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Chapter 1  
 
Introduction. 
 

There is a currently growing interest in improving and regulation of surface 

characteristics of polymer materials due to many potential applications in the field of 

nanotechnology, medicine, and biomaterials. 

There is a general agreement that the ultimate performance of materials in many 

traditional and modern applications depends not only on their bulk properties, but also heavily 

relies on their surface microstructure and interfacial behavior because of inventible 

involvement of such phenomena as friction, shearing, lubrication, abrasion, wetting, adhesion, 

adsorption, and indentation phenomena [Tsu97, Bhu98, Bhu97, Pok02]. This importance is 

becoming paramount in the age of eve shrinking operational dimensions in micro- and 

nanodevices and demand on materials with extreme properties [Gra00, Tsu01, Laf03]. In 

many studies, a special attention is devoted to the fine design of the topmost surface layer 

incorporating all necessary elements controlling a predictable surface response or a variable 

surface response under different conditions [Cre03, Tsu00, Tsu98, San93, Bir00, Bli98]. For 

this reason, structure and characteristics of the phase boundaries are of the utmost importance 

for the understanding of the material properties in processing and use. Moreover, further 

advances in materials science impose requirements for the surface properties that are 

frequently in a conflict: a given material, depending on the conditions under which it is 

utilized, has to be hydrophobic or hydrophilic, acidic or basic, conductive or nonconductive, 

adhesive or repellent, release or absorb some species. With the increasing demand for more 

sophisticated surfaces, one of the current targets is the fabrication and understanding of 

materials with interfacial properties capable of consistent reversible changes in their 

characteristics according to external conditions or stimuli. 

An intensive study in the filed of the adaptive/responsive surfaces began several 

decades ago from attempts to understand relationships between bulk properties/composition 

of pristine polymeric materials and their surface characteristics. With time, the focus of 

researches has moved to the design of materials with “smart” or “intelligent” surface 

behavior.  A number of approaches has been employed to reach the goal, which includes but 

not limited to (a) synthesis of functional polymers with specific composition and architecture; 

(b) blending of a virgin polymer material with small amounts of (macro)molecular additive; 

and (c) surface modification by various chemical/physical treatment [ Nak99, You99, Cre99, 

Lai92].  
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Introduction 
 

Modification of polymer surfaces via grafting of polymers is a very well known and 

widely used approach of modern material science, for example, to regulate friction, 

adsorption, adhesion, and wettability as well. 

Controlling the wettability of solid surfaces is of abiding importance for many 

processes in living organisms (e.g. ultra-water repellent materials are found in self cleaning 

surfaces of plants and insects [Bar97,] and for numerous industrial applications [Oga93, 

Tad97, Nak99, Vee97, You99, Cou00, Cre99, Lai92, Sin97, Zha00c]. Advantages of 

ultrahydrophobic surfaces, however, can turn into disadvantages: the self cleaning properties 

of a surface may result in static electric charges, of poor adhesion, or dyeability. The ability to 

reversible switch the properties of the same material from water-repellent to hydrophilic 

would allow for a diverse range of applications. In general, however, polymer surfaces have 

fixed properties. Design of switchable coatings is a formidable challenge. 

Resent investigations have shown that a combination of two different polymers in the 

same thin polymer coating for the surface modification results in new properties of the 

materials resembling somehow responsive properties in nature [Min01]. The latter work was 

done with mixed polymer brushes when two incompatible polymers were randomly grafted 

by end groups to/from the surface of Si wafers [Sid99a, Min02a]. The mixed polymer brushes 

represent a polymer system with remarkable responsive properties. In contrast to 

homopolymer brushes, consisting of one kind of homopolymer, they can amplify the response 

due to the combination of conformational changes with the microphase separation (Figure1.1 

b). If the mixed brush constituted of both hydrophilic and hydrophobic homopolymers is 

exposed to a hydrophilic solvent, the hydrophilic component preferentially segregates to the 

top of the film and the surface becomes hydrophilic (Figure1.1 a).  

 
Figure 1.1. Switchable mixed A/B polymer brush in selective solvent for chains( a, c) and 

non-selective solvent (b). 

Exposing the same brush to the hydrophobic solvent reversibly switches the surface 

from hydrophilic to hydrophobic state (Figure1.1 c). This adaptive behavior is very promising 

for engineering of smart surfaces for biomedical applications and micro- and/or nanodevices.  
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Introduction 
 

This thesis is focused on the fabrication of switchable surfaces consisting of mixed 

polymer brushes with a wide range of switching properties on both flat and rough substrates 

exploiting for different approaches of the modification of the substrates and grafting 

techniques. 

These techniques include grafting of mixed polymer brushes after the plasma 

modification of polymer substrates. The switchable surfaces are obtained using grafting of 

different homo-, co-, and blockcopolymers. 

In addition to the study of surface modification and grafting approaches, the work 

contains comparing different approaches and some optimization of the process of the 

fabrication of the switchable surfaces. 
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Chapter 2  

 

Theoretical Background and Experimental Considerations 
 

2.1. Modification of Polymer Surface Behavior 
 

2.1.0. Abstract. 

In this chapter basic principles of polymer surface modification approaches as well as 

theoretical and experimental considerations of polymer brushes are described. A short 

introduction to modified polymer materials is given. More comprehensive and detailed 

descriptions of the reviewed techniques can be found in the references quoted. 

 

2.1.1. Introduction 

Many polymers have excellent bulk properties, low cost, and are well suited for some 

particular applications.  For these reasons, various surface modification techniques that could 

transform these pristine, inexpensive materials into sophisticated elements of the complex 

adaptive/responsive systems are under development in various laboratories. Modification 

strategies, which are supposed not to affect the bulk properties significantly, involve either 

blending of a virgin material with small amounts of (macro)molecular additive or/and the 

surface modification by chemical/physical treatment to alter the surface properties. 

Over many years, polymer surface modification have been studied in various fields of 

industrial applications, using different innovative techniques including chemical and physical 

processes. Physical processes take advantages of surface segregation, radiation, 

electromagnetic waves, and oxidation with gases, while chemical modification use wet 

treatment, blending, coating, and metallization. 

 

2.1.2 Modification of Polymer Surface Behavior by Chemical/Physical Treatment 

Surface modification of polymeric materials with chemical or physical treatments has 

been accomplished by a variety of procedures. [Chan93, Ber94, Ber98]. Flame, corona, and 

plasma treatments were generally applicable methods which serve to introduce various 

oxygen, nitrogen, and other functionalities. Plasma polymerization process has been also used 

to tailor the polymer surface. As a result, thin modifying surface films, which are usually 

highly cross-linked can be obtained on a polymeric surface. Solution oxidation using reactive 
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oxidants have successfully produced oxygenated and sulfonated surfaces. Ion-beam treatment, 

photon and γ-radiation also have been utilized to modify polymer surfaces [Chan93, Ber94, 

Ber98]. Once functionalized, often the second stage such as an attachment of some functional 

molecules and/or polymer grafting is required to produce a surface with necessary properties. 

Some of aforesaid modification methods are confirmed to be capable to convert an inert 

polymer substrate into a material with the adaptive/responsive surface behavior. 

To this end, Whitesides et al. [Hol87, Whi90] studied reconstruction of the interface of 

oxidatively functionalized polyethylene and derivatives on heating. Oxidation of low-density 

polyethylene (PE) film with chromic acid resulted in the material (PE-CO2H) bearing 

hydrophilic carboxylic acid and ketone groups in a thin oxidatively functionalized surface. 

This interface was indefinitely stable at room temperature. Functionalized hydrophilic 

interfaces of oxidized PE film became hydrophobic and similar in the wettability to the non-

functionalized PE film upon heating under vacuum. This demonstrates the surface 

reconstruction after modification. The progression of water contact angle from the initial 

value of 55° to the final value of 103° indicates that the polar functional groups disappear 

from the interface by diffusion. The migration of functional groups away from the interface 

was driven by the minimization of the interfacial free energy and by the dilution of the 

interfacial functional group in the polymer interior. The rate of the surface reconstruction 

decreased with increasing size of the functional groups deposited on the surface. Functional 

groups, which migrated into the bulk polymer, were still available to reagents in aqueous 

solutions in contact with the film even when the wetting properties had become similar to 

those of unmodified PE film. Samples that previously reconstructed by the heating could, to a 

limited extend, be made to become hydrophilic again by heating in water.  

The next paper examined the surface wetting by water of functionalized PE [Hol88]. It 

was determined that the wettability of the PE-CO2H surface depends on pH: at pH ≤ 4, the 

carboxylic acid groups are protonated and the surface is less hydrophilic (advancing contact 

angle is ~ 55°); at pH ≥ 10 the carboxylic acid groups are present as the more hydrophilic 

carboxilate ions, and the contact angle drops down to 20°. Wilson and Whitesides [Wil88] 

reported that anthranilate amide of the PE-CO2H surface showed an exceptionally large 

change with pH in its wettability by water. Indeed, the advancing contact angle of the PE-

anthranilate decreased from 110° at pH 1 to 33° at pH 12. Comparison of these values with 

those for corresponding amides of m- and p-aminobenzoic acid and aniline suggested that 

both the conformational mobility of the polar functional group at the solid-water interface and 

the surface roughness contributed to the large change in wettability with pH. 
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Modification of Polymer Surface Behavior 

Generally, enthalpic forces (e.g., hydrogen bonding, Lewis acid-base interactions, and 

van der Waals forces) between a polymer and any contacting phase determine the relative 

concentrations of polar and nonpolar groups in the outermost portion of the polymer material 

with modified/functionalized surface. Nevertheless, when Bergbeiter and Kabza studied 

annealing and the surface reorganization of sulfonated PE (in order to produce surface-

modified films of varying hydrophilicity), some unanticipated surface response was found. 

[Ber91] The sulfonation of PE surfaces resulted in relatively hydrophilic films whose 

hydrophilicity, however, was increased upon thermal annealing. This behavior was in a 

contradiction to that seen for the PE-CO2H and its derivatives. The extent to which such 

surfaces did not reorganize to a less hydrophilic surface was affected by the presence of 

alkylammonium salts. Films with long chain alkylammonium salts at their surface 

reorganized thermally to less hydrophilic surfaces while films with short chain 

alkylammonium salts had contact angles which decreased on heating instead. According to 

the authors, the reason for the unanticipated behavior might be due to a change in the 

uniformity distribution of sulfonic acid groups during the annealing. 

In different developments, in a series of papers Ferguson et al. reported on a 

responsive polymer material with a chemically modified surface for which entropy plays a 

central role in determining the composition of the polymer surface when it is in contact with 

water or a polar substrate [Car96, Car00, Kho01, Kho02]. The authors studied the 

surface/interfacial behavior of syndiotactic 1,2-polybutadiene (PBD) modified by the 

oxidation of the surface with aqueous KMnO4/K2CO3. When heated against water, the surface 

of PBD-ox became more hydrophobic, a result apparently contrary to that expected based on 

the tendency of systems to minimize interfacial free energy.  The advancing contact angle of 

water for this system, in fact, increased with increasing temperature of the water against 

which it was equilibrated. Initially, the hydrophilicity of the surface varied reversibly as a 

function of temperature, reflecting reversible changes in the relative concentrations of 

hydrophilic and hydrophobic groups at the interface. Eventually, however, the surface 

remained hydrophilic against water, independently on temperature. The temperature 

dependence of this phenomenon suggested the importance of entropy in determining the state 

of minimum interfacial free energy in this system. 

This entropic effect was attributed to rubber elasticity arising from crystallinity in the 

polymer, and its loss was associated with a change in the amount and type of crystallinity. 

The authors suggested that in lightly cross-linked elastomers, the rubber elasticity might 

compete with the tendency to minimize the interfacial free energy and perhaps dominate the 
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interfacial behavior at high temperatures. As a result, the migration of functional groups 

attached to the mobile segments could require the extension of chains out of their relaxed, 

random-coil conformations.  When the temperature is increased, however, the polymer chains 

recoil, pulling these polar groups away from the interface.  This hypothesis is analogous to the 

thermodynamic changes that accompany small extensions of an elastomer: while stretching of 

an elastomer can be enthalpically favorable, an entropic restoring force determines the 

equilibrium extent of the extension. 

Khongtong and Ferguson have employed the observed surface behavior of the PBD-

ox for designing smart adhesive systems in which the surface adhesion itself is responsive to 

changes in environmental conditions. Specifically, the strength of adhesion in laminated 

PBD-ox/Al samples that have been equilibrated at room temperature and at elevated 

temperature was examined. In fact, the PBD-ox/Al interface displayed temperature-dependent 

adhesion. It was proposed that the temperature dependence in this system arised from the 

rubber elasticity of the polymer and reflected the interfacial behavior of the same polymer 

against water.  The interface produced a strong adhesive joint at room temperature due to 

enthalpically favorable chemical interactions between the added functional groups and the 

surface of the metal substrate. However, the migration of these functional groups into the 

contact with the aluminum (oxide) required the extension of the polymer chains out of their 

random coil conformations, thus reducing the entropy in that region of the polymer. At high 

temperature, in turn, these functional groups were pulled away from the interface by the 

elastic restoring force induced by the entropic loss in the extended polymer chains. As a 

result, adhesion at the oxidized-1,4-PBD interface decreased dramatically when temperature 

increased. The change in the adhesion at the PBD-ox/Al interface was reversible; the 

interfacial adhesion slowly recovered and reached its initial steady-state level within about 40 

h. This reversibility extended through several cycles of heating up to 80o C and cooling to 

room temperature.  

Another example of a very different polymer material demonstrating the responsive 

surface behavior are cross-linked polymers in their rubbery state with chemically modified 

surface. The material can be easily stretched/contracted causing significant increase/decrease 

in the surface area.  Thus, the surface concentration of the functional groups introduced on the 

polymer surface can be varied by the extension/retraction of the elastomer. Genzer and 

Efimenko have used this change in surface area for the generation of hydrophobic polymer 

surfaces that can change the hydrophobicity level when the rubbery material is stretched or 
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relaxed [Gen00].  At the first step, they oxidized the surface of the stretched PDMS film by 

ultraviolet/ozone (UVO) treatment to introduce –OH functionalities. Next, perfluoroalkanes 

possessing low surface energy were deposited on the surface from vapor, and hydrophobic 

self-assembled monolayer was formed on the rubbery substrate.  When the modified PDMS 

samples were relaxed, water contact angle with significantly increased.  The values of the 

contact angle were strongly dependent on the degree of stretching of the PDMS substrate 

before the UVO treatment. The approach proposed by Genzer and Efimenko is very attractive, 

since any external force or stimulus, (e.g. heat or solvent exposure), that causes the elastomer 

to deform, changes the wetting characteristics of the surface and can be used to tailor its 

wetting properties in a predictable manner.  

Lampitt et al. reported another mechanism of switching of liquid repellent surfaces 

through generation of polyelectrolyte-surfactant complexes on a substrate surface [Lam00]. 

They employed plasma polymerization of maleic anhydride as a direct and interfacially 

specific approach to the functionalization. The plasma polymer layer was deposited by 

pulsing the electrical discharge on the submicrosecond time scale in order to achieve a high 

structural retention of the anhydride groups. Next, a complex between the plasma polymer 

and cationic fluorinated surfactant was obtained. The fluorocontaining surfactant-plasma 

polymer layer was found to repel oil but allow the spreading of water. Thus, the cationic 

fluorosurfactants complexed to maleic anhydride polymer layers readily underwent the 

surface reconstruction in a response to their local liquid environment. It was shown that this 

ability to switch between oleophobicity and hydrophilicity could be repeated at least 20 times. 

Actually, in the aforesaid work by Lampitt et al., glass slides were used as model 

substrates for the plasma polymer deposition to obtain the material with responsive/adaptive 

surface.  However, the proposed method can be readily applied to a polymer boundary, since 

the deposition of a functional layer on a polymer surface by plasma polymerization has been 

successfully used for the treatment of polymeric materials. In fact, once stimuli-responsive 

(macro)molecular system is identified and its behavior understood, the modification approach 

frequently could be translated to other polymers and any inorganic substrates of interest.  

Then, the problem to create materials with the smart surface can be viewed from another point 

and more general questions can be formulated.  What are the optimum structure, composition, 

and properties of the stimuli-responsive layer grafted to a surface that can bring 

adaptive/responsive behavior to any non-polymer (e.g., metals, semiconductors) material? 

How this layer should be attached to the underlying surface to perform its function in the best 
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way? How the substrate nature and morphology will affect the polymer layer responsiveness? 

For that reason, significant efforts have been made to prepare, characterize, and understand 

the functional surface layers. The next sections of the present review are devoted to the 

analysis of the progress in this area. 

 

2.2. Polymer Brushes 
 

2.2.1 Introduction 

Polymer brushes (or tethered polymers) attracted attention in 1950s when it was found 

that grafting of polymer molecules to colloidal particles was a very effective way to prevent 

flocculation [Waa50, Waa51, Mac51, Mac52, Mil89, Cla66b]. In other words, one can attach 

polymer chains with which prefer the suspension solvent to the colloidal particle surface; the 

brushes of two approaching particles resist overlapping and colloidal stabilization is achieved. 

It was found that polymer brushes can be useful in other applications such as new adhesive 

materials, [Rap92, Jih93] protein resistant biosurfaces, [Ami93] chromatographic devices, 

[Zan94] lubricants, [Joa92] polymer surfactants, [Tke94] and polymer compatibilizers [Ito97].  

In terms of polymer chemical compositions, polymer brushes tethered to a solid 

substrate surface can be derived into homopolymer brushes (Figure 2.1a), mixed 

homopolymer brushes (Figure 2.1b), random copolymer brushes (Figure 2.1c) and block 

copolymer brushes (Figure 2.1d)  [Zha00b] Homopolymer brushes refer to an assembly of 

tethered polymer chains consisting of one type of repeat units. Mixed homopolymer brushes 

are composed of two or more types of homopolymer chains [Sog96]. Random copolymer 

brushes refer to polymer chains consisting of two different repeat units, which are randomly 

distributed along the polymer chain [Man97]. Block copolymer brushes refer to an assembly 

of tethered polymer chains consisting of two or more homopolymer chains covalently 

connected to each other at one end [Zha99]. Homopolymer brushes can be further divided 

into neutral polymer brushes and charged polymer brushes (Figure 2.1e). They may also be 

classified in flexible polymer brush, semiflexible polymer brushes and liquid crystalline 

polymer brushes (Figure 2.1f). 
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Figure 2.1. Classification of linear polymer brushes. 

 

Polymer brushes refer to an assembly of polymer chains, which are tethered by one 

end to a surface or an interface [Mil91, Hal92, Szl96]. Tethering is sufficiently dense so that 

the polymer chains are crowded and forced stretch away from the surface or interface to avoid 

overlapping, sometimes much further than the typical unstretched size of chain. These 

stretched configurations are found under equilibrium conditions; neither a confining geometry 

nor an external field is required. This situation, in which polymer chains stretch along the 

direction normal to the grafting surface, is quite different from the typical behavior of flexible 

polymer chains in solution where chains adopt a random-walk configuration [Zha00b]. Series 

of discovers show that the deformation of densely tethered chains affects many aspects of 

their behavior and results in many novel properties of polymer brushes [Hal92]. 

Polymer brushes are a central model for many practical polymer systems such as polymer 

micelles; block copolymers at fluid-fluid interfaces (e.g. microemulsions and vesicles), 

grafted polymers on solid surfaces, adsorbed diblock copolymers and graft copolymers at 

fluid-fluid interfaces. All of these systems have a common feature: the polymer chains exhibit 

deformed configurations. Solvent can be either present or absent in polymer brushes. In the 

presence of the good solvent, the polymer chains try to avoid contact with each other to 

maximize contact with solvent molecules. With solvent absence (melt conditions) polymer 

chains must stretch away from the interface to avoid overfilling incompressible space 

[Zha00]. 
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2.2.2 Theoretical and Experimental Studies of Homopolymer Brushes. 

Alexander [Ale77] was one of the first scientists who noted the distinctive properties 

of polymer brushes through theoretical analysis concerning the end-adsorption of terminally 

fictionalized polymers on a flat surface. Further elaboration by the Gennes [Gen76, Gen80] 

and by Cantor [Can81] stressed the utility of tethered chains to the description of self-

assembled block copolymers. The internal structure of polymer brushes was illustrated by 

numerical and analytical self-consisted field (SCF) calculations, and by computer simulations. 

The configurational space of the polymer chains is limited by the presence of the 

interface. The deformation of densely tethered polymer chains reflects a balance between 

interaction and free elastic energies. Dense tethering of polymer chains on an interface 

enforces a strong overlap among the under formed coils, increases the monomer-monomer 

unit contact and the corresponding interaction energy. The polymer chains are forced to 

stretch away along the direction normal to the grafting sites, thereby lowering the monomer 

concentration in the layer and increasing the layer thickness, L. Stretching lowers the 

interaction energy per chain, Fint, by the price of a high elastic free energy, Fel. The interplay 

of these two terms determines the equilibrium thickness of the layer. 

The Alexanders model considers a flat, nonadsorbing surface to which monodisperce 

polymer chains are tethered. The polymer chains consist of N statistical segments of diameter 

a, the average distance between the tethering points is d, which is much smaller than the 

radius of gyration of a free, underformed chain. The free energy chain includes two terms: 

F= Fint+ Fel      (2.1)

Fint refers to the interaction energy between two statistical segments and Fel refers to the 

elastic free energy. Two assumptions are made to enable simple expressions for these two 

terms. The first one is that the depth profile of statistical segments is step-like. The 

concentration of statistical segments is a constant within brushes, ϕ = Na3/d2L. The second is 

that all free ends of tethered polymer chains are located in the single plane at a distance L 

from the tethering surface. 

The “Flory approximation” [Flo81] is used to obtain the explicit expression for free 

energy. This argument estimates the reduction in configurational entropy from results for an 

ideal random walk chain constrained to travel a distance L from the grafting surface to the 

outer edge of polymer brush. The corresponding free energy per chain can bee expressed in 

the following equation: 

F/kT ≈ νϕ2d2L/a3 + L2/R0
2  (2.2) 

where ν is a dimensionless excluded volume parameter and R0 is the radius of an unperturbed, 
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ideal coil. The first term represents the interaction energy between statistical segments and the 

second represents the elasticity of Gaussian chains. A “scaling argument” approach gives a 

similar result. The equilibrium thickness is obtained by minimization of F with respect to L 

and is shown in the following equation: 

L/a ≈ N (a/d)2/3      (2.3) 

The most important and distinctive characteristic of polymer brushes expressed in 

Equation (2.3) is that the equilibrium thickness varies linearly with the degree of 

polymerization. This is in contrast with free polymer chains in a good solvent, where the 

dimension of polymer chain varies with N in a relationship of R ~ N3/5

Theoretical considerations demonstrate that the densely tethered polymer chains are 

deformed. The relationship between the equilibrium thickness and degree of polymerization 

of polymer chains is linear. This is the origin of the novel behavior of tethered polymer 

brushes. 

The idea of the balance of interaction energy and elastic free energy, the essential 

features in the Alexander model, can be applied to other situations involving polymer brushes 

in a theta solvent or a poor solvent [Hal88] In a theta solvent, the interaction between 

statistical segments disappears. The free energy per chain is expressed in the following 

equation: 

F/kT = ωϕ3d2L/a3 + L2/Na2      (2.4) 

Where ω is a dimensionless third viral coefficient. The relationship between the equilibrium 

thickness and N can be obtained by minimization of free energy with respect to L: 

L/a ≈ N(a/d)       (2.5) 

It is interesting to note that the linearity of L with N is maintained with the solvent and 

poor solvents. Compared to Equation (2.3), the chains have shrunk by a factor of (a/d)1/3, but 

polymer chains are still distorted at the theta point. This is remarkably different from the 

behavior of free polymer chains in theta solvent, where the relationship between chain 

dimension and N is R0 ~ N1/2. 

For a brush without solvent (melt brush), the relationship between the thickness of 

polymer brushes and degree of polymerization can be obtained by a similar approach. It was 

found that the relationship can be described in the following equation: 

L ~ N2/3      (2.6) 

As indicated in Equation (2.6), the tethered polymer chains in the melt state are 

deformed as compared with the behavior of free polymer chains in melt state, where the 

relationship is R0 ~ N1/2.  
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In conclusion, no matter in the presence of a good solvent, a theta solvent, a poor 

solvent, or in the absence of solvent (melt conditions), the polymer chains in tethered polymer 

brushes exhibit deformed configurations. The degree of deformation of polymer chains 

depends on environment conditions to which the tethered polymer is exposed. 

The Alexander approach is a simple free energy balance argument. It does not attempt 

to examine of the details of the conformation of polymer chains or the density profile of chain 

units at a distance from the grafting surface. This simple model can be used to describe the 

hydrodynamic properties of polymer brushes and other properties, which depend on 

perturbing the balance between chain stretching and chain-chain repulsion. Such properties 

are the hydrodynamic thickness, permeability of a brush and the force per area required to 

compress a brush (either vertically or laterally). The lubrication forces that arise if two 

brushes are brought into near contact are related to the hydrodynamic properties.  

However, the following question on brush structures are not well represented by the 

Alexander model. These questions include: the shape of the chain unit density function, the 

location of the free ends of polymer chains, how the polymer chains segregate or mix in a 

mixed polymer brush of either different chain lengths or different chemical compositions, and 

how the polymer chains interpenetrate each other. 

Relatively simple theoretical results have been obtained for a wide variety of brush 

properties and situations under the conditions of strong stretching. A simple hypothesis about 

free chain ends from the interface is made: free chain ends may be located at any distance 

from the interface [Mil91, Sem75, Mil88, Mil89]  

Experimental research has been carried out to elucidate polymer brush structure and 

explore their novel properties. For end adsorbed polymer brushes, optical probes such as 

evanescent waves [All81], ellipsometry [Sau89], infrared spectroscopy [Kaw88], and 

multiple-reflection interferometry [Mun90a, Mun90b] give information equivalent to the total 

amount of polymer adsorbed. Many scattering experiments have been performed to 

investigate the structure of end-grafted polymer systems [Cos90, Cos87]. Parsonage and co-

workers [Per87] studied the adsorption of the diblock copolymer polystyrene-b-poly(4-

vinylpyridine) (PS-b-PVP) from toluene solution onto mica and used radiolabeling techniques 

to measure the coverage for various PS-b-PVP copolymers on mica. Patel and al. [Pat87] 

studied a series of adsorbed block copolymers where a block strongly interacts with the 

surface and the other block adsorbs weakly. The work of Auroy et al. [Aur91] gave strong 

support of linearity of polymer brush height with respect to the degree of polymerisation of 

tethered polymer chains. 
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2.2.3 Theoretical and Experimental Studies of Mixed Polymer Brushes 

Theoretical study of mixed brushes started in early 90-th by Marko and Witten, who 

demonstrated for the first time that the system of anchored polymer chains of two chemically 

distinct types undergoes the microphase separation, if incompatibility of the chains is 

sufficiently high. This result has been obtained in frames of the mean-field strong stretching 

theory, which has been earlier successfully applied to homopolymer brushes. Since then, the 

mixed brushes have been explored with a number of powerful theoretical tools of polymer 

physics. 

The basic assumption of the mean-field strong stretching theory is the strong 

stretching limit (SSL). The analytical theory, based on the SSL, was proved to be very useful 

for analysis of brushes, consisting of chemically equivalent chains. In 1991, Marko and 

Witten [Mar91] extended it to the case of binary brushes. They considered the case of the 

brush under melt conditions, composed of two species of incompatible molecules (called 

usually A and B molecules). Chemical difference of the unlike molecules gives rise to a 

mixing free energy per chain which is a function of the monomer concentrations: 

)()(
3

rrrd
nkT
E

BA
rr φφ

σ∫ ΩΛ=       (2.7) 

where σΩ=n  is the total number of molecules in the layer, Ω  is the surface of the layer. 

The coupling constant has units of inverse volume and related to the Flory-Huggins 

parameter 

Λ

χ via NV /Λ=χ , where N is the polymerization index. The incompressibility 

condition expressed by BA φφ −= 1 . The positive value of the coupling constant implies that 

the system will tend to phase separation of the A and B monomers. This separation is opposed 

by the loss of entropy. The equilibrium configuration is the result of the balance of the mixing 

energy and the entropic cost.  

Λ

 
Figure 2.2. Schematic representation of phase segregation of a mixed polymer brush. 

 

There are basically two possibilities of the phase separation. In case of perpendicular 

segregation  (Figure 2.2b), a layer enriched by the A component lies below the layer enriched 
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by the B-component, or vice versa. Then the lost of entropy is that of the distribution of the 

free ends of the chains. In case of lateral segregation (Figure 2.2a), homogeneity in the lateral 

direction is broken and the chains can form ripples, clusters etc. This behavior of the mixed 

brushes is qualitatively similar to the behavior of free block-copolymer melts, but the self-

assembled structures are periodic in two dimensions and have a brush-like structure 

perpendicular to the grafting surface. The entropy cost is then due to subtle changes of the 

chain conformations traveling through different regions of the layer. Further progress can be 

made if one assumes that the mixing energy is much smaller than the stretching energy of the 

chains. Then the pressure inside the brush is dominated by the excluded volume interactions 

and  can be described by the formula (2.1). Using the Green function formalism, Marko and 

Witten have shown that the brush undergoes the second order phase transition to the ripple 

laterally segregated structure as the incompatibility Λ  increases: the monomer density 

difference behaves as  

( ) )cos(21* kxBA Λ−Λ≈−φφ        (2.8) 

where the wavelength of the ripples is approximately two times larger than the average end-

to-end distance  of unconstrained chains in the ER θ -solvent, ERk 97.12 == πλ . The theory 

predicts, that the transition to the ripple morphology  occurs at smaller values of 

incompatibility, than the transition to the layered phase. In other words, the ripping transition 

pre-empts the layering transition.  

 
Figure 2.3. Morphologies of a binary mixed polymer brush with symmetric composition. 

 

Although the theory, developed by Milner, Witten, Marko and Cates, do predicts the 

major phenomena, which take place in the binary brushes, it is constrained to the case of very 

high grafting densities and/or long chains. A more general method, based on the self-

consistent field theory has been developed recently by Müller [Muel02]. The calculation 

technique was designed initially by Matsen and Schick [Mat94] for calculation of the phase 

diagram of block-copolymers with the use of Fourier representation of the monomer densities 

and effective fields. This technique allows to analyze the stability of different lateral 
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morphologies, such as lamellar, check board and hexagonal "dimple" phases (Figure 2.3). The 

first-order phase transitions between the different morphologies depend on the number of 

parameters, which characterize the brush and the solvent. The phase diagrams of the mixed 

brushes were calculated for varying incompatibility (Flory-Huggins parameter), difference of 

the solvent quality for the brush components, total grafting density and the relative grafting 

density of the A and the B-species. It was shown, that the morphology of the mixed brush is 

the result of the delicate interplay between the lateral and the perpendicular phase segregation 

[Min02a]. 

Using two-dimensional SCF calculations, Zhulina et al. [Zhul96] have studied diblock 

copolymer brushes. They have found that under the poor solvent conditions and sparse 

grafting density  the brush self-organizes in an ordered array of micelles, which have “onion” 

or “garlic-like” structures. The spacing between the micelles can be manipulated by the 

molecular weight of the chains and fraction of the species. They also suggested that mixed 

brushes find applications as coatings of colloids and enable some fine-tuning of their 

interaction.  

 

2.2.4. Responsive/Switching/Adaptive Behaviour 

Sidorenko et. al. [Sid99a] for the first time reported on the responsive behaviour of the 

mixed PS/P2VP brush. XPS and contact angle experiments have shown that the surface 

composition of the brush and the surface wetting behavior switched upon exposure to 

different selective solvents. Recently, it was proven for various mixed binary brushes that 

they are capable of switching their structure in response to solvent quality, temperature, pH, 

and confining wall signals [Min 03b, Uso02]. 

The origin for the responsive behavior is in the reversible microphase segregation of 

the components in the mixed brush [Min02a]. The phase diagram for symmetrical mixed 

brush as a function of the solvent selectivity ζ is presented in Figure2.4. In a non-selective 

solvent, ζ=0, a transition from laterally homogeneous phase to a ripple phase was observed 

upon increasing the incompatibility of A and B species. As solvent quality for the A-

component (ζ<0) decreased, the ripple phase transformed to a dimple structure, where the A 

component segregated into clusters. Similarly, a dimple structure with a collapsed B polymer 

was observed when solvent was poor for the B component (ζ>0). At higher incompatibility 

(or poorer solvent quality) only dimple structures were stable. Experimentally, this 

mechanism was proved by applying the combination of X-ray photoemission electron 
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microscopy (XPEEM), contact angle, and AFM techniques for the binary mixed brush 

[Lem03b, Lem03c]. 

 
Figure 2.4. Phase diagram for a symmetric binary polymer brush as a function of 

incompatibility χ´ and inverse stretching δ´. 

 

Lemieux at.al [Lem03a] have proved the mechanism of structural reorganization by 

studying nanomechanical properties of the mixed binary brush prepared from two polymers 

with very different mechanical behavior of PSF and polymethylacrylate (PMA). This was 

demonstrated for corresponding homobrushes. [Lem03b] The lateral and vertical reordering 

of the mixed brush was observed to be relatively quick (on the order of a few minutes), and 

reversibility between good and bad solvent states for each component. Since PSF and PMA 

are mechanically dissimilar (glassy and rubbery, respectively) at room temperature, AFM 

phase imaging was used to verify the resulting laterally segregated structures. To determine 

the vertical segregation in addition to the lateral ordering, surface nanomechanical mapping 

was conducted to directly determine the surface distribution of the elastic modulus and 

adhesive forces. Results show a clear bimodal response of the mechanically heterogeneous 

surface, with elastic modulus and adhesion contributions very different for the “glassy state” 

and the “rubbery state”. Furthermore, depth profiling of the elastic modulus was exploited to 

understand the vertical segregation in the mixed brush and verify partial vertical segregation 

of dissimilar components. Results of this study quantified the elastic properties of PSF and 

PMA, demonstrated the dramatic mechanical contrast of the surface as a function of solvent 
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conditions, and decisively revealed the lateral and layered modes of the phase segregation in a 

binary polymer brush. 

 

2.2.5. Synthesis of Mixed Brushes  

Two well established approaches are usually used to synthesize mixed brushes: 

“grafting from“ (Figure 2.5) and “grafting to“ (Figure 2.6) methods. The “Grafting from” 

method refers to the approach when the initiator is attached to the solid substrate and 

polymerization is done in situ on the solid surface.  

 
 

Figure 2.5. Scheme of synthesis of binary polymer brushes via “grafting from” approach: (a) 

two-step polymerization with a slow rate of surface-initiation, the same initiator is used for 

the both steps; (b) two-step polymerization with different surface-immobilized initiators used 

for two grafting steps; (c) end-grafting of di- (or tri-) block copolymer brushes via living 

(controlled) polymerization from one kind of surface-immobilized initiator.  
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For instance, Sidorenko et.al. [Sid99b] applied the approach suggested by Tsubokawa et. 

al. [Tsu90] to introduce the initiator on the solid substrate. First, ω-epoxysilane was used to 

introduce epoxy functional groups on the surface of silicon wafers. 

 
Figure 2.6 Scheme of synthesis of binary polymer brushes via “Grafting to” approach: (a) 

two-step anchoring of two different end-functionalized homopolymers to one kind of surface 

reactive groups; (b) simultaneous anchoring of two end-functional homopolymers via 

different mechanisms to complementary functionalities on the substrate; (c) immobilization 

on surface of triblock copolymers via the middle anchoring block. 

 

Afterward, 4,4´-azobis(4-cyanopentanoic acid) (ACPA) was anchored using the catalytic 

reaction of the epoxy groups on the surface with carboxyl groups of the azoinitiator. Another 

approach [Min00] was based on the method of Boven et.al [Bov90] where the ω-aminosilane 

was grafted on the silicon wafer and then the chloride derivative of ACPA (Cl-ACPA) was 

bonded to the substrate. Both methods were found to have disadvantages. In the first case, the 

reaction of epoxy groups with ACPA was not very well controlled. Moreover, during 

chemisorption a large fraction of epoxy rings is lost by a catalytic effect of the surface and 
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adsorbed water. In the second case, due to the high reactivity of amino groups, the 

chemisroption of ω-aminosilane was not well-controlled process.  

Recently, Usov et al. [Uso02] suggested a solution of the problem when, in the first 

step, 3-glycidoxypropyl trimethoxysilane (GPS) was used to modify the surface of Si-wafers 

resulting in the chemisorbed layer with epoxide and hydroxyl groups. A high density 

monolayer can be formed with epoxy groups [Tsu99, Luz00a]. In the second step, the epoxy-

terminated silicon wafer was treated with ethylene diamine to transform epoxy groups into 

more reactive amino groups. Finally, Cl-ACPA was attached by the reaction with amino and 

hydroxyl groups on the surface in the presence of a catalytic amount of thriethylamine to bind 

released HCl . The latter method demonstrated very good reproducibility 

A novel method to introduce epoxide and hydroxyl groups on the surface of different 

substrates by the deposition of a thin (1-2 nm) film of poly(glycidylmethacrylate) (PGMA) 

has been reported in literature [Luz03, Swa03]. Upon heating, this film was cross-linked and 

formed a stable smooth polymer “carpet” with a high density of hydroxyl and epoxy group on 

the surface. This method is universal and can be applied for the modification of different 

substrates because the cross-linked PGMA forms the stable surface film due to the multi-point 

interactions between backbones and the surface even in the case of the participation of weak 

van der Waals attractive interactions between PGMA monomer units with the substrate. 

Once the initiator was attached to the solid substrate, the two-step radical 

polymerization procedure was performed to graft two different polymers. The first 

polymerization step was done for the controlled periods of time to use only a fraction of the 

initiator. Afterwards, the obtained monobrush was thoroughly rinsed to remove the non-

grafted polymer after the first reaction. Then the second grafting polymerization was 

performed using the residual initiator on the surface.  

The alternative strategy for synthesis of mixed polymer brushes consists of the 

combination of atom transfer radical polymerization (ATRP) and nitroxide-mediated radical 

polymerization (NMRP) [Eja03, Zha03]. These two controlled radical polymerization 

techniques depend upon different mechanisms and can be performed at very different 

temperatures. A nitroxide-terminated and ATRP- initiator terminated organotrichlor- or 

triethoxy silanes were used to graft the initiators to the solid substrate. Then two-step 

polymerization procedure is applied to fabricate mixed brushes.  

On the contrary, the “grafting to” method employs end functionalized homopolymers 

or random copolymers, or functionalized block-copolymers with functional groups located 

near the point connecting different blocks. The polymers are grafted onto the substrate via 
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chemical reaction of the polymer functional precursor groups and complimentary functional 

groups on the surface. 

Grafting density of polymer brushes prepared with the “grafting to” method usually is 

relatively low because of the kinetic limitations resulting from the very low diffusion rate of 

polymer chains penetrating through the already grafted brush layer. In the framework of this 

approach, the largest grafting density was obtained for the grafting performed from 

concentrated solutions or polymer melts when the concentration of the polymer segments with 

the functional groups have approached the maximal possible level. Under these grafting 

conditions, two incompatible polymers segregate macroscopically when one of polymers 

preferentially occupies the substrate surface. One of the problems with this approach is that, 

upon heating, the film can dewet the substrate and the grafting may result in a very 

inhomogeneous polymer film. Thus, the two step grafting procedure avoiding the phase 

segregation during grafting was developed. For example, the mixed brush from carboxyl 

terminated homopolymers PS and P2VP was prepared with the two-step procedure. First, PS 

was grafted to the GPS modified silicon wafer. The PS film on the wafer surface was 

prepared by spin coating. The grafting was performed upon heating above the glass transition 

temperature for controlled period of time to assure that the first grafting step was terminated 

at the grafting density less than the plateau value. Then, the non-grafted polymer was 

removed and the same procedure was repeated to graft carboxyl terminated P2VP. This 

routine was also successfully used to graft PS/PtBA mixed brush and, after hydrolysis, 

PS/PAA binary brushes. [Jul03a]. These mixed brushes showed clearly pronounced 

switchable behavior with dramatic rearrangements of surface morphology upon exposure to 

different solvents. The authors observed that not only the surface wettability changed 

significantly, but also surface nanomechanical properties were altered by this reorganization. 

This procedure was the most successful if a less polar polymer (PS) was grafted first. 

It gives an additional driving force for the second polymer to penetrate the layer of the first 

grafted polymer. With “grafting to” approach, the mixed brushes with the grafting densities 

ranging from 0.01 to 0.2 nm-2 and molecular mass from 4Kg/mol to 100 Kg/mol were 

synthesized. 

Recently, the synthesis of the PS/PBA mixed brush by the combination of the 

"grafting to" and "grafting from" methods was reported in literature. [Kle03] The Si-wafer 

substrate was modified with the PGMA thin layer. Then, the sample was treated with a vapor 

of 2-bromoisobutiric acid, which can serve as an initiator for ATRP. In the first step, the 

carboxyl terminated poly(tert-butylacrylate) was grafted to the silicon wafer via “grafting to” 
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method involving the reaction of the end carboxyl groups with the epoxy groups of the 

PGMA modified substrate. In the second step, ATRP of styrene was carried out. The high-

density brushes were synthesized with this approach. The advantage of this method refers to 

the possibility to substantially extend the range of polymers, which can be exploited for the 

fabrication of mixed brushes. 

It is worth to note that mixed brushes prepared by different grafting methods show 

very similar surface behavior. The general tendency reveals that the higher grafting density 

results in the larger range of switching until the limiting state (e.g., complete switching 

between properties of polymers A and B) is approached. In other words, the increase of the 

grafting density within the practical experimental region of the grafting densities enhances the 

tendency to both vertical and lateral phase segregation of dissimilar components.  

To approach the maximal switching range controlled by the phase transition 

mechanism, the mixed brush should be randomly grafted. However, the microphase 

segregation even before or during grafting tends to deviate from random grafting. 

Modifications of grafting procedures aim to overcome this inhomogeneous grafting affected 

by the microphase segregation.  

 

2.2.6 Methods to Study Responsive Behavior. 

The main problem in studying the phase transition and responsive properties of the 

mixed brushes is affected by the high sensitivity of the polymer chain conformation to a 

change of environment. On top of this, the simultaneous segregation in lateral and vertical 

directions makes the problem to be much more difficult. It implies that in situ study of the 

morphology of the brushes should be performed with methods sensitive to the brush profile 

with a lateral resolution at the molecular dimension scale. There are only few methods, known 

for investigations of thin polymer films, which can in principal fit the requirements: AFM 

with direct scanning under solvent (in a liquid cell) and neutron reflectivity from solid-liquid 

interfaces. Only two reports are published in the literature about the investigation of the 

mixed brush morphology performed with AFM in situ in a selective solvent and 

demonstrating reversible switching of surface morphology [Lem03c, Mel03]. So far to our 

knowledge, there were no attempts to the present time to employ neutron reflectivity for study 

of mixed brushes in situ. 

The task of studying of mixed brushes is much easier if we make an assumption that 

the original brush morphology is frozen in dry state due to the rapid evaporation of solvent. 

Indeed, during drying the brush undergoes collapse mainly in Z direction, so that the lateral 
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morphology should remain almost unchanged. The profile in Z direction is strongly modified 

because of solvent evaporation. However, the relative distribution of the polymers A and B in 

Z direction still reflects the layered or vertical segregation. Practically, it means that after the 

rapid evaporation of solvent one can measure the surface composition of the dry mixed brush 

with an appropriate lateral resolution and then reconstruct the morphology of the brush, which 

corresponds to that in solvent. That assumption is quite reasonable because the solvent 

evaporation time from the brush layer is much smaller than the characteristic time of polymer 

diffusion in a swollen state.  

In fact, it is commonly used practice to freeze the morphology of multicomponent 

polymer materials by rapid drying or cooling. There are also several experimental evidences 

supporting the assumption: 1) the morphology of the dry brush reversibly switches upon 

exposure to different solvents; 2) the morphologies after the treatment by a particular solvent 

are reproducible and can be repeated many times; 3) the AFM scanning under solvents proved 

that the lateral structures in dry film and under solvent are similar, but sizes in a swollen state 

somewhat larger, that is quite reasonable for a good solvent; 4) the surface structures 

observed for dry mixed brushes are in good agreement with theoretical predictions made for 

the brushes in solvent [Min01, Min02a, Zha00a, Zha00b]. Based on that, the brush 

morphology was studied for the dry mixed brushes of different compositions with AFM and 

XPEEM and considered to be relevant to actual morphology of brushes in different solvents. 

[Jul03b]. The integral chemical composition of the top layer of the mixed brushes is evaluated 

with contact angle, nanomechanical probing, ζ-potential, and XPS methods. Adsorption of 

colloidal particles and adhesion tests were used to probe the surface composition of mixed 

brushes [Zha00a, Zha00c]. 
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Experimental Techniques. 
 

3.1 Introduction 
The field of polymer and materials research creates the need of specific analytical 

techniques for the investigation and determination of chemical composition (UV-vis, FT-IR 

spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS)), end groups 

(MALDI-TOF-MS, NMR spectroscopy), polymerization kinetics (GC), molecular weights 

and polydispersity (gel permeation chromatography (GPC)), Tm and Tg, morphology (atomic 

force microscopy (AFM), scanning electron microscopy (SEM), transmission electron 

microscopy (TEM)) and solution properties, such as viscosity.  

During recent years, many surface sensitive techniques have been developed to 

analyze polymer surfaces. However, the surface investigated by one technique may be the 

bulk if studied by another. An appropriate definition of a surface, e.g., the sampling depth 

observed, is therefore very important. These techniques provide compositional information 

for different depth below the surface. When structural information (surface topology, lateral 

heterogeneity) is required, various types of microscopic techniques are appropriate, such as 

scanning electron microscopy (SEM), transmission electron microscopy (TEM) and more 

recently atomic force microscopy (AFM). 

The choice of a suitable analytical surface technique involves the consideration of 

what kind of surface information is needed. Contact angle data, which are extremely surface 

sensitive, are important for the determination of surface tensions of the solid surface. 

However, these data do not provide direct information about the chemical composition of the 

surface. In this respect XPS, SIMS have to be used. The combination of several techniques 

can provide complementary surface information and can result in a more detailed view on the 

chemical composition and the component distribution, particularly in relation to a better 

understanding of the phenomena of wetting and adhesion. 

 

3.2. Ellipsometry. 
Ellipsometry is an optical technique that uses polarised light to probe the dielectric 

properties of a sample. The most common application of ellipsometry is the analysis of very 

thin films. Through the analysis of the state of polarisation of the light that is reflected from 
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the sample, ellipsometry can yield information about layers that are thinner than the 

wavelength of the light itself, down to a single atomic layer or less. Depending on what is 

already known about the sample, the technique can probe a range of properties including the 

layer thickness, morphology, or chemical composition.  

The name "ellipsometry" stems from the fact that the most general state of polarization 

is elliptic. The technique has been known for almost a century, and today has many standard 

applications. It is mainly used in semiconductor research and fabrication to determine 

properties of layer stacks of thin films and the interfaces between the layers.  

An illustration of the transmitted, reflected, and incident beams is shown in Figure 3.1. 

A beam of light is incident on a sample at some arbitrary angle of incidence θi, the angle of 

incidence is defined as the angle between the input beam direction and the direction normal to 

the sample surface. At the boundary of the medium, part of the light will be reflected at angle 

θγ  while the other part will be transmitted through the sample at angle θt. Snell's law requires 

that all three beams be in the plane of incidence. The plane of incidence is defined as a plane 

which contains the incident beam, the reflected beam. 

 
Figure 3.1 Schematic showing the incident, reflected, and transmitted light. 

The transmission and reflection measurements acquire the intensity ratios, T and R 

respectively, over a given range of wavelengths. T and R are defined as the ratio of the light 

intensity being transmitted It or reflected Ir over the incident light intensity Ii on the sample, as 

shown in Equations (3.1) and (3.2) 

it IIT /=       (3.1) 

iIIR /γ=       (3.2) 
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Ellipsometry measures the change in polarization state of light reflected from the 

surface of a sample. The measured values are expressed as Ψ and ∆. These values are related 

to the ratio of Fresnel reflection coefficients, Rp and Rs for p and s-polarized light, 

respectively.  

s

pi

R
R

e =Ψ ∆)tan(       (3.3) 

Because ellipsometry measures the ratio of two values, it can be highly accurate and 

very reproducible. From Equation (3.3) the ratio is seen to be a complex number, thus it 

contains “phase” information contained in ∆, which makes the measurement very sensitive. In 

the Figure 3.2, a linearly polarized incident beam is converted to an elliptically polarized 

reflected beam. For any angle of incidence in the range between 0° and 90°, p-polarized light 

and s-polarized will be reflected differently. 

 

 
Figure 3.2Scheme of an ellipsometry experiment. 

The coordinate system used to describe the ellipse of polarization is the p-s coordinate 

system. The s-direction is taken to be perpendicular to the direction of propagation and 

parallel to the sample surface. The p-direction is taken to be perpendicular to the direction of 

propagation and contained in the plane of incidence. 

The optical constants define how light interacts with a material. The complex 

refractive index is a representation of the optical constants of a material, it is represented by 

iknn +=
~

      (3.4) 

The real part or index of refraction, n, defines the light propagation velocity of light in 

material:  

n
c

=ν        (3.5) 
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where v is the speed of light in the material and c is the speed of light in vacuum. The 

imaginary part or extinction coefficient, k, determines how fast the amplitude of the wave 

decreases. The extinction coefficient is directly related to the absorption of a material and is 

related to the absorption coefficient by:  

λ
πα k4

=       (3.6) 

were α is the absorption coefficient and λ is the wavelength of light. 

The Equation (3.3) is the basic equation of ellipsometry [Azz79]: The values Ψ and ∆ 

are the ellipsometric angles, which are directly obtained from an ellipsometric experiment. 

The thickness of a thin film and its refractive index are calculated from the Ψ and ∆ using an 

appropriate physical model: 

There are different methods for determination of the Ψ and ∆ parameters [Azz79] . We 

used null-ellipsometry [Mots91] in this work. The principal setup is depicted in Figure 3.3. 

 

 
Figure 3.3. Ellipsometr set-up.  

 

The light source is a He-Ne laser producing monochromatic red light (λ = 632.8 nm). 

The beam passing through the polarizer and the compensator adopts an elliptical polarization. 

It is incident at 70° to the sample (optimal for Si substrates with natural SiO2 layer). The 

polarization state of the incident beam is chosen so (rotating the polarizer, the compensator 

position is fixed) that the reflected beam is linearly polarized and can be fully cancelled by the 

analyzer. The intensity of the beam passed through the analyzer is measured with the 4-
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section photodiode. The Ψ and ∆ values are derived from positions of the polarizer (P) and 

analyzer (A), which lead to zero intensity of the beam at the detector [Azz79, Mots91]: 

Ψ=A, ∆=2P+90o      (3.7).  

Glan-Thompson prisms made of calcite CaCO3 were used as the polarizer and the 

analyzer. The prism splits a propagating beam into two beams of mutual perpendicular 

polarization: the extraordinary and the ordinary beam [Mots91a]. The prism is designed in a 

way that the extraordinary beam is totally reflected whereas the ordinary beam is transmitted. 

The compensator was made of a properly cut quartz plate with two distinct orthogonal 

directions: the slow and the fast axis [Mots91a]. For an arbitrary orientation of the electric 

field vector of a propagated beam, the electric field vector is decomposed in its two 

components parallel to the fast and the slow axis. Since the refractive indices do not match a 

phase shift occurs. The thickness of the quartz plate is chosen so that the produced phase shift 

equals π/2. The compensator converts linearly polarized light into elliptically polarized light. 

For the thin layers of few nanometers thick the change of the Ψ and ∆ relative to the 

bare substrate is small, what makes impossible parallel determination of the refractive index 

and the thickness of the film [Zhan96]. In such cases the refractive index is measured in an 

independent experiment on a thick film of the same material or is taken from literature. 

 
3.3. Atomic Force Microscopy (AFM). 

The Atomic Force Microscope (AFM) is being used to solve processing and materials 

problems in a wide range of technologies The materials being investigating include thin and 

thick film coatings, ceramics, composites, glasses, synthetic and biological membranes, 

metals, polymers, and semiconductors. AFM investigates properties of a top layer of materials 

through measuring interaction forces between a probe and the sample surface. Van der Waals, 

friction, electrostatic, and magnetic forces are the examples of the interaction kinds, which 

can be probed with AFM [Han88]. 

The principle scheme of AFM is very simple (Figure 3.4). A very sharp tip is scanned 

over a surface with feedback mechanisms that enable the piezo-electric scanners to maintain 

the tip at a constant force (to obtain topography information), or height (to obtain force 

information) above the sample surface. Tips are typically made from Si3N4 or Si. The 

nanoscope AFM head employs an optical detection system in which the tip is attached to the 

underside of a reflective cantilever. 
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Figure 3.4. Scheme of an AFM microscope 

 

A diode laser is focused onto the back of a reflective cantilever. As the tip scans the surface of 

the sample, moving up and down with the contour of the surface, the laser beam is deflected 

off the attached cantilever into a dual element photodiode. The photo detector measures the 

difference in light intensities between the upper and lower photo detectors, and then converts 

to voltage. Feedback from the photodiode difference signal, through computer control, 

enables the tip to maintain either a constant force or constant height above the sample. In the 

constant force mode the piezo-electric transducer monitors real time height deviation. In the 

constant height mode the cantilever deflection force caused by the interaction with the sample 

is recorded. 

Three imaging modes, contact mode, non-contact mode, and intermittent contact or 

tapping mode can be used to produce topographic images of sample surfaces. In contact 

mode, the probe is essentially dragged across the sample surface. (Figure 3.5) During 

scanning, a constant bend in the cantilever is maintained. A bend in the cantilever corresponds 

to a displacement of the probe tip, zt, relative to an undeflected cantilever, and the applied 

normal force, P = kzt, where k is the cantilever spring constant. As the topography of the 

sample changes, the z-scanner must move the relative position of the tip with respect to the 

sample to maintain this constant deflection. Using this feedback mechanism, the topography 

of the sample is thus mapped during scanning by assuming that the motion of the z-scanner 

directly corresponds to the sample topography. To minimize the value of the applied force 

used to scan the sample, low spring constant (k < 1 N/m) probes are normally used. [DI99]. In 

the tapping mode, an external periodic force is applied to the probe. That causes the cantilever 

to oscillate perpendicular to the sample surface with a typical amplitude 20-100 nm. The 

tapping mode was developed [Zho93, Qui94] for investigation of soft materials. When the 

oscillating cantilever approaches the surface and the tip starts to interact with it, the amplitude 
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of oscillation linearly decreases (Figure 3.6c) and is maintained constant at a certain value 

(amplitude set-point) by the feedback loop of the microscope. 

 

 

 

 

 

 

 

 

 

Figure 3.5. Contact mode. (a) Force distance 

diagram, solid line-approach, dot line- 

withdraw of the tip. (b) Maintaining the 

interaction force at the constant level. 

The lower is the set-point (or the amplitude set-point ratio A/A0, where A0 is the amplitude of 

free oscillations), the closer the tip can come to the sample. Changes in the vertical coordinate 

(z) of the sample (or the cantilever) upon scanning the surface needed to keep a constant 

amplitude of oscillation are monitored and displayed as a topography signal. The typical 

amplitude while imaging in air allows the tip to contact the sample surface through an 

adsorbed liquid layer without getting stuck. Time of the contact of the tip with the surface and 

the friction energy are from one to two orders smaller in the tapping mode than in the contact 

mode [Tam96]. The contact time increases upon decreasing the amplitude set-point ratio. 

The non-contact mode differs from the tapping mode by smaller amplitude of 

cantilever oscillations which is <10 nm. The tip does not have enough energy to strike the 

sample but oscillates in the range of the attractive forces [DI99]. Application of the non-

contact mode is limited by materials where the adsorbed liquid layer is thin, otherwise the tip 

becomes trapped by it and scrapes the sample. 
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3.4. Determination of Surface Tension. 
Surface tensions of solid-vapor interfaces and solid-liquid interfaces are important 

parameters in many areas of applied science and technology. These interfacial tensions are 

responsible for the behavior and properties of commonly used materials such as paints, 

adhesives, detergents and lubricants.  

The combined use of the first and the second law of thermodynamics give the 

variation of the internal energy U of a macroscopically homogeneous bulk phase:  

ii dnpdVTdSdU ∑+−= µ        (3.8) 

where S is entropy, V volume, and µ chemical potential. The index i refer to the type of 

molecules. For a thermodynamic description of bulk properties this equation is adequate but 

considering surfaces it has to be extended since the boundary of the system is the locus of 

some excess energy. This excess term is proportional to the change in surface area A and the 

associated intensive variable is the surface tension γ so that Equation (3.8) is modified: 

dAdnpdVTdSdU i
i

i γµ ++−= ∑        (3.9) 

The surface tension γ, is the most important quantity that characterizes a surface. 

Thermodynamically, the surface tension of a solid material in contact with vapor γSV is thus 

defined as the change in energy (U) of the whole system with change of surface area (A) at 

constant entropy (S), volume (V) and number of moles of the components involved (n). It can 

be shown that γ is also equal to the change in Gibbs energy (G) at constant temperature (T), 

pressure (p) and number of moles (n), i.e. [Zan88]  

npTnVS
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For liquids there are several direct methods, e.g. Wilhelmy plate, capillary rise and 

pendant drop, for direct determination of the surface tension. However, it is impossible to 

measure directly the surface tension of a solid, such as a polymer. Therefore, indirect methods 

have to be used similar to the liquid homologue method, the polymer melt method and contact 

angle measurements. The last method is perhaps the simplest and most widely used 

techniques for the evaluation of surface tension. Various approaches have been developed to 

calculate surface tension of solids from contact angle measurements. They all are based on the 

Young’s equation in which the relation is given between the surface tension γ and contact 

angle Θ for a (pure) solid in contact with a (pure) liquid. When a droplet of a wetting liquid 

comes into the contact with the solid surface (Figure 3.7), the balance between the forces 

along the three phase boundaries is defined by the Young’s equation: 
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slsvlv γγγ −=Θcos                  (3.11) 
where γlv, γsv, and γsl  denote the interfacial tension of the liquid-vapor, the solid-vapor and the 

solid-liquid interfaces, respectively. The terms on the left hand side are readily obtained 

experimentally leaving γsv and γsl as unknown. While only the value of γsv -γlv can be obtained 

from contact angle measurements, the value of γsl is needed for the evaluation of γsv. 

Numerous approximate models have been developed to determine the surface tension of 

solids from contact angle measurements. There are, for instance, the critical surface tension 

concept of Zisman [Zis64], the surface tension components approach of Fowkes [Wus82], and 

the equation of state approach of Neumann [Kwo99]. The last two methods will be discussed 

here in brief. In spite of the extensive studies, a definite theoretical framework has yet not 

been established and all models are more or less subject to arguments. 

 
Figure 3.7. Balance of interfacial tensions between a solid, a liquid and a vapor. 

 

3.4.1. Surface Tension Component Approach 

Fowkes pioneered the approach of surface tension components. He assumed that the 

total surface tension γ is composed of different surface tension components, each of which 

arises from specific intermolecular or inter-atomic forces at the interface. Then the surface 

tension can be written as: 

...+++++= mihpd γγγγγγ                   (3.12) 

where γd, γp, γh, γI, γm are the contribution due to London dispersive forces, Keesom 

permanent dipole-dipole forces, hydrogen bonds, Debye induction forces, and metallic 

interactions, respectively. For a two phase system, in which only dispersive forces are 

operative (γ = γd) across the interface γ12 can be written (using a geometric mean approach) 

as: 
2/1

2121
2/1

212112 )(2)(2 dddd γγγγγγγγγ −+=−+=                 (3.13) 
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where subscript 1 and 2 represent phase 1 and 2, respectively. For a solid-liquid interface, 

Equation. (3.13) results in: 
2/1)(2 d

lv
d
sv

d
lv

d
sv

d
sl γγγγγ −+=                    (3.14) 

Owens, Wendt and Kaelble [Owe69]  extended this concept by considering both 

dispersive and polar forces. Using the geometrical mean approach in combination with the 

Young’s equation they proposed: 
2/12/1 )(2)(2)cos1( p

lv
p
sv

d
lv

d
svlv γγγγγ +=Θ+  (3.15) 

The surface tension γsv of the solid surface and its components and γd
sv and γd

sv can be 

determined according to Equation (3.15) by using two different liquids with known dispersive 

γd
lv and polar components γp

lv of their surface tensions. 

Wu [Wus82] suggested another empirical approximation in which the “harmonic-

mean” instead of a geometric mean approach was used for the interfacial tension. Substitution 

in the Young’s equation leads to: 
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Similar to the geometric-mean approach, two relationships are obtained after 

substituting the contact angles of two wetting liquids into Equation (3.16), with γd
sv and γp

sv as 

unknown parameters. Solution of these equations results in the dispersive and polar 

contribution of the surface tension of the solid substrate. Although there is no theoretical 

background for the use of the harmonic-mean approach, Wu claimed that surface tensions of a 

number of polymers, obtained by the harmonic-mean method, are comparable to those 

obtained by the polymer melt method. Both Equations (3.15) and (3.16) have been used 

extensively to determine the wettability of polymer surfaces. An analogous approach was 

used by Van Oss and coworkers[Goo92, Oss88]. According to them, the surface tension of a 

solid can be divided into two parts: 
ABLW γγγ +=                (3.17) 

where γLWdenotes the non-covalent long range Lifshitz-Van der Waals interactions and γAB the 

short-range Lewis acid-base interactions. The long-range interactions are a summation of: 
pidLW γγγγ ++=                  (3.18) 

Moreover, the short-range interactions can be expressed as a function of the geometric mean 

of the electron-acceptor γ+ and the electron-donor γ-- parts: 

)(2 −+= svsv
AB
sv γγγ                 (3.19) 
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Taking the geometric mean of the Lifshitz-Van der Waals component and the electron 

acceptor and the electron donor part and combining this with Young’s equations, the 

following equation can be obtained: 

)(2)(2)2)cos1( +−−+ ++=Θ+ svlvsvlv
LW
sv

LW
lvlv γγγγγγγ                (3.20) 

To determine the three parameters for the solid surface (γsv
LW, γsv

+ γsv
-), three independent 

equations are obtained by measuring the contact angles of three liquids (two of which must be 

polar) with known values of γsv
LW, γsv

+ and γsv  on the solid surface. 

 

3.4.2. Equation of State Approach 

On phenomenological grounds, Neumann et al [Kwo99] have proposed an equation of 

state approach for solid-liquid interfacial tensions interaction: 
2)(2 svlvesvlvsvlvsl

γγβγγγγγ −−−+=                 (3.21) 

where β is a constant which was found to be 0.0001247 (m2/mJ)2. The combination of this 

equation with Young’s relation results in an equation of state approach, where the relation 

between cosΘ and γlv is given by: 

2)(2cos1 svlve
lv

sv γγβ

γ
γ −−=Θ+            (3.22) 

When the liquid surface tension γlv is known and the contact angle Θ is measured, γsv can 

easily be calculated. 

Although there are still some controversies between both methods, the surface tension 

components approach and the equation of state of approach are both used in literature. In our 

case the Lifshitz-Van der Waals/Acid-Base method is used to determine the surface tensions 

of solids. 

 

3.4.3. Contact Angles on Heterogeneous Surfaces. 

Wenzel proposed an approach to characterize the influence of the surface roughness 

on the wettability of a solid [Wen49]. The contact angle Θ* on a rough surface can be 

evaluated by considering a little displacement dx of the contact line parallel to the surface 

(Figure 3.8). 
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Figure 3.8. Infinitesimal spreading of a liquid wedge on a rough surface. 

Then, the surface energies (written per unit length of the contact line) are modified of a 

quantity dF given by: 
*cos)( Θ+−= dxdxrdF svsl γγγ                 (3.23) 

where r is surface roughness, defined as the ratio between the real surface and the projected 

one. The equilibrium is given by the minimum of F, from which we get the Wenzel’s equation 

cos Θ* = r cos Θ                (3.24) 

This simple model shows that the effect of surface roughness is to amplify the wetting. Since 

we always have r > 1, the wetting gets better in hydrophilic situations (Θ* < Θ for Θ < π/2) 

and worse in hydrophobic ones (Θ* > Θ for Θ > π/2). 

For Θ >π/2, the surface energy of the dry solid is lower than the surface energy of the 

wet solid (γsv< γlv) and thus it is expected that the contact line does not follow the accidents of 

the solid surface, as supposed for establishing Equation (3.24). In this case, the drop is rather 

laid on a composite surface, patchwork of solid and air, as shown directly by Barthlott and 

Neinhuis [Bar97] who took photomicrographs of drops on a hydrophobic leaf. We can 

evaluate how the existence of these air pockets modifies the contact angle. The simplest way 

to treat this problem is to consider a crenellated surface (or equivalently full of holes), as in 

Figure 3.9a. 

Then, displacing the contact line of a quantity dx parallel to the surface implies a 

change in surface energy dF equal to: 
*cos)1()( Θ+−+−= dxdxdxdF ssvsls γγϕγγϕ                 (3.25) 

where ϕs is the solid fraction of the surface. The thin lines in Figure 3.9a are the liquid/vapor 

interfaces (occupying a surface fraction 1 - ϕs) below the liquid drop. Since the drop is much 

larger than the air pockets and because of the condition of a constant Laplace pressure inside 

the drop, these interfaces can be drawn with a straight line. Furthermore, all these interfaces 
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are pinned on the corners of the crenellations, the condition of pinning of a contact line on 

such corners being precisely a contact angle larger than π/2 [Oli77]. 

 

 
Figure 3.9. Liquid deposited on a model surface with holes (a) crenellated surface; (b) 

hemispherical bumps: for contact angles larger than π/2, air is trapped below the liquid, 

inducing a composite interface between the solid and the drop. 

 

At equilibrium, F is minimum and we get (using Young's equation): 

cos Θ* = -1 + φs(cos Θ + 1)                (3.26) 

Equation (3.26) is a particular form of the Cassie-Baxter equation which gives the 

contact angle for a drop deposited on a composite surface: the cosine of this angle is the 

average of the cosines of the different contact angles, weighed by the respective surface 

fractions of the heterogeneities [Cas44]. It is plotted in full line in Figure 3.10 for Θ > π/2, 

while keeping the Wenzel equation on the hydrophilic side (Θ < π/2). 

Figure 3.10. Cosine of the effective 

contact angle Θ* of a drop on a 

rough model surface as a function of 

cosine of the Young contact angle Θ. 

r is the surface roughness and ϕs is 

the surface solid fraction. On the 

hydrophobic side (cosΘ < 0), the 

solid line is Equation (3.26) and the 

dot line is Equation (3.27). 

Of course, taking crenellations for modeling the surface is an approximation. On a 

given rough surface, the fraction ϕs itself is a function of the contact angle Θ. Let us suppose 

for example that the solid fraction is not flat but ends with hemispherical bumps (Figure 

3.9b). Then, the liquid/vapor interfaces (still in thin line) are located where the Young 
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condition is fulfilled: the surface of solid in contact with the liquid is all the larger since the 

contact angle is low. 

Finally, we can calculate the way ϕs depends on Θ and the effective contact angle Θ* 

of a drop, via Equation (3.26). Elementary trigonometry gives 

cos Θ* = -1+ ϕb (cosΘ + 1)2                      (3.27) 

where ϕb  is the ratio of the surfaces of the spike bases over the total solid surface. Equation 

(3.27) is the parabolic dotted line in Figure 3.10 and turns out to have the same qualitative 

features as Equation (3.26). In both cases, the contact angle has a discontinuity when q 

becomes smaller than π/2, a major difference with Wenzel's equation. As soon as the contact 

angle is above this value, air is trapped below the drop, which basically modifies the wetting. 

The limit of a surface which would be one single hole (ϕs = ϕb = 0) is of course Θ = π: a static 

drop in the air is spherical. Another difference with Wenzel's law is the fact that an π-angle is 

only asymptotic, which is physically reasonable. 

 

3.4.4. Contact Angle Measurement Techniques. 

Advancing contact angles were obtained by means of the Contact Angle Measuring 

Systems ADSA-P (Axisymmetric Drop Shape Analysis Profile) and ADSA-CD (Contact 

Diameter) [institute-made] (Figure 3.11) and the sessile drop method, using a Krüss set-up 

(Figure 3.11) 

 
Figure 3.11 Set-up of ADSA technique. 

During the measurements of the advancing contact angle the needle remains inside of 

the drop. The droplet is monitored by a CCD-camera and analyzed by Drop Shape Analysis 

software (DSA Version 1.0, Krüss). The complete profile of the sessile droplet is to be fitted 

by the tangent method to a general conic section equation. The derivative of this equation at 

the baseline gives the slope at the three-phase contact point and thus the contact angle. In this 
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way angles are determined both at the right and the left side. Reproducibility is within 

0.5°, depends on the range. 

 

3.5. X-Ray Photoelectron Spectroscopy (XPS) 
X-ray photoelectron spectroscopy (XPS) is one of the most popular spectroscopic 

techniques available for surface analysis of polymers, including surface modification, 

polymer chain mobility, degradation, chemical reactions, and biocompatibility [Bri77, Bri82]. 

X-ray photoelectron spectroscopy, also known as electron spectroscopy for chemical 

analysis (ESCA), is probably the most widely used technique to study the chemical 

composition of polymer surfaces. The technique is based on the photoelectrical effect, which 

provides information on elemental and functional group composition, and oxidation state. In 

an XPS experiment the surface is irradiated with X-rays. The energy of the incident X-ray 

photons is that high that electrons can be ejected from electron shells. These ejected electrons 

are referred to as photoelectrons. A schematic representation of the XPS process is given in 

Figure 3.12. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Schematic depiction of the 

XPS process. 

From the difference between the known energy of the X-ray photons and the measured 

kinetic energy of the photoelectrons, the binding energy can be calculated according to: 

[Nie95] Eb = hν - Ek - ϕ, where  Eb denotes the binding energy of the photoelectrons in the 

excited electron shell, Ek the kinetic energy of the photoelectrons, h Planck’s constant, ν the 

frequency of the X-ray, and φ the work function of the spectrometer. Elements can be 
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recognized by their binding energy, which depends slightly on the oxidation state and 

chemical environment. Some experimental problems can occur in XPS. First, insulating 

samples (polymers) may become positively charged during the measurement, because 

photoelectrons leave the sample. Due to the positive charge on the samples, all XPS peaks in 

the spectrum shift by the same amount to apparently higher binding energies. Calibration is 

therefore necessary and, in the case of organic polymers, the –CH2- peak at 284.5 eV is often 

used. Secondly, organic polymers are damaged during XPS by the impact of photoelectrons 

and secondary electrons generated from them [Gra93, Bea98]. This gives rise to the 

generation of free radicals, which react to give various products like crosslinked structures. In 

order to minimize this polymer degradation, the acquisition time must be limited [Bri98]. The 

surface sensitivity of XPS is not related to the penetration depth of the incident X-rays, which 

is many micrometers, but to the probability of the generated photoelectrons being able to 

leave the surface. Generally, it is accepted that 95% of the signal of the photoelectron 

originates from 3 times inelastic mean free path λ [Tan94] If an electron is emitted from a 

deeper layer, it will almost certainly lose its information due to energy loss due to collisions 

within the solid material and will only contribute to the XPS background. Therefore, the 

sampling depth d (from which 95% of the emitted electrons originates) in XPS is usually 

defined as [Bri98].: d = 3λcosθ, where θ represents the angle between the surface normal and 

the electron detector. This means that measurements can be made more sensitive to the outer 

surface region by increasing θ, and thus decreasing the actual probing depth (angle dependent 

XPS, see Figure 3.13). In this way depth profiles of chemical composition are obtained in a 

non-destructive way. 

 
Figure 3.13 Schematic representation of an angle-dependent XPS. 
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Quantitative surface analyses by XPS have been reviewed extensively by many 

authors [Bri77]. Usually, a uniform distribution of atoms is assumed with depth. The 

quantification of the surface composition for XPS can be obtained from the peak areas after 

correction for the background. Several methods are available for background correction. The 

most widely used are a linear background subtraction, the Shirley method, and the Tougaard 

method [Pow90]. The simple linear approach has been recommended for the analysis of 

polymers over the Shirley method. The Tougaard method is not a proven method for 

polymers and hence has not been applied. After correction of the background, the atomic 

concentration Ci of an element i can be calculated from: 
∑

= m
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/

/  ,where m is the 

number of elements in the sample, and Ai and Si are the peak area and the relative sensitivity 

factor for element i, respectively. These relative sensitivity factors parameters are defined as 

the ratio of the XPS intensity divided by the number of atoms of the element per unit volume, 

taking one elemental peak as standard. It is important to note that relative sensitivity factors 

have to be determined by calibration as they depend on the spectrometer used. Another 

important point is that the sampling depth, defined as the layer thickness that contributes to 

the XPS signal, varies from element to element. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Schematic representation of XPS 

experimental set-up (AXIS ULTRA) 

A direct comparison of atomic concentrations as ‘determined by XPS’ is therefore not 

possible when dealing with non-homogeneous samples. Therefore, when dealing with organic 

polymers the best procedure to evaluate the surface composition from XPS data is by curve 
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fitting the C1s region. In this case the emitted photoelectrons originate from the same 

sampling depth. [Zhu96]. 

XPS instrument, schematically presented in Figure 3.14, consists of an X-ray source, 

an energy analyser for the photoelectrons, and an electron detector. 

The analysis and detection of photoelectrons requires the sample to be placed in an 

Ultra High Vacuum (UHV) chamber. UHV conditions are generally regarded as being in the 

region below 10-7 Pa. The number of gas in a UHV chamber is 1/1,000,000,000,000 that of air 

per unit volume. UHV is needed to prevent the interaction between photoelectrons and gas 

molecules. Due to the interaction, the photoelectrons will loose part of their kinetic energy. 

The energy of the photoelectrons leaving the sample is determined using a Concentric 

Hemispherical Analyzer (CHA). The counted photoelectrons, which passed the analyser via 

the slit plate, are collected by a set of canneltrons. The number of the counted photoelectrons 

per time (count rate) in dependence on their kinetic or binding energy gives a spectrum with a 

series of photoelectron and Auger peaks. The peak areas can be used to determine the 

composition of the material surface. The shape of each peak and the binding energy can be 

slightly altered by the chemical state of the emitting atoms. Hence, XPS can provide chemical 

bonding information as well. 

 

3.6. Infrared Spectroscopy. 

The spectral range for  infrared (IR) spectra used by most chemists is approximately 

4000 – 400 cm-1. This range is now called the mid-IR and, because it contains the 

fundamental vibrational modes, is most useful for qualitative purposes. Also, it is used for 

quantitative analysis. For some years now, mid-IR spectrometers are based on an 

interferometer that produces an interferogram of the sample from which the absorbance 

spectra can be calculated. These spectrometers are known as Fourier Transform Infrared 

(FTIR) spectrometers. The FTIR approach has a number of advantages in terms of speed, 

accuracy, reproducibility and sensitivity. Attenuated Total Reflection (ATR) spectroscopy, 

whose surface analytical potential was initially explored by Harrick [Har67] and further 

developed by Fringeli [[Fri81] to address biological membrane and liquid crystalline systems 

quantitatively and in-situ, is a powerful analytical tool for the molecular detection of 

processes at the solid/liquid or solid/air interface.  
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A scheme of the ATR-IR principle is given in Figure 3.14. If IR light insides from the 

optical denser medium (e.g. Si) under a certain angle θ, which exceeds the angle of total 

reflectance, an evanescent wave penetrating in and interacting with the less dense medium, 

which is material deposited on the internal reflection element (IRE), is established. 

 

 

 

Figure 3.14. The scheme of an ATR IR 

experiment 

Generally, ATR-FTIR spectroscopy enables in-situ detection of surface sorbed species 

of different molecular sizes (gases, water, ions, surfactants, drugs, reactive polymers, 

polyelectrolytes, lattices, proteins, cells), whereby the sorbates can be molecularly identified 

by their diagnostic IR bands. Conveniently, trapezoidal IREs are used, which are incorporated 

in in-situ cells dividing the ATR plate in an O-ring sealed upper (sample) and lower half 

(reference), which are alternately and repeatedly shuttled in a fixed IR beam (Single Beam 

Sample Reference-(SBSR)-concept). Thereby, the reproducibility of the ATR technique, the 

spectral compensation of the strong water absorptions and the spectral baseline could be 

significantly improved. 

The FTIR techniques and calculation approaches will be described in the experimental 

part of this thesis (Chapters 4-6). 
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Mixed Polymer Brushes on Polyamide Substrates 

 

 
4.0 Abstract. 

This chapter focuses on the development of the route to fabricate the mixed brush-like 

layers on polyamide substrates (PA-6, PA-6I, PA-66) by "grafting from" and "grafting to" 

approaches. PA substrates were functionalized by NH3-plasma and the azo-initiator of 

radical polymerization was covalently bond to the functionalized PA surface. Two-step 

grafting procedure was applied to graft polystyrene in the first step and poly(2-vinylpyridine) 

in the second step. We found remarkable differences between grafting on Si-wafers and PA-

substrates. Grafting from the PA surface results in a dramatic increase of the surface 

roughness of the film which can be explained by grafting in a swollen surface layer of PA. 

Due to this effect we found the substantial amount of grafted polymers even on not 

functionalized PA substrates, which was explained by grafting via chain transfer reaction. 

The mixed polymer brushes (two different incompatible homopolymers randomly grafted to 

Si-wafer by end groups) were shown to form responsive coatings, which switch their 

morphology due to the interplay between lateral and vertical phase segregation upon 

exposure to selective solvent. The switching of morphology affects the change of the surface 

composition of the brushes and their surface energetic state. The same grafting procedures 

were performed on the surface of  PA fabric. In this case the switching behavior was 

amplified by a texture of the material: Wettability of the fabric with the mixed brush was 

switched from complete wetting to highly hydrophobic state (150o water contact angle) 

 

4.1. Introduction 
Grafting of polymers is a widely used method for the modification of solid surfaces. A 

number of grafting points per polymer chain can be different and affects properties of the 

grafted chains [Gon98]. A thin film with polymer chains grafted to the solid substrate by only 

one end is a very suitable subject for theoretical analysis and experimental study, because its 

behavior can be easily modeled and interpreted [Sze96]. If the distance between grafted 

chains is smaller than an average end-to-end distance of the polymer chain, the layer of the 
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grafted chains is in the regime of the polymer brush. In this regime, grafted chains are 

forced to stretch in the direction normal to the plane of grafting and the conformation is 

determined by the energy balance between the elastic free energy of the stretched chain and 

the energy of the interaction between statistical segments [Ale91]. Such an arrangement offers 

many interesting applications of the brush-like layers [Hal92] that have stimulated great 

interest in synthesis and investigation of polymer brushes [Tha00]. The questions of the 

regulation of thin polymer film stability [Zer94], wettability [Man97], adhesion [Rap92, 

Rut00], reactivity and cell protein interaction [Aks96, Phe98], micro/nanopatterning [Niu98, 

Hus00], swelling [Hab99], friction [Kle94, Berm98], stabilization of colloids [Pin91], core-

shell structures [Guo99], and so forth were addressed with respect to the employment of 

polymer brushes.  

Polyamides as semicrystalline thermoplastics have found numerous applications, 

particular for the fabrication of excellent fibers due to their good thermal stability, flexibility, 

and mechanical properties. Surface modification of PA is a widely used approach to regulate 

properties of fiber-reinforced materials, textiles, etc. [Pol96]. Responsive properties of PA 

surface would extend the application of PA, particularly for bio-medical materials. 

The aim of this study is to fabricate PA-based materials, which change surface 

characteristics in response to environmental conditions. One of the possible routes to 

approach this goal comprises the grafting of mixed polymer brushes from PA surface, which 

can introduce adaptive and switching behavior in different surrounding media. 

This chapter describes the synthesis of the mixed polymer brushes of two different 

polymers by both “grafting from” and “grafting to” (Scheme 4.1) to the PA substrate. The 

PA surfaces were treated with a low-pressure ammonia plasma, which introduces N-

containing functionalities such as amino (-NH2), imino (-CH=NH), cyano (-C≡N), and other 

functional groups and in addition oxygen-containing groups such as amido (-CONH2) and 

hydroxyl groups due to the post discharge atmospheric oxidation. We used those functional 

groups for further surface modification via grafting of mixed polymer brushes. Each step of 

the surface modification was controlled with ellipsometry, X-ray photoelectron spectroscopy 

(XPS), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy in 

attenuated total reflection (FTIR-ATR), and contact angle measurements.  

In this chapter a biotest of binary polymer brushes on PA textiles will be presented as 

well. 

44 



Mixed Polymer Brushes on Polyamide Substrates 
 

 
 

Scheme4.1 Schematic representation of grafting of PS/PVP binary polymer brushes to PA 

surfaces. 

 

4.2. Materials 

PA-6 (Durethan® B) and PA-6I (Durethan® T) were obtained from Bayer AG. 

Samples of textile made from PA-6 and PA- 6.6 were supplied by Bekleidungphysiologisches 

Institut Hohenstein (Germany).  
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Styrene and 2-Vinylpyridine (Aldrich) were distilled under reduced pressure of argon. 

Toluene, tetrahydrofurane (THF) and hexane (Aldrich) were dried over sodium and distilled. 

Methanol, ethanol and p-chlorophenol  (Aldrich) were used as received. Dichloromethane 

(Aldrich) was dried on molecular sieves.  

Initiators: 4,4’-azobis(4-cyanopentanoic acid) (ACP) from Aldrich and 4,4’-

azobis(isobutyronitrile) (AIBN) from Fluka were purified by recrystallization from methanol. 

All reagents were used immediately after purification.  

Carboxyl-terminated polystyrene P115-SCOOH (Mn=9700 g/mol, Mw=10476 g/mol), 

P2824-SCOOH (Mn=48000 g/mol, Mw=50400 g/mol), and poly(2-vinyl pyridine) (PVP-

COOH; Mn = 39200 g/mol and Mw = 41500 g/mol) were purchased from Polymer Source, Inc 

(synthesized by anionic polymerization). 

Silicon wafers obtained from Wacker Chemitronics (Germany) were cleaned with 

dichloromethane in an ultrasonic bath and then in a hot ammonia: hydrogen peroxide: water 

(1: 1: 1) by volume solution and rinsed several times in Millipore water. 

We used different PA substrates to study each step of surface modification with 

ellipsometry, XPS, AFM and FTIR-ATR. Such experimental scheme was caused by different 

requirements for samples investigated by each method. We used PA samples of different 

cristalinity to study the effect of the substrate morphology on the grafting procedure. PA6 is 

partially crystalline material, while PA 6I is an amorphous polymer soluble in p-chlorophenol. 

PA 6I forms (by spin coating) smooth homogeneous films of the amorphous polymer on Si-

wafers appropriate for ellipsometric experiments. PA6 is widely used for fiber productions 
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and we employ this substrate as a model sample representing  large range of PA materials. 

Finally, we use different PA substrates to demonstrate that the key role for the  grafting 

mechanism from the polymer surface is played by swollen polymer layer rather then by 

differences in chemical structure of  different PA samples. 

 

4.3. Surface Modification of PA Substrates. 
A thin layer of PA-6I was spin coated from 1.5% p-chlorophenol solution onto the 

surface of cleaned silica wafers. The thickness of these PA films estimated with ellipsometry 

was in the range of 30 ± 5 nm. The plasma treatment was done in a computer controlled 

customized MICROSYS apparatus (Roth&Rau, Germany) supplied with a 2.46 GHz-electron 

cyclotron resonance plasma source. The distance between the sample and the excitation 

volume of the plasma source is about 200 mm. For the plasma treatment the following 

parameters were applied: NH3 gas flow 15 sccm, pressure 3.8 ×10-3 mbar, effective 

microwave power 600 W. The time of the treatment was in the range from 10 to 180 sec. 

In order to determine the amount of –NH2 groups introduced by NH3 plasma treatment 

we labeled amino-groups of the untreated, and 30, 60, 90, 120, 150 and 180 sec. treated 

samples via exposure to the vapor of 4-trifluoromethylbenzaldehyde (TFBA) for three hours 

as proposed by Favia et al. [Fav96]. Afterwards the samples were rinsed with ethanol and 

analyzed by XPS. The F1s signal in the XPS spectrum is attributed to the presence of –NH2 

groups.  

 

4.4. Preparation of the Binary Brushes via Grafting From Approach 
 

4.4.1. Attachment of azo-initiator.  

For the introduction of the azo-initiator onto PA surfaces treated with NH3 plasma we 

used the reaction of surface amino-groups with the chloroanhydride derivative of azo-initiator 

[Bov90]. The chloroanhydride derivative of 4,4’-azobis-(4-cyanopentanic acid) was prepared 

by adding of the slurry of phosphorus pentachloride to a suspension of ACP in 

dichloromethane at 0oC. The product (ACPC) after crystallization from hexane-

dichloromethane mixture at 0oC was washed and dried in vacuum. In the next step, ACPC 

was introduced on the surface of the  NH3 plasma treated PA substrate from 5% solution in 

dichloromethane with catalytic amount of triethylamine at room temperature for 4 hours. The 

resulting samples of PA on Si-wafers, PA plates and PA textile with chemically attached 

initiating groups were rinsed in ethanol in an ultrasonic bath. Each step of the surface 
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modification of PA on Si-wafers was controlled by ellipsometric measurements of the 

layer thickness. 

 

4.4.2 Grafting Procedure.  

Oxygen was removed from the solution of monomer (styrene or 2-vinylpyridine, 5 

mol/l) and AIBN (5 ÷ 9 × 10-4 mol/l) in THF (AIBN was used as an additional initiator in the 

volume to control molecular weight of grafted chains [Min99a, Min99b, Sid99b]) using five 

freeze-pump-thaw cycles. The PA samples (also PA-6I on Si-wafers) with the chemically 

attached initiator were placed in monomer solution under argon atmosphere in the glass 

reactor. The reactor was immersed in a water bath (60 ± 0.1oC) for different periods of time (6 

- 24 h). The non-grafted polymer from the bulk was obtained and purified by precipitation in 

hexane. The PA surface modified samples were rinsed six times in THF. 

In the next step, the same procedure was applied to graft the second polymer using the 

PA samples with the grafted first polymer. Afterward, the ungrafted polymers were removed 

by a Soxhlet extraction with THF for 4h (controlled by analysis of the film thickness). We 

assumed that the molecular weight of the grafted and non-grafted polymers was of the same 

order [Bov90, Min99a, Min99b, Sid99a]. Molecular weight of the non-grafted polymer was 

determined using gel permeation chromatography (GPC). In this paper we refer to number 

average values of molecular weight (Mn). 

 

 

4.5. Preparation of the Binary Brushes via Grafting To Approach 
In our route of synthesis we explore the method of grafting of end-terminated polymer 

from the melt recently proposed by I. Luzinov at. al. For grafting of PS and PVP onto PA 

substrates we used the reaction of carboxyl groups of the polymers and amino groups on the 

top of PA surfaces after ammonia plasma treatment. A thin film (50±5 nm as measured with 

ellipsometry) of PS-COOH was spin-coated on the top of the PA substrates after ammonia 

plasma from the 1% toluene solution. PA textiles were simply dipped in the PS solution for 5 

min and dried with nitrogen flux. Then the film was heated at 170o C in vacuum oven for 

different periods of time to graft PS-COOH and to measure the kinetics of grafting. The non-

grafted polymer was removed by Soxhlet extraction with toluene for 5-7 h. Then the second 

polymer PVP-COOH was spin-coated on top of the film, meanwhile, PA textiles were dipped 

in PVP solution for 5 min and dried. The heating procedure followed by subsequent Soxhlet 

extraction to remove any ungrafted polymer was performed. 
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4.6. Sample Characterization. 
 

4.6.1 Ellipsometry 

Layer thickness and the amount of the grafted substances are evaluated with 

Multiscope Optrel null-ellipsometer (Berlin, Germany) at an incidence angle of 70o. The 

measurements were performed for each sample after each step of the modification to use the 

measurement of the previous step as a reference for the simulation of ellipsometric data. 

Initially, the thickness of native SiO2 layer (usually 1.4 ± 0.2 nm) was evaluated at the value 

of refractive index n = 3.858 − i 0.018 for Si and 1.4598 for SiO2, respectively. Then the 

thickness of the PA-6I layer was evaluated  using the two layer model: SiO2/PA-6I for 

refractive index of PA-6I equal to 1.628. The thickness of grafted azo-initiator was evaluated 

with the three-layer model SiO2/PA-6I/azo-initiator with n=1.551 for the layer of the azo-

initiator. Finally, the thickness of the polymer film after grafting of each polymer was 

calculated using the tree layer model SiO2/PA-6I/grafted polymer considering the thin 

polymer film as an effective optical medium with n=1.59. In reference experiments we found 

no influence of the surface roughness on the ellipsometric results for the prepared grafted 

films. 

4.6.2 FTIR-ATR 

FTIR-ATR spectra were taken with an IFS 66 (Bruker) spectrometer and variable 

angle ATR unit (HARRICK). We used three different internal reflection elements of a 

parallelogram geometry with different crystal end-face angles (θB) prepared from different 

crystals: Zn/Se θB = 45 o, and two different Ge crystals with θB equal to 45 and 60o to 

approach different penetration depths of IR irradiation into the sample of PA with grafted 

PS/PVP layers.  

The internal angle of incident of IR-radiation can be calculated using equation (4.1): 

n
RB

B
)( θθ

θ
−

−=Θ       (4.1) 

where θR is the angle of incidence of IR beam on the crystal (dial settings), n is refractive 

index equal to 2.4 and 4.0 for Zn/Se and Ge crystals, respectively. The penetration depth of 

IR-radiation dp into the PA-samples at different incident angles can be calculated using 

equation (4.2) 
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where λ1 = λ/n1, λ is the wavelength, n21=n2/n1, n2 and n1  are the refractive indexes of PA and 

the material of ATR crystal, respectively, dp is the depth, at which the electric field amplitude 

of the IR-radiation E0 decays to a value E=E0 exp(-1). Therefore E is not zero at dp. The 

calculated depths of the penetration dp at different incident angles and for different crystals 

are presented in Table 4.1. The range for penetration depth was from 0.35 to 2.33 µm. 

 

Table4.1 Penetration Depth (dp) of IR Radiation (at 1500 cm-1) into PA Samples at Different 

Incident Angles and Different ATR Crystals 

 

Crystal material ΘB, deg ΘR, deg dp, µm 

Zn/Se 45 35 2.33 

  45 1.33 

  55 1.01 

  65 0.88 

Ge 45 25 0.51 

  35 0.47 

  45 0.44 

  55 0.42 

  65 0.40 

Ge 60 60 0.34 

 

4.6.3 XPS  

XPS experiments were performed using an AXIS ULTRA spectrometer (Kratos 

Analytical, England) equipped with a monochromatized Al Kα X-ray source of 300W at 

20mA. The kinetic energy of photoelectrons was determined with a hemispherical analyzer 

with a constant pass energy of 160 eV for survey spectra and 20 eV for high-resolution 

spectra. To eliminate sample charging an electron flood gun in combination with a magnetic 

immersion lens in the extraction optic was used during all measurements. The charge over-

compensation required that all recorded spectra were adjusted to the C 1s reference peak of 

saturated hydrocarbons (CxHy) at BE = 285.00 eV. The elemental compositions were 

quantified from the peak areas using experimentally determined sensitivity factors and taking 

the spectrometer transmission function into account. The inelastic spectrum background was 

subtracted according to Shirley’s procedure. Peak fitting was carried out to obtain information 

about the chemical nature of functional groups. The parameters used for fitting were the peak 
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area, the position of the peak maximum, the peak full width at half maximum, and the 

Gaussian-Lorentzian ratio. 

 

4.6.4 AFM 

AFM studies were performed on a Dimension 3100 (Digital Instruments, Inc., Santa 

Barbara) microscope. The tapping and phase contrast modes were used to map the film 

morphology at ambient conditions. Silicon tips with a radius 20  ± 5 nm, a spring constant of 

1.5-6.3 N/m and frequency 63-100 KHz were used. Root mean square roughness (RMS) was 

calculated from the images with the commercial software. 

 

4.6.5 Contact Angle Measurements  

Advancing contact angles of water were measured using DSA Krüss (Hamburg, 

Germany) equipment. Samples with mixed brushes were exposed to particular solvent for 10 

minutes, then rapidly dried with Ar flux and afterwards water contact angle was rapidly 

(within first 30 seconds) measured. 

 

4.6.6 Biological Tests of PA Materials With Grafted Binary Polymer Brushes*. 

The polyamide substrates with grafted binary PS/PVP brushes was examined for 

vitality of cell cultures by the norm of ISO 10993-5 which was establishes on the basis of the 

cytotoxicity of implanting materials. For the tests were used fibrolasts (L929) and endothel 

cells (bovine aorta endothel). The samples were placed in 24 well cell culture plates in which 

the samples are occupied with 500.000 cells, and incubated for 48 h. The vitality of the cells 

was estimated by means of an MTS-test. Test results of the vitality test of both the 

Polyamides and Polyamides with grafted polymer brushes were compared with a control 

sample (TCPS-Tissue Culture Polystyrene) and each with other. 

 

 

 

 

 

 

 

                                                 
* The Biological Tests were performed in the Institute of Textile Technology and Process Engineering 
Denkendorf. 
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4.7. Results and Discussion. 
 

4.7.1 Plasma Treatment.  

The PA samples were treated with NH3 plasma for different periods of time as 

described above. Wettability of samples, obtained from contact angle measurements, was 

used to evaluate the efficiency of the plasma treatment. The untreated PA-6 sample has the 

highest values of advancing (71o) and receding (34o) contact angles, indicating the most 

hydrophobic surface. NH3 plasma treatment reduces the advancing contact angle to the values 

of 61o, 57o, 62o, 63o, and 67o for the treatment time of 30, 60, 90, 120 and 150 s, respectively, 

thus resulting in less hydrophobic surfaces. The polar N and O containing groups introduced 

onto the surface by plasma treatment improve wettability [Chan96]. We used for grafting 

experiments samples treated with plasma for 60 s. 

The ratio between number of atoms of oxygen and carbon ([O] : [C]) and nitrogen and 

carbon ([N] : [C]) in PA-6 calculated from the chemical composition equals 0.167.  

Binding Energy [eV]
1000 800 600 400 200 0

 a.

 b.

 c.

O KLL F KLL F 1s O 1s N 1s C 1s

Cl 2p

Si 2p

Cl 2s

Si 2s

 
Figure 4.1. X-ray photoelectron spectra of PA-6I spin-coated on Si-substrate: the reference 

sample, no treatment, no label (a); the reference sample, no treatment, labeling with TBFA 

(b); NH3 plasma treatment, labeling with TBFA (c). 
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The surface composition determined from the XPS spectra (Figure 4.1, 4.2) gives the 

ratios [O] : [C] = 0.15 and [N] : [C] = 0.14 which is in good agreement with the chemical 

composition of the substrate. The plasma treated samples of PA-6 show the increased ratios 

[N] : [C] = 0.19 which prove the introduction of the N- containing functionalities (Table 4.2). 

TBFA labels attached selectively to amino-groups indicate that more than 10% of N-

containing functional groups are represented by amino groups. Similar results were obtained 

for the PA-6I samples. 
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Figure 4.2. X-ray photoelectron spectra taken from the surface of PA-6 plates: the reference 

sample, no treatment, no label (a); the reference sample, no treatment, labeling with TBFA 

(b); NH3 plasma treatment, labeling with TBFA (c).  

 
The ammonia plasma treatment essentially enhances the roughness of the PA films as 

measured by AFM because of inhomogeneous etching (the RMS roughness increased from 

2.5 to 9 nm), see Figure 4.3 (a and b). Therefore, using the plasma modification we obtained 

PA fictionalized substrates with well characterized structure and chemical composition. 
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Table 4.2. Quantitative surface composition of PA original samples, after NH3 plasma 

treatment, and labeled with TBFA (F-labeling) determined employing XPS. 

atoms quantity of the surface, mass. 
concentration, % 

 
      sample 

[F]:[C] [O]:[C] [N]:[C] 

PA-6, NH3-plasma 
treatment, TFBA-
labeling 

0.033 0.16 0.19 

PA-6, no treatment, 
TFBA-labeling 

0.001 0.16 0.12 

PA-6, no treatment, 
no labels 

 0.15 0.14 

PA-6I on Si, NH3-
plasma treatment, 
TFBA-labeling 

0.038 0.13 0.19 

PA-6I on Si, no 
treatment, TFBA-
labeling 

 0.12 0.13 

PA-6I on Si, no 
treatment, no labels 

 0.11 0.13 
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Figure 4.3. AFM topography images and corresponding cross sections of PA-6I on Si-wafers: 

original sample, RMS = 2.5 nm (a); after NH3- plasma treatment, RMS = 9 nm (b), and after 

grafting of mixed brush (grafting from approach), RMS = 41 nm (c). 

 

4.7.2 Synthesis of the Binary Brushes via Grafting From Approach 

Grafting of azo-initiator. Our synthetic procedure (Scheme4.2) starts with the covalent 

grafting of the azo-initiator to the plasma modified PA surfaces. The azo-initiator was 

covalently bound to the surface via the reaction of the amino- and hydroxyl-groups with 

ACPC. This reaction is well reproducible. The resulting layer of the initiator is about 2.1 ± 0.3 

nm thick as measured with ellipsometry on PA-6I surface. This value corresponds to 5.7 10-6 

mol m-2 surface concentration of the initiator and to 0.5 nm average distances between grafted 

initiator molecules. 

 
Scheme 4.2. Schematic Representation of Synthetic Rout To Fabricate Mixed Brushes on PA 

Surfaces:1-plasma treatment of the polymer substrate, 2-grafting of the azo-initiator, 3-free 

radical polymerization of styrene from the PA surface, 4- free radical polymerization of 2VP 

from the surface of PA. 

 

4.7.3 Grafting of the Mixed Brushes.  

Grafting of PS chains was performed by in situ radical polymerization initiated by 

thermal decomposition of the azo-initiator covalently attached to the PA surface. The amount 

of the grafted polymer and the residual initiator on the surface is regulated by polymerization 

time. Ungrafted polymer was washed out by a cold Soxhlet extraction. In the second 

polymerization step, the residual amount of the azo-initiator is used to carry out the graft 
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polymerization of 2-vinylpyridine. A representative example of the step-by-step grafting is 

shown in Table 4.3.  

 

 

 

Table 4.3. Characteristics of the mixed polymer brushes grafted from PA-6I.  

Mn, kg/mol grafted amount (mg/m2)/grafting density (nm-2)  

PA sample PS PVP PS  PVP  PS + PVP 

No treatment 320 308 8/0.015 12/0.023 20/0.04 

NH3-plasma + azo-
initiator 

380 300 12/0.019 16/0.032 29/0.051 

As a reference we performed the grafting polymerization according to the same 

procedure but using an untreated PA substrate. We investigated the reference PA sample 

expecting to graft polymers via chain transfer reaction of free macroradicals to the PA 

surface. In this reaction free radicals attack the hydrogen atoms of the main chain located near 

the carbon in the activated α-position to the amide group. The free radicals on the main chain 

of PA molecules, produced in the chain transfer reactions, initiate radical polymerization 

giving grafting of the polymer to the PA substrate. This is well known way to modify PA 

surfaces [Str91, Mei99].

 
4.7.4 Synthesis of the Binary Brushes via Grafting To Approach 

Mixed brush (Scheme 4.3) consisting of two carboxyl-terminated incompatible 

polymers PS-COOH and PVP-COOH was synthesized by a two step “grafting to” procedure 

[Zhul96, Zha95, Wang00, Sed00, Zha00a]. In the first step, PS-COOH was spin coated on the 

surface of the PA sample (samples of PA textiles were simply immersed in the polymer 

solution and after that dried under nitrogen flux) and heated for a different period of time at 

170OC to graft the first polymer PS-COOH from the melt. Nongrafted polymer was removed 

with Soxhlet extraction. Then the second polymer PVP-COOH was grafted by the same 

procedure. 

The thickness of the grafted polymer layers in terms of the ellipsometric thickness of 

the layer is presented in Table 4.4. As a reference we performed the grafting of polymer 

brushes according to the same procedure but using an untreated PA substrate. We did not 

found any grafted amount of the polymer. 
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Scheme 4.3 Schematic Representation of Synthetic Rout To Fabricate Mixed Brushes on PA 

Surfaces via grafting to approach. 1- plasma treatment of the polymer substrate, 2- grafting of 

the first polymer (PS) from melt, 3-grafting of the second polymer (PVP) from melt. 

 

Table 4.4 Ellipsometric thickness of polymer brushes after each step of grafting and surface 

treatment. 

Grafted amount, mg/m2Thickness 
of PA 6I 
on Si 
wafer, nm 

PS 
(Mn=9700g/mol) 

PS 
(Mn=9700g/mol) 

PVP PS/PVP 
(Mn=9700g/mol) 

PS/ PVP 
(Mn=9700g/mol)

39 2,8 3,3 3,4 5,7 6,2 

 

4.7.5 Characterization of the Grafted Brushes 

Additionally to the ellipsometric measurements the grafting of both polymers was 

proved with FTIR-ATR study performed with PA plates tightly pressed to the surface of ATR 

prisms (Figure 4.4b). The very well pronounced differences in the spectra of individual 

polymers (Figure 4.4 e and d) at 1400-1750 cm-1 and 2750-3200 cm-1 allowed us to analyze 

the layer composition at least qualitatively. The characteristic bands of aromatic and aliphatic 

groups observed for the mixed brushes (Figure 4.4 c, obtained by subtraction of the reference 

spectra of the PA substrate (a) from the spectra (b)) provide evidence for the grafting of PS 

and PVP. In the spectra we identify very pronounced PS bands at 1601 and at 1493 cm-1 and 

the characteristic bands of PVP at1568 and 1590 cm-1 .  
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Figure 4.4. FTIR-ATR spectra: reference sample, PA-6 (a); PA-6 with grafted PS/PVP brush 

(b); spectra obtained by subtraction of (a) spectra from (b) spectra (c); reference PVP sample 

(d); reference PS sample (e). 

 
Figure 4.5. Swelling kinetics of PA-6I film  (spin-coated on Si-wafer) in THF at room 

temperature 

In contrast to the graft polymerization on a flat solid surface described elsewhere 

[Gon98, Sze96, Ale91, Pru98] we observed two quite pronounced specific effects in the case 

of “grafting from” method. Firstly, the grafted amount of both polymers on the unmodified 

PA surface was surprisingly large. The grafting via chain transfer reaction can be considered 
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as the "grafting to" approach where macroradicals penetrate the grafted layer to react with the 

substrate surface. For this approach, the grafted amount is usually kinetically limited and 

levels off at about 10 mg/m2 of grafted polymers. In our case we received relatively thick 20 

mg/m2 mixed brush. Secondly, the roughness of the PA substrate dramatically increases 

during grafting polymerization (Figure 4.3 c).  

These two facts can be explained if we take into account that the top layer of the PA 

substrate is swollen by solvent during the grafting procedure. We performed a model swelling 

experiment to demonstrate that. The swelling kinetics of the PA-6I film deposited on Si-wafer 

presented in Figure 4.5 shows that the PA film is more than 20% swollen by THF at room 

temperature, giving an increase of film thickness from 95 nm of the initial dry film to 117 nm 

of the swollen film. Therefore, PA is swollen by solvent and monomer when immersed into 

the reaction mixture. The latter may have two consequences. Firstly, swelling of polymers 

effects an decrease of glass transition temperature and, therefore, increase of mobility of 

segments. Secondly, the monomer is localized in the swollen PA layer. Penetration of free 

radicals in the swollen PA can induce polymerization and grafting to the PA somewhere 

inside the PA substrate. Consequently, we may expect different locations of the grafting 

process: on the top of the PA substrate, but also somewhere inside the swollen PA layer. Both 

these phenomena may effect the observed increase of the surface roughness of the PA 

substrate and enhance the grafted amount. 

We used two different IR-spectroscopy experiments to study the depth of the 

penetration of the grafted polymers into the PA substrate. The first experiment using the FT-

IR microscope (BRUKER) was performed with a microtome cut of the PA plate with grafted 

PS/PVP mixed brush in the direction perpendicular to the plane of the grafting. Figure 4.6.  

 

 

 

Figure 4.6. Scheme of IR 

investigation of PA 

microtom cut with grafted 

polymer layers. 

We focused the IR-light beam (10 µm in diameter) step by step on the microtome cut 

starting from the edge with grafted polymer and moved the projection of the beam towards 

the middle of the cut with the step size of 10 µm until the 150 µm distance from the edge was 

approached. The transmission IR spectrum was recorded for each point (not shown in the 
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Chapter). We found characteristic bands of the grafted polymer only for the case when the 

beam was focused on the edge of the microtome cut proving that the depth of the penetration 

of grafted polymer is less than 10 µm from the edge. 

 
Figure 4.7. FTIR-ATR spectra of PA-6I with grafted PS/PVP layers at different dp: 0.34 

µm (a); 0.40 µm (b); 0.47 µm (c); 0.51 µm (d). 

 
Figure 4.8. FTIR-ATR data for the penetration depth of PS into PA bulk: immediately after 

polymerization (no  extraction) (a); after Soxhlet extraction in THF (b). 

 

In the second experiment we applied FTIR-ATR mode described in the experimental 

section to study the penetration depth of the grafted PS into the PA-6 plates. The plate from 
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the side with grafted polymer was attached to ATR-prisms of different geometry (to change 

the incident angle) and prepared from different materials (to change the refractive index of the 

prism). Thus, the FTIR-ATR spectra were recorded for different penetration depths of IR-

radiation inside the PA sample (Figure 4.7). For this investigation we used both the PA 

sample with grafted PS after a simple rinsing with THF and the similar sample after Soxhlet 

extraction of the ungrafted polymer in THF. In the spectra we compared integral absorbance 

for the bands of PA at 1544 cm-1 (1585–1500 cm-1 integration range) and grafted PS at 1493 

cm-1 (1499-1487 cm-1 integration range). The intensity of both bands decreases with depth of 

the penetration reflecting the well known decreasing exponential law. The ratio between 

intensities of the bands reflects the change of the chemical composition with the depth of 

penetration (Figure 4.8).  

We have made no attempts to resolve the intrinsic concentration profile of the grafted 

PS, because of the difficulty of quantitative interpretation. Nevertheless, the obtained results 

present a qualitative picture giving some information about the composition profile. Firstly, 

we have found that the Soxhlet extraction removes only relatively  small amounts of 

nongrafted PS from the layer. Secondly, the depth of the PS location has been found to be up 

to 0.6 - 1 µm from the top of the sample. This value is of the same order as the roughness 

value RMS = 0.5 µm of the surface after grafting measured with AFM. With commercial 

AFM software we found that the increase of the surface roughness corresponds to about 10% 

increase of intrinsic surface of the PA substrates.  

Therefore, we may suggest two possible scenarios to explain the obtained data. Firstly, 

the polymerization takes place on the surface and inside the swollen PA effecting the increase 

of roughness. Secondly, the grafted chains bend the swollen PA substrate due to the 

accumulated elastic energy of the deformed coils in the brush. Each of those mechanisms or 

both of them at the same time may cause the increased roughness of the substrate.  

The larger as compared to usually observed for "grafting to" method amount of grafted 

polymers due to the chain transfer to PA substrate has the same reason as for grafting of end-

functional polymers to the solid substrate modified with the anchoring layer of  poly(glycidyl 

methacrylate) recently reported by Luzinov et.al. [Iyer02]. Mobility of the grafting points and 

their location on different levels (the interface becomes broader) due to the interpenetration of 

both the polymer of the substrate and the polymer of the brush substantially enhances the 

grafting amount. The interpenetration results in a complex interface with fractal 

characteristics. Consequently, the amount of polymer chains grafted to a swollen polymer 

substrate may be larger than just due to grafting to a flat solid substrate (Scheme 4.4).  
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It is noteworthy, that the grafting due to chain transfer reaction can be performed to 

any solid and polymer substrate and even to grafted polymer brush [Luz98, Luz96] depending 

on conditions of the polymerization.  At the experimental conditions we used (styrene, P2VP, 

600C) any grafting due to chain transfer to the brush layer was reported in literature [Pruc98]. 

However, PA is much more active in the chain transfer reaction and we may speculate that the 

grafting by chain transfer takes place mainly due to the interaction with the PA swollen 

substrate. We may speculate also that in the case of the surface-attached azo-initiator the most 

of polymers are grafted due to the surface-initiated radical polymerization  because of high 

surface concentration of the azo-initiator when the rate of initiated polymerization is much 

higher than the rate of chain transfer reaction. 

 
Scheme 4.4. Schematic representation of two possible mechanisms of the increase of the film 

roughness after grafting from PA surface: bending of swollen PA substrate due to the elastic 

energy of the brush (a); grafting inside the swollen PA film (b) 

 

4.7.6. Switching/Adaptive Properties.  

The same samples of PA on the Si wafer and on the PA plates both with the grafted 

PS/PVP mixed (via both “grafting from” and “grafting to” approaches) brushes were exposed 

for 5 minutes to solvents of different thermodynamic quality in respect to the polymers. After 

each treatment with a particular solvent the samples were dried in a flow of nitrogen and used 

for AFM and a rapid contact angle investigations. The experiments were repeated several 

times with each sample to prove the reversibility of the switching of surface properties. In 

these experiments we assume here that the morphology of the dry film is directly correlated 

with the structure of the swollen film. Time of the switching in a particular solvent is in the 

order of minutes (contact angle changes in 1-2 minutes and approaches to equilibrium in 5-10 

minutes) that is much larger than time to dry the film under nitrogen flux (several seconds). 
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We may assume that we freeze the film morphology during solvent evaporation. At ambient 

conditions the polymers in the dry polymer film are in glassy state and the film morphology is 

stable for a long period of time. 

The switching of morphologies upon exposure to different solvents was documented 

for similar mixed PS/PVP brushes grafted to the flat surface of highly polished Si-wafers 

[Sid99a]. This switching is affected by the phase segregation at nanoscopic scale and that 

results in regular patterns with average dimensions scaling with end-to-end distance of the 

grafted chains [Min02a]. For the grafted polymer with molecular weight of the order of 500 - 

800 Kg/mol the characteristic size of clusters was measured to be in the range of 50-100 nm. 

In the case of the mixed brushes grafted to PA substrates the large roughness of the film 

introduced by grafting process decreases the lateral resolution of AFM images. We were not 

able to observe fine structure of grafted polymer layers on the surface caused by  phase 

segregation, while contact angle measurements showed very pronounced switching of surface 

energetic state (Tables 4.5, 4.6). 

 

Table 4.5. Wetting of the mixed brushes grafted from  PA-6 and PA-6I substrates 

contact angles of water, deg  

sample 
treatment before 
polymerization 

toluene ethanol water, pH=3 

no treatment; grafting 
via chain transfer 

92 61 75 PA-6I on Si-
wafer 

NH3-plasma, azo-
initiator  

90 62 35 

no treatment; grafting 
via chain transfer 

64 68 68 PA-6 

NH3-plasma, azo-
initiator  

90 61 39 

Original PA-6I 
on Si-wafer (ref) 

no grafting 64 62 64 

Original PA-6 
(ref) 

no grafting 63 64 64 

The data clearly show that a top layer of the binary brush switches from hydrophobic 

to hydrophilic energetic state and vice versa upon exposure to selective solvent for one of 

polymers. For example, if we expose the sample to toluene, the top of the layer is 

preferentially occupied by PS. In this case the contact angle approaches the value of 90o, 
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while in ethanol and water (pH=3.0) the surface is dominated by PVP with the contact angles 

60o and 35o, respectively.  

 

Table 4.6. Wetting of the mixed brushes grafted to PA-6 and PA-6I substrates 

Contact angles of water, deg  

Sample Toluene Ethanol Water, pH=3

PA-6I on Si-
wafer 

88 72 49 

PA-6 87 71 48 

Original PA-
6I on Si-

wafer 
(reference) 

64 62 64 

Original PA-
6 (reference) 

63 64 64 

The contact angles obtained on the mixed brush 90o and 600 after toluene and ethanol, 

respectively, correspond to the same values of the contact angles on the model PS and PVP 

single homopolymer brushes, respectively. This fact gives evidence that in a selective solvent 

the top layer of the mixed brush is formed due to the layered (perpendicular) segregation and 

the top is occupied by the favorite polymer. In acidic water PVP is protonated and charged. 

This layer is wetted by water much better as compared with neutral PVP. Wetting in this case 

is promoted by dissociation of the protonated PVP below water drop and at the same time the 

wetting behavior is complicated by diffusion of protons in bulk of the water drop deposited on 

the top of the brush [Sid99a]. Thus the contact angle is a function even of the drop size.  

In the case of nonselective solvents after exposure to chloroform or THF both 

polymers are present on the top of the film (contact angle 800). Using the Cassie equation we 

calculated that this contact angle corresponded to the 65% PS fraction on the top of the brush 

when the surface of the brush is constructed from laterally segregated domains of PS and 

PVP. In a broad range of the binary brush compositions the range of switching between 

hydrophobic and hydrophilic states shows no strong influence of the composition (ratio 

between two polymers) [Min01]. 

Here we extend the study of switching behavior on substrates with a complicated 

texture and present  the results of contact angle measurements on the PA textile with the 

grafted PS/PVP binary brushes as compared with the wetting behavior on the PA plates with 
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the same grafted brush. The fibers of about 200 µm in diameter forming the textile introduce 

an effect of a composite surface [Oen00] where the drop of water is in the contact partially 

with the surface of PA fibers and partially with air. In this case we observed the much more 

pronounced switching effect amplified by the surface texture of the PA textile (Figure 4.9)  

The exposure of the textile sample to toluene results in highly hydrophobic properties 

of the material with advancing contact angle of 152o, while upon exposure to ethanol the 

advancing contact angle is 50o, and after treatment with acidic water  the film is fully wetted 

and water soaks in the textile sample. These pictures demonstrate that, in contrast, the flat PA 

surface is less hydrophobic (900) and less hydrophilic (200) upon exposure to toluene and 

acidic water, respectively. 

 

 
Figure 4.9. Video images of drops on the substrates with grafted PS-PVP brush from the PA-

6 textile: after exposure to toluene, Θ = 1500 (a); ethanol, Θ = 500  (b); water, pH=3, wicking 

regime (c), and from the PA-6 plates after exposure to toluene Θ = 900 (d) and  water, pH=3, 

Θ = 200  (e) 

Schematically this phenomenon is outlined in Scheme 4.5. The drop of water 

deposited on the textile is in contact with the textile fibers and air. Each fiber is a twist of 

single fibers forming a yarn with a rough surface. Thus, the textile surface has a complicated 

hierarchical texture. Depending on the bare contact angle on a flat surface, the liquid might 

fill all grooves of the rough substrate or might be in contact with the upper part of the relief 

and air can be trapped below a drop. The wicking criteria is determined as follows [Bic01]: 

)/()1(cos 0 Ss r φφ −−>Θ  

where Θ0 is the bare contact angle of water on a flat surface, φS  is the solid surface fraction 

assigned with the upper part of the relief (in this case it is a fraction of the total area which is 

not in contact with the liquid), r is the ratio between the increased contact area of the rough 

surface and the corresponding projected area. An example of this regime is shown in Figure 

4.9c. 
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Scheme 4.5.  Schematic representation of a drop of water on PA textile: Θ0 > 90o , Θ ≈ 150o, 

air is trapped below the drop giving the Cassie regime if the brush was switched in a 

hydrophobic state (a); Θ0 << 90o, water soaks in the textile sample if the brush was switched 

in a hydrophilic state (b). 

 

If the bare contact angle is smaller than 900 but the wicking criteria is not fulfilled the 

liquid fills the grooves of the rough surface only below a droplet contacting with fibers and 

the contact angle corresponds to Wenzel’s regime [Wen36] 

0cos/)(cos Θ=−=Θ rr lsvs γγγ  

where Θ is the contact angle of water on a rough surface. An example of this regime is shown 

in Figure 4.9b. 

If the bare contact angle is larger than 900, air can be trapped below a drop and the 

liquid is only in contact with the upper part of the relief of the rough surface of fibers 

resulting in the Cassie wetting regime given by: [Cas44, Bic99] 

)cos1(1cos 0Θ++−=Θ sφ  

where φS  is the fraction of the upper part of the relief (in this case that is the fraction of the 

total area contacting with liquid), which itself depends on Θ0. An example of this regime is 

shown in Figure 4.9a.  

Consequently, switching of the mixed brush on the surface of the textile material 

causes the transition between the Cassie regime (Scheme 4.5a,  when the contact angle is 

larger than 900 ) and wicking regime (Scheme 4.5 b, when wetting is characterized by a small 

contact angle and the wicking criteria is fulfilled). Therefore, the textile material with the 

grafted mixed brush demonstrated the behavior effected by the combination of two possible 

approaches to regulate surface wetting: chemical composition and roughness. 
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Finally, we note that differences neither in surface modification and grafting process 

nor in switching behavior of the brushes were observed for different samples of PA 

substrates. The same for all PA samples specific grafting mechanism in a swollen top layer 

was observed. We speculate that this mechanism may be observed for various swollen 

polymer substrates. 

 

4.7.7. The Estimation of Biological Efficiency of the Grafted Polymer Layers to PA 

Textiles. 

The vitality tests of Fibrolasts (L929) for pure PA textiles, PA textiles with grafted 

monobrushes of PS and PVP, and PA textiles with grafted binary brushes with grafting to 

approach are presented in the Figure 4.10.  

 
Figure 4.10. Vitality of Fibrolasts (L929) on different samples of PA. 

In this test one can see a substantial difference between the original sample of the PA 

textile and the samples with grafted polymer layers. The vitality of the cells on original PA 

mounts only to 62%, for PA with grafted PVP brush the vitality mounts to 92% and up to 

97%. In the case of PS brush, we might expect the longer vitality on PA with the hydrophilic 

PVP brush then on the hydrophobic PS, this result not in good agreement with the literature 

[Wac84] as well. The vitality on the sample of PA with grafted binary brush of PS/PVP 

mounts almost to 120% that might be explained, on the one hand, by adaptive behavior of the 

binary brush, and on the other hand, by the synergism of two components 

(hydrophobic/hydrophilic) of the brush. In general, preconditions for a high vitality are very 

complex and complicated. At the best, the cells can adhere to a material and then grow. If 
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cells have a weak adhesion to the material, they cannot properly propagate and pass away. 

The cell adhesion depends on many parameters of the material, i.e. hydrophilicity, roughness, 

crystallinity, zeta-potential, and also the type of cell and textile.  

 
Figure 4.11 Vitality of endothel cells (RNE) on different samples of PA. 

 

As the behavior of cells depends on the cell type the same test was performed on 

endothel cells (Figure 4.11). 

It is known that endothel cells interact more sensible than fibrolasts cells with 

materials [Wac84]. The Figure 4.11 shows that for all materials tested the endothel cells have 

a significantly shorter vitality than the fibrolasts. But in this case also the binary polymer 

brush on PA textile improve the vitality.  

 

4.8. Conclusions 
In conclusion, we synthesized mixed PS/PVP polymer brushes via both step-by-step 

grafting of these two polymers from PA surfaces and the sequential grafting of a carboxyl 

terminated PS and PVP. We show that NH3 plasma can be successfully used for the 

introduction of amino and OH functionalities on PA surfaces with the following attachment of 

azo-initiator for radical polymerization and for direct grafting of carboxyl terminated 

polymers. The covalent bonding of the initiator improves the grafting procedure, although the 

chain transfer mechanism introduces also, but less effective, the mixed brush on the untreated 

PA surface. 
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The “grafting from” procedure causes a substantial increase of the PA surface 

roughness, which we explain by banding of the swollen PA substrate during the grafting 

procedure. We found no deep penetration of the grafting process into the PA substrate and 

proved that surface roughness was driven by grafting events occurring on the very top layer of 

the swollen substrate. 

The mixed brushes synthesized on PA substrates exhibited the same switching 

properties as it was recently shown for brushes grafted to Si-wafers. The mixed brushes 

prepared on the surface of PA textiles combined both the switching effect and effect of 

composite surface (Cassie regime) which substantially amplifies the switching range.  

The vitality test shown that grafted binary polymer brushes improve the adhesion of 

fibrolasts and endothel cells to PA textiles. This effect can be used for further application of 

binary brush modified materials. 
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5 Chapter 

Block Copolymer Responsive Brushes 

 
5.0. Abstract 

In this chapter we report on study of grafting of di- and triblock copolymers of highly 

incompatible polymers to both flat surface of silica wafers and to silica nanoparticles by 

means of the Minshutkin’s quaternization reaction. For this goal the surfaces were modified 

with a bromoalkilsilane.  

 

5.1 Introduction 
Di- or triblock copolymers grafted to a solid substrate constitute a special class of 

block copolymer brushes. In general, thin films of block copolymers (BC) are the focus of 

intensive investigations due to their ability to self-assemble into well ordered, nanoscale 

periodic structures [Kra02]. BC demonstrate a variety of bulk and surface morphologies 

(spherical, cylindrical, gyroidal, and lamellar) depending on the ratio of block lengths and the 

segment-segment interaction parameter. The periodicity of these structures is determined by 

molecular weight and chemical composition in the BC and typically is in the range from 10 to 

100 nm. This class of ordered materials is promising for sophisticated applications in many 

fields of nanoscience and nanotechnology such as surface patterning, lithography, and 

templating for the fabrication of information storage devices of terabits per cm2 capacity, 

magnetic and optical materials, and nanowires and nanomembranes [Man95, Park97]. 

The grafted block copolymer surface layer strongly differs from physically adsorbed 

thin films of mobile block copolymer chains due to confinements introduced by tethering to a 

solid surface. However, even in the case of the immobilized polymer chains, a very rich phase 

behavior can be observed upon exposure to different media and external stimuli, which can be 

much more complicated then in the case of physisorbed films. The basis for the responsive 

behavior of BC brushes is the phase segregation mechanism, specifically if the solvent 

affinities to the different blocks are significantly different. The polymer-solvent interactions 

will govern the formation of the segregated phases even within the grafted layer. 

A series of investigations of Zhao, Brittain et.al. on BC brushes of different structures 

[Zhao00, Zhao00a, Zhao00b] proved the mechanism of the phase segregation predicted by the 

theoretical  investigations  of Zhulina,  Singh and  Balazs.  For  example,  in  the case  of  the 
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tethered PS-b-PMMA and PS-b-PMA, CH2Cl2 is a good solvent for PS, PMMA, and PMA. 

When the sample is immersed in this solvent, the polymer chains are forced to stretch away 

from the interface to avoid contact with neighboring polymer chains. Removing the PS-b-

PMMA brushes from CH2Cl2 condenses the polymer brushes and localizes PMMA blocks at 

the air interface. The Tg's of PS and PMMA in the bulk state are both around 100o C, and 

there is little difference in surface free energies of PS and PMMA. Therefore, the PMMA 

blocks remain at the air interface, which is supported by contact angle measurements and 

XPS results.  

If the sample is immersed in cyclohexane, PMMA chains migrate from the solvent 

interface and form aggregates with the neighboring PMMA blocks to avoid contact with 

solvent. Although PS blocks have a low mobility because of the covalent bonding to the 

silicon wafer surface and to the PMMA block, they are miscible with cyclohexane and 

migrate to the solvent interface to form a shield around the PMMA aggregates. 

Zhao and Brittain synthesized block copolymer brushes by sequential carbcationic 

polymerization and ATRP. They started with surface immobilization of functional 

trichlorosilane, which is an initiator for carbocationic polymerization. The silane layer was 

deposited on the silicate substrate. Treatment of the modified substrate with styrene under 

carbocationic polymerization conditions led to the formation of tethered PS layer. This PS 

film was immersed in a solution of MMA and polymerized using typical ATRP conditions 

resulting in the block copolymer brush. 

In another development, K. Matyjaszewski et al. developed a two step ATRP routine 

for the fabrication of BC brushes [Mat99]. ATRP was successfully used for the fabrication of 

triblock copolymer brushes on planar surfaces and BC brushes directly on the surface of 

nanoparticles [Zhao03]. 

Recently, the reversible addition fragmentation chain transfer techniques was applied 

for synthesis of BC brush PS-b-PDMA (N,N-dimethylacrylamide), PDMA-b-PMMA on 

silicon wafers, and poly(3-[2-(N-methylacrylamido)-ethyldimethyl ammonio]propane 

sulfonate-b-PDMA on gold surface [Baum02, Sum03]. These brushes displayed reversible 

surface properties upon treatment with block-selective solvents. Finally, several research 

groups suggested and have developed living anionic polymerization for the synthesis of BC 

brushes [Qui02, Advi02]. 

All the above-mentioned synthetic methods are based on the approaches, which are 

very similar to that developed for synthesis of similar block copolymers in solution 

polymerization. The main challenges of the synthesis of chemically grafted layer on solid 
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substrates concern an appropriate choice to immobilize the initiator on the surface and, then, 

performing the process under conditions allowing to avoid side reactions, which can 

dramatically decrease quality of the brushes. 

A specific case of BC brushes is represented by Y-shaped brushes when Y-shaped AB 

copolymers are grafted onto a flat surface. One "arm" of the Y-shaped brush is an A 

homopolymer, and the other arm is an incompatible B chain, and the short "stem" tethers the 

entire copolymer to the surface. This type of BC brush builds the bridge between end-tethered 

BC brushes and mixed binary polymer brushes [Kra02, Mat99, Sum03]. Here we develop an 

alternative approach for the fabrication of mixed polymer brushes on both flat and rough 

substrates. 

 

5.2. Materials 
Triblock copolymer of poly(styrene-b-2-vinypyridine-b-etyleneoxyde) P(S-b-2VP-b-

EO) (Mn(PS-P2VP-PEO) 14100-12300-35000) was kindly offered by Prof. Gohy. 

Poly(styrene-b-4-vinyl pyridine) P(S-b-4VP) (P105-S4VP; Mn(PS-P4VP)=2140-2070, 

Mw/Mn=1.13), was purchased from Polymer Source, Inc (synthesized by anionic 

polymerization) 

Tetrahydrofurane (THF), nitromethane, 1,4-dioxane, hexane, toluene, ethanol 

(Aldrich) were used as received. Dichloromethane (Aldrich) was dried on molecular sieves. 

Highly polished silicon wafers (obtained from Wacker Chemitronics, Germany) were first 

cleaned in an ultrasonic bath for 30 min with dichloromethane, placed in cleaning solution 

(prepared from NH4OH and H2O2) at 600C for 1 h and then rinsed several times in Millipore 

water (18 MΩ cm-1). 11-bromoundodeciltrimethoxisilane (BUDTMS) ABCR (Karlsruhe, 

Germany) was used as received. 

Silica nanoparticles (SiO2-F-0.2; d=0.193 µm) were purchased from Microparticles 

GmbH, Berlin, Germany. 

 

5.3. Preparation of the Mixed Brushes on Silica Wafers 
In the route of synthesis of mixed polymer brushes on the surface, we explore the 

reaction of quaternization [Fuo48] of pyridine groups in vinylpyridine blocks of the block 

copolymers with Br-alkyl groups on the surface after modification with a ω-bromalkyl silane 

(BUDTMS). 

BUDTMS was chemosorbed on the surface of the cleaned Si wafres from 1% toluene 

solution. In the next step, a thin films (50±5 nm as measured with ellipsometry) of the block 
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copolymers were spin-coated on the top of the BUDTMS layer from the 1% dichloromethan 

solution. Then the samples were heated at 160oC in a vacuum oven for different periods of 

time to graft the block copolymers and to measure the kinetics of grafting. The nongrafted 

polymer was removed by Soxhlet extraction with dichloromethane for 3-4 h. Each step was 

monitored with ellipsometry and atomic force microscopy (AFM). The same procedure was 

performed on the surface of a Silicone prism and monitored with Fourier transform infrared 

spectroscopy with attenuated total reflection (FTIR-ATR). 

A control experiment showed that block copolymers deposited on the bare Si wafer 

were completely removed by Soxhlet extraction with dichloromethane. 

 

5.4. Preparation of the Mixed Brushes on Silica Nanoparticles 
To graft the block copolymers to the surface of silica nanoparticles the same approach 

of the quaternization reaction to the surface was used. BUDTMS was chemosorbed on the 

surface of the annealed at 110oC in a vacuum oven silica nanoparticles from 3% toluene 

solution. The concentration of nanoparticles in the solution was 5%. After adsorption of 

BUDTMS the nanoparticles were washed out from nonadsorbed silane several times in 

toluene using a centrefuge for the separation. The grafting of block copolymers was 

performed in 3% nitromethane polymer solution at 60oC for 68-72 h as proposed in [Fuo48]. 

The concentration of the particles in the solution was 3%. The nongrafted polymer was 

removed by washing out using the centrifuge for several times by chloroform. 

 

5.5. Sample Characterization. 
5.5.1 Ellipsometry 

Layer thickness and the amount of the grafted substances was evaluated with 

Multiscope Optrel null-ellipsometer (Berlin, Germany) at incidence angle of 70o. The 

measurements were performed for each sample after each step of the modification to use the 

measurement of the previous step as a reference for the simulation of ellipsometric data. 

Initially, the thickness of native SiO2 layer (usually 1.4 ± 0.2 nm) was evaluated at the value 

of refractive index n = 3.858 − i 0.018 for Si and 1.4598 for SiO2, respectively. Then the 

thickness of the chemosorbed BUDTMS layer was evaluated  using the two layer model: 

SiO2/ BUDTMS for refractive index of BUDTMS equal to 1.4559 [ABCR]. Finally, the 

thickness of the polymer film after grafting was calculated using the tree layer model SiO2/ 

BUDTMS /grafted polymer considering the thin polymer film as an effective optical medium 
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with n=1.59. In reference experiments we found no influence of the surface roughness on the 

ellipsometric results for the prepared grafted films. 

 

5.5.2. FTIR 

FTIR spectra were taken with an IFS 66 (Bruker) spectrometer for the chemosorbed 

BUDTMS layer, and grafted block copolymer layers to the silica nanoparticles using the 

diffuse reflection technique (the samples were mixed with the KBr powder. 500 mg of KBr 

powder was taken to 3mg of pure silica nanoparticles and the nanoparticles with grafted block 

copolymer brushes, and to 8 mg of the nanoparticles with the chemosorbed BUDTMS. As the 

background was used the pure KBr powder). 

 

5.5.3. AFM 

AFM studies were performed on a Dimension 3100 (Digital Instruments, Inc., Santa 

Barbara) microscope. The tapping and phase contrast modes were used to map the film 

morphology at ambient conditions. Silicon tips with a radius 20  ± 5 nm, a spring constant of 

1.5-6.3 N/m and frequency 63-100 KHz were used. Root mean square roughness (RMS) was 

calculated from the images with the commercial software. 

 

5.5.4. Scanning Electron Microscopy (SEM)  

A DSM 982 Gemini, ZEISS instrument was used for SEM. Specimens were prepared 

by deposition of the silica nanoparticles from dichloromethane solution on Si wafers. 

 

5.5.5 Contact Angles 

Advancing contact angles of water were measured using DSA Krüss (Hamburg, 

Germany) equipment. Samples with mixed brushes were exposed to particular solvent for 10 

minutes, then rapidly dried with Ar flux and afterwards water contact angle was rapidly 

(within first 30 seconds) measured. 

 

5.6. Results and Discussion  

 
5.6.1 Grafting of BUDTMS 

The synthetic procedure (Scheme 5.1) starts with the covalent grafting of BUDTMS to 

the surface of Si wafer as mentioned in the experimental part. 
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For such conditions, it is possible to approach a reproducible preparation of covalently 

bonded thin layers of BUDTMS. AFM topographical images of the surface covered with 

BUDTMS (Figure 5.1) showed only few clusters of polymerized and precipitated BUDTMS, 

which do not have an influence on the following investigations. 

The ellipsometric thickness of the film of about 16±3 Å corresponds to the 1-1.5 

theoretical monolayers of the BUDTMS [Men97]. 

 

Scheme 5.1. Schematic representation of the grafting route to fabricate block copolymer 

brushes on Si wafers: 1-chemosorbtion of BUDTMS; 2-garfting of the triblock copolymer. 

 

 

 

 

 

 

 

Figure 5.1. AFM topography image (1×1 µm2, Z-range 

5nm) of chemosorbed BUDTMS on a Si wafer. 

 

 

5.6.2. Grafting of the Block Copolymers 

The next step of the synthetic procedure comprises the grafting of the P(S-b-2VP-b-

EO) or P(S-b-4VP) from the thin film deposited on the surface of the Si-wafer with 

chemosorbed BUDTMS. The kinetics of the grafting of P(S-b-2VP-b-EO) from 1% 

dichloromethane solution at 160o C in terms of the ellipsometric thickness of the layer is 

presented in (Figure 5.2).  
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With AFM we observe the phase segregation in the grafted block copolymer, which 

occurs at a nanoscopic scale with the apparent 30-40 nm average lateral size of domains. The 

size of the domains is overestimated because it is almost impossible for this morphology to 

perform the convolution procedure correctly for the tip curvature radius. Representive image 

of the 1×1 µm2 scale of the laterally segregated phases is shown in Figure 5.3. 

 

 

 

 

 

 

 

 

Figure5.2. Grafting kinetics of the 

P(S-b-2VP-b-EO) brush on the 

BUDTMS modified Si-wafer. 

 

 
 

Figure 5.3. AFM topographical (1×1 µm2, Z-range 5nm) images of the P(S-b-2VP-b-EO) 

brush after exposure to methanol (a), water with pH 3 (b), and THF (c). 

 

 

5.6.3. Switching/Adaptive Properties 

The block copolymer brush morphology and surface energetic state switch reversibly 

upon exposure to different solvents in the same way as it is observed for the binary brushes of 

PS/PVP prepared via “grafting from” and “grafting to” approaches. After exposure to 

different solvents, the silica wafers are taken from the solvent and rapidly dried under 
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nitrogen flux. Then the appropriate measurements of the film characteristics are performed. In 

these experiments we assume that the morphology of the dry film reflects the morphology of 

the swollen film as described above. At ambient conditions, the block copolymers in the dry 

film are in a glassy state and the film morphology is stable for a long period of time. 

Contact angles of water were measured on the surface of the wafer immediately after 

the drop was set on the substrate. In these experiments we measured water contact angle on 

the surface of the frozen layer structure before it is changed under the water drop. Then the 

wafer was exposed to the next solvent and the same measurements were carried out. All 

changes of film properties observed experimentally were reversible and the switching 

experiments were repeated several times for each sample. 

AFM images show the change of morphology and roughness of the polymer films 

upon exposure to methanol, THF and water pH 3 (Figure5.3). Two different morphology can 

be identified: dimples (round clusters) after water and so called mixed morphology (ripple-

elongated domains and round clusters) after THF and methanol. These morphologies are 

caused by the lateral phase segregation of three incompatible blocks in the triblock 

copolymer. 

The switching/Adaptive behavior of the block copolymer brushes can be observed 

from the contact angle data (Table 5.1). The data clearly show that a top layer of the brush 

switches from hydrophobic to hydrophilic energetic state upon exposure to selective solvents. 

 

Table 5.1. Wetting of Block copolymer Brushes Grafted to Si Wafers 

contact angles of water, deg  
sample 

toluene CH2Cl2 ethanol water, pH 7 water, pH 3 
P(S-b-2VP-b-EO) 

P(S-b-4VP) 
92 
90 

87 
83 

53 
65 

66 
71 

50 
53 

 

When we expose the sample to toluene, the top of the layer is occupied by the block 

of PS, while in ethanol and water (pH 3) the surface is dominated by PVP and PEO blocks in 

P(S-b-2VP-b-EO) and P(S-b-4VP) respectively. The comparison of the switching behaviour 

of these di- and triblock copolymers after exposure to water with pH 7 allows to estimate the 

influence of the third block (PEO) of P(S-b-2VP-b-EO). In this case P2VP block has a 

negligible influence on the contact angle value because N atoms of the pyridine fragment are 

not protonated at pH 7 and the contact angle value depends preferentially on a fraction of 
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PEO on the top of the layer. Hence, we have a smaller contact angle for P(S-b-2VP-b-EO) 

after exposure to neutral water than for P(S-b-4VP). 

Such a switching behavior of the block copolymer brush suggest both lateral and 

perpendicular phase segregation which is considered to be a second order transition resulting 

from the interplay between segment-segment and segment-solvent interaction [Min02a] 

 

5.6.4. Block Copolymer Brushes on Silica Nanoparticles. 

We used the same approach for the grafting of block copolymers to the surface of 

silica nanoparticles (Scheme 5.2). BUDTMS was grafted to the nanoparticles surface as 

mentioned in the experimental part. 

 

 

Scheme 5.2. Schematic representation of silica nanoparticle with grafted block copolymer via 

quaternization of the poly(2-vinypyridine) block 

 

P(S-b-2VP-b-EO) and P(S-b-4VP) were grafted to the BUDTMS modified surface of 

the nanoparticles. To prove the fact of grafting of the block copolymers to the silica 

nanoparticles, we performed FTIR experiment using the diffuse reflection technique as 

described in the experimental section. The obtained spectra of silica nanoparticles with 

grafted P(S-b-2VP-b-EO) gave a very small absorbance of the characteristic band of 

quaternized N atoms (-C-N+≡) at 1669 cm-1 due to only partial quaternization of vinylpyridine 

to the nanoparticle surface. This characteristic is poorly resolved and can not be considered as 

a sufficient evidence for the grafting. However, a multiple rinsing of the particles in THF 

results in the product with clearly identified bands of the block copolymer. 
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As a reference we used the spectrum of the pure P(S-b-2VP-b-EO) copolymer (Figure 

5.4) 

 
Figure 5.4. FTIR spectra of P(S-b-2VP-b-EO) thin film. 

Very well pronounced differences in the spectra of individual blocks of the block 

copolymer (Figure 5.4, Figure 5.5) allowed us to analyse the chemical composition of the 

silica particles after grafting. The characteristic bands of aromatic and aliphatic groups 

observed for the block copolymer brushes (Figure 5.5d) were obtained by subtraction of the 

spectrum (a) of the silica nanoparticles with chemosorbed BUDTMS from spectrum of the 

silica nanoparticles with the chemosorbed BUDTMS and the grafted block copolymer (b). In 

the spectra we identify very pronounced PS block bands at 1601 and 1493 cm-1 , the 

characteristic bands of the PVP block at 1568 and 1590 cm-1, and the characteristic bands of 

the PEO end block at 1648 and 3378 cm-1, which provide evidence for the grafting of P(S-b-

2VP-b-EO). 

For the quantitative analysis of the particles we have prepared a calibration curve in 

terms of P(S-b-2VP-b-EO) fraction in mechanical mixtures of the block copolymer with the 

nanoparticles. For each mixture the intensity of FTIR spectraat 2926 cm-1 was measured. This 

characteristic band represents the C-H groups which can be found in all polymer blocks of the 

copolymer. Figure 5.6 presents the amount of the block copolymer in the mixture with silica 

nanoparticles vs. the integral absorbance at 2926 cm-1. 
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Figure 5.5. FTIR spectra: silica nanoparticles with chemosorbed BUDTMS (a); silica 

nanoparticles with chemosorbed BUDTMS and grafted P(S-b-2VP-b-EO), reference sample, 

P(S-b-2VP-b-EO) (c); spectra obtained by substraction of spectrum b from spectrum a (d). 

 
Figure 5.6 . The calibration plot for the P(S-b-2VP-b-EO) block copolymer in the mixture 

with silica nanoparticles in terms of the FTIR spectrum integral absorbance vs. mass fraction 

of the block copolymer. 
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For the analysis of FTIR spectra for the sample of copolymer coated nanoparticles we 

found that about 11% of the P(S-b-2VP-b-EO) (Figure 5.5d) was grafted. This value 

corresponds to the 6.7 mg/m2 grafting amount and 0.066 nm-2 grafting density. These data are 

in good agreement with the thickness of the grafted layers to the silica wafers and with 

grafting of polymers via “grafting to” in general. 

AFM images (Figure 5.7) obtained for the same nanoparticles with grafted block 

copolymer brushes deposited form dichloromethane on Si wafer give another evidence of the 

grafting to the nanoparticle surface. 

 

 
Figure 5.7. AFM topographical (left) and phase (right) (1×1µm2) images of the silica 

nanoparticles with grafted block copolymer brushes on the surface of silica wafers. 

 

 

Figure 5.8. SEM image of silica nanoparticles with grafted block copolymer brushes. 

 81



Results and Discussion 
 

The phase image allows to clearly see the prominent phase contrast which confirms 

the presence of the block copolymer on the particle surface and the phase separation of the 

block copolymer after exposure to dichloromethane. These data are in the good agreemnt 

with the AFM data obtained for the block copolymers grafted to the silica wafers. 

The SEM micrograph, presented in Figure 5.8 also shows the surface of the nanoparticles 

with grafted brushes. The surface has a rough structure due to the block copolymer on the top. 

 

5.6.5. Switching/Adaptive Properties of Block Copolymer Brushes on Silica 

Nanoparticles 

For the investigations of switching/adaptive behaviour of block copolymer brushes on 

the silica nanoparticles we grafted the silica nanoparticles to silica wafers which were 

modified with the same BUDTMS. The Scheme 5.3 presents the grafting procedure of the 

nanoparticles to the silica wafer surface.  

 
Scheme 5.3. Schematic representation of grafting silica nanoparticles with block copolymer 

brushes to the Si wafer surface (a); a layer of the nanoparticles on Si wafer (b) 

The deposition of nanoparticles on silica wafers was performed using the vertical 

deposition approach. We prepared 3% suspension of the grafted particles in dichloromethane. 
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Then a silica wafer was immersed in the solution and the solvent was evaporated under low 

pressure. This approach can be used for the fabrication of coatings with well ordered structure 

[Kit03]. The AFM image (Figure 5.9) shows two dimensional ordering of a close dense 

hexagonal array of the particles with the grafted P(S-b-2VP-b-EO) block copolymer brush on 

the silica wafer. 

 

 

 

 

Figure 5.9. AFM topography image (2×2 

µm2) of the silica nanoparticles with grafted 

block copolymer brushe on the surface of 

the silica wafer. 

 

The data of contact angle measurements on these surfaces demonstrate the well 

pronounced switching from hydrophobic to hydrophilic wetting behavior (Table 5.2) upon 

exposure to different solvents. This behavior is similar to the behavior of block copolymer 

brushes on a flat surface. However, the range of switching on the particle coated substrate is 

much larger than on the flat surface. 

 

Table 5.2. Wetting of Block copolymer Brushes Grafted to Si particles on silica wafers. 

contact angles of water, deg  
sample 

toluene CH2Cl2 ethanol water, pH=7 water, pH=3
P(S-b-2VP-b-EO) 

P(S-b-4VP) 
131 
125 

117 
107 

57 
65 

69 
71 

29 
44 

 

This fact may be considered as amplification effect of wetting by the surface 

roughness obtained on the silica wafer surface with grafted nanoparticles. The phenomena of 

amplification of wetting characteristics of the surface by the roughness was in detail 

discussed in the Secttion 4.1 for the case of textiles with grafted binary brushes and will be 

analyzed at issue in the following Chapter. 
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5.7. Conclusions  
In conclusions, mixed polymer brushes prepared from P(S-b-2VP-b-EO) and P(S-b-

4VP) block copolymers were grafted to both the flat surface (Si wafers) and to the surface of 

silica nanoparticles via quaternization reaction of the pyridine nitrogen. This one step grafting 

technique has a substantial advantage over the multistep grafting of mixed polymer brushes 

consisting of two incompatible polymers. 

Nanoparticles with grafted mixed brushes may be used for the fabrication of coatings 

with switching behavior. 
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Chapter 6 

 

Hierarchically Structured Self-Adaptive Surfaces on PTFE 

Substrates 

 
6.0. Abstract.  

In this chapter we report on a novel route to fabricate two level structured self-

adaptive surfaces (SAS) of polymer materials. The first level of structure is built by a rough 

polymer film that consists of needlelike structures of micrometer size. The second level of 

structure is formed by the nanoscopic self assembled domains of a demixed polymer brush 

irreversibly grafted onto the micro needles. By exposing the surface to solvents that are 

selective to one of the components of the brush, we reversibly tune the surface properties. The 

large scale surface structure amplifies the response and enables the control of wettability, 

adhesion, and chemical composition of the surface over a wide range. 

 

6.1. Introduction 
Controlling the wettability of solid surfaces is of abiding importance for many 

processes in living organisms (e.g., ultra-water-repellent materials are found in self-cleaning 

surfaces of plants and insects [Bar97]) and for numerous industrial applications [Oga93, 

Tad97, Tsuj97, Nak99, Veer97, Youn99, Cou00, Cre99, Lai92, Sin97, Zhao95, Zhao00]. 

Advantages of ultra-hydrophobic surfaces, however, can turn into disadvantages: the self-

cleaning properties of a surface may result in static electric charges, poor adhesion or 

dyeability. The ability to reversibly switch the properties of the same material from strongly 

water-repellent to hydrophilic would allow a diverse range of applications. In general, 

however, polymer surface has fixed properties and the design of switchable coatings is a 

formidable challenge [Cre99, Lai92]. 

Wettability can be regulated by chemical surface composition [Man97, Wen36, 

Bor95]. On a flat polymer film the contact angle of a liquid drop is determined by the balance 

of tensions at the contact line between the polymer film, the liquid and its vapor which results 

in Young's equation:  

γγγ /)(cos 0 slsv −=Θ  

 



where Θ0 is the bare contact angle of water (on a flat surface), γ is the surface tension of 

water, γvs and γls are the surface tension of the solid-vapor and the solid-liquid (water) 

interface, respectively. Roughness of the surface can strongly amplify hydrophobicity or 

hydrophilicity [Wen36, Bor95, Bico99, Her00, Chen99, Cart00, Miwa00, Onda96, Bico01, 

Yos02, Muel02]. If the bare contact angle on a flat surface is very small, the liquid might fill 

the grooves of the rough surface and only the upper part of the relief, which comprises a 

fraction φs of the total area, is not in contact with the liquid. This occurs if the situation 

corresponds to wicking criteria [Bico01] (Figure 6.1). r denotes the ratio between the 

increased contact area of the rough surface and the corresponding projected area. 

)/()1(cos 0 ss r φφ −−>Θ

 
Figure 6.1 Wicking regime for a liquid drop on a rough solid surface. 

If the bare contact angle is smaller than 900 but the wicking criteria is not fulfilled the 

liquid fills the grooves of the rough surface only below a droplet (Figure 6.2), and Wenzel’s 

equation [Wen36] holds which takes into account the increased contact area between the 

liquid and the surface, where Θ is contact angle of water on a rough surface. 

0cos/)(cos Θ=−=Θ rr lsvs γγγ

 
Figure 6.2. Wenzel’s wetting regime for a liquid drop on a rough solid surface. 

 

If the bare contact angle is larger than 900 (Figure 6.3), air can be trapped below a 

drop and the rough surface acts like a “fakir carpet” [Bico99] , i.e. the liquid is only in contact 

with the upper part of the relief of the rough surface. In this limit (Cassie regime [Cas44]) the 

contact angle is given by: 

)cos1(1cos 0Θ++−=Θ sφ

 
Figure 6.3 Cassie’ regime: the suspended droplet sits on the crests of the rough pattern. 
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where φs is the fraction of the upper part of the relief, which itself depends on Θ0. 

Superhydrophobic surfaces [Bico99, Her00, Chen99, Cart00, Miwa00, Onda96, Bico01, 

Yos02, Muel02] often possess surface textures which trap air between the liquid and the 

surface. 

Thus, the ability of a surface to repel a liquid or to make it spread can be tuned by the 

surface design. For a fixed liquid (e.g., water), wettability may be regulated by an appropriate 

surface texture and/or by (γvs −γls) value. Careful studies on model surfaces [Bico99, Her00, 

Chen99, Cart00, Miwa00, Onda96, Bico01, Yos02, Muel02], which consist of regular 

structures like spikes, pillars or stripes, reveal that if the contact angle on a flat surface is less 

than 90o the roughness amplifies hydrophilicity, while it enhances hydrophobicity otherwise. 

Very similar mechanism is also employed in biological systems (e.g., plant leaves [Bar97]). 

Details, however, depend on the geometrical properties of the surface as well as on the ability 

of the structures to pin the three-phase contact line between liquid, vapor and 

substrate[Bico99, Chen99, Miwa00, Yos02]. 

In the present chapter we take advantage of the amplification of hydrophilicity or 

hydrophobicity by the roughness of an etched substrate. It is shown that wettability is 

amplified by rather irregular structure of the plasma etched surface. The combination of 

controlling of the wetting properties of mixed polymer brushes and its strong amplification by 

the roughness enables to effectively fabricate surfaces with a wide span of reversibly tunable 

surface properties. 

 

6.2. Materials  
Polytetrafluoroethylene (PTFE) foils, 0.5mm thick, were purchased from PTFE 

Nünchritz GmbH, Germany. The material as recieved was cut into pieces of 2 x 2 cm2 and 

subsequently cleaned in CHCl3 for 10 min using an ultrasonic bath to remove any 

contaminants.  

Highly polished silicon wafers (obtained from Wacker-Chemitronics) were first 

cleaned in an ultrasonic bath for 30 min with dichloromethane, placed in cleaning solution 

(prepared from NH4OH and H2O2) at 60 0C for 1 h and then rinsed several times with 

Millipore water (18 MΩ×cm-1).  

Carboxyl-terminated poly(styrene-co-2,3,4,5,6-pentafluorostyrene) (PSF-COOH) 

(styrene units : pentafluorostyrene units = 0.75 : 0.25) (Mn=16000 g/mol, Mw=29500 g/mol) 

was synthesized by free radical polymerization in THF solution using 4-4′-azobis(4-

cyanopentanoic acid) as initiator. 
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Carboxyl-terminated poly(2-vinyl pyridine) (PVP-COOH; Mn = 39200 g/mol and Mw 

= 41500 g/mol) was purchased from Polymer Source, Inc (synthesized by anionic 

polymerization).  

Toluene and tetrahydrofuran (THF) were distilled after drying over sodium. 

Dichloromethane was dried on molecular sieves. 3-glycidoxypropyl trimethoxysilane (GPS) 

ABCR (Karlsruhe, Germany) was used as received.  

Oxygen and ammonia for plasma treatment with purity of 99.95% and 99.999% 

respectively were purchased from Messer Griesheim, Germany. 

 

6.3. Plasma treatment of PTFE substrates. 

Plasma etching of PTFE was performed in a cylindrical vacuum chamber made of 

stainless steel with a diameter of 250 mm and a height of 250 mm. The base pressure obtained 

with a turbomolecular pump was kept at <10-6 mbar. Oxygen was introduced into the chamber 

via a gas flow control system. The samples were introduced by a load-lock-system and placed 

on an aluminum holder near the center of the chamber which was coupled capacitively to a 

13.56 MHz radio frequency (RF) generator Caesar 136 (Dressler, Germany) via an automatic 

matching network. The metallic wall of the whole chamber worked as a grounded electrode, 

i.e. the electrode configuration was higly asymmetric causing significant self bias voltages 

and ion energies at the RF electrode . The following parameters were used: oxygen flow 10 

sccm, pressure 2 x 10-2 mbar, effective RF power 200 W. The resulting self bias voltage as 

displayed at the RF generator was approximately 1000 V. After plasma etching the samples 

were rinsed in an ultrasonic bath for 10 min in CHCl3. 

Ammonia plasma treatment of PTFE was carried out in a cylindrical vacuum chamber 

made of stainless steel with a diameter of 350 mm and a height of 350 mm. The base pressure 

obtained with a turbomolecular pump was <10-7 mbar. On the top of the chamber a 2,46 GHz 

electron cyclotron resonance (ECR) plasma source RR160 (Roth&Rau, Germany) with a 

diameter of 160mm and a maximum power of 800 W was mounted. Ammonia was introduced 

into the active volume of the plasma source via a gas flow control system.  

The samples were introduced by a load-lock-system and placed on a grounded 

aluminum holder near the center of the chamber. The distance between the sample and the 

excitation volume of the plasma source was of about 200 mm. The following parameters were 

used: ammonia flow 15 sccm, pressure 7 x 10-3 mbar, power 220 W, treament time varied 

from 20 s up to 120 s. 
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6.4. Preparation of the binary brushes.  
Polymer chains of PSF-COOH and PVP-COOH were attached to the PTFE substrate 

by end functional groups (See also Scheme 4.3 in the Section 4.5). Hydroxyl and amino 

functional groups, introduced covalently by ammonia plasma treatment into the PTFE surface, 

were used to graft the mixed polymer brush. The brush was fabricated using a two-step 

"grafting to" procedure based on the "grafting to" approach suggested by Luzinov et al. 

[Luz00a, Luz00b]. In the first step, a thin film of PSF-COOH was spin-coated on the surface 

of the PTFE foil and heated for six hours at 150oC to graft the polymer from melt. Non-

grafted polymer was removed with Soxhlet extraction and the second polymer PVP-COOH 

was grafted using the same procedure.  

The amount of grafted polymer on the rough surface of PTFE substrate can not be 

determined. However, we performed control experiments on the surface of Si-wafers with 

covalently attached GPS. Epoxy groups of GPS were transformed to amino-groups by 

treatments with ethylenediamine. In this way we prepared a model surface modified with 

hydroxyl and amino gropus. The control experiments show that under these conditions about 

3.5 mg/m2 of each polymer can be grafted onto the Si-wafer which corresponds to the total 

thickness of 7 nm for the mixed polymer brush. 

 

6.5. Sample Characterization.  
 

6.5.1. Ellipsometry.  

Layer thickness and grafted amount in the control experiments on Si-wafers were 

evaluated at λ=633 nm and an angle of incidence of 70o with Multiscope Optrel (Berlin, 

Germany). The measurements were performed for each sample and after each step of the 

modification. The measurements of the previous steps were used as a reference for the 

simulation of the ellipsometric data as it is described elsewhere [Luz00a, Luz00c]. 

 

 

 

 

 

6.5.2. SEM 

The surface topography was investigated using scanning electron microscopy (SEM) 

and scanning force microscopy (SFM). SEM micrographs were obtained without 



metallization of the sample at a beam voltage of 1 kV with a low voltage scanning electron 

microscope Gemini LEO/ DSM 982. 

 

6.5.3. AFM 

SFM experiments were carried out under ambient conditions using a Dimension 3100 

of Veeco/ Digital Instruments, Inc., Santa Barbara, USA. The SFM was used in tapping mode 

to reduce tip induced surface degradation and to avoid sample damages. Standard and ultra 

sharp silicon tips were used with a resonance frequency of 300 kHz and 60 kHz, respectively. 

The surface root mean square (rms) roughness values Sq were determined using a scan size 

area of 20 x 20 µm2 and a commercial software. According to the definition of the standard 

deviation of the elevation, z values, within the given area and is calculated from  
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The rms roughness describes only structures vertical to the surface. However, the 

surface topography consists of both, vertical and lateral structures. To include also the lateral 

distribution of the height features, the power spectral density function (PSD) was determined 

from radially integrated 2d FFT images. The PSD is interpreted as a spatial frequency analysis 

of the surface topography. The PSD intensity describes the probability of a spatial frequency 

q. Thus, a peak on the PSD plot corresponds to a most prominent frequency which is related 

to a dominant in-plane length λ using the relationship 

λ = 2π/q      (6.2) 

In addition, a roughness coefficient rs was calculated 

area  surface  geometric
area  surface  actual

=Sr       (6.3) 

characterizing the ratio of the actual surface area and the geometric surface area. The rs 

parameter implies both vertical and lateral changes of the roughness features. 

Images of the PTFE surfaces were obtained at three different locations and the average 

rms and rs roughness was determined for a particular surface-treated PTFE sample based on 

these images from three different locations. The surface roughness was also quantified using 
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section analysis. We obtain vertical distance (depth), horizontal distance, angle between two 

or more points, and roughness along a section line. 

 

6.5.4. XPS 

Changes of the elemental surface composition of the treated samples were examined 

using X- ray photoelectron spectroscopy (XPS). An Axis Ultra spectrometer (Kratos 

Analytical, UK) equipped with a monochromatized Al Kα X-ray source of 300 W at 15 kV 

was used. The kinetic energy of photoelectrons was determined using a hemispherical 

analyzer with a constant pass energy of 160 eV for survey spectra and 20 eV for high-

resolution spectra. The take-off angle, here defined as the angle between normal of the sample 

surface and the electronoptical axis of the spectrometer, was 0°. Hence, the information depth 

of XPS was limited by 5 nm. An effective charge compensation unit over-compensating 

charging effects was used during all measurements. Spectra were referenced to the C 1s peak 

of the –CF2– structure in PTFE at binding energy BE=292.48 eV. Quantitative elemental 

compositions were determined from peak areas using experimentally determined sensitivity 

factors and the spectrometer transmission function.  

 

6.5.5. Contact Angle Measurements  

The modified surface wettability was characterized by contact angle measurements 

using sessile water droplets. Two techniques were applied, a goniometer technique and 

axisymmetric drop shape analysis-profile (ADSA-P). Using Krüss goniometer DSA10  

advancing (θa) and receding (θr) contact angles from 6 individual drops placed on 6 new 

surface areas were measured by adding or withdrawing a small volume of water through a 

syringe. The needle was maintained in contact with the drop during the experiments. All 

readings were then averaged to give a mean advancing and receding contact angle for each 

sample. The accuracy of this technique is in the order of ± 2°. ADSA-P is a technique to 

determine liquid-fluid interfacial tensions and contact angles from the shape of axisymmetric 

menisci, i.e., from sessile as well as pendant drops. Details of the methodology and 

experimental set-up can be found in the Section 3.4.4. and elsewhere [Kwo97].  

Low-rate dynamic contact angle measurements were carried out supplying liquid to 

the sessile drop from below the solid surface using a motorized syringe device. It is a good 

strategy first to deposit a drop of liquid on a given solid surface covering a small hole, which 

is needed to supply liquid from below. This experimental procedure is necessary since ADSA 
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determines the contact angles based on a complete and undisturbed drop profile. Compared to 

the goniometer technique, the accuracy of the contact angle measurement is distinctly higher 

(± 0.5°). While the drop is growing at very slow motion of the three-phase contact line, a 

sequence of images is recorded by the computer (typically 1 image every 2-5 seconds). Since 

ADSA-P determines the contact angle and the three-phase contact radius simultaneously for 

each image, the advancing dynamic contact angles as a function of the three-phase contact 

radius (i.e., location on the surface) can be obtained. Furthermore, the drop volume and the 

liquid surface tension are determined for each image, and can also be recorded. If the polymer 

surface is not very smooth or other complexities due to swelling, stick/slip, etc. occur, 

irregular and inconsistent contact angle or liquid surface tension values, respectively, will be 

seen as a function of the three-phase contact radius. Details of the procedure and the 

experimental set-up for low-rate dynamic contact angle measurements are given elsewhere 

[Kwo97, Aug98]. During the experiments the temperature and relative humidity were 

maintained, respectively, at (23 ± 0.5)°C and about 40%. 

 

6.5.6. FTIR-ATR  

Fourier transform infrared spectroscopic measurements in the attenuated total 

reflection mode  spectra were taken with IFS 55 (Bruker) spectrometer.  

 

6.6. Results and Discussion 
The approach for the design and the fabrication of two-level structured surfaces, which 

are capable of reversibly switching from hydrophilic to ultra-hydrophobic states upon external 

stimuli (solvent selectivity, acidity, or temperature), is outlined in Figure 6.4. 

PTFE film with roughness on the micrometer scale was produced using plasma 

etching. Then, the "grafting to'' technique was employed to synthesize a mixed polymer brush 

[Luz00a, Luz00c] onto this rough surface. The mixed brush forms domains of nanometer size 

and its (average) surface composition stems from an intricate interplay between lateral and 

perpendicular segregation [Min02a, Min01, Sid99a]. Exposing this mixed brush to different 

environments, we can reversibly modify its surface properties, and the range of switching is 

substantially amplified by the needle-like, micrometer-roughness of the etched PTFE 

substrate.  
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Figure 6.4. Two-level structure of self-adaptive surfaces (SAS):  Schematic representation of 

needle-like surface morphology of the PTFE surface (first level) (a) and SEM image of the 

PTFE film after 600 s of plasma etching (b). Each needle is covered by a covalently grafted 

mixed brush which consists of hydrophobic and hydrophilic polymers (second level) depicted 

schematically in panel (c-e). Its morphology results from an interplay between lateral and 

vertical phase segregation of the polymers which switches the morphology and surface 

properties upon exposure to different solvents. In selective solvents the preferred polymers 

preferentially occupies a top of the surface (c and e), while in non-selective solvents, both of 

polymers are present in the top layer (d). The lower panels (f and g) show AFM images 

(model smooth substrate) of the different morphologies after exposition to different solvents. 

The first step of the procedure comprises the fabrication of the composite surface with 

functional groups required for further modification steps. The radio-frequency oxygen plasma 

etching is used to create a rough PTFE surface with large scale features of 1-2 µm both in 

lateral as well as vertical dimensions. 
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The morphology of an untreated virgin PTFE surface and of O2 plasma treated 

samples after different treatment times obtained by SEM is shown in Figure 6.5. All scanning 

electron micrographs have the same magnification. The untreated PTFE foil has a rough and 

to some extent porous surface. With increasing treatment time in oxygen plasma, the original 

morphology of the PTFE surface is changed and a pin-like surface structure is observed. For 

longer treatment times, the spires become gradually coarser and taller while the general 

appearence of the features is preserved. After 10 minutes treatment time, a widely spaced 

spire or cone-like structure of the PTFE surface is observed. 

 
Figure 6.5 Scanning electron micrographs of PTFE foils: untreated (a), treated with oxygen 

plasma 60 s (b), 120 s (c), 5 min (d), 10 min (e), 10 min oxygen plasma + 1 min NH3  (f). 

The etched PTFE surfaces were additionally treated in ammonia plasma in order to 

functionalize these surfaces with reactive groups for a subsequent grafting procedure. As it is 

seen from the electron micrographs, no change in the surface morphology was observed.  

The prolongation of etching time from 60 s to 300 s yields an increase of the surface 

roughness from 150 nm to 1 µm as measured by AFM (Figure 6.6) rms roughness values of 

the treated PTFE surfaces increase with increasing treatment time. 

These values describe only roughness features vertical to the surface. To take into 

acount lateral distribution, we calculated the ratio between the actual surface area and the 

geometric surface area rs. The dynamics of rs value development is ploted in Figure 6.7. 
 94



Hierarchically Structured Self-Adaptive Surfaces on PTFE Substrates 

 

 

Figure 6.6. Plot of rms roughness of 

PTFE surfaces over the treatment time 

in oxygen plasma. Longer treatment 

time’s results in even more gradually 

increase of roughness. After 10 minutes 

treatment time a widely spaced cone-

like structure of the PTFE surface is 

observed 

 

 

 

 

 

Figure 6.7 A plot of rs roughness 

values of PTFE surfaces development 

with the treatment in oxygen plasma.  

Based on the roughness development dynamics, we concluded that the actual surface 

area of the PTFE surface increases distinctly after very short treatment (15 sec). Up to a 

treatment time of 60 sec, the actual surface area does not change remarkably. During120 sec 

of treatment it increases again to distinctly higher values. From the fact that at longer 

treatment times (300 sec) the rms roughness values are strongly increasing while the rs 

roughness is nearly constant we can conclude that the roughness features became coarser and 

widely spaced. This conclusion was also supported by an estimation of the dominant in-plane 

length λ, calculated from the power spectral density curves (PSD).  

From the λ values shown in Table 6.1 it is apparent that the lateral distances between 

the roughness features increase up to a treatment time of 60 sec. A considerable increase is 

observed when the etching duration was increases from 60 sec to 120 sec and from 120 sec to 

300 sec. A comparison between the different quantitative roughness values (rms, rs, and λ) 

shows that all values start to increase considerably at a certain treatment time (60 sec  120 
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sec). In other words, at this point the vertical height of the roughness features, their lateral 

distances and the actual surface area start to change considerably. 

Table 6.1 Dominant in-plane length λ, calculated from the power spectral density curves 

(PSD) of SFM topography images obtained from PTFE surfaces after different treatment 

times in oxygen plasma 

Treatment time (sec) λ (q) (nm) ∆λ (nm) 

15 806  

  324 

30 1130  

  357 

60 1487  

  1161 

120 2648  

  2613 

300 5261  

With regard to the general appearence of the morphology, SEM results indicates 

qualitatively a change in the roughness features from the original morphology to a more pin-

like structure when the treatment time was increased from 30 sec to 60 sec (cf. Figure 6.5). 

However, the size of the needle-like features do not change remarkably from 30 sec to 60 sec 

as was shown by AFM. 

XPS investigations of the oxygen plasma treated surfaces revealed only minor changes 

in the F/C ratio and only traces of oxygen as can be seen from Figures 6.8. 6.9. In accordance 

with results obtained by Garbassi et al. [Mor89], some increase in the oxygen content together 

with a fluorine depletion was only observed at short treatment times (Figure 6.9). The F/C 

ratio shows a minimum at a treatment time of 10 sec and develops to the expected value of 

F/C = 2 for longer treatment times. It is known that oxygen plasma promotes etching via 

preferential attack of the carbon-carbon bonds [Kim00]. 
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Figure 6.8. XPS survey spectra of PTFE: untreated (a), 600 sec oxygen plasma treated PTFE 

(b), plus 60 sec ammonia plasma treatment (the inset shows the high-resolution C 1s spectrum 

of sample) (c). 
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Figure 6.9. Elemental surface composition of the untreated and oxygen plasma treated PTFE 

samples with the treatment time; [F]:[C] ( ), [O]:[C] ( ). 

High resolution C1s spectra of the oxygen plasma treated samples (Figure 6.10) show 

these structural changes. In addition to the characteristic CF2 peak at 292.48 eV, an increased 

amount of CF3 and CF groups is found at 294.3 eV and 290.6 eV, respectively, at the surface 

of the etched PTFE samples compared to the untreated surface. Hence, we concluded that the 
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oxygen plasma induces some chemical modification. But at longer treatment times, fast 

etching process predominates chemical surface modification resulting in morphology changes 

which was confirmed by SEM and SFM measurements. Due to the difference in plasma 

susceptibility of crystalline and amorphous polymer regions, crystalline regions etch more 

slowly than amorphous regions [Yas90, Dwi84, Dwi77]. 
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Figure 6.10 High-resolution C 1s spectra of 

untreated (a) and oxygen plasma treated 

PTFE; duration: 5 s (b), 15 s (c), 30 s (d), 60 

s (e), 120 s (f), 300 s (g), and 600 s (h). 

 

The survey spectrum together with the high-resolution C1s spectrum of a PTFE 

sample treated for 10 min by oxygen plasma and subsequently by ammonia plasma for 60 sec 

is shown in Figure 6.8c. Based on the quantitative analysis of O1s, N1s and C1s peaks of XPS 

spectrum, it can be concluded that amino groups and hydroxyl groups were incorporated 

covalently into the PTFE surface after ammonia plasma etching. Thus, we obtained rough 

functionalized PTFE surface. 

To characterize the wetting behavior of the PTFE surfaces with water we carried out 

contact angle measurements using two sessile drop techniques, as described in Section 4.3.5  
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We obtained a composite surface with ultra-hydrophobic properties using plasma 

treatment. The large structures (at the micrometer scale) of the surface trap air below a drop of 

liquid. The drop sitting on the surface is in the contact with both solid surface and air. 

Figure 6.11 shows a typical ADSA contact angle plot obtained for untreated and after 

600 s O2 plasma treated PTFE foils. When the drop volume V is increased (Figure 6.11a) the 

three-phase contact line starts to move and the contact radius R increases with a velocity of 

0.19 mm/min while the advancing contact angle θa is nearly constant. The mean θa is 

calculated to be of 133° ± 0.1°. Then the volume of the drop is decreased constantly while the 

contact radius of the drop remains constant and the contact angle decreases. At a certain point, 

the contact line starts to recede and the contact angle becomes constant. A value of 98.7° was 

determined at that point. Obviously, the roughness of the untreated PTFE foil (rms ≈ 200 nm) 

causes this high contact angle.  

 

Figure 6.11 ADSA contact angle measurements of water on untreated (a) and oxygen plasma 

treated (600 sec) PTFE surfaces (b). θ is the contact angle, R is the contact radius of the 

sessile drop and V is the drop volume. Contrary to untreated surface, the contact radius starts 

to decrease immediately when the volume of the drop is decreasing indicating nearly no 

contact angle hysteresis for oxidized surface. 

Longer treatment times cause an increase in the receding contact angle, while the 

advancing angle does not change significantly. After 600 sec very high advancing and 
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receding contact angles of about 150° up to 160° are found indicating nearly no contact angle 

hysteresis. From Figure 6.11b it can be seen that in this case the contact radius starts to 

decrease immediately when the volume of the drop is decreasing.  

Afterwards, the PTFE samples were treated by micro-wave ammonium plasma for a 

short period of time (20 s). It was observed a some additional increase of the film roughness 

after this treatment. XPS spectra indicate the incorporation of amine groups into the surface 

(16% of nitrogen) (Figure 6.8c). Advancing and receding contact angles decrease 

substantially to 100o and 45o, respectively, showing large hysteresis (Figure 6.12). 

The hydroxyl and amino functional groups, which have been introduced by the plasma 

treatment, are subsequently used to create the second level of surface structure: a mixed brush 

consisting of two carboxyl terminated incompatible polymers PSF-COOH and P2VP-COOH. 

The brush was fabricated using two-step "grafting to'' procedure. In the first step, PSF-COOH 

was spin-coated on the surface of the PTFE film and heated for 6 hours at 150o C to graft the 

first polymer PSF-COOH from the melt. Non-grafted polymer was removed with Soxhlet 

extraction. Then, the second polymer P2VP-COOH was grafted using the same procedure. 

FTIR ATR spectra give evidence for the grafting of both polymers: characteristic bands of 

PSF-COOH (1601, 2923, and 3027 cm-1) and PVP-COOH  (1586 and 1590 cm-1) are 

identified in the spectra. Quantitative evaluation using XPS and FTIR-ATR spectra gives the 

composition of the mixed brush 50:50 ± 10 %. 

 

Figure 6.12. Advancing and receding 

water contact angles measured on 

surface treated PTFE foils as a function 

of the treatment time in ammonia 

plasma. The PTFE surfaces were etched 

in oxygen plasma for 600 sec and then 

treated with ammonia plasma. 

 

A reference sample was also prepared using the same protocol except for a much 

shorter treatment (60s) in oxygen plasma which resulted in a surface roughness of less than 

100 nm.  

Covalent binding to the substrate surface prevents macrophase separation in the mixed 

brush and the chains self-assemble laterally into domains which are of the molecule (50 nm) 
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size[Muel02]. Simultaneously, the chains segregate perpendicular to the grafting surface. 

There is a subtle interplay between lateral and perpendicular segregation which affects the 

film morphology and its surface properties. This switching of morphology has been recently 

proved based on X-ray photoemission electron microscopy experiments [Min02b, Min01, 

Sid99a]. Exposure to a selective solvent results in enrichment of the favored component at the 

top of the polymer film, while the other component collapses into dense dimples in the 

interior of the polymer film (Figure 6.4c-e). On the other hand, P2VP builds round domains in 

the matrix of PSF (Figure 6.4g) upon exposure to toluene. The inverse situation is observed 

upon exposure to acid water (pH 3). In the latter case PSF forms clusters buried in the P2VP 

matrix. We observe lamellar-like domains of both polymers on the surface (Figure 6.4 f) upon 

exposure to 1,4-dioxane. Contact angle measurements confirm the switching of surface 

composition.  

 

Figure 6.13. Photograph of a water drop 

deposited onto the SAS: the 

stroboscopic image shows that a water 

drop jumps and rolls on the ultra-

hydrophobic surface obtained after 

exposure of the sample to toluene (a). In 

contrast, exposure to acidic water 

switches the sample to a hydrophilic 

state and the water drop spreads on the 

substrate (b). 

The advancing contact angle of water on the control sample was measured to be 118o after 

exposure to toluene, 25o after exposure to water (pH 3), and 75o after exposure to 1,4-dioxane. 

In contrast, a much more pronounced modification of surface properties was observed for the 

two-level structured surface. An advancing contact angle of 160o was measured after exposure 

to toluene. A drop of water rolls easily on the surface, a fact that indicates also a very small 

hysteresis of the contact angle (Figure 6.13a). Afterwards, the same sample was immersed in 

acid water (pH 3) bath for several minutes and dried. However, a drop of water spreads on the 

surface because of the wicking effect (Figure 6.13b). These observations demonstrate the 

usefulness of combining large scale roughness (scale of micrometers) with the self-assembled 

structure of a binary polymer brush in the range of nanometers, and it reflects the "smart'' 

properties of the self-adaptive surface (SAS). From Figure 6.14 it can be seen that switching 
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of wettability between θa=150°/θr=150° and θ=0° is completely reversible by dipping the 

sample in toluene and water (at pH=3), respectively. 

 

Figure 6.14 Reversible switching 

between ultra-hydrophobic and 

hydrophilic surface properties by 

dipping the PTFE sample with 

grafted PSF/P2VP binary brush in 

toluene and water (pH=3), 

respectively. The  

hydrophobicity/hydrophilicity is 

measured by water contact angles.  

 

 

 

 

 

 

Figure 6.15. Switching adhesion with 

SAS: the plot presents the change of the 

force applied to the Tesa® band 

defoliated from SAS vs. distance (X) 

from the starting point. The dashed line 

marks the border between ultra-

hydrophobic (black) and hydrophilic 

(gray) areas on SAS. 

It is noteworthy that after the treatment with toluene the wetting hysteresis depends on 

the time of the water drop contact with the substrate. The difference between advancing and 

receding contact angles is within the error of the measurement (± 2o) after 30 sec while in 

several minutes the difference increases dramatically due to the slow switching of the surface 

composition to more hydrophilic state. 

SAS can be employed for constructing sophisticated functional materials. Switching of 

SAS results in tuning of various kinds of interaction mechanisms with its surroundings. An 
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example of practical importance are van der Waals interactions which can be used to regulate 

adhesion.  

As an illustration, a simple adhesion test was performed in which the Tesa®-tape was 

glued to the plate with SAS. Half  the plate is in the hydrophilic state and the other half is in 

the hydrophobic state. A sharp decrease of adhesion was observed, when we cross the border 

between the ultra-hydrophobic and hydrophilic areas on the sample (Figure 6.15). 

 

6.7. Conclusions. 

Plasma etching is a suitable technique to fabricate ultrahydrophobic polymer surfaces. 

To produce ultrahydrophobic PTFE surfaces with specifically designed surface roughness an 

interplay of the size scale of the roughness features, their morphology and the surface free 

energy are important. Contact angle hysteresis strongly depends on the geometrical nature of 

the roughness: a certain type of roughness rather than its absolute size is the determining 

factor to reach ultrahydrophobicity. “Composite” (air trapped) surfaces, with pin- or spire-like 

features and open spaces between them are necessary. To preserve ultrahydrophobicity, the 

size scale of the features regarding their vertical heights and lateral distances can vary from 

submicrometer to micron-scale roughness. The transition to ultrahydrophobicity can be 

shifted to a lower size scale of roughness by lowering the surface free energy.  

We reversibly tuned the surface properties of PTFE by grafting demixed polymer 

brushes of PSF-COOH and PVP-COOH onto the structured surfaces. It results in a sharp 

transition of wettability from ultrahydrophobic to hydrophilic wetting behavior upon exposure 

to different solvents. 
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Summary and Outlook 

 

Surfaces and interfaces play an important role in controlling the properties of a broad 

range of modern materials. Recent advances in the analytical techniques for surfaces have led 

to improved knowledge of material surfaces and interfaces. At the same time, synthetic and 

processing tools have been proved for a better control of surfaces and interfacial 

characteristics for specific applications. 

The framework of this thesis aims to fabricate materials, which change surface 

characteristics in response to environmental conditions. This response may be employed to 

improve such material characteristics as adhesion, wettability, interaction with cells etc. One 

of the possible routes to approach this goal comprises the grafting of mixed polymer brushes 

onto the solid surface. The mixed brushes introduce adaptive and switching behavior in 

different surrounding media.  

Mixed polymer brushes are an remarkable representative of the class of responsive 

materials and may find diverse applications for the development of smart materials, devices, 

sensors, imaging technologies, adaptive biomaterials, molecular lubricants etc. If a mixed 

brush of hydrophilic and hydrophobic homopolymers is exposed to a hydrophilic solvent the 

hydrophilic component preferentially segregates to the top of the film and the surface 

becomes hydrophilic. Exposing the same brush to a hydrophobic solvent reversibly switches 

the surface from hydrophilic to hydrophobic state. The phase behavior of mixed brushes is 

determined by competition of the mixing entropy and elastic behavior of polymer chains. 

Anchoring of the polymer chains prevents macroscopic segregation of incompatible species. 

By this mean, two main approaches were employed to fabricate mixed polymer brushes: 

“grafting to” and “grafting from”. 

The main difference between the fabrication of mono and mixed (binary) brushes is 

introduced by two times repeating grafting procedure, when the grafting of the first polymer is 

followed by the grafting of the second polymer. Block copolymers with anchoring groups 

were also grafted to fabricate mixed polymer brushes with similar switchable behavior. 
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Applying different surface modification approaches mixed PS/PVP polymer brushes 

were synthesized via step-by-step grafting of these two polymers from polyamide (PA) 

surfaces. The surface of PA should be functionalized to anchor the initiator of radical 

polymerization or to graft end functionalized polymer chains. We show that NH3 plasma can 

be successfully used for the introduction of amino and OH functionalities on PA surfaces with 

following attachment of azo initiator of radical polymerizaton. The covalent bonding of the 

initiator improves the grafting procedure, although the chain transfer mechanism introduces 

also, but less effective, the mixed brush on the untreated PA surface. 

The grafting procedure causes a substantial increase of the PA surface roughness, 

which we explain by banding of the swollen PA substrate during grafting procedure. We 

found no deep penetration of the grafting process into the PA substarte and proved that the 

surface roughness is driven by grafting events occurring on the very top layer of the substrate.  

The mixed brushes prepared on the surface of PA textiles combine both the switching 

effect and effect of composite surface (i.e. micrometer scale roughness) which substantially 

amplifies the switching range. 

The vitality tests have shown that the grafted binary polymer brushes improve the 

adhesion of fibrolasts and endothel cells to the modified PA textiles. This effect can be used 

for the further application of the binary brush modified materials. 

We used also another approach for fabrication of mixed polymer brushes on silica 

surfaces. Mixed polymer brushes prepared from P(S-b-2VP-b-EO) and P(S-b-4VP) block 

copolymers were grafted to both the flat surface (Si wafers) and to the surface of silica 

nanoparticles via quaternization reaction of the pyridine nitrogen. This one step grafting 

technique has a substantial advantage over the multistep grafting of mixed polymer brushes 

consisting of two incompatible polymers. 

Nanoparticles with grafted mixed brushes may be used for the fabrication of coatings 

with switching behavior. 

Reversibly tuning of the surface wetting behavior can be performed with mixed 

brushes in a broad range of contact angle values. Surface texture may strongly amplify the 

switching effect between wetting and non-wetting states. We have demonstrated that 

combination of the two level hierarchical organization of polymer films at macroscopic and 

nanoscopic levels resulted in the formation of self adaptive surfaces switchable in controlled 
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environment from ultra-hydrophobic to hydrophilic energetic states. The PFS/PVP mixed 

brush was grafted onto the pre-treated PTFE surface (plasma etching) with the needle like 

topography. The size of vertical needles was at micron scale. If the brush was switched to the 

hydrophobic state upon exposure to toluene the layer has shown a unique ultra-hydrophobic 

behavior (complete non-wetting) with the contact angle approaching value of 160o. If the 

mixed brush was switched into the hydrophilic state upon exposure to acidic water, the 

surface became completely wetted due to the capillary forces in the pores formed by the 

needle like structure. Thus, the surface can be either highly wettable or completely non-

wettable with the self cleaning properties. 

In conclusion, we obtained a series of results related to reversible changes in structural 

organization and surface morphology of polymeric systems composed of grafted polymer 

brushes of different types. We demonstrated how the changes of structural organization 

results in dramatic alterations of surface properties. These properties can be controlled by 

external stimuli and, therefore, these surfaces can be used as both sensing and active elements 

responsive to environmental conditions. 
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LIST OF ABBREVIATIONS AND SIMBOLS 
 
N    polymerization index. 

RE    wavelength of the ripples 

α    absorption coefficient 

ϕ    concentration of statistical segments 

Θ    contact angle 

Θ*    contact angle on rough surface 

Λ    coupling constant 

λ    dominant inplane length 

χ    Flori Huggins interaction parameter; 

Θ    internal angle of incident of IR radiation 

ζ    solvent selectivity  

Ω    surface of the layer. 

γ   surface tension 

χ    the Flory-Huggins parameter 

λ    wavelength of light 

ν   dimensionless volume parameter 

µ �   chemical potential 

χ´    repulsion (attraction) parameter for two unlike monomer units 

ϕb    ratio of the surfaces of the spike bases over the total solid surface 

γlv,    interfacial tension of the liquidvapor  

θR    angle of incidence of IR beam on the crystal 

ϕs    solid fraction of the surface 

γsl�    solidliquid interfacial tension  

γsv�,    solidvapor interfacial tension 

1,4PBD   1,4polybutadiene 

a –   diameter 

A    surface area 

A0    amplitude of free oscillations 

ACPA   4,4´azobis(4cyanopentanoic acid); 

ADSAP   Axisymmetric Drop Shape Analysis Profile 

AFM   Atomic Force Microscopy 

Ai    peak area for element I 
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LIST OF ABBREVIATIONS AND SIMBOLS 
 

AIBN   4,4’azobis(isobutyronitrile) 

ATR    Attinuated Total Reflection 

ATRP   Atom Transfer Radical Polymerization 

BC    Block Copolymers 

BUDTMS  11bromoundodeciltrimethoxisilane 

c    speed of light in vacuum 

CHA    Concentric Hemispherical Analyzer 

Ci    background the atomic concentration 

ClACPA  chloroanhydride of ACPA; 

d    average distance between the tethering points 

dp    penetration depth of IRradiation 

DSA    Drop Shape Analysis  

E    mixing free energy per chain 

e.g.   for example; 

Eb    binding energy of the photoelectron in the excited electron shell 

ECR    electron cyclotron resonance 

Ek     kinetic energy of the photoelectron 

ESCA   Electron Spectroscopy for Chemical Analysis 

et al.   Latin abbreviation meaning and others; 

eV   electronvolt, an energy unit which equals 1.60218·1019 J; 

F    free chain energy  

Fel    price of a high elastic free energy 

Fint    interaction energy per polymer chain 

FTIR    Fourier Transform Infrared Reflectometry  

G   the Gibbs energy 

GPC    Gel Permeation Chromatography 

GPS    (3glycidoxypropyl)trimethoxysilane; 

h   the Planck’s constant 

IR    Infrared Spectroscopy 

Ir    reflected ratio of the light intensity 

IRE   Internal Reflection Element 

It    transmitted ratio of the light intensity  

k    (1)imaginary part (extinction coefficient); (2) the Boltzmann constant, 

1.38065·1023 J/K 
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LIST OF ABBREVIATIONS AND SIMBOLS 
 

L    layer thickness 

Mn   chain number averaged molecular mass; 

Mw   weight averaged molecular mass; 

ń     complex refractive index 

n    number of moles 

N   number of statical segments 

n   (1) real part or index of refraction; (2) refractive index; (3) total number of 

molecules in the layer 

NA   the Avogadro constant which is the number of particles in one mole of matter, 

NA = 6.02214·1023 mol1; 

NMR   Nuclear Magnetic Resonance 

NMRP   NitroxideMediated Radical Polymerization 

p   pressure 

P(Sb2VPbEO) Poly(styreneb2vinypyridinebetyleneoxyde) 

P(Sb4VP)   Poly(styreneb4vinyl pyridine) 

PA   polyamide 

PA6    polyamide Durethan® B 

PA6I    polyamide Durethan® T 

PAA   polyacrylic acid 

PBA   polybutylacrylate 

PBD    1,2polybutadiene 

PDMS  polydimethylsiloxane; 

PE   polyethylene  

PEO   polyethyleneoxide 

PGMA   poly(glycidylmethacrylate) 

PMA   polymethylacrylate; 

PMMA  polymethylmethacrylate 

PS   polystyrene 

PSbPDMA  polystyrenebpoly(dimethylsiloxane) 

PSbPMA  polystyrenebpoly(methylacrylate) 

PSbPMMA polystyrenebpoly(methylmetacrylate) 

PSbPVP polystyrenebpoly(4vinylpyridine) 

PSF  poly(styreneco2,3,4,5,6pentafluorostyrene); 

PtBA   polytetrabutylacrylate 

 115



LIST OF ABBREVIATIONS AND SIMBOLS 
 

PTFE   polytetrafluoroethylene 

R   reflection intensity ratio 

r    surface roughness 

R0    radius of an unperturbed ideal coil 

RMS   Root Mean Square 

rs   roughness coefficient  

S   entropy 

SAS   Self Adaptive Surface 

SCF   Self Consisted Field 

SEM   Scanning Electron Microscopy  

Si    relative sensitivity factor for element  

Sq   surface root mean square roughness value 

SSL   Strong Stretching Limit 

T   (1) temperature; (2) transmission intensity ratio 

TEM   Transmission Electron Microscopy 

Tg   glass transition temperature 

THF   tetrahydrofurane 

U   internal energy 

UHV   Ultra High Vacuum 

UVO    Ultraviolet/Ozone 

v    speed of light in the material 

V   volume 

XPEEM  X ray Photoemission Electron Microscopy 

XPS    X ray Photoelectron Spectroscopy 

XRD    X ray Diffraction  

∆   (1) difference (e.g. ∆x = x2 – x1); (2) ellipsometric angle; 

�´    inverse stretching parameter 

λ   wavelength, 

�     frequency of the X ray 

�    work function of the spectrometer 

Ψ   ellipsometric angle; 
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