Untersuchungen zur Hydrolyse von β-Casein in Modellsystemen und in ausgewählten Käsesorten

DISSERTATION

zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt

der Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden

von

DLC Koch, Juliane

geboren am 13.05.1972 in Dresden

Gutachter: Prof. Dr. rer. nat. habil. Wolfgang Krause Prof. Dr. rer. nat. Dr.- Ing. habil. Thomas Henle Prof. Dr. rer. nat. habil. Jürgen Kroll

Eingereicht am:26.01.2004Tag der Verteidigung:28.04.2004

.....Was wir besiegen, ist das Kleine, und der Erfolg selbst macht uns klein. Das Ewige und Ungemeine *will* nicht von uns gebogen sein......

> (Auszug aus dem Gedicht "Der Schauende" von Rainer Maria Rilke)

Die experimentellen Arbeiten zur vorliegenden Dissertation wurden unter Leitung von Herrn Prof. Dr. rer. nat. habil. W. Krause am Institut für Lebensmittelchemie der TU Dresden in der Zeit von Oktober 1999 bis September 2003 durchgeführt.

Ihm danke ich besonders für die interessante Aufgabenstellung und das stets entgegengebrachte Vertrauen, sowie die ständige Gesprächsbereitschaft und wertvollen Hilfestellungen.

All jenen, die zum Gelingen der vorliegenden Arbeit beitrugen, sei an dieser Stelle ganz herzlich gedankt. Insbesondere danke ich allen Mitarbeitern des Institutes für die angenehme Arbeitsatmosphäre und die vielfältige Hilfe. Namentlich möchte ich erwähnen: Frau W. Babinsky für die Durchführung verschiedener Elektrophoresen; Frau E. Hartwig und Frau DLC M. Partzsch für die stete Hilfsbereitschaft bei gerätetechnischen Problemen helfend zur Seite zu stehen; Frau K. Schlosser und Herrn Dr. rer. nat. H. Nötzold für die Durchführung der Aminosäureanalysen und stetige Diskussionbereitschaft, Herrn Dr. rer. nat. U. Schwarzenbolz für die tatkräftige Unterstützung bei den Messungen am Massenspektrometer.

Weiterhin möchte ich mich bei meinen zwei Diplomandinnen Frau DLC S. Maresch und Frau DLC N. Buchner bedanken, die auch zum Gelingen dieser Arbeit beitrugen. Vor allem Frau DLC N. Buchner leistete einen entscheidenden Beitrag zu dieser Arbeit auch nach Abschluss ihrer Diplomarbeit nahm sie sich immer wieder Zeit fachliche Probleme zu erörtern.

Besonders erwähnen möchte ich meine Kollegin Frau Dr. rer. nat. A. Böhm, die mir während der gemeinsamen Zeit eine gute Freundin und wertvolle Ratgeberin geworden ist. Sie nahm sich neben ihrer Arbeit sehr viel Zeit zum kritischen Durchlesen des Skripts und anschließender Diskussion.

Mein ganz besonderer Dank gilt meinem Freund S. Scherzberg für sein Verständnis, seine Zuneigung und seine Unterstützung vor allem in schwierigen Phasen der Arbeit. Meinen Eltern möchte ich danken, dass sie mir diesen Weg erst ermöglicht haben. Meinem Freund und meiner Familie widme ich diese Arbeit.

I. Inhaltsverzeichnis

1	Einleitung	1
2	Käse	2
	2.1 Begriffsbestimmung	2
	2.2 Technologie der Käseherstellung	3
	2.3 Milchgerinnung als Initiator der Käsereifung	5
	2.3.1 Das Protein des Käses: Casein	5
	2.3.1.1 Allgemeines	5
	2.3.1.2 Zusammensetzung, Struktur und Eigenschaften von Caseinmicellen	6
	2.3.1.3 Struktur und Eigenschaften von β-Casein	8
	2.3.2 Die verschiedenen Phasen der Milchgerinnung und deren Auswirkungen	10
	2.3.3 Milchgerinnungsenzyme	11
	2.3.3.1 Allgemeines zu Lab und Labaustauschstoffen	11
	2.3.3.2 Reaktionsmechanismus der Aspartatproteasen und deren Spezifität	12
	2.3.3.3 Chymosin	14
	2.3.3.4 Suparen	17
	2.4 Die Käsereifung	18
	2.4.1 Allgemeines	18
	2.4.2 Bedeutung der Proteolyse als Hauptprozess der Käsereifung	19
	2.4.3 Entstehung biologisch aktiver Peptide aus dem β -Casein	22
	2.4.3.1 Opioide Peptide	22
	2.4.3.2 ACE-Inhibitoren	23
	2.4.3.3 Immunstimulierende Peptide	23
	2.4.3.4 Phosphopeptide	24
	2.4.4 Bitterpeptide	24
	2.5 Methoden zur Verfolgung der Hydrolyse	25
	2.5.1 Ermittlung der Enzymaktivität	25
	2.5.2 Chemische Methoden	25
	2.5.3 Elelektrophoretische Untersuchungen der Hydrolysate	27
	2.5.4 Trennung der β -Caseinhydrolysate mittels Gelpermeationschromatographie	27
	2.5.5 RP-HPLC-Untersuchungen	28
	2.5.6 Fraktionierung von Hydrolysaten	28
	2.6 Analyse der terminalen Aminosäuren	29

	2.6.1	Analyse der C-terminalen Aminosäuren mittels Carboxypeptidase A und B	29
	2.6.1	.1 Allgemeines zu den Carboxypeptidasen	29
	2.6.1	.2 Derivatisierung der abgespaltenen Aminosäuren mit FMOC-Cl	30
	2.6.1	.3 Trennung der C-terminalen Aminosäuren mittels Ionenaustauschchromato-	
		graphie und Nachsäulenderivatisierung mit Ninhydrin	30
	2.6.2	Analyse der N-terminalen Aminosäuren	31
	2.7 Mas	senspektrometrie	32
	2.7.1	Allgemeines	32
	2.7.2	Untersuchung von Fraktionen mittels ESI-Massenspektrometrie	32
3	Mater	ial und Methoden	33
	3.1 Ch	emikalien und Geräte	33
	3.1.1	Chemikalien	33
	3.1.2	Enzympräparate	35
	3.1.3	Spezielle Analysengeräte	35
	3.2 All	gemeines Arbeitsprogramm	36
	3.3 Gev	winnung und Charakterisierung von β-Casein	37
	3.3.1	Isolierung und Reinigung des β-Caseins	37
	3.3.2	Reinheitsprüfung mit der Polyacrylamidgelelektrophorese	37
	3.3.3	Reinheitsprüfung mit Gelpermeationschromatographie	38
	3.3.4	Bestimmung des Proteingehaltes des β-Caseinpräparates	39
	3.3.5	Bestimmung des Wassergehaltes des β-Caseins	39
	3.4 Ab	gleich der Gerinnungszeit von Chymosin und Suparen	39
	3.5 Ent	wicklung der Modelle	41
	3.5.1	Allgemeines	41
	3.5.2	Fließschema der verschiedenen Herstellungsschritte	41
	3.6 Her	stellung der Lösungen für das Modell Milch	43
	3.6.1	Herstellung der 1 %igen Substratlösung (Wässriges System)	43
	3.6.2	Herstellung der Enzymlösungen	43
	3.6.3	Herstellung der Konservierungsmittellösung	44
	3.6.4	Herstellung der kochsalzhaltigen Proben	44
	3.6.5	Durchführung der Hydrolyse	44
	3.7 Her	stellung der Ansätze für das Modell Käse mit 35 bzw. 50 % Trockenmasse	45
	3.7.1	Allgemeines	45
	3.7.2	Substratlösung und Einstellung der Trockenmasse	45

3.7.3 Herstellung der Enzymlösungen	46
3.7.4 Herstellung der MIT-Lösung	46
3.7.5 Herstellung der Kochsalzlösungen	46
3.7.6 Durchführung der Hydrolyse	46
3.8 Probennahmeschema der Hydrolysen (Kurzzeit- und Langzeitinkubation)	47
3.9 Ermittlung der Enzymaktivität im Verlauf der Hydrolyse	48
3.10 Verfolgung der Hydrolyse im Gesamthydrolysat	50
3.10.1 Bestimmung der freien primären Aminogruppen	50
3.10.2 Erfassung der höhermolekularen Spaltprodukte mit Hilfe der Gelpermeations-	
chromatographie	52
3.10.3 Erfassung der höhermolekularen Spaltprodukte mit Hilfe der Harnstoff-Poly-	
acrylamidgelelektrophorese	56
3.11 Verfolgung der Hydrolyse in der NCN-Fraktion	56
3.11.1 Bestimmung der Tyrosinäquivalente mittels der Methode nach Lowry	56
3.11.2 Erfassung der niedermolekularen Spaltprodukte mit Hilfe der RP-HPLC	59
3.12 Fraktionierung einer Auswahl mit Chymosin inkubierter Hydrolysate	63
3.12.1 Allgemeines	63
3.12.2 Erarbeitung des Gradientenelutionsprogrammes	63
3.12.3 Peptidfraktionierung der Hydrolyseproben	64
3.12.4 Rechromatographie der erhaltenen Fraktionen	65
3.12.5 Bestimmung der C-terminalen Aminosäuren in den fraktionierten Hydrolysater	n
inkubiert mit Chymosin	67
3.12.5.1 Aktivitätsbestimmung der Carboxypeptidasen	67
3.12.5.2 Enzymatische Abspaltung der C-terminalen Aminosäuren mittels Carboxy-	
peptidasen	68
3.12.5.3 Identifizierung mittels Ionenaustauschchromatographie	69
3.12.6 Bestimmung der N-terminalen Aminosäuren in den fraktionierten Hydrolysate	en
aus der Inkubation von β-Casein mit Chymosin	69
3.12.6.1 Derivatisierung der Standard Aminosäuren	69
3.12.6.2 Abspaltung und Derivatisierung der Aminosäuren aus den Hydrolysaten mi	t
der DABITC-Methode	70
3.12.6.3 Identifizierung mittels RP-HPLC	71
3.12.7 ESI-ToF-Massenspektrometrie der fraktionierten Hydrolysate	72
3.13 Käseuntersuchungen	80

4	Ausw	ertung und Diskussion	82
	4.1 Gev	winnung und Charakterisierung der β-Caseinprobe	82
	4.1.1	Isolierung und Reinigung des β-Caseins	82
	4.2 Ent	wicklung der Modelle	84
	4.2.1	Allgemeines	84
	4.2.2	Modellaufbau	85
	4.3 Übe	erprüfung der Aktivität der Enzyme	88
	4.4 Ver	folgung der Hydrolyse	90
	4.4.1	Verfolgung des Hydrolyseverlaufs durch Bestimmung der Tyrosinäquivalente	und
		der freien primären Aminogruppen	90
	4.4.2	Erfassung der niedermolekularen Spaltprodukte mit RP-HPLC	99
	4.4.3	Abschätzung der enstandenen Molmassen mit Hilfe der GPC	106
	4.4.4	Erfassung der höhermolekularen Spaltprodukte mit Polyacrylamidgelelektro-	
		phorese	112
	4.5 Prä	parative Isolierung von Peptidfraktionen	120
	4.5.1	Analyse der C- und N-terminalen Aminosäuren	124
	4.5.1	.1 Bestimmung der C-terminalen Aminosäuren	124
	4.5.1	.2 Bestimmung der N-terminalen Aminosäuren	128
	4.6 Au	swertung der LC-MS-Spektren und Zuordnung der Bruchstücke zur Sequenz der	S
	β-C	Caseins	132
	4.7 Voi	m Modell zum Käse	146
	4.8 We	rtung der Ergebnisse und Ausblick	153
5	Zusan	nmenfassung	156
6	Litera	turverzeichnis	160

II. Abkürzungsverzeichnis

μm	Mikrometer (10^{-6} m)
Å	Angström
Abb.	Abbildung
ACN	Acetonitril
ADAM	1-Aminoadamantan
ASA	Aminosäureanalyse
ATZ-AS	Anilinthiazolinon-Aminosäure
AUFS	absorbance units full scale
bidest.	bidestilliert
Bis	N,N'- Methylenbisacrylamid
cDNA/cDNS	komplementäre Desoxyribonucleinsäure
CN	Caseinstickstoff
Da	Dalton (g/mol)
DABITC	4-Dimethylaminoazobenzen-4'-isothiocyanat
DABTH-AS	4-Dimethylaminoazobenzen-4'-thiohydantoin-Aminosäure
dest.	destilliert
DNA/DNS	Desoxyribonucleinsäure
DTT	Dithiothreitol
EC	enzyme classification
EDTA	Ethylendiamintetraessigsäure
ESI-MS	Elektrospray-Ionisierungs-Massenspektrometrie
FMOC-ADAM	9-Fluorenylmethoxycarbonylchlorid-Aminoadamantan
FMOC-AS	9-Fluorenylmethoxycarbonylchlorid-Aminosäure
FMOC-Cl	9-Fluorenylmethoxycarbonylchlorid
FMOC-OH	9-Fluorenylmethanol
FTIR	Fourier-Transformations-Infrarot-Spektroskopie
GMP	(glyko-)Makropeptid
GPC	Gelpermeationschromatographie
HPLC	high performance liquid chromatography (Hochleistungsflüssig-
	keitschromatographie)
IEF	Isoelektrische Fokussierung
IgG	Immunoglobulin G

Kap.	Kapitel
kDa	Kilo-Dalton
LC-MS	"liquid chromatography-mass spectroscopy"
	Flüssigkeitschromatographie-Massenspektroskopie
Μ	(mol/l)
MIT	2-Methyl-4-isothiazolin-3-on
mRNA/mRNS	"messenger-ribonucleinacid" (Boten-Ribonucleinsäure)
MS	Massenspektrometrie
NCN	Nicht-Casein-Stickstoff
nm	Nanometer (10^{-9} m)
ns	Nanosekunden $(10^{-9} s)$
OPA	ortho-Phthalaldehyd
PAGE	Polyacrylamid-Gelelektrophorese
PITC	Phenylisothiocyanat
pmol	Pikomol (10 ⁻¹² mol)
PTC	Phenylthiocarbanoylpeptid
PTH-AS	Phenylthiohydantoin-Aminosäure
RNA/RNS	Ribonucleinsäure
RP-HPLC	reversed phase-(Umkehrphasen-)HPLC
RP-HPLC	Umkehrphasen-HPLC
RT	Raumtemperatur
SDS	sodium dodecylsulfate (Natriumdodecylsulfat)
SI	Système International d'unités
	Internationales Einheitssystem
Tab.	Tabelle
TEMED	N,N,N',N'-Tetramethylethylendiamin
THF	Tetrahydrofuran
TNBS	Trinitrobenzensulfonsäure
TOF	time of flight
Tricin	Tris(hydroxymethyl)-methylglycin
Tris	Tris(hydroxymethyl)-aminomethan
z.B.	zum Beispiel

Aminosäuren:

Alanin	Ala	А
Arginin	Arg	R
Asparagin	Asn	Ν
Asparaginsäure	Asp	D
Cystein	Cys	С
Glutamin	Gln	Q
Glutaminsäure	Glu	E
Glycin	Gly	G
Histidin	His	Н
Isoleucin	Ile	Ι
Leucin	Leu	L
Lysin	Lys	К
Methionin	Met	М
Phenylalanin	Phe	F
Phosphoserin	PSer	S*
Prolin	Pro	Р
Serin	Ser	S
Threonin	Thr	Т
Tryptophan	Trp	W
Tyrosin	Tyr	Y
Valin	Val	V

1 Einleitung

Die Käsereifung ist ein komplizierter und aufwendiger Prozess. Während der Käsereifung laufen drei biochemische Hauptprozesse ab: die Proteolyse der Proteine, die Glycolyse der Lactose und die Lipolyse. Zur Vermeidung von Fehlreifungen oder Reifungsverzögerungen sind standardisierte Käseherstellungsverfahren unerlässlich. Unabdingbar ist dabei das detaillierte Wissen um den proteolytischen Abbau der einzelnen Caseinfraktionen während der Reifung. Die Proteolyse ist dabei essentiell für die Aromabildung in Cheddarkäse und anderen Käsesorten (McGoldrick und Fox, 1999) sowie für die Textur des Käses.

Von Larsson und Andrén (1997) wird berichtet, dass ein nicht unerheblicher Anteil des zur Dicklegung der Milch verwendeten Chymosins am Käsebruch retardiert und entscheidend in den ersten Tagen der Käsereifung den proteolytischen Abbau beeinflusst. Dies ist auch für weitere industriell wichtige Milchge-rinnungsenzyme denkbar. Bisherige Untersuchungen fanden an vereinfachten Modellen mit Caseinlösungen (Awad et al., 1998, Awad et al., 1999) oder direkt am Käsebruch (Desmazeaud und Gripon, 1977) statt. Während in verdünnter Lösung β -Casein schneller als α_s -Casein hydrolysiert wird, kehren sich die Verhältnisse in Käse mit niedrigem Wassergehalt um. Bisherige Untersuchungen zum Abbau des β -Caseins in Käse ergaben, dass bei niedrigen Wassergehalten β -Casein sehr resistent gegenüber einem Abbau zu sein scheint (Desmazeaud und Gripon, 1977; Kristiansen et al., 1999). Die komplexe Proteinmatrix des Käses macht es schwer möglich die Proteolysevorgänge an den Caseinkomponenten isoliert zu erfassen.

Mit dieser Arbeit soll ein Ansatz gezeigt werden, mit dem ein Modellsystem etabliert wird, welches in Trockenmasse und Kochsalzgehalt dem Käse ähnlich ist. Ziel dieser Arbeit ist es, die proteolytische Wirkung von zwei industriell bedeutenden Enzymen zur Dicklegung von Milch, Chymosin und Suparen, gegenüber isoliertem β -Casein in Abhängigkeit von der Hydrolysedauer zu untersuchen. Es sollten dabei zwei Modelle erstellt werden, die zum einen dem Käse bzw. zum anderen der Milch nachempfunden sein sollten.

Aus den Ergebnissen ist abzuleiten, ob und in welchem Umfang sich die Kinetik von proteolytisch wirkenden Enzymen unter den Bedingungen des begrenztem Wasserangebotes im reifenden Käse gegenüber Vorgängen in verdünnter Proteinlösung (Modell Milch) verändern. Weiterhin sollen Peptide aus der NCN-Fraktion der Hydrolysate mittels RP-HPLC isoliert und anschließend näher charakterisiert werden. Eine Zuordnung der entstandenen Bruchstücke zur β -Caseinsequenz kann nach Molmassenbestimmung sowie durch die Analyse der C- und N-terminalen Aminosäuren erfolgen. Dabei soll geklärt werden, welche Sequenzen des β -Caseins als Peptide freigesetzt werden, und ob der Zusatz von Kochsalz einen Einfluss auf die Proteolyse zeigt.

2 Käse

2.1 Begriffsbestimmung

Der Begriff Käse ist wie auch seine Herstellungs- und Qualitätskriterien in Deutschland gesetzlich geregelt. Die Klassifizierung nach der Käseverordnung ist nur eine Möglichkeit unter vielen anderen. So kann man die Käse u.a. auch nach ihrer Milchart, nach der Art und Weise der Milchdicklegung, nach Fettgehaltsstufen und nach Geschmackstypen einteilen.

Laut § 1 Abs. 1 der Käseverordnung¹ sind Käse frische oder in verschiedenen Graden der Reife befindliche Erzeugnisse, die aus dickgelegter Käsereimilch hergestellt sind. Laut § 6 der Käseverordnung kann man Käse in sechs verschiedene Gruppen unterteilen. Die Zugehörigkeit zu den verschiedenen Gruppen wird durch den Wassergehalt in der fettfreien Käsemasse bestimmt.

Käsegruppe	Wassergehalt in der fettfreien Käsemasse
Hartkäse	56 % oder weniger
Schnittkäse	mehr als 54 % bis 63 %
Halbfester Schnittkäse	mehr als 61 % bis 69 %
Sauermilchkäse	mehr als 60 % bis 73 %
Weichkäse	mehr als 67 %
Frischkäse	mehr als 73 %

 Tab. 2.1–1: Käsegruppen laut § 6 der Käseverordnung

Hartkäse haben mit bis zu 60 % den höchsten Anteil an Trockenmasse. Die Reifezeit beträgt 3-6 Monate, bei manchen Sorten auch einige Jahre. Je länger die Reifezeit, umso ausgeprägter ist der Geschmack und umso länger ist die Haltbarkeit. Bekannte Hartkäsesorten sind z.B. Emmentaler, Parmesan und Bergkäse.

Eine weitere Gruppe ist der Schnittkäse, der etwas weicher und saftiger ist als Hartkäse. Zu dieser Gruppe gehören auch die Edelpilzkäsesorten wie z.B. Blauschimmelkäse und Grünschimmelkäse. Sie können bis zu 10 Wochen und länger gereift werden.

Der Sauermilchkäse umfasst die Käsesorten, die aus Magermilch und Milchsäurebakterien hergestellt werden. Diese Käsesorten reifen einige Tage bis Wochen.

Bekannte Sauermilchkäsesorten sind Quargel, Vorarlberger Sauerkäse, Graukäse und Kochkäse.

¹ Käseverordnung in der Fassung vom 14. April 1986

Der Weichkäse weist eine Trockenmasse von 35-52 % auf und muss bis zur Auslieferung 2-4 Wochen reifen. Man unterscheidet zwei Arten: Käse mit weißer Schimmelbildung und Käse mit roter Oberschicht (Rotschmiere). Wenn Weichkäse scharf und kratzig schmeckt, hat die Nachreifung zur Bildung geschmacklich unangenehmer Abbauprodukte geführt.

Bekannte Weichkäsesorten sind Camembert, Brie, Romadour, Limburger und Schlosskäse. Frischkäse sind meist Sauermilchkäsesorten. Sie haben ein lockeres, pastetenartiges Gefüge und einen erfrischenden, milchsauren Geschmack. Im Gegensatz zu allen übrigen Käsesorten sollen Frischkäsesorten nicht reifen, sondern möglichst frisch zum Verzehr kommen. Bekannte Frischkäsesorten sind Topfen (mager, 10 %, 20 %, 40 % F.i.Tr.), Gervais (55 oder 65 % F.i.Tr.) und Cottage Cheese.

Der Schmelzkäse ist eine Käsegruppe, dessen Ausgangsmaterial aus Hart-, Schnitt- oder Weichkäse besteht, welches bei der Herstellung bestimmte Abweichungen in Form und Farbe hatte, jedoch voll genussfähig ist. Das Ausgangsmaterial wird zerkleinert, homogenisiert, mit Schmelzsalzen versetzt, auf 80-90 °C erwärmt und zu einer einheitlichen Masse geschmolzen. Schmelzkäse gibt es in allen Fettstufen von 10-70 % F.i.Tr.. Schmelzkäsesorten kommen mit verschiedenen Zusätzen in den Handel - z.B.: Paprika, Kümmel, Pfeffer, Schinken, Champignons und Kräuter.

2.2 Technologie der Käseherstellung

Ausgangsstoff für die Käseherstellung ist die Käsereimilch (Kesselmilch). Für die Eignung einer Käsereimilch gibt es unterschiedliche Bewertungsmerkmale wie z.B. der Hemmstoffgehalt, die Säuerungsaktivität, die SH-Zahl, die Labgerinnungszeit.

Die Aufbereitung der Kesselmilch umfasst das Erhitzen, das Standardisieren und das Vorreifen. Unter dem Standardisieren versteht man das Einstellen eines bestimmten Fettgehaltes je nach herzustellendem Käse oder auch das Einstellen eines bestimmten Trockenmassegehaltes. Die Vorreifung der Milch ist das Einleiten einer Säuerungsphase, die alle Folgeprozesse wesentlich mitbestimmt. In dieser Phase werden zur Käsereimilch verschiedene Käsereikulturen zugesetzt (vgl. Abb. 2.2–1).

Anschließend erfolgt die Milchgerinnung, die durch den Zusatz von Lab bzw. auch anderen Milchgerinnungsenzymen initialisiert wird. Es sind vor allem die Art und Konzentration der Gerinnungsenzyme, die Substrateigenschaften, die Gerinnungstemperatur und der pH-Wert, von denen die Qualität des Erzeugnisses abhängt. Die Bruchbearbeitung des Rohkäses ist entscheidend für die spätere Konsistenz des Käses. Dabei werden durch verschiedene technologische Verfahren, wie z.B. Temperaturführung und Anpressdruck des Käsebruches,

der Wassergehalt, der pH-Wert und der Kochsalzgehalt so eingestellt, dass nur die für diesen Käse typische Art und Zusammensetzung erreicht wird. Im folgenden soll nur das Grundprinzip der Labkäseherstellung gezeigt werden, da die Herstellungsweisen von Käserei zu Käserei erheblich voneinander abweichen.

Abb. 2.2–1: Grundfließbild der Labkäseherstellung (Spreer, 1995)

Der bearbeitete Bruch wird geformt, anschließend gepresst und danach gesalzen. Mit dem Salzen soll vorwiegend auf den Geschmack des Käses Einfluss genommen werden. Die Arten des Salzens (Zusatz zur Käsereimilch, Bruchsalzen, Trockensalzen, Salzen im Folien-Beutel, Injektion von Kochsalz, Salzen im Salzbad) können unterschiedlich sein und auch als Kombination erfolgen. Nach dem Salzen wird der Käse meist zum Abtrocknen in einen Abtropf- oder Trockenraum gebracht. Die Temperatur dieses Raumes liegt zwischen 17 °C und 19 °C und weist außerdem eine relative Luftfeuchte zwischen 75 und 85 % auf. Das Abtrocknen der Oberfläche verhindert eine Fremdinfektion und ist außerdem wichtig, wenn die Reifung in einer Folie erfolgt bzw. ein Wachsen der Oberfläche stattfindet. Nachdem die Käseoberfläche getrocknet wurde, lässt man den Käse anschließend reifen. Dabei muss eine konstante Klimatisierung vorrausgesetzt werden, die in speziellen Reifungsräumen realisiert werden kann.

2.3 Milchgerinnung als Initiator der Käsereifung

2.3.1 Das Protein des Käses: Casein

und den Zusammenhalt der Caseinkomplexe.

2.3.1.1 Allgemeines

Für das Verständnis der Käsereifung ist es essentiell, den Vorgang beim Dicklegen der Milch zu beleuchten. Dabei ist es vor allem wichtig, die verschiedenen Funktionen der einzelnen Eiweißfraktionen zu erläutern. Anfangs wurde das Milcheiweiß für einheitlich gehalten, doch bereits im 19. Jahrhundert stellte sich heraus, dass das Proteinsystem der Milch bzw. des Käses komplexer ist.

Casein bildet mit einem Anteil bis 80 % die Hauptkomponente der Milch, daneben liegen noch verschiedene Milchserumproteine wie β -Lactoglobulin mit genetischen Varianten, α -Lactalbumin und Immunoglobuline vor (Belitz und Grosch, 1992).

Die drei Hauptkomponenten der Caseinfraktion, α_s -, β - und κ -Casein, können sich innerhalb einer Kuhrasse stark unterscheiden, da sie aufgrund genetischer Informationen synthetisiert werden. Es sind viele genetische Varianten der Caseine bekannt. Zu den Minorkomponenten der Caseine gehören die γ -Caseine, λ -Caseine und die Proteose-Pepton-Fraktion. Sie entstehen durch das Einwirken der milcheigenen Protease Plasmin auf β - bzw. α_s -Casein. Zwei signifikante Nichtproteinbestandteile, die zu den Mineralstoffen der Milch gezählt werden, sind das Calcium- und Phosphation. Sie beeinflussen nachhaltig die Eigenschaften

2.3.1.2 Zusammensetzung, Struktur und Eigenschaften von Caseinmicellen

Bis auf einen kleinen Serumproteinanteil von ≤ 10 % gemessen am Gesamtcasein aggregieren alle Monomeren vorwiegend zu Caseinkomplexen und -micellen. Das Verhältnis der Monomeren zueinander kann unterschiedlich sein und ist abhängig von Kuhrasse, Jahreszeit und Fütterung. Der Caseinmicellendurchmesser schwankt zwischen 50 und 300 nm. Ca. 35 % der Caseinmicellen weisen einen mittleren Durchmesser von 150 nm auf. Bezogen auf die einzelnen Monomeren entspricht dies pro Micelle ungefähr 25000 Monomeren.

Zusammensetzung	g/100 g Micelle				
Casei	n				
$-\alpha_{s1}$ -Casein	35,6				
$-\alpha_{s2}$ -Casein	9,9				
-β-Casein	33,6				
-κ-Casein	11,9				
-Minorkomponenten	2,3				
Gesamtcasein	93,3				
Anorganische S	Substanzen				
– Calcium	2,87				
– Magnesium	0,11				
– Natrium	0,11				
– Kalium	0,26				
– anorg. Phosphat (PO ₄) ³⁻	2,89				
Summe anorganischer Substanzen	6,24				

Tał). 2	2.3-	1:	Zusammensetzung d	ler	Caseinmicelle
-----	-------------	------	----	-------------------	-----	---------------

Die elektrostatischen Wechselwirkungen zwischen sauren Gruppen und Ca²⁺- und Mg²⁺-Ionen sowie auch die hydrophoben Bindungen gewährleisten den Zusammenhalt der einzelnen Monomeren. Die elektrostatischen Bindungen werden vorwiegend über Calciumbzw. Phosphatbrücken zwischen Phosphoserinresten und Glutaminsäureresten gebildet. Des weiteren beeinflussen auch Wasserstoffbrückenbindungen die Stabilität der Micellen.

Verschiedene Micell-Modelle fanden Eingang in die Literatur. Das Modellsystem mit der größten Akzeptanz ist das "coat-core model", ursprünglich von Waugh und Talbot (1971) entwickelt. Die Micelle wird dabei als aus Kern (core) und Mantel (coat) aufgebaut betrachtet.

Der Kern besteht aus α_s - und β -Caseinmonomeren, die sich sphärisch zusammenlagern und deren Oberfläche von einem Mantel aus κ -Casein überzogen ist.

Das κ -Casein besitzt dabei stabilisierende Wirkung, die durch das Vorhandensein des Glycomacropeptides zu erklären ist. Im C-Terminus des Moleküls sind verschiedene Kohlenhydrate (Galactose, N-Acetylneuraminsäure und N-Acetylgalactosamin) über Threonin- und Serinseitenketten o-glykosidisch gebunden. Das κ -Casein ist damit oberflächenaktiv.

Abb. 2.3–1: Caseinmicellenaufbau (Walstra et al., 1981) (*GMP-Glycomakropeptid)

Ein weiterentwickeltes Modellsystem von Webb et al. (1974) wurde von Walstra und Jenness (1984) vorgeschlagen. Die Autoren postulierten, dass die Caseinmicelle aus einer Vielzahl von Subeinheiten aufgebaut ist. Diese Subeinheiten bestehen aus Caseinmonomeren, die über Calciumbrücken zur eigentlichen Caseinmicelle aggregieren (vgl. Abb. 2.3–1). Die Caseinmicellen enthalten die verschiedenen Monomere in unterschiedlichen Konzentrationen.

Bemerkenswert ist die große Bedeutung des κ -Caseins in den Submicellen. Es ist als einzige Komponente der Caseinfraktion in Gegenwart der in Milch üblichen Ca²⁺-Konzentration von ca. 12 mg/100 g löslich. Es existieren offensichtlich zwei Typen von Subeinheiten. Der erste enthält κ -Casein, der zweite nicht. κ -Casein besitzt eine detergenzienähnliche Struktur, wobei die hydrophileren Strukturmerkmale durch einen hohen Anteil von Kohlenhydraten gekennzeichnet sind. Die hydrophilen Enden der κ -Caseinmoleküle befinden sich wie Haare auf der Oberfläche der entsprechenden Submicelle. Die vergleichsweise hydrophoberen Caseine wie α_{s} - und β -Casein werden in das Innere der Micelle gedrängt. Damit wird das

Ausfallen dieser calciumempfindlichen Caseine verhindert. Die Aggregation zu einer großen Micelle schreitet so lange fort, bis deren gesamte Oberfläche von κ-Casein bedeckt ist. Diese Schicht verhindert durch elektrostatische und sterische Abstoßung ein Agglomerieren der Micellen (Walstra et al., 1981).

Die Caseinmicellen sind gegenüber Änderungen der Ionenumgebung sehr empfindlich, da sie vor allem durch die Ladung der Partikel in der Lösung stabilisiert sind und bivalente Ionen sehr fest binden.

Einen weiteren Einfluss auf die Bildung von Caseinkomplexen, bis hin zur Auflösung von Caseinmicellen, haben vor allem Komplexbildner, z. B. kann Citrat das Gleichgewicht fast völlig in Richtung der Monomeren verschieben. Erhöhte Temperaturen bzw. Ca²⁺-Konzentrationen, führen dagegen zu einer Aggregation, bei der große Caseinmicellen entstehen können.

Casein unterscheidet sich von vielen anderen Proteinen durch seine besondere Hitzeresistenz in Lösung. Beim pH-Wert des Milchserums erfolgt eine Koagulation nur in Anwesenheit von Calcium und erst bei Temperaturen oberhalb des Siedepunktes von Wasser.

2.3.1.3 Struktur und Eigenschaften von β-Casein

Ca. 30 % des Gesamtcaseins von Kuhmilch sind β -Caseine. Die genetischen Varianten lassen sich durch isoelektrische Fokussierung voneinander trennen. Die bekanntesten sind das β -Casein A¹ und A². Die Struktur der A²-Variante wurde bereits im Jahre 1972 von Mercier et al. (1972) ermittelt. In Abb. 2.3–2 ist die Primärsequenz der Variante β -Casein A² dargestellt.

Die anderen Varianten des β -Caseins unterscheiden sich gegenüber der β -Casein A²-Variante wie folgt:

β -A ¹ , β -B, β -C:	Substitution des Prolinrestes (67) durch His,
β-A ³ :	Substitution des Histidinrestes (106) durch Gln,
β-Β:	Substitution des Serinrestes (122) durch Arg,
β-C:	Substitution des Glutaminrestes (37) durch Lys und
	Substitution des Phosphoserinrestes (35) durch Ser,
β-D:	Substitution des Phosphoserinrestes (18) durch Lys,
β-E:	Substitution des Glutaminrestes (36) durch Lys,
β-F-5P:	Substitution des Prolinrestes (152) durch Leu

25	R-	T-	I-	S-	E-	E-	<u>S-</u>	<u>S-</u>	<u>S-</u>	L-	<u>S-</u>	E-	V-	I-	E-	G-	P-	V-	N-	L-	E-	E-	L-	E-	- R-	H2N-
50	H-	I-	K-	D-	G-	L-	E-	D-	E-	T-	Q-	Q-	Q-	E-	E-	<u>S-</u>	Q-	F-	K-	E-	I-	K-	K-	N-	I-	
75	P-	I-	N-	Q-	P-	L-	S-	N-	P-	I-	P-	G-	P-	F-	P-	Y-	V-	L-	S-	Q-	T-	Q-	A-	F-	P-	
100	E-	K-	V-	K-	S-	V-	G-	M-	V-	E-	P-	Q-	L-	F-	P-	P-	V-	V-	V-	P-	T-	Q-	T-	L-	P-	
125	L-	S-	Q-	S-	E-	T-	F-	P-	Q-	V-	P-	Y-	K-	P-	F-	P-	M-	E-	K-	H-	K-	P-	A-	M-	A-	
150	P-	Q-	H-	P-	Q-	H-	M-	W-	S-	Q-	L-	L-	L-	P-	P-	L-	H-	L-	D-	E-	V-	D-	T-	L-	T-	
175	E-	P-	V-	P-	L-	V-	K-	S-	Q-	S-	L-	S-	L-	V-	S-	Q-	P-	P-	F-	M-	V-	T-	P-	P-	L-	
200	P-	G-	L-	V-	P-	Q-	Q-	Y-	L-	L-	F-	A-	Q-	I-	P-	M-	D-	R-	Q-	P-	Y-	P-	V-	A-	K-	
209																OH	V-	I-	I-	P-	F-	P-	G-	R-	V-	

Abb. 2.3–2: Primärstruktur des β –Caseins A² / (<u>S</u>...Phosphoserin) (Mercier et al., 1972)

Die in Abb. 2.3–2 dargestellte genetische Variante β -A² enthält 209 Aminosäuren bei einem Molekulargewicht von \approx 24500 Da. Die fünf Phosphorsäurereste befinden sich an Serinresten, welche im Sequenzabschnitt 1-35 des Moleküls lokalisiert sind (Belitz und Grosch, 1992). Auffällig ist, dass die ersten 21 Aminosäuren vom N-Terminus des Moleküls beim pH-Wert nativer Milch (pH 6,8) stark negativ geladen sind. Im übrigen Teil der Sequenz überwiegen die hydrophoben Aminosäuren.

 β -Casein gehört zu den Proteinen des Milcheiweißes mit dem stärksten hydrophoben Charakter und ist in der Lage, micellartige Strukturen auszubilden. Dieser Vorgang wird unterstützt durch die Annäherung des pH-Wertes an den isoelektrischen Punkt des Moleküls sowie durch Temperaturerhöhung. Als Folge kommt es zur Ausfällung des Proteins.

Außerdem besitzt β -Casein keine Cystein- und Cystinreste. Alle anderen proteinogenen Aminosäuren sind jedoch im Molekül enthalten. Erstaunlich ist auch der relativ hohe Gehalt an der Aminosäure Prolin (16,7 %), die gleichmäßig über das ganze Protein verteilt ist und die Ausbildung einer α -Helix erschwert. Aus neueren ramanspektroskopischen Untersuchungen wurde abgeleitet, dass β -Casein zu etwa 10 % α -helikale Strukturen, zu 20 % β -Faltblattstrukturen und zu 20 - 35 % Mäander(turn)-Strukturen enthalten soll (Byler et al., 1988). Die Anordnungen in der anderen Hälfte des Proteins kann man strukturlos und ungeordnet bezeichnen.

Farrell et al. (1993) wies nach, dass die ausgebildete Tertiärstruktur einen unmittelbaren Zusammenhang mit möglichen Angriffsstellen des Enzyms Chymosin aufweist. So liegen die chymosinsensitiven Aminosäurereste (Ala₁₈₉-Phe₁₉₀) senkrecht zur hydrophoben Oberfläche des Moleküls und ragen somit in das angrenzende Medium hinein. Dieser Teil ist also für das Enzym leicht zugänglich. Findet allerdings eine Selbstassoziation oder eine Aggregatbildung mit anderen Caseinen statt, so sollte der Angriff des Enzyms erschwert oder sogar verhindert werden. Diese These konnte durch Creamer (1976) belegt werden. Er zeigte, dass der überwiegende Teil des β -Caseins in 1-1,5 M Natriumchloridlösung polymerisiert vorliegt. Die Angreifbarkeit der chymosinsensitiven Bindungen ist somit durch das Enzym erschwert.

2.3.2 Die verschiedenen Phasen der Milchgerinnung und deren Auswirkungen

Wie schon erwähnt, ist es essentiell für das Verständnis der Käsereifung, den Vorgang beim Dicklegen der Milch zu erklären, da ein nicht unerheblicher Teil des Gerinnungsenzyms in Abhängigkeit vom pH-Wert am Käsebruch adsorptiv gebunden bleibt.

Die enzymatische Milchgerinnung wird im allgemeinen in Primär-, Sekundär- und Tertiärreaktion eingeteilt (Kirchmeier, 1969).

Während der enzymatischen Phase (Primärreaktion) wird das an der Oberfläche der Caseinmicellen befindliche κ -Casein hydrolytisch gespalten. Die Spaltung erfolgt durch das Chymosin bevorzugt an der Bindung zwischen Phe₁₀₅ und Met₁₀₆. Es entstehen zwei Peptidbruchstücke. Das para- κ -Casein (Reste 1-105) ist stark hydrophob und aggregiert aus diesem Grund mit den übrigen Caseinen. Das zweite Proteinbruchstück enthält die am C-Terminus gebundenen Kohlenhydrate und ist deshalb gut wasserlöslich.

Nachdem ca. 80-90 % des κ -Caseins gespalten wurden, setzt die Koagulation ein. Sie wird auch als Sekundärreaktion bezeichnet.

 α_{s} -, β -, und para- κ -Caseine treten zu einem unlöslichen Koagulat zusammen und bilden ein dreidimensionales Netzwerk, in dessen Poren noch Wasser immobilisiert ist. Diese Koagulation ist im wesentlichen von der Calciumkonzentration der Milch abhängig. Wird das Calcium entfernt, so erhöht sich die Gerinnungszeit merklich oder die Gerinnung bleibt ganz aus (Mehaia und Cheryan, 1983).

Nach einiger Zeit tritt die Synärese des Gels ein. Das Wasser wird durch Schrumpfung des Netzwerkes aus den Hohlräumen verdrängt. Das Gel stabilisiert sich durch die Ausbildung von Calciumphosphatbrücken, Wasserstoffbrückenbindungen, Disulfidbrücken und durch van-der-Waals'sche Anziehungskräfte.

Der Tertiärvorgang, wie er von Visser (1981) beschrieben wird, ist durch den proteolytischen Abbau der Caseine charakterisiert. Auf die Reifung des Käses hat die deutlich langsamere Tertiärphase einen entscheidenden Einfluss, da in ihrem Verlauf wichtige Aromavorstufen gebildet werden.

Ein wichtiger Aspekt der Milchgerinnung ist das Verbleiben des Gerinnungsenzyms nach der Bruchbereitung. Von Windisch (1997) wurde die Adsorption von Chymosin am Käsebruch bestimmt. Der pH-Wert hat einen großen Einfluss auf die adsorbierte Enzymmenge. Bei einem pH-Wert von 6,6 und einer Temperatur von 30 °C wurde die durchschnittliche Restaktivität des Chymosins in der Molke zu 42 % bestimmt. Das bedeutet, ca. 58 % des Chymosins verbleiben unter diesen Bedingungen im Käsebruch und sollten demnach im reifenden Käse weiterhin wirksam sein.

Entscheidende Parameter für die Milchgerinnung sind definierte Wirkungsoptima für die Milchgerinnungsenzyme wie pH-Wert, Temperatur, Calciumionenkonzentration und Ionenstärke. Die Variation dieser Parameter beeinflusst unterschiedlich stark die einzelnen Phasen der Milchgerinnung.

2.3.3 Milchgerinnungsenzyme

2.3.3.1 Allgemeines zu Lab und Labaustauschstoffen

Seit Beginn der Käseherstellung wird das für die Dicklegung der Milch erforderliche Lab aus Kälbermägen gewonnen. Kälbermagenlabpräparate enthalten stets eine Mischung aus Chymosin und Pepsin. Je jünger das Tier bei der Schlachtung ist, desto höher ist der Chymosinanteil. Da die Kälberproduktion rückläufig ist, der Käseverbrauch aber gleichzeitig steigt, wurde intensiv nach Labersatzstoffen gesucht (Reiner, 1997).

Die Natur liefert eine Reihe von Enzymen, die milchgerinnende Eigenschaften aufweisen. Sie stammen aus dem Tier- und Pflanzenreich oder wurden aus Mikroorganismen isoliert. Labenzym (Chymosin) und Labaustauschstoffe gehören der Gruppe der Aspartatproteasen an. Der Name weist auf die zwei Asparaginsäurereste hin, die sich im katalytisch wirksamen Zentrum befinden. Sie erfahren eine Inaktivierung durch Pepstatin, Diazo- und Epoxyverbindungen.

Ob eine tierische, pflanzliche oder mikrobielle Aspartatprotease geeignet ist, kann durch das Verhältnis von Gerinnungswirkung zur unspezifischen Hydrolyse beurteilt werden (Thomasow, 1980). Die Vielzahl der neuentdeckten bzw. neuentwickelten Milchgerinnungsenzyme löst aber noch nicht das Problem, geeignete Labersatzstoffe zu finden.

Besitzen die Enzympräparate eine höhere unspezifische Proteolyseaktivität in Bezug zum Chymosin, so kommt es zur verstärkten unspezifischen Hydrolyse. Darunter versteht man den außerhalb der eigentlichen Koagulation liegenden Angriff auf bestimmte Peptidbindungen des Caseins.

Dieser hat Gefügeabweichungen, Aroma- und Konsistenzfehler im Käse sowie Ausbeuteverluste zur Folge (Philippos und Christ, 1976; Emmons, 1990, Krause et al., 1992). Besonders aus Mikroorganismen isolierte Milchgerinnungsenzyme zeigen oft einen deutlich stärkeren Caseinabbau als Kälbermagenlab.

Tab. 2.3–2: Mikrobielle Milchgerinnungsenzyme (Philippos und Christ, 1976)

Mikroorganismus	Industrielle Bezeichnung
Bacillus polymyxa (Labpulver)	Milcozyme
Endothia parasitica (Labpulver)	Suparen, Sure curd
Mucor miehei (Labextrakt)	Rennilase/ Fromase
Mucor pusillus	-

2.3.3.2 Reaktionsmechanismus der Aspartatproteasen und deren Spezifität

Den Aspartatproteasen sind die charakteristischen Asparaginsäurereste (Asp₃₂ und Asp₂₁₅ nach Pepsinnomenklatur) im aktiven Zentrum gemeinsam. Sie zeigen ein pH-Optimum im Bereich von 1,5 bis 5,0, weshalb sie auch als saure Proteasen bezeichnet werden. Die Spezifität der Proteasen ist von der räumlichen Struktur, also von der Geometrie des aktiven Zentrums, abhängig. Anhand von Röntgenstrukturanalysen konnte gezeigt werden, dass die räumliche Gestalt der Proteasen einer Klasse einander gleichen. Die Sekundärstruktur enthält große Teile an β -Faltblattbereichen und einen geringen Anteil an α -Helices. Die Asparaginsäurereste liegen in β -turn-Bereichen (Yada und Nakai, 1986).

Die Tertiärstruktur, wie sie von Visser (1981) beschrieben wird, stellt sich folgendermaßen dar: Die Polypeptidkette teilt sich in zwei verschiedene Bereiche, die durch eine tiefe Kluft getrennt sind. Diese Spalte enthält das aktive Zentrum, was sich anhand von Versuchen mit spezifischen Inhibitoren zeigen lies. Die in der Spalte lokalisierten Carboxylgruppen der Asparaginsäurereste befinden sich in engem Kontakt. Von Pearl (1985) wurde ein katalytischer Mechanismus postuliert, nach dem zwischen den Carboxylgruppen der Asparaginsäurereste ein Wassermolekül locker gebunden ist. Der polarisierende Effekt des Carbonyl-Wasser-Systems hat zur Folge, dass die negative Ladung der Carboxylgruppe auf das Sauerstoffatom des Wassers übertragen wird. In Folge dessen erhöht sich die Nucleophilie. Der nucleophile Angriff des Sauerstoffatoms des gebundenen Wassers wird von einer Protonenübertragung auf den Peptidstickstoff des Substrates begleitet. Es wäre möglich, dass dieser Protonenübergang von einer der Carboxylgruppen vermittelt wird. Die entstehende tetraedrische Zwischenstufe könnte durch Wechselwirkung mit den Peptidstickstoffen der Reste 76 und 77 stabilisiert werden, da sie direkt auf das katalytische Zentrum hin ausgerichtet sind.

Der Zerfall dieses Übergangsstadiums liefert die freien Produkte. Das Enzym wird durch Bindung eines neuen Wassermoleküls reaktiviert, während das ursprünglich gebundene Wasser in die neuentstandene Carboxylgruppe integriert wird (Veerapandian und Cooper, 1992).

Der Begriff "Substratspezifität" ist für die Aspartatproteasen, die zur Gruppe der Endoenzyme zählen, schwierig zu definieren. Orientiert man die Spezifität an der Primärspaltung des ĸ-Caseins, ergibt sich folgendes Bild.

In vielen Studien wurde die Kinetik dieses Spaltungsvorganges durch Einsatz verschiedener Modellsubstrate, die der Aminosäuresequenz der chymosinsensitiven Bindung des κ -Caseins ähnelten, ermittelt. Hierbei wurde festgestellt, dass die Mindestanforderung für die Spaltung eine Kettenlänge von fünf Aminosäuren ist, wobei die Phe₁₀₅-Met₁₀₆-Bindung nicht terminal positioniert sein darf. Aus diesem Grund wurde der Begriff "erweiterte Bindungsstelle" geprägt. Damit soll verdeutlicht werden, dass Art und Anzahl der um die Spaltstelle befindlichen Aminosäuren Einfluss auf die Hydrolyse nehmen.

So wird eine Erhöhung der Proteolysegeschwindigkeit verzeichnet, wenn die Zahl der Aminosäuren im Peptid steigt.

Auch sind bestimmte Aminosäuren, z. B. der Serinrest (Ser₁₀₇), unerlässlich für den Angriff des Chymosins. Wird er durch einen Alaninrest ersetzt, ist das Chymosin nicht mehr in der Lage, diese Bindung zu hydrolysieren. Wahrscheinlich bindet Chymosin über Wasserstoffbrückenbin-dung an die Hydroxylgruppe des Serins (Visser, 1981).

Farrell et al. (1993) hingegen lehnt die These ab, dass ausgehend von der hohen Affinität des Chymosins zur Phe₁₀₅-Met₁₀₆-Bindung auf eine hohe Spezifität geschlossen wird. Vielmehr

vertritt er die Ansicht, dass diese Bindung allein aufgrund ihrer Lage in der Caseinmicelle hervorragend für einen Enzymangriff geeignet ist.

Antonov (1985) führte bei seinen Studien zum Sequenzeinfluss auf die Peptidbindungsspaltung den Spezifitätsindex ein. Er gibt an, in welchem Maße Aminosäuren, die sich in der Nähe der zu spaltenden Bindung befinden, ausgetauscht werden können, ohne dass sich die Hydrolysesensitivität dieser Bindung ändert.

Pearl (1985) beschäftigte sich ebenfalls mit dem Einfluss der umgebenden Aminosäuresequenz auf die Proteolyse. Unter der Annahme, dass der katalytische Mechanismus für alle Substrate gleich ist, kommt er ebenfalls zu dem Schluss, dass die Hydrolyseaktivität von der Art der Wechselwirkungen an den erweiterten Bindungsstellen abhängt. Damit lässt sich erklären, dass Peptidbindungen mit beliebigen anderen beteiligten Aminosäuren hydrolysiert werden können.

2.3.3.3 Chymosin

Die seit den Anfängen der Käseherstellung eingesetzten Gerinnungsenzyme enthalten überwiegend Chymosin (EC 3.4.23.4) als aktive Komponente (Reiner, 1997). Die ersten Versuche zur Isolierung des Enzyms wurden 1840 von Dechamps gemacht. Hammarsten entdeckte, dass das Enzym als inaktive Vorstufe im Labmagen des Kalbes ausgeschieden und durch Protonen in die aktive Form überführt wird. Diese Vorstufe wird auch als Proenzym bezeichnet. Prochymosin wird durch eine begrenzte Proteolyse bei pH-Werten unter 5 in die aktive Vorstufe umgewandelt (Barrett et al., 1988).

Die Tertiärstruktur der genetischen Variante des Chymosins B wurde von Newman et al. (1991) aufgeklärt. Er stellte fest, dass das Protein aus zwei großen gefalteten Lappen besteht. Sie werden vom N- und vom C-terminalen Teil gebildet. Zwischen diesen Bereichen befindet sich eine tiefe Spalte, in der das aktive Zentrum lokalisiert ist. Das Protein ist symmetrisch. Die Symmetrieachse verläuft genau zwischen den beiden Aspartatresten in der Mitte der Kluft (Veerapandian und Cooper, 1992).

Die traditionelle Gewinnung des Chymosins erfolgt durch Extraktion aus den Jungkälbermägen. Dabei wird allerdings nicht das reine Chymosin erhalten, sondern ein Gemisch aus Chymosin, Pepsin und anderen Enzymen, das Labenzym (Reiner, 1997).

Die intensiven Fortschritte auf dem Gebiet der Gentechnologie machen es heutzutage auch möglich, genetisch veränderte Mikroorganismen zur Chymosinproduktion einzusetzen.

Anfang der 80er Jahre wurde die genetische Information für die Chymosinbildung entschlüsselt. Dieses Gen wurde nun in Mikroorganismen eingeschleust, um diese zur Chymosinproduktion zu veranlassen (Pabst et al., 1998). Das Kälberprochymosin B kann beispielsweise in Escherichia coli, Aspergillus niger oder Kluyveromyces lactis synthetisiert werden. Vorteil dieser Methode ist die identische Zusammensetzung der Chymosinfraktionen im Vergleich zum Kälberlab und die damit einhergehende übereinstimmende Proteolyseaktivität der Klonlabe (Meisel, 1988).

In Deutschland darf aus gentechnisch modifizierten Mikroorganismen gewonnenes Chymosin seit 1997 für die Käseherstellung eingesetzt werden.

Die primäre Angriffsstelle des Chymosins ist die Phe₁₀₅-Met₁₀₆-Bindung im κ -Casein. Diese Bindung ist für einen Chymosinangriff weit mehr anfällig als jede andere Bindung der Milchproteine. Der Auffassung, dass die übrigen Caseine während der Milchgerinnung nicht angegriffen werden, muss widersprochen werden, da neben dem zu erwartenden GMP weitere Peptide als Hydrolyseprodukte elektrophoretisch und chromatographisch nachweisbar sind (Krause, 1994).

Proteolytische Wirkung von Chymosin auf Gesamtcasein und β-Casein

Chymosin ist in der Lage, das β -Casein bei pH 5,3 innerhalb von 21 h vollständig zu Peptiden zu hydrolysieren. Nach einer Inkubationszeit von 144 h konnten 19 Peptide mit einer Molmasse bis zu 5000 Da nachgewiesen werden. Es existieren Unterschiede zwischen dem isolierten Abbau von β -Casein und dem Abbau des Caseingemisches durch Chymosin. Die Proteolysegeschwin-digkeit ist im isolierten Ansatz höher als im Ansatz mit Gesamtcasein (Sienkiewicz und Scherze, 1994).

Creamer und Mills (1971) verfolgten den Abbau des β -Caseins in verdünnter gepufferter Lösung bei pH 6,5 und einer Temperatur von 10 °C. Sie konnten durch elektrophoretische Trennung drei β -Caseinbruchstücke identifizieren. Nach ihrem Erscheinen und ihrer Mobilität geordnet, wurden sie als β -I, β -II und β -III bezeichnet. Zuerst erfolgt der Abbau von β -Casein zur mobileren Komponente β -I. Diese nimmt in ihrer Konzentration dann langsam ab, während die beiden anderen Komponenten entstehen.

Später ordnete Creamer (1976) diesen Peptiden folgende Aminosäuresequenzen zu: β -I (1-189), β -II (1-166 bzw.164) und β -III (1-139). Er untersuchte weiterhin die Abhängigkeit der Bindungsspaltung von der Natriumchlorid-Konzentration und dem pH-Wert bei Temperaturen von 5 °C und 37 °C. Durch Erhöhung der Natriumchloridkonzentration wird die Bildung der einzelnen Fragmente deutlich verzögert.

Die Erklärung für die Hydrolyseverzögerung bei steigenden Salzgehalten liegt sicherlich in der Neigung des β -Caseins zur Selbstassoziation. Mittels Gelfiltration konnte gezeigt werden, dass das β - Casein bei Natriumchloridkonzentrationen zwischen 1 und 1,5 M größtenteils assoziiert vorlag. Es kommt sowohl zur Selbstassoziation als auch zur Komplexbildung mit α_{S1} -Casein. Damit sind die chymosinempfindlichen Bindungen durch das Enzym nicht zugänglich (Creamer, 1976).

Pélissier et al. (1972) studierten die proteolytische Spezifität von Chymosin an β -Casein und fanden unter milden Hydrolysebedingungen vier Peptide, die aus der Hydrolyse der Peptidbindungen 164-165; 189- 190 und 192-193 resultierten.

Visser und Slangen (1977) konnten sieben bevorzugte Spaltungsstellen des Chymosins im β -Casein identifizieren. In absteigender Geschwindigkeit werden diese sieben Peptidbinungen wie folgt hydrolysiert:

 $Leu_{192} - Try_{193} \ge Ala_{189} - Phe_{190} \ge Leu_{165} - Ser_{166} \ge Gln_{167} - Ser_{168} \ge Leu_{163} - Ser_{164} \ge Leu_{139} - Leu_{140} \ge Leu_{127} - Thr_{128}.$

Den Milchgerinnungsenzymen wird eine zweistufige proteolytische Wirkung zugeschrieben. Zuerst erfolgt die spezifische Spaltung des κ -Caseins durch das Chymosin. Anschließend werden durch das Enzym weitere zugängliche Bindungen im Casein hydrolysiert. Dabei spricht man auch von "unspezifischer" Hydrolyse.

Krause et al. (1992) konnten allerdings bereits nach 15 min Chymosineinwirkung (bei $T = 35^{\circ}C$ und pH = 6,5) eine Vielzahl von Peptiden neben dem Glycomacropeptid nachweisen. Dabei werden β - und κ -Casein mit hohen Anfangsgeschwindigkeiten hydrolysiert. Die "spezifische" Hydrolyse der Phe₁₀₅-Met₁₀₆ Bindung im κ -Casein ist demzufolge der bevorzugte, aber nicht der alleinige Vorgang während der Gerinnungsphase.

Über den Eonfluss von Natriumchlorid berichten ferner Fox und Walley (1971). So vermindert ein Salzzusatz von 5 % die Proteolyse des β-Caseins deutlich, und bei 10 % Salzzugabe wird die Proteolyse unterbunden. Die Wirkung auf α_{S1} -Casein ist hingegen eine andere. So fördern Salzgehalte um 5 % die Proteolyse, oberhalb von 15 % Salz wird der α_{S1} -Caseinabbau jedoch ebenfalls inhibiert. De Jong und de Groot-Mostert (1977) bestätigen diese Ergebnisse, weiterhin stellen sie fest, dass die Spezifität der Enzyme durch den Salzzusatz nicht verändert wird, sondern nur deren Aktivität.

2.3.3.4 Suparen

Suparen ist eine Protease, die durch Fermentation aus dem Schimmelpilz Endothia parasitica gewonnen wird. Die Sekundärstruktur der Endothia parasitica-Protease besteht aus einem zweisträngigen verdrehten Faltblatt und α -helicalen Abschnitten. Die Tertiärstruktur ergibt sich durch Verdrehen der β -Faltblattstrukturen und der Helices zum Hauptstrang. Das aktive Zentrum der mikrobiellen Protease besteht aus einem komplizierten, über Wasserstoffbrücken verbundenen Netzwerk, das die beiden katalytisch wirksamen Aspartat-Seitenketten (32 und 215 Pepsinnomenklatur) enthält (Blundell et al., 1985).

Proteolytische Wirkung von Suparen auf Gesamtcasein und β-Casein

Zur Charakterisierung der Wirkung mikrobieller Aspartat-Proteasen wurde zumeist der in 12 %iger Trichloressigsäure lösliche NPN²-Anteil der Hydrolysate bestimmt, hieraus lassen sich Aussagen über die Enzymkinetik ableiten. Weiterhin wurden die Hydrolysate nach Einwirken von Labaustauschstoffen gelelektrophoretisch getrennt, um so Unterschiede bezüglich der Art und Zahl der entstandenen Spaltprodukte im Vergleich zu Chymosin festzustellen. Mikrobielle Labaustauschstoffe zeigen bei den in der Käsereitechnologie angewandten Bedingungen zumeist eine stärkere proteolytische Aktivität als Lab bzw. Chymosin.

Vanderpoorten und Weckx (1972) führten gelelektrophoretische Trennungen von β -Casein Hydrolysaten nach Zusatz von Enzymextrakten aus Mucor miehei, Mucor pusillus, und Endothia parasitica-Protease durch. Das Auftreten einer Bande mit geringerer elektrophoretischer Mobilität als die des originären β -Caseins ist für Hydrolysate von Endothia-Protease charakteristisch. Auch Mickelsen und Fisch (1976), El-Shibiny und Abd El-Salam (1976) beobachteten zahlreiche Fraktionen geringerer elektrophoretischer Beweglichkeit als die des originären Substrates. Weiterhin vermuteten Edwards und Kosikowski (1969) aufgrund von elelktrophoretischen Studien, dass β -Casein von Suparen stärker hydrolysiert wird als von Chymosin.

Tam und Withaker (1972) untersuchten die pH-Abhängigkeit der Enzymaktivität, indem sie die Hydrolyserate in der Initialphase und den Hydrolysegrad nach 24stündiger Einwirkung von Chymosin und Endothia parasitica Extrakt über die Zunahme der primären Aminogruppen, bestimmt mit Trinitrobenzensulfonsäure (TNBS), erfassten. Die

² NPN-Anteil: Nicht-Protein-Stickstoff-Anteil, d. h. der Überstand der isolelektrischen Fällung durch Trichloressigsäure

Untersuchungen zeigten eine geringfügig höhere anfängliche Hydrolyserate des mikrobiellen Enzyms gegenüber Chymosin. Nach einer Hydrolysedauer von 24 Stunden ist für beide Enzyme ein Anstieg der proteolytischen Aktivität im pH-Bereich von 3,5-6,0 festzustellen. Awad et al. (1999) konnten anhand von umfangreichen gelelektrophoretischen sowie RP-HPLC-Untersuchungen feststellen, dass β -Casein durch Suparen sehr schnell hydrolysiert und selbst durch einen Zusatz von Natriumchlorid kein Proteolysestillstand erreicht wird. Nach einer Hydrolysezeit von 1440 min lassen sich in den NCN-Fraktionen der Hydrolysate, die durch Einwirken von Suparen auf β -Casein (1 %ige β -Caseinlösung) erhalten wurden, alle in β -Casein vorkommenden terminalen Aminosäuren nachweisen (Hugel, 1996). Suparen spaltet Peptidbindungen viel unspezifischer als Chymosin.

2.4 Die Käsereifung

2.4.1 Allgemeines

Während der Käsereifung laufen drei biochemische Hauptprozesse ab: die Proteolyse der Proteine, die Glycolyse der Lactose und die Lipolyse. Die Proteolyse ist essentiell für die Aromabildung in Cheddarkäse und anderen Käsesorten (McGoldrick und Fox, 1999). Die dabei entstehenden Intermediärprodukte sind für eine optimale Entwicklung der bakteriellen Reifungsflora unerlässlich. Art und Menge der zunächst gebildeten Intermediärprodukte beeinflussen entscheidend die Entstehung von Folge- und Endprodukten, die Geschmack, Konsistenz und Aussehen des Käses prägen.

In der Käsereitechnologie sind beim Reifen des Käses Lagertemperatur, -feuchte und -dauer die entscheidenden Parameter. Die Reifungsbedingungen sind je nach Sorte bzw. Art des Käses unterschiedlich (Tab. 2.4–1).

Käseart bzw. Sorte	Temperatur in °C	Relative Luftfeuchte	Reifungsdauer in Wochen (Wo) oder Tagen (d)
Hartkäse	1013	8590	mind. 12 Wo
Schnittkäse	1316	8090	5 10 Wo
Weichkäse	1619	9095	10 30 d

Tab. 2.4–1: Reifungsbedingungen und –dauer (Spreer, 1995; AID, 1993)

Ein weiterer wichtiger Parameter bei der Käsereifung ist der Wassergehalt. Das Verhältnis Wassergehalt zu Caseingehalt und Wassergehalt zu Salzgehalt bestimmen entscheidend die mikrobiellen Reifungsvorgänge im Käse und damit Charakter und Qualität des Käses. Jede Käsesorte muss deshalb einen Normalwassergehalt $W_{ff/N}^3$ aufweisen, bei dem das Eiweiß den idealen Quellungszustand erreicht und die Mikroorganismen bzw. Enzyme die günstigsten Bedingungen zur Wirkungsentfaltung haben (Spreer, 1995). Dieser Normalwassergehalt $W_{ff/N}$ spielt bei der Entwicklung von Modellen eine große Rolle.

Der Kochsalzgehalt ist ebenfalls ein wesentlicher Parameter für die Bildung der charakteristischen Eigenschaften einer Käsesorte. Er hat Auswirkungen auf die sich entwickelnde Bakterienflora und beeinflusst so die weitere Reifung. Je nach Sorte enthalten Käse zwischen 0,8 und 2,5 % Natriumchlorid (Heiss, 1999).

2.4.2 Bedeutung der Proteolyse als Hauptprozess der Käsereifung

Die größte Menge der Gerinnungsenzyme wird zwar mit der Molke abgetrennt, ausschlaggebend ist jedoch der adsorbierte Chymosinrest, der nach dem Abpressen der Molke noch am Käsebruch verbleibt. Die genaue Menge hängt vom Käsetyp, seinen Verarbeitungsbedingungen (Einlabungszeit, pH-Wert, Rührzeit, Pressdauer, Pressintensität, Salzzusatz und Nachbrenndauer) und von der Art des eingesetzten Gerinnungsenzymes ab (Visser, 1981). Die verbleibenden Gerinnungsenzyme, die Enzyme der Starterkulturen und der sich entwickelnden Reifungsflora bestimmen zum größten Teil den weiteren proteolytischen Abbau.

Desmazeaud und Gripon (1977) führten Untersuchungen mit aseptischen Milchgallerten durch, um den Einfluss des Labs, der Milchproteasen, der proteolytischen Enzyme der Milchsäurebakterien und der Penicilliumarten auf die Proteolyse zu ermitteln.

Chymosin gilt als wichtigstes Proteolyseenzym im Vergleich zu den Enzymen der Milchsäurebakterien, es sei denn, die Chymosinaktivität ist durch Hitzeeinwirkung (hohe Brenntemperaturen wie in Schweizerkäsesorten) herabgesetzt. Sodann kann die Wirkung vertauscht sein.

Die Wirkung der milcheigenen Protease Plasmin konnte noch nicht vollständig geklärt werden. Auf Grund ihrer Hitzeresistenz wird sie in nachgebranntem Käsebruch eine höhere Wirkung erzielen.

³ $W_{ff} = \frac{100 \cdot W}{100 - f}$ (%); W_{ff} : Wassergehalt der fettfreien Käsemasse; W: Wassergehalt des Käses; f: Fettgehalt des Käses

Die Penicilliumarten zeichnen sich besonders durch die Bildung von Aminosäuren aus. In Käsen, die keine Penicilliumkulturen enthalten, übernehmen die Aminopeptidasen der Milchsäurebakterien diese Aufgabe. Der Anteil des Chymosins an der Freisetzung von Aminosäuren ist vergleichsweise gering, da es sich um ein Endoenzym handelt.

Desmazeaud und Gripon (1977) schlussfolgerten, dass alle diskutierten proteolytischen Enzyme eine synergistische Wirkung auf den Caseinabbau haben. Die Abbauprodukte werden stufenweise immer weiter abgebaut, wobei die Proteolyseprodukte der einen Enzyme die Edukte der anderen sind (Abb. 2.4–1).

Abb. 2.4–1: Schema zum eventuellen Mechanismus der Hydrolyse von Proteinen durch Chymosin während der Käsereifung (Desmazeaud und Gripon, 1977)

Noomen (1978) beobachtete, dass der proteolytische Abbau während der ersten Tage der Reifung maßgeblich von der Aktivität des Chymosins abhängt. Visser und Slangen (1977) registrierten zudem am sterilen Käsebruch, der nur mit Chymosin inkubiert wurde, dass Chymosin im ersten Monat der Reifung fast vollständig das α_{S1} -Casein spaltet. β -Casein scheint relativ beständig gegenüber dem proteolytischen Abbau zu sein und liegt nach einer Reifungszeit von etwa 6 Monaten noch zu 50 % intakt vor. Im weiteren Verlauf der Reifung nutzen die Reifungskulturen diese partiellen Abbauprodukte für die Stickstoffversorgung. Gripon et al. (1975) konnten weiterhin feststellen, dass nur 5 % der Gesamtpeptide im Käse eine Molmasse < 3000 Da aufwiesen. Der Hauptteil des β -Caseins schien selbst nach 40 Tagen nicht abgebaut zu sein. Creamer (1976) konnte den teilweisen Abbau von β -Casein während der Reifung mit Hilfe der Gelelektrophorese bestätigen. Er isolierte drei Peptide, die er den Fraktionen β -I, β -II und β -III zuordnete (vgl. Kapitel 2.3.3.3).

Der Umfang der Proteolyse kann je nach Käseart variieren. In Mozarella ist die Proteolyse sehr eingeschränkt, während in Blauschimmelkäse ein ausgedehnter Proteinabbau stattfindet. Je nach Proteolyseumfang schwanken auch die Produkte: von großen Polypeptiden, über eine Reihe mittlerer und kleiner Peptide, bis hin zu Aminosäuren. McGoldrick und Fox (1999) hatten sich das Ziel gesetzt, Käsesorten anhand ihrer Proteolyseprodukte mit HPLC und Harnstoff-PAGE zu unterscheiden. Das Problem war allerdings, dass die charakteristischen Merkmale, die mit diesen Methoden analysiert wurden, im Laufe der Reifung variieren. Weitere Faktoren, die die Klassifikation von Käse ungenau machen, sind die Reifungstemperatur, die Art des Koagulationsenzyms und die eingesetzten Starterkulturen.

Bütikofer et al. (1998) untersuchten den Einfluss der Starterkulturen auf die Käsereifung. Sie verwendeten Emmentaler Käse und ließen die Reifung mit und ohne Zusatz von Lactobacillus casei subsp. casei ablaufen. Die Peptide des wasserlöslichen Extrakts wurden mittels RP-HPLC aufgetrennt und die Peakhöhe als Index für den Proteinabbau betrachtet. Es konnten mehr als 100 Peaks detektiert werden, deren Intensität während der Reifung teils variierte, teils konstant blieb. Fünf Peaks unterschieden sich signifikant bei der Reifung mit oder ohne Lactobacillus casei subsp. casei.

Belitz und Kaiser (1993) beurteilten den Reifungsverlauf in Cheddarkäse bei 10 °C über 24 Wochen. Sie trennten die in Citratpuffer bei pH 4,6 löslichen Peptide mittels RP-HPLC und erhielten 13 Peptide. Diese ordneten sie alle dem β -Casein zu. Die Mengen und Anteile der Peptide änderten sich über den Reifungszeitraum so, dass sie als Reifungsindikatoren nutzbar waren.

Ein großer, nicht zu unterschätzender Aspekt bei der Käsereifung ist der Einfluss des Wassers und des pH-Wertes. Der Prozess der Hydrolyse wird mit Abnahme des Wassergehaltes zusehends verlangsamt. Die Ursachen dafür sind vielfältig. Zum einen findet eine eingeschränkte Diffusion der Substratmoleküle zum Enzym hin statt, außerdem wird die Abdiffusion der Produktmoleküle vom Enzym weg behindert. Augenscheinlich bewirkt selbst eine bestimmte Natriumchloridkonzentration eine Verzögerung des Reaktionsmechanismus (Kube, 1996). Bei schneller Säuerung und höheren Wassergehalten verbleiben etwa 40 % des Chymosins am Käsebruch (Klostermeyer et al., 1972). Majeed und Ernstrom (1985) fanden bei einem pH-Wert von 6,2 30-35 % des Chymosins im Käsebruch wieder, während bei Pepsin die Restaktivität im Käsebruch für pH 5,8 fast 64 % betrug. Mikrobielle Proteasen dagegen gehen zum größten Teil in die Molke über (Garoutte et al., 1985). Der Einfluss des pH-Wertes auf die Retention ist daher für Labenzyme charakteristisch.

2.4.3 Entstehung biologisch aktiver Peptide aus dem β–Casein

Milchproteine sind eine der wichtigsten Quellen für bioaktive Peptide. Sie sind in einem inaktiven Status in der Sequenz des Milchproteins verborgen und können durch enzymatische Hydrolyse freigesetzt werden. Solche Peptide agieren im Körper als Regulatoren und können hormonartige Wirkung zeigen (Meisel und Schlimme, 1996).

2.4.3.1 Opioide Peptide

Eine wichtige Gruppe sind die opioiden Peptide des β -Caseins. Als opioid wird ein Peptid dann bezeichnet, wenn es in der Lage ist, an den Opiatrezeptor der Zellen zu binden. Dieser Rezeptor konnte im endokrinen System, im zentralnervösen System, im Immunsystem und ebenfalls im Verdauungstrakt von Säugetieren lokalisiert werden. Er interagiert mit endo- und exogenen opioiden Anta- und Agonisten.

Tab. 2.4–2: β -Casomorphin-Sequenzen in der Primärstruktur des bovinen β -Caseins A²-5P (Schlimme und Meisel, *1988 und **1995)

Nomenklatur*	β –Caseinreste*	Bioaktivität**
β –Casomorphin – 3	f 60 – 62	inaktiv
β –Casomorphin – 4	f 60 – 63	opioider Agonist/ immunoreaktiv
β –Casomorphin – 4 – amid	f 60 – 63	opioider Agonist
β –Casomorphin – 5	f 60 – 64	opioider Agonist
β –Casomorphin – 6	f 60 – 65	opioider Agonist / immunoreaktiv
β –Casomorphin – 7	f 60 – 66	opioider Agonist
β –Casomorphin – 8	f 60 – 67	?
β –Casomorphin – 11	f 60 – 70	opioider Agonist

Vom β -Casein sind verschiedene opioide Peptide bekannt. Sie werden auch als β -Casomorphine, Exorphine oder Formone ("food hormons") bezeichnet. Sie stammen aus der Region, die die Aminosäurenreste 60 bis 70 umfasst.

Casomorphine sind in der Lage, einen Einfluss auf die Verdauung auszuüben und die Absorptionsprozesse im Darm zu modulieren. Oral verabreicht, verlängern sie die Verweildauer der Nahrung im Gastro-Intestinaltrakt. Sie beeinflussen ebenfalls den postprandialen ("nach der Mahlzeit") Metabolismus durch Stimulation der Insulin- und Somatostatinsekretion.

 β -Casomorphin-5 und β -Casomorphin-4-amid sind die wirksamsten Verbindungen aus dieser Gruppe. Allerdings konnte bisher nur β -Casomorphin-11 als Verdauungsprodukt des β -Caseins in vivo nachgewiesen werden (Meisel und Schlimme, 1996).

2.4.3.2 ACE-Inhibitoren

Eine weitere interessante Gruppe von biologisch aktiven Peptiden ist die der ACE-Inhibitoren. Das Angiotensin-converting-enzyme (ACE) ist ein multifunktionales Enzym. Es katalysiert die Produktion des vasokonstriktiv ("gefäßverengend") wirkenden Angiotensin II (Fiat und Jollès, 1989).

Die Wirkung der Inhibitoren besteht in einer nachhaltigen Senkung des Blutdrucks und einer Besserung der Herzinsuffizienz. Solche ACE-Inhibitoren, vom β -Casein abgeleitet, werden auch als β -Casokinine bezeichnet.

Tab. 2.4–3: ACE–Inhibierende Peptidsequenzen in der Primärstruktur des β–Caseins *(Meisel und Schlimme, 1996), **(Schlimme und Meisel, 1995)

Nomenklatur*	Ursprungsregion aus der Primär- struktur des β–Caseins*	Primärstruktur**
β–Casokinin – 7	f177 – 183	A ₁₇₇ -V-P-Y-P-Q-R ₁₈₃
β–Casokinin – 10	f193 – 202	Y_{193} -Q-Q-P-V-L-G-P-V-R ₂₀₂

2.4.3.3 Immunstimulierende Peptide

Die Aminosäurereste 60 bis 70 spielen im bovinen β -Casein eine wichtige biologische Rolle, dieser Sequenzabschnitt wird deshalb auch als "Strategische Zone" bezeichnet. Das Tripeptid mit den Resten 60-63 aus β -Casein wirkt stimulierend auf die Phagozytose von Maus-Macrophagen und erwirkt bei Mäusen einen schützenden Effekt gegen Klebsiella pneumoniae ("Lungenentzündung"). Weiterhin aktivieren diese Peptide menschliche Macrophagen, um alternde rote Blutzellen abzubauen (Fiat und Jollès, 1989).

Das Hexapeptid (Reste 63-68 aus β -Casein) regt die Phagozytose von Schafsblutzellen durch Macrophagen an. Coste et al. (1992) konnten dem Peptid mit der Sequenz f193-f209

immunstimulierende Wirkung zuweisen. Im Tierversuch konnte die Produktion von Ratten-Lymphozyten erhöht werden.

2.4.3.4 Phosphopeptide

Phosphopeptide stellen eine weitere wichtige biologisch aktive Peptidgruppe dar. Sie werden bei der Hydrolyse durch Trypsin gebildet und besitzen die Fähigkeit, Calcium und Eisen zu binden. Da sie auch in der Lage sind, lösliche Komplexe zu bilden, wird diesen Peptiden die Funktion eines Calciumcarriers zugesprochen. Weiterhin ist es auch möglich, dass sie die Absorption von Calcium und anderen Mineralstoffen im Dünndarm fördern (Schlimme und Meisel, 1995).

Ein Caseinphosphopeptid entspricht den ersten 25 Resten des β -Caseins und inhibiert die Fällung des Calciums in vivo. Es verbessert die Calciumabsorption aus dem Dünndarm durch Erhöhung der Konzentration an löslichem Calcium. Das Caseinphosphopeptid kann in der Milch die Verfügbarkeit das Calciums steigern (Fiat und Jolès, 1989).

2.4.4 Bitterpeptide

Für den Geschmack eines Käses sind in Abhängigkeit von der Käsesorte eine Vielzahl von Einzelkomponenten prägend. In erster Linie wird die Geschmacksentwicklung durch die Komponenten Fett und Protein bestimmt. Das richtige Verhältnis dieser beiden Bestandteile zueinander ist dabei entscheidend. Während in anderen Lebensmitteln ein bitterer Geschmack erwünscht ist, bedeutet er im Käse einen Geschmacksfehler, der bis zur Genussuntauglichkeit führen kann.

Fox und Walley (1971) vermuten einen Zusammenhang zwischen dem Salzgehalt und der Bitterkeit des Cheddarkäses. Peptide, die aus dem proteolytischen Abbau des β -Caseins resultieren, scheinen weitestgehend für das Bitteraroma im Käse verantwortlich zu sein.

Wie in Kapitel 2.3.3.3 erläutert, inhibiert ein Salzgehalt von 10 % die Proteolyse des β -Caseins, während α_{S1} -Casein weiterhin abgebaut wird. Fox und Walley (1971) kommen nun zu dem Schluss, dass der Salzzusatz bis zu 2 % in gewissem Umfang die Proteolyse des β -Caseins hemmt und somit eine Bitterpeptidbildung unterdrückt. Warum allerdings sollten Peptide, die beim β -Caseinabbau gebildet werden, bitterer sein als die des α_{S1} -Caseins? Ney (1972) stellte in diesem Zusammenhang fest, dass die Bitterkeit eines Peptides mit seiner mittleren Hydrophobie (Q-Wert) zusammenhängt. Der Q-Wert ist ein Enthalpiewert und wird in Kalorien pro mol (cal/mol) angegeben. Peptide mit einem Q-Wert von über 1400 cal/mol

schmecken bitter, währenddessen Peptide mit $Q \le 1300$ cal/mol keinen Bittergeschmack aufweisen. Für Q-Werte zwischen 1300 und 1400 cal/mol kann keine Voraussage getroffen werden. Die angegebenen Q-Werte sind Richtwerte und können nur abschätzen, ob ein Peptid bitter sein könnte.

Im Käse sind diese bitteren Peptide Produkte der enzymatischen Hydrolyse und werden im Normalfall von den Proteasen oder Peptidasen der Starter- und Reifungskulturen abgebaut. Findet dieser Abbau nicht statt, bildet sich das bittere Fehlaroma heraus (Schalinatus und Behnke, 1974). Forschungen zur Identifizierung von Bitterpeptiden aus Proteinhydrolysaten des Caseins wurden von mehreren Autoren durchgeführt. So konnten Pélissier et al. (1972) drei Bitterpeptide aus dem Chymosinhydrolysat des β -Caseins identifizieren: Ala₁₀₃-Lys₁₀₅; Phe₁₉₀-Leu₁₉₂ und Gly₂₀₃-Val₂₀₉.

Bumberger und Belitz (1993) isolierten aus dem Trypsinhydrolysat ebenfalls Bitterpeptide. Drei Fragmente konnten dabei dem β -Casein zugeordnet werden. Folgende Sequenzen wurden mittels Aminosäureanalyse ermittelt: Ile₄₉-Asn₆₈; Ile₄₉-Lys₉₇ und das schon von Pélissier et al. (1972) gefundene Gly₂₀₃-Val₂₀₉. Die Autoren testeten weiterhin den Erkennungsschwellenwert der Peptide. Anhand ihrer Resultate schlussfolgerten sie, dass für die Bitterpotenz der Peptide nicht nur Hydrophobie und Größe, sondern auch konformative bzw. sterische Parameter ausschlaggebend sind.

2.5 Methoden zur Verfolgung der Hydrolyse

2.5.1 Ermittlung der Enzymaktivität

Um sicher zu gehen, dass das Enzym auch bei fehlender Hydrolyse des Substrates noch intakt ist, ist es notwendig, die proteolytische Wirkung des Enzyms auch nach längerer Lagerung bestätigen zu können. Da die Gerinnungswirkung von Aspartatproteasen ein Nachweis der noch vorhandenen Enzymaktivität ist, kann sie als Parameter noch vorhandener proteolytischer Aktivität gewählt werden. Die Bestimmung der Gerinnungszeit kann visuell erfolgen (Berridge, 1942) oder mit verschiedenen Instrumenten, die die Viskositätsänderung der Milch bei der Gerinnung als Messgröße benutzen.

2.5.2 Chemische Methoden

Die Charakterisierung der Hydrolysate kann zum einen durch chemische Methoden oder durch Ermittlung der Peptidmuster unter Verwendung der Gelpermeationschromatographie (GPC), Reversed phase-HPLC (RP-HPLC) und Polyacrylamidgelelektrophorese (PAGE) erfolgen.

Bestimmung der Tyrosinäquivalente nach LOWRY

Die LOWRY-Methode ist die am häufigsten angewandte photometrische Protein- und Peptidbestimmungsmethode im Mikromaßstab. Sie wird auch zur Erfassung von Spaltprodukten enzymatischer Hydrolysen eingesetzt. Nach Lowry et al. (1951) erfolgt die Reaktion in zwei Schritten. Dabei wird zuerst eine Kupfer-Protein- bzw. Kupfer-Peptid-Komplex gebildet. Dieser Komplex reduziert anschließend das Wolframatophosphorsäure-Molybdatophosphorsäure-Reagens nach FOLIN-CIOCALTEAU, wobei eine blauer Farbstoff mit einem Absorptionsmaximum bei 750 nm entsteht (Lowry et al., 1951; Kirazov et al., 1993).

Zur Beurteilung des Hydrolysegrades ist ein Trennung des Hydrolysates in CN- und NCNoder NPN-Fraktion erforderlich.

Die Hydrolyserate kann u.a. durch die Bestimmung der Tyrosinäquivalente in der NCN-Fraktion der isoelektrisch gefällten Hydrolysate verfolgt werden.

Bestimmung der freien Aminogruppen mit TNBS

Eine weitere Methode zur Untersuchung der Aktivität von proteolytisch wirksamen Enzymen ist Bestimmung der primären Aminogruppen mit TNBS (Trinitrobenzensulfonsäure) nach Kakade und Liener (1969) (Langner et al., 1971 ; Fields, 1972) im Hydrolysat.

Mit steigendem Hydrolysegrad nimmt der Anteil von α-Aminogruppen im Hydrolysat zu.

Abb. 2.5–1: Reaktionsgleichung der Reaktion freier Aminogruppen mit TNBS

Freie primäre Aminogruppen reagieren mit TNBS zu gelb gefärbte Produkten (Abb. 2.5–1), deren Absorptionsmaximum bei 405 nm liegt.
2.5.3 Elelektrophoretische Untersuchungen der Hydrolysate

Die Polyacrylamidgelelektrophorese (PAGE) eignet sich gut zur Charakterisierung von Proteinhydrolysaten mit Molmassen > 2 000 Da. Es gibt verschiedene Methoden der PAGE, bei denen man gute Aussagen über die Beschaffenheit der Proteine und Peptide bezüglich Größe und elektrophoretischer Mobilität treffen kann.

Bei der konventionellen PAGE wird ein konstanter pH-Wert und ein konstanter Vernetzungsgrad des Gels gewählt. Die Proteine trennen sich aufgrund von Ladung und Masse in einem elektrischen Feld (Westermeier, 1990).

Bei der SDS-PAGE wird ausschließlich nach Molekülgröße getrennt. Durch die Beladung der Proteine mit dem organischen Detergenz Natriumdodecylsulfat (SDS) wird die Eigenladung dieser Proteine abgeschirmt. Es werden anionische Micellen gebildet, die eine konstante Belegung der Oberfläche aufweisen.

Es ergibt sich eine lineare Beziehung zwischen dem Logarithmus der jeweiligen Molekülmassen und deren Wanderungsstrecke durch das Gradientengel. Aufgrund der bekannten Molmassen der Markerproteine, die zusätzlich auf das Gel als Standard aufgetragen werden, lassen sich über eine Kalibriergerade Schlussfolgerungen über die Molmassen der Proteine treffen.

Mit der Kapillarelektrophorese können komplexe Gemische gut und schnell getrennt werden. Die Trennung beruht auf der unterschiedlichen Wanderungsgeschwindigkeit geladener Moleküle im elektrischen Feld. In der Praxis erfolgt die Trennung in einer Quarzkapillare, die zwei Puffergefäße miteinander verbindet. Aufgrund des geringen Kapillarinnendurchmessers und der Art der Detektion (meist UV) weist die Kapillarelektrophorese gegenüber der HPLC eine geringere Konzentrationsempfindlichkeit auf.

2.5.4 Trennung der β-Caseinhydrolysate mittels Gelpermeationschromatographie

Eine weitere geeignete Methode zur Molmassenabschätzung ist die Gelpermeationschromatographie (GPC).

Durch Unterschiede in der Molekülgröße sind Proteine voneinander trennbar. Bei der GPC läuft das in einem entsprechenden Puffer gelöste Proteingemisch über eine mit inertem, stark hydratisiertem, polymerem Material gefüllte Säule.

Zu bedenken ist, dass aufgrund der Hydratisierung von Peptiden und Proteinen deren Hydrathülle einen größeren Molekülradius vortäuschen kann, was praktische Ergebnisse häufig von den theoretischen Erwartungen abweichen lässt.

2.5.5 **RP-HPLC-Untersuchungen**

Die Umkehrphasen-Hochdruckflüssigchromatographie (RP-HPLC) ist wahrscheinlich eine der meistbenutzten analytischen Trenntechniken. Die Fähigkeit zur Trennung nichtflüchtiger oder thermisch instabiler Verbindungen, ihre Empfindlichkeit, ihre Geschwindigkeit und ihre Effizienz eignen sich sehr gut zur Analyse von Aminosäuren, Peptiden, Nukleinsäuren, Steroiden, Kohlenhydraten und zahlreichen weiteren organischen Substanzen. Die RP-HPLC konnte in zahlreichen Untersuchungen ihre gute Eignung zu Untersuchung der Peptidfreisetzung aus Casein und seinen Fraktionen unter Beweis stellen (Corradini (1996), Herold und Winzer (1992), Lottspeich und Henschen (1981)).

In Abhängigkeit vom eingesetzten Enzym, den angewendeten Reaktionsbedingungen und den chromatographischen Parametern ergeben sich charakteristische Peptidmuster ("peptide mapping"). Unterschiede in der enzymatischen Wirkung der verschiedenen Proteasen lassen sich so gut darstellen. Aussagen über die Zusammensetzung der einzelnen Peptide, abgesehen von allgemeinen Feststellungen über die Polarität, sind jedoch nicht möglich.

Die RP-HPLC gehört zur Gruppe der Verteilungschromatographie an chemisch gebundenen Phasen. Es existieren zwei Trennmodelle. Das Verteilungsmodell geht davon aus, dass die Trennung der polaren bis unpolaren Substanzen auf der Verteilung des Analyten zwischen der unpolaren stationären Phase und der polaren mobilen Phase beruht (Skoog und Leary, 1996).

Das Absorptionsmodell hingegen geht davon aus, dass Analyt und mobile Phase um Bindungsstellen auf der Oberfläche der stationären Phase konkurrieren. Der Analyt bleibt also dort gebunden, bis eine genügend hohe Konzentration an organischem Solvent den Analyten vom stationären Träger ablöst. Nach Verdrängung des Analyten ist die Wechselwirkung mit der hydrophoben stationären Phase nebensächlich.

2.5.6 Fraktionierung von Hydrolysaten

Die Aufnahme eines RP-HPLC-Peptidmusters reicht allein nicht aus, um umfassende Aussagen (z.B. Molmasse, Herkunft des entstandenen β -Casein-Bruchstückes) über die entstandenen Peptidbruchstücke zu treffen.

Um einzelne Peptide aus komplexen Proteinhydrolysaten präparativ in hoher Reinheit zu gewinnen, bedarf es leistungsfähiger Trennverfahren. Auch hier bietet sich die RP-HPLC an präparativen bzw. semipräparativen Säulen als Methode der Wahl an. Bei Verwendung vollständig flüchtiger Puffer ist eine Weiterbearbeitung der isolierten Peptidfarktionen problemlos möglich. Salzfreie Präparate sind meist von Vorteil, da bei der anschließenden

Verwendung wie z. B. bei der LC-MS keine Störsignale auftreten. Empfohlen werden Gradienten aus wässriger Trifluoressigsäure (TFA) und Acteonitril. Je nach pH-Wert können Proteinen bzw. Peptide besser getrennt werden. Eine Reinheitsprüfung der isolierten Peptidfraktionen ist in jedem Fall erforderlich. Dabei bietet sich eine Rechromatographie an. Lemieux und Amiot (1989; 1990) isolierten phosphorhaltige und nichtphosphorhaltige Peptide aus Caseinhydrolysaten. Nach einer Vortrennung durch Ultrafiltration erfolgt eine Fraktionierung mit Größenausschlußchromatographie. Die Fraktionen wurden anschließend der RP-HPLC zugeführt und unter Verwendung eines TFA-haltigen Eluentensystems weiter aufgetrennt. Mit Hilfe der Aminosäureanalyse nach Totalhydrolyse und des Nachweises der N- und C-terminalen Endgruppen konnten Peptide der bekannten Sequenz zugeordnet werden.

2.6 Analyse der terminalen Aminosäuren

2.6.1 Analyse der C-terminalen Aminosäuren mittels Carboxypeptidase A und B

2.6.1.1 Allgemeines zu den Carboxypeptidasen

Carboxypeptidasen sind in Organen, Geweben und den Körperflüssigkeiten von Säugetieren zu finden. Es sind Exopeptidasen, die sich in zwei übergeordnete Gruppen einteilen lassen. Zum einen in Metallocarboxypeptidasen und in Serincarboxypeptidasen. Die Pancreascarboxy-peptidasen gehören zur ersten Gruppe, sie lassen sich in Carboxypeptidase A und B unterteilen.

Von Carboxypeptidase A existieren sechs verschiedene Formen, die sich in ihrer Aminosäuresequenz unterscheiden. Carboxypeptidase A α besteht aus einer Peptidkette mit 304 Aminosäuren, das aktive Zentrum enthält Zink (Zn). Dieses Zink ist durch zwei Sauerstoffatome von Glu₇₂, jeweils ein Stickstoffatom aus His₆₉/His₁₉₆ sowie einem Wassermolekül (W) koordiniert. Das Wassermolekül wiederum ist über Wasserstoffbrückenbindung mit Glu₂₇₀ verbunden (Tsuru, 1970). Carboxypeptidase A katalysiert bevorzugt die Abspaltung von C-terminalen neutralen und sauren Aminosäuren. Prolin, Hydroxyprolin, Arginin, Lysin und Glycin können nicht freigesetzt werden.

Carboxypeptidase B besteht aus 300 Aminosäureresten, und das aktive Zentrum ähnelt dem der Carboxypeptidase A. Bevorzugt werden basische Aminosäuren vom C-Terminus abgespalten. Dieser Unterschied in der Substratspezifität rührt wahrscheinlich von der Anwesenheit des Asparaginrestes (Asp₂₅₅) im aktiven Zentrum. Bei Carboxypeptidase A befindet sich dort ein Isoleucinrest (Ile₂₅₅). Carboxypeptidase B ist ebenfalls nicht in der Lage,

Prolin, Hydroxyprolin und Glycin abzuspalten (Tsuru, 1970). Dieses vermag u.a. die bakterielle Carboxypeptidase Y.

2.6.1.2 Derivatisierung der abgespaltenen Aminosäuren mit FMOC-Cl

Die Derivatisierung der abgespaltenen Aminosäuren kann mit der von Betner und Földi (1986) ausgearbeiteten FMOC-ADAM-Methode erfolgen. Dabei wird FMOC-Cl mit der Aminosäure umgesetzt. Die FMOC-Schutzgruppe ist stabil gegenüber saurer und katalytischer Hydrolyse und kann im milden basischen Milieu entfernt werden (Caprino und Han, 1972). Der Reagenzienüberschuss an FMOC-Cl wird hierbei durch Reaktion mit 1-Aminoadamantan entfernt, weil es stark fluoresziert. Das Reaktionsprodukt eluiert im hinteren Teil des Chromatogramms, so dass es die Trennung der FMOC-Aminosäuren nicht mehr behindert (Betner und Földi, 1986).

Als Nebenreaktion ist die Bildung des Hydrolyseproduktes 9-Fluorenylmethanol (FMOC-OH) bekannt. Nach Hydrolyse und Decarboxylierung des Reagenz, eluiert FMOC-OH mitten im RP-HPLC-Chromatogramm. Bei hohen Konzentrationen kann sein Peak die anderen Aminosäuren überlappen und eine Trennung und Quantifizierung unmöglich machen (Bank et al., 1996).

2.6.1.3 Trennung der C-terminalen Aminosäuren mittels Ionenaustauschchromatographie und Nachsäulenderivatisierung mit Ninhydrin

Moore et al. (1958) und Spackman et al. (1958) entwickelten eine auf Ionenaustausch basierende Trennungsmethode Identifizierung und Quantifizierung zur von Aminosäuregemischen. Die Trennung erfolgt an sulfonierten Kationenaustauschern mit einem pH-abgestuften Elutionspuffersystem aus Natrium- oder Lithiumcitratpuffer. Die an den Sulfongruppen gebundenen Natrium- oder Lithiumionen werden durch die aufgegebenen Aminosäuren (die im sauren pH-Bereich als Kationen vorliegen) zuerst ausgetauscht. Im folgenden werden die Molarität und der pH-Wert des Puffers erhöht, wodurch die gebundenen Aminosäuren eluieren. Der Trennung wird eine Nachsäulenderivatisierung mit Ninhydrin angeschlossen. Der gebildete Farbstoff wird am Photometer bei 570 nm (primäre Aminogruppe) und 440 nm (sekundäre Aminogruppe) detektiert.

2.6.2 Analyse der N-terminalen Aminosäuren

Von Chang et. al (1976) wurde die DABITC-Methode entwickelt. Unter Verwendung von 4-Dimethylaminoazobenzen-4'-isothiocyanat wird die N-terminale Aminosäure in ein gelb-rot bis rot-violettes DABTH-Derivat überführt, welches mittels RP-HPLC getrennt und im sichtbaren Bereich ($\lambda = 436$ nm) detektiert werden kann. Der Reaktionsmechanismus (vgl. Abb. 2.6–1) gleicht dem der PITC-Reaktion, allerdings verlaufen Abspaltung und Umlagerung zur DABTH-AS in einem Schritt. Der Kupplungsschritt findet in wässrigem Pyridin statt. Um eine quantitative Umsetzung zu erreichen, wird mit Reagenzienüberschuss gearbeitet. Allerdings müssen dieser Überschuss und die Reaktionsnebenprodukte durch einen Extraktionsschritt entfernt werden, da sie die Trennung der DABTH-AS stören.

Die Abspaltung der markierten N-terminalen Aminosäure erfolgt wiederum durch Säurehydrolyse, mit einem Gemisch aus Salz- und Essigsäure. Anschließend wird bis zur Trockne eingedampft, da bereits Spuren von Acetat zu Verlusten an DABTH-AS führen. Die durchgeführten Schritte müssen unter Sauerstoffausschluss durchgeführt werden, um eine quantitative Umsetzung zu gewährleisten. Aus diesem Grund muss die verwendete Salzsäure auch Eisen-(III)-ionen frei sein, da sonst unkontrollierte Oxidationsprozesse ablaufen (Chang und Creaser, 1976; Chang et al, 1976; Chang, 1988).

Abb. 2.6–1: Mechanismus der DABITC-Derivatisierung (Arnold, 1995)

2.7 Massenspektrometrie

2.7.1 Allgemeines

Die Massenspektrometrie ist eine vielseitig einsetzbare Analysenmethode. Mit ihrer Hilfe ist es möglich, die qualitative und quantitative Zusammensetzung organischer und anorganischer Analyten zu ermitteln. Voraussetzung ist, dass dieser ionisierbar ist. Ein Massenspektrum erhält man, wenn man die Komponenten einer Probe in sich schnell bewegende Ionen umwandelt und diese auf Basis ihres Masse/Ladungsverhältnisses trennt.

Abb. 2.7–1: Komponenten eines Massenspektrometers (Skoog und Leary, 1996)

2.7.2 Untersuchung von Fraktionen mittels ESI-Massenspektrometrie

Das Prinzip der LC-MS besteht darin, einen Analyten mit Hilfe der RP-HPLC zu trennen und mit einem Massenspektrometer zu koppeln. Die Kopplung einer flüssigen Phase mit der einer gasförmigen erfordert ein Sprayverfahren. In diesem Verfahren werden Lösungsmittelgemische, die den Analyten enthalten, verdampft. Es gibt verschiedene Sprayverfahren: Thermospray, Elektrospray und Ionenspray, Zum Einsatz kommt ein Ionensprayverfahren. Dabei wird am Ende der HPLC-Trennung der Lösungsmittelstrom durch eine heiße Austrittskapillare geführt und durch eine hohe Spannung am Ende der Kapillare in hochgeladene Tröpfchen zerlegt. Durch einen Stickstoffstrom wird das verdampfte Lösungsmittelgemisch weiter vernebelt und zum Massenanalysator transportiert.

Beim Flugzeit-Massenspektrometer werden die beschleunigten Ionen in ein Flugrohr überführt, dessen Ende die leichteren Ionen schneller erreichen als die schwereren. Sie können daher nacheinander registriert werden. Die meisten Flugzeitgeräte arbeiten gepulst. In einem Puls werden Ionen erzeugt, beschleunigt und getrennt (Budzikiewicz, 1992).

3 Material und Methoden

3.1 Chemikalien und Geräte

3.1.1 Chemikalien

Alle verwendeten anorganischen und organischen Chemikalien waren analysenrein, die Lösungsmittel für die HPLC hatten "gradient quality".

Aceton	J. T. Baker, Deventer (NL)
Acetonitril, 100 %, HPLC grade	J. T. Baker, Deventer (NL)
Acetonitril, 84 %	aceotropes Destillat der HPLC- Rückstände
Acrylamid (2 x umkristallisiert)	Serva, Heidelberg
Alanin	Berlin Chemie
1-Aminoadamantan	Fluka, Buchs (CH)
Aminosäuren	Serva, Heidelberg
Aminosäure-Standardlösung	Sigma, Deisenhofen
Ammoniumperoxodisulfat	Merck, Darmstadt
Ascorbinsäure	Merck, Darmstadt
Borsäure	Merck, Darmstadt
Bromphenolblau	Serva, Heidelberg
Calciumchlorid wasserfrei	Laborchemie Apolda
Coomassie Brillantblau G	Fluka, Berlin
4-Dimethylaminoazobenzen-4'-isothiocyanat	Fluka, Buchs (CH)
Dithiothreitol	ICN Biomedicals, Ohio
Eisessig	J. T. Baker Deventer (NL)
Ethylacetat	Riedel-de-Haën, Seelze-Hannover
9-Fluorenylmethoxycarbonylchlorid	Fluka Biochemica Buchs (CH)
Formaldehyd	keine Angaben
Glutardialdehyd	Merck-Schuchardt Hohenbrunn
Glycerol, 86 – 88 %	Riedel de Haën
Glycin; Puffersubstanz nach SÖRENSEN	HB Labor- und Feinchemikalien
Harnstoff (umkristallisiert aus Ethanol)	Merck Darmstadt
Jodacetamid	Serva Feinbiochemica Heidelberg
Kaliumdihydrogenphosphat	Riedel de Haën
Kaliumdihydrogenphosphat	Merck Darmstadt

Kupfer (II)- sulfat-5-hydrat	Laborchemie Apolda
Magermilchpulver	Sachsenmilch AG 1992, Leppersdorf
N,N'- Methylenbisacrylamid (umkristallisiert)	Serva Feinbiochemica Heidelberg
Natriumacetat (wasserfrei)	Merck, Darmstadt
Natriumcarbonat	Laborchemie Apolda
Natriumcarbonat, DAB 6	Laborchemie Apolda
Natriumchlorid	Chemapol, Prag
Natriumchlorid.	Laborchemie Apolda
Natriumcitrat	Laborchemie Apolda
Natriumdodecylsulfat	Serva Feinbiochemica Heidelberg
Natriumhydroxid	J. T. Baker Deventer (NL)
Natriumhydroxid reinst	J. T. Baker Deventer (NL)
Natriumtetraborat, chemisch rein	Laborchemie Apolda
Natriumthiosulfat	keine Angaben
n-Heptan	J. T. Baker Deventer (NL)
N-Hippuryl-L-Arginin	Merck Darmstadt
N-Hippuryl-L-Phenylalanin	Merck Darmstadt
Orange G	Serva, Heidelberg
Paraffin (Blockform)	Merck, Darmstadt
Phenolreagenz nach Folin- Ciocalteau	Institut für Lebensmittelchemie
Phenylisothicyanat	Fluka, Buchs (CH)
Pyridin, for sequential analysis	Fluka, Buchs (CH)
Salzsäure (37%ig), for sequential analysis	Fluka, Buchs (CH)
Suparen (Endothia parasitica)	Pfizer AG, Zürich (CH)
N,N,N',N'-Tetramethylenethylendiamin	Serva, Heidelberg
Trägerampholytmischung	Serva, Heidelberg
Trichloressigsäure	Laborchemie Apolda
Tricin	Serva, Heidelberg
Triethylamin	Fluka, Buchs (CH)
Trifluoressigsäure, für die Spektroskopie	Merck, Darmstadt
Trinitrobenzensulfonsäure	Nutritional Biochemicals Corporation
Tris(hydroxymethyl)-aminomethan	Serva, Heidelberg
D,L- Tyrosin	Chemapol, Prag

3.1.2 Enzympräparate

Zur Hydrolyse steht ein kristallines Chymosin-Präparat (Rennin Sigma[®] R-4879 Lot 83H0451) zur Verfügung.

Der eingesetzte Enzymextrakt aus Endothia parasitica (Suparen) liegt als Handelspräparat (von Pfizer) in flüssiger Form vor.

Für die Abspaltung der C-terminalen Aminosäuren stehen zwei Enzympräparate zur Verfügung, zum einen Carboxypeptidase A und zum anderen Carboxypeptidase B (Merck[®]).

3.1.3 Spezielle Analysengeräte

Einstrahl- Spektralphotometer Spekol 11	Carl Zeiss Jena
Gefriertrocknungsanlage LGA 05	MLW Engelsdorf/Leipzig
Vertikalgel- Electrophoresekammer	Hoefer
HPLC- Anlage:	SYSTEM-GOLD, BECKMANN
Programmable Solvent Module 126	
Programmable Detecor Module 166	
PC PS/2 Model 55 SX (IBM)	
Matrix-Drucker FX-850 (EPSON)	
Sterilbank	HeraSafe Heraeus
Aminosäureanalysator	Pharmacia LKB-Alpha-Plus
LC-MS-Anlage:	
LC: 1100 Series	Agilent
MS: Mariner TM Biospectrometry	Perkin Elmer Corporation
UV/VIS-Spektrophotometer	Ultraspec 1000 Pharmacia Biotech
Aminosäureanalysator LKB-Alpha Plus	Pharmacia Biotech
Brutschrank	memmert

3.2 Allgemeines Arbeitsprogramm

Das folgende Arbeitprogramm zeigt die verschiedenen Modelle, die für die Arbeit notwendig waren. Dabei werden zwei Modelle etabliert (Modell Milch und Modell Käse). Zwei Enzyme werden für die Hydrolyse des β -Caseins eingesetzt zum einen Chymosin und zum anderen Suparen.

Abb. 3.2–1: Fließschema für das allgemeine Arbeitsprogramm (TM: Trockenmasse)

3.3 Gewinnung und Charakterisierung von β-Casein

3.3.1 Isolierung und Reinigung des β-Caseins

Die als Substrat verwendete β -Caseinprobe wurde vom Institut zur Verfügung gestellt. Zur Isolierung des β -Caseins wurde aus Mischmilch der Sachsenmilch AG vom Juni 1993 zunächst Säurecasein gewonnen, das anschließend nach einer Vorschrift von Aschaffenburg (1963) behandelt wurde. Das β -Casein wurde durch fraktionierte Fällung gewonnen und anschließend bei pH 7,0 wieder aufgelöst. Die β -Caseinlösung wird kältefraktioniert, gefriergetrocknet (Payens et. al. (1963)) und das gefriertgetrocknete β -Casein bis zur Verwendung im Kühlschrank aufbewahrt.

3.3.2 Reinheitsprüfung mit der Polyacrylamidgelelektrophorese

Herstellung von alkalischen Trenngelen:(15 % an Acrylamid, 5 M an Harnstoff)Lösung A:48 ml 1 N Salzsäure + 36,6 g Tris + 0,46 ml TEMED mit bidest. Wasser auf100 ml aufgefüllt (pH 8,9)

- <u>Lösung B:</u> 30,0 g Acrylamid + 0,8 g Bisacrylamid mit bidest. Wasser auf 100 ml aufgefüllt
- <u>Lösung C:</u> 40 %ige "Perlösung", 200 mg Ammoniumperoxodisulfat in 0,5 ml bidest Wasser gelöst

In einem 50-ml-Maßkolben werden 15 g Harnstoff eingewogen, mit 6,25 ml der Stammlösung A und 25,0 ml der Stammlösung B versetzt und unter leichtem Erwärmen gelöst. Mit bidest. Wasser wird bis zur Eichmarke aufgefüllt und der Maßkolbeninhalt in einen Rundkolben überführt. Der Rundkolbeninhalt wird im Vakuum entlüftet, da Sauerstoff als Radikalfänger die Polymerisation inhibieren kann.

Für ein Gel mit einer Abmessung von 14,0 cm \times 13,5 cm \times 0,075 cm werden ca. 20 ml des Stammlösungsgemisches benötigt. Unter Zusatz von 20 µl Lösung C wird die Polymerisation gestartet.

Stammlösung Elektrophorese- Puffer:

In einem 1000-ml-Maßkolben werden 6,0 g Tris und 28,0 g Glycin eingewogen und bis zur Eichmarke aufgefüllt. Nach Kontrolle des pH-Wertes (pH 8,3) wird die Lösung zum Gebrauch 1 + 1 mit bidest. Wasser verdünnt und als Katoden- und Anodenpuffer verwendet.

Probenvorbereitung:

3-5 mg β -Casein werden in 1 ml 5 M Harbstoff gelöst, ein Tropfen Bromphenolblau zur Erkennung des Endpunktes zugesetzt und vor dem Auftragen kurz zentrifugiert.

Elektrophoreseparameter:

Kammer:	Vertikal-Gelelektrophoresekammer nach HOEFER
Temperatur:	10 °C
Vorelektrophorese:	Vorgabe: Spannung 227 V, 15 min
Hauptlauf:	Spannung, ansteigend (Grenze 800 V), 1 ¹ / ₂ h

Fixierung:

Zur Fixierung der getrennten Proben werden die Gele für ca. 30 min in 20 %ige Trichloressigsäure (TCE) gegeben.

Färbung:

Färbelösung nach RADOLA:

0,4 g Coomassie Brillantblau G löst man in 250 ml Methanol, 100 ml Essigsäure wird dazu gegeben und mit dest. Wasser auf 500 ml aufgefüllt.

Die fixierten Gele werden unter vorsichtigem Bewegen bis zum deutlichen Sichtbarwerden der einzelnen Banden in der Färbelösung belassen. Anschließend erfolgt ein Herauslösen des überschüssigen Farbstoffes des Gelhintergrundes mit einer Entfärbelösung aus Wasser/ Methanol/Eisessig (65/25/10) (v/v/v).

Scan:

Scanner: Sharp JX-330

Auswertesoftware: Image Master ID Elite (Version 3.0) von Amersham Bioscience

3.3.3 Reinheitsprüfung mit Gelpermeationschromatographie

Die gereinigte β -Caseinprobe wird über GPC getrennt und das Elutionsprofil aufgenommen. Die Konzentration der Probe ist nicht höher als 1 mg/ml. Die Parameter der Trennbedingungen sind Kapitel 3.10.2 zu entnehmen.

3.3.4 Bestimmung des Proteingehaltes des β-Caseinpräparates

Der Rohproteingehalt wird mit der Methode nach Kjeldahl in der Mikrovariante ermittelt (Konrad, 1969). Der Proteingehalt des β -Caseins wird unter Berücksichtigung des Faktors 6,38 für Milchprodukte mit 93,5 ± 1,7 % bestimmt. Die Wiederfindung wird mit Ammoniumsulfat bestimmt und beträgt 100,6 %. Der angegebene Proteingehalt bildet die Grundlage der Berechnungen für die Modelle.

3.3.5 Bestimmung des Wassergehaltes des β-Caseins

Der Wassergehalt der Probe wird gravimetrisch zu 5,4 \pm 0,3 % ermittelt (König, 1910). Dabei wird β -Casein über Phosphorpentoxid bis zur Massenkonstanz getrocknet und anschließend ausgewogen. Die ermittelten Differenzen ergeben den Wassergehalt der Probe.

3.4 Abgleich der Gerinnungszeit von Chymosin und Suparen

Da die zum Einsatz kommenden Gerinnungsenzyme unterschiedliche Aktivitäten aufweisen, müssen diese standardisiert werden, damit ein Vergleich der Enzyme möglich ist. Dies ist über den Abgleich der Gerinnungszeit erreichbar, wobei die Enzymkonzentration so gewählt wird, dass die Gerinnungszeit von 5 ml rekonstituierter Magermilch in sechs parallelen Ansätzen 600 ± 30 s beträgt.

Reagenzien:

Calciumchloridlösung	:	1,0 M (11,099 g in 100 ml Wasser gelöst, filtriert)
Natriumchloridlösung	:	0,01 N (0,058 g Natriumchlorid in 100 ml Wasser gelöst)
rekonstituierte Magerr	nilch:	12 g Magermilchpulver in 100 ml Wasser gelöst
Chymosinlösung:	2 mg Ren	nin in 100 ml 0,01 N Natriumchloridlösung
Suparenlösung:	1 ml Flüss	sigpäparat in 100 ml 0,01 N Natriumchloridlösung

Durchführung:

5 ml einer rekonstituierten Magermilch werden in einem Reagenzglas mit 0,05 ml Calciumchloridlösung versetzt und im Wasserbad auf 30 °C temperiert. Die Enzymlösung, die eine Stunde vor der Verwendung hergestellt wird, muss zunächst filtriert und wie die Substratlösung auf 30 °C temperiert werden. Anschließend wird ein definiertes Volumen der

Enzymlösung zu der Substratlösung gegeben und durchmischt. Die Zeit wird gestoppt, wenn die ersten koagulierten Partikel an der Glaswandung des Reagenzglases sichtbar werden. Weitere Ergebnisse in Tab. 3.4–1 geben Auskunft darüber.

Tab. 3.4–1:	Messwerte des	Gerinnungszeitabgleichs	für Chymosin	(Rennin) und Suparen
-------------	---------------	-------------------------	--------------	----------------------

Enzym	$c_{\rm E}$	$V_{\rm E}$	c _G	Mittelwert \overline{t}
Chymosin	20 µg /ml	100 µl	0,39 µg/ml	610 ± 6 s
Suparen	0,15 µl /ml	75 µl	0,15 µl/ml	599 ± 8 s

Exemplarische Berechnung der Enzymkonzentration c_G:

C	$-\frac{M_{E}}{M_{E}}$	$c_{_{\rm E}}\cdot V_{_{\rm E}}$	$\frac{2 \mu g}{-0.39}$	шœ	Chymosin / ml Ansatz
C	$G^{G} V_{G}$	$V_{Milch} + V_{CaCl_2} + V_E$	5,15 ml ^{-0,59}	μg	

c_G Enzymkonzentration im Reaktionsansatz in µg/ml bzw. µl/ml Ansatz (Chymosin)

M_E Masse/Volumen des Enzyms im eingesetzten Volumen

- V_G Volumen-Enzym-Substrat-Ansatz (5 ml rekonstituierte Magermilch + 0,05 ml Calciumchloridlösung + eingesetztes Enzymvolumen)
- c_E Konzentration der zugegebenen Enzymlösung
- V_E Volumen der zugegebenen Enzymlösung
- \bar{t} Mittelwert der Gerinnungszeiten und deren Konfidenzintervall (t(P;f) P = 0,95; f = 5)

Für das Chymosinpräparat berechnet sich die Enzymmenge wie angegeben. Es wird zur Ermittlung der Gerinnungszeit von 600 ± 30 s für Chymosin (Rennin) 0,39 µg/ml Ansatz und für Suparen eine Enzymmenge von 0,15 µl/ml Ansatz bestimmt.

3.5 Entwicklung der Modelle

3.5.1 Allgemeines

Aufgrund der langen Lagerzeiten der Hydrolysate werden verschiedene Vorkehrungen getroffen, damit ein mikrobieller Befall des β -Caseins und somit eine nicht vorgesehene Hydrolyse ausgeschlossen werden kann. Es wird unter sterilen Bedingungen gearbeitet.

Das beinhaltet:

- a) Alle Glasarbeitsgeräte werden, sofern es keine Ma
 ßinstrumente sind, bei 160 °C drei Stunden sterilisiert.
- b) Die β -Caseinlösungen werden bei 90 °C für etwa fünf Minuten erhitzt und am darauffolgenden Tag wird die Hitzebehandlung wiederholt.
- c) Es wird ein Konservierungsmittel (MIT: 2-<u>M</u>ethyl-4-<u>i</u>so<u>t</u>hiazolin-3-on) zugesetzt, welches im Ansatz eine Konzentration von 0,1 % bzw. 0,5 % (w/v) aufweist.
- d) Das Pipettieren der jeweiligen Lösungen, außer der β-Caseinlösung, erfolgt unter einer Sterilbank.
- e) Außer der Konservierungsmittellösung werden alle Lösungen durch ein Sterilfilter 0,2 μm
 Porendurchmesser filtriert.
- f) Es wird in sterile 5-ml-Ampullen (beim Modell Milch) bzw. 10-ml-Ampullen (beim Modell Käse) pipettiert, zugeschmolzen und danach mit Paraffin versiegelt.

3.5.2 Fließschema der verschiedenen Herstellungsschritte

Folgendes Fließschema soll die verschiedenen Herstellungsschritte erklären und die verschiedenen Hydrolysen des β -Caseinsubstrates (Modell Milch und Käse) erläutern.

Die Wahl der 10-ml-Ampullen hat beim Modellansatz für den Käse den praktischen Hintergrund, dass die Lyophilisation schneller abläuft.

Abb. 3.5–1: Fließschema der Herstellung der Inkubationsansätze

⁴ MIT: 2-<u>M</u>ethyl-4-<u>i</u>so<u>t</u>hiazolin-3-on

3.6 Herstellung der Lösungen für das Modell Milch

3.6.1 Herstellung der 1 % igen Substratlösung (Wässriges System)

Das Substrat (β -Casein) wird in Phosphatpuffer gelöst.

Herstellung des Phosphatpuffers nach SÖRENSEN:

Stammlösungen: Dinatriumhydrogenphosphat-2-hydrat (0,5933 g in 50 ml dest. Wasser lösen) Natriumdihydrogenphosphat-2-hydrat (5,2005 g in 500 ml dest. Wasser lösen)

Danach werden 19,5 ml von der Dinatriumhydrogenphosphatlösung abgenommen und mit der Natriumdihydrogenphosphatlösung auf 500 ml aufgefüllt. Die Mischung hat einen pH-Wert von 5,5.

Die Einwaage des β -Caseins wird so gewählt, dass in einer 5-ml-Ampulle mit Inhalt 5 ml eine 1 %ige β -Caseinlösung vorliegt. Verdünnungen durch das Enzym und durch die Zugabe des Konservierungsmittels müssen berücksichtigt werden.

Es wird ein Proteingehalt, wie nach Kapitel 3.3 bestimmt, herangezogen.

Die Einwaage beträgt für einen Ansatz von 250 ml β -Caseinlösung 3,337 g. Das β -Casein wird mit wenig Phosphatpuffer nach SÖRENSEN vermischt und anschließend für etwa 60 Minuten gerührt. Anschließend wird der pH-Wert durch Zugabe von 0,1 N Phosphorsäure auf pH 5,5 korrigiert. In einem 250-ml-Maßkolben wird mit dest. Wasser aufgefüllt.

Mit einer 4-ml-Pipette werden 32 Proben und sechs Reserveproben in sterile 5-ml-Ampullen pipettiert.

Die gefüllten 5-ml-Ampullen werden anschließend, in einem Wasserbad abgedeckt an zwei aufeinanderfolgenden Tagen bei 90 °C für fünf Minuten erhitzt.

3.6.2 Herstellung der Enzymlösungen

Chymosin:

Die Enzymlösung wird zwei Stunden vor der Verwendung hergestellt. Das Lösungsmittel ist 0,01 N Natriumchloridlösung. Die Enzymkonzentration wird so gewählt, wie im Gerinnungszeitabgleich (Kapitel 3.3.4, Rennin Sigma[®] R-4879 Lot 83H0451) ermittelt.

Suparen:

Die Enzymkonzentration wird so gewählt, wie im Gerinnungszeitabgleich Kapitel 3.3.4 ermittelt.

3.6.3 Herstellung der Konservierungsmittellösung

Das Konservierungsmittel 2-<u>M</u>ethyl-4-<u>i</u>so<u>t</u>hiazolin-3-on (MIT) wird den Ansätzen zugesetzt, um einen mikrobiellen Befall über die lange Lagerzeit zu verhindern. Dabei sind Konzentrationen zwischen (0,1-0,5) % geeignet. Um eine 0,1 %ige MIT-Endkonzentration in der Ampulle einzustellen, werden 0,25 g MIT in einen 25 ml Maßkolben eingewogen und in 20 ml Phosphatpuffer (Herstellung unter 3.6.1) angelöst. Da MIT in Lösung stark sauer reagiert, wird der pH-Wert mit konzentrierter Natronlauge auf 5,5 eingestellt und mit Phosphatpuffer nach SÖRENSEN auf 25 ml aufgefüllt. Von der hergestellten Lösung werden 500 µl zur Ampulle zugesetzt.

3.6.4 Herstellung der kochsalzhaltigen Proben

Des weiteren kann ein inhibitorischer Effekt in Abhängigkeit von der Natriumchloridkonzentration untersucht werden. Es sollen Natriumchloridkonzentrationen von 1, 2 und 4 % in einem Hydrolyseansatz von 5 ml vorliegen.

Dabei wird eine etwaige Volumenänderung außer Acht gelassen. Es werden 3 x 25 ml der originalen β -Caseinlösung (Herstellung unter 3.6.1) in sterile Bechergläser pipettiert, die verschiedene Salzeinwaagen enthalten.

Bei den Salzeinwaagen wird außerdem die Verdünnung berücksichtigt, die nach Zugabe der MIT-Lösung (Konservierungsmittel, Erklärung 3.6.3) und der Enzymlösung erfolgt.

Von den β -Caseinlösungen verschiedener Salzkonzentrationen werden jeweils sechs 5-ml-Ampullen mit 4 ml β -Caseinlösung befüllt.

3.6.5 Durchführung der Hydrolyse

Zu jeder Ampulle, die 4 ml der 1,25 %igen Substratlösung enthält, werden 500 µl Enzymlösung und 500 µl MIT-Lösung zugegeben, um ein Endvolumen von 5 ml einzustellen und eine Substratkonzentration von 10 mg Protein / ml . Zusätzlich werden zu den Proben ohne Salzzusatz und mit Salzzusatz Autolysekontroll- und Enzymkontrollproben mitgeführt. In erstere wird keine Enzymlösung zugegeben sondern 500 µl einer 0,01 N Natriumchloridlösung. Der Zusatz der Enzymlösung und MIT-Lösung bei den Enzymkontrollproben erfolgt wie bei den Proben ohne Salzzusatz. Das weitere Vorgehen bei der Probennahme wird in Kapitel 3.8 erklärt. Die Ampullen werden anschließend mit einem Gebläsebrenner zugeschmolzen, die Ampullenspitzen mit Paraffin geschützt und bei 12-16 °C im Brutschrank gelagert. Die Gesamthydrolysezeit beträgt 15 Wochen mit einer Enzymmenge von $0,39 \,\mu g$ Chymosin/10 mg Protein bzw. $0,15 \,\mu$ l Suparen/10 mg Protein abgestimmt auf gleiche Gerinnungsaktivität.

3.7 Herstellung der Ansätze für das Modell Käse mit 35 bzw. 50 % Trockenmasse3.7.1 Allgemeines

Der Hydrolyseansatz mit einer Trockenmasse von 50 % wird nur für die Inkubation mit Chymosin verwendet.

Wie aus Vorversuchen hervorging, findet keine Hydrolyse des β -Caseins bei einer Trockenmasse von 50 % statt. Daher werden in einem Kurzzeitinkubationsversuch bei einer Temperatur von 30 °C die geeigneten Versuchsbedingungen für das Modell Käse ermittelt. Die Herstellung der Kurzzeitinkubationen erfolgt wie im weiteren Verlauf beschrieben.

3.7.2 Substratlösung und Einstellung der Trockenmasse

Die 10-ml-Ampullen werden mit 0,2 g gereinigtem Kieselgur beschickt und anschließend bei 160 °C sterilisiert. Nach der Sterilisation werden die Ampullen vor der Gefriertrocknung ausgewogen. Dieser Schritt ist nötig, um die entsprechenden Volumina für die Zugabe der Lösungen zu berechnen, damit eine bestimmte Trockenmasse erzielt wird.

Der Puffer für die Substratlösungen wird wie unter 3.6.1 hergestellt. Die Einwaagen des β -Caseins für die Herstellung der Substratlösung richten sich nach dem angestrebten Trockenmassegehalt der Ansätze.

 β -Casein wird in einem Becherglas abgewogen und anschließend mit wenig Phosphatpuffer vorgequollen und gerührt. Die so erhaltene Lösung wird zum besseren Auflösen des β -Caseins mit wenig verdünnter Natronlauge auf ca. pH 6,0 gebracht. Nach dem vollständigen Lösen wird die Lösung mit 0,1 N Phosphorsäurelösung unter Kühlung auf ca. 5 °C auf einen pH-Wert von 5,5 eingestellt.

Anschließend werden 4 ml mit einer Vollpipette abgemessen und in 10-ml-Ampullen überführt. Die so befüllten 10-ml-Ampullen werden anschließend an zwei aufeinanderfolgenden Tagen, in einem Wasserbad abgedeckt, bei 90 °C fünf Minuten erhitzt.

Zum Schockgefrieren wird eine Mischung aus zwei Teilen Eis und einem Teil Kochsalz hergestellt. Die 10-ml-Ampullen werden nochmals gut aufgeschüttelt, damit eine Feinverteilung des Kieselgurs gewährleistet wird, was eine bessere Rückfeuchtung des β -Caseins zulässt. Der Ampulleninhalt wird lyophilisiert. Die Gefriertrocknung des Inhaltes dauert etwa zwei Tage. Die Ampullen werden anschließend in einen Exsikkator gestellt und ausgewogen. Die Differenz zwischen Auswaage nach der Gefriertrocknung und Auswaage vor der Gefriertrocknung ergibt den eigentlichen Ampulleninhalt. Die Zugabe der weiteren Lösungen richtet sich nach dem ermittelten Ampulleninhalt.

3.7.3 Herstellung der Enzymlösungen

Die Enzymmenge wird so gewählt, dass im Reaktionsansatz des Modells Käse die Enzym-Substrat-Konzentration der des Milchmodells entspricht (0,39 µg Chymosin/10 mg Protein bzw. 0,15 µl Suparen/10 mg Protein).

3.7.4 Herstellung der MIT-Lösung

Die Einwaage an MIT wird so gewählt, dass im Ansatz eine Konzentration von 0,5 % 2-<u>M</u>ethyl-4-<u>i</u>so<u>t</u>hiazolin-3-on, bezogen auf die Trockenmasse von 35 % vorliegt. Dazu werden 122,3 mg MIT in 3 ml Phosphatpuffer nach SÖRENSEN gelöst. Aufgrund der sauren Reaktion, die MIT im Wässrigen aufweist, ist es unbedingt notwendig, vor dem Auffüllen auf 3 ml den pH-Wert mit konz. Natronlauge auf pH 5,5 zu korrigieren.

3.7.5 Herstellung der Kochsalzlösungen

Die Herstellung der jeweiligen Natriumchloridlösungen richtet sich nach der Auswaage der Ampullen nach der Gefriertrocknung. Die Einwaage erfolgt so, dass in 100 µl der jeweiligen Lösung 1, 2 bzw. 4 % Natriumchlorid enthalten sind, bezogen auf die Gesamttrockenmasse des Ansatzes nach dem Zuschmelzen der Ampullen. Die Kurzzeitinkubationen werden nur mit den Natriumchloridkonzentrationen von 1 % und 2 % durchgeführt. Bei den Langzeitinkubationen werden zusätzlich bei beiden Trockenmassesystemen Ansätze mit 4 % Natriumchlorid mitgeführt.

3.7.6 Durchführung der Hydrolyse

Die ermittelte Auswaage von β -Casein ist 132,9 mg pro Ampulle. Danach richten sich im folgenden alle berechneten Zusätze. Zu den unterschiedlichen Proben werden die in Tab. 3.7–1 aufgeführten Volumina der jeweiligen Lösungen zugegeben.

Proben	MIT-	NaCl-	Enzym-	NaCl-	Phosphatpuffer
	Lösung	Lösung	lösung	Lösungen	[µ1]
	[µl]	0,01 N	[µl]	[µ1]*	
		[µl]			
Autolyse	50	50	-	-	165,8
Hydrolyse	50	-	50	-	165,8
Enzymkontrolle	50	-	50	-	165,8
mit 1 % NaCl	50	-	50	100	65,8
mit 2 % NaCl	50	-	50	100	65,8
mit 4 % NaCl	50	_	50	100	65,8

 Tab. 3.7–1:
 Pipettierschema der Inkubationsansätze

* Die Einwaage des Natriumchlorids richtet sich nach der jeweiligen Konzentration der Natriumchloridlösungen und ist bezogen auf die Trockenmasse der Inkubationsansätze Kapitel 3.7.5.

Außer der MIT-Lösung werden alle Lösungen sterilfiltriert und unter der Sterilbank in die Ampulle pipettiert. Anschließend erfolgt eine Durchmischung mit Hilfe eines Glasstabes, der danach entfernt wird. Die Ampullen werden mit einem Gebläsebrenner zugeschmolzen und zusätzlich zum mechanischen Schutz mit Paraffin versiegelt. Die Inkubation findet bei Temperaturen von 10-15 °C statt.

3.8 Probennahmeschema der Hydrolysen (Kurzzeit- und Langzeitinkubation)

Um das Modell Milch und das Modell Käse ausreichend zu charakterisieren und miteinander zu vergleichen, werden zu bestimmten Zeiten bei beiden Modellen je zwei Ampullen entnommen.

Für die Kurzzeitinkubation wird die Hydrolysezeit auf 14 Tage festgesetzt. Bei den Kurzzeitinkubationen werden Proben zu Beginn (0.Woche), nach einer Woche und nach zwei Wochen entnommen und analysiert.

Der Langzeitansatz orientiert sich bezüglich der Hydrolysedauer an der Reifungszeit von Gouda (3-4 Monate).

Bei der Langzeitinkubation erfolgt die Probenahme am Starttag (0.Woche), nach der 1., der 2., der 3., der 5., der 8., der 12. und der 15.Woche. Von den Ansätzen mit Natriumchloridzusatz werden nur zum Starttag (0.Woche), in der 5. Woche und zuletzt in der 15. Woche Proben entnommen.

Der Probenumfang wird wegen der Vergleichbarkeit für das Modell Milch und Modell Käse gleich gewählt.

Als Autolyse wird eine Probe ohne Zusatz von Enzym bezeichnet. Eine "normale" Probe kennzeichnet eine Probe, die ohne Zusatz von Natriumchlorid inkubiert wird. Natriumchlorid wird bis zu einer Konzentration von 4 % zugesetzt. Eine weitere Kontrolle soll beurteilen, ob das Enzym über die gesamte Inkubationszeit aktiv ist (vgl. Kapitel 3.9).

Abbruch der Hydrolyse

Die Proben des Modells Milch werden direkt in der Ampulle hitzeinaktiviert. Nach dem Aufbrechen der Ampulle wird der Inhalt in ein Rollrandglas mit Schnappdeckel überführt und bis zur weiteren Analyse bei -18° C aufbewahrt.

Der Abbruch der Hydrolyse zu den jeweiligen Zeiten bei Proben des Modells Käse erfolgt durch Hitzeinaktivierung des Enzyms fünf Minuten bei 90 °C nach Öffnung der Ampullen und Rückverdünnung der Ansätze auf eine Konzentration von 10 mg Protein / ml. Mit wenig verd. Natronlauge wird das β -Casein der Ampulle in Lösung gebracht, dann in einen 10 ml-Maßkolben überführt und aufgefüllt. Die Konzentration der Lösung entspricht nun einer 1 %igen β -Caseinlösung und kann somit mit den Lösungen des Modells Milch verglichen werden. Der Inhalt der Ampulle wird zentrifugiert, um das Kieselgur vom Hydrolysat abzutrennen. Anschließend wird der Überstand in ein Rollrandglas mit Schnappdeckel überführt und bis zur weiteren Analyse bei -18 °C aufbewahrt.

3.9 Ermittlung der Enzymaktivität im Verlauf der Hydrolyse

Mit den Enzymkontrollproben wird eine Bestimmung der Gerinnungsaktivität durchgeführt (vgl. Kapitel 3.4). Dabei wird die Probe beim Modell Milch (original 5 ml Modellansatzvolumen), bis zu einem Volumen von 1 ml, der rekonstituierten Magermilch zugesetzt.

Beim Modell Käse wird die Probe noch rehydratisiert. Dazu wird der Ampulleninhalt, nach Zugabe von 5 ml Puffer nach SÖRENSEN zu der aufgebrochenen Ampulle, in einen 10 ml Maßkolben überführt und mit Puffer nach SÖRENSEN aufgefüllt. 1 ml der so erhaltenen Ampullenlösung wird zum Gerinnungsansatz (vgl. Kapitel 3.4) zugegeben. Die Gerinnungszeit wird nach Zugabe der Lösung ermittelt.

Inkubationsansatz	Hydrolysezeitraum	Suparen	Chymosin
Modell Milch 1 % TM	Start	$1240 \text{ s} \pm 20 \text{ s}$	1754 s*
	2. Woche	1342 s ± 230 s	2786 s*
	15. Woche	1526 s ± 134 s	2747 s*
Modell Käse 35 % TM	Start	2266 s ± 16 s	$1224 \text{ s} \pm 34 \text{ s}$
	2. Woche	2715 s ± 17 s	1521 s ± 29 s
	15. Woche	2614 s ± 129 s	3924 s ± 468 s
Modell Käse 50 % TM	Start	-	1533 s*
	2. Woche	-	2839 s*
	11. Woche	_	3340 s*

Tab. 3.9–1: Gerinnungszeiten der unterschiedlichen Enzyme bei 1 ml Zusatz

*Die Daten für eine statistische Auswertung sind nicht ausreichend, da f = 1

De Roos et al. (2000) konnten nachweisen, dass die ermittelten Gerinnungszeiten in gleichem Maße ansteigen wie die noch aktive Enzymmenge im Ansatz abnimmt. D.h. die aktive Enzymmenge verhält sich umgekehrt proportional zum Anstieg der Gerinnungszeit. Legt man die ermittelten Gerinnungszeiten nach Kapitel 3.4 zugrunde und die ermittelten Zeiten nach Tab. 3.9–1, so ergeben sich die in Tab. 3.9–2, Tab. 3.9–3 und Tab. 3.9–4 dargestellten Werte an aktivem Enzym in den jeweiligen Modellen.

Tab. 3.9–2: Berechnung der Menge an aktivem Enzym im Modell Milch

	0.Woche	2. Woche	15. Woche
Chymosin [µg/ml Ansatz]	0,133	0,084	0,085
Suparen [µl/ml Ansatz]	0,073	0,067	0,059

Tab. 3.9–3: Berechnung der Menge an aktivem Enzym im Modell Käse mit 35 %Trockenmasse

	0.Woche	2. Woche	15. Woche
Chymosin [µg/ml Ansatz]	0,191	0,154	0,060
Suparen [µl/ml Ansatz]	0,040	0,033	0,034

Tab. 3.9-4:Berechnung der Menge an aktiven Enzym im Modell Käse mit 50 %Trockenmasse

	0.Woche	2. Woche	11. Woche
Chymosin [µg/ml Ansatz]	0,153	0,082	0,070

3.10 Verfolgung der Hydrolyse im Gesamthydrolysat

3.10.1 Bestimmung der freien primären Aminogruppen

Die Bestimmung der freien primären Aminogruppen erfolgt in Anlehnung an die Methode nach Kakade et al. (1969), die von Langner et al. (1971) modifiziert wurde. Die Gesamthydrolysate des Modells Milch (Suparen) und des Modells Käse mit 35 % Trockenmasse (Chymosin und Suparen) werden zur Bestimmung eingesetzt.

Reagenzien:

0,2 M Borax-Puffer pH 9,0	76,3 g Natriumtetraborat * 10 H ₂ O werden auf einen Liter			
	dest. Wasser aufgefüllt			
TNBS-Lösung	100 mg Trinitrobenzensulfonsäure werden in 100 ml			
	0,2 M Borax-Puffer gelöst			
	(Diese Lösung immer frisch herstellen!)			
Alanin-Stammlösung	10 mM Alanin in dest. Wasser lösen			
	(89,1 mg/100 ml)			
Salzsäure:	0,5 N Salzsäure mit ca. 1 % Natriumdodecylsulfat			
	versetzen			

Die Alanin-Stammlösung wird so verdünnt, dass die Kalibrierstandards zur Erstellung der Kalibriergerade zwischen 0,05 bis 0,7 µmol NH₂-Gruppen pro 100 µl Probe liegen.

Kalibriergerade: y = 0.934 x - 0.0012 R = 0.9967

y Extinktion bei 405 nm

x Konzentration µmol NH₂-Gruppen/100 µl

Die statistische Auswertung ergibt für y = bx + a die Standardabweichung von a $(s_a) = 0,01$ [Extinktionseinheiten] und für b $(s_b) = 0,02$ [100 µl Probe/µmol NH₂-Gruppen].⁵

Durchführung:

Die Hydrolysate werden jeweils unverdünnt eingesetzt. 100 µl Probe werden in braune Tablettenröhrchen pipettiert. Anschließend wird 1 ml der TNBS-Lösung zugegeben und unter Ausschluss von Tages- bzw. Lampenlicht werden die Proben in einem Wasserbad bei 40 °C für 20 min inkubiert. Nach der Reaktionszeit werden die Proben mit Leitungswasser abgekühlt und mit 5 ml 0,5 N Salzsäure angesäuert. Kommt es zu einer Trübung der Reaktionslösung nach Zugabe der Salzsäure, kann mit einem Zusatz von 1 % Natriumdodecylsulfat zur Salzsäure gearbeitet werden. Die Proben werden bei 405 nm

⁵ Statistik: Excel-Programm, RGP-Analyse, P = 0,95; f = 19

vermessen. Der Reagenzienblindwert wird nicht mit Probe sondern mit 100 µl Wasser angesetzt.

Die Inkubationsansätze werden statistisch ausgewertet und die Signifikanz und Vergleichbarkeit der verschiedenen Ansätze mit Hilfe des Lord-Test und F-Test überprüft (Doerffel, 1990; Lozán, 1992). Folgende Tabellen geben einen Überblick über die ermittelten Werte der freien primären Aminogruppen. Dabei werden von allen Werten die Anfangsgehalte der primären freien Aminogruppen abgezogen. Die Berechnung der Standardabweichung erfolgt nach Doerffel (1990).⁶

Tab. 3.10–1:Übersicht über den Gehalt an freien primären Aminogruppen in den
Hydrolysaten (Gehalt in µmol NH2-Gruppen pro10 mg Protein)

Modell Milch⁶

		1. Woche	2. Woche	3. Woche	5. Woche	8. Woche	12. Woche	15. Woche		
Autolyse			$4,5 \pm 0,1$			$4,7 \pm 3,9$				
Suparen	Normal	$2,4 \pm 0,4$	$3,7 \pm 0,3$	$5,3 \pm 0,4$	$8,4 \pm 0,2$	$8,6 \pm 0,4$	$9,2 \pm 0,4$	$11,1 \pm 0,3$		
	1 % Salz				$6,5 \pm 0,2$			$6,5 \pm 0,2$		
	2 % Salz				$14,2 \pm 0,3$			$15,6 \pm 0,2$		
	4 % Salz				$13,0 \pm 0,2$			$13,1 \pm 0,4$		

Tab. 3.10–2: Übersicht über den Gehalt an freien primären Aminogruppen in den Hydrolysaten der 35 %igen Trockenmassesysteme (Gehalt in μmol NH₂-Gruppen pro10 mg Protein)

Modell Käse ⁶									
		1. Woche	2. Woche	3. Woche	5. Woche	8. Woche	12. Woche	15. Woche	
Autolyse			$3,4 \pm 1,0$			$3,3 \pm 0,1$		$3,7 \pm 0,5$	
Chymosin	Normal	$1,1 \pm 0,3$	$1,8 \pm 0,2$	$2,6 \pm 0,2$	$3,3 \pm 0,2$	$4,1 \pm 0,1$	$4,7 \pm 0,2$	$5,1 \pm 0,2$	
	1 % Salz				$1,4 \pm 0,3$			$2,3 \pm 0,3$	
	2 % Salz				$1,0 \pm 0,4$			$2,5 \pm 0,4$	
	4 % Salz				$1,2 \pm 0,5$			$1,9 \pm 0,2$	
Suparen	Normal	$0,7 \pm 0,3$	$0,6 \pm 0,4$	$2,9 \pm 0,2$	$3,3 \pm 0,3$	$3,7 \pm 0,3$	$7,0 \pm 0,2$	$10,8 \pm 0,2$	
	1 % Salz				$0,9 \pm 0,4$			$5,9 \pm 0,2$	
	2 % Salz				$4,9 \pm 0,2$			$5,6 \pm 0,3$	
	4 % Salz				$1,8 \pm 0,3$			$4,5 \pm 0,3$	

⁶ $s = \sqrt{\frac{\sum (x_i - x_j)^2}{2m}} s$: Standardabweichung; x_{ij} : Werte aus der Parallelbestimmung; m: Anzahl der Doppelbestimmungen (s = 0,30 µmol/10 mg Protein)

3.10.2 Erfassung der höhermolekularen Spaltprodukte mit Hilfe der Gelpermeationschromatographie

Die Gesamthydrolysate der Modelle Milch und Käse mit 35 % Trockenmasse werden unverdünnt zur GPC eingesetzt. Vor der Analyse werden die Proben durch regenerierte Cellulose (Porengröße: 0,45 µm) membranfiltriert.

Parameter:

GPC-Anlage:	SYSTEM-GOLD, BECKMANN (vgl. Kapitel 3.1.3)					
Säule:	BioSep-SEC-S2000 Phenomenex					
Säulengröße:	300 mm x 7,8 mm ID					
Partikelgröße:	5 μm					
Porengröße:	145 Å					
Säulenmaterial:	Hydrophilic bonded silica					
Temperatur:	25 °C					
Flussrate:	0,5 ml/min					
Injektionsvolumen:	20 µl					
Detektion:	215 nm					
Gradient:	isokratisch					
Eluent:	Natriumdihydrogenphosphat/Natriumo	Natriumdihydrogenphosphat/Natriumchlorid-Puffer pH 7,2				
	0,02 M NaH ₂ PO ₄ \cdot 2 H ₂ O	(3,12 g/Liter)				
	0,25 M NaCl	(14,50 g/Liter)				
	Der pH-Wert der Lösung wird mit Natronlauge auf 7,2 eingestellt.					

Zur Kalibrierung wird ein Mix hergestellt, der aus folgenden Proteinen besteht: β -Casein, α -Casein, β -Lactoglobulin, α -Lactalbumin, s-Insulin und Bradykinin.

Die Konzentrationen der Lösungen sind nicht höher als 1 mg/ml und werden als Einzelsubstanzen eingespritzt, um die Retentionszeiten bzw. Elutionsvolumina zu ermitteln. Mit den ermittelten Elutionsvolumina wird eine Kalibriergerade erstellt. Da die Trennkapazität der Säule zwischen einer Molmasse von 300 und 1 kDa für native Proteine gewährleistet ist, werden nur Standards verwendet, die diesen Molmassenbereich abdecken. Zusätzlich werden in einem Mix die Retentionszeiten bzw. Elutionsvolumina überprüft.

Kalibrierstandard	Molmasse [Da]	Logarithmus der	Retentionszeit	berechnetes
		Molmasse	[min]	Elutionsvolumen
				[ml]
β-Casein	24000	4,380	13,85	6,925
α-Casein	23610	4,373	14,45	7,225
β-Lactoglobulin	18000	4,255	16,20	8,100
α-Lactalbumin	14200	4,152	16,89	8,445
s-Insulin	5800	3,763	19,04	9,520
Bradykinin	1060	3,025	23,65	11,825

Tab. 3.10–3: Parameter der Kalibrierstandards zur Ermittlung der Kalibriergerade

Funktion der Kalibriergerade :

y = -0,2878 x + 6,488

y log der Molmasse ; x Elutionsvolumen in ml

Die statistische Auswertung ergibt für y = bx + a die Standardabweichung von a $(s_a) =$

0,21 [log der Molmasse] und für b (s_b) = 0,02 [1/ml]⁷.

Das Größenausschlussvolumen wird mit Dextranblau bestimmt und weist eine Ausschlussgrenze von 5,9 ml auf.

⁷ Statistik: Excel-Programm, RGP-Analyse, P = 0.95; f = 4

	Modell Käse								
		1.	2.	3.	5.	8.	12.	15.	
		Woche	Woche	Woche	Woche	Woche	Woche	Woche	
	Mol-	Deak-	Deak-	Deak-	Deak-	Deak-	Deak-	Deak-	
	masse	fläche	fläche	fläche	fläche	fläche	fläche	fläche	
	[kDa]	mache	mache	mache	mache	mache	Hache	mache	
Chymosin	29,7	3021	2955	2322	2035	1766	1510	847	
	22,9	-	-	-	1472	1105	2181	903	
	11,7	68	320	615	1054	492	1034	427	
	7,8	99	511	913	1395	735	1579	634	
	4,8	77	302	764	1186	361	650	581	
	1,9		281	283	410	164	145	140	
	Mol-	D1-	D1.	D1.	D1-	D 1-	D 1-	D1-	
	masse	Peak-	Peak-	Peak-	Peak-	Peak-	Peak-	Peak-	
	[kDa]	Hache	Hache	Hache	Hache	Hache	Hache	Hache	
Suparen	29,7	419	279	244	226	151	123	83	
	18,7	348	224	189	-	-	-	-	
	11,0	435	553	497	740	774	528	1510	
	5,7	266	257	394	536	935	807	1729	
	3,4	-	-	-	173	221	161	-	
		1 % Salz		2 %Salz		4 % Salz			
		5.	15.	5.	15.	5.	15.		
		Woche	Woche	Woche	Woche	Woche	Woche		
	Mol-	Deak	Deak	Deak	Dook	Deak	Deak		
	masse	fläche	fläche	fläche	fläche	fläche	fläche		
	[kDa]	mache	mache	mache	mache	mache	Indefie		
Chymosin	30,7	1393	1611	1614	612	1251	1449		
	22,9	-	1227	-	735	-	-		
	11,7	893	812	923	267	155	-		
	7,9	1160	1475	686	848	454	1518		
	4,8	525	1058	491	658	226	648		
	1,9	262	184	70	83	-	396		
	Mol-	Dealr	Dealr	Dealr	Dealr	Dealr	Deelr		
	masse	Peak- fläche	fläche	fläche	Peak- fläche	Peak- fläche	fläche		
	[kDa]	nache	Hache	nache	Hache	Hache	Hache		
Suparen	29,7	946	426	534	560	808	628		
	15,3	442	-	391	-	929	-		
	8,4	845	1458	622	1333	1464	1385		
	20	000	1271	010	1275	1040	1102		

Tab. 3.10–4:	Für das Modell Käse (35 % Trockenmasse) mit GPC ermittelte Peakflächen
	und Molmassen (Peakfläche gemessen in Flächeneinheiten)

	Modell Milch								
		1.	2.	3.	5.	8.	12.	15.	
		Woche							
	Mol- masse	Peak- fläche							
	[kDa]								
Chymosin	29,0	223	-	-	-	-	-	-	
	27,2	895	978	576	304	145	56	-	
	22,0	67	120	414	700	578	376	190	
	19,3	56	265	380	405	602	723	801	
	15,0	45	120	256	312	367	402	423	
	8,6	34	/8	145	190	254	287	301	
Suparen	14,1	942	1092	-	-	-	-	-	
	9,0	3298	4190	3293	2226	1410	1670	1719	
	6,4	654	-	-	-	-	-	-	
	5,2	2956	4186	4640	4233	3894	3093	4537	
	2,7	-	478	900	679	505			
	2,1	204	397	630	526	290	-	-	
	1,0	165	559	654	404	74	88	88	
		1 %	Salz	2 % Salz		4 % Salz			
		5.	15.	5.	15.	5.	15.		
		Woche	Woche	Woche	Woche	Woche	Woche		
	Mol- masse [kDa]	Peak- fläche	Peak- fläche	Peak- fläche	Peak- fläche	Peak- fläche	Peak- fläche		
Chymosin	29,0	230	35	320	56	300	105		
•	27,2	503	13	550	23	432	98		
	22,0	734	340	889	430	647	300		
	19,3	367	786	354	654	433	544		
	15,0	187	378	233	411	216	274		
	8,6	156	233	164	245	132	212		
Suparen	8,9	2670	2870	3750	2837	3037	2140		
I	5,5	4878	8872	6173	9594	4547	5723		
	2,9	978	_	_	-	1428	-		
	1,1	714	314	923	423	409	166		

Tab. 3.10–5: Für das Modell Milch (1 % Trockenmasse) mit GPC ermittelte Peakflächenund Molmassen (Peakfläche gemessen in Flächeneinheiten)

3.10.3 Erfassung der höhermolekularen Spaltprodukte mit Hilfe der Harnstoff-Polyacrylamidgelelektrophorese

Die hitzeinaktivierten Gesamthydrolysate des Modells Käse und des Modells Milch werden mit Hilfe der Harnstoff-PAGE untersucht. Dazu werden 200 µl des Gesamthydrolysates mit 1 ml einer 5 M Harnstofflösung und einigen Tropfen einer 0,4 %igen Bromphenolblaulösung versetzt. Weitere Parameter sind Kapitel 3.3.2 zu entnehmen.

3.11 Verfolgung der Hydrolyse in der NCN-Fraktion

3.11.1 Bestimmung der Tyrosinäquivalente mittels der Methode nach Lowry

Die Hydrolyse wird durch die Bestimmung der Tyrosinäquivalente nach Lowry et al. (1951) verfolgt. Aufgrund der geringen Probenmenge bei dem Modell Milch (5 ml) wird die Mikromethode nach Kirazov et al. (1993) angewendet, die in Anlehnung an die Bestimmung nach Lowry et al. (1951) erfolgt.

Reagenzien:

Lösung A:	2 % ige Natriumcarbonatlösung in 0,1 N Natronlauge					
	(2,0 g Natriumcarbonat in 100 ml 0,1 N Natronlauge gelöst)					
Lösung B:	0,5 %ige Kupfersulfatlösung					
	(0,5 g Kupfersulfat-5-hydrat und 1,0 g Natriumcitrat in 100 ml Wasser gelöst)					
Lösung C:	alkalische Kupferlösung					
	(1 ml Lösung B mit Lösung A auf 50 ml aufgefüllt, Lösung immer frisch					
	hergestellt)					

Lösung D: Phenolreagenz nach Folin-Ciocalteau

Durchführung:

Die Überstände der isoelektrisch gefällten Hydrolysate (NCN-Fraktionen) werden in entsprechender Verdünnung eingesetzt und vor der Bestimmung durch ein Cellulosefilter, Porengröße 0,45 µm, filtriert.

Die entsprechenden Ansätze sind der Tab. 3.11-1 zu entnehmen.

Tab. 3.11–1:Pipettierschema zur Bestimmung der Tyrosinäquivalente nach Kirazov et al.
(1993)

Lösungen [ml]	Leerwert	Probe
Hydrolysate	-	0,1
Phosphatpuffer	0,1	-
Lösung C	0,5	0,5
kräftig durchmischen, 15 min bei 20 °C belassen	Х	Х
Lösung D	0,05	0,05
Messung nach ca. 2 h bei 750 nm	Х	х

Zur Erstellung der Kalibriergerade wird eine 0,5 mM Tyrosin-Stammlösung verwendet. Die Stammlösung wird so verdünnt, dass über einen Konzentrationsbereich von 0,05 mM bis 0,5 mM gemessen werden kann. Es werden dazu von der Stammlösung entsprechende Volumina eingesetzt, die auf 200 µl bzw. bei der Methode nach Kirazov auf 100 µl ergänzt werden. Von den Proben und den Standards werden jeweils Dreifachbestimmungen durchgeführt. Bei jeder neuen Bestimmungsserie wird mindestens ein Standard mitgeführt, um die Richtigkeit der Kalibriergerade zu überprüfen.

Ermittelte Kalibriergerade:

y = 2,0187 x + 0,0398 ; R^2 = 0,9968 y Extinktion bei $E_{750 \text{ nm}}$ x µmol Tyrosinäquivalente/ ml

Die statistische Auswertung ergibt für die Geradengleichung y = bx + a die Standardabweichung von a $(s_a) = 0,02$ Extinktionseinheiten und für b $(s_b) = 0,06$ ml/µmol Tyrosinäquivalente.⁸

Die Berechnung der Standardabweichung für die Einzelwerte der Analyse berechnet sich nach Doerffel (1990).⁹

⁸ Statistik: Excel-Programm, RGP-Analyse, P = 0,95; f = 4

⁹ $s = \sqrt{\frac{\sum (x_i - x_j)^2}{2m}} s$: Standardabweichung; x_{ij} : Werte aus der Parallelbestimmung; m: Anzahl der Doppelbestimmungen (s = 0,15 µmol/10 mg Protein)

Tab. 3.11–2: Übersicht über die freigesetzten Tyrosinäquivalente in μmol/ 10 mg Protein über den Hydrolysezeitraum von 15 Wochen im Modell Käse (TM: Trockenmasse)

Modell Käse ⁹									
		1. Woche	2. Woche	3. Woche	5. Woche	8. Woche	12. Woche	15. Woche	
Autolyse			$0,1 \pm 0,1$			$0,1 \pm 0,1$		$0,1 \pm 0,1$	
Chymosin	Normal	$0,4 \pm 0,1$	$0,3 \pm 0,1$	$0,3 \pm 0,1$	$0,4 \pm 0,1$	$0,3 \pm 0,1$	$0,4 \pm 0,1$	-1	
50 % TM	1 % Salz				$0,3 \pm 0,1$				
	2 % Salz				$0,3 \pm 0,1$				
	4 % Salz				$0,4 \pm 0,1$				
Chymosin	Normal	$0,2 \pm 0,2$	$0,2 \pm 0,2$	$0,4 \pm 0,2$	$0,6 \pm 0,2$	$0,5 \pm 0,1$	$0,8 \pm 0,2$	$1,1 \pm 0,2$	
35 % TM	1 % Salz				$0,7 \pm 0,1$			$1,3 \pm 0,1$	
	2 % Salz				$0,6 \pm 0,2$			$1,2 \pm 0,2$	
	4 % Salz				$0,5 \pm 0,1$			$0,7 \pm 0,1$	
Suparen	Normal	$0,5 \pm 0,1$	$0,5 \pm 0,1$	$0,8 \pm 0,1$	$1,0 \pm 0,1$	$0,8 \pm 0,1$	$1,2 \pm 0,2$	$1,2 \pm 0,2$	
	1 % Salz				$0,7 \pm 0,1$			$1,1 \pm 0,1$	
	2 % Salz				$0,7 \pm 0,1$			$0,9 \pm 0,2$	
	4 % Salz				$0,6 \pm 0,2$			$1,0 \pm 0,1$	

¹ Das Experiment des Modells Käse mit 50 % Trockenmasse wurde nach der 12. Woche abgebrochen.

Tab. 3.11–3: Übersicht über die freigesetzten Tyrosinäquivalente in μmol/ 10 mg Protein über den Hydrolysezeitraum von 15 Wochen im Modell Milch

Modell Milch ⁹										
		1. Woche	2. Woche	3. Woche	5. Woche	8. Woche	12. Woche	15. Woche		
Autolyse			$0,1 \pm 0,1$			$0,3 \pm 0,1$		$0,4 \pm 0,1$		
Chymosin	Normal	$1,7 \pm 0,2$	$2,4 \pm 0,1$	$2,9 \pm 0,2$	$4,1 \pm 0,1$	$4,2 \pm 0,2$	$5,2 \pm 0,1$	$5,9 \pm 0,1$		
	1 % Salz				$4,7 \pm 0,1$			6,1±0,2		
	2 % Salz				$4,8 \pm 0,2$			$6,4 \pm 0,2$		
	4 % Salz				$3,9 \pm 0,2$			$5,0\pm0,1$		
Suparen	Normal	$3,2 \pm 0,7$	$2,9 \pm 0,3$	$2,0 \pm 0,2$	$1,7 \pm 0,5$	$2,1 \pm 0,4$	$2,7 \pm 0,9$	$3,0 \pm 0,2$		
	1 % Salz				$2,4 \pm 2,1$			$4,2 \pm 0,1$		
	2 % Salz				$2,3 \pm 0,5$			$4,3 \pm 0,2$		
	4 % Salz				$2,5 \pm 2,0$			$4,4 \pm 0,3$		

Die Ermittlung der Tyrosinäquivalente im Gesamthydrolysat ergibt 9,17 µmol Tyrosinäquivalente / 10 mg Protein. Diese werden zur Berechnung der Hydrolyserate genutzt (vgl. Kapitel 4.4.1).

3.11.2 Erfassung der niedermolekularen Spaltprodukte mit Hilfe der RP-HPLC

Die isoelektrisch gefällten Überstände (NCN-Fraktionen) der Hydrolysate des Modells Käse und des Modells Milch werden unverdünnt für die HPLC eingesetzt. Vor der Analyse erfolgt eine Membranfiltration durch regenerierte Cellulose (Porengröße 0,45 µm).

Parameter:						
HPLC-Anlage:	SYSTEM-GOLD, BECKMANN (vgl. Kapitel 3.1.3)					
Säule:	Eurospher 100 - C 18, Knauer					
	250 mm \times 4,6 mm, Partikel-/Porengröße: 5 μ m/100 Å					
Temperatur:	20 °C					
Flussrate:	0,7 ml/min					
Injektionsvolumen:	20 µl					
Detektion:	215 nm					
Eluent A:	Kaliumdihydrogenphosphat-Puffer 0,02 M, pH 5,5					
Eluent B:	Acetonitril 84 %					
Folgendes Gradientenelutionsprogramm wird verwendet:						

1 ab. 3.11–4: Gradientenerutionsprogram	onsprogramn	Gradientenelutions	. 3.11–4:	Tab.
--	-------------	--------------------	-----------	------

Zeitintervall	Anteil Eluent B	Kurvenanstieg
[min]	[%]	
0-35	$20 \rightarrow 40$	linear ansteigend
35-40	$40 \rightarrow 70$	linear ansteigend
40-50	70	gleichbleibend
50-55	$70 \rightarrow 20$	linear fallend
55-60	20	gleichbleibend

Die im folgenden aufgeführten Tabellen (Tab. 3.11–5 bis Tab. 3.11–7) geben eine Übersicht über die ermittelten Retentionszeiten für das Modell Milch und das Modell Käse.

	Modell Milch							
		1.	3.	5.	8.	12.	15.	
		Woche	Woche	Woche	Woche	Woche	Woche	
	t _R [min]	Peak-	Peak-	Peak-	Peak-	Peak-	Peak-	
_		fläche	fläche	fläche	fläche	fläche	fläche	
Chymosin	15,1	27	77	93	119	152	158	
	15,8	26	712	78	98	131	134	
	17,7	46	118	166	234	246	243	
	19,7	73	72	76	89	89	88	
	25,4	3	12	19	16	24	27	
	28,6	1	2	7	19	34	40	
	31,9	488	382	398	404	426	425	
	34,6	-	32	70	21	111	120	
	37,0	-	23	107	31	84	81	
	41,8	44	21	35	64	62	71	
	t _R [min]	Peak-	Peak-	Peak-	Peak-	Peak-	Peak-	
		fläche	fläche	fläche	fläche	fläche	fläche	
Suparen	7,4	11	40	55	69	120	294	
	8,3	-	-	-	24	68	103	
	43,3	-	2	8	22	27	31	
	43,7	65	-	-	-	31	56	
	44,0	71	-	-	-	-	18	
	45,2	-	23	43	59	112	229	
	46,2	467	46	72	117	220	333	
	46,7	255	204	194	119	346	428	
	47,3	88	56	28	35	167	251	
	47,7	77	87	118	113	387	579	

Tab. 3.11–5:ausgewählte Retentionszeiten von Peptiden im Modell Milch mit 1 %
Trockenmasse (Peakfläche in Flächeneinheiten)

	Modell Milch						
		1 %	Salz	2 % Salz		4 % Salz	
		5.	15.	5.	15.	5.	15.
		Woche	Woche	Woche	Woche	Woche	Woche
	t _R [min]	Peak-	Peak-	Peak-	Peak-	Peak-	Peak-
		fläche	fläche	fläche	fläche	fläche	fläche
Chymosin	14,9	108	172	116	173	119	206
	15,6	110	129	114	165	129	204
	17,5	163	208	148	187	129	146
	19,5	92	84	75	83	65	78
	24,6	13	30	16	34	8	23
	28,8	7	75	22	133	40	296
	31,8	413	405	382	421	353	454
	34,7	78	211	99	264	57	248
	37,2	194	181	90	162	17	174
	41,8	68	59	47	62	26	114
		1 %	Salz	2 %	Salz	4 %	Salz
		5.	15.	5.	15.	5.	15.
		Woche	Woche	Woche	Woche	Woche	Woche
	t _R [min]	Peak-	Peak-	Peak-	Peak-	Peak-	Peak-
		fläche	fläche	fläche	fläche	fläche	fläche
Suparen	7,4	62	56	46	22	36	104
	8,3	-	141	-	157	-	105
	44,0	-	-	-	-	10	10
	44,7	25	42	21	38	12	23
	45,5	17	36	14	27	-	23
	45,8	90	141	79	150	83	114
	46,1	60	170	52	164	38	154
	47,4	311	308	301	269	294	249
	47,7	-	278	-	232	-	191
	47,9	205	165	128	178	167	190

Tab. 3.11–6:ausgewählte Retentionszeiten von Peptiden im Modell Milch mit 1 %Trockenmasse und Salzeinfluss (Peakfläche in Flächeneinheiten)

	Modell Käse							
		1.	2.	3.	5.	8.	12.	15.
		Woche	Woche	Woche	Woche	Woche	Woche	Woche
	t _R	Peak-	Peak-	Peak-	Peak-	Peak-	Peak-	Peak-
	[min]	fläche	fläche	fläche	fläche	fläche	fläche	fläche
Chymosin	43,5	6	5	4	-	31	25	18
	43,7	6	10	15	10	18	19	-
	45,7	8	27	38	29	32	36	29
	46,1	5	-	-	-	17	21	22
	46,3	17	23	46	36	68	67	47
	47,4	-	7	5	4	5	9	14
	48,5	-	-	-	-	4	14	23
	t _R	Peak-	Peak-	Peak-	Peak-	Peak-	Peak-	Peak-
	[min]	fläche	fläche	fläche	fläche	fläche	fläche	fläche
Suparen	43,0	10	13	9	15	29	14	62
	43,3	-	-	-	-	6	-	4
	44,9	-	-	-	7	22	-	20
	45,6	13	20	10	28	107	37	100
	46,3	17	20	14	26	-	-	94
	46,6	-	7	6	29	48	9	-
	47,9	-	-	22	-	47	9	24
	48,5	17	23	-	39	92	26	109
	48,9	-	-	-	-	29	-	-
	49,5	-	-	-	-	60	-	-
		1 %	2 %	4 %		1 %	2 %	4 %
		Salz	Salz	Salz		Salz	Salz	Salz
		5.	5.	5.		15.	15.	15.
		Woche	Woche	Woche		Woche	Woche	Woche
	t _R	Peak-	Peak-	Peak-	t _p [min]	Peak-	Peak-	Peak-
	[min]	fläche	fläche	fläche	tR [IIIII]	fläche	fläche	fläche
Chymosin	43,5	6	2	8	39,8	-	-	-
	45,7	7	-	9	42,1	26	40	14
	46,2	7	16	8	46,0	12	16	11
	46,3	17	33	10	46,5	15	27	114
	47,4	2	5	5	47,0	39	60	23
	48,5	-	-	-	49,0	7	11	6
					49,6	16	33	19
					51,1	7	19	7
					52,1	8	28	6

Tab. 3.11–7:ausgewählte Retentionszeiten von Peptiden im Modell Käse mit 35 %Trockenmasse (Peakfläche gemessen in Flächeneinheiten)
	Modell Käse								
		1 %	2 %	4 %		1 %	2 %	4 %	
		Salz	Salz	Salz		Salz	Salz	Salz	
		5.	5.	5.		15.	15.	15.	
		Woche	Woche	Woche		Woche	Woche	Woche	
	t- [min]	Peak-	Peak-	Peak-	t- [min]	Peak-	Peak-	Peak-	
		fläche	fläche	fläche	t _R [IIIII]	fläche	fläche	fläche	
Suparen	43,0	13	22	15	43,0	12	13	13	
	46,2	20	29	18	46,2	31	34	31	
	46,6	10	-	-	46,6	-	-	-	
	47,9	2	-	-	47,9	4	4	4	
	48,9	27	49	44	48,9	30	34	30	
	49,5	-	-	-	49,5	7	11	9	

Fortsetzung von Tab. 3.11–7

3.12 Fraktionierung einer Auswahl mit Chymosin inkubierter Hydrolysate

3.12.1 Allgemeines

Zur Erstellung des Gradientenelutionsprogrammes, zur Fraktionierung und zur Rechromatographie der Fraktionen wird an der RP-HPLC mit folgenden gleichbleibenden Parametern gearbeitet:

Parameter:

HPLC-Anlage:	SYSTEM-GOLD, BECKMANN (Vgl. Kapitel 3.1.3)
Temperatur:	25 °C
Detektion:	UV; Channel A: 215nm/ Channel B: 280 nm

3.12.2 Erarbeitung des Gradientenelutionsprogrammes

Parameter:	
Säule: (analytisch)	I) Lichrospher 100 RP 18 endc. 250×4,6 mm; Partikel-/Porengröße: 5µm/100Å II) Eurospher 100 C18 KNAUER 250×4,6 mm; Partikel-/Porengröße: 5µm/100Å
Eluent A:	Kaliumdihydrogenphosphat-Puffer 0,02 M, pH 5,5
Eluent B :	84 %iges Acetonitril
Injektionsvolumen :	$20 - 50 \mu l$
Flussrate :	0,5 - 0,7 ml/min

Es wird zuerst mit der Lichrospher-Säule gearbeitet, als präparative Säule stand allerdings nur eine Eurospher 100 C 18 von KNAUER zur Verfügung. Um die Veränderung der Trennbilder so gering wie möglich zu halten, wird deshalb mit der analytischen Säule Eurospher 100 C 18 von KNAUER gearbeitet. Folgendes Elutionsprogramm wurde zur Fraktionierung der Peptide verwendet.

Zeitintervall	Anteil Eluent B	Kurvenanstieg/Gradient
[min]	[%]	
0-2	20	gleichbleibend
2-22	$20 \rightarrow 30$	linear ansteigend
22-27	30	gleichbleibend
27-42	$30 \rightarrow 40$	linear ansteigend
42-47	40	gleichbleibend
47-52	$40 \rightarrow 50$	linear ansteigend
52-57	50	gleichbleibend
57-62	$50 \rightarrow 60$	linear ansteigend
62-67	$60 \rightarrow 80$	linear ansteigend
67-72	80	gleichbleibend
72-77	$80 \rightarrow 20$	linear fallend
77-80	20	gleichbleibend

Tab. 3.12–1: Gradientenprogramm zur Fraktionierung der Proben

3.12.3 Peptidfraktionierung der Hydrolyseproben

Parameter:

Säule: (präparativ)	Eurospher 100 C18 KNAUER 300×8,0 mm; Partikel-/Porengröße: 5µm/100Å
Eluent A:	Kaliumdihydrogenphosphat-Puffer 0,02 M, pH 5,5
Eluent B :	84%iges ACN
Injektionsvolumen :	$300 - 500 \ \mu l$
Flussrate :	1,51 – 2,12 ml/min

Durchführung

Die Proben werden manuell in 25 bzw. 50 ml Spitzkolben fraktioniert. Das Lösungsmittel wird am Rotationsverdampfer bei 40 °C Wasserbadtemperatur abgedampft. Der trockene Rückstand wird anschließend in einem Gemisch aus Acetonitril (84 %ig) und bidestilliertem

Wasser 20:80 (v/v) aufgenommen. Nach Filtration über Membranfilter (0,45 μ m) werden die Fraktionen in Eppendorftubes überführt. Bis zur Rechromatographie werden sie im Kühlschrank bei 5-8 °C aufbewahrt.

3.12.4 Rechromatographie der erhaltenen Fraktionen

Zur Abtrennung des schwerflüchtigen Phosphatpuffers werden alle Fraktionen nochmals im Acetonitril-Trifluoressigsäure–System fraktioniert.

Parameter

Säule:	Eurospher 100 C18 KNAUER 300×8,0 mm; Partikel-/Porengröße: 5µm/100Å
Eluent A:	0,1 %ige Trifluoressigsäure (TFA)
Eluemt B :	84 %iges Acetonitril mit 0,1 %iger TFA
Injektionsvolumen :	300 –500 µl
Flussrate :	1,51 – 2,12 ml/min

Durchführung:

Die Rechromatographie erfolgt wie unter Kapitel 3.12.3 angegeben. Nach dem Abrotieren wird der Rückstand in bidestilliertem Wasser aufgenommen. Dazu wird der Kolben zweimal mit jeweils 300 µl bidest. Wasser gespült und die Flüssigkeit mit einer Spritze abgezogen und in Eppendorftubes überführt. Bis zur weiteren Verwendung werden die Fraktionen im Kühlschrank aufbewahrt.

Die folgenden Tabellen geben einen Überblick über die Proben, die fraktioniert wurden und auch über die Fraktionierungszeiten, die ausgewählt wurden.

Proben	Hauptfraktionen	Zeiten [min]	Fraktionierung in der	Zeiten [min]
	1		Rechromatographie	
8. Woche	F1	0,0-14,1	f1	11,7 – 14,0
			f2	14,0-43,6
	F2	14,1 – 19,0	f1	17,5 – 22,0
			f2	22,0-43,0
	F3	19,0 - 40,0	f1	25,0-43,0
	F4	40,0 - 52,0	f1	41,0-43,0
			f2	43,0 - 63,0
	F5	52,0 - 56,1	f1	56,0 - 63,0
	F6	56,1-60,9	f1	0,0-63,0
15. Woche	F1	0,0 – 13,6	f1	10,9 - 15,0
			f2	15,0-27,4
	F2	13,6 - 18,9	f1	9,0-21,0
			f2	21,0-23,0
			f3	23,0-37,2
			f4	37,2 - 54,0
	F3	18,9 – 39,0	f1	21,0 - 33,9
			f2	33,9 - 39,3
			f3	39,3 - 48,6
			f4	48,6 - 62,5
	F4	39,0 - 51,0	f1	42,0-44,0
			f2	44,0-65,0
	F5	51,0-55,2	f1	42,0-62,0
	F6	55,2-60,5	f1	56,0-61,0

 Tab. 3.12–2:
 Fraktionierungen NCN-Fraktion mit Chymosin und 35 % Trockenmasse ohne

 Salzzusatz

Tab. 3.12–3:	Fraktionierungen	NCN-Fraktion	mit	Chymosin	und	35	%	Trockenmasse	mit
	Kochsalzzusatz								

Probe	Hauptfraktionen	Zeiten [min]	Fraktionierungen in der	Zeiten [min]
	-		Rechromatographie	
5. Woche	F1	1,0 – 12,0	f1	8,0-23,0
2 % Salz	F2	12,0-39,0	f1	20,0 - 30,0
			f2	30,0 - 62,0
	F3	39,0 - 46,0	f1	40,7 - 43,0
			f2	43,0-61,0
	F4	46,0-48,0	f1	54,0-62,0
	F5	48,0 - 55,0	f1	56,0-61,0
	F6	55,0-60,0	f1	0,0-63,0
15. Woche	F1	0,0-11,4	f1	8,0-20,6
2 % Salz	F2	11,4 – 19,0	f1	13,0 - 46,0
	F3	19,0 - 39,0	f1	27,0-53,2
	F4	39,0-45,0	f1	39,5 - 42,6
			f2	42,6 - 60,0
	F5	45,0 - 52,0	f1	47,1 – 52,3
			f2	52,3 - 60,0
	F6	52,0-62,3	f1	56,0-62,9

3.12.5 Bestimmung der C-terminalen Aminosäuren in den fraktionierten Hydrolysaten inkubiert mit Chymosin

3.12.5.1 Aktivitätsbestimmung der Carboxypeptidasen

Reagenzien für Carboxypeptidase A (Cpase A)

Trispuffer:	27,5 mM, pH 7,60; 1,1 M an Natriumchlorid				
	(0,33 g Trishydroxymethylaminomethan und 0,64 g Natriumchlorid in				
	25 ml bidestilliertem Wasser gelöst, 22,5 ml 0,1 N Salzsäure zur pH-				
	Wert-Einstellung zugegeben, auf 100 ml aufgefüllt)				
Substratlösung:	N-Hippuryl-L-Arginin 1mM				
	(19,5 mg N-Hippuryl-L-Arginin in 50 ml Trispuffer gelöst)				
Enzymlösung:	1 µl handelsübliche Enzymlösung mit 10 %iger Natriumchloridlösung				
	auf 1 ml ergänzt)				
	(Angaben des Herstellers: aus Rinderpankreas, Kristallsuspension in				
	Wasser gesättigt mit Toluol, 1000 U/ml)				

Reagenzien für Carboxypeptidase B (CpaseB)

Trispuffer:	25 mM, pH 7,50; 0,5 M an Natriumchlorid				
	(0,30 g Trishydroxymethylaminomethan und 2,92 g Natriumchlorid in				
	25 ml bidestilliertem Wasser gelöst, 22 ml 0,1 N Salzsäure zur pH-Wert-				
	Einstellung zugegeben, auf 100 ml aufgefüllt)				
Substratlösung:	N-Hippuryl-L-Phenylalanin 1mM				
	(16,3 mg N-Hippuryl-L-Phenylalanin in 50 ml Trispuffer gelöst)				
Enzymlösung:	1 µl handelsübliche Enzymsuspension mit 10 %iger				
	Natriumchloridlösung auf 1ml ergänzt)				
	(Angaben des Herstellers: aus Schweinepankreas, in Trispuffer pH 7,0;				
	600 U/ml)				

Durchführung

Die Enzymlösungen werden vor der Bestimmung frisch hergestellt. Substrat- und Enzymlösung werden zuerst auf die entsprechende Temperatur temperiert (25 °C für Cpase A und 37 °C für Cpase B). Die Bestimmung erfolgt in handelsüblichen Quarzküvetten an einem UV-Spektrometer bei 254 nm gegen einen Reagenzienblindwert (1,45 ml bzw. 1,5 ml

Substrat mit 0,05 ml Natriumchloridlösung). Die Extinktionen werden im Minutenabstand gemessen. Tab. 3.12–4 zeigt das für die Messung verwendete Pipettierschema.

	BW* (A)	Cpase A	BW* (B)	Cpase B			
Substratlösung	1,45 ml	1,45 ml	1,50 ml	1,50 ml			
Enzymlösung	-	0,05 ml	-	0,05 ml			
10 %ige NaCl	0,05 ml	-	0,05 ml	-			
	Durchmischen mit Rührspatel und Start der Messung						

 Tab. 3.12–4:
 Pipettierschema f
 ür die Aktivit
 ätsbestimmung der Carboxypeptidasen

* BW: Blindwert

Die Aktivitäten von Carboxypeptidase A und B wurden ermittelt mit 902 Units/ml bzw. 172 Units/ml.

3.12.5.2 Enzymatische Abspaltung der C-terminalen Aminosäuren mittels Carboxypeptidasen

Reagenzien für Cpase A:

Boratpuffer	0,5 M; pH 7,5; 10%ig an Natriumchlorid
	(3,09 g Borsäure und 10,0 g Natriumchlorid in etwa 90 ml
	bidestilliertem Wasser gelöst, pH-Wert-Einstellung mit 0,1 N
	Natronlauge, anschließend auf 100 ml aufgefüllt)
Enzymlösung	$10~\mu l$ handelsübliche Enzymsuspension mit $90~\mu l$ Boratpuffer pH 7,5
	verdünnt (c \approx 9,0 U/ml)

Reagenzien für Cpas	<u>be B:</u>
Boratpuffer	0,5 M; pH 7,6; 0,11 M an Natriumchlorid
	(3,09 g Borsäure und 0,64 g Natriumchlorid in etwa 90 ml
	bidestilliertem Wasser gelöst, pH-Wert-Einstellung mit 0,1 N
	Natronlauge, anschließend auf 100 ml aufgefüllt)
Enzymlösung	20 µl handelsübliche Enzymlösung mit 80 µl Boratpuffer pH 7,6
	verdünnt ($c \approx 3.6 \text{ U/ml}$)

Substratlösung

90 µl der gesammelten Fraktionen oder des Überstandes der NCN-Fraktion werden zur Analyse eingesetzt.

Durchführung

Im Thermostaten werden die Substrat- und Enzymlösung vor Reaktionsbeginn etwa 20 min temperiert (Cpase A; T = 25° C; Cpase B; T = 37° C).

Nach Enzymzugabe wird die Zeit der Enzymeinwirkung gestoppt. Für 90 µl Substrat wird jeweils 10 µl Enzymlösung verwendet. Für den Blindwert wird statt Enzymlösung 10 µl einer 10% igen Natriumchloridlösung benutzt. Die Reaktion wird nach 10 min durch Enzyminaktivierung bei einer Temperatur von 90 °C abgebrochen.

3.12.5.3 Identifizierung mittels Ionenaustauschchromatographie

Die nach 3.12.5.2 erhaltenen C-terminalen Aminosäuren werden durch Ionenaustauschchromatographie getrennt, im Anschluss mit Ninhydrin derivatisiert und mittels Photometer bei 570 nm (primäre Aminogruppen) bzw. 440 nm (sekundäre Aminogruppen) detektiert. Die Trennung erfolgt im Natriumcitratpuffersystem mit folgenden Parametern.

Parameter:	
Säule:	PEEK, 150×4 mm
Vorsäulenharz:	Ultropac 1
Austauscherharz:	PC4A-spec, Na ⁺ -Form

Tab. 3.12–5: ASA-Puffersystem

lfd.Nummer	Art	Konzentration [mol/l]	pH-Wert
1	Reinstwasser mit 1ml THF/l	-	-
2	Natriumcitrat	0,2	3,20
3	Natriumcitrat	0,2	4,25
4	Natriumcitrat	1,2	6,25
5	Natronlauge	0,4	-

3.12.6 Bestimmung der N-terminalen Aminosäuren in den fraktionierten Hydrolysaten aus der Inkubation von β-Casein mit Chymosin

3.12.6.1 Derivatisierung der Standard Aminosäuren

<u>Reagenzien</u>

Probenpuffer	bidestilliertes Wasser/ Aceton/ 0,2 M Essigsäure/ Triethylamin 50/50/5/0,5 (v/v/v/v); pH-Wert 10,6
DABITC-Lösung:	4 mM in Aceton 5,6 mg DABITC in 5 ml Aceton gelöst
Säuregemisch:	4,5 N Salzsäure / Eisessig im Verhältnis 1/2 (v/v)

Aminosäurestandardshandelsübliche Aminosäuren (Ala; Arg; Asp; Asn, Cys; Gln;
Glu;Gly; His; Ile; Leu; Lys; Met; Phe; Pro; Ser; Thr; Trp; Tyr; Val)

Durchführung

Etwa 0,5- 0,7 mg der jeweiligen Standardaminosäure werden in Eppendorftubes eingewogen und dann in 50 µl Probenpuffer aufgenommen. Glutaminsäure und Asparaginsäure weisen im Probenpuffer eine geringe Löslichkeit auf. 10 mg der jeweiligen Aminosäure werden deshalb wie von Windisch (1997) angegeben, in Aceton/bidestilliertem Wasser 1+1 (v/v) gelöst und der pH-Wert mit Triethylamin auf 10,0 eingestellt.

Weitere Durchführungsschritte sind, in Anlehnung an Chang und Creaser (1976), Chang et al. (1976) und Chang (1988), zu entnehmen.

3.12.6.2 Abspaltung und Derivatisierung der Aminosäuren aus den Hydrolysaten mit der DABITC-Methode

Reagenzien

DABITC-Lösung:	10 mM in Pyridin
	Da das Reagenz in Pyridin instabil ist, wird eine Lösung von
	1,4 mg/ml DABITC in Aceton hergestellt. Jeweils 500 µl dieser Lö-
	sung werden in Eppendorfgefäße überführt und im Vakuum abge-
	dampft. Der Rückstand kann bis zur Nutzung bei -18 °C aufbewahrt
	werden. für die Derivatisierung wird der Inhalt eines Tubes in 250 μl
	Pyridin aufgenommen.
Extraktionsgemisch:	n-Heptan / Essigsäureethylester im Verhältnis 3/1 (v/v)
Säuregemisch:	4,5N Salzsäure / Eisessig im Verhältnis 1/2 (v/v)

Durchführung

Als Probensubstanz werden die isoelektrisch gefällten Hydrolysate nach 15 und 5 Wochen (Probenbeschreibung) und die nach 3.12.4 erhaltenen Fraktionen eingesetzt. 200 μ l der Probe werden mit 0,1 N Natronlauge auf pH 9 eingestellt. Die Umsetzung erfolgt je Hydrolysat viermal, im Parallelansatz à 50 μ l. Bei den Fraktionen ist auf Grund der geringen Probenmenge nur ein Parallelansatz möglich.

Kupplungsschritt: Zur Kupplung werden 50 µl Probelösung mit 100 µl DABITC-Lösung versetzt, die Eppendorftubes mit Stickstoff gespült und verschlossen. Im Wasserbad werden die Ansätze über 50 min auf 70°C temperiert. Nach Abkühlung mit Eiswasser erfolgt der Zusatz von 3 µl Phenylisothiocyanat (PITC). Die Reaktionsgefäße werden wiederum mit Stickstoff gespült und nach Verschließen 15 min bei 70 °C im Wasserbad temperiert.

Extraktionsschritt: Die Extraktion erfolgt nach Abkühlung viermal mit je 200 µl des Extraktionsgemisches. Zum Abhebern der organischen oberen Phase wird eine Spritze mit abgeflachter Kanüle verwendet. Die verbleibende wässrige Phase wird in der Vakuumzentrifuge bei mittlerer Trocknungstemperatur bis zur Trockne eingeengt.

Säureschritt: Der Rückstand wird in 30 μl Säuregemisch aufgenommen (Spülen mit Stickstoff!) und im Wasserbad über 50 min auf 52 °C temperiert. Nach Abkühlung erfolgt wiederum das Abdampfen des Säuregemisches im Vakuum. Der essigsäurefreie Rückstand (Geruchsprüfung!) wird in 50 μl 84 %igem Acetonitril aufgenommen. Die Parallelansätze werden membranfiltriert und vereinigt. Bis zur Identifizierung mittels HPLC werden sie bei -18°C aufbewahrt.

3.12.6.3 Identifizierung mittels RP-HPLC

Die nach der Derivatisierung (Kapitel 3.12.6.1 und 3.12.6.2) erhaltenen Proben werden unter Anwendung folgender Parameter an der RP-HPLC getrennt. Dabei kommen zwei Elutionsprogramme zum Einsatz. Diese Programme unterscheiden sich hinsichtlich der Gradientenzusammensetzung. Dabei können die langsam eluierenden und schnell eluierenden Aminosäuren voneinander getrennt werden. Dies ermöglicht eine bessere Auswertung.

Parameter:	
HPLC-Anlage:	SYSTEM-GOLD BECKMANN (vgl. Kapitel 3.1.3)
Säule:	Ultrasphere ODS-Dabsyl C18 Fa. Beckman 250 × 4,6 mm; Poren-/ Partickelgröße:5 µm 100 Angström
Temperatur:	Raumtemperatur
Flussrate:	1 ml/min
Injektionsvolumen:	20 µl
Detektion:	436 nm

Eluent A:	Natriumacetatpuffer 35 mM, pH 5,0
	(2,871 g Natriumacetat in ca. 980 ml bidestiliertem Wasser
	gelost und nach pH-Werteinstellung auf 1 1 aufgefullt)
Eluent B:	84 %iges Acetonitril

3.12.7 ESI-ToF-Massenspektrometrie der fraktionierten Hydrolysate

Die unter Kapitel 3.12.4 fraktionierten Hydrolysate werden zur Analyse für die ESI-ToF-MS verwendet. Dabei werden die Hydrolysate 1 + 1 mit 50 %igem Acetonitril, welches 1 % Ameisensäure enthält, verdünnt. Nach Filtration durch einen 0,45 μ m Filter werden die Proben direkt in den Massenanalysator eingespritzt. Die applizierte Probenmenge war 20 μ l/min. Die Proben wurden im Totalionenstrom aufgenommen und mehrmals vermessen. Als Standardsubstanzen werden Bradykinin (1060,2 Da), Angiotensin (1296,4 Da) sowie Neurotensin (1672,9 Da) in Form eines kommerziell erhältlichen Standardkits (Interim Mariner Standard Kit, Fa. Sigma –V700653) eingesetzt. Alle Standardsubstanzen sind dreifach geladen (MH₃³⁺), wenn sie im Massenanalysator aufgetrennt werden. Daher muss, um auf die exakten Molmassen zu kommen, die erhaltenen Massen mit 3 multipliziert werden und anschließend noch die 3 H⁺ abgezogen werden.

Abb. 3.12–1: Massenspektrum des Standards (A: Bradykinin, B: Angiotensin, C: Neurotensin)

Bei der Analyse der fraktionierten Proben kommen verschiedene Variationen von Parametern zum Tragen. Dabei kann vor allem die Austrittsspannung an der Kapillare des Eintrittssystems verändert werden und dadurch können unterschiedliche Fragmentierungsgrade der Proteine erreicht werden. In Tab. 3.12–6 sind die gemessenen Molmassen mit ihren wahrscheinlichen Molmassen aufgeführt.

Tab. 3.12-6:mitLC-MSermittelteMolmassenderverschiedenenFraktionen(Hydrolysezeiten : C8: 8.Woche, C15: 15.Woche, C5: 5.Woche; S: Salz;S*: Phosphoserin)

Probenbez.	Kürzel	Gefundenes Bruchstück im LC-MS	Wahrscheinliche	Aminosäure-
			Molmasse	sequenz
C8 F1f1	M1	MH ⁺ : 230,97	229,17	-
		MH ⁺ : 252,95	251,95	-
		MH ⁺ : 830,25	829,25	A_{177} - R_{183}
C8 F1f2	M2	MH ⁺ : 528,16	527,16	-
		MH ⁺ : 546,16	545,16	A ₁₇₇ - P₁₈₁
		MH ⁺ : 780,31	779,31	-
		MH ⁺ : 830,25	829,25	A_{177} - R_{183}
		MH ₂ ²⁺ : 284,60 (MH ⁺ : 568,20)	567,34	-
		MH ₂ ²⁺ : 409,63 (MH ⁺ : 818,26)	817,26	-
		MH ₂ ²⁺ : 454,69 (MH ⁺ : 908,37)	907,37	-
C8 F2f1	M3	MH ⁺ : 473,07	472,07	W ₁₄₃ -H ₁₄₅
				V ₁₇₃ -K ₁₇₆
		MH ⁺ : 511,03	510,03	V ₈₂ - P₈₆
		MH ⁺ : 568,23	567,23	-
		MH ⁺ : 802,29	801,29	H_{134} - L_{140}
		$MH_2^{2^+}$: 553,71 (MH ⁺ : 1106,41)	1105,41	M_{109} - Q_{117}
C8 F2f2	M4	MH ⁺ : 336,05	335,05	W_{143} - M_{144}
		MH ⁺ : 441,20	440,20	P ₁₇₂ -E ₁₇₅
				P ₁₁₅ - P₁₁₈
				$P_{206}-V_{209}$
		MH ⁺ : 524,21	523,21	P_{150} - T_{154}
		2.		V_{170} - P_{174}
		MH_2^{2+} : 326,10 (MH ⁺ : 651,19)	650,19	P ₁₁₀ -Y ₁₁₄
		2.		F ₁₁₁ - P₁₁₅
		MH_2^{2+} : 390,36 (MH ⁺ : 780,31)	779,31	-
		MH_2^{2+} : 707,70 (MH ⁺ : 1414,39)	1413,39	A ₁₇₇ -Q ₁₈₈
		MH_2^{2+} : 743,20 (MH ⁺ :1485,40)	1484,40	Q_{141} - P_{152}
		24		Q_{160} - V_{173}
		$MH_2^{2+}: 832,22 (MH^+: 1663,44)$	1662,44	$P_{110}-Q_{123}$
				S_{124} - L_{138}
		3+		$V_{116} - V_{130}$
		MH ₃ ⁻⁺ : 1104,94 (MH ⁺ : 3312,82)	3311,82	$Q_{141}-K_{169}$
C8 F3	M5	MH ⁻ : 787,17	786,17	S ₁₄₂ - P ₁₄₇
				P ₁₄₇ - P₁₅₃
		MH': 840,27	839,27	$A_{103}-M_{109}$
				E_{108} - M_{122}

				DI
			1006.04	P_{158} -L ₁₆₅
		MH : 1227,34	1226,34	-
		MH_2^{-1} : 326,64 (MH ⁺ : 652,28)	651,28	Q_{149} - T_{154}
		$MH_2^{2+}: 382,62 (MH^+: 764,23)$	763,23	-
		$MH_2^{2+}: 447, 15 (MH^+: 893, 30)$	892,30	-
		MH_2^{21} : 456,11 (MH ⁺ : 911,21)	910,21	$S_{22}-K_{28}$
				Q_{188} - Q_{194}
				A_{189} - Q_{195}
				$Q_{72}-Q_{79}$
		MH_2^{21} : 464,12 (MH ⁺ : 927,23)	926,23	V_{84} -E ₉₁
			075.00	P_{158} - S_{166}
		MH_2^{-1} : 488,65 (MH ⁺ : 976,28)	975,28	S ₅₇ -P ₆₅
				V_{92} - E_{100}
				P_{110} - Q_{117}
		N 41 ² + 512 (C () 41+ 102(22)	1025.22	P_{112} - F_{119}
		MH_2^{-1} : 513,66 (MH ⁺ : 1026,32)	1025,32	V ₈₃ -E ₉₁
		MH ₂ ⁻ : 1026,28 (MH : 2051,55)	2050,55	-
C8 F4f1	M6	MH : 1064,26	1063,26	-
		MH_2^{-1} : 513,66 (MH ⁺ : 1026,32)	1025,32	V_{83} - E_{91}
		MNa : 1048,31 (MH : 1026,32)	Na ⁺ -Addukt von	
			MH : 1026,32	
		MH_2^{-1} : 382,62 (MH : 764,24)	763,24	-
		MH_2 : 581,17 (MH : 1161,34)	1160,34	$S_{161}-L_{171}$
<u>C0 F460</u>	147	MH_2 : 6/8,25 (MH : 1355,49)	1354,49	S_{124} -L ₁₃₅
C8 F412	MI/	MH : 1/3,91	//2,91	- D T
		MH_2 : 440,69 (MH : 880, 37)	8/9,3/	P_{71} - I_{78}
		MII^{2+} , 500 20 (MII^{+} , 1017 40)	1016 40	M_{109} - P_{115}
		$MH_2 : 309,20 (MH : 1017,40)$	1010,40	P ₈₆ -G ₉₄
		MH^{2+} , 512 67 (MH^+ , 1026 24)	1025.24	$v_{155}-L_{163}$
		$MH_2 : 515,07 (MH : 1020,34)$	1023,34	V_{83} -E91
		MH $^{2+}$, 547 72(MH ⁺ , 1004 46)	1002.46	V 84- V 92 S* I
		$MII_2 : 547,75(MII : 1094,40)$	1095,40	$3^{+}19^{-}126$
		MH_{2}^{2+} , 570 20 (MH_{2}^{+} , 1120 41)	1128 /1	F 200 - V 209
		MH_2^{2+} , 944 , 90 (MH^+ , 1699, 59)	1697 58	- D., F.,
		MH_2^{2+} 040.85 (MH ⁺ 1880.70)	1007,30	\mathbf{F}_{86} - \mathbf{L}_{100}
		1112 . 940,03 (10111 . 1000,70)	10/9,70	$1_{193} - v_{209}$
		MH_{2}^{2+} , 008 32 (MH^{+} , 1005 64)	1004 64	$S_{161} - v_{178}$
		WIII ₂ . 990,52 (WIII . 1995,04)	1994,04	I 120-I 137
		MH_{2}^{2+} : 1098 40: MH_{2}^{3+} : 773 91	210/ 73	11109-12125
		$(MH^{+}, 2195, 73)$	2174,75	-
		MH_{2}^{3+} 1076 05 (MH ⁺ : 3226 18)	3225 18	_
C8 F5	M8	MH_2^{2+} : 401.68 (MH ⁺ : 802.36)	801 36	L122-L 120
0015	1110	······································	001,00	H_{124} -L ₁₃₉
		MH_{2}^{2+} : 547 72 (MH ⁺): 1094 44)	1093 44	11 134 L 140
		MH_2^{2+} : 565.72 (MH ⁺ · 1130.45)	1129.45	L122-S142
		MH_2^{2+} 632.76 (MH ⁺ 1264.52)	1263.52	$H_{140}-P_{1=0}$
		MH_2^{2+} : 940.85 (MH ⁺ · 1880 70)	1879.70	140 - 130
		MH_3^{3+} : 1406.49 (MH^+ · 42.17.42)	4216.42	V05-E121
		MH_4^{4+} : 1049.38 (MH ⁺ · 4194.79)	4193.79	V=0-K07
	I	(1011) (1010),00 (10111 (1101),100)		• 39 1 9/

		MH4 ⁴⁺ : 1058,86 (MH ⁺ : 4232,43)	4231,43	I ₃₀ -P ₆₅
C8 F6	M9	MH ₂ ²⁺ : 458,21 (MH ⁺ : 915,43)	914,43	H ₅₀ -S ₅₇
		$MH_2^{2+}: 681, 28 (1361, 58)$	1360,58	_
		MH_2^{2+} : 730,81 (MH ⁺ : 1460,62)	1459,62	F87-K99
		MHNa ²⁺ : 741,80; MH ₃ ³⁺ : 494,87	Na ⁺ -Addukt von	
		(MH ⁺ : 1482,59)	MH ⁺ : 1460,62	
		MH ₂ ²⁺ : 749,78; MH ₃ ³⁺ : 500,19	1497,56	F_{33} - E_{44}
		(MH ⁺ : 1498,56)		P ₁₀₄ - P₁₁₅
				V ₈₃ -S ₉₆
		MH4 ⁴⁺ : 1064,61 (MH ⁺ : 4255,43)	4254,43	P ₁₃₇ - P₁₇₄
C15 F2f1	P1	MH ⁺ : 568, 26	567,26	G_{94} - A_{101}
		MH ⁺ : 818,32	817,32	-
		MH^+ : 780,36 MH_2^{2+} : 390,68	779,36	-
		MH_2^{2+} : 409,65 (MH ⁺ : 818,30)	817,30	-
		MH_2^{2+} : 454,72 (MH ⁺ : 908,44)	907,44	F ₁₉₀ - P₁₉₆
		$MH_2^{2+}: 553,74 (MH^+: 1106,48)$	1105,48	-
C15 F2f2	P2	MH ⁺ :272,10	271,10	$V_{8}-G_{10}$
		MH ⁺ : 294,09	293,09	-
		MH ⁺ :543,26	542,26	-
		MH ⁺ :565,21	564,21	-
C15 F2f3	P3	MH ⁺ : 441,21	440,21	$P_{172}-E_{175}$
			500.00	$P_{206}-V_{209}$
		MH : 524,23	523,23	P_{150} - T_{154}
			5(1.10	V_{170} - P_{174
		MH : 562,19	561,19	L_{165} -K ₁₆₉
		MII ⁺ , 602 70	602 70	$L_{125}-D_{129}$
		MH . 005,70	002,70	-
		MH ⁺ · 633 22	632.22	S*1-S*10
		1011 . 055,22	052,22	$L_{16} = S_{10}^{*}$
		MH_2^{2+} 707.74 (MH^+ 1414.48)	1413.48	L ₁₀ S 19
		MH_2^{2+} : 743.26 (MH ⁺ : 1485.52)	1484.52	
C15 F2f4	P4	MH ⁺ : 524.23	523.23	P ₁₅₀ -T ₁₅₄
		,	,	V_{170} - P ₁₇₄
		MH ₂ ²⁺ :724,74 (MH ⁺ : 1448,48)	1447,48	P_{136} - P_{147}
				P ₁₁₅ -L ₁₂₇
		MH ₂ ²⁺ :735,24 (MH ⁺ : 1469,48)	1468,48	F ₁₁₉ -E ₁₃₁
		MH ₂ ²⁺ : 743,22 (MH ⁺ : 1485,44)	1484,44	-
		MH ₂ ²⁺ :832,28 (MH ⁺ : 1663,56)	1662,56	S_{124} - L_{138}
				F_{87} - A_{101}
				P_{115} - D_{129}
		$MH_2^{2+}:843,25 (MH^+: 1685,50)$	1684,50	P ₆₁ - P₇₆
		$MH_3^{3+}: 567,83 (MH^+: 1701,49)$	1700,49	M_{102} - P_{115}
				F ₆₂ -L ₇₇
015 52 64	D5		(51.00	P_{90} - K_{105}
C15 F3f1	P5	MH_2^{-1} : 326,64 (MH ⁺ : 652,28)	651,28	-
		$MH_2^{-1}:3/3,64$ (MH : /46,28)	145,28	-
		$MH_2^{-1}:382,01 (MH : 764,22)$	/63,22	-
		MH_2 : 44/,18 (MH : 893,36) MH $^{2+}$ 489.65 (MH : 076.20)	892,30	- C D
		$MH_2^-:488,65 (MH: 9/6,30)$	9/5,30	S ₅₇ -P ₆₅

				F111- P11 0
		MH_{2}^{2+} : 633 15 (MH^{+} : 1265 30)	1264 30	-
		MH_2^{2+} : 641 14 (MH ⁺ ·1281 28)	1280.28	_
		MH_2^{3+} : 821 26 (MH ⁺ : 2461 78)	2460 78	P150- P173
		MH_{2}^{3+} : 898 30 (MH ⁺ : 2692 90)	2691 90	$V_{11} = I_{12}$
		MH_{4}^{4+} : 669 96 (MH ⁺ : 2676 85)	2675.85	P_{115} L ₁₃₉
		wini : 2070,00)	2075,05	V_{155} - P ₁₇₀
C15 F3f2	P6	MH ⁺ · 394.10	393.10	M ₁₅₆ -P ₁₅₉
0101012	10	MH ⁺ · 576 23	575 23	O_{54} -L 59
		MH ⁺ · 590 24	589 24	$S_{05}-E_{100}$
		MH ⁺ : 787 20	786.20	S_{142} - P ₁₄₇
		1,111 . 707,20	700,20	F_{157} -L ₁₆₂
		MH ⁺ · 811 34	810 34	F_{110} -L 105
		MH_{2}^{2+} , 456 13 MH^{+} , 911 27	010,34	A_{101} - E_{125}
		MH_2^{2+} : 464 14 (MH ⁺ : 927 28)	926.28	A101-L108
C15 E2f2	D7	ML ⁺ · 258 10	257.10	
C15 F515	F /	MII . 550,19 MII ⁺ . 787 20	786.20	-
		MH^+ 800 26	808.26	-
		MII ⁺ . 825 22	808,20	- C* T
		$\mathbf{M}\mathbf{H}^{+}, 940, 21$	024,23 820 21	$3^{+}19^{-}124$
		MIT . 840,51	039,31	$102 - E_{108}$
				178- F85
		MII ⁺ , 1412 41	1 4 1 1 4 1	$F_{158}-L_{165}$
		MH : 1412,41	1411,41	$S_{164}-K_{176}$
		MIL ²⁺ , 929 78 (MIL ⁺ , 1656 56)	1655 56	V 82-G94
		MH_2 : 828,78 (MH : 1030,30) MH $^{2+}$ 545 10 (MH $^+$ 1000 27)	1033,30	- D C*
		MH_2 : 545,19 (MH : 1090,37) MH ²⁺ , 018 21 (MH ⁺ , 1825 58)	1089,57	P9-5*17
		MH_2 : 918,51 (MH : 1855,58)	1834,38	5^{+}_{19} - Λ_{32}
		$\mathbf{M}\mathbf{H}^{2+}, 1026, 22, \mathbf{M}\mathbf{H}^{+}, 2051, 62$	2050 62	P_{112} -L ₁₂₇
		MH_2 : 1020,33 (MH : 2051,03) MH_2^{2+} 1148 25 (MH ⁺ 2005 71)	2030,03	P_{112} - D_{129}
C15 E264	DO	MH_2 : 1148,33 (MH : 2293,71)	2294,71	P_{110} - D_{129}
C15 F314	P8	MH : 308,14	307,14	- E V
		MH : 392,17	391,17	F_{111} - K_{113}
		MII ⁺ , 425.05	424.05	F ₁₉₀ -L ₁₉₂
		MH : 423,03	424,05	-
		MH : 507,40	300,40	- 17 D
		MH : 987,30	980,30	V 59- P 67
				$M_{144}-L_{151}$
015 5461	DO	NULT 764.10	7(2.10	F ₁₅₇ -L ₁₆₅
C15 F4f1	P9	MH : $764,18$	/63,18	-
		$MH : 1026,22 MH_2^{-1} : 513,62 MH :$	1025,22	$V_{84} - V_{92}$
		2097,38	2096,38	V_{92} - P_{110}
		MNa ⁺ : $1048,22$ MNaH ₂ ⁺ : $350,07$	Na-Addukt von	
	510	(MH ⁺ : 1048,21)	MH : 1026,22	
C15 F4f2	P10	MH : $880,33$ MH ₂ ⁻¹ : 440,67	8/9,33	$I_{30}-E_{36}$
		MH_2^{2+} : 509,17 (MH ⁺ : 1017,34)	1016,34	-
		MH ₂ ⁻¹ : 547,71 (MH ⁺ : 1094,42)	1093,42	-
		MH ₂ : 730,80 (MH ⁻ : 1460,60)	1459,60	F ₈₇ -K ₉₉
		2+ 040 0		S_{161} - V_{178}
		MH_2^{-1} : 940,82 (MH ⁻ : 1880,64)	1879,64	Y ₁₉₃ -V ₂₀₉
				I_{187} - L_{198}

		1 1		
		$MNaH^{2+}: 951,81 (MNa^{+}: 1902,62)$	Na-Addukt von	
			MH : 1880,64	
		MH_2^{2+} : 998,30 (MH ⁺ : 1995,60)	1994,60	-
		MH_2^{2+} : 1009,30 (MH ⁺ : 2017,60)	2016,60	-
		MH ₂ ²⁺ : 1017,35 (MH ⁺ : 2033,70)	2032,70	-
C15 F5	P11	MH ⁺ : 524,24	523,24	
		MH ⁺ : 802,36	801,36	L_{133} - L_{139}
				H_{134} - L_{140}
		MH ⁺ : 880,39	879,39	
		MH ₂ ²⁺ : 547,73 (MH ⁺ : 1094,46)	1093,46	T ₁₂₀ - P₁₃₇
				H ₅₀ - P₆₇
				M_{109} - L_{125}
		MH_2^{2+} : 565.75 (MH ⁺ : 1130.50)	1129.50	$T_{24}-K_{32}$
				$L_{122}-S_{142}$
		MH_{2}^{2+} 632 78 (MH^{+} 1264 56)	1263 56	H_{149} - P_{159}
		MH_2^{2+} 730 82 (MH ⁺ 1460 64)	1459 64	-
		MH_2^{2+} : 844 82 (MH ⁺ : 1688 64)	1687 64	Heo-Gea
		11112 · 044,02 (1111 · 1000,04)	1007,04	$\mathbf{P}_{05} = \mathbf{F}_{100}$
		MH_{2}^{2+} : 940.87 (MH^{+} : 1880.74)	1870 74	$P_{100} = V_{100}$
		MH_2^{2+} : 951 87 (MH ⁺ : 1002 74)	10/7,74	1 1/9-1 193
		MH_2^{2+} 959.86 (MH ⁺ : 1918.72)	1901,74	_
C15 F6	D12	MH_2^{2+} , 458 17 (MH ⁺ : 015 34)	01/ 3/	
01510	112	MH_2^{2+} : 550 63 (MH ⁺ : 1100 26)	1000 26	-
		MH_2^{2+} : 730,05 (MH ⁺ : 1460,50)	1099,20	- E K.
		$\mathbf{MN}_{2} = \mathbf{M}_{2} + \mathbf{MN}_{2} + \mathbf{MN}$	1439,30 No. Addukt von	1'87 -1 599
		MINaH : 741,74 (MINa : 1462,48)	Na- Addukt Voli MII^+ , 1460 50	
		$MII ^{2+}$, 740 72 (MII ⁺ , 1409 44)	MH : 1400,30	
		MH_2 : 749,72 (MH : 1498,44)	1497,44	- T IZ
		MH_2 : 962,77 (MH : 1924,53)	1923,53	1 80-K97
		AUX ²⁺ 1011 00 (AUX ⁺ 2022 50)	2021 50	Y ₁₁₄ - V ₁₃₀
		MH_2^{-1} : 1011,80 (MH : 2022,59)	2021,59	$1_{80} - V_{98}$
			2200 50	V_{116} -L ₁₃₃
		MH ₃	2289,59	Y ₆₀ -T ₈₀
C5 2S F1	K 1	MH': 190,87	189,87	-
		MH ⁺ : 780,35	779,35	-
		MH ⁺ : 830,30	829,30	A_{177} - R_{183}
		MH ⁺ : 908,41	907,41	F_{190} - P_{196}
		MH ⁺ : 1696,13	1695,13	L ₁₄₀ - P₁₅₃
C5 2S	K2	MH ⁺ : 633,24	632,24	$S_{15}^*-S_{18}^*$
F2f1				Q_{38} - E_{42}
		2		F_{87} - E_{91}
		$MH_2^{2+}: 237,06 (MH^+: 473,12)$	472,12	-
		MH_2^{2+} : 243,06 (MH ⁺ : 485,11)	484,11	-
		MH_{2}^{2+} : 326,12 (MH ⁺ : 651,24)	650,24	F ₁₁₁ - P₁₁₅
		MH_{2}^{2+} : 373,66 (MH ⁺ : 746,32)	745,32	M_{93} - E_{100}
		MH ₂ ²⁺ : 454,73 (MH ⁺ : 908,46)	907,46	F ₁₉₀ - P₁₉₆
		MH ₂ ²⁺ : 506,22 (MH ⁺ : 1011,43)	1010,43	Q_{72} - T_{80}
		MH ₂ ²⁺ : 707,75 (MH ⁺ : 1414,48)	1413,48	A ₁₇₇ -Q ₁₈₈
		MH ₂ ²⁺ : 743,26 (MH ⁺ : 1485,52)	1484,52	Q_{141} - P_{152}
		MH ₂ ²⁺ : 751,25 (MH ⁺ : 1501,49)	1500,49	$S_{57}-L_{70}$
		MHNa ²⁺ : 762,25 (MNa ⁺ : 1523,47)	Na-Addukt von	
			•	•

			MH ⁺ : 1501,49	
C5 2S	K3	MH ⁺ : 524,26	523,26	-
F2f2		MH ₂ ²⁺ : 509,23 (MH ⁺ : 1017,45)	1016,45	H_{134} - S_{142}
		MH ₂ ²⁺ : 513,70 (MH ⁺ : 1026,39)	1025,39	L_{140} - P_{147}
				F_{119} - L_{127}
		MH ₂ ²⁺ : 735,24 (MH ⁺ : 1469,48)	1468,48	F_{119} - L_{131}
		MH ₂ ²⁺ : 832,30 (MH ⁺ : 1663,55)	1662,55	S_{124} - L_{138}
		MHNa ²⁺ : 843,27 (MH ⁺ : 1685,53)	Na-Addukt von	
			MH ⁺ : 1663,55	
		MH ₂ ²⁺ : 940,90 (MH ⁺ : 1880,79)	1879,79	_
		MHNa ²⁺ : 951,89 (MH ⁺ : 1902,75)	Na-Addukt von	
			MH ⁺ : 1880,79	
C5 2S	K4	MNa ⁺ : 1048,35	Na-Addukt von	
F3f1		_	MH ⁺ : 1026,38	
		MH_{2}^{2+} : 382,65 (MH ⁺ : 764,65)	763,65	-
		MH_2^{2+} : 513,69 (MH ⁺ : 1026,38)	1025,38	V_{83} - E_{91}
				F_{119} - L_{127}
		MNa ₂ ²⁺ : 532,67 (MNa ⁺ : 1064,34)	Na ₂ -Addukt von	
			MH ⁺ : 1026,38	
C5 2S	K5	MH ⁺ : 880,84	879,84	-
F3f2		MH_2^{2+} : 509,23 (MH ⁺ : 1017,23)	1016,23	-
		MH_2^{2+} : 547,75 (MH ⁺ : 1094,50)	1093,50	-
		MH_2^{2+} : 570,22 (MH ⁺ : 1139,44)	1138,44	L_{139} - P ₁₄₇
		MH_2^{2+} : 622,27 (MH ⁺ : 1244,55)	1243,55	-
		MH_2^{2+} : 844,84 (MH ⁺ : 1688,66)	1687,66	$L_{125}-L_{139}$
				L_{126} - L_{140}
		2		M_{185} - L_{198}
		MH_2^{2+} : 940,90 (MH ⁺ : 1880,79)	1879,79	-
		MHNa ²⁺ : 951,87 (MNa ⁺ : 1902,76)	Na-Addukt von	
		3+	MH ⁺ : 1880,79	
		MH ₃ ³⁺ : 640,25 (MH ⁺ : 1918,73)	1917,73	-
C5 2S F4	K6	MH_2^{2+} : 522,27 (MH ⁺ : 1043,53)	1042,53	L_{133} - Q_{141}
				L_{139} - Q_{146}
		MH_2^{2+} : 565,76 (MH ⁺ : 1130,51)	1129,51	L_{133} - S_{142}
		MH_2^{-1} :1098,44 (MH ⁺ : 2195,86)	2194,86	-
		$MH_3^{3+}: 627,60 (MH^{3+}: 1880,80)$	18/9,80	-
		$MH_2Na^{-1}: 634,92 (MNa : 1902,75)$	Na-Addukt von	
		107642(107642)	MH : 1880,79	
C5 20 E5	177	MH_3 : 10/6,42 (MH : 3227,26)	3220,20	
C5 25 F5	К/	MH_2 : 547,76 (MH : 1094,51) MH_2^{2+} 565.77 (MH ⁺ , 1120,52)	1093,51	- 1 C
		MH_2 : 505,77 (MH : 1130,52) MH_2^{2+} (22.80 (MH ⁺ , 1264.50)	1129,52	L_{133} - S_{142}
		$MH_2 : 0.52,80 (MH : 1204,59)$	1203,39	H ₁₄₈ - F 158
C5 28 E4	V0	MH ²⁺ . 458 24 (MH ⁺ , 015 47)	014 47	V 197-L208
CJ 23 FU	NO	$\mathbf{MH}_{2}^{2+} 52226 (\mathbf{MH}_{1}^{+} 104252)$	214,47 1042 52	L133-L140
		$MH_{2}^{2+} 730 85 (MH^{+} 1460 70)$	1/142,32	- Fa- Ka
		$\frac{1}{12} = \frac{1}{10000000000000000000000000000000000$	Na-Addukt von	1 ⁻ 87 -1 399
		191111 va . 741,04 (1911 va . 1402,08)	MH ⁺ · 1/60 70	
C15 28 F2	S 1	$MH^+ \cdot 441.23$	440.23	P.22-F.22
CIJ 23 FZ	51	MH ⁺ · 781 34	780.34	$1 172^{-1}175$ V $172^{-1}175$
		1111 . 701,34	100,54	v 170 -1x 176

		MH ⁺ : 909.41	908.41	V8-S*15
		MH ⁺ · 1044 36	1043 36	-
		MH ⁺ · 1301 56	1390 56	_
		MH ⁺ : 1404.60	1370,50	Δ
		MU^+ , 1528 20	1403,09	A53-1 65
		MIII . 1330,20 MII ⁺ . 1051 99	1050.88	L ₁₉₁ - F 204
C15 28 E2	62	MII ⁺ . 576 20	1930,00	L77-U94
C15 25 F5	52	MH : 576,20	575,20	$L_{127}-E_{131}$ L ₁₂₂ - P ₁₃₇
		MH ⁺ · 780 29	779 29	-
		MH ⁺ : 787 23	786.23	F157-L1C2
		MH_2^{2+} : 456 10 (MH ⁺ : 911 20)	910 20	$PS_{22}-K_{22}$
			510,20	$A_{101}-E_{108}$
		MH_2^{2+} : 464.10 (MH ⁺ : 927.20)	926.20	V_{84} -E01
			/ _ 0, _ 0	$P_{95}-V_{02}$
				$P_{158}-S_{166}$
		$MH_2^{2+.}513.64 (MH^{+.}1026.29)$	1025.29	V_{84} - V_{02}
			1020,25	$V_{84} + 92$ V ₈₂ -E ₀₁
				F_{110} -L ₁₂₇
				$I_{119} \mathbf{E}_{127}$ $I_{140} \mathbf{P}_{147}$
		MH_{2}^{2+} 547 70 (MH ⁺ 1094 40)	1093 40	$P_{200}-V_{200}$
		MH_2^{2+} : 625 15 (MH ⁺ : 1249 30)	1248 30	I 200 V 209
		(WIII 2 12 19,50)	1210,50	$\mathbf{L}_{0} \mathbf{L}_{10}$ Vog-A102
		MH_{2}^{2+} : 633 14 (MH ⁺): 1265 30	1264 30	• 92-2 • 103
		MH_2^{2+} : 811 28 (MH ⁺ : 1565 55)	1564 55	
C15.28	\$3	MH ⁺ : 1026 32	1025 32	V 116-D129
C15 25 E4f1	35	WIII . 1020,32	1023,32	L ₁₄₀ -1 147
1'411		MN_{0}^{+} 1048 20	No. Addukt von	1,119-L127
		Wilva . 1040,50	MU ⁺ , 1026 22	
		MH ⁺ , 1064 26	MIT . 1020,32	
		MH^+ : 1070 20	1003,20	-
C 15 28	C 1	MII ⁺ , 400 16	1009,50	- I V
$C_{13} Z_{3}$	54	$MH : 409,10$ $MH^+, 711,42$	408,10	L ₁₉₁ - I ₁₉₃
F41Z		MH : 711,42	710,42	$N_{102}-N_{107}$
		MH : 793,33	192,53	V ₁₉₇ -P ₂₀₄
		MH_2 : 343,22 (MH : 089,44)	088,44	$v_{95}-E_{100}$
				$L_{133}-L_{138}$
		1000000000000000000000000000000000000	001 54	$H_{134}-L_{139}$
		MH_2 : 451,77 (MH : 902,54)	901,54	V ₁₇₃ -Y ₁₈₀
		MH_2^{-1} : 509,31 (MH : 1017,62)	1016,62	$V_{155}-L_{163}$
		MH_2^{-1} : 844,97 (MH : 1688,94)	1880,10	$S_{161} - V_{178}$
		MH_{2}^{2+} , 041 05 (MH_{2}^{+} , 1881 10)	1687.04	I 193- V 209
		WIII ₂ : 941,03 (WIII : 1881,10)	1007,94	$I_{125}-I_{120}$
		MH_{2}^{2+} 998 54 (MH^{+} 1996 08)	1995 08	H_{50} - P_{7}
			1770,00	M ₁₀₉ -L ₁₂₅
		MH ₂ ²⁺ : 1020,50 (MH ⁺ : 2040.00)	2039,00	$S_{17}^*-E_{31}$
		MH_2^{2+} : 1053.04 (MH ⁺ : 2105.08)	2104,08	$S_{122}-L_{140}$
C15 28	S 5	MH_2^{2+} : 465.66 (MH ⁺ : 930.33)	929.33	-
F5f1		MH_2^{2+} : 476.65 (MH ⁺ · 951.29)	950.29	-
		MH_2^{2+} : 509.16 (MH ⁺ · 1017 32)	1016.32	H124-S142
			1010,02	V_{155} -L 1/2
	I			• 155 L163

		MH_2^{2+} : 520,16 (MH ⁺ : 1039,31)	1038,31	T ₁₂₈ - P₁₃₆
		2 , (, , , , ,	,	V_{197} - P₂₀₆
		MH_2^{2+} : 570,16 (MH ⁺ : 1139,31)	1138,31	A_{101} - P_{110
		MH_2^{2+} : 587,15 (MH ⁺ : 1173,29)	1172,29	A ₁₇₇ - P₁₈₆
		MH ₃ ³⁺ : 780,85 (MH ⁺ : 2280,55)	2279,55	T ₅₅ - P₇₅
				T_{80} - A_{101}
C15 2S	S6	MH ⁺ : 802,28	801,28	_
F5f2		MH ₂ ²⁺ : 547,69 (MH ⁺ : 1094,37)	1093,37	D ₄₃ - P₅₁
		MH ₂ ²⁺ : 576,20 (MH ⁺ : 1151,38)	1150,38	-
		MH ₂ ²⁺ : 940,79 (MH ⁺ : 1880,57)	1879,57	-
		MHNa ²⁺ : 951,78; MH ₂ Na ³⁺ : 634,85	Na-Addukt von	
		(MNa ⁺ : 1902,53)	MH ⁺ : 1880,57	
		MH ₂ ²⁺ : 1109,29 (MH ⁺ : 2218,59)	2217,59	-
		MH ₃ ³⁺ : 1083,30 (MH ⁺ : 3246,89)	3245,89	-
C15 2S F6	S 7	MH ₂ ²⁺ : 458,17 (MH ⁺ : 915,34)	1459,58	F ₈₇ -K ₉₉
				I_{187} - L_{198}
				P_{196} - V_{209}
		MH ₂ ²⁺ : 547,76 (MH ⁺ : 1094,76)	1093,76	P_{200} - V_{209}
		MH ₂ ²⁺ : 730,75 (MH ⁺ : 1460,68)	Na-Addukt von	
		_	MH ⁺ : 1460,68	
		MHNa ²⁺ : 741,74 (MNa ⁺ : 1482,66)	1481,66	$S_{96}-E_{108}$
				P_{158} - L_{171}
				P ₁₅₉ - P₁₇₂
				S_{164} - A_{177}
		MH ₂ ²⁺ : 940,90 (MH ⁺ : 1880,79)	1879,79	P ₁₇₉ -Y ₁₉₃
				V_{193} - V_{209}
				S_{161} - V_{178}
		MH_2^{2+} : 632,79 (MH ⁺ : 1264,58)	1263,58	P_{147} - F_{157}
				S ₁₆₈ - P₁₇₉
				L_{198} - V_{209}

Die in Klammern eingefügten Massen sind die entsprechenden einfach geladenen Massen, der jeweiligen Peptide, die jedoch im Spektrum nicht gefunden worden. Fettgedruckte Aminosäuren sind nicht zweifelsfrei bestätigte terminale Aminosäuren.

3.13 Käseuntersuchungen

Es wird kommerziell erhältlicher Goudakäse in unterschiedlichen Reifestadien (4 Wochen, 16 Wochen, 9 Monate, 1 Jahr und 2 Jahre gereift) untersucht. Es handelt sich dabei um Goudakäse der 48 % Fett i Tr. aufweist. Die Extraktion der wasserlöslichen Peptide erfolgt nach der von Igoshi et al. (1997) vorgeschlagenen Methode. Proben von Goudakäse, etwa 20 g, werden fein gerieben und mit 100 ml dest. Wasser versetzt. Anschließend werden die Proben 1 min mit einem Homogenisator homogenisiert und danach bei 4000 U/min für 30 min zentrifugiert, um die Fettschicht abzuschöpfen. Zunächst wird die Fällung mit dem

Überstand wieder homogenisiert, danach mit verdünnter Phosphorsäure auf einen pH-Wert von 4,6 gebracht und 15 min rühren gelassen. Es wird bei 8000 U/min zentrifugiert. Nach nochmaligem Absetzen lassen für 4 Stunden wird noch einmal zentrifugiert bei 10000 U/min für 30 min. Die überstehende Lösung wird gefriergetrocknet und für die RP-HPLC eine Lösung von 2mg/ml in bidest. Wasser hergestellt. Die Lösung wird durch einen Membranfilter 0,45 μ m filtriert und zur RP-HPLC-Bestimmung eingesetzt. Die verwendete RP-HPLC-Methode sowie die Eluenten als auch die eingestellten Parameter sind Kapitel 3.12.3 zu entnehmen.

4 Auswertung und Diskussion

4.1 Gewinnung und Charakterisierung der β-Caseinprobe

4.1.1 Isolierung und Reinigung des β-Caseins

Das im Institut durch die Vorschrift nach Aschaffenburg (1963) gewonnene β -Casein dient in der vorliegenden Arbeit als Untersuchungssubstanz. β -Casein wird aus Sammelmilch durch Harnstoff-Fraktionierung gewonnen. Gereinigt wird das Protein durch Tieftemperatur-Fraktionierung nach Payens et. al. (1963), Dialyse und Gefriertrocknung. Anschließend erfolgt eine Charakterisierung des erhaltenen Proteins.

Das β -Casein wird mit Hilfe der Polyacrylamid-Gelelektrophorese (PAGE) auf Reinheit überprüft. Verunreinigungen des β -Caseins durch andere Casein-Komponenten können durch die empfindliche Harnstoff-PAGE nachgewiesen werden.

Bahn	Probe	m [µg]
1	Säurecasein	5,0
2	Säurecasein	7,5
3	frei	-
4	β-Casein	2,5
5	β-Casein	5,0
6	β-Casein	7,5

Abb. 4.1–1: Elektropherogramm zur Reinheitsprüfung des β-Caseins, Anfärbung mit Coomassie Brillantblau G, Elektrophoresebedingungen vgl. Kapitel 3.10.3

Das in Abb. 4.1–1 aufgeführte Elektropherogramm zeigt die Zusammensetzung des verwendeten β -Caseins. Als Vergleichsprobe wurde Säurecasein aufgetragen.

Deutlich sind die starken Banden des $\alpha_{s.}$ und β -Caseins der Vergleichsprobe (Bahnen 1 und 2) zu erkennen. Die obere Bande mit einem R_x-Wert von 1,0 entspricht dem β -Casein, die untere mit einem R_x-Wert von 1,7 entspricht dem α_{s1} -Casein. Das auf Bahn 4, 5 und 6 aufgetragene und isolierte β -Casein hat die Hauptbande bei R_x = 1,0. Nach Anfärben mit Coomassie Brillantblau G werden neben der Bande des originären β -Caseins (R_x = 1,0) weitere Banden mit höherer elektrophoretischer Mobilität detektiert, die auch im Säurecasein nachweisbar sind. Sie konnten nicht dem primären Spaltprodukt β -I-Casein zugeordnet werden. Es handelt sich wahrscheinlich um genetische Varianten des β -Caseins. Bei den schwachen Banden mit $R_x < 1,0$ oberhalb der Hauptbande des β -Caseins könnte es sich um γ -Caseine handeln, die sich infolge des Einwirkens der milcheigenen Protease Plasmin auf β -Casein bilden und ebenfalls im Säurecasein nachzuweisen sind. Bei der Reinigung nach Payens et al. (1963) können diese Bruchstücke nicht vollständig entfernt wurden.

Eine weitere Überprüfung der Reinheit des β -Caseins kann mit Hilfe der Gelpermeationschromatographie (GPC) erfolgen.

Abb. 4.1–2: Trennung von β-Casein mit Hilfe der GPC; Elution der Hauptfraktion bei6,95 ml; Chromatographie: vgl. Kapitel 3.10.2

Das aufgeführte Chromatogramm in Abb. 4.1–2 zeigt eine Autolyseprobe¹⁰, wobei die Hauptfraktion des β -Caseins unter den in Kapitel 3.10.2 beschriebenen Trennbedingungen bei einem Elutionsvolumen von 6,95 ml eluiert. Mit Hilfe der Kalibriergerade aus Kapitel 3.10.2 errechnet sich daraus eine scheinbare Molmasse von 30746 Da. Im Vergleich zur theoretisch berechneten Molmasse von 24000 Da¹¹ weicht die ermittelte um fast 6750 Da ab. Eine

¹⁰ β-Caseinprobe ohne Zusatz von Enzym, bezeichnet als Autolyseprobe, die zur Kontrolle der Selbsthydrolyse des β-Caseins eingesetzt wurde.

¹¹ errechnet aus der prozentualen Aminosäurezusammensetzung des β -Casein-A² von Mercier et al. (1972)

Möglichkeit der Erklärung ist, dass die gebildete Hydrathülle von Peptiden und Proteinen keine ideale Kugelform ergibt. Eine elipsoide Form passt schlechter in die Poren der Säule und dadurch werden die Peptide bzw. Proteine eher eluiert als ein Molekül mit idealem Molekülradius. Dies täuscht eine höhere Molmasse vor. Auch Visser et al. (1992), Silvestre et al. (1994) und Tossavainen et al. (1997) konnten feststellen, dass von Peptiden aufgrund von elektrostatischen und hydrophoben Wechselwirkungen untereinander und mit der stationären Phase nicht die wahren Molmassen erhältlich sind.

Um eine exakte Berechnung der Proteinmenge für die Inkubationen zu erreichen, musste der Wasser- und Proteingehalt des β -Caseins ermittelt werden. Der Wassergehalt der β -Caseinprobe wurde gravimetrisch über die Methode nach König (1910) zu 5,4 ± 0,3 % bestimmt. Der Rohproteingehalt wurde durch die Methode nach Kjeldahl in der Mikrovariante zu 93,5 ± 1,7 % bestimmt (Konrad, 1969).

4.2 Entwicklung der Modelle

4.2.1 Allgemeines

Bisherige Ergebnisse über die Enzymwirkung von Chymosin auf β-Casein beschränkten sich auf Untersuchungen in wässrigen Systemen mit 1,0 - 2,0 % Proteinanteil (w/v) an β -Casein bzw. Gesamtcasein (Awad et al., 1998; Awad et al., 1999; Krause et al., 1992, Krause et al., 1995, Krause et al., 1998; Sienkiewicz et al., 1994) bzw. auf Forschungen am Käsebruch und gereiftem Käse (Ledford et al., 1966; Kristiansen et al., 1999). Ein Vergleich der Arbeiten lässt erkennen, dass Enzymmenge und Hydrolysebedingungen, wie Inkubationszeit, Temperatur oder pH-Wert, dabei beträchtlich variieren. Um eventuelle Unterschiede zwischen den Reaktionsmechanismen in verdünnten Proteinlösungen und Proteinsystemen mit erhöhter Trockenmasse aufzudecken, wurden für die Untersuchungen zwei unterschiedliche Modelle genutzt. Dies war zum einen ein Modellsystem, welches der Milch nachempfunden war, und zum anderen ein System mit begrenztem Wasserangebot, welches den Käse darstellen sollte. Ausgehend von einem Schnittkäse mit einer Trockenmasse von 50 %, der durchschnittlich 25 g Protein und 50 g Wasser auf 100 g Käse enthält, errechnet sich abzüglich 5 g Wasser, welches in etwa als Hydratwasser an Kohlenhydrate und Mineralien gebunden ist, für 1 g Protein eine Menge von 1,8 g Wasser. Dieses Wasser steht für hydrolytische Zwecke zur Verfügung. Desmazeaud und Gripon (1977) konnten zeigen, dass in einem Käse des Typs "Cheddar" etwa 32 % des originären β -Caseins nicht hydrolysiert wird.

Auch Kristiansen et al. (1999) stellten fest, dass in Schnittkäse des Typs "Danbo" der Abbau des β -Caseins während der ersten Reifungswochen gegenüber α_s -Casein verzögert abläuft. Orientierend für die endgültige Festlegung der Modellparameter wurde in einem Vorversuch die Hydrolyse von β -Casein in einem System mit 35 % Trockenmasse bei 30 °C für 14 Tage durchgeführt (Kurzeitinkubation). Die Langzeitinkubationen sollten anschließend mit dem optimierten Modell durchgeführt werden. Dabei sollten Temperaturen eingehalten werden, die der Käsereifung entsprechen (vgl. Tab. 2.4–1 in Kapitel 2.4.1).

Alle Inkubationen (Kurzeit- und Langzeitinkubationen) wurden unter sterilen Bedingungen durchgeführt. Des Weiteren wurden Vorkehrungen getroffen, die mikrobiologische Anfälligkeit zu minimieren (Kapitel 3.5.1). Zusätzlich sollten noch Proben mit einem Kochsalzgehalt von 1 bis zu 4 % Zusatz zeigen, inwieweit sich der Hydrolyseverlauf durch Natriumchloridzugabe verändert.

4.2.2 Modellaufbau

Die Kurzzeitinkubationen (vgl. Kapitel 3.7) waren erforderlich, um festzustellen, 1. ob eine Hydrolyse überhaupt bei einem Wassergehalt von 65 % stattfindet, 2. in welchem Umfang diese Hydrolyse stattfindet und 3. den Einfluss des Kochsalzzusatzes auf die Hydrolyse des β -Caseins zu ermitteln. Als Berechnungsgrundlage zum Erstellen des wasserlimitierten Systems diente ein Schnittkäse mit 30 % Fett in der Trockenmasse.

Zur Verfolgung des Hydrolyseverlaufs wurde die Ermittlung der Tyrosinäquivalente in der NCN-Fraktion herangezogen.

Daher wurden die NCN-Fraktionen der Modellansätze vor allem unter dem Gesichtspunkt der einsetzenden Hydrolyse mit Hilfe der Ermittlung der Tyrosinäquivalente analysiert und die Hydrolyserate bestimmt (Berechnung: Kapitel 4.4.1). Die Hydrolyserate gibt Auskunft über den Abbau des originären β -Caseins.

Aufgrund der Temperaturerhöhung (30 °C) ist schon innerhalb von 14 Tagen ein deutlicher Abbau des β -Caseins über einen Anstieg der Hydrolyserate in Abhängigkeit von der Zeit in Abb. 4.2–1 zu erkennen.

Abb. 4.2–1: Vergleich der Hydrolyseraten nach der Kurzzeitinkubation von β-Casein mit Chymosin und Suparen bei pH 5,5 ohne Salzzusatz

Zu bemerken ist, dass bei Verwendung von Chymosin die Hydrolyse im Vergleich zu Suparen eine geringeres Ausmaß annimmt, obwohl gleiche Enzymaktivitäten, bezogen auf die Gerinnungsaktivität zum Einsatz kamen.

Der Zusatz von Natriumchlorid sollte zeigen, in wie weit die Hydrolyserate beeinflusst wird. Erkennbar ist in Abb. 4.2–2, dass durch den Zusatz von Natriumchlorid in einigen Fällen eine deutliche Verzögerung der Proteolyse zum Ende der Inkubationszeit vorwiegend bei Suparen (14. Tag) stattfindet. Im Vergleich zu den Proben ohne Salz (Hydrolyserate 21 % bei Inkubation mit Suparen) werden die Hydrolyseraten bei einem Zusatz von 2 % Natriumchlorid (Hydrolyserate 13,9 %) signifikant¹² gesenkt. Bei den Inkubationen, die mit Chymosin durchgeführt wurden, ist der Einfluss von Natriumchlorid nicht eindeutig nachweisbar.

 $^{^{12}}$ Statistische Auswertung bei Stichproben n ≤ 20 mit Hilfe des LORD-Tests ermittelt (José L. Lozán: Angewandte Statistik für Naturwissenschaftler. Pareys Studientexte 74; Verlag Paul Parey Berlin/Hamburg, 1992)

Abb. 4.2–2: Vergleich der Hydrolyseraten nach der Kurzzeitinkubation von β-Casein mit Chymosin und Suparen ohne und mit Salzzusätzen bis zu 2 % bei pH 5,5

Elektrophoretische Untersuchungen zur Abhängigkeit der β -Casein-Hydrolyse vom Wassergehalt des Systems ergaben, dass bei niedrigen Wassergehalten, wie sie in Schnittkäse anzutreffen sind (Abb. 4.2–3), die Bildung des β -I-Casein, -II-Casein und –III-Casein unterbleibt (Krause, 2001).

1	2	3	4	5	6	7	8	9	_	Bahn	Probenbezeichnung
- 1475								*15000		1	β-Casein, originär (β-CN), 2,5µg
	salaya Ali									2	A, 2 Wochen (1 % TM), 2,5µg
•	•	-	-	-	-		-	-	-β-CN	3	15 Wochen (50 % TM), 10 µg
						-	-		P-I-CN	4	15 Wochen (45 % TM), 10 µg
						testel	-		-р-ш-см	5	15 Wochen (42 % TM), 10 µg
						1000	-		-p-m-cr	6	15 Wochen (37 % TM), 10 µg
										7	15 Wochen (7 % TM), 10 μg
										8	15 Wochen (1 % TM), 10 μg
					. L	and and an			+	9	A, 15 Wochen (1 % TM), 2,5µg

Abb. 4.2–3: Elektropherogramm der Hydrolysate des β-Caseins in Ansätzen mit unterschiedlichen Trockenmassen (Erläuterungen: β-Caseinhydrolysate: Bahn 3 bis 8; Hydrolysebedingungen: 15 °C bei pH 5,5 unter sterilen Bedingungen; A: Autolyse; TM: Trockenmasse)

Neben der starken Bande des unveränderten β -Caseins ist bei Trockenmassegehalten von 50 - 42 % lediglich eine Zunahme der Bandenintensitäten im γ -Casein-Bereich festzustellen. Erst ab einer Trockenmasse unter 37 % kann man eine geringe Bildung von β -I-Casein erkennen (Bahn 6). Die Bildung von β -II-Casein erfolgte erst, wenn die Trockenmasse auf 7 % und darunter gesenkt worden ist (Bahn 7 und 8).

Mit den Vorversuchen konnte gezeigt werden, dass bei einer Trockenmasse von 35 % bzw. einem Wassergehalt von 65 % die Hydrolyse des β -Caseins durch Chymosin und Suparen über eine Änderung in der NCN-Fraktion eindeutig nachzuweisen ist.

Zusätzliche Untersuchungen der Hydrolysate mit Hilfe der RP-HPLC und der GPC ergaben ein breites Spektrum von Peptiden unterschiedlicher Polarität und Molmassen.

Die Langzeitinkubationen wurden daraufhin mit einer Trockenmasse von 35 % und in einem Temperatur-Intervall in Anlehnung an die Reifung eines Schnittkäses durchgeführt.

4.3 Überprüfung der Aktivität der Enzyme

Durch eine Standardisierung der Enzymaktivität verschiedener Proteasen ist ein Vergleich der Modelle möglich. Die Enzymaktivitäten wurden mit Hilfe der Gerinnungszeit (Kapitel 3.4) abgeglichen. Rekonstituierte Magermilch wurde unter Zusatz der Enzympräparate zur Gerinnung gebracht. Diese erhaltenen Werte bilden die Grundlage zur Berechnung der Enzymkonzentration, die zur Hydrolyse von β-Casein eingesetzt wurde. Die Ergebnisse des Gerinnungszeitbabgleiches sind im Kapitel 3.4, Tab. 3.4–1 aufgeführt. Die so ermittelten Enzymkonzentrationen wurden eingesetzt für die Hydrolysen des Modells Milch und des Modells Käse. Das verwendete Chymosinpräparat weist eine Aktivität bzw. Labstärke (Spreer, 1995) von 19700 auf, d.h. 19700 Teile Milch werden durch ein Teil Chymosin in 40 min bei einer Temperatur von 35 °C und einem pH-Wert von 6,5 dickgelegt. Das Suparenpräparat weist eine Aktivität bzw. Labstärke von 26700 auf.

Bei den Inkubationen der Modell-Ansätze wurde das Enzym-Substrat-Verhältnis konstant gehalten. Sie wurden bei einem pH-Wert von 5,5 und einer Temperatur von 12 ± 2 °C durchgeführt.

Die Aktivität des Chymosins und des Suparens wurde durch Enzymkontrollproben über den gesamten Hydrolysezeitraum zu Beginn der Hydrolyse, in der 2. Woche und am Ende der Hydrolysezeit nach der 15. Woche untersucht (Kapitel 3.8).

Innerhalb des Versuchszeitraumes von 15 Wochen nahm die Aktivität zwar teilweise erheblich ab, sank jedoch in keinem Fall auf Null.

Durch die Beziehung, die zwischen der Gerinnungszeit und dem noch aktiven Chymosin besteht, kann der Aktivitätsverlust grafisch dargestellt werden (Kapitel 3.9 in Tab. 3.9–2 bis Tab. 3.9–4).

Abb. 4.3–1: Relative Veränderung der Enzymaktivität in den verschiedenen Modellsystemen

Setzt man nun die Enzymmenge am Anfang als die Enzymenge voraus, die aktiv ist und wirken kann, so kann sie als Bezugspunkt dienen, durch welchen man die Inaktivierung berechnen kann: $y_t = E_t/E_0$

- yt: Menge an noch aktivem Enzym
- Et: Enzymmenge zum Zeitpunkt t (t: Start; 2. und 15. Woche)
- E₀: Enzymmenge zum Zeitpunkt 0 (Start)

Wenn y_t (in %) für beide Modelle (Käse und Milch) über der jeweiligen Kontrollzeit aufgetragen wird, ergibt sich das Balkendiagramm in Abb. 4.3–1.

Man kann erkennen, dass unabhängig vom Enzym die Aktivität über den Hydrolysezeitraum teilweise drastisch abnimmt. Im Modell Milch (Chymosin) scheint nach 2 Wochen und 15 Wochen Hydrolysezeit die ermittelte Aktivität gleich zu sein. Im Modell Käse (Chymosin) ist eine stärkere Inaktivierung zu finden als beim Modell Käse (Suparen). Zu erwarten ist eine entsprechende Verminderung der Hydrolysegeschwindigkeit. Suparen wird im Hydrolysezeitraum weniger inaktiviert als Chymosin. Erklärt werden könnten die starken Aktivitätsverluste im Modell Käse (Chymosin) durch Adsorptionsreaktionen von Chymosin an β -Casein oder Spaltprodukten von β -Casein. In der Literatur gibt es verschiedene Angaben zum Assoziationsverhalten, speziell zur Assoziation von para-ĸ-Casein mit Chymosin. Nach de Roos et al. (2000) scheint jedoch die aktive Seite des Chymosins von der Assoziation nicht betroffen zu sein, so dass diese nicht zu einer Erklärung der Inaktivierung herangezogen werden kann.

Eine Assoziation des Chymosin mit β -Casein ist also nicht auszuschließen, lässt aber keine Rückschlüsse auf Aktivitätsveränderungen des Enzyms zu, wenn die aktive Seite des Chymosins nicht davon betroffen wird.

Obwohl die Aktivitätsverluste der Enzyme über einen Zeitraum von 15 Wochen in einigen Fällen erheblich zu sein scheinen, verlief die Hydrolyse des β -Caseins über die gesamte Versuchszeit weiter. Das zeigen die folgenden Ergebnisse zur Verfolgung des Hydrolyseverlaufs.

4.4 Verfolgung der Hydrolyse

4.4.1 Verfolgung des Hydrolyseverlaufs durch Bestimmung der Tyrosinäquivalente und der freien primären Aminogruppen

Die Langzeitinkubationen erfolgten in Anlehnung an die Reifung eines Schnittkäses. Schnittkäse werden bei etwa 13 - 16 °C (vgl. Kapitel 2.4) über 3 Monate gereift. Die Langzeitinkubationen fanden bei Temperaturen von 10 - 14 °C und einem pH-Wert von 5,5 statt. Die Hydrolysezeit betrug 15 Wochen. Der Zusatz von Chymosin und Suparen erfolgte wie im Gerinnungszeitabgleich ermittelt. Nach bestimmten Hydrolysezeiten wurden Proben entnommen und analysiert.

Zur Verfolgung des Hydrolyseverlaufs wurden zwei Methoden eingesetzt, zum einen die Methode nach Lowry et al. (1951) in der Mikrovariante nach Kirazov et al. (1993) zur Ermittlung der Tyrosinäquivalente in der NCN-Fraktion, zum anderen die Bestimmung der freien primären Aminogruppen, welche direkt im Gesamthydrolysat ermittelt wurden.

Die Methode nach Lowry et al. (1951) zeichnet sich durch die hohe Empfindlichkeit aus und wurde daher bevorzugt verwendet. Um eine Aussage über den Umfang der Hydrolyse treffen zu können, kann man die Hydrolyserate berechnen. Dabei werden die Tyrosinäquivalente des originären β -Caseins (entspricht 100 %) in Relation zu den in der NCN-Fraktion bestimmten Tyrosinäquivalenten gesetzt.

Da die Ermittlung der Tyrosinäquivalente keine Angabe über die Zahl der gespaltenen Peptidbindungen liefert, wurde direkt im Gesamthydrolysat die Zunahme an freien primären Aminogruppen während der Hydrolyse ermittelt. Es wurden nur ausgewählte Modelle untersucht. Ein entscheidender Vorteil ist die kurze Inkubationszeit zur Entwicklung des gelbgefärbten TNBS-Komplexes, welcher bei 405 nm bestimmt wird.

Im folgenden sollen die Ergebnisse, die durch die Ermittlung der Tyrosinäquivalente in der NCN-Fraktion der Hydrolysate erhalten wurden, näher betrachtet werden.

Abb. 4.4–1: Hydrolyseraten von β-Casein, berechnet aus den Tyrosinäquivalenten der NCN-Fraktionen von unterschiedlichen Modellsystemen (TM: Trockenmasse)

In Abb. 4.4–1 sind nur ausgewählte Hydrolysezeiten dargestellt, deren Ergebnisse wurden innerhalb der verschiedenen Modelle, die ohne Salzzusatz inkubiert wurden, miteinander

verglichen. Deutlich zu erkennen ist, das im Modell Milch das Chymosin im Vergleich zum Suparen die höheren Hydrolyseraten aufweist. Entgegen der Erwartung war die Hydrolyserate für Chymosin doppelt so hoch wie für Suparen der Unterschied ist signifikant.

Ein linearer Zusammenhang zwischen der Reaktionszeit und der Hydrolyserate ist nicht gegeben. Pélissier et al. (1972), Creamer und Mills (1971), Visser (1981) und Sienkiewicz et al. (1994) stellten eine hohe Initialgeschwindigkeit der Hydrolyse von β -Casein in verdünnten Lösungen fest, die zur Bildung des β -I-Casein-Peptids führt. Durch eigene Untersuchungen kann festgestellt werden, dass die Reaktionsgeschwindigkeit im Modell Milch mit fortschreitender Hydrolyse abnimmt (Substratmangel). Dieses Verhalten ist durch den zunehmenden Mangel an leicht spaltbaren Peptidbindungen zu erklären. Außerdem kommt es infolge der langen Hydrolysezeit zu einer fortschreitenden Inaktivierung des Enzyms.

Der Hydrolyseverlauf des β -Caseins in den Modellen, welche mit Chymosin und Suparen inkubiert wurden, kann durch eine nicht lineare Gleichung des Typs $y = b \cdot x^a$ beschrieben werden. Der Exponent a hat dabei einen gebrochenen positiven Wert < 1 und zeigt an, dass die Reaktionsmechanismus komplex ist.

Abb. 4.4–2: Hydrolyseverlauf der Inkubationen von Chymosin mit β -Casein im Modell Milch 1 % TM und Modell Käse mit 35 % TM (TM: Trockenmasse) Regressionsgleichungen (Potenziell; Typ y = b · x^a)

Die berechneten Werte für die Konstanten a und b ergeben eine Regressionsgleichung der nachstehenden Formeln, wenn mit einer Aktivität von 1 : 19700 bei Chymosin bzw. 1 : 26700 bei Suparen gearbeitet wird:

	Chymosin	Suparen
Modell Milch:	$y = 0,19 x^{0,44}$	$y = 0,18 x^{0,25}$
Modell Käse mit 35 % Trockenmasse:	$y = 0,020 x^{0,64}$	$y = 0.048 x^{0.38}$

Wie aus Abb. 4.4–2 ersichtlich, läuft die Hydrolyse des β -Caseins im Modell Käse mit 35 % Trockenmasse deutlich langsamer ab als im Modell Milch. Jedoch kann man aus dem Kurvenverlauf ableiten, dass der Hydrolyseverlauf die gleiche Komplexität aufweist wie der des Modells Milch. Erwartungsgemäß ist im Modell Milch im Vergleich zum Modell Käse mit 35 % Trockenmasse (Chymosin) die Hydrolyserate viel höher und mit 63,9 % im Vergleich zu 11,7 % am Ende der Hydrolysezeit von 15 Wochen sehr stark erhöht (vgl. auch Kapitel 4.2.2; Abb. 4.2–1). Das Modell Käse mit 35 % Trockenmasse (Suparen) weist im Vergleich zum mit Chymosin inkubierten Modell ähnliche Hydrolyseraten auf, jedoch sind die ermittelten Hydrolyseraten nicht signifikant unterschiedlich (Lord-Test¹³).

Im Modell Käse mit 50 % Trockenmasse, welches mit Chymosin inkubiert wurde, blieb der relative NCN-Anteil mit 3,6 % über den gesamten Zeitraum konstant. Dieser Wert entspricht dem in der NCN-Fraktion enthaltenen Anteil an nicht fällbarem β -Casein (Krause, 1998). Es findet praktisch keine Hydrolyse des β -Caseins statt. Auch gelelektrophoretische Auswertungen der Hydrolysate ergaben, dass ein Abbau von β -Casein durch Chymosin bei einer Trockenmasse von 50 % nicht stattfindet. Da alle Hydrolyseraten der aufgeführten Hydrolysezeiten im Rahmen der Versuchsfehler praktisch gleich sind, wurde zur Vereinfachung ein Mittelwert gebildet. Die in Kapitel 3.11.1; Tab. 3.11–2 aufgeführten Daten entsprechen einer Hydrolyserate von 4,0 ± 0,1 % ohne erkennbare zeitliche Änderung und entsprechen damit dem Wert, der für die Autolyse des β -Caseins in verdünnter wässriger Lösung bestimmt wurde. Weitere Untersuchungen zur Hydrolyse dieses Systems wurden daraufhin nicht vorgenommen.

¹³ Lozán, J.L.: Angewandte Statistik für Naturwissenschaftler. Pareys Studientexte 74, Verlag Paul Parey Berlin und Hamburg, 1992

Wie aus Tab. 3.11–2 und Tab. 3.11–3 (Kapitel 3.11.1) ersichtlich, beeinflusst der Natriumchloridgehalt die Hydrolyse des β -Caseins im Modell Milch als auch im Modell Käse.

Im Modell Milch erhöht ein Zusatz von Natriumchlorid die Hydrolyserate des β -Caseins deutlich, dieses ist unabhängig vom Enzym (Abb. 4.4–3).

Abb. 4.4–3: Vergleich der Hydrolysate bei verschiedenen Kochsalzzusätzen und zwei ausgewählten Inkubationszeiten (TM: Trockenmasse)

Man erkennt, dass während einer Lagerzeit von 5 Wochen der Umsatz der Probe, die mit einem Zusatz von 2 % Natriumchlorid (Chymosin) bzw. 1 % Natriumchloridzusatz (Suparen) inkubiert wurde, stark erhöht ist. Nach einer Lagerzeit von 15 Wochen bestätigt sich dieses Ergebnis. Die Hydrolyserate der Probe mit 2 % Natriumchlorid beträgt 69,8 % bei Chymosin bzw. 46,8 % bei Suparen, was im Gegensatz zu der salzfreien Probe eine Zunahme von ca. 5,5 % Hydrolyserate bei Chymosin bzw. von 14,1 % bei Suparen bedeutet (Tab. 3.11–2 und Tab. 3.11–3). Die Untersuchungen lassen erkennen, dass eine Natriumchloridkonzentration bis zu 2 % keine negativen Auswirkungen auf den Verlauf der Hydrolyse hat. Es lässt sich im Gegenteil eine leichte Beschleunigung der Hydrolyse feststellen. In Gegenwart von 4 % Natriumchlorid werden in den Ansätzen mit Chymosin sowohl im Modell Milch als auch im Modell Käse (35 % Trockenmasse) die Hydrolyseraten eines salzfreien Ansatzes nicht erreicht. Das Ergebnis hat allerdings nur rein wissenschaftliches Interesse, da ein Käse mit 4 % Natriumchlorid nicht hergestellt wird.

Bei Hydrolysen mit Suparen ist im Modell Milch ebenso wie bei den Hydrolysen mit Chymosin eine erhöhte Hydrolyserate durch einen Natriumchlorid-Zusatz im Vergleich zum salzfreien Ansatz festzustellen. 4 % Natriumchlorid beeinflussen die Hydrolyse des β -Caseins durch Suparen im Gegensatz zur Hydrolyse des β -Caseins durch Chymosin nicht.

Von einer Hemmung der Chymosinwirkung sprachen de Jong und de Groot-Mostert (1977) als sie gelelektrophoretische Untersuchungen zum Caseinabbau in Abhängigkeit von der Natriumchloridkonzentration durchführten. Auch Fox und Walley konnten 1971 feststellen, dass die Proteolyse von β -Casein durch Chymosin durch einen Salzzusatz von 5 % deutlich vermindert abläuft und bei 10 % Natriumchloridzusatz die Proteolyse vollkommen verhindert wird.

Um eventuell einen mikrobiellen Befall anzuzeigen, bzw. den Einfluss einer Autolyse (Selbsthydrolyse) abschätzen zu können, wurden β -Caseinlösungen ohne Zusatz von Chymosin für eine Zeit von 15 Wochen inkubiert. Der Peptidgehalt der NCN-Fraktion von den Autolyseproben wurde in der 2., 8. und 15. Woche bestimmt. Die in den Tabellen (Tab. 3.11–2 und Tab. 3.11–3) dargestellten Ergebnisse zeigen, dass der Wert der gefundenen Tyrosinäquivalente von 0,1 auf 0,4 µmol/10 mg Protein im Modell Milch bzw. 0,1 µmol/10 mg Protein im Modell Käse nach 15 Wochen ansteigt, das entspricht einer Autolyserate von 3,6 % in 15 Wochen beim Modell Milch bzw. einer Autolyserate von 1,1 %

beim Modell Käse. Dieser Wert kann angesichts der durch Chymosin katalysierten Hydrolyserate von 63,9 % im Modell Milch bzw. 11,7 % im Modell Käse als geringfügig eingestuft werden. Mikrobielle Kontaminationen der Proben konnten also ausgeschlossen werden.

Verfolgt man die Hydrolyse des β -Caseins durch Chymosin bzw. Suparen über die Neubildung primärer Aminogruppen (in diesem Falle α -Aminogruppen) erhält man vergleichbare Aussagen wie bei der Beurteilung der Hydrolyse durch die Bestimmung der Tyrosinäquivalente in der NCN-Fraktion. Vor der Hydrolyse sind im β -Casein neben der terminalen α -Aminogruppe die ε -Aminogruppen des Lysins bestimmbar. Diese wurden von den erhaltenen Werten zu den jeweiligen Hydrolysezeiten als Blindwert abgezogen.

Die in Abb. 4.4–4 dargestellten Ergebnisse über die Zunahme an freien primären Aminogruppen wurde nur von ausgewählten Modellen ermittelt.

Abb. 4.4–4: Vergleich der Hydrolysate über die Zeit von 15 Wochen ohne Zusatz von Salz (TM: Trockenmasse)

Es wurden die Käse-Modellansätze mit 35 % Trockenmasse und als Modell für die Milch nur die Inkubation mit Suparen untersucht. Im Modell Milch (Chymosin), welches hier nicht näher charakterisiert wurde, sind ähnliche Tendenzen wie beim Modell Milch (Suparen) zu erkennen.

Betrachtet man die erhaltenen Ergebnisse, so ist bemerkenswert, dass im Modell Käse mit 35 % Trockenmasse durch Suparen am Ende der Hydrolysezeit annähernd die gleiche Anzahl α -Aminogruppen freigesetzt wird wie im Modell Milch bei Verwendung des gleichen Enzyms. Im Gegensatz hierzu ist das Modell Käse (Chymosin) zu sehen, in dessen Proben die Konzentration der freien Aminogruppen am Ende der Hydrolysezeit um die Hälfte niedriger ist als bei den mit Suparen durchgeführten Hydrolysen.

Deutlich ist der gleichmäßige Anstieg der primären Aminogruppen über die gesamte Hydrolysezeit erkennbar, während Suparen eine nicht lineare Zunahme der α -Aminogruppen induziert. Suparen ist deutlich proteolytisch aktiver und liefert doppelt so viel neue Peptide wie Chymosin.

Der Einfluss verschiedener Natriumchloridkonzentrationen lässt sich auch über den Zunahme der Aminogruppen bestätigen. Im Modell Milch ist die Hydrolyse des β -Caseins durch Suparen, gemessen an der Neubildung der primären Aminogruppen, durch einen Zusatz von Natriumchlorid begünstigt.

Abb. 4.4–5: Vergleich der Hydrolysate der 5. Woche mit verschiedenen Kochsalzzusätzen (TM: Trockenmasse)

Im Modell Käse mit 35 % Trockenmasse weist die Inkubation ohne Salzzusatz am Ende der Hydrolysezeit (15. Woche) eine deutlich höhere Bildung an primären Aminogruppen auf als die salzhaltigen Hydrolysen.

Abb. 4.4–6: Vergleich der Hydrolysate der 15. Woche mit verschiedenen Kochsalzzusätzen (TM: Trockenmasse)

Zusammenfassend kann gesagt werden, dass durch Chymosin im Modell Milch, gemessen an den erhöhten Hydrolyseraten in der NCN-Fraktion, vorwiegend niedermolekulare Bestandteile gebildet werden. Suparen setzt in der gleichen Zeit im Modell Milch weniger NCN-Bestandteile frei als Chymosin im gleichen Modell. Chymosin und Suparen zeigen im Modell Käse mit 35 % Trockenmasse ähnliche Hydrolyseraten, jedoch niedrigerere Hydrolyseraten als im Modell Milch ermittelt. Im Modell Käse mit 50 % Trockenmasse konnte, beuogen auf die NCN-Fraktion, keine merkliche Hydrolyse festgestellte werden. Aus der Neubildung der Aminogruppen im Gesamthydrolysat kann abgeleitet werden, dass Suparen im Vergleich zu Chymosin sowohl im Modell Milch als auch im Modell Käse proteolytisch aktiver ist. Auch Natriumchlorid hat einen nicht zu unterschätzenden Einfluss. In der NCN-Fraktion und in den Gesamthydrolysaten der Milchmodelle findet bei einem Zusatz bis zu 2 % eine deutliche Enzymaktivierung unabhängig vom Enzym statt. Im Gegensatz hierzu können für die Hydrolyseraten der NCN-Fraktion der salzhaltigen Proben im Modell Käse am Ende der Hydrolysezeit im Vergleich zur salzfreien Proben keine Aussagen getroffen werden. Die
Neubildung der Aminogruppen in den Gesamthydrolysaten der salzhaltigen Proben im Modell Käse sind im Vergleich zur salzfreien Probe am Ende der Hydrolysezeit verringert.

4.4.2 Erfassung der niedermolekularen Spaltprodukte mit RP-HPLC

Um eine Aussage über die Anzahl der enzymatisch gebildeten Spaltprodukte zu erhalten, bietet sich eine vergleichende Gegenüberstellung der Peptidmuster ("peptide patterns") an. Als Methode der Wahl wurde die RP-HPLC genutzt (vgl. Kapitel 2.5.6). Je unpolarer eine Probensubstanz ist, desto stärker wird sie im Normalfall von der Umkehrphasen-Oberfläche festgehalten. Daher ist auch eine Aussage über die Hydrophobie der gebildeten Peptide möglich. Im nachfolgenden sollen die erhaltenen Chromatogramme der jeweiligen Modelle über die verschiedenen Hydrolysezeiten miteinander verglichen werden. Die Trennparameter wurden so gewählt, dass sie für alle Proben gleich und reproduzierbar sind. Damit ist die Auswertung durch Vergleich der Peakmuster und auch der Peakflächen möglich. Es wurden die NCN-Fraktionen der Proben bei 215 nm detektiert. Die Wellenlänge stellt einen Absorptionsmaximum der Peptidbindung Kompromiss zwischen dem und der Eigenabsorption des Eluenten dar. Die entsprechenden Chromatogramme sind in den Abb. 4.4-7 bis Abb. 4.4-9 zu sehen. Angaben wie Retentionszeiten und zugehörige Peakflächen sind den Tab. 3.11–5 bis Tab. 3.11–7 zu entnehmen.

Der erste Peak, den man in allen Chromatogrammen (Abb. 4.4–7) in allen Modellen mit der Retentionszeit von 6,5 min identifizieren konnte, wurden dem Konservierungsmittel MIT eindeutig zugewiesen. Dies wurde mit einer Probe, die nur gelöstes MIT in Phosphatpuffer enthielt, geklärt.

Anhand der Chromatogramme 1, 2, 3 und 4 der Proben des Modells Milch kann man feststellen, dass nach drei Wochen ein markantes Signal bei 32,4 min zu erkennen ist. Dieses Signal ist schon nach einem Tag zu erkennen. Das zugehörige Peptid entspricht nach dem Elutionsprofil zu beurteilen dem von Krause (1997) isolierten und identifizierten Peptid β -Casein A 125 - 143 (Sequenz) mit den Endgruppen Leu und Trp.

1: 3. Woche	
3: 12. Woche	

4: 15. Woche

2: 5. Woche

Abb. 4.4–7: RP-HPLC-Pattern von NCN-Fraktionen des Modells Käse und des Modells Milch der Inkubationen mit Chymosin ohne Salzzusatz

Nach etwa 2 Wochen verstärken sich die Signale und ergeben ein Peptidmuster, dass dem nach 3 Wochen Hydrolysezeit weitgehend gleicht (Chromatogramm 1). In den ersten drei Wochen nehmen die Signale aller Peptide stark zu, welches sich auch in der Zunahme der Peakflächen wiederspiegelt (vgl. Tab. 3.11–5 bis Tab. 3.11–7). Nach 3 Wochen Hydrolysezeit ist vor allem ein Anstieg der Intensitäten im Bereich höherer Retentionszeiten der Chromatogramme zu verzeichnen. Hervorzuheben ist, dass zu Anfang der Hydrolyse überwiegend Peptide mit niedrigen Retentionszeiten aus dem β -Casein freigesetzt werden.

So werden zuerst hydrophile Bestandteile freigesetzt und später erst hydrophobe gebildet.

Im Modell Käse sind im Vergleich zum Modell Milch wesentlich weniger Peptide nachweisbar. Sie eluieren ausschließlich bei hohen Retentionszeiten. Es fehlen das für das System Milch charakteristische Peptid $t_R = 32,4$ min sowie zahlreiche schnell eluierende

Peptide. Im Vergleich zu den RP-HPLC-Chromatogrammen des Modells Milch wurden im Modell Käse vorwiegend Peptide freigesetzt, die im hinteren Elutionsbereich des Chromatogramms zu finden sind.

Vergleicht man die Chromatogramme der Hydrolysate aus beiden Modellen und dem gleichem Enzym miteinander, so kann man erkennen, dass die Chromatogramme des Modells Milch im gleichen Zeitraum höhere Peakintensitäten aufweisen, als die des Modells Käse. Erklärbar ist dies durch das hohe Wasserangebot, welches im Modell Milch im Überschuss für eine Hydrolyse zur Verfügung steht.

In folgender Abbildung (Abb. 4.4–8) ist eine Übersicht der Chromatogramme des Modells Milch und des Modells Käse, welche mit Suparen inkubiert wurden, wiedergegeben.

Abb. 4.4–8: Chromatogrammübersicht über die NCN-Fraktionen des Modells Käse und des Modells Milch der Inkubationen mit Suparen ohne Salzzusatz

Deutlich zu erkennen ist im Modell Milch, dass im vorderen und hinteren Elutionsbereich Peptide erfasst werden, jedoch zwischen 10 und 43 min kaum Peptide detektiert werden. Ähnliche Aussagen lassen sich beim Modell Käse treffen. Jedoch ist die Intensität der Signale im Vergleich zum Modell Milch stark erniedrigt. So sind die Peptide, die bis 10 min bzw. ab 43 min eluieren wahrscheinlich die gleichen Peptide wie beim Modell Milch.

Vergleicht man nun die zwei verschiedenen Enzyme miteinander innerhalb eines Modells, so kann man eindeutig feststellen, dass Suparen im Modell Milch vornehmlich Bruchstücke freisetzt, die im vorderen (bis 15 min) und hinteren Elutionsbereich (ab 40 min) eluieren. Bei den Inkubationen mit Chymosin im Modell Milch werden jedoch über den ganzen Elutionszeitraum Peptide identifiziert. Beim Modell Käse ähneln sich die Peptide, die durch die Enzyme Suparen und Chymosin freigesetzt werden. So werden im vorderen und hinteren Elutionsbereich Peptide detektiert. Interessant ist es nun zu wissen, inwiefern sich die Peptidmuster durch Zusatz von Natriumchlorid verändern werden. Im folgenden werden die erhaltenen Ergebnisse erörtert.

In Abb. 4.4–9 ist eine Übersicht der Chromatogramme des Modells Milch und des Modells Käse beider Enzyminkubationen, welche mit und ohne Zusatz von Salz inkubiert wurden, wiedergegeben.

Bemerkenswert fällt der Vergleich der salzhaltigen Proben, die fünf Wochen und 15 Wochen mit 1 - 4 % Natriumchloridzusatz inkubiert wurden, mit den Proben, die ohne Natriumchloridzusatz inkubiert wurden, aus. Exemplarisch sind in Abb. 4.4–9 nur die NCN-Fraktionen der 15. Woche aufgeführt. Beim Vergleich der Hydrolysate der 15. Woche des Modells Milch, welche mit Chymosin inkubiert wurden, fällt auf, dass bis zu einer Natriumchloridkonzentration von 2 % die Intensitäten der Peaks mit höheren Retentionszeiten ansteigen. Man kann aufgrund der Gradientenzusammensetzung darauf schließen, dass es sich hier wahrscheinlich vornehmlich um Peptide mit hydrophoben Charakter handelt.

 1: ohne Salz
 2: 1 % Salz

 3: 2 % Salz
 4: 4 % Salz

Abb. 4.4–9: HPLC-Cromatogramme der NCN-Hydrolysate der 15. Woche ohne und mit unterschiedlichen Zusätzen an Natriumchlorid

Bei dem Inkubationsansatz mit 4 % Natriumchlorid des Modells Milch (Chymosin) erkennt man schon deutlich eine Verringerung der Intensitäten im hinteren Elutionsbereich. Bemerkenswert ist, dass vor allem im vorderen Elutionsbereich die Chromatogramme aller Proben sehr ähnlich sind, d.h. die Signale ähnliche Intensitäten aufweisen. Wahrscheinlich ist die Hydrolyse der hydrophileren Spaltstücke des β -Caseins nicht abhängig von der Natriumchloridkonzentration, während die Freisetzung der hydrophoberen Bestandteile im Modell Milch und damit auch deren Intensitäten im Chromatogramm bis zu einer Natriumchloridkonzentration von 2 % stark erhöht ist (Tab. 3.11–5 bis Tab. 3.11–7), wird die Hydrolyse des Inkubationsansatzes mit 4 % Natriumchlorid erniedrigt. Beim Vergleich des Inkubationsansatzes mit 4 % Natriumchlorid mit der salzfreien Probe gleicher Hydrolyse-dauer kann man keinen signifikanten Unterschied in den Intensitäten der Peaks feststellen.

Bei den Modellen Milch und Käse, welche mit Suparen und Natriumchlorid inkubiert wurden, sind genau wie bei den Inkubationen ohne Salz ähnliche Aussagen zu treffen. So treten vor allem im vorderen Elutionsbereich bis 20 min im Modell Milch bzw. bis 10 min im Modell Käse charakteristische Signale auf. Zwischen 20 und 35 min im Modell Milch bzw. 10 bis 40 min im Modell Käse werden im Chromatogramm kaum Peptide detektiert. Ab 35 min im Modell Milch bzw. 40 min im Modell Käse sind wieder vermehrt Peptide zu registrieren. Die Signale der natriumchloridfreien Probe im Modell Milch (bis 20 min) sowie auch im Modell Käse (bis 10 min) weisen vor allem im vorderen Elutionsbereich deutlich höhere Intensitäten auf als die Proben mit Salz inkubiert. Geringste Peakintensitäten weist die Probe mit 4 % Natriumchlorid im vorderen Chromatogrammbereich auf. Im hinteren Elutionsbereich (Modell Milch + Salz) (ab 35 min) können keine signifikanten Unterschiede in den Signalen festgestellt werden. Im Modell Käse (Suparen) mit 35 % Trockenmasse kann man deutliche Unterschiede im hinteren Elutionsbereich in Abhängigkeit der Salzkonzentrationen erkennen. So zeigt die Probe ohne Salzzusatz wieder deutlich höhere Signale als die anderen Proben. Weiter kann festgestellt werden, dass die Probe mit einem Zusatz von 4 % Natriumchlorid kleinere Peaks aufzeigt als die Probe ohne Natriumchlorid. Deutlich höhere Peaks zeigt die Probe mit 2 % Natriumchlorid im Vergleich zur Probe mit 1 % Natriumchlorid.

Der Salzgehalt scheint also allenfalls die Hydrolyserate nicht aber den Hydrolyseweg zu beeinflussen. Diese Beobachtung wurde auch von de Jong und de Groot-Mostert (1977) gemacht.

Die mit Hilfe der RP-HPLC ermittelten Ergebnisse korrelieren auch mit den ermittelten Tyrosinäquivalenten in den NCN-Fraktionen beide Enzyme betreffend (vgl. Kapitel 4.4.1). Es konnte ein Anstieg der Tyrosinäquivalente in der NCN-Fraktion bei den Proben mit einem Zusatz von 2 % an Natriumchlorid ermittelt werden. Der Zusatz von bis zu 2 % Kochsalz begünstigt also die Freisetzung von hydrophoben Peptiden aus dem β -Casein.

In diesem Zusammenhang stellten von Fox und Walley (1971) fest, dass eine Verlangsamung der Hydrolyse von β -Casein erfolgt, wenn dem Modellansatz Natriumchlorid zugesetzt wird. Des weiteren postulierten sie, dass hydrophobe Bereiche des β -Caseins weniger stark einem Abbau unterliegen bzw. sogar eine Inhibierung der Proteolyse stattfindet, wenn dem Inkubationsansatz Natriumchlorid bis zu 10 % zugesetzt wurde. Die getroffenen Aussagen von Fox und Walley konnten in dieser Arbeit teilweise bestätigt werden. Es fand trotz des Salzzusatzes ein konsequenter Abbau der hydrophoben Bereiche statt, was sich in der Zunahme der Zahl "hydrophober" Peptide gemessen an der Anzahl der Signale im Chromatogramm äußerte. Eine Inhibierung durch Natriumchlorid konnte nur teilweise bestätigt werden.

Natriumchlorid ist in der Lage, ionische Bindungen, die sich inter- oder intramolekular bilden können, zu lösen. Dies konnte von Zittle und Custer (1963) experimentell bestätigt werden, die diese Wechselwirkungen zwischen Natriumchloridionen und anderen ionischen Bestandteilen des Caseins nutzte, um α_s -Casein von κ -Casein zu trennen. Eine Überlagerung dieser beiden Effekte ist aller Voraussicht nach denkbar. So kommt es einerseits zu einer Auflockerung der Struktur des β -Caseins, bei der sich zwar alle Gebiete auffalten, diese aber andererseits vermehrt rückgefaltet werden bei Erhöhung der Natriumchloridkonzentration.

In allen Modellen werden über den gesamten Hydrolysezeitraum niedermolekulare Bestandteile gebildet. Mit Zunahme der Hydrolysezeit kommt es auch zur Zunahme der auswertbaren Peakflächen. Im Modell Milch kann generell eine höhere Anzahl von Signalen als im Modell Käse detektiert werden, d.h. es entstehen mehr niedermolekulare Bruchstücke als im Vergleich zum Modell Käse. Natriumchlorid bewirkt bis zu einem Zusatz von 2 % eine verstärkte Bildung von niedermolekularen, hydrophoben Bruchstücken. Bestätigt werden können die Ergebnisse im Modell Milch auch durch die schon ermittelten Tyrosinäquivalente in den NCN-Fraktionen.

Im Modell Käse werden im niedermolekularen Bereich bevorzugt hydrophobe Peptide freigesetzt, während im Modell Milch auch hydrophile Peptide gebildet werden. Alle Zusätze von Natriumchlorid bewirken im Modell Käse eine Verzögerung der Hydrolyse im Vergleich zum Modell Milch.

4.4.3 Abschätzung der enstandenen Molmassen mit Hilfe der GPC

Eingesetzt werden die Gesamthydrolysate, die durch Wirkung der Enzyme Chymosin und Suparen auf β -Casein im Zeitraum von 15 Wochen erhalten wurden.

Exemplarisch sind in Abb. 4.4–10 die Elutionsprofile am Beispiel des Modells Käse mit 35 % Trockenmasse (Chymosin) aufgeführt, die an der Bio-Sec-S 2000 Säule von der Firma Phenomenex mit einem Natriumdihydrogenphosphat/Natriumchlorid-Puffer, pH 7,2, als Eluent erhalten wurden. Dieses dargestellte Übersichtschromatogramm enthält die Elutionsprofile der 3., 5., 8. und 15. Woche des Modell Käse (35 % Trockenmasse) mit Chymosin ohne Salz. Die Einspritzvolumina sowie auch die Proteinkonzentration (10 mg/ml Ansatz) der jeweiligen Hydrolysate sind einheitlich. Ein Vergleich der Peakflächen ist damit möglich. Die Auswertung erfolgt mit der in Kapitel 3.10.2 angegebenen Kalibriergerade. Die erhaltenen Elutionsprofile weisen keine basisliniengetrennten Peaks auf. Um die Ergebnisse übersichtlicher darstellen zu können, wurden die Profile in vier verschiedene Molmassenbereiche eingeteilt. Da eine Verschiebung der wahren Molmasse des β -Caseins auftritt und zwar von 24 kDa auf fast 29 kDa, kann hier nur eine grobe Abschätzung der Molmassen der entstandenen Bruchstücke vorgenommen werden.

Der erste Bereich umfasst alle Komponenten mit Elutionsvolumina zwischen 6,7 ml und 7,2 ml, welche einem Molmassenbereich von 37,5 kDa bis 25,7 kDa entsprechen. Die weiteren Bereiche sind Tab. 4.4–1 zu entnehmen. Dabei ist anzumerken, dass Molmassen < 1 kDa nicht ausgewertet werden, da diese Bruchstücke nicht mehr im Trennbereich der Säule liegen bzw. die Moleküle sich nicht nur aufgrund ihrer Größe trennen können, sondern auch unspezifische Adsorptionserscheinungen mit dem Säulenmaterial aufweisen.

Molmassenbereich	Scheinbare Molmasse [kDa]	v _e = Elutionsbereich [ml]
0*	> 37,5	5,9 - 6,6
Ι	37,5 - 25,7	6,6 – 7,2
II	25,7 – 14,3	7,2 - 8,1
III	14,3 – 6,0	8,1 - 9,4
V	6,0 – 1,4	9,4 – 11,6

Tab. 4.4–1: Molmassenbereiche und scheinbare Molmassen der dargestellten Elutionsprofile

*Ausschlussgrenze

Abb. 4.4–10: Elutionsprofile der β-Caseinhydrolysate (Chymosin, Modell Käse)

Auch ein Zusatz von Natriumchlorid kann die proteolytische Aktivität der einzelnen Enzyme hemmen und eventuell eine Freisetzung bestimmter Peptide verhindern bzw. fördern, welches sich in der Abnahme bzw. Zunahme verschiedener Peaks wiederspiegeln würde. Daher wurden die Gesamthydrolysate, die mit 1, 2 und 4 % Natriumchlorid inkubiert wurden, analysiert.

Molmassenbereich I (37,5 - 25,7 kDa)

In diesem Bereich eluiert das originäre β -Casein, dem nach der erstellten Kalibrationskurve eine scheinbare Molmasse von 29,0 kDa zugeordnet werden muss. Wie schon erwähnt, fand eine Verschiebung der Molmasse des β -Caseins von 24,0 auf 29,0 kDa statt. In den Modellen Milch (Hydrolysen mit Chymosin bzw. Suparen) sind keine Peaks im ersten Molmassenbereich zu detektieren. Dies lässt darauf schließen, dass der Abbau des β -Caseins sehr schnell zu Peptiden niedrigerer Molmassen erfolgt. Dabei ist anzumerken, dass die Geschwindigkeit, mit der das β -Casein hydrolysiert wird unabhängig vom Enzym ist. Selbst ein Zusatz von Natriumchlorid bis zu 2 % hemmt den Abbau des β -Caseins nicht. Nur beim Modell (Chymosin) mit 4 % Natriumchlorid ist nach der 5. Woche noch ein Signal zu detektieren, welches vom β -Casein herrührt. Bis zum Ende der Hydrolyse nach 15 Wochen kann eine deutliche Abnahme des Signals beobachtet werden. 4 % Natriumchlorid hemmt also den Abbau von β -Casein durch Chymosin. Im Modell Käse mit 35 % Trockenmasse (Chymosin/Suparen) ist bis zum Ende der Hydrolysezeit noch ein Signal vorhanden, welches dem originären β -Casein entspricht. Anhand der Abnahme der Peakflächen und Signalintensitäten im Modell Käse (Chymosin/Suparen) ist davon auszugehen, dass β -Casein innerhalb von 15 Wochen deutlich verzögert abgebaut wird. Unabhängig vom Enzym hemmt ein Natriumchloridzusatz die Hydrolyse des β -Caseins. Bis zum Ende der Hydrolysezeit nach 15 Wochen beobachtet man in allen Chromatogrammen noch ein Signal, welches dem β -Casein zugeordnet werden kann.

Molmassenbereich II (25,7 – 14,3 kDa)

Im Modell Milch (Chymosin) wurde ein Spaltprodukt mit einer scheinbaren Molmasse von 24,7 kDa ($v_e = 7,3$ ml) detektiert. Das Signal nimmt bis zur 5. Woche an Intensität zu und ist nach etwa 12 Wochen Hydrolysezeit kaum noch zu erfassen. Vermutlich handelt es sich hierbei um das β -I-Casein-Spaltstück, welches eine aus der Aminosäuresequenz berechnete Molmasse von 21,8 kDa aufweisen müsste. Ein sehr breites Signal (scheinbare Molmasse von 22,9 kDa) dominiert in diesem Molmassenbereich. Es liegt die Vermutung nahe, dass es sich aufgrund des starken Tailings um mehrere Bruchstücke des β -Caseins handeln kann, die sich in ihren Molmassen kaum von einander unterscheiden. Pélissier et al. (1972) ermittelten für das β-II-CN eine Molmasse von etwa 19,0 kDa und für β-III-CN von 16,1 kDa. Beide Bruchstücke liegen in ihren ermittelten Molmassen sehr nah beieinander, so dass es sich bei dem sehr breiten Signal um eine Überlagerung von zwei Signalen handeln könnte, welche diesen Bruchstücken zugeordnet werden könnten. Dabei kann festgestellt werden, dass die Intensität des Signals bis zur 5. Woche zunimmt und sich dann bis zum Ende der Hydrolysezeit vermindert. In der 15. Woche wird das Bruchstücke noch detektiert. Die Hydrolysate mit einem Kochsalzzusatz bis 2 % scheinen in diesem Molmassenbereich besonders starke Intensitäten aufzuweisen. So weist das Signal (scheinbare Molmasse 24,7 kDa) bis zur 5. Woche maximale Intensität auf und kann am Ende der Hydrolysezeit kaum noch detektiert werden. Das Signal mit dem Tailing (scheinbare Molmasse 22,9 kDa) verstärkt sich bis zum Ende der Hydrolysezeit im Vergleich zum Modell Milch (Chymosin) ohne Salz. 4 % Natriumchlorid bewirken eine deutlich Verminderung der Intensitäten der beiden Signale im Vergleich zur salzfreien Probe.

Im Vergleich zum Modell Milch (Chymosin) kann im gleichen Modell bei Suparen nur ein Signal mit einem Elutionsvolumen von 8,0 ml in der 3. Woche detektiert werden, welches einer scheinbaren Molmasse von 15,3 kDa entspricht. Schon nach der 3. Woche ist dieses Bruchstück vollständig abgebaut. Weitere Bruchstücke konnten nicht erfasst werden. Die Chromatogramme der Modelle mit Salzzusätzen zeigen im Vergleich zur salzfreien Probe über den gesamten Hydrolysezeitraum keine Unterschiede.

Im Modell Käse (Chymosin) kann man erst ab einer Inkubationszeit von fünf Wochen ein Signal mit $v_e = 7,3$ ml detektieren. Dabei kann es sich um das wie bereits erörtert und von verschiedenen Autoren nachgewiesene β -I-Casein Bruchstück handeln, unter der Vorrausetzung, dass das mit 29,7 kDa detektierte Protein das originäre β -Casein ist. Aufgrund der Tatsache, dass auch dieses Signal gerade am Ende der Hydrolysezeit ein starkes Tailing aufweist, könnten auch hier, wie schon im Modell Milch erwähnt, mehrere Bruchstücke des β -Caseins durch ein Signal erfasst werden. Daher kann hier nicht ermittelt werden, in welchem Umfang β -Casein schon hydrolysiert wurde und ob eine Spaltung zu β -II-CN und β -III-CN schon stattgefunden hat. Die Bildung dieses Bruchstückes mit einer zugeordneten Molmasse von 22,9 kDa scheint durch Zusätze von 2 % Natriumchlorid nicht beeinflusst zu werden. Höhere Natriumchloridgehalte führen zu einer Abschwächung des detektierten Signals.

Im Vergleich zum Modell Milch (Suparen) kann im Modell Käse (Suparen) nur ein Signal mit einem Elutionsvolumen von 8,0 ml detektiert werden, welches einer Molmasse von 18,7 kDa zugeordnet werden kann. Dabei scheint es sich um ein direktes Abbauprodukt des β -Caseins zu handeln, da es sich nach etwa 3 Wochen Hydrolysezeit bildet. Bis zu 15 Wochen wird dieses Peptid merklich abgebaut, kann aber noch am Ende der Hydrolyszeit durch einen Peak erfasst werden. Die Intensität des Signals der salzfreien Probe scheint im Vergleich zu den salzhaltigen Proben erhöht zu sein. Vermutlich wurde die Bildung des Bruchstückes durch 4 % Natriumchlorid verzögert.

Molmassenbereich III (14,3 – 6,0 kDa)

Der Molmassenbereich III umfasst Komponenten mit Elutionsvolumina zwischen 8,1 und 9,4 ml. In diesem Elutionsbereich sind eine Vielzahl von Komponenten zu detektieren, unabhängig vom betrachtetem Modell.

Im Modell Milch (Chymosin) gibt es ein Signal, welches einer scheinbaren Molmasse von 15,0 kDa entspricht. Da auch dieses Signal wieder ein sehr ausgeprägtes Tailing mit einer Schulter aufweist, liegt wiederum die Vermutung nahe, dass auch hier mehrere Peptide eine Signalüberlagerung ergeben und der exakte Molmassenbereich zwischen 15,0 und 8,6 kDa liegt. Es ist zu beobachten, dass in Hydrolysaten mit steigender Natriumchloridkonzentration das Signal (scheinbare Molasse 15,0 kDa) verstärkt wird im Vergleich zur salzfreien Probe. Bis zu einer Hydrolysezeit von 15 Wochen kann keine Abnahme des Signals detektiert werden.

Im Modell Milch (Suparen) wird im Vergleich zum Modell Milch (Chymosin) ein sehr markantes Signal detektiert. Diesem Signal wird eine scheinbare Molmasse von 9,0 kDa zugeordnet und ist selbst nach 15 Wochen Hydrolysezeit noch detektierbar. Da dieser Peak in den gesamten GPC-Chromatogrammen zu dominieren scheint, ist davon auszugehen, dass es sich bei dem detektierten Bruchstück um ein Hauptabbauprodukt des β -Caseins handelt. Dabei fällt auf, dass, im Gegensatz zum Modell Milch (Chymosin), dieses Bruchstück, im Vergleich zum β -Casein, eine sehr kleine Molmasse aufweist. Da dieses Signal bis zur 15. Woche in diesem Molmassenbereich deutlich dominiert, ist dieses detektierte Bruchstück gegenüber einem Angriff von Suparen bemerkenswert stabil. Suparen wird in seiner proteolytischen Wirkung durch einen Zusatz von Natriumchlorid beeinflusst.

Im Modell Käse (Chymosin) werden in diesem Molmassenbereich zwei Signale erfasst. Zum einen ein Signal mit einer zugeordneten Molmasse von 11,7 kDa und zum anderen eines mit 7,8 kDa. Bis zur 12. Woche verstärken sich die beiden Signale zusehens, verlieren jedoch bis zum Ende der Hydrolysezeit an Intensität. Die Signale mit einer zugeordneten Molmasse von 11,7 kDa und 7,8 kDa sind in der salzfreien Proben im Vergleich zur salzhaltigen Probe stärker ausgeprägt. Bei 4 % Natriumchlorid scheint die Bildung des Bruchstückes von 11,7 kDa völlig zu unterbleiben und auch die Bildung des Bruchstückes mit 7,8 kDa scheint verzögert. Im Modell Käse (Suparen) kann nur ein Signal mit einer zugeordneten Molmasse von 11,0 kDa detektiert werden. Die Signale der salzhaltigen Proben zeigen keine Unterschiede zu den salzfreien Proben.

Molmassenbereich IV (6,0 – 1,4 kDa)

Im Modell Milch (Chymosin) kann besonders in diesem Bereich eine Zunahme der Intensitäten der Signale beobachtet werden. Dabei fällt ein Peak bei einer zugeordneten Molmasse von 2,5 kDa auf, der ein starkes Tailing zeigt und der erst ab der 3. Woche erfasst wird. Zusätzlich kann man noch mehrere Schulterpeaks detektieren. Da jedoch auch hier die Differenzen in den Elutionsvolumina der Bruchstücke zu gering sind, können keine exakten Molmassen zugeordnet werden. Der Bereich des Signals deckt Molmassen zwischen 2,6 und 1,8 kDa ab. Der Zusatz von Natriumchlorid scheint keine Änderungen der Signalintensitäten hervorzurufen.

Bei Suparen kann man im gleichen Modell auch nur ein Signal (5,2 kDa) mit mehreren Schulterpeaks detektieren. Den Schulterpeaks können Molmassen zwischen 2,7 und 1,0 kDa zugeordnet werden. Auffallend ist, dass im Modell Milch nach der 15. Woche im nicht ausgewerteten Molmassenbereich < 1 kDa viele Peptidbruchstücke detektiert werden können. Je mehr Natriumchlorid dem Modell Milch (Suparen) zugesetzt wird, desto stärker werden die detektierten Signale vermindert.

Im Modell Käse (Chymosin) ist nur ein markantes Signal zu detektieren. Diesem Bruchstück kann eine Molmasse von 4,8 kDa zugeordnet werden. Diese Bruchstück wird bis zur 12. Woche vermehrt gebildet und unterliegt bis zum Ende nur einem geringen Abbau. Bis zum Ende der Hydrolysezeit kann bei den salzhaltigen Proben eine deutliche Abnahme der Signalintensität beobachtet werden im Vergleich zur salzfreien Probe. Mit steigender Natriumchloridkonzentration kann die Bildung dieses Bruchstückes beeinflusst werden.

Im Modell Käse (Suparen) kann ein Signal mit einer zugeordneten Molmassen von 5,7 kDa detektiert werden. Dieses Signal verstärkt sich bis zur 15. Woche. Weiterhin kann ein Signal mit einem starken Tailing detektiert werden, welches einen scheinbaren Molmassenbereich von 4,3 bis 1,9 kDa abdeckt. Die Signale, die in der salzfreien Probe detektiert werden, können auch in den salzhaltigen Proben erfasst werden. Ein Instensitätszuwachs bzw. -abschwächung der Signale im Vergleich zur salzfreien Probe ist über die gesamte Hydrolysezeit nicht zu beobachten.

Zusammenfassung

Dem β -Casein konnte in allen Modellen ein Elutionspeak mit einer scheinbaren Molmasse von 29 kDa zugeordnet werden. Dabei handelt es sich um eine Erhöhung der exakten Molmasse um etwa 5 kDa. Daher können mit dieser Methode keine exakten Molmassen berechnet werden, sondern es kann nur eine Abschätzung erfolgen. Im Modell Milch wird β -Casein schneller abgebaut im Vergleich zum Modell Käse. Beim Suparen, welches sich schon (Querverweis 4.4.1) als proteolytisch aktiver erweist, erfolgt ein rascherer Abbau des β -Caseins als bei Chymosin. Im Modell Milch (Chymosin) werden innerhalb einer Hydrolysezeit von 3 Wochen Bruchstücke \geq 19 kDa gebildet. Im späteren Hydrolyseverlauf treten Bruchstücke mit einer scheinbaren Molmasse <15 kDa auf. Im Gegensatz hierzu entstehen im Modell Milch (Suparen) bereits bis zur 3. Woche vorwiegend Bruchstücke < 15 kDa. Im Vergleich zum Modell Milch (Chymosin) werden im weitere Hydrolyseverlauf verstärkt Peptide mit Molmassen < 1 kDa gebildet, d.h. es handelt sich um Signale, die sich außerhalb des auswertbaren Messbereiches befinden. Im Modell Käse (Chymosin/Suparen) ist im Gegensatz zu den Modellen Milch auch nach 15 Wochen noch das Signal des β -Caseins zu detektieren. Der Abbau des β -Caseins, verläuft, gemessen an der Anzahl der Signale, im Modell Käse langsamer als im Modell Milch.

Es konnte gezeigt werden, dass die Bildung bestimmter Bruchstücke unterschiedlich stark vom Natriumchloridgehalt der einzelnen Proben abhängt. Wahrscheinlich ist, dass aufgrund des Reaktionsmechanismus der Aspartatproteasen, die in ihrem aktiven Zentrum ein locker gebundenes Wassermolekül aufweisen, eine Konkurrenzreaktion bei den Zusätzen mit Kochsalz um das Wasser stattfindet. Einerseits wird das Wasser für das Enzym zur Hydrolyse des Proteins und zur Hydratisierung des β -Caseins gebraucht, andererseits verringert sich natürlich das freie Wasser in Abhängigkeit von der vorhandenen Natriumchloridkonzentration erheblich. Dadurch kann die Verzögerung der Hydrolyse erklärt werden.

4.4.4 Erfassung der höhermolekularen Spaltprodukte mit Polyacrylamidgelelektrophorese

Zur Erfassung der Bildung bzw. des Abbaus höhermolekularer Hydrolyseprodukte wird die Elektrophorese in alkalischen, harnstoffhaltigen Polyacrylamidgelen durchgeführt. Dazu werden die hitzeinaktivierten Gesamthydrolysate der zwei verschiedenen Modellansätze einegesetzt. Dabei entstehen Peptidmuster die für die jeweiligen Modellansätze und Enzyme sehr charakteristisch sind. Die Sichtbarmachung der Banden erfolgt durch Anfärbung mit Coomassie Brillant Blau G.

Beispielhaft sollen die elektrophoretischen Trennbilder diskutiert werden, die nach Einwirkung von Chymosin sowie des wichtigen Labersatzstoffes Suparen auf β -Casein erhalten wurden. Die eingescannten Elektropherogramme sind im weiteren Verlauf als Abbildungen dargestellt. Das Auftragsschema ist den jeweiligen Abbildungen zugeordnet.

Zu erkennen ist bei der alkalischen Gelelektrophorese des β -Caseins im Modell Milch, dass schon nach einem Tag (Bahn 2) das originäre β -Casein (β -CN) durch Chymosin fast vollständig zu β -I-Casein (β -I-CN) abgebaut ist. Das Ergebnis korreliert mit den von Sienkiewiecz et al. (1994) durchgeführten Untersuchungen, welche nachgewiesen haben, dass β-Casein, mit Chymosin inkubiert, nach 21 Stunden Hydrolysedauer vollständig zu dem genannten Zwischenprodukt abgebaut wird.

Chymosin											
	Modell Milch	Modell Käse mit 35 % Trockenmasse									
1	Start	1	Start								
2	1. Woche (1. Tag)	2	1. Woche								
3	1. Woche (4. Tag)	3	2. Woche								
4	2. Woche	4	3. Woche								
5	3. Woche	5	3. Woche (Autolyse)								
6	5. Woche	6	5. Woche								
7	8. Woche	7	8. Woche								
8	12. Woche	8	12. Woche								
9	15. Woche	9	15. Woche								

Abb. 4.4–11: PAG-Elektropherogramme des Modells Milch und Käse (Chymosin)

Die Bande des β -I-Casein wird nach einem Tag sichtbar und hat den R_x-Wert von 1,1 bezogen auf das β -Casein R_x-Wert von 1,0. Diese ist sehr intensiv und nimmt bis zur 2. Woche (Bahn 4) noch an Intensität zu, während nach 5 Wochen Hydrolysezeit ein merklicher Intensitätsverlust einsetzt. Bis zur 15. Woche wird β -I-Casein fast vollständig zu Peptiden mit höherer Mobilität abgebaut. Zusammenfassend ist festzustellen, dass das Peptid mit einem R_x-Wert von 1,1, welches als erstes neben dem originären β -Casein detektiert wird, wahrscheinlich sehr schnell im Laufe des ersten Tages der Hydrolyse gebildet wird und es sich dabei um das von Creamer und Mills (1971) beschriebene β -I handelt. Erst nach der Bildung des β -I-CN erfolgt die Hydrolyse unter Bildung der Peptide mit einem R_x -Wert von 1,5 und 1,9/2,1. Beide Peptidfraktionen (β -II-CN und β -III-CN) nehmen im Laufe der Hydrolysezeit an Intensität stark zu. Diese Peptidfraktionen können aus einer Vielzahl von anderen Peptiden bestehen (Visser und Slangen (1977), Visser, (1981)). Erkennbar ist dies an den Doppelbanden. Das Peptid mit dem R_x-Wert von 1,5 weist maximale Intensität nach der 2. Woche auf, während es danach bis zur 15. Woche in gleicher Weise wie das β -I-CN an Intensität verliert. Das Peptid mit dem R_x-Wert von 1,5 entspricht wahrscheinlich dem β -II-CN. Die Peptide mit R_x-Werten von 1,9 und 2,1 besitzen ähnliche elektrophoretische Mobilitäten. Sie treten daher in einer Doppelbande auf, die erst nach der 2. Woche (Bahn 4) erkennbar ist. Diese beiden Peptide erreichen bis zur 15. Woche, dem Ende der Hydrolyse, maximale Intensität. Die Peptide mit R_x-Werten von 1,9 und 2,1 entsprechen dem β-IIIa-CN bzw. β-IIIb-CN. β-II-CN wird im weiteren Verlauf zu β-III-CN bzw. zu weiteren kleineren Bruchstücken abgebaut. Weitere schwächere Peptidfraktionen ab R_x -Werten von 2,3 nehmen in ihrer Intensität mit fortschreitender Hydrolyse zu. Sie werden erst nach der 2. Woche sichtbar. Weiterhin ist festzustellen, dass Banden mit geringerer elektrophoretischer Mobilität ($R_x 0.6 - 0.8$) als das originäre β -Casein detektiert werden, deren Intensität bei einer Hydrolysedauer von 2 Wochen maximal zu sein scheint.

Jedoch werden im Verlauf der Hydrolyse Peptide mit geringerer negativen Ladung als das originale β -Casein gebildet, die kaum elektrophoretisch wandern. Diese Peptide werden zwischen dem originalen β -Casein und Startpunkt des Elektropherogramms detektiert.

Im Modell Käse mit 35 % Trockenmasse (Abb. 4.4–11), welches mit Chymosin inkubiert wurde, kann man deutlich eine Verzögerung des Abbaus von β -Casein beobachten. Nach der 3. Woche (Bahn 4) ist eine schwache Bande mit einem R_x-Wert von 1,1 zu beobachten, welches schon im Modell Milch dem β -I-CN zugeordnet werden konnte. Eine Intensitätszunahme dieser Bande bis zur 15. Woche ist jedoch nicht zu beobachten. Schon in der 3. Woche (Bahn 4) kann man eine zweite Bande neben dem originären β -Casein detektieren. Dieses Peptid mit einem R_x-Wert von 1,5 kann dem β -II-CN zugeordnet werden. Die Intensität dieser Bande verstärkt sich im Laufe der Hydrolyse nicht. Eine Doppelbande, die dem β -III-CN zugeordnet werden kann, wird während der gesamten Hydrolysezeit nicht detektiert. Weiterhin ist festzustellen, dass, wie auch im Modell Milch, Banden mit geringerer elektrophoretischer Mobilität (R_x 0,6 - 0,8) als das originäre β -Casein detektiert werden. Bruchstücke mit größeren Wanderungsgeschwindigkeiten als R_x -Wert $\geq 3,0$ können beobachtet werden. Dies konnte auch schon im Modell Milch registriert werden.

Weiterhin wurden die Gesamthydrolysate des β -Caseins im Modell Milch und im Modell Käse mit 35 % Trockenmasse, welche mit Suparen inkubiert wurden, gelelektrophoretisch untersucht.

Awad et al. (1999) konnten bei der gelelektrophoretischen Untersuchungen, die auch unter alkalischen Bedingungen durchgeführt wurde, von Gesamtcasein und β -Casein unterschiedlicher Tierarten, die durch Einwirkung von Suparen hydrolysiert wurden, feststellen, dass Banden mit geringerer elektrophoretischer Mobilität R_x< 1,0 als das originäre β -Casein gebildet wurden. Die Untersuchungen wurden an 2 %igen Proteinlösungen durchgeführt und nach Entnahme von verschiedenen Hydrolysaten zu bestimmten Zeiten nach 480 min abgebrochen. Sie detektierten vier Hauptabbauprodukte, die mit den Buchstaben A-D bezeichnet wurden. Die Beobachtungen zeigten, dass aus dem β -Casein verschiedener Tierarten unterschiedliche Abbauprodukte freigesetzt werden. So wurden bei Kuhmilch- β -Casein nur zwei Bruchstücke detektiert, Peptide mit der Bandenbezeichnung A und C.

Die in Abb. 4.4–12 dargestellten Elektropherogramme der Supareninkubationen sind sehr unterschiedlich zu den Elektropherogrammen, welche durch Trennung der Bruchstücke von β -Casein nach Einwirkung von Chymosin erhalten wurden.

Charakteristisch für die Wirkung von Suparen ist das Auftreten von zahlreichen Banden mit geringerer elektrophoretischer Mobilität ($R_x = 0,30-0,75$) als das originäre β -Casein. Diese Banden sind vor allem im Modell Käse sehr gut zu sehen, während im Modell Milch keine Banden zwischen $R_x = 0,30-0,75$ zu detektieren sind. Awad et al. (1999) beobachtete diese Banden bis zu einer Hydrolysezeit von 480 min. Im Modell Milch ist die erste Probennahme jedoch erst nach einer Woche vorgenommen worden, womit die Wahrscheinlichkeit des Auftretens der von Awad et al. (1999) beobachteten Banden wegen der intensiven Hydrolyse sehr gering ist.

Im Modell Käse ist durch die Verzögerung der Hydrolyse, aufgrund des geringen Wasseranteils das Auftreten der Banden wahrscheinlich. Im Gegensatz zu den in der Literatur bekannten Bruchstücken aus Kuhmilch- β -Casein (Bande A und C) werden noch zwei weitere Banden B und D detektiert. Diese wurden in Abb. 4.4–12 kenntlich gemacht.

1	2	3	4	5	6	7	8	R_x -Wert	1	2	3	4	5	6	7	8
								$\begin{array}{c} 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ B \\ B \\ B \\ B \\ \end{array}$				14-414		11 11		H H
9								$\begin{array}{c} 0.8 + \alpha \\ 1.0 + \beta - CN \\ 1.2 + \end{array}$	-	-	-	÷	-		•	-
								1.4 + 1.6 + 1.8								
								2.0 + 2.2 + 2.2 + 2.4 + 100								
		-						2.6 + 2.8 + 3.0 + 3.2 + 3.2 + 3.0 + 3.2 + 3.2 + 3.0 + 3.2								
								3.4 + 3.6 + 3.8 + 1								

Suparen											
	Modell Milch	Modell Käse mit 35 % Trockenmasse									
1	Start	1	Start								
2	1. Woche (1. Tag)	2	1. Woche								
3	2. Woche	3	2. Woche								
4	3. Woche	4	3. Woche								
5	5. Woche	5	5. Woche								
6	8. Woche	6	8. Woche								
7	12. Woche	7	12. Woche								
8	15. Woche	8	15. Woche								

Abb. 4.4–12: PAG-Elektropherogramme des Modells Milch und Modells Käse (Suparen)

Im Modell Milch können noch weitere Banden mit höherer elektrophoretischer Mobilität detektiert werden. Dabei kann man erkennen, dass die Banden mit einem R_x -Wert von 1,40 und 2,50 maximale Intensität nach einer Woche Hydrolyszeit aufweisen. Erstaunlich ist, dass nach 3 Wochen Hydrolysezeit keine weiteren Peptide zu detektieren sind. Nach ca. 2 Wochen ist das originäre β -Casein soweit abgebaut, dass mit der PAGE keine Peptide mehr nachweisbar sind.

Im Modell Käse mit 35 % Trockenmasse entsteht in der 5. Woche zusätzlich noch ein Spaltprodukt mit $R_x = 1,48$, welches wahrscheinlich der im Modell Milch detektierten Bande von $R_x = 1,40$ entspricht.

Interessant ist nun gelelektrophoretisch die Freisetzung der β -Caseinbruchstücke in Abhängigkeit des Natriumchloridgehaltes und des Wassergehaltes zu verfolgen.

Diesen Ansätzen wurde Natriumchlorid in unterschiedlichen Konzentrationen zugesetzt. Sie wurden mit Hydrolysaten der 5. und 15. Woche verglichen, die ohne Zusatz von Natriumchlorid mit gleichem Enzymzusatz inkubiert worden sind.

Abb. 4.4–13: PAG-Elektropherogramm der hitzeinaktivierten Gesamthydrolysate mit Natriumchloridzusatz (1 % - 4 %)

Exemplarisch ist hier nur das Elektropherogramm des Modells Milch (Chymosin) in Abb. 4.4–13 dargestellt. In diesem Elektropherogramm sind die Unterschiede zwischen der Bildung der Bruchstücke in Abhängigkeit der Natriumchloridkonzentration gut zu sehen.

Wie die Polyacrylamidgelelektrophorese erkennen lässt, wurde das originäre β -Casein (R_x = 1,0) der Proben mit einem Zusatz von 1 % und 2 % Natriumchlorid nach einer Hydrolysedauer von 5 Wochen fast vollständig abgebaut. Dagegen konnte eine noch sehr deutliche Bande des originären β -Caseins nach 5 Wochen bei einem Natriumchloridzusatz

von 4 % detektiert werden. Des weiteren wurden nach der 5. Woche sechs weitere Banden detektiert ($R_x = 1,2$; 1,6; 2,0; 2,1; 2,6; 3,2), die sich lediglich in ihren Intensitäten unterschieden. Bei der Bande mit einem $R_x = 1,2$ handelt es sich mit großer Wahrscheinlichkeit um das oben schon beschriebene β -I-Caseinbruchstück, welches nach fünf Wochen fast abgebaut ist.

Die Intensität der Bande mit $R_x = 1,6$ war in der Reihenfolge der aufgetragenen Proben, bezogen auf die jeweilige Hydrolysezeit, ähnlich ausgeprägt. Jedoch ist ein leichter Intensitätsverlust beim Hydrolysat mit 4 % Natriumchloridzusatz zu vermuten. Jene Bande ist vermutlich das Bruchstück β -II-CN, welches erst nach Entstehung des β -I-CN gebildet wird. Die Doppelbande (R_x 2,0 und 2,1) nimmt an Intensität beim Hydrolysat mit 4 % igem Kochsalzzusatz ab. Die zuletzt genannten Banden stellen die Bruchstücke β -IIIa-CN und β -IIIb-CN dar. Vermutlich werden jene unter Kochsalzeinfluß schneller weiter hydrolysiert. Somit werden weitere Banden mit hoher elektrophoretischer Mobilität bei R_x -Werten von 2,6 und 3,2 sichtbar. Sehr deutlich nimmt deren Intensität mit steigendem Natriumchloridgehalt zu und ist maximal bei der Probe mit einem Zusatz von 4 % Natriumchlorid nach der 5. Woche der Hydrolyse. Dies bestätigt die Aussage, dass ein vermehrter Abbau des β -III-Caseinbruchstückes stattfindet, bei dem Bruchstücke höherer Mobilität freigesetzt werden.

Die zuletzt genannten Banden stellen die Bruchstücke β -IIIa-CN und β -IIIb-CN dar. Vermutlich werden jene unter Kochsalzeinfluß schneller weiter hydrolysiert. Somit werden weitere Banden mit hoher elektrophoretischer Mobilität bei R_x-Werten von 2,6 und 3,2 sichtbar. Sehr deutlich nimmt deren Intensität mit steigendem Natriumchloridgehalt zu und ist maximal bei der Probe mit einem Zusatz von 4 % Natriumchlorid nach der 5. Woche der Hydrolyse. Dies bestätigt vermehrter Abbau die Aussage, dass ein des β-III-Caseinbruchstückes stattfindet, bei dem Bruchstücke höherer Mobilität freigesetzt werden.

Der Vergleich der Hydrolysate der 15. Woche erhärtet die zuvor getroffenen Aussagen. So ist die für das originäre β -Casein charakteristische Bande nur noch bei der Probe mit einem Zusatz von 2 % und 4 % Natriumchlorid zu erkennen. Das Bruchstück β -I-CN (R_x = 1,2) ist nur recht schwach erkennbar. Die Intensität der Bande, die das Peptid β -II-CN darstellt, nimmt mit steigendem Natriumchloridzusatz ab. Des weiteren verstärkt sich die Intensität der dem β -IIIa/b-CN zugeordneten Doppelbande mit einem R_x-Wert von 2,0/2,1 die bei einem Zusatz von 2 % Natriumchlorid maximale Intensität aufweist. Deutlich schwächer ist die Intensität der Bande bei einem Zusatz von 4 % Kochsalz.

Bemerkenswert ist auch die Zunahme der Intensitäte der Bande mit einem R_x-Wert von 3,2 in Abhängigkeit von der Natriumchloridkonzentration. So kann man feststellen, dass mit Zunahme der Natriumchloridkonzentration vermehrt Peptide mit höherer elektrophoretischer Mobilität freigesetzt werden. Jedoch lässt sich bei höherer Kochsalzkonzentration eine Verlangsamung der Hydrolyse des originären β-Caseins ablesen, d.h. die abgespaltenen Bruchstücke des β -Caseins werden vermutlich eher hydrolysiert. So scheint beim Inkubationsansatz mit 4 % Kochsalz, ein Bruchstück des β-III-CN bei der weiteren Hydrolyse eher begünstigt zu sein, mit dem Resultat, dass die Intensität einer der beiden Banden abnimmt. Creamer konnte schon 1976 feststellen, dass mit Erhöhung der Natriumchloridkonzentration die Hydrolyse des β-Caseins durch Chymosin verlangsamt abläuft. Dabei kommt der Bildung des β -I-Caseins aus β -Casein eine Schlüsselrolle zu, da diese am meisten durch pH-Wert und Natriumchloridkonzentration beeinflusst werden kann. Er erklärte dies durch die erhöhte Polymerisationsfähigkeit des β-Caseins bzw. durch dessen Selbstassoziation. Chymosin würden dadurch nur noch wenige spaltfähige Bindungen zur Verfügung stehen, was sich in einer Verlangsamung der Hydrolyse äußert.

Im Modell Milch (Chymosin) erfolgt ein konsequenter Abbau des β -Caseins zu den in der Literatur beschriebenen Bruchstücken β -I-CN, β -II-CN und β -III-CN. Indem ein Bruchstück abgebaut wird das nächste gebildet (Reihenfolge β -I-CN zu β -II-CN und danach zu β -III-CN). Am Ende der Hydrolysezeit sind von den charakteristischen Bruchstücken nur noch β -II-CN und β -III.CN nachweisbar. Im Modell Milch (Suparen) enstehen nicht die gleichen markanten Spalprodukte wie β -I-CN, β -II-CN und β -III-CN, da Suparen eine andere Spezifität gegenüber β -Casein zeigt. Es entstehen andere Hydrolyseprodukte mit einer anderen Mobilität im Vergleich zum β -Casein, welche allerdings nach 3 Wochen mittels PAGE nicht mehr detektierbar sind. Im Modell Käse (Chymosin) findet ein verzögerter Abbau zum β -I-CN statt. Erst im späteren Hydrolyseverlauf (nach der 3. Woche) wird β -II-CN, jedoch kein β -III-CN gebildet. Bemerkenswerterweise entstehen beim Suparen eine Vielzahl von Produkten mit geringerer elektrophoretischer Mobilität im Vergleich zum β -Casein. Es handelt sich dabei vermutlich um γ -Caseine aus dem β -Casein. Zusätze von Natriumchlorid führen vor allem im Modell Milch (Chymosin) zu einer verzögerten Bildung der Abbauprodukte des β -Caseins. Im Modell Käse kann keine Auswirkung auf die Bildung von Bruchstücken beobachtet werden.

4.5 Präparative Isolierung von Peptidfraktionen

Zur Bestimmung der Primärstruktur der proteolytisch gebildeten Peptide sind die vorgestellten, summarischen Untersuchungen der NCN-Fraktion und der Gesamthydrolysate nicht ausreichend. Zur Isolierung von Peptiden eignet sich die RP-HPLC. Aufgabe war es, eine RP-HPLC-Methode zu entwickeln, die es erlaubt, einige ausgewählte Bruchstücke der erhaltenen NCN-Fraktion der mit Chymosin inkubierten Hydrolysate zu separieren. Durch Erstellen und Modifikation verschiedener älterer Elutionsprogramme wurden mit dem neu entwickelten Gradientenprogramm, welches im Kapitel 3.12 vorgestellt wurde, die besten Ergebnisse erzielt. Die zur Trennung verwendeten Gradientenprogramme sind in Kapitel 3.12.2 aufgeführt. Die Trennung der NCN-Fraktion erfolgt im Phosphatpuffer-System (pH 5,5). Jeder Lauf beginnt mit 20 % Eluent B (aceotrop siedendes, 84 %iges Acetonitril). Eluent A ist ein 20 mM Kaliumdihydrogenphosphatpuffer, der auf einen pH-Wert von 5,5 eingestellt ist.

Da die Säule eine Porenweite von nur 100 Angström besitzt, bleiben oft stark hydrophobe Bestandteile in den Poren der Säule haften. Zur Entfernung dieser Rückstände wird der sogenannte "Spülschritt" nach 62 min etabliert. Durch Verringerung der Polarität der mobilen Phase werden die anhaftenden Bestandteile eluiert.

Für die Fraktionierung der Hydrolyseproben wurde die präparative Säule Eurosphere 100 C18 endc. benutzt. Es wurde das in Kapitel 3.12.2 vorgestellte Gradientenprogramm verwendet.

Allerdings mussten die Flussraten (ml/min), die zuvor auf der analytischen Säule ermittelt wurden, dem größeren Innendurchmesser der präparativen Säule angepasst werden. Damit wurde die Elutionsreihenfolge der Peaks gewährleistet. Weitere Parameter wie Flussrate und Elutionsprofil sind Kapitel 3.12 zu entnehmen.

Trotz Konstanthalten des linearen Flusses (cm/min) beim Fraktionieren mit Hilfe der semipräparativen Säule fiel auf, das sich einige Peaks gegeneinander verschieben.

So eluierten die vorderen Peaks (Nummer: 1 und 2) auf der analytischen Säule zwischen 0 und 10 min, während sich ihre Elutionszeit auf der präparativen Säule bis etwa 13 min verlängerte. Der mittlere Peak 3, welcher auf der analytischen Säule bei 34 min eluierte, wurde an der präparativen Säule sogar erst bei 40 min detektiert. Die Elutionszeiten der

hinteren Peaks (5 und 6) wurden allerdings fast gar nicht beeinflusst. Der Mehrfachpeak mit der Nummer 4 wurde auf der präparativen Säule besser aufgetrennt.

Abb. 4.5–1:Vergleich der Trennung der NCN-Fraktion der 15. Woche (Chymosin, Modell
Käse mit 35 % Trockenmasse) Chromatographie: Kapitel 3.12.3

Es wurden Proben des Modells Käse mit 35 % Trockenmasse, welche mit Chymosin inkubiert wurden, fraktioniert. Es wurden nur die isolelektrisch gefällten Überstände verwendet. Aufgrund der Vielzahl an verschiedenen Proben wurden vier unterschiedliche Proben ausgewählt. Dabei wurden zum einen die Hydrolysezeiten und zum anderen der Zusatz an Kochsalz berücksichtigt, der zu möglichen Veränderungen hinsichtlich der Freisetzung von Hydrolyseprodukten führen kann.

Durch verschiedene Testläufe wurde das Programm erprobt. Anhand eines RP-HPLC-Übersichtschromatogrammes der jeweiligen Proben wurde ein Fraktionierungsschema erarbeitet. Die Fraktionen wurden so ausgewählt, dass ein Vergleich einzelner Fraktionen unterschiedlicher Hydrolysate möglich ist. Interessant war es, Hydrolysate mit und ohne Kochsalzzusatz zu vergleichen, um eventuelle Unterschiede in der Bildung der Bruchstücke aufzudecken. Die in Abb. 4.5–2 aufgeführten Chromatogramme geben einen Überblick über die Fraktionierungsschemen, die verwendet wurden. Weitere Fraktionierungszeiten für die einzelnen Hydrolysate sind Kapitel 3.12.3; Tab. 2.1–1 und Tab. 3.12–3 zu entnehmen.

A: 8. Woche C: 5. Woche mit 2 % Salz

B: 15. Woche **D:** 15. Woche mit 2 % Salz

Aufgrund der schlechten Basislinientrennung war die Fraktionierung einzelner Peaks nicht zu erreichen. Deshalb wurde versucht einige markante Bereiche abzutrennen und diese dann zu rechromatographieren. Es sind in den Chromatogrammen (Abb. 4.5–2) beide Detektionswellenlängen (A-Kanal: 215nm und B-Kanal: 280 nm) angegeben. Im B-Kanal, mit einer Detektionswellenlänge von 280 nm, können Peptide mit einem hohen Gehalt an aromatischen Aminosäuren identifiziert werden.

Bei den am Anfang eluierenden Peaks zwischen 0 und 10 min im B-Kanal handelt es sich wahrscheinlich um MIT-Abbbauprodukte. MIT besitzt eine Thiazolinon-Struktur, die bei 280 nm stark absorbiert. Die Struktur zerfällt bei Hitzeeinwirkung wie z. B. bei der Inaktivierung der Proben. Dies konnte durch Einspritzen einer hitzebehandelten (90 °C) MIT-

Lösung geklärt werden. In wie weit MIT Addukte mit entstandenen Peptiden bildet, konnte nicht im Einzelnen aufgeschlüsselt werden. Es könnte aber eine Erklärung für die Peaks zwischen 40 und 50 min sein.

Bei der Rechromatographie der sechs Fraktionen jeder Probe wurde mit 0,1 %iger Trifluoressigsäure und 84 %igem Acetonitril, dem ebenfalls 0,1 % Trifluoressigsäure zugesetzt war, gearbeitet. Grund dieser Änderung war die Notwendigkeit, den schwerflüchtigen Phosphatpuffer abzutrennen. Die Phosphationen können mit den Peptiden aggregieren und stören bei der Molmassenbestimmung.

Man konnte bei der Rechromatographie erkennen, dass stets mehrere Peptide coeluierten. So verhielt es sich mit einem Großteil der Fraktionen.

Abb. 4.5–3: Rechromatographie der Fraktion 1 (F1) von der NCN-Fraktion des mit Chymosin inkubierten Hydrolysates der 8. Woche

Damit wurde es nötig, zusätzlich Unterfraktionen der einzelnen Fraktionen zu separieren. Aus diesem Grund wurden einige Fraktionen bei der Rechromatographie nochmals fraktioniert, so war es möglich einzelne Peaks zu erhalten.

Wie in Abb. 4.5–2 dargestellt, wurden die Fraktionierungszeiten der jeweiligen Fraktionen angepasst, um diese miteinander vergleichen zu können.

Exemplarisch für alle Unterfraktionen, die von den Hauptfraktionen nochmals fraktioniert wurden, soll nur hier ein Chromatogramm (Abb. 4.5–3) einer Rechromatographie gezeigt werden.

4.5.1 Analyse der C- und N-terminalen Aminosäuren

4.5.1.1 Bestimmung der C-terminalen Aminosäuren

Zur Abspaltung der C-terminalen Aminosäuren von den Peptiden der isolierten Fraktionen kommen Carboxypeptidase A und B zum Einsatz. Die Abspaltung der C-terminalen Aminosäure muss mit einer hinreichenden Geschwindigkeit erfolgen. Gleichzeitig sollte es jedoch vermieden werden, dass ein Abbau der Peptidkette über die erste C-terminale Aminosäure hinaus erfolgt. Daher ist es wichtig eine geeignete Aktivität der Carboxypeptidasen im Enzym-Substrat-Ansatz einzustellen. Die Aktivität der Carboxypeptidase A wurde anhand von Vorversuchen für die Bestimmung auf $c \approx 9,0$ U/ml, die der Carboxypeptidase B auf $c \approx 3,6$ U/ml eingestellt.

Eine Identifizierung der mit Carboxypeptidase A und B freigesetzten Aminosäuren ist zum einen durch Derivatisierung der Aminosäuren mit der FMOC-ADAM-Methode und anschließender RP-chromatographischer Trennung und zum anderen durch Aminosäureanalyse möglich. Die FMOC-ADAM-Methode ist aus folgenden Gründen für eine Peptidanalyse ungeeignet:

- 1. Es kommt zu Interferenzen einzelner Aminosäuren mit Hydrolyseprodukten des Derivatisierungsreagenzes
- 2. Die bei der Derivatisierung ebenfalls entstandenen FMOC-Peptide coeluieren mit einigen FMOC-Aminosäuren
- Die pH-Einstellung zur Derivatisierung ist im µl-Maßstab problematisch. Die Einhaltung des vorgegebenen pH-Wertes ist aber f
 ür den Erfolg der Derivatisierung ausschlaggebend.

Die Proben wurden daraufhin mit Hilfe der klassischen Aminosäureanalyse nach Moore et al. (1958) untersucht. Dort erfolgt zuerst eine chromatographische Trennung mit anschließender Ninhydrin-Nachsäulenderivatisierung. Reagenzienblindwert und Peptidprobe nach Carboxy-peptidaseeinwirkung zeigen übereinstimmende Peakspektren und die Peakflächen der freigesetzten Aminosäuren nehmen nach Carboxypeptidase-einwirkung zu.

Beide Carboxypeptidasen sind nicht in der Lage, Glycin und Prolin freizusetzen, allerdings wurde in den Hydrolysaten mehrmals ein Peak mit einer dem Glycin entsprechenden Retentionszeit gefunden (Tsuru, 1970). In der Blindprobe war er allerdings nicht vorhanden. Das bedeutet, es handelt sich nicht um ein coeluierendes Peptid oder die ursprünglich vorhandene Aminosäure. Es besteht allerdings die Möglichkeit, dass es sich bei diesem Peak, um das am C-Terminus um eine Aminosäure verkürzte Peptid handeln könnte. Des weiteren sollte Carboxypeptidase A keine basischen Aminosäuren abspalten. Entgegen dieser in der Literatur (Tsuru, 1970) beschriebenen Tatsache konnten in einigen Proben, die mit Carboxypeptidase A behandelt wurden, Lysin und Histidin eindeutig identifiziert werden. Eine Erklärung für dieses Verhalten konnte noch nicht gefunden werden. In gleichen Proben wurden die Aminosäuren, die durch Carboxypeptidase A freigesetzt worden sind, auch in der mit Carboxypeptidase B behandelten Probe identifiziert.

Die Auswertung erfolgte über externe Kalibrierung, dabei war die niedrigste Standardkonzentration 2,5 nmol. In den NCN-Fraktionen konnten zahlreiche C-terminale Aminosäuren identifiziert werden. In Tab. 4.5-1 sind die mit Carboxypeptidase A und B freigesetzten Aminosäuren zusammengefasst. Als nachgewiesen (in den Tabellen mit einem + gekennzeichnet) gelten Aminosäuren mit einer Konzentration (abzüglich Blindwertkonzentration) von >1,0 nmol, bei Konzentrationen zwischen 0,9 bis 1,0 nmol ist der Nachweis der AS nicht eindeutig (mit +/- gekennzeichnet). Lag die errechnete Konzentration unterhalb 0,9 nmol so gilt die betreffende AS als nicht nachgewiesen (mit einem - gekennzeichnet). Es handelt sich hierbei nicht um eine Nachweisgrenze, die nach DFG-Methode ermittelt wurde, sondern um die 3 σ -Blindmethode und die daraus ermittelte Nachweisgrenze.

Asn eluiert kurz nach Ser, möglicherweise eluieren in dieser Methode (Aminosäurebestimmung nach Kapitel 3.12.5.3) beide Aminosäuren in einem Peak. Die Aminosäuren Trp, Gln und Asn konnten mit dieser Methode nur sehr schwierig identifiziert werden und sind deshalb stets mit einem +/- versehen.

In den Blindwerten der NCN-Fraktionen sowie der fraktionierten Proben, konnten Peaks mit Retentionszeiten identifiziert werden, die bestimmten Aminosäuren entsprachen. Dabei kann nicht geklärt werden, ob es sich um Aminosäuren handelt, oder um Peptide die zu diesen Zeiten miteluieren. Die Möglichkeit, das Aminosäuren in den Hydrolysaten vorkommen besteht durchaus. Einerseits können sie durch das Chymosin freigesetzt worden sein, oder sie sind das Ergebnis einer Enzymfremdaktivität (Exopeptidaseaktivität) im Chymosin.¹⁴

¹⁴ Krause, W.: pers. Mitteilung

Wenn man nun die mit + und +/- gekennzeichneten Aminosäuren in den jeweiligen Fraktionen summiert und eine Häufigkeit des Auftretens am C-terminalen Ende in den Fraktionen aufstellen will, hilft folgende Überlegung.

Die Aminosäure Asp wurde 15 mal in den insgesamt 36 Fraktionen nachgewiesen, daraus ergibt sich eine Häufigkeit von 41,7 % am C-terminalen Ende.

In absteigender Reihenfolge der Häufigkeit des Auftretens der Aminosäuren können somit folgende Aminosäuren am C-terminalen Ende in den Fraktionen festgestellt werden: K > L > T > A > E > S > Y > Q > F / D > V > M > I / H / R > W > N.

Dabei konnte die Aminosäure Lysin gefolgt von der Aminosäure Leucin in fast allen Fraktionen nachgewiesen werden, während Asparagin in keiner der untersuchten Fraktionen als C-terminale Aminosäure nachgewiesen werden konnte. Möglicherweise trat aber auch eine Coelution mit Serin auf. Zu Glycin und Prolin können keine Aussagen gemacht werden, da sie durch Carboxypeptidase A und B nicht freigesetzt werden.

Diese Ergebnisse stehen in Übereinstimmung mit den von Hugel (1996) identifizierten C-terminalen Aminosäuren in den NCN-Fraktionen der β-Caseinhydrolysate.

Schon Visser und Slangen konnten 1977 feststellen, dass Chymosin mit relativ hoher Empfindlichkeit Peptidbindungen, die Leucin enthalten, spaltet. Später stellte Visser (1981) fest, dass in Casein und Caseinhydrolysaten Peptidbindungen der Form Leu-X bzw. Phe-X vorzugsweise durch Chymosin gespalten werden.

Tab. 4.5–1: Bestimmung C-terminaler Aminosäuren in den Fraktionen der mit Chymosin inkubierten β-Caseinhydrolysate (Probensymbole: M: 8. Woche ohne Salz; P: 15. Woche ohne Salz; K: 5. Woche mit 2 % Salz; S: 15. Woche mit 2 % Salz; F: Hauptfraktion; f: Unterfraktion)

								Am	inosä	iuren							
Proben-	D	Т	S	Ν	Е	Q	А	V	М	Ι	L	Y	F	Н	Κ	W	R
bez.																	
M1(F1f1)	-	-	-	-	+	+	+	-	-	-	+	-	-	-	+	-	+
M2 (F1f2)	-	+	-	-	+	+	+	-	+	+	+	+	-	-	+	-	+
M3 (F2f1)	-	+	-	-	+	+	+	-	-	-	+	+	-	+	+	-	-
M4 (F2f2)	-	+	-	-	+	+	+	+	+	-	+	+	-	-	+	-	-
M5 (F3)	-	+	+	-	+	+	+	+	+	-	+	-	+	-	+	-	+
M6 (F4f1)	-	+	+	-	+	+	+	-	-	-	+	+	-	-	+	-	-
M7 (F4f2)	-	+/-	+	-	+	+	+	+	+	+	+	-	+/-	-	+	-	-
M8 (F5)	•	+	+	I	+	+	+	-	-	-	+	-	+	-	+	-	-
M9 (F6)	-	+	+	I	+	+	+	1	1	1	+	1	+	-	+	1	-
P1(F2f1)	+	+	-	-	-	-	+	-	-	-	+	+	-	-	+	-	-
P2(F2f2)	+/-	+/-	-	-	-	-	-	-	-	+/-	+/-	-	-	-	+/-	-	-
P3(F2f3)	+	+	+	-	+	-	+	+	-	-	+	+	+	-	+	-	-
P4(F2f4)	+	+	+	-	+	-	+	+	-	-	+	+	+	-	+	-	-
P5(F3f1)	-	+	+	-	-	-	+	-	-	-	+	+	-	-	+	-	-
P6(F3f2)	-	+	+	-	+	-	+	-	-	-	+	+	-	-	+	-	-
P7(F3f3)	+	+	+	-	+	-	-	-	-	-	+	+	+	-	+	-	-
P8 (F3f4)	+	+	+	-	+	-	+	-	-	-	+	+	-	-	+/-	-	-
P9(F4f1)	-	+	+	-	-	+/-	+	-	-	-	+	+/-	-	-	+	-	-
P10(F4f2)	+	+	+	-	+	-	+	+	-	-	+	+	-	-	+	-	-
P11 (F5)	-	+	+	-	+	-	+	-	-	-	+	+	-	-	+	+/-	-
P12 (F6)	-	+	-	-	-	-	-	+	-	-	+	-	-	-	+	-	-
K1 (F1)	+	+	-	-	+	+	+	-	-	-	+	-	-	-	+	-	+
K2 (F2f1)	+	+	+	-	+	+	+	-	-	-	+	-	+	+	+	-	+
K3 (F2f2)	+	+	+	-	+	+	+	-	+	-	+	-	+	+	+	-	-
K4 (F3f1)	-	+	+	-	+	+	+	-	-	-	+	-	+	-	+	-	-
K5 (F3f2)	-	+	+	-	+	+	+	-	-	-	+	+	+	-	+	-	-
K6 (F4)	+	+	+	-	+	+	+	-	-	+	+	+	+	-	+	-	-
K7 (F5)	+	+	+	-	+	+	+	-	-	+	+	+	-	-	+	-	-
K8 (F6)	-	+	-	-	-	-	+	-	-	-	+	-	-	-	+	-	-
S1 (F2)	+/-	+/-	+/-	-	+/-	-	-	-	-	-	-	-	-	+/-	+/-	-	-
S2 (F3)	+	+	+	-	+	-	+	+	+	-	+	+	+	-	+	+/-	-
S3 (F4f1)	-	+	+	-	-	+/-	+	-	-	-	+	+/-	-	-	+	+/-	-
S4 (F4f2)	-	+	-	-	+/-	-	+	+/-	-	-	+	+	+/-	+/-	+	-	-
S5 (F5f1)	-	+	+	-	-	-	+	-	-	-	+	+	-	-	+	+/-	-
S6 (F5f2)	-	-	+	-	-	-	+	-	+	-	+	+	-	-	+	-	-
S7 (F6)	+	+	+	-	+	+/-	+	+	+	-	+	+	+	-	+	-	-
Häufig-	41.7	94.4	72.2	0	75.0	52.8	88.9	27.8	22.2	13.9	97.2	63.9	41.7	13.9	100	11.1	13.9
keit [%]	,,	, i, i	,_	Ĵ	, .	,0	00,7	,0	,-	,,	,2	,	,,	,,	100	,.	,>

4.5.1.2 Bestimmung der N-terminalen Aminosäuren

Die N-terminalen Aminosäuren wurden mit der DABITC-Methode derivatisiert, als DABTH-Aminosäuren abgespalten, und an der RP-HPLC getrennt. Die beiden Gradientenelutionsprogramme SCHASRN (zur Trennung der unpolaren Aminosäuren) und LANGASRN (Trennung der polaren Aminosäuren) wurden schon in vorangegangenen Arbeiten (Hugel (1996); Windisch (1997)) zur Trennung eingesetzt.

In Abb. 4.5–4 sind die Chromatogramme der Aminosäurestandardmischungen (vgl. Kapitel 3.12.6.3) dargestellt. In beiden Chromatogrammen sind die Peaks des Derivatisierungsreagenzes gekennzeichnet. Die absoluten und relativen Retentionszeiten der Aminosäuren wurden berechnet.

Bei der Derivatisierung der Proben wurden einige Probleme ersichtlich. Es sollte darauf geachtet werden, dass die Vakuumzentrifugation der Proben nicht zu lange und nur bei niedriger Temperatur durchgeführt wird. Sonst treten bei den DABTH-AS Zersetzungserscheinungen auf. Die derivatisierten Aminosäuren sind in diesem Fall mit der HPLC nicht mehr nachweisbar, nur Reaktionsnebenprodukte können gefunden werden. Eine mögliche Erklärung ist die Oxidation der DABTH-AS bei zu langer Zentrifugationsdauer bzw. die thermische Zersetzung bei erhöhter Temperatur.

Störpeaks bei den Proben waren durch Derivatisierungsnebenprodukte immer zu verzeichnen. Bei der Methode zur Trennung der unpolaren Aminosäuren (SCHASRN) traten Störpeaks vor allem bei Retentionszeiten zwischen 50 und 60 min und bei 25 min auf. Methionin eluiert bei 55 min zwischen den Reagenzienpeaks. Durch die Standardaddition konnten jedoch alle Aminosäuren gut identifiziert werden.

Weiterhin eluiert die Aminosäure Arg meist als Schulterpeak von Asn, weshalb eine eindeutige Identifizierung erschwert war (Abb. 4.5–4; Chromatogramm A).

Gradientenelutionsprogramm: A: schnell eluierende Aminosäuren (unpolare Aminosäuren) B: langsam eluierende Aminosäuren (polare Aminosäuren)

Abb. 4.5–4: Chromatogramm des Aminosäurestandardmixes; Chromatographie: Kapitel 3.12.6.3

Mit dem Elutionsprogramm, das für die Trennung der polaren Aminosäuren (LANGASRN) entwickelt wurde, treten die Störpeaks bei etwa 14, 35 und nach 42 min auf. Der Störpeak bei 35 min eluiert bei manchen Proben allerdings schon bei 30 min und stört somit die Identifizierung von Val, Pro und Phe. Diese Beobachtung wurde auch schon in vorangegangenen Arbeiten von Künstler (1997) und Windisch (1997) gemacht.

Die Ursache dieser Störpeaks sind Derivatisierungsnebenprodukte, möglicherweise Hydrolyseprodukte des DABITC wie sich durch Analyse eines Blindwertes zeigen ließ.

Mit den zwei verschiedenen RP-HPLC-Elutionsprogrammen (LANGASRN und SCHASRN) wurden die derivatisierten Aminosäuren der einzelnen Fraktionen getrennt. Alle Aminosäuren wurden mit dem Standardadditionsverfahren identifiziert.

In Tab. 4.5–2 sind die N-terminalen Aminosäuren der fraktionierten β -Caseinhydrolysate aufgeführt. In den fraktionierten Proben des β -Caseinhydrolysates ohne Salz konnten eine Vielzahl an N-terminalen Aminosäuren bestimmt werden. Glu wurde in keiner der Fraktionen identifiziert.

Die Überlegung zur Berechnung der Häufigkeit wurde schon bei den C-terminalen Aminosäuren zugrunde gelegt. In absteigender Reihenfolge konnte somit folgende Häufigkeit des Auftretens der Aminosäuren am N-terminalen Ende in den Fraktionen festgestellt werden: M/S > V > A > Y/F > P/L > T > W > G/I > H > R/N > Q > D > E.

Von Hugel (1996) wurden in einer vorangegangenen Arbeit die N-terminalen Aminosäuren in der NCN-Fraktion von wässrigen β -Caseinhydrolysaten bestimmt. Dabei wurden Proben mit einer Hydrolysedauer von 30 bzw. 1440 min untersucht. Nach 1440 min werden bei Chymosineinwirkung und einem pH-Wert von 6,5 bis auf Asp, Pro und Trp alle Aminosäuren im N-Terminus der Peptide nachgewiesen.

Mit den identifizierten Aminosäuren kann, nach der Bestimmung der Molmassen mit LC-MS, die Zuordnung einzelner Bruchstücke zur Sequenz des β-Caseins erfolgen.

Tab. 4.5–2: Bestimmung N-terminaler Aminosäuren in den Fraktionen der mit Chymosin inkubierten β-Caseinhydrolysate (Probensymbole: M: 8. Woche ohne Salz; P: 15. Woche ohne Salz; K: 5. Woche mit 2 % Salz; S: 15. Woche mit 2 % Salz; F: Hauptfraktion; f: Unterfraktion)

								A	mino	osäur	en							
Proben-	D	Т	S	Ν	Е	Q	Α	V	Μ	Ι	L	Y	F	Η	G	W	Р	R
bez.																		
M1(F1f1)	-	-	-	-	-	-	+	-	-	-	-	+	-	-	-	-	-	-
M2(F1f2)	-	+	+	-	-	-	+	-	+	-	-	-	-	-	-	-	-	-
M3(F2f1)	-	-	+	-	-	-	+/-	+	+	-	-	-	-	+	+	+	-	-
M4 F2f2)	-	+	+	-	-	-	+/-	+	-	-	-	-	+/-	-	-	-	+/-	+
M5 (F3)	-	-	+	-	-	-	+	+	+	-	-	-	-	-	-	-	+	-
M6(F4f1)	-	-	+	-	-	-	-	+	+	-	-	+/-	-	-	-	-	-	-
M7(F4f2)	-	+/-	+	-	-	-	-	+	+/-	-	-	+	-	-	-	-	+	-
M8 (F5)	-	-	-	-	-	-	+/-	+/-	+	+/-	+/-	+/-	-	+	-	-	-	-
M9 (F6)	-	-	+/-	-	-	-	+/-	+	+	-	-	+/-	+	+/-	-	-	+	-
P1(F2f1)	-	-	+	-	I	I	+	+	-	-	-	+	+/-	+/-	+/-	+	-	+/-
P2(F2f2)	-	-	-	-	I	I	+	+	+	-	-	-	+/-	-	I	-	-	-
P3(F2f3)	-	-	+	-	I	I	+	+	+	+/-	+/-	+/-	+	-	I	+	+	-
P4(F2f4)	-	-	+	-	-	-	+	-	+	+	-	+	+	-	+	-	+	+/-
P5(F3f1)	-	+	+	-	I	I	+	+	+	-	-	-	+/-	-	I	-	+/-	I
P6(F3f2)	-	+	+	-	-	+	+	-	+	-	-	-	+/-	-	-	+	-	-
P7(F3f3)	-	+/-	+	-	-	-	+	+	+	-	-	-	-	-	-	-	+	-
P8 (F3f4)	-	-	+	-	-	-	+	+	+/-	-	-	-	+/-	-	-	-	-	-
P9(F4f1)	-	-	-	+	-	+	-	+/-	-	-	-	-	-	-	-	+/-	+/-	-
P10(F4f2)	-	-	+	-	-	-	-	-	-	+	-	+	+/-	-	-	+	-	-
P11 (F5)	-	+	-	-	-	-	+	+	+	-	+	-	-	+	-	-	+	-
P12 (F6)	-	+	+	-	-	-	-	+/-	-	-	-	+	+/-	-	+	+	-	-
K1 (F1)	-	-	+	+	-	-	+	-	+	+/-	+/-	+	-	-	-	-	-	-
K2 (F2f1)	-	+/-	+	-	-	-	+	-	+	-	-	-	-	-	-	-	-	-
K3 (F2f2)	-	-	+	-	-	-	+	-	+	-	+	+	+/-	+	-	-	-	-
K4 (F3f1)	-	-	+	-	-	-	-	+	+	-	-	+	+/-	-	-	-	-	-
K5 (F3f2)	-	+	+	-	-	-	-	-	+	-	+	+	+/-	-	-	-	-	-
K6 (F4)	-	-	+	-	-	-	-	+/-	+	+	+	+	+/-	-	+	-	-	-
K7 (F5)	-	-	-	-	-	-	-	+	+	+	+	+	+/-	+	-	-	-	-
K8 (F6)	-	-	+	-	-	-	-	+	+	-	+/-	+	+/-	-	+/-	+/-	+	-
S1 (F2)	+/-	+/-	+	-	-	-	+	+	-	-	+	+	+	-	-	+	+	-
S2 (F3)	-	-	+	-	-	-	+	+	+	-	+/-	+	+	-	+	-	+	-
S3 (F4f1)	-	-	-	-	-	-	-	-	-	+/-	+/-	-	+/-	-	-	+	-	-
S4 (F4f2)	-	-	+	-	-	-	-	+	+	-	+	+	-	-	+/-	-	-	+/-
S5 (F5f1)	-	+	-	+	-	-	+	+	+	-	-	-	-	+	+/-	-	-	-
S6 (F5f2)	-	+	+/-	+/-	-	-	+/-	+/-	+	-	-	+	+/-	-	-	-	-	-
S7 (F6)	-	-	+	-	-	-	+	+	+	+	+/-	+	+	-	-	-	+/-	-
Häufig- keit [%]	2,8	36,1	77,8	11,1	0	5,6	66,7	72,2	77,8	25,0	38,9	61,1	61,1	22,2	25,0	27,8	38,9	11,1

4.6 Auswertung der LC-MS-Spektren und Zuordnung der Bruchstücke zur Sequenz des β-Caseins

Ziel der massenspektrometrischen Untersuchungen war, einen Überblick über die Molmassen der Bruchstücke in den fraktionierten NCN-Fraktionen zu erhalten, die durch die Einwirkung von Chymosin auf β -Casein erhalten wurden. Sommerer et al. (2001) setzten die ESI-MS erfolgreich zur Identifizierung von Hydrolyseprodukten der Caseine bei der Untersuchung des wasserlöslichen Extraktes eines Ziegenkäses ein. Es konnten 26 Tri- bis Octapeptide identifiziert werden, die den Sequenzen von α_{S1} - und β -Casein zugeordnet werden konnten.

Bisherige Untersuchungen mittels GPC (vgl. Kapitel 3.10.2) ließen nur Abschätzungen über die Molmassen der gebildeten Bruchstücke in den Gesamthydrolysaten zu. Es konnten mit Hilfe der RP-HPLC (vgl. Kapitel 3.11.2) keine Aussagen über die Größe der freigesetzten Bruchstücke getroffen werden. Daher war es nötig, die separierten Proben mittels LC-MS, wie im Kapitel 3.12.7 beschrieben, zu untersuchen. Durch die Kalibrierung des Gerätes mit den Standardsubstanzen Bradykinin (1060,2 Da), Angiotensin (1296,4 Da) sowie Neurotensin (1672,9 Da), deren ermittelte Molmasse ähnlich den zu erwartenden Molmassen waren, konnten die Spektren der Fraktionen gut ausgewertet werden. Da Trifluoressigsäure (Störpeaks) infolge Ionenpaarbildung verursacht, wurde diese im Lösungsmittelgemisch nicht eingesetzt bzw. vorher abgetrennt. Zur Anwendung kam ein Gemisch aus Acetonitril, welches 1 %ig an Ameisensäure war. Der Zusatz von Ameisensäure verbessert die Ionisation der Peptide und erleichtert die Auftrennung im Flugzeit-Massenspektrometer. Böhm (2003) stellt die Schwierigkeiten dar, eine geeignete RP-HPLC-Methode zur Trennung von Peptiden vor deren massenspektrometrischer Identifizierung zu finden. Aufgrund der gewonnenen Erfahrungen wurden die Proben ohne vorherige Trennung mittels RP-HPLC in das MS injiziert.

Wie schon im Kapitel 3.12.7 erwähnt, ermöglicht eine Variation der Spannung an der Austrittskapillare einen unterschiedlichen Fragmentierungsgrad der jeweiligen Peptidfraktionen. Es werden die isotopenfreien Massen gemessen. Die detektierten Massen lagen zwischen 100 und 3000 m/z (Masse-/Ladungsverhältnis).

Anhand des in Abb. 4.6–1 dargestellte Massenspektrum der Fraktion 3 des Hydrolysates der 15. Woche mit 2 % Salz soll exemplarisch die Vorgehensweise bei der Auswertung der Spektren erklärt werden. Deutlich zu erkennen ist, dass trotz der Fraktionierung an einer semipräparativen RP-HPLC-Säule eine Vielzahl von Peptiden detektiert werden, die eine m/z-Zahl bis zu 1000 aufweisen. Anhand der im Spektrum detektierten Peaks und deren Verschiebung infolge Mehrfachladung kann nun auf die Ladung der einzelnen Peptide geschlossen werden.

Abb. 4.6–1: Ausschnitt aus dem Massenspektrum des Hydrolysates der 15. Woche mit 2 % Salz, Fraktion 3

Ist der Massenpeak, wie in Abb. 4.6–1 um +1,00 m/z verschoben, so handelt es sich bei dem detektierten Peptid um ein einfach geladenes Ion. Ist er um +0,50 m/z verschoben dann handelt es sich um ein zweifach geladenes Ion bzw. bei Verschiebung von +0,33 m/z um ein dreifach geladenes. Die richtige Molmasse ergibt sich, indem man die ermittelte Masse-/Ladungszahl mit der ermittelten Ladung multipliziert und die Ladung der H⁺-Ionen abzieht.

So wird z.B. ein Molekül mit einem Masseladungsverhältnis von 415,63 und mit einer Verschiebung von +0,50 m/z detektiert. Dies deutet auf ein doppelt geladenes Molekül hin. Also wird die ermittelte Molmasse von 415,63 Da mal 2 genommen und anschließend minus 2 wegen der Ladung der H⁺-Ionen. Daraus ergibt sich eine wahre Molmasse von 829,26 Da.

Peaks, deren Intensitäten kleiner als 50 counts waren, wurden nicht in die Auswertung einbezogen. Trotz dieser Vereinfachung wurden in vielen Massenspektren noch mehr als 30 Peaks oberhalb einer Intensität von 50 counts detektiert. Daher wurden nur Signale mit einer Intensität > 50 %, bezogen auf den jeweiligen Basispeak, ausgewertet und m/z-Zahlen von $\pm 0,50$ berücksichtigt. Zur Berechnung der Peptidmassen wurden die isotopenfreien Massen der jeweiligen Aminosäuren herangezogen und für jede vorhandene Peptidbindung die Masse eines Wassermoleküls subtrahiert.

Die detektierten m/z-Zahlen, deren zugehörigen Molmassen und deren zugeordnete Aminosäuresequenzen sind Kapitel 3.12.7 der Tab. 3.12–6 zu entnehmen.

Auffallend war, dass trotz mehrmaliger Rechromatographie der Peptidfraktionen mit Natriumionen freien Eluenten an der RP-HPLC, natriumhaltige Moleküle detektiert werden konnten. So kann z. B. ein H⁺-Ion gegen ein Natriumion in einer Peptidkette ausgetauscht werden. Die verschiedenen Cluster, die Natriumionen enthielten, ließen sich durch die Massendifferenz m/z = 23 erkennen und wurden in Tab. 3.12–6 in Kapitel 3.12.7 kenntlich gemacht.

Die berechneten Molmassen, die ermittelten terminalen Aminosäuren und die Primärstruktur des β -Caseins schränken die Anzahl der in Betracht kommenden Peptide stark ein. Mit Hilfe des Tabellenkalkulationsprogrammes EXCEL wurden die isotopenfreien Massen der aus dem β -Casein freisetzbaren Peptide (Länge: 2 – 40 Aminosäuren) berechnet. Als Grundlage dient die von Mercier et al. (1972) bestimmte Primärstruktur des β -Caseins-A². Die bestimmten Peptide und deren zugehörigen Molmassen sind im Kapitel 3.12.7 in Tab. 3.12–6 aufgeführt. Die Toleranzangabe von ± 0,50 Da wurde aus den Auswertemöglichkeiten des Massenspektrums abgeleitet. Konnte nicht zu allen erhaltenen Peaks ein entsprechendes Bruchstück zugeordnet werden, wurde der Toleranzbereich auf ± 1,00 Da erhöht.

In Abb. 4.6–2 ist das Massenspektrum der Probe M2 dargestellt (β -Caseinhydrolysat der 8.Woche F1f2). Erkennbar sind die vielen dominanten Peaks im vorderen Teil des Massenspektrums. Meist sind dies Störionen wie z. B. Phthalate mit der Masse 149,02; 279,16 und 391,28. Diese Störionen weisen meist nicht die für Peptide typischen Ladungsverhältnisse auf. Daher wurden Ionen, die diese Ladungsverhältnisse nicht aufwiesen, nicht weiter betrachtet.

Abb. 4.6–2: Massenspektrum der Probe M2

Exemplarisch ist für die in Abb. 4.6–2 dargestellte Fraktion (M2) die Vorgehensweise des Auffindens der zugehörigen Bruchstücke in Tab. 4.6–1 wiedergegeben.

Tab. 4.6–1: Zuordnung der möglichen Bruchstücke aus der Sequenz des β-Caseins der Fraktion M2 (M: Hydrolysat der 8. Woche ohne Salzzusatz, Ser*: Phosphorylierter Serin)

Frak-	Proben-	C-terminal	N-terminal	MH ⁺ [Da]	М	Mögliches Bruch-
tion	bez.	ermittelte	ermittelte	L	[Da]	stück laut Sequenz
		Aminosäuren	Aminosäuren		L J	des β-Caseins
F1 f2	M 2	Ile/Leu/Lys/	Ala/Thr/	528,16	527,16	526,32 : P ₆₅ - S ₆₉ ;
		Arg/Thr/Glu/	Ser/Met			P ₆₇ -P ₇₁ ;
		Gly/Ala/Met/				P_{158} - V_{162}
		Tyr				526,24: I ₁₂ - S * ₁₅ ;
						V ₁₃ -L ₁₆
				546,16	545,16	545,31: R ₁ -E ₄ ;
						G_{10} - E_{14}
						545,33: A ₁₇₇ -P ₁₈₁
						544,33: T ₇₈ -V ₈₂
				780,31	779,31	-
				830,25	829,25	829,51: A ₁₇₇ -R ₁₈₃
						829,55: P ₁₅₉ -S ₁₆₆
				568,20	567,34	567,34: P ₇₁ -P ₇₅ ;
				$(MH_2^{2+}: 284,60)$		Q ₇₂ -P ₇₆
				818,26	817,26	816,47: P ₁₁₅ -E ₁₂₁
				$(MH_2^{2+}: 409, 63)$		816,55: G ₉₄ -A ₁₀₁
				908,37	907,37	907,54: F ₁₉₀ -L ₁₉₆ ;
				$(MH_2^{2+}: 454, 69)$		907,52: P ₁₁₈ -L ₁₂₅

Die fettgedruckten Aminosäuren sind als die C- und N-terminale Aminosäuren nicht bestätigt worden. Das Bruchstück, welches nicht fettgedruckte Aminosäuren enthält, konnte als Sequenzstück des β -Caseins im Hydrolysat zugeordnet werden. Prolin und Glycin wurden als C-terminale Aminosäuren als wahrscheinlich vorhanden vorausgesetzt, da sie von Carboxypeptidasen nicht freigesetzt werden können und sind daher am C-terminalen Ende eines Sequenzstückes zu erwarten. Die Zuordnung der Bruchstücke zu der Sequenz des β -Caseins gestaltete sich als sehr schwierig, da trotz der Einschränkung durch die terminalen Aminosäuren zu jeder Molmasse verschiedene Bruchstücke zugeordnet werden können.

Um die entstandenen Bruchstücke der Sequenz des β -Caseins übersichtlich zuzuordnen, wurde im folgenden ein Zahlenstrahlmodell genutzt und die Aminosäuren in Form des Ein-Buchstabensymbols kenntlich gemacht. Sollte sich am Ende einer Sequenz eine fettgedruckte Aminosäure befinden, handelt es sich um eine Aminosäure, die während der C- und N-terminalen Analyse mit +/- gekennzeichnet wurde. Die β -Caseinhydrolysate der 8. Woche und der 15. Woche ohne Salz bzw. der 5. Woche und 15. Woche mit 2 % Salzzusatz wurden grafisch dargestellt. Die Hydrolysate der 15. Woche mit 2 % Salz und ohne Salzzusatz konnten unmittelbar in den jeweiligen Fraktionen miteinander verglichen werden, da ihre Fraktionierungszeiten miteinander übereinstimmten.

Abb. 4.6–3: Bruchstücke des Hydrolysates der 8. Woche ohne Salz im Modell Käse (Chymosin) mit 35 % Trockenmasse

Abb. 4.6–4: Bruchstücke des Hydrolysates der 15. Woche ohne Salz im Modell Käse (Chymosin) mit 35 % Trockenmasse

Abb. 4.6–5: Bruchstücke des Hydrolysates der 15. Woche ohne Salz im Modell Käse (Chymosin) mit 35 % Trockenmasse (Fortsetzung)

Abb. 4.6–6: Bruchstücke des Hydrolysates der 5. Woche mit 2 % Salz im Modell Käse (Chymosin) mit 35 % Trockenmasse

Abb. 4.6–7: Bruchstücke des Hydrolysates der 15. Woche mit 2 % Salz im Modell Käse (Chymosin) mit 35 % Trockenmasse

Unabhängig davon, ob Salz der Probe zugesetzt wurde oder nicht, konnte über den gesamten Hydrolysezeitraum ein breites Spektrum an Spaltprodukten identifiziert werden. Peptide mit vier bis neun Aminosäuren dominieren im Hydrolysat der 8. Woche ohne Salz. Beim Ansatz ohne Salz findet man im Hydrolysat der 15. Woche Peptide zwischen fünf und achtzehn Aminosäuren. Auch in den Ansätzen mit Salz zeigen die Hydrolysate ein ähnliches Spektrum an Peptiden wie das salzfreie Hydrolysat der 15. Woche. Einen Überblick über die gefundenen Bruchstücke in Abhängigkeit von der Hydrolysezeit zeigt Tab. 3.12–6; Kapitel 3.12.7.

Auffällig ist, dass mit zunehmender Hydrolysezeit keine Zunahme der Zahl an Spaltprodukten beobachtet wird. Peptide mit 2-39 Aminosäuren werden über den gesamten Hydrolysezeitraum unabhängig vom Salzgehalt freigesetzt. Die Peptide mit der höchsten Anzahl an Aminosäuren (36-39) und mit einer Molmasse zwischen 4193,79 Da und 4254,43 Da werden in der Probe des Hydrolysates der 8. Woche detektiert. Zusätzlich wurde nach Peptiden gesucht, die in allen untersuchten Proben zu finden waren. Es konnte ein Sequenzabschnitt des β -Caseins f 87-99 zu allen Hydrolysaten zugeordnet werden (siehe auch Tab. 4.6–3).

Anhand der im Zahlenstrahl dargestellten Ergebnisse kann man nun eine entscheidende Aussage zu den Angriffsstellen des Chymosins im β -Casein erhalten. Erstaunlich ist, dass vorwiegend Spaltstellen im C-terminalen Abschnitt des β -Caseins zu finden sind. So fällt auf, das vor allem im Bereich zwischen f1-f80 kaum Bruchstücke gebildet werden, während im Bereich zwischen f80-f180 viele Bruchstücke zu verzeichnen sind.

Anhand der Häufigkeit der gespaltenen Bindung (>3 Bindungsspaltungen) in der Sequenz des β -Caseins kann man zu jeder Probe die sensitive Bindung gegenüber einem Angriff von Chymosin erhalten. Die Bindungen, die am häufigsten gespalten werden, sind in Tab. 4.6–2 dargestellt. Die aus der Literatur bekannten sensitiven Bindungen des β -Caseins wurden mit den experimentell ermittelten sensitiven Bindungen verglichen. Die in Tab. 4.6–2 fettgedruckten Bindungssequenzen sind sensitive Bindungen, die aus der Literatur bekannt sind. Dabei ist auffällig, dass bei den Hydrolysen ohne Salz keine Übereinstimmungen gefunden werden konnten. Im Hydrolysat der 15. Woche mit 2 % Salz konnten drei sensitive Bindungen nachgewiesen werden.

Probe	Probenbez.	Sensitive Bindung
8. Woche ohne Salz	М	V ₈₂ -V ₈₃
		P_{86} - F_{87}
		$E_{91}-V_{92}$
		E_{108} - M_{109}
		M ₁₀₉ -P ₁₁₀
		P_{115} - V_{116}
		E_{123} - S_{124}
		L_{140} - E_{141}
		S_{142} - W_{143}
		T_{154} - V_{155}
		Q_{160} - S_{161}
		P_{174} - E_{175}
		K ₁₇₆ -A ₁₇₇
15. Woche ohne Salz	Р	$S_{18}-S_{19}$
		P_{86} - F_{87}
		E_{100} - A_{101}
		A_{101} - M_{102}
		Q_{108} - M_{109}
		P_{110} - F_{111}
		Y ₁₁₄ -P ₁₁₅
		P_{115} - V_{116}
		P_{118} - F_{119}
		D_{129} - V_{130}
		P_{147} - H_{148}
		Q_{149} - P_{150}
		T_{154} - V_{155}
		P_{158} - P_{159}
		K_{169} - V_{170}
5. Woche mit 2 % Salz	K	P_{118} - F_{119}
		D_{132} - L_{133}
		L_{138} - L_{139}
		L_{139} - L_{140}^{1}
		L_{140} - Q_{141}
		S_{142} - W_{143}
		P_{147} - H_{148}
		P_{196} - V_{197}
15. Woche mit 2 % Salz	S	$E_{91}-V_{92}$
		E_{100} - A_{101}
		E_{108} - M_{109}
		L_{127} - T_{128}^{1}
		L_{139} - L_{140} ¹
		F_{157} - P_{158}
		L_{163} - S_{164}
		V ₁₇₈ -P ₁₇₉

Tab. 4.6–2:experimentell ermittelte Angriffstellen im β-Casein durch Chymosin kalkuliert
aus Peptidsequenzen und terminalen Aminosäuren (S*: Phosphoserin)

¹ Pélissier et al. (1974); Visser und Slangen (1977)

Auffallend ist, dass es eine Häufung von Bindungsspaltungen im Bereich der sensitiven Bindungen (f 140-f142; f160-f169) von β -Casein gegenüber einem Angriff von Chymosin gibt. In diesem Sequenzabschnitt hat β -Casein kein Prolin und zeigt auch sehr starke Hydrophobie (Wong et al. 1996). Man kann davon ausgehen, dass es sich um Bereiche handelt, die keine geordneten Strukturen aufweisen. Farrell et al. (1993) schlussfolgerten, dass die sensitiven Bindungen des β -Caseins gegenüber Chymosin aus der Ebene des Moleküls herausragen und dadurch ein Angriff ermöglicht wird. Auch die Bindungen, die in der Nähe der sensitiven Angriffsstellen des β -Caseins liegen, scheinen für den Angriff von Chymosin sterisch besonders gut zugänglich zu sein.

In der Art der entstandenen Bruchstücke konnten gleiche bzw. ähnliche Bruchstücke gefunden werden, die auch in der Literatur beschrieben wurden. So konnte in der Probe M4 ein Bruchstück mit der Sequenz Q₁₄₁-K₁₆₉ gefunden werden, welches Ähnlichkeiten mit dem Peptid aufweist, was bei der Spaltung von β -III-CN aus β -III-CN (f140-163/165/167) frei wird (Mulvihil und Fox, (1979)). Auch das während der Spaltung von β -I-CN aus β -Casein freigesetzte Peptid mit der Sequenz von 190-192 bzw. 193-209 konnte in der Probe P8 bzw. M7 wiedergefunden werden.

Es fiel auf, dass in allen Hydrolysaten Bruchstücke enthalten sind, die bioaktive Sequenzen enthielten. Diese Bruchstücke in den Abb. 4.6–3 bis Abb. 4.6–7 wurden durch dünne Kreise markiert. Milchproteine sind eine der wichtigsten Quellen für bioaktive Peptide. Sie sind in einem inaktiven Status in der Sequenz des Milchproteins verborgen, und können durch enzymatische Hydrolyse freigesetzt werden. Nur in der Probe M1, M2 und K1 (β -Caseinhydrolysat der 8. Woche ohne Salz bzw. der 5. Woche mit 2 % Salzzusatz) konnte das ACE–inhibierende Peptid (f177-183) unmittelbar nachgewiesen werden (Fiat und Jollès, 1989). Das Peptid mit der Sequenz von f193-f209 wirkt dagegen immunstimulierend (Coste et al., 1992). Des weiteren konnten Peptide gefunden werden, die aus der "strategischen Zone" des β -Caseins (f60-f70) stammen, jedoch erst durch die Abspaltung einiger Aminosäuren bioaktiv werden.

Die Hydrolysate der 15. Woche mit und ohne Salzzusatz wurden miteinander verglichen. Dabei sollten gleiche Bruchstücke herausgefunden werden. Es konnten, die in Tab. 4.6–3 aufgeführten Peptide, in den beiden Hydrolysaten nachgewiesen werden. Es handelt sich dabei vornehmlich um Peptide, die vor allem im C-terminalen Bereich der Sequenz vom β -Casein zu finden sind.

Anhand ihrer zugeordneten Sequenz lassen sich auch grobe Aussagen hinsichtlich ihrer Bitterkeit treffen. Ney (1972) stellte in diesem Zusammenhang fest, dass die Bitterkeit eines Peptides mit seiner mittleren Hydrophobie (Q-Wert) zusammenhängt. Der Q-Wert ist ein Enthalpiewert (cal/mol). Peptide mit einem Q-Wert von über 1400 cal/mol schmecken bitter, falls sie wasserlöslich sind , während Peptide mit Q \leq 1300 cal/mol keinen Bittergeschmack aufweisen. Für Q-Werte zwischen 1300 und 1400 cal/mol kann keine Voraussage getroffen werden. Die angegebenen Q-Werte sind Richtwerte und können nur abschätzen, ob ein Peptid bitter sein könnte. Die in der Tabelle markierten Peptide sind wahrscheinlich bitter.

Tab. 4.6–3: Übersicht über die sequenzgleichen Bruchstücke in den Proben P und S im Modell Käse (Chymosin) mit 35 % Trockenmasse (P: Hydrolysat der 15. Woche; S: Hydrolysat der 15. Woche mit 2 % Salzzusatz)

Peptide	Sequenz	Molmasse	Q-Wert	Lite	raturdaten
		[Da]	[cal/mol]	~	
				Sequenz	Literatur
84-92	VPPFLQPE	1025,29	1888,75*	84-89	Visser und
					Slangen, 1977
				77-93	Addeo et al.
					1992
87-99	FLQPEVMGVSKVK	1459,58	1356,15		
101-108	АМАРКНКЕ	910,20	1113,75	100-105	Bumberger
					und Belitz,
					1993
109-125	MPFPKYPVQPFTESQSL	1995,08	1561,76*	108-113	Bumberger
					und Belitz,
					1993
157-163	FPPQSVL	786,23	1714,29*	-	-
161-178	SVLSLSQSKVLPVPQKAV	1880,10	1190,00	-	-
172-175	PVPE	440,23	1860,00*	170-176	Bumberger
					und Belitz,
					1993
				170-175	Sommerer et
					al., 2001
179-193	PYPQRDMPIQAFLLY	1879,79	1820,00*	181-187-	Sommerer et
				182-186_	al., 2001
187-198	IQAFLLYQQPVL	1459,58	1730,83*	-	-
193-209	YQQPVLGPVRGPFPIIV	1880,10	1769,41*	193-209	Coste et al.,
					1992
					Addeo et al.
					1992

* wahrscheinlich Bitterpeptide nach Ney (1972) berechnet

4.7 Vom Modell zum Käse

Die Käsereifung hat einen entscheidenden Einfluss auf den Proteinabbau im Käse. So wird von Larsson und Andrén (1997) berichtet, das ein nicht unerheblicher Anteil von Chymosin am Käsebruch retardiert und entscheidend in den ersten Tagen der Käsereifung den proteolytischen Abbau beeinflusst. Anzumerken ist, dass bei pH-Werten zwischen 5,2 und 6,0 die Adsorption von Chymosin am Käsebruch am höchsten war. Üblicherweise ist dieser pH-Wert auch in Käse anzutreffen.

Daher kann geschlussfolgert werden, dass ein relativ großer Anteil der proteolytischen Prozesse am Anfang der Käsereifung auf das Milchgerinnungsenzym zurückzuführen ist. An der Proteolyse im Käse sind jedoch nicht nur Milchgerinnungsenzyme beteiligt, sondern auch die in der Milch original vorkommende Proteasen Plasmin oder Cathepsin D. Des weiteren werden der Milch in nicht unerheblichem Maße Säuerungskulturen und andere Kulturen zugesetzt, die in Verbindung mit der Technologie die Käseart und –qualität bestimmen. So werden z. B. P. roqueforti und P. camemberti zur Herstellung von Blauschimmelkäse bzw. Camembert genutzt, während Brevibakterien als Schmierekulturen auf die Oberfläche von einigen Käsen aufgebracht werden. Durch die proteolytische Wirkung der eingesetzten Enzyme bzw. durch die bakteriellen Proteasen und Peptidasen kommt es zur Spaltung der Proteine und damit zur Freisetzung von Peptiden. Dabei gibt es eine Vielzahl von Literaturdaten, die zum Abbau des β -Caseins zur Verfügung stehen. So kann festgestellt werden, dass in Cheddar-Käse etwa 50 % des β -Caseins durch Plasmin zu γ -Caseinen und Proteose Peptonen hydrolysiert wird (Fox und McSweeney, 1996).

Einige Autoren wie McGoldrick und Fox (1999), Phelan et al. (1973) und Edwards und Kosikowski (1969) untersuchten die Proteolyse von Caseinen in verschiedenen Käsesorten. Anhand ihrer gelelektrophoretischen Studien versuchten sie Aussagen zu treffen hinsichtlich des Abbaus der einzelnen Caseine, der verwendeten Milchgerinnungsenzyme und des Reifegrades der Käsesorten. Dabei gestaltete sich der Abbau der Caseine sehr unterschiedlich. Dies konnte durch eigene gelelektrophoretische Untersuchungen von kommerziell erhältlichen Käsesorten bestätigt werden. Es wurden verschiedene Käsesorten hinsichtlich ihres Caseinabbaus vor allem des β -Caseinabbaus untersucht.

Das in Abb. 4.6–1 dargestellte Elektropherogramm liefert eine guten Hinweis, in wie weit die Casein-Hauptkomponenten α_{S1} - und β -Casein im Laufe der Käsereifung von unterschiedlichen Käsereifungsfloren abgebaut wird. Krause (2001) konnte in reifendem

Gouda-Käse nach der 5. Reifungswoche eine Gerinnungsaktivität von 1,5 MCU¹⁵/g Käse bestimmen.

Abb. 4.7–1: Polyacrylamidgelelektropherogramm von verschiedenen Käsesorten unter dem Gesichtspunkt des β-bzw. α_s- Caseinabbaus; Erläuterungen: Gelkonzentration T = 15 % T; pH = 8,3; Auftragsmenge: 15 µg/Bahn; Färbung: Coomassie Brillant Blau G

Deutlich zu erkennen ist, dass Karsdorfer Käse (Typ: Sauermilchkäse) als einziger Käse in sehr starkem Ausmaß β -I-Casein bildet. In geringem Maße trifft dies auch für Emmentaler und Parmesan zu. Dieses Bruchstück wird als erstes Hauptprodukt bei der Einwirkung von Chymosin auf β -Casein erhalten. Die Banden wurden den einzelnen Caseinen und deren Abbauprodukten mit Hilfe eigener Arbeiten bzw. verfügbarer Literatur (McGoldrick und Fox, 1999; Trujillo et al. 1997) zugeordnet. Karsdorfer Käse wird im Gegensatz zu allen anderen untersuchten Käsesorten als einziger ohne Labgerinnung hergestellt. Somit kann man feststellen, dass selbst andere Käsereifungsfloren ähnliche Reifungsverläufe wie bei Chymosin induzieren können. Je länger die Reifungszeit des Käses desto eher besteht die Möglichkeit, dass aus β -Casein Peptide gebildet werden. In vielen der untersuchten Käsesorten ist ein erheblicher α_S -Casein-Abbau nachzuweisen, die vorzugsweise bis zum

¹⁵ MCU: Milk Clotting Units nach SOXHLET entspricht der Labmenge, die erforderlich ist, um ein Volumenteil Milch in 40 min zur Gerinnung zu bringen

 α_{s} -I-Casein verläuft. Vergleicht man die Käsesorten hinsichtlich ihrer Trockenmasse, kann man feststellen, dass α_{s} -Casein vorwiegend in Käsessorten abgebaut wird, die einen geringen Wasseranteil bzw. eine hohe Trockenmasse aufweisen. β -Casein unterliegt einem geringeren oder anderem Abbau, der nicht zur Bildung des β -I-Casein führt (vgl. Abb. 4.7–2). Diese Aussage wird durch die Verfolgung des Reifungsverlaufes eines Gouda-Käses unterstrichen.

Abb. 4.7–2: Verfolgung des Reifungsverlaufes eines Gouda-Käses über 14 Wochen Reifungszeit mittels Harnstoff-PAGE

Abb. 4.7–3: Densitometrische Auswertung des in Abb. 4.7–2 gezeigten Elektropherogramm

Sowohl Abb. 4.7–2 als auch das Densitogramm (Abb. 4.7–3) lassen erkennen, dass im Gouda mit 45 % Trockenmasse bevorzugt das α_{S1} -Casein der Hydrolyse unterliegt, wobei der relative Anteil im Casein von 33 auf 10 % nach 14 Wochen abnimmt. β -Casein hingegen unterliegt einem wesentlich geringerem Abbau von 24 auf 19 %. β -I-Casein ließ sich nicht identifizieren.

Im Gegensatz dazu verläuft die Reifung eines Sauermilchkäses (Karsdorfer Käse), der eine Trockenmasse von 33 % aufweist, anders.

Wie das aus den Elektropherogrammen abgeleitete Densitogramm (Abb. 4.7–4) aufweist, wird bevorzugt β -Casein unter Bildung von β -I-Casein hydrolysiert, die γ -Casein-Fraktion nimmt deutlich zu und α_{s_1} -I-Casein ist nicht nachweisbar.

Abb. 4.7–4: Densitometrische Auswertung des Elektropherogramms zum Reifungsverlauf von Sauermilchkäse (Karsdorfer)

Der unmittelbare Vergleich der unterscheidlichen Reifung lässt sich aus nachstehender Tab. 4.7–1 ablesen.

 Tab. 4.7–1:
 Veränderungen der elektrophoretisch detektierten Caseinfraktionen in zwei ausgewählten Käsesorten

Käsesorte	Wasser [%]	$\Delta \alpha_{\rm S} [\%]$	$\Delta \beta [\%]$	β / α_s	$\Delta \gamma [\%]$
Gouda	45,1	81,0	31,0	2,75	0,6
Sauermilchkäse (Karsdorf)	66,9	39,0	81,0	0,24	8,0
Casein	-	0	0	0,86	0

Statuserhebung nach 14 Wochen Reifung bei 12 ± 2 °C (Gouda) bzw. 24 Tage Reifung bei 20 ± 2 °C (Sauermilchkäse Karsdorf)

Der bemerkenswerte Unterschied ist am deutlichsten aus dem Verhältnis der noch vorhandenen originären Casein-Hauptkomponenten β -Casein und α_{S1} -Casein zu ersehen. Ausgehend von dem Verhältnis β / α_S bei Casein mit 0,86 ist diese Relation bei Gouda zum β -Casein verschoben, bei Sauermilchkäse hingegen zum α_{S1} -Casein. Für die übrigen untersuchten Käsesorten (vgl. Abb. 4.7–1) liegen die Verhältnisse β / α_S zwischen 1,23 (Tilsiter) und 2,22 (Brie).

Wie bereits in Kapitel 2.4.1 erläutert, hat der Wassergehalt des Systems eine erheblichen Einfluss auf die Hydrolyse. Die am β -Casein erhaltenen Aussagen lassen sich sowohl für α_s -Casein-Modelle also auch für die Reifung von zwei ausgewählten Käsesorten ergänzen (vgl. Tab. 4.7–2 und Tab. 4.7–3).

Tab. 4.7–2: Einfluss von Wasser und Natriumchlorid auf die Hydrolyserate des α_s -Caseins in Modellsystemen

Hydrolyserate [% NCN]	Weichkäse-Modell	Hartkäse-Modell	
	(73 % Wasseranteil)	(45 % Wasseranteil)	
ohne Natriumchlorid	20 ± 3	12 ± 2	
mit 2 % Natriumchlorid	16 ± 2	10 ± 2	

Reifungszeit: 8 Wochen bei 12 ± 2 °C

Tab. 4.7–3: Zunahme der freien primären Aminogruppen in reifendem Käse

µmol Aminogruppen / g Käse / Tag	Gouda	Sauermilchkäse (Karsdorfer)
Gesamt-Aminogruppen	0,47	11,5
Nicht-Casein-Stickstoff-Fraktion	-0,49 t + 11,6	11,9
Aminosäurestickstoff-Fraktion	-0,33 t + 6,1	6,8

t: Reifungszeitraum in Tagen

Um einen Abbau des β-Caseins im gereiften Goudakäse noch weiter zu verfolgen, bietet sich die RP-HPLC der NCN-Fraktionen verschieden gereifter Goudakäse an. Dabei wurden kommerziell erhältliche Goudaproben mit einer Reifungszeit von 4 Wochen, 16 Wochen, 9 Monate, 1 Jahr und 2 Jahren untersucht. Die wasserlösliche Peptidfraktion (pH: 4,6) wurde anschließend mit Hilfe der RP-HPLC untersucht (Probenvorbereitung vgl. Kapitel 3.13). Eine Gegenüberstellung der erhaltenen Chromatogramme (Chromatographie: Kapitel 3.12.3) der NCN-Fraktion des Goudakäses und des Modells Käse mit 35 % Trockenmasse (Chymosin) ist in Abb. 4.7–5 zu sehen.

G5: 2 Jahre gereift
Abb. 4.7–5: Vergleich der RP-HPLC-Chromatogramme der β-Caseinhydrolysate Modell Käse mit 35 % Trockenmasse (Chymosin) mit den Chromatogrammen der wasserlöslichen NCN-Fraktion von Goudakäse

Peptide sowie auch niedermolekulare Substanzen sind wasserlöslich und können durch die Probenvorbereitung in den Extrakt übergehen. Man kann davon ausgehen, dass die erhaltenen Peaks auf Peptide zurückzuführen sind, da die Peptidbindung zwischen 205 und 220 nm ein Absorptionsmaxium aufweist. Im Goudakäse können während der Reifung von 2 Jahren auch andere Caseine neben β -Casein hydrolysiert werden. Um die Ähnlichkeiten in den Peakmustern zu verdeutlichen wurden die erhaltenen Chromatogramme in bestimmte Bereiche eingeteilt, die von I-IV gekennzeichnet wurden. Zum einen einen vorderen Elutionsbereich, der von 0-13 min abgedeckt wird, und zum anderen einen hinteren Eutionsbereich, der zwei Bereiche umfasst.

Im vorderen Elutionsbereich I, der vermutlich die hydrophileren Peptide umfasst, kann man bei beiden Untersuchungen eine Zunahme der Peakintensitäten erkennen. Im hinteren Elutionsbereich (II-III) nehmen die Peakintensitäten beim Modell Käse als auch beim Goudakäse deutlich zu. Vergleicht man nun Hydrolysezeiten beim Modell Käse bzw. Reifezeiten beim Gouda, die sich ähnlich sind, ist eine vermehrte Bildung von Peptiden im Modell Käse zu beobachten, sowohl im vorderen als auch im hinteren Elutionsbereich.

Der Elutionsbereich IV markiert in dem Chromatogramm der NCN-Fraktion des Goudas nur einen scharf abgetrennten Bereich. In diesem kann ein markanter Peak detektiert werden, der weder im Modell Käse (Chymosin) zu finden ist, noch im Goudakäse während der weiteren Reifung entsteht. Wahrscheinlich handelt sich hierbei um ein Peptid, welches vor allem am Anfang der Reifung entsteht und im späteren Verlauf zugunsten anderer Hydrolyseprodukte abgebaut wird.

Deutlich erkennbar ist, dass im Goudakäse innerhalb von 16 Wochen weniger Peptide freigesetzt werden als im Modell Käse mit β -Casein und Chymosin mit ähnlicher Hydrolysezeit (15 Wochen) bzw. Reifungszeit. Erklärbar ist dies durch die Brenntemperatur von 45 °C nach der Bruchbildung, dabei können Enzyme inaktiviert werden, so dass nur noch ein geringer Prozentsatz von der Ausgangsaktivität zur Verfügung steht, um Proteine zu hydrolysieren. Mit steigender Temperatur wird Chymosin instabiler, bei Temperaturerhöhung auf 45-55 °C tritt ein starker Aktivitätsverlust auf (Chitipnityol und Crabbe, 1998). Weiterhin steht dem Chymosin im Modell nur β -Casein zur Hydrolyse zur Verfügung. Im Goudakäse hingegen können mehrere Caseine hydrolysiert werden. Entscheidenden Einfluss hat dann die Spezifität des Chymosins hinsichtlich der Caseine. Desmazeaud und Gripon konnten (1977) feststellen, dass α_s -Casein bevorzugt in den ersten Tagen der Reifung hydrolysiert wird und etwa 32 % des β -Caseins am Ende der Reifung nicht hydrolysiert werden. β -Casein zeigt sich also hinsichtlich eines Enzymangriffes in Käse mit niedrigem Wassergehalt sehr resistent.

4.8 Wertung der Ergebnisse und Ausblick

Ziel dieser Arbeit war es, den Einfluss verschiedener Milchgerinnungsenzyme (Chymosin und Suparen) auf die Proteolyse im Käse zu zeigen. Da die Käsematrix in ihrer Beschaffenheit jedoch zu komplex ist und verschiedene Einflüsse wie Fett- und Kohlenhydratgehalt und weitere Caseinkomponenten sich störend bei der Analyse von Proteinen auswirken, wurde ein Käsemodell nur mit ß-Casein entwickelt. Zum Vergleich sollte ein schon mehrfach Modell Milch untersuchtes wässriges analog der herangezogen werden. Als Berechnungsgrundlage zum Erstellen des wasserlimitierten Systems diente ein Schnittkäse mit 30 % Fett in der Trockenmasse und es wurden zwei verschiedene Trockenmassen (35 und 50 % Trockenmasse) eingestellt. Die durchgeführten Untersuchungen an den Modellen haben gezeigt, dass die Hydrolyse des β-Caseins stark wasserabhängig ist. Im Modell Käse können deutliche Unterschiede in der Bildung der Bruchstücke in Abhängigkeit vom Wassergehalt erkannt werden.

Bei einer Trockenmasse von 50 % findet kein Abbau von β -Casein durch Chymosin statt, was vermutlich auf ein Fehlen des Reaktionswassers im aktiven Zentrum des Chymosins zurückzuführen ist. Aspartatproteasen weisen in ihrem aktiven Zentrum ein locker gebundenes Wassermolekül auf. Das Wasser muss für das Enzym zur Hydrolyse des Proteins und zur Hydratisierung des β -Caseins zur Verfügung stehen. Wahrscheinlich findet eine Konkurrenzreaktion um das freie Wasser statt. Dadurch kann die Verzögerung der Hydrolyse erklärt werden. Aufgrund dieses Ergebnisses wurde dieses Modell nicht weiter betrachtet.

Im Modell Käse mit 35 % Trockenmasse konnte ein Abbau des β-Caseins festgestellt werden, jedoch ist dieser im Vergleich zum Modell Milch noch eingeschränkt. Im Modell Milch werden im Vergleich zum Modell Käse (35 % Trockenmasse) durch die proteolytische Wirkung der zugesetzten Enzyme schon nach einer Woche eine Vielzahl von Peptiden detektiert. Bemerkenswert ist, dass trotz Zugehörigkeit der zugesetzten Enzyme zur gleichen Enzymklasse die proteolytischen Wirkungen der beiden Enzyme unterschiedlich sind. Suparen ist im Modell Käse (35 % Trockenmasse) deutlich proteolytisch aktiver als Chymosin. Vergleicht man die beiden Modellsysteme miteinander (Modell Milch und Modell Käse mit 35 % Trockenmasse), so erkennt man, dass Suparen im Modell Milch bezogen auf das Gesamthydrolysat eine höhere proteolytische Aktivität aufweist als Chymosin. Betrachtet

man nur die NCN-Fraktion der Hydrolysate des Modells Milch, so ist Chymosin über den gesamten Hydrolysezeitraum proteolytisch wirksamer als Suparen. Das bedeutet, dass mehr niedermolekulare Hydrolyseprodukte gebildet werden als im Fall von Suparen. Im Modell Käse mit 35 % Trockenmasse ist das Verhalten der Enzyme bezogen auf die NCN-Fraktion als ähnlich einzuschätzen.

Es konnte außerdem gezeigt werden, dass die Bildung bestimmter Bruchstücke unterschiedlich stark vom Natriumchloridgehalt der einzelnen Proben abhängt. Im Modell Milch bewirkt ein Zusatz von Natriumchlorid bis zu 2 % bei beiden Enzymen eine Aktivierung der Hydrolyse. Im Modell Käse mit 35 % Trockenmasse konnte keine Beschleunigung der Hydrolyse festgestellt werden. Alle zugesetzten Natriumchloridkonzentrationen bewirken im Modell Käse eine Verzögerung der Hydrolyse im Vergleich zum Modell Milch. In wässrigen Proteinlösungen bewirkt Natriumchlorid eine Auflockerung der Proteinstruktur und führt zu einem verbesserten Angriff der Enzyme. Bei reduziertem Wasserangebot findet vermutlich eine zusätzliche Konkurrenzreaktion um das verfügbare Wasser statt.

Da die Aufnahme eines RP-HPLC-Peptidmusters und GPC-Elutionsprofils allein nicht ausreicht, um umfassende Aussagen über die entstandenen Peptidbruchstücke zu treffen, wurden Hydrolysate des Modells Käse (Chymosin) mit 35 % Trockenmasse fraktioniert. Proben mit und ohne Natriumchloridzusatz sollten miteinander verglichen werden. Ziel einer Fraktionierung und Rechromatographie der Proben war es, einzelne Peptide aus dem komplexen Hydrolysegemisch abzutrennen und diese näher zu charakterisieren. Aufgrund der enormen Anzahl an entstehenden Hydrolyseprodukten konnte mit dem angewandten Fraktionierungsverfahren keine zufriedenstellende Isolierung einzelner Peptide erreicht werden. Die "einzelnen" Fraktionen weisen, wie die aufgenommenen Massenspektren belegen, immer mehr als ein (bis zu 11 und mehr) auswertbare Bruchstücke mit unterschiedlichen Massen auf.

Die untersuchten Käseproben zeigten einen unterschiedliches Ausmaß im Abbau der Caseinkomponenten, der ausschliesslich vom Wassergehalt abhängig ist. α_{S1} -Casein wird bevorzugt von den Reifungsfloren im Goudakäse hydrolysiert. β -Casein hingegen scheint bei diesem Wassergehalt (45-55 %) sehr resistent gegenüber einem Angriff der Käsereifungsflora zu sein. Dominierend wirken im Gouda Käse vor allem mesophile Säuerungskulturen und Lactobacillus casei. Weiterhin wurde Sauermilchkäse näher untersucht. Dieser eignet sich

besonders gut, da er einen sehr geringen Fettgehalt hat. Die Reifung des Sauermilchkäses wird hauptsächlich durch Plasmin, Hefen und die Rotschmierekultur Brevibacterium linens vermittelt. In den Modellen wird die Proteolyse allein durch Chymosin oder Suparen erreicht. Im Sauermilchkäse wird bevorzugt β-I-Casein sowie γ-Caseine aus β-Casein freigesetzt, während α_{s1} -Casein kaum angegriffen wird. Überraschend ist dabei, dass die proteolytische Wirkung im Sauermilchkäse nicht durch Lab und Labaustauschstoffe erreicht wird. Die Ergebnisse, die durch Untersuchungen an realen Käseproben erhalten wurden, können sehr gut mit den neu entwickelten Modellen verglichen werden. Im Modell Käse mit 35 % Trockenmasse konnte wie im Sauermilchkäse ein Abbau von β-Casein zu β-I-Casein festgestellt werden, während das Modell mit 50 % Trockenmasse Ähnlichkeiten im proteolytischen Verhalten wie Gouda-Käse aufweist. α_{s1} -Casein wird durch die Käsereifungskulturen in Gouda-Käse relativ schnell zu α_{s1} -I-Casein hydrolysiert. Vermutlich ist das Protein α_{s1} -Casein durch seine Sekundärstruktur, die im Vergleich zu β-Casein mehr α -Helices aufweist, besser für einen Enzymangriff geeignet.

Die Aussagen der Modelle lassen sich also gut in die Praxis übertragen unabhängig von den zugesetzten Käsereifungsfloren. Die Modelle tragen zum Verständnis der Hydrolyse von β-Casein während der Käsereifung bei.

Eine weitere Möglichkeit zum grundlegenden Verständnis der Käsereifung beizutragen, wäre eine Optimierung der Modelle durchzuführen. Im Moment handelt es sich um ein stark vereinfachtes Modell. Um weitere Einflüsse auf die Käsereifung zu untersuchen, könnte z.B. ein Temperaturprogramm etabliert werden, um die Brenntemperaturen nach Dicklegung der Milch zu simulieren. Weiterhin sollte an einem geeigneten Fraktionierungsverfahren gearbeitet werden, da bis jetzt keine einzelnen Peaks in der RP-HPLC einem entsprechendem Peptid zugeordnet werden konnten. Da β -Casein zu den Caseinen gehört, aus deren Struktur verschiedene bioaktive Peptide freigesetzt werden, könnten die fraktionierten Hydrolysate zusätzlich auf Bioaktivität untersucht werden.

5 Zusammenfassung

Die Käsereifung ist ein biochemischer Prozess, der sich durch physikalische, mikrobiologische und enzymatische Ursachen und Abläufe vollzieht. Dabei ist die Proteolyse entscheidend für Veränderungen hinsichtlich Textur und Sensorik im Endprodukt Käse. Da die Käsematrix zu komplex ist und verschiedene Einflüsse sich störend bei der Analyse von Proteinen auswirken, sollte ein Käsemodell entwickelt werden. Ziel dieser Arbeit war es daher ein geeignetes Modell zu entwickeln, welches die Käsereifung simulieren sollte. Zum Vergleich sollte ein Modell herangezogen werden, welches der Milch nachempfunden war. Als Protein sollte das β -Casein, welches bis zu 30 % an der Caseinfraktion beteiligt ist, durch Chymosin und ein mikrobielles Milchgerinnungsenzym (Suparen) hydrolysiert werden. Anschließend sollten kommerziell erhältliche Käse untersucht werden, um eventuelle Parallelen zum Modell Käse ziehen zu können.

 β -Casein wurde aus Mischmilch durch Harnstoff-Fraktionierung gewonnen. Gereinigt wurde das Protein durch Tieftemperatur-Fraktionierung nach Payens et. al. (1963), Dialyse und Gefriertrocknung.

Die Hydrolyse des β -Caseins ist stark vom Wassergehalt abhängig. Für eine umfassende Hydrolyse des β -Caseins sind Wassergehalte unter 58 % nicht ausreichend. In Vorversuchen konnte in einem Modell mit 35 % Trockenmasse eine Hydrolyse des β -Caseins bestätigt werden. Ausgehend von diesen Ergebnissen wurde das Modell Käse daraufhin mit einer Trockenmasse von 35 bzw. 50 % und das Modell Milch mit 1 % Trockenmasse erstellt. Die Hydrolyse des β -Caseins wurde in Gegenwart der Enzyme Chymosin und Suparen über einen Hydrolysezeitraum von 15 Wochen verfolgt. Die Gerinnungsaktiviäten der jeweiligen Enzyme wurden abgeglichen und das Enzyme-Substrat-Verhältnis der Modelle konstant gehalten.

Die Aktivität des Chymosins und des Suparens wurde durch Enzymkontrollproben über den gesamten Hydrolysezeitraum überprüft. Chymosin scheint im Modell Käse eine stärkere Inaktivierung zu erfahren als im Modell Milch. Suparen zeigt in beiden Modellen ähnliche Inaktivierungen, jedoch wirkt sich der Aktivitätsverlust nicht so gravierend aus wie bei Chymosin ermittelt wurde. Obwohl die Aktivitätsverluste der Enzyme über einen Zeitraum von 15 Wochen erheblich zu sein scheinen, konnte ein Hydrolyse des β -Caseins beobachtet werden.

Es kann ausgeschlossen werden, dass es sich bei dem Abbau des β -Caseins, um eine Hydrolyse handelt, die durch Cathepsin D bzw. Plasmin (milcheigene Proteasen) initiiert wurde. So wurde β -Casein durch Harnstofffraktionierung bei Raumtemperatur isoliert, wobei es bei noch anhaftenden Enzymen zu einem Aktivtätsverlust kommt. Gleichzeitig wurden über den gesamten Hydrolysezeitraum Autolyseproben untersucht und keine Hydrolyse festgestellt.

Zusätze von bis zu 2 % Natriumchlorid wirken im Modell Milch aktivierend auf die Hydrolyse von β -Casein. Im Modell Käse hat ein käseüblicher Salzzusatz nur unbedeutenden Einfluss auf die Hydrolyse des β -Caseins in Gegenwart von Chymosin und Suparen. Bei Zusätzen von 4 % Natriumchlorid wurde eine Inhibierung beider Enzyme festgestellt.

Der Hydrolyseverlauf des β-Caseins durch die Ermittlung der Tyrosinäquivalente in der NCN-Fraktion der Modelle kann durch eine nicht lineare Gleichung des Typs $y = b \cdot x^a$ beschrieben werden. Der Exponent a hat dabei einen gebrochenen positiven Wert < 1. Deutlich zeigt der Kurvenverlauf des Modells Käse mit 35 % Trockenmasse eine zeitverzögerte Hydrolyse im Vergleich zum milchähnlichen System. Chymosin bildet im Modell Milch bei der proteolytischen Spaltung von β-Casein vorwiegend niedermolekulare Bestandteile. Dies wirkt sich auf die Hydrolyserate in der NCN-Fraktion aus. Suparen setzt in der gleichen Zeit im Modell Milch weniger NCN-Bestandteile frei. Chymosin und Suparen zeigen im Modell Käse mit 35 % Trockenmasse ähnliche Hydrolyseraten auf. Im Modell Käse mit 50 % Trockenmasse kann in der NCN-Fraktion kein Anstieg der Tyrosinäquivalente über einen Zeitraum von 15 Wochen festgestellt werden. Bei der Verfolgung der Hydrolyse durch die Ermittlung der neugebildeten Aminogruppen zeigt sich das Suparen im Vergleich zu Chymosin im Modell Käse proteolytisch aktiver ist.

In allen Modellen werden über den gesamten Hydrolysezeitraum niedermolekulare Bestandteile gebildet. Mit Zunahme der Hydrolysezeit kommt es auch zur Zunahme der auswertbaren Peakflächen in der RP-HPLC. Im Modell Milch kann generell eine höhere Anzahl von Signalen als im Modell Käse detektiert werden, d.h. es entstehen mehr niedermolekulare Bruchstücke als im Vergleich zum Modell Käse. Natriumchlorid bewirkt bis zu einem Zusatz von 2 % eine verstärkte Bildung von niedermolekularen, hydrophoben Bruchstücken. Bestätigt werden können die Ergebnisse im Modell Milch auch durch die schon ermittelten Tyrosinäquivalente in den NCN-Fraktionen. Im Modell Käse werden im niedermolekularen Bereich bevorzugt hydrophobe Peptide freigesetzt, während im Modell Milch auch hydrophile Peptide gebildet werden. Alle Zusätze von Natriumchlorid bewirken im Modell Käse eine Verzögerung der Hydrolyse als im Vergleich zum Modell Milch.

Mit Hilfe der GPC kann nur eine Abschätzung der gebildeten Molmassen erfolgen. Dem β -Casein konnte in allen Modellen ein Bruchstück mit einer scheinbaren Molmasse von 29 kDa zugeordnet werden. Dabei handelt es sich um eine Verschiebung der exakten Molmasse von etwa 24 kDa. Im Modell Milch wird β -Casein schneller abgebaut im Vergleich zum Modell Käse. Beim Suparen erfolgt ein rascherer Abbau des β -Caseins als bei Chymosin. Im Modell Milch (Chymosin) werden in der Hydrolysezeit von 3 Wochen Bruchstücke ≥ 19 kDa gebildet. Im späteren Hydrolyseverlauf treten Bruchstücke mit einer scheinbaren Molmasse < 15 kDa auf. Im Gegensatz hierzu entstehen im Modell Milch (Suparen) bis zur 3. Woche vorwiegend Bruchstücke < 15 kDa. Im Vergleich zum Modell Milch (Chymosin) werden im weitere Hydrolyseverlauf verstärkt Peptide mit Molmassen < 1 kDa gebildet. Im Modell Käse (Chymosin/Suparen) ist im Gegensatz zu den Modellen Milch auch nach 15 Wochen noch das Signal des β -Caseins zu detektieren. Der Abbau des β -Caseins, scheint im Modell Käse verzögert abzulaufen als im Vergleich zum Modell Milch. Natriumchlorid kann die Bildung einzelner Bruchstücke beeinflussen.

Die Untersuchungen der PAGE bestätigen, dass im Modell Milch (Chymosin) β -Casein zu β -I-CN; β -II-CN und β -III-CN abgebaut wird. Im Modell Käse mit 35 % Trockenmasse (Chymosin) findet eine verzögerte Freisetzung der Bruchstücke statt. Im Modell Milch (Suparen) ist davon auszugehen, dass nach 3 Wochen das originäre β -Casein von Suparen zu Bruchstücken hydrolysiert werden, die mit der PAGE nicht mehr detektiert werden. Im Modell Käse mit 35 % Trockenmasse findet eine deutliche Verzögerung der Hydrolyse statt. Selbst nach 15 Wochen Hydrolysezeit ist das β -Casein nicht vollständig abgebaut.

Ausgewählte Proben der NCN-Fraktionen des Modells Käse mit 35 % Trockenmasse (Chymosin) wurden fraktioniert und rechromatographiert. In den Fraktionen werden die C- und N-terminalen Aminosäuren ermittelt. Dabei konnte die Aminosäure Lys gefolgt von der Aminosäure Leu in fast allen Fraktionen als C-terminale Aminosäure nachgewiesen werden. Asn konnte als C-terminale Aminosäure nicht nachgewiesen werden. Die Aminosäuren Met und Ser konnte als häufigste terminale Aminosäure am N-terminalen Ende von Bruchstücken bestätigt werden. Glu wurde in keiner der Fraktionen identifiziert. Die rechromatographierten Fraktionen wurden außerdem mit Hilfe der LC-MS untersucht. Es wurden m/z-Zahlen zwischen 100 und 3000 detektiert. Durch Mehrfachladungen konnten zahlreiche Peptide in den Fraktionen detektiert und einzelne Molmassen zugeordnet werden.

Es konnte nicht bestätigt werden, dass durch längere Hydrolysezeiten auch mehr Peptide freigesetzt werden.

Durch die ermittelten C- und N-terminalen Aminosäuren und die detektierten Molmassen konnten allen Fraktionen mit Hilfe des Tabellenkalkulationsprogrammes Excel verschiedene Bruchstücke der Sequenz des β -Caseins zugeordnet werden. Natriumchlorid in Konzentrationen bis 2 % zeigen keinerlei Auswirkungen auf die Freisetzung von Bruchstücken zu haben. Peptide mit 2-39 Aminosäuren werden über den gesamten Hydrolysezeitraum unabhängig vom Salzgehalt freigesetzt.

Allen Proben gemeinsam war ein Bruchstück, welches dem Sequenzabschnitt des β -Caseins f 87-99 zugeordnet werden konnte. Auffällig ist, dass Chymosin vorwiegend im C-terminalen Abschnitt zwischen f80-f180 im β -Casein spaltet. Das Hydrolysat der 15. Woche mit 2 % Salz wies drei sensitive Bindungen auf, die durch Literaturangaben bestätigt wurden. Die Hydrolysate der 15. Woche mit und ohne Salzzusatz wurden miteinander verglichen und zu jedem gemeinsamem Peptid einen Enthalpiewert (Q-Wert) für die möglichen Bitterkeit zugeordnet. Nur das Peptid mit f193-f209 konnte in Literaturdaten wiedergefunden werden. In allen Fraktionen konnten Bruchstücke detektiert werden die bioaktive Sequenzen enthielten. Die Peptide f193-f209 und f177-f183 konnten direkt als bioaktive Bruchstücke ermittelt werden.

Die Käseuntersuchungen an kommerziell erhältlichen Käsesorten bestätigen die getroffenen Aussagen im Modell Käse mit 35 bzw. 50 % Trockenmasse. Man konnte anhand von gelelektrophoretischen Untersuchungen feststellen, dass β -Casein gegenüber einem Angriff von Chymosin resistent zu sein scheint, je höher die Trockenmasse des Käses. Auch anhand von chromatographischen Untersuchungen konnte gezeigt werden, dass im Falle von lang gereiftem Goudakäse (2 Jahre) mit 45 % Trockenmasse weniger Peptide detektiert werden als beim Modell Käse am Ende der Hydrolyse mit 35 % Trockenmasse. Einen ähnlichen Hydrolyseverlauf zum Goudakäse zeigte das Modell Käse mit 50 % Trockenmasse. Die entwickelten Modellen sind geeignet die Proteolyse während der Käsereifung nachzuvollziehen.

6 Literaturverzeichnis

- Addeo, F.; Chianese, L.; Salzano, A.; Sacchi, R.; Cappuccio, U.; Ferranti, P.; Malorni, A.: Characterization of the 12 % trichloroacetic acid-insoluble oligpeptides of Parmigiano-Reggiano cheese. J. Dairy Res. <u>59</u> (1992), S. 401-411
- AID: Informationsmaterial zur K\u00e4seherstellung. Auswertungs- und Informatiosndienst f\u00fcr Ern\u00e4hrung, Landwirtschaft und Forsten e.V. (1993)
- Antonov, V.K: Chemical approaches of the mechanism of aspartic proteinases <u>ref. in:</u> Kostka,
 V. (Hrsgb.): Aspartic proteinases and their inhibitors. Walter de Gruyter-Verlag Berlin, (1985), S. 203-220
- Arnold, U.: Dissertation. TU-Dresden, Inst. f. Lebensmittelchemie (1995)
- Aschaffenburg, R.: Preparation of β-Casein by a modified urea fractionation method. J. Dairy Res. <u>30</u> (1963), S. 259-261
- Awad, S.; Lüthi-Peng, Q.-Q.; Puhan, Z.: Proteolytic activities of chymosin and porcine pepsin on buffalo, cow, and goat whole and β-casein fractions. J. Agric. Food Chem. <u>46</u> (1998), S. 4997-5007
- Awad, S.; Lüthi-Peng, Q.-Q.; Puhan, Z.: Proteolytic activities of suparen and rennilase on buffalo, cow and goat whole casein and β-Casein. J. Agric. Food Chem. <u>47</u> (1999), S. 3632-3639
- Bank, R. A.; Jansen, E. J.; Beekman, B.; te Koppele, J. M.: Amino Acid Analysis by Reverse-Phase High-Performance Liquid Chromatography: Improved Derivatization and Detection Conditions with 9-Fluorenylmethyl Chloroformate. Analyt. Biochem. <u>240</u> (1996) S. 167-176
- Barrett, A.; Rawlings, N.; Woessner, J. (editors): Handbook of proteolytic enzymes. Academic Press 1988, S.815-819
- Belitz, H.D.; Grosch, W.: Lehrbuch der Lebensmittelchemie. Springer-Verlag, Berlin (1992),4. Auflage
- Belitz, H.-D.; Kaiser, K.-P.: Monitoring cheddar cheese ripening by chemical indicies of proteolysis. 3. Identification of several high-molecular mass peptides. Z Lebensm Unters Forsch <u>197</u> (1993), S. 119-122
- Berridge, N. J.: Nature (London) 149 (1942), S. 194
- Betner, J.; Földi, P.: New automated amino acid analysis by HPLC precolumn derivatisation with FMOC. Chromatographia <u>22</u> (1986), S. 7-12
- Blum, H.; Beyer H.; Gross H. J.: Verbesserte Vorschrift zur Färbung mit Silber. Electrophoresis <u>8</u> (1987), S. 93

- Blundell, T.; Jenkins, J.; Pearl, A.; Sewell, T.; Pedersen, V.: The high resolution structure of Endothia pepsin, S. 151-161 ref. in: Kostka, V. (Hrsg.): Aspartic Proteinases and Their Inhibitors. Walter de Gruyter, Berlin 1985.
- Böhm, A.: Untersuchungen zur Proteolyse von para-κ-Casein: vom Modell zum Käse. Dissertation. TU Dresden, Inst. f. Lebensmittelchemie (2003)
- Boldt, R.: Untersuchungen zum enzymatischen Abbau von α_s-Casein durch Chymosin in verdünnter Lösung und Systemen mit begrenztem Wasserangebot. Diplomarbeit TU Dresden, Inst. f. Lebensmittelchemie (1999)
- Budzikiewicz, H.: Massenspektrometrie. Eine Einführung. VCH-Verlag, Weinheim (1992)
- Bumberger, E.; Belitz, H.-D.: Bitter taste of enzymic hydrolysates of casein. I. Isolation, structural and sensorial analysis of peptides from tryptic hydrolysates of beta-casein. Z Lebensm Unters Forsch <u>197</u> (1993), S. 14-19
- Bütikofer, U.; Baumann, E.; Sieber, R.; Bosset, J.O.: Ripening of Emmental cheese wrapped in foil with and without addition of Lactobacillus casei subsp. casei. IV. HPLC Separation of water-soluble Peptides. Lebensm.-Wiss. u. Technol. 31 (1998), S. 297-301
- Byler, D. M.; Farrell, H. M.; Susi, H.: Raman spectroscopic study of casein structure. J. of Dairy Sci. <u>71</u> (1988), S. 2622- 2629, <u>ref. in:</u> Z. Lebensmittel-Unters. u.- Forsch. <u>190</u> (1990), S. 148
- Carpino, L.A.; Han, G.Y.: The 9-Fluorenylmethoxycarbonyl amino protecting group. J. Org. Chem. <u>37</u> (1972), S. 3404-3409
- Chang, J. Y.: A complete quantitative N-terminal Analysis method. Analyt. Biochemistry (N.Y.) <u>179</u> (1988) S. 542-556
- Chang, J. Y.; Creaser, E. H.: A Novel Manual Method for Protein-Sequence Analysis, Biochem. J. <u>157</u> (1976), S.77-85
- Chang, J. Y.; Creaser, E. H.; Bentley, K. W.: 4-N, N-Dimethylaminoazobenzene-4' isothiocyanate, a New Chromophoric Reagent for Protein Analysis, Biochem. J. <u>153</u> (1976), S. 607-611
- Chitipnityol, S.; Crabbe, M.J.C.: Chymosin and aspartic proteinases. Food Chemistry <u>61</u> (1998), S. 404
- Corradini, D.: Peptide mapping by reversed-phase chromatography, LC GC International <u>9</u>, 11 (1996), S. 732-739
- Coste, M.; Rochel, V.; Lenoil, J.; Molle, D.; Bouhallab, S.; Tome, D.: Identification of Cterminal peptides of bovine β-Casein that enhance proliferation of rat lymphocytes. Immunol. Lett. <u>33</u> (1992), S. 41-46
- Creamer, L. K.: A further study of the action of Rennin on β -Casein. N.Z.J Dairy Sci. Technol. <u>11</u> (1976), S. 30-39

- Creamer, L. K.; Mills, O. E.: The action of rennets on the caseins I. Rennin action on β -Casein-B in solution. J. Dairy Res. <u>38</u> (1971), S. 269-281
- de Jong, L.; de Groot-Mostert, E.A.: The proteolytic action of rennet on different casein substrates under various conditions. Neth. Milk Dairy J. <u>31</u> (1977), S. 296-313
- de Roos, A. L. ; Geurts, T. J. ; Walstra, P.: The association of chymosin with artificial casein micelles. Int. Dairy J. <u>10</u> (2000), S. 225-232
- Desmazeaud, M. J.; Gripon, J.-C.: General mechanism of protein breakdown during cheese ripening. Milchwissenschaft <u>32</u> (1977), S. 731-734
- Doerffel, K.: Statistik in der analytischen Chemie. 5. Aufl. VEB Deutscher Verlag für Grundstoffindustrie. Leipzig, 1990.
- Edwards, J.L.; Kosikowski, F.V.: Electrophoretic proteolytic patterns in cheddar cheese by rennet an fungal rennets: Their significance to international classification of cheese varieties. <u>52</u> (1969), S. 1675-1678
- El-Shibiny, S.; Abd El-Salam, M.H.: Action of milk clotting enzymes on β-Casein from buffalo's and cow's milk. J. Dairy Res. <u>43</u> (1976), S. 443-448
- Emmons, B. D.; Beckett, D. C.; Binns, M.: Milk clotting enzymes: 1. Proteolysis during cheese making in relation to estimated losses of yield. 2. Estimating cheese yield losses from proteolysis during cheese making. J. Dairy Sci. <u>73</u> (1990), S. 2007-2027, <u>ref. in:</u> Milchwissenschaft <u>46</u> (1991), S. 466
- Farrell, H.; Brown, E.; Kumosinski, T.: Three dimensional molecular modelling of bovine caseins. Food Structure <u>12</u> (1993), S. 235-249
- Fiat, A.-M.; Jollès, P.: Caseins of various origins and biologically casein peptides and oligosaccharides: Structural and physiological aspects. Molecular and cellular Biochemisrty <u>87</u> (1989)
- Fields, R.: The rapid dtermination of amino groups with TNBS. Methods in Enzymology <u>25</u> (1972), S. 464-468
- Fox, P.F.; McSweeney, P. L. H.: Proteolysis in cheese during ripening. Food Rev. Int. 12 (1996), S. 457-509
- Fox, P.F.; Walley, B.F.:Influence of sodium chloride on the proteolysis of casein by rennet and by pepsin. J. Dairy Res. <u>38</u> (1971), S. 165-169
- Garoutte, C.A.; Amundson, C.H.; Ernstrom, C.A.: In Molke zurückbleibende Milchgerinnungsenzyme. J. Dairy Sci. <u>68</u> (1985), S. 817-821
- Gripon, J.-C.; Desmazeaud, M. J.; Le Bars, D.; Bergere, J.-L.: Role of microorganisms and their enzymes in cheese ripening. II. Effect of commercial rennet. Le Lait <u>55</u> (1975), S. 502-516

- Hafkenscheid, J.C.M.: ref. in: Bergmeyer, H.U.: Methods of Enzymatic Analysis. VCH Verlagsgesellschaft Weinheim, 1988, 3. Auflage, Bd. 5, S. 11-15
- Haufe, T.: Untersuchungen zur Spezifität ausgewählter Milchgerinnungsenzyme gegenüber κ -Casein der Kuhmilch. Dissertation, TU Dresden, Inst. f. Lebensmittelchemie (1999)
- Haynes, P.A.; Sheumack, D.; Kibby, J.; Redmond, J.W.: Amino acid analysis using derivatisation with 9-fluorenylmethyl chloroformate and reversed-phase highperformance liquid chromatography. J. of Chromatography <u>540</u> (1991), S. 177-185
- Heiss, R.: Lebensmitteltechnologie. 3. Auflage, Springer-Verlag (1999), S. 17-28
- Herold, M.; Winzer, L.: Peptide Mapping durch Reversed-Phase-HPLC. BioTec Analytik <u>4</u> (1992), S. 47-54
- Hugel, S.: Untersuchungen zur Spezifität von Endothia Parasitica-Protease und Chymosin gegenüber β–Casein. Diplomarbeit, TU Dresden, Inst. f. Lebensmittelchemie (1996)
- Igoshi, K.; Jiromaru, N.; Kobayashi, H.; Arima, S.: Isolation an identification of low molecular weight peptides in gouda cheese. Anim. Sci. Technol. (Jpn.) <u>68</u> (1997), S. 385-388
- Kakade, M. L.; Liener, I. E.: Determination of available lysine in proteins. Analyt. Biochemistry <u>27</u> (1969), S. 273-280
- Kirazov, L. P.; Venkov, L. G.; Kirazov, E. P.: Comparison of the LOWRY and the BRADFORD protein essays. Analyt. Biochemistry 208 (1993), S. 44–48
- Kirchmeier, O.: Chemismus der Milchgerinnung. Milchwissenschaft 24 (1969), S. 336-343
- Klostermeyer, H.; Thomasow, J.; Wiechen, A.: Eine Methode zur Untersuchung der Labverteilung zwischen Molke und Bruch mit J₁₃₁-markiertem Rennin. Milchwissenschaft <u>27</u> (1972), S. 102-106
- Koch, J.: Vergleichende Untersuchungen zur Partialhydrolyse von β-Casein in verdünnter
 Lösung und Systemen mit begrenztem Wasserangebot. Diplomarbeit, TU Dresden, Inst.
 f. Lebensmittelchemie (1998)
- König, J.: Chemie der menschlichen Nahrungs- und Genußmittel. Bd. III/1. Untersuchung von Nahrungs-, Genussmittel- und Gebrauchsgegenständen. 4. Überarbeitete Auflage. Berlin. Verlag J. Springer. 1910, S. 28
- Konrad, H.: Das Halbmikro-Kjeldahl-Verfahren als Standard-Bezugsmethode für die Eiweißbestimmung in Milch. Nahrung <u>13</u> (1969), S. 143-149
- Krause, W.; Ludwig, E.; Seiler, M.: Kinetische Untersuchungen zur Hydrolyse von Casein und Caseinkomponenten durch saure Proteasen mit Milchgerinnungswirkung. Milchwissenschaft <u>47</u> (1992) S. 641-644

- Krause, W.; Ludwig, E.; Bernstein, A.: Kinetische Untersuchungen zum proteolytischen Abbau von Casein, isolierten Molkenproteinen und Casein-Molkenprotein-Copräzipitat durch Aspartatproteasen mit Milchgerinnungswirkung. Milchwissenschaft <u>50</u> (1995), S. 6-10
- Krause, W.; Partzsch, M.; Hassan, Z.M.R.: Zur Hydrolyse von α_s -Casein durch Aspartatproteasen aus Milchgerinnungsenzympräpraten. Milchwissenschaft <u>51</u> (1996), S. 205-209
- Krause, W.; Partzsch, M.; Hassan, Z.M.R.; Haufe, T.: Substrate binding specificity of aspartic proteases with milk clotting properties. Nahrung <u>42</u> (1998), S. 162-165

Krause, W.: persönliche Mitteilung (1998)

- Krause, W.: Abschlußbericht für die deutsche Forschungsgesellschaft; Kr1424/2-2 (2001)
- Kristiansen, K.R.; Deding, A.S.; Jensen, D.F.; Ardö, Y.; Qvist, K.B.: Influence of salt content on ripening of semi-hard round eyed cheese of Danbo-type. Milchwissenschaft <u>54</u> (1999), S.19-23
- Kube, S.: Charakterisierung C-terminaler Aminosäuren von Peptiden nach der Einwirkung von Endothia parasitica-Protease. Diplomarbeit, TU-Dresden, Inst. f. Lebensmittelchemie (1994)
- Künstler, J.-U.: Charakterisierung von Hydrolyseprodukten des α_S Caseins nach Einwirkung der Enzympräparate zur Milchgerinnung Rennilase und Suparen. Diplomarbeit, TU-Dresden, Inst. f. Lebensmittelchemie (1997)
- Langner, J; Ansorge, S; Bohley, P; Kirschke, H; Hanson; M.: Acta biol. Med. germ. <u>26</u> (1971), S. 935-951
- Larsen, B.; di Stasio, L.; Tucker, E.: COGNOSAG Workshop Report Animal Genet 23 (1992), S. 188-192
- Larsson, K.I.; Andrén, A.: Affinity between chymosin and individual Caseins at varying pH-values. Int. Dairy Journal <u>7</u> (1997), S. 615-618
- Lawrence, R.C.; Creamer, L.K.; Gilles, J.: Texture development during cheese ripening. J. Dairy. Sci. <u>70</u> (1987), S. 1748-1760
- Ledford, R.A.; O'Sullivan, A.C.; Nath, K.R.: Residual casein fractions in ripened cheese determined by polyacrylamid-gel electrophoresis. J. of Dairy Sci. <u>49</u> (1966), S. 1098-1101
- Lemieux, L.; Amiot, J.: Application of RP-HPLC to the separation of peptides from phosphorylated and dephosphorylated casein hydrolysates. J. Chromato. <u>473</u> (1989), S. 189-206

- Lemieux, L.; Amiot, J.: High-performance liquid chromatography of casein hydrolysates phosphorylated and dephosphorylated. I. Peptide mapping. J. Chromato. <u>519</u> (1990), S. 299-321
- Lien, S.; Rogne, S.: Bovine casein haplotypes: number, frequencies and applicability as genetic markers Animal Genet <u>24</u> (1993) S. 373-376 <u>ref. in: http://bibd.uni-giessen.de/gdoc/1998/uni/d980009b.ps</u>.
- Lottspeich, F.; Henschen, A.: High performance liquid chromatography in protein und peptide chemistry, Berlin: Walter de Gruyter, 1981
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J.: Proteinmeasurement with the Folin-Phenol-Reagent. J. Biol. Chem. <u>193</u> (1951), S. 265-275
- Lozán, J.L: Angewandte Statistik für Naturwissenschaftler. Pareys Studientexte 74, Verlag Paul Parey Berlin und Hamburg, 1992
- Majeed, G.H.; Ernstrom, C.A.: Bestimmung der Restaktivität von Pepsin und Chymosin im Käsebruch. J. Dairy Sci. <u>68</u> (1985), S. 1936-1938 ref.in: Milchwissenschaft <u>42</u> (1987), S. 131
- McGoldrick, M.; Fox, P.F.: Intervarietal comparison of proteolysis in commercial cheese. Z Lebensm Unters Forsch A 208 (1999), S. 90-99
- Mehaia, M. A.; Cheryan, M.: The secondary phase of milk coagulation. Effect of calcium, pH and temperature on clotting activity. Milchwissenschaft <u>38</u> (1983), S. 137-140
- Meisel, H.: Charakterisierung von gentechnologisch gewonnenen Labpräperaten im Vergleich zu Kälberlab. 2. Ergebnisse. Milchwissenschaft <u>43</u> (1988), S. 71-75
- Meisel,H.; Schlimme,E.: Bioactive peptides derived from milk proteins: Ingredients for fuctional foods? Kieler Milchwirtschaftliche Forschungsberichte <u>48</u> (1996), S. 343-357
- Mercier, J. C.; Grosclaude, F.; Ribadeau-Dumas, B.: Primary structure of bovine caseins. A review. Milchwissenschaft <u>27</u> (1972), S. 402-408
- Meyer, J; Jordi, R.: Purification and characterization of X-prolyl-dipeptidyl-aminopeptidase from Lb. lactis and Sc. thermophilus. J. Dairy Sci. <u>70</u> (1987), S. 738-745
- Mickelsen, R.; Fish, N.L.: Comparing Proteolytic Action of milk clotting enzymes on casein and cheese. J. Dairy Sci. <u>53</u> (1976), S. 704-710
- Moore, S.; Spackman, D.H.; Stein, W.H.: Chromatography of amino acids on sulfonated polystyrene resins An improved system. Analyt. Chem. <u>30</u> (1958), S. 1185-1190
- Mulvihil, D. M.; Fox, P. F.: Proteolytic specificity of chymosins and pepsins on β -caseins. Milchwissenschaft <u>34</u> (1979), S. 680-683
- Newman, M.; Safro, M.; Frazao, C.; Khan, G.; Zdanov, A.; Tickle, I.J.; Blundell, T.L.; Andreeva, N.: X-ray analyses of aspartic proteinases. IV. Structure and refinement at 2.2 A resolution of bovine chymosin. J. Mol. Biol, <u>221</u> (1991), S. 1295-309

- Ney: Z. Aminosäurezusammensetzung von Proteinen und die Bitterkeit ihrer Peptide. Lebensm-Unters. u. –Forsch. <u>149</u> (1972), S.321-323
- Noomen, A: Activity of proteolytic enzymes in simulated soft cheeses (Meshanger type). II. Activity of calf rennet. Neth. Milk and Dairy J. <u>32</u> (1978), S. 49-68
- Pabst, K.; Geis, A; Bockelmann, W.: Forschungsreport. Institut für Mikrobiologie; Bundesanstalt für Milchforschung Kiel, 2/1998
- Payens, T. A. J.; van Markwijk B. W.: Biochim. Biophysica Acta 73 (1963), S. 517-530
- Pearl, L.: The extended binding cleft of aspartic proteinases and its role in petide hydrolysis. <u>ref. in</u> Kostka, V.(Hrgb.): Aspartic proteinases and their inhibitors. Walter de Gruyter-Verlag Berlin, 1985
- Pélissier, J.-P.; Mercier, J.-C.; Ribadeau Dumas, B.: Étude de la protéolyse des caséines α_s et β-bovines par la présure. Annal. biol. anim. biochem. biophys. <u>14</u> (1972), S. 343-362
- Philippos, SH. G.; Christ, W.: Über einige, für die Käseherstellung vorgeschlagene mikrobielle, milchgerinnende Enzyme und deren Einwirkung auf das Casein der Kuhmilch. I: Wirkung milchgerinnender Enzyme auf Kuhmilchcasein. Milchwissenschaft <u>31</u> (1976), S. 349-354
- Phelan, J.A.; Guiney, J.; Fox, P.F.: Proteolysis of β-casein in cheddar cheese. J. Dairy Res. <u>40</u> (1973), S. 105-112
- Reiner, T.: Chymosin- Das perfekte Enzym für die Käsehrstellung. Deutsche Milchwirtschaft <u>48</u> (1997), S. 762-765
- Roche Lexikon Medizin, 4.Auflage; © Urban & Fischer Verlag, München 1984/1987/1993/1999
- Schägger, H.; von Jagow, G.: Tricine-sodium dodecylsulfate-polyacrylamide gelelectrophoresis for separation of proteins in the range from 1-100 kDa. Analyt. Biochemistry <u>166</u> (1987), S. 368-379
- Schalinatus, E.; Behnke, U.: Untersuchungen über bittere Peptide aus Casein und Käse, 1. Mitt. Stand der Kenntnisse. Nahrung <u>18</u> (1974), S. 697-704
- Schlimme, E.; Meisel, H.: Bioactive sequences in milk proteins. <u>ref. in:</u> Barth, C. A.; Schlimme, E (Eds.): Milkproteins Steinkopff-Verlag Darmstadt; Springer-Verlag New York (1988), S.143-149
- Schlimme,E.; Meisel, H.: Bioactive peptides derived from milk proteins structural, physiological and analytical aspects. Die Nahrung <u>39</u> (1995)
- Sienkiewicz, T.; Scherze, I.; Krenkel, K.: Untersuchungen zum proteolytischen Abbau der Caseine. 1. Wirkungen von Plasmin und Chymosin auf Caseine im Modellsystem. Milchwissenschaft <u>49</u> (1994), S. 499-504

- Silvestre, M.P.C.; Hammon, M.; Yvon, M.: Analysis of protein hydrolysates. 1. Use of poly(2-hydroxyethylaspartamide)-silica column in size exclusion chromatography for the fractionation of casein hydrolysates. J. of Agric. Food Chem. <u>42</u> (1994), S. 2778-2782
- Skoog, D. A.; Leary, J. J.: Instrumentelle Analytik. Springer-Verlag, 1996, S. 455
- Sommerer, N.; Salles, C.; Promé, D.; Promé, J.C.; Le Quéré, J.L.: Isolation of oligopeptides from the water-soluble extract of goat cheese and their identification by mass spectrometry. J. Agric. Food Chem. <u>49</u> (2001), S. 402-408
- Spackman, D. H.; Stein, W.H.; Moore, S.: Automatic recording apparatus for use in the chromatography of amino acids. Analyt. Chem. <u>30</u> (1958), S. 1190-1206
- Spreer, E.: Technologie der Milchverarbeitung. 7. Aufl. 1995, Behr's Verlag, Hamburg; S. 301-360
- Tam, J. J.; Whitaker, J. R.: Rates and extents of hydrolysis of several caseins by pepsin, rennin, Endothia parasitica Protease and Mucor pusillus Protease. J. Dairy Sci. <u>55</u> (1972), S. 1523-1531
- Thomasow, J.: Käseausbeute bei Verwendung verschiedener tierischer Labpräparate. Milchwissenschaft <u>35</u> (1980), S. 212-214
- Tossavainen, O.; Syvaoja, E.L.; Tuominen, J.; Heinanen, M.; Kalkkinen, N.: Determiantion of the peptide size range of an extensively hydrolysed protein hydrolysate. Milchwissenschaft <u>52</u> (1997), S. 63-67
- Trujillo, A.-J.; Guamis, B.; Carretero, C.: Proteolysis of Goat casein by calf rennet. Int. Dairy Journal <u>7</u> (1997), S. 579-588
- Tsuru, D.: 9.2 Carboxypeptidase. <u>ref. in:</u> Bergmeyer, H. U.: Methoden er enzymatischen Analyse, Bd. V Carboxypeptidasen. 2. Aufl. Berlin: Akademie-Verlag, 1970, S. 355-362
- Vanderpoorten, R.; Weckx, M.: Breakdown of casein by rennett and microbial milkclotting enzymes. Neth. Milk Dairy J. <u>26</u> (1972), S. 49-59
- Veerapandian, B; Cooper, J. B.: Direct observation by X-ray analysis of the tetrahedral "intermediate" of aspartic proteinases. Protein Sci. 1 (1992), S. 322- 328 ref. in: Chitipnityol, S.; Crabbe, M.J.C.: Chymosin and aspartic proteinases. Food Chemistry <u>61</u> (1998), S. 404
- Visser, S.: Proteolytic enzymes and their action on milk proteins. A review. Neth. Milk Dairy J. <u>35</u> (1981), S. 65-88
- Visser, S.; Slangen, C.; Lagerwerf, F.; Van-Dongen, W.; Haverkamp, J.: Identification of a new genetic variant of bovine beta-casein using reversedphase high-performance liquid chromatography and mass spectrometric analysis J. Chromatogr A <u>711</u> (1995), S. 141-150 <u>ref. in: http://bibd.uni-giessen.de/gdoc/1998/uni/d980009b.ps</u>.

- Visser, S.; Slangen, C..J.; Robben, A.: Determination of molecular mass distributions of whey protein hydrolysates by high-performance size-exclusion chromatography. J. of Chromatography 599 (1992), S. 205-209
- Visser, S.; Slangen, C.: On the specifity of chymosin it's action bovine β-Casein; Neth. Milk Dairy J.<u>31</u> (1977), S. 120-133
- Walstra, P.; Bloomfield, V. A.;L Wei, G. J.; Jenness, R.: Effect of chymosin action on the hydrodynamic diameter of casein micelles. Biochim Biophys Acta <u>669</u> (1981), S. 258-259
- Walstra, P., Jenness, R.: Dairy chemistry und Physics. John Wiley & Sons: New York. 1984
- Waugh D. F.; Talbot, B.: Equilibrium casein micelle systems. Biochemistry <u>10</u> (1971), S. 4153-4162
- Webb, B.H.; Johnson, A.H.; Alford, J.A.: Fundamentals of dairy chemistry, 2nd edn. AVI
 Publ. Co.: Westport, Conn. (1974), ref. in: Belitz, H.D.; Grosch, W.: Lehrbuch der
 Lebensmittelchemie. Springer-Verlag Berlin, 4. Aufl. 1992, S. 451-493
- Westermeier, R.: Elektrophorese-Praktikum. Verlag Chemie (VCH), 1990.
- Windisch, E.: Untersuchungen zur Spezifität von Rinderpepsin gegenüber β Casein. Diplomarbeit, TU Dresden, Inst. f. Lebensmittelchemie (1997)
- Wong, D.W.S.; Camirand, W.M.; Pavlath, A.E.: Structures and functionalities of milk proteins. Critical review in Food Sci. and Nutrition <u>36</u> (1996), S. 807-844
- Yada, R.Y; Nakai, S.: Secondary structure of some aspartyl proteinases. J. o. Food Biochemistry <u>10</u> (1986), S. 155-183
- Zittle, C.A.; Custer, J. H.: Purification and some of the properties of α_{s} and κ Casein. J. Dairy Sci. <u>46</u> (1963), S. 1183

Lebenslauf

Persönliche Daten:		Juliane Koch
		Geboren am 13.05.72 in Dresden
		Ledig; keine Kinder
Beruflicher	1999-2003	Wissenschaftliche Mitarbeiterin an der
Werdegang:		Technischen Universität Dresden /Institut für
		Lebensmittelchemie
	1998-1999	Gutachterausbildung an der
		Landesuntersuchungsanstalt für Gesundheits- und
		Veterinärwesen Standort Dresden;
		Abschluss: staatl. gepr. Lebensmittelchemikerin
Studium:	1996-1998	Wiederaufnahme des Studiums an der
		Technischen Universität Dresden
		Abschluss: Diplom-Lebensmittelchemikerin
	1995-1996	Studium an der Dublin City University, Irland
	1992-1995	Studium der Lebensmittelchemie an der
		Technische Universität Dresden
Schulischer	1990-1992	Städtisches Gymnasium Erding
Werdegang:		Abschluss: Abitur
	1984-1990	6.1 Städtisches Gymnasium
		Vohwinkel/Wuppertal
	1978-1984	3. Polytechnische Oberschule Dresden

Versicherung:

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Datum

Juliane Koch