)) → A(zag x1),
zag(σ(x1, x2)) → B(zig x2) }.

�

3.1.2 Macro tree transducers

We will restate the definition of top-down tree transducers (Definition 3.1.1.1) using
notions of category theory in Definition 6.1.2.2. All the other syntactic classes of tree
transducers (like homomorphism tree transducers, ((simple) basic) macro tree transduc-
ers, etc. are defined that way in Subsection 6.1.2. This makes sense, since Chapter 5 is
on top-down tree transducers only.

Let us just give an example to get an idea what a macro tree transducer looks like: It
is similar to a top-down tree transducer, but has got context arguments in addition.

3.1.2.1 Example (macro tree transducer). We use ∆ = {N (0), A(1), B(1)} again.
Then

rev N y → y
rev (Ax) y → rev x (Ay)
rev (B x) y → rev x (B y)

are the rules of a macro tree transducer with one context argument y. In particular this
is a pure basic macro tree transducer as we will learn later in Definition 6.1.2.5.

The semantics of this tree transducer is a function which reverses a list of As and Bs.
The context argument y is used to accumulate the result. �

3.2 Semantics

The semantics of a tree transducer with output alphabet ∆ and input alphabet Σ is a
function T∆∅ ← TΣ∅.

3.2.1 Operational semantics

The operational semantics of a tree transducer is defined by a term reduction system:
Let T be a top-down tree transducer with rules 7→T⊆ TΓX×TΓX where Γ = Σ+Q+∆.
Let z 6∈ X. We define the transition relation ⇒T⊆ TΓ∅ × TΓ∅ by

t⇒T t
′ ⇐⇒ ∃ t̂ ∈ Tctx

Γ {z}. ∃ i : TΓ∅ ← X.

t =
[
[ix/x]x∈X lhs

/
z
]
t̂

∧ lhs 7→T rhs

∧ t′ =
[
[ix/x]x∈Xrhs

/
z
]
t̂.

22

3.2 Semantics

It is possible to prove that ⇒T is confluent and terminating (see e.g. [FV98]). Now we
define the relation ⇒∗T⊆ TΓ∅ × TΓ∅ to be the reflexive and transitive closure of ⇒T .
Finally we define ⇓T⊆ TΓ∅ × TΓ∅ by

t ⇓T t
′ ⇐⇒ t⇒∗T t

′ ∧ ∀ t′′ ∈ TΓ∅. t
′ ⇒∗T t

′′ =⇒ t′ = t′′.

Intuitively ⇒T performs one computation step, ⇒∗T an arbitrary (but finite) number
of computation steps, and finally ⇓T performs as many computation steps as possible.
Since⇒T is confluent and terminating, the relation ⇓T is in fact a function. It is easy to
see, that this function maps terms from Q(TΣ∅) to T∆∅. We use this function to define
the operational semantics [[�]]op : T∆∅ ← TΣ∅ by

[[T]]opt = t′ ⇐⇒ q0t ⇓T t
′.

An important property of the operational semantics of a tree transducer is that it
is compositional. A function f on terms is called compositional (or syntax di-
rected [FV98]) if the value of f applied to a term t only depends on the values of
f applied to subterms of t.

We will define a denotational semantics in Definition 6.3.1.2 in such a way, that it will
be the unique function which satisfies certain properties. One of these properties is to
be compositional as explained in Definition 6.3.1.2 (ii). Thus the only thing we need to
know about the operational semantics in Chapter 6 is the fact that it is compositional.
In Chapter 5 we will use the following denotational semantics:

3.2.2 Denotational semantics

3.2.2.1 Definition (computed tree transformation). Let T = (Q,Σ,∆, q0, R) be
a top-down tree transducer. The tree transformation

[[T]] : T∆∅ ← TΣ∅

computed by T is defined by [[T]] = [[T]]q0 where

∀ q ∈ Q. ∀ k ∈ N0. ∀σ ∈ Σ(k). ∀ t1, . . . , tk ∈ TΣ∅.

[[T]]q(σ(t1, . . . , tk)) = [[[T]]p tj/pxj] p∈Q
xj∈Xk

(rhsR,σ q).

Since the number of symbols in the term σ(t1, . . . , tk) is finite and for every p ∈ Q the
function [[T]]p on the right hand side is applied on the proper subexpressions t1, . . . , tk of
σ(t1, . . . , tk), for every q ∈ Q the function [[T]]q is well defined. We call the function [[�]] :
(T∆∅)

TΣ∅ ← tdtt(∆,Σ) the denotational semantics of a top-down tree transducer. �

3.2.2.2 Theorem ([FV98] Theorem 3.25). Let T be a top-down tree transducer. Then
[[T]] = [[T]]op. �

23

3 Tree transducers

3.2.2.3 Definition (top-down tree transformation). We denote the image class of
the semantics function [[�]] by TOP , i.e. TOP =

{
[[T]]

∣∣ T ∈ tdtt
}
. The elements of

TOP are called top-down tree transformations. �

3.2.2.4 Example (computed tree transformation). The tree transformation com-
puted by the top-down tree transducer Tzigzag from Example 3.1.1.2 is a function, which
reads an input tree by traversing the σ’s in a zig-zag-shape until an α is reached. It
outputs a monadic tree of alternating A’s and B’s where the number of A’s and B’s
together is the same as the number of traversed σ’s, e.g. for arbitrary terms t1, t2 ∈ TΣ∅:

[[Tzigzag]](σ(σ(t1, α), t2))

= [[Tzigzag]]zig(σ(σ(t1, α), t2))

= A([[Tzigzag]]zag(σ(t1, α)))

= A(B([[Tzigzag]]zigα))

= A(BN). �

3.2.2.5 Definition (top-down tree transducer homomorphism).
Let T = (Q,Σ,∆, q0, R) and T ′ = (Q′,Σ,∆, q′0, R

′) be top-down tree transducers. A
function

(i) h : Q← Q′ with

(ii) q0 = hq′0 and

(iii) ∀σ ∈ Σ. [hq′ x/q′x] q′∈Q′

x∈XrankΣ σ

· rhsR′,σ = rhsR,σ · h,

is called a top-down tree transducer homomorphism and we write:

h : T ← T ′.

If h is bijective then we call it a top-down tree transducer isomorphism. If a top-
down tree transducer isomorphism to T from T ′ exists then we call T and T ′ isomorphic
and write T ∼= T ′. �

3.2.2.6 Lemma (homomorphisms preserve semantics). Let T, T ′ ∈ tdtt(∆,Σ) be
top-down tree transducers. Then:

∃h : T ← T ′

[[T]] = [[T ′]]
.

24

3.3 Composition of tree transducers

Proof. Let T = (Q,Σ,∆, q0, R) and T ′ = (Q′,Σ,∆, q′0, R
′) and h : T ← T ′. We will

show:

∀ t ∈ TΣ∅. ∀ q
′ ∈ Q′. [[T]]hq′ t = [[T ′]]q′ t

by induction on t. Let k ∈ N0, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ∅ and assume that

∀ j ∈ {1, . . . , k}. ∀ p ∈ Q′. [[T]]hptj = [[T ′]]ptj .

Then we calculate:

[[T]]hq′(σ(t1, . . . , tk))

=[[[T]]ptj/pxj] p∈Q
xj∈Xk

(rhsR,σ(hq
′))

=[[[T]]ptj/pxj] p∈Q
xj∈Xk

(
[hp x/px] p∈Q′

x∈Xk

(rhsR′,σ q
′)
)

=[[[T]]hptj/pxj] p∈Q′

xj∈Xk

(rhsR′,σ q
′)

=[[[T ′]]ptj/pxj] p∈Q′

xj∈Xk

(rhsR′,σ q
′)

=[[T]]q′(σ(t1, . . . , tk)).

And thus: [[T]] = [[T]]q0 = [[T]]hq′0 = [[T ′]]q′0 = [[T ′]].

3.3 Composition of tree transducers

3.3.1 Composition of individual tree transducers

The idea for the following construction is simple: In order to compose two top-down tree
transducers, we use the right hand sides of the producer as input for the consumer. To
do so, we need to extend the definition of the consumer, because it has to be able to read
states of the producer as input symbols. The results of these computations are the right
hand sides of a new top-down tree transducer. Then we can prove that the semantics of
this new top-down tree transducer is in fact the composition of the semantics of producer
and consumer.

3.3.1.1 Definition (syntactic composition of top-down tree transducers).
(cf. Theorem 2 of [Rou70] and p. 195 of [Bak79]) Let T1 = (P,Σ,∆, p0, R1) and T2 =

(Q,∆,Γ, q0, R2) be top-down tree transducers. We modify the top-down tree transducer

25

3 Tree transducers

T2 so that it can operate on the right hand sides of rules of T1:

T ′2 =
(
Q,∆] {(px)(0)} p∈P

x∈Xr

,Γ] {((q, p)x)(0)} q∈Q
p∈P
x∈Xr

, q0, R
′
2

)
where

r = max
σ∈Σ

(rankΣ σ) and

R′2 = R2]
{
q(px)→ (q, p)x

}
q∈Q
p∈P
x∈Xr

.

The syntactic composition T2 ·T1 of T2 and T1 is the top-down tree transducer defined
by

T2 · T1 =
(
Q× P,Σ,Γ, (q0, p0), R

)
where

R =
{
(q, p)(σ(x1, . . . , xrankΣ σ))→ [[T ′2]]q(rhsR1,σ p)

}
q∈Q
p∈P
σ∈Σ

.

Notice that the expressions px and (q, p)x are viewed from two different perspectives:
for T ′2 they are symbols of rank 0. For T1 and T2 ·T1 they are composite terms built out
of unary symbols (p or (p, q)) and a variable x. �

3.3.1.2 Theorem (syntactic composition preserves semantics). Let Σ, ∆, and Γ
be ranked alphabets. Then:

T2 ∈ tdtt(Γ,∆) T1 ∈ tdtt(∆,Σ)

[[T2]] · [[T1]] = [[T2 · T1]]
.

Proof. See Theorem 2 of [Rou70] and Theorem 3.39 of [FV98].

3.3.1.3 Example (syntactic composition). Consider the top-down tree transducer
Tzigzag from Example 3.1.1.2 and the top-down tree transducer Tbin = (Q′,∆,Σ, bin, R′)
where Q′ = {bin}, Σ and ∆ are defined as in Example 3.1.1.2, and

R′ = { bin N → α,
bin(Ax1) → σ(bin x1, bin x1),
bin(B x1) → σ(bin x1, bin x1) }.

The tree transformation computed by Tbin constructs the full binary tree the height of
which is equal to the height of the input tree, e.g. [[Tbin]]

(
A(BN)

)
= σ(σ(α, α), σ(α, α)).

We may construct the following syntactic composition:

Tbin · Tzigzag =
(
Q′ ×Q,Σ,Σ, (bin, zig), R1

)

26

3.3 Composition of tree transducers

where

R1 = { (bin, zig)α → α,
(bin, zag)α → α,
(bin, zig)(σ(x1, x2)) → σ((bin, zag)x1, (bin, zag)x1),
(bin, zag)(σ(x1, x2)) → σ((bin, zig)x2, (bin, zig)x2) }.

Let t1, t2 ∈ TΣ∅ be arbitrary terms and t = σ(σ(t1, α), t2). The tree transformation
computed by the top-down tree transducer Tbin · Tzigzag constructs a full binary tree,
where the height is determined by the length of the ‘zig-zag-path’ of its argument tree
(cf. Example 3.2.2.4), thus we have:

[[Tbin · Tzigzag]]t = σ(σ(α, α), σ(α, α)).

In Example 3.2.2.4 we saw that [[Tzigzag]]t = A(B(N)). Together with the example for
Tbin from above we get:

([[Tbin]] · [[Tzigzag]])t = [[Tbin]]([[Tzigzag]]t) = σ(σ(α, α), σ(α, α)).

We can also compose the transducers Tzigzag and Tbin in the other order:

Tzigzag · Tbin =
(
Q×Q′,∆,∆, (zig , bin), R2

)

where
R2 = { (zig , bin)(N) → N,

(zag , bin)(N) → N,
(zig , bin)(Ax1) → A((zag , bin)x1),
(zag , bin)(Ax1) → A((zig , bin)x1),
(zig , bin)(B x1) → B((zag , bin)x1),
(zag , bin)(B x1) → B((zig , bin)x1) }.

�

The construction from Definition 3.3.1.1 is also applicable to compose a macro tree
transducer with a top-down tree transducer, where the top-down tree transducer is the
producer. However, if the macro tree transducer is the producer then the construction
fails: It is by no means obvious how the consuming top-down tree transducer should
operate on context variable occurrences in the right hand side of the producer. See
[Voi01] for a construction to compose two restricted macro tree transducers (and in
particular one macro and one top-down tree transducer in either succession).

3.3.2 Composition of classes of tree transformations

For two classes of tree transformations A and B we define the composition A · B ={
a · b

∣∣ a ∈ A ∧ b ∈ B ∧ dom a = cod b
}
.

27

3 Tree transducers

3.3.2.1 Lemma (identities are top-down tree transducers). For every ranked al-
phabet Σ:

idTΣ∅ ∈ TOP .

Proof. It is easy to see that the tree transformation computed by the top-down tree
transducer

Tid = ({q(1)},Σ,Σ, q, R) where

R = {q(σ(x1, . . . , xrankΣ σ))→ σ(qx1, . . . , qxrankΣ σ)}σ∈Σ

is the identity function, i.e. [[Tid]] = idTΣ∅.

3.3.2.2 Corollary. From Theorem 3.3.1.2 and Lemma 3.3.2.1 we obtain that the class
of top-down tree transducers is closed under composition:

TOP · TOP = TOP . �

In Subsection 6.5.2 we will see more compositions of different classes of tree transfor-
mations.

28

4 Category theory

Consider all functions to a set A from A. Then the composition of such functions is
associative and there exists an identity function on A. It is easy to see, that this gives rise
to a monoid (AA, idA, ·). This is the archetype of all monoids, which gave the inspiration
to define the notion of an abstract monoid. Many other algebraic structures (like groups,
fields, vector-spaces, etc.) are monoids (or combinations of two monoids) satisfying some
additional axioms. However, functions may not be composed in general: The functions
f : A← B and g : C ← D may only be composed, if B = C1. So composition is a partial
binary operation, which is defined iff the codomain of the producer (i.e. the first or right
function) and the domain of the consumer (i.e. the second or left function) are equal.
Moreover, for every set we have an identity function. A category is an abstraction of this
situation. In other words: A category is a generalization of a monoid, where composition
is partial and we may have more than one unit2.

4.1 Basic Definitions and Theorems

4.1.1 Categories

4.1.1.1 Definition (category). A category C = (Ob C,Mor C, dom, cod, ·, id) con-
sists of a class Ob C of so called objects, a class Mor C of so called morphisms, two func-
tions dom, cod : Ob C ← Mor C called domain- (or source-)function and codomain-
(or target-)function, a partial function · : Mor C ←··· Mor C ×MorC called compo-
sition, and a function id

�
: Mor C ← Ob C called identity. Before we introduce the

axioms which a category has to satisfy, we define the hom-classes as the classes

∀A,B ∈ Ob C. C(A,B) =
{
f ∈ Mor C

∣∣ A = cod f ∧ dom f = B
}

and the ternary relation (� : � ←C �) ⊆ Mor C ×Ob C ×Ob C by

∀A,B ∈ Ob C. f : A←C B ⇐⇒ A
f
←−−C B ⇐⇒ f ∈ C(A,B)

which we will write just as

f : A← B or A
f
←−− B

1or whenever B ⊆ C which is a matter of taste and definition.
2Notice, that it is possible to prove that the unit of a monoid is unique. A category may have more

that one unit, because the composition is partial. Since then the aforementioned proof does not work
anymore.

29

4 Category theory

if the connection to the category C is obvious. The axioms are:

f, g, h ∈ Mor C f · g = h

dom f = cod g
(typing)

f : A← B g : B ← C

f · g : A← C
(composition)

f : A← B g : B ← C h : C ← D

(f · g) · h = f · (g · h)
(associativity)

A ∈ Ob C

idA : A← A

f : A← B

f · idB = f = idA · f
(identity)

�

4.1.1.2 Lemma (hom-classes partition morphism class). For every category C
the class

{
C(A,B)

∣∣ A,B ∈ Ob C
}

is a partition of Mor C, i.e. Mor C =⊎
A,B∈Ob C C(A,B). �

4.1.1.3 Definition (pre-category). A pre-category is defined by the same ax-
ioms as a category except that domain and codomain are not unique, i.e.
dom, cod : Pot(Ob C) ← Mor C.3 We use the same notations for pre-categories as
defined for categories in Definition 4.1.1.1. For a pre-category C we like to mention the
definition of hom-classes

∀A,B ∈ Ob C. C(A,B) =
{
f ∈ Mor C

∣∣ A ∈ cod f ∧ B ∈ dom f
}

and the typing axiom:

f, g, h ∈ Mor C f · g = h

dom f ∩ cod g 6= ∅
.

�

4.1.1.4 Note (pre-categories give rise to categories). For every pre-category C
we can construct a category C ′ by

Ob C′ = Ob C ∀A,B ∈ Ob C. C′(A,B) =
{
(A, f,B)

∣∣ f : A←C B
}

with the obvious composition and identities inherited from C. Notice that the definition
of the C′-hom-classes also uniquely determines domains and codomains. �

30

4.1 Basic Definitions and Theorems

category objects morphisms

Set all sets all set functions
Setℵ0 all countable sets all set functions between countable sets

SetΣ all Σ-algebras all Σ-algebra homomorphisms
Top all topological spaces all continuous functions

Table 4.1: Some categories

4.1.1.5 Example (category). We list some categories in Table 4.1.

4.1.1.6 Definition and Theorem (duality principle). For every category C we de-
fine the dual (or opposite) category Cop by

Ob Cop = Ob C

Cop(A,B) = C(B,A) ∀A,B ∈ Ob C

f ·Cop g = g ·C f ∀ f, g ∈ Mor C with domC g = codC f

idCop = idC,

i.e. Cop has the same objects and morphisms as C, but dom and cod are exchanged and
the composition is commuted. The transformation from C to Cop may be viewed as the
reversion of all morphism arrows. Notice, that Cop is indeed a category, because of a
symmetry of the axioms of category theory (Definition 4.1.1.1). If we do this twice, then
obviously we receive the original category:

(Cop)op = C.

Thus (�)op is a bijection on the conglomerate of all categories. We will use this symmetry
as follows: For every predicate A(C) about a category C we derive the dual predicate
Aop(C) ⇐⇒ A(Cop) by reversing all morphism arrows. Then the following equivalence
holds:

(
for every category C. A(C)

)
⇐⇒

(
for every category C. Aop(C)

)

3where Pot denotes the power-class operator defined by Pot C = {P
˛
˛ P ⊆ C} for every class C

31

4 Category theory

Proof.

∀C. A(C)

⇐⇒ { since (�)op is a bijection }

∀C. A(Cop)

⇐⇒ { definition of the dual predicate }

∀C. Aop(C)

Thus a proof for a predicate about categories is also a proof for the dual predicate.
Furthermore, for every notion defined in category theory there is a dual notion. We only
need to investigate one of them and get the properties of the dual notion by the duality
principle. Sometimes notions and dual notions are named systematicly: The dual of foo
should be called cofoo. �

4.1.1.7 Definition (isomorphism). Let C be a category and A,B ∈ Ob C. A mor-
phism f : A← B for which

∃ g : B ← A. f · g = idA ∧ g · f = idB

holds is called an isomorphism. It is easy to see that in this case g is unique. We call g
the inverse of f and denote it by f−1. The set of all isomorphisms of Mor C is denoted
by Iso C. Two objects A,B ∈ Ob C such that

∃ isomorphism f ∈ Mor C. f : A← B

are called isomorphic, and we write:

A ∼= B.

Obviously, the relation ∼= is an equivalence relation on Ob C. �

4.1.2 Functors

4.1.2.1 Definition (functor). Let C and D be categories. A (covariant) functor F

to C from D consists of two functions

F : Ob C ← Ob D and F : Mor C ← Mor D,

which satisfy the following axioms:

f : A←D B

Ff : FA←C FB
(typing)

32

4.1 Basic Definitions and Theorems

A ∈ Ob D

FidA = idFA
(identity)

f : A←D B g : B ←D C

F(f · g) = Ff · Fg
(multiplicativity)

In this case we write:
F : C ← D.

It is common to denote the functor as well as the two underlying functions by the
same symbol F. In fact, a functor is already determined on objects, if it is defined on
morphisms, because it follows from the typing-axiom that ∀A ∈ Ob C. FA = dom(FidA).

For every functor F : C ← D we define the dual functor Fop : Cop ← Dop, which is
determined by the same underlying functions on objects and morphisms as F. It is easy
to see that Fop is indeed a functor.

A functor E : C ← C, which maps a category on itself, is called an endofunctor.
A functor G : C ← Dop, i.e. a covariant functor from Dop, is called a contravariant

functor4 from D (not Dop). We define the identity functor

Id :

C ← C
A ← [A ∀A ∈ Ob C
f ←[f ∀ f ∈ Mor C

and for every A ∈ Ob C the constant functor

A :

C ← D
A ←[B ∀B ∈ Ob D
idA ←[f ∀ f ∈ Mor D.

where it is easy to see that these are indeed functors. �

4.1.2.2 Observation (constant functor fusion). The constant functors absorb
other functors in compositions. More precisely: Let C be a category and A ∈ Ob C.
For every functor F from C and every functor G to C holds

(i) F ·A = FA and

(ii) A · G = A. �

4.1.2.3 Lemma (functors preserve isomorphisms). Let C and D be categories, F :
C ← D a functor, and f ∈ Mor D an isomorphism. Then Ff is an isomorphism in C.

4According to our definition any functor is covariant. We use the notion contravariant functor to
emphasize that the functor maps from the dual category of some given category. Many authors use
a different definition.

33

4 Category theory

Proof. Using the definitions it is easy to show that F(f−1) = (Ff)−1.

4.1.2.4 Definition ((full) subcategory). Let C and D be categories. The category
D is called a subcategory of C provided that

Ob D ⊆ Ob C and Mor D ⊆ Mor C

holds, D-identities are also C-identities, and D-composition is the restriction of C-
composition to MorD. If in addition

∀A,B ∈ Ob D. D(A,B) = C(A,B)

is true, then D is called a full subcategory of C. The functor

E :

C ← D
A ←[A ∀A ∈ Ob D
f ←[f ∀ f ∈ Mor D

is called the canonical embedding of the subcategory D in C. �

4.1.2.5 Definition (product-category). Let I be a set and (Ci)i∈I be a family of
categories. We define the product-category

∏
i∈I Ci by

Ob
(∏

i∈I

Ci
)

=
{

(Ai)i∈I
∣∣ ∀ i ∈ I. Ai ∈ Ob Ci

}

and ∏

i∈I

Ci
(
(Ai)i∈I , (Bi)i∈I

)
=

{
(fi)i∈I

∣∣ ∀ i ∈ I. fi : Ai ←Ci
Bi

}

with pointwise identities and composition. The functors (Pj)j∈I defined by ∀ j ∈ I:

Pj :

Cj ←
∏
i∈I Ci

Aj ←[(Ai)i∈I ∀ (Ai)i∈I ∈ Ob(
∏
i∈I Ci)

fj ←[(fi)i∈I ∀ (fi)i∈I ∈ Mor(
∏
i∈I Ci),

are called the projection-functors. If I is finite, say I = {1, . . . , n}, we write C1 ×
· · ·×Cn =

∏n
i=1 Ci =

∏
i∈I Ci. For a category C we define CI =

∏
i∈I C and if I is finite,

e.g. I = {1, . . . , n}, we write Cn = CI . �

4.1.2.6 Definition (hom-functor). Let C be a category. We introduce the hom-
functor of C

C(� , �) :

Set ← C × Cop

C(A,B) ←[(A,B) ∀A,B ∈ Ob C
(f · p · g ←[p) ←[(f, g) ∀ f ∈ Mor C ∀ g ∈ Mor Cop,

and as a special case the so called covariant hom-functors

C(� , B) : Set ← C ∀B ∈ Ob C. �

34

4.1 Basic Definitions and Theorems

4.1.3 Natural transformations

4.1.3.1 Definition ((natural) transformation). Let C and D be categories and
F,G : C ← D be functors. A function

τ = (τA)A∈Ob D ∈ (Mor C)Ob D

with
∀A ∈ Ob D. τA : FA←C GA

is called a transformation to F from G. If in addition τ satisfies the so called natu-
ralness condition:

h : A←D B

Fh · τB = τA · Gh
,

then it is called a natural transformation to F from G, and we write:

τ : F
.← G. �

4.1.3.2 Observation (natural transformation). Let C be a category. The identity
id is a natural transformation:

id = (idA)A∈Ob C : Id
.← Id �

4.1.3.3 Definition and Lemma (horizontal composition). Let C and D be cate-
gories and F,G,H : C ← D be functors and σ : F← G and τ : G← H be transformations.
The composition of σ and τ is the transformation which is defined pointwise by

∀A ∈ Ob D. (σ · τ)A = σA · τA

The composition of natural transformations is a natural transformation, i.e.:

σ : F
.← G τ : G

.← H

σ · τ : F
.← H

Proof. Immediately with Definition 4.1.3.1.

This composition of natural transformations is often called horizontal com-
position. We will see vertical composition of natural transformations in
Definition and Lemma 4.1.3.7. �

4.1.3.4 Definition (composition of morphisms and natural transformations).
Let F,G : C ← D be functors, τ : F

.← G, and f : GA ← FB. It is common practice to
drop the subscript of τ in composition expressions

35

4 Category theory

(i) τ · f = τA · f ,

(ii) f · τ = f · τB

since it can be derived from the type of f . �

4.1.3.5 Definition (functor-category). Let C and D be categories. We define the
meta-category CD by

Ob CD =
{
F

∣∣ F : C ← D
}

and for every F,G ∈ Ob CD:

CD(F,G) =
{
τ

∣∣ τ : F
.← G

}

with the composition of natural transformations and for every F : C ← D the identity
idF = (idFA)A∈Ob D : F

.← F. Furthermore we will use the abbreviations EndC = CC

and End2 C = End(EndC). �

4.1.3.6 Definition and Lemma (functors preserve naturalness). Let C, D,
and E be categories and F,G : C ← D be functors. For every natural transformation

τ : F
.← G

the following statements hold:

(i) The composition Hτ of a functor H : E ← C and τ defined by

∀A ∈ Ob D. (Hτ)A = H(τA)

is a natural transformation
Hτ : H · F .← H · G.

(ii) The composition τH of τ and a functor H : D ← E defined by

∀A ∈ Ob E. (τH)A = τHA

is a natural transformation
τH : F · H .← G · H.

Proof. Immediately by Definition 4.1.2.1 and Definition 4.1.3.1.

4.1.3.7 Definition and Lemma (vertical composition). Let C, D, and E be cate-
gories, and

C
F,F′
←−−−− D

G,G′
←−−−− E

be functors, and σ : F
.← F′ and τ : G

.← G′ be natural transformations. It holds
σG · F′τ = Fτ · σG′. We use this to define the vertical composition (or Godement
product) σ ∗ τ of σ and τ by

σ ∗ τ = σG · F′τ = Fτ · σG′

which is a natural transformation σ ∗ τ : F · G .← F′ · G′, i.e. the following diagram of
natural transformations commutes:

36

4.1 Basic Definitions and Theorems

F′ · G

F · G F′ · G′

F · G′

σG F′τ

σ ∗ τ

Fτ σG′

Notice that σ ∗ idG = σG and idF ∗ τ = Fτ .

Proof. Let A ∈ Ob E.

(σG · F′τ)A

= { Definition and Lemma 4.1.3.3 and Definition and Lemma 4.1.3.6 }

σGA · F
′τA

= { naturalness of σ }

FτA · σG′A

= { Definition and Lemma 4.1.3.3 and Definition and Lemma 4.1.3.6 }

(Fτ · σG′)A

4.1.3.8 Lemma (vertical composition versus horizontal composition). Let C,
D, and E be categories, and

C
F,F′,F′′
←−−−−−−− D

G,G′,G′′
←−−−−−−− E

be functors, and

F
σ
←−− F′

σ′
←−− F′′ and G

τ
←−− G′

τ ′
←−− G′′

be natural transformations. It holds:

(σ ∗ τ) · (σ′ ∗ τ ′) = (σ · σ′) ∗ (τ · τ ′).

The latter equation is also called middle-four exchange5. Then the class of all natural
transformations with horizontal and vertical composition is a 2-category 6.

5A pair of categories sharing the same morphism class such that the middle-four exchange axiom holds
is called a double category. Then the composition of one category can be extended to the object
class of the other category and vice versa. This gives rise to two more categories (called the vertical

and horizontal edge category of the double category) which share the same object class.
6A 2-category is a double category (see preceding footnote) in which the vertical edge category is

discrete (i.e. all morphisms are identities). The horizontal edge category of the 2-category of all
natural transformations is CAT.

37

4 Category theory

Proof. Let A ∈ Ob E.

(
(σ ∗ τ) · (σ′ ∗ τ ′)

)
A

= { Definition and Lemma 4.1.3.7 and Definition and Lemma 4.1.3.6 }

σGA · F
′τA · F

′τ ′A · σ
′
G′′A

= { F′ is a functor }

σGA · F
′(τA · τ

′
A) · σ′G′′A

= { naturalness of σ′ }

σGA · σ
′
GA · F

′′(τA · τ
′
A)

= { Definition and Lemma 4.1.3.7 and Definition and Lemma 4.1.3.6 }(
(σ · σ′) ∗ (τ · τ ′)

)
A

4.1.3.9 Lemma (vertical composition is associative). Let C, D, E,and F be cat-
egories, and

C
F,F′
←−−−− D

G,G′
←−−−− E

H,H′
←−−−− F

be functors, and

F
σ
←−− F′ G

τ
←−− G′ H

%
←−− H′

be natural transformations. It holds:

(σ ∗ τ) ∗ % = σ ∗ (τ ∗ %).

Proof. Let A ∈ Ob F .

(
(σ ∗ τ) ∗ %

)
A

= { Definition and Lemma 4.1.3.7 and Definition and Lemma 4.1.3.6 }

(σ ∗ τ)HA · (F
′ · G′)%A

= { Definition and Lemma 4.1.3.7 and Definition and Lemma 4.1.3.6 }

σ(G·H)A · F
′τHA · (F

′ · G′)%A

= { F′ is a functor }

σ(G·H)A · F
′(τHA · G

′%A)

= { Definition and Lemma 4.1.3.7 and Definition and Lemma 4.1.3.6 }

σ(G·H)A · F
′(τ ∗ %)A

= { Definition and Lemma 4.1.3.7 and Definition and Lemma 4.1.3.6 }(
σ ∗ (τ ∗ %)

)
A

38

4.1 Basic Definitions and Theorems

4.1.3.10 Definition (hom-class restricted functor). Let C and D be categories, F :
C ← D be a functor, and A,B ∈ Ob D. We denote the function, which we obtain from
the function

F : Mor C ←CLASS MorD

by restricting the domain of F to the hom-class D(A,B) ⊆ Mor D and the codomain of
F to the hom-class C(FA,FB) ⊆ Mor D by

F(A,B) : C(FA,FB)←Set D(A,B).

F(A,B) is called the hom-class restriction (or the localization) of F by (A,B). Using
the multiplicativity of the functor F, it is easy to see that F(� , �) is a natural transforma-
tion

F(� , �) : C(F � ,Fop
�) .← D(� , �)

where C(� , �) and D(� , �) are the hom-functors from Definition 4.1.2.6. �

4.1.4 Initial and final objects

4.1.4.1 Definition (initial/final object). Let C be a category. An object 0 ∈ Ob C
is called an initial object of C, if for every C-object A there exists a unique C-morphism
to A from 0, i.e.:

∀A ∈ Ob C. #
(
C(A, 0)

)
= 1.

or equivalently
∀A ∈ Ob C. ∃! f ∈ Mor C. f : A← 0

This formula has the form ∀ · · · ∃! · · · and can thus be used to define the function

¡(�)←0 : Mor C ← Ob C

by
∀ f ∈ Mor C. f = ¡A←0 ⇐⇒ f : A← 0. (UP)

The defining property (UP) is called the universal property. The function ¡ is called
the comediator of 0. The morphism ¡A←0 is called the unique mediating morphism
to A from the initial object 0. If the connection to the initial object 0 ∈ Ob C is obvious,
we simply write ¡A for ¡A←0.

Dually an object 1 ∈ Ob C with

∀A ∈ Ob C. #
(
C(1, A)

)
= 1

is called final object (and sometimes terminal object) of C and the function

!(�)→1 : Mor C ← Ob C

with
∀ f ∈ Mor C. f = !A→1 ⇐⇒ f : 1← A (UPop)

39

4 Category theory

is called the mediator of 1. The morphism !A→1 is called the unique mediating
morphism from A to the final object 1. If the connection to the final object 1 ∈ Ob C
is obvious, we simply write !A for !A→1.

A C-object that is initial and final as well is called a null-object of C. �

4.1.4.2 Example (initial and final object). In the category Set the empty set ∅ is
an initial object and every singleton set is a final object. �

4.1.4.3 Lemma (essential uniqueness of initial objects). Let C be a category.
Every two initial objects of C are isomorphic.

Proof. Let 0 and 0′ be initial objects with comediators ¡(�)←0 and ¡(�)←0′ , respectively.

=⇒ { (composition) }

¡0←0′ · ¡0′←0 : 0← 0

=⇒ { (UP), (typing) & (identity) }

¡0←0′ · ¡0′←0 = ¡0←0 = id0.

Dually follows: ¡0′←0 · ¡0←0′ = id0′ . Hence ¡0←0′ : 0 ← 0′ is an isomorphism and thus
0 ∼= 0′.

Since #
(
C(0, 0′)

)
= 1 the morphism ¡0←0′ is even the only isomorphism to 0 from 0′.

4.1.4.4 Lemma (laws for initial/final objects). Let C be a category with initial
object 0 ∈ Ob C. Then the laws in Table 4.2 hold.

Laws for comediators

UP f = ¡A ⇐⇒ f : A← 0

reflection ¡0 = id0

fusion f : A← B =⇒ f · ¡B = ¡A

where f ∈ Mor C and A,B ∈ Ob C

Table 4.2: Laws for comediators

And thus the dual laws in Table 4.3 hold for a category C with a final object 1 ∈ Ob C.

Proof. The reflection law follows from the first part of the proof of Lemma 4.1.4.3. The
fusion law can be proven similarly: Because of f · ¡B : A← 0 it is obvious from the (UP)
that f · ¡B = ¡A.

40

4.1 Basic Definitions and Theorems

Laws for mediators

UP f = !A ⇐⇒ f : 1← A

reflection !1 = id1

fusion f : A← B =⇒ !A · f = !B

where f ∈ MorC and A,B ∈ Ob C

Table 4.3: Laws for mediators

4.1.4.5 Corollary (naturalness of (co-)mediators). Let C be a category with ini-
tial object 0 ∈ Ob C and 0 : C ← C be the constant functor to 0. The comediator ¡ is a
natural transformation, i.e.:

¡ : Id
.← 0.

Proof. Since for every A ∈ Ob C holds ¡A : A← 0, the comediator is a transformation
to Id from 0. It is also natural, because its naturalness condition (Definition 4.1.3.1) is
equivalent to the fusion law (Table 4.2).

4.1.5 (Co-)products

4.1.5.1 Definition and Lemma (product). Let C be a category, I a set, (Ai)i∈I ∈

Ob CI , and P ∈ Ob C. An I-family (Ai
πi←−− P)i∈I of C-morphisms is called a product

of (Ai)i∈I provided that for every object B ∈ Ob C and every I-family (Ai
fi
←−− B)i∈I of

C-morphisms there exists a unique morphism:

〈fi〉i∈I : P ← B,

which is called pairing such that the diagram in Figure 4.1 commutes.
For every i ∈ I the morphism πi : Ai ← P is called the projection onto Ai from P . It is
also common to say that the object P itself is a product of (Ai)i∈I with projections

(Ai
πi←−− P)i∈I . If there exists a product of (Ai)i∈I ∈ Ob CI and the connection to the

respective projections is obvious or unimportant, then we denote the product-object P
by

∏
i∈I Ai. Notice that the object

∏
i∈I Ai depends on the projections (πi)i∈I , which is

not obvious from the notation. If I is finite, then
∏
i∈I Ai is called a finite product.

For finite products with e.g. I = {1, . . . , n}, we write A1 × · · · × An =
∏
i∈I Ai and

〈f1, . . . , fn〉 = 〈fi〉i∈I . Notice that an empty product (i.e. I = ∅) is a final object.
We say that C has (finite) products, if for every (finite) set I and every (Ai)i∈I ∈

Ob CI there exists a product
∏
i∈I Ai in C. It is easy to see that we find the laws in

Table 4.4 in analogy to the laws in Table 4.3 from Lemma 4.1.4.4.

41

4 Category theory

P Aj

B

-

6

�
�

�
�

�
�

�
��>

πj

〈fi〉i∈I

fj

∀ j ∈ I.

Figure 4.1: Product UP

Laws for products

UP h = 〈fi〉i∈I ⇐⇒ ∀ i ∈ I. πi · h = fi
reflection 〈πi〉i∈I = idQ

i∈I Ai

fusion 〈fi〉i∈I · h = 〈fi · h〉i∈I
cancelation ∀ j ∈ I. πj · 〈fi〉i∈I = fj

where h ∈ Mor C and ∀ j ∈ I. fj : Aj ← B

Table 4.4: Laws for products

Proof. The UP is equivalent to the definition of the product. The remaining laws follow
in analogy to Lemma 4.1.4.3 and Lemma 4.1.4.4.

4.1.5.2 Lemma (products in Set). The category Set has products.

Proof. Let I be a set and for every i ∈ I let Ai be a set. We will show that

∏

i∈I

Ai =
{
(ai)i∈I

∣∣ ∀ i ∈ I. ai ∈ Ai
}
,

is a product of (Ai)i∈I with projections:

∀ j ∈ I. πj : Aj ←
∏

i∈I

Ai : aj ←[(ai)i∈I .

Therefore it is sufficient to show that for every set B and every (Ai
fi
←−− B)i∈I :

〈fi〉i∈I :
∏

i∈I

Ai ← B : (fib)i∈I ←[b

is the respective pairing by verifying the UP of the product (Table 4.4).

42

4.1 Basic Definitions and Theorems

4.1.5.3 Definition and Lemma (coproduct). The dual notion to product is the no-
tion of coproduct : Let C be a category, I a set, (Ai)i∈I ∈ Ob CI , and C ∈ Ob C. An

I-family (C
ιi←−− Ai)i∈I of C-morphisms is called a coproduct (or sum) of (Ai)i∈I pro-

vided that for every object B ∈ Ob C and every I-family (B
fi
←−− Ai)i∈I of C-morphisms

there exists a unique morphism:

[fi]i∈I : B ← C

which is called copairing (or case) such that the diagram in Figure 4.2 commutes:

C Aj

B

�

?

�
�

�
�

�
�

�
��=

ιj

[fi]i∈I

fj

∀ j ∈ I.

Figure 4.2: Coproduct UP

For every i ∈ I the morphism ιi : C ← Ai is called the injection of Ai into C. It is
also common to say that the object C itself is a coproduct of (Ai)i∈I with injections

(C
ιi←−− Ai)i∈I . If there exists a coproduct of (Ai)i∈I ∈ Ob CI and the connection to the

respective injections is obvious or unimportant, then we denote the coproduct-object by∐
i∈I Ai = C. Notice that the object

∐
i∈I Ai depends on the injections (ιi)i∈I , which is

not obvious from the notation. If I is finite, then
∐
i∈I Ai is called a finite coproduct.

For finite coproducts with e.g. I = {1, . . . , n}, we write A1 + · · · + An =
∐
i∈I Ai and

[f1, . . . , fn] = [fi]i∈I . Notice that an empty coproduct (i.e. I = ∅) is an initial object.
We say that C has (finite) coproducts, if for every (finite) set I and every (Ai)i∈I ∈

Ob CI there exists a coproduct
∐
i∈I Ai in C. We obtain the laws in Table 4.5 which are

dual to the laws in Table 4.4.

Proof. Dually to Definition and Definition and Lemma 4.1.5.1.

4.1.5.4 Lemma (coproducts in Set). The category Set has coproducts.

Proof. Let I be a set and for every i ∈ I let Ai be a set. We will show that
∐

i∈I

Ai =
⋃

i∈I

{
(i, a)

∣∣ a ∈ Ai
}
,

43

4 Category theory

Laws for coproducts

UP h = [fi]i∈I ⇐⇒ ∀ i ∈ I. h · ιi = fi
reflection [ιi]i∈I = id‘

i∈I Ai

fusion h · [fi]i∈I = [h · fi]i∈I
cancelation ∀ j ∈ I. [fi]i∈I · ιj = fj

where h ∈ Mor C and ∀ j ∈ I. fj : B ← Aj

Table 4.5: Laws for coproducts

is a coproduct of (Ai)i∈I with inclusions:

∀ j ∈ I. ιj :
∐

i∈I

Ai ← Aj : (j, a)←[a.

Therefore it is sufficient to show that for every set B and every (B
fi
←−− Ai)i∈I :

[fi]i∈I : B ←
∐

i∈I

Ai : fja←[(j, a)

is the respective copairing by verifying the UP of the coproduct (Table 4.5).

4.1.5.5 Definition and Corollary (product functor). Let C be a category which
has finite products. The product functor is defined by

∏
:

C ← Cn∏n
i=1Ai ←[(Ai)

n
i=1 ∀ (Ai)

n
i=1 ∈ Ob Cn

〈fi · πi〉
n
i=1 ←[(fi)

n
i=1 ∀ (fi)

n
i=1 ∈ Mor Cn,

We also write f1×· · ·×fn =
∏n
i=1 fi =

∏
(fi)

n
i=1. We declare that the operation symbol

× binds weaker (i.e. has lower precedence) than the composition operator · . For every
f ∈ Mor C and n ∈ N0 we define

∏n : C ← C by
∏n f =

∏n
i=1 f . For every C-object

A we also write An =
∏nA. We will never use the latter notation for morphisms. The

product functor
∏

satisfies the laws in Table 4.6.

Laws for product functors

reflection
∏n
i=1 idAi

= idQn
i=1Ai

fusion (i)
∏n
i=1 fi · 〈gi〉

n
i=1 = 〈fi · gi〉

n
i=1

fusion (ii)
∏n
i=1 fi ·

∏n
i=1 hi =

∏n
i=1(fi · hi)

cancelation ∀ j. πj ·
∏n
i∈I fi = fj · πj

where ∀ j. fj , gj , hj ∈ Mor C such that ∀ i, j. dom gi = dom gj

Table 4.6: Laws for product functors

44

4.1 Basic Definitions and Theorems

The projections are natural transformations:

πj : Pj
.←

∏
.

Proof. The laws follow straightforward from the definition of the product functor and
the laws for products from Table 4.4. The cancelation law is the naturalness condition
for πj : Pj

.←
∏

.

4.1.5.6 Definition and Corollary (coproduct functor). This is dual to Definition
and Definition and Corollary 4.1.5.5 so we will have nothing to prove. Let C be a cate-
gory which has finite coproducts. The coproduct functor is defined by

∐
:

C ← Cn∐n
i=1Ai ← [(Ai)

n
i=1 ∀ (Ai)

n
i=1 ∈ Ob Cn

[ιi · fi]
n
i=1 ← [(fi)

n
i=1 ∀ (fi)

n
i=1 ∈ Mor Cn.

We also write f1 + · · ·+fn =
∐n
i=1 fi =

∐
(fi)

n
i=1. We declare that the operation symbol

+ binds weaker (i.e. has lower precedence) than the product functor operator ×. The
coproduct functor

∐
satisfies the laws in Table 4.7.

Laws for coproduct functors

reflection
∐n
i=1 idAi

= id‘n
i=1Ai

fusion (i) [fi]
n
i=1 ·

∐n
i=1 gi = [fi · gi]

n
i=1

fusion (ii)
∐n
i=1 gi ·

∐n
i=1 hi =

∐n
i=1(gi · hi)

cancelation ∀ j.
∐n
i=1 gi · ιj = ιj · gj

where ∀ j. fj , gj , hj ∈ Mor C such that ∀ i, j. cod fi = cod fj

Table 4.7: Laws for coproduct functors

The injections are natural transformations:

ιj :
∐ .← Pj . �

4.1.5.7 Lemma ((co-)products in the functor category). Let C and D be cate-
gories such that C has (finite) (co-)products. Then CD has (finite) (co-)products.

Proof. Since products and coproducts are dual to each other, it is sufficient to prove
the statement for products: Let I be a set and (Fi)i∈I ∈ Ob(CD)I be an I-family of

CD-objects. The category C has products (FiD
(πi)D
←−−−−−

∏
j∈I(FjD))i∈I . We claim

that (Fi
πi←−−

∏
j∈I Fj)i∈I is a product in CD where πi =

(
(pii)D

)
D∈Ob D

and ∀ f ∈

45

4 Category theory

Mor D. (
∏
j∈I Fj)f =

∏
j∈I(Fjf). The naturalness of πi follows from cancelation in

Table 4.6. The UP can easily be verified for the pairing ∀ (τi)i∈I ∈ Mor(CD)I . ∀D ∈
Ob D. (〈τi〉i∈I)D = 〈(τi)D〉i∈I by pointwise calculations in C for every D-object. The
dual statement is true for coproducts.

4.1.5.8 Note. Let C be a category which has (finite) products. From Lemma 4.1.5.7
we know that the functor category CC has (finite) products also. Let I be a (finite) set.
The functors

∏
: CC ← (CC)I and

∏
: C ← CI are related by the equation

∀ (Fi)i∈I ∈ Ob(CC)I . (
∏

i∈I

Fi)f =
∏

i∈I

(Fif).

Let n ∈ N0. The functors
∏n : CC ← CC and

∏n : C ← C are related by the equation∏n
IdC =

∏n. �

4.1.5.9 Lemma (faithful (co-)product functors). Let C be a category with no
empty hom-classes, i.e. ∀A,B ∈ Ob C. C(A,B) 6= ∅. If C has (co-)products, then
the respective (co-)product functors are faithful (see Definition 4.2.1.1).

Proof. Let I be a set, (Ai)i∈I , (Bi)i∈I ∈ Ob CI , and (fi)i∈I , (f
′
i)i∈I ∈

CI
(
(Ai)i∈I , (Bi)i∈I

)
, and let j ∈ I. Since ∀ i ∈ I. C(Bi, Bj) 6= ∅ there exist for ev-

ery i ∈ I a C-morphism hi : Bi ← Bj . We choose hj = idBj
and calculate:

∏

i∈I

fi =
∏

i∈I

f ′i

=⇒ πj ·
∏

i∈I

fi · 〈hi〉i∈I = πj ·
∏

i∈I

f ′i · 〈hi〉i∈I

=⇒ { cancelation for product(functors) Table 4.6 and Table 4.4 }

fj = f ′j .

This is true for all j ∈ I and thus (fj)j∈I = (f ′j)j∈I and hence
∏
i∈I is faithful. The dual

proposition holds for coproducts.

4.1.6 Exponents

4.1.6.1 Definition and Lemma (exponent, application, abstraction, currying).
Let C be a category with finite products. For every two objects A,B ∈ Ob C we define
the category ExpC(A,B) by

Ob
(
ExpC(A,B)

)
=

⋃

C∈Ob C

C(A,C ×B)

and ∀ f, g ∈ Ob
(
ExpC(A,B)

)
where f : A← C×B and g : A← D×B with C,D ∈ Ob C:

ExpC(A,B)(f, g) =
{
h ∈ C(C,D)

∣∣ f · (h× idB) = g
}
.

46

4.1 Basic Definitions and Theorems

If it has a final object, we denote it by

ev (A,B) = 1ExpC(A,B) : A←C A
B ×B

and call the underlying C-object AB an exponent of A and B with application ev (A,B).
The unique morphism

curry f = !f : AB ←C C (where C ∈ Ob C such that f : A← C ×B)

for each f ∈ Ob
(
ExpC(A,B)

)
is called the abstraction or currying7. The function

uncurry : Mor C ← Ob
(
ExpC(A,B)

)

defined by
uncurry h = ev (A,B) · (h× idB) ∀h ∈ Ob

(
ExpC(A,B)

)
,

is the inverse of curry and we have the following laws:

Laws for currying

UP h = curry f ⇐⇒ ev (A,B) · (h× idB) = f

reflection curry ev (A,B) = idAB

fusion curry f · h = curry
(
f · (h× idB)

)

cancelation ev (A,B) · (curry f × idB) = f

where h ∈ MorC and f ∈ Ob
(
ExpC(A,B)

)

Proof. Immediately by Definition 4.1.4.1.

4.1.7 Initial algebras and catamorphisms

4.1.7.1 Definition (F-algebra). Let F : C ← C be an endofunctor. We define the
category CF of all F-algebras as follows: The object class is given by

Ob(CF) =
{
ϕ ∈ Mor C

∣∣ ∃A ∈ Ob C. ϕ : A← FA
}

and for every ϕ,ϕ′ ∈ Ob(CF) where ϕ : A← FA and ϕ′ : B ← FB with A,B ∈ Ob C we
define the hom-class by

CF(ϕ,ϕ′) =
{
(ϕ, f, ϕ′) ∈ {ϕ} × C(A,B)× {ϕ′}

∣∣ f · ϕ′ = ϕ · Ff
}
.

The identity and composition of CF are defined for every ϕ : A ← FA, ϕ′ : A′ ← FA′,
ϕ′′ : A′′ ← FA′′, and every f : A← A′ by

idϕ = (ϕ, idA, ϕ),

(ϕ, f, ϕ′) · (ϕ′, g, ϕ′′) = (ϕ, f · g, ϕ′′).

7Named after Haskell B. Curry.

47

4 Category theory

The morphisms of this category are called F-algebra homomorphisms. We define
the forgetful functor | � |F : C ← CF by

∀ϕ ∈ Ob(CF). |ϕ|F = codC ϕ

and

∀ (ϕ, f, ϕ′) ∈ Mor(CF). |(ϕ, f, ϕ′)|F = f.

For every F-algebra ϕ : A← FA we call the object A ∈ Ob C the carrier of ϕ, thus the
forgetful functor | � |F maps an F-algebras onto its carrier. If CF has an initial object,
then we denote it by inF and call it the initial algebra (or constructor) of F. The
carrier of the initial algebra is denoted by µF and is called the least fixed point8 of F.

The image of the uniquely mediating morphism

∀ϕ ∈ Ob(CF). ¡ϕ : ϕ←CF inF

under the functor | � |F, i.e.

|¡ϕ|F : codC ϕ←C µF �

is called the catamorphism generated by ϕ (w.r.t. F) (from Greek κατα, downwards)
and is denoted by ([ϕ])F, i.e. ¡ϕ = (ϕ, ([ϕ])F, inF). The laws in Table 4.8 are a consequence
of the laws in Table 4.2.

Laws for catamorphisms

UP f = ([ϕ])F ⇐⇒ f · inF = ϕ · Ff

reflection ([inF])F = idµF

fusion f · ϕ′ = ϕ · Ff =⇒ f · ([ϕ′])F = ([ϕ])F
where f ∈ Mor C and ϕ,ϕ′ ∈ Ob CF

Table 4.8: Laws for catamorphisms

The following equivalent definition is more descriptive: the CF-object inF : µF← F(µF)
is an initial algebra of F, provided that for every A ∈ Ob C and every ϕ : A← FA there
exists a unique C-morphism ([ϕ])F such that the square in the diagram in Figure 4.3
commutes.

8The reason is that it satisfies the fixed-point-equation µF ∼= F(µF), because initial algebras are always
isomorphisms (Lemma 4.1.7.4). There exists an equivalent definition of the least fixed point of F as
(carrier of) the initial object in the category of fixed points of F, i.e. the full subcategory of CF where
the objects are C-isomorphisms.

48

4.1 Basic Definitions and Theorems

�
??

�µF F(µF)

FAA

inF

ϕ

C

([ϕ])
F

F([ϕ])
F

-

?

inF

ϕ

¡
ϕ

CF -

| � |
F

| � |
F

Figure 4.3: Catamorphism UP

4.1.7.2 Example (F-algebra). For the endofunctor F = Id × Id in the category Set ,
i.e.

F :

Set ← Set

A×A ← [A ∀A ∈ Ob Set

f × f ←[f ∀ f ∈ Mor Set

we consider the category SetF. An F-Algebra ϕ ∈ Ob(SetF) is a function

ϕ : A←Set A×A

with an A ∈ Ob Set . On the other hand an F-Algebra ϕ can be considered as a set
A = |ϕ|F together with a binary operation ?, where

∀ a, b ∈ A. a ? b = ϕ(a, b).

Let ϕ,ϕ′ ∈ Ob(SetF) where ϕ : A ← A × A and ϕ′ : A′ ← A′ × A′. The underlying
function |f |F : A ←Set A

′ of an SetF-morphism f = (ϕ, |f |F, ϕ′) : ϕ ←SetF ϕ′ has to
satisfy the equation

|f |F · ϕ′ = ϕ · F|f |F,

i.e.

∀ a, b ∈ A. |f |F
(
ϕ′(a, b)

)
= ϕ(|f |Fa, |f |Fb).

If we denote the functions ϕ and ϕ′ by the binary operations ? and ?′, respectively, as

49

4 Category theory

above, we may write this equation as follows:

f(a ?′ b) = fa ? fb.

This is the homomorphism property of f for algebras (with one binary function ? or ?′,
respectively). �

4.1.7.3 Lemma (initial algebras in Set). Let Σ = {σ1, . . . , σm} be a ranked alpha-
bet and F =

∐m
j=1(

∏rankΣ σj Id) : Set ← Set . The category SetF has an initial object.

Proof. We will show that

inF = [σ1, . . . , σm] : µF← F(µF) where µF = TΣ∅

is an initial F-algebra. For every A ∈ Ob Set and every ϕ : A ← FA we claim that the
underlying function of the unique Σ-algebra homomorphism

(A;ϕ · ι1, . . . , ϕ · ιm)← (TΣ∅;σ1, . . . , σm)

from the initial term algebra TΣ∅ (which is free over ∅) is the respective catamorphism

([ϕ])F : A← µF.

But this is easy to see, because the UP of the catamorphism (Table 4.8) is nothing else
than the Σ-algebra homomorphism property.

4.1.7.4 Lemma (Lambek’s Lemma [Lam68]). Constructors are isomorphisms. In
more detail: Let C be a category and F : C ← C be an endofunctor. If the category CF

has an initial object inF, then this is an isomorphism in C.

Proof. On the one hand

inF · ([FinF])F
= { fusion (Table 4.8) }

([inF])F
= { reflection (Table 4.8) }

idµF

50

4.2 Concrete categories and constructs

while on the other hand

([FinF])F · inF

= { UP (Table 4.8) }

FinF · F([FinF])F
= { F functor }

F
(
inF · ([FinF])F

)

= { see above }

FidµF

= { F functor }

idF(µF).

Thus, the constructor inF is a C-isomorphism.

4.1.7.5 Proposition (rolling rule [Fre90]). Let F : C ← D and G : D ← C be func-
tors. If G · F has an initial algebra inG·F, then FinG·F is an initial (F · G)-algebra. �

4.1.7.6 Corollary (rolling rule). Let F : C ← D and G : D ← C be functors such
that µ(G · F) exists. Then:

µ(F · G) ∼= F
(
µ(G · F)

)
.

Proof. From Proposition 4.1.7.5 we know that FinG·F is an initial (F · G)-algebra, thus
FinG·F

∼= inF·G (isomorphic in the category CF·G), because initial objects are unique up
to isomorphism. Applying the forgetful functor | � |F·G yields the assertion.

4.1.7.7 Definition (algebraically complete [Fre90]). A category C is called alge-
braically complete if every C-endofunctor has an initial algebra. �

4.1.7.8 Proposition ([Fre92]). The category Setℵ0 of all countable sets is algebraically
complete. �

4.2 Concrete categories and constructs

4.2.1 Concrete categories and concrete functors

4.2.1.1 Definition (faithful functor). Let F : C ← D be a functor. F is called an
embedding provided that F is injective on morphisms. F is called faithful provided
that all its hom-class restrictions F(A,B) : C(FA,FB) ← D(A,B) are injective for every
A,B ∈ D. �

51

4 Category theory

4.2.1.2 Definition ((semi)concrete category [AHS90] Def. 5.1). Let C and D be
categories and U : C ← D be a functor. The pair (D,U) is called the semiconcrete
category built upon C by U. If moreover U is faithful then (D,U) is called concrete
category and the functor U is called the forgetful functor of (D,U).

As a convention we will write most of the forgetful functors just | � | if the connection
to their concrete category is obvious. For each D-object A we call |A| the underlying
C-object of A and for each D-morphism f we call |f | the underlying C-morphism
of f . Motivated by the fact that | � | is faithful it is common practice to identify the
morphisms f and |f | and to write just f for both of them.

A concrete category built upon Set is called a construct. �

4.2.1.3 Example. Every mathematical structure, i.e. a set together with some al-
gebraic and/or topological structure, is a construct. The forgetful functor maps
a mathematical structure onto its carrier set, in other words it forgets the struc-
ture. The notion of a concrete category is a natural generalization: Consider the
constructs (AbGrp, | � |AbGrp) of Abelian groups and (Grp, | � |Grp) of groups. Then
(AbGrp,UAbGrp) is built upon Grp where UAbGrp embeds Abelian groups into groups.
Thus the forgetful functor | � |AbGrp = | � |Grp · UAbGrp forgets first that the group was
Abelian and secondly the entire group-structure. �

4.2.1.4 Definition ((semi)concrete functor, [AHS90] Def. 5.9). Let C be a cate-
gory and (D,U) and (D′,U′) be semiconcrete categories built upon C. A functor
F : D ← D′ is called a semiconcrete functor provided that

U · F = U′.

In this case we write
F : (D,U)← (D′,U′).

If furthermore the codomain (D,U) is concrete then F is called a concrete functor.
We denote the meta-category of all concrete categories built upon C with all concrete
functors as morphisms by cCAT C. �

4.2.1.5 Lemma ([AHS90] Prop. 5.10(2)). A concrete functor is completely determined
by its values on objects.

Proof. Let C by a category, (D,U) be a concrete and (D′,U′) be a semiconcrete
category built upon C. Let F,G : (D,U) ← (D′,U′) be two concrete functors with
∀A ∈ Ob D′. FA = GA. We have to show that F = G. Let f : A←D′ B. Then:

Ff,Gf : FA = GA←D FB = GB,

i.e. Ff and Gf are morphisms in the same hom-class. Since F and G are concrete, it
holds

U(Ff) = U′f = U(Gf)

52

4.2 Concrete categories and constructs

and thus Ff = Gf because U is faithful.

4.2.1.6 Definition and Lemma (concrete categories of concrete categories).
Let C be a category. It is easy to see that identity functors and the compositions
of concrete functors are concrete. Thus the conglomerate of all concrete categories
built upon C is the object class of a meta-pre-category with all concrete functors as
morphisms. We denote the according meta-category (see Note 4.1.1.4) of all concrete
categories built upon C by cCAT C. The meta-category cCAT C itself is built upon
the meta-category CAT by the forgetful functor | � | which maps a (cCAT C)-morphism
to its underlying CAT-morphism, i.e. functor. �

4.2.1.7 Note. Let C be a category and (cCAT C, | � |) be the concrete meta-
category built upon CAT from Definition and Lemma 4.2.1.6. Let (D,U), (D′,U′) ∈
Ob(cCAT C) be two concrete categories and F : (D,U) ← (D′,U′) be a concrete func-
tor. We may view F out of three different perspectives:

(i) as the functor F : D ← D′ (i.e. as a CAT-morphism) with the property U ·F = U′,

(ii) as the concrete functor F : (D,U)← (D′,U′), i.e. as a morphism in the meta-pre-
category from Definition and Lemma 4.2.1.6, or

(iii) as the cCAT C-morphism
(
(D,U),F, (D′,U′)

)
: (D,U)← (D′,U′).

The connection

• from (i) to (ii) is the Definition 4.2.1.4 (and Definition and Lemma 4.2.1.6),

• from (ii) to (iii) is the construction from Note 4.1.1.4, and

• from (iii) to (i) is the forgetful functor: |
(
(D,U),F, (D′,U′)

)
| = F. �

4.2.1.8 Definition and Lemma (’forgetting more’ is a concrete functor). Let
C and C′ be categories and (D1,U1) and (D2,U2) be concrete categories built upon
C′ and let U : C ← C′ be a faithful functor. Then (D1,U · U1) and (D2,U · U2) are
concrete categories built upon C and if H : (D1,U1)← (D2,U2) is a concrete functor, so
is H : (D1,U · U1)← (D2,U · U2). This motivates the definition of the function U(�) by

U

(
(D1,U1),H, (D2,U2)

)
=

(
(D1,U · U1),H, (D2,U · U2)

)
.

This function is a concrete functor:

U(�) : (cCAT C, | � |)← (cCAT C′, | � |).

53

4 Category theory

Proof. With the operation on objects U(D1,U1) = (D1,U · U1) the typing axiom is
obvious. The function U(�) is also multiplicative and preserves identities, because it op-
erates trivially on morphisms, i.e. it only changes domain and codomain. The concrete-
ness property of U(�) follows from |U

(
(D1,U1),H, (D2,U2)

)
| = |

(
(D1,U ·U1),H, (D2,U ·

U2)
)
| = H = |

(
(D1,U1),H, (D2,U2)

)
|.

4.2.1.9 Definition (function spaces). A construct (C, | � |) has function spaces if

(i) (C, | � |) has finite concrete products, i.e. C has finite products and | � | preserves
them, and

(ii) C is cartesian closed and the evaluation morphism ev : A← AB×B can be chosen
in such a way that |AB| = C(A,B) and |ev |(f, x) = f x.

We say that a category C has function spaces if there exists a faithful functor
| � | : Set ← C such that the construct (C, | � |) has function spaces. �

4.3 Adjoint functors and adjunctions

This section is not necessary to understand Chapter 5. We will use adjunctions and
monads in Chapter 6 only.

4.3.1 Free objects

4.3.1.1 Definition (universal arrow). Let G : C ← D be a functor. A C-morphism
uX : GA ← X is called a G-universal arrow from X if for every % : GB ← X there
exists a unique D-morphism f : B ← A such that Gf · uX = % holds. The dual notion
is called a G-co-universal arrow. �

4.3.1.2 Definition (free object of a concrete category). Let (D,U) be a concrete
category built upon C.

(i) Let X be a C-object. A D-object A is called a free object over X in (D,U) if
there exists a U-universal arrow uX : UA← X.

(ii) We say that (D,U) has free objects if for every C-object X there exists a free
object over X in (D,U). �

4.3.1.3 Example. Let (D,U) be a concrete category built upon C.

(i) If C has an initial object 0, then the free objects over 0 in (D,U) are precisely the
initial objects of D.

(ii) If C = Set and (D,U) is the construct of all Σ-algebras, then the free objects over
a set X are precisely the free Σ-algebras over X in the sense of universal algebra.
The according universal arrows are the embeddings of X into a free algebra over
X. �

54

4.3 Adjoint functors and adjunctions

4.3.2 Varietors

4.3.2.1 Definition (polynomial functors).

A category is called

(co)cartesian
bicartesian

cartesian closed
bicartesian closed

if it

has finite (co)products,
is cocartesian and cartesian,
is cartesian and has exponents,
is cartesian closed and cocartesian.

The class of

cocartesian
bicartesian
polynomial

 functors to a

cocartesian
bicartesian

bicartesian closed

 category C is the

smallest class of functors to C closed under

finite coproducts,
finite coproducts and products,
constants, finite (co)products,

and constant exponents.
We can describe these classes of endofunctors in a more intuitive way by the following

grammars:

(i) cocartesian functors: FX ::= X
∣∣ F1X + F2X,

(ii) bicartesian functors: FX ::= X
∣∣ F1X + F2X

∣∣ F1X × F2X,

(iii) polynomial functors: FX ::= A
∣∣ X

∣∣ F1X + F2X
∣∣ F1X × F2X

∣∣ F1⇐A. �

4.3.2.2 Observation. (i) Cocartesian functors to a bicartesian category are also bi-
cartesian. Bicartesian functors to a bicartesian closed category are also polynomial.

(ii) The classes of cocartesian, bicartesian, and polynomial endofunctors on some cat-
egory are each closed under composition. �

4.3.2.3 Definition (varietor). An endofunctor F : C ← C is called a varietor if the
concrete category of F-algebras (CF, | � |F) has free objects. �

4.3.2.4 Proposition (free algebras versus initial algebras). Let C be a cocarte-
sian category, X be a C-object, and F : C ← C be an endofunctor. The following are
equivalent:

(i) There exists a free object over X in (CF, | � |F).

(ii) F +X has an initial algebra.

Proof. The universal property of a free F-algebra over X can be translated into the
universal property of an initial (F +X)-algebra and vice versa by straight forward cal-
culations using the following:

Let χ be free over X in (CF, | � |F) with universal arrow uX . Then [χ, uX] is initial
in CF+X . The catamorphism is given for every (F + X)-algebra ϕ by ([ϕ])F+X = |(ϕ ·

ί(F|ϕ|F,X))/uX |F+X .

55

4 Category theory

Let inF+X be initial in CF+X . Then inF+X · ὶ(µ(F+X),X) is free over X in (CF, | � |F)
with universal arrow uX = inF+X · ί(µ(F+X),X). For every F-algebra ψ and every % :

|ψ|F ← X the unique algebra homomorphism to ψ from the free algebra is given by
|%/uX |F = ([[ψ, %]])F+X .

4.3.2.5 Corollary (varietors versus initial algebras). Let C be a cocartesian cat-
egory and let F : C ← C be an endofunctor. The following are equivalent:

(i) F is a varietor.

(ii) For every C-object X the functor F +X has an initial algebra. �

4.3.2.6 Corollary. Every endofunctor on an algebraically complete cocartesian cate-
gory is a varietor. �

4.3.2.7 Theorem ([AP01]). Polynomial Set-endofunctors are varietors. �

4.3.3 Adjoint functors

4.3.3.1 Definition (right (and left) adjoint functor). Let G : C ← D be a functor.
Then G is called right adjoint (or adjoint) if for every C-object X there exists a G-
universal arrow from X. Dually G is called left adjoint (or co-adjoint) if for every
D-object Y there exists a G-co-universal arrow to Y . �

4.3.3.2 Observation. (i) Let (D,U) be a concrete category built upon C. Then U is
right adjoint iff (D,U) has free objects. We call a left adjoint of U a free functor
of (D,U).

(ii) Let F be an endofunctor. Then the canonical forgetful functor from the category
of F-algebras | � |F is right adjoint iff F is a varietor. �

4.3.4 Adjunctions

4.3.4.1 Definition (adjunction). Let C and D be categories.

(i) (η, ε) : F a G : C ← D is called an adjunction (or adjoint situation) if

F : C ← D, G : D ← C,

and
η : G · F .← Id, ε : Id

.← F · G,

such that
εF · Fη = idF and Gε · ηG = idG

holds. The natural transformations η and ε are called the unit and the co-unit
of the adjunction, respectively.

56

4.3 Adjoint functors and adjunctions

(ii) If the relation to the categories C and D is obvious we will only write (η, ε) : F a G

to denote the adjunction.

(iii) If for given functors F : C ← D and G : D ← C an adjunction (η, ε) : F a G exists,
then F and G are called adjoint and we write F a G.

(iv) If for a given functor F : C ← D there exists a functor G : D ← C such that F a G,
then we say that F has a right adjoint.

(v) If for a given functor G : D ← C there exists a functor F : C ← D such that F a G,
then we say that G has a left adjoint. �

4.3.4.2 Definition (adjungate). Let (η, ε) : F a G : C ← D be an adjunction and
f : A←C FB and g : GA←D B.

(i) f] = Gf · ηB is called the left adjungate of f and

(ii) g[= εA · Fg is called the right adjungate of g.

A left or right adjungate is also called an adjoint transpose. Notice that the func-
tions (�)] and (�)[are defined w.r.t. some adjunction which is invisible in the notation.
Usually the according adjunction will be obvious from the context. �

4.3.4.3 Lemma (laws for adjunctions [Fok92a]). Let (η, ε) : F a G : C ← D be an

adjunction with left/right adjungates (�)] and (�)[, respectively. Then for all X
x
←−−C

A
f
←−−C FB and GA

g
←−−D B

y
←−−D Y :

(i) ε] = id,

(ii) (x · f · Fy)] = Gx · f] · y,

(iii) η[= id,

(iv) (Gx · g · y)[= x · g[· Fy,

(v) (f])[= f and (g[)] = g. �

4.3.4.4 Proposition ([AHS90] Exer. 19A). Let C and D be categories. The functors
F : C ← D and G : D ← C are adjoint, i.e. F a G iff

C(A,FB) ∼= D(GA,B) natural in A & B.

Proof. ⇒ Using Lemma 4.3.4.3 (v) we show that (�)] : D(G � , �) .← C(� ,F �) and
(�)[: C(� ,F �) .← D(G � , �) are natural transformations which are each others
inverses.

57

4 Category theory

⇐ Let (�)] : D(G � , �) .← C(� ,F �) and (�)[: C(� ,F �) .← D(G � , �) be mutually
inverse natural isomorphisms. We show that (id], id[) : F a G is an adjunction.
Moreover (�)] and (�)[are in fact the left and right adjungates w.r.t. that adjunc-
tion.

4.3.4.5 Lemma (composition of adjunctions, [AHS90] Prop. 19.13). Let (η, ε) :
F a G : C ← D and (η′, ε′) : F′ a G′ : D ← E be adjunctions, then (G′ηF′ · η′, ε · Fε′G) :
F · F′ a G′ · G : C ← E is an adjunction. It is called the composition of (η, ε) : F a G

and (η′, ε′) : F′ a G′. �

4.3.4.6 Corollary. The subclass of left adjoint functors is a subcategory of CAT. We
denote this category by LeftAdj. �

4.3.4.7 Theorem ([AHS90] Th. 19.1 & Proposition 19.7). Let C and D be categories
and F : C ← D and G : D ← C be functors.

(i) F a G ⇐⇒ Gop a Fop.

(ii) G is right adjoint iff G has a left adjoint.

(iii) F is left adjoint iff F has a right adjoint. �

4.3.4.8 Lemma (essential uniqueness of adjoint functors, [AHS90] Prop. 19.9).
The right adjoints of a given functor F are unique up to isomorphism. Vice versa all
functors which are isomorphic to a right adjoint of F are right adjoints of F. Obviously,
the dual statements hold for right adjoints. �

4.3.4.9 Proposition ([AHS90] Prop. 18.9). Right adjoint functors are continuous,
i.e. preserve small limits. Left adjoint functors are co-continuous, i.e. preserve small
colimits. Thus in particular: right adjoint functors preserve products and left adjoint
functors preserve coproducts. �

4.4 Monads

This section is not necessary to understand Chapter 5. We will use adjunctions and
monads in Chapter 6 only.

Monads are related to terms (or trees) like monoids are related to character strings:

• Let Σ be an alphabet and Σ∗ =
⋃
k∈N0

Σk be the set of all words over Σ. Then
(Σ∗, ε, ·) has the structure of a monoid, where ε = () ∈ Σ∗ denotes the empty
word and · : Σ∗ ← Σ∗ × Σ∗ is the concatenation of words, i.e. (a1, . . . , ak) ·
(ak+1, . . . , ak+`) = (a1, . . . , ak+`). It is well known that (Σ∗, ε, ·) is a free monoid
over Σ and vice versa every free monoid is isomorphic to a monoid of character
strings with concatenation.

58

4.4 Monads

• Let Σ be a functor induced by a ranked alphabet and TΣ : Set ← Set be the
functor defined by TΣX ∼= µ(Σ + X). As we will see shortly: (TΣ, η, µ) has
the structure of a monad, where ηX : TΣX ← X is the embedding of variables
and µX : TΣX ← TΣ(TΣX) describes term-substitution. This monad is a free
monad over Σ and vice versa every free monad (over a functor induced by a ranked
alphabet) is a monad of terms with term-substitution.

It is possible to formalize the above analogy between monads and monoids: Both notions
monoid and monad are instances of the more general notion monoid over a monoidal
category [Str72, BW85].

4.4.1 Monads and Kleisli triples

4.4.1.1 Definition (monad). Let C be a category. T = (T, η, µ) is called a monad9

on C if

T : C ← C, η : T
.← IdC, µ : T

.← T2

such that

µ · Tη = idT = µ · ηT

and

µ · Tµ = µ · µT

holds. The natural transformations η and µ are called the unit and the join (or mul-
tiplication), respectively. �

4.4.1.2 Note (monadic). In relation with monads the adjective monadic is commonly
used. E.g.. the operations ‘unit’ and ‘join’ are also called monadic operations. Later we
will see the definitions of monadic categories, monadic functors, and monadic trans-
ducers. However, all this is not related at all to the notions monadic ranked alphabet,
monadic tree, or monadic term. �

4.4.1.3 Definition and Lemma (Kleisli-triple, Haskell-Monad). There exists
another equivalent description of a monad: A Kleisli-triple

(
M, η, (�)†

)
on a category

C consists of an endofunction M : Ob C ← Ob C, an Ob C-indexed family η (called unit)
of morphisms ηX : MX ← X, and an operation (�)† (called extension operation)
taking every C-morphism f : MX ← Y to a C-morphism f † : MX ← MY such that

(i) f : MX ← Y =⇒ f † · ηY = f ,

(ii) η†X = idMX , and

9The name monad comes from shortening and joining together two older names for the same construc-
tion: monoid and triad [Mac71]. Other old names for a monad are triple, standard construction, or
fundamental construction

59

4 Category theory

(iii) (f † · g)† = f † · g†.

There exists a bijection between monads (T, η, µ) and Kleisli-triples
(
M, η, (�)†

)
on C

given by the equations

MX = TX,
f † = µ · Tf,

and
Tf = (η · f)†,
µ = id†.

In Haskell a monad is defined by

class Monad m where
(>>=) :: m a → (a → m b) → m b
return :: a → m a

The operator >>= is called bind. The type constructor m and the functions return and
(=<<), where the latter is just a variant of (>>=) with exchanged input arguments

(=<<) :: (a → m b) → m a → m b
(=<<) = flip (>>=)

correspond to the functions M, η, and (�)† of a Kleisli-triple, respectively. The monad
laws are not part of the definition in Haskell, however it is usually assumed that they
hold. �

4.4.1.4 Example. Let us illustrate the monadic operations of the free ∆ monad ∆? =
(T∆, η, µ): The unit is simple:

X T∆X

x x

ηX

ηX
�

The multiplication is just term-substitution. We can express it more easily with the
according Kleisli-† as shown in Figure 4.4.

4.4.2 Monad morphisms

4.4.2.1 Definition (monad morphism). Let T = (T, η, µ) and T′ = (T′, η′, µ′) be
monads on C.

(i) A natural transformation h : T
.← T′ such that η = h · η′ and µ · (h ∗ h) = h · µ′ is

called a monad morphism to T from T′ and we write h : T← T′.

(ii) It is easy to see that (i) gives rise to a category which we will denote by MndC.
Moreover this is a concrete category

(
MndC, | � |

)
built upon EndC where the

forgetful functor | � | maps a monad onto its underlying endofunctor: |(|T, η, µ) =
T. �

60

4.4 Monads

T∆X T∆Y

s

x y

s

t

z

y

t

z

f

f †

f †

Figure 4.4: Kleisli-† of the free ∆ monad

4.4.3 Free monads

4.4.3.1 Definition (free monad). Let F : C ← C be an endofunctor. A free object
over F in

(
MndC, | � |

)
is called a free monad over F. Since free monads over F are

determined uniquely up to isomorphism we also talk about the free monad over F. We
denote it by F? and its underlying endofunctor by TF = |F?|. �

4.4.4 Monads versus Adjunctions

4.4.4.1 Lemma (each adjunction gives rise to a monad, [AHS90] Prop. 20.3).
Let (η, ε) : F a G : C ← D be an adjunction. Then (G · F, η,GεF) is a monad on D. �

4.4.4.2 Definition (Eilenberg-Moore category). Let T = (T, η, µ) be a monad on
C. The Eilenberg-Moore category (CT,UT) of T is the full concrete subcategory
of the concrete category (CT,U) of all T-algebras, where the objects of CT are those
T-algebras (X,ϕ) ∈ Ob CT for which

(i) ϕ · ηX = idX and

(ii) ϕ · Tϕ = ϕ · µX

61

holds. The objects of CT are called T-algebras. �

4.4.4.3 Proposition (monads induce adjunctions, [AHS90] Prop. 20.7). Every
monad T = (T, η, µ) on C gives rise to an adjunction (η, ε) : FT a UT : CT ← C, where

(i) (CT,UT) is the Eilenberg-Moore category from Definition 4.4.4.2,

(ii) FT(X
f
←−− Y) = (TX,µX)

Tf
←−−− (TY, µY), and in particular (TX,µX) is a free

object over X in (CT,UT).

(iii) ε(X,ϕ) = ϕ.

Moreover, the monad associated with the above adjunction according to Lemma 4.4.4.1
is T itself. �

4.4.4.4 Definition (monadic category and monadic functor).

(i) A concrete category (D,U) built upon C is called monadic (over C) if there exists
a monad T such that (D,U) ∼= (CT,UT), where (CT,UT) is the Eilenberg-Moore
category of T.

(ii) A functor U : C ← D is called monadic if it is faithful and (D,U) is monadic. �

4.4.4.5 Theorem ([AHS90] Th. 20.56). If Σ : C ← C is a varietor, then (CΣ, | � |Σ) is
monadic and the associated monad (Lemma 4.4.4.1) is a free monad over Σ. �

4.4.4.6 Corollary. Let C be an algebraically complete cocartesian category. Then
(MndC, | � |) has free objects and thus (�)? a | � | where (�)? is the free functor
(Observation 4.3.3.2 (i) & Definition 4.4.3.1 (iii)). �

4.4.4.7 Corollary. Let C be a cocartesian category, Σ : C ← C be a varietor, and
X a C-object. Then from Theorem 4.4.4.5 together with Proposition 4.3.2.4 follows:
TΣX ∼= µ(Σ +X). �

4.4.4.8 Definition (Kleisli category [Kle65]). The Kleisli category of a monad
T = (T, η, µ) (or of the associated Kleisli Triple

(
M, η, (�)†

)
) is the following concrete

category (CT,UT) built upon C with objects Ob CT = Ob C, morphisms CT(X,Y) =
C(TX,Y), identities id = η, composition f •T g = µ ·Tf ·g = f † ·g, and forgetful functor
UTf = µ · Tf = f †. �

62

Part II

Tree transducer composition in
category theory

63

64

5 The initial algebra approach

In this chapter we will describe the semantics and the composition of tree transducers in
terms of category theory. Moreover we will describe short cut fusion in terms of category
theory as well, and compare it to the composition of tree transducers. We developed
this idea in [JV01], presented it in [Jür01], and published it in [JV04].

Short cut fusion is based on the cata/build-rule [GLP93], cata/augment-rule [Gil96], or
–using category theory– on the acid rain theorem [TM95]. For the latter, it is necessary
to represent the consumer as a catamorphism. A catamorphism is a generalization of the
well known list-function foldr for arbitrary regular types. In terms of category theory a
catamorphism is the unique algebra morphism from an initial algebra. To describe the
polymorphic build -function we will use an algebra transformer as suggested by [Fok92b].

5.1 Algebra Transformers

A function which maps algebras onto algebras is called an algebra transformer
in [Fok92b]. We will use algebra transformers to express functions which are param-
eterized by constructors: e.g. the function ([HinG])F is parameterized by the constructors
encoded in the initial G-algebra inG. Here the function H is an algebra transformer
mapping F-algebras to G-algebras.

5.1.1 Characterization of concrete algebra transformers

5.1.1.1 Definition (algebra transformer). A ((semi)concrete) algebra trans-
former is a (semi(concrete)) functor between two categories of algebras over a common
base category. �

5.1.1.2 Lemma (characterization of concrete algebra transformers). Let C be
a category, F,G,U : C ← C be endofunctors where U is faithful and H : Ob CF ← Ob CG

a function. The following two statements are equivalent:

(i) The function H can be uniquely extended on CG-morphisms to a concrete algebra
transformer:

H : (CF, | � |F)← (CG,U · | � |G).

(ii) The function H satisfies the following condition: for every ϕ,ϕ′ ∈ Ob CG and every

65

5 The initial algebra approach

f : |ϕ|G ←C |ϕ′|G:

ϕ · Gf = f · ϕ′

Hϕ · F(Uf) = Uf · Hϕ′
. (∗)

Notice the different usage of functors F, G on morphisms and H on objects in the above
equations.

Proof. (ii) =⇒ (i): We extend H on morphisms by

∀ϕ,ϕ′ ∈ Ob CG. ∀ (ϕ, f, ϕ′) ∈ CG(ϕ,ϕ′). H(ϕ, f, ϕ′) = (Hϕ,Uf,Hϕ′).

If this is a functor H : CF ← CG, then it is obviously concrete, i.e.: H : (CF, | � |F) ←
(CG,U · | � |G) and thus uniquely determined due to Lemma 4.2.1.5. The function H

satisfies the functor axioms by construction, because U is a functor. The only property
that we have to verify is H : Mor CF ← Mor CG, i.e. H maps G-algebra-morphisms onto
F-algebra-morphisms. This is equivalent to the condition (∗) which is easy to see using
the definition of H on morphisms and Definition 4.1.7.1.

(i) =⇒ (ii): If H can be extended uniquely to a concrete algebra transformer H :
(CF, | � |F) ← (CG,U · | � |G), then in particular H : Mor CF ← Mor CG. Let ϕ,ϕ′ ∈ Ob CF

and f : ϕ← ϕ′, which is equivalent to the precondition of (∗) for |f |. We have Hf : Hϕ←
Hϕ′ and thus Hϕ ·F|Hf |F = |Hf |F ·Hϕ′. Using the concreteness of H, i.e. |Hf |F = U|f |F,
the latter is equivalent to the proposition of (∗).

5.1.2 Construction of algebra transformers

The following corollary shows how to construct concrete algebra transformers using the
condition from Lemma 5.1.1.2.

5.1.2.1 Corollary (Construction of concrete algebra transformers). With the
preconditions from Lemma 5.1.1.2, each of the following definitions yields an H :
(CG, | � |G)← (CF, | � |F). For every ϕ ∈ Ob CF:

(i) Hϕ = ϕ · Fϕ where G = F · F,

(ii) Hϕ = ϕ · τ where τ : F
.← G,

(iii) Hϕ = τ where τ : Id
.← G,

(iv) If C has coproducts: Hϕ = [H1ϕ,H2ϕ] , where H1 : (CG1 , | � |G1)← (CF, | � |F)
and H2 : (CG2 , | � |G2)← (CF, | � |F) and G = G1 + G2,

Proof. All cases are instances of Lemma 5.1.1.2 with UG = Id.

66

5.2 Generalized acid rain theorems

5.2 Generalized acid rain theorems

5.2.1 The acid rain theorem

We begin with a version of the well known acid rain theorem [TM95]. Usually a free
theorem [Wad89] is used to proof the acid rain theorem. Since we are in the setting of
category theory, it will be more natural to use naturalness (Definition 4.1.3.1). However
free theorems entail the naturalness of polymorphic functions [dB89].

5.2.1.1 Proposition (acid rain theorem ([TM95] Theorem 3.2)). Let C be a cate-
gory, B ∈ Ob C, F : C ← C have an initial algebra, and ϕ ∈ Ob CF. Then:

τ : | � |F .← B

([ϕ])F · τinF
= τϕ

Proof.

([ϕ])F · τinF

= { Definition 4.1.7.1 }

|¡ϕ|F · τinF

= { naturalness of τ : | � |F .← B (Definition 4.1.3.1) }

τϕ ·B(¡ϕ)

= { Definition 4.1.2.1 }

τϕ

5.2.1.2 Note (short cut fusion). The acid rain theorem is a category theory version
of the cata/build-rule from short cut fusion: Let Λ be a functional language, C be an
appropriate category, and [[�]] : C ← Λ be a denotational semantics. If [[�]] is sound and
parametric (i.e. polymorphic functions are mapped onto natural transformations) then
the acid rain theorem tells us that the cata/build-rule holds in Λ w.r.t. [[�]]. However,
the image of [[�]] may be trivial. But if moreover [[�]] is correct (i.e. reflects equality
in C to observational equivalence in Λ) then the cata/build-rule holds in Λ modulo
observational equivalence.

τ : | � |F .← B

([ϕ])F · τinF
= τϕ

build :: (∀β.(α→ β → β)→ β)→ [α]

foldr c n(buildg) = g c n

67

5 The initial algebra approach

A semantics which maps polymorphic functions onto natural transformations is called
a parametric model. In [Joh01] a sound and complete parametric model for the
language PolyFix is used to prove the correctness of short cut fusion.

In order to establish a parametric model for a language, the free theorems [Wad89,
dB89]] have to hold for that language. �

In the previous Proposition we needed a natural transformation. Here is one that we
can use:

5.2.1.3 Lemma (naturalness of the catamorphism). Let C be a category and F :
C ← C have an initial algebra. Then:

([�])F =
(
([ϕ])F

)
ϕ∈Ob(CF)

: | � |F .← µF

Proof. From Corollary 4.1.4.5 we know ¡ : Id
.← inF. Then ([�])F = |¡|F : | � |F .← µF

with Definition and Lemma 4.1.3.6 (i).

Now we can state an instance of the acid rain theorem where we do not need free
theorems or explicit naturalness at all:

5.2.1.4 Corollary (fusion of two catamorphisms). Let C be a category and F,G :
C ← C be functors which have initial algebras. Then:

H : (CF, | � |F)← (CG, | � |G)

([ϕ])G · ([HinG])F = ([Hϕ])F

Proof. This is just an instance of Lemma 5.2.1.1 where τϕ = ([Hϕ])F. Where the latter
is natural in ϕ according to Lemma 5.2.1.3 and Definition and Lemma 4.1.3.6 (ii).

5.2.2 Generalized acid rain theorems

For our purpose we will need a more general acid rain theorem which we can apply
conveniently to mutually recursive programs. We developed these generalizations of the
acid rain theorem in [Jür99] and in [Jür00].

5.2.2.1 Proposition (mutual acid rain theorem). Let C be a category and F,U :
C ← C be endofunctors where F has an initial algebra. Let B ∈ Ob C and ϕ ∈ Ob CF.
Then:

τ : | � |F .← B H : (CF, | � |F)← (CG,U · | � |G)

U([ϕ])G · τHinG
= τHϕ

.

68

5.2 Generalized acid rain theorems

Proof. This is a generalization of the proof of Lemma 5.2.1.1:

U([ϕ])G · τHinG

= { Definition 4.1.7.1 & Definition and Lemma 4.1.3.6 }

U|¡ϕ|G · (τH)inG

= { naturalness of τH : | � |F · H .← B (Definition 4.1.3.1) & | � |F · H = U · | � |G }

(τH)ϕ ·B(¡ϕ)

= { Definition 4.1.2.1 & Definition and Lemma 4.1.3.6 }

τHϕ

Finally we give a symmetric version of the acid rain theorem (i.e. producer and con-
sumer have the same structure):

5.2.2.2 Theorem (functorial acid rain theorem). Let C be a category. Let D be
the full (meta-)category of the category of concrete categories with concrete functors
where

Ob(D) =
{
(CF,UF · | � |

F)
∣∣ F : C ← C, CF has an initial object, UF : C ← C faithful

}
.

We define the function M by

∀H ∈ D
(
(CF,UF · | � |

F), (CG,UG · | � |
G)

)
. M H = UF([HinG])F.

Then M is a functor
M : C ← Dop

and thus in particular:

(CF3 ,UF3
· | � |F3)

H2←−−−D (CF2 ,UF2
· | � |F2)

H1←−−−D (CF1 ,UF1
· | � |F1)

UF2
([H1inF1

])
F2
· UF3

([H2inF2
])
F3

= UF3
([H2(H1inF1

)])
F3

.

Proof. We have to verify the functor axioms for M :

(i) M Id = UF([inG])F = UFid = id using ([�])-reflection.

(ii) M H2 · M H1 = UF3
([H2inF2

])
F3
· UF2

([H1inF1
])
F2

== M(H2 · H1) using
Proposition 5.2.2.1

The functor M is a generalization of the type functor µ : (µF
([inF · τ])G←−−−−−−−− µG) ←[

(F
τ
←−− G) (cf. [BdM97] Section 2.7), i.e. M H = µ τ where ∀ϕ. Hϕ = ϕ · τ (Later in

Corollary 5.1.2.1 (ii) we will see that this indeed defines a concrete functor H).

69

5 The initial algebra approach

5.2.2.3 Lemma. Let C be a category and U : C ← C be faithful. Then:

M · U(�) = U ·M

where U(�) : D ← D is the functor defined in Definition and Lemma 4.2.1.8 restricted
to D defined in Theorem 5.2.2.2.

Proof. For every

(CF,UF · | � |
F)

H
←−−D (CG,UG · | � |

G)

we calculate:

M(UH) = (U · UF)([|H|inG])F = U
(
UF([|H|inG])F

)
= U(M H). (5.2.2.1)

5.3 Algebraic transducers

5.3.1 Syntax of algebraic transducers

5.3.1.1 Definition (algebraic transducer). Let F and G be C-endofunctors, such
that CF has an initial object. A triple (H,U, π) is called an algebraic transducer1

(from F to G) on C if

(i) H : (CF, | � |F)← (CG,U · | � |G) is a concrete functor,

(ii) U : C ← C is a faithful endofunctor, and

(iii) π : Id
.← U is a natural transformation.

We write (H,U, π) : G← F. �

5.3.2 Composition of algebraic transducers

5.3.2.1 Definition (fusion of algebraic transducers). Let C be a category and
F1,F2,F3 : C ← C. Let (H1,U1, π1) : F2 ← F1 and (H2,U2, π2) : F3 ← F2 be alge-
braic transducers. The fusion of these two is the algebraic transducer defined by

(H2,U2, π2) · (H1,U1, π1) = (H1 · H2,U1 · U2, π1 ∗ π2).

1In [JV01] we called it categorical transducer. The name algebraic transducer emphasizes that it is
defined using F-algebras, in contrast to the monadic transducer (Definition 6.3.1.1) which is defined
using monads (Definition 4.4.1.1).

Sometimes—but rarely—a push down transducer (i.e. a character string push down automaton
with additional output) is also called an algebraic transducer. This is not related to our work.

70

5.3 Algebraic transducers

Moreover, we define for every C-endofunctor F the identity algebraic transducer

IDF = (Id(CF,| � |F), IdC, idIdC
).

Notice that the fusion is defined by component-wise (commuted) composition and the
identity is defined by component-wise identities. Thus it is obvious, that this gives rise
to a category ATC where the objects are all C-endofunctors which have initial algebras,
the morphisms are all algebraic transducers between such functors, and composition is
fusion. �

5.3.3 Denotational semantics of algebraic transducers

5.3.3.1 Definition (semantics of algebraic transducers). Let C be a category.
For every (H,U, π) ∈ ATC(G,F) we define

[[(H,U, π)]] = π · ([HinG])F : µG← µF

where in the right hand side expression the functor U is hidden in the codomain of
the concrete functor H : (CF, | � |F) ← (CG,U · | � |G). We call [[�]] : Mor C ← MorATC

the semantics of algebraic transducers. Notice that [[�]] depends on the choice of the
initial algebras of the functors in ObATC. In Definition 5.3.1.1 we demanded only the
existence of initial algebras. From Lemma 4.1.4.3 we know that initial algebras are
uniquely determined up to algebra isomorphism, thus we may choose an initial algebra
out of every isomorphism class. �

5.3.3.2 Example (algebraic transducer). Let C be a bicartesian category. Let F =
1 + Id× Id : C ← C and G = 1 + Id + Id : C ← C be functors which have initial algebras,
where inG = [N,A,B] : µG← G(µG). For every C ∈ Ob C and every [ϕ1, ϕ2, ϕ3] : C ←
GC we define

H[ϕ1, ϕ2, ϕ3] = [〈ϕ1, ϕ1〉, 〈ϕ2 · π2 · π1, ϕ3 · π1 · π2〉]

which obviously satisfies H[ϕ1, ϕ2, ϕ3] : C × C ← F(C × C). We use Lemma 5.1.1.2 to
prove that H can be uniquely extended to a concrete functor:

H : (CF, | � |F)← (CG,
∏2 · | � |G).

More precisely we show that for every ϕ = [ϕ1, ϕ2, ϕ3], ϕ
′ = [ϕ′1, ϕ

′
2, ϕ
′
3] ∈ Ob(CG) and

every f : |ϕ|G ←C |ϕ′|G the condition

ϕ · Gf = f · ϕ′

Hϕ · F(f × f) = (f × f) · Hϕ′
(∗)

71

5 The initial algebra approach

is satisfied: With the definition of G the precondition of (∗) can be restated as ϕ · (id1 +
f + f) = f · ϕ′, i.e.

ϕ1 = fϕ′1 ϕ2 · f = f · ϕ′2 ϕ3 · f = f · ϕ′3.

Using this we calculate

〈ϕ1, ϕ1〉 = 〈f · ϕ′1, f · ϕ
′
1〉 = (f × f) · 〈ϕ′1, ϕ

′
1〉

where we used the fusion (i) law (Table 4.6). Moreover we calculate:

〈ϕ2 · π2 · π1, ϕ3 · π1 · π2〉 · ((f × f)× (f × f))

= { fusion (Table 4.4) and four times cancelation (Table 4.6) }

〈ϕ2 · f · π2 · π1, ϕ3 · f · π1 · π2〉

= { precondition of (∗) }

〈f · ϕ′2 · π2 · π1, f · ϕ
′
3 · π1 · π2〉

= { fusion (i) (Table 4.6) }

(f × f) · 〈ϕ′2 · π2 · π1, ϕ
′
3 · π1 · π2〉.

Using the fusion (i) law (Table 4.7) we get

[〈ϕ1, ϕ1〉, 〈ϕ2 · π2 · π1, ϕ3 · π1 · π2〉] · (id1 + ((f × f)× (f × f)))

= (f × f) · [〈ϕ′1, ϕ
′
1〉, 〈ϕ

′
2 · π2 · π1, ϕ

′
3 · π1 · π2〉]

which is nothing else than the conclusion of (∗). Thus we have

H : (CF, | � |F)← (CG,
∏2 · | � |G)

by means of Lemma 5.1.1.2. Obviously we have a natural transformation π1 : Id
.← Id×Id.

Finally we obtain that
(H, Id× Id, π1) : G← F

is an algebraic transducer over C. �

5.3.3.3 Theorem (semantics functor). Let C be a category. The semantics of alge-
braic transducers over C is a functor

[[�]] : C ← ATC

and thus in particular (compare Theorem 5.2.2.2 and Theorem 3.3.1.2):

F3
(H2,U2, π2)
←−−−−−−−−−− F2

(H1,U1, π1)
←−−−−−−−−−− F1

[[(H2,U2, π2)]] · [[(H1,U1, π1)]] = [[(H1 · H2,U1 · U2, π1 ∗ π2)]]
.

72

5.3 Algebraic transducers

Proof. [[�]] satisfies the typing axiom by construction where ∀F ∈ ObATC . [[F]] = µF.
In order to prove the other functor axioms, we use the functor M from Theorem 5.2.2.2
to express the function [[�]]: For every H : (CF, | � |F) ← (CG,U · | � |G), every faithful
U : C ← C and every π : Id

.← U we know that (|H|,U, π) ∈ ATC(G,F), and we obtain:

[[(|H|,U, π)]] = π · ([|H|inG])F = π ·M H.

Thus [[(Id, Id, id)]] = id ·M Id = id and hence [[�]] satisfies the identity axiom. Finally we
show the multiplicativity axiom: For

F3
(|H2|,U2, π2)
←−−−−−−−−−−− F2

(|H1|,U1, π1)
←−−−−−−−−−−− F1

we have (Definition 5.3.1.1 and Note 4.2.1.7)

H1 =
(
(CF1 , | � |F1), |H1|, (C

F2 ,U1 · | � |
F2)

)
,

H2 =
(
(CF2 , | � |F2), |H2|, (C

F3 ,U2 · | � |
F3)

)

and calculate

[[(|H2|,U2, π2) · (|H1|,U1, π1)]]

= { Definition 5.3.1.1 }

[[(|H1| · |H2|,U1 · U2, π1 ∗ π2)]]

= { Definition and Lemma 4.2.1.8: |U1
H2| = |H2| and | � | is a functor }

[[(|H1 · U1
H2|,U1 · U2, π1 ∗ π2)]]

= { see above }

(π1 ∗ π2) ·M(H1 · U1
H2)

= { M is a contravariant functor (short cut fusion) }

(π1 ∗ π2) ·M(U1
H2) ·M H1

= { Definition and Lemma 4.1.3.7 of ∗ and Lemma 5.2.2.3 }

π1 · U1π2 · U1(M H2) ·M H1

= { U1 is a functor }

π1 · U1(π2 ·M H2) ·M H1

= { π1 : Id
.← U1 }

π2 ·M H2 · π1 ·M H1

= { see above }

[[(|H2|,U2, π2)]] · [[(|H1|,U1, π1)]].

73

5 The initial algebra approach

5.3.4 Algebraic transducer homomorphisms

In this subsection we lift the notion of homomorphisms between tree automata (cf. Def-
inition 6.1 of [GS84]) to the abstract level of algebraic transducers. Then we can prove
that homomorphic algebraic transducers have equal semantics and that isomorphism is
a congruence w.r.t. to fusion, i.e. the composition of algebraic transducers.

5.3.4.1 Definition (algebraic transducer homomorphism).
(cf. Definition 3.2.2.5) Let C be a category and A = (H,U, π) : G ← F and
A′ = (H′,U′, π′) : G← F algebraic transducers over C. A natural transformation

(i) η : U
.← U′ such that

(ii) ∃ η̃ : H
.← H′ with |η̃|F = η| � |G and

(iii) π · η = π′

is called a algebraic transducer homomorphism to A from A′ and we write:

η : A← A′.

If η is a natural isomorphism, then we call it a algebraic transducer isomorphism.
If an algebraic transducer isomorphism to A from A′ exists, then we call A and A′

isomorphic and write A ∼= A′. �

The condition (ii) from Definition 5.3.4.1 seems to be peculiar. The following
Lemma 5.3.4.2 shows an equivalent statement which is closer to Definition 3.2.2.5 (ii):

5.3.4.2 Lemma. Let C be a category, F,G,U : C ← C endofunctors where U is faithful,
and let H,H′ : (CF, | � |F)← (CG,U · | � |G) be concrete functors.

(i) If there exists a natural transformation η̃ : H
.← H′ with |η̃|F = η| � |G then it is

uniquely determined by ∀ϕ ∈ Ob(CG). η̃ϕ = (Hϕ, η|ϕ|G
,H′ϕ) and

(ii) for η̃ given by ∀ϕ ∈ Ob(CG). η̃ϕ = (Hϕ, η|ϕ|G
,H′ϕ), we have that

η̃ : H
.← H′ ⇐⇒ ∀ϕ ∈ Ob(CG). η · H′ϕ = Hϕ · Fη.

Proof. Let ϕ,ψ ∈ Ob(CG).

(i) From the definition of | � |F on morphisms and the preconditions we obtain
|(Hϕ, η|ϕ|G

,H′ϕ)|F = η|ϕ|G
= |η̃ϕ|F. Since | � |F is faithful, its restriction to

CF(Hϕ,H′ϕ) is injective and we have (Hϕ, η|ϕ|G
,H′ϕ) = η̃ϕ.

74

5.3 Algebraic transducers

(ii) ⇒:

η̃ : H
.← H′

=⇒ { Definition 4.1.3.1 }

η̃ϕ : Hϕ←CF H′ϕ

⇐⇒ { Definition 4.1.7.1 }

|η̃ϕ|F · H′ϕ = Hϕ · F|η̃ϕ|F

⇐⇒ { Definition 4.1.3.4 and definition of η̃ }

η · H′ϕ = Hϕ · Fη.

⇐: The last two steps in the above derivation are in fact equivalences, thus we
have a transformation η̃ : H← H′ and have to show that it is natural:

η : U
.← U′

=⇒ { naturalness of η }

U|f |G · η|ψ|G
= η|ϕ|G

· U′|f |G

=⇒ { concreteness of H and H′ and definition of η̃ }

|Hf |F · |η̃ψ|F = |η̃ϕ|F · |H′f |F

=⇒ { | � |F is faithful }

Hf · η̃ψ = η̃ϕ · H
′f

=⇒ { the latter is true for every ϕ and ψ }

η̃ : H
.← H′.

5.3.4.3 Lemma. Let C be a category and (H,U, π), (H,U, π) : G ← F be algebraic
transducers over C. Then:

(H,U, π)
η
←−− (H′,U′, π′)

∀ϕ ∈ Ob(CG). ([Hϕ])F = η · ([H′ϕ])F
.

Proof.

([Hϕ])F

= { fusion (Table 4.8) with |η̃ϕ|F · H′ϕ = Hϕ · F|η̃ϕ|F }

|η̃ϕ|F · ([H′ϕ])F
= { Definition 5.3.4.1 (ii) }

η|ϕ|G
· ([H′ϕ])F

= { Definition 4.1.3.4 }

η · ([H′ϕ])F.

75

5 The initial algebra approach

5.3.4.4 Theorem (hom. preserve semantics of algebraic transducers).
(cf. Lemma 3.2.2.6) Let C be a category and A,A′ : G ← F algebraic transducers
over C. Then:

∃ η : A← A′

[[A]] = [[A′]]
.

Proof. Let A = (H,U, π) and A′ = (H′,U′, π′) and η : A← A′ be an algebraic transducer
homomorphism. We calculate:

[[A]]

= { Definition 5.3.3.1 }

π · ([HinG])F
= { Lemma 5.3.4.3 }

π · η · ([H′inG])F
= { Definition 5.3.4.1 }

π′ · ([H′inG])F
= { Definition 5.3.3.1 }

[[A′]].

5.3.4.5 Theorem (vertical composition of algebraic transducer hom.). Let C
be a category and

F3
A2 = (H2,U2, π2), A′2 = (H′2,U

′
2, π
′
2)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− F2

A1 = (H1,U1, π1), A′1 = (H′1,U
′
1, π
′
1)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− F1

be algebraic transducers over C. Then:

A2
η2
←−− A′2 A1

η1
←−− A′1

A2 · A1
η1 ∗ η2
←−−−−−− A′2 · A

′
1

.

Proof. We have to show that the vertical composition η1∗η2 of η1 and η2 is an algebraic
transducer homomorphism to A2 · A1 = (H1 · H2,U1 · U2, π1 ∗ π2) from A′2 · A

′
1 = (H′1 ·

H′2,U
′
1 · U

′
2, π
′
1 ∗ π

′
2). according to Definition 5.3.4.1:

(i) Obviously, we have η1 ∗ η2 : U1 · U2
.← U′1 · U

′
2.

(ii) We set η̃1 ∗ η2 = η̃1 ∗ η̃2 then we have η̃1 ∗ η2 : H1 ·H2
.← H′1 ·H

′
2. It remains to show

that |η̃1 ∗ η2|
F1 = (η1 ∗η2)| � |

F3 holds: For every C-endofunctor F we use the abbre-
viation F̂ for the identical natural transformation from the forgetful functor | � |F to

76

5.3 Algebraic transducers

itself, i.e. F̂ = id| � |F : | � |F .← | � |F. Notice that from Definition and Lemma 4.1.3.7
for every algebraic transducer homomorphism between algebraic transducers in
ATC(G,F) we have F̂∗ η̃ = |η̃|F and η| � |G = η∗Ĝ. Thus we have got F̂1∗ η̃1 = η1∗ F̂2

and F̂2 ∗ η̃2 = η2 ∗ F̂3 and we have to show F̂1 ∗ η̃1 ∗ η2 = η1 ∗ η2 ∗ F̂3 which
now is a straightforward calculation (using the associativity of ∗ according to
Lemma 4.1.3.9): F̂1 ∗ η̃1 ∗ η2 = F̂1 ∗ η̃1 ∗ η̃2 = η1 ∗ F̂2 ∗ η̃2 = η1 ∗ η2 ∗ F̂3.

(iii) With Lemma 4.1.3.8 we have (π1 ∗ π2) · (η1 ∗ η2) = (π1 · η1) ∗ (π2 · η2) = π′1 ∗ π
′
2.

5.3.4.6 Corollary (isomorphism is a congruence w.r.t. fusion). With the pre-
conditions from Theorem 5.3.4.5 we have

A2
∼= A′2 A1

∼= A′1

A2 · A1
∼= A′2 · A

′
1

.

Proof. We just have to show that the vertical composition of natural transformations
∗ preserves isomorphisms, which is easy to see with Lemma 4.1.3.8 and the obvious fact
that id ∗ id = id.

5.3.5 Top-down algebraic transducers

The concept of algebraic transducer is very general. Now we will define a subclass of
so called top-down algebraic transducers, which will be our model for top-down tree
transducers in category theory. We derive a respective composition result for top-down
algebraic transducers.

5.3.5.1 Definition (top-down algebraic transducer). Let C be a category which
has finite products and finite coproducts. An algebraic transducer (H,U, π) ∈ ATC(G,F)
is called a top-down algebraic transducer over C provided that

(i) F and G are bicartesian,

(ii) U is cartesian, and

(iii) π is one of the projections of the product U.

Notice that it is part of the definition of the (top-down) algebraic transducer that F and
G have initial algebras. �

5.3.5.2 Theorem (composition of top-down algebraic transducers). Let C be a
category which has finite products and finite coproducts. The class of all top-down
algebraic transducers over C is a subcategory of ATC which we will denote by td -ATC

77

5 The initial algebra approach

Proof. According to Definition 4.1.2.4 it suffices to show that td -ATC contains the
identities and is closed under composition. Obviously, the identical algebraic transducer
(Id, Id, id) is a top-down algebraic transducer. Let (H,U, π1) : F3 ← F2 and (H′,U′, π′1) :
F2 ← F1 be top-down algebraic transducers. By Definition 5.3.5.1 there exist finite
products

(πi : Id
.← U)i∈I and (π′j : Id

.← U′)j∈J

where I and J are some finite sets with 1 ∈ I ∩ J . In order to show that

(H,U, π1) · (H
′,U′, π′1) = (H′ · H,U′ · U, π′1 ∗ π1) : F3 ← F1

is a top-down algebraic transducer it is sufficient to show that

(π′j ∗ πi : Id
.← U′ · U)(i,j)∈I×J

is a finite product. We define for every U′′ : C ← C and every τij : Id
.← U′′ the pairing

〈τij〉(i,j)∈I×J = 〈〈τij〉i∈I〉j∈J and verify the UP (Table 4.4): Let σ : Id
.← U′′ such that

∀ (i, j) ∈ I × J. (π′j ∗ πi) · σ = τij . We have to show σ = 〈τij〉(i,j)∈I×J . First we calculate
for every (i, j) ∈ I × J :

π′j ∗ πi

= { Definition and Lemma 4.1.3.7 }

π′j · U
′πi

= { U′ =
∏

k∈J

Id }

π′j ·
∏

j∈J

πi

= { fusion (i) for product functors (Table 4.6) }

πi · π
′
j .

With this we continue:

∀ (i, j) ∈ I × J. (π′j ∗ πi) · σ = τij

⇐⇒ { see above }

∀ (i, j) ∈ I × J. πi · π
′
j · σ = τij

⇐⇒ { UP (Table 4.4) for the product U }

∀ j ∈ J. π′j · σ = 〈τij〉i∈I

⇐⇒ { UP (Table 4.4) for the product U′ }

σ = 〈〈τij〉i∈I〉j∈J = 〈τij〉(i,j)∈I×J .

78

5.4 Relating transducers

5.3.5.3 Lemma. Let C be a category. The class Ob td -ATC is an ∼=-block in ObATC,
i.e. a disjoint union of algebraic transducer isomorphism classes.

Proof. Let A = (H,U, π) and A′ = (H′,U′, π′) be algebraic transducers over C with
A ∼= A′. We have to show: if A is a top-down algebraic transducer then A′ is also a
top-down algebraic transducer. Using Definition 5.3.4.1 and Definition 5.3.5.1 this is
obvious, because we have a natural isomorphism η : U

.← U′ with π · η = π′.

5.3.5.4 Definition. We define the following class:

TOPAT =
{
[[A]]

∣∣ A ∈ Mor td -ATSet

}
,

which the reader should compare with TOP from Definition 3.2.2.3. �

5.4 Relating top-down tree transducers and algebraic
transducers

In this section we describe a translation (Lemma 5.4.2.9) of a top-down tree transducer
into a top-down algebraic transducer.

5.4.1 Category of forests

5.4.1.1 Definition (forest). Let Σ be a ranked alphabet. A Σ-forest is a tuple of
Σ-trees, i.e. an element of (TΣ∅)

∗. �

Now we will give the set of Σ-forests the structure of a category, by defining an ap-
propriate composition. The following construction can also be found in [GTWW77] on
page 74 (footnote 10) where functions are used instead of tuples. It is also possible to gen-
eralize this construction, which is then known as a Kleisli category (Definition 4.4.4.8).

5.4.1.2 Definition (category of forests). Let Σ be a ranked alphabet. We define
the category T Σ by

Ob T Σ = N0,

T Σ(m,n) = (TΣXn)
m

where ∀ l,m, n ∈ Ob T Σ. ∀ f = (fi)
l
i=1 ∈ T Σ(l,m). ∀ g = (gj)

m
j=1 ∈ T Σ(m,n).

f · g = ([gj/xj]
m
j=1fi)

l
i=1

and ∀n ∈ Ob T Σ.
idn = (xi)

n
i=1.

Notice that T Σ is actually a pre-category, which we view as a category according to
Note 4.1.1.4. �

79

5 The initial algebra approach

5.4.1.3 Lemma (finite products in the category of forests). Let Σ be a ranked
alphabet. The category T Σ has finite products.

Proof. To simplify the notation we will only give the proof for a binary product. This
may be generalized straightforwardly for arbitrary finite products. It is obvious that
0 ∈ Ob T Σ is a final object. Let m,n ∈ Ob T Σ. We define

m× n = m+ n where + is the usual sum of natural numbers,

π1 = (x1, . . . , xm),

π2 = (xm+1, . . . , xm+n)

and ∀ l ∈ Ob T Σ. ∀ f = (fi)
m
i=1 ∈ T Σ(m, l). ∀ g = (gj)

n
j=1 ∈ T Σ(n, l).

〈f, g〉 = (f1, . . . , fm, g1, . . . , gn)

and can easily verify the UP of the product (Table 4.4).

5.4.1.4 Note. The pairing of the product in T Σ from Lemma 5.4.1.3 is associative,
because it is defined by the concatenation of tuples. Thus for the product functor in
T Σ the following holds for every m,n ∈ N0:

∏m
i=1 ·

∏n
j=1 =

∏m+n
i=1 . This is not true

in general: The pairing of the product in Set from Lemma 4.1.5.2 is not associative,
because it is defined by tupling and successive tupling is not associative. However it is
associative up to isomorphism. �

5.4.1.5 Lemma (embedding of the category of forests). Let Σ be a ranked al-
phabet. The function E : Mor Set ← Mor T Σ defined by

∀m,n ∈ Ob T Σ. ∀ f = (fi)
m
i=1 ∈ T Σ(m,n). ∀ t = (t1, . . . , tn) ∈ (TΣ∅)

n.

Eft = ([tj/xj]
n
j=1fi)

m
i=1

is an embedding functor

E : Set ← T Σ

which preserves finite products.

Proof. Note that, for every l ∈ Ob T Σ we have El = T l
Σ. We have to prove three

statements:

(i) E is a functor. The composition in T Σ (cf. Definition 5.4.1.2) and the function E

are both defined by means of a substitution operator. Using these definitions it is
a straightforward calculation to show that E is a functor.

(ii) The functor E is an embedding. Let f, g ∈ T Σ(m,n). Then Ef = Eg =⇒ f =
Ef(xi)

n
i=1 = Eg(xi)

n
i=1 = g

80

5.4 Relating transducers

(iii) The functor E preserves products, i.e. it maps products onto products. From the
definition of E we get that ∀n ∈ Ob T Σ = N0. En = (TΣ∅)

n and thus ∀ (mi)
n
i=1 ∈

Ob T n
Σ. E(

∏n
i=1mi) = E(

∑n
i=1mi) = (TΣ∅)

Pn
i=1mi ∼=

∏n
i=1(TΣ∅)

mi .

5.4.1.6 Note. Let Σ be a ranked alphabet.

(i) In order to avoid unnecessary notation, we will assume that the above embedding

E : Set ← T Σ

is an inclusion, or in other words, we identify a morphism f ∈ Mor T Σ (i.e. a
Σ-forest) with the set function Ef . Notice that this means that we have to identify
an object n ∈ Ob T Σ with the set (TΣ∅)

n, which is not a problem, since in category
theory objects are only indexes for the identities.

(ii) To make our notation even simpler, we will identify a symbol σ ∈ Σ with the
set function E

(
σ(x1, . . . , xrankΣ σ)

)
(see Definition 2.2.1.2). Consider e.g. Σ =

{σ(2), α(0)}. We identify the forest
(
σ(α, x1), α, σ(σ(x1, x2), α)

)
∈ (TΣX2)

3 with a
set function that we may write

〈
〈σ · 〈α · !, π1〉, α · !, σ · 〈σ, α · !〉

〉
: (TΣ∅)

3 ← (TΣ∅)
2�

5.4.1.7 Note. Let Σ, and Σ′ be ranked alphabets with Σ ⊆ Σ′ such that for every
σ ∈ Σ the equality rankΣ′ σ = rankΣ σ holds. Since for every n ∈ N0: TΣXn ⊆ TΣ′Xn

we obviously have an embedding

T Σ′ ← T Σ.

We will identify this embedding with the inclusion. �

5.4.2 Relating the semantics of top-down tree transducers and top-down
algebraic transducers

5.4.2.1 Example (motivating example for relation). To motivate the description
of the semantics of top-down tree transducers as algebraic transducers over Set , consider
the top-down tree transducer Tzigzag from Example 3.1.1.2. We view the rules of R as
equations in the category TQ∪Σ∪∆ which is embedded into Set by E:

E(zig x1) · E(α) = E(N),

E(zag x1) · E(α) = E(N),

E(zig x1) · E(σ(x1, x2)) = E(Ax1) · E(zag x1),

E(zag x1) · E(σ(x1, x2)) = E(B x1) · E(zig x2).

If we identify forests with set functions according to Note 5.4.1.6 (i), we may describe
the rules of R as a system of equations in the category Set just by omitting the E. Our

81

5 The initial algebra approach

aim is to find solutions for zig and zag that suffice the above equations. First, let us
simplify the notation according to Note 5.4.1.6 (ii):

zig · α = N,

zag · α = N,

zig · σ = A · zag · π1,

zag · σ = B · zig · π2.

We use pairing to collect all the states:

〈zig · α, zag · α〉 = 〈N,N〉,

〈zig · σ, zag · σ〉 = 〈A · zag · π1, B · zig · π2〉.

On the left hand side we use the fusion law for the product (Table 4.4) and on the right
hand side the fusion (i) law for product functors (Table 4.7) and cancelation law for
products (Table 4.4) and obtain

〈zig , zag〉 · α = 〈N,N〉 · id1,

〈zig , zag〉 · σ = 〈A · π2 · π1, B · π1 · π2〉 · (〈zig , zag〉 × 〈zig , zag〉).

We use copairing to collect all input symbols:

[〈zig , zag〉 · α, 〈zig , zag〉 · σ]

= [〈N,N〉 · id1, 〈A · π2 · π1, B · π1 · π2〉 · (〈zig , zag〉 × 〈zig , zag〉)].

To the left hand side we apply the fusion law for coproducts (Table 4.5) and to the right
hand side we apply the fusion (i) law for coproduct functors (Table 4.7) and obtain

〈zig , zag〉 · [α, σ] = [〈N,N〉, 〈A · π2 · π1, B · π1 · π2〉] · (id1 + 〈zig , zag〉 × 〈zig , zag〉).

Since the functor F = 1 + Id× Id : Set ← Set has the least fixed point µF = TΣ∅ where
the initial F-algebra is [α, σ] = inF : µF← F(µF), we can write

〈zig , zag〉 · inF = [〈N,N〉, 〈A · π2 · π1, B · π1 · π2〉] · F〈zig , zag〉

Due to the UP of the catamorphism (Table 4.8), the above is equivalent to

〈zig , zag〉 = ([[〈N,N〉, 〈A · π2 · π1, B · π1 · π2〉]])F.

Notice that we found a unique solution for zig and for zag, respectively. Using the
functor G = 1 + Id + Id with inG = [N,A,B], we may write

zig = π1 · ([[〈N,N〉, 〈A · π2 · π1, B · π1 · π2〉]])F
= π1 · ([HinG])F where H[ϕ1, ϕ2, ϕ3] = [〈ϕ1, ϕ1〉, 〈ϕ2 · π2 · π1, ϕ3 · π1 · π2〉]

82

5.4 Relating transducers

With Example 5.3.3.2 we get that

Azigzag = (H, Id× Id, π1) : G← F

is an algebraic transducer over Set with

zig = π1 · ([HinG])F = [[(H, Id× Id, π1)]].

It is worth mentioning that the fact that H is a certain concrete functor is important
in Theorem 5.3.3.3, because it is a precondition for the functorial acid rain theorem
(Theorem 5.2.2.2). �

5.4.2.2 Example (top-down algebraic transducer). The algebraic transducer
Azigzag = (H, Id × Id, π1) from the Example 5.4.2.1 is a top-down algebraic transducer
over Set . With the notations from the Example 5.4.2.1 we can show how a top-down
algebraic transducer operates: for every f : (TΣ∅)

2 ← (TΣ∅)
0:

[[Azigzag]] · σ · f

=π1 · ([HinG])F · inF · ι2 · f

= { UP (Table 4.8) }

π1 · HinG · F([HinG])F · ι2 · f

= { definition of H and F and cancelation for coproduct functors (Table 4.7) }

π1 · [〈N,N〉, 〈A · π2 · π1, B · π1 · π2〉] · ι2 · (([HinG])F × ([HinG])F) · f

= { cancelation (Table 4.5 and Table 4.4) }

A · π2 · π1 · (([HinG])F × ([HinG])F) · f

= { cancelation (Table 4.6) }

A · π2 · ([HinG])F · π1 · f

=A · [[(H, Id× Id, π2)]] · π1 · f. �

5.4.2.3 Note (motivation for relation). We want to generalize the construction
from Example 5.4.2.1. Let T ∈ tdtt(∆,Σ) be a top-down tree transducer and A =
(H,U, π) : G← F be a top-down algebraic transducer over Set . In Table 5.1 we list the
parts of T and A which correspond to each other. The following Definition 5.4.2.5 will
define this correspondence formally.

5.4.2.4 Lemma (right hand side form). Let T = (Q,Σ,∆, q1, R) be a top-down
tree transducer with Q = {q1, . . . , ql}, r ∈ N0, σ ∈ Σ(r) and q ∈ Q. We can write
the right hand side of the rule

q(σ(x1, . . . , xr))→ rhsR,σ q

83

5 The initial algebra approach

top-down tree transducer ←→ top-down algebraic transducer
T = (Q,Σ,∆, q0, R) ←→ A = (H,U, π) : G← F

Q ←→ U

Σ ←→ F

∆ ←→ G

q0 ←→ π
R ←→ HinG

TΣ∅ ←→ µF

T∆∅ ←→ µG

[[T]] ←→ [[A]]

Table 5.1: Relation between the components of top-down tree and top-down algebraic
transducers

of R in the form (see Definition and Corollary 4.1.5.5 for the definition of
∏r)

rhsR,σ q = rhs′R,σ q ·
r∏(
〈qi〉

l
i=1

)
with rhs′R,σ q ∈ T∆Xr·l

where the composition is that of the category of forests and

rhs′R,σ q = [x(t−1)·l+s/qsxt]
l
s=1

r
t=1(rhsR,σ q).

Proof.

rhs′R,σ q ·
r∏(
〈qi〉

l
i=1

)

= { Lemma 5.4.1.3 }

rhs′R,σ q ·
r∏

t=1

(
q1xt, . . . , qlxt)

= { Lemma 5.4.1.3 and Definition and Corollary 4.1.5.5 }

rhs′R,σ q · (q1x1, . . . , qlx1, q1x2, . . . , qlx2, . . . q1xr, . . . , qlxr)

= { Definition 5.4.1.2 }

[qsxt/x(t−1)·l+s]
l
s=1

r
t=1(rhs′R,σ q)

= { definition of rhs′ }

rhsR,σ q.

84

5.4 Relating transducers

5.4.2.5 Definition (relation). Let T = (Q,Σ,∆, q0, R) be a top-down tree transducer
and A = (H,U, π) ∈ ATSet (G,F) be an algebraic transducer. We call T and A related
and write

T ≈ A

provided that

(i) F =
∐
σ∈Σ(

∏rankΣ σ Id) and G =
∐
δ∈∆(

∏rank∆ δ
Id) such that inF = [σ]σ∈Σ and

inG = [δ]δ∈∆,

(ii) U is a product (Id
πq
←−− U)q∈Q such that πq0 = π, and

(iii) HinG = [〈rhs′R,σ q〉q∈Q]σ∈Σ. �

5.4.2.6 Example (relation). The top-down tree transducer Tzigzag from
Example 3.1.1.2 and the algebraic transducer Azigzag from Example 5.4.2.1 are related
Tzigzag ≈ Azigzag. It is obvious by construction that (i) and (ii) from Definition 5.4.2.5
are satisfied. Let us have a look at (iii): From the definition of Tzigzag in Example 3.1.1.2
and with Lemma 5.4.2.4 we obtain

rhs′R,α zig = N

rhs′R,α zag = N

rhs′R,σ zig = Ax2

rhs′R,σ zag = B x3.

With Definition 5.4.1.2 and Lemma 5.4.1.3 we calculate:

A · π2 · π1 = (Ax1) · (x2) · (x1, x2) = Ax2,

B · π1 · π2 = (B x1) · (x1) · (x3, x4) = B x3

and thus

HinG = [〈N,N〉, 〈A·π2 ·π1, B ·π1 ·π2〉] =
[
〈rhs′R,α zig , rhs′R,α zag〉, 〈rhs′R,σ zig , rhs′R,σ zag〉

]
.

Notice that we have used the same symbols for different projections: π1, π2 :
T∆∅ ← (T∆∅)

2 and π1, π2 : (T∆∅)
2 ← (T∆∅)

4. We do this according to
Definition 4.1.3.4, because projections are natural transformations due to Definition and
Definition and Corollary 4.1.5.5. �

5.4.2.7 Theorem (relation implies semantic equivalence). Let A be a top-down
algebraic transducer over Set and T be a top-down tree transducer. If T and A are
related, then they have equal semantics:

T ≈ A =⇒ [[T]] = [[A]].

85

5 The initial algebra approach

Proof. We use the notations from Definition 5.4.2.5 and let Q = {q1, . . . , ql} with l ∈ N.

([HinG])F = 〈[[T]]q〉q∈Q

⇐⇒ { UP (Table 4.8) }

〈[[T]]q〉q∈Q · [σ]σ∈Σ = HinG · F〈[[T]]q〉q∈Q

⇐⇒ { UP (Table 4.4 and Table 4.5) }

∀σ ∈ Σ. ∀ q ∈ Q. [[T]]q · σ = πq · HinG · F〈[[T]]q〉q∈Q · ισ

⇐⇒ { definition of F in Definition 5.4.2.5; cancelation (Table 4.7) }

∀σ ∈ Σ. ∀ q ∈ Q. [[T]]q · σ = πq · HinG · ισ ·

rankΣ σ∏ (
〈[[T]]q〉q∈Q

)

⇐⇒ { Definition 5.4.2.5 (iii) }

∀σ ∈ Σ. ∀ q ∈ Q. [[T]]q · σ = rhs′R,σ q ·

rankΣ σ∏ (
〈[[T]]q〉q∈Q

)

⇐⇒ { pointwise on terms with Lemma 5.4.2.4 and Definition 5.4.1.2 }

∀σ ∈ Σ. ∀ q ∈ Q. ∀ (tr)
rankΣ σ
r=1 ∈ (TΣ∅)

rankΣ σ.

[[T]]q
(
σ(t1, . . . , trankΣ σ)

)

=
[
[[T]]q1t1/x1, . . . , [[T]]qlt1/xl, [[T]]q1t2/xl+1, . . . , [[T]]qlt2/x2·l, . . .

]
(rhs′R,σ q)

=
[
[[T]]ptj/pxj

]
p∈Q

xj∈XrankΣ σ

(rhsR,σ q).

The latter is the definition of [[�]] in Definition 3.2.2.1 and thus with
Definition 5.4.2.5 (ii):

[[A]] = π · ([HinG])F = [[T]]q0 = [[T]].

5.4.2.8 Lemma. Let ∆ = {δ1, . . . , δn} be a ranked alphabet and A = (|A|;ϕ1, . . . , ϕn)
and B = (|B|;ϕ′1, . . . , ϕ

′
n) be ∆-algebras. For every ∆-algebra homomorphism f : A←

B, every k ∈ N0, and every ∆-term t ∈ T∆Xk the following holds:

[ϕi/δi]
n
i=1t ·

k∏
|f | = |f | · [ϕ′i/δi]

n
i=1t.

Proof. Let (bj)
k
j=1 ∈ B

k. The ∆-algebra T∆Xk is free over Xk. The 2nd-order substi-
tution operators from Definition 2.2.2.6 (ii) are defined as follows

(α)
(
[ϕi/δi]

n
i=1t ·

∏k |f |
)
(bj)

k
j=1 = [ϕi/δi]

n
i=1t(|f |bj)

k
j=1 = |g|t where g : A ← T∆Xk is

the unique ∆-algebra homomorphism with ∀xj ∈ Xk. |g|xj = |f |bj and

86

5.4 Relating transducers

(β) [ϕ′i/δi]
n
i=1t(bj)

k
j=1 = |h|t where h : B ← T∆Xk is the unique ∆-algebra homomor-

phism with ∀xj ∈ Xk. |h|xj = bj .

Thus ∀xi ∈ Xk. |f · h|xi = |f |
(
|h|xi

)
= |f |bi = |g|xi and hence with (β): g = f · h.

5.4.2.9 Lemma. For every top-down tree transducer T ∈ tdtt there exists a related
top-down algebraic transducer A ∈ Mor td -ATSet , i.e. T ≈ A.

Proof. Let T = (Q,Σ,∆, q0, R) be a top-down tree transducer. We use the product and
coproduct functor according to Lemma 5.4.1.3 and Lemma 4.1.5.4 to define the functors
F,G,U : Set ← Set by

F =
∐

σ∈Σ

(

rankΣ σ∏
Id), G =

∐

δ∈∆

(

rank∆ δ∏
Id), U =

#Q∏
Id.

According to Lemma 4.1.7.3 we have the initial algebras:

inF = [σ]σ∈Σ and inG = [δ]δ∈∆.

This choice of initial algebras leads to

µF = TΣ∅ and µG = T∆∅.

Lemma 4.1.5.9 ensures that U is faithful. We claim that the function H : Ob(SetF) ←
Ob(SetG) defined by

∀ϕ ∈ Ob(SetG). Hϕ =
[〈

[ϕ · ιδ/δ]δ∈∆(rhs′R,σ q)
〉
q∈Q

]
σ∈Σ

can be uniquely extended to a concrete functor:

H : (SetF, | � |F)← (SetG,U · | � |G).

To prove this we use Lemma 5.1.1.2, thus we have to verify that for every ϕ,ϕ′ ∈
Ob(SetG) and every f : |ϕ|G ← |ϕ|′G the condition:

ϕ · Gf = f · ϕ′

Hϕ · F(Uf) = Uf · Hϕ′
(∗)

87

5 The initial algebra approach

holds. First we restate the precondition of (∗):

ϕ · Gf = f · ϕ′

⇐⇒ { fusion and reflection in Table 4.5 and definition of G }

[ϕ · ιδ]δ∈∆ ·
∐

δ∈∆

(

rank∆ δ∏
f) = f · [ϕ′ · ιδ]δ∈∆

⇐⇒ { fusion (i) in Table 4.7 }

[ϕ · ιδ ·

rank∆ δ∏
f]δ∈∆ = f · [ϕ′ · ιδ]δ∈∆

⇐⇒ { UP and cancelation in Table 4.5 }

∀ δ ∈ ∆. ϕ · ιδ ·

rank∆ δ∏
f = f · ϕ′ · ιδ

⇐⇒ { Definition 2.2.2.2 }

f : (|ϕ|G; (ϕ · ιδ)δ∈∆)← (|ϕ′|G; (ϕ′ · ιδ)δ∈∆) is a ∆-algebra homomorphism.

Now we show the conclusion of (∗):

Hϕ · F(Uf)

=
[〈

[ϕ · ιδ/δ]δ∈∆(rhs′R,σ q)
〉
q∈Q

]
σ∈Σ
·
∐

σ∈Σ

(

rankΣ σ∏
(Uf))

=

〈
[ϕ · ιδ/δ]δ∈∆(rhs′R,σ q) ·

rankΣ σ∏
(Uf)

〉

q∈Q

σ∈Σ

= { Lemma 5.4.2.8 with

rankΣ σ·#Q∏
=

rankΣ σ∏
·U and precondition of (∗) }

[〈
f · [ϕ′ · ιδ/δ]δ∈∆(rhs′R,σ q)

〉
q∈Q

]
σ∈Σ

=

{
fusion (i) for product functors (Table 4.6), definition of U,

and fusion for coproducts (Table 4.5)

}

Uf ·
[〈

[ϕ′ · ιδ/δ]δ∈∆(rhs′R,σ q)
〉
q∈Q

]
σ∈Σ

=Uf · Hϕ′.

It is easy to see that HinG =
[〈

(rhs′R,σ q)
〉
q∈Q

]
σ∈Σ

and thus A = (H,U, πq0) is an

algebraic transducer over Set with T ≈ A.

5.4.2.10 Definition. We use the construction from the preceding Lemma 5.4.2.9 to
define a function:

R : Mor td -ATSet ← tdtt .

88

5.4 Relating transducers

Notice that the functors F, G, and U from Lemma 5.4.2.9 are only determined up to iso-
morphism. We make R a function just by choosing one of the representatives of the iso-
morphism class. Notice that we can view the category td -ATSet modulo algebraic trans-
ducer isomorphisms, because of Corollary 5.3.4.6, Lemma 5.3.5.3, and Theorem 5.3.4.4.�

5.4.2.11 Corollary. From Lemma 5.4.2.9 and Theorem 5.4.2.7 follows:

(i) For every top-down tree transducer T we have: T ≈ RT .

(ii) [[�]]︸︷︷︸
on tdtt

= [[�]]︸︷︷︸
on td -AT

· R. �

5.4.2.12 Corollary. With Lemma 5.4.2.9 and Theorem 5.4.2.7 we get:

TOP ⊆ TOPAT. �

5.4.2.13 Note. We have not yet proven the other direction, and thus equality, in
Corollary 5.4.2.12, because there may be top-down algebraic transducers, which are
not in the image of R. Perhaps we would need additional preconditions on the concrete
functors of the algebraic transducers, to force R to be surjective. �

5.4.3 Relating syntactic composition and fusion

5.4.3.1 Example (composition of top-down algebraic transducers). Consider
the two top-down tree transducers Tzigzag and Tbin from the Example 3.1.1.2 and
Example 3.3.1.3. For both we may construct a related algebraic transducer
over Set according to Lemma 5.4.2.9, i.e. Tzigzag ≈ Azigzag and Tbin ≈ Abin.
In Example 5.4.2.1 we have already seen Azigzag = (H, Id × Id, π1) where
H[ϕ1, ϕ2, ϕ3] = [〈ϕ1, ϕ1〉, 〈ϕ2 · π2 · π1, ϕ3 · π1 · π2〉]. Likewise we can construct the
Abin = (H′, Id, id) where H′[ϕ1, ϕ2] = [ϕ1, ϕ2 · 〈id, id〉, ϕ2 · 〈id, id〉]. We construct the
composition (cf. Example 3.3.1.3):

Abin · Azigzag

= (H′, Id, id) · (H, Id× Id, π1)

= (H · H′, Id× Id, π1)

where (H · H′)[ϕ1, ϕ2] = [〈ϕ1, ϕ1〉, ϕ2 · 〈id, id〉 · π2 · π1, ϕ2 · 〈id, id〉 · π2 · π1]

In the same way we could construct the composition:

Azigzag·Abin = (H′·H, Id×Id, π1) where (H′ · H)[ϕ1, ϕ2, ϕ3] = [ϕ2 · π2 · π1, ϕ3 · π1, ϕ3 · π1].
�

The following theorem gives an answers a question which motivated this thesis: What
is the relation between short-cut fusion and composition of tree transducers? For top-
down tree transducers both fusion techniques yield the same result (modulo relation):

89

5 The initial algebra approach

5.4.3.2 Theorem. Let T1 and T2 be top-down tree transducers such that the input
alphabet of T2 is the output alphabet of T1. Then:

RT2 · RT1 = R(T2 · T1)

Proof. Let T1 = (P,Σ,∆, p0, R1), T2 = (Q,∆,Γ, q0, R2), and T2 · T1 = (Q ×
P,Σ,Γ, (q0, p0), R) with

R =
{
(q, p)(σ(x1, . . .))→ [[T ′2]]q(rhsR1,σ p)

∣∣ q ∈ Q ∧ p ∈ P ∧ σ ∈ Σ
}

where T ′2 is constructed from T2 as in the proof of Theorem 3.3.1.2. Let r =
max(rankΣ σ). Without loss of generality we can assume that ∆ and Γ are disjoint.
We define the top-down algebraic tree transducers

F3

A2 = (H2,U2, πq0)
←−−−−−−−−−−−−−−− F2

A1 = (H1,U1, πp0)
←−−−−−−−−−−−−−−− F1 and F3

A = (H,U, π(q0,p0))
←−−−−−−−−−−−−−−− F1

by A1 = RT1, A2 = RT2, and A = R(T2 · T1) where we use the construction of
Lemma 5.4.2.9 and thus in particular:

∀ϕ ∈ Ob(SetF2). H1ϕ =
[〈

[ϕ · ιδ/δ]δ∈∆(rhs′R1,σ p)
〉
p∈P

]
σ∈Σ

,

∀ϕ ∈ Ob(SetF3). H2ϕ =
[〈

[ϕ · ιγ/γ]γ∈Γ(rhs′R2,δ
q)

〉
q∈Q

]
δ∈∆

, and

∀ϕ ∈ Ob(SetF3). Hϕ =
[〈

[ϕ · ιγ/γ]γ∈Γ(rhs′R,σ p)
〉
(q,p)∈Q×P

]
σ∈Σ

.

We have to show that A2 · A1 = A holds. From Definition 5.3.1.1 we obtain A2 · A1 =
(H1 · H2,U1 · U2, π1 ∗ π2). Since the functors F1, F2, F3, U1, U2, and U are determined
only up to isomorphism, we may assume that U1 · U2 = U and π(q0,p0) = πp0 ∗ πq0
(cf. Theorem 5.3.5.2).

The essential statement we have to show is H1 ·H2 = H: From the definition of [[�]] in
Definition 3.2.2.1 and with Lemma 5.4.2.4 we obtain:

∀ δ ∈ ∆. 〈[[T ′2]]q〉q∈Q · δ = 〈rhs′R2,σ q〉q∈Q ·

rankΣ σ∏
〈[[T ′2]]q〉q∈Q

and ∀ px ∈ PXr. 〈[[T
′
2]]q〉q∈Q(px) =

(
(q, p)x

)
q∈Q

, i.e. 〈[[T ′2]]q〉q∈Q is a unique ∆-

algebra homomorphism on the ∆-algebra T∆(PXr) which is free on PXr. With

90

5.4 Relating transducers

Definition 2.2.2.6 (ii) we get

∀ p ∈ P. ∀σ ∈ Σ. [〈rhsR′

2,σ
q〉q∈Q/δ]δ∈∆(rhsR1,σ p) = 〈[[T ′2]]q〉(rhsR1,σ p)

=⇒ { definition of R }

∀ p ∈ P. ∀σ ∈ Σ. [〈rhsR′

2,σ
q〉q∈Q/δ]δ∈∆(rhsR1,σ p) = 〈rhsR,σ(q, p)〉q∈Q

=⇒ { Lemma 5.4.2.4 }

∀ p ∈ P. ∀σ ∈ Σ. [〈rhs′R2,σ q〉q∈Q/δ]δ∈∆(rhs′R1,σ p) = 〈rhs′R,σ(q, p)〉q∈Q

=⇒ { apply the substitution operator [ϕ · ιγ/γ]γ∈Γ on both sides }

∀ϕ ∈ Ob(SetF3). ∀ p ∈ P. ∀σ ∈ Σ.

[ϕ · ιγ/γ]γ∈Γ
(
[〈rhs′R2,σ q〉q∈Q/δ]δ∈∆(rhs′R1,σ p)

)
= 〈[ϕ · ιγ/γ]γ∈Γ rhs′R,σ(q, p)〉q∈Q

=⇒ { there are no symbols from Γ in the term rhs′R1,σp ∈ T∆X }

∀ϕ ∈ Ob(SetF3). ∀ p ∈ P. ∀σ ∈ Σ.[
〈[ϕ · ιγ/γ]γ∈Γ rhs′R2,σ q〉q∈Q/δ

]
δ∈∆

(rhs′R1,σ p) = 〈[ϕ · ιγ/γ]γ∈Γ rhs′R,σ(q, p)〉q∈Q

=⇒ { definition of H2 and cancelation (Table 4.5) }

∀ϕ ∈ Ob(SetF3). ∀σ ∈ Σ.[
H2ϕ · ιδ/δ

]
δ∈∆

(rhs′R1,σ p) = 〈[ϕ · ιγ/γ]γ∈Γ rhs′R,σ(q, p)〉(q,p)∈Q×P

=⇒ { definition of H1 and H and cancelation (Table 4.5) }

∀ϕ ∈ Ob(SetF3). H1(H2ϕ) = Hϕ

=⇒ { Lemma 4.2.1.5 }

H1 · H2 = H.

5.4.3.3 Lemma. Let Tid be the top-down tree transducer from Lemma 3.3.2.1. Then
RTid = Id.

Proof. Let RTid = (H,U, π). Since Tid has only one state, it is obvious that U = Id

and π = id. The construction for R in Lemma 5.4.2.9 yields for every ϕ: Hϕ =
[
[ϕ ·

ισ/σ]σ∈Σ(rhs′R,σ q)
]
σ∈Σ

=
[
[ϕ · ισ/σ]σ∈Σ

]
σ∈Σ

= [ϕ · ισ]σ∈Σ = ϕ. And thus we obtain with
Lemma 4.2.1.5 that H = Id.

5.4.3.4 Lemma. Let T1 = (P,Σ,∆, p0, R1) and T2 = (Q,Σ,∆, q0, R2) be top-down tree
transducers. The following holds:

RT1 = RT2 ⇐⇒ T1
∼= T2

where ∼= is the isomorphism of top-down tree transducers from Definition 3.2.2.5.

Proof. The direction⇐ is obvious, because the construction from Lemma 5.4.2.9 which
is the definition of R (Definition 5.4.2.10) depends only on the number of states rather

91

5 The initial algebra approach

than on the set of states. Let A1 = (H1,U1, πp0) = RT1 and A2 = (H2,U2, πq0) = RT2

where A1,A2 : G ← F. Thus we have H1 = H2, U1 = U2, and πp0 = πq0 . With the

construction of R from Lemma 5.4.2.9 we obtain
∏#P

Id = U1 = U2 =
∏#Q

Id and thus
#P = #Q, i.e. there exists a bijection between P and Q. We calculate

RT1 = RT2

=⇒ { see above }

H1 = H2

=⇒ H1 inG = H2 inG

=⇒ { Corollary 5.4.2.11: T1 ≈ A1 and T2 ≈ A2 and Definition 5.4.2.5 }

∀σ ∈ Σ. 〈rhs′R1,σ p〉p∈P = 〈rhs′R2,σ q〉q∈Q

=⇒ { choose the appropriate bijection h : P ← Q }

∀ q ∈ Q. ∀σ ∈ Σ. rhs′R1,σ(hq) = rhs′R2,σ q

=⇒ ∀ q ∈ Q. ∀σ ∈ Σ. rhs′R1,σ(hq) ·

rankΣ σ∏
(〈px〉p∈P) = rhs′R2,σ q ·

rankΣ σ∏
(〈px〉p∈P)

=⇒ ∀ q ∈ Q. ∀σ ∈ Σ. rhs′R1,σ(hq) ·

rankΣ σ∏
(〈px〉p∈P) = rhs′R2,σ q ·

rankΣ σ∏
(〈hq x〉q∈Q)

=⇒ { Lemma 5.4.2.4 }

∀ q ∈ Q. ∀σ ∈ Σ. rhsR1,σ(hq) = [hq x/qx]q∈Q
x∈X

(rhsR2,σ q)

The latter is the property (iii) from Definition 3.2.2.5.

5.4.3.5 Theorem (category of top-down tree transducers). (i) The class of
all top-down tree transducers modulo ∼= is a category (denoted by td -T t) where
the composition is the syntactic composition of top-down tree transducers.

(ii) The function R is an embedding functor R : td -ATSet ← td -T t .

Proof. (i) We have to show that ∼= is a congruence relation w.r.t. syntactic compo-
sition of top-down tree transducers, and we have to show that syntactic compo-
sition is associative modulo ∼=. Let T1, T2, and T3 be top-down tree transducers
(with input and output alphabets, such that the following compositions are de-
fined): Since R maps to a category and is multiplicative (Theorem 5.4.3.2) we have
R((T3 · T2) · T1) = RT3 ·RT2 ·RT1 = R(T3 · (T2 · T1)) and thus with Lemma 5.4.3.4
we obtain (T3 · T2) · T1

∼= T3 · (T2 · T1). Similarly we show that ∼= is a congru-
ence: Let T1, T

′
1, T2, and T ′2 be top-down tree transducers (with input and output

alphabets, such that the following compositions are defined) such that T1
∼= T ′1

and T2
∼= T ′2. From Lemma 5.4.3.4 we get that RT1 = RT ′1 and RT2 = RT ′2 and

thus with Theorem 5.4.3.2: R(T2 · T1) = RT2 · RT1 = RT ′2 · RT
′
1 = R(T ′2 · T

′
1). We

92

5.4 Relating transducers

use Lemma 5.4.3.4 again and have T2 · T1
∼= T ′2 · T

′
1. The latter means that ∼= is

a congruence. Thus we obtain a category td -T t where Mor td -T t = tdtt/ ∼= and
Ob td -T t is the class of all finite ranked alphabets.

(ii) We already know from Theorem 5.4.3.2 that R is multiplicative, from
Lemma 5.4.3.3 that R preserves identities, and from Lemma 5.4.3.4 that R does
not depend on the representative of the isomorphism class. Thus together with
(i), we obtain that R is a functor R : td -ATSet ← td -T t . It is obvious from
Lemma 5.4.3.4 that R is also an embedding.

5.4.3.6 Note. We try to visualize the relation between top-down tree transducers and
top-down algebraic transducers over Set in a diagram in Figure 5.1.

tree transducers

top-down

transducers

algebraic

top-down

tree transformations

[[T2]] = [[A2]] [[T1]] = [[A1]]

TΓ = µF2 TΣ = µF0

T∆ = µF1

ΣΓ F0

T1T2 A1A2

∆ F1

td-T t td-ATSet

Set

[[�]] [[�]]

R

T2 · T1 A2 · A1

R

[[T2 · T1]] = [[A2 · A1]]

F2

R

Figure 5.1: Relation between td -T t and td -ATSet

93

94

6 The free monad approach

The generalization from monoids to monads corresponds to the generalization from
character strings to trees on an abstract level.

As the theories of character string automata and generalized sequential machines use
monoids, it seems thus to be natural to use monads in the theory of tree transducers.
This idea has been developed in [Jür02] and has been presented in [Jür03].

Let us motivate the denotational semantics of tree transducers, that we will define
using a free monad in Subsection 6.3.1. We define a denotational semantics for deter-
ministic finite state automata (FSA) using a free monoid in three steps:

Consider an FSA M = (Q,Σ, r, q0, F) where Q is the set of states, Σ is the input
alphabet, r : Q ← Q × Σ is the transition function1, q0 ∈ Q is the initial state, and
F ⊆ Q the set of final states.

Step 1: The transition function
r : Q← Q× Σ

can equivalently be described by

r] : QQ ← Σ.

Step 2: The set QQ is the carrier of the monoid (QQ, idQ, ·). The character string
monoid (Σ∗, ε, ·) is a free monoid over Σ with universal arrow uΣ : Σ∗ ← Σ : a←[a.
Then there exists a unique monoid morphism r]/uΣ : (QQ, idQ, ·)← (Σ∗, ε, ·) such
that the following diagram commutes:

Σ

QQ Σ∗

uΣ

|r]/uΣ|

r]

(QQ, idQ, ·) (Σ∗, ε, ·)
r]/uΣ

This unique monoid morphism can be used as a denotational semantics 〈[M]〉 =
r]/uΣ of the FSA M . We call 〈[M]〉 the generalized semantics, because it is inde-
pendent from the initial state q0. Notice, that a compositional function is a monoid

1Without loss of generality we may assume that r is a function, rather than just a partial function.
Otherwise we could introduce one additional state Q′ = Q] {⊥}, and define r′ : Q′ ← Q′ × Σ for
every q ∈ Q′ and a ∈ Σ by r′(q, a) = r(q, a) if q 6= ⊥ and r(q, a) is defined, and r′(q, a) = ⊥ otherwise.

95

6 The free monad approach

homomorphism from a free monoid. Since the above generalized semantics is de-
fined to be the unique monoid homomorphism extending r], it is obvious, that any
compositional semantics of the automaton M will be equal to 〈[M]〉.

Step 3: We define the semantics [[M]] : Q← Σ∗ of M by [[M]]w = |〈[M]〉|w q0, i.e.

[[M]] = ω · |〈[M]〉|

where ω : Q← QQ : f q0 ←[f (called observation function) and | � | : Set ←Mon :
A←[(A, 1, ·) is the canonical forgetful functor on the category of monoids Mon.

The language recognized by M can now be described as the F -pre-image of this seman-
tics: LM = [[M]]−1[F] =

{
w ∈ Σ∗

∣∣ [[M]]w ∈ F
}
.

Before we continue let us summarize the three steps from above: Step 1: We used
the adjunction (Q× �) a (�)Q : Set ← Set to transform the transition function r into
r]. Step 2: We used the free character string monoid over Σ to iterate the transformed
transition r] deriving 〈[M]〉. Step 3: We used the observation function ω (encoding the
initial state q0) and the forgetful functor | � | to get the semantics [[M]].

We will see these three steps again in Subsection 6.3.1 on the level of terms and
monads.

For the following we will need a more abstract view on tree transducers and/or func-
tional programs:

6.1 Tree transducers as functional programs

6.1.1 Terms, types, and functors

In the following we want to use the language of category theory to describe terms and
types. We have already seen how to relate a ranked alphabet to a functor in Note 5.4.2.3.
In the last chapter this relation was rather ad hoc. In this chapter we will use a formal
definition:

6.1.1.1 Definition (ranked alphabets induce endofunctors on Set). (i) Let
Σ = (Σ, rankΣ) be a ranked alphabet. The function Σ′ defined by

∀ f ∈ Set(A,B). ∀ r ∈ N0. ∀σ ∈ Σ(r). ∀ b1, . . . , br. Σ
′f(σb1 · · · br) = σ(fb1) · · · (fbr)

is an endofunctor Σ′ : Set ← Set which is defined on objects by ∀A ∈
Ob Set . Σ′A =

{
σa1 · · · arankΣ

∣∣ σ ∈ Σ ∧ ai ∈ A
}
.

(ii) Obviously Σ′∅ = Σ(0) and Σ′{∅} ∼= Σ and we will assume, without loss of generality,
that Σ′{∅} = Σ.

(iii) To simplify our notation we will use the same symbol Σ to denote a ranked alphabet
Σ = (Σ, rankΣ), its underlying set of symbols Σ, and the functor Σ′ induced by
Σ. �

96

6.1 Tree transducers as functional programs

6.1.1.2 Definition (algebraic data type, regular type). An algebraic data type in
Haskell [PH99] is declared by the expression

data T α1 · · ·αn = C1 ~τ1 | · · · | Cm ~τm

where n ∈ N0, α1, . . . , αn are type variables, m ∈ N, and ~τ1, . . . , ~τm are types with a
syntax given by the following grammar

~τ ::= {τ}
τ ::= α type variable

| τ → τ function type
| T{τ} recursive call
| T ′{τ} (where T ′ 6= T) algebraic data type

where { � } denotes ‘zero or more’ occurrences.2 The symbol T is called a type con-
structor and C1, . . . ,Cm are called data constructors. For any types β1, . . . , βn the
above defines a type T β1 · · ·βn .3

An algebraic data type is called regular type (or uniform type) if the recursive call
occurs only positively. This can be described by the following extension to the above
grammar, where we introduce the new nonterminals τ+ and τ− for positive and negative
type expressions, respectively:

~τ ::= {τ+}
τ+ ::= α type variable

| τ− → τ+ function type
| T α1 . . . αn recursive call
| T ′{τ+} (where T ′ 6= T) regular type

τ− ::= α type variable
| τ+ → τ− function type
| T ′{τ−} (where T ′ 6= T) regular type

If the recursive call never occurs in the domain of a function type (i.e. left of →), then
the regular type is called a polynomial type. �

6.1.1.3 Definition (regular types as endofunctors). Consider a regular type

data T α1 · · ·αn = C1 ~τ1 | · · · | Cm ~τm

as defined in Definition 6.1.1.2.
Notice, that in the special case that all ~τi have the form ~τ ::= {Tα1 · · ·αn}, the values

of the regular type are just Σ-trees for Σ = {C1, . . . , Cm} where the ranks are equal to
the arities. Then we have the induced Set-endofunctor Σ from Definition 6.1.1.1.

2Please distinguish the Haskell | from the | used in grammars!
3More precisely T is a type of kind ∗ → · · · → ∗

| {z }

n times

, where a kind is a ‘meta type’ of types. Like a value

may be of some type, a type my be of some kind. A kind is either ∗ (for base types) or κ1 → κ2 for
some kinds κ1 and κ2. If α has kind κ1 → κ2 and β has kind κ1 then αβ is a type of kind κ2.

97

6 The free monad approach

Let us extend the definition of the endofunctor Σ to regular types: The restriction
to positive recursion calls is essential to guaranty that the algebraic data type can be
described by a (covariant) endofunctor. Otherwise the functor may become contravariant
(and thus cannot be an endofunctor) or even have some ‘mixed variance’. Let C be a
cartesian closed category that we use as semantic domain. For every free type variable
α let [[α]] ∈ Ob C be the semantics of α. We define the functor Σ : C ← C by

Σ = ΣC1~τ1| · · · |Cm~τm = ΣC1~τ1 + · · ·+ ΣCm~τm

ΣCiτi,1 · · · τi,ki
= Στi,1 × · · · × Στi,m

Σα = [[α]]

ΣT α1···αn
= Id

Στ→τ ′ = Στ ′ ⇐ Στ

Finally, we define the denotational semantics of T α1 · · ·αn by [[T α1 · · ·αn]] = [[Σ]] = µΣ

where we assume that Σ has an initial algebra inΣ : µΣ← Σ(µΣ).

Notice, that for a ranked alphabet Σ (which we identify with an endofunctor Σ accord-
ing to Definition 6.1.1.1 (iii)) the semantics [[�]] given by Definition 5.3.3.1 is a functor
(according to Theorem 5.3.3.3) which is defined on objects by [[Σ]] = µΣ. Later we
will see a semantics [[�]] (Definition 6.3.1.3) which will have the same property for every
varietor Σ. �

6.1.1.4 Observation.

The endofunctors induced by polynomial types, ranked alphabets, and unary ranked
alphabets are polynomial, bicartesian, and cocartesian Set-endofunctors, respectively.
E.g. the functor for the list data type data [α] = [] | α : [α] is the polynomial functor
1 + [[α]]× Id.

The endofunctors induced by ranked alphabets or polynomial functors with only finite
exponents are Setℵ0-endofunctors. �

6.1.2 Syntax and semantics of tree transducers

Throughout this subsection the symbols Q, Σ and ∆ usually denote ranked alphabets
where Q is unary, i.e. Σ and ∆ are bicartesian Set-endofunctors and Q is a cocarte-
sian Set-endofunctor. It is possible to generalize all definitions in this subsection, by
allowing Σ and ∆ to be Seta-endofunctors or polynomial Set-endofunctors. Of course
this generalization enlarges the classes of functions computable by a tree transducer.
However, it has no effect on the fusion results in Section 6.5.

As pointed out in Subsection 3.2.1, an important property of the operational seman-
tics of a tree transducer is that it is compositional. A function f on terms is called
compositional (or syntax directed [FV98]) if the value of f applied to a term t only
depends on the values of f applied to subterms of t.

98

6.1 Tree transducers as functional programs

We will define a denotational semantics in Definition 6.3.1.2 in such a way, that it will
be the unique function which satisfies certain properties. One of these properties is to be
compositional as explained in Definition 6.3.1.2 (ii). Thus the only thing we need to know
about the operational semantics in this chapter is the fact that it is compositional. And
thus we will not need further details about the operational semantics of tree transducers
here.

6.1.2.1 Definition (‘left hand side’ term). Let Σ be a ranked alphabet and X =
{x1, x2, x3, . . .} be a countably infinite set of variables. The set Tlhs

Σ X of all ‘left hand
side’ terms is the smallest subset of TΣX such that ’x1 ∈ Tlhs

Σ X and

r ∈ N0 σ ∈ Σ(r) t1, . . . , tr ∈ Tlhs
Σ X k1, . . . , kr ∈ N k1 = 1

∀ i < j. ki < kj ∀ i < r. varX ti = {xki
, . . . , xki+1−1} varX tr = {xkr

, . . .}

σt1 · · · tr ∈ Tlhs
Σ
X

.

Obviously Tlhs
Σ X ⊆ Tlin

Σ X. Notice that Tlhs
Σ X depends on the order in which we enumer-

ated the elements of X. The essential property of Tlhs
Σ X is, that for every term t ∈ TΣX

there is precisely one term t′ ∈ Tlhs
Σ X such that t′ is linear and t′ is equal to t up to

renaming of variables. �

The following is essentialy equivalent to Definition 3.1.1.1 but now we use some func-
tors to describe the syntactic restrictions of the left and right hand side terms. This will
make it easier to handle the tree transducers in our category theroy framework.

6.1.2.2 Definition ((pure) top-down tree transducer [Rou68, Rou70, Tha70]).
A functional program (e.g. a Haskell program [PH99]) of the form

λ x → let
lhs1 = rhs1

...
lhsm = rhsm

in f x

is called a top-down tree transducer with initial state f if there exists a set of
variables X and ranked alphabets Q,Σ,∆ where Q is unary and finite (` = #Q ∈ N),
such that for all i ∈ {1, . . . ,m}:

(i) lhsi ∈ Q(ΣX) ∩ Tlhs
Q+ΣX,

(ii) rhsi ∈ T∆(QX),

(iii) varX rhsi ⊆ varX lhsi , and

(iv) f x ∈ Q{x}.

The let . . . in construction is only used to make the initial state f explicit. The λ-
abstraction λ x → is only used to make explicit that f is a unary function (and may be
dropped using η-conversion). In fact the body of the program, i.e. the equation system

99

6 The free monad approach

lhs1 = rhs1
...

lhsm = rhsm

can be viewed as the relation of a top-down tree transducer in the sense of
Definition 3.1.1.1 where we have writen → instead of =.

Notice, that it is part of the definition of a functional program, that every left hand
side of the above equation system has a unique right hand side.

Notice, that in the case of a top-down tree transducer the operational semantics
of the according functional program, and the operational semantics as described in
Subsection 3.2.1, as well as the denotational semantics given in Subsection 3.2.2 coincide.
We denote the class of all functions which may be computed by an `-state top-down tree

transducer by TOP ` and according to Definition 3.2.2.3 we have TOP =
⋃
`∈N

TOP `.
A top-down tree transducer is called pure if ` = 1, i.e. the top-down tree transducer

has only one state. A pure top-down tree transducer is also called a homomorphism
tree transducer. The class of all functions computable by a homomorphism tree
transducer is also denoted by HOM = TOP 1. Obviously HOM ⊆ TOP . �

6.1.2.3 Example (top-down tree transducer). Consider the following two regular
types:

data Nat = Zero | Succ Nat
data Bool = False| True

The program

let
even Zero = True
even(Succ n) = odd n
odd Zero = False
odd (Succ n) = even n

in even

is a top-down tree transducer with two states and initial state even. Moreover the
program

even Zero = True
even(Succ n) = odd n
odd Zero = False
odd (Succ n) = even n

can be viewed as a top-down tree transducer with initial state even or a top-down tree
transducer with initial state odd . �

Before we can define macro tree transducers we need one more definition in order
to express applicative terms [Dam82], i.e. terms, where some subterms are treated as
functions which can be applied to other terms.

100

6.1 Tree transducers as functional programs

6.1.2.4 Definition (application functor). Let C be a cartesian closed category and
I ∈ Ob C. We define the functor AI : EndC ← C by

∀ f, g ∈ Mor C. AIf g = (g⇐ idI)× f.

Obviously AI is polynomial.
Notice, that since ⇐ and × are only defined up to isomorphism, so is AI . For every

pair of objects X,Y ∈ Ob C we have AIX Y = Y I ×X.
For finite sets I = {1, . . . , k} we can easily define AI on cartesian categories (e.g. on

Setℵ0). For C = Set or C = Setℵ0 and k ∈ N0 we use AkX Y =
{
x y1 · · · yk

∣∣ x ∈
X ∧ yi ∈ Y

}
∼= Y k ×X ∼= A{1,...,k}X Y . �

6.1.2.5 Definition ((pure) ((simple) basic) macro tree transducer). A func-
tional program of the form

λ x → let
lhs1 = rhs1

...
lhsm = rhsm

in f x e1 · · · ek

is called a macro tree transducer with initial state f and environment (e1, . . . , ek)
if there exist sets X, Y and ranked alphabets Q,Σ,∆ where Q is unary and finite
(` = #Q ∈ N), and a finite index set I = {1, . . . , k}, such that for all i ∈ {1, . . . ,m}:

(i) lhsi ∈ AI
(
Q(ΣX)

)
Y ∩ Tlhs

F+Σ(X + Y), where FX = AI(QX)X

(ii) rhsi ∈ T∆+AI(QX)Y ,

(iii) varX]Y rhsi ⊆ varX]Y lhsi , and

(iv) f x e1 · · · ek ∈ AI(Q{x}) {e1, . . . , ek}.

The let . . . in construction is only used to make explicit the initial state f and the
environment (e1, . . . , ek).

We denote the class of all functions which may be computed by an `-state macro tree
transducer by MAC ` and set MAC =

⋃
`∈N

MAC `. A macro tree transducer is called
pure if ` = 1, i.e. the macro tree transducer has only one state. If {rhs1, . . . , rhsm} ⊆
T∆

(
Y +AI(QX)(T∆Y)

)
it is called basic and if {rhs1, . . . , rhsm} ⊆ T∆

(
Y +AI(QX)Y

)

it is called simple basic. In other words basic macro tree transducers have no nested
states in any right hand side, and simple basic macro tree transducers are basic macro
tree transducers where constructors may not occur inside a context parameter in any
right hand side.

The classes of all functions computable by (simple) basic macro tree transducers are
denoted by b-MAC and sb-MAC , respectively. The classical definition of a macro
tree transducer allows different states to have different numbers of context parame-
ters, whereas we use a fixed number for all the states. This can be done without loss of

101

6 The free monad approach

generality because we need not to use all the context parameters in the right hand sides.
It is easy to see that TOP ⊆ sb-MAC ⊆ b-MAC ⊆ MAC . �

6.1.2.6 Example (macro tree transducer). Consider the list data type:

data [α] = [] | α : [α]

The program

reverse x = let
rev [] ys = ys
rev (x : xs)ys = rev xs (x : ys)

in rev x []

is a pure basic macro tree transducer with one context parameter ys. It is not simple.

Notice that this is not a tree transducer in the classical sense, since the functor Σ =
∆ for the input and output data type (see Observation 6.1.1.4) is polynomial rather
than just bicartesian (compare Example 3.1.2.1). As we will see later, the monadic
transducer (Definition 6.3.1.1) makes it possible to describe this kind of polymorphic
tree transducers without any additional effort. �

6.1.3 The rule of a tree transducer

The body of a tree transducer is a system of defining equations

lhs1 = rhs1
...

lhsm = rhsm

Since every left hand side has a unique right hand side, we can describe these equations by
the function %X : lhsi 7→ rhsi where X is the set of variables occurring in the equations.
We call this function the rule of the tree transducer. The type of this function depends
on the syntactic class of the tree transducer. We give an overview over the syntactic
classes of tree transducers that we have defined (and some more) and the types of their
rules in Table 6.1 where Σ, ∆ are polynomial Set-endofunctors; Q is a cocartesian Set-
endofunctor; X, Y are sets; k ∈ N; A is a complete semiring; and B is the boolean
semiring. The symbol 〈〈 � 〉〉 will be explained later in Definition 7.1.3.3.

Moreover, every tree transducer rule %X is natural in X:

6.1.3.1 Proposition (tree transducer rules are natural transformations).
Every tree transducer rule can be uniquely extended to a natural transformation, and
vice versa every natural transformation of the appropriate type can be restricted to a
tree transducer rule.

102

6.1 Tree transducers as functional programs

syntactic class class of tree transformations type of rules

homomorphism HOM T∆ X ← ΣX
top-down TOP T∆ (QX) ← Q(ΣX)
simple basic macro sb-MAC T∆

(
Y + Ak(QX) Y

)
←Ak

(
Q(ΣX)

)
Y

basic macro b-MAC T∆

(
Y + Ak(QX)(T∆Y)

)
←Ak

(
Q(ΣX)

)
Y

macro MAC T∆+Ak(QX)Y ←Ak
(
Q(ΣX)

)
Y

top-down tree-series TOPA A〈〈T∆(QX)〉〉 ← Q(ΣX)
nondeterm. top-down TOPB B〈〈T∆(QX)〉〉 ← Q(ΣX)

bottom-up BOT Q(T∆X) ← Σ(QX)

Table 6.1: Some classes of tree transducers

Proof. We begin with a precise formalization of the statement:

Let Σ = (Σ, rankΣ) and ∆ be ranked alphabets and X = {x1, x2, x3, . . .} a countably
infinite set. As described in Definition 6.1.1.1 we can view these as Set-endofunctors.

We formalize and prove the statement for homomorphism tree transducers only. It
can be generalized mechanically to other subsets of Tlhs

Σ X.

We define the sets L =
{
σ’x1 · · · ’xrankΣ σ

∣∣ σ∈Σ
}

= ΣX ∩ Tlhs
Σ X of left hand sides and

R =
{
r : T∆X ← L

∣∣ ∀ ` ∈ L. varX(r`) ⊆ varX `
}

of tree transducer rules. Finally,
we define the function Ψ by

Ψ : R ← EndSet(T∆,Σ)
%X |L ←[%

where EndSet(T∆,Σ) denotes the set of all natural transformations to T∆ from Σ and
%X |L denotes the restriction of the function %X on the set L.

The statement may now be given as follows: The function Ψ is a bijection.

Now we are going to prove that statement: We will show that the inverse of Ψ is
the function �̂ given for every r ∈ R, for every set Y , every k ∈ N0, σ ∈ Σ(k), and
y1, . . . , yk ∈ Y by

(r̂)Y (σ’y1 · · · ’yk) = T∆f
(
r(σ’x1 · · · ’xk)

)
where f : Y ← {x1, . . . , xk} : yi ←[xi.

Notice, that the above definition of f is possible because the variables {x1, . . . , xk} are
pairwise distinct. We have to prove the following four statements:

(i) The values of Ψ are indeed elements of R:
Let % : T∆

.← Σ and ` ∈ L. We assume that there exists an x ∈ X such that
x ∈ varX(Ψ% `) but x 6∈ varX `. Let x′ ∈ X \ varX(Ψ%`). We define h : X ← X

103

6 The free monad approach

by hx = x′ and h|X\{x,x′} = id.

%X`

= { h|varX ` = id }

%X(Σh`)

= { naturalness of %, i.e. %X · Σh = T∆h · %X }

T∆h(%X`)

6= { x′ ∈ varX
(
T∆h(%X`)

)
\ varX(%X`) }

%X`.

And thus by contraposition varX(Ψ% `) ⊆ varX `.

(ii) The values of �̂ are indeed natural transformations:
Let % = r̂. Let Y and Z be sets, h : Y ← Z, {y1, . . . , yk} ⊆ Y , {z1, . . . , zk} ⊆ Z,
fxi = hzi, and gxi = zi.

%Y
(
Σh(σ’z1 · · · ’zk)

)

= { definition of Σ in Definition 6.1.1.1 }

%Y
(
σ(hz1) · · · (hzk)

)

= { definition of �̂ }

T∆f
(
r(σ’x1 · · · ’xk)

)

= { f = h · g }

T∆(h · g)
(
r(σ’x1 · · · ’xk)

)

= { T∆ is a functor }

T∆h
(
T∆g

(
r(σ’x1 · · · ’xk)

))

= { definition of �̂ }

T∆h
(
%Z(σ’z1 · · · ’zk)

)

And thus %Y · Σh = T∆h · %Z .

(iii) Obviously Ψ · �̂ = id because �̂ is an extension and Ψ the according restriction.

(iv) �̂ ·Ψ = id:

104

6.2 Monads and Monad transformers

Let Y be a set, % : T∆
.← Σ, and σ’y1 · · · ’yk ∈ ΣY .

Ψ̂%Y (σ’y1 · · · ’yk)

= { definition of Ψ }

%̂X |LY (σ’y1 · · · ’yk)

= { definition of �̂ with fxi = yi }

T∆f
(
%X(σ’x1 . . . ’xk)

)

= { naturalness of %, i.e. T∆f · %X = %Y · Σf }

%Y
(
Σf(σ’x1 · · · ’xk)

)

= { definition of Σ in Definition 6.1.1.1 }

%Y (σ’y1 · · · ’yk)

6.2 Monads and Monad transformers

A monad T = (T, η, µ) over a category C is a triple consisting of a C-endofunctor T and
two natural transformations η : T

.← Id and µ : T
.← T2 which have to satisfy some

axioms (see Definition 4.4.1.1). The category of all monads together with all monad
morphisms (i.e. natural transformations commuting with the monadic operations, see
Definition 4.4.3.1) is denoted by MndC.

The intuition for a monad, that we will need is, that it can be viewed as a description
of a recursive data structure together with a notion of substitution.

The easiest example for a monad is the trivial monad OC = (IdC, idIdC
, idIdC

) on
a category C. It is easy to see, that OC is an initial object in MndC (with unique
mediating arrow |¡(T,η,µ)| = η). Moreover, if 0 is an initial object of C then OC is free
over 0 (Example 4.3.1.3 (i)).

An important example are the tree monads:

6.2.1 Tree monads and free monads

Consider a Set-endofunctor Σ induced by a ranked alphabet. Then TΣX ∼= µ(Σ +X)
denotes the set of all Σ-terms over X. It is easy to see that (TΣ, ’(�), (�)†) is a Kleisli
triple, i.e. the embedding of variables into trees ’(�) and the substitution (�)† satisfy the
axioms (i)–(iii) given in Definition and Lemma 4.4.1.3. Moreover the according monad
(TΣ, η, µ) is a free monad (Definition 4.4.3.1) over Σ with universal arrow uΣ given by
(uΣ)X = idTΣ

|ΣX (see Theorem 4.3.2.7, Theorem 4.4.4.5, and Corollary 4.4.4.7).
Thus a free monad over a Set-endofunctor Σ induced by a ranked alphabet describes

the free term-algebra together with the common term-substitution.
We will use monads (which are not necessarily free) to express the calculations of the

right hand sides of tree transducer rules during the computation. And we will use free

105

6 The free monad approach

monads to describe the input (and output) terms of tree transducers. Moreover we will
use the (UP) of free monads to define a denotational semantics for tree transducers.

We know that varietors have free monads (Theorem 4.4.4.5). We denote the free
monad over a varietor Σ by Σ? and its underlying endofunctor by TΣ = |Σ?|
(Definition 4.4.3.1).

The theory of tree transducers can be modeled in the category Set or even in the
full subcategory Setℵ0 , because sets of terms over finite ranked alphabets are countable.
Thus we may choose one of the following to get the existence of the free monads we
need:

(i) Every polynomial Set-endofunctor is a varietor (Theorem 4.3.2.7).

(ii) Every Setℵ0-endofunctor is a varietor (Proposition 4.1.7.8 & Corollary 4.3.2.6).

In case (i) we have to verify that the functors we deal with are indeed polynomial. In
case (ii) we have to be careful, since Setℵ0 lacks many of the convenient properties of
Set , e.g. Setℵ0 is not cartesian closed, since function spaces may be uncountable.

However, for us the choice (ii) is more convenient, since (MndSetℵ0 , | � |) has free
objects and thus (�)? a | � | (Proposition 4.1.7.8 & Corollary 4.4.4.6).

6.2.2 Monad transformers

One part of the monadic transducer, which we define later in Definition 6.3.1.1, is an
endofunctor on the category of all monads (on some category). Such a functor is some-
times called a monad transformer [Mog90].

Many different definitions of monad transformers exist in the literature. In [Hin00] a
monad transformer (H, π, ω) is an endofunctor H mapping monads onto monads together
with two natural transformations π : H

.← Id (called promote or lift) and ω : Id
.← H

(called observe). We will need a natural transformation ω : | � |0 · | � |
∆? .← | � |0 ·H · | � |

∆?

to observe the final result of the monadic computation. However, this function ω will
not be part of our definition of a monad transformer.

6.2.2.1 Definition (monad transformer). A pointed functor (F, π) on a category
C is a pair consisting of a C-endofunctor F and a natural transformation π : F

.← IdC. A
monad transformer on C is a pointed functor on the category of monads MndC. �

In the following two subsections we will see how to construct monad transformers from
adjunctions or coproducts of monads:

6.2.3 Monad transformers from adjunctions

6.2.3.1 Lemma (composition of an adjunction and a monad). Let (η, ε) : Q a
U : C ← D be an adjunction and T = (T, η̃, µ) be a monad on D. Then

S =
(
U · T · Q,Uη̃Q · η,U(µ · TεT)Q

)
(6.2.3.1)

is a monad on C.

106

6.2 Monads and Monad transformers

Proof. According to Proposition 4.4.4.3 we have an adjunction (η̃, ε̃) : FT a UT with

(UT · FT, η̃,UTε̃FT) = T. (∗)

We compose this adjunction with the adjunction (η, ε) : Q a U as described in
Lemma 4.3.4.5 and get the adjunction

(Uη̃Q · η, ε̃ · FTεUT) : FT · Q a U · UT

which itself gives rise to a monad (see Lemma 4.4.4.1):

(
U · UT · FT · Q,Uη̃Q · η, (U · UT)(ε̃ · FTεUT)(FT · Q)

)
.

We claim that the latter is equal to S which would finish our proof. The first components
can seen to be equal using the fact UT · FT = T from (∗). The second components are
equal. To show that the third components are equal as well we use (∗) and calculate:

(U · UT)(ε̃ · FTεUT)(FT · Q) = U
(
UTε̃FT

︸ ︷︷ ︸
= µ

·(UT · FT

︸ ︷︷ ︸
= T

)ε(UT · FT

︸ ︷︷ ︸
= T

)
)
Q.

We have just seen the function U · T · Q ←[T. For the following it will be useful to
give it a name:

6.2.3.2 Definition. Let C, D, E, and F be categories. We define the binary operator
←◦ for every α ∈ Mor CD and β ∈ Mor EF by

∀H ∈ Ob DE . (α←◦ β)H = α ∗ idH ∗ β.

Using Definition and Lemma 4.1.3.7, Lemma 4.1.3.8, and Definition and Lemma 4.1.3.6
it is easy to see that ←◦ is a bifunctor

� ←◦ � : (CF)DE

← CD × EF

where the value of ←◦ applied to a pair of objects F ∈ Ob CD and G ∈ Ob EF is given
by

∀ϕ ∈ Mor DE . (F←◦ G)ϕ = FϕG

where F←◦ G is a functor

F←◦ G : CF ← DE

given on objects H ∈ Ob DE by (F←◦ G)H = F ·H · G. Notice, that the latter makes ←◦
to a bifunctor

� ←◦ � : CAT← CAT×CATop. �

107

6 The free monad approach

6.2.3.3 Lemma. The binary operator ←◦ is a functor

� ←◦ � : CAT← CAT× CATop

which is given on objects by

∀C,D ∈ Ob CAT. C←◦D = CD.

Proof. Let C, D, E, and F be categories. Let F,F′,G,G′ : C ← D and H,H′, I, I′ : E ←
F . Let α : F← F′, β : G← G′, γ : H← H′ and δ : I← I′. Then

(α ∗ β)←◦ (γ ∗ δ)

= { Definition and Lemma 4.1.3.7 }

(αG · F′β)←◦ (Hδ · γI′)

= { Definition 6.2.3.2: � ←◦ � : (CF)DE

← CD × EF }

(αG←◦ Hδ) · (F′β←◦ γI′)

= { Definition 6.2.3.2: � ←◦ � : CAT← CAT×CATop }

(α←◦ δ)(G←◦ H) · (F′←◦ I′)(β←◦ γ)

= { Definition and Lemma 4.1.3.7 }

(α←◦ δ) ∗ (β←◦ γ)

6.2.3.4 Definition. Let Q : C ← D be a left adjoint functor. We use the construction
from Lemma 6.2.3.1 to define a functor Q : MndD ←MndC by

∀ (T, η̃, µ) ∈ Ob
(
MndC

)
. Q(T, η̃, µ) = (U · T · Q,Uη̃Q · η,U(µ · TεT)Q),

∀h ∈ Mor
(
MndC

)
. Qh = UhQ

where (η, ε) : Q a U is an adjunction. That Q is indeed a functor follows from
Definition and Lemma 4.1.3.6 and the fact that U is a functor. Moreover Q is a concrete
functor Q :

(
MndD, | � |

)
←

(
MndC, (U←◦ Q) · | � |

)
. Notice that Q depends on the

choice of the right adjoint U. However, according to Lemma 4.3.4.8 Q determines U

uniquely up to isomorphism. �

6.2.3.5 Lemma. The function � from Definition 6.2.3.4 is a functor

� : CAT← LeftAdjop

where LeftAdj denotes the subcategory of CAT where the morphisms are all left adjoint
functors (see Corollary 4.3.4.6).

108

6.2 Monads and Monad transformers

Proof. Obviously Id = Id. Let Q,Q′ : C ← D be left adjoint endofunctors with adjunc-
tions Q a U and Q′ a U′, respectively. Then Q′ ·Q a U ·U′ is an adjunction according to
Lemma 4.3.4.5. We show that Q · Q′ = Q′ · Q holds by pointwise calculation for all h ∈
Mor

(
MndD

)
as follows: (Q ·Q′)h = Q(Q′h) = U(U′hQ′)Q = (U ·U′)h(Q′ ·Q) = Q′ · Q.

6.2.3.6 Lemma. The bifunctor ←◦ preserves adjunctions: Let Q, U, Q′, and U′ be
functors. Then

Q a U ∧ Q′ a U′ =⇒ (Q←◦ U′) a (U←◦ Q′).

Proof. We claim that

(η, ε) : Q a U ∧ (η′, ε′) : Q′ a U′ =⇒ (η←◦ η′, ε←◦ ε′) : (Q←◦ U′) a (U←◦ Q′)

holds. We have to show that η ←◦ η′ and ε←◦ ε′ satisfy the axioms of an adjunction
given in Definition 4.3.4.1:

(ε←◦ ε′)(Q←◦ U′) · (Q←◦ U′)(η←◦ η′)

= { Definition 6.2.3.2 }

(εQ←◦ U′ε′) · (Qη←◦ η′U′)

= { Definition 6.2.3.2 }

(εQ · Qη)←◦ (U′ε′ · η′U′)

= { (η, ε) : Q a U, (η′, ε′) : Q′ a U′ & Definition 4.3.4.1 }

idQ←◦ idU′

= { Definition 6.2.3.2 }

idQ←◦U′ .

And similar (U←◦ Q′)(ε←◦ ε′) · (η←◦ η′)(U←◦ Q′) = idU←◦Q′ .

6.2.3.7 Proposition. Let C be a category. The bifunctor ←◦ : End2 C ← EndC ×
EndC can be extended to a concrete bifunctor:

� ←◦ � : (Mnd(EndC), | � |)← (MonC, | � |)× (MndC, | � |)

Proof. We define ←◦ on monads (T, η, µ) and (T̃, η̃, µ̃) on C by

(T, η, µ)←◦ (T̃, η̃, µ̃) = (T←◦ T̃, η←◦ η̃, µ←◦ µ̃). (∗)

First we have to show that the right hand side of (∗) is indeed a monad: We could just
verify the monad axioms. But we will do it a little more complicated: By means of

109

6 The free monad approach

Proposition 4.4.4.3 we have adjunctions (η, ε) : FT a UT and (η̃, ε̃) : F̃T̃ a ŨT̃ such that

(UT ·FT, η,UTεFT) = T and
(
ŨT̃ · F̃T̃, η̃, ŨT̃ε̃F̃T̃

)
= T̃. Then (η←◦ η̃, ε←◦ ε̃) : (FT←◦ ŨT̃) a

(UT←◦ F̃T̃) is an adjunction according to Lemma 6.2.3.6. Using Lemma 4.4.4.1 we can

make this into a monad
(
(UT ←◦ F̃T̃) · (FT ←◦ ŨT̃), η ←◦ η̃, (UT ←◦ F̃T̃)(ε←◦ ε̃)(FT ←◦

ŨT̃)
)
. The latter is equal to the right hand side of (∗) which can easily be seen using

Definition 6.2.3.2. Notice, that we in fact derived the right hand side of (∗) rather that
just verifying that it is a monad.

It remains to show that ←◦ maps monad morphisms onto monad morphisms: Let
h : T ← T′ and h̃ : T̃ ← T̃′ be monad morphisms. We have to show h←◦ h̃ : (T←◦
T̃) ← (T′ ←◦ T̃′) i.e. we have to verify the axioms of a monad morphism given in
Definition 4.4.3.1 (i). We will only show that h←◦ h̃ respects joins:

(µ←◦ µ̃) ·
(
(h←◦ h̃) ∗ (h←◦ h̃)

)

= { Lemma 6.2.3.3 }

(µ←◦ µ̃) ·
(
(h ∗ h)←◦ (h̃ ∗ h̃)

)

= { Definition 6.2.3.2 }
(
µ · (h ∗ h)

)
←◦

(
µ̃ · (h̃ ∗ h̃)

)

= { precondition }

(h · µ′)←◦ (h̃ · µ̃′)

= { Definition 6.2.3.2 }

(h←◦ h̃) · (µ′←◦ µ̃′)

Similarity h←◦ h̃ respects units also.

6.2.3.8 Definition. We define the functor Ł : LeftAdj ← LeftAdj for every left ad-
joint functor Q by

ŁQ = Q←◦ U

where U is a right adjoint of Q. Notice that Ł is determined uniquely up to isomor-
phism with Lemma 4.3.4.8. That Ł is indeed a functor follows from Lemma 4.3.4.5 and
Definition 6.2.3.2. Finally Ł preserves left adjoint functors due to Lemma 6.2.3.6. �

6.2.3.9 Lemma. Let Q a U : C ← D be an adjunction and T and T′ be monads on C.
Then:

Q←◦ U(T←◦ T′) ∼= QT←◦ QT′

Proof. Let T = (T, η, µ), T′ = (T′, η′, µ′), and (η̃, ε) : Q a U. With Lemma 6.2.3.6 we
get:

(η̃←◦ η̃, ε←◦ ε) : (Q←◦ U) a (U←◦ Q). (∗)

110

6.2 Monads and Monad transformers

We calculate:

Q←◦ U(T←◦ T′)

= { Proposition 6.2.3.7 }

Q←◦ U(T←◦ T′, η←◦ η′, µ←◦ µ′)

= { (∗) & Definition 6.2.3.4 }
(
(U←◦ Q)(T←◦ T′)(Q←◦ U), (U←◦ Q)(η←◦ η′)(Q←◦ U) · (η̃←◦ η̃),

(U←◦ Q)
(
(µ←◦ µ′) · (T←◦ T′)(ε←◦ ε)(T←◦ T′)

)
(Q←◦ U)

)

= { Definition 6.2.3.2 }(
U · T · Q←◦ U · T′ · Q, UηQ · η̃←◦ Uη′Q · η̃, U(µ · TεT)Q←◦ U(µ′ · T′εT′)Q

)

= { Proposition 6.2.3.7 }(
U · T · Q,UηQ · η̃,U(µ · TεT)Q

)
·

(
U · T′ · Q,Uη′Q · η̃,U(µ′ · T′εT′)Q

)

= { Definition 6.2.3.4 }

QT←◦ QT′

6.2.3.10 Lemma. Let (η, ε) : Q a U : C ← C be an adjunction where Q is a cocartesian
endofunctor. Then Q is a monad transformer.

Proof. Since Q is cocartesian we have a product (Q
ιq
←−− Id)q∈Q where Q is a finite set.

We claim that (Q, π) is a pointed functor where for every monad T = (T, η̃, µ):

πT = U[Tιq]q∈Q · ηT

where m = [Tιq]q∈Q denotes the unique mediating morphism satisfying ∀ q ∈ Q. m · ιq =
Tιq. That π is indeed natural in T and that π is a monad morphism (i.e. it respects
units and joins according to Definition 4.4.3.1) can be demonstrated by straightforward
calculations.

6.2.4 Monad transformers from coproducts of monads

The coproduct of monads on a category C is just the usual coproduct in the category
MndC.

Colimits of monads have been studied in [Kel80]. Coproducts of monads have been
used in [LG02a, LG02b] to construct monad transformers.

6.2.4.1 Lemma (coproduct of free monads). Let C be a cocartesian category and
Σ and ∆ be C-varietors. Then:

Σ? + ∆? ∼= (Σ + ∆)?

111

6 The free monad approach

Proof. The free functor (�)? mapping a varietor onto its free monad is left adjoint and
thus preserves coproducts (Proposition 4.3.4.9).

6.2.4.2 Definition and Lemma. Let C be a cocartesian category with initial object
0 and A a C-object. Let us denote the left and right injections of binary coproducts by
ὶ and ί, respectively.

(i) A+ =
(
(A+ �), ί, [ὶ, id]

)
is a monad on C.

(ii) The monad A+ is free over A.

(iii) The function (�)+ is a functor

(�)+ : MndC ← C

defined on C-morphisms f by f+ = f + id.

Proof. (i) Elementary.

(ii) We claim that (uA)X = ὶ(A,X) is a universal arrow, i.e. for every monad T =
(T, η, µ) and every % : T ← A there exists a unique %/uA : T ← A+ such that
|%/uA| · uA = %. This can easily be verified for |%/uA| = [%, η] using the UP of the
coproduct.

(iii) Since � and + are functors (�)+ is also a functor. That (�)+ maps onto monad
morphisms can easily be checked.

6.2.4.3 Definition (abstraction functor). Let C be a category and I ∈ Ob C.

(i) We define the functor ΛI : C ← EndC by

∀T ∈ Ob(EndC). ΛIT = TI and

∀h ∈ Mor(EndC). ΛIh = hI .

That this is indeed a functor is easy to see, using the definition of the horizontal
composition of natural transformations.

(ii) We define the functor | � |I : C ← MndC by ΛI · | � | where
(
MndC, | � |

)
is the

concrete category of monads on C and | � | : EndC ←MndC the default forgetful
functor mapping a monad onto its underlying endofunctor. Thus in particular
|(T, η, µ)|0 = T0. �

6.2.4.4 Corollary. Let C be a category such that MndC is cocartesian. Then:

(i)
(�)+ :

(
Mnd(MndC), | � | · | � |

OC

)
←

(
MndC, | � |

)

is a semi-concrete functor.

112

6.3 Monadic transducers

(ii) For every monad T on C the functor (T + �) = |T+| is a monad transformer:(
(T + �), ί

)
where ί denotes a right injection into the coproduct of two monads. �

We have already seen how to construct a coproduct of two free monads. The following
theorem gives us a coproduct of a free monad and an arbitrary monad:

6.2.4.5 Theorem. Let Q a U : C ← D and ∆ : D ← D such that ∆ and Q∆ · U have
free monads. Then:

QOC + ∆? ∼= Q(Q ·∆ · U)? natural in ∆.

Proof. Using Corollary 4.4.4.7 and the rolling rule (Corollary 4.1.7.6) the right hand
side can be shown to be isomorphic to the resumptions monad from [CM93]. Then we
can apply Proposition 5.3 of [SP00] as demonstrated in Theorem 4 and Corollary 2 of
[HPP02].

6.2.4.6 Corollary. Let Q be left adjoint. Then:

(�)? · (�)+ · Q ∼= ŁQ · (�)? · (�)+

provided the coproducts exist.

Proof. Let Q a U. We can generalize Theorem 6.2.4.5 to

QT + ∆? ∼= Q
(
T + (Q ·∆ · U)?

)
natural in ∆.

Then the assertion is just a point free version of the latter equation.

6.2.4.7 Corollary. For every C-object A we have a concrete functor

(A+ + �) : (MndC, | � |)←
(
MndC,

(
Id←◦ (A+ �)

)
· | � |

)
. �

6.3 Monadic transducers

A monadic transducer is a generalization of a tree transducer described in terms of cate-
gory theory. The advantage of monadic transducers is a higher level of abstraction which
leads to much more elegant proofs and enables us to treat different kinds of tree trans-
ducers (homomorphism, top-down, tree-series, . . .) in a unified framework. Monadic
transducers can be used to give denotational semantics to fragments of functional pro-
grams. We will use this denotational semantics to prove the correctness of our monadic
fusion.

113

6 The free monad approach

6.3.1 Syntax and semantics of monadic transducers

6.3.1.1 Definition (monadic transducer). Let C be a category which has an initial
object 0 and let Σ,∆ : C ← C be varietors. A triple M = (H, %, ω) is called a monadic
transducer (to ∆ from Σ) on C if

(i) H : MndC ←MndC (called pattern) is an endofunctor,

(ii) % : |H∆?| .← Σ (called rule), and

(iii) ω : | � |0 · | � |
∆? .← | � |0 · H · | � |

∆?

(called observe) are natural transformations.

We denote this by M = (H, %, ω) : ∆← Σ.
In the above definition we used | � |0 : C ← MndC from Definition 6.2.4.3 (ii) and

| � |∆
?

: MndC ← (MndC)∆
?

from Definition 4.1.7.1, with the convention ∆? = (∆?) .�

We define the semantics of a monadic transducer in two phases (corresponding to
Step 2 and Step 3 from the motivation in the beginning of Chapter 6): We wait with
Step 1 until Section 6.4 where we are going to describe tree transducers of different
syntactic classes as monadic transducers. The first phase corresponds to Step 2: from
the motivation in the beginning of Chapter 6:

6.3.1.2 Definition (generalized semantics of a monadic transducer). Let M =
(H, %, ω) : ∆← Σ be a monadic transducer on C. Since Σ? is free over Σ, there exists a
universal arrow uΣ : TΣ

.← Σ (see Theorem 4.4.4.5 and Definition 4.3.1.2). Then there
exists a unique monad morphism 〈[M]〉 : H∆? ← Σ? such that |〈[M]〉| · uΣ = % holds:

Σ

|H∆?| TΣ

uΣ

|〈[M]〉|

%

H∆? Σ?
〈[M]〉

The underlying natural transformation 〈[M]〉 : |H∆?| .← TΣ is called the generalized
semantics of M. The generalized semantics is independent from ω. However, it depends
on the choice of the universal arrow uΣ. To make things simpler, we choose for every
varietor Σ a universal arrow uΣ from Σ (to the free monad over Σ) and use this choice
implicitly for the generalized semantics of every monadic transducer. To simplify our
notation we will sometimes omit the forgetful functor | � | on morphisms.

It is worth mentioning that ‘being a monad morphism’ (Definition 4.4.3.1) is a natural
property for the generalized semantics 〈[M]〉:

(i) η = 〈[M]〉 · η′ means that variables will be throughput and

(ii) µ · (〈[M]〉 ∗ 〈[M]〉) = 〈[M]〉 · µ′ states that 〈[M]〉 is compositional (or syntax directed).

Thus, in other words, the generalized semantics is the unique compositional (and variable
through passing) extension of the rule. �

114

6.3 Monadic transducers

The second phase corresponds to Step 3: from the motivation in the beginning of
Chapter 6:

6.3.1.3 Definition (semantics of a monadic transducer). Let M = (H, %, ω) :
∆ ← Σ be a monadic transducer on C which has an initial object 0. The semantics
[[M]] : T∆0← TΣ0 of M is defined by

[[M]] = ωid∆? · |〈[M]〉|0. �

6.3.2 Fusion of monadic transducers

6.3.2.1 Definition. Let C be a category. We define the functor (�)• : CAT ← Cop

on objects by ∀A ∈ Ob C. A• = CA. For every f : A ← B we define the functor
f• : CB ← CA on objects by

∀ϕ ∈ Ob CA. f•ϕ = ϕ · f.

It is easy to see that the latter induces a unique concrete functor f • : (CB, | � |B) ←
(CA, | � |A). �

6.3.2.2 Definition. Let C and D be categories and A ∈ Ob D. Every functor F : C ←
D induces a functor F(A) : CFA ← DA where F operates on A-algebras and on A-algebra
morphisms just in the same way as on D-morphism. Obviously, F maps every A-algebra

B
ϕ
←−− AB = A onto an FA-algebra FB

Fϕ
←−−− FA = FA(FB). Since every functor

maps commuting diagrams onto commuting diagrams, the functor F will map A-algebra
morphisms onto FA-algebra morphisms. Moreover, F(A) : (CFA, | � |FA)← (DA,F · | � |A)
is concrete. Notice, that this is not possible for F-algebras in general, since it depends
on properties of constant functors. �

6.3.2.3 Definition (fusion of monadic transducers). Let M = (H, %, ω) : Γ ← ∆

and M = (H′, %′, ω′) : ∆← Σ be monadic transducers on C. The fusion M ·M′ : Γ← Σ

of M and M′ is the monadic transducer on C defined by

M ·M′ =
(
H′ · H,H′〈[M]〉 · %′, ω · ω′(〈[M]〉• · H(Γ?))

)
.

Moreover we define for every C-varietor Σ the identity monadic transducer by

IDΣ = (Id, uΣ, ididΣ?) : Σ← Σ. �

For the next theorem we will have to calculate with (�)•:

6.3.2.4 Lemma. Let C
F
←−− D

G
←−− E, FB

f
←−−C A, GC

g
←−−D B, and X

h
←−−D Y .

Then:

115

6 The free monad approach

(i) (Fh)• · F(X) = F(Y) · h•,

(ii) F(GC) · G(C) = (F · G)(C),

(iii) (Fg · f)• · (F · G)(C) = f• · F(B) · g• · G(C),

(iv) (f• · F(B))idB = f where idB ∈ Ob DB.

Proof. We use Definition 6.3.2.1 and Definition 6.3.2.2:

(i) The left and the right hand side of (i) are concrete functors, thus (with
Lemma 4.2.1.5) it suffices to show that (i) holds for every object ϕ ∈ Ob DA:

(
(Fh)• · F(X)

)
ϕ = Fϕ · Fh = F(ϕ · h) = (F(Y) · h•)ϕ.

(ii) Immediately from the definition.

(iii) With (i) and (ii): (Fg · f)• · (F ·G)(C) = f• · (Fg)• ·F(GC) ·G(C) = f• ·F(B) · g• ·G(C).

(iv) (f• · F(B))idB = f•(FidB) = f•idFB = idFB · f = f where idB is considered an
object.

The following is the main theorem in Chapter 5:

6.3.2.5 Theorem (monadic fusion). Let M = (H, %, ω) : Γ ← ∆ and M′ =
(H′, %′, ω′) : ∆← Σ be monadic transducers on C. Then the following holds:

(i) 〈[ID]〉 = id, and

(ii) 〈[M ·M′]〉 = H′〈[M]〉 · 〈[M′]〉.

(iii) The monadic transducers on C are the morphisms of a category MTC where
composition is fusion and the objects are all C-varietors.

(iv) The semantics [[�]] is a functor: [[�]] : C ←MTC.

Proof. (i) Consider the following diagram:

Σ

Ê

|IdΣ?| TΣ

uΣ

〈[IDΣ]〉

uΣ

idTΣ

Ë

The outside triangle around ÊË commutes trivially and Ê commutes by definition
of 〈[�]〉 (Definition 6.3.1.2). Thus Ë also commutes, because uΣ is universal.

116

6.3 Monadic transducers

(ii) Let %̃ = H′〈[M]〉 · %′.

Σ

Ë Ê

|(H′ · H)Γ?| |H′∆?| TΣ

uΣ
%′

%̃

〈[M′]〉H′〈[M]〉

〈[M ·M′]〉

Ì

The outside triangle around ÊËÌ and the triangle Ê commute by definition
(Definition 6.3.1.2). Obviously Ë commutes by definition of %̃. Thus Ì also com-
mutes, because uΣ is universal.

(iii) We define the category MTC by

Ob(MTC) =
{
Σ

∣∣ Σ : C ← C varietor
}

MTC(∆,Σ) =
{
M

∣∣ M : ∆← Σ monadic transducer on C
}

where the identity for every Σ ∈ Ob(MTC) is the monadic transducer IDΣ and
composition is fusion. That the identities are neutral elements w.r.t. fusion is
obvious by definition. It remains to show that fusion is associative: Let M′′ =
(H′′, %′′, ω′′) : Σ← Θ be a monadic transducer on C. Then:

(M ·M′) ·M′′

= { two times Definition 6.3.2.3 }
(
H′′ · H′ · H, H′′〈[M ·M′]〉 · %′′,

ω · ω′(〈[M]〉• · H(Γ?)) · ω′′
(
〈[M ·M′]〉• · (H′ · H)(Γ

?)
))

= { (ii) }
(
H′′ · H′ · H, H′′(H′〈[M]〉 · 〈[M′]〉) · %′′,

ω · ω′(〈[M]〉• · H(Γ?)) · ω′′
(
(H′〈[M]〉 · 〈[M′]〉)• · (H′ · H)(Γ

?)
))

= { Lemma 6.3.2.4 (iii) }(
H′′ · H′ · H, H′′(H′〈[M]〉 · 〈[M′]〉) · %′′,

ω · ω′(〈[M]〉• · H(Γ?)) · ω′′(〈[M′]〉• · H′(∆
?) · 〈[M]〉• · H(Γ?))

)

117

6 The free monad approach

= { functor }
(
H′′ · H′ · H, (H′′ · H′)〈[M]〉 · H′′〈[M′]〉 · %′′,

ω ·
(
ω′ · ω′′(〈[M′]〉• · H′(∆

?))
)
(〈[M]〉• · H(Γ?))

)

= { Definition 6.3.2.3 }

M ·
(
H′′ · H′, H′′〈[M′]〉 · %′′, ω′ · ω′′(〈[M′]〉• · H′(∆

?))
)

= { Definition 6.3.2.3 }

M · (M′ ·M′′)

(iv) With Definition 6.3.1.3 and (i) we calculate [[IDΣ]] = ididΣ? · |〈[ID]〉|0 = idTΣ0.
Consider the diagram:

|(H′ · H)Γ?|0 |H′∆?|0 TΣ0

Ì

|HΓ?|0 T∆0

TΓ0

|〈[M ·M′]〉|0

Í

|H′〈[M]〉|0 |〈[M′]〉|0

(ω
·
ω
′ (
〈[M

]〉•
·H

(Γ
?
))

) id
Γ
?

Î

ω′〈[M]〉 ω′id∆?

ωidΓ?

|〈[M]〉|0

[[M]]

Ë

[[M′]]

Ê

[[M ·M′]]

Ï

The triangles Ê and Ë commute by definition and the square Ì because
ω′ : | � |0 · | � |∆

? .← | � |0 · H′ · | � |∆
?

is natural. The triangle Í is just an
instance of (ii). The triangle Î commutes due to Lemma 6.3.2.4 (iv) and
Definition and Lemma 4.1.3.6 (ii). The outside triangle around Ê-Ï commutes
by definition. Thus Ï also commutes. Altogether we have that [[�]] : C ← MTC
is a functor.

6.3.3 Monadic transducer homomorphisms

In order to class the results of fusions in Subsection 6.5.2 we will have to compare
monadic transducers. We have two obvious notions of equivalence: Monadic transducers

118

6.3 Monadic transducers

M and M′ may be syntacticly equivalent (M = M′) or they may be semanticly equivalent
([[M]] = [[M′]]). Artlessly, the former implies the latter.

It will become obvious (in Theorem 6.5.2.11) that a more subtle relation between
monadic transducers is of use:

6.3.3.1 Definition (monadic transducer homomorphism). Let M =
(H, %, ω), M′ = (H′, %′, ω′) : ∆ ← Σ be monadic transducers on C. A natural
transformation τ : H

.← H′ such that

ω · | � |0τ | � |
∆?

= ω′ and % = τ∆? · %′

holds is called a monadic transducer homomorphism to M from M′ and we write
it

τ : M←M′. �

Obviously, ‘being homomorphic’ is a preorder on the class of monadic transducers,
moreover it implies semantic equivalence as demonstrated in the following:

6.3.3.2 Theorem (monadic transducer homomorphisms preserve semantics).
Let M = (H, %, ω), M′ = (H′, %′, ω′) : ∆ ← Σ be monadic transducers on C. If there
exists a monadic transducer homomorphism τ : M←M′ then [[M]] = [[M′]].

Proof. Consider the following diagrams:

|H′∆?|0 |H′∆?| Ê

T∆0 TΣ Σ

|H∆?|0 |H∆?| Ë

ω′id∆?

%′

τ∆? Ì|τ∆?|0Í

〈[M′]〉

〈[M]〉

uΣ

ωid∆?

%

The triangles Ê and Ë commute by definition and the triangle around ÊËÌ commutes
according to the precondition. Thus the square around ËÌ also commutes and since uΣ

is universal Ì commutes. The triangle Í commutes according to the precondition and
finally we calculate: [[M]] = ωid∆? · |〈[M]〉|0 = ωid∆? · |τ∆? · 〈[M′]〉|0 = ωid∆? · |τ∆?|0 · |〈[M

′]〉|0 =
ω′id∆?

· |〈[M′]〉|0 = [[M′]].

In the next section we will characterize classes of tree transducers by patterns of
monadic transducers. The following corollary to Theorem 6.3.3.2 allows us to do calcu-
lations with these patterns up to isomorphism.

119

6 The free monad approach

6.3.3.3 Corollary (isomorphic patterns imply semantic equivalence). Let
M = (H, %, ω) : ∆ ← Σ be a monadic transducer on C and H′ ∼= H. Then there exists a
monadic transducer M′ : ∆← Σ on C such that H′ is the pattern of M′ and [[M]] = [[M′]].

Proof. There exists a natural isomorphism α : H
.← H′. We define

%′ = α−1
∆? · % and ω′ = ω · | � |0α| � |∆

?

.

Then M′ = (H′, %′, ω′) : ∆ ← Σ is a monadic transducer on C such that α : M ← M′

(Definition 6.3.3.1) and with Theorem 6.3.3.2 follows [[M]] = [[M′]].

6.3.4 Algebraic transducers versus Monadic transducers

Obviously, there are some similarities between algebraic and monadic transducers: In
both cases we use the language of category theory to define them and in both cases we
use a universal property to define the denotational semantics and to prove the respective
fusion theorem. However, the aim of both approaches is completely different: The alge-
braic transducer is used to bridge the gap between syntactic composition of top-down
tree transducers and short cut fusion. The monadic transducer is used to directly fuse
classes of tree transducers. A main difference is the way in which the tree transducer is
being transformed into an algebraic or monadic transducer, respectively. To derive an al-
gebraic transducer from a top-down tree transducer, a transformation of the equations of
the top-down tree transducer is necessary using pairings and copairings (Lemma 5.4.2.4).
The result is a concrete functor which encodes the equations (Lemma 5.4.2.9). On the
other hand side, the transformation of a tree transducer into a monadic transducer is (in
principle) quite simple: The rule of the tree transducer can be transformed into the rule
of a monadic transducer via the two simple bijections �̂ (Proposition 6.1.3.1) and (�)]

(Chapter 6 Step 1 and Section 6.4). The result is a natural transformation which en-
codes the equations. The difficult part is to identify a monad such that its carrier is the
codomain of that rule (Section 6.4). Another important difference is that in one case the
generalized semantics is an algebra morphism (Subsection 5.3.3) and in the other case
it is a monad morphism (Definition 6.3.1.2). It is easy to see that a monad morphism
from a free monad is a compositional (or syntax directed) function. Since the generalized
semantics of a monadic transducer is the unique monad morphism from a free monad,
and since any reasonable semantics of a tree transducer is compositional, it is obvious
that the two coincide. Thus no more effort is needed to verify that a tree transducer
and the according monadic transducer are semanticly equivalent. The latter is by no
means obvious in the case of algebraic transducers, where we had to define the relation
(Definition 5.4.2.5) to prove semantic equivalence (Theorem 5.4.2.7). Finally, the the-
ory of monadic transducers is more elegant and on a higher level of abstraction then the
theory of algebraic transducers. We believe that every kind of tree transducer can be
described as a monadic transducer, whereas we only managed to describe top-down tree
transducers as algebraic transducers.

120

6.4 Tree transducers as monadic transducers

6.4 Tree transducers as monadic transducers

In this section we will model tree transducers by monadic transducers. Moreover we
will see that syntactic classes of tree transducers can be characterized by the patterns
of monadic transducers.

We have already seen, that the rule of a tree transducer can be written as a natural
transformation (Proposition 6.1.3.1). Now we will see how to transform this natural
transformation into the form used in a monadic transducer (Definition 6.3.1.1).

This corresponds to Step 1 from the motivation in the beginning of Chapter 6.
Notice, that we will get semantic equivalence for free in the following subsections,

because the generalized semantics of a monadic transducer is defined to be the unique
compositional extension of its rule (Definition 6.3.1.2). As we will see in detail shortly,
the rule of a tree transducer (Proposition 6.1.3.1) can be transformed into the rule of a
monadic transducer just by applying the bijection (�)] which is the adjungate of some
adjunction. We will investigate in the following, how to find this adjunction.

6.4.1 Homomorphism tree transducers as monadic transducers

We start with the easiest case: the homomorphism tree transducer (Definition 6.1.2.2).
The rule of a homomorphism tree transducer has the form

T∆X
r
←−− ΣX ∩ Tlhs

Σ X.

According to Proposition 6.1.3.1 this can be equivalently described by a natural trans-
formation

|Id ∆?| = T∆

% = r̂
←−−−−− Σ.

This is already the desired rule of a monadic transducer on Setℵ0 where the pattern is
the identity functor Id. Since �̂ is a bijection, we can reverse the above transformation.
Thus we have the following:

6.4.1.1 Proposition. The homomorphism tree transducers are equivalent4 to the
monadic transducers

M = (Id, %, id) : ∆← Σ

on Setℵ0 where Σ and ∆ are bicartesian. �

6.4.2 Top-down tree transducers as monadic transducers

The rule of a top-down tree transducer (Definition 6.1.2.2) has the form

T∆(QX)
r
←−− Q(ΣX) ∩ Tlhs

Q+ΣX

4I.e. syntacticly and semanticly equivalent via the bijections described in Proposition 6.1.3.1
and Proposition 4.3.4.4).

121

6 The free monad approach

where Q is cocartesian. According to Proposition 6.1.3.1 this can be equivalently de-
scribed by a natural transformation

T∆ · Q
r̂
←−− Q · Σ.

This rule can be understood as a definition for a couple of functions (e.g. even and
odd in Example 6.1.2.3). Alternatively we could define just one function mapping onto
tuples (e.g. f x = (even x , odd x)). Let us describe the tupling by U (i.e. UA is the set of
all Q-tuples with elements in A). Then the new rule would have the form U ·T∆ ·Q

.← Σ.
The latter transformation corresponds to Step 1 from the motivation in the beginning
of Chapter 6. Before we continue, let us repeat the last step in a more formal way:

6.4.2.1 Lemma. Let C be a bicartesian category and Q : C ← C a cocartesian functor.
Then Q is left adjoint.

Proof. Since Q is cocartesian, there exists an ` ∈ N0 such that Q ∼=
∐`. We set U =

∏
`

and denote the projections and injections by πi : Id
.← U and ιi : Q

.← Id, respectively.
We claim that

(η, ε) : Q a U : C ← C

where η = 〈ιi〉
`
i=1 and ε = [πi]

`
i=1 are the unique mediating morphisms with πi · η = ιi

and ε · ιi = πi, respectively, according to the universal property of the (co)product. The
axioms of the adjunction (Definition 4.3.4.1) can now be verified by straight forward
calculations using the universal property of the (co)product.

We continue with the rule of a top-down tree transducer in the form

T∆ · Q
r̂
←−− Q · Σ.

Since Q is cocartesian, Lemma 6.4.2.1 tells us that Q has a right adjoint U. Using
Lemma 6.2.3.6 and Definition 6.2.3.4 we can write the rule equivalently as

|Q∆?| = U · T∆ · Q
% = r̂]
←−−−−−− Σ

where (�)] refers to (Q←◦Id) a (U←◦Id). This is the desired rule of a monadic transducer
with pattern Q.

The inclusion ι : Q
.← Id of the initial state can be equivalently described by the

projection π = ι[: Id← U where (�)[refers to (Id←◦ U) a (Id←◦ Q). Using Q∅ = ∅ we
can define the observation function of the monadic transducer by

∀h : (T, η, µ)← ∆?. ωh = πT∅

i.e. ω = π(| � |∅ · | � |
∆?

).

Since �̂ , (�)], and (�)[are bijections, we can reverse the above transformations. Thus
we have the following:

122

6.4 Tree transducers as monadic transducers

6.4.2.2 Proposition. The top-down tree transducers are equivalent5 to the monadic
transducers

M = (Q, %, ω) : ∆← Σ

on Setℵ0 where Q is cocartesian and Σ and ∆ are bicartesian. �

6.4.2.3 Example. Let us illustrate the monadic operations of the monad Q∆? which
models the computation of a top-down tree transducer according to Proposition 6.4.2.2
(see also Definition 6.3.1.1 and Definition 6.3.1.2). It is helpful to have a look at
Example 4.4.1.4 before. In diagrams we draw triangles for arbitrary terms and for every
variable x we draw x for the term ’x. The unit is simple:

X U(T∆

(
QY)

)

x (
q

x
)q∈Q

ηX

ηX

�

The multiplication is like term-substitution but tags are used to project from tuples. We
show the according Kleisli-† in Figure 6.1.

6.4.3 Simple basic macro tree transducers as monadic transducers

Writing a macro tree transducer as a monadic transducer is a little more involved: We
start with a simple case: the simple basic macro tree transducer.

Using Proposition 6.1.3.1 we can write the rule of a simple basic macro tree transducer
(Definition 6.1.2.5) in the form

T∆

(
Y + AI(QX)Y

)
(
(r̂)X

)
Y←−−−−−−− AI

(
Q(ΣX)

)
Y

where
(
(r̂)X

)
Y

is natural in X and Y , Q is cocartesian, and I is finite. Abstraction from
Y yields

T∆ ·
(
Id + AI(QX)

) (r̂)X
←−−−− AI

(
Q(ΣX)

)

and then abstracting from X gives us

(T∆←◦ Id) · (Id + �) · AI · Q
r̂
←−− AI · Q · Σ

5I.e. syntacticly and semanticly equivalent via the bijections described in Proposition 6.1.3.1
and Proposition 4.3.4.4).

123

6 The free monad approach

U(T∆

(
QX)

)
U(T∆

(
QX)

)

(. . . ,
s

p

x

q

y

, . . .)

(. . . ,
s

tp

r

z

q

y

, . . .)

(. . . ,
tp

r

z

, . . .)

f

f †

f †

Figure 6.1: Kleisli-† of the monad Q∆?

where we used the bifunctor ←◦ from Definition 6.2.3.2. Now we need an adjunction to
continue in a similar way as in Subsection 6.4.2:

6.4.3.1 Lemma. Let C be a category which has function spaces (Definition 4.2.1.9).
Then

AI a ΛI : EndC ← C

where ΛI : C ← EndC is the functor from Definition 6.2.4.3.

Proof. Let | � | : Set ← C be the faithful functor according to Definition 4.2.1.9. We
claim that (η, ε) : AI a ΛI where ηX : II × X ← X and (εT)Y : TY ← Y I × TI
are defined by |ηX |x = (idI , x) and |(εT)Y |(f, t) = |Tf |t, respectively. Since | � | is
faithful, η and ε are well defined. That η and ε are indeed natural transformation
can be verified by straight forward calculations. It remains to show the axioms of an

124

6.4 Tree transducers as monadic transducers

adjunction (Definition 4.3.4.1):

|(ΛIε · ηΛI)T|t

= { Definition and Lemma 4.1.3.6 and Definition 6.2.4.3 }

|(εT)I |
(
|ηTI |t

)

= { definition of η }

|(εT)I |(idI , t)

= { definition of ε and Definition 6.2.4.3 }

|TidI |t = |idTI |t = |(idΛI
)T|t.

Since | � | is faithful and the above is true for arbitrary T : C ← C and t ∈ |TI| we get
ΛIε · ηΛI = idΛI

. Analogously we can show that εAI · AIη = idAI
holds.

6.4.3.2 Note. Let us illustrate the above theorem in the category Set for I =
{1, . . . , k}. Notice that in this case where I is finite the proof of Lemma 6.4.3.1 also
works in Setℵ0 .

We use AIX Y =
{
x y1 · · · yk

∣∣ x ∈ X ∧ yi ∈ Y
}
∼= Y I ×X and ΛIT =

{
λ1 · · · k. t

∣∣
t ∈ TI

}
∼= TI. Then we have an adjunction:

(η, ε) : AI a ΛI : EndSet ← Set

where ηXx = (idI , x) and (εT)Y (f, t) = T f t. Moreover, the function η and ε describe
η-conversion and β-reduction, respectively:

ΛI(AIX) =
{
λ1 · · · k. t

∣∣ t ∈ AIXI
}

η : ΛI · AI ← Id

ηX : λ1 · · · k. x 1 · · · k ←[x η-conversion

and
AI(ΛIT)Y =

{
(λ1 · · · k. t) y1 · · · yk

∣∣ t ∈ TI ∧ yi ∈ Y
}

ε : Id ← ΛI · AI
(εT)Y : [yi/i]

k
i=1t ←[(λ1 · · · k. t) y1 · · · yk β-reduction.

�

Let us continue with the rule of a simple basic macro tree transducer in the form

(T∆←◦ Id) · (Id + �) · AI · Q
r̂
←−− AI · Q · Σ.

With Lemma 6.4.2.1 and Lemma 6.4.3.1 we get the adjunctions Q a U and AI a ΛI ,
respectively. Now we can use (�)] w.r.t. AI · Q a U · ΛI , Definition 6.2.3.4, and
Corollary 6.2.4.7 to write the rule as

|AI · Q · (Id
+ + �) · (� ←◦O

)
| = U · ΛI · (T∆←◦ Id) · (Id + �) · AI · Q

r̂]
←−− Σ.

125

6 The free monad approach

The inclusion ι : Q
.← Id of the initial state can be equivalently described by the

projection π = ι[: Id← U where (�)[refers to (Id←◦ U) a (Id←◦Q). Using AI(Q∅) = ∅
we can define the observation function of the monadic transducer by

∀h : (T, η, µ)← ∆?. ωh = πT∅ · U
(
µ∅ · T(h∅ · e)

)
.

Thus altogether we have got:

6.4.3.3 Proposition. The simple basic macro tree transducers are equivalent6 to the
monadic transducers

M =
(
AI · Q · (Id

+ + �) · (� ←◦O
)
, %, ω

)
: ∆← Σ

on Setℵ0 where I is a finite set, Q is a cocartesian and Σ and ∆ are bicartesian. �

6.4.4 Basic macro tree transducers as monadic transducers

The basic macro tree transducer case is just a little more complicated than the simple
basic macro tree transducer: The only difference to Proposition 6.4.3.3 is that we have
to replace the functor (� ←◦O) by the functor 〈←◦〉 defined by ∀h. 〈←◦〉h = h←◦ h.

The rule of a basic macro tree transducer can be written in the form

T∆

(
T∆Y + AI(QX)(T∆Y)

)
(
(r̂)X

)
Y←−−−−−−− AI

(
Q(ΣX)

)
Y

where we have introduced (without loss of generality) an additional T∆. Similar to
Subsection 6.4.3 we can abstract from Y and then from X:

(T∆←◦ T∆) · (Id + �) · AI · Q
r̂
←−− AI · Q · Σ.

The only difference to Subsection 6.4.3 is that we now have an additional T∆.
Similar to Subsection 6.4.3 we get:

6.4.4.1 Proposition. The basic macro tree transducers are equivalent6 to the monadic
transducers

M = (AI · Q · (Id
+ + �) · 〈←◦〉, %, ω) : ∆← Σ

on Setℵ0 where I is a finite set, Q is a cocartesian and Σ and ∆ are bicartesian. �

6.4.5 Macro tree transducers as monadic transducers

The rule of a macro tree transducer (Definition 6.1.2.5) can be written in the form

T∆+AI(QX)Y

(
(r̂)X

)
Y←−−−−−−− AI

(
Q(ΣX)

)
Y.

6I.e. syntacticly and semanticly equivalent via the bijections described in Proposition 6.1.3.1
and Proposition 4.3.4.4).

126

6.4 Tree transducers as monadic transducers

Abstraction from Y yields

T∆+AI(QX)

(r̂)X
←−−−− AI

(
Q(ΣX)).

Now we need the coproduct of monads: With T∆ = |∆?| and Lemma 6.2.4.1 we can
write the rule as

|∆? +
(
AI(QX)

)?
|

(r̂)X
←−−−− AI

(
Q(ΣX)).

Abstracting from X gives us

| � | · (∆? + �) · (�)? · AI · Q
r̂
←−− AI · Q · Σ.

We have the adjunctions Q a U and AI a ΛI as in Subsection 6.4.3 and (�)? a
| � | from Corollary 4.4.4.6. Now we use (�)] w.r.t. (�)? · AI · Q a U · ΛI · | � |,
Definition and Lemma 6.2.4.2 (i), and Definition 6.2.3.4 to write the rule as

(�)? · AI · Q (∆?)+
r̂]
←−− Σ.

The latter is the rule of a monadic transducer with pattern (�)? · AI · Q · (�)+. The
observation function is defined just as in Subsection 6.4.3. Altogether we have:

6.4.5.1 Proposition. The macro tree transducers are equivalent7 to the monadic trans-
ducers

M =
(
(�)? · AI · Q · (�)+, %, ω

)
: ∆← Σ

on Setℵ0 where I is a finite set, Q is a cocartesian and Σ and ∆ are bicartesian. �

6.4.5.2 Example. Let us now illustrate the monadic operations of the monad
AI((�)?(∆?)+). It is helpful to have a look at Example 4.4.1.4 and Example 6.4.2.3

before. For every context variable y and terms t1, . . . tk we draw t1

. . .

tk

y
for the

applicative term ’y t1 · · · tk. The unit is simple:

X ΛIT∆+AIX

x λ 1 · · · k. 1 · · · kx

ηX

ηX
�

The multiplication is like term-substitution but with an extra β-reduction. We show the
according Kleisli-† in Figure 6.2.

7I.e. syntacticly and semanticly equivalent via the bijections described in Proposition 6.1.3.1
and Proposition 4.3.4.4).

127

6 The free monad approach

ΛIT∆+AIX ΛIT∆+AIY

λ 1 · · · k.
s

7
s1

. . .

sk

x

λ 1 · · · k.
s

7

t

s5

t1

s3

. . .

tk

s1

y

λ 1 · · · k.
t

5
t1

3

. . .

tk

1

y

f

f †

f †

Figure 6.2: Kleisli-† of the monad AI((�

?)(∆?)+)

6.5 Fusion of tree transducers

6.5.1 Fusion of particular functional programs

In Section 6.4 we have seen how particular functional programs (i.e.some syntactic
classes of tree transducers) can be equivalently transformed into monadic transducers.
Now we are ready to apply the monadic fusion Theorem 6.3.2.5 to functional programs:

Given regular types A, B, and C and functional programs C
g
←−− B

f
←−− A we construct

a new program C
h
←−− A such that

TΓ∅ T∆∅ TΣ∅
[[g]] [[f]]

[[h]]

where the initial term-algebras TΣ, T∆, andTΓ are supposed to be the semantics of the
regular types A, B, and C, respectively. The construction of h is shown in Figure 6.3.

128

6.5 Fusion of tree transducers

The rule of h is constructed according to Definition 6.3.2.3. The correctness of the fusion
transformation w.r.t. the denotational semantics [[�]] follows from Theorem 6.3.2.5. No-
tice, that there occurs no ∆ in the rule of h (as shown in Figure 6.3), i.e. the intermediate
data structure B is indeed eliminated.

functional
program C

g
←−− B C

h
←−− A B

f
←−− A

rule |HΓ?|
%
←−− ∆ |(H′ · H)Γ?|

H′〈[g]〉 · %′
←−−−−−−−− Σ |H′∆?|

%′
←−− Σ

generalized
semantics |HΓ?|

〈[g]〉
←−−− T∆ |(H′ · H)Γ?|

〈[h]〉
←−−− TΣ |H′∆?|

〈[f]〉
←−−− TΣ

semantics
TΓ∅

[[g]]
←−−− T∆∅ TΓ∅

[[h]]
←−−− TΣ∅ T∆∅

[[f]]
←−−− TΣ∅

some category
theory magic

universal
property

restriction
& observation

Figure 6.3: Monadic fusion algorithm

6.5.2 Fusion of classes of tree transformations

Now we are ready to use our machinery to harvest tree transducer fusion re-
sults: In the last subsection we have characterized some classes of tree transduc-
ers by patterns of monadic transducers. We derive fusion results as follows: First
we compose the patterns of the consumer and producer to get the pattern of the
fusion (Definition 6.3.2.3 and Theorem 6.3.2.5). Then we do calculations (using
e.g. Lemma 6.2.3.9 or Corollary 6.2.4.6) to transform isomorphicly the pattern such that
we are able to recognize the associated class of tree transducers. Here it is worth men-
tioning that it suffices to calculate the pattern up to isomorphism to derive the fusion
up to semantic equivalence (with Corollary 6.3.3.3).

We have seen patterns for the following classes of tree transformations: HOM ⊆
TOP ⊆ sb-MAC ⊆ b-MAC ⊆ MAC .

For two classes of tree transformations A and B we define the composition A · B ={
a · b

∣∣ a ∈ A ∧ b ∈ B ∧ dom a = cod b
}
. Moreover we define the class ID to be the

class of all identity tree transformations.

6.5.2.1 Definition (characterization by patterns). Let A be a class of tree trans-
formations and P be a class of (MndSet)-endofunctors.

(i) We say that A is characterized by P if

A =
{
[[M]]

∣∣ M is a monadic transducer with a pattern from P
}

129

6 The free monad approach

i.e. A is the class of all functions computable by monadic transducers where the
pattern is an endofunctor from the class P .

(ii) We say that A can be characterized by patterns if there exists a class P such
that A is characterized by P . �

6.5.2.2 Lemma (fusion with homomorphism tree transducers). Let A be char-
acterized by patterns. Then A ·HOM ⊆ A and HOM ·A ⊆ A.

Proof. The class HOM is characterized by the single pattern Id (Proposition 6.4.1.1).
Obviously, any class of patterns is closed under composition with the identity functor
Id.

The other inclusion direction also holds:

6.5.2.3 Lemma. Let A be characterized by patterns. Then A ⊆ A · HOM and A ⊆
HOM ·A.

Proof. Every identity monadic transducer IDΣ (Definition 6.3.2.3) is a homomorphism
tree transducer (Proposition 6.4.1.1). Thus ID ⊆ HOM and then A ⊆ A · ID ⊆ A ·
HOM .

The following corollary can be understood in a negative way: It states that a class of
tree transducers can only be characterized by patterns if it is closed under composition
with homomorphisms tree transducers:

6.5.2.4 Corollary. Let A be characterized by patterns. Then A·HOM = A = HOM ·A.

Or a little more general: Let HOM ⊆ B. Then

(i) A ·B ⊆ A =⇒ A ·B = A and

(ii) B ·A ⊆ A =⇒ B ·A = A.

Proof. Immediately with Lemma 6.5.2.2 and Lemma 6.5.2.3.

6.5.2.5 Theorem (fusion of top-down tree transducers [Eng75]).

TOP ` · TOPk = TOP `·k.

Proof. According to Proposition 6.4.2.2 the consumer and producer are characterized

by the patterns
∐` and

∐k, respectively. With Definition 6.3.2.3 we get the pattern of

130

6.5 Fusion of tree transducers

the fusion

∐k
·

∐`

= { Lemma 6.2.3.5 }
∐`

·
∐k

∼= { coproducts are associative up to isomorphism }
∐`·k

The latter is the pattern of a top-down tree transducers (with ` · k states) which is
semanticly equivalent to the fusion according to Theorem 6.3.2.5 and Corollary 6.3.3.3.
Vice versa the pattern of top-down tree transducer with ` · k states can be factorized
into the patterns of two top-down tree transducers with ` and k states, respectively.

Thus (with a little additional help from Corollary 6.5.2.4) we reproduced the result
from Corollary 3.3.2.2:

6.5.2.6 Corollary. The class of all top-down tree transducers is closed under fusion:
TOP · TOP = TOP . �

6.5.2.7 Theorem (fusion of a macro and a top-down tree transd. [Eng81]).

sb-MAC ` · TOPk = sb-MAC `·k

b-MAC ` · TOPk = b-MAC `·k

MAC ` · TOPk = MAC `·k.

Proof. We can almost copy the proof of Theorem 6.5.2.5: The classes b-MAC `,

sb-MAC `, and MAC ` are all characterized by patterns of the form (· · ·) ·
∐`. The class

TOPk is characterized by the pattern
∐k. Thus the pattern of the fusion is (· · ·) ·

∐`·k,
where the (· · ·) part is left untouched.

For a commuted version of Theorem 6.5.2.7 we need to calculate with patterns:

6.5.2.8 Lemma. Let C be a category which has function spaces (Definition 4.2.1.9), I
be a C object, and Q a U : C ← C. Then the following holds:

AQI
∼= (Id←◦ U) · AI natural in I.

131

6 The free monad approach

Proof.

Q a U

=⇒ { Proposition 4.3.4.4 }

C(Y,QI) ∼= C(UY, I) natural in I & Y

=⇒ { C has function spaces }

Y QI ∼= (UY)I natural in I & Y

=⇒ Y QI ×X ∼= (UY)I ×X natural in I, X, & Y

=⇒ { Definition 6.1.2.4 }

AQIX Y ∼= AIX (UY) natural in I, X, & Y

=⇒ AQIX ∼= (AIX) · U natural in I & X

=⇒ { Definition 6.2.3.2 }

AQI
∼= (Id←◦ U) · AI natural in I.

6.5.2.9 Lemma. Let C be a bicartesian closed category, I be a C-object, and Q a
cocartesian C-endofunctor. Then the following holds:

AI · Q ∼= (Q←◦ Id) · AI natural in I.

Proof. Let X and Y be C objects. The C-endofunctor (Y I × �) preserves coproducts
since it is left adjoint. The functor Q is cocartesian and thus Q ∼=

∐` for some ` ∈ N0.
Thus the functors (Y I × �) and Q commute:

=⇒ Y I × QX ∼= Q(Y I ×X) natural in I, X & Y

=⇒ { Definition 6.1.2.4 }

AI(QX)Y ∼= Q(AIX Y) natural in I, X, & Y

=⇒ { Definition 6.2.3.2 }

AI(QX) ∼= (Q←◦ Id)(AIX) natural in I & X

=⇒ AI · Q ∼= (Q←◦ Id) · AI natural in I.

6.5.2.10 Corollary. Let C be a bicartesian closed category which has function spaces
(Definition 4.2.1.9), I be a C object, and Q a cocartesian C-endofunctor.Putting to-
gether Lemma 6.5.2.8 and Lemma 6.5.2.9 and with a little help from Definition 6.2.3.2,
Lemma 6.2.3.6 and Lemma 6.4.3.1 we get:

AQI · Q ∼= ŁQ · AI natural in I. �

132

6.5 Fusion of tree transducers

6.5.2.11 Theorem (fusion of a top-down and a macro tree transd. [EV85]).

TOP ` · MAC k = MAC `·k.

Proof. The class TOP ` is characterized by the pattern Q where Q =
∐`. The class

MAC k is characterized by patterns of the form (�)? · AI · Q′ · (�)+ where I is finite and
Q′ =

∐k. Then the pattern of the fusion is

(�)? · AI · Q′ · (�)+ · Q

∼= { Lemma 6.2.3.5 }

AI · Q′ · (�)? · (�)+ · Q
∼= { Corollary 6.2.4.6 }

AI · Q′ · ŁQ · (�)? · (�)+

∼= { Lemma 6.2.3.5 }

(�)? · ŁQ · AI · Q′ · (�)+

∼= { Corollary 6.5.2.10 }

(�)? · AQI · Q · Q′ · (�)+.

The latter is a pattern of MAC `·k since Q · Q′ ∼=
∐`·k (see Theorem 6.5.2.5).

Since QI is a coproduct, we have an injection to QI from I. Then every macro
tree transducer with pattern (�)? · AI · Q′ · (�)+ can be transformed into a semanticly
equivalent macro tree transducer with pattern (�)? · AQI · Q · Q′ · (�)+ just by adding
superfluous context parameters and states. The resulting pattern can then be factorized
using the above equations in reverse order.

6.5.2.12 Corollary. MAC 1 ·TOP = MAC = TOP ·MAC 1 and MAC ·TOP = MAC =
TOP ·MAC . �

The following is a variant of MAC = YIELD · TOP in [Eng80] and [FV98] where
YIELD ⊆ MAC 1 is a class of tree transformations expressing β-reductions.

6.5.2.13 Corollary.

MAC n = MAC n
1 · TOP .

133

6 The free monad approach

Proof.

MAC n

= { Corollary 6.5.2.12 }

(MAC 1 · TOP)n

= { by induction using Corollary 6.5.2.12 to swap MAC 1 with TOP }

MAC n
1 · TOPn

= { by induction using Theorem 6.5.2.5 }

MAC n
1 · TOP .

134

7 Open problems and future work

7.1 Generalized monadic transducers

7.1.1 Generalized monadic transducers

Consider the rule % : |H∆?| .← Σ of a monadic transducers according to Definition 6.3.1.1.
It is easy to see that (i) and (ii) of Theorem 6.3.2.5 make no use of the fact that ∆?

is a free monad over ∆. Hence we can define the generalized monadic transducer
where the rule has the form % : |HT| .← Σ where T is an arbitrary monad. Then we
can still apply our fusion theorem (Theorem 6.3.2.5 (ii)) even if the consuming monadic
transducer is generalized

7.1.2 Internal functions

An application of the generalization described in Subsection 7.1.1 is the following: In-
stead of the free monad ∆? we consider an arbitrary ∆-algebra A. The construct of all
super ∆-algebras of A has free objects, namely the ∆-algebras of A-polynomials. Let
uX : A[X] ← X be the universal arrow to the set of all A-polynomials over the set X.
Then A[�] : Set ← Set is an endofunctor and we can define a monad A = (A[�], η, µ)
where ηX = uX and µX : A

[
A[X]

]
← A[X] is the unique ∆-algebra-homomorphism such

that µX ·uA[X] = idA[X] holds. This monad A describes the substitution of variables in A-
polynomials and in the special case that A is the initial ∆-term-algebra we have A ∼= ∆?.
As outlined in Subsection 7.1.1 we can apply our fusion theorem (Theorem 6.3.2.5 (ii))
even if the consuming (generalized) monadic transducer uses arbitrary functions (opera-
tions of a ∆-algebra A) to construct its output instead of using constructors (operations
of T∆∅).

7.1.3 Tree to tree-series transducers

It is possible to generalize tree transducers to so called tree to tree-series transducers, by
allowing formal tree-series as output rather than just trees. The composition of tree to
tree-series transducers is investigated in [EFV02]. In the following we will give a brief
outline, how tree to tree-series transducers should be described as monadic transducers.

Let us first introduce the basic notions regarding tree-series:

7.1.3.1 Definition (semiring). A = (|A|,+, ·, 0, 1) is called a semiring if (|A|,+, 0)
is a commutative monoid and (|A|, ·, 1) is a monoid, such that for all a, b, c ∈ |A| holds

(i) a · (b+ c) = a · b+ a · c,

135

7 Open problems and future work

(ii) (a+ b) · c = a · c+ b · c, and

(iii) 0 · a = 0 = a · 0. �

7.1.3.2 Definition (complete semiring). A semiring A = (|A|,+, ·, 0, 1) is called
complete if sums are defined over arbitrary index sets X, i.e. we have a function∑

X : |A|← |A|X which is natural in X, such that for every finite set X = {x1, . . . , xn}
and every p : |A|← X holds

∑
X p =

∑
x∈X px = px1

+ · · ·+ pxn . �

7.1.3.3 Definition (formal series). Let A = (|A|,+, ·, 0, 1) be a semiring and X be
a set. The set of all formal series over X is defined by A〈〈X〉〉 = |A|X . It is common
to denote elements p = (px)x∈X ∈ A〈〈X〉〉 as formal series: p =

∑
x∈X px · x. We

define the support of a formal series p ∈ A〈〈X〉〉 by supp p =
{
x ∈ X

∣∣ f 6= 0
}
.

If the support of a formal series p is finite, say supp p = {x1, . . . , xn} we also write:
p = px1

· x1 + · · ·+ pxn · xn. �

7.1.3.4 Lemma (formal series functor). Let A be a complete semiring. For every
function f : X ← Y we define

A〈〈f〉〉(
∑

y∈Y

py · y) =
∑

y∈Y

py · fy =
∑

x∈X

(∑

y∈Y
fy=x

py
)
· x.

Then A〈〈 � 〉〉 : Set ← Set is a functor. �

7.1.3.5 Definition (formal series monad). Let A be a complete semiring. For every
set X we define the functions ηX : A〈〈X〉〉 ← X and µX : A〈〈X〉〉 ← A〈〈A〈〈X〉〉〉〉 by

ηXx = 1 · x

µX
(∑

p∈A〈〈X〉〉

fp · p
)

=
∑

x∈X

(∑

p∈A〈〈X〉〉

fp · px
)
· x.

Then A = (A〈〈 � 〉〉, η, µ) is a monad. �

7.1.3.6 Definition (distributive law [BW85] 9.2). Let T = (T, η, µ) and T′ =
(T′, η′, µ′) be monads on C. A natural transformation λ : T · T′ ← T′ · T is called a
distributive law of T′ over T if the following axioms hold:

(i) λ · T′η = ηT′,

(ii) λ · η′T = Tη′,

(iii) λ · T′µ = µT′ · Tλ · λT, and

(iv) λ · µ′T = Tµ′ · λT′ · T′λ. �

136

7.2 High-level tree transducers as monadic transducers

7.1.3.7 Proposition (composition of monads [BW85] 9.2 and [JD93] Section 3.4).
Let T = (T, η, µ) and T′ = (T′, η′, µ′) be monads on C and let λ : T · T′ ← T′ · T be a
distributive law of T′ over T. Then TλT′ =

(
T · T′, η ∗ η′, (µ ∗ µ′) · TλT′

)
is a monad on

C called the compatible monad with T and T′ w.r.t. λ. �

7.1.3.8 Definition (tree-series monad). Let A be a complete semiring and Σ a
ranked alphabet. Let A be the formal series monad w.r.t. the complete semiring A
and Σ? the free monad over Σ. For every set X an element of A〈〈TΣX〉〉 is called a
tree-series over A and X. We will use Proposition 7.1.3.7 to impose monadic structure
on tree-series, i.e. on the functor A〈〈 � 〉〉 · TΣ: Let AλΣ? be the compatible monad with
A and Σ? w.r.t. the distributive law λ. Then AλΣ? is called the tree-series monad
over A and Σ w.r.t. the distributive law λ. Notice that |AλΣ?|X = A〈〈TΣX〉〉. �

Now we are ready to describe tree to tree-series transducers as generalized monadic
transducers: Let A be a semiring and Σ and ∆ be a ranked alphabet. The rule
(Subsection 6.1.3) of a tree to tree-series transducer has the form %X : A〈〈T∆X〉〉 ← TΣX
or (abstracted from X) the form % : A〈〈 � 〉〉 ·T∆

.← TΣ. We have to choose a distributive
law λ satisfying the conditions from Proposition 7.1.3.7 then % : |Aλ∆?| .← TΣ is the rule
of a generalized monadic transducer. Notice, that we did not touch the natural trans-
formation % at all, we have only rewritten its type. Now we can fuse arbitrary monadic
transducers (as producer) with this tree series transducer (as consumer). However, some
more work is needed to investigate the pattern of the fusion.

7.2 High-level tree transducers as monadic transducers

A generalization of a macro tree transducer where the context arguments may also be
functions is called a high-level tree transducer [EV88]. In [EV88] it is demonstrated,
that the composition of finitely many macro tree transducers is semanticly equivalent to
a high-level tree transducer. Thus the pattern of MAC n characterizes a high-level tree
transducer (of level n). However, we have not yet been able to establish a satisfying
relation between the syntax of a high-level tree transducer and such a pattern.

7.3 Bottom-up tree transducers as comonadic transducers

This work is only on tree transducers which read input trees starting from the root
towards the leaves (top-down). However, there also exists the notion of bottom-up tree
transducers which read input trees in the opposite direction from the leaves towards the
root. We can define comonadic transducers as the dual notion of monadic transducers
using covarietors (which have cofree comonads) and comonad transformers. Then it
turns out that bottom-up tree transducers are comonadic transducers. We have not yet
formalized this precisely.

137

7 Open problems and future work

7.4 Efficiency improvement

In [Voi02] conditions for efficiency improvement by tree transducer composition are given.
It is worth mentioning that the composition of tree transducers may also deteriorate the
efficiency of a functional program. We would like to have this kind of conditions on the
level of monadic transducers.

7.5 Implementation

It is possible to implement the monadic fusion algorithm Figure 6.3 using the rewrite
rules of the GHC [PTH01]. However, the respective recursive functions would have to
be given in the form of monadic transducers. In the particular case that the recursive
programs are tree transducers—which can be checked syntacticly—it should be pos-
sible to use the results from Section 6.4 to derive the according monadic transducers
automaticly.

138

Bibliography

[AHS90] J. Adámek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Cate-
gories. Pure and Applied Mathematics. John Wiley & Sons, 1990. 4.2.1.2,
4.2.1.4, 4.2.1.5, 4.3.4.4, 4.3.4.5, 4.3.4.7, 4.3.4.8, 4.3.4.9, 4.4.4.1, 4.4.4.3,
4.4.4.5

[AP01] J. Adámek and H.-E. Porst. From varieties of algebras to covarieties of
coalgebras. In Proceedings of the 4th Workshop on Coalgebraic Methods
in Computer Science (CMCS ’01), pages 27–46, Genova, Italy, April 2001.
Elsevier Science Publishers. 4.3.2.7

[Bak79] B. S. Baker. Composition of top-down and bottom-up tree transductions.
Inform. and Control, 41:186–213, 1979. 1.2, 3.3.1.1

[BdM97] R. Bird and O. de Moor. Algebra of Programming. International Series in
Computer Science. Prentice Hall, 1997. 5.2.2

[BW85] M. Barr and C. Wells. Toposes, triples and theories, volume 278 of
Grundlehren der mathematischen Wissenschaften. Springer, New York;
Heidelberg, 1985. 4.4, 7.1.3.6, 7.1.3.7

[CDPR97a] L. Correnson, E. Duris, D. Parigot, and G. Roussel. Attribute grammars
and functional programming deforestation. In 4th International Static Anal-
ysis Symposium—Poster Session, Paris (F), 1997. 1, 1.2

[CDPR97b] L. Correnson, E. Duris, D. Parigot, and G. Roussel. Symbolic composition.
Technical Report 3348, INRIA, January 1997. 1, 1.2

[CF82] B. Courcelle and P. Franchi–Zannettacci. Attribute grammars and recursive
program schemes. Theoret. Comput. Sci., 17:163–191, 235–257, 1982. 1,
1.2

[CM93] P. Cenciarelli and E. Moggi. A syntactic approach to modularity in deno-
tational semantics. In Proceedings of the 5th Biennial Meeting on Category
Theory and Computer Science, 1993. 65

[Dam82] W. Damm. The IO- and OI-hierarchies. Theoretical Computer Science,
20:95–206, 1982. 6.1.2

139

Bibliography

[dB89] P. J. de Bruin. Naturalness of polymorphism. Technical Report CS 8916,
Rijksuniversiteit Groningen, The Netherlands, 1989. 5.2.1, 5.2.1.2

[EFV02] J. Engelfriet, Z. Fülöp, and H. Vogler. Bottom-up and top-down tree se-
ries transformations. J. Automata, Languages and Combinatorics, 2002.
accepted. 7.1.3

[Eng75] J. Engelfriet. Bottom-up and top-down tree transformations—a compari-
son. Math. Systems Theory, 9(3):198–231, 1975. 1, 1.2, 6.5.2.5

[Eng77] J. Engelfriet. Top-down tree transducers with regular look-ahead. Math.
Systems Theory, 10:289–303, 1977. 1.2

[Eng80] J. Engelfriet. Some open questions and recent results on tree transducers
and tree languages. In R.V. Book, editor, Formal language theory: perspec-
tives and open problems, pages 241–286. New York, Academic Press, 1980.
1, 1.2, 6.5.2

[Eng81] J. Engelfriet. Tree transducers and syntax-directed semantics. Technical Re-
port Memorandum 363, Technische Hogeschool Twente, March 1981. also
in: Proceedings of the Colloquium on Trees in Algebra and Programming
(CAAP ’92), Lille, France 1992. 6.5.2.7

[Eng82] J. Engelfriet. Three Hierarchies of Transducers. Math. Systems Theory,
15:95–125, 1982. 1.2

[EV85] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. System
Sci., 31:71–146, 1985. 1, 1.2, 6.5.2.11

[EV88] J. Engelfriet and H. Vogler. High level tree transducers and iterated push-
down tree transducers. Acta Informatica, 26:131–192, 1988. 1.2, 7.2

[EV91] J. Engelfriet and H. Vogler. Modular tree transducers. Theoret. Comput.
Sci., 78:267–304, 1991. 1.2

[FHVV93] Z. Fülöp, F. Herrmann, S. Vágvölgyi, and H. Vogler. Tree transducers with
external functions. Theoret. Comput. Sci., 108:185–236, 1993. 1.2

[Fok92a] M. M. Fokkinga. A gentle introduction to category theory—the calcu-
lational approach. In Lecture Notes of the STOP 1992 Summerschool on
Constructive Algorithmics, pages 1–72 of Part 1. University of Utrecht, The
Netherlands, September 1992. 4.3.4.3

[Fok92b] M. M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University
of Twente, Dept INF, Enschede, The Netherlands, 1992. 5, 5.1

140

Bibliography

[Fre90] P. J. Freyd. Agebaically complete categories. In G. Rosolini, A. Carboni,
and M. C. Pedicchio, editors, Category Theory, volume 1488 of Lecture
Notes in Mathematics, pages 95–104, Como, Italy, 1990. Springer Verlag.
4.1.7.5, 4.1.7.7

[Fre92] P. J. Freyd. Remarks on algebraically compact categories. In Applications
of Categories in Computer Science, volume 77 of London Math. Society
Lecture Notes Series. Cambridge University Press, 1992. 4.1.7.8

[Fül81] Z. Fülöp. On attributed tree transducers. Acta Cybernet., 5:261–279, 1981.
1, 1.2

[FV98] Z. Fülöp and H. Vogler. Syntax-directed semantics—Formal models based
on tree transducers. Monographs in Theoretical Computer Science, An
EATCS Series. Springer-Verlag, 1998. 1, 1.2, 3.2.1, 3.2.2.2, 2, 6.1.2, 6.5.2

[Gie88] R. Giegerich. Composition and evaluation of attribute coupled grammars.
Acta Inform., 25:355–423, 1988. 1, 1.2

[Gil96] A. Gill. Cheap Deforestation for Non-strict Functional Languages. PhD
thesis, Department of Computing Science, Glasgow University, January
1996. 1, 1.1, 1.4, 5

[GLP93] A. Gill, J. Launchburry, and S. L. Peyton-Jones. A short cut to defor-
estation. In Proceedings of Functional Programming Languages an Com-
puter Architecture (FPCA ’93), pages 223–232, Copenhagen, Denmark,
June 1993. ACM Press. 1, 1.1, 1.4, 5

[GS84] F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest,
1984. 1.2, 5.3.4

[GS97] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, chapter 1, pages 1–68.
Springer-Verlag, 1997. 1.2

[GTWW77] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial algebra
semantics and continuous algebras. J. ACM, 24:68–95, 1977. 5.4.1

[Hin00] R. Hinze. Deriving backtracking monad transformers. In P. Wadler, editor,
Proceedings of the 2000 International Conference on Functional Program-
ming (ICFP ’03), Montreal, Canada, September 2000. 6.2.2

[HIT96] Z. Hu, H. Iwasaki, and M. Takeichi. Deriving structural hylomorphisms
from recursive definitions. In Proceedings of the 1st International Con-
ference on Functional Programming, pages 73–82, Philadelphia, PA, May
1996. ACM Press. 1.1

141

Bibliography

[HPP02] M. Hyland, G. Plotkin, and J. Power. Combining computational effects:
Commutativity and sum. In 2nd IFIP International Conference on Com-
puter Science (TCS 2002), Montreal, 2002. 65

[Ihr88] Th. Ihringer. Allgemeine Algebra. Teubner Studienbücher: Mathematik.
Teubner, Stuttgart, Germany, 1988. 2.2

[JD93] M. Jones and L. Duponcheel. Composing monads. Yale technical report
YALEU/DCS/RR-1004, Yale University, December 1993. 7.1.3.7

[Joh01] P. Johann. Short cut fusion: Proved and improved. In W. Taha, editor,
Proceedings of the 2nd International Workshop on Semantics, Applications,
and Implementation of Program Generation (SAIG ’01), volume 2196 of
LNCS, pages 47–71, Florence, Italy, September 2001. Springer. 1, 1.1,
5.2.1.2

[Jür99] C. Jürgensen. Kategorientheoretisch fundierte Programmtransformationen
für Haskell. Diplomarbeit in Mathematik, Lehrstuhl für Informatik II,
RWTH-Aachen, Germany, October 1999. 5.2.2

[Jür00] C. Jürgensen. A formalization of hylomorphism based deforestation with an
application to an extended typed λ-calculus. Technical Report TUD-FI00-
13, Technische Universität Dresden, Fakultät Informatik, D-01062 Dresden,
Germany, November 2000. 5.2.2

[Jür01] C. Jürgensen. Composition of tree transducers versus categorical deforesta-
tion. In J. Dassow and B. Reichel, editors, Proceedings of the Workshop on
Coding Theory and Formal Languages, 11. Theorietag der GI-Fachgruppe
0.1.5. ‘Automaten und Formale Sprachen’, Wendgräben, pages 73–77,
Magdeburg, Germany, October 2001. Otto-von-Guericke-Universität. 5

[Jür02] C. Jürgensen. Monadic fusion of functional programs. Technical Report
TUD-FI02-12, Technische Universität Dresden, Fakultät Informatik, D-
01062 Dresden, Germany, December 2002. Submitted. 6

[Jür03] C. Jürgensen. Monadic fusion of functional programs. In Z. Ésik and
I. Walukiewicz, editors, Preliminary Proceedings of the 2003 International
Workshop on Fixed Points in Computer Science (FICS ’03), Satellite
Workshop at the ETAPS ’03, pages 44–63, Warsaw, Poland, April 2003.
6

[JV01] C. Jürgensen and H. Vogler. Syntactic composition of top-down tree trans-
ducers is short cut fusion. Technical Report TUD-FI01-10, Technische Uni-
versität Dresden, Fakultät Informatik, D-01062 Dresden, Germany, Novem-
ber 2001. 5, 1

142

Bibliography

[JV04] C. Jürgensen and H. Vogler. Syntactic composition of top-down tree trans-
ducers is short cut fusion. Math. Structures in Comput. Sci., 14(2):215–282,
2004. 5

[Kel80] G. M. Kelly. A unified treatment of transfinite constructions for free alge-
bras, free monoids, colimits, associated sheaves and so on. Bulletins of the
Australian Mathematical Society, 22:1–83, 1980. 6.2.4

[Kle65] H. Kleisli. Every standard construction is induced by a pair of adjoint
functors,. In Proc. Amer. Math. Soc., volume 16, pages 544–546, 1965.
4.4.4.8

[Küh98] A. Kühnemann. Benefits of tree transducers for optimizing functional pro-
grams. In V. Arvind and R. Ramanujam, editors, Proceedings of the 18th
INternational Conference on Foundations of Software Technology & The-
oretical Computer Science (FST&TCS ’98), volume 1530 of LNCS, pages
146–157, Chennai, India, December 1998. Springer-Verlag. 1, 1.2

[Küh99] A. Kühnemann. Comparison of deforestation techniques for functional pro-
grams and for tree transducers. In A. Middeldorp and T. Sato, editors,
Proceedings of the 4th Fuji International Symposium on Functional and
Logic Programming (FLOPS ’99), volume 1722 of LNCS, pages 114–130,
Tsukuba, Japan, November 1999. Springer-Verlag. 1.2

[KV01] A. Kühnemann and J. Voigtländer. Tree transducer composition as de-
forestation method for functional programs. Technical Report TUD-FI01-
07, Technische Universität Dresden, Fakultät Informatik, D-01062 Dresden,
Germany, August 2001. 1.2

[Lam68] J. Lambek. A fixpoint theorem for complete categories. Mathematische
Zeitschrift, 103:151–161, 1968. 4.1.7.4

[LG02a] Ch. Lüth and N. Ghani. Composing monads using coproducts. In Interna-
tional Conference on Functional Programming (ICFP ’02), pages 133– 144.
ACM Press, September 2002. 6.2.4

[LG02b] Ch. Lüth and N. Ghani. Monads and modularity. In Alessandro Armando,
editor, Frontiers of Combining Systems (FroCos ’02), 4th International
Workshop, number 2309 in Lecture Notes in Artificial Intelligence, pages
18–32. Springer Verlag, 2002. 6.2.4

[LS95] J. Launchburry and T. Sheard. Warm fusion: Deriving build-catas from
recursive definitions. In Proceedings of Functional Programming Languages
and Computer Architecture (FPCA ’95), pages 314–323, La Jolla, San
Diego, CA, USA, June 1995. ACM Press. 1.1

143

Bibliography

[Mac71] S. Mac Lane. Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. Springer, 1971. 9

[Mog90] E. Moggi. An abstract view of programming languages. Technical Report
ECS-LFCS-90-113, LFCS, 1990. 6.2.2

[NV01] T. Noll and H. Vogler. The universality of higher-order attributed tree
transducers. Theory of Computing Systems, pages 45–75, 2001. 1.2

[PH99] S. L. Peyton-Jones and J. Hughes, editors. Haskell 98: A Non-strict, Purely
Functional Language. http://www.haskell.org/onlinereport/, 1999. 1,
6.1.1.2, 6.1.2.2

[PTH01] S. L. Peyton-Jones, A. Tolmach, and T. Hoare. Playing by the rules:
Rewriting as a practical optimisation technique in GHC. In Ralf Hinze,
editor, Preliminary Proceedings of the 2001 ACM SIGPLAN Haskell Work-
shop (HW ’01), pages 203–233, Firenze, Italy, September 2001. 1.1, 7.5

[Rou68] W. C. Rounds. Trees, transducers and transformations. PhD thesis, Stan-
ford University, 1968. 1.2, 3, 6.1.2.2

[Rou70] W. C. Rounds. Mappings and grammars on trees. Math. Systems Theory,
4:257–287, 1970. 1.2, 3, 3.3.1.1, 2, 6.1.2.2

[SP00] A. Simpson and G. D. Plotkin. Complete axioms for categorical fixed-point
operators. In Proceedings of the 15th Symposium on Logic in Computer
Science, pages 30–41. IEEE Computer Society Press, 2000. 65

[Str72] R. Street. The formal theory of monads. Journal of Pure and Applied
Algebra, 2:149–168, 1972. 4.4

[Tha70] J. W. Thatcher. Generalized2 sequential machine maps. J. Comput. System
Sci., 4:339–367, 1970. 1.2, 3, 6.1.2.2

[TM95] A. Takano and E. Meijer. Shortcut deforestation in calculational form. In
Proceedings of the Conference on Functional Programing Languages and
Computer Architecture, pages 306–313, La Jolla, CA, June 1995. ACM
Press. 1, 1, 1.1, 1.4, 5, 5.2.1, 5.2.1.1

[VK01] J. Voigtländer and A. Kühnemann. Composition of functions with accumu-
lating parameters. Technical Report TUD-FI01-08, Technische Universität
Dresden, Fakultät Informatik, D-01062 Dresden, Germany, August 2001.
To appear in Journal of Functional Programming. 1

[Voi01] J. Voigtländer. Composition of restricted macro tree transducers. Diplo-
marbeit in Informatik, Lehrstuhl Grundlagen der Programmierung, Institut
für Theoretische Informatik, TU-Dresden, Germany, March 2001. 3.3.1

144

http://www.haskell.org/onlinereport/

Bibliography

[Voi02] Janis Voigtländer. Conditions for efficiency improvement by tree trans-
ducer composition. In Sophie Tison, editor, 13th International Conference
on Rewriting Techniques and Applications, Copenhagen, Denmark, Pro-
ceedings, volume 2378 of LNCS, pages 222–236. Springer-Verlag, July 2002.
7.4

[Wad89] P. Wadler. Theorems for free! In The 4th International Conference on Func-
tional Programming Languages and Computer Architecture (FPCA ’89),
pages 347–359, London, September 1989. Imperial College, ACM Press.
1.1, 5.2.1, 5.2.1.2

[Wad90] P. Wadler. Deforestation: Transforming programs to eliminate trees. The-
oretical Computer Science, 73(2):231–248, 1990. 1, 1.2

[Wec92] W. Wechsler. Universal Algebra for Computer Scientists, volume 25 of
EATCS Monograohs on Theoretical Computer Science. Springer, 1992. 2.2

145

146

Index

Symbols
(CF, | � |F) (concrete category of F-

algebras), 48

(CT,UT) (Eilenberg-Moore category),
61

(F, π) (pointed functor), 106

(H, π) (monad transformer), 106

(�)† (Kleisli-star), 59

(�)[(right adjungate), 57

(�)] (left adjungate), 57

+ (coproduct), 18

A〈〈X〉〉 (formal series), 136

[�] (copairing), 43

C(A,B) (hom-class), 29, 34

C(� , B) (covariant hom-functor), 34

C(� , �) (hom-functor), 34

Cop (dual category of C), 31

CF (category of F-algebras), 47

CT (category of T-algebras), 61

| � | (forgetful functor), 52, 112

| � |F (forgetful functor on F-algebras),
48

F(A), 115

F(A,B) (hom-class restriction), 39

µF (least fixed point of F), 48

TΣX (Σ-terms), 14

Tctx
Σ X ((Σ, X)-contexts), 14

Tlin
Σ X (linear Σ-terms), 14

a (adjunction), 56

∗ (vertical composition), 17⊙
(composition), 17

•T (composition in Kleisli cat. of T), 62

([�]) (catamorphism), 4, 48∐
(coproduct), 18

! (mediator), 39
⇐ (exponent), 18
ΛI (λ-abstraction functor), 112
Σ(r) (symbols of rank r), 14
Σ? (free monad over Σ), 61
〈[�]〉 (generalized semantics), 114
∼= (isomorphic), 32
←◦, 107
〈←◦〉, 126
〈 � 〉 (pairing), 41
; (composition), 13
¡ (comediator), 39
· (composition), 13, 17, 29
Q, 108∏

(product), 18
[[�]] (semantics), 23, 71, 98, 115
� (constant functor), 18, 33
← (morphism arrow), 13, 29
.← (natural transformation arrow), 35
× (product), 18
{ � }, 97
f•, 115
inF (initial F-algebra), 48

U(�) ‘forgetting more’ functor, 53
|, 97
>>= (bind), 60
=<<, 60

A
A (application functor), 101
abstraction, 46

147

Index

adjoint

functor, 56

situation, 56

transpose, 57

adjunction, 56

composition of, 58

adjungate, 57

algebra

F-, 17

F-algebra, 47

homomorphism, 47

T-, 61

transformer, 65, 106

algebraic data type, 97

algebraically complete, 51

alphabet, 14

application, 46

associativity

axiom, 30

B
bifunctor, 17

bind, 59

b-MAC , 101

C
carrier, 47

CAT, 17

category, 17, 29

2-, 37

bicartesian, 55

bicartesian closed, 55

cartesian, 55

cartesian closed, 55

CAT, 17

cCAT C, 52

cocartesian, 55

concrete, 52

discrete, 37

double, 37

dual, 31

Eilenberg-Moore, 61

ExpC(A,B), 46

horizontal edge, 37
Kleisli, 62
meta-, 13, 17

LeftAdj, 58
Mnd (category of monads on C),

60
monadic, 62
MT , 116
opposite , see dual
pre-, 30
product-, 34
semiconcrete, 52
Set , 31
Setℵ0 , 31
SetΣ, 31
sub, 34
sub-

full, 34
Top, 31
vertical edge, 37

cCAT C, 52
class, 13
co-adjoint functor, 56
co-continuous functor, 58
co-unit, 56
cod (codomain), 13, 29
codomain, 29
cofree, 137
comediator, 39
comonad, 137
compatible monad, 137
composition

axiom, 30
horizontal, 17, 35
of adjunctions, 58
of classes of tree transformations,

129
of monads, 137
of morphisms, 17
vertical, 17, 36

compositional, 23, 114
conglomerate, 13
construct, 52

148

Index

constructor, 47, 97
consumer, 1
context, 14
continuous functor, 58
contravariant functor, 97
coproduct, 17
covarietor, 137
curry, 46
Curry, Haskell B., 47
currying, 47

D
data, 97
data constructor, 97
deforestation, 1
distributive law, 136
dom (domain), 13, 29
domain, 29
dual

category, 31
functor, 33
predicate, 31

duality principle, 31

E
Eilenberg-Moore category, 61
embedding, 51

canonical, 34
End, 17
End2, 17
endofunctor, 17, 33
environment, 101
ev (evaluation morphism), 18
evaluation morphism, 18
exponent, 17, 46
extension operation, 59

F
F-algebra, 17, 47
final

object, 17, 39
forall, 97
forest, 79
forgetful functor, 52

formal series, 136
functor, 136

free
has free objects, 54
monad, 61
object, 54
theorems, 68

free functor, 56
function spaces, 54
functor, 32

adjoint, 56
bi-, 17
bicartesian, 55
co-adjoint, 56
co-continuous, 58
cocartesian, 55
concrete, 52
constant, 18, 33
continuous, 58
contravariant, 33, 97
coproduct, 18
covariant, 32
embedding, 51
endo-, 17, 33
exponent, 18
faithful, 51
forgetful, 52
formal series, 136
free, 56
identity, 18, 33
left adjoint, 56
monadic, 62
pointed, 106
polynomial, 55
product, 18
projection-, 34
right adjoint, 56
semiconcrete, 52

fundamental construction, see monad
fusion, 1

of monadic transducers, 115

G

149

Index

Godement product, see vertical compo-
sition

H
Haskell, 1, 97
HOM , 100
Hom, 17
hom-class restriction, 39
hom-classes, 29
hom-functor, 34

covariant, 34
horizontal composition, 17

I
Id

Id (identity functor), 33
Id (identity functor), 18
id (identity morphism), 17, 29
identity

axiom, 30, 33
functor, 18
monadic transducers, 115
morphism, 17

initial
object, 17, 39
state, 99

inverse morphism, 32
Iso, 32
isomorphic, 32
isomorphism, 32

J
join, 59

K
kind, 97
Kleisli

category, 62
Kleisli-†, 59
Kleisli-triple, 59

L
least fixed point, 47
left adjoint functor, 56

left adjungate, 57
LeftAdj, 58
lift, 106
linear term, 14
localization, see hom-class restriction

M
MAC , 101
MAC `, 101
mediator, 39

co-, 39
Mnd (category of monads on C), 60
monad, 59

compatible, 137
composition of, 137
formal series, 136
free, 61
Haskell-, 59
morphism, 60
tree-series, 137

monad transformer, 106
monadic, 62

transducer, 9, 114
fusion of, 115
homomorphism, 119
identity, 115

monoid, see monad
Mor (morphism class), 17, 29
morphism, 29

evaluation, 18
MT , 116
multiplication, 59
multiplicativity

axiom, 33

N
N (natural numbers from 1), 13
N0 (natural numbers from 0), 13
natural transformation, 17
naturalness condition, 35
null-object, 40

O
Ob (object class), 17, 29

150

Index

object, 29
final, 39
free, 54
has free s, 54
initial, 39
null-, 40
terminal , see final

observe, 106, 114
opposite category, see dual category

P
P (projection-functor), 34
parametric model, 67
pointed functor, 106
PolyFix, 67
polynomial type, 97
producer, 1
product, 17

concrete, 54
promote, 106

R
rank, 14
ranked alphabet, 14
regular type, 97
related, 85
return, 60
right adjoint functor, 56
right adjungate, 57
rolling rule, 51
rule, 9

of a monadic transducer, 114
of a tree transducer, 102

S
sb-MAC , 101
semantics, 115

denotational sem. of an algebraic
transducer, 71

generalized, 114
semiring, 135

complete, 136
Set , 31
Setℵ0 , 31

SetΣ, 31
source, see domain
standard construction, see monad
state, 99
subcategory

full, 34
support, 136
syntax directed, 23, 114

T
TΣ (underlying endofunctor of Σ?), 61
T-algebra, 61
target, see codomain
term, 14
terminal object, see final object
TOP , 24, 100
Top, 31
TOP `, 100
transducer

algebraic, 70
algebraic

denotational semantics of an, 71
homomorphism, 74
top-down, 77

categorical , see algebraic
monadic, 9
monadic

generalized, 135
tree, see tree transducer
tree to tree-series, 135

transformation, 35
natural, 35

transformer
algebra, 65, 106
monad, 106

transition relation, 22
tree

linear, 14
transducer, 98

basic, 101
bottom-up, 137
homomorphism, 99
macro, 101

151

Index

pure, 99
simple basic, 101
top-down, 99

tree-series monad, 137
triad, see monad
triple, see monad
type

algebraic data type, 97
constructor, 97
polynomial, 97
regular, 97
uniform, 97

typing axiom, 30, 32

U
u (universal arrow), 54
unary ranked alphabet, 14
underlying morphism, 52
underlying object, 52
uniform type, 97
unit

of a Kleisli-triple, 59
of a monad, 59
of an adjunction, 56

universal
arrow, 54
property, 39

UP (universal property), 39

V
varietor, 55
vertical composition, 17

152

	1 Introduction
	1.1 Short cut fusion
	1.2 Syntactic composition of tree transducers
	1.3 The initial algebra approach
	1.4 The free monad approach
	1.5 Structure of the thesis

	2 Preliminaries
	2.1 General notions
	2.1.1 Sets and classes
	2.1.2 Functions and arrows

	2.2 Universal algebra
	2.2.1 Trees, terms and substitution
	2.2.2 Algebras

	2.3 Basic notions of category theory

	I Introduction to tree transducers and category theory
	3 Tree transducers
	3.1 Syntax
	3.1.1 Top-down tree transducers
	3.1.2 Macro tree transducers

	3.2 Semantics
	3.2.1 Operational semantics
	3.2.2 Denotational semantics

	3.3 Composition of tree transducers
	3.3.1 Composition of individual tree transducers
	3.3.2 Composition of classes of tree transformations

	4 Category theory
	4.1 Basic Definitions and Theorems
	4.1.1 Categories
	4.1.2 Functors
	4.1.3 Natural transformations
	4.1.4 Initial and final objects
	4.1.5 (Co-)products
	4.1.6 Exponents
	4.1.7 Initial algebras and catamorphisms

	4.2 Concrete categories and constructs
	4.2.1 Concrete categories and concrete functors

	4.3 Adjoint functors and adjunctions
	4.3.1 Free objects
	4.3.2 Varietors
	4.3.3 Adjoint functors
	4.3.4 Adjunctions

	4.4 Monads
	4.4.1 Monads and Kleisli triples
	4.4.2 Monad morphisms
	4.4.3 Free monads
	4.4.4 Monads versus Adjunctions

	II Tree transducer composition in category theory
	5 The initial algebra approach
	5.1 Algebra Transformers
	5.1.1 Characterization of concrete algebra transformers
	5.1.2 Construction of algebra transformers

	5.2 Generalized acid rain theorems
	5.2.1 The acid rain theorem
	5.2.2 Generalized acid rain theorems

	5.3 Algebraic transducers
	5.3.1 Syntax of algebraic transducers
	5.3.2 Composition of algebraic transducers
	5.3.3 Denotational semantics of algebraic transducers
	5.3.4 Algebraic transducer homomorphisms
	5.3.5 Top-down algebraic transducers

	5.4 Relating transducers
	5.4.1 Category of forests
	5.4.2 Relating the semantics
	5.4.3 Relating syntactic composition and fusion

	6 The free monad approach
	6.1 Tree transducers as functional programs
	6.1.1 Terms, types, and functors
	6.1.2 Syntax and semantics of tree transducers
	6.1.3 The rule of a tree transducer

	6.2 Monads and Monad transformers
	6.2.1 Tree monads and free monads
	6.2.2 Monad transformers
	6.2.3 Monad transformers from adjunctions
	6.2.4 Monad transformers from coproducts of monads

	6.3 Monadic transducers
	6.3.1 Syntax and semantics of monadic transducers
	6.3.2 Fusion of monadic transducers
	6.3.3 Monadic transducer homomorphisms
	6.3.4 Algebraic transducers versus Monadic transducers

	6.4 Tree transducers as monadic transducers
	6.4.1 Homomorphism tree transducers as monadic transducers
	6.4.2 Top-down tree transducers as monadic transducers
	6.4.3 Simple basic macro tree transducers as monadic transducers
	6.4.4 Basic macro tree transducers as monadic transducers
	6.4.5 Macro tree transducers as monadic transducers

	6.5 Fusion of tree transducers
	6.5.1 Fusion of particular functional programs
	6.5.2 Fusion of classes of tree transformations

	7 Open problems and future work
	7.1 Generalized monadic transducers
	7.1.1 Generalized monadic transducers
	7.1.2 Internal functions
	7.1.3 Tree to tree-series transducers

	7.2 High-level tree transducers as monadic transducers
	7.3 Bottom-up tree transducers as comonadic transducers
	7.4 Efficiency improvement
	7.5 Implementation

	Bibliography
	Index

