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Abstract

Using 90.4 fb−1 of data taken at the BABAR experiment in the years 1999 to 2002,
the decays D∗+s → D+

s π
0 and D∗+s → D+

s γ have been reconstructed with two
different methods. Signal Monte Carlo events as well as D∗0 decays have been
used to determine the reconstruction efficiencies. Thereby, the partial widths ratio
Γ(D∗+s → D+

s π
0)/Γ(D∗+s → D+

s γ) has been measured in four different ways, and
the following results have been obtained:

Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) = 0.0621± 0.0049± 0.0063;

Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) = 0.0653± 0.0048± 0.0082;

Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) = 0.0574± 0.0046± 0.0089;

Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) = 0.0593± 0.0044± 0.0092.

The first error is statistical, the second represents systematic uncertainties.
Additionally, the partial widths ratio Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ) has been

measured:

Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ) = 1.7401± 0.0204± 0.1247.

Kurzfassung

Unter Benutzung von 90.4 fb−1 Daten, die das BABAR-Experiment in den Jahren
1999 bis 2002 genommen hat, wurden die Zerfälle D∗+s → D+

s π
0 und D∗+s → D+

s γ
mit zwei verschiedenen Methoden rekonstruiert. Die Rekonstruktions-Effizienzen
wurden mittels Signal-Monte Carlo-Ereignissen und D∗0-Zerfällen ermittelt. Auf
diese Weise wurde das Partialbreiten-Verhältnis Γ(D∗+s → D+

s π
0)/Γ(D∗+s → D+

s γ)
auf vier verschiedene Weisen gemessen, wobei sich folgende Ergebnisse ergaben:

Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) = 0.0621± 0.0049± 0.0063;

Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) = 0.0653± 0.0048± 0.0082;

Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) = 0.0574± 0.0046± 0.0089;

Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) = 0.0593± 0.0044± 0.0092.

Der erste Fehler ist statistisch, der zweite repräsentiert systematische Unsicher-
heiten.

Zusätzlich wurde das Partialbreiten-Verhältnis Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ)
gemessen:

Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ) = 1.7401± 0.0204± 0.1247.
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Chapter 1

Introduction

This dissertation presents an analysis in which the phenomenon of isospin sym-
metry breaking in the standard model is studied. The goal of the analysis is to
measure the branching fraction of the isospin-violating decay1 D∗+s → D+

s π
0; ex-

perimentally, this is best achieved by a measurement of the partial widths ratio
Γ(D∗+s → D+

s π
0)/Γ(D∗+s → D+

s γ). The same D+
s sample is used for the reconstruc-

tion of the decays D∗+s → D+
s π

0 and D∗+s → D+
s γ, so that systematic uncertainties

in the D+
s reconstruction cancel in the ratio. Under the assumption that the D∗+s

meson can decay only toD+
s π

0 orD+
s γ, i.e., B(D∗+s → D+

s π
0)+B(D∗+s → D+

s γ) = 1,
B(D∗+s → D+

s π
0) can be calculated from the partial widths ratio.

A previous measurement of the ratio Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) was

performed by the CLEO Collaboration in 1995 [1], using 3.75 fb−1 of data. The ratio
resulting from this measurement has a statistical error of + 32%

− 29% and a systematic
uncertainty of ±35%.

The analysis presented in this dissertation has used 90.40 fb−1 of data accu-
mulated at the BABAR experiment in the years 1999 to 2002. While CLEO’s
previous result is confirmed, BABAR’s amount of data allows a measurement of
Γ(D∗+s → D+

s π
0)/Γ(D∗+s → D+

s γ) with much greater precision than CLEO could
achieve.

BABAR has primarily been designed to study CP violation in the system of B0B0

meson pairs, but its high luminosity allows a rich physics program, which makes
it also ideally suited to study the physics of charmed mesons. BABAR’s recent
observation of the charmed meson state D∗sJ(2317)

+ [2] constitutes an important
contribution to the area of charm physics.

An efficient detection of photons as well as a precise measurement of photon
energies is crucial for this analysis, both for the reconstruction of the decay D∗+s →
D+
s γ and the reconstruction of π0 mesons from the decayD∗+s → D+

s π
0. Specifically,

due to the small mass difference [3]

mD∗+s
−mD+

s
= 143.8MeV/c2, (1.1)

1References to a specific particle or decay channel also imply the charge-conjugated particle or
decay channel. E.g., the notation D∗+s → D+

s π
0 also implies the decay D∗−s → D−s π0.

1



Chapter 1

which is only slightly larger than the π0 mass mπ0 = 135.0MeV/c2 [3], the decay
D∗+s → D+

s π
0 produces slow π0 mesons. With its electromagnetic calorimeter (de-

scribed in detail in Section 3.2.5), which is designed to be efficient over a wide energy
range, the BABAR detector is well suited for this task. It is therefore possible to use
π0 mesons with a momentum in the center-of-mass frame of p∗

π0 > 150MeV/c, while
CLEO used only π0 mesons with a momentum of p∗

π0 > 250MeV/c [1].

The reconstruction efficiencies of the decays D∗+s → D+
s π

0 and D∗+s → D+
s γ

are determined in two different ways. First of all, signal Monte Carlo events are
used, and secondly, the ratio of the efficiencies is obtained from a measurement
of the event yield ratio of the decays D∗0 → D0π0 and D∗0 → D0γ. The latter
method requires knowledge of the branching fractions of these decays, which are
currently not known with great precision. Therefore, the smallest uncertainty in
Γ(D∗+s → D+

s π
0)/Γ(D∗+s → D+

s γ) is achieved by determining the efficiencies with
signal Monte Carlo events. However, if B(D∗0 → D0π0)/B(D∗0 → D0γ) is measured
with greater precision in the future, this also improves the precision of Γ(D∗+s →
D+
s π

0)/Γ(D∗+s → D+
s γ), so that ultimately the second method of determining the

efficiencies could become superior to the first.

Alternatively, the measurement of the event yield ratioN(D∗0 → D0π0)/N(D∗0 →
D0γ) can be used to determine the partial width ratio Γ(D∗0 → D0π0)/Γ(D∗0 →
D0γ), if the ratio of the efficiencies is calculated from signal Monte Carlo events.
The result is also presented in this dissertation.

1.1 Outline

This dissertation is structured in the following way:

• Chapter 2 gives a short introduction to the theory of isospin symmetry break-
ing in the standard model and describes the prediction for B(D∗+s → D+

s π
0)

as calculated using chiral perturbation theory.

• The BABAR experiment and detector are presented in Chapter 3. This chapter
describes the subsystems of the BABAR detector and their properties.

• Chapter 4 presents the measurement of the partial widths ratio Γ(D∗+s →
D+
s π

0)/Γ(D∗+s → D+
s γ). First of all, the particle identification and the re-

construction of D+
s mesons are described. The next section explains the se-

lection of π0 → γγ candidates. Following sections present how the decays
D∗+s → D+

s π
0 and D∗+s → D+

s γ have been reconstructed.

Finally, the two methods for the determination of the reconstruction efficien-
cies, signal Monte Carlo events and measurements of N(D∗0 → D0π0) and
N(D∗0 → D0γ), are introduced, and the results for the measurements of
Γ(D∗+s → D+

s π
0)/Γ(D∗+s → D+

s γ) and Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ) are
shown.

2
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• Chapter 5 describes how the backgrounds under the D∗+s and D∗0 signals have
been studied and how these backgrounds affect the result. D+

s , D0, and π0

sidebands have been analyzed.

• To test for a possible momentum dependency of Γ(D∗+s → D+
s π

0)/Γ(D∗+s →
D+
s γ), the ratio has been measured separately in five momentum bins. This

test is presented in Chapter 6, and the systematic uncertainty caused by a
possibly unknown momentum dependency is estimated.

• Chapter 7 summarizes the systematic uncertainties.

• Finally, the results are shown in Chapter 8.

3
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Chapter 2

Theory and Motivation

2.1 The Quark Model

The quarks as the constituents of the mesons and baryons can be divided into three
‘families’, where corresponding members of different families differ in their mass,
but have the same electric charge:

(

u

d

) (

c

s

) (

t

b

)

Q = +2/3e

Q = −1/3e

Antiquarks have the same mass as the corresponding quarks, but opposite electric
charge.

The two lightest quarks, u and d, both have similar constituent masses mud ≈
300MeV/c2, which makes it possible for uu and dd states to mix. This phenomenon
is described by the isospin I: u and d form an isospin doublet (I = 1/2) with
I3 = +1/2 for the u and I3 = −1/2 for the d quark. I3 of the antiquarks has the
opposite sign as I3 of the corresponding quark.

The next heavier quark, s, has isospin I = 0. It is characterized by a new
quantum number, the ‘strangeness’ S, which is −1 for the s quark and +1 for the
s antiquark. The three quarks u, d, and s can be combined to the flavor symme-
try group SU(3); the nine combinations are represented as an octet and a singlet.
Considering only pseudoscalar (JP = 0−) mesons, the octet states are

•
∣

∣π+
〉

=
∣

∣ud
〉

,

•
∣

∣π−
〉

=
∣

∣du
〉

,

•
∣

∣K+
〉

=
∣

∣us
〉

,

•
∣

∣K−〉 =
∣

∣us
〉

,

•
∣

∣K0
〉

=
∣

∣ds
〉

,

•
∣

∣K0
〉

=
∣

∣ds
〉

,
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K
−

K0 K+

K0

π +π0

η’
π−

I3

S

−1 0 +1

0

−1

+1

η

Figure 2.1: Classification of the light pseudoscalar mesons by isospin I3 and strange-
ness S.

•
∣

∣π0
〉

=
(∣

∣uu
〉

−
∣

∣dd
〉)

/
√
2,

•
∣

∣η8

〉

=
(∣

∣uu
〉

+
∣

∣dd
〉

− 2
∣

∣ss
〉)

/
√
6,

and the singlet state is

•
∣

∣η1

〉

=
(∣

∣uu
〉

+
∣

∣dd
〉

+
∣

∣ss
〉)

/
√
3.

The s quark is heavier than the u and d quarks; it has a constituent mass of
approximately ms ≈ 450MeV/c2. Therefore, the SU(3) symmetry is broken, which
causes the

∣

∣η8

〉

and
∣

∣η1

〉

states to mix. However, there is only a slight mixing, so
that the physical states

∣

∣η
〉

and
∣

∣η′
〉

correspond almost exactly to
∣

∣η8

〉

and
∣

∣η1

〉

,
respectively. A classification of the light pseudoscalar mesons by isospin I3 and
strangeness S is depicted in Figure 2.1.

2.2 Isospin Symmetry Breaking

Due to the mass difference between the u and d quarks [4],

md −mu

md +mu
= 0.29± 0.05, (2.1)

the isospin symmetry is broken, and therefore mixing between the π0 and the η
mesons is possible. It is described by a mixing angle θ, which in lowest order chiral
perturbation theory is given by [5]

θ =

√
3

4

md −mu

ms −mud
, mud =

mu +md

2
. (2.2)
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s s

s

D*s
+ D s

+
c c

s
η

Figure 2.2: Feynman diagram of the process D∗+s → D+
s η. The η couples through

its ss component.

The numerical value thereby obtained for the mixing angle is θ ≈ 0.01, but it should
be noted that next to leading order corrections are typically of the order of 30% [4].

Experimentally, the phenomenon can best be studied by measuring the branching
fraction for the D∗+s → D+

s π
0 decay [6]. The D∗+s and D+

s mesons both have isospin
I = 0, while the π0 meson has isospin I = 1, so unlike the hadronic D∗+ decay,
D∗+s → D+

s π
0 is an isospin-violating process.

Cho and Wise describe the decay at tree level as the emission of a virtual η by
the D∗+s , which is isospin-conserving, followed by the isospin-violating mixing of the
η into a π0 [6]. The D∗+s → D+

s η transition is dominantly strong, but also contains a
small electromagnetic contribution, which is suppressed by a factor of α/π ≈ 1/430,
and is therefore neglected in the partial width calculation.

The η couples through its ss component. The process is shown in Figure 2.2.

2.3 Calculation of B(D∗+
s → D+

s π
0)

A calculation of the partial width yields

Γ(D∗+s → D+
s π

0) =
g2

48πf2
η

(

md −mu

ms −mud

)2

p3
π0 , (2.3)

where g denotes the (unknown) coupling constant, fη the decay constant, and pπ0 the
momentum of the π0 meson. The usage of fη = 171MeV instead of fπ = 132MeV
takes higher order chiral perturbation theory SU(3) breaking into account.

It is possible to get rid of the unknown coupling constant g in the limit of
SU(3) symmetry. By assuming Γ(D∗+s → D+

s γ) = Γ(D∗+ → D+γ) and fη = fπ,
Equation 2.3 and the partial width

Γ(D∗+ → D0π+) =
g2

6πf2
π

p3
π+ (2.4)
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can be used to calculate

B(D∗+s → D+
s π

0) ≈ Γ(D∗+s → D+
s π

0)

Γ(D∗+s → D+
s γ)

=
1

8

(

md −mu

ms −mud

)2 p3
π0

p3
π+

B(D∗+ → D0π+)

B(D∗+ → D+γ)

=
2

3
θ2 p

3
π0

p3
π+

B(D∗+ → D0π+)

B(D∗+ → D+γ)
.

(2.5)

With θ = 0.01 and the measured branching fraction B(D∗+ → D0π+) = 67.7% [3],
the following result is obtained:

B(D∗+s → D+
s π

0) ≈ 8× 10−5

B(D∗+ → D+γ)
. (2.6)

The partial widths of the electromagnetic transitions of charmed vector mesons
to their pseudoscalar counterparts

Γ(D∗i → Diγ) =
α

3
|µi|2 p3

γ , i ∈ {u, d, s}, D
(∗)
i ∈ {D(∗)0, D(∗)+, D(∗)+

s } (2.7)

depend on the transition magnetic moments µi. Since both the coupling to the
heavy charm quark and to the light quark contribute, the µi = µ(h) + µi

(`) are the
sum of the charm magnetic moment, µ(h) = 2/(3mc), which is fixed by heavy quark
spin symmetry, and the light quark magnetic moments µi

(`) = βQi, which in the
SU(3) symmetry limit are proportional to the electric charges of the quarks with
some unknown proportionality constant β.

In chiral perturbation theory, the leading SU(3) corrections, which arise from
one-loop Feynman diagrams, are calculable and are of the order O(

√
mq). They

modify the light quark transition moments in the following way [7]:

µu
(`) = +

2

3
β − g2mK

4πf2
K

− g2mπ

4πf2
π

, (2.8)

µd
(`) = −1

3
β +

g2mπ

4πf2
π

, (2.9)

µs
(`) = −1

3
β +

g2mK

4πf2
K

. (2.10)

It should be noted that since a neutral pion or kaon does not couple to the photon,
only virtual states with a charged pion or kaon contribute to the corrections of
the magnetic moments. The one-loop contributions are therefore not in the ratio
+2 : −1 : −1, i.e., they violate SU(3) symmetry.

The moments depend on the unknown values of β and g, which can be determined
by measurements of the independent radiative branching fractions B(D∗0 → D0γ)
and B(D∗+ → D+γ). Once β and g are known as functions of B(D∗+ → D+γ), it is

8
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B(D∗+
→ D+γ)

B
(D

∗
+

s
→

D
+ s
π

0
)

0.04

0.08

0.06

0.02

0.00

0.10

0.00 0.01 0.02 0.03 0.04 0.05

Figure 2.3: Correlation between B(D∗+ → D+γ) and B(D∗+s → D+
s π

0) [6]. Leading
SU(3) corrections to the transition magnetic moments are included.

also possible to calculate B(D∗+s → D+
s π

0) as function of B(D∗+ → D+γ) [6]. For
B(D∗+ → D+γ) = (1.6 ± 0.4)% [3], B(D∗+s → D+

s π
0) is in the range of 1 ∼ 3%.

However, it should be noted that B(D∗+s → D+
s π

0) and B(D∗+ → D+γ) are highly
correlated. Specifically, for smaller values of B(D∗+ → D+γ), there is a strong
cancellation between µ(h) and µs

(`) which greatly enhances B(D∗+s → D+
s π

0). The
correlation between B(D∗+ → D+γ) and B(D∗+s → D+

s π
0) is shown in Figure 2.3.

SU(3) corrections to the transition magnetic moments of the order O(mq) may
also be important [6]. Unfortunately, these corrections are not completely calculable,
so that unknown terms enter into Equations 2.8–2.10.

2.4 Previous Measurement

The partial widths ratio Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) was measured by the

CLEO Collaboration in 1995 [1]. In 3.75 fb−1 of data, the decay chain D+
s → φπ+,

φ→ K+K− was reconstructed to search for D∗+s → D+
s π

0. After the application of
various selection criteria, 14.7 + 4.6

− 4.0 D
∗+
s → D+

s π
0 events and 944± 57 D∗+s → D+

s γ
events were found (statistical errors only). The D∗+s → D+

s π
0 signal is shown in

Figure 2.4.

The ratio of the efficiencies of the hadronic and radiative D∗+s decays was esti-

9
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Figure 2.4: mD+
s π0 −mD+

s
mass difference as measured by the CLEO Collaboration

in 1995 [1]. The points are the data, the solid line is the fit to the data, and the
dashed line is an estimate of the background.

mated with Monte Carlo events. CLEO has obtained a partial widths ratio of

Γ(D∗+s → D+
s π

0)

Γ(D∗+s → D+
s γ)

= 0.062 + 0.020
− 0.018 ± 0.022. (2.11)

2.4.1 Comparison with the Theory

If the D∗+s meson decays only the D+
s π

0 and D+
s γ, i.e., B(D∗+s → D+

s π
0)+B(D∗+s →

D+
s γ) = 1, the branching fractions can be calculated from the partial widths ratio.

The branching fraction of the hadronic D∗+s decay thereby obtained is

B(D∗+s → D+
s π

0) = 0.058 + 0.018
− 0.016 ± 0.020. (2.12)

While this number is significantly larger than the theoretical prediction of 0.01 ∼
0.03, it must be taken into account that the latter has large uncertainties. Specifi-
cally,

10
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• the mixing angle θ, which enters into Equation 2.5 quadratically, has a large
uncertainty of 30%, and

• unknown terms enter into the SU(3) corrections to the transition magnetic
moments (Equations 2.8–2.10).
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Chapter 3

The BABAR Experiment

3.1 Introduction

In 1964, Christenson, Cronin, Fitch, and Turlay published their discovery that na-
ture is not invariant under the symmetry known as CP, the simultaneous interchange
of particles with antiparticles (charge conjugation C) and spatial inversion (parity P)
[8]. They had demonstrated that the long-lived component of the neutral K me-
son, known as K0

L, can decay to two charged pions π+π− with a branching fraction
in the order of 10−3. Since K0

L is a CP eigenstate with eigenvalue −1, while the
two-pion system π+π− is a CP eigenstate with eigenvalue +1, the decay violates
CP symmetry. Cronin and Fitch received the 1980 Nobel Prize in Physics for the
discovery.

The Standard Model of particle physics has no explanation for what causes
the phenomenon of CP violation. It was therefore proposed in 1993 to construct
an ‘Asymmetric B Factory’ at the Stanford Linear Accelerator Center (SLAC) to
facilitate the study of CP violation in the system of B0B0 meson pairs [9]. The new
machine, to be built into the existing tunnel of the Positron Electron Project (PEP)
and therefore dubbed PEP-II, would collide 9GeV electrons and 3.1GeV positrons
at an unprecedentedly high luminosity of 3 × 1033 cm−2s−1. The collision energy
of
√
s = 10.58GeV in the center-of-mass frame excites the Υ(4S ) resonance, which

decays almost exclusively to a pair of B mesons (B0B0 or B+B−) [3].
Due to the different energies of the electrons and positrons, the center-of-mass

frame is boosted with βγ = 0.56 with respect to the laboratory frame. The B and
B move almost in parallel along the boost direction, so that, even without an exact
knowledge of the position of the primary vertex, the spatial, and therefore also the
temporal, distance between the decays of the B mesons can be determined if the
decay vertices are reconstructed. Knowledge of this distance is crucial for the study
of flavor oscillations and CP violation.

A Letter of Intent to build a detector, named BABAR, at the PEP-II facility was
published in 1994 [10], followed by a Technical Design Report one year later [11]. The
BABAR experiment started to take data in October 1999. At the 30th International

13
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e+e− → Cross-section

bb 1.05 nb

cc 1.30 nb

ss 0.35 nb

uu 1.39 nb

dd 0.35 nb

τ+τ− 0.94 nb

µ+µ− 1.16 nb

e+e− ≈ 40 nb

Table 3.1: Fermion production cross-sections at the energy of the Υ(4S ) resonance,√
s = 10.58GeV [16]. The e+e− → e+e− cross-section refers only to events which

are entirely contained within the geometrical acceptance solid-angle of the BABAR
detector.

Conference on High-Energy Physics (ICHEP 2000) in Osaka, Japan, BABAR and the
Japanese Belle experiment simultaneously announced their discovery of CP violation
in the B0B0 meson system [12, 13]. Both experiments published their results in 2001
[14, 15].

While BABAR is optimized for the study of CP asymmetries in the B meson
system, the high luminosity also makes it ideally suited for searches for rare decays,
and for precision measurements of the decays of bottom and charm mesons and τ
leptons. Table 3.1 lists the fermion production cross-sections at

√
s = 10.58GeV.

3.2 The BABAR Detector

A detailed description of the BABAR detector can be found in [17]. The need to
fully reconstruct B0 mesons in various exclusive final states (many of which include
several charged particles and π0 mesons), and tag the flavor of the second neutral
B, both with high efficiency, places a number of requirements on the detector:

• Large geometrical acceptance;

• High reconstruction efficiency for charged particles down to low momenta of
60MeV/c, and for photons down to low energies of 20MeV;

• Very good momentum and vertex resolution;

• Very good energy and angular resolution for the detection of photons over a
wide energy range;

• Efficient particle identification for both leptons and hadrons.
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Figure 3.1: Longitudinal section through the BABAR detector [17]. All dimensions
are given in mm.

A schematic view of the detector is shown in Figure 3.1. The detector is composed
of a silicon vertex tracker (SVT), a drift chamber (DCH), a Cherenkov detector
(DIRC), an electromagnetic calorimeter (EMC), a superconducting solenoid, and
an instrumented flux return (IFR). These subsystems are described in the following
sections.

3.2.1 Coordinate System

The BABAR coordinate system has its origin at the nominal interaction point (I.P.).
The z-axis points in the flight direction of the electrons, which is also the direction
of the boost of the center-of-mass frame with respect to the laboratory frame. It is
known as the ‘forward direction.’ The y-axis points upwards and the x-axis points
sideways in such a way that the coordinate system is right-handed.
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Figure 3.2: Top half of a longitudinal section through the silicon vertex tracker
(SVT) [17].

3.2.2 The Silicon Vertex Tracker (SVT)

The purpose of the silicon vertex tracker is to facilitate the precise reconstruction of
charged particle tracks and decay vertices close to the interaction region. To fully
reconstruct B mesons, the vertex resolution must be better than 80µm along the
z-axis and 100µm in the xy-plane. Since particles with a transverse momentum
pT below 120MeV/c are too slow to be reconstructed in the drift chamber, the
measurement of the trajectories and the ionization loss dE/dx of these particles
must be possible with the SVT alone.

The SVT is entirely contained within a support tube, which has an inner radius
of 21.7 cm. The vertex detector is 58 cm long and covers a polar angle from 350mrad
from the beam line in forward direction to 520mrad from the beam line in backward
direction. A schematic view is shown in Figure 3.2.

The SVT consists of five layers of double-sided silicon strip sensors. The inner
three layers have a spatial resolution of 10 ∼ 15µm for perpendicular tracks, while
the resolution of the outer two layers is 40µm. Each of the layers is organized into
strips to measure the azimuthal angle φ, which run parallel to the beam axis, and
strips to measure z, which run transverse to the beam axis. There are approximately
150 000 readout channels.

3.2.3 The Drift Chamber (DCH)

The drift chamber is designed for the precise reconstruction of the trajectories and
momenta of charged particles. It also plays an important role for the identification
of particles with low momenta (up to about 700MeV/c), which is achieved with
a measurement of the ionization loss dE/dx. In the extreme forward and back-
ward directions, the drift chamber is the only device to provide information for the
determination of particle masses.

The cylindrical chamber has an inner radius of 23.6 cm, an outer radius of
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80.9 cm, and a length of 276.4 cm. It is composed of 7 104 hexagonal drift cells,
which have a size of 11.9mm in radial direction and approximately 19.0mm in az-
imuthal direction. The cells are arranged in 40 layers. Particles with transverse
momenta above 180MeV/c pass all 40 layers.

The layers are divided into 10 superlayers, each consisting of four adjacent layers.
The number of cells and wire orientation is identical in each layer of a superlayer.
The wire orientation alternates between axial, stereo angle u, and stereo angle v, with
axial wires in the innermost and the outermost superlayer. u and v have opposite
signs; their values vary between ±45mrad and ±76mrad. The whole chamber has
a 16-fold azimuthal symmetry.

Each drift cell contains one sense wire, which has a diameter of 20µm and is
made of gold-plated tungsten-rhenium (WRe), surrounded by six field wires with a
diameter of 120µm, made of gold-plated aluminum (Al). While the field wires are
at ground potential, a voltage of nominally 1 960V is applied to the sense wires.

The chamber uses a helium-based gas mixture, composed of 80% helium (He)
and 20% isobutane (C4H10). This mixture has a radiation length of 807m and a
drift velocity (without magnetic field) of 22µm/ns.

3.2.4 The Detector of Internally Reflected Cherenkov Light (DIRC)

The purpose of the detector of internally reflected Cherenkov light (DIRC) is the
identification of charged particles. A good separation of K± and π± is important for
the flavor-tagging of the B meson, as well as to be able to distinguish the rare decays
B0 → π+π− and B0 → K+π−. Additionally, the amount of material placed in front
of the electromagnetic calorimeter is to be minimized, so that the measurement of
neutral particles is disturbed as little as possible. The DIRC achieves these goals
by separating the Cherenkov light production from the measurement. The design is
shown schematically in Figure 3.3.

144 rectangular bars, made of synthetic, fused silica, form the active region of
the detector. Each bar is 35mm wide, 17mm thick, and 4.9m long. Groups of
12 bars are placed into hermetically sealed containers, called bar boxes, which are
made of thin aluminum. Within each box, the bars are separated by 150µm air
gaps. Figure 3.4 shows a schematic view of a bar box.

The DIRC surrounds the drift chamber and occupies 80mm of radial space. The
active region covers about 94% of the azimuth.

Particles passing through the silica, which has an index of refraction of n = 1.473,
produce a light cone with a Cherenkov angle θC following the relation cos θC = 1/βn
(β = v/c representing the velocity of the particle). A fraction of the Cherenkov pho-
tons is internally reflected within the bars, and since the forward ends are equipped
with mirrors, all internally reflected photons are directed to the backward ends, irre-
spective of their original flight direction. This light transport mechanism preserves
the magnitude of the Cherenkov angle.

At the backward end, the photons are directed into a container of stainless steel,
known as the standoff box, which is located outside of the BABAR detector. It is
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Figure 3.3: Schematic view of the DIRC [17].

Figure 3.4: Transverse section through a DIRC bar box [17]. All dimensions are
given in mm.
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in a sample of 5 000 events. The region above the dotted line is excluded by the K±

selector; see Section 4.2 for details.

filled with 6 000 liters of purified water. The rear of the standoff box is instrumented
with 10 752 photomultiplier tubes (PMTs) with 29mm diameter, which are closely
packed inside the water volume. This results in about 90% of the rear surface being
active for light collection. The PMTs are about 1.2m away from the bar ends.

Measurement of the positions and arrival times of the PMT signals allows the
reconstruction of the Cherenkov angles as well as an association of the light cones
with tracks. Figure 3.5 shows a plot of the Cherenkov angle θC vs. the momentum p,
where electrons, muons, pions, kaons, and protons correspond to to different ‘bands’.
As can be seen, kaons are very well separated from pions and leptons in the accessible
momentum region.

The DIRC has an angular resolution of 10.2mrad and a time resolution of 1.7 ns
for single Cherenkov photons. This results in a track Cherenkov angle resolution
of 2.5mrad for di-muon events, which is close to the design goal of 2.2mrad. The
mean efficiency of kaons selected with the DIRC is 96.2 ± 0.2%, and 2.1 ± 0.1% of
the pions are misidentified as kaons.

3.2.5 The Electromagnetic Calorimeter (EMC)

The electromagnetic calorimeter is designed to measure electromagnetic showers
with high efficiency to allow the reconstruction of π0 and η mesons, as well as the
detection of single photons with excellent angular and energy resolution. Addi-
tionally, it plays an important role for the identification of electrons and for the
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Figure 3.6: Top half of a longitudinal section through the electromagnetic calori-
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separation of electrons from charged pions.

The calorimeter is made of 6 580 thallium-doped cesium iodide (CsI(Th)) crys-
tals, which are grouped into a barrel region and an endcap region. The barrel, which
has an inner radius of 920mm, encompasses 48 axially symmetric rings of 120 crys-
tals each. The crystals are arranged to have a small polar dip angle, i.e., the center
axis of each crystal does not point exactly to the interaction point. This prevents
an acceptance loss which would otherwise result from the fact that the crystals are
separated by about 700µm of wrapping and support structure material.

The conical endcap, which is positioned adjacent to the forward end of the barrel,
is also axially symmetric. It is composed of three rings of 120 crystals, three rings
of 100 crystals, and two rings of 80 crystals.

The calorimeter extends in polar angle from 15.8◦ to 141.8◦, which corresponds
to a 90% solid-angle coverage in the center-of-mass frame. A schematic view is
shown in Figure 3.6.

The geometry of the calorimeter requires a trapezoidal crystal shape (Figure 3.7).
The height of the crystals varies between 29.76 cm and 32.55 cm, the front face
area varies between 19.13 cm2 and 23.13 cm2, and the back face area varies between
25.19 cm2 and 39.90 cm2 [11].

The thallium-doped cesium iodide has a radiation length of 1.85 cm and a light
yield of about 50 000 photons per MeV of deposited energy. The scintillation light
spectrum peaks at a wavelength of 565 nm. Two photo diodes and pre-amplifiers
are attached to the back face of each crystal. This redundancy makes it possible to
read out a channel even if a single diode or pre-amplifier has failed.
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Figure 3.7: Shape of the calorimeter crystals [11].

In order to fulfill the stringent resolution requirements, various calibration and
monitoring mechanisms are in place. To test and calibrate the readout electronics,
it is possible to inject a defined charge into the pre-amplifier input. The single
crystal deposited energy is calibrated at opposite ends of the dynamic range and
interpolated in between. For the low energy calibration, activated Fluorinert is
pumped through a system of thin aluminum pipes which run in front of the crystals.
The reaction 16N → 16O∗ + β, 16O∗ → 16O+ γ(6.13MeV) provides a calibration
point at 6.13MeV. For the high energy calibration, the known kinematics of Bhabha
events (e+e− → e+e−) is exploited to obtain a calibration point in the range of 3 ∼
9GeV, with a well-defined relation between polar angle and e± energy. Furthermore,
a correction on the energy of clusters, which encompass more than one crystal, is
needed to account for shower leakage. It is derived from π0 decays.

To monitor the light response of individual crystals, a light-pulser systems allows
to inject light pulses from a xenon flash-lamp into each crystal through optical fibers.
The intensity of the pulses is itself monitored with a reference system, which is
calibrated with two radioactive sources, 241Am and 148Gd.

Both the energy resolution σE/E and the angular resolutions σθ, σφ of the cal-
orimeter depend on the energy. They are given by the following formulas:

σE/E =
(2.32± 0.30)%

4
√

E/1GeV
⊕ (1.85± 0.12)%;

σθ = σφ =
(3.87± 0.07)mrad
√

E/1GeV
+ (0.00± 0.04)mrad.

(3.1)
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3.2.6 The Solenoid Magnet

The electromagnetic calorimeter is surrounded by a superconducting solenoid coil
with a mean radius of 153 cm, which is embedded in a cryostat system with an inner
radius of 142 cm and a length of 385 cm. The coil operates at a current of 4 596A,
resulting in a magnetic field of 1.5T which stores 27MJ of energy.

3.2.7 The Instrumented Flux Return (IFR)

The magnetic flux of the solenoid is returned in steel plates which are instrumented
with resistive plate chambers (RPCs). This system, called instrumented flux return
(IFR), is used to identify muons and detect neutral hadrons (primarily K0

L mesons
and neutrons).

The flux return consists of a barrel, a forward and a backward endcap, all of
which have a hexagonal cross-section. The thickness of the steel plates varies from
2 cm for the innermost to 10 cm for the outermost plates. The gap between the
plates is 3.5 cm in the inner barrel region and 3.2 cm elsewhere. There are 19 layers
of RPCs in the barrel, 18 layers in each endcap, and 2 layers of cylindrical RPCs
between the electromagnetic calorimeter and the cryostat. The total number of
806 RPCs covers an active area of about 2 000m2.

The RPCs are made of two 2mm thick bakelite (phenolic polymer) sheets, which
have a high resistivity of 1011 ∼ 1012 Ωcm, and which are separated by a 2mm gap.
The volume between the sheets is filled with a gas mixture, consisting nominally
of 56.7% argon, 38.8% 1,1,1,2-tetrafluoroethane (‘Freon 134a’), and 4.5% isobutane.
The exterior surfaces of the bakelite sheets are coated with graphite, and a voltage
of 8 kV is applied between the two graphite layers. Spark discharges are read out
by aluminum strips on both sides of the chambers, which have varying lengths up
to 423 cm and widths between 1.97 cm and 3.85 cm. This results in a total number
of almost 53 000 readout channels.

3.3 Run Periods and Luminosity

As has been explained in Section 3.1, the excitation of the Υ(4S ) resonance requires
a collision energy of

√
s = 10.58GeV. The integrated luminosity recorded in this

mode, which is called ‘on-peak’, amounts to 163.24 fb−1 (until March 2004). Addi-
tionally, BABAR operates at a collision energy 40MeV below the Υ(4S ) resonance
for a fraction of the time to facilitate background studies. In this mode, called
‘off-peak’, 17.27 fb−1 of data have been recorded. Figure 3.8 shows the integrated
luminosities at different times.

The highest peak luminosity which PEP-II achieved until March 2004 is 8.16×
1033 cm−2s−1, which considerably exceeds the design luminosity of 3×1033 cm−2s−1.

Since the error of the analysis presented in this dissertation is dominated by
systematic uncertainties, only data from the first two periods of data taking, known
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as ‘Run 1’ and ‘Run 2’, have been used. Run 1 encompasses October 1999 to
October 2000, while Run 2 includes February 2001 to June 2002.
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Measurement of
Γ(D∗+

s → D+
s π0)/Γ(D∗+

s → D+
s γ)

4.1 Overview

For a reconstruction of the decays D∗+s → D+
s π

0 and D∗+s → D+
s γ, a clear D+

s

signal is required. The decay chain D+
s → φπ+, φ → K+K− has the best signal-

to-background ratio [18], therefore this decay chain has been chosen for the D+
s

reconstruction. D+
s → φπ+ has a branching fraction of (3.6±0.9)% and φ→ K+K−

has a branching fraction of (49.2 + 0.6
− 0.7)% [3].

π0 candidates are reconstructed in the channel π0 → γγ. Since the same set of
D+
s candidates is used for the D∗+s → D+

s π
0 as for the D∗+s → D+

s γ decay channel,
systematic uncertainties in theD+

s reconstruction cancel out when the partial widths
ratio Γ(D∗+s → D+

s π
0)/Γ(D∗+s → D+

s γ) is calculated.

Various selection criteria, which are described in detail in the following sections,
have been applied to obtain D∗+s → D+

s π
0 and D∗+s → D+

s γ signals. Unless stated
otherwise, these criteria have been optimized to maximize the signal efficiency of
the D∗+s → D+

s π
0 channel, i.e., the function S2/(S + B) has been maximized. S

and B correspond to the expected number of signal events and background events
in the signal region, respectively, according to a D∗+s → D+

s π
0 signal obtained from

generic Monte Carlo events.

4.1.1 Data and Monte Carlo Sets

For the inclusive reconstruction of D∗+s → D+
s π

0 and D∗+s → D+
s γ, off-peak and

on-peak data can be used alike. Of the 93.80 fb−1 of data recorded during Run 1
and Run 2, 91.46 fb−1 are available to be used in analyses.

This analysis is based on 90.40 fb−1. The remaining 1.06 fb−1 correspond to
a running period during which the electromagnetic calorimeter was miscalibrated.
Since the efficient identification of neutral particles is crucial for this analysis, the
data from this period have explicitly been excluded.
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Run 1 Run 2 Run 1 + Run 2

Off-Peak 2.60 fb−1 6.98 fb−1 9.58 fb−1

On-Peak 20.73 fb−1 60.09 fb−1 80.82 fb−1

Off-Peak + On-Peak 23.33 fb−1 67.07 fb−1 90.40 fb−1

Table 4.1: Data sets used in the analysis presented in this dissertation. The numbers
have a systematic uncertainty of 0.5% or better [19].

Table 4.1 gives an overview of the data sets which have been used.

Since the start of the BABAR experiment, 573 569 600 generic Monte Carlo events
have been generated in the four channels (referred to as ‘Monte Carlo types’)

• e+e− → Υ(4S )→ B0B0,

• e+e− → Υ(4S )→ B+B−,

• e+e− → cc, and

• e+e− → uu/dd/ss.

During the generation of each Monte Carlo event, the detector conditions of a spe-
cific month of data taking have been simulated, so that changing conditions are
taken into account. The detector background has not been simulated, but measured
background has been mixed into the Monte Carlo events. This has been achieved
with a ‘random trigger’, a system which triggers the read-out of the detector at
random times.

Table 4.2 lists the numbers of Monte Carlo events of the different Monte Carlo
types and run periods. A scale factor has been applied to each event, so that the
scaled number of Monte Carlo events corresponds to the expected number of data
events. For the e+e− → uu/dd/cc/ss channels, this number has been calculated as
the product of the integrated luminosities in Table 4.1 and the corresponding cross-
sections which have been obtained from [16] and are shown in Table 3.1. The number
of BB pairs are measured by comparing the cross-sections of multi-hadron events,
normalized to the e+e− → µ+µ− cross-sections, in on-peak and off-peak data [20].
This method yields, respectively, 22 325 255± 245 839 and 65 399 735± 719 660 BB
events in the Run 1 and Run 2 data sets used in this analysis.

In addition to generic Monte Carlo, signal Monte Carlo events are used. For
each of the channels D∗+s → D+

s π
0, D∗+s → D+

s γ, D
∗0 → D0π0, and D∗0 → D0γ,

30 000 events have been generated.
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Run Monte Carlo type Number of events Scale factor

Run 1 B0B0 27 693 600 0.403

B+B− 27 356 000 0.408

cc 36 452 000 0.832

uu/dd/ss 60 491 000 0.806

Run 2 B0B0 73 479 100 0.445

B+B− 76 558 000 0.427

cc 106 595 900 0.818

uu/dd/ss 164 944 000 0.850

Table 4.2: Generic Monte Carlo event sets used in the analysis presented in this
dissertation. The events have been scaled to match the number of events in the
data.

4.2 Charged Particle Identification

Charged particles are identified by their trajectories in the silicon vertex tracker and
the drift chamber. Tracks are fitted to the hits in these two subsystems and these
tracks are then extrapolated. The point in space where the extrapolation of a track
is closest to the interaction point is referred to as the ‘point of closest approach’
(‘POCA’); the distance between the POCA and the interaction point is called the
‘distance of closest approach’ (‘DOCA’).

To be considered for this analysis, charged particle tracks must fulfill the follow-
ing criteria:

• Momentum p < 10GeV/c;

• Track fit probability Ptrack(χ
2) > 0;

• Transverse momentum pT > 100MeV/c;

• Number of hits in the drift chamber ≥ 12;

• DOCA in the xy-plane < 1.5 cm;

• DOCA in z direction < 10 cm.

Figure 4.1(a) shows the momentum spectrum of the tracks.

The product of efficiency ε and acceptance A varies with the multiplicity of the
event and high voltage setting of the drift chamber. For events with low multiplicity,
it is of the order of 85% < εA < 88%. This is only slightly less than the εA of all
identified tracks, which is of the order of 89% < εA < 92% [21].
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Figure 4.1: Momentum spectrum of (a) tracks, (b) π± candidates, (c) tight K±

candidates, (d) loose K± candidates, based on a 0.9 fb−1 subsample of the data.
The discontinuities in the kaon spectra correspond to momenta where the selector
switches criteria; see text for details.

4.2.1 Kaon Identification

Charged kaons are identified with a likelihood selector which combines measurements
of the silicon vertex tracker, the drift chamber, and the DIRC [22].

The measurement of dE/dx allows a better than 2σ π±/K± separation for mo-
menta of up to 600MeV/c in the SVT and momenta of up to 700MeV/c in the
DCH (see Figure 4.2). While dE/dx in principle follows the Bethe-Bloch formula,
a phenomenological parameterization which includes calibration constants is used.

Under the assumption that dE/dx follows a Gaussian distribution with well-
known width σ, the probability density function (PDF) gi for a particular particle
hypothesis i with an expected ionization loss (dE/dx)i can be calculated in the
following way:1

gi =
1√
2πσ

exp

(

−(dE/dx− (dE/dx)i)
2

2σ2

)

, i ∈ {e±, µ±, π±,K±, p}. (4.1)

This is done separately for the SVT and the DCH, so that each subsystem yields a
likelihood for each of the five particle hypotheses.

1dE/dx as well as σ are functions of the momentum p.
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Figure 4.2: dE/dx distribution for pions and kaons in the momentum range 500 <
p < 600MeV/c measured in the SVT (left) and DCH (right). The pions and kaons
are obtained from a very pure D∗ decay sample [22].

Kaons with momenta above

p >
mK±√
n2 − 1

≈ 460MeV/c (4.2)

emit Cherenkov light in the silica bars of the DIRC (index of refraction n = 1.473).
While the Cherenkov angle θC is described by

cos θC =
1

βn
, β =

p

E
, (4.3)

the expected number of Cherenkov photons Ni depends on the particle type, charge,
momentum, polar angle, and bar number. It is obtained from a lookup table.

The DIRC likelihood is the normalized product of a Gaussian probability gi,
based on the measurement of the Cherenkov angle θC , and a Poisson probability pi,
based on the number of signal photons N and the number of background photons
Nb:

pi =
(Ni +Nb)

N+Nb

(N +Nb)!
e−(Ni+Nb), i ∈ {e±, µ±, π±,K±, p}. (4.4)

Below the Cherenkov threshold of protons (p ≈ 880MeV/c), a constant probability
of 0.2 is assigned to the proton hypothesis.

An overall likelihood `i is calculated for each particle hypothesis by multiplying
the subsystem likelihoods, but each subsystem is considered only in certain momen-
tum domains. Specifically,

• the SVT likelihood is used if 25 < p < 700MeV/c or p > 1.5GeV/c;

• the DCH likelihood is used if 90 < p < 700MeV/c or p > 1.5GeV/c;
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Figure 4.3: Momentum domains in which the SVT, DCH, and DIRC likelihoods are
considered for charged kaon identification.

• the DIRC likelihood is used if p > 600MeV/c.

The momentum domains are depicted in Figure 4.3.
The selection of kaons is based on likelihood ratios. Of the various modes sup-

ported by the selector, two are used in this analysis. They are referred to as tight

and loose. The tight mode is optimized to keep the misidentification rate below 5%
for momenta up to 4GeV/c. It applies the following criteria:

• The SVT and DCH are disregarded if p > 1.5GeV/c. Only the DIRC likeli-
hood is used for high momenta.

• `K±/`π± > 1 if p < 500MeV/c and 0.7 < p < 2.7GeV/c;

• `K±/`π± > 15 if 500 < p < 700MeV/c;

• `K±/`π± > 80 if p > 2.7GeV/c;

• `K±/`p > 1;

• θC(p) <

(

310

1MeV/c
p+ 0.48

)

rad.

The last criterion excludes the region above the dotted line in Figure 3.5, which
contains slow leptons and pions.

The loose mode keeps the misidentification rate below 7% for momenta up to
4GeV/c and improves the efficiency at momenta above 1.5GeV/c. The same selec-
tion criteria as for the tight mode are applied, but the SVT and DCH are taken into
account for p > 1.5GeV/c (as well as for p < 700MeV/c).

Figures 4.1(c) and (d) show the momentum spectra of tight and loose kaons,
respectively. The discontinuities in the spectra can be understood in terms of the
subsystems used and the required `K±/`π± likelihood ratio:

• p < 0.5GeV/c: SVT, DCH, `K±/`π± > 1;
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• 0.5 < p < 0.6GeV/c: SVT, DCH, `K±/`π± > 15;

• 0.6 < p < 0.7GeV/c: SVT, DCH, DIRC, `K±/`π± > 15;

• 0.7 < p < 1.5GeV/c: DIRC, `K±/`π± > 1;

• 1.5 < p < 2.7GeV/c: SVT, DCH (loose mode only), DIRC, `K±/`π± > 1;

The discontinuity at p ≈ 880MeV/c is caused by the proton Cherenkov threshold.

4.2.2 Pion Identification

Due to the large number of charged pions per event, no attempt is made to ac-
tively identify them. However, charged particle tracks which have been identified
as tight kaons are vetoed in order to reduce the combinatoric background under the
D+
s signal. All charged particles which have not been identified as tight kaons are

considered as π± candidates.
The momentum spectrum of the π± candidates is shown in Figure 4.1(c).

4.3 Energy Measurement

Energy which is deposited in the calorimeter usually spreads over several adjacent
crystals, making it necessary to deploy pattern recognition algorithms to determine
energies and impact points [17].

Regions of adjacent crystals into which an electromagnetic shower has spread
are known as ‘clusters’. More specifically, a cluster must contain at least one ‘seed’
crystal with an energy above 10MeV. Surrounding crystals with an energy of at
least 1MeV are considered a part of the same cluster, as are crystals for which at
least one neighbor (including corners) has an energy above 3MeV.

If two or more particles hit the calorimeter with little spatial distance, the elec-
tromagnetic showers caused by the energy deposits can merge into a single cluster.
It is therefore necessary to split clusters with more than one local energy maximum
into what is referred to as ‘bumps’. To be considered a local maximum, a crystal is
required to exceed the energy of each of its neighbors, and additionally its energy E
must satisfy the condition E/EN < 0.5(N − 2.5), where N is the number of neigh-
boring crystals with an energy above 2MeV and EN is the highest energy of any of
these N crystals.

For single bump clusters, the energy of the bump is simply the sum of the
energies of the crystals in the cluster, while for multiple bump clusters, the energy
of the bumps is determined by an iterative algorithm. A weight

wi = Ei
exp(−2.5ri/rM)

∑

j∈clusterEj exp(−2.5rj/rM)
(4.5)

is assigned to each crystal i in the cluster, where ri is the distance from the centroid
of the bump and rM = 3.8 cm is the Molière radius of CsI(Th). Initially, all weights
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are set to 1, and then the process is iterated using the previous wi to determine the
centroid position, until the centroid position is stable within 1mm. The energy of
the bump is then calculated as

Ebump =
∑

i∈cluster

wiEi. (4.6)

The bump position is defined as the center-of-gravity of the logarithmic weights

Wi = 4.0 + ln
Ei

Ebump
. (4.7)

Only crystals with positive weights Wi > 0 are taken into account. This method
emphasizes lower-energy crystals, while neglecting peripheral crystals. The polar
non-projectivity of the crystals causes a systematic bias, which is corrected by an
offset of −2.6mrad for θ > 90◦ and +2.6mrad for θ < 90◦.

Each bump with a position that is consistent with an extrapolated charged track
is associated with that track. The remaining bumps are assumed to originate from
neutral particles.

4.4 D+
s Reconstruction

As described in Section 4.1, D+
s candidates are reconstructed in the decay chain

D+
s → φπ+, φ → K+K−. First of all, each positively charged kaon candidate K+

is combined with each negatively charged kaon candidate K−. The combination is
only considered further if one of the kaons fulfills the tight criteria, while the other
kaon must fulfill the loose criteria. Figure 4.4 shows the distribution of the invariant
K+K− mass. φ candidates are selected according to the following criterion:

|mK+K− −mφ| < 8MeV/c2, (4.8)

where mK+K− is the measured K+K− invariant mass and mφ = 1019.456MeV/c2

is the known φ mass [3].
The φ are then combined with π+ candidates (see Section 4.2.2). A vertex fit is

applied to these combinations, and only those candidates are retained for which the
fit does not fail, i.e., for which the fit probability is greater than zero:

Pvertex(χ
2) > 0. (4.9)

To be accepted as D+
s candidates, the φπ+ combinations must fulfill a number of

additional criteria, described in the following sections.

4.4.1 Helicity Distribution

The D+
s is a pseudoscalar meson (JP = 0−), as is the π+. However, the φ is a vector

meson (JP = 1−). When the D+
s meson decays to a pion and a φ meson, the spin
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Figure 4.4: K+K− invariant mass distribution, based on a 0.9 fb−1 subsample of the
data. The candidates between the vertical dotted lines are selected as φ candidates.

of the latter is compensated by the angular momentum of the φπ+ system, which
must be perpendicular to the φ momentum direction (as well as the π+ momentum
direction) in the D+

s rest frame. The φ meson is therefore polarized.
When the polarized φ meson decays to two kaons, the momentum direction of

the kaons in the φ rest frame shows a characteristic angular distribution with respect
to the φ momentum direction in the D+

s rest frame. To describe this behavior, the
helicity angle θH is defined as the angle between the φ momentum direction in the
D+
s rest frame and the momentum direction of the positively charged kaon K+ in

the φ rest frame, as illustrated by Figure 4.5. It is distributed proportionally to
cos2 θH , as shown in Figure 4.6.

There are two ways in which this can be exploited to discriminate D+
s → φπ+

from background events, both of which this analysis follows alternatively. The first
one is to require that the absolute value of cos θH exceeds a certain value; this will
be referred to as the ‘selection method’ in the following text. The criterion

| cos θH | > 0.3 (4.10)

is chosen.
Due to this selection, a small number of signal events is lost; this is avoided

by the ‘weighting method’ [23]: Instead of discarding some events, all events are
retained and weighted with the normalized second Legendre polynomial

P2(x) =
5

2
P2(x) =

5

4

(

3x2 − 1
)

, x = cos θH . (4.11)
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D s
+π +

K−

K+

θHφ

Figure 4.5: The helicity angle θH is the angle between the φ momentum direction
in the D+

s rest frame and the K+ momentum direction in the φ rest frame. The
blue lines refer to directions in the D+

s rest frame, the red lines to directions in the
φ rest frame.

The normalization factor 5/2 in front of the second Legendre polynomial

P2(x) =
1

2

(

3x2 − 1
)

(4.12)

is chosen such that the yield of the cos2 θH distributed signal events is correctly
produced when the events are weighted with P2(cos

2 θH), i.e,

∫ 1

−1
dxP2(x)x

2

/∫ 1

−1
dxx2 = 1. (4.13)

The Legendre polynomials obey the orthogonality relationship

∫ 1

−1
dxPn(x)Pm(x) = 0 if n 6= m; (4.14)

therefore, the weighting causes all parts of the background distribution not pro-
portional to P2(cos

2 θH) (in an expansion in the Legendre polynomials) to vanish.
Specifically, all background events are projected away in the ideal case of a flat
(cos θH independent) background distribution.

Figure 4.7 depicts the normalized second Legendre polynomial P2.

4.4.2 D+
s Candidate Selection

When D∗+s mesons are produced in the fragmentation of e+e− → cc processes, the
high momentum of the c quark causes the D∗+s meson, and therefore also the D+

s
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Figure 4.6: Distribution of the cosine of the helicity angle, cos θH , based on a 0.9 fb−1

subsample of the data. In addition to the selection criteria described in the text,
|mφπ+ −mD+

s
| < 12MeV/c2 has been required. The candidates outside the vertical

dotted lines are selected when the ‘selection method’ is used.

meson, to have a high momentum as well. To reduce the combinatoric background,
D+
s candidates are therefore required to have a scaled momentum greater than 0.6:

xp = p∗
D+
s

/
√

E∗beam
2 −mD+

s

2 > 0.6. (4.15)

p∗
D+
s

is the measured momentum of the D+
s candidate in the center-of-mass frame,

E∗beam is the energy of one beam in the center-of-mass frame (i.e.,
√
s/2), andmD+

s
is

the mass of theD+
s meson. xp = 0.6 corresponds to aD+

s momentum of≈ 2.9GeV/c;
this selection also removes all D+

s particles from B decays, for which the kinematic
threshold is below xp = 0.6.

Finally, the invariant mass mφπ+ of the D+
s candidates must differ by less than

12MeV/c2 from the expected D+
s mass mD+

s
:

|mφπ+ −mD+
s
| < 12MeV/c2. (4.16)

For the generic Monte Carlo events, the known D+
s mass mD+

s
= 1968.5MeV/c2 [3]

has been used as the expected value, while in the data, the mean D+
s mass comes

out approximately 90 keV/c2 below the mean Monte Carlo mass. This slight mass
shift has been taken into account when selecting D+

s candidates in the data.
The φπ+ invariant mass distributions obtained with the selection and the weight-

ing method from generic Monte Carlo events and data is shown in Figure 4.8.
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Figure 4.7: The normalized second Legendre polynomial P2(cos θH) =
5/4 (3 cos2 θH − 1).

To determine the signal event yields, a binned maximum likelihood fit is used to
fit a function to the data points. The function used is a sum of Gauss functions to
model the signal and a third-order polynomial for the background:

f(x) = G1(x) +G2(x) + ax3 + bx2 + cx+ d;

Gi(x) =
Ni√
2πσi

exp

(

−(x−mi)
2

2σ2
i

)

, i ∈ {1, 2}.
(4.17)

The resulting parameters obtained for the signal shape and event yields are shown in
Figure 4.3. The number of true (matched) Monte Carlo events has also been counted,
so that this number can be compared with the event yield from the fit. The fit finds
68 809 ± 329 signal events for the selection method, while 68 703 true events have
been counted. For the weighting method, 71 228±278 signals are obtained from the
fit, and 70 744 true events are found by counting.
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Figure 4.8: φπ+ invariant mass and fit functions: (a) generic Monte Carlo, selection
method; (b) generic Monte Carlo, weighting method; (c) data, selection method;
(d) data, weighting method. The hatched areas in the Monte Carlo diagrams cor-
respond to background. The vertical dotted lines indicate the signal and sideband
regions.
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Generic Monte Carlo

Selection Method Weighting Method

N1 55 753± 2 228 57 941± 1 156

m1 1968.279± 0.037MeV/c2 1968.302± 0.028MeV/c2

σ1 4.758± 0.073MeV/c2 4.798± 0.045MeV/c2

N2 13 056± 2 136 13 254± 1 109

m2 1969.055± 0.249MeV/c2 1968.566± 0.148MeV/c2

σ2 9.182± 0.623MeV/c2 9.597± 0.305MeV/c2

N = N1 +N2 68 809± 329 71 228± 278

Data

Selection Method Weighting Method

N1 56 792± 1 666 63 344± 512

m1 1967.419± 0.033MeV/c2 1967.391± 0.025MeV/c2

σ1 4.975± 0.066MeV/c2 5.288± 0.032MeV/c2

N2 16 725± 1 564 11 005± 409

m2 1966.926± 0.209MeV/c2 1966.688± 0.243MeV/c2

σ2 10.543± 0.496MeV/c2 15.298± 0.455MeV/c2

N = N1 +N2 73 518± 344 74 349± 304

Table 4.3: Results of the fits to the φπ+ invariant mass distributions.
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4.5 π0
→ γγ Reconstruction

The selection of γ candidates to be used for π0 reconstruction starts from a list of
neutral candidates as described in Section 4.3. First of all,

Eγ > 45MeV (4.18)

is required for the energy measured in the laboratory frame, which eliminates most
neutral clusters which are not photons.

To further separate electromagnetic from hadronic showers in the calorimeter,
the lateral energy distribution ‘LAT ’ of each bump is considered. It is defined as

LAT =

∑

i≥3Eir
2
i

E1r20 + E2r20 +
∑

i≥3Eir2i
. (4.19)

Ei represents the energy deposited in the ith crystal after having sorted the crystals
by deposited energy:

E1 > E2 > E3 > . . . (4.20)

ri is the distance between the center of the ith crystal and the bump position as
defined by Equation 4.7; r0 = 5 cm is a measure of the distance between two crystals.

For electromagnetic showers, most of the energy is typically contained in two
to three crystals, while hadronic showers spread out over greater distances. Since
the sum in the numerator of Equation 4.19 omits the two highest energies, LAT is
typically small for electromagnetic showers and larger for hadronic showers.

Only γ candidates which fulfill the condition

LAT < 0.55 (4.21)

are retained. Two γ candidates are then combined to form a π0 candidate.
The signal in the γγ invariant mass distribution is modeled by a ‘Novosibirsk

function’

f(x) =
N√
2πσ

exp






−1

2











ln
(

1 + τ sinh(τ
√

ln 4)

τ
√

ln 4
x−m
σ

)

τ





2

+ τ2












. (4.22)

The Novosibirsk function is a logarithmic normal distribution which is parameter-
ized in such a way that two of its parameters, m and σ, correspond to the mean
and standard deviation of a Gauss function. The third parameter, τ , describes the
asymmetry. The Novosibirsk function is commonly used to model the energy dis-
tribution of neutral calorimeter clusters; its asymmetry takes energy leakage in the
calorimeter into account.

The background is described by a third-order polynomial.
Since there is a mass shift in the measured π0 mass between Run 1 and Run 2,

both runs are considered separately. The γγ invariant mass distributions are shown
in Figure 4.9; Table 4.4 summarizes the fit results. As can be seen, the Monte Carlo
model does not produce the mass distributions of the data exactly.
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Figure 4.9: γγ invariant mass and fit functions, based on a 0.9 fb−1 subsample of the
data and a corresponding amount of generic Monte Carlo events: (a) generic Monte
Carlo, Run 1; (b) generic Monte Carlo, Run 2; (c) data, Run 1; (d) data, Run 2.
The hatched areas in the Monte Carlo diagrams correspond to background.

4.5.1 π0 Candidate Selection

The decay angle θ∗
π0 is defined as the angle between the momentum direction of one

of the photons in the π0 rest frame and the π0 momentum direction in the Υ(4S ) rest
frame (center-of-mass frame).2 The definition of this angle may appear similar to the
definition of the helicity angle in Section 4.4.1; in fact, it is sometimes referred to as
‘helicity angle’. However, the two describe unrelated phenomena: While the helicity
angle models the fact that a polarized vector meson decays with a characteristic
angular distribution, the decay angle discriminates signal from background by the
fact that the π0 decays isotropically (which causes a flat distribution of

∣

∣cos θ∗
π0

∣

∣),
while

∣

∣cos θ∗
π0

∣

∣ peaks near 1 for background introduced by random γγ combinations.
To be retained, π0 candidates must therefore fulfill the condition

| cos θ∗π0 | < 0.85. (4.23)

Furthermore, the π0 candidates are required to have a momentum in the center-

2The momentum direction of the π0 in the laboratory frame could also be used to define a similar
decay angle θπ0 ; however, a selection based on θ∗π0 has slightly better discrimination power than a
selection based on θπ0 .
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Generic Monte Carlo

Run 1 Run 2

N (1.9138± 0.0042)× 106 (5.4038± 0.0067)× 106

m 134.757± 0.016MeV/c2 133.462± 0.009MeV/c2

σ 6.469± 0.012MeV/c2 6.236± 0.007MeV/c2

τ −0.1619± 0.0024 −0.1534± 0.0014

Data

Run 1 Run 2

N (1.5440± 0.0031)× 106 (4.4846± 0.0061)× 106

m 135.155± 0.018MeV/c2 134.658± 0.010MeV/c2

σ 6.715± 0.013MeV/c2 6.375± 0.008MeV/c2

τ −0.1886± 0.0026 −0.1587± 0.0015

Table 4.4: Results of the fits to the γγ invariant mass distributions.

of-mass frame of
p∗π0 > 150MeV/c. (4.24)

To determine the optimal mass window for the selection of π0 → γγ candidates, it
is necessary to compare the γγ mass distributions shown in Figure 4.9 with the mass
distributions of exclusive π0 candidates. The latter must fulfill all the π0 candidate
selection criteria and must additionally form a D∗+s candidate when combined with a
D+
s candidate3 according to the condition 139 < mD+

s π0 −mD+
s
< 151MeV/c2. The

invariant mass distributions and fit results are shown in Figure 4.10 and Table 4.5.
The counted numbers of true Monte Carlo exclusive π0 particles are 510 and

1 343, while the yields obtained from the fits are 487.6± 59.0 and 1 369.4± 100.3 for
Run 1 and Run 2, respectively. These numbers therefore agree within error margins.

No useful information can be derived from the fit to Run 1 data due to low statis-
tics. Specifically, the positive τ parameter is not compatible with the expectation
of energy leakage in the calorimeter, which pulls the measured energy towards lower
values and should therefore result in a negative τ . The Run 1 data has therefore
been disregarded. Otherwise, the differences between the inclusive and exclusive π0

candidates are summarized in Table 4.6.
To determine mass selection windows, the region where the fitted signal exceeds

0.2 times its maximum has been calculated for all samples with the exception of the
exclusive Run 1 data sample. The results are shown in Table 4.7.

Given the large errors in the fits to the exclusive samples, and the fact that the
signal shape of the exclusive π0 mass distributions is mostly compatible with the

3A mass constrained fit is performed on the π0 candidates before they are combined with the
D+
s candidates.
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Figure 4.10: γγ invariant mass and fit functions for exclusive π0 candidates (see
text): (a) generic Monte Carlo, Run 1; (b) generic Monte Carlo, Run 2; (c) data,
Run 1; (d) data, Run 2. The hatched areas in the Monte Carlo diagrams correspond
to background. Figure (c) has been disregarded for the determination of the γγ
mass window.

signal shape of the inclusive π0 mass distributions, it has been decided to base the
four mass windows on the inclusive samples. However, since there seems to be a
≈ 1MeV/c2 mass shift, 1MeV/c2 is subtracted from the values in the ‘Inclusive π0

Candidates’ column of Table 4.7. The resulting mass windows are used to select π0

candidates.
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Generic Monte Carlo

Run 1 Run 2

N 487.6± 59.0 1369.4± 100.3

m 135.682± 1.005MeV/c2 134.510± 0.474MeV/c2

σ 6.843± 0.730MeV/c2 6.323± 0.149MeV/c2

τ −0.1716± 0.1519 −0.3107± 0.0725

Data

Run 1 Run 2

N 175.2± 28.6 452.7± 59.9

m 134.892± 1.171MeV/c2 135.777± 1.165MeV/c2

σ 4.941± 0.789MeV/c2 6.742± 0.749MeV/c2

τ 0.0660± 0.1979 −0.0980± 0.1532

Table 4.5: Results of the fits to the γγ invariant mass distributions for exclusive π0

candidates.

Generic Monte Carlo

Run 1 Run 2

mincl −mexcl 0.925± 1.020MeV/c2 1.048± 0.483MeV/c2

(σincl − σexcl)/σexcl 0.058± 0.115 0.014± 0.068

(τincl − τexcl)/τexcl 0.060± 0.954 1.026± 0.492

Data

Run 1 Run 2

mincl −mexcl 1.119± 1.175MeV/c2

(σincl − σexcl)/σexcl 0.058± 0.119

(τincl − τexcl)/τexcl −0.382± 0.971

Table 4.6: Differences in the fit results between inclusive and exclusive π0 candidates.

Inclusive π0 Candidates Exclusive π0 Candidates

Run 1 MC 121.37 < mγγ < 144.77MeV/c2 121.40 < mγγ < 146.18MeV/c2

Run 2 MC 120.65 < mγγ < 143.19MeV/c2 119.66 < mγγ < 143.02MeV/c2

Run 1 Data 120.94 < mγγ < 145.29MeV/c2

Run 2 Data 121.50 < mγγ < 144.55MeV/c2 122.58 < mγγ < 146.84MeV/c2

Table 4.7: γγ invariant mass window where the fitted π0 signal exceeds 0.2 times
its maximum.
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4.6 D∗+
s → D+

s π
0 Reconstruction

A mass constrained fit is performed on the π0 candidates, which are then combined
with the D+

s candidates to form D∗+s candidates. The difference between the D∗+s
and the D+

s invariant mass

∆mD+
s π0 = mD+

s π0 −mD+
s

(4.25)

is plotted. The binning of the ∆mD+
s π0 histograms has been chosen such that the

kinematic threshold (mπ0) corresponds exactly to one bin edge.

4.6.1 Signal Shape Determination

The matched generic Monte Carlo D∗+s → D+
s π

0 events are used to find a function
which best describes the signal shape of the ∆mD+

s π0 distribution. Four functions
have been considered: a Gauss function, a Novosibirsk function, the sum of two
Gauss functions, and a ‘mirrored Crystal Ball function’:

f(x) = N ·



















exp

(

−(x−m)2

2σ2

)

if (x−m)/σ ≤ α

A

(

B − x−m

σ

)−n
if (x−m)/σ ≥ α

,

A =

( |α|
n

)−n
exp

(

−α
2

2

)

, B =
n

|α| − |α|.

(4.26)

The latter is a Gauss function which changes to a power function at point (x −
m)/σ = α. A and B are chosen such that the function and its first derivate are
continuous.4

Figure 4.11 shows the fitted functions for the selection and weighting method.
The fit results are summarized in Table 4.8. While the function parameters have
been calculated with a maximum likelihood fit, the quantity

χ2 =
∑

i

(f(xi)− ni)
2

σ2
i

(4.27)

is used to characterize the quality of the fit, i.e., how well the fit function models the
data. The index i indices all non-empty bins, xi is the ∆mD+

s π0 value corresponding
to the center of the ith bin, ni is the number of entries in the ith bin, and σi is the
error on the number of entries in the ith bin.

4The original function introduced by the Crystal Ball experiment changes to a power function
at a point below the mean of the Gauss function, unlike the function here, which changes at a point
above the mean. This function is therefore referred to as a ‘mirrored Crystal Ball function’.
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Table 4.8 also quotes the probability that the fit function models the data cor-
rectly. This probability is calculated as

Probability = 1− P

(

ndf

2
,
χ2

2

)

, (4.28)

where P is the incomplete Gamma function and ndf is the number of degrees of
freedom, i.e., the number of non-empty bins minus the number of parameters in the
fit function.

Finally, it can be observed that all fit functions reproduce the event yield cor-
rectly within error margins: By counting, 733 and 795.9 signal events are found for
the selection and weighting method, respectively.

The sum of two Gauss functions has the highest probability for both methods.
It is therefore chosen to model the signal shape.

4.6.2 Background Shape Determination

The background shape has been determined in a similar fashion to the one described
in the previous section. Various functions are fitted to the unmatched generic Monte
Carlo events, and the resulting fit probabilities as defined by Equation 4.28 are
compared.

Three functions have been considered: First of all, a power function

f(x) = a (x− b)2 . (4.29)

Secondly, a power function which at some point β changes to a second-order
polynomial

f(x) =

{

Ax2 +Bx+ C if x ≤ β

a (x− b)2 if x ≥ β
,

A = (β − b)c−2 · (c− 1),

B = (β − b)c−2 · (2β − c(β + b)),

C = (β − b)c−2 · (b2 + (c− 2)βb).

(4.30)

The parameters A, B, and C have been chosen such that the function and its first
derivative are continuous, and the function is zero at x = b. This function will be
referred to as a ‘quadratic/power function’.

Finally, the third function is a product of an exponential function and a second-
order polynomial:

f(x) = n ·
(

1− exp

(

β − x

me

))

·
(

x2 + ax+ b
)

. (4.31)

This will be referred to as an ‘exponential/quadratic function’.
In all cases, one fit parameter has been fixed such that f(mπ0) = 0, to take into

account the kinematic threshold.
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The fits and results are shown in Figure 4.12 and Table 4.9. The exponen-
tial/quadratic function has the highest probability, although it is only slightly bet-
ter than the quadratic/power function. The former is therefore chosen to model the
background shape.

4.6.3 D∗+
s → D+

s π
0 Event Yield

A sum of two Gauss functions and an ‘exponential/quadratic function’ (Equa-
tion 4.31) is fitted to the ∆mD+

s π0 invariant mass difference distributions; the results
of these fits are shown in Figure 4.13 and Table 4.10.

For the Monte Carlo sample, the event numbers obtained by counting the matched
(true) events are 733 and 795.9 for the selection and weighting method, respectively.
These numbers agree well with the event yields from the fits, 697.0 ± 46.7 and
812.5± 143.8.

For the data, the event yield found for the selection method is

Nselection(D
∗+
s → D+

s π
0) = 560.1± 43.4, (4.32)

while for the weighting method,

Nweighting(D
∗+
s → D+

s π
0) = 578.6± 41.6 (4.33)

events are found.
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Figure 4.11: ∆mD+
s π0 distribution of matched generic Monte Carlo events fitted with

various functions: (a) Gauss function, selection method; (b) Gauss function, weight-
ing method; (c) Novosibirsk function, selection method; (d) Novosibirsk function,
weighting method; (e) sum of two Gauss functions, selection method; (f) sum of two
Gauss functions, weighting method; (g) mirrored Crystal Ball function, selection
method; (h) mirrored Crystal Ball function, weighting method.
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Gauss Function

Selection Method Weighting Method

χ2/ndf 30.74/23 41.61/24

Probability 0.129 0.014

N 719.0± 26.8 784.0± 28.0

m 143.900± 0.056MeV/c2 143.912± 0.055MeV/c2

σ 1.499± 0.040MeV/c2 1.538± 0.039MeV/c2

Novosibirsk Function

Selection Method Weighting Method

χ2/ndf 29.09/22 38.24/23

Probability 0.142 0.024

N 719.3± 26.8 784.4± 28.0

m 143.813± 0.084MeV/c2 143.810± 0.074MeV/c2

σ 1.496± 0.040MeV/c2 1.531± 0.039MeV/c2

τ 0.0390± 0.0283 0.0443± 0.0219

Sum of Two Gauss Functions

Selection Method Weighting Method

χ2/ndf 15.62/20 29.30/21

Probability 0.740 0.107

N1 110.0± 52.2 158.0± 42.7

m1 143.669± 0.140MeV/c2 143.779± 0.083MeV/c2

σ1 0.554± 0.188MeV/c2 0.484± 0.110MeV/c2

N2 609.0± 56.7 626.0± 47.8

m2 143.942± 0.073MeV/c2 143.946± 0.072MeV/c2

σ2 1.609± 0.067MeV/c2 1.702± 0.065MeV/c2

N = N1 +N2 719.0± 26.8 784.0± 28.0

Mirrored Crystal Ball Function

Selection Method Weighting Method

χ2/ndf 25.31/21 45.26/22

Probability 0.234 0.002

N 719.0± 26.8 784.0± 28.0

m 143.862± 0.061MeV/c2 143.873± 0.058MeV/c2

σ 1.450± 0.049MeV/c2 1.473± 0.047MeV/c2

n 4.182± 0.595 9.835± 14.833

α 1.768± 0.293 1.982± 0.508

Table 4.8: Results of the fits of various functions to the ∆mD+
s π0 distribution of

matched generic Monte Carlo events.
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Figure 4.12: ∆mD+
s π0 distribution of unmatched generic Monte Carlo events fit-

ted with various functions: (a) power function, selection method; (b) power
function, weighting method; (c) quadratic/power function, selection method;
(d) quadratic/power function, weighting method; (e) exponential/quadratic func-
tion, selection method; (f) exponential/quadratic function, weighting method.
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Power Function

Selection Method Weighting Method

χ2/ndf 102.9/50 73.3/50

Probability 1.57× 10−5 0.017

a (293.39± 34.55)× 103 (263.75± 32.83)× 103

b mπ0 mπ0

c 0.260± 0.026 0.261± 0.028

Quadratic/Power Function

Selection Method Weighting Method

χ2/ndf 54.3/49 60.2/49

Probability 0.279 0.131

a (159.09± 31.68)× 103 (149.61± 28.48)× 103

b mπ0 mπ0

c 0.115± 0.046 0.127± 0.044

β 139.43± 0.92MeV/c2 139.27± 0.78MeV/c2

Exponential/Quadratic Function

Selection Method Weighting Method

χ2/ndf 52.3/48 58.9/48

Probability 0.311 0.134

n (60.37± 17.72)× 103 (63.89± 63.92)× 103

me 2.180± 0.292MeV/c2 1.579± 0.316MeV/c2

β mπ0 mπ0

a 6.218± 2.937 14.499± 11.685

b 0.680± 0.436 −0.835± 0.677

Table 4.9: Results of the fits of various functions to the ∆mD+
s π0 distribution of

unmatched generic Monte Carlo events.
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Figure 4.13: ∆mD+
s π0 invariant mass difference distribution and fit functions:

(a) generic Monte Carlo, selection method; (b) generic Monte Carlo, weighting
method; (c) data, selection method; (d) data, weighting method. The hatched
areas in the Monte Carlo diagrams correspond to background.
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Generic Monte Carlo

Selection Method Weighting Method

N1 159.1± 78.4 220.2± 49.0

m1 143.735± 0.114MeV/c2 143.835± 0.064MeV/c2

σ1 0.499± 0.171MeV/c2 0.445± 0.081MeV/c2

N2 537.9± 80.8 592.4± 129.0

m2 143.907± 0.155MeV/c2 143.701± 0.186MeV/c2

σ2 1.612± 0.207MeV/c2 2.081± 0.392MeV/c2

N = N1 +N2 697.0± 46.7 812.5± 143.8

Data

Selection Method Weighting Method

N1 72.8± 38.2 86.1± 31.9

m1 144.285± 0.154MeV/c2 144.252± 0.110MeV/c2

σ1 0.387± 0.132MeV/c2 0.368± 0.086MeV/c2

N2 487.3± 51.7 492.6± 48.0

m2 144.251± 0.138MeV/c2 144.166± 0.137MeV/c2

σ2 1.581± 0.170MeV/c2 1.655± 0.151MeV/c2

N = N1 +N2 560.1± 43.4 578.6± 41.6

Table 4.10: Results of the fits to the ∆mD+
s π0 invariant mass difference distributions.
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4.7 D∗+
s → D+

s γ Reconstruction

The γ candidates for the reconstruction of the decay D∗+s → D+
s γ are selected

according to different criteria than the γ candidates for the π0 → γγ reconstruction.
These criteria are chosen to optimize the signal efficiency of the D∗+s → D+

s γ signal.
First of all, neutral clusters are required to have an energy in the laboratory

frame of
Eγ > 50MeV. (4.34)

The energy in the center-of-mass frame must fulfill the condition

E∗γ > 100MeV, (4.35)

and
LAT < 0.8 (4.36)

must hold for the lateral energy distribution.
Furthermore, a π0 veto greatly reduces the background consisting of photons

from π0 decays: The γ candidate under consideration is only retained if it does not
form a π0 candidate when it is combined with any other γ candidate in the event.
For this selection criterion, a π0 candidate is defined as a γγ combination with an
invariant mass of

115 < mγγ < 155MeV/c2 (4.37)

and an energy in the center-of-mass frame of

E∗γγ > 200MeV. (4.38)

The γ candidates which fulfill these criteria are combined with theD+
s candidates

to form D∗+s candidates, and the difference between the D∗+s and the D+
s invariant

mass
∆mD+

s γ = mD+
s γ −mD+

s
(4.39)

is plotted.

4.7.1 Signal Shape

To take into account the asymmetric line shape caused by energy leakage in the
calorimeter, the ∆mD+

s γ is modeled by a Crystal Ball function:5

f(x) = N ·



















A

(

B − x−m

σ

)−n
if (x−m)/σ ≤ α

exp

(

−(x−m)2

2σ2

)

if (x−m)/σ ≥ α

,

A =

( |α|
n

)−n
exp

(

−α
2

2

)

, B =
n

|α| − |α|.

(4.40)

5Its ‘mirrored’ version has already been introduced by Equation 4.26.
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Figure 4.14: ∆mD+
s γ distribution of matched generic Monte Carlo events fitted with

a Crystal Ball function: (a) selection method; (b) weighting method.

Selection Method Weighting Method

N 20 895± 145 21 386± 146

m 143.347± 0.072MeV/c2 143.352± 0.072MeV/c2

σ 6.248± 0.054MeV/c2 6.253± 0.054MeV/c2

n 61.502± 51.010 79.308± 83.806

α −0.988± 0.031 −0.973± 0.030

Table 4.11: Results of the fits of a Crystal Ball function to the ∆mD+
s γ distribution

of matched generic Monte Carlo events.

This function is a Gauss function which changes to a power function at point (x−
m)/σ = α. A and B are chosen such that the function and its first derivate are
continuous.

A fit of the Crystal Ball function to the ∆mD+
s γ distribution of matched Monte

Carlo events is shown in Figure 4.14; Table 4.11 summarizes the fit results. The
counted numbers of true signal events are 20 914 for the selection method and 21 403
for the weighting method. The event yields from the fits, 20 895 ± 145 for the
selection method and 21 386 ± 146 for the weighting method, therefore reproduce
these numbers within error margins.

4.7.2 D∗+
s → D+

s γ Event Yield

A sum of a Crystal Ball function for the signal and a third-order polynomial for
the background is fitted to the ∆mD+

s γ invariant mass difference distributions. The

fit range is constrained to ∆mD+
s γ > 60MeV/c2. Figure 4.15 shows the ∆mD+

s γ

distributions; Table 4.12 summarizes the fit results.
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Figure 4.15: ∆mD+
s γ invariant mass difference distribution and fit functions:

(a) generic Monte Carlo, selection method; (b) generic Monte Carlo, weighting
method; (c) data, selection method; (d) data, weighting method. The hatched
areas in the Monte Carlo diagrams correspond to background.

The counted numbers of matched generic Monte Carlo events, 20 914 and 21 403
for the selection and weighting method, respectively, are reproduced within error
margins by the fit results, 21 055 ± 199 events for the selection and 21 436 ± 195
events for the weighting method.

The event yield found in the data for the selection method is

Nselection(D
∗+
s → D+

s π
0) = 15 622± 194, (4.41)

while
Nweighting(D

∗+
s → D+

s π
0) = 15 616± 208 (4.42)

events are found for the weighting method.
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Generic Monte Carlo

Selection Method Weighting Method

N 21 055± 199 21 436± 195

m 143.386± 0.081MeV/c2 143.387± 0.080MeV/c2

σ 6.128± 0.081MeV/c2 6.117± 0.079MeV/c2

n (1.316± 0.596)× 106 (2.752± 0.288)× 106

α −0.994± 0.035 −0.994± 0.034

Data

Selection Method Weighting Method

N 15 622± 194 15 616± 208

m 144.887± 0.103MeV/c2 144.822± 0.095MeV/c2

σ 6.123± 0.103MeV/c2 6.267± 0.098MeV/c2

n (687.8± 1177.5)× 103 77.46± 305.82

α −0.894± 0.037 −0.945± 0.055

Table 4.12: Results of the fits to the ∆mD+
s γ invariant mass difference distributions.
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Figure 4.16: ∆mD+
s π0 and ∆mD+

s γ invariant mass difference distributions for
30 000 signal Monte Carlo events: (a) ∆mD+

s π0 distribution, selection method;
(b) ∆mD+

s π0 distribution, weighting method; (c) ∆mD+
s γ distribution, selection

method; (d) ∆mD+
s γ distribution, weighting method.

4.8 Efficiency Determination with Signal Monte Carlo
Events

To estimate the efficiencies of the decays D∗+s → D+
s π

0 and D∗+s → D+
s γ, 30 000

signal Monte Carlo events of each decay channel have been used. By fitting the same
functions to the ∆mD+

s π0 and ∆mD+
s γ distributions of signal Monte Carlo events as

to the corresponding distributions of data events, the efficiencies can be determined.

The mass difference distributions for the signal Monte Carlo events are shown in
Figure 4.16; Table 4.13 lists the fit results.

4.8.1 Systematic Uncertainties in Monte Carlo Efficiencies

The errors on the event numbers N express the limited statistics of signal Monte
Carlo events; they represent a systematic uncertainty of the result.

Unrelated to this uncertainty, it must also be assumed that the Monte Carlo
model does not describe the data perfectly, which introduces another source of un-
certainty.
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D∗+s → D+
s π

0 Signal Monte Carlo

Selection Method Weighting Method

N1 459.2± 191.6 559.7± 267.7

m1 143.677± 0.098MeV/c2 143.748± 0.118MeV/c2

σ1 0.840± 0.145MeV/c2 0.901± 0.153MeV/c2

N2 769.3± 181.7 691.7± 245.3

m2 143.993± 0.131MeV/c2 144.091± 0.148MeV/c2

σ2 1.675± 0.188MeV/c2 1.719± 0.294MeV/c2

N = N1 +N2 1 222.2± 51.2 1 251.4± 56.1

D∗+s → D+
s γ Signal Monte Carlo

Selection Method Weighting Method

N 2 116.9± 56.6 2 206.8± 57.1

m 143.195± 0.257MeV/c2 143.350± 0.258MeV/c2

σ 6.067± 0.239MeV/c2 5.968± 0.230MeV/c2

n (481.49± 634.99)× 103 (1.657± 4.514)× 106

α −0.923± 0.088 −0.887± 0.080

Table 4.13: Results of the fits to the signal Monte Carlo ∆mD+
s π0 and ∆mD+

s γ

invariant mass difference distributions.

π0 Monte Carlo Efficiency

For the π0 Monte Carlo, this has been studied using τ 1-on-1 decays, i.e., decays
of τ+τ− lepton pairs, where one τ lepton decays to eνeντ , while the other τ lepton
decays to a charged hadron, a neutrino, and one or two π0 mesons [24]. The ratio
R of two π0 events to one π0 events is calculated for the Monte Carlo and data
samples in different energy ranges. The ratio of R obtained from data to R obtained
from Monte Carlo events then provides an energy-dependent comparison of data and
Monte Carlo efficiencies.

In this way, not only a correction function for the π0 efficiency can be computed,
but taking errors into account, an ‘error band’ corresponding to one standard de-
viation (‘1σ’) can be obtained. This band represents the errors and uncertainties
of the correction function. The result, which is a function of the π0 energy in the
laboratory frame E∗

π0 , is depicted in Figure 4.17.

The correction function and the error band are obtained by independent fits, so
the function need not (and does not) lie entirely within the band. While this might
at first seem surprising, it does in fact represent the best knowledge about the π0

Monte Carlo efficiencies.

The correction function turns out to be 1, so no correction needs to be applied.
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Figure 4.17: Monte Carlo efficiency correction function (blue) and 1σ error band
(red) for π0 mesons, as functions of the π0 energy in the laboratory frame.

To obtain the systematic uncertainty of the D∗+s → D+
s π

0 efficiency, the method of
‘random killing’ is used: The signal Monte Carlo sample is processed again, and for
each π0 candidate, a normally distributed random number r is calculated according
to the mean and standard deviation of the error band at the energy E∗

π0 of the
candidate. If r is greater than or equal to 1, nothing is done. Otherwise, another
random number q is calculated, which is uniformly distributed between 0 and 1. If
q > r, the candidate is ‘killed’, i.e., removed from the event.

γ Monte Carlo Efficiency

The same data and Monte Carlo samples used to obtain the π0 Monte Carlo efficiency
correction are also used to study the Monte Carlo efficiency of single photons. A
comparison of the π0 invariant mass width in the data and Monte Carlo samples
is used to calculate an energy rescaling and random smearing function (collectively
known as ‘γ correction function’) to be applied to photons.

As in the case of the π0 particles, a second processing of the Monte Carlo sample
is required to obtain the systematic uncertainty. During this processing, a different
γ correction function is used.

Monte Carlo Model Uncertainties

The results of processing the signal Monte Carlo sample with ‘random π0 killing’
and the γ correction function for systematic uncertainties applied, as described in
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Figure 4.18: ∆mD+
s π0 and ∆mD+

s γ invariant mass difference distributions for 30 000
signal Monte Carlo events, with ‘random killing’ and the γ correction function
for systematic uncertainties applied: (a) ∆mD+

s π0 distribution, selection method;
(b) ∆mD+

s π0 distribution, weighting method; (c) ∆mD+
s γ distribution, selection

method; (d) ∆mD+
s γ distribution, weighting method.

the previous sections, are shown in Figure 4.18 and Table 4.14. The discrepancies
between these event yields and the event yields in Table 4.13 represent uncorrelated
errors.

In addition to these uncorrelated errors, there are also (fixed) correlated errors.
The correlated error on the π0 Monte Carlo efficiency is 5.0%, while it is 2.5% for
the γ Monte Carlo efficiency. The uncorrelated and correlated errors must be added
in quadrature to obtain the total systematic uncertainty due to Monte Carlo model
uncertainties.

However, this analysis does not make separate use of the efficiencies for the
hadronicD∗+s decay, ε(D∗+s → D+

s π
0), and the radiativeD∗+s decay, ε(D∗+s → D+

s γ).
It only uses the efficiency ratio ε(D∗+s → D+

s π
0)/ε(D∗+s → D+

s γ). Therefore, the
two correlated errors cancel partially, and a total correlated error on the ratio of 2.5%
remains. This must be summed in quadrature with the two uncorrelated errors.
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D∗+s → D+
s π

0 Signal Monte Carlo

Selection Method Weighting Method

N1 306.2± 120.6 470.2± 125.6

m1 143.733± 0.100MeV/c2 143.855± 0.076MeV/c2

σ1 0.706± 0.130MeV/c2 0.804± 0.112MeV/c2

N2 931.8± 107.7 864.5± 118.5

m2 143.890± 0.088MeV/c2 143.877± 0.096MeV/c2

σ2 1.682± 0.164MeV/c2 1.960± 0.168MeV/c2

N = N1 +N2 1 238.0± 76.6 1 334.6± 44.7

D∗+s → D+
s γ Signal Monte Carlo

Selection Method Weighting Method

N 2 068.6± 56.0 2 159.8± 56.5

m 143.018± 0.246MeV/c2 143.011± 0.247MeV/c2

σ 5.834± 0.245MeV/c2 5.626± 0.244MeV/c2

n (1.727± 1.946)× 106 (1.193± 0.554)× 106

α −0.916± 0.085 −0.872± 0.080

Table 4.14: Results of the fits to the signal Monte Carlo ∆mD+
s π0 and ∆mD+

s γ

invariant mass difference distributions, with ‘random killing’ and the γ correction
function for systematic uncertainties applied.

4.8.2 Efficiencies from Signal Monte Carlo Events

The efficiencies ε(D∗+s → D+
s π

0) and ε(D∗+s → D+
s γ) are calculated by dividing

the event yields obtained in the signal Monte Carlo sample (Table 4.13) by 30 000,
the number of signal Monte Carlo events. The resulting efficiencies, as well as their
ratio, are tabulated in Table 4.15.
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Selection Method Weighting Method

ε(D∗+s → D+
s π

0) 0.0407± 0.0017 0.0417± 0.0019

ε(D∗+s → D+
s γ) 0.0706± 0.0019 0.0736± 0.0019

ε(D∗+s → D+
s π

0)

ε(D∗+s → D+
s γ)

0.5774± 0.0287± 0.0209 0.5671± 0.0293± 0.0421

Table 4.15: Efficiencies of D∗+s decays, and ratio of efficiencies, as obtained from
signal Monte Carlo events. The fist error results from Monte Carlo statistics; the
second error in the ratio represents systematic uncertainties of the Monte Carlo
model.
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4.9 Efficiency Determination with D∗0 Decays

To avoid dependency on Monte Carlo models, the efficiency ratio ε(D∗+s → D+
s π

0)/ε(D∗+s →
D+
s γ) can alternatively be determined from D∗0 → D0π0 and D∗0 → D0γ decays,

exploiting the fact that the branching fractions

B(D∗0 → D0π0) = 0.619± 0.029 (4.43)

and
B(D∗0 → D0γ) = 0.381± 0.029 (4.44)

are well known [3]. Under the assumptions that the efficiency ratio of the D∗0

decays is identical to the efficiency ratio of the D∗+s decays if the D∗0 candidates are
reconstructed with the same selection criteria as the D∗+s candidates, i.e.,

ε(D∗0 → D0π0)

ε(D∗0 → D0γ)
=
ε(D∗+s → D+

s π
0)

ε(D∗+s → D+
s γ)

, (4.45)

the efficiency ratio can be calculated by measuring the event yields N(D∗0 → D0π0)
and N(D∗0 → D0γ). To verify this assumption, the efficiency ratio ε(D∗0 →
D0π0)/ε(D∗0 → D0γ) is calculated with signal Monte Carlo events, and compared
to the ratio ε(D∗+s → D+

s π
0)/ε(D∗+s → D+

s γ) as determined with signal Monte Carlo
(cf. Section 4.8).

4.9.1 D0 Reconstruction

D0 candidates are reconstructed in the decay D0 → K−π+, where the kaon is
required to fulfill the tight criteria. The D0 candidates must satisfy the same vertex
probability

Pvertex(χ
2) > 0 (4.46)

and scaled momentum

xp = p∗D0

/

√

E∗beam
2 −mD0

2 > 0.6 (4.47)

criteria as the D+
s candidates (cf. Section 4.4).

The K−π+ invariant mass distributions for the Monte Carlo and data samples
are shown in Figure 4.19. The sum of two Gauss functions for the signal and a
third-order polynomial for the background is fitted to the distributions; the results
of these fits are listed in Table 4.16. By counting matched Monte Carlo events, it is
established that 1.05459×106 signal events are present, while (1.04914± 0.00128)×
106 are found by the fit.

D0 candidates are retained for the D∗0 reconstruction if their invariant mass
mK−π+ differs by less than 17MeV/c2 from expected mass mD0 :

|mK−π+ −mD0 | < 17MeV/c2. (4.48)

The known D0 mass mD0 = 1864.5MeV/c2 [3] has been used for the Monte Carlo
sample. For the data, it has been taken into account that the mean measured D0

mass is 55 keV/c2 below the mean Monte Carlo mass.
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Figure 4.19: K−π+ invariant mass and fit functions: (a) generic Monte Carlo;
(b) data. The hatched area in the Monte Carlo diagram corresponds to background.
The vertical dotted lines indicate the signal and sideband regions.

Generic Monte Carlo Data

N1 (836.4± 13.0)× 103 (752.9± 8.0)× 103

m1 1864.095± 0.014MeV/c2 1863.549± 0.016MeV/c2

σ1 6.607± 0.032MeV/c2 6.893± 0.029MeV/c2

N2 (212.7± 12.6)× 103 (243.1± 7.5)× 103

m2 1863.548± 0.079MeV/c2 1861.342± 0.111MeV/c2

σ2 11.532± 0.227MeV/c2 13.557± 0.191MeV/c2

N = N1 +N2 (1.04914± 0.00128)× 106 (0.99596± 0.00146)× 106

Table 4.16: Results of the fits to the K−π+ invariant mass distributions.

4.9.2 D∗0
→ D0π0 Reconstruction

The π0 candidates to be combined with the D0 candidates are selected in the same
way as in the case of the D∗+s → D+

s π
0 decay, as described in Section 4.5. The

difference between the D∗0 and the D0 invariant mass

∆mD0π0 = mD0π0 −mD0 (4.49)

is shown in Figure 4.20 for both the Monte Carlo and the data sample.

The same fit function as for the ∆mD+
s π0 distribution is used to model ∆mD0π0 :

a sum of two Gauss functions for the signal and an ‘exponential/quadratic function’
(Equation 4.31) for the background. Table 4.17 lists the results.

The counted number of matched Monte Carlo events is 95 600, while the fit yields
94 982± 496 events.
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Figure 4.20: ∆mD0π0 invariant mass difference distribution and fit functions:
(a) generic Monte Carlo; (b) data. The hatched area in the Monte Carlo diagram
corresponds to background.

Generic Monte Carlo Data

N1 (66.0± 1.6)× 103 (43.8± 2.0)× 103

m1 142.147± 0.008MeV/c2 141.931± 0.011MeV/c2

σ1 1.016± 0.012MeV/c2 0.988± 0.019MeV/c2

N2 (29.0± 1.5)× 103 (25.1± 1.9)× 103

m2 142.795± 0.042MeV/c2 142.561± 0.061MeV/c2

σ2 2.107± 0.046MeV/c2 1.902± 0.058MeV/c2

N = N1 +N2 94 982± 496 68 965± 445

Table 4.17: Results of the fits to the ∆mD0π0 invariant mass difference distributions.

4.9.3 D∗0
→ D0γ Reconstruction

Again, the γ candidates to be combined with the D0 candidates are selected in the
same way as in the case of the corresponding D∗+s decay D∗+s → D+

s γ, which is
described in Section 4.7. The difference between the D∗0 and the D0 invariant mass

∆mD0γ = mD0γ −mD0 (4.50)

is then plotted.

Figure 4.21 shows the ∆mD0γ distribution of unmatched (background) generic
Monte Carlo events. A large π0 reflection can be seen in the region 40 . ∆mD0γ .

110MeV/c2, which is unfortunately so close to the expected signal region that a
polynomial is infeasible as a background model.

Instead, a product of an exponential function and a second-order polynomial is
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Figure 4.21: ∆mD0γ distribution of unmatched generic Monte Carlo events. The
dotted line shows the result of a fit in the region 90 < ∆mD0γ < 250MeV/c2, while
the solid line results from a fit in the region 95 < ∆mD0γ < 250MeV/c2.

used:6

f(x) = n ·
(

1 + exp

(

β − x

me

))

·
(

x2 + ax+ b
)

. (4.51)

This function has been fitted to the ∆mD0γ distribution of unmatched generic
Monte Carlo events in two different regions, 90 < ∆mD0γ < 250MeV/c2 and 95 <
∆mD0γ < 250MeV/c2. The results are listed in Table 4.18.

A Crystal Ball function (Equation 4.40) is used to model the signal. The fits to
the generic Monte Carlo and data samples are shown in Figure 4.22 and Table 4.19.
By counting matched Monte Carlo events, 94 761 events are found, which is in very
good agreement with the event yield from the fit, 94 374± 623.

4.9.4 Efficiencies from D∗0 Decays

The efficiency ratio can be calculated from the event yields N obtained from the fits
to the data and the known branching fractions:

ε(D∗0 → D0π0)

ε(D∗0 → D0γ)
=
N(D∗0 → D0π0)

N(D∗0 → D0γ)

/B(D∗0 → D0π0)

B(D∗0 → D0γ)

=
68 965± 445

67 882± 665

/

0.619± 0.029

0.381± 0.029
= 0.6253± 0.0073± 0.0769.

(4.52)

6This function is similar to the ‘exponential/quadratic function’ (Equation 4.31), but differs in
the sign of the exponential part.
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90 < ∆mD0γ < 250MeV/c2 95 < ∆mD0γ < 250MeV/c2

n (25.4± 2.2)× 106 (28.4± 2.2)× 106

me 3.726± 0.126MeV/c2 2.405± 0.334MeV/c2

β 90.645± 0.087MeV/c2 92.547± 0.554MeV/c2

a −0.530± 0.015 −0.515± 0.012

b 0.143± 0.010 0.132± 0.008

Table 4.18: Results of the fits to the ∆mD0π0 distribution of unmatched generic
Monte Carlo events for two different fitting regions.
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Figure 4.22: ∆mD0γ invariant mass difference distribution and fit functions:
(a) generic Monte Carlo; (b) data. The hatched area in the Monte Carlo diagram
corresponds to background.

The first error of the ratio is statistical, the second represents uncertainties in the
branching fractions.

It has been taken into account that the errors on the branching fractions are
not independent. The Particle Data Group [3] calculates both branching fractions
from three measurements of D∗0 → D0γ [25, 26, 27] and the constraint B(D∗0 →
D0π0) + B(D∗0 → D0γ) = 1. The uncertainty of the branching fraction ratio is
therefore the sum of the errors on the individual branching fractions.

4.9.5 Efficiencies of D∗0 Decays from Signal Monte Carlo Events

30 000 signal Monte Carlo events for each of the channels D∗0 → D0π0 and D∗0 →
D0γ have been processed, and the same functions have been fitted to the ∆m distri-
butions as for the data. To determine systematic effects due to Monte Carlo model
uncertainties, this process has been repeated with ‘random π0 killing’ and the γ
correction for systematic uncertainties, as described in Section 4.8.1. All four ∆m
distributions are shown in Figure 4.23; the fit results are listed in Table 4.20.
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Generic Monte Carlo Data

N 94 374± 623 67 882± 665

m 141.586± 0.042MeV/c2 142.457± 0.060MeV/c2

σ 5.970± 0.046MeV/c2 5.791± 0.065MeV/c2

n (1.512± 0.741)× 106 (635.2± 519.1)× 103

α −0.969± 0.023 −0.881± 0.029

Table 4.19: Results of the fits to the ∆mD0γ invariant mass difference distributions.

As in the case of the D∗+s efficiencies, ε(D∗0 → D0π0) and ε(D∗0 → D0γ) are
obtained by dividing the event yields by 30 000, the number of processed events.
The efficiencies and their ratio are shown in Table 4.21.

The D∗0 efficiency ratio ε(D∗0 → D0π0)/ε(D∗0 → D0γ) = 0.5838 ± 0.0313
is in very good agreement (within statistical error margins) with the D∗+s effi-
ciency ratios ε(D∗+s → D+

s π
0)/ε(D∗+s → D+

s γ) = 0.5774 ± 0.0287 and ε(D∗+s →
D+
s π

0)/ε(D∗+s → D+
s γ) = 0.5671 ± 0.0293 for the selection and weighting method,

respectively. It is therefore justified to assume ε(D∗0 → D0π0)/ε(D∗0 → D0γ) =
ε(D∗+s → D+

s π
0)/ε(D∗+s → D+

s γ).
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Figure 4.23: ∆mD0π0 and ∆mD0γ invariant mass difference distributions for 30 000
signal Monte Carlo events: (a) ∆mD0π0 distribution; (b) ∆mD0π0 distribution, with
‘random killing’ and the γ correction for systematic uncertainties; (c) ∆mD0γ dis-
tribution; (d) ∆mD0γ distribution, with ‘random killing’ and the γ correction for
systematic uncertainties.
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D∗0 → D0π0 Signal Monte Carlo

No Systematic Corrections Systematic Corrections

N1 798.6± 224.6 549.2± 154.7

m1 142.094± 0.108MeV/c2 142.036± 0.084MeV/c2

σ1 1.055± 0.116MeV/c2 0.864± 0.112MeV/c2

N2 325.7± 214.9 600.7± 150.6

m2 143.061± 0.653MeV/c2 142.572± 0.168MeV/c2

σ2 1.783± 0.381MeV/c2 1.709± 0.173MeV/c2

N = N1 +N2 1 124.4± 52.2 1 149.8± 37.5

D∗0 → D0γ Signal Monte Carlo

No Systematic Corrections Systematic Corrections

N 1 925.8± 51.8 1 890.3± 61.1

m 141.487± 0.268MeV/c2 140.776± 0.216MeV/c2

σ 5.462± 0.251MeV/c2 6.207± 0.209MeV/c2

n (1.485± 0.904)× 106 17.53± 42.68

α −0.805± 0.073 −1.071± 0.143

Table 4.20: Results of the fits to the signal Monte Carlo ∆mD0π0 and ∆mD0γ in-
variant mass difference distributions. The left column corresponds to the processing
without corrections for the determination of systematic uncertainties, while the right
column corresponds to the processing with ‘random killing’ and the γ correction
function for systematic uncertainties.

ε(D∗0 → D0π0) 0.0375± 0.0017

ε(D∗0 → D0γ) 0.0642± 0.0017

ε(D∗0 → D0π0)

ε(D∗0 → D0γ)
0.5838± 0.0313± 0.0225

Table 4.21: Efficiencies ofD∗0 decays and ratio of efficiencies, as obtained from signal
Monte Carlo events. The first error results from Monte Carlo statistics; the second
error in the ratio represents systematic uncertainties of the Monte Carlo model.
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Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ)

Selection Method Weighting Method

Efficiency Ratio from Monte Carlo 0.0621± 0.0049 0.0653± 0.0048

Efficiency Ratio from D∗0 Decays 0.0574± 0.0046 0.0593± 0.0044

Table 4.22: Partial widths ratio Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ). Errors are

statistical only.

4.10 Results

With the knowledge of the event yields in the data and the ratio of the reconstruction
efficiencies, the ratio of the partial widths can be calculated:

Γ(D∗+s → D+
s π

0)

Γ(D∗+s → D+
s γ)

=
N(D∗+s → D+

s π
0)

N(D∗+s → D+
s γ)

/

ε(D∗+s → D+
s π

0)

ε(D∗+s → D+
s γ)

. (4.53)

By using all combinations of methods (selection vs. weighting method, and efficiency
ratio from the signal Monte Carlo sample vs. D∗0 decays), four results are obtained.
They are listed in Table 4.22.

The quoted errors are the statistical errors on theD∗+s → D+
s π

0 andD∗+s → D+
s γ

event yields, and, for the numbers calculated with the efficiency ratio determined
from D∗0 decays, also include the statistical errors on the D∗0 → D0π0 and D∗0 →
D0γ event yields.

4.11 Measurement of Γ(D∗0
→ D0π0)/Γ(D∗0

→ D0γ)

Alternatively to using the measurement of the yield ratioN(D∗0 → D0π0)/N(D∗0 →
D0γ) to determine ε(D∗+s → D+

s π
0)/ε(D∗+s → D+

s γ) (cf. Section 4.9), it can also
be considered a measurement of the partial widths ratio Γ(D∗0 → D0π0)/Γ(D∗0 →
D0γ). With the efficiency ratio determined with signal Monte Carlo events (cf.
Section 4.9.5), the following result is obtained (statistical errors only):

Γ(D∗0 → D0π0)

Γ(D∗0 → D0γ)
=
N(D∗0 → D0π0)

N(D∗0 → D0γ)

/

ε(D∗0 → D0π0)

ε(D∗0 → D0γ)
= 1.7401± 0.0204. (4.54)

4.12 Confirmation of D∗

sJ(2317)
+

→ D+
s π

0

During BABAR’s search for the D∗sJ(2317)
+ state [2], which decays to D+

s π
0, an

attempt has been made to confirm the existence of the decay D∗sJ(2317)
+ → D+

s π
0 in

the data used for the analysis presented in this dissertation. A subsample of 21.0 fb−1

has been reprocessed with slightly different criteria for the π0 → γγ selection:
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Figure 4.24: D+
s π

0 invariant mass distribution in the region of the D∗sJ(2317)
+ mass,

based on a 21.0 fb−1 subsample of the data.

• Photon energy in the laboratory frame: Eγ > 150MeV;

• π0 mass window: 122 < mγγ < 148MeV/c2;

• π0 momentum in the center-of-mass frame: p∗
π0 > 300MeV/c.

Figure 4.24 shows the resulting D+
s π

0 invariant mass distribution. A clear peak
in the region of 2317MeV/c2 can be seen.
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Background

To test for peaking background structures in the signal region, left and right side-
bands in theD+

s , D0, and π0 invariant mass distributions have been analyzed. Monte
Carlo sidebands have been compared to data sidebands; discrepancies are considered
a systematic uncertainty.

The widths of the sidebands are chosen such that the expected number of back-
ground events in each sideband region corresponds to that of the signal region. The
expected number of background events in a region is calculated by integrating the
background function (obtained by fitting) over that region.

5.1 D+
s Sidebands

Table 5.1 lists the definitions of the D+
s sidebands.

Selection Method

Left Sideband Right Sideband

Monte Carlo 1916 < mφπ+ < 1940MeV/c2 2000 < mφπ+ < 2025MeV/c2

Data 1916 < mφπ+ < 1940MeV/c2 2000 < mφπ+ < 2026MeV/c2

Weighting Method

Left Sideband Right Sideband

Monte Carlo 1914 < mφπ+ < 1940MeV/c2 2000 < mφπ+ < 2025MeV/c2

Data 1918 < mφπ+ < 1940MeV/c2 2000 < mφπ+ < 2027MeV/c2

Table 5.1: Definitions of the D+
s sidebands.
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Selection Method

Left Sideband Right Sideband

Monte Carlo −5.03± 12.03 −0.52± 12.84

Data 9.62± 10.11 18.15± 10.62

Weighting Method

Left Sideband Right Sideband

Monte Carlo 7.69± 7.20 −8.53± 2.70

Data −5.65± 2.97 34.36± 16.47

Table 5.2: Event yields in the ∆mD+
s π0 invariant mass difference distributions with

the D∗+s candidate reconstructed from D+
s sidebands.

5.1.1 D+
s π

0 Reconstructed from D+
s Sidebands

The distributions of the invariant mass difference ∆mD+
s π0 obtained by reconstruct-

ing the D∗+s candidates with D+
s candidates from the sidebands are shown in Fig-

ure 5.1. The same function as for the D+
s π

0 signal, i.e., the sum of two Gauss
functions and an ‘exponential/quadratic function’ (Equation 4.31), has been fitted
to the distributions (cf. Section 4.6). In these fits, the signal shape parameters m1,
σ1, m2, σ2, and the ratio N1/N2 have been fixed to the values found for the signal
(cf. Table 4.10). The background parameters and the normalization of the signal
have been included in the fit as free parameters.

The resulting event yields are summarized in Table 5.2. In the rightD+
s sideband,

an excess of events is observed in the data, but not in the Monte Carlo sample. It
corresponds to 3.24% of the signal yield for the selection method and to 5.91% for
the weighting method.

5.1.2 D+
s γ Reconstructed from D+

s Sidebands

D∗+s → D+
s γ is reconstructed with D+

s candidates from the sidebands; the results
are shown in Figure 5.2. The sum of a Crystal Ball function (Equation 4.40) and a
third-order polynomial are fitted to the ∆mD+

s γ distributions, which is the same fit
function as for the signal (cf. Section 4.7). Again, the signal shape parameters m,
σ, n, α have been fixed to the values found for the signal (cf. Table 4.12), while the
signal event yield and the background parameters have been determined by the fit.

The results are listed in Table 5.3. A peaking structure is observed both in the
Monte Carlo sample and the data. By studying these structures with Monte Carlo
events, it can be seen that in fact they arise from true D∗+s → D+

s γ decays. If the
momentum of one of the kaons or the pion from theD+

s decay is measured incorrectly
(e.g., if the particle interacts with the drift chamber material), the invariant mass
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Selection Method

Left Sideband Right Sideband

Monte Carlo 190.90± 33.54 122.24± 32.23

Data 207.20± 33.53 94.54± 31.05

Weighting Method

Left Sideband Right Sideband

Monte Carlo 173.08± 47.36 91.13± 43.21

Data 211.56± 50.78 38.74± 47.52

Table 5.3: Event yields in the ∆mD+
s γ invariant mass difference distributions with

the D∗+s candidate reconstructed from D+
s sidebands.

of the D+
s candidate can fall into the sideband region.

Since the event yields of the peaking structures in the sidebands are compatible
for the data and the Monte Carlo sample, it can be assumed that the Monte Carlo
model describes this behavior correctly.
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Figure 5.1: ∆mD+
s π0 invariant mass difference distributions; D∗+s reconstructed from

D+
s sidebands: (a) generic Monte Carlo, selection method, left sideband; (b) generic

Monte Carlo, selection method, right sideband; (c) data, selection method, left side-
band; (d) data, selection method, right sideband; (e) generic Monte Carlo, weighting
method, left sideband; (f) generic Monte Carlo, weighting method, right sideband;
(g) data, weighting method, left sideband; (h) data, weighting method, right side-
band.
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Figure 5.2: ∆mD+
s γ invariant mass difference distributions; D∗+s reconstructed from

D+
s sidebands: (a) generic Monte Carlo, selection method, left sideband; (b) generic

Monte Carlo, selection method, right sideband; (c) data, selection method, left side-
band; (d) data, selection method, right sideband; (e) generic Monte Carlo, weighting
method, left sideband; (f) generic Monte Carlo, weighting method, right sideband;
(g) data, weighting method, left sideband; (h) data, weighting method, right side-
band.
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Left Sideband Right Sideband

Monte Carlo 1801 < mK−π+ < 1830MeV/c2 1900 < mK−π+ < 1939MeV/c2

Data 1800 < mK−π+ < 1830MeV/c2 1900 < mK−π+ < 1937MeV/c2

Table 5.4: Definitions of the D0 sidebands.
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Figure 5.3: ∆mD0π0 invariant mass difference distributions; D∗0 reconstructed from
D0 sidebands: (a) generic Monte Carlo, left sideband; (b) generic Monte Carlo, right
sideband; (c) data, left sideband; (d) data, right sideband.

5.2 D0 Sidebands

The D0 sidebands are defined according to Table 5.4.

5.2.1 D0π0 Reconstructed from D0 Sidebands

Figure 5.3 shows the ∆mD0π0 distribution of D∗0 candidates reconstructed with D0

candidates from the sidebands. The distributions are fitted with the same function
as the D∗0 → D0π0 signal (cf. Section 4.9.2), but with the signal shape parameters
fixed to the values of the signal (cf. Table 4.17). The resulting event yields are
summarized in Table 5.5.
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Left Sideband Right Sideband

Monte Carlo 1499.6± 87.0 608.1± 65.3

Data 1842.0± 79.2 511.3± 72.7

Table 5.5: Event yields in the ∆mD+
s π0 invariant mass difference distributions with

the D∗0 candidate reconstructed from D0 sidebands.

Left Sideband Right Sideband

Monte Carlo 1633.5± 102.2 916.4± 170.5

Data 1811.6± 157.1 727.5± 187.9

Table 5.6: Event yields in the ∆mD+
s γ invariant mass difference distributions with

the D∗0 candidate reconstructed from D0 sidebands.

As in the case of the D+
s sidebands, the peaking structures observed in the D0

sidebands result from true D0 particles with incorrectly measured momenta, which
fall in the sideband regions. Since the event yields in the Monte Carlo sample and
the data are again compatible, it can be assumed that no peaking structure is present
under the signal.

5.2.2 D0γ Reconstructed from D0 Sidebands

The D∗0 candidates are reconstructed with D0 candidates from the sidebands; the
resulting ∆mD0γ distributions are shown in Figure 5.6. Again, the same fit function
as for the signal is used (cf. Section 4.9.3) and the signal shape parameters are fixed
to the signal values (cf. Table 4.19). Table 5.6 lists the event yields obtained in this
way.

The peaking structures already observed in the D0 sidebands for the decay
D∗0 → D0π0 are also seen in the ∆mD0γ distributions. Again, the event yields
in the Monte Carlo sample are compatible with the event yields in the data.
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Figure 5.4: ∆mD0γ invariant mass difference distributions; D∗0 reconstructed from
D0 sidebands: (a) generic Monte Carlo, left sideband; (b) generic Monte Carlo, right
sideband; (c) data, left sideband; (d) data, right sideband.
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Run 1

Left Sideband Right Sideband

Monte Carlo 73.5 < mγγ < 100.0MeV/c2 160.0 < mγγ < 187.9MeV/c2

Data 71.2 < mγγ < 100.0MeV/c2 160.0 < mγγ < 188.8MeV/c2

Run 2

Left Sideband Right Sideband

Monte Carlo 74.7 < mγγ < 100.0MeV/c2 160.0 < mγγ < 187.0MeV/c2

Data 73.7 < mγγ < 100.0MeV/c2 160.0 < mγγ < 186.6MeV/c2

Table 5.7: Definitions of the π0 sidebands.

5.3 π0 Sidebands

The π0 sideband regions are defined separately for Run 1 and Run 2 according to
Table 5.7.

5.3.1 D+
s π

0 and D0π0 Reconstructed from π0 Sidebands

The decays D∗+s → D+
s π

0 and D∗0 → D0π0 are reconstructed with π0 candidates
from the sidebands, and as in the previous sections, the sum of two Gauss functions
with fixed signal shape and an ‘exponential/quadratic function’ are fitted to the
mass difference distributions. Figures 5.5 and 5.6 show the results.

The event yields obtained in this way are listed in Tables 5.8 and 5.9 for the D∗+s
andD∗0 decays, respectively. They differ between Monte Carlo sample and data, but
it should be noted that the fits to corresponding Monte Carlo and data distributions
also yield very different background shapes. Therefore, another approach is followed
to obtain potentially peaking background contributions, which is described in the
following section.
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Selection Method

Left Sideband Right Sideband

Monte Carlo 23.30± 20.19 14.59± 21.31

Data −43.21± 22.70 −1.88± 26.63

Weighting Method

Left Sideband Right Sideband

Monte Carlo 31.91± 20.91 17.68± 22.19

Data −81.26± 24.63 1.73± 24.42

Table 5.8: Event yields in the ∆mD+
s π0 invariant mass difference distributions with

the D∗+s candidate reconstructed from π0 sidebands.

Left Sideband Right Sideband

Monte Carlo −97.4± 116.5 −304.4± 116.1

Data −174.5± 117.4 −87.5± 115.4

Table 5.9: Event yields in the ∆mD+
s π0 invariant mass difference distributions with

the D∗0 candidate reconstructed from π0 sidebands.
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Figure 5.5: ∆mD+
s π0 invariant mass difference distributions; D∗+s reconstructed from

π0 sidebands: (a) generic Monte Carlo, selection method, left sideband; (b) generic
Monte Carlo, selection method, right sideband; (c) data, selection method, left side-
band; (d) data, selection method, right sideband; (e) generic Monte Carlo, weighting
method, left sideband; (f) generic Monte Carlo, weighting method, right sideband;
(g) data, weighting method, left sideband; (h) data, weighting method, right side-
band.
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Figure 5.6: ∆mD0π0 invariant mass difference distributions; D∗0 reconstructed from
π0 sidebands: (a) generic Monte Carlo, left sideband; (b) generic Monte Carlo, right
sideband; (c) data, left sideband; (d) data, right sideband.

84



Background

]2m [GeV/c∆
0.135 0.14 0.145 0.15 0.155 0.16

)2
E

n
tr

ie
s/

(0
.5

 M
eV

/c

-30

-20

-10

0

10

20

30

(a)

]2m [GeV/c∆
0.135 0.14 0.145 0.15 0.155 0.16

)2
E

n
tr

ie
s/

(0
.5

 M
eV

/c

-30

-20

-10

0

10

20

30
(b)

]2m [GeV/c∆
0.135 0.14 0.145 0.15 0.155 0.16

)2
E

n
tr

ie
s/

(0
.5

 M
eV

/c

-40

-20

0

20

40
(c)

]2m [GeV/c∆
0.135 0.14 0.145 0.15 0.155 0.16

)2
E

n
tr

ie
s/

(0
.5

 M
eV

/c

-40

-30

-20

-10

0

10

20

30

40

(d)

Figure 5.7: ∆mD+
s π0 invariant mass difference distributions; D∗+s reconstructed from

π0 sidebands; data with normalized Monte Carlo events subtracted: (a) selection
method, left sideband; (b) selection method, right sideband; (c) weighting method,
left sideband; (d) weighting method, right sideband.

5.3.2 Data with Monte Carlo Events Subtracted

For each π0 sideband and decay channel involving π0 mesons, the Monte Carlo
histogram is normalized with respect to the corresponding data histogram, i.e., it is
rescaled such that the total number of entries is the same for both histograms. The
normalized Monte Carlo histogram is then subtracted from the data histogram, and
a sum of two Gauss functions is fitted to the resulting difference histogram. In each
fit, the signal shape parameters are again fixed to the values of the corresponding
signal. Figures 5.7 and 5.8 show the resulting distribution.

Tables 5.10 and 5.11 list the event yields as well as what fraction of the corre-
sponding signal event yield they constitute. All event yields are compatible with
zero within error margins. However, to follow a conservative approach, the yields in
the right sidebands (which are larger than the ones in the left sidebands) are taken
as a systematic uncertainty of the background.
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Figure 5.8: ∆mD0π0 invariant mass difference distributions; D∗0 reconstructed from
π0 sidebands; data with normalized Monte Carlo events subtracted: (a) left side-
band; (b) right sideband.

Selection Method

Left Sideband Right Sideband

Yield 7.2± 27.1 17.2± 24.7

Fraction of Signal Events 1.28% 3.07%

Weighting Method

Left Sideband Right Sideband

Yield −8.7± 38.0 16.9± 35.7

Fraction of Signal Events 1.51% 2.92%

Table 5.10: Results of the fits to the ∆mD+
s π0 invariant mass difference distributions

of data with normalized Monte Carlo events subtracted. The D∗+s candidate has
been reconstructed from the π0 sidebands.

Left Sideband Right Sideband

Yield −31.9± 100.4 98.7± 104.4

Fraction of Signal Events 0.05% 0.14%

Table 5.11: Results of the fits to the ∆mD0π0 invariant mass difference distributions
of data with normalized Monte Carlo events subtracted. The D∗0 candidate has
been reconstructed from the π0 sidebands.
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Momentum Spectra

6.1 Introduction

To test for a possible momentum dependency, the momentum p∗ of the D∗+s and
D∗0 candidates in the center-of-mass frame has been divided into five bins:

• 3.0 < p∗ < 3.4GeV/c;

• 3.4 < p∗ < 3.8GeV/c;

• 3.8 < p∗ < 4.2GeV/c;

• 4.2 < p∗ < 4.6GeV/c;

• 4.6 < p∗ < 5.0GeV/c.

The signal event yields for the four decays D∗+s → D+
s π

0/γ, D∗0 → D0π0/γ have
been measured in the data, and signal Monte Carlo events have been used to correct
for efficiency differences between the momentum bins. The theoretical fragmentation
model by Collins and Spiller [28] has then been applied to estimate the momentum
distribution of the D∗+s and D∗0 particles.

Next, Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) and Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ)

have been calculated for each bin. A constant function and a first-order polynomial
have been fitted to the resulting distributions to test for a momentum dependency,
and the latter fit has also been used to estimate a potentially unknown systematic
momentum dependency.

The remainder of this chapter describes this methodology in more detail and
presents the results.

6.2 Momentum Dependent Event Yields

The signal event yields for the decays D∗+s → D+
s π

0, D∗+s → D+
s γ, D

∗0 → D0π0,
and D∗0 → D0γ (the former two reconstructed with the selection and weighting
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method) have been determined by fitting a function to the invariant mass difference
distributions, as described in Chapter 4. Additionally, for each fit the momentum of
the D∗+s or D∗0 candidates in the center-of-mass frame has been constrained to one
of five 400MeV/c wide ranges, as specified in Section 6.1. The results are shown in
Figures 6.1 to 6.6 and Tables 6.1 to 6.3. Figures 6.7 to 6.9 depict the momentum
spectra.
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Selection Method Weighting Method

3.0 < p∗
D∗+s

< 3.4GeV/c 68.2± 24.7 79.0± 16.3

3.4 < p∗
D∗+s

< 3.8GeV/c 162.0± 20.2 160.8± 19.7

3.8 < p∗
D∗+s

< 4.2GeV/c 192.4± 19.4 199.0± 23.1

4.2 < p∗
D∗+s

< 4.6GeV/c 92.6± 14.0 96.7± 12.3

4.6 < p∗
D∗+s

< 5.0GeV/c 32.2± 8.2 32.8± 7.1

Table 6.1: D∗+s → D+
s π

0 event yields obtained in the data for different momentum
bins.

Selection Method Weighting Method

3.0 < p∗
D∗+s

< 3.4GeV/c 2 063.6± 68.1 2 051.8± 65.7

3.4 < p∗
D∗+s

< 3.8GeV/c 4 726.7± 90.6 4 831.0± 89.3

3.8 < p∗
D∗+s

< 4.2GeV/c 4 638.9± 84.2 4 561.5± 83.1

4.2 < p∗
D∗+s

< 4.6GeV/c 3 142.2± 67.7 3 098.5± 67.0

4.6 < p∗
D∗+s

< 5.0GeV/c 1 029.2± 39.8 1 051.8± 39.0

Table 6.2: D∗+s → D+
s γ event yields obtained in the data for different momentum

bins.

D∗0 → D0π0 D∗0 → D0γ

3.0 < p∗
D∗0

< 3.4GeV/c 13 112± 210 11 820± 767

3.4 < p∗
D∗0

< 3.8GeV/c 24 522± 298 24 489± 376

3.8 < p∗
D∗0

< 4.2GeV/c 18 631± 266 18 321± 301

4.2 < p∗
D∗0

< 4.6GeV/c 10 975± 136 10 726± 217

4.6 < p∗
D∗0

< 5.0GeV/c 3 365± 93 3 143± 112

Table 6.3: D∗0 → D0π0 and D∗0 → D0γ event yields obtained in the data for
different momentum bins.
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Figure 6.1: ∆mD+
s π0 invariant mass difference distributions in different bins of the

D∗+s momentum p∗
D∗+s

: (a) 3.0 < p∗
D∗+s

< 3.4GeV/c; (b) 3.4 < p∗
D∗+s

< 3.8GeV/c;

(c) 3.8 < p∗
D∗+s

< 4.2GeV/c; (d) 4.2 < p∗
D∗+s

< 4.6GeV/c; (e) 4.6 < p∗
D∗+s

<

5.0GeV/c. The D+
s candidate has been reconstructed with the selection method.
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Figure 6.2: ∆mD+
s π0 invariant mass difference distributions in different bins of the

D∗+s momentum p∗
D∗+s

: (a) 3.0 < p∗
D∗+s

< 3.4GeV/c; (b) 3.4 < p∗
D∗+s

< 3.8GeV/c;

(c) 3.8 < p∗
D∗+s

< 4.2GeV/c; (d) 4.2 < p∗
D∗+s

< 4.6GeV/c; (e) 4.6 < p∗
D∗+s

<

5.0GeV/c. The D+
s candidate has been reconstructed with the weighting method.
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Figure 6.3: ∆mD+
s γ invariant mass difference distributions in different bins of the

D∗+s momentum p∗
D∗+s

: (a) 3.0 < p∗
D∗+s

< 3.4GeV/c; (b) 3.4 < p∗
D∗+s

< 3.8GeV/c;

(c) 3.8 < p∗
D∗+s

< 4.2GeV/c; (d) 4.2 < p∗
D∗+s

< 4.6GeV/c; (e) 4.6 < p∗
D∗+s

<

5.0GeV/c. The D+
s candidate has been reconstructed with the selection method.
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Figure 6.4: ∆mD+
s γ invariant mass difference distributions in different bins of the

D∗+s momentum p∗
D∗+s

: (a) 3.0 < p∗
D∗+s

< 3.4GeV/c; (b) 3.4 < p∗
D∗+s

< 3.8GeV/c;

(c) 3.8 < p∗
D∗+s

< 4.2GeV/c; (d) 4.2 < p∗
D∗+s

< 4.6GeV/c; (e) 4.6 < p∗
D∗+s

<

5.0GeV/c. The D+
s candidate has been reconstructed with the weighting method.
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Figure 6.5: ∆mD0π0 invariant mass difference distributions in different bins of the
D∗0 momentum p∗

D∗0
: (a) 3.0 < p∗

D∗0
< 3.4GeV/c; (b) 3.4 < p∗

D∗0
< 3.8GeV/c;

(c) 3.8 < p∗
D∗0

< 4.2GeV/c; (d) 4.2 < p∗
D∗0

< 4.6GeV/c; (e) 4.6 < p∗
D∗0

<
5.0GeV/c.
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Figure 6.6: ∆mD0γ invariant mass difference distributions in different bins of theD∗0

momentum p∗
D∗0

: (a) 3.0 < p∗
D∗0

< 3.4GeV/c; (b) 3.4 < p∗
D∗0

< 3.8GeV/c; (c) 3.8 <
p∗
D∗0

< 4.2GeV/c; (d) 4.2 < p∗
D∗0

< 4.6GeV/c; (e) 4.6 < p∗
D∗0

< 5.0GeV/c.
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Figure 6.7: Momentum spectra of D∗+s → D+
s π

0 event yields in the data: (a) selec-
tion method; (b) weighting method.
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Figure 6.8: Momentum spectra ofD∗+s → D+
s γ event yields in the data: (a) selection

method; (b) weighting method.
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Figure 6.9: Momentum spectra of event yields in the data: (a) D∗0 → D0π0;
(b) D∗0 → D0γ.
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6.3 Efficiency Correction

6.3.1 Determination of Momentum Dependent Efficiencies with Sig-
nal Monte Carlo Events

To estimate the reconstruction efficiencies in the five momentum bins, the numbers of
reconstructed and total events have been counted in the signal Monte Carlo samples.
The ratio of the two numbers represents the efficiency. For each channel, this has
been performed separately for each momentum bin. Tables 6.4 to 6.9 list the results.

A comparison of the resulting efficiencies is shown in Figure 6.10. Except for
the 3.0 < p∗ < 3.4GeV/c bin, where the efficiencies are reduced by the scaled
momentum (xp) selection of the D+

s and D0 candidates, the efficiencies appear to
be momentum independent within the error margins. Therefore, for each decay
channel, a constant function has been fitted to the efficiency distributions over the
range 3.4 < p∗ < 5.0GeV/c. The results are given in Table 6.10.

It should be noted that these numbers are larger than the total efficiencies pre-
sented in Chapter 4. This is expected, as the effect of the scaled momentum selec-
tions influences the latter, but not the former efficiencies.

6.3.2 Efficiency Corrected Momentum Spectra

To correct the momentum spectra (Figures 6.7 to 6.9) for different efficiencies, the
event yields in the 3.0 < p∗ < 3.4GeV/c bins are divided by the efficiency in that
bin. The event yields in the other bins are divided by the efficiencies according to
the respective fit results.

Two theoretical models to describe the momentum distribution have been con-
sidered. The first one, by Peterson, Schlatter, Schmitt, and Zerwas [29], models the
momentum distribution resulting from the heavy quark fragmentation process by
the function

fPSSZ(xp) = N
1

xp

(

1− 1
xp
− ε

1−xp

)2 . (6.1)

The second model, by Collins and Spiller [28], refines the first one and describes the
momentum distribution by the function

fCS(xp) = N

(

1−xp
xp

+
2−xp
1−xp ε

)

(

1 + x2
p

)

(

1− 1
xp
− ε

1−xp

)2 . (6.2)

Both model functions are fitted to each efficiency corrected momentum spectrum.
The results are shown in Figures 6.11 to 6.13. Each fit yields a shape parameter ε;
these are tabulated in Table 6.11.

The function by Collins and Spiller models the observed distributions much bet-
ter than the function by Peterson et al. Therefore, the former function is used in
Section 6.5 to estimate systematic uncertainties.
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Total Reconstructed Reconstruction

Events Events Efficiency

3.0 < p∗
D∗+s

< 3.4GeV/c 4 822 216 0.0448± 0.0030

3.4 < p∗
D∗+s

< 3.8GeV/c 4 590 374 0.0815± 0.0042

3.8 < p∗
D∗+s

< 4.2GeV/c 3 749 338 0.0902± 0.0049

4.2 < p∗
D∗+s

< 4.6GeV/c 2 527 238 0.0942± 0.0061

4.6 < p∗
D∗+s

< 5.0GeV/c 196 15 0.0765± 0.0198

Table 6.4: Momentum dependent number of total events, reconstructed events, and
reconstruction efficiency in the D∗+s → D+

s π
0 signal Monte Carlo sample, recon-

structed with the selection method.

Total Reconstructed Reconstruction

Events Events Efficiency

3.0 < p∗
D∗+s

< 3.4GeV/c 4 822 236.2 0.0490± 0.0032

3.4 < p∗
D∗+s

< 3.8GeV/c 4 590 390.6 0.0851± 0.0043

3.8 < p∗
D∗+s

< 4.2GeV/c 3 749 319.7 0.0853± 0.0048

4.2 < p∗
D∗+s

< 4.6GeV/c 2 527 239.0 0.0946± 0.0061

4.6 < p∗
D∗+s

< 5.0GeV/c 196 13.4 0.0684± 0.0187

Table 6.5: Momentum dependent number of total events, reconstructed events, and
reconstruction efficiency in the D∗+s → D+

s π
0 signal Monte Carlo sample, recon-

structed with the weighting method.

The four shape parameters ε of the D∗+s distributions agree within error margins,
as do the two D∗0 shape parameters. For each of the two particles, the weighted
average of the individual parameters is calculated, with the squares of the inverse
errors as weights. The resulting values,

εD∗+s = 0.0836 (6.3)

for the D∗+s , and
εD∗0 = 0.4505 (6.4)

for the D∗0, are used in the systematic uncertainty estimate in Section 6.5.
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Total Reconstructed Reconstruction

Events Events Efficiency

3.0 < p∗
D∗+s

< 3.4GeV/c 4 888 383 0.0784± 0.0040

3.4 < p∗
D∗+s

< 3.8GeV/c 4 516 660 0.1461± 0.0057

3.8 < p∗
D∗+s

< 4.2GeV/c 4 170 628 0.1506± 0.0060

4.2 < p∗
D∗+s

< 4.6GeV/c 2 307 360 0.1560± 0.0082

4.6 < p∗
D∗+s

< 5.0GeV/c 298 48 0.1611± 0.0232

Table 6.6: Momentum dependent number of total events, reconstructed events, and
reconstruction efficiency in the D∗+s → D+

s γ signal Monte Carlo sample, recon-
structed with the selection method.

Total Reconstructed Reconstruction

Events Events Efficiency

3.0 < p∗
D∗+s

< 3.4GeV/c 4 888 403.5 0.0825± 0.0041

3.4 < p∗
D∗+s

< 3.8GeV/c 4 516 707.1 0.1566± 0.0059

3.8 < p∗
D∗+s

< 4.2GeV/c 4 170 622.4 0.1493± 0.0060

4.2 < p∗
D∗+s

< 4.6GeV/c 2 307 359.1 0.1557± 0.0082

4.6 < p∗
D∗+s

< 5.0GeV/c 298 56.2 0.1886± 0.0252

Table 6.7: Momentum dependent number of total events, reconstructed events, and
reconstruction efficiency in the D∗+s → D+

s γ signal Monte Carlo sample, recon-
structed with the weighting method.

Total Reconstructed Reconstruction

Events Events Efficiency

3.0 < p∗
D∗0

< 3.4GeV/c 4 918 216 0.0439± 0.0030

3.4 < p∗
D∗0

< 3.8GeV/c 4 227 398 0.0942± 0.0047

3.8 < p∗
D∗0

< 4.2GeV/c 3 281 301 0.0917± 0.0053

4.2 < p∗
D∗0

< 4.6GeV/c 2 049 179 0.0874± 0.0065

4.6 < p∗
D∗0

< 5.0GeV/c 386 43 0.1114± 0.0170

Table 6.8: Momentum dependent number of total events, reconstructed events, and
reconstruction efficiency in the D∗0 → D0π0 signal Monte Carlo sample.
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Total Reconstructed Reconstruction

Events Events Efficiency

3.0 < p∗
D∗0

< 3.4GeV/c 5 017 332 0.0662± 0.0036

3.4 < p∗
D∗0

< 3.8GeV/c 4 313 712 0.1651± 0.0062

3.8 < p∗
D∗0

< 4.2GeV/c 3 185 544 0.1708± 0.0073

4.2 < p∗
D∗0

< 4.6GeV/c 1 928 334 0.1732± 0.0095

4.6 < p∗
D∗0

< 5.0GeV/c 418 64 0.1531± 0.0191

Table 6.9: Momentum dependent number of total events, reconstructed events, and
reconstruction efficiency in the D∗0 → D0γ signal Monte Carlo sample.
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Figure 6.10: Momentum dependent efficiencies from signal Monte Carlo events:
(a) hadronic decays: D∗+s → D+

s π
0, selection method (black, dot markers);

D∗+s → D+
s π

0, weighting method (red, cross markers); D∗0 → D0π0 (blue, open
circle markers); (b) radiative decays: D∗+s → D+

s γ, selection method (black, dot
markers); D∗+s → D+

s γ, weighting method (red, cross markers); D∗0 → D0γ (blue,
open circle markers). The horizontal lines represent the results of fits of constant
functions in the range 3.4 < p∗ < 5.0GeV/c.

Decay Channel Efficiency

D∗+s → D+
s π

0, selection method 0.0869± 0.0028

D∗+s → D+
s π

0, weighting method 0.0868± 0.0028

D∗0 → D0π0 0.0924± 0.0030

D∗+s → D+
s γ, selection method 0.1501± 0.0036

D∗+s → D+
s γ, weighting method 0.1543± 0.0037

D∗0 → D0γ 0.1679± 0.0041

Table 6.10: Results of the fit of a constant function to the momentum dependent
efficiencies determined from signal Monte Carlo events in the range 3.4 < p∗ <
5.0GeV/c.
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Figure 6.11: Efficiency corrected momentum spectra of D∗+s → D+
s π

0 event yields in
the data: (a) selection method; (b) weighting method. The functions are fits of the
momentum distribution models by Peterson et al. (black) and Collins and Spiller
(red).
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Figure 6.12: Efficiency corrected momentum spectra of D∗+s → D+
s γ event yields in

the data: (a) selection method; (b) weighting method. The functions are fits of the
momentum distribution models by Peterson et al. (black) and Collins and Spiller
(red).

Decay Channel ε (Peterson et al.) ε (Collins and Spiller)

D∗+s → D+
s π

0, selection method 0.0458± 0.0088 0.1132± 0.0413

D∗+s → D+
s π

0, weighting method 0.0445± 0.0076 0.1042± 0.0327

D∗0 → D0π0 0.0639± 0.0041 0.4125± 0.0781

D∗+s → D+
s γ, selection method 0.0371± 0.0018 0.0817± 0.0067

D∗+s → D+
s γ, weighting method 0.0381± 0.0019 0.0838± 0.0068

D∗0 → D0γ 0.0674± 0.0039 0.5449± 0.1232

Table 6.11: Results of the fits of theoretical model functions to the measured and
efficiency corrected momentum spectra.
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Figure 6.13: Efficiency corrected momentum spectra of event yields in the data:
(a) D∗0 → D0π0; (b) D∗0 → D0γ. The functions are fits of the momentum distri-
bution models by Peterson et al. (black) and Collins and Spiller (red).
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Figure 6.14: Momentum dependent Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) with effi-

ciencies from signal Monte Carlo events, and results of the fits of a constant func-
tion (black) and a first-order polynomial (red): (a) selection method; (b) weighting
method. Errors are statistical only.

6.4 Momentum Dependent Partial Widths Ratios

For each momentum bin, the partial widths ratios Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ)

and Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ) have been calculated in the same way as
described in Chapter 4. The results are shown in Figures 6.14 to 6.16 and Tables 6.12
to 6.14.

A constant function has been fitted to each partial widths ratio distribution
(black line in Figures 6.14 to 6.16). The resulting values are in good agreement with
the respective partial widths ratios calculated from all events.

Additionally, a first-order polynomial has been fitted to each partial widths ra-
tio distribution (red line in Figures 6.14 to 6.16). In each case, the slope of the
polynomial is compatible with zero within error margins.
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Figure 6.15: Momentum dependent Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) with efficien-

cies from D∗0 decays, and results of the fits of a constant function (black) and a
first-order polynomial (red): (a) selection method; (b) weighting method. Errors
are statistical only.
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Figure 6.16: Momentum dependent Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ) with efficiencies
from signal Monte Carlo events, and results of the fits of a constant function (black)
and a first-order polynomial (red). Errors are statistical only.
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Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ)

Selection Method Weighting Method

3.0 < p∗
D∗+s

< 3.4GeV/c 0.0572± 0.0208 0.0679± 0.0142

3.4 < p∗
D∗+s

< 3.8GeV/c 0.0594± 0.0075 0.0587± 0.0073

3.8 < p∗
D∗+s

< 4.2GeV/c 0.0719± 0.0073 0.0769± 0.0090

4.2 < p∗
D∗+s

< 4.6GeV/c 0.0510± 0.0078 0.0550± 0.0076

4.6 < p∗
D∗+s

< 5.0GeV/c 0.0542± 0.0139 0.0550± 0.0121

Fit of constant 0.0604± 0.0041 0.0617± 0.0041

Fit of first-order polynomial:

a: slope×GeV/c (−7.27± 9.89)× 10−3 (−6.30± 8.67)× 10−3

b: ordinate intercept 0.0897± 0.0400 0.0870± 0.0350

All Events (cf. Table 4.22) 0.0621± 0.0049 0.0653± 0.0048

Table 6.12: Momentum dependent Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) with efficien-

cies from signal Monte Carlo events, results of the fits to the momentum spectra,
and Γ(D∗+s → D+

s π
0)/Γ(D∗+s → D+

s γ) for all events. Errors are statistical only.

Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ)

Selection Method Weighting Method

3.0 < p∗
D∗+s

< 3.4GeV/c 0.0484± 0.0179 0.0564± 0.0124

3.4 < p∗
D∗+s

< 3.8GeV/c 0.0556± 0.0071 0.0540± 0.0068

3.8 < p∗
D∗+s

< 4.2GeV/c 0.0663± 0.0069 0.0697± 0.0083

4.2 < p∗
D∗+s

< 4.6GeV/c 0.0467± 0.0072 0.0495± 0.0070

4.6 < p∗
D∗+s

< 5.0GeV/c 0.0475± 0.0124 0.0474± 0.0106

Fit of constant 0.0553± 0.0038 0.0553± 0.0037

Fit of first-order polynomial:

a: slope×GeV/c (−7.42± 9.00)× 10−3 (−5.89± 7.77)× 10−3

b: ordinate intercept 0.0852± 0.0365 0.0789± 0.0314

All Events (cf. Table 4.22) 0.0574± 0.0046 0.0593± 0.0044

Table 6.13: Momentum dependent Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) with ef-

ficiencies from D∗0 decays, results of the fits to the momentum spectra, and
Γ(D∗+s → D+

s π
0)/Γ(D∗+s → D+

s γ) for all events. Errors are statistical only.
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Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ)

3.0 < p∗
D∗+s

< 3.4GeV/c 1.9000± 0.1270

3.4 < p∗
D∗+s

< 3.8GeV/c 1.7151± 0.0336

3.8 < p∗
D∗+s

< 4.2GeV/c 1.7417± 0.0379

4.2 < p∗
D∗+s

< 4.6GeV/c 1.7527± 0.0416

4.6 < p∗
D∗+s

< 5.0GeV/c 1.8342± 0.0829

Fit of constant 1.7443± 0.0205

Fit of first-order polynomial:

a: slope×GeV/c (41.0± 52.3)× 10−3

b: ordinate intercept 1.5811± 0.2089

All Events (cf. Equation 4.54) 1.7401± 0.0204

Table 6.14: Momentum dependent Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ) with efficiencies
from signal Monte Carlo events, results of the fits to the momentum spectrum, and
Γ(D∗+s → D+

s π
0)/Γ(D∗+s → D+

s γ) for all events. Errors are statistical only.
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6.5 Systematic Momentum Dependency

Systematic uncertainties are calculated under the assumption that the slopes of the
first-order polynomials (referred to as p1(xp) = axp + b in the following text) fitted
to the partial widths ratio distributions represent systematic momentum dependen-
cies. Such dependencies could arise due to unknown momentum dependencies of
the efficiencies which do not compensate in the partial widths ratios and which are
not correctly modeled by the signal Monte Carlo events. The method described here
yields a conservative estimate of the uncertainties such unknown dependencies could
cause.

Under the assumption stated above, if the partial width ratios had been measured
in n bins which covered the allowed momentum range (0 ≤ xp ≤ 1) completely, the
partial width ratio in the ith bin (i ∈ {1, . . . , n}) would be given by

(Γπ0/Γγ)i = p1(xp,i) = axp,i + b, (6.5)

where xp,i is the scaled momentum xp at the center of the ith bin.
In the case of Γ(D∗+s → D+

s π
0)/Γ(D∗+s → D+

s γ) with efficiencies determined
with signal Monte Carlo events, the relative statistical error of the ith bin would be

σi
(Γπ0/Γγ)i

=

√

1

Ni(D
+
s π0)

+
1

Ni(D
+
s γ)

. (6.6)

Ni(D
+
s π

0) and Ni(D
+
s γ) are the event yields of D∗+s → D+

s π
0 and D∗+s → D+

s γ,
respectively, in the ith bin. Except for unknown normalization factors, these yields
are given by the momentum distribution function fCS,D∗+s

(Equation 6.2), with the
shape parameter εD∗+s = 0.0836 as given by Equation 6.3.

The squares of the absolute errors are therefore proportional to

σ2
i ∝

(axp,i + b)2

fCS,D∗+s
(xp,i)

. (6.7)

The total partial widths ratio Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) could be cal-

culated as the weighted sum of the values in the n bins, with the inverse squares of
the errors as weights:1

(Γπ0/Γγ)mom.dep =
n
∑

i=1

axp,i + b

σ2
i

/

n
∑

i=1

1

σ2
i

. (6.8)

In the limit n→∞ and with the unknown proportionality constant in σ2
i cancelled,

this becomes

(Γπ0/Γγ)mom.dep =

∫ 1

0
dxp

fCS,D∗+s
(xp)

axp + b

/

∫ 1

0
dxp

fCS,D∗+s
(xp)

(axp + b)2
. (6.9)

1This is mathematically equivalent to fitting a constant function to the partial widths ratio
distribution.
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In the case of Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) with efficiencies determined

with D∗0 decays, the relative statistical error of the ith bin would be

σi
(Γπ0/Γγ)i

=

√

1

Ni(D
+
s π0)

+
1

Ni(D
+
s γ)

+
1

Ni(D0π0)
+

1

Ni(D0γ)
. (6.10)

This case is slightly more complicated due to the different momentum spectra of
the D∗+s and D∗0 particles: there is no common momentum distribution function to
factor out. Instead, the Ni are assumed to be proportional to the measured event
yields N , and the different normalizations of the momentum distribution functions
fCS,D∗+s

(cf. Equation 6.3) for the D∗+s decays and fCS,D∗0 (cf. Equation 6.4) for the

D∗0 decays are taken into account:

Ni(D
+
s π

0) ∝ N(D∗+s → D+
s π

0) fCS,D∗+s
(xp,i)

/∫ 1

0
dxp fCS,D∗+s

(xp) ; (6.11)

Ni(D
+
s γ) ∝ N(D∗+s → D+

s γ) fCS,D∗+s
(xp,i)

/∫ 1

0
dxp fCS,D∗+s

(xp) ; (6.12)

Ni(D
0π0) ∝ N(D∗0 → D0π0) fCS,D∗0(xp,i)

/∫ 1

0
dxp fCS,D∗0(xp) ; (6.13)

Ni(D
0γ) ∝ N(D∗0 → D0γ) fCS,D∗0(xp,i)

/∫ 1

0
dxp fCS,D∗0(xp) . (6.14)

With the measured event yields given in Tables 4.10, 4.12, 4.17, and 4.19, and
the normalizations of the momentum distribution functions

∫ 1

0
dxp fCS,D∗+s

(xp) = 0.0930, (6.15)

∫ 1

0
dxp fCS,D∗0(xp) = 0.5186, (6.16)

the squares of the absolute errors of the partial widths ratios are proportional to

σ2
i ∝ (axp,i + b)2

(

1.72× 10−4

fCS,D∗+s
(xp,i)

+
1.52× 10−5

fCS,D∗0(xp,i)

)

(6.17)

for the selection method and

σ2
i ∝ (axp,i + b)2

(

1.67× 10−4

fCS,D∗+s
(xp,i)

+
1.52× 10−5

fCS,D∗0(xp,i)

)

(6.18)

for the weighting method.
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If again the limit n→∞ is performed and the unknown proportionality constant
in σ2

i cancelled, the equations

(Γπ0/Γγ)mom.dep =

∫ 1

0
dxp

(

1.72×10−4

f
CS,D

∗+
s

(xp)
+ 1.52×10−5

f
CS,D∗0 (xp)

)−1

axp + b

/

∫ 1

0
dxp

(

1.72×10−4

f
CS,D

∗+
s

(xp)
+ 1.52×10−5

f
CS,D∗0 (xp)

)−1

(axp + b)2
(6.19)

for the selection method and

(Γπ0/Γγ)mom.dep =

∫ 1

0
dxp

(

1.67×10−4

f
CS,D

∗+
s

(xp)
+ 1.52×10−5

f
CS,D∗0 (xp)

)−1

axp + b

/

∫ 1

0
dxp

(

1.67×10−4

f
CS,D

∗+
s

(xp)
+ 1.52×10−5

f
CS,D∗0 (xp)

)−1

(axp + b)2
(6.20)

for the weighting method are obtained.
Finally, the case of Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ) with efficiencies determined

with signal Monte Carlo events is very similar to Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ)

with efficiencies determined with signal Monte Carlo events:

(Γπ0/Γγ)mom.dep =

∫ 1

0
dxp

fCS,D∗0(xp)

axp + b

/∫ 1

0
dxp

fCS,D∗0(xp)

(axp + b)2
. (6.21)

The numbers obtained in this way for the momentum dependent partial widths
ratios (Γπ0/Γγ)mom.dep are compared with the results of the fits of a constant func-
tion to the partial widths ratio distributions, which represent the assumption that
no momentum dependencies exist. The differences are taken as systematic uncer-
tainties. Table 6.15 shows the results.
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Partial Widths Ratio (Γπ0/Γγ)mom.dep Constant Relative

Function Fit Difference

Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ),

selection method, 0.0644 0.0604 6.80%

eff. from signal Monte Carlo

Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ),

weighting method, 0.0653 0.0617 5.83%

eff. from signal Monte Carlo

Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ),

selection method, 0.0599 0.0553 8.33%

eff. from D∗0 decays

Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ),

weighting method, 0.0590 0.0553 6.82%

eff. from D∗0 decays

Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ) 1.6966 1.7443 2.77%

Table 6.15: Comparison of momentum dependent partial widths ratios
(Γπ0/Γγ)mom.dep (see text for details) and fits of a constant function to the partial
widths ratio distributions. The relative difference represents a systematic momen-
tum dependency.
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Systematic Uncertainties

Various sources of systematic uncertainties have been identified in the previous chap-
ters. They are summarized here.

7.1 Systematic Uncertainties on
Γ(D∗+

s → D+
s π

0)/Γ(D∗+
s → D+

s γ)

There is an uncertainty of 3.2% for the selection method and 5.9% for the weighting
method in the D+

s background shape of the D∗+s → D+
s π

0 signal, as described in
Section 5.1.1. The π0 background shape of the same channel has an uncertainty of
3.1% for the selection method and 2.9% for the weighting method (see Section 5.3.2).
These uncertainties do not depend on how the efficiency ratio is determined (signal
Monte Carlo events or D∗0 decays), therefore they are common to both efficiency
ratio methods.

If the efficiency ratio is determined with signal Monte Carlo events, the limited
statistics of these events are a systematic uncertainty. It contributes 5.0% and 5.2%
to the total uncertainty for the selection and weighting method, respectively, as
described in Section 4.8.1. The same section also explains how uncertainties in the
Monte Carlo model influence the efficiency ratio. They amount to 3.6% uncertainty
for the selection method and 7.4% for the weighting method.

For the efficiency ratio determination from D∗0 decays, it must be taken into
account that the uncertainties in the branching fractions B(D∗0 → D0π0) and
B(D∗0 → D0γ) are correlated, as detailed in Section 4.9.4. This results in an
uncertainty of 12.3% in the ratio of the branching fractions.

There is also a small uncertainty of 0.1% in the π0 background shape for the
D∗0 → D0π0 signal (see Section 5.3.2).

Potentially unknown momentum dependencies of the efficiencies have been esti-
mated as described in Section 6.5. If the efficiency ratio is determined with signal
Monte Carlo events, they amount to 6.8% and 5.8% for the selection and weighting
method, respectively. For the efficiency ratio determination from D∗0 decays, the
uncertainty is 8.3% for the selection method and 6.8% for the weighting method.
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Efficiencies from Signal Monte Carlo

Selection Method Weighting Method

D∗+s → D+
s π

0: D+
s Background Shape 3.2% 5.9%

D∗+s → D+
s π

0: π0 Background Shape 3.1% 2.9%

Signal Monte Carlo Statistics 5.0% 5.2%

Monte Carlo Model Uncertainty 3.6% 7.4%

Momentum Dependency 6.8% 5.8%

Total 10.2% 12.6%

Efficiencies from D∗0 Decays

Selection Method Weighting Method

D∗+s → D+
s π

0: D+
s Background Shape 3.2% 5.9%

D∗+s → D+
s π

0: π0 Background Shape 3.1% 2.9%

D∗0 Branching Fractions 12.3%

D∗0 → D0π0: π0 Background Shape 0.1%

Momentum Dependency 8.3% 6.8%

Total 15.5% 15.5%

Table 7.1: Summary of systematic uncertainties on Γ(D∗+s → D+
s π

0)/Γ(D∗+s →
D+
s γ).

The systematic uncertainties are summarized in Table 7.1. The uncertainties for
the efficiency ratio determination with D∗0 decays are dominated by the uncertain-
ties in the D∗0 branching fractions. If the knowledge about these branching fractions
is improved by future measurements, this method of efficiency determination could
potentially be superior to the efficiency determination from Monte Carlo events.

While the weighting method has smaller statistical errors than the selection
method, its systematic uncertainties can be larger. Specifically, this should be ex-
pected for the D+

s background. The weighting method does not remove any back-
ground events, so that more events contribute than for the selection method. While
the positive and negative weights cause the background events to mostly cancel,
this is not the case for the errors, which add up (in quadrature). Therefore, the
D+
s background distribution has less entries, but larger errors in each bin for the

weighting method compared to the selection method.
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D∗0 → D0π0: π0 Background Shape 0.1%

Signal Monte Carlo Statistics 5.4%

Monte Carlo Model Uncertainty 3.8%

Momentum Dependency 2.8%

Total 7.2%

Table 7.2: Summary of systematic uncertainties on Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ).

7.2 Systematic Uncertainties on
Γ(D∗0

→ D0π0)/Γ(D∗0
→ D0γ)

The 0.1% uncertainty in the π0 background shape for the D∗0 → D0π0 signal,
which has already been mentioned in the previous section, also contributes to the
Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ) uncertainty.

The limited statistics of signal Monte Carlo events is another source of uncer-
tainty (see Section 4.9.5); it amounts to 5.4%. Uncertainties in the Monte Carlo
model contribute with 3.8%; Section 4.9.5 explains how this value has been deter-
mined.

Potentially unknown momentum dependencies of the efficiencies are estimated
to contribute 2.8% to the uncertainty, as described in Section 6.5.

Table 7.2 summarizes the systematic uncertainties. If the individual uncertainties
are summed in quadrature, a total uncertainty of 7.2% is obtained.
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Summary and Results

Using 90.40 fb−1 of BABAR data, the branching fraction ratio Γ(D∗+s → D+
s π

0)/
Γ(D∗+s → D+

s γ) has been measured with four different combinations of methods.

The ‘selection method’ and ‘weighting method’ both exploit the fact that when
the D+

s meson decays to a φ and a π+ meson, the φ meson is polarized, so that
its decay products show a characteristic angular distribution. This is expressed by
the helicity angle θH ; see Section 4.4.1 for details. The selection method removes
events from further consideration if the helicity angle is not compatible with an
expected range of values. The weighting method retains all events and weights each
one with a positive or negative factor. The weighting factor, which is a function of
θH , is chosen such that the signal event yield remains unaffected, while most of the
background is projected away.

Each of the above methods has been followed in combination with two different
ways to obtain the ratio of the efficiencies of the hadronic to the radiative D∗+s decay.
First of all, signal Monte Carlo events have been used to determine the efficiency
ratio; this is described in Section 4.8. Secondly, as explained in Section 4.9, the
efficiency ratio has been calculated from a measurement of the decays D∗0 → D0π0

and D∗0 → D0γ, and the known branching fractions of these decays.

The resulting values for Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) are shown in Ta-

ble 8.1. Also listed are the branching fractions B(D∗+s → D+
s π

0) and B(D∗+s →
D+
s γ), which can be calculated under the constraint

B(D∗+s → D+
s π

0) + B(D∗+s → D+
s γ) = 1, (8.1)

i.e., under the assumption that the D∗+s meson can decay only to D+
s π

0 or to D+
s γ.

Figure 8.1 compares the results obtained with the different methods. All four
Γ(D∗+s → D+

s π
0)/Γ(D∗+s → D+

s γ) values confirm the 1995 measurement of the
CLEO Collaboration of Γ(D∗+s → D+

s π
0)/Γ(D∗+s → D+

s γ) = 0.062 + 0.020
− 0.018±0.022 [1].

However, both the statistical errors and the systematic uncertainties of the measure-
ments presented in this dissertation are much smaller than those given by CLEO.
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Efficiencies from Signal Monte Carlo

Selection Method Weighting Method

Γ(D∗+s → D+
s π

0)

Γ(D∗+s → D+
s γ)

0.0621± 0.0049± 0.0063 0.0653± 0.0048± 0.0082

B(D∗+s → D+
s π

0) 0.0585± 0.0043± 0.0056 0.0613± 0.0042± 0.0073

B(D∗+s → D+
s γ) 0.9415± 0.0043± 0.0056 0.9387± 0.0042± 0.0073

Efficiencies from D∗0 Decays

Selection Method Weighting Method

Γ(D∗+s → D+
s π

0)

Γ(D∗+s → D+
s γ)

0.0574± 0.0046± 0.0089 0.0593± 0.0044± 0.0092

B(D∗+s → D+
s π

0) 0.0542± 0.0041± 0.0080 0.0559± 0.0039± 0.0082

B(D∗+s → D+
s γ) 0.9458± 0.0041± 0.0080 0.9441± 0.0039± 0.0082

Table 8.1: Partial widths ratio Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) and branching

fractions B(D∗+s → D+
s π

0), B(D∗+s → D+
s γ). The first error is statistical, the

second represents systematic uncertainties.

Γ(D∗0 → D0π0)

Γ(D∗0 → D0γ)
1.7401± 0.0204± 0.1247

B(D∗0 → D0π0) 0.6351± 0.0027± 0.0166

B(D∗0 → D0γ) 0.3649± 0.0027± 0.0166

Table 8.2: Partial widths ratio Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ) and branching
fractions B(D∗0 → D0π0), B(D∗0 → D0γ). The first error is statistical, the second
represents systematic uncertainties.

The measurement of the event yield ratio N(D∗0 → D0π0)/N(D∗0 → D0γ) and
signal Monte Carlo events for the channels D∗0 → D0π0 and D∗0 → D0γ have also
been used to calculate the partial width ratio Γ(D∗0 → D0π0)/Γ(D∗0 → D0γ). The
result as well as the branching fractions B(D∗0 → D0π0) and B(D∗0 → D0γ), which
have again been calculated under the assumption

B(D∗0 → D0π0) + B(D∗0 → D0γ) = 1, (8.2)

are shown in Table 8.2.
The branching fractions agree within error margins with the values in [3]: B(D∗0 →

D0π0) = 0.619 ± 0.029, B(D∗0 → D0γ) = 0.381 ± 0.029. However, the precision of
the branching fractions is greater in the measurement presented here than in [3].
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)γ +
s D→ +*s(DΓ)/0π +

s D→ +*s(DΓ
0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08

Selection method, Monte Carlo efficiency

Weighting method, Monte Carlo efficiency

 efficiency0Selection method, D*

 efficiency0Weighting method, D*

Figure 8.1: Comparison of Γ(D∗+s → D+
s π

0)/Γ(D∗+s → D+
s γ) obtained with different

methods.
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