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Zusammenfassung 

Das Schmelzspinnen von feinen Polyetheretherketon- (PEEK) Filamenten wurde in der 

vorliegenden Dissertation erstmals umfassend untersucht. Feine PEEK-Filamente sind für 

innovative Anwendungen aufgrund ihrer mechanischen und thermischen Eigenschaften (hohe 

Dauergebrauchstemperatur) sowie ihrer chemischen Beständigkeit sehr gut geeignet, z.B. als 

textil-verstärkte leichte Hochleistungsrotoren. Ziel dieser Arbeit bestand darin, feine PEEK-

Filamente (Durchmesser zwischen 10 µm und 15 µm) erstmals zu erspinnen und dafür die 

Spinnbedingung des Schmelzspinnens mit Hilfe der experimentellen und theoretischen 

Untersuchungen zu optimieren. Zum Vergleich wurde das Verhalten von feinen Polypropylen- 

(PP) Filamenten beim Schmelzspinnen mit herangezogen. Innerhalb der Fadenbildungszone 

wurden online-Messungen der Filamentgeschwindigkeit (Laser-Doppler-Anemometrie) und der 

Filamenttemperatur (Infrarot-Thermographie) simultan durchgeführt. Der Verlauf der 

Filamentgeschwindigkeit in Abhängigkeit vom Abstand zur Spinndüse wird beeinflusst durch die 

technologischen Spinnparameter, insbesondere aber durch die sich ausprägende innere Struktur 

der PEEK-Filamente. Für die Bestimmung der Filamenttemperatur wurden zwei verschiedene 

Methoden der Emissivitätskorrektur in Abhängigkeit vom Filamentdurchmesser entwickelt und 

angewendet. Dabei wurde auch eine neuartige Methode zur Bestimmung des 

Filamentdurchmessers simultan zur Temperaturbestimmung mittels der Infrarot-Thermographie 

entwickelt. Die Genauigkeit der Durchmesserbestimmung ist hierbei von der Auflösung der 

verwendeten Kamera abhängig. 

Die rheologischen Messungen bestätigten die thermische Stabilität der PEEK-Schmelze bei 

400°C für mehr als 30 min, es war keine thermische Degradation erkennbar und die untersuchte 

(komplexe) Scherviskosität blieb über diesen Zeitraum unveränderlich. Bei hohen 

Schergeschwindigkeiten (dγ/dt > 10 s-1) im dynamischen Schwingungsversuch zeigte die 

(komplexe) Scherviskosität ein mit der Schwingungsfrequenz abnehmendes Verhalten, das nicht 

mit dem bekannten Potenzgesetz, sondern besser durch das Bueche (Cross) Modell beschrieben 

werden kann. Eine Masterkurve wurde berechnet und die Temperaturabhängigkeit der Viskosität 

nach Arrhenius bestimmt. Entlang der Spinnstrecke wurde innerhalb der Fadenbildungszone mit 

Hilfe der gemessenen Filamentgeschwindigkeiten die (scheinbare) Dehnviskosität bei hohen 

Dehnraten (Gradient der Filamentgeschwindigkeit > 10 s-1) abgeschätzt. Es sind in der Literatur 

keine Angaben für die Dehnviskosität von PEEK in diesem Bereich verfügbar. Die ermittelte 

(scheinbare) Dehnviskosität konnte über die Temperaturabhängigkeit nach Arrhenius reduziert 

  



werden. Das üblich angewendete Maxwell-Modell und das Upper-convected Maxwell Modell 

stellen dabei keine geeignete Anpassung an die Messwerte dar, eine eigene Anpassung für den 

abfallenden Verlauf der Dehnviskosität in Abhängigkeit von der Dehnrate konnte diese 

Verhalten von PEEK-Material interpretieren und wurde deshalb verwendet. 

Die Orientierung der PEEK-Spinnfilamente, ausgedrückt durch die Doppelbrechung, nimmt mit 

wachsender Abzugsgeschwindigkeit (untersuchter Bereich: 1000 bis 2000 m/min) zu. Mit 

wachsendem Durchsatz (Bereich 0.17 bis 3.5 g/min) nimmt dagegen die Doppelbrechung ab. 

Dieses Verhalten entspricht dem üblicher thermoplastischer Spinnpolymere, es besteht eine 

Relation zwischen Orientierung und Spinnverzug bzw. Spinnspannung. Feine PEEK-Filamente 

weisen eine hohe Orientierung auf. DSC-Messungen an den ersponnenen PEEK-Filamenten 

zeigten, dass der Kristallisationsgrad der Spinnfilamente von ihrer Abzugsgeschwindigkeit und 

dem verwendeten Durchsatz abhängig ist und mit der Orientierung der Polymerketten korreliert. 

Die durchgeführten Untersuchungen weisen einen hohen Kristallisationsgrad für feine PEEK-

Filamente nach. Für die berechneten und gemessenen Filamentfeinheiten und –durchmesser 

ergaben sich im Rahmen der Spinnversuche gute Übereinstimmungen. Dieses Ergebnis deutet 

auf ein homogen und stabil realisiertes Spinnverfahren für feine PEEK-Filamente hin. Mit 

wachsender Spinnspannung, insbesondere bei hoher mechanischer Spannung im 

Verfestigungspunkt, erhöht sich die Orientierung der Polymerketten und in Folge davon 

verringert sich die Reißdehnung der ersponnenen Filamente. Ein hoher Spinnverzug, d. h. eine 

hohe Dehnung innerhalb der Fadenbildungszone, wirkt ebenfalls in gleicher Weise auf die innere 

Strukturausprägung. Im Ergebnis dessen liegen hochorientierte feine PEEK-Filamente vor, deren 

bereits gestreckte Molekülketten keine wesentlichen Dehnungen mehr ermöglichen, die aber 

ohne weitere Prozessschritte bereits über ausreichende Festigkeiten (bis 4 cN/dTex) verfügen. 

Das Fadenbildungsmodell (angewendet in IPF für andere Polymere) wurde in der Form eines 

entsprechend modifizierten Satzes eindimensionaler gekoppelter Differenzialgleichungen für das 

Material PEEK angepasst und numerisch für die Fadenbildungszone des PEEK-Spinnprozesses 

gelöst. Beim Vergleich der berechneten und gemessenen Filamenttemperaturen und –

geschwindigkeiten wurde nachgewiesen, dass im Modell die Abhängigkeit der Dehnviskosität von 

Temperatur und Dehnrate (im Bereich von V′=10...1000 s-1) berücksichtigt werden muss, um den 

Fadenbildungsverlauf, die Strukturbildung und die Wärmeübertragung zu erfassen. Die 

Wärmeübertragung bei der Abkühlung wurde auch mit Hilfe geeigneter Temperaturmessungen 

innerhalb der Fadenbildungszone untersucht und die Übertragungskoeffizienten (Nusselt-

Zahlen) bestimmt. Die so abgeschätzten Nusselt-Zahlen zeigten dabei im Gegensatz zum häufig 

verwendeten Modellansatz von Kase und Matsuo einen leicht abnehmenden Verlauf in der 

   



Fadenbildungszone. Es konnte gezeigt werden, dass die Ursachen dafür in dem für PEEK nicht 

zu vernachlässigenden Anteil von freier Konvektion und Wärmestrahlung am 

Gesamtwärmeübergang liegen. Beispielsweise beträgt in der Nähe der Spinndüse der 

Strahlungsanteil etwa 12% des Gesamtbetrags des Wärmeübergangs. Die im 

Fadenbildungsmodell verschiedenen verwendeten konstitutiven Gleichungen (differenziell 

viskoelastisch bzw. nichtlinear viskoelastisch) zeigten bei der Lösung der Differenzialgleichungen 

keine großen Unterschiede bezüglich des viskosen Verhaltens im Fadenbildungsverlauf. Das liegt 

daran, dass bei starker Verstreckung das PEEK-Material sich viskos (und weniger elastisch) 

beschreiben lässt, obwohl die PEEK-Schmelze direkt nach der Düse auch viskoelastisches 

Verhalten zeigt. 

Mit dem vorliegenden Modell kann die Strangaufweitung nicht erfasst werden, eine 

Kompensation kann ggf. durch eine Verschiebung des Anfangspunktes der numerischen Lösung 

erreicht werden. Eine weitere Korrektur kann erforderlich sein, wenn auch die in der Düsennähe 

erhöhte Lufttemperatur im Modell mit einbezogen werden soll. So lassen sich berechnete und 

gemessene Filamenttemperaturen und –geschwindigkeiten auch in größerem Abstand von der 

Düse sinnvoll vergleichen. Bei den Spinnversuchen mit zunehmender Abzugsgeschwindigkeit, 

aber konstanten Spinnbedingungen, insbesondere konstantem Durchsatz, zeigten die gemessenen 

Geschwindigkeitsprofile in Düsennähe einen nahezu identischen Verlauf, die Differenzierung der 

Profile fand hauptsächlich erst nach der viskosen Deformation statt. Am Ende der 

Fadenbildungszone, im Bereich der Verfestigung, unterschieden sich die Spinnfilamente dann 

wesentlich bezüglich ihrer durchlaufenen Dehnungen und der damit verknüpften 

Strukturausprägung (Orientierung und Kristallisation). Die innere Fadenkraft, d. h. die 

Fadenspannung, wird bestimmt durch die Spinnbedingungen und die Abkühlung entlang der 

Spinnstrecke. Es besteht eine Korrelation, wie bei anderen Thermoplasics, zwischen der 

Spannung (berechnet von o.g. PEEK Modell) am Verfestigungspunkt und der Orientierung 

(gemessene Doppelberechung) der Spinnfilamente. Die berechnete Fadenspannung ist zusätzlich 

noch von den im Modell verwendeten Beziehungen für die Nusselt-Zahl und für die 

Dehnviskosität abhängig. Die Korrelation zwischen der berechneten Spannung im 

Verfestigungspunkt und der Orientierung, dargestellt durch die gemessene Doppelbrechung, 

konnte für PEEK nachgewiesen werden. 

Die Spinnbarkeitsgrenzen von PEEK bezüglich Abzugsgeschwindigkeit und Durchsatz wurden 

untersucht. Dabei wurden solche Spinnbedingungen bestimmt, die ein stabiles 

Schmelzspinnverfahren ermöglichten: Für Durchsätze (pro Düsenbohrung) >0.5 g/min und 

Abzugsgeschwindigkeiten <7000 m/min konnten so PEEK-Filamente mit minimalem 

   



Durchmesser bis etwa 13 µm hergestellt werden. Ebenfalls konnte PEEK auch noch mit einem 

Durchsatz von 0.1 g/min versponnen werden, wobei die Abzugsgeschwindigkeiten hier jedoch 

deutlich bis ca. 1000 m/min begrenzt blieben. Im Vergleich dazu konnte Polypropylen bei 

höheren Abzugsgeschwindigkeiten versponnen werden, so dass hier feinere PP-Filamente als 

PEEK-Filamente möglich wurden. Mit Hilfe des PEEK-Fadenbildungsmodells wurden die 

Einflüsse von erhöhter Schmelzetemperatur und verkürztem Spinnweg (Abstand zwischen Düse 

und Wickler) untersucht. Beide Effekte bewirken eine Verringerung der Spinnspannung und der 

Dehnrate (infolge der vergrößerten Fadenbildungszone), was günstig für die Erspinnung von 

feinen Filamenten ist und experimentell auch bestätigt wurde. Es wurden auf diese Weise sehr 

feine PEEK-Filamente mit Durchmessern < 6 µm hergestellt. Bei diesen Spinnversuchen war 

jedoch die Realisierung des erforderlichen geringen Durchsatzes problematisch, da sowohl der 

Schmelzedruck in der Kapillare sehr niedrig war als auch die lange Verweilzeit sich ungünstig auf 

die Stabilität des Spinnprozesses auswirkte. 

Im Ergebnis dieser Dissertation lassen sich Empfehlungen für weiterführende Arbeiten auf dem 

Gebiet des Schmelzspinnens von feinen Filamenten ableiten. Insbesondere besteht weiterer 

Forschungsbedarf in den Bereichen der spannungsinduzierten Kristallisation, der 

zweidimensionalen Behandlung der Strangaufweitung nach der Spinndüse, der erzwungenen 

(zusätzlichen) Wärmeübertragung durch die laterale Bewegung des Spinnfilaments und zur 

zeitbezogenen Spinnstabilität. Die vorliegende Arbeit stellt eine Konzeption für das 

Schmelzspinnen feiner PEEK-Filamente dar, die vom Prinzip auch auf das Schmelzspinnen von 

anderen thermoplastischen Materialien angewendet werden kann. Diese Konzeption beinhaltet 

die systematischen Untersuchungen zu Granulat und Filament, insbesondere die Untersuchungen 

zur Korrelation zwischen innerer Strukturausprägung und mechanischen Eigenschaften der 

feinen Filamente. Mit dem grundlegenden Verständnis der Zusammenhänge können so die 

Spinnbedingungen im Schmelzspinnprozess für feine Filamente optimiert werden. Das 

verbesserte Fadenbildungsmodell und die Erkenntnisse zu den Spinnbarkeitsgrenzen bei der 

Herstellung von feinen Filamenten können für relevante Anwendungen in der Industrie genutzt 

werden.  

 

   



Abstract 
The production of fine filaments using the melt spinning process needs considerable effort. A 

thermoplastic melt is stretched from the spinneret under a constant take-up speed. The high 

performance thermoplastic PEEK is solidified in the melt spinning process in a small distance 

and short time. Therefore, the fine PEEK filaments in the fibre formation zone underwent a 

high deformation and cooling rate. To make the melt spinning process stable and to produce the 

fine PEEK filaments, material properties and material behaviour are examined using on-line and 

off-line measurements. The fibre speed measured using Laser Doppler Anemometry and 

simultaneous temperature measured using infrared thermography enable both the strain rate and 

consequently the apparent extensional viscosity to be estimated. This provides the apparent 

extensional viscosity over the spinning line, which can itself show the structural development of 

PEEK fibres in the fibre formation zone, i.e. necking and solidification phenomena.  

The one-dimensional fibre formation model must include both procedural and material 

parameters. The heat transfer coefficient was estimated using the filament temperature 

measurement and showed a relatively high contribution of radiation and free convection in 

comparison to forced convection near the spinneret. The improved model of PEEK fibre 

formation gave a good agreement to both temperature and speed measurements, and also 

confirmed the high deformation rate effect on the extensional viscosity, which could be 

simulated with a properly generalised Newtonian constitutive equation.  

The end properties of the fibres, such as as-spun filament fineness, orientation (expressed using 

total birefringence) and total crystallisation (examined using DSC) are investigated in relation to 

different spinning conditions, i.e. take-up speed, throughput and the draw down ratio. The tensile 

test diagram results, measuring phenomena such as the elongation at break, tenacity, and the 

Young modulus of elasticity are also analysed in order to complete the correlation of the above-

mentioned spinning conditions to the structural properties of as-spun fine PEEK filaments.  

The melt spinning of fine PEEK fibres under different spinning conditions is examined with the 

purpose of finding the optimum take-up speed and throughputs. Other spinning conditions, such 

as the temperature of melt processing, and the arrangement and diameter of the spinneret holes, 

are changed in order to make the process more stable. The recommendations for further study 

can be used to further examine some aspects of this work; however, this work presents a new 

concept for fine PEEK melt spinning supported by spinnability examinations under different 

spinning conditions and the improved model of fibre formation, which is also relevant for typical 

industrial processing applications. 
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1 Introduction 

This thesis focuses on the theoretical and experimental investigations of the melt spinning 

process, which is used to produce fine thermoplastic filaments of poly (ether ether ketone) 

PEEK. The following chapter provides an overview and explains the goals of this work. 

1.1 Fine thermoplastic filaments: an overview 

Fine thermoplastic fibres have been produced since 1950 and can be used in a wide range of 

applications [Okatomo 1994]. The many different characteristics of fine filaments, such as 

softness, flexibility and smoothness, make the fine fibres also suitable for potential new 

applications. The motive of this work is the usage of fine filaments as matrix for a reinforced 

composite. In this connection, the thermoplastic material is melted and processed to produce the 

fine thermoplastic fibres, these fibres are then mixed with the reinforcement fibres; which are 

normally fine fibres as well. Finally the fine thermoplastic is melted to make a special fibre 

reinforced composite (this is dealt with in greater detail in section 1.2).  

Various methods and processes have been developed to produce the fine fibres in continues or 

random forms. While the direct conventionally melt spinning process is an approved technique 

for producing continuous fine fibres, it can also raise some difficulties. Nevertheless, the direct 

melt spinning method is an optimised method of producing the fine fibre properly 

[Fourné 1995].  

This thesis concerns the melt spinning of fine PEEK filaments and brings together the required 

theoretical and practical understandings. At present, the as-spun PEEK yarn is commercially 

available [Zyex, Hoechst], but not in fine fibres requested here. The first melt spinning of PEEK 

was reported by Shimizu et al. [1985] and was also dealt with widely by Ohkoshi [1990-2000], but 

no more reports on fine PEEK fibres have appeared since this time. Results by 

Beyreuther et al. [2001] and Brünig et al. [2002] have however been published on research and 

experiments conducted on fine as-spun PEEK fibres.  

The fine fibres can normally be extruded by reducing the polymer throughput and increasing the 

draw down ratio, but this reduction of mass throughput is observed to have its limits. Other 

problems in the process of direct melt spinning must also be fully explored. Fourné [1995] 

developed the melt spinning equipment of fine PET filaments, but a new improved technology in 

the equipment is still in process by other developer [Schäfer 2002] and [Stibal 2002]. To produce 
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fine filaments Fourné suggested the necessary conditions for production of fine PET fibres: very 

pure and homogenous polymer (usage of good filtration), increase the melt temperature higher 

than normal spinning, a wide holes distance for multifilament spinneret, a short blowing way and 

lower air velocity, fibre lubrication, double sided preparation after the blowing way and small 

fibre way (distance between spinneret and winder). More steps to modify the fine spinning 

process of PET in more detail are listed in [Fourné 1995]. In order to overcome the melt 

spinning problems for fie PEEK filaments, the same solutions have been suggested: to optimise 

the viscosity (using high temperature to reduce viscosity), special design in the arrangement and 

positioning of spinneret holes (to ensure uniform cooling), controlling the spinning line tension, 

lower throughput and to increase the filtration. These potential answers to the problems of melt 

spinning of fine PEEK fibres have been partly investigated by Beyreuther [2001] and 

Brünig [2002] and the three following solutions were specified: high take-up velocity, very low 

mass throughput and high draw down ratio.  

Despite taking precautions, the fibre breakage increases by fineness less than 1 dTex. Melt 

spinning of fine filaments is often a sensitive process, especially combined with filament 

breakage. Increasing the draw down ratio can initiate necking in the profile of the spinning line, 

which is important for the internal structure and the stability of process. The maximum allowed 

take-up speed to produce the minimum fine filament is especially dependent on the 

viscoelasticity and temperature distribution along the spinning line. The problems which must 

normally be covered can be summarised as forth: the instability of the spinning line (such as the 

necking effect), variation of filaments’ fineness in a bundle, and the breakage of fibre.  

Fine fibres are defined according to convention in diameter or fineness of fibre. The Textile 

Committee of Germany defines micro fibres as follows: fibres finer than 1.2 dTex as Polyester 

and finer than 1.0 dTex as Polyamide. However, other definitions [Fourné 1995] classify a micro-

filament as lying between 0.3 and 1.1 dTex. Alternatively, fine fibres are also defined as fibres of 

less than 0.7 denier (0.7*1.11~8 dTex) [Okamoto 1994]. Fibres less than 0.55 dTex are 

considered ultra-fine and fibres finer than 0.11 dTex are sometimes referred to as super ultra-fine. 

Beyreuther [2001] has defined the so-called micro fibres as filaments with a fineness of <1 dTex 

and diameter of <10 µm. This thesis concerns itself with the fibres holding diameter of 

10 µm<D<30 µm; however, other fibres with a diameter lower than 10 µm and up to 60 µm 

have also been investigated in order to complete the discussions. 
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1.2 Specific application of fine PEEK fibres for hybrid yarn 

To produce Fibre Reinforced Composites (FRC) or Reinforced Thermoplastics Composites 

(RTC), the filaments are the base components. These types of composites have high strength and 

lightweight properties, and are used in many fields of engineering including aerospace, 

automotive and other industries. FRC are designed to have both creep as well as fatigue 

resistance at a high operating temperature. The first step in the production of FRC is the 

selection and preparation of proper fibres. The second step is to mix the fibres in a commingled 

hybrid yarn, which is a textured yarn consisting of continuous reinforcement fibres (for example 

carbon or glass) and thermoplastic fibres (for example PEEK or PP). Since the hybrid yarn is 

soft, it is very suitable for producing fibre pre-forms using almost any textile technology. In the 

subsequent heating and consolidation process, the thermoplastic fibres melt and become the 

matrix material, and the reinforcement fibres are impregnated with the matrix in the formed fibre 

composite material (see Figure 1.1). Two cases of hybrid yarn, PEEK/CF and PP/GF, are briefly 

explained as follows:  

Case 1 Commingled hybrid yarns PEEK/CF (carbon fibre) [Hufenbach 2002]: PEEK fibres as a 

thermoplastic matrix material and carbon fibres as a reinforcement are used to produce high  
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Figure 1.1 Melt spinning as starting process to produce the Fibre Reinforced Composite 
[DFG Project FOR278/2] 
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performance rotors from reinforced textile composite to use in complex applications. Carbon 

fibre is selected as a reinforcement material due to its high strength. The PEEK fibre is selected 

as the thermoplastic matrix material for its relative high operating temperature and a stable 

chemical resistance. An advanced composite rotor was developed for high rotation speeds up to 

100,000 min-1. Construction of the net shape rotor pre-form is achieved by means of different 

stitching processes. The machines of the ready-made-clothing technology allow the specific 

sewing-up of the semi-finished textile products into a three dimensionally reinforced multi-layer 

composite structure [Herzberg 2001]. 

Case 2 Commingled hybrid yarn PP/GF: In this case the glass fibre is produced with special 

lubricant to be used as reinforcement and the low viscous polypropylene is used as a matrix 

polymer. This makes for fast and simple processing of hybrid yarn. 

Theoretical investigations concerning the diameter ratio of two-fibre system (reinforcement and 

matrix) to design the hybrid yarn were summarised by Beyreuther [2001] using the following 

criteria:  

- Filament Surface/Volume Ratio (FSVR) criterion: if the FSVR ratio of reinforcing fibres 

(CF or GF) come near to matrix fibres FSVR Ratio, then the better laminate can be 

obtained. 

 

- Each Other Touch (EOT) criterion: If the number of matrix filaments are at least as high 

as the number of reinforcement in the hybrid yarn, bonding with less defect can be 

achieved.  

Following these two criteria, the optimal consolidation can be obtained if the hybrid yarn has a 

uniform and homogeneous mixture of reinforced fibres and matrix. This can be realised if both 

components have the same diameter and same cross section area. Classical reinforcements 

(CF/GF) have a relatively small diameter in the order of 10 µm. Brünig [2002] explained that the 

available PEEK yarn with a diameter of 20 µm and the commercial CF with a diameter of 7 µm 

makes a hybrid yarn with 40/60 volume ratio (see Step 2 in Figure 1.1). In this type of hybrid 

yarn components, the thermoplastic molten can not reach every reinforcing fibre during press 

and consolidation. This can lead to unbounded reinforcement and a FRC with defects. 

Therefore, in order to have a better reinforcement, the diameter of the PEEK fibre must reach 

12 µm or even 10 µm when possible. 
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1.3 Goals and methods of this work  

In order to supply the fine PEEK filaments to use later as hybrid yarn for reinforced 

thermoplastics, the following two goals have been established:  

The first goal is the investigation of fine PEEK filaments produced by the melt spinning process. 

In order to produce the fine filaments, it is necessary to find the proper spinning conditions such 

as take-up speed, throughput, draw down ratio, melting temperature and take-up point. To obtain 

a more fundamental understanding of the spinning conditions on the melt spinning process, on-

line measuring of fibre speed and temperature is carried out in order to examine the cooling rate, 

extensional viscosity, necking effect and stress along spinning line. Based on the on-line 

measurements and the proposed new model of extensional viscosity and cooling rate, the 

mathematical model is improved to compare with the experimental results. In the theoretical 

part, the steady state equations of melt spinning are submitted to cover PEEK properties such as 

density and a specific heat as a function of temperature, and viscosity as a function of 

temperature and strain rate. The equations are solved after the implementation of the constitutive 

equations of viscous (Newton model) and viscoelastic (Maxwell model). The suitable model 

describes the fibre formation of fine PEEK fibre, which confirms close results to online 

measurements, is also used to study the effect of different spinning conditions. The effect of the 

spinning conditions on properties of filaments such as fineness, stress-strain curve, tenacity and 

structure (birefringence and crystallinity) are parts of this analysis. The so-named off-line 

measurements characterise the properties of as-spun fibres. 

The second goal is to find the limits of spinnability by repeating the process in a trial form and by 

also repeating the spinning conditions for spinnable region of the fine filaments. In this part, the 

take-up speed and the mass throughput of material are changed to find the stable spinning 

conditions. The design of arrangement of holes, the number of spinneret holes, melting 

temperature and effect of heating tube are changed to improve the spinnability in practice. To 

decrease the take-up point (distance from spinneret to winder), a special moveable winder was 

used.  

To overcome the problems and to find the unknowns, this work is supported by experimental 

and analytical methods. In the experimental part of the work, a large number of equipment and 

methods are incorporated; Melt spinning equipment in the laboratory and the semi-production 

scale are used.  
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1.4 Outline of the thesis 

Based on the above stated goals, the thesis is divided in five chapters as follows: 

The experimental methods and equipment used are summarised in Chapter 2. The first section of 

Chapter 2 concerns the melt spinning equipment, the apparatus for on-line measurements, the 

base of measurement and the required temperature corrector. The last section of Chapter 2 

describes the off-line measurements of as-spun fibre and contains the selected materials’ 

properties of PEEK and PP used in this thesis. 

The first section of Chapter 3 describes the shear melt rheology of PEEK and PP, and the 

material function. In the second section of the Chapter 3, the extensional viscosity of PEEK is 

estimated by on-line measurements. The proper expression for extensional viscosity is found 

using the three models: viscous, viscoelastic and non-linear viscoelastic.  

Chapter 4 contains the structural and mechanical properties of as-spun fine PEEK fibres. 

Therefore, this chapter can be dealt separately. The fineness and diameter of as-spun PEEK 

filaments are compared to as-spun PP filaments. The optical birefringence and degree of 

crystallinity of as-spun PEEK fibre are measured and discussed over spinning conditions. The 

final section of Chapter 4 covers the stress strain curves and the modulus elasticity for different 

spinning conditions.  

In Chapter 5, the equations of steady state melt spinning and the implementation of constitutive 

equations (Newton, Maxwell and upper-convected Maxwell) are explained. The fibre formation 

model using the material function and other properties for PEEK is also applied in this chapter. 

Comparison of fibre temperature and speed profile, both experimentally and theoretically, are 

given. The last section of Chapter 5 deals with the tension and stress profile along the spinning 

line. 

Chapter 6 investigates the spinnable regions and the spinnability limits (under different spinning 

conditions such as throughput and take-up speed, etc.) for PEEK and PP. The effect of melt 

temperature and viscosity are explained briefly and the optimisation of spinning conditions for 

fine PEEK filaments are explained (based on the fibre formation modelling and experiments). 
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2 Experiments and measurements 

Chapter 2 consists of four sections which describe the experimental methods, measurements and 

the melt spinning equipment used in this thesis. The first section describes the main parts of the 

melt spinning equipment and their various functions. On-line measurements including fibre 

speed, temperature and diameter along the spinning line are discussed thoroughly in the second 

section. Off-line measurements for the structural and mechanical properties of the as-spun fibre 

at room temperature are explained briefly in the third section. Finally, the rheometry and the 

properties of original materials for both PEEK and PP thermoplastics are summarised in the 

fourth section. 

2.1 Melt Spinning equipment  

Two types of spinning equipments are used in this thesis and these are introduced simply by 

general specifications and geometrical arrangements. Two different equipment arrangements are 

used for melt spinning experiments at the Institute of Polymer Research Dresden e.V.: one using 

piston equipment and the other using extruder equipment. Both arrangements consist of two 

major units: (a) an extrusion unit to melt the polymer and to supply definite throughputs, and 

(b) a wind-up unit to supply the take-up speed.  

Piston equipment: The piston (Dp=10 mm) equipment is designed for small scale spinning and 

can support mass throughputs from 0.01 g/min up to 10 g/min and take-up speeds from 

5 m/min to 1200 m/min, see Figure 2.1.1 (a). This small scale arrangement is basically able to 

spin with a few grams of polymer and can be applied for some flexible spinning conditions. 

Piston spinning allows one to quickly realise the desired conditions (mainly a very low mass 

throughput) and to optimise the spinning conditions for the special material.  

Extruder equipment: In the extruder equipment, the extruder geometries are (De=18 mm and 

Le/De=25) and a gear spinning pump supports the throughput of the polymer melt in the 

spinneret. It can supply mass throughputs ranging from 5 g/min up to 50 g/min and take-up 

speeds ranging from 50 m/min to 6000 m/min. Figure 2.1 (b) shows the three major units of 

extruder equipment. The godets unit only exists in extruder equipment for the drawing after the 

fibre formation process, which can be heated and rotated separately up to 7000 m/min. For more 

details about melt spinning equipment specifications, the references under Beyreuther, Brünig, 

Vogel and Schmack are recommended.  
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Figure 2.1.1 (a) Piston equipment (b) extruder equipment for melt spinning in IPF Dresden 
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2.2  On-line measurements (along the spinning line) 

The on-line measurements of fibre speed, temperature and diameter are used in the thesis as 

non - contact measurement methods [Golzar et al. 2002]. The same methods are also reported by 

Ohkoshi et al. [2000] and Götz et al. [2001]. Contacting methods for temperature measurements 

such as thermocouples are used for glass fibre [Xiang et al 2001], but can also disturb the 

polymer melt and the cooling process in the fibre formation zone. 

2.2.1 Fibre speed measurements 

The laser Doppler anemometry device named ‘LaserSpeed LS50M’ (TSI Inc., USA) measures the 

speed of moving filament, see Figure 2.2.1. The device works principally as follows: a laser beam 

produced in the device is separated into two convergent parts and is focused on the running 

fibres. When two laser beams intersect, an interference pattern of both light and dark fringes is 

created. The distance between the fringes is a function of wavelength and the angle between the 

beams. 

Nearly all materials (including synthetic fibre and plastics etc) have light scattering sites-particle 

and minute facts that make up the surface microstructure. As a light-scattering site passes 

through the measurement region, light is scattered every time it passes through a light fringes. 

The scattering-light is collected and converted to an electrical signal that has a frequency 

proportional to the material velocity. The reflected beams are detected by an optical system. The 

control unit receives the signals, evaluates by fast transformation and gives an absolute speed 

value. The fibre speed is obtained by dividing the distance between the fringes by the time it 

takes for the light scattering site to move from one fringe to the next. The distance between the 

device and fibres is approximately 280 mm, and can be adjusted in such way that two laser beams 

meet each other exactly at the fibre surface. The laser device is mounted onto a vertical stand and 

can be moved up and down along the spinning line. The measurements of fibre speed contain 

uncertainties at high speeds due to the fluctuation of moving fibre. The data is displayed on a 

connected computer and can be saved for evaluation. 

2.2.2 Temperature thermography and emission correction 

The temperature measuring system consists of three subsystems: an infrared camera, a 

monitoring subsystem and a newly developed processing subsystem to calibrate and correct the 

infrared temperature measurements. 
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Figure 2.2.1 On-line measurements of fibre temperature and speed along the spinning line 
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Infrared camera: The VarioTHERMTM is a portable infrared camera designed for precise real time 

thermography applications by Jenoptik AG, Jena, Germany. The spectral sensitivity of the camera 

ranges from 3.4 µm to 5.0 µm and can renew the measurement every 20 ms. A precise 

microscope lens MWIR f/4.4 is added to make our special measurement possible. Another 

essential accessory is the stable and portable tripod that fixes the camera and can adjust it 

vertically and horizontally. 

Monitoring subsystem: The monitoring subsystem includes various hardware components such as 

a personal computer connected to the camera, some interfaces and converters. The special 

IRBIS® software package is supported by InfraTec GmbH, Dresden, Germany. It is possible to 

receive the digital data from the camera and with regards to the target on the monitor live, to take 

snapshots, open and save the thermography as files etc. [InfraTec 1998].  

Correction subsystem: As shown in Figure 2.2.2, the on-line measurement of temperature along 

the spinning line can be used to estimate the diameter. The temperature will be corrected using 

an emissivity correction factor depending on the fibre diameter (see Figures 2.2.3 and 2.2.4).  
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Figure 2.2.2 General principles of the on-line temperature measurements and correction 

Temperature correction: As already mentioned, the infrared thermography is a non-contacting 

measurement method. The total value of energy received by the infrared camera splits into three 

components and can be expressed in the following simplified formula: 

em+re+tr=1 ,    (2.2.1) 

where em=We/W is the emissivity, which indicates the ability to send infrared energy; re=Wr/W 

is the reflectivity, which indicates the ability to reflect infrared energy and tr=Wt/W is the 

transmittivity, which indicates the ability to transmit infrared energy (other symbols are referred 

to the list of symbols from this point onwards). It is obviously that: 0 ≤ em, re, tr ≤ 1. 

Emissivity: Black bodies can exclusively emit radiation and do not reflect or transmit infrared 

waves, therefore, as given in Equation (2.2.1), the emissivity value for a black body has a 

maximum of one (em=1 and re=tr=0). In reality, the fibre is not an ideal black body, and as a 

result, the emissivity of the fibre is less than one (em<1). The emissivity of a target generally 

depends on many parameters such as material composition, surface oxide layer thickness, surface 

roughness, the normal axis angle, temperature and polarization direction. The thermography of 

polymers is classified into two different thicknesses: solids with a thickness of at least a few 

millimetres, and very thin films or fibres. It can be generally observed that the polymers as solids 

give an emissivity of close to one (em≈1), but the emissivity of fibres behaves in a more 
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complicated manner in infrared measurements, because the emissivity as a correction factor 

depends on the fibre thickness. In addition, just like other materials, polymers have a spectral 

emission or transmission according to their chemical composition [InfraTec 1998].  

 diameters 

and different temperatures. The following two methods were arranged experimentally: 

und  

b) Heated, polished and fixed drum. 

In the present work, the emissivity as a correction factor was found for different fibre

a) Heated chamber and black backgro

Heated chamber and black background: In the first experimental method, a dark, closed heated 

chamber was prepared, and a fibre was hanged in front of a heated background, see 

Figure 2.2.3 (a). The temperature in the chamber is supplied by hot air assumed to be a fibre 

temperature. The experiment was carried out for different fibre diameters and different chamber 

temperatures. The background temperature was measured and could be adjusted lower or higher 

than the fibre temperature. The energy that the camera received, as shown in Figure 2.2.3 (a), can 

be simply written in the following form: 

W=emf .Wf+trf .Wh+ref .Wf ,   (2.2.2) 

ding to the 

aforementioned assumptions, Equation (2.2.2) and Equation (2.2.1) can be simplified: 

Figure 2.2.3 Two methods to find the emmisivity corrector for thermograpy of fibre 
(a) heated chamber (b) polished drum [Golzar et al. 2004] 

(a) (b) 

where the index f refers to the fibre and the index h refers to the heated black background. The 

following conditions were assumed: no or small fibre reflection (ref ≈0), equal fibre and hot air 

temperatures (Tf =Ta) and that the heated background is a black body (emh≈1). Accor
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Figure 2.2.4 Results for the emissivity correction factor using two experimental methods  

 W=emf .Wf+(1-emf) .Wh     (2.2.3)

Equation (2.2.3) can only be used to find the emissivity of the fibre (emf) if the fibre and

background temperatures are differently assigned. The results were calculated using the IRBIS

computer program, supported by the infrared camera by varying the emissivity (emf) until the 

measured fibre temperature had reached the real temperature value. 

Heated, polished and fixed drum: In the second experiment, as shown in the Figure 2.2.3 (b), th
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ed drum (diameter 193 mm) was heated electrically, and part of the fibre was bound ar

eratures and fibre diameters. The assumptions for this experiment are as follows: no or o

nt ted black, as the drum was assumed to be a black body 

(emp≈1). In this case, the following equation is valid: 

 W=emf .Wf     (2.2.4) 
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The two experiments mentioned above were conducted in order to determine the emissivity 

correction factor. It was observed that the fibre temperature had no or only a very slight effect 

on the measured emissivities. Figure 2.2.4 summarises the comparison with the emissivities 

dependent on the PEEK fibre diameter, derived from the two experiments. The emissivities for 

the fibre diameters (20, 32, 42.4, 60, 63, 93, 135, 165) µm, which are presented in Figure 2.2.4, 

were fitted with a general simple logarithm expression showing a difference of less than 5 %. 

The emission corrector for polybutene was found and reported by Joshua [2000]. He found the 

correction factor for a different ma rial ty

the 

continuity equation, Equation (5.1.2). Using a new approach, the diameter of the fibre was 

y Golzar et. al. [2004]  

The ed c e surroundings as shown in 

ASCII file corresponding to the snapshot contains 256×254 temperature values. Every pixel 

occupies 25 µm, which means that every snapshot displays a temperature area of about 6×6 mm2. 

 

 

te pe and with another experiment but the emissivity 

correction factor still shows the same tendency as given in Figure 2.2.4  

2.2.3 Diameter estimation via infrared measurements 

The LaserSpeed LSM 50 (TSI Inc.) measures the fibre speed, and the fibre diameter can be 

calculated by using the continuity equation (throughput and density are assumed to be known). 

The fibre diameter can also be calculated from the on-line fibre speed measurement and 

estimated along spinning line by gauging on-line temperature measurement via infrared camera; 

this was reported successfully by Vogel et al. [2003]. A brief literature review to on-line fibre 

diameter measurement and more detail about this new method is given b

 infrar amera displays the temperature of the fibre and th

Figure 2.2.5 (left). This figure contains the temperature as a digit in every pixel. The temperature 

distribution of an arbitrary line perpendicular to the spinning line is shown in Figure 2.2.5 (right). 

As explained in Section 2.2.2, the IRBIS® software package instantaneously shows the 

temperature measurement along the spinning line and also takes snapshots. Every snapshot 

contains 256×254 pixels, and every pixel refers to a known temperature. Therefore, the output 

The camera was adjusted to move vertically using the elevator of the tripod. The snapshots were 

taken at desired vertical distances to the spinneret.  
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Figure 2.2.5 (left) Snapshot of the fibre after leaving the spinneret 
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The estimation of the fibre diameter using temperature measurement was automated usi

subroutines. The NADIA1 computer program was developed in the Visual Basic langua

active X and associating a MS-Excel spread sheet. The output of IRBIS® is the inpu

IA u

snapshots, the vertical distance between two neighbouring snapshots and the respective names of

the ASCII files. After starting the NADIA program, it works according to the flowchart shown 

2.2.6. It reads the temperature at every point with distance (z) and also finds the 

program. The program needs the following additional information: the n

te

which are higher than the ambient temperature, are found. The to

the fibre diameter after multiplying b

Figure 2.2.5 (right). The measured maximum temperature is the fibre temperature, but this 

temperature varies across the fibre diameter and in turn drops to ambient temperature. This drop 

25 µm up to 5000 µm (the limit of IR-camera resolution). 
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Figure 2.2.6 Flowchart of diameter estimati  the infrared temperature measurement on via

 16 



2.3 Off-line measurements (as-spun fibre characterisation methods) 

This section briefly describes the different methods used to characterise the as-spun fibre (as a 

product of melt spinning). It contains a general description of the equipment, the accuracy and 

the formula used to find the mechanical and geometrical properties (diameter, fineness, tenacity, 

stress-strain) and the structure of end product (as-spun fibre orientation and degree of 

crystallinity). 

2.3.1 Fineness and diameter measurements 

To determine the filament fineness, two methods have been used in this work according to 

DIN53834: 

a) Gravimetric method: measuring the mass of 100 m fibres, or 1 m for 10 samples. The 

mass scale used (Sartorius BP 110 S) has an accuracy of ± 0.0001 g; 

b) Optical method: measuring the filament diameter by means of microscope with an 

accuracy of ± 0.2 µm. 

The fineness is a combination of mass and length of fibre and is normally assigned by titre (Tt). 

The titre unit is presented in Tex (1 g/1 km) or dTex (1 g/10 km). The following formulas can be 

simply derived [Fourné 1995] and are often used for textile fineness: 
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Fig 2.3.1 Fineness and draw down ratio of PEEK and PP as a function of fibre diameter, the effect of 
polymer density (ρmelt/ρsolid) is for fibre diameter over draw down ratio considered. 
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fibre in dTex. Fineness and draw down ratio of two polymers (PEEK and PP) are compared 

graphically in Figure 2.3.1. The fineness (Tt) can be expressed as a spinning parameter in 

Equation (2.3.2) (a): 
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where  the fineness in dT   g/min, VL is 

m/min and DR is the possible draw ratio. By neglecting the drawing after the spinning and 

eformation test) was carried out in accordance with DIN 53834 by the 

tensile strength testing device GOODBRAND MICRO 350. The error raised in the test device 

e fineness of fibre, and can be 

calculated as follows: 

=F/Tt   RcN/dtex = 0.1RGPa/ρ ,   (2.3.3) 

where RcN/dtex is the tenacity in cN/dTex, R  is the tensile strength in GPa, ρ is the density in 

g/cm3. The physical tenacity is defined as: Ru=RcN/dTex.(1+0.01δu), where δu is the elongation at 

Tt is ex, Q is the mass throughput in the take-up speed in 

   (b) 

replacing the mass throughput from the continuity equation, the fineness as a function of draw 

down ratio is found and expressed in Equation (2.3.2) (b). In this equation, Tt is the fineness in 

dTex, (VL/V0) is the draw down ratio, the ρ0 is the melt density in g/cm3 and A0 represents the 

spinneret hole area in mm2. 

2.3.2 Tensile test 

The tensile test (force-d

for force measurement is about ±0.01 N. The test used a sample fibre length of 100 mm, and the 

fineness determined from the gravimetric method in Section 2.3.1 was used as an input. Other 

important input data were the test speed 200 mm/min, which is dependent on the elongation of 

the fibres and the pre-stress, which is dependent on the fineness.  

Tenacity can be defined as the tensile strength with relation to th

RcN/dtex

Gpa

the break in %. The tensile device measures and displays the force (F) versus the deformation (δ). 

The following equations are used to find the true stress σ (Pa) and true strain ε (Hencky’s strain): 
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i

ally not valid when ed. The elasticity modulus (E) 

)
100

1( δε += Ln    AF /)
100

1( δσ +⋅=  ,   (2.3.4) 

where δ is the deformation in %, F is the tensile force in N and Ai is the initial area of fibre in m2. 

Equation (2.3.4) is norm the necking is occurr

was found in the linear elastic range (ε<0.01) from general relation E=σ/ε. 

Crystallinity: The degree of crystallinity can be measured using the following three methods: 

the on-line temperature measurement 

along the spinning line and (c) using DSC measurement. However, in order to compare the 

 

2.3.3 Crystallinity and birefringence measurements 

(a) by measuring the density of as-spun fibre, (b) using 

methods (a) and (c), they should be carried out at the same time after spinning, and the 

method (b) can give the on-line crystallinity along the spinning line until the solidification point. 

a) The volumetric degree of crystallinity (X) can be calculated from the density of as-spun fibre 

(ρp), the amorphous density (ρam)  and crystalline density (ρcr) of polymer, which is found using

the simple formula cramp XX ρρρ ⋅−+⋅= )1( or 





−
= crX

ρρρ
[Ziabicki 1985]. The 

Formula 2.3.1 (b). For . 

b) Using the on-line temperature measurement which discussed later in Chapter 5, Section 5.2.4. 







−

pamcr

amp ρρρ

density of fibre (ρp) is determined by measuring the titre and diameter of fibre from 

 PEEK, ρcr and ρam are given in Tables 2.4.1 and 2.4.4

c) Using the DSC method to determine the melting and glass temperature and degree of 

 

PEEK is taken as ∆H=130 J/g [Blundell 1983]. The degree of crystallinity is calculated as 

Cooling down from 380°C to 30°C  

nd heating from 30°C to380°C to find the maximum crystallinity 

crystallinity of the melt-spun fibres by TA Instrument. The enthalpy of fusion of fully crystalline

follows: finding the difference between the endothermic peak area and the post-crystallization 

area (the area under the exothermic crystallization), which is divided by the fully crystalline 

enthalpy (∆H). The DSC measurements are carried out in following steps with heating rate of 

20°C/min: 

For PEEK 

1. First heating from 30°C to 380°C in order to find the cold-crystallization 

2. 

3. Seco
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For PP 

rder to find the cold-crystallization 

C to 230°C to find the maximum crystallinity 

Birefringe n be measured as birefringence (∆n) using a 

polarized o refringence 

value, 10 measurements in different points for every sample are carried out. The diameter 

original material granules of both PEEK and PP polymers are 

behaviour by rheometery is given first. 

arried 

ARES-PA® from the company RhemoetricScientific, USA. The software, 

named the Orchestrator® 6.5.1 evaluates the results in Windows 95®. The configuration used was 

 i

-1

0°C 

and 260°C for PP respectively. The reference temperatures of master curve were 380°C for 

P respectively. 

1. First heating from 30°C to 230°C in o

2. Cooling down from 230°C to 30°C  

3. Second heating from 30°

nce measurements: Total orientation ca

ptical microscope with a 30 order tilting compensator. To determine the bi

measured by the same microscope and the mean value and standard deviation are determined. 

The birefringence is calculated after determining the diameter and the two angles in the opposite 

direction in the proper formula. 

2.4 Material properties of original granules 

In this section, the properties of 

collected. The experimental method related to melt 

2.4.1 Rheometry 

The rheological measurements in this work are found by using rotational shear rheometry c

out by the Rheometer 

cone plate geometry with Ø 25 mm and cone ∠ 0.1 rad. The heating gas for all measurements 

was dried nitrogen. The samples were prepared as follows: drying 3 h in the air circulating oven at 

150°C to normal atmosphere. The water content was determined by coulometric titration at 

120°C [Schmack 2000]. The samples were heated n an oven and the water was transported to the 

titration vessel. The following data was adjusted to the specifications of each individual test. 

- Small angle oscillating sweeps for the domain 0.1-100 s  with an oscillating amplitude of 10%. 

The three melting test temperature were 360°C, 380°C and 400°C for PEEK and 200°C, 23

PEEK and 230°C for PP. 

- Time dependence for 1 rad/s, 30 min, with an amplitude of 10 %, using a temperature of 400°C 

for PEEK and 230°C for P
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2.4.2 General material properties of PEEK (in comparison with PP) 

OO C

O

n
PEEK (poly (ether ether ketone) ): Common types from the 

ypical properties of 

Victrex® PEEKTM 151 G are listed neral properties of PEEK are as 

,

company Victrex PEEK are used for the experiments of this thesis. T

 in Table 2.4.1. The ge

ery low moisture absorptionfollows: excellent chemical resistance, v  inherently good wear and 

abrasion resistance and that it is unaffected by continuous exposure to hot water or steam. 

Property Test Method PEEK Units 

Density          (crystalline) ISO 1183 1.32 g/cm3 

                      (amorphous) 1.26 
Typical crystal
Water absorption (24 h, 23°C) 

DSC °C 
erature  

400 
pecific heat capacity (melt) SC .16 J/kg/K 

 C177 /K 

 O 527 
/min 

 

eak 23°C) 
                             (Yield 23°C) 0 mm/min 

 60 
 

°C) 

 

GPa 

 

°C) ASTM D3846 MPa 
846 

ASTM D638 - 
  

 
 

 
 

linity N/A 
ISO 62 

35 
0.5 

% 
% 

    
Melting point 334 
Glass transition temp DSC 143 °C 
Melt operating temperature  375- °C 
S D 2 k
Thermal conductivity ASTM 0.25 W/m
    
Tensile strength      (23   °C)
                               (250 °C) 

IS
50 mm

100 
12 

MPa

Tensile elongation  (Br
  

ISO 527 
5

Up to
5

% 

Secant Modulus (1% strain 23 ISO 527 3.5 GPa 
Flexural Modulus (23°C) 
                            (120°C) 
                            (250°C) 

ISO 178 4.1 
4.0 
0.3

Flexural strength (23°C) 
                            (120°C)
                            (250°C) 

ISO 178 170 
100 
13 

MPa 

Shear strength (ultimate, 23 53 
Shear Modulus (23°C) ASTM D3 13 GPa 
Poisson’s ratio (23°C) 0.4 
  
Shear viscosity (400°C) 
                        (380°C)
                        (360°C)

In 1000 s-1 350
400
480 

Pa.s 

Table 2.4.1 EEK 151 G ng Vi  
 

Properties of P  accordi ctrex®
 
 

PEEK 450G PEEK 380G PEEK 150G 
34,000 26,000 20,000 

 
Table 2.4.2 Molecular weight obtained by the intrinsic viscosity [Ohkoshi 1996] based on 

5][Devaux et al 198  
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Polypropylene HF445FB (from Borealis): ypropyl  here was modified in order 

to h as 

used to mix in 98 % PP HF 445 FB an . Polybond is a type of additive used 

to decrease the viscosity of polypropylene and mainly to increase the bond of PP matrix to Glass 

required condition. The Melt Flow Index (MFI) for the PP and the modifier are carried out and 

compared in Table 2.4.3. Borealis’s other properties of PP HF445FB are listed in Table 2.4.4. 

Material 
(MFI) 

 The pol ene used

ave the proper surface condition for the hybrid yarn. A double screw extruder (ZSK30) w

d 2% polybond 3200

fiber. The melt spinning of both elements in a double screw extruder did not directly satisfy the 

 

 Melting Index  

1 PP HF 445 FB 18.2    gr/10 min 
2 98% PP HF 445 FB +2% polybond 3200 20.1    gr/10 min Under 230°C, 2.16 kg 

 polybond 3200  121.6  gr/10 min nder 190°C 2.16 kg 3 U

PP Units 

 
Table 2.4.3 Melting index of two types of polypropylene unmodified and modified 

 
 

Property 

Density          (Crystalline) 
                      (Amorphous) 

1.0 
0.7 

g/cm

                      (melt in 200°C) 0.712 

3 

Typical crystallin
Water absorption (24 h, 23°C)  

165 °C 
°C 

erature -270 
0 

pecific heat capacity (melt) .18 J/kg/K 
m/K 

a 
°C) 
°C) 

% 

rain 23°C) 
lexural Modulus (23°C) .35 Pa 

A 
 

00 

ity 65 
<0.1

% 
% 

   
Melting point 161-
Glass transition temperature 4 
Melt operating temp
                            Preferred  

200
230-24

°C 

S 3 k
Thermal conductivity 0.12 W/
   
Tensile strength      (23   °C) 32 M P
Tensile elongation  (Break 23
                               (Yield 23

400 
9.8 

Secant Modulus (1% st - GPa 
F
                            (120°C) 

1
1.4 

G

Poisson’s ratio (23°C) 0.32 N/
  
Shear zero viscosity (200°C) 12 Pa.s 

Table 2.4.4 Properties of PP HF 445 FB according to producer (Borealis) 
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The specific volume, specific heat and the shear viscosity as a function of temperature: The 

specific volume is graphically given as both a function of temperature and pressure in 

Figure 2.4.1 (a), taken from the company Victrex. The density is found as a reciprocal of specific 

volume, wh , there are ich is shown in Figure 2.4.1 (b). To find the proper expression of density

two expressions reported: for a melt state, ρ(T,X)=ρ0/(1+δ.(T-T0)) [Menges 1998], and for a 

solid state, ρ(T,X)=ρ0(X)+α.(T-T0) [Zieminski 1986]. Fitting to the density curve in 

Figure 2.4.1 (b) is given in Equation 2.4.1. 

( )
( )








>

<









⋅+
= m

g

TTif

TTif

T

T
T

000793.01
1410
000174.01

ρ  in kg/m3 , (2.4.1) 
( )

( ) 


<<





+⋅+⋅−

⋅+

mg TTTifTT 6.1181112.10037.0

1310

2

nly taken as a function of 

where T is the desired temperature and Tg is the glass transition temperature and Tm is the 

melting temperature (all in°C). Density in the solid state is o

temperature. 

Specific heat of PEEK is assumed to be a linear function of temperature. Equation (2.4.2) is 

  Where T in °C and Cpp in J/kg/K  (2.4.2) 

(a) (b) 

Figure 2.4.1 (a) PEEK specific volume as a function of temperature from producer (Victrex) (b) 
PEEK density vs. temperature in solid and melt calculated from specific value  

fitted to PEEK 151 G from the data given by Victrex®, see Figure 2.4.2 (a). 

( ) =TCp




>→+⋅
+⋅

g
p TifTT

T
12002.3
11006.3

80
120
16

1250

)  
[k

g/
cm
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Equation (2.4.1)
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(a) (b) 

PEEK by crystallinity X~35 % and PP by crystallinity X~60-70 % [Ehrenstein 1999] 

Figure 2.4.3 Shear viscosity over temperature in comparison with different polymers [Victrex] 

Figure 2.4.2 Diagrams over temperature for (a) Specific heat of PEEK (b) Elasticity Modulus for 

Typical elasticity modulus over temperature of partially crystalline PEEK and PP are

Figure 2.4.2 (b). Figure 2.4.3 gives an overvi

condition compared to other polymers. PEEK ha

viscosity is in the same order as those 

 given in 

ew of PEEK and PP shear viscosity in the melt 

s a high processing temperature, but the shear 

of PP, Nylon 6,6, Soft PVC and LDPE.  

)
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3 Rheological studies in the melt spinning as extensional flow 

Melt spinning involves various deformation and flow conditions: shear flow mainly in the 

spinneret channel and extension in the fibre formation zone. Therefore both shear rheology and 

extension rheology are considered. However, Schöne [1980] has also considered the solid 

deformation rheology after the solidification point. The polymer melts in the extruder, and the 

spinning pump (gear pump type) supplies the constant volume throughput through the spinneret. 

The polymer undergoes shear and extension in the extruder to spinneret capillary. Therefore 

stress and strain prehistory exists at the outlet of the spinneret, but in order to simplify the 

investigations, this prehistory is not considered here at first. The fibre formation zone is itself a 

free surface deformation process and can be assumed to be a pure uniaxial extension between the 

spinneret and wind-up unit. 

The intent of rheological studies in this chapter is to provide two aspects. The first is to find the 

properties and parameters in the constitutive equation, and then submit these into the fibre 

formation model. The second is to investigate the spinnability, improve the material selection and 

melt spinning process parameters. As mentioned above, the polymer in the melt spinning 

process, especially in the fibre formation zone (from the spinneret to solidification point), mainly 

undergoes extension, but the shear rheology provides properties for the extension studies such 

as: the material function and material properties such as zero shear viscosity (η0), temperature 

dependence viscosity (η0 (T)), and the shear strain rate dependence of viscosity (η0 (γ )). The 

shear relaxation strength (g

&

i) and relaxation time (λi), evaluated from the shear rheology, can also 

be used in the extension. Both the above properties from shear rheology and also the on-line 

measurements along the spinning line are used to modify the extensional viscosity. Chapter 3 

includes some background on extensional rheology aided melt spinning, which is essential 

especially for (fine) fibre formation zone. Section 3.1 deals with the basic concept of shear 

viscosity, which is applied in the melt spinning model. Shear rheology is generally quite widely 

discussed in literature; by contrast, the extensional viscosity in Section 3.2 encounters some 

difficulties. The constitutive equations and their application are studied in Chapter 5, but in this 

chapter, the experimental methods and some results are discussed. The material function 

determined from shear rheology is replaced in the constitutive equations for the viscous, 

viscoelastic and nonlinear behaviour of material. The nonlinear behaviour is evident in time 

dependent measurements, and the damping function can be found from the shear rheology and 

also implemented in extension. 
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3.1 Rheological characterization and material function from shear flow 

Shear rheology is basically the first polymer characterization, because in the shear rheometer, the 

deformation is homogenous and can simulate all cases: small, large and steady state deformation. 

The rough estimations used here for the flow behaviour of melt spinning are the small amplitude 

oscillatory shear, the steady state shear and the strain sweep test.  

The simple constitutive equation for the simple shear flow is the Newton law for fluid (τ ), 

which relate the shear strain rate (γ ) and shear stress (τ) by the shear viscosity (η), see 

Figure 3.1.1. Newton law is for a perfect viscous fluid but can describe most low viscous fluids 

and can also apply to extensional flow. But for high viscous fluids such as the polymer melts, 

more additional interesting phenomena appear such as time dependent properties (viscoelastic), 

the normal stress in the shear flow for high shear strain (non-linearity) and the decrease in 

viscosity when increasing the shear strain rate (shear thinning). Therefore, the more complex 

constitutive equations are developed and applied in order to describe the polymer behaviour.  

γη &⋅=

&

y 

x 

v 
γηη &⋅=⋅=

dvx

 

Figure 3.1.1 Shear flow, a homogeneo

3.1.1 Shear viscosity and spinnability using the sma

The shear viscosity for small shear strain rate is approx

is defined as the limit of shear viscosity when 

( ).0
0

lim ηη
γ

=
→&

s   However, the polymer melt shows line

law only for a small shear strain rate; for a high shear st

shear stress, meaning that the shear stress needed for a

shear stress estimated by Newton’s law. In other wor

down with a higher shear strain rate. This is what is kno

rheological behaviour. To establish the zero shear v

different experimental methods have been used throu

 26 
τ

dyyx

us and uniform deformation 

ll amplitude oscillatory shear test  

imately constant. The zero shear viscosity 

the shear strain rate approaches zero 

ar behaviour in accordance with Newton 

rain rate, the polymer melt shows a lower 

 high deformation rate is smaller than the 

ds, one can say the shear viscosity drops 

wn as shear thinning and it is a non-linear 

iscosity dependent on shear strain rate, 

gh the literature. A common method to 



estimate the zero shear viscosity using shear rheology is the small amplitude sinusoidal oscillation. 

The apparatus used here and the test conditions are given in Section 2.4.1. This is the suitable 

method to investigate the shear viscosity over a wide range of rotational frequency (ω). 

Reminding now some important relations in this method: The polymer sample is melted and a 

small amplitude frequency deformation (γ ) is applied to the polymer melt, see 

Figure 3.1.2. A transducer transforms the shear force initiated (τ + ), and the 

viscosity and loss and storage modulus will be calculated as follows: 

)sin(0 t⋅⋅= ωγ

)sin(0 δωτ ⋅⋅= t

2
VG+

( )ω*G

dt ∑
=

⋅=
n

i
iig

1
0 λ

Elastic modulus ( )
0

0 cos
γ

δτ ⋅
=EG   2*

EGG =  

Viscous modulus  ( )
0

0 sin
γ

δτ ⋅=VG   ( )
E

V

G
G

=δtan    (3.1.1) 

Complex viscosity  ( )
ωωω

ωη
γ
τ

η
22

* 1GG VE =





+






=⇒=

&
 

The shear rate, as given in Figure 3.1.2, is a cosine function and is comparable to the extension 

rate in the fibre formation zone, which is similar to a half sine periodic function, see Figure 6.2.8. 

The constitutive equation relating to the above test can be extended to the viscoelastic case where 

the elastic behaviour of polymer is considered. The viscoelastic model means that the material 

relaxes over a significant time and the strength is therefore time-dependent. In this model, the 

relaxation strength (G(t)) and the zero shear viscosity (η0) can be approximated as a series of 

relaxation strengths (gi) and relaxation times (λi) as follows:  

( ) ( )
0γ

τ ttG =  or ( ) ∑
=

−⋅=
N

i

t
i

iegtG
1

λ    or η  (3.1.2) ( )tG ⋅= ∫
∞

00η

In this case however, the first relaxation times have more effect on the material relaxation than 

the next one and the discrete distribution of elastic and viscous strength from the small amplitude  

γ& 

 

γ

 

Figure 3.1.2 Small amp
τ
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oscillation can be summarised as Equation (3.1.3): 

( ) ∑
= ⋅+

⋅
⋅=

n

i i

i
iV gG

1
221 λω

λω
ω   ( )EG ω

The temperature master curves in Figures 3.1.3, 3.1.4 a

amplitude oscillatory shear test. The relaxation strengths 

figure, and are found by fitting the Maxwell model to expe

zero shear viscosity and the temperature dependent viscos

master curve concept that is described in the next section (S

Spinnability: Spinnability of polymers can also be predi

Figures 3.1.3, 3.1.4 and 3.1.5. The main idea was reported

verified later for other polymers by Hoffmann [2002], based

rheology in small angle oscillation and loss angle (tan (δ

different polymers which were examined were classified in

spinnable polymers. Following this classification, a poly

tan (δ)>10 for GE>100 Pa in the master curve. 
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Figure 3.1.4 Master curve of elastic modulus GE, viscous modulus GV and tan (δ) of melt PP at 
230°C experimentally by rheometer (symbols) and fitted by strength spectrum gi and λi (lines) 
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Comparisons of the master curves of PP in Figure 3.1.4 and Figure 3.1.5, show that a tan (δ)<5 

for GE>100 Pa. Therefore, according to these criteria, they are non-spinnable, although 

experiences shows that both polymers are well spinnable. If the first criterion is improved to 

tan (δ)>10 for ω=1 rad/s, then it will be valid for the PEEK and PP master curves 

(Figures 3.1.3, 3.1.4 and 3.1.5). More experiences in the melt rheology lead to a simple new rule 

that predicts the spinnability of polymer by primitive observation, i.e. if the melt is pulled 

manually to a distance of 1 m to 2 m and still connected to the melt and makes a continuous 

fibre, the polymer can be spinnable. In other words, the ability to extend a polymer melt to high 

strain (~5) is a good qualitative signal of a spinnable polymer, but this cannot recommend in this 

form for quantitative testing.  

3.1.2 Temperature dependence of viscosity  

The effect of temperature on viscosity is high, because the polymer chains will move easier at a 

high temperature. Therefore, the shear viscosity decreases by increasing the polymer temperature, 

and the viscosity decreases by using the empirical model in an exponential temperature function. 

The temperature dependent viscosity measurement is carried out using rotational rheometer 

measurements by means of the small oscillatory frequency sweeps. The PEEK was tested at three 

temperatures (360, 380, 400)°C and PP (200, 230, 260)°C. All samples showed similar rheological 

properties at the relevant processing temperature, as can be seen in Figures 3.1.3 to 3.1.6. In 

other words, the polymers approach a constant zero shear viscosity at a low shear rate and the 

shear viscosity decreases with a high shear rate. All samples tested also showed no degradation 

for more than 30 minutes and the complex viscosities were constant. The complex 

viscosity (η*(ω)), was calculated from Equation 3.1.1. According to the time-temperature-

superposition principle, the master curves of complex viscosity were constructed for each sample 

at the reference temperature specified as in Figure 3.1.6. The shift factor (aT) was fitted using the 

Arrhenius-equation: 

aT (T,Tref) = exp ))11((
ref

a

TTR
E

−    (3.1.4) 

These fits provide the flow activation energy ( ), as can be seen in Table 3.1.1. The master 

curves for three PEEK types and two PP samples are shown in the Figure 3.1.6. The temperature 

dependence of viscosity can now be represented as in Equations 3.1.5 (a) and (b):  

aE
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(3.1.5) 

In Arrhenius equation (Equation (3.1.5)(a)), R=8.321 J/mol/K is the molar gas constant and the 

Parameters η0 and Ea are determined at the reference temperature (Tref) as explained previously in 

this section. The temperature dependent viscosities found by this method are shown in 

Figure 3.1.7. As noted in Equation (3.1.5), the Arrhenius equation gives a good approximation at 

the temperatures ranging above melting point and the ″WLF″ equation at temperature near glass 

temperature. In the ″WLF″ equation the subscript r refers to the condition at some arbitrary 

reference condition, the best fit is reported as Tr=Tg+40 [Macosko 1994]. Using the "WLF" shift 

factor, the coefficients C1 and C2 could be found by master curves constructed near the 

reference temperature Tr. From this point onwards the Arrhenius equation is used.  

3.1.3 Shear rate and molecular weight dependence of shear viscosity:  

The so-called shear thinning (the decrease of the viscosity in high shear strain rate) can be 

investigated by the result of small amplitude shear oscillation test, as given in Figure 3.1.6. 

Because the power law fails to describe the low shear rate region, in order to find a simple model 

of shear viscosity, another viscosity model was fitted to the experimental data in Figure 3.1.6. To 

give regions at both low and high shear rates, the three-parameter Bueche model, or modified 

Cross model, is proposed as in Equation (3.1.6). Applying the more complex viscous models 

requires more numerical efforts. Fitting the master curve of viscosity, three constants of the 

Equation (3.1.6) are found and listed for the steady shear viscosity in Table 3.1.1. 

( ) mk ω
η

ωη
⋅+

=
1

0*      (3.1.6) 

 Ea [kJ/mol] 0η  [Pa.s] k m 
PEEK 151 G 58.512 611.30 0.0402 0.6597 
PEEK 381 G 63.469 5831.9 0.4150 0.5498 
PEEK 450 G 67.706 9307.3 0.6253 0.5408 
PP 41.872 546.70 0.0560 0.7113 
PP+ 2%Polybond 40.685 514.08 0.0517 0.7233 

Table 3.1.1 Activation energy and coefficients of shear viscosity as a function of strain rate 
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In the shear flow, there is a very useful relationship between material functions often observed to 

hold approximately. The empirical relationship, called the Cox-Merz rule, often holds fairly well 

at high shear strain rates: 

( ) ( )ωηγη *=&   for γ =     (3.1.7) )/(: sradω&

This rule states that the shear strain rate dependence of the steady state viscosity (η) is equal to 

the frequency dependence of the complex linear viscoelasticity (η∗), see Figure 3.1.2. According 

the Cox-Merz rule (Equation (3.1.7)), Equation (3.1.6) can be extended to present the steady 

shear viscosity as a function of temperature and shear strain rate in Equation (3.1.8): 

( ) mk
T

T
γ

η
γη

&
&

⋅+
=

1
)(

, 0       (3.1.8) 

The temperature effect of the zero shear viscosity can be used from Arrhenius equation 

(Equation (3.1.2)(a)). In the next section (Section 3.2), this expression is compared with the 

extensional viscosity. 

Molecular weight dependence of shear viscosity: The longer the molecular chain the more 

entanglements exist. As a result, the viscosity increases by increasing the molecular weight. The 

zero shear viscosity (η0) and the average molecular weight (Mw) are valid in the relationship 

Equation (3.1.9): 

j
wMK ⋅=0η    j≈3.4 if Mw>Mc and j≈1 if Mw<Mc    ,  (3.1.9) 

where Mc is the critical molecular weight for the entanglement and the two parameters K and j 

can be determined experimentally. The long chain length allows for entanglements, as shown in 

the Figure 3.1.8. The chains entanglements cause the viscosity to rise quite significantly. 

High molecular weights usually lead to higher activation energies of viscous flow. If the polymer 

exhibits a higher glass transition temperature, it will show higher activation energies and will 

consequently show higher sensitivity to temperature (see Table 3.1.1 and Figure 3.1.7). The 

comparison between the estimated activation energies in Table 3.1.1 and the viscosities in 

Figure 3.1.6 show a result of: η0
PEEK 450G> η0

PEEK 381G>η0
PEEK 151G> η0

PP> η0
PP+2%polybond. It can also 

be concluded according Equation (3.1.9) that: Mw
PEEK> Mc

PEEK, Mw
PP>Mc

PP  
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Ohkoshi et al. [1993] investigated the molecular weight effect on melt spinning of PEEK. For 

polypropylene, an expression of viscosity was given by Ghijsels [1994]:  

[ ] ( ) 57.316
0 1049.2 wPP M⋅×= −η    (3.1.12) 

 

 

 
 
 

  

 (a) (b)
 

Figure 3.1.8 Entanglement of the molecular chains (a) low molecular weight (b) high molecular 
weight [Sperling 1992] 
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3.2 Extensional viscosity in the melt spinning process 

It is known that the polymers behave according to loading. Consequently the different 

constitutive equations, which relate the deformation and the internal force, can describe the 

polymer behaviour. Also the polymers show different behaviour in the extension and in the shear 

deformation, because the long chains of polymer molecules exhibit resistance to extension 

deformation, therefore the extensional viscosity is more than shear viscosity. The primary reason 

for the poor prediction of an extension dominated flow is the low viscosity of the material in 

generalized Newton model. Experiments and theories have been proved that the extensional 

viscosity for a small extension rate is three times that of shear viscosity ( lim ).  0
0

3 ηη
ε

⋅=
→&

e

However, extensional viscosity is a true material property, independent of both techniques of 

measurement and of any assumption concerning the constitutive behaviour of the fluid 

[Shridar 1988]. To measure the extensional viscosity, a lot of extensional rheometers have been 

proposed [Macosko 1994]. The current state of extensional measurements and their limitations 

were summarized by Rides et al. [1996]. The upper limits of the reported extensional 

measurements were for the Hencky’s strain up to 4, and a strain rate up to 30 s-1, and temperature 

up to 200°C, but the availability of such equipments is still limited.  

The extensional viscosity in the melt spinning along the spinning line and in the fibre formation 

zone cannot be extracted from common extensional rheometry measurements for many reasons. 

Firstly, the extension strain rate reaches a high value and varies along the spinning line like a bell 

function (or half period of sine function) and the stress also increases, but the important aspect 

of measuring extensional properties is that the testing shall be carried out using either constant 

strain or constant stress in order to generate the quantitative data which is independent of the test 

method. Secondly, the extension Hencky′s strain increases along the spinning line. Thirdly, the 

temperature decreases due to air cooling and the possible crystallisation along the spinning line, 

but in extensional rheometery, the temperature uniformity is essential for a uniform deformation 

of the test specimen. Therefore, an estimation of the extensional viscosity using on-line 

measurement of speed and temperature is recommended [Rides 1996]. Results from such 

estimations are not expected to be qualitatively correct for all polymer melts, however, the melt 

spinning can be used as technique to measure the extensional viscosity for the melts of lower 

viscosities [Gupta 1988], and the obtained extensional viscosity from melt spinning will give the 

best approximations of true material properties [Revenu 1993]. 
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Sano et al. [1968] estimated the extensional viscosity by means of melt spinning process and 

measurements of fibre temperature and diameter along the spinning line. The viscosity was 

obtained for an isotactic polypropylene filament by measurements and speed-drag force 

calculations. He compared the non-Newtonian behaviour, from the so-called Bird equation 

η=3.η0.(1+(λ-τ).V′) with the Newtonian behaviour (η=3.η0). He concluded that for V′<30 s-1 

there is no non-linear effect that is valid for (λ−ξ)<10-3 s (the difference of the relaxation time 

constant (λ) and the retardation time constant (ξ)). Laun [1989] widely studied the extensional 

viscosity by the Rheotens test. With relation to his especial equipment, he concluded that 

extensional viscosities calculated from the Rheotens tests are not expected to be qualitatively 

correct because the Rheotens test is a non-homogenous and non-isothermal stretching. However, 

the laboratory extension flow studies by Meissner rheometer tried to supply constant strain rate 

in order to have precise measurements. The master curve idea has recently allowed a direct and 

quantitative comparison of the extensional behavior of different polymers in different processing 

conditions using the hyperlink die [Collier 2002] and Rheotens test [Brennat 2001]. Some 

producers also supply a portable universal testing platform, named SER (Xpansion Instruments, 

LLC, USA), to allow the shear rheometer a uniform extensional deformation. For the PEEK 

melt spinning process, other extensional or shear rheological test results have still not applied. 

3.2.1 Estimation of extensional viscosity along spinning line 

In order to estimate the extensional viscosity, the on-line fibre speed measurement, the estimated 

speed gradient and the internal force calculated from the momentum balance are replaced in 

Equation (3.2.4). Figure 3.2.1 shows a flow diagram and indicates the procedure used for the 

estimation of extensional viscosity. Internal force along the spinning line is calculated using the 

momentum equation, see Chapter 5. Difficulties are however raised in the initial value of internal 

force (F0) and the speed gradient ((dV/dz)0) at the spinneret outlet. Both of these values were 

estimated using different approaches which are discussed in Chapter 5. In this section, the 

estimated extensional viscosity along the spinning line (according to Equation (3.2.1)) is 

discussed, and then some mathematical expressions of extensional viscosity are also suggested. 

The estimated extensional viscosities over distance to spinneret are presented in Figures 3.2.2 

and 3.2.3. The on-line speed and temperature measurements are included in Chapter 5. The 

spinning conditions are tabulated in the appendix Table A1. Looking to the distribution of 

extensional viscosity along the  
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Figure 3.2.1. Flow diagram for estimation of elongation viscosity from online measurements. 

Online measurements 

A(z) cross area 

F0 

 

 

Polymer- & 
Air- & 
Spinning 
properties 

  

 
ηe=σ/(dV/dz) 

extensional viscosity 
σ=F(z)/A(z) stress 

F(z) force dV/dz speed gradient 

V (Z) Speed of fibre 

distance from spinneret initially keeps a constant value near the spinneret, but then increases with 

distance. The extensional viscosity can later drop locally at a certain distance and then increases 

rapidly. This drop can be a sign of the so-called necking in the fibre profile. This drop is obvious 

in Figures 3.2.2 and 3.2.3. Such drop in the region of a take-up speed of 5000 m/min was more 

than take-up speeds 4000 m/min and 3000 m/min, which was investigated by Ishizuka [1985] for 

PE. This means that the reduction of the extensional viscosity becomes larger as the draw down 

ratio increases. Figures 3.2.2 and 3.2.3 also show that the necking point shifts upstream along the 

spinning line due to an increase of mass throughput, as Murase [1994] investigated for PET. The 

necking can be initiated by increasing the spinning speed at the same throughput. A rapid 

increase in the extensional viscosity is found at the end of the fibre formation zone, where the 

fibre has lower temperature. The rapid increase of extensional viscosity can be forced by the 

crystallisation along the spinning line. This increase becomes higher for take-up speeds greater 

than 2000 m/min. In addition to the spinning speed, however, a combination of the throughput 

and the take-up speed (draw down ratio) can be taken as a dimensionless criterion for 

crystallisation. This suggests that the polymer along spinning line undergoes structural changes 

accompanied by a rapid increase in viscosity of extensional flow. The structural changes involved 

are related to molecular ordering in the effective entanglement network, or in other words, to the 

change of the size of flow units or cohesive forces between neighbouring molecules. Off-line 

orientation and crystallisation of fibres are discussed in Section 4.1 
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Figure 3.2.2 Estimated apparent extensional viscosity along spinning line of PEEK 151G, from 

melt spinning, T0=385°C spinneret 3 holes (d=0.25 mm, l=0.5 mm). 
 

Figure 3.2.3 Estimated apparent extensional viscosity along spinning line of PEEK 151G, from 
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3.2.2     Strain rate dependence of extensional viscosity  

The extensional viscosity estimated from Figure 3.2.1 contains all spinning line effects such as the 

temperature dependence of the viscosity and varies from one point to point along the spinning 

line; it is therefore sometimes called the transient viscosity. Because the temperature (T), the 

strain rate (ε ), and the crystallisation (X) also vary along the spinning line, the extensional 

viscosity varies with these quantities (T, ε , X). Therefore the extensional viscosity can be 

expressed as function of distance along spinning line: 

&

&

( ) ( ) XTzXzzTz ee 21 ,)(),(),()( ηεηεηη ⋅== && ( )  (3.2.1) 

Different expressions for η1 and η2 in Equation (3.2.1) are proposed in the literature of 

Ziabicki [2002], Spruiell [2001] and Shimizu [1985]. In order to find the proper form, a brief 

introduction is given.  

Apparent extensional viscosity: For the pure extensional viscous behaviour of polymer melt, 

the stress (σ ) and the strain rate (ε ) are related according to the Newtonian constitutive 

equation by:  

&

   (3.2.2) εησ &⋅= e

ηe 

 

This is the so-called mechan

describes the extensional visc

in Equation (3.2.2), therefore 

Equation (3.2.3) 

   
By replacing the definition 

continuity equation (Q=ρ.A.V

   

To estimate the extensional v

(V), and speed gradient (V′) 

form of strain rate dependent

of the definition of Trouto

 

σ

ical model of polymer behaviour as dashpot where the factor η  

osity. The strain rate, ε , can be replaced by the speed gradient, V , 

the extensional viscosity can be expressed along the spinning line as 

e

′&

 dzdVe
σ

η =       (3.2.3) 

of the normal stress (σ =F/A) in Equation (3.2.3), and from 

), the cross section area (A=Q/ρ.V) leads to: 

QV
VF

A
F

dzdVe ⋅′
⋅

=⋅=
ρ.1

η      (3.2.4) 

iscosity from Equation (3.2.4), the internal force (F), the fibre speed 

must be known along the spinning line. In order to find the final 

 extensional viscosity as discussed above, it is useful to be reminded 

n ratio in the uniaxial extension. The dimensionless extensional 
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viscosity known as the Trouton ratio is often reported as: ( )εησ &⋅= 0Tr =ηe/η0. For melt 

spinning under low and constant extension strain rates, the Trouton ratio will be equal to three 

and therefore, ηe=3.η0, as for the Newton viscous model.  

For low strain rates (below 600 s-1 according to Cuculo [2001], although this seems very high), the 

extensional viscosity is predominantly a function of temperature only and is reasonably close to 

three times the shear viscosity (η0) predicted by the Newtonian fluid model. In the case of a high 

strain rate (high speed gradient), both the elastic and the viscous behaviour of polymer melt must 

be taken into consideration. The simplest approximation of the viscoelastic model is expressed by 

the Maxwell constitutive equation as a series combination of Hooke's spring (elastic behaviour) 

and Newton dashpot (viscous behaviour). Because the viscous deformation is dominant in the 

fibre formation zone for temperature higher than glass transition temperature, and also by 

decreasing the temperature, the elastic deformation is dominant; therefore the Maxwell model 

(one spring and one dashpot) is applied for melt spinning [Shimizu 1985(a)] as followed in 

Equation (3.2.5):  

 

E ηe eE η
σσ

ε +=
&

&      (3.2.5) 

 
It should be mentioned, however, that the mechanical model of viscoelastic behaviour in 

Equation (3.2.5) can indeed simplify the calculation, but cannot help to understand the polymer 

behaviour from molecular events in any way. In order to combine the viscous and elastic effect 

into a single variable quantity, the apparent extensional viscosity (η ) has been defined as the 

ratio of stress to the extension rate from Equation (3.2.5), and can be derived as:  

app
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  The second fraction in Equation (3.2.6) tends to zero and can be ignored, if the air drag and all 

other forces, except the inertial force, are negligible. On replacing (F'=Q.V') and the continuity 

equation (Q=ρ.A.V), and assuming for spin polymers (E>>V2 ρ) then ( 0
2

→
⋅

=
′⋅⋅

′⋅
E

V
VAE

FV ρ
). 

The Maxwell viscoelastic Equation (3.2.5) leads to the simple form [Ziabicki 1985]: 
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where  is the Deborah number and VzDe ′⋅= λ)( Eηλ =  is the extension relaxation time. 

Stelter [2002] emphasized that both the relaxation time and the steady terminal extensional 

viscosity are needed for describing the extensional viscoelastic behaviour. The Deborah number, 

(De(z)) characterizes the strength of extensional flow, equal to the longest characteristic 

relaxation time (λ(z)) of the polymer multiplied by the characteristic timescale of the kinematics 

(V′(z)). To state it briefly, the Deborah number indicates the relative importance of elastic effects 

to viscous effects [Rothstein 2002]. If the Deborah number is very small ( ), 

Equation (3.2.7) will be same as Equation (3.2.3) and η

0→De

app = ηe, which means that the polymer 

behaves viscous. However, a small relaxation time (λ(z)) as for spinnable polymer, and 

sufficiently high strain rate (ε ) as for along the spinning line can produce a high Deborah 

number that should not be ignored. When the Deborah number increases, the effect of elastic 

part will appear. In other words, the Deborah number indicates if the polymer behaves viscously, 

linear viscoelasticly or non-linear viscoelasticly and also indicates which constitutive equation is 

suitable for the fibre formation zone. 

&

Considering the simplest incorporated non-linearity Maxwell model (Upper-Convected Maxwell) 

in the steady state uniaxial extension and rewrite the η  in Equation (3.2.1) [Macosko 1994]:  ( ε&,1 T )
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, 000
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TTT
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It is also noteworthy that for the case ( λ⋅≥ 21&ε ) the prediction of an infinite or negative value 

of viscosity has no physical significance, it is the limit of validity of Equation (3.2.8).  

If Equations (3.2.7) and (3.2.8) are fitted to the extensional viscosity estimations, the relaxation 

time (λ) must be known. The relaxation time can be found by fitting the Maxwell model to the 

shear rheology measurements, but the temperature dependence of relaxation time makes it 

difficult to work with Equations (3.2.7) and (3.2.8). 

Since the zero viscosity (η0) varies depending on temperature and temperature itself varies along 

the spinning line, η0 is replaced by η0(T). The temperature dependence of viscosity η0(T) from 

Arrhenius Equation (3.1.2) (a) is presented in Figure 3.1.7, and can also be implemented for 

extension. Therefore, by replacing Equation (3.2.7) with ηapp/η0(T), the strain rate dependent  
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Figure 3.2.4 Dimensionless apparent extensional viscosity over strain rate along spinning line of 
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Figure 3.2.5 Dimensionless apparent extensional viscosity over strain rate along spinning line of 
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extensional viscosity can be displayed over the strain rate. The ratio ηapp/η0(T) from on-line 

measurements over the strain rate gives a lower value than from Equations (3.2.7) and (3.2.8) at 

high strain rate, see Figures 3.2.4 and  3.2.5. The relaxation time in Equations (3.2.7) and (3.2.8) 

was found using the shear rheology of PEEK, see Figure 3.1.3. The reduced apparent extensional 

viscosity over the strain rate fitted by the linear and non-linear viscoelastic behaviour gives a 

good explanation, but it is nonetheless still depending on the relaxation time constant and the 

spinning conditions as seen in Figures 3.2.4 and 3.2.5. To improve the strain rate effect on 

extensional viscosity, the generalized viscous fluid σ  and the following constitutive 

equation was proposed [Ding 1995].  

( ) εεη && ⋅= ,1 T

( ) bTa
TT

))((1
)(,

0

0
1 εη

η
εη

&
&

⋅⋅+
=      (3.2.9) 

In this case, the η  approaches a constant value for a low strain rate and decreases by 

increasing the strain rate (thinning effect). In other words, Equation (3.2.9) is similar to modified 

Cross model, Equation (3.1.6). In contrast to Equation (3.2.7) and (3.2.8), Equation (3.2.9) 

contains a temperature effect under the fraction, and the constants a and b can be found directly 

by fitting Equation (3.2.9) to the estimated extensional viscosity from on-line measurements. 

Equation (3.2.9) is a special case of Equation (3.2.7), in which b=1 and 

( ε&,1 T )

Ea 1= . 

To find the final form of extensional viscosity from Equations (3.2.1) and (3.2.9), either no or 

negligible level of crystallinity in PEEK melt spinning for low draw down ratios is assumed 

[Spruiell 2001]. According to Figure 3.2.1, the estimated extensional viscosity (ηapp) is reduced in 

relation to the temperature dependent viscosity (η0(T)) from Equation (3.1.2). The vertical axis 

ηapp/η0(T) is subsequently dimensionless in Figures 3.2.6 and 3.2.7 and the horizontal axis is the 

product of speed gradient and the estimated temperature dependent viscosity from 

Equation (3.1.2). Parameters a and b are found by fitting Equation (3.2.9). It may be of interest 

to report that the exponents of shear and extension rate, parameter b in Equation (3.2.5) and 

parameter m in Equation (3.1.5) are found to be very close. The other parameters a and k are 

different in regards to the temperature variation considered along spinning line in Equation 3.2.5. 

The first region of spinning, where the strain rate is smaller than 10 s-1, is not included in 

Equation (3.2.9) because the on-line measurements were out of the range.  
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Figure 3.2.6 Dimensionless extensional viscosity estimated from online measurement (symbols) 
and function fitted (solid line) for test series B1 to B4 (see Table A1) 
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Figure 3.2.7 Dimensionless extensional viscosity estimated from online measurement (symbols) 
and function fitted (solid line) for test series C1 to C6 (see Table A1) 
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Crystalline-controlled viscosity: If the polymer crystallises in the fibre formation zone, several 

anticipated relationships between viscosity and crystallinity were discussed and compared by 

Ziabicki et al. [2002], they have proposed an empirical relation in the form: 

( )
a

crXX
X 








−

=
)(1

1
2η     (3.2.10) 

If the crystallinity X approaches Xcr , fluid melt is converted into elastic solid and viscosity 

asymptotically approaches infinity and the material becomes incapable of flowing. The effect of 

this function is out of the scope of this article; this is neglected from the estimation of 

extensional viscosity as a result. Assume no crystallinity (X=0), the viscosity along the spinning 

line will only be a function of temperature (T) and the extension rate (ε ). Figure 3.2.8 shows 

how the temperature dependent viscosity varies if the material is fully crystallised during cooling. 

For the partially crystallised polymers, it can be imagined that the viscosity goes to infinity 

between T

&

g and Tm at the freezing temperature. It can be shown that if the fully crystallised 

polymer is melted, it becomes very thin after crystals melt temperature. It is obvious that this 

crystallisation leads to an increase in polymer viscosity and then completes the solidification of 

material. The increase of viscosity should be applied to the fibre formation modelling for melt 

spinning. 
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Figure.3.2.8 Effect of crystallisation on the polymer viscosity over temperature [Menges 1998] 
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3.2.3 Conclusion 

The extensional viscosity along the spinning line is a complex, which varies from point to point. 

The estimation of the extensional viscosity from on-line measurements of the fibre speed and 

temperature is only qualitative, but for a low viscous polymer, a quantitative estimation can also 

be used along the spinning line. It can be concluded from the estimated extensional viscosity 

along the spinning line that the viscosity gradient (dη/dz) in the range of stable spinning controls 

the stress and molecular orientation (see Figures 3.2.2 and 3.2.3); therefore, a stronger viscosity 

gradient initiates the necking, and later, the instabilities. The stress along the spinning line for 

PEEK filament [Ohkoshi 1996] is discussed in Chapter 4 and 5.  

It is obvious from results in Figures 3.2.4 and 3.2.5 that two regions of polymer behaviour exist 

(neglecting the region of decreasing the speed gradient along the spinning line). In the region in 

which the polymer assumed to have a viscous behaviour for an extension strain rate higher than 

10 s-1, the extensional viscosity decreases by increasing the extension strain rate. However, the 

second region near the spinneret for a strain rate smaller than 10 s-1 can proceed with viscoelastic 

behaviour during die swelling, which is a relaxation of polymer from upstairs flow 

[Brennat 2001]. The above observation simply confirms the following general statements along 

the spinning line of the melt spinning process. If the filament temperature is higher than the glass 

transition temperature, the viscosity term dominates. The viscous deformation decreases with 

decreases in temperature. The elastic deformation on the other hand dominates after 

solidification. The viscosity seems to be constant in low strain rate up to 10 s-1 and drops rapidly 

in the high strain rate as estimated for PEEK 151 G.  

The deviations in the experimental estimations could be raised from measuring errors, due to 

inhomogeneous deformation, and also in the estimation of initial internal force and speed 

gradient. 

To study the extensional rheology, the dimensionless apparent extensional viscosity is introduced. 

The extensional viscosity over strain rate can be interpreted in three regions, see schematic 

drawing in Figure 3.2.9. In the first region, the polymer has a high temperature, low extension 

strain and low strain rate, for PEEK 151 G: ε  s10<& -1. However, an increase in the extensional 

viscosity for low strain rate could not be detected by this study as reported by Rheotens 

[Laun 1989]. By decreasing the temperature along the spinning line, the viscosity increases 

exponentially according to the Arrhenius formula and the extension strain rate increases when 
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the fibre speed is also increased. This is the second region, where the dimensionless viscosity 

decreases by increasing the extension strain rate, but the apparent viscosity here is more than 

three times the shear viscosity, see Figures 3.2.2 and 3.2.3. This is the region for viscous 

deformation behaviour of polymer. In the third region after the peak of extension strain rate, the 

strain rate decreases, and the fibre solidifies. The temperature dependent extensional viscosity 

then increases quickly and approaches infinity near the solidification point. Therefore the 

dimensionless extensional viscosity in the third region is small in comparison to the same 

extension rate in the second region. After the solidification point, the extension strain rate 

becomes zero.  
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Figure 3.2.9 Schematic drawing of (a) fibre speed gradient along spinning line (b) dimensionless 
viscosity over extension strain rate along spinning line 
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4 Structural, mechanical and geometrical properties of the  
  as-spun fibres 

The structural and mechanical properties of as-spun fine PEEK and PP fibres are briefly dealt 

with in the following two sections in Chapter 4. It is worthwhile to fully study the structure of as-

spun fine fibres of PEEK in order to understand and control the final properties in various 

spinning conditions. Various spinning conditions such as the take-up speed (VL), throughput (Q), 

and the draw down ratio, (VL/V0) are discussed in relation to how they in turn affect the 

structural and mechanical properties of the fibres. The first section (Section 4.1) focuses mainly 

on structural investigations such as the orientation using off-line birefringence measurements 

(∆n), and the degree of crystallinity (X) using DSC measurements of as-spun fibres. The second 

section (Section 4.2) deal with mechanical and the geometrical properties such as fineness (Tt) 

and the end fibre diameter (DL), and also stress-strain investigations such as elongation, strain 

and stress at break, tenacity and elasticity modulus.  

4.1 Structural properties of the as-spun fine PEEK fibres  

As the spinning speed increases along the spinning line in the fibre formation zone, the polymer 

chains orient and crystallise, and the fibre structure develops. The total orientation measured by 

birefringence could be correlated with the spinning line stress. The major variables affecting the 

molecular orientation are known to be those that have the greatest effect on the spinning line 

stress; namely polymer viscosity (and molecular weight), the spinning speed and mass 

throughput. The extrusion temperature also affects to a less extent the molecular orientation 

[Salem 2001]. 

4.1.1 Orientation investigations 

The mechanical properties of as-spun fibres are strongly affected by the molecular orientation of 

polymer. The orientation of fibres has been widely investigated and it is of interest both for 

relation of orientation and properties of fibre, and also to find the melt spinning conditions that 

will result in the desired properties. Chain orientation is developed using polymer deformation; 

the deformation is either carried out in the melt or in the solid state. In the melt spinning process, 

the orientation of polymer molecules is developed in three regions: in the capillary, in the fibre 

formation zone during the stress-induced crystallisation and by drawing the crystallised fibre 

[Ehrenstein 1999]. However, the orientation of the shear flow in the capillary is lower than the 

orientation of polymer melt when extended along the spinning line. The main requirement is that 
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the molecular relaxation time of the deformed molecules must be longer than the experimental 

time allowed for relaxation. The partial crystallised polymer contains two phases: the amorphous 

phase and the crystalline phase, which can be independent from each other. However, the 

orientation of crystallised fibre is difficult to investigate because the simultaneously existing cases 

of orientation are dependent on each other. Therefore, all of the orientation measurements 

contain two mentioned parts, and a third additional part which covers the interaction of the two 

phases. Assuming that the interaction phase is negligible (the so-called birefringence form), the 

molecular orientation can be evaluated separately for the crystalline phase and amorphous phase 

by using the total birefringence (∆n). The birefringence (∆n), which is found in fibres due to 

molecular orientation, can be defined as the difference between the index of parallel refraction 

(nt), and perpendicular refraction (nr) to the fibre axis (∆n=nt-nr). The birefringence of partial 

crystalline fibre can be expressed as: 

 amcr nXnXn ∆⋅−+∆⋅=∆ )1( ,    (4.1.1) 

where  max
crcrcr nfn ∆⋅=∆  and max

amamam nfn ∆⋅=∆ , 
 
X   is the degree of crystallinity, which can be determined by DSC measurements. 

maxmax , amcr nn ∆∆  are the fibre birefringences of the total crystalline and amorphous phases 
respectively. They are adopted using the sonic module parameter [Schmack 1997]. 
The maximum possible birefringence corresponds to all molecules aligned parallel 
to the fibre axis. 

amcr ff ,  are “crystalline” and “amorphous” orientation functions (order parameters) 
respectively, and can be evaluated by X-ray scattering. 

According to the definition of the orientation function, f = 1 means that all of molecules are 

aligned parallel to the fibre axis, and f = 0 describes the random dispersed (isotropic) system and 

f =- 0.5 is valid if all the molecules are perpendicular to the fibre axis. The total birefringence 

(∆n), and the degree of crystallinity (X) are dependent on the spinning conditions. The 

orientation of amorphous part increases slightly when the spinning speed is increased. The 

orientation of crystalline phase is known to begin with a definite spinning speed; however, the 

effect of the draw down ratio on the orientation was only recently reported in the investigations 

for Polypropylene [Choi 2002] and for Nylon-6,6 [Joo 2002].  

Birefringence of as spun PEEK fibres: The on-line birefringence of PEEK was measured by 

interference [Shimizu et al. 1985]. The reported total birefringence was 0.199 and the crystal 

orientation factor found fcr =0.9. The reported birefringence of the amorphous region of as-spun 
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(a) (b) 

Figure 4.1.1 Birefringence measured in different throughput conditions of spun fibre 
PEEK 151 G (a) over take-up speed (b) over draw down ratio,  

measuremrnt (symbols), fitted (solid line)  

PEEK fibres was more than ten times of the crystalline region. Increases in the birefringence 

caused by increasing the spinning speed are well known for different melt-spun fibres 

[Shimizu 1985] and also for PEEK fibres [Ohkoshi 1999]. For a range of take-up speeds up to 

100 m/min, the molecular orientation of as-spun fibres increases with an increasing take-up 

speed [Shimizu 1987].  

The birefringence was measured here aided by an optic microscope, as explained in Section 2.3. 

Figure 4.1.1 (a) demonstrates the measured birefringence of as-spun PEEK fibres over take-up 

speed for different mass throughputs. It is evident from the Figure 4.1.1 (a) the birefringence 

increases by increasing the take-up speed, but in a constant take-up speed, increasing the mass 

throughput leads to decreases in the orientation. For example, with a take-up speed of 

2000 m/min, by making the throughput twenty times as small (3.5 g/min to 0.17 g/min), the 

orientation increasing tenfold. With a constant throughput, increasing the take-up speed increases 

the orientation, but the slope of the increase becomes more gradual when increasing the 

throughput. For a constant mass throughput of 0.17 g/min, the measured birefringence for 

different take-up speed shows a sharp increase. At a mass throughput of 0.17 g/min, the 

maximum possible take-up speed for stable spinning is about 2000 m/min (see Chapter 6 for 

spinning limits). It can be concluded that for these spinning conditions, the maximum orientation 

for PEEK expressed as birefringence is ∆nmax≈0.05. For the higher throughput of 3.5 g/min, the 

orientation seems to be only weakly dependent on the take-up speed.  
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To discuss the combined effect of the mass throughput and the take-up speed, the results of the 

birefringence measurements over the draw down ratio are presented in Figure 4.1.1 (b). With the 

smaller draw down ratio values, the birefringence can approach a constant value of ∆n→0.005, 

extrapolated by the solid line fitted to orientation. In the specified region of draw down 

ratio>200, the as-spun PEEK fibres show comparatively high molecular orientation. If the draw 

down ratio is above 200, high levels of orientation are obtained. By increasing the draw down 

ratio, the birefringence increases and the fineness (diameter) is known to decrease. The stress 

development (especially the stress at solidification point) along the spinning line mainly initiates 

and controls the orientation of molecule chains. 

Orientation and stress along the PEEK spinning line: Above the glass transition temperature 

for the low initial stress level, the birefringence of an as-spun amorphous polymer filament is 

proportional to the applied stress. This is expressed with an experimental linear relation between 

birefringence (∆n) and the internal tensile stress (σ) as follows: 

∆n= C.σ      (4.1.2) 

The constant C is inversely proportional to the absolute temperature. However, it is frequently  

Figure 4.1.2 Birefringence (measured) over stress (calculated) at solidification point 
for PEEK 151 G fibre 
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found that C can be treated as a constant over the range of the temperature where the 

birefringence of the spinning polymer develops. C can be either positive or negative, depending 

on the relative value of the two components of polarity. By increasing the spinning speed the 

stress becomes higher and higher, but the birefringence reaches its maximum (Intrinsic) value 

∆n*.  

Ohkoshi [1996] reported some on-line birefringence measurements and stresses along the PEEK 

spinning line and concluded that the stress-optical law, which is a good approximation for some 

polymers, is not valid for PEEK. At the beginning of the spinning line the birefringence was just 

2 % of the intrinsic birefringence. He concluded that because of the long relaxation time and the 

high thinning rate, stable viscous deformation could not occur. The molecular chain deformation 

has rather elasticity with little relaxation, and then it freezes with orientation-induced 

crystallisation. Figure 4.1.2 represents the off-line measured birefringence over the estimated 

internal stress at the solidification point, calculated from model of fibre formation of PEEK (see 

Section 5.4). The linear relation as Equation (4.1.2) shows still a good agreement, but shows some 

deviations to the orientation measurements. 

4.1.2 Crystallisation of the as-spun PEEK fibres 

Crystallisation is a term used for both nucleation and crystal growth. The nucleation rate of 

polymers at a constant temperature is greatly accelerated by the molecular orientation. 

Crystallinity plays an important role in determining the strength, stiffness and dimensional 

stability of synthetic fibres. Crystallisation occurs only within a specific temperature range that is 

bonded by melting point and the glass transition temperature (Tm>T>Tg). Along spinning line 

the polymer cools from a molten to a solid state, and subsequently passes through this 

aforementioned temperature range. It should be noted that materials having a Tg below ambient 

temperature, such as polypropylene, would continue to crystallise (post-crystallisation) even after 

the spinning process is completed. It is known that the crystallisation that occurs under molecular 

orientation may be different from ordinary not-oriented crystallisation. Ziabicki et al. [1985] 

concluded in the theory of orientation and crystallisation in the fibre spinning that the primary 

factor controlling the structural formation is the internal tensile stress (σ) along the spinning line 

in the fibre and not the draw down ratio (VL/V0) or deformation rate (V′). However, the internal 

tensile stress depends on the spinning speed (VL), extensional viscosity, the cooling rate and the 

fibre cross-section area. The spinnable polymers can be classified into three groups: not-
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crystallising (e.g. atactic polystyrene), slowly crystallising (e.g. PET) and fast crystallising (e.g. 

Nylon 6,6 and PP). The relationship between structure and spinning conditions for polymers 

capable of effectively crystallising at low spinning speed such as polypropylene are different. A 

large number of crystals are formed in a low-stress part of spinning line at a high or low take-up 

speed. To a large extent, molecular and crystal orientations are developed independently and are 

controlled not by the oriented nucleation, but by the rotation of crystals and chain segments in 

the deformation flow field. This means that the crystal orientation factors (fcr) will be smaller and 

the amorphous orientation factor (fam) will be much higher than predicted for orientation-induced 

crystallisation. Amorphous orientation will not be considerably reduced as a result of 

crystallisation. Therefore, PEEK and PP can crystallise at a low take-up speed and in a part of the 

spinning line where the stress is low. The amorphous and crystal orientations are developed 

independently. This means that, at the same stress level (σ = Κ ), the crystal orientation factors 

will be smaller and amorphous orientation factors will be much higher than those predicted for 

orientation-induced crystallisation.  

The Degree of Crystallinity for as-spun PEEK fibre using DSC measurements: The crystal 

structure of PEEK has been investigated by wide angle X-ray diffraction from melt-spun fibres 

[Shimizu 1985]. Some information of kinetics of no isothermal crystallisation of PEEK was 

reported by Zhang [2003]. In this thesis the degree of crystallinity of the as-spun fibre was 

determined using DSC measurement, as explained in Section 2.3.3. The DSC scanning curves for 

samples selected at first heating show a difference (as shown in Figure 4.1.3 (a),(b)). The first 

heating step of as-spun fibres shows a glass transition followed by post-crystallisation region and 

a melting peak. The glass transition temperature (Tg) shows no distinct difference under different 

spinning conditions. The post-crystallisation, which appears in the first heating, takes place 

directly after the glass transition. However, the beginning of as-spun PEEK fibre post-

crystallisation is shifted to higher temperature using higher throughputs or lower draw down 

ratios of the melt spinning process. The melting points (Tm) of as-spun PEEK fibres are not 

affected (no high difference) by different spinning condition, see Figure (4.1.3) (a) and (b). The 

degree of crystallinity of a-spun PEEK fibres was determined using the first heating step of DSC 

measurements by subtracting the melting and post-crystallisation areas. The result (enthalpy of 

crystallisation) is divided by the enthalpy of 100% crystallisation. The area of post-crystallisation 

shows an increase with a lower draw down ratio; this is a spinning condition in which the stress is 

low and the induced crystallisation consequently lower than for higher draw down ratio.  
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(a) 

(b) 

Figure 4.1.3 DSC measurement, first step heating flow over temperature  
(a) take-up speed 2000 m/min (b) take-up speed 1000 m/min 
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(a) (b) 

e 4.1.4 (a) First and second step heating to find crystallinity (b) second heating step 

d heating step shows no post-crystallisation and only a light relaxation in the glass 

temperature, see Figure 4.1.4 (b). After a cooling stage of 20°C/min, the second 

 DSC measurement shows the totally same behaviour at the glass temperature and the 

 temperature. The crystallisation at second heating indicates that the maximum possible 

y of PEEK is about 40%. 

Nr. Q 
g/min 

VL 

m/min 
DL 

µm 
VL/V0 

- 
∆H 
J/g 

X 
% 

∆n*1000 
- 

1 3.5 1000 58 15 20 15 5.58 
2 2 1000 44 27 23 17 5.61 
3 3.5 2000 41 30 22 17.5 5.58 
4 0.225 200 33 47 22 17 - 
5 2 2000 31 53 23 17.9 9.9 
6 0.225 400 23 94 23 18 - 
7 0.4 1000 19.6 133 29 22 14.3 
8 0.225 600 19 141 29 22 - 
9 0.225 800 16.5 189 32 25 - 
10 0.4 1500 16 199 39 30 18.2 
11 0.231 1000 14.9 230 33 25 18.6 
12 0.4 2000 13.9 265 43 33 22.5 
13 0.17 1000 12.8 309 40 31 30.4 
14 0.225 1500 12 350 42 32.4 20.1 
15 0.231 2000 10.6 455 45 35 27.2 
16 0.17 1700 9.8 526 45 34.5 43.2 
17 0.17 2000 9.1 619 46 35 44.8 

ble 4.1 birefringence and degree of crystallisation from DSC for as-spun PEEK 
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(a) 
 

(b) 
Figure 4.1.5 Crystallinity from DSC of as-spun fibre PEEK 151 G  

(a) over diameter and (b) over birefringence 

 

In Figure 4.1.5 (a), the degrees of crystallinity from DSC measurements are plotted over the draw 

down ratio. The crystallinity increases by increasing the draw down ratio slowly, but if the draw 

down ratio reaches the value ~200, it increases rapidly until it reaches a maximum value of draw 

down ddr~350. The maximum crystallinity of as-spun fibre measured from DSC is about ~35 % 

for a draw down ratio greater than 350. One should be remind that increasing the draw down 

ratio is known to lead to decreasing the fibre diameter and fineness. This means that the fine 

PEEK fibres show a high degree of crystallinity. If the crystallinity is extrapolated at a very small 

draw down ratio (ddr→0), the crystallinity can reach a constant value of X~15 %. It is obvious 

that the crystallinity also exists for a very small draw down ratios. The effect of crystallinity on 

geometrical and mechanical properties of fibres is discussed in the Section 4.2. 

Crystallinity of as-spun PEEK 151G vs. Birefringence (∆n) is plotted in Figure 4.1.5 (b). The 

total birefringence starts at low take-up level speed but shows a little dependence on degree of 

crystallisation. The crystallinity and birefringence both simultaneously reach a maximum. The 

extrapolation for the maximum orientation does not reach the 100 % crystallinity. PEEK is 

known to be a polymer that crystallises at a lower molecular orientation and the crystallinity 

produced inhibits further progression of molecular orientation.  
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Figure 4.1.6 Degree of crystallinity and total birefringence measured (symbols) 
over throughput for different take-up velocities of PEEK 151G 

According to the DSC measurements of the as-spun PEEK fibre, the degree of crystallinity 

reaches a maximum value of about 35 % at a spinning speed 2000 m/min and falls to below 

15 % at the same spinning speed but for a higher throughput (>2 g/min), see Figure 4.1.6. The 

same maximum degree of crystallinity can be reached using a spinning speed 1000 m/min, but 

this can be only for a very low throughput. The total birefringence of as-spun PEEK fibre at 

2000 m/min shows a decrease by increasing the throughput as discussed previously in 

Figure 4.1.1 (b).  

Some considerations for on-line crystallisation and orientation: The increase in take-up 

speed produces a major increase in the crystallisation kinetics, and it is expected, the 

crystallisation temperature will also increase. If the crystallisation kinetics is saturated, an increase 

in take-up speed will still increase the cooling rate and that will produce lower crystallisation 

temperature. Increasing the molecular weight increases the polymer viscosity and leads to a 

greater stress and molecular orientation in the spinning line. This usually leads to higher 

crystallisation temperature. Crystallisation of polypropylene in the spinning line occurs at a lower 

temperature than for polyethylene, despite the higher melting point of polypropylene. The 

crystallisation in melt spinning of PEEK proceeds in a highly oriented structure region of fibres 

on the spinning line [Shimizu 1987]. According to the oriented crystallisation, the molecular 

orientation causes an increase in the crystallisation rate but reduces the average crystal size 

[Salem 2001]. 
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4.2 Mechanical and geometrical properties of as-spun fine fibres 

4.2.1 Fineness and Tenacity (PEEK and PP fibres) 

Fineness: In Figure 4.2.1, the fineness and diameter of as-spun PEEK fibres over the take-up 

speed for different throughputs are compared. The solid lines are the calculated values of 

fineness and the symbols are the measured values of fineness. It can be seen that the values of 

fineness measured and calculated are close together and show a good agreement. The deviations 

of measurements from theoretical calculation may be due to the process parameters, i.e. mass 

throughput, take-up speed deviations, polymer impurities and the die inaccuracies 

[Beyreuther 1998]. If the fineness and diameter values are presented over the draw down ratio, 

the curves can be reduced with respect to throughput as shown in Figure 4.2.2. It is obvious 

from this presentation that in order to produce fine fibres, the draw down ratio has to increase 

quadratic. For example, to reduce the diameter from 60 µm to 20 µm, the draw down ratio has to 

increase from 10 to 90. But to decrease the diameter from 10 µm to 8 µm the draw down ratio 

must increase from 500 to 780, which is not easy to spin stable because of such high draw down 

ratio. More investigations about the spin stability and the limit of fineness to produce the fine 

fibres are discussed in the Chapter 6.  
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Figure 4.2.1 Fineness and diameter measured and calculated of as-spun PEEK 151G fibres for 
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Figure 4.2.2 Fineness and diameter measured and calculated of as-spun PEEK 151 G fibres for 
different spinning conditions over draw down ratio 

The fineness was measured according to gravitational method as described in Section 2.3.1. In 

Figure 4.2.2, the diameter measurements were carried out using an optic microscope described in 

Section 2.3, and the fineness measurements were done directly after spinning and again later after 

30 months, and showed no significant difference. 

Elongation at break: As explained in Section 2.3.2 the elongation measured by a tensile test can 

be used to calculate the Hencky’s strain. The elongation and Hencky’s strain are only identical for 

a very small deformation (<0.01). Figure 4.2.3 shows the elongation at break over the take-up 

speed for as-spun PEEK fibres. In comparison to the general observation of many spinning 

thermoplastic fibres, Figure 4.2.3 verifies that the high stress at the solidification point along the 

spinning line for PEEK fibres leads to decrease the elongation at break [Brünig 1999]. Of course, 

the Hencky’s strain shows the same trend as the elongation over take-up speed. As the take-up 

speed increases and approaches 5000 m/min, the elongation at break will reach 40 % and the 

Hencky’s strain will equal 0.4. If the take-up speed is extrapolated for (VL→100) the elongation at 

break appears to approach 300 % and the Hencky’s strain at break (ε) will approach 1.4. As 

explained, the elongation at break decreases by increasing the take-up speed, however, at the 

constant take-up speed, a different value for measured elongation exists, see Figure 4.2.3. 
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PEEK 151G Victrex from tensile test  

Different elongations are caused by different draw down ratios for one take-up speed, in other 

words, it is due to different throughputs. Higher throughput means lower solidification stress 

value and smaller throughput leads to a higher elongation at break [Beyreuther 1991]. The 

elongation at break decreases more when increasing the draw down ratio, see Figure 4.2.4 (b). 

Whilst the elongation at break is more than 100 % for ddr~10, it can decrease to 40 % as the 

draw down ratio approaches 1000. This can be due to the structure of PEEK fibres; for a higher 

draw down ratio, the crystalline part approaches its maximum, and the amorphous part can be 

stretched and oriented along the fibre axis. 

Tenacity: The effect of the take-up speed on the physical tenacity is presented in Figure 4.2.4 (a). 

The line fitted to physical tenacity of PEEK fibres slowly decreases from 6-7 cN/dTex down to 

4 cN/dTex for a take-up speed approaching 5000 m/min. It is necessary to notice that, for the 

production of fine filaments, the elongation and the physical tenacity are lower for the same take-

up speed. A low melting temperature also leads to a higher value of physical tenacity. This can be 

due to increased crystallization and lower orientation. One should consider that the variation of 

physical tenacity of fibres with respect to draw down ratio shows a relative constant tenacity 

5 cN/dTex for a draw down ratio of (VL/V0)<200, see Figure 4.2.4 (b). For a higher draw down 

ratio (to produce fine fibres), the physical tenacity decreases slightly to a smaller value; for 
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ddr→ 1000, the physical tenacity can possibly reach 4 cN/dTex (see Figure 4.2.4 (b)). 

Figure 4.2.4 (b) also shows another set of measurements taken after 30 months of spinning. 

However, the tenacity itself over the draw down ratio shows a slight increase for as-spun PEEK 

fibers, as shown in Figure 4.2.5 (a) and (b). For a low draw down ratio about 10, the tenacity is 

about 2 cN/dTex, and for a high draw down ratio close to 1000, it is greater than 4 cN/dTex. 

This means that to produce more fine filaments in the melt spinning, the tenacity increases, but 

the physical tenacity decreases, as shown in Figure 4.2.4. The increase of tenacity was also 

reported for other polymer, e.g. by Murase [1994] for PET. The deviation in the tenacity 

measurements is caused by different structural properties, i.e. crystallization and orientations. 

Other reason for physical tenacities deviations is the effect of multifilament tensile test. This 

means that the single filaments of multifilament under stress breaks one by one, and the stress 

and the strain of break differs for every filament, therefore the physical tenacities, as a true stress 

at the breakage can not be totally reliable as for the tensile test of single filament.  

By comparing the polypropylene to PEEK in Figure 4.2.6 (a) and (b), this confirms that physical 

tenacity decreases if the draw down ratio is increased. The elongation at the PP break is higher 

than for PEEK, and decreases rapidly with the increase of the draw down ratio. However, the 

elongation at break of PP is higher than for PEEK and the physical tenacity is also higher. The 

polypropylene fibres show a higher deviation in fineness and diameter in the measurements given 

in Figure 4.2.6 (a); this could be interpreted as due to the different structure formation of 

polypropylene compared with PEEK.  
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Figure 4.2.4 (a) Physical tenacity over take-up speed (b) Physical tenacity and elongation at break over 
draw down ratio for different spinning conditions of PEEK 151 G (solid line fitted) 
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4.2.2 Elasticity modulus and stress strain curves 

The room-temperature fibre structure properties discussed here are the initial elasticity modulus 

and the tensile strength. The following discussion of the structure-property relationship provides 

a simplified outline of the subject. The modulus of fibres from flexible chain polymers is usually 

much lower than the ultimate value, because chains in the non-crystalline regions are far from 

being fully aligned. The modulus of polymers in the amorphous state (Eam), with randomly 

oriented chains, is generally one to two orders of magnitude lower than its (chain axis) modulus 

in the crystalline state (Ecr). For a simple series arrangement of amorphous and crystalline region 

assuming crystals fully oriented along fibre axis the overall elasticity modulus is given by  

cram E
X

E
X

E
+

−
=

)1(1      (4.1.3) 

It is clear that the not-oriented amorphous regions have the dominated influence on the fibre 

elasticity modulus, even at very high levels of crystallinity. If the crystalline regions are 

surrounded by the amorphous phase in a parallel series arrangement, and Ecr>>Eam, the influence 

of Eam is again predominant. Only when there is crystal continuity (amorphous and crystalline  
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Figure 4.2.7 Elasticity modulus from true stress-strain curves in room temperature of melt-spun 
PEEK 151 G fibres over take-up speed 
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Figure 4.2.8 Elasticity modulus from true stress-strain curves in room temperature of melt-spun 
PEEK fibres (a) over the draw down ratio (b) over birefringence in different spinning conditions, 

(solid line fitted to measurement) 

phase in parallel, or amorphous regions surrounded by crystalline regions) can E approach Ecr. 

[Salem 2001].  

Elasticity modulus of as-spun PEEK fibres: The theoretical tensile modulus of a fully 

extended PEEK molecule was calculated by Shimizu et al. [1987] and the module of the 

crystalline and amorphous regions were obtained. They applied a two-phase model by combining 

the crystalline and amorphous regions in series for various PEEK fibres, and they have been 

established that the initial compliance of the amorphous region can be represented as a linear 

function of amorphous orientation.  

In this thesis, the total elasticity modulus of PEEK fibres is investigated in Figures 4.2.7; the 

elasticity modulus is calculated from tensile tests for the linear behaviour of PEEK fibres and 

presented over the take-up speed. Increasing the take-up speed leads to increases in the elasticity 

modulus of as-spun PEEK fibres. The different values of modulus at one take-up speed are 

referred to different mass throughputs in the melt spinning process. This is similar to the 

orientation variation over take-up speed investigated in Figure 4.1.1; therefore it is verified that 

the elasticity modulus of as-spun PEEK fibres depends on the orientation of the filaments. In 

Section 4.1, it was also mentioned that the orientation depends on the internal stress in the 

solidification point.  

 65 



Figure 4.2.8 (a) presents the elasticity modulus over the draw down ratio. For a draw down ratio 

ranging within 10<(VL/V0)<1000, the elasticity modulus increases by increasing the draw down 

ratio. With a draw down ratio of less than 100, the elasticity modulus increases slowly around 

1 GPa and than quickly increases to reach 6 GPa. Figure 4.2.8 (b) presents the elasticity modulus 

over orientation expressed in birefringence. It is clear that orientation mainly controls the 

elasticity module value, and more molecular chains oriented along the fibre axis make a high 

elasticity modulus. With a birefringence of less than 0.01, the elasticity modulus is about 1 GPa 

and for the birefringence between 0.01 to 0.05, the elasticity modulus increases approximately 

linear from 1 GPa to 6 GPa. However, Shimizu et al. [1987] have examined the PEEK and found 

that the initial modulus of PEEK fibres of varying crystallinity can be related to the orientation of 

the corresponding amorphous region. 

Stress strain curves of as-spun PEEK fibres: Two important points are here necessary to 

remind: Firstly, it is time consuming to measure stress and strain (σ−ε) of all isolated filaments in 

a yarn bundle, and especially in the case of fine fibres, it is impossible to isolate the fine filaments. 

Because the multifilament is broken in different levels, some theoretical and practical 

investigations of (σ−ε) curves of multifilament yarn bundle have been discussed by 

Beyreuther et al. [1998]. Based on this work, the simple (σ−ε) curve for single filament are 

compared to the multifilament yarn bundle in order to estimate the cross unevenness of 

multifilament without test all individual filaments. In the multifilament (σ−ε) curve, the single 

filaments break at specific stress and elongation levels, and the remaining filaments break at lower 

stress one after other. In the end, all the filaments are broken at the maximum elongation where 

the force is zero. Comparing single fine filament to multifilament is very difficult to achieve. 

Secondly, tensile strength, extensibility, and modulus depend not only on the test temperature but 

also on the strain rate imposed, e.g. at low rates of deformation, the polymer chains in isotactic 

polypropylene have time to rearrange before failure, in a way that the final structure at failure is 

the same for all samples irrespective of the starting orientation, and that all samples break at the 

same true stress [Salem 2001]. If the deformation rate increases, the samples will break at lower 

stresses and lower extensions, because the chains cannot redistribute the stress fast enough, and 

at very high strain rates the breaking stress is directly related to the starting orientation. 

Keeping in mind the two above mentioned points, typical true stress-strain curves for as-spun 

PEEK filaments in room temperature are shown in Figure 4.2.9 (a), (b), (c) and (d). The true 
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strain at break increases by decreasing the draw down ratio as seen in different curves. However, 

for the same throughput, increasing the take-up speed leads to increases in the strain at break, 

because of stress increases in the solidification point and orientation as previously discussed in 

Section 4.2.1. 
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The true stress at break increases by decreasing the melt throughput, see Figure 4.2.10. But with 

the same throughput, increasing the take-up speed leads to a slight decrease in stress at the break. 

It can be concluded that if the draw down ratio increases (to produce the fine PEEK fibres), the 

room temperature as-spun fibre will be yield at a higher tensile stress, but with a lower 

elongation, see Figure 4.2.10. In the other words, the fine fibres produced by a high draw down 

ratio, high crystallization and orientation become tougher and cannot deform plastic, because 

their elastic deformation is fully developed by the high draw down ratio. Filaments with low 

orientation show the yield, necking and extension at a relatively constant load, followed by a 

work hardening and high elongation at break. Because of its ductility, this filament can be drawn. 

The filaments with higher orientation have a higher yield strength, tenacity and lower elongation 

at break. 
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5 Applying the model of fibre formation to PEEK 

In Chapter 5, the mathematical simulation of fibre formation is applied for the special 

thermoplastic PEEK Victrex 151 G. The first section (Section 5.1) is devoted to the differential 

equations, the boundary conditions and how to solve the equations. In Sections 5.2 and 5.3, the 

on-line measurements of temperature and speed are compared to the solution of the applied 

model, in order to examine the heat transfer and the viscosity effect on the structure formation 

of PEEK along the spinning line. In Section 5.4 the force calculation, internal stress and effect of 

skin drag force are discussed, which affect the orientation of chains in fibre. 

5.1 Fundamental equations of steady state melt spinning 

Fibre spinning is an example of steady state but non-uniform flow. This means that for a 

stationary observer the process is steady state, and variables such as the speed and deformation 

rate also remain constant at each point (z) of the spinning line. From the point of view of a small 

particle of polymer moving along the spinning line, the deformation is dependent on time, and 

the particle experiences different velocities and different strain rates as it moves along its 

trajectory. Figure 5.1.1 shows the distance dependent view of melt spinning process, which is 

often used in the modeling. The fibre formation zone begins from the spinneret where the 

polymer melt is supplied by the extruder, and then continues to solidification point where the 

melt cools down through exposure to air and where the fibre is transported as solid to wind-up 

unit.  
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Figure 5.1.1 The one-dimensional model of melt spinning process and the coordinate 
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Unknown variables  Axisymetric Vr=Vθ=0 This work  
V (Vz, Vr, Vθ) 3 2 1 Vz 
σ (σzz, σrr, σθθ,τzr, τzθ, τrθ ) 6 3 1 σzz 
P, T, ρ 3 3 3 T 
X, ∆n 2 2 2 - 

Total 14 10 7 3 
Equations     

Equation for conservation of energy 1 1 1 1 
Equation for conservation of matter 1 1 1 - 
Equation for conservation of momentum 3 2 1 1 
Constitutive equations  6 3 1 1 
Equation of crystallisation kinetics 1 1 1 - 
Equation concerning molecular orientation 1 1 1 - 
Equation of state 1 1 1 - 

Total 14 10 7 3 

Table 5.1 Unknowns and equations in the model of melt spinning process 

The general case for the melt spinning process in the three-dimensional polar coordinate has 

fourteen unknowns, which in turn needs a system of fourteen equations. Table 5.1 contains all of 

the unknowns and equations as summarized by Katayama [1994]. Solving the system of fourteen 

equations is in fact is possible, but it is quite time consuming and not always necessary because 

the difficulties are at any rate normally present in the parameters and coefficients of equations. 

One can also use the two-dimensional approach (axisymmetric in polar coordinates) which 

reduces the system of unknowns and equations down to ten, by neglecting the variation in the 

angular coordinate, θ, from the geometrical symmetry. Recently, more new methods are reported 

to contain complex application and the use of non-linear constitutive equations. Joo et al. [2002] 

developed a model and simulation method for two-dimensional melt spinning of a viscoelastic 

melt (from non-isothermal Giesekus constitutive equation [2001]) and the crystallisation kinetics 

is described in the model proposed by Nakamura [1973], whereas the crystallisation rate is, as 

proposed by Ziabicki [1976], a function of both temperature and molecular orientation. Two 

different thermoplastics, amorphous polystyrene and fast crystallising Nylon-6,6 are simulated, 

and the non-linear governing equations are solved by using the finite element method and by 

including the die (composed of a contraction region and a capillary length), the molten zone, the 

spinning line and the solidification point in the calculation. The one-dimensional approach, 

which reduces the system of unknowns and equations to seven, is a much used method. 

Mitsoulis et al. [2000] analysed the melt spinning by means of a unidirectional approach and take 

apart the prehistory of the material in the die aided viscoelasic polymer melt behaviour (K-BKZ 

integral constitutive equation). They compared the experiments with the simulation results for 
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polypropylene (PP), Poly(ethylene terephthalate) (PET) and low density polyethylene (LDPE) 

melts at low and high speeds. They used an isothermal and non-isothermal simulation, and the 

die swell near the spinneret was not taken into consideration. The crystallisation effect was also 

not considered. 

5.1.1 One-dimensional model for fibre formation  

In this chapter the simple model of equations is assumed and solved. The equations of steady 

state melt spinning are derived from the three fundamental equilibrium equations: the 

conservation of energy, the conservation of momentum and the conservation of matter. Because 

there have been no adequate studies for PEEK including general information about the material’s 

properties, the accurate and detailed physical property relationships must be at first developed 

(Chapters 2, 3 and 4), without adding further unknown and complexity to the model. In addition, 

the reported on-line measurements for PEEK fibre in the literature are of a very limited nature. 

Because of this, a lot of this thesis concerns itself with the on-line measurements, and their 

calibration as stated in Chapter 2. Hence the equations of state in fibre formation can be 

summarized in three one-dimensional equations. The three equations consist of momentum or 

force balance, and the energy, and the constitutive equation combined with continuity.  

To simplify the simulation of the melt spinning process, the model is used with the following 

assumptions: 

a One-dimensional steady state and stable melt spinning process 
b The temperature and velocity are independent of radial position  
c The density and specific heat are functions of temperature 
d Stress-induced crystallisation is not taken into consideration at all 
e Cooling occurs in stationary air Ta (convective and radiation heat transfer) 
f The Newtonian model for fluid flow and Maxwell viscoelastic model 
g The die swell is small or negligible 
h The elongation viscosity is dependent on temperature and extension rate 
i The prehistory of polymer flow is ignored.  

The assumption (a) and (i) means that the fibre speed gradient (V ) is approximated by the strain 

rate ( ) of polymer as: 

′

ε&

dz
dV

dt
d

=
ε  or       (5.1.1) V ′=ε&

The one-dimensional model is based on the small slope of fibre in the axial direction, i.e. 

(dD/dz<<1). This fails near the spinneret where the flow is more complex and therefore 

 71 



requires two-dimensional analysis. Although the small slope approximation imposes some 

restriction, it is still worth undertaking the one-dimensional analysis.  

Continuity equation:  

VAQ ⋅⋅= ρ ,  (5.1.2) 

where the density (ρ) cross-section area (A) and fibre speed (V) vary from point to point along 

the spinning line but their product, the throughput (Q) stays constant. 

Momentum or force balance:  

AgVCD
dz
dVQ

dz
dF

af ⋅⋅−





 ⋅⋅⋅⋅+⋅= ρπ 2

2
1

ρ  ,   (5.1.3) 

where the internal force gradient is (dF/dz) at every section along spinning line and the inertia 

force gradient is F′i=Q.(dV/dz), the skin drag force gradient is F′s=π.D.(Cf.ρa.V2/2) and the 

gravity force gradient is F′g=ρ.g.A. 

Energy equation: 

( ) ( )
dz
dX

Cp
HDTTTTNu

CpQdz
dT

pa
amSBa

p

a ⋅
∆

+







⋅−⋅⋅+−⋅⋅

⋅
⋅

−=
λ

εσ
λπ 44  , (5.1.4) 

where the Nusselt number (Nu) refers to heat convection, εm is the emissivity of radiation and 

the crystallisation (X) should be defined as a function of z, but is neglected by solving the 

equation. 

5.1.2  Constitutive equations 

Viscous and viscoelastic constitutive equation were used separately for the model. This section 

provides a brief introduction to the method used to implement the constitutive equation in the 

model. 

Viscous or Newton Model: As explained in Section 3.2, the constitutive equation of viscous 

model is ( )dtde εη=σ ⋅  or σ . In the viscous model the stress (σ) can be 

eliminated, where σ=F/A and the cross section area (A) from continuity Equation (5.1.2) can be 

replaced. Therefore, the velocity gradient in viscous model works out to be as follow: 

( dzdVe /⋅= η )
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Q
VF

dz
dV

e ⋅
⋅⋅

=
η

ρ   (5.1.5) 

Viscoelastic Maxwell Model: One must note that by using the viscoelastic Maxwell, 

Equation (3.2.2), and replacing the definitions ε  and σ  in ε  

leads to: 

ε ′⋅=V& σ ′⋅=V& eE ησσ // += &&

EVe

σ
η

σ
ε

′
+

⋅
=′   (5.1.6)  

If VV ′=′ε , AF=σ  and ( ) 2AAFAF ′⋅−⋅′=′σ are replaced in Equation (5.1.6) and 

is eliminated by using Equations (5.1.3) and (5.1.2), the velocity gradient for Maxwell 

viscoelastic is: 

AF ′′,

)(
)(

QVFAE
FFVFE

dz
dVV

e

gse

⋅−−⋅⋅

−⋅⋅+⋅
==′

η

η
 ,   (5.1.7) 

where Fs and Fg are defined in the Equation (5.1.3).  

Non-linear Viscoelastic equation: The simple form of nonlinear viscoelastic used in melt spinning 

process is the upper-convected Maxwell model, and in cases for the one-dimensional steady state, 

Yarin [1993] suggested the following constitutive equation: 

( ) VVVG ′⋅⋅=′⋅⋅−′⋅⋅+ σσησ 22)( η    (5.1.8) 

Using the same replacement explained above for Maxwell model in Equation (5.1.8) leads to the 

following: 

)2(
)(
QVFAG
FFVFG

dz
dVV gs

⋅−+⋅⋅⋅

−⋅⋅+⋅
==′

η

η
    (5.1.9) 

Solving the equations of steady state melt spinning: The general form of the equations of 

state in the fibre formation zone can be summarised using the following matrix form. 
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The equation f1(V,T,F) is replaced by Equation (5.1.5) for viscous behavior, Equation (5.1.7) for 

viscoelastic behavior, or Equation (5.1.9) for nonlinear viscoelastic behavior. The equation 

f2(V,T,F) and f3(V,T,F) are replaced by Equations (5.1.4) and (5.1.3), respectively. Other material 

properties used in the above equations are given in Chapter 2 and 3. The three unknowns in the 

three governing equations are the velocity (V), the temperature (T) and the internal force (F). 

This means that to find the three variable V, T and F, these three equations must be solved 

simultaneously with the following boundary conditions: 

Boundary conditions: the boundary conditions of melt spinning process are as follow: 

Initial values      Boundary values 

T0 
F0 

V0 initial velocity   z=0 V0=V0  take-up speed  z=L VL=VL  
initial temperature  z=0 T0=Tm  
initial force  z=0 F0=?  

Two initial values and one boundary value are known. The three initial values { V

needed in order to start the solution of the three differential equations. Since the 

tension F0 is not known, an initial guess is necessary. More about initial force 

discussed in Section 5.4. 

Integral type of constitutive equations: The usual form of linear viscoelastic an

viscoelastic constitutive equations is, with respect to time, the integral type, whic

memory function and also the prehistory of polymer in the extrusion unit and spinn

The integral form is used to include prehistory from spinneret. However, the differe

the constitutive equation explained above is considered relatively easy to implemen

The equations of steady state in melt spinning mentioned above are derived wi

distance (z) but the constitutive equations are derived with respect to time (t). This i

that the variation of state for one point moves along the spinning line. Rauschen

used the time dependent equations and K-BKZ integral model for Rheotens. H

equations of steady state with a recursive method with respect to time. However, he 

inertia and friction force due to the relatively low speed spinning. Recently, Misuouli

combined the one-dimensional non-isothermal differential equation with respect to

with the integral constitutive equation (K-BKZ integral) with respect to time (

element approach and the relation between velocity, distance and time made it pos

the problem. The calculations, to change the time to distance and vice versa make

more complicated; they are only useful in cases the die swell near the spinneret o

force is important to deal with. 
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5.2 Heat transfer and fibre temperature along spinning line  

The cooling procedure and heat transfer of fibres are investigated in the fibre formation zone of 

the melt spinning process. The aim of Section 5.2 is to correct the measured temperature of 

PEEK fibre in order to examine the type of heat transfer to its surrounding. It was spun at piston 

and extruder equipment, the last combined with a single screw high-temperature extruder by 

Rieter Automatic.  

Heat transfer along spinning line: To characterize the heat transfer from filaments, two 

approaches have normally been used, (a) the theoretical approach, which is based on boundary 

layer heat transfer, thermodynamics and fluid mechanics; and (b) the experimental approach, 

which includes design and fabrication of an experimental setup that adequately simulates the 

conditions experienced by a fibre formation. In this section, the heat transfer investigation is 

based on the energy balance equation and on the on-line measurements along the fibre formation 

zone. In other words, a complexity of boundary layer theory and a laboratory simulation are to be 

avoided.  

The boundary layer on a spun fibre, however, has three specific features [Kubo 1985]: 

1. The filament is usually very thin compared to the boundary layer around it, 

2. There is a large temperature gradient across the boundary layer, 

3. The surface of the filament undergoes acceleration in the longitudinal direction. 

The basic problem of boundary layer growth and heat transfer from continues cylinders moving 

through a still fluid has been studied quite extensively. It is evident that the boundary layer in the 

fibre formation zone is different to ordinary boundary layer theory. In the boundary layer theory, 

the flow along spun filament must divide into two regions: the first one from spinneret to 

solidification point, and the second one the flow after solidification point. In order to reduce the 

complexity of this problem, some assumptions are necessary. In most previous research, two 

essential assumptions were made: the polymer melt is assumed to be solid and cylindrically, and 

that the air is incompressible. 

The heat transfer from the melt-spinning line to an ambient medium involves several 

mechanisms: radiation, free (natural) convection, forced convection [Ziabicki 1976] and 

conduction [White 2001]. Depending on spinning conditions, one or more mechanism are 

dominated. In a low speed spinning, the free convection dominates [Ohkoshi 1993]. In a relative 

thick filament, the heat conduction part cannot be ignored, and for high fibre temperature, the 

radiation especially near the spinneret is of utmost importance. 
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Nusselt number from on-line measurement: The Nusselt number (Nu) is the most important 

dimensionless number in the convective heat transfer; it is defined as Nu=h.D/λa, where h is 

convection heat coefficient, D is diameter of fibre and λa is the heat conduction coefficient of air. 

The Nusselt number represents the ratio of heat convection to heat conduction (both in fluid) 

[Tucker 1989]. The heat transfer coefficient for melt spinning requires further study, although, 

several theoretical and empirical efforts were made to find a general relationship for Nusselt 

number [Ziabicki 1976]. For the same spinning conditions, different values occur from 

relationships suggested, in turn affecting the calculated fibre temperature profile along the 

spinning line. The energy equation, Equation (5.2.1), contains all form of heat transfer and the 

heat from crystallisation in the melt spinning process: 

( ) ( )
dz
dX

Cp
HDTTTTNu

CpQdz
dT

pa
amSBa

p

a ⋅
∆

+







⋅−⋅⋅+−⋅⋅

⋅
⋅

−=
λ

εσ
λπ 44  (5.2.1) 

Assuming that the radiation energy can be ignored, Equation (5.2.1) in dimensionless 

temperature, Θ =(T-Ta)/(T0-Ta), and dimensionless distance to spinneret, Z=z/L, is reduced to 

the following equation: 

  
dZ
dX

TTCp
H

CpQ
Nu

dZ app

a ⋅
−⋅

∆
+Θ

⋅
⋅⋅

−=
Θ

)( 0

λπd     (5.2.2) 

Equation (5.2.2) can be solved and was reported by Nakamura [1972]: 

For Z<ZX before the crystallisation occurs where (dX/dZ)=0, see Figure 5.2.1 
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For ZX<Z<ZX+∆Z assume a plateau if crystallisation occur (dΘ/dZ)=0 
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      (5.2.4) 

For Z<ZX+∆Z after the crystallisation ends where (dX/dZ)=0 
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Figure 5.2.1 Typical dimensionless fibre temperature over dimensionless distance to spinneret 
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To solve the energy equation, Equation (5.2.1), numerically or to find the temperature analytically 

as in Equations (5.2.3), (5.2.4) and (5.2.5), the value of the Nusselt number must be known. If the 

crystallisation along the spinning line is ignored (dX/dZ=0 in Equation (5.2.1)), the Nusselt 

number is found out from measured variable such T(z) and D(z): 

 ( ) aa

a
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p D
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TT
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 (5.2.6)

After the substitution of known parameters and on-line measured variables such as the diameter 

of filament (calculated from measured velocity in different distance to spinneret) and the 

corrected temperature in the above equation, the Nusselt number can be calculated. The Nusselt 

number (Nu) is normally expressed in dimensionless groups such as the Reynolds number (Re), 

Rayleigh number (Ra), Prandtl number (Pr) and Grasshof number (Gr). The Reynolds number is 

defined as Re=V.D/νa, where V is fibre speed, D is the fibre diameter and νa is the kinematic 

viscosity of air. The Reynolds number is the ratio of the internal force of the air to the viscous 

flow. When the Reynolds number is large, the effect of air viscosity is relatively small.  

The Nusselt number in melt spinning process is a combination of natural and forced convection  

Nu = Nu(Nuf, Nun)     (5.2.7) 

Free (natural) convective heat transfer is known to be the typical heat transfer mechanism for 

stationary system, and it is concerned with the movement of air due to the temperature gradient 

around the cooling body. The dimensionless free convective Nusselt number around the fibre is 

generally reported as a function of two other dimensionless numbers, the Grasshof number (Gr), 

and the Prandtl number (Pr) [Kast 1974]  

Nun = Nun (Gr, Pr),     (5.2.8) 

where the Grasshof number is Gr=g.β.(Τ−Τa).D3 and the Prandtl number of air is 

Pr=η.Cpa/λa. In order to find the specific correlation for free convection, an experimental 

investigation must be carried out.  

In the melt spinning process, the Grasshof number indicates that the natural convection is 

dependent on temperature difference of fibre and ambient air, which depends on both take-up 

speed and throughput. The cooling by natural convection becomes dominant factor for a low 

take-up speed [Ziabicki 1976]. Schöne [1980] has explained that a large share of heat transfer is 

expected near the spinneret due to free convection, but the high temperature of spin block brings 
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forth additional complication. Recently, Ohkoshi [2000] also confirmed this effect for PEEK 

aided experimental measurements when the fibre temperature is high and the fibre speed is low. 

Forced convective heat transfer occurs due to the relative movement of an immersed body in 

an ambient medium. The relative movement in the melt spinning refers to the axial speed of 

fibre, or the cross airflow. In high speed spinning lines, the convective heat transfer in the melt 

spinning process is dominant. The Nusselt number for the convective heat transfer depends on 

three dimensionless numbers: Reynolds (Re), Prandtl (Pr), and dimensionless distance (z/D), 

Nuf = Nuf(Re, Pr, z/D),    (5.2.9) 

where the Reynolds number is based on fibre diameter, Re=V.D/νa. In both theories and 

experimental studies, other dimensionless numbers are also introduced to provide a general 

relationship of the Nusselt number. The Reynolds number, based on distance, Rez=V.z/νa, can 

be expressed as Rez=Re.z/D. The dimensionless distance that appears in the theoretical 

boundary layer studies as ζ=z.νa/VD2 can be expressed as ζ=Re-1.z/D. 

Therefore the Nusselt number, Equation (5.2.7), can be expressed as a function of three 

dimensionless numbers by combining Equation (5.2.8) and (5.2.9) in the following way 

Nu = Nu(Re, Gr, z/D)    (5.2.10) 

In Equation (5.2.10), it is also assumed that the Prandtl number of air is equal to unity. The 

Nusselt number can now be expressed as Nu=a Reb. Grc.(z/D)d, and if the four constants a, b, c 

and d are found using experimental correlation, the empirical relation will be provided.  

5.2.1 Fibre temperature and Nusselt number for PEEK fibres 

Some melt spinning experiments with the spin equipments were designed and carried out using a 

single screw extruder and a movable wind-up unit. The wind-up unit was placed about 1.5 m 

from the spinneret. PEEK Victrex 151 G was used as the spinning material. The melt was drawn 

through a three holes spinneret, and the melt temperature was 385°C.  

To measure the fibre temperature, 100 snapshots were taken with the infrared camera at every 

desired vertical distance to the spinneret. As shown in Figure 5.2.2 and Figure 5.2.3, the recorded 

temperatures have different values at every location because the fibres go out of the focal point 

of the lens. This occurs due to the motion of the fast running fibre and its subsequent lateral 

vibration. Therefore, the maximum of the measured temperature values was assumed as the fibre 

temperature at every location.  
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The measured temperature has to be corrected using the emissivity correction factor, which is a 

line measurements and the temperature gradient of fibre are replaced 

exp(-A.z),  (5.2.11) 

where the dimensionless temperature is Θ= a)/
2

2

Table 5.2.1 Melt spinning process of PEEK and fitting meter to m e profile 

 Throughput  
Q   g/min 

Take-up speed 
VL   m/min 

Draw down ratio 
VL/V0 

A 
cm-1 

B 
- 

function of the fibre diameter (see Section 2.2.2). These procedures were repeated with different 

take-up speeds and different throughputs as shown in Figure 5.2.3. The melt spinning equipment, 

the material conditions, the melt temperature and the spinneret were the same for all 

experiments. From the results it is obvious that the corrected temperatures are higher than 10% 

of the measured maximum temperature. Therefore the effect of the emissivity correction factor 

to justify the true fibre temperature cannot be discounted. The corrected temperatures were fitted 

to a curve and compared with measurements of Ohkoshi [1993] in Figure 5.2.4. Although the 

material is the same as in Ohkoshi’s experiment [1993], the spin conditions and the melt 

temperature are different. 

The temperature from on-

in the Equation (5.2.6) to investigate the fibre heat transfer coefficient. Replacing the expression 

fitted to the corrected temperature is recommended in order to smooth the temperature and 

temperature gradient estimation from on-line measurement. The fibre temperature along the 

spinning line decreases due to cooling, therefore one should assume an exponential decreasing 

function using the applications of Equations 5.2.3 to 5.2.5 as follow: 

Θ= exp(-B.ζ )  or  T(z)=Ta+(T0-Ta).

(T-T (T0-Ta) and the dimensionless distance to the 

spinneret is ζ= zνa /VD =πzνaρp /4Q. A and B are found by fitting the Equation (5.2.11) to the 

corrected on-line fibre temperature in Figures 5.2.2 to 5.2.5 (see Table 5.2.1). The dimensionless 

temperature, Θ=(T-Ta)/(T0-Ta), is normally used to reduce the temperature of fibre, and the 

dimensionless distance to spinneret, ζ=zνa/VD , appears from the boundary layer studies around 

the long cylinder. However, Figure 5.2.5 demonstrates that the effect of different spinning 

conditions, especially the low draw down ratio, could not be reduced as simply as expected. 

 

para  fibre te peratur

1 0.05 0.0024 0.465 25 4 
1000 15 0.013 

3 2 27 0.021 0.0044 
4 3.5 2000 30 0.014 0.0052 
5 2 2000 53 0.025 0.006 

2 3.5 0.0048 
1000 
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Figure 5.2.4 Fibre temperature along spinning line, online corrected for different spinning 
conditions of PEEK Victrex 151 G, T0=385°C, spinneret 3 holes (d=0.25 mm, l=0.5 mm) 
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Th as 

been studied by Ohkoshi et al. [2000, 1 3] concluded that the heat radiation is 

on (5.2.11), the fibre temperature and fibre temperature gradient 

can be calculated and replaced using Equation (5.2.6) to estimate the Nusselt number for every 

 and 10<ζ<300 

Nu=3.Re-0.22     (5.2.12) 

The Equation (5.2.12) is found by fitting the equation Nu=a.Reb to experimental Nusselt values 

found in Equation (5.2.6). The Nusselt num

give different Nusselt values for the same spinning condition. Table 5.2.2 and 

e empirical Nusselt number for PEEK melt spinning: The heat transfer of PEEK h

993]. Ohkoshi [199

predominant near the spinneret and leads to an empirical formula of Nu=0.16Re0.520. Later 

Ohkoshi [2000] took both the natural convection and heat radiation into consideration, and 

concluded that the Nusselt number should be a function of not only the Reynolds number but 

also the Rayleigh number by assuming the empirical formula Nu=k.Rea.Rab. The obtained 

Nusselt numbers were higher than the reported values by Kase and Matsuo [1965], especially 

when the fibre temperature was higher than 300°C. The higher cooling rate on the spinning line 

is caused by natural convection. 

Using Table 5.2.1 and the Equati

distance to spinneret. Figure 5.2.6 gives the end result of the Nusselt number over the Reynolds 

number calculated for four spinning conditions. The Nusselt number decreases as the Reynolds 

number increases along the spinning line. The absolute values lay between 1 and 2 and it seems 

that with a higher throughput, the Nusselt number is higher. However, it is not to be expected 

that the various take-up speeds influence the Nusselt number. The Nusselt number and the 

Reynolds number for the four experiments estimations in Figure 5.2.6 are for the melt spinning 

of PEEK and can be used under following conditions: 

1<Nu<2 for 10<Re<100

ber, as in Equation (5.2.10) with four parameters, is 

not easy to apply.  

As previously mentioned, the Nusselt number has several relationships from different 

approaches, which 

Figure 5.2.6 shows the variation clearly. For the above spinning condition the Kase and Matsuo 

relationship increases, see Figure 5.2.6 (A). The only relationships decrease in Table 5.2.2 are (C) 

and (F). The estimated Nusselt number shows a slight increase at the end of spinning line in 

Figure 5.2.6. This in turn means that by increasing the fibre speed and the Reynolds number, the 

force convection increases, but near the spinneret, the decreasing effect can be interpreted as 

effect of radiation and natural heat convection. 
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Figure 5.2.6 Nusselt number estimated from online temperature measurements along spinning 
line of PEEK 151 G Victrex, T0=385°C, spinneret 3 holes (d=0.25 mm, l=0.5 mm) 
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Figure 5.2.7 The radiation effect and the radiation contribution of heat transfer along spinning 
line of PEEK, T0=385°C, 3 holes spinneret 

Radiation effect along the PEEK spinning line strongly depends on the temperature of the 

radiating body. Studies have been conducted which indicate that the radiation contribution ranges 

from 20% of the total heat flux near the die to less than 1% away from the die [Zieminski 1986]. 
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The second term in Equation 5.2.6 is used to define the apparent radiation coefficient, Rad: 

Rad= a DTTmεσ ⋅⋅⋅
44

   SB
aaTT λ

The radiation contribution, (Rad/Nu), is defined from Equation (5.2.12) and Equation (5.2.6). 

The maximum radiation contribution for PEEK is about 12% of all heat transfer along spinning 

line. The Figure 5.2.7 shows that as the Reynolds number decreases along the spinning line

−
−   (5.2.12) 

, the 

radiation contribution also decreases. This is evident due to fact that the fibre temperature 

decreases by the cooling.  

erature over dimensionless distance in Figure 5.2.8. The suggested 

relationships for the Nusselt number in Table 5.2.2 (F) and (G) give a more accurate estimation 

5.2.2 Temperature comparison: model and on-line measurement 

The PEEK fibre formation model, as stated in Section 5.1, is solved for various throughputs and 

take-up speeds. The results of the model and the online measurement temperature are compared 

in the dimensionless temp

10

100100 Q=3.5  g/min     V=1000 m/min

Q=2.0  g/min     V=1000 m/min

Q=3.5  g/min     V=2000 m/min

Q=2.0  g/min     V=2000 m/min
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than the Kase and Matsuo formula in the fibre formation zone due to the radiation effect 

considered in the estimation of Nusselt number in Figure 5.2.5. On solving the model for 

ctions are used, as seen in Figure 5.2.8. The 

symbols shown in the Figure 5.2.8 are from temperature measurements.  

The Kase and Matsuo relationship for Nusselt number, Nu=0.42.Re , gives a better 

approximation, as this relation contains both forms of cooling, convection and radiation. 

dimensionless temperature, it can be concluded that: 

- There is no significant difference between the Newton constitutive equation and for Maxwell 

viscoelastic model; the dimensionless temperature from Newton is just 1% more than Maxwell. 

There is also no difference present when using the extensional viscosity as a function of 

temperature or by adding the strain rate effect. 

- The difference exists only if different Nusselt fun

- 0.344.

approximation for the distance (z/L)>1, i.e. for the distance after the solidification and out of 

the fibre formation zone, the temperature calculated after Kase and Matsuo is close to the on-

line measurements. 

- In the fibre formation zone, (z/L)<1, the proposed relationship (Nu=3.Re-0.22.) gives a better 
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Figure 5.2.8 Dimensionless temperature measurement (symbols) and theory (solid lines) of the 
fibre along spinning line, PEEK 151 G Victrex, T0=385°C, spinneret 3 holes 

(d=0.25 mm, l=0.5 mm) 
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5

By neglect ), and on 

.2.3 Crystallisation investigations by on-line temperature measurement 

ing the radiation heat transfer in the energy balance equation, Equation (5.2.1

assuming that crystallisation takes occur, then the energy equation becomes 

TTNu +−⋅⋅= )(    (5.2.13) 

The crystallisation term is found out and the Equation (5.2.13) is written in other form: 

dz
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⋅
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   (5.2.14) 

Integration with respect to distance, both sides of Equation (5.2.14) give: 

zddTCp
TTNuX

z pa ′⋅



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⋅−−⋅⋅
⋅

= )(
λπ

0 (J/g) [Blundell 1983]. By 

dzHHQ a 



 ∆∆⋅∫0

,   (5.2.15) 

where ∆Η is the enthalpy of fusion of fully crystalline, ∆ΗPEEK=13

knowing the Nusselt number and temperature along the spinning line, one can calculate the so-

Figure 5.2.9 Fibre temperature along spinning line, on-line measurement (symbols) for 
PEEK 151 G Victrex, T0=385°C, Q=2 g/min, V=2000 m/min, spinneret 3 holes 

(d=0.25 mm, l=0.5 mm), fitting to corrected values (solid lines) 

named stress-induced crystallisation along the spinning line from Equation (5.2.15). The area 

surrounded by the temperature profiles in Figure 5.2.9, is the total end crystallisation of PEEK 

fibres. However, no measurement was carried out to verify the result of Equation (5.2.15) and the 
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Figure 5.2.10 Continuous cooling transformation diagram for PEEK victrex 151 G, on-line 

 
measurement (symbols), calculated from model (solid lines) 

on-line temperature measurement did not give sufficient information to examine the on-line 

stress-induced crystallisation along the spinning line. The temperature varies along spinning line 

and it is often displayed over the distance. However, in the crystallisation studies, the temperature 

(T) along time (t), and temperature rate (dT/dt) is of more importance. In the melt spinning 

process, the time for moving chain from the outlet spinneret to solidification point is very short 

(ts<1 s), but the time can be calculated from fibre speed measurements.  

If the fibre speed defined as 
dt
dzV = , then the time can be integrated by:  

∫
′

=
z

V
zdt

0
      (5.2.16) 

Figure 5.2.10 demonstrates the temperature measured over time. Figure 5.2.10 obtains a good 

qualitative understanding of the important relationships between cooling conditions and 

crystallisation kinetics using the concept of a “continuous cooling transformation diagram” 

[Spruiell 1975]. This concept can be applied for PEEK and the cooling curves plotted versus 

times axis can also be used. It was illustrated that faster cooling produces a greater super cooling 

of the melt before crystallisation occurs. 
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5.3 Speed of PEEK fibre along spinning line  

5.3.1 Fibre speed comparison: model and on-line measurement 

The fibre speed profile along the spinning line shows the structure formation of fibre and is 

affected by various factors such as material behaviour, processing conditions and energy transfer. 

The model of fibre formation of PEEK was solved under the following assumptions, and the 

fibre speed was compared to on-line measurements: 

(a) Viscosity as a function of temperature, η(T), and Nu=0.42.Re0.344 
(b) Viscosity as a function of temperature, η(T), and Nu=3.Re-0.22 
(c) Viscosity as a function of temperature and speed gradient, η(T,V′), and Nu=0.42.Re0.344 
(d) Viscosity as a function of temperature and speed gradient, η(T,V′), and Nu=3.Re-0.22 

The spinning conditions for the selected experiments are classified into four separated cases to 

simplify the discussions. 

Case I VL<2000 m/min and (VL/V0)<50: Two spinning conditions in 

Figures 5.3.1 and 5.3.2 were selected to discuss the on-line fibre speed measurements and the 

results of the mathematical model.  

The extensional viscosity as a function of temperature and speed gradient, η(T,V′), improves the 

results of model assumptions (c) and (d) in comparison to the temperature dependent viscosity, 

η(T), given in Figures 5.3.1 and 5.3.2 (a), (b). The extensional viscosity as a function of 

temperature, η(T), causes an overestimation for the calculated fibre speed in comparison with the 

measured fibre speed. This is caused by high estimated viscosity, because the high temperature 

and low speed gradient cause η(T)>η(T,V′) near to spinneret. 

The fibre speed profile from assumptions (c) shows two different types of behaviour. It means 

that near the spinneret, the fibre speed from (c) is less than the (d) for low Reynolds number, but 

later the fibre speed profile (c) is also more than (d) for low Reynolds number. The calculated 

fibre speed for (c) and (d) in the first part of fibre formation zone provides a slight 

overestimation with respect to the measurements. This could be due to higher temperatures near 

the spin block, where the velocity decreases and the diameter of fibre increases. The solidification 

point does not move when changing the cooling rate or extensional viscosity, as shown in 

Figures 5.3.1 and 5.3.2. This means that the total heat transfer and the average Nusselt number 

assumed for the model is approximately equal. Increasing the draw down ratio in Figure 5.3.1 
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Figure 5.3.1 Fibre speed along spinning line measurement (symbols) and model comparison for 
PEEK 151 G Victrex, T0=385°C, Q=2 g/min, V=2000 m/min, spinneret 3 holes 

(d=0.25 mm, l=0.5 mm) 
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Figure 5.3.3 Fibre speed along spinning line measurement (symbols) and model comparison for 
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with respect to Figure 5.3.2 increases the fibre speed at the end of the fibre formation zone (from 

measurements and assumptions (c) and (d)). This is expected when increasing the speed gradient 

and consequently when increasing the extensional viscosity. 

Case II VL>3000 m/min: The effect of high speed melt spinning on the fibre speed 

profile and the PEEK fibre formation are investigated in Figures 5.3.3, 5.3.4 and 5.3.5. As well as 

the considerations in Case I, other points are summarised as follow: 

The high speed spinning encounters a high mass throughput of 2.5 to 5 g/min, however, when 

using these spinning conditions, it is difficult to measure the precise fibre speed at the end of 

fibre formation zone. The deviation of fibre speed measurements were especially recorded at the 

last part of the fibre formation zone, where the structure formation accelerates and necking effect 

normally can occur. In the first part of the fibre formation zone, the measured fibre speed is 

almost identical with constant mass throughput; increasing the take-up speed does not affect this 

region, i.e. there is no high cooling rate and structure formation near the spinneret. For the high 

speed spinning in Figure 5.3.3, the Reynolds numbers are in the range of (10<Re<100), and for 

Figures 5.3.4 and 5.3.5 the Reynolds numbers are (25<Re<180). The dimensionless distances for 

these three figures are ζ<350. These conditions are out of the range of validity for 
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Equation 5.2.12, therefore the Nusselt number over Reynolds number (Nu=3.Re-0.22) from 

Section 5.2 does not provide valid results. 

Case III  Q<0.5 g/min and VL<2000 m/min: In Figure 5.3.6, by comparing the 

measured with calculated fibre speed for a very low mass throughput, and for take-up speed 

lower than previously discussed, it is important to notice here that the spinning conditions in 

Figure 5.3.6 leads to Reynolds number of <10 (1<Re<4 for VL=25 m/min) and (1<Re<8 for 

VL=100 m/min), therefore the relationship (Nu=3.Re-0.22) gives a higher value than the 

estimations of Nusselt number using temperature measurements, however, the Nusselt number 

still decreases when increasing the Reynolds number. The cooling rate in the model with Nusselt 

relationship of (Nu=3.Re-0.22) causes to two effects: the fibre speed is increased rapidly along the 

spinning line, and the solidification distance is decreased. Using a higher cooling rate in the 

model like (Nu=3.Re-0.22) decreases the fibre diameter and increases the fibre speed; as a result, 

the solidification region will be short. The measurements in Figure 5.3.6 were carried out by the 

piston equipment. It is a different spinneret, spin block and take-up unit configuration in 

comparison with extruder equipment. The heat transferred by free convection especially close the 

spinneret (<1 cm), where the temperature of the air is high and the fibre speed is low. The effect 

of radiation at the beginning of the spinning line is not negligible, as discussed in Section 5.2. 
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Figure 5.3.6 Fibre speed along spinning line measurement (symbols) and model comparison for 
PEEK 151 G Victrex, T0=380°C, Q=0.465 g/min, V=100, 50, 25 m/min, spinneret 1 holes 

(d=0.3 mm, l=0.6 mm) 
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Figure 5.3.7 Fibre speed along spinning line measurement (symbols) and model comparison for 
PEEK 151 G Victrex, T0=385°C, Q=0.4 g/min, V=1000 m/min, spinneret 24 holes 

(d=0.25 mm, l=0.5 mm) 

 

The viscosity as a function of temperature and speed gradient, η(T,V′), in Figure 5.3.6 shows 

there is no better agreement between calculated fibre speed and the measured fibre speed. This 

could be due to the low strain rate ( <10) along the spinning line, which does not fall within the 

validity of equation for viscosity, Equation (3.2.5). 

ε&

In the relatively high take-up speed spinning >1000 m/min, and low mass throughput 0.4 g/min 

further effects are to be noticed: 

The effect of multifilament melt spinning, as in the spinning condition of Figure 5.3.7, causes an 

increase in the fibre temperature in comparison to monofilament melt spinning. As a result, the 

Nusselt number and cooling rate will decrease, at least at the beginning of the spinning line.  

The higher fibre temperature in multifilament spinning causes a lower extensional viscosity and a 

decreasing fibre speed. Therefore, the Kase and Matsuo relationship gives a better approximation 

in these circumstances, because it gives lower Nusselt number, as indicated in Figure (5.2.6). This 

can be interpreted to be caused by the multifilament effect. 
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5.3.8 Fibre speed along spinning line measurement (symbols) and model comparison for 
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Figure 5.3.9 Fibre speed along spinning line measurement (symbols) and model comparison for 
PEEK 151 G Victrex, T0=400°C, Q=0.225 g/min, V=1500 m/min, spinneret 48 holes  

(d=0.25 mm, l=0.5 mm) 
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Figure 5.3.10 Fibre speed along spinning line measurement (symbols) and model comparison for 
PEEK 151 G Victrex, T0=400°C, Q=0.15 g/min, V=1500 m/min, spinneret 48 holes 

(d=0.25 mm, l=0.5 mm) 

Case IV  Q<0.23 g/min and VL<1500 m/min: This case applies to very fine filaments of 

PEEK (DL~10 µm). The comparison is presented for the mass throughput 0.225 g/min and for 

take-up speeds 1000 m/min and 1500 m/min (see Figures 5.3.8 and 5.3.9). The measurement for 

the finest fibre was with a mass throughput of 0.15 g/min and a take-up speed of 1500 m/min, 

(see Figure 5.3.10). There are some comments in this case: 

The fibre formation zone is very short, L<10 cm, and the take-up speed is a relatively high speed 

of 1500 m/min, the on-line measuring therefore is difficult and it is in fact impossible to measure 

the fibre speed near the spinneret (<5 cm), especially in Figure 5.3.10. The air temperature is high 

near the spinneret; the heat convection is therefore low and this can affect the fibre speed profile.  

In Figure 5.3.8, the solution (d1) is shown with the same condition as for (d), but the origin of 

the calculation is shifted to z0=5 cm. The solution (d2) was made for an air temperature of 

Ta=200°C near the spinneret (0<z<5) cm. Both solutions confirm that the air temperature is too 

high near the spinneret, and in the first half of the fibre formation zone, the effect of die swell 

can shift the course of fibre formation of the model, because the swelling effect was ignored in 

the model. 
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In Figure 5.3.9 the solution (d1) is shown with the same condition as for (d) but the origin of the 

calculation is shifted to z0=3 cm. The solution (d2) was made for an air temperature of Ta=250°C 

near the spinneret (0<z<4) cm. 

The effect of radiation in the energy equation on fibre speed profile: The effect of radiation 

is investigated in the last section (Section 5.2), and the radiation heat transfer contribution is 

calculated and compared to other heat transfer mechanisms, free convection and forced 

convection. The emissivity (εm) in the energy equation (Equation 5.2.1) was considered to be 

constant and equal to the maximum contribution of radiation, εm=1. Other reported 

investigations used different values; for example Maebius [1985] investigated the spinning of glass 

fibre by studying the effects of radiation and employing one-dimensional model of a Newtonian 

fluid. He concluded that if the effect of convection is neglected, and if all the cooling is assumed 

to take place due to radiation, the small changes in emmissivity could have a large influence on 

the shape of glass fibre, and consequently, the fibre speed profile. Schöne [1980] reported that 

for polymer, the emissivity value in literature ranges within 0.62< εm<0.95, and he used the value 

0.8; recently Mitsoulis [2000] used the εm=0.5. The emissivity should not be considered constant 

along the spinning line, however, in order to simplify the radiation investigation, the upper and 

lower values of emissivity are assumed, 0≤ εm≤ 1.  

Figure 5.3.10 shows two various effects of radiation. The maximum effect of radiation causes an 

increase in the local speed and also increases the Reynolds number. The Nusselt relationship as 

conducted by Kase and Matsuo was increased by increasing the Reynolds number, therefore the 

fibre speed in Figure 5.3.10 (c) for (εm=1) became higher than for (εm=0). This effect by Nusselt 

relationship (Nu=3.Re-0.22) is the reverse. Because increasing the radiation (εm=1) increases the 

local speed and the Reynolds number, but this decreases the Nusselt number and fibre speed in 

the model as seen in Figure 5.3.10 (d).  

5.3.3 Solidification point 

The solidification point is the region where the fibre becomes solid, i.e. the end of the fibre 

formation way, and can be found manually after taking following methods into consideration: 

a) from spinning speed profile: the first point along the spinning line which reaches the 

take-up speed, 

 96 



b) f int along the spinning line which reaches the 

g

From v

spinnere

the on-

through

through

on-line 

measuri

The sol

L=L (Q

found fo

where L

Figu

 

rom temperature distribution: the first po
lass transition temperature. 

elocity measurements of different melt spinning processes, the distance from the 

t to the solidification point over draw down ratio is presented in Figure 5.3.11. Based on 

line measurements of fibre speed, the solidification way is dominated by the mass 

puts. The table on Figure 5.3.11 sets out the different take-up speeds for the given 

put. The fibre formation ways for throughputs < 0.1 g/min were too short, therefore the 

measurements for speed and temperature could not be practically gauge with the 

ng equipments.  

idification point in the melt spinning of thermoplastics has been generally reported as 

,VL) [Shimizu 1985-a] or L=L (Q, VL, D0, Θ) [Beyreuther 1991]. The following relation is 

r PEEK by fitting a simple L~L (Q) to Figure 5.3.1 

L~(26.Q+6.4)  for (0.2<Q<5) g/min, 

 in cm and Q in g/min. 
 

L ~ 25.98*Q + 6.3578
R2 = 0.983

0

50

100

150

200

0 1 2 3 4 5

Throughput  (Q) [g/min]

So
lid

ifi
ca

tio
n 

pa
th

 (L
) [

cm
]

Q 
g/min 

V 
m/min 

0.2 200 600 800 
0.4 1000 1500 2000 
2 1000 2000  
2.5 3000 4000 5000 
3.5 1000 2000  
5 3000 4000 5000 

re 5.3.11 Solidification path over mass throughput from fibre speed measurements of 
PEEK 151 Victrex 

97 



5.4 Tension in the spinning line (force-stress estimation) 

The internal force value along the spinning line can be calculated from Equation (5.1.3). The 

momentum balance at every section along the spinning line [Ziabicki 1976] leads to 

Equation (5.3.1), which is rewritten in Equation (5.4.1): 

gs FFVQF ′−′+′⋅=′      (5.4.1) 

Integrating both sides of Equation (5.4.1), the following expression for internal force is obtained: 

F(z)=F(0)+ Q.(V-V0)+ dzVCD a

z

f ⋅⋅⋅⋅∫ 2

02
ρ

π - dzAgp

z

⋅⋅⋅∫ ρ
π

02
,   (5.4.2) 

F0 Fi 

F(z) 

Fs 

Fg 

z where F(z) is the internal force at every section along spinning line and  
 
the inertia force is Fi=Q.(V-V0), 

the skin drag force is Fs= dzVCD a

z

f ⋅⋅⋅⋅∫ 2

02
ρ

π , 

and the gravity force is Fg= dzAgp

z

⋅⋅⋅∫ ρ
π

02
. 

Finally the fibre stress can be found by:    σ(z)=F(z)/A(z)            (5.4.3) 

To find the tension force along the spinning line, the initial force F0= F(0) at the spinneret 

( ) must be known. The initial force F0=z 0 is estimated using two approaches: an experimental 

approach by a new non-vertically melt spinning arrangement, and a theoretical approach.  

Experimental approach to find F0: On-line internal force measurements along the spinning 

line have been investigated [Beyreuther 1999], and the experimentally and the theoretically 

calculated tensile forces have been compared. However, some restrictions encounter the 

measurement of force along the spinning line, for example the fibre force measurement by 

tensiometer is only possible after the solidification point and can only measure relative high 

internal force >2 mN. Therefore, a new method was developed, where the spinning tension in 

the fibre formation zone was calculated with a geometric measurements. This method was based 

on the tensile force measurement of melt spinning of PEEK and was developed by Brünig 

[2003]. A non-contact method to determine the force tension of the spinning line was proposed 

by the non-vertically arrangement of a melt spinning equipment. The curvature caused by 

gravitation was determined experimentally by measuring the spinning line location. This is the 
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key to the determination of filament force by non-vertically arrangement of melt spinning 

equipment from non-contact measurements. 

Theoretical approaches to find F0: The initial force is the limit of tension force in 

Equation (5.4.2) as . Ziabicki [1976] found this limit value by assuming the simple model: 0→z

( ) ( ) ( )Lp

V

V TTC
dV

V
hDTF

L

,
1

2
60

0
0

0
ψρ

η
⋅⋅

⋅⋅
⋅
⋅

⋅⋅= ∫ ,   (5.4.4) 

where  ( ) ( ) ( ) ( )∫ ⋅−
⋅=

∞

0

00 ,
T

TL
L TTT

dTTTT
η

ηψ . 

An other theoretical approach to find F0 is based on solving numerically the initial value problem 

of coupled steady state equations of the melt spinning process simultaneously. The general form 

of differential equations of the fibre formation zone is well known and is summarised in 

Equation (5.1.10). The solution of three differential equations needs three initial values 

{ V0, T0, F0 }. Since the initial spinning line tension F0 is not known, an initial guess is necessary. 

This was done by the so-called shooting method.  

The result of the estimated initial forces from non-contact experiments [Brünig 2003] and the 

two theoretical approaches used are listed in Table 5.4.1. The non-contact determination of initial 

force by non-vertically melt spinning is time consuming, but it give a better correlation with the 

Equation (5.4.4). However, for melt spinning of PEEK a Newton model in Equations (5.1.10) 

was applied. The initial force was calculated from mathematical model and is listed in Table 5.4.1. 

By applying the Maxwell viscoelastic model in Equation (5.1.10) and the elongation viscosity as 

function of temperature and strain rate, the initial value was underestimated.  

 

 F0  mN 
Experiment 
conditions 

Ziabicki  
Equation (5.4.4) 

Measurement 
Brünig [2003] 

Equations (5.1.10) 
η(T), Kase and Matsuo 

A1 0.4643 - 0.303 
B1 1.752 2.006 1.07 
B2 1.861 - 1.25 
B3 2.392 - 1.3 
B4 2.452 - 1.51 

Table 5.4.1 Comparison of different method to estimate the initial force 
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Figure 5.4.1 Calculated fibre stress from different model along spinning line for PEEK 151 G 
Victrex, T0=385°C, V=1000 m/min, Q=3.5 g/min, spinneret 3 holes (d=0.25 mm, l=0.5 mm) 
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Figure 5.4.2 Calculated fibre stress from different model along spinning line for PEEK 151 G 
Victrex, T0=385°C, V=1000 m/min, Q=0.225 g/min, spinneret 48 holes 

(d=0.25 mm, l=0.5 mm) 
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Ziabicki [1976] concluded that the initial force (F0) depends on upper flow conditions and the 

spinning conditions. This means that the relaxation of shear flow in spinneret channel and the 

cooling rate, throughputs and take-up speed can change the initial force value. From model 

increases in initial force (F0) with increasing the take-up speed and decreasing the throughput. 

In Figure 5.4.1, the calculated stress along the spinning line at low draw down ratio (ddr=15, 

DL=58 µm) is presented. The effect of viscosity and Nusselt number were investigated for 

filament stress profile as in Section 5.3. The different models (a) to (d) in Figure 5.4.1 show 

different initial forces and take-up tensions. The calculated stress and internal force from model 

(a) and (b) are twice the other models (c) and (d). In Figure 5.4.2 the high draw down ratio 

(ddr=230, DL=15 µm) makes a very different stress profile along the spinning line. The higher 

viscosity and higher heat transfer used, result a very high internal force and the stress becomes 

very high at the take-up point. Therefore it is necessary to compare the fibre speed profile of 

each model and filament speed measurement to choose the matching solution as discussed in 

Section 5.3. 

Figure 5.4.3 shows the effect of take-up speed for constant throughput. Up to solidification point 

the stress growth dramatically as S-shape and after solidification the stress growth is linear due to 

the skin drag friction. The slope of stress line increases proportional to the square of take-up 

velocity. Figure 5.4.4 shows the effect of increasing the throughput at constant take-up speed. 

The slope of stress line after solidification is proportional to the inverse of root square of end 

fibre diameter. Therefore it can be concluded that:  

Slope of skin drag stress  V∝ L
2.DL

-0.5 ∝  VL
2.25.Q-0.25.ρp

 0.25   (5.4.5) 

The relation (5.4.5) is obtained from the calculated slope of stress after the solidification in the 

model of (c) of Figure 5.4.3 and 5.4.4. 

Figures 5.4.5 and 5.4.6 present the fibre stress at solidification point over the take-up speed for 

different throughputs. The interesting results are due to different models of viscosity. 

Equation (4.1.2) states that the orientation of fibre is proportional to the fibre stress in 

solidification. This means that the result in Figure 5.4.5 calculated for η(T) clarifies well the 

Equation (4.1.2), but in Section 5.3 the model of η(T,V′) shows better agreement to fibre speed 

profile. Figure 5.4.2 shows that the model (a) for η(T) gives higher F0 than (c). The correctness of 

stress estimations value could not be verified because no measurements were carried out. 

 101 



0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

3.E+07

0 20 40 60 80 100 120
Distance to spinneret (z) [cm]

In
te

rn
al 

fib
re

 st
re

ss
 (σ

) [
Pa

]
(1) 2000 m/min

(2) 1500 m/min

(3)  800 m/min

(4)  400 m/min (1)

(4)

(3)

(2)

 

Figure 5.4.3 Calculated fibre stress from model η(T,V′) and Kase and Matsuo along spinning line 
for PEEK 151 G Victrex, T0=385°C, Q=0.225 g/min, spinneret 48 holes 

(d=0.25 mm, l=0.5 mm) 
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Figure 5.4.6 Calculated fibre stress at solidification point over take-up speed from η(T,V′) and 
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6 Stability and fineness limitations of PEEK melt spinning 

In this chapter, the failure theory is briefly introduced to discuss and understand the probable 

origin of instability in the melt spinning process. This introduction is followed by an examination 

into different spinning conditions in order to find the limits of stable spinning. 

6.1 Failure theory in the melt spinning  

Takasaki [2002] discussed the mechanism of fibre structure development in the spinning of ultra-

fine Polylactides fibres. He concluded that the stability of spinning ultra-fine fibre is affected by 

two main failure mechanisms. The first is increasing surface tension, because for the ultra-fine 

fibres, the surface area over unit volume ratio becomes large. This outcome can cause the so-

called capillary failure of the spinning line. The other possible failure mechanism is the effect of 

air-friction force, which also becomes high as the fibre fineness decreases, because the surface 

area is large. This effect may cause a cohesive failure of the spinning line in the down stream. 

Rauschenberger [2002] tried to summarise the criteria for the stable melt spinning of polymers by 

developing criteria for stability and applying them for LDPE, PA6 and two types of PP. Melt 

instability can occur in three different mechanisms: brittle, ductile failure and the necking. Both 

brittle and ductile failures can occur either in the melt or after the solidification. To distinguish 

between failure theories, general definitions are given here: 

Brittle failure is a type of fibre breakage without any large plastic deformation. At the point of 

fracture, the fibre looks like a glassy break. The brittleness appears when the internal stress 

reaches a value near the critical tensile stress. This critical value for polymer melts is constant and 

tabulated for different polymers [Ghijsels 1997], although no value is reported for PEEK. For 

the fibre after solidification, the critical tensile stress can be assumed to be the minimum value of 

yield and ultimate stress. 

Ductile failure is the type of fibre failure where the plastic deformation or strain becomes so large 

that the fibre material has stretched at one or more points, and the stress subsequently increases 

rapidly. If the strain increases and does not approach a constant value along the spinning line, the 

ductile failure leads to fibre breakage. 

Necking is not a type of filament failure, but could initiate the instability in the melt spinning, 

which later leads to ductile or brittle breakage. If the fibre diameter decreases sharply at one point 
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along spinning line, the neck-like deformation takes occur, and the instability can lead to a failure. 

Ziabicki [1985] used the factor (V′max/VL) to predict necking, and he also discussed the necking 

effect on the filament speed profile and on the extensional viscosity gradient (see Section 3.2). 

Rauschenberger [2002] defined the necking mathematically when the (∂2D/∂2z)<0. 

6.2 Fineness limitations 

6.2.1 Throughput, take-up speed and draw down ratio 

In order to investigate the type of relationship between the three important spinning conditions: 

throughput (Q) take-up speed (VL), and the draw down ratio (VL/V0), various experiments were 

carried out and compared with the theoretical calculation contained in Chapter 5.  

It is to distinguish between the stability of melt spinning and the limits of spinnability. Stability is 

investigated in connection with time, and spinnability can be defined as the limits to which 

satisfactory spinning condition can be achieved in melt spinning process, independent of time. 

The following experiments can explain the difference: 

a) Conducting the melt spinning process with the same throughput, with an increasing take-

up speed until the spinning line fails, determining the limit of spinnability. 

b) Melt spinning at the given spinning conditions without rupture or irregularity of as-spun 

fibre properties (for example the fineness, stress-strain curves…), making the melt 

spinning process stable. 

Many methods were applied to establish relationships between the spinning conditions and the 

stability and spinnability [Ziabicki1976, 1985]. Beyreuther et al. [1991] presented the limit of 

fineness over the take-up speed by applying two criteria: the maximum allowed internal fibre 

stress and the temperature limitation to solidify the fibre, and presented the maximum and 

minimum fineness over the take-up speed. In this thesis, a relatively new concept of a ‘fibre 

spinning map’ [Ghijsels 1994] is used. This concept was later successfully verified with the 

theoretical failure approach by Rauschenberger [2002], and was recently applied for PA6 and 

presented by Brünig [2002-b]. In order to graphically present the results, the maximum draw 

down ratio is presented over the take-up speed. By using constant mass throughput (the outlet 

velocity, V0) it was spun with an increasing take-up speed (VL). The take-up speed was increased 

until the spinning line is failed. This was repeated for the next throughput. The graph of (VL/V0) 
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Figure 6.2.1 the fiber stability map for PEEK 151G Victrex under different spinning conditions 



 vs. VL, shows the constant throughput as a straight line with the slope (ρ0.A0/Q). As explained in 

Section 2.2.1, the draw down ratio can be expressed by diameter of fibre as follows: 

D=1000.D0. )/( 0

0

VVL⋅
⋅

ρ
ρ

     (6.2.1) 

The draw down ratio over PEEK fibre diameter is already given in Figure 2.3.1. According to the 

Formula (6.2.1), it can be concluded that in order to produce fibre diameter of 7 µm<DL<12 µm, 

the spinning conditions must be arranged to make the draw down ratio of 100<ddr<1000. 

The spinning limit experiments were carried out for PEEK and are shown in the so-called ‘fibre 

spinning map’ in Figure 6.2.1. The horizontal lines in the ‘fibre spinning map’ are of constant 

diameter, i.e. constant fineness. For a take-up speed of VL > 4000 m/min, the draw down ratio 

for stable spinning can reach maximum of ddr <300. This means that with a filament diameter of 

less than 13 µm, a fineness of 0.3 dTex can be reached for take-up speeds lower than 

4000 m/min. The upper limit of take-up speed was limited to 6000 m/min by the wind-up unit, 

and when using the godets, can reach 7500 m/min. By decreasing the throughput, the stable melt 

spinning process was generally limited by take-up speed, because the stress and strain rate of the 

filament were increased and could not controlled by the structure formation of the polymer. 

These were the causes for ductile or brittle failure in the spinning line. The observed failures in a 

lot of melt spinning experiments, occurred in the region of the filament formation zone. In other 

words, the spinning line failures were not caused by an increase in stress beyond the solidification 

point to wind-up unit. 

The region of stable spinning is divided into two limit lines (see Figure 6.2.1). The first limit 

range was identified for throughputs of more than approximately 0.7 g/min. For the throughputs 

range of about 0.8 g/min<Q<5 g/min, the take-up speed limit was increased and was observed 

within a range of 4000 m/min<VL<6000 m/min. Brittle failure is the most plausible reason for 

failures in this range. The filament stress calculated from the PEEK fiber formation model, 

equals more than 20 MPa. Because no measuring limit value of melt break stress for PEEK was 

reported, an exact value for melt rupture could not be concluded. The second limits for stability 

were found to occur within a range of 1500 m/min<VL<4000 m/min. A possible reason of these 

instability limits is that ductile failure may have also caused the allowable take-up speed to 

decrease. In this case the take-up speed was limited, where the strain rate of filament growth 

suddenly in the fibre formation zone when the throughput ranges between  
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0.1 g/min<Q<0.5 g/min. It was observed that upon decreasing the throughput, the strain rate 

increases suddenly along spinning line and the extensional viscosity decreases. The local 

decreasing viscosity caused a local filament speed increase and probably the necking. However, 

the necking is the beginning of instability, which can lead to ductile or brittle fracture. However, 

Rauschenberger [2002] suggested that the ductile failures could be occurred if the strain grows 

and does not approach a constant value. The Hencky strain is normally defined in the melt 

spinning as ε=ln(V/V0). For draw down ratios in the range of fine filaments within 

100<ddr<1000, the Hencky strain is about 4.6<ε<6.9. 

The stability investigation was also carried out for polypropylene (PP HF 445 FB), and the results 

are presented in the fibre spinning map, see Figure 6.2.3. Fine PP filament demand a higher take-

up speed. As investigated in Section 4.1 the as-spun polypropylene fibre has a higher elongation 

at break than PEEK in the tensile test. This is a probably reason why a high take-up speed is 

required to produce fine polypropylene fibres. In this thesis, no mathematical model was applied 

for a fibre formation of PP HF 445 FB, and no speeds or temperatures were measured. 

Therefore no further explanation about PP melt spinning failures can be pursued. PP HF 445 FB 

can generally be spun more easily in the temperature of 260°C and the draw down ratio reached 

(fine fibre) is higher than for PEEK spun in melt temperature of 400°C. This fact, which can be 
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to 260°C also improved the spinnability. The PEEK fibre formation model was used to 

investigate the effect of increased melt temperature on the melt spinning process. Figure 6.2.4 

graphically demonstrates the effect on the filament speed profile when the PEEK melt 

temperature is increased from 370°C to 400°C. No spinning at 370°C was actually carried out, 

but this was taken in the PEEK fiber formation model to observe influence of low melt 

temperature.  

Decreases in melt temperature also decreased the filament speed gradient at the end spinning line 

for both models (c) and (d). Figure 6.2.4 shows that the higher temperature enlarges the 

solidification way. The internal stress of filament at both the solidification point and the take-up 

point also decreases when the melt temperature is increased, as shown in the table contained in 

the Figure 6.2.4. The lower stress and enlarged solidification could be presumed to make a better 

structure formation. The effect on the take-up point can be seen in Section 6.2.3. 

The temperature of the spinning line can be increased with a heat tube. It was observed during 

various experiments that adding the heat tube and increasing the temperature did not improve 

the stability of PEEK melt spinning. Increasing the air temperature in the model within the fibre 

formation zone decreased the initial force and also decreased the stress in the spinning line, but 

no effect on filament speed was observed. Additional effects were increases in the solidification 

way and the fineness of the filament. Decreasing the extensional viscosity in the applied model 

for PEEK lead to decreases in initial force. However, in this case, the velocity profile is changed 

as shown in Figure 6.2.5. More to the effect of viscosity was given in Section 5.3, where the fibre 

speed profile is discussed. 
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Figure 6.2.5 Effect of decrease of viscosity on the fibre speed profile along spinning line, 

calculated from PEEK fibre formation model 
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6.2.3 Take-up point 

Figure 6.2.6 shows an example of melt spinning at a constant take-up speed of 1500 m/min, but 

with different running lengths of 50 cm and 120 cm at a constant throughput of 0.225 g/min. 

For a long running length, the fibre speed increases in two steps; the first step corresponds to the 

thinning process in the conventional melt spinning, and the second one is a deformation by 

plastic or elastic, since the filament is rather undeveloped in this step. This means that if the 

filament is running a long length and the air resistance is high, then the deformation in the 

second step would reduce the filament to a lower value than the short running length. The stress 

at the solidification point is increased by long spinning way and the maximum speed gradient of 

fibre is also increased. Although the PEEK fibre formation model does not contain the stress-

induced crystallisation, the long take-up point was decreases the fibre speed at the end of the 

spinning line due to skin drag force. 

The decrease of the spinning way (the distance from spinneret to wind-up unit) causes stable 

melt spinning for fine filaments, but is limited to a minimum value. Beyreuther et al. [1991] 

explained that the take-up point is limited by cooling conditions. This means that the fibres must 

reach the solidification temperature before first contact with the preparation; this limitation has 

to be consider for high throughputs and low take-up speed, which is different to melt spinning of 

fine PEEK fibers. The maximum allowed spinning way was defined by Beyreuthern et al. [1991] 

as a limit of fibre tensile stress along spinning line of < (½…⅔).σs. This means the fiber stress 

may not exceed the rupture stress along the spinning line, before and beyond the solidification 

point. 

Figure 6.2.7 presents results of PEEK model calculations to illustrate the effect of increasing the 

take-up point on speed gradient. An example of melt spinning at a constant take-up speed of 

1500 m/min and constant throughput of 5 g/min was selected. The distance of wind-up unit and 

the spinneret for the experiment was 580 cm. Two different running lengths are assumed; 200 cm 

and 580 cm. The speed gradients were calculated for different viscosity and heat transfer 

coefficient, as shown in Section 5.3. The speed gradient profile from models (a) and (b) is a 

typical form, and it appears to be a half periodic function. The models (b) and (c) show a 

depressed form and make a suddenly increase to a higher value. Such increases of speed gradient 

decrease the extensional viscosity in a small region and can be can be an indication of necking. 

This effect can later lead to brittle or ductile failure.  
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6.3 Optimisation of spinning conditions for fine filaments 

Beyreuther et al. [2001] mentioned that very fine filaments could be spun under a high take-up 

speed and with a very low mass throughput. They added a dependent condition namely the draw 

ratio. The spinning parameters to produce fine filaments are explained in this section. The most 

important parameters in this study are the take-up speed, the mass throughput and the draw 

down ratio. The melt temperature and viscosity are discussed briefly in the Sections 6.1 and 6.2. 

Take-up speed, VL: Fine as-spun fiber can be obtained under a relatively high take-up speed. 

Increasing the take-up speed is known to lead to conditions that arise in high speed spinning, 

such as increasing the drag force, and as a result, rheological force and induced filament stress. 

The strain rate increases rapidly and the necking effect appears. The strength limitations of 

material soon lead to filament breakages.  

Draw down ratio, VL/V0: Different studies have shown that decreasing the throughput leads to 

decreases in the maximum possible take-up speed. It is therefore better to use the ratio of take-up 

speed to speed of material at the outlet of the spinneret as dimensionless draw down ratio (ddr). 

The different experiments carried out and the following parameters were varied to find the 

optimal conditions to produce fine filaments. 

a) Increases in the number of spinneret holes to decrease the mass throughput per holes 

were made, because the minimum mass throughput depends on extruder and 

spinning pump rotation speed (rpm) limitations. However, mass throughput decreases 

results in a smaller fibre formation zone, smaller solidification time and high 

temperature gradient. This effect can be seen in the fibre spinning map Figure 6.2.1. 

b) Increases in the take-up speed for the low mass throughput and find the take-up 

speed to spin in a stable and continuous conditions, can be seen Section 6.1 

c) Decreases the fibre path spinning line, i.e. distance between wind-up unit and the 

spinneret, can be seen in Section 6.2.3 

d) Increases the melt temperature are examined in Section 6.2.2 

e) Results of using the heating tube for different temperature and heating length are 

shown in Section 6.2.2 

The first experiments were carried out with piston equipment in order to investigate PEEK melt 

spinning spinnability. A large amount of PEEK was later spun with the extruder equipment. 
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Figure 6.4.1 ‘Fibre spinning map’ for ultra fine filament by piston melt spinning equipment, 
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6.4 Ultra-fine PEEK filaments (DL<9 µm) 

The Section 6.3 explained how it is possible to optimise the spinning conditions to spin fine 

PEEK filaments with the extruder spinning equipment. The limits of fibre spinning come from a 

combination of the draw down ratio and the throughput. It is actually possible to spin with a high 

take-up speed in the extruder equipment, but decreasing the throughput under 0.1 g/min per 

holes is not possible, and therefore the piston spinning equipment must be used. Brünig [2002] 

reported that ultra-fine PEEK filament was spun aided with the piston equipment by decreasing 

the throughput, and the minimum filament diameter of 2.5 µm (0.2 dTex) was spun. He reported 

however that this experiment was not carried out under stable spinning conditions. To investigate 

the ultra-fine spinning, more experiments were carried out here with piston spinning equipment 

and represented in the ‘fibre spinning map’ in Figure 6.4.1. The limits of stable spinning by piston 

spinning were increased relative to extruder spinning equipment, and more fine filaments were 

produced. The slope of limits line for stable spinning by piston equipment was not longer the 

same as the extruder equipment. Neglecting the effect of time process variable variation (such as 

polymer melt, spinneret,…) in Figure 6.4.1 leads to important results. Firstly, decreases in mass 

throughput per holes are not necessary in order to spin even finer filaments, it means lower than 

certain throughput, no more finer fibres can be spun. Another important result is the draw down 
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ratio effect. A fine filament is produced with a high draw down ratio; this high draw down ratio 

can be obtained if the spinneret diameter is increased with the same throughput.  

Low throughput and the melt pressure: It is generally not possible to generate very low 

throughput Q <0.1 g/min per holes to spin fine filaments with the extruder equipment used 

here. The piston equipment is suitable for this purpose. The piston was derived once by direct 

movement, and once with a gearing system to change the rotation to a straight piston motion, 

and finally, the gas pressure was used to directly press the melt within the cylinder. The time 

variations of the polymer melt conditions and the pressure drop created a negative effect on the 

stability of ultra-fine melt spinning. Figure 6.4.2 presents the measured pressure drop over the 

throughput for low throughput experiments with piston equipment. The simple theoretical 

power law flow relation was fitted. As expected, the exponent of the classical power law is less 

than one (n=0.9) for the piston equipment. The exponent (n=0.95) was fitted for the extruder 

equipment. As already known the shear decreasing effect corresponds to exponent n less than 

unity, this means for the given throughput, the ∆p can be many times lower than the calculated 

one with the equation in Figure 6.4.2. 
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7 Conclusion and recommendations 

7.1 Summary and Conclusion 

No unique definition is given in the literature for fine filaments, this work mainly investigated the 

filaments with a diameter of 10 µm<DL<30 µm, but higher and lower limits were included in 

order to complete the discussions. Although other fine polymer filaments have also been 

developed and patented, no extended and completed studies on fine PEEK fibres are cited in the 

literature. The special application of fine PEEK fibres are explained, such as the innovative 

product of commingling carbon reinforced fibres. This thesis investigated further features which 

concern the melt spinning process, e.g. textile properties and extensional melt rheology. The 

main goal of this thesis was to investigate the required spinning conditions (VL, Q, T0) to produce 

fine PEEK fibres using the melt spinning process. The effect of spinning conditions on final 

properties was investigated to explain the structure development (∆n, X) and its effect on 

mechanical properties in stress-strain curves. The model of PEEK fibre formation was applied to 

study the cooling and viscosity on fine filaments. The spinning limits for the production of fine 

PEEK filaments were investigated to optimise the spinning conditions.  

Two methods were introduced to calibrate and correct the on-line temperature measurement by 

thermography. The related experiments were carried out under different temperatures and 

various filament diameters. The correction factor (related here to the emissivity factor) was 

established from two different methods, and it was mainly a function of filament diameter and 

the thermoplastic type. No dependence on any temperature difference of filament and 

environment of the correction factor was observed. A new method was developed to find the 

filament diameter along the spinning line by using infrared camera snapshots. This method can 

be helpful in measuring the filament diameter near the spinneret, especially when used to study 

the die swelling effect. The infrared camera used here was well-equipped to measure the usual 

filament diameter. Unfortunately, the camera led to limits, as it could not be used for all fine 

filament diameter, because the camera resolution could detect a minimum 25 µm diameter and 

the measurements were limited just to 25 µm<D<5000 µm. The method used to measure the 

filament speed (Laser Doppler Anemometry device) is based on the reflected light-scattering and 

depends on the surface microstructure. As a result, the measurements at the end of the spinning 

line, where the structure is in formation, are subject to uncertainty (see Sections 2.21 and 5.3.1). 

The spinning equipment and the on-line and off-line test conditions were also explained in 
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Chapter 2. The filament characterizations and the collected material properties of PEEK were 

applied to the model of fibre formation in Chapter 5. 

The material function of the PEEK melt (and PP in comparison) was found by shear rheometry, 

especially the small amplitude oscillatory test. The shear rheology of melt is necessary for the 

development of the constitutive equation in shear and can also be applied in extensional 

deformation. Zero shear viscosity, temperature dependent viscosity, strength relaxation, 

relaxation time and other properties are measured from shear rheology and implemented in the 

extensional constitutive equation. The shear thinning behaviour (the dependence of viscosity on 

shear rate) was fitted by the cross model, because the power law failed to fit the decreasing effect 

in a wide range of shear rates. 

The apparent extensional viscosity was estimated by on-line filament speed and temperature 

measurements along the spinning line. The estimated apparent viscosity of PEEK versus the 

spinning line showed the important structure formation, especially the necking effect that occurs 

before the solidification. The effect of the speed gradient on extensional viscosity was 

approximated by using different expressions of the viscosity form in three approaches: viscous 

(Newton), viscoelastic (Maxwell) and simple non-linear viscoelastic (upper-convective Maxwell), 

but no total conformity was observed to the estimated extensional viscosity. The selected 

modified cross model η(T,V′)=η0(T)/(1+(a.η0(T).V′)b was proven to be the best form of the 

extensional viscosity variation over the speed gradient. This was possible by displaying the 

estimated apparent extensional viscosity reduced by temperature viscosity, ηapp/η0(T), over the 

time dependent speed gradient,V′.η0(T). This turned out to be the most useful relation for the 

extensional rheological investigations in this thesis, which was subsequently applied successfully 

to the model of fibre formation outlined in Chapter 5. The strain rate dependent extensional 

viscosity investigated for PEEK shows a decreasing behaviour for 10 s-1<ε <1000 s& -1. The 

mathematical expression fitted to the estimated extensional viscosity, Equation 3.2.9, could not 

include the thickening effect of extensional viscosity (non-linear behaviour) which normally 

appears after the outlet of the PEEK melt for smaller strain rate, ε <10 s& -1. Because of this, the 

equation cannot be considered valid to verifying the swelling effect.  

The orientation of as-spun PEEK filaments was investigated by optical off-line measurements of 

birefringence. The results discussed in this thesis demonstrated that the birefringence of as-spun 

PEEK filaments increases on increasing the take-up speed from 1000 m/min to 2000 m/min 
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with a constant mass throughput. Increasing the throughput from 0.17 g/min to 3.5 g/min by 

constant take-up speed decreases the birefringence. However, It should also be made clear that 

the birefringence over draw down ratio increases exponentially and has an upper limit value; this 

means fine fibres are subsequently more oriented. The on-line birefringence and orientation 

development could not investigated in this thesis, but it was verified that the total birefringence 

shows a linear relation to the stress at solidification point (calculated from the model contained in 

Chapter 5). The off-line crystallisation was investigated for as-spun PEEK fibre by DSC 

measurement. The results of the DSC measurement verified that the melting areas of as-spun 

PEEK filament are the same even with different take-up speed, but the post-crystallisation areas 

increase with increase in the take-up speed. The measured crystallinity in the first heating step lies 

between 15 %<X<35 %. After cooling with 20°C/min, the second heating step showed no heat 

release after the glass temperature and the maximum degree of crystallinity was about 40 %. The 

crystallinity degree increases when increasing the draw down ratio (ddr) and approaches a 

constant value X→35 % for ddr>350. This draw down ratio results in a fibre diameter of 

DL<13 µm, of which the birefringence has its maximum value of ∆nmax~0.05. 

The measured and calculated fineness for a wide range of spinning conditions was demonstrated 

to be a good agreement. For fine PEEK filaments the diameters were measured with a precision 

of ±1 µm. The measured elongation at break proved that the high stress at solidification leads to 

the decrease of elongation at break (like other spin thermoplastics). The minimum measured 

elongation at break of as-spun PEEK filaments was 40 % with a take-up speed of 5000 m/min 

(for PP>100 %). For the extrapolated take-up speed (VL→0) the elongation at break seams to 

approach different values depending on the throughput. This means that not only the draw dawn 

ratio but also the mass throughput affect the elongation at break, although the elongation 

generally decreases when increasing the take-up speed. For higher throughputs and equal take-up 

speed, the elongation at break shows higher values. The tenacity of as-spun PEEK filaments 

increases slightly by increasing the take-up speed or increasing the draw down ratio. The tenacity 

lies between 1 cN/dTex and 2 cN/dTex (for polypropylene, the tenacity measured is between 

5 cN/dTex and 8 cN/dTex). 

The elasticity modulus of as-spun PEEK fibres showed the same trend as the orientation for 

different take-up speeds and constant throughput. This proved the dependence between the 

elasticity modulus and birefringence of as-spun PEEK fibres. The modulus of elasticity over 

draw down ratio for 10<ddr<100 lies between 1 GPa<E<2 Gpa, and for 200<ddr<400, the 
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modulus increases linear up to 6 Gpa. The stress strain curve of as-spun PEEK fibre for different 

spinning conditions confirm the following facts: the fine fibres produced by high draw down 

ratio, high crystallisation and orientation become tougher and cannot deform plastic, because 

their elastic deformation is fully developed by the high draw down ratio in the melt spinning 

process. The fibres with lower orientation show the yield, necking behaviour and extension at 

relative constant load, followed by a work hardening and show high elongation at break. These 

filaments can be drawn because of its ductility. The PEEK fibres with higher orientation showed 

a higher yield strength, tenacity and lower elongation at break. 

The one dimensional fibre formation model of PEEK was applied using the information 

collected from Chapter 2 and the result in Chapter 3 of this thesis. The three differential 

equations were used with different constitutive equations: Newton for viscous deformation, 

Maxwell for viscoelastic deformation and upper-convected Maxwell for non-linear viscoelastic 

deformation, in a differential form. The integral type of constitutive equations is an appropriate 

form to study both the effect of prehistory and swelling effect. Therefore applying the integral 

form of constitutive equation normally is accomplished by considering the upstairs flow in the 

spinneret channel as a part of the model. Although the PEEK crystallises along the spinning line, 

the stress-induced crystallisation was not considered in the model for two reasons; firstly, that no 

information about the crystallisation kinetics in the fibre formation zone of fine fibre especially 

for PEEK was available; and secondly, to implement the stress-induced crystallisation, the on-

line measuring did not give enough information to verify the crystallisation behaviour 

(temperature measurement announced in Section 5.2.3). 

By measuring the temperature along the spinning line, it was possible to examine the heat 

transfer mechanism in the air cooling of PEEK filament. A simple temperature profile was 

proposed in this thesis (Equation 5.2.11) to fit the measured data and to replace a smooth form 

in the estimation of the heat convection coefficient (Nusselt number). The Nusselt number over 

the Reynolds number decreased for 10<Re<100 and was placed higher than the relationship 

suggested by Kase and Matsuo (1<Nu<2). Therefore a new (decreasing) Nusselt relationship, 

Nu=3.Re-0.22 (for 10<Re<100 and 10<ζ<300) was developed. The suggested relationship gives a 

good agreement to the measured temperature in the fibre formation zone but after solidification 

it shows some overestimation. At the beginning of fine PEEK fibre formation, the effect of 

radiation is important and makes up about 12 % share of the total heat transfer. It decreases 

quickly to drop to 1 % at the end of the fibre formation zone. The Nusselt number increases at 
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the end of fibre formation due to forced convective heat transfer; therefore, near solidification 

point, the increasing Nusselt number relationship from Kase and Matsuo gives a better 

agreement to measurement. 

The filament speed measurements and the solution of the PEEK model were also compared. For 

fine filaments, measuring the speed profile near the spinneret was not possible. The model was 

used for two different viscosities, η(T) and η(T,V′) and two different Nusselt number 

relationships. The strain rate effect considered in the viscosity and the Kase and Matsuo 

relationship generally shows a better approximation. The one-dimensional model was solved by 

shifting the origin, the filament speed profile could give a better agreement to measurement. This 

could be due to the effect of high air temperature near the spinneret, or alternatively the swelling 

effect. The swelling effect was not considered in the model, as it did not affect the speed profile 

along the spinning line. Due to the fact that the origin of coordinate was assumed at the diameter 

equal to spinneret hole, the swelling effect could only shift the filament speed profile. Solving the 

equations of state in a two dimensional form near the spinneret maybe useful, but in this thesis it 

was proved that, in cases of melt spinning of fine filaments where the formation zone is very 

short, the one dimensional model can be successfully applied. The effect of cooling mechanism 

on filament structure formation was investigated, whilst also avoiding the complex formulation 

for the two dimensional model. At the beginning of the fibre formation zone, no high 

temperature decrease occurred, and structure of PEEK was still not oriented, because the 

filament speeds had conformed to different take-up speeds and constant throughput. 

It was also proven that the initial rheology force F0 dominates the stress along the spinning line 

of PEEK especially for fine filaments. The different cooling conditions and the different 

viscosity expressions changed the initial force value and the stress development. The calculated 

slope of skin drag stress from the model of PEEK after the solidification point is proportional to 

the square of the take-up speed and inverse to root square of the end filament diameter. The 

model results of filament stress at solidification were verified in the following manner: increase of 

stress at solidification exponentially with increasing take-up speed for constant throughput, and 

decrease of stress at solidification by increasing throughputs at constant take-up speed. The off-

line measured birefringence and the calculated stress shows a linear relation. 

The fibre spinning map (draw down ratio vs. take-up speed) developed for the spinning 

conditions of PEEK is very useful in understanding the mechanism of failure and the limits of 

spinning conditions for different throughputs. In cases for very low throughput ( <0.5 g/min), 
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the ductile failure due to large strain and strain rate can be the reason behind spinning line 

breakages. The brittle failure takes occur in cases where the throughputs are >1 g/min. The fine 

fibre with a diameter of <13 µm can only be produced with a relative low take-up speed of 

 <2000 m/min. Polypropylene PP HF445 FB showed a wide range of stability limits in relative 

high take-up speed of >2000 m/min and a low throughput of <0.1 g/min. Decreasing the melt 

temperature and increasing the take-up point (distance from spinneret to wind-up unit) was 

examined with fibre formation model of PEEK. It was proven that both effects increase the fibre 

stress and are therefore not suitable for satisfactorily producing fine fibres. Increasing the strain 

rate and changing of fibre speed profile are also proven using the model of fibre formation of 

PEEK. Very low throughputs for ultra-fine PEEK fibres were carried out, and the fibre with a 

diameter of <6 µm was produced. The melt spinning of ultra-fine fibres is very sensitive to the 

condition equipment and material; for example the way of supplying the low throughput, and 

also the effect of time variation parameter. The pressure drop vs. throughput was fitted for a low 

throughput of <0.1 g/min per hole by the power law relation for the flow in capillary.  

7.2 Recommendations 

The non-linear constitutive equation can be applied to the model of PEEK fibre spinning, 

especially in the first region of spinning line directly after the outlet of the spinneret. In this 

region the die swell can appear and influence the downward flow state of the fibre formation 

zone. This dilemma has been solved for other type of thermoplastics, but not for PEEK in two 

dimensions coordinate. Because the PEEK crystallises along spinning line the crystallisation 

kinetics and the orientation development, combined with some additional on-line measurements 

along the spinning line for birefringence and crystallisation, complete the model of the fibre 

formation. In this case the density and the viscosity should be treated as a function of 

crystallisation. For further studies the constitutive equation of linear viscoelasic Maxwell model of 

discrete spring and dashpot can be applied using the parameters in Figure 3.1.3. This is a 

recommendation on which further studies could be conducted. Different combinations of spring 

and dashpot in series and parallel may also provide interesting research work. In heat transfer, the 

fitting of Equation 5.2.10 will cover the free and force convection. However, the lateral vibration 

of fibres observed along the spinning line disturbs the boundary layer and an additional heat 

transfer process should complete the description. The effect of the time dependent parameters 

must be especially considered for the stability of melt spinning of fine filament.  
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Appendix  

Melt spinning of various PEEK using various spinning condition 

In the first experiments, different products of Victrex® PEEKTM were selected and were spun 

using piston equipment. In these investigations the spinning conditions and the final properties 

were compared. In Table A1, three different as-spun fine PEEK filaments are compared. 

  Q 
(g/min) 

VL 
(m/min) 

T0 
(°C) 

ddr 
(VL/V0) 

Spinneret 

1 PEEK 450G 0.465 350 400 72 1 hole 0.3 
2 PEEK 381G 0.465 820 400 168  
3 PEEK 151G 0.465 1000 380 227  
4 PEEK 151G 0.233 500 380 227  
5 PEEK 151G 0.233 1000 380 454  

Table A1 As-spun for different type of PEEK by piston equipment 

Considering the rheological investigations in Section 3.2 especially Figure 3.1.6 and the Table A1, 

it is obvious that PEEK 151 G can be spun more finer in the melt spinning. To verify the other 

specifications of filaments the final filaments produced in piston equipment tested for fineness, 

tenacity and elongation and compared to the standard product of Hoechst and Zyex in Table A2. 

As shown in Table A2 the as-spun from PEEK 151 G fibre shows higher deformation and 

ultimate strength but smaller tenacity. The physical tenacity appears to be the same for all types 

of PEEK. Therefore, the type PEEK 151 G is selected for the fine melt spinning. A series of test 

carried out to investigate the spinning conditions for fine Titer. The on-line measurements along 

the spinning line and off-line measurements for the as-spun PEEK fibre are listed in Table A3. 

  D 
(µm) 

Tt 
(dtex) 

Ultimate 
strain 
(%) 

Tenacity 
(cN/dTex) 

Physical 
tenacity 

(cN/dTex) 

Ultimate 
strength 
(M Pa) 

1 PEEK 450G 36 13.3 90 1.72 3.26 227 
2 PEEK 381G 27 5.8 49 1.6 2.39 211 
3 PEEK 151G 22 4.7 143 2.73 6.63 355 
4 PEEK 151G 21 4.7 144 2.27 5.53 299 
5 PEEK 151G 14 2.3 101 2.7 5.42 324 
6 Hoechst M 27 6.9 42 5.19 7.37 623 
7 Zyex 4110 40 15.3 42 4.14 5.88 497 
8 Hoechst 495 f72 - 495 32 3.86 5.1 464 
9 Zyex 460 f30 - 460 38 3.6 4.96 431 

Table A2 As-spun PEEK fibres properties  



  Qhole 
g/min 

Qt  
g/min 

VL 
m/min 

T0 
°C 

VL/V0o 
ddr 

Filaments 
 

 B 
cm 

  

A1 0.465 0.465 26.5 380 4.4 1 T*, V** 120 Pi.*** 
A2 0.465 0.465 50 380 8.2 1 V 120 Pi.  
A3 0.465 0.465 100 380 16.5 1 V 120 Pi  
A4 1 12 3000 401 157.5 12 T 120   
A5 1 12 4000 401 210.1 12 T 120   
B1 2 6 1000 385 26.5 3 T, V 120 Un**** 
B2 2 6 2000 386 53.0 3 T, V 120 Un 
B3 3.5 10.5 1000 385 15.1 3 T, V 120 Un 
B4 3.5 10.5 2000 385 30.3 3 T, V 120 Un 
C1 2.5 7.5 3000 400 63.1 3 V 580 Un 
C2 2.5 7.5 4000 400 84.1 3 V 580 Un 
C3 2.5 7.5 5000 400 105.1 3 V 580 Un 
C4 5 15 3000 400 31.5 3 V 580 Un 
C5 5 15 4000 400 42.0 3 V 580 Un 
C6 5 15 5000 400 52.5 3 V 580 Un 
D1 0.4 9.6 1000 382 132.8 24 V 120 Un 
D2 0.4 9.6 1500 385 198.8 24 V 120 Un 
D3 0.4 9.6 2000 385 265.1 24 V 120 Un 
E1 0.23 5.52 1000 385 230.5 24 V 120 Un 
E2 0.23 5.52 1500 385 345.8 24 V 120 Un 
E3 0.225 10.8 200 385 47.1 48 V 120 Un 
E4 0.225 10.8 400 385 94.3 48 V 120 Un 
E5 0.225 10.8 600 385 141.4 48 V 120 Un 
E6 0.225 10.8 800 385 188.5 48 V 120 Un 
E7 0.225 10.8 1000 385 235.7 48 V 120 Un 
E8 0.225 10.8 1500 400 350.3 48 V 120 Un 
E9 0.225 10.8 2000 400 467.1 48   120   
F1 0.17 5.44 1000 400 309 32 V 120 Un 
F2 0.17 5.44 1700 400 526 32 V 120 Un 
F3 0.17 5.44 2000 400 619 32 V 120 Un 
G1 0.15 7.2 1500 400 525.5 48 V 120 Un 

Table A3 List of experiments and the measurements of as-spun PEEK fibres 

 
 
* Online temperature measurement ** On-line speed measurement 
*** Piston equipment   **** Extruder equipment  
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Figure A1 On-line speed measurements along spinning line 
PEEK 151G, T0=400°C, Spinneret 3 holes (d=0.25 mm, l=0.5 mm) 

 
 

Figure A2 Speed gradient or strain rate of fibre along spinning line 
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PEEK 151G, T0=385°C, spinneret 3 holes (d=0.25 mm, l=0.5 mm) 
 



Figure A3 Speed gradient or strain rate of fibre along spinning line 
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Figure A4 Speed gradient or strain rate of fibre along spinning line, PEEK 151G, Q=0.465 
g/min, T0=380°C, spinneret 1 hole (d=0.3 mm, l=0.6 mm), piston equipment 
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Figure A5 Maximum speed gradient or strain rate over draw down ratio along spinning line, 
PEEK 151G  
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Figure A6 On-line speed measurements along spinning line 
PEEK 151G, T0=385°C, Q=0.255 g/min, spinneret 48 holes (d=0.25 mm, l=0.5 mm) 

 



Temperature measured and corrected 

 temperatures for the melt spinning of PEEK 151 G, 

Q=2 g/min, V=1000 m/min, T0=385°C, 3 hole spinneret, 2ro=0.25 mm, l/2ro=2 
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Figure A7 Measured and corrected fibre
Q=3.5 g/min, V=2000 m/min, T0=385°C, 3 hole spinneret, 2ro=0.25 mm, l/2ro=2 

 

Figure A8 Measured and corrected fibre temperatures for the melt spinning of PEEK 151 G 
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Figure A9 Crystallinity and Birefringence measured over diameter of as-spun PEEK fibre 
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Figure A10 Tenacity and physical tenacity measured over diameter of as-spun PEEK fibre 
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Figure A11 the fiber stability map for PEEK 151G Victrex  under different spinning conditions, diameter over take-up speed  
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