
Program Reversal Schedules for Single-

and Multi-processor Machines

Dissertation

von

Andrea Walther

Dresden 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236363265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Program Reversal Schedules for Single-

and Multi-processor Machines

DISSERTATION

zur Erlangung des akademischen Grades

Doctor rerum naturalium
(Dr. rer. nat.)

vorgelegt

der Fakultät Mathematik und Naturwissenschaften
der Technischen Universität Dresden

von

Dipl.-Wirtschaftsmath. Andrea Walther

geboren am 9. September 1970 in Bremerhaven

Gutachter: Prof. Ph.D. Andreas Griewank
Prof. Ph.D. Richard P. Brent
Ph.D. Alan Carle

Eingereicht am: 15. Oktober 1999
Tag der Verteidigung: 10. Dezember 1999

My attention was drawn to this research topic by Prof. Andreas Griewank,
whose inspiration and advise formed the foundation of this thesis. Above all I
would like to thank him for his support and many fruitful discussions.

I am indebted to Angela Giampietro, Uwe Naumann, and Olaf Vogel for
helping me to put this thesis into shape. Special thanks are due to my husband
for his aid during difficult times. Furthermore I am grateful to my parents for
making my studies possible and for their encouragement.

Moreover I wish to thank my colleagues at the Institute of Scientific Com-
puting, Technical University Dresden, for the pleasant working atmosphere.
Last but not least thanks to the DFG for financial support within the research
group “Identifikation und Optimierung komplexer Modelle auf der Basis ana-
lytischer Sensitivitätsberechnungen”.

Contents

List of Figures iii

Notations v

1 Introduction 1

2 Notations, Assumptions, and Basic Observations 7

2.1 One-step Recurrences . 7

2.2 Multi-step Recurrences . 9

2.3 Characterizing the Step Costs . 13

2.4 Reversal Schedules . 14

3 Serial Reversal Schedules 19

3.1 Introduction . 19

3.2 Notations and Basic Observations 22

3.3 Multi-step Evolutions with Uniform Step Costs 26

3.3.1 Derivation of Optimal Reversal Schedules 27

3.3.2 Numerical Example . 40

3.3.3 Conclusions . 46

3.4 One-step Evolutions with Non-uniform Step Costs 48

3.4.1 Monotony of Partitioning 48

3.4.2 Numerical Examples . 53

3.4.3 Conclusions . 55

4 Parallel Reversal Schedules 57

4.1 Introduction and Notations . 57

4.2 Structural Properties and an Upper Bound 62

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 73

4.3.1 Feasible Parallel Reversal Schedules for t̄ = 1 74

4.3.2 Feasible Parallel Reversal Schedules for t̄ = 2 85

4.3.3 Feasible Parallel Reversal Schedules for t̄ > 2 95

4.4 Conclusions . 99

5 Conclusions and Outlook 103

5.1 Serial Reversal Schedules . 103

5.2 Parallel Reversal Schedules . 104

5.3 Summary . 105

i

ii Contents

A Source of the Coded Algorithms 107
A.1 revolve.c: Multi-step Recurrences and Uniform Step Costs . . . 107
A.2 sched.c: One-step Recurrences and Non-uniform Step Costs . . 111

B Construction of Feasible Parallel Reversal Schedules 115
B.1 Construction of Parallel Reversal Schedules for t̄ = 2 and t̂ > 1 . 115
B.2 Construction of Parallel Reversal Schedules for t̄ > 2 129

Bibliography 153

List of Figures

1.1 Evaluation of F . 2

1.2 Example of Serial Reversal Using 3 Checkpoints 3

1.3 Example of Parallel Reversal Using 3 Checkpoints 5

2.1 Explicit Euler Method . 9

2.2 Leap Frog Method . 12

2.3 Possible Reversal of F . 17

3.1 Reversal Process Storing All Intermediates 19

3.2 Total Recalculation for l = 12 . 20

3.3 Reversal Process with no Reuse of Checkpoints 20

3.4 Reversal Process Reusing Checkpoints 21

3.5 Distribution of Checkpoints and Processors determined by S . . 23

3.6 Distribution of Checkpoints and Processors determined by S̃ . . 24

3.7 Placing of the Second Checkpoint Writing 25

3.8 Values of t(l, c) for q = 2 and b = 1 33

3.9 Domain of l̂ Optimizing the Number of Physical Steps 34

3.10 Optimal Number of Checkpoint Writings 40

3.11 Relative Error of z̄ Using Adjoint of the Adams 3-step Method . 45

3.12 Run-time Ratio for Different Numbers of Checkpoints 46

3.13 CPU times to and tm for 0 < l ≤ 2000 and Linearly Increasing ti 54

3.14 Ratio to/tm for 0 < l ≤ 2000 and Random Distributed Step Costs 55

4.1 Parallel Reversal Schedule using Bisection Strategy 59

4.2 Improved Parallel Reversal Schedule 59

4.3 Feasible Parallel Reversal Schedule for l = 9, t̂ = 2, and t̄ = 3 . . 60

4.4 Resource Profile . 61

4.5 Parallel Reversal Schedule S̃ . 63

4.6 Transformation of S̃ into S . 64

4.7 Domain of S̃ to Change . 64

4.8 Transformation of S̃ into S . 65

4.9 Domain of S̃ to Modify . 65

4.10 First Possible Structure of S̃ and the Resulting S 66

4.11 Second Possible Structure of S̃ and the Resulting S 67

4.12 Reasons for Increase in Applied Resources 67

4.13 Special Structure of S . 69

4.14 Resulting Parallel Reversal Schedule S̃1 71

iii

iv List of Figures

4.15 Structure of S̃2 and the Preliminary S̃ 72
4.16 Structure of S̃ . 72
4.17 New Structure of S1 . 72
4.18 Reversal Schedule Sk . 74
4.19 Feasible Parallel Reversal Schedules S1, S2, and S3 74
4.20 Behavior of sj

k ∈ R(Sk) . 75

4.21 Reversal Schedule S5 and sj
5 ∈ R(S5) 75

4.22 Behavior of cj
k, p

j
k ∈ R(Sk) . 77

4.23 Reversal Schedule S5 and cj
5, p

j
5 ∈ R(S5) 77

4.24 Parallel Reversal Schedule Sk, where k < 2 + t̂ 81
4.25 Modification of Sk̃,1 for k = 7 and t̂ = 3 82

4.26 Complete Parallel Reversal Schedule S̄7 83
4.27 Resulting Parallel Reversal Schedule S7 84
4.28 Modified Parallel Reversal Schedule for k = 7 and t̂ = 3 85
4.29 Parallel Reversal Schedule Sk for k > 4 86
4.30 Parallel Reversal Schedule S3 for t̄ = 2 and t̂ = 1 86
4.31 Parallel Reversal Schedule S4 and Resource Profile R(S4) 87
4.32 Parallel Reversal Schedule S5 and Resource Profile R(S5) 88
4.33 Parallel Reversal Schedule Sk . 91
4.34 Parallel Reversal Schedules S3 and S4 for t̄ = 2 and t̂ = 2 92
4.35 Parallel Reversal Schedules S̃2 and S̃3 for t̄ = 4 and t̂ = 2 96
4.36 Construction of S̃k for k > 3 . 96
4.37 Parallel Reversal Schedule S3 for t̄ = 4 and t̂ = 2 97
4.38 Parallel Reversal Schedule Sk for k ≥ 4 97
4.39 Parallel Reversal Schedule S7 for t̄ = t̂ = 1 100

B.1 Parallel Reversal Schedule S5 for t̂ = 2 and t̄ = 2 116
B.2 Parallel Reversal Schedule S6 for t̂ = 2 and t̄ = 2 116
B.3 Reversal Schedule S̄5 . 117
B.4 Resource Profile R(S̄5) . 118
B.5 Reversal Schedule Sk, where k < 2 + t̂/2 125
B.6 Placing of Processors and Checkpoints 135
B.7 Parallel Reversal Schedules S̃3 and S̃4 for t̄ = t̂ = 3 140
B.8 Parallel Reversal Schedules S1, S2, and S3 for t̄ = 4 and t̂ = 2 . . 146

Notations

a+= b a = a + b

dwe Smallest integer greater than or equal to w ∈ R

bwc Greatest integer less than or equal to w ∈ R

b Number of linear arguments (Def. 2.1, Page 11)

β(c, r) Binomial coefficient
(
c+r

c

)
(Def. 3.2, Page 27)

c Total number of checkpoints available

cj
k Number of checkpoints used in the jth computational cycle for

fixed t̂ and a given parameter k

cj

k,t̂
Number of checkpoints used in the jth computational cycle for

given parameters t̂ and k

η(c, r) ≡ (β(c, r) + β(c − 1, r))q + (β(c − 1, r) − 1)b (Theo. 3.2, Page 34)

F Evaluation procedure, evolutionary system

Fi Physical step (Section 2.1, Section 2.2)

F̂i Recording step (Section 2.1, Section 2.2)

F̄i Reverse step (Section 2.1, Section 2.2)

γ(c, r) ≡ β(c, r)q + (β(c − 1, r) − 1)b (Lemma 3.3, Page 27)

k Number of available resources, each of which can be used either

as processor or as checkpoint

l Number of physical steps to be reversed

l̂, l̃ Place of the next checkpoint

lk Maximal number of physical steps to be reversed for fixed t̂

and a given parameter k

lk,t̂ Maximal number of physical steps to be reversed for given

parameters t̂ and k

N Set of natural numbers including zero

p Number of processors available

pj
k Number of processors used in the jth computational cycle

for fixed t̂ and a given parameter k

pj

k,t̂
Number of processors used in the jth computational cycle

for given parameters t̂ and k

P (i, h, c) Minimal partition function (Def. 3.3, Page 49)

v

vi Notations

φ(c, r) ≡ β(c, r − 1) + β(c − 1, r − 1) (Theo. 3.2, Page 34)

q Number of previous states the new one depends on

ri Number of times Fi is performed while executing the reversal

schedule S (Def. 2.4, Page 16)

R(S) Resource profile of S (Def. 4.3, Page 61)

R Set of real numbers

sj
k Number of resources used in the jth computational cycle for

fixed t̂ and a given parameter k

sj

k,t̂
Number of resources in the jth computational cycle for

given parameters t̂ and k

s(l, c) Minimal number of checkpoint writings to reverse l physical steps

with c checkpoints on a serial machine (Theo. 3.2, Page 34)

S Reversal schedule

S̃, S̄ Auxiliary reversal schedules

Sk Parallel reversal schedule using k processors and checkpoints for

fixed t̂

Sk,t̂ Parallel reversal schedule using k processors and checkpoints for t̂

ti Time needed to perform Fi (Section 2.3, Page 13)

t̄i Time needed to perform F̄i (Section 2.3, Page 13)

t̂i Time needed to perform F̂i (Section 2.3, Page 13)

t̄ Time needed to perform a reverse step

t̂ Time needed to perform a recording step

t(i, h, c) Minimal cost to reverse the physical steps Fi, . . . , Fh−1 with c

checkpoints on a serial machine (Def. 3.1, Page 22)

t(h, c) Minimal cost to reverse h physical steps with uniform step costs

using c checkpoints on a serial machine (Theo. 3.1, Page 29)

T Reversal trace (Def. 2.6, Page 17)

Z Set of integers

Chapter 1

Introduction

“Detailed studies of the real world impel us, albeit re-
luctantly, to take into account of the fact that the rate
of change of physical systems depends not only on their
present state, but also on their past history”

R. Bellmann & K.L. Cooke [BC63]

The mathematical specification of many applications involve nonlinear vector
functions

F : R
n → R

m, x 7→ F (x),

that are evaluated by a computer program. For several purposes one may need
to reverse the execution of the evaluation procedure F . The reversal of F is
extensively used for example to calculate adjoints, to adapt parameters in a
given model, or to steer a production process. Hence there are several contri-
butions on weather data assimilation (e.g. [Tal91], [GC96]) or the optimization
of production processes (e.g. [KW98]) dealing with this technique. Here the
desired gradients can be obtained with a low temporal complexity by integrat-
ing the linear co-state equation backward. Therefore the reversal of F may be
needed. This well-known technique is closely related to the reverse mode of al-
gorithmic differentiation (AD) [Evt91], also called automatic or computational
differentiation. For this mode of AD it is necessary to reverse the evaluation
procedure F (e.g. [BBCG96], [Gri00]). Moreover, debugging and interactive
control may require the reconstruction of previous states by some form of run-
ning the program that evaluates F backward. Serious difficulties arise when the
simulated process described by F is not invertible or ill conditioned. In these
cases one cannot simply apply the inverse function F−1. Therefore the reversal
of a program execution has received some, but only perfunctory, attention in
the computer science literature (see e.g. [vdS93]). Nevertheless Bennett con-
jectured already in 1973 that a logarithmic growth in the spatial complexity
might be achievable [Ben73].

1

2 Chapter 1. Introduction

An obvious way to reverse the evaluation of F is given by first recording
the complete execution log onto a corresponding data structure called tape and
subsequently reading the tape backward. The execution log contains for each
arithmetic operation the operator and the addresses of the arguments. This ba-
sic approach causes a memory requirement proportional to the run time needed
to evaluate F . Therefore the practical applicability is limited despite the avail-
ability of constantly growing memory systems.

Another way to reverse the calculation of F employs only a fixed and usu-
ally small amount of memory to store intermediate states called checkpoints
or snapshots during the evaluation process. Then the execution log is gener-
ated piecewise by restarting the evaluation repeatedly from the suitably placed
checkpoints. In this way the same values are computed several times according
to requests by the reversal process. Applying this checkpoint technique the
calculation of F can be reversed even in such cases, where the basic approach
fails due to excessive memory requirement (e.g. [VO85], [Kub98] with respect
to AD).

Throughout this thesis it is assumed that the evaluation of F comprises
the evaluation of subfunctions Fi, i = 0, . . . , l − 1, called physical steps that
act on state i to calculate the intermediate state i + 1 for i = 0, . . . , l − 1.
Hence F describes an evolutionary system as depicted in Fig. 1.1. Here, the

PSfrag replacements

0 1 i l
F0 F1 Fi−1 Fi Fl−1

︸ ︷︷ ︸

F

· · ·· · ·

Figure 1.1: Evaluation of F

states represented by the counter i should be thought of as vectors of large
dimensions representing the intermediate states of the evolutionary system F .
The physical steps Fi describe mathematical mappings that in general cannot
be reversed at a reasonable cost. Hence it is impossible to apply simply the
inverses F−1

i in order to run backward from state l to state 0. Also it will be
assumed that due to their size only a certain number of intermediate states can
be kept in memory.

If F describes an explicitly time-dependent problem or a general stepwise
evaluation process each propagation of the state vector from state i to state
i+1 can be seen as physical step Fi. In the case of an arbitrary function evalu-
ation procedure written in an imperative programming language the execution
can be interpreted as a time-dependent problem by combining an appropriate
number of successively executed statements into one physical step. Therefore it
causes no loss of generality basically to assume that the evaluation of the given
computer program equals the computation of Fi, i = 0, . . . , l − 1.

Furthermore it is assumed that for each i ∈ {0, . . . , l − 1} there exist func-
tions F̂i that cause the recording of the data required during the evaluation
of Fi onto the tape and corresponding functions F̄i that perform the reversal
of the ith physical step using the tape. Having Fi, F̂i, and F̄i at hand the

3

checkpoints can be thought of as pointers to nodes representing intermediate
states i. Then all reversal strategies that use checkpoints perform the following
actions (e.g. [Gri92], [GPRS96]) in order to reverse the execution of F :

a: Initialization: Reserve space for c checkpoints and copy the initial state
0 to the first one.

b: Forward sweep: Starting from a state i advance to a state j by performing
the physical steps Fh, h = i, . . . , j−1, without recording the execution log.

c: Recording step: Starting from state i perform recording step(s) to the
currently final state by writing the execution log onto the tape.

d: Reverse Step: Perform a corresponding number of reverse steps from the
currently final state to state i using the tape. Now state i becomes the
final state. If the new final state is stored in a checkpoint, free the corre-
sponding checkpoint up.

e: Checkpoint writing: Copy a state into a checkpoint.

f: Checkpoint reading: Read a state from a checkpoint.

It will be supposed that the time needed for writing or reading a checkpoint is
negligible in comparison to the execution of one physical step.

On a serial machine only one processor is available to perform Actions a – f.
Then, the usage of reversal strategies using checkpoints can be seen as a tradeoff
between processor run time and memory requirement. To illustrate the check-
pointing algorithm resulting from the execution of the actions defined above
assume that F equals a stock index forecast for the next eight months the pa-
rameters of which have to be adapted. Furthermore suppose that each physical
step has a duration of one month. Then for the reversal of F one has to re-
verse 8 physical steps. Figure 1.2 shows one possible reversal strategy using
the actions described above if 3 checkpoints are available. It is assumed that
all Fi, i = 0, . . . , 7, the corresponding recording steps F̂i as well as the reverse

PSfrag replacements

1

1 10 20

8

t

l

a

c

c
c

c

c

c

c

c

b

b

b

b

b

b

b

d

d

d

d

d

d

d

d

f
ff

ff

f f

e

e

e

Figure 1.2: Example of Serial Reversal Using 3 Checkpoints

4 Chapter 1. Introduction

steps F̄i have the same computational complexity ω. Here and throughout the
thesis the physical steps are plotted along the vertical axis and the time re-
quired to reverse the execution of F measured in units of ω is represented by
the horizontal axis. Hence, the horizontal axis can be thought of as the compu-
tational axis. Each solid horizontal line including the computational axis itself
represents a checkpoint. The solid slanted lines represent the physical steps
Fi without recording whereas the recording steps F̂i are visualized by dotted
slanted lines. Finally the reverse steps F̄i are drawn as dashed slanted lines.
One starts with Action a copying the initial state into a checkpoint, i.e. the
computational axis can be seen as a checkpoint. Then Action b is executed by
performing three physical steps without recording and state 3 is copied into a
checkpoint by Action e. Now again Action b is applied to perform two physical
steps and state 5 is copied into a checkpoint (Action e). Subsequently again
two physical steps are executed employing Action b a third time. Now Action c
and Action d are applied to reverse F7. After Action f, i.e. after reading state
5 from a checkpoint, a forward sweep starts at state 5 to advance to state 6
(Action b). Hence, it is possible to reverse F6 by performing Action c and
Action d and so on.

In Fig. 1.2 a vertical line intersects for every time t exactly one slanted line
and therefore only one processor is applied. Using this checkpointing scheme
the time needed for the reversal of F is equal to 27 units ω. Apart from the
checkpoints only memory to store one physical step is required. Employing the
basic approach the run time would be 16 units ω if all intermediates, i.e. all
eight physical steps, were stored as a whole execution log on the tape.

On a multi-processor machine the Actions b, c, d, e, and f that act on dif-
ferent states can be performed at the same time using more than one processor
during the reversal process. It is not possible to execute Actions d that re-
verse different physical steps simultaneously because each reverse step F̄i−1 for
i = l, l − 1, . . . , 1 is based on the results of the previous reverse step F̄i. Never-
theless, using a sufficient number of processors the same run time to calculate
the reversal of F as in the basic approach where the complete execution log is
recorded can be achieved. In other words, the reversal of F can be performed
without any interruption. Figure 1.3 displays one possible implementation of
a parallel reversal schedule for the example described above if there are three
processors available. This number of processors needed to execute the rever-
sal schedule shown in Fig. 1.3 is given by the maximal number of slanted lines
crossing any vertical line. The run time required for the reversal equals 16 units
ω and hence is the same as the execution time needed for the basic approach
with unrestricted memory. For that the scheme shown in Fig. 1.2 is modified
such that the executions of Action b start early enough to enable the completion
of the recording steps F̂i in time.

Naturally, the following question arises in the serial reversal as well as in
the parallel reversal: Which states should be copied to checkpoints during the
execution of Action e? If more than one processor is used information on when
to start a particular execution of Action b – f is required, too. Suitable schemes
for reversing the execution of F by determining which state is copied into a
particular checkpoint at which time and by fixing the starting times of the

5

PSfrag replacements

1

1 10

20

8

t

l

Figure 1.3: Example of Parallel Reversal Using 3 Checkpoints

forward sweeps, recording steps, and the reverse steps in the multi-processor
case are called reversal schedules.

The subject of this thesis is the construction of reversal schedules that are
optimal with respect to particular criteria given certain problem parameters.
New reversal schedules for one-processors machines are developed that minimize
the temporal complexity for reversing a sequence of physical steps with constant
step costs, where the new state depends on q > 1 previous states. These evolu-
tionary systems form already a generalization of the one-step case displayed in
Fig. 1.1. Then sequences of physical steps with non-constant step costs are con-
sidered, where a new state depends only on the previous one. A new technique
to find an optimal reversal schedule for these evolutionary systems and serial
machines is presented. For parallel machines the maximal number of physical
steps that can be reversed with a given number of processors and checkpoints
is determined the first time. Corresponding reversal schedules are constructed
for multi-processor computers.

The thesis is organized as follows. In Chapter 2 various kinds of evolutionary
systems F are introduced. Furthermore several notations are defined and some
basic observations are presented.

Chapter 3 deals with reversal techniques in the serial case, i.e. if only one
processor is available. In the literature there are several articles concerning op-
timal reversal schedules if all Fi have the same computational complexity and
the new state depends on the previous one only (see e.g. [Gri92], [GPRS96]).
Merely one approach is known for a particular two-step method, where the two
previous states determine the next one [Cha98]. This thesis extends the existing
results in two directions. First, instead of an one-step method as displayed in
Fig. 1.1 the evolutionary system F could employ a multi-step method. There-
fore optimal reversal schedules for multi-step methods, where the new state
depends on q > 1 previous states, are constructed theoretically and coded. The
second extension concerns the step costs. One-step methods and physical steps
with varying computational complexity are considered. A new search algorithm
for determining an optimal reversal schedule is represented. For all examples

6 Chapter 1. Introduction

considered the temporal complexity of the search can be reduced to a quadratic
behavior in the number of physical steps to be reversed.

The structure of Chapter 3 is the following: It starts with a presentation of
the methods known so far and the software available to reverse the execution
of the evaluation procedure F . Then the notations needed are introduced and
some basic assertions are proven. After that multi-step methods are considered
for the case that all physical steps have the same computational complexity.
Two optimality statements and their proofs constructively yielding optimal re-
versal schedules are presented. The corresponding software is applied to a
discretized ordinary differential equation in order to approximate the solution
of the adjoint differential equation using various multi-step methods. The run
times achieved are reported and interpreted. Then physical steps with varying
computational complexity are studied. One has to apply a search algorithm to
find an optimal reversal schedule. A particular monotonicity property of the
checkpoints is proven the first time. This property is exploited in the search
algorithm for an optimal reversal schedule. The improvement of the modified
algorithm is reported with the help of several examples.

Chapter 4 covers reversal techniques for multi-processor machines. In an
introduction the results of the only published article [Ben96] dealing with par-
allel reversal schedules are briefly described. Furthermore this thesis presents
for the first time a constructive proof for the maximal number of physical steps
that can be reversed in minimal time with a given number of processors and
checkpoints. This result is derived in two parts. First an upper bound of the
number of physical steps that can be reverse with a given number of proces-
sors and checkpoints will be established. Then it will be shown how this upper
bound can actually be attained. Finally some derived results are shown and
several conclusions are drawn.

Chapter 5 presents some conclusions. Implementation challenges with re-
spect to coding the parallel reversal schedules are described. Furthermore con-
jectures concerning theoretical questions of interest are formulated.

Chapter 2

Notations, Assumptions,

and Basic Observations

As mentioned in the previous chapter it is assumed for the development of rever-
sal strategies throughout that the calculation of the evolutionary system F can
be split into a sequence of physical steps Fi, i = 0, . . . , l − 1. Besides the intro-
duction of several notations this chapter defines different kinds of evolutionary
systems F and of reversal schedules S. Furthermore, some basic assumptions
and observations are presented.

2.1 One-step Recurrences

In what will be called one-step recurrence if a state depends only on its imme-
diate predecessor. Therefore it is possible to describe the calculation of F as
the evaluation of the function sequence

Fi : R
ni → R

ni+1 , x̃i 7→ x̃i+1 ≡ Fi(x̃i), for 0 ≤ i < l .

All checkpoints are assumed to be of the same size. Hence it is useful to define
a state space R

M with

M ≡ max{ni | 0 ≤ i ≤ l} .

Then it is possible to consider all physical steps Fi as acting on R
M instead of

R
ni . Hence, one has

Fi : R
M → R

M , xi 7→ xi+1 ≡ Fi(xi), for 0 ≤ i < l ,

where some of the Fi do not actually depend on the full state vector xi but
only on a part of it. Using this simplification for one-step recurrences each
checkpoint has to provide enough memory to store a complete vector x ∈ R

M .
For example each state vector xi may represent a phase state, i.e.

xi ≡ (yi−1, zi) ≡ (fi−1(zi−1), zi) ,

such that yi−1 is determined by the value of a nonlinear function fi−1 at the
argument zi−1 and zi depends linearly on zi−1 and yi−1 for 0 < i ≤ l. Then

7

8 Chapter 2. Notations, Assumptions, and Basic Observations

F may serve to approximate the solution of an ordinary differential equation.
One has fi = f for 0 ≤ i < l if the ordinary differential equation is autonomous.

In the next chapters the counter i is identified with the state xi to simplify
the notation. Moreover, the corresponding evolutionary system F is called
one-step evolution.

It will be supposed that each physical step Fi applied to xi has a corre-
sponding reverse step

F̄i : R
2×M → R

M , (x̄i+1, xi) 7→ x̄i ≡ F̄i(x̄i+1, xi), for l > i ≥ 0 .

For example the F̄i may be the adjoint of Fi. Then one has

F̄i(x̄i+1, xi) ≡ x̄T
i+1F

′
i (xi) .

with F ′
i = ∂Fi/∂xi denoting the Jacobian. The sequence F̄l−1, . . . , F̄0 provides

the possibility to calculate the desired value x̄0, i.e. the value of the reversal,
for a fixed terminal x̄l ∈ R

M . In order to prepare for the corresponding reverse
step for each physical step Fi one needs the recording step

F̂i : R
M → R

M , xi 7→ xi+1 ≡ F̂i(xi), for 0 ≤ i < l .

It causes the storage of all intermediates calculated during the evaluation of Fi

and needed on the way back, i.e. for the execution of the reverse step F̄i.
There exist numerous one-step recurrences (see [HNW96]). They are widely

used e.g. for evolution calculations over a time period. The simulation of multi-
body systems, fluid flows or of the weather represent only a small part of the
applications. Using an one-step recurrence in the following example is only one
possibility among a great variety of problems to solve and methods to employ.

Example 2.1 (Explicit Euler Method). Consider the ordinary differential equa-
tion

dz

dt
= f(z, t) ∈ R

n, z(0) = u ∈ R
n,

with a continously differentiable function f : R
n×R → R

n such that there exists
a unique solution z(t). Assume that the evaluation of the evolutionary system
F serves to calculate an approximation of z(T̃) for some arbitrary T̃ ∈ R, T̃ > 0.
For that one may choose l ∈ N and define the physical steps as

xi+1 = (yi, zi+1) ≡
(
f(zi, t̃i), zi + hyi

)
≡ Fi(xi) with

h ≡ T̃ /l, t̃i ≡ ih, and zi ≡ z(t̃i)

for i = 0, . . . , l − 1, t̃l ≡ T̃ , and zl ≡ z(t̃l). It is assumed as throughout
that the components of Fi are evaluated from the left to the right, i.e. one
computes successively

yi = f(zi)

zi+1 = zi + hyi .

This discretization scheme was first introduced by Euler in the last section of
his “Institutiones Calculi Integralis” [Eul68] and uses only the value of f at zi to

2.2 Multi-step Recurrences 9
PSfrag replacements

xi−1

zi−1

yi−2

xi+1

zi+1

yi

xi

zi

yi−1

linear dependence
nonlinear dependence

Figure 2.1: Explicit Euler Method

calculate zi+1. Therefore it is called explicit Euler method. The dependencies
of the explicit Euler method are illustrated by Fig. 2.1. It is possible to prove
that the limit of zl equals z(T̃) as l approaches infinity [HNW96]. Hence if
l is chosen large enough one obtains that the calculated zl represents a good
approximation of z(T̃).

For this particular one-step recurrence F̂i would evaluate Fi(xi) storing the
intermediate values required on the tape. Then the reverse step F̄i is given by

x̄i = (ȳi−1, z̄i) =
(
0, z̄i+1 + hz̄T

i+1f
′(zi, t̃i)

)

for i = l − 1, . . . , 0, where f ′(zi, t̃i) denotes the derivative ∂f
∂z (zi, t̃i). Alterna-

tively, one may write

z̄i = z̄i+1 + ȳT
i f ′(zi, t̃i) .

Because of the phase-state formulation the value ȳi = hz̄i+1 is evaluated inter-
nally by F̄i. The adjoint discretization scheme can be derived according to the
procedure described in [Gri00]. Hence, the reverse steps F̄i resemble in some
sense the implicit Euler method because the value of f ′ is needed at state zi to
calculate z̄i.

In the last example the reverse steps represent the adjoint of the discretiza-
tion scheme. This will always be the case, if the reverse steps F̄i form the
adjoints of the physical steps Fi describing a discretization. A different ap-
proach would be to consider the discretized adjoint differential equation as the
reversal process. For most discretization schemes both techniques will lead to
almost the same results (see e.g. the numerical example of Subsection 3.3.1).
Therefore throughout this thesis the adjoint of the discretization scheme will be
utilized. Also tools that generate the reverse steps automatically, for example
ADOL-C [GJU96], use the adjoint of the discretization scheme instead of the
discretized adjoint differential equation.

2.2 Multi-step Recurrences

As an alternative to one-step recurrences, which represent more or less the
simplest case of an evolutionary system, it is possible to consider multi-step

10 Chapter 2. Notations, Assumptions, and Basic Observations

recurrences, where each new state depends on several previous states.
Suppose that the given evolutionary system F represents a q-step recur-

rence (see e.g. [HNW96]). It is assumed throughout this thesis that the first q
states x1−q, x2−q, . . . , x0 are known. Usually, they are provided by a start-up
calculation. Obviously, one must reverse also the start-up calculation. This has
to be done only once. Therefore, the reversal of the start-up calculation is not
considered in this thesis. Since the first q states are available F may apply the
q-step recurrence in an arbitrary number of physical steps

Fi : R
q×M → R

M , (xi−q+1, . . . , xi) 7→ xi+1 ≡ Fi(xi−q+1, . . . , xi),

for 0 ≤ i < l. Possibly as above some of the Fi do not really depend on all state
vectors xi−q+1, . . . , xi but only on a part of them.

As in the one-step case each state vector may represent a phase state, i.e.

xi ≡ (yi−1, zi) = (fi−1(zi−1), zi) ,

such that yi−1 is determined by the value of a nonlinear function fi−1 at the
argument zi−1 and zi depends only linearly on zi−j and yi−j for 1 ≤ j ≤ q and
0 < i ≤ l. Then the evaluation of two physical steps Fi and Fı̃ do not involve
common subexpressions if i 6= ı̃. This is the reason why yi−1 is introduced as
part of the ith state vector. The corresponding F may be used to calculate an
approximation of the solution of an ordinary differential equation.

In the following chapters the counter i is again identified with the state xi

to simplify the notation. Furthermore, the given evolutionary system F that
equals a multi-step recurrence as described above is called multi-step evolution.
Correspondingly, if a q-step recurrence is employed by F then F is called q-step
evolution.

As before it is assumed that for each physical step Fi at a certain argument
there exists a corresponding reverse step

F̄i : R
(q+1)×M → R

q×M , (x̄i−q+1, . . . , x̄i) += F̄i(x̄i+1, xi−q+1, . . . , xi),

for l > i ≥ 0. At the beginning of the reversal process all x̄i, l > i ≥ 0, are
initialized to zero. The incremental form is necessary in contrast to the one-step
scenario because the xj occur now as argument to several Fi. Once more the
reverse step F̄i may calculate for example the adjoint of Fi. Then one obtains

F̄i(x̄i+1, xi−q+1, . . . , xi) ≡ x̄T
i+1

(
∂Fi

∂xi−q+j
(xi−q+1, . . . , xi)

)

j=1,...,q

. (2.1)

In order to execute a reverse step F̄i one has to ensure that all actions of
a call to Fi at a particular argument are recorded on the tape such that the
information needed for the reverse step becomes available. To this end the
recording steps

F̂i : R
q×M → R

M , (xi−q+1, . . . , xi) 7→ xi+1 ≡ F̂i(xi−q+1, . . . , xi),

for 0 ≤ i < l are defined writing all data required to perform F̄i on the tape.
With respect to the development of reversal strategies a given multi-step

recurrence determines the following parameter:

2.2 Multi-step Recurrences 11

Definition 2.1 (Degree of Nonlinear Dependence). Suppose the given
q-step evolution F comprises l physical steps. Let the reverse steps F̄i serve to
calculate the adjoint of F . There exists q̃ ∈ N with 0 ≤ q̃ ≤ q such that

∂Fi

∂xj
= constant

for i − q + 1 ≤ j < i − q̃ + 1 and all i = 0, . . . , l − 1. The integer q̃ is called
degree of nonlinear dependence. The difference b ≡ q− q̃ denotes the number of
linear arguments of each physical step Fi.

The number b of linear arguments can be employed for the reversal of multi-
step evolutions. For a q-step evolution the corresponding reverse steps F̄i are
defined as in Equation (2.1). The degree of nonlinear dependence yields that
the knowledge of the q̃ states xi−q̃+1, . . . , xi suffice to evaluate F̄i, i.e. F̄i can
be reduced to

F̄i : R
(q̃+1)×N → R

q×N , (x̄i−q+1, . . . , x̄i) += F̄i(x̄i+1, xi−q̃+1, . . . , xi) .

In general b equals the number of reverse steps that can be performed if q succes-
sive state vectors xi−q+1, . . . , xi and x̄i+1 are completely known. In order to re-
verse the b additional reverse steps one has to perform recording steps that store
the intermediates that are needed to perform the reverse steps F̄i, . . . , F̄i−b+1 on
the tape. These recording steps are not identical with F̂i−b+1, . . . , F̂i. It could
happen that it is impossible to evaluate the complete physical step because less
than q previous state vectors are known. Nevertheless one can record the data
required on the tape. These recording steps have almost the same temporal
complexity as the recording steps F̂i−b+1, . . . , F̂i and are identified with them.
This will be illustrated in the following example. As in the case of one-step
evolutions there is a large variety of multi-step evolutions F . Hence in order to
illustrate the principle one can consider:

Example 2.2 (Leap-frog Method). Let z(t) ∈ R
n be the solution of the differential

equation
dz

dt
= f(z) ∈ R

n

with the initial condition z−1 ≡ z(0) = u ∈ R
n, a continously differentiable

function f and a given time interval [0, T̃].
In order to determine the desired value of z(T̃) by the evolutionary system

F , the explicit Euler method may serve as start-up calculation to provide the
state vector x0 = (f(z−1), z0) using the initial value z−1. Then one can use the
leap-frog method to calculate an approximation of z(T̃). This yields for a fixed
l ∈ N with h = T̃ /(l + 2)

xi+1 = (yi, zi+1) ≡ (f(zi), zi−1 + 2hyi) ≡ Fi(xi−1, xi) with

zi ≡ z((i + 2)h) for 0 ≤ i < l,

where the components of Fi are evaluated from the left to the right:

yi = f(zi)

zi+1 = zi−1 + 2hyi .

12 Chapter 2. Notations, Assumptions, and Basic Observations

This 2-step method is also known as the midpoint rule (or first Gauss formula).
Furthermore, the explicit Nyström method for k = 1 proposed by Nyström in
1925 is identical to the leap-frog method [HNW96]. The dependencies of this
discretization scheme are illustrated by Fig. 2.2.

PSfrag replacements

xi−1

zi−1

yi−2

xi+1

zi+1

yi

xi

zi

yi−1

xi+2

zi+2

yi+1

linear dependence
nonlinear dependence

Figure 2.2: Leap Frog Method

Now suppose the reverse steps F̄i are equal to the adjoint of Fi. One obtains
for the derivatives of Fi

∂Fi

∂yi−2
(xi−1, xi) = (0, 0)T ,

∂Fi

∂zi−1
(xi−1, xi) = (0, I)T

∂Fi

∂yi−1
(xi−1, xi) = (0, 0)T ,

∂Fi

∂zi
(xi−1, xi) = (f ′(zi), 2hf ′(zi))

T

and hence

∂Fi

∂xi−1
(xi−1, xi) =

(
0 0
0 I

)

and
∂Fi

∂xi
(xi−1, xi) =

(
0 f ′(zi)
0 2hf ′(zi)

)

. (2.2)

Therefore one finds according to Equation (2.1) or the procedure described in
[Gri00] with x̄l ≡ (0, z̄l)

T

(x̄i−1, x̄i) =
(
(ȳi−2, z̄i−1), (ȳi−1, z̄i)

)
+=

(
(0, z̄i+1), (0, 2hz̄T

i+1f
′(zi))

)

for l > i ≥ 0 and therefore

F̄i(x̄i+1, xi) ≡
(
(0, z̄i+1), (0, 2hz̄T

i+1f
′(zi))

)
.

In order to perform these reverse steps the recording step F̂i has to store the
intermediates calculated during the evaluation of f at the argument zi on the
tape besides the evaluation of Fi.

From Equation (2.2) follows according to Def. 2.1 that the degree of non-
linear dependence is equal to 1. Hence one obtains b = 1. To illustrate the
meaning of the number b of linear arguments suppose that x̄i, xi−1, and xi are
known. Then one can perform a recording step that stores the intermediates
calculated during the evaluation of f at the argument zi−1 on the tape. There-
fore it is possible to evaluate F̄i−1 since all needed values are available. It follows

2.3 Characterizing the Step Costs 13

again that b is equal to 1 for the leap-frog method. In comparison the recording
step F̂i−1 would store the linear dependencies besides the intermediates calcu-
lated during the evaluation of f at the argument zi−1 on the tape. Therefore
F̂i−1 and the recording step performed without the complete evaluation of the
physical step have almost the same temporal complexity.

2.3 Characterizing the Step Costs

Throughout the thesis the symbols Fi, F̂i, and F̄i are used to denote both math-
ematical functions and procedures to evaluate the corresponding mathematical
function on a computer. The former interpretation applies when arguments are
explicitly listed. Hence, one has Fi(x) = F̂i(x) for all arguments x, i.e. advanc-
ing and recording are equivalent as functions. Considered as procedures F̂i has
the side effect of recording the data required for the evaluation of the reverse
step F̄i on the tape.

The spatial complexity measure |Fi| counts for the physical step Fi with
0 ≤ i < l the number of bytes one has to store on the tape to prepare the
execution of the reverse step F̄i. For the development of the reversal schedules
in the next chapters the physical steps are assumed to be chosen such that the
memory requirement for recording one of them, i.e. |Fi|, is greater than the
space needed to store one state vector. Hence, the spatial complexity should
be greater than the number of bytes needed to store N floating point numbers.
Furthermore, it is required that an upper bound of |Fi|, i = 0, . . . , l − 1, is
available at a negligible cost. Moreover, the spatial complexity |Fi| should be
essentially constant.

It is assumed throughout that one has

TIME
(
evaluate F0, . . . , Fl−1

)
=

l−1∑

i=0

TIME
(
evaluate Fi

)
,

i.e. the physical steps are separable, which means that there are no common
subexpressions involved in the evaluations of various physical steps. Then the
temporal complexity of Fi, 0 ≤ i < l, i.e. the time needed to execute a particular
physical step, will be denoted throughout as

ti ≡ TIME(Fi) for 0 ≤ i < l .

This definition is only appropriate if the physical steps are separable as supposed
in this thesis. The time needed to execute F̂i, 0 ≤ i < l, will be denoted from
now on as

t̂i ≡ TIME
(
F̂i

)
for 0 ≤ i < l .

Moreover throughout the temporal complexity of F̄i, l > i ≥ 0, i.e. the time
needed to perform a particular reverse step, will be denoted as

t̄i ≡ TIME
(
F̄i

)
for l > i ≥ 0 .

14 Chapter 2. Notations, Assumptions, and Basic Observations

For example all linear multi-step methods to approximate the solution of a
differential equation can be formulated according to the definition of multi-step
recurrence used in this thesis. The physical steps are separable if the discretiza-
tion utilizes phase states as described above. Furthermore, also the backward
differentiation formulas (or BDF-methods, see e.g. [Gea71]) that involve an
inverse function fit the model employed.

Having the definitions of the temporal complexity of each physical step and
of the corresponding recording and reverse steps at hand one can make a further
distinction between different one-step recurrences and multi-step recurrences,
respectively:

Definition 2.2 (Uniform step costs). Suppose the given evolutionary system
F is formed by the physical steps Fi with 0 ≤ i < l. If there exists a constant
ω ∈ R, such that ti = ω is valid for all Fi, 0 ≤ i < l, the physical steps
have uniform step costs. Otherwise the physical steps Fi, 0 ≤ i < l, have
non-uniform step costs.

The following evolutionary systems may serve as illustration for the two
different kinds of step costs considered in this thesis.

Example 2.3 (Explicit Situation). For each physical step using the explicit Euler
method introduced in Example 2.1 or the leap-frog method as in Example 2.2
one evaluation of f(x, t) and f(x), respectively, becomes necessary. If the cal-
culations of f(x, t) and f(x) cause the same temporal complexity for each pos-
sible argument, as it is usually the case, the corresponding physical steps Fi,
0 ≤ i < l, have uniform step costs.

Example 2.4 (Implicit Situation). Assume that the evolutionary system F con-
sists of physical steps each of which is defined implicitly so that an iterative
process has to be performed during the evaluation of each physical step. If the
duration of this iteration depends strongly on the argument actually considered
it is likely that the physical steps have non-uniform step costs.

2.4 Reversal Schedules

In order to perform the reversal of a given evolutionary system F one has to
evaluate several Actions a, b, c, d, e, and f defined already in the previous
chapter. For that purpose one has to distinguish between single- and multi-
processor machines.

Serial Reversal Schedules

Suppose that only one processor is available to perform the reversal process of a
given evolutionary system. For describing the strategy employed in more detail
one may use the following

Definition 2.3 (Serial Reversal Schedule S). Assume the q-step evolution
F under consideration comprises the physical steps Fi, 0 ≤ i < l, and deter-
mines b ≤ q according to Def. 2.1. Let n ≡ cq, c ∈ N, checkpoints be available

2.4 Reversal Schedules 15

each of which can accommodate one state vector. Then a serial reversal sched-
ule S initializes lc = l and i = 0. Subsequently starting with 1 − q, . . . , i it
performs a sequence of basic actions

Pm ≡ Increment i by m ∈ {1, . . . , lc − i − 1}
D ≡ If i ≥ lc − q: Decrement lc to i
Wj ≡ Copy i − q + 1, . . . , i to checkpoints j − q + 1, . . . , j

with j ∈ {q, 2q, 3q, . . . , cq}
Rj ≡ Reset i − q + 1, . . . , i to checkpoints j − q + 1, . . . , j

with j ∈ {q, 2q, 3q, . . . , cq}
Aj ≡ If j = i = lc − 1: Decrement lc by b

until lc has been reduced to zero, i.e. the reversal of F is finished.

This definition of a reversal schedule relies closely on the one described in
Chapter 12 of [Gri00]. Furthermore, it is related to the execution of the actions
defined in Chapter 1. Hence Pm corresponds to the forward sweep of Action b,
i.e. the physical steps Fh, h = i, . . . , i + m − 1, are performed. Action c and d
are combined to D in order to reverse the final physical step(s) by evaluating
F̂i, . . . , F̂lc−1 and F̄lc−1, . . . , F̄i. The checkpoint writing of Action e is done by
Wj . Action f, i.e. the checkpoint reading, is identical to Rj . The basic action
Aj is only relevant for the multi-step evolutions considered in this thesis for
the first time with respect to reversal schedules. Hence Aj does not occur in
the reversal strategies that use checkpoints up to now. As can be seen it is
supposed that q state vectors are held by the processor in order to perform for
example the physical steps.

It is always possible to find a serial reversal schedule for a given q-step
evolution F if at least q checkpoints can accommodate q state vectors as one
may use the serial reversal schedule S determined by the sequence

S ≡ W1 + Pl−1 + D + R1 + Pl−2 + D + R1 + · · · + Pk + D + R1 +

· · · + P1 + D + R1 + D,

where + indicates successive performance. This reversal schedule represents
the strategy of total recalculation described in the next chapter.

Throughout the thesis it is supposed that the following assumption holds:

Assumption 2.1 (Available Memory). For a given q-step evolution F com-
bining l physical steps let n ≡ cq with c ∈ N be valid. The number of check-
points that are available equals n. Moreover one has always the possibility to
store the writings of q recording steps onto the tape.

Therefore it makes sense to say that a serial reversal schedule needs c check-
points each of which combines q state vectors.

As can be seen from the definition of serial reversal schedules for each phy-
sical step Fi, i = 0, . . . , l− 1, of the evaluation procedure F one has to perform
both the recording step F̂i and the reverse step F̄i exactly once, respectively,
during the reversal of F . Hence the time needed by any serial reversal schedule
to record the data on the tape is given by

∑l−1
i=0 t̂i. Equivalently the time needed

16 Chapter 2. Notations, Assumptions, and Basic Observations

by any serial reversal schedule to perform the reverse steps F̄i equals
∑l−1

i=0 t̄i.
Furthermore, the temporal complexity of the basic action D and a particular
value of i is given by t̂i + · · · + t̂lc−1 + t̄lc−1 + · · · + t̄i. In the figures used
throughout this thesis to illustrate the reversal schedules this sum corresponds
to the time needed to perform the “hook” consisting of a dotted and a dashed
line for the particular value of i (see e.g. Fig. 1.2). With respect to the physical
steps that are performed it is helpful to have the following definition at hand.

Definition 2.4 (Executions of Physical Steps). Suppose the given evo-
lutionary system F comprises l physical steps. A reversal schedule S for F
determines for i = 0, . . . , l − 1 the integer counts

ri ≡ number of times the physical step Fi is performed for executing S .

Chapter 3 examines the optimization of the temporal complexity caused by
a serial reversal schedule S, i.e. the sum

l−1∑

i=0

riti .

For uniform step costs ti = ω, 0 ≤ i < l, this sum can be reduced to ω
∑l−1

i=0 ri,
which measures the number of physical steps performed during the reversal.
In order to find a corresponding optimal serial reversal schedule for uniform as
well as for non-uniform step costs dynamic programming techniques are used.

Parallel Reversal Schedules

Obviously serial reversal schedules can be used on single- as well as on multi-
processor machines to perform the reversal of an evolutionary system F consist-
ing of the appropriate number of physical steps. Naturally, one can use more
than one processor for the reversal of a given evolutionary system F . For that it
is assumed for simplicity that all processors work on a common memory, i.e. the
shared memory model is used. Nevertheless, the parallel reversal schedules can
also be implemented using a message passing strategy. Here one has to take the
time needed for the communication between the processors into account. Us-
ing the parallel reversal schedules considered in this thesis the communication
cost is largely determined a priori. This thesis constructs reversal schedules on
multi-processor machines for the following one-step evolutions:

Definition 2.5 (Uniform One-step Evolutions). Suppose the given one-
step evolution F comprises l physical steps with uniform step costs ti = ω ∈ R.
If there exist ω̂, ω̄ ∈ N with t̂i = ω̂ti and t̄i = ω̄ti then F is called uniform
one-step evolution.

Obviously, the step costs of uniform one-step evolutions can be normalized
to ti = 1, t̂i = ω̂ ∈ N, and t̄i = ω̄ ∈ N. Then the usage of two-dimensional
arrays establishes one possibility to describe the reversal process of an uniform
one-step evolution:

2.4 Reversal Schedules 17

Definition 2.6 (Reversal Trace). Suppose the uniform one-step evolution F
under consideration comprises l physical steps. Let c be the number of available
checkpoints, p the number of available processors, and k = p + c. The given
two-dimensional array T has entries T [j][h] ∈ {ı,~ı, ı̂, ı̄ | 0 ≤ ı < l} for 0 ≤ j ≤ N
with N ∈ N and 1 ≤ h ≤ k. Define T [j] ≡ {T [j][1], . . . , T [j][k]} for 0 ≤ j ≤ N .
If T fulfils the requirements

1. Initial configuration: T [0][h] = 0, 1 ≤ h ≤ k

2. Terminal configuration: T [N][h] = 0, 1 ≤ h ≤ k

3. Advances: ~ı ∈ T [j] ⇒  ∈ T [j − 1] or ~ ∈ T [j − 1],  = max{ı − 1, 0}

4. Decrements: For each ı ∈ {0, . . . , l−1} there exists jı ∈ {t̂, . . . , N − t̄−1},
a recording step ı̂ ∈ T [j], jı − t̂ + 1 ≤ j ≤ jı such that  ∈ T [jı − t̂] or
~ ∈ T [jı − t̂],  = max{ı− 1, 0}, and a reverse step ı̄ ∈ T [j], jı < j ≤ jı + t̄

5. Fitting reversals: jı−1 < jı − t̄ + 1 for ı ∈ {1, . . . , l − 1}

6. Admissibility: The number of processors used in T [j] is not greater than
p for 1 ≤ j ≤ N .

then T is called reversal trace.

An entry ı of T stands for a checkpoint storing state ı. The value~ı represents
the evaluation of the physical step Fı. The execution of the recording step F̂ı

is denoted by ı̂. Finally ı̄ is identified with F̄ı.

Each reversal trace represents at least one reversal schedule on a multi-
processor machine. The next example will illustrate this meaning of a rever-
sal trace.

Example 2.5 (Reversal Trace and Parallel Reversal Schedule). Let the uniform
one-step evolution F to be reversed combine 5 physical steps. Suppose F deter-
mines the temporal complexities ti = 1, t̂i = 3, and t̄i = 2 for i = 0, . . . , 4. One
checkpoint and three processors are available. Figure 2.3 illustrates one possible
reversal of F . The only task left is to determine which processor has to perform
which action. For example the first processor could perform the physical steps
PSfrag replacements

1

1

10 15

5
l

t

Figure 2.3: Possible Reversal of F

F0, . . . , F3, the recording step F̂4, and all reverse steps F̄i, 4 ≥ i ≥ 0. The
second processor could be used as checkpoint storing state 3. Subsequently it

18 Chapter 2. Notations, Assumptions, and Basic Observations

could evaluate the sequence F̂3, F0, and F̂1 in time. The physical steps F0, F1,
and the recording steps F̂2 and F̂0 could be performed by the third processor.

Furthermore, Fig. 2.3 displays the two-dimensional array T [j][h], 0 ≤ j ≤ 18
and 1 ≤ h ≤ 4, the entries of which are defined as in Table 2.1. As can be seen,
T fulfils the requirements 1−6 of Def. 2.6. Hence T represents a reversal trace.

h
∖
j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 ~0 ~1 2̂ ~0 1̂ 0 0̂ 0 0 0 0 0

3 0 0 0 0 3 3 3 3̂ 3̂ 3̂ 2̂ 2̂ 1̂ 1̂ 0̂ 0̂ 0 0 0

4 0 ~0 ~1 ~2 ~3 4̂ 4̂ 4̂ 4̄ 4̄ 3̄ 3̄ 2̄ 2̄ 1̄ 1̄ 0̄ 0̄ 0

Table 2.1: Reversal Trace T Corresponding to Fig. 2.3

For each reversal trace T it is possible to construct an appropriate paral-
lel reversal schedule by determining which action ~ı, ı̂, ı̄ is executed by which
processor and which checkpoint stores which state ı. Usually there exists a
variety of reversal schedules corresponding to the reversal trace T . In the last
example one obtains easily another parallel reversal schedule for F than the one
described above. One possibility could be to use the third processor as check-
point storing state 3 instead of the second processor. It might be difficult to
find an “optimal” parallel reversal schedule that minimizes the communication
required for a given reversal trace T . Nevertheless one can define an “equiva-
lence class” of parallel reversal schedules which have the same reversal trace T .
These reversal traces determine yet important properties of the “equivalence
classes” introduced by them. Therefore in Chapter 4 only the reversal traces,
i.e. “equivalence class” of parallel reversal schedules, are considered. They are
used to determine the maximal number of physical steps that can be reversed
with a given number of processors and checkpoints.

Throughout figures as for example Fig. 2.3 are used to illustrate reversal
traces. Here, the number pj of slanted lines crossing any vertical line in the
interval (j − 1, j) denotes the number of processors needed to execute T [j].
The number of processors p required by T is equal to max{ pj | 0 ≤ j ≤ N }.
Furthermore, the number of checkpoints cj needed for T [j] is given by the
number of horizontal lines crossing a vertical line at t ∈ (j − 1, j). Hence
sj = pj + cj denotes the number of resources required by T [j].

Chapter 3

Serial Reversal Schedules

3.1 Introduction

This chapter considers the reversal of a given evolutionary system F comprising
l physical steps Fi, 0 ≤ i < l, as defined in the previous chapter if only one
processor is available.

An obvious way to reverse F is given by recording the complete execution
log onto a tape during the evaluation of the physical steps Fi, 0 ≤ i < l, and
reading the tape backward during the reversal. I.e. first the recording steps F̂i,
0 ≤ i < l, and second the reverse steps F̄i, l > i ≥ 0, are evaluated. Figure 3.1
illustrates this basic approach for an evolutionary system F combining 12 phy-
sical steps with the temporal complexities t̂i = t̄i = 1. All intermediate values
are recorded onto a tape, a process that is represented by the dotted slanted
line. Subsequently the reversal depicted as dashed slanted line is performed
without any interruption on the basis of the data stored. This approach leads

PSfrag replacements 1
1

10

10

20

5

l

t

Figure 3.1: Reversal Process Storing All Intermediates

to a run time for the reversal that is only a small multiple of the run time
needed to evaluate F , but the spatial complexity is proportional to the tem-
poral complexity of F (see e.g. [Gri89], originally due to Linnainmaa [Lin76]).
Hence if F represents a large evaluation with thousands of physical steps each
of which contains a reasonable amount of data to record then this technique is
not applicable because of the enormous amount of memory required.

At the opposite extreme the spatial complexity is minimized if one recalcu-
lates all data needed for the reversal as depicted in Fig. 3.2. Since all physical

19

20 Chapter 3. Serial Reversal Schedules

PSfrag replacements
1

1

10

10

20 80 90

5

l

t

. . .

Figure 3.2: Total Recalculation for l = 12

steps Fi, 0 ≤ i < l, are evaluated l − 1 − i times, the complete elimination of
storage except the checkpoint storing the initial state 0 and one recording step
is quite expensive in terms of run time. If all temporal complexities ti are of
roughly the same size the run time required for the reversal would be about 1

2 l2

times that of one physical step Fi. Hence this approach yields an increase in
temporal complexity that is probably unacceptable.

A first idea to reduce the memory requirement at a moderate increase in run
time could be to place c checkpoints during the first forward sweep advancing
to state l − 1. This provides the possibility to start the calculation of F at
the checkpoints again. Then each piece of the evaluation determined by the
checkpoints set is reversed separately. One possible resulting serial reversal
schedule for l = 12 using 3 checkpoints that are placed equidistantly is shown
in Fig. 3.3. Using this technique the memory requirement depends linearly on

PSfrag replacements 1

1

10

10 20 30

40
50

5

l

t

Figure 3.3: Reversal Process with no Reuse of Checkpoints

the number of physical steps l for a fixed number c of available checkpoints.
The increase in run time is limited by the run time needed to evaluate F .
Here, the main point is that no checkpoint is ever reused. This checkpointing
strategy is explained further and implemented in [MO] for the calculation of
derivatives using the reverse mode of algorithmic differentiation. If the solution

3.1 Introduction 21

of a differential equation is approximated using the leap-frog scheme, where q
equals 2 (see Chapter 2), a particular reversal technique without reuse of the
checkpoints is discussed in [Cha98] in order to approximate the solution of the
corresponding adjoint differential equation with a reduced memory requirement.

Nevertheless in the case of one-step evolutions (q = 1) with uniform step
costs it is possible to utilize a more sophisticated reversal strategy, namely by
reusing the checkpoints appropriately. Here, one can achieve a logarithmic be-
havior of the memory requirement and of the increase in run time if q = 1
[Gri92]. Further compromises between temporal and spatial complexity are
possible, so that the reversal becomes applicable to evolutionary systems F of
virtually any size. Figure 3.4 shows one possibility to reverse 12 physical steps
reusing the checkpoints if 4 checkpoints are available. During the reversal of the
physical steps F0, . . . , F4 once more state vectors are copied to the 3 free check-
points. All known results with respect to the reversal technique with reuse

PSfrag replacements 1

1

10

10

20 30 40

5

l

t

Figure 3.4: Reversal Process Reusing Checkpoints

of checkpoints consider one-step evolutions, i.e. q = 1, and are only optimal
when the step costs are uniform. This approach was introduced first by [Gri92]
showing that a logarithmic growth both in the temporal and spatial complexity
can be achieved. An explicit description of the increase in run time can be
found in [GPRS96] and using a different proof in [GW00]. Furthermore, the
latter proposes serial reversal schedules minimizing also the number of check-
point writings. Two implementation of this checkpointing strategy for one-step
evolutions with uniform step costs are available, namely [GW00] and [Kub98].

These existing results will be extended on one hand to multi-step evolutions
and on the other hand with respect to the uniformity of the step costs. Fol-
lowing the introduction of the notations needed and the proofs of some general
properties in Section 3.2 two optimality results are shown in Section 3.3. These
will lead to the construction of optimal serial reversal schedules for multi-step
evolutions with uniform step costs. Run-time results applying this new reversal
technique are reported and interpreted for the approximations of the solution
of an ordinary differential equation and its adjoint. In Section 3.4 one-step evo-
lutions with non-uniform step costs are considered. Here, a search algorithm
has to be applied. For the first time a search algorithm based on dynamic
programming is proposed. Using a certain monotonicity property of checkpoint

22 Chapter 3. Serial Reversal Schedules

partitions one can improved this first approach drastically. Several examples
are examined and the enormous shortening of the run time needed to determine
one optimal serial reversal schedule is shown.

3.2 Notations and Basic Observations

The time needed to perform the recording steps as well as the temporal complex-
ity to perform the reverse steps required is determined a priori (see Chapter 2
for an explanation). Only the time needed to perform physical steps Fi will
vary from one serial reversal schedule to the other. Therefore this forms a good
criterion for judging a particular serial reversal schedule.

Definition 3.1 (Cost tS(i, h, c), Minimal Cost t(i, h, c)). Suppose a q-step
evolution F combining l physical steps and c checkpoints are given. Let S be a
serial reversal schedule using no more than c checkpoints to reverse the physical
steps Fj between state i and state h with 0 ≤ i ≤ h ≤ l. The cost tS(i, h, c) to
reverse the sequence Fi, . . . , Fh−1 applying S is defined as

tS(i, h, c) ≡
h−1∑

j=i

rjtj ,

where rj denotes the number of times the physical step Fj is performed during
the reversal applying S as defined in Chapter 2. The minimal cost t(i, h, c) for
the reversal of the physical steps between state i and state h is denoted as

t(i, h, c) ≡ min{tS(i, h, c) | S is a serial reversal schedule to reverse the

physical steps between state i and state h} .

If the sequence of physical steps under consideration has uniform step costs
ti = ω only the number of physical steps performed during the execution of a
particular serial reversal schedule S is important because one has

tS(i, h, c) =

h−1∑

j=i

rjtj = ω

h−1∑

j=i

rj .

If the physical steps have non-uniform step costs this is obviously not the case
as illustrated by the following

Example 3.1 (Cost of Serial Reversal Schedules). Let the one-step evolution F
consist of 9 physical steps. Consider the serial reversal schedule

S ≡ W2 + P3 + W1 + P2 + D + R1 + P1 + D + R1 + D + R2 + P1 + W1 +

P1 + D + R1 + D + R2 + D,

which uses 2 checkpoints for the reversal of 6 physical steps. If the basic action D
causes also the release of a checkpoint storing the state lc−1 Fig. 3.5 illustrates
the distribution of the checkpoints and the processor caused by S. Hence one

3.2 Notations and Basic Observations 23

PSfrag replacements 1

1 10 20

6 l

t

Figure 3.5: Distribution of Checkpoints and Processors determined by S

obtains for the integer counts ri defined according to Def. 2.4

r5 = 0, r2 = r4 = 1, r0 = r1 = r3 = 2 .

If the physical steps have uniform step costs ti = 1, i = 0, . . . , 8, this yields

tS(0, 6, 2) =
5∑

i=0

ri = 8 = tS(3, 9, 2)

if S is applied to reverse the physical steps between state 0 and state 6 and
between state 3 and state 9, respectively. It can be proven (see e.g. [GW00])
that this equals also the value of t(0, 6, 2) and t(3, 9, 2), respectively.

Now suppose that there is a start-up calculation with a greater temporal
complexity comprising the first two physical steps, i.e. ti = 3 for i = 0, 1 and
ti = 1 for i = 2, . . . , 8. If S is applied the same way it follows that

tS(0, 6, 2) =

5∑

i=0

ri ti = 16 6= 8 = tS(3, 9, 2) .

Furthermore, one has tS(0, 6, 2) = 16 > 15 = tS̃(0, 6, 2), where S̃ is defined as
the serial reversal schedule

W2 + P2 + W1 + P3 + D + R1 + P2 + D + R1 + P1 + D + R1 +

D + R2 + P1 + D + R2 + D .

Figure 3.6 displays this serial reversal schedule S̃. Obviously, S does not at-
tain the minimal cost t(0, 6, 2) for the considered one-step evolution with non-
uniform step costs.

To derive an explicit formula for t(i, h, c) for multi-step evolutions with
uniform step costs and to improve the search algorithm for one-step evolutions
with non-uniform step costs the serial reversal schedule will be decomposed into
smaller substructures that are considered separately. To that end it is necessary
to prove the following assertion.

24 Chapter 3. Serial Reversal Schedules
PSfrag replacements

1

1

10 20 30

6 l

t

Figure 3.6: Distribution of Checkpoints and Processors determined by S̃

Lemma 3.1 (Checkpoint Persistence).
Suppose the given q-step evolution F consists of l physical steps. If q > 1 the
physical steps of F must have uniform step costs. Otherwise also non-uniform
step costs are allowed. Let S be a serial reversal schedule that uses no more than
c checkpoints and attains the minimum cost t(0, l, c). Then S can be modified
without increasing the cost tS(0, l, c) = t(0, l, c) such that after the checkpoint
writing Wj copying states i − q + 1, . . . , i in checkpoint j the next action Wj

occurs only when lc has already been reduced to i or below. Moreover, until that
time no actions involving the states between 0 and i are taken.

Proof. Suppose, S is a serial reversal schedule where the action Wj is taken at
states i − q + 1, . . . , i and then later again at some states ı̃ − q + 1, . . . , ı̃ with
lc > i all the time. It is not possible that a forward sweep Pm advances through
the states stored in checkpoint j because then Pm could be replaced by Rj +Pm̃

with m̃ < m reducing tS(0, l, c). This is a contradiction to the assumption that
the reversal schedule under consideration minimizes tS(0, l, c).

Hence, all that can happen concerning the states i− q + 1, . . . , i in between
the two successive actions Wj are one forward sweep immediately after the first
action Wj or resets Rj followed by forward sweeps over various length.

If no action Rj occurs the first action Wj is useless and can be deleted. The
same is true if only one advance Pm is performed right after the first action Wj .

If no forward sweep is performed immediately after the first action Wj only
resets Rj followed by forward sweeps over various length may occur.

If there is only one reset Rj possibly followed by an advance consider the
actions between the first Wj and the only Rj . The actions, which affect only
states between 0 and i, can be performed also after the next action Wj . Fur-
thermore, S can be modified in such a way that all other actions between the
first Wj and the only Rj are executed after Rj and the actions belonging to
this Rj . Then the first checkpoint writing Wj and the only reset Rj are useless
and can be deleted.

If there is more than one reset Rj the overall cost would be reduced if the
advance before the first action Wj goes one physical step further and the first
Wj is performed copying states i − q + 2, . . . , i + 1 instead of i − q + 1, . . . , i
because the length of all forward sweeps performed after the resets Rj is reduced
by one physical step. This is a contradiction to the assumption that the reversal
schedule under consideration minimizes tS(0, l, c).

If an advance is performed right after the first Wj and one or more reset Rj

3.2 Notations and Basic Observations 25

occur between the two successive actions Wj all advances would be reduced in
length if one performs Wj at least one step further such that Wj copies states
i − q + 2, . . . , i + 1 in the first place. This is a contradiction to the assumption
that S attains t(0, l, c), which completes the proof.

The concept “Checkpoint persistence” has already been introduced for one-
step evolutions in Chapter 12 of [Gri00]. Also the proof of this property relies
on the one presented in the same book. Lemma 3.1 implies for any q-step
evolution F consisting of l physical steps and determining the parameter b
according to Def. 2.1 the following powerful conclusion: An optimal serial re-
versal schedule S for reversing l physical steps with up to c checkpoints can
be decomposed without loss of generality into subschedules dealing with the
sequences F0, . . . , Fl̃−b−1 and Fl̃, . . . , Fl−1 of physical steps, respectively. Af-
ter copying the initial states 1 − q, . . . , 0 to a checkpoint a forward sweep to
some state l̃ and the action Wj are performed. Then the sequence Fl̃, . . . , Fl−1

is reversed using the remaining checkpoints. After that the action Aj causes
the reverse steps F̄l̃−1, . . . , F̄l̃−b during the release of the checkpoint storing the

states l̃ − q + 1, . . . , l̃. Finally the reversal of the sequence F0, . . . , Fl̃−b−1 is
performed using again c checkpoints. This situation is depicted by Fig. 3.7.
Hence it is possible to prove the following assertion:

PSfrag replacements

01 − q l̃ − q + 1 l̃ − b l̃ l· · ·· · ·· · · · · ·· · ·

first checkpoint
︷ ︸︸ ︷

second checkpoint
︷ ︸︸ ︷

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

l − l̃ stepsb stepsl̃ − b steps

Figure 3.7: Placing of the Second Checkpoint Writing

Lemma 3.2 (Decomposition of Serial Reversal Schedules).
Let F be a q-step evolution that determines b according to Def. 2.1. If q > 1 the
physical steps of F must have uniform step costs. Otherwise also non-uniform
step costs are allowed. Then the function t(i, h, c), which denotes the minimal
cost to reverse the physical steps Fj between state i and state h of F with up
to c checkpoints accommodated at any time, equals 0 if h − i ≤ q. If h − i > q
then t(i, h, c) has the form

t(i, h, c) =







h−1∑

j=i

⌊
h − j − 1

q

⌋

tj for c = 1,

min
i+q≤l̃<h

{
l̃−1∑

j=i
tj + t(l̃, h, c−1) + t(i, l̃−b, c)

}

for c > 1.

(3.1)

Proof. For h − i ≤ q it is obvious that no physical step has to be performed
because h− i recording steps and h− i reverse steps suffice to reverse h− i ≤ q
physical steps.

For h − i > q and c = 1 one can perform only one checkpoint writing
that copies states i − q + 1, . . . , i. To reverse Fh−q, . . . , Fh−1 the physical

26 Chapter 3. Serial Reversal Schedules

steps Fi, . . . , Fh−q−1 are evaluated. In oder to evaluate the next reverse steps
F̄h−2q, . . . , F̄h−q−1, one has to perform the physical steps Fi, . . . , Fh−2q−1 and
so on. Therefore it follows that

t(i, h, c) =

= t0 + · · · + th−q−1 + t0 + · · · + th−2q−1 + · · · + t0 + · · · + th−b(h−i)/qcq−1

≡
h−1∑

j=i

⌊h − j − 1

q

⌋

tj .

If h−i > q and c > 1 the first checkpoint writing copies states i−q+1, . . . , i and
the second checkpoint writing copies states l̃−q+1, . . . , l̃ with i+q ≤ l̃ < h. This
second checkpoint must be kept until the h− l̃ physical steps on the right of state
l̃ are reversed because of Lemma 3.1. These physical steps on the right-hand side
of the second checkpoint have to be reversed with up to c−1 checkpoints at any
time, taking the one storing states l̃− q +1, . . . , l̃ into account. The cost of this
reversal equals t(l̃, h, c−1) because otherwise t(i, h, c) would not be minimal. If
b > 0 is valid during the release of the checkpoint storing states l̃ − q + 1, . . . , l̃
the reverse steps F̄l̃−1, . . . , F̄l̃−b can be performed. The next physical step to
be reversed is given by F̄l̃−b−1. Since it is assumed that q physical steps can be
recorded on the tape the next forward sweep to reverse Fl̃−b−1 advance to state

l̃ − b − 1 − q in order to minimize the number of physical steps performed and
hence the cost of the reversal. One has l̃ − b − 1 − q < l̃ − q + 1. Therefore the
checkpoint storing the states l̃ − q + 1, . . . , l̃ can be freed up because it cannot
be applied to reduce the reversal cost.

The remaining l̃− b physical steps are reversed with a maximum of c check-
points at any time and the minimal cost t(i, l̃ − b, c) for the same reason as
above. Furthermore, one has to perform a forward sweep that advances from
state i to state l̃. Hence, it follows that t(i, h, c) has the form

t(i, h, c) = min
i+q≤l̃<h







l̃−1∑

j=i

tj + t(l̃, h, c − 1) + t(i, l̃ − b, c)






.

3.3 Multi-step Evolutions with Uniform Step Costs

Throughout this section it is supposed that the given q-step evolution F com-
prises the physical steps Fi, 0 ≤ i < l, with uniform step costs. Without loss of
generality one may presume ti = 1 for 0 ≤ i < l.

If l = mq, m ∈ N, an obvious idea for reversing F could be to group always
q states together to a mega state

(
(i − 1)q + 1, . . . , iq

)
for i ∈ {0, . . . , m} .

Subsequently one could define an one-step evolution F comprising the mega
steps FI , I = 0, . . . , m acting on the mega states, such that the evaluation of

3.3 Multi-step Evolutions with Uniform Step Costs 27

FI is identical to the evaluation of the physical steps Fi, . . . , Fi+q of the orig-
inal multi-step evolution F with i = Iq. Naturally, in order to reverse F it is
possible to apply the known results for one-step evolutions with uniform step
costs (see e.g. [GPRS96], [GW00]). Nevertheless, several degrees of freedom
are neglected using this first approach, for example the possibility to perform
a checkpoint writing that copies a mega state L̃ = (l̃ − q + 1, . . . , l̃) such that
l̃/q /∈ N. Furthermore, the number b of linear arguments is not taken into ac-
count. Therefore, the possibility to perform additional reverse steps during the
release of a checkpoint is ignored. Hence it is not certain that the mega stepping
yields an optimal serial reversal schedule. Therefore the next subsection studies
the question how to construct serial reversal schedules that attain minimal cost
in detail.

3.3.1 Derivation of Optimal Reversal Schedules

As mentioned already above only the time needed to perform physical steps
may vary from one serial reversal schedule to another. In this section an explicit
formula for the optimal temporal complexity of the reversal of F is derived. In
addition to this minimization of the number of physical steps performed the
number of checkpoint writings Wj is also minimized. Thus the run time of the
reversal is reduced further if the temporal complexity of the action Wj is not
really negligible.

In order to simplify the notation used in the proofs within this section the
following function will be used extensively:

Definition 3.2 (Function β(a, r)). For given a, r ∈ Z define the function

β(a, r) ≡
{ (

a+r
a

)
if a ≥ 0

0 else
.

It follows that for any fixed a ∈ Z the function β(a, r) is monotonic in r.
Furthermore β(a, r) represents for any fixed a ∈ Z a polynomial in r. In order to
prove the explicit formula for the minimal number of physical steps that have
to be performed during the reversal it is advantageous to have the following
assertion at hand.

Lemma 3.3.
For b, c, q ∈ N and l ∈ R let r be the unique integer such that the inequality

γ(c, r − 1) < l ≤ γ(c, r) with

γ(c, r) ≡ β(c, r)q + (β(c − 1, r) − 1)b

is fulfilled. Then the expression

rl − β(c + 1, r − 1)q − (β(c, r − 1) − r)b

is for any c > 0 a piecewise linear and convex function of l ≥ 0.

28 Chapter 3. Serial Reversal Schedules

Proof. Define f(l, c) ≡ rl − β(c + 1, r − 1)q − (β(c, r − 1) − r)b. The function
f is piecewise linear since β(c + 1, r − 1)q + (β(c, r − 1) − r)b is constant for
l ∈ (γ(c, r − 1), γ(c, r)]. Hence f is continuous in l for all l 6= γ(c, r), r ∈ N.
It will be shown that f is continuous for all l ∈ R. Chose an arbitrary r ∈ N.
For ln ∈ R, n ∈ N, with ln < γ(c, r) and limn→∞ ln = γ(c, r) if n approaches
infinity one obtains for f(c, ln)

lim
n→∞

f(c, ln) = lim
n→∞

(rln) − β(c + 1, r − 1)q − (β(c, r − 1) − r)b

= rγ(c, r) − β(c + 1, r − 1)q − (β(c, r − 1) − r)b .

For ln ∈ R, n ∈ N, with ln > γ(c, r) and limn→∞ ln = γ(c, r) it follows for the
limit of f(c, ln) that

lim
n→∞

f(c, ln) = lim
n→∞

(
(r + 1)ln

)
− β(c + 1, r)q − (β(c, r) − r − 1)b

= (r + 1)γ(c, r) − β(c + 1, r)q − (β(c, r) − r − 1)b

= rγ(c, r) − β(c + 1, r − 1)q − (β(c, r − 1) − r)b .

Therefore f is continuous in l = γ(c, r). Since an arbitrary r ∈ N was considered
one obtains that f is continuous for all l ∈ R.

The function γ(c, r) is strictly monotone increasing in r. I.e. for l1, l2 ∈ R

with l1 ≤ l2 there exist r1, r2 ∈ N with

γ(c, r1 − 1) < l1 ≤ γ(c, r1), γ(c, r2 − 1) < l2 ≤ γ(c, r2),

and r1 ≤ r2. Hence, on can conclude that the slope of f is monotone in-
creasing. Therefore, f is a continuous, piecewise linear function the slope of
which increases monotonously. This yields that f is convex in l, which proves
the assertion.

If one needs to reverse the evolutionary system F a very natural aim is
to execute the reversal at the lowest cost that can be achieved. The number
of recording steps and reverse steps is determined already by the number of
physical steps l to be reversed as mentioned before. Two variables that can be
minimized are given by the number of physical steps Fi performed during the
reversal and the number of checkpoint writings performed during the reversal.
Now the former will be considered in detail. Because of the assumption that
ti = 1 for all physical steps Fi, 0 ≤ i < l, the function t(i, h, c) determining the
minimal cost to reverse the physical steps between state i and state h using no
more than c checkpoints can be denoted by t(h−i, c). In the case of uniform step
costs only the number of physical steps to be reversed has an influence on the
cost t(i, h, c), but not the particular physical steps to be reversed. Furthermore,
t(h− i, c) equals the number of physical steps Fi performed during the reversal
since ti = 1 for all 0 ≤ i < l is assumed. The following theorem determines an
explicit formula for t(l, c). In the proof serial reversal schedules are constructed
which attain the minimal cost t(l, c).

3.3 Multi-step Evolutions with Uniform Step Costs 29

Theorem 3.1 (Minimal Number of Performed Physical Steps).
Suppose the q-step evolution F under consideration comprises l physical steps
with uniform step costs and determines the number b of linear arguments ac-
cording to Def. 2.1. Then the function

t(l, c) ≡







0 for l ≤ q,
(dl/qe − 1)

(
l − qdl/qe/2

)
for c = 1, l > q,

min
q≤l̃<h

{l̃ + t(l − l̃, c − 1) + t(l̃ − b, c)} for c > 1, l > q,
(3.2)

denoting the minimal cost to reverse a sequence of l physical steps with uniform
step costs storing up to c checkpoints at any time takes the explicit form

t(l, c) = rl − β(c + 1, r − 1)q − (β(c, r − 1) − r)b, (3.3)

where r is the unique integer satisfying

β(c, r − 1)q + (β(c − 1, r − 1) − 1)b < l ≤ β(c, r)q + (β(c − 1, r) − 1)b . (3.4)

Proof. Because of Lemma 3.2 one can conclude that the function t(l, c) satisfies
(3.2). Now Identity (3.3) is proven by induction on c and l:

c = 1 and l ∈ N:
With the identity

γ(c, r) ≡ β(c, r)q + (β(c − 1, r) − 1)b

the inequalities

γ(1, r − 1) = rq < l ≤ (r + 1)q = γ(1, r)

hold, if and only if r ≡ dl/qe − 1. This yields

t(l, 1) = (dl/qe − 1)
(
l − qdl/qe/2

)

= (dl/qe − 1)l − β(2, dl/qe − 2)q − (dl/qe − 1 − dl/qe + 1)b

= rl − β(2, r − 1)q − (β(1, r − 1) − r)b .

Hence, Identity (3.3) has been proven.

c ∈ N and l ≤ q:
One finds that r = 0 is the only integer satisfying Inequality (3.4) because

γ(c,−1) = −b < l ≤ q = γ(c, 0) .

Therefore, it follows that

t(l, c) = 0 = 0 · l − β(c + 1,−1)q − (β(c,−1) − 0)b

as asserted.

Induction step in lexicographical order of (c, l):
The numbers c > 1 and l > q are given. It is clear that they determine a unique

30 Chapter 3. Serial Reversal Schedules

r ∈ N satisfying Inequality (3.4). Suppose that the assertion is true for all (c̃, l̃)
with c̃ < c or c̃ = c and l̃ < l.

One has to decide which states l̃−q+1, . . . , l̃ are copied to the second check-
point. It will be shown that Equation (3.3) is fulfilled if the second checkpoint
writing copies states satisfying certain conditions. Then it will be proven that
more than rl− β(c + 1, r− 1)q − (β(c, r − 1)− r)b physical steps are performed
if the second checkpoint stores states that do not satisfy these conditions.

Let the second checkpoint writing copy states l̂ − q + 1, . . . , l̂ such that the
inequalities

γ(c, r − 2) ≤ l̂ − b ≤ γ(c, r − 1) and (3.5)

γ(c − 1, r − 1) ≤ l − l̂ ≤ γ(c − 1, r) (3.6)

are valid. These conditions are fulfilled if and only if

max{γ(c, r−2) + b, l − γ(c−1, r)} ≤ l̂ ≤ min{γ(c, r−1) + b, l − γ(c−1, r−1)}.

It is always possible to find l̂ satisfying Inequalities (3.5) and (3.6) because

1. γ(c, r − 2) + b ≤ γ(c, r − 1) + b :

0 ≤ β(c − 1, r − 1)q + β(c − 2, r − 1)b ⇒
0 ≤ (β(c, r − 1) − β(c, r − 2))q + (β(c − 1, r − 1) − β(c − 1, r − 2))b ⇒
0 ≤ γ(c, r − 1) − γ(c, r − 2) ,

2. γ(c, r − 2) + b ≤ l − γ(c − 1, r − 1) :

γ(c, r − 1) ≤ l ⇒
(β(c, r−2) + β(c−1, r−1))q + (β(c−1, r−2) + β(c−2, r−1)−1)b ≤ l ⇒
γ(c, r − 2) + b ≤ l − γ(c − 1, r − 1) ,

3. l − γ(c − 1, r) ≤ γ(c, r − 1) + b :

l ≤ γ(c, r) ⇒
l ≤ (β(c, r−1) + β(c−1, r))q + (β(c−1, r−1) + β(c−2, r) − 1)b ⇒
l − γ(c−1, r) ≤ γ(c, r−1) + b ,

4. l − γ(c − 1, r) ≤ l − γ(c − 1, r − 1) :

0 ≤ β(c − 2, r)q + β(c − 3, r)b ⇒
0 ≤ (β(c − 1, r) − β(c − 1, r − 1))q + (β(c − 2, r) − β(c − 2, r − 1))b ⇒
0 ≤ γ(c − 1, r) − γ(c − 1, r − 1) .

It follows from Inequality (3.6) and the induction hypothesis that the minimal
number of physical steps performed for reversing l − l̂ of them is given by
t(l− l̂, c−1). During the release of the second checkpoint b reverse steps can be
performed. From Inequality (3.5) and the induction hypothesis one obtains that

3.3 Multi-step Evolutions with Uniform Step Costs 31

the number of physical steps performed is no less than t(l̂ − b, c) for reversing
l̂ − b physical steps. Furthermore, one needs to perform l̂ physical steps to go
to state l̂. Hence, if the second checkpoint writing copies states l̂ − q + 1, . . . , l̂
with l̂ satisfying Inequalities (3.5) and (3.6), the minimal number of physical
steps performed while reversing l physical steps equals

l̂ + t(l − l̂, c−1) + t(l̂−b, c) = rl − β(c+1, r−1)q − (β(c, r−1) − r)b . (3.7)

It remains to prove that the number of physical steps performed for the reversal
of l physical steps becomes greater than (3.7) if the second checkpoint stores
states l̃ − q + 1, . . . , l̃ with l̃ not satisfying Inequalities (3.5) and (3.6).

The expression rl−β(c+1, r−1)q− (β(c, r−1)− r)b is convex in l because
of Lemma 3.3. Therefore,

l̃ + t(l − l̃, c − 1) + t(l̃ − b, c)

is also convex in l̃ with l̃ ∈ {q, . . . , l − 1}. A convex function can have at most
one interval where the function value is minimal. For that reason it is sufficient
to prove that the number of physical steps performed to reverse l physical steps
becomes greater than rl − β(c + 1, r − 1)q − (β(c, r − 1) − r)b if the second
checkpoint writing copies states l̃ − q + 1, . . . , l̃ with

l̃ = max{γ(c, r − 2) + b, l − γ(c − 1, r)} − 1 or

l̃ = min{γ(c, r − 1) + b, l − γ(c − 1, r − 1)} + 1 .

First, the case l̃ = max{γ(c, r− 2)+ b, l− γ(c− 1, r)}− 1 will be examined. Let
γ(c, r − 2) + b be smaller than l − γ(c − 1, r). It follows that

γ(c, r − 2) ≤ l̃ − b = l − γ(c − 1, r) − 1 − b < γ(c, r − 1) and

γ(c − 1, r) < l − l̃ ≤ γ(c − 1, r + 1) .

Using the induction hypothesis one obtains that at least t(l̃ − b, c) physical
steps have to be performed to reverse the left-hand side of l̃ − b and at least
t(l− l̃, c− 1) physical steps have to be performed to reverse the right-hand side
of l̃. One has

rl − β(c + 1, r − 1)q − (β(c, r − 1) − r)b − l̃ − t(l − l̃, c − 1) − t(l̃ − b, c) =

= rl − l̃ − (r−1)(l̃−b) − (r+1)(l− l̃) − (β(c+1, r−1) − β(c+1, r−2)

− β(c, r))q − (β(c, r−1) − r − β(c, r−2) + r − 1 − β(c−1, r) + r + 1)b

= − γ(c−1, r) − 1 + β(c−1, r)q + (β(c−2, r) − 1)b = −1 .

Therefore, more than (3.7) physical steps have to be performed to reverse l
physical steps if the states l̃− q + 1, . . . , l̃ with l̃ = l− γ(c− 1, r)− 1 are chosen
as second checkpoint. Now assume that

γ(c, r − 2) + b ≥ l − γ(c − 1, r) .

Then the inequalities

γ(c, r − 3) ≤ l̃ − b = γ(c, r − 2) − 1 < γ(c, r − 2) and

γ(c − 1, r − 1) < l − l̃ ≤ γ(c − 1, r) + 1

32 Chapter 3. Serial Reversal Schedules

are fulfilled. Hence, the number of physical steps performed to reverse the right-
hand side of l̃ is not smaller than r(l − l̃) − β(c, r − 1)q − (β(c − 1, r − 1) − r)b
and the number of physical steps performed to reverse the left-hand side of l̃−b
equals t(l̃ − b, c). Therefore, one has

rl − β(c + 1, r − 1)q − (β(c, r − 1) − r)b − l̃ − t(l − l̃, c − 1) − t(l̃ − b, c) ≤
≤ rl − l̃ − (r−2)(l̃−b) − r(l− l̃) − (β(c+1, r−1) − β(c+1, r−3)

− β(c, r−1))q − (β(c, r−1) − r − β(c, r−3) + r − 2 − β(c−1, r−1) + r)b

= γ(c, r−2) + b − 1 − β(c, r−2)q − β(c−1, r−2)b = −1 .

Consequently, more than (3.7) physical steps are performed to reverse l of them
if the second checkpoint stores states l̃− q + 1, . . . , l̃ with l̃ = γ(c, r−2) + b− 1.

It is shown that for the reversal of l physical steps using states l̃−q+1, . . . , l̃
with l̃ = max{γ(c, r − 2) + b, l − γ(c − 1, r)} − 1 as second checkpoint leads to
more than (3.7) physical steps performed during the reversal process. It is left
to consider the case l̃ = min{γ(c, r−1) + b, l − γ(c−1, r−1)} + 1.

One possibility is that γ(c, r− 1) + b < l− γ(c− 1, r− 1). Then one obtains

γ(c, r − 1) < l̃ − b = γ(c, r−1) + 1 ≤ γ(c, r) and

γ(c − 1, r − 1) ≤ l − l̃ ≤ γ(c − 1, r) .

Therefore, t(l̃ − b, c) physical steps are performed to reverse the left-hand side
of l̃− b and t(l− l̃, c− 1) physical steps are performed to reverse the right-hand
side of l̃. It yields

rl − β(c + 1, r − 1)q − (β(c, r − 1) − r)b − l̃ − t(l − l̃, c − 1) − t(l̃ − b, c) =

= rl − l̃ − r(l̃ − b) − r(l − l̃) − (β(c+1, r−1) − β(c+1, r−1)

− β(c, r−1))q − (β(c, r−1) − r − β(c, r−1) + r − β(c−1, r−1) + r)b

= −l̃ + β(c, r−1)q + β(c−1, r−1)b = −1 .

It follows that more than (3.7) physical steps performed are required to reverse
l physical steps if the second checkpoint writing copies states l̃ − q + 1, . . . , l̃
with l̃ = γ(c, r − 1) + b + 1. Now consider the second possibility, namely
γ(c, r − 1) + b ≥ l − γ(c − 1, r − 1). One obtains

γ(c, r − 2) < l̃ − b = l − γ(c − 1, r − 1) + 1 − b ≤ γ(c, r) and

γ(c − 1, r − 2) ≤ l − l̃ < γ(c − 1, r − 1) .

Building on the induction hypothesis the number of physical steps performed
for the reversal of the right-hand side of l̃ equals t(l − l̃, c − 1) and the number
of physical steps performed for the reversal of the left-hand side of l̃ − b is not
smaller than (r − 1)(l̃ − b) − β(c + 1, r − 2)q − (β(c, r − 2) − r + 1)b. Moreover

rl − β(c + 1, r − 1)q − (β(c, r − 1) − r)b − l̃ − t(l − l̃, c − 1) − t(l̃ − b, c) ≤
≤ rl − l̃ − (r − 1)(l̃ − b) − (r − 1)(l − l̃) − (β(c+1, r−1) − β(c+1, r−2)

− β(c, r−2))q − (β(c, r−1) − β(c, r−2) − β(c−1, r−2) + r − 2)b

= l − l̃ − β(c−1, r−1)q − (β(c − 2, r − 1) − 1)b = −1 .

3.3 Multi-step Evolutions with Uniform Step Costs 33

For that reason more than (3.7) physical steps are performed to reverse l phy-
sical steps if states l̃ − q + 1, . . . , l̃ with l̃ = l − γ(c− 1, r − 1) + 1 are chosen as
second checkpoint.

Finally, Equation (3.3) is proven because the number of physical steps per-
formed to reverse l of them exceeds (3.7) if the second checkpoint writing copies
states l̃ − q + 1, . . . , l̃ with l̃ not satisfying the Inequalities (3.5) and (3.6).

Figure 3.8 illustrates the behavior of the function t(l, c) for different values
of c if the parameters q and b of the multi-step evolution under consideration
have the values 2 and 1, respectively. Obviously, this function is piecewise
linear and strictly monotonous increasing in l for each value of c. Hence for a

PSfrag replacements

10

10

50

50

100

100

150 c=3
c=4 c=5 c=6 c=7

c=8
t(l, c)

l

Figure 3.8: Values of t(l, c) for q = 2 and b = 1

given increase in run time that is acceptable one finds easily the corresponding
minimal number of checkpoints needed. Furthermore, for a fixed number of
checkpoints that are available the minimal increase in run time that is not
avoidable can be determined.

Table 3.1 serves to illustrate the gain that can be achieved by taking b > 0
into account. To that end the value of t(l, c) is calculated for q = 2, b = 1,

q = 2 q = 4
l c = 4 c = 6 c = 4 c = 6

100 10.8 % 11.0 % 16.7 % 8.9 %
250 6.5 % 10.5 % 12.0 % 12.4 %
500 7.8 % 8.7 % 9.8 % 15.7 %

1000 5.2 % 6.4 % 10.1 % 10.9 %
1500 5.1 % 6.1 % 8.9 % 10.0 %
2000 4.4 % 5.8 % 7.7 % 8.7 %
2500 4.6 % 6.5 % 8.4 % 10.7 %
3000 4.6 % 5.2 % 7.3 % 9.2 %

Table 3.1: Achievable Improvements Taking b > 0 Into Account

34 Chapter 3. Serial Reversal Schedules

c ∈ {4, 6} and for q = 4, b = 3, c ∈ {4, 6}. The reduction of the cost t(l, c) is re-
ported as percentage of the cost t(l, c) if one sets b = 0 neglecting the additional
reverse steps that can be performed during the release of a checkpoint. Assume
l = 1000, q = 4, b = 3, and c = 6. If one takes the possibility to perform three
additional reverse steps during the release of each checkpoint into account the
number of physical steps performed during the reversal is reduced by 10.9 %.

The structure of the valid domain for the value l̂ is displayed by Fig. 3.9.
Usually, i.e. if c and r have nontrivial values, there is a wide range of choices.
This fact can be used for a further improvement of the serial reversal schedules.

PSfrag replacements

γ(c, r − 1) γ(c, r)

γ(c, r − 2) + b

γ(c, r − 1) + b

l

l̂

Figure 3.9: Domain of l̂ Optimizing the Number of Physical Steps

As mentioned above the number of times current states are copied to a
checkpoint during the reversal may vary from one serial reversal schedule to
the other. Hence one could look for serial reversal schedules, which minimize
the total number of checkpoint writings during the reversal under the pre-
condition that the number of physical steps performed by the serial reversal
schedules under consideration is optimal, i.e. minimal. These optimal serial
reversal schedules are constructed in the proof of the following theorem.

Theorem 3.2 (Minimal Number of Checkpoint Writings).
Suppose, the given q-step evolution F comprises l physical steps and determines
the corresponding value of b. Among all serial reversal schedules requiring t(l, c)
physical steps to be performed for the reversal of the given l physical steps with
up to c checkpoints at any time the minimal number of checkpoint writings is
given for all l ∈ N by

s(l, c) ≡







0 if l ≤ q
β(c − 1, r − 1) if q < l ≤ φ(c, r)q + (β(c − 1, r − 1) − 1)b
m1 − β(c, r − 1) if q < (m1 − 1)q + (m2 − 1)b < l ≤ m1q + m2b

with φ(c, r) + 1 ≤ m1 ≤ β(c, r) and
m2 = m1 − β(c, r − 1) − 1 ,

where r is again the unique integer satisfying

β(c, r − 1)q + (β(c − 1, r − 1) − 1)b < l ≤ β(c, r)q + (β(c − 1, r) − 1)b (3.8)

and

φ(c, r) ≡ β(c, r − 1) + β(c − 1, r − 1) .

3.3 Multi-step Evolutions with Uniform Step Costs 35

Proof. If l ≤ q no checkpoint writing is performed because only l ≤ q recording
steps and l ≤ q reverse steps yield the desired reversal. To prove the assertion
for l > q once again an induction on c and l is used:

c = 1 and l ∈ N, l > q:
The states 1 − q, . . . , 0 are copied to the only checkpoint once. Therefore the
number of checkpoint writings equals 1. Furthermore, using the definitions

γ(c, r) ≡ β(c, r)q + (β(c − 1, r) − 1)b and

η(c, r) ≡ φ(c, r + 1)q + (β(c − 1, r) − 1)b

one has

γ(1, r−1) = rq < l ≤ (r+1)q = η(1, r − 1) = γ(1, r)

if and only if r ≡ dl/qe − 1. It follows that s(l, 1) = β(0, r − 1) = 1.

c ≥ 1 and q < l ≤ 2q:
The states 1 − q, . . . , 0 are copied to the only checkpoint once. Now l − q
physical steps are performed. After that q recording steps and q reverse steps are
evaluated. Then the states stored in the only checkpoint are read. Subsequently
l − q recording steps and l − q reverse steps yield the desired reversal. Hence,
the number of checkpoint writings equals 1. Furthermore, the inequality

γ(c, 0) = q < l ≤ 2q ≤ η(c, 0)

holds. Thus s(l, c) = β(c − 1, 0) = 1.

Induction step in lexicographical order of (c, l):
The numbers c > 1 and l > 2q are given. It is clear that they determine a unique
r ∈ N satisfying Inequality (3.4). Suppose, the assertion is true for all (c̃, l̃) with
c̃ < c or c̃ = c and l̃ < l. First, the assertion will be proven for l ≤ η(c, r − 1).
The second possibility, namely l > η(c, r − 1), will be examined later. In both
cases it will be shown that the number of checkpoint writings equals s(l, c) if
the states that are copied to the second checkpoint satisfy certain conditions.
In a second step it will be proven that there is no possibility to achieve a smaller
number of checkpoint writings.

If l ≤ η(c, r − 1) then copy states l̂ − q + 1, . . . , l̂ to the second checkpoint
such that

γ(c, r − 2) ≤ l̂ − b ≤ η(c, r − 2) and (3.9)

γ(c − 1, r − 1) ≤ l − l̂ ≤ η(c − 1, r − 1) . (3.10)

It is always possible to find an appropriate l̂, because

1. γ(c, r − 2) + b ≤ η(c, r − 2) + b :

0 ≤ β(c − 1, r − 2)q ⇒ 0 ≤ (φ(c, r − 1) − β(c, r−2))q ⇒
0 ≤ η(c, r − 2) − γ(c, r − 2) ,

36 Chapter 3. Serial Reversal Schedules

2. γ(c, r − 2) + b ≤ l − γ(c − 1, r − 1) :

γ(c, r − 1) ≤ l ⇒ γ(c, r − 2) + γ(c − 1, r − 1) + b ≤ l ,

3. l − η(c − 1, r − 1) ≤ η(c, r − 2) + b :

l ≤ η(c, r−1) ⇒
l ≤ (φ(c, r−1) + φ(c−1, r))q + (β(c−2, r−1) + β(c−1, r−2) − 1)b ⇒
l − η(c − 1, r − 1) ≤ η(c, r − 2) + b ,

4. l − η(c − 1, r − 1) ≤ l − γ(c − 1, r − 1) :

0 ≤ β(c−2, r−1)q ⇒ 0 ≤ (φ(c−1, r) − β(c−1, r−1))q ⇒
0 ≤ η(c−1, r−1) − γ(c−1, r−1) .

From the induction hypothesis and Inequality (3.9) follows that no less than
β(c − 1, r − 2) checkpoint writings are needed for reversing the left-hand side
of state l̂ − b. The induction hypothesis and Inequality (3.10) yield that the
minimal number of checkpoint writings equals β(c − 2, r − 1) for reversing the
right-hand side of l̂. Hence, the minimal number of checkpoint writings is equals

β(c − 1, r − 2) + β(c − 2, r − 1) = β(c − 1, r − 1)

for reversing l physical steps if states l̂ − q + 1, . . . , l̂ with l̂ satisfying Inequali-
ties (3.9) and (3.10) are copied to the second checkpoint.

It will be shown that more than β(c−1, r−1) checkpoint writings are needed
if states l̃ − q + 1, . . . , l̃ with l̃ not satisfying Inequalities (3.9) and (3.10) are
copied to the second checkpoint. There are four possibilities.

First, let l̃ satisfy Inequality (3.9) but η(c − 1, r − 1) < l − l̃. Then at least
β(c−1, r−2) checkpoint writings are performed for reversing the left-hand side
of l̃−b and at least s(l− l̃, c−1) > β(c−2, r−1) checkpoint writings are needed
for reversing the right-hand side of l̃. Hence, their minimal number equals

β(c − 1, r − 2) + s(l − l̃, c − 1) > β(c − 1, r − 1) .

Second, let l̃ satisfy Inequality (3.10) while η(c, r − 2) < l̃ − b. It follows from
the induction hypothesis that the number of checkpoint writings is no less than
s(l̃ − b, c) > β(c − 1, r − 2) to reverse the left-hand side of l̃ − b and at least
β(c − 2, r − 1) checkpoint writings are needed to reverse the right-hand side of
l̃. Therefore, at least

s(l̃ − b, c) + β(c − 2, r − 1) > β(c − 1, r − 1)

checkpoint writings are performed. Third, if

l̃ − b > η(c, r − 2) and l − l̃ > η(c − 1, r − 1)

it follows that

l = l − l̃ + l̃ > η(c − 1, r − 1) + η(c, r − 2) + b > η(c, r − 1) .

3.3 Multi-step Evolutions with Uniform Step Costs 37

This is a contradiction to the assumption that l ≤ η(c, r − 1). Finally, if

γ(c, r − 2) > l̃ − b and/or γ(c − 1, r − 1) > l − l̃

the number of physical steps performed is not optimal because of Theorem 3.1.
This is a contradiction to the assumption that the serial reversal schedule under
consideration needs the minimal number t(l, c) of physical steps performed to
reverse the l given physical steps. Therefore it is shown that the minimal
number of checkpoint writings equals s(l, c) = β(c − 1, r − 1) if l ≤ η(c, r − 1).

Now the assertion will be proven for l > η(c, r − 1). There exists exactly
one m1 ∈ {φ(c, r)+1, . . . , β(c, r)} with (m1 −1)q +(m2 −1)b < l ≤ m1q +m2b,
where m2 ≡ m1 − β(c, r− 1)− 1. Choose m̂1 ∈ {φ(c, r− 1) + 1, . . . , β(c, r− 1)}
such that m1 − m̂1 ∈ {φ(c− 1, r), . . . , β(c− 1, r)}. This is always possible. For
example it is easy to check that

m̂1 ≡
{

m1 − β(c−1, r) if φ(c, r) + β(c−3, r) < m1 ≤ β(c, r)
φ(c, r−1) + 1 else

(3.11)

has the desired property. Copy states l̂ − q + 1, . . . , l̂ to the second checkpoint
such that l̂ satisfies the inequalities

(m̂1−1)q + (m̂2−1)b < l̂ − b ≤ m̂1q + m̂2 b and (3.12)

(m1−m̂1−1)q+(m2−m̂2−2)b < l− l̂ ≤ (m1−m̂1)q+(m2−m̂2−1)b (3.13)

with m̂2 ≡ m̂1 − β(c, r − 2) − 1. It is always possible to find an appropriate l̂
because

1. (m̂1 − 1)q + m̂2 b < m̂1q + (m̂2 + 1)b : Is obviously valid,

2. (m̂1 − 1)q + m̂2 b < l − (m1 − m̂1 − 1)q − (m2 − m̂2 − 2)b − 1 :

l > (m1 − 1)q + (m2 − 1)b > (m1 − 2)q + (m2 − 2)b + 1 ⇒
0 < l − (m1 − m̂1 − 1)q − (m2 − m̂2 − 2)b − 1 − (m̂1 − 1)q − m̂2 b ,

3. l− (m1 − m̂1)q− (m2 − m̂2 −1)b < l− (m1 − m̂1 −1)q− (m2 − m̂2 −2)b :
Is obviously valid,

4. l − (m1 − m̂1)q − (m2 − m̂2 − 1)b ≤ m̂1q + (m̂2 + 1)b :

l ≤ m1q + m2b ⇒
l ≤ (m1 − m̂1)q + (m2 − m̂2 − 1)b + m̂1q + (m̂2 + 1)b .

Furthermore, with m̃1 ≡ m1 − m̂1 and

m̃2 ≡ m2 − m̂2 − 1 = m1 − m̂1 − β(c, r − 1) − 1 + β(c, r − 2) + 1 − 1

= m1 − m̂1 − β(c − 1, r − 1) − 1

Inequality (3.13) is equivalent to

(m̃1 − 1)q + (m̃2 − 1)b < l − l̂ ≤ m̃1q + m̃2 b .

38 Chapter 3. Serial Reversal Schedules

Hence, one obtains from the induction hypothesis that m1−m̂1−β(c−1, r−1)
checkpoint writings are needed to reverse the right-hand side of l̂. Furthermore,
it follows that the minimal number of checkpoint writings needed for reversing
the left-hand side of l̂ − b equals m̂1 − β(c, r − 2). Therefore, at least

m̂1 − β(c, r − 2) + m1 − m̂1 − β(c − 1, r − 1) = m1 − β(c, r − 1)

checkpoint writings are performed if l̂ − q + 1, . . . , l̂ are copied to the second
checkpoint.

It is left to show that no less than m1 − β(c, r − 1) checkpoint writings are
needed if states l̃−q+1, . . . , l̃ with l̃ not satisfying Inequalities (3.12) and (3.13)
are copied to the second checkpoint. There are eight possibilities to check.

1. Consider the case where Inequality (3.12) is fulfilled for l̃ but

l − l̃ > (m1 − m̂1)q + (m2 − m̂2 − 1)b .

Then s(l − l̂, c − 1) is greater than m1 − m̂1 − β(c − 1, r − 1) and the minimal
number of checkpoint writings to reverse the given l physical steps equals

m̂1 − β(c, r − 2) + s(l − l̃, c − 1) > m1 − β(c, r − 1) .

2. Let Inequality (3.12) be valid for l̃ but l − l̃ ≤ (m̃1 − 1)q + (m̃2 − 1)b. It
follows that

l = l̃ + l − l̃ ≤ m̂1q + (m̂2 + 1)b + (m1 − m̂1 − 1)q + (m2 − m̂2 − 2)b

= (m1 − 1)q + (m2 − 1)b .

This is a contradiction to the assumption (m1 − 1)q + (m2 − 1)b < l.

3. Assume l̃ satisfies Inequality (3.13) while l̃ > m̂1q +(m̂2 +1)b. For reversing
the left-hand side of l̃ − b more than m̂1 − β(c, r − 2) checkpoint writings are
needed. Hence, the minimal number of checkpoint writings to reverse the given
l physical steps equals

s(l̃ − b, c) + m1 − m̂1 − β(c − 1, r − 1) > m1 − β(c, r − 1) .

4. Let l̃ satisfy Inequality (3.13) and l̃ ≤ (m̂1 − 1)q + m̂2b. Then

l ≤ (m1 − m̂1)q + (m2 − m̂2 − 1)b + l̃

≤ (m1 − m̂1)q + (m2 − m̂2 − 1)b + (m̂1 − 1)q + m̂2b

= (m1 − 1)q + (m2 − 1)b .

This is a contradiction to the assumption (m1 − 1)q + (m2 − 1)b < l.

5. For l̃ ≤ (m̂1 − 1)q + m̂2 b and l − l̃ ≤ (m̃1 − 1)q + (m̃2 − 1)b follows

l = l̃ + l − l̃ ≤ (m̂1 − 1)q + m̂2b + (m̃1 − 1)q + (m̃2 − 1)b

= (m1 − 2)q + (m2 − 2)b ,

which yields the same contradiction as in 4.

3.3 Multi-step Evolutions with Uniform Step Costs 39

6. Studying the case l̃ > m̂1q + (m̂2 + 1)b and l − l̃ > m̃1q + m̃2 b one obtains
with

l = l̃ + l − l̃ > m̂1q + (m̂2 + 1)b + m̃1q + m̃2 b = m1q + m2 b

a contradiction to the assumption l ≤ m1q + m2 b. There are two a little more
complicated cases left.

7. Assume that l̃ − b ≤ (m̂1 − 1)q + (m̂2 − 1)b and l − l̃ > m̃1q + m̃2b. Then
there exists a j ≥ 1 with

(m̂1 − j − 1)q + (m̂2 − j − 1)b < l̃ − b ≤ (m̂1 − j)q + (m̂2 − j)b .

Therefore, one has

l − l̃ > (m1 − 1)q + (m2 − 1)b − (m̂1 − j)q − (m̂2 − j + 1)b

≥ (m1 − m̂1 + j − 1)q + (m2 − m̂2 + j − 2)b

= (m̃1 + j − 1)q + (m̃2 + j − 1)b .

Furthermore, it exists an i ∈ {1, . . . , β(c − 2, r − 1)} such that the identity
m̂1 = φ(c, r − 1) + i is valid. For j < i it follows from the induction hypothesis
that no less than

m̂1 − j − β(c, r − 2) + m1 − m̂1 + j − β(c − 1, r − 1) = m1 − β(c, r − 1)

checkpoint writings are needed to reverse the given l physical steps if states
l̃ − q + 1, . . . , l̃ are copied to the second checkpoint. For j ≥ i one obtains that
j ≤ i+β(c−1, r−2) because otherwise the number of physical steps performed
to reverse l̃−b physical steps would not be optimal. Hence, using the induction
hypothesis one has that the minimal number of checkpoint writings needed to
reverse the given l physical steps is no less than

β(c−1, r−2) + m1 − m̂1 + j − β(c−1, r−1) =

= β(c−1, r−2) + m1 − β(c, r−2) − β(c−1, r−2) − i + j − β(c−1, r−1)

≥ m1 − β(c, r−1) .

8. Finally let l̃ − b > m̂1q + m̂2 b and l − l̃ ≤ (m1 − m̂1 − 1)q + (m2 − m̂2 − 2)b
be valid. Then there exists a j ≥ 1 fulfilling the inequality

(m̂1 + j − 1)q + (m̂2 + j − 1)b < l̃ − b ≤ (m̂1 + j)q + (m̂2 + j)b .

This yields

l − l̃ > (m1 − 1)q + (m2 − 1)b − (m̂1 + j)q − (m̂2 + j + 1)b

≥ (m1 − m̂1 − j − 1)q + (m2 − m̂2 − j − 2)b

= (m̃1 + j − 1)q + (m̃2 + j − 1)b .

Consider i ∈ {0, . . . , β(c − 3, r)} with m1 − m̂1 = φ(c − 1, r) + i. For j < i
follows from the induction hypothesis that the minimal number of checkpoint
writings is greater than or equal to

m̂1 + j − β(c, r − 2) + m1 − m̂1 − j − β(c − 1, r − 1) = m1 − β(c, r − 1) .

40 Chapter 3. Serial Reversal Schedules

In the case j ≥ i one obtains from the induction hypothesis that at least

m̂1 + j − β(c, r − 2) + β(c − 2, r − 1) =

= m1 − β(c−1, r−1) − β(c−2, r−1) − i + j − β(c, r−2) + β(c−2, r−1)

≥ m1 − β(c, r−1)

checkpoint writings are needed for the reversal of the given l physical steps.

Hence it has been shown for l > η(c, r − 1) that the minimal number of
checkpoint writings needed to reverse the given l physical steps equals s(l, c),
which completes the proof.

Figure 3.10 shows the principle structure of the function s(l, c). It is, quite
amazingly, piecewise constant, where the right margin belongs to the corre-
sponding interval while the left margin does not.

PSfrag replacements

γ(c, r − 1) γ(c, r)

β(c−1, r−1)

β(c−1, r)

l

s(l, c)

Figure 3.10: Optimal Number of Checkpoint Writings

3.3.2 Numerical Example

In this subsection the optimal serial reversal schedules developed in the previous
subsection are applied to approximate the solution of the adjoint differential
equation belonging to a particular nonlinear ordinary differential equation of
order one. This problem is taken from [WNZD95]. The numerical results as
well as the run times required are reported and discussed.

Model Problem

Consider the nonlinear ordinary differential equation

dz

dt
= −z2, 0 < t < 1, z(0) = u ∈ R . (3.14)

The analytic solution of this differential equation is given by

z(t) =
u

tu + 1
. (3.15)

3.3 Multi-step Evolutions with Uniform Step Costs 41

Suppose that observations z∗ of the model are generated with the initial con-
dition z∗(0) = 1. Then one has for the observation z∗ that

z∗(t) =
1

t + 1
. (3.16)

One may define the cost function

J(u) =
1

2

∫ 1

0
< z − z∗, z − z∗ > dt

=
1

2

∫ 1

0

(
u

tu + 1
− 1

t + 1

)2

dt

=
1

2

(

1 + u +
2u

1 − u
ln

(
u + 1

2

)

− 1 + 3u

2(u + 1)

)

.

(3.17)

The first order adjoint equation of system (3.14) equals

−∂z̄

∂t
= −2zz̄ + z − z∗, z̄(1) = 0 , (3.18)

where z̄ is the adjoint variable [WNZD95]. The gradient of the cost function
with respect to the initial conditions is given by ∇uJ = z̄(0) [WNZD95]. Hence
the gradient is known if the solution of the adjoint system (3.18) is available.
For the model problem considered z̄ has the analytic solution [WNZD95]

z̄(t) = (tu + 1)2
(∫ 1

0

(
1

t + 1
− u

tu + 1

)
1

(tu + 1)2
dt + C

)

= (tu + 1)2
(

1

(1 − u)(tu + 1)

+
1

(1 − u)2
ln

(
t + 1

ut + 1

)

+
1

2(tu + 1)2
+ C

)

,

(3.19)

where C is the constant

C = − 1

1 − u2
− 1

(1 − u)2
ln

(
2

u + 1

)

− 1

2(u + 1)2

determined by the final condition z̄(1) = 0.
Three different multi-step evolutions each of which calculates an approxi-

mation of z are considered. The reversal of F is applied to evaluate an approx-
imation of z̄. Thus one can check the correctness of z̄ besides the analysis of
the run-time behavior. For the three multi-step evolutions the value of J is
approximated using the integration

J +=
h

2

(
zj − z∗j

)2
=

h

2
(zj − 1/(hj + 1))2 . (3.20)

As discretization schemes the leap-frog method, the explicit Adams 3-step
method, and a Milne 4-step method are applied (see e.g. [SB90], [HNW96]).
The explicit Euler method forms the start-up calculation.

42 Chapter 3. Serial Reversal Schedules

For the approximation of z applying the leap-frog method with the time step
size h and the right-hand side f(z) = z2 of the ordinary differential equation
under consideration, i.e.

zj+1 = zj−1 + 2hf(zj) ,

one can determine the adjoint of the 2-step method according to the procedure
described in [Gri00]. This yields with J̄ = 1

z̄j−1 = z̄j+1 + 2hz̄jf
′(zj−1) + h(zj−1 − 1/(h(j − 1) + 1)) l ≥ j > 1 .

For the adjoint of the discretization method the last term on the right-hand
side takes the computation of J into account (see Equation (3.20)). The corre-
sponding 2-step evolution F was already derived in Example 2.2 of Chapter 2.
The same expression for z̄j−1 using f ′(zj) instead of f ′(zj−1) represents the dis-
cretization of the adjoint differential equation applying the leap-frog method.

If the Adams 3-step method is used to calculate an approximation of z, i.e.

zj+1 = zj + h

(
23

12
f(zj) −

16

12
f(zj−1) +

5

12
f(zj−2)

)

with the time step size h, the corresponding adjoint of this 3-step method is
given by

z̄j−1 = z̄j + h

(
23

12
z̄j −

16

12
z̄j+1 +

5

12
z̄j+2

)

f ′(zj−1) + hzj−1 −
h

h(j − 1) + 1
.

One can define the physical steps Fi of an appropriate multi-step evolution F as

xi+1 = (yi, zi+1) ≡
(

f(zi), zi+
23h

12
yi−

16h

12
yi−1+

5h

12
yi−2

)

≡ Fi(xi−1, xi) .

Hence, in this case F equals a 2-step evolution. Furthermore it is possible to
observe that Fi depends nonlinear only on zi. This yields that the number b of
linear arguments equals 1. The reverse steps F̄i are defined as

x̄i−1 = (ȳi−2, z̄i−1) +=

(
5h

12
z̄i+1, 0

)

,

x̄i = (ȳi−1, z̄i)

+=

(

−16h

12
z̄i+1, z̄i+1+

(
23h

12
z̄i+1+ȳi

)

f ′(zi)+hzi−
h

hi+1

)

.

Suppose that x̄i is known. During the release of two checkpoints that comprise
the successive state vectors i − 1 and i one can perform a recording step that
stores the intermediates calculated during the evaluation of f at the argument
zi−1 on the tape. Therefore it is possible to evaluate F̄i−1 since all needed values
are available. It follows again that b is equal to 1 for this 2-step evolution F .

Finally, if the Milne 4-step method

zj+1 = zj−3 + h

(
8

3
f(zj) −

4

3
f(zj−1) +

8

3
f(zj−2)

)

,

3.3 Multi-step Evolutions with Uniform Step Costs 43

with the time step size h, is used to approximate z, the corresponding adjoint
of this 4-step method equals

z̄j−1 = z̄j+3 + h

(
8

3
z̄j −

4

3
z̄j+1 +

8

3
z̄j+2

)

f ′(zj−1) + hzj−1 −
h

h(j − 1) + 1

In order to define an appropriate multi-step evolution F one may use the phy-
sical steps Fi

xi+1 = (yi, zi+1) ≡
(

f(zi), zi−3 +
8h

3
yi −

4h

3
yi−1 +

8h

3
yi−2

)

≡ Fi(xi−3, xi−2, xi−1, xi)

and the reverse steps F̄i with

x̄i−3 = (ȳi−4, z̄i−3) += (0, z̄i+1) ,

x̄i−2 = (ȳi−3, z̄i−2) += (0, 0) ,

x̄i−1 = (ȳi−2, z̄i−1) +=

(
8h

3
z̄i+1, 0

)

,

x̄i = (ȳi−1, z̄i) +=

(

−4h

3
z̄i+1,

(
8h

3
z̄i+1+ȳi

)

f ′(zi)+hzi−
h

hi+1

)

.

A similar argument as above yields b = 3 for this 4-step evolution.
The three multi-step evolutions are used together with the steering routine

described in next subsection to calculate approximations of z and z̄.

Available Software

The C-routine revolve a code listing of which is contained in Appendix A
implements the optimal serial schedules derived in Section 3.3.1. Depending
on the actual number of physical steps l to be reversed and the number c of
checkpoints that are available at the moment revolve selects the next states
l̂ − q + 1, . . . , l̂ to be copied to a checkpoint according to

l̂ =

{
γ(c, r−1)+b if l ≤ γ(c, r−1)+β(c−2, r−1)q
l−φ(c−1, r)q−(β(c−2, r−1)−1)b else

if one has l ≤ φ(c, r)q + (β(c − 1, r − 1) − 1)b. Otherwise, i.e. if the inequality
l > φ(c, r)q + (β(c − 1, r − 1) − 1)b is valid, l̂ is chosen according to

l̂ =

{
(m1−β(c−1, r))(q+b)−(β(c, r−2)+1)b if φ(c, r)+β(c−3, r) < m1

(φ(c, r−1)+1)q+(β(c−1, r−2)−1)b else

with m1 as defined above. Because of the proofs given in Section 3.3.1 this choice
guarantees that the minimal number t(l, c) of physical steps and the minimal
number s(l, c) of checkpoint writings are performed during the reversal of l
physical steps.

To reverse a given sequence of physical steps revolve can be thought of
as a “controller” steering the reversal process. To apply revolve one has to
provide procedures for the tasks

44 Chapter 3. Serial Reversal Schedules

(a) Advance F to a certain state (forward(..))

(b) Perform at most q recording steps and reverse steps (with special provi-
sions for the first time this happens) (forwardrec(..), reverse(..))

(c) Copy the current states to a checkpoint (store checkpoint(..))

(d) Read the most recently saved program states (restore checkpoint(..))

These tasks represent the actions defined already in Def. 2.3, that introduced
serial reversal schedules. Having them at hand the reversal of the evolutionary
system can be performed in principle according to the following code segment.
It is contained within the program to calculate z̄ as solution of the adjoint
equation (3.18), where revolve determines the task to execute:

... /* declarations and initializations */

do

{ oldcapo = capo;

whatodo = revolve(&check,&capo,&fine,snaps,q,b,&num,&info);

switch(whatodo)

{ /* Advancing F to a certain state */

case advance: for(j=oldcapo;j<capo;j++)

forward(..);

break;

/* Save the current states onto a stack */

case takeshot: store_checkpoint(..);

break;

/* Restore the most recently saved checkpoint */

case restore: restore_checkpoint(..);

break;

/* Perform num recording steps and reverse steps */

case firsturn: forwardrec(..,num);

init_x_bar(..);

reverse(..,num);

break;

/* Perform num recording steps and reverse steps */

case youturn: forwardrec(..,num);

reverse(..,num);

break;

/* Perform b reverse steps during release */

case reduce_checkpoint:

forwardrec(..,b);

reverse(..,b);

break;

case error: printf("irregular termination of revolve\n");

}

} while((whatodo != terminate) && (whatodo != error));

3.3 Multi-step Evolutions with Uniform Step Costs 45

Numerical Results and Run Times

Approximations of z̄ were computed using the three different multi-step evo-
lutions on a Pentium PC. Figure 3.11 shows the relative error of z̄ computed
with the adjoint of the Adams 3-step method in comparison with the analytic
solution z̄ given by Equation (3.19) for u = 1.5 and five different numbers of
physical steps starting with l = 1000 (i.e. h = 0.001) up to l = 5000. For

0.00 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

0.12 Relative error in %

t

l = 5000
l = 4000
l = 3000

l = 2000

l = 1000

Figure 3.11: Relative Error of z̄ Using Adjoint of the Adams 3-step Method

t = 1 the error is limited above by 0.12 % for the five values of l. The principal
behavior of the approximations computed with the leap-frog method and the
Milne 4-step method, respectively, is more or less the same.

As mentioned already in Chapter 2 the reverse steps F̄i represents the ad-
joint of the discretization method described by F . Naturally, as alternative one
could use the discretized adjoint differential equation to approximate z̄. For
example then one obtains for the leap-frog method

z̄i ≡ z̄i+2 + 2hz̄i+1f
′(zi+1) .

Hence the difference is given by the fact that F̄i utilizes f ′(zi) to calculate z̄i

whereas in the discretized adjoint differential equation f ′(zi+1) is used to calcu-
late z̄i. The approximation calculated with the discretized adjoint differential
equation and the approximation calculated with the reverse steps F̄i are almost
identical. Furthermore the relative error of z̄ computed with the discretized
adjoint differential equation has the same order and shows the same behavior
as the relative error of z̄ computed with the reverse steps F̄i. Therefore it make
sense to utilize the adjoints F̄i of the physical steps Fi. This behavior can be
observed for all discretization schemes considered so far.

Figure 3.12 illustrates the run-time behavior for the reversal of 10000 phy-
sical steps using the routine revolve. The leap-frog method was applied as

46 Chapter 3. Serial Reversal Schedules

1.0 10.0 100.0 1000.0 10000.0

10.0

100.0

1000.0

Run-time ratio

Number of Checkpoints c

Figure 3.12: Run-time Ratio for Different Numbers of Checkpoints

discretization scheme. For both axes a logarithmic scale is utilized. The run
time of the reversal is normalized by the run time required to evaluate F and dis-
played as function of the number of checkpoints c that are available. Therefore,
the value c = 10000 represents the memory requirement of the basic approach
where the complete execution log is recorded once. Here, the ratio 7.7 is near
the theoretical minimum of 5 for the ratio between the run time of the reversal
and of the function evaluation [Gri89], where only a flat memory hierarchy is
assumed. As one can see it is possible to push the number of checkpoints that
are available far below 100, i.e. below 1 % of the number of physical steps to
be reversed, before a significant impact on the temporal complexity becomes
apparent. Only when the number of checkpoints becomes lower than 10 the
run time increases drastically. Nevertheless these thresholds are not constant
and will decline as the total number of physical steps to be reversed grows.

3.3.3 Conclusions

Assume the given evolutionary system F applies a one-step recurrence such
that no reverse step can be performed during the release of a checkpoint, i.e.
q = 1 and b = 0. Then one obtains for the minimal number t(l, c) of physical
steps that have to be performed and the minimal number s(l, c) of checkpoint
writings during the reversal exactly the formulas already derived in [GW00].
Hence the new results presented in this thesis can be seen as a generalization
of the known theory for uniform step costs.

Furthermore, for the integer r determined by the given number l of physical
steps and the number of checkpoints c that are utilized Theorem 3.1 yields the
following inequality

(r − 1)
c

c + 1
≤ t(l, c)

l
≤ r .

Hence, if c is of significant size the value of r can be considered as integer

3.3 Multi-step Evolutions with Uniform Step Costs 47

approximation to the ratio between the cost of reversing the given l physical
steps and the cost of evaluating the evolutionary system F formed by the l
physical steps. More precisely it can be shown that the integer r denotes the
maximal number of times a particular physical step is performed during the
reversal of F .

Rather than achieving the minimal number of physical steps t(l, c) per-
formed for given l and c one may ask for the behavior of the maximal number
l of physical steps that can be reversed with up to c checkpoints and a given
value of r. Using the assumption of Theorem 3.1

β(c, r − 1)q + (β(c − 1, r − 1) − 1)b < l ≤ β(c, r)q + (β(c − 1, r) − 1)b

with q and b determined by the multi-step evolution under consideration for
the maximal number l(c, r) of physical steps that can be reversed follows

l(c, r) = β(c, r)q + (β(c − 1, r) − 1)b =

(
c + r

c

)

q +

((
c + r − 1

c − 1

)

− 1

)

b

=
(c + r)!q

c! r!
+

(
(c + r − 1)!

(c − 1)! r!
− 1

)

b

≈
(

1√
2π

(

1 +
r

c

)c (

1 +
c

r

)r
√

1

c
+

1

r

)

q

+

(

1√
2π

(

1 +
r

c − 1

)c−1(

1 +
c − 1

r

)r
√

1

c − 1
+

1

r
− 1

)

b

∼ q
√

2π min(c, r)

(
max(c, r)

min(c, r)
e

)min(c,r)

+
b

√

2π min(c − 1, r)

(
max(c − 1, r)

min(c − 1, r)
e

)min(c−1,r)

.

The first approximation is derived using Stirling’s formula. From the last for-
mula one obtains

l(c, r) ∼







(q + b/e) exp(r)/
√

r if c ∼ r

q cr + b (c − 1)r if c � r = const

(q + b/r)rc if r � c = const

.

Hence, if one accepts a similar growth in the number of checkpoints that are
used and the increase in run time, i.e. c ∼ r, one obtains a logarithmic growth in
the memory requirement and in the run time for the reversal of an evolutionary
system. Suppose that q = 2 and b = 1 (e.g. leap-frog method). If one has
c = r = 8, i.e. cq = 16 states can be copied to checkpoints, the maximal number
of physical steps that can be reversed equals 32 174. Assume that for q = 4 and
b = 3 (e.g. Milne 4-step method) the equality c = r = 8 is valid. Hence, cq = 32
states can be copied to checkpoints. Then one finds l(c, r) = 70 782. For the
usual case, where one has a fixed amount of memory, i.e. c is constant and r
increases, one finds that l(c, r) grows more or less like the cth power of r.

48 Chapter 3. Serial Reversal Schedules

Summarizing the above one can conclude that for b > 0 some gain can
be achieved applying the new optimal serial reversal schedules for multi-step
recurrences instead of using the mega-step approach described in the beginning
of this section.

3.4 One-step Evolutions with Non-uniform

Step Costs

For the remainder of this chapter only one-step evolutions F combining l phy-
sical steps will be considered. It is supposed that the physical steps have non-
uniform step costs and b = 0 linear arguments as defined in Def. 2.1. The
derived results can be extended easily to the case q > 1 and b = 0, where the
mega-step approach described in the beginning of Section 3.3 can be applied.

3.4.1 Monotony of Partitioning

As seen already in Example 3.1 the optimal serial reversal schedules derived
in Section 3.3 for uniform step costs do not usually lead to the minimal cost
t(0, l, c) in the non-uniform case. Nevertheless because of its meaning described
above the integer r denotes an approximation of the complexity rate t(0, l, c)/l.
To find an optimal serial reversal schedule for non-uniform step costs a search
algorithm has to be used. The technique of dynamic programming [AHU74]
provides a possibility to find with temporal complexity O(cl3) a serial reversal
schedule S that attains t(0, l, c). I.e. one can determine S for reversing l > 1
physical steps with non-uniform step costs using up to c > 1 checkpoints and

tS(0, l, c) = t(0, l, c) = min
1≤l̃<l







l̃−1∑

j=0

tj + t(l̃, l, c−1) + t(0, l̃, c)







in a run time the behavior of which is cubic in l. For example one may apply
the following algorithm to examine all possible serial reversal schedules:

for(s=1;s<=c;s++) /* for all checkpoint */

{ for(d=2;d<=l;d++) /* for all possible distances */

for(i=0;i<=l-d;i++) /* for all possible i */

{ h = i+d;

if (d <= s+1) ... /* some initializations */

else

{ if (s == 1) ... /* some initializations */

else

{ lb_m = i+1;

ub_m = h-1;

part[s][i+h*(h-1)/2] = 0; /* part = next checkpoint */

t[s][i+h*(h-1)/2] = -1;

for(m=lb_m;m<=ub_m;m++)

{ /* tenp = ti[i]+...+ti[m-1]+t(m,h,s-1)+t(i,m,s) */

if (i > 0)

3.4 One-step Evolutions with Non-uniform Step Costs 49

tenp = sum[m-1]-sum[i-1];

else

tenp = sum[m-1];

tenp += t[s-1][m+h*(h-1)/2]+t[s][i+m*(m-1)/2];

if((tenp<t[s][i+h*(h-1)/2])||(t[s][i+h*(h-1)/2]==-1))

{ t[s][i+h*(h-1)/2] = tenp;

part[s][i+h*(h-1)/2] = m;

} } } } } }

which has the stated complexity because of the 4 nested for-loops. The
array part stores the information on which state has to be copied to the next
checkpoint. The array t denotes the values of t(i, h, c). In order to reduce the
run time needed by this algorithm to find an optimal serial reversal schedule
one may apply a property of the checkpoint writings proven in the remainder
of this subsection. For that purpose the partition of the given physical steps
into two sequences that are reversed separately is studied in detail.

Definition 3.3 (Minimal Partition Function). Assume that the given se-
quence of l physical steps has the step costs tj , 0 ≤ j < l. Let c > 1
checkpoints be available. The minimal partition function P (i, h, c) denotes for
0 < i+1 < h ≤ l the minimal state that can be copied to the second checkpoint
such that the minimal cost t(i, h, c) is attained, i.e.

P (i, h, c) ≡ min






i < m < h

∣
∣
∣
∣
∣

m−1∑

j=i

tj + t(m, h, c − 1) + t(i, m, c) = t(i, h, c)






.

Theorem 3.3 (Monotonic Partitioning).
Suppose a sequence of l physical steps with the step costs tj, 0 ≤ j < l, is given.
Let c > 1 checkpoints be available. For 0 < i + 1 < h ≤ l the minimal partition
function P (i, h, c) is monotonic in i and h, respectively.

Proof. For arbitrary i and h with 1 < i + 1 < h < l define

m1 ≡ P (i − 1, h, c), m2 ≡ P (i, h, c), m3 ≡ P (i, h + 1, c) . (3.21)

In order to prove the assertion one has to show that m1 ≤ m2 ≤ m3. To do so
an induction on c will be used:

c = 2:
First, m2 ≤ m3 will be shown. For that the following property of t(i, h, 1), as a
consequence of Lemma 3.2, is needed:

t(i − 1, h + 1, 1) − t(i, h + 1, 1) − (t(i − 1, h, 1) − t(i, h, 1)) =

=
h∑

j=i−1

(h − j)tj −
h∑

j=i

(h − j)tj −





h−1∑

j=i−1

(h − j − 1)tj −
h−1∑

j=i

(h − j − 1)tj





= (h − i + 1)ti−1 − (h − i)ti−1 = ti−1 > 0 .

This provides the inequality

t(i − 1, h + 1, 1) − t(i − 1, h, 1) ≥ t(i, h + 1, 1) − t(i, h, 1) . (3.22)

50 Chapter 3. Serial Reversal Schedules

Assume that m2 > m3 and consider

t̃(i, h, 2) =

m3−1∑

j=i

tj + t(m3, h, 1) + t(i, m3, 2) and

t̃(i, h + 1, 2) =

m2−1∑

j=i

tj + t(m2, h + 1, 1) + t(i, m2, 2) .

The fact t(i, h + 1, 2) ≤ t̃(i, h + 1, 2) yields

t(m3, h + 1, 1) − t(m2, h + 1, 1) ≤
m2−1∑

j=m3

tj + t(i, m2, 2) − t(i, m3, 2) .

Using Inequality (3.22) one obtains

t(m3, h, 1) − t(m2, h, 1) ≤ t(m3, h + 1, 1) − t(m2, h + 1, 1) .

The last two inequalities can be combined to derive

t(m3, h, 1) − t(m2, h, 1) ≤
m2−1∑

j=m3

tj + t(i, m2, 2) − t(i, m3, 2) ,

which implies t̃(i, h, 2) ≤ t(i, h, 2). This is a contradiction to the definition of
m2 in Def. (3.21). Hence, m2 ≤ m3 must be valid.

To show m1 ≤ m2 a second induction on h − i is used. For h − i = 2 it is
easy to check that the assertion is true and that the inequality

t(m − 1, h − 1, 2) − t(m, h − 1, 2) ≤ t(m − 1, h, 2) − t(m, h, 2) (3.23)

is valid for i ≤ m ≤ h − 1, i.e. for m = i or m = i + 1. Suppose that
Inequality (3.23) holds for h̃ − ı̃ ≤ M − 1 and consider h − i = M . Defining

t̄(i − 1, h, 2) ≡
m2−1∑

j=i−1

tj + t(m2, h, 1) + t(i − 1, m2, 2) as well as

t̄(i, h, 2) ≡
m1−1∑

j=i

tj + t(m1, h, 1) + t(i, m1, 2)

and assuming m2 < m1 it follows that t(i, h, 2) ≤ t̄(i, h, 2) because of the
minimum given by t(i, h, 2). Therefore one obtains

t(i, m2, 2) − t(i, m1, 2) ≤
m1−1∑

j=m2

tj + t(m1, h, 1) − t(m2, h, 1) .

For m2 < m1 ≤ h − 1 the Inequality (3.23) holds because of the induction
hypothesis. Hence one has

t(i − 1, m2, 2) − t(i − 1, m1, 2) ≤ t(i, m2, 2) − t(i, m1, 2) .

3.4 One-step Evolutions with Non-uniform Step Costs 51

The last two inequalities yield

t(i − 1, m2, 2) − t(i − 1, m1, 2) ≤
m1−1∑

j=m2

tj + t(m1, h, 1) − t(m2, h, 1)

and one finds t̄(i−1, h, 2) ≤ t(i−1, h, 2). This is a contradiction to the definition
of m1 in Def. (3.21). Therefore m1 ≤ m2 must be valid and the assertion is
proven for h − i = M > 2. In order to perform the next step of the induction
on h − i it is left to show that for all i ≤ m ≤ h − 1

t(m − 1, h − 1, 2) − t(m, h − 1, 2) ≤ t(m − 1, h, 2) − t(m, h, 2) (3.24)

holds. For m with i + 1 ≤ m ≤ h − 1 Inequality (3.24) is valid because of
h − m ≤ h − (i + 1) = M − 1 and the induction hypothesis that provides
Inequality (3.23). Hence, it is left to show that Inequality (3.24) is valid for
m = i. With m4 and m5 defined as

m4 ≡ P (i − 1, h − 1, 2) and m5 ≡ P (i, h − 1, 2)

the induction hypothesis and the properties shown so far yield the relations
m4 ≤ m1 ≤ m2 and m4 ≤ m5 ≤ m2. In the case m1 ≤ m5 the inequalities
t(m1, h − 1, 1) − t(m5, h − 1, 1) ≤ t(m1, h, 1) − t(m5, h, 1) and

t(i − 1, h − 1, 2) ≤
m1−1∑

j=i−1

tj + t(m1, h − 1, 1) + t(i − 1, m1, 2)

hold. The last inequality is valid because t(i− 1, h− 1, 2) denotes the minimal
cost to reverse the physical steps between i − 1 and h − 1. Therefore, it is
possible to conclude that

t(i − 1, h − 1, 2) − t(i, h − 1, 2) ≤

≤
m1−1∑

j=i−1

tj+t(m1, h−1, 1)+t(i−1, m1, 2)−
m5−1∑

j=i

tj −t(m5, h−1, 1)−t(i, m5, 2)

≤
m1−1∑

j=i−1

tj+t(m1, h, 1)+t(i−1, m1, 2)−
m5−1∑

j=i

tj−t(m5, h, 1)−t(i, m5, 2)

≤ t(i−1, h, 2)−t(i, h, 2)

and Inequality (3.24) is proven for m = i. For m5 < m1 assume that the strict
inequality

t(i − 1, h − 1, 2) − t(i, h − 1, 2) > t(i − 1, h, 2) − t(i, h, 2)

is valid. This yields

m1−1∑

j=m4

tj + t(m1, h, 1) + t(i − 1, m1, 2) − t(m4, h − 1, 1) − t(i − 1, m4, 2) <

<

m2−1∑

j=m5

tj + t(m2, h, 1) + t(i, m2, 2) − t(m5, h − 1, 1) − t(i, m5, 2) .

52 Chapter 3. Serial Reversal Schedules

Furthermore, one has t(i, m1, 2) − t(i − 1, m1, 2) ≤ t(i, m5, 2) − t(i − 1, m5, 2)
because of m5 < m1 ≤ h− 1 and the induction hypothesis for m1 − i ≤ M − 1.
Using these inequalities and the minimization property of m4 one finds by
adding the term t(i, m1, 2) − t(i, m1, 2) on the right-hand side

t(m1, h, 1) − t(m2, h, 1) <

<

m2−1∑

j=m1

tj + t(i, m2, 2) − t(i, m1, 2) + t(i, m5, 2) − t(i, m5, 2) −
m5−1∑

j=m4

tj

− t(m5, h−1, 1) − t(i−1, m5, 2) + t(m4, h−1, 1) + t(i−1, m4, 2)

=

m2−1∑

j=m1

tj + t(i, m2, 2) − t(i, m1, 2) + t(i−1, h−1, 2) −
m5−1∑

j=i−1

tj

− t(i−1, m5, 2) − t(m5, h−1, 1)

≤
m2−1∑

j=m1

tj + t(i, m2, 2) − t(i, m1, 2)

because t(i − 1, h − 1, 2) is minimal and hence

m1−1∑

j=i

tj + t(m1, h, 1) + t(i, m1, 2) <

m2−1∑

j=i

tj + t(m2, h, 1) + t(i, m2, 2) .

This implies that the cost for reversing the physical steps between state i and
state h using m1 rather than m2 is lower than t(i, h, 2). This is a contradiction
to the choice of m2 in Equation (3.21). Hence also in the case m5 < m1 the
inequality t(i − 1, h − 1, 2) − t(i, h − 1, 2) ≤ t(i − 1, h, 2) − t(i, h, 2) is valid and
therefore Inequality (3.24) is proven for m = i.

Now time has come to draw conclusions from the results shown so far.
Starting with the inequality

t(i, h + 1, c − 1) − t(i, h, c − 1) ≤ t(i − 1, h + 1, c − 1) − t(i − 1, h, c − 1)

for c = 2 it was shown that m2 ≤ m3. This was applied in a second induction
to prove m1 ≤ m2 and

t(i, h + 1, c) − t(i, h, c) ≤ t(i − 1, h + 1, c) − t(i − 1, h, c) .

Exact the same argument as above can be used to perform the induction step
from c − 1 to c if c > 2, which completes the proof.

The conclusion that can be drawn from Theorem 3.3 is the following. Con-
sider the physical steps between state i and state h as well as m ≡ P (i, h, c).
Hence m equals the minimal partition of the physical steps between state i and
state h such that the minimal cost t(i, h, c) for the reversal is attained. Because
the minimal partition function p is monotonic, the range of possibilities for the
determination of m can be reduced from {i < m < h− 1} to {ml ≤ m < h− 1}
with ml ≡ P (i, h − 1, c). Using m ≤ mu with mu ≡ P (i + 1, h, c) it is possible
to reduce the search interval further to {ml ≤ m ≤ mu}. These reductions can
be used quite efficiently in the algorithm to find one serial reversal schedule
needing the minimal cost t(i, h, c) as shown in the next subsection.

3.4 One-step Evolutions with Non-uniform Step Costs 53

3.4.2 Numerical Examples

Software Available

The routine shown at Page 48 was modified employing the results of the last
theorem. The full source code of this improved algorithm can be found in
Appendix A. Because of the for-loop over d the lower and upper bound of m
are always available such that the search can be reduced correspondingly.

for(s=1;s<=c;s++) /* for all checkpoint */

{ for(d=2;d<=l;d++) /* for all possible distances */

for(i=0;i<=l-d;i++) /* for all possible i */

{ h = i+d;

if (d <= s+1)

... /* initializations as above */

else

{ if (s == 1)

... /* initializations as above */

else

{ /* the only changes: */

lb_j = part[s][i+(h-1)*(h-2)/2];

ub_j = part[s][i+1+h*(h-1)/2];

/* instead of lb_m = i+1; and ub_m = h-1; */

/* part = next checkpoint */

part[s][i+h*(h-1)/2] = 0;

t[s][i+h*(h-1)/2] = -1;

for(m=lb_m;m<=ub_m;m++)

{

/* tenp = ti[i]+...+ti[m-1]+t(m,h,s-1)+t(i,m,s) */

if (i > 0)

tenp = sum[m-1]-sum[i-1];

else

tenp = sum[m-1];

tenp += t[s-1][m+h*(h-1)/2]+t[s][i+m*(m-1)/2];

if((tenp<t[s][i+h*(h-1)/2])||(t[s][i+h*(h-1)/2]==-1))

{ t[s][i+h*(h-1)/2] = tenp;

part[s][i+h*(h-1)/2] = m;

} } } } } }

The behavior of the memory requirement of the modified algorithm as well
as of the original algorithm is equal to O(cl2) because for almost all 1 ≤ s ≤ c
and 0 ≤ i < h ≤ l the cost t(i, h, s) is stored in the array t.

Both algorithms were applied to calculate optimal serial reversal schedules
for different kinds of one-step evolutions with non-uniform step costs. The
resulting improvements using the modified algorithm with respect to a decreased
run time are reported next.

54 Chapter 3. Serial Reversal Schedules

Run-time Tests

In order to test the modified search algorithm four different distributions of the
step costs ti, 0 ≤ i < l, are considered, namely linearly increasing step costs
with ti = 0.05(i + 1), linearly decreasing step costs, i.e. ti = l − 0.05(i + 1),
step costs with a Gaussian distribution ti = l − exp(−0.5(4i/l − 2)2), and
random distributed step costs ti = rand(). For each of these four possibilities
and c = 5, 10, 20 the CPU time to needed by the original algorithm and the
CPU time tm required by the modified algorithm to calculate an optimal serial
reversal schedule are measured. The run times required for the different kinds
of non-uniform step costs are almost the same. Hence, Fig. 3.13 displays the
results achieved only for linearly increasing step costs. A logarithmic scaling

200 500 1000 2000

l1.0e−2

1.0e−1

1.0e+0

1.0e+1

1.0e+2

1.0e+3

Seconds c=20, to
c=10, to
c=5, to

c=20, tm
c=10, tm
c=5, tm

Figure 3.13: CPU times to and tm for 0 < l ≤ 2000 and Linearly Increasing ti

is used for both axes. The run time to of the original algorithm increases very
rapidly. For example to exceeds 2 minutes for all l ≥ 1000 and c = 10, 20. The
run time tm is never greater than 30 seconds for all l ≤ 2000 and c = 5, 10, 20.
One can conclude that the temporal complexity is reduced drastically using the
modified algorithm.

In order to get a better impression of the improvement achieved, the ratio
to/tm is studied. The behavior of the ratio to/tm is similar for all considered
distributions of the step costs. Therefore Fig. 3.14 reports this ratio only for the
random distributed step costs and the different number of checkpoints available.
As can be seen the ratio shows a linear behavior for l ≤ 2000. Hence one can
conclude that the modified search algorithm has a time complexity of only
O(cl2) for the considered examples of step costs. The improvement is caused
by the fact that the interval to search is drastically reduced in consequence
of Theorem 3.3. This is illustrated by Table 3.2 that shows the frequency of

3.4 One-step Evolutions with Non-uniform Step Costs 55

500 1000 1500 2000
l

0

50

100

150

200

Ratio to/tm c = 20
c = 10
c = 5

Figure 3.14: Ratio to/tm for 0 < l ≤ 2000 and Random Distributed Step Costs

different interval sizes for l = 2000 and c = 5, 10, 20 with s denoting the length
of the search interval. If the sizes s could be uniformly bounded in general,
i.e. for an arbitrary distribution of step costs, one would have the temporal
complexity of only O(cl2) for the modified search algorithm.

Linear Increase
s
∖
c 5 10 20

= 0 3.50 % 5.40 % 5.50 %
= 1 96.05 % 94.01 % 94.21 %
= 2 0.40 % 0.40 % 0.24 %
= 3 0.04 % 0.08 % 0.04 %
> 3 0.01 % 0.02 % 0.01 %

Linear Decrease
s
∖
c 5 10 20

= 0 0.01 % 0.12 % 0.51 %
= 1 99.98 % 99.76 % 99.13 %
= 2 0.01 % 0.11 % 0.26 %
= 3 0.00 % 0.01 % 0.09 %
> 3 0.00 % 0.00 % 0.01 %

Gaussian Distribution
s
∖
c 5 10 20

= 0 11.99 % 16.72 % 16.10 %
= 1 87.89 % 83.17 % 83.82 %
= 2 0.10 % 0.10 % 0.07 %
= 3 0.02 % 0.01 % 0.01 %
> 3 0.00 % 0.00 % 0.00 %

Random Distribution
s
∖
c 5 10 20

= 0 91.1 % 92.3 % 91.3 %
= 1 1.2 % 1.0 % 1.4 %
= 2 0.8 % 0.6 % 0.8 %
= 3 0.7 % 0.5 % 0.7 %
> 3 6.2 % 5.6 % 5.8 %

Table 3.2: Search Interval Sizes in Improved Search Algorithm

3.4.3 Conclusions

Having the new theoretical results of this thesis at hand it is possible to reduce
the run time of the search algorithm to find an optimal serial reversal schedule

56 Chapter 3. Serial Reversal Schedules

for non-uniform step costs drastically. For example if one has 3000 physical
steps with linearly increasing step costs to be reversed and 10 checkpoints that
can be used the CPU-time needed for the search is shortened from over one hour
to only 42 seconds on a Pentium II PC with 350 Mc/s and 256 MByte RAM.

The run times achieved with the modified algorithm for the quite different
step costs considered in the last subsection suggest that a general reduction of
the temporal complexity from O(cl3) to O(cl2) is possible using the improve-
ments derived above. Also the sizes of the search intervals cause this presump-
tion. Nevertheless, so far there is no proof that the temporal complexity of
the modified algorithm is O(cl2). This will be the subject of further work in
the future.

Chapter 4

Parallel Reversal Schedules

4.1 Introduction and Notations

On one hand serial reversal schedules allow an enormous reduction of the mem-
ory required to reverse a given evolutionary system F with the basic approach
described in the previous chapter. On the other hand one has to pay for this
improvement in form of a greater temporal complexity. If any increase of the
time needed to reverse F is not acceptable the usage of sufficient processors
provides the possibility to reverse the evolutionary system F with drastically
reduced spatial complexity and minimal temporal complexity. Therefore this
chapter has the development of optimal parallel reversal schedules for a given
number of processors and checkpoints as subject.

It will be assumed throughout that the one-step evolution F to be reversed
consists of l physical steps with uniform step costs ti = ω ∈ R. Furthermore, it
will be supposed that also the time t̂i needed to perform the recording steps F̂i

and the time t̄i needed to perform the reverse steps F̄i are constant, i.e. there
exist ω̂, ω̄ ∈ R with t̂i = ω̂ and t̄i = ω̄ for all 0 ≤ i < l. Then ω may serve as
measuring unit in time and one has that

t̂i = t̂ ω and t̄i = t̄ ω

with some t̂, t̄ ∈ R. Because each recording step F̂i stores the intermediates
needed for the reverse step onto the tape besides the evaluation of the physical
step Fi it follows that t̂ ≥ 1. Furthermore, it is assumed that the evaluation
of one reverse step F̄i is at least as time consuming as the evaluation of one
physical step Fi and hence t̄ ≥ 1. Using these assumptions without loss of
generality one may normalize the temporal complexities to

ti = 1, t̂i = t̂ ≥ 1, and t̄i = t̄ ≥ 1

for all 0 ≤ i < l. Here, one faces the first big difference between serial and par-
allel reversal schedules. Only one processor is available to perform the recording
steps and the reverse steps in the serial case. Hence it does not matter whether
they have the same temporal complexity or not because nothing else can be
done while a recording step or a reverse step is performed. If more than one
processor is used in the reversal it is important to know the time required to

57

58 Chapter 4. Parallel Reversal Schedules

perform a particular recording or reverse step in order to manage the other
processors appropriately.

Suppose the given evolutionary system F comprises l physical steps and
determines the temporal complexities t̂ and t̄. Then the minimal time tM
required by a parallel reversal schedule S to reverse F equals

tM ≡ (l − 1) + t̂ + l t̄ = (t̄ + 1)l + t̂ − 1

because one has to perform at least one forward sweep from the initial state 0
to the penultimate state l− 1. Since ti ≡ 1, at least l− 1 time units are needed
for that. Then the recording step F̂l−1 has to be performed. This requires t̂
time units. Because each reverse step F̄i is based on the results of the reverse
step F̄i+1 for l − 1 > i ≥ 0 they cannot be parallelized. Therefore the minimal
time to perform the l reverse steps that are needed is given by l t̄. Hence it is
shown that tM equals (l − 1) + t̂ + l t̄. This minimal temporal complexity can
be used to characterize parallel reversal schedules.

Definition 4.1 (Feasible Parallel Reversal Schedule). Let F be the one-
step evolution under consideration that combines l physical steps and deter-
mines the parameters t̂ and t̄. A parallel reversal schedule S to reverse F is
called feasible if the time needed by S to perform the reversal of F equals
tM = (l − 1) + t̂ + l t̄.

Hence a feasible parallel reversal schedule is optimal with respect to the run
time needed for reversing F , but not necessarily with respect to the processors
and checkpoints required.

From the formula (t̄+1)l+ t̂−1 follows that the value t̄ has an important in-
fluence on the minimal time tM for reversing a given sequence of physical steps.
Therefore it make sense to reduce t̄ at the expense of t̂. For example one can
use the technique of preaccumulation (see e.g. [Gri00] for adjoint computation).
Here, all intermediates that do not depend on the value of the previous reverse
step but are needed for the next one are calculated already by the corresponding
recording step. In case of adjoint calculations the preaccumulation could eval-
uate for instance local derivatives. Thus it becomes possible to reduce t̄ to 1 by
modifying the recording steps appropriately. Hence it is important to examine
the case t̄ = 1. Moreover, on this account t̂ � 1 represent a relevant research
topic, because t̂ could possibly be increased drastically by preaccumulation.

For developing feasible parallel reversal schedules an obvious idea could be
to use a bisection strategy.

Example 4.1 (Bisection strategy). If the one-step evolution F under considera-
tion combines 8 physical steps with t̂ = t̄ = 1 this technique yields the feasible
parallel reversal schedule shown in Fig. 4.1. Here, 4 processors and 3 check-
points are employed to perform the reversal of F . The initial state is copied
to the first checkpoint. Then a processor performs a forward sweep to the 4th
state, i.e. the midpoint of 9 states. This state is copied to the second checkpoint.
After that a forward sweep is performed to the 6th state, i.e. the midpoint of
state 4 and 8. The 6th state is copied to the third checkpoint. After another
physical step the first recording step is performed. Subsequently the calculation

4.1 Introduction and Notations 59

PSfrag replacements

l

t
1

1 10

5

8

16

Figure 4.1: Parallel Reversal Schedule using Bisection Strategy

of the reversal of F starts. The number of processors needed to execute this
reversal schedule is given by the maximal number of slanted lines crossing any
vertical line. Therefore three processors are required by the parallel reversal
schedule displayed in the last figure.

The only published article dealing with parallel reversal schedules so far
considers a slightly more general idea, namely an uniform distribution of the
checkpoint positions [Ben96]. The corresponding implementation DAP [Ben95]
written in C uses PVM [GBD+94] to control the processors and to manage the
communication between them.

Naturally, the question arises if the parallel reversal schedules determined
by the bisection strategy or the recursive partition with fixed ratio as in [Ben96]
are optimal in terms of the number of processors and the number of checkpoints
required. The answer is “No” because, for example, 3 processors and 2 check-
points suffice to reverse the evolutionary system F of Example 4.1 as shown
in Fig. 4.2. Here, a slightly different reversal technique was chosen, namely a

PSfrag replacements

l

t
1

1 10

5

8

16

Figure 4.2: Improved Parallel Reversal Schedule

checkpoint writing of the fifth and subsequently of the third state.
Obviously, one would like to find an optimal reversal schedule, i.e. one that

requires a minimal number of resources. As a first step this chapter determines
the maximal number of physical steps that can be reversed with a given num-
ber of processors and checkpoints. For the development of the corresponding

60 Chapter 4. Parallel Reversal Schedules

optimal reversal schedules from now on only uniform one-step evolutions are
considered. Hence the temporal complexity of all recording steps and all re-
verse steps are given by the integer constants t̂, t̄ ∈ N\{0}, respectively (see
Def. 2.5). Naturally, this means a restriction of the evolutionary systems under
consideration, but allows the following

Definition 4.2 (Computational Cycle). The time needed to reverse l physi-
cal steps with the corresponding temporal complexities t̂, t̄ ∈ N using a feasible
parallel reversal schedule can be divided into l−1+ t̂+ l t̄ computational cycles.
During each computational cycle at least one complete physical step Fi, one
part of a recording step F̂i, or one part of a reverse step F̄i is performed.

In order to simplify the notation in the proofs of this chapter the compu-
tational cycles are numbered in reverse order. This will be illustrated by the
next example.

Example 4.2 (Reversal Schedule for l = 9, t̂ = 2, and t̄ = 3). Suppose the
uniform one-step evolution F under consideration consists of 9 physical steps.
Furthermore, one has t̂ = 2 and t̄ = 3 as temporal complexities for the recording
and reverse steps, respectively. Then Fig. 4.3 shows the reversal trace belonging
to one feasible parallel reversal schedule to reverse F with 3 processors and 2
checkpoints. Obviously, there are 37 = 8+2+9 · 3 computational cycles j with

PSfrag replacements

l

t1

1 10 20

9

30

slope t̄

slope −t̂

Figure 4.3: Feasible Parallel Reversal Schedule for l = 9, t̂ = 2, and t̄ = 3

j = −t+38. Because of this reverse numbering in the first computational cycle
j = 1 only one processor performs the last part of the reverse step F̄0, in the
9th computational cycle one checkpoint stores the initial state 0, one processor
performs F0, and another one a part of the reverse step F̄2. During the last,
i.e. the 37th, computational cycle one checkpoint stores the initial state and
one processor performs F0. Hence the number of the computational cycles are
in reverse order compared to the numbering of the time units needed for the
reversal. As mentioned before this has only technical reasons in the notation of
the proofs to follow.

In order to analyze the parallel reversal schedules in more detail it will be
studied how many processors and checkpoints are used in each computational
cycle. For that purpose one can use a

4.1 Introduction and Notations 61

Definition 4.3 (Resource Profile R(S)). Suppose S is a feasible parallel re-
versal schedule for the uniform one-step evolution F . Let F comprise l physical
steps and determine the temporal complexities t̂ and t̄. The resource profile
R(S) with

R(S) ≡
(
cj , pj , sj

)

1≤j≤(l−1)+t̂+l t̄

specifies for the computational cycle j, 1 ≤ j ≤ (l − 1) + t̂ + l t̄, the number cj

of checkpoints used in j, the number pj of processors used in j, and the sum
sj = cj + pj of both.

Example 4.3 (Possible Resource Profile for l = 5, t̂ = 1, and t̄ = 1). The
given uniform one-step evolution F comprises 5 physical steps and determines
the temporal complexities t̂ = 1 and t̄ = 1. Figure 4.4 shows one possible
parallel reversal schedule S for F . Furthermore, the corresponding resource

PSfrag replacements
l

t1

1

1

1

1

5

10

sj

pj

cj

Figure 4.4: Resource Profile

profile R(S) is illustrated. As can be seen first sj increases monotonously in
a warm-up phase, then reaches a plateau, and finally decreases monotonically
in a cool-down phase. A corresponding behavior can be observed for parallel
reversal schedules that reverse the maximal number of physical steps for a given
number of processors and checkpoints that are available.

Definition 4.4 (Ordering of Resource Profiles). Suppose the given uni-
form one-step evolution F comprises l physical steps and determines the tempo-
ral complexities t̂ and t̄. Let S1 and S2 be two parallel reversal schedules for F
with the same number of computational cycles. The parallel reversal schedule
S1 uses no more resources than S2 if one has

R(S1) 3 sj ≤ sj ∈ R(S2) for all j ∈ {1, . . . , (l − 1) + t̂ + l t̄} .

This will be denoted as R(S1) ≤ R(S2).

62 Chapter 4. Parallel Reversal Schedules

Throughout this chapter it is assumed that the available resources have the
following property:

Definition 4.5 (Processor-Checkpoint Convertibility). If a resource can
be used in each computational cycle either as checkpoint or as processor it has
the property of processor-checkpoint convertibility.

The remainder of this chapter is organized as follows. In Section 4.2 some
basic properties of feasible parallel reversal schedules are shown. It is assumed
that during each computational cycle k resources each of which can be used
either as processor or as checkpoint are available. For all k ∈ N and given
temporal complexities t̂ and t̄ an upper bound of the maximal number lk of
physical steps that can be reversed with k resources is proven.

In Section 4.3 feasible parallel reversal schedules are constructed that attain
the proven upper bound of physical steps for k resources with the property of
processor-checkpoint convertibility. This is a rather technical part of this thesis.
Then the maximal number of physical steps that can be reversed with a given
number of resources is determined.

Finally, Section 4.4 presents some illustrations of the results achieved and
draws several conclusions.

In order to get a first idea of the maximal number lk of physical steps
that can be reversed with up to k resources an exhaustive search algorithm
was applied. This algorithm constructed implicitly all possible parallel reversal
schedules for a given number of processors and checkpoints to determine the
maximal number of physical steps that could be reversed with these resources.
In spite of the fact that a sophisticated storage method was used to decide if a
particular parallel reversal schedule has been examined already the time needed
to determine the maximal number of physical steps that can be reversed grew
exponentially with the number of processors and checkpoints available. Even
on a SGI Origin 2000 it was not possible to find for t̂ = t̄ = 1 the maximal
number lk of physical steps that can be reversed for more than 9 resources.
Nevertheless the available results for k ≤ 9 resources that have the property
of processor-checkpoint convertibility provided sufficient insight to develop the
theory presented in the Sections 4.2 and 4.3.

4.2 Structural Properties and an Upper Bound

For the serial reversal schedules considered in the previous chapter the prop-
erty of checkpoint persistence yielded the possibility to split a serial reversal
schedule into two parts. This splitting forms an important ingredient for the
proofs of the minimal number of physical steps and the minimal number of
checkpoint writings performed during the reversal. In order to analyze feasible
parallel reversal schedules the same strategy is applied, namely the splitting of
one feasible parallel reversal schedule into smaller ones. Therefore the follow-
ing definition describes how two feasible parallel reversal schedules can form
another one.

4.2 Structural Properties and an Upper Bound 63

Definition 4.6 (Composition of Parallel Reversal Schedules). Assume
the physical steps under consideration determine the temporal complexities
t̂ ∈ N to perform one recording step and t̄ ∈ N to perform one reverse step. Let
S1 and S2 be two feasible parallel reversal schedules to reverse l1 and l2 of the
given physical steps, respectively. The composition S = S1 +S2 of S1 and S2 is
defined as a feasible parallel reversal schedule S that reverses l ≡ l1+l2 physical
steps in (t̄ + 1)l + t̂− 1 computational cycles by performing the following tasks:

i: Copy state 0 to a checkpoint in the computational cycle (t̄ + 1)l + t̂ − 1.

ii: Perform a forward sweep from the initial state 0 to state l2 during the
computational cycles (t̄ + 1)l + t̂ − 1, . . . , (t̄ + 1)l + t̂ − l2.

iii: Start S1 at state l2 to reverse the physical steps l2, . . . , l − 1 in the com-
putational cycle j1 ≡ (t̄ + 1)l + t̂ − 1 − l2.

iv: Start S2 at the initial state 0 to reverse the physical steps 0, . . . , l2 − 1 in
the computational cycle j2 ≡ (t̄ + 1)l2 + t̂ − 1.

Figure 4.5 depicts the resulting parallel reversal schedule S for given S1

and S2 each of which is illustrated with dash-doted lines. As can be seen S isPSfrag replacements

l

t

l

l2
S1

S2

Figure 4.5: Parallel Reversal Schedule S̃

feasible. The computational cycle j1 and j2 chosen in tasks iii and iv to start S1

and S2, respectively, ensures that the reverse steps can be performed without
an interruption. Moreover one finds that the composition of feasible parallel
reversal schedules is neither associative nor commutative.

The resource profile R(S) of S = S1 + S2 can be determined easily. In
detail one obtains with (cj,i, pj,i, sj,i) ∈ R(Si) for the computational cycles
1 ≤ j ≤ t̄ l2 of S that

R(S) 3
(
cj , pj , sj

)
=
(
cj,2, pj,2, sj,2

)
.

For t̄ l2 < j ≤ min{j1, j2}, i.e. the overlapping region of S1 and S2, follows

R(S) 3
(
cj , pj , sj

)
=
(

cj−t̄ l2,1 + cj,2, pj−t̄ l2,1 + pj,2, sj−t̄ l2,1 + sj,2
)

.

If j2 < j1 the parallel reversal schedule S1 starts temporally before S2. Hence
one has for min{j1, j2} < j ≤ max{j1, j2}

R(S) 3
(
cj , pj , sj

)
=
(

cj−t̄ l2,1, pj−t̄ l2,1, sj−t̄ l2,1
)

.

64 Chapter 4. Parallel Reversal Schedules

Otherwise it follows for min{j1, j2} < j ≤ max{j1, j2} that

R(S) 3
(
cj , pj , sj

)
=
(
cj,2, pj,2, sj,2

)
.

During the remaining computational cycles only one processor and one check-
point are needed. Hence one finds for max{j1, j2} < j ≤ (t̄ + 1)l + t̂ − 1 that

R(S) 3
(
cj , pj , sj

)
= (1, 1, 2) .

For serial reversal schedules one has the property of checkpoint persistence as
mentioned above. Throughout this chapter is assumed that there are k available
resources, which have the property of processor-checkpoint convertibility. Then
a quite similar property, therefore also called “Checkpoint Persistence”, can be
proven for parallel reversal schedule.

Lemma 4.1 (Checkpoint Persistence).
Let S̃ be a parallel reversal schedule to reverse l physical steps. Assume that
while executing S̃ a checkpoint converts into a processor in order to perform a
forward sweep and is used subsequently again as checkpoint. Then there exists

PSfrag replacements

processorsprocessors

checkpoint

checkpoint

checkpoint

checkpoint

Schedule S̃ Schedule S

Figure 4.6: Transformation of S̃ into S

a parallel reversal schedule S with R(S) ≤ R(S̃) to reverse l physical steps such
that the checkpoint is used only as checkpoint.

Proof. Figure 4.6 depicts this situation, where the checkpoint is drawn as black
line. The behavior of the particular checkpoint in the parallel reversal schedule
S̃ is illustrated again by Fig. 4.7. In the grey region each forward sweep starting

Figure 4.7: Domain of S̃ to Change

there and reaching the lower boundary of the grey region can start also corre-
spondingly from the modified checkpoint of S. Hence all other forward sweeps
and each checkpoint writing in the grey domain are then useless and can be
deleted. Obviously the number of computational cycles needed is the same for
S̃ and S.

4.2 Structural Properties and an Upper Bound 65

For the computational cycles that are different in S̃ and S one finds the
following facts. The parallel reversal schedule S needs one processor to eval-
uate the part of the forward sweep that forms the left boundary of the grey
region and subsequently one checkpoint that represents the lower boundary of
the grey domain. In the corresponding computational cycles S̃ utilizes at least
one checkpoint that forms the upper boundary of the grey domain and after
that at least one processor in order to perform the forward sweep that repre-
sents the right boundary of the grey domain. Therefore during the modified
computational cycles the number of resources used by S is less than or equal
to the number of resources used by S̃.

With respect to the processors utilized in a parallel reversal schedule one
can show the following corresponding property:

Lemma 4.2 (Processor Persistence).
Let S̃ be a parallel reversal schedule to reverse l physical steps. Assume that
while executing S̃ a processor performs a forward sweep, converts into a check-
point, and is used subsequently again for a forward sweep. Then there exists a

PSfrag replacements

processorsprocessors

checkpoint

checkpoint

checkpoint

checkpoint

checkpoint

checkpoint

Schedule S̃ Schedule S

Figure 4.8: Transformation of S̃ into S

parallel reversal schedule S with R(S) ≤ R(S̃) to reverse l physical steps such
that the processor is used only for the two forward sweeps.

Proof. Figure 4.8 depicts this situation, where the processor is drawn as black
line. The behavior of the particular processor in the parallel reversal schedule S̃
is illustrated again by Fig. 4.9. In the grey region each checkpoint writing that

Figure 4.9: Domain of S̃ to Modify

is performed can be executed also during the forward sweep in S that forms
the right boundary of the grey region if the stored state is used in the further
reversal process. Therefore all other checkpoint writings and each forward sweep
in the grey domain are useless and can be deleted. Obviously the number of
computational cycles needed is the same for S̃ and S.

Consider the computational cycles that are different in S̃ and S. During the
execution of these computational cycles S uses one checkpoint that forms the

66 Chapter 4. Parallel Reversal Schedules

upper boundary of the grey domain and subsequently one processor in order
to perform the forward sweep that represents the right boundary of the grey
domain. For the evaluation of the same computational cycles S̃ uses at least one
processor performing the forward sweep that forms the left boundary of the grey
domain. After that at least one checkpoint that represents the lower boundary
of the grey domain is used by S̃. Hence during the modified computational
cycles the number of resources used by S is less than or equal to the number of
resources used by S̃.

From the last two lemmas one can conclude without loss of generality that
in a parallel reversal schedule a forward sweep ends always at an appropriate
recording step. The same is true for each checkpoint writing, i.e. a checkpoint
is held until the state saved in this checkpoint is used to start a recording step.
Moreover, the last two lemmas are applied to prove the following important
property of feasible parallel reversal schedules, namely the splitting into two
smaller ones.

Theorem 4.1 (Binary Decomposition).
For arbitrary temporal complexities t̂, t̄ ∈ N let S̃ be a feasible parallel reversal
schedule to reverse l ≥ 2 physical steps. Then there exists a feasible parallel
reversal schedule S for the reversal of l physical steps, which is the composition
of two feasible parallel reversal schedules S1 and S2. Furthermore, R(S) ≤ R(S̃)
is valid.

Proof. If S̃ satisfies already the assertion nothing needs to be shown. Therefore
assume that S̃ does not have the desired structure. Then S̃ can be easily
transformed to one of the feasible parallel reversal schedules S̃ depicted in
Fig. 4.10 or in Fig. 4.11. Here, at least one checkpoint writing is performed
by the forward sweep from the initial state to state l − 1. It is not of interest

PSfrag replacements

ll

tt

Schedule SSchedule S̃

Figure 4.10: First Possible Structure of S̃ and the Resulting S

what happens inside the dark grey and light grey domain of S̃, respectively, but
it is easy to simplify them to the dark grey and light grey domain of S. The
properties checkpoint persistence and processor persistence shown in the last
two theorems can be applied. Therefore, the parallel reversal schedule S can
be constructed as depicted in Fig. 4.10 and Fig. 4.11, respectively, according
to the proofs of the Theorems 4.1 and 4.2. This yields the desired structure
of S, because then S is given as composition of two feasible parallel reversal

4.2 Structural Properties and an Upper Bound 67

PSfrag replacements

ll

tt

Schedule SSchedule S̃

Figure 4.11: Second Possible Structure of S̃ and the Resulting S

schedules S1 and S2. Moreover, it is proven that each computational cycle of
S needs no more processors and checkpoints that the corresponding one of S̃.

As a second important property of parallel reversal schedules it is possible
to show that the number of processors and checkpoints grows monotonously
from the first checkpoint writing up to the first recording step. This assertion
will be proven in the next

Theorem 4.2 (Monotony of Resource Requirements before Vertex).
For arbitrary temporal complexities t̂, t̄ ∈ N let S̃ be a feasible parallel rever-
sal schedule for l physical steps. Then there exists a feasible parallel reversal
schedule S to reverse l physical steps, such that R(S) ≤ R(S̃). Moreover each
computational cycle j = t̄ l +2, . . . , (t̄+1)l + t̂− 1 of S needs no more resources
than the preceding computational cycle j−1 of S. I.e. the resource profile R(S)
is monotonously decreasing in the last l + t̂ − 1 computational cycles.

Proof. If S̃ has already the monotonously decreasing resource profile nothing
has to be proven.

Therefore assume that the assertion does not hold for S̃. An appropriate
parallel reversal schedule S can be constructed using the given schedule S̃ in the
following way. First define S ≡ S̃. Determine the minimal computational cycle
jl ∈ {t̄ l + 2, . . . , (t̄ + 1)l + t̂ − 1} of S̃, where more processors and checkpoints
are needed than in the computational cycle jl−1. This jl exists because S̃ does
not fulfil the assertion.

PSfrag replacements

jljljljljl

a b c d e

Figure 4.12: Reasons for Increase in Applied Resources

Figure 4.12 shows all possibilities that could cause an increase in the number
of resources that are used. First one state could be stored in a checkpoint during

68 Chapter 4. Parallel Reversal Schedules

jl but this state is not used in jl − 1 (see possibility a). One can delete this
checkpoints in jl of S without any effect on the reversal process. Second a
processor could perform a physical step, a recording step or a reverse step the
result of which is not used in jl − 1 (see possibilities b, c, d). Therefore one
can delete this evaluation in jl of S without any effect on the reversal process.
Third a processor and a checkpoint could merge in jl (see possibility e). Then
either the processor or the checkpoint can be deleted in jl of S without any
influence on the reversal process.

These modifications can be repeated no more than l + t̂ − 3 times. As a
consequence of the elimination process one has that each computational cycle
j with j = t̄ l + 2, . . . , (t̄ + 1)l + t̂ − 1 of the feasible parallel reversal schedule
S needs no more processors and checkpoints than the preceding computational
cycle j−1. Furthermore, it is obvious that a computational cycle of S does not
use more processors and checkpoints than the corresponding one of S̃. Hence
the assertion is proven.

Having these theoretical results at hand, it is possible to derive the main
result of the section. An upper bound for the maximal number of physical steps
that can be reversed with up to k resources available in each computational cycle
will be proven. As throughout it is supposed that during a computational cycle
a resource can be utilized either as processor or as checkpoint.

Theorem 4.3 (Upper Bound of Physical Steps to Be Reversed).
For arbitrary temporal complexities t̂, t̄ ∈ N let k ∈ N denote the number of
available resources each of which has the property of processor-checkpoint con-
vertibility. For the maximal number lk of physical steps that can be reversed by
any conceivable feasible parallel reversal schedule with up to k resources in each
computational cycle the following upper bound is valid:

lk ≤
{

k if k < 2 + t̂/t̄

lk−1 + t̄ lk−2 − t̂ + 1 else
. (4.1)

Proof. First it will be shown that lk ≤ k for k < 2 + t̂/t̄. Second an induction
on k is used to prove lk ≤ lk−1 + t̄ lk−2− t̂+1 for k ≥ 2+ t̂/t̄. Thus the assertion
will be verified.

Let k be smaller than 2 + t̂/t̄, i.e. k ≤ 2 + b(t̂ − 1)/t̄c. First assume that
t̂ ≤ t̄ and therefore k ∈ {1, 2}. In this case it is obvious that for k = 1
only one physical step can be reversed and for k = 2 only two physical steps.
Now suppose that t̂ > t̄. Let S be a feasible parallel schedule to reverse lk
physical steps with up to k resources. Set j ≡ (t̄ − 1)lk + 1, i.e. j denotes
the computational cycle during which the last part of the reverse step F̄lk−1 is
performed. One processor has to perform this part of F̄lk−1. To make the results
for the next reverse steps available in time r ≡ min{k−1, dt̂/t̄ e} processors are
applied to perform the corresponding recording steps in the computational cycle
j. Hence if r = k − 1 it follows that r + 1 = k processors are needed for the
recording steps and the reverse step. Therefore no checkpoint can store the
initial state in the computational cycle j. For that reason it is impossible to
start a forward sweep or a recording step from the initial state anymore. Hence

4.2 Structural Properties and an Upper Bound 69

only k physical steps can be reversed. If r = dt̂/t̄ e = b(t̂ − 1)/t̄c + 1 one has
b(t̂ − 1)/t̄c + 1 ≤ k − 1 ≤ 1 + b(t̂ − 1)/t̄c. Hence b(t̂ − 1)/t̄c + 2 = k processors
are needed to perform the recording steps and the reverse step. Once more
no checkpoint can store the initial state in the computational cycle j and it is
impossible to start a forward sweep or a recording step from the initial state
anymore. Therefore again only k physical steps can be reversed.

Now let k be equal to 2 + dt̂/t̄ e. It must be shown that the inequality
lk ≤ (t̄ + 1)k − 2t̄− t̂ is valid. Suppose S is a feasible parallel reversal schedule
that reverses lk physical steps with up to k resources. Consider again the
computational cycle j with j ≡ (t̄− 1)lk + 1, where the last part of the reverse
step F̄lk−1 is performed. In the same computational cycle r ≡ dt̂/t̄ e processors
are applied to perform the recording steps needed to provide the data for the
next reverse steps in time. Hence only k−1 processors are used for the recording
steps and the reverse step. Therefore a checkpoint can store the initial state. In
the computational cycle j ≡ (t̄ − 1)lk the processor performing F̂lk−2 becomes
available. Because all other processors perform a recording or a reverse step,
respectively, the free processor cannot be used as a checkpoint elsewhere. Hence
the only possibility is to use this free processor to perform a forward sweep
starting at the initial state succeeded by a recording step. This forward sweep
and the recording step require lk − k + t̂ computational cycles. It is finished
in time such that the reversal can be executed without any interruption if
lk − k + t̂ = (k − 2)t̄ because (k − 2)t̄ computational cycles are needed for the
k − 2 reverse steps evaluated after F̂lk−2 is completed. The last equality yields
lk = (t̄ + 1)k − 2t̄ − t̂ and hence lk ≤ lk−1 + t̄ lk−2 − t̂ + 1 is proven.

If k > 2+dt̂/t̄ e an induction on k will be used to show the upper bound (4.1).
Since k > 3 it follows that lk > 3. Hence, among all feasible parallel reversal
schedules to reverse the maximal number lk of physical steps with up to k
processors and checkpoints applied at any time there is at least one feasible
parallel reversal schedule S that is a composition of two feasible parallel reversal
schedules S1 and S2 as shown by Fig. 4.13 because of Theorem 4.1. Let lS1

PSfrag replacements

l

t

S1

S2

start up
︷ ︸︸ ︷

front reverse
︷ ︸︸ ︷

overlap
︷ ︸︸ ︷

tail reverse
︷ ︸︸ ︷

vertex of S and S1

vertex of S2

Figure 4.13: Special Structure of S

denote the number of physical steps reversed by S1 and lS2 the number of
physical steps reversed by S2. One has lk = lS2 + lS1 as well as lS1 ≤ lk−1

70 Chapter 4. Parallel Reversal Schedules

because one checkpoint stores the initial state during the reversal performed
by S1. Hence at most k − 1 processors and checkpoints are available in each
computational cycle of S1.

In the remainder of this proof one has to distinguish two possibilities, namely
the case lS1 > lk−2 and the case lS1 ≤ lk−2. In the former instance it will be
shown that lS2 ≤ t̄ lk−2 − t̂ + 1. In the latter instance the assertion is true
if one has lS2 ≤ lk−1 + t̄ lk−2 − t̂ + 1 − lS1 . Otherwise a reversal schedule is
constructed that fulfils either lS1 > lk−2 and lS2 ≤ t̄ lk−2 − t̂ + 1 or lS1 ≤ lk−2

and lS2 ≤ lk−1 + t̄ lk−2 − t̂ + 1 − lS1 .

First suppose that lS1 > lk−2 is valid. It follows that there are at least
t̄(lk−2 + 1) computational cycles between the vertex of S2 and the vertex of S.
The computational cycles j of S with j = t̄ lS2 +1, . . . , (t̄+1)lS2 + t̂−1 form the
overlap of S1 and S2 as depicted in Fig. 4.13. During each computational cycle
j in the overlap at least one checkpoint stores the initial state and one processor
performs the forward sweep to state lS2 − 1. It follows that S1 utilizes in the
overlap at most k − 2 resources. Therefore the first lS2 + t̂ − 1 computational
cycles of S1 employ no more than k − 2 processors and checkpoints. It will be
shown next that lS2 ≤ t̄ lk−2 − t̂ + 1 is valid. Suppose lS2 > t̄ lk−2 − t̂ + 1, an
assumption, which will lead to a contradiction. One obtains

lS2 + t̂ − 1 > t̄lk−2 − t̂ + 1 + t̂ − 1 = t̄lk−2,

i.e. lS2 + t̂ − 1 = t̄ lk−2 + r with r ∈ N and r ≥ 1. Let  be the counter of the
computational cycles in S1. From the last inequality follows that S1 needs no
more than k− 2 resources during the computational cycles  = 1, . . . , t̄ lk−2 +1.
During these computational cycles the vertex of S1 is not reached because there
are at least t̄(lk−2 + 1) computational cycles between the vertex of S1 and the
vertex of S2. These facts are exploited for the construction of a parallel schedule
S̃1 to reverse lk−2 + 1 physical steps such that S̃1 needs no more than k − 2
processors and checkpoints at any time. This will yield a contradiction to the
definition of lk−2.

The first t̄ lk−2 + 1 computational cycles of S̃1 are identical to the first
t̄ lk−2 + 1 computational cycles of S1. Hence during these computational cycles
no more than k−2 processors and checkpoints are applied. Let ̃ be the counter
of the computational cycles in S̃1. In the computational cycle ̃ = t̄ lk−2 + 1
of S̃1 one processor performs the last part of the reverse step F̄lk−2

. This pro-
cessor is used during the t̄ computational cycles ̃ = t̄ lk−2 + 1, . . . t̄ lk−2 + t̄
for evaluating the reverse step F̄lk−2

. Furthermore, there are some proces-
sors performing recording steps. After the completion of the recording step
each processor becomes a checkpoint for the remaining computational cycles.
All other processors of the computational cycle ̃ = t̄ lk−2 + 1 become also
checkpoints during the remaining computational cycles of S̃1. Furthermore,
all checkpoints remain checkpoints. The processor performing the reverse step
F̄lk−2

is used also for the recording step F̂lk−2
in the t̂ computational cycles

̃ = t̄ lk−2 + t̄ + 1, . . . , t̄ lk−2 + t̄ + t̂. Subsequently it is utilized for the forward
sweep from the initial state to state lk−2 during the last lk−2 computational cy-
cles of S̃1. This forward sweep performs all necessary checkpoint writings. The

4.2 Structural Properties and an Upper Bound 71

PSfrag replacements

1

1

t

l

̃ = t̄ lk−2 + 1

10

10 20 30

5

40

50
60

Figure 4.14: Resulting Parallel Reversal Schedule S̃1

described construction principle is depicted in Fig. 4.14, where the fat slanted
lines mark the physical steps performed in S1. It follows that the feasible paral-
lel reversal schedule S̃1 needs no more than k−2 processors and checkpoints for
the reversal of lk−2 + 1 physical steps. This is a contradiction to the definition
of lk−2. Hence the inequality lS2 > t̄ lk−2 − t̂ + 1 cannot be true. Therefore one
has

lk = lS2 + lS1 ≤ t̄ lk−2 − t̂ + 1 + lk−1

and the assertion is proven.

Second assume that lS1 ≤ lk−2. If lS2 ≤ lk−1 + t̄ lk−2− t̂+1− lS1 one obtains

lk = lS2 + lS1 ≤ lk−1 + t̄ lk−2 − t̂ + 1

and the assertion is proven. If lS2 > lk−1 + t̄ lk−2 − t̂ + 1 − lS1 it follows that

lS2 ≥ lk−1 + (t̄ − 1)lk−2 − t̂ + 2 ≥ t̄ lS1 − t̂ + 2 . (4.2)

This yields the inequality lS2 + t̂− 1 ≥ t̄ lS1 + 1. As before one obtains that S1

needs no more than k − 2 processors and checkpoints in the overlap. Further-
more, one finds that each computational cycle  = 1, . . . , t̄ lS1 +1 of S1 needs no
more than k − 2 processors and checkpoints. It follows from Theorem 4.2 that
there exists a feasible parallel schedule S̃1 for the reversal of lS1 physical steps
such that R(S̃1) ≤ R(S1). Moreover no more than k − 2 resources are needed
in the last lS1 + t̂ − 1 computational cycles of S̃1. Therefore in the overlap
and in the front reverse as depicted in Fig. 4.13 at most k − 2 processors and
checkpoints are used by S̃1.

For k ≥ 3 + dt̂/t̄ e follows that lS2 ≥ 3 because of Inequality (4.2). Hence
it is possible to apply Theorem 4.1 to S2. On this account there exists a
parallel schedule S̃2 to reverse lS2 physical steps with the structure shown in
Fig. 4.15 and R(S̃2) ≤ R(S2). Consider the parallel schedule S̃ displayed in
Fig. 4.16 to reverse lk physical steps. Here a checkpoint instead of a processor

72 Chapter 4. Parallel Reversal Schedules
PSfrag replacements

ll

tt

S̃21S̃21

S̃22S̃22

S̃1

Schedule S̃2 Schedule S̃

Figure 4.15: Structure of S̃2 and the Preliminary S̃
PSfrag replacements

l

t

S̃21

S̃22

S̃1

Schedule S̃

Figure 4.16: Structure of S̃

is used to start S̃21. As before one has for each computational cycle of the tail
reverse as depicted in Fig 4.13 and of the overlap that a maximal number of
k resources are utilized because nothing has changed in these computational
cycle apart from using a processor as a checkpoint. For the computational
cycles of the front reverse no more than k − 2 processors and checkpoints are
needed in the corresponding computational cycles of S̃1 as described above. In
addition to these processors and checkpoints used by S̃1 only two checkpoints
are needed during the computational cycles of the front reverse. Hence one
finds that the number of resources utilized in each computational cycle of the
front reversal does not exceed k. In the remaining computational cycles of S
that form the start up as depicted in Fig 4.13 the number of processors and
checkpoints needed never exceeds 3, which is less than k. Hence the feasible
parallel reversal schedule S̃ can be considered instead of S.

Let lS̃21 denote the number of physical steps reversed by S̃21 and lS̃22 the

number of physical steps reversed by S̃22. One has to distinguish between
the following two cases. First if lS1 + lS̃21 > lk−2 or lS1 + lS̃21 ≤ lk−2 and
lS̃22 ≤ lk−1 + t̄ lk−2 − t̂+1− (lS1 + lS̃21) the same argument as above proves the
assertion. Second if lS1 + lS̃21 ≤ lk−2 and lS̃22 > lk−1 + t̄ lk−2− t̂+1− (lS1 + lS̃21)

define S ≡ S̃, S2 ≡ S̃22, and S1 = S̃1 + S̃21 as depicted in Fig. 4.17. Repeat
the construction of S̃ as described above. This will yield that lS1 + lS̃21 > lk−2

PSfrag replacements

l

tS̃21

S̃1

Figure 4.17: New Structure of S1

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 73

or lS1 + lS̃21 ≤ lk−2 and lS̃22 ≤ lk−1 + t̄ lk−2 − t̂ + 1 − lS1 after at most k − 2

consecutive constructions of S̃: The original S1 employs at least one processor
in the computational cycle  = t̄ lS1 + 1 of S1, i.e. just after the vertex of S1.
In the first construction of the new S1 as in Fig. 4.17 this number of resources
needed increases by one because of the new checkpoint storing the new initial
state. Hence after the first construction at least two processors and checkpoints
are needed in the computational cycle  = t̄ lS1

1
+ 1 of S1

1 . The new second
index denotes the first construction. Applying this argumentation again and
again one finds that at least three processors and checkpoints are used in the
computational cycle  = t̄ lS1

2
+ 1 of S1

2 , four processors and checkpoints are

used in the computational cycle  = t̄ lS1
3

+ 1 of S1
3 and hence k processors

and checkpoints are used in the computational cycle  = t̄ lS1
k−1

+ 1 of S1
k−1.

This is a contradiction because together with the checkpoint storing the initial
state 0 now k + 1 processors and checkpoints are needed in the computational
cycle j = t̄ lk + 1 of S. This cannot be true. Therefore after no more than
k − 2 constructions one finds that lS1 + lS̃21 > lk−2 or lS1 + lS̃21 ≤ lk−2 and
lS̃22 ≤ lk−1 + t̄ lk−2 − t̂ + 1 − lS1 . Then the assertion can be proven using the
same argument as above.

An explicit formula has been proven for an upper bound of the maximal
number lk of physical steps that can be reversed with a feasible parallel reversal
schedule using up to k processors and checkpoints at any time. In the following
section it will be shown that this upper bound it also a lower bound and hence
one has an equality in Equation (4.1).

4.3 Feasible Parallel Schedules to Reverse lk

Physical Steps

This section serves to construct feasible parallel reversal schedules that reverse
lk physical steps. In detail the following main theorem of this section will be
proven in three subsections:

Theorem 4.4 (Feasible Parallel Reversal Schedules for t̂, t̄ ∈ N).
Suppose the temporal complexities t̂ ∈ N and t̄ ∈ N to perform one recording step
and one reverse step, respectively, are given. The number of available resources
each of which has the property of processor-checkpoint convertibility equals k.
Then the upper bound

lk =

{
k if k < 2 + t̂/t̄

lk−1 + t̄ lk−2 − t̂ + 1 else
(4.3)

of physical steps to be reversed with up to k resources at any time is actually
attained by feasible parallel reversal schedules.

In order to construct feasible parallel schedules for reversing lk physical
steps one has to distinguish between three cases of temporal complexities of the
reverse steps, namely t̄ = 1, t̄ = 2, and t̄ > 2. For each possible combination of
t̄ and t̂ and all k ∈ N the same principle to develop the corresponding feasible
parallel reversal schedules is used applying a recursive construction.

74 Chapter 4. Parallel Reversal Schedules

4.3.1 Feasible Parallel Reversal Schedules for t̄ = 1

First, the temporal complexities t̄ = 1 and t̂ = 1 will be examined. In this case
one obtains the upper bound lk = lk−1+lk−2 for k ≥ 3 because of Equation (4.3).
Therefore a natural approach in order to attain the upper bound would be to
construct the feasible parallel reversal schedule Sk for k ≥ 3 as composition
Sk = Sk−2 + Sk−1 of two feasible parallel schedules Sk−1 and Sk−2 for the
reversal of lk−1 and lk−2 physical steps, respectively. The construction principle
is illustrated by Fig. 4.18. Exactly this idea is used to prove Theorem 4.4 for

PSfrag replacements Sk−1

Sk−2

t

l

Figure 4.18: Reversal Schedule Sk

t̂ = 1 and t̄ = 1. For that purpose, the resource profile of Sk that results from
the composition of Sk−2 and Sk−1 is analyzed in detail. Obviously, it would
suffice to show that sj

k is not greater than k.

Theorem 4.5 (Parallel Reversal Schedules for t̄ = 1 and t̂ = 1).
Suppose the given one-step evolution F determines the temporal complexities
t̄ = 1 and t̂ = 1 to perform one reverse step and one recording step, respectively.
Let k resources that can be used in each computational either as processor or as
checkpoint be available. For the reversal of lk physical steps, k ≥ 3, there exist
feasible parallel reversal schedules Sk = Sk−2+Sk−1 using up to k resources such
that lk−2 and lk−1 physical steps are reversed by Sk−2 and Sk−1, respectively.
One obtains for the resource profile R(Sk), k > 3,

sj
k =







i for li−1 < j ≤ li, 1 ≤ i ≤ k
k for j = lk + 1
k−i+1 for lk + li−1 < j ≤ lk + li, 2 ≤ i ≤ k − 2
2 for lk + lk−2 < j ≤ 2lk

. (4.4)

Proof. Consider the parallel reversal schedules to reverse lk physical steps with
k = 1, 2, 3 as shown in Fig. 4.19. For k > 3 the feasible parallel reversal schedule

PSfrag replacements

11 1

11 1
tt t

l
l

l

Figure 4.19: Feasible Parallel Reversal Schedules S1, S2, and S3

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 75

Sk to reverse lk physical steps is constructed recursively as composition of Sk−2

and Sk−1 as shown already in Fig. 4.18. Using an induction on k it will be proven
that then Sk fulfils Equation (4.4). This behavior of sj

k is depicted in Fig 4.20.
The tickmarks are used to illustrated the different regions of Equation (4.4).

PSfrag replacements

1 t

sj
kpj

k

cj
k

lk−1 2lklk−1 + lk−3

Figure 4.20: Behavior of sj
k ∈ R(Sk)

For S4 constructed according to Fig. 4.18 the corresponding resource profile
R(S4) was already displayed in Fig. 4.4. It is easy to check that it fulfils exactly
Equation (4.4). The feasible parallel reversal schedule S5 = S3 + S4 and the
resulting sj

5 are illustrated by Fig 4.21. The grey dotted line represents the

PSfrag replacements

1

1

1

10

5

t

t

l

sj
5

pj
5

cj
5

Figure 4.21: Reversal Schedule S5 and sj
5 ∈ R(S5)

profile sj
3 and the grey dashed line the profile sj

4. Once more one can easily
verify that Equation (4.4) hold exactly for R(S5).

Now it will be shown the following: If Equation (4.4) holds for the resource
profiles of Sk−1 and Sk−2 then the resource profile of the parallel reversal sched-
ule Sk constructed as the composition Sk−2 + Sk−1 fulfils also Equation (4.4).

The parallel reversal schedule Sk takes the computational cycles j with
j = 1, . . . , lk−1 over from of Sk−1 without any changes. Therefore one has

sj
k = sj

k−1 = i for li−1 < j ≤ li, i = 1, . . . , k − 1 .

Now Sk−2 is placed at the vertex of Sk−1. Hence one obtains for j = lk−1 + 1

s
lk−1+1
k = s

lk−1+1
k−1 + s1

k−2 = k − 1 + 1 = k .

Furthermore, it follows for li−1 < j ≤ li with i = 2, . . . , k − 3 that

s
lk−1+j
k = s

lk−1+j
k−1 + sj

k−2 = k − i + i = k

76 Chapter 4. Parallel Reversal Schedules

and for lk−3 < j ≤ lk−2, i.e. i = k − 2, that

s
lk−1+j
k = s

lk−1+j
k−1 + sj

k−2 = 2 + k − 2 = k .

This is possible because lk−1 + lk−2 < 2 lk−1. Now it is shown that the resource
profile R(Sk) fulfils Equation (4.4) for all computational cycles j ≤ lk. For the
three following computational cycles follows

j = lk + 1 : slk+1
k = slk+1

k−1 + s
lk−2+1
k−2 = 2 + k − 2 = k

j = lk + 2 : slk+2
k = slk+2

k−1 + s
lk−2+2
k−2 = 2 + k − 3 = k − 1

j = lk + 3 : slk+3
k = slk+3

k−1 + s
lk−2+3
k−2 = 2 + k − 4 = k − 2

because lk+3 ≤ lk−1+lk−2+lk−3 = 2 lk−1 for k > 5. With respect to Sk−1 there
are 2 lk−1 − lk−1 − lk−2 − 3 = lk−3 − 3 computational cycles left each of which
needs only one checkpoint and only one processor. For lk + li−1 < j ≤ lk + li
and i = 4, . . . , k − 4 follows

sj
k = sj

k−1 + s
j−lk−1

k−2 = 2 + k − i − 1 = k − i + 1

and for lk + lk−4 < j ≤ lk + lk−3, i.e. i = k − 3,

sj
k = sj

k−1 + s
j−lk−1

k−2 = 2 + 2 = k − (k − 3) + 1 = k − i + 1 .

After taking all computational cycles of the parallel reversal schedule Sk−1 into
account from now on one checkpoint has to store the initial state 0. Therefore
one finds for lk + lk−3 < j ≤ lk + lk−2, i.e. i = k − 2, that

sj
k = 1 + s

j−lk−1

k−2 = 1 + 2 = k − (k − 2) + 1 = k − i + 1

because j − lk−1 ≤ lk + lk−2 − lk−1 = 2 lk−2. Hence also the parallel reversal
schedule Sk−2 is completed. Now one processor has to run from the initial state
0 to state lk−1 where the parallel reversal schedule Sk−2 starts. Additionally
one checkpoint stores the initial state 0. This yields

sj
k = 2 for lk + lk−2 < j ≤ 2 lk .

It follows that R(Sk) fulfils Equation (4.4), which completes the proof.

Because of Theorem 4.5 there exist feasible parallel reversal schedules Sk for
reversing lk physical steps using up to k resources at any time if (t̂, t̄) = (1, 1).
Hence for the natural number pair (t̂, t̄) = (1, 1) Theorem 4.4 is proven. Nev-
ertheless, in the worst case it could happen that one needs really k processors
to reverse lk physical steps because each resource can be used as processor. In
order to bound above also the number of processor needed the behaviour of cj

k

and pj
k, respectively, is considered in the next corollary:

Corollary 4.3 (Resource Profile R(Sk) for t̄ = 1 and t̂ = 1).
For the resource profiles R(Sk) of the feasible parallel reversal schedules Sk

constructed in Theorem 4.5 and k > 3 one obtains

pj
k ≤ d i+1

2 e for li−1 < j ≤ li, 1 ≤ i ≤ k

cj
k = dk−1

2 e, pj
k = bk+1

2 c for j = lk + 1

cj
k = dk−i+1

2 e, pj
k = bk−i+1

2 c for lk + li−1 < j ≤ lk + li, 2 ≤ i ≤ k − 2

cj
k = 1, pj

k = 1 for lk + lk−2 < j ≤ 2 lk .

(4.5)

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 77

Proof. Figure 4.22 illustrates the behavior of cj
k and pj

k belonging to R(Sk) for
k > 3. The black lines represent the equalities in (4.5), whereas the upper

PSfrag replacements

1

1

t

t
sj
k

pj
k

cj
k

lk−1 2 lklk−1 + lk−3

Figure 4.22: Behavior of cj
k, p

j
k ∈ R(Sk)

bounds are illustrated as grey lines. The upper bound of cj
k during the compu-

tational cycles 1 ≤ j ≤ lk equals sj
k − 1 because at least one processor performs

one physical step, one recording steps or one reverse step.

For S4 = S2 + S3 the behavior of cj
k and pj

k, respectively, was already
displayed in Fig. 4.4. It is easy to check that Equation (4.5) holds. The feasible
parallel reversal schedule S5 constructed according to Fig. 4.18 and the resulting
values of cj

5 and pj
5 are illustrated by Fig 4.23. One can conclude that they fulfil

PSfrag replacements

1

1

1

1

10

5

t

t

t

l

sj
5

pj
5

cj
5

Figure 4.23: Reversal Schedule S5 and cj
5, p

j
5 ∈ R(S5)

also the requirements of Equation (4.5).

The remainder of this proof has the same structure as the proof of The-
orem 4.5. Hence it will be shown the following: If Equation (4.5) holds for
the resource profiles of Sk−1 and Sk−2 then the resource profile of the parallel
reversal schedule Sk constructed as the composition Sk−2 + Sk−1 fulfils also
Equation (4.5).

78 Chapter 4. Parallel Reversal Schedules

The computational cycles j = 1, . . . , lk−1 of Sk and Sk−1 are identical.
Therefore it follows that

pj
k = pj

k−1 ≤
⌈ i + 1

2

⌉

for li−1 < j ≤ li, i = 1, . . . , k − 1 .

The parallel reversal schedule Sk−2 is placed at the vertex of Sk−1. Hence one
has for j = lk−1 + 1

p
lk−1+1
k = p

lk−1+1
k−1 + p1

k−2 =
⌊k

2

⌋

+ 1 =
⌈k + 1

2

⌉

.

Moreover, one obtains for li−1 < j ≤ li with i = 2, . . . , k − 3 that

p
lk−1+j
k = p

lk−1+j
k−1 + pj

k−2 ≤
⌊k − i

2

⌋

+
⌈ i + 1

2

⌉

≤
⌈k + 1

2

⌉

and for lk−3 < j ≤ lk−2, i.e. i = k − 2, that

p
lk−1+j
k = p

lk−1+j
k−1 + pj

k−2 ≤ 1 +
⌈k − 1

2

⌉

≤
⌈k + 1

2

⌉

.

This is valid because lk−1 + lk−2 < 2 lk−1 holds. It is shown that Sk fulfils Equa-
tion (4.5) for all computational cycles j ≤ lk. For the next three computational
cycles one finds

j = lk + 1 : clk+1
k = clk+1

k−1 + c
lk−2+1
k−2 = 1 +

⌈k − 3

2

⌉

=
⌈k − 1

2

⌉

,

plk+1
k = plk+1

k−1 + p
lk−2+1
k−2 = 1 +

⌊k − 1

2

⌋

=
⌊k + 1

2

⌋

j = lk + 2 : clk+2
k = clk+2

k−1 + c
lk−2+2
k−2 = 1 +

⌈k − 3

2

⌉

=
⌈k − 1

2

⌉

,

plk+2
k = plk+2

k−1 + p
lk−2+2
k−2 = 1 +

⌊k − 3

2

⌋

=
⌊k − 1

2

⌋

j = lk + 3 : clk+3
k = clk+3

k−1 + c
lk−2+3
k−2 = 1 +

⌈k − 4

2

⌉

=
⌈k − 2

2

⌉

,

plk+3
k = plk+3

k−1 + p
lk−2+3
k−2 = 1 +

⌊k − 4

2

⌋

=
⌊k − 2

2

⌋

because lk + 3 ≤ lk−1 + lk−2 + lk−3 = 2 lk−1 for k > 5. With respect to Sk−1

there are 2 lk−1 − lk−1 − lk−2 − 3 = lk−3 − 3 computational cycles left each of
which needs only one checkpoint and only one processor. Hence it follows for
lk + li−1 < j ≤ lk + li and i = 4, . . . , k − 4 that

cj
k = cj

k−1 + c
j−lk−1

k−2 = 1 +
⌈k − i − 1

2

⌉

=
⌈k − i + 1

2

⌉

,

pj
k = pj

k−1 + p
j−lk−1

k−2 = 1 +
⌊k − i − 1

2

⌋

=
⌊k − i + 1

2

⌋

and for lk + lk−4 < j ≤ lk + lk−3, i.e. i = k − 3, that

cj
k = cj

k−1 + c
j−lk−1

k−2 = 1 + 1 = 2 =
⌈k − (k − 3) + 1

2

⌉

=
⌈k − i + 1

2

⌉

,

pj
k = pj

k−1 + p
j−lk−1

k−2 = 1 + 1 = 2 =
⌊k − (k − 3) + 1

2

⌋

=
⌊k − i + 1

2

⌋

.

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 79

The parallel reversal schedule Sk−1 is completed. From now on one checkpoint
has to store the initial state 0. Therefore one finds for lk + lk−3 < j ≤ lk + lk−2,
i.e. i = k − 2, that

cj
k = 1 + c

j−lk−1

k−2 = 2 =
⌈k − (k − 2) + 1

2

⌉

=
⌈k − i + 1

2

⌉

,

pj
k = p

j−lk−1

k−2 = 1 =
⌊k − (k − 2) + 1

2

⌋

=
⌊k − i + 1

2

⌋

because j − lk−1 ≤ lk + lk−2 − lk−1 = 2 lk−2 is valid. The parallel reversal
schedule Sk−2 is completed. One processor has to run from the initial state 0
to state lk−1 where the parallel reversal schedule Sk−2 starts. Additionally one
checkpoint stores the initial state 0. Therefore one has

cj
k = 1 and pj

k = 1

for lk + lk−2 < j ≤ 2 lk. It follows that Equation (4.5) is valid for Sk, which
completes the proof.

Assume that k ≥ 3 resources are available and each resource can be used
either as processor or as checkpoint. Suppose the given uniform one-step evo-
lution determines the temporal complexities t̂ = 1 and t̄ = 1. Because of the
Theorems 4.3 and 4.5 one can easily determine the maximal number of physi-
cal steps that can be reversed with k resources, namely lk = lk−1 + lk−2 with
l1 = 1 and l2 = 2. Furthermore, starting with the feasible parallel reversal
schedules shown in Fig. 4.19 an appropriate feasible parallel schedule for the
reversal of lk physical steps can be constructed recursively according to the rule
Sk = Sk−2 +Sk−1 for k > 3 as depicted already in Fig. 4.18. It should be noted
that Sk is formed by optimal subschedules Sk−1 and Sk−2. Because of Corol-
lary 4.3 no more than d(k + 1)/2e processors are needed during this reversal
process. Furthermore, one can conclude from Theorem 4.5 that the number sj

k

of resources needed during the reversal increases monotonously until the vertex
of Sk is reached. Subsequently it decreases monotonously. The maximal num-
ber k of resources is attained in the computational cycles before the vertex of
Sk and in the computational cycle right after the vertex of Sk. In Corollary 4.3
it was shown that the upper bound of processors needed during the reversal
grows monotonously before the vertex of Sk and declines monotonously after
the vertex of Sk. A task left is to determine the distribution of the processors
during the reversal process. This will be a subject of future work.

One will see that the feasible parallel reversal schedules Sk constructed for
the case t̂ = 1 and t̄ = 1 form the base to construct appropriate feasible parallel
reversal schedules for situations t̂ ∈ N, t̂ > 1 and t̄ = 1. The combinations
(t̂, t̄) ∈ N × N with t̂ > t̄ = 1 represent an important part of uniform one-
step evolutions. As described already in the introduction of this chapter the
parameter t̄ has a big influence on the time needed to execute a feasible parallel
reversal schedule. Therefore it is worthwhile to reduce t̄ at the expense of
t̂ for example by using preaccumulation strategies. For all uniform one-step
evolutions combining a reasonable number of physical steps it would be optimal
to reduce t̄ to 1 by a corresponding increase in t̂, i.e. the temporal complexity of

80 Chapter 4. Parallel Reversal Schedules

the recording steps. In these cases the upper bound of the number of physical
steps that can be reversed with up to k resources at any time is given by

lk ≡
{

k if k < 2 + t̂

lk−1 + lk−2 − t̂ + 1 else
.

Hence the composition of the feasible parallel reversal schedules Sk−2 and Sk−1

for reversing lk−2 and lk−1 physical steps does obviously not yield the desired
feasible parallel schedule Sk for the reversal of lk physical steps. Therefore an-
other construction principle for the feasible parallel reversal schedules Sk has to
be applied if the given one-step evolution determines the temporal complexities
t̂ > 1 and t̄ = 1. One finds the following relation to the pair (t̂, t̄) = (1, 1)
considered before:

Lemma 4.4.
Let t̂ ∈ N with t̂ > 1 be given and define with k ∈ N

lk ≡
{

k if k < 2 + t̂

lk−1 + lk−2 − t̂ + 1 else
and

lk,1 ≡
{

k if k ≤ 2
lk−1 + lk−2 else

.

For k ≥ 2 + t̂ follows that

lk = lk−t̂+1,1 + t̂ − 1 . (4.6)

Proof. In order to show Equation (4.6) an induction on k is used. First consider
k = 2 + t̂. According to the definitions of lk and lk,1 one obtains

lk = k − 1 + k − 2 − t̂ + 1 = 2k − t̂ − 2 = 2 + t̂,

lk−t̂+1,1 = l3,1 = 3,

lk+1 = 2 + t̂ + k − 1 − t̂ + 1 = k + 2 = 4 + t̂, and

lk−t̂+2,1 = l4,1 = 5 .

Therefore one has lk = 2+ t̂ = l3,1 + t̂−1 and lk+1 = 4+ t̂ = l4,1 + t̂−1. Assume
that Equation (4.6) holds for 2 + t̂ ≤ j ≤ k − 1 with k > 3 + t̂. This yields

lk = lk−1 + lk−2 − t̂ + 1

= lk−t̂,1 + t̂ − 1 + lk−t̂−1,1 + t̂ − 1 − t̂ + 1

= lk−t̂+1,1 + t̂ − 1 .

Hence, Equation (4.6) has been proven for all k ∈ N.

Furthermore, one can make the following observation. If (t̂, t̄) = (1, 1) is
valid at most one processor is used to perform a recording step. If one has t̂ > 1
and t̄ = 1 one needs up to t̂ processors in order to perform the recording steps
of one computational cycle. Hence, a first idea could be to modify the parallel
reversal schedules constructed in the proof of Theorem 4.5 such that the value
t̂ > 1 is taken into account. This will lead to feasible schedules for the reversal
of lk−t̂+1 physical steps if k resources are available. Using the modified feasible
parallel reversal schedules and Lemma 4.4 it is possible to derive feasible parallel
schedules to reverse lk physical steps as follows:

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 81

Theorem 4.6 (Parallel Reversal Schedules for t̄ = 1 and t̂ > 1).
Suppose the given uniform one-step evolution F determines the temporal com-
plexities t̄ = 1 and t̂ > 1 to perform one reverse step and one recording step,
respectively. Let k resources be available each of which can be used either as
processor or as checkpoint. It is possible to construct feasible parallel schedules
Sk for the reversal of lk physical steps which need no more than k resources at
any time on the base of the feasible parallel schedules developed in Theorem 4.5.
The number of processors needed by Sk does not exceed

pb
k ≡

{
k if 1 ≤ k < 2 + t̂

d(k + t̂)/2e else
.

Proof. All feasible parallel schedules to reverse lk physical steps need 2 lk + t̂−1
computational cycles. First, assume that 1 ≤ k < 2 + t̂. For each value of k
one possible parallel reversal schedule Sk consists of one processor performing
the first forward sweep from the initial state 0 to the penultimate state k − 1,
the recording step F̂k−1, and all reverse steps F̄i, k > i ≥ 0. Furthermore,
one processor serves as checkpoint storing the initial state. The same processor
performs the recording step F̂0 during the computational cycles t̂ + 1 down to
2. Moreover each of the k − 2 processors left starts at the computational cycle
t̂ + 1 + 2i, i = 1, . . . , k− 2, in order to perform a forward sweep from the initial
state 0 to state i and the recording step F̂i in time. The resulting parallel
reversal schedules are depicted in principle by Fig. 4.24.

PSfrag replacements
t

l

.

Figure 4.24: Parallel Reversal Schedule Sk, where k < 2 + t̂

It is easy to check that this approach yields the resource profiles

cj
k = 0, pj

k = j, sj
k = j for 1 ≤ j ≤ k

cj
k = 0, pj

k = k, sj
k = k for k < j ≤ 1 + t̂

cj
k = 1, pj

k = k−i, sj
k = k−i+1 for 2i−2 < j−1− t̂ ≤ 2i, 1 ≤ i ≤ k−1 .

Hence the assertion is proven for 1 ≤ k < 2 + t̂.
Second, for k ≥ 2 + t̂ feasible parallel reversal schedules Sk that need no

more than k resources to reverse lk physical steps are constructed. Furthermore,
these Sk apply no more than pb

k processors in each computational cycle. Because
of Lemma 4.4 Equation (4.6) is valid. Using this equality appropriate parallel
reversal schedules Sk will be constructed using the parallel reversal schedules
Sk−t̂+1,1 of Theorem 4.5 to reverse lk−t̂+1,1 physical steps. Set k̃ = k − t̂ + 1

and consider for each k ≥ 2 + t̂ the first lk̃,1 + 1 computational cycles of Sk̃,1

as constructed in Theorem 4.5. Transform them into the first lk̃,1 + t̂ compu-

tational cycles of a parallel reversal schedule S̄k such that the given value of

82 Chapter 4. Parallel Reversal Schedules

t̂ > 1 is taken into account. This corresponds to shifting the reverse sweep
to the right as depicted in Fig. 4.25 for k = 7 and t̂ = 3. Everything else,

PSfrag replacements

t t

ll

Figure 4.25: Modification of Sk̃,1 for k = 7 and t̂ = 3

especially the checkpoint writings, stay the same. Therefore in each of these
computational cycles j > t̂ of S̄k one obtains that t̂ processors perform recording
steps instead of one processor performing one recording step in Sk̃,1. For that

reason the resource profile of the first lk̃,1 + t̂ computational cycles of S̄k can
be derived as follows. The computational cycle lk̃,1 + 1 of the parallel reversal
schedule Sk̃,1 constructed in Theorem 4.5 corresponds exactly to the computa-

tional cycle lk̃,1 + t̂ of S̄k. The lk̃,1th computational cycle of Sk̃,1 differs from

the (lk̃,1 + t̂− 1)th computational cycle of S̄k: In the former a reverse step and
a recording step are perform by two processors. In the latter the reverse step
is not performed but two recording steps. Hence the number of processors and
therefore the total number of checkpoints and processors are the same. For
m = 1, . . . , t̂ − 2 the computational cycles j = lk̃,1 − t̂ + 1 + m of Sk̃,1 need
two processors for a recording step and a reverse step. Comparing this with
the corresponding computational cycles lk̃,1 + m with m = 1, . . . , t̂ − 2 of S̄k

it follows that t̂ + 1 − m processors are needed only for the recording steps.
No reverse step is performed yet. Therefore, the number of processors needed
and the total number of checkpoints and processors increase by t̂ − 1 − m in
each computational cycle lk̃,1 + m with m = 1, . . . , t̂ − 2 of S̄k. Furthermore,
two processors perform the recording and reverse steps in the computational
cycles j = 4, . . . , lk̃,1 − t̂ + 1 of Sk̃,1. During the corresponding computational

cycles j = t̂+3, . . . , lk̃,1 of S̄k instead of one t̂ processors are needed to perform
the appropriate number of recording steps. Hence the number of processors
required and the total number of checkpoints and processors increase by t̂ − 1
in each of those computational cycles. The resource profile for the remaining
computational cycles j = 1, . . . , t̂ + 2 is obvious. In detail one obtains

pj
k = j, sj

k = j 1 ≤ j ≤ t̂ + 1

pj
k = t̂ + 1, sj

k = t̂+2 j = t̂ + 2

pj
k = pj−t̂+1

k̃,1
+ t̂−1, sj

k = sj−t̂+1

k̃,1
+ t̂−1 t̂ + 2 < j ≤ lk̃,1

pj
k = pj−t̂+1

k̃,1
+ t̂−1−m, sj

k = sj−t̂+1

k̃,1
+ t̂−1−m j = lk̃,1+m, 1 ≤ m ≤ t̂−1

pj
k = pj−t̂+1

k̃,1
, sj

k = sj−t̂+1

k̃,1
j = lk̃,1 + t̂ .

(4.7)

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 83

Therefore it is possible to derive for all j = 1, . . . , lk̃,1 the following inequalities:

pj
k ≤ max

{

t̂ + 1, max
4≤j≤l

k̃,1

{

pj−t̂+1

k̃,1
+ t̂ − 1

}
}

≤ max

{

t̂ + 1,
⌈k − t̂ + 2

2

⌉

+ t̂ − 1

}

=
⌈k + t̂

2

⌉

,

sj
k ≤ max

{

t̂ + 2, max
4≤j≤l

k̃,1

{

si−t̂+1

k̃,1
+ t̂ − 1

}
}

≤ max
{
t̂ + 2, k − t̂ + 1 + t̂ − 1

}
= k .

(4.8)

Furthermore, it follows for each j = lk̃,1 + m with 1 ≤ m ≤ t̂ − 1 that

pj
k = pj−t̂+1

k̃,1
+ t̂ − 1 − m ≤

⌈k + t̂

2

⌉

− m,

sj
k = sj−t̂+1

k̃,1
+ t̂ − 1 − m ≤ k − m .

(4.9)

Hence, in the (lk̃,1 +m)th computational cycle there are m processors available.

One can put the lk̃,1 + t̂ modified computational cycles of S̄k and the computa-
tional cycles j = lk̃,1 + 2, . . . , 2 lk̃,1 of Sk̃,1 together to form a complete parallel

reversal schedule S̄k reversing lk̃,1 physical steps for the given t̂. This is possi-

ble because the computational cycle lk̃,1 + t̂ of S̄k is equal to the computational

cycle lk̃,1 + 1 of Sk̃,1. The corresponding parallel reversal schedule S̄7 of the
example shown in Fig. 4.25 is illustrated by Fig. 4.26. For the computational

PSfrag replacements
t

l

1

1

8

10

Figure 4.26: Complete Parallel Reversal Schedule S̄7

cycles j = lk̃,1 + t̂ + 1, . . . , 2 lk̃,1 + t̂ − 1 of S̄k follows that

pj
k = pj−t̂+1

k̃,1
≤
⌈k − t̂ + 2

2

⌉

and sj
k = sj−t̂+1

k̃,1
≤ k − t̂ + 1 . (4.10)

Combining (4.9) and (4.10) one has for each m = 1, . . . , t̂−1 that one processor
is available during the computational cycles lk̃,1 + m, . . . , 2 lk̃,1 + t̂ − 1. This
processor can be used the following way to increase the number of physical
steps that are reversed and hence to create the desired parallel reversal sched-
ule Sk. The free processor is applied to perform the reverse step F̄l

k̃,1
+m−1

in the computational cycle lk̃,1 + m, the recording step F̂l
k̃,1

+m−1 during the

84 Chapter 4. Parallel Reversal Schedules

computational cycles lk̃,1 + m + 1, . . . , lk̃,1 + m + t̂, and the forward sweep from
the initial state 0 to the state lk̃,1 + m − 1 during the computational cycles

lk̃,1 + m + t̂ + 1, . . . , 2 lk̃,1 + 2m + t̂ − 1. This extension is possible t̂ − 1 times.
The described construction principle is illustrated by Fig. 4.27 for the example
considered above. Naturally, the checkpoint writing copying the initial state 0

PSfrag replacements
t

l

1

1 10

10

20

Figure 4.27: Resulting Parallel Reversal Schedule S7

is performed already in the computational cycle 2 lk + t̂ − 1 instead of 2 lk̃,1.
Hence because of Equation (4.6) the total number of physical steps that can be
reversed with Sk is given by lk̃,1 + t̂ − 1 = lk. The number of computational

cycles in Sk equals exactly 2 lk̃,1 + 3t̂ − 3 = 2 lk + t̂ − 1. Moreover, it follows
from (4.8), (4.9), (4.10), and

⌈k − t̂ + 2

2

⌉

+ t̂ − 1 =
⌈k + t̂

2

⌉

that the number of processors needed at any time is not greater than d k+t̂
2 e

and that the number of checkpoints and processors required does not exceed k,
which completes the proof.

Figure 4.27 shows the resulting parallel reversal schedule S7 constructed
building on the parallel reversal schedule S̄7 that can be seen in Fig. 4.26.
Here, 7 resources are required. Furthermore, the number of processors applied
does not exceed 5 = dk+t̂

2 e.
Suppose the given uniform one-step evolution F determines the temporal

complexities t̂ > 1 and t̄ = 1, which is a desirable situation because of the overall
run time needed for the reversal. Let k resources be available. For this case
Theorem 4.6 proves the assertion of Theorem 4.4. Furthermore, it shows that
one can reverse lk physical steps on the base of the parallel reversal schedule
Sk−t̂+1 constructed in Theorem 4.5. One has to modify the recording steps to

take t̂ > 1 into account. This corresponds to shifting the reverse sweep to the
right as illustrated by Fig. 4.25. Furthermore, one has to perform additional
reversals of t̂ − 1 physical steps at the vertex of Sk−t̂+1 (see again Fig. 4.27).
These modifications lead to a feasible parallel schedule for reversing lk physical
steps because of the equality lk = lk−t̂+1,1 + t̂ − 1 proven in Lemma 4.4.

After the construction of feasible parallel reversal schedules for reversing
lk physical steps if one has t̂ > 1 and t̄ = 1 one can think about the mini-
mization of the time the processors are used. One natural way to modify the

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 85

parallel reversal schedules developed in Theorem 4.6 is to perform the second
checkpoint writing of Sk̃,1 already in the forward sweep to state lk − 1. Then

the following t̂ − 1 forward sweeps can start at this checkpoint instead of the
checkpoint storing the initial state. This strategy should be easy to use in an
implementation of the parallel reversal schedules. Figure 4.28 shows the parallel
reversal schedule using the modified checkpoint writing described in this para-
graph for the example k = 7 and t̂ = 3. Nevertheless, it is not certain that this

PSfrag replacements
t

l

1

1 10

10

20

Figure 4.28: Modified Parallel Reversal Schedule for k = 7 and t̂ = 3

improvement, i.e. the minimization of the time the processors are used, can be
exploited by the available multi-processor machines. One has to determine the
number of processors required a priori. Often these processors are available for
the complete reversal process. It is impossible to declare that they are needed
only during a part of the computation.

At the end of this subsection the following conclusion can be drawn. Theo-
rems 4.5 and 4.6 yield for one-step evolutions F with the temporal complexities
t̄ = 1 and t̂ ∈ N feasible parallel reversal schedules to reverse lk physical steps
with no more than k processors and checkpoints, where lk is given by

lk =

{
k if 0 ≤ k < 2 + t̂/t̄

lk−1 + t̄ lk−2 − t̂ + 1 else
.

Furthermore, Theorem 4.3 shows that no more than lk physical steps can be
reversed with k processors and checkpoints. Therefore if one has the temporal
complexities t̄ = 1 and t̂ ∈ N to perform one reverse step and one recording
step, respectively, the maximal number of physical steps that can be reversed
with k processors and checkpoints equals lk.

4.3.2 Feasible Parallel Reversal Schedules for t̄ = 2

Suppose, the given one-step evolution F determines the temporal complexities
t̄ = 2 and t̂ ∈ N to perform one reverse step and one recording step, respectively.
More or less the same strategy as in the last subsection is used to construct
feasible parallel schedules Sk for the reversal of lk physical steps.

For t̂ = 1 and k > 2 one obtains the upper bound

lk = lk−1 + 2 lk−2

86 Chapter 4. Parallel Reversal Schedules

with l1 = 1 and l2 = 2. Hence an obvious idea in order to develop parallel
schedules Sk for reversing lk physical steps would be to consider the composition
Sk = Sk−2+(Sk−2+Sk−1). Here Sk−1 and Sk−2 are feasible parallel schedules for
reversing lk−1 and lk−2 physical steps, respectively. This construction principle
is depicted by Fig. 4.29. The following theorem constructs Sk according to the

PSfrag replacements

t

l

Sk−2

Sk−2

Sk−1

Figure 4.29: Parallel Reversal Schedule Sk for k > 4

rule Sk = Sk−2 + (Sk−2 + Sk−1) for k > 4 and analyzes the resulting resource
profile R(Sk). It will be shown that Sk needs no more than k resources each of
which as the property of processor-checkpoint convertibility at any time.

Theorem 4.7 (Parallel Reversal Schedules for t̄ = 2 and t̂ = 1).
Suppose the given one-step evolution F determines the temporal complexities
t̄ = 2 and t̂ = 1 to perform one reverse step and one recording step, respectively.
Then there exist feasible parallel reversal schedules Sk = Sk−2 + (Sk−2 + Sk−1)
for the reversal of lk physical steps if k > 4, such that lk−1 and lk−2 physical
steps can be reversed with the feasible parallel reversal schedules Sk−1 and Sk−2,
respectively. One obtains for the resource profile R(Sk), k ≥ 4,

cj
k = 0, pj

k = 1, sj
k = 1 j = 1, 2

pj
k ≤ d i+1

2 e, sj
k ≤ i li < j ≤ li+1, 2 ≤ i ≤ k

cj
k = bk

2c, pj
k = dk

2e, sj
k = k j = 2 lk + 1

cj
k = bk

2c, pj
k = bk−1

2 c, sj
k = k−1 2 lk + 2 ≤ j ≤ 2 lk + 4

cj
k = bk−2

2 c, pj
k = bk−2

2 c, sj
k = 2bk−2

2 c
{

2 lk+5 ≤ j ≤ 2 lk+lm,

m = k − 2bk−4
2 c

cj
k = bk−i+2

2 c, pj
k = bk−i+2

2 c, sj
k = k−i+2

{
2 lk+li−1 < j ≤ 2 lk+li,
i = m+2, m+4, . . . , k .

(4.11)

Proof. For k = 1 and k = 2 the corresponding parallel reversal schedules are
obvious. The parallel reversal schedule S3 is depicted by Fig. 4.30. For k = 4 thePSfrag replacements

t

l

1

1 10

20

Figure 4.30: Parallel Reversal Schedule S3 for t̄ = 2 and t̂ = 1

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 87

parallel reversal schedule S4 as well as the resulting resource profile R(S4) are
illustrated by Fig. 4.31. It can be checked easily that Equation (4.11) holds for

PSfrag replacements

t

t

t

t

l

1

1

1

1

1

10 20

sj
4

pj
4

cj
4

Figure 4.31: Parallel Reversal Schedule S4 and Resource Profile R(S4)

R(S4). In order to prove the assertion of the theorem also for all k > 4, parallel
reversal schedules Sk to reverse lk physical steps are constructed according to
the procedure shown in Fig. 4.29.

For S5 = S3 +(S3 +S4) one obtains the values of cj
5, pj

5, and sj
5 as illustrated

by Fig. 4.32. Hence Equation (4.11) is valid for R(S5). Now assume that one
has two parallel reversal schedules Sk−2 and Sk−1 the resource profiles of which
satisfy Equation (4.11). One constructs Sk = Sk−2 + (Sk−2 + Sk−1) according
to the procedure illustrated by Fig. 4.29. In the remainder of this proof it will
be shown that the resulting parallel schedule Sk for the reversal of lk physical
steps fulfils Equation (4.11), too.

The parallel reversal schedule Sk takes the first 2 lk−1 computational cycles
over from Sk−1 without any changes. Therefore one has for the number of
checkpoints and the number of processors applied as well as for the sum of
both during these computational cycles

cj
k = cj

k−1 = 0, pj
k = pj

k−1 = 1, and sj
k = sj

k−1 = 1 for j = 1, 2

as well as

pj
k = pj

k−1 ≤
⌈ i + 1

2

⌉

and sj
k = sj

k−1 ≤ i for li < j ≤ li+1, 2 ≤ i ≤ k − 1 .

Then Sk−2 is placed at the vertex of Sk−1 so that the reversal can be performed

88 Chapter 4. Parallel Reversal Schedules

PSfrag replacements

t

t

t

t

l

1

1

1

1

1

10

10 20 30 40

sj
5

pj
5

cj
5

Figure 4.32: Parallel Reversal Schedule S5 and Resource Profile R(S5)

without any interruption. Hence for j = lk + 1 follows that

pj
k = pj

k−1 + p1
k−2 =

⌈k−1

2

⌉

+ 1 =
⌈k+1

2

⌉

, sj
k = sj

k−1 + s1
k−2 = k . (4.12)

Moreover one obtains for

j = lk + 2 : plk+2
k = plk+2

k−1 + p2
k−2 =

⌊k − 2

2

⌋

+ 1 <
⌈k + 1

2

⌉

,

slk+2
k = slk+2

k−1 + s2
k−2 = k − 2 + 1 < k

j = lk + 3 and j = lk + 4 :

pj
k = pj

k−1 + pj−lk
k−2 ≤

⌊k − 3

2

⌋

+ 2 ≤
⌈k + 1

2

⌉

,

sj
k = sj

k−1 + sj−lk
k−2 ≤ k − 2 + 2 = k

(4.13)

as well as for j = lk + 5, . . . , lk + lm̃ with 5 ≥ m̃ ≡ k − 1 − 2bk−5
2 c ≥ 4

pj
k = pj

k−1 + pj−lk
k−2 ≤

⌊k − 3

2

⌋

+
⌈m̃

2

⌉

=
⌈k + 1

2

⌉

,

sj
k = sj

k−1 + sj−lk
k−2 ≤ 2

⌊k − 3

2

⌋

+ m̃ − 1 = k .

(4.14)

It follows for lk + li−1 < j ≤ lk + li, i = m̃ + 2, m̃ + 4, . . . , k − 3, k − 1, that

pj
k = pj

k−1 + pj−lk
k−2 ≤

⌊k − i + 1

2

⌋

+
⌈ i

2

⌉

≤
⌈k + 1

2

⌉

,

sj
k = sj

k−1 + sj−lk
k−2 ≤ k − i + 1 + i − 1 = k

(4.15)

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 89

because lk + li ≤ lk + lk−1 = 3 lk−1. The parallel reversal schedule Sk−1 is
completed. From now on one has to take into account the checkpoint storing
the initial state 0. The second parallel reversal schedule Sk−2 is placed at the
vertex of the first Sk−2. Therefore one obtains for

j = lk + lk−1 + 1 = lk + 2 lk−2 + 1 :

p
lk+lk−1+1
k = p

2 lk−2+1
k−2 + p1

k−2 =
⌈k − 2

2

⌉

+ 1 ≤
⌈k + 1

2

⌉

,

s
lk+lk−1+1
k = s

2 lk−2+1
k−2 + s1

k−2 + 1 = k − 2 + 1 + 1 = k

j = lk + lk−1 + 2 :

p
lk+lk−1+2
k = p

2 lk−2+2
k−2 + p2

k−2 =
⌊k − 3

2

⌋

+ 1 <
⌈k + 1

2

⌉

,

s
lk+lk−1+2
k = s

2 lk−2+2
k−2 + s2

k−2 + 1 = k − 3 + 1 + 1 < k

(4.16)

as well as for j = lk + lk−1 + 3 and j = lk + lk−1 + 4

pj
k = pj−lk

k−2 + p
j−lk−lk−1

k−2 ≤
⌊k − 3

2

⌋

+ 2 ≤
⌈k + 1

2

⌉

,

sj
k = sj−lk

k−2 + s
j−lk−lk−1

k−2 + 1 ≤ k − 3 + 2 + 1 = k .

(4.17)

For j = lk + lk−1 +5, . . . , lk + lk−1 + lm̂ with 5 ≥ m̂ ≡ k−2−2bk−6
2 c ≥ 4 follows

that

pj
k = pj−lk

k−2 + p
j−lk−lk−1

k−2 ≤
⌊k − 4

2

⌋

+
⌈m̂

2

⌉

≤
⌈k + 1

2

⌉

,

sj
k = sj−lk

k−2 + s
j−lk−lk−1

k−2 + 1 ≤ 2
⌊k − 4

2

⌋

+ m̂ − 1 + 1 = k .

(4.18)

For lk + lk−1 + li−1 < j ≤ lk + lk−1 + li with i = m̂ + 2, m̂ + 4, . . . , k − 4, k − 2
one has

pj
k = pj−lk

k−2 + p
j−lk−lk−1

k−2 ≤
⌊k − i

2

⌋

+
⌈ i

2

⌉

≤
⌈k + 1

2

⌉

,

sj
k = sj−lk

k−2 + s
j−lk−lk−1

k−2 + 1 ≤ k − i + i − 1 + 1 = k

(4.19)

because j − lk ≤ lk−1 + lk−2 = 3 lk−2. Now the first parallel reversal schedule
Sk−2 is completed. Therefore apart from the checkpoint storing the initial
state 0 an additional processor is needed during the computational cycles j
with j = lk + lk−1 + lk−2 + 1, . . . , lk + 2 lk−1 + lk−2. It performs the forward
sweep from the initial state 0 to state lk−1 in order to start the execution of the
first parallel reversal schedule Sk−2 in the computational cycle lk + lk−1 + lk−2.
Hence for j = lk + lk−1 + lk−2 + 1, . . . , lk + lk−1 + 2 lk−2 = 2 lk follows that

pj
k = p

j−lk−lk−1

k−2 + 1 ≤
⌈ i + 1

2

⌉

+ 1 =
⌈ i + 3

2

⌉

and

sj
k = s

j−lk−lk−1

k−2 + 2 ≤ i + 2

(4.20)

with i = 2, . . . , k− 2. Combining Equations (4.12) up to (4.20) it is shown that

pj
k ≤ dk+1

2 e and sj
k ≤ k for lk < j ≤ lk+1 .

90 Chapter 4. Parallel Reversal Schedules

Furthermore, one has for j = 2 lk + 1

cj
k = c

j−lk−lk−1

k−2 + 1 =
⌊k − 2

2

⌋

+ 1 =
⌊k

2

⌋

,

pj
k = p

j−lk−lk−1

k−2 + 1 =
⌈k − 2

2

⌉

+ 1 =
⌈k

2

⌉

,

sj
k = s

j−lk−lk−1

k−2 + 2 = k − 2 + 2 = k

(4.21)

and for j = 2 lk + 2, 2 lk + 3, 2 lk + 4

cj
k = c

j−lk−lk−1

k−2 + 1 =
⌊k − 2

2

⌋

+ 1 =
⌊k

2

⌋

,

pj
k = p

j−lk−lk−1

k−2 + 1 =
⌊k − 3

2

⌋

+ 1 =
⌊k − 1

2

⌋

,

sj
k = s

j−lk−lk−1

k−2 + 2 = k − 3 + 2 = k − 1 .

(4.22)

Since m̂ = k − 2 − 2bk−6
2 c = k − 2bk−4

2 c ≡ m one finds for the computational
cycles j = lk + lk−1 + 5, . . . , lk + lk−1 + lm that

cj
k = c

j−lk−lk−1

k−2 + 1 =
⌊k − 4

2

⌋

+ 1 =
⌊k − 2

2

⌋

,

pj
k = p

j−lk−lk−1

k−2 + 1 =
⌊k − 4

2

⌋

+ 1 =
⌊k − 2

2

⌋

,

sj
k = s

j−lk−lk−1

k−2 + 2 = 2
⌊k − 4

2

⌋

+ 2 = 2
⌊k − 2

2

⌋

.

(4.23)

Moreover it follows for the computational cycles 2 lk + li−1 < j ≤ 2 lk + li with
i = m + 2, m + 4, . . . , k − 4, k − 2

cj
k = c

j−lk−lk−1

k−2 + 1 =
⌊k − i

2

⌋

+ 1 =
⌊k − i + 2

2

⌋

,

pj
k = p

j−lk−lk−1

k−2 + 1 =
⌊k − i

2

⌋

+ 1 =
⌊k − i + 2

2

⌋

,

sj
k = s

j−lk−lk−1

k−2 + 2 = k − i + 2

(4.24)

because j ≤ 2 lk + lk−2 = lk + 2 lk−1 + lk−2. The second parallel reversal
schedule Sk−2 is completed. During the remaining computational cycles j with
j = 2 lk + lk−2 +1, . . . , 3 lk only one checkpoint stores the initial state 0 and one
processor performs a forward sweep from the initial state 0 to state lk−1 + lk−2.
Hence, one has for 2 lk + lk−2 < j ≤ 3 lk

cj
k = 1 =

⌊k − i + 2

2

⌋

, pj
k = 1 =

⌊k − i + 2

2

⌋

, and sj
k = k − i + 2 (4.25)

with i = k. Equations (4.21) up to (4.25) show that Sk fulfils also the remainder
of Equation (4.11), which completes the proof.

Theorem 4.7 proves that the assertion of Theorem 4.4 is true for the tempo-
ral complexities t̂ = 1 and t̄ = 2. Furthermore, it yields a detailed description
how to construct the desired feasible parallel reversal schedules. One has to
use the recursion Sk = Sk−2 + (Sk−2 + Sk−1) for k ≥ 5 as depicted in Fig. 4.29

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 91

with S3 and S4 defined as in Fig. 4.30 and Fig. 4.31, respectively. It should
be noted that again Sk is formed by optimal subschedules Sk−1 and Sk−2. As
for the pair (t̂, t̄) = (1, 1) the upper bound of the number of resources used in
each computational cycle grows monotonously until the vertex of Sk is reached.
Subsequently it declines monotonously. The maximal number k of resources is
attained at least in the computational cycle j = 2 lk + 1 right after the vertex
of Sk. The upper bound of the processors used increases monotonously before
the vertex of Sk is reached and decreases monotonously in the remainder of the
reversal process.

Now the temporal complexities (t̂, t̄) = (2, 2) will be considered. One ob-
tains for the upper bound lk according to Equation (4.3) the formula

lk =

{
k if k < 3
lk−1 + 2 lk−2 − 1 else

.

This yields lk = 2 lk−1 if k is even and lk = 2 lk−1 − 1 if k is odd. Therefore a
first approach would be to construct the desired parallel reversal schedule Sk

for reversing lk physical steps as the composition Sk = Sk−1 +Sk−1 if k is even.
Here, Sk−1 is a feasible parallel schedule for the reversal of lk−1 physical steps.
If k is odd, one could try to form Sk as the composition Sk = Sk−1 + S̄k−1. Here
Sk−1 is again a feasible parallel schedule for the reversal of lk−1 physical steps
whereas S̄k−1 is a feasible parallel schedule for the reversal of lk−1 − 1 physical
steps. A slightly different idea how to construct Sk is depicted in Fig. 4.33 using
the feasible parallel reversal schedules Sk−2 and S̄k−2 for the reversal of lk−2

and lk−2−1 physical steps. In order to create S̄k−2 the parallel reversal schedule

PSfrag replacements

k oddk even

tt

ll

Sk−2

Sk−2

Sk−2

Sk−1

Sk−1

S̄k−2

Figure 4.33: Parallel Reversal Schedule Sk

Sk−2 is shortened by the reversal of the last physical step Flk−2−1. Exactly the
construction principle illustrated in Fig. 4.33 is exploited by the next theorem.
The resulting resource profiles are analyzes in order to prove that Sk needs no
more that k resources each of which has the property of processor-checkpoint
convertibility for the reversal of lk physical steps.

Theorem 4.8 (Parallel Reversal Schedules for t̄ = 2 and t̂ = 2).
Suppose the given one-step evolution F determines the temporal complexities
t̄ = 2 and t̂ = 2 to perform one reverse step and one recording step, respectively.
A feasible parallel schedule Sk, k ≥ 4, for the reversal of lk physical steps can

92 Chapter 4. Parallel Reversal Schedules

be constructed according to

Sk ≡
{

Sk−1 + Sk−1 if k is even
Sk−2 + (Sk−2 + (S̄k−2 + Sk−2)) if k is odd

, (4.26)

where Sk−1, Sk−2, and S̄k−2 are feasible parallel reversal schedules for reversing
lk−1, lk−2, and lk−2 − 1 physical steps, respectively. For the resource profile
R(Sk), k > 4, follows

cj
k = 0, pj

k = 1, sj
k = 1 j = 1, 2

pj
k ≤ d i+1

2 e, sj
k ≤ i







li <j≤ li+1+1, i even
li+1<j≤ li+1, i odd
i = 2, . . . , k

cj
k = bk

2c, pj
k = dk

2e, sj
k = k j = 2 lk + 1

cj
k = bk

2c, pj
k = bk−1

2 c, sj
k = k−1 j = 2 lk + 2, 2 lk + 3

cj
k = bk

2c, pj
k = bk−3

2 c, sj
k = k−2 j = 2 lk + 4

cj
k = bk−i+3

2 c, pj
k ≤ bk−i+2

2 c, sj
k ≤ k−i+2

{
li−2 < j−2 lk−1 ≤ li
i = 5, 7, . . . , 2bk

2c−1

cj
k = 1, pj

k = 1, sj
k = 2 2 lk+l2b k

2
c−1 <j−1≤3 lk.

(4.27)

Proof. See Appendix B, Page 115.

In the proof of Theorem 4.8 the analyse of the resource profile resulting from
the composition of feasible parallel reversal schedules forms again the main in-
gredient. The starting point is given by the schedules S3 and S4 for the reversal
of l3 = 3 and l4 = 6 physical steps as shown in Fig. 4.34. Subsequently feasible

PSfrag replacements
tt

l

l

1

1 1

1

1010

20

Figure 4.34: Parallel Reversal Schedules S3 and S4 for t̄ = 2 and t̂ = 2

parallel reversal schedules Sk are constructed according to Equation (4.26). It
is shown that Equation (4.27) holds for R(Sk) if k > 4. For that purpose also
the resource profile of S̄k−2 is derived if k is odd. The proof of Theorem 4.8
is really technical and does not provide further insights. Therefore it is not
presented here, but contained in Appendix B.

Theorem 4.8 implies that the assertion of Theorem 4.4 is valid for (t̂, t̄) =
(2, 2). From the resource profile R(Sk) one can conclude that the upper bound of
resources used as well as of the processors needed increase monotonously before
the vertex of Sk is reached and decrease monotonously afterwards. Once more
the maximal number k of resources is needed at least in the computational cycle
j = 2 lk +1 right after the vertex of Sk. Moreover, one should note the following

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 93

fact: The parallel reversal schedule Sk for odd k is built on a feasible reversal
schedule S̄k−2 that is not optimal, i.e. it cannot be used for the reversal of lk−2

physical steps. This is not true for the combinations of t̂ and t̄ considered before.
If the given uniform one-step evolution F determines the temporal complex-

ities t̂ > 2 and t̄ = 2 the upper bound lk equals

lk ≡
{

k if k < 2 + t̂/2

lk−1 + 2 lk−2 − t̂ + 1 else
.

One finds the following relation to the pairs (t̂, t̄) = (1, 2) and (t̂, t̄) = (2, 2)
considered so far in this subsection:

Lemma 4.5.
Let t̂ ∈ N with t̂ > 2 be given and define with k ∈ N

lk ≡
{

k if k < 2 + t̂/2

lk−1 + 2 lk−2 − t̂ + 1 else ,

lk,1 ≡
{

k if k ≤ 2
lk−1 + 2 lk−2 else ,

and

lk,2 ≡
{

k if k ≤ 2
lk−1 + 2 lk−2 − 1 else

.

For k ≥ 2 + t̂/2 follows that

lk =

{

lk−(t̂−1)/2,1 + (t̂ − 1)/2 if t̂ is odd

lk−(t̂−2)/2,2 + (t̂ − 2)/2 if t̂ is even
. (4.28)

Proof. In order to show Equation (4.28) consider first odd t̂ and k = 2+(t̂+1)/2.
According to the definition of lk and lk,1, respectively, one has

lk = k − 1 + 2(k − 2) − t̂ + 1 = 3k − t̂ − 4 = 3 + (t̂ + 1)/2,

lk−(t̂−1)/2,1 = l3,1 = 4,

lk+1 = 3 + (t̂ + 1)/2 + 2(k − 1) − t̂ + 1 = 7 + (t̂ + 1)/2, and

lk+1−(t̂−1)/2,1 = l4,1 = 8 .

Therefore the equalities lk = 4 + (t̂ − 1)/2 = lk−(t̂−1)/2,1 + (t̂ − 1)/2 as well

as lk+1 = 8 + (t̂ − 1)/2 = lk+1−(t̂−1)/2,1 + (t̂ − 1)/2 are valid. Assume that

Equation (4.28) holds for 2+(t̂+1)/2 ≤ j ≤ k−1 with k > 3+(t̂+1)/2. Then
one obtains

lk = lk−1 + 2 lk−2 − t̂ + 1

= lk−1−(t̂−1)/2,1 + (t̂ − 1)/2 + 2
(

lk−2−(t̂−1)/2,1 + (t̂ − 1)/2
)

− t̂ + 1

= lk−(t̂−1)/2,1 + (t̂ − 1)/2 .

For even t̂ and k = 2 + t̂/2 one finds according to the definitions of lk and lk,2

lk = k − 1 + 2(k − 2) − t̂ + 1 = 3k − t̂ − 4 = 2 + t̂/2,

lk−(t̂−2)/2,2 = l3,2 = 3,

lk+1 = 2 + t̂/2 + 2(k − 1) − t̂ + 1 = 5 + t̂/2, and

lk+1−(t̂−2)/2,2 = l4,2 = 6 .

94 Chapter 4. Parallel Reversal Schedules

This yields lk = l3,2 + (t̂ − 2)/2 and lk+1 = l4,2 + (t̂ − 2)/2. Providing that
Equation (4.28) holds for 2 + t̂/2 ≤ j ≤ k − 1 with k > 3 + t̂/2 one has

lk = lk−1 + 2 lk−2 − t̂ + 1

= lk−1−(t̂−2)/2,2 + (t̂ − 2)/2 + 2
(

lk−2−(t̂−2)/2,2 + (t̂ − 2)/2
)

− t̂ + 1

= lk−(t̂−1)/2,2 + (t̂ − 2)/2 .

Therefore, Equation (4.28) is valid for all t̂ > 2 and k ≥ 2 + t̂/2.

Having Equation (4.28) at hand the reversal schedules constructed in the
Theorems 4.7 and 4.8 are applied to develop feasible reversal schedules Sk if
the given uniform one-step evolution F determines temporal complexities t̄ = 2
and t̂ > 2. For that purpose the value t̂ > 2 is taken into account, which
corresponds to shifting the reverse sweep to the right. Subsequently additional
reversals of physical steps are performed at the vertex of the modified parallel
reversal schedule. This leads to the following assertion:

Theorem 4.9 (Parallel Reversal Schedules for t̄ = 2 and t̂ > 2).
Suppose the given uniform one-step evolution F determines the temporal com-
plexities t̄ = 2 and t̂ > 2 to perform one reverse step and one recording step,
respectively. Let k resources be available each of which has the property of
processor-checkpoint convertibility. If k is even one can construct a feasible
parallel schedule Sk needing up to k resources at any time for the reversal of lk
physical steps on the base of the parallel schedules developed in Theorem 4.8.
Otherwise a feasible parallel schedule Sk using up to k resources at any time
for the reversal of lk physical steps can be built on the parallel schedules devel-
oped in Theorem 4.7. Furthermore the number of processors applied by Sk does
not exceed

pb
k ≡

{
k if k < 2 + t̂/2

d(k + 1)/2e + d(t̂ − 1)/4e else
.

Proof. See Appendix B, Page 125.

The proof consists of two main parts. In the first one Sk is constructed for
odd t̂. In the second one an appropriate parallel reversal schedule is developed
for even t̂. In both parts a similar argument as in the proof of Theorem 4.6 is
utilized. Therefore the proof of Theorem 4.9 is not presented here, but contained
in Appendix B.

Because of Theorem 4.9 the assertion of Theorem 4.4 is valid for t̂ > 2
and t̄ = 2. If t̂ is odd the parallel reversal schedule Sk−(t̂−1)/2,1 constructed in

Theorem 4.7 is modified such that the value of t̂ is taken into account. Hence
the reverse sweep is shifted to the right. Furthermore it is shown in the proof
of Theorem 4.9 that the reversal of (t̂ − 1)/2 physical steps can be attached
at the vertex of Sk−(t̂−1)/2,1 according to the procedure depicted in Fig. 4.27.
This yields the desired parallel reversal schedule because of Equation (4.28). If
t̂ is even Sk−(t̂−2)/2,2 constructed in Theorem 4.8 forms the base of the desired
parallel reversal schedule Sk. Once more one has to shift the reverse sweep

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 95

to the right in order to take the value of t̂ into account. Moreover, in the
proof of Theorem 4.9 it is shown that (t̂ − 2)/2 physical steps can be reversed
additionally at the vertex of Sk−(t̂−2)/2,2 according to the procedure depicted
in Fig. 4.27. Then the parallel reversal schedule Sk is constructed completely
because of Lemma 4.5.

4.3.3 Feasible Parallel Reversal Schedules for t̄ > 2

Finally assume that the given uniform one-step evolution determines temporal
complexities t̂ ∈ N and t̄ > 2 to perform one recording step and one reverse
step, respectively. For t̂ ≤ t̄ appropriate parallel reversal schedules Sk will be
constructed recursively. Then these parallel reversal schedules form the base to
develop the desired Sk if t̂ > t̄ is valid.

For the pair (t̂, t̄) with t̂ ≤ t̄ the upper bound lk is defined as

lk =

{
k if k ≤ 2

lk−1 + t̄ lk−2 − t̂ + 1 else
.

In order to construct appropriate Sk for reversing lk physical steps one part of
the composition could be represented by the parallel schedule Sk−1 for reversing
lk−1 physical steps. One finds that t̄ lk−2 − t̂ + 1 > (t̄ − 1)lk−2 > lk−2 is valid
for k ≥ 3. Hence, it is clear that the other part of the composition cannot
be equal to Sk−2, i.e. the parallel reversal schedule for reversing lk−2 physical
steps. Obviously, it would be advantageous to have appropriate parallel reversal
schedules S̃k−1 for reversing l̃k−1 ≡ t̄ lk−2 − t̂ + 1 at hand. Then Sk could be
formed by the composition Sk = Sk−1 + S̃k−1. Furthermore, it is easy to prove
by induction that l̃k−1 > lk−1 for k ≥ 4. It follows that the parallel reversal
schedule S̃k−1 needs more than k − 1 resources for the reversal of l̃k−1 physical
steps. Therefore Sk = Sk−1+S̃k−1 must be valid. Otherwise only k−1 resources
can be used by S̃k−1. Moreover, from the formula Sk = Sk−1+ S̃k−1 one obtains
that S̃k−1 needs no more than k − 1 resources in the computational cycles after
the vertex because at least one processor is needed by Sk−1. Hence one obtains
for the resource profile R(S̃k−1):

- ∃ j ∈ {1, . . . , t̄ l̃k−1} : R(S̃k−1) 3 sj = k

- R(S̃k−1) 3 sj ≤ k − 1 for t̄ l̃k−1 < j ≤ (t̄ + 1)l̃k−1 + t̂ − 1.

For t̂ < t̄ corresponding parallel reversal schedules S̃2 and S̃3 can be constructed
according to the schedules depicted in Fig. 4.35 for t̄ = 4 and t̂ = 2. If one has
t̂ = t̄ similar parallel reversal schedules are used for k ∈ {3, 4}. Subsequently
parallel reversal schedules S̃k are constructed recursively using S̃k−1 and S̃k−2.
The corresponding procedure is depicted in Fig 4.36. An exact description how
to construct the auxiliary feasible parallel reversal schedules S̃k is contained in
the proof of Theorem B.1 for t̂ < t̄ and in the proof of Theorem B.2 for t̂ = t̄ (see
Appendix B). Furthermore, the resulting resource profiles R(S̃k) are analyzed
in detail. Because the construction is rather technical and does not provide
further insights both theorems as well as their proofs are not presented here, but
contained in Appendix B. Having the auxiliary parallel reversal schedules S̃k

and their resource profiles at hand it is possible to prove the following assertion.

96 Chapter 4. Parallel Reversal SchedulesPSfrag replacements

t t

l

l

1 1

5 510 10 20 30

Figure 4.35: Parallel Reversal Schedules S̃2 and S̃3 for t̄ = 4 and t̂ = 2

PSfrag replacements

t

l

· · ·

︸ ︷︷ ︸

t̄-times S̃k−2

S̃k−2

S̃k−2

S̃k−2

S̃k−2

S̃k−1

Figure 4.36: Construction of S̃k for k > 3

Theorem 4.10 (Reversal Schedules for t̄ > 2 and t̂ ≤ t̄).
Suppose the given uniform one-step evolution F determines the temporal com-
plexities t̄ > 2 and t̂ ≤ t̄ to perform one reverse step and one recording step,
respectively. Then there exist for k > 4 feasible parallel reversal schedules
Sk = Sk−1 + S̃k−1 for the reversal of lk physical steps, such that lk−1 and
t̄ lk−2 − t̂+1 physical steps are reversed by Sk−1 and S̃k−1, respectively. For the
resource profile R(Sk), k ≥ 4, follows

cj
k = 0, pj

k = 1, sj
k = 1 1 ≤ j ≤ t̄

pj
k ≤ d i+1

2 e, sj
k ≤ i t̄ li−1 < j ≤ t̄ li, 2 ≤ i ≤ k

cj
k = k−2, pj

k = 2, sj
k = k j = t̄ lk + 1

cj
k = k−2, pj

k = 1, sj
k = k−1 1 < j− t̄ lk ≤ l3+ t̂−1

cj
k = k−i+1, pj

k = 1, sj
k = k−i+2

{
li−1 < j− t̄ lk− t̂+1 ≤ li
4 ≤ i ≤ k .

(4.29)

Proof. See Appendix B, Page 146.

In order to prove Theorem 4.10 the resource profile R(Sk) resulting from the
composition of Sk−1 and S̃k−1 is analyzed. For that purpose the starting point
is given by the feasible parallel reversal schedule S3 the principle structure of
which is depicted in Fig. 4.37 for t̄ = 4 and t̂ = 2. Subsequently the feasible
parallel reversal schedule Sk = Sk−1 + S̃k−1, k ≥ 4, illustrated in Fig. 4.38 is
examined. A similar approach as for example in the proof of Theorem 4.5 yields

4.3 Feasible Parallel Schedules to Reverse lk Physical Steps 97

PSfrag replacements

t

l

1

1 10 20

Figure 4.37: Parallel Reversal Schedule S3 for t̄ = 4 and t̂ = 2

PSfrag replacements t

l

Sk−1

S̃k−1

Figure 4.38: Parallel Reversal Schedule Sk for k ≥ 4

that Equation (4.29) holds for the resource profile R(Sk). Therefore the proof is
not presented here, but contained in Appendix B. Because of Theorem 4.10 the
assertion of Theorem 4.4 is valid for (t̂, t̄) ∈ N×N with t̂ ≤ t̄. Furthermore, one
can conclude from the resource profile R(Sk) that again the maximal number of
resources is attained at least in the computational cycle j = t̄ ll + 1 right after
the vertex of Sk. Moreover, the upper bound of the resources required grows
monotonously in a warm-up phase before the vertex and declines monotonously
in a cool-down phase after the vertex. The same is true for the upper bound of
the processors utilized by Sk.

At last the case (t̂, t̄) ∈ N × N, t̂ > t̄, will be considered. For the upper
bound lk one obtains according to Equation (4.3)

lk =

{
k if k < 2 + t̂/t̄

lk−1 + t̄ lk−2 − t̂ + 1 else
.

For the construction of corresponding parallel reversal schedule Sk it is advan-
tageous to have the following relation between the upper bound for the case
(t̂, t̄) ∈ N × N, t̂ ≤ t̄, and lk for (t̂, t̄) ∈ N × N, t̂ > t̄, as defined in the last
equation at hand.

Lemma 4.6.
Let t̂, t̄ ∈ N with t̂ > t̄ > 2 be given and set r ≡ t̂ − b(t̂ − 1)/t̄ct̄ ∈ {1, . . . t̄}.
Define the sequences

lk ≡
{

k if k < 2 + t̂/t̄

lk−1 + t̄ lk−2 − t̂ + 1 else
and

lk,r ≡
{

k if k ≤ 2
lk−1 + t̄ lk−2 − r + 1 else

with k ∈ N. For k ≥ 2 + t̂/t̄ follows that

lk = lk−(t̂−r)/t̄,r+(t̂−r)/t̄ . (4.30)

98 Chapter 4. Parallel Reversal Schedules

Proof. In order to show Equation (4.30) consider k = 2 + dt̂/t̄e. According to
the definition of lk and lk,r this yields

lk = k − 1 + t̄(k − 2) − t̂ + 1 = (t̄ + 1)k − 2 t̄ − t̂,

lk−(t̂−r)/t̄,r = l3,r = 3 + t̄ − r,

lk+1 = (t̄ + 1)k − 2 t̄ − t̂ + t̄(k − 1) − t̂ + 1 = 2 t̄ k − 3 t̄ − 2 t̂ + k + 1,

lk−(t̂−r)/t̄,r = l4,r = 4 + 3 t̄ − 2r .

Therefore one has that

lk = 2 + dt̂/t̄ e + t̄ − r = lk−(t̂−r)/t̄,r + (t̂ − r)/t̄ and

lk+1 = 3 t̄ + 3 + dt̂/t̄ e − 2r = lk+1−(t̂−r)/t̄,r + (t̂ − r)/t̄ .

Now assume that Equation (4.30) is valid for 2 + dt̂/t̄ e ≤ j ≤ k − 1 with
k > 3 + dt̂/t̄ e. Then one obtains

lk = lk−1 + t̄ lk−2 − t̂ + 1

= lk−1−(t̂−r)/t̄,r + (t̂ − r)/t̄ + t̄
(

lk−2−(t̂−r)/t̄,r + (t̂ − r)/t̄
)

− t̂ + 1

= lk−1−(t̂−r)/t̄,r + t̄ lk−2−(t̂−r)/t̄,r − r + 1 + (t̂ − r)/t̄

= lk−(t̂−r)/t̄,r + (t̂ − r)/t̄ .

Hence Equation (4.30) holds for all k ≥ 2 + t̂/t̄.

Equation (4.30) is exploited in the proof of the following theorem in order
to construct the desired parallel reversal schedules Sk.

Theorem 4.11 (Reversal Schedules for t̄ > 2 and t̂ > t̄).
Suppose the given uniform one-step evolution F determines the temporal com-
plexities t̂ > t̄ > 2 to perform one recording step and one reverse step, respec-
tively. Let k resources be available each of which has the property of processor-
checkpoint convertibility. It is possible to construct feasible parallel schedules Sk

for the reversal of lk physical steps which need no more than k resources at any
time on the base of the feasible parallel schedules developed in Theorem 4.10.
The number of processors needed by Sk does not exceed

pb
k ≡

{
k if 1 ≤ k < 2 + t̂/t̄

d(k + 1)/2e +
⌈

1
2b(t̂ − 1)/t̄c

⌉

else
.

Proof. See Appendix B, Page 149.

In the proof of Theorem 4.11 the integer value r = t̂ − b(t̂ − 1)/t̄ct̄ is de-
termined. The desired Sk to reverse lk physical steps is built on the parallel
reversal schedule Sk,r for the pair (r, t̄) as constructed in Theorem 4.10. For
that purpose the recording steps of Sk,r are modified such that the given value
of t̂ > t̄ is taken into account. Subsequently the reversal of (t̂ − r)/t̄ additional
physical steps is attached at the vertex of Sk,r. As can be seen the argument
is similar to the one used in the proof of Theorem 4.6. Therefore the proof of
Theorem 4.11 is not presented here, but contained in Appendix B.

4.4 Conclusions 99

Because of Theorem 4.11 the assertion of Theorem 4.4 holds also for the
case considered at last. Therefore it has been proven for all natural number
pairs (t̂, t̄) ∈ N × N.

4.4 Conclusions

Let an one-step evolution F be given that determines the temporal complexities
t̄ ∈ N and t̂ ∈ N to perform a reverse step and a recording step, respectively.
Throughout this chapter it was assumed that each resource that is available has
the property of processor-checkpoint convertibility. Having this simplification
at hand it was proven in Section 4.2 that the maximal number lk of physical
steps that can be reversed with up to k resources at any time is limited above
in the following way

lk ≤
{

k if k < 2 + t̂/t̄

lk−1 + t̄ lk−2 − t̂ + 1 else
.

Section 4.3 contains the construction of feasible parallel reversal schedules that
apply up to k resources at any time and reverse exactly k physical steps if one
has k < 2+ t̂/t̄ and lk ≡ lk−1 + t̄ lk−2− t̂+1 physical steps otherwise. Therefore
it was proven that for the maximal number lk of physical steps that can be
reversed with up to k processors and checkpoints at any time the equality

lk =

{
k if k < 2 + t̂/t̄

lk−1 + t̄ lk−2 − t̂ + 1 else

holds. Furthermore, the construction of the parallel reversal schedules Sk yields
an upper bound of the fraction of processors among the k processors and check-
points. It was shown that no more than

pb
k ≡

{
k if k < 2 + t̂/t̄

d(k + 1)/2e +
⌈

1
2b(t̂ − 1)/t̄c

⌉

else

processors are required in each computational cycle. So far, for general temporal
complexities t̄, t̂ ∈ N there is no idea how to prove that this fraction of processors
is really needed or how to reduce pb

k further.
Figure 4.39 serves to get a better impression of the parallel reversal schedules

developed in the last section. Here for t̄ = t̂ = 1 the parallel reversal schedule
S7 as well as the needed checkpoints cj

7, the needed processors pj
7 and the sum

sj
7 of both are shown. As can be seen there is a warm-up and a cool-down

phase, where the number of processors and checkpoints required increases and
decreases, respectively. Furthermore, the maximal number of processors and
checkpoints, namely 7, is needed during the recording step Flk−1. This fact
is true for all parallel reversal schedules that reverse the maximal number of
physical steps with a given number of processors and checkpoints. Otherwise
it would be possible to reverse at least one more physical step.

To illustrate the achieved results further assume that at most 16 processors
are available and at most 16 checkpoints can be accommodated. This is a

100 Chapter 4. Parallel Reversal Schedules

PSfrag replacements

l

t

t

t

t

cj
7

pj
7

sj
7

1

1

1

1

1

10

10

20

20 30 40

Figure 4.39: Parallel Reversal Schedule S7 for t̄ = t̂ = 1

quite realistic situation for existing multi-processor machines. Then for several
combinations of t̄ and t̂ the corresponding value of lk, i.e. the maximal number
of physical steps that can be reversed with the parallel reversal schedule Sk

developed in this chapter, are given by Table 4.1. Because of the size of lk,

t̄
∖
t̂ 1 2 3

1 2 178 309 514 230 317 813
2 1 073 741 824 715 827 883 134 217 729
3 65 523 692 457 51 830 637 705 36 137 582 953

Table 4.1: Maximal Number lk of Physical Steps that can be reversed

it should be possible to reverse every one-step evolution of interest for these
temporal complexities.

Now the behavior of lk is analyzed in more detail. For t̂ = t̄ = 1 and k > 0
follows that lk equals the (k− 1)th Fibonacci number. Therefore one finds that
(see e.g. [Knu73])

lk ∼
(

1

2
(1 +

√
5)

)k−1

. (4.31)

This relation yields that the number of physical steps that can be reversed with
k resources grows exponentially in k. For the corresponding reversals d(k+1)/2e
processors suffice as shown in Section 4.3.

If the given one-step evolution determines another combination of t̄ and t̂
then a slightly different formulation of the recursion provides more insight. One

4.4 Conclusions 101

obtains for k ≥ 2 + t̂/t̄

lk = lk−1 + t̄ lk−2 − t̂ + 1 = lk−1 + t̄ lk−2 + α t̄

with α = (1 − t̂)/t̄. This yields with l̄k ≡ lk + α

l̄k = l̄k−1 + t̄ l̄k−2 ,

which equals the recursion formula for the generalized Fibonacci sequence (see
e.g. [HP98]). Hence, one can derive a behavior of the corresponding lk that is
similar to the right-hand side of Equation (4.31). Here, only the base differs.
In detail one has

lk ∼
(

1

2
(1 +

√

1 + 4t̄)

)k−1

.

Therefore also for general t̄ and t̂ one has an exponential growth of lk in k.
Moreover, it is possible to draw the following interesting connection between

serial and parallel reversal schedules. Assume that the given one-step evolution
F combines l physical steps and determines the temporal complexities t̄ = 1 and
t̂ = 1 to perform one reverse step and one recording step with one processor,
respectively. Let P processors be available. Furthermore, suppose that the
times required to perform one physical step, one reverse step, and one recording
step speedup perfectly with respect to the number of processors that are applied
to perform them. Thus, if m denote the number of processors that can be used
then the time needed to perform either a physical step, a reverse step, or a
recording step is given by 1/m. For the number p of processors required by
the parallel reversal schedules Sk developed in Section 4.3 to reverse l physical
steps follows

p ≈ 0.5 log(1+
√

5)/2 l

The time tM needed for the complete reversal of l physical steps is determined
by tM = 2 l/m taking the speed-up of the physical steps, reverse steps, and
recording steps into account. With m = P/p one obtains tM = 2 lp/P . Assume
for the serial reversal of F that r = c, where r is defined as in Chapter 3. I.e. a
similar growth in the temporal and spatial complexity of the serial reversal is
accepted. Then r l can be seen as integer approximation of the cost to reverse
the given l physical steps using optimal serial reversal schedules. Using the
processor-checkpoint convertibility one can assume r = c = p. Hence, the time
required to reverse l physical steps with the serial reversal schedule equals lp/P
because of the perfect speed-up. In this special case the ratio between the
time needed for the reversal using a optimal serial reversal schedule and the
time needed for the reversal using a optimal parallel schedule is given by 2.
For the serial reversal schedule P processors are active throughout the reversal
process. Using the parallel reversal schedule it seems that only P/2 processors
work on an average in time. These facts can be seen as an explanation for the
asymptotic factor 2. Furthermore, the serial reversal schedule that takes the
speed-up into account can be used even if the step costs vary slightly. However,

102 Chapter 4. Parallel Reversal Schedules

it depends strongly on the perfect speed-up. The parallel reversal schedule needs
uniform-step costs but can handle a speed-up that is not as regular as assumed
here. Obviously the unrestricted speed-up of the run time needed to perform
a physical step, a recording step or a reverse step is not realistic. Nevertheless,
it might be useful to utilize the processors that are actually not needed for the
reversal process to speed up the evaluation of the physical steps. For example,
this could be done in the warm-up or cool-down phase. The development of
corresponding parallel reversal schedules will be subject of future work.

Usually, the one-step evolution under consideration does not combine a
number l of physical steps that equals lk for some k ∈ N. Nevertheless, it is
possible to determine one unique k ∈ N with lk−1 < l ≤ lk. Then it is obvious
that exactly k resources are needed to reverse the given l physical steps. Here,
again in each computational cycle a resource may be used either as processor
or as checkpoint. Furthermore, the corresponding parallel reversal schedule Sk

developed in Section 4.3 can be applied with slight modifications to reverse the
given number l of physical steps. To that end more or less only the actions
of Sk are performed that act on the states lk − l, . . . , lk because they form a
complete reversal schedule for l physical steps.

Chapter 5

Conclusions and Outlook

Often one may need to reverse the evaluation of a given function F . The key
difficulty is given by the enormous amount of memory required for the reversal of
any evaluation program that has a reasonable size if the basic approach is used.
If F can be split into a sequence of physical steps then F forms an evolutionary
system. Different types of evolutionary systems are considered. The goal of this
thesis was to present optimal strategies to reverse these evolutionary systems.
The proposed reversal schedules for single- and multi-processor machines reduce
the spatial complexity for reversing F drastically.

5.1 Serial Reversal Schedules

Suppose the reversal of F has to be performed on a single-processor machine.
The case where F combines physical steps of the same temporal complexity and
each state depends only on the previous one has been completely covered in the
literature. Only little was known about the reversal of evolutionary systems
with non-uniform step costs.

This thesis presents new results with respect to optimal serial reversal sched-
ules for multi-step evolutions with uniform step costs. Here each state depends
on more than one previous state and the cost to go from the previous state to
the next one is always the same. The derived serial reversal schedules minimize
the number of physical steps that have to be performed during the reversal.
Furthermore, they cause the minimal number of checkpoint writings. The rou-
tine revolve.c implementing the developed optimal serial reversal schedules
was coded. As numerical application it was used to approximate the solution
of an adjoint differential equation. Three different multi-step recurrences were
considered. The achieved results were reported and interpreted.

In the case of one-step recurrences and non-uniform step costs a search
algorithm has to be used to find one optimal serial reversal schedule. Based
on the technique of dynamic programming an obvious search algorithm has
a temporal complexity that is cubic in the number of physical steps to be
reversed. In this thesis an important property of the checkpoint writings is
proven, namely the “monotonic partition”. This property can be applied to
reduce the complexity of the search algorithm. For all considered examples the

103

104 Chapter 5. Conclusions and Outlook

time required to find an optimal serial reversal schedule is drastically reduced,
apparently by one power of l. It may be conjectured from the measured run
times that it is possible to achieve a temporal complexity of the search algorithm
that is quadratic in the number of physical steps to be reversed. Nevertheless
two tasks are left for future work. On one hand it would be advantageous to
have a proof of the reduction to a quadratic complexity or even further. For
monotonously increasing or decreasing step costs it should not be too difficult
to obtain a corresponding result. For arbitrary step costs so far there is no idea
how the proof could work. On the other hand, usually one does not know the
exact distribution of the step costs a priori as assumed in this thesis. Therefore
it is desirable to have a procedure at hand, which performs the checkpoint
writings during the first forward sweep from the initial state to the penultimate
state according to a predefined strategy and stores the step costs observed in an
array. This array can be used during the following forward sweeps to manage
the checkpoint writings such that the time needed for the reversal is minimized.
The steering process could be based on the improved search algorithm presented
in Chapter 3, but one has to think about the strategy applied to perform the
checkpoint writings in the first forward sweep.

5.2 Parallel Reversal Schedules

So far, one knew only little about reversal strategies on multi-processor ma-
chines. Therefore the development of optimal parallel reversal schedules is right
at the beginning. This thesis answers for uniform one-step evolutions the ques-
tion how many physical steps can be reversed maximally with a given number of
resources. Here it is supposed that each resource has the property of processor-
checkpoint convertibility, i.e. can be used either as processor or as checkpoint
in each computational cycle. The corresponding parallel reversal schedules are
derived in Chapter 4. These parallel reversal schedules also can be used easily
for evolutionary systems that use multi-step recurrences in the following way.
Suppose that a q-step recurrence is applied. One can group always q physical
steps to one mega step. Then the reversal of the modified evolutionary system
can be performed by the parallel reversal schedules developed in the last chap-
ter. Obviously this is only a sub-optimal solution if additional reverse steps can
be performed during the release of a checkpoint as considered in Chapter 3.

It is planned to code the parallel reversal schedules of Chapter 4 using either
MPI or OpenMP. With respect to the implementation the following remarks
can be made. First one has to note that the communication between the pro-
cessors is largely determined a priori. In principle only checkpoints need to be
exchanged. Furthermore if there are more checkpoints than are needed by the
particular parallel reversal schedule, then they can be used to manage possible
delays of the processors. Moreover assume that the given evolutionary system
F is coded using already a parallel mechanism. Suppose that m processors are
required to evaluate F . Let p be the number of processors that are needed
by a feasible parallel reversal schedule S to reverse the evolutionary system F .
Then the number of processors required for the reversal with the schedule S is

5.3 Summary 105

given by the product of m and p. A further task for the future should be the
development of suitable recover strategies if there are delays or break downs
during the calculation of reversal processes.

Besides these more practical aspects there are several theoretical questions
to think about. Throughout Chapter 4 it was assumed that the temporal com-
plexities t̄ and t̂ determined by the given evolutionary system are natural num-
bers. Obviously, this assumptions forms a restriction of the allowed evolutionary
systems that is not negligible. Therefore in the future one has to examine how
the theory for the reversal of evolutionary systems on multi-processor machines
can be extended to more general situations. Furthermore, so far only uniform
step costs are considered. Optimal reversal schedules for multi-processors ma-
chines and non-uniform step costs are an open research topic, where so far no
results are known.

5.3 Summary

In order to summarize the above it appears useful to work on the development of
optimal reversal strategies for program evolutions because the enormous amount
of memory required to reverse a program execution is still a problem.

For a wide range of applications, namely evolutionary systems that have
uniform step costs and employ one- or the multi-step recurrences considered in
this thesis, software tools are available to reverse the corresponding evaluation
on serial machines. Furthermore now an improved search algorithm is coded to
find optimal serial reversal schedules in the case of non-uniform step costs. This
should be a good base to reverse program evolutions that describe evolutionary
systems on serial machines.

Moreover now optimal schedules are available for the reversal of many evolu-
tionary systems on multi-processor machines. On one hand the results achieved
in this thesis form a good foundation to implement a corresponding software
tool that manages the reversal process on multi-processor machines appropri-
ately. On the other hand now a first base for further theoretical and practical
results with respect to more general evolutionary systems is built.

106 Chapter 5. Conclusions and Outlook

Appendix A

Source of the Coded

Algorithms

A.1 revolve.c: Multi-step Recurrences and Uniform

Step Costs

The procedure revolve.c below is self-contained. It can be used to control the
reversal process on a serial machines for a given q-step evolution determining
the parameter b as described in Section 3.3.2 of Chapter 3. For that purpose
the technique of reverse communication has to be utilized.

#include <stdio.h>

#include <stdlib.h>

#define min(x,y) ((y<x) ? y : x)

enum action { advance, takeshot, restore, firsturn, youturn,

terminate, error, reduce_checkpoint};

enum action revolve(int* check,int* capo,int* fine,int snaps,

int q,int b,int* perform,int* info)

{

static int ch[checkup], m, range_b, range_q, reduce,

reps, turn;

int ds, mh, num, oldcapo;

int bino1, bino2, bino3, bino4, bino5, bino6, bino7;

/* (*capo,*fine) = time range under consideration */

/* ch[j] = number of the state stored in checkpoint j */

if (*check < -1 || *capo > *fine || b >= q)

return error;

if ((*check == -1) && (*capo < *fine))

{

if (*check == -1)

{

107

108 Chapter A. Source of the Coded Algorithms

turn = 0; /* initialization of turn counter */

reduce = 0; /* do we have to go b steps back? */

m = 0;

}

*ch = *capo-1;

}

if (*fine-*capo == 0)

{ /* reduce capo to previous checkpoint, unless done */

if (*check == -1 || *capo==*ch)

{

*check -= 1;

return terminate;

}

else

{

if ((reduce == 1) && (b > 0))

{

reduce = 0;

*fine = *fine - b;

*capo = *fine;

return reduce_checkpoint;

}

else

{

*capo = ch[*check];

m = 0;

return restore;

}

}

}

else

{

if (*fine-*capo <= q)

{ /* (possibly first) combined forward/reverse step */

*perform = *fine-*capo;

*fine = *capo;

if (*check >= 0 && ch[*check] == *capo)

{

*check -= 1;

reduce = 1;

}

if (turn == 0)

{

turn = 1;

return firsturn;

}

else

A.1 revolve.c: Multi-step Recurrences and Uniform Step Costs 109

return youturn;

}

else

{

if (*check == -1 || ch[*check] != *capo)

{

*check += 1 ;

ch[*check] = *capo;

return takeshot;

}

else

{

oldcapo = *capo;

ds = snaps - *check;

reps = 0;

range_b = 1;

range_q = 1;

while(q * range_q + b * (range_b - 1) < *fine - *capo)

{

reps += 1;

range_q = range_q*(reps + ds)/reps;

range_b = range_b*(reps + ds - 1)/reps;

}

bino1 = range_q*reps/(ds+reps);

bino2 = (ds > 1) ? bino1*ds/(ds+reps-1) : 1;

if (ds == 1)

bino3 = 0;

else

bino3 = (ds > 2) ? bino2*(ds-1)/(ds+reps-2) : 1;

bino4 = bino2*(reps-1)/ds;

bino6 = range_q*ds/(ds+reps);

if (reps == 1)

bino7=0;

else

bino7 = (reps > 2) ? bino2*(reps-1)/(ds+reps-2): 1;

if (*fine-*capo <= q*(bino1+bino3) + b*(bino2-1))

*capo = *capo+q*bino4+b*bino7;

else

{

if (ds == 1)

*capo = *fine-q;

else

{

if (*fine-*capo <= q*(bino1 + bino2) + b*(bino2-1))

*capo = *fine-q*(bino2+bino3)-b*(bino3-1);

else

{

110 Chapter A. Source of the Coded Algorithms

if (turn == 0)

{

if (m == 0)

m = min(range_q,*fine);

while(*fine-*capo <= (m-1)*q+((m-1)-bino1-1)*b)

m -= 1;

}

else

{

m = bino1 + bino2 + 1;

while(*fine-*capo > m*q+(m-bino1-1)*b)

m += 1;

}

if (ds < 3)

bino5 = 0;

else

bino5 = (ds > 3) ? bino3*(ds-2)/reps : 1;

if (m > bino1 + bino2 + bino5)

mh = (m-bino6);

else

mh = (bino4 + bino7+1);

*capo = *fine-q*(m-mh)-b*(m-mh-bino2-1);

}

}

if ((*capo-oldcapo < q) && (*fine-*capo > q))

*capo = oldcapo+q;

if (*fine-*capo < q)

*capo = *fine-q;

return advance;

}

}

}

}

If c = 3 checkpoints are available a procedure similar to the code list at
Page 44 causes for l = 20 and the parameters q = 2 and b = 1 (e.g. leap-frog
method) the output:

ENTER: STEPS, CHECKS, Q, B, INFO

20 3 2 1 3

prediction of needed forward steps: 28 =>

slowdown factor: 1.4000

takeshot at 0

advance to 6

takeshot at 6

A.2 sched.c: One-step Recurrences and Non-uniform Step Costs 111

advance to 14

takeshot at 14

advance to 18

firsturn at 18 with 2 steps

restore at 14

advance to 16

youturn at 16 with 2 steps

restore at 14

youturn at 14 with 2 steps

reduce checkpoint at 14

restore at 6

advance to 9

takeshot at 9

advance to 11

youturn at 11 with 2 steps

restore at 9

youturn at 9 with 2 steps

reduce checkpoint at 9

restore at 6

youturn at 6 with 2 steps

reduce checkpoint at 6

restore at 0

advance to 2

takeshot at 2

advance to 3

youturn at 3 with 2 steps

restore at 2

youturn at 3 with 2 steps

youturn at 2 with 1 steps

reduce checkpoint at 2

restore at 0

youturn at 0 with 1 steps

advances: 28

takeshots: 5

commands: 35

A.2 sched.c: One-step Recurrences and

Non-uniform Step Costs

The complete source of the improved search algorithm for an optimal serial
reversal schedule as described in Section 3.4 of Chapter 3 is listed below.
Apart from the procedure initweights(..) it is self-contained. The rou-
tine initweights(..) initializes the array w of step costs. Therefore it has
to be written by the user in correspondence to the evolutionary system under
consideration.

112 Chapter A. Source of the Coded Algorithms

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

double** t;

double* w;

double* sum;

int** part;

main()

{

int c,d,h,i,l,m,lb_m,ub_m;

double slope,totalcost,tenp;

printf(" checks, steps, slope \n"); */

scanf("%d %d %lf",&c,&l,&slope);

t = (double**)malloc((c+1)*sizeof(double*));

part = (int**)malloc((c+1)*sizeof(int*));

w = (double*)malloc(l*sizeof(double));

sum = (double*)malloc(l*sizeof(double));

for(h=1;h<=c;h++)

{ t[h] = (double*)calloc(l*(l+1)/2,sizeof(double));

part[h] = (int*)calloc(l*(l+1)/2,sizeof(int));

}

initweights(w,sum,l,slope);

for(s=1;s<=c;s++)

{ for(d=2;d<=l;d++)

for(i=0;i<=l-d;i++)

{ h=i+d;

if (d <= s+1)

{ if (i > 0)

t[s][i+h*(h-1)/2-1]=sum[h-2]-sum[i-1];

else

t[s][i+h*(h-1)/2-1]=sum[h-2];

part[s][i+h*(h-1)/2-1]=i+1;

}

else

{ if (s == 1)

{ if (d == 2)

t[s][i+h*(h-1)/2-1]=2*w[i]+w[i+1];

else

if (i == 0)

t[s][i+h*(h-1)/2-1]=t[s][i+(h-1)*(h-2)/2-1]+sum[h-2];

else

t[s][i+h*(h-1)/2-1]=t[s][i+(h-1)*(h-2)/2-1]

A.2 sched.c: One-step Recurrences and Non-uniform Step Costs 113

+sum[h-2]-sum[i-1];

}

else

{ lb_m = part[s][i+(h-1)*(h-2)/2-1];

ub_m = part[s][i+1+h*(h-1)/2-1];

part[s][i+h*(h-1)/2-1] = 0;

t[s][i+h*(h-1)/2-1] = -1;

for(m=lb_m;m<=ub_m;m++)

{ if (i > 0)

tenp = sum[m-1]-sum[i-1];

else

tenp = sum[m-1];

tenp += t[s-1][m+h*(h-1)/2-1] + t[s][i+m*(m-1)/2-1];

if(tenp<t[s][i+h*(h-1)/2-1] || t[s][i+h*(h-1)/2-1]<0)

{ t[s][i+h*(h-1)/2-1] = tenp;

part[s][i+h*(h-1)/2-1] = m;

}

}

}

}

}

}

printf("\n Minimal Reversal Cost: %10.2f \n",t[c][l*(l-1)/2]);

schedprint(c,0,l);

}

114 Chapter A. Source of the Coded Algorithms

Appendix B

Construction of Feasible

Parallel Reversal Schedules

B.1 Construction of Parallel Reversal Schedules for

t̄ = 2 and t̂ > 1

This section contains the proofs of the Theorems 4.8 and 4.9. In the first proof
the desired feasible parallel reversal schedules Sk for the temporal complexi-
ties (t̂, t̄) = (2, 2) are constructed. The second one describes how to develop
the desired feasible parallel reversal schedules Sk if the given uniform one-step
evolution determines the temporal complexities t̄ = 2 and t̂ > 2.

Proof of Theorem 4.8, Page 91:

For k ≤ 3 one has lk = k. It is obvious how to construct the corresponding
parallel reversal schedules Sk such that they need no more than d(k + 1)/2e
processors. In order to prove the existence of appropriate parallel reversal
schedules for an arbitrary k > 3 consider the parallel reversal schedules S3 and
S4 as shown in Fig. 4.34. It is easy to see that both schedules need no more
than 3 and 4 resources in any computational cycle, respectively. Furthermore,
one finds that the number of processors used does not exceed d(3 + 1)/2e and
d(4 + 1)/2e, respectively. The parallel reversal schedules Sk for k ≥ 5 are
constructed according to the procedure illustrated by Fig. 4.33, where S̄k−2

denotes the reduced parallel reversal schedule Sk−2 to reverse lk−2 − 1 physical
steps. In order to create S̄k−2 the parallel reversal schedule Sk−2 is shortened
by the reversal of the last physical step Flk−2−1.

Using an induction on k it will be shown in this proof that Equation (4.27)
holds for the resource profile R(Sk), k > 4, if Sk is recursively constructed
according to Fig. 4.33.

Considering the resulting parallel reversal schedule S5 (see Fig. B.1) it fol-
lows that Equation (4.27) holds for the resource profile R(S5). The reversal
schedule S6 constructed according to Fig. 4.33 as well as the resulting resource
profile R(S6) are illustrated by Fig. B.2. One finds that Equation (4.27) is also
valid for R(S6).

Now it will be proven that Equation (4.27) holds for R(Sk), k > 6, if Sk

115

116 Chapter B. Construction of Feasible Parallel Reversal Schedules

PSfrag replacements

1

1

1

1

1

sj
5

cj
5

pj
5

t

t

t

t

l

10 20 30

5

Figure B.1: Parallel Reversal Schedule S5 for t̂ = 2 and t̄ = 2

PSfrag replacements

1
1

1

1

1

t

t

t

t

l

sj
6

cj
6

pj
6

10 20 30

5

40 50 60

Figure B.2: Parallel Reversal Schedule S6 for t̂ = 2 and t̄ = 2

B.1 Construction of Parallel Reversal Schedules for t̄ = 2 and t̂ > 1 117

is constructed in accordance with Fig. 4.33. First, suppose that k is odd. The
alternative will be considered later.

If k is odd Sk is constructed on the base of Sk−2 and S̄k−2, where S̄k−2

results from a shortening of Sk−2 as as depicted in Fig. B.3 for k − 2 = 5. The
lines drawn in black determine the new parallel reversal schedule S̄k−2. It will

PSfrag replacements t

l

1

1

10

10 20 30

Figure B.3: Reversal Schedule S̄5

be shown using once more an induction on k that for S̄k−2 the resource profile
R(S̄k−2) fulfils

c̄j
k−2 = 0, p̄j

k−2 = 1, s̄j
k−2 = 1 j = 1, 2

p̄j
k−2 ≤ d i+1

2 e, s̄j
k−2 ≤ i







li < j ≤ li+1+1, i even
li+1 < j ≤ li+1, i odd
i = 2, . . . , k − 3

p̄j
k−2 ≤ k−1

2 , s̄j
k−2 ≤ k−2 lk−2 + 1 < j ≤ lk−1− 2

c̄j
k−2 = k−3

2 , p̄j
k−2 = k−3

2 , s̄j
k−2 = k−3 lk−1−1 ≤ j ≤ lk−1+1

c̄j
k−2 = k−5

2 , p̄j
k−2 = k−3

2 , s̄j
k− 2 = k−4 j = lk−1+2, lk−1+3

c̄j
k−2 = k−i

2 , p̄j
k−2 = k−i

2 , s̄j
k−2 = k−i li−2 < j−lk−1 ≤ li−2

c̄j
k−2 = k−i−2

2 , p̄j
k−2 = k−i

2 , s̄j
k−2 = k−i−1 li−2 < j−lk−1 ≤ li

i = 5, 7, . . . , k − 4

c̄j
k−2 = 1, p̄j

k−2 = 1, s̄j
k−2 = 2 lk−1+lk−4 <j≤3 lk−2−2 .

(B.1)

Equation (B.1) is valid for the resource profile R(S̄5) = R(S̄7−2) as can be seen
from Figs. B.3 and B.4. This fact will be exploited to construct for odd k > 5
parallel reversal schedules Sk such that Equation (4.27) holds for the resource
profiles R(Sk). Subsequently it will be shown that Equation (B.1) is valid for
the resource profiles R(S̄k) of the shortened parallel reversal schedules S̄k.

For constructing the feasible parallel schedule to reverse lk physical steps Sk

takes the first lk−2 computational cycles over from Sk−2 without any changes.
Hence one has for j = 1 and j = 2

cj
k =cj

k−2 =0, pj
k =pj

k−2 =1, sj
k =sj

k−2 =1 (B.2)

as well as for i = 2, . . . , k − 2

pj
k = pj

k−2 ≤ d i+1
2 e, sj

k = sj
k−2 ≤ i

{
li < j ≤ li+1 + 1, i even
li + 1 < j ≤ li+1, i odd

(B.3)

118 Chapter B. Construction of Feasible Parallel Reversal Schedules

PSfrag replacements

1

1

1

1

s̄j
5

c̄j
5

p̄j
5

t

t

t

l

10 20 305

Figure B.4: Resource Profile R(S̄5)

and the vertex of the first parallel reversal schedule Sk−2 is reached. The
parallel reversal schedule S̄k−2 starts. This yields for j = lk−1 + 1 = 2 lk−2 + 1
and j = 2 lk−2 + 2

pj
k = pj

k−2 + p̄
j−2lk−2

k−2 ≤
⌈k−2

2

⌉

+ 1 =
⌈k

2

⌉

, sj
k = sj

k−2 + s̄
j−2lk−2

k−2 ≤ k − 1 .

Furthermore, one obtains for i = 2, 4, . . . , k− 5 and li < j − 2 lk−2 ≤ li+1 + 1 as
well as for i = 3, 5, . . . , k − 4 and li + 1 < j − 2 lk−2 ≤ li+1 that

pj
k = pj

k−2 + p̄
j−2lk−2

k−2 ≤
⌊k − i

2

⌋

+
⌈ i + 1

2

⌉

=
⌈k

2

⌉

,

sj
k = sj

k−2 + s̄
j−2lk−2

k−2 ≤ k − i + i .

For the computational cycles j = 2 lk−2 + lk−4, . . . , 3 lk−2 + 1 follows

pj
k = pj

k−2 + p̄
j−2lk−2

k−2 ≤ 1 +
⌈k − 2

2

⌉

=
⌈k

2

⌉

,

sj
k = sj

k−2 + s̄
j−2lk−2

k−2 ≤ 2 + k − 3 = k − 1 .

Now the parallel reversal schedule Sk−2 is completed. Hence one obtains for
j = 3 lk−2 + 2, . . . , 2 lk−2 + lk−1 − 2

pj
k = p̄

j−2lk−2

k−2 ≤
⌈k − 1

2

⌉

<
⌈k

2

⌉

, sj
k = 1 + s̄

j−2lk−2

k−2 ≤ k − 1 ,

where the checkpoint that stores the initial state is taken into account. The
vertex of S̄k−2 is reached and the second Sk−2 starts. Because of the identity
2 lk−2 + lk−1 − 2 = 2 lk−1 − 2 = lk − 1 one has for j = lk and j = lk + 1

pj
k = p̄

j−lk−1

k−2 + pj−lk+1
k−2 ≤ k − 3

2
+ 1 <

⌈k

2

⌉

,

sj
k = 1 + s̄

j−lk−1

k−2 + sj−lk+1
k−2 ≤ k − 3 + 1 + 1 = k − 1

and therefore

pj
k ≤

⌈ i + 1

2

⌉

and sj
k ≤ i for li < j ≤ li+1 + 1 (B.4)

B.1 Construction of Parallel Reversal Schedules for t̄ = 2 and t̂ > 1 119

with i = k − 1. Moreover, it follows for j = lk + 2

pj
k = p̄

j−lk−1

k−2 + pj−lk+1
k−2 ≤ k − 3

2
+ 2 =

⌈k + 1

2

⌉

,

sj
k = 1 + s̄

j−lk−1

k−2 + sj−lk+1
k−2 ≤ 1 + k − 3 + 2 = k

(B.5)

as well as for

j = lk + 3 : pj
k = p̄

j−lk−1

k−2 + pj−lk+1
k−2 ≤ k − 3

2
+ 2 =

⌈k + 1

2

⌉

,

sj
k = 1 + s̄

j−lk−1

k−2 + sj−lk+1
k−2 ≤ 1 + k − 4 + 2 < k

j = lk + 4 : pj
k = p̄

j−lk−1

k−2 + pj−lk+1
k−2 ≤ k − 3

2
+ 2 =

⌈k + 1

2

⌉

,

sj
k = 1 + s̄

j−lk−1

k−2 + sj−lk+1
k−2 = 1 + k − 4 + 3 = k .

(B.6)

One obtains for i = 5, . . . , k − 4 and the computational cycles

lk + li−2 + 1 < j ≤ lk + li − 1 :

pj
k = p̄

j−lk−1

k−2 + pj−lk+1
k−2 ≤ k − i

2
+
⌈ i

2

⌉

=
⌈k + 1

2

⌉

,

sj
k = 1 + s̄

j−lk−1

k−2 + sj−lk+1
k−2 ≤ 1 + k − i + i − 1 = k

j = lk + li :

pj
k = p̄

j−lk−1

k−2 + pj−lk+1
k−2 ≤ k − i

2
+
⌈ i

2

⌉

=
⌈k + 1

2

⌉

,

sj
k = 1 + s̄

j−lk−1

k−2 + sj−lk+1
k−2 ≤ 1 + k − i − 1 + i − 1 < k

j = lk + li + 1 :

pj
k = p̄

j−lk−1

k−2 + pj−lk+1
k−2 ≤ k − i

2
+
⌈ i + 1

2

⌉

=
⌈k + 1

2

⌉

,

sj
k = 1 + s̄

j−lk−1

k−2 + sj−lk+1
k−2 ≤ 1 + k − i − 1 + i = k .

(B.7)

For the remainder of S̄k−2, i.e. lk + lk−4 + 1 < j ≤ lk + lk−2, follows that

pj
k = p̄

j−lk−1

k−2 + pj−lk+1
k−2 ≤ 1 +

⌈k − 2

2

⌉

=
⌈k + 1

2

⌉

,

sj
k = 1 + s̄

j−lk−1

k−2 + sj−lk+1
k−2 ≤ 1 + 2 + k − 3 = k .

(B.8)

For the next lk−2 computational cycles one processor that performs the forward
sweep from the initial state to state lk−2 must be taken into account apart from
the checkpoint storing the initial state 0. Hence one has for the computational
cycles lk + lk−2 < j ≤ 3 lk−1 − 2 = lk + lk−1 − 1

pj
k = 1 + pj−lk+1

k−2 ≤ 1 +
⌈k − 1

2

⌉

=
⌈k + 1

2

⌉

,

sj
k = 2 + sj−lk+1

k−2 ≤ 2 + k − 2 = k .

(B.9)

The vertex of the second Sk−2 is reached, where a third parallel reversal schedule
Sk−2 is placed. Furthermore, one checkpoint stores still the initial state 0.

120 Chapter B. Construction of Feasible Parallel Reversal Schedules

Therefore one obtains for

j = lk+ lk−1 and j = lk + lk−1 + 1 :

pj
k = pj−lk+1

k−2 + p
j−lk−lk−1+1
k−2 ≤

⌈k − 2

2

⌉

+ 1 =
⌈k + 1

2

⌉

,

sj
k = 1 + sj−lk+1

k−2 + s
j−lk−lk−1+1
k−2 ≤ 1 + k − 2 + 1 = k

j = lk+ lk−1 + 2 and j = lk + lk−1 + 3 :

pj
k = pj−lk+1

k−2 + p
j−lk−lk−1+1
k−2 ≤

⌊k − 3

2

⌋

+ 2 =
⌈k + 1

2

⌉

,

sj
k = 1 + sj−lk+1

k−2 + s
j−lk−lk−1+1
k−2 ≤ 1 + k − 3 + 2 = k .

(B.10)

Moreover one has for the computational cycles lk+lk−1+li−2 < j ≤ lk+lk−1+li
with i = 5, 7, . . . , 2bk−2

2 c − 1

pj
k = pj−lk+1

k−2 + p
j−lk−lk−1+1
k−2 ≤

⌊k − i

2

⌋

+
⌈ i

2

⌉

=
⌈k + 1

2

⌉

,

sj
k = 1 + sj−lk+1

k−2 + s
j−lk−lk−1+1
k−2 ≤ 1 + k − i + i − 1 = k

(B.11)

and for lk + lk−1 + l2b k−2

2
c−1 < j ≤ lk + lk−1 + lk−2

pj
k = pj−lk+1

k−2 + p
j−lk−lk−1+1
k−2 ≤ 1 +

⌈k − 2

2

⌉

<
⌈k + 1

2

⌉

,

sj
k = 1 + sj−lk+1

k−2 + s
j−lk−lk−1+1
k−2 ≤ 1 + 2 + k − 3 = k .

(B.12)

Hence, the second parallel reversal schedule Sk−2 is completed. From now
on one processor is applied to perform a forward sweep from the initial state
0 to state lk−1 − 1 where the second parallel reversal schedule Sk−2 starts.
Furthermore, one checkpoint stores still the initial state 0. Therefore, one
obtains for lk + lk−1 + lk−2 < j ≤ 2 lk

pj
k = 1 + p

j−lk−lk−1+1
k−2 ≤ 1 +

⌈k − 1

2

⌉

=
⌈k + 1

2

⌉

,

sj
k = 2 + s

j−lk−lk−1+1
k−2 ≤ 2 + k − 2 = k .

(B.13)

Finally Equations (B.5) up to (B.13) yield with i = k

pj
k ≤

⌈ i + 1

2

⌉

and sj
k ≤ i for li + 1 < j ≤ li+1 . (B.14)

Subsequently, it follows for

j = 2 lk + 1 : cj
k = 1 + c

j−lk−lk−1+1
k−2 = 1 +

⌊k − 2

2

⌋

=
⌊k

2

⌋

,

pj
k = 1 + p

j−lk−lk−1+1
k−2 = 1 +

⌈k − 2

2

⌉

=
⌈k

2

⌉

,

sj
k = 2 + s

j−lk−lk−1+1
k−2 = 2 + k − 2 = k

(B.15)

B.1 Construction of Parallel Reversal Schedules for t̄ = 2 and t̂ > 1 121

as well as for

j = 2 lk + 2 and j = 2 lk + 3 :

cj
k = 1 + c

j−lk−lk−1+1
k−2 = 1 +

⌊k − 2

2

⌋

=
⌊k

2

⌋

,

pj
k = 1 + p

j−lk−lk−1+1
k−2 = 1 +

⌊k − 3

2

⌋

=
⌊k − 1

2

⌋

,

sj
k = 2 + s

j−lk−lk−1+1
k−2 = k − 1

j = 2 lk + 4 : cj
k = 1 + c

j−lk−lk−1+1
k−2 = 1 +

⌊k − 2

2

⌋

=
⌊k

2

⌋

,

pj
k = 1 + p

j−lk−lk−1+1
k−2 = 1 +

⌊k − 5

2

⌋

=
⌊k − 3

2

⌋

,

sj
k = 2 + s

j−lk−lk−1+1
k−2 = k − 2 .

(B.16)

Moreover, one has for the remainder of the third parallel reversal schedule Sk−2

cj
k = 1 + c

j−lk−lk−1+1
k−2 = 1 +

⌊k − i + 1

2

⌋

=
⌊k − i + 3

2

⌋

,

pj
k ≤ 1 + p

j−lk−lk−1+1
k−2 ≤ 1 +

⌊k − i

2

⌋

=
⌊k − i + 2

2

⌋

,

sj
k ≤ 2 + s

j−lk−lk−1+1
k−2 ≤ k − i + 2

(B.17)

with 2 lk + li−2 < j − 1 ≤ 2 lk +li, i = 5, 7, . . . , 2bk−2
2 c − 1, as well as

cj
k = 1 + c

j−lk−lk−1+1
k−2 = 2 =

⌊k − i + 3

2

⌋

,

pj
k ≤ 1 + p

j−lk−lk−1+1
k−2 = 2 =

⌊k − i + 2

2

⌋

,

sj
k ≤ 2 + s

j−lk−lk−1+1
k−2 = 4 = k − i + 2

(B.18)

for 2 lk+li−2 < j−1 ≤ 2 lk+li and i = k−2 = 2bk
2c−1 because 2bk−2

2 c−1 = k−4.
Now the third parallel reversal schedule Sk−2 is also completed. Because of
lk + 2 lk−1 + lk−2 − 1 = 2 lk + lk−2 in the following one has to take into account
only the checkpoint storing the initial state 0 and the processor performing the
forward sweep to state lk − lk−2 necessary to start there the third Sk−2. Hence
one obtains

cj
k = 1, pj

k = 1, and sj
k = 2 (B.19)

for 2 lk + l2b k
2
c−1 + 1 < j ≤ 3 lk + 1. Combining Equations (B.2) up to (B.4)

and Equations (B.14) up to (B.19) it is proven that the resource profile R(Sk)
fulfils Equation (4.27).

It is left to show that Equation (B.1) holds for the resource profile R(S̄k)
constructed by the appropriate shortening of the parallel reversal schedule Sk.
Due to the shortening S̄k−2 is placed at the vertex of Sk instead of Sk−2. Nev-
ertheless, the first 2 lk − 2 computational cycles are taken over from Sk without

122 Chapter B. Construction of Feasible Parallel Reversal Schedules

any changes. Hence one has

c̄j
k = cj

k = 0, p̄j
k = pj

k = 1, s̄j
k = sj

k = 1 j = 1, 2

p̄j
k = pj

k ≤ d i+1
2 e, s̄j

k = sj
k ≤ i







li < j ≤ li+1+1, i even
li+1 < j ≤ li+1, i odd
i = 2, . . . , k − 1

p̄j
k = pj

k ≤ k+1
2 , s̄j

k = sj
k ≤ k, lk + 1 <j≤2 lk− 2 .

(B.20)

The second parallel reversal schedule Sk−2 is completed because of the inequal-
ity 7 lk−2 − 1 < 2 lk − 2. There is one processor running from the initial state 0
to state lk − 2lk−2 during the computational cycles 2 lk − 1 ≤ j < 2 lk + lk−2 to
start the second Sk−2 in time. Therefore one has with 2 lk = lk+1 for

lk+1 − 1 ≤ j ≤ lk+1 + 1 : c̄j
k = 1 + c̄

j−lk−lk−1+1
k−2 = 1 +

k − 3

2
=

k − 1

2
,

p̄j
k = 1 + p̄

j−lk−lk−1+1
k−2 = 1 +

k − 3

2
=

k − 1

2
,

s̄j
k = 2 + s̄

j−lk−lk−1+1
k−2 = k − 1

lk+1 + 2 ≤ j ≤ lk+1 + 3 : c̄j
k = 1 + c̄

j−lk−lk−1+1
k−2 = 1 +

k − 5

2
=

k − 3

2
,

p̄j
k = 1 + p̄

j−lk−lk−1+1
k−2 = 1 +

k − 3

2
=

k − 1

2
,

s̄j
k = 2 + s̄

j−lk−lk−1+1
k−2 = k − 2

(B.21)

as well as for i = 5, 7, . . . , k − 4 and

lk+1 + li−2 < j ≤ lk+1 + li − 2 :

c̄j
k = 1 + c̄

j−lk−lk−1+1
k−2 = 1 +

k − i

2
=

k − i + 2

2
,

p̄j
k = 1 + p̄

j−lk−lk−1+1
k−2 = 1 +

k − i

2
=

k − i + 2

2
,

s̄j
k = 2 + s̄

j−lk−lk−1+1
k−2 = k − i + 2

lk+1 + li − 2 < j ≤ lk+1 + li :

c̄j
k = 1 + c̄

j−lk−lk−1+1
k−2 = 1 +

k − i − 2

2
=

k − i

2
,

p̄j
k = 1 + p̄

j−lk−lk−1+1
k−2 = 1 +

k − i

2
=

k − i + 2

2
,

s̄j
k = 2 + s̄

j−lk−lk−1+1
k−2 = k − i + 1 .

(B.22)

Furthermore, one obtains for lk+1 + lk−4 < j ≤ lk+1 + lk−2 − 2 and i = k − 2

c̄j
k = 1 + c̄

j−lk−lk−1+1
k−2 = 1 + 1 = 2 =

k − i + 2

2
,

p̄j
k = 1 + p̄

j−lk−lk−1+1
k−2 = 1 + 1 = 2 =

k − i + 2

2
, and

s̄j
k = 2 + s̄

j−lk−lk−1+1
k−2 = k − i + 2 .

(B.23)

B.1 Construction of Parallel Reversal Schedules for t̄ = 2 and t̂ > 1 123

The second parallel reversal schedule S̄k−2 is completed. To make the execution
of S̄k−2 possible in the next computational cycles one processor has to perform
a forward sweep from the initial state 0 to state lk−lk−2+1. Therefore one finds

c̄j
k = 1 =

k − i

2
, p̄j

k = 1 + 1 = 2 =
k − i + 2

2
,

s̄j
k = 1 + 2 = k − i + 1

(B.24)

for lk+1 + li − 2 < j ≤ lk+1 + li and i = k − 2. The forward sweep from the
initial state 0 to state lk − 2 lk−2 necessary to start the second parallel reversal
schedule Sk−2 is completed. This yields

c̄j
k = 1, p̄j

k = 1, and s̄j
k = 2 for lk+1 + lk−2 < j ≤ 3 lk − 1 . (B.25)

Equations (B.20) up to (B.25) show that R(S̄k) fulfils Equation (B.1). Therefore
everything is proven for odd k.

Now suppose that k is even. Once more Sk takes the first lk computational
cycles over from Sk−1 without any changes. Hence one has

cj
k =cj

k−1 =0, pj
k =pj

k−1 =1, sj
k =sj

k−1 =1 j = 1, 2

pj
k =pj

k−1≤d i+1
2 e, sj

k =sj
k−1≤ i







li < j ≤ li+1+1, i even
li+1 < j ≤ li+1, i odd
i = 2, . . . , k − 1 .

(B.26)

Subsequently the second parallel reversal schedule Sk−1 is placed at the vertex
of the first one to enable the reversal without any interruption. Therefore it
follows for

j = lk + 1, lk + 2 : pj
k = pj

k−1 + pj−lk
k−1 ≤

⌈k − 1

2

⌉

+ 1 =
⌈k + 1

2

⌉

,

sj
k = sj

k−1 + sj−lk
k−1 ≤ k − 1 + 1 = k

j = lk + 3, lk + 4 : pj
k = pj

k−1 + pj−lk
k−1 ≤

⌊k − 2

2

⌋

+ 2 =
⌈k + 1

2

⌉

,

sj
k = sj

k−1 + sj−lk
k−1 ≤ k − 2 + 2 = k .

(B.27)

Moreover, one has for lk + li−2 +1 < j ≤ lk + li +1 with i = 5, 7, . . . , 2bk−1
2 c−1

pj
k = pj

k−1 + pj−lk
k−1 ≤

⌊k − i + 1

2

⌋

+
⌈ i

2

⌉

≤
⌈k + 1

2

⌉

,

sj
k = sj

k−1 + sj−lk
k−1 ≤ k − i + 1 + i − 1 = k

(B.28)

and for lk + l2b k−1

2
c−1 < j − 1 ≤ lk + lk−1

pj
k = pj

k−1 + pj−lk
k−1 ≤ 1 +

⌈k − 1

2

⌉

=
⌈k + 1

2

⌉

,

sj
k = sj

k−1 + sj−lk
k−1 ≤ 2 + k − 2 = k .

(B.29)

The first parallel reversal schedules Sk−1 is completed. Hence from now on only
the checkpoint storing the initial state 0 must be taken into account and one
obtains for lk + lk−1 + 1 < j ≤ 2 lk

pj
k = pj−lk

k−1 ≤
⌈k

2

⌉

<
⌈k + 1

2

⌉

, sj
k = 1 + sj−lk

k−1 ≤ 1 + k − 1 = k . (B.30)

124 Chapter B. Construction of Feasible Parallel Reversal Schedules

Therefore it is shown by Equations (B.27) up to (B.30) that

pj
k ≤

⌈k + 1

2

⌉

and sj
k ≤ k for lk < j ≤ lk+1 + 1 . (B.31)

Furthermore, it follows for

j = 2 lk + 1 : cj
k = 1 + cj−lk

k−1 = 1 +
⌊k − 1

2

⌋

=
⌊k

2

⌋

,

pj
k = pj−lk

k−1 =
⌈k − 1

2

⌉

=
⌈k

2

⌉

, sj
k = 1 + sj−lk

k−1 = 1 + k − 1 = k

j = 2 lk + 2 and j = 2 lk + 3 : cj
k = 1 + cj−lk

k−1 = 1 +
⌊k − 1

2

⌋

=
⌊k

2

⌋

,

pj
k = pj−lk

k−1 =
⌊k − 2

2

⌋

=
⌊k − 1

2

⌋

, sj
k = 1 + sj−lk

k−1 = k − 1

j = 2 lk + 4 : cj
k = 1 + cj−lk

k−1 = 1 +
⌊k − 1

2

⌋

=
⌊k

2

⌋

,

pj
k = pj−lk

k−1 =
⌊k − 4

2

⌋

=
⌊k − 3

2

⌋

, sj
k = 1 + sj−lk

k−1 = k − 2

(B.32)

as well as for 2 lk + li−2 < j − 1 ≤ 2 lk + li with i = 5, 7, . . . , 2bk−1
2 c − 1

cj
k = 1 + cj−lk

k−1 = 1 +
⌊k − i + 2

2

⌋

=
⌊k − i + 3

2

⌋

,

pj
k = pj−lk

k−1 ≤
⌊k − i + 1

2

⌋

=
⌊k − i + 2

2

⌋

, sj
k = 1+sj−lk

k−1 ≤ k−i+2 .

(B.33)

For the remainder of the second parallel reversal schedule Sk−1 one has for
2 lk + li−2 < j − 1 ≤ 2 lk + li and i = k − 1 = 2bk−1

2 c − 1

cj
k = 1 + cj−lk

k−1 = 2 =
⌊k − i + 3

2

⌋

,

pj
k = pj−lk

k−1 = 1 =
⌊k − i + 2

2

⌋

, sj
k = 1 + sj−lk

k−1 = 3 = k − i + 2

(B.34)

because 2bk−1
2 c− 1 = k− 3. The second parallel reversal schedule Sk−1 is com-

pleted and in the remaining computational cycles one processor has to perform
a forward sweep from the initial state 0 to state lk−1 in order to start the second
Sk−1. Therefore one has

cj
k = 1, pj

k = 1, and sj
k = 2 (B.35)

for 2 lk + lk−1 + 1 < j ≤ 2 lk + lk + 1. Combining Equations (B.26), (B.31),
and (B.32) up to (B.35) it is shown that the resource profile R(Sk) fulfils Equa-
tion (4.27) for even k. Summarizing the above the assertion is proven for all
k ∈ N.

In order to construct feasible parallel reversal schedules Sk for the case t̄ = 2
and t̂ ∈ N, t̂ > 2, a similar approach as in the proof of Theorem 4.6 is applied:

B.1 Construction of Parallel Reversal Schedules for t̄ = 2 and t̂ > 1 125

Proof of Theorem 4.9, Page 94:

First, assume 1 ≤ k < 2 + t̂/2. Appropriate parallel reversal schedules Sk can
be constructed according to the ones described in the beginning of the proof of
Theorem 4.6. For each physical step i, 0 ≤ i ≤ lk − 1 = k − 1 one processor
performs a forward sweep from the initial state 0 to state i, one recording step
F̂i, and one reverse step F̄i. Then it is possible to control all k processors in
order to calculate the reversal without any interruption (see Fig. B.5). It is

PSfrag replacements
t

l

.

Figure B.5: Reversal Schedule Sk, where k < 2 + t̂/2

easy to check that one obtains the resource profile

cj
k = 0, pj

k = i, sj
k = i j = 2i − 1, 2i, 1 ≤ i ≤ k − 1

cj
k = 0, pj

k = k, sj
k = k j = 2k − 1

cj
k = 0, pj

k = k, sj
k = k 2k − 1 < j ≤ 2 + t̂

cj
k = 1, pj

k = k − i, sk
j = k − i + 1

{
2 + t̂ + 3(i − 1) < j ≤ 2 + t̂ + 3i
1 ≤ i ≤ k − 1 .

Hence the assertion is proven for 1 ≤ k < 2 + t̂/2.

Second, for k ≥ 2 + t̂/2 parallel reversal schedules Sk needing no more than
k resources are constructed for the reversal of lk physical steps. Furthermore,
the number of processors required by Sk is limited above by pb

k. For that let lk,1

and lk,2 denote the number of physical steps that can be reversed with up to k
processors and checkpoints applying the parallel reversal schedules developed
in Theorem 4.7 and Theorem 4.8, respectively. Moreover the corresponding
feasible reversal schedules constructed in these theorems are denoted by Sk,1

and Sk,2. Based on Equation (4.28) appropriate parallel reversal schedules
Sk will be constructed using the parallel reversal schedules Sk−(t̂−1)/2,1 and
Sk−(t̂−2)/2,2, respectively.

First, assume that t̂ is odd. Consider for an arbitrary k > 2 + t̂/2 the
feasible parallel reversal schedule Sk̃,1 with k̃ ≡ k − (t̂ − 1)/2. Take the first
2 lk̃,1 + 1 computational cycles of Sk̃,1 as constructed in Theorem 4.7 and trans-

form them into the first 2 lk̃,1 + t̂ computational cycles of a parallel reversal

schedule S̄k such that the given value of t̂ is taken into account. This modifica-
tion corresponds to shifting the reverse sweep to the right as depicted already
in Fig. 4.25 for the case k = 7, t̂ = 3 and t̄ = 1. Everything else, especially
the checkpoint writings, remain unchanged. Hence, it follows that during each
computational cycle j with 1 ≤ j ≤ 2 lk̃,1 of S̄k there are no more than (t̂+1)/2
processors performing recording steps instead of at most one processor in the
corresponding computational cycle of Sk̃,1. Moreover for each m = 1, . . . , t̂ − 1

126 Chapter B. Construction of Feasible Parallel Reversal Schedules

the computational cycle j = 2 lk̃,1 − t̂ + 1 + m of Sk̃,1 applies one processor
for a reverse step if j is even and two processors for a recording step and a
reverse step if j is odd. In the corresponding computational cycle j = 2 lk̃,1 +m

of Sk̃,1 no more than (t̂ + 1)/2 − 1 − b(m − 1)/2c processors are needed only

for the recording steps if j is even and no more than (t̂ + 1)/2 − b(m − 1)/2c
processors if j is odd. No reverse step has started yet. Therefore, the number of
processors needed and the total number of applied processors and checkpoints
increase during each computational cycle j = 2 lk̃,1 + m with m = 1, . . . , t̂ − 1

of S̄k by (t̂− 3)/2−b(m− 1)/2c compared to the corresponding computational
cycle of Sk̃,1. Moreover, the computational cycle 2 lk̃,1+1 of the parallel reversal
schedule Sk̃,1 constructed in Theorem 4.7 corresponds exactly to the computa-

tional cycle 2 lk̃,1 + t̂ of S̄k. This yields the following resource profile for the

first 2 lk̃,1 + t̂ computational cycles of the parallel reversal schedule S̄k

cj
k = 0, pj

k = i, sj
k = i j = 2i − 1, 2i, 1 ≤ i ≤ (t̂+1)/2

cj
k = 0, pj

k = t̂+1
2 + 1, sj

k = t̂+1
2 +1 j = t̂ + 2

pj
k ≤ pj−t̂+1

k̃,1
+ t̂−1

2 ,

sj
k ≤ sj−t̂+1

k̃,1
+ t̂−1

2






t̂ + 2 < j ≤ 2 lk̃,1

pj
k ≤ pj−t̂+1

k̃,1
+ t̂−3

2 −bm−1
2 c,

sj
k ≤ sj−t̂+1

k̃,1
+ t̂−3

2 −bm−1
2 c






j = 2 lk̃,1+m, 1 ≤ m ≤ t̂−1

pj
k = pj−t̂+1

k̃,1
, sj

k = sj−t̂+1

k̃,1
j = 2 lk̃,1+ t̂ .

(B.36)
Therefore one has for the computational cycles j = 1, . . . , 2 lk̃,1

pj
k ≤ max

{

t̂ + 1

2
+ 1, max

t̂+1<j≤2 l
k̃,1

{

pj−t̂+1

k̃,1
+

t̂ − 1

2

}}

≤ max

{

t̂ + 1

2
+ 1,

⌈ k̃ + 1

2

⌉

+
t̂ − 1

2

}

≤
⌈k + 1

2

⌉

+
⌈ t̂ − 1

4

⌉
(B.37)

as well as

sj
k ≤ max

{

t̂ + 1

2
+ 1, max

t̂+1<j≤2 l
k̃,1

{

sj−t̂+1

k̃,1
+

t̂ − 1

2

}}

≤ max

{
t̂ + 1

2
+ 1, k − t̂ − 1

2
+

t̂ − 1

2

}

= k .

(B.38)

Moreover for each computational cycle j = 2 lk̃,1 + m with 1 ≤ m ≤ t̂ − 1
follows that

pj
k = pj−t̂+1

k̃,1
+

t̂ − 3

2
−
⌊m − 1

2

⌋

≤
⌈k + 1

2

⌉

+
⌈ t̂ − 1

4

⌉

− 1 −
⌊m − 1

2

⌋

,

sj
k = sj−t̂+1

k̃,1
+

t̂ − 3

2
−
⌊m − 1

2

⌋

≤ k − 1 −
⌊m − 1

2

⌋

.

(B.39)

B.1 Construction of Parallel Reversal Schedules for t̄ = 2 and t̂ > 1 127

It is possible to put the first 2 lk̃,1 + t̂ computational cycles of S̄k and the
computational cycles j with j = 2 lk̃,1 + 2, . . . , 3 lk̃,1 of Sk̃,1 together to form a

complete parallel reversal schedule S̄k for lk̃,1 physical steps and given t̂. This

can be done because the computational cycle 2 lk̃,1 + t̂ of S̄k is equal to the
computational cycle 2 lk̃,1 + 1 of Sk̃,1. The resulting parallel reversal schedule

corresponds to the one shown in Fig. 4.26 for k = 7, t̂ = 3, and t̄ = 1. It follows
for the computational cycles j with j = 2 lk̃,1 + t̂+1, . . . , 3 lk̃,1 + t̂−1 of S̄k that

pj
k = pj−t̂+1

k̃,1
≤
⌈k−(t̂−1)/2+1

2

⌉

and sj
k = sj−t̂+1

k̃,1
≤ k − (t̂ − 1)/2 . (B.40)

From the Equations (B.39) and (B.40) it is possible to conclude that for each
m = 1, 3, . . . , t̂− 2 one processor is available for all computational cycles j with
j = 2 lk̃,1 + m, . . . , 3 lk̃,1 + t̂ − 1. This processor can be used in the following
way to increase the number of physical steps that are reversed and hence to
create the desired parallel reversal schedule Sk. The free processor performs
the reverse step F̄l

k̃,1
+(m−1)/2 during the computational cycles 2 lk̃,1 + m and

2 lk̃,1 + m + 1. Then the recording step F̂l
k̃,1

+(m−1)/2 is evaluated by the free

processor in the computational cycles 2 lk̃,1 +m+2, . . . , 2 lk̃,1 +m+ t̂+1. In the

computational cycles 2 lk̃,1+m+t̂+2, . . . , 3 lk̃,1+m+t̂+2+(m+1)/2 the forward
sweep from the initial state 0 to state lk̃,1 + (m− 1)/2 is performed by the free

processor. This extension is possible (t̂−1)/2 times. Obviously, the checkpoint
writing copying the initial state 0 has to be done in the computational cycle
3 lk̃,1+ t̂−1+3(t̂−1)/2 instead of 3 lk̃,1. The total number of physical steps that

can be reversed with Sk equals lk̃,1 + (t̂− 1)/2 = lk because of Equation (4.28).

The number of computational cycles in Sk is given by 3 lk̃,1 + t̂−1+3(t̂−1)/2 =

3 lk + t̂ − 1. Furthermore, it follows from the Equations (B.37) up to (B.40),
and

⌈k − (t̂ − 1)/2 + 1

2

⌉

+
t̂ − 1

2
=
⌈k + 1

2

⌉

+
⌈ t̂ − 1

4

⌉

that the number of processors needed is not greater than pb
k. Moreover it is

shown that the number of applied checkpoints and processors at any time does
not exceed k. Therefore the assertion is proven if t̂ is odd.

Now suppose that t̂ is even and consider for an arbitrary k ≥ 2 + t̂/2 the
parallel reversal schedule Sk̃,2 with k̃ ≡ k− (t̂− 2)/2. Change the first 2 lk̃,2 +2
computational cycles of Sk̃,2 as constructed in the proof of Theorem 4.8 in or-

der to take the given value of t̂ into account. This corresponds to shifting the
reverse sweep to the right as depicted already in Fig. 4.25 for k = 7, t̂ = 3 and
t̄ = 1. Everything else, especially the checkpoint writings, remain unchanged.
Now these 2 lk̃,2+ t̂ computational cycles form the first part of a parallel reversal

schedule denoted by S̄k. During each computational cycle j with 1 ≤ j ≤ 2 lk̃,2

of S̄k there are no more than t̂/2 processors that perform recording steps instead
of at most one processor that performs a recording step in the corresponding
computational cycle of Sk̃,2. Furthermore, for each m = 1, . . . , t̂ − 1 the com-

putational cycle j = 2 lk̃,2 − t̂ + 1 + m of Sk̃,2 applies two processors for a

128 Chapter B. Construction of Feasible Parallel Reversal Schedules

recording step and a reverse step. In the corresponding computational cycle
j = 2 lk̃,2 + m of S̄k no more than t̂/2 + 1 − dm/2e processors are needed only
for the recording. No reverse step has started yet. Therefore, the number of
processors needed and the total number of applied processors and checkpoints
increase by t̂/2−1−dm/2e during each computational cycle j = 2 lk̃,2 +m with

m = 1, . . . , t̂ − 1 of S̄k compared to the corresponding computational cycle of
Sk̃,2. Moreover, the computational cycles 2 lk̃,2 + 1 and 2 lk̃,2 + 2 of the parallel
reversal schedule Sk̃,2 constructed in Theorem 4.8 are identical to the compu-

tational cycles 2 lk̃,2 + t̂ − 1 and 2 lk̃,2 + t̂ of S̄k. Therefore the resource profile

R(S̄k) of the parallel reversal schedule S̄k fulfils

cj
k = 0, pj

k = i, sj
k = i j = 2i−1, 2i, 1 ≤ i ≤ t̂/2+1

pj
k = pj−t̂+1

k̃,2
+ t̂−2

2 ,

sj
k = sj−t̂+1

k̃,2
+ t̂−2

2






t̂ + 2 < j ≤ 2 lk̃,2

pj
k = pj−t̂+1

k̃,2
+ t̂−2

2 −dm
2 e,

sj
k = sj−t̂+1

k̃,2
+ t̂−2

2 −dm
2 e






j = 2 lk̃,2+m, 1 ≤ m ≤ t̂−2

pj
k = pj−t̂+1

k̃,2
, sj

k = sj−t̂+1

k̃,2
j = 2 lk̃,2 + t̂ − 1, 2 lk̃,2+ t̂ .

(B.41)

Hence one obtains for the computational cycles j = 1, . . . , 2 lk̃,2

pj
k ≤ max

{

t̂

2
+ 1, max

t̂+1<j≤2 l
k̃,2

{

pj−t̂+1

k̃,2
+

t̂ − 2

2

}}

≤ max

{

t̂

2
+ 1,

⌈ k̃ + 1

2

⌉

+
t̂ − 2

2

}

≤
⌈k + 1

2

⌉

+
⌈ t̂ − 1

4

⌉

,

sj
k ≤ max

{

t̂

2
+ 1, max

t̂+1<j≤2 l
k̃,2

{

sj−t̂+1

k̃,2
+

t̂ − 2

2

}}

≤ max

{
t̂

2
+ 1, k − t̂ − 2

2
+

t̂ − 2

2

}

= k .

(B.42)

Moreover, for each j = 2 lk̃,2 + m with 1 ≤ m ≤ t̂ − 2 follows that

pj
k = pj−t̂+1

k̃,2
+

t̂ − 2

2
−
⌈m

2

⌉

≤
⌈k + 1

2

⌉

+
⌈ t̂ − 1

4

⌉

−
⌈m

2

⌉

,

sj
k = sj−t̂+1

k̃,2
+

t̂ − 2

2
−
⌈m

2

⌉

≤ k −
⌈m

2

⌉

.

(B.43)

Because the computational cycle 2 lk̃,2 + t̂ of S̄k is equal to the computational

cycle 2 lk̃,2 + 2 of Sk̃,2 one can put the 2 lk̃,2 + t̂ computational cycles of S̄k and
the computational cycles j with j = 2 lk̃,2 + 3, . . . , 3 lk̃,2 + 1 of Sk̃,2 together to

form a complete parallel reversal schedule S̄k for lk̃,2 physical steps and given

t̂. The resulting parallel reversal schedule corresponds to the one shown in
Fig. 4.26 for k = 7, t̂ = 3, and t̄ = 1. It follows for the computational cycles j

B.2 Construction of Parallel Reversal Schedules for t̄ > 2 129

with j = 2 lk̃,2 + t̂ + 1, . . . , 3 lk̃,2 + t̂ − 1 of S̄k that

pj
k = pj−t̂+1

k̃,2
≤
⌈k−(t̂−2)/2+1

2

⌉

and sj
k = sj−t̂+1

k̃,2
≤ k − (t̂ − 2)/2 . (B.44)

Equations (B.43) and (B.44) yield that for each m = 1, 3, . . . , t̂−3 one processor
is available in the computational cycles 2 lk̃,2+m, . . . , 3 lk̃,2+t̂−1. This processor
can be used in the following way to increase the number of physical steps that
are reversed and hence to create the desired parallel reversal schedule Sk. First,
it performs the reverse step F̄l

k̃,2
+(m−1)/2 in the computational cycles 2 lk̃,2 +m

and 2 lk̃,2 + m + 1. Then the recording step F̂l
k̃,2

+(m−1)/2 is evaluated by the

free processor in the computational cycles 2 lk̃,2 + m + 2, . . . , 2 lk̃,2 + m + t̂ + 1.
The forward sweep from the initial state 0 to state lk̃,2 + (m − 1)/2 is per-
formed using also the available processor during the computational cycles j
with j = 2 lk̃,2 + m + t̂ + 2, . . . , 3 lk̃,2 + m + t̂ + 2 + (m + 1)/2. This extension

is possible (t̂−2)/2 times. Naturally, the checkpoint writing copying the initial
state 0 has to be performed in the computational cycle 3 lk̃,2 + t̂−1+3(t̂−2)/2
instead of 3 lk̃,2+1. The total number of physical steps that can be reversed with

Sk is given by lk̃,2 + (t̂ − 2)/2 = lk because of Equation (4.28). The number of

computational cycles in Sk equals properly 3 lk̃,2+ t̂−1+3(t̂−2)/2 = 3 lk + t̂−1.
Furthermore, it follows from Equations (B.42) up to (B.44), and

⌈k − (t̂ − 2)/2 + 1

2

⌉

+
t̂ − 2

2
≤
⌈k + 1

2

⌉

+
⌈ t̂ − 1

4

⌉

that the number of processors needed is not greater than pb
k. Furthermore, it

has been shown that the number of resources that are used does not exceed k
at any time. Therefore the theorem is proven also if t̂ is even, which completes
the proof.

B.2 Construction of Parallel Reversal Schedules

for t̄ > 2

First, some auxiliary sequences that are needed in the remaining proofs are
considered. Several properties of the sequences are shown. Then two theorems
deal with auxiliary parallel reversal schedules S̃k for the cases t̂ < t̄ and t̂ = t̄.
These S̃k are applied in in the proofs of two further theorems to construct the
desired feasible reversal schedules Sk to reverse lk physical steps for the cases
t̂ ≤ t̄ and t̂ > t̄.

Lemma B.1 (Some Auxiliary Sequences and Their Properties).
For given values t̄, t̂ ∈ N with t̄ > 2 and t̂ ≤ t̄ define for k ∈ N the sequences

lk ≡
{

k if 0 ≤ k ≤ 2

lk−1 + t̄ lk−2 − t̂ + 1 else
and

l̃k ≡







0 if k = 0
lk+1 − lk if 1 ≤ k ≤ 3

l̃k−1 + t̄(lk−1 − lk−2) else

.

130 Chapter B. Construction of Feasible Parallel Reversal Schedules

Consider a fixed k ∈ N. If t̂ < t̄ let ľj be given by

ľj ≡







0 j = 0
t̄ j = 1 and k even

t̂ + 1 j = 1 and k odd

ľj−1 + l̃j j > 1 and k + j even

l̃j+1 + t̂ − 1 j > 1 and k + j odd

.

If t̂ = t̄ set

ľj ≡







0 j = 0
t̄ − 2 j = 1 and k even
t̄ + 1 j = 2 and k even
t̄ − 1 j = 1 and k odd
2t̄ − 1 j = 2 and k odd
2t̄ j = 3 and k odd

ľj−1 + l̃j j > 3 and k + j even

l̃j+1 + t̄ − 1 j > 2 and k + j odd

.

Then for k ≥ 4 the equalities

l̃k = lk − lk−1 + t̄(lk−1 − lk−2) and l̃k−1 + l̃k−2 + lk−2 = lk

as well as the inequalities

2lk−1 ≤ lk, 2l̃k ≤ t̄ lk, and l̃k ≤ t̄(lk − lk−1)

are valid. If k ∈ N is fixed one obtains ľj ≤ t̄ lj for 1 ≤ j ≤ k.

Proof. The assertions will be proven by induction on k and j, respectively. In
order to show the equality l̃k = lk − lk−1 + t̄(lk−1 − lk−2) one has for k = 4

l̃4 = l̃3 + t̄(l3 − l2) = l4 − l3 + t̄(l3 − l2) .

Now assume that l̃k−1 = lk−1 − lk−2 + t̄(lk−2 − lk−3) is valid for k > 4. Then
using the definition of lk in case of k > 3 for l̃k follows

l̃k = l̃k−1 + t̄(lk−1 − lk−2)

= lk−1 − lk−2 + t̄(lk−2 − lk−3) + t̄(lk−1 − lk−2)

= lk − lk−1 + t̄(lk−1 − lk−2) .

The first equality is proven. In order to show the second equality for k = 4 and
k = 5 one has

l̃3 + l̃2 + l2 = l4 − l3 + l3 − l2 + l2 = l4

l̃4 + l̃3 + l3 = l4 − l3 + t̄(l3 − l2) + l4 − l3 + l3 = l5 .

If l̃j−2 + l̃j−3 + lj−3 = lj−1 holds for 4 ≤ j < k with k ≥ 6 one finds that

l̃k−1 + l̃k−2 + lk−2 = l̃k−2 + t̄(lk−2 − lk−3) + l̃k−3 + t̄(lk−3 − lk−4) + lk−2

= lk−1 − lk−3 + t̄lk−2 + lk−2 − t̄lk−4 = lk

B.2 Construction of Parallel Reversal Schedules for t̄ > 2 131

and the second equality is proven. In order to show 2 lk−1 ≤ lk one obtains for
k = 4 and k = 5

2 l3 = 2 t̄ − 2 t̂ + 6 < 3 t̄ − 2 t̂ + 4 = l4

2 l4 = 6 t̄ − 4 t̂ + 8 ≤ 6 t̄ − 3 t̂ + 5 + t̄(t̄ − t̂) = l5 .

Suppose 2 lk−3 ≤ lk−2 is valid for k ≥ 6. Since k − 1 > 3 one has

lk = lk−1 + t̄ lk−2 − t̂ + 1 ≥ 2 lk−1 ⇐⇒
t̄ lk−2 − t̂ + 1 ≥ lk−1 = lk−2 + t̄ lk−2 − t̂ + 1 ⇐⇒ (t̄ − 1)lk−2 ≥ t̄ lk−3 .

Because (t̄ − 1)lk−2 ≥ 2(t̄ − 1)lk−3 ≥ t̄ lk−3 the last inequality is true and
therefore the assertion proven. Now it will be shown that 2 l̃k ≤ t̄ lk holds. For
k = 4 one has

2 l̃4 = 2 l̃3 + 2 t̄(l3 − l2) = 2 t̄ 2 + 6 t̄ − 2 t̄ t̂ − 2 t̂ + 2

< 3 t̄ 2 + 4 t̄ − 2 t̄ t̂ = t̄(4 + 3 t̄ − 2 t̂) = t̄ l4

because t̄ > 2. For k > 4 again the induction principle is used. Assuming that
2 l̃k−1 ≤ t̄ lk−1 holds for k > 4 one obtains

2 l̃k = 2(lk − lk−1) + 2 t̄(lk−1 − lk−2) = 2 t̄ lk−1 − 2 t̂ + 2 ≤ 2 t̄ lk−1 ≤ t̄ lk

and the asserted inequality is proven. In order to show l̃k ≤ t̄(lk − lk−1) first
consider for k = 4

l̃4 = 2 t̄ − t̂ + 1 + t̄(t̄ − t̂ + 1) ≤ t̄ 2 + t̄(t̄ − t̂ + 1) = t̄(l4 − l3) .

Now assume that l̃k−1 ≤ t̄(lk−1 − lk−2) is true for k > 4. This yields

l̃k = l̃k−1 + t̄(lk−1 − lk−2) ≤ 2 t̄(lk−1 − lk−2) ≤ 2 t̄ lk−1 ≤ t̄ lk

and the asserted inequality is proven. Finally for fixed k it will be shown that
ľj ≤ t̄ lj holds for 1 ≤ j ≤ k. First assume that t̂ < t̄. Then one has

ľ1 ≤ t̄ = t̄ l1, ľ2 ≤ 2 t̄ = t̄ l2, ľ3 ≤ t̄ 2 + 3 t̄ − t̄ t̂ = t̄ l3 .

In the case t̂ = t̄ one obtains

ľ1 < t̄ = t̄ l1, ľ2 < 2 t̄ = t̄ l2, ľ3 ≤ t̄ 2 + 3 t̄ − t̄ t̂ = t̄ l3 .

Now assume that ľj−1 ≤ t̄ lj−1 is valid for j > 3. If ľj = ľj−1 + l̃j one has

ľj = ľj−1 + l̃j ≤ t̄ lj−1 + t̄(lj − lj−1) = t̄ lj .

If ľj = l̃j + t̂ − 1 it follows that

ľj = l̃j + t̂ − 1 ≤ t̄ lj − l̃j + t̂ − 1 < t̄ lj .

Therefore the last asserted inequality is proven, which completes the proof.

Now everything is prepared to construct the auxiliary parallel reversal sched-
ules to reverse l̃k = t̄ lk−2 − t̂ + 1 physical steps with up to k resources each of
which has the property of processor-checkpoint convertibility.

132 Chapter B. Construction of Feasible Parallel Reversal Schedules

Theorem B.1 (Auxiliary Reversal Schedules for t̄ > 2 and t̂ < t̄).
Suppose the given uniform one-step evolution F determines the temporal com-
plexities t̄ > 2 and t̂ < t̄ to perform one reverse step and one recording step, re-
spectively. Define the sequences lk, l̃k, and the corresponding ľj as in Lemma B.1
for k ∈ N. Then for k ≥ 2 there exist feasible parallel schedules S̃k for the re-
versal of l̃k physical steps such that the resource profile R(S̃k) fulfils for k ≥ 3

c̃j
k = 0, p̃j

k = 1, s̃j
k = 1 1 ≤ j ≤ t̄

p̃j
k ≤ d i+1

2 e, s̃j
k ≤ i t̄ li−1 < j ≤ t̄ li, 2 ≤ i ≤ k

p̃j
k ≤ dk+2

2 e, s̃j
k ≤ k + 1 t̄ lk < j ≤ t̄ l̃k

c̃j
k = k − 1, p̃j

k = 1, s̃j
k = k t̄ l̃k < j ≤ t̄ l̃k + ľ1

c̃j
k = k − i, p̃j

k = 1, s̃j
k = k − i + 1

{
t̄ l̃k + ľi−1 < j ≤ t̄ l̃k + ľi
2 ≤ i ≤ k − 1 .

(B.45)

Proof. By definition one has ľk−1 = l̃k + t̂−1 for k ≥ 3 because j = k−1 ensures
that k + j = 2k − 1 is odd. Therefore one obtains t̄ l̃k + ľk−1 = (t̄ + 1)l̃k + t̂− 1
and the resource profile (B.45) is well defined.

In order to prove the assertion appropriate feasible parallel schedules S̃k

reversing l̃k physical steps are constructed and analyzed for k ≥ 2. For these
S̃k the resource profiles R(S̃k) fulfil Equation (B.45) if k ≥ 3.

For k = 2 consider S̃2 to reverse l̃2 = t̄ − t̂ + 1 physical steps as illustrated
in Fig. 4.35 for t̄ = 4 and t̂ = 2. I.e. no checkpoint writing is performed
except that one copying the initial state 0. One obtains for each physical step
i ∈ {0, . . . , t̄ − t̂ − 1} that t̂ + i < t̄. Therefore during each reverse step F̄i+1

only one processor is needed to perform a forward sweep from the initial state
0 to state i and to perform the recording step F̂i. The corresponding resource
profile of S̃2 is given by

c̃j
2 = 0, p̃j

2 = 1, s̃j
2 = 1 for 1 ≤ j ≤ t̄

c̃j
2 = 0, p̃j

2 = 2, s̃j
2 = 2 for t̄ < j ≤ t̄ + t̂

c̃j
2 = 1, p̃j

2 = 1, s̃j
2 = 2 for t̄ + t̂ < j ≤ 2t̄

c̃j
2 = 1, p̃j

2 ≤ 2, s̃j
2 ≤ 3 for 2 t̄ < j ≤ t̄ l̃2

c̃j
2 = 1, p̃i

2 = 1, s̃i
2 = 2 for t̄ l̃2 < j ≤ (t̄ + 1)l̃2 + t̂ − 1 .

(B.46)

Furthermore, the schedule S̃3 provides a possibility to reverse l̃3 = 2t̄ − t̂ + 1
physical steps in minimal time using two checkpoints that store the initial state
0 and state l̃3 − 2 as shown in Fig. 4.35 for the case t̄ = 4 and t̂ = 2. For
1 ≤ j ≤ t̄(t̄− t̂+1), i.e. the physical steps i with i = 0, . . . , t̄− t̂−1, the resource
profile of S̃3 is identical to the one of S̃2. For the physical step i = t̄ − t̂ the
equation t̄ = t̂ + t̄− t̂ is valid. Therefore during the execution of F̄i+1 and F̄i+2

again only one processor is needed to perform the necessary actions in order to
start F̄i and F̄i+1 in time, respectively. This yields p̃j

3 ≤ 2 for the computational
cycles t̄ l̃2 < j ≤ t̄(t̄ − t̂ + 3) = t̄ l3 taking the processor executing the reverse
steps into account. For the physical steps i = t̄ − t̂ + 1, . . . , l̃3 − 2 one has

t̂ + i ≤ t̂ + 2 t̄ − t̂ + 1 − 2 = 2 t̄ − 1 . (B.47)

B.2 Construction of Parallel Reversal Schedules for t̄ > 2 133

Hence for these physical steps at most two processors are needed to perform
the corresponding forward sweeps and recording steps F̂i. This yields

p̃j
3 ≤ 3 and s̃j

3 ≤ 4 for t̄ l3 < j ≤ t̄(l̃3 − 1)

because of the additional processor performing the reverse steps F̄i. During the
reverse step F̄l̃3−1 in the computational cycles t̄(l̃3 − 1) < j ≤ t̄(l̃3 − 1)+ t̂ there
are the checkpoint storing the initial state 0, perhaps the processor performing
the forward sweep belonging to the recording step F̂l̃3−3, and the processor

evaluating F̂l̃3−2. Therefore one has

p̃j
3 ≤ 3 and s̃j

3 ≤ 4 for t̄(l̃3 − 1) < j ≤ t̄(l̃3 − 1) + t̂ .

The processor performing the recording step F̂l̃3−2 is not needed anymore.

Moreover from now on there is a checkpoint storing state l̃3 − 2. It follows that

p̃j
3 ≤ 2 and s̃j

3 ≤ 4 for t̄(l̃3 − 1) + t̂ < j ≤ t̄ l̃3 .

Subsequently one processor performs the recording step F̂l̃3−1 and one physical

step after the checkpoint writing that copies state l̃3 − 2. The forward sweep
belonging to F̂l̃3−3 is started in a computational cycle j with j < t̄ l̃3 because
of Inequality (B.47). This yields

c̃j
3 = 2, p̃j

3 = 1, s̃j
3 = 3 for t̄ l̃3 < j ≤ t̄ l̃3 + ľ1 .

For the remaining computational cycles one obtains c̃j
3 = 1, p̃j

3 = 1, as well

as s̃j
3 = 2 because the checkpoint writing that copies state l̃3 − 2 is performed

in the computational cycle l̃3 + t̂ + 1. Summarizing the above one obtains the
resource profile

c̃j
3 = 0, p̃j

3 = 1, s̃j
3 = 1 for 1 ≤ j ≤ t̄

c̃j
3 = 0, p̃j

3 = 2, s̃j
3 = 2 for t̄ < j ≤ t̄ + t̂

c̃j
3 = 1, p̃j

3 = 1, s̃j
3 = 2 for t̄ + t̂ < j ≤ 2t̄

c̃j
3 = 1, p̃j

3 ≤ 2, s̃j
3 ≤ 3 for 2t̄ < j ≤ t̄l3

c̃j
3 ≤ 2, p̃j

3 ≤ 3, s̃j
3 ≤ 4 for t̄l3 < j ≤ t̄l̃3

c̃j
3 = 2, p̃j

3 = 1, s̃j
3 = 3 for t̄l̃3 < j ≤ t̄l̃3 + t̂ + 1

c̃j
3 = 1, p̃j

3 = 1, s̃j
3 = 2 for t̄l̃3 + t̂ + 1 < j ≤ (t̄ + 1)l̃3 + t̂ − 1 .

(B.48)

Now it has been proven that S̃3 fulfils (B.45).
An induction on k will be used to show that for k > 3 the resource profile

R(S̃k) of the parallel reversal schedule S̃k constructed as depicted in Fig 4.36
fulfils Equation (B.45). First, this will be proven for S̃4. Then it will be shown
that S̃k fulfils (B.45) for arbitrary k > 4, if (B.45) holds for S̃k−1 and S̃k−2.

In order to construct S̃4 the parallel reversal schedule S̃3 is applied for the
first computational cycles. Hence one has

c̃j
4 = c̃j

3 = 0, p̃j
4 = p̃j

3 = 1, s̃j
4 = s̃j

3 = 1 1 ≤ j ≤ t̄

p̃j
4 = p̃j

3 ≤ d i+1
2 e, s̃j

4 = s̃j
3 ≤ i t̄ li−1 < j ≤ t̄ li, i = 2, 3

p̃j
4 = p̃j

3 ≤ 3, s̃j
4 = s̃j

3 ≤ 4 t̄ l3 < j ≤ t̄ l̃3 .

(B.49)

134 Chapter B. Construction of Feasible Parallel Reversal Schedules

One parallel reversal schedule S̃2 is placed at the vertex of S̃3. One finds for
t̄ l̃3 < j ≤ (t̄ + 1)l̃3 + t̂ − 1

p̃j
4 = p̃j

3 + p̃j−t̄ l̃3
2 ≤ 3 and s̃j

4 = s̃j
3 + s̃j−t̄ l̃3

2 ≤ 4 (B.50)

because 2 t̄ = l̃3 + t̂ − 1 ≤ t̄ 2 − t̄ t̂ + t̄ = t̄ l̃2. Now S̃3 is completed and one
checkpoint stores the initial state 0. It follows for the computational cycles
(t̄ + 1)l̃3 + t̂ − 1 < j ≤ t̄(l̃3 + l̃2) that

p̃j
4 = p̃j−t̄ l̃3

2 ≤ 2 and s̃j
4 = 1 + s̃j−t̄ l̃3

2 ≤ 4 . (B.51)

The vertex of the first parallel reversal schedule S̃2 is reached and therefore the
second one starts. Placing S̃2 at the vertex of S̃2 yields

p̃j
4 = p̃j−t̄ l̃3

2 +p̃
j−t̄(l̃3+l̃2)
2 ≤ 2 and s̃j

4 = 1+s̃j−t̄ l̃3
2 +s̃

j−t̄(l̃3+l̃2)
2 ≤ 4 (B.52)

for t̄(l̃3+ l̃2) < j ≤ t̄(l̃3+ l̃2)+ t̄ taking the checkpoint that stores the initial state
0 into account. The equality t̄(l̃3 + l̃2) + t̄ = t̄ l̃3 + (t̄ + 1)l̃2 + t̂− 1 ensures that
the first parallel reversal schedule S̃2 is completed. From now on one processor
performs the forward sweep from the initial state 0 to state l̃3 − 1 to start the
evaluation of the first S̃2 in time. Therefore one obtains

p̃j
4 = 1 + p̃

j−t̄(l̃3+l̃2)
2 ≤ 3 and s̃j

4 = 2 + s̃
j−t̄(l̃3+l̃2)
2 ≤ 4 . (B.53)

for the computational cycles t̄(l̃3 + l̃2)+ t̄ < j ≤ t̄(l̃3 + l̃2)+2 t̄ = t̄ l4. Combining
Equations (B.49) up to (B.53) one finds that

p̃j
4 ≤ 3 and s̃j

4 ≤ 4 for t̄ l3 < j ≤ t̄ l4 . (B.54)

Going on until the vertex of the second parallel reversal schedule S̃2 is reached
for t̄ l4 < j ≤ t̄(l̃3 + 2 l̃2) follows

p̃j
4 = 1 + p̃

j−t̄(l̃3+l̃2)
2 ≤ 3 and s̃j

4 = 2 + s̃
j−t̄(l̃3+l̃2)
2 ≤ 5 (B.55)

taking the additional processor and the checkpoint that stores the initial state
0 into account. Now t̄−2 parallel reversal schedules S̃2 are applied to construct
S̃4. Considering only these parallel reversal schedules and the checkpoint that
stores the initial state 0 and forgetting for a moment the additional forward
sweeps that are necessary, for the non-overlapping regions in accordance to
Equation (B.46) and for the overlapping ones in accordance to Equation (B.52)
one obtains

p̃j
4 ≤ 2 and s̃j

4 ≤ 4 .

In order to perform the ith S̃2, i = 1, . . . , t̄ − 1, in time the corresponding
forward sweep from the initial state 0 to state l̃3 + (i − 1)l̃2 would start in
the computational cycle j = (t̄ + 1)(l̃3 + il̃2) + t̂ − 1 and would end in the
computational cycle j = t̄(l̃3 + il̃2) + t̄ + 1. Furthermore, it follows that

(t̄ + 1)(l̃3 + il̃2) + t̂ − 1 ≤ t̄(l̃3 + (i + 1)l̃2 + 2) .

B.2 Construction of Parallel Reversal Schedules for t̄ > 2 135

Using (t̄ + 1)(l̃3 + l̃2) + t̂ − 1 ≤ t̄(l̃3 + 2 l̃2 + 1) it is possible to define the upper
bound iu and the lower bound il as

iu ≡ max
1≤i≤t̄−1

{

(t̄ + 1)(l̃3 + il̃2) + t̂ − 1 ≤ t̄(l̃3 + (i + 1)l̃2 + 1)
}

il ≡ min {i | i = t̄ − 2m > iu and m ∈ N} .

Then one has for all i with i ≤ iu that only one processor is needed for the
forward sweeps. Now for i = t̄ − 2m with m ∈ N and i ≥ il a forward sweep
from the initial state 0 to state l̃3 +(i− 1)l̃2 is performed in time. During these
forward sweeps a checkpoint writing that copies state l̃3 +(i−2)l̃2 is performed.
This construction procedure is depicted in Fig. B.6. It follows that in addition

Figure B.6: Placing of Processors and Checkpoints

to the checkpoint storing the initial state 0 one processor is needed during the
computational cycles t̄(l̃3 + il̃2 + 1) < j ≤ (t̄ + 1)(l̃3 + il̃2) + t̂ − 1 and one
additional checkpoint for t̄(l̃3 + (i − 1)l̃2 + 1) < j ≤ t̄(l̃3 + il̃2) + 2 t̄ − t̂ + 1.
This yields

p̃j
4 ≤ 3, s̃j

4 ≤ 5 for t̄(l̃3 + (i + 1)l̃2 + 1) < j ≤ t̄(l̃3 + (i + 1)l̃2 + 2) (B.56)

because here at most one processor and one checkpoint are needed in addition
to the processors and checkpoints required by two S̃2 and the checkpoint storing
the initial state. Furthermore, one has

p̃j
4 ≤ 3, s̃j

4 ≤ 5 for t̄(l̃3 + il̃2 + 2) < j ≤ t̄(l̃3 + (i + 1)l̃2 + 1) (B.57)

because here at most one processor is needed in addition to the processors and
checkpoints required by two S̃2 and the checkpoint storing the initial state.
Moreover it follows that

p̃j
4 ≤ 3, s̃j

4 ≤ 5 for t̄(l̃3 + il̃2 + 1) < j ≤ t̄(l̃3 + il̃2 + 2) (B.58)

because here at most one processor and one checkpoint are needed in addition
to the processors and checkpoints required by two S̃2 and the checkpoint storing
the initial state. Finally one obtains

p̃j
4 ≤ 2, s̃j

4 ≤ 5 for t̄(l̃3 + (i − 1)l̃2 + 2) < j ≤ t̄(l̃3 + il̃2 + 1) (B.59)

because here at most one checkpoint is needed in addition to the processors
and checkpoints required by two S̃2 and the checkpoint storing the initial state.

136 Chapter B. Construction of Feasible Parallel Reversal Schedules

For all i < il − 1 one has as mentioned above that only one processor is needed
for the evaluation of the forward sweeps to state l̃3 + (i − 1)l̃2. Therefore the
inequalities

p̃j
4 ≤ 3 and s̃j

4 ≤ 5 (B.60)

are valid for t̄(l̃3 +2 l̃2) < j ≤ t̄(l̃3 + il l̃2)+ t̄. One obtains from Equations (B.55)
up to (B.60) that

p̃j
4 ≤ 3 and s̃j

4 ≤ 5 for t̄ l4 < j ≤ t̄ l̃4 . (B.61)

Now the vertex of the t̄th parallel reversal schedule is reached. Taking the
checkpoints that store the initial state 0 and state l̃3 + (t̄ − 2)l̃2 into account
one obtains for t̄ l̃4 < j ≤ t̄ l̃4 + t̄

c̃j
4 = 2 + c̃

j−t̄(l̃4−l̃2)
2 = 3, p̃j

4 = p̃
j−t̄(l̃4−l̃2)
2 = 1,

s̃j
4 = 2 + s̃

j−t̄(l̃4−l̃2)
2 = 4 .

(B.62)

The final parallel reversal S̃2 is completed and from now on one processor per-
forms a forward sweep from the initial state 0 to state l̃3 + (t̄ − 1)l̃2. The
checkpoint writing that copies state l̃3 + (t̄− 2)l̃2 is performed in the computa-
tional cycle t̄ l̃4 + t̄ + l̃2 = t̄ l̃4 + ľ2. This yields

c̃j
4 = 2, p̃j

4 = 1, s̃j
4 = 3 for t̄ l̃4 + t̄ < j ≤ t̄ l̃4 + ľ2 (B.63)

as well as

c̃j
4 = 1, p̃j

4 = 1, s̃j
4 = 2 for t̄ l̃4 + ľ2 < j ≤ t̄ l̃4 + ľ3 . (B.64)

The Equations (B.49), (B.54), and (B.61) up to (B.64) show that the resource
profile R(S̃4) fulfils Equation (B.45).

From the results proven so far follows that S̃3 and S̃4 fulfil Equation (B.45).
Now it will be shown that this equation holds for the resource profile of S̃k with
k > 4 if S̃k is constructed as depicted in Fig. 4.36 and explained below using
S̃k−1 and S̃k−2, which fulfil (B.45), too.

Once more the first computational cycles of S̃k are formed by S̃k−1. Hence
one finds

c̃j
k = c̃j

k−1 = 0, p̃j
k = p̃j

k−1 = 1, s̃j
k = s̃j

k−1 = 1 1 ≤ j ≤ t̄

p̃j
k = p̃j

k−1 ≤ d i+1
2 e, s̃j

k = s̃j
k−1 ≤ i

{
t̄ li−1 < j ≤ t̄ li,
2 ≤ i ≤ k − 1

p̃j
k = p̃j

k−1 ≤ dk+1
2 e, s̃j

k = s̃j
k−1 ≤ k t̄ lk−1 < j ≤ t̄ l̃k−1

(B.65)

and the vertex of S̃k−1 is reached. Here the first parallel reversal schedule S̃k−2

is placed. As shown in Lemma B.1 the relation ľj ≤ t̄lj is valid. Therefore
one has

p̃j
k = p̃j

k−1 + p̃
j−t̄ l̃k−1

k−2 ≤ 1 +
⌈ i + 1

2

⌉

=
⌈ i + 3

2

⌉

≤
⌈k + 1

2

⌉

,

s̃j
k = s̃j

k−1 + s̃
j−t̄l̃k−1

k−2 ≤ k − i + i = k

(B.66)

B.2 Construction of Parallel Reversal Schedules for t̄ > 2 137

for t̄(l̃k−1 + li−1) < j ≤ t̄(l̃k−1 + li) and i = 1, . . . , k − 2. If S̃k−1 is completed
earlier the values of p̃j

k and s̃j
k are overestimated by Equation (B.66). Never-

theless, it suffices to prove the assertion. For the next computational cycles the
checkpoint storing the initial state 0 must be taken into account. This yields

p̃j
k = p̃

j−t̄ l̃k−1

k−2 ≤
⌈k + 1

2

⌉

and s̃j
k = 1 + s̃

j−t̄ l̃k−1

k−2 ≤ k (B.67)

for t̄(l̃k−1 + lk−2) < j ≤ t̄(l̃k−1 + l̃k−2). The vertex of the first parallel reversal
schedule S̃k−2 is reached and the second one starts yielding

p̃j
k = p̃

j−t̄ l̃k−1

k−2 + p̃
j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 1 +

⌈ i + 1

2

⌉

=
⌈ i + 3

2

⌉

≤
⌈k

2

⌉

,

s̃j
k = s̃

j−t̄ l̃k−1

k−2 + s̃
j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 1 + k − 1 − i + i = k

(B.68)

for t̄(l̃k−1 + l̃k−2 + l̃i−1) < j ≤ t̄(l̃k−1 + l̃k−2 + l̃i) and i = 1, . . . , k − 3. Now it is
certain that the first parallel reversal schedule S̃k−2 is completed. Hence there
exists a processor performing the forward sweep from the initial state to state
l̃k−1 in addition to the checkpoint storing the initial state 0. It follows that

p̃j
k ≤ 1 + p̃

j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 1 +

⌈k − 1

2

⌉

=
⌈k + 1

2

⌉

,

s̃j
k ≤ 2 + s̃

j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 2 + k − 2 = k

(B.69)

for t̄(l̃k−1 + l̃k−2 + l̃k−3) < j ≤ t̄(l̃k−2 + l̃k−2 + lk−2). Because the identity
l̃k−2 + l̃k−2 + lk−2 = lk is valid as shown in Lemma B.1 Equations (B.66) up to
(B.69) prove that

p̃j
k ≤

⌈k + 1

2

⌉

and s̃j
k ≤ k for t̄ l̃k−1 < j ≤ t̄ lk . (B.70)

Going on until the vertex of the second parallel schedule S̃k−2 is reached one
obtains for t̄ lk < j ≤ t̄(l̃k−1 + 2l̃k−2)

p̃j
k ≤ 1 + p̃

j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 1 +

⌈k

2

⌉

=
⌈k + 2

2

⌉

,

s̃j
k ≤ 2 + s̃

j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 2 + k − 1 = k + 1 .

(B.71)

Now t̄ − 2 parallel reversal schedules S̃k−2 are applied to construct S̃k. Con-
sidering only these parallel reversal schedules and the checkpoint storing the
initial state 0 and forgetting for a moment the additional forward sweeps that
are necessary, for the non-overlapping regions in accordance to Equation (B.45)
and for the overlapping ones in accordance to Equation (B.68) follows

p̃j
k ≤

⌈k

2

⌉

and s̃j
k ≤ k .

In order to perform the ith S̃k−2, i = 1, . . . , t̄ − 1, in time the corresponding
forward sweep from the initial state 0 to state l̃k−1 + (i− 1)l̃k−2 would start in

138 Chapter B. Construction of Feasible Parallel Reversal Schedules

the computational cycle j = (t̄ + 1)(l̃k−1 + il̃k−2) + t̂ − 1 and would end in the
computational cycle j = t̄(l̃k−1 + il̃k−2) + ľk−3 + 1. Furthermore, one has

(t̄ + 1)(l̃k−1 + il̃k−2) + t̂ − 1 ≤ t̄(l̃k−1 + (i + 1)l̃k−2 + lk−2) .

Using (t̄ + 1)(l̃k−1 + l̃k−2) + t̂− 1 ≤ t̄(l̃k−1 + 2l̃k−2) + ľk−3 it is possible to define
the upper bound iu and the lower bound il as

iu ≡ max
1≤i≤t̄−1

{

(t̄+1)(l̃k−1+il̃k−2)+ t̂ − 1 ≤ t̄(l̃k−1+(i+1)l̃k−2)+ ľk−3

}

il ≡ min {i | i = t̄ − 2m > iu and m ∈ N} .
(B.72)

Then one has for all i with i ≤ iu that only one processor is needed for the
forward sweeps. Now for all i = t̄− 2m with m ∈ N and i ≥ il a forward sweep
from the initial state 0 to state l̃k−1 + (i− 1)l̃k−2 is performed in time. During
these forward sweeps a checkpoint writing that copies state l̃k−1 + (i − 2)l̃k−2

is performed. This construction procedure is the same as that one depicted
already in Fig. 4.36. Therefore it follows that in addition to the checkpoint
storing the initial state 0 one processor is needed for the computational cycles
t̄(l̃k−1 + il̃k−2) + ľk−3 < j ≤ (t̄ + 1)(l̃k−1 + il̃k−2) + t̂ − 1. Moreover during the
computational cycles t̄(l̃k−1 + (i − 1)l̃k−2) + ľk−3 < j ≤ t̄(l̃k−1 + il̃k−2) + 2 l̃k−2

one additional checkpoint is needed. This yields

p̃j
k ≤ 1 +

⌈k

2

⌉

=
⌈k + 2

2

⌉

and s̃j
k ≤ 3 + k − 2 = k + 1 (B.73)

for t̄(l̃k−1 + (i + 1)l̃k−2) + ľk−3 < j ≤ t̄(l̃k−1 + (i + 1)l̃k−2 + lk−2) because
in these computational cycles at most one processor and one checkpoint are
needed in addition to the processors and checkpoints required by two S̃k−2 and
the checkpoint storing the initial state. Furthermore, one has

p̃j
k ≤ 1 +

⌈k

2

⌉

=
⌈k + 2

2

⌉

and s̃j
k ≤ 2 + k − 1 = k + 1 (B.74)

for t̄(l̃k−1 + il̃k−2) + 2 l̃k−2 < j ≤ t̄(l̃k−1 + (i + 1)l̃k−2) + ľk−3 because in these
computational cycles at most one processor is needed in addition to the pro-
cessors and checkpoints required by two S̃k−2 and the checkpoint storing the
initial state. Moreover it follows that

p̃j
k ≤ 1 +

⌈k

2

⌉

=
⌈k + 2

2

⌉

and s̃j
k ≤ 3 + k − 2 = k + 1 (B.75)

for t̄(l̃k−1+il̃k−2)+ ľk−3 < j ≤ t̄(l̃k−1+il̃k−2)+2 l̃k−2 because in these computa-
tional cycles at most one processor and one checkpoint are needed in addition
to the processors and checkpoints required by two S̃k−2 and the checkpoint
storing the initial state. Finally, one obtains

p̃j
k ≤

⌈k

2

⌉

and s̃j
k ≤ 2 + k − 1 = k + 1 (B.76)

for t̄(l̃k−1 + (i − 1)l̃k−2 + lk−2) < j ≤ t̄(l̃k−1 + il̃k−2) + ľk−3 because in these
computational cycles at most one checkpoint is needed in addition to the pro-
cessors and checkpoints required by two S̃k−2 and the checkpoint storing the

B.2 Construction of Parallel Reversal Schedules for t̄ > 2 139

initial state. For all i < il − 1 only one processor is necessary for the evaluation
of the forward sweeps from the initial state 0 to state l̃k−1 +(i− 1)l̃k−2 because
of Equation (B.72). Therefore the inequalities

p̃j
k ≤

⌈k + 2

2

⌉

and s̃j
k ≤ k + 1 (B.77)

are valid for t̄(l̃k−1 + 2 l̃k−2) < j ≤ t̄(l̃k−1 + (il − 1) l̃k−2 + lk−2). Combining
Equation (B.71) and Equations (B.73) up to (B.77) one obtains for the number
of processors used and the number of resources needed in the computational
cycles t̄ lk < j ≤ t̄ l̃k the upper bounds

p̃j
k ≤

⌈k + 2

2

⌉

and s̃j
k ≤ k + 1 . (B.78)

Now the vertex of the t̄th parallel reversal schedule S̃k−2 is reached. Taking
the checkpoints that store the initial state 0 and state l̃k−1 + (t̄ − 2)l̃k−2 into
account it follows

c̃j
k = 2 + c̃

j−t̄(l̃k−l̃k−2)
k−2 = k − i, p̃j

k = p̃
j−t̄(l̃k−l̃k−2)
k−2 = 1,

s̃j
k = 2 + s̃

j−t̄(l̃k−l̃k−2)
k−2 = k − i + 1

(B.79)

for the computational cycles t̄ l̃k + ľi−1 < j ≤ t̄ l̃k + ľi and i = 1, . . . , k − 3.
Then the final parallel reversal schedule S̃k−2 is completed. From now on one
processor performs a forward sweep that advances from the initial state 0 to
state l̃k−1 + (t̄ − 1)l̃k−2. Furthermore a checkpoint writing copies the state
l̃k−1 + (t̄ − 2)l̃k−2 in the computational cycle t̄ l̃k + ľk−3 + l̃k−2. Hence one
finds that

c̃j
k = 2, p̃j

k = 1, s̃j
k = 3 for t̄ l̃k + ľk−3 < j ≤ t̄ l̃k + ľk−2 (B.80)

with ľk−3 + l̃k−2 = ľk−2 as well as

c̃j
k = 1, p̃j

k = 1, s̃j
k = 2 for t̄ l̃k + ľk−2 < j ≤ t̄ l̃k + ľk−1 . (B.81)

Combining Equations (B.65), (B.70), (B.78), (B.79), and (B.80) one finds that
Equation (B.45) holds for the resource profile R(S̃k) of S̃k, which completes
the proof.

Suppose that the reverse steps and recording steps of the one-step evolution
F under consideration determine the same temporal complexities t̄ = t̂ > 2.
Then a construction principle quite similar to the one used in the last proof
is applied for the auxiliary parallel reversal schedules S̃k for the reversal of
l̃k = t̄ lk−1 − t̂ + 1 physical steps.

140 Chapter B. Construction of Feasible Parallel Reversal Schedules

Theorem B.2 (Auxiliary Reversal Schedules for t̂ = t̄ > 2).
Suppose the given uniform one-step evolution F determines the temporal com-
plexities t̄ = t̂ > 2 to perform one reverse step and one recording step, respec-
tively. Define the sequences lk, l̃k, and the corresponding ľj as in Lemma B.1
for k ∈ N. Then for k ≥ 3 there exist feasible parallel schedules S̃k for the
reversal of l̃k physical steps such that the resource profiles R(S̃k) fulfil for k ≥ 4

c̃j
k = 0, p̃j

k = 1, s̃j
k = 1 1 ≤ j ≤ t̄

p̃j
k ≤ d i+1

2 e, s̃j
k ≤ i t̄ li−1 < j ≤ t̄ li, 2 ≤ i ≤ k

p̃j
k ≤ dk+2

2 e, s̃j
k ≤ k+1 t̄ lk < j ≤ t̄ l̃k

c̃j
k = k−2−o, p̃j

k = 2+o, s̃j
k = k t̄ l̃k < j ≤ t̄ l̃k+ ľ1

c̃j
k = k−2−o, p̃j

k = 1+o, s̃j
k = k−1 t̄ l̃k+ ľ1 < j ≤ t̄ l̃k+ ľ2

c̃j
k = k−i, p̃j

k = 1, s̃j
k = k−i+1

{
t̄ l̃k+ ľi−1 < j ≤ t̄ l̃k+ ľi
i = 3, . . . , k − 1

(B.82)

with o ≡ dk
2e − bk

2c.

Proof. As shown in Lemma B.1 the identity ľk−1 = l̃k + t̄− 1 is valid for k ≥ 4.
Therefore the resource profile (B.82) is well defined. In order to prove the as-
sertion feasible parallel schedules S̃k reversing l̃k physical steps are constructed
and analyzed for k ≥ 3. For these parallel reversal schedules the resource profile
fulfil Equation (B.82) if k ≥ 4.

The parallel schedule S̃3 to reverse l̃3 = t̄+1 physical steps is constructed as
depicted in Fig. B.7 for the case t̄ = t̂ = 3, i.e. without any checkpoint writing
besides the one copying the initial state. Therefore the corresponding resource

PSfrag replacements

t t

l

l

1

1

1

15

1010 20 30

Figure B.7: Parallel Reversal Schedules S̃3 and S̃4 for t̄ = t̂ = 3

profile is clear for the computational cycles 1 ≤ j ≤ 3 t̄. For the physical steps
i ∈ {0, . . . , t̄ } one needs t̄+i ≤ 2 t̄ computational cycles to perform the recording
step F̂i and the corresponding forward sweep from the initial state 0 to state i.
Therefore two processors suffice to execute the recording steps and the forward
sweeps for these physical steps during the computational cycles 3 t̄ < j ≤ t̄ l̃3.
One needs 2 t̄ − 1 computational cycles to perform F̂t̄−1 and the appropriate
forward sweep. Moreover there are the checkpoint storing the initial state and
one processor performing F̂t̄ during the forward sweep belonging to F̂t̄−1. This
yields

c̃j
3 = 1, p̃j

3 = 2, and s̃j
3 = 3 for t̄ l̃3 < j ≤ t̄ l̃3 + t̄ − 1 .

For the remaining computational cycles one obtains

c̃j
3 = 1, p̃j

3 = 1, and s̃j
3 = 2 with t̄ l̃3 + t̄ − 1 < j ≤ t̄ l̃3 + 2 t̄ .

B.2 Construction of Parallel Reversal Schedules for t̄ > 2 141

In detail the resource profile is given by

c̃j
3 = 0, p̃j

3 = 1, s̃j
3 = 1 for 1 ≤ j ≤ t̄

c̃j
3 = 0, p̃j

3 = 2, s̃j
3 = 2 for t̄ < j ≤ 2 t̄

c̃j
3 = 1, p̃j

3 = 2, s̃j
3 = 3 for 2 t̄ < j ≤ 3 t̄

c̃j
3 = 1, p̃j

3 ≤ 3, s̃j
3 ≤ 4 for 3 t̄ < j ≤ t̄ l̃3

c̃j
3 = 1, p̃j

3 = 2, s̃j
3 = 3 for t̄ l̃3 < j ≤ t̄ l̃3 + t̄ − 1

c̃j
3 = 1, p̃j

3 = 1, s̃j
3 = 2 for t̄ l̃3 + t̄ − 1 < j ≤ t̄ l̃3 + 2 t̄ .

(B.83)

The construction of the parallel schedule S̃4 to reverse l̃4 = 2 t̄+1 physical steps
is depicted also in Fig. B.7. This yields immediately

c̃j
4 = 0, p̃j

4 = 1, s̃j
4 = 1 for 1 ≤ j ≤ t̄

c̃j
4 = 0, p̃j

4 = 2, s̃j
4 = 2 for t̄ < j ≤ 2 t̄

c̃j
4 = 1, p̃j

4 = 2, s̃j
4 = 3 for 2 t̄ < j ≤ 3 t̄ .

(B.84)

Furthermore, for each physical step i with 2 ≤ i ≤ t̄ the corresponding recording
step and the corresponding forward sweeps are performed by one processor. As
explained above one has

p̃j
4 ≤ 3 and s̃j

4 ≤ 4 for 3 t̄ < j ≤ t̄(t̄ + 2) .

Now for all i = 2 t̄−2m with m ∈ N and i ≥ t̄+1 a forward sweep is performed
to start the corresponding recording step in time. During these forward sweeps
a checkpoint writing that copies state i− 1 is performed if i > t̄ + 1. Hence if t̄
is odd one processor performs a forward sweep from the initial state 0 to state
t̄ + 1, which yields

p̃j
4 ≤ 3 and s̃j

4 ≤ 4 for t̄(t̄ + 2) < j ≤ t̄(t̄ + 4) = t̄ l4 .

If t̄ is even a checkpoint writing that copies state t̄ + 1 is performed by the
forward sweep to state t̄ + 2. Therefore one finds

p̃j
4 ≤ 2 and s̃j

4 ≤ 4 for t̄(t̄ + 2) < j ≤ t̄(t̄ + 4) = t̄ l4 .

Hence one obtains

p̃j
4 ≤ 3 and s̃j

4 ≤ 4 for t̄ l3 < j ≤ t̄ l4 . (B.85)

For i = 2 t̄ − 2m with m ∈ N and i > t̄ + 1 one processor is needed to perform
the recording step and the corresponding forward sweep during the computa-
tional cycles t̄(i + 1) < j ≤ t̄(i + 2) + i as well as one checkpoint during the
computational cycles t̄(i + 1) < j ≤ t̄(i + 2) + 1. Because t̄ + i ≤ 3 t̄ no more
than two processors are required in one of these computational cycles to per-
form the recording steps and the forward sweeps needed. Moreover no more
than one checkpoint is necessary in addition to the one storing the initial state.
This yields

p̃j
4 ≤ 3 and s̃j

4 ≤ 5 for t̄ l4 < j ≤ t̄(2 t̄ + 1) = t̄ l̃4 . (B.86)

142 Chapter B. Construction of Feasible Parallel Reversal Schedules

Then there are two checkpoints storing the initial state and state l̃4 − 2, re-
spectively. The checkpoint writing that copies state l̃4 − 2 is executed in the
computational cycle t̄ l̃4+t̄+1. Furthermore, two processors perform the record-
ing step F̂l̃4−1 and the forward sweep belonging to F̂l̃4−3, respectively. Therefore
it follows that

c̃j
4 = 2, p̃j

4 = 2, and s̃j
4 = 4 for t̄ l̃4 < j ≤ t̄ l̃4 + t̄ − 2 . (B.87)

For the remaining computational cycles one obtains

c̃j
4 = 2, p̃j

4 = 1, and s̃j
4 = 3 with t̄ l̃4 + t̄ − 2 < j ≤ t̄ l̃4 + t̄ + 1 (B.88)

as well as

c̃j
4 = 1, p̃j

4 = 1, and s̃j
4 = 2 with t̄ l̃4 + t̄ + 1 < j ≤ t̄ l̃4 + ľ3 . (B.89)

Equations (B.84) and (B.85) up to (B.89) show that S̃4 fulfils Equation (B.82).
For k ≥ 5 the parallel reversal schedules are constructed as depicted earlier

in Fig. 4.36. It will be proven that the Equation (B.82) holds for the resource
profile of S̃5. Then it will be shown that this equation is fulfilled by R(S̃k) with
k ≥ 6 if S̃k is constructed according to the same scheme using S̃k−1 and S̃k−2,
which fulfil (B.82) also.

In order to construct S̃5 the parallel reversal schedule S̃4 is applied for the
first computational cycles. This yields

c̃j
5 = 0, p̃j

5 = 1, s̃j
5 = 1 for 1 ≤ j ≤ t̄

p̃j
5 ≤ d i+1

2 e, s̃j
5 ≤ i for t̄ li−1 < j ≤ t̄ li, i = 2, 3, 4

p̃j
5 ≤ dk+2

2 e, s̃j
5 ≤ k + 1 for t̄ l4 < j ≤ t̄ l̃4 .

(B.90)

Now the first parallel reversal schedule S̃3 is placed at the vertex of S̃4. It
follows that

p̃j
5 = p̃j

4 + p̃j−t̄ l̃4
3 ≤ 3, s̃j

5 = s̃j
4 + s̃j−t̄ l̃4

3 ≤ 5 for t̄ l̃4 < j ≤ t̄(l̃4 + 3) (B.91)

and the parallel reversal schedule S̃4 is completed. From now on a checkpoint
storing the initial state must be taken into account. Hence one obtains

p̃j
5 = p̃j−t̄ l̃4

3 ≤ 3, s̃j
5 = 1 + s̃j−t̄ l̃4

3 ≤ 5 for t̄(l̃4+3) < j ≤ t̄(l̃4+ l̃3) (B.92)

and the vertex of the first S̃3 is reached. The second parallel reversal schedule
S̃3 starts. Therefore one has

p̃j
5 = p̃j−t̄ l̃4

3 + p̃
j−t̄(l̃4+l̃3)
3 ≤ 3 and s̃j

5 = 1 + s̃j−t̄l̃4
3 + s̃

j−t̄(l̃4+l̃3)
3 ≤ 5 (B.93)

for t̄(l̃4 + l̃3) < j ≤ t̄(l̃4 + l̃3 +2) taking also the checkpoint that stores the initial
state into account. Then the first parallel schedule S̃3 is completed. From now
on one processor performs a forward sweep from the initial state 0 to state l̃4.
It follows that

p̃j
5 = 1 + p̃

j−t̄(l̃4+l̃3)
3 ≤ 3 and s̃j

5 = 2 + s̃
j−t̄(l̃4+l̃3)
3 ≤ 5 (B.94)

B.2 Construction of Parallel Reversal Schedules for t̄ > 2 143

for t̄(l̃4 + l̃3 + 2) < j ≤ t̄(l̃4 + l̃3 + 3). Equations (B.91) up to (B.94) show that

p̃j
5 ≤ 3 and s̃j

5 ≤ 5 for t̄ l4 < j ≤ t̄ l5 (B.95)

because l̃4 + l̃3 + 3 = 3 t̄ + 5 = l5. Going on until the vertex of the second
parallel reversal schedule S̃3 is reached one obtains

p̃j
5 = 1 + p̃

j−t̄(l̃4+l̃3)
3 ≤ 4 and s̃j

5 = 2 + s̃
j−t̄(l̃4+l̃3)
3 ≤ 6 (B.96)

for t̄ l5 < j ≤ t̄(l̃4 + 2 l̃3). Now t̄ − 2 parallel reversal schedules S̃3 are ap-
plied to construct S̃5. Considering only these parallel reversal schedules and
the checkpoint that stores the initial state 0 and forgetting for a moment the
additional forward sweeps that are necessary, for the non-overlapping regions
in accordance to Equation (B.83) and for the overlapping ones in accordance
to Equation (B.93) follows

p̃j
5 ≤ 3 and s̃j

5 ≤ 5 . (B.97)

In order to perform the ith S̃3, i = 1, . . . , t̄ − 1, in time the corresponding
forward sweep from the initial state 0 to state l̃3 + (i − 1)l̃2 would start in
the computational cycle j = (t̄ + 1)(l̃4 + il̃3) + t̄ − 1 and would end in the
computational cycle j = t̄(l̃4 + il̃3) + 2 t̄ + 1. Furthermore, it follows that

(t̄ + 1)(l̃4 + il̃3) + t̄ − 1 ≤ t̄(l̃4 + (i + 1)l̃3) + 2 t̄ .

Because of Inequalities (B.97) one has

p̃j
5 ≤ 4 and s̃j

5 ≤ 6 for t̄ l5 < j ≤ t̄(l̃4 + t̄ l̃3) = t̄ l̃5 . (B.98)

For i = t̄−1 the forward sweep comprises l̃4+(t̄−2)l̃3 = t̄(t̄+1)−1 computational
cycles. This yields the equalities

p̃j
5 = 1+p̃

j−t̄(l̃5−l̃3)
3 = 3, s̃j

5 = 2+s̃
j−t̄(l̃5−l̃3)
3 = 5 for 0 < j− t̄ l̃5 ≤ ľ1

p̃j
5 = 1+p̃

j−t̄(l̃5−l̃3)
3 = 2, s̃j

5 = 2+s̃
j−t̄(l̃5−l̃3)
3 = 4 for ľ1 < j− t̄ l̃5 ≤ ľ2

p̃j
5 = p̃

j−t̄(l̃5−l̃3)
3 = 1, s̃j

5 =1+ s̃
j−t̄(l̃5−l̃3)
3 = 3 for ľ2 < j− t̄ l̃5 ≤ ľ3 .

(B.99)

Now the t̄th parallel reversal schedule S̃3 is finished. Therefore it follows for
the remainder of S̃5 that

c̃j
5 = 1, p̃j

5 = 1, and s̃j
5 = 2 for t̄ l̃5 + ľ3 < j ≤ t̄ l̃5 + ľ4 . (B.100)

Equations (B.90), (B.95), and (B.98) up to (B.100) show that Equation (B.82)
holds for the resource profile R(S̃5).

From the results achieved so far follows that R(S̃4) and R(S̃5) fulfil Equa-
tion (B.82). Now it will be shown that this equation holds for the resource
profile R(S̃k) with k > 5 if S̃k is constructed as depicted already in Fig. 4.36
and explained below using S̃k−1 and S̃k−2 the resource profiles of which fulfil
Equation (B.82).

144 Chapter B. Construction of Feasible Parallel Reversal Schedules

Once more the first computational cycles of S̃k are formed by the first com-
putational cycles of S̃k−1. This yields

c̃j
k = c̃j

k−1 = 0, p̃j
k = p̃j

k−1 = 1, s̃j
k = s̃j

k−1 = 1 1 ≤ j ≤ t̄

p̃j
k = p̃j

k−1 ≤ d i+1
2 e, s̃j

k = s̃j
k−1 ≤ i

{
t̄ li−1 < j ≤ t̄ li,
2 ≤ i ≤ k − 1

p̃j
k = p̃j

k−1 ≤ dk+1
2 e, s̃j

k = s̃j
k−1 ≤ k t̄ lk−1 < j ≤ t̄ l̃k−1.

(B.101)

Now the first parallel reversal schedule S̃k−2 is placed at the vertex of S̃k−1. As
shown in Lemma B.1 the relation ľj ≤ t̄ lj is valid. Therefore one has

p̃j
k = p̃j

k−1 + p̃
j−t̄ l̃k−1

k−2 ≤ 3+1 = 4 ≤ dk+1
2 e 0 < j− t̄ l̃k−1 ≤ t̄

p̃j
k = p̃j

k−1 + p̃
j−t̄ l̃k−1

k−2 ≤ 2+2 = 4 ≤ dk+1
2 e t̄ < j− t̄ l̃k−1 ≤ 2 t̄

(B.102)

and for t̄(l̃k−1 + li−1) < j ≤ t̄(l̃k−1 + li) with i = 3, . . . , k − 2

p̃j
k = p̃j

k−1 + p̃
j−t̄ l̃k−1

k−2 ≤ 1+
⌈ i + 1

2

⌉

≤
⌈k + 1

2

⌉

. (B.103)

For the sum s̃j
k of c̃j

k and p̃j
k follows that

s̃j
k = s̃j

k−1 + s̃
j−t̄ l̃k−1

k−2 ≤ k − i + i = k (B.104)

for t̄(l̃k−1+li−1) < j ≤ t̄(l̃k−1+li) with i = 1, . . . , k−2. Then S̃k−1 is completed.
From now on the checkpoint storing the initial state must be taken into account.
This yields

p̃j
k = p̃

j−t̄ l̃k−1

k−2 ≤
⌈k + 1

2

⌉

and s̃j
k = 1 + s̃

j−t̄ l̃k−1

k−2 ≤ k (B.105)

for t̄(l̃k−1 + lk−2) < j ≤ t̄(l̃k−1 + l̃k−2). Now the vertex of the first parallel
reversal schedule S̃k−2 is reached and the second one is started. Therefore
one has

p̃j
k = p̃

j−t̄ l̃k−1

k−2 + p̃
j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 3 + 1 = 4 ≤

⌈k + 1

2

⌉

(B.106)

for the computational cycles t̄(l̃k−1 + l̃k−2) < j ≤ t̄(l̃k−1 + l̃k−2 + 1) as well as

p̃j
k = p̃

j−t̄ l̃k−1

k−2 + p̃
j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 2 + 2 = 4 ≤

⌈k + 1

2

⌉

(B.107)

for t̄(l̃k−1 + l̃k−2 + 1) < j ≤ t̄(l̃k−1 + l̃k−2 + 2). For the computational cycles
t̄(l̃k−1 + l̃k−2 + li−1) < j ≤ t̄(l̃k−1 + l̃k−2 + li) with i = 3, . . . , k − 3 one obtains

p̃j
k = p̃

j−t̄ l̃k−1

k−2 + p̃
j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 1+

⌈ i + 1

2

⌉

≤
⌈k + 1

2

⌉

. (B.108)

For the sum s̃j
k of c̃j

k and p̃j
k follows that

s̃j
k = 1 + s̃

j−t̄ l̃k−1

k−2 + s̃
j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 1 + k − i − 1 + i = k (B.109)

B.2 Construction of Parallel Reversal Schedules for t̄ > 2 145

for t̄(l̃k−1 + l̃k−2 + li−1) < j ≤ t̄(l̃k−1 + l̃k−2 + li) with i = 1, . . . , k − 3. Then
the first parallel reversal schedule S̃k−2 is completed. Now there exists one
processor performing the forward sweep from the initial state 0 to state l̃k−1 in
addition to the checkpoint storing the initial state. Hence it follows that

p̃j
k = 1 + p̃

j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 1 +

⌈k − 1

2

⌉

=
⌈k + 1

2

⌉

,

s̃j
k = 2 + s̃

j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 2 + k − 2 = k

(B.110)

for t̄(l̃k−1 + l̃k−2 + lk−3) < j ≤ t̄(l̃k−2 + l̃k−2 + lk−2). Because the identity
l̃k−2 + l̃k−2 + lk−2 = lk is valid as shown in Lemma B.1 Equations (B.102) up
to (B.110) prove that

p̃j
k ≤

⌈k + 1

2

⌉

and s̃j
k ≤ k for t̄ l̃k−1 < j ≤ t̄ lk . (B.111)

Going on until the vertex of the second parallel schedule S̃k−2 is reached it
follows that

p̃j
k ≤ 1 + p̃

j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 1 +

⌈k

2

⌉

=
⌈k + 2

2

⌉

,

s̃j
k ≤ 2 + s̃

j−t̄(l̃k−1+l̃k−2)
k−2 ≤ 2 + k − 1 = k + 1

(B.112)

for t̄ lk < j ≤ t̄(l̃k−1 +2 l̃k−2). Now t̄−2 parallel reversal schedules S̃k−2 are ap-
plied to construct S̃k. Using exactly the same argumentation as in Theorem B.1
one can show that

p̃j
k ≤

⌈k + 2

2

⌉

and s̃j
k ≤ k + 1 for t̄ lk < j ≤ t̄ l̃k . (B.113)

The vertex of the t̄th parallel reversal schedule S̃k−2 is reached. Taking the
checkpoints that store the initial state 0 and state l̃k−1+(t̄−2)l̃k−2 into account
it follows for t̄ l̃k < j ≤ t̄ l̃k + ľ1 if k is even that

c̃j
k = 2 + c̃

j−t̄(l̃k−l̃k−2)
k−2 = 2 + k − 4 = k − 2, p̃j

k = p̃
j−t̄(l̃k−l̃k−2)
k−2 = 2,

s̃j
k = 2 + s̃

j−t̄(l̃k−l̃k−2)
k−2 = 2 + k − 2 = k

(B.114)

and if k is odd that

c̃j
k = 2 + c̃

j−t̄(l̃k−l̃k−2)
k−2 = 2 + k − 5 = k − 3, p̃j

k = p̃
j−t̄(l̃k−l̃k−2)
k−2 = 3,

s̃j
k = 2 + s̃

j−t̄(l̃k−l̃k−2)
k−2 = 2 + k − 2 = k .

(B.115)

Moreover for t̄ l̃k + ľ1 < j ≤ t̄ l̃k + ľ2 in the case that k is even one obtains

c̃j
k = 2 + c̃

j−t̄(l̃k−l̃k−2)
k−2 = 2 + k − 4 = k − 2, p̃j

k = p̃
j−t̄(l̃k−l̃k−2)
k−2 = 1,

s̃j
k = 2 + s̃

j−t̄(l̃k−l̃k−2)
k−2 = 2 + k − 3 = k − 1

(B.116)

146 Chapter B. Construction of Feasible Parallel Reversal Schedules

and in the case that k is odd

c̃j
k = 2 + c̃

j−t̄(l̃k−l̃k−2)
k−2 = 2 + k − 5 = k − 3, p̃j

k = p̃
j−t̄(l̃k−l̃k−2)
k−2 = 2,

s̃j
k = 2 + s̃

j−t̄(l̃k−l̃k−2)
k−2 = 2 + k − 3 = k − 1 .

(B.117)

For t̄ l̃k + ľi−1 < j ≤ t̄ l̃k + ľi and i = 3, . . . , k − 3 one finds

c̃j
k = 2 + c̃

j−t̄(l̃k−l̃k−2)
k−2 = k − i, p̃j

k = p̃
j−t̄(l̃k−l̃k−2)
k−2 = 1,

s̃j
k = 2 + s̃

j−t̄(l̃k−l̃k−2)
k−2 = k − i + 1 .

(B.118)

The t̄th parallel reversal schedule S̃k−2 is completed. From now on one proces-
sor performs a forward sweep from the initial state 0 to state l̃k−1 +(t̄− 1)l̃k−2.
Furthermore, a checkpoint writing that copies state l̃k−1 + (t̄ − 2)l̃k−2 is per-
formed in the computational cycle t̄ l̃k + ľk−3 + l̃k−2. This yields

c̃j
k = 2, p̃j

k = 1, and s̃j
k = 3 for t̄ l̃k + ľk−3 < j ≤ t̄ l̃k + ľk−2 (B.119)

with ľk−3 + l̃k−2 = ľk−2 as well as

c̃j
k = 1, p̃j

k = 1, and s̃j
k = 2 for t̄ l̃k + ľk−2 < j ≤ t̄ l̃k + ľk−1 . (B.120)

Combining Equations (B.101), (B.111), and (B.113) up to (B.120) it is shown
that Equation (B.82) holds for R(S̃k), which completes the proof.

The auxiliary feasible reversal schedule S̃k developed in the Theorems B.1
and B.2 are applied to construct the desired feasible parallel reversal schedules
Sk for the temporal complexities t̄ and t̂ with t̄ > 2 and t̂ ≤ t̄:

Proof of Theorem 4.10, Page 96:

Obviously, one has 2 < 2+ t̂/t̄ ≤ 3 because t̂ ≤ t̄. Therefore the construction of
appropriate parallel reversal schedules Sk for k ≤ 2 is clear. They are displayed
by Fig. B.8 for t̄ = 4 and t̂ = 2. These parallel reversal schedules for k ∈ {1, 2}
need no more than k processors. Hence the assertion is true for k ≤ 2.

PSfrag replacements

t

tt

l
l

l

11

1

11

1 10

10

20

Schedule S1 Schedule S2

Schedule S3

Figure B.8: Parallel Reversal Schedules S1, S2, and S3 for t̄ = 4 and t̂ = 2

B.2 Construction of Parallel Reversal Schedules for t̄ > 2 147

For k = 3 one obtains l3 = 2+ t̄− t̂+1 = t̄− t̂+3. Consider S3 constructed as
depicted in Fig. B.8. For each i ∈ {0, . . . , t̄− t̂ } one has that t̂+i ≤ t̄. Therefore
during each reverse step F̄i+1 only one processor is needed to perform a forward
sweep from the initial state 0 to state i and to perform the recording step F̂i.
For i = t̄− t̂ the equation t̄+1 = t̂+ i+1 is valid. Hence during the evaluation
of the last computational cycle of F̄i+2 and the evaluation of F̄i+1 again one
processor is needed to perform the necessary actions to start F̄i in time. Hence
one has pj

k = 2 for the computational cycles j = (t̄ − 1)l3 + 1, . . . , t̄ l3 + 1. In
the remaining computational cycles of S3 one processor performs the forward
sweep from state 0 to state l3 − 1, the recording step F̂l3−1 as well as the first
t̄ − 1 computational cycles of F̄l3−1. Furthermore, one checkpoint stores the
initial state 0. Therefore one obtains the resource profile

cj
3 = 0, pj

3 = 1, sj
3 = 1 for 1 ≤ j ≤ t̄

cj
3 = 0, pj

3 = 2, sj
3 = 2 for t̄ < j ≤ t̄ + t̂

cj
3 = 1, pj

3 = 1, sj
3 = 2 for t̄ + t̂ < j ≤ 2 t̄

cj
3 = 1, pj

3 ≤ 2, sj
3 ≤ 3 for 2 t̄ < j ≤ t̄ l3

cj
3 = 1, pj

3 = 2, sj
3 = 3 for j = t̄ l3 + 1

cj
3 = 1, pj

3 = 1, sj
3 = 2 for t̄ l3 + 1 < j ≤ (t̄ + 1)l3 + t̂ − 1 .

For k ≥ 4 the construction of the parallel reversal schedule Sk is shown in
Fig. 4.38, where S̃k−1 denotes the parallel schedule to reverse l̃k−1 physical
steps as constructed in the Theorems B.1 and B.2. Using the induction prin-
ciple in this proof it will be shown that Equation (4.29) holds for the resource
profile R(Sk) of Sk if k ≥ 4. To do so first the parallel reversal schedule S4

is constructed according to Fig. 4.38. It will be shown that Equation (4.29)
holds for S4. Then it will proven that this equation is also valid for Sk if Sk is
constructed as depicted in Fig. 4.38 using Sk−1 that fulfils Equation (4.29) and
S̃k−1 that fulfils Equation (B.45) and (B.82), respectively.

For the first computational cycles of S4 the parallel reversal schedule S̃3 is
applied. Hence one obtains

cj
4 = c̃j

3 = 0, pj
4 = p̃j

3 = 1, sj
4 = s̃j

3 = 1 1 ≤ j ≤ t̄

pj
4 = p̃j

3 ≤ d i+1
2 e, sj

4 = s̃j
3 ≤ i t̄ li−1 < j ≤ t̄ li, i = 2, 3

pj
4 = p̃j

3 ≤ 3, sj
4 = s̃j

3 ≤ 4 t̄ l3 < j ≤ t̄ l̃3 .

(B.121)

Now the vertex of S̃3 is reached and S3 starts. This yields

pj
4 = p̃j

3 + pj−t̄ l̃3
3 ≤ 2 + 1 = 3,

sj
4 = s̃j

3 + sj−t̄ l̃3
3 ≤ 3 + 1 = 4

}

t̄ l̃3 < j ≤ t̄ l̃3 + t̄

pj
4 = p̃j

3 + pj−t̄ l̃3
3 ≤ 1 + 2 = 3,

sj
4 = s̃j

3 + sj−t̄ l̃3
3 = 2 + 2 = 4

}

t̄ l̃3 + t̄ < j ≤ t̄ l̃3 + 2 t̄

(B.122)

and S̃3 is completed. The checkpoint storing the initial state has to be taken

148 Chapter B. Construction of Feasible Parallel Reversal Schedules

into account. It follows with l̃3 + l3 = l4 that

pj
4 = pj−t̄ l̃3

3 ≤ 2,

sj
4 = 1+sj−t̄ l̃3

3 ≤ 1+3 = 4

}

t̄ l̃3 + 2 t̄ < j ≤ t̄(l̃3 + l3)

cj
4 = 1+cj−t̄ l̃3

3 = 2, pj
4 = pj−t̄ l̃3

3 = 2,

sj
4 = 1+sj−t̄ l̃3

3 = 1+3 = 4

}

j = t̄ l4 + 1

cj
4 = 1+cj−t̄ l̃3

3 = 2, pj
4 = pj−t̄ l̃3

3 = 1,

sj
4 = 1+sj−t̄ l̃3

3 = 1+2 = 3

}

t̄ l4 + 1 < j ≤ t̄ l4 + l3 + t̂ − 1

(B.123)

and the parallel reversal schedule S3 is completed, too. The only task left is
the forward sweep from the initial state to the state l̃3. Therefore one has

cj
4 = 1, pj

4 = 1, and sj
4 = 1 for l3 < j − t̄ l4 − t̂ + 1 ≤ l4 . (B.124)

Hence it is shown by Equations (B.121) up to (B.124) that the resource profile
R(S4) fulfils Equation (4.29).

In order to construct Sk for k > 4 the parallel reversal schedule S̃k−1 serves
to form the first computational cycles of Sk. This yields

cj
k = c̃j

k−1 = 0, pj
k = p̃j

k−1 = 1, sj
k = s̃j

k−1 = 1 1 ≤ j ≤ t̄

pj
k = p̃j

k−1 ≤ d i+1
2 e, sj

k = s̃j
k−1 ≤ i

{
t̄ li−1 < j ≤ t̄ li,
2 ≤ i ≤ k − 1

pj
k = p̃j

k−1 ≤ dk+1
2 e, sj

k = s̃j
k−1 ≤ k t̄ lk−1 < j ≤ t̄ l̃k−1

(B.125)

and the vertex of S̃k−1 is reached. Therefore Sk−1 starts. Because of the
inequality ľi ≤ t̄ li shown in Lemma B.1 one can conclude

pj
k = p̃j

k−1 + p
j−t̄ l̃k−1

k−1 ≤ 2+1 ≤ dk+1
2 e,

sj
k = s̃j

k−1 + s
j−t̄ l̃k−1

k−1 ≤ k−1+1 = k

}

t̄ l̃k−1 < j ≤ t̄ l̃k−1 + t̄

pj
k = p̃j

k−1 + p
j−t̄ l̃k−1

k−1 ≤ 1+2 ≤ dk+1
2 e,

sj
k = s̃j

k−1 + s
j−t̄ l̃k−1

k−1 = k−1+1 = k

}

t̄ < j − t̄ l̃k−1 ≤ 2 t̄

(B.126)

as well as

pj
k = p̃j

k−1 + p
j−t̄ l̃k−1

k−1 ≤ 1 +
⌈ i + 1

2

⌉

≤
⌈k + 1

2

⌉

,

sj
k = s̃j

k−1 + s
j−t̄ l̃k−1

k−1 ≤ k − i + i = k

(B.127)

for t̄(l̃k−1 + li−1) < j ≤ t̄(l̃k−1 + li) and i = 3, . . . , k − 2. Obviously, if ľi < t̄ lj
then the Inequalities (B.127) overestimate the values of pj

k and sj
k. Nevertheless,

it suffices to prove the assertion. From now on only the checkpoint storing the
initial state must be taken into account. This yields

pj
k = p

j−t̄ l̃k−1

k−1 ≤ dk+1
2 e,

sj
k = 1 + s

j−t̄ l̃k−1

k−1 ≤ 1 + k − 1 = k,

}

t̄(l̃k−1 + lk−2) < j ≤ t̄ lk (B.128)

B.2 Construction of Parallel Reversal Schedules for t̄ > 2 149

because l̃k−1 + lk−1 = lk. For the remainder of Sk−1 one obtains

pj
k = p

j−t̄ l̃k−1

k−1 = 2,

sj
k = 1+s

j−t̄ l̃k−1

k−1 ≤ 1+k−1 = k

}

j = t̄ lk + 1

pj
k = p

j−t̄ l̃k−1

k−1 = 1,

sj
k = 1+s

j−t̄ l̃k−1

k−1 ≤ 1+k−2 = k−1

}

1 < j− t̄ lk ≤ l3+ t̂−1

pj
k = p

j−t̄ l̃k−1

k−1 = 1,

sj
k = 1+s

j−t̄ l̃k−1

k−1 ≤ k−i+2

}

li−1 < j− t̄ lk− t̂+1 ≤ li
4 ≤ i ≤ k − 1

(B.129)

and the parallel reversal schedule Sk−1 is completed. The only task left is the
forward sweep from the initial state to the state l̃k−1. It follows that

cj
k = 1, pj

k = 1, and sj
k = 1 for lk−1 < j − t̄ lk − t̂ + 1 ≤ lk (B.130)

because lk−1 + l̃k−1 = lk. Equations (B.125) up to (B.130) show that Sk fulfils
Equation (4.29), which completes the proof.

The feasible parallel reversal schedules of the last proof form the base to
construct the desired parallel reversal schedules Sk for reversing lk physical steps
for the temporal complexities t̄, t̂ ∈ N with t̂ > t̄ > 2. The same construction
principle as in the proofs of Theorem 4.6 is applied.

Proof of Theorem 4.11, Page 98:

First assume 1 ≤ k < 2 + t̂/t̄. Then appropriate parallel reversal schedules
Sk can be constructed according to the ones described in the beginning of the
proof of Theorem 4.6. Hence for each physical step i, 0 ≤ i ≤ lk − 1 = k − 1
one processor performs a forward sweep from the initial state 0 to state i, one
recording step F̂i, and one reverse step F̄i. Then it is possible to control all k
processors in order to calculate the reversal appropriately (see Fig. B.5). It is
easy to check that one obtains the following resource profile

cj
k = 0, pj

k = i, sj
k = i (i−1)t̄ < j ≤ i t̄, 1 ≤ i ≤ k−1

cj
k = 0, pj

k = k, sj
k = k j = (k−1)t̄+1

cj
k = 0, pj

k = k, sj
k = k (k−1)t̄+1 < j ≤ t̄+ t̂

cj
k = 1, pj

k = k−i, sj
k = k−i+1

{
(i−1)(t̄+1) < j− t̄− t̂ ≤ i(t̄+1),
1 ≤ i ≤ k−1 .

Therefore the assertion has been proven for 1 ≤ k < 2 + t̂/t̄.

For k ≥ 2 + t̂/t̄ parallel reversal schedules Sk needing no more than pb
k

processors are constructed for the reversal of lk physical steps. Defining

r ≡ t̂ − b(t̂ − 1)/t̄ct̄

yields r ∈ {1, . . . t̄ }. Denote with Sk,r the feasible parallel reversal schedules
developed in the last proof for the reversal of lk,r physical steps for the temporal
complexities t̄ > 2 and r ≤ t̄ to perform one reverse step and one recording
step, respectively. Using Equality (4.30) the desired feasible parallel reversal

150 Chapter B. Construction of Feasible Parallel Reversal Schedules

schedules Sk that are based on the parallel reversal schedules of Theorem 4.10
will be constructed.

Consider for k ≥ 2 + dt̂/t̄e the feasible parallel reversal schedule Sk̃,r with

k̃ ≡ k− (t̂−r)/t̄ and r as above. Take the first t̄ lk̃,r +r computational cycles of

Sk̃,r as constructed in Theorem 4.10 and transform them into the first t̄ lk̃,r + t̂

computational cycles of a parallel reversal schedule S̄k such that the given value
of t̂ is taken into account. This corresponds to shifting the reverse sweep to the
right as depicted in Fig. 4.25 for the case k = 7, t̂ = 3, and t̄ = 1. Everything
else, especially the checkpoint writings, remain unchanged. Therefore in each
computational cycle j with 1 ≤ j ≤ 2 lk̃,r of S̄k there are at most (t̂ − r)/t̄ + 1
processors performing recording steps instead of at most one processor in the
corresponding computational cycles of Sk̃,r. This yields the resource profile

cj
k = 0, pj

k = i, sj
k = i

{
(i−1)t̄ < j ≤ it̄,

1 ≤ i ≤ (t̂−r)/t̄+1

cj
k = 0, pj

k = t̂−r
t̄ +2, sj

k = t̂−r
t̄ +2 t̂ − r + t̄ < j ≤ t̂ + r

pj
k ≤ pj−t̂+r

k̃,r
+ t̂−r

t̄ , sj
k ≤ sj−t̂+r

k̃,r
+ t̂−r

t̄ t̂ + r < j ≤ t̄ lk̃,r .

(B.131)

Furthermore, for each m = 1, . . . , t̂ − 1 during the computational cycle j with
j = t̄ lk̃,r − t̂ + 1 + m of Sk̃,r two processors are needed for a recording step and
a reverse step if m − b(m − 1)/t̄ct̄ ≤ r as well as one processor for the reverse
step else. In the corresponding computational cycle j = t̄ lk̃,r +m of S̄k at most

(t̂−r)/t̄+1−d(m−r)/t̄ e processors are needed only for the recording steps. No
reverse step has started yet. Therefore, the number of processors needed as well
as the total number of resources required increase by (t̂− r)/t̄−1−b(m−1)/t̄c
during each computational cycle j = t̄ lk̃,r + m of S̄k with m = 1, . . . , t̂ − 1.
Moreover, the computational cycle t̄ lk̃,r + r of the parallel reversal schedule
Sk̃,r constructed in Theorem 4.10 corresponds exactly to the computational

cycle t̄ lk̃,r + t̂ of S̄k. Therefore one obtains the following resource profile for the

next computational cycles of the parallel reversal schedule S̄k

pj
k ≤ pj−t̂+r

k̃,r
+(t̂−r)/t̄−1−b(m−1)/t̄c,

sj
k ≤ sj−t̂+r

k̃,r
+(t̂−r)/t̄−1−b(m−1)/t̄c






j = t̄ lk̃,r+m, 1 ≤ m ≤ t̂−1

pj
k = pj−t̂+r

k̃,r
, sj

k = sj−t̂+r

k̃,r
j = t̄ lk̃,r + t̂ .

(B.132)

For the computational cycles j = 1, . . . , t̄ lk̃,r follows

pj
k ≤ max

{

t̂ − r

t̄
+ 2, max

t̂+r<j≤t̄ l
k̃,r

{

pj−t̂+r

k̃,r
+

t̂ − r

t̄

}}

≤ max

{

t̂ − r

t̄
+ 2,

⌈ k̃ + 1

2

⌉

+
t̂ − r

t̄

}

≤
⌈k + 1

2

⌉

+
⌈1

2

⌊ t̂ − 1

t̄

⌋⌉
(B.133)

B.2 Construction of Parallel Reversal Schedules for t̄ > 2 151

as well as

sj
k ≤ max

{

t̂ − r

t̄
+ 2, max

t̂+r<j≤t̄ l
k̃,r

{

sj−t̂+r

k̃,r
+

t̂ − r

t̄

}}

≤ max

{
t̂ − r

t̄
+ 2, k − t̂ − r

t̄
+

t̂ − r

t̄

}

= k .

(B.134)

Furthermore, for each j = t̄ lk̃,r + m with 1 ≤ m ≤ t̂ − 1 one finds that

pj
k = pj−t̂+r

k̃,r
+

t̂ − r

t̄
− 1 −

⌊m − 1

t̄

⌋

≤
⌈k + 1

2

⌉

+
⌈1

2

⌊ t̂ − 1

t̄

⌋⌉

− 1 −
⌊m − 1

t̄

⌋

,

sj
k = sj−t̂+r

k̃,r
+

t̂ − r

t̄
− 1 −

⌊m − 1

t̄

⌋

≤ k − 1 −
⌊m − 1

t̄

⌋

.

(B.135)

It is possible to put the first t̄ lk̃,r + t̂ computational cycles of S̄k and the com-
putational cycles j = t̄lk̃,r + r +1, . . . , (t̄+1)lk̃,r + r− 1 of Sk̃,r together to form

a complete parallel reversal schedule S̄k for lk̃,r physical steps and the given t̂.

This can be done, because the computational cycle t̄ lk̃,r + t̂ of S̄k is equal to the
computational cycle t̄ lk̃,r + r of Sk̃,r. The resulting parallel reversal schedule

corresponds to the one shown in Fig. 4.26 for k = 7, t̂ = 3, and t̄ = 1. For the
computational cycles j = t̄ lk̃,r + t̂ + 1, . . . , (t̄ + 1)lk̃,r + t̂− 1 of S̄k one has that

pj
k = pj−t̂+r

k̃,r
≤
⌈k − (t̂ − r)/t̄ + 1

2

⌉

and sj
k = sj−t̂+r

k̃,r
≤ k − (t̂ − r)/t̄ . (B.136)

For each m = 1, t̄ + 1, 2 t̄ + 1, 3 t̄ + 1, . . . , t̂ − r + 1 follows from the Inequal-
ities (B.135) and (B.136) that one processor is available during the compu-
tational cycles j = t̄ lk̃,r + m, . . . , (t̄ + 1)lk̃,r + t̂ − 1. This processor can be
used in the following way to increase the number of physical steps that are
reversed and hence to create the desired parallel reversal schedule Sk. The
free processor performs the reverse step F̄l

k̃,r
+bm/t̄c in the computational cy-

cles t̄ lk̃,r + bm/t̄ct̄ + 1, . . . , t̄ lk̃,r + (bm/t̄c + 1)t̄. Then the recording step

F̂l
k̃,r

+bm/t̄c is evaluated using the free processor during the computational cy-

cles t̄ lk̃,r + (bm/t̄c+ 1)t̄ + 1, . . . , t̄ lk̃,r + (bm/t̄c+ 1)t̄ + t̂ and the forward sweep
from the initial state 0 to state lk̃,r + bm/t̄c during the computational cycles

t̄ lk̃,r +(bm/t̄c+1)t̄+ t̂+1, . . . , (t̄+1)lk̃,r +bm/t̄c(t̄+1)+ t̄−1. This extension is

possible (t̂−r)/t̄ times. Obviously, the checkpoint writing that copies the initial
state 0 has to be performed in the computational cycle (t̄+1)lk + t̂−1 instead of
(t̄+1)lk̃,r + r−1. The total number of physical steps that can be reversed with

Sk is given by lk̃,r + (t̂ − r)/t̄ = lk because of Equality (4.30). The number of

computational cycles in Sk equals properly (t̄+1)lk̃,r + t̂−1+(t̄+1)(t̂− r)/t̄ =

(t̄ + 1)lk + t̂ − 1. Furthermore, it follows from Equations (B.135) and (B.136)
as well as from

⌈k − (t̂ − r)/t̄ + 1

2

⌉

+
t̂ − r

t̄
≤
⌈k + 1

2

⌉

+
⌈1

2

⌊ t̂ − 1

t̄

⌋⌉

152 Chapter B. Construction of Feasible Parallel Reversal Schedules

that in each computational cycle of Sk the number of resources applied does
not exceed k. Furthermore, it is shown that in each computational cycle the
number of processors used is not greater than pb

k, which completes the proof.

Bibliography

[AHU74] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

[BBCG96] M. Berz, C. Bischof, G. Corliss, and A. Griewank (eds.), Computa-
tional Differentiation: Techniques, Applications, and Tools, SIAM
Philadelphia, 1996.

[BC63] R. Bellmann and K.L. Cooke, Differential-difference equations,
Academic Press, 1963.

[Ben73] C. Bennett, Logical reversibility of computation, IBM J. Research
and Development 17 (1973), 525 – 532.

[Ben95] J. Benary, DAP – Dresdener Adjungierten Parallelisierungsprojekt,
Preprint IOKOMO-05-1995, Techn. Univ. Dresden, 1995.

[Ben96] J. Benary, Parallelism in the reverse mode, Computational Differen-
tiation: Techniques, Applications, and Tools (M. Berz, C. Bischof,
G. Corliss, and A. Griewank, eds.), SIAM Philadelphia, 1996,
pp. 137 – 147.

[Cha98] I. Charpentier, Checkpoints schemes for adjoint codes: Application
to the meteorological model Meso-NH, Tech. report, Projet IDOPT,
LMC-IMAG, 1998.

[Eul68] L. Euler, Institutiones Calculi Integralis, primum ed., vol. XI, Opera
Omnia, 1768.

[Evt91] Y.G. Evtushenko, Automatic differentiation viewed from optimal
control, Automatic Differentiation of Algorithms: Theory, Imple-
mentation, and Application (A. Griewank and G. Corliss, eds.),
SIAM Philadelphia, 1991, pp. 25 – 30.

[GBD+94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and
V. Sunderam, PVM parallel virtual machine, a user’s guide and
tutorial for networked parallel computing, MIT Press, Cambridge,
Mass., 1994.

[GC96] V. Goldman and G. Cats, Automatic adjoint modelling within a
program generation framework: A case study for a weather forecast-
ing grid-point model, Computational Differentiation: Techniques,

153

154 Bibliography

Applications, and Tools (M. Berz, C. Bischof, G. Corliss, and
A. Griewank, eds.), SIAM Philadelphia, 1996, pp. 185 – 194.

[Gea71] C.W. Gear, Numerical Initial Value Problems in Ordinary Differ-
ential Equations, Prentice-Hall, 1971.

[GJU96] A. Griewank, D. Juedes, and J. Utke, ADOL-C, A package for the
automatic differentiation of algorithms written in C/C++, ACM
Trans. Math. Software 22 (1996), 131 – 167.

[GPRS96] J. Grimm, L. Pottier, and N. Rostaing-Schmidt, Optimal time and
minimum space-time product for reversing a certain class of pro-
grams, Computational Differentiation: Techniques, Applications,
and Tools (M. Berz, C. Bischof, G. Corliss, and A. Griewank, eds.),
SIAM Philadelphia, 1996, pp. 95 – 106.

[Gri89] A. Griewank, On automatic differentiation, Mathematical Pro-
gramming: Recent Developments and Applications (Amsterdam)
(M. Iri and K. Tanabe, eds.), Kluwer Academic Publishers, 1989,
pp. 83 – 108.

[Gri92] A. Griewank, Achieving logarithmic growth of temporal and spa-
tial complexity in reverse automatic differentiation, Optimization
Methods and Software 1 (1992), 35 – 54.

[Gri00] A. Griewank, Evaluating derivatives: Principles and techniques of
algorithmic differentiation, Frontiers in Appl. Math., no. 19, SIAM,
Philadelphia, 2000.

[GW00] A. Griewank and A. Walther, Revolve: An implementation of check-
pointing for the reverse or adjoint mode of computational differen-
tiation, ACM Trans. Math. Software 26 (2000), 19 – 45.

[HNW96] E. Hairer, S.P. Nørsett, and G. Wanner, Solving Ordinary Differen-
tial Equations I. Nonstiff Problems, 2nd revised ed., Computational
Mechanics, No. 14, Springer-Verlag, Berlin, 1996.

[HP98] P. Hilton and J. Petersen, A fresh look at old favourites: The Fi-
bonacci and Lucas sequences revisited, Australian Mathematical So-
ciety Gazette 25 (1998), 146 – 160.

[Knu73] D.E. Knuth, The Art of Computer Programming, Computer Science
and Information Processing, vol. I, Addison-Wesley, Massachusetts,
1973.

[Kub98] K. Kubota, A fortran77 preprocessor for reverse mode automatic
differentiation with recursive checkpointing, Optimization Methods
and Software 10 (1998), 319 – 336.

Bibliography 155

[KW98] W. Klein and A. Walther, Application of techniques of computa-
tional differentiation to a cooling system, Preprint IOKOMO-05-
1998, Techn. Univ. Dresden, 1998, To appear in Optimization Meth-
ods and Software.

[Lin76] S. Linnainmaa, Taylor expansion of the accumulated rounding er-
ror, BIT (Nordisk Tidskrift for Informationsbehandling) 16 (1976),
146 – 160.

[MO] A. Mauer-Oats, Checkpointing for ADOL-C: checkpoint-1.0.2,
http://www.math.uiuc.edu/˜mauer/checkpoint/index.html.

[SB90] J. Stoer and R. Bulirsch, Numerische Mathematik 2, Springer Ver-
lag, Berlin, 1990.

[Tal91] O. Talagrand, The use of adjoint equations in numerical modeling
of the atmospheric circulation, Automatic Differentiation of Algo-
rithms: Theory, Implementations, and Application (A. Griewank
and G. Corliss, eds.), SIAM Philadelphia, 1991, pp. 169 – 180.

[vdS93] J. van der Snepscheut, What Computing is all about, Texts and
Monographs in Computer Science, Suppl. 2, Springer Verlag, Berlin,
1993.

[VO85] Y.M. Volin and G.M. Ostrovskii, Automatic computation of deriva-
tives with the use of the multilevel differentiation technique, Com-
puters and Mathematics with Applications 11 (1985), 1099 – 1114.

[WNZD95] Z. Wang, I.M. Navon, X. Zou, and F.X. Le Dimet, A truncated
Newton optimization algorithm in meteorology applications with an-
alytic Hessian/vector products, Comput. Optim. Appl. 4 (1995),
241 – 262.

Versicherung

Hiermit versichere ich, daß ich die vorliegende Arbeit ohne unzulässige Hilfe
Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt
habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken
sind als solche kenntlich gemacht. Die Arbeit wurde bisher weder im Inland
noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde
vorgelegt.

I affirm that I have written this dissertation without any inadmissible help from
any third person and without recourse to any other aids; all sources are clearly
referenced. The dissertation has never been submitted in this or similar form
before, neither in Germany nor in any foreign country.

Die vorgelegte Dissertation habe ich am Institut für Wissenschaftliches Rechnen
der Technischen Universität Dresden unter der wissenschaftlichen Betreuung
von Herrn Prof. Ph.D. Andreas Griewank angefertigt.

I have written this dissertation at the Institute of Scientific Computing, Techni-
cal University Dresden, under the scientific supervision of Prof. Ph.D. Andreas
Griewank.

Dresden, den 14. Oktober 1999

HSSS AdminTools (c) 2001, last visited: Fri Mar 01 11:06:42 GMT+01:00 2002

