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Abstract 
 

 

 
Forest-cover in the tropics is changing rapidly due to indiscriminate removal of timber from many 

localities, which might be one of the major sources of carbon emission and global climate change 

in recent decades. The main focus of the current study is to develop an operational tool for 

monitoring above-ground biomass and carbon of tropical forest ecosystem. It will also able to 

detect any changes in the pool due to deforestation or growth. Finally the method was applied to a 

test site. The test site is located at the south-eastern Bangladesh where a considerable amount of 

deforestation has been noticed in the recent years. The research used Landsat ETM+, Landsat TM 

and IRS pan images on the 2001, 1992 and 1999 respectively. Geometrically corrected Landsat 

ETM+ imagery was obtained from USGS and later was adjusted in the field using GPS. Historical 

images were corrected using image-to-image registration. Atmospheric correction was done by 

modified dark object subtraction method. Selected study area was separated from the whole 

image. Stratified sampling design based on remote sensing data was applied for assessing the 

above-ground biomass and carbon content in the selected study area. Recent image was classified 

using supervised method to establish strata for field inventory. Eight different vegetation types were 

recognized. Field sampling was done during 2002-2003. A total of seventy field samples were 

collected from different strata. The plot size was variable in different vegetation types. Dbh and 

height of all the trees inside plots were measured. Field measurement was finally converted to 

carbon content using allometric relations. Three different methods: stratification, regression and k-

nearest neighbors were tested for combining remote sensing image information and terrestrial 

carbon pool from field sample plots. Additional field sampling was conducted during 2003-2004 for 

testing the accuracy of different methods. Thirty field sample plots were collected for this validation 

purpose. Finally regression method was selected to predict the terrestrial carbon pool of the study 

area from Landsat images of 2001 and 1992 as the other two methods have some constraints. The 

amount of carbon released and sequestrated from the ecosystem due to deforestation or growth 

was estimated. The dissertation has also discussed the limitations of the above-described 

estimation procedure. The method can also be applied for estimating carbon pool of the temperate 

forest, which is rather straight-forward. The application of the above technique would be quite 

useful for understating the terrestrial carbon dynamics and global climate change.  
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Chapter I 

1 Climate Change and Carbon-di-oxide Emission 

1.1 Global Climate System and Recent Climate Change 

Global climate change is a change in the long-term weather patterns of the world. The greenhouse 

effect is a one example of the recent climate change, which is a warming process that balances 

Earth's cooling processes. During this process, sunlight passes through Earth's atmosphere as 

short-wave radiation. Some of the radiation is absorbed by the planet's surface. As Earth's surface 

is heated, it emits long wave radiation toward the atmosphere. In the atmosphere, certain gases 

called greenhouse gases absorb some of the long wave radiation. Greenhouse gases include 

carbon dioxide (CO2), chlorofluorocarbons (CFC's), methane (CH4), nitrous oxide (N20), 

tropospheric ozone (O3), and water vapours. Each molecule of greenhouse gas becomes 

energized by the long wave radiation. The energized molecules of gas then emit heat energy in all 

directions. By emitting heat energy toward Earth, greenhouse gases increase Earth's temperature.  

 

The greenhouse effect is a natural occurrence that maintains Earth's average temperature at 

approximately 60 degrees Fahrenheit. The greenhouse effect is a necessary phenomenon that 

keeps all Earth's heat from escaping to the outer atmosphere. Without the greenhouse effect, 

temperatures on Earth would be much lower than they are now, and the existence of life on this 

planet would not be possible. However, too many greenhouse gases in Earth's atmosphere could 

increase the greenhouse effect. This could result in an increase in mean global temperatures as 

well as changes in precipitation patterns. When weather patterns for an area change in one 

direction over long periods of time, they can result in a net climate change for that area. The key 

concept in climate change is time. Natural changes in climate usually occur over; that is to say they 

occur over such long periods of time that they are often not noticed within several human lifetimes. 

This gradual nature of the changes in climate enables the plants, animals, and microorganisms on 

earth to evolve and adapt to the new temperatures, precipitation patterns, etc. 

 

The real threat of climate change lies in how rapidly the change occurs. For example, over the past 

130 years, the mean global temperature appears to have risen 0.6 to 1.2 degrees Fahrenheit (0.3 

to 0.7 degrees Celsius). The increasing steepness of the curve suggests that changes in mean 

global temperature have occurred at greater rates over time. Further evidence suggests that future 

increases in mean global temperature may occur at a rate of 0.4 degrees Fahrenheit (0.2 degrees 

Celsius) each decade. Figure 1.1 describes the changes in global temperature (degrees 

Fahrenheit) from 1861 to 1996 (Graph adapted from image courtesy of the US EPA).  
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The geological record and the physical evidence of the results of processes that have occurred on 

Earth since it was formed, provides evidence of climate changes similar in magnitude to those in 

the above graph. This means during the history of the earth, there have been changes in global 

temperatures similar in size to these changes. However, the past changes occurred at much slower 

rates, and thus they were spread out over long periods of time. The slow rate of change allowed 

most species enough time to adapt to the new climate. The current and predicted rates of 

temperature change, on the other hand, may be harmful to ecosystems. This is because these 

rates of temperature change are much faster than those of Earth's past. Many species of plants, 

animals, and micro-organisms may not have enough time to adapt to the new climate. These 

organisms may become extinct.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1.1 Variations of Earth’s surface temperature (1000 to 2100 AD). Data from IPCC Third 

Assessment Report (Prentice et al. 2001). Sources of data from 1000-1861 AD-northern 

hemisphere, proxy data (tree rings, sediment cores etc.); 1861-2000 AD- global instrumental data; 

2000-2100 AD- Special Report on Emission Scenarios projections. 

 

Analyses of air bubbles in ice cores from Greenland and Antarctica have given a reasonably clear 

idea about variations in atmospheric CO2 concentration since the end of the last glacial maximum.  

The global atmospheric CO2 concentration is now nearly 100 ppmv higher than the interglacial 
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maximum; this recent rise is equal to the entire range of CO2 concentrations between glacial 

minima and interglacial maxima. Atmospheric concentrations of carbon dioxide have risen to 

current levels at least ten- possibly a hundred- times faster than at any other time in the last 

429,000 years, and continue to rise sharply. The recent dramatic increase in atmospheric CO2 is 

unquestionably the result of human activities. It is highly likely the observed changes toward a 

warmer climate over the last century are a consequence of this increase (Figure 1.1 and Prentice 

et al. 2001). 

 

Carbon dioxide has received a lot of attention with respect to global warming; 50% to 60% of the 

anthropogenic greenhouse effect is attributed to this gas. 160,000 years prior to the industrial 

revolution the atmospheric concentration of carbon dioxide varied from approximately 200 to 300 

ppm (Post et. al. 1990). The major anthropogenic greenhouse gases are listed in table 1.1. The 

table also lists the recent growth rate in percent to the anthropogenic greenhouse effect. 

 

Table 1.1 Relative contributions of trace gases to the anthropogenic effect 

 

Trace Gases Relative Contribution (%) Growth Rate (% yr) 

CFC 15a-25b 5

CH4 12a-20b 1c

O3 (troposphere) 8d 0.5

N2O 5d 0.2

Total 40-50

Contribution of CO2 50-60 0.3e-0.5d,f

a W. A. Nierenberg. 1989.  
b Hanson et al. 1989.  
cGrowth stopped in 1991-1992 possibly due to control of leaks in Russian natural gas production 

systems (Botkin and Keller. 1998).  
d Rodhe 1990.  
e Kellogg 1989 
f Abelson 1990.  

 
About 130 years ago, at the beginning of the industrial revolution, the atmospheric concentration of 

carbon dioxide was approximately 280 ppm, a level apparently constant for the last 700 years 

(Moss and Lins 1989). Beginning in about 1860, the concentration of carbon dioxide in the 

atmosphere has grown exponentially. Currently, the rate of increase of carbon dioxide in the 
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atmosphere is about 0.5% per year; if it continues to grow at this rate, it will be doubled 

approximately in 140 years (Botkin and Keller 1998).  

 

Today the concentration of carbon dioxide in the atmosphere is approaching 400 ppm, and it is 

predicted that the level may rise to approximately 450 ppm by the year 2050, more than 1.5 times 

the pre-industrial level (Titus et al. 1985). Figure 1.2 compares the global emission of carbon 

dioxide to the average concentration of the gas to the atmosphere. These data suggest a direct 

correlation between the emission of carbon dioxide and its concentration in the atmosphere. It is 

interesting to note, however, that the rate of increase of carbon emission from burning of fossil 

fuels, deforestation and other anthropogenic processes has been approximately 4.3% per year 

since the industrial revolution began, more than 8 times the 0.5% per year rate of increase in 

concentration of carbon dioxide in the atmosphere (Botkin and Keller 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Flux of global carbon in 1850-2000 (source: Woods Hole Research Center) 

 

1.2 Carbon Cycle 

All life is based on the element carbon. Carbon is the major chemical constituent of most organic 

matter, from fossil fuels to the complex molecules (DNA and RNA) that control genetic reproduction 

in organisms. The movement of carbon, in its many forms, between the biosphere, atmosphere, 

oceans and geo-sphere is described by the carbon cycle. Carbon is stored on our planet in the 
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following major sinks (1) as organic molecules in living and dead organisms found in the biosphere, 

(2) as the carbon dioxide in the atmosphere (3) as organic matters in soils (4) in the lithosphere as 

fossil fuels and sedimentary rock deposits such as limestone, dolomite and chalk and (5) in the 

oceans as dissolved atmospheric carbon dioxide and as calcium carbonate shells in marine 

organisms. 

 

Table 1.2 Estimated major stores of carbon on the earth (Pidwirny 2004) 

 

Sink Amount in Billions of Metric Tons 

Atmosphere 578 (as of 1700 A.D.) to 766 (as 1999 A.D.) 

Soil organic matter 1500 to 1600 

Ocean 38,000 to 40,000 

Marine sediments and sedimentary rocks 66,000,000 to 100,000,000 

Terrestrial plants 540 to 640 

Fossil fuel deposits 4000 

 

Ecosystems gain most of their carbon dioxide from the atmosphere. A number of autotrophic 

organisms have specialized mechanisms that allow for absorption of gas into their cells. With the 

addition of water and energy from solar radiation, these organisms use photosynthesis to 

chemically convert the carbon dioxide to carbon based sugar molecules. These molecules can then 

be chemically modified by these organisms through the metabolic addition of other elements to 

produce more complex compounds like proteins, cellulose and amino acids. Some of the organic 

matter produced in plants is passed down to heterotrophic animals through consumption. 

 

Carbon dioxide enters the waters of the ocean by simple diffusion. Once dissolved in seawater, the 

carbon dioxide can remain as is or can be converted into carbonate C03
--) or bicarbonate (HCO3

-). 

Certain forms of sea life biologically fix bicarbonate with calcium (Ca++) to produce calcium 

carbonate (CaCO3). This substance is used to produce shells and other body parts by organisms 

such as coral, calms, oysters, some protozoa and some algae. When these organisms die, their 

shells and body parts sink to the ocean floor where they accumulate as carbonate-rich deposits. 

After long period of time, these deposits are physically and chemically altered into sedimentary 

rocks. Ocean deposits are by far the biggest sinks of carbon on the planet. 

 

Carbon is released from ecosystems as carbon dioxide gas by the process of respiration. 

Respiration takes place in both plants and animals and involved the breakdown of carbon-based 
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organic molecules into carbon dioxide gas and some other compound by-products. Food chain 

contains a number of organisms whose primary ecological role is the decomposition of organic 

matter into its abiotic component also plays role in carbon release. The carbon cycle can be 

presented by figure 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Schematic representation of carbon cycle 

 

The other major problem in estimating carbon transfer to the atmosphere on the route is that there 

may be less obvious movements of carbon to the atmosphere, such as oxidation of organic matter 

from soils that accompanies forest destruction. This is obviously difficult to quantify and varies 

considerably from one ecosystem to another. Fortunately for the balance of carbon on earth, there 

are also parts by which carbon is removed from the atmosphere. One of these is absorbed by 

solution in the oceans. Seawater is slightly alkaline and this assists the solution of CO2 where it 

may form hydrogen carbonate ions. These can be used by the phytoplankton as a source of carbon 

synthesis and some of the carbons fixed in this way will sediment into deeper waters as the dead 

bodies of the phytoplankton sink downwards. Hydrogen carbonate ions may also combine with 

calcium to generate calcium carbonate (lime), especially forming the lime-impregnated outer coats 

on some of the planktonic organisms (Moore et al. 1996). 

 



 7

Over millions of years buried organic matter is compressed between layers of sediment, where it 

forms carbon-containing fossil fuels such as coal and oil. This carbon is not released to the 

atmosphere as CO2 for recycling until these fuels are extracted and burned or until long-term 

geological processes expose these deposits to air. In the short time period of a few hundred years, 

we have been extracting and burning fossil fuels that took million of years to form from dead plant 

matter, which is why fossil fuels are non-renewable resources on a human time scale. 

 

1.3 Forests and Carbon Fluxes   

1.3.1 Storage of carbon in forest ecosystem 

The high-latitude zone is suggested to contain the highest forest carbon reserves per surface area, 

principally due to belowground carbon stocks. Biomass-carbon stocks are highest in tropical forests 

but show average soil-carbon contents of the same order as those of the temperate zone 

(Houghton 1996). Dixon and Wisniewski (1995) estimate 31% of the total global forest carbon 

reserve to be locked in vegetation and 69% in soils and peat. The aboveground portion of the total 

forest-biomass carbon is thought to be approximately 75-90%. The remaining 10-25% is located in 

the soil, particularly as root biomass. Ratios of aboveground biomass to belowground biomass may 

though vary in a range of between 1.32 and 0.1 in different ecosystem types (Olson et al. 1983, 

Körner 1989, Nilsson and Schopfhauser 1995). Within any latitude belt, soil-carbon contents tend 

to diminish (according to increasing disturbance) from primary forest to secondary forest and 

agricultural land use. 

 

Each of the vegetation types is described in relation to categories used in the Olson et al. (1985) 

ecosystems map (figure 1.4) although many modifications to this framework is necessary. The 

detailed tabular statement of the map is enumerated in table 1.3.  
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Figure 1.4 World Ecosystem Complexes in terms of carbon storage (Olson et al. 1985) 

 

Global estimates in short- and long-lived wood products amount to approximately 15 Pg carbon, of 

which approximately 25% or 2-8 Pg carbon would correspond to long-lived (>1 year) products. 

Thus, carbon storage in wood products would amount to approximately 3-4% of that in the forest 

biomass and approximately 1.3-1.4% of the whole forest ecosystem (Matthews et al. 1996). 

According to Vitousek (1991), worldwide, approximately 4 Pg carbon (~0.7-1.1% of the carbon 

storage of forest vegetation) is presently contained in buildings and 0.5 Pg carbon is in paper and 

other wood products. The annual global logging yield is 0.6 Pg carbon, of which approximately half 

is used as fuel wood and only 0.1 Pg is used as construction material. In contrast to the buildup of 

the carbon pool in wood products, decay or destruction rates of the different wood products vary 

widely and are difficult to calculate (Puhe and Ulrich 2001).   
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Table 1.3 World Ecosystem Complexes in terms of carbon storage 
Color-

Id 
Ecosystem complexes Grid 

cell 
count 
(0.5°) 

Medium 
carbon 
density 

(Kg 
C/m2) 

Revised 
medium 
carbon 
density 

(Kg 
C/m2) 

Minimum 
carbon 
density 

(Kg 
C/m2) 

Maximum 
carbon 
density 

(Kg C/m2) 

Ecosystem 
codes 

1 Conifers 1719 16.00 13.00 12.0 20.0 22,27
2 Tropical/Subtropical Broad-leaved 

Humid Forest 
3430 15.00 12.00 4.0 25.0 29,33,73

3 Southern Taiga 903 11.00 8.00 6.0 14.0 60,61
4 Mid-Latitude Mixed Woods 

(Deciduous/Evergreen/Conifer) 
1589 10.00 7.00 6.0 14.0 23,24

5 Mid-Latitude Temperate Broad-
leaved Forest 

676 10.00 9.00 8.0 14.0 25,26

6 Main Boreal Taiga 3579 8.00 6.00 4.0 11.0 20,21
7 Tropical/Subtropical Dry Forest 

and Woodland 
1584 7.00 6.00 5.0 9.0 32

8 Second Growth Forest/Fields 
(Tropical/Subtropical Humid, 
Temperate/Boreal Forests) 

2232 5.00 4.00 4.0 8.0 56,57

9 Semi-arid Woodland or Low 
Forest 

324 5.00 4.00 2.0 10.0 48

10 Northern or Maritime Taiga, Sub 
alpine 

3175 5.00 5.00 2.0 8.0 62

11 Tropical Montane Complexes 394 5.00 5.00 1.0 15.0 28
12 Second Growth Field/Woods 

(Tropical/Temperate Woods, 
Fields/Grass/Scrub) 1680 

4.00 3.00 2.0 5.0 55,58 

13 Succulent and Thorn Woods and 
Scrub 

1350 4.00 3.00 2.0 6.0 59

14 Mediterranean Types & Dry, 
Highland Woods 

1374 4.00 3.00 2.0 8.0 46,47

15 Warm or Hot Wetlands 546 3.00 2.00 1.0 6.0 45,72
16 Paddy land 697 3.00 3.00 2.0 4.0 36
17 Tropical Savanna and Woodland 

(Interrupted Woods) 
2229 3.00 3.00 2.0 5.0 43

18 Shore and Hinterland Complexes 403 3.00 3.00 0.0 10.0 65,66,67,68
19 Other Irrigated Dryland 627 2.00 2.00 1.0 3.0 37,38,39
20 Wooded Tundra 1236 2.00 2.00 1.0 5.0 63
21 Bog/Mire of Cool or Cold Climates 576 2.00 2.00 1.0 6.0 44
22 Heath and Moorland 72 1.50 1.00 1.0 2.0 64
23 Warm or Hot Shrub and Grassland 

(Marginal Lands) 
6400 1.30 0.90 0.5 3.0 41

24 Cool or Cold Farms, Towns 1477 1.00 0.70 0.4 2.0 30
25 Warm/Hot Farms, Towns, Cool 

Grass/Scrub 
5553 1.00 0.80 0.6 2.0 31,40

26 Tibetan Meadows, Siberian 
Highlands 

425 1.00 1.00 0.5 4.0 42

27 Cool Semidesert Scrub 930 0.60 0.60 0.3 1.0 52
28 Tundra, Arctic Desert and Ice 10561 0.50 0.50 0.0 1.2 53,54,69,70
29 Non-Polar Desert and Semidesert, 

Sparse Vegetation 
4070 0.40 0.30 0.2 1.0 51,71,49

30 Non-Polar Sand Desert 1930 0.05 0.05 0.0 0.2 50
31 Water Bodies 172495 0.00 0.00 0.0 0.0 0
32 Antarctica 24964 0.00 0.00 0.0 0.0 17

In the above table, minimum, medium, and maximum carbon densities were taken from Table 5 in 

Olson et al. (1983). The revised medium carbon densities were taken from Table 1 in Olson et al. 

(1985) and were specified by J. S. Olson at the time of publication of Olson et al. (1985). "Colour-

Id" refers to the World Ecosystem Complexes shown in the figure 1.4. 
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1.3.2 Carbon fluxes from forests 

All forest biomes have undergone major changes in distribution since the last ice age (18000 years 

ago), when the climate was both cooler and more arid than it is today. Boreal and northern 

temperate forests were squeezed between advancing ice sheets and steppe tundra from the north 

and expanding semi-desert and steppe tundra from the south, while tropical rain forests retreated 

into small pockets as savannah expanded. The amount of carbon stored in terrestrial biomes was 

25 to 50 percent lower than at present. Terrestrial carbon storage peaked in the warm, moist early 

Holocene period about 10 000 years ago and subsequently declined about 200 Gt to reach today’s 

level (2 200 Gt of carbon), probably because of a gradual cooling and aridification of the climate 

(FAO 2001). 

 

Prior to the nineteenth century humans exerted only a modest influence on terrestrial carbon 

storage through fire, fuel use and deforestation, but since the outset of the industrial revolution, 

human activities have had a major effect on the global carbon cycle. Between 1850 and 1980, 

more than 100 Gt of carbon were released into the atmosphere as a result of land use changes, 

representing about one-third of the total anthropogenic carbon emission over this period (Houghton 

1996) (figure 1.5 - 1.6) though the estimate from different scientists varied slightly (figure 1.7). 
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Figure 1.5 Estimated annual global carbon emission from fossil fuel burning and land use change 

(source: Woods Hole Research Center) 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 1.6 Atmospheric budget for carbon showing sources and sinks with estimated fluxes (Gt 

yr-1)1 (source: Moore et al. 1996) 

 

 

                                                 
1 The missing sink could be in large part be accounted for by vegetation biomass growth as a result of CO2 
fertilization (estimated at 1.0+0.5) [after Schimel 1995]. 
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Figure 1.7 Comparison of estimates of net flux of carbon to the atmosphere from land-use changes 

during 1850 to 1990 (Houghton and Haker 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Net flux of carbon to the atmosphere from land-use changes, by region, 1850 to 1990 

(Houghton and Haker 2002). 
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Until the late nineteenth century most forest clearing and degradation took place in temperate 

regions. In the twentieth century, the area of temperate forest largely stabilized and tropical forest 

became the primary source of carbon emissions from terrestrial ecosystems (Houghton 1996) 

(figure 1.8). Today, forest cover in developed countries is still increasing slightly between 1980 and 

1995 there was an average increase of 1.3 million ha per year (FAO 1999). In recent decades, 

many temperate forest regions (such as Europe and eastern North America) have become 

moderate carbon sinks through the establishment of plantations, the re-growth of forests on 

abandoned agricultural lands, and increased growing stock in forests. In contrast tropical forests 

have become a major source of carbon emissions; the rate of tropical deforestation is estimated to 

have been 15.5 million per year in the period 1980-1995 (FAO 1999). 

 

The main sources of atmospheric carbon are the burning of fossil fuel (75%) as well as clearing of 

land (25%) (Miller 1999). The main sinks are the absorption by ocean and terrestrial biosphere 

(IPCC 1992). One source that is reasonably well documented and therefore can be calculated with 

some accuracy is the combustion of fossil fuels. For the years 1989-1990 this has been estimated 

at between 5.5 and 6.0 Gt (IPCC 1992), most of which derived from industrial activity in the 

northern hemisphere. Obviously, this total varies from year to year. 

 

The net flux of C to the atmosphere from land use change (primarily, though not exclusively due to 

deforestation in the tropics) depends on the area covered, carbon density per ha, the fate of the 

altered land and the ecosystem processes that control flux of carbon. The IPCC (1990) estimate 

the flux in 1980 was 0.6-2.5 GtC, somewhat higher than the 1980 estimate of 0.6-2.5 GtC. The 

IPCC (1990) estimate of net average annual emissions for the decade 1980-1989 was 1.6� 1.0 

GtC, which is consistent with Houghton’s estimate within the limits of uncertainty (IPCC 1992). 

 

The area of global forests has been declining for centuries and the process has accelerated to an 

alarming rate within the last half of the 20th century (FAO 1997). Between 1850 and 1980, 15% of 

the world’s forests and woodlands were cleared (Rowe et al., 1992), while 5% were decreased 

during 1980 - 1995. There was a net increase of 20 million hectares in developed nations while net 

loss of 200 million hectares in developing countries between 1980 and 1995. The estimate of forest 

cover change in natural forests of developing countries was an annual loss of 13.7 million hectares 

(where most deforestation is taking place) between 1990 and 1995, compared with 15.5 million 

hectares per year over the decade 1980-1990 (FAO 1999). Table 1.4 enumerated the estimate of 

change of major terrestrial ecosystem and carbon pool since the industrial revolution began. 
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Table 1.4 Areas and carbon contents of major terrestrial ecosystems in 1850 and 1980 and 

changes over the 130-year period (Houghton 1996). 

 
Area (106 ha) Carbon content 

Vegetation (Pg carbon) Soil (pg carbon) 
Biotic system 

1850 1980 Change 
1850 1980 Change 1850 1980 Change 

Tropical 
evergreen forest 

608 540 -68 116 100 -15 67 59 -8

Tropical seasonal 
forest 

1,647 1,345 -302 208 173 -36 149 124 -25

Tropical open 
forest/woodland 

420 282 -138 23 5 -8 28 19 -9

Subtotal tropical 
forests 

2,675 2,167 -508 347 288 -59 245 203 -42

Temperate 
evergreen forest 

558 564 6 83 71 -12 73 67 -6

Temperate 
deciduous forest 

461 398 -63 55 41 -14 61 51 -9

Temperate 
woodland 

564 530 -34 15 14 -1 39 37 -2

Subtotal 
temperate forests 

1,583 1,492 -91 153 127 -26 173 155 -17

Boreal forest 
 

1,172 1,167 -4 102 96 -6 240 237 -3

Subtotal all forests 
and woodlands 

5,430 4,827 -603 601 510 -91 657 595 -62

Desert scrub 
 

1,120 849 -271 3 2 -1 65 49 -15

Tropical fallows 
(shifting 

cultivation) 

199 229 30 8 8 1 17 19 2

Tropical grassland 
and pasture 

459 545 86 8 9 1 20 28 8

Temperate 
grassland and 

pasture 

2,150 2,010 -140 34 26 -8 310 270 -41

Cultivated, 
temperate zone 

261 762 501 2 5 2 49 105 56

Cultivated, tropical 
zone 

28 417 389 0 4 4 2 24 22

Othera 

 
4,080 4,088 8 18 18 0 351 351 0

Total 
 

13,727 13,727 0 673 583 -90 1,471 1,440 -31

aIncludes tundra, alpine meadow, marsh, rock, ice and sand (Whittaker and Likens 1973, 

Schlesinger 1984). 

 

The area of the world’s forests, including natural forests and forest plantations, was estimated to be 

3,454 million hectares that represents about one fourth of the land area of earth in 1995. About 

55% of these forests are located in developing countries (mainly tropical and sub-tropical and some 

temperate countries), with the remaining 45% in developed countries (FAO, 1999). South-Asia 

contains only 6.07% of the tropical forest area but supports 22% of the earth‘s population (FAO 

1993). Bangladesh is a part of South-Asia that represents 0.05% forest of it (FAO 2000). It is a 

densely populated country and consequently, its forests are subjected to heavy demanded 
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pressure in terms of both wood production and competing landuse. Bangladesh has a relatively low 

proportion of forest cover which is 7% of its total land area (FAO 1997, FAO 1999). 

 

1.4 Methods of Estimating C Flux 

The amount of carbon held in the vegetation and soils of terrestrial ecosystems varies spatially and 

temporally as a result of natural processes and human activities. There are a number of methods 

exist for measuring the amount of carbon in all components of terrestrial ecosystems, as well as for 

measuring changes in this amount. The methods vary in complexity, precision, accuracy, and cost. 

Different methods are appropriate for different pools and components of terrestrial carbon and for 

different temporal and spatial scales (table 1.5). Methods used to measure carbon, or a change in 

carbon, are different from those used to attribute cause to an observed change in carbon (e.g., 

direct human activity versus natural causes). This distinction is important because the protocol is 

concerned with human-induced, rather than total, changes in carbon. Even the most direct 

measurements on small plots do not distinguish mechanisms or yield attribution. Attribution must 

be inferred from controlled experiments or from ecosystem process models that are based on the 

mechanism responsible for the change (e.g., land-use change versus CO2 fertilization) (IPCC 

2000). 
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1.5 Objective and Research Hypothesis 

In the continental and global scale the estimates of C flux, uncertainties exist for all forests but are 

largest in tropical forests. Many of the temperate or boreal forests are covered by permanent 

national forest inventories, on relatively homogenous landscapes and currently subject to less 

modification by humans than the tropical systems (Apps and Kurz 1991, Harmon et al 1990, 

Birdsey et al 1993, Birdsey, 1992, Turner et al. 1995, Kurz and Apps, 1993, Kurz et al. 1992). In 

the tropics, uncertainties in estimated rates of forest area change (deforestation and reforestation) 

are high and may vary by 10-30%. Moreover, spatial variation in vegetation C density estimates 

may be up to 90% of mean values (Brown et al. 1991, Brown et al. 1989). National forest 

inventories and continuous forest monitoring systems are not uniformly available, particularly in the 

tropical nations. Thus, there is no consistent method to measure and detect changes  (degradation 

or accumulation) in the C stored in the forests. Uncertainties in balancing the C flux from forest 

landscapes will remain until a coordinated global network of permanent forest inventory plots and 

the application of remote sensing technology to measure changes in area and condition of forests, 

including ‘mature’ forest, is undertaken (Dixon et al. 1994). 

 

Therefore, the goal of the current study is to develop an operational tool of estimation of carbon 

pool and any changes in that pool by accumulation or degradation using a low-cost method in the 

tropical forest ecosystems. The specific objectives of the research are: 

 

(1) Search an optimal method of estimating above-ground carbon pool in a tropical forest 

ecosystem using remote sensing and in-situ measurements.  

 

(2) Estimate the carbon pool and carbon release due to tropical deforestation in a particular 

test site using the recommended method. 

 

To fulfil the above objectives a number of additional aims have been set. Those include: 

 

(3) Atmospheric correction and radiometric normalization of the remote sensing data sets used 

in the quantification. 

 

(4) Generation of visual-interpretation key and spectral library for identifying different types of 

tropical vegetation in the test site. 
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The approach has coupled remote sensing, geographic information systems (GIS) and in-situ 

measurements by the mathematical and statistical analysis. Following questions need to be 

investigated to fulfil the above objectives: given that estimates of deforestation and carbon 

emission rates and how may we improve the accuracy of remote sensing estimates of 

deforestation and land-use change at the local and regional scales such that the data are more 

useful both for modelling carbon fluxes and for land-use management? 

 

To get the answer of the above question a general statistical procedures can be followed which will 

usually examine a hypothesis. The first stage in formulating hypothesis entails stating the initial 

question as a research or geographical hypothesis. Even when the question arises from empirical 

observation, such as the apparent tendency of forest to grow and accumulate carbon at early stage 

of succession or decay and release carbon if there is no human or catastrophic intervention. The 

second stage of hypothesis formulation involves deriving two statistical hypotheses, which are 

expressed in terms of operational definitions. These statistical hypotheses are mirror images of 

each other. One is known as the null hypotheses (H0) and the other as the alternative hypothesis 

(H1). Most investigations require the researcher to the broad geographical question. For example, 

different stages in the analysis may build on each other, which separate null and alternative 

hypotheses needed at each point (Walford 1995).   

 

The current study will formulate two sets of null and research hypotheses. The first pair will 

examine the applicability of remote sensing technology for monitoring the timber stocking and 

carbon pool in a tropical forest ecosystem. It basically deals with the measurement system and its 

effectiveness. However, the second pair of hypotheses will be process oriented for particular 

ecosystem. It is directly related to change in carbon pool over time in a particular study area.  

 

Hypothesis 1: 

 

H0 : Remote sensing technique supplemented by in situ observation can effectively monitor the 

carbon storage and carbon release from a forest ecosystem. Any significant (can be arbitrarily 

fixed, for this study 5-10%) change of carbon storage in a forest ecosystem is detectable in a 

remote sensing image. 

 

This could be expressed in symbol as 

 

H0: x ri equal to x ai 
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Where, x ri and x ai represent the mean carbon content observed by remote sensing supplemented 

by ground survey and the actual carbon storage at various ecosystems (i = 1 to n) during the 

recent study year respectively. The alternative hypothesis could be expressed as follows: 

 

H1 : The difference between the estimated carbon (remote sensing information supplemented by 

in-situ measurements) and the actual carbon content is significantly greater than that would have 

been expected through the chance of sampling variations alone.  

 

In symbols, this could be stated as 

 

H1: x ri not equal to x ai 

 

Hypothesis 2: 

 

H0 : The amount of carbon content (variable X) of different ecosystems over a given time period is 

the same, irrespective to their density class. Any observed difference in mean carbon pool between 

the historical and recent time has merely arisen through the chance and is not significant, in spite 

of change might occur due to forest growth and decay.     

 

This could be expressed in symbol as: 

 

H0: x ci equal to x hi 

 

Where, x ci and x hi represent the mean carbon content of different ecosystems (the value of i = 1 

to n) at the current and historical study year respectively. The alternative hypothesis could be 

expressed as follows: 

 

H1 : The difference between the mean carbon content over a specified period of time is greater 

than that would have been expected through the chance of sampling variations alone.  

 

In symbols, this could be stated as 

 

H1: x ci not equal to x hi 

 

The form of H0 depends on the particular research question under investigation; nevertheless 

reference can normally be made to some statistical quantity (such as the mean, variance or 
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standard deviation), to the difference between the observed and expected frequencies, or to an 

association between two or more attributes or variables (Walford 1995).  

 

The study period deals with the last decade, starting from 1992 to 2001. Landsat ETM+, TM and 

IRS pan data have been used for this study. Ground survey was conducted by measuring tree dbh 

(diameter at breast height) and height, and then converted to biomass and carbon stocks by 

allometric relation and using form factor.  
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Chapter II 

2 Quantifying Forest Attribute and Carbon Flux  

2.1 Estimating Carbon Stocks using Remote Sensing 

2.1.1 Measuring carbon stocks in forest ecosystem 

Direct measurement of carbon stocks in forest ecosystem is not a practical approach because it 

needs destructive sampling, which is rather expensive and time consuming. However, an indirect 

approach is rather easy to apply. For small-scale ecosystem carbon analysis researchers take 

samples of the ecosystem components, measure their biomass and carbon content and calculate 

in per unit area basis.  

 

Even estimating the volume of each component can be resource intensive for sites of significant 

size, so researchers have developed models that correlate easily observed or measured 

characteristics of forests to the variables of interest. For example, for a given forest type and age, it 

is possible to relate a sample measurement of tree diameters on the site in question to the total 

biomass on the site. One of the simplest forms of forestry models, the allometric model, relates 

diameter at breast height (DBH) and canopy height to forest biomass. 

 

Carbon models can be developed that express carbon stocks as a function of any number of forest 

characteristics. A typical carbon model of the carbon content of a forest stand might include some 

combination of the following independent variables that are listed (NBS 1998, Brown 1996, Brown 

1999, MacDicken 1997): 

 

C = ƒ (D, A, L, R, H, O, S, F, P, Cr, B, W) 

 

Where, 

C = total carbon in the stand, 

D = average tree diameter at breast-height 

A = stand age 

L = leaf area index 

H = canopy height 

O = canopy cover 

R = total area of the stand 

S = stems per unit area 

F = forest type 

P = species 

Cr = crown height 
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B = bole height 

W = crown width 

Cl = leaf cluster index 

 

Another challenge in the application of allometric models to carbon stock estimates is that the 

models can be sensitive to the species composition of the forest, the age and history of the forest, 

the soil type, climate, and solar exposure. Incorporating these additional factors would require 

developing more sophisticated carbon models, but the range and combination of independent 

variables is great (Richards and Anderson 2004). 

 

2.1.2 Remote sensing as a tool of carbon stock estimation in forest ecosystem 

Remote sensing instruments can play a significant role in improving the accuracy of national forest 

inventories, especially if employed early in the monitoring process. Starting the national inventory 

process by analysing satellite images is both costs saving and accuracy-enhancing. As the 

technology improves, so will the viability of using a combination of complimentary remote sensing 

instruments in the estimate of woody biomass stocks and changes. Experimental research on how 

to combine different technologies and measurement methods can provide useful lessons for other 

countries that are discussing how to do national inventories of their forest carbon.  

 

Scientists have employed a variety of remote sensing methods that provide data about the type of 

forest (F), its spatial extent (R), canopy cover (O), canopy height (H), stems per stand (S), Leaf 

area index (L) and with some instruments even the degree of succession and approximate stand 

age (A) without the need to dispatch field research teams to measure those parameters. This 

section examines the tools that are currently available for gathering the data on those forest 

parameters. 

 

Four major sources of remote sensing data are used to estimate forest structure parameters today: 

lidar, radar, photogrammetric, and image sensors, respectively. For the purposes of estimating 

forest structure with adequate accuracy and precision, it is critical to select the proper type of 

remote sensing data and image processing methods (Adapted from Anon 2002). 

 

2.1.2.1 Very high spatial resolution data  

Air photo is an important data source for characterizing forest structural parameters manually and 

digitally. Multiple-bands digital air-photos of high spatial resolution (< 2m) are capable of estimating 

stem density and delineating crown, as well as identifying tree species (Sheng et al. 2001, Pouliot 

et al. 2002, Huang et al. 2001). The tree height information can be gained by processing the 

stereopair of aerial photos (Gong et al. 2002, Sheng et al. 2001). 
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Very high spatial resolution images come from either airborne systems such as CASI (0.25 - 1m 

multiple bands), AVI (0.3 m), AVIRIS (hyper-spectral sensor, xm multiple bands) and ADAR (xm 

multiple bands) or space-borne systems like IKONOS (0.82 m pan, 4 m multiple bands) and 

Quickbird (0.61 - 1 m pan, 2.44 - 4 m multiple bands). High spatial resolution imagery, particularly 

airborne high spatial resolution imagery, has been extensively used in identifying tree species, 

reconstructing crown surface, estimating stem density and crown bulk density within last couple of 

years (Burnett et al. 1998, McGraw et al. 1998, Heyman, 2000).  

 

 Airborne profiling radar and space-boarded synthetic aperture radar (SAR) interferometry data 

Airborne radar (HUTSCAT) and interferometric SAR (ERS-1/ERS-2) can provide forest structural 

information in centimeters- to meters-scales. HUTSCAT data have been used to derive tree height 

profile, while radar interferometric data (C-band and L band) were used in reconstructing crown 

structure and estimating stem volumes (Hyyppa et al. 1996, Hyyppa et al. 2000, Santoro et al. 

2002).  

 

2.1.2.2 High and intermediate spatial resolution data  

RADARSAT, SIR-C/X-SAR, JERS, ERS-1/ERS-2 Satellite radars normally provide intermediate 

spatial resolution data (10 m - 100 m). Radar data have been applied to many forest regions for the 

purposes of estimating forest structural parameters (Castel et al. 2001, Hyyppa et al. 2000, Liao et 

al. 1999). SAR imagery has a variety of wavelengths and polarization combinations. Selecting 

proper combinations of wavelength and polarization is critical to process such datasets 

successfully. To date, L-band appears to be the best data to derive structural info such as biomass, 

size of stems and branches, basal area, leaf area index (LAI), tree height, crown closure and crown 

base height (Castel et al. 2001, Fransson and Isrelsson 1999).  

 

Landsat and SPOT images are the most common remote sensing data source for mapping forest 

structure at regional and landscape scales. With a 10m - 120m spatial resolution range, Landsat 

and SPOT images normally need ground truthing or high spatial resolution data as training 

datasets to yield models. Recently, there is a significant trend in remote sensing of forest structure 

analysis in which Landsat or SPOT data are used in conjunction with Lidar or air-photo high spatial 

resolution imagery to map regional- and landscape-scales forest structures (Sabol et al. 2002, 

Hudak et al. 2002).  

 

Remote sensing instruments, extractable information, their advantages and disadvantages are 

summarized in table 2.1. 
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Table 2.1 Summary of Remote Sensing Instruments: Advantages, disadvantages and extractable 

information (Richards and Anderson 2004). 

Remote 
sensing 
instruments 
 

Advantages Disadvantages Extractable information 

Optical: 
Aircraft 

Detailed images 
Flexibility in geographic targets 
 

Small area 
Expensive 
Sensitive to daylight 
and cloud cover 

Canopy height (H) 
Canopy cover (O) 
Total area of stand (R) 

Optical: 
Satellite (high 
resolution) 

Detect small (15 m) changes in 
land use and deforestation with 
ETM+ panchromatic 
Frequent global coverage (weekly 
to semi-monthly) 
Long historical record of global 
images (early 1970s) 
Multi-angle sampling can 
characterize forest structure 

Sensitive to daylight 
and cloud cover 
Insensitive to 
differences in dense 
biomasses 
 

Canopy cover (O) 
Leaf area index (up to level of 
3 or 4) (L) 
Total area of stand (R) 
Leaf cluster index (Cl) 
 

Optical: 
Satellite 
(coarse 
resolution) 

Detect trends at the continental 
and global scale 
Very frequent global coverage 
(daily to weekly) 
Long historical record of global 
images (early 1970s) 

Sensitive to daylight 
and cloud cover 
 

Total area of stand (R) 
 

Synthetic 
Aperture 
Radar  

Not dependent upon daylight or 
cloud cover 
Use of multiple polarization can 
increase measurable density to 
400 tonnes per hectare 

Saturation at relatively 
low levels of biomass 
density 
Only used on 
relatively flat 
topography 
 

Canopy height (H) 
Total area of stand (R) 
Forest type (F) 
Leaf area index (L) 
Branch surface to volume 
ratios 

Synthetic 
Aperture radar 
(VHF) 

Not dependent upon daylight or 
cloud cover 
Measures biomass density up to 
1000 tonnes per hectare 
 

Airplane deployment 
only 
Only used on 
relatively flat 
topography 
 

Canopy height (H) 
Total area of stand (R) 
Forest type (F) 
Leaf area index (L) 
Branch surface to volume 
ratios 
 

LIDAR Characterizes 3-D structural 
characteristics of forests 
Useful in steeply sloped areas 
 

Airplane deployment 
only 
Narrow coverage with 
each pass 
 

Leaf area index (L) 
Canopy height (H) 
Canopy cover (O) 
Stems per unit area (S) 
Bole height (B) 
Crown width (W) 

 

2.1.3 Spectral reflectance properties of vegetation and forest canopies 

Reflectance properties of vegetation depend upon the wavelength region. Plants pigments, 

primarily chlorophyll a, chlorophyll b, xanthophylls and carotenes, are the main pigments, which 

influence reflectance and absorption of radiation in the visible region (400-700 nm) of spectrum. 

The main chlorophyll absorption bands are cantered at approximately 480 and 680 nm. Several 
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other chloroplasts (carotenes, xanthophylls and anthocyanins), which contain no chlorophyll, 

exhibit a green reflectance peak at about 550 nm. That absorption in the blue and red regions of 

the visible spectrum is comparatively greater than in the green region causes leaves appear to 

green (Murtha 1997). Many published spectral reflectance curves of stressed vegetation show a 

reflectance increase (red rise) at about 633 nm. The red edge is the sharp change in leaf 

reflectance, which occurs in the 680-to 750 nm range of the spectrum (Horler et al. 1983).  

 

High reflectance in the NIR plateau (700 – 1100 nm) is primarily due to multiple refractions 

occurring at the interface of hydrated cell walls with intercellular spaces, as a result of different 

refraction indices (Gaters 1970, Wooley 1971, Kumar and Silva 1973, Gausman 1974). Chlorophyll 

does not reflect and is transparent to NIR radiation (Coblentz and Stair 1929). NIR wavelengths are 

relatively long and thus are not scattered by the chlorophyll. Gausman (1977) reported that leaf 

components including stomata, nuclei, cell walls, crystals and cytoplasm, directly contribute a small 

percentage of reflectance within the 700 to 1100 nm range. 

 

Spectral characteristic of vegetation in the short wave infrared region, SWIR (1100 to 2100 nm) are 

dominated by absorption of energy by liquid water within leaves (Gates 1970, Knipling 1970, Myers 

et al. 1970). Strong water absorption bands occur at 1450 and 1900 nm (Gaters et al. 1965, 

Gausman et al. 1969, Knipling 1970, Wooley 1971) and according to Tucker (1980), the 1650 to 

2200 nm region can provide an indication of leaf water content.  
 

Spectral reflectance of vegetation canopies is modified from those of individual leaves due to 

natural variations in leaf orientation, solar and viewing geometries, and background element 

characteristics. Colwell (1974), Jarvis et al. (1976), Curran and Milton (1983) and Goel (1988) have 

discussed these effects. Reflectance from a plant canopy with many leaves and branches, often in 

several layers, as its own particular characteristics, which include volume reflectance and included 

or contained shadows. However, the spectral reflectance of a forest curve of a forest canopy has 

more variability as compared to other types of vegetation communities, such as agricultural 

croplands and rangelands, because of the in homogeneity and complexity in the structure of forests 

(Lee 1990). 
 

Krinov (1947) used an aerial photographic method to determine the spectral reflectance of forest 

canopies. He reported reflectance from continuous broad-leaved canopies near 5 to 35 percent in 

the visible and NIR, respectively. This is less than the reflectance of individual leaves, which have 

corresponding values nearer 10 and 45 percent. These lower reflectance values result from 

shadows contained within the canopy. Reflectance from a plant canopy depends upon the total leaf 

area, canopy geometry, and absorption and scattering coefficients (optical properties) of leaves. 
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Natural variations in spectral reflectance patterns for a given plant species are associated with the 

species phenotype and genotype, leaf morphology, leaf development, structural differences, foliage 

age (changes through the growing season), leaf senescence, and plant maturity. External 

environmental factors including soil, site, latitude, altitude, atmospheric attenuation of incident 

energy, and stress- both biotic (insects and disease) and abiotic (fire, moisture, atmospheric 

depositions, acid rain, air pollution, etc.)-also affect the reflectance. These natural factors may 

cause the spectral reflectance to increase or decrease, the red rise to fluctuate, and the red edge 

to shift (Murtha 1997). 

 

2.2 Remote Sensing Image Pre-processing 

2.2.1 The effect of the atmosphere on radiation 

The presence of the atmosphere as a transmission medium through which radiation must travel 

from its source to the sensors as well as instrumentation effects can result in two broad types of 

radiometric distortion. First, the relative distribution of brightness over an image in a given band can 

be different to that in the ground scene. Secondly, the relative brightness of a single pixel from band 

to band can be distorted compared with the spectral reflectance character of the corresponding 

region on the ground.  

 

The sun, as a source of energy emits a given rate of Joule per second, or Watts. At a given 

distance, the sun’s emission can be measured as Watts per square meter. This power density is so 

called irradiance and can be used to describe the strength of an emitter of electromagnetic energy. 

We can measure a level of solar irradiance at the earth’s surface. If the surface is perfectly uniform 

then this amount is scattered diffuse into the upper hemisphere. The amount of power density 

scattered in a particular direction is defined by its density per solid angle, since equal amounts are 

scattered into equal cones of solid angle. This amount is called radiance and has units of Watts per 

square meter per steradian [W m-² sr-1]. Spectral irradiance is used to describe how much power 

density is available incrementally across a wavelength range. Due to absorption and scattering only 

a fraction of the incoming solar radiation reaches the ground, the direct irradiance.  

 

We can measure a level of solar irradiance at the earth’s surface. If the surface is perfectly diffuse 

then this amount is scattered uniformly into the upper hemisphere. The amount of power density 

scattered uniformly into the upper hemisphere. The amount of power density scattered in a 

particular direction is defined by its density per solid angle. This quantity is called radiance and has 

units of Watts per square meter per steradian (Wm-2sr-1)  
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Absorption by atmospheric molecules is a selective process that converts incoming energy into 

heat. In particular, molecules of oxygen, carbon dioxide, ozone and water attenuate the radiation 

very strongly in certain wavebands. Sensor commonly used in solid earth and ocean remote 

sensing is usually designed to operate away from these regions so that the effects are small. 

Scattering by atmospheric particles is then the dominant mechanism that leads to radiometric 

distortion in image data (apart from sensor effects) (Richards and Jia 1999).  

 

There are two broadly identified scattering mechanisms. The first is scattering by the air molecules 

themselves. This is called Rayleigh scattering and is an inverse fourth power function of the 

wavelengths used. The other is called aerosol or Mie scattering and is a result of scattering of the 

radiation from larger particles such as those associated with smoke, haze and fumes. These 

particulates are of the order of one-tenth to ten wavelengths. Mie scattering is also wavelength 

dependents, although not as strongly as Rayleigh scattering. When the atmospheric particulates 

become much larger than a wavelength, such as those common in fogs, clouds and dust the 

wavelength dependence disappears (Richards and Jia 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Effect of atmosphere in determining various paths for energy to illuminate a (equivalent 

ground) pixel and to reach the sensor 

 

Figure 2.1 presents the atmospheric effects and the radiance that ultimately reach to the sensor. 

Some of the scattered photons contribute to the illumination of the target by means of scattered 

paths and compensate for attenuation of the direct solar path. This is called sky irradiance. Path 

radiance is a part of incoming solar radiation, which is backscattered towards the sensor without 
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reaching the ground. It does not carry information about the target and blurs the satellite signal. 

Some of the photons reaching the sensor are reflected from objects adjacent to the target under 

consideration due to the scattering effect on the path target-sensor; as long as the surface is 

homogeneous, it is a useful component but if the surface has a patchy structure, this term will 

introduce a perturbation. It is called trapping effect when photons which interact multiple times with 

atmosphere and ground contribute to the image. After one or two interactions, the phenomenon 

can be neglected.  

 

Atmospheric radiance is defined as the photons scattered by the atmosphere alone. It could be 

computed over a black uniform surface. Background radiance is defined as the photons reflected 

by the background surface of a given pixel of small size and then scattered by the atmosphere 

towards the sensor. Thus, it depends upon surface and atmospheric properties. 

 

Only a fraction of the photons coming from the target reaches the satellite sensor so that the target 

seems less reflective. Transmittance describes the amount of ground reaching irradiance relative to 

that for no atmosphere. Transmittance depends on the zenith angle of the source. The bigger the 

zenith angles the longer the path length through the atmosphere. Upward transmittance is the way 

between the point of reflection and sensor called. 

 

2.2.2 Computation of haze 

Several different atmospheric scattering or haze removal techniques have been developed for use 

with digital remotely sensed data. Many of these techniques can be grouped into a simple dark-

object subtraction method (Vincent 1973, Rowan et al. 1974, Chavez 1975). Many haze correction 

techniques involve subtracting a constant DN value from the entire digital image, assuming a 

constant haze throughout the image. Subtracting a single value from the entire image gives a first 

order correction, which is better than no correction, because it removes the major effect of the 

additive scattering component. A different constant must be used for each spectral band, with a 

different set of constants used from image to image. However, using a uniform correction for the 

entire image will leave local errors due to non-homogeneity in the atmosphere. 

 

The atmosphere affects remote sensing images by scattering, absorbing and refracting light. Often, 

the most dominant of these effects is scattering (Siegel et al. 1980, Slater et al. 1983). A method 

developed by Chavez (1988) to correct for the additive component of atmospheric scattering uses a 

relative power law model to predict the haze values for the multispectral bands based on a starting 

band haze value selected by the user. In this stand-alone method the user selects a starting band 
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dark-object subtraction haze value, typically using the histogram of band 1 or 2. The method then 

utilizes a relative power law scattering model that represents the atmospheric conditions at the time 

of data collection. The amplitude of the starting haze value is used as a guide to identify the type of 

atmospheric conditions that existed during the time the data were collected. Using the information 

supplied by Curcio (1961) and Slater et al. (1983), and extrapolating to very clear and very hazy 

atmospheres, one possible set of relative scattering models are enumerated in table 2.2. 

 

Table 2.2 Relative atmospheric models for variable atmospheric condition 

 

Atmospheric conditions Relative Scattering Model 

Very clear �
-4.0 

Clear �
-2.0 

Moderate �
-1.0 

Hazy �
-0.7 

Very Hazy �
-0.5 

 

In this study, the starting haze value was selected from the image DN values using the 

histogram/dark-object method. If a valid dark object does not exist in the image, an iteration 

process can often be used to generate more acceptable values. This is done by iteratively using a 

lower starting haze value until no over corrections occurs. That is, if a starting haze value results as 

the predicted values for other bands that are higher than some of the actual image DNs, a lower 

starting haze value must be used. Also, a completely black or zero reflectance surfaces usually 

does not exist and a minimum reflectance value of 1 or 2 percent is more realistic (Chavez 1989). 

 

2.2.3 Dark Subtraction 

It is assumed that each band of data for a given scene should have contained some pixels at or 

close to zero brightness value. It is also supposed that atmospheric effects, and especially path 

radiance, have added a constant value to each pixel in a band. Histograms taken of each band 

outlines that the lowest significant occupied brightness value will be non-zero as shown in figure 

2.2. Correction amounts first to identifying the amount by which each histogram is “shifted” in 

brightness away from the origin and then subtracting the amount from each pixel brightness in that 

band. The method causes a lightning of the image. Every band is shifted with a different value, so 

one wants to correct the bands relative to each other. The dynamic range of image intensity is 

improved. In literature this procedure is also called haze removal, because the subtracted values 

displayed look like whitish-bluish haze. 
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Figure 2.2 Illustration of the effect of path radiance, resulting from atmospheric scattering on the 

four histograms of Landsat MSS image data (Richards and Jia 1999). 

 

The electromagnetic radiation signals collected by satellites in the solar spectrum are modified by 

scattering and absorption by gases and aerosols while travelling through the atmosphere from the 

earth surface to the sensor. Each image has to go through a pre-processing step in which 

correction for atmospheric effects is often a primary task before classification and change detection 

analysis can be applied. Landsat TM/ETM+ sensors have spectral bands placed in portions of the 

spectrum relatively unaffected by gases absorption in the atmosphere, and the gases scattering, or 

Rayleigh scattering, can be well characterized. However, scattering and absorption by aerosols are 

difficult to characterize due to their variation in time and space (Kaufman 1993), thus constituting 

the most sever limitation to the radiometric normalization of satellite data (Coppin and Bauer 1994, 

Laing et al. 1997). 

 

The interaction of solar radiation with atmosphere has been well characterized by Chandrasekhar 

(1960). A number of radiative transfer codes (RTCs) based on radiative transfer theory have been 
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developed to correct for atmospheric effects in satellite images (for example, Kneizys et al. 1988, 

Haan et al. 1991, Vermote et al. 1997). Studies have shown that these radiative transfer codes can 

accurately convert the satellite measurements to surface reflectance (Holm et al. 1989, Moran et al. 

1992). However these corrections require accurate measurements of atmospheric optical 

properties at the time of image acquisition. These measurements are frequently unavailable or of 

questionable quality, which makes routine atmospheric correction of images difficult with RTCs. 

Many applications of remote sensing have to rely on algorithms that utilize information derived from 

the image itself to correct the atmospheric effects (Song et al 2001). 

 

Depending on the application, atmospheric correction can either be absolute, where a digital 

number is converted to surface reflectance, or relative, where the same digital number (DN) values 

in corrected image represents the same reflectance, irrespective of what the actual reflectance 

value may be on the ground (Chavez and Mackinnon 1994) 

 

For many applications involving image classification and change detection, atmospheric correction 

is unnecessary. A typical example of a remote sensing application for which atmospheric correction 

is not necessary is image classification with a maximum likelihood classifier using a single date 

image. As long as the training data and image to be classified are on the same relative scale 

(corrected or uncorrected), atmospheric correction has little effect on classification accuracy (Potter 

1974, Fraser et al. 1977, Kawata et al. 1990) For Landsat TM/ETM+ data the dominant 

atmospheric effect is scattering which is additive to the remotely sensed signals, while 

multiplicative effect from absorption is often neglected because the TM/ETM+ bands were selected 

to avoid effects due to absorption. Thus atmospheric correction for a single date image is often 

equivalent to subtracting a constant from all pixels in a spectral band. Such correction is essentially 

nothing but translating the origins in multidimensional space as illustrated in figure 2.3. Although 

the means of the classes change, the variance-covariance matrix remains the same regardless of 

correction. The unnecessary nature of atmospheric correction on classification with single date 

image can be extended to post classification change detection (Singh 1989) where multiple images 

are classified individually and the resulting maps are compared to identify changes (Foody et al. 

1996). Similarly, atmospheric correction is also unnecessary for change detection based on 

classification of multidate composite imagery in which multiple dates of remotely sensed image are 

rectified and placed in single dataset, and then classified as if it were a single date image. In 

essence, as long as the training data are derived from the image being classified, atmospheric 

correction is unnecessary (Song et al. 2001). 
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Figure 2.3 Subtracting a constant from a band is equivalent to translate the origin of the data set. It 

has no effect on the variance-covariance matrix for the classes of interest. Thus dark object 

subtraction for single date image has no effect on classification results. 

 

2.2.4 Data normalization  

Variations in solar illumination conditions, atmospheric scattering, atmospheric absorption and 

detector performance results in differences in radiance values unrelated to the reflectance of the 

land surface. Given sufficient time and resources, it would be possible to model or calibrate each of 

these effects and generate corrected multi-spectral data sets for use in the analysis of land cover 

change. Radiometric data normalization represents a first order data transformation approach used 

to reduce the variability between multi-temporal datasets acquired over the same geographic area. 

The process substantially reduces or normalizes the inter-scene variability resulting from different 

atmospheric conditions, radiation incidence angle, and detector disparity. Relative radiometric 

normalization uses one image as a reference (Hall et al. 1991). Among the most commonly used 

radiometric normalization techniques are (a) pseudovariat features (Schott et al. 1988), (b) dark-

pixel subtraction (Gonima 1993) and (c) relative radiometric normalization (Elvidge et al., 1995). 

 

When performing multi-temporal image analyses, radiometric corrections are required because of 

the following atmospheric effects (Lunetta 1999): 

 

1. Modifications of the spectral and spatial distribution of the radiation incident on the earth 

surface. 
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2. Attenuation of the radiation reflected by the surface 

3. Addition of path radiance 

 

Accordingly, multi-temporal analysis approach necessitates corrections for the variations in 

atmospheric conditions, which affect the transmittance of surface reflected radiance. For example, 

in two TM images collected 16 days apart, a resultant 6° change in solar elevation was sufficient to 

prevent accurate radiometric comparisons of steeply sloping areas (Thomson 1992). As a first 

approximation, radiometric normalization can be applied to minimize the above atmospheric effects 

(Maracci and Aifadopoulou 1990). 

 

Additionally, variations across identical sensors also contribute to radiometric discontinuity. For 

example, although the Landsat 1-4 MSS and Landsat 4-5 TM sensors are essentially identical 

among platforms, their spectral characteristics vary slightly. In a study conducted by Markham and 

Baker (1983), the spectral variation between the Landsat MSS sensor’s spectral responses ranged 

from 3.0 to 10.0 percent in the red band (0.6-0.7 �m) and 3.0 to 11.0 percent in the near-IR band 

(0.7-0.8 �m). Because the Landsat MSS and TM sensors have no onboard calibration systems, 

there are uncorrected differences between data collected by different sensors (e.g., Landsats 1-5). 

Drift in radiometric performance also occurs over time (Elvidge et al. 1995). The spectral variations 

between identical sensors can be minimized by using a first approximation radiometric 

normalization correction. 

 

The current study followed the modified dark-object subtraction technique of Chavez (1988, 1989). 

The method is quite useful, especially when the absolute atmospheric parameters are not 

available. To account for slope and aspect related illumination differences, topographic corrections 

can be applied to the atmospherically corrected radiance values of each band based on methods 

reported by Smith et al. (1980). However, the current study has excluded the topographic 

normalization due to lack of appropriate digital elevation model available for the study area. 
 

2.3 Remote Sensing Image Interpretation 

2.3.1 Elements of visual interpretation 

 

The six primary elements of visual interpretation are tone or colour, size, shape, texture, shadow 

and pattern (Estes and Simonett 1975). In addition of those height, size and association may be 

added (Howard 1970). Tone refers to the relative brightness or colour of objects on imagery. Size, 

shape and position (site), are combined under the term contextual information. Size of the object 
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often help to identify it, which includes the recognition of old over-mature trees, maturing trees, 

saplings, seedlings and shrubs on an image. Shape relates to the configuration or the general 

outline of objects as recorded on imagery. Man-made feature sometimes follow a regular boundary, 

but the natural features usually follow natural boundary. Site refers to topographic or geographic 

location and is a particular important aid in the identification of vegetation types. Texture is the 

frequency of tonal change on the photographic image. It determines the overall visual ‘smoothness’ 

or ‘coarseness’ of image features. On a satellite image, presence of shadow within a particular 

pixel reduces the reflectance and might cause problems for accurate interpretation. Pattern relates 

to the spatial arrangement of objects. Association refers to the occurrence of certain features in 

relation to others. The shape, tone, pattern, texture, area, height and/or site are associated with a 

class of object not recorded or not clearly recorded on the imagery. Studying one or more of these 

image characteristics, which have been observed to be associated with the object not clearly seen 

on the imagery, enables the latter to be evaluated (Lillesand and Kiefer 2000, Howard 1991).  

 

2.3.2 Visual-interpretation keys 

On a SPOT false colour composite natural forest, bamboos, scattered trees, brush, plantation, reed 

forest could be identified in northeastern Bangladesh (Arquero 1997). The principal Dipterocarp 

(Garjan) could be easily distinguish on 1:20,000 scale photographs because of its characteristic 

crown in southeastern Bangladesh (Zahir-ud-Din 1954). In Thailand, one dipterocarp (Yang) could 

be distinguished because of its large crown and bright shining leaves. On 1:50,000 scale aerial 

photographs covering moist tropical forest of Kerala and Tamilnadu, India, the following forest 

cover and land use types were delineated: tropical evergreen, tropical semi-evergreen, moist 

deciduous, dry deciduous, teak plantation, eucalyptus plantation, reeds, bamboos, rubber 

plantations and tea estates (Tomar 1968). In tropical moist deciduous and tropical dry deciduous 

forests of Bastar region (India) the following forest cover types could be interpreted on 1:15,000 

scale aerial photographs: sal, teak, young plantation and regeneration areas, scattered bamboos, 

medium and dense bamboos, regrowth on abandoned shifting cultivation areas, scrub lands and 

degraded forest, shifting cultivation and grass lands (Tomar 1970). 

 
An image-interpretation key is a set of guidelines used to assist interpreters in rapidly identifying 

features on a remote sensing image. Depending on the method of presenting diagnostic features, 

image-interpretation keys may be grouped into two classes: selective keys and elimination keys. 

Selective keys are usually made up of typical illustration and descriptions of objects in a given 

category. In contrast, elimination keys require the user to follow a step-by-step procedure, working 

form the general to the specific. One of the more common forms of elimination keys is the 

dichotomous type. Here, the interpreter must continually select one of two contrasting alternatives 

until he or she progressively eliminates all but one item of the category, which is correctly 

describing the feature under investigations (Avery and Berlin 1992). 
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Following the above principles several interpretation keys have been developed both for tropical 

and temperate forests based on aerial photographs, satellite and radar imagery. For example, 

selective interpretation keys were developed for tropical woodland of Tanzania (Howard, 1959), 

and for coniferous and hardwoods of Middle-European trees (Grundman 1984, Anthony 1986 

modified by Hildebrandt 1996). 

 

2.4 Remote Sensing Image Processing 

An important part of image analysis is identifying groups of pixels that have similar spectral 

characteristics and to determine the various features or land cover classes represented by these 

groups. This form of analysis is known as classification. Visual classification relies on the analyst's 

ability to use visual elements (tone, contrast, shape, etc) to classify an image. Digital image 

classification is based on the spectral information used to create the image and classifies each 

individual pixel based on its spectral characteristics. The result of a classification is that all pixels in 

an image are assigned to particular classes or themes (e.g. water, coniferous forest, deciduous 

forest, corn, wheat, etc.), resulting in a classified image that is essentially a thematic map of the 

original image. The theme of the classification is selectable, thus a classification can be performed 

to observe land use patterns, geology, vegetation types, or rainfall. 

 

The analyst classifying an image must distinguish between spectral classes and information 

classes. Spectral classes are groups of pixels that have nearly uniform spectral characteristics. 

Information classes are the various themes or groups the analyst is attempting to identify in an 

image. Information classes may include such classes as deciduous and coniferous forests, various 

agricultural crop types, or inland bodies of water. The objective of image classification is to match 

the spectral classes in the data to the information classes of interest. 

 

Though any image can be classified, multispectral imagery tends to be used most often. One band 

classification is usually very difficult to classify since more than one surface type will exhibit the 

same digital number. Thus, any spectral classes in a single band classification will likely contain 

several information classes, and distinguishing between them would be difficult. Normally two or 

more bands are used for classification, and their combined digital numbers are used to identify the 

spectral signatures of the spectral classes present in the image. The more bands used to create a 

classification, the more likely the analyst will get a set of unique land cover classes. 
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2.4.1 Supervised classification 

A classification process in which an image is separated into a number of information classes based 

on the statistical characteristics of training areas outlined by the operator. The process of assigning 

each pixel in an image to one of a number of classes (ground cover types etc.), by comparing the 

properties of the pixels (training data) known to belong to the various classes. The properties 

(features) of a pixel can be specified by a vector x in N-dimensional feature space. The 

components of this vector will often be the digital numbers or reflectance in each of N spectral 

bands, but could also be, for example, radar backscatter coefficients in different polarization states, 

texture parameters, or single-band digital numbers in a multi-date composite image. For forest 

stratification the procedure might play an important role as the operator can assign different types 

of forest specially when track is sufficiently large and homogeneous. 

 

2.4.2 Vegetation indices  

The use of a vegetation index has two primary advantages over the use of raw data: 1) providing a 

continuous measure of green biomass over a large geographic area and 2) the relative calibration 

effect of eliminating different solar angle effect effects between scenes. However, in general, the 

use of vegetation indices has been limited to areas of grasslands and agricultural lands (Lee 1990). 

 

Although numerous researchers have reported on the use of a vegetation index for assessment of 

green biomass over large geographical areas of grasslands and agricultural areas where foliage is 

the primary component of biomass, there have been relatively few studies using the vegetation 

index in forested areas. In coniferous forests, the ratio of red and near infrared bands exhibits 

positive correlations with leaf are index (Peterson et al. 1987). Sader et al. (1989) studied the 

feasibility of detecting tropical forest successional age class and total forest biomass by using the 

normalized difference vegetation index derived from Landsat TM data. They concluded that the 

vegetation index did not work well for estimating forest biomass. Considering that the major 

portions of forest biomass are occupied by woody components, such as branches and stems, it is 

not surprising that the vegetation index derived from the optical data is not as good a predictor for 

forests as it is with areas of grasslands and croplands (Lee 1990). 

 

Vegetation indices are mathematical transformations design to assess the spectral contribution of 

vegetation to multispectral observations. The most widely used green vegetation indices are 

formed with data from discrete red and infrared (NIR) bands. These vegetation indices operate by 

contrasting intense chlorophyll pigment absorptions in the red against the high reflectivity of plant 

materials in the NIR (Tucker 1979). The value of these vegetation indices lies in their potential use 
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to estimate vegetation variables such as percent green cover, Leaf Area Index (LAI) or absorbed 

Photosynthetically Active Radiation (APAR), which in turn can be used to analyse such as Net 

Primary Productivity and evapotranspiration.  

 

The vegetation indices developed in the 1970s are based on discrete red NIR bands, and can be 

generally divided into two basic categories: ratios and orthogonal indices. The ratio-based indices 

include the Ratio Vegetation Index (RVI) and the Normalized Difference Vegetation Index (NDVI). 

More recently a hybrid set of vegetation indices have emerged, such as the Soil Adjusted 

Vegetation Index (SAVI). Selected vegetation indices were calculated from Landsat image bands 

using the equations enlisted in table 2.3 (Chen et al. 1999 and Murtha 1997). 

 

Table 2.3 Vegetation indices formulas 

 
Abbreviation 

 
Name Vegetation index Reference 

NDVI 
 
 

Normalized difference 
vegetation index 

(NIR – RED) / (NIR + RED) 
 

Rouse et al. (1973) 

RVI 
 

Ratio vegetation index NIR / RED Jordan (1969) 

SAVI 
 
 

Soil adjusted 
vegetation index 

(NIR – RED) (I + L*) / (NIR + RED + L) Heute (1988) 

DVI 
 
 

Difference vegetation 
index 

NIR – RED Tucker (1979) 

TVI Transformed 
Vegetation Index 
 

SQRT[{Blue/(Blue+Green+Red)}+0.5] Rouse et al. (1973) 

PVI Perpendicular 
Vegetation Index 
 

[-0.8736(Red)+0.4866(NIR)] Richardson et al. 
1983 

* The L term (soil adjustment factor) ranges form 0 to 1 and is typically set to 0.5. 

 

2.4.3 Tasseled cap based 

Tasseled cap transformation (Crist and Kauth 1986) developed by Kauth and Thomas (1976) is a 

means for highlighting the most important (spectrally observable) phenomena of crop development 

in a way that allows discrimination of specific crops from other vegetation cover, in Landsat 

multitemporal, multispectral imagery. Its basis lies in an observation of crop trajectories in an 

observation of crop trajectories in band 6 versus band 5, and band 5 versus band 4 subspaces 

(Figure 2.4 - 2.5). 
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Figure 2.4 Band 6 versus band 5 Landsat multispectral scanner subspace showing trajectories of 

crop development (Richards and Jia 1999) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Band 5 versus band 4 subspace also depicting crop development  

(Richards and Jia 1999) 

A first observation that can be made is that the variety of soil types on which specific crops might 

be planted appear as points along a diagonal in the band 6, band 5 spaces as shown. This is well 

known and can be assessed from an observation of the spectral reflectance characteristics for 

soils. Darker soils lie nearer the origin and the lighter soils at higher values in both bands. The 

actual slope of this line of soils will depend upon global external variables such as atmospheric 

haze and soil moisture effects. If the transformation to be derived is to be used quantitatively these 

effects need to be modelled and the data calibrated or corrected beforehand.  
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Consider now the trajectories followed in the band 6 versus band 5 subspace for crop pixels 

corresponding to growth on different soils- in this case take the extreme light and dark soils as 

depicted in figure. For both regions at planting the multispectral response is dominated by soil 

types. As the crops emerge the shadows cast over the soil dominate any green matter response. 

As a result there is considerable darkening of the response of the lighter soil crop field and only a 

slight darkening of that on dark soil. When both crops reach maturity their trajectories come 

together implying closure of the crop canopy over the soil. The response is then dominated by 

green biomass, being in a high band 6 and low band 5 region, as is well known. When the crops 

senesce and turn yellow their trajectories remain together and move away from the green biomass 

point in the manner depicted in the diagram. However whereas the development to maturity takes 

place almost totally in the same plane, the yellowing development in fact moves out of this plane, 

as can be assessed by how the trajectories develop in the band 5 versus band 4 subspace during 

senescence as illustrated in figure 2.5. 

 

Figure 2.4 and 2.5 can be combined into a single three dimensional version in which stages of crop 

transectories can be described according to the parts of a cap, with tassels, from which the name 

of the subsequent transformation is derived (Figure 2.6). The behaviour observable in that figure 

led Kauth and Thomas to consider the development of a linear transformation that would be useful 

in crop discrimination.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Crop trajectories in Landsat multispectral scanner band 4, 5, 6 spaces, having the 

appearance of a tasselled cap (Richards and Jia 1999) 
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Three major orthogonal directions of significance in agriculture can be identified. The first is the 

principal diagonal along which solid are distributed. This was chosen by kauth and Thomas as the 

first axis in the tasselled cap transformation. The development of green biomass as crops move 

towards maturity appears to occur orthogonal to the soil major axis. This direction was then chosen 

as the second axis, with the intension of providing a greenness indicator. Crop yellowing takes 

place in a different manner of maturity. Consequently choosing a third axis orthogonal to the soil 

line and greenness axis will give a yellowness measure (Richards and Jia 1999).  

 

Tasseled cap transformation was developed by Kauth and Thomas (1976). They defined a 

transform space that was designed to improve the analysis of agricultural scenes using Landsat 

MSS data. The tasselled-cap transform (named after the shape of the population distribution) is 

designed to project the data along a set of axis where the first three axes correspond roughly with 

the brightness of soils (brightness axis), the vegetation biomass (greenness axis), and the 

senescence of vegetation (yellowness axis) (Schott 1997).  

 

The ‘tasselled cap’ transformation rotates the MSS data such that the majority of information is 

contained in two components or features that are directly related to physical scene characteristics. 

Brightness, the first feature, is a weighted sum of all bands and is defined by the direction of the 

principal variation in soil reflectance. The second feature, greenness, is approximately orthogonal 

to brightness and is a contrast between the near-infrared and visible bands. Greenness is strongly 

related to the amount of green vegetation present in the scene.  

 

Crist and Cicone (1984) extended the tasselled cap concept to Landsat TM data and found that the 

six bands of reflected data effectively occupy three dimensions, defining planes of soils, vegetation, 

and a transition zone between them. The third feature, called wetness, relates to canopy and soil 

moisture. Crist’s transformation defines three properties: brightness, greenness and wetness. 

 

These transformations use predefined co-efficient, derived from agricultural areas in the U.S.A. 

Their suitability for other types of vegetation cannot be guaranteed (Anon 1999). However, for 

forest stratification it may contain some better information for classifying forest. Because when 

apply the concept to Landsat TM data it transform 6 bands information into three bands and 

magnify the information in those components. 

 

The tasselled cap transformation is sensor specific and is designed to transform the input data to a 

feature space where the features are more directly correlated with an application parameter and 

more inter-comparable over time. While not an optimised transform, it has the advantage from the 
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user’s standpoint of using a constant pre-computed transform matrix. It must, however, be 

recognized that the transform was designed for particular types of scenes and is sensor-specific 

(Schott 1997). For example, tasseled cap coefficients enumerated in table 2.4 and 2.5 (Crist et al. 

1986, Anon 1997) need to be multiplied to the Landsat TM image to separate the layers consist 

information on brightness, greenness and wetness.  

 

Table 2.4 Tasseled cap multiplicative matrix (Landsat TM) 

 

Tasseled 

Cap Index 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Brightness 0.2909 0.2493 0.4806 0.5568 0.4438 0.0000 0.1706

Greenness -0.2728 -0.2174 -0.5508 0.7221 0.0733 0.0000 -0.1648

Wetness 0.1446 0.1761 0.3322 0.3396 -0.6210 0.0000 -0.4186

Haze 0.8461 -0.0731 -0.4640 -0.0032 -0492 0.0000 0.0119

Other 1 0.0549 -0.0232 0.0339 -0.1937 0.4162 0.0000 -0.7823

Other 2 0.1186 -0.8069 0.4094 0.0571 -0.0228 0.0000 -0.0220

 

Table 2.5 Tasseled cap additive matrix (Landsat TM) 

 

 Brightness Greenness Wetness Haze Other 1 Other 2 

Scale 10.3695 0.7310 -3.3828 0.7879 -2.4750 -0.0336 

 

Brightness is a particular sum of all bands. Greenness describes the contrast between near 

infrared and the visible bands, with the mid-infrared bands especially cancelling one another. 

Wetness component contrasts middle-infrared reflectance with visible and near-infrared 

reflectance, would show a degree of moisture sensitivity. Fourth component may present some 

information of interest, particularly with respect to soils. The fifth and sixth components, unrotated 

from those produced in the original principal components analysis, show little variation and are 

likely to carry much, if any, important information with respect to agricultural crops or soils (Crist 

and Cicone 1984). 

 

2.4.4 Principal Component Analysis 

The transformation of the raw remote sensor data using Principal Component Analysis (PCA) may 

be more interpretable than the original data (Singh and Harrison 1985). PCA may also be used to 
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compress the information content of a number of bands of imagery (for example six TM bands) just 

two or three transformed principal component images. The ability to reduce the dimensionality from 

n to two or three bands is an important economic consideration, if the potential information 

recoverable from the transformed data as good as the original remote sensor data. The goal is to 

use principal component analysis to translate and/or rotate the original axes so that the original 

brightness values on axes X1 and X2 are redistributed (reprojected) onto a new set of data set of 

axes or dimensions X1’ and X2’ (Wang 1993). The X’ coordinate system might then be rotated 

about its new origin in the new coordinate system some degrees so that the first axis X1’ is 

associated with the maximum amount of variance in the scatter of points. The new axis is called 

the first principal component. The second principal component is perpendicular (orthogonal) to PC1 

(Figure 2.8). The first band, or feature, in the multiple principal component image will account for 

most of the variance in the data, with decreasing amounts in the remaining bands. The latter bands 

in a many-band image tend to contain mostly random noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Rotation of axes in two-dimensional space for a hypothetical two-band data set by 

principal components analysis (Avery and Berlin 1992) 

 

The Principal Component Transformation is computed from the original spectral statistics as 

follows (Short 1982): 
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1. The nXn covariance matrix of the n-dimensional remote sensing data is to be computed. 

Use of the covariance matrix results in an unstandardized PCA, whereas use of the 

correlation matrix results in a standardized PCA (Eastman and Fulk 1993). 

 

2. The eigenvalues, E = [λ1,1,λ2,2,λ3,3,…….,λn,n], and eigenvectors EV [akp….. for k = 1 to 

n bands, and p = 1 to n components] of the covariance matrix should be computed such 

that    

 

 

 

 

 

 

 

 

 

 

Where, EVT is the transpose of the eigenvector matrix, EV and E is the diagonal covariance matrix 

whose element λii, called eigenvalues, are the variances of the pth principal components, where p 

= 1 to n components. The non-diagonal eigenvalues,  λij , are equal to zero and therefore can be 

ignored. The number of nonzero eigenvalues is an nXn covariance matrix always equals n, the 

numbers of bands examined. The eigenvalues are often called components (i.e. eigenvalue 1 may 

be referred to as principal component 1) (Jensen 1996).  

  

2.4.5 Structure or image texture analysis 

Texture matrices are a class of neighbourhood operations designed to characterize the variability 

(texture) in the neighbourhood around a pixel. In general they utilize a window of some size that 

moves over the image in the same fashion as a kernel operation. The output pixels are formed 

from some measure of the texture in the window when it is cantered over the pixel location. One of 

simplest structure matrices is the range. For example, using a 3X3 window centred on f(i,j), the 

output g(i,j) would be the range (Dcmax-Dcmin) computed over the set of pixels comprised of f(i,f) and 

its eight nearest neighbours. The output image would be bright in regions with structure and dark in 

regions with little structure. Another similar local texture metric is local standard deviation. Again, 

the output image pixel value g(i,j) is simply the standard deviation of the pixels under a window 

cantered on f (i,j) in the input image (Schott 1997). 
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There are a large variety of texture matrices. Some are very direction-specific, some require fairly 

large windows and are aimed at characterizing low-frequency texture, others require fairly large 

windows and are designed to differentiate high-frequency texture patterns. One of these texture 

matrices is the co-occurrence metrics described by Haralick et al. (1973). In most cases it is 

necessary to consider many texture matrices to aid in separating different material classes or to 

merge texture matrices with multispectral digital count values to provide greater differences 

between classes (Scott 1997). 

 

Co-occurrence (spatial dependence) matrices are widely accepted for the classification of texture 

(Haralick 1979, Gonzalez and Woods 1992). Given the 5X5 digital image, a co-occurrence matrix is 

developed as follows (E-W direction only). First the number of different pixel values is determined. 

Second, these pixel values are ranked, smallest to largest. Third, the digital image is scanned in 

the direction noted (E-W in this case) to determine the frequency with which one of these pixel 

values follows another (Carr and Miranda 1998). 

 

 

1   1   2   2   5 

3   2   3   1   1 

0   1   1   0   1 

3   2   4   0   1 

2   1   1   2   2  

 

With respect to the digital image presented earlier, six different pixel values are observed: 0-5. 

Hence, the co-occurrence matrix is 6X6 matrix (in this case co-occurrence matrix is larger than the 

input image. If the matrix is called [A] 

 

 

 0   1   2   3   4   5   

0 

1 

2 

3 

4 

5 

0   3   0   0   0   0 

1   4   2   0   0   0 

0   1   2   1   1   1 

0   1   2   0   0   0 

1   0   0   0   0   0 

0   0   0   0   0   0 

[A]  =   
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Once the matrix is determined, seven statistical parameters are chosen for this study (described 

follow, Gonzalez and Woods 1992, more parameters may be computed for higher orders of 

element of difference and inverse element difference: 

 

1) Each entry in matrix [A] is divided by n, the number of pixels that satisfy the algorithm (in 

this case, one pixel to the right; in this example, n is 20; let this resultant matrix be called 

[C]. 

2) Once step 1 is finished, the first statistical parameter is extracted, and it is the maximum 

value for any entry in [C]; in this example the maximum value is 4/20 or 0.2. 

3) First-order element difference moment is computed: 

 

……………………………………..(2.1) 

 

 

4) Second-order element difference moment is computed: 

 

………………………………….(2.2) 

 

 

5) First-order inverse element difference moment is computed: 

 

……………………………………(2.3) 

 

 

6) Second-order inverse element difference moment is computed: 

 

 

…………………………………(2.4) 

 

 

7) Entropy is computed: 

 

…………………………………..(2.5) 
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8) Uniformity is computed: 

 

……………………………………..(2.6) 

 

 

Once these statistical parameters are computed for an MXM training class, a similar sized window 

is used, centred over pixels to be classified. Similar statistical measures are computed, from which 

a minimum distance metric is computed to determine to which class, or threshold, pixels are 

assigned. 

 

2.4.6 Integration of the higher and lower resolution images 

A number of methods have been developed in recent years in order to combine the information 

from two co-registered data sets of different spatial resolution, including pixel-by-pixel arithmetic 

like adding, subtracting, or rationing of image channels (Chavez 1986), intensity-hue-saturation 

transformation and principal component analysis (Haydn et al. 1982). However, due to the fact that 

the spectral windows used by two sensors usually are not the same, merging may modify the 

colour balance of the land cover types known from the original images. Therefore, image fusion 

should be well tuned and the new image product requires careful interpretation.  

 

The following two techniques of image fusion were applied for this study: 

(i) pixel addition using the Brovey transformation, and 

(ii) the RGB-IHS-RGB transformation. 

 

The Brovey transformation, presented by Musa et al. (2000) is a pixel addition method, which 

would preserve the higher resolution of the single-band IRS-Pan image as well as the multi-

spectral information of the lower resolution TM bands. It allows adding the IRS-Pan image equally 

to each of the TM bands without distorting the spectral balance of signatures within the latter 

image.  

 

The IHS colour transform on the other hand, has been found useful for integrating and displaying 

the remotely sensed data in many applications (Andreadis et al. 1995, Carper et al. 1990, Chavez 

and Bowell 1988, Chavez et al. 1991, Koutsias et al. 2000). The IHS transformation is defined by 

three separate, orthogonal and easily perceived colour attributes, those of intensity, hue and 

saturation. While geometrically, the RGB system can be represented as a cube with the red, green 

and the blue axes defining x, y and z vectors respectively, the IHS coordinate system can be 

��
i j

ijc2
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represented as a cylinder or a sphere. Intensity, which represents the total energy or brightness of 

the image, defines the vertical axis of the cylinder, or the radius of the sphere. Hue represents the 

average wavelength of colour and defines the circumferential angle of the cylinder or sphere, and 

ranges from blue (0 degrees) through green, yellow, red and purple (360 degrees). Saturation can 

be thought of as purity of the colour (i.e. percentage of white light in the image) and defines the 

colatitudes of the sphere, or the radius of the cylinder. 

 

For creation of a multi-sensor data set the Landsat TM bands 5 4 3, displayed as RGB (red, green 

and blue) composition, were re-sampled to pixels of a spatial resolution of 5m by 5m in order to be 

compatible with the IRS-Pan image. This combination of TM bands was judged to be optimal for 

separation of different forest and land cover classes.  

 

For the Bovey transformation the three re-sampled Landsat TM bands were normalized and 

multiplied with the IRS pan image by the following equations: 

 

Red band = {TM band 5 / (TM bands 5 + 4 + 3)}*IRS pan……………….(2.7) 

Green band = {TM band 4 / (TM bands 5 + 4 + 3}*IRS pan……………..(2.8) 

Blue band = {TM band 3 / (TM bands 5 + 4 + 3}*IRS pan……………….(2.9) 

 

For the IHS transformation the three TM bands (5, 4, 3) were transformed to the intensity-hue-

saturation (IHS) domain. Intensity of TM band was then replaced by the panchromatic band of the 

IRS image. Finally, the new IHS combination was transformed back to the RGB domain. 

 

2.4.7 Accuracy assessment of classification 

One of the most common means of expressing classification accuracy is the preparation of a 

classification error matrix (sometimes called a confusion matrix or a contingency table). Error 

matrices compare, on a category-by-category basis, the relationship between known reference 

data (ground truth) and corresponding results of an automated classification. Such matrices are 

square, with the number of rows and columns equal to the number of categories whose 

classification accuracy is being assessed (Lillesand and Kiefer 2000). 

 

Several descriptive measures can be obtained from the error matrix. For example, the overall 

accuracy is computed by dividing the total number of correctly classified pixels by the total number 

of reference pixels. Likewise, the accuracies of individual categories can be calculated by dividing 

the number of accurately classified pixel in each category by either the total number of reference 

pixels. Likewise, the accuracies of individual categories can be calculated by dividing the number of 
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correctly classified pixel in each category by the number of training set pixels in the corresponding 

row or column. What are often termed producer’s accuracies result from dividing the number of 

correctly classified pixels in each category by the number of training set pixels used for that 

category. This figure indicates how well the training set pixels of the given cover type are classified. 

User’s accuracies are computed by dividing the number of correctly classified pixels in each 

category by the total number of pixels that were classified in that category.  

 

The error matrix based on training data only indicates how well the statistics extracted from these 

areas can be used to categorize the same area. If the results are good, it means nothing more than 

that the training areas are homogenous, the training classes are spectrally separable, and the 

classification strategy being employed works well in the training areas. This aids in the training set 

refinement process, but it indicates little about how the classification performs elsewhere in a 

scene. Random sampling of classified pixels circumvents the above problems, but it is plagued its 

own set of limitations. First collection of reference data for a large sample of randomly distributed 

points is often very difficult and costly. For example, travel distance and access to random sites 

might be prohibitive. Second, the validity of random sampling depends on the ability to precisely 

register the reference data to the image data. This is often difficult to do so. One-way is to 

overcome this problem is to sample only pixels whose identity is not only influenced by potential 

registration errors (for example, points at least several pixels away from field boundaries (Lillesand 

and Kiefer 2000). 

 

2.5 Sampling Strategy 

2.5.1 Double and two-stage sampling 

Many variables that are of interest to foresters are difficult and /or expensive to measure but are 

related to other variables that are less difficult or expensive to estimate. If the relationship between 

such variables can be established, it becomes possible to use the data from the latter to make 

estimates of the former. This process is known as double sampling (Johnson 2000). Usually the 

term double sampling is reserved for situation where estimates are made of population means or 

totals. However, whenever regressions are developed to obtain estimate of difficult-to-measure 

quantities as, for example, the volume of standing trees using spectral response, the procedure 

could be considered a form of double sampling. 

 

When the universe of interest is divided into subsets that are to be used as sampling units, those 

subsets are primary samples. Each of these primary samples can be considered as mini-universe, 

which can be made up either of individual elements or group of individual elements. Those are the 

secondary samples. When sampling process is limited to drawing primary samples, it is referred to 
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as simple one-stage or single stage sampling. If sub-samples are drawn from randomly drawn 

primary samples, either individual elements or secondary samples two-stage sampling or sampling 

with sub-sampling is being used (Johnson 2000).  

 
Double sampling has been applied to combine remote sensing image and field-based forest 

inventory. Double sampling is a two-phase sampling strategy, where one phase consists of the 

auxiliary variable, which is relatively easy to measure, and the other phase the variable of interest, 

which is difficult or expensive, and those two phases are somehow related. In our study the 

auxiliary variable is the remote sensing spectral information. Our variable of interest is the carbon 

content which is a function of forest biomass or volume. 

 

Double sampling can be applied in several ways: double sampling for stratification, double 

sampling with regression estimator or knn estimate. Double sampling for stratification will stratify 

our forest to conduct an efficient ground sampling. Double sampling with regression estimator will 

correlate the remote sensing spectral response and field measured forest volume or biomass to 

generate a geographic carbon database. Double sampling with knn estimate will relate field-based 

information with satellite spectral response in terms of Euclidian distance.  

 

2.5.2 First phase sampling 

The first sampling phase will only deal with the selection of the image pixel from the remote 

sensing image. Those Image pixels are auxiliary variable. The next question is that what should be 

the size of a sample unit. Usually there are four categories of sample units on a remote sensing 

image: a single pixel, a cluster of pixels (often a 3x3 pixel square), a polygon or a cluster of 

polygons. A cluster of pixels, typically a 3x3 box, is the most common choice for the sample unit. A 

cluster minimizes registration problems, because it is larger than 1 pixel and therefore easier to 

locate in the reference data. However, clusters of pixels, especially a 3x3 window, may still be an 

arbitrary delineation of the landscape, if the sample unit covers more than one class. To avoid this 

problem, some researchers suggest that only homogenous clusters of pixels should be sampled. 

However, such restrictions may result in a biased sample that avoids heterogeneous areas, which 

could be a function of mixed pixels (e.g., a mixed hardwood conifer stand of trees). It is important to 

remember that the sample unit dictates the level of accuracy. If the assessment is performed on a 

3x3 cluster of pixels, nothing can be criticized about the selection of individual pixel nor about 

polygons (management areas, forest stands, agricultural fields, etc.) (Congalton and Green 1999).  

  

Therefore, in our case the pixel group should not be smaller (for example one pixel) because 

reaching of that level of accuracy on the field-sample plot in the second phase will not be possible 
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without a differential GPS. The other reason of not having a smaller plot is that often a single pixel 

spectral reflectance is affected by the surrounding pixel due to the illumination effect. The size of 

the pixel group was not larger because that might increase variability within the sample unit and 

reduce the correlation coefficient with the field measurement.  

 

2.5.3 Second-phase sampling (application of two-stage sampling in this phase) 

The second phase sampling deals with the field sampling of forest biomass. Though our variable of 

interest is carbon but it is very difficult to measure directly, however this variable is strongly 

associated with forest biomass. Therefore this study measures forest biomass and it is our variable 

of interest. The next problem is that what should be the appropriate size of sample unit. According 

to the first phase sampling the size should be 90mX90m (corresponds to the 3X3 pixel window). 

However, measuring all the trees inside that plot involves a high cost and time. Therefore two-

stage sampling is decided to apply in this phase. 

 

Two-stage sampling is a hierarchical structured sampling where within a bigger-sized sample a 

smaller sub-sample will be selected and measured. For example, each unit of a population can be 

divided into a number of smaller units, or subunits. A sample of n units has been selected. If 

subunits within a selected unit give similar results, it seems uneconomical to measure them all. A 

common practice is to select and measure a sample of the subunits in any chosen unit. This 

technique is called sub-sampling, since the unit is not measured completely but is itself sampled. 

Another name of the process is two-stage sampling, because the sample is taken in two steps. The 

first is to select a sample of second-stage units, often called the primary units, and the second is to 

select a sample of second stage units or subunits from each chosen primary unit (Cochran 1977). 

 

In the second phase of double sampling of our project the variable of interest (i.e. forest 

volume/carbon content) can be estimated by two-stage sampling. In the first stage a bigger size of 

sampling (known as primary sampling unit) is selected and in the second stage a smaller sample 

size would be selected (secondary sampling unit) and measured. The estimate of parameters of 

first stage can be obtained from the measurement of second stage sampling. Direct measurement 

of carbon content is cost-effective approach, however, there is a direct relationship between forest 

volume/biomass and carbon content. Hence, our variable of interest is forest volume and this will 

be converted to carbon by the ratio of an established relationship.  
 

Theoretically primary sampling unit selected on a satellite image will be homogeneous in group. 

However, in practice there might be variability in terms of volume and biomass on the ground. As 
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the area is still large (approximately 90mx90m) to measure the details of forest parameters, second 

stage sampling would be applied. The area may be arbitrarily selected as those followed by local 

inventory or determined by the optimisation process described by Zeide (1980). The number and 

distribution of secondary sample plots would be determined by the optimising. 

 

There are two reasons for stratification. It ensures that the sample will be well distributed across 

the primary sampling units, thus increasing the probability of obtaining a representative sample. 

The second reason for stratification is that it will reduce the magnitude of the standard error of the 

mean. Since some of the sample must come from each of the strata, the likelihood of a sample 

containing all high or low values is greatly reduced and consequently repeated samples will have 

more nearly alike means than would be the case if the sampling was unrestricted. Thus, the 

variance and standard error of the mean would be less in the case of the stratified sample than it 

would be if the sampling is unrestricted (Johnson 2000).  

 

2.5.4 Determination the sample size   

The sample size n for this study is calculated by 

 

Sample size n = ………………………………………(2.10) 

 

Where AE is the maximum allowable error specified for this study as a percent of the mean and t is 

the weighting factor from student t distribution and accounts for the probability of achieving the 

specified level of accuracy with a given sample size. C is the coefficient of variation, which is a 

measure of variability within a population. 

 

2.6 Field Estimation of Forest Volume/Biomass/Carbon Pool  

2.6.1 Estimation by direct measurement 

Volume estimation is based on measurement of diameter and length. These measurements may 

be made most accurately when the logs are separate and accessible to the measurer. Logs are 

neither cylindrical nor often a regular geometrical shape. Usually the model of a frustum of a 

quadratic paraboloid (Figure 2.8) is adopted and the formulae enumerated in table 2.6 are used to 

calculate volume. 

AE
ct
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Figure 2.8 Geometric forms assumed by portions of a tree stem 

 

Table 2.6 Equations for computation of cubic volume of important solids 

 

Geometrical solid Equation for volume Name 

Cylinder V = Abh  

Paraboloid V = 1/2(Abh)  

Cone V = 1/3(Abh)  

Neiliod V = ¼(Abh)  

Paraboloid frustum V = h/2(Ab+Au) Smalian’s formula 

 V = (Am) Huber’s formula 

Cone frustum V = h/3(Ab + AA ub  + Au)  

Neiloid frustum V = h/4(Ab + 3 2 AA ub  + 3 2 AA bu  +Au)  

Neiloid, cone, or 

paraboloid frustum 

V = h/6 (Ab + 4Am + Au) Newton’s formula 

h = height or length of the log 

Ab = cross-sectional area at base 

Am = cross-sectional area at middle 

Au = cross-sectional area at top 
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However, direct measurements are laborious and time consuming and hence the other methods, 

for example, using form factor and volume or biomass tables are widely used for practical purpose. 

 

2.6.2 Estimation by tree form factor 

Form of a tree actually is its shape. The shape of a tree is usually irregular. The tree form may be 

measured by the form factor that is the ratio of the volume of the tree or log to that of cylinder of 

equal basal cross-sectional area and height. For trees, the equivalent basal area is usually taken at 

1,3 m above ground level, that is at breast height; in some circumstances the cross-sectional area 

at (0,9) (total height) from the growing point may be used so the form factors of trees of different 

total heights may be compared on a rational basis. Form factor can be calculated by (for field 

practice): 

 

Form factor = Vt/(gbh*ht)…………………………………..(2.11) 

 

Where, Vt = total volume overbark, gbh = cross-sectional area at breast height, i.e. 1,3 m above 

ground level and ht = total height. 

 

Apart from the variables used in this calculation, form factor has the following sources of variation: 

 

�� Species and genotype 

�� Age 

�� Stocking 

�� Crown size 

�� Site factors – especially wind exposure (Philip 1998). 

 

2.6.3 Estimation using functions and tables 

A volume table is a tabulation that provides the average contents for standing trees of various sizes 

and species. The principal objective of volume tables is to estimate volume of standing trees that 

would correspond with the volume obtained if the same trees were felled, bucked and scaled as 

logs. Thus such tables are used in timber estimating as a means of ascertaining the volume and 

value of standing trees in a forested tract. In modern practice, equations are usually used to predict 

tree volumes rather than obtaining the values from tables. Tree weight tables are analogous to 

volume tables except that weights (green or dry) of standing trees are predicted rather than 
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volumes. The principal variables ordinarily associated with standing tree volume or weight is 

diameter at breast height (dbh), tree height, and perhaps, tree from (Avery and Burkhart 1994).  

 

Volume or weight tables are usually single entry or multiple entries. Those tables, whether of single 

or multiple entry can be classified as species tables or composite tables. In the first instance, 

separate tables are constructed for each important timber species or groups of species that are 

similar in terms of tree form. On the other hand, composite tables are intended for application to 

diverse species. To compensate for inherent differences in stem taper and volume between various 

species groups, provision is usually made for additionally measuring tree form, or correction factors 

developed for various species. Otherwise, composite tables will overestimate volumes of some 

trees while underestimating the volumes of others (Avery and Burkhart 1994). 

 

The main disadvantage of species tables is the large number of species encountered in most 

regions. When it is not feasible to construct separate tables for each species, those of similar taper 

and shaped may be grouped together. To avoid such difficulties, composite tables utilizing some 

measurement of tree form in lieu of species differentiation have been adopted in several regions 

(Avery and Burkhart 1994). 

 

2.7 Combine Remote Sensing and Terrestrial Information 

2.7.1 Incorporation of field measurement on the pixel level 

Field estimation of sub-sample can be accurately matched by a differential correction of GPS 

signal. Post-processing differential correction will provide the accuracy better than 5 meter. As 

Landsat images have the spatial resolution of 30 m the measured value can be easily incorporated 

on the pixel level. Alternatively, it can also be incorporated by a statistical method. First a mean 

value of 3X3 pixels and field measurements will be correlated. Using the best-fitted correlation 

coefficient the field measured carbon content will be simulated to the spectral response. Then it will 

be matched by a statistical approach to find the accurate location of the pixel. In this approach the 

field measurements will be fit into a moving window matrix. In that matrix, digital count of the nine 

pixels and the simulated spectral reflectance from the secondary sample plot will be plotted in two 

directions. The moving window will calculate the variance between field simulations with the 

reflectance count of each pixel from satellite data and select where the variance is minimum. The 

pixel with minimum variance or bias in that calculation should be used for establishing a correlation 

between two phases of the double sampling (figure 2.9). There are other approaches of location 

uncertainty has been discussed by Jaquez and Waller (2000).  
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Figure 2.9 Reducing location uncertainties by a geo-statistical approach 

2.7.2 Double sampling for stratification 

2.7.2.1 Background information 

In forest survey applications it has often been shown that cost-effectiveness can be improved by 

combining information assessed in aerial photographs/satellite images and field-assessments. The 

proposed study will stratify the forest based on the supervised classification of remote sensing 

image inside the test site. As supervised classification separates the image pixels into a number of 

spectral classes depending on their spectral distribution related to particular class, it could be used 

as a base of stratification. A number of studies used double sampling for stratification to estimate 

forest volume or biomass using remote sensing data and field inventory (Chojnacky 1998, Franklin 

1986, Glass et al. 2001, Köhl 1994, Köhl and Kushawaha 1994, Leyk et al. 2002, Nelson et al. 

2000). 

 

Although double sampling for stratification offers the potential for estimating forest biomass more 

efficiently than simple field plot sample, there is no guarantee of success. The success depends on 

how well the method might work to guide primarily by the experience of others to make the 

stratification. In particular, it is necessary to know whether double sampling will result in lower 
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sampling errors than might be obtained by simple field surveys of equal cost, and if so, how much 

of a reduction in sampling error the analyst can expect. If he decides to adopt the method, he will 

need to decide how many strata to identify and what boundaries to give them. In addition, he will 

need to decide how to allocate the field samples among these strata.  

 

Also double sampling for stratification, both the auxiliary variable at the first level (satellite image) 

and the variable of interest at the second level (field survey) are computed. In contrast to double 

sampling with regression estimators no measurable parameter on the satellite image is taken as an 

auxiliary variable. The auxiliary variable serves in allocating a sampling unit to a particular stratum. 

The sampling procedure is very similar to stratified sampling; the difference is that employs 

estimated strata sizes instead of known ones. 

 

Various stratification variables such as forest type, degree of mixture, canopy density, stand 

structure, stage of development etc with ground sampling can be investigated on satellite image. 

Stage of development proved the most suitable parameter for stratification. It was divided into 

several classes; young growth, pole-wood, young and medium mature timber, mature timber and 

mixed growth. 

 

2.7.2.2 Strata as a domains of study: 

This section deals with surveys in which the primary purpose is to make comparisons between 

different strata, assumed to be identifiable in advance. The rules for allocating sample sizes to the 

strata are different from those that apply when the objective is to make over-all population 

estimates. If there are only two strata, we might choose n1, n2 to minimize the variance of the 

difference (
��

� yy 21 ) between the estimated strata means. Omitting the fpc’s, we have 

 

………………………………………(2.12) 

 

 

With L strata, L>2, the optimum allocation depends on the amounts of precision desired for 

different comparisons. For instance, the cost might be minimized subject to the set of L(L-1)/2 

conditions that VyiyhV hi��
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( , where the values of Vhi are chosen according to the precision 

considered necessary for a satisfactory comparison of strata h and i. 
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Frequently a simpler method of allocation is adequate, especially if the Sh and ch do not differ 

greatly. One approach is to minimize the average variance of the difference between all L(L-1)/2 

pairs of strata, that is, to minimize (Cochran 1977). 

 

 

…………………………..(2.13) 

 

 

2.7.3 Double sampling with regression estimator 

2.7.3.1 Background information 

Double sampling with regression estimator will measure x variable on each sampling unit and 

predict y by using a regression parameter. In this strategy x are measured on each sampling unit 

and the regression parameters for predicting y from x are estimated from measurements of x and y 

taken on a sub-sample. This enables the surveyor to predict Y as a function of the estimated X 

from the main sample. The application of this technique implies that the residual variance of the 

regression is very much smaller than the variance of the x values in the population (Philip 1998).   

 

The general linear regression model can be written as: 

 

Yj = b1 + b1X1j + b2X2j + b3X3j +……………………….+ bmXmj + �j……………………(2.14) 

 

b1, b2, b3 …………bm = parameters of the model 

X1j, X2j,………………………………Xmj = values of the predictor (independent) variables for the jth 

population element 

 

The quantity �j represents the value of a random variable that expresses the difference between Yj 

and the average of all Y values associated with the specific combination of predictor variables 

values X1j, X2j………………..,Xmj. The random variable � is assumed to be additive to the model 

and randomly distributed with mean 0 and constant variance �2. From an analysis standpoint, b0, 

b1,………………..bm and �2 are unknown parameters to be estimated from the data, while the 

values of the predictor variables are treated as known constants. The random variable Y is 

therefore distributed with a mean of b0 + b1X1+………………+bmXm and a variance of �2. 

 

The first step in any regression analysis is data collection. A sample of n element is selected from 

the population, and the values for the dependent and independent variables are determined for 

each of the sample elements. Sample relationships are expressed by writing equation as: 
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Yi = b0 + b1X1i + b2X2i+…………………bmXmi + �i..…………………………………(2.15) 

 

Where, 

X1i, X2i,…………..Xmi = values of the predictor variables for the ith sample element 

Yi = value of the dependent variable for the ith sample element 

�I = value of the random variable � that is associated with the ith sample element (I = 1,……….,n) 

 

When predicted values of b0 + b1,…………….bm are available (these predicted values are denoted 

as b0, b1, ….bm), predicted values of the response variable can be obtained as 

 

Y = b0 + b1X1i + b2X2i+ bmXmi…………………………………………(2.16) 

 

And predicted values of � values can be calculated as: 

 

�I = Yi - 
�

Y i……………………………………………….(2.17) 

In our case, the easily measured variable is the digital count of remote sensing image (x) and the 

variable difficult to measure is the carbon content (y). Constant and coefficient of the regression 

was calculated by using SPSS software.  

 

Figure 2.10 listed some different patterns of scattergram and a possible fit of regression lines. 
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Figure 2.10 Typical straight-line regression situations (Draper and Smith 1998) 

 

A number of studies used regression technique for estimating and predicting forest attributes based 

on remote sensing data (Ardö 1992, Foody et al. 2003, Gjertsen 1996, Häme et al. 1996, Roy and 

Ravan 1996, Trotter et al. 1997, Lu et al. 2002, Thenkbail et al. 2004). 

 

2.7.3.2 Residual analysis 

The residuals are often used to detect and assess the degree of discrepancy between the model 

assumed (includes assumptions made) and the data observed. A simple plotting of ordinary 

residuals against the fitted values 
�

Y i is often beneficial in highlighting either model under 

specification or a deviation from the homogenous variance assumption. The classical appearance 

of such a residual plot for an ideal situation is depicted in figure 2.11. The picture indicates a 

random pattern around zero with no detectable trend.  
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Figure 2.11 Ideal residual plot 

 

Figure 2.12 reveals residual patterns that give evidence of model under specification and 

heterogeneous variance. The figure 2.12 (b) shows the funnel effect, which indicates that as the 

response variable gets larger, the deviations from the residuals from zero become greater. Hence 

one detects a condition whereby the error variance is not constant but increases as the measured 

response increases. In figure a, the systematic trend in the residuals usually indicates a model term 

is missing, perhaps a quadratic term in one of the repressor variables (Myers 1990).  
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(a) 
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Figure 2.12 Residuals plots indicating violation of assumptions (a) model should involve curvature 

(b) heterogeneous variance 

 

2.7.3.3 ‘Dummy’ Variables to Separate Blocks of Data 

The variables considered in regression equations usually can take values over some continuous 

range. Occasionally we must introduce a factor, which has two or more distinct levels. For 

example, data may arise from three machines, or two factories, or six operators. In such a case we 

cannot set up a continuous scale for the variable ‘machine’ or ‘factory’ or ‘operator’. We must 

assign to these variables some levels in order to take account of the fact that the various machines 
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or factories or operators may have separate deterministic effects on the response. Variables of this 

sort are usually called dummy variables. They are usually (but not always) unrelated to any 

physical levels that might exist in the factors themselves (Draper and Smith 1998).  

 

Suppose we wish to introduce into a model the idea that there are two types of machines (types A 

and B) that produce different levels of response, in addition to the variation, which occurs due to 

other variables. One-way is doing this is to add to the model a dummy variable Z and a regression 

coefficient � so that an additional term �Z appears in the model. The coefficient � must be 

estimated at the same time the �’s are estimated. Values can be assigned to Z as follows: 

 

Z = 0 if the observation is from machine A, 

Z = 1 if the observation is from machine B.  

 

Any two distinct values of Z would actually be suitable, though the above is usually best. However, 

other assignments are sometimes convenient; for example, suppose of a total of n observations, n1 

comes from type A machines and n2 = n-n1 from type B machines. If we choose levels 

 

Z = for machine A …………………………….(2.18) 

 

 

 

Z = for machine B …………………………….(2.19) 

 

 

It will be found that the corresponding column of the X matrix is orthogonal to the ‘�0 column’ and 

has sum of squares unity, which may be convenient. 

 

If it were desired to take account of three distinct machines, two dummy variables Z1 and Z2 would 

be required. Then we should set 

 

(Z1, Z2) = (1,0) for machine A 

                (0, 1) for machine B 

                (0,0) for machine C 
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and the, model would include extra terms �1Z1 + �2Z2, with coefficients �1, �2 to be estimated. 

Again, many different allocations of levels are possible. If desired, columns which are orthogonal to 

the �0 column which have sum of squares unity can be achieved by setting 

 

(Z1, Z2) =   ( 0, 0 )                         for machine A 

 

 

                ( 0,   )                           for machine B 

 

 

              ( ,  ) for machine C 

 

 

where, n1, n2 and n3 are, respectively, the numbers of observations from machines A, B and C. 

 

In general, by an extension of this procedure we can deal with r levels by the introduction of (r – 1) 

dummy variables. The basic allocation pattern is obtained by writing down an (r-1) X (r-1 ) I matrix 

and adding a row of (r-1) zero (Draper and Smith 1998). 

 

In order to get an easy understating of different possibilities of regression lines using different forms 

of dummy variables are presented in figure 2.13. 
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Figure 2.13 Different possibilities of two straight lines using dummy variables  

(Draper and Smith 1998) 

 

2.7.3.4 Criteria for comparing candidate models 

In the ideal regression analysis, the analyst specifies an initial model that, when fitted to the sample 

data, produces a regression equation composed entirely of statistically significant variables. In 

addition, plotting of the residuals from this model over predicted Y, and the independent variables 

show a random, constant variance pattern around a residual value of zero. In such a situation, the 

analyst will have fitted only one model and will generally adopt the calculated equation as the final 

regression. Since the sample data played no role in dictating the form of the model, the analyst can 

expect such sample statistics as r2 (proportion of variation explained) and the residual mean 

square to be good indicators of the predictive performance of the final regression when it is applied 

in the population. 

 

The only practical difficulty with the ideal regression analysis situation is its infrequency of 

occurrence with real-world data sets. All too commonly, the analyst will, for various reasons, be 

forced to fit a number of candidate models to the data set involved. Residual analysis will often rule 
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out some of the candidate models for such reasons as heterogeneous variance or non-random 

relationship between the residuals and one or more independent variables. Usually, however, 

selected candidate models will remain after dismissal of the equations with unacceptable residual 

patterns. These remaining candidate models may or may not have the same number of 

independent variables. One or more independent variables might be included in all the candidate 

models. On the other hand, each model could include only variables that occur in no other model. 

Therefore, the following criteria can effectively help to choose the model, especially when the 

candidate models have the same dependent variables. 

 

(i) Residual Mean Square: 

 

The Residual Mean Square (RMSp) statistic has been used fairly extensively as a selection 

criterion. Some analysts simply select as the final model the candidate regression with smallest 

value of RMSp. However, it has been pointed out (Hocking 1976) that this practice is most 

appropriate when the objective of analysis is parameter estimation or development of a model with 

good explanation properties. If the objective of the analysis is the development of a model that will 

provide good predictions, the RMSp statistic should probably be employed as follows: 

 

(a) Plot the RMSP values over p. For the larger values of p, the RMSP values will generally 

fluctuate around a horizontal line. The RMS value associated with the line is denoted as 
2�

�  since this values is usually be a satisfactory estimate of � 2 (This assumes that the 

largest model contains all variables present in any of the smaller models. 

 

(b) Selection of the final model is accomplished by selecting the candidate model that 

represents the best compromise between (i) minimizing the size of the model, and (ii) 

having an RMSP value that is reasonably close to the 2�

� value.  

 

(ii) Squared Multiple Correlation Coefficient: 

 

Since a decrease in R2 never occurs whenever a model is expanded by the addition of another 

variable, it is seldom appropriate to use maximization of R2 as a selection rule. Instead, the model 

selected as best should (a) contain as few variables as possible, and (b) have an R2 value that is 

not substantially less than R2
max , where R2

max  is the maximum of Rp2 values. If the largest model 

contain all variables present in other models, it is often useful to plot the Rp2  values over p. 

Typically, such a plotting shows theRp2  values for larger p lying closer to an upper asymptote of 

R2
max . As p decreases, however, there will be a point where Rp2 values begin to decrease sharply. 
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The model associated with the p value at which this decrease begins is often a good choice as the 

final model. 

 

(iii) Adjusted Squared Multiple Correlation Coefficient 

 

The statistic is essential equivalent to RMSp, which is far easier to interpret. It is therefore 

recommended that RMSP be used in preference to Rap2  as a selection criterion. TheRap2  statistic 

has been defined because some computer programs (for example, SPSS) use maximization of 

Rap2  as the selection criterion. Such a procedure is equivalent to selecting those subset 

regressions that have minimum RMSp values. 

 

2.7.4 Double sampling with knn estimate 

2.7.4.1 Background information 

The knn algorithm searches the feature space for the k nearest pixels, whose field data vectors are 

known, applying a distance measure, d, defined in the feature space. Field data from the k nearest 

pixels is transferred to the unknown pixel. The method has been widely in pattern recognition 

(Cover & Hart 1967, Keller et al. 1985) and statistics (Linton & Härdle 1998). Altman (1992) 

showed that the knn estimator might give biased estimates as the value of k increases, but that the 

bias can be weighted by weighted average of the k neighbours. The error rate asymptotically 

approaches the optimal rate of the Bayes decision rule for discrete variables when both the k and n 

(number of observations) tend to infinity in such a way that k/n� 0 (Keller et al. 1985). 

 

2.7.4.2 Knn estimate procedure 

Fix and Hodges (1951) developed the k-nearest neighbour rule in an attempt to non-parametrically 

model multivariate density functions. In this rule, a neighbourhood is defined as a fixed number of 

pixels (k) centred on the unlabeled pixel’s coordinate (x) in feature space. The class labels of these 

neighbouring training pixels are examined, and the class label represented most frequently is given 

to the query pixel. In performing classification of pixels to be utilized as a neighbourhood, and the 

manner in which ties in the voting will be resolved. In figure 2.14, the neighbourhood for the query 

pixel is predefined as its seven nearest neighbours. The unlabeled pixel is assigned to class 2, 

because it constitutes a majority of the seven pixels (Hardin 1994).  
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Figure. 2.14 The multiple (k) nearest neighbour rule (Hardin 1994) 

 

The knn method is used here to generalize information from field plots to pixels for map production 

and local area estimation. The method assumes that similar forest exists within a large reference 

area covered by a satellite image and that the spectral radiometric responses of the pixels are only 

dependent on the state of the forest. Several examples can be found in literature, including: 

Fazakas and Nilsson (1996), Muinonen and Tokola (1990), Nilsson (1997) and Tomppo (1991, 

1993, 1997a, 1997b), Franco-Lopez (2001), McRoberts et al. (2002.) etc. 

 
A general description of knn method is as follows: the spectral distance, dp, p is computed in the 

feature space from the pixel p to be classified to each pixel pi for which the ground measurement or 

class is known. For each pixel p, take k-nearest field plot pixels (in the feature space) and denote 

the distances from the pixel p to the nearest field plot pixels by dpi, p,,….,dpk,p (dpi,p<….<dpk,p). The 

estimate of the variable value for the pixel p is then expressed as a function of the closest units, 

each such unit value weighted according to a distance function in a particular feature space. A 

commonly used function for weighting distances is: 

 

W(pi)p = 
dt ppi)(

1 / �
�

k

j t
ppid1 )(

1
……………………………………………..(2.20) 

With t = 2. The estimate of the variable m for pixel p is then:  

 

mp = �
�

k

i
pippi mw

1
)()( ,..………………………………………………….(2.21) 
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Where m(pi), i = 1,……………………….,k is the value of the variable m in sample plot i 

corresponding to the pixel p(i), which is ith closest pixel (of ‘known’ pixels) in the spectral space to 

the pixel p (Tomppo 1997a). 

 

This estimation procedure is used on an operational basis in the Finnish national forest inventory. 

Even though the procedures involved have been documented, the analysis of the behaviour and 

quality of the estimation has not been explored in depth. Tomppo (1997b) reported that a method 

for error evaluation for this technique was under development. 

 

2.8 Literature Review: Extraction of Forest Attributes from Remote Sensing Data 

Numbers of studies have already been carried out to conduct a forest inventory or predict forest 

attributes using remote sensing imagery. Most of the studies used the regression method. 

However, knn, stratification and neural networks were used in some cases. All of those studies 

were done in different forest regions including boreal, temperate and tropical forests.  

 

2.8.1 Boreal forest 

Gjertsen (1996) applied two different approaches for forest inventory in the boreal forest of Norway: 

using traditional methods based on field measurements and using two-phase sampling based on 

SPOT and Landsat TM data. The study used regression to predict the forest attributes from 

satellite data. Ardö (1992) investigated the relationship between the spectral radiance recorded by 

Landsat Thematic Mapper and the volume of forest compartments in a coniferous forest area of 

southern Sweden. The study established a relationship using regression. Häme et al. (1996) 

developed a model to predict biomass of conifer-dominated boreal forests of southern Finnland 

from ground measurements and Landsat TM data using regression method. The spectral models 

were applied to a calibrated AVHRR image mosaic covering the northern Europe reaching from the 

west coast of Norway to the Ural Mountains. The result was quantitatively tested in Finland. 

 

Tomppo et al. (2002) estimated tree stem volume and above-ground biomass of boreal forests of 

Sweden and checked with the forests of Finnland using data of National Forest Inventories (NFI) 

and Landsat TM and IRS 1C WiFS satellite. A nonparametric K-nearest neighbour estimation 

method was applied using Landsat TM and field sample plot data of the Swedish National Forest 

Inventory (SNFI). Non-linear regression models were developed for predicting volume and biomass 

from WiFS data. Finally the results were evaluated from the independent estimates of Finnish 

Multi-source Forest Inventory.    

 

Katila and Tomppo (2001) examined the selection of parameters for the nonparametric knn 

estimation method, which was used in the Finnish Multi-source National Forest Inventory (MS-NFI). 

The MS-NFI utilised NFI field plot data, satellite images and digital maps to produce forest 
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attributes from the single pixel to the national level. Hyyppä et al. (2000) conducted a research from 

a variety of remote sensing data on the retrieval of stem volume, basal area and mean height on 

typical boreal forest in southern Finland. The data includes Landsat TM, Spot PAN and XS, ERS-

1/2, airborne data from imaging spectrometer AISA, radar-derived forest canopy profiles and aerial 

photographs. Leyk et al. (2003) examined two different sampling approaches in test sites of boreal 

forest in Eastern Finland: stratified sampling and sampling with regression estimators. Two 

alternative stratification rules were tested: stratification with terrestrial a-priori information (i.e. 

supervised classification on the image) and without (i.e. unsupervised classification) using that 

information. The study used airborne E-SAR (Experimental Synthetic Aperture Radar) and 

terrestrial survey data. Systematically distributed field sample plots provided a detailed reference 

data source for studying the relation of the backscatter signal as auxiliary variable and the 

terrestrial information as variable of interest. Segmentation was performed to estimate radar cross 

section as a basis to apply regression or stratification.  

 

2.8.2 Temperate and subtropical forests 

Jakubauskas and Price (1997) related various environmental and forest variables of Yellowstone 

Lodgepole pine forest with Landsat TM data. Franklin (1986) correlated basal area and leaf 

biomass for a selected study area of California. The area was dominated by Red Fir and mixed 

conifer stands. McRoberts (2000) estimated forest area in Minnesota using stratification. A 

classified Landsat Thematic Mapper satellite imagery was used as the basis for stratification. 

Franco-Lopez (2001) applied the knn method for estimation of forest cover type, basal area and 

volume for Aspen-Birch and Spruce-Fir forests of north-eastern Minnesota. The study tested 

several variations within the method including distance metric, weighting function, feature-weighting 

parameters, and number of neighbours. Using the nearest neighbours (k = 1), Euclidean distance, 

a three date 18-band composite image and feature weighting parameters, maps were constructed 

for basal area, volume and cover type. The study by Lee (1990) used SIR-B and Landsat TM data 

to obtain a better characterization of forest stand parameters of sub-tropical forests of northern 

Florida. Glass et al. (2001) examined the sampling gain due to stratification using Landsat TM 

satellite data of four Mississippi counties, USA. Three categories of forest composition were 

mapped, based on a continuous spectral metric applied to leaf-off data: 1) mostly deciduous; 2) 

mostly evergreen; and 3) mixed. A priori variability information about the forest within each county 

was used to estimate the initial number of plots, which were then allocated proportionally by the 

area associated with each cover-type. Incorporating the stratifications derived from the Landsat 

data resulted in gains in sampling efficiency by identifying and spatially locating homogeneous 

populations within a fragmented landscape. The study conducted by Atmawidjaja (1972) applied 

double sampling technique using aerial photographs for volume estimation of Heiberg Memorial 
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Forest, New York. The study used double sampling with regression estimator. The study discussed 

about the optimum sample size and compared the efficiency of double sampling with simple 

random sampling of similar standard error. 

 

Salvador and Pons (1998) conducted a study for estimating forest variables in north-east Spain 

using Landsat TM. They analysed the relationship between tree canopy coverage and leaf area 

index with six non-thermal TM bands and NDVI. A two phase or double sampling for stratification 

has been introduced in the second Swiss national forest inventory (Köhl 1994), where in a first 

phase strata weights are assessed on a large sample of aerial photographic plots and variable of 

interests are assessed on a smaller sample of field plots. The study by Dees et al. (2000) presents 

two elements of a study on forest inventory and mapping for the test site in Germany. The area is 

dominated by oak and beech among broad-leaved stands and spruce among the coniferous. The 

study examined the gain of stratified random sampling based on aerial photographs using tree 

volume. The study also used knn method using terrestrial sample data with Landsat TM and IRS 

LISS data for mapping the dominant tree species. 

 

Trotter et al. (1997) compared the three different methods: regression analysis, non-parametric line 

fitting, and an N-dimensional k-nearest neighbour classification scheme to predict wood volume of 

coniferous plantations in New Zeland from Landsat TM data. Chiao (1996) compared the three 

types of satellite sensors data airborne multispectral, Landsat TM and SPOT HRV for estimating 

forest crown closure and volume in central Taiwan. The study used stepwise regression technique 

for predicting tree volume and crown closure from digital count of individual band and vegetation 

indices. 
 

2.8.3 Tropical forests 

Lu et al. (2002) estimated above-ground biomass of succesional and mature forest in the Amzon 

basin using TM images and field-inventory. Atmospherically corrected TM data and field-measured 

forest variables were used in the analysis. The study examined the utility of different vegetation 

indices and texture measures to predict forest biomass. The study by Nelson et al. (2000) 

estimated biomass and carbon of selected sites of tropical forests in the Amazon basin using 

double sampling for stratification from Landsat TM image. Twenty one different classes were 

identified on a Landsat scene. The image was later classified. Biomass and carbon of each class 

was estimated from the previous studies. Steininger (2000) tested the ability of estimating above-

ground biomass of tropical secondary forest from canopy spectral reflectance using satellite optical 

data. Data were collected from 34 re-growth stands of the selected test sites of Brazil and Bolivia. 
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Sader et al. (1989) evaluated the feasibility of detecting tropical forest succesional age class and 

total biomass differences using Landsat Thematic Mapper (TM) in the mountain forest of Puerto 

Rico.  
 

Thenkabail et al. (2004) compared narrowband hyperspectral Hyperion data with broadband 

hyperspatial IKONOS data, multispectral Advanced Land Imager (ALI) and Landsat-7 Enhanced 

Thematic Mapper Plus (ETM+) data through modelling and classifying complex rainforest 

vegetation of southern Cameroon. Foody et al. (1996) used NOAA AVHRR data for estimation of 

tropical forest biophysical properties in south-west Ghana.  

 

Roy and Ravan (1996) conducted regional biomass mapping in Madhav National Park, India. A 

stratified random sampling in the homogenous vegetation strata was done. The sample point 

biomass data were extrapolated for the whole study area using satellite remote sensing. The study 

has also generated empirical models with spectral responses. A study by Köhl and Kushwaha 

(1994) applied a four-phase sampling strategy based on Landsat TM data, Colour Infra-Red, Black 

and White panchromatic aerial photographs as well as field assessments. The study estimated the 

standing volume using stratification in the tropical forests of Karnataka, India. The study stratified 

seven classes based on Landsat TM in the first phase, density classes based on Black and White 

aerial photographs in the second phase and heights, number of stems and crown diameter using 

CIR aerial photos in phase three. Field inventory was carried out in the phase four. Foody et al. 

(2003) studied the estimation of tropical forest biomass from Landsat TM data between sites in 

Brazil, Malaysia and Thailand using regression and neural networks. The study also discussed the 

transferability of the estimates among the region. 
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Chapter III 

3 Study Area and Stand Information  

3.1 Location 

The study area is located at the southern Chittagong, which is the southeastern part of 

Bangladesh. The area corresponds to the selected part of 136/045 scene of Landsat TM /ETM+. 

The size of the study area is about 300 sq. km (20km x 15km). It covers 21°29´to 21°37´ N Latitude 

and 92°05´ to 92°13´ E longitude (Figure 3.1). 

  

 
Figure 3.1 Location of the study area 

 

3.2 Climate  

The area enjoys a sub-tropical monsoon climate. Though there are six seasons in a year, three 

namely winter, summer and monsoon are prominent. Winter is quite pleasant, begins in November 

and ends in February. Usually there is no fluctuation in temperature, which ranges minimum of 18° 

C to maximum of 29° C. The maximum temperature recorded in summer is 32° C to minimum 26° 

C. Monsoon starts in July and stays up to October. The period accounts for 80% of the total rainfall. 

The average monthly annual rainfall varies from 400-500 mm in monsoon period (June to October) 

to 100 mm in dry period. 

 

3.3 Topography 

The eastern part of the study area consists of plain-lands and in some places small hills, whereas 

the western part consists of medium-high to high hills. The elevation starts just above mean sea 

level. The hills consist of alternate broad valleys. The hills usually rise from the flat valley; gradually 
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reach to peaks of maximum 457 meters (Das 1990). The characteristic morphological features of 

the region are low elongated hills running almost north south with intervening parallel valleys.  

 

3.4 Geology and Soil 

Geologically the area belongs to the tertiary period (Pliocene and Miocene epoch), whose origin 

dates back to 25 million years (Chaudhury 1969). In the study region different types of soils and 

land formations are observed. Coastal and estuarine plain-lands represent the recent alluvial soil 

formations of the Quaternary geological age. Low hills with rolling to steep slopes belong to the 

Dupi Tila Series and medium-high to high hills belong to the upper-middle Tipam Series of the 

Pliocene epoch. In some areas, sandy sales and fine-grained sandstone with some soils of Tertiary 

Miocene epoch are also found (Khan 1979). 

 

The plain-land and valley soils of the study area are formed with recent and sub-recent alluvial 

sediments of tidal and river flood plains. Most of these soils are seasonally flooded, medium to 

moderately fine textured and have low contents of organic matter. They are moderately alkaline to 

wildly acid in reaction and are slightly saline. Extremely acid soils, however, locally occur in the 

coastal mangrove tidal flood plains. Soils developed in the hills from un-consolidated rocks with 

moderately well to excessive drainage are probably the oldest soils in this region. They are 

yellowish brown to yellowish red, sandy loam to clay loam, moderate to strong blocky and strongly 

to very strongly acidic. They have few to many iron-manganese concretions. Soils develop on the 

hills with consolidated rocks are mainly sandy loam to clay loam. They are excessively drained, 

pale brown to yellowish brown in color. The sub-soils are mainly sandy loam to silty clay loam, 

weak to strong blocky and medium to strongly acidic (Khan 1979). 

 

3.5 Description of Forest Types 

The forests of the study area can be classified as tropical wet evergreen forests and tropical semi-

evergreen forest (Champion et al. 1965) (Figure 3.2). In the regional context the Chittagong flora 

differs from the Eastern Himalayan flora by the absence of Sal (Shorea robusta) and that from 

Myanmar by the absence of Teak (Tectona grandis). The outstanding feature of the forest 

vegetation is the frequent occurrence of the general Dipterocarpus, Quercus and Eugenia 

(Syzygium spp) (Baten 1969). 
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Figure 3.2 Tropical evergreen and semi-evergreen forests of the study area (photographs acquired 

during winter 2002-2003) 

 

As all the accessible areas were transformed to shifting cultivation, virgin forests can be seldom 

noticed in the area. Present crop mostly consists of secondary re-growth, which is still in the 

process of succession to the climax evergreen type. This process of succession is often influenced 

by the repeated disturbance and thus leads to a drier scrubby forest or to a savanna in many areas 

(Khan 1979).  

 

3.5.1 Tropical wet evergreen forests 

This forest type is characterized by the presence of a considerable amount of evergreen trees in 

the upper canopy. The top canopy reaches a height of 40-60 meters. A few semi-evergreen or 

deciduous species may occur, but usually they do not change the evergreen character of the 

forest. The forest is rich in epiphytes, orchids, woody climbers, ferns, mosses and palms 

particularly in shady moist places (Das 1990). 

 

The Dipterocarpus are characteristic for the evergreen stratum. A certain amount of deciduous 

species like Anacardaeous, Swintonia is predominating. Sterculiaceae, Artocarpus and Sygigium 

that generally form an important part of the upper canopy are often present. Mesua ferrea and 

Hopea are generally also found, but not at an abundant amount. Sometimes bamboo appears in 

certain places where upper canopy is disturbed. Bamboo is typically absent in the virgin forests 

where canes and palms are the main woody monocotyledons. Tree ferns sometimes occur but 

epiphytes and ground-ferns are frequent. In the shrubby undergrowth Rubiaceae and Acanthaceae 
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are common. In certain areas, gregarious occurrence of the several Dipterocarpus species is 

observed in the top canopy with a rare occurrence of any other species (Khan 1979). 

 

3.5.2 Tropical semi-evergreen forests  

The main characteristic of this forest is the presence of appreciable proportion of deciduous 

species in the main canopy. The canopy is correspondingly lighter during the period of minimum 

rainfall (November to March) due to shed of leaves. The predominance of epiphyte and climbers, 

as well as bamboo, which later in some extent is replaced by the canes, and palms of the climax 

evergreen formation. 

 

In the upper canopy Dipterocarpus spp are common but not always present with evergreen species 

like Mangifera, Lophopetalum, Amoora, Cinnamomum and Sygigium. However, there is a fair 

proportion of deciduous species such as Tetramcies, Artocarpus, Salmalia, Duabanga, Garuga, 

Albizzia, Cederala and Chickrassia are usually present in the canopy.  The lower canopy is mostly 

evergreen with various Meliaoca, Louracea, Myrtaodae and Cupuliferace. Several species of 

Bamboo with a few dwarf palms such as Phryniun, Alpina and Clinogyne are locally abundant 

especially in wet places. Rubiaeoae and Acanthaeae are also common in the shrub layer (Khan 

1979).  

 

3.5.3 Semi-evergreen shrub forest and savannas 

This type of vegetation formation usually occurs nearby the habitation and at the accessible part of 

forest areas. The forests were disturbed repeatedly and formed to the scrubby vegetation. 

Repeated clear felling or temporary cultivation favors growth of grass, which usually burns 

regularly. This treatment tends to eliminate almost all the evergreen species and results in a very 

open savanna type forest with the presence of scattered deciduous trees of poor growth condition 

over dense grass. The common tree species are Albizia spp. Lannea coromandelica, Caruga 

pinnata, Salmalia, Sterculia spp. Ficus spp. The undergrowth of weed Eupatorium may be 

noticeable and weedy climbers are often strongly developed in many places of this forest (Khan 

1979). Some areas in the study region are invaded by Sungrass (Imperata arundinaceas) and 

Khagra (Saceftram spontaneum) (Baten 1969). 

 

3.5.4 Moist bamboo brakes 

Mostly bamboo occurs as undergrowth and associates with other trees, but in some places pure 

bamboo forest is also observed. The bamboo brakes occupy extensive areas in the Chittagong Hill 

Tracts, which is the eastern part of study area. The important species of bamboo are Muli 

(Melocanna baccifera), Mitenga (Bambusa tulda), Dalu (Neohouzeaua dullooa), Orah 
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(Dendrocalamus longispathus) and Kalichari (Oxytenanthera nigrociliata). In some places 

extensive bamboo is found without overstorey, which is the result of former clearing. A more or less 

complete cover of bamboo (mainly Melocanna) is common in other areas. But scattered singletree 

over the bamboo is also found especially in depression. The different species of bamboo tend to be 

concentrated in separate groups though appreciable proportion of overlapping is also observed. 

Melocanna appears to flower and die gregariously at 45-50 years interval after producing seeds. 

The dense growth precludes the natural regeneration of most tree species and makes the areas of 

pure bamboo formations (Khan 1979). 

 

3.6 Forest Jurisdiction 

The study area consists of two Forest Divisions under the administrative control of Forest 

Department. Forest Divisions have been usually sub-divided into several Forest Ranges. Each 

Forest Range consists of a number of Forest Beats, which are the local administrative unit of forest 

management. The names of the administrative units covered by the study area are enlisted in table 

3.1.  

Table 3.1 Distribution of study area controlled by the Bangladesh Forest Department 
Division 

 
Range Beat 

Fulchari Khutakhali 

Fulchari 

Napithkhali 

Rajkhat 

Bhomoriaghona Bhomorighona Sadar 

Dumchakata 

Purnagram 

Idgarh Idgarh 

Tulatuli 

Baishari 

Meherghona Meherghona 

Machukhali 

Kalirchara 

Dhalirchara 

Joarianala Joarianala 

Bengdhepa 

Jumchari 

Rubber Bagans 

Cox’s Bazar North Forest 

Division  

Bagkhali Gilatali 

Barabil 

Lama Forest Division 

 

Sangu Range - 

 



 78

Chapter IV 

4 Methodology 

The aim of the current study is to extract spectral information from satellite data and relate those 

with field-based carbon estimation and finally simulate the carbon pool for the whole study region. 

The remotely sensed imagery contains spectral information on vegetation from the reflection of the 

electromagnetic wavelengths by the chlorophyll pigments and the physiological structure of 

mesophyll tissue of leaf. Field sampling provides the quantity of forest biomass and carbon stocks 

o the selected sample plots. Statistical and mathematical techniques combine and analyse all 

those information.  

 

The schematic workflow is represented in figure 4.1. However, overlaying the classified historical 

and recent images generates forest cover change map and matrix; those activities are not 

presented in the flow chart because it makes clumsier to understand.    
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Figure 4.1 Representation of the research methodology 
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4.1 Remote Sensing Image Information 

Landsat ETM+ & TM data are used for the study because those are relatively cheap and having 

satisfactory radiometric bands and also available for the designed study period. The time interval 

for the investigation is fixed as 1992 to 2001. Additional data set of IRS pan is used to get high 

spatial resolution (5mm) information. All the images are chosen at the mid of dry season when 

most of the perennial shrubs and grasses are dead and having minimal spectral influence over the 

forest vegetation. However, there is a chance of loosing information from the deciduous forest 

canopy due to shading of their leaves during the period. The data set corresponds to the 136/045 

Landsat TM and 112/057 of IRS pan scene. ERDAS imagine and ENVI were used for image 

processing. 

 
During the image purchase (mid of 2002), an effort was made to select the image as close as 

possible to the recent time, however it was impossible to choose any other than the selected one 

due to the presence of cloud coverage on the scene (Table 4.1) 

 

Table 4.1 Remote sensing data-set of the study area and corresponding cloud coverage. 

 
Date 

 
Cloud coverage 

18 Oct 2000 
 

72 

03 Nov 2000 
 

5 

21 Dec 2000 
 

0 

07 Feb 2001 
 

0 

27 Mar 2001 
 

17 

28 Apr 2001 
 

52 

14 May 2001 
 

11 

02 Aug 2001 
 

99 

18 Aug 2001 
 

40 

03 Sep 2001 
 

39 

19 Sep 2001 
 

96 

21 Oct 2001 
 

3 

09 Jan 2002 
 

18 

10 Feb 2002 
 

0* 

15 Apr 2002 
 

58 

*the required area was covered by fog 
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The cloud-free image of 7th February 2001 was selected for procurement. One scene available at 

the SPARRSO archive on 7th February 1992 was selected as the historical image. The IRS-scene 

of 10th March 1999 was purchased by TREES Project. The spectral characteristics of Landsat 

ETM+/TM and IRS pan channels and their utility on vegetation science are enlisted in table 4.2. 

 

Table 4.2 Landsat Thematic Mapper /ETM+ and IRS pan spectral bands for vegetation studies 

(adapted from Jensen 1996, Sabins 1997 and Irish 2004) 

 
Satellite Band Wave 

Length (µm) 
Nominal 
spectral 
location 

Principal applications 

1 0.45-0.52 (TM) 

0.45 - 0.52 

(ETM+) 
 

Blue-green Useful for distinguishing soil from vegetation 
and deciduous from coniferous plants. 
 

2 0.52-0.60 (TM) 

0.53 - 0.61 

(ETM+) 
 

Green 
 

This band spans the region between the blue 
and red chlorophyll absorption bands and 
therefore corresponds to the green reflectance 
of healthy vegetation. 
 

3 0.63-0.69 (TM) 

0.63 - 0.69 

(ETM+) 
 

Red This is the red chlorophyll absorption band of 
healthy green vegetation and represents one 
of the most important bands for vegetation 
discrimination. The 0.69-µm cutoff is significant 
because it represents the limit of a spectral 
region from 0.68 to 0.75 µm where the 
crossover of vegetation reflectance takes 
place. 
 

4 0.76-0.90 (TM) 

0.78 - 0.90 

(ETM+) 
 

Reflected 
infrared 
 

For the above reasons, the lower cutoff for this 
band was placed over 0.75 µm. This band is 
especially responsive to the amount of 
vegetation biomass present in a scene. It is 
useful for crop identification and soil-crop 
separation. 
 

5 1.55-1.75 (TM) 

1.55 - 1.75 

(ETM+) 
 

Mid-
infrared 

This band is sensitive to the turgidity or 
amount of water in plants. Such information is 
useful for plant stress and plant vigour 
investigations.  
 

7 2.08-2.35 (TM) 
2.09 - 2.35 
(ETM+) 

Mid-
infrared 

This band is sensitive to the turgidity or 
amount of water in plants. Such information is 
useful for plant stress and plant vigour 
investigations.  
 

Landsat 
5 / 7 

8 
0.52 – 0.90 

(ETM+)  
 

Green, red 
and 
reflective 
infrared 

As bands 2, 3 and 4 above. 

IRS Pan 
0.50 - 0.75µm 

Visible 
green-red 

As Landsat bands 2 and 3 above. 
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4.2 Remote Sensing Image Pre-processing  

4.2.1 Radiometric correction 

Atmospheric correction is essential for the current study because of two reasons. First, the study 

uses a relationship between field-based carbon content and Landsat spectral information of 

different time. Although those images are on the same date but different years, atmospheric 

condition might be similar but not the same. Therefore, the relationship established for one time 

frame might mislead the result if it used for the other time unless the digital counts (DC) being 

converted to a common unit. Second reason is that the two images are from different sensors, 

where information is recorded in a very similar but not the same spectral range (table 4.2).  
 

Generally, the objective of a radiometric atmospheric correction procedure is to convert satellite-

generated digital counts (DCs) to ground reflectance (i.e. absolute surface reflectance). How the 

different models parameters are derived depends on the available information (i.e. ground and/or 

atmospheric in-situ measurements). DCs must first be converted to at-satellite radiances by 

removing the offset effects introduced by the imaging system. If the data have been processed to 

remove striping noise by using a statistical technique, these additional gains and offsets must also 

be included in the correction. The equation to convert satellite DCs to at-satellite radiances is 

 

Lsat� = (DC – Offset)/Gain………………………………(4.1) 

 

Alternatively this can also be calculated by the following equation 

 

 

Lsat� = LMIN�  +   X DC�  ……………………(4.2) 

 

Where, 

DC� = Calibrated and quantized scaled radiance in units of DN, digital number for band � 

Lsat� = At satellite spectral radiance for band � 

LMIN� = Spectral radiance at minimum DC (0) for band � 

LMAX� = Spectral radiance at maximum DC (255) for band � 

DCMAX = Range of rescaled radiance in DN = 255 

 

Basically, both the equation is the same only the coefficient factors are different. LMIN� and LMAX� 

values for Landsat ETM+ and TM are enumerated in table 4.3 (Markham and Barker 1986, Irish 

2004). 

DCMAX
LMINLMAX )( �� �
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Table 4.3 Spectral radiance at minimum and maximum DC for Landsat TM and ETM+ images 

 

Landsat 7 (ETM+) Landsat 5 (TM) 

Low gain High gain 

Band (�) 

LMIN� LMAX� LMIN� LMAX� LMIN� LMAX� 

1 -0,15 15,21 -6,2 293,7 -6,2 191,6

2 -0,28 29,66 -6,4 300,9 -6,4 196,5

3 -0,12 20,43 -5,0 234,4 -5,0 152,9

4 -0,15 20,62 -5,1 241,1 -5,1 157,4

5 -0,037 2,719 -1,0 47,57 -1,0 31,06

7 -0,015 1,438 -,35 16,54 -0,35 10,80

8 - - -4,7 243,1 -4,7 158,3

 

It should be noted that the units are different for two Landsat sensors. The units are in milliwatts 

per square centimetre per steradian per micrometer (mW*cm-2*ster-1*�m-1) and watts per square 

meter per steradian per micrometer (W*m-2*ster-1*�m-1) for TM and ETM+ respectively. The values 

are applicable after 15 January 1984 (TIPS-era processing) for TM and 1 July 2000 for ETM+ (high 

gain, obtained from image header). 

 

Next, at-satellite radiance must be converted to surface reflectance by correcting for both solar and 

atmospheric effects. The general model/equation used to do this and presented by Moran et al. 

(1992) is 

 

REF = ………………(4.3) 

 

 

REF = Spectral reflectance of the surface 

Lhaze = Upwelling atmospheric spectral radiance scattered in the direction of and at the sensor 

entrance pupil and within the sensor’s field of view (Wm-2sr-1
�m-1), i.e., the path radiance. 

TAUv = Atmospheric transmittance along the path from the ground surface to the sensor. 

Eo = Solar spectral irradiance on a surface perpendicular to the sun’s rays outside the atmosphere 

(Wm-2�m-1). Eo contains the Earth-sun distance term (d*d) imbedded and is in astronomical units. 

Therefore, mathematically Eo = ESUN� / d2, where, ESUN� for TM/ETM+ scene is presented in 

table 4.4 (Markham and Barker 1986 and Irish 2004). The Earth-sun distance in astronomical unit 

)}*)(*{*
)(*{
EdownTAUzTZCosEoTAUv

LhazeLsatPI
�

� ��
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is a function of time of year and range from about 0,983 to 1,017 and can be calculated by the 

formula 

 

d = ………………………………(4.4) 

 

d can also be obtained from an Ephemeris for the date of image acquisition (for example 

http://ssd.jpl.nasa.gov/cgi-bin/eph where observer range and rate option in the output format should 

be activated). 

TZ = Angle of incidence of the direct solar flux onto the Earth’s surface (solar zenith angle, Thetaz). 

TAUz = Atmospheric transmittance along the path from the sun to the ground surface. 

Edown = Downwelling spectral irradiance at the surface due to the scattered solar flux in the 

atmosphere (Wm-2
�m-1)      

 

Table 4.4 Landsat TM/ETM+ Solar Exoatmospheric Spectral Irradiances 

 

Band (�) Landsat 5 (TM) 

Milliwatts/(cm squared*�m) 

Landsat /(ETM+) 

Watts/(meter squared*�m) 

1 

 

195,700 1969,000

2 

 

182,900 1840,000

3 

 

155,700 1551,000

4 

 

104,700 1044,000

5 

 

21,930 225,700

7 

 

7,452 82,070

8 

 

- 1368,000

 

All the radiometric correction procedures start with this general model (equation 4.3). But make 

different by simplifying assumptions that eliminate certain parameters. The information available 

about the data and atmospheric conditions determines what assumptions must be made and 

)}4(9856,0cos{01674,01
1

�� JD
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therefore, the specific model that is to be used. Often, the method used to derive the required 

parameters can also determine assumptions that must be made (Chavez 1996). 

 

4.2.1.1 DOS model 

Dark object subtraction (DOS) is perhaps the simplest yet most widely used image-based absolute 

atmospheric correction approach for classification and change detection applications (Spanner et 

al. 1990, Ekstrand 1994, Jakubauskas 1996, Huguenin et al. 1997). The basic assumption is that 

within the image some pixels are in complete shadow and their radiances received at the satellite 

are due to the atmospheric scattering (path radiance). This assumption is combined with the fact 

that very few targets on the Earth’s surface are absolutely black, so an assumed one percent 

minimum reflectance is better than zero percent. The article by Chavez (1989) discusses an 

improved method of selecting the dark-object haze values for the separate spectral bands. The 

objective of the improved dark-object method is to select spectral-band haze values that are 

correlated to each other, rather than by using the histograms of each spectral band independently, 

which can cause haze-selection problems when topographic/shadow conditions are minimal. Both 

methods generate haze values that are very similar when sufficient topography exists, as in the 

images used for this study (Chavez 1996). 

 

Besides correcting for the same parameters that the apparent reflectance model does, the image-

based DOS radiometric correction model also corrects for the atmospheric additive scattering 

component attributed to the path radiance. Therefore, in the general radiance-to-reflectance model 

shown in Equation 4.3, the following applies for the DOS model: 

 

TAUz = 1.0 (ignores atmospheric transmittance), 

TAUv = 1.0 (ignores atmospheric transmittance), 

Edown = 0.0 (ignores downwelling), and 

Lhaze = value derived from the digital image using the dark-object criteria. 

 

The main advantages of the DOS model are that it is strictly an image-based procedure and does 

not require in-situ field measurements and that is simple and relatively straightforward to apply. The 

main disadvantages are that for reflectance values greater than about 15 percent the accuracy is 

often not acceptable and that the selection of the haze values must be done with care (Chavez 

1996). 
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4.2.1.2 Improved image-based model (COST model) 

The improvement in this model is to add a correction for multiplicative transmittance effect. The 

equation 4.3 shows that is the error for not including a multiplicative transmittance factor is 

approximately 1/(TAUz * TAUv). The study by Chavez (1996) shows that it incurs an approximate 

overall error of 30 percent. Therefore, a correction for multiplicative transmittance component can 

substantially improve the DOS model results. In that study two different methods were used to 

derive the required TAU values in equation 4.3. Both methods that correct for multiplicative 

transmittance effects are independent of in-situ atmospheric and ground measurements. Field-

independent derived TAU values were used, along with the DOS Lhaze� additive-scattering 

component due to path radiance, in the general radiance-to-reflectance model (equation 4.3) to 

compute surface reflectance. 

 

The first method used to derive TAU values independent of in-situ field measurements. The 

multiplicative transmittance component for scattering and weak absorption is approximated by the 

following equations (Moran et al. 1992): 

 

TAUz = EXP {-del * sec (TZ)}………………………………….(4.5) 

TAUv = EXP {-del * sec (TV)}………………………………….(4.6) 

 

 Where, del = optical thickness at given wavelengths 

            TZ = solar zenith angle (�z) 

            TV = viewing angle, zero degrees for Landsat scenes (�v) 

 

The above equations show that transmittance is a function of the solar zenith angle (TZ) and the 

optical depth (del). For most of the required images, TZ is in the range of 30 to 55 degrees and del 

has a range of 0,08 to 0,30. Therefore, in the EXP {-del * sec(TZ)} function, the variation of sec(TZ) 

is about 2,7 times larger than that for del, which implies that TZ (the solar zenith angle) is the more 

dominant variable. So, a relation that is strictly dependent on TZ to approximate the exponential 

function, to a first order, may be acceptable (i.e. set it equal to the cosine of TZ). 

 

To examine the empirically observed relation between the cosine of solar zenith angle (TZ) and 

EXP(-del * sec (TZ)}, the power series expansion was used. The first four terms of the power series 

are 

 

Cos(TZ) = 1 –TZ2/2! + TZ4/4! – TZ6/6!……………………………..(4.7) 
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EXP{-del * sec(TZ)} = 1 –  del * sec(TZ) + (del2) * {sec(TZ)2}/2! – (del3) * {sec(TZ)3}/3! 

……………….(4.8) 

 

Where, the solar zenith angle TZ is in radians and ! represents factorial. 

 

The average TZ and del values for all the dates used in that study are 0.64 and 0.17 respectively. 

Using these two average values in the power series expansions generates values of 0.8021 for the 

cosine and 0.8087 for the exponential when carried out four terms; if only the first two terms are 

used, the cosine value is 0.7952 and the exponential value is 0.7882 (both are within one percent 

of each other). Therefore, using the cosine of the solar zenith angle for TAUz substantially 

improves the DOS result. In fact, the results are as good as those generated by HBC model. The 

correction using the cosine of the solar zenith angle, cos(TZ) is termed as COST model. 

 

COST model uses the following criteria in the general radiance-to reflectance model in Equation 

4.3: 

 

TAUz = Cos(thetaz)  

TAUv = Cos(thetav) = 1 because thetav is zero degrees for nadir view, 

Edown = 0.0 (ignores downwelling) and 

Lhaze = Values derived from the digital image using the dark-object criteria (identical to the DOS 

model) 

 

The current study assumed the reflectance of a dark object is 1 percent (Chavez 1996, Moran et al. 

1992).  

 

There are several ways to choose an appropriate dark object DN. The following methods were 

used for the current study 

(http://www.gis.usu.edu/docs/projects/swgap/ImageStandardizationFAQ.htm): 

 

a) Landsat images were loaded using ERDAS Imagine software. 

 

b) Image statistics were recalculated with an X and Y skip factor of 1 (ignore value 0 icon was 

activated as well) from ImageInfo Edit menu. 
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c) The histograms were displayed and examined. The DN choice for the Dark Object would 

be the lowest value at the base of the slope of the histogram.  If the slope is gradual (i.e. 

contains very few (< 100 pixels of low DN values) these should be ignored, and the DN 

value chosen where slope of the histogram begins to increase more dramatically.  In the 

figure, an appropriate DN value for the Dark Object would be 31 (figure 4.2). 

  

As in the DOS model, the main advantage of these models are that they are strictly image-based 

procedures and therefore, do not require in-situ field measurements and they are simple and very 

straightforward to apply. Compared to that DOS model, the accuracy generated by the COST 

models substantially improved, and use of RTC software is not required. However, as for the DOS 

model, a disadvantage is that the dark object DN value for Lhaze� must be selected carefully 

(Chavez 1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Selection of appropriate dark object from a Landsat image. In this figure 31 was selected 

as an appropriate DN value for the dark object (Landsat ETM+ 2001, Band 3). 

 

This approach assumes the existence of dark objects (zero or small surface reflectance) 

throughout a Landsat scene and a horizontally homogenous atmosphere. The minimum DN value 

in the histogram from the entire scene is thus attributed to the effect of the atmosphere and is 

subtracted from all the pixels (Chavez 1989) More sophisticated algorithms derive atmospheric 
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optical properties from dark objects in the image, and correct the images with the derived 

information. 

 

4.2.2 Geometric corrections 

Accurate geometric fidelity is particularly important for change detection analysis study and also for 

which incorporates field information. Overlay analysis of post-classification thematic coverage, or 

the simultaneous analysis of multi-spectral data necessitates accurate spatial orientation of the 

input datasets. Because analysis is performed on a pixel-by-pixel basis, any mis-registration 

greater than one pixel will provide an anomalous result for that pixel. To overcome this problem, 

the RMS error between any two dates should not exceed 0.5 pixels. This is typically accomplished 

by performing an image-to-image registration. Usually, one date is selected for absolute 

registration to ground coordinates, followed by the image-to-image registration to the geo-coded 

image. In locations with a high degree o topographic relief, the employment of a digital elevation 

model (DEM) data may be required to achieve the necessary degree of geometric agreement 

(Lunetta 1999). For the second case field plots usually use GPS to identify its location. If the 

geometric location of the image pixel is not accurate it will create mis-match of the field plot and it 

will create bias result during the incorporation of field information on remote sensing image. 

 

The accurate geometric registration is very important for the current study. The geometrically 

corrected recent image (Landsat ETM+) was acquired form USGS. However, a linear shipment 

was discovered during the field mission and therefore the image was shifted accordingly. Lambert 

Conformal Conic (LCC) (detailed parameters on Appendix II) is used as projection. Image to image 

registration was done using standard method to geo-code all the remaining images. Nearest 

neighbour method was used for re-sampling using ERDAS Imagine software to the images to keep 

the original spectral value as close as possible to the raw image.  

 

The study area consists of small hills. But topographic normalization was not possible to apply due 

to the unavailability of digital elevation model. The accuracy of geo-coding was checked using a 

portable GPS from the known location of the geodetic points of Survey General of Bangladesh. The 

result is presented in Appendix III. 
 

4.3 Development of Visual Interpretation Key 

A computer-aided unsupervised classification scheme was applied to the Landsat ETM+ image. 

Simultaneously a variety of image channels were displayed on computer-screen and tried to find an 

optimal combination where a variety of vegetation classes were distinguishable. Additionally a 
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correlation matrix of different spectral bands for the sample pixels was calculated to ease the band 

selection process. Interpretation could delineate eight different vegetation classes. All variety of 

vegetation classes was reached during 2002-2003 for field investigation. The location was 

identified by a portable GPS. A detailed description of vegetation was recorded and a panoramic 

camera photo was taken for each of the field-plots. A total number of seventy sample plots were 

collected. The surface reflectance value of the Landsat ETM+ image corresponding to the field 

samples was separated. The values were further categorized for different vegetation types and 

presented in the results. The interpretation key was generated from the experience of image 

characteristics of each vegetation class and corresponding vegetation types in the field. 

 

4.4 Pre-stratification of Landsat ETM+ Image by Supervised Classification 

A number of training areas were selected for classification using image signature editor menu of 

Erdas Imagine. Care was taken to select only the homogeneous class as the training sets. Training 

areas were distributed throughout the class to ensure the adequate representation of all those 

classes. Approximately 1000 pixels were chosen form each forest class. Region growing properties 

tool of signature editor was used expand the training pixels in some cases. Feature space image 

having two-dimensional scattergram of various band combinations of Landsat channels was 

sometimes useful to separate some classes.  
 

4.5 Field Sampling: 

4.5.1 Location of sample plot 

All the field sample plots were located by using a portable GPS. The plot was distributed among 

various strata. Care was taken to locate the plots (i) in relatively homogenous area so that the error 

originated from the location uncertainty can be minimized and (ii) in the area which did not change 

during the last decade so that error generates from the estimation of carbon of historical image 

would be minimum. Local forestry officials helped to collect the field samples. A number of 

90mX90m plots (known as primary sampling unit) corresponding to the 3X3 sample pixel window of 

remote sensing image was located on the field. A handheld GPS (Garmin GPS 12, further 

information:http://www.garmin.com/products/gps12/spec.html) provides 15 m real-time accuracy in 

the field; therefore it provides a satisfactory precision. The study area consists of a mixed forest 

with a variable density. In few cases GPS signal was hindered by the dense canopy and adjacent 

hills. Then GPS signal was recorded at the adjacent area and the location of the plot was estimated 

by geodetic techniques. As 90mX90m plot in the ground is large and in a relatively homogenous 



 91

ground a sub-sampling (known as two-stage sampling) would be economic. Figure 4.3 and table 

4.5 represent the distribution of the field sample plots. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Location of field sample plots among different strata in the study area. 
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Table 4.5 Distribution of field samples among various vegetation classes 
 
 

Phase I 
 

Phase II 

Field sampling 
 

Nr. Landsat image class Total 
area in 
image 
(ha) 

Plot size (ha) Number of 
plots 

Area 
sampled 

Sampling 
intensity 

(%) 

1 Primary forest 
 

3 950 0,09 12 1,08 0,0273

2 Secondary forest 
 

1 032 0,01 7 0,07 0,0068

3 Bamboo 
 

2 565 0,0025 7 0,0175 0,0007

4 Shrub 
 

3 023 0,0025 7 0,0175 0,0006

5 Plantation of indigenous 
species 
 

2 555 0,01
0,0225 

9
5

0,2025 0,0079

6 Teak plantation 
 

3 745 0,01
0,0225

6
3

0,1275 0,0034

7 Acacia 
 

342 0,01 6 0,06 0,0175

8 Rubber plantation 
 

3 006 0,01 8 0,08 0,0027

9 Non-forest 
 

11 035 - 0 - -

 Total 
 

31 255 70  

 

4.5.2 Sample size calculation 

The finite population sample size (approximate 95% confidence level) (Shiver & Borders 1996): 
 
 

n = 

SN
BN

W

SN

yh
L

h
h

M

L

h h

yhh

2

1

22
1

22

4
��

�

�

� ……………………………………….4.8 

 
where, 
 

n= estimated sample size 

N= number of sampling units in population = �
�

L

h
hN

1
 

 
Nh = number of sampling units in stratum h 
 
L= number of strata into which population is divided 
 
S2

yh  = sample variance among sampling units within stratum h 
 
BM = desired bound on the overall population mean per sampling unit (for this study 5%) 
 
Wh = proportion of sample size allocation to stratum h (0<Wh<1) 
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Table 4.6 represents the statistics of the collected sample plots. 
 

 
Table 4.6 Mean and variance of different strata 

 
Serial 

no. 
Forest type Mean 

carbon 
content 
(ton/ha) 

 

Variance 

1 Primary forest 
 
 

134,37 2722,24

2 Secondary 
forest 
 
 

86,84 261,90

3 Bamboo 
 
 

62,70 231,32

4 Shrub 
 
 

0,87 0,20

5 Plantation of 
indigenous 
species 
 

83,73 2927,24

6 Teak 
 
 

60,81 680,86

7 Acacia 
 
 

30,62 49,58

8 Rubber 
 
 

30,95 524,16

 
 
The numerator of the equation 1 = 8649191.35 
 
The denominator of the equation 1 = 102216.73 
 
The required sample size= 85 
 
If we would like to make proportional allocation each stratum requires 85 X 0.125=10.6 or 11 
sample plots. 
 

The number of sub-sample plots within each primary sampling unit was arbitrarily selected; one 

secondary plot within one primary sampling unit. The number of primary sample plots within each 

stratum can be determined by the following formula (Harding and Scott 1978): 

 

Sample size n = ………………………………………(4.9) 

 

Where AE is the maximum allowable error specified for this study as a percent of the mean and t is 

the weighting factor from student t distribution and accounts for the probability of achieving the 

specified level of accuracy with a given sample size. CV is the coefficient of variation, which is a 

AE
cvt

2

22 )(
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measure of variability within a population. First a number of plots should be measured within each 

stratum to calculate CV. Then required number of sample plots can be calculated by using the 

above formula. 
 

4.5.3 Sub-sampling plot size 

Usually, plot sizes for forest sampling (in this study those plots are termed as secondary sample 

unit) are often chosen on the basis of experience (Avery and Burkhart 1994) for particular forest 

type or region. The plot size represented in table 4.7 is common for sampling in Chittagong forest, 

Bangladesh. The two-sage sampling is presented in figure 4.4.  

 

Table 4.7 Plot size for two-stage sampling in the second phase of sampling strategy 

 

Stage I Stage II 

Plot size: 90mX90m 

(corresponds to 3X3 pixel window of Landsat 

image) 

Primary forest: 30mX30m 

Old plantation: 15mX15m 

Young plantation or 

Secondary forest: 10mX10m 

Bamboo: 5mX5m 

Shrubs: 5mX5m 
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Figure 4.4 Representation of two-stages sampling for various vegetation types 

 

Therefore, the current study aims to use the above sized sample plots. The efficient plot size can 

also be calculated by optimisation process. Where the coefficient of variation has been determined 

for plots of a given size, the coefficient of variation for different-sized plots may be approximately 

calculated by the following formula (Freese 1962): 

 

(cv2)2 = (cv1)2 
2
1
P
P

………………………………….(4.10) 

 

Where, cv2 = estimated coefficient of variation for new plot size 

           cv1 = known coefficient of variation for plots of previous size 

            P1 = previous plot size 

            P2 = new plot size 
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The optimisation process to determine a plot size is described by Zeide (1980). However, this will 

increase the research cost. It should be noted that if we increase the plot size, the required number 

of sample to meet a desired precision level would decrease.  

 

4.5.4 Field measurement of sub-sample plots 

All trees with a diameter at breast height (dbh) exceeding 5 cm inside the plot were measured. 

Under-storey vegetation consisting of small trees with less than 5 cm dbh, shrubs, herbs and 

grasses was sampled from one 2mx2m sub-sample plot located at the centre of the sample plot to 

determine the under-storey biomass. Available allometric relation was used to convert dbh and 

height to volume for those species where available. In case of the unavailability of the relationship 

for a particular species one equation for mixed species was applied. For shrubs, bole volume was 

calculated using a formula for cone and then a particular ratio was added to include the branches 

and biomass volume. 

 

4.5.5 Estimation of plot biomass 

4.5.5.1 Measurement of tree diameter and height 

Diameter is commonly measured in forestry. Again, because tree boles are not circular, different 

measurements of diameter are possible. Diameter at breast height (dbh) is probably the most 

common measurement made on a standing tree as this exhibits better correlation with volume and 

biomass as well as provides efficiency in measurement. Direct measurement of diameter is 

commonly done by measuring two different axes: the diameter of the maximum and minimum axis 

of the bole on trees that are clearly elliptical or the diameter of the maximum axis and the axis at 90 

degrees or the diameter of any two axes at 90 degrees to each other. The two diameter 

measurements are averaged using an arithmetic mean (most common) or a geometric mean (for 

highly elliptical boles). The measurement of diameter on one axis is often acceptable when the 

data is only being used to group trees into a stand table (Anon 2002). However, such problem of 

measurement can be minimized by using a diameter tape and hence this was used for the current 

study. 

 

4.5.5.2 Conversion of dbh and height to biomass by allometric relationship 

Plot biomass was calculated from measured dbh and height by using the allometric relationships 

developed by Bangladesh Forest Research Institute (BFRI) (detail in Appendix V). Volume will be 

converted to biomass by using appropriate conversion factors (Appendix VI). When the factor for a 
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particular species is not available a mean value was calculated from the other species and applied. 

Bole biomass was converted to the total tree biomass by adding 0.65 of stem as followed by FAO 

(1997) when those are not available. It would be assumed that the carbon fraction for the 

aboveground biomass is 0.5. Multiplication of carbon fraction with stand biomass generates the 

aboveground carbon stocks of each plot. The list of the species found during field sampling is 

enlisted in Appendix VII. Data collected by field sampling is presented in Appendix VIII. 

 

4.6 Estimation of Carbon Pool 

4.6.1 Stratification 

Supervised classification was used to stratify the forest. Eight classes were separable on a remote 

sensing image (table 4.6). Details of all the classes have already been described. A number of 

variables have been selected for post-stratification. At first all the individual bands were selected for 

stratification. Image enhancement and transformation based on Vegetation Indices, Tasselled Cap 

and Principal Component Analysis were also used as a basis of stratification. In all the cases the 

plots were categorized into five groups according to the above-mentioned criteria. Variances 
�

V  

were calculated in each cases and the best method were selected based on the minimum variance. 
 
 

4.6.2 Regression estimator 

Regression was calculated by SPSS software.  A backward selection method was applied to select 

the best method. Backward elimination begins with all regressors and eliminates one at a time. The 

first removal is the regressor, which results in the smallest decrease in R2 (thus the smallest partial 

F-statistic). The procedure is continued until the candidate regressor for removal experiences a 

partial F values which exceeds the pre-selected Fout.. 
 
 

The forms of linear and non-linear equations examined in the current study are enumerated in table 

4.8. 
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Table 4.8 Various forms of regression equations 
 

Keyword 
 

Equation Linear equation 

Linear 

 

Y = b0 + b1X  

Logarithmic 

 

Y = b0 + b1ln(X)  

Inverse 

 

Y = b0 + b1/X  

Quadric 

 

Y = b0 + b1X + b2X2 b3X3  

Cubic 

 

Y = b0 + b1X + b2X2 + b3X3  

Compound 

 

Y = b0b1X ln(Y) = ln(b0) + Xln(b1) 

Power 

 

Y = b0(Xb1) ln (Y) + ln(b0) +b1ln(X) 

S 

 

Y = eb0+b1/X ln(Y) = b0 + b1/X 

Growth 

 

Y = eb0+b1X ln(Y) = b0 + b1X 

Exponential 

 

Y = b0(eb1X) ln(Y) = ln(b0) + b1X 

Logistic 

 

Y = (1/u + b0b1
X)-1 ln(1/Y – 1/u) = ln(b0) + Xln(b1) 

 

Where, 

Y = Carbon (ton/ha) 

b0 = a constant 

bn = regression coefficient 

X = independent variable (spectral reflectance at specific band) 

ln = the natural log base 

e = base e logs 

u = upper bound value for logistic 

 

The current study applied the concept of dummy variables to estimate the carbon from remote 

sensing image. The variables considered in the study come from the result of stratification. The 

coefficients of dummy variables for different strata are presented in table 4.9. 
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Table 4.9 Use of dummy variables (dummy variables generated from the result of stratification) 
 

Group 

 

Z1 Z2 Z3 Z4 Z5 Z6 Z7 

Acacia 

 

1 1 1 1 1 1 1 

Bamboo 

 

0 1 1 1 1 1 1 

Plantation of 

indigenous species 

0 0 1 1 1 1 1 

Primary forest 

 

0 0 0 1 1 1 1 

Rubber 

 

0 0 0 0 1 1 1 

Shrubs 

 

0 0 0 0 0 1 1 

Teak 

 

0 0 0 0 0 0 1 

Secondary forest 

 

0 0 0 0 0 0 0 

 

4.6.3 Knn method 

4.6.3.1 Distance metric 

Distances between neighbours were computed using the Euclidean distance metric. The general 

expression for the distance between pixel p (to be classified) and pixel pi, for which the ground data 

is known, is as follows: 

 

dp(pi) = �

�

�
nf

j
x jpix jp

1
)2),(( , …………………………………………….(4.11) 

 

Where xp,j = digital number for the feature j, nf = number of feature in the spectral space 

 

 

 



 100

4.6.3.2 Neighbour’s weighting function 

In order to investigate the relative importance of the neighbours in constructing estimators, the 

weight of the pixel pi in estimating a variable on pixel p was computed using three different 

weighting functions: (a) equal, (b) inversely proportional to the distance and (c) inversely 

proportional to the square of the distance. These weights are obtained from Equation (1) by 

choosing t = 0, 1 or 2 respectively. 

 

For carbon estimation, once the distances among neighbours and their weights in the estimation 

were calculated, the knn method estimator was applied to each pixel. The estimator of the variable 

m for the pixel p is then obtained from Equation 2.20. 

 

4.6.3.3 Feature weighting parameters 

Not all the features in the feature space share the same influence in the prediction of a forest 

variable for a given pixel. Assuming that there exists a linear combination of features that can 

provide the best result, additional weights were computed and applied to the original features. This 

weighting parameter was developed by Nelder and Mead (1965), adapting the amoeba ‘recipe’ 

from Press, Teukolsky, Vetterling, and Flannery (1994) to cross-validation problem. The resulting 

expanded form of Eq 4.11 is: 

 

 

Dp(pi) = � �
�

nf

j
jpijp

xxa j
1

2
),(,

)(2 ………………………………………………(4.12) 

 

 

Where aj = weighting parameter for feature j.  

 

4.6.3.4 Estimation procedure 

The knn software developed by Department of Forest Resources, University of Minnesota 

(Haapanen and Ek 2001) was used in this study. The programs are coded in a DOS-environment 

so that they can be compiled Unix, Linux or Windows. They are written for the most part in C, but 

utilize some features of C++. 
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The following parameters were used to compute carbon content of 2001 using Landsat ETM+ and 

filed sampling plots: 

 

Used in calculation: only satellite image 
Number of satellite image: 1 

Use coefficients: no coefficient 

Number of bands: 6 

Number of plots: 70 

Number of neighbours used in the estimation: 1 

Weight function used: equal weight 

Most variable band: band 4 

Search radius for uplands and lowlands in meters: no limit. 

 

4.6.4 Selection of the best method 

4.6.4.1 Prediction error estimation 

After obtained an independent estimate based on the above all methods for each one of the pixels 

in the training set, the results were evaluated using prediction error, which measures how well a 

model predicts the response value of a future observation.  

 

For every trial, the accuracy of our estimates of carbon was examined using the root mean squared 

error (RMSE) (omitting the sampling error term, variance) 
 

RMSE = � �
�

�n

i
ij nyy

1

2 /)( ………………………………………….(4.13) 

 

Where yi is the variable of the interest on the ith observation and yi is the predicted value from 

applying the entire above prediction rule. However, estimating the true prediction error of a model 

using the same data used to fit it tends to be too ‘optimistic,’ since the model is fine-tuned to that 

data. In other words, the test sample is the same as the training sample and the estimator tends to 

be downwardly biased. Estimates of prediction error obtained in this were aptly called apparent 

error estimates (Efron and Tibshirani 1993).  
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4.6.4.2 Bias calculation 

Bias is the absolute difference of the observed and predicted value. Mean and standard error of 

bias can be calculated by the following formulas: 
 

�

e = � �
�

�n

i
ij nyy

1
/)( ………………………………………………(4.14) 

 

 

s(
n
ese )() �

�

…………………………………………….(4.15) 

 

Where, s(e) is the standard deviation of errors yyi i�

�

and also the variance component of RMSE, 

which does not include the possible bias. 

 

The quantity )(es
�

can be used for testing whether the bias deviates significantly from zero. 

Deviations greater than 2 )(es
�

 from the field plot based estimate of mean are here considered to 

be statistically significant. 
 

4.7 Estimation of Carbon Release  

An overlay analysis of the geographic carbon databases (recent and historical) provides a spatio-

temporal estimate of the amount of carbon release from the ecosystem during the synoptic time 

interval. The total amount of carbon release due to changes in forest cover classes is calculated by 

using the co-occurrence of the carbon classes. A number of carbon release classes representing a 

certain quantity of carbon loss from the historical to recent time, can be defined on the 

superimposed databases. The sum of the individual carbon release classes multiplied by the 

extension (area) allows for the estimation of total carbon release during the synoptic study period. 

The study used the following equations: 

 

i) Initial carbon stock 

 

 

………………………………….(4.16)  

 

 

ii) Final carbon stock 

��
�

n

i
iiiI ACC

1
*
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…………………………………(4.17) 

 

 

 

 

iii) Net carbon release 

 

 

………………………(4.18) 

 

                                                            When (Cff > Cii) 

 

 

iv) Net carbon sequestration 

 

 

………………………(4.19) 

 

When (Cii > Cff) 

 

 

Where, A is area in ha, CI and CF are the total initial and final carbon stock in ton respectively, Cii 

and Cfi are the initial and final carbon stocks of individual polygons representing a unique carbon 

class i (i = 1,2,3….n) in ton/ha respectively; CR is the net carbon release and CS is the net carbon 

sequestration between the synoptic study year. 

 

��
�

n
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1
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�
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i
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1
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Chapter V 

5 Results 

5.1 Atmospheric Correction 

The digital numbers (DNs) of satellite image has been converted to surface reflectance by the 

calculation process (section 4.2.1). The details of calculation of calibration and radiometric 

correction of Landsat images are presented in Appendix I. An example of one correction of Landsat 

ETM+ image scene (selected subset) is shown in figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Results of radiometric correction of Landsat ETM+ 2001 image using COST method:  

(a) not corrected (b) corrected image 
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Figure 5.1 shows that the atmospheric haze in the image before correction is reduced by the 

radiometric correction process. This is visually detectable in all different features of the image 

especially concerning sediments in water, vegetation and bare ground. The essential part of the 

correction (i.e. the conversion of digital number to surface reflectance) cannot be visualized.  

 

5.2 Interpretation of Vegetation 

5.2.1 Selection of optimal band combination 

The correlation matrix of the spectral bands contains useful information about the redundancy of 

information and selection of optimal band combination for interpretation purpose. If the bands show 

strong correlation (value near to 1.000) this indicates that the bands usually contain similar 

information to each other. When those bands are visualized, the minimum separibilty among 

different feature would be noticed. The correlation matrix of spectral values of six bands of the 

selected seventy plots can be represented as:. 

 

 

Bands 

 

1 2 3 4 5 7 

1 

 

2 

 

3 

 

4 

 

5 

 

7 

 

1.000

 

0.861

 

0.856

 

0.070

 

0.609

 

0.660

 

 

1.000

 

0.942

 

0.175

 

0.809

 

0.832

 

 

 

 

1.000

 

0.012

 

0.847

 

0.898

 

 

 

 

 

 

1.000

 

0.210

 

0.096

 

 

 

 

 

 

 

 

1.000

 

0.978

 

 

 

 

 

 

 

 

 

 

1.000

 

 

From the above table it can be noticed that the correlation is very high within the visible (band 1-3) 

and mid-infrared bands (band 5-7). It means that there is a high redundancy of information within 

those bands in the vegetated areas. So it makes more sense to select the bands, which contain 
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minimum redundancy. Therefore, only one band from each of the above categories i.e. visible, near 

infrared and mid-infrared, can be selected for getting the best separibilty of different kinds of 

vegetation using Landsat ETM+ image. As it is common to use band 3 from the visible bands and 5 

from the mid-infrared bands the current study has also decided to do so. Therefore, bands 3, 4 and 

5 were finally selected for the interpretation purpose. 

 

5.2.2 Interpretation of tropical vegetation 

Band 1, 2 and 3 of Landsat ETM+ represent the visible light of blue-green, green and red 

reflectance respectively. The reflectance of vegetation in the visible spectrum dominates due to the 

presence of leaf pigments. Shrubs usually contain a lower amount of biomass, which has higher 

reflectance in the three visible channels. In contrast, bamboo, which is a monocotyledon, appears 

with a high spectral absorption in this region. Vegetation, which contains a huge amount of green 

leaves and biomass (i.e. bamboo, natural forest, Acacia plantation etc.) usually shows greater 

absorption in the visible green and red spectral region. On the other hand, vegetation that has 

fewer amounts of those components (i.e. shrub, rubber) exhibits relatively higher reflectance in that 

spectral region. It should be noted that vegetation containing a little amount of green biomass might 

have included some of the reflectance from underneath soil. It is interesting to note that the 

reflectance in visible-red is higher than the green region for vegetation containing little amount of 

biomass, however, the relationship is opposite for those vegetation layers containing huge amounts 

of biomass, because red light is largely absorbed by chloroplasts and used in photosynthesis. 

Therefore, it can be concluded that the first derivative of visible-red to green reflectance might 

contain some useful information on the green biomass content of tropical broad-leave vegetation. 

As band 3 provides the highest variability among the visible channels and hence it makes sense to 

use this channel for interpretation of vegetation (Figure 5.2). 
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Figure 5.2 Comparison of spectral reflectance for different vegetation types  

 

Band 4 corresponds to the reflectance of near infrared region, which is very high for vegetation and 

therefore it is widely used to separate vegetation from other types of landuse. Usually reflectance in 

this band is transparent to chloroplasts, but highly reflected by spongy mesophyl. Young secondary 

forest shows the highest reflectance in this region and teak/scattered trees have the lowest. Mature 

natural forest shows relative lower reflectance than the young secondary forest. Though mature 

forests have the similar species composition as the young secondary forests, the difference might 

be the result of the difference of the structure of mesophyl tissue. The mesophyl tissue in the 

leaves of young vegetation creates stronger reflectance than the mature vegetation. In addition, 

presence of more shadows on mature forest canopy might have some influence on it. As band 4 

shows a high variability among different vegetation classes it would be useful to use this band for 

vegetation interpretation. 

 

Band 5 corresponds to the shortwave-infrared region, which is quite sensitive to the amount of 

water present in plant leaves. Rubber plantation and shrub vegetation class shows a high 

reflectance in this spectral region. This is because of either presence of little amount of water on 

plant leaves in these classes or the reflectance was dominated by the soil-background. Acacia 

plantation exhibits the lowest reflectance. This vegetation does not contain any true-leaf. Leaves 

usually shed at the seedling stage and the phyllod become swollen and act the function of leaf. 

Probably those modified phyllods contain a large amount of water than the leaves of other 

vegetations of the study area. This spectral region shows a high variability of reflectance within 

various classes of vegetation. It means that the band could be quite suitable for separation of 

different types of vegetation on a satellite image. All the spectral lines in figure 5.2 have crossed 
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each other in between the region of near-infrared and mid-infrared. Consequently, the first 

derivative of bands 5 to 4 might contain valuable information for vegetation class separation in the 

tropics. 

 

Band 7 also contains the information of shortwave-infrared channel, which is also an indicator of 

the presence of water in plant leaves.  However, all the lines in figure 5.2 from the band 5 to 7 

remain almost parallel among each other. So, band 7 contains only the redundant information of 

band 5 for interpretation of vegetation. Hence, if band 5 is already used in rgb visualization further 

use of 7 will not improve the interpretation capability. 

  

From the above discussion it can be concluded that the use of bands 3, 4 and 5 could be optimal 

for interpretation of vegetation as we can only use maximum three channels as the basic colour 

combinations. The next question arise which band should be used in which combination. If 5 4 3 

bands are assigned to red, green and blue the vegetated area will appear as green. If 4 5 3 

combination is used the vegetation will be red. As human eye can distinct red better than green the 

latter combination could separate vegetation classes in a better way. However, working 

continuously with red on computer screen is a stressful for eye, the other combination is 

recommended for certain time. 

  

5.2.3 Separation of individual class 

As figure 5.2 shows only the mean value of reflectance, further graphs were developed to show the 

variability of reflectance in each class (Figure 5.3). In this figure, high-low graph represents the 

mean value at the centre with a plus and minus of 95% confidence limit, which means that a 

chance at this probability level the mean value of reflectance lies within this threshold. 
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Figure 5.3 Spectral reflectance for different vegetation types. Vertical lines show mean values with 

95% confidence limit (contd.) 
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Figure 5.3 Spectral reflectance values for different vegetation types. Vertical lines show mean 

values with 95% confidence limit  
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The reflection in the visible region occurs due to the presence of plant pigments (i.e. chlorophyll). 

The reflections in this region for different vegetation types show a distinct pattern (Figure 5.3). 

From the figure, it can be concluded that the visible red reflectance (band 3) has a relative better 

separability than other spectral bands. 

 

In the visible red-reflectance shrub, rubber and teak are identically different than primary and 

secondary forest, bamboo and acacia. Differentiation between primary and secondary forests using 

only the reflectance in the visible bands is not possible. However, image texture might help to 

separate primary from secondary forests. Secondary forests usually have a smooth texture than 

the primary one. The class shrub and rubber has quite similar and high reflectance. The reflectance 

of teak just follows them partly. Shrub is usually having a relatively thin layer of canopy than the 

other vegetation types and sometimes mixed with background soil reflectance. Though the canopy 

of rubber is quite different than the shrub, during the time of image acquisition rubber canopy was 

quite leafless, and therefore the understorey shrub layers dominated the reflection. Consequently 

the reflection is not identically different from the scrubby vegetation. Furthermore, teak has bigger 

leaves, which usually are not dense enough to hide the understorey. This plantation strongly 

discourages the growth of understorey vegetation and therefore, the reflection perhaps was a 

mixture of upper canopy leaves which are intermixed with background soil reflectance. This 

assumption is likely being true for the scattered trees, which are also not differentiable form teak 

plantation using Landsat ETM+ image. 

 

The reflectance of primary and secondary forests, bamboo and acacia are identically lower than 

the above vegetation types in the visible red reflectance. All these vegetations are having a thick 

layer of canopy and are often multi-storeyed. Plantations with indigenous species are having 

reflectance in between these two categories. Those plantations are often not having thick multi-

storeyed canopy due to the previous weeding and thinning operation. 

 

However, the applicability of the visible blue-green and green (band 1 and 2) cannot be ignored for 

particular cases. For example, the reflectance from shrub and rubber is not identically different in 

the visible red reflectance but they are in the visible blue-green and green reflectance. 

 

The reflection in the near infrared region is dominated by the interface of hydrated cell walls and 

intercellular spaces are different for various vegetation types. The reflection of primary forests and 

teak is identically lower than shrubs, secondary forests and indigenous plantation in this spectral 

region. The reflection of the rest category lies in between these two types of vegetation. It is 

interesting to note that the reflectance from the primary and young secondary forest is different 
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though they are having the similar species composition in their top-canopy. This difference might 

be associated with the difference of age. So it can be concluded that the spectral reflectance due to 

the internal leaf structure varies with age, and young vegetation has a higher reflectance than the 

mature one in this spectral region though shadow might have an additional influence on it. 

 
The reflectance in the mid-infrared region is dominated by the absorption of energy by liquid water 

on plant leaves. The reflectance pattern from different categories of vegetation is similar for two of 

the bands at mid-infrared region (Figure 5.3). Acacia plantation shows a high absorption in this 

region. This is followed by the class of primary and secondary forests, bamboo, indigenous and 

teak plantation. It is observed that the reflection from shrub and rubber is significantly higher than 

the other classes. This phenomenon has also been noticed in the visible red spectral region. 
 

5.2.4 Selective interpretation key 

The above result can be summarized and presented in table 5.1 for interpretation purpose. To ease 

the interpretation, the Landsat image and its corresponding field photos have also been included 

(Figure 5.4 and Figure 5.5). 
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Table 5.1 Description of vegetation type and their appearance on a Landsat image (4�red, 5 � green and 3 
� blue) 

 
Vegetation 
type 
 

Vegetation characteristic Interpretation remark 

Primary 
(tropical wet 
evergreen and 
semi-
evergreen) 
forests 

�� Multi-storeyed forests with a number of 
matured trees in the upper canopy; shrubs 
and sometimes bamboo in lower canopy 

�� In some areas a gregarious occurrence of 
Dipterocarpus species is noticed 

�� Dark brown with sometimes reddish 
brown spots 

�� Rough texture 
�� Irregular boundary 

Secondary 
(young) 
forests 

�� Mixture of a number of species at pole-stage 
�� Cleared several years ago and left undisturbed

�� Red to reddish brown 
�� Smoother texture than the mature 

forests 
Mixed 
vegetation 
dominated by 
bamboo 

�� Dominated by bamboo (Muli: Melocanna 
baccifera, Mitinga: Bambusa tulda) with 
sometimes scattered trees in the upper 
canopy 

�� Assoication varies with local topography, top 
and mid slope covered by small-sized 
bamboo (Muli) whereas foothill and valleys by 
larger bamboos (Mitinga) 

�� Some bamboo plots are subject to extreme 
human interference  

�� Yellow and yellowish brown 
�� Texture varies with region 
�� Difficult to distinguish from natural 

forests when bamboo is intermixed 

Shrubs �� Shrubs intermixed with seedling and sapling of 
natural vegetation, bamboo and grasses 

�� Formerly covered by natural forests, repeated 
disturbance resulted scrubby or bush type 
vegetation 

�� Light yellow with green, smooth 
texture  

�� If canopy is closed appears light 
yellow but in case of exposed soil it 
appears green 

�� Located nearby the habitation  
Acacia 
plantation 

�� Plantation with Acacia auriculformis and A. 
mangium 

�� Excellent growth was noticed  

�� Dark red with smooth texture, dark 
tone is sometimes identical 

�� Identification between two species is 
not possible without ground 
information 

�� Usually follows a regular boundary 
Mixed 
plantation of 
indigenous 
species 

�� A variety of indigenous species: Dipterocarpus 
turbinatus, Sysygium grande, Artorcarpus 
Chaplasha, Gmelina arborea, Chikrassia 
tabularis etc. 

�� Reddish brown, smooth texture, 
regular boundary 

Scattered 
trees, teak 
plantation, 
teak coppice 

�� This class has a large variability, all the 
mentioned class appears as the same 
spectral response on a Landsat image 

�� Teak coppice appears if teak plantations were 
removed 

�� Scattered trees appear due to the extreme 
human interference on natural forests 

�� Green with dark brown spots. Those 
spots might appear due to scattered 
remaining of natural vegetation inside 
this class 

�� Teak trees have large leaves with no 
undergrowth, scattered trees with 
scrubby surrounding appears as 
same.  

�� No difference can be made with teak 
plantation or coppice 

Rubber 
plantation 

�� Introduced before one-two decades for the 
production of rubber 

�� The spacing is variable 
�� Rubber tree sheds leaves during winter. 

Beginning of January the leaves turn to pale; 
by the end of the month trees are complete 
leafless 

�� Green on Landsat image. This tone 
appears from bare soil because trees 
were leafless during the time of 
image acquisition 
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One additional IRS-pan dataset of 1999 was used to get a better interpretation.  IRS-pan data was 

integrated with the Landsat ETM+ image by using rgb-his-rgb and Brovey transformation. Result of 

such a transformation is presented in Figure 5.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Improving interpretations using multi-sensor image fusion 

 

The above figure shows that the transformations have significantly improved the interpretation 

capability of certain land cover and landuse classes. Settlements can be easily separated. The 

difference of the density of forest biomass can be easily detected on the fused image, which is not 

possible on Landsat ETM+ multispectral image. 

 

The above result can be used for better interpretation of vegetation classes, which would be later 

used for making an optimal stratification. The success of stratified sampling also depends on how 

well the stratification is done.  
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5.3 Estimation of Recent Carbon Pool  

5.3.1 Using forest stratification 

The objective of any stratification is to reduce variance within a stratum, whereas increase variance 

between or among strata. The more variance among the strata can be reduced the more gain from 

stratification can be achieved. The current study used double sampling for stratification technique 

to examine the optimal information or technique from the phase I (satellite image), which could 

reduce the variance among strata in phase II (field samples). Phase one used six Landsat ETM+ 

optical bands with a number of transformations that are widely applied in remote sensing and 

phase two used seventy sample plots. 

 

5.3.1.1 Pre-stratification using terrestrial information 

The study identified eight different vegetation types on Landsat ETM+ image. Preliminary field visit 

prior to field sampling confirmed the individual classes. It was noticed that most of the classes are 

identical. However some classes on satellite imagery are a mixture of two or three types of 

vegetation. Further separation from Landsat ETM+ image was not possible. For example, teak 

plantation, teak coppice re-growth and scattered trees are having similar spectral reflectance. Field 

sampling was carried out in teak and teak coppice. Scattered trees were omitted and this could add 

some sampling error in the analysis. A similar situation also occurred for indigenous plantations. 

Those plantations were raised using a variety of species. Further separation of individual species 

was not possible using ETM+ imagery. Plantations at the very early stage could be separated. But 

after canopy closure (age depends on species, site quality, intermediate operation, for example 

weeding or thinning etc.) it could not be further separated. This might incur a large standard 

deviation in this class. Similar observation was also noticed for the mature natural vegetation. 

These forests are multistoried and often consist of valuable trees at the upper storey with a high 

amount of biomass. But during the retrogression process due to human interference those trees 

are often removed from the top layer leaving the mid or lower canopy open. This vegetation could 

not be separated from the mature well-stocked forest based on Landsat ETM+ image. This often 

led to a high standard deviation in this class. Table 5.2 presents the variance within each stratum 

and the average variance from the stratification based on forest types.  
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Table 5.2. Pre-stratification using vegetation types as domains of comparison 

 
Strata no 

 
Forest type Variance (S2) V  

1 

 

Mature primary forest 

 

2722,24

2 

 

Young secondary forest 261,90

3 

 

Bamboo 

 

231,32

4 

 

Shrub 

 

0,20

5 

 

Plantation with 

indigenous species 

2927,24

6 

 

Teak 

 

680,86

7 

 

Acacia 

 

49,58

8 

 

Rubber 

 

524,16

163,97

 

The overall variance using one phase sampling was 2763. In contrast, two-phase strategy (from 

the above table) could certainly minimize variance in most of the classes than the one phase 

sampling strategy. Two classes, mature primary forest and plantation with indigenous species have 

a large variance, which is close to the one-phase sample variance. The class, shrub has an 

extreme low variance. This is not because of the class is extremely homogenous but because of 

the numeric value of the sample statistics. Shrubs contain a very little amount of biomass and 

consequently the value is very low in comparison with the other classes.   

 

5.3.1.2 Post-stratification without terrestrial information 

A number of stratification rules were tested to find out the best result after collecting the field 

samples. These post-stratification did not use any terrestrial field-based information, rather it was 

solely dependent on the phase I remote sensing image. The current study not only used the 

individual optical band information for strata construction but also a number of other 

transformations, for example normalized difference vegetation indices, tasselled cap 

transformation, principal component analysis etc., all widely used in remote sensing. The number 

of strata should be in between 5 and 10 (Cochran 1977). Because of the low number of terrestrial 

field sample plots the current study used 5 strata. Equal allocation was used to allocate field 

sample plots in each stratum. In this case the number of plot was 14 per stratum.  
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Individual band information is the most basic form of obtainable information from satellite imagery. 

Some of the bands contain redundant information and some have more useful information related 

to forest biomass than the others. Table 5.3 examines the utility of all different bands for obtaining 

forest biomass (carbon) information. 

 

Table 5.3 Post-stratification using Landsat band information as domains of comparison 

 
Variance (S2) 

 
Variable 

Strata 1 
 

Strata 2 Strata 3 Strata 4 Strata 5 

V  

Band 1 

 

2122,71 1962,07 1402,37 3853,72 494,06 281,00

Band 2 

 

1890,30 3012,73 2119,93 2423,50 320,48 279,06

Band 3 

 

2042,87 2160,50 2275,36 3276,25 585,32 295,44

Band 4 

 

1895,03 3344,24 5079,16 1880,81 1619,09 394,81

Band 5 

 

2612,14 2024,04 3617,73 923,64 496,35 276,40

Band 7 

 

2777,96 1971,47 3838,35 859,62 496,79 284,12

 

From the above table it is observed that the average variance was minimum when band 5 was 

used and maximum in case of band 4. Band 5 represents 1.55 to 1.75 µm, which corresponds to 

mid-infrared and band 4 represents 0.78 to 0.90 µm, which is reflected infrared. The rest of the 

band lies in between. Reflection at the mid-infrared part is dominated by the presence of water in 

plant leaves, whereas near-infrared reflectance is dominated by the internal structure of plant 

leaves. Therefore, it can be concluded that the mid-infrared region of reflectance contains the most 

valuable information for stratification. 

 

Vegetation indices are widely used in many of the studies that deal with the remote sensing image 

and vegetation canopy closure, LAI or even biomass study. The current study has also examined 

the utility of the selected vegetation indices for stratification and the result is presented in table 5.4. 
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Table 5.4 Post-stratification using Vegetation Indices as domains of comparison 

 
Variance (S2) 

 
Variable 

Strata 1 
 

Strata 2 Strata 3 Strata 4 Strata 5 

V

NDVI 

 

749,22 4459,66 3993,16 1785,62 1269,80 350,21

RVI 

 

749,22 4459,66 3993,16 1785,62 1269,80 350,21

SAVI 

 

806,26 3611,71 4952,64 2266,80 1210,40 367,08

DVI 

 

2100,93 3233,78 5476,21 2426,55 1197,77 412,44

TVI 

 

489,93 2413,41 2493,11 2675,89 2631,64 305,83

PVI 

 

806,26 3611,71 4952,64 2266,81 1210,40 367,08

 

From the above table transformed vegetation index (TVI) shows the best result for stratification. 

TVI uses only the band information of the visible channels. NDVI, which is widely used, did not 

provide the best result. The performance of the difference vegetation index, which is the numeric 

difference of near infrared and red, is the lowest for stratification.  

 

Tasselled cap transformation concept is well suited for agriculture or even vegetation having thin-

layer of biomass. For forestry purposes its usefulness needs to be investigated. The current study 

has explored the utility of various components of tasselled cap for obtaining information of biomass 

or carbon estimation. The result of stratification based on tasselled cap transformation is presented 

in table 5.5. 
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Table 5.5 Post-stratification using Tasseled Cap information as domains of comparison 

 
Variance (S2) 

 
Variable 

Strata 1 
 

Strata 2 Strata 3 Strata 4 Strata 5 

V  

Brightness 

 

2373,27 2202,64 3465,18 1805,94 848,11 305,58

Greenness 

 

970,39 4121,81 4752,36 2072,51 1210,40 375,07

Wetness 

 

496,79 2300,96 3114,54 1935,80 2758,93 303,06

Tasseled 

Cap 4 

2222,03 2838,83 4139,02 2913,44 1089,85 377,23

Tasseled 

Cap 5 

2375,76 3428,59 3993,18 1892,68 2425,87 403,32

Tasseled 

Cap 6 

1676,74 2991,77 3388,80 1018,16 3559,65 361,00

 

Tasselled cap wetness provides the best result among all the other components, which is closely 

followed by brightness. Wetness component is an indicator for presence of moisture in soil or 

vegetation and brightness component usually indicates the brightness of soil it has certainly some 

utility on vegetated area. It was expected that the greenness component, which is a measure of the 

amount of green vegetation present in an area would provide the best result, but it did not.  

 

Principal component transformation is a rotational transformation, which reduces the dimension of 

image and generates an image without correlation. Principal component 1 includes the largest 

percentage of total scene variance and succeeding components (PC2, PC3….PCn) contain a 

decreasing trend of the value. Image bands usually contain redundant information if they are highly 

correlated. The stratification based on the principal component transformation is presented in table 

5.6. 
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Table 5.6 Post-stratification using Principal Components as domains of comparison 

 
Variance (S2) 

 
Variable 

Strata 1 
 

Strata 2 Strata 3 Strata 4 Strata 5 

V  

Principal 

Component 1 

3070,34 1617,06 2446,14 2434,78 526,71 294,14

Principal 

Component 2 

2494,13 2616,52 5267,86 1986,56 1289,14 390,12

Principal 

Component 3 

1582,36 1810,07 5011,73 3940,96 382,20 363,64

 

 

From the above table the first principal component provides the best result for stratification as it 

was expected. Principal component 3 performed better than the principal component 2. From the 

above result it is noticed that a variety of transformation does not contain better information for 

stratification among the post-stratification rules tested. All the individual bands except band 4 (near-

infrared band) contain good information for stratification. Among the various transformations tested, 

principal component 1 provides the best result. Neither vegetation indices nor tasselled cap 

improve the result of stratification in compare with the individual band information. 

 

5.3.1.3 Estimates of carbon 

The study estimates the carbon pool using an optimal stratification rule. Pre-stratification using 

terrestrial information provides the best result among all different stratification rules examined. 

Therefore, the aboveground carbon was estimated using forest types information (table 5.7).   
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Table 5.7 Carbon pool of the test site in 2001 using stratification 

 
95% confidence level Serial 

no. 
Forest type Area (ha) Mean 

carbon 
content 
(ton/ha) 

 

Standard 
deviation 

Total 
carbon 
content 

(ton) 

Upper limit Lower 
Limit 

1 Mature primary 

forest 

 

3 950 134,37 52,18 530 768 637 613 423 923

2 Young 

secondary 

forest 

1 032 86,84 16,18 89 697 101 975 77 420

3 Bamboo 

 

2 565 62,70 15,21 160 842 189 499 132 186

4 Shrub 

 

3 023 0,87 0,45 2 645 3 637 1 654

5 Plantation of 

indigenous 

species 

2 555 83,73 54,10 213 929 279 353 148 505

6 Teak 

 

3 745 60,81 26,09 227 716 288 285 167 147

7 Acacia 

 

342 30,62 7,04 10 468 12 449 8 488

8 Rubber 

 

3 006 30,95 22,89 93 016 139 112 46 920

9 Non-forest 

 

11 035 0 0  

 Total 

 

31 255 1 329 082  

 

From the above table it is observed that the mature primary forest contains the highest amount of 

carbon per unit area, which is more than 130 ton/ha and shrub contains the lowest, which is less 

than 1 ton/ha. Some class, for example, young forest or plantation with indigenous species 

contains a considerable amount of carbon, which is more than 80 ton/ha. Teak plantation also has 

more than 60 ton/ha. Among the plantations acacia or rubber contains the lowest amount, which is 

slightly higher than 30 ton/ha.  

 

Mature primary forest, teak, rubber and shrub contain the highest area, which is more than about 3 

000 ha in each category. This figure is followed by bamboo and plantation with indigenous species, 

which are more than 2 500 ha. Young secondary forest and acacia have more than 1 000 ha and 
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300 ha respectively. The amount and distribution of carbon in 2001 at the study area using 

stratification is presented in figure 5.7. 

 

 

Figure 5.7 Carbon map of southern Chittagong 2001 using stratification 

 

The distribution of carbon is closely associated with the vegetation type. The distribution of 

vegetation type usually follows certain factors for example, local topography and soil formation, 

management history etc. The highest amount of carbon in the above map is concentrated at the 

central and southern part and in some scattered patches of the other parts of the study area. The 

non-forest area, which is assumed to hold zero carbon content, divides the forest region into two 

separate blocks. The settlement and agricultural lands are usually located in the non-forest area. 
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The threat of any disturbance and consequently release of carbon is usually generated from the 

settlements. 

  

5.3.2 Using regression technique 

Plotting the variables in scattergram is often useful to understand the trend of relationship before 

modelling. Scattergrams showing the carbon content and individual band information are presented 

in figure 5.8. 
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Most of the scatterplots show a negative trend between information on carbon content and spectral 

reflectance. The relationship differs with channels. Most of the bands (i.e. band 2, 3, 5 and 7) show 

a curvilinear relation. The other two bands show different patterns; band 1 shows a sharp negative 

trend and band 4 shows almost no relationship. 

 

5.3.2.1 Simple regression 

Simple regression examines the linear relationship between two variables. In real world situation 

many of the relationships are non-linear. In such situations transformation is required using simple 

algebra to fit the variables if non-linear regression software is unavailable. This study examined 

linear as well as a number of non-linear transformations to find an optimal model for predicting 

information on carbon from spectral reflectance. Coefficient of determination (r2) is an important 

indicator of comparing the candidate models. Therefore, the current study used this criterion for 

pre-selecting the regression equations. The r2 values calculated from different equations are 

presented in table 5.8. 
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Table 5.8 Coefficient of determination (r2) between individual band spectral reflectance and carbon 

content for non-linear relationship 

 
Equation 

type 
Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

Linear 

 

0,167 0,264 0,241 0,025 0,226 0,242

Logarithmic 

 

0,152 0,236 0,220 0,023 0,193 0,224

Inverse 

 

0,134 0,198 0,186 0,019 0,141 0,180

Quadratic 

 

0,184 0,286 0,245 0,029 0,236 0,243

Cubic 

 

0,182 0,281 0,284 0,029 0,330 0,309

Compound 

 

0,337 0,473 0,380 0,036 0,313 0,332

Power 

 

0,305 0,421 0,356 0,037 0,280 0,321

S 

 

0,266 0,356 0,312 0,037 0,218 0,271

Growth 

 

0,337 0,473 0,380 0,036 0,313 0,332

Exponential 

 

0,337 0,473 0,380 0,036 0,313 0,332

Logistic 

 

0,337 0,473 0,380 0,036 0,313 0,332

 

The above result (r2 < 0.26) is un-satisfactory to predict carbon using linear regression. The poorest 

result was obtained by using ETM+ band 4. The r2 value was highest when band 2 was used. 

Transformations of variables mostly improved the relationship. Some cases (i.e. growth, 

exponential or logistic) the improvement was significant. Band 2 still provides the highest coefficient 

of determination (r2 = 0.47, r = 0.69) after transformation.  

 

Additionally a number of different spectral transformations were tested. Six different vegetation 

indices, six components of tasselled cap transformation and first three components of PCA were 

examined and the results are presented in table 5.9-5.11. 
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Table 5.9 Coefficient of determination (r2) between vegetation indices and carbon content for non-

linear relationship 

 
Equation 

type 
NDVI RVI SAVI DVI TVI PVI 

Linear 

 

0,138 0,099 0,029 0,002 0,171 0,031

Logarithmic 

 

0,135 0,127 0,029 0,003 0,173 0,031

Inverse 

 

0,127 0,137 0,026 0,003 0,175 0,019

Quadratic 

 

0,138 0,181 0,031 0,005 0,220 0,040

Cubic 

 

0,139* 0,184 0,076 0,011 0,221* 0,082

Compound 

 

0,201 0,190 0,046 0,005 0,229 0,052

Power 

 

0,185 0,205 0,035 0,002 0,231 0,034

S 

 

0,162 0,190 0,023 0,000 0,233 0,010

Growth 

 

0,201 0,190 0,046 0,005 0,229 0,052

Exponential 

 

0,201 0,190 0,046 0,005 0,229 0,052

Logistic 

 

0,201 0,190 0,046 0,005 0,229 0,052

*Tolerance limits reached; some dependent variables were not entered 

 

From the above result transformed vegetation index (TVI) generates the best result. Most of the 

cases transformation provides better results than the simple regression. S type of equation using 

TVI shows the highest r2 value.  
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Table 5.10 Coefficient of determination (r2) between tasseled cap transformation and carbon 

content for non-linear relationship 

 
Equation 

type 
Brightness Greenness Wetness Component 

4 
Component 

5 
Component 

6 

Linear 

 

0,210 0,053 0,221 0,035 0,035 0,059

Logarithmic 

 

0,192 0,057 * * * *

Inverse 

 

0,172 0,038 0,113 0,034 0,024 0,005

Quadratic 

 

0,250 0,077 0,226 0,093 0,041 0,086

Cubic 

 

0,247 0,120 0,337 0,100 0,046 0,103

Compound 

 

0,314 0,086 0,296 0,063 0,057 0,119

Power 

 

0,285 0,061 * * * *

S 

 

0,254 0,024 0,185 0,009 0,044 0,016

Growth 

 

0,314 0,086 0,296 0,063 0,057 0,119

Exponential 

 

0,314 0,086 0,296 0,063 0,057 0,119

Logistic 

 

0,314 0,086 0,296 0,063 0,057 0,119

* Independent variable has non-positive value 

 

The brightness and wetness components of tasselled cap generate the highest correlation. Almost 

no relation was observed between the other components and carbon information. In general, 

transformations improve the value of r2. The correlation coefficient was highest in the brightness 

component using growth, exponential and logistic equations and the value was 0.560 (r2 = 0.314). 

The results are still not good enough for a satisfactory prediction using tasselled cap 

transformation.  
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Table 5.11 Coefficient of determination (r2) between principal component and carbon content for 

non-linear relationship (DN values) 

 
Equation type 

 

Principal component 1 Principal component 2 Principal component 3 

Linear 

 

0,259 0,003 0,003

Logarithmic 

 

0,252 0,003 **

Inverse 

 

0,236 0,003 0,005

Quadratic 

 

0,259 0,003 0,052

Cubic 

 

0,259* 0,004 0,052*

Compound 

 

0,326 0,001 0,001

Power 

 

0,322 0,002 **

S 

 

0,305 0,004 0,002

Growth 

 

0,326 0,001 0,001

Exponential 

 

0,326 0,001 0,001

Logistic 

 

0,326 0,001 0,001

* Tolerance limits reached; some independent variables were not entered. 

** Independent variable has non-positive values. 

 

A relative better relation was observed in the first principal component. The last two components 

(component 2 and 3) show almost no correlation. The result improved when the first principal 

component was transformed. The compound, growth, exponential and logistic transformations 

showed the highest correlation (r = 0.571 / r2 = 0.326). The result is yet not satisfactory enough to 

make a good prediction from the principal components.  

 

It was expected that the various forms of spectral transformations would provide better correlation 

than the individual bands. But, the result was opposite. Therefore, in further analysis (i.e. multiple 

regression, regression with dummy variables) only individual bands were tested.  

 



 132

5.3.2.2 Multiple regression 

Multiple regression equations were calculated using all different bands. All the variables were 

entered at the initial stage of analysis. The variables having less association with the carbon 

information were later removed step by step using backward elimination criteria. At the last stage 

the strongest predictor variable will remain in the model. The predictor variables and r2 are 

presented in table 5.12. 

 

Table 5.12 Coefficient of determination (r2) between all bands spectral reflectance and carbon 

content by backward elimination 

 
Model no Variables used Variables 

removed 
Coefficient of 

determination (r2) 
 

Adjusted r2 

1 

 

Bands 1,2, 3, 4, 5, 7  0,295 0,228

2 

 

Bands 2, 3, 4, 5, 7 Band 1 0,295 0,240

3 

 

Band 2, 4, 5, 7 Band 3 0,295 0,248

4 

 

Bands 2, 4, 7 Band 5 0,284 0,252

5 

 

Band 2, 7 Band 4 0,278 0,256

6 

 

Band 2 Band 7 0,264 0,253

 

From the above result, band 2 is the strongest predictor of carbon content. The value of r2 slightly 

increases with the addition of band 7 and band 4. However, further incorporation of bands did not 

improve the relationship. The above result is still poor and hence cannot be effectively used for 

prediction. 

 

5.3.2.3 Additional information from image texture 

Image texture was calculated using Landsat ETM+ pan data, as it has higher spatial resolution 

than the multi-spectral bands.  A variety of window size, for example 3x3, 5x5, and 7x7 were 

tested. Finally, a 3x3 size was selected as it provides the best result. This information was later 

incorporated as additional variable in the multiple regression together with the individual band 

information. The relationships are presented in table 5.13  
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Table 5.13 Coefficient of determination (r2) between image texture, all bands spectral reflectance 

and carbon content by backward elimination 
Model no Variables used Variables 

removed 

Coefficient of 

determination (r2) 

Adjusted r2 

1 

 

Band 1, 2, 3, 4, 5, 7, Mean, 

Variance, Second moment, 

Homogeneity, Contrast, 

Dissimilarity, Entropy 

 0,476 0,354

2 

 

Band 1, 3, 4, 5, 7, Mean, Variance, 

Second moment, Homogeneity, 

Contrast, Dissimilarity, Entropy 

Band 2 0,475 0,365

3 

 

Band 1, 3, 5, 7, Mean, Variance, 

Second moment, Homogeneity, 

Contrast, Dissimilarity, Entropy 

Band 4 0,474 0,374

4 

 

Band 1, 3, 5, 7, Mean, Variance, 

Second moment, Homogeneity, 

Contrast, Dissimilarity 

Entropy 0,472 0,382

5 

 

Band 1, 3, 5, 7, Mean, Variance, 

Homogeneity, Contrast, 

Dissimilarity  

Second 

moment 

0,467 0,388

6 

 

Band 1, 3, 7, Mean, Variance, 

Homogeneity, Contrast, 

Dissimilarity 

Band 5 0,452 0,380

7 Band 1, 7, Mean, Variance, 

Homogeneity, Contrast, 

Dissimilarity 

Band 3 0,439 0,375

 

Incorporation of image texture in multiple regression has improved the relationship. The above 

table represents some surprising results. For example, band 2 that was the strongest predictor of 

carbon (table 5.12) was removed at the very early stage of analysis. If we consider the model 7, it 

has two bands (band 1, 7) and five components of image texture information and the r2 value is 

0.439 (r = 0.663). The relationship is still not very good but better than the previous results. The 

goal of the current study is to develop one operational tool for monitoring terrestrial carbon budgets 

in the tropics and therefore it should be kept in mind that most of the tropical forests are distributed 

in the developing countries, which often have limited availability of resources. For the calculation of 

image texture additional software, i. e. ENVI is required. The general module of ERDAS Imagine, 

the other widely used software for image processing does not provide this facility. Simultaneously, 

the improvement of the relationship was not quite satisfactory and hence second order texture 

information was not used in further analysis.     
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5.3.2.4 Additional information from dummy variables 

From the scatter plot (figure 5.8) and raw data (Appendix VIII) it was noticed that the relationship 

between spectral response and carbon information might be slightly different for different types of 

vegetation. Therefore, it was decided to apply the dummy variables. Each vegetation class was 

considered as a source of different sets of dummy variables. The results are presented in table 

5.14.  

 

Table 5.14 Coefficient of determination (r2) between all bands spectral reflectance and carbon 

content by backward elimination 

 
Model no Variables used Variables 

removed 

Coefficient of 

determination 

(r2) 

Adjusted r2 

1 

 

Bands 1,2, 3, 4, 5, 7, Z1, Z2, Z3, Z4, 

Z5, Z6, Z7 

 0,611 0,521

2 

 

Bands 1, 2, 4, 5, 7, Z1, Z2, Z3, Z4, Z5, 

Z6, Z7 

Band 3 0,611 0,530

3 

 

Band 2, 4, 5, 7, Z1, Z2, Z3, Z4, Z5, Z6, 

Z7 

Band 1 0,611 0,538

4 

 

Bands 2, 4, 7, Z1, Z2, Z3, Z4, Z5, Z6, 

Z7 

Band 5 0,610 0,544

5 

 

Band 2, 7, Z1, Z2, Z3, Z4, Z5, Z6, Z7 Band 4 0,610 0,551

6 

 

Band 2, Z1, Z2, Z3, Z4, Z5, Z6, Z7 Band 7 0,608 0,557

7 

 

Band 2, Z1, Z2, Z3, Z4, Z5, Z6 Z7 0,605 0,560

8 

 

Band 2, Z1, Z2, Z3, Z4, Z6 Z5 0,600 0,562

9 

 

Band 2, Z2, Z3, Z4, Z6 Z1 0,591 0,559

 

 

The above result is very impressive. The use of dummy variable has significantly improved the 

relationship. If we consider the model 9, it has five independent variables including information from 

one band, band 2. The rests are dummy variables that basically add a constant in the regression 

equation. The value of the coefficient of determination is 0.591 (r = 0.769), which is satisfactory.  

 

From the previous result, the study discovered that the mathematical transformations of bands 

improve the relationship. For example, the coefficient of determination is 0.264 (r2= 0.514) for 

predicting carbon using band 2 in simple regression; however, it is 0.473 (r2 = 0.688) when used in 
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non-linear form (i.e. growth, exponential and logistic) (Table 5.8). All the three models are basically 

similar. They use an exponential relationship between the independent and dependent variables 

but their intercepts and/or coefficients are different. The current study has decided to use any of 

these equations (i.e. exponential) together with dummy variables to explore the improvement of  

relationship. The result is presented in table 5.15. 

 

Table 5.15 Coefficient of determination (r2) between all bands spectral reflectance and logarithm 

(base e) carbon content (exponential relationship)  

 

Model no Variables used Variables 

removed 

Coefficient of 

determination 

(r2) 

 

Adjusted r2 

1 

 

Bands 1,2, 3, 4, 5, 7, Z1, Z2, Z3, 

Z4, Z5, Z6, Z7 

 0,890 0,865

2 

 

Bands 1, 2, 3, 5, 7, Z1, Z2, Z3, Z4, 

Z5, Z6, Z7 

Band 4 0,890 0,867

3 

 

Band 1, 2, 3, 5, 7, Z1, Z2, Z3, Z4, 

Z5, Z6 

Z7 0,890 0,869

4 

 

Bands 2, 3, 5, 7, Z1, Z2, Z3, Z4, 

Z5, Z6  

Band1 0,890 0,871

5 

 

Band 2, 3, 7, Z1, Z2, Z3, Z4, Z5, 

Z6 

Band 5 0,889 0,872

6 

 

Band 2, 7, Z1, Z2, Z3, Z4, Z5, Z6 Band 3 0,887 0,873

7 

 

Band 2, Z1, Z2, Z3, Z4, Z5, Z6 Band 7 0,887 0,874

8 

 

Band 2, Z1, Z2, Z4, Z5, Z6 Z3 0,885 0,874

9 

 

Band 2, Z2, Z4, Z5, Z6 Z1 0,881 0,872

 

The above result represents a significant improvement of the correlation. If model 7 is selected it 

has seven independent variables, one band and six dummy variables. The coefficient of 

determination is 0.887 (r = 0.942), which is quite impressive. Though incorporation of additional 

variables (model 1-6) slightly improves the relationship the current study recommends the 

utilization of model 7 as it has the lowest number of real independent variable. The details of the 

selected regression equation are presented in table 5.16. 
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Table 5.16 Coefficients of the selected regression model 

 

Unstandardized Coefficients Standardized 

Coefficients 

t Variable 

B Standard 

Error 

Beta Value Significance 

Constant 

 

6,190 0,446 13,878 0,000

Band 2 

 

-36,534 7,856 -0,297 -4,650 0,000

Z1 

 

-0,462 0,307 -0,085 -1,506 0,137

Z2 

 

-0,582 0,280 -0,149 -2,079 0,042

Z3 

 

-0,226 0,235 -0,072 -0,959 0,341

Z4 

 

0,945 0,288 0,309 3,280 0,002

Z5 

 

3,098 0,292 0,958 10,594 0,000

Z6 

 

-3,750 0,295 -1,037 -12,705 0,000

 

Form the above table it is noticed that the level of significance for each independent variable is 

quite high (except Z3 and Z1). The residual of the selected regression equation is presented in 

figure 5.9. 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Residual analysis of the selected regression equation: (a) residual versus predicted 

carbon (b) residual versus band 2 reflectance 
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Residual plot (figure 5.9a) of the selected regression equation shows heterogeneous variance, 

which is the result of ‘funnel effect’. This means that if the predicted carbon gets larger, the 

deviation of the residual from zero becomes greater. Therefore, it should be kept in mind that the 

error variance in the predicted model is not constant, but increases as the measured response 

increases. The plot of band 2 versus residual (Figure 5.9b) indicates that the model can make 

relative good prediction when band 2 has a very low (< 0.04) or high reflectance (> 0.06). Any 

prediction in between this spectral range (0.02 - 0.04) might incur a relative large amount of error. 

The reason for such behaviour is possibly originated from the coverage condition of vegetation 

canopy. The relation of carbon and the reflectance from band 2 is negative. So, when the canopy 

coverage is low the model will make a good prediction. On the other hand, when canopy is 

completely closed, the prediction capacity using optical data becomes poor, because it cannot 

extract the information from the understorey vegetation.  

 

The estimate of carbon pool using the selected regression model is presented in table 5.17. 

 

Table 5.17 Estimation of carbon pool of 2001 in southern Chittagong using regression 

Carbon class 
 

Area (ha) Carbon (Total) 

0-50 

 

6 918 125 941

>50-100 

 

8 980 632 757

>100-150 

 

3 540 440 389

>150-200 

 

701 119 100

>200-250 

 

68 15 291

>250-300 

 

8 2 263

>300-350 

 

4 1 261

Non-forest 

 

11 035 0

Total 

 

31 255 1 337 000

 

The carbon map using regression is presented in figure 5.10. 
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Figure 5.10 Carbon map of southern Chittagong 2001 using regression 

 

5.3.3 Using knn method 

The current study calculated the amount of carbon for recent time using knn method. The result is 

presented in table 5.18. 
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Table 5.18 Estimation of carbon content of the study area for 2001 using knn method 

 

Carbon class 
 

Area (ha) Carbon (Ton) 

0-50 

 

7 892 153 063 

>50-100 

 

6 432 466 744 

>100-150 

 

2 730 338 145 

>150-200 

 

2 874 508 097 

>200-250 

 

291 61 647 

Non forest 

 

11 035 0 

Total 

 

31 255 1 527 696 

 

 

The carbon map using knn method is presented in figure 5.11. 
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Figure 5.11 Knn estimate of carbon (ton/ha) 2001 in the study area 

 

5.4 Comparing Three Methods 

The accuracy of the three methods was tested from independent validation plots and the result is 

presented in Appendix IX. The table enlisted the actual and classified forest, observed and 

predicted carbon content and absolute bias generated from the each plot. Among the thirty 

validation sample plots nine were misclassified. From the bias test it can also be noted that the 

greater amount of errors were generated from the misclassified plots. This means that if the 

accuracy of the classification improves the forest attributes can be more precisely extracted from 
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the remote sensing data. Therefore, it is necessary to invent new sensors, which allow the 

separation of vegetation more accurately. Better algorithms for classification should also be 

explored. 

 

Statistics of the accuracy test is presented in table 5.19. Stratification provides the minimum 

amount of RMSE and absolute bias. The standard error of bias was lowest when regression 

method was used. Knn generates the largest amount of error both in the three estimates. 

 

Table 5.19 Statistics of validation test using three methods  

 

Parameters 

 

Stratification Regression Knn 

RMSE 

 

47,13 48,10 58,70 

Mean bias 

 

31,76 33,98 38,99 

Standard error of bias 

 

6,47 6,32 8,15 

  

The result of the validation test is presented in a 1:1 graph (Figure 5.12). The plots located near the 

diagonal line predict more accurate results than the plots, which are dispersed from the line. Those 

plots located below the diagonal line are underestimated, whereas the plots located above the line 

are overestimated. The patterns of the distribution of plots calculated by stratification and 

regression are similar in nature, but are slightly different when knn method is used. Some of the 

plots in that figure are located at the similar location generated from the prediction of either 

stratification or regression but are different from knn. It is interesting to note that the accuracy is 

higher for certain plots using stratification or regression but lower when knn method is used. The 

result is opposite for some other plots. Therefore, it can be concluded that the accuracy of the 

result can be improved if we can successfully combine two or more methods.  
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5.5 Assessment of Carbon in Historical Image 

The carbon in the historical image was estimated by cross-calibration and regression technique. In 

this method 380 sample points were selected randomly from the recent and historical image to find 

out the cross-calibration coefficient. Points were only selected from the unchanged vegetation 

classes. Scatterplots show a definitive trend of the sample points towards the origin except band 7 

(Figure 5.13). Calculation was done by simple regression technique that passes through the origin. 

Table 5.20 enumerated the coefficient and the precision of cross-calibration. 

 

Table 5.20 Estimate of cross-calibration equation for TM 1992 to ETM+ 2001 

 

Band 
 

Coefficient b r-square Adjusted r-square 

1 

 

0,924 0,986 0,986

2 

 

0,868 0,983 0,983

3 

 

0,736 0,979 0,979

4 

 

0,840 0,985 0,984

5 

 

0,837 0,982 0,982

7 

 

0,256 0,741 0,741

 

After cross-calibration the same regression equation was used to estimate the carbon in the 

historical image. The results of the estimation are presented in table 5.21 and figure 5.14. 
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Figure 5.14 Carbon map of southern Chittagong 1992 using regression 
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Table 5.21 Estimation of carbon pool of 1992 using regression 

 

Carbon class 
 

Total area Total carbon 

0-50 

 

6 806 180 121

>50-100 

 

8 665 623 179

>100-150 

 

6 389 911 478

>150-200 

 

93 20 833

>200-250 

 

5 1 444

>250-300 

 

1 201

Non forest 

 

9 295 0

Total 

 

31 255 1 737 256

 

5.6 Estimation of Carbon Release 

5.6.1 Assessment of deforestation by change matrix 

Vegetation change matrix was calculated to find out the dynamics of vegetation change during the 

study period (Table 5.22). The end column of the vegetation change matrix represents the total 

area of origin, whereas the bottom row represents the total area of destination for forest cover 

change assessment. The diagonal (shaded) cell represents the stable classes. Upper right portion 

of the stable areas represents deforestation or degradation, whereas the lower left represents 

amelioration or increase of woody biomass. Each cell of the table shows the class of origin and 

class of destination. This helps the reader to identify the dimension of forest cover changes.  

 

It is noticed that the primary and secondary forests are subject to a severe loss during the study 

period; loss of primary and secondary forest is about 35% and 56% respectively. The destruction of 

teak (scattered trees are also misclassified to this category) and indigenous plantation was not very 

severe. They have lost only about 15% and 17% respectively. Acacia has been recently introduced 

in the study area and was not available in 1992 image. Rubber plantation is extended dramatically 
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(about 56%). The bamboo areas have also slightly been increased, which is about 5%. The shrub 

vegetation has been tremendously extended and it is about 80%. Non-forest area has also been 

increased (about 19%).  
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Forest cover maps of southern Chittagong in the recent and historical time are presented in figure 

5.15-5.16. 

 

Figure 5.15. Forest cover map of southern Chittagong 2001 
 

The above map shows the distribution of forest areas in the study region. The development of 

forest usually follows local topography, soil formation, management and landuse history etc. The 

major forest area is distributed scatteredly, some part is concentrated in the middle of south. 

Bamboos are mainly distributed in the north-eastern region. The non-forest area has separated the 

vegetated region into two separate blocks. 
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Figure 5.16 Forest cover map of southern Chittagong 1992 

 

The vegetation change can be detected if the recent and historical maps are superimposed. The 

deforestation hotspots are distributed scatteredly. The drastic deforestation is noticed in the mid of 

north (local forest jurisdiction: Purnagram beat) where mature primary forest has been removed 

completely by plantation, shrub and non-forest. East part of that block, primary forest (Rajghat 

beat) has also been reduced in a certain extent and converted mostly to non-forest area. The 

mature primary forest in the south-eastern part (Gilatali beat) has also been partly replaced by 

plantation and non-forest. The successful development of Acacia plantation has also been noticed 

in the southwest (Kalirchara, Dhalirchara and Meherghona beat). Rubber plantation has been 
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raised successfully in the eastern part of the study area by private enterprises replacing mostly the 

primary and secondary forests. 

 

5.6.2 Carbon dynamics in the study area 

Table 5.23 represents the change of carbon budgets in the study area during the period under 

investigation. From the result it can be concluded that the major amount of carbon was released 

due to the conversion of primary forests. It should also be noted that 

 

Carbon 2001 = Carbon 1992 + sequestration - release 

 

Table 5.23 Estimates of carbon dynamics in southern Chittagong 1992-2001 

 
1992 2001 Forest 

type Area 

(ha) 

Carbon 

(ton/ha) 

Total 

carbon 

(ton) 

Area 

(ha) 

Carbon 

(ton/ha) 

Total 

carbon 

(ton) 

Change in 

mean 

carbon  

(ton/ha) 

Change in 

total 

carbon 

(ton) 

Primary 

forest 

6 067 143,60 871 224 3 950 133,18 526 077 -10,42 -345 147

Secondary 

forest 

2 349 86,37 202 883 1 034 101,40 104 849 15.03 -98 034

Plantation 

of ind.spp. 

3 000 61,96 185 867 2 554 61,77 157 766 -0.19 -28 101

Teak 

 

4 510 69,99 315 646 3 746 73,69 276 050 3,70 -39 596

Acacia 

 

0  341 25,27 8 617 25,27 8 617

Rubber 

 

1 925 23,24 44 739 3 006 31,14 93 594 7,90 48 855

Bamboo 

 

2 434 47,36 115 270 2 566 65,25 167 434 17.89 52 164

Shrubs 

 

1 675 0,97 1 627 3 023 0,86 2 614 -0.11 978

Non- 

forest 

9 295  11 035  

Total 

 

31 255 55,58 1 737 256 31 255 42,78 1 337 000 -12,80 -400 256

The positive value in the last two columns indicate sequestration and the negative value indicates 

release 

 

The above result represents the distribution and the amount of carbon hold by different forest types 

both in the recent and historical time. The last two columns represent the change of carbon budget. 
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The changes in average carbon content indicate whether carbon was sequestrated or released by 

a particular class. This is an indication of amelioration or degradation of woody biomass. However, 

the change in total carbon hold by each class is not only the result of amelioration or degradation 

but also the result of conversion of forest cover from one to the other class. 

 

Above table shows that around ten ton per ha carbon was released due to the degradation of 

primary forest during the study period. Most of the other classes show forest growth and carbon 

sequestration. The highest amount of carbon is sequestrated by acacia and it is about 25 ton per 

ha in nine years, i.e. 2,78 ton per ha per annum. The growth performance of bamboo and 

secondary forest was satisfactory and the amount of carbon sequestrated by these two classes 

was 18 and 15 ton per ha respectively. The class of indigenous plantation and shrub shows a 

negligible amount of carbon release.  

 

The highest amount of total carbon was released from the degradation and conversion of mature 

primary forest. Secondary forests, teak and indigenous plantations have showed some amount of 

carbon release. On the other hand bamboo showed the highest amount of carbon sequestration. 

The class rubber has also sequestrated a considerable amount of carbon. Shrubs show a slight 

increase of total carbon, which is not the result of the growth of vegetation but the conversion of 

other classes into this cover type. 

 

The above results show information on carbon sequestration or release by each class due to 

amelioration or degradation. This was only possible by using regression or even knn method. But 

stratification technique would not provide any information because the method assumes a fixed 

mean value for a particular class for both in the recent and historical time. 

 

Carbon release and sequestration maps of southern Chittagong are presented in figure 5.17 and 

5.18 respectively.  
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Figure 5.17 Carbon release map of southern Chittagong 1992-2001 using regression 
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Figure 5.18 Carbon sequestration map of southern Chittagong using regression 

 

5.7 Accuracy Assessment of Classification 

The current study assessed the accuracy of classification from training set pixels. The matrix of the 

accuracy of classification for the recent image is presented in table 5.24. 
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In the above table the training set pixels those are accurately classified are located along the major 

diagonal of the error matrix (running from upper left to lower right-shaded cells). All the rest 

diagonal elements of the matrix represent errors of omission or commission. Omission errors 

correspond to non-diagonal column elements (e.g. 254 that should have been classified as primary 

forests were omitted from that category). Commission errors are represented by non-diagonal row 

elements (e.g. 125 teak plus 169 Rubber were improperly included in the soil category). The above 

matrix is summarised and presented in table 5.25. 

 

Table 5.25 Summary of error matrix for classification of Landsat ETM+ data 2001 from training set 

pixels 
Forest / Land 

cover type 
Producer’s accuracy User’s accuracy 

Primary forest 

 

2636 / 3145 84% 2636 / 3029 87%

Secondary forest 

 

546 / 660 83% 546 / 996 55%

Plantation of 

indigenous species 

1505 / 1978 76% 1505 / 1707 88%

Teak 

 

1357 / 1845 74% 1337 / 1798 74%

Acacia 

 

633 / 695 91% 633 / 730 87%

Rubber 

 

1234 / 1446 85% 1234 / 1527 81%

Bamboo 

 

722 / 751 96% 722 / 742 97%

Shrubs 

 

978 / 1051 93% 978 / 1125 87%

Soil 

 

3489 / 4035 86% 3489 / 4055 86%

Settlements 

 

2351 / 2640 89% 2351 / 2516 93%

Water 

 

1581 / 1639 96% 1581 / 1660 95%

Overall accuracy = ( 2636 + 546 + 1505 + 1357 + 633 + 1234 + 722 + 978 + 3489 + 2351 + 1581 ) / 

19885 = 86% 

 

The matrix of the accuracy of classification for the historical image is presented in table 5.26. 
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The above result can be summarised in table 5.27. 

 

Table 5.27 Summary of error matrix for classification of Landsat TM data 1992 from training set 

pixels 
Forest / Land 

cover type 
Producer’s accuracy User’s accuracy 

Primary forest 

 

2563 / 3145 81% 2563 / 3134 82%

Secondary forest 

 

377 / 660 57% 377 / 1311 29%

Plantation of 

indigenous spp. 

1164 / 1978 59% 1164 / 1935 60%

Teak 

 

1435 /1845 78% 1435 / 2273 63%

Acacia 

 

Rubber 

 

522 / 1446 36% 522 / 1063 49%

Bamboo 

 

593 / 751 79% 593 / 816 73%

Shrubs 

 

511 / 1051 49% 511 / 1207 42%

Soil 

 

1523 / 4035 38% 1523 / 2605 58%

Settlements 

 

2068 / 2640 78% 2068 / 2682 77%

Water 

 

1493 / 1639 91% 1493 / 2164 69%

Overall accuracy =  ( 2563 + 377 + 1164 + 1435 + 522 + 593 + 511 + 1523 + 2068 + 1493 ) / 19190 = 

64% 

 

The accuracy of classification was better for the recent image than the historical one. The reason 

might be that the forest type was verified from the field on recent years and the identification of 

pixel-class of the historical image was only done from this experience. 

 

The error generated from the location uncertainty was tried to minimize by the geo-statistical 

approach discussed earlier. This approach can minimize bias and consequently improve 

correlation. However, it was not possible to verify the result using a differential GPS. Therefore, the 

analysis obtained from the geo-statistical approach was not finally included for presentation. 
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Chapter VI 

6 Discussion 

6.1 Extracting Forest Biomass and Carbon Information from Satellite Data 

The current study compares three methods; stratification, regression and knn for extracting forest 

biomass information and carbon content from satellite data. The study finally recommends a 

method, which is a regression technique, however it uses some information from the results of 

stratification in the form of dummy variables. 

 

The study found an inverse relationship of spectral reflectance and above-ground standing 

biomass information except ETM+/TM band 4 where almost no relationship was noticed. The 

similar phenomena were noticed by many of the previous studies (Ardö 1992, Gjertsen 1996, 

Spanner et al. 1990, Horler and Ahren 1986, Roy and Ravan 1996). The inverse relationship 

between the biomass and spectral reflectance would be the result of increased canopy shadowing 

within larger stands and the decreased understorey brightness (soil brightness) due to increased 

density of biomass (Spanner et al. 1990). This result is agreed with the Alchrona (1988), who 

stated that there is an inverse relationship between amount of shadow and reflectance in all 

wavebands. Results from the study by Horler and Ahren (1986) specified this nature of behaviour 

for particular spectral regions, for example, band 5 or 7 of Landsat TM and stated that shadowing is 

a factor at least as important as leaf moisture content in influencing the spectral reflectance of 

forests in the shortwave infrared spectral region. Thus the higher spectral reflectance of the sample 

points with less biomass can be explained partially by smaller amount of shadow, which will result 

in a higher contribution to the spectral radiance from the background soil.  

 

This study reported that the spectral reflectance of vegetation canopy ranges approximately from 3-

10% in the visible range, 20-40% in the near infrared and 5-40% in the short-wave infrared region. 

These values are much lower than the reflectance of an ideal vegetation reflectance curve (figure 

6.1). The reduced reflectance might be the result of the presence of shadow in vegetation 

canopies. This phenomenon has already been discussed in section 2.1.3.   
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Figure 6.1 Spectral reflectance curve for a green leaf and dominant factors controlling leaf 

reflectance in the visible and near-infrared spectral regions (Bracher 1991) 
 

The study found that the relationship between forest biomass content and spectral response from 

satellite data is poor in simple regression analysis and cannot be effectively used for prediction 

purpose. The value of the coefficient of determination, which expresses the proportion of variation 

in the response data that is explained by the model, is below 0.26. This result is quite consistent 

with many of the previous studies not only on tropical forests but also on temperate and boreal 

forests. The study by Steininger (2000) reported the above-ground dry biomass has a very poor 

correlation with Landsat TM bands in the tropical secondary forest for the study site in Bolivia (r2 

value was 0.03, 0.16, 0.00 and 0.03) however moderate in the site of Brazil (r2 value was 0.05, 

0.21, 0.49 and 0.37 for TM bands 3, 4, 5 and 7). Trotter et al. (1997) reported r2 value of 0.17 for 

predicting volume of coniferous plantation in New Zealand using either band 3 or 4 of Landsat TM 

data. Häme et al. (1996) calculated r2 values of 0.15-0.23 for estimating volume of coniferous forest 

using the visible red channel (band 3) of Landsat TM in southern Finland. Gjertsen (1996) reported 

the values of r2 0.38, 0.28, 0.50 for SPOT XS1, XS2, XS3 and 0.29, 0.35 and 0.35 for TM band 3, 4 

and 5 to predict coniferous stem volume for a selected test site of boreal needle-leaved, evergreen 

forest of Norway using simple linear regression. 

 

The results of simple linear regression and the r2 value found in the current study are not quite 

similar with some of the other studies. For example, Roy and Ravan (1996) found a good 

correlation for predicting forest biomass from all Landsat TM bands (r2 0.59 to 0.76, for two dates, 

all types of ecosystem) except band 4 (r2 value 0.18 to 0.49) in mixed deciduous and scrub forest 
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of Madav National Park, India using DN values as independent variables in simple linear 

regression. However, the study used only 22 sample plots, which is rather optimistic for a general 

conclusion. Their study also reported that the correlation degrades significantly when 

atmospherically corrected radiance values were used instead of digital numbers (r2 values 0.25 to 

0.43 for all bands except band 4, where 0.09 to 0.20), which is quite surprising. The study by Lu et 

al. (2002) found a surprising result for predicting forest biomass of the two study sites in Amazon 

forests. They reported that Landsat TM bands 5 and 4 were the best single band predictor of 

biomass and the r2 values were 0.39 and 0.70 respectively. However, the current study found the r2 

value for band 4 is quite low (r2 = 0.03) compared with the other bands.  

 

The study found that the value of the coefficient of determination for predicting biomass and carbon 

information slightly improves when multiple regression is used with more than a single band. The 

improvement is steady in case of the addition of a second variable; however, any other subsequent 

addition does not show further improvement in a significant amount. The value of r2 was 0.26 using 

one variable (band 2), after addition of the second variable (band 7) it improved to 0.28 and to 0.30, 

if all the bands were used in regression. This phenomenon was also reported by some of the 

previous studies (i.e. Häme et al. 1996, Thenkabail et al. 2004 etc.).  

 

Many of the earlier studies found the similar value of r2 for predicting biomass and volume from 

satellite data using multiple regression. Foody et al. (2003) reported that the values of r2 were 0.30, 

0.32 and 0.25 to predict tropical forest biomass in the selected test sites of Thailand, Brazil and 

Malaysia using all Landsat TM bands. Thenkabail et al. (2004) reported that the values of r2 were 

0.16 and 0.13 for predicting dry weight biomass in African rainforest of the Congo basin, southern 

Cameroon, using IKONOS and ETM+ data respectively for all vegetation types studied. Trotter et 

al. (1997) found that the r2 value was 0.24 for relating all Landsat TM bands and volume of 

coniferous plantation in NewZeland. The study by Hyyppä et al. (2000) got r2 values of 0.44 and 

0.31 for predicting stem volume of boreal forest in southern Finland using Spot XS and Landsat TM 

bands respectively. 

 

The result of regression in the logarithmic or exponential transformation shows some improvement 

instead of using in linear form. The current study found the values of r2 were 0.34, 0.47, 0.38, 0.04, 

0.31, 0.33 for predicting biomass and carbon content using Landsat ETM+ bands 1-5 & 7 in 

exponential form, which means that there is some improvement in the relationship. Some other 

studies also reported similar results. For example, Ardö (1992) found a relationship of 0.55, 0.61, 

0.50, 0.23, 0.62 and 0.55 between forest volume and natural logarithm (ln) of Landsat TM bands 

radiance (1-5 & 7) for test sites of boreal forest in southern Sweden. 

 

The information content of spectral windows in satellite bands is not the same and hence they 

show different degree of utility. Moreover, the usefulness of different bands for extracting forest 

biomass and carbon information varies with the method applied (Table 6.1). Band 5 has the utility 
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order 7 in regression; however, it has the highest order in stratification for extracting biomass and 

carbon information. In some cases the spectral channels have similar order of utility both in 

regression and stratification. The utility of TVI and NDVI is ordered in the position nine and ten for 

both in regression and stratification. It should be noted that the ordered list of the ten components 

is the same for both regression and stratification but their chronology is different. 

 

Table 6.1 Utility of various remote sensing components for extracting biomass information using 

regression and stratification  
Ordered 

list in 
regression 

 

Component  
R2* 

Information content 
(some parts adapted from 

Tucker 1978) 

 Ordered list 
in 

stratification 

1 Band 2 0,473 Slightly sensitive to 
chlorophyll plus green 
region characteristics 

279,06 2 

2 Band 3 0,38 Sensitive to chlorophyll 295,44 6 

3 Band 1 0,337 Sensitive to chlorophyll and 
carotinoid concentrations 

281,00 3 

4 Band 7 0,332 Sensitive to water in plant 
leaves 

284,12 4 

5 Principal 
component 
1 

0,326 Combined information from 
all bands maximizing 
variance in a new spectral 
axis 

294,14 5 

6 Brightness 0,314 Soil brightness indicator, 
relation to the biomass 
content has not been 
described yet 

305,58 8 

7 Band 5 0,313 Sensitive to water in plant 
leaves 

276,40 1 

8 Wetness 0,296 Contrasts middle-infrared 
reflectance with visible and 
near-infrared reflectance, 
represents a degree of 
moisture sensitivity 

303,06 7 

9 TVI 0,229 Stretched Blue to the total 
of the visible reflectance 

305,83 9 

10 NDVI 0,201 Stretched NIR to red 
reflectance 

350,21 10 

*r2 value in exponential equation 

 

The current study found that the visible bands (band 2, 3 and 1) have the highest information 

content on forest biomass, when the regression method is used. They are followed by band 7. 

Similar results were obtained by the study of Franklin (1986). The study reported that the value of 

r2 was higher for visible bands (0.22, 0.28, 0.29 for TM band 1, 2 and 3), however, lower for near 

�

V
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infrared (0.04, band 4) and mid infrared bands (0.03, band 7) in logarithmic transformation for 

predicting basal area of conifer, hardwood and mixed evergreen forest of California. However, this 

phenomenon was not supported by some of the other studies. Ardö (1992) found a highest 

correlation with band 5 (r2 = 0.62), though band 2 (r2 = 0.61) was quite close to it. The study by 

Steininger (2000) reported the aboveground dry biomass has a moderate correlation with Landsat 

TM band 5 in an exponential relationship for the tropical secondary forest of the study site in Brazil 

(r2 value was 0.51).  

 

The reason for improving the value of r2 in transformation is due to the asymptotic nature of the 

relationship between spectral reflectance and biomass content. This could be the result of 

saturation effect. The figure 5.9(a) shows that low biomass values lie near to the zero residual line 

but point towards high biomass values were scattered away from that line. The above result agreed 

with Franklin (1986) who suggested that when the vegetation cover approaches 100%, the basal 

area (i.e. wood volume or wood biomass) continues to increase as the stand grows older, but the 

remotely sensed signal is not affected by this increase because it is most sensitive to the degree of 

crown closure.  

 

NDVI is sometimes widely used for a lot of the vegetation studies, but has the lowest performance 

for predicting forest biomass and carbon information among the listed components in table 6.1. The 

r2 values found in the current study were 0.14 in simple and 0.20 in exponential relationship. Many 

of the other studies have also reported similar results. A study of Häme et al. (1996) found the 

value of r2 is 0.02 for predicting coniferous stem volume in southern Finland using NDVI. This 

indicates, that almost no relationship exists between these variables. Franklin (1996) reported that 

the relationship with ratio vegetation index (NIR/red channel of TM) was 0.15 in logarithm for 

predicting basal area in the test site of California. Trotter et al. (1997) reported that the r2 value was 

better for the individual band data alone than for NDVI when relating Landsat TM bands and 

volume of coniferous plantation in New Zealand.  

 

The application of dummy variables in regression has significantly improved the relationship. The 

dummy variables have been set from the result of optimal stratification. The value of r2 was 0.89, 

which is quite excellent for a satisfactory prediction. Though dummy variables are sometimes 

applied in other sciences, however, it has not been applied earlier in remote sensing for extracting 

forest biomass and carbon information. Therefore no results from any other similar studies are 

available yet. This is a new finding for the science community. 

 

6.2 Carbon Pool and Flux 

The above-ground carbon pool in a tropical forest ecosystem varies with many factors, for 

example, with the types and stocking of forest, site quality, disturbing patterns etc. Local level 

studies can produce accurate results. However, uncertainties increase when it focusing on regional 
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and global level, unless a sound sampling system is applied to get the information from all the 

representative forest and stocking conditions. The current study estimated that mean aboveground 

carbon stored in the mature tropical wet evergreen and semi-evergreen forest of the study area 

was 133 ton/ha. The result is quite close to the estimate reported by Dixon et al. (1994). The study 

reported that tropical forest in Asia has a vegetation carbon density of 132-174 ton/ha. Brown and 

Lugo (1984) reported the biomass density for tropical undisturbed closed, logged and unproductive 

forests in Bangladesh were 176, 120 and 110 ton/ha (88, 60 and 55 ton/ha of carbon) respectively. 

Brown et al. (1993) reported that the mean carbon was 232 ton/ha in biomass as the potential 

aboveground mean carbon in 1980, whereas 87 ton/ha was the recoded as actual in the forests of 

Bangladesh. Brown (1997) mentioned that the above-ground biomass was 210, 150, 190 and 85 

ton/ha (105, 75, 95 and 42,5 ton/ha carbon) for closed-large crowns, closed-small crowns, 

disturbed closed and disturbed open forest respectively for Bangladesh.  

 

Primary forest biomass estimates varied from 290 to 495 t/ha in Rodontia (145 to 248 t/ha C), 

western Brazilian Amazon (Alves et al. 1997). Dixon et al. (1994) reported that smaller regions of 

Malaysia and Indonesia might contain up to 250 ton/ha of carbon. The study by Murdiyarso and 

Warsin (1995) reported that aboveground carbon was 300-325 ton/ha for primary humid evergreen 

forest of Sumatra, Indonesia. 

 

Secondary forest holds much more lower amount of carbon. This study estimated that secondary 

forest has 100 ton/ha of carbon (75% of the primary forest). Secondary forest of Rodontia, Brazil, 

contains about 40-60% of biomass of the primary forest biomass (58 to 149 t/ha of C) after 18 

years of abandonment (Alves et al. 1997). The clearing history of the secondary forest of the 

current study area is unknown. The area was allotted for felling in different coupes; the practice 

was stopped officially during late 1980s to stop further degradation of forest in the country. 

 

Plantation has a relative lower carbon content than the primary and secondary forests. However, 

the amount of carbon sequestration by a plantation forest depends upon the species planted and 

its growth rate, site quality, cultural and tending operation, disturbance etc. Indigenous and teak 

plantations in the study area were estimated to have 60-75 ton/ha carbon. Rubber has about 30 

ton/ha of carbon. Short rotation acacia has a relative lower amount of carbon (25 ton/ha).  

 

Scrub vegetation has less than 1 ton/ha of carbon. This ecological zone is very close to the 

habitation. Most of the forest in the study area belongs to the Government property. The control 

system to protect forest for this region has broken down. The area seems to be under the process 

of repeated disturbance by human interference, which hinders the process of succession to form 

secondary forest.  

 

About 4 00 250 ton of carbon was released during 1992-2001 (nine years) from our investigated 

test site. It means that about 44 473 ton/year (1 ton = 106 gram) was released from 31 255 ha 
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(about 313 sq. km) of the study area. Dixon et al. (1994) reported that the annual C flux from 

tropical Asian forest is –0.50 to –0.90 Pg/year (I Pg = 1015 gram, Appendix IV). The ratio of the C 

flux of the study area to that figure of continental scale is quite small (0.9 x 10-4 to 0.5 x 10-4). 

 

The test site has released around 13 ton/ha of carbon in 9 years, i.e. 1,4 ton/ha/year. Harmon et al. 

(1996) reported that during harvest approximately 50% of the living biomass is converted to 

additional woody debris that decay on site. Of the carbon removed from the site and distributed to 

the forest products sector, approximately 40% quickly returns to the atmosphere due to losses 

during primary and secondary manufacturing as well as to incineration and decomposition of short-

lived forest products. They stated that the remaining forest products decompose slowly, at a rate of 

approximately 2% per year. This means that about 2 00 130 ton i.e. 0.71 ton/ha carbon (2.61 ton 

carbon di oxide, Appendix IV) was released to the atmosphere from our test site or is going to be 

released soon during the harvesting process. Another 80 050 ton of carbon (2 93 790 ton of 

carbon-di-oxide) has already been released or is going to be released shortly during the secondary 

manufacturing. 

 

However, all the carbon removed from the ecosystem does not come back to the atmosphere 

immediately. The fate of carbon depends upon the end-use of forest products. Table 6.2 reports 

the durability of the forest products coming from the living pool and locked for the time period in 

dead pool. However, after the lifecycle the carbon might come to the atmosphere. 

 
Table 6.2 Different lifespan of various commodities (locked carbon) (Eaggers 2002) 

 
Category Lifespan 

(years) 
Included commodities 

 

Short lifespan paper-products 1 Newsprint, shares of packing papers, paperboard, and 

printing and writing paper 

 

Medium-short lifespan paper-

products 

4 Rest of packing paper, paperboard, and printing and 

writing paper 

 

Short lifespan timber 1 Fuelwood, wooden packing materials and structural 

support materials 

 

Medium-long lifespan timber 16 Part of swan timber and wood-based panels 

 

Long lifespan timber 50 Rest of swan timber and wood-based panel 

 

 
 

However, the estimate of the amount of carbon released to the atmosphere in the current study 

might varies in some extend, because results of a study in the U.S. regarding the fate of removed 
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biomass and durability of forest products were used. But those estimates vary with locality and type 

of wood. Such studies on local level are still quite absent. 
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Chapter VII 

7 Conclusion 

7.1 Important Research Findings 

The results of the current study provide partly new, partly specifically adapted methods to extract 

forest biomass/carbon information from satellite data. Usually the relationship between forest 

variables and spectral reflectance of satellite image using regression is very poor. The current 

study has explored an important finding regarding the use of dummy variables in the regression 

equation. Dummy variables obtained from the optimal stratification can significantly improve the 

correlation (section 5.3.2).  

 

The study has successfully applied the image based COST calculation method developed by 

Chavez and compared the findings for a tropical region located near the seashore (section 5.1). 

The study has also generated the interpretation key and spectral library for the identification of 

tropical forests of southern Chittagong, which are currently not available (section 5.2).   

 

Finally the study calculated the amount of carbon released from the selected area of southern 

Chittagong due to forest cover change (section 5.6). However, the global carbon budget would not 

be influenced by the change of carbon pool in a small test area, however, the global budget would 

be influenced by the change of regional / local budgets if it occurs in many places. Therefore, the 

result of the study is applicable to other forested region to estimate the carbon pool and investigate 

any change in that pool to understand the global carbon dynamics. 

 

7.2 Limitation of the Study 

7.2.1 Remote sensing data 

The current study faced several limitations. One of the main constraints of the study is related to 

the limitations of information, which can be extracted from the optical satellite images. Low-cost 

optical data usually provide the spectral information in passive range. The information could be 

sufficient for detecting forest and forest types, but does not contain the information related to the 

canopy height, which is an important variable for estimating forest volume / biomass and eventually 

the carbon content. In the recent days the availability of laser scanning or even active remote 

sensing data could help to extract those information more precisely. 

 

The other problem is the limited spatial resolution of data sets. Currently Landsat imagery provides 

a spatial resolution of 30-60 meter for the multispectral image of visible to thermal wavelengths. 

However, the use of very high-resolution data with a few meters of spatial resolution i.e. IKONOS 

or QuickBird could mitigate the problem. The current study did not use all those data sets, as they 
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are very costly. Any findings of research using those data sets cannot be applied in a large scale 

by developing countries, where most of the tropical forests are located due to financial constraints.  

 

Satellite sensors acquire radiance values at-satellite level, which are later converted to DNs 

through the use of gain and offset values for distribution. Because of sensor degradation over time, 

gain and offset values are subject to periodic adjustments over the life of a system and are different 

for sensors even of the same type (e.g., Landsat 4 TM and Landsat 5 TM) (Musick 1986, Suits et 

al. 1988, Gallo and Eidenshink 1988). A specific radiance or reflectance level will not be expressed 

as a constant DN value over time or between sensors (Hill and Sturm 1991). Relationships 

between DN values and biophysical factors are therefore time and sensor specific (Graetz 1990). 

To minimize this problem, remotely sensed data for this study were converted to radiance values 

prior to statistical analysis. However, there might be still some errors as periodic adjustments of 

sensors are not continuously done and are rather available at certain time intervals. 

 

7.2.2 Topography 

Errors might also be incurred due to the topographic factors. The study area consists of slightly hilly 

terrain. The reflectance from the sun-facing slopes and opposite ones is not the same. The 

problem could be solved by topographic normalization using a digital elevation model (DEM). But 

currently no DEM is available with an acceptable resolution for the study area. The data of SRTM 

mission by NASA for that region is still not available. Results by Walsh (1987) and Cohen and 

Speis (1992) have demonstrated the topographic influence on monitoring forest stands. 

 

7.2.3 Location uncertainty 

The errors due to the location uncertainty can arise from two sources: (1) satellite data, which are 

geometrically corrected using topographic maps, (2) locating field sample plots by a portable GPS. 

The topographic maps covering the study area have been prepared during the colonial period and 

might contain errors, which should be adjusted by GPS. The current study used a portable GPS, 

which gathers information of position with 15m RMS. In contrast, differential GPS, which shows 

accuracy up to centimetre level, was not available during field sampling. Therefore, this study 

assumed that the biomass and carbon information for the measured plot matched with the 

particular pixel reflectance of the satellite image (30m size), which might not always be true. The 

field measurement value rather might contain information from the neighbouring pixels.  

 

7.2.4 Mixed pixel and classification 

The study generated a carbon map using regression with dummy variables. Though regression is a 

process of predicting variables in a continuous form, however, the use of dummy variables make it 
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discrete for a number of vegetation classes. In reality all the pixels do not belong to a particular 

class, but contain a mixture of two or more classes. Therefore, the accuracy of this study depends 

upon the accuracy of classification for certain classes, which have distinct dummy variables.  
 

7.2.5 Sampling error 

A certain degree of bias might be generated due to the constraints of ideal application of sampling 

technique. The study aimed to use stratified random sampling, but, in practice the exact principle of 

the technique might be absent in some extent due to the difficulties and restrictions of accessibility. 

Therefore, a considerable number of field sample plots were located near the route network. 

Similar problems were also noticed by Köhl et al. (1995). As the accessible areas are more 

vulnerable by disturbance, the remote places should have better stocking under the assumption 

that there is constant site productivity. This fact might affect the current study because the estimate 

using the stratification method generates the lowest amount of carbon content compared to the 

estimates obtained by the other two methods. The other problem might be related to the local field 

officials. They usually have a tendency to locate the field samples on the best stocking in their 

jurisdiction.     

 

7.2.6 Measurement error 

Two variables, tree height and diameter at breast height (dbh) were measured during field 

sampling and were later converted to biomass and carbon content. Dbh can be accurately 

measured by diameter tape. In contrast, heights of selected trees inside a plot were measured to 

get a better efficiency. Most of the height measuring instruments use the trigonometric principle, 

which needs a clear identification of treetops. But inside a dense tropical forest demarcation of 

treetops is often difficult due to the presence of heavy biomass and oval shapes of tree crown in 

some cases. Some errors might be added due to lack of proper identification of treetop. The 

heights of the remaining trees were estimated from the nearby measured height. This practice 

might have incurred some errors as well.  

 

7.2.7 Estimation error 

The accurate measurement of biomass and carbon content of forest requires destructive sampling, 

which is an expensive and time-consuming process. In some cases it is virtually impossible due to 

the prohibition of felling. Therefore, the study is highly depending on the allometric relationships 

between tree dbh and height with volume/biomass. The accuracy of this study relies to the 

accuracy of those relationships. Moreover, the respective equations were not available for all those 

species found in the tropical forest, because of its high biodiversity. Many of the species are not 

commercially important and consequently no relationship for those species has yet been 
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developed. Hence, the current study used an equation for the mixed species. Using that equation 

may have incurred a certain degree of errors.  

 

Most of the available allometric equations were applicable to estimate volume, which was later 

converted to the biomass content using the wood density for a particular species. Wood density 

varies with the portion of wood, either sapwood or heartwood from stem or branches, or even the 

geographical position. However, the wood density was not available for all the species. In that 

case, a constant close to the average density of other species was used, which could have 

incurred a considerable error.   

 

7.2.8 Lack of below-ground carbon information 

Another limitation of the current study is related to the fact that it is only concerning the 

aboveground biomass. Below-ground processes have not been considered. There is currently no 

consensus about whether tropical deforestation results in a significant reduction of soil carbon 

stocks (IPCC/OECD 1994), although some evidence suggests that clearing and burning of forests 

may reduce soil carbon by various means, such as oxidizing carbon near the soil surface (Cerri et 

al. 1991, Kauffman et al. 1995) or causing decomposition of deep or shallow roots from the original 

forest (Nepstad et al. 1994). If deforestation or fragmentation leads to substantial losses of below-

ground carbon, then our estimation would have to be modified accordingly. 
 

7.3 Recommendation and Future Outlooks 

The study has developed a method, which allows for the extraction of forest biomass and carbon 

information in a precise way. The method requires low-cost satellite imagery and some field 

sampling, which is indeed not that expensive to be conducted in a developing country. The 

technique can be successfully applied for periodic monitoring of forest condition and for updating 

biomass and carbon accounting. Thus it can be used as an operational tool for many of the tropical 

countries. However, there would be a generalization problem due to the coefficients and constants 

of the regression equation. This means that the values calculated for the study area cannot be 

used to predict forest biomass and carbon stock information for different regions or forest types, 

because the relationships between the forest biomass and their spectral reflectance depend upon 

the canopy cover, canopy optical properties, presence of shadows, understorey reflectance and 

topographic conditions, if no topographic normalization is applied. Though there are some relations 

of those factors with biomass, it is not strong enough for a successful prediction. Therefore, it is 

necessary to calculate those coefficients and constants in regression for particular regions and 

forest types. Such generalization problems have also been discussed by Foody et al. (2003), 

Woodcock et al. (2001) and others. 

 



 172

The study concludes with the following recommendations: 

 

1. Use of dummy variables in regression provides better results for extracting forest biomass 

and carbon information over the methods of knn and traditional regression. Those dummy 

variables can be obtained from the result of stratification. Stratification generates a slightly 

better result in some cases. However, the method does not generate continuous 

information on pixel level, it rather provides discrete and constant information for the whole 

class, which is not appropriate in reality. On the other hand knn needs a huge number of 

field sample plots. Additionally details of statistics for prediction still are not available. 

However, it should also be kept in mind that the current study has only applied one form of 

k (k = 1).  

 

2. Mature primary forest of the study area contains the highest amount of carbon (130-140 

ton/ha) in unit of area for the study region. Any other forest types (except young secondary 

forest) do not contain more than 55% of the carbon storage which primary forest holds. 

Therefore, conversion of such forest will have a great impact on carbon release in a short 

period of time. During the last decade primary forest of the study area showed average 

degradation and carbon release of 1.2 ton/ha/year due to removal of timber from the 

forests. Therefore, the study recommends halting further degradation of mature primary 

forest by means of better protection and by better motivation of the local people. 

  

3. The possibility of carbon sequestration by mature forest is limited because of the presence 

of mature and over-mature trees at a large extend, which exhibit a very slight or stagnant 

growth. On the other hand young secondary forests and young plantations have a high 

potential of carbon sequestration in near future, because the trees exhibit a high growth 

rate in their early stage of life. During the last decade the net sequestration by plantation in 

the study area was negligible perhaps due to the removal of timber by human activity. But 

young secondary forest in the study area has sequestrated carbon around 1.7 ton/ha/year 

because of their growth and because the area was not affected by human interference, as 

it is located in a remote place. Therefore, the conversion of mature forest to plantation for 

carbon sequestration is not recommended, not only due to the man-made pressure on 

forest and plantation but also for biodiversity and other ecological reasons. 

 

4. Mature primary and young secondary tropical forests are easily distinguishable on Landsat 

ETM+ imagery. Bamboos, when dominant in the upper canopy, can also be separated. 

However, the presence of bamboo in a mixed form with other trees and as understorey is 

rather difficult to detect. Scrubby vegetation is also distinguishable on imagery. Some 

plantations can also be separated. Rubber (i.e. leafless stage) and acacia plantations can 

be easily detected. Plantations with indigenous forest can also be distinguished. However, 

in some cases they exhibit the similar reflectance as young secondary forests, especially 
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when the weeding operation is not regularly applied in the early stage of the plantation and 

the planted trees are intermixed with understorey natural vegetation. Teak can be 

separated from other plantations, but it is hard to distinguish it from scattered trees and 

degraded mature forests, as all these three categories show the similar reflectance. 

 

5. Atmospheric correction and conversion of digital number to surface reflectance is 

necessary for multi-temporal studies, because the digital count is scene specific while the 

reflectance value is general. However, such a correction is sometimes not sufficient and an 

additional normalization between multi-date images is often required. This might be 

essential due to sensor degradation or even if multi-sensor imagery is used, as the spectral 

window for different bands in multi-sensor imagery is often similar but not the same. 

 

The study has discovered an improved relationship in the regression equation and consequently it 

is expected that the method could be widely used for monitoring tropical forest biomass and carbon 

storage in near future. However, the applicability of the method is not only limited to tropical 

vegetation. It can also be applied to temperate and boreal forest conditions. However, the 

applicability of the method for such forests is rather simple. Because those forests are 

homogenous and have less variability than the tropical forest due to presence of a limited number 

of flora in the upper canopy often forming a canopy of homogenous height. In contrast, tropical 

forests are often diverged due to the presence of a large number of species. The change in the 

temperate and boreal forests is also limited. Carbon sequestration due to forest growth is much 

more slower in these forests than in the tropics. Forest destruction is rather extended and 

homogenous and is followed by the prescription of management plans in those forests. On the 

other hand trees in tropics have a high rate of growth. Small-scale clearings and removal of 

selected trees are very common there, which is rather difficult to monitor from satellite platform. 

The change in tropical forests often occurs in localized pattern, which are quite variable from place 

to place and are often not followed by the prescription of the management plans, even if those 

plans would exist. 

 

Further studies can be carried out in order to incorporate height information and to improve the 

relationship. In that regard, the incorporation of laser-scanning data could improve the equation 

significantly. Most of the optical sensors heavily depend on the presence of green biomass on the 

top canopy. However, a major amount of above-ground carbon stored in a mature forest 

ecosystem is not sequestrated in the green biomass but in the tree trunks and branches. A main 

difficulty noticed by the current study was the lack of being able to acquire this information by most 

of the remote sensing optical sensor. Therefore, the specific task of remote sensing scientist would 

be to develop such types of sensors, which could also collect that information. Additional studies 

should also be carried out to extract forest biomass and carbon information from the microwave 

data, which has some penetration ability in combination with the optical image. Studies are also 

needed to make better prediction of forest attributes from remote sensing data using different 
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methods in combination. Finally, the study also missed the availability of appropriate allometric 

relations for a number of species growing in the study region. The task of local forest researchers is 

to carry out further investigations in this regard. Local studies for estimating the flow of carbon from 

forest to the atmosphere is quite absent. Further studies should be carried out in this regard. 
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APPENDIX I 

A - I. Calculation of atmospheric correction 

A. Calculation for historical image (Landsat TM 1992) 

 

Table 1: Conversion of minimum DN value to at-satellite minimum spectral radiance 

 

Band QCAL LMAX1 LMIN1 QCALMAX L1.min 

1 55 15.21 -0.15 255 3.162941 

2 22 29.68 -0.28 255 2.304784 

3 22 20.43 -0.12 255 1.652941 

4 12 20.62 -0.15 255 0.827412 

5 5 2.719 -0.037 255 0.017039 

7 3 1.438 -0.015 255 0.002094 

 

Table 2: Computation of the radiance of a dark object (assumed reflectance as 1%) 

 

Band ESUN1 q (solar 

zenith 

angle) 

d (Earth-

Sun 

distance) 

pi L1.1% 

1 195.70 53.48 0.986188 3.141593 0.637103 

2 182.90 53.48 0.986188 3.141593 0.595432 

3 155.70 53.48 0.986188 3.141593 0.506883 

4 104.70 53.48 0.986188 3.141593 0.340852 

5 21.93 53.48 0.986188 3.141593 0.071393 

7 7.45 53.48 0.986188 3.141593 0.02426 

 

Table 3: Computation of haze correction 

 

Band L1.haze 

1 2.525838

2 1.709352

3 1.146059

4 0.486560

5 -0.054350

7 -0.022170
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B. Calculation for recent image (Landsat ETM+ 2001) 

 

Table 1: Conversion of minimum DN value to at-satellite minimum spectral radiance 

 

Band QCAL LMAX1 LMIN1 QCALMAX L1.min 

1 58 191.6 -6.2 255 38.789804 

2 40 196.5 -6.4 255 25.427451 

3 31 152.9 -5.0 255 14.195686 

4 22 157.4 -5.1 255 8.919608 

5 11 31.06 -1.0 255 0.382980 

7 10 10.8 -0.35 255 0.087255 

8 22 243.1 -4.7 255 16.678824 

       

 Table 2: Computation of the radiance of a dark object (assumed reflectance as 1%) 

  

Band ESUN1 q (solar 

zenith 

angle) 

D (Earth-

Sun 

distance) 

pi L1.1% 

1 1969.00  47.007903 0.986305 3.141593 6.356494 

2 1840.00 47.007903 0.986305 3.141593 5.940045 

3 1551.00 47.007903 0.986305 3.141593 5.007070 

4 1044.00 47.007903 0.986305 3.141593 3.370330 

5 225.70 47.007903 0.986305 3.141593 0.728624 

7 82.07 47.007903 0.986305 3.141593 0.264945 

8 1368.00 47.007903 0.986305 3.141593 4.416294 

      

Table 3: Computation of haze correction 

  

Band L1.haze 

1 32.4333103 

2 19.4874062 

3 9.18861588 

4 5.54927806 

5 -0.3456436 

7 -0.1776905 

8 12.2625293 
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APPENDIX II 

A - II. Projection parameters used for geometric correction 

 

Map Information 

Site : Landsat ETM+/TM 136-045 

 

Geographical Extent 

 

                       Latitude       Longitude 

 

Upper Left     92 04 35 E      21 38 17 N 

Upper Right   92 13 45 E     21 38 09 N 

Lower Left     92 04 24 E      21 27 42 N 

Lower Right   92 13 36 E     21 27 33 N 

 

Map Series Used 

 

Source:                Topographic maps, 

                             Survey General of Bangladesh 

Scale                    1:50,000 

Date                      Variable 

 

 

Projection Type    Lambert Conformal Conic 

Spheroid              Everest  

Datum                  Indian (Bangladesh) 

 

False easting:       2743185.699 meters 

False northing:     914395.233 meters 

 

Longitude of central meridian:    90:00:00 E 

Latitude of 1st standard parallel:  23:09:00 N 

Latitude of 2nd standard parallel: 28:48: 00 N 

Latitude of origin of projection:   26:00:00 N 

 

 



 vi

APPENDIX III 

A - III. Accuracy of GPS and geodetic points 

 

Geographic position Geodetic point no Location 

Actual Measured 

FM-0209 Cox’s Bazar 21°26’25.8”

91°58’10.4”

21°26’25.9”

91°58’10.5”

FM-0283 Badarkhali 21°43’05.2”

91°57’22.4”

21°43’05.6”

91°57’22.7”

FM-0426 Satkania 22°04’50.6”

92°01’44.4”

22°04’50.8”

92°01’44.5”

FM-0428 Keranirhat 22°05’39.9”

92°04’55.9”

22°05’40.4”

92°04’56.2”

FM-0590 Ramu 21°24’57.9”

92°06’39.90”

21°24’58.2”

90°06’40.1 ”

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-II. Geodetic pillar and acquiring geographic position by a handheld GPS 
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Appendix IV  

A - IV. Conversion units for estimating carbon 

 

Table 1. Conversion units for estimating carbon content (IPCC 200) 
 

1 tonne (t) 

 

1000 kilogram (kg) 106 gram (g) 1 Megagram (Mg) 

1 Megatonne (Mt) 

 

1,000,000 t 1012 g 1Teragram (Tg) 

1 Gigatonne (Gt) 

 

1,000,000,000 t 1015 g 1 Petagram (Pg) 

1 hectare (ha) 

 

10,000 square metre (m2)     

1 square kilometee (km2) 

 

100 hectare (ha)     

1 tonne per hectare (t ha-1) 

 

100 gram per square metre  

(g m-2) 

    

1 tonne carbon 

 

3.67 tonne carbon dioxide (t CO2)     

1 tonne carbon dioxide 

 

0.273 tonne carbon (t C)     

1 tonne 

 

0.984 imperial ton 1.10 US ton 2,204 pound 

1 hectare (ha) 

 

2.471 acre     

1 square kilometre (km2) 

 

0.386 square mile     

1 tonne per hectare (t ha-1) 

 

892 pound per acre    
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APPENDIX V 

A - V. Allometric relations to estimate volume of standing trees from measured dbh and 
height  

Table 1. Allometric relationship for different species in the plantations of Bangladesh 

 

Species 

 

Allometric relations (total volume overbark) References 

Dipterocarpus 

turbinatus 

V = 0.000390878 + 0.00064549776D2 + 

0.0001478277DH + 0.00002407D2H 

(Choudhury and 

Davidson 1984)   

Syzigium grande   

 

V = 0.00019297 D2 + 0.000029437 + 0.0002489 DH + 

0.0000243726 D2H 

(Choudhury and 

Davidson 1984)   

Tecktona grandis  

 

Ln(V) = 1.62116 ln (D) + 1.6483 ln(H) – 9.48076 Latif et al. 1986 

Acacia 

auriculiformis 

 

Ln(V) = -9,125+1,918*Ln(D)+0,67988*Ln(H) Latif et al. 1995 

Acacia mangium 

 

Ln(V) = -9,1426+1,7612*Ln(D)+0,83335*Ln(H) 

 

Latif et al. 1993 

D is dhb in cm 

H is total height in m and 

V is total volume overbark in m3 
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Table 2. Allometric relationship for different species in natural forests of Bangladesh (Latif et al. 1986) 

 

Allometric relation 

 

Species 

 total volume overbark 

 

Branchwood volume factor 

Aphanamixis 

polystachya 

 

Ln (V) = 1.9328 ln (D) + 0.6992 ln (H) – 

8.9863 

 

F = 0.07395 (1.0 – e –0.18846 D) 

4054.6 

 

Artocarpus 

chaplasha 

 

Ln (V) = 2.13197 ln (D) + 0.294608 ln (H) 

– 8.66393 

 

F1 = 1 / (9.179182 + 1546.113e-

0.0965741 D) 

 

Bombax ceiba 

 

Ln (V) = 1.9419 ln (D) + 0.5276 ln (H) – 

9.1013 

 

 

Dipterocarpus 

gracilis 

 

Ln (V) = 1.8660 ln (D) + 0.9648 ln (H) – 

9.4406 

 

 

Dipterocarpus 

costatus 

 

Ln (V) = 1.76514 ln (D) + 1.00107 ln (H) – 

9.1692675 

 

F = 0.0005324126 D – 

0.0000034916D2 – 0.01252606 

Dipterocarpus 

turbinatus 

 

Ln (V) = 1.64852 ln (D) + 1.13061 ln (H) – 

9.187185 

 

F = 0.000190656 D + 0.000004132 

D2 – 0.005090909 

Duabanga 

grandiflora 

 

V = 0.0004129 D2 + 0.001298 H + 

0.0000247 D2H – 0.5127 

F = 1/(5.2419 + 416737.9e-

0.2012D) 

Mangifera 

sylvatica 

 

Ln (V) = 2.0808 ln (D) + 0.6926 ln (H) – 

8.9048 

 

F2 = 0.2134 – 0.008965 D + 

0.00009556 D2 

 

Schima wallichi 

 

V = 0.05978 – 0.00003151 D2 + 0.01648 

H + 0.00002781D2H 

 

F = 0.09787 – 3.0658 e – 0.1131D 

 

Swintonia Ln (V) = 1.81484 ln (D) + 0.827986 ln (H) F = 0.2927091 (1- e -0.0287884 D) 

                                                      
1 Conversion factor (F) of Branchwood volume is computed by multiplying total volume overbark by the factor 
and then to be added to the total volume to get total volume including branches 
2 Since this is a quadric, extrapolation much beyond the range of the data would be unwise 



 x

floribunda 

 

– 8.862135955 

 

12.07019 

 

Syzygium grande 

 

V = 0.08566 + 0.0002378 D2 + 0.011944 

H + 0.000023649 D2H 

 

F3 = 0.004358 D – 0.000032 D2 – 

0.09923815 

 

Terminalia 

bellerica 

 

Ln (V) = 1.7826 ln (D) + 0.6257 ln (H) – 

8.3245 

 

F = 0.00002085 D-2.4536 

 

Tetrameles 

nudiflora 

 

Ln (V) = 1.85222 ln (D) + 0.687905 ln (H) 

– 8.492536 

 

F = 0.0000124585D3.4442044 

 

Mixed species 

group 

 

Ln (V) = 1.59316 ln (D) + 0.940025 ln (H) 

– 8.3367 

 

F = D / (17.6668D – 0.1012375 D2 – 

241.9453) 

 

 

D is dhb in cm 

H is total height in m and 

V is total volume overbark in m3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
3 If F is negative set F = 0 
4 up to a diameter of 100 cm then use constant F = 0.166 
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APPENDIX VI 

A - VI. Some common species of the study area and their densities 

(http://www.worldagroforestrycentre.org/sea/products/afdbases/wd/index.htm and FAO 1997) 

 

Density Species Name 

Low Medium High 

Moisture 

content 

(%) 

Notes Reference 

Acacia 

auriculiformis 

 

-  404 - - Thailand 
Prosea Database, 

PROSEA 

Acacia mangium 

530 610 660 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Actinodaphne sp 

 
430 - 815 15 - Prosea 5(3) p:45 

Adina cordifolia 

 

- 580 - - - FAO 1997 

Alstonia scholaris 

 
270 300 490 15 - Martawijaya et al. 1992  

Anisoptera 

scaphula 
510 - 815 15 - Prosea 5(1) p:102 

Antidesma 

ghaesembilla 580 660 740 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Aphanamixis 

polystachya 600 690 750 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Artocarpus 

chaplasha 

 

-  241 - - - Prosea 2 p:81 

Artocarpus sp. 

 
420 640-875 945 15 - Prosea 5(2) p:60 

Beilschmiedia sp 

 
430 470-680 815 15 - Prosea 5(2) p:78 

Bombax ceiba 

 

120 300 470 15 - Anon 1981 



 xii

Bursera serrata 

 

- 590 - - - FAO 1997 

Callicarpa sp. 

340 410 480 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Calophyllum sp 

 
-  680 - 15 average Prosea 5(1) p:115 

Carallia sp. 

 
640 - 1050 15 - Prosea 5(3) p:135 

Cassia fistula 

 760 920 1050 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Ceriops decandra 

 -  960 - 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Cinnamomum sp. 

 
350 370 860 15 - Prosea 5(2) p:131 

Cordia dichotoma 

 390 480 620 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

 

Dillenia pentagyna 

 

560 690 820 15 - 

Prosea 5(2) p:182; Oey 

Djoen Seng (1951) in 

Soewarsono, PH (1990) 

 

Diospyros sp. -  1030 - 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Diospyros toposia 

-  870 - 15 sapwood 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Dipterocarppus 

gracilis 
580 730 1000 15 - Martawijaya  et al. 1992 

Dipterocarpus 

turbinatus 
750 - 850 - Vietnam 

Nguyen Ngoc Chinh et 

al. 1996.  

Eugenia sp. 

 
450 520-925 1100 15 - Prosea 5(2) p:442 

Ficus 

benghalensisi 
-  480 - 15 sapwood 

Oey Djoen Seng (1951) 

in Soewarsono, PH 



 xiii

(1990)  

Ficus sp. 

 
190 - 740 15 - Prosea 5(3) p:233 

Firmiana sp. 

 
355 - 400 15 - Prosea 5(3) p:239 

Garcinia sp. 

 
-  910 - - - 

Memed, R., Paribotro, S. 

and Kliwon S. 1981  

Glochidion sp. 

 
440 - 890 15 - Prosea 5(3) p:258 

Gmelina arborea 

 
400 - 560 - - 

Agroforestry tree 

Database, ICRAF 

Hevea brasiliensis 

550 610 700 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Hopea odorata 

 
620 - 930 15 - Prosea 5(1) p:251 

Kandelia candel 

 540 580 640 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990) 

Lagerstroemia 

speciosa 
580 690 810 15 - Martawijaya et al. 1992  

Lannea 

coromandelica -  430 - 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990) 

Macaranga 

denticulata -  410 - 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Mangifera indica 

630 670 730 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Mangifera sp. 

 
410 450 800 15 - Prosea 5(2) p:324 

Meliosma pinnata 

340 400 430 15 sapwood 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Michelia champaca 
510 560 620 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 



 xiv

(1990)  

Microcos sp. 

 
290 - 840 15 - Prosea 5(3) p:379 

Mitragyna 

parvifolia 

 

-  641 - 12
average 

density 

Forestry Compendium, 

CAB International 

Myristica sp. 

 -  540 - - - 

The Wood Exchange 

(http://www.thewoodexc

hange.info) 

Phyllanthus 

emblica 

 

730 840 940 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Pterocarpus 

dalbergioides 
-  775 - 12

Andaman 

Islands 
Prosea 5(1) p:379 

Pterocarpus spp. 

 -  440 - - 

basic 

density in 

Brazil 

Fearnside, P.M. 1997  

Pterospermum sp. 

 
300 - 780 15 - Prosea 5(3) p:480 

Quercus sp 

 
520 815 1100 15 - Prosea 5(2) p:410 

Quercus velutina 

-  650 - - - 

Woods of the World 

(http://www.forestworld.c

om) 

Randia sp. 

-  910 - 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Salix tetrasperma 

420 420 430 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Sapium baccatum 

 
310 350 420 15 - Anon 1981 

Schima wallichii 

 
700 - 800 - Vietnam 

Nguyen Ngoc Chinh et 

al. 1996  

Spondias sp. 

 
245 320 480 15 - Prosea 5(3) p:532 

Sterculia sp 120 250-600 760 15 - Prosea 5(2) p:424 
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Swintonia 

floribunda 610 770 880 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Syzygium 

claviflorum 

 

720 - 880 15 - Prosea 5(2) p:451 

Syzygium cumini 

 730 800 870 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Syzygium species 

 
- 690 - - - FAO 1997 

Tectona grandis 

 590 700 820 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

Terminalia chebula 

 
-  880 - 12 - Prosea 5(2) p:483 

Tetrameles 

nudiflora 

 

250 320 420 15 - 

Prosea 5(3) p:554; Oey 

Djoen Seng (1951) in 

Soewarsono, PH (1990) 

Toona ciliata 
-  530 - 14

Malaysia, 

Thailand 

PROSEA Timber 

Tree,CD ROM series 

Vitex glabrata 

720 740 780 15 - 

Prosea 5(2) p:508; Oey 

Djoen Seng (1951) in 

Soewarsono, PH (1990) 

Vitex sp 

 
340 520-940 1010 15 - Prosea 5(2) p:502 

Xanthophyllum 

flavescens 

 

-  805 - 12
The 

Philippines

PROSEA Timber 

Tree,CD ROM series 

Ziziphus sp. 

 1020 1080 1140 15 - 

Oey Djoen Seng (1951) 

in Soewarsono, PH 

(1990)  

 

Note: If the Moisture content is undefined, it should be assumed as 15% 
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APPENDIX VII 

A - VII. List of species found in the study area 

Scientific Name Local name 

 

Family 

Acacia auriculiformis Griseb. Akashmoni Leguminosae 

 

Acacia mangium Willd. Mangium Leguminosae 

 

Actinodaphne sp / Dehaasia kurzi (Thunb). Madanmasta  Rubiaceae 

 

Adina cordifolia Hook. Mala Rubiaceae 

 

Adina cordifolia Hook. Sandang Rubiaceae 

 

Aegialitis rotundifolia Roxb. Nunia Plumbagiceae 

 

Alstonia scholaris (L.) R. Br. Chatian Apocynaceae 

 

Amaranthus tricolor L.  Denga Amarantheaceae 

 

Anisoptera scaphula Roxb. Boilum Dipterocarpaceae 

 

Antidesma ghaesembilla Gaertn. Elena  Euphorbiaceae 

 

Aphanamixis polystachya (Wall.) R. N. Park. Royna Meliaceae 

 

Aphanamixis polystachya Wall. R. N. Park. Pitraj Meliaceae 

 

Areca catechu L. Gua Palmae 

 

Artocarpus chaplasha Roxb. Chapalish / Chhram Moraceae 

 

Artocarpus lakoocha Roxb. Barta Moraceae 

 

Beilschmiedia pseudomicrocarpa Chongri Lauraceae 
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Bursera serrata Wall. Gutguttya Burseraceae 

 

Callicarpa arborea Roxb. Bormala Verbenaceae 

 

Calophyllum polyanthum Wall. Kamdev, Pouia  Guttiferae 

 

Carallia lucida Roxb. Kiabong Rhizophoraceae 

 

Cassia fistula L. Bandarlathi Leguminosae 

 

Cassia fistula L. Sonalu  Leguminosae 

 

Ceriops decandra Griff. Ding Hou Guttya Rhizophoraceae 

 

Cinnamomum iners Reinw. Tejbohu  Lauraceae 

 

Cordia dichotoma Fors f.  Bohari Boraginaceae 

 

Curcuma longa L. 

 

Haldi Zingiberaceae 

Derris trifoliata Lour. Kalilata Leguminosae 

 

Dillenia pentagyna Roxb. Hargeza / Akushi Dilleniaceae 

 

Diospyros peregrina L. Gab  Ebena 

 

Diospyros toposia Ham. Gabgula  Ebenaceae 

 

Diospyros toposia Ham. Katgula Ebenaceae 

 

Dipterocarpus gracilis Bl. 

 

Sil garjan Dipterocarpaceae 

Dipterocarpus turbinatus Gaertn. Garjan  Dipterocarpaceae 

 

Elaeocarpus robustus Roxb. Jalpai Elaeocarpaceae 

 

Engelhardita spicata Lesch. Ex. Bl. Dad Juglandaceae 
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Ficus benghalensis L. Bat  Moraceae 

 

Ficus hispida L f. Dumur Moraceae 

 

Firmiana colorata R. Br. Ujal Sterculaceae 

 

Garcinia cowa Roxb. Kao Guttiferae 

 

Gardenia coronaria Ham. Kanyari Rubiaceae 

 

Glochidion lanceolarium Dalz. Kechua Euphorbiaceae 

 

Glochidion multiloculare Muell.-Arg. Paniaturi Euphorbiaceae 

 

Glycosmis pentaphylla (Retz.) A. DC. Rang gash Rutaceae 

 

Hevea brasiliensis Rubber Euphorbiaceae 

 

Holigarna longifolia Roxb. Barola Anacardiaceae 

 

Hopea odorata Roxb. Telsur Dipterocarpaceae 

 

Kandelia candel L. Druce Gora Rhizophoraceae 

 

Lagerstroemia speciosa (L.) Pers. Jarul Lythraceae 

 

Lannea coromandelica (Houtt.) Merill. Bhadi  Anacardiaceae 

 

Macaranga denticulata Muell.-Arg. Bura Euphorbiaceae 

 

Maesa indica Wall. Ramjani Myrsinaceae 

 

Mangifera indica Am (Mango) Anacardiaceae 

 

Mangifera sylvatica Roxb. Uriam  Anacardiaceae 
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Marinda angustifolia Roxb. Pandogi Rubiaceae 

 

Meliosma pinnata Maxim. Adaliya Sabiaceae 

 

Michelia champaca L. Champafool,  Magnoliaceae 

 

Microcos paniculata L.  Assar   Tiliaceae 

 

Mitragyna parvifolia (Roxb.) Korth. Dakrum  Rubiaceae 

 

Myristica linifolia Am-barola Anacardiaceae 

 

Paspalum scrobiculatum Boj. Goaicha 

 

Graminae  

Phyllanthus emblica L. Amloki  Euphorbiaceae 

 

Pithecellobium clypearia Benth. Kuramara Leguminosae 

 

Pterocarpus chelonioides (L. f.) DC. Dharmara  Bignoniaceae 

 

Pterocarpus dalbergioides Padauk  Leguminosae 

 

Pterospermum acerifolium Willd. Moos  Sterculaceae 

 

Quercus acuminata Roxb. Kalibatna Fagaceae 

 

Quercus spicata Sm. Batana  Fagaceae 

 

Quercus velutina Lindl. Sil batana  Fagaceae 

 

Randia dumetorum Lamk. Mankata Rubiaceae 

 

Salix tetrasporma Panijoma Salicaceae 

 

Sapium baccatum Roxb. Kala boil / Champata Euphorbiaceae 

 

Schima wallichii Chilauni Theaceae 



 xx

 

Spondias pinnata (L. f.) Kurz Amrah  Anacardiaceae 

 

Swintonia floribunda Griff. Civit/Amchandul Anacardiaceae 

 

Syzygium claviflorum (Roxb,) Wall. Nali jam Myrtaceae 

 

Syzygium cumini Putijam Myrtaceae 

 

Syzygium grande (Wt.) Wall. Dhakijam Myrtaceae 

 

Syzygium grandis (Wt.) Wall. Jam Myrtaceae 

 

Syzygium syzygiodes Merr. Khorijam Myrtaceae 

 

Syzygium wallichi Wall.  Dholijam Myrtaceae 

 

Tectona grandis L. f. Teak Verbenaceae 

 

Tephrosia purpurea (L.) Pres. Lohamohori Leguminosae 

 

Terminalia chebula Retz Haritaki Combretaceae 

 

Tetrameles nudiflora R. Br. Chundul Datiscaceae 

 

Toona ciliata J. Roem.  Toon Meliaceae 

 

Trewia polycarpa Benth. Latim Euphorbiaceae 

 

Vitex glabrata Heyne Goda / Harina Vitaceae 

 

Xanthophyllum flavescens Roxb. Hansak Polygalaceae 

 

 

N.B. Some of the local names were not found in the literature and therefore included in the mixed 

species group 
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APPENDIX VIII 

A - VIII. Raw data collected by field survey 

Sl 

no. 

 

Str. 

no 

Plot 

no 

Vegetation 

type 

Latitude 

(N) 

Longitude 

(E) 

Owner Range Beat Carbon 

(Ton/ha) 

1 1 1 Acacia 

auriculiformis 

21°30'09,9" 92°05'53,2" BFD Meherghona Dhalirchara 22,87

2 1 2 Acacia 

auriculiformis 

21°30'09,0" 92°06'09,4" BFD Meherghona Dhalirchara 24,93

3 1 3 Acacia 

auriculiformis 

21°30'09,5" 92°06'20,4" BFD Meherghona Dhalirchara 38,32

4 1 4 Acacia 

auriculiformis 

21°30'10,8" 92°06'34,2" BFD Meherghona Dhalirchara 28,14

5 1 1 Acacia 

mangium 

21°35'19,3" 92°09'12,3" BFD Idgarh Idgarh 40,03

6 1 2 Acacia 

mangium 

21°29'46,7" 92°06'06" BFD Joarianala Head 

quarter 

29,40

7 2 1 Bamboo 

 

21°34'40,3" 92°12'03,9" USF Ali Khjang*  89,54

8 2 2 Bamboo 

 

21°34'28,0" 92°12'04,3" USF Ali Khjang  54,40

9 2 3 Bamboo 

 

21°34'22,3" 92°11'58,4" USF Ali Khjang  55,42

10 2 4 Bamboo 

 

21°34'18,2" 92°11'52,3" USF Ali Khjang  45,06

11 2 5 Bamboo 

 

21°35'15,3" 92°12'37,4" USF Ali Khjang  75,44

12 2 6 Bamboo 

 

21°35'03,8" 92°12'32,6" USF Ali Khjang  64,59

13 2 7 Bamboo 

 

21°34'43,4" 92°12'23,6" USF Ali Khjang  54,44

14 3 1 Dhakijam 

 

21°35'33,7" 92°09'52,8" BFD Idgarh Idgarh 61,65

15 3 2 Dhakijam 

 

21°28'01,0" 92°13'19,2" BFD Baghkhali Gilatali 127,59

16 3 3 Dhakijam 21°28'46,2" 92°13'02,2" BFD Baghkhali Gilatali 46,80
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17 3 4 Dhakijam 

 

21°28'43,5" 92°13'15,2" BFD Baghkhali Gilatali 117,35

18 3 5 Dhakijam 21°33'52,1" 92°06'04,9" BFD Bhomoriaghona Head 

quarter 

26,20

19 3 1 Garjan 

 

21°35'03,7" 92°09'35,3" BFD Idgarh Idgarh 195,15

20 3 2 Garjan 

 

21°36'15,5" 92°05'24,2" BFD Fulchari Fulchari 41,98

21 3 3 Garjan 

 

21°36'17,9" 92°05'35,6" BFD Fulchari Fulchari 79,57

22 3 4 Garjan 

 

21°37'26,6" 92°05'54,2" BFD Fulchari Khutakhali 79,26

23 3 5 Garjan 

 

21°37'25,0" 92°06'02,1" BFD Fulchari Khutakhali 130,01

24 3 6 Garjan 

 

21°37'30,5" 92°05'59,0" BFD Fulchari Khutakhali 140,97

25 3 7 Garjan 

 

21°37'44,9" 92°06'08,6" BFD Fulchari Khutakhali 98,70

26 3 8 Garjan 21°29'48,6" 92°06'14" BFD Joarianala Head 

quarter 

21,77

27 3 1 Telsur 21°29'48" 92°06'28,1" BFD Joarianala Head 

quarter 

5,24

28 4 1 Primary forest 21°33'28,1" 92°05'48,8" BFD Bhomoriaghona Head 

quarter 

211,72

29 4 2 Primary forest 21°33'29,1" 92°05'42,9" BFD Bhomoriaghona Head 

quarter 

169,30

30 4 3 Primary forest 21°33'17,4" 92°05'32,8" BFD Bhomoriaghona Head 

quarter 

174,98

31 4 4 Primary forest 

 

21°30'11,3" 92°09'38,2" BFD Idgarh Baishari 136,00

32 4 5 Primary forest 

 

21°30'15,7" 92°09'40,2" BFD Idgarh Baishari 177,93

33 4 6 Primary forest 

 

21°30'48,8" 92°09'49,3" BFD Idgarh Baishari 72,62

34 4 7 Primary forest 

 

21°33'10,5" 92°10'07,3" BFD Idgarh Idgarh 43,41
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35 4 8 Primary forest 

 

21°33'23,6" 92°10'54,2" BFD Idgarh Idgarh 107,60

36 4 9 Primary forest 

 

21°33'29,5" 92°10'49,2" BFD Idgarh Idgarh 170,52

37 4 10 Primary forest 

 

21°35'18,3" 92°06'11,9" BFD Fulchari Rajkhat 131,01

38 4 11 Primary forest 

 

21°35'26,4" 92°06'35,8" BFD Fulchari Rajkhat 151,98

39 4 12 Primary forest 

 

21°29'33,3" 92°12'59,4" BFD Baghkhali Gilatali 65,38

40 5 1 Rubber 21°34'04,3" 92°11'23,8" Private Manjur** 

Choudhury 

 9,85

41 5 2 Rubber 21°34'02,2" 92°11'25,7" Private Manjur 

Choudhury 

 35,35

42 5 3 Rubber 21°33'41,5" 92°11'40,6" Private Manjur 

Choudhury 

 38,36

43 5 4 Rubber 21°33'38,1" 92°11'39,5" Private Manjur 

Choudhury 

 6,27

44 5 5 Rubber 

 

21°33'25,5" 92°11'52,5" Private Masud Parvez**  24,56

45 5 6 Rubber 

 

21°33'12,4" 92°12'03,6" Private Masud Parvez  20,99

46 5 7 Rubber 

 

21°33'16,5" 92°11'52,3" Private Masud Parvez  32,26

47 5 8 Rubber 

 

21°33'12,2" 92°11'37,3" Private Masud Parvez  79,93

48 6 1 Shrub 

 

21°35'04,7" 92°04'46,2" BFD Fulchari Napithkhali 0,20

49 6 2 Shrub 

 

21°35'12,5" 92°04'47,8" BFD Fulchari Napithkhali 0,64

50 6 3 Shrub 

 

21°35'24,5" 92°04'56,7" BFD Fulchari Napithkhali 0,54

51 6 4 Shrub 

 

21°35'23,0" 92°05'08,7" BFD Fulchari Napithkhali 1,36

52 6 5 Shrub 

 

21°34'58,5" 92°05'23,6" BFD Fulchari Napithkhali 1,37

53 6 6 Shrub 21°35'17,2" 92°05'15,8" BFD Fulchari Napithkhali 1,19



 xxiv

 

54 6 7 Shrub 

 

21°35'08,0" 92°04'59,7" BFD Fulchari Napithkhali 0,81

55 7 1 Teak 

 

21°31'22,2" 92°08'59,8" BFD Joarianala Bengdeba 58,18

56 7 2 Teak 

 

21°31'10,8" 92°08'57,8" BFD Joarianala Bengdeba 118,33

57 7 3 Teak 

 

21°28'14,0" 92°13'33,5" BFD Baghkhali Gilatali 79,55

58 7 1 Teak coppice 21°34'04,2" 92°06'20,6" BFD Bhomoriaghona Head 

quarter 

32,13

59 7 2 Teak coppice 21°29'18,1" 92°07'21,2" BFD Joarianala Head 

quarter 

64,57

60 7 3 Teak coppice 21°29'09,8" 92°07'24,4" BFD Joarianala Head 

quarter 

52,36

61 7 4 Teak coppice 21°29'32,8" 92°07'24,4" BFD Joarianala Head 

quarter 

37,96

62 7 5 Teak coppice 

 

21°31'37,1" 92°08'01,0" BFD Joarianala Bengdeba 42,14

63 7 6 Teak coppice 

 

21°31'48,7" 92°08'30,6" BFD Joarianala Bengdeba 62,02

64 8 1 Secondary 

forest 

 

21°33'35,2" 92°11'38,4" USF Ali Khjang  101,54

65 8 2 Secondary 

forest 

 

21°33'53,7" 92°11'34,3" USF Ali Khjang  51,89

66 8 3 Secondary 

forest 

 

21°33'47,9" 92°11'31,1" USF Ali Khjang  86,47

67 8 4 Secondary 

forest 

 

21°33'18,2" 92°12'05,3" USF Ali Khjang  88,97

68 8 5 Secondary 

forest 

 

21°33'20,9" 92°12'04,5" USF Ali Khjang  92,43

69 8 6 Secondary 21°33'23,5" 92°12'04,5" USF Ali Khjang  95,98



 xxv

forest 

 

70 8 7 Secondary 

forest 

 

21°33'25" 92°12'05,7" USF Ali Khjang  90,58

 

BFD: Bangladesh Forest Department 

USH: Unclassified Stated Forest controlled by District Commissioner 

*: Name of the mouza 

**: Name of the owner 
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