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Kurzfassung

In der vorliegenden Dissertation werden Transporteigenschaften und die Limi-

tierung der kritischen Stromdichte von YBa2Cu3O7−δ Bandleitern untersucht. Für

die Präparation wird das epitaktische Schichtwachstum auf biaxial texturierten

Substraten genutzt (RABiTS-Technik). Dabei wird mittels gepulster Laserdepo-

sition eine Pufferschicht aus CeO2 und Yttrium-stabilisiertem Zirkonoxyd (YSZ)

und anschließend eine YBa2Cu3O7−δ Schicht epitaktisch auf ein Substrat aufge-

bracht. Die resultierende biaxiale Textur der YBa2Cu3O7−δ-Schicht spielt eine Haup-

trolle, um möglichst hohe Stromdichten zu erreichen. Es zeigte sich, daß die gran-

ulare Struktur des Substrates in die YBa2Cu3O7−δ-Schicht übertragen wird und

zur Ausbildung eines Korngrenzennetzwerkes führt, welches wiederum die zu

erwartende kritische Stromdichte begrenzt. Um die Wirkung des Korngrenzen-

netzwerkes zu untersuchen, wurden kritische Ströme der gewachsenen Schichten

in Abhängigkeit der Temperatur und des angelegten Magnetfeldes gemessen. Es

stellte sich heraus, daß die Limitierung des Stroms bei schwachen Magnetfeldern

zwischen den einzelnen Körnern bestimmend ist, die dann bei größeren Feldern

einer Strombegrenzung innerhalb der Körner weicht. Das beide Bereiche tren-

nende Magnetfeld wird als Übergangsfeld bezeichnet. Daraus kann geschlußfol-

gert werden, daß das Korngrenzennetzwerk von YBa2Cu3O7−δ Bandleitern den

Strom nur für magnetische Felder unterhalb des Übergangsfeldes begrenzt.

Abstract

This thesis deals with the transport properties and critical current limitations found

in YBa2Cu3O7−δ coated conductors prepared by the “rolling assisted biaxially tex-

tured substrate” (RABiTS) approach. For this purpose a buffer layer system com-

posed of CeO2 and yttria-stabilised zirconia, and subsequently a YBa2Cu3O7−δ

film were epitaxially grown by pulsed laser deposition on a biaxially textured

metallic substrate. The resulting texture of the YBa2Cu3O7−δ film is crucial for

the achievement of high critical current densities. A propagation of the granular

structure of the metallic substrate into the YBa2Cu3O7−δ film was detected, which

leads to the formation of a YBa2Cu3O7−δ grain boundary network and limits the

critical current density of the samples. In order to study this limitation, critical

current measurements were performed on the prepared samples at different tem-

peratures and magnetic fields, detecting a transition between intergrain and intra-

grain current limitation that occurs at the so-called crossover magnetic field. The

crossover magnetic field was found to shift to lower values as the temperature

was increased. It was concluded that the grain boundary network limits the criti-

cal current density of the YBa2Cu3O7−δ coated conductor only for magnetic fields

below the crossover field.
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Chapter 1

Introduction

From the discovery of superconductivity in 1911 by Heike Kamerlingh Onnes up

to the present, many advances have been made in this field in both theoretical

description and practical application, making superconductivity one of the most

heavily investigated branches of physics. The discovery of high temperature su-

perconductors with Tc values well above the boiling point of liquid nitrogen (77

K) opened up the way to a broader range of applications with the possibility to

replace liquid helium as cooling medium with liquid nitrogen that is more eco-

nomical. YBa2Cu3O7−δ is the most promising material of the high temperature

superconductor family despite its relatively “low” critical temperature Tc = 93 K

in comparison to HgBa2Ca2Cu3O9 with Tc = 134 K. The most remarkable proper-

ties of YBa2Cu3O7−δ are high pinning energy and irreversibility field as a result of

its reduced anisotropy, yielding higher critical current densities in magnetic fields

at 77 K than other high temperature superconductors.

Current challenges are the development and production of long YBa2Cu3O7−δ

tapes known as coated conductors, with high critical current density values Jc ex-

ceeding 1 MA/cm2 (at 77 K and self-field), and their implementation in power

devices. A YBa2Cu3O7−δ coated conductor consists of a long metallic substrate

coated by a buffer layer architecture and a biaxially textured YBa2Cu3O7−δ film on

top. One crucial requirement for the preparation of YBa2Cu3O7−δ coated conduc-

tors with high critical current densities is the elimination of weak links between

the YBa2Cu3O7−δ grains. Weak links in the high temperature superconductors are

produced by grain boundaries that lead to a weak coupling between the super-

conducting grains and consequently to a reduction in the critical current density.

One way to avoid the formation of weak links is to induce a biaxial texture in the

YBa2Cu3O7−δ film. For this, both the c axis and the a(b) axis of all the YBa2Cu3O7−δ

grains must be aligned. Presently, there are three main techniques for the produc-

tion of YBa2Cu3O7−δ coated conductors that vary in the way the biaxial texture is
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introduced into the system: (i) rolling assisted biaxially textured substrate (RA-

BiTS), (ii) ion beam assisted deposition (IBAD), and (iii) inclined substrate depo-

sition (ISD). The IBAD and ISD techniques use a polycrystalline metallic substrate

where the biaxial texture is induced into the buffer layer during growth, whereas

the RABiTS technique uses a biaxially textured metallic substrate on which buffer

and YBa2Cu3O7−δ films are grown epitaxially. All these techniques will be dis-

cussed in detail in chapter 4, in particular the RABiTS technique that was used in

this work.

The biaxially textured metallic substrate of the RABiTS approach is characterised

by a granular structure with small misorientation between the grains. During

the epitaxial growth, the grain boundaries of the substrate propagate into the

YBa2Cu3O7−δ film forming a YBa2Cu3O7−δ grain boundary network that consists

of a large number of grain boundaries with an extended distribution of misorienta-

tion angles. As a consequence, the current in the YBa2Cu3O7−δ coated conductor is

found to flow percolatively through the sample, crossing only those grain bound-

aries with the lowest misorientation angles. Magneto-optical measurements on

YBa2Cu3O7−δ coated conductors have shown that the misorientation angle should

be below 4◦ to prevent the percolative current flow and a resulting reduction

in Jc [Fel00]. Often in the YBa2Cu3O7−δ coated conductors, the majority of the

grain boundary angles are around 5◦ or even higher. Consequently, YBa2Cu3O7−δ

coated conductors have reduced critical current values compared to YBa2Cu3O7−δ

films grown on a single crystal substrate.

The aim of this work is the analysis of grain boundary networks of YBa2Cu3O7−δ

coated conductors prepared by pulsed laser deposition, and the study of the effects

of the granular structure of the samples on the critical current and transport prop-

erties. Two critical current limitations are expected to occur in the YBa2Cu3O7−δ

coated conductors: (i) intergrain current limitation by the grain boundaries, and

(ii) intragrain current limitation by flux creep within the YBCO grains, which can

be distinguished by a different dependence of the critical current density on the

applied magnetic field. Critical current density measurements in magnetic fields

on YBa2Cu3O7−δ coated conductors should help to clarify the mechanism for cur-

rent limitation by the grain boundary network. Moreover for a complete under-

standing, it is important to consider some interesting properties of low-angle grain

boundaries in magnetic fields, such as grain boundary pinning [Dı́a98a], viscous

flux flow of flux lines along the grain boundary [Dı́a98a], and a grain boundary

angle dependent crossover behaviour from intergrain to intragrain limited critical

current density with increasing magnetic field [Ver00].

The present work is divided into seven chapters. The properties of the high tem-

perature superconductors and especially of YBa2Cu3O7−δ are reviewed in chap-
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ter 2, including phenomena like flux line pinning, thermal activation processes

and the irreversibility field in this material. Chapter 3 deals with the nature of

low-angle grain boundaries in YBa2Cu3O7−δ and the transport properties found

in these systems. Chapter 4 gives an overview of the preparation techniques for

YBa2Cu3O7−δ coated conductors, the technical requirements for power applica-

tions, and actual values of critical current density and lengths of the prepared

YBa2Cu3O7−δ coated conductors. The experimental description with the different

steps and parameters that are required for the preparation of YBa2Cu3O7−δ coated

conductors samples by pulsed laser deposition, and the structural and microstruc-

tural characterisation of the grain boundary network of the samples are presented

in chapter 5. Chapter 6 deals with transport current measurements carried out on

the YBa2Cu3O7−δ coated conductors, in particular the magnetic field dependence

of the critical current density and voltage-current characteristics. Furthermore, the

anisotropy of the critical current density is also analysed in this chapter. Finally, in

chapter 7 the results are discussed and conclusions drawn.
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Chapter 2

The high-temperature superconductor

YBa2Cu3O7−δ

2.1 Structural properties

High-temperature superconductors (HTS) have a perovskite structure with CuO2

planes lying normal to the crystallographic c-direction. This is a common feature

of these materials, therefore they are often referred to as cuprates. In the case

of YBa2Cu3O7−δ (YBCO), three perovskite units BaCuO3, YCuO2, and BaCuO2

stack vertically forming the superconducting unit cell with some oxygen atoms

missing. Similar stacking occurs in other cuprates such as LaSrCuO, BiSrCaCuO,

and TlBaCaCuO.

YBCO exists in either a tetragonal or orthorhombic crystal structure (see Fig. 2.1),

being only superconducting in the orthorhombic phase. The tetragonal phase is

observed at high temperatures in a range between 750 and 900 ◦C. On decreasing

the temperature and increasing the oxygen content of the sample, by oxygen up-

take and diffusion, a second-order phase transition occurs at about 700 ◦C from

the tetragonal to the orthorhombic phase.

Both structures have three planes containing Cu and O atoms that are intercalated

with two planes containing Ba and O and one plane containing Y. The two median

CuO2 planes show a puckered appearance due to the different positions of the

Cu and O atoms in c-direction. The third CuO2 plane is the basal plane and is

flat. In the tetragonal phase the oxygen sites in the basal plane are about half

occupied in a random manner, while in the orthorhombic phase they are ordered

into Cu-O chains along the b direction (see Fig. 2.1). The oxygen vacancies along

the a direction in the orthorhombic phase cause the unit cell to compress slightly

so that a < b. In the orthorhombic phase, both the CuO2 planes and the Cu-O

chains contribute to the superconductivity; the CuO2 planes contain mobile charge
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(a) (b)

Fig. 2.1: Sketches of the unit cell of the orthorhombic (a) and tetragonal (b) phases

of YBCO [Jor87]. Representative lattice parameters for the orthorhombic phase of

YBCO are a = 3.827 Å, b = 3.882 Å, and c =11.682 Å.

carriers (holes), and the Cu-O chains act as charge reservoirs that transfer holes to

the planes.

The oxygen content in YBCO determines its crystallographic structure [Fig. 2.2 (a)]

and the hole concentration in the CuO2 plane [RM91, Tal95, Bre95]. For an oxygen

content x = 6 the compound YBa2Cu3O6 is in the tetragonal phase and is an in-

sulator. Increasing the oxygen content up to x = 6.6, the compound undergoes

a phase transition from tetragonal to orthorhombic. Finally, raising x to 6.94, Tc

approaches its maximum value (93 K). Above x = 6.94, Tc drops by about 4 K [see

Fig. 2.2 (b)]. The maximum Tc value found for x = 6.94 is due to an optimum hole

doping of the CuO2 planes. The drop in Tc for x above 6.94 can be explained as an

overdoping, where the holes in the CuO2 planes exceed the optimum concentra-

tion.

2.2 YBa2Cu3O7−δ as an anisotropic type II supercon-

ductor

Superconductors are classified as type I and type II, depending on whether the

Ginzburg-Landau parameter κ is smaller or larger than 1/
√

2, respectively. The
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Fig. 2.2: (a) Phase diagram of the YBa2Cu3O7−δ system as a function of the oxygen

content. TN represents the Néel temperature of the antiferromagnetic phase, and

Tc the critical temperature of the superconducting phase [RM91]; (b) Variation of

Tc with oxygen content [Bre95].

Ginzburg-Landau parameter κ is defined as

κ =
λ

ξGL
(2.1)

where λ describes the penetration depth of a magnetic field into the superconduc-

tor, and ξGL is a characteristic length over which the Cooper-pair density increases

from 0 to its maximum value nc(T). Nearly, all the elemental superconductors

except Nb, V, and Tc are type I, while most superconducting compounds are type

II.

Type I superconductors possess only one critical magnetic field Bc, below which

the superconductor produces shielding currents that flow on the surface of the

material expelling the magnetic field from inside. In this situation, the supercon-

ductor is in the Meissner phase. Above Bc, the applied magnetic field penetrates

completely into the interior of the material, disrupting the superconductivity.

Type II superconductors have two critical fields, a lower critical field Bc1 and an

upper critical field Bc2. Figure 2.3 (a) shows the typical B − T phase diagram of a

type II superconductor. Below Bc1, the superconductor behaves like a type I super-

conductor and remains in the Meissner phase. When the applied magnetic field
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Fig. 2.3: (a) Typical B − T phase diagram of a type II superconductor; (b) Magneti-

sation curve of a type II superconductor[Buc91].

exceeds Bc1, it penetrates into the material in the form of flux lines called vortices 1.

For applied fields close to Bc2, the vortices begin to overlap and the field inside the

superconductor becomes strong everywhere. When the applied field reaches Bc2,

the material becomes non-superconducting. The magnetisation curve of a type II

superconductor is schematically illustrated in Fig. 2.3 (b), showing the same sit-

uation as described above. For magnetic fields below Bc1, the magnetisation in-

creases equal to the applied magnetic field but in opposite direction (the values

of µ0M are negative). When the applied magnetic field reaches Bc1, the magnetic

field penetrates the superconductor and the magnetisation of the superconductor

decreases monotonically with increasing magnetic field. At Bc2, there is a discon-

tinuous change in the slope of the magnetisation curve, and above Bc2 the material

is in the normal state. Bc th represents the thermodynamic critical field that is a

measure of the free energy difference between the superconducting and normal

state at a constant temperature. The ratio between Bc2 and Bc th is such that the

area enclosed by the dashed lines equals the area enclosed by the magnetisation

curve of the type II superconductors.

The superconducting state between Bc1 and Bc2 is known as the mixed state or the

Shubnikov phase, and is shown schematically in Fig. 2.4. In this phase the vortices

are arranged forming an hexagonal lattice with a lattice parameter a0 that depends

1Each vortex has a core that is encompassed by shielding currents. The magnetic field has its

maximum value at the axis of the vortex and decreases exponentially over the characteristic length

λ.
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B

Fig. 2.4: Representation of the Shubnikov phase, where each vortex is surrounded

by shielding currents[Buc91].

on B in the form

a0 = 1.075

√

Φ0

B
. (2.2)

Φ0 represents the flux quantum that each individual vortex is carrying, and has

a value of Φ0 = h/2e ≈ 2 × 10−15 T m2 [Tin96, Abr98]. This hexagonal flux

line lattice is known as an Abrikosov lattice, because it was Abrikosov who pre-

dicted theoretically the mixed state for type II superconductors and the regular

arrangement of the flux line lattice in the Shubnikov phase. He deduced that the

mixed state is a result of a negative surface energy between the normal and the

superconducting phase. Under these circumstances, the total free energy can be

lowered by subdivision of the superconductor into superconducting and normal

regions. The Abrikosov lattice was first observed experimentally by Essmann and

Träuble [Ess67] using a magnetic decoration technique coupled with electron mi-

croscopy.

HTS compounds are extreme type II superconductors with large κ values on the

order of 100. This is related to their very small ξGL and large λ values. These

materials are also characterised by a strong anisotropy as a consequence of their

crystalline structure that is reflected in the directional dependence of λ, ξGL and

Bc2. The anisotropy of these parameters is remarkable between the c-direction and

the a or b direction, while the anisotropy between the a and b directions is small

and can be neglected in most cases. The anisotropy of the HTS compounds can be

described using the Ginzburg-Landau theory that introduces a different effective

mass of the hole carriers in different directions. The effective mass in the ab plane

is denoted by mab, and along the c axis by mc. The anisotropy is described by the

parameter γ, defined as γ = (mc/mab)
1/2 = λc/λab = ξab/ξc = Bab

c2 / Bc
c2 [Tin96,
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Fig. 2.5: (a) Representation of a three-dimensional flux line in YBCO; (b) Represen-

tation of two-dimensional pancake vortices in Bi2Sr2Ca2Cu3Ox (BSCCO-2223).

Cle98] with γ > 1. The value of γ for YBCO lies between 5 and 8 [Far90], while

in Tl2Ba2CaCu2Ox γ is found to be 90 [Gra90] and in Bi2Sr2CaCu2Ox (BSCCO-

2212) it exceeds 150 [Mar92, Cle98]. The large γ values of the Tl and especially

the Bi compounds indicate a strong anisotropy. On the other hand, YBCO with a

relatively small γ value is considered commonly as a nearly isotropic HTS.

The anisotropy in the HTS materials is related to their layered structure and long

distances between the CuO2 planes when compared to ξc. For YBCO the distance

d between the CuO2 planes (d ≈ 8 Å) is closer to 2ξc (ξc=3 Å at 0 K) than in other

HTS, which leads to a stronger coupling between the CuO2 planes and a three di-

mensional (3D) vortex structure [Fig. 2.5 (a)]. In contrast, for the Bi, Tl and Hg com-

pounds the distance d is much larger than the respective value of 2ξc. This results

in a weak coupling between the CuO2 planes that are practically isolated. Con-

sequently, the vortices in these high anisotropic materials dissolve in each CuO2

plane into so-called pancake vortices [Fig. 2.5 (b)], which are two-dimensional (2D)

and have a very weak interaction with the pancakes of the adjacent planes. For

the strongly anisotropic HTS compounds, a better description than the Ginzburg-
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Fig. 2.6: Schematic cross-section of (a) an Abrikosov vortex along the c-axis, and

(b) a Josephson vortex along the a-axis.

Landau theory is achieved by a discrete Lawrence-Doniach model, which assumes

that a layered superconductor can be approximated as a stack of weakly coupled

superconducting layers [Cle91, Cle98]. However, in the case of YBCO, the use of

the Ginzburg-Landau theory is more precise over a large temperature regime due

to its three dimensional (3D) vortex structure.

2.3 Vortex structure in YBa2Cu3O7−δ

The vortex structure of YBCO varies depending on the orientation of the applied

magnetic field with respect to the CuO2 planes. When the applied magnetic field

is parallel to the c-axis, the vortices present an axial symmetry with the shield-

ing currents circulating around the cores. In this case, they are named Abrikosov

vortices [Fig. 2.6 (a)]. In a homogeneous material with a low number of pinning

centers, the Abrikosov vortices form a hexagonal lattice, as mentioned above. In

this arrangement the vortices are in the most stable positions, compensating the

magnetic interactions.

When the magnetic field is applied parallel to the CuO2 planes, the field penetrates

in form of Josephson vortices [Fig. 2.6 (b)] that are characterised by an elliptical

core with major axis ξab along the a (or b) direction and minor axis ξc along the

c-direction. This yields elliptical current patterns that circulate around the vor-

tex. The Josephson vortices experience a strong pinning in the interlayer space

that prevents the movement of the flux lines in c-direction. This effect is known as



18 The high-temperature superconductor YBa2Cu3O7−δ

B

Cuprate
plane

Interlayer
space

Fig. 2.7: Kinked vortex line in a layered superconductor.

intrinsic pinning and is caused by the modulation of the order parameter2 in the

c-direction that decreases strongly in the space between the CuO2 planes. An ex-

perimental observation of intrinsic pinning in thin YBCO films was carried out by

critical current measurements in applied magnetic fields. A strong enhancement

of the critical current was detected when the applied magnetic field was aligned

within the CuO2 planes [Roa90a, Roa90b]. In the case of strongly anisotropic HTS

compounds like the BSCCO family, intrinsic pinning becomes even more effective

than in YBCO because, in these materials, the order parameter decreases practi-

cally to zero between the CuO2 planes [Sch91].

In an inclined magnetic field the vortices in YBCO have a kinked structure as

shown in Fig. 2.7 that can be described by Abrikosov vortices parallel to the c

axis, and Josephson strings (short segments of Josephson vortices) confined in the

interlayer space between the CuO2 planes. In this geometry, the critical current

is lower than that when critical current density is aligned parallel to the CuO2

planes [Bla94, Kes90].

2.4 Flux Line Pinning

When an external current density ~J flows along a superconducting sample that is

in the Shubnikov phase, the flux lines start to move under the action of the Lorentz

force ~FL = ~J × ~B. Within a perfectly homogeneous system the driving Lorentz

force is counteracted only by the friction force ~Fη = −η~v, where ~v is the steady-

state velocity of the vortex system, and η represents the friction coefficient. The

2The Ginzburg-Landau theory is formulated in terms of the order parameter φ(~r), whose am-

plitude squared |φ|2 is the supercarrier density n∗
s .
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consequence of the flux motion is the appearance of a finite electric field ~E = ~B ×~v

in the superconductor. The electric field has a component with the same direction

as ~J, giving rise to the ohmic loss ~J · ~E,

~J · ~E = ~J · (~B ×~v) (2.3)

In this situation, the desired superconducting property of dissipation-free current

flow is lost. In order to recover it, the flux lines have to be fixed to pinning centres

in such a way that ~v = 0. The force that holds the core of the flux lines at the

pinning centres is called pinning force Fp, and it allows the system to sustain the

Lorentz force between the flux lines and the current without flux motion and dis-

sipation. In the case that the Lorentz force equals the pinning force the depinning

critical current density Jdp is achieved, and the flux lines start to move producing

dissipation. In conventional type II superconductors the critical current density Jc

can be identified with Jdp. In HTS, on the other hand, dissipation processes already

occur before Jdp is reached. Hence, Jc is lower than Jdp in these materials.

Pinning centres in a superconductor result from structural inhomogeneities in the

material that yield a local reduction in the order parameter. Therefore, a vortex can

reduce its free energy when positioned on a pinning centre. The energy saved by

a pinned vortex, which is related to the intersection volume Vintersec between the

pinning centre and the flux line, is called pinning energy Up = (Bc
2/2µ0)Vintersec.

In HTS materials, pinning centres should be on the scale of ξGL to be effective. This

kind of pinning is known as core pinning. Due to the characteristically short co-

herence lengths of these materials, the pinning is expected to be weak compared to

that in conventional type II superconductors. The high Jc values found in HTS can

be explained only by the presence of a large number of pinning centres. Typical

pinning centres found in HTS are twin boundaries, stacking faults, screw disloca-

tions, low-angle grain boundaries [Lai90, Man92, Dı́a98b] and oxygen vacancies.

All of these, except for oxygen vacancies, can be considered as strong pinning cen-

tres that act separately with individual pinning forces fp. In this case, the elasticity

of the flux line lattice is neglected [see Fig. 2.8 (a)], and the total volume pinning

force density Pv may be expressed as the sum of the pinning force on each vortex,

Pv = n fp (2.4)

where n corresponds to the density of pinning centres, and fp is the average pin-

ning force per unit length on each vortex line.

Oxygen vacancies in the HTS are weak pinning centres that exist in large number

and are randomly distributed. Here, the dynamical behaviour of the vortex sys-

tem has to be studied considering a collective pinning theory proposed by Larkin

and Ovchinnikov [Ovc91]. This theory considers flux lines as elastic objects that
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(a) (b)

Fig. 2.8: (a) Flux line pinning by a strong pinning centre, in which case the elasticity

of a flux line is not considered; (b) Deformation of a 3D flux line due to collective

pinning by weak pinning centres, in which case the elasticity of the vortex plays

an important role in the pinning process.

can deviate from the ideal periodic arrangement of the Abrikosov lattice to gain

energy by passing through favourable pinning sites as shown in Fig. 2.8 (b). The

equilibrium flux line lattice configuration will be a distorted arrangement which

minimises the total pinning and the elastic energy due to deformation of the flux

line lattice. The collective pinning describes the distortion of the flux line lattice in

terms of correlated volumes Vc termed flux bundles, within which the flux line lat-

tice is reasonably undistorted, but between which exist pinning-motivated shear

and tilt distortions. The length of the flux bundle is denoted by Lc along the field

direction, and Rc represents the radius of the bundle. An important point is the

relation between Lc and the distance d between the CuO2 planes in the supercon-

ductor. For Lc > d the pinning has a 3D nature, while for Lc < d the pinning

mechanism changes to 2D behaviour. For YBCO only 3D collective pinning has to

be considered.

2.5 Thermally activated flux motion

At finite temperatures, the thermal energy may allow flux lines to jump from

one pinning centre to another in response to the driving Lorentz force, even if

the Lorentz force is smaller than the pinning force. The resulting flux motion in

type II superconductors is revealed in two ways, leading to slow changes in the

trapped magnetic fields with a logarithmic time-dependence, and to measurable

resistive voltages. Anderson and Kim introduced a model to study the thermally



2.5 Thermally activated flux motion 21

U

E
n
e
rg

y

x

U0

TAFF: J<< Jc

flux creep J~Jc

flux flow J>Jc

J = 0

Fig. 2.9: Schematic representation of a vortex or flux bundle in an one-dimensional

pinning potential well U; the upper curve shows the unperturbed potential U0 for

J = 0, the lower curves show the effect of depinning on the potential well, which

gives rise to the different thermal activation processes: thermally activated flux

flow (TAFF), and flux creep. Finally flux flow appears when the Lorentz force

overcomes the pinning force.

activated processes and to describe the magnetic relaxation in type II supercon-

ductors [And62, And64].

2.5.1 Anderson-Kim model for thermal activation

Anderson and Kim assumed that activated flux motion occurs by bundles of flux

lines jumping between adjacent pinning sites. In this model the elastic properties

of the flux bundle are neglected, and each bundle at T > 0 and J = 0 jumps like

an unit with a jump rate R to overcome the pinning potential U0:

R = ω0 exp

(−U0

kBT

)

(2.5)

where ω0 is the vibration frequency of the flux bundle in the potential minimum,

and lies in the range of 105 to 1010 s−1.

If a current J is applied, a Lorentz energy UL will perturb the pinning potential U0,

leading to a pinning potential U = U0 − UL that depends on J (see Fig. 2.9). UL

is defined as UL = |~J × ~B|Vrp, where V represents the volume of the flux bundle

and rp the interaction range of the pinning potential. If the applied current J and

the magnetic field B are perpendicular, then UL = JBVcrp. In this situation the rate
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of forward (R+) and reverse (R−) hopping in the direction of the Lorentz force is

given by,

R± = ω0 exp

(−U0 ∓ J B Vc rp

kBT

)

(2.6)

The net hopping rate R = R+ − R− of a flux bundle leads to a drift velocity v

given by v = RL, where L is the average jump distance of the flux bundle. The

movement of the flux bundles generates an electric field E. If the electric field is in

the current direction, it is defined by E = vB, yielding

E(J) = E0 exp

(−U0

kBT

)

· sinh

(

U0

kBT

J

Jc

)

(2.7)

Depending on the proximity of J with respect to Jc, the previous relation describes

two different thermal activation processes: thermally activated flux flow (TAFF)

and flux creep.

1. Thermally activated flux flow (TAFF)

The TAFF regime is observed for J � Jc. In the limit of small current densi-

ties, the sinh term can be approximated to a linear relation. This results in an

ohmic regime of thermally activated flux flow,

E(J) ≈ E0 exp

(−U0

kBT

)

· U0 J

kBTJc
= ρ J (2.8)

Thus, in the TAFF regime the E − J curves are linear (see Fig. 2.10), and ρ

represents the TAFF resistivity,

ρ =
E0

Jc
· U0

kBT
· exp

(−U0

kBT

)

(2.9)

2. Flux creep

For large currents approaching the critical current density (J ≈ Jc), the acti-

vation energy U becomes small, and hence the jump rate of reverse hopping

R− of the flux bundles is negligible (see Fig. 2.9 for flux creep). This leads to

E(J) = E0 exp

[

U0

kBT
·
(

J

Jc
− 1

)]

= E0(−U(J)/kBT) (2.10)

In the flux-creep regime, the E − J curves are expected to be exponential and

the electric field increases strongly with the current (see Fig. 2.10).
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Fig. 2.10: Schematic representation of the E − J curves in type II superconductors.

In HTS compounds, both thermally activated processes (TAFF and flux creep) are

very important and dominate the dissipation process. In contrast, in conventional

type II superconductors thermally activated processes occur only at temperatures

close to Tc or for current densities close to Jc.

For J � Jc flux pinning becomes negligible or zero, and the Lorentz force is

counteracted only by the friction force ~Fη = −η~v. This is the flux flow regime,

where a differential flux flow resistivity ρ f low appears, which is independent of

current [Bar65]:

ρ f low ' ρn
B

Bc2
(2.11)

where ρn represents the resistivity in the normal state. In the flux flow regime the

E − J curves are linear, showing an ohmic behaviour. Figure 2.10 summaries the

E − J characteristics in the three different regimes: TAFF, flux creep and flux flow.

2.5.2 Thermal activation in high-Tc materials

As previously mentioned, in HTS materials the thermal activation processes are

considerably stronger than in conventional type II superconductors. This is a con-

sequence of: (i) the short coherence length ξGL, (ii) the layered structure with high

structural anisotropy, and (iii) the high operation temperatures that yield high

thermal energies (kBT) also for T << Tc or J << Jc. U(B, T, J) represents the

activation energy, and can be used to describe the interaction that the flux lines

have with the pinning centres. Taking into account that for currents approaching

Jc the activation energy becomes zero, U(J) is relevant for the study of the dynamic
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of flux lines in the superconductor. Several models propose different expressions

for U(J) depending on the pinning mechanism that is considered. In the Anderson-

Kim model, where the flux lines or bundles are treated as a unit, the pinning energy

U(J) is assumed to be:

U(J) = U0

∣

∣

∣

∣

1 − J

Jc

∣

∣

∣

∣

(2.12)

which implies that U(J) has a triangular shape, with a linear dependence of U on

J. As a refinement of this model, a more realistic shape of U(J) has been suggested

by several authors [Bea69, Gri91],

U(J) = U0

∣

∣

∣

∣

1 − J

Jc

∣

∣

∣

∣

n

(2.13)

where the exponent varies between 1.5 and 2, determining the curvature of the

pinning potential.

Zeldov et al. [Zel89, Zel90] have proposed a phenomenological activation barrier

to account for E − J characteristics in the presence of high magnetic fields. In this

phenomenological model U(J) is given by

U(J) = U0 ln

(

J

Jc

)

(2.14)

The logarithmic dependence of U(J) is based on experimental measurements car-

ried out on YBCO thin films and other HTS materials. Considering the expres-

sion 2.10 of the electric field due to flux creep, the E − J characteristics in this

model are obtained as

E(J) = E0 exp

[−U(J)

kBT

]

= E0

(

J

Jc

)p(T,B)

(2.15)

Thus, the electric field depends on the current density as a power law with a power

p(T, B) =
U0(T, B)

kBT
(2.16)

that introduces the dependency on temperature and magnetic field.

Such assumptions for U(J) are valid for strong pinning centres, but not for collec-

tive pinning by many weak pinning sites, as is the case for the oxygen vacancies in

the HTS materials. For this case, the collective pinning theory introduces a new U(J)

dependence,

U(J) ≈ U0

(

Jc

J

)µ

(2.17)
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with a characteristic exponent µ > 0. Such a relation has been found experimen-

tally in flux creep measurements by Maley et al. [Mal90]. The exponent µ defines

the size of the flux bundles and the dimensionality of the flux line lattice. In the

case of 3D pinning, as in YBCO, the theoretically expected values for the exponent

µ are 1/7 for single-vortex collective pinning (Rc < a0), 3/2 for small vortex bun-

dles (Rc ≈ a0), and 7/9 for large bundles. It is expected that the regime changes

from the single-vortex regime at high J towards the large-bundle regime at low J,

passing through the small-bundle regime at intermediate J.

The relation 2.17 reveals that for J going to zero the activation energy approaches

infinity. Consequently, flux motion and linear resistance vanish, even if the volt-

age remains finite at finite current densities. This contrasts to the Anderson-Kim

model that shows a U(J), having a finite activation energy when J approaches

zero: U(J → 0) = U0.

In this model, the E − J characteristics are given by,

E(J) = E0 exp

[−U(J)

kBT

]

= E0 exp

[−U0

kBT
·
(

Jc

J

)µ]

µ > 0 (2.18)

2.6 The flux vortex phase diagram in YBa2Cu3O7−δ

Vortex matter exists in different phases depending on temperature and magnetic

field: the Bragg glass, vortex glass, and vortex liquid (Fig. 2.11). The Bragg glass

is an partially ordered “solid” phase, where the vortices are arranged in a non-

perfect Abrikosov lattice, while the vortex glass is a completely disordered “solid”

phase, where the flux line lattice shows a glassy structure caused by disordered

pinning centres. The so-called vortex liquid is found at higher temperatures and

magnetic fields. In this phase the vortex lattice has no long-range order; the vor-

tices do not present coupling and move independently. Consequently, in the vor-

tex liquid phase an electrical resistance is detected. The transition from the Bragg

glass into the vortex liquid takes place at the melting temperature Tm(B), and is a

first order transition. Commonly, this transition is not detected in HTS thin films

or bulk materials that have a high density of pinning centres. The Bragg glass

phase is only observed in very homogeneous materials with low density of pin-

ning centres, such as the case of the YBCO single crystal that was needed to obtain

the phase diagram of Fig. 2.11. The transition from the vortex glass to the vor-

tex liquid occurs at the glass temperature Tg(B). This transition is defined as the

dividing point between temperatures where the resistance is zero (vortex glass),

and those for which it is non-zero (vortex liquid). This definition is equal to the

one for the irreversibility field line (see section 2.7), therefore both irreversibility

field and Tg(B) represent nearly the same transition in the flux line lattice (see
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Fig. 2.11: The vortex matter phase diagram in untwinned YBCO [Nis00].

Fig. 2.11). In samples with a high pinning centre density, the transition between

vortex glass and vortex liquid has been observed in the analysis of the E − J char-

acteristics [Koc89]. The authors analysed the E − J curves measured on a YBCO

thin film, considering the vortex glass theory formulated by Fisher [Fis89] that

takes into account the effects of thermal activation and disorder induced by weak

pinning centres. In this theory, the E − J characteristics in the field-temperature

region are obtained by a scaling approach. For temperatures below the transition,

the E − J characteristics can be expressed as

E(J) ∝ exp

[

−
(

Jc

J

)µ]

0 < µ ≤ 1. (2.19)

This implies that the resistance ρ = E/J vanishes in the limit of low current den-

sities. At the phase transition, T = Tg(B), a power law behaviour E ≈ Jβ for

the E − J characteristics is obtained. Above the phase transition, T > Tg(B), the

E − J characteristics indicate a non-zero resistance at relatively low currents that

changes to power law behaviour for higher currents.
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2.7 Irreversibility line

The existence of an irreversibility line Birr(T) that lies below Bc2(T) on a B ver-

sus T phase diagram is an important point to consider for practical applications of

HTS (see Fig. 2.12). The position of Birr(T) is profoundly dependent on the nature

and density of pinning centres in a material, and determines the range where flux

line pinning is effective. Between Birr(T) and Bc2(T) the superconductor is in the

mixed state, but the thermal activation processes are so strong that the material

presents a substantial electrical resistance due to flux motion. Therefore, above

Birr(T) the critical current density vanishes (Jc = 0), while below Birr(T) the critical

current density has a finite value (Jc > 0). The Birr(T) lines of different cuprates

are shown in Fig. 2.13. YBCO reveals the highest irreversibility fields compared

to the Tl or Bi compounds. This is a consequence of the relatively isotropic struc-

ture of YBCO that leads to a 3D behaviour of its flux line lattice and a stronger

pinning than in other cuprates. In highly anisotropic materials (e.g. BSCCO), the

2D behaviour of the flux line lattice causes weaker pinning and strong thermally

activated flux motion that moves the irreversibility line towards lower values.

The Bragg glass is an partially ordered “solid” phase, where the vortices are ar-

ranged in a non-perfect Abrikosov lattice, while the vortex glass is a completely
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Fig. 2.12: Position of the irreversibility line Birr(T) in the B(T) phase diagram.

Birr(T) is found below Bc2(T) and divides the states where the critical current den-

sity Jc of the superconductor is characterised by Jc = 0 and Jc > 0.
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Fig. 2.13: The irreversibility line in various cuprates [Wal96].

disordered “solid” phase, where the flux line lattice shows a glassy structure caused

by disordered pinning centres. The so-called vortex liquid is found at higher tem-

peratures and magnetic fields. In this phase the vortex lattice has no long-range or-

der; the vortices do not present coupling and move independently. Consequently,

in the vortex liquid phase an electrical resistance is detected. The transition from

the Bragg glass into the vortex liquid takes place at the melting temperature Tm(B),

and is a first order transition. Commonly, this transition is not detected in HTS thin

films or bulk materials that have a high density of pinning centres. The Bragg glass

phase is only observed in very homogeneous materials with low density of pin-

ning centres, such as the case of the YBCO single crystal that was needed to obtain

the phase diagram of Fig. 2.11. The transition from the vortex glass to the vortex

liquid occurs at the glass temperature Tg(B). This transition is defined as the di-

viding point between temperatures where the resistance is zero (vortex glass), and

those for which it is non-zero (vortex liquid). This definition is equal to the one for

the irreversibility field line (see 2.7), therefore both irreversibility field and Tg(B)

represent nearly the same transition in the flux line lattice (see Fig. 2.11). In sam-

ples with a high pinning centre density, the transition between vortex glass and

vortex liquid has been observed in the analysis of the E − J



Chapter 3

Grain boundaries in HTS materials

At present, there are numerous applications of HTS materials where the grain

boundaries (GBs) play an important role, e.g., electronic circuits, sensors, super-

conducting quantum interference devices (SQUIDs) and power cables. Especially,

the critical current density Jc is influenced by the GBs in a complex manner. Poly-

crystalline HTS samples have typical Jc values of a few hundred A/cm2 at 4.2 K,

while single crystalline samples have values in the range of MA/cm2. A GB in-

troduces structural disorder that in the case of HTS materials strongly affects the

order parameter in the region of the boundary. Considering the degree of connec-

tivity, it can be distinguished between low-angle GBs having strong coupling be-

tween the grains, and high-angle GBs with a weak coupling. Transmission electron

microscopy (TEM) investigations reveal that low-angle GBs consist of an array of

uniformly spaced dislocations produced to accommodate the mismatch between

adjacent grains [Chi89, Chi91]. Figure 3.1 shows schematically such a low-angle

grain boundary. For small misorientation angles θ, the dislocations are separated

by channels of a nearly undisturbed lattice. In the standard GB theory, the distance

d between the dislocation cores is given by Frank’s formula,

d = |~b|/ sin θ (3.1)

where |~b| is the magnitude of the Burgers vector~b [Hir82]. The distance between

dislocation cores reduces with increasing GB angle, with the result that for misori-

entation angles of approximately 10◦ the dislocation cores overlap leading to an

area with high structural disorder and a reduced order parameter [Dim90, Chi91].

These GBs are named high-angle grain boundaries and present typical Josephson

junction characteristics 1.

1A Josephson junction is formed when two superconductors are separated by a thin layer of

insulating material. In this situation Cooper pairs are able to tunnel through the insulator from one

superconductor to the other. The supercurrent through the contact I = Imax sin(φ2 − φ1) is related

to the phase difference φ2 − φ1 between the order parameters of both superconductors [Jos62].
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Fig. 3.1: Chain of edge dislocations which form a symmetric low-angle grain

boundary in the y − z plane. The non- superconducting regions are shadowed.

GBs are usually classified according to the misorientation and rotation of the ad-

jacent grains. Figure 3.2 presents the three different types of grain boundary ge-

ometry. In the [001] tilt boundary [Fig. 3.2 (a)], the c-axes are perpendicular to the

plane of the film so that the CuO2 planes in the adjacent grains are parallel to each

other. The angle θ between the principal in-plane directions defines the misorien-

tation (tilt) angle. In Fig. 3.2 (b), the c-axes of the adjacent grains are misaligned

by an angle φ in a plane normal to the grain boundary plane; this misorientation

produces a [100] tilt boundary. In Fig. 3.2 (c), the misorientation angle γ between

the c-axes is in a plane parallel to the boundary. In the latter case, the a (or b) axes

are normal to the boundary plane so that a [010] twist boundary is formed. GBs

with identical misorientations of the grains with respect to the boundary are called

symmetric, otherwise they are asymmetric. For a detailed investigation of GBs and

their transport properties, they can be produced artificially by growing epitaxially

(a)

q

[001] [001]

(b)

[100][100]

f

(c)

[010] [010]
g

Fig. 3.2: Sketch showing the crystallography of (a) a [001] tilt boundary, (b) a [100]

tilt boundary, and (c) a [010] twist boundary.



3.1 Nature of grain boundaries in HTS materials 31

HTS films on bicrystal substrates, which consist of two crystals with different crys-

tallographic orientations that are fused together. In the epitaxial growth process,

the GB of the substrate is carried into the HTS film.

3.1 Nature of grain boundaries in HTS materials

The critical current density across a GB, JGB
c (intergrain critical current density),

has been reported by many authors to decrease exponentially with increasing GB

misorientation angle θ [Dim90, Iva91] (see Fig. 3.3). Some other authors have sug-

gested a plateau at low misorientation angles where JGB
c is not reduced. In the lit-

erature, critical angles for this plateau (where JGB
c begins to drop) between 2◦ and

5◦ have been reported [Dim88, Ver00, Hol00]. Considering the work of Holzapfel

et al. [Hol00] that proposes a cut-off angle of 4◦, the Jc dependence on the misori-

entation angle for YBCO can be phenomenologically quantified as

Jc(θ)

Jc(0)
= exp

(

− θ

α

)

; [θ ≥ 4◦] (3.2)

Fig. 3.3: Critical current density ratio in YBCO films as a function of the misorien-

tation angle. The different symbols distinguish the different GBs [Dim90].
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with α = 3.2◦ and Jc(0) = 3.2 MA/cm2, at 77 K and self-field. A similar exponen-

tial dependence of Jc with the misorientation angle has been reported in all three

different GB geometries described in Fig. 3.2, and for many HTS materials, e.g.,

NdBa2Cu3O7−δ [Rom01], Bi2Sr2CaCu2O8+δ [Amr95], Bi2Sr2Ca2Cu3O10+δ [Hän02,

Att02], Tl2Ba2CaCu2O8+δ [Sar94], TlBa2Ca2Cu3Ox [Nab94], HgBa2CaCu2O6+δ

[Tsu98] and Nd2−xCexCuO4 [Woo99].

There are several mechanisms that can account for the observed decrease of the

critical current density at the GB. Such mechanisms are connected with a reduc-

tion of the current-carrying cross-section by the insulating dislocation cores and by

local suppression of the order parameter at the GB if the GB misorientation angle

increases.

• Strain field

Each GB dislocation has an associated strain field. The strained regions

around the dislocation core produce a strong reduction in the hole carrier

density and a modification of the electronic structure by introducing oxygen

defects. Furthermore, it could be demonstrated that the width of the strained

area increases linearly with increasing misorientation angle [Chi91, Bro98].

• Stoichiometry deviations

Deviations from the ideal stoichiometry found in GBs are associated with

the disorder in these regions and lead to a lower carrier density at the GBs

compared to the bulk material [Bro98]. Typical stoichiometrical deviations

are oxygen vacancies. As the oxygen concentration may be non-uniform,

the GB may be highly inhomogeneous so that the supercurrent flows in fil-

aments across the boundary. Increasing the concentration of oxygen vacan-

cies, the width of the non-superconducting zones between the channels be-

comes larger, reducing the transport properties [Moe93]. If the oxygen con-

centration becomes very low in YBCO, a transformation to the tetragonal

phase may occur locally at the GB.

• Interface charging

HTS are characterised by a large dielectric constant and a low carrier density

that lead to the formation of space charge layers at the GB. This results in a

band bending of the band structure next to the interface, and a reduction of

the hole carrier density [Man99, Hil99b] (see Fig. 3.4). Similar band bending

occurs in GBs of dielectric or ferroelectric oxides and semiconductors. The

space charge layers extend into the superconducting grains over the Thomas-

Fermi electrostatic screening length λTF that is in the range of 5 - 10 Å and is

comparable to the coherence length of the HTS. For a strong depletion of the
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Fig. 3.4: Sketch of the band bending at a GB. Ec and Ev represent the conduction

and valence bands, respectively, and EF represents the Fermi level. λTF is the

electrostatic screening length, and represents the distance over which the depletion

takes place [Man99].

band structure, it is expected that the cuprate undergoes a phase transition

into the antiferromagnetic insulating phase. Several experimental investiga-

tions revealed that a selective doping of the GBs by Ca is a possibility to en-

hance the hole carrier density at the GBs, and reduce the band bending at the

interface. In this doping process, Y3+ is replaced by Ca2+ producing over-

doping of the CuO2 planes [Hil99a, Hil99b, Sch99, Man00a, Man00b]. Selec-

tive doping of the GBs is required to avoid a reduction of Tc in the bulk due to

overdoping. Bilayer and trilayer samples of intercalated YBa2Cu3O7−δ and

Y1−xCaxBa2Cu3O7−δ layers were produced by Hammerl et al. [Ham00], in-

ducing diffusion of calcium into the GBs of the pure YBCO layers by postan-

nealing of the samples. Such heterostructures yielded critical current densi-

ties as high as 0.3 MA/cm2 for a 24◦ YBCO bicrystal at 77 K. An improve-

ment in Jc was also detected in Ca-doping experiments of low-angle grain

boundaries with 4◦ and 8◦ [Gut01, Dan00], however it is found that the en-

hancement in Jc by Ca-doping is stronger in high-angle grain boundaries.

• d-wave symmetry

The HTS cuprates are characterised by a mixed s/dx2−y2 wave symmetry

of the order parameter, although the dx2−y2 symmetry is dominant. This
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Fig. 3.5: Illustration of the mechanism by which the critical current density of a GB

with misorientation angle θ is depressed by the tilting of the dx2−y2-wave symme-

try of the order parameter. The faceting of the GB is also illustrated [Hil96].

was shown by several experiments based on Josephson tunneling between

two HTS materials with a conventional superconductor as barrier [Kou97,

Wol93], and also with tricrystal junctions [Tsu94]. It is expected that a con-

tact with a misorientation angle θ between dx2−y2-wave superconductors pro-

duces a reduction of the component of the order parameter perpendicular to

the grain boundary plane caused by the different crystallographic orienta-

tions on either side of the boundary (see Fig. 3.5). The strongest depression

of the order parameter is produced in the case of a 45◦ [001] tilt boundary

due to the coincidence of the maximum of the order parameter of the super-

conductor on one side of the interface with the node in the gap function on

the other side.

Faceting of grain boundaries is a further point that has to be considered in

the reduction of Jc. As a consequence of the growth modes of the cuprates,

the boundaries are not well defined, but consist of several segments with

different orientations (see Fig. 3.5). TEM investigations on bicrystals showed

facet patterns with typical dimensions of the order of 10 to 100 nm [Cai98].

Faceting together with dx2−y2 symmetry causes the critical current density to

be very inhomogeneous across the boundary. Both effects account for a con-

siderable part of the experimentally observed reduction of the critical current

with misorientation angle.
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• Direct suppression of the pairing mechanism

The misorientation and the interruption of the periodic lattice structure at

the GB depresses the pairing interaction, for example by interrupting the

antiferromagnetic order of the CuO2 planes, which directly affects Jc.

It is not possible to estimate which mechanism has the largest effect on Jc. All of

them are interconnected, and the predominance of any of them depends on the

kind of GB, which itself might depend on the preparation method.

3.2 Transport properties of low-angle grain boundaries

3.2.1 Voltage-current characteristics

Models of low-angle GBs propose a weaker flux pinning of vortices at the GBs

compared to the flux pinning within the grains. The pinning in the GBs is due to

a reduction of the order parameter in the dislocation cores, which is produced by

several factors commented in section 3.1. Gurevich et al. found that, at the bound-

ary, the cores of the conventional Abrikosov (A) vortices turn into Abrikosov Jose-

phson (AJ) vortices [Gur94, Gur98, Gur02]. AJ vortices have a highly anisotropic

Josephson core with a length l along the GB, and a width ξGL (coherence length) in

the transverse direction, being l much larger than the size of the dislocation cores

(typically on the order of ξGL) (see Fig. 3.6). This implies that in the direction

along the GB plain AJ vortices are weaker pinned. Consequently, if the applied

current density J perpendicular to the boundary is high enough, the line of in-

tergrain vortices pinned at the GB will move along the boundary by viscous flux

flow in response to the Lorentz force, while the A vortices surrounding the GB stay

pinned in the YBCO grains. The situation is sketched in Fig. 3.7, and was experi-

mentally observed by Dı́az et al. [Dı́a98b]. The movement of vortices along the GB

generates a voltage V across the boundary over a very short distance (the intervor-

tex distance a0) that results in an electric field located exclusively at the boundary,

which is relatively high and well above the range of fields produced by flux creep.

This leads to a linear behaviour of the V(J) curves measured at low-angle GBs, in

contrast to the power law found in V(J) curves measured in YBCO single crystals

that is produced by flux creep effects when J is close to Jc. Figure 3.8 presents V(I)

curves measured by Dı́az et al. [Dı́a98b] on a YBCO bicrystal with a 4◦ GB. The

authors have patterned conducting paths (bridges) on different positions of the

sample: one bridge within the grain (IG bridge) and the second one crossing the

GB perpendicularly (GB bridge).



36 Grain boundaries in HTS materials

GB

Abrikosov Josephson
vortex

Abrikosov
vortex

Fig. 3.6: Calculated lines of current around Abrikosov Josephson (AJ) vortices at a

GB (dashed line), and the bulk Abrikosov (A) vortices in the grains [Gur02].
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Fig. 3.7: Sketch of the hexagonal vortex lattice in the vicinity of a [100] tilt low-

angle GB. For an applied field ~B within the plane of the GB, parallel to the c-axis

of the film, vortices are pinned by dislocation cores in the boundary. For J > JGB
c ,

however, vortices in the grain boundary start to move due to the Lorentz force ~FL

directed along the GB [Dı́a98b].
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Fig. 3.8: Measured voltage-current density V(I) characteristics for a 4◦ GB and the

intragrain bridge. The IG curve shows a power law behaviour due to flux creep,

while the GB trace is clearly linear, being characteristic of flux flow [Dı́a98b].

Additionally, another phenomenon called vortex channelling is observed in the V −
J measurements of low-angle GBs, directly related to viscous flux flow of flux lines,

but with a change in the number of vortex rows flowing at the low-angle GB. This

results in a variation of the dissipation width at the GB that yields a Jc profile across

the interface: Jc increases from a minimum value within the GB to a maximum

value given by the intragrain Jc [Fig. 3.9 (a)]. Vortex channelling is detected as a

kinking of the V(J) curves into several linear segments with different gradients

dV/dJ [Hog01] [Fig. 3.9 (b)]. The channelling of flux lines along the GB is directly

connected to the vortex spacing and vortex size, i.e., it depends on the magnetic

field and temperature.

3.2.2 Critical current density

Usually, Jc in a single crystalline HTS film decreases strongly under applied mag-

netic field due to thermally activated flux creep, yielding an exponential Jc(B) de-

pendence. Several experimental investigations, however, found a different Jc(B)

dependence for low-angle grain boundaries [Ver00]. This is thought to be a re-

sult of pinning in the dislocation cores of the GB that configure a planar dis-

tribution of pinning centres with a characteristic low-field dependence Jc(B) ∝

B−1/2 [Cam72, Gur94]. Such a behaviour has been observed in both conventional

superconductors and HTS materials [Cam72, Gur93, Yam93].

Results of Jc(B) measurements reveal that at high magnetic fields the dependence
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Fig. 3.9: (a) Proposed effective Jc profile across a low-angle GB. Vortices will ini-

tially be depinned at the low-angle GB, and as J increases, the surrounding intra-

grain vortex rows will move progressively; (b) V(J) measurement taken at 1 T for

a 4◦ low-angle GB. A kinking between the different linear segments with different

gradients dV/dJ is observed [Hog01].

Jc(B) ∝ B−1/2 is no longer valid, and a crossover to the normal flux creep mech-

anism discussed above occurs (Fig. 3.10). This crossover behaviour is caused by

the dominance of flux creep effects of the intragrain vortices pinned in the grains,

which become especially important when the applied magnetic field increases.

The crossover between the power law Jc(B) ∝ B−1/2 and the exponential depen-

dence of Jc(B) occurs at a crossover magnetic field Bcr, which is found to depend

on the misorientation angle of the GB [Hol00]. The crossover behaviour between

GB and flux creep limitation of Jc(B) is demonstrated in Fig. 3.10 for bicrystals

with misorientation angles of 4.5◦ and 7◦ [Ver00]. The 4.5◦ and 7◦ bicrystals

present a crossover field of 3 and 5 T, respectively. In the case of the 2◦ bicrystal,

there is a perfect coincidence of the Jc(B) measurements for the bridges crossing

the GB and the one patterned onto a single grain, which is in accordance with the

phenomenologically quantified behaviour found for Jc(B), where JGB
c equals the

intragrain critical current density J IG
c for small misorientation angles [Hei99] (see

section 3.1).

Vortex pinning by dislocation cores in a low-angle GB becomes evident in Jc mea-
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Fig. 3.10: Magnetic field dependence of bicrystal samples with different GB mis-

orientation angles. Above 4◦, the GBs show a reduced Jc. At high magnetic fields

and low θ, Jc is dominated by flux creep within the grains and not longer by flux

flow in the GBs [Ver00].

Fig. 3.11: Jc(θ) curves measured at T = 60 K by Dı́az et al. on a 4◦ GB. At θ = 0◦, the

applied magnetic field is aligned parallel to the dislocation cores, detecting a local

maximum. For θ= 90◦, the applied magnetic is parallel to the CuO2 planes, and a

further maximum in Jc(B) is detected, caused by intrinsic pinning [Dı́a98a].
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surements carried out by varying the direction of the applied magnetic field

[Dı́a98a, Gur94]. When the magnetic field is aligned parallel to the dislocation

cores in the c-direction, a maximum Jc value is detected (see Fig. 3.11), indepen-

dent of the maximum Jc caused by intrinsic pinning.



Chapter 4

YBa2Cu3O7−δ coated conductors

YBa2Cu3O7−δ coated conductors (YBCO CCs) are the so-called “second genera-

tion” of high-temperature superconducting tapes and represent an attractive alter-

native to the “first generation” Bi2Sr2Ca2Cu3O10+δ (BSCCO-2223) conductors. At

present, several manufacturers in Europe, Japan and the USA are able to fabricate

kilometer lengths of BSCCO-2223 tapes using the oxide powder in tube (OPIT)

technique. In this technique, oxide powders of the superconductor are loaded into

silver or silver alloy tubes, which are sealed, and then drawn into round wires.

The round wire is then further rolled to produce a flat tape which is then thermally

processed generating a HTS conductor [Hei89, Fis98]. The BSCCO-2223 tapes have

disadvantages like the extremely strong reduction of the critical current density Jc

in substantial magnetic fields (exceeding 0.2 T) at liquid nitrogen temperature (77

K), and the relatively high raw material and production costs. The comparison

between Jc(B) of BSCCO-2223 tapes and that of YBCO CCs at 75 K is shown in

Fig. 4.1. BSCCO compounds are characterised by an intrinsically weak flux pin-

ning that results in a strong reduction in Jc as the magnetic field increases. YBCO

however, has better flux pinning properties and higher irreversibility fields that

make it suitable for applications in magnetic fields at 77 K. Moreover, it is expected

that the manufacturing costs of YBCO CCs will be two to five times lower than in

the case of BSCCO conductors, reaching values of 10 $ per kA m.

Currently, industry and the scientific community are working in close cooperation

to improve and develop techniques for the production of high quality YBCO CC

tapes and their implementation in power application devices (transmission cables,

motors, generators, transformers and fault current limiters) where high magnetic

fields are present. The use of YBCO CCs might save energy in power generation

and distribution resulting in economic and environmental gains. Furthermore,

a substantial reduction in size and weight of all these devices by about 50% is

expected.



42 YBa2Cu3O7−δ coated conductors

Fig. 4.1: Jc(B) for OPIT BSCCO-2223 and YBCO CCs at 75 K [USD98].

4.1 Technical requirements for YBa2Cu3O7−δ coated

conductors

YBCO CCs have some technical requirements that have to be fulfilled to enable

their implementation in power applications. One of the most challenging prob-

lems is the production of long YBCO CCs, which means the scaling of the pro-

duction from a short to a longer sample fabrication by a continuous preparation

process. This requires significant modification of the equipment and the necessary

incorporation of reel-to-reel handling, as indicated in Fig. 4.2, for all the process-

ing steps: substrate preparation, and buffer layers and YBCO film deposition. The

achievement of long CCs is a technical problem due to the necessity of a homoge-

neous heating and oxygenation of the long substrate during YBCO deposition to

obtain a YBCO CC with constant Tc and Jc values along the tape.

In addition to the length problem, there are other tasks in the optimisation of the

YBCO CCs that have to be solved: the substrate has to be flexible, non-magnetic

and thin with the necessary mechanical strength to allow the production of cables
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Fig. 4.2: Reel-to-reel handling during pulsed laser deposition of long lengths of

YBCO CC

or coils and, on the other hand, the YBCO film has to be thick enough to improve

the current capability of the YBCO CC.

4.1.1 Metallic substrates

The substrate plays a crucial role in the YBCO CC. It should be flexible and possess

good mechanical strength. Metals are the ideal candidates with obvious benefits

for the preparation of long and flexible tapes at relatively low cost. The thickness

of the substrate is an important point for the engineering critical current density

(Je), which takes into account the complete cross-sectional area of the CC. Hence,

the substrate should be as thin as possible, and the YBCO film relatively thick.

The second point is the ferromagnetism of the substrate that leads to magnetisation

losses and increases the total alternating current losses of the YBCO CC [Tho02].

Alternating current losses are important when power-engineering applications are

considered; they must be low enough to justify the extra investment in the YBCO

CCs. A possible solution is the use of metallic substrates with Curie temperatures

well below 77 K.

4.1.2 YBa2Cu3O7−δ film thickness

It could be expected that the total critical current Ic of the film increases with the

thickness d of the YBCO film, yielding a constant Jc. However, it was observed that

Jc is a function of film thickness and decreases exponentially when the thickness

exceeds 0.5 µm. This Jc reduction was found to be correlated with a transition from
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c-axis to a-axis orientation for YBCO films grown onto biaxially textured metallic

substrates [Leo03]. Foltyn et al. investigated the transport capability in depen-

dence of the YBCO film thickness [Fol99]. They prepared 4.7 µm thick YBCO films

and found that the current flows only in an approximately 1.25 µm thick layer lo-

cated in the interior of the thick film. The superconducting properties of the films

exceeding a thickness of 1.5 µm were poor due to a low temperature during the

growth process. On the other hand, the first 0.25 µm of the 4.7 µm films were

equally damaged by a too high substrate temperature. To overcome the problem

and obtain thicker YBCO films Jia et al. proposed a multilayer architecture con-

sisting of two intercalated layers of 1.1 µm thick YBCO with a 50 nm thick CeO2

layers [Jia01]. The aim of this approach was the reduction of defects like voids,

porosity and a-axis oriented grains in the YBCO film. The authors observed that

both YBCO layers exhibited a similar critical current density of 1.4 to 1.5 MA/cm2

at 75.2 K . The ability to maintain a constant and high Jc as the total YBCO thick-

ness is increased suggests that even higher total Jc can be reached by adding more

layers.

4.2 Preparation routes

The main routes to produce YBCO CCs are ion beam assisted deposition (IBAD),

inclined substrate deposition (IBAD) and rolling assisted biaxially textured sub-

strate (RABiTS), as already commented in chapter 1. All of these techniques have

achieved critical currents densities Jc higher than 1 MA/cm2 in short samples

[Mat98, Nor98, Bet98, Hol01a, Bau99].

The IBAD and ISD techniques use polycrystalline substrates that in most cases are

commercially available low magnetic Ni alloys like Hastelloy, Inconel, or stainless

steel. The IBAD technique uses an ion beam that bombards the growing film at a

fixed angle during deposition. In this way, it is possible to control the orientation

of the film by producing a selective grain growth mechanism and so to develop a

biaxial texture in the buffer layer [Fig. 4.3 (a)]. Optimal textures for buffer materials

like yttria-stabilized zirconia (YSZ) or MgO have been achieved providing high

critical current densities in the subsequently YBCO film [Bet98, Bet97c, Bet97a,

Bet97b, Hüh01, Hol01a]. A limitation for this technique is the difficulty of scaling

up the ion beam assisted deposition into an industrially viable production process.

In the ISD technique, an in-plane textured film is obtained just by inclining the

substrate at an angle α during deposition [see Fig. 4.3 (b)]. The <110> axis of de-

posited material is favoured to align towards the direction of the evaporated mate-

rial. This technique is characterised by very high deposition rates (approximately

300 nm/min.). For MgO buffer layers good results were obtained evaporating the
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Fig. 4.3: Sketch of the two techniques that use complete polycrystalline substrates

for the production of YBCO CCs: (a) IBAD approach with IBAD-YSZ and epitaxial

CeO2 as buffer layers; (b) ISD approach with ISD-MgO and epitaxial MgO as buffer

layer.

layers by e-beam or reactive thermal evaporation of magnesium. Usually, a second

MgO film is epitaxially grown on the ISD-MgO to achieve a smoother buffer layer

in order to improve the growth of the YBCO film [Bau99, Met01].

In contrast to the former techniques, RABiTS is characterised by the use of a bi-

axially textured metallic substrate, on which the buffer layers and YBCO film are

epitaxially grown (Fig. 4.4). The RABiTS approach offers a high flexibility, and

promises possibilities for the production of long YBCO CCs.

In all three approaches YBCO can be grown using many different deposition tech-

niques, either vacuum techniques [pulsed laser deposition (PLD), sputtering, ther-

mal evaporation, metalorganic epitaxial chemical vapor deposition (MOCVD)] or

non-vacuum techniques like chemical solution deposition (CSD) that have been

proposed as flexible and low-cost alternative for long tape coating with high criti-

cal current densities [Oku01, Fal02, Sie02, Cas03].

Presently, companies and institutions have achieved the production of long YBCO

CCs by IBAD, ISD and RABiTS techniques. In Japan, Fujikura Ltd. and Sumit-

omo Ltd. have produced a 100 m (Jc = 0.8 MA/cm2) [Iij03] and 50 m (Jc = 0.15

MA/cm2) [Fuj03] long YBCO CC using IBAD and ISD, respectively. American Su-

perconductor Corporation obtained a length of 10 m with a critical current density

of 1.5 MA/cm2 using the RABiTS technique [Mas03].
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Fig. 4.4: Sketch of the RABiTS technique using epitaxial CeO2 and YSZ as buffer

layers.

4.3 The RABiTS approach

The RABiTS approach was first proposed by Norton et al. [Nor96], utilising the

ability of face-centered cubic (fcc) metals like Cu, Ni or Ag to achieve a strong

{100} <100> cube texture by heavy cold rolling and successive recrystallisation.

This texture is then transferred to subsequent layers by epitaxial growth.

4.3.1 Biaxially textured metallic substrate

In spite of its ferromagnetism, pure Ni and Ni-based alloys are preferred as sub-

strate materials thanks to their good oxidation resistance compared to Cu or Al.

The preparation method used for the production of long tapes of Ni or Ni alloys

consists of several steps. First, the elements are melted and alloyed in an induc-

tion furnace and cooled to room temperature. The resulting square-shaped rods

are heavily cold rolled with several passes down to the final thickness (typically

between 40 and 80µm), and finally the samples are annealed at temperatures be-

tween 300◦C and 1100◦C either in a mixed atmosphere of 10% H2 in N2 or in pure

H2. In the annealing process a recrystallisation of the substrate material occurs,

providing a strong {100} <100> cube texture.

The purity of the elements is an important factor contributing to a sharp texture

in the tapes. It can heavily influence the recrystallisation process and abnormal
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grain growth may occur and destroy the cube texture. In the case of pure Ni,

the abnormal growth can be prevented by alloying with 0.1 at.% of Mo, Mn or

W [Eic01, dB01a]. These microalloying additions do not change the properties of

the substrate material in comparison to Ni. Both pure and microalloyed Ni are

characterised by a low tensile strength that can be improved by a factor of 3 with

additions of V and Cr (≥ 10 at.%) [dB01a, dB01b, Sar02]. A higher tensile strength

allows thinner tapes, which is desirable to increase the engineering critical current

density of the YBCO CC. Additionally, these highly alloyed Ni tapes show Curie

temperatures below 77 K, lower than that of pure or microalloyed Ni tapes, which

eliminates magnetisation losses in alternating current applications. However, the

additions of V and Cr result in an easy V or Cr oxide formation on the substrate

surface during buffer deposition, that difficults the epitaxial growth. The problem

can be solved by using composite substrates with a non-oxidising outer layer and

a highly alloyed inner core. An example is the 80 µm tape prepared by Sarma et

al. [Sar03a] with a 30 µm core consisting of a Ni-Cr-Al alloy (Ni-10 at.% Cr-1.5 at.%

Al) and outer layers of Ni-3 at.% W.

4.3.2 Buffer layer architecture

The buffer layer architecture consists typically of two or three oxide layers, al-

though the development of an effective single layer is desirable. Two principal

functions of these buffer layers are to protect the substrate from oxidation, and

to act as a chemical barrier avoiding the diffusion of Ni atoms from the substrate

into the superconducting film, since a contamination of the YBCO film by Ni dif-

fusion leads to a reduction of Tc [How89, Tar88]. As a diffusion barrier the buffer

layer has to be a closed crack-free layer and it must not itself react with the YBCO

film. In addition to the barrier function, the buffer layer constitute the template for

the epitaxial YBCO film growth and propagate the biaxial texture from the metal

substrate to the YBCO film.

Several oxide materials are suitable as layers for coated conductors, since they

have a good lattice matching with both YBCO and Ni. The first proposed buffer

layer architecture that achieved high Jc values over 1 MA/cm2 was a combination

of CeO2 and YSZ [Nor96, Nor98, Fer02]. This standard buffer layer system consists

of a thin layer of CeO2 (50 - 100 nm) followed by a thicker YSZ film that acts as the

real diffusion barrier. A variation of this architecture is the addition of a second

thin CeO2 buffer layer onto the YSZ layer [Par99a].

Buffer layers of Y2O3, Yb2O3 and Gd2O3 were deposited on RABiTS substrates

by reactive e-beam evaporation. A novel buffer layer consisting of a combina-

tion of Y2O3 and Yb2O3 was developed, achieving Jc values exceeding 1 MA/cm2
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[Par99b, Ich99]. New potential buffer layers are LaNiO3 and SrRuO3, which have

a perovskite structure and conducting properties. The advantage of a conducting

buffer is the electrical and thermal stabilisation of the CC against transient condi-

tions in which the current may exceed Ic of the YBCO film generating a very high

dissipation power. In the case that the YBCO film is electrically connected to a

conducting substrate, the current could be transferred to this reducing the risk of

damage. Both layers were prepared by sputtering and PLD on Ni substrates with

subsequent YBCO deposition, achieving Jc = 1.2 MA/cm2 [Can01a].

It was found that also NiO can grow biaxially textured on the RABiTS tape un-

der optimised conditions, and therefore, it can be also used as buffer layer. This

procedure is known as surface oxidation epitaxy (SOE) [Mat99, Kur03], and its

principal problem is the roughness of the grown NiO layer that has to be covered

by other oxides like YSZ , Y2O3, SrZrO3 or BaZrO3 to improve the epitaxial growth

of the YBa2Cu3O7−δ film [Don02, Eve03].

Presently, the preparation of buffer layers by CSD techniques is in development.

Candidates like La2Zr2O7, Nd2CuO4, CeO2, BaZrO3 and SrTiO3 are being investi-

gated [Oku01, Cas02, Dem03, Hos03].

4.3.3 YBa2Cu3O7−δ film

The YBCO film deposition can be carried out by any of the techniques already

mentioned. A critical point is that the YBCO has to grow biaxially textured, as

previously commented in chapter 1. Such a biaxial texture is the only way to

eliminate intergranular weak links and achieve high critical current densities (Jc

> 1 MA/cm2 at 77 K and B = 0 T). In general, it is found that with the proper

buffer layer architecture and deposition parameters, YBCO grows biaxially tex-

tured on RABiTS substrates. However, very often Jc is lower than expected (below

1 MA/cm2). Overlooking Ni diffusion problem into the YBCO film, the princi-

pal reason for the low Jc value is the grain boundary network (GBN) propagated

from the substrate into the YBCO film by the epitaxial growth. The GBN consist of

many GBs with various misorientation angles, which limit the critical current den-

sity in a different manner: GBs with misorientation angles below the cut-off angle

(3◦-5◦) do not limit Jc, while misorientation angles above the cut-off angle reduce

Jc exponentially (see section 3.1). Such a situation leads to a percolative current

flow along the GBN, i.e., the current selects the easiest way to flow in the granular

coated conductor. Most often, the GBs that strongly limit Jc are isolated obsta-

cles, around which the current can easily flow. However, it is possible that these

randomly located GBs form a barrier that significantly restricts the current flow.

This fact points out the importance of the development of well-textured RABiTS
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Fig. 4.5: Magneto-optical image taken across the full width of a 4 × 10 mm YBCO

CC at 15 K and 60 mT applied fields. Bright areas indicate magnetic flux penetra-

tion, dark areas flux shielding [Fel00].

substrates to obtain Jc values in YBCO CCs that are similar to the ones obtained

in single crystalline YBCO films. Fig. 4.5 shows magneto-optical measurements

carried out on a YBCO CC sample grown on a RABiTS tape, where the initial pen-

etration of the magnetic field along some high misoriented grain boundaries of the

grain boundary network is detected.

As previously commented in section 3.1, Ca doping of grain boundaries increases

the effective critical current density of the grain boundary, JGB
c , both for high-angle

and for low-angle grain boundaries. Investigations on YBCO CCs also revealed

an enhancement of the critical current density at 77 K after Ca doping [Man01,

Web03].
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Chapter 5

Preparation and characterisation of

YBa2Cu3O7−δ coated conductors

In this chapter, the preparation of the YBCO CC samples and the results of the

structural and microstructural characterisation are described. YBCO CCs were

prepared using the RABiTS approach, depositing the buffer layer system and the

YBCO films by pulsed laser deposition. For comparison, YBCO films were pre-

pared in a similar way on single crystalline Ni substrates as reference for the criti-

cal current measurements performed on the YBCO CC.

5.1 YBa2Cu3O7−δ coated conductor preparation

5.1.1 RABiTS tapes

Pure Ni (99.98%), Ni-0.1 at.% Mn microalloy, Ni-12 at.% Cr, and Ni-5 at.% W al-

loys were used as substrates. For the coating process the tapes were cut into pieces

of about 1 cm × 1 cm, and each piece was carefully cleaned in an ultrasonic bath

with acetone and isopropanol to remove contaminations of the rolling process.

The substrate annealing was carried out in situ in a high vacuum (HV) chamber

before buffer layer deposition, except for the Ni-Cr and Ni-W alloys that were an-

nealed separately in a tubular furnace at 900◦C and 1000◦C, respectively. The other

substrates (Pure Ni and Ni-Mn) were recrystallised in the HV chamber in forming

gas (7% H2 in Ar ) at a partial pressure of 10−2 mbar for 30 minutes at tempera-

tures of 700◦C and 850◦C, respectively. The different annealing temperatures of

the tapes are related to the concentration of substitutional elements present in the

alloy. Highly alloyed tapes require higher recrystallisation temperatures due to

the reduced mobility of the atoms.

The NiCr tape was coated with a 200 nm thick Ni film grown epitaxially by e-beam
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evaporation at 500◦C, in order to avoid formation of Cr oxides at the surface of the

tape during the subsequent buffer layers and film deposition.

5.1.2 Pulsed laser deposition of buffer and YBa2Cu3O7−δ layers

Buffer and YBCO layers were prepared by pulsed laser deposition, utilising a KrF

excimer laser (Lambda-Physik LPX305i) that operates in the ultraviolet spectral

region at a wavelength of λ = 248 nm. The maximum pulse energy of this laser is

1.3 J, which corresponds to a mean power per pulse of approximately 30 MW. The

maximum repetition frequency is 50 Hz and the pulse duration is approximately

50 ns.

In order to obtain high quality films, a constant deposition rate is required. This

can be obtained by imaging the laser beam onto a small area of the target material

(approx. 0.1 cm2) via a quartz lens. A homogeneous energy density distribution

across the laser spot is achieved by the use of a quadratic aperture placed before

the lens. During the pulse, a high energy is transferred to this small area of the

target which heats up in a very short time to high temperatures and evaporates

forming a plasma plume. The plasma, which contains thermally emitted ions, elec-

trons, neutral atoms and molecules in a vapour phase, propagates in a direction

perpendicular to the target surface. The typical plasma temperature during initial

expansion measured by emission spectroscopy is approximately 10000 K [Auc88].

The interaction of the laser beam with the target material is affected by a num-

ber of parameters like the absorption coefficient and the reflectivity of the target

material, the pulse duration, and the energy of the laser beam.

The chamber was equipped with a turbo molecular pump, a gas-flow system with

two different gas channels, and a butterfly valve that was connected to a vacuum

gauge to control the gas flow into the chamber. For the preparation of the buffer

and YBCO films, three ceramic targets were used: CeO2, yttria-stabilized zirconia

(YSZ), and YBCO. In order to obtain an uniform target erosion and consumption,

the targets were rotated and wobbled simultaneously during the deposition pro-

cess. PLD deposition was carried out in on-axis geometry, i.e., the substrate sur-

face is positioned parallel to the target surface (see Fig. 5.1). The quality of the

growing film is controlled by several parameters: laser energy density on the tar-

get, frequency of the laser pulses, substrate temperature, and gas pressure in the

chamber during deposition.

Buffer layer deposition

The buffer layer system of the YBCO CC was composed of a thin layer of CeO2 (50

nm) grown directly onto the RABiTS tape, and a thick layer of YSZ (600 nm). For
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Fig. 5.1: Pulsed laser deposition geometry in on-axis configuration.

the growth of CeO2 and YSZ the energy density of the laser was set to 1.3 J/cm2

with a pulse frequency of 3 Hz, while the substrate was held at 700◦C. The distance

between target and substrate was 6.5 cm. The CeO2 layer was grown in a forming

gas atmosphere of 2×10−2 mbar at a deposition rate of 1 nm/pulse. CeO2 was

deposited directly onto the RABiTS tape taking advantage of its ability to grow

without the requirement of oxygen gas flow into the chamber, which could oxi-

dise the surface of the RABiTS tape. YSZ was deposited at a rate of 0.7 nm /pulse

under a controlled oxygen partial pressure. In order to avoid a strong oxygen dif-

fusion through the buffer layers when the YSZ was not thick enough to prevent it,

the oxygen partial pressure was slowly increased during deposition from 1×10−4

mbar to 5×10−3 mbar.

YBCO film deposition

The pulsed laser deposition of the YBCO film was carried out in an oxygen atmo-

sphere at a pressure of 0.3 mbar and a substrate temperature of 770◦C, positioning

the target and substrate at a distance of 6.9 cm. The laser pulse frequency was 5

Hz and the energy density 2 J/cm2. These parameters produced a YBCO depo-

sition rate of 1 nm/pulse, being the YBCO film thickness of 200 nm. After the
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Tab. 5.1: Structure and lattice parameters of Ni, CeO2, YSZ, and YBCO.

Material Structure lattice parameter (Å)

Ni cubic, fcc 3.50

CeO2 cubic, CaF2 structure 5.41

YSZ cubic, CaF2 structure 5.14

YBCO orthorhombic a = 3.82, b = 3.88, c = 11.68

deposition, the sample was cooled to room temperature at a rate of 15 K/min in

an oxygen partial pressure of 400 mbar. The cooling process at high oxygen partial

pressure is crucial for obtaining superconducting YBCO films. Immediately after

the deposition, YBCO possesses a tetragonal structure, which is the stable phase at

high temperature. The cooling process in a high oxygen partial pressure ensures

the transition from the tetragonal to the orthorhombic phase that takes place at

700◦C. At this temperature the Cu-O chains are formed.

One of the most critical parameters for the YBCO deposition is the substrate tem-

perature, which may affect the orientation of the YBCO film. For YBCO a c-axis

orientation is required, which means that the CuO2 planes of the different YBCO

grains are parallel to the substrate, and hence parallel to each other. Frequently,

if the deposition temperature is too low, YBCO shows an a-axis growth with the

c-axis parallel to the substrate surface. Such an a-axis growth strongly affects the

superconducting properties, especially the critical current density. The optimal

substrate temperature for YBCO deposition was found here to be 770◦C, leading

to a Tc of approximately 90 K and a transition width of about 1 K.

Epitaxial growth of the films

Table 5.1 compares the structure and lattice parameters of the materials used in

the YBCO CC. The difference in the lattice parameter between Ni and CeO2 is

evident but does not affect the epitaxial growth, since CeO2 grows rotated by 45◦

with respect to Ni to adjust the lattices [see Fig. 5.2 (a)]. In this situation the lattice

parameter of CeO2 matches to the diagonal of the unit cell of Ni (4.94 Å), achieving

a lattice mismatch of 9% 1. YSZ grows cube-on-cube on CeO2, due to the similarity

of the lattice parameters, and YBCO grows rotated by 45◦ on YSZ, as shown in

Fig. 5.2 (b).

1The lattice mismatch between substrate and film was calculated as (asubstrate − a f ilm)/a f ilm.
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Fig. 5.2: Schematic representation of the epitaxial growth of (a) CeO2 and YSZ on

Ni, and (b) YBCO on YSZ. The unit cell of CeO2 is rotated by 45◦ with respect to

Ni, while YSZ grows cube-on-cube on CeO2. YBCO grows rotated by 45◦ with

respect to YSZ.

5.2 Preparation of YBa2Cu3O7−δ films on single

crystalline Ni substrates

Single crystalline Ni films were grown epitaxially onto SrTiO3 (100) single crys-

tals using e-beam evaporation at a substrate temperature of 500◦C under vacuum

(10−5 mbar) conditions. The Ni films were 200 nm thick and revealed a perfect

epitaxial growth with (100) orientation. The buffer and the YBCO layers on the

single crystalline Ni films were prepared exactly as in the case of RABiTS tapes.

The critical currents obtained for these samples were used as a reference to esti-

mate the limitation of the critical current by the grain boundary network in the

coated conductors.

5.3 Structural characterisation techniques

5.3.1 Texture measurements

The texture of the films were analysed using x-ray diffraction (XRD) and elec-

tron back scatter diffraction (EBSD). XRD techniques were used to investigate the

macrotexture, i.e., the averaged orientation data from the bulk of the sample. On

the other hand, EBSD was used to study the microtexture (local orientation) of the

samples.
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Fig. 5.3: XRD pattern in Bragg-Brentano geometry of the YBCO CC grown on a

RABiTS tape. (00l) diffraction peaks corresponding to the buffer layer (CeO2 and

YSZ) and to the YBCO film are visible. Additionally, the (200) diffraction peak

of the RABiTS tape, the (111) diffraction peak of NiO and a small contribution of

CeO2(222) are present.

Figure 5.3 shows a typical θ-2θ XRD pattern in Bragg-Brentano geometry for a

YBCO coated conductor grown on a RABiTS tape. The 2θ angle of each diffraction

peak of the XRD pattern is characteristic of the interplanar distance d in the mate-

rial, and can be used to determine the layer and orientation. The metal substrate

and the oxide layers, including YBCO, show diffraction peaks corresponding to

(00l) planes. This demonstrates the predominant c-axis orientation of the layers in

the CC. Additionally, small fractions of CeO2(222) and NiO(111) diffraction peaks

are observed. The growth of NiO (111) was not found to affect the orientation

of the buffer layers and YBCO film. XRD measurements of RABiTS tapes coated

only with buffer layers did not show NiO(111) diffraction peak. Therefore, NiO

formation is thought to be a result of oxygen diffusion through the buffer layers to

the Ni tape during YBCO deposition caused by the high temperature and oxygen

pressure.

Pole figures were measured to examine the texture of the YBCO CCs. With this
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Fig. 5.4: (a) (111) pole figure of the RABiTS tape; (b) (111) pole figure of the CeO2

layer; (c) (111) pole figure of the YSZ layer and (d) (103) pole figure of the YBCO

film. The FWHM values of the φ-scans corresponding to the in-plane texture of

each layer are also given.
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Fig. 5.5: Rocking curves of the different layers present in the YBCO CC: (a) RABiTS

tape (Ni-0.1%Mn), (b) CeO2 buffer layer, (c) YSZ buffer layer, and (d) YBCO film.

aim, the detector was set at the appropriate Bragg angle 2θ with respect to the

primary beam for diffraction of the desired lattice planes (hkl). The measurement

is carried out by rotating and tilting the sample, leading to diffraction if the Bragg

law is satisfied. The obtained pole figure gives information about the arrangement

of the lattice planes inside the crystal. In the experiment, monochromatic Cu-Kα

x-rays with a wavelength λ = 1.5 Å were used. Figure 5.4 shows the pole figures

measured for a Ni-0.1at.%Mn RABiTS tape, the CeO2 and YSZ buffer layers, and

the YBCO film. The pole figures of Ni-0.1at.%Mn, CeO2 and YSZ were measured

for the (111) planes, and in the case of the YBCO film for the (103) planes. The

intensity distribution corresponding to the diffraction at the (111) planes of the Ni,

CeO2 and YSZ comprises four maxima that are found in symmetrical positions.

In contrast to the substrate, the maxima of the buffer layers are rotated by 45◦

caused by the epitaxial growth process. The (103) pole figure of YBCO shows also

four symmetrical maxima reflections for 45◦ tilt and 45◦ rotation angle, due to a

rotation by 45◦ of the (103) planes of YBCO with respect to the expected positions

for the (103) planes of YSZ. The full width at half maximum (FWHM) values of
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Fig. 5.6: Heteroepitaxial growth mode for CeO2 on textured RABiTS substrates

with crystallographic tilt. α is the local substrate surface miscut angle; ∆α is the

out-of plane tilt angle; ds is the out-of-plane substrate lattice spacing, d f is the

relaxed film lattice spacing [Bud03].

the maxima in the φ direction (direction of rotation) provide information about

the quality of the in-plane texture of the films. A clear improvement in the in-plane

texture from the RABiTS tape to the YBCO film is observed (Fig. 5.4).

Rocking curves were measured to detect the degree of c-axis misorientation of each

layer and to quantify the out-of-plane texture. The information obtained measuring

rocking curves is equivalent to that obtained from the polefigures in χ direction

(direction of tilt). For better comparison between the layers, rocking curves were

measured for the (111) planes of all layers (see Fig. 5.5). An improvement in the

out-of-plane texture is observed from the Ni substrate with a FWHM of 7.3◦ to the

CeO2 layer with a FWHM of 6.0◦, while for YSZ the value of FWHM is slightly

larger (FWHM: 6.2◦) than for CeO2. The YBCO film reveals also an enhancement

in the out-of-plane texture respect to the YSZ layer, showing a FWHM value of 5.8◦.

X-ray φ and ω scans reveal a strong improvement in both in-plane and out-of-

plane texture in the CeO2 film with respect to the RABiTS tape, which is in agree-

ment with an EBSD analysis recently published [Sar03b]. Budai et al. [Bud03] ex-

plained the improvement in the out-of-plane texture of the CeO2 film as a result

of the heteroepitaxial growth of CeO2 on out-of-plane misoriented RABiTS grains.

Such RABiTS grains show a vicinal surface with steps that CeO2 tries to adjust.

During the initial stages, CeO2 is strained in the direction perpendicular to the

surface to adjust the out-of-plane substrate lattice spacing, but is free to relax in

the surface direction (see Fig. 5.6). This results in a tilt of the c-axis of the CeO2

film toward the surface normal, leading to an improvement of the out-of plane

texture in comparison to the substrate. The improvement in the out-of-plane tex-

ture of YBCO, however, could be explained considering that YBCO has a layered

structure with a preferential lateral growth, i.e, the rapid growth direction is per-
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Fig. 5.7: (a) Geometry of an EBSD measurement; (b) schematic representation for

Kikuchi lines determination.

pendicular to the c-axis [Cha94, Low97]. If a cluster with the a− b planes lying par-

allel to the substrate surface nucleates, numerous sites for further lateral growth at

the edges of the cluster exist. On the other hand, clusters that grow with the a − b

planes out-of-plane misoriented have parallel to the substrate surface a slower

growth. This results in a dominant growth of YBCO with the a − b planes parallel

to the substrate surface, which consequently improves the out-of-plane texture of

the YBCO film.

EBSD was used to investigate the local texture of the YBCO CC. The measured

EBSD pattern is composed of many Kikuchi bands that result from electron diffrac-

tion in the first 10 - 50 nm of the sample. For this analysis the specimen must be

tilted to a relatively large angle (typically 70◦) inside a scanning electron micro-

scope (SEM) [see Fig. 5.7 (a)]. This geometry enhances the yield of backscattered

electrons. During EBSD measurements, initial inelastic scattering of the incident

beam causes the electrons to diverge from an area below the specimen surface and

to impinge upon the crystal planes in all directions, producing cones of diffracted

electrons when the Bragg condition for diffraction is satisfied by a family of atomic

lattice planes [see Fig. 5.7 (b)]. These cones can be imaged using a phosphor screen

and a CCD camera. When the cones of electrons intersect with the phosphor

screen, they appear as Kikuchi bands, that correspond to a family of crystal lattice

planes. EBSD software automatically locates the positions of individual Kikuchi

bands and compares them to theoretical data about the specimen. This informa-
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Fig. 5.8: (a) EBSD measurements of a RABiTS tape and a YBCO film carried out

for a CC before and after coating [Sch00]. Grain boundaries with misorientation

angles larger than 10◦ are represented as pink lines. (b) Frequency of the grain

boundary misorientation angles found in the RABiTS tapes and the YBCO film.

tion can be used to reconstruct the local texture, creating a texture map.

The Kikuchi lines measured for the RABiTS tape are typically sharp and easy to

identify compared to those measured on the YBCO films, which are weaker and

not so well defined due to various reasons: (i) YBCO is a ceramic material with low

conductivity that produces charging effects, leading to a reduction of the number

of backscattered electrons, (ii) YBCO films have internal stresses due to the epitax-

ial growth, and (iii) the small grain size of YBCO is close to the resolution limit of

the microscope (200 - 500 nm). All these features make difficult the determination

of the orientation mapping of the YBCO film.

Figure 5.8 (a) shows EBSD measurements corresponding to a Ni-0.1%Mn tape and

to the YBCO film grown on this substrate. Both EBSD measurements were car-

ried out on the same area of the sample, before and after coating [Sch00, Hol01b].

The EBSD patterns are represented with a colour scale that indicates the three-

dimensional misorientation of each grain with respect to the ideal cube texture.

The EBSD measurements on YBCO were carried out with the approximation that

the YBCO structure is a perovskite composed of 3 cubes, so that c = 3a. Under
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this assumption, it is found that YBCO does not grow epitaxially on Ni grains

with misorientations above 15◦ [Sch00, Hol01b]. This is reflected in the black ar-

eas that are unindexed regions. Moreover, it is expected that only the out-of-plane

texture component of the RABiTS grains affects the epitaxial growth of YBCO on

each grain. Therefore, 15◦ out-of-plane misorientation of the RABiTS substrate is

thought to be the limit for the epitaxial growth of YBCO [see Fig. 5.8 (a)].

The pink lines in the EBSD patterns are grain boundaries with misorientation an-

gles higher than 10◦. Figure 5.8 (b) shows the frequency of grain boundary misori-

entation angles in the RABiTS tape and in the YBCO film. The misorientation of

the grain boundaries are calculated as the misorientation between neighbouring

grains. In the RABiTS tape the grain boundary angles are found to vary between

5◦ and 20◦, with a further presence of twin boundaries at 60◦. The grain boundary

angles in the YBCO film have only values below 12◦. This indicates a clear im-

provement of the texture in the YBCO film compared to the RABiTS tape that is in

agreement with the results obtained by XRD measurements.

5.3.2 Microstructure investigations

Scanning electron microscopy

Scanning electron microscopy (SEM) was used to analyse the surface morphol-

ogy of the buffer layers before YBCO coating, and of the deposited YBCO films.

Figure 5.9 shows SEM pictures corresponding to buffer layers of CeO2 50 nm

thick, and of YSZ 600 nm thick. They disclose a smooth and crack-free appear-

ance, which avoids Ni diffusion into the superconducting film. SEM micrographs

of YBCO CCs grown on the former buffer layer of YSZ and CeO2 are shown in

(a) (b)

50  µm 1 µm

Fig. 5.9: SEM micrographs of epitaxially grown crack-free buffer layer: (a) 50 nm

CeO2 layer, (b) 600 nm YSZ buffer layer grown onto the CeO2 layer.
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Fig. 5.10: SEM micrographs of a YBCO CC surface in (a) low , and (b) high magnifi-

cation. The typical grain size of the nickel grains is around 20 - 50 µm; (c) pinholes

and CuO segregations around a low-angle grain boundary; (d) High-angle grain

boundary with characteristic grooving.

Fig. 5.10, revealing the typical grain structure of the YBCO CC propagated from

the RABiTS substrate, with grain sizes on the scale of 20 - 50 µm. However, the

small YBCO grains with sizes below 1 µm within the large grains are not observed

in these micrographs.

Figures 5.10 (c) and (d) exhibit the surface morphology of the YBCO CCs that re-

veals the presence of defects like pinholes and CuO segregations with sizes of

around 0.5 µm. The pinhole formation in the YBCO films is a result of the three-

dimensional island growth mechanism of YBCO (Volmer-Weber mode) [Haw91],

and indicates that the small YBCO grains contained within the large grains prop-

agated from the RABiTS substrate are not completely connected. To achieve a

smooth surface without pinholes, it would need a layer by layer growth mode

that is unlikely in a four-component compound with a very anisotropic unit cell.

Figure 5.10 (d) shows a high-angle grain boundary with a strong grooving that
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is transferred from the RABiTS tape. The grain on the left is highly misoriented

and has much larger pinholes. This is thought to be related to a different nucle-

ation process and growth of buffer and YBCO layers on highly-misoriented RA-

BiTS grains.

Atomic force microscopy

The microstructure of the YBCO CCs was also studied by atomic force microscopy

(AFM), which gives further information about the topography of the surface. Fig-

ure 5.11 shows AFM micrographs of the YBCO CC that reveal the small size of

the YBCO grains (0.2 - 0.3 µm), well below the grain size of the RABiTS tape (20

- 50 µm). The pinholes are found to have an irregular size that varies between 1

and 2 µm. From the AFM analysis across the pinholes it may be concluded that

they are as deep as the thickness of the YBCO film. The size of the pinholes de-

tected in Fig. 5.11 (a) corresponds to an optimised YBCO CC with high Jc (above 1

MA/cm2). If pinholes were not present a clear degradation of the superconducting

properties was detected. Due to the relatively large size of the pinholes, pinning is

not considered as a possible reason for this improvement. However, it is thought

that pinholes can lead to a better oxidation of the YBCO film during deposition

and cooling. On the other hand, excessively large pinholes were found to affect

negatively the superconducting properties of the film. The CuO segregations on

the surface of YBCO have a size of 0.5 - 1 µm, and a height of 200 nm. Figure 5.11
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Fig. 5.11: AFM micrographs of a YBCO CC surface: (a) YBCO grains, pinholes,

and CuO2 segregations are visible, (b) Grain boundaries of the YBCO CC. Grain A

is highly misoriented.
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(b) is an AFM micrograph of three different grains propagated from the RABiTS

tape. Grain A is identified as a highly-misoriented grain, due to the grooving of

the boundaries, exhibiting small YBCO grains and defects (pinholes and CuO seg-

regations) that are slightly larger than in the grains B and C.

Transmission electron microscopy

Transmission electron microscopy (TEM) analysis was carried out on the YBCO CC

in order to study its microstructure. The specimen was prepared by the so called

“T-Tool” technique, cutting the sample in thin slices with a wire saw, and pasting

two of these slices face-to-face (YBCO surface in contact with YBCO surface). The

resulting specimen was lapped, and finally polished by ion beam bombardment at

an energy of 3.5 keV, and an incident angle between 3◦ - 5◦.

Microstructural characterisation was performed using conventional TEM (JEOL

2000 FX) and high-resolution TEM (HRTEM) (Tecnai F30). Only substrate and

buffer layers were analysed, the YBCO film could not be investigated due to tech-

nical problems in the specimen preparation. TEM micrographs of the buffer layers

and the RABiTS tape evidence the formation of a thin NiO layer at the interface

between the RABiTS tape and the CeO2 film (Fig. 5.12). The thickness of the NiO

layer is found to vary from 15 to 28 nm. However, in the case of the CeO2 film

an uniform thickness of around 50 nm is disclosed. Moreover, the columnar grain

(a) (b)

Ni

NiO

CeO2

YSZ

YSZ

CeO2

NiO

Ni

Fig. 5.12: (a) Cross-section of the YBCO coated conductor. The TEM micrograph

shows the inhomogeneously grown NiO layer and the columnar YSZ grains; (b)

TEM micrograph with higher magnification showing the Moiré fringes observed

at the interface between CeO2 and YSZ. (TEM preparation and micrographs by C.

Mickel, IFW Dresden)
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Fig. 5.13: HRTEM micrograph of the buffer layers grown on RABiTS. (a) Interface

between RABiTS tape and CeO2 layer; (b) Interface between CeO2 and YSZ. Misfit

dislocations due to the epitaxial grow are also visible at the interface. (HRTEM

micrographs by J. Thomas, IFW Dresden)

structure of YSZ is detected, with a typical grain width of 50 - 100 nm. The interface

between CeO2 and YSZ layers is easily distinguished at increased magnifications

by the presence of Moiré fringes [Fig. 5.12 (b)], which are an interference effect at

the interface of both materials that have a very similar structure, but with slightly

different lattice constants.

Detailed examinations of the films with HRTEM revealed the perfectly epitaxial

growth of YSZ on CeO2 and the thin layer of NiO formed at the interface between

RABiTS tape and CeO2 film (Fig. 5.13). At the interfaces between YSZ and CeO2,

misfit dislocations are formed to accommodate the lattice mismatch between the

materials [Fig. 5.13 (b)]. Furthermore, the (111) orientation of the NiO layer de-

tected by XRD was confirmed.

Focused ion beam analysis

In order to prepare and analyse a cross-section of the YBCO CC, a focused ion

beam (FIB) system working with Ga+ ions was used. With this technique it is pos-

sible to remove very precisely the material in the areas of interest, in this case the

grain boundaries. The Ga+ ions were accelerated to energies of 30 keV to perform

the cross sectioning of the sample. Besides sample preparation, the ion beam can
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Fig. 5.14: Micrograph of a cross-section of the YBCO CC prepared by FIB. The cut

crosses a high-angle grain boundary that is clearly visible in the RABiTS tape. (FIB

micrographs by S. Menzel, IFW Dresden)

also be used to image the prepared cross-section with high magnification. The ad-

vantage of this technique in comparison to TEM is the possibility to easily select

the area for analysis. A FIB micrograph of a cross-section, 4 µm deep, prepared

across a high-angle grain boundary of the YBCO CC is shown in Fig. 5.14. The ar-

chitecture of the YBCO CC is clearly seen: RABiTS substrate, buffer layers, YBCO

film and a thick Pt layer that was deposited on the area of analysis to protect the

YBCO film during cross section preparation. The high-angle grain boundary of

the RABiTS tape is detected in the FIB micrograph due to the different contrast of

the RABiTS grains on the left and on the right hand side. FIB reveals the preferred

formation of NiO in the high-angle grain boundary due to the easy solid-state dif-

fusion of oxygen through the buffer layers at this area. This explains the relatively

strong diffraction peaks of NiO (111) in the XRD measurements (see section 5.3.1)

without further effects on the rest of the layers.

Figure 5.15 shows microstructural inhomogeneities found at the surface of the

YBCO film prepared on tungsten alloyed Ni substrates (Ni-5at.%W). Such inhomo-

geneities exhibit the form of “bubbles” with a size between 1 and 10 µm [Fig. 5.15

(a)]. FIB analysis allowed the preparation of a cross-section on one of these “bub-

bles” to study its structure [Fig. 5.15 (b)]. Inside the “bubbles” there is an empty
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5 µm 1 µm

(a) (b)

“bubbles”

Fig. 5.15: (a) FIB micrograph revealing inhomogeneities in the form of “bubbles”

formed at the surface of the YBCO CC. (b) Cross-section of the YBCO CC prepared

by FIB across a “bubble”. The “bubble” is empty; buffer and YBCO films are de-

formed. (FIB micrographs by S. Menzel, IFW Dresden)

space where the buffer layer system is completely deformed, and without contact

to the metal substrate. These defects are formed only during the YBCO deposi-

tion, but their mechanism of formation is still unclear. A possible origin for such

“bubble” formation could be excess of C and S impurities, which are present in

different concentrations in the RABiTS tapes. It is known that C and S segregate

to the surface of the RABiTS tape during heating, and that S produces a c(2×2) su-

perstructure, which is found to be necessary for the epitaxial growth of the buffer

layers [Can01b]. However, if the concentration of S or C is too high, a reaction

with the oxygen that diffuses through the buffer layers (see section 5.3.1) could be

expected forming different gases (e.g., SO2, CO, CO2). If the partial pressure of

the gas becomes very high, a local deformation of the layers would occur. For a

definitive conclusion, a deeper analysis of the impurities present in the RABiTS

tape has to be performed.



Chapter 6

Electrical transport properties of

YBa2Cu3O7−δ coated conductors

6.1 The superconducting transition

The superconducting transition of the prepared YBCO CCs in zero magnetic field

was typically measured by an inductive method, for the determination of the crit-

ical temperature Tc of the samples. The principle of the inductive method is based

on the generation of an alternating magnetic field by a primary coil and the de-

tection of the response in a secondary coil by a lock-in amplifier. Locating the

sample between these two coils, two main scenarios should be distinguished. If

the sample is in the superconducting state, producing shielding currents in re-

sponse to the generated alternating magnetic field, the secondary coil is screened

by the superconducting sample and the lock-in amplifier does not detect any sig-

nal. If however, the sample is in the non-superconducting state, the alternating

magnetic field generated by the primary coil induces an alternating voltage in the

secondary coil that is detected by the lock-in amplifier. Figure 6.1 shows the result

of an inductive Tc measurement of a YBCO CC. The temperature dependence of

the voltage induced in the secondary coil, and its phase with respect to the primary

voltage are presented. Tc can be determined at 10%, 50% and 90% of the supercon-

ducting transition and is termed T10
c , T50

c and T90
c , respectively. Here, T90

c will be

used together with ∆T= T90
c -T10

c as representative values for the superconducting

transition.

Typical Tc values measured on the YBCO CCs were between 88.0 K and 90.0 K with

a transition width ∆T of approximately 1.0 K. The obtained value of ∆T = 1.0 K

indicates a sharp phase transition that is a measure of the quality of the YBCO film.

In the case of conventional type II superconductors the superconducting transition

width is usually sharper than the ones presented here. This is a consequence of
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Fig. 6.1: Inductive measurement of Tc of a YBCO CC.

the strong thermally activated flux creep phenomena that occur in HTS materials,

becoming especially important at temperatures close to Tc (see section 2.5.2).

Resistive transition measurements were performed in a four-probe geometry at

different magnetic fields, which were varied between 0 and 9 T in a Quantum De-

sign “Physical Property Measurement System” (PPMS). During the measurement

the applied field was aligned to the c-axis of YBCO and perpendicular to the direc-

tion of current flow. The results of such measurements are shown in Fig. 6.2. The

R(T) curves of the YBCO CC reveal a broadening of the resistive transition from

∆T = 0.7 K to ∆T = 4.5 K, and a successive reduction of Tc from 89.0 K in zero field

to 79.6 K when the applied magnetic field is increased to 9 T. The reduction in Tc

and increase of the transition width ∆T is directly related to flux creep effects that

become even more important in the presence of applied magnetic fields. Never-

theless, the broadening in the resistive transition of YBCO is not very pronounced

compared to that in highly anisotropic HTS compounds like the BSCCO family.

As a consequence of their large anisotropy these materials have much lower pin-

ning energies than the “isotropic” YBCO, showing stronger flux creep effects and

consequently broader resistive transitions [Pal91].

YBCO CC samples were coated with silver immediately after deposition to protect

the YBCO film from humidity and to avoid degradation of the superconducting

properties. Therefore, the silver film was present during all the resistance mea-

surements, hindering the determination of the resistivity of the YBCO film in the

non-superconducting state between 89 K and 300 K, where the measured resis-

tance is mainly determined by the Ag film.
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Fig. 6.2: Resistive superconducting transition measured at different applied mag-

netic fields between 0 and 9 T.

Bridges with lengths of 800 µm and widths of 300 µm were patterned on the sam-

ples. The width of the bridges is an important point that has to be taken into

account due to the relatively large grain size of the RABiTS tapes that varies be-

tween 20 - 50 µm. The bridge must be wide enough to include several grains in

order to obtain a result that is representative of the whole YBCO CC. Moreover,

using wider bridges reduces the likelihood that some high-angle grain boundaries

block the current in the bridge.

The bridges on the YBCO CCs were patterned by photolithography. For this pur-

pose, the YBCO film was covered with a thin film of photoresist and subsequently

exposed to UV light illuminating the sample through a negative mask of the con-

tact pad pattern, obtaining in this way the positive structure of the mask on the

sample. The final etching process that is necessary to remove the unmasked YBCO

film was carried out utilising different techniques: wet chemical etching or ion

etching. The wet chemical etching consists of removing the unmasked YBCO film

by dilute H3PO4, while the covered YBCO film is protected by the photoresist

mask. A disadvantage of this method is that the dilute acid can undercut the pho-

toresist leading to a patterned bridge with unknown dimensions. Especially, the

GBs of the YBCO CC can be etched more strongly than the grains, since GBs are

more sensitive to the etchant. This problem is solved by ion etching, where the

uncovered YBCO film is removed by Ar+ ion bombardment, while the photoresist

protects the covered YBCO film.
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6.2 Voltage-current characteristics

Voltage-current density (V − J) measurements were carried out on patterned sam-

ples using a four-probe geometry. The V − J measurements were performed in a

9 T PPMS at different temperatures and applied magnetic fields. The aim of these

measurements was the determination of the critical current density Jc, and of the
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Fig. 6.3: V − J characteristics of a YBCO CC, a YBCO bicrystal with an 8◦ [001] tilt

grain boundary, and a YBCO film grown on a single-crystalline Ni film on SrTiO3

(100) (STO), all of them measured at 77 K and 1 T applied magnetic field. (a) Linear

representation of the V − J characteristics; (b) double logarithmic representation

of the V − J characteristics.
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J vf

50 µm

Fig. 6.4: Schematic representation of a YBCO CC. Vortex flow channels are made

up of low-angle grain boundary segments with different Jc values. The applied

magnetic field is normal to the conductor plane [Eve99].

effects that the sample granularity has on the transport current.

Figure 6.3 shows the V − J curves of a YBCO CC, a YBCO bicrystal with an 8◦

[001] tilt grain boundary and a YBCO film grown on a single crystalline Ni film on

SrTiO3 (100), measured at 77 K and 1 T applied magnetic field.

The results for the bicrystal indicate a linear V − J characteristic typical for low-

angle grain boundaries. The linearity is produced by a viscous flow of the flux

lines along the grain boundary (see section 3.2.1), and is termed non-ohmic linear

differential (NOLD) behaviour [Ver00]. This contrasts to the V − J curves of the

YBCO film grown on a single crystalline Ni substrate that present a different be-

haviour. The YBCO CC reveals a V − J characteristic that can not be described by

a perfect NOLD behaviour. This is caused by the contribution of a large number

of grain boundaries that are present in the YBCO grain boundary network (GBN)

with many different misorientation angles. Similar to the bicrystal, viscous flux

flow takes place along the grain boundaries of the YBCO GBN, but in a more com-

plex form due to the percolative current flow and viscous flux flow through mul-

tiple channels of the GBN [Eve99] (see Fig. 6.4). The nearly NOLD behaviour of

the V − J characteristic in the YBCO CC is more evident in the double logarithmic

representation [see Fig. 6.3 (b)]. Such a characteristic of both the YBCO bicrystal

and YBCO CC is a sign that the limitation of the transport current is caused by

grain boundaries in contrast to the single-crystalline YBCO film.

6.2.1 V − J characteristics with ~B||~c
The V − J characteristics of the YBCO CCs were measured at different tempera-

tures and magnetic fields varied from 0 to 9 T. The same layer system (YBCO/YSZ/

CeO2) grown on a single-crystalline Ni film (without grain boundaries) was taken



74 Electrical transport properties of YBa2Cu3O7−δ coated conductors

as a reference system. The V − J curves measured on this sample at different tem-

peratures are shown in Fig. 6.5. They reveal a slight curvature change between

low and high applied magnetic fields and voltages. This behaviour is similar to

the V − J curves measured by Koch et al. [Koc89], who identified this as a glass-

liquid transition (see section 2.6). The measured V − J curves show that at high

magnetic fields and low currents (or voltages) a linear (ohmic) behaviour is de-

tected, indicating that the irreversibility field of the YBCO film is reached, while for

higher currents, the V − J curves disclose a positive curvature. At lower magnetic

fields, a power law behaviour is found at high voltages, while for low voltages a

slight negative curvature is detected. Between high and low magnetic fields, the

V − J characteristics reveal a pure power law behaviour at low and high voltages

without any sign of ohmic resistance. Considering the vortex glass model, the

pure power law behaviour should indicate the transition from vortex glass (at low

magnetic fields) to vortex liquid phase (at high magnetic fields).

Fig. 6.5: Magnetic field dependence of V − J curves for the YBCO film grown on

YSZ/CeO2/Ni/SrTiO3 at (a) 74 K, (b) 77 K, (c) 80 K, and (d) 83 K.
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Alternatively, the phenomenological model of Zeldov introduced in section 2.5.2

can be used to explain the pure power law behaviour found in the V − J character-

istics as an indication of flux creep limitation, however the model can not explain

the behaviour found at low and high applied magnetic fields.

The V − J curves measured for the YBCO CC are presented in Fig. 6.6. At low

temperatures (20 K and 60 K) the curves present a NOLD behaviour over the full

range of accessible fields, resulting from viscous flux flow along low-angle grain

boundaries [Dı́a98b]. At higher temperatures (77 K and 83 K) the V − J charac-

teristics reveal a change in curvature as the magnetic field increases. This change

takes place at a field known as the crossover magnetic field Bcr already introduced

in section 3.2.2, that indicates a transition from Jc limitation by grain boundaries to

Jc limitation by flux creep mechanism. Consequently, for applied magnetic fields

below Bcr the V − J curves present the expected NOLD-like signature, and for

applied magnetic fields above Bcr a power law behaviour is observed. The irre-

versibility field is reached at higher magnetic fields.

Fig. 6.6: Magnetic field dependence of V − J curves for a YBCO CC, at (a) 20 K, (b)

60 K, (c) 77 K, and (d) 83 K.
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6.2.2 V − J characteristics with ~B||~ab

In the case that the magnetic field is applied parallel to the a − b plane of YBCO,

much higher Jc values are obtained as a result of the intrinsic vortex pinning be-

tween the CuO2 planes (see section 2.3). V − J curves measured on YBCO CCs

with ~B||~ab reveal a NOLD-like behaviour, which is a sign for current limitation by

grain boundaries (see Fig. 6.7). The complex grain boundary network of the YBCO

CC with multiple misorientation angles in the a − b plane and in the c-direction

makes it difficult to conclude which kind of current limitation mechanism is ac-

tive in this geometry. The out-of-plane misorientation of the grains in the RABiTS

tape, measured by EBSD (see section 5.3.1) are thought to affect the transport cur-

rent leading to a kinking of the vortex lattice in Josephson strings and Abrikosov

vortices (see section 2.3) that reduces Jc. Investigations on YBCO bicrystals with

well-defined c-axis misorientations are required to clarify the effects of such grain

boundaries on the transport current of the YBCO CC when B is parallel to the a− b

plane.
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Fig. 6.7: V − J characteristics of a YBCO CC measured for different magnetic fields

at 75 K. The magnetic field has been applied parallel to the a − b planes of YBCO.
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6.3 Determination of the irreversibility field

The irreversibility field Birr is an important parameter for practical applications

of superconducting materials. For magnetic fields above Birr pinning is no longer

effective and consequently, Jc drops to zero. Birr of the YBCO CC was obtained

from the V − J characteristics as the applied magnetic field for which the V − J

curves start to show an ohmic behaviour. In order to determine the first V − J

curve showing ohmic behaviour, a quadratic fit of the V − J curves in the logarith-

mic representation is used: ln(V)=C+Bln(J)+A[ln(J)]2, where the coefficients A, B

and C are fitting parameters (see Fig. 6.8). This is the so-called curvature method

that has been frequently applied in the literature for the determination of Birr in

different superconducting systems like BSCCO tapes [And97, Par96] and YBCO

bicrystals [Hei99]. Usually, for applied magnetic fields below Birr, the lnV-lnJ dia-

grams can be described by a polynomial fit where the coefficient A of the quadratic

term is larger than 0. The irreversibility field Birr is reached when lnV-lnJ describes

a linear correspondence with slope 1. The fit of the lnV-lnJ diagrams was carried

out for voltages below 0.5 µV. Applying this procedure, Birr of the YBCO CC was
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Fig. 6.8: Determination of Birr using the curvature method. The V − J curves

measured at applied magnetic fields below Birr reveal a quadratic dependence

ln(V)=C+Bln(J)+A[ln(J)]2 with the coefficient A larger than 0. Increasing the ap-

plied field, Birr is defined as the magnetic field where the lnV-lnJ diagrams reveal

a linear dependence with a slope 1, which corresponds to an ohmic behaviour.
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determined as a function of temperature. The obtained irreversibility line is shown

in Fig. 6.9. Here, the relation between Birr and the reduced temperature t = T/Tc

can be described by,

Birr = B0

(

1 − T

Tc

)n

(6.1)

where B0 is a constant, and n is found to equal 1.3 in this case.

6.4 Jc measurements on coated conductors

The critical current density Jc of the YBCO CC was also obtained from the V − J

characteristics, defining Jc as V(Jc) = 8×10−8 V. This voltage criterion corresponds

to an electric field criterion of E = 1 µV/cm over the bridge of 800 µm length. Fig-

ure 6.10 shows results of Jc measurements at different magnetic fields and temper-

atures for the YBCO CC, where it is seen that Jc decreases with increasing applied

magnetic fields. The drop in Jc becomes more pronounced at temperatures close

to Tc, where stronger thermally activated flux creep mechanisms occur.

The Jc of YBCO CCs is found to be strongly reduced by the GBN propagated from

the RABiTS tape, producing a clear enhancement in Jc when the biaxial texture of
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Fig. 6.10: Jc(T) dependence at different magnetic fields for a YBCO CC.

the RABiTS tape is improved. Before coating with buffer and YBCO layers, the

texture of different RABiTS tapes was measured using EBSD, determining which

is the maximum value of the grain boundary distribution function of the different

RABiTS tapes (see Fig. 6.11). This value was found to be 8.5◦ for the Ni-0.1at.%Mn

RABiTS tape and 5.5◦ for the pure Ni RABiTS tape. Figure 6.12 shows the results

for Jc(T) measurements carried out at 77 K and in self-field for YBCO CCs grown

on these RABiTS substrates, revealing an improvement in Jc from 0.3 MA/cm2 for

the Ni-0.1at.%Mn tape to 1.3 MA/cm2 for the pure Ni tape.

The improvement in Jc with the reduction of the maximum of the grain boundary

distribution function of the GBN may be explained considering that the transport

current is affected only by grain boundaries with misorientation angles exceeding

a cut-off angle (see section 3.1). Therefore, reducing the misorientation angles of

the GBN, i.e., improving the biaxial texture, the percolation of the current flow

becomes less significant and consequently Jc is not so strongly reduced.

6.5 Magnetic field dependence of Jc

Jc measurements in magnetic fields should help to clarify the limitation of the crit-

ical current induced by the GBN and provide information on the pinning mecha-

nisms in the YBCO CC. The magnetic field dependence of Jc for the YBCO CC and
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Fig. 6.11: (a) EBSD measurements for different RABiTS tapes: Ni-0.1at.%Mn tape

and pure Ni tape. Grain boundaries with misorientation angles larger than 10◦ are
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for the same system grown on a single-crystalline Ni film were determined from

the V − J curves measured on these samples (see section 6.2.1).

Figure 6.13 demonstrates that the Jc(B) dependence is different in the two sys-

tems. YBCO grown on the single-crystalline Ni film presents an exponential Jc(B)

decay over the complete range of measured magnetic fields caused by thermally

activated flux creep [Sta98, Ste97], showing that this mechanism is the principal

limitation of Jc in this sample. Here, the critical current density is termed intra-

grain Jc, since the current limitation occurs within the YBCO grains. In the case of

the YBCO CC, different Jc(B) dependencies are found as a function of the temper-

ature and the applied magnetic field. At 60 K, Jc(B) can be described by a power

law behaviour over the complete range of measured magnetic fields. At higher

temperatures, such as 77 K, a transition in the Jc(B) dependence from a power law

to an exponential decay is observed as the applied magnetic field increases.

For the YBCO CC, the power law behaviour at 77 K is associated with an intergrain

limitation of Jc by the GBN, and the exponential decay with an intragrain Jc limi-

tation by flux creep in the YBCO grains. At this temperature, the transition from

intergranular to intragranular Jc takes place when the dissipation mechanism due

to flux creep within the YBCO grains becomes stronger than the dissipation in the

GBs of the GBN, and it occurs at the crossover field Bcr that lies at 4 T (Fig. 6.13).
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Fig. 6.13: Dependence of Jc on the applied magnetic field for the YBCO CC on

RABiTS (open circles) and YBCO on the single-crystalline Ni film (filled circles) at

60 K and 77 K. The dotted line represents a power law fit of the measurements.
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Bcr can be seen as the point where the GBN becomes “transparent” for the current

limitation in the YBCO CC. At 60 K, the situation is probably the same but Bcr is

shifted to magnetic fields above 9 T (maximum available magnetic field in the ex-

periment). These results are consistent with the V − J characteristics of the YBCO

CC explained in section 6.2.1 that indicated a different behaviour when the current

is limited either by the GBs or by the YBCO grains.

Figure 6.14 shows the Jc(B) curves of the YBCO CC for a broader temperature

range, revealing a pure power law dependence for temperatures below 70 K, while

a crossover from power law to exponential decay is observed above 70 K. The

power law behaviour of Jc(B) found below Bcr follows the relation,

Jc(B) = Jc(0)

(

B0

B

)n

(6.2)

with the exponent n ≈ 0.5 for all temperatures. As shown in section 3.2.2, this

value results from flux pinning at the dislocation cores of the GBs and corroborates

the Jc limitation by the GBs in the YBCO CC.

Figure 6.15 demonstrates the determination of Bcr from the Jc(B) measurement of

the YBCO CC at 85 K. Applying this method for all Jc(B) curves of Fig. 6.14, a

Bcr(T) dependence is found; Bcr decreases with increasing temperature, e.g., from

5.5 T at 75 K to 1 T at 85 K. This means that when the temperature increases, flux

creep effects become dominant and limit Jc.
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Fig. 6.14: Dependence of Jc on the applied magnetic field for the YBCO CC at

different temperatures.
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Fig. 6.15: Method for the detection of the crossover field from Jc(B) measurements

at 85 K. Bcr is the intersection point between the power law behavior of the inter-

grain Jc and the exponential dependence of the intragrain Jc.

Figure 6.16 shows the obtained crossover fields at different temperatures together

with the irreversibility line, allowing the evaluation of the range of temperatures

and magnetic fields over which the GBN limits the critical current in the YBCO

CC. At temperatures and magnetic fields below the crossover line the measured

critical current is intergranular and viscous flux flow along the GBs is expected to

occur, limiting Jc in the YBCO CC. The area in the B − T plane bounded by the

crossover field and the irreversibility field lines corresponds to a range of temper-

atures and magnetic fields where the critical current of the YBCO CC is completely

intragranular; the critical current density in this range is limited only by flux creep

in the YBCO grains and the value of the critical current is the same as in a system

without GBs (compare the Jc(B) curve at 77 K in Fig. 6.13). The area above the

irreversibility field line is of no importance for applications because, at these tem-

peratures and magnetic fields, the critical current of the superconductor is zero.

In order to study the effect of the GBN in more detail, Jc(B) was measured on

YBCO CCs prepared on RABiTS tapes with a better biaxial texture than the YBCO

CC prepared on the Ni-0.1at.%Mn tape (YBCO CC previously analysed). In this

case, pure Ni and non-magnetic Ni-13at.%Cr tapes were used, which have grain

boundary distribution functions that show maxima centred at misorientation an-

gles of 5.5◦ and 6.6◦, respectively. In comparison the Ni-0.1at.%Mn tape had a
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maximum centred at 8.5◦, as previously discussed in section 6.4.

As can be seen in Fig. 6.17, YBCO CCs prepared using these new RABiTS tapes

have higher Jc values around 1 MA/cm2 (at 77 K and self-field), and moreover,

the transition from intergranular to intragranular Jc takes place at Bcr = 1.8 T, which

contrasts to the Bcr = 4 T at 77 K for the YBCO CC grown on the Ni-0.1at.%Mn

tape. The shift of Bcr to lower values is directly related to the lower grain bound-

ary misorientation angles of the samples that lead to smaller dissipation in the

GBN. Consequently, in such a situation flux creep in the YBCO grains becomes the

dominant limitation at lower applied magnetic fields.

Considering the reduction of Bcr at 77 K for an YBCO CC on a RABiTS tape with

a better biaxial texture, a complete shift of the Bcr line to lower values may be

expected as indicated in Fig. 6.18, resulting in a much larger area where the criti-

cal current of the YBCO CC is completely intragranular without any effect of the

YBCO GBN on Jc. Therefore, Jc values like in a single-crystalline YBCO film could

be obtained in this area. Future work should verify such a shift of the crossover

field line also for other temperatures.
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6.6 Pinning force density in coated conductors

From experiments with conventional type II superconductors it is known that the

pinning force density defined as Fp = |~Jc × ~B| obeys scaling laws of the form Fp ∝

[(Bc2(T)]n f (b), where b is the reduced magnetic field b = B/Bc2 [Kra73], and f (b)

can be expressed by f (b) = bn(1 − b)m [Cam72]. In the case of high temperature

superconductors Bc2 must be replaced by Birr, since pinning is no longer effective

between Birr and Bc2. Consequently, the pinning force above Birr is practically zero.

The dependence of the pinning force density on the reduced magnetic field Fp(b)

usually shows a maximum that shifts depending on structure, microstructure and

pinning mechanism of the material. Fp can be calculated for each temperature

from Jc(B) measurements on the YBCO CC (see Fig. 6.14).

The results are shown in Fig. 6.19: for temperatures between 75 K and 85 K the nor-

malised pinning force density Fp/Fmax
p versus the reduced magnetic field b can be

scaled by the following relation f (p) ∝ b0.8(1− b)2. This result suggests a common

pinning mechanism for all measured temperatures in the YBCO CC. For reduced

magnetic fields above 0.5, deviations of the normalised pinning force density oc-

cur as a result of thermally activated flux creep effects that become important close

to Birr.
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Fig. 6.19: Normalised pinning force density Fp/Fmax
p for the YBCO CC at different

temperatures. A scaling of the pinning force density is found for all measured

temperatures (solid curve).
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6.7 Jc anisotropy measurements

The Jc anisotropy in the YBCO CC was studied by varying the direction between

the applied magnetic field and the c-axis of YBCO, keeping the directions of the

magnetic field and the current always perpendicular to each other. Therefore, the

magnitude of the Lorentz force ~FL = ~Jc × ~B is constant. Figure 6.20 presents results

of Jc(B) measurements carried out at different temperatures and magnetic fields

applied perpendicular to the c-axis of YBCO. In this geometry, a slight reduction

in Jc at 70 K, 77 K and 80 K is revealed as the applied magnetic field is increased.

However, at 85 K that is close to Tc, Jc(B) decreases strongly, since the intrinsic pin-

ning is less effective. This is due to the coherence length - temperature dependence

that follows the relation ξGL ∝ [1 − T/Tc]1/2 for T . Tc, and leads to an increase

of the coherence length ξGL with temperature. Consequently, a reduction in the

intrinsic flux line pinning occurs when the core diameter (2ξc) of the Josephson

vortex exceeds the layer spacing d.

The results obtained for the angular dependence of Jc in the YBCO CC at 77 K

and an applied magnetic field of 1 T are shown in Fig. 6.21(a). Two sharp max-

ima are found at 90◦ and 270◦. In these directions, the applied magnetic field lies

parallel to the CuO2 planes and the intrinsic pinning against the Lorentz force in

the c-direction is very effective. Jc(90◦) appears to be slightly higher than Jc(270◦),

which is most probably caused by a slightly different pinning mechanism at the

film surface than at the film-substrate interface. Such an effect is a consequence of

0 2 4 6 8 10

10
3

10
4

10
5

10
6

85K

80K

77K

70K

B||ab

J c
(A

/c
m

2
)

Magnetic Field (T)

Fig. 6.20: Jc(B) measurements for the YBCO CC with B||ab.



88 Electrical transport properties of YBa2Cu3O7−δ coated conductors

0 50 100 150 200 250 300 350
1.0x10

5

1.5x10
5

2.0x10
5

2.5x10
5

3.0x10
5

YBCO/Buffer/Ni/STO 77 K

1T

J c(
A

/c
m

2
)

Sample position (degrees)

0 50 100 150 200 250 300 350
2x10

4

3x10
4

4x10
4

5x10
4

6x10
4

7x10
4

8x10
4

YBCO/Buffer/RABiTS

1T

77K

J c
(A

/c
m

2
)

Sample position (degrees)

B

B

(a)

(b)

Fig. 6.21: Jc(θ) measured at 77 K and 1 T for (a) YBCO CC, and (b) the YBCO film
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the roughness of the YBCO film surface, typical for on-axis laser deposition, which

leads to a lower pinning capability at the surface than at the interface [Roa90a,

Roa90b]. The assumption that the pinning mechanism is different for the film

surface and interface is further supported by anisotropic Jc measurements carried

out on YBCO films grown by off-axis laser deposition, which have smoother sur-

faces, obtaining Jc(90◦)=Jc(270◦) for these films [Hol93, Hol95]. When the applied

magnetic field is not perpendicular to the c-axis, Jc decreases drastically. In this

geometry, the flux lines develop kinks composed of Josephson strings between the

CuO2 planes and Abrikosov vortices that cross the CuO2 planes (see section 2.3).

Another interesting feature of the Jc(θ) results shown in Fig. 6.21 (a) are the small

Jc maxima that are found at 0◦ and 180◦. They are an indication of flux line pinning

in the YBCO CC when the applied magnetic field is parallel to the c-axis. Consid-

ering the pinning by GBs detected in Jc(θ) measurements carried out on YBCO

bicrystals [Dı́a98b], it can be expected that in the case of the YBCO CCs the GBN

produces similar vortex pinning by dislocations in the GBs. Figure 6.21 (b) shows

measurements carried out on the YBCO film grown on a single-crystalline Ni film

(without grain boundaries), showing no peaks at 0◦ and at 180◦, and hence, no

signs of pinning centres aligned along the c-axis.

The Jc(θ) measurements on the YBCO CC were carried out at 77 K and 70 K for

different magnetic fields. Figure 6.22 shows the Jc(θ) results normalised to the

maximum Jc. At 77 K and high magnetic fields, the Jc anisotropy in the YBCO CC

becomes more important and the ratio between Jc(90◦) and Jc(0
◦) is higher than

at lower fields. This can be explained considering that at high magnetic fields

(5T) strong flux creep effects are expected for applied magnetic fields that are not

aligned with the CuO2 planes, particularly at 0◦. In contrast, at 70 K the difference

between Jc(90◦) and Jc(0
◦) at 5 T is not so pronounced due to the weaker flux creep

effects at this temperature. The small Jc maxima at θ = 0◦ and 180◦ are observed

only for B = 0.5 T and 1 T [Fig. 6.22 (a)]. For 3 T these maxima are not well de-

fined, and for 5 T they do not exist any more at 77 K. This behaviour is probably

connected to the proximity to the irreversibility field when the magnetic field in-

creases, and may be related to the crossover behaviour commented in section 6.5.

Below Bcr there is an effective pinning at the GBN (small local maxima at θ= 0◦

and 180◦), and above Bcr the flux line pinning at the GBN is no longer effective,

leading to the disappearance of the small local maxima.
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Fig. 6.22: Jc(θ) for the YBCO CC on a Ni-0.1at.%Mn RABiTS tape at (a) 77 K, and

(b) 70K, measured at 0.5 T, 1 T, 3 T and 5 T.



Chapter 7

Conclusions and Outlook

YBCO CCs have been prepared by pulsed laser deposition using the RABiTS ap-

proach. Different biaxially textured metallic substrates, with different composi-

tions (pure Ni (99.98%), Ni-0.1 at.% Mn, Ni-13 at.% Cr, and Ni-5 at.% W) and dif-

ferent biaxial texture quality were used. A critical point for the preparation of sam-

ples with high critical current densities (above 1 MA/cm2 at 77 K and self-field) is

the growth of an effective buffer layer system that prevents chemical reactions be-

tween the metal substrate and the YBCO film, and allows the YBCO film to grow

biaxially textured. With this aim in mind, a buffer layer system composed of a thin

CeO2 film (50 nm) and a thick YSZ film (600 nm) was used. The prepared YBCO

CCs have critical temperatures between 88 K and 90 K with a transition width less

than 1 K. This shows the efficiency of the buffer layer system in preventing Ni dif-

fusion into the YBCO film. However, a thin NiO layer grows (111) oriented at the

interface between the RABiTS substrate and the CeO2 film during YBCO film de-

position. This is caused by oxygen diffusion through the buffer layer system due

to the high substrate temperature (770◦C) and oxygen partial pressure (0.3 mbar)

required for the optimised formation of the superconducting YBCO phase. Nev-

ertheless, x-ray and TEM analyses show that the thin NiO film does not adversely

affect the biaxial texture of the YBCO CC.

Texture analysis reveals an improvement in the biaxial texture (both in-plane and

out-of-plane) of the CeO2 film with respect to the RABiTS tape (approximately of

1◦ in-plane, and 0.5◦ out-of-plane), and of the YBCO film with respect to the YSZ

film (more than 1◦ in-plane and approximately 0.5◦ out-of-plane). The reason for

improvement in the in-plane texture during the epitaxial growth is still unclear.

However, the enhancement in the out-of-plane texture can be explained by the

growth mechanism of both materials on their respective substrates: the CeO2 film

tilts its c-axis towards surface normal on out-of-plane misoriented RABITS grains,

while the YBCO film has a preferred lateral growth with the a − b planes paral-
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lel to the substrate surface, which results in an improvement of the out-of-plane

orientation of the films.

Electron back scatter diffraction measurements reveal the granular structure of the

YBCO CC with grain sizes between 20 and 40 µm. These large grains are propa-

gated from the RABiTS tape to the YBCO film due to the epitaxial growth, forming

a grain boundary network (GBN) in the YBCO film, where the misorientation an-

gles are typically less than 12◦. These grain boundaries are responsible for the

reduced critical current density of the YBCO CC. Moreover, higher grain bound-

ary angles are found isolated in the YBCO CC, but they do not affect the critical

current density due to the percolative nature of the current flow in these samples.

A direct relation between the texture of the RABiTS tape and the critical current

density of the YBCO CC is found. The experiments revealed an improvement

from 0.3 MA/cm2 to 1.3 MA/cm2 (at 77 K and self-field) when the maximum of

the grain boundary distribution function (measured by EBSD) in the RABiTS tape

drops from 8.5◦ to 5.5◦.

For the study of the Jc limitation by the GBN of the YBCO CCs, Jc(B) measure-

ments have been performed. Different mechanisms of Jc limitation were observed

in the YBCO CC, depending on the temperature and applied magnetic fields. At

low magnetic fields the critical current is limited by the GBN (intergrain critical

current). This is reflected in a power-law dependence of Jc(B) and non-Ohmic

linear differential-like signature of the V − J curves. At higher magnetic fields,

Jc(B) is found to be limited by pinning within the YBCO grains (intragrain crit-

ical current) with a typical exponential decay dependence. The transition from

intergrain to intragrain critical current limitation occurs at the so-called crossover

magnetic field Bcr, that is found to shift to lower magnetic fields as the temper-

ature is increased. This crossover behaviour between intergrain and intragrain

current limitation can have important implications for CC applications. For appli-

cations that require the presence of high magnetic fields, the GBN of the YBCO CC

does not limit the critical current and hence, Jc is completely intragrain limited.

The irreversibility field represents in this case the upper limit for applications in

high magnetic fields with the GBN having no influence. The use of RABiTS tapes

with a better texture, i.e. smaller GB angles, does not avoid this problem since

the crossover field is shifted to lower values, leaving the exponential Jc decrease

at high fields unchanged. Only in the case of applications that require magnetic

fields lower than the crossover field can an improvement of the GBN angles in the

sample be useful. Consequently, it is concluded that the GBN strongly limits the

critical current in the YBCO CC but only in the range of magnetic fields below Bcr.

The GBN does not represent an obstacle for applications that require fields above

this crossover point.
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Additionally, anisotropic critical current density measurements have shown flux

line pinning in the grain boundaries of the YBCO CC. Further work based on

measurements of the anisotropic critical current densities of YBCO bicrystals with

well defined grain boundary misorientation angles and different geometries (twist

and tilt grain boundaries) is required. These measurements can lead to determine

which grain boundaries are the principal pinning centres in the YBCO CC, and in

which ranges of magnetic fields they pin the flux lines effectively.

Recent measurements on thin films of a mixed (RE)Ba2Cu3O7−δ [Y in YBCO is

substituted by a mixture of rare earth metals (Gd, Nd, Eu)] have revealed enhanced

critical current densities and irreversibility fields due to an improvement in the

pinning properties [Cai03]. Therefore, future work should include optimisation of

(Gd, Nd, Eu)Ba2Cu3O7−δ CCs to improve the superconducting properties.

Finally, coming back to the preparation of YBCO CCs, it has been seen that in some

cases the prepared samples show defects that are thought to be related to natural

impurities (C and S) found in the tapes . Therefore a systematic study of the com-

position of the materials used to produce the RABiTS tapes is proposed, in order

to determine the kind and the amount of impurity that allows the preparation of

YBCO CCs without defects. This is a critical point for the preparation of YBCO

CCs with full control of their structural and transport properties.
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[Att02] A. ATTENBERGER, J. HÄNISCH, B. HOLZAPFEL and L. SCHULTZ: Elec-

trical transport properties of Bi-2223 [001] tilt grain boundary junctions.

Physica C 372-376 (2002) 649.

[Auc88] O. AUCIELLO, S. ATHAVALLE, O. E. ANKINS, M. SITO, A. F.

SCHREINER and N. BIUNNO: Spectroscopy analysis of electrically excited

species in XeCl excimer laser-induced plasmas from the ablated high tempera-

ture superconductor YBa2Cu3O7−x. Appl. Phys. Lett. 53 (1988) 72.

[Bar65] J. BARDEEN and M. J. STEPHEN: Theory of the motion of vortices in super-

conductors. Phys. Rev. 140 (1965) 1197.

[Bau99] M. BAUER, R. SEMERAD and H. KINDER: YBCO films on metal substrates

with biaxially aligned MgO buffer layers. IEEE Trans. Appl. Superconduc-

tivity 9 (1999) 1502.



96 BIBLIOGRAPHY

[Bea69] M. R. BEASLEY, R. LABUSCH and W. W. WEBB: Flux creep in type II

superconductor. Phys. Rev. 181 (1969) 682.

[Bet97a] V. BETZ, B. HOLZAPFEL, D. RAONSER and L. SCHULTZ: In-plane aligned

Pr6O11 buffer layers by ion-beam-assisted pulsed-laser deposition on metal

substrates. Appl. Phys. Lett. 71 (1997) 2952.

[Bet97b] V. BETZ, B. HOLZAPFEL and L. SCHULTZ: Growth of biaxially aligned

buffer layers for YBCO tapes by ion-beam-assisted laser deposition and in-situ

RHEED texture analysis. IEEE Trans. Appl. Superconductivity 7 (1997)

1436.

[Bet97c] V. BETZ, B. HOLZAPFEL and L. SCHULTZ: In situ reflection high energy

electron bombardment analysis of biaxially oriented yttria-stabilized zirconia

thin film growth on amorphous substrates. Thin Solid Films 301 (1997) 28.

[Bet98] V. BETZ: Biaxial orientiertes Schichtwachstum unter Ionenbeschuß. Ph.D.

thesis, Technische Universität Dresden (1998).

[Bla94] G. BLATTER, M. V. FEIGELMAN, V. B. GESHKENBEIN, A. I. LARKIN and

V. M. VINOKUR: Vortices in high-temperature superconductors. Rev. Mod.

Phys. 66 (1994) 1125.

[Bre95] V. BREIT, P. SCHWEISS, R. HAUFF, H. WÜHL, H. CLAUS, H. RI-

ETSCHEL, A. ERB and G. MÜLLER-VOGT: Evidence for chain supercon-

ductivity in near-stoichiometry YBa2Cu3Ox single crystals. Phys. Rev. B 52

(1995) 15727.

[Bro98] N. D. BROWNING, J. P. BUBAN, P. D. NELLIST, D. P. NORTON, M. F.

CHISHOLM and S. J. PENNYCOOK: The atomic origins of reduced critical

currents at (001)-tilt grain boundaries in YBa2Cu3O7 thin films. Physica C

294 (1998) 183.

[Buc91] W. BUCKEL: Superconductivity. 1 edn. (VCH Verlagsgesellschaft mbH

Weinheim, 1991).

[Bud03] J. D. BUDAI, W. YANG, N. TAMURA, J. CHUNG, J. Z. TISCHLER, B. C.

LARSON, G. E. ICE, C. PARK and D. P. NORTON: X-ray microdiffraction

study of growth modes and crystallographics tilts in oxide films on metal sub-

strates. Nature materials 2 (2003) 487.

[Cai98] X. Y. CAI, A. GUREVICH, I. F. TSU, D. L. KEISER, S. E. BABCOCK and

D. C. LARBALESTIER: Large enhancement of critical-current density due to



BIBLIOGRAPHY 97

vortex matching at the periodic facet structure in YBa2Cu3O7−δ bicrystals.

Phys. Rev. B 57 (1998) 10951.

[Cai03] C. CAI, B. HOLZAPFEL, J. HÄNISCH, L. FERNÁNDEZ and L. SCHULTZ:
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N. MESTRES, F. SANDIUMENGE and X. OBRADORS: Epitaxial nucleation

and growth of buffer layers and Y123 coated conductors deposited by metal-

organic decomposition. Physica C 372-376 (2002) 806.
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7. L. FERNÁNDEZ, B. HOLZAPFEL, F. SCHINDLER, B. DE BOER, A. ATTEN-
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