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Chapter 1

Introduction

The mathematical description of application problems is often done using a nonlinear vector
function

~F : IRn −→ IRm, x 7−→ ~F (x)

which is evaluated by a computer or evaluation function F , or for short function F . For many
mathematical methods, some kind of reversal or adjoint F̄ of such an evaluation function F is
needed. From now on, the term ”function F ” represents the procedure evaluating the vector
function ~F . For example, the reversal F̄ may be required for optimal control problems solved
using adjoints or parameter adaption problems for given computer models. Computing the
adjoints of the evaluation function F is related to the reverse mode of algorithmic differentiation
(AD), also called automatic or computational differentiation. Using the reverse mode of AD,
one needs to provide the reversal of the evaluation function F . Another example for techniques
needing the reversal of a computer function is debugging. The program runs until an error
appears and is stopped by the debugger. To find out why the program execution fails, the
debugger has to check what happened previously.

Difficulties appear in all cases if the reversal of the evaluation function F cannot be easily
created. The runtime and the spatial complexity of reversing such an evaluation function F ,
which is difficult to reverse, can be large. This can be illustrated by the following examples.

Example 1.1 (Explicit Euler method). Let an optimal control problem be described by a cost
function J and a system of ordinary differential equations f , which are given by

J
(
x(1)

)
−→ min such that ẋ = f(x, u, t) with x(0) = x0 .

The time parameter t lies in the time interval t ∈ [0, 1]. The value x = x(t) describes the state
of the system at the time t while the value u = u(t) ∈ IR defines the control done at the time
t. This control is bounded, i.e. u ∈ [a, b] with a, b ∈ IR. The initial value for the state values is
given by x(0) = x0. The ODE system is integrated using an equidistant grid of step size h and
a given control. For simplification, the explicit Euler scheme is used, which is defined by

xi = xi−1 + hf(xi−1, ui−1, ti−1)

9



10 Chapter 1. Introduction

for i = 0, . . . , N ⊂ IN and N = dh−1e. The time ti is defined by ti = ih and the approximated
state value is defined by xi = x(ti). The control u given at time ti is denoted by ui. For
many optimisation algorithms one needs to know how the control influences the result, i.e. the
sensitivities of the cost function J with respect to u. Hence, one wants to compute the discrete
adjoints Ju. These can be obtained by using a backwards method for the explicit Euler scheme
(compare [GW01]) given by

λi =
[
I + hfx

(
xi, ui, ti

)]T
λi+1

for i = N, . . . , 0. The computation of the local Jacobian fx needs the results xi of the explicit
Euler scheme, but in the reverse order. There are different ways to get the needed values
in reverse order. One obvious way is to store all values xi during the forward computation,
i.e. during the execution of the explicit Euler scheme. This approach leads to a large spatial
complexity of the computation. Another obvious way is to recompute all values, which leads
to an increase in runtime.

Example 1.2 (MPEG Decoding). In order to illustrate the problem once more, a ”nonnumerical
example” is chosen, namely the decoding of MPEG video streams. MPEG stands for Motion
Picture Expert Group. This is a working group of ISO/IEC (International Organisation for
Standardisation / International Electrotechnical Commission) in charge of the development of
standards for coded representation of digital audio and video [MPG02]. This group established
different standards for video compression, depending on the quality and other properties. This
example mostly deals with the MPEG-1 standard. The basic idea behind MPEG video compres-
sion is to remove spatial redundancy within a video frame and temporal redundancy between
temporally neighboured video frames. A frame is a picture displayed on the screen during the
motion picture. Within a frame, the spatial redundancy is reduced by using techniques known
from the still image compression such as JPEG. To exploit temporal redundancy, one notes that
the images in a video stream usually do not change much within small time intervals. Hence,
the idea of reducing the temporal redundancy is to encode a video frame based on other video
frames temporally close to it. This technique is also called motion-compensation.

When using the MPEG video compression, the motion picture is encoded using three types
of frames, namely the I-, the P- and the B-frame. The I-frame is encoded as a single image,
with no references to any past or future frame. The P-frame is encoded with a reference to a
frame in the past. The reference frame can either be the previous I- or the previous P-frame.
The information stored for a P-frame is roughly ten times smaller then the information stored
for an I-frame. The third frame type is the B-frame. The reference one needs for the decoding
of this frame is the closest I- or P-frame in the past and the closest I- or P-frame in the future.
This frame type roughly needs to store just a tenth of the size of the information of the P-frame.
The frame dependencies can be summarised by

dec(I) −→ picture

dec(P, ref(I−/P−)) −→ picture

dec(B, ref(I+/P+), ref(I−/P−)) −→ picture .
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The way a typical frame sequence is stored is shown in Figure 1.1 on the top. The frame order
needs not follow a static pattern. The output of the decoded frames can be seen in Figure 1.1PSfrag replacements

II PP BBBB

dec(I) dec(I)dec(P)dec(P) dec(B)dec(B)dec(B)dec(B)

Input:

Output:

Figure 1.1: Dependencies and temporal order of the frames of a MPEG-decoded video stream.

at the bottom. The solid arrows show how the order changes. The dashed arrows illustrate the
dependencies to the reference frames. The maximum number of frames needed to be buffered
is three.

So far, the goal is to play the motion picture forward. But what happens, if the video
needs to be played backwards? Due to the temporal dependencies, this becomes complicated
if the distance between two I-frames increases. If one wants to keep the initial frame rate per
second, one must store all P-frame information between two I-frames in order to decode the B-
frames. This can enormously increase the memory need of the MPEG-decoder. The approach
is later referred to the full-logging approach. Another possibility is to redecode all P-frame
information. This will significantly reduce the frame rate and the reverse motion picture will
run in slow motion. In order to avoid the slow down one possible solution is redecoding of
the P-frames in parallel. In the worst case the procedure leads to a need in computing power
proportional to the number of P-frames between two I-frames times the computing power of
one MPEG-decoder. One way out is to just remember a few P-frames and redecode the missing
one. Such alternative approaches will be discussed in this work.

The two examples above both have in common that the considered vector function ~F :
IRn → IRm, with x 7→ y = ~F (x) is an iteration or evolutionary system. That means that the
function can be divided into vector subfunctions ~Fi as shown in Figure 1.2. The evaluation

PSfrag replacements
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~F5
~Fl−1 ~Fl

~F

x0 x1 x2 x3 x4 xl−1 xl

Figure 1.2: Evaluation of vector function ~F .

functions Fi of these vector subfunctions ~Fi are called physical steps or advancing steps.
Examples of applications requiring the reversal of such a vector function ~F are programs

calculating the adjoints of evaluation function F , programs adapting parameters for a given
mathematical model (e.g. [HL+00]) and program debuggers. More examples can be found in
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weather or ocean modelling (see e.g. [HHG02] and [RLG98]), or production optimisation (see
e.g. [KGW00]).

In [HHG02], the adjoint of the ocean simulation is computed to minimise the misfit between
the computer model and the observation. To solve a parameter adaption problem like this, a
huge amount of memory is usually required. In order to handle the memory requirement of the
program in [HHG02], a serial checkpointing strategy is used.

The parameters to be adapted in [HL+00] are the size parameters of a frame used in an in-
jection moulding machine. The resulting nonlinear optimisation problem is solved by sequen-
tial quadratic programming. The gradient information needed for this algorithm is obtained by
using the reverse mode of AD.

An example of a debugging problem can be found in [RdB99]. This article describes how
to search for the reason for nondeterministic behaviour in a parallel program. During the ex-
ecution of the parallel program, all potential nondeterministic actions, such as system calls or
unsynchronised memory access are recorded. During the analysis, this data is read in order to
get the same program behaviour.

Discussions dealing with the reversal of computer programs in general can be found in
[Sne93]. For example, in Chapter 11, van Snepscheut discusses problems occurring due to data
dependencies or problems occurring if one wants to reverse loops. In [Ben73] a first effort
estimate was described. Bennett has indicated that the spatial complexity to reverse a function
F may grow logarithmically.

As described in the examples, there are two obvious ways to reverse the execution of the
function F . The first scheme, illustrated in Figure 1.3(a), writes a complete execution log
(dotted line) to an appropriated data structure called trace. The function writing the execution
log is called F̂ and the associated subfunctions are called F̂i. During the reversal (dashed
line in Figure 1.3(a)), this data structure is read backwards. The reverse function is called
F̄ , consisting of the subfunctions F̄i, which is the reversal associated with the subfunction
Fi. The second scheme is the recomputation (solid line) of all data required for the function
reversal (Figure 1.3(b)). The first case leads to an enormous spatial complexity while the second
approach increases the runtime in terms of wall clock time. This increase can be avoided, if the
recomputation is carried out by additional processors in parallel (Figure 1.3(c)). The first two
cases are examples of a serial reversal of the function F , while the latter case is an example of
the parallel reversal of the evaluation function F .

A more general estimate of [Ben73] for the runtime and the spatial complexity, especially
for the reverse mode of AD, is given in [Gri92]. The first approach to establish these results
for AD in practice was done in [Ben96], [Ben95], their continuation in [Bra98], as well as in
[RDG93]. The spatial complexity of the problems discussed in these references is reduced by
storing the state values in temporally equidistant steps (called checkpoints) and recomputing the
missing state values between two stored checkpoints in parallel. Hence, the increase in runtime
is converted into an increase in computing power, i.e the additional runtime is converted into an
increase in the number of processes used at the same time. The first optimal results and bounds
for the complexity of a program reversal were given in [Wal99] and [WG01]. In [Wal99] two
major cases were distinguished. For the first case, it is assumed that only one processor is
available, which leads to serial reversal schedules. In the second case, it is assumed that the
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reversal is carried out on a multi-processor machine, which yields parallel reversal schedules.
In [Wal99] it is assumed that the evaluation function F , the function that one wants to reverse,
can be divided into N subfunction Fi as shown in Example 1.1. Every execution of such a
subfunction yields a new state of the system. A reversal schedule specifies which states have to
be stored and when, as well as which states have to be recomputed and when the recomputation
starts at the stored states. In the used termonology parallel reversal schedule does not specify
which process or which processor on a parallel computer has to perform the tasks.

The minimum time needed for the function reversal using a serial reversal schedule is the
time for a complete logging of the evaluation function F , plus the time of the reverse compu-
tation. The use of a serial reversal schedule increases the runtime due to recomputation done
in a sequential manner. In [Wal99] this increase is minimised. More specifically, two cases are
investigated. The first case is given if each subfunction Fi requires the same execution time.
The second case assumes that the execution of the subfunctions needs different amounts of
time. This first property is called uniform step cost while the second property is called nonuni-
form step cost. Serial reversal schedules for nonuniform step costs were developed further in
[Ste02]. For both kinds of step costs (uniform and nonuniform), cheap algorithms to create
serial reversal schedules are introduced in [Ste02].

In this thesis parallel reversal schedules will be discussed and developed. The construction
of parallel reversal schedules in [Wal99] will be extended for online application. That means
that the step number l does not need to be known priori and can in fact be modified repeatedly.
The step number l is the number of subfunctions Fi evaluated during one evaluation of F and
defines a measurement for the length of the evolutionary system. For the construction of a
parallel reversal schedule developed in [Wal99], the length of the evolutionary system must
be known priori. This construction of parallel reversal schedules is called offline, while the
construction of parallel reversal schedules developed in this thesis is called online. The goal is
to use minimal resources for the complete program reversal. Thereby, the overall complexity
will stay within the bounds established in [Wal99].

A parallel reversal schedule starts with the evaluation of the function F . During the evalu-
ation certain intermediated states are stored into checkpoints. The distribution of checkpoints,
after a subfunction is evaluated, will be explored. The the intermediate state information which
was currently worked on and the stored checkpoints together, are called resources. One can
now give a description of resource distributions, which are instantaneously reversible. First, it
will be defined as to what it means for a resource distribution to be instantaneously reversible.
The definition of an instantaneously reversible resource distribution depends on the current step
number l, i.e. the state xl with the largest state number. Furthermore an algorithm is discussed,
which changes an instantaneously reversible resource distribution for the step number l to an
instantaneously reversible resource distribution for the step number l + 1. The needed time
for this change is the time that one subfunction Fi takes to be executed. If the algorithm is
used starting from the step number l = 0 up to an arbitrary step number, it defines the for-
ward computation for parallel reversal schedules constructed online. Later on in the thesis, the
description of instantaneously reversible resource distributions will be extended, such that the
resource distributions of reverse computation, i.e. the actual function reversal, can also be cov-
ered. This extension is done by generalising the position of a resource, i.e. the number of the
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intermediated state of F , to an interval, containing possible resource positions. This gives the
opportunity to define an algorithm, which converts a given instantaneously reversible resource
distribution (defined by using the intervals), either to an instantaneously reversible resource
distribution for the step number l + 1, or to an instantaneously reversible resource distribution
for the step number l − 1 on a parallel computer. Thus, one can use this algorithm to switch
between the forward computation and the reverse computation at any time. The occurring
resource distribution are all instantaneously reversible. Once again the required time for the
change of the instantaneously reversible resource distribution in any direction is the time that
one subfunction Fi needs in order to be executed. Therefore, the resulting schedules can be
used to run a simulation in both directions (forward and reverse) at any time, i.e. one obtains
schedules for dynamic bidirectional simulations.

Within the next chapter, reversal schedules will introduced more precisely and known the-
oretical results will be reviewed. The different types of schedules (for uniform and nonuniform
step cost, offline and online construction, serial and parallel) will therefore be discussed. In
Chapter 3 the theory of the offline construction of parallel reversal schedules will be extended
to online construction and generalised, such that schedules for both the function evaluation and
the function reversal can be described. Thereby one looks at resource distributions which are
instantaneously reversible. This leads to a description of how a restart of the function evaluation
can be done without the loss of instantaneous reversibility. Chapter 4 explains implementation
issues for parallel reversal schedules. It will be discussed, under which circumstances the theo-
retical optimality can be reached, if the implementation effort is small. Chapter 5 will represent
the results obtained by using an implementation for the online construction and execution of
reversal schedules on parallel computers. First, the runtime behaviour of a reversal schedule
with restart is shown. Then, the implemented reversal schedules are applied to the parallel
computation of the adjoints of an optimal control problem, namely the steering of a Formula
One car. The last chapter, Chapter 6, summarises the thesis and gives an outlook on further
problems.
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Chapter 2

Reversal Schedules

2.1 Notation, Assumptions and Definitions

It is supposed that the evaluation of the vector function ~F : IRn → IRm can be divided into l
parts ~Fi+1 : IRni → IRni+1 with xi 7→ xi+1 = ~Fi+1(xi). The evaluation functions Fi of the
vector subfunctions ~Fi, are called advancing steps, or just steps for short. From now on the term
”function F ” denotes the evaluation function, in the sense of a computer or C function of the
mathematical function or mapping ~F . The arguments xi and the results xi+1 of the functions
Fi+1 are called the state or state vector. The index i is called the state counter. It is assumed
throughout this thesis that all state vectors have the same size, i.e. ni = ni+1 for all i, or at least
that there exists an upper bound n such that ni ≤ n and ni ≈ n for all i. If an intermediate
state is retained in memory it is called a checkpoint. The goal is to reverse the execution of the
function F . The reverse function is denoted by F̄ . Difficulties occur if the original function
F is not invertible, in the sense that the original subfunctions Fi are ill conditioned or difficult
to reverse. Another problem is that the results of the corresponding forward computation are
required for the reverse computation as in Example 1.1. The information flow which are as-

PSfrag replacements
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Figure 2.1: The evaluation and reversal of a function F .

sumed throughout this thesis are illustrated in Figure 2.1. The function F̄i is the corresponding
reverse function to the advancing step Fi. These reverse functions are also called reversing

17



18 Chapter 2. Reversal Schedules

steps. The arguments of such a function F̄i are the result x̄i of the previous reversing step F̄i+1,
the intermediate state xi−1 and possibly some more information or other intermediate values,
which are obtained from the execution of the corresponding advancing step Fi. An advancing
step that does the additional collecting of required data is called preparing step F̂i. The data
obtained while executing the preparing step F̂i is denoted by zi. Thus, one can formalise the
definition of a reverse step as

x̄i = F̄i+1

(
xi, zi+1, x̄i+1

)
.

The variables x̄i are assumed to have the same dimension, or the dimension that is uniformly
bounded for all i. The same is assumed for the dimension of the variables zi. Of course the
dimensions of x̄i and zi can be different, which is usually the case.

Since the information zi needed for the reverse computation is required in a reverse order
to that in which it is obtained during the forward computation, the data structure holding this
information can be realised as a stack. This data structure is usually called a trace.

In order to obtain information about the runtime behaviour of the introduced functions,
times τi, τ̄i and τ̂i are used. These values denote the computation time of functions Fi, F̂i and
F̄i respectively. Two scenarios have to be considered.

The first case assumes that all advancing steps Fi require the same time τ . An equivalent
assumption is made for the preparing and the reversing steps. Such a function is called an
evolutionary function with a uniform step cost. To simplify, τ can be scaled to one w.l.o.g..
The second case is called an evolutionary function with a nonuniform step cost. Here, the
execution times for the advancing steps Fi vary and are given explicitly by a sequence 〈τ〉 =
〈τ1, τ2, . . . , τl−1, τl, 0, 0, . . .〉. Again, an equivalent assumption is made for the preparing steps
F̂i and the reversing steps F̄i.

2.2 Offline Constructed Serial Reversal Schedules

For this section it is assumed that only one processor is available for the reversal. The simple
way to realise the reversal of function F is to store all information during the forward computa-
tion. The reverse computation is carried out by simply reading the trace information backwards
and carrying out the reverse computation. This kind of approach is called the full-logging ap-
proach and is illustrated in Figure 2.2. The dashed line going from the middle down to the
bottom lefthand side represents the computed reversing steps, while the dotted line from the
top left corner to the middle represents the preparing steps. All computation done until the final
state xl is reached, is called forward computation (light grey area in Figure 2.2). All compu-
tation performed during the reversing step F̄i is called reverse computation (dark grey area in
Figure 2.2).

The l-axis shows the current intermediate state reached, i.e. the state counter. The vertical
t-axis represents the normalised time. As already stated, the drawback of this algorithm is the
memory requirement. This approach yields a runtime minimal program reversal on a single
processor machine. For every step which has to be reversed, the memory of size xi and zi

is needed. Hence, the memory requirement for the full-logging approach, as illustrated in
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Figure 2.2: Full-logging approach to calculate the reversal of function F .

Figure 2.2, is l times the size of zi and l + 1 times the size of xi at the returning point. Thus,
the memory requirement is proportional to the length of the computation.

The use of serial reversal schedules allows a reduction in the memory requirement to a
given limit. The drawback is an increase in computing time.

The first improvement can be seen in the approach illustrated in Figure 2.3(a). During the
forward computation (illustrated by the solid line from the top lefthand side going down to the
right), only the intermediate states are stored. The time (one of these checkpoints is kept in
memory) is shown by the vertical lines within the schedules.

The trace information zi is obtained by recomputing the step Fi and logging the data, i.e.
the preparing step F̂i is carried out. The computation time increases by l − 1 times the time
required for one advancing step Fi. The memory requirement still depends on the number
of time steps, however, because after each advancing step, the intermediate state xi has to be
stored.

Another solution is shown in Figure 2.3(b). Here, no intermediate state is stored except x0,
and all the information needed is recomputed. The constant and minimal memory requirement
means that a lot of time is required. Hence, one spends about l/4 times the amount of time one
advancing step needs more than the full-logging approach needs. Runtime optimal solutions
for a given number of intermediate states that can be stored (i.e. checkpoints) are discussed in
[Wal99, GW00, Gri00, Ste02].

To obtain a serial reversal schedule, more notation is required. A reversal schedule S con-
sists of a chain of instructions such as:

• carry out n advancing steps Fi for i = j, j + 1, . . . , j + n − 1,
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Figure 2.3: Serial reversal schedules for step number l = 8.

• set a checkpoint, i.e. copy the actual state xi into a checkpoint,

• carry out the returning step Ui, or

• copy a checkpoint and restart the forward computation using the copy of the checkpoint.

The preparing step F̂i and the reversing step F̂i are merged into the returning step Ui. The
number l denotes the currently maximal state counter during the execution of the schedules S.

From now on, it is assumed that all advancing steps need the same time to be executed. In
order to judge the quality of a schedule S, the total cost of an execution of the schedule S is
introduced. The cost function denotes the sum of the amount of time the executed advancing
steps Fi need. During the execution of a reversal schedule, certain individual steps are executed
more than once. In order to obtain an optimal serial reversal schedule, the total cost of a
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schedule must be minimised. There can be more than one schedule having the property of
minimal total execution cost. In order to select a schedule out of the number of schedules
with minimal total cost a secondary objective function may be used. One possibility for such a
secondary objective is the number of intermediate states which are copied and used for a restart
during the execution of a schedule S. Still, there can be more than one schedule S satisfying
both optimality criteria.

One main characteristic of an optimal reversal schedule is checkpoint persistence. Check-
point persistence means that if a intermediated state xi is copied into j th checkpoint, then this
checkpoint will only be deleted after carrying out the returning step Ui, if l ≤ i. Furthermore,
no action takes place concerning the intermediate state xk for k ∈ [0, .., i], between setting
the checkpoint and starting the returning step Ui. The proof of the checkpoint persistence of
an reversal schedule can be found in [Wal99], [Gri00] or [Ste02]. The major conclusion of
checkpoint persistence is that any optimal serial reversal schedule can be decomposed into two
optimal subschedules: One named S1, concerning all computation having state counters be-
tween 0 and ľ, and the other subschedule named S2, concerning all computation having state
counters between ľ and l

(2.1) S = S2 + S1 .

The decomposition of a serial reversal schedule is illustrated in Figure 2.3(c).
Serial reversal schedules for nonuniform step cost, i.e. the subfunctions Fi of the function

F , do not need the same computation time. This is discussed in [Wal99, Ste02].

2.3 Online Constructed Serial Reversal Schedules

Until now it was assumed for all schedules that the number of steps l one wants to reverse was
known beforehand. In reality, however, there are cases in which this is not true. An example is
an iteration using a reversal criterion or stopping criterion. Before the online construction of a
serial reversal schedule Sa can start, the number of checkpoints c one can store has to be known.
The computation is carried out in two phases. The first phase is the forward computation. This
phase lasts as long as the reversal criterion is not satisfied. This phase is also called the adaption
phase and S1

a denotes the corresponding schedule. The second phase is the computation after
the number of steps is known. It is called the reversal phase, and the schedule is named S 2

a .
Since the number of steps is known during the second phase, offline constructed schedules must
be used.

There are different methods to construct a reversal schedule when l is unknown. The easiest
way is to carry out a normal function evaluation until the reverse computation is initiated,
stopping at the intermediate state xl, and then run a reversal schedule for l steps. This approach
of ”test computing” is shown in Figure 2.4(a).

Figure 2.4(b) shows another approach. All c checkpoints are set within the first c computa-
tion step. When the step number becomes larger then the checkpoint number c, and the reversal
criterion is not yet satisfied, then at the end of every advancing step Fi it must be checked,
which checkpoint has to be moved to the next intermediate state. This keeps the checkpoint
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positions in such a way as it would be in an offline constructed optimal reversal schedules. In
this case, additional computing power is required to keep the checkpoints distributed like they
are distributed in an offline constructed optimal reversal schedule.

As it can be seen in Figure 2.4(c), there is a better solution which needs less time than the
two previous approaches (Figure 2.4(a) and 2.4(b)). The procedure starts with the computation
of c steps, and every intermediate state computed is stored in a checkpoint at the end of each
advancing step. For step numbers larger than c, it is checked after each step, whether or not
one checkpoint can be deleted for storing the current state, in order to obtain a smaller total
execution cost than for the execution of the schedule using the current checkpoint distribution.
This is illustrated by the dotted arrow in Figure 2.4(c). Once a checkpoint is stored it will not
be moved if using this approach.

In [Ste02], numerical tests are carried out to compare the total execution cost of the online
and offline constructed serial reversal schedules for a uniform, as well as for a nonuniform
step cost. The results show a tolerance of a maximum of twenty percent between the total
computation cost of an online constructed reversal schedule, and the total computation cost of
an offline constructed reversal schedule for both kind of step costs.

The results, described above, are used in the implementation of the software package RE-
VOLVE and REVOLVE++. Both include procedures acting as a controller when evaluating a
program reversal. By the return value of the function revolve(..) the user program is told
to perform one of the following actions:

• advance: carry out the computation of the advancing step Fi,

• takeshot: copy the actual state into a checkpoint,

• restore: read a checkpoint and

• firstturn: carry out the first return, i.e. carry out a preparing step F̂i, initialise the
reverse value x̄, and make the first reversing step F̄i.

• youturn: carry out a return step Ui, i.e. carry out a preparing step F̂i and a reversing
step F̄i.

The user has to implement corresponding functions and routines adapted to the specific prob-
lem. Two further return values of the revolve routines are terminate and error.

2.4 Offline Constructed Parallel Reversal Schedules

For all schedules discussed so far, the computation runtime has always been larger than the
smallest possible runtime, even if an offline constructed optimal serial reversal schedule was
used. The aim of parallel reversal schedules is to achieve a minimal runtime by using additional
processes for the recomputation of the intermediate states. Since the time one preparing step
F̂i requires to be executed is usually larger than the time for one normal advancing step Fi, the
minimal time T (S(l)) a parallel reversal schedule S needs, is smaller than for the full-logging
approach. It can also be given by the time needed for l − 1 advancing steps Fi, plus the time



24 Chapter 2. Reversal Schedules

needed for one preparing step F̂i, plus the time needed for l corresponding reversing steps F̄i

(see Figure 2.5), i.e.

T (S(l)) = (l − 1) + τ̂ + lτ̄ = (τ̄ + 1)l + τ̂ − 1

for τ = 1. For comparison the runtime for the full-logging approach is given by lτ̄ + lτ̂ . Pro-
vided a parallel reversal schedule needs the minimum time to execute, the goal is to minimise
the number of checkpoints and processes needed for the reversal. The number of checkpoints
and the number of processes are added to the number of resources.

One example of what a parallel reversal schedule can look like is given in Figure 2.5. Here,
the bisection strategy was applied for the reversal of l = 8 steps. Furthermore, τ̂ = τ̄ = 1 was
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Figure 2.5: A schedule for l = 8 steps with τ̂ = τ̄ = 1 using the bisection strategy.

assumed. As can be seen in the diagram the furthest left in Figure 2.5, one process copies the
initial state into a checkpoint, carries out the forward computation up to the 4 th state and copies
it into a checkpoint. After that, the process continues up to x7, thereby copying the state x6 into
a checkpoint. Then it carries out the preparing step up to the 8th intermediate state and the first
reversal afterwards. The checkpoints are always set at the midpoint of the subrange that remains
for computation. At the time t = 8 (when the first reversing step starts), three other processes
must start: One process carrying out the forward computation starts from state x0, one process
starts the forward computation from state x4 and one starts a preparing step from state x6. At
the time t = 10, the preparing step starting at state x4 must be carried out. Furthermore, one
process must delete the checkpoint holding the state x4 and store the intermediate state x2. The
checkpoint at state x2 is deleted at the time t = 12.

During the time between t = 8 and t = 16, one process carries out the reversing steps.
The computation stops when the state count 0 is reached by a reversing process. More about
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implementation strategies and how to assign the task to available processors can be found in
Chapter 4.

The three remaining diagrams in Figure 2.5 are called resource profiles. These diagrams
show how many resources are used at which time. The first resource profile shows the use of
checkpoints c(t), the second profile the need of processes p(t) and the third resource profile
shows the sum of checkpoints and processes %(t) = c(t) + p(t), i.e. the resource use over the
time.

A slightly more general approach was developed in [Ben96]. Here the checkpoints are
uniformly distributed. This means that the checkpoints are recursively distributed, using a fixed
ratio between the last checkpoint set and the final state xl. The bisection strategy described
above uses the ratio 0.5. Implementations of this approach were discussed in [Ben95] and
[Bra98].

For the serial case, one knows from [Gri92] that the resource need (runtime and check-
points) grows logarithmically with the length of the computational graph of the function F , i.e.
the resource need grows logarithmically with the number of steps l. For the parallel case the
increase of the resource need also depends logarithmically on the length of the computational
graph of the function F as stated in [Ben96]. There, the logarithmic dependency is achieved
using the uniformly distributed checkpoint strategy.

The question which must be answered, however, is what is the maximum number of steps
which can be reversed in minimal time for a given number of resources. The answer is given
and proved in [Wal99] or [WG01]. There, the recursion formula for τ̂ = 1 depending on τ̄ is
given by

(2.2) l% =







% if % < 2 +
1

τ̄
l%−1 + τ̄ l%−2 else .

For τ̄ = 1, the construction of an optimal parallel reversal schedule which satisfies (2.2) is
similar to the construction of an optimal serial reversal schedule. Equivalent to the construction
of an optimal serial reversal schedule, the schedule S0 consists of two subschedules S1

1 and
S1

2 (compare the two diagrams on the right in Figure 2.6). One subschedule on the far right
corresponds to the step number l%−1, while the other subschedule corresponds to the step num-
ber l%−2. The resulting schedules are further divided into three subschedules S 2

2 , S2
3 and S2

4

connected to the step numbers l%−2, l%−3 and l%−4, respectively. This is carried out recursively,
until the trivial subschedule length one is reached. The resource profiles are constructed equiv-
alently. As shown in Figure 2.7, the resource profile is composed of the resource profiles of the
two subschedules plus the resources needed for the startup phase (dark grey areas). Again, this
is carried out recursively, until only subschedules of a step size l = 1 remain.

Using τ̄ = 1 in formula (2.2) yields the definition of the %th Fibonacci number. Therefore,
using the results in [Knu97] and [HP98], an explicit estimate for the maximum number of steps
which can be reversed in minimal time using % resources can be given by

l% ∼ 1√
5

(

1 +
√

5

2

)%+1
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or for general τ̄ by

l% ∼ 1

2

(

1 +
3√

1 + 4τ̄

)(
1 +

√
1 + 4τ̄

2

)%−1

.

This formula clarifies the exponential growth of the number of steps l, which can be reversed
in minimal time using a given number of resources. Using parallel computers, one question is,
how many processes are needed to solve this problem. If possible, it should be known before
the program is started. The number of processes p needed is defined by the maximum value in
the process resource profile, i.e. p = maxt{p(t) | 0 ≤ t ≤ T (S(l))}, and can be bounded by

(2.3) p ≤
⌈

% + 1

2

⌉

as shown in [Wal99]. Hence, roughly half of the resources need to be processes, if an offline
constructed parallel reversal schedule is executed.
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Chapter 3

Online Constructed Parallel Reversal
Schedules

ich fange immer wieder von vorne an
alle sieben jahre kommt ein neuer mann
alle sieben jahre oder irgendwann
drum fang ich immer wieder von vorne an

Pension Volkmann in ”von vorn” (1988)

For the function F considered so far, one knows the number of steps l, before the evaluation
starts. Hence, the length of the computation is known beforehand. But for many applica-
tions, this information is not given. An example of such an application is a function evaluation
based on an iteration, where a stopping criterion is checked after each iteration step. Since
the construction of the parallel reversal schedules described in Chapter 2 needs the information
about the number of steps l, parallel reversal schedules which can be constructed online have
to be developed. For the development of such a schedule one has to construct instantaneously
reversible resource distributions first. A resource distribution r(l) is the set of all intermedi-
ated states available at the end of the lth iteration during the execution of a reversal schedule.
Thereby, the intermediate state information with the largest index defines the step number of the
resource distribution. The step number is named l. The construction of such an instantaneously
reversible resource distribution is possible for any arbitrary given number l. Furthermore, a
way should be found to change a given resource distribution for the step number l to a resource
distribution for the step number l + 1, without loss of the instantaneous reversibility.

Assuming the instantaneous reversibility of a resource distribution, an appropriate reverse
computation has to be found. The offline construction of a schedule for the reverse computation
can be used to extend the definition of instantaneously reversible distributions. The online
construction of a schedule for the forward computation, together with the offline construction
of a schedule for the reverse computation, yield a parallel reversal schedule constructed online.

29
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3.1 Instantaneously Reversible Distributions

From now on, only the case τ̂ = τ̄ = 1 is considered. From (2.2), it follows that n resources
are needed for the reversal of ϕn steps. From now on it is assumed that ϕi denotes that ith

Fibonacci number with the index shifted by one, i.e. the sequence starts with ϕ1 = 1 and
ϕ2 = 2. It is assumed that the intermediate state xl is reached during a forward computation,
i.e. the number of steps is given by l. Further, it is assumed that l ∈ [ϕn, ϕn+1) ⊂ IN. The
interval [n1, n2) denotes the set of natural numbers defined by

[n1, n2) := {n ∈ IN | n1 ≤ n ∧ n < n2 ∧ n1, n2 ∈ IN} .

In order to distribute the other intermediate states xri
for 0 ≤ i < n, or simply to distribute

the resource positions ri, a sequence of intervals [ai, bi) for i ∈ [0, n − 1) is constructed by
[a0, b0) = [ϕn, ϕn+1) and

(3.1) [ai, bi) =







[ai−1, bi−1) if ai−1 = b̃i−1 ,

[ai−1, b̃i−1) if ai−1 6= b̃i−1 ∧ l < b̃i−1 ,

[b̃i−1, bi−1) if ai−1 6= b̃i−1 ∧ l ≥ b̃i−1 .

Here and throughout, the value b̃i−1 is defined by bi−1 − ϕn−i−1. For all intervals [ai, bi),
one obtains that l ∈ [ai, bi). Now the resource positions ri of the resource distribution r(l) :=
{ri | i ∈ [0, n)} are chosen as

(3.2)

r0 = 0 ,

ri =

{

ri−1 + ϕn−i if ai−1 6= b̃i−1 ∧ l ≥ b̃i−1 ,

ri−1 + ϕn−i−1 else ,

rn−1 = l .

Definition 3.1 (formula for the resource distribution). The interval definition (3.1) and the
position definition (3.2) together are called formula for the resource distribution.

Example 3.1. It is assumed that the intermediate state x31 is reached, i.e. l = 31. Because
of 31 ∈ [21, 34) = [ϕ7, ϕ8), the number of resources needed equals 7. Hence, the resource
distribution can be computed by

i = 0 : [a0, b0) = [21, 34), r0 = 0

i = 1 : b̃0 = 34 − ϕ5 = 26, [a1, b1) = [26, 34), r1 = 13

i = 2 : b̃1 = 34 − ϕ4 = 29, [a2, b2) = [29, 34), r2 = 21

i = 3 : b̃2 = 34 − ϕ3 = 31, [a3, b3) = [31, 34), r3 = 26

i = 4 : b̃3 = 34 − ϕ2 = 32, [a4, b4) = [31, 32), r4 = 28

i = 5 : b̃4 = 32 − ϕ1 = 31, [a5, b5) = [31, 31), r5 = 29
i = 6 : r6 = 31 .

Figure 3.1 shows the resource distributions up to l = 34.
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Figure 3.1: Resource distributions for l ∈ [0, 34].

Lemma 3.1
Every distribution defined by the formula for the resource distribution (Definition 3.1) is instan-
taneously reversible if an arbitrary number of processors is available. �

As illustrated in Figure 3.2, it suffices to show that the distance between two neighbouring
resources ri−1 and ri is small enough; that is, that the time needed to evaluate the steps from
ri−1 up to ri is less than or equal to the time needed to calculate the reversal starting at rn−1

down to ri, i.e.

l − ri ≥ ri − ri−1(3.3)

⇐⇒ l − ri + (ri − ri−1) ≥ ri − ri−1 + (ri − ri−1)

⇐⇒ l − ri−1 ≥ 2(ri − ri−1) .(3.4)

The left hand side in (3.3) describes the distance ③, while the right hand side depicts the dis-
tance labelled with ② in Figure 3.2. After changing (3.3) to (3.4), the distance ④ in Figure 3.2
illustrates the lefthand side in (3.4), while the right hand side describes ①. Equivalent to (3.4),
one may prove

(3.5) l ≥ 2ri − ri−1

for all i ∈ [1, n). In Section 3.2 and in Section 3.3 it will be shown, that the number of pro-
cessors required for the reverse computation starting with a instantaneously reversible resource
distribution is bounded by the number of processors required for offline constructed parallel
reversal schedules (2.3).

The proof of (3.5) consists of two steps. First, a corollary will be proven which shows
that the resource distribution r(l) is recursively constructed using a resource distribution r(λ)
for a smaller λ, which corresponds to l shifted by ϕn−1 and the resources between 0 and
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ϕn−1. This corollary can be seen as an equivalent to the formula for the resource distribution
(Definition 3.1), but it defines a recursive algorithm. The second step is the actual proof of
Lemma 3.1, carried out by recursively splitting the resource distributions down to obviously
instantaneously reversible resource distributions.

Corollary 3.1
For l ∈ [ϕn, ϕn+1) with n ≥ 3 let the resource distribution r(l) = {ri | i ∈ [0, n)} be defined by
the formula for the resource distribution. Set λ = l − ϕn−1, and d = 1 if λ ∈ [ϕn−1, ϕn), and
d = 2 if λ ∈ [ϕn−2, ϕn−1). Consider for λ the resource distribution r(λ) = {%j | j ∈ [0, n−d)}
again defined by the formula for the resource distribution. Then, for every resource position
ri ∈ r(l), there exists a unique resource position %j ∈ r(λ), such that

%j + ϕn−1 = ri = rj+d with

{

d = 1 if λ ∈ [ϕn−1, ϕn) and

d = 2 if λ ∈ [ϕn−2, ϕn−1) .

for i ∈ [1, n) or i ∈ [2, n) respectively A similar statement can be specified for the sequences
of intervals [ai, bi) and [αi, βi). �

Proof of Corollary 3.1:
Within this proof all Greek written variables belong to the resource distribution r(λ) for the
smaller λ. The proof is carried out by induction. Since λ = l − ϕn−1, it follows that λ ∈
[ϕn−2, ϕn). Two cases have to be distinguished (Figure 3.3): first λ ∈ [ϕn−2, ϕn−1), which
implies that l ∈ [ϕn, ϕn + ϕn−3), or second λ ∈ [ϕn−1, ϕn), which implies that l ∈ [ϕn +
ϕn−3, ϕn+1).
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Induction base case (j = 0): for j = 0 and λ ∈ [ϕn−2, ϕn−1), it has to be shown that
r2 = %0 + ϕn−1 as well as, [a2, b2) = [α0 + ϕn−1, β0 + ϕn−1). Since d = 2, it follows that
l ∈ [ϕn, ϕn + ϕn−3). By definition, one knows that for i = 0

(3.6) [a0, b0) = [ϕn, ϕn+1) and r0 = 0 .

Since b0 − a0 = ϕn−1 6= ϕn−2 for n > 2, and l < b̃0 because of

ϕn + ϕn−3 = a0 + ϕn−3

= ϕn+1 − ϕn−2

= b0 − ϕn−2

= b̃0 ,

it follows from (3.1) for i = 1 that [a1, b1) = [ϕn, ϕn + ϕn−3), and from (3.2) that r1 = ϕn−2.
For i = 2 follows b1 − a1 = ϕn−3 and b̃1 = b1 − ϕn−2. Therefore, one has

a2 = a1 = ϕn = ϕn−2 + ϕn−1 = α0 + ϕn−1 ,
b2 = b1 = ϕn + ϕn−3 = ϕn−1 + ϕn−1 = β0 + ϕn−1 ,
r2 = r1 + ϕn−3 = ϕn−2 + ϕn−3 = ϕn−1 = %0 + ϕn−1 .

For the case λ ∈ [ϕn−1, ϕn), it has to be shown that [a1, b1) = [α0 + ϕn−1, β0 + ϕn−1),
as well as that r1 = %0 + ϕn−1. Since d = 1 it follows that l ∈ [ϕn + ϕn−3, ϕn+1). Again
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for i = 0, the interval and resource position is defined by (3.6). For i = 1, one knows that
b0 − a0 = ϕn−1 6= ϕn−2, and l ∈ [ϕn + ϕn−3, ϕn+1). Hence, b0 − ϕn−2 = ϕn + ϕn−3 ≤ l.
Therefore, one obtains

a1 = b0 − ϕn−2 = ϕn+1 − ϕn−2 = 2ϕn−1 = α0 + ϕn−1 ,
b1 = b0 = ϕn+1 = ϕn + ϕn−1 = β0 + ϕn−1 ,
r1 = r0 + ϕn−1 = ϕn−1 = %0 + ϕn−1 .

This proves the induction base case for j = 0.
Induction step (j → j + 1): let m = |r(λ)| be the number of resources in r(λ) with

m = n−d. It is required to obtain the definition of %j right. Assume for λ ∈ [ϕn−d, ϕn−d+1) =
[ϕm, ϕm+1) that [ai−1, bi−1) = [αj−1 + ϕn−1, βj−1 + ϕn−1), as well as ri−1 = %j−1 + ϕn−1

with i = j + d. Obviously, since β̃j is defined by βj + ϕm−j , one has

b̃i−1 = bi−1 − ϕn−i+1

= βj−1 + ϕn−1 − ϕm−j+1

= β̃j−1 + ϕn−1 .

As a result, if l < b̃i−1 it follows that

l < b̃i−1

⇐⇒ l − ϕn−1 < b̃i−1 − ϕn−1

⇐⇒ λ < β̃j−1 .

Then the interval [ai, bi) is given by

[ai, bi) =







[ai−1, bi−1) if ai−1 = b̃i−1 ,

[ai−1, b̃i−1) if ai−1 6= b̃i−1 and l < b̃i−1 ,

[b̃i−1, bi−1) if ai−1 6= b̃i−1 and l ≥ b̃i−1

=







[αj−1 + ϕn−1, βj−1 + ϕn−1) if αj−1 = β̃j−1 ,

[αj−1 + ϕn−1, β̃j−1 + ϕn−1) if αj−1 6= β̃j−1 and λ < β̃j−1 ,

[β̃j−1 + ϕn−1, βj−1 + ϕn−1) if αj−1 6= β̃j−1 and λ ≥ β̃j−1

= [αj + ϕn−1, βj + ϕn−1) .

Hence the resource position ri is given by

ri =

{

ri−1 + ϕn−i if ai−1 6= b̃i−1 and l ≥ b̃i−1 ,

ri−1 + ϕn−i−1 else .

=

{

%j−1 + ϕn−1 + ϕm−j if αj−1 6= β̃j−1 and λ ≥ β̃j−1 ,

%j−1 + ϕn−1 + ϕm−j−1 else ,

= %j + ϕn−1 ,

which completes the proof of Corollary 3.1. �
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Proof of Lemma 3.1:
Using the terminology of Corollary 3.1, it is assumed that the resource distribution r(λ) for
λ = l − ϕn−1 steps is instantaneously reversible, i.e. λ ≥ 2%j − %j−1 for all j ∈ [1,m).
Hence, all resource positions ri for i ∈ [d, n) also fulfil (3.5), i.e. l ≥ 2ri − ri−1. Now, for
λ ∈ [ϕn−2, ϕn−1), the first resources i ∈ [0, d) are given by r0 = 0, r1 = ϕn−2 and r2 = ϕn−1.
Thus, (3.5) follows from

2r1 − r0 = 2ϕn−2 = ϕn−1 + ϕn−4 < ϕn ≤ l
2r2 − r1 = 2ϕn−1 − ϕn−2 = ϕn−1 + ϕn−3 < ϕn ≤ l .

Furthermore, if λ ∈ [ϕn−1, ϕn), the inequality

2r1 − r0 = 2ϕn−1 = ϕn + ϕn−3 ≤ l

holds for the first two resources.
Finally, to complete the proof, it must be shown that all small resource distributions for one,

two, three and four steps fulfil the proposition in Lemma 3.1. This is obvious and can be shown
by simply writing down the resource positions

(3.7)

l = 1 : r0 = 0, r1 = 1,
l = 2 : r0 = 0, r1 = 2,
l = 3 : r0 = 0, r1 = 1, r2 = 3
l = 4 : r0 = 0, r1 = 2, r2 = 4 ,

inserting them in (3.5) and recalculating the inequality (3.5). This completes the proof of
Lemma 3.1. �

3.2 Forward Computation for Instantaneous Reversal

Having obtained the resource distributions defined by the formula for the resource distribution
(Definition 3.1), the question is whether or not it is possible to change the resource distribution
r(l − 1) = {%i | i ∈ [0,m)} for a given l to the resource distribution r(l) = {ri | i ∈ [0, n)}.
Furthermore, if this transition is possible, one must study the computational effort.

Only time minimal transitions are acceptable. Such a time minimal transition takes the time
τ = 1 that one advancing step Fi(xi) lasts, because the intermediate state xl−1 has to change to
the intermediate state xl by carrying out one advancing step. Also one can say that the resource
position %m−1 ∈ r(l − 1) must be propagated to the resource position %m−1 +1 = rn−1 ∈ r(l).
Thus, in order to obtain a time minimal transition, all resource positions can only change from
%i to rj = %i + 1 or rj = %i. The next lemma shows how such a time minimal transition works
and how large the computational effort is.

Lemma 3.2
The effort to change a given resource distribution r(l − 1) for given l ≥ 3 to the resource
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distribution r(l) is equivalent to two advancing steps Fi(xi) carried out in parallel, i.e. only two
resource positions %j ∈ r(l − 1) have to be changed to the resource positions ri = %j + 1. For
all other resource positions ri, there exists a resource position %j ∈ r(l − 1) such that ri = %j .
Furthermore, the resource positions that have to be moved are the resource positions %m−2 and
%m−1, which are moved to the resource positions %n−2 + 1 = rn−2 and %m−1 + 1 = rn−1,
respectively. �

Proof:
Two cases must be considered. In the first case, the resource distributions for l − 1 and l have
different numbers of resource positions, and, in the second case, the distributions for l − 1 and
l have the same number of resource positions. By definition, the last case can only happen if
the number of steps l equals a Fibonacci number. From here on, all variables written in Greek
letters belong to the resource distribution with the smaller number of l − 1 steps. The variables
corresponding to l steps are written in Latin letters.

First, it is assumed that l = ϕn. The number of resources equals n for r(l), and m = n− 1
for r(l − 1). To prove Lemma 3.2, it has to be shown that the resource positions of the resource
distributions r(l − 1) and r(l) are equal for all resources with an index i < n − 2 = m − 1.

All intervals [ai, bi) are defined such that l always lies inside the interval. Additionally,
a0 = l by definition (3.1). Thus the values ai = l will never be changed for all i. Therefore,
only the first two cases of the interval definition (3.1) will be used to calculate the intervals.
Hence, only the second case of the resource positions’ definition (3.2) is applied. That is why
all resources are computed by ri = ri−1 + ϕn−i−1 for i ∈ [0, n − 1), if the number of steps l
equals ϕn.

For l−1 steps, the upper interval limit βi = ϕn will never be changed for all i ∈ [0,m−1).
This can be shown inductively. For case i = 0, the definition (3.1) of the intervals yields
β0 = ϕn. Now, for i − 1 it is assumed that βi−1 = ϕn, l − 1 ≥ β̃i−2, and αi−1 6= β̃i−2.
For the calculation of the intervals for the case i, one knows that β̃i−1 = βi−1 − ϕm−i−1 =
ϕn − ϕm−i−1. This expression defines a sequence of increasing numbers for the increasing
value of i. The maximum is reached at i = m − 2, i.e. β̃i−1 = ϕn − ϕ1 = ϕn − 1. This
value, however, is always less than or equal to l − 1, such that only the third case of the
definition (3.1) of the intervals will be used. Therefore, only the first case of the definition (3.2)
of the resource positions will be applied. Hence, the definitions of all resource positions %i

and ri for all i ∈ [0,m − 1) are identical, i.e. it was shown that all resources %j ∈ r(l − 1)
are given by %j = %j−1 + ϕm−j , j ∈ [0,m − 1), and all resources ri of r(l) are given by
ri = ri−1 + ϕn−i−1 = ri−1 + ϕm−i, i ∈ [0, n − 2) = [0,m − 1).

The two movements of resource positions are %m−1 = l − 1 moved to rn−1 = l and %m−2

moved to rn−2. The resource positions %m−1 and rn−1 define the step number l − 1 and l
respectively. Hence, the forward step Fl(xl−1) = xl has to be carried out. The next smaller
resource position starts at %m−2 = rn−3 and is transformed to rn−2 = rn−3 + ϕn−(n−2)−1 =
rn−3 + ϕ1 = rn−3 + 1. The situation for the last two resource positions is illustrated in
Figure 3.4. The additional resource needed to change the resource distribution r(l − 1) to the
resource distribution r(l) is used for the resource position %m−2. On the one hand, this resource
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position is used to obtain the resource position rn−3, and on the other hand, this resource is
used to compute the resource position rn−2.

PSfrag replacements
rn−4 = %m−3

rn−3 = %m−2

rn−2 = %m−2 + 1

%m−1 = l − 1

rn−1 = l

ϕ1 = 1 ϕ2 = 2

Figure 3.4: Changing of the resource positions %m−2 and %m−1 to the resource positions rn−3, rn−2

and rn−1

In order to prove the second part of the assertion, it is assumed that the resource distribution
r(l − 1) is comprised of the same number of elements as the resource distribution r(l). This is
equivalent to the assumption that l − 1, l ∈ [ϕn, ϕn+1). The proof for this case is carried out
recursively using the subdistributions defined by Corollary 3.1.

Obviously all resource distributions with a number of steps between one and four satisfy
Lemma 3.2.

Now, using the approach of Corollary 3.1, it is assumed that for λ = l − ϕn−1, Lemma 3.2
is true for the resource position within the resource distribution r(λ − 1) for λ−1, and resource
distribution r(λ) for λ.

Now the effort needed for the resource positions smaller than ϕn−1 has to be computed.
This must be zero for all l ∈ (ϕn, ϕn+1). The resource positions are explicit given by r0 = 0,
r1 = ϕn−2 and r2 = ϕn−1, if l − 1, l ∈ [ϕn, ϕn + ϕn+3), or by r0 = 0 and r1 = ϕn−1, if
l − 1, l ∈ [ϕn + ϕn+3 + ϕn+1). In both cases, for every resource position ri a corresponding
resource position %j can be found such that ri = %j . Even if l − 1 ∈ [ϕn, ϕn + ϕn+3) and
l ∈ [ϕn + ϕn+3, ϕn+1), the resource r1 has its predecessor %2. This concludes the proof. �

Lemma 3.2 provides an indication of how one should proceed if no final number of steps l is
known. As shown in Figure 3.5, one has to start two asynchronous running advancing pro-
cesses. The second process starts, when the first process reaches the intermediate state x2.
All other resources act as checkpoints and are set by the second process calculation. These
checkpoints are written and deleted at certain times. The specification of these times is carried
out using the state count of the last resource rn−1, which is equivalent to the current number
of steps. The state count, when the checkpoint ri is written, is named lO(ri), while the dele-
tion state count is named lI(ri). The indices O and I stands for outer and inner, whereby the
meaning will be explained in more detail in the following Section 3.3.

During the forward computation of the second process, every state the process reaches has
to be checked, whether a checkpoint has to be written or not. A checkpoint is written if the step
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Figure 3.5: Forward computation for an unknown number of steps.

number l equals lO(ri). This step number is always given by

(3.8) lO(ri) = ri + 2 .

Generally, every intermediate state has to be stored as a checkpoint. Some of them, however,
have a life time of 0 = lI(ri) − lO(ri), such as the intermediate state x1, and x4.

The deletion of a checkpoint is carried out if the step number l = lI(ri). For the definition
of lI(ri), one must first look at the second resource position r1. By definition, this resource
position is always a Fibonacci number, w.l.o.g. r1 = ϕn. The last step number l, when this
resource position is used, is one step before the condition l < b0 − ϕn = ϕn+3 − ϕn =
2(ϕn + ϕn−1) which can be found in the formula for the resource distribution (Definition 3.1)
fails. If l = b0 − ϕn, the resource position r1 equals ϕn+1. Hence, the step number lI(r1),
when a resource position r1 = ϕn has to be deleted, is defined by

lI(ϕn) = 2(ϕn + ϕn−1) − 1 = 2ϕn+1 − 1 .

To determine the deletion step number of an arbitrary resource position, the following corollary
is required. It shows that if a checkpoint has the resource position ri ∈ (ϕn, ϕn+1), and it is
set at step lO(ri), and it is deleted at step lI(ri), then a checkpoint exists with the resource
position %j = ri − ϕn ∈ (0, ϕn−1), which is set at step lO(%j) = lO(ri) − ϕn and deleted
at step lI(%j) = lI(ri) − ϕn. In abstract, the corollary shows that the inner structure formed
by all resource positions between two Fibonacci numbers ϕn and ϕn+1 (right grey area in
Figure 3.6(a)) is equivalent to the inner structure formed by all resource positions lying between
0 and ϕn−1 (left grey area in Figure 3.6(a)).

Using this knowledge, the deletion step of an arbitrary resource position can be recursively
defined by lI(ri) = lI(ri − ϕn) + ϕn, if ri ∈ (ϕn, ϕn+1).
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Corollary 3.2
Let S(ϕn, ϕn+1) with n ≥ 3 be the set of all possible resource positions r ∈ (ϕn, ϕn+1), i.e.

S(ϕn, ϕn+1) =
{
r | r ∈ (ϕn, ϕn+1) and r ∈ r(l) for l ∈ IN .

}

Then, for every resource position ri ∈ S(ϕn, ϕn+1) ∩ r(l), there exists a resource position
%j ∈ S(0, ϕn−1) ∩ r(λ) for a step number λ such that

ri = %j + ϕn and l = λ + ϕn .

�

Proof:
The proof will be carried out in three parts. First, it will be shown that if a resource position
ri lies in (ϕn, ϕn+1), the range of possible number of steps l with ri ∈ r(l) can be bounded.
Secondly, the statement of Corollary 3.2 is shown for a subset of the possible number of steps
l. Finally, the assertion will be proven by induction for all steps numbers l ∈ IN.

To prove the first part, it has to be shown that if ri ∈ (ϕn, ϕn+1), then l ∈ (ϕn, ϕn+2) =:
(ll, lu). If ri > ϕn, then l > ϕn = ll by definition. The upper bound lu for l is reached at
the number of steps, where no resource position lies between the resource positions rk = ϕn

and rk+1 = ϕn+1. By Lemma 3.2 the position rk and rk+1 will not be changed once they
are set, and k is small enough. The resource position can only be deleted. Also one obtains
from Lemma 3.2 that every resource position ri, i > 0 needs a predecessor. Therefore, a
resource position between ϕn and ϕn+1 cannot exist for all step numbers greater than the upper
bound lu. That means that only one situation, i.e. one k, has to be found where rk = ϕn

and rk+1 = ϕn+1. Since n > 0 and r0 = 0, it follows that k > 0. One possible number of
steps where no resource position exists between ϕn and ϕn+1 is given by l = ϕn+2 − 1. Then
k equals 1. This can be verified by the formula for the resource distribution. As a result of
l ∈ [ϕn+1, ϕn+2), the intervals and the resource positions are given by

a0 = ϕn+1 , b0 = ϕn+2 , r0 = 0 ,

b̃0 = ϕn+2 − ϕn−1 , a1 = b̃0 , b1 = ϕn+2 , r1 = ϕn ,

b̃1 = ϕn+2 − ϕn−2 , a2 = b̃1 , b2 = ϕn+2 , r2 = ϕn+1 .

Lemma 3.2 provides that for all l larger than ϕn+2 − 1, there is no resource position between
r1 = ϕn and r2 = ϕn+1.

In order to prove the second part, all resource positions ri ∈ (ϕn, ϕn+1) for all l ∈
[ϕn+1, ϕn+2) are considered. The area containing these resource positions is denoted by
Rec(ϕn, ϕn+1, ϕn+2) (see Figure 3.6(a)). By Corollary 3.1, resource positions %j ∈ (0, ϕn−1)
for λ ∈ (ϕn−1, ϕn) exist such that ri = %j + ϕn for ri ∈ r(l) and l = λ + ϕn. Hence, for each
resource position ri within the considered rectangle area Rec(ϕn, ϕn+1, ϕn+2), an equivalent
resource %j can be found, which lies within the rectangle area defined by %j ∈ (0, ϕn−1) for
λ ∈ (ϕn−1, ϕn). This rectangle is denoted Rec(0, ϕn−1, ϕn) in Figure 3.6(a). Thus one can
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Figure 3.6: Proof sketch for Corollary 3.2.

say that the rectangle Rec(ϕn, ϕn+1, ϕn+2) is shifted by ϕn in both the step number direction
and the time direction, which yields the rectangle Rec(0, ϕn−1, ϕn).

Part three: For the remaining resource positions within the triangle area defined by ri ∈
(ϕn, ϕn+1) ∩ r(l) with l ∈ [ϕn, ϕn+1), it now has to be proved that they are equivalent to
resource positions within the triangle defined by %i ∈ (0, ϕn−1) ∩ r(λ) for λ ∈ [0, ϕn−1)
shifted by ϕn. The first area will be termed Tr(ϕn, ϕn+1) and the second Tr(0, ϕn−1), as can
been seen in Figure 3.6(a). Hence, it has to be shown that

(3.9) Tr(ϕn, ϕn+1) = S(Tr(0, ϕn−1), ϕn) ,

where S(., .) denotes the shift in the down-rightward direction referring to the Figures 3.6(a),
3.6(b), 3.7(a) or 3.7(b). The triangle Tr(ϕn, ϕn+1) is a subset of all resource positions r(l) for
l ∈ [ϕn, ϕn+1). Further, all resource positions within Tr(ϕn, ϕn+1) are larger then ϕn−1 by
definition. Therefore, from Corollary 3.1, one knows, that for each resource position r ∈ r(l)
there exists a unique resource position % ∈ r(λ) such that r = % + ϕn−1 and l = λ + ϕn−1.
Hence, it is known that

(3.10) Tr(ϕn, ϕn+1) = S(Tr(ϕn−2, ϕn), ϕn−1) .

As shown in Figure 3.6(b), Tr(ϕn−2, ϕn) can be divided into the triangle Tr(ϕn−2, ϕn−1)
and a tetragon Te(ϕn−2, ϕn−1, ϕn), which contain all resource positions ri ∈ (ϕn−2, ϕn) for
l ∈ [ϕn−1, ϕn). Using Corollary 3.1 once more, one obtains that

Te(ϕn−2, ϕn−1, ϕn) = S(Te(0, ϕn−3, ϕn−1), ϕn−2)
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Figure 3.7: Proof sketch for Corollary 3.2.

and hence

Te(ϕn, ϕn+1 − ϕn−2, ϕn+1) = S(Te(ϕn−2, ϕn−1, ϕn), ϕn−1)

= S(S(Te(0, ϕn−3, ϕn−1), ϕn−2), ϕn−1)

= S(Te(0, ϕn−3, ϕn−1), ϕn−2 + ϕn−1)

= S(Te(0, ϕn−3, ϕn−1), ϕn) ,(3.11)

as can be seen in Figure 3.7(a). For the remaining triangle defined by Tr(ϕn, ϕn+1 − ϕn−2) =
Tr(ϕn, ϕn + ϕn−3), it must be shown that

Tr(ϕn, ϕn+1 − ϕn−2) = S(Tr(0, ϕn−3), ϕn) .

As a result of (3.10), the claim can be rewritten as Tr(ϕn−2, ϕn−1) = S(Tr(0, ϕn−3), ϕn−2),
which is an equivalent claim to (3.9).

Part three of the proof is achieved by proving

(3.12)
Tr(ϕn, ϕn+1 − Φj) = Tr(ϕn, ϕn + ϕn−2j−1)

= S(Tr(ϕn−2j−2, ϕn−2j), Φ̄j)

with

(3.13) Φj =

j
∑

k=1

ϕn−2k and Φ̄j =

j
∑

k=0

ϕn−2k−1

first. An induction will be used.
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Induction base case (j = 0): by setting j = 0 in (3.12) one obtains

Tr(ϕn, ϕn+1 − Φ0) = S(Tr(ϕn−2, ϕn), Φ̄0)

Tr(ϕn, ϕn+1) = S(Tr(ϕn−2, ϕn), ϕn−1) ,

the induction base case, which is the formula (3.10).
Induction hypothesis: It is assumed that (3.12) is true for j.
Induction step (j → j + 1): the given area can be subdivided once more into a triangle and

a tetragon such that

Tr(ϕn, ϕn+1 − Φj) = Tr(ϕn, ϕn+1 − Φj − ϕn−2j−2)
∪ Te(ϕn, ϕn+1 − Φj − ϕn−2j−2, ϕn+1 − Φj)

= Tr(ϕn, ϕn + ϕn−2j−1 − ϕn−2j−2)
∪ Te(ϕn, ϕn + ϕn−2j−1 − ϕn−2j−2, ϕn + ϕn−2j−1)

= Tr(ϕn, ϕn + ϕn−2j−3)
∪ Te(ϕn, ϕn + ϕn−2j−3, ϕn + ϕn−2j−1) .

Using the formula (3.12), one can rewrite this equation as

(3.14)
Tr(ϕn, ϕn+1 − Φj − ϕn−2j−2) = Tr(ϕn, ϕn+1 − Φj+1)

= S(Tr(ϕn−2j−2, ϕn−2j − ϕn−2j−2), Φ̄j)
= S(Tr(ϕn−2j−2, ϕn−2j−1), Φ̄j)

and

(3.15)

Te(ϕn, ϕn+1 − Φj − ϕn−2j−2, ϕn+1 − Φj)
= Te(ϕn, ϕn+1 − Φj+1, ϕn+1 − Φj)
= S(Te(ϕn−2j−2, ϕn−2j − ϕn−2j−2, ϕn−2j), Φ̄j)
= S(Te(ϕn−2j−2, ϕn−2j−1, ϕn−2j), Φ̄j) .

The resulting triangle in (3.14), Tr(ϕn−2j−2, ϕn−2j−1), can be shifted again by utilising Corol-
lary 3.1 such that

Tr(ϕn−2j−2, ϕn−2j−1) = S(Tr(ϕn−2j−4, ϕn−2j−2), ϕn−2j−3) .

By combining this equation with (3.14), one obtains the induction hypothesis for j = j +1, i.e.

Tr(ϕn, ϕn+1 − Φj+1) = Tr(ϕn, ϕn+1 − Φj − ϕn−2j−2)
= S(Tr(ϕn−2j−2, ϕn−2j−1), Φ̄j)
= S(S(Tr(ϕn−2j−4, ϕn−2j−2), ϕn−2j−3), Φ̄j)
= S(Tr(ϕn−2j−4, ϕn−2j−2), Φ̄j + ϕn−2j−3)
= S(Tr(ϕn−2(j+1)−2, ϕn−2(j+1)), Φ̄j+1) ,

which finishes the induction.
Secondly, it must be proven that the tetragon part Te(ϕn, ϕn + ϕn−2j−3, ϕn + ϕn−2j−1)

of every triangle Tr(ϕn, ϕn + ϕn−2j−1) can always be shifted by ϕn to the tetragon given
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by Te(0, ϕn−2j−3, ϕn−2j−1). The tetragon lays between 0 and ϕn−2j−1, as can be seen in
Figure 3.7(a).

The tetragon Te(ϕn−2j−2, ϕn−2j−1, ϕn−2j), which is the result in (3.15), can be shifted
using Corollary 3.1 such that

Te(ϕn−2j−2, ϕn−2j−1, ϕn−2j) = S(Te(0, ϕn−2j−3, ϕn−2j−1), ϕn−2j−2) .

Combining this result with (3.15) one obtains

(3.16)

Te(ϕn, ϕn + ϕn−2j−3, ϕn + ϕn−2j−1)
= Te(ϕn, ϕn+1 − Φj − ϕn−2j−2, ϕn+1 − Φj)
= Te(ϕn, ϕn+1 − Φj+1, ϕn+1 − Φj)
= S(Te(ϕn−2j−2, ϕn−2j−1, ϕn−2j), Φ̄j)
= S(S(Te(0, ϕn−2j−3, ϕn−2j−1), ϕn−2j−2), Φ̄j)
= S(Te(0, ϕn−2j−3, ϕn−2j−1), Φ̄j + ϕn−2j−2)
= S(Te(0, ϕn−2j−3, ϕn−2j−1), ϕn) .

Now, one can build a tetragon Te(ϕn, ϕn + ϕn−2j−3, ϕn+1) by the union of all tetragon
up to index j, i.e.

Te(ϕn, ϕn + ϕn−2j−3, ϕn+1) =

j
⋃

k=0

Te(ϕn, ϕn + ϕn−2k−3, ϕn + ϕn−2k−1) .

Since by (3.16) each element of this union can be shifted by ϕn, the whole union can be shifted
as well, i.e.

Te(ϕn, ϕn + ϕn−2j−3, ϕn+1) = S(Te(ϕn, ϕn + ϕn−2j−3, ϕn+1), ϕn)

For j = d(n−3)/2e the tetragon Te(ϕn, ϕn + ϕn−2j−3, ϕn+1) either covers the whole triangle
Tr(ϕn, ϕn+1), or for the remaining triangle Tr(ϕn, ϕn + 1) it is trivial to show that it can be
shifted by ϕn, i.e. Tr(ϕn, ϕn + 1) = S(Tr(0, 1), ϕn). Hence, one obtains (3.9), i.e.

Tr(ϕn, ϕn+1) = S(Tr(0, ϕn−1), ϕn) .

This completes the proof. �

Using Corollary 3.2, one can concretise the upper bound of the step number, where a re-
source ri is deleted, i.e. an upper bound on lI(ri), given in the first part of the proof of Corol-
lary 3.2, to the exact definition

(3.17) lI(ri) =

{

2ϕn+1 − 1 if ri = ϕn ,

lI(ri − ϕn) + ϕn if ri ∈ (ϕn, ϕn+1) .
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3.3 Reverse Sweep for Instantaneous Reversal

Assume a computation with checkpointing is carried out as described in Section 3.2. This
computation is referred to as the forward computation. This forward computation stopped with
a step number l. Now, the corresponding reversal of this forward computation will be derived.
This reversal is also called the reverse computation. From inequality (3.5) and Figure 3.2, one
knows that for the Fibonacci number 2ϕj = ri − ri−1, an equilateral triangle of the height ϕj

and the base line length 2ϕj fits always between the resource positions ri−1 and ri. According
to the formula for the resource distribution (Definition 3.1), the distance between two resource
positions is always a Fibonacci number. Hence, one may insert a time optimal reversal schedule
for a fixed number of steps ϕj as explained in Chapter 2.4.
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Figure 3.8: One forward and backward computation for an instantaneous reversal.

A resulting schedule can be seen in Figure 3.8. Once again, the diagrams c(t) and p(t)
show the checkpoints and the processes needed during the advancing steps, respectively. The
diagram for the value s(t) (second from the right) illustrates the sum of all resources needed
during the advancing steps. The sum of all resources at the end of an advancing step can be
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seen on the diagram on the far right (value n(t)).
From the symmetry observed in this diagram, one can conclude that the schedules for the

forward computation and the reverse computation are symmetric in some sense. To exploit this
”symmetry”, the resource distributions of a reverse computation (illustrated by × in Figure 3.9)
are mirrored on the apex (the axis determined by the number of steps where the reverse calcu-
lations starts) onto the resource distributions of the forward computation (illustrated by � in
Figure 3.9). This yields a new view of the ”behaviour” of the resources during the forward or
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Figure 3.9: Resource distribution of the reverse calculation (×) mirrored onto resource distribution of
the forward computation (�).

reverse computation using a parallel schedule. During the forward computation, a resource is
set at the resource position ri, when the leading process reaches the step number lO(ri). The
leading process is always the process using or computing the intermediate state with the largest
state number. During the reverse computation, the step number lO(ri) is the same step number
of the leading reversing process, when the resource ri is used to start the computation of the
preparing step. It is the step number where the resource at the resource position ri is deleted
during the reversal (compare Figure 3.10).

At the other end of the life cycle of a resource assigned to the resource position ri, the step
number lI(ri) can be defined. If during the forward computation the leading process reaches
the step number lI(ri), then the resource assigned to the resource position ri must be deleted. If
a reverse computation is carried out and if the leading process reaches lI(ri), then the resource
assigned to the resource positions ri begins to ”exist”. The actual resource position or the
intermediate state of this resource is not yet the resource position ri or the intermediate state xri

(therefore the resource is just assigned to the resource position ri). This resource position has to
be computed by carrying out advancing steps. Once the resource reaches the resource position
ri, the forward computation stops and the resource becomes a checkpoint. This happens when
the leading process position reaches the step number lM (ri) (see Figure 3.10).

In Figure 3.10, one can also see how the step numbers lO(ri), lI(ri) are computed and, as
explained in the next section, how the step number lM (ri) is computed. Here, the life cycle of
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a resource position ri = ϕn +ϕk for some k < n is illustrated. As defined in formula (3.8), the
resource position starts to exist during the forward computation or is deleted during the reverse
computation, if the leading process reaches the step number lO(ri) = ri + 2. If the leading
process reaches the step number lI(ri), then the resource assigned to the resource position ri is
deleted during the forward computation and is created during the reverse computation. In this
case, it is computed by formula (3.17), i.e. lI(ri) = lI(ri − ϕn) + ϕn = 2ϕk+1 − 1 + ϕn.

Due to the different meaning of the step numbers lO(ri) and lI(ri) during the forward and
the reverse computation, these are labelled with O for the outer step number, i.e. close to the
leading process, and I for the inner step number, away from the leading process. During the
reverse computation, the resource changes from a process resource to a checkpoint resource at
the step number lM (ri) of the leading process. This step lies somewhere in the middle of the
life cycle interval [lO(ri), lI(ri)]. Another meaning for this step number lM (ri) is given by the
point where the resource position of the forward and the backward computation merge. Both
are indicated by the index M . A precise description of the step number lM (ri) and how it can
be used to extend the formula for the resource distribution (Definition 3.1) is given in the next
section.
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3.4 Extended Instantaneously Reversible Distributions

In order to get a more general characterisation for instantaneously reversible resource distribu-
tions the results above are extended. Since the resource distributions of the reverse computation
are instantaneously reversible by definition, the extension will lead to a definition including the
resource distributions of the forward computation as well as the resource distributions of the
reverse computation.

Using the results in Section 3.1 and Section 3.3, one can extend the formula for the resource
distribution (Definition 3.1). Again, a step number l ∈ [ϕn, ϕn+1) is given. Instead of specific
resource positions, intervals of possible resource positions are used. These intervals are defined
by

(3.18) ri(l) =
[

min
(
ri, ri − l + lM (ri)

)
, ri

]

.

Thereby, it is assumed w.l.o.g. that ri ∈ [ϕm, ϕm+1) for a m ∈ IN and the step number lM (ri)
are defined by

(3.19) lM (ri) =

{

ϕm−1 + ϕm+1 if ri = ϕm ,

lM (ri − ϕm) + ϕm if ri ∈ (ϕm, ϕm+1) .

The values ri are computed by the formula for the resource distribution (Definition 3.1) for the
given step number l. The step number lM (ri) defines the step number of the leading process
when the resource connected to the resource position ri changes from a computing resource
to a checkpoint resource, as described in Section 3.3. Figure 3.11 shows the intervals of the
resource positions (grey shaded areas) up to l = 34. One important property of these intervals
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is that they do not intersect, which is shown by the following corollary.
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Corollary 3.3
For an arbitrary step number l ∈ [ϕn, ϕn+1) and n ∈ IN, let the resource intervals be defined
by (3.18) and (3.19). Then for all i ∈ [1, n) one has

ri−1(l) ∩ ri(l) = ∅ .

�

Proof:
It must be shown that the upper bound of the interval ri−1(l) is always smaller than the lower
bound of the interval ri(l). By definition (3.2), one knows ri(l) > ri−1(l). Therefore, only the
step number l is of interest, where the minimum in (3.18) is formed by ri − l + lM (ri), i.e.
where lM (ri) ≤ l. Hence, l is restricted to l ∈ [lM (ri), lI(ri)]. The statement of Corollary 3.3
can be rewritten as

(3.20) ri − l + lM (ri) > ri−1

for l ∈ [lM (ri), lI(ri)] and i ∈ [1, n).
First it is assumed that ri = ϕm. The inequality (3.20) changes to

ϕm − l + ϕm+1 + ϕm−1 = 2ϕm+1 − l > ri−1

which yields l ∈ [ϕm+1 +ϕm−1, 2ϕm+1−1]. In order to obtain the correct definition of ri, one
must subdivide the range of l into the parts l ∈ [ϕm+1 +ϕm−1, ϕm+2) and l ∈ [ϕm+2, ϕm+2 +
ϕm−1−1]. Using the formula for the resource distribution (Definition 3.1) within the two given
intervals, one notes that the only case in which ri = ϕm is if i = 1. Hence, ri−1 = r0 = 0.
Then the proposition can be rewritten as

2ϕm+1 − l > 0

for l ∈ [ϕm+1 + ϕm−1, 2ϕm+1 − 1]. Using the maximal value for l = 2ϕm+1 − 1, the
proposition is still true.

Secondly, it is assumed that ri ∈ (ϕm, ϕm+1). Using Corollary 3.2, one knows that a re-
source position %j exists such that ri(l) = %j(λ)+ϕm. Additionally, the interval [lM (ri), lI(ri)]
of possible step numbers l is shifted by ϕm to the interval [lM (%j), lI(%j)] for possible step
numbers λ, as a result of lM (ri) = lM (ri − ϕm) + ϕm = lM (%j) + ϕm and lI(ri) =
lI(ri − ϕm) + ϕm = lI(%j) + ϕm.

Next, the upper bound of the interval ri−1(l) must be determined. The smallest possible
value for this bound is ri−1 = ϕm. To prove this, one has to show that for all resource positions
ri ∈ (ϕm, ϕm+1), the resource position at ϕm is already set when the resource assigned to ri

is created and that the resource position at ϕm is still the resource assigned to ri when it is
deleted, i.e. one has to show that lO(ϕm) < lO(ri) and lI(ϕm) > lI(ri). The first statement
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is true by definition, since lO(ϕm) = ϕm + 2, lO(ri) = ri + 2, and ϕm < ri. The second
statement is true because

lI(ϕm) > lI(ri)
⇐⇒ lI(ϕm) > ϕm + lI(%j)
⇐⇒ 2ϕm+1 − 1 > ϕm + 2ϕm − 1
⇐⇒ ϕm−1 > ϕm−2 .

Now, two possibilities to set the resource position ri−1 must be considered. First, if ri−1 =
ϕm, then (3.20) changes to ri − l + lM (ri) > ϕm, and by shifting about ϕm, it is equivalent
to %j − λ + lM (%j) > 0. If the resource position ri−1 ∈ (ϕm, ϕm+1), then the problem can be
converted into an equivalent problem by a ϕm-shift because

ri − l + lM (ri) > ri−1

⇐⇒ %j + ϕm − (λ + ϕm) + lM (%j + ϕm) + ϕm > %j−1 + ϕm

⇐⇒ %j − λ + lM (%j) > %j−1 .

Hence, the statement (3.20) is proven recursively. �

The actual purpose of defining intervals ri(l) is the instantaneous reversibility of the resulting
resource distributions. An equivalent lemma to Lemma 3.1 can be stated.

Lemma 3.3
Resource distributions r(l) satisfying

r(l) =
{
ri | ri ∈ ri(l) ∧ i < n ∧ i, n ∈ IN

}

are instantaneously reversible. �

The second condition (i < n) of the resource position ri ensures that there is only one re-
source within each resource interval. The statement of Lemma 3.1 is a restriction of Lemma 3.3
to the upper bound. The aim is to prove that

l ≥ 2ri − ri−1 ,

which is similar to the inequality (3.5). Different to inequality (3.5), the resource positions r i

can be any resource position within the interval ri(l), and the resource positions ri−1 can be any
resource position within the interval ri−1(l). Nevertheless, the procedure proving Lemma 3.3
is equivalent to the proof of Lemma 3.1.

In an extra corollary simular to Corollary 3.1, substructures were exploited first. Again, it
is assumed that the step number l lies within the interval [ϕn, ϕn+1). In addition to this, the
interval is divided into parts, but in contrast to Corollary 3.1, these intervals are given by

• l ∈ [ϕn, ϕn + ϕn−3)
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• l ∈ [ϕn + ϕn−3, ϕn + ϕn−2) and

• l ∈ [ϕn + ϕn−2, ϕn + ϕn−1) = [ϕn + ϕn−2, ϕn+1).

The resource positions equal to or larger than ϕn−1 of the first interval (labelled ① in Fig-
ure 3.12(a)) have their equivalent within the resource positions lying in the interval [ϕn−2, ϕn−1)
of the step number (①’ in Figure 3.12(a)), shifted by ϕn−1. Considering the two other intervals,
only the resource positions larger than ϕn will be looked at (labelled ② and ③ in Figure 3.12(a)).
These resource positions will be shifted by ϕn, and their equivalents will be found between the
step number ϕn−3 and ϕn−1 (②’ and ③’ in Figure 3.12(a)). Using the notation of the proof of
Corollary 3.2, the new corollary will state that

(3.21) Te(ϕn−1, ϕn, ϕϕn+ϕn−3
) = S(Te(0, ϕn−2, ϕn−1), ϕn−1)

and

(3.22) Te(ϕn, ϕn + ϕn−3, ϕn+1) = S(Te(0, ϕn−3, ϕn−1), ϕn) .

Using the notations of Figure 3.12(a), one can state ① = S(①’, ϕn−1), as well as ② + ③ =
S(②’ + ③’, ϕn). Having proved this corollary, it remains to be shown that the left over resource
positions (dark grey area in Figure 3.12(a)) satisfy the inequality of instantaneous reversibility
(3.5).
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Figure 3.12: Proof sketch for Corollary 3.4.

Corollary 3.4
Let l ∈ [ϕn, ϕn+1) and n ≥ 3 with the resource distribution intervals R(l) = {ri(l) | i ∈
[0, n)} and

λ =

{

l − ϕn−1 if l ∈ [ϕn, ϕn + ϕn−3) ,

l − ϕn if l ∈ [ϕn + ϕn−3, ϕn+1)
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with the resource distribution intervals R(λ) = {ri(λ) | i ∈ [0, n − d)}. Then, for every
resource interval rj(λ) ∈ R(λ), there exists a unique resource interval ri(l) ∈ R(l) such that

ri(l) = rj+d(l) =







rj(λ) + ϕn−1 with d = 2 if l ∈ [ϕn, ϕn + ϕn−3) ;
rj(λ) + ϕn with d = 3 if l ∈ [ϕn + ϕn−3, ϕn + ϕn−2) ;
rj(λ) + ϕn with d = 2 if l ∈ [ϕn + ϕn−2, ϕn+1) .

�

Proof:
As with the proof of Corollary 3.1, the Greek written variables belong to the resource interval
R(λ) for λ.

First, it will be shown that the tetragons ①, i.e. Te(ϕn−1, ϕn, ϕϕn+ϕn−3
), and ②+③, i.e.

Te(ϕn, ϕn + ϕn−3, ϕn+1), include all possible resource positions ri with i ≥ d. An equivalent
statement is that for all resource intervals ri(l) with the i ≥ d, the left-most bound lies within
the tetragons ①, ② and ③. This bound is the resource positions rd. By using the formula of the
resource distribution (Definition 3.1), one can verify that

if l ∈ [ϕn, ϕn + ϕn−3) =⇒ r2 = ϕn−1 ,
if l ∈ [ϕn + ϕn−3, ϕn + ϕn−2) =⇒ r3 = ϕn and
if l ∈ [ϕn, ϕn + ϕn−1) = [ϕn, ϕn+1) =⇒ r2 = ϕn .

Since the resource intervals do not intersect and all resource intervals ri(l) with i > d cover
larger resource positions than rd, it has been shown that the left-most bound rd lies within
the tetragon Te(ϕn−1, ϕn, ϕϕn+ϕn−3

), the tetragon Te(ϕn, ϕn + ϕn−3, ϕn + ϕn−2), and the
tetragon Te(ϕn, ϕn + ϕn−2, ϕn+1). This can be achieved by showing that rd(l) = [rd, rd] for
all three step ranges, i.e. lM (rd) ≥ l, such that

l ∈ [ϕn, ϕn + ϕn−3) =⇒ lM (r2) = ϕn−2 + ϕn − 1 ≥ l
l ∈ [ϕn + ϕn−3, ϕn + ϕn−2) =⇒ lM (r3) = ϕn−1 + ϕn+1 − 1 ≥ l
l ∈ [ϕn + ϕn−2, ϕn+1) =⇒ lM (r2) = ϕn−1 + ϕn+1 − 1 ≥ l .

Using the result of the Corollary 3.1 once for the tetragon Te(ϕn−1, ϕn, ϕn + ϕn−3) ⊂
Te(ϕn−1, ϕn, ϕn+1), or twice for Te(ϕn, ϕn + ϕn−3, ϕn+1), the result is proven for the upper
bound of each interval ri(l) ∈ R(l). To prove the lower bound, one has to show that lM (ri) =
lM (%j)+ϕn−1 for the case ①, or that lM (ri) = lM (%j)+ϕn for the cases ② and ③. Providing
this is true, one can rewrite the interval definition (3.18) as

ri(l) =
[

min
(
ri, ri − l + lM (ri)

)
, ri

]

=
[

min
(
%j + ϕn−1, (%j + ϕn−1) − (λ + ϕn−1) + lM (%j) + ϕn−1

)
, %j + ϕn−1

]

=
[

min
(
%j + ϕn−1, %j − λ + lM (%j) + ϕn−1

)
, %j + ϕn−1

]

=
[

min
(
%j, %j − λ + lM (%j)

)
+ ϕn−1, %j + ϕn−1

]

=
[

min
(
%j, %j − λ + lM (%j)

)
, %j

]

+ ϕn−1

= rj(λ) + ϕn−1
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for the case that l ∈ [ϕn, ϕn + ϕn−3). Equally, if l ∈ [ϕn + ϕn−3, ϕn+1), then ri(l) =
rj(λ) + ϕn. Using the definition of lM (ri), one notes that the lower bounds of all resource
intervals within the area Te(ϕn, ϕn + ϕn−3, ϕn+1) are equivalent to all lower bounds of all
resources intervals of the area Te(0, ϕn−3, ϕn−1) shifted by ϕn.

By definition, for all l it is known that lM (l) = lM (λ) + ϕn. Hence, ② is equivalent to ②’
and ③ is equivalent to ③’, both shifted by ϕn, i.e. (3.21) is proven.

Since there are resources r with r = ϕn in the area ①, some more steps are required to prove
that ①, i.e. Te(ϕn−1, ϕn, ϕn + ϕn−3), is equivalent to Te(0, ϕn−2, ϕn−1) shifted by ϕn−1 (la-
belled ①’ in Figure 3.12(b)). The area Te(ϕn−1, ϕn, ϕn + ϕn−3) has to be divided into the
area Rec(ϕn−1, ϕn, ϕn + ϕn−3) (labelled ①a in Figure 3.12(b)) containing the resource posi-
tions ri(l) ⊂ [ϕn−1, ϕn] and l ∈ [ϕn, ϕn + ϕn−3) and the area Tr(ϕn, ϕn + ϕn−3) (labelled
①b in Figure 3.12(b)), containing the resource positions ri(l) ⊂ [ϕn, ϕn + ϕn−3]. Again, the
area ①a, i.e. Rec(ϕn−1, ϕn, ϕn + ϕn−3), can be shifted by ϕn−1, i.e. ①a = S(①a’, ϕn−1),
because of the Corollary 3.1 used for the upper bounds of the resource interval, the definition
(3.19) of the values lM (ri), and the fact that all resources in that area lie within the interval
(ϕn−1, ϕn).

The remaining triangle Tr(ϕn, ϕn + ϕn−3) can be shifted by ϕn using Corollary 3.2 and
the definition (3.19) of lM (ri) to the triangle Tr(0, ϕn−3), or formal Tr(ϕn, ϕn + ϕn−3) =
S(Tr(0, ϕn−3), ϕn). One actually wants to show , however, that one can carry out a smaller
shift such that Tr(ϕn, ϕn + ϕn−3) = S(Tr(ϕn−2, ϕn−1), ϕn−1). By using Corollary 3.2
again and the definition (3.19) of lM (ri), one can show that

Tr(ϕn−2, ϕn−1) = S(Tr(0, ϕn−3), ϕn−2) .

Combining these two results, one finds that

Tr(ϕn, ϕn + ϕn−3) = S(Tr(0, ϕn−3), ϕn)

= S(S(Tr(ϕn−2, ϕn−1),−ϕn−2), ϕn)

= S(Tr(ϕn−2, ϕn−1), ϕn − ϕn−2)

= S(Tr(ϕn−2, ϕn−1), ϕn−1) .

Putting the pieces Tr(ϕn, ϕn + ϕn−3) and Rec(ϕn−1, ϕn, ϕn + ϕn−3) back together yields
(3.22). Combining (3.21) and (3.22), the corollary is proven. �

Now it is assumed that the resource distributions defined by the resource intervals ri(l) within
the area Te(0, ϕn−3, ϕn−1) are instantaneously reversible. Since one can shift these areas
by ϕn−1 or ϕn as in Corollary 3.4, the instantaneous reversibility is true for the union of
the areas Te(ϕn−1, ϕn, ϕϕn+ϕn−3

) and Te(ϕn, ϕn + ϕn−3, ϕn+1). Hence, the final proof of
Lemma 3.3 can be obtained by proving that all resource positions defined by the resource
intervals ri(l) with l ∈ [ϕn, ϕn+1), which are not included in Te(ϕn−1, ϕn, ϕϕn+ϕn−3

) +
Te(ϕn, ϕn + ϕn−3, ϕn+1), are instantaneously reversible.

Proof of Lemma 3.3:
Again, the range of l ∈ [ϕn, ϕn−1) will be divided into the three subranges
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• l ∈ [ϕn, ϕn + ϕn−3),

• l ∈ [ϕn + ϕn−3, ϕn + ϕn−2), and

• l ∈ [ϕn + ϕn−2, ϕn + ϕn−1) = [ϕn + ϕn−2, ϕn+1).

First, l ∈ [ϕn, ϕn + ϕn−3) is considered. The resource positions ri for i = [0, 2], defined
by the formula for the resource distribution (Definition 3.1), are given by r0 = 0, r1 = ϕn−2

and r2 = ϕn−1. The resource interval r2(l) is defined by r2(l) = [r2, r2] because lM (r2) =
lM (ϕn−1) = ϕn−2 + ϕn ≥ ϕn + ϕn−3, which is the largest possible value for l within the
considered interval. Using the result of Lemma 3.1, one finds that

2r1 − r0 = 2ϕn−2 = ϕn−1 + ϕn−4 ≤ l
2r2 − r1 = 2ϕn−1 − ϕn−2 = ϕn−1 + ϕn−3 ≤ l .

A similar result can be obtained for the lower bound of the resource interval r1(l). Only the
distance to r2 is the point of interest here, because the largest distance between r0 and r1 already
satisfies the inequality (3.5), as shown above. Thus,

2r2 −
(
r1 − l + lM (r1)

)
= 2ϕn−1 −

(
ϕn−2 − l + ϕn−3 + ϕn−1

)

= 2ϕn−1 − ϕn−2 + l − ϕn−3 − ϕn−1

= ϕn−1 − ϕn−2 + l − ϕn−3

= l .

Hence, for all possible combinations of the resource distributions ri ∈ ri(l) for i = [0, 2] and
l ∈ [ϕn, ϕn + ϕn−3), the inequality (3.5) is true.

Secondly, l ∈ [ϕn + ϕn−3, ϕn + ϕn−2) is assumed. Again, the resource interval defining
resource positions ri for i = [0, d] has to be defined first. Since d = 3, the possible resource
positions are given by r0 = 0, r1 = ϕn−1, r2 = ϕn−1 + ϕn−3 and r3 = ϕn. Applying the
proof of Lemma 3.1 for the upper bounds of the resource intervals, one obtains

2r1 − r0 = 2ϕn−1 = ϕn + ϕn−3 ≤ l
2r2 − r1 = 2(ϕn−1 + ϕn−3) − ϕn−1 = ϕn + ϕn−5 ≤ l
2r3 − r2 = 2ϕn − (ϕn−1 + ϕn−3) = ϕn + ϕn−4 ≤ l .

Using the definition (3.19) of lM (ri), the intervals r1(l) and r3(l) only consist of one resource
position r1 and r3 respectively. Hence, one has to prove inequality (3.5) for all possible dis-
tances between a resource position out of the interval r2(l) and the resource position r3. In-
equality (3.5) can be shown as

2r3 −
(
r2 − l + lM (r2)

)
= 2ϕn −

(
ϕn−1 + ϕn−3 − l + ϕn−1 + (ϕn−2 + ϕn−4)

)

= 2ϕn − ϕn−1 − ϕn−3 + l − ϕn−1 − ϕn−2 − ϕn−4

= 2ϕn − 2ϕn−1 + l − 2ϕn−2

= l .

Thus, 2r3−
(
r2− l+ lM(r2)

)
≤ l and therefore, inequality (3.5) is true for all possible resource

distributions defined by the resource intervals ri(l) for i = [0, 3] and l ∈ [ϕn + ϕn−3, ϕn +
ϕn−2).
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Finally to complete the proof, l ∈ [ϕn +ϕn−2, ϕn+1) is considered. As in the two previous
cases, the upper bound of the resource intervals ri(l) for i = [0, 2] is considered. They are
given by r0 = 0, r1 = ϕn−1 and r2 = ϕn. Stressing the proof of Lemma 3.1 once again, one
finds that

2r1 − r0 = 2ϕn−1 = ϕn + ϕn−3 ≤ l
2r2 − r1 = 2ϕn − ϕn−1 = ϕn + ϕn−2 ≤ l .

Since r2(l) contains only one resource position, one has to prove that 2r2−(r1−l+lM (r1)) ≤ l,
which is true because of

2r2 −
(
r1 − l + lM (r1)

)
= 2ϕn−1 −

(
ϕn−2 − l + ϕn−3 + ϕn−1

)

= 2ϕn−1 − ϕn−2 + l − ϕn−3 − ϕn−1

= ϕn−1 − ϕn−2 + l − ϕn−3

= l ,

which is less than or equal to l. Thus, all resource position distributions defined by the resource
intervals ri(l) for i = [0, 2] satisfy the inequality (3.5).

For all three parts, it is shown that the first d (with d = 2 or d = 3) resource intervals
satisfy the inequality (3.5). Furthermore, by Corollary 3.4 it was shown, that for each l a λ
can be found, such that the resource distribution intervals for λ can be shifted by ϕn or ϕn−1

to a subset of the resource distribution intervals for l (more precise to the last n − d resource
distribution intervals of R(l)). Using these two facts recursively, the lemma is proven. �

3.5 Properties of Instantaneously Reversible Distributions

The structure and the properties of instantaneously reversible distributions can be explored
further by analysing the intervals [ai, bi). The size of the intervals will be analysed first. Using
results about the size of the intervals, one can derive a visualisation of the computation of the
instantaneously reversible resource distributions (Definition 3.1).

Theorem 3.1
Let the interval definition for the computation of an instantaneously reversible resource distri-
bution be given by (3.1). Then the size of these intervals can be obtained by

(3.23) bi − ai =







ϕn−i−1 if ai−1 = b̃i−1 , (a)

ϕn−i−2 if ai−1 6= b̃i−1 and l < b̃i−1 , (b)

ϕn−i−1 if ai−1 6= b̃i−1 and l ≥ b̃i−1 . (c)

�

The cases (3.23(a)), (3.23(b)) and (3.23(c)) are identical to the cases distinguished in (3.1).
The proof is done by induction over i.
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Proof of Theorem 3.1:

Induction base case (i = 1): In order to compute this induction base case, one has to look
for the case i = 0 first. The interval is initially given by [a0, b0) = [ϕn, ϕn+1). Hence, one
obtains b0 − a0 = ϕn−1. Using these interval limits, one can compute for i = 1 the value b̃0 by
b̃0 = b0 − ϕn−2 = ϕn+1 − ϕn−2 = ϕn + ϕn−3. Since b̃0 = ϕn + ϕn−3 > ϕn = a0, the case
(3.23(a)) for i = 1 cannot happen. The two other cases yield

(3.24)

a1 = a0 = ϕn

b1 = b̃0 = ϕn + ϕn−3
=⇒ b1 − a1 = ϕn−3 = ϕn−i−2 , (b)

a1 = b̃0 = ϕn + ϕn−3

b1 = b0 = ϕn+1
=⇒ b1 − a1 = ϕn−1 = ϕn−i−1 . (c)

Since not all possibilities of (3.23) are covered, one has to look at the next value for i.
Induction base case (i = 2): First one obtains that b̃1 is given by b̃1 = b1 − ϕn−3. From

(3.24(b)) follows b̃1 = b1 − ϕn−3 = ϕn + ϕn−3 − ϕn−3 = a1. Hence, the only choice is
(3.23(a)). This means that a2 = a1 = ϕn, b2 = b1 = ϕn + ϕn−3 and, therefore, b2 − a2 =
ϕn−3 = ϕn−i−1. For the case (3.24(c)) one can compute b̃1 = b1 − ϕn−3 = ϕn+1 − ϕn−3 =
ϕn + ϕn−2. For the choice (3.23(b)), it follows that a2 = b̃1 = ϕn + ϕn−3 and b2 = b1 =
ϕn + ϕn−2 and, hence, b1 − a1 = ϕn−4 = ϕn−i−2. For the choice (3.23(c)) it follows that
a2 = b̃1 = ϕn + ϕn−2, as well as b2 = b1 = ϕn+1, such that b1 − a1 = ϕn−3 = ϕn−i−1.
Overall, one obtains that

(3.25) b2 − a2 =







b1 − a1 = ϕn−3 if a1 = b̃1 , (a)

b̃1 − a1 = ϕn−4 if a1 6= b̃1 and l < b̃1 , (b)

b1 − b̃1 = ϕn−3 if a1 6= b̃1 and l ≥ b̃1 . (c)

Having this induction base case, one can establish an induction assumption.
Induction assumption: Now it is assumed that

(3.26) bi − ai =







bi−1 − ai−1 = ϕn−i−1 if ai−1 = b̃i−1 , (a)

b̃i−1 − ai−1 = ϕn−i−2 if ai−1 6= b̃i−1 and l < b̃i−1 , (b)

bi−1 − b̃i−1 = ϕn−i−1 if ai−1 6= b̃i−1 and l ≥ b̃i−1 . (c)

is true. Then the induction hypothesis can be given as

(3.27) bi+1 − ai+1 =







bi − ai = ϕn−i−2 if ai = b̃i , (a)

b̃i − ai = ϕn−i−3 if ai 6= b̃i and l < b̃i , (b)

bi − b̃i = ϕn−i−2 if ai 6= b̃i and l ≥ b̃i . (c)

In order to prove this hypothesis, one has to go through all possible combinations in (3.26) and
(3.27).
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First the case (3.26(a)) is assumed. The interval [ai, bi) is given by [ai−1, bi−1), and b̃i

is given by bi − ϕn−i−2 = bi−1 − ϕn−i−2. Since ai = ai−1 = bi−1 − ϕn−i−1 and b̃i =
bi−1 − ϕn−i−2 > bi−1 − ϕn−i−1 = ai, one can conclude that case (3.27(a)) cannot follow the
case (3.26(a)). For the case (3.27(b)) one obtains

bi+1 − ai+1 = b̃i − ai = bi−1 − ϕn−i−2 − ai−1 = ϕn−i−1 − ϕn−i−2 = ϕn−i−3

and for the case (3.27(c))

bi+1 − ai+1 = bi − b̃i = bi−1 − (bi−1 − ϕn−i−2) = ϕn−i−2 .

Now the case (3.26(b)) is assumed. The interval [ai, bi) is given by [ai−1, b̃i−1), and b̃i is
given by bi − ϕn−i−2 = b̃i−1 − ϕn−i−2 = bi−1 − ϕn−i−1 − ϕn−i−2 = bi−1 − ϕn−i. The
left interval limit ai can be calculated using (3.26(b)) by ai = ai−1 = b̃i−1 − ϕn−i−2 =
bi−1 − ϕn−i = b̃i. That means that assuming case (3.26(b)), only case (3.27(a)) can happen.
Now, the size of the interval [ai+1, bi+1) can be computed by

bi+1 − ai+1 = bi − ai = bi − (bi − ϕn−i−2) = ϕn−i−2 .

Finally, the case (3.26(c)) is assumed. The interval [ai, bi) is given by [b̃i−1, bi−1), and
b̃i is given by bi − ϕn−i−2 = bi−1 − ϕn−i−2. Since ai = b̃i−1 = bi−1 − ϕn−i−1 < b̃i =
bi−1 − ϕn−i−2, the case (3.26(a)) cannot occur. For the case (3.27(b)) one obtains

bi+1 − ai+1 = b̃i − ai = bi−1 − ϕn−i−2 − (bi−1 − ϕn−i−1) = ϕn−i−3

and for the case (3.27(c))

bi+1 − ai+1 = bi − b̃i = bi−1 − (bi−1 − ϕn−i−2) = ϕn−i−2 .

Thus, for all possible combinations of (3.26) and (3.27) the induction hypothesis is shown,
which completes the proof. �

The resource distribution definition (Definition 3.1) can be visualised by a decision graph as
shown in Figure 3.13. Thereby, every possible choice in (3.1) and (3.2) is assigned to a vertex
of the graph, visualised by the upper label. Two additional vertices, the start vertex S and the
end vertex E, are needed.

Due to the exclusion of some combination of (3.26) and (3.27), (compare to the proof of
Theorem 3.1) not all possible edges exist within the graph. The lower label of the vertices
in Figure 3.13 represents the action to be done with the resource position ri, if the vertex is
reached.

The addition of two to the current resource positions at the end vertex E is equivalent to
the assignment of l to the resource position rn−1, i.e. rn−1 − rn−2 = 2 for any resource
distribution r(l). This can be clarified by checking the first resource distributions up to l = 4
explicitly (proof of Lemma 3.1 Formula (3.7)). For all step numbers larger than four, one uses
the technique of shifting the resource distribution as done in the proof of Corollary 3.2.
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Figure 3.13: Graph for the computation of instantaneously reversible resources distributions (Defini-
tion 3.1.) – decision graph

Example 3.2. Let the number of resources be given by n = 5. It follows that the step numbers
which can be reversed lie between l ∈ [ϕ5, ϕ6) = [8, 13). A path can be given by an n-tuple
p = (v0, v1, . . . , vn−1) of vertices, which lie on the path. Now the resource distribution r(l)
and the corresponding paths are given by

r(8) = {0, 3, 5, 6, 8} =⇒ p = (S, (b), (a), (b), E)
r(9) = {0, 3, 5, 7, 9} =⇒ p = (S, (b), (a), (c), E)
r(10) = {0, 5, 7, 8, 10} =⇒ p = (S, (c), (b), (a), E)
r(11) = {0, 5, 8, 9, 11} =⇒ p = (S, (c), (c), (b), E)
r(12) = {0, 5, 8, 10, 12} =⇒ p = (S, (c), (c), (c), E) .

Overall, one can conclude the following theorem.

Theorem 3.2
Let r(l) be a resource distribution computed by (3.1) and (3.2) for a given step number l and
for n resources. Then there exists a unique path through the decision graph, which starts at the
vertex S and ends at the vertex E after n steps. Furthermore, the computation of the resource
distribution is equivalent to the action described by the path through the decision graph. �

As already described in Example 3.2, a path is given by an n-tuple p = (v0, v1, . . . , vn−1) of
vertices. The computed resource position sequence is defined by s(p) = (w0, w1, . . . , wn−1).
For all paths through the graph, one knows that v0 = S, vn−1 = E, w0 = 0.
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Example 3.3. The resource distribution for l = 23 is given by

r(23) = {r0, r1, r2, r3, r4, r5, r6} = {0, 8, 13, 18, 20, 21, 23} .

The corresponding path and the corresponding resource position sequence then are given by

p = (v0, v1, v3, v4, v5, v6) =
(
S, (b), (a), (c), (b), (a), E

)
and

s(p) = (w0, w1, w3, w4, w5, w6) =
(
0, 8, 13, 18, 20, 21, 23

)
.

One should note, that r(23) = s(p).

The example suggests that the reverse direction of the Theorem 3.2 is also true. This as-
sumption is established in the next theorem.

Theorem 3.3
Let p = (v0, v1, . . . , vn−1) be a path through the decision graph (Figure 3.13), and let the
corresponding resource position sequence s(p) be given by s(p) = (w0, w1, . . . , wn−1). Then
there exists a unique step number l, such that the resource position sequence is equal to the
resource distribution for l computed by (3.1) and (3.2), i.e.

r(l) = s(p) .

�

Proof:
The proof in done by induction over the path length.

Induction base case (n = 3 and n = 4): For both cases one can show that the assertion of
the theorem is true. For n = 3 one has

p = (S, (b), E) −→ s(p) = (0, 1, 3) = r(3)

p = (S, (c), E) −→ s(p) = (0, 2, 4) = r(4)

For n = 4 one has

p = (S, (b), (a), E) −→ s(p) = (0, 2, 3, 5) = r(5)

p = (S, (c), (b), E) −→ s(p) = (0, 3, 4, 6) = r(6)

p = (S, (c), (c), E) −→ s(p) = (0, 3, 5, 7) = r(7) .

Induction assumption: It is assumed now that for any m < n and any path p through the
graph of Figure 3.13 of the length m, there exists an l, such that the resource distribution r(l) =
{r0, r1 . . . , rm−1}, computed by (3.1) and (3.2), is equal to the resource position sequence
s(p) = (w0, w1, . . . , wm−1) of the path p. Further, l ∈ [ϕm, ϕm+1), and l = rm−1 = wm−1.

Induction hypothesis: Let p = (v0, v1, v2, . . . , vn−1) be a path through the graph of Fig-
ure 3.13, and let the corresponding resource position sequence s(p) be given by

s(p) = (w0, w1, . . . , wn−1) .
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Then there exists a unique step number l, such that the resource position sequence is equal to
the resource distribution for l, computed by (3.1) and (3.2).

Any path through the graph of Figure 3.13 starts with one of the following sequences:

(a) (S, (b), (a), (b), . . .) or (S, (b), (a), (c), . . .),

(b) (S, (c), (b), . . .) or (S, (c), (c), . . .).

Therefore, the path p = (v0, v1, . . . , vn−1) can be rewritten as p = (S, (b), (a), v3, . . . , vn−1),
assuming case (a), or the path p can be rewritten as p = (S, (c), v3, . . . , vn−1), if the case (b)
assumed. Since the vertices (b) and (c) are only one step away from the vertex S, a sub path
P of the length m = n − d can be defined by P = (S, vd+1, . . . , vn−1). Using case (a), d = 2
while using case (b), d = 1.

Now case (a) is assumed. The resource position sequence for the path P = (ν0, ν1, . . . , νn−3)
is defined by s(P) = (ω0, ω1, . . . , ωn−3). By the induction assumption, this sequence is equiv-
alent to the resource distribution for λ = %n−3, i.e. s(P) = r(λ) = (%0, %1, . . . , %n−3). Since
P is a subpath of p one can rewrite p by

p = (v0, v1, v2, v3, . . . , vn−1)

= (v0, v1, v2, ν0, ν1, . . . , νn−3)

= (S, (b), (a), ν0, ν1, . . . , νn−3) .

Now, the resource position sequence s(p) for the path p can be computed by using the resource
position sequence s(P) for the path P, i.e.

s(p) = (w0, w1, w2, w3, . . . , wn−1)

= (w0, w1, w2 + ω0, w2 + ω1, . . . , w2 + ωn−3)

= (0, ϕn−2, ϕn−1, ϕn−1 + ω1, ϕn−1 + ω2, . . . , ϕn−1 + ωn−3) .

The induction assumption yields

s(p) = (0, ϕn−2, ϕn−1, ϕn−1 + %1, ϕn−1 + %2, . . . , ϕn−1 + %n−3) .

Since s(p) represents the resource distribution r(λ) with λ = %n−3 ∈ [ϕn−2, ϕn−1) shifted by
ϕn−1, one obtains (using Corollary 3.1) that for l = λ + ϕn−1 the resource distribution r(l) is
given by

r(l) = {0, ϕn−2, ϕn−1, ϕn−1 + %1, ϕn−1 + %2, . . . , ϕn−1 + %n−3} = s(p) .

For the case (b) an equivalent result can be obtained. The resource position sequence for
the path P = (ν0, ν1, . . . , νn−2) is now defined as s(P) = (ω0, ω1, . . . , ωn−2). By using the
induction assumption this sequence is equivalent to the resource distribution for λ = %n−2, i.e.
s(P) = r(λ) = (%0, %1, . . . , %n−2). Again, since P is a subpath of p, one can rewrite p by

p = (v0, v1, v2, v3, . . . , vn−1)

= (v0, v1, ν0, ν1, . . . , νn−2)

= (S, (c), ν0, ν1, . . . , νn−2) .
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Once more, the resource position sequence s(p) for the path p can be computed by using the
resource position sequence s(P) for the path P, i.e.

s(p) = (w0, w1, w2, w3, . . . , wn−1)

= (w0, w1 + ω0, w1 + ω1, . . . , w1 + ωn−2)

= (0, ϕn−1, ϕn−1 + ω1, ϕn−1 + ω2, . . . , ϕn−1 + ωn−2) .

Again, the induction assumption yields

s(p) = (0, ϕn−1, ϕn−1 + %1, ϕn−1 + %2, . . . , ϕn−1 + %n−2) .

Since s(p) represents the resource distribution r(λ) with λ = %n−2 ∈ [ϕn−1, ϕn) shifted by
ϕn−1, one obtains by using Corollary 3.1 that for l = λ + ϕn−1, the resource distribution r(l)
is given by

r(l) = {0, ϕn−1, ϕn−1 + %1, ϕn−1 + %2, . . . , ϕn−1 + %n−2} = s(p) .

�

3.6 An Algebraic View onto Instantaneously Reversible Distribu-
tions

The Definition 3.1 can be used to obtain another algebraic description of natural numbers. All
resource positions are defined by a sum of Fibonacci numbers. Using the last resource rn−1 of
each instantaneously reversible resource distribution, one gets a definition for the step number
as the sum

l = 2 +
m∑

i=1

niϕi .

The numbers ni can be written as a word n(l) defined by n(l) = n0 n1 . . . nm over the alphabet
{0, 1, 2}, i.e., each single word entry ni is limited by two. This can be verified by exploring
the structure of the decision graph (Figure 3.13). Since at each vertex of the graph the index i
increases by one, the word entry 2 is obtained if the path contains the vertices (a) and (c) in
that order, i.e.

p = (. . . , (a), (c), . . .) =⇒ n(l) = . . . 2 . . . .

A word entry 0 appears if a path goes through the vertex (c), i.e. the path contains one of the
following vertex orders:

p = (. . . , (c), (b), . . .) =⇒ n(l) = . . . 01 . . .
p = (. . . , (c), E) =⇒ n(l) = . . . 0 .

The vertex (c) can only be reached via the vertex (a) and can only be left via the vertices (b)
or E. Since the path between reaching and leaving the vertex (c) consisted only of the vertex
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(c), a word entry 2 is always followed by a word entry 0. Between these two entries, there may
be a couple of 1s, i.e.

p = (. . . , (a), (c), (c)
︸︷︷︸

k−times

, (b), . . .) =⇒ n(l) = . . . 2 1
︸︷︷︸

k−times

01 . . .

p = (. . . , (a), (c), (c)
︸︷︷︸

k−times

, E) =⇒ n(l) = . . . 2 1
︸︷︷︸

k−times

0

Furthermore, the vertex (a) within the decision graph (Figure 3.13) can only be reached via the
vertex (b). With the exception of the final vertex E, the vertex (a) can be left in the direction
of the vertex (b) which yields a 2, or the path can ”jump” between the vertex (b) and back to
the vertex (a) again which yields always two 1 entries. Therefore, a path between (b) and (c)
only can look like

p = (. . . , (b), (a), (b)
︸ ︷︷ ︸

k−times

, (a), (c), . . .) =⇒ n(l) = . . . 1 11
︸︷︷︸

k−times

2 . . .

with k ∈ IN. Thus, in front of a word entry 2 there has to be an odd number of 1s. All properties
of a word n(l) can be summarised by

1. A word n(l) consists of 0, 1 and 2.

2. A sequence always starts with a 1.

3. A 0 stands at the end of a sequence or is followed by a 1.

4. A 2 is always followed by any number of 1s and one 0.

5. The number of 1s between a 0 and a 2 or between the sequence start and a 2 is always
odd.

6. Between two 0s there is at least one 1 and exactly one 2.

Example 3.4. First, equivalent to Example 3.2, all words for the number of resources n = 5
are given by

p = (S, (b), (a), (b), E) =⇒ n(8) = 111
p = (S, (b), (a), (c), E) =⇒ n(9) = 120
p = (S, (c), (b), (a), E) =⇒ n(10) = 1011
p = (S, (c), (c), (b), E) =⇒ n(11) = 1101
p = (S, (c), (c), (c), E) =⇒ n(12) = 1110 .
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To show all properties, one has to look for longer words e.g.

n(34) = 111111, n(42) = 1011111, n(50) = 1110111,
n(35) = 111201, n(43) = 1011120, n(51) = 1110120,
n(36) = 111210, n(44) = 1012011, n(52) = 1111011,
n(37) = 120111, n(45) = 1012101, n(53) = 1111101,
n(38) = 120120, n(46) = 1012110, n(54) = 1111110,
n(39) = 121011, n(47) = 1101111, n(55) = 1111111,
n(40) = 121101, n(48) = 1101201, n(56) = 1111120,
n(41) = 121110, n(49) = 1101210, n(57) = 1112011.

A special case is given if the word consists of m 1s. Then the word represent the known formula
for Fibonacci numbers, namely

(3.28) l = 2 +

m∑

i=1

ϕi = ϕm+2 .

Now, a final deterministic automata can be built which only accepts words represented by
the six properties. In Figure 3.14 such a final deterministic automata is displayed. The analysis
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Figure 3.14: Automata excepting a word n(l).

of any given word starts at the vertex labelled with S. If for every entry within the word an
appropriate edge can be found, and if the automata stops at a vertex labelled with E, then the
word is correct and represents an instantaneously reversible distribution.

The smallest number, which can be displayed using a word of length m, is given by
101 . . . 1. Using (3.28), this word is equivalent to the step number

l = ϕm + 2 +
m−2∑

i=1

ϕi = 2ϕm .
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The largest number, which can be displayed using the six properties, is 121 . . . 10. The step
number for this word is given by

l = ϕm−1 + 2 +
m∑

i=2

ϕi = ϕm + ϕm−1 + 2 +
m−1∑

i=1

ϕi − ϕ1

= ϕm+1 + 2 +
m−1∑

i=1

ϕi − 1 = 2ϕm+1 − 1

Thus, if the step number l is given by l ∈ [2ϕm, 2ϕm+1), then a word representing r(l) has the
length m.
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Chapter 4

Implementation of Parallel Reversal
Schedules

vor ort hat der plan nicht nur zahlen
Pension Volkmann in ”vor ort” (1985)

The developed theory for parallel reversal schedules does not contain much information about
the usage and the implementation of such schedules on parallel computers. The main chal-
lenge is finding an optimal allocation of the computational work to processors of the computer.
Further, one has to be careful about the location of the information about the checkpoints, the
traces, the adjoints and other needed data structures within the computer memory. Depending
on the type of parallel computer used, this information is made available to processors need-
ing this information, or this information has to be protected against other processors. There
exist two major implementation strategies for the implementation of parallel reversal sched-
ules, independent of the computer type. For each strategy there are four possibilities on how
to handle the preparing and the reversing step. Depending on the implementation strategy and
substrategy, the optimality regarding the resource needed may be violated. This problem is
discussed in [LW02] also. Further on, the implementation of the forward computation for an
online constructed parallel reversal schedule will be described.

4.1 Programming models

There are two major programming models which can be used on parallel computers. The first
one is the shared memory programming model. Its main advantage is that the user need not care
about transferring data within the computer memory. Hence, the transfer time can be ignored
for the implementation. It might be done internally by the operating system. The main task
concerning the data within the parallel computer is to protect the data against uncoordinated
data access.

For the shared memory programming model, few approaches exist. One is based on the
join fork mechanism, mostly used on UNIX platforms. The main idea behind this approach
is to create child processes by duplicating the parent process. This may lead to unnecessary
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memory usage, since data that is not needed, may also be copied. Another problem is the
synchronisation. This is mostly done using signals. Furthermore, for the data exchange special
data structures are needed. An example for such a programming technique is given in [Bra98].
Using the programming language extension OpenMP [OMP00], this approach can be simplified
for the programmer. A second approach is to use threads for shared memory programming.
This technique is available on most computer platforms. The main problems using threads
are the synchronisation and the data protection. The realisation can be done by using special
libraries like the ptheard library [NBF96].

Another programming model assumes distributed memory. Here, each part of the memory
is assigned to a fixed processor. Hence, one has to worry about how to transfer the data between
the processors and how the transfer time influences the algorithm. The most commonly used
tools are message passing libraries such as PVM [PVM94] or MPI [MPI95, MPI97]. By imple-
menting a reversal schedule using the distributed memory model, one can distinguish critical
and noncritical communication.

If a communication is classified as critical, then the data written by one process at the end of
one advancing, preparing or reversing step at a time t is needed for the beginning of the next ad-
vancing, preparing or reversing step by another process at the same time t. This is independent
of the type of data required. If the communication is noncritical, the time between writing and
reading of the data set is at least as long as the minimum of the time an advancing, preparing or
reversing step lasts. The data transfer can be carried out asynchronously. Additional temporary
memory for the communication might also be needed for the distributed memory programming
model, since most message passing libraries can only send connected memory regions.

Henceforth, only the distribute memory programming model is discussed and later used.
One reason for this is the portability. The support and the runtime behaviour of distribute
memory programs running on shared memory or distribute shared memory computers (such as
the Tera/Cray vector computers or the SGI Origin series) are very good. On the other hand,
the support for running shared memory programs on distribute memory computers (such as a
workstation cluster) is still in its infancy and still at a point of research.

The next section discusses the implementation of offline constructed parallel reversal sched-
ules for the distributed memory programming models [LW02]. As mention in Section 3.3
these schedule implementations are needed to compose the reverse computation for online con-
structed parallel reversal schedules. This and the implementation for the forward computation
(compare Section 3.2) is discussed in Section 4.3 in more detail.

4.2 Offline Constructed Parallel Reversal Schedules for Distributed
Memory Programming Models

Two basic approaches exist to implement parallel reversal schedules using a distributed memory
programming model. Both approaches assume that a pool of available processors exists.
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4.2.1 Checkpoint Oriented Implementation Approach

The first possibility of implementing a parallel reversal schedule scheme using a distributed
memory programming model is to assign each processor to a fixed checkpoint. This approach,
shown in Figure 4.1, is called checkpoint oriented. It works in the following way: A processor
receives a checkpoint and stores it. At a predetermined time, the processor starts the forward
computation up to a state where the next checkpoint is written. The current state is sent to
another available processor. After doing so, the processor waits until it will restart the forward
computation at the state stored in the assigned checkpoint. Again, this forward computation
is done up to the state where the next checkpoint is sent. The state number is smaller than
the previous one. Hence, the numbers of advancing steps computed is monotonically decreas-
ing. The processor continues switching between the forward computation and waiting until the
checkpoint can be vacated after serving as a starting point for the preparing step. Using this
implementation approach, all occurring communication is critical. This implementation cannot
satisfy the optimal requirement profile (grey line in Figure 4.1), because of the idle times.

4.2.2 Process Oriented Implementation Approach

The second possibility of implementing a parallel reversal schedule scheme using a distributed
memory programming model is called process oriented. This approach is shown in Figure 4.2.
A processor receives a checkpoint and starts the forward computation at a predefined time,
until the processor reaches a final state. Such a final state can be defined as the state where the
preparing step starts, the state where the preparing step ends and the reversing step starts, or the
state where the reversing step ends. During the computation the processor writes, stores and
sends needed checkpoints. The time when a checkpoint is sent or received by another processor,
respectively, can be any time between the time when the checkpoint is written, which is the
earliest time, and the time the computation using this checkpoint starts, which defined the latest
time.

The determination of the time when the checkpoint data is sent defines the need of storage
and the optimality of an implementation. If the checkpoint is sent just when it is written, then no
additional memory is needed to store the checkpoint. Since in that case the receiving processor
has to wait before, within or at the end of the forward computation, this kind of implementation
cannot satisfy the optimal requirement profile. This profile equals the resource requirement of a
checkpoint oriented implementation, shown in Figure 4.1. On the other hand, if the checkpoint
is sent at the latest point of time, one processor has to possibly store up to three checkpoints
temporarily. This is caused by the fact that the computation of the sub-schedules S 1 starts,
before the computation of the sub-schedules S2 ends. But, thereby, this kind of the process
oriented implementation can fulfil the optimality, if the checkpoint written at state i = 0 is
needed before the processor which does the advancing from the state i = 0 up to state i = l
reaches its final state.

The upper bound of three checkpoints is established in the following lemma.

Lemma 4.1
Suppose the number of steps to be reversed is l with l ∈ (ϕn, ϕn+1], The schedule is imple-
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Figure 4.1: General implementation strategies (checkpoint oriented).
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Figure 4.2: General implementation strategies (process oriented).
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Figure 4.3: One fixed process carries out the tracing and one fixed process carries out reversing.

mented in a process oriented manner. Each process may store as many checkpoints as required,
i.e. the checkpoints will be sent as late as possible. Then each processor has to store at most
three checkpoints at any time. �

Proof:
One only has to show that the process started first satisfies this property. For all other processes,
one applies the claim to the sub-schedules. To prove that lemma one defines the number λ by
λ = l − ϕn−1, hence λ ∈ (ϕn−2, ϕn]. As shown in [Wal99], the times tW (i), where the
ith checkpoint is written, are recursively defined by tW (1) = 0, tW (2) = λ and tW (i) =
tW (i−1)+ϕn−2i+4 . The maximal number of checkpoints written is limited above by d n

2 e+1.
The time when a checkpoint is needed/read is defined by tR(i) = tW (i) + 2ϕn−2i+1 [Wal99].
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Figure 4.4: Two processes carry out tracing and reversing alternately.

Hence, the lemma is proven if the inequality tR(i) < tW (i + 3) holds for any i. One has
tW (i + 3) = tW (i) + ϕn−2i−2 + ϕn−2i + ϕn−2i+2. Furthermore, one obtains

tR(i) < tW (i + 3)
⇐⇒ tW (i) + 2ϕn−2i+1 < tW (i) + ϕn−2i−2 + ϕn−2i + ϕn−2i+2

⇐⇒ 0 < 2ϕn−2i−2

which is true for all i ≤ dn
2 e + 1. This completes the proof. �

There are three ways to carry out the preparing and the reversing step, namely, the processor

• stops before the trace has to be written, stores the data in a checkpoint and sends it to a
special tracing process (Figure 4.4 and Figure 4.3);
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Figure 4.5: Processes carry out the tracing and the reversing by themselves.

• carries out the writing of the trace and sends it to a reversing process (Figure 4.2);

• carries out the writing of the trace and reversing by itself (Figure 4.5) and sends the
reversing result to the next reversing process.

Using the first approach, the computation of a preparing step and the computation of a reversing
step can be assigned to a fixed processor each (Figure 4.3), or can be combined into one task
alternately done by two processors (Figure 4.4). If the computation time τ̄ of a reversing step is
smaller than the computation time τ̂ of a preparing step, then there are more than two processors
needed to do the special preparing and reversing computation.

The decision about which approach is to be used, the checkpoint oriented or the process
oriented, depends on the properties of the problem to be reversed. The checkpoint oriented
approach might be easier to implement, because the writing and sending times of a checkpoint
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are identical. The disadvantage is that more processors are needed than for an optimal schedule.
The size of the data to be sent forms one criteria which implementation strategy should be

applied. For large traces, an implementation where no trace segments are sent is preferable
(Figure 4.5 or Figure 4.4). If the result of the reversing step is relatively large compared to the
size of the result of a preparing step, then a fixed reversing processor reduces the communi-
cation cost (Figure 4.2 or Figure 4.3). This invalidates the previous approach if both the trace
segments and the result of the reversing step are relatively large and have approximately the
same size.

Another problem may occur if the time τ̂ one preparing step needs and/or the time τ̄ one
reversing step needs does not equal one. The preparing or reversing process is not able to
interrupt the computation. If then a checkpoint has to be sent from this preparing or reversing
process to another process, then the problem occurs.

There are two solutions. The first possibility is to send the checkpoint after the preparing
or reversing step is finished. This leads to an increase in time, i.e. one will need more than the
minimal time to complete the function reversal. The second solution is to send the checkpoint
before the computation of the preparing or reversing step starts.

If, using the second approach, the receiving processor will not stay in the pool of available
processors, one may need more processors for the execution of the parallel reversal schedule
than the defined optimal number of processors. Otherwise, if the processor is used before
computation using the received checkpoint starts, then the checkpoint has to be sent to another
processor. This causes additional communication.

4.3 Online Constructed Parallel Reversal Schedules for Distributed
Memory Programming Models

As stated in Section 3.3, the reverse computation of an offline constructed parallel reversal
schedule and an online constructed parallel reversal schedule look almost like the same. There-
fore one can use the results of the previous section to implement the appropriate part, i.e the
computation after the vertex was reached. Within this section the implementation of the forward
computation will be discussed in detail.

Two processes are needed to carry out the actual computational work. One process starts
the computation and checks whether or not the vertex of the program reversal is reached at
the end of each advancing step. The second process starts the same computation at the time
when the first process reaches the step number two. From then on, the two processes do the
same computation in parallel with a displacement of two advancing steps. The second process
is responsible for storing the checkpoints. Hence, if a checkpoint has to be written, then the
current state of the second process represents the starting point for the checkpoint writing.

Using a shared memory programming model, only one process is needed to carry out the
checkpoint handling. The second process can store the checkpoint into the shared memory or
delete the checkpoint from it at the appropriated time.

A different situation occurs for a distributed memory programming model. Here again,
the second process could store the checkpoints for itself, but this would lead to an enormous
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imbalance of memory use. Therefore, it seems preferable to distribute the checkpoints among
other processors. Storing a checkpoint then means that the checkpoint data is sent to another
process after it was written by the second process. In order to obtain the correct schedule, the
processes storing checkpoints have to be notified by at least one of the two computing processes
when the checkpoints has to be deleted.

At the returning point of the computation, i.e. at the beginning of the program reversal, a
data structure containing all information of the reversal schedule used in the reverse compu-
tation can be built. This data structure can be realised by a list of actions one processor has
to carry out, as described in Section 2.2. Using a distributed memory programming model,
one also has to be careful about the checkpoint location while building up the schedule data
structure. The checkpoint that one process needs for the computation is not necessarily stored
in the connected memory. Hence, additional communication has to be done during the program
reversal. This may cause additional communication or processors, if the execution time τ̄ and
τ̂ are not equal to one (compare previous section).

4.4 TOPAS – User interface

In order to realise the discussed implementation strategies, a test implementation was written
using the programming language C. This test implementation is called TOPAS, which stands
for ”Time Optimal Parallel Reversal Schedules”. As already stated, the parallel programming
model chosen is the distributed memory programming model. For availability and performance
reasons the communication is realised using the Message Passing Interface – MPI [MPI95].
TOPAS consists of more than 70 routines implemented on more than 12000 lines of C code.
So far, the names of the routines described below are fixed. In further versions of TOPAS this
could be changed to a declaration of function pointers.

Compared with the packages REVOLVE and REVOLVE++, the program TOPAS does not
just tell the user what to do, i.e. which function has to be called, it also calls the required func-
tions itself. This is essential, because in a parallel environment the call of a function must be
done at a specified time and at a specified location, i.e processor. Therefore, the execution of
the same parallel reversal schedule may run in a different manner if the environment changes,
e.g. if the reversal schedule is executed on computers with a different number of processors or
the reversal schedule is executed on computers with a different amount of memory per proces-
sor. Thus, TOPAS calls functions whose interfaces are predefined by TOPAS. In the following,
these user interfaces will be described.

4.4.1 Predefined function

First of all, the two main functions provided by TOPAS are described. These are the functions
TOPAS RTC forward and TOPAS RTC reverse, whose interfaces are given by

TOPAS_el *TOPAS_RTC_forward(
int *, int *, void *, TOPAS_el *,
int (*func)(int, const void *));
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and

TOPAS_el *TOPAS_RTC_reverse(
int*, int*, void *, TOPAS_el *, int,
int (*func)(int, const void *, const void *)); .

The first two parameters are the time count t and the step number l. These are both input
and output parameters. The third variable is optional. Depending on whether one wants to
use global parameters or not, the user has to choose whether to compile the program using
the preprocessor flag USE PARAM or not. If the parameter flag is used, then one has to assign
the global parameter information to the third argument. This data will be passed through the
complete program up to the user defined routines. (The user defined routines will be described
below.) Therefore, the user may use a pointer pointing to any data structure that contains the
global parameter information. The next argument of type TOPAS el is a list of pointers to
checkpoint data structure, trace data structure or reverse information data structure. The latter
will also be called adjoints data structure. An item of the TOPAS el type list element contains,
among others, a pointer of type void *, pointing to a data structure that contains the check-
point, trace or adjoint information and an element of type enum TOPAS T e={..., CP =
3002, TR = 3003, AJ = 3004, ...}, which holds the information about the type of
the pointer. The last argument of the functions TOPAS RTC reverse and TOPAS RTC forward
are pointers to the function checking the restart criterion for the forward computation and rever-
sal criterion for the reverse computation, respectively. The argument of this function is the step
number l and the current state xl contained in a checkpoint. The third argument of the restart
criterion is the current adjoint information x̄l. The restart criterion argument of the function
TOPAS RTC reverse is optimal, depending on whether the last but one argument is one or
the last but one argument is zero. That means that either the restart criterion must be checked
during the reverse computation or it does not have to be.

In order to handle the lists of type TOPAS el the two functions,

TOPAS_el *TOPAS_RTC_insert_el(void *, TOPAS_el *);

and

void *TOPAS_RTC_search_el(enum TOPAS_T_e, int, TOPAS_el *);

were implemented. The first function inserts a user defined data structure into the TOPAS el
list, and the second function searches a user defined data structure in the list. The function
TOPAS RTC insert el returns the changed list which was given as the second input argu-
ment. The first input argument is a pointer to the data one wants to insert into the list. The
second function searches for an element which type is given by the first argument and which
step number is given by the second argument. This element is returned if it is found.

The function TOPAS RTC reverse can also be used to compute program reversals with
offline constructed reversal schedules. The input list (fourth argument) consists of just one
element, i.e. the checkpoint for the state x0. The second argument, i.e. the step number,
contains the final step number. If the function is used with theses inputs, then it builds up the
schedule data structure and runs the reversal. The last two arguments are irrelevant in that case.
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Both functions TOPAS RTC forward as well as TOPAS RTC reverse, the input ar-
guments are checked of consistency. Thus, it is checked, for instance, whether the input list
contains the checkpoints xl−2 and xl or not. If the check fails, then the program terminates
with an error.

4.4.2 User defined function

The program TOPAS calls for a couple of routines which have to be provided by the user.
First of all, the user has to define data structures which store the information about a check-

point, a trace and an adjoint. An example of such a data structure that contains the checkpoint
information might be given by struct my cp{int l; double *x; double *u;};
where l denotes the step number of the checkpoint, the variable *x is a pointer to an array of
doubles containing the state xl, and *u containing the current control ul at this state. The
names of the data structures can be chosen arbitrarily.

Two functions which have to be implemented by the user are the functions

int TOPAS_USER_reversal_criterion(int, void *);

and

int TOPAS_USER_restart_criterion(int, void *, void *);

checking the reversal criterion of the forward computation and of the reversal criterion of the
reverse computation, respectively. The first two arguments are a step number l and a pointer to
a data structure containing checkpoint information. The restart criterion needs, as an additional
argument, a pointer to a data structure containing the adjoint information. The functions are
always called with the current step number l, the appropriate checkpoint xl, and, if restart
criterion function is called, with the adjoint state x̄l. If a restart or reversal criterion is satisfied,
then the corresponding function must return a value larger than zero; if not, then the functions
must return a value equals zero.

Next, the functions for the advancing steps Fi, for the preparing step F̂i and reversing step
F̄i have to be implemented. The declaration of the advancing step function

void TOPAS_USER_forward(void *, void *);

requires, beside a checkpoint pointer for the first argument, a pointer for the input of the global
parameters. Again, one has to compile TOPAS with the USE PARAM preprocessor flag. If
the flag is not used, then the second argument is omitted. The pointer to the checkpoint data
structure has to be of the type as it was defined by the user, i.e. using the example above, the
pointer must be of type my cp. The declaration of the preparing step function is given by

void TOPAS_USER_trace(void *, void *, void *);

and

void TOPAS_USER_trace_f(void *, void *, void *); .
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The two different function declaration are needed to give the user the opportunity to use dif-
ferent preparing step functions during the forward computation (TOPAS USER trace f) and
during the reverse computation (TOPAS USER trace). As in the advancing step function
declaration, the first argument is a pointer to the checkpoint data. The second argument is a
pointer to the data structure keeping the trace information zi. The last argument of the prepar-
ing step defines the global parameter input. Therefore, if this information is not needed, then it
can be omitted. The function declaration

void TOPAS_USER_reverse(void *, void *, void *);

defines one reverse step F̄i. The first argument is an input parameter and is a pointer to the
trace information zi. The second argument is an input and output argument and is declared by
a pointer to the adjoint data x̄i. Again, the third argument is the global parameter input for
the current state and is an optional argument. The first reverse step of the reverse computation
has to do the initialisation of the adjoint data x̄i. Therefore, an additional reverse function is
declared by

void TOPAS_USER_init_return(void *, void *, void *);

which is only called at the beginning of each reverse computation. The declaration of the
argument lists of both functions is identical.

The function names are slightly different than the names used before. If one wants to
use the original names, one has to adapt TOPAS, or one has to write wrapper functions for
forward(..), prepare(..)and reverse(..).

A further type of user defined functions needed in order to run TOPAS is the communication
routine for the exchange of user defined data between the processors. The interfaces for sending
and receiving checkpoints, trace and adjoint informations are defined by

int TOAPS_USER_send_cp(void *, int, int);
int TOAPS_USER_recv_cp(void *, int, int);
int TOAPS_USER_send_tr(void *, int, int);
int TOAPS_USER_recv_tr(void *, int, int);
int TOAPS_USER_send_aj(void *, int, int);
int TOAPS_USER_recv_aj(void *, int, int); ,

respectively. The first argument of all routines is a pointer to the data one wants to send or
receive. The second argument defines the receiver or the sender of the data to whom the data
is sent or for whom the data is received. The last argument is the time t, given in counted
computing cycles. This time may be used to identify the messages, e.g. it could be used for the
tag argument in the appropriated MPI-function call.

The last type of required user functions are functions for the memory management. The
declaration is given by

void *TOPAS_USER_malloc_cp(int);
void *TOPAS_USER_malloc_tr(int);
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void *TOPAS_USER_malloc_aj(int);
void TOPAS_USER_free_cp(void *);
void TOPAS_USER_free_tr(void *);
void TOPAS_USER_free_aj(void *);
void *TOPAS_USER_copy_cp(void *);
void *TOPAS_USER_copy_tr(void *);
void *TOPAS_USER_copy_aj(void *); .

The semantics of each single function can easily extracted from the function name. The in-
put argument of the allocation function is the step number of the current checkpoint, trace or
adjoint information. This argument can be used by the user to identify the data. The func-
tions TOPAS USER free ... are used to delete checkpoints, trace or adjoint informations,
if they are not needed anymore. Before TOPAS calls a function whose output is a new check-
point, trace or adjoint information, an allocation function is called, such that the pointer to the
data structure is always valid. Examples for such functions are TOAPS USER recv tr or
TOPAS USER trace.



Chapter 5

Numerical Results

This chapter presents the numerical results. The discussed parallel reversal schedules were
implemented using a distributed memory programming model. Again, the program skeleton
TOPAS, which is the test realisation of the parallel reversal schedules, is written in C. Once
more, the communication between the processes is carried out using the MPI. The analysis of
the program behaviour was mainly done using Vampir [NA+96].

First, only the implementation of the schedules was tested. The results are presented in
the next section. Following that section, numerical results for an optimal control problem are
presented.

5.1 Schedules

The basic structure of a program using the program skeleton can be divided into three parts.
One part is responsible for the computation, while the reversal criterion of the forward compu-
tation is not satisfied (i.e. the forward computation is carried out). Another part of the program
skeleton generates the data structure containing all information for running the program rever-
sal, i.e. builds a data structure containing the reversal schedule information. A third part is
responsible for all computation after the reversal criterion is fulfilled (i.e. the reverse computa-
tion is carried out). This reverse computation is performed until a restart criterion is satisfied or
the step number l = 0 is reached. Hence, the basic behaviour of the program skeleton can be
given by:

do
while (reversal criterion is not fulfilled) do

forward computation
done
generate reversal schedule data structure
while (restart criterion is not fulfilled) and (l 6= 0) do

reverse computation using the parallel reversal schedule data structure
done

while (l 6= 0).

79
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The behaviour of the program skeleton can be seen in Figure 5.1. The values for τ̄ and τ̂
were set to one. The reversal criterion of the forward computation was satisfied when the step
number 48, 40 and 32 was reached. The reversal was demanded at the step number 32 and
24. On the left of Figure 5.1, the schedule computed is shown. The next figure illustrates the
measured runtime behaviour of the program. There, one can see the six most time consuming
phases of the computation, namely three forward computations (labelled with ①) from l = 0
to l = 48, from l = 32 to l = 40 and from l = 24 to l = 32, as well as the three reverse
computations (labelled with ②) from l = 48 to l = 32, from l = 40 to l = 24, and from
l = 32 to l = 0. The part labelled with ③ in Figure 5.1 illustrates the generation of the
reversal schedule data structure. Since his part does not need much time (the runtime of all three
schedule generation parts together is just two percent of the overall runtime of the example),
this time can be neglected.

As stated in Section 3.2, two processes are needed to accomplish the forward computation.
For the first occurring forward computation, these are the processes number zero and two. For
the second forward computation, these are the processes four and five. For the third forward
computation, these are the processes one and three (middle grep rectangles in Figure 5.1). For
the first forward computation, the processes were chosen arbitrarily, while for all other forward
computation the processes keeping the checkpoints for the intermediated states x l−2 and xl

were chosen.
Since a distributed memory programming model was used, the other processes were used

to store the checkpoints during the forward computation. At the end of each advancing step, the
computing process (e.g. process zero) sends a synchronisation signal to the processes keeping
checkpoints (black lines in middle diagram of Figure 5.1).

The other parts of the computing time-line in Figure 5.1, i.e. the part where more than
two processes were used for the computation (middle grep rectangles) illustrate the reverse
computation. Again, at the end of each computed step, a time synchronisation is done. Also,
the checkpoints, traces and adjoint are sent if necessary.

The second diagram from the right of Figure 5.1 shows the summarised processor need over
the whole computation time. The middle grep areas again illustrate the processor need of the
user functions forward(..), prepare(..)and reverse(..). Therefore, the middle
grep area should be identical with the processor resource profile of the parallel reverse schedule
(compare resource profile p(t) in Figure 3.8).

The right most diagram shows what happens during the time when schedules data structure
is built up. Since every processor builds its own schedule data structure, no communication is
needed within this part of the program, i.e. no black line is shown in the diagram.

5.2 Example: Formula One Car Model

For the purposes of testing the implementation of TOPAS, an optimal control problem, namely
the simulation of an automobile, was chosen (compare [WL01]). The aim is to minimise the
time the car needs to travel on the specified road.
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Figure 5.2: Visualisation of the car model values.

5.2.1 Car model

The car model is a simplified model of a Formula one car, i.e. it describes a go-kart model
(Figure 5.2). That means that the modelled car only has the lateral and longitudinal velocity as
well as the yaw angle as a degree of freedom. Furthermore, the car has a rigid suspension of all
axis and tyres and a body rolling about a fixed roll axis. Hence, the model-defining system of
ordinary differential equations is given by

ẋ1 = x2

ẋ2 =
(Fη1

+ Fη2
)lf − (Fη3

+ Fη4
)lr

I

ẋ3 =
Fη1

+ Fη2
+ Fη3

+ Fη4

M
− x2x4

ẋ4 =
Fξ −Fα

M
+ x2x3

ẋ5 = x4 sin(x1) + x3 cos(x1)

ẋ6 = x4 cos(x1) − x3 sin(x1)

ẋ7 = u1 .

(5.1)

This model was adapted from [HMK96] and can also be found in [All97]. The vector x :=
(x1, x2, x3, x4, x5, x6, x7)

T defines the current state of the car and includes values for the lateral
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and longitudinal velocity of the centre of gravity of the car (x3 and x4), as well as the lateral
and longitudinal position of the car (x5 and x6), among others. A complete listing of all system
variables can be found in Appendix A.2. The control vector consists of two values, namely
the steering rate and the longitudinal force, and is defined by u(s) := (u1(s), u2(s))

T. The
value s is the integration parameter. Using this notation, the car model ODE system (5.1) can
be rewritten by

(5.2) ẋ(s) = f
(
x(s),u(s), s

)
.

Besides fixed model parameter such as the mass M or the length of the car (given by lf and
lr), other model parameter such as the tyre forces Fηi

or the aerodynamic drag force Fα have to
be computed. The tyre forces are calculated by using the so-called Magic Tyre Formula, which
can originally be found in [PB92] or [PB97]. The formula used in this computation was adapted
from [HMK96]. Using the Magic Tyre Formula, a cyclic dependency of the tyre parameters
occurs. The computation can be done iteratively using an initial guess.

5.2.2 Cost function

In order to judge the quality of a driven line, the cost function

J(tf ) =

∫ tf

0

(
1 + gt(x, t)

)
dt

is used. The final time tf , which is the time the car needs to drive through the course, is
unknown. This parameter is the one to be minimised. Therefore, the time dependent integration
of the cost function has to be changed to a distance integration along the road centre line by
using the scaling factor SCF (x, s). Then, the cost function is defined by

(5.3) J(sf ) =

∫ sf

0
SCF (x, s)

(
1 + gs(x, s)

)
ds .

The derivation of the scaling factor SCF (x, s) can be found in [SCS00] or [CSS00]. The scaling
factor SCF (x, s) is computed using the state values x of the car and their derivatives ẋ, as well
as the closest point of the road centre line to the car position. Another part of the cost function
is the penalty function gs(x, s), judging the quality of the driven line with respect to the road
boundaries. As long as the car is within the predefined road boundaries, the function gs(x, s)
returns zero. If the car leaves the road, then the penalty function returns a value larger than
zero. For the numerical results presented here, it returns the distance between the car position
and the road boundary squared.

Merging the cost function definition (5.3) and the definition of the car model (5.2), one can
express the optimal control problem of steering a car by

(5.4)

Minimise J(x) = J
(
sf

)

such that ẋ(s) = f
(
x(s),u(s), s

)
s ∈ [0, sf ],

x(0) = x0,
u(s) ∈ IR2 .

The state x(s) has values in IRp with p = 7, while the control space has the dimension q = 2.
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5.2.3 The Forward Computation

For the implementation of the test problem, the optimal control problem has to be discretised.
In order to do so the four-stage Runge-Kutta scheme

(5.5)

l1 = si−1, k1 = f
(
xi−1, u(l1)

)
,

l2 = si−1 +
h

2
, k2 = f

(

xi−1 +
h

2
k1, u(l2)

)

,

l3 = si−1 +
h

2
, k3 = f

(

xi−1 +
h

2
k2, u(l3)

)

,

l4 = si−1 + h, k4 = f
(
xi−1 + hk3, u(l4)

)
,

xi = xi−1 +
h

6
(k1 + 2k2 + 2k3 + k4)

for i = 1, . . . , l was used for the forward computation. The algorithm (5.5) defines one ad-
vancing step Fi. The starting conditions were chosen by an initial state vector x0 and a starting
position of the integration variable s0 = 0. The integration was carried along a given road
centre line, using a step size h of twenty centimetres. Since an implementation of an online
constructed parallel reversal schedule is used, one can use a reversal criterion which stops the
forward computation after a distance of 130 meters. This distance, however, is not measured
along the road centre. Rather, the real distance is used, i.e. the value x6 of the car model.
Furthermore, the evaluation of the cost function was done using the trapeze rule. Since the
computational effort to compute one Runge-Kutta step is very small, ten Runge-Kutta steps Fi

were glued together to one advancing step forward(..). This avoids the possibility that
the communication dominates the computation. Furthermore, the merging of the single Runge-
Kutta steps yields smaller reversal schedules, i.e. it yields schedules for a step number of about
65, instead of a step number of approximately 650.

5.2.4 The Reverse Computation

In order to calculate the discrete adjoints, there are two possible ways. The first possibility
is to adjoin the continuous model equations and, after that, discretise the continuous adjoint
equations. The second possibility works the other way around. First, the continuous model
equation is discretised and after that Algorithmic Differentiation or hand coding is used to
adjoin the discretised model equations. Both ways do not lead to the same result in general (see
e.g. [Hag00] or [GW01]). This fact has to be take into account, if one has to come to a decision
of which way to choose.

The example presented uses the second way, i.e. doing first the discretisation and second the
adjoint. The adjoining of the four-stage Runge-Kutta scheme used for the forward computation
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leads to the following algorithm for the calculation of the reversing step F̄i

(5.6)

x̄i = x̄i+1

mj =
∂

∂x
f (kj , lj , u(lj)) nj =

∂

∂u
f (kj , lj , u(lj)) j = 4, . . . , 1

k̄4 =
h

6
x̄i+1 k̄3 =

h

3
x̄i+1 + hk̄4m4

k̄2 =
h

3
x̄i+1 +

h

2
k̄3m3 k̄1 =

h

6
x̄i+1 +

h

2
k̄2m2

ūi = ūi + k̄4n4 x̄i = x̄i + k̄4m4

ūi = k̄3n3 x̄i = x̄i + k̄3m3

ūi = ūi + k̄2n2 x̄i = x̄i + k̄2m2

ūi = k̄1n1 x̄i = x̄i + k̄1m1

for i = l, .., 1. As can be seen, the evaluation of the adjoint state vector x̄i is done in a reverse
order. The initial values x̄

l for the adjoint of the state vector and ū
l for the adjoint control

vector are defined by

x̄
l =

∂

∂x
J(xl) and ū

l = 0 .

The formulae (5.6) define one reversing step F̄i. As done for the forward computation, ten
reversing steps F̄i are glued together to the function reverse(..).

The functions kj and lj for j = 1, .., 4 in algorithm (5.6) are identical with the functions kj

and lj in algorithm (5.5). This gives an indication of how the corresponding preparing step F̂i,
respectively, the function prepare(..)can be implemented.

The first possibility is just to store the intermediate values of the functions kj . Then, the
reversing step has to compute all the Jacobians mj and nj .

Another implementation strategy is to do the calculation of the partial Jacobians mj and nj

during the preparing step and then to store the results. This can be done because the Jacobians
only depend on the value of kj and lj of the advancing step Fi. This leads to a larger trace
and a larger τ̂ than for the first approach. Then, the reversing step only has computed the last
statements of algorithm (5.6).

Besides the trace size, the runtime behaviour of the two implementation approaches can
be a criterion about which approach is used. For the example presented, the first approach
leads to τ̂ equals one and τ̄ equals four, while the second approach has the runtime behaviour
of τ̂ equals four and τ̄ equals one. For the first approach, no online construction of parallel
reversal schedules has been developed yet. The second approach is implementation by using
τ processors for the preparing step. These processors carry out the computations one after the
other. The additional resource need still agrees with resource need given by (2.2).

At the beginning of this section, the order of adjoining and discretising was discussed.
Since the results of the first adjoining and then discretising do not equate with the results of
first discretising and then adjoining in general, one should note that when using the four-stage
Runge-Kutta scheme (5.5), the results do. Further explanation can be found in [Hag00].
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5.2.5 The Computation of the Jacobians mj and nj

The adjoining of the described problem can be done by hand as done above (compare (5.6))
or can be done by using a Algorithmic Differentiation tool. If the forward integration will be
adjoined by hand one has to adjoin the whole car model as well. This error-prone hand-coding
can be avoided by using the technique of Algorithmic Differentiation.

Algorithmic or Automatic Differentiation (AD for short) offers the opportunity to provide
derivative information for a given code segment. The basic idea behind AD is the systematic
application of the chain rule of differentiation to the statements within the code segment. For a
comprehensive discussion of AD see [Gri00].

The application of the chain rule can be performed at two stages. The first possibility is
the application before compile time. AD tools using this so called source-to-source approach
generate new derivative program code from of original code. An example for such a tool is
ADIC. The second possibility to obtain derivative information is the application of AD during
the runtime. This is usually done by operator overloading. One tool using this technique for
the programming languages C and C++ is ADOL-C, detailed explained in [GJ+99].

For the reverse computation, AD was applied to the Runge-Kutta step (5.5). The operator
overloading AD tool ADOL-C was used. As explained in the previous section the Jacobians
are computed during the preparing step. Therefore the trace data sent is only the result of the
Jacobian computation, which are small vectors or matrices. Thus, one needs not care about
the internal trace representation of the ADOL-C package. This ADOL-C internal trace data is
always kept locally.

5.2.6 Optimisation

The optimisation of the optimal control problem (5.4) was done using a nonlinear conjugated
gradients method as can be found, for instance, in [NW99]. In order to carry out the line search,
a method using cubic polynomials as described in [DS96] was used. Different to the described
method, the polynomial was built by using two points and the directional derivatives at these
two points. These directional derivatives can be obtained by using the forward mode of AD for
the function evaluation of J , instead of using the normal function evaluation.

5.2.7 Results

Since the memory requirement is one of the major challenges for the program reversal (com-
pare Chapter 1), this memory requirement will be investigated first. The comparison of the
memory requirement of the full-logging approach described in Section 2.2 and Figure 2.2 and
the parallel approach is done in Table 5.1. The values for the memory need are computed for
650 advancing steps. Thereby, one checkpoint has the size of 7 double values, while the size
of the data obtained by one preparing step is given by 63 double values. The size of a double
value is set to 64 bits, as it is on most computers. The maximal memory need of the parallel
approach is composed by the size of three checkpoints (compare Lemma 4.1) and the size of
the data one preparing step requires. During the forward computation, the checkpoints were
distributed between the processors equally. Since six processors were used and schedules of
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full-logging approach parallel approach

maximal number values 40950 651
memory required in kB 327.6 5.2
in % 100.0 1.6

Table 5.1: Memory requirement for one function reversal.

the length of about 62 were utilised, the resource needed was given by ten. Therefore, each
processor has to store a maximum of two checkpoints during the forward computation at the
same time. This means that the memory requirement during the forward computation can be
disregarded, compared to the memory requirement during the reverse computation.

The maximal memory requirement during the reverse computation of the parallel approach
is less than two percent of the maximal initial memory, which was needed for the full-logging
approach at the computation vertex.

An online constructed parallel reversal schedule was used to compute the adjoint of the
forward integration of the ODE system with respect to a given road shape. In order to carry
out the time measurement shown in Table 5.2, the program was slightly changed. Thus, the

full-logging approach parallel approach

T3E
in sec. 20.27 18.91
in % 100.0 93.3

Origin 3800
in sec. 6.71 6.04
in % 100.0 90.0

Table 5.2: Runtime of one function reversal

discretisation step size was changed from twenty centimetres to one centimetre. Furthermore,
not 10 but 200 Runge-Kutta steps were glued together to one advancing step forward(..).
Thereby, the behaviour of the program with respect to the used online constructed reversal
schedule was the same, but the computational work to be done for one advancing was 200 times
larger. Since the original problem is very small, this was necessary to get the computation time
measurable. Furthermore, the computation time of all computed advancing and preparing steps
was set to the same value, such that the full-logging approach and the parallel approach would
get competitive. The computations were measured on a Cray T3E and on a SGI Origin3800. As
it can be seen in Table 5.2, the runtime of the program reversal has just a slight improvement.
This may be due to the less memory each computing node has to manage [SNB00].

The result of the computed optimal control problem can be seen in Figure 5.3 and Fig-
ure 5.5. Figure 5.3 shows the car position after the 1st, 3rd and 7th optimisation step. The road
shape was an S-curve defined by the road centre line given by

f(x) =
17

4
arctan

(
3

34
(x − 40)

)

+ 6
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Figure 5.3: Driven car line after the 1st, 3rd and 7th optimisation step.

and the road width was given by three meters. Again, the reversal criterion was satisfied if
the longitudinal position x6 reached a value equals to or larger than 130 meters. After seven
optimisation steps no visible change of the driven car line takes place. This can be verified by
a look at the cost function value in Figure 5.4.
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Figure 5.4: Cost function J(sf ) (left) and the integrand SCF (x, s)(1 + gs(x, s)) of the cost function
(right) after the 1st, 3rd and 7th optimisation step.

The computed adjoined values of the control along the road centre line are shown in Fig-
ure 5.5. The left column of diagrams shows the adjoint car steer rate ū1, and the right column of
diagrams shows the adjoint car longitudinal force ū2 plotted over the distance measured on the
road centre line. Again, the values after the 1st, 3rd and 7th optimisation step were visualised.

If, during the optimisation, the car must stay on the road, then one might use the restart of
the forward computation. Additional to the target line criterion, the reversal can be initiated
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ū2

PSfrag replacements

1.2e + 6
1.0e + 6
8.0e + 5
6.0e + 5
4.0e + 5
2.0e + 5
3.5e + 4
3.0e + 4
2.5e + 4
2.0e + 4
1.5e + 4
1.0e + 4
5.0e + 3

120100

90

80

70

60

50

40

30

20

10
2

1.5
1.0
0.5

0

0

−0.2
−0.4
−0.6
−0.8
−1.0
−0.2
−0.4
−0.5
−0.6
−0.8
−1.2
−1.4
−1.5
−1.6
−1.8

−2
−4
−6
−8
−10
−12
−14
−16
−18
−20

−2.0e + 5
−4.0e + 5
−6.0e + 5
−8.0e + 5

s
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ū1 ū
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Figure 5.5: Adjoint control values ū1 (left) and ū2 (right) for the 1st, 3rd and 7th optimisation step.

if the distance between the car and the road centre line is too large. The reverse computation
updates the control until the forward computation starts again, for instance, if the car is close
enough to the road centre line. Thus, the car goes forth and back until it reaches the target
line. The result of this bidirectional computation is usually a nonoptimal but valid driven car
trajectory, i.e. the car always stays on the road. This driven car line can then be improved by
computing further optimisation steps using online constructed parallel reversal schedules with
no restart.

5.3 Example: Lipschitz tracking

An example which uses the bidirectional computing feature of the implementation of TOPAS
is the Lipschitz tracking problem. The Lipschitz tracking problem is defined by a number
of values y∗i given at the sampling points xi for i = 0, 1, . . . , n. The values y∗

i are called
data points and are assumed to be generated recursively so that y∗

i = Fi(y
∗

i−1) with each Fi

being not invertible or ill conditioned. The sampling points are ordered, such that x0 < x1 <
. . . < xn−1 < xn. The aim is the construction of a piecewise linear continuous function
Ψ(x) whose derivative is bounded. That means that the function Ψ(x) has a globally bounded
Lipschitz constant. The objective is to minimise the L2-norm of the discrepancies y∗

i − Ψ(xi)
for i = 0, . . . , n. Moreover, it is assumed that the values y∗

i are generated one by one and
the approximation has to be optimal at each stage. One example for i = 2, . . . , 12 is given in
Figure 5.6.

The data points y∗

i , for example, could be measured values one wants to follow with a
Lipschitz bounded piecewise linear control, or the values y∗

i obtained by a complex computer
simulation F with y∗

i = F (y∗i ), which is not invertible.
With yi = Ψ(xi) the optimisation problem can now be defined by

Minimise g(y) =
1

2

n∑

i=0

(
yi − y∗i

)2
(5.7)

such that µi ≥
∣
∣fi(yi, yi−1)

∣
∣(5.8)
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Figure 5.6: Optimal solutions of the Lipschitz tracking problem for n = 11 points using the Logistic
map to generate the data values y∗

i and µ = 2.
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for i = 1, 2, . . . , n and with y ∈ IRn+1, fi(yi, yi−1) = yi − yi−1 and µ(xi − xi−1) ≡ µi for a
given 0 < µ.

The optimisation problem (5.7) and (5.8) can also be interpreted as an optimal control
problem with a constrained control. The control is given by the slope of the straight line, i.e.
values

ui =
yi − yi−1

xi − xi−1
,

whose absolute values are bounded by µ. The cost function one wants to minimise is again
given by (5.7). This is a convex quadratic optimisation problem with box constraints. How-
ever, the objective Hessian is dense with respect to the ui but diagonal with respect to the yi.
Therefore, one sticks with the original formulation.

The Kuhn-Tucker theorem for the considered QP-problem yields the existence of the La-
grange multipliers λi such that

(5.9)
n∑

i=0

λi∇fi(y) = ∇g(y)

with λi = 0 if |fi| < µi(5.10)

and λifi < 0 if |fi| = µi .(5.11)

Because the problem is strictly convex, these first order necessary conditions are already suffi-
cient for optimality. The Kuhn-Tucker condition (5.9) can be given in detail by

n∑

i=0

λi∇fi(y) =










−λ1

λ1 − λ2
...

λn−1 − λn

λn










=










y0 − y∗0
y1 − y∗1

...
yn−1 − y∗n−1

yn − y∗n










= ∇g(y) .

Hence, the ith component is given by λi−1 − λi = yi−1 − y∗i−1 with λ1 = −(y0 − y∗0) and
λn = yn − y∗n. Thus the kth Lagrange multiplier λk can be computed forward, starting form
the sampling point x0 or the multiplier can be computed backward, starting from xn by

λk = −
k−1∑

i=0

(yi − y∗i ) or λk =

n∑

i=k

(yi − y∗i ) ,

respectively. If for an interval [xi−1, xi] the constrain |fi(yi, yi−1)| ≤ µi is not active, i.e.
|fi(yi, yi−1)| < µi, then the problem separates in that λi = 0. Now an algorithm can be
defined which computes the optimal solution stepwise.

First, it is assumed that the piecewise linear function is optimal for all sampling points xi

with i = 0, . . . , k − 1. That means that for the intervals with |fi| = |yi − y∗i | < µi, one knows
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that λi = 0. Now the new data point y∗

k at the sampling point xk is entered. The first estimate
for the value yk is chosen by

yk =







yk + µk if 1 <
y∗k − yk

µk

yk − µk if −1 >
y∗k − yk

µk

y∗k else.

Considering the third case, the Lagrange multiplier λk = yk − y∗k satisfies the optimality cri-
terion (5.10), and, hence, one can proceed with the next sampling point xk+1. For the first two
cases, one has to pull up a segment of the piecewise linear function Ψ, if the Lagrange multi-
plier λk is larger than zero, or one has to pull down a segment of the piecewise linear function
Ψ, if the Lagrange multiplier λk is smaller than zero.

Pulling a segment of the piecewise linear function Ψ up or down means that one has to find
an interval [xj−1, xj] with

1. uj < µ if the segment [xj , xk] has to be pulled up (i.e. λk > 0), or

2. uj > µ if the segment [xj , xk] has to be pulled down (i.e. λk < 0).

If such an interval was found, one has to move the segment by

∆y =
1

k − j

k∑

i=j

(yi − y∗i )

i.e. all values yi for i = j, . . . , k must be updated in the corresponding direction. If |yk −
yk−1 − ∆y| is larger than µk, then the segment can only be moved by a value ∆y such that
|yk − yk−1 − ∆y| = µk. Then the search for an interval [xj−1, xj ] with a smaller index j and
the properties 1 or 2, respectively, must be continued and the values yi for i = j, . . . , k have to
be updated again.

One sweep for a new value y∗

k decreases the value of the objective function g(y). Thereby,
one decreases the value of the objective function by shifting a whole segment of the piecewise
linear function Ψ. The segment is bounded by two intervals [xi−1, xi] with |fi| < µi on each
side. This shift can be taken by a move through a set S of feasible points of the subspace
IRk ⊂ IRn+1. The dimension of this feasible set S is given by the number of constraints, which
are not active, i.e. the number of intervals [xi−1, xi] with λi = 0 plus one. The boundaries of the
feasible set S are defined by the sizes of all possible shifts of all segments within the piecewise
linear function Ψ which do not change the activity constraints of the intervals. If now a sweep
activates the constraint for a certain interval [xj−1, xj ], then one move to the boundary of the
feasible set S and its dimension decreases by one. If a sweep deactivates the constraint for a
certain interval [xj−1, xj], then the feasible set S is extended by a new direction. The value
of the objective function is minimal if y is restricted to this feasible set S. Since there is only
a finite number of feasible sets, and since at each sweep the value of the objective function is
minimal within the feasible set, the algorithm stops after a finite number of steps.
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The reversal schedules come into play if the data points y∗

i are computed by an iterative
process which is not invertible. The computation of the Lagrange multipliers λj then needs
the data points y∗

i in a reverse order. In that case, the advancing step forward(..)and the
preparing step prepare(..)are identical. Both compute the data point y∗

i = F (y∗i−1). The
reversing step reverse(..)does nothing except provide the data point y∗

i .
A one dimensional example for such a function F is the logistic map, which was used in

order to test the optimisation algorithm. Hence, the data points y∗

i are computed by

y∗i = F (y∗i−1) = 4y∗i−1(1 − y∗i−1) .

A first test case was computed using 11 data points, as can be seen in Figure 5.7. The movement
of the algorithm through the data points y∗

i , can be seen in Figure 5.7. The upper value repre-
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Figure 5.7: Movement of the optimisation algorithm through the data points y∗

i .

sents the index k, while the lower value illustrates how far the algorithm has to go backwards,
i.e. the values illustrate the index j. These two indices define the behaviour of the bidirectional
schedule used.

The final solution of a larger data point set (n = 100) is shown in Figure 5.8(a). Again,
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Figure 5.8: Lipschitz tracking problem for n = 100 points using the Logistic map for the data values y∗

i

and µ = 2.
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the data points are computed using the logistic map. The start value for the logistic map was
chosen near the stationary point of the logistic map. That means that the data points stay near
the stationary point at the beginning, and then they start to get a chaotic behaviour. This is the
reason that the movement of the optimisation algorithm through the data point is very small at
the beginning and then starts to get larger. For both computations the bound for the Lipschitz
number was given by µ = 2.



Chapter 6

Summary and Outlook

6.1 Summary

For the solution of several computational tasks, the reversal of a computer function F is needed.
The main problem of reversing the computer program which evaluates the function F is the
enormous memory requirement especially, if the function F is ill-conditioned or difficult to
reverse. This memory requirement grows linearly with the length of the function evaluation, if
all values needed for function reversal are stored. One way to avoid the memory requirement is
to recompute of all values used for the function reversal. This leads to an enormous increase in
the time needed to complete the program reversal, compared with the runtime of the reversal if
all values are stored. The runtime using the latter approach grows linearly with respect to the
original duration of the function evaluation.

The present work investigated parallel reversal schedules for program reversion. Reversal
schedules are one way to find an optimal medium between complete recalculation and complete
storing of the values needed for the reversal of the function F .

In the beginning, a brief introduction was given about the classes of functions which were
explored. Within this work, it was supposed that the function F can be divided into a sequence
of l advancing steps, such that the function forms an evolutionary system. Each advancing
step uses a current state of the evolutionary system to compute a new state. Reversal schedules
use checkpointing to find the optimal medium between complete recalculation and complete
storing. A checkpoint is an intermediate state of the evolutionary system which is used to
start recomputations and which is saved into the computer memory for a certain time while the
computation proceeds. Furthermore, it was assumed that all advancing steps of the evolutionary
system require the same time to evaluate, or the runtime of each advancing step is uniquely
bounded for all advancing steps. Only little is known about the reversal schedules, if the length
l of the evolutionary system is not known priori.

In the second part, reversal schedules for single-processor computers were discussed for
both cases, if the length of the function F is known priori and if the length of the function is
not known. The former case leads to the offline construction of serial reversal schedules, while
the latter case leads to the online construction of serial reversal schedules. The outcome of

95
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the first case is that for the reversal of an evolutionary function in which c checkpoints can be
stored at the same time, the runtime using an offline constructed optimal serial reversal schedule
increases by a factor of c

√
l. Measurements for example problems done so far have shown that

the introduced technique for the online construction of serial reversal schedules leads to only a
small increase in the runtime of the complete program reversal, compared to the runtime of an
offline constructed serial reversal schedule. Furthermore, the theory of reversal schedules on
parallel computer was introduced in a nutshell. Only the theory of offline constructed reversal
schedules was discussed.

One major part of this work was the extension of the offline construction of parallel rever-
sal schedules for the online scenario. First, a possibility to define instantaneously reversible
resource distributions for any given step number l was discussed. A resource distribution was
defined to be a set of different intermediate states of the evolutionary system. Thereby, the
number of resources within a resource distribution for the step number l was bounded by the
maximal number of resources needed to reverse l advancing step, using offline constructed par-
allel reversal schedules. An important property was that one instantaneously reversible resource
distribution for a given step number l can easily be converted into the instantaneously reversible
resource distribution for the next step number l + 1, within the time of one advancing step, by
changing one or more intermediate states. The way in which the resource distributions are con-
verted to the next step number defines the way in which the forward computation is carried out
using online constructed parallel reversal schedules. Having the conversion property, the struc-
ture of the occurring set of resource distributions for all step numbers up to a step number l was
investigated next. Two options for finding recursive substructures in the resource distributions
were discussed. One substructure is associated with the step number, while the other substruc-
ture is associated with the time of the forward computation. Using these substructures, the
definition of instantaneously reversible resource distribution was extended from an exact posi-
tion of the resource to intervals in which the resources must lie, if a resource distribution has to
be instantaneously reversible. This interval definition was used to join the offline and the online
construction of parallel reversal schedules. This allows one to restart the forward computation
during the reverse computation, such that all arising resource distribution are instantaneously
reversible. Thus, an algorithm was defined, which converts a given instantaneously reversible
resource distribution (defined by using the intervals), either to an instantaneously reversible
resource distribution for the step number l +1, or to an instantaneously reversible resource dis-
tribution for the step number l− 1 on a parallel computer. One can use this algorithm to switch
between the forward computation and the reverse computation at any time. Overall, this leads
to schedules for dynamic bidirectional simulations on multi-processor machines. Furthermore,
different possibilities for the presentation of instantaneously reversible resource distributions
were discussed.

Subsequently, the implementation of parallel reversal schedules was discussed in detail.
The preferred programming model was the distributed memory model. It was discovered that
the checkpoint oriented implementation concept cannot keep the resource optimality, by def-
inition. It was furthermore discussed under which condition the resource requirement of the
process oriented programming model is optimal, and how many checkpoints have to be stored
by one processor in that case.
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Finally, this work contains a documentation of the testing of the theoretical results. There-
fore, a program skeleton was written in C. This test implementation, called TOPAS, was written
using the MPI for the communication. The basic structure of such a program skeleton realising
parallel reversal schedules was discussed. Further on, the TOPAS package was used to compute
the solution of two small optimal control problems, namely the steering of a Formula One car
and a Lipschitz tracking problem. Considering the Formula One car problem, the resource need
of the implementation and the runtime behaviour were discussed in addition to the actual opti-
mal control result, i.e. the optimal steering sequence. Therefore, the optimal control problem
was solved on two different parallel computers. The Lipschitz tracking problem was solved by
an algorithm, which uses a bidirectional schedules.

6.2 Outlook

During the reversal of a program using a parallel reversal schedule, the number of actual used
resources changes. Most parallel computers are unable to dynamically handle the change of re-
source need while a computation is running. This is particularly the case if the number of used
processes changes. Since a process without a processor does not make much sense with respect
to the parallel reversal schedules, the size of the pool of available processors must be the same
or larger than the number of processes currently used during the execution of a parallel reversal
schedule. Difficulties occur if one must add a processor to the processors available. Thus, one
should investigate how to get a sufficient efficiency for a fixed number of processors while com-
puting a program reversal using parallel reversal schedules. In many cases, the program which
one wants to reverse and which evaluates the evolutionary system is running in parallel already.
For the forward computation, this problem can be easily solved, since the number of needed
processors does not change. Thus, each half of the available processors carries out one forward
computation. The reverse computation seems to be much more complicated. If in addition to
the parallel execution of the reversal schedule, one wants to execute the advancing, preparing
and reversing step in parallel, then the parallelisation of the single advancing, preparing and
reversing step must be very dynamical and might be changed at the end of each computed step.
In this context, one should investigate which parallel programming model should be used for
the implementation of the parallel reversal schedule and which parallel programming model
should be used for the implementation of the advancing, preparing and reversing step.

A continuative task is the construction of parallel reversal schedules online if the runtime
of the preparing and the reversing step are not one. The case τ̂ > 1 can easily be handled
if no restart is needed. The preparing steps start at the end of each forward computation, i.e.
with a timely distance of τ = 1. The results of the preparing steps are obtained in a vector or
pipeline-like manner. Therefore, τ̂ − 1 additional processors are needed. On the other hand,
this pipelined computation of the preparing steps causes problems if a restart is needed. At the
restart point, there are τ̂ − 1 processors carrying out the preparing step, which can usually not
be interrupted. This leads either to a delay of the restart, or one has to construct special parallel
reversal schedules handling the restart. The case τ̄ > 1 seems to be much harder to handle.
From the theory of the offline constructed parallel reversal schedules [Wal99], one knows that
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the resource need decreases for a fixed step number l and a fixed τ̂ , if τ̄ increases. Thus, the
resource needed of the online constructed parallel reversal schedules should decrease as well.

A further generalisation is that the construction of parallel reversal schedules for nonuni-
form steps cost, i.e. the subfunctions Fi need different amount of time. Almost nothing is
known about the offline and online construction of parallel reversal schedules for nonuniform
step cost. Furthermore, there is an additional adaptivity in the problem, namely whether the
step costs of the single steps is known priori or not.

A further challenge is the construction of parallel schedules for the computation of second
order derivative information for optimal control problems, in order to use Newton-like methods.
One efficient way to compute the Newton direction for the discrete optimal control problem is
Pantoja’s algorithm [Chr99, CBB00] in its direct formulation. In addition to the forward and
the reverse computation of the discussed program reversal, another forward computation is
needed for Pantoja’s algorithm. This second forward computation needs information obtained
during the reverse computation in the reverse order, i.e. the indices are running from l to
0 during the reverse computation, but the second forward computation needs the data in the
natural order from 0 to l. Again, a full-logging approach seems to be possible, but the required
reverse state information has the size of a normal state information xi, squared. One possible
solution is to perform the first forward computation in a full-logging manner. For the reverse
computation and the second forward computation, one uses parallel reversal schedules which
were discussed in this thesis. Another possibility could be the use of an indirect formulation of
Pantoja’s algorithm [Chr01]. In doing so, the second forward computation is no longer needed.
Using an indirect Pantoja-like algorithm, however, one must beware of the algorithm stability.

A further topic which is left over is the transfer of the test implementation TOPAS to a
robust program package. Right now, TOPAS consists of a couple of files written in C containing
more than 12000 lines of code. These files must be adapted to each problem. Especially when
the user must write his own communication routines. The goal is to write a package consisting
of three libraries associated with the three major part of the implementation. Using predefined
interfaces, these libraries should be exchangeable by user written libraries. Furthermore, the
libraries should be able to use both kinds of parallel computer architecture, the distribute and
the shared memory computer architecture. If the libraries are used on a distribute memory
computer, then a tool has to be written, which creates the communication routines for the
checkpoints or for the traces automatically for example. The user should only have to provide
a file describing the data structure. A first approach for the automatic communication code
generation was done in [Ben95].



Appendix A

Glossary

A.1 General Notations

~F and ~Fi Function or subfunction in terms of a mathematical mapping
Fi Advancing step, i.e. computer function evaluating the vetcor function ~Fi

F̄i Reversing step, i.e. computer function evaluating the reversal of the advancing
step Fi

F̂i Preparing step, i.e. computer function evaluating the advancing step Fi and as-
sembling all data required for the reversing step F̄i.

ϕn The nth Fibonacci number defined by ϕ0 = 1, ϕ1 = 1 and ϕn+1 = ϕn + ϕn−1,
ri and %i Position of the ith resource
l Current step number
lI and λI Inner end point of the live time of a resource defined by (3.17) page 43.
lM and λM The joining step number of a resource defined by (3.19) page 47.
lO and λO Outer end point of the live time of a resource defined by (3.8) page 38.
b̃i and β̃i Shortage for bi − ϕn−i and βi − ϕm−i (page 30 and page 34)
τ Time of one advancing step Fi

τ̄ Time of one reversing step F̄i

τ̂ Time of one preparing step F̂i

r Intervals of possible resource positions (see Section 3.4 at page 47)
r(·) Resource distribution (see Section 3.1 at page 30)
S(·, ·) Set of all possible resource positions (see Section 3.2 at page 38 Corollary 3.2)
R(·) Resource distribution intervals (see Section 3.4 at page 50 Corollary 3.4)
Tr(·, ·) Triangle area containing resource positions (see Section 3.2 at page 40)
Te(·, ·, ·) Tetragon area containing resource positions (see Section 3.2 at page 40)
Rec(·, ·, ·) Rectangle area containing resource positions (see Section 3.2 at page 39)
S(·, ·) Shift of an area of resources in the down-rightward direction (see Section 3.2 at

page 40)
Φ· and Φ̄· Sums of Fibonacci numbers (see Section 3.4 at page 41 Definition (3.13))
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A.2 Notations for Car Model Problem

x1 Car yaw angle (relative to the inertial reference axes)
x2 Car yaw rate
x3 Lateral velocity of the centre of gravity
x4 Longitudinal velocity of the centre of gravity
x5 Lateral position of the centre of gravity (relative to the inertial reference axes)
x6 Longitudinal position of the centre of gravity (relative to the inertial reference

axes)
x7 Car steer angle
u1 Car steer rate (as a control action)
u2 Car longitudinal force
Fηi

Car lateral force of the ith tyre where i if defined by

(A.1)

Front left tyre . . . i = 1
Front right tyre . . . i = 2
Rear left tyre . . . i = 3
Rear right tyre . . . i = 4

Fξ Car longitudinal force
Fα Car aerodynamic drag force
M Car mass
lf Distance from the centre of gravity to the front axis
lr Distance from the centre of gravity to the rear axis
Fyi

Car lateral tyre force of the ith tyre (i defined by (A.1))
Pi Car longitudinal tyre force of the ith tyre (i defined by (A.1))
Fzi

Tyre normal force of the ith tyre (i defined by (A.1))
αf Front slip angle
αr Rear slip angle
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und Naturwissenschaften, December 1999.



Bibliography 107

[WG01] ANDREA WALTHER AND ANDREAS GRIEWANK. Bounding the number of pro-
cesses and checkpoints in time-minimal parallel reversal schedules. Technical Re-
port IOKOMO–03–2001, Technische Universit ät Dresden, April 2001.

[WL01] ANDREA WALTHER AND UWE LEHMANN. Adjoint Calculation using Time-
Minimal Program Reversals for Multiprocessor Machines. Technical Report
IOKOMO–09–2001, Technische Universit ät Dresden, November 2001.





Versicherung

Hiermit versichere ich, daß ich die vorliegende Arbeit ohne unzul ässige Hilfe Dritter und ohne
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