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Summary  
 
Functional characterization of biochemically-isolated proteins is a central task in the 

biochemical and genetic description of the biology of cells and tissues. Protein 

identification by mass spectrometry consists of associating an isolated protein with a 

specific gene or protein sequence in silico, thus inferring its specific biochemical 

function based upon previous characterizations of that protein or a similar protein 

having that sequence identity. By performing this analysis on a large scale in 

conjunction with biochemical experiments, novel biological knowledge can be 

developed. The study presented here focuses on mass spectrometry-based proteomics of 

organisms with unsequenced genomes and corresponding developments in biological 

sequence database searching with mass spectrometry data. Conventional methods to 

identify proteins by mass spectrometry analysis have employed proteolytic digestion, 

fragmentation of resultant peptides, and the correlation of acquired tandem mass spectra 

with database sequences, relying upon exact matching algorithms; i.e. the analyzed 

peptide had to previously exist in a database in silico to be identified. One existing 

sequence-similarity protein identification method was applied (MS BLAST, 

Shevchenko 2001) and one alternative novel method was developed (MultiTag), for 

searching protein and EST databases, to enable the recognition of proteins that are 

generally unrecognizable by conventional softwares but share significant sequence 

similarity with database entries (~60-90%). These techniques and available database 

sequences enabled the characterization of the Xenopus laevis microtubule-associated 

proteome and the Dunaliella salina soluble salt-induced proteome, both organisms with 

unsequenced genomes and minimal database sequence resources. These sequence-

similarity methods extended protein identification capabilities by more than two-fold 

compared to conventional methods, making existing methods virtually superfluous. The 

proteomics of Dunaliella salina demonstrated the utility of MS BLAST as an 

indispensable method for characterization of proteins in organisms with unsequenced 

genomes, and produced insight into Dunaliella’s inherent resilience to high salinity. The 

Xenopus study was the first proteomics project to simultaneously use all three central 

methods of representation for peptide tandem mass spectra for protein identification: 

sequence tags, amino acids sequences, and mass lists; and it is the largest proteomics 
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study in Xenopus laevis yet completed, which indicated a potential relationship between 

the mitotic spindle of dividing cells and the protein synthesis machinery. At the 

beginning of these experiments, the identification of proteins was conceptualized as 

using “conventional” versus “sequence-similarity” techniques, but through the course of 

experiments, a conceptual shift in understanding occurred along with the techniques 

developed and employed to encompass variations in mass spectrometry instrumentation, 

alternative mass spectrum representation forms, and the complexities of database 

resources, producing a more systematic description and utilization of available 

resources for the characterization of proteomes by mass spectrometry and advanced 

informatic approaches. The experiments demonstrated that proteomics technologies are 

only as powerful in the field of biology as the biochemical experiments are precise and 

meaningful.   
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1 Introduction 

1.1 Mass Spectrometry-Based Proteomics and Biological Sequence 

Database Searching 
1.1.1 Technological Developments in Biology and the Emergence of Proteomics 

A number of technologies are revolutionizing biological research. Molecular biology has 

mastered the detection and manipulation of genes by specific nucleases, PCR, Northern & 

Southern blot, microarray technology, RNA interference, and cell transformation by 

homologous recombination, among other techniques. At the same time, high-throughput 

DNA sequencing has paved the way for ‘shotgun’ whole genome sequencing. 

Developments in protein biochemistry now allow proteins to be isolated specifically from 

cells along with selective isolation of interacting protein partners. Technical and 

computational advances now enable mass spectrometry (MS) to ionize proteins and 

peptides into the gas phase with high yields, and determine their masses with high accuracy, 

creating a direct tie between analyzed protein fragments and database (DB) sequences 

(genes) in a matter of minutes.  This series of tools allows unprecedented levels of 

molecular analysis of proteins and genes in living cells. Now proteins and the genes that 

give cells their unique properties can be examined rapidly and accurately, thus advancing 

the development of theoretical biological knowledge, applied biotechnology and the 

biomedical sciences to a high degree. Developments in the related fields above have 

enabled proteomics to arise in the biological sciences.    

Proteomics is the characterization of groups of proteins that are found in specific 

cells or tissues[1]; the proteome is defined as the protein complement of the genome; the 

genome being the cells complete set of DNA. Proteomics research is carried out in order to 

characterize cellular protein complexes or organelles in cell biology, analyze gene 

expression patterns[2], and interrogate genes and genomes. The first problem in conducting 

proteomics is the development of accurate and versatile protein identification strategies. 

Although it has been possible to purify proteins using established methods of biochemistry, 

the crucial step in the characterization of any proteome is high-throughput protein 

identification. Protein identification by MS consists of associating a biochemically-isolated 

protein with a specific gene or protein sequence in silico, thus inferring its specific 

biochemical function based upon previous characterizations of that protein or a similar 

protein having that sequence identity. By performing this on a large scale in conjunction 

with biochemical experiments, novel biological knowledge can be developed.   
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In proteomics, MS has become a powerful analytical technology to identify proteins 

by the analysis of peptides and the correlation of resultant mass spectra with available DB 

sequences (reviewed in[3,4]). Genomic sequencing projects, which supply the majority of 

sequences for databases, are a relatively new phenomenon in the biological sciences and 

thus have only a few representative complete genomes to show for their efforts, however 

significant the development of these efforts may be[5]. However recently many important 

organisms have had their genomes sequenced, such as human[6,7], mouse[8], rice[9,10], 

Arabidopsis[11], and the pufferfish[12]. Using established MS techniques, a limited DB 

resource has not been conducive for facile protein identification from species with 

unsequenced genomes. Yet despite the relative deficiency of genomic sequences compared 

to a whole biosphere of living species, the emerging interplay of MS and bioinformatics is 

significantly expanding the organismal scope of proteomics.   

 

1.1.2 Cross-Species Protein Identification by Mass Spectrometry  

Irrespective of whether the genome of a species is sequenced or not, the identification of 

proteins by MS consists primarily of two analyses of peptides produced by proteolytic 

digestion of purified whole proteins. Matrix-assisted laser desorption/ionization time-of-

flight (MALDI TOF) MS produces spectra by the resolution of intact peptides according to 

their masses, and identifies proteins by the correlation of these masses with theoretically 

calculated masses of peptides from DB entries; a method defined as peptide mass 

fingerprinting (PMF). The second type of analysis, tandem mass spectrometry (MS/MS), 

produces patterns of peptide fragments that can be correlated to DB entries in a number of 

ways (see section 2.5.2). 

Using MS and available protein DB sequences, cross-species protein identifications 

are accomplished by partially aligning analyzed peptides from a protein from a species with 

an unsequenced genome to a DB sequence from a related species. After DNA sequencing 

projects began, it became apparent that phylogenetically related species have significant 

genomic sequence co-linearity and their proteins have a high degree of homology[5]. 

However, gene sequences are rarely identical from one species to another and genes are 

normally riddled with nucleotide substitutions, resulting in amino acid substitutions in 

proteins. As organisms become more phylogenetically distant from one another or as certain 

genes become altered at higher rates, homologous genes and their corresponding proteins 

retain a lower percentage of identity.   
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PMF enables cross-species protein identification in some cases because only a 

subset of all peptides from a protein digest needs to be recognized[13,14]. Those peptides 

that have amino acid substitutions and corresponding shifts in mass are not recognized and 

don’t contribute to the identification. The theoretical predictions by Wilkins and Williams 

proposed that proteins can be identified using PMF if the analyzed protein and reference 

DB entry have >80% sequence identity, although the authors added that these cases would 

need to be supported by further evidence for validation. The high mass accuracy of modern 

TOF and Fourier transform ion-cyclotron resonance mass spectrometry (FTMS) instruments 

increases confidence in cross-species PMF and loosens the sequence identity requirement, 

as less peptide masses would be required to produce a confident hit[15].  

For proteins with a lower sequence identity compared to available sequences, the 

more specific MS/MS analysis of peptides provides confident cross-species identifications 

with a few peptide sequences, depending on the length and significance of their amino acid 

composition.  In this method, masses of precursor ions and fragment ions (from MS/MS) 

are submitted for DB searching using specialized software (reviewed in[16]). Regardless of 

differences in DB searching algorithms and MS platforms, the conventional softwares 

correlate the observed masses with theoretically predicted masses derived from peptide 

sequences produced by in silico digestion of protein DB entries, and calculates the 

statistical significance of matches. Importantly, these softwares do not require a full 

representation of the fragment ions in the tandem mass spectrum and can positively identify 

the peptide even if only some of the fragment ions are matched. The significance of hits 

increases if more fragment ions are detected and if more than one peptide sequence 

originating from the same DB entry is recognized. Thus conventional DB mining software 

is inherently biased towards exact matching of spectra (and corresponding peptides) to 

catalogued sequences, and in practice it is mostly applied to the identification of proteins 

already residing in available databases. It is therefore not surprising that proteomics is 

largely limited to organisms with sequenced genomes, despite the fact that phylogenetically 

related species share significant molecular homology and that extensive protein sequence 

information may be available from related species.  

Where PMF and non-error-tolerant MS/MS methods fail, the identification of 

proteins in the past has relied primarily on predicting amino acid sequences from MS/MS 

spectra and using the predicted sequences to identify proteins by their similarity to existing 

databases entries (Figure 1).  
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Figure 1  Strategy for cross-species protein identifications by mass spectrometry.   

Proteins are identified by the analysis of peptides by either MS or MS/MS.  A DB search follows each analysis.  
From MS/MS spectra, the less sensitive non-error-tolerant route or the more sensitive sequence-similarity 
search route are used for protein identification depending on the sequence of the analyzed protein and available 
database resources. 
 
 
1.1.3 Mass Spectrometry Platforms 

Historically, the first mass spectrometry platform (MSP) for protein identification included 

2-D PAGE and MALDI TOF MS for PMF (reviewed in[17]). MALDI-TOF is most 

commonly used in proteomics in ion reflection mode because of its low femtomole (even 

attomole) sensitivity and high resolution (>10,000 full width at half maximum, FWHM). 

Peptide mass fingerprints are routinely acquired with better than 50 ppm mass accuracy 

with external calibration, and recently reported automated re-calibration methods lower the 

error of mass measurement below 10 ppm[18,19]. MALDI spectra can be acquired very 

rapidly, and the entire routine, starting from digestion of proteins, preparation of the 
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MALDI probes and acquiring the spectra, is now automated and optimized for a very high 

throughput[20,21]. 

MALDI identification capabilities can be additionally strengthened by the 

acquisition of post source decay (PSD) spectra for a few selected peptide ions[22]. 

However, acquisition of PSD spectra is rather slow and it is much less sensitive compared 

to peptide fingerprinting, fragmentation is poorly controlled, and the spectra suffer from 

low resolution and mass accuracy, and therefore the technology has not had a significant 

impact in proteomics. However the recently introduced LIFT method[23] speeds up 

acquisition of MALDI PSD spectra considerably.  

MALDI MS/MS capabilities are mainly explored through the development of 

instruments with combined mass analyzers, such as MALDI-quadrupole TOF (Q(q)TOF) 

mass spectrometers[24,25] and MALDI-TOF/TOF[26]. Both instruments can acquire high 

mass accuracy peptide fingerprints, and enable the control of collision energy in MS/MS 

mode. However, because of the orthogonal configuration of the ion path, MALDI-Q(q)TOF 

machines can acquire MS/MS spectra at relatively low collision energy, with the same 

resolution (>12,000) and mass accuracy (<20 ppm) as in the MS mode[27].  

Regardless of the employed mass analyzers, MALDI sources predominantly ionize 

tryptic peptides as singly charged ions. To fragment singly charged ions, higher collision 

energy is required and therefore cleavage of amide bonds in the peptide backbone occurs 

less consistently. Usually MALDI MS/MS spectra do not contain continuous ion series that 

facilitate the confident determination of long peptide sequences. A number of peptide 

derivatization methods, localizing the charged groups at the N- or C-terminus of the 

molecule, have been developed to improve peptide fragment patterns[28,29]. MALDI 

sources have also been coupled with an ion trap, allowing the acquisition of MS/MS spectra 

very rapidly, albeit mass accuracy of the ion trap is much lower compared to TOF 

analyzers[30]. However, a large number of acquired MS/MS spectra increases the 

specificity of DB searching, and compensates the lack of specificity of DB searching with 

peptide mass fingerprints, which is heavily dependant on mass accuracy.  

Electrospray ionization (ESI) methods form another major cluster of MS platforms. 

In ESI MS, tryptic peptides are typically ionized as doubly or triply charged ions. Multiply 

charged ions can be efficiently fragmented at lower collision energy, and their MS/MS 

spectra are usually dominated by intense y- and b-ions (see[31] for the nomenclature), 

which facilitates DB searching and also makes the spectra more amenable for de novo 

interpretation[32]. 
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Peptides can be either separated by liquid chromatography on-line with the mass 

spectrometer (LC-MS/MS), or alternatively, unseparated peptide mixtures may be directly 

analyzed by nanoelectrospray mass spectrometry (NanoESI)[33]. The absence of separation 

in NanoESI is compensated by much longer spraying time per spectrum, which is made 

possible by low flow injection rates (20 – 30 µL/ min), and many precursor ions can be 

fragmented successively[34]. However, NanoESI-MS/MS experiments are limited by the 

ability of the operator to recognize low abundance precursors masked by chemical noise. 

The specificity of precursor ion detection can be increased via precursor ion scanning for 

abundant immonium ions of amino acid residues (typically, of Leu and Ile)[35]. Precursor 

ion scanning is a routine operation mode of triple quadrupole (TQ) mass spectrometers and 

recently it has been set up also on Q(q)TOF machines[36,37]. Although fewer peptide 

precursor ions are typically fragmented in the course of NanoESI-MS/MS analysis, the 

quality and signal-to-noise ratio in their fragment spectra are routinely better than by LC-

MS/MS, because the data accumulation time and collision energy can be precisely tuned by 

an operator during the acquisition process. However, NanoESI-MS/MS is relatively 

difficult to automate[38] and it has a limited ability to identify proteins in complex 

mixtures. 

By pre-separating peptides in front of the on-line mass spectrometer, analytical 

methods gain higher dynamic range and ability to identify proteins in very complex 

mixtures[39]. By applying this method a substantial part of the proteomes of prokaryotic 

and low eukaryotic organisms can be characterized[39-41]. Further coupling of 

multidimensional LC-MS/MS analysis enables relative quantification that utilizes peptides 

enriched with stable isotopes as internal standards, and promises global survey of 

quantitative changes in the proteomes[41-43]. However, there is less control in the process 

of spectra acquisition, and information content of MS/MS spectra might be compromised. 

This might not be particularly important for protein identification by pattern searches (see 

later section) because with high resolution of instruments the ion statistics in the peak does 

not strongly affect mass accuracy, and full representation of fragments in the spectrum is 

not required[27]. However, poor ion statistics affects the accuracy of de novo sequencing, 

which benefits from recognizing complementary pairs of fragment ions and the full 

representation of low molecular weight peaks is often critical.  

Because of differences in ionization mechanisms, MALDI and ESI produce 

different data sets when the same protein digest is analyzed[44,45]. Parallel analysis of 

digests by two methods increases the sequence coverage of peptide maps, but usually 
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requires the employment of different instrumentation. Rapidly switchable combined 

MALDI/ESI sources[46,47] allow changing between ionization modes within minutes 

without venting the mass spectrometer, and might provide an effective alternative to 

expanding costly instrumentation. 

Other MSPs such as MALDI- and ESI-Fourier transform ion cyclotron mass 

spectrometry (FTMS)[48,49], linear ion trap[50], and ion trap-TOF[51] mass spectrometers 

are employed in proteomics, but are currently less prevalent. Depending on the type of mass 

spectra, specific types of databases (protein, EST, or genomic) can be interrogated with 

more or less efficiency.  

 

1.1.4 Efforts Towards the Identification of Proteins by Tandem Mass Spectrometry 

and Sequence-Similarity Searches 

The new instrument configurations described above have greatly contributed to large-scale 

protein identification. However, the increasing analytical precision and sensitivity of mass 

spectrometers does not necessarily lead to improved success in the identification of proteins 

from species with unsequenced genomes. A central analytical consideration is the inability 

to always reconstruct a complete and accurate amino acid sequence from tandem mass 

spectra of peptides (Figure 2). Usually these spectra can only be partially interpreted due to 

the natural under-representation of peptide fragment ions and because of the presence of 

chemical noise, which may obscure peptide fragments of low intensity and misguide 

spectrum interpretation. To overcome this difficulty, methods for the chemical 

derivatization of peptides, and alternate methods of interpreting spectra and DB searching 

have been developed. 

 De novo interpretation of tandem mass spectra relies on measuring the mass 

differences between adjacent fragment ion peaks of one of the major ion series, i.e. b-series 

(ions containing N-terminus) or y-series (ions containing C-terminus), which are more 

common in tryptic peptides ionized by electrospray, resulting in the prediction of an amino 

acid sequence (see[31] for the nomenclature). Upon collision-induced dissociation (CID), 

tryptic peptides tend to break at the amide bonds between consecutive amino acid residues 

producing a continuous y-ion series of fragments; an amino acid sequence can be 

determined by measuring the mass difference between consecutive y-ions; this relies upon 

the varying mass values of different amino acid residues.  One method to facilitate this 

interpretation is to enrich a series of fragments by attaching a strongly positively or strongly 

negatively charged group to the N-terminus of peptides[28,29].  Another method is to 
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introduce an isotopic label to the C-terminus of peptides by digesting proteins in a buffer 

containing H2
18O (protocols reviewed in[52]) or by CD3OH[53]. 18O-labeled y-ions can be 

recognized by a one or two Thomson shift (depending on the peptides fragments charge) 

and allow confident readout of a peptide sequence[54]. These methods have enabled the 

cloning of a few proteins via oligonucleotide primers and PCR[55].  However, usually 

abundant amounts of protein are required, spectra interpretation remains laborious and time 

consuming, and therefore these approaches have never been applied in large-scale projects.  
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Figure 2  Interpretation of a peptide tandem mass spectrum.  

The MS/MS spectrum of a doubly charged precursor ion with m/z 883.44 was acquired by fragmentation on a 
quadrupole time-of-flight mass spectrometer.  Manual interpretation of spectra considered precise mass 
difference between adjacent y-ions starting from the m/z segment above the precursor ion (corresponding peaks 
and amino acid residues are designated by arrows).  Automated interpretation resulted in a few partially 
redundant sequences covering the C-terminus of the peptide (inset).  The underlined sequence was matched to 
bovine DNA Polymerase.  The symbol Z represents the amino acid Q or K (delta 0.036 Daltons).  The symbol 
X represents an unknown amino acid. 
 

A second possibility is to interpret tandem mass spectra of peptides using 

specialized software that creates amino acid sequences de novo[56,57]. Although the 

software utilizes different computational principles, sequences of short peptides can be 

produced rapidly and accurately. However, less confident sequences and/or incomplete 

sequences are usually deduced from spectra of large and/or triply charged ions. For each 

spectrum, the software produces a list of candidate peptide sequences that are ranked in the 
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order according to their scored confidence. However, the absence of a rigorous scoring 

system may lead to erroneous identifications as the correct sequence may be present in the 

list, but may not be ranked among the top hits. Even though it is difficult to use these 

sequences for cloning (where the requirement is that the sequences should be long, 100% 

accurate, and encode for low degeneracy primers), they can be successfully used for 

identifying proteins in a sequence DB using various sequence-similarity search algorithms.  

The use of BLAST[58] or FASTA[59] DB searching engines to analyze peptide 

sequences produced by interpretation of tandem mass spectra is not straightforward because 

both algorithms have been optimized for comparing long and accurate protein sequences, 

whereas the interpretation of tandem mass spectra yields sets of short inherently-redundant 

and error-prone sequence candidates. Furthermore, it is not known in what order the peptide 

sequences should be aligned on the backbone of the polypeptide, if those sequences belong 

to a single protein or originate from a few proteins co-migrating within a single 

chromatographic gel band (or spot), nor what isobaric amino acids are present (such as, Leu 

and Ile, Lys and Gln, or Phe, or Met–sulphoxide). 

To address these difficulties, common DB search engines have been manipulated to 

allow the input of sequences produced by MS. Modified FASTA-based software is 

available as stand-alone applications[57,60,61], whereas MS BLAST (Mass Spectrometry 

driven BLAST DB searching[62]) is accessible over the internet (http://dove.embl-

heidelberg.de/Blast2/msblast.html). The limitations of FASTA-based algorithms are that 

they are slow search engines and the final score of hits depends not only on the number of 

matched peptides, but decreases with the number of candidate peptide sequences submitted 

in a query (the significance of all DB searches decreases with the increasing size of the 

query; i.e. the number of fragmented peptides). This aspect of the software means that 

spectra must be represented by as few putative amino acid sequences as possible, which is 

difficult to do because of the inherent ambiguity of automated interpretation of tandem mass 

spectra, as well as the difficulty to create one sequence prediction by manual interpretation. 

If DB searching with the predicted sequences makes no alignment, researchers are unable to 

ascertain whether the spectra were misinterpreted or no corresponding sequence exists in a 

DB. However, FASTA-based engines are flexible, may engage optional gapped alignment, 

and the statistical apparatus is specifically tailored for matching short peptide sequences. 
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Figure 3  MS BLAST sequence alignment of an analyzed unknown protein from Xenopus laevis. 

Manual and automated de novo sequence prediction of 21 tandem mass spectra from fragmented tryptic 
peptides resulted in 792 putative peptide sequences submitted to a search string.  Bovine DNA polymerase was 
the top hit; matching 10 peptides.  Multiple hits from different organisms were retrieved from the MS BLAST 
search and many were able to make high confidence matches (see Table 4.) 
 

The MS BLAST software has a particular advantage of being very fast in searching 

and not penalizing the score of hits for submissions of numerous redundant putative 

sequence candidates (Figure 3)[62]. This allows direct submission of the entire output of the 

sequence prediction software for all fragmented peptides, without intermediate inspection of 

data and arbitrary selection of the most reliable hits. This quality allows MS BLAST to be 

coupled with high-throughput sequencing techniques such as MALDI-TOF/TOF, MALDI-

QqTOF and LC/MS/MS through a simple scripting interface[63]. Importantly, both MS 

BLAST and FASTS methods provide independent means of evaluating the statistical 

significance of alignments, and therefore it is not necessary to compare retrospectively the 

matched peptide sequences with actual tandem mass spectra to rule out false positive hits. 

When trying to identify proteins by sequence-similarity searches, the number of 

peptides recognized from a digested protein determines the success of the identification. It 

has been calculated that as more peptides are analyzed and matched, proteins of lower 
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homology to DB sequences can be identified with the limit being around 50% identity (this 

is dependent on which software is used)[61]. Since mass spectrometric analysis rarely 

reconstructs a complete sequence, the percent identity of the analyzed protein compared to 

the matching DB sequence is unable to be determined without extended analysis.   

Besides these statistical considerations, when investigating the proteome of an 

organism with an unsequenced genome, the ability to identify proteins is dependent on the 

content of available databases. Where an abundance of DB sequences exist from closely 

related organisms, with respect to the organism under inquiry, more homologous genes 

exist in silico to make cross-species identifications possible.  If the organism being studied 

is very distantly related to any organism with a sequenced genome, the likelihood of protein 

identification decreases because of the decrease in the number of homologous genes in 

silico. 

 

1.1.5 Organismal Diversity in Functional Proteomics: Orthologous Protein Complexes 

and Protein Interaction Networks 

The availability of genomic sequences and progress in gene manipulation technologies has 

shifted the focus of functional proteomics from the identification of individual proteins 

towards deciphering of protein complexes and their place in a global protein interaction 

network[64,65]. As protein complexes are often regarded as functional units of the 

molecular machinery of the cell[66], their characterization provides mechanistic insight into 

key regulatory processes and facilitates functional interpretation of genomic sequences. 

As many cellular functions are conserved throughout a variety of species, it has 

been inferred that orthologous protein complexes might also share similar composition and 

architecture[5]. Comparison of three native protein complexes, isolated from budding yeast 

cells and from human cells by immunoaffinity chromatography, supports this notion[64]. 

Thus, it is conceivable that conserved protein complexes may be initially characterized in a 

model organism and then the obtained knowledge can be projected on orthologous 

complexes in other organisms, including humans. There are several lines of evidence why 

such a strategy will benefit from wider representation of model organisms, which might 

have uncharacterized or partially sequenced genomes. 

 A combination of biochemical isolation of protein complexes and mass 

spectrometric identification of their subunits provides the most detailed characterization of 

their composition and organization. However, the abundance of orthologous complexes 

varies greatly between different species and cell types (and hence their ability to be 
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identified by MS) and so does the completeness of their biochemical characterization. The 

study of complexes is also facilitated by a multitude of investigative methods that 

differentially suit distinct specimens. Some species are more amenable to genetic 

manipulation than others, while some are more easily studied under a microscope. The 

characterization of complexes is best accomplished through the study of more than one 

species, applying a set of different investigative methods, with MS being a major 

participant.  

Orthologous protein complexes are seldom identical, even if they comprise subunits 

with a high degree of homology. For example, a complex of aminoacyl-tRNA synthetases 

in budding yeast contains three subunits: Glu-tRNA synthetase, Met-tRNA synthetase, and 

the non-aminoacyl-tRNA synthetase component Arc1p[67]. Despite the fact that 

orthologous yeast and human aminoacyl-tRNA synthetases share substantial sequence 

identity, the orthologous complex in higher eukaryotes comprises nine aminoacyl-tRNA 

synthetases and three non-aminoacyl-tRNA synthetase components: Arg-tRNA synthetase, 

Asp-tRNA synthetase, Gln-tRNA synthetase, Ile-tRNA synthetase, Leu-tRNA synthetase, 

Lys-tRNA synthetase, Met-tRNA synthetase, bifunctional Glu-Pro-tRNA synthetase, and 

p18, p38, p43[67]. Thus, characterization of the complex only in lower organisms or only in 

higher organisms provides limited knowledge of its architecture and function in general. 

Most importantly, even if orthologous complexes are very similar in composition, 

they might be regulated via interaction with different, non-orthologous proteins or protein 

complexes. Orthologous cell cycle regulating ubiquitin ligases in yeast and human serve as 

a good example. The SCF complex (termed for Skp1–Cdc53–F-box protein) is built from 

conserved core subunits: Skp1, cullin homologue Cdc53, and RING H2 subunit Hrt1 

(reviewed in[68]). The recruitment of various adaptor proteins, which share the F-box 

sequence motif, forms an array of distinct ubiquitin ligases with different substrate 

specificity. SCF complex was immunoaffinity isolated from human and yeast cells using the 

epitope-tagged cullin subunits cul1[69] and cdc53[70], respectively, as baits. Comparison of 

the patterns of co-immunoprecipitated proteins revealed orthologous core proteins, along 

with a pool of F-box adaptors. However, eight subunits of the signalosome complex (CSN), 

a conserved 500 kDa protein assembly originally discovered in Arabidopsis[71], were 

found in association with cul1 from human and not yeast. Subsequent experiments 

suggested a possible role of the CSN in regulating of ligase activity[69]. Interestingly, the 

budding yeast genome only encodes for the apparent ortholog of a single subunit of CSN-

CSN5, which is called Rri1[72]. However neither Rri1, nor its interaction partners 
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suggested by two-hybrid screening[73] or by systematic analysis of protein 

complexes[64,65], were detected in the immunoprecipitate of tagged cdc53. Thus critical 

insight into the regulation of the conserved ubiquitin ligase complex SCF by another 

conserved complex CSN came from the isolation and comparative analysis of complexes in 

multiple species, rather than via expanding the pattern of interactors identified in a single 

model organism.  

 

1.1.6 Developments in Genomic Sequencing, Biological Sequence Databases, and 

Proteomics by Mass Spectrometry  

The development of automated high-throughput DNA sequencing in the early 1990’s made 

necessary technical advances for genomic sequencing. The first living organism to be 

sequenced was Haemophilus influenzae, in 1995. Since the completion of the first genome, 

many unicellular and multicellular eukaryotic organisms’ genomes have been sequenced, 

including S. cerevisiae, E. coli, C. elegans, D. melanogaster, A. thaliana, and the crowning 

achievement of the first draft assembly of the human genome[6,7]. Genomic sequencing 

continues at a very high rate with the completion of a new organism every few months, if 

not weeks.  

Protein sequence databases are continually updated with submissions produced 

from the cloning of genes, from which amino acid sequences are generated by translation of 

nucleotide sequences in their correct reading frames (www.ncbi.nlm.nih.gov, 

www.expasy.org/sprot/, www.ebi.ac.uk/). Whole-genome shotgun sequencing also 

produces large sets of nucleotide sequences that are assembled into contiguous sequences 

(i.e. whole chromosomes). As these genomic sequences are evaluated by gene prediction 

methods and open reading frames are designated, protein sequence is generated on the basis 

of nucleotide sequence and contributed to growing protein sequence databases (see[74] for 

review). Besides the sequencing of individual genes or genomic DNA, messenger RNA 

(mRNA) is isolated to generate complementary DNA (cDNA) libraries. cDNAs are then 

partially sequenced to produce expressed sequence tag (EST) nucleotide sequence 

databases[75]. Often cDNAs are translated to protein sequences and submitted to databases. 

In the hands of the mass spectrometrist, all three types of DB (protein, EST, and genomic) 

may be interrogated with mass spectra.  

With this first completed genome, biologists began to identify large sets of proteins 

from Haemophilus influenzae using 2-D gels and MS via PMF[76]. With the completion of 

the sequencing of genomes other organisms, research into the proteome of these organisms 
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began to follow by a variety of MS techniques. These efforts have been extensive and more 

research has been accomplished than can be cited here.  

The research community that uses MS for protein identification has made a habit of 

identifying proteins from only those organisms with sequenced genomes, because of the 

ability to easily translate those sequences and correlate them with analyzed proteins in a 

number of ways, as shown above. However, using MS and advanced methods of DB 

interrogation, it is becoming increasingly possible to study the proteomes of species with 

unsequenced genomes. Cross-species identifications have been made in these species and 

others not cited: Zea mays[77,78], Pisum sativum[79,80], Papaver somniferum[81], 

Spinacia oleracea[82], Arabidopsis thaliana[82], Bos taurus[83], Xenopus laevis[84,85], 

Pichia pastoris[62], and Trypanosoma brucei[60,61]. Many earlier studies utilizing cross-

species identification of unknown proteins have relied on high mass accuracy MALDI-TOF 

PMF, and therefore may have identified highly abundant proteins or enzymes conserved 

across the biosphere. As more sequence-similarity-based methods are being developed and 

applied, the proteomics of organisms with unsequenced genomes can be envisioned to 

become more productive and insightful by being able to identify a wider breadth of 

proteins, i.e. less conserved proteins in closely related species and conserved proteins in 

distantly related species. 
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1.2 Questions and Aims of the Thesis 
 

Researchers desire to apply proteomics methods to a breadth of species with unsequenced 

genomes in an attempt to solve many practical problems and characterize species more 

thoroughly at the molecular level. The focus of this thesis was to extend the high-

throughput capabilities of mass spectrometric protein identification to these organisms. 

Three goals were to be met during the research: 

 

 

 

1. Extend the capabilities of the MS BLAST method to nanoelectrospray Q(q)TOF 

mass spectrometry for high-throughput analysis; and establish a standard pipeline 

for protein analysis. 

 

 

 

2. Develop a method based on error-tolerant sequence tags for sequence-similarity 

protein identification to complement the capabilities of MS BLAST. This method 

should be applicable for high-throughput analysis. 

 

 

 

3. Apply the sequence-similarity methods above to problems in cell biology of species 

with unsequenced genomes.  
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2 Results and Discussion 

2.1 Development of the MultiTag Sequence-Similarity Protein 

Identification Method 
2.1.1 The Sequence Tag for Peptide Mass Spectrum Interpretation 

A major limitation to sequence-similarity protein identification rests in the quality of de 

novo interpretation of tandem mass spectra, rather than in DB searching. Tandem mass 

spectra imperfectly represent the structure of any peptide because upon CID only some 

peptide fragments are detected which could indicate the amino acid sequence of the peptide. 

At the same time, spectra often display unpredictable ions that originate from fragmentation 

of the side chains of amino acid residues, or other fragmentations (or chemical noise), and 

are not accounted for by typical scoring schemes applied by software for spectra 

interpretation. It is common in peptide sequencing at femtomole concentrations that low 

peptide content and high chemical noise allows only a few informative fragment ions to be 

detected in MS/MS spectra, from which software-assisted interpretation can not produce 

credible full-length peptide sequence proposals, and subsequent sequence-similarity 

identification will likely be ineffective for protein identification.  

The peptide sequence tag approach for error-tolerant database searching developed 

by Matthias Mann and Matthias Wilm in 1994 helps to overcome those limitations[86]. The 

sequence tag utilizes a short (2-4 amino acid residue) sequence stretch, (which can be easily 

determined from low energy CID spectra acquired from multiply charged precursors) and a 

pair of masses that lock the determined stretch in the full length peptide sequence; namely 

the combined mass of all amino acids between the N-terminus of the tryptic peptide and the 

identified regions, and the mass of all amino acids between the identified region and the 

tryptic peptide’s C-terminus (Figure 4). In stringent DB searches both masses and the 

sequence are required to match. Currently, sequence tags are employed in protein[87], 

EST[88], and genomic sequence[82] DB searching. However no statistical evaluation of the 

significance of matches is provided in these searches. Therefore even if a single hit was 

retrieved upon DB searching, the match between corresponding peptide sequence from a 

DB entry and the tandem mass spectrum has to be verified retrospectively by manual 

inspection; i.e. the predicted fragment ions corresponding to those produced by the 

theoretical CID of the respective peptide sequence must be overlaid on the spectrum, taking 

note particularly of coincidence of y-ions in the m/z region above the multiply-charged 

precursor. 
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Figure 4  Analysis of a Xenopus protein by MS and construction of a sequence tag. 
 
Xenopus proteins were in-gel digested and analyzed by nanoelectrospray tandem mass spectrometry. MS 
spectrum peaks labeled with a * were fragmented and peptide sequence tags were constructed from MS/MS 
spectra (inset). Abundant y-ions above the multiply charged precursor in MS/MS spectra allow direct 
determination of the partial amino acid sequence of a peptide and corresponding sequence tag construction. 
Peaks in the MS spectrum labeled with a T belong to trypsin. The resulting sequence tag from the MS/MS 
spectrum shown is (587.36)VSQ(901.52), parent mass 1047.55. All of the determined sequence tags from the 
analysis of this sample are found in Table 1. The protein was identified as Isoleucyl-tRNA synthetase. 
 

Sequence tags can be used for error-tolerant searching allowing one of the regions 

of the sequence tag (and, consequently, the intact mass) to mismatch. The approach enables 

cross-species identifications in protein sequence databases[54]. However, loose matching 

requirements result in a dramatic loss of search specificity so that typically many hundreds 

of hits are retrieved, and manual inspection of all of them is tedious.  

In the experiments below, the capability of the sequence tag search has been 

extended with the implementation of a statistical evaluation for the matching of multiple 

partial sequence tags in the identification of proteins from organisms with unsequenced 

genomes. Here the MultiTag (MT) approach is demonstrated to enable the identification of 
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distantly related proteins by sequence-similarity searching using only very short stretches of 

peptide sequence retrieved from tandem mass spectra, and is therefore a vastly simplified 

and sensitive method of exploring the proteomes of organisms with unknown genomes.  

 

2.1.2 MultiTag Protein Identification Strategy 

MT is a sequence-similarity searching approach for identifying unknown proteins via their 

homology to known proteins available in sequence databases. Comparison of homologous 

sequences of proteins from different species often shows that varying amino acid residues 

are distributed randomly along a polypeptide backbone, with some regions having more 

conservation than others. Although a single tryptic peptide may not be completely identical 

between the two protein sequences, their partial identity frequently occurs (Figure 5) Error-

tolerant searching with sequence tags can reveal regions of partial identity without 

determining complete peptide sequences. Although those regions are rather short to claim 

positive identification of a protein homologue, typically many peptides are sequenced from 

a protein digest. The MT software reveals proteins to which multiple fragmented peptides 

are matched in an error-tolerant fashion and computes the statistical significance of the hits 

to discriminate true hits from false positives. 

 The first step of the analysis is the construction of peptide sequence tags based on 

raw mass spectra (Figure 6). Sequence tags are typically called from the high m/z region of 

tandem mass spectra of tryptic peptides, which are dominated by abundant y-ions and 

partial interpretation of the spectrum is straightforward. Sequence tags were assembled for 

as many fragmented tryptic peptides as possible and were used for searching a DB in a 

stringent fashion (matching regions 1, 2 and 3) and error-tolerant fashion; a search 

tolerating a mismatch of the C-terminal mass (matching regions 1 and 2); a search tolerating 

a mismatch of the N-terminal mass (matching regions 2 and 3); and searches tolerating one 

mismatch in the amino acid sequence (matching regions 1 and 3); the hits were additionally 

encoded by the mass of the precursor ion and by the abbreviated matching region (NC, N, 

C, or E, respectively) in the sequence tag. Importantly, matches of retrieved sequences to 

corresponding tandem mass spectra were not further inspected, and the redundant hits 

(matching the same peptide sequence in another DB entry, or in another search) were not 

removed. If stringent searches (i.e. with regions 1, 2 and 3 matched) retrieved many 

candidate sequences no additional verification of hits was performed. The full list of hits 

was then submitted to the MT program. The software identified multiple hits originating 

from the same protein entry, eliminated redundant hits to the same peptide in the same entry 
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and assigned the significance to all matches by computing an estimate of the probability 

that such a combination of tags may hit a protein entry at random. 

 

 

 

 

 

 
Human            --MSTAGK  VIK  CK  AAVLWEVK  KPFSIEDVEVAPPK  AYEVR IK  MVAVGICR  

Alligator        ---    STAGK  VIK  CK  AAITWEIK     KPFSIEEIEVAPPK    AHEVR IK    ILATGICR  

 

TDDHVVSG-NLVTPLPVILGHEAAGIVESVGEGVTTVKPGDK   VIPLFTPQCGKCRVCKNPESNYCLK  NDL 

SDDHVTAG-LLTMPLPMILGHEAAGVVESTGEGVTSLKPGDK  VIPLFVPQCGECMPCLKSNGNLCIR  NDL 

 

GNPRGTLQDG-TRR  FTCR GKPIHHFLGTSTFSQYTVVDENAVAK  IDAASPLEK  VCLIGCGFSTGYGSAVNVAK  

GS-PSGLMADGTSR  FTCK GKDIHHFIGTSTFTEYTVVHETAVAR  IDAAAPLEK  VCLIGCGFSTGYGAAVKDAK  

 

VTPGSTCAVFGLGGVGLSAVMGCK  AAGAAR  IIAVDINK  DK  FAK  AK  ELGATECINPQDYK   

VEPGSTCAVFGLGGVGLSTIMGCK    AAGASR     IIGIDINK  DK  FAK  AK  ELGATECINPLDCK   

 

 
Figure 5  Sequence alignment of the human and alligator ADH protein. 

Partial protein amino acids sequences for alcohol dehydrogenase are aligned above from human and alligator 
(75% identity). Regions alignable by error-tolerant sequence tags between the two sequences are highlighted in 
gray. These regions are theoretical tryptic peptides over six amino acids in length with ≥ three conserved amino 
acids from the N-terminus or ≥ four conserved amino acids from the C-terminus. Tryptic cleavage sites 
designated above are shared between both sequences. Tryptic cleavage sites not at the same point on the 
sequences are not designated by spaces; sites do not occur in the gray regions. Accession numbers: human, 
P00325; alligator, AAB28120. The sequences were aligned using the Clustal X program.  
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Database Search1: Full tag   (815.47)ELD(1172.61)
Database Search2, One error  (815.47)E?D(1172.61),

(815.47)EL?(1172.61),(815.47)?LD(1172.61)
Database Search3: Regions 1,2        ELD(1172.61)
Database Search4: Regions 2,3(815.47)ELD

MultiTag Sorts and Calculates the Significance of 
Multiple Error-Tolerant Sequence Tag Alignments

Combine Search Results and Submit to MultiTag1.

2.

3.

4.

100 400 800 1200

13

26

Intensity, C
ounts

707.88

815.47 944.50
1172.61

[M+2H]2+  

1057.54 

MS/MS

m/z

E       D      L

Tag Region:        3                                        2                1

0

 
Figure 6  MultiTag method schematic.   

The MT approach consists of constructing sequence tags from peptide tandem mass spectra, error-tolerant 
database searches, and sorting and calculation of the significance of multiple error-tolerant sequence tag 
alignments by the MT software. Panel 1. shows a tandem mass spectrum of a low abundance peptide with an 
overlaid sequence tag. Panel 2. shows one complete and three error-tolerant sequence tag database searches, 
which is done for each MS/MS spectrum and corresponding sequence tag. Panel 3. shows the combined list of 
search results (most of the 8000 entry list is not shown) from all spectra and all searches in the analysis of a 
single sample; “Tag Mass” column indicating the tag’s parent mass followed by an “NC” for search results 
with complete tags, an “N” for searches with tag regions 1 and 2, an “E” for searches with tags with one amino 
acid error, or a “C” for searches with tag regions 2 and 3; “Sequence” column is the retrieved sequence found 
from the database search; “Mass” column indicates the protein’s total mass in kDa from which the peptide 
originated; “DB Accession” the proteins accession number; “Protein name”; “Species”. Panel 4. shows the MT 
output; “Tag Mass” column lists the tag-search code for the tags aligned; “Sequence” lists all of the full peptide 
sequences error-tolerantly aligned; “Mass”—“Species” same as Panel 3; “E-values” for the probability of the 
alignment of the group of sorted sequence tags.  
  

2.1.3 Calculation of E-values  

(in collaboration with Professor Shamil Sunyaev) 
The major problem of DB searching with multiple sequence tags is the need to identify hits 

corresponding to truly homologous proteins in the large pool of randomly matching proteins 

produced of multiple degenerate searches, and therefore the evaluation of statistical 

significance of hits is ultimately required. The classic way to interpret the results of a DB 

search in the statistical framework is to assign an E-value to each hit resulting from a 
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search. E-values corresponding to a hit represent the expected number of better or equally 

good matches found in a DB at random. In the case of the MT search, a DB search hit is a 

protein sequence, which matches some sequence tags in a degenerate or a non-degenerate 

manner. E-values here give the expected number of sequences from a random DB, which 

would match the same combination of tags in the same way or even more specific (less 

likely) combination of tags in a more specific way. In order to compute E-values, the 

probability that a given tag with a given type of degeneracy would match a random amino 

acid sequence had to be determined. The probability that a given combination of tags would 

match a random sequence can then be computed as a product of the probabilities 

corresponding to individual matches. Further, the probability that any possible more 

specific (less likely) combination of tags than a given combination would match a random 

sequence has to be determined. Finally, the E-value would be given by multiplication of the 

latter probability to the total number of DB sequences. Below the detailed consideration of 

each of those steps is presented.  

Let us consider a sequence tag, which is represented by an N-terminal mass mN, 

three amino acids a1, a2, a3 and C-terminal mass mC. The probability that a random tryptic 

peptide would match this tag in a non-degenerate manner would be given as a product of 

three following probabilities. First, the probability that the random tryptic peptide has an N-

terminal fragment of any length, whose mass lies in the interval (mN-∆m, mN+∆m), where 

∆m is mass tolerance of the instrument. Second, the probability that this fragment of 

random peptide has amino acids a1, a2 and a3. This is simply given by the product 

f(a1)f(a2)f(a3), where f(ai) denotes frequency of amino acid ai. And third, the probability that 

the mass of the random peptide fragment between these amino acids and the C-terminus 

would be between mC-∆m and mC+∆m.  

In order to derive probabilities corresponding to mN and mC one would regard the 

mass of a random tryptic peptide being a result of a random process. We imagine that the 

sequence of the random tryptic peptide was constructed by a random generator, which 

consequently generates amino acids, one at a time, and the probability that next coming 

amino acid will be ai is given by its frequency f(ai).  Obviously, at each moment of time the 

generator can produce a trypsin cleavage site (K or R residue) with the probability 

q=f(K)+f(R) and thus stops the process. The mass M of the random tryptic peptide can be 

regarded as an accumulated sum of masses of randomly generated amino acids: 
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...321 +++= MMMM      (1) 

 

In probability theory, random values represented as successive sums of positive 

identically distributed variables as in equation (1) are called a renewal process[89]. 

Obviously masses of randomly generated amino acids obey the probability distribution 

determined by amino acid frequencies, so that the probability p(m) that the random mass 

would be exactly m is given by combined frequency of amino acids of mass m. Then, the 

distribution of the mass accumulated after n+1 step, i.e. the probability that the peptide 

fragment of length n+1 would have its mass smaller than t can be computed via successive 

convolutions: 
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Summation here is carried over all values of amino acid masses. Multiplication to (1-q) is 

needed to take into account that the process survived the n+1-th step, i.e. the tryptic peptide 

has more amino acids than n+1.  

The distribution of the total mass of the tryptic peptide, i.e. the probability that the 

peptide’s total mass would not exceed t is given by allowing for all possible lengths of the 

peptide: 
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Which implies that the probability that the peptide’s mass would be in the interval from m-

∆m to m+∆m is 

 

 ( ) ( )mmFmmFmmP ∆−−∆+=∆ ),(     (4) 

 

 Although not intuitively obvious, this formula holds both for the whole mass of the 

peptide and for any of its fragments between a fixed amino acid position and the cleavage 

site. Indeed, if we further consider our analogy with the renewal process, it will retain its 

properties regardless of the point we consider the process started (the process has no 

memory). Therefore, after the position of the sequence tag on the peptide sequence is fixed 
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through matching one mass and the short sequence stretch, the probability that the second 

mass would also match is given by equation (4). 

 Now consider matching of the sequence tag as a sequence of three consecutive 

independent events, namely match of the first mass, match of the short sequence stretch and 

the following match of the second mass. Although, the consideration is obviously 

symmetric with regard to N- and C-termini of the peptide, without loss of generality, we 

would assume that the N-terminal mass is the first mass to match. The probability that the 

mass of any N-terminal fragment of the peptide would be in the interval (mN-∆m, mN+∆m) 

is given by: 
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A multiplier 1/q was introduced because in this case the process survives the step with this 

mass, i.e. all peptides with arbitrary lengths with N-terminal parts matching the mass would 

satisfy the condition. We note that the equation 5 holds only if mass tolerance of the 

instrument is lower than any of amino acid masses, otherwise it corresponds to the 

expectation and not to the probability. 

 Since the probability of the non-degenerate match of the sequence tag would be a 

product of probabilities of the N-terminal mass match (which importantly fixes the position 

of the tag along the peptide), sequence stretch match and the C-terminal mass match it will 

be expressed as: 
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Additional multiplier 1/(1-q) simply reflects the fact that we do not consider zero length 

tryptic peptides, allowed by the model if the cleavage site comes at the first step. Therefore, 

we work only with 1/(1-q) fraction of realistic peptides. 

  Examples of probabilities for degenerate matches are given by: 
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As the next step, we compute the probability that a random protein sequence containing K 

tryptic peptides would match multiple sequence tags, taking into account the tags being 

matched and the type of degeneracy of the match. For instance, if we had three sequence 

tags and the random sequence matched simultaneously sequence tag 1 with an error in the 

N-terminal mass, sequence tag 2 with an error in the C-terminal mass and sequence tag 3 

with a mismatch at the second identified amino acid, the probability of the event would be 

given by: 

          (8) 
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This example shows how to compute the probability that a random amino acid 

protein sequence would match an arbitrary combination of sequence tags. 

In order to calculate E-values, we should first compute the probability that any 

combination of tags would match a random amino acid sequence, which is equally or more 

specific than the combination observed. In other words, we will need to sum up 

probabilities (eq. 8) of all possible matches, which do not exceed the probability of the 

actual DB hit. It is definitely too demanding computationally to directly enumerate all less 

likely combinations of tags. However, it appears to be much easier to enumerate all 

combinations, which are, in opposite, more likely to happen because they mostly involve 

matches with a very few tags. Therefore, we compute the probability that a random 

sequence would produce a less specific match than the actual hit (taking care of possible 

statistical dependence of various combinations of tags) and subtract the result from 1. E-

value is then computed by multiplying the result to the DB size.  

A series of computational simulations have been carried out to validate the 

computation of E-values described above.  
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 Software implementation of MT uses pre-computed distribution function F(t). The 

software imports sequence tags in the conventional format (mc)a1…an(mn)[86] and peptide 

mass, and computes probabilities for each tag to match a random tryptic peptide. Further, 

the software imports a full list of hits produced by multiple degenerate and non-degenerate 

sequence tag searches and identifies hits corresponding to the same protein. For each hit 

MT first computes the probability of the match (similarly to equation 8). Then, it identifies 

all tag combinations giving the same or higher probability, and based on this information, 

assigns E-value to the hit.  At the final step, MT sorts all hits according to E-values. 

 

2.1.4 Specificity, Performance, and Limitations of Error-Tolerant MultiTag Searching 

MT aligns multiple partial and/or complete sequence tags to increase the coverage of a DB 

sequence from available MS/MS data to raise the significance and lower the E-value of 

identifications. Sequence tags were used from the identification of DNA polymerase (Table 

1) to perform alignments with MT to demonstrate factors that contribute to final E-values 

(Table 2). High E-values are given for “poor” quality tags that have short mass lengths for 

tag regions 1 and 3, and designate common amino acids with a high frequency in proteins, 

i.e. Leucine, “L.” Lower E-values are given for uncommon amino acids such as 

Tryptophan, “W,” or for tags with more amino acids in the sequence stretch.  The 

probability that a combination of partial sequence tags will match a single DB entry is lower 

than if an individual tag is matched, with an increasing significance as more partial 

sequence tags are aligned. Two partial sequence tags were found to be not significant 

enough for a confident identification in some cases, depending on the character of the tags. 

However, the alignment of three or more partial sequence tags lowers E-values to the range 

of 1E-6-1E-9 when mass accuracies are sufficiently high, enabling confident protein 

identification. Sequence tags assembled with narrower mass tolerance increase the 

specificity of DB searching and lower the E-values of hits.  As in case of conventional DB 

sequence-similarity searches, specificity of the MT search decreases with the growing size 

of the DB.  

An intrinsic problem to all statistical approaches to homology searches relying on 

average amino acid frequencies is posed by low complexity regions and other proteins 

and/or protein regions with amino acid frequencies, which strongly deviate from the DB 

average[90]. If a MT identification results in a peptide from a low complexity region or in a 

peptide of obviously special amino acid composition, these identifications have to be 
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interpreted with caution, since the underlying statistical model does not account for bias in 

amino acid composition. 

An advantage of MT over MS BLAST, besides its ability to represent noisy and low 

intensity spectra, is that peptide sequences retrieved by sequence tag searches can be 

overlaid on fragment ion spectra allowing one to determine whether the retrieved sequence 

is the correct sequence; this is less direct with MS BLAST. Even though relatively weak 

matches can be evaluated in this way, the MT approach is suited for a high-throughput 

setting without the need to go back to the original spectra to evaluate the identifications. 

The determination of the significance of sequence tags by the MT statistics takes the place 

of retrospective manual data evaluation. 

MT, as well as any sequence-similarity searching method, is prone to errors if the 

analyzed protein contains low complexity sequence regions, i.e. collagen, Glycine-rich cell 

wall proteins, and silk proteins. Because MT only recognizes a few central amino acids 

accurately, it would be possible that multiple sequence tags to different regions of the same 

proteins could not be distinguished, thus diminishing the overall score.  

 

2.1.5 Identification of Proteins from Xenopus laevis by MultiTag Searching 

The MT approach was applied to the identification of proteins isolated from the African 

clawed frog Xenopus laevis. In-gel digests of Xenopus proteins were analyzed by PMF and 

NanoESI-MS/MS. Sequence-similarity searching methods were applied for protein 

identification because Mascot DB searching with peptide mass fingerprints and with lists of 

fragment masses derived from uninterpreted tandem mass spectra were unable to identify 

proteins by stringent matching. Two methods of sequence-similarity searching were applied 

in parallel to the same set of MS/MS data. Peptide sequence proposals obtained by 

automated de novo interpretation of tandem mass spectra were submitted to MS BLAST 

searching. In parallel, peptide sequence tags were assembled via partial manual 

interpretation of spectra (Figure 4), followed by error-tolerant DB searching and sorting and 

evaluating the results by MT, as described above (Table 1). From five attempted unknown 

proteins, MS BLAST identified three, however all five were identified by MT. Importantly, 

in three cases both MT and MS BLAST identified homologous sequences from the same 

organism or from different species, providing an independent validation of the MT 

approach.  
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Table 1 Sequence Tags used in the Identification of Xenopus Proteins by MultiTag. 
 
MultiTag Protein Identifications Tags Submitted Mass Matching Tags MS BLAST Identifications Alignments 

Isoleucyl-tRNA Synthetase  (371.24)VTY(734.42)       846.5 (371.24)VTY(734.42) No identification None 

Human P41252 (637.34)VL(849.49)         935.51     

E-value: 2.73E-5 (587.36)VSQ(901.52)      1047.55 (587.36)VSQ   

 (488.34)LEL(843.55)        1099.56     

E-value:  First False Positive:  0.15 (602.42)EQ(859.53)        1134.64     

 (979.62)DVS(1280.74)    1408.76 DVS(1280.74)   

 (1166.60)DLL(1507.80)    1619.81     

 (1363.59)VV(1561.73)     1918.98     

  (985.50)NT(1200.59)        2329.25       

Glutamyl-Prolyl-tRNA Synthetase  (492.31)TY(756.42)  902.49 (492.31)TY No identification None 

Human XP_001958 (559.31)QAS(845.44)  942.03     

E-value: 7.14E-7 (559.33)QVS(873.49)  971.57     

 (545.27)LWT(945.48)  1058.58     

E-value:  First False Positive:  0.52 (705.35)LE(947.47)  1192.62     

 (626.40)LLDE(1096.64)  1357.67     

 (1177.60)LLA(1474.81)  1544.87 (1177.60)LLA(1474.81)   

 (926.54)FSLTDT(1590.84)  1688.94     

  (561.34)AVEP(957.54)  1711.92 (561.34)AVEP     

DNA Polymerase Delta (401.30)PVP(694.48)    750.5   DNA Polymerase Delta  

Human S35455 (486.38)SE(702.45)      772.49   Human P28340   

E-value: 8.14E-7 (441.21)PF(685.33)      797.42     

 (456.31)FT(704.42)      816.48 (456.31)?T(704.42)  LTFALPR 

E-value:  First False Positive:  0.35 (345.25)QEL(715.43)       827.49 (345.25)QEL(715.43)   

 (385.28)LY(661.42)      846.49 (385.28)LY(661.42)  DAYLPLR 

 (421.29)EAW(807.44)   877.48     

 (583.32)LGG(810.44)   908.5 LGG(810.44)  VGGLFAFAK 

 (543.30)LNL(883.51)    995.6     

 (470.29)FVL(829.51)   1071.58     

 (533.32)LPE(872.50)   1131.65 LPE(872.50)   

  (889.45)QS(1104.54)    1190.56       

Hsp70/Hsp90 Organizing Protein (494.26)DSLL(922.48) 992.53   Stress-Induced   

Chinese Hamster AAB94760 (408.23)FQLA(867.48) 995.51   Phosphoprotein STI1  

E-value: 7.82E-9 (550.27)ELL(905.48) 1017.56 (550.27)E?L(905.48) Xenopus AAM77586  

 (585.40)GVDF(1003.59) 1115.67 (585.40)G?DF(1003.59)  LFDVGLLALR  

E-value:  First False Positive:  0.59 (674.38)NGAS(1003.52) 1186.65 NGAS(1003.52)  ALSAGNLD 

 (416.24)ELL(771.45) 1350.72 (416.24)ELL   

  (856.51)NLYA(1317.73) 1415.8     VAYLNPD 

Heat Shock Protein 90-beta (385.26)FLL(758.50) 828.53 (385.26)FLL(758.50) Heat Shock Protein 90-beta ALLFLPR 

Zebrafish NP_571385 (567.28)Y(730.35) 876.43 (567.28)Y(730.35) Salmon AF135117(Nucleotide) FYDGFTK 

E-value: 4.35E-9 (401.29)ES(617.37) 729.45 (401.29)ES(617.37)  LSELLR  

 (708.37)NAV(992.52) 1234.64 (708.37)N?V(992.52)   

E-value:  First False Positive:  0.0051 (716.34)NLL(1056.55) 1241.69 NLL(1056.55)   

      LTPDQPVV 

 
For each sample, sequence tags were constructed from multiple MS/MS spectra from the analysis of a single 
in-gel digest (“Tags Submitted”) and error-tolerantly searched against a protein database (resulting list of 
entries not shown). The “Mass” column contains the corresponding complete mass for each sequence tag. 
Results were sorted by MT. Groups of matching partial sequence tags resulted (“Matching Tags”). E-values for 
the group of partial sequence tags were calculated by the MT software (first column in Bold). The final 
MultiTag report gave a list of database entries with diminishing E-values (data not shown). E-values are cited 
(column 1, “First False Positive”) for the first database entry in the list to not correspond by annotated function 
(i.e. HSP 90) to the most significant hit. Protein identifications made by MS BLAST are found in the column 
“MS BLAST Identifications” and peptide sequences aligned are in “Alignments.”  
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This data demonstrates that MT can outperform the more generic sequence-

similarity searching tool—MS BLAST—when de novo sequence prediction is unable to 

produce meaningful peptide sequences from noisy or low intensity spectra. On the other 

hand, MT successfully identified the proteins because sequence tags are easily assembled 

from tandem mass spectra where complete amino acid sequence prediction is impossible 

(Figure 4). The results suggest that three and more error-tolerantly matching sequence tags 

may unequivocally identify a homologous protein (Table 2), despite none of the sequenced 

peptides exactly matched the corresponding sequence from a DB entry and sequence 

stretches of less than four amino acid residues were determined. Both MT and MS BLAST 

were able to identify the proteins not identified by Mascot because they could tolerate 

amino acid substitutions, resulting in an offset of the peptide’s total mass. 
 

2.1.6 Homologue Identification Specificity of MultiTag Searching 

By its algorithm, MT is a less generic sequence-similarity searching tool, compared to MS 

BLAST and FASTS since it requires identical (although short) stretches of peptide 

sequence for protein identification. We roughly estimated the scope of MT identification 

from the bottom, assuming the most unfavorable model when identical amino acids between 

proteins are distributed uniformly along the sequence. According to our experience and 

table 2, three partial matches normally give a statistically significant match. We have 

estimated the chance to obtain three partial matches and its dependence on the overall 

identity of the complete query sequence and the DB sequence. A very simple calculation 

assumes that the probability that a single amino acid would match between the query and 

the DB sequence is equal to the overall sequence identity and is independent of the 

sequence region and amino acid type. Assuming further a query of 10 identical tags we 

estimated that the MT method is able to identify almost all homologues at the level of 80% 

sequence identity, 75% of homologues at the level of 75% sequence identity, but only about 

45% of homologues at the level of 70% sequence identity. Obviously, MT cannot achieve 

the specificity of the methods using the knowledge of longer sequence parts. According to 

simulations results, sequence based methods like MS BLAST and FASTS are able to detect 

about 50% of homologous sequences at the sequence identity level of ~50%[61]. According 

to our lower limit estimate, MT would require 71% sequence identity (in reality less) to 

reach the same efficiency of identifications. However, simulations with MS BLAST and 

FASTS were performed assuming all sequence predictions are correct, which is rarely the 

case. Therefore, the advantage of using MT is the ability to identify sequence similarities at 
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the reasonable level with high robustness with respect to the quality of the raw data and 

independently of the quality of automated or manual de novo sequence prediction 

techniques. 

 



 

 

 

Table 2 MultiTag E-values are Dependent on Amino Acids in Tag, Number of Tags, Mass Accuracy, and Database Size. 

          E-values PredCount E-values

  Mass Sequence Tags in the identification of DNA Polymerase 1.0 Da* 0.5 Da* 0.1 Da* 0.1 Da* 

1,600,000 

 DB Entries** 

200,000  

DB Entries** 

1 816.48 (456.31)?T(704.42)      6.06E+03     2.73E+03 2.56E+03 1.76E+02 5.11E+03 6.39E+02

2 827.49 (345.25)QEL(715.43)    1.96E+02     8.83E+01 8.34E+01 1.23 1.67E+02 2.09E+01

3 846.49 (385.28)LY(661.42)      2.61E+02     1.30E+02 1.29E+02 2.66 2.58E+02 3.22E+01

4 908.5 LGG(810.44)   8.36E+03     6.53E+03 6.92E+03 9.81E+02 1.38E+04 1.73E+03

5  1131.7 LPE(872.50)   1.73E+03     1.01E+03 9.52E+02 7.06E+01 1.90E+03 2.38E+02

6 LGG(810.44) + LPE(872.50)   5.08E+01 2.71E+01 2.51E+01 9.23E-02 5.16E+01  6.45E+00

7 LGG(810.44) + LPE(872.50) + (456.31)?T(704.42)    1.24E-01 3.09E-02 2.86E-02 2.17E-05 5.72E-02  7.15E-03

8 LGG(810.44) + LPE(872.50) + (456.31)?T(704.42) + (385.28)LY(661.42)     1.97E-05 3.23E-06 3.01E-06 7.68E-11 6.02E-06  7.53E-07

9 LGG(810.44) + LPE(872.50) + (456.31)?T(704.42) + (385.28)LY(661.42) + (345.25)QEL(715.43) 1.49E-06 8.60E-07 8.14E-07 1.26E-16 1.63E-06  2.03E-07

10 LGG(810.44) + LPE(872.50) + (456.31)?T(704.42) + (385.28)LY(661.42) + (345.25)QEL(715.43) 3.64E-09 4.17E-09 3.55E-09 1.31E-16 7.11E-09  8.88E-10

 
The E-value in Bold is shown in Table 1. In the calculation ofE-values for row 9, all tags submitted were included from Table 1. In row 10, 
only the tags that matched the database entry were included in the list of tags submitted for MT calculations (reduced query length. 800,000 
and 200,000 database entries correspond approximately to the NCBI Nonredundant (nrdb) and SwissProt protein databases, respectively.   
“Mass” in column 2 indicates the full length of the peptide corresponding to the sequence tag in column 3. *800,000 database entries, **Mass 
Accuracy of 0.1 Da. 



2.1.7 Enhanced Error-tolerant EST Database Searching by Tandem Mass 

Spectrometry and MultiTag Software 

In general, there are a number of difficulties when searching EST databases with MS data. 

First of all, ESTs represent nucleotide sequences, whereas amino acid polymers are 

analyzed by MS. This however can easily be overcome by these sequences inherent 

colinearity, which allows the translation of either EST sequences, or amino acid queries, in 

six frames into theoretical amino acid sequence, or nucleotide sequence, respectively, for 

DB searching. Secondly, ESTs are generally short sequences, translating into ~150 amino 

acids of polypeptide sequence each. Therefore, many large proteins (i.e. 80-300kD) will 

only be represented by a short sequence stretch, and we would expect many analyzed 

peptides to be left unaligned. This may be overcome by assembling multiple EST sequences 

into cDNA clones of the expressed genes, potentially covering the length of the expressed 

protein. Thirdly, EST sequences are generated by single-pass sequencing of cDNA clones 

(generated from mRNAs), which would likely result in multiple errors. Thus, even in 

searching sequences from the organism of origin (not cross-species), an error-tolerant 

method such as MT would be expected to be more sensitive than a method that demanded 

exact matching because more partial peptide sequences could be aligned to produce a higher 

coverage and more significant alignment.  

Protein identification by the interpretation of tandem mass spectra with sequence 

tags and EST DB searching has relied upon the searching of databases one sequence tag 

(and thus one spectrum) at a time. Since the sequence tag is only a partial interpretation of a 

spectrum, multiple degenerate DB sequences are recognized in most searches, matching 

entries from many different species and proteins with varying molecular weights (when a 

tag is searched error-tolerantly, even more entries are retrieved). Therefore, these retrieved 

sequences must be manually inspected and the false positives must be discriminated against 

in a time-consuming operation. The MT method overcomes this problem by correlating 

search results from multiple spectra to determine the most probable protein identification(s). 

MT sorts DB search results (including combined results from full and partial tags) by their 

statistical significance and assigns an E value for every set of alignments, thus indicating 

alignments otherwise missed and greatly facilitating interpretation of sequence tag-driven 

DB search results. Since there is often an abundance of EST sequence data in silico, the 

utilization of these sequences, either as independent resources or by applying alternate DB 

searching strategies simultaneously (reviewed in section 2.5.3) could greatly facilitate 

protein identification.  
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To test the specificity of MT versus Mascot in EST DB searching, a model dataset 

was used that was generated in a screen of microtubule-associated proteins from Xenopus 

laevis (see section 2.2). Gel separated Xenopus proteins were analyzed by nanoelectrospray 

M/MS and identified by protein DB searching using multiple techniques, which gave 

significant matches for a single protein often with Mascot, MS BLAST, and MT (and 

corresponding greater sequence coverage with the later methods generally).  
To facilitate the DB searching process with sequence tags, a script has been 

developed (in collaboration with Applied Biosystems, Foster City, CA, USA) for automated 

error-tolerant searching to generate unsorted search results for submission to the previously 

described MT software[91]. This script “MTSearch” was developed specifically for 

BioAnalyst QS (Applied Biosystems, CA) to automatically search a list of complete and 

error-tolerant sequence tags against a DB and compile the results in an unsorted list. The 

previously described MT software subsequently sorts search results by the statistical 

significance of combinations of multiple tags and individual tags. The results of MTSearch 

can be directly submitted to the MT statistics software (Figure 7).  
A modification was made to MT for EST DB searching. MT relies upon an 

expected number of peptides per protein sequence, which was previously averaged at 41 

peptides per protein for protein DB searching. The average protein length in a non-

redundant DB was previously determined to be 492 amino acids (corresponding to ~60kD). 

The average length of a tryptic peptides was designated at 12 amino acids, setting the 

average number of tryptic peptides per DB entry at 41. Since EST DB sequences are 

shorter, we would expect fewer peptides possible from each entry; therefore the parameter 

designating the number of peptides expected per DB entry was made adjustable to account 

for differences in length. Secondly, MT relies upon a designated size of the DB searched for 

producing a probability of a random match. This is straightforward with protein DB 

searches because this is a designated number of DB entries. For EST DB searching, all 

nucleotide sequences or the query must be translated in six frames, generating additional 

erroneous hypothetical sequence; only one frame is the correct translation; the number of 

entries were multiplied by 6 to account for this degeneracy.  

A set of DB searches was performed using Mascot, relying upon its own statistics, 

and MT, relying upon E values for the determination of true versus false positives, as a trial 

to judge the sensitivity of MT. Peak lists with corresponding intensities were generated 

automatically from tandem mass spectra of protein digests and were submitted to Mascot 

for DB searching. Sequence tags were constructed by manual interpretation from the same 
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set of tandem mass spectra; averaging ~9 sequence tags per protein digest, which required 

~4 minutes of spectrum interpretation per tag. Sequence tags were used for DB searching 

and the results were analyzed by MT. EST sequences from Xenopus laevis[92] were used as 

reference by both methods for protein identification. In general, MT can make direct 

identifications or cross-species identifications.  
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Figure 7  Integrated MultiTag database searching scheme 
 
To interpret peptide tandem mass spectra with MT for DB searching: 1. Construct tags and list in text file; 2. 
Run DB search script; 3. Submit search results to MT software for sorting by probabilities. MT search script is 
written for Applied Biosystems Bioanalyst QS software. MT software was modified for EST DB searching as 
described above.  

 

 

The MT software reports a “Predicted Count” (PredCount) value and an E value for 

every alignment. The employed statistical model implies that the first species-specific false 

positive should be detected at an E value of approximately 1. The second false positive 

should have an E value of 2, and the third false positive an E value of 3, etc. Because of the 

imperfections of the statistical model, E values less than 0.1 generally indicate true matches, 

with more significant matches having lower E values. PredCount values reflect the 

specificity of matches; however, PredCount does not reflect the expected number of false-

positives when the entire query is searched against a DB. Contrary to E values, PredCount 

values very weakly depend on the number of tags in a query, and low PredCount values 

serve as a further statistical indicator of true matches when E values are high due to large 

queries where few sequence are aligned.   

From the model data set, Mascot was able to recognize 49 peptides with optimized 

settings, making 20 identifications (Table 3). From the same dataset, MT was able to 

recognize 87 peptides and produced 31 identifications, which included all of the Mascot 
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identifications. Whereas many identifications are statistically at the borderline by Mascot, 

MT was able to increase the coverage of these alignments by error-tolerant matching of 

partial peptides to provide more evidence for a positive identification in 12 cases. 

Furthermore, MT was able to make significant alignments in 11 cases where Mascot could 

not. 

Where MT was able to make a significant alignment and Mascot produced no 

significant matches, the top five Mascot hits were inspected to see if the same protein had 

been nonconfidently detected. Since it is possible that MT may recognize one specific EST 

with a query and Mascot may recognize a different EST corresponding to the same cDNA 

sequence, these top hits were carefully inspected to find alternate ESTs matching the same 

protein sequence. Where MT was unable to make a significant alignment, the top five MT 

hits were manually inspected by overlaying the retrieved peptide sequence “on the 

spectrum” using BioAnalyst QS, and comparing the observed fragment ions with 

theoretically calculated fragment ions (at a precision of 0.001 m/z), taking into 

consideration abundant a, b and y series ions, and immonium ions. In this manner, MT was 

able to detect 6 additional matches; 3 of these 6 were not in the Mascot top 5 hits (data not 

shown). This suggests that the MT method can also retrieve true matches that are not 

statistically significant; single hits below threshold should be manually inspected if no other 

alignments are made.  

From this data, MT proves to be a sensitive method for EST DB searching, both 

because more identifications were made than the conventional software and more peptides 

were identified in total, resulting in a higher coverage of proteins. 

The MT approach for enhanced EST DB searching balances the specificity and 

sensitivity of mass spectra interpretation using sequence tags with the sequence tags’ 

inherent degeneracy in DB searching.  In cases where EST sequences would be assembled 

as cDNA clones, we would expect even higher coverage because often MT hit multiple tags 

for different EST sequences of the same cDNA sequence (data not shown). Furthermore, 

MT also would be expected to have fewer false positives because there is no cutoff 

threshold (like conventional softwares), and all borderline hits must be discriminated 

against by manual inspection. However, MT does require manual spectrum and data 

interpretation that is not required by conventional softwares, and because of the 

effectiveness of the conventional softwares, MT would be applied most efficiently in cases 

where other methods fail to make an identification, or where they have recognized certain 

proteins only on the borderline of their scoring thresholds.   
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Table 3 EST database searching: Mascot vs. MultiTag  
 
MW Mascot EST_others  P. MultiTag EST_others Tags Query PredCount E value  

175 Glutamyl-propyl-tRNA syn., 12748494 1 Glutamyl-propyl-tRNA syn., 14989013  2 11 2.70E-13 2.10E-04 
175 Glutamyl-propyl-tRNA syn., 14989013  1 Glutamyl-propyl-tRNA syn., 17398490 2 & 1 9 1.10E-12 1.10E-06 
165 †   Glutamyl-propyl-tRNA syn., 24091165 2 9 1.70E-08 5.70E-06 
165 †   Glutamyl-propyl-tRNA syn., 12746970 1 4 5.07E-04 3.81E-03 

160 Hyaluronan mediated receptor, 13252946 1 Hyaluronan mediated receptor, 13252946 2 9 5.82E-09 1.42E-04 
155 †   Isoleucyl-tRNA synthetase, 24090398 2 & 1 9 2.31E-13 7.39E-08 
150 †   Leucyl-tRNA synthetase, 21870435  2 12 3.36E-06 1.57E-03 
150 †   Leucyl-tRNA synthetase, 21870435 2 6 3.81E-06 3.36E-04 
122 Kinesin heavy chain, 17418741 3 Kinesin heavy chain, 17418741 2 9 1.42E-08 5.37E-06 

122 Kinesin heavy chain, 12480559 2 Kinesin heavy chain, 12480559 2 & 1 7 6.79E-12 1.94E-08 
118 Kinesin heavy chain, 17418741 2 Kinesin heavy chain, 17418741 3 10 1.27E-16 3.13E-08 
  Kinesin heavy chain, 12480559 2 Kinesin heavy chain, 12480559 3 10 8.96E-16 3.13E-08 

100 Elongation factor-2, 11787464  2 Elongation factor-2, 21875348 2 6 3.73E-06 1.27E-02 
90 Heat shock protein, 10065828 2 Heat shock protein 90-beta, 21873865 3 & 1 13 1.12E-17 8.96E-07 

  Glutaminyl-tRNA synthetase, 7699102 2 Glutaminyl-tRNA synthetase, 7393733 3 13 1.57E-14 8.96E-07 

85 †   Cytoplasmic dynein inter. chain, 24082627 3 9 1.12E-17 4.48E-06 
70 Heat shock cognate-70, 21384290 5 Heat shock cognate, 24087000 2 & 1 7 5.00E-15 3.43E-08 

68 Lysyl-tRNA synthetase, 17580417 2 Lysyl-tRNA synthetase, 24097853 2 4 5.00E-06 3.21E-04 

68 Lysyl-tRNA synthetase, 12473885 3 Lysyl-tRNA synthetase, 12473885 3 9 4.03E-14 1.12E-07 

68 HSP70/HSP90 org. protein, 17395146 2 HSP70/HSP90 org. protein, 21874237 2 & 1 7 3.73E-15 6.19E-09 

52 Alpha-tublin, 12471404 2 Alpha-tublin, 21863612 2 16 7.46E-09 3.88E-03 

  Formiminotrans. cyclode., 17413939 1 Formiminotrans. cyclode., 12471624 2 16 5.67E-10 3.88E-03 

50 Alpha-tublin, 12471404  4 Alpha-tublin, 24097682 3 & 1 18 9.70E-20 2.01E-06 

  Beta-tublin, 17425087  2 Beta-tublin, 24093819 3 18 3.66E-15 2.01E-06 

50 Elongation factor-1 gamma, 17414578 6 Elongation Factor-1 gamma, 17527452 5 18 3.58E-25 3.58E-06 
  Elongation factor-1 alpha, 10063988    4 Elongation factor-1 alpha, 21071694 3 18 3.28E-12 3.58E-06 

36 Elongation factor-1 delta, 17397886    2 Elongation factor-1 delta, 24082682 4 5 2.24E-23 1.27E-09 

34 60S Ribosomal Protein L5B, 14181865 1 60S Ribosomal Protein L5B, 14181865 1 & 1 5 1.12E-09 3.36E-08 
30 40S Ribosomal protein, 14185581 1 40S Ribosomal protein S3, 24085095 2 6 2.54E-08 4.33E-06 

28 Elongation factor 1-beta, 17398022  2 Elongation factor 1-beta, 24091513 3 & 2 7 5.67E-31 2.24E-08 

28 †   Elongation Factor 1-beta, 21088085 4 5 6.57E-19 5.22E-09 
Total Peptide hits = 49  87    
Identifications =  20  31    
 
Two similar sets of purified proteins contributed to the identifications above. Peptides = no. of peptides 
matched to any single DB entry; Tags = no. of complete and partial tags matching any single EST sequence, X 
& Y (complete tags & partial tags, respectfully); Tags in Query = no. of tags submitted in query; † not in top 5 
hits; Mascot hits below threshold score in top 5 are in italics; apparent molecular weights (MW) in KiloDaltons 
for corresponding gel bands. 
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2.1.8 The Broader Significance of MultiTag  

The MT approach addresses an issue of growing prominence among the proteomics 

community: universal statistical evaluation of protein identifications[93,94]. It is a goal of 

the proteomics community to set a threshold for protein identifications in high throughput 

settings, so that a protein confidently identified in one laboratory will be confidently 

identified by a similar method in another institution. Consequently, the statistics of MT 

takes a step in this direction and determines the significance of sequence tag alignments in a 

manner that can be adopted as a universal standard evaluation of sequence tag 

identifications without the need for retrospective inspection. As the MT approach could be 

applied to the mining of genomic databases, the statistics will require alteration due to the 

size and nature of these searches. The independent statistics of MT lends the method to a 

wide application and to high throughput settings. 

With further software developments it will be possible to completely automate the 

MT method for high throughput proteomics of organisms with unsequenced genomes or the 

analysis of highly modified proteins from organisms with sequenced genomes. Currently 

the ability to call sequence tags automatically is available, and a scripted interfaced can be 

written to create lists of sequence tags for spectra acquired from a complete LC-MS/MS 

run. A corresponding scripted interface for DB searching has been written that can produce 

a complete list of encoded retrieved DB entries for submission to MT for sorting and 

significance calculation (see section 2.1.7). 

Following developments in automation, MT will be a good complementary method 

to de novo sequence prediction based methods like MS BLAST and FASTS for sequence-

similarity protein identification in high throughput settings, thus expanding the repertoire of 

spectra interpretation and DB mining tools in the hands of mass spectrometrists. As 

sequence-similarity methods develop, the proteomes of organisms with unsequenced 

genomes will become more amenable for characterization, contributing to the development 

of medicine, agriculture, and the biological sciences in general.   
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2.2 Xenopus laevis Functional Proteomics  
2.2.1 Xenopus laevis as a Model System 

Functional proteomics couples purification of multiprotein complexes, organelles, or 

specific macromolecular structures with identification of protein components by MS, and 

provides an effective methodology for the elucidation of the molecular architecture of 

cells[95,96]. An important model organism in vertebrate biology that hasn’t been amenable 

for functional proteomics is the African clawed frog Xenopus laevis. Research carried out 

on Xenopus oocytes and egg extracts has produced insights into the cell cycle[97], 

microtubule cytoskeleton regulation by associated proteins[98], and spindle formation[99, 

100]. Despite the importance of Xenopus laevis, its large 3070-megabase pseudotetraploid 

genome[101] remains unsequenced, and the genome of Xenopus tropicalis is planned to be 

sequenced by the DOE Joint Genome Institute by 2005, which significantly limits the rate at 

which isolated proteins can be identified. Currently, sequences of less than 7000 Xenopus 

proteins are present in a publically available DB despite a public initiative in EST 

sequencing (less than 221,000 largely unannotated ESTs are available, August 16, 2002, 

both figures from http://www.ncbi.nlm.nih.gov/). Taken together current DB resources 

don’t provide an adequate coverage of Xenopus’ large 3070-megabase pseudotetraploid 

genome[101]. 

Below, alternative MS data interpretation approaches (see 2.5.1) and specialized DB 

searching softwares were applied to characterize the Xenopus microtubule-associated 

proteome. 

  

2.2.2 Mass Spectrometry Analysis of Microtubule-Associated Proteins 

Microtubule-associated proteins (MAPs) from Xenopus laevis egg extracts were isolated 

through binding and subsequent elution from microtubules using ATP or salt. The eluted 

proteins were resolved by one-dimensional gel electrophoresis and identified by MS. A first 

screen was conducted for proteins with a high degree of sequence similarity compared to 

available DB sequences using PMF, and proteins not identified by PMF were subjected to 

MS/MS analysis. The conventional MS/MS spectra analysis and DB searching software 

compares lists of observed fragment masses with predicted fragment ion masses to identify 

peptides that are highly similar to DB entries[102,103]. If a close homologue of the 

analyzed protein is not in a DB, conventional protein identification methods fail. In these 

cases, sequence-similarity approaches were used to identify homologous proteins beyond 

the limits of the conventional software. 
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From three gel lanes, 55 protein bands were analyzed and 61 proteins were 

identified by MS (Figures 8 & 11). The conventional software identified 20 proteins by 

PMF and 19 proteins from MS/MS spectra.  From the same set of MS/MS spectra, 

sequence-similarity DB searching by MS BLAST identified 24 proteins and MT identified 

41 proteins (this included all of the proteins identified by the conventional software and MS 

BLAST but one, plus 17 more) (Table 6). The presence of three known microtubule 

associated proteins was confirmed by Western blot (Figure 9). 

In this screen, unknown Xenopus proteins were analyzed by NanoESI-MS/MS (Figure 

10) and the resulting tandem mass spectra were used to generate peptide sequences for DB 

searching. In one example, upon DB searching a protein was simultaneously aligned to Bos 

taurus, Mus musculus, Rattus norvegicus, Homo sapiens, Saccharomyces cerevisiae, and 

Arabidopsis thaliana DB entries, demonstrating that some proteins are widely 

phylogenetically conserved and that DB entries from many distantly-related species can be 

used for protein identification (Table 4).  To identify all of the proteins in the screen above, 

proteins were identified using Xenopus DB entries, making 29 determinations, and 32 

proteins were identified by cross-species reference to homologous sequences from Homo 

sapiens, Mus musculus, Rattus norvegicus, Cricetulus griseus, Sus scrofa, Gallus gallus, 

Gillichthys mirabilis, Paralichthys olivaceus, Salmo salar, Danio rerio, Paracentrotus 

lividus, Caenorhabditis elegans, Drosophila auraria, and Thermosynechococcus elongatus.  
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Figure 8A   Identification of Xenopus MAPs.  

The analysis of protein bands by in-gel digestion and mass spectrometry identified proteins eluted from 

microtubules by NaCl (A) and ATP (B). Conventional protein identification methods include: peptide mass 

fingerprinting, and conventional MS/MS spectra interpretation software. Sequence-similarity identification 

methods include: MS BLAST and MT. All proteins in the first column that were identified by MS/MS were 

identified by conventional and sequence-similarity methods. However only sequence-similarity methods 

identified proteins in the second column. Components: ARS complex (red), EF-1 complex (Green). Molecular 

mass markers are in kilo Daltons. (in collaboration with Dr. Andrei Popov). 
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Figure 8B   Identification of Xenopus MAPs. 
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Figure 9  Immunoblot of Xenopus NaCl elution fractions. 

NaCl-eluted proteins were resolved on a 6% polyacrylamide gel and blotted onto a nitrocellulose membrane. 
Blot was probed with antibodies for XMAP215 (lane 1), XMAP230 and XMAP310 (lane2). Positions of the 
molecular weight markers are on the left hand side, in kilo Daltons. (in collaboration with Dr. Andrei Popov) 
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Figure 10  Time-of-Flight mass spectrum of an in-gel tryptic digest of a 120 kDa Xenopus protein.  

Tandem mass spectra were acquired from peaks designated with m/z. Peaks originating from trypsin autolysis 
products are designated with T. Peaks of the peptides, which matched the sequence of bovine DNA polymerase 
delta are labeled with asterisks. 
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Table 4  Identification of a Xenopus Protein by MS BLAST Sequence-Similarity Searching. 

M/z z 

Precursor  

Mass Manual Interpretation  AUTO BOVINE MOUSE RAT HUMAN YEAST ARABIDOPSIS Score 

407.77 2 813.52 BVVSZLLR / + + + +   47 

414.75 2 827.49 BLLEZGLR / + + + +   46 

435.91 3 1304.70 BXXXTAVLZD YES   +     

440.76 2 879.50 BLAVYD YES       - 

444.27 3 1329.79 BXXAHFNTAVLK, BXXXAHFNTAVLK YES       - 

449.25 3 1344.73 BXXXXADLL, BXXXXXADLL NONE       - 

467.25 2 932.49 BTPTPT NONE       - 

487.74 2 973.46 BYTLDDGYK YES + + + +   42 

512.29 2 1022.57 BVSTFPG YES       - 

519.76 2 1037.52 BTPTGDZV YES + + + +   41 

536.79 2 1071.56 BLALZDPFLR YES       - 

546.77 2 1091.52 BLQDLSDFZK YES       - 

566.82 2 1131.62 BLFEPLL YES + + + +   51 

588.31 2 1174.60 BVLSFDLE NONE + +  +  + 53 

598.31 2 1194.62 BYGLNPEDFLK YES  + +     

623.84 2 1245.66 BXXSZLSALEEK YES + + + +   54 

640.82 2 1279.65 BVLSFDLEE / + +  +   54 

709.33 2 1416.65 BXXEVPDZ NONE       - 

745.41 2 1488.80 BXXXTVAEA, BXXXXTVAEA YES       - 

792.95 2 1583.89 BXADSVYGFT, BXXADSVYGFT YES + + + + + + 58 

883.44 2 1764.86 BXXXEDYTZTVLE, BXXXEDYTGATVLE YES + + + + +  72 

 
Fragmentation of peptide ions in Figure 10 enabled the production of the query above. Bovine DNA 
Polymerase delta was the top hit, scores of individual HSPs are presented. Sequence stretches in bold and 
underlined matched the bovine sequences exactly. Spectra that the software was unable to automatically predict 
sequences for are labeled “NONE.”  Spectra with automatically predicted sequences are labeled “YES”.  In 
spectra labeled “/,” no automatically predicted sequences were included because high quality sequences were 
retrieved directly from y-ion series in the spectrum. 
 
 
2.2.3 Proteins Identified in Xenopus MAP Screen 

The identified proteins can be grouped in three classes: 1) previously described MAPs and 

motors, 2) proteins reported to be associated with the microtubule cytoskeleton, but without 

a known cytoskeletal function (Heat shock proteins), and 3) proteins not previously 

described as having microtubule localization (Table 5). In the first and second groups, 

several known kinesins as well as dynein heavy and intermediate chains were identified, 

and four previously characterized MAPs. Among the proteins of the third group 

components of two multiprotein complexes were detected. These are: four subunits of the 

750-kD guanine nucleotide exchange EF-1βγδ complex[104], and seven aminoacyl-tRNA 

synthetases known to form a multicomponent complex thought to exist in all higher 

eukaryotes[67].  The aminoacyl-tRNA synthetase (ARS) complex has been shown to 

consist of eight to nine aminoacyl-tRNA synthetases and three non-synthetase components. 

The ARS complex is essential for aminoacylation of tRNAs prior to polypeptide synthesis 
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(rev. in [67]) and the EF-1 complex exchanges GTP/GDP in the binding and transportation 

of aminoacyl-tRNAs to the ribosome[104]. 

 
Table 5  Proteins Identified in the Microtubule-Bound Fractions 
(1) MAPs and Motor Proteins    

  Protein Localization/function ID type 

1 Dynein heavy chain ATPase domain-containing chain of the dynein complex[105] Cr 

2 XMAP310 Figure 9[106]  AB 

3 XMAP230 Figure 9[107]  AB 

4 XMAP215 Microtubule-associated protein, regulation of microtubule dynamics[84] X.l.,AB 

5 Xklp1 Chromokinesin[108] X.l. 

6 Eg5 Plus-end-directed microtubule motor[109],[110] X.l. 

7 Kinesin 5B Kinesin heavy chain member 5B[111] Cr 

8 Kinesin 5C Neuron-specific kinesin heavy chain member 5C[112] Cr 

9 EMAP4 a WD repeat protein, localizes to microtubules and 

promotes microtubule dynamics[113] 

Cr 

10 Xklp3 Kinesin II motor protein, Figure 12 X.l. 

11 Xklp3A Kinesin II motor protein[114] X.l. 

12 Dynein intermediate chain Part of the dynein minus-end motor complex[115] X.l. 

13 Alfa tubulin Part of the alpha-beta tubulin dimer[116] Cr, X.l. 

14 Beta tubulin Part of the alpha-beta tubulin dimer[117] Cr, X.l. 

(2) Proteins with previously described microtubule cytoskeleton localization 

1 RHAMM, (Hyaluronan 

mediated motility receptor) 

RHAMM was reported to be associated with microtubuless in interphase and mitotic cells as well as with 

microtubules in vitro[118] 

X.l. 

2 ISWI (imitation switch protein) ATP-dependent chromatin-remodeling factor[119, 120] X.l. 

3 Poly (ADP-ribose) polymerase 

(PARP) 

Telomeres, mitotic centrosomes[121] X.l. 

4 Heat shock protein 90 Microtubules, centrosome[122, 123] Cr 

5 Heat shock protein 70.II Microtubules[122] X.l. 

6 XNF7  Xenopus nuclear factor 7, protein with function in dorsal/ventral patterning of the embryo. In mitosis 

localizes to mitotic spindle[124] 

X.l. 

7 FTCD Formininotransferase cyclodeaminase, microtubule-binding Golgi protein[125] Cr 

 (3) Proteins not previously described as having microtubule localization   

1 Ataxia telangiectasia  protein Chromatin-binding protein[126] X.l. 

2 Ataxia telangiectasia protein  Chromatin-binding protein[127] X.l. 

3 Glutamyl-prolyl-bifunctional 

aminoacyl tRNA synthetase 

Part of a multicomponent aminoacyl-tRNA synthetase complex[67] Cr 

4 Isoleucyl-tRNA synthetase Part of a multicomponent aminoacyl-tRNA synthetase complex[67] Cr 

5 Leucyl-tRNA synthetase Part of a multicomponent aminoacyl-tRNA synthetase complex[67] Cr 

6 DNA-polymerase delta, 

catalytic subunit 

Part of the three-subunit DNA polymerase delta[128] Cr 

7 eEF-2 Translation Elongation factor[129] Cr 

8 Glutaminyl-tRNA synthetase Part of a multicomponent aminoacyl-tRNA synthetase complex[67]  Cr 

9 Arginyl-tRNA synthetase Part of a multicomponent aminoacyl-tRNA synthetase complex[67] Cr 

10 Lysyl-tRNA synthetase Part of a multicomponent aminoacyl-tRNA synthetase complex[67] Cr 
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Table 5  continued

SP70/HSP90 organizing 

otein 

Stress-response protein[130] X.l. 

spartyl-tRNA synthetase Part of a multicomponent aminoacyl-tRNA synthetase complex[67] Cr 

 1-gamma Beta, delta and gamma subunits of EF1 form a guanine nucleotide exchange complex (co-localize with the 

endoplasmic reticulum)[104] 

X.l. 

 1-alpha Substrate of the guanine-nucleotide exchange complex[104]  X.l. 

 1-delta-2 Homologous to the EF-delta-1, part of the guanine-nucleotide exchange complex of elongation factor-1 (EF-

1)[104] 

X.l. 

S Ribosomal protein L5B  60S subunit ribosome-binding protein. Was previously described in association with the ARS complex[131] X.l. 

S Ribosomal protein S3A 40S ribosomal subunit[132] X.l. 

ctivated protein kinase C 

ceptor (RACK1) 

RACK1 is a highly conserved WD protein expressed during embryogenesis[133] X.l. 

 1-beta Part of the guanine nucleotide exchange complex of EF-1[104] X.l. 

ified proteins are grouped into three categories (see text). Proteins were identified (ID Type) by mass 
rometry and reference to Xenopus laevis database sequences (X.l.) or cross-species referenced to 
nces other than Xenopus (Cr). Tubulin monomers were identified with Xenopus and other species entries, 

we detected both Xenopus and pig tubulins. Additional identifications were made by immunoblot analysis 
 specific antibodies (AB). (in collaboration with Dr. Andrei Popov) 

 

 Association of the ARS Complex with Microtubules 

hysical interaction of the ARS complex with meiotic microtubules has not been 

rved previously. The ARS was examined to determine if it could be a cargo complex, 

ciated via a motor protein to microtubules. ATP eluted proteins were fractionated on a 

ose density gradient and resolved by SDS-PAGE. A fraction was identified that 

ded seven aminoacyl-tRNA synthetases and dynein heavy chain (Figure 11). Whereas 

lanes contained this pattern, one lane contained only the ARS complex but no dynein 

y chain (data not shown).  

As p50 (dynamitin) disrupts the dynein/dynactin interaction in vivo and in 

[134], we examined whether p50 would dissociate the ARS complex from 

otubules in the presence of dynein. After p50 addition, some proteins like XNF7 

opus Nuclear Factor 7) disappeared from the microtubule pellet, but we still detected 

S/MS the ARSs in the bound fraction (Figure 12). The ARS complex was eluted from 

otubules with excess ATP, along with other kinesin proteins whose association is 

n to be ATP-dependent. Furthermore, ATP added to the egg extract also prevented the 

 complex from binding to microtubules. We therefore concluded that the binding of the 

 complex to microtubules is specific and ATP-sensitive. These experiments suggest 

the ARS complex is not a “classical” dynein/dynactin cargo. Since MS analysis of 
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other, minor protein bands present in the ARS-containing fraction did not detect any other 

motor proteins, we concluded that the ARS complex binds to microtubules directly.  
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3. Ataxia telangiectasia, AAG40002 250-

50-

75-

100-

150-

 
Figure 11  Xenopus ARS complex purification. 

Microtubule-bound proteins were eluted by ATP and further fractionated on a density gradient, with one 
unique fraction corresponding to ca. 15S shown above. Seven aminoacyl-tRNA synthetases co-migrated on a 
sucrose density gradient with dynein heavy chain. Components of the ARS complex (Red). (in collaboration 
with Dr. Andrei Popov) 
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Control                  +p50    +ATP

+AMP-PNP

250

200

150

50

100

Dynein heavy chain, AAF91078

Myosin II, AAC83556

Glutamyl-Propyl-tRNA Synthetase
Isoleucyl-tRNA Synthetase
Leucyl-tRNA Synthetase

Xklp3, CAA08879
XNF7, AAB35876
Heat shock protein 70.II, AAB41583

 
Figure 12  Isolation of the motor faction in the presence of p50. 

Coomassie-Blue-stained gradient (6-20%) polyacrylamide SDS-gel showing the proteins bound to 
microtubules under different conditions and eluted from them with 20mM ATP. The lanes show from left to 
the right: 1. Molecular weight markers, in kiloDaltons; 2. Proteins bound to microtubules from native extract 
(control); 3. Proteins bound in the presence of AMP-PNP; 4. Proteins bound in the presence of AMP-PNP and 
p50; and 5. Proteins isolated from native extracts supplemented with 10 mM ATP. The major band above the 
50 kD marker corresponds to alpha and beta tubulin (data not shown). (in collaboration with Dr. Andrei Popov) 
 

 
2.2.5 In vitro Spindle Reconstitution and Electron Microscopy 

We have demonstrated that two essential components of the protein translation machinery, 

EF-1 complex and the ARS complex are bound to microtubules in meiotic egg extracts. 

These findings suggested that protein translation may be spatially connected with the 

spindle. To verify this hypothesis, we assembled spindles in Xenopus egg extracts and 

analyzed their structure by electron microscopy. Remarkably, we detected ribosomes, that 

appeared in clusters located peripheral to the centrosomes (Figure 13a) and were distributed 

along the length of the spindle microtubules (Figure 13b), further suggesting that the protein 

translation machinery is localized on the spindle in vivo.    
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Figure 13  Electron micrographs of the Xenopus In vitro-reconstituted spindle.  

A) Initial low magnification images show ribosomes in clusters located peripheral to the centrosomes. B) Upon 
higher magnification, ribosomes were found to be distributed along the length of the spindle microtubules. (in 
collaboration with Dr. Peg Coughlin) 
 

2.2.6 Biological Implications of Xenopus Experiments 

(in collaboration with Dr. Andrei Popov and Professor Eric Karsenti) 
Due to the large size of Xenopus oocytes and the fact that they contain an abundance of 

cytoplasmic proteins for early development, these cells or extracts prepared from them have 

been the preferred model system for the study of the mitotic spindle and spindle-associated 

proteins[100]. For example, MAPs have been analyzed by purification and MS from other 

organisms, such as human, Drosophila, and yeast. However, from the sixteen microtubule-

bound proteins purified by Mack and Compton in 2001 from mitotic HeLa cells, only two 

are on the list of proteins identified above (Eg5 and HSP70)[135]. In a systematic analysis 

of centrosome-associated proteins (and many MAPs are also centrosomal components, 

see[136]) from Drosophila, only one identified protein was also found in our preparation 

(HSP90)[123]. Of the eight proteins identified by Adams and Kilmartin from 

Saccharomyces cerevisiae spindle pole bodies, none matches those found in our 

preparation[137]. Comparing these studies with our results demonstrates the utility of the 

Xenopus oocyte as a model system. 
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The finding that the ARS complex and the EF-1 complex of the protein translation 

machinery are bound to microtubules in egg extracts, and electron micrographs showing 

ribosomes on the reconstituted spindle, prompts speculations about the potential existence 

of such interactions in vivo. The ARS and EF-1 complexes were identified primarily in the 

ATP-elution samples and, interestingly, there is evidence that they may interact with each 

other in vitro[138]. From our results, it could be suggested that protein translation during 

meiosis occurs on spindle microtubules. Indeed, ribosomes have also previously been found 

on microtubules isolated from sea urchin unfertilized eggs, and their attachments were 

mediated through another protein found in our screen (EMAP)[139]. Spatial regulation of 

translation could be especially important for large cells like the Xenopus oocyte. Although 

transcription of cyclin B1[140] does occur during mitosis, protein synthesis has not been 

directly detected in mitotic cells.  On the contrary, de novo synthesis of several cell cycle 

components, including c-mos, cyclin B1, and XKID is essential during meiosis[141,142]. 

Furthermore, cyclin B1 mRNA was found associated with meiotic spindles and it was 

suggested that translation of cyclin B1 occurs locally, “on or near spindles and 

centrosomes”[143]. These findings lend support to this interpretation. 

These findings demonstrate the power of sequence-similarity protein-identification 

methods combined with cell biological approaches for the functional proteomics of 

organisms outside the boundaries of sequenced genomes.  

  



Table 6 Xenopus Protein Identifications and Statistics 
 
No. 

Peptide Mass Mapping 
-Mascot 

MS/MS 
-Mascot 

MS/MS 
-MSBLAST  

MS/MS 
-MultiTag BLS BLH MS MT TH C H XE EM S MA E -value PredCount

1. NaCl elution lane (Figure 8A)                            

1 
Dynein heavy chain 
R. norvegicus, AAA41103           / / / / / / / / / / / 

2 
XMAP 215kD 
Xenopus, CAB61894     / / / / / / / / / / / 

3 
XMAP 215kD,  
Xenopus, CAB61894     / / / / / / / / / / / 

4    
Glutamyl-prolyl-tRNA synthetase 
H. sapiens, XP_001958 16 11 3 2 4 41 1 1 0.1 1.08E-05 2.84E-14 

5  
Bifunctional aminoacyl-tRNA  
Synthetase H. sapiens, P07814 

Glutamyl-prolyl-tRNA synthetase 
H. sapiens, XP_001958 12 9 5 3 5 12 3 2 0.1 5.30E-08 3.09E-24 

6 Xklp1, Xenopus, I51617      / / / / / / / / / / / 

7 
Isoleucyl-tRNA synthetase       
PMF match to ATP 4     / / / / / / / / / / / 

8    
Hyaluronan mediated motility  
Receptor, Xenopus(EST)BG363849 12 9 0 0 0 35 0 3 0.1 / / 

9    ISWI, Xenopus, AAG01537   14 12 2 2 7 29 5 2 0.1 1.72E-03 2.83E-08 

9    Eg5 , Xenopus, Q91783   14 12 2 1 1 29 13 2 0.1 1.26E-02 1.94E-05 

9    Leucyl-tRNA synthetase*   14 12 4* 0 4 29 0 0 / / / 

10   
DNA polymerase delta 
H. sapiens, P28340  

DNA polymerase delta  
H. sapiens, S35455 145 3 12 12 5 2 13 31 1 1 0.1 8.14E-07 1.26E-16 

11   
Kinesin heavy chain 
Xenopus, AJ249840 

Kinesin 5B 
M. musculus, NP_032474 139 3 12 9 4 3 33 11 5 5 0.1 5.05E-08 6.94E-18 

12  
Kinesin 5C  
M. musculus, AAC79804  

Kinesin heavy chain 
  M. musculus, L27153 

Kinesin 5C 
H. sapiens, NP_004513 387 9 15 10 5 1 19 5 3 4 0.1 3.40E-08 3.54E-17 

13  
Poly [ADP-ribose] polymerase  
Xenopus, P31735 

Poly [ADP-ribose] polymerase 
Xenopus, P31669   14 11 4 4 2 88 5 2 0.1 1.00E-04 9.95E-17 

13   
EMAP 
H. sapiens, Q9HC35 EMAP, H. sapiens, NP_061936 134 2 14 12 2 1 0 88 1 1 0.1 4.57 8.56E-03 

14  
Heat shock-like protein 
M. musculus. CAA34748 

Heat shock protein 90-beta  
S. salar, AF135117 

Heat shock protein 90-beta 
D. rerio, NP_571385 184 4 14 5 5 3 38 190 35 3 0.1 4.35E-09 3.87E-19 

14   
Glutaminyl-tRNA synthetase 
M. musculus, AK003794 

Glutaminyl-tRNA synthetase 
H. sapiens, NM_005051 104 2 14 8 5 2 7 190 14 8 0.1 6.26E-08 7.95E-16 

15 
XNF7 
 Xenopus, AAB35876     / / / / / / / / / / / 

16 
XNF7  
Xenopus, AAB35876     / / / / / / / / / / / 

17 
XNF7 
Xenopus, AAB35877     / / / / / / / / / / / 

18 
Xklp3A 
Xenopus, CAC33801     / / / / / / / / / / / 

19 
Heat shock protein 70  
Xenopus, AAB41583     / / / / / / / / / / / 

20    
Lysyl-tRNA synthetase 
H. sapiens, BAA06688  15 9 5 4 10 71 21 4 0.1 1.07E-07 3.80E-24 

21   

Formiminotransferase  
cyclodeaminase 
 H. sapiens, AF289023 

Formiminotransferase  
Cyclodeaminase 
S. scrofa, P53603 169 3 16 12 2 0 7 172 8 4 0.1 2.18E-01 3.49E-04 

21  
Tubulin alpha 
G. mirabilis. AAL24509 

Tubulin alpha 
Xenopus, P08537   16 4 3 3 179 172 118 3 0.1 7.11E-10 1.02E-14 

22   
Tubulin beta 
H. sapiens, BC020171 

Tubulin beta-5 
G. gallus, B27554 350 8 18 10 4 3 289 251 25 2 0.1 2.19E-07 3.19E-17 

22  
Tubulin alpha 1 
H. sapiens, AAH06468  

Tubulin alpha 
P. lividus, A60671 

Tubulin alpha 
Xenopus, CAA30093 267 5 18 7 6 6 268 251 137 7 0.1 2.72E-08 3.39E-33 

23 
Tubulin beta-2 
Xenopus, S05968      / / / / / / / / / / / 

24 
Elongation factor gamma 
Xenopus, I51237     / / / / / / / / / / / 

25  
Elongation factor 1-beta 
 Xenopus, CAA49418  

Elongation factor 1-beta 
Xenopus, P30151 

Elongation factor 1-beta 
Xenopus, P30151 250 5 13 7 7 4 3 26 26 1 0.1 2.12E-08 1.06E-32 

26   
Pancreatic trypsin inhibitor 
B. taurus, P00974 

Pancreatic trypsin inhibitor 
 B. taurus, X04666 

Pancreatic trypsin inhibitor 
B. taurus, 1FAN 160 3 10 6 3 3 43 36 0 0 0.1 1.07E-08 2.00E-16 

2. ATP elution lane (Figure 8B)                   

1 
Dynein heavy chain 
R. norvegicus, A38905         / / / / / / / / / / / 

2    
Glutamyl-prolyl-tRNA synthetase 
H. sapiens, XP_001958 10 9 3 1 7 21 15 4 0.1 7.14E-07 1.09E-09 

3    
Glutamyl-prolyl-tRNA synthetase 
H. sapiens, XP_001958 8 4 1 1 0 4 1 1 0.1 15.35 4.45 

4    
Isoleucyl-tRNA synthetase 
H. sapiens, P41252  10 9 3 1 4 22 0 0 0.1 2.73E-05 2.89E-08 

5    Eg5, Xenopus, Q91783   10 7 1 1 0 6 1 1 1 19.79 0.75 

6  
Kinesin heavy chain, 
M. musculus, AAC06326 

Kinesin heavy chain  
M. musculus, X61435 

Kinesin 5B 
M. musculus, NP_032474 109 2 15 8 3 3 15 3 1 3 1.5 1.37E-05 1.01E-10 

7 
Kinesin heavy chain 
H. sapiens, A41919     / / / / / / / / / / / 

8  
Elongation factor eEF-2  
R. norvegicus, CAA68805 

Elongation factor eEF-2 
C. elegans, A40411  10 6 4 3 65 50 50 2 0.1 7.99E-07 1.02E-13 

9 
Heat shock protein 90 
H. sapiens, P07900      / / / / / / / / / / / 

10   

Cytoplasmic dynein  
intermediate chain 
 Xenopus, AF319781 

Cytoplasmic dynein  
intermediate chain 
Xenopus, AF319781 179 3 18 9 5 5 7 63 17 5 0.1 6.25E-28 1.80E-07 

11  
Heat shock protein 70.II  
Xenopus, AAB00199 

Heat shock protein 68 
D. auraria, AF247553 

Heat shock protein 70 
P. olivaceus,  AAC33859 106 2 20 4 3 2 31 167 167 2 0.1 4.09E-09 5.78E-10 

12    
Lysyl-tRNA synthetase 
H. sapiens, Q15046  15 4 1 1 6 81 25 2 0.1 1.56 6.58E-02 

13   

HSP70/HSP90  
organizing protein 
C. griseus, AAB94760 

HSP70/HSP90 
organizing protein 
C. griseus, AAB94760 168 3 16 7 4 0 6 25 13 2 0.1 7.82E-09 6.43E-14 

14  
Elongation factor 1-gamma  
Xenopus, AAB29957 

Elongation factor 1-gamma 
Xenopus, AAB29958 

Elongation factor 1-gamma 
Xenopus, I51237 168 7 22 8 8 6 3 100 100 6 0.1 4.12E-08 5.38E-41 

14  
Elongation factor 1-alpha 
Xenopus, CAA37169 

Elongation factor 1-alpha 
Xenopus, P17507 

Elongation factor 1-alpha 
Xenopus, P17508 379 8 22 11 5 5 4 95 95 5 0.2 8.35E-07 3.03E-22 

15  
Elongation factor delta-2  
Xenopus, S57631 

Elongation factor  
1-beta/delta 
C. elegans, P34460 

Elongation factor delta-2 
Xenopus, S57631 106 2 9 5 4 3 2 46 46 3 0.1 2.49E-09 3.53E-18 

16    60S Ribosomal protein L5B   6 5 2 1 17 66 39 2 0.1 2.21E-07 5.36E-09 
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Table 6  continued

Xenopus, P15126 

 
Ribosomal protein S3 
M. musculus, AAH10721 

40S ribosomal protein S3B 
Xenopus, P47835 

40S Ribosomal protein S3A 
Xenopus, P02350 98 1 18 7 2 2 21 120 20 2 0.1 9.86E-05 1.24E-07 

 
Activated protein kinase C receptor 
Xenopus, AAD42045 

Activated protein kinase  
C receptor 
Xenopus, AAD42045 18 7 2 1 1 120 100 2 0.1 4.98E-03 5.60E-05 

  
Elongation factor 1-beta 
Xenopus, P30151 

Elongation factor 1-beta 
Xenopus, P30151 266 5 7 5 5 4 18 70 70 5 0.3 2.75E-09 1.16E-20 

  
Pancreatic trypsin inhibitor 
B. taurus, P00974 

Pancreatic trypsin inhibitor 
B. taurus, 1FAN   10 4 2 2 40 1 0 0 0.1 3.82E-07 3.64E-08 

actionation lane (Figure 11)                           
Dynein heavy chain  
R. norvegicus, BAA02996         / / / / / / / / / / / 

   
Ataxia telangiectasia  
Xenopus, AAF20175  5 5 2 2 0 0 0 0 0.1 8.88E-11 4.07E-07 

  
Ataxia telangiectasia 
Xenopus, AAG40002  150 3 / / / / / / / / / / / 

Glutamyl-prolyl-tRNA  
Synthetase  
PMF match to ATP 2    

Glutamyl-prolyl-tRNA synthetase 
Xenopus, EST, BI443016 / / / / / 40 14 3 / / / 

Isoleucyl-tRNA 
synthetase  
PMF match to ATP 4       / / / / / / / / / / / 

 
Leucyl-tRNA synthetase 
H. sapiens, BAA95667          

Leucyl-tRNA synthetase 
H. sapiens, BAA95667 

Leucyl-tRNA synthetase 
H. sapiens, BAA92590 416 8 14 7 3 1 2 / / / / 7.73E-05 1.50E-07 

Glutaminyl-tRNA 
synthetase  
PMF match to NaCl 14       / / / / / / / / / / / 

  
Arginyl-tRNA synthetase 
H. sapiens, P54136 

Arginyl-tRNA synthetase 
T. elongatus,  NP_681615   439 9 12 7 2 1 17 / / / / 3.42E-05 4.95E-03 

Lysyl-tRNA synthetase 
 PMF match to NaCl 20      / / / / / / / / / / / 

  
Aspartyl-tRNA synthetase 
H. sapiens, AAH00629 

Aspartyl-tRNA synthetase 
H. sapiens, P14868 

Aspartyl-tRNA synthetase 
H. sapiens,  P14868 361 6 10 5 5 4 2 / / / / 2.98E-21 3.55E-09 

tein bands were analyzed by peptide mass fingerprinting and Mascot database searching (Blue) from the 
Cl elution lane (section 1), ATP elution lane (section 2), and Density Gradient fractionation lane (section 3). 
e set of tandem mass spectra was analyzed by Mascot (Orange), MS BLAST (Red), and MultiTag (Green). 
S: MS BLAST score, BLH: no. of high scoring pairs in MS BLAST identification, MS: no. of MS/MS 
uired where sequence tag interpretation was attempted, MT: no. of complete tags submitted to MT, TH: no. 

tags in top MT hit, C: no. of complete tags in top hit, H: hits that are homologues to the top MT hit with E-
lues <0.1, including the top hit, XE: no. of Xenopus ESTs retrieved from non-error-tolerant searches with all 
uence tags from the analysis of the digest, EM: no. of Xenopus ESTs matching the top MT hit, S: no. of 
uence tags matching Xenopus ESTs matching the top MT hit, MA: mass accuracy in Daltons used in MT 

aluation, E: E-values calculated by MT. PredCount: Predicted Count calculated by MT. *Each individual 
uence tag matched to a different database entry from four different species. Identifications in Black were 
ntified by EST DB searching. 

 



 62

2.3 Dunaliella salina Functional Proteomics 
2.3.1 Plant Proteomics 

The characterization of proteomes is a precise method to identify the proteins, and their 

corresponding genes, which act together to produce the unique biochemistry and physiology 

of cells. The proteomes of plants have been characterized in multiple species, such as 

Arabidopsis[144], rice[145], maize[77], pea[79], wheat[146], and poppy[81], among others. 

The sequencing of the Arabidopsis[11] and rice genomes[9,10] has facilitated proteomic 

research into these organisms. Genome sequences and corresponding protein sequence 

databases provide a reference for the identification of proteins by the correlation of 

analyzed peptide fragments with in silico sequences by MS and DB searching. 

Conventional protein-identification algorithms, such as Mascot[102] and SEQUEST[147], 

correlate mass data from the mass spectra of protein digests (PMF) or fragment ion tandem 

mass spectra of peptides (produced by the proteolytic digestion of whole proteins), and are 

primarily capable of exact matching (reviewed in[16]), subsequently restricting proteome 

characterization in many plant species with unsequenced genomes (reviewed in[148]).  

Despite this limitation, homologous proteins in different species often have conserved 

amino acid sequences, enabling existing DB entries to serve as a reference for the 

identification of homologous proteins in other phylogenetically related species.  

Here MS and multiple DB searching strategies were applied simultaneously 

(reviewed in section 2.5.3) to characterize the proteome of the green alga Dunaliella salina. 

Dunaliella can adapt to the most hypersaline conditions on earth. As such it is recognized as 

a model photosynthetic organism for analyzing salinity tolerance. In contrast, most plants 

can adapt to low or moderate salinities and their growth is severely limited at salinities 

exceeding 200 mM NaCl[149].  

Differential mRNA screens carried out in Arabidopsis thaliana and rice have shown 

that plants respond to salt stress by up-regulation of expression of a large number of genes 

involved in diverse physiological functions[150-153]. Dunaliella responds to salt stress by 

massive accumulation of glycerol, the internal osmotic element in Dunaliella, by enhanced 

elimination of Na+ ions and by accumulation of distinct proteins[154]. However, no 

comprehensive analysis of salt up-regulated genes/proteins has been carried out in 

Dunaliella, mainly due to absence of sufficient genomic information. Sequence information 

for D. salina is limited to approximately 50 protein entries and 3000 nucleotide entries in 

NCBI (August, 2003), thus restricting the ability to identify proteins by MS using 

conventional methods. 
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The conventional DB-searching algorithm, Mascot, and two sequence-similarity 

DB-searching algorithms, MS BLAST and MultiTag, and protein and EST DB searching, 

were applied for the identification of proteins from 2D gels. In an attempt to characterize 

Dunalella’s unique physiology resulting in resistance to high saline conditions, we 

identified 61 proteins that are up-regulated in 3M salt, from three sub-cellular fractions: 

crude plasma membrane, chloroplast soluble proteins, and cytosol. The induced proteins 

included many members of the Calvin cycle, starch biosynthesis and degradation, amino 

acid biosynthesis, energy production, chaperones, and protein synthesis and degradation. 

Sequence-similarity protein identification techniques were essential for effective 

identification of more than half of the proteins analyzed. From these results, we expect the 

proteomics of many plants with unsequenced genomes to be more amenable to 

characterization than previously facilitated by conventional methods.  

 

2.3.2 Analysis of Dunaliella Proteins by Mass Spectrometry 

D. salina cells were cultured in 0.5M or in 3M NaCl, and  fractionated into crude plasma 

membrane, cytoplasmic soluble, and chloroplast soluble fractions. After separation of each 

fraction on 2-D gel electrophoresis the spots were differentially analyzed to identify 

components up-regulated by high salt (Figure 14A, B, C). In general, the fractionation 

elevated the overall number of salt up-regulated spots (>2-fold induction) from 30 in a total 

cell protein extract to 75 (+ 3 references) in the combined 3 fractions after exclusion of 

cross-contaminations between fractions (data not shown).  

Initial peptide mass fingerprinting analysis of spots up regulated in the total cell 

extract failed to identify any protein (data not shown). From the three cellular fractions, 

PMF was able to identify 9 of 78 spots using reference protein DB sequences from 

Dunaliella sp. and Chlamydomonas sp., among others (Table 7). The remaining 69 proteins 

from the three 2-D gels were analyzed by nanoelectrospray MS/MS and Mascot protein DB 

searching, which identified 23 additional proteins (in one case two proteins were identified 

in one spot).  
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A. Crude plasma membrane (3M NaCl) 

 
B. Cytoplasmic soluble (3M NaCl)  

 
C. Chloroplast soluble (3M NaCl)  

    
 
Figure 14 Dunaliella 2-D gel protein separation 
 
Proteins were first resolved by isoelectric point from pH of 3-10 or 4-7, then according to 
mass, ~21-200kiloDaltons. Gels were stained with Coomassie. (in collaboration with Dr. 
Adriana Katz) 
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Table 7  Dunaliella Protein Identification  

Spot Protein Identifications F.I. OMW TMW Species  Accession  PF Ma-EST/Ac Ma MB MT 
  Antioxidation                     
B30 Iron-superoxide dismutase pre. 3 27 27 V. unguiculata AAF28773   1   
B31 Thioredoxin peroxidase 2 26 22 T. elongatus BAC09006  2 3   
C21 Thioredoxin peroxidase 3 25 23 R. conorii AAL02989   1   
              
  Chaperones                     
A22 Chaperonin precursor 3 70 63 P. sativum AAA66365 2 / AV397884 4 8   
A24 Heat shock protein 70 # 100 70 A. albimanus AAC41543 2 / BI874228 4 10   
C2 Luminal binding protein 5 pre. 4 98 74 N. tabacum CAA42660 2 / AV643368 3 7   
C4 Heat shock 70 put. mit. pre.  3 87 70 O. sativa AAO17017   2   

                        
  Calvin Cycle / Carbon Acquisition                     
A8 Carbonic anhydrase  # 47 64 D. salina AAC49378   4   
A12 Carbonic anhydrase  # 35 64 D. salina AAC49378   3   
A14 Carbonic anhydrase  # 60 64 D. salina AAC49378 X      
A17 Rubisco pre. # 55 53 C. moewusii AAA84152  X      
A4 Rubisco large sub. 1 55 53 C. reinhardtii AAA84449 3 / BI726309  6 9   
A15 Rubisco large sub. 1 55 13 bacteria OTI-8 BAA92486 X      
B18 Rubisco large sub. 4 60 52 H. capensis AAK96893 X      
B13 Rubisco activase chl. pre. 2 75 45 C. reinhardtii AAA33091  2 4   
C7 Rubisco activase chl. pre. 2 75 45 C. reinhardtii AAA33091   4   
A9 Phosphoribulokinase pre. 1 45 46 S. oleracea AAA34036 1 / AV392278 6   
A20 Phosphoribulokinase  3 45 42 C. reinhardtii AAA33090 1 / BE453265 1 3   
A11 NADP-Glyceraldehyde-3-phosphate DH 6 42 40 Chlamydo. sp. AB035312    8   
B25 Sedoheptulose-1,7-bisphosphatase 4 42 39 Chlamydo. sp. BAA94305   6   
B8 Dihydroxyacetone kinase 6 76 65 S. pombe AF059204   4   
C3 Dihydroxyacetone/glycerone kinase-like  4 88 64 A. thaliana BAB02871   8   
B29 Triose phosphate isomerase 2 29 23 B. belcheri BAA22631   4   
              
  Starch Biosynthesis / Pentose Phosphate Pathway             
B10 Phosphoglucomutase chl. pre.  73 69 S. tuberosum AJ240053  2 / BE128973 2 10   
B17 6-Phosphogluconate DH decarboxylating 1 64 54 M. sativa AAB41553  2 / BF269268 4 8   
B15 ADP-Glucose pyrophosphorylase small sub. 2 66 55 C. reinhardtii AAF75832   5 10   
B16 ADP-Glucose pyrophosphorylase large sub. 3 65 57 L. esculentum AAC49943   5   
B26 Inorganic pyrophosphatase pre. 2 34 31 C. reinhardtii CAC42762 1 / BM498985 1 8   
C18 Inorganic pyrophosphatase pre. 3 39 31 C. reinhardtii CAC42762   6   
              
  Energy                     
A1 Glucose-6-phosphate 1-DH 6 60 66 D. bioculata CAB52685 X      
A3 Glucose-6-phosphate 1-DH 5 60 66 D. bioculata CAB52685 X      
C13 Plastidic NADP-dependent malate DH 2 58 47 D. bioculata CAC15546   2  3 
B19 Plastidic NADP-dependent malate DH 4 50 47 D. bioculata CAC15546  X      
A2 Dihydrolipoamide S-acetyltransferase   4 60 44 T. elongatus BAC08851   8   
A6 Pyruvate DH E1 alpha sub. 4 50 47 A. thaliana AAB86803   3   
B24 Thiamin biosynthetic enzyme 2 41 37 G. max BAA88227     1 
C17 Adenosine kinase 3 48 38 P. patens CAA75628 1 / BJ172248 1 1   
B23 Ferrodoxin NADP oxidoreductase put. 3 42 43 A. thaliana AAF19753   8   
C15 Ferrodoxin NADP oxidoreductase put. 2 49 43 A. thaliana AAF19753 2 / BG647868 1 4   
C16 Ferrodoxin NADP oxidoreductase put. 3 49 43 A. thaliana AAM65564   1 / BG647868 1 3   
C5 ATP synthase beta chain mit. pre. 2 86 62 C. reinhardtii CAA43808 1 / BE642669 1 4   
C22 ATP synthase delta chain chl. pre. 4 24 24 C. reinhardtii AAB51365    3   
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Table 7  Continued

yrimidine and Amino Acid Biosynthesis                 
lutamine synthetase # 50 42 C. reinhardtii AAB01817  5 7   
lutamine synthetase 3 45 41 C. reinhardtii AAB01818 2 / AV623601 2 3   
arbamoyl phosphate synthetase large chain 3 127 130 A. thaliana AAB67843  3 11   
spartate kinase-homoserine DH put. 3 95 100 A. thaliana BAC43372    3   
-Isopropylmalate synthase put. 4 72 74 A. thaliana AAF26002 2 / AV631505 2 8   
-3-Phosphoglycerate dehydrogenase  3 70 66 A. thaliana BAA20405  2 / BF269268 4   

           
rotein Biosynthesis and Degradation                 
inc metalloprotease 3 112 118 A. thaliana BAB02957  1 / BE249333 2 5   
inc metalloprotease  3 112 118 A. thaliana BAB02957  2 / AV628512 4   
GF-beta receptor interacting homolog 2 42 36 A. thaliana AAC49079   5   
rocessing peptidase put. mit.  2 72 59 A. thaliana AAF14827   7   
6S Proteasome regulatory particle triple-A  2 58 50 O. sativa AB037154 4 / AV620391 4 7   
ranslation elongation factor Tu mit. 5 57 44 R. americana AAD11872   5   
ranslation elongation factor EF-G 4 103 78 G. max X71439  1 / BI727515 2 9   

           
ytoskeleton            

eta tubulin 3 72 50 C. incerta AAB60936 X      
lpha tubulin 2 71 29 Z. mays S39969 X      
lycosilation            

DP-mannose pyrophosphorylase 1 45 40 A. thaliana CAC35355   4   
a+ transpot            

QR alpha sub. 5 79 51 V. cholerae AAF95439    1   
QR alpha sub. 4 77 51 V. cholerae AAF95439    1   
thers                     

TP-binding protein typA 7 92 68 A. thaliana BAB08691     6   
    PMF IDs =  9     
    Mascot EST IDs = 20    
    Mascot Protein IDs = 23   
    MS BLAST(s) Ids=  50  
    MS BLAST(m) Ids=   2 
          

mns: Spot: no. corresponding to 2-D gels; Protein identification: proposed biochemical function of the 
in based on MS analysis and DB searching; FI: fold induction of the spot from changing growth 
itions from 1M to 3M NaCl; OMW: observed molecular weight in kiloDaltons calculated by software X; 

: theoretical molecular weight of the identified protein based on the aligned database sequence; Species: 
 of corresponding retrieved DB sequence; Accession: retrieved DB sequence; PF: Peptide mass 

rprinting, X = positive identification; Ma: no. of peptides positively identified by Mascot by protein DB 
hing; MB: no. of peptides positively identified by scripted or manually interpreted MS BLAST protein 
earching; MT: no. of peptides positively identified by MultiTag protein DB searching; Ma-EST/Ac: no. of 
des positively identified by Mascot EST DB searching / accession number; put. = putative; mit. = 
hondrial; chl. = chloroplast; DH = dehydrogenase; sub. = subunit; pre. = precursor. 
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The complete set of tandem mass spectra from the analysis was further interpreted 

using the MS BLAST sequence-similarity protein identification approach. Amino acid 

sequences were predicted de novo from tandem mass spectra and assembled into modified 

BLAST queries for DB searching, as previously described[62]. MS BLAST identified 50 

proteins, which included all of the proteins identified by Mascot (except one) plus 28 more 

(Table 7).  

Further EST DB searching of all tandem mass spectra with Mascot confirmed the 

protein identifications made in 20 of the cases, using primarily Chlamydomonas reinhardtii 

sequences (Table 7). All spots still unidentified were analyzed by MS BLAST EST DB 

searching; however, this did not contribute to the characterization of any of the unknown 

spots, although the method confirmed the identification of a few proteins already identified 

(data not shown).  

The MT approach for sequence-similarity identification was used as a final attempt 

to identify the remaining unidentified proteins because of its demonstrated enhanced 

sensitivity over MS BLAST (see section 2.2), but this technique was only able to confirm 

an identification made by Mascot and subsequently missed by MS BLAST, and contributed 

only one new identification which relied upon only one peptide alignment. Whereas MS 

BLAST relies upon representing a peptide along its full length, MT is more sensitive when 

low abundance proteins are analyzed and full amino acid sequences can not be discerned, 

rendering MS BLAST ineffective[91].  

 

2.3.3 Dunaliella Proteins Induced in 3M NaCl  

Of the 61 identified proteins, the largest categories are enzymes involved in carbon 

assimilation or mobilization and in production of metabolic energy. Up regulation of four 

major Calvin cycle enzymes (Rubisco, Phosphoribulokinase, NADP Glyceraldehyde 3-P 

DH, Sedoheptulose 1,7 bisphosphatase) and of Rubisco activase, suggest that high salinity 

enhanced CO2 assimilation. The large accumulation of a different form of Rubisco under 

high salt (spot A17) may be an adaptation response for more efficient CO2 assimilation. The 

pronounced induction of plasma membrane-associated carbonic anhydrases is a typical 

response of algae and cyanobacteria to carbon limitation. It has been reported before in 

Dunaliella and proposed to enable the algae to overcome the limitations in CO2 availability 

in hypersaline solutions[155]. 

Up-regulation of two ADP-pyrophosphorylase subunits suggests enhanced starch 

biosynthesis whereas the large accumulation of glucose 6-phosphate dehydrogenase, a key 
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enzyme in starch mobilization and NADPH production, suggests enhanced starch 

degradation and generation of Redox energy for biosynthesis of carbon metabolites.           

Notable enzymes in the category of metabolic energy production, in addition to 

glucose 6-phosphate dehydrogenase, are 2 subunits of pyruvate dehydrogenase 

(dihydrolipoamide S-acyl transferase, pyruvate dehydrogenase E1 alpha subunit), the key 

enzyme in channeling carbon into the citric acid cycle for production of NADH and the 

chloroplastic malate dehydrogenase, which catalyzes translocation of reducing power 

between the chloroplast and the cytoplasm in plant cells. Based on these results we propose 

that high salt induces enhanced starch mobilization, CO2 fixation and Redox energy 

production in order to meet the need for massive glycerol biosynthesis at high salinity 

(Figure 15). This interpretation is consistent with previous indications for synthesis of 

glycerol in Dunaliella from starch and photosynthetic carbon assimilation[156].  

Another group of up-regulated proteins are key enzymes in ammonia assimilation 

(glutamine synthetase) and in biosynthesis of different amino acids. Induction of glutamine 

synthetase in plants usually reflects accumulation of ammonia, either from enhanced 

photorespiration or from enhanced protein degradation (see below). Carbamoyl phosphate 

synthetase, aspartate kinase-homoserine dehydrogenase, 2-isopropyl malate sysnthase and 

3-phosphoglycerate dehydrogenase are key enzymens in the biosynthesis of arginine (and 

pyrimidines), threonine (and methionine, isoleucine), leucine and serine (and cysteine, 

glycine), respectively.  

Various regulatory proteins involved in protein synthesis initiation (eIF3=TGF-beta 

receptor interacting protein), elongation and processing of proteins are up-regulated at 3 M 

NaCl. Related to this is GDP-mannose pyrophosphorylase, involved in protein 

glycosylation. Two other categories include general stress-related proteins in plants: 

antioxidants (Fe superroxide dismutase, thioredoxin peroxidase), involved in oxidative 

stress, and chaperones (chaperonin, HSP-70) involved in protecting proteins under stress 

conditions. NQR alpha is a subunit of the Na+ extrusion complex involved in salinity 

tolerance in bacteria, as will be discussed below.  

  



 69

 
 
Figure 15  Salt-activated carbon flux in Dunaliella 
 
Here is a metabolic network in Dunaliella that is activated by high salt. Paths in red are activated, some to 
produce an excess of glycerol. (in collaboration with Dr. Adriana Katz) 
 

2.3.4 Salinity Tolerance in Dunaliella 

(in collaboration with Dr. Adriana Katz and Professor Uri Pick) 
 Presented here is the first large-scale proteome analysis of salt up-regulated proteins in a 

lower plant whose genome is largely uncharacterized. Even though the analysis was limited 

mostly to soluble proteins that are up-regulated by no less than 2-fold and eliminated low 

abundance proteins, we were able to identify about 80% of the selected protein components. 

This success is partly due to the fractionation which increased the resolution of up-regulated 

proteins and mostly to the layered mass spectroscopic analysis and in particular the 

sequence-similarity searching algorithm MS BLAST.  
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 Most proteins identified in the crude plasma membrane fraction were soluble 

proteins derived from the chloroplast or cytoplasm. The contamination of plasma membrane 

preparations with soluble proteins has been observed in many cases and probably results 

from adsorption of soluble proteins that are released during cell lysis. Integral membrane 

proteins were not identified in the crude plasma membrane fraction probably because they 

are under-represented by isoelectic focusing (IEF)[157]. Thylakoid membrane and integral 

plasma membrane proteins are currently being resolved and analyzed by different 

procedures (Pick and Katz). Considering these limitations, it may be expected that the 

overall number of salt up-regulated proteins in Dunaliella is much larger than revealed in 

this study. 

The observation that major Calvin cycle enzymes are up-regulated by high salinity 

in Dunaliella contrast observations in plants and cyanobacteria of suppression of 

photosynthetic carbon assimilation and Calvin cycle enzymes under salt stress[158,159]. 

The typical response of plants to salt/drought stress is inhibition of photosynthesis and 

enhanced photorespiration, which results primarily from CO2 limitation and is predicted to 

consume excess photosynthetically-produced Redox energy. The present results suggest 

that in Dunaliella photosynthesis was not inhibited by high salinity: the accumulation of 

plasma membrane carbonic anhydrases and of major Calvin-cycle enzymes suggests 

compensation for decreased CO2 availability and enhanced CO2 assimilation. Also the up-

regulation of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, 

ferredoxin NADP oxidoreductase, pyruvate dehydrogenase and NADP malate 

dehydrogenase in Dunaliella suggest enhancement, rather than inhibition, of photosynthetic 

and respiratory Redox energy production and mobilization. These results may have a 

broader significance for identifying rate-limiting steps in carbon metabolism and energy 

production in plants under stress. Up-regulation of distinct key enzymes in the Calvin cycle 

and Redox-energy generation may relieve the general inhibition of photosynthesis under 

stress, which is a major limitation in the ability of plants to cope with salt stress. 

This difference between the response of Dunaliella and higher plants to high salt 

may be explained by the need for massive glycerol biosynthesis in Dunaliella at high 

salinity: at 3M NaCl, the internal glycerol concentration in Dunaliella is close to 5M and it 

constitutes the major carbon pool under these conditions. As shown in Figure 15, these 

results suggest that glycerol is produced from enhanced CO2 assimilation and starch 

degradation channeled through the Calvin cycle to dihydroxyacetonephosphate, which is 

reduced to yield glycerol. Plants and cyanobacteria utilize different osmotic elements 
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(proline, glycine-betaine) that are derived from amino acids. Dunaliella resembles yeast and 

fungi in the utilization of glycerol as an osmotic element[160]. Proteomic analysis of salt-

induced proteins in S. cerevisiae revealed up-regulation of 3 glycerol 

biosynthetic/dissimilation enzymes, including dihydroxyacetone kinase[161], that were 

identified in this work.  

The large increase in glutamine synthetase level in 3M NaCl indicates enhanced 

production of ammonia. The up-regulation of carbamoyl synthase can reflect enhanced 

synthesis of arginine, which is a storage form of assimilated ammonia in plants. Enhanced 

ammonia production may result either from photorespiration or from enhanced protein 

degradation. Although none of these possibilities can be excluded, there are indications 

against enhanced photorespiration. For example, the up-regulation of 3-phosphoglycerate 

dehydrogenase indicated that serine biosynthesis at high salinity in Dunaliella proceeds 

primarily from 3-PGA. High photorespiration activity produces glyoxalate which serves as 

an alternative substrate for production of serine and suppresses biosynthesis from 3-PGA. 

Also the indications for high CO2 assimilation activity and the massive production of 

glycerol are inconsistent with enhanced photorespiration. It seems more likely that the 

upregulation of glutamine synthetase reflects ammonia production from enhanced protein 

degradation.  

Conversely, the up-regulation of key enzymes in amino acid biosynthesis suggests a 

need for enhanced synthesis of new proteins. Another indication for enhanced biosynthesis 

and degradation of proteins at high salinity is the up-regulation of several regulatory factors 

in protein translation initiation and elongation and protein processing enzymes. Of 

particular interest is the dual-function eukaryotic initiation factor eIF3=TGF beta-receptor 

interacting protein (spot A10). Homologs of this protein in mammals and in plants interact 

with plasma membrane receptors and as such are part of a signal-transduction pathway in 

response to external stimuli[162,163]. A fission yeast homologue, of this protein Sum-1, is 

part of protein translation initiation complex 3 and was shown to be re-localized under salt 

or heat stress into distinct cytoplasmic domains[164]. Also the two mitochondrial 

translation elongation factors, EF-G and EF-Tu, may have dual functions: in addition to 

their established roles in protein biosynthesis, bacterial homologues of both proteins have 

chaperone properties and were proposed to protect proteins against mis-folding under 

stress[165,166]. The mitochondrial processing peptidase, zinc metaloproteases, and GDP-

manose pyrophosphorylase are involved in processing and glycosylation of proteins. It may 

be noted that a major plasma membrane salt-induced proteins in Dunaliella, a triplicated 
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transferrin-like protein, is heavily glycosylated [167,168]. Conversely, the up-regulation of 

a 26S proteasome regulatory subunit suggests enhanced protein degradation at high salinity. 

The overall picture emerging from these results is of a dynamic reorganization of protein 

composition in different cellular compartments, by synthesis and processing of novel 

proteins as well as by massive degradation of other proteins.  

Another particularly interesting up-regulated protein is the NQR alpha subunit 

homolog, a component of a bacterial Redox-driven Na+ extrusion system[169]. It has 

recently been reported evidence for Redox-driven Na+ extrusion system in Dunaliella[170]. 

The identification of a homologous protein to the bacterial system provides a tool for 

identification and cloning of this unique Na+ transport system that so far has not been 

identified in eukaryotes. 

In summary, these results suggest that the response of the halotolerant alga 

Dunaliella to high salinity involves up-regulation of different enzymes and metabolic 

pathways, some of which differing from higher plants, such as carbon assimilation and 

mobilization for glycerol biosynthesis and Redox-drived Na+ extrusion, others common to 

plants and related organisms (chaperones, antioxidative enzymes), and others whose 

relationship to salt stress in plants has not yet been clarified. The latter include the factors 

regulating protein biosynthesis, processing and degradation, which may have cardinal 

importance in adaptation to high salinity. 

 

2.3.5 Cross-Species Protein Identification Specificity of Mascot and MS BLAST  

The Mascot software may detect a match as being significant when one or multiple MS/MS 

spectra from the analyzed peptides are correlated with a DB sequence from a related 

species, taking into consideration certain statistical issues, such as the goodness of fit 

between the observed and theoretically predicted fragment ions, mass accuracy, and the size 

of the DB. Mascot can generally align a few (one or two) peptides from proteins from 

organisms with unsequenced genomes with DB sequences from related organisms; for 

instance, in this study of Dunaliella salina, the majority of Mascot identifications were 

made by using reference sequences from Chlamydomonas sp.  

However, Mascot is prone to produce false positives (like every protein 

identification method associated with MS); this usually occurs with the correlation of one or 

two spectra/peptides to a DB entry. A false positive occurs when the DB sequence 

recognized by Mascot correlation methods and scoring rules doesn’t truly represent the 

peptide that was fragmented to produce the resulting spectrum. In these cases, by 
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substituting isobaric amino acid combinations within the length of a peptide sequence, the 

sequence will mistakenly indicate an unrelated protein; a false positive. For instance, 

Mascot recognized the peptide YPIDWFK and a related miscleavage form, YPIDWFKK 

(1095.575), putting the protein identification well above the scoring threshold. However, 

upon MS BLAST analysis of the same data set, two other peptides and the isobaric peptide 

sequence YPLVSDFKK (1095.596) were recognized as aligning to a different protein entry 

that shared no significant sequence similarity with the Mascot identification (Figure 16). 

Furthermore, the complete fragment ion series could be read for this peptide (and its fully 

cleaved product, YPLVSDFK) in the MS BLAST identification, the entry had the 

appropriate predicted molecular weight, and a homologue existed in Chlamydomonas 

reinhardtii.  

Upon close manual interpretation, that is, by overlaying of the retrieved sequence on 

to the spectrum and examining the closeness of fit of the predicted fragment ions, the high 

sensitivity, resolution and mass accuracy of Q(q)TOF MS enables the discernment of 

inconsistent mass accuracy errors and the inspection of the absence of usually intense 

fragment ions (such as, the b-2 ion, the a-2 ion, or b series or y series ions, or immonium 

ions), indicating the likelihood of a false positive identification. By extending the sequence 

coverage of the DB entry with the other tandem mass spectra, ambiguous sequences can be 

correlated with more evidence. By inspecting the data in this way, false positives can be 

minimized, as it has been done in this study. 

The MS BLAST approach has been demonstrated here to produce higher sequence 

coverage than Mascot by aligning more peptides in an error-tolerant sequence-similarity 

manner, increasing the confidence of protein identifications by MS. MS BLAST recognized 

266 peptides in total from tandem mass spectra (averaging 5.32 peptides per identification, 

range 1-11) whereas Mascot was able to align only 60 peptides in total to DB entries 

(averaging 2.6 peptides per identification, range 1-6). In 19 cases, MS BLAST extended 

Mascot sequence coverage (i.e. from 1 to 8 peptides aligned); MS BLAST averaged 6 

peptides per identification for this group. In 28 additional cases, MS BLAST made 

identifications where Mascot was unable to produce any significant alignments, averaging 

4.4 peptide alignments per identification. EST DB searching with Mascot averaged 1.75 

peptides per identification in 20 cases.  

In this manner confident cross-species protein identifications were determined. This 

data further demonstrates the fact that all proteins identified in proteomics are assigned with 
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certain confidence levels, with some protein assignments having higher confidence levels 

than others.   

 

 

 
 
Figure 16 Mascot false positive identification. 
 
A doubly-charged peptide ion of precursor mass m/z 548.80 was fragmented on a Q(q)TOF mass spectrometer; 
the acquired m/z range was from 100 to 1200 Thomsons (above). Mascot matched the amino acid sequence 
YPIDWFKK (1095.575 amu) from a protein DB to the tandem mass spectrum above. However, de novo 
sequencing and MS BLAST analysis of the same mass spectrum recognized the near isobaric peptide sequence 
YPLVSDFKK (1095.596 amu). Both sequences matched all of the same y-ions (fragments which retain the C-
terminus of the peptide) except for three discrepancies (positions are shown in spectra 1-3 above, m/z 536-540, 
605-610, 623-627, respectively). The sequence retrieved by Mascot required an ion match at the Red line in 
spectrum 2 to have a full y-ion series. The sequence retrieved by MS BLAST required an ion match at the Red 
lines in spectrum 1 and 3 to have a full y-ion series.   
 

 

 

2.3.6 Assigning Biochemical Function to Proteins based on Sequence Alignments 

Extending sequence coverage may help exclude false positive functional assignments based 

on sequence identity, but only to a certain degree. Rost has demonstrated using 
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bioinformatics that proteins with high sequence similarity (70-90%) can have divergent 

biochemical functions[171].  To overcome this problem for sequence-similarity protein 

identification, the analyzed proteins in proteomics need to be found in specific functional 

contexts. For example, here we attempted to identify soluble proteins induced under 

specific stress conditions. The experimental context used to recognize a set of proteins in 

proteomics already puts the proteins to be identified in a functional setting, thus imposing 

certain criteria on the character of most of those identifications; i.e. kinases, ribosomal, 

glycolytic, etc. For example, if we were to identify one of the Dunaliella proteins as a 

human histone (and if we did not question the integrity of the biochemical preparation), we 

would likely doubt the validity of such an identification, even if extensive sequence-

similarity was determined. In the case demonstrated here, the multiple proteins identified 

were recognized to fit into coherent metabolic pathways and biochemical patterns, thus 

further suggesting that such sequence-similarity identifications likely correspond to the 

proposed biochemical function of the protein.  

 

2.3.7 Sequence-Similarity Protein Identification in Plant Proteomics 

The above study demonstrated that sequence-similarity protein identification techniques by 

MS could identify more than twice as many proteins recognized by the conventional 

software, subsequently greatly enhancing the proteome analysis in the alga Dunaliella 

salina. The DB searching sensitivity of MS BLAST was demonstrated to be a significant 

advantage over Mascot because of the BLAST algorithm’s ability to perform true sequence-

similarity alignments, and in no cases did these alignments rely upon precursor mass 

correlation or the exact matching of predicted peptide fragment ions with observed ions. 

Furthermore, this capability allows MS BLAST to extend the sequence coverage capable of 

conventional methods, thus utilizing a greater proportion of mass spectra for protein 

identification, and increasing the confidence of identifications. One disadvantage of MS 

BLAST is the requirement that amino acid sequences need to be predicted from peptide 

tandem mass spectra, either manually or automatically, thus requiring a certain abundance 

of protein and a certain level of spectra quality.  

Even though these techniques were used with nanoelectrospray MS for the above 

study, the MS BLAST and MT sequence-similarity DB searching methods can be applied to 

data generated by different MS platforms (reviewed in section 1.1.3). Recently, the method 

has been applied with MALDI TOF-TOF MS[172]. Similarly, MT may be applied to all 

MS data where peptide sequence tags can be determined from tandem mass spectra (see 
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section 2.5.2). However, these methods are most effective in the analysis of gel separated 

proteins and due to statistical considerations they most likely will not be able to be utilized 

with shotgun proteomics methods such as MudPIT[39]. 

 With these methods and future related developments, the proteomes of plants with 

unsequenced genomes will be more amenable for characterization by high-throughput MS 

techniques. Not only will more conserved proteins be able to be identified in distantly 

related plant species from those with sequenced genomes, but also more divergent 

homologous proteins will be able to be identified from those species that are closely related 

to organisms with sequenced genomes, such as maize, wheat, and barley, using the rice 

genomic sequences. Using these methods for protein identification, immediate, rapid and 

effective proteome analysis will be possible in plant biochemistry and physiology in many 

species, without having to wait for the completion of future genomic sequencing in many 

cases.     

 

2.4 MS BLAST Specificity and Phylogenetic Considerations for Future 

Genomic Sequencing 
2.4.1 Calculation of MS BLAST Specifity and Phylogenetic Reach of Protein 

Identification Using Available Resources. 

To estimate the success of proteome characterization for a selection of organisms with 

unsequenced genomes, we calculated the specificity of MS BLAST to identify homologous 

proteins. The success rate of MS BLAST searches was correlated to the phylogenetic 

distance of the organism under study to the next closest organism with a fully sequenced 

genome. With the analysis of 10 peptides (each 10 amino acids in length, with two 

undetermined residues placed at randomly chosen position in their sequence), MS BLAST 

can successfully identify proteins down to a limit of 65% identity. Taking into consideration 

eight species with sequenced genomes, we propose groups of species where sequence-

similarity methods will be effective (Figure 18). With these developments, functional 

proteomics in important model species with unsequenced genomes has the potential to be 

advanced by MS and sequence-similarity DB searching. 
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Figure 17  Predicted success of proteomics in organisms with unsequenced genomes 

Three partial phylogenetic trees of major subkingdoms branch from a phylogenetic tree of all living organisms. 
Phylogenetic analysis was used to estimate the success of proteome characterization by mass spectrometry and 
sequence-similarity database searching, based on the specificity of the MS BLAST to identify homologous 
proteins. To estimate the success of MS BLAST searches, queries comprised of 8 peptides sequences were 
used, 10 amino acids in length and with 2 errors in each peptide to simulate ambiguities in spectrum 
interpretation. Organisms in red have sequenced genomes. Color code is based on the distance between species 
and corresponding protein identification coverage of the proteome by MS BLAST; light green: >90% 
coverage; middle green: 30-50% coverage; dark green: up to 30% coverage. (in collaboration with Dr. Bianca 
Habermann) 
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2.4.2 Genomic Sequencing and Proteomics 

Currently, there is a substantial debate over which organisms’ genomes deserve to be 

sequenced next[173,174]. A recent conference sponsored by the National Human Genome 

Research Institute focused on the direction of genomic sequencing and established criteria 

for the selection of the next organisms to be sequenced. The criteria include the ability to 

improve human health, the scientific utility of the new data, and technical considerations. 

One suggestion at the conference was to sequence the genome of an organism from each of 

the major branches of life to better understand the evolution of traits[173]. As already 

mentioned, the ability to identify proteins depends on DB content, meaning this genomic 

sequencing proposal may also be extremely beneficial for the proteomics of the organisms 

with unsequenced genomes in these diverse branches, in light of cross-species protein 

identification by MS.  

With over 1.7 million described species, and potentially as many as 10 million 

species in the biosphere, it is evident that the research community will not be able to 

sequence the genome of every species. Many biological researchers investigating proteomes 

have already experienced the lack of genomic resources as an inability to identify proteins 

by MS. For example, proteomics studies in maize, an economically important organism, 

have been compromised due to the lack of DB resources and an inability to use available 

DB resources effectively[78]. However, plant scientists have begun to realize the limitations 

of non-error-tolerant methods of protein identification and now see the prospects of 

sequence-similarity methods to contribute to proteomics[78,148].   

Yet for organisms distantly related to ones with sequenced genomes, even protein 

identification by sequence-similarity methods will be ineffective in many cases because 

sequences still will not exist in databases that have significant identity to those proteins 

studied.  For example, whereas many proteins in mammals will have sequence similarity to 

human, the more diverse classes of proteins in distantly related mammals would be unable 

to be identified (any protein below ~50% identity).  In addition, as percent identity 

decreases between orthologs, it is likely that the divergent protein will take on a new 

function.  Without the genomic sequencing of organisms in these distant phylogenetic 

regions, which could fill the gap between available genomic sequences and proteins from 

organisms with unsequenced genomes, many analyzed proteins will go unidentified because 

of a continuing deficiency of genomic sequence resources. 

As genomic sequences become available to the public in the form of annotated DB 

entries, these sequences are immediately used in proteomics to identify isolated gene 
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products.  Historically, with the completion of a genomic sequencing project, those 

sequences were utilized to identify proteins from the organism with the newly sequenced 

genome.  Since MS relies upon databases to make protein identifications, it is evident that 

as more genomic sequences are produced, it will be possible to identify more proteins.  This 

has been the case since the inception of proteomics.   

However, in addition, every sequenced genome provides a resource that enables 

researchers to identify homologous proteins in many organisms.  Consider the impact made 

by the complete genomic sequencing of Arabidopsis thaliana upon plant proteomics (Table 

8).  The Arabidopsis genomic sequences provide a resource for the identification of proteins 

from Arabidopsis itself and many different species of plants as well.  With the application 

of MS and sequence-similarity methods, a single sequenced genome will enable the 

identification of more proteins from the proteomes of organisms with unsequenced genomes 

than by the use of methods that are only able to identify proteins of high homology to DB 

entries.  For example, all cross-species identifications in the study of the maize proteome by 

Chang et al. could have been accomplished using DB entries from the Arabidopsis genome 

and sequence similarity searches (Table 9) Even though Chang et al. identified maize 

proteins using DB entries from many different plants, this data only underscores the fact 

that many proteins are highly homologous in related organisms, and sequence-similarity 

searches will likely be successful in making proteomics a reality in a significant number of 

organisms with unsequenced genomes.   

The expanding organismal scope of proteomics depends upon the creation of 

software tools for sequence-similarity searching and related methods that couple MS with 

bioinformatics, as discussed above, and the sequencing of genomes.  In this context, species 

representative of diverse phylogenetic lineages must have their genomes sequenced.  More 

specifically, the proteomics of organisms with unsequenced genomes is probably focused to 

certain phylogenetic branches, which could be better represented by genomic sequencing, 

giving a broad resource for many independent researchers.  These sequenced genomes can 

represent many phylogenetically related organisms depending on the nucleotide substitution 

rate in those lineages and the ability to annotate future genomic sequences[175,176].  
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Table 8  Sequencing of the Arabidopsis genome and its effects in proteomics. 

Year 

Genomics  

Development  Proteomics   Ref. Organisms in the ID of Proteins MS MS/MS SSS Citation

2000 Arabidopsis thaliana Papaver somniferum ARABIDOPSIS (31), P. sativum(6), Glycine max(6), X  X** [81] 

   Nicotiana tabacum(3), Solanum tuberosum(3),      

   Oryza sativa(3), Vitis vinifera(3),      

   Protea neriifolia(2), Lavatera thuringiaca(2),      

   Brassica oleracea(2), Fritillaria agrestis(1),      

   Z. mays(1), Brassica juncea(1), Datisca glomerata(1),      

   Hordeum vulgare(1), S. cerevisiae(1),       

   S. oleracea(1), Linum usitatissimum(1),     

   Citris paradisi(1), Catharanthus roseus(1),     

   Schizosaccharomyces pombe(1), Batis maritima(1),     

   Thermotoga maritima(1), Alcaligenes entrophus(1),    

   Amycolatopsis mediteranei(1), Malus domestica(1),     

   Mesmryanthemum crystallinum(1)     

  Zea mays ARABIDOPSIS (2), B. vulgaris(2),  B. napus(2), G. max(2), X   [77] 

   C.roseus(4), O. sativa(3), N. tabacum(3), M. sativa(3),     

   H. vulgare(2), C. reinhardtii(1)     

  Pisum sativum ARABIDOPSIS (8), Z. mays(3), G. max(3), O. sativa(2), X X  [79] 

   Lycopersicum esculentum(2), Nicotiana sylvestris(1),     

   H. vulgare(1), Carica papaya(1), Helianthus annuus(1),     

   Onobrychis vicifolia(1), Sesbania rostrata(1),      

   Physcomitrella patens(1),       

  A. thaliana ARABIDOPSIS (33), Z. mays(3) X X  [82] 

  Z. mays ARABIDOPSIS (14),O. sativa (22), Triticum aestivum(15),  X   [78] 

   P. sativum(5),H. vulgare(5), S. oleracea(5),     

   Cucumis sativus(4), N. tabacum(3), S. tuberosum(2)    

   Picea rubens(1), Secale cereale(1), Populus nigra(1),    

   Schismocarpus matudai(1)     

2001  T. bruei   ARABIDOPSIS , Mouse, D. melano, E. histoly, C. elegans,   X X [60] 

   O. sativa, S. cerevisiae, and others(9)     

  X. laevis *ARABIDOPSIS (1) *B. taurus(1) , *Mouse (1), *Rat (1), X X [85] 

    *Human (1),      

 

Organisms in the column “Developments in Proteomics” had proteins identified by cross-species identification.  
Organisms in the column “Ref. Organisms…” contributed reference database entries used in the identification 
of proteins from organisms in the previous column, with the number of proteins following reference organism.  
“MS” designates that proteins were identified peptide mass mapping, “MS/MS” by tandem mass spectrometry, 
and “SSS” by sequence similarity searches.  *Multiple alignments are made to different species from the 
analysis of a single protein. **Peptides were sequenced by Edman degradation. 
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Table 9 Arabidopsis homologues to database references used in maize protein identification[77] 

Accession No. Accession No.  Identity 

X89451 B. napus AAL32658 Arabidopsis 89% 

Z97178 B. vulgaris AAK32918 Arabidopsis 89% 

X83499 C. roseus AAK82464 Arabidopsis 88% 

U40212 C.reinhardtii AAL32658 Arabidopsis 72% 

U53418 G. max BAB02581 Arabidopsis 89% 

P37228 G. max O82399 Arabidopsis 77% 

X91347 H. vulgare P57751 Arabidopsis 77% 

AF020271 M. sativa BAA97065 Arabidopsis 80% 

X77944 N. tabacum AAK73989 Arabidopsis 88% 

U38199 O. sativa T48154 Arabidopsis 83% 

D67043 O. sativa AAA79369 Arabidopsis 83% 

Z26867 O. sativa AAG10639 Arabidopsis 88% 

 
Protein sequences from Organisms in the left column were used to identify maize proteins by peptide mass 
mapping.  Arabidopsis homologues exist to all maize proteins that were cross-species identified. BLASTP 
searches were performed at NCBI to create the table above. 
 

With the complete sequencing of the pufferfish genome, we can predict that studies 

into the proteomes of other fishes will capitalize on these sequence resources by using 

sequence-similarity search methods[12]. Once a bird’s genome or reptile’s genome is 

sequenced, we can expect to see developments in the proteomics of related organisms.  For 

the timely expansion of the organismal scope of proteomics, the selection of closely related 

organisms for genomic sequencing is not an optimized use of available resources.  From a 

proteomics perspective, it makes no difference whether the human or the chimpanzee has its 

genome sequenced, because only one of the organisms needs to have its genome sequenced 

for the successful proteomics of both using the discussed analytical methods. 

With the use of MS and emerging bioinformatic techniques, proteins could 

potentially be identified from any organism depending on the availability of diverse 

genomic sequences and the annotation of those sequences.  As many biologists are without 

protein identification support for their research, we can directly conclude from these 

developments that where proteomics studies are desired, genomics should utilize its efforts 

on organisms phylogenetically situated to positively affect the proteomics of their 

phylogenetic neighbors.  The future of protein identifications by MS and the efforts of 

biological scientists involved in proteomics of organisms with unsequenced genomes 
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depends to a large degree on the sequencing of the genomes from underrepresented classes 

and distantly related organisms in accordance with the findings of molecular systematics.  

 

2.5 Analytical Strategies in Proteomics 
2.5.1 Analytical Strategies 

Protein identification by MS and sequence DB searching was established in 1993, and since 

that time the proteomics community has witnessed a proliferation of analytical strategies for 

protein identification. Analytical strategies are composed of three components: mass 

spectrometry platforms, spectra-database sequence correlation methods, and sequence 

databases. To extend protein identification capabilities, as well as to advance the efficacy of 

protein identification in organisms with unsequenced genomes, a number of recent 

developments are pointing to new analytical strategies to interrogate proteomes. Specific 

types of mass spectrometers produce spectra of varying quality, and alternate interpretation 

methods are suited for specific types of spectra. When a specific mass spectrometry 

platform is combined with a specific correlation method and a specific type of database, 

this combination may be more or less effective for protein identification than a different 

combination. Here, to discuss these relationships, we will designate specific analytical 

strategies by the annotation “mass spectrometry platform”(where “MS/MS” means any 

tandem MS method, unless otherwise named)—“spectra-DB sequence correlation 

method”–“sequence database.” To enhance protein identification ability, a number of 

combinations must be developed, compared, and employed simultaneously in proteome 

analysis. Here this complexity is attempted to be systematically described and potential new 

strategies for protein identification are recognized. Multiple strategies are now applied 

simultaneously to increase sensitivity, throughout, and reliability of the characterization of 

proteomes. Now, by assessing the complexity of the interplay of MS, bioinformatics and 

sequence databases, we can begin to predict future approaches and challenges in the 

development of proteomics. 

 

2.5.2 Spectra-Sequence Correlation Methods and Analytical Strategies 

Mass spectra are correlated with DB sequences primarily in three ways: the mass pattern, 

the amino acid sequence, and the sequence tag (Figure 18). These three methods derive 

information of different qualities from peptide MS/MS, and they each suit the interpretation 

of spectra (more or less effectively) depending on the spectra’s signal-to-noise, mass 

accuracy and resolution. Furthermore, each of the different methods has distinct capabilities 
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to identify analyzed peptides whose sequences share only partial identity with DB 

sequences. 

Mass patterns (composed of lists of m/z values of detected peaks along with the 

corresponding peak intensities) are used in two types of MS analysis: PMF and MS/MS. In 

PMF, masses of intact peptides are determined and are used for DB searches. Historically, 

mass patterns derived from peptide mass fingerprints were first used to search protein 

sequence databases (PMF-mass pattern-Protein DB)[177-180] (Figure 19)(Table 10). 

Observed peptide masses are compared with peptide masses calculated from the in silico 

digestion of protein DB sequences with trypsin, and resulting matches are scored 

accordingly. In these softwares, mostly mass values have been used, but now there are 

attempts to incorporate peak intensities to improve the specificity of the 

identifications[102,181,182]. When analyzed peptide sequences deviate away from the 

identity of corresponding sequences in DB entries, either because of amino acid substitution 

or post-translational modifications, the probability of successful identification by this 

method diminishes[13], and MS/MS must be employed. 

A second common analytical strategy correlates MS/MS spectra through mass 

patterns with protein DB sequences (MS/MS-mass pattern-Protein DB)[15,102,147,187-

189]. In these cases, observed masses of peptide precursors and masses and intensities of 

their fragment ions are compared with theoretical peptide masses and fragments derived 

from sequence databases with the application of particular enzyme specificity and peptide 

fragmentation rules. The method of scoring of the similarity between MS/MS spectrum and 

DB sequence employs certain peptide fragmentation models, and those models are 

instrument-dependent. To this end, DB searching programs usually allow the specification 

of instrument type. MS/MS spectra with higher mass accuracy will be able to interrogate 

databases more specifically, increasing the probability of identification with fewer 

peptides[15]. Furthermore, MS/MS spectra with high signal-to-noise will give best results, 

as true peptide fragment ions won’t be obscured by background peaks in spectra. Mass 

pattern methods are currently more diverse and have experienced a greater attention in the 

proteomics community than other protein identification methods. The correlation of mass 

patterns with DB sequences also have some “error-tolerant” capabilities that withstand 

amino acid substitutions between those peptides observed and sequences present in a 

DB[15,103]. In addition to protein DB interrogation, spectra can be correlated through mass 

patterns with EST databases (MS/MS-mass pattern-EST DB)[15,102,147,190] and more 

recently with genomic databases (MS/MS-mass pattern-Genomic DB)[184,190] (Figure 
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19). Besides using complete mass patterns for protein identification, the recently developed 

“peptide end sequencing” makes use of N- and C-terminal peptide fragment ions detected in 

the low m/z region, along with a parent mass, for the identification of low abundance 

proteins[191,192]. However, if multiple non-isobaric amino acids substitutions occur within 

individual peptides or if unknown multiple post-translational modifications exist, then the 

probability decreases that the protein will be identified by these methods. In these cases, a 

different method of spectra interpretation is employed.  
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Figure 18  Representative Information from the Mass Spectrum in Proteomics. 

Mass spectra can be represented by primarily three types of information for their correlation with DB 
sequences. Mass patterns are composed of lists of m/z values of detected peaks and corresponding peak 
intensities (partial list shown above/right). Amino acid sequences are derived from spectra considering precise 
mass differences in ion series, and annotated in the form of series of amino acid symbols (KVLQV…).  
Sequence tags consist of partial amino acid sequences combined with two mass values which lock the sequence 
within the length of a peptide, and a parent mass (the sequence tag for the above spectrum is 
(815.44)VFE(1190.62), peptide mass 1460.72. 
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Figure 19  Strategy Network 

Analytical strategies are composed of three components: mass spectrometry platforms, spectra-sequence 
correlation methods, and sequence databases, which can be read left to right, in the scheme above. Arrows 
show the interaction of mass spectra with representation methods (mass pattern, amino acid sequences, 
sequence tags)(see Figure 18) and nucleotide or amino acid databases (protein, EST, genomic). Arrows 
represent robust and less established interactions equally, despite practical limitations to some. 
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 Table 10  Analytical Strategies 
Analytical Strategy Ref. 

MS  

PMF-mass pattern-Protein DB [177] 

PMF-mass pattern-EST DB [102] 

PSD-mass pattern-Protein DB [22] 

PSD-amino acids-Protein DB [183] 

MS/MS  

MS/MS-mass pattern-Protein DB [147] 

MS/MS-mass pattern-EST DB [147] 

MS/MS-mass pattern-Genomic DB [184] 

MALDI-Q(q)TOF-amino acids-Protein DB [62] 

ESI-Q(q)TOF-amino acids-Protein DB [85] 

ESI-TQ-amino acids-Protein DB [85] 

LC-Q(q)TOF-amino acids-Protein DB [63] 

ESI-Ion Trap-amino acids-Protein DB [185] 

MS/MS-amino acids-EST DB * 

MS/MS-amino acids-Genomic DB * 

MS/MS-sequence tag-Protein DB [86] 

LC-Ion Trap-sequence tag-Protein DB [186] 

MS/MS-sequence tag-EST DB [88] 

MS/MS-sequence tag-Genomic DB [82] 

 
Representative analytical strategies are listed above. Analytical strategies are represented by the annotation 
“mass spectrometry platform”(where “MS/MS” means any tandem MS method, unless otherwise named)—
“spectra-sequence correlation method”–“sequence database.” Researchers who contributed to the development 
of these strategies are cited in the column on the right. *These strategies are currently established in house and 
are under development.  
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Amino acid sequences enable spectra interpretation for the identification of proteins 

that are homologous to DB sequences despite having no peptides of identical precursor 

mass with those theoretically predicted from DB entries (as required by mass pattern 

searches). In this analytical strategy, amino acid sequences produced from MS/MS spectra 

can be correlated with protein DB sequences (MS/MS-amino acids-Protein DB)[57,61,62]. 

Amino acid sequences can be produced de novo from MS/MS spectra of peptides primarily 

by two methods: via chemical modification of peptide N- or C-termini or by direct 

computer-assisted interpretation of spectra by sequence prediction algorithms (see section 

1.1.4). Chemical modification methods demand relatively large sample quantities, are 

manually laborious, and ultimately obscure spectra for parallel mass pattern interpretation. 

However, sequence prediction algorithms rapidly generate putative amino acid sequences, 

although often multiple degenerate sequences are predicted with similar statistical 

confidence. To utilize this information, numerous peptide sequences from multiple 

fragmented peptides must be compiled in a query for a sequence-similarity DB search. This 

has been accomplished in dedicated softwares based on FASTA[59] and BLAST[58] 

sequence homology searching algorithms. Mass spectrometry driven BLAST (MS BLAST) 

is one example of this type of strategy[62].  

Amino acid sequence-based interpretation methods are also flexible for the 

development of alternate analytical strategies (Figure 19). In one proteome analysis, MS 

BLAST was employed to correlate MALDI-Q(q)TOF spectra with protein DB sequences 

(MALDI-Q(q)TOF-amino acids-Protein DB)[62]. However, this is just one strategy among 

other possible paths considering available MSPs, databases, and developments in high-

throughput spectra processing and MS BLAST DB searching capabilities. NanoESI-

QqTOF-amino acids-Protein DB and NanoESI-TQ-amino acids-Protein DB[85], as well as 

LC-QqTOF-amino acids-Protein DB[63], are other options for sequence-similarity 

identification depending on available instrumentation (Table 10). Furthermore, peptide 

sequence can be generated de novo from LC-ion trap mass spectra and used for protein DB 

interrogation (LC-Ion Trap-amino acids-Protein DB)[185,193]. In addition, MS/MS-amino 

acids-EST DB and MS/MS-amino acids-Genomic DB are other possible DB searching 

strategies that could also be employed for protein identification with amino acid sequences 

(currently both approaches are operating in house) (Table 10). All of these strategies enable 

new capabilities for protein identification; however, their efficiency is limited when 

sequence prediction fails.  
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Sequence tags enable spectra interpretation for the identification of proteins from 

low intensity spectra or where background chemical noise interferes with full-length amino 

acid sequence determination. Sequence tags consist of a few (2-4) determined amino acids, 

along with two mass values, which lock the sequence stretch within the length of the 

peptide[86] (Figure 18), effectively combining mass data with sequence data. This requires 

that only one section of a complete mass spectrum be interpreted correctly by manual 

inspection. Sequence tags can be employed to identify proteins by correlating MS/MS 

spectra (of preferably high mass accuracy[15]) with protein (MS/MS-sequence tags-Protein 

DB)[87], EST (MS/MS-sequence tags-EST DB)[88], or genomic DB sequences (MS/MS-

sequence tags-Genomic DB)[82] (Figure 17). However, it is rather difficult to assemble 

sequence tags from MALDI-TOF/TOF and MALDI-Q(q)TOF spectra[194], mostly because 

prominent y- or b- fragment ion series often cannot be determined unambiguously[25].  

Error-tolerant sequence tags enable the identification of proteins that are 

homologous to DB entries[91]. The recently developed MT software correlates multiple 

(often partial) sequence tags with individual DB entries, whereas previous identification 

techniques using sequence tags rely upon the correlation of individual spectra to DB entries 

alone. The MT approach is similar to approaches with mass patterns[15,102,147] or amino 

acid sequences[57,61,62] that rely upon information from multiple spectra to increase the 

confidence of protein identifications. The MT approach was also extended to EST DB 

searching, and in the future, a MT approach could greatly facilitate genomic DB searches 

with sequence tags. 

The correlation of mass patterns, amino acid sequences, and sequences tags with 

DB sequences all have their own unique evaluation schemes to discriminate correct from 

false positive protein identifications. Mass pattern identification methods primarily score 

the quality of a tandem mass spectrum’s fit to a predicted model spectrum, while taking into 

consideration other DB search parameters (i.e. SEQUEST[147], Mascot[102], Protein 

Prospector[15], Scope[187], Sonar MS/MS[188], ProbID[189]). Protein identifications 

made using amino acid sequences are evaluated by the significance of the alignment of a 

sequence query to a DB sequence and the probability of that alignment occurring in a DB of 

a specific size (i.e. CIDentify[57], MS BLAST[62], and FASTS[61]). In the evaluation of 

multiple sequence tags (MT), the probability that such a set of sequence tags align at 

random to a DB entry (within a DB of a particular size and at a particular mass accuracy) 

provides a measure of confidence of the identification.  
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The existence of multiple scoring schemes for the determination of the significance 

of spectra-sequence alignments raises the question of whether proteins identified by one 

method are considered positive identifications by another similar method (for instance, two 

mass pattern methods, or two amino acid sequence methods), which could ultimately 

compromise the certainty of proteome characterization. A solution to alternate scoring 

systems can be provided with the implementation of algorithms that calculate probabilities 

that the spectra acquired derive from specific known sequences, rather than their similarity 

occurs at random[195]. Another possibility is to develop empirical statistical models based 

on search results to assess the validity of protein identifications by MS and DB 

searches[196]. This approach suggests that in the future statistical data interpretation 

methods can be applied to search results acquired by different MSPs and individual 

softwares[196].  

 

2.5.3 Bridging the Gap: A Network of Strategies 

The character of various types of MS/MS spectra directly determines the operation of 

spectra-DB sequence correlation methods (mass lists, amino acid sequences, and sequences 

tags) and different methods enable unequal abilities to interrogate databases (protein, EST, 

and genomic). Alternate MSPs, spectra-DB sequence correlation methods, and databases 

can be combined yielding varying degrees of effectiveness for protein identification, and 

new analytical strategies are rapidly creating novel ties between different types of spectra 

through the three discussed interpretation mechanisms (Figure 19). Each particular 

proteome analysis will require a different strategy or strategies to successfully identify 

proteins at a high throughput depending on the MSPs at hand, the proteins’ abundance, the 

quality of experimental mass spectra, and the availability of species-specific DB sequences, 

as well as the DB type or types employed. This applies both to the proteomics of organisms 

with sequence resources as well as those species with unsequenced genomes. 

 Simultaneously applying multiple analytical strategies has enabled the most 

effective approaches in the analysis of complex protein mixtures by increasing sensitivity, 

throughout, and reliability of the characterization of proteomes. In 1996, multiple strategies 

began to be employed simultaneously with the application of PMF-mass pattern-Protein DB 

and MS/MS-mass pattern-Protein DB together in one study (Table 11)[197]. Today, 

multiple strategies are employed on a regular basis for high-throughput proteomics. In the 

recent characterization of the human nucleolus, five strategies (PMF-mass pattern-Protein 

DB, MS/MS-mass pattern-Protein DB, NanoESI-Q(q)TOF-sequence tags-Protein DB, 
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NanoESI-Q(q)TOF-sequence tags-EST DB, and NanoESI-Q(q)TOF-sequence tags-

Genomic DB) were all employed simultaneously[87]. In addition, in this study, multiple 

protein (nrdb and IPI) and genomic (phases 0-3 of the uncompleted human genome 

sequence) databases were interrogated, adding addition reference sequences to facilitate 

protein identification.  

The effective characterization of proteomes from organisms with unsequenced 

genomes relies upon the use of multiple analytical strategies as well. The proteome of maize 

leaves was analyzed using two strategies, PMF-mass pattern-Protein DB and PMF-mass 

pattern-EST DB[78]. However, using only these two strategies enabled the identification of 

216 spots out of 300 analyzed from 2-D gels. The authors recognized the importance of 

MS/MS methods (perhaps homology-based) for further studies to be more comprehensive. 

Similarly, in the proteomics of the pea symbiosome, NanoESI-Ion Trap-mass pattern-

Protein DB and NanoESI-Ion Trap-mass pattern-EST DB methods were applied, but failed 

to identify almost one half of the proteins, with 46 identifications out of 89 spots analyzed 

from 2-D gels, despite the application of MS/MS methods[198]. In another example, five 

strategies (PMF-mass pattern-Protein DB, NanoESI-Q(q)TOF-mass pattern-Protein DB, 

NanoESI-Q(q)TOF-amino acids-Protein DB, NanoESI-Q(q)TOF-sequence tags-Protein 

DB, and NanoESI-Q(q)TOF-sequence tags-EST DB) were applied simultaneously to 

characterize the African Clawed frog Xenopus laevis microtubule-associated proteome, 

successfully identifying 62 proteins from 55 protein bands from one dimensional gels. 
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        Table 11  Application of Analytical Strategies in Parallel 
Year Proteomics Ref. 

1993 Bacteria Proteomics [177] 

 PMF-mass pattern-Protein DB  

1996 Yeast Proteomics [197] 

 PMF-mass pattern-Protein DB  

 MS/MS-mass pattern-Protein DB  

2001 Maize Proteomics [78] 

 PMF-mass pattern-Protein DB  

 PMF-mass pattern-EST DB  

2002 Pea Symbiosome Proteomics [198] 

 NanoESI-Ion Trap-mass pattern-Protein DB  

 NanoESI-Ion Trap-mass pattern-EST DB  

2002 Human Nucleolus Proteomics [87] 

 PMF-mass pattern-Protein DB  

 MS/MS-mass pattern-Protein DB  

 MS/MS-sequence tag-Protein DB  

 MS/MS-sequence tag-EST DB  

 MS/MS-sequence tag-Genomic DB  

2002 African Clawed Frog Proteomics [199] 

 PMF-mass pattern-Protein DB 

 MS/MS-mass pattern-Protein DB  

 MS/MS-amino acids-Protein DB  

 MS/MS-sequence tags-Protein DB  

 MS/MS-sequence tag-EST DB  

 

 
Representative proteomic studies are shown above. The name of the organism is in bold. The analytical 
strategies that were employed in those particular proteome studies are listed below the name. Researchers who 
conducted these studies are cited in the column on the right and the year of the study in the left hand column. 
The legend of Table 10 describes strategy annotation. 
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3 Conclusion 
Considering the developments in MS informatics presented here, mass spectrometrists can 

begin to systematically develop, apply, and evaluate the effectiveness of these strategies for 

the functional characterization of proteins based upon sequence identity (Figure 19). In 

many proteomics studies, one strategy will produce the greatest number of identifications, 

while alternative methods will produce diminishing returns (but the methods nonetheless 

allow more data to be accumulated in the analysis of mass spectra, increasing the 

confidence of individual protein identifications and adding to the volume of identifications). 

This was demonstrated in the Dunaliella study where MS BLAST identified twice as many 

proteins as Mascot, and subsequent application of MultiTag identified only one more 

protein (see section 2.3). However, in the Xenopus study, MS BLAST identified only three 

more proteins than Mascot, but MultiTag identified almost twice as many as Mascot (see 

section 2.2). This excentuates the fact that each proteomics study has its own qualities, such 

as DB availability and spectra quality, thus multiple strategies must be explored in order to 

develop a set of tools that can identify proteins in many different situations; each alternative 

strategy has the potential to perform a vital function in future proteomics studies. In the 

future, we can expect new MSPs, new spectra-sequence correlation methods, as well as 

perhaps new types of databases to contribute to the proliferation of protein identification 

strategies. We can also begin to predict future strategies that provide new potential for the 

MS community (i.e. currently MS BLAST is being developed for EST and genomic DB 

searching; these strategies will be significant resources where species have catalogued raw 

genomic or EST sequence and limited protein databases, currently this includes dog, 

chicken, Xenopus laevis, and Chlamydomonas, among others). However as a general trend, 

sequence-similarity protein identification methods are able to identify twice as many 

proteins as conventional softwares, producing a significant contribution to proteomics.   

Sensitive and confident protein identification by MS is a never-ending problem. All 

of the world’s species will not have their genomes sequenced, sequence databases will 

always be at various stages of development, and the biological sciences will find new 

specimens to be analyzed at the level of the proteome. However, the inherent homology of 

proteins in phylogenetically related species can be exploited for mass spectrometry-based 

proteomics. In order to thoroughly and sensitively characterize these proteomes, the 

application of multiple analytical strategies provides a successful approach. In the future, 

we can expect that the network between various types of mass spectra and different types of 
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DB sequences will become more and more integrated with the development of these 

informatic approaches. 
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4 Materials and Methods 

4.1 Peptide Tandem Mass Spectrometry for MultiTag Development 
4.1.1 Software 

MT is a stand-alone application on the Microsoft Windows platform. MT code was written 

using C++ language with Microsoft Visual C++ and Microsoft Foundation Classes 

(Microsoft Inc. CA). Sorting and statistical evaluation of ~5,000 hits takes about 1 second 

on the Pentium IV workstation. Dr. Alexander Golod programmed MT.  

 

4.1.2 Sample Analysis 

Proteins in a purified extract from Xenopus laevis oocytes were separated on a one-

dimensional polyacrylamide gel and visualized by staining with Coomassie (4.2.1). Protein 

bands were excised and in-gel digested with trypsin as previously described[200]. Extracted 

peptides were first analyzed by PMF on a Reflex IV (Bruker Daltonik, Bremen, Germany) 

matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometer, 

and obtained peptide mass fingerprints were submitted for DB searching by Mascot (Matrix 

Science Ltd, UK) software[102]. None of the samples were positively identified. Samples 

were further analyzed by nanoelectrospray tandem mass spectrometry on a QSTAR Pulsar i 

Q(q)TOF instrument (MDS Sciex, Canada).  

 

4.1.3 Interpretation of Tandem Mass Spectra and Database Searching 

Sets of uninterpreted tandem mass spectra were used to search databases first with 

Mascot[102] (the conventional software), and when no positive identifications were 

achieved, the spectra were interpreted manually. Sequence tags were determined by the 

interpretation of tandem mass spectra using BioAnalyst QS software (Applied Biosystems, 

CA). DB searching was performed using the PepSea program (a part of the BioAnalyst QS 

package) against a comprehensive non-redundant protein sequence DB downloaded from 

NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/db/). No constraints on the protein molecular weight 

or species of origin were imposed. The mass tolerance was set to 0.05 Da for fragment ions 

and 0.1 Da for precursor ions. Hits of error-tolerant searches were pooled in a spreadsheet 

(MS Excel) and were encoded by a peptide precursor mass and a letter code for the matched 

regions of the corresponding sequence tag in order to facilitate subsequent processing by the 

MT program. The entire pool of hits was submitted to the MT program for sorting and 

statistical evaluation. MS/MS spectra were further analyzed by MS BLAST sequence-
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similarity DB searches at http://dove.embl-heidelberg.de/Blast2/msblast.html against the 

“nrdb” protein DB. 

 

4.1.4 EST Database Searching  

4.1.4.1 Software Alteraton 

MT-Integrated DB Search Software. The “MTSearch” script was developed to 

automatically generate a list of DB search results from a list of sequence tags; this was 

performed by Dr. Ignat Shilov of Applied Biosystems (Foster City, CA, USA). Tags were 

used for searching a DB in a stringent fashion (matching regions 1, 2 and 3, see figure 5) 

and error-tolerant fashion: a search tolerating a mismatch of the C-terminal mass (matching 

regions 1 and 2); a search tolerating a mismatch of the N-terminal mass (matching regions 2 

and 3); and searches tolerating one mismatch in the amino acid sequence (matching regions 

1 and 3); the hits were additionally encoded by the mass of the precursor ion and by the 

abbreviated matching region (NC, N, C, or E, respectively) in the sequence tag and 

compiled in a list for submission to MT.  

MT Modifications The existing MT software was modified so the average number of tryptic 

peptides DB entry could be specified. The average protein length in a non-redundant DB 

was previously determined to be 492 amino acids (corresponding to ~60kD). The average 

length of a tryptic peptides was designated at 12 amino acids, setting the average number of 

tryptic peptides per DB entry at 41. Since the average length of an EST entry codes for 166 

amino acids (EST_others, Nov. 27, 2002, NCBI), this number was divided by 12 and the 

value for EST DB searching was set at 14. 

 

4.1.3.2 Database Searching 

Mascot queries were generated from tandem mass spectra using the processing script 

Mascot v.1.6b2 as an extension of BioAnalyst QS software (Applied Biosystems). Spectra 

were centroided and peaks were merged at 0.05 Thomsons, and peak lists contained mass 

values from peaks ≥2% base peak. DB searches with Mascot were performed on an internal 

server with a precursor mass tolerance of 0.1 Da and a fragment ion mass tolerance of 0.05 

Da, default precursor charge states were set at +2 and +3, with trypsin enzyme specificity, 

one miscleavage allowed, variable methionine oxidation, fixed carboxyamidomethyl 

cysteine, instrument type set at default, and no restrictions for protein molecular weight, but 

restricted to DB entries from the species Xenopus laevis. The Mascot identifications were 

made using the Peptide Summary Report for enhanced sensitivity.  
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Sequence tags were generated as previously using the Bioanalyst QS software. MT 

searches were performed using the PepSea software as a part of BioAnalyst QS, with a 

precursor mass tolerance of 0.1 Da and a fragment ion mass tolerance of 0.05 Da, with 

trypsin enzyme specificity, and fixed carboxyamidomethyl cysteine. Search results were 

analyzed with the MT software described above. MT parameters were set: 1,396,530 DB 

entries searched (6 frames X 232,755 Xenopus laevis EST entries), 0.1 Da mass accuracy, 

and 14 for number of peptides per entry. MT has no species restriction parameter and 

therefore all cross-species alignments were ignored.  

Both methods searched the same DB EST_others (November 27, 2002), from the 

National Center for Biotechnology Information, and only used the Xenopus laevis subset of 

this DB. The identity of all ESTs was verified by blastx DB searches at the NCBI internet 

site.  

 

4.2 Xenopus Experiments 
4.2.1 Purification of MAPs From Xenopus Egg Extract.  

Mitotic MAPs were prepared by Dr. Andrei Popov in the laboratory of Professor Eric 

Karsenti. The complete procedure is described in[199]. Mitotic Xenopus egg extracts were 

prepared according to A. Murray[97]. Assembled microtubules were prepared with pig 

brain tubulin and stabilized by addition of Taxol and pelleted. To bind MAPs and motors to 

microtubules, the extract was incubated with prepolymerized microtubules, plus GTP and 

AMP-PNP (Adenosine-5'-imidotriphosphate). AMP-PNP, a non-hydrolysable analogue of 

ATP, was shown to stabilize motors interaction with microtubules[201]. The microtubule 

pellet was collected and prepared by SDS-PAGE. 

 

4.2.2 Mass Spectrometry Analysis.  

Individual protein bands were in-gel digested with trypsin as previously described[200]. 

Collected peptides were analyzed first by peptide mass mapping on a Bruker Reflex IV 

MALDI TOF mass spectrometer. Peptide mass maps were searched against NCBI’s protein 

DB (MSDB) using the Mascot server ver.1.8[102] with a mass tolerance of 150 ppm. No 

search parameters were imposed to limit species-specificity for all searches. Proteins not 

identified by peptide mass mapping were subjected to MS/MS analysis by nanoelectrospray 

mass spectrometry.  All MS/MS spectra were first used for DB searches with Mascot at a 

tolerance of 0.1 Da for the precursor mass and 0.05 Da for fragment ion masses. All 
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MS/MS spectra were then used for DB searches with MS BLAST (http://dove.embl-

heidelberg.de/Blast2/msblast.html) against a protein DB (nrdb95), and then finally again 

analyzed by MT (Table 1). For MS BLAST, BioAnalyst software from Applied Biosystems 

(Foster City, CA) predicted de novo amino acid sequences with a tolerance of 0.1 Da for the 

precursor mass and 0.05 Da for fragment ion masses. The MSBlast processing script 

(version 1.1beta) automatically generated peptide sequence queries from MS/MS spectra for 

the MS BLAST DB searches. For MT interpretation, sequence tags were manually 

constructed, using BioAnalyst, from abundant y-ion series with m/z usually larger than the 

precursor ion in MS/MS spectra. All sequence tags contained 2-5 amino acid residues 

within the tag.  Complete sequence tags (containing all three regions) were first searched 

against NCBI’s protein nonredundent DB (March 6, 2002) and NCBI’s EST_others DB 

(March 6, 2002) using PepSea DB searching and subsequent MT analysis as previously 

described[91].  

 

4.2.3 Density Gradient Fractionation.  

The motor fraction was prepared above. Proteins were then eluted by addition of ATP, 

concentrated by centrifugation, and resolved on 5-45% sucrose gradients. Fractions were 

collected manually from the top of the tube and analyzed on an SDS 6-20% polyacrylamide 

gradient gel. This experiment was completed by Dr. Andrei Popov in the laboratory of 

Professor Eric Karsenti, and the complete procedure is described in[199].  

 

4.2.4 Immunoblot Analysis. 

SDS-PAGE resolved proteins were transferred onto nitrocellulose membranes and probed 

with antibodies by Dr. Andrei Popov in the laboratory of Professor Eric Karsenti, and the 

complete procedure is described in[199].  

 

4.2.5 Motor Fraction Isolation in the Presence of p50.  

Taxol-stabilized microtubules were prepared as described above. The p50 experiment was 

completed by Dr. Andrei Popov in the laboratory of Professor Eric Karsenti, and the 

complete procedure is described in[199].  

 

4.2.6 Spindle Assembly and Electron Microscopy.  

The anaphase spindle was prepared from Xenpous laevis egg extracts and analyzed by 

electron microscopy. Electron micrographs were compared with rough endoplasmic 
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reticulum in the same field for particle comparison. This experiment was completed by Dr. 

Peg Coughlin in the laboratory of Professor Tim Mitchison, and the complete procedure is 

described in[199].  

 

4.3 Dunaliella salina Experiments 
4.3.1 Cellular fractionation 

Algae were cultured in 0.5 M NaCl medium for control conditions and at 3M NaCl medium 

for induced conditions. Cells were fractionated into crude plasma membrane, cytoplasmic 

soluble, and chloroplast soluble as described in[202]. These experiments were completed by 

Dr. Adriana Katz in the laboratory of Professor Uri Pick. 

 

4.3.2 Two-Dimensional (2D) PAGE 

Isolated proteins were resolved by 2-D PAGE as desribed in[202]. The intensity of protein 

spots from the 3 M and 0.5 M control gels were compared. Spots up regulated more than 2-

fold were selected for analysis by MS. These experiments were completed by Dr. Adriana 

Katz in the laboratory of Professor Uri Pick. 

 

4.3.3 Mass Spectrometry Analysis of Protein Spots  

Individual protein spots were manually excised from 2-D gels and in-gel digested with the 

protease trypsin as previously described[200]. Extracted protein digests were analyzed first 

by PMF on a Bruker Reflex IV matrix-assisted laser-desorption ionization time-of-flight 

(MALDI-TOF) mass spectrometer in reflectron mode and anchor-chip sample 

preparation[203]. Resulting peptide mass fingerprints were used for DB searching. Proteins 

unidentified by PMF were analyzed by nanoelectrospray tandem mass spectrometry on a 

modified MDS Sciex QSTAR Pulsar i quadruple time-of-flight (QqTOF) instrument, using 

uncoated borosilicate glass capillaries (1.2mm O.D. X 0.69mm I.D.) from Harvard 

Apparatus Ltd (capillaries were drawn in-house on a Sutter P-97 puller).  

 

4.3.4 Database Searching 

Peptide mass fingerprints were used for DB searching by Mascot[102] against the MSDB 

DB from NCBI (February, 2003), with a mass tolerance of 150 ppm; no restrictions were 

imposed for protein molecular weight; species set to “Green Plants”. Sets of tandem mass 

spectra from the analysis of unidentified proteins were first searched by Mascot against the 

above DB to identify proteins with peptides identical to those existing in silico, at a 

  



 99

precursor mass tolerance of 0.1 Da and fragment ion mass tolerance of 0.05 Da, as above. 

Mascot queries were generated from MS/MS spectra using the processing script Mascot 

v.1.6b2 as an extension of Bioanalyst QS software from Applied Biosystems (Foster City, 

CA). Mascot EST DB searching used "Other Green Plants" EST_others (Nov. 27, 2002). 

All tandem mass spectra were then analyzed by MS BLAST against the non-redundant nrdb 

protein DB at http://dove.embl-heidelberg.de/Blast2/msblast.html, as previously 

described[62]. Amino acid sequences were predicted with 0.1 Da tolerance for precursor 

masses and a 0.05 Da tolerance for fragment ions using Bioanalyst QS.  Queries for MS 

BLAST DB searches were generated from MS/MS spectra using the ProBLAST v.1.0b11 

data processing script as an extension of Bioanalyst QS[63]. In cases where scripted MS 

BLAST methods failed to identify a protein, an MS BLAST query was generated by manual 

interpretation of MS/MS spectra using Bioanalyst. If the analyzed protein remained 

unidentified after PMF, Mascot, and MS BLAST DB searching with queries derived 

automatically and manually from MS/MS data, peptide sequence tags were constructed 

from MS/MS spectra by manual interpretation using Bioanalyst QS for DB searching and 

MultiTag analysis of search results[91].     

 

4.4 MS BLAST Specificity and Phylogenetic Analysis 
4.4.1 Computing of MS BLAST Specificity and Phylogenetic Analysis.  

The following analysis was performed by Bianca Habermann of MPI-CBG, Dresden. MS 

BLAST searches with standard settings were carried out for 1000 proteins from several 

model organisms (S. cerevisiae, S. pombe, C. albicans, T. rubripes, R. norvegicus, M. 

musculus and H. sapiens) using eight randomly selected peptides per DB entry. A non-

redundant DB was prepared such that all sequences from the organism under analysis were 

omitted. Further trials using only the next closest species as a reference DB and not the total 

set of non-redundant proteins showed no significant increase or decrease in the success rate 

of identifications (data not shown). To estimate the success of MS BLAST searches, queries 

comprised of 8 peptides sequences were used, 10 amino acids in length and with 2 errors in 

each peptide to simulate ambiguities in spectrum interpretation. The top hit of each MS 

BLAST search was collected and tested for positive or negative identification, whereby 

threshold values for MS BLAST searching were calculated, essentially as published 

previously[62], with the exception that the reversed non-redundant DB downloaded from 

NCBI (release of August 2001) was used. A phylogenetic tree of a selected set of organisms 

from three subkingdoms was constructed based on mitochondrial small ribosomal RNA. 
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Multiple sequence alignments were made using the program ClustalX[204], and the 

phylogenetic trees were constructed with the programs dnadist and fitch, both from the 

Phylip package[205]. The estimated success rate of MS BLAST identification was 

correlated with phylogenetic distances between a model set of organisms and was applied to 

a larger set of organisms on a phylogenetic tree. 
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