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Abbreviations

Aa Amino acid
ADH Alcohol dehydrogenase
APS Ammoniumperoxidisulfat
ATP Adenosine triphosphate
BCS Bathocuproine sulfonate
BSA Bovine serum albumin
CMV Cytomegalovirus
CMXRos Chloromethyl-X-rosamine
Conc Concentration
COX Cytochrome c oxidase
C-terminus Carboxyl-terminus
Cu Copper
DMEM Dulbecco's Modified Eagle medium
DMSO Dimethyl sulfoxide
DNA Deoxyribonuleic acid
dNTP Deoxynucleosidtriphosphate
DTT Dithiothreitol
EDTA Ethylendiamine-tetraacetic acid
EGFP Enhanced green fluorescent protein
FADH2 Flavin adenine dinucleotide (reduced form of FAD)
FCS Fetal Calf Serum
Gal Galactose
GSH Glutathione
GST Glutathione S-transferase
HRP Horseradish-peroxidase
IM Inner membrane
IMS Intermembrane space
IPTG Isopropyl-1-thio-ß-D-galactopyranoside
Kan Kanamycin
kDa Kilodalton
MCS Multiple cloning site
mt Mitochondrial
MT Metallothionein
n Nuclear
NADPH Nicotinamide adenine dinucleotide phosphate (reduced form

of NADP+)
Neo Neomycin
NP-40 Nonidet P-40
N-terminus Amino-terminus
OD Optical density
PAGE Polyacrylamide gel electrophoresis
PBS Phosphate buffered saline
PCR Polymerase chain reaction
PMSF Phenylmethylsulfonyl fluoride
PVDF Polyvinylidene difluoride
RT Room temperature
SDS Sodium dodecyl sulphate
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SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis
TEMED N,N,N',N'-Tetramethylethylenediamine
TM Transmembrane
Tris Tris(hydroxymethyl)aminomethane
v/v Volume per volume
w/v Weight per volume

Amino acids

A Ala alanine M Met methionine
C Cys cysteine N Asn asparagine
D Asp aspartate P Pro proline
E Glu glutamate Q Gln glutamine
F Phe phenylalanine R Arg arginine
G Gly glycine S Ser serine
H His histidine T Thr threonine
I Ile isoleucine V Val valine
K Lys lysine W Trp tryptophan
L Leu leucine Y Tyr tyrosine
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Aim of the work

Human cytochrome c oxidase (COX), the last enzyme of the respiration pathway in

mitochondria, is a complex enzyme constituted from at least 13 subunits, 3 of which are

encoded by the mitochondrial DNA. The assembly process requires the involvement of

different chaperones. The catalytic core of the enzyme, consisting of the three mitochondrially

encoded subunits Cox1p, Cox2p and Cox3p, contains three copper atoms and two heme

groups. Because free copper is not available in the cells, specific copper chaperones are

necessary to deliver copper to the mitochondria and to COX. Studies in yeast suggest that the

transfer of copper to the mitochondria requires yCox17p* and that two proteins, ySco1p and

ySco2p, representatives of a large protein family, are involved in the insertion of copper in

COX. Sco proteins could perform this function by binding copper and transferring it to COX.

Alternatively, they could allow COX to assume a three-dimensional structure necessary for the

insertion of copper from another chaperone. This last function is performed in bacteria by

thioredoxin-like proteins. In human, two Sco proteins have been identified. Mutations in these

proteins have been associated with lethal COX deficiency in infants.

This work will be focused on the characterisation of both hSco proteins and of some mutant

forms found in patients. The intracellular localisation and the ability of the hSco proteins to

substitute for the yeast homologues should be analysed. It is planned to develop a yeast model

to characterise hSCO mutations. Recombinant hSco1p, hSco2p and mutant forms should be

purified and analysed for their ability to bind copper and to act as thioredoxins. To define the

pathway of the copper insertion, interaction with hCox17p and Cox2p will be analysed.

Moreover, the ability of the two proteins to form homomers and heteromers should be

examined.

*To distinguish between human and yeast, y is used to denote the yeast genes and proteins while
h is used to denote the mammal genes and proteins.
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1 INTRODUCTION

Mitochondria are small intracellular organelles present in the cytoplasm of aerobic eukaryotic

cells. They are surrounded by a double membrane, the outer membrane separates the

mitochondrion from the cytosol, the inner membrane is invaginated to form cristae which

protrude into and define the matrix of the organelle. Most human cells contains 500 to 2000

mitochondria, often dynamically interconnected in a complex reticular network. Some cell

types, like platelets, have only few mitochondria and red blood cells do not contain

mitochondria. In the last decade, a considerable body of evidence has accumulated implicating

defects in the mitochondrial (mt) energy-generating pathway, oxidative phosphorylation

(OXPHOS), in a wide variety of degenerative diseases. The ubiquitous nature of mitochondria,

the dual genetic control of the respiratory chain, and the peculiar rules of mt genetics

contribute to explain the extraordinary clinical heterogeneity of disorders associated with

defects of OXPHOS [1]. Abnormalities of the electron transport and OXPHOS system are

probably the most common cause of mt diseases.

1.1 The OXPHOS System

The OXPHOS system is the main process responsible for the production of energy in the form

of ATP in most animal tissues under most conditions. The human OXPHOS system contains at

least 83 polypeptides, 13 of which are encoded by mtDNA genes. From a genetic point of

view, the respiratory chain results from a coordinate expression of the nuclear (n) genome and

the mt genome. The human mtDNA is a circular double-stranded molecule of 16,569 base

pairs. It encodes 13 proteins, 2 rRNAs and 22 tRNAs [2]. Introns are absent and all coding

sequences are contiguous with each other and lack significant untranslated flanking regions.

All proteins encoded from mtDNA are directly involved in OXPHOS and include components

of complex I (encoded by ND1, ND2, ND3, ND4, ND4L, ND5, ND6), III (encoded by CYT

b), IV (encoded by COX1, COX2 and COX3) and V (encoded by A6 and A8). All other mt

proteins (around 1100) are transcribed from the respective nuclear genes, translated in the

cytoplasm and their products are imported into mitochondria.

The five multi-protein complexes involved in OXPHOS are located in the mt inner membrane.

Substrates feed electrons into the respiratory chain at different points. Electrons are passed

down the chain and protons are pumped into the mt intermembrane space. This creates the

electrochemical membrane potential which is used to drive ATP production through re-entry of
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protons via complex V. Complex I oxidises NADH, transfers electrons to ubiquinone (or

coenzyme Q, CoQ) and pumps protons to the intermembrane space. Complex II links the

tricarboxylic acid cycle and the respiratory chain: it converts succinate to fumarate, producing

reducing equivalents as FADH2 and transferring electrons to ubiquinone. Complex III

transfers electrons from ubiquinone to cytochrome c (cyt c) while pumping protons to the

intermembrane space. Complex IV transfers electrons from cyt c to molecular oxygen and

pumps protons to the intermembrane space. Complex V couples the proton gradient generated

by the respiratory chain to ATP synthesis. Fig. 1 shows the OXPHOS complexes and denotes

the associated diseases.

Fig. 1. Diseases associated with defects of OXPHOS.
OXPHOS complexes are composed of nDNA-encoded (blue) and mtDNA-encoded subunits (red). The
'vertical' flow of protons (H+) and the concomitant 'horizontal' flow of electrons (e-) through the
respiratory complexes and the two mobile electron carriers CoQ and cyt c result in the synthesis of
ATP from ADP at Complex V. Diseases associated with mutations in mt-encoded tRNA, and rRNA
are in pink. The diseases associated with specific complexes are indicated: diseases resulting from
mutations in mtDNA-encoded subunits are in red, from mutations in nDNA-encoded subunits are in
blue and from mutations in assembly factors are in dark blue. Details and abbreviations are given in
the text. (In part taken from [3])
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1.1.1 The OXPHOS system and diseases

Mitochondria are maternally inherited. After fertilisation of the oocyte, sperm mtDNA is

actively degraded [4]. Each mitochondrion may contain ten or more mtDNA molecules.

Usually all copies of mtDNA are identical (homoplasmy). Occasionally, however, mtDNA

mutations occur and there arise more populations of mtDNA (heteroplasmy). Heteroplasmic

mtDNA ought to be relatively common, considering that human mtDNA mutates 10-20 times

faster than nDNA as a result of inadequate proof-reading by mtDNA polymerase and limited

mtDNA repair capability [5-8]. Moreover mtDNA lacks protective proteins like histones and is

physically associated with the inner mt membrane where highly mutagenic oxygen radicals are

generated [9]. Mutations may arise frequently and when mutated gene copies accumulate over

a certain threshold, the deleterious effect is no longer suppressed by the coexisting wild-type

mtDNA and will be expressed phenotypically as a disease. The threshold for biochemical

expression may be around 60 % mutant for mtDNA deletions [10] and 85-95 % for tRNA

mutations [11, 12]. The degree of organ dysfunction will also depend on a tissue’s energy

requirement. Brain and muscle are highly dependent on OXPHOS and neurological illness and

myopathy are common features of mtDNA mutations. Mt diseases can have a wide variety of

inheritance patterns, maternal, Mendelian, and a combination of both. Adding to this

complexity is the fact that the same mtDNA mutation can produce quite different phenotypes

and different mutations can produce similar phenotypes.

A significant percentage of respiratory chain disorders is caused by mutations of the mtDNA.

Dysfunction of OXPHOS has also been associated with mutations in nuclear-encoded

OXPHOS subunits. A further group of diseases results from mutations in genes coding non

OXPHOS mt proteins and in genes coding non mt proteins.

1.1.1.1 Diseases associated with mtDNA mutations.

Most pathogenic mtDNA mutations affect the heart, in association with a variety of other

clinical manifestations that can include skeletal muscle, the central nervous system (including

eye), the endocrine system, and the renal system [13]. They include point mutations,

rearrangements (deletions and duplications) and depletion.

Mutations in tRNA and rRNA genes typically affect the translation of all 13 mtDNA-encoded

polypeptides, resulting in generalised OXPHOS deficiencies. Mutations in the tRNALeu gene
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are associated with the MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic

acidosis and stroke-like episodes) [14], mutations in the tRNALys gene are associated with the

MERRF syndrome (myoclonic epilepsy with ragged-red fibers) [15] and mutations in the 12S

rRNA gene are associated with the AID syndrome (antibiotic-associated deafness) [16].

Most mutations in genes coding for complex I subunits are associated with LHON syndrome

(Leber’s hereditary optic neuropathy), a degeneration of the optic nerve leading to almost

complete blindness [17-19].

Pathogenic mutations in the mt encoded subunit of complex III are associated with myopathies

[20].

Mutations in the three subunits of complex IV are associated with unrelated disorders

including myopathy, encephalomyopathy and anemia [21-28].

Pathogenic mutations of complex V have been associated with the NARP syndrome

(neuropathy, ataxia, and retinitis pigmentosa) [29] or the Leigh syndrome, depending on the

degree of heteroplasmy [30].

Large scale rearrangements of mtDNA can be either partial mtDNA deletions or more rarely

partial duplications. They are found in some 40 % of adult patients with mt diseases [31].

Three phenotypes are associated with these mutations: Kearns-Sayre syndrome (KSS) [32],

progressive external ophthalmoplegia (PEO) [33] and Pearson’s syndrome [34]. The

pathogenicity of mtDNA deletions is due to the loss of tRNA genes, whereas duplicated

mtDNAs do not lack any tRNA genes and are probably not pathogenic [35]. Depletion of

mtDNA, first described in 1991 [36], is an important cause of mt dysfunction in neonates and

infants. Patients show a severe reduction of mtDNA, up to 98 % in the most severe forms.

1.1.1.2 Diseases associated with mutations of nuclear genes encoding OXPHOS proteins.

The observation of familial cases with Mendelian inheritance and severe isolated defects of the

respiratory chain complexes not associated with mtDNA lesions suggests the presence of

nuclear genes as a source of respiratory chain deficiencies.

Mutations in nuclear-encoded OXPHOS subunits are rare. So far mutations have been

identified for complex I, associated with Leigh syndrome and complex II, associated with

Leigh syndrome or with a neoplastic transformation called hereditary paraganglioma (PGL),

characterised by benign carotid body tumors in the head and the neck [37].
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1.1.1.3 Diseases associated with mutations of nuclear genes encoding mt non OXPHOS

proteins.

The OXPHOS system is dependent on mt protein transport and assembly systems, and many

nuclear-encoded factors are necessary to maintain mtDNA structure and function.

Defects of mt protein import have been described in two patients with Mohr-Tranebjaerg

syndrome. They presented a truncated form of a chaperonin (DPPI) [38], homologous to the

yeast protein Tim8p, a member of the inner mt membrane transport machinery located in the

mt intermembrane space [39].

Mutations in genes coding for assembly factors have been described for hSURF1, hCOX11,

hSCO1 and hSCO2, four genes involved in the assembly and maintenance of complex IV (see

below). Recently a mutation in hBCS1L, a gene coding for an assembly factor for complex III,

was described in patients suffering from tubulopathy, encephalopathy and liver failure [40].

Defect in frataxin, a protein involved in intramitochondrial iron handling, is associated with

Friedreich’s ataxia (FRDA), characterised by progressive ataxia, neuropathy, skeletal

abnormalities and cardiomyopathy [41]. The causative mutation is an abnormally expanded

GAA triplet repeat in intron 1 of the gene [42]. This defect causes decreased frataxin

expression [43], with increased iron deposition in the heart and deficiencies in complex I-III

and aconitase, which contain iron-sulphur clusters [44].

Mutations in the gene coding for paraplegin, a mt protein with high degree of homology to

AAA proteins (ATPases associated with diverse cellular activities) are associated with

hereditary spastic paraplegia (HSP) [45]. Mitochondrial AAA proteins are ATP-dependent

metalloproteases and have chaperone-like activities, for example, they can activate the

assembly of respiratory chain complexes and can participate in protein quality control by

binding unfolded peptides and ensuring specificity of proteolysis [46]. The mt dysfunction in

HSP patients could result from impaired protein quality control, causing an accumulation of

misfolded proteins within the mt matrix.

Defect in copper homeostasis in the Wilson’s disease is associated with mutations in a copper

transporter P-type ATPase, called WND [47]. The WND protein exists in two isoforms, a 160

kDa form which localises to the trans-Golgi network and a 140 kDa form which localises to

mitochondria [48]. This isoform may play a role in the copper-dependent functions of mt

enzymes.
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1.1.1.4 Diseases associated with mutations of nuclear genes encoding non mitochondrial

proteins.

Huntington’s disease (HD) is caused by an expansion of a CAG repeat within the huntingtin

gene on chromosome 4 [49]. Mutant forms of huntingtin protein accumulate in the nucleus of

affected neurons [50]. Defects of complex II, III and aconitase have been described in HD

brain [51], but the mechanisms through which huntingtin with expanded polyglutamine repeats

cause mt dysfunction is unknown.

Mutations of the human cytosolic Cu/Zn superoxide dismutase 1 (hSod1p) are associated with

Amyotrophic Lateral Sclerosis (ALS) [52], a devastating paralytic disorder caused by motor

neurons degeneration. Because hSod1p reduces the potentially harmful superoxide radicals,

ALS could be a consequence of disturbed free radical homeostasis and resulting oxidative

stress. Mouse models show, besides the morphological alteration in motor neurons, massive mt

degeneration [53] and abnormal respiration chain functions [54]. Mutated hSod1p forms show

no loss of activity and a toxic gain-of-function has been postulated [55].

OXPHOS defects have also been reported in patients suffering from progressive supranuclear

palsy (PSP), a disorder characterised by rigidity, slowed movement, tremor and abnormal eyes

movement. The tau locus on chromosome 21 has been identified as a potential risk factor to

develop this disease [56]. Tau is a phosphoprotein that belongs to a family of microtubule-

associated proteins. In the adult human brain there are six tau isoforms, generated by

alternative splicing of exons 2, 3 and 10, which contain either three or four microtubule

binding domains [57]. In the PSP brain, there is a selective enrichment of tau isoforms

containing four microtubule binding domains (4-repeat tau), particularly the 64 and 69 kDa

isoforms that result from the splicing-in of exon 10 [58]. These two isoforms are

hyperphosphorylated [59]. One hypothesis to explain the hyperphosphorylation of tau is that

free radical-induced oxidative stress makes tau resistent to dephosphorylation [60].
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1.2 The cytochrome c oxidase

Complex IV or cytochrome c oxidase (COX) is a member of a superfamily of heme-copper

containing terminal oxidases. These oxidases contain either a heme O or a heme A moiety at

their active site. Both hemes differ from proto-heme having a farnesyl group instead of a vinyl

group on position 2 of the porphyrin ring. In addition, in heme A, the methyl group on position

8 of the porphyrin ring is replaced by a formyl group [61]. The nature of the electron input site

reflects a division in the cytochrome oxidase in two groups. In cytochrome c oxidase, reducing

equivalents are delivered from the soluble protein ferrocytochrome c. The quinol oxidases, in

prokaryotes, receive electrons from a lipid-soluble quinol.

Recently, crystal structures at a resolution of 2.8 Å have been reported for COX from bovine

heart [62]. The crystal structure shows that the mammalian oxidase contains 13 polypeptides in

equimolar amount and is present as a dimer in the membrane with limited contact between the

monomers. Each monomer contains two iron centres, heme a and heme a3 (also referred to as

cytochromes a and a3), two copper centres, CuA and CuB, a magnesium centre and a zinc

centre. From the 13 protein components, Cox1p Cox2p and Cox3p are encoded from mtDNA

and represent the catalytic core of the enzyme, while the remaining ten subunits (Cox4, 5a, 5b,

6a, 6b, 6c, 7a, 7b, 7c and 8) are nuclear-encoded. The subunits 6a, 7a and 8 have heart (H)- and

liver (L)-specific isoforms so that heart and skeletal muscle express the heart form whereas the

L isoform is ubiquitously expressed [63-65]. Fetal heart and skeletal muscle mainly express the

L isoform, switching to the heart-type after birth [66]. Cox1p, Cox2p and Cox3p are

considered to be crucial for the catalytic function of the enzyme because they contain the redox

active prosthetic groups and are homologous to COX subunits found in proteobacteria such as

Paracoccus denitrificans and Rhodobacter sphaeroides [61]. Cox1p has 12 transmembrane

helices and contains, in the membrane space, heme a and the oxygen-binding site, composed

of heme a3 and CuB. Cox2p has two transmembrane helices and contains, in the extra-

membranous domain exposed to the intermembrane space, the binuclear CuA centre. The metal

binding motif CxxxC (single letter amino acid code where x is any amino acid) provides 3 of

the 6 ligands for the formation of the CuA site. Cox2p receives the electrons from cyt c and

transfers them to heme a and finally to heme a3-CuB centre. Cox3p contains seven

transmembrane helices and has no metal centres, but it is essential for preserving the structure

integrity of the active site during turnover [67]. On the interface between Cox1p and Cox2p,

the Mg2+ binding site is located, whose function is still unknown. The nuclear encoded
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subunits are important for assembly or stability of the complex [68] or for optimal activity of

the oxidase [69-72].

1.2.1 Assembly of COX

Many bacterial oxidases have little more than the three core subunits to constitute a fully

functional complex. However, both mammalian and yeast systems have difficulty assembling a

functional complex unless the additional nuclear subunits are present. The structure of COX

from the yeast Saccharomyces cerevisiae closely resembles that of its mammalian counterpart

[73]. Genetic studies in yeast have identified many nuclear genes that are involved in the

correct assembly of the structural components. Many of these factors have human homologues.

Some of these factors act in a general manner and also affect the biogenesis of other mt

respiratory complexes. Among these are proteins involved in the mt protein import or sorting,

like heath shock proteins [74], chaperones, like the AAA family of ATPases, involved in the

clearing of unassembled and improperly folded polypeptides [75], proteins like prohibitins,

that stabilise or protect unassembled protein subunits [76], and Mba1p [77] and Oxa1p [78]

which are required for the insertion of proteins into the inner membrane from the matrix site.

Some of the other nuclear genes encode proteins that are specific for the assembly of COX.

These include factors involved in heme farnesylation (Cox10p) [79, 80], in the insertion of

Cox1p and Cox2p (yShy1p/hSurf1p) [81-83], and in the copper recruitment (Cox17p, Sco1p,

Sco2p and Cox11p) [84-87]. In addition to the above genes there are at least eight others that

have been proposed to function as assembly facilitators. Proteins required in the assembly of

COX are listed in Table 1. The assembly of the multi subunits oxidase apparently occurs in an

ordered sequence, but most of the details remain to be resolved. Two dimensional gel

electrophoresis performed on mt fractions from cultured human cells provides evidence for

four steps (S1-S4) [88] (Fig. 2). The first subunit to assemble is Cox1p. It is inserted into the

membrane from the matrix side probably with the aid of Oxa1p and forms a subcomplex with

Cox4p. hSurf1p is possibly involved in the insertion of Cox1p. Metabolic labelling

experiments have indicated that Cox1p assembles with Cox2p and Cox3p only after a lag

period of 1,5 h [89]. It was postulated [90] that during this time Cox1p is folded into the inner

membrane and that concurrently the heme a is buried inside the protein. Synthesis of heme A

from protoheme requires Cox10p, a 7 transmembrane helix protein of the inner mt membrane,

and could be take place before or after the insertion of heme A in Cox1p. Heme A promotes
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the binding of Cox1p with Cox2p [91]. In the next step the CuB-heme a3 centre is formed and

simultaneously Cox2p associates with Cox1p to stabilise the active site. It was postulated that

the insertion of CuA occurs during this phase [90]. The insertion of CuB could be generated at a

later stage [87]. Sco1p, Sco2p and Cox17p are probably involved in the copper transport to the

CuA site [84, 86, 92], but they might also facilitate copper transfer to the CuB site in concert

with Cox11p [87]. A larger complex is then formed by association with Cox3p and most of the

nuclear-encoded subunits lacking only Cox6ap and Cox7ap which are peripheral polypeptides

and are incorporated late.

Yeast

protein

Function Human

homologues

Associated disease Reference

yPet100p Incorporation of nuclear-

encoded subunits

Unknown Unknown [93]

yShy1p Insertion of Cox1p and Cox2p hSurf1p Leigh syndrome [82, 83, 94-99]

ySco1p Incorporation of copper hSco1p

hSco2p

Hepatic failure

Encephalomyopathy

[84, 85, 92,

100-108]

ySco2p Incorporation of copper hSco1p

hSco2p

Hepatic failure

Encephalomyopathy

[84, 92, 95,

109-111]

yCox17p Incorporation of copper hCox17p Unknown [84, 86, 112-

117]

yCox10p Farnesylation of protoheme hCox10p Tubulopathy [79, 80, 118-

120]

yCox11p Incorporation of CuB hCox11p Unknown [87, 105]

yCox14p Function in the late step of

assembly

Unknown Unknown [121]

yCox15p Hydroxylation of heme O hCox15p Unknown [122]

yCox18p Stabilises Cox2p and might

assist in its binding to Cox1p

Unknown Unknown [123]

yCox20p Processes the exported

precursor of Cox2p

Unknown Unknown [124]

yPet117p Unknown Unknown Unknown [125]

yPet191p Unknown Unknown Unknown [125]

Table 1. Proteins required for the assembly of COX.
Yeast proteins and their human counterparts specifically involved in the assembly of COX are listed.
Diseases associated with mutations in the assembly factors are indicated.
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Fig. 2. Model of COX assembly.
Bold letters denote subunits of COX. Red letters indicate the steps of the assembly pathway (S1-S4).
Prosthetic groups are indicated in blue and assembly factors are indicated in grey. See text for details.

1.2.2 The thioredoxin system in the COX assembly.

Thioredoxin is a small and ubiquitously expressed protein conserved from prokaryotes to

higher eukaryotes (for review see [126]). Thioredoxin is characterised by a CxxC active site

[127] and by a conserved fold consisting of four β-sheet and three flanking α-helices [128].

When thioredoxin is in a reduced state, the two active-site cysteines form a dithiol group that is

able to catalyse the reduction of disulfides in a number of proteins. Oxidised thioredoxin can

be reduced by NADPH through the catalytic action of the thioredoxin reductase. The other

major factor generally responsible for maintaining proteins in the reduced state in vivo is

glutathione and the glutaredoxin system. Thiol-disulfide reductases that belong to the

thioredoxin superfamily can have either reducing properties or oxidising properties. In

bacterial systems the electron transport of OXPHOS is localised to the cytoplasm membrane

and protons are pumped in the periplasm. A broad variety of periplasmic thiol-disulfide

oxidoreductases have been identified in recent years (for review see [129]). Like the
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cytoplasmic thioredoxins and glutaredoxins, these periplasmic thiol-disulfide oxidoreductases

contain the conserved CxxC motif in their active site. Most of them have a domain that

displays the thioredoxin-like fold. In contrast to the cytoplasmic system, which consists

exclusively of reducing proteins, the periplasmic oxidoreductases have either an oxidising, a

reducing or an isomerisation activity. The periplasm of bacterial cells is an oxidising

environment and contains an apparatus for catalysing the formation of disulfide bonds,

involving in Escherichia coli two proteins, DsbA and DsbB [130]. Since the oxidising

conditions of the periplasmic compartment may be deleterious for certain proteins,

periplasmically oriented redox proteins exist which keep cysteines reduced during protein

biogenesis. Unlike other cytochromes, c-type cytochromes have two covalent bonds formed

between the two vinyl groups of heme and two cysteines of the protein. DipZ and CcsX are

required in Bordetella pertussis for the periplasmic reduction of the cysteines of

apocytochromes c before ligation [131]. In Bradyrhizobium japonicum, TlpA is essential for

the biogenesis of a functional cytochrome aa3 [132] which contains a binuclear CuA ligated by

two cysteine thiols, one methionine and two histidines [133]. The two cysteines must be in the

reduced state to act as ligands. TlpA could keep these cysteines in the reduced state during aa3

biogenesis [134]. Thioredoxins have also been identified in yeast mitochondria [135] and

mammalian mitochondria [136], and a role in protection against oxidative stress was proposed

in both cases. So far no data are available on an involvement of the thioredoxin system in the

COX assembly in eukaryotes.

1.2.3 Copper delivery to COX: the role of copper chaperones

The transport of copper is a controlled process. In excess, copper ions are highly toxic, because

they catalyse the formation of hydroxyl radicals with subsequent damage of lipids, proteins

and DNA [137]. Thus, proper correct trafficking is essential for cell vitality. In vitro most

copper enzymes easily acquire copper without auxiliary proteins. In vivo, free copper is not

available, being less than one atom of free copper per cell [138], and metallochaperones are

needed to transport copper to the site of utilisation (see Fig. 3). In blood copper is bound to

albumin and histidine. The predominant copper-containing protein in mammalian serum is

ceruloplasmin [139], a ferroxidase critical for iron metabolism. A candidate for copper uptake

in mammal cells is hCtr1p [140], which shows high similarity to the yeast high-affinity Cu-

transport proteins yCtr1p and yCtr3p [141, 142]. A putative low affinity mammalian Cu
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transporter, hCtr2p has also been identified [143]. Following entry, detoxification mechanisms

found across species include the binding of copper to specific proteins, e.g. metallothioneins

[144], and the transfer of copper into isolated cell compartments.

Fig. 3. Copper transport pathways in human cells.
Copper uptake is mediated by hCtr1p and hCtr2p. Cu chaperones (hCox17p, hCcsp, hHah1p)
distribute Cu to specific cellular compartments for incorporation in copper requiring enzymes. See text
for details.
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The transport of copper to mitochondria involves hCox17p [112]. The role of Cox17p as

metallochaperone was deduced from the ability of high levels of exogenous copper to

complement a ycox17 disruption mutant [86]. yCox17p is localised in the cytosol and in the

intermembrane space [113], acting as a shuttle between the two compartments. yCox17p binds

three copper ions per monomer in a polycopper cluster [115]. yCox17p forms oligomers and

the oligomeric state is important for its function [115]. The human homologue, hCOX17, can

complement the ycox17 disruption mutant [112]. The transfer of copper from Cox17p to COX

involves at least three proteins, Sco1p, Sco2p [84, 92] and Cox11p [87], but no data have been

so far published about an interaction between these proteins and Cox17p. The pathways for

assembly of CuA and CuB are probably distinct since cytochrome c oxidase containing CuA but

lacking CuB can be assembled in a cox11 null mutant in Rhodobacter sphaeroides [87].

yCox11p and its human homologue [105] show a conserved CFCF motif which is possibly

involved in the CuB insertion.

Two further copper pathways, to the secretion system and to the Cu/Zn superoxide dismutase

(Sod1p), have been described. Disruption of these copper pathways is involved in different

human diseases.

hHah1p [145] transfers copper to two proteins located in the Golgi network, the Menkes and

Wilson’s disease proteins (WND and MNK) [146, 147] which transport copper to the secretory

pathway for incorporation into copper containing enzymes like ceruloplasmin [139]. Elevated

Cu levels stimulate the trafficking of MNK to the plasma membrane where it may be involved

in copper efflux [148], and the traffic of WND to an unknown cytosolic vesicular compartment

[149]. A cleaved form of WND was reported to localise to mitochondria where it is suggested

to play a role in the mt copper homeostasis [48]. Both proteins are P-type ATPase [150], and

mutations in the respective genes lead to genetic disorders of copper metabolism. WND is

expressed in most tissues but predominantly in the liver and MNK is expressed in all tissues

except the liver. In the Wilson’s disease, toxic amounts of copper accumulate in liver and brain

resulting in cirrhosis and neuronal degeneration. Menkes disease is a neurodegenerative

disease caused by copper deficiency in a number of tissues. hHah1p interacts with its partners

in a copper-dependent fashion [151, 152]. Yeast homologues are known for WND and MNK

(Ccc2p) [153] and for hHah1p (Atx1p) [154]. Copper is bound by the conserved MxCxxC

motif present one time in hHah1p [155] and six times in the target ATPases [156, 157].

Sod1p is a cytosolic homodimeric copper and zinc-binding enzyme which protects the cells

against oxidative damage by catalysing the conversion of superoxide radicals to hydrogen
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peroxide and oxygen [158]. Recent evidences suggest that Sod1p is incapable of acquiring Cu

ions in vivo in the absence of its chaperone, Ccsp [138]. yCcsp [159] and hCcsp [160] are

composed of a three-domain structure [161-163]. Domain I contains a conserved MxCccC

domain, domain II has high sequence homology to Sod1p, domain III contains a CxC motif.

Domain I and II bind copper and can interact via a cysteine-bridged dicopper cluster [164].

The high degree of homology of domain II to Sod1p was postulated to be important in the

target recognition of Sod1p [165]. hCcsp can form homodimers [163] and the metal insertion

into ySod1p by yCcsp is accomplished by the formation of a heterodimer between the two

proteins [166]. This interaction is not copper dependent [165].

Copper delivery by chaperones appears to be a specific process. One chaperone cannot

substitute for the absence of another chaperone. A transitory interaction between the chaperone

and its target has been proposed and the docking between the two proteins presumably

involves electrostatic interactions [167]. The mechanism of copper transfer between the

chaperones and their target proteins are not clear but a ligand attack of the recipient protein on

the Cu ion of the chaperone is plausible, implicating a competitive exchange process [154].

1.2.4 COX deficiency

Isolated COX deficiency is the most frequent cause of respiratory chain defects primarily

affecting those organs with high energy demand, such as the brain, skeletal muscle, heart and

kidney and resulting in a variety of clinical manifestations including Leigh syndrome [82],

hepatic failure [168] and encephalomyopathy [169]. COX deficiency has been associated with

mutations in the three mt-encoded subunits, Cox1p, Cox2p and Cox3p [21-28], with large

scale deletions of the mtDNA [170] and with point mutations in mt tRNA genes [14] (MELAS

and MERRF syndrome). No mutations have been reported in any of the nuclear genes

encoding COX subunits, however, mutations in nuclear encoded proteins required for the

assembly of the COX complex have been identified in human diseases. In patients suffering

from Leigh syndrome mutations in the hSURF1 gene have been detected [82, 96, 97], and

hCOX10 mutations have been found to be the cause of tubulopathy and leukodystrophy [80].

Mutations in hSCO2 were described in infants who suffered from a fatal disorder with

hypertrophic cardiomyopathy as the predominant symptom [95, 109, 110]. Recently a first

report on mutations in the hSCO1 gene was published [108]. The key symptoms of the infant

patients were hepatic failure and ketoacidotic coma.
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1.2.4.1  hSurf1p

hSurf1p is an integral inner membrane protein. [99]. To date, 30 different mutations have been

reported in 40 unrelated patients [96]. The concentration of all COX-subunits except for

Cox5ap and Cox5bp is strongly reduced [98, 99]. The transcription [171] and translation [172]

of COX genes is normal, implicating a defective assembly or instability of the assembled

complex. Northern blot analyses have shown that hSURF1 mRNA is ubiquitously expressed

but expression in the brain appears to be low compared with other highly aerobic tissues like

heart, skeletal muscle and kidney [99]. As Leigh syndrome is primarily a central nervous

system disorder, it is clear that the protein, despite its low expression in the brain, plays a

crucial role in this tissue. Most of the identified mutations in hSURF1 patients predict

truncated proteins. The loss-of-function of this mutants is associated with the absence of

hSurf1p due to either mRNA instability, rapid protein degradation or both [173]. Recently,

missense mutations have been identified, which do not alter hSURF1 mRNA expression but

are able to prevent its function [97]. Blue native two-dimensional electrophoresis indicates that

the absence of hSurf1p causes the accumulation of early intermediates of COX assembly

(Cox1p and Cox1p associated with Cox4p) [173], suggesting that it is involved in the

incorporation of Cox2p. This crucial step is believed to produce the rapid „cascade-like“

assembly of the other COX subunits. Detection of residual amounts of fully assembled

complexes suggests a certain degree of redundancy of hSurf1p in COX assembly [173]. Defect

of COX activity in hSURF1 patients is widespread in all tissues of the body, including skin

fibroblasts and it is quite severe, although a residual activity ranging from 5 to 20 % [97] can

usually be found.

1.2.4.2 hCox10p

The yCOX10 gene encodes an heme A:farnesyltransferase [120]. The human homologue

encodes a protein predicted to contain seven to nine transmembrane domains localised in the

mt inner membrane [118]. The protein structure is conserved from bacteria to human, with the

amino acid sequence of transmembrane segments II to V being highly conserved [174].

Mutations in the hCOX10 gene have a major effect on the level of Cox2p, the steady-state

levels of the other subunits, including Cox1p, are relatively normal [80]. This is remarkable

because Cox1p in these patients cannot associate with heme aa3 prosthetic groups. This

suggests that the heme groups are not necessary to stabilise Cox1p and that assembled enzyme

complex may be present, protecting the subunits from proteolytic degradation by mt proteases
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[175]. hCOX10 is expressed in multiple tissues with highest expression observed in heart,

skeletal muscle, and testis [119].

1.2.4.3 The Sco proteins

Yeast was the first organism in which a member of the SCO gene family was identified and

characterised [106]. Mutants lacking the ySCO1 gene are respiratory deficient due to a COX

deficiency. This phenotype results from an incorrect COX-subunits assembly which leads to

proteolytic degradation of unassembled COX subunits, especially of Cox1p and Cox2p [102,

106]. ySco1p, which is anchored in the inner mt membrane [100], is thought to be required for

transfer of copper ions to Cox1p and/or Cox2p because over-expression of ySco1p can

suppress the respiratory deficiency of strains lacking yCox17p [84]. The presence in ySco1p of

a CxxxC motif, which is similar to the copper binding site of Cox2p, suggests that ySco1p

might be directly involved in copper binding. In line with this suggestion is the finding that the

mutational alteration of either one or both of the two cysteine residues of the motif affects the

function of the protein [85]. Alternatively, it was proposed that ySco1p could mediate the

insertion of copper without direct copper-binding, e.g. as a thioredoxin, which is required for

the formation of a binding-competent 3D-structure of the COX-subunits [176]. Chinenov

(2000) [176] reported the similarity of proteins of the Sco family to thiol-disulfide

oxidoreductases. The overall similarity is low, but cysteine residues and hydrophobic amino

acids in the active centre are conserved and the predicted secondary structure of ySco1p

display the thioredoxin-like fold. Moreover, a conserved histidine was proposed to activate a

sulfhydryl group of the active centre. Indeed, yeast Sco1p carrying a mutation of this histidine

was shown to be inactive [104].

Sequence analysis of the yeast genome revealed ySCO2, a gene with a high degree of identity

to ySCO1 [177]. The function of ySco2p is unclear: like in the case of ySco1p, over-expression

of this mt protein can suppress the lack of the mt copper-shuttle protein yCox17p in the

presence of enhanced copper concentrations, suggesting that it might be involved in mt copper

metabolism [84]. However, neither there is an obvious mutant phenotype after deletion of the

ySCO2 gene nor the over-expression of ySCO2 is capable to suppress the respiratory

deficiency of ysco1 null mutants [84]. A partially overlapping function of ySco1p and ySco2p

is suggested by the demonstration that chimeras of both proteins can substitue for ySco1p [85].

Sco proteins are conserved among prokaryotes and eukaryotes. All homologues present the

CxxxC motif. The best characterised homologues are SenC from Rhodobacter capsulatus
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[178], YpmQ from Bacillus subtilis [179], and PrrC from Rhodobacter sphaeroides [180]. B.

subtilis has two cytochrome oxidases, a cytochrome c oxidase, which contains cytochrome a,

a3, CuA and CuB, and a menaquinol oxidase which lacks the CuA centre [181]. Deletion of

YpmQ disrupts the expression of the cytochrome c oxidase but not of menaquinol oxidase,

suggesting that YpmQ is involved specifically in the assembly of CuA. SenC is required for an

optimal COX activity in Rhodobacter capsulatus, a photosynthetic bacterium [178]. The

cytochrome c oxidase of Rhodobacter capsulatus has no a CuA centre [182] and it was shown

that SenC has an additional role in regulating photosynthesis gene expression [178]. A similar

role was proposed for the homologous PrrC in Rhodobacter sphaeroides [180].

In the human genome two genes with a high degree of identity to ySCO1 have been identified,

hSCO1 located on chromosome 17p12-13 and hSCO2 located on chromosome 22q13.

The essential role of hSco proteins for mt function is evident by the recent finding of mutations

associated with fatal infantile COX deficiency. An overview of the so far known mutations is

shown in Fig. 4.

                                             MAMLVLVPGRVMRPLG hSco1p

 GQLWRFLPRGLEFWGPAEGTARVLLRQFCARQAEAWRASGRPGYCLGTRPLSTARPPPPW hSco1p

                       MLLLTRSPTAWHRLSQLKPPVLPGTLGGQALHLRSWLL hSco2p

 SQKGPGDSTRPSKP-GPVSWKSLAITFAIGGALLAGMKHVKKEKAEKLEKERQRHIGKPL hSco1p

 SRQGPAETGGQGQPQGPGLRTRLLITGLFGAGLGGAWLALRAEKERLQQQKRTEALRQAA hSco2p

 LG-GPFSLTTHTGERKTDKDYLGQWLLIYFGFTHCPDVCPEELEKMIQVVDEIDSITTLP hSco1p

 VGQGDFHLLDHRGRARCKADFRGQWVLMYFGFTHCPDICPDELEKLVQVVRQLEAEPGLP hSco2p

 DLTPLFISIDPERDTKEAIANYVKEFSPKLVGLTGTREEVDQVARAYRVYYSPGPKDEDE hSco1p

 PVQPVFITVDPERDDVEAMARYVQDFHPRLLGLTGSTKQVAQASHSYRVYYNAGPKDEDQ hSco2p

 DYIVDHTIIMYLIGPDGEFLDYFGQNKRKGEIAASIATHMRPYRKKS              hSco1p

 DYIVDHSIAIYLLNPDGLFTDYYGRSRSAEQISDSVRRHMAAFRSVLS             hSco2p

Fig. 4. Alignment of hSco1p and hSco2p sequences.
Identical residues are in blue. The putative copper binding site is boxed, the known point mutations
and stop mutations (X) are in red.
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Mutations in hSCO2 are associated with muscular hypotonia, hypertrophic cardiomyopathy

and encephalopathy. Each patient is heterozygous for a single mutation. Mutations in hSCO2

have now been described in a total of 9 unrelated patients, each carrying a particular

(“common”) mutation at position 140 (E140K) with a stop or a missense mutation on the other

allele in 6 cases [95, 109] and 3 being homozygous for the E140K mutation [110]. A R20P

mutation was identified in patients and in healthy controls suggesting that it is a common

polymorphism. The E140K mutation, found in all patients, is near the predicted CxxxC copper

binding motif and changes a highly conserved negatively charged glutamate to a positively

charged lysine. It was postulated that this mutation could interfere with the copper binding of

the protein [95]. The S225F mutation is located next to the highly conserved His 224 and

converts an uncharged polar to an hydrophobic residue. His 224 was discussed as potential

ligand for copper [179], or as activator of the catalytic function in the case of the thioredoxin

model [176]. The R171W mutation converts a positive charged arginine to a polar tryptophan.

The known stop mutations occur at position 53 and 90, respectively, and truncate the protein

upstream the CxxxC motif. A proof for the causal role of hSCO2 mutations in COX deficiency

has not been obtained in human cells so far, however the transfer of a normal chromosome 22

into COX-deficient fibroblasts of a patient carrying the E140K and the R171W mutations

resulted in a rescue of COX activity [109]. Northern blot analysis shows hSCO2 transcripts in

all human tissues, with stronger signals present in heart, skeletal muscle, brain, liver and

kidney [95]. Biochemical measurements in biopsy samples show that heart and skeletal muscle

have a strong reduction in COX activity (0-18 % rest activity) whereas liver and fibroblasts

have mild COX deficiency (16-50 %) [95, 109]. Immunohistochemistry of skeletal muscle

shows severe reduction of Cox1p and Cox2p, and a small reduction of Cox4 and Cox5a [95].

Western blot analysis of fibroblasts shows a very small reduction in the steady-state levels of

either mtDNA- or nuclearly-encoded subunits [109]. Tissue-specific reduction of COX activity

has also been described in a distinct form of Leigh syndrome in the French Canadian

population. These patients show very low COX activity in liver and brain and relatively high

activity in muscle and fibroblasts [183]. In this case the gene defect is still unknown. A

genotype/phenotype correlation was observed: the progress of the disease was more severe in

patients carrying an additional stop mutation than in those with an additional point mutation

and again lesser in homozygous patients (E140K/E140K). Jaksch et al. discuss that this

observation could hint at the formation of dimers or higher order oligomers [110]. Most

probably, two stop mutations in hSCO2 would cause early prenatal deleterious effects. Patients
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with the E140K homozygous mutation show a less progressive clinical course, with an initial

typical Leigh syndrome, a progressive decline of the COX activity (30 % in the final state) and

the fatal hypertrophic cardiomyopathy occurring late. In these patients a predominant

involvement of the peripheral nervous system was observed and it was hypothesised that the

progressive cardiomyopathy in hSCO2 patients is not necessarily an early symptom of this

disorder, but it is indicative of a specific aerobic energy supply threshold for cardiac function

[110]. Again, fibroblasts show a relatively high residual COX activity. Interestingly, copper

uptake of cultured fibroblasts from a homozygous patient was significantly increased,

indicating an involvement of hSco2p in the copper metabolism. Engineered in the ySCO1 gene

of haploid yeast, the common mutation did not result in a measurable phenotype while the

S225F mutation caused a loss of respiratory competence resulting from a partial but incorrect

assembly of COX [92]. The assembled COX in this mutant specifically lacks Cox2p while

∆ysco1 mutant lacks Cox1p, too. The yeast strain carrying the S240F mutation in ySCO1

(corresponding to the S225F mutation in the human gene) is the first example of a yeast COX

assembly mutant that can produce a partially assembled COX complex without undergoing the

proteolytic pathway [184]. The specific lack of Cox2p strongly suggests the involvement of

Sco proteins in the addition of copper to the CuA-site after Cox2p has been incorporated in the

assembling enzyme and a stabilising influence of Sco proteins on the assembling enzyme.

Recently a first report on mutations in the hSCO1 gene was published [108]. The key

symptoms of the two infant patients were hepatic failure and ketoacidotic coma. Sequence

analysis revealed compound heterozygosity for the hSCO1 gene. One of the hSCO1 alleles

harboured a -2 bp frame shift mutation resulting in a premature stop codon. The mutated

mRNA was highly unstable. The other allele showed a missense mutation, resulting in a

substitution of a proline at position 174, immediately adjacent to the CxxxC motif, by a leucine

(P174L). Prolines are known to bend proteins and it was proposed that this substitution can

modify the tertiary structure of the copper binding motif. This finding suggests that the P174L

mutation interferes with the function of the hSCO1 gene product, however, direct experimental

proof for the pathogenicity of this mutation is lacking. COX deficiency was found in liver (10

% residual activity), in muscle (0,5 % residual activity), in lymphocytes and skeletal muscle.

COX deficiency was observed, too, in chorionic villi and amniotic cell fluid in two male

fetuses of the same family [108]. Northern blot analysis shows hSCO1 transcripts in all human

tissues, with the stronger signals present in heart, skeletal muscle, brain, liver and kidney, like
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hSCO2. The steady-state level of hSCO1 transcripts in these tissues was higher than that of

hSCO2 transcripts [95].

Despite the similar expression patterns and the predicted similar function, the consequences of

hSCO1 mutations are markedly different from those caused by hSCO2 mutations. So far no

data are available to explain the clinical discrepancies .
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2 MATERIALS AND METHODS

2.1 Materials

2.1.1 Instruments

LI-COR DNA sequencer (model
4000/4200;)

MWG-BIOTECH

SenSys Digital CCD camera INVITRO SYSTEM
Atom emission spectroscope: PGS2 ZEISS, Jena
Atom absorption spectroscope: SpectrAA
10 GTA-96

VARIAN, Darmstadt

FPLC system AMERSHAM PHARMACIA BIOTECH
French Press SLM-AMINCO
Swing-out centrifuge HETTICH
CO2 incubator WTB BINDER
Dounce homogeniser BRAUN

2.1.2 Materials

5´ IRD800-labelled primers MWG-BIOTECH
Acrylamide/Bisacrylamide ROTH

Coomassie Brilliant blue G250 MERCK

Copper Standards FLUKA
Cytochrome c SIGMA
Dithiothreitol SIGMA
DMEM 4500 mg/l D-glucose, with non
essential amino acids, without L-glutamine
and sodium pyruvate

GIBCO-BRL

dNTP’s GIBCO-BRL
ECLplus-SystemTM AMERSHAM PHARMACIA BIOTECH
FCS GIBCO-BRL
Gel Blotting Paper SCHLEICHER & SCHUELL
Geneticin GIBCO-BRL
Glutamine GIBCO-BRL
GSH-Sepharose 4B AMERSHAM PHARMACIA BIOTECH
Human thioredoxin IMCO, STOCKHOLM
Human thioredoxinreductase IMCO, STOCKHOLM
ImmobilonTM-P PVDF-Membrane MILLIPORE
Insulin SIGMA
IPTG SIGMA

MitoTracker Red CMXRos MOLECULAR PROBES

NADPH SIGMA
NP-40 SIGMA
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PBS without calcium and magnesium GIBCO-BRL
Placenta cDNA bank CLONTECH
PMSF SIGMA
Precision Protein StandardsTM BIO-RAD
Primers MWG-BIOTECH
Protein G-Agarose SANTA CRUZ BIOTECHNOLOGY
Proteinase inhibitors BOEHRINGER MANNHEIM
PVDF (ImmobilonTM, 0,45 µm) MILLIPORE
Pwo-Polymerase BOEHRINGER MANNHEIM
Restriction enzymes GIBCO-BRL
Spectral plates B + G BANSE UND GROHMAN
T4-DNA-Ligase PROMEGA
TEMED GIBCO-BRL
Tfx-20 liposome reagent PROMEGA

Thioredoxin IMCO
Thrombin SIGMA
Tissue culture flasks SARSTEDT
Trypsin (0,05 % Trypsin, 0,02 % EDTA) GIBCO-BRL
Tween 20 MERCK
X-ray films AMERSHAM PHARMACIA BIOTECH

2.1.3 Kits

Jetquick PCR Purification Spin Kit GENOMED
Jetquick Gel Extraction Spin Kit GENOMED
Jetquick Plasmid Miniprep Spin Kit GENOMED
DC-Protein Assay BIO-RAD
Thermo-Sequenase fluorescent labeled
primer cycle sequencing kit with 7-deaza-
dGTP

AMERSHAM PHARMACIA BIOTECH

2.1.4 Antibodies

Dilution in 1x TBS-T with 5 %
(w/v) skimmed milk powder

Mouse-Anti-yCox1p (MOLECULAR PROBES) 1:400
Mouse-Anti-yCox2p (MOLECULAR PROBES) 1:250
Mouse-Anti-hCox2p (MOLECULAR PROBES) 1:250
Mouse-Anti-Porin (MOLECULAR PROBES) 1:1000
Rabbit-Anti-ySco1p (Buchwald et al., 1991) 1:3000
Mouse-Anti-EGFP (ROCHE) 1:1000
Rabbit-Anti-EGFP (SANTA CRUZ) 1:500
Sheep-Anti-mouse IgG-HRP (AMERSHAM
PHARMACIA BIOTECH)

1:5000

Donkey-Anti-rabbit IgG-HRP (AMERSHAM
PHARMACIA BIOTECH)

1:5000
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2.1.5 Strains

2.1.5.1 Escherichia coli (E. coli)

Strain Genotype Reference

DH5αα Φ80dlacZ∆M15, recA1, endA1, gyrA96, thi-1, hsdR17
(rK

-, mK
+), supE44, relA1, deoR, ∆(lacZYA-argF)U169

[185]

BL21 F-[dcm], ompT, [lon], hsdS(rB-mB-) gal [186]

2.1.5.2 Saccharomyces cerevisiae (S. cerevisiae)

Strain Genotype Reference

GR20 MATα, ura3-251, ura3-379, ura3-228, leu2-3, leu2-112,
his3-11, his3-15, SCO1::URA3, [rho+]

[106]

2.1.5.3 Human cells

Strain Reference

HeLa [187]
HeLa 17A3 This work

2.1.6 Media

2.1.6.1 E. coli-media

LB 1,0 % (w/v) Tryptone
0,5 % (w/v) Yeast extract
0,5 % (w/v) NaCl
2,0 % (w/v) Agar (for LB-Plates)

Marker selection 100 µg/ml Ampicillin
30 µg/ml Kanamycin

2.1.6.2 S. cerevisiae-media

YPD 1,0 % (w/v) Yeast extract
2,0 % (w/v) Peptone
2,0 % (w/v) Glucose
2,0 % (w/v) Agar (for YP-Plates)

YPGal 1,0 % (w/v) Yeast extract
2,0 % (w/v) Peptone
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2,0 % (w/v) Galactose
2,0 % (w/v) Agar (forYP-Plates)

YPGly 1,0 % (w/v) Yeast extract
2,0 % (w/v) Peptone
3,0 % (v/v) Glycerol
2,0 % (w/v) Agar (for YP-Plates)

WO 1,7 g/l Yeast nitrogen base
5,0 g/l Ammonium sulphate
2,0 % (w/v) Agar (for MM-Plates)
2,0 % (w/v) Glucose
for selection with YEp351 in GR20 add
3,0 g/l L-Histidine

WO-Gal 1,7 g/l Yeast nitrogen base
5,0 g/l Ammonium sulphate
2,0 % (w/v) Agar (for MM-Plates)
2,0 % (w/v) Galactose
for selection with YEp351 in GR20 add
3,0 g/l L-Histidine

2.1.6.3 Human cells media

Complete medium DMEM
10 % (v/v) FCS
2 mM Glutamine

Incomplete medium DMEM
2 mM Glutamine

Freezing solution (10 ml) DMEM
20 % DMSO
20 % FCS

2.1.6.4 Buffers

TBE 90 mM Tris
90 mM Boric acid
2,5 mM EDTA

TBS 137 mM NaCl
20 mM Tris-HCl (pH 7,4)

TBS-T 1 x TBS
0,1 % (v/v) Tween 20

PBS 140 mM NaCl
2,7 mM KCl
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10,1 mM Na2HPO4

1,8 mM KH2PO4

PBS-DTT 140 mM NaCl
2,7 mM KCl
10,1 mM Na2HPO4

1,8 mM KH2PO4

1 mM DTT (freshly added)

MTE 1,8 mM KH2PO4, pH 7,3
0,65 M Mannitol
20 mM Tris-HCl, pH 7,1
1 mM EDTA
1 mM PMSF (freshly added)

Homogenisation buffer 20 mM Hepes-KOH, pH 7.5
250 mM Sucrose
1 mM EDTA
10 mM MgCl2

0,1 mM PMSF
10 mM KCl
1 mM DTT (freshly added)

WM 250 mM Sucrose
10 mM Tris-HCl, pH 7,8
2 mM EDTA

Lysis buffer 150 mM NaCl
50 mM Tris, pH 8
1 % (v/v) NP-40
1 mM DTT (freshly added)
add 1X Proteinase inhibitors before use

Proteinase inhibitors stock solution
(1000X)

5 mg/ml Chymostatin

in DMSO 5 mg/ml Antipain
5 mg/ml Leupeptin
5 mg/ml Pepstatin
5 mg/ml Aprotinin

2.1.6.5 Solutions for SDS-PAGE

Running gel (12 %) 375 mM Tris-HCl, pH 8,8
12 % (w/v) Acrylamide
0,32 % (w/v) Bisacrylamide
0,1 % (w/v) SDS
0,1 % (w/v) Ammonium persulfate
0,1 % (v/v) TEMED
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Stacking gel 125 mM Tris-HCl, pH 6,8
4 % (w/v) Acrylamide
0,1 % (w/v) Bisacrylamide
0,1 % (w/v) SDS
0,1 % (w/v) Ammonium persulfate
0,1 % (v/v) TEMED

Running buffer 25 mM Tris
192 mM Glycine
0,1 % (w/v) SDS

6 x loading buffer 300 mM Tris-HCl, pH 6,8
30 % (w/v) Glycerol
10 % (w/v) SDS
0,1 % (w/v) Bromphenol blue
600 mM DTT or 5 % ß-mercaptoethanol
(freshly added)

Coomassie blue staining 42 % (v/v) Methanol
17 % (v/v) Acetic acid
0,1 % (w/v) Coomassie brilliant blue
G250

Destaining solution 30 % (v/v) Methanol
7 % (v/v) Acetic acid

2.1.6.6 Solutions for Western blot

Transfer buffer 192 mM Glycine
25 mM Tris
5,0 % (v/v) Methanol
0,1 % (w/v) SDS

Ponceau S staining 0,5 % (w/v) Ponceau S
1 % (v/v) Acetic acid

Blocking solution TBS-T
5 % (w/v) skimmed milk powder

2.1.6.7 Solutions for the Bradford assay

Bradford solution 0,01 % (w/v) Coomassie brilliant blue
G250
5 % (v/v) Ethanol
10 % (v/v) H3PO4
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2.1.7 Vectors

Vector Genetic marker Reference

YEp351 Ampr, LEU2, 2 µ, lacZ‘ [188]

p415 ADH Ampr, LEU2, CEN-ARS, ADH-promoter [189]

pGEX-4T-3 Ampr, Taq-promoter/GST-ORF/ MCS,
lacIq-ORF

AMERSHAM PHARMACIA
BIOTECH

pEGFP-N1 Kanr/Neor, CMV-promoter, MCS,
EGFP-ORF,

CLONTECH

2.1.8 Primers

primer Sequence (5‘ →→ 3‘) enzyme
site

 1 TATAGGATCCATATGCTGCTGCTGACTCGGAGCCC BamHI
 2 TATAGGATCCGTCGACTCAAGACAGGACACTGCGG BamHI,

SalI
 3 TATATAGGATCCATGGCGATGCTGGTCCTAGTACCC BamHI,
 4 TATATATAGTCGACCTAGCTCTTTTTTCTGTATGGCCT SalI
 5 GTCCTCGAGCTCCCAATTGAAACTAAATTG SacI
 6 AGGGAGAAA/GAGAGGCTGCAGCAGCAAAAG
 7 CAGCCTCTC/TTTCTCCCTGTTGAAGAAATA
 8 CTGGATAAG/CTGGTGCAGGTGGTGCGGCAG
 9 CTGCACCAG/CTTATCCAGTTCATCAGGACA
 10 CAGCCATTA/TTCATCACTGTGGACCCCGAGCGG
 11 AGTGATGAA/TAATGGCTGCAGAGTAATACCATA
 12 CCAGCAAGA/GACGACGTTGAAGCCATGGCCCGC
 13 AACGTCGTC/TCTTGCTGGATCACAAGTTATAAA
 14 AGAGTATAC/TACAATGCCGGCCCCAAGGATGAG
 15 GGCATTGTA/GTATACTCTGTACTTCTTGCATGC
 16 CGTAGAAAA/GTACACGCGGTAACTGTGACTAGC
 17 CGCGTGTAC/TTTTCTACGCCTCCAAACGTCAAA
 18 TATATATGTCGACCTTCCCACGTTCACATAG SalI
 19 AGGGAGAAG/AAGGAAAAGGCAGAGAAGTTAGAGAAG
 20 CTTTTCCTT/CTTCTCCCTGTTGAAGAAATAAGAAAG
 21 CTGGACAAG/ATGATCCAAGTCGTGGATGAAATAGATAGC
 22 TTGGATCAT/CTTGTCCAGTTCATCAGGACAGAT
 23 AGTATAAAGCTTATGCTGCTGCTGACTCGGAGCCCC HindIII
 24 AGTATACCGCGGAGACAGGACACTGCGGAAAGCCGC SacII
 25 TATATAAAGCTTATGGCGATGCTGGTCCTAGTACCC HindIII
 26 TATATATACCGCGGGCTCTTTTTTCTGTATGGCCTCAT SacII
 27 AAGAACCTT/TTGGGTCAGTGGTTATTGATTTATTTTGGC
 28 CTGACCCAA/AAGGTTCTTCTCCGTAAACTCATT
 29 CTTGGGGGA/CCGTTTTCCCTCACAACTCATAC
 30 GGAAAACGG/TCCCCCAAGTGAAGGTTTACCGTA
 31 CCTGATGTCTGTCTAGAAGAACTAG
 32 CTAGTTCTTCTAGACAGACATCAGG
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 33 TGCCCAGACAAGCTGGAGAAGCTGGTG
 34 CTCCAGCTTGTCTG GGCAGATGTCAGGG
 35 GTGGACCACTTCATTGCCATCTACCTG
 36 GGCAATGAAGTGGT CCACGATGTAGTC
 37 GATGTCAGG/GGCGTGAGTGAAGCC
 38 ACTCACGCC/CCTGACATCGCCCCAGACGAGCTGG
 39 GACATCAGGGGCATGAGTGAAGCC
 40 ACTCATGCCCCTGATGTCGCCCCAGAAGAACTA
 41 TATATAAAGCTTATGCCGGGTCTGGTTGACTC HindIII
 42 TATATACCGCGGTATTTTAAATCCTAGGGCTCTCATGC SacII
 43 TATATAGGATCCAAGCACGTCAAGAAAGAAAAGGCA BamHI
 44 TATATAGGATCCAGGGCTGAGAAGGAGAGGCTG BamHI
 45 TATATATAGCGGCCGCTTACTACTTCAGGTAAAAGTCGGTC

CGCGGAGACAGGACACTGCGGAAAGCCGC
NotI,
SacII

uni-21* TGTAAAACGACGGCCAGT
rev-29* CAGGAAACAGCTATGACC
GST-for* GGGCTGGCAAGCCACGTTTG
GST-rev* CCGGGAGCTGCATGTGTCAG
hSco2-int-
rev*

AAACCAGGCTCTGCTTCCAG

hSco2-int-
vor*

GTGCAGCCTGTCTTCATCAC

hSco1-int-
rev*

AAGTAAAGGCTTGCCGATGT

EGFP-vor* CTGGTTTAGTGAACCGTCAG
EGFP-rev* ACGCTGAACTTGTGGCCGTT
EGFP-
rev2*

TTATGTTTCAGGTTCAGGGG

Table 2. Primers used for the plasmids construction and for sequencing.
The enzyme recognition sites are indicated in italic. The primer annealing regions are in bold,
overlapping sequences are underlined, (/) indicates the switch between two genes, the introduced
mutations are in red, (*) indicates 5’ IRD800 labelled sequencing primers.

2.1.9 Plasmids

Plasmid primers over-
lapping
primers

template protein

p415 ADH-hSco1p 3, 4 hSCO1 cDNA hSco1p
p415 ADH-hSco2p 1, 2 hSCO2 cDNA hSco2p
YEp351-ySco1p(1-95)/
hSco1p(117-301)

5, 4 19, 20 p415 ADH-hSco1p,
YEp351-ySco1p

ySco1p(1-95)/
hSco1p(117-301)

YEp351-ySco1p(1-158)/
hSco1p(180-301)

5, 4 21, 22 p415 ADH-hSco1p,
YEp351-ySco1p

ySco1p(1-158)/
hSco1p(180-301)

YEp351-ySco1p(1-95)/
hSco2p(83-266)

5, 2 6, 7 p415 ADH-hSco2p,
YEp351-ySco1p

ySco1p(1-95)/
hSco2p(83-266)

YEp351-ySco1p(1-
158)/hSco2p(144-266)

5, 2 8, 9 p415 ADH-hSco2p,
YEp351-ySco1

ySco1p(1-158)/
hSco2p(144-266)

YEp351-ySco1p(1-177)/
hSco2p(164-266)

5, 2 10, 11 p415 ADH-hSco2p,
YEp351-ySco1p

ySco1p(1-177)/
hSco2p(164-266)

YEp351-ySco1p(1-185)/ 5, 2 12, 13 p415 ADH-hSco2p, ySco1p(1-185)/



Materials and methods

32

hSco2p(172-266) YEp351-ySco1p hSco2p(172-266)
YEp351-ySco1p(1-222)/
hSco2p(209-266)

5, 2 14, 15 p415 ADH-hSco2p,
YEp351-ySco1p

ySco1p(1-222)/
hSco2p(209-266)

YEp351-ySco1p(1-158)/
hSco2p(144-208)/
ySco1p(223-295)

5, 18 16, 17 YEp351-ySco1p
(1-158)/hSco2p
(144-266), YEp351-
ySco1p

ySco1p(1-158)/
hSco2p(144-208)/
ySco1p(223-295)

YEp351-ySco1p(1-134)/
hSco1p(156-301)

5, 4 27, 28 p415 ADH-hSco1p,
YEp351-ySco1p

K1

YEp351-ySco1p(1-117)/
hSco1p(139-301)

5, 4 29, 30 p415 ADH-hSco1p,
YEp351-ySco1p

K2

YEp351-ySco1p(1-134)/
hSco1p(156-301)(P174L)

5, 4 31, 32 YEp351-ySco1p
(1-134)/hSco1p
(156-301)

K1L

YEp351-ySco1p(1-117)/
hSco1p(139-301)(P174L)

5, 4 31, 32 YEp351-ySco1p(1-
117)/hSco1p(139-
301)

K2L

pEGFP-hSco1p 25, 26 p415 ADH-hSco1p hSco1p-EGFP
pEGFP-hSco2p 23, 24 p415 ADH-hSco2p hSco2p-EGFP
pEGFP-hSco2p(E140K) 23, 24 33, 34 pEGFP-hSco2p hSco2p(E140K)-

EGFP
pEGFP-hSco2p(S225F) 23, 24 35, 36 pEGFP-hSco2p hSco2p(S225F)-

EGFP
pEGFP-hSco1p∆cys 25, 26 37, 38 pEGFP-hSco1p hSco1p∆cys-EGFP
pEGFP-hSco2p∆cys 23, 24 39, 40 pEGFP-hSco2p hSco2p∆cys-EGFP
pEGFP-hCox17p 41, 42 cDNA hCox17p-EGFP
pGEX-4T-3-hSco1p(C) 43, 4 pEGFP-hSco1p hSco1p(C)
pGEX-4T-3-hSco2p(C) 44, 2 pEGFP-hSco2p hSco2p(C)
pGEX-4T-3-
hSco2p(C)(E140K)

44, 2 pEGFP-
hSco2p(E140K)

hSco2p(C)(E140K)

pGEX-4T-3-
hSco2p(C)(S225F)

44, 2 pEGFP-
hSco2p(S225F)

hSco2p(C)(S225F)

pGEX-4T-3-
hSco2p(C)∆cys

44, 2 pEGFP-hSco2p∆cys hSco2p(C)∆cys

pGEX-4T-3-
hSco1p(C)∆cys

43,.4 pEGFP-hSco1p∆cys hSco1p(C)∆cys

pAU5-hSco1p 25, 45 pEGFP-hSco1p hSco1p-AU5

Table 3. List of the plasmids constructed in this work.
The name of the plasmids are indicated on the left and the resulting protein on the right, the numbers in
brackets indicate amino acids position. The primers and the templates used in the PCR are indicated.
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2.2 Methods

2.2.1 Plasmids

The oligonucleotide primers used for PCRs are listed in Table 2. The combination of primers

and the created constructs are listed in Table 3. The annealing temperature (Ta) of the primers

was calculated according to the following formula (MWG-BIOTECH):

Ta = 69,4°C +0,41 x (GC-Percent) – 650/Primer length – 6°C

The following mix was used:

Final concentration

Template 1 ng/µl

Upstream primer (100 pmol/µl) 1 pmol/µl

Downstream primer (100

pmol/µl)

1 pmol/µl

dNTP mix (each dNTP 10 mM) each dNTP 200µM

PCR puffer (10X) 1X

Pwo Polymerase (5 units/µl) 2 units

Total volume 100 µl

The following PCR programs were used:

General PCR

5 min 95°C

addition of Polymerase (“hot start”)

Initial denaturation 1X

1 min 94°C

1 min Ta

2 min 72°C

Denaturation

Annealing

Elongation

20X

5 min 72°C Final elongation 1X
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Overlay PCR

5 min 95°C

addition of Polymerase (“hot start”)

Initial denaturation 1X

1 min 94°C

1 min Ta

2 min 72°C

Denaturation

Annealing

Elongation

10X

1 min 94°C

1 min Ta + 5°C

2 min 72°C

Denaturation

Annealing

Elongation

20X

5 min 72°C Final elongation 1X

Standard techniques were used for restriction endonuclease analysis of DNA, ligation of DNA

fragments, transformations and recovery of plasmid DNA from E. coli [190]. Purification of

PCR products and plasmids was carried out with the kits listed in section 2.1.3.

The construct YEp351-ySco1p comprises the promoter, the coding region and the terminator

of ySCO1 [85]. A cDNA clone containing the hSCO2 gene was obtained from Luc Smink

(Sanger Centre, Hinxton, GB) and a cDNA clone containing the hSCO1 gene was provided by

Professor Massimo Zeviani (National Neurological Institute “C. Besta”, Milano, Italy).

Constructs p415 ADH-hSco1p and p415 ADH-hSco2p, in which the human genes are under

control of the ADH promoter, were obtained by cloning a PCR product in the vector p415

ADH.

Chimeras under the control of the ySCO1 promoter were created by overlap extension PCR

[191] and cloned into the vector YEp351. The mutant chimeras K1L and K2L, in which the

proline at position 174 of the original human wild type protein was substituted by leucine,

were obtained with overlap extension PCR and cloned in the YEp351 vector.

Plasmids pEGFP-hSco1p and pEGFP-hSco2p, in which the human genes are fused C-

terminally to the EGFP gene, were obtained by cloning a PCR product into the pEGFP-N1

vector.

Mutant genes coding for hSco2p(E140K), in which the aspartic acid at position 140 is changed

into a lysine and hSco2p(S225F), in which serine at position 225 is changed to phenylalanine,

were obtained by overlap extension PCR. The PCR products were cloned into the vector

pEGFP-N1 to create pEGFP-hSco2p(E140K) and pEGFP-hSco2p(S225F).
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Mutant gene coding for hSco2p∆cys, in which the cysteine residues at positions 133 and 137

are substituted through alanines, and mutant gene coding for hSco1p∆cys, in which the

cysteine residues at positions 169 and 173 are changed to alanines, were obtained by overlap

extension PCR. The PCR products were cloned into the vector pEGFP-N1 to create pEGFP-

hSco1p∆cys and pEGFP-hSco2p∆cys.

The C-terminal portion of hSco1p and hSco1p∆cys was generated by amplification of the gene

region coding for Aa 113-301 of hSco1p and hSco1p∆cys respectively. The PCR products

were cloned into the GST-fusion expression vector pGEX-4T-3 to obtain pGEX-4T-3-

hSco1p(C) and pGEX-4T-3-hSco1p(C)∆cys in which the hSCO1 genes are fused N-terminally

to GST gene. The C-terminal portions of hSco2p, hSco2p(E140K), hSco2p(S225F) and

hSco1p∆cys were obtained by amplification of the gene region coding for Aa 79-266 of the

respective constructs. The PCR products were cloned into the vector pGEX-4T-3 to create

pGEX-4T-3-hSco2p(C), pGEX-4T-3-hSco2p(C)(E140K), pGEX-4T-3-hSco2p(C)(S225F)

pGEX-4T-3-hSco2p(C)∆cys and pGEX-4T-3-hSco1p(C)∆cys in which the hSCO2 genes are

fused N-terminally to GST gene.

The vector pAU5-hSco1p was constructed from the pEGFP-N1 vector by removing the EGFP

gene with the enzymes BamH1 and Not1 and by cloning a PCR product carrying the sequence

coding for hSco1p fused C-terminally with the sequence coding for the AU5 tag [192].

The hCOX17 gene was amplified from a placenta cDNA bank (CLONTECH) by PCR and

cloned into the plasmid pEGFP-N1 to create pEGFP-hCox17p.

2.2.2 Sequencing

DNA sequences were determined by the dideoxy chain termination method of Sanger [193]

using 5´ IRD800-labelled primers and the Thermo Sequenase fluorescent labelled primer cycle

sequencing kit with 7-deaza-dGTP as described by the manufacturer and the LI-COR DNA

sequencer. Primers used for sequencing are listed in Table 2. The annealing temperature of the

primers was calculated according the following formula (MWG-BIOTECH):

Ta = 69,4°C +0,41 x (GC-Percent) – 650/Primer length + 3°C
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2.2.3 Human cell methods

2.2.3.1 Cell Culture

HeLa cells were grown routinely in 75 cm2 flask in Dulbecco’s modified Eagle medium

(DMEM) containing 10 % fetal calf serum and 2 mM glutamine (complete medium). Cultures

were maintained at 37°C in a humidified atmosphere containing 5 % (v/v) CO2. Cultures were

splitted every three days by detaching the cells from the surface of the flask with the protease

trypsin. Before trypsin treatment, complete medium was removed and the adherent cells were

washed with 2 x 10 ml Ca2+- and Mg2+-free PBS. 1 ml trypsin was added and cells were

incubated at 37°C for 3 minutes. 10 ml complete medium were added to inactivate the trypsin

and the cells were pelleted by centrifugation for 5 min at 800 x g with a swing-out rotor at

room temperature. After removing the supernatant, cells were resuspend in 10 ml complete

medium and 10 µl of this suspension were used for determining the cell amount in a Neubauer-

counting chamber. 5x105 cells were transferred to a new flask.

For long-term storage, 1X107 cells were detached from the flask with trypsin, washed with 2 x

10 ml Ca2+- and Mg2+-free PBS and resuspend in 800 µl complete medium. 800 µl ice cold

freezing solution were then added drop by drop. The cells suspension was transferred to a

freezing vial and was stored for one year at –80°. For longer storage, cells were frozen

overnight at –80°C and then transferred to liquid nitrogen. To recover the frozen cells, the vial

was kept in a 37°C water bath. When the cells were thawed, the cells suspension was

transferred to a centrifuge tube. 1,8 ml complete medium (at room temperature) were added

and the cells were incubated for 5 minutes in a 37°C water bath. 3,6 ml complete medium were

added and the cells were again incubated for 5 minutes in a 37°C water bath. 1 ml complete

medium was finally added and the cells were centrifuged for 5 min at 800 x g at room

temperature. The medium was removed and 10 ml complete medium were added. The cells

were transferred to a tissue culture flask.

2.2.3.2 Transfection of HeLa cells

For transient expression cells were cultured in one-well TC chamber slides and transformed

using liposome-mediated transfection (Tfx-20) as described by the manufacturer. Cells were

seeded 1 day prior to transfection at 40-70 % confluence. For transfection of about 3 x 105

cells, 1 µg of plasmid DNA and 2 µl of liposome-solution (1 mM stock solution) in 1 ml

incomplete medium were used. Cells were washed with 2 x 10 ml Ca2+- and Mg2+-free PBS
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and the DNA/liposome mixture was added. After 2 h incubation in the CO2 incubator at 37°, 2

ml complete medium were added and the cells were incubated for further 14 hours.

Transfection efficiency was routinely high (approximately 50 %). Transfections in 100-mm

plates (3X106 cells) were performed with 20 µl DNA and 40 µl of liposome reagent in 10 ml

incomplete medium.

For stable transfection, cells were put under geneticinTM selection (final concentration: 500

µg/ml) 48 h after transfection. To improve selection, cells were successively replated to

eliminate untransfected cells. Geneticin-resistant clones were picked by ring cloning, regrown

in multiwell plates, and subsequently tested for the presence of an expressed transgene by

Western blot analysis and fluorescence microscopy.

2.2.3.3 Isolation of human mitochondria

Cells were detached from the flask as described in 2.2.3.1. and the cell pellet was washed twice

with PBS. The pellet was resuspend by gentle pipetting in 2 volumes of ice-cold

homogenisation buffer, kept on ice for 5 min and then homogenised in a dounce homogeniser

with 20 strokes. Disruption of the cells was monitored by microscopy. Nuclei and cell debris

were pelleted by two sequential centrifugations at 1200 x g for 3 min at 4°C. Mitochondria

from the post-nuclear supernatants were recovered by centrifugation at 12000 x g for 10 min at

4 °C. Mitochondrial pellet was washed once with 1 ml ice-cold wash-buffer (WM) and either

directly processed or frozen at  -80 °C. 800 µg mitochondria were obtained from 2x107 cells.

2.2.3.4 Preparation of HeLa cells mitochondrial lysate and whole lysate

Mitochondrial and whole cell lysate were prepared by lysing mitochondria (prepared as

described in section 2.2.3.3) or cells in lysis buffer for 1 h on ice. For 1x107 cells or 1 mg

mitochondria, 1 ml lysis puffer was used. Cells debris was removed by centrifugation at 3000

x g for 10 min at 4°C. Supernatant was collected after centrifugation at 13000 x g at 4° for 15

min.

2.2.3.5 Fluorescence microscopy

HeLa cells were subcultured in TC chamber slides and transfected as described above. For

staining of mitochondria cells were incubated for 30 min in the presence of 50 nM

MitoTracker Red CMXRos. Cells were visualized with a Jena Lumar fluorescence

microscope 14 hours after transfection. EGFP has a fluorescence excitation maximum at 408
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nm and a fluorescence emission maximum at 507 nm. MitoTracker has a fluorescence

excitation maximum at 579 nm and a fluorescence emission maximum at 599 nm. Pictures

were taken with the SenSys Digital CCD camera and edited with the MetaView software

(INVITRO SYSTEM).

2.2.4 Yeast cells methods

2.2.4.1 Transformation

Yeast cells were transformed using the LiAc procedure [194].

2.2.4.2 Isolation of yeast mitochondria

Yeast transformants were grown to stationary phase in WO-Gal medium. Cells were harvested

by centrifugation at 3000 x g for 5 minutes. After washing with 1 ml ice-cold water, cells were

resuspended in 1 ml ice-cold MTE. Cells were lysed by vortexing vigorously for 5 min in the

presence of 500 µl glass beads (∅ 0,45 mm). Supernatants were collected to new tubes and

glass beads were washed once with 500 µl ice-cold MTE. The supernatant of the washing step

was added to the previous supernatants. Unbroken cells and the cell debris were removed by

centrifugation at 3000 x g for 3 min at 4°C. Mitochondria were pelleted by centrifugation at

13000 x g for 15 min at 4°C.

2.2.4.3 Determination of COX-activity

COX activity was determined as described by Tzagoloff et al. [195]. 50 µg of mitochondria

were solubilized in assay-buffer (50 mM potassium phosphate, pH 7,2; 0,5 % (v/v) Tween 80).

The enzyme reaction was started by addition of 50 µM reduced ferrocytochrome c and the

initial rate of oxidation was determined at room temperature by following the decrease in

absorbance at 550 nm.

2.2.5 Affinity purification of recombinant proteins

BL21 transformants harbouring plasmid pGEX-4T-3 or pGEX-4T-3 carrying the coding region

for the genes of interest were inoculated 1:100 from an overnight culture and grown at 30°C in

LB broth with 2 % (w/v) glucose and 100 µg/ml ampicillin until an absorbance of 0,8 at 600

nm was reached. The culture was induced with 100 µM IPTG. For isolation of proteins for
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atomic absorption spectroscopy 0,5 mM CuSO4 was added at the time of induction. After 30

minutes cells were harvested, washed twice in PBS-DTT and resuspended in PBS-DTT with

10 % (v/v) glycerol, 1 mM PMSF. Cells were lysed using a French press at 1000 psi 2 times

and cell debris was removed by centrifugation at 20000 x g at 4°C for 1 h. The supernatant was

incubated for 1 h at 4°C with 50 % (w/v) Glutathione (GSH)-Sepharose 4B suspension

equilibrated three times with 20 volumes PBS-DTT. GSH-Sepharose 4B was pelleted by

centrifugation and washed with PBS-DTT. Bound fusion protein was cleaved on the matrix

with thrombin in PBS-DTT at room temperature to eliminate the GST moiety. Proteins were

analysed by SDS-PAGE and stained with Coomassie Blue G-250.

2.2.6 In vitro interaction assay

20 µg of GST fusion proteins or GST alone were immobilized on GSH-Sepharose beads and

allowed to interact for 2 h at 4°C with cell lysate of 2x106 HeLa cells or with 800 µg

mitochondrial lysate (prepared as described in section 2.2.3.4). In some experiments

immobilised fusion proteins were loaded with copper by incubation with 200 µM CuSO4 and 1

mM DTT in TBS for 2 h at 4°C. Excess copper was removed by washing with 30 volumes

TBS. Following binding, the beads were washed extensively with 1x PBS-DTT containing 0,3

% (v/v) NP-40 and protein complexes were released by the addition of sample buffer with β-

mercaptoethanol and heating at 100° for 5 min. Samples were analysed in Western blot with

antibody against Cox2p or EGFP. In some experiments lysis puffer and wash solution without

DTT were used.

2.2.7 Immunoprecipitation

Immunoprecipitation of mitochondrial proteins were performed with anti-AU5 or anti-EGFP

antibodies. 1 mg mitochondria were lysed as described in section 2.2.3.4 and the supernatant

was incubated with 10 µl anti-AU5 antibody or anti-EGFP antibody for 3 h at 4°C on an

orbital shaker. 30 µl protein G-Sepharose were added and the samples were incubated for

further 2 h at 4°C. The beads were washed four times with 1 ml lysis buffer.

Immunoprecipitates were examined with Western blot analysis.
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2.2.8 Determination of the protein concentration

The protein concentration was determined using the DC protein-assay as described by the

supplier or using the Bradford method [196].

2.2.9 Western blot analysis

Proteins were separated on a 12 % polyacrylamide gel in the presence of SDS. Proteins were

transferred to a PVDF membrane using the semi-dry method for 1 h at RT at 1,5 mA/cm2.

Membranes were blocked over night at 4° C or 1 hour at room temperature with 5 % (w/v)

non-fat dry milk in TBS-T. Membranes were probed with polyclonal or monoclonal antisera

for 1 hour at room temperature and then washed three times for 10 minutes in TBS-T.

Horseradish peroxidase-conjugated anti-rabbit or anti-mouse antibodies were used as

secondary antibodies. The secondary antibody was added to the membranes for 30 minutes at

room temperature and the membranes were then again washed three times for 10 minutes in

TBS-T. Antigen-antibody complexes were visualised by enhanced chemiluminescence (ECL

plus).

2.2.10 FPLC analysis

Proteins were separated on a Superdex 75 HR 10/30 gel filtration column. Column was

equilibrated with two column volumes of PBS-DTT. 500 µg of affinity purified proteins were

loaded and separation was performed at a flow rate of 0,5 ml/min at RT. Calibration of the

column for estimation of the molecular weights was performed using BSA and carbonic

anhydrase.
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2.2.11 Thioredoxin assay

The reaction mixture contained 500 µM NADPH, 55 µM insulin, 15 µM of a purified human

Sco protein or 5 µM human thioredoxin in 100 mM potassium phosphate, 2 mM EDTA, pH

7.4 [197]. The reaction was started by adding 80 nM human thioredoxin reductase. The

increase in turbidity as a result of the formation of the insoluble insulin B chain was followed

at 595 nm. The schema of the reaction is shown in Fig. 5.

Fig. 5. Reactions involved in the thioredoxin assay.
Thioredoxin, in its reduced state, reduce the disulfides of insulin and the free insulin B chain
precipitates. Oxidised thioredoxin is converted back to the reduced form by thioredoxin reductase with
the use of the electrons from NADPH.

2.2.12 Atomic emission spectroscopy

Atomic emission spectroscopy of affinity purified proteins (60 µg in PBS-DTT) was

performed with the plangrating spectrograph PGS2 using the arc method with carbon

electrodes. Spectral lines were recorded on a photo plate. Copper-specific lines at 324,75 nm

and 327,40 nm were identified with the spectral lines of iron as a reference. The principle of

the method is illustrated in Fig. 6.

Thioredoxin reduced + Insulin oxidised             Thioredoxin oxidised + Insulin reduced

turbidity

Thioredoxin reductase

       NADP+                                                       NADPH
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Fig. 6. Scheme of functioning of the atom emission spectroscopy.
The sample is submitted to a arc between two carbon electrodes. The radiation emitted from the
sample is separated by a grid in its wavelengths (λ) and recovered on a film.

2.2.13 Atomic absorption spectroscopy (AAS)

Atomic absorption spectroscopy of affinity purified proteins in PBS-DTT isolated from E. coli

cells grown in the presence of 0,5 mM CuSO4, was performed with the SpectrAA 10 GTA-96.

The principle of functioning of the AAS is given in Fig. 7.

Fig. 7. Scheme of atom absorption spectroscopy for copper analysis.
A copper cavity cathode lamp emits the radiation which is directed to the graphite furnace. In the
graphite furnace the sample is atomised and absorbs part of the radiation. The monochromator
separates the analytic line (λ = 324,75, in red), the intensity of which is measured by the detector. The
Lambert-Beer law fixes a relation between the decrease in the intensity of the initial radiation and the
concentration of the sample.

Lamp

Graphite
fornace

Monochromator

RilevatorDetector

Film

Carbon
electrodes

Grid

λλ

Samples
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3 RESULTS

3.1 Structural analysis of hSco proteins

The ySCO1 human homologous gene on chromosome 22 (hSCO2) [Sequence ID: AL021683]

was detected in the course of the systematic sequencing project of the human genome by Luc

Smink at the Sanger Centre. The homologue on chromosome 17 (hSCO1) [Sequence ID:

AF026852] was identified by the group of Massimo Zeviani [105]. hSCO1 contains six exons

and five introns, hSCO2 two exons and one intron.

The homologues of ySco1p share a high degree of similarity with respect to the primary

sequence and to their overall structure (Fig. 8). The BLAST 2 program [198] predicts 39 %

overall identity and 59 % similarity between hSco1p and ySco1p, and 41 % overall identity

and 59 % similarity between hSco2p and ySco1p. The overall identity between hSco1p and

hSco2p is 43 % and the similarity 63 %. The N-terminal part of ySco1p contains a

mitochondrial import sequence and a single predicted TM-region which directs the protein to

mitochondria and anchors it in the inner mitochondrial membrane [100]. The N-termini of both

hSco proteins are also reminiscent of mitochondrial pre-sequences in that they lack negatively

charged amino acids while they contain positively charged and hydroxylated amino acid

residues [199]. MitoProtII [200] predicts that hSco1p and hSco2p are very likely to be

mitochondrial proteins with a N-terminal import signal of 42 amino acids (Aa) for hSco1p and

of 31 Aa for hSco2p. The predicted molecular mass is 34 kDa for hSco1p (30 kDa without the

import sequence) and 29 kDa for hSco2p (26 kDa without the import signal). Computer

analysis of both human homologues with the MacMolly Tetra program (Mologen, Berlin)

predicts a single transmembranous domain between Aa 95-112 for hSco1p and Aa 61-78 for

hSco2p. The region following the transmembranous domain (in this work indicated as C-

terminal portion), including Aa 113-301 for hSco1p and 79-266 for hSco2p, shows the highest

degree of homology between all known homologues and contains the conserved motif CxxxC

which is essential for ySco1p function [85]. This motif is localised at Aa position 169-173 in

hSco1p and at Aa position 133-137 in hSco2p. Within the C-terminal portion, the two hSco

proteins reach a similarity of 73 %. At the extreme end of the C-terminal domain, the human

homologues differ strongly from the yeast proteins. A PSI-BLAST [201] search made by

Chinenov [176], revealed a low similarity of Sco proteins to bacterial thiol-disulfide

reductases, and a secondary structure predictions using PHD [202] suggests a thioredoxin fold.

Otherwise, the CxxxC motif is reminescent of the copper binding domain of Cox2p .
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3.2 Complementation analysis in yeast of hSco1p and hSco2p

hSco1p and hSco2p were tested for their ability to substitute ySco1p. The respective cDNAs of

the homologues were cloned behind the strong S. cerevisiae ADH1 promoter in the p415 ADH

vector and transformed into strain GR20, which is deleted for ySCO1. Both constructs failed to

restore respiratory competence (Fig. 9, (5) and (6)), i.e. the genes are not per se functional

homologues of ySCO1.

Different chimeric proteins (Fig. 10) were constructed between ySco1p and the human

homologues to identify regions of the human genes which are able to substitute for the

corresponding yeast parts. The chimeras were cloned in the YEp351 vector behind the ySCO1

promoter. To exclude the possibility that the import signal and/or the TM-region of the human

proteins are not functional in S. cerevisiae, chimeras were constructed consisting of the N-

terminal 95 amino acids of ySco1p (including import signal and TM region) and the C-

terminus of hSco1p (ySco1p(1-95)/hSco1p(117-301)) and hSco2p (ySco1p (1-95)/hSco2p(83-

266)), respectively. These constructs, too, proved not to be able to complement the respiratory

deficiency of strain GR20.

In a second set of chimeras the N-terminal 158 amino acids of ySco1p up to the CxxxC-motif

were fused to the C-termini of hSco2p (ySco1p(1-158)/hSco2p(144-266)) and hSco1p

(ySco1p(1-158)/hSco1p(180-301)), respectively. In a control experiment it was shown that the

aminoterminal 158 amino acids of ySco1p (ySco1p(1-158)) alone do not restore respiratory

competence in the ∆ysco1 strain GR20 [203]. Interestingly the ySco1p(1-158)/hSco1p(180-

301) chimera restored respiratory competence in GR20, while the chimeric protein ySco1p(1-

158)/hSco2p(144-266) did not (Fig. 9, (3) and (4)). Transformants bearing ySco1p(1-

158)/hSco1p(180-301) show a slight cold sensitive phenotype, i.e. a somewhat reduced growth

rate at 23°C as compared to wild type (data not shown). The difference in complementation

behaviour is not due to a proteolytic sensitivity of ySco1p(1-158)/hSco2p(144-266), as a

protein of the expected molecular mass can be detected with ySco1p-antibodies in Western

analysis (data not shown). To test whether parts of the C-terminal region of the human

chromosome 22 homologue may replace the respective yeast sequences, the C-terminal portion

derived from the human homologue was progressively shortened as outlined in Fig. 10:

ySco1p(1-177)/hSco2p(164-266), ySco1p(1-185)/hSco2p (172-266) and ySco1p(1-

222)/hSco2p(209-266). All constructs were transformed into strain GR20 and tested for their

ability to restore respiratory competence. None of the chimeras was able to substitute for

ySco1p function.
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In yeast a truncated version of ySco1p (ySco1p(1-258)), lacking the C-terminal 35 amino

acids, is not functional [203]. Because the extreme C-terminus is one of the most divergent

regions between the homologues it was tested whether the authentic ySco1p C-terminus might

be necessary for function of a chimeric protein. To this end the chimera ySco1p(1-

158)/hSco2p(144-208)/ySco1p(223-295) was constructed. In this protein the aminoterminal

158 amino acids as well as the carboxyterminal 73 amino acids are derived from ySco1p, while

the internal segment corresponds to amino acids 144-208 of hSco2p. This construct, too,

proved not to be functional in yeast.

Fig. 8. 

Fig. 9. Complementation behaviour of Sco1p-derivatives in strain GR20.
∆ysco1-strain GR20 was transformed with YEp351 (control (2)) or with plasmids encoding: (1)
ySco1p, (3) ySco1p(1-158)/hSco1p(180-301), (4) ySco1p(1-158)/hSco2p(144-266), (5) hSco1p, (6)
hSco2p. Growth on minimal medium (WO) and glycerol medium (YPGly) was monitored after 3 days
of  incubation at 30°C.

YPGlyWO
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Fig. 10. Overview of constructs tested in the complementation analysis of the ∆∆ysco1-strain
GR20.

A. Schematic presentation of ySco1p. B. Schematic presentation of hSco1p and ySco1p/hSco1p
chimeras. C. Schematic presentation of hSco2p and ySco1p/hSco2p chimeras. P indicates the putative
mitochondrial pre-sequence, TM the putative transmembrane domain and CxxxC the potential metal-
binding site. The thin arrow indicates the ySCO1 promoter and the fat arrow the ADH1 promoter.
Sequences derived from ySco1p are in white, from hSco1p in dark grey and from hSco2p in light grey.
Growth of GR20 transformants on YPGly is indicated on the right side: + = growth; - = no growth.
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3.3 Localisation of hSco1p and hSco2p

The finding that both human Sco proteins by themselves fail to substitute ySco1p function in yeast

raised the question whether the human homologues are located within mitochondria. To examine the

subcellular distribution in vivo, the proteins were fused at the C-terminus to the enhanced green

fluorescent protein (EGFP) and placed behind the cytomegalovirus (CMV) promoter. The

spontaneously fluorescent EGFP protein, an enhanced variant of the GFP protein from the jellyfish

Aequoria victoria, is widely used to facilitate subcellular localisation of a target protein [204]. When

expressed in mammalian cells fluorescence from wild type GFP is typically distributed throughout the

cytoplasm and the nucleus, but excluded from the nucleolus and vesicular organelles [204]. However,

highly specific intracellular localisation including the nucleus, mitochondria, secretory pathway,

plasma membrane and cytoskeleton [205, 206] can be achieved via fusions to individual targeting

sequences. EGFP contains two amino acids substitutions in the chromophore and fluoresces 35-fold

more intensive than wild type GFP. HeLa cells were transfected, using the liposome method, with the

plasmid encoding for EGFP (control), with the plasmid encoding for hSco2p-EGFP and with the

plasmid encoding for hSco1p-EGFP, respectively. After 14 h HeLa cells were analysed with a

fluorescence microscope. Transfectants expressing the hSco1p-EGFP clearly exhibited staining in

punctuated structures (Fig. 11 A). Evidence that these structures represent mitochondria was obtained

by staining with the mitochondria-specific dye MitoTracker Red CMXRos, which resulted in an

identical staining pattern (Fig 11 B). The identity of the patterns was confirmed by overlay of both

fluorescences (Fig. 11 C). In the case of hSco2p-EGFP an identical staining pattern was observed (Fig.

12). In contrast to hSco1p-EGFP, however, occasionally a slight green fluorescence was also detected

in the cytosol, possibly reflecting a higher concentration of the EGFP-fusion protein or a less efficient

mitochondrial import. As expected, HeLa cells transfected with the EGFP-bearing control plasmid

showed an homogeneous green fluorescence which did not correspond to the labeling pattern with

MitoTracker Red CMXRos (data not shown). These data demonstrate that both chimeric hSco-EGFP

proteins are localised in mitochondria and that mitochondrial localisation is mediated by the hSco

portions of the fusion proteins.
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Fig. 11. In vivo localisation of hSco1p.
HeLa cells were transfected with a plasmid encoding for hSco1p-EGFP. After 14 h cells were
counterstained with the mitochondria-specific dye MitoTracker Red CMXRos. A. Green
fluorescence by EGFP. B. Red fluorescence by MitoTracker Red CMXRos. C. Overlay of green
and red fluorescence
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Fig. 12. In vivo localisation of hSco2p.
HeLa cells were transfected with the plasmid encoding for hSco2p-EGFP After 14 h cells were
counterstained with the mitochondria-specific dye MitoTracker Red CMXRos. A. Green
fluorescence by EGFP. B. Red fluorescence by MitoTracker Red CMXRos. C. Overlay of green and
red fluorescence.
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These results were confirmed by Western blot analysis. Because no antisera against hSco1p

and hSco2p were available, C-terminal EGFP-tagged versions of both proteins were used.

EGFP can function as a protein tag, as it tolerates N- and C-terminal fusions to a broad variety

of proteins many of which have been shown to retain native function [204]. The molecular

mass of EGFP is 27 kDa. The expected molecular mass, without the postulated import signal,

is approximately 57 kDa for hSco1p-EGFP and 53 kDa for hSco2p-EGFP. HeLa cells were

transfected with the plasmids encoding for hSco1p-EGFP and for hSco2p-EGFP, respectively.

Mitochondrial and cytosolic fractions were prepared and probed with anti-EGFP antibody.

Cox2p was used as a marker for the mitochondrial fraction. Fig. 13 shows that a band of the

expected molecular mass is localised only in the mitochondrial fraction of hSco1p-EGFP

expressing cells (lane 1) and of hSco2p-EGFP expressing cells (lane 3). The thin bands

observed in both cases above the major bands probably represent the precursor forms. Because

of the high protein expression induced from the CMV promoter, it is possible that not all

proteins are processed to the mature form. This finding would confirm the hypothesis that

hSco1p and hSco2p have a cleavable import sequence. These data are in agreement with the

results of the in vitro import of hSco1p [105].

Fig. 13. Localisation of hSco1p and hSco2p.
Mitochondria (lane 1 and 3) and cytoplasm (lane 2 and 4) of HeLa cells expressing hSco1p-EGFP
(lane 1 and 2) and hSco2p-EGFP (lane 3 and 4) were prepared. Western blot analysis of the two
fractions was done with antibodies against EGFP and Cox2p.
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3.4  Creation of cell lines stably expressing hSco1p-EGFP and hSco2p-EGFP

Transient transfection of cells is time-consuming and expensive. To dispose from a permanent

source of cells expressing hSco1p-EGFP and hSco2p-EGFP, stable cell lines were created.

HeLa cells were transfected with the plasmids encoding for hSco1p-EGFP and hSco2p-EGFP,

respectively, and cells were cultivated under Geneticin selection for five weeks. Single

Geneticin-resistant clones were isolated and allowed to grow for further four weeks. The

resulting cultures were tested for their ability to express the EGFP fusion protein in vivo and by

Western blot analysis. The selection was successful so far only for transfectants expressing

hSco1p-EGFP. One clone, called HeLa 17A3, was isolated which shows a single

mitochondrial band of the expected molecular mass of hSco1p-EGFP in Western blot analysis

(Fig. 14) and a mitochondrial pattern of the EGFP fluorescence in fluorescence microscopic

analysis (Fig. 15). Selection of stable hSco2p-EGFP transfectants was not successful after

three months selection and is still in progress.

Fig. 14. Western blot analysis of the HeLa 17A3 cell line.
HeLa cells were stably transfected with the plasmid encoding for hSco1p-EGFP. Mitochondria (lane 1)
and cytoplasm (lane 2) were probed with the anti-EGFP and the anti-Cox2p antibodies.
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Fig. 15. Fluorescence microscopic analysis of the HeLa 17A3 cell line.
HeLa cells were stably transfected with the plasmid coding for hSco1p-EGFP. Cells were
counterstained with the mitochondria-specific dye MitoTracker Red CMXRos. A. Green
fluorescence by EGFP. B. Red fluorescence by MitoTracker Red CMXRos. C. Overlay of green and
red fluorescence.
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3.5 Functional analysis of hSco1p and hSco2p

All known eukaryotic members of the Sco-protein family possess a single transmembrane

segment, which divides the proteins into a smaller N-terminal segment and a larger C-terminal

segment which bears the essential motif CxxxC. As outlined in the introduction, the CxxxC

motif could be involved in the copper delivery to COX. Sco proteins could mediate this

transfer by direct copper binding or as a thioredoxin which is required for the formation of a

binding-competent 3D-structure of the COX-subunits. To discriminate between the two

models, the C-terminus (Aa 113-301) of hSco1p (hSco1p(C)) and the C-terminus (Aa 79-266)

of hSco2p (hSco2p(C)) were purified and tested for their ability to reduce insulin, a classical

thioredoxin test, and to bind copper. Because the CxxxC motif is essential for the protein

function [85], mutant forms in which both cysteines were replaced by alanines (hSco1p∆cys

and hSco2p∆cys) were constructed by directed mutagenesis. The C-terminal portions of the

two mutant proteins (hSco1p(C)∆cys and hSco2p(C)∆cys) were then purified for functional

analysis. Because of the difficulty to obtain a membrane protein in its native form, the full-

length proteins have not been purified. Moreover, reductase activity as well as copper binding

have been often proved using only a protein segment bearing the putative functional motif

[156, 157, 207]. The recombinant proteins were isolated from E. coli using affinity

chromatography. Although the folding process is different between the bacterial and the

eukaryotic system, human proteins purified from E. coli often retain their functionality.

Reductase activity was shown for a bacterial-purified mammalian thioredoxin [136] and

copper binding properties have been analysed in bacterial-purified Wilson’s and Menkes

disease proteins [157].
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3.5.1 Affinity purification of the C-terminal portions of hSco1p, hSco2p and of the
mutant hSco forms

The coding regions for hSco2p(C) hSco2p(C)∆cys, hSco1p(C) and hSco1p(C)∆cys were

cloned into plasmid pGEX-4T-3. In the resulting constructs the reading frames of the Sco

proteins are fused in frame to the 3´-end of the GST gene, separated by a sequence which

encodes a thrombin cleavage site. Expression of the fusion proteins under the control of the tac

promoter was induced in E. coli transformants by the addition of IPTG. Steady state

concentrations of the chimeric proteins were monitored at various time points after induction

by SDS-PAGE of cell lysates containing GST-hSco1p and GST-hSco2p and subsequent

Coomassie Blue staining of the gels. Fig. 16 shows the appearance of a band of the expected

molecular weight (48 kDa for both proteins) only after induction with IPTG. Cells were lysed

and insoluble material was removed by centrifugation. Several conditions were tested to

increase the solubility of the recombinant proteins. The solubility increased by lowering the

growth temperature and by induction for a shorter period of time. Moreover several lysis

methods were tested: sonication, freeze/thaw, and french press [190]. The highest protein

yields (1-2 mg protein pro litre culture) were obtained with the latter technique. Lysates of

cells grown at 30° and induced for 30 minutes were used for affinity binding to GSH-

Sepharose. For copper binding analysis, 0,5 mM copper sulphate was added at the beginning

of the induction period. This copper concentration does not affect the growth rate and it was

used in a similar experiment to determine the copper stoichiometry of MNK and WND [157].

Purified fusion proteins bound to GSH-Sepharose were incubated with thrombin to remove the

GST segments. The released hSco2(C) proteins show a molecular mass of 22 kDa, as expected

(Fig. 17). No difference was observed between hSco2p(C) (A) and the mutant form

hSco2p(C)∆cys (B). The recombinant hSco1p(C) and hSco1p(C)∆cys have a molecular mass

of 25 kDa (Fig. 17, C and D), contrary to the expected molecular mass of 22 kDa. To confirm

that the 25 kDa purified segment was not a GST contamination (GST has a molecular mass of

25 kDa after thrombin cleavage), Western blot analysis was performed with anti-GST

antibody. The purified 25 kDa segment was not recognised by the anti-GST antibody (data not

shown). The recombinant hSco1p(C) obviously migrates with an apparent size of 25 kDa on

SDS-polyacrylamide gels. The purity grade of the recombinant proteins were high as deduced

from the Coomassie Blue staining of the gels. This observation was confirmed by gel filtration

analysis (see section 3.6.5).
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Fig. 16. Expression analysis of the C-terminal portions of hSco1p and hSco2p.
BL21 transformants harbouring plasmid pGEX-4T-3 carrying the coding region for Aa 113-301 of
hSco1p (A) and for Aa 79-266 of hSco2p (B) were grown at 30°. The level of protein expression,
before the induction (lane 1), and 30 minutes (lane 2), one hour (lane 3) and two hours (lane 4) after
induction with IPTG, was monitored by SDS-PAGE of cell lysates and subsequent Coomassie Blue
staining of the gels.

Fig. 17. Purification of the C-terminal portions of wild type and mutant forms of hSco2p.
The C-terminal portions of hSco2p (A), hSco2p∆Cys (B), hSco1p (C) and of hSco1p∆Cys (D) were
expressed in BL21 and purified by affinity chromatography. Lane 1, supernatant after cell lysis prior to
incubation with GSH. Lane 2, GSH-bound GST-fusion protein. Lane 3, purified protein after cleavage
with thrombin.
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3.5.2 hSco1p(C) and hSco2p(C) have no thioredoxin activity

Thioredoxins catalyse the formation and the reduction of disulfide bonds in proteins. The putative

active sites of hSco1p and hSco2p does not perfectly match those of classical thioredoxins and other

related proteins. However, a predicted thioredoxin fold and the similarity to thiol-disulfide

oxidoreductases, led to the suggestion that Sco proteins could have a catalytic function [176]. To test

whether hSco1p and hSco2p act as a thioredoxin, recombinant hSco2p(C) and hSco1p(C) were

assayed for their ability to reduce disulfide bridges in insulin in the presence of NADPH and

thioredoxin reductase. In this assay, disulfide reductase activity is monitored by increase in the

turbidity of the reaction mixture due to the formation of fine precipitates of dissociated insulin B

chains. In the control, human thioredoxin was used to reduce insulin. Fig. 18 shows that hSco1p(C)

and hSco2p(C) are not active as a disulfide reductase.

Fig. 18. Thioredoxin activity of hSco1p(C) and hSco2p(C).
Human thioredoxin (hThio), hSco1p(C) and hSco2p(C) were tested for their ability to reduce insulin.
Formation of insoluble insulin B chain was followed at 595 nm for 120 minutes.

-0,05

0

0,05

0,1

0,15

0,2

0,25

0 20 40 60 80 100 120

minuts

A
bs

or
ba

nc
e 

59
5 

nm

hThio 5 µM

hSco1p(C) 15 µM

hSco2p(C) 15 µM



Results

58

3.5.3 Qualitative analysis of copper binding properties of hSco1p(C) and hSco2p(C):
atomic emission analysis

Atomic emission spectroscopy allows the analysis of the metal’s content of a sample. To test if

hSco1p and hSco2p bind copper in vivo, the C-terminal portion of hSco2p and hSco1p was

purified from E. coli grown in medium containing 0,5 mM CuSO4. 60 µg of the purified

protein in PBS-DTT were analysed by atomic emission spectroscopy. Copper-specific

absorption lines at 324,75 nm and 327,40 nm are clearly visible (Fig. 19). Copper lines from

hSco2p(C) are more intensive than from hSco1p(C). However because this method was not

performed in a quantitative manner, the question remains open if the two human homologues

bind copper with different affinities or different stoichiometries. No other metal-specific lines

were present. The absorption lines were less intensive when the protein was isolated from cells

grown in a medium without added CuSO4 (data not shown). This observation suggests that

under normal growth conditions the copper concentration may be too low to load all hSco

proteins with the metal. As negative control PBS-DTT alone and purified GST-Sepharose were

analysed. No copper absorption lines were detected.

To test the requirement of the CxxxC motif for copper-binding, hSco1p(C)∆cys and

hSco2p(C)∆cys were purified as described previously and 60 µg of the protein were analysed

by atomic emission spectroscopy. The two copper-specific signals are detected for hSco2p(C),

however their intensities are dramatically lower as compared to the wild type protein. Copper-

specific signals are detected for hSco1p(C)∆cys, too, if more protein was analysed (data not

shown). This results show that the cysteine residues are involved in copper-binding. The

residual copper binding may indicate the involvement of additional amino acids in the binding

of copper. Copper can require 3 or 4 ligands, and histidine residues in the C-terminal portion of

both proteins could accomplish this function.
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Fig. 19. Atomic emission spectra of wild type and mutant C-terminal portions of hSco1p and
hSco2p.

60 µg of purified C-terminal portions of wild type hSco2p, hSco2p∆cys, hSco1p and of hSco1p∆cys
were analysed by atomic emission spectroscopy. The spectrum of iron was used as reference and PBS-
DTT and GST-Sepharose were used as negative controls. Wavelengths of the copper-specific lines are
indicated.

3.5.4 Quantitative analysis of copper binding of hSco1p(C) and hSco2p(C): atomic
absorption analysis

To determine the stoichiometry of bound copper in hSco1p and hSco2p in vivo, the C-terminal

portions of hSco1p, hSco2p and hSco2p∆cys were purified from E. coli grown in a medium

containing 0,5 mM CuSO4. Bound copper was quantified using atomic absorption

spectroscopy. The graphite furnace atomic absorption was used because it is a very sensible

method which requires only a small amount of sample for the analysis. In the graphite furnace,

the sample is subjected to three heating processes: drying, incineration and atomisation. The

duration and the temperature of these processes have been optimised to obtain the best

signal/noise ratio. The appropriate temperature programme allowed to analyse the native

proteins and to obtain a very good calibration curve in PBS-DTT (Fig. 20). The concentration

of the protein was determined using the Bradford method. This method was preferred to the
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Lowry method because it is not copper-dependent. Protein calibration was performed with

BSA. The protein concentration was calculated from three independent measurements. The

stoichiometry of copper binding was shown to be 1 ± 0,2 µmol of copper per µmol of protein

for hSco2p(C) and 0,2 ± 0,05 µmol of copper per µmol of protein for hSco2p(C)∆cys in three

independent experiments. This result was confirmed by a coupled plasma mass spectrometry

(ICP-MS) analysis performed by Dr. H. Hartel (Department of Chemistry, LMU Munich). The

purified hSco1p(C) contained 0,6 µmol of copper per µmol of protein as determined in a single

experiment. The lower binding capacity of hSco1p(C) compared to hSco2p(C) can reflect a

different copper binding stoichiometry, a different affinity of the two proteins to copper or a

misfolded recombinant hSco1p(C) protein (see Discussion). Recently it was shown that the C-

terminal portion of ySco1p binds copper with a stoichiometry of 1 ± 0,1 µmol copper per µmol

of protein, while the C-terminal portion of ySco1p∆cys binds copper with a stoichiometry of

0,15 ± 0,01 µmol copper per µmol of protein [208]. Because a ySco1p/hSco1p chimeric

construct, in which the CxxxC motif was derived from the human protein, can complement the

∆ysco1 strain GR20 (see section 3.7.2.1), it can be expected that hSco1p, too, binds copper

with a 1:1 stoichiometry.

Fig. 20. Calibration curve for the atomic absorption analysis.
Calibration was performed using 0,8 µM, 1,4 µM, 2,4 µM, 4 µM and 4,8 µM copper nitrate in PBS-
DTT. Each standard was measured once. Three independent calibration curves were performed.
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3.6 Interaction analysis of hSco1p and hSco2p

The functional analysis suggests that Sco proteins are mitochondrial copper chaperones. In the

model proposed for yeast, copper is delivered from Cox17p to the Sco proteins in the

mitochondrial intermembrane space. Sco proteins then incorporate the copper into Cox2p [84].

According to this model, an interaction between hSco1p and/or hSco2p with hCox17p and

Cox2p can be postulated. Moreover, dimerisation of copper transporter has been reported for

yCcs [162] and hCcsp [163], and yCox17p forms oligomer complexes [115]. The striking

homology between hSco1p and hSco2p suggests that these two proteins may form an

heteromeric complex, like Sod1p and its chaperone Ccsp [165, 166]. These interactions were

analysed in vitro by affinity chromatography and in some cases in vivo by

coimmunoprecipitation. In the in vitro analysis, one of the proteins is expressed as a GST-

fusion protein, immobilised on GSH-Sepharose and incubated with cell lysate containing the

partner proteins. In the in vivo analysis, one protein is immunoprecipitated from a cell lysate

containing both partner proteins. In the case of an interaction, the partner protein will be found

in the immunoprecipitate. If not specified, both analyses were performed in the presence of 1

mM DTT to avoid unspecific cross-linking by disulfide-bridges. For the analysis of the

dimerisation, gel filtration chromatography was also used. Because no antibodies were

available against hSco1p, hSco2p and hCox17p, epitope-tagged variants were used in both

assays. As epitope tags, EGFP ( see section 3.3) and AU5 were used. AU5 is a 6 Aa peptide

from the bovine papillomavirus type 1 (BPV-1) [192]. Both tags were placed at the C-terminus

of the investigated proteins.

3.6.1 Interaction between hSco proteins and hCox17p

The interaction with hCox17p was tested by affinity chromatography. A C-terminal EGFP-

tagged hCox17p was used in the test. The expected molecular mass for hCox17p-EGFP is 34

kDa. GST-hSco2p(C) (Fig. 21 A), GST-hSco1p(C) (Fig. 21 B) and GST (Fig. 21 C) were

coupled to GSH-Sepharose and incubated with lysate of HeLa-cells expressing hCox17p-

EGFP in the absence of DTT. Sepharose-bound proteins were separated on a 12 % SDS-

PAGE, transferred to PVDF membrane and probed with anti-EGFP antibody. As shown in

lanes 1, hCox17p-EGFP is bound by GST-hSco1p(C) and GST-hSco2p(C), but only a small

amount is bound by GST. The interaction between copper chaperones can be copper-

dependent [151, 154]. To test this eventuality, the GST fusion proteins were loaded with
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copper before incubation with the cell lysate containing hCox17p-EGFP. Lanes 2 show that

hCox17p-EGFP is bound in a copper-dependent manner. If the interaction was performed in

the presence of DTT, almost no interaction could be detected (lanes 3).

Fig. 21. In vitro interaction with hCox17p.
GST-hSco1p(C) (A), GST-hSco2p(C) (B), and GST (C) were bound to GSH-Sepharose and incubated
with cells lysate from HeLa cells expressing hCox17-EGFP. Lane 1: Sepharose-bound proteins were
not loaded with copper. Lane 2: Sepharose bound proteins were loaded with copper. Lane 3: Sepharose
bound proteins were loaded with copper and the interaction was performed in the presence of 1 mM
DTT. Western blot analysis of the precipitates was done with anti-EGFP antibody.

3.6.2 Interaction between hSco proteins and Cox2p

In accordance with the proposed function of Sco proteins as chaperones for the assembly of

Cox2p, an interaction between Sco1p and/or Sco2p with Cox2p can be postulated. This

interaction has been reported for ySco1p [104] and ySco2p [203]. To test this possibility,

affinity chromatography was performed. GST-hSco1p(C) (Fig.22 A, lane 1), GST-hSco2p(C)

(Fig.22 B, lane 1) and GST alone (Fig.22 A, B, lane 2) were coupled to GSH-Sepharose and

incubated with mitochondrial lysate of HeLa cells. Bound material was analysed by Western

blot with anti-Cox2p antibody. No interaction was detected. To test if the interaction is copper-

dependent, GST-hSco1p(C) and GST-hSco2p(C) were loaded with copper before the

incubation with mitochondrial lysate (lanes 3). Again no interaction was detected.
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Fig. 22. In vitro interaction between hSco1p and Cox2p and between hSco2p and Cox2p.
A. GST-hSco1p(C) (lane 1) or GST-hSco1p(C) loaded with copper (lane3) were bound to GSH-
Sepharose and incubated with mitochondrial lysate of HeLa cells (lane 5). As control GST (lane 2) or
GST loaded with copper (lane 4) were incubated with mitochondrial lysate. B. GST-hSco2p(C) (lane
1) or GST-hSco2p(C) loaded with copper (lane 3) were bound to GSH-Sepharose and incubated with
mitochondrial lysate (lane 5). As control GST (lane 2) or GST loaded with copper (lane 4) were
incubated with mitochondrial lysate. Western blot analysis was performed with anti-Cox2p antibody.

The interaction with Cox2p was tested also with coimmunoprecipitation. hSco1p-EGFP and

hSco2p-EGFP were immunoprecipitated with anti-EGFP antibody from lysate of HeLa cells

expressing the two EGFP fusion constructs, respectively. As a negative control,

immunoprecipitation with anti-EGFP antibody was performed from lysate of HeLa cells

expressing EGFP alone. Immunoprecipitates were analysed with anti-Cox2p antibody. Fig. 23

shows that a weak Cox2p band was detected only in the precipitate of hSco1p-EGFP-

expressing cells (lane 2) but not in hSco2p-EGFP-expressing cells (lane 3) or in the control

(lane 4)

Fig. 23. Coimmunoprecipitation of hSco1p, hSco2p and Cox2p.
Mitochondrial lysate from HeLa cells expressing hSco1p-EGFP (lane 2), hSco2p-EGFP (lane 3) or
EGFP (lane 4) was immunoprecipitated with anti-EGFP antibody. In lane 1 mitochondrial lysate of
untransfected HeLa cells was loaded. Western blot analysis of the precipitates was done with anti-
Cox2p antibody.
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3.6.3 Homomerisation of hSco1p and hSco2p

The ability of the C-terminal segment of hSco1p and hSco2p to form homomeric complexes

was tested by affinity chromatography. hSco2p(C) fused to GST was coupled to GSH-

Sepharose and incubated with cell lysate of HeLa transformants expressing a hSco2p-EGFP

fusion protein. Sepharose-bound material was analyzed in Western blot with antibody against

EGFP. Fig. 24 A shows that hSco2p-EGFP is bound to GST-hSco2p(C)-Sepharose (lane 1),

but not to GST-Sepharose (lane 3). In a further control, Sepharose-bound GST-hSco2p(C) was

incubated with cell lysates containing EGFP. Again no binding was observed (data not shown).

Similar results were obtained if GST-hSco1p(C) was incubated with lysate of Hela cells

expressing hSco1p-EGFP (Fig. 24 B). hSco1p-EGFP is bound by GST-hSco1p(C) (lane 1), but

not by GST alone (lane 3).

To test whether the CxxxC motif is required for homomerisation, GST-hSco1p(C) and GST-

hSco2p(C) were bound to Sepharose and incubated with hSco1p∆cys-EGFP (Fig. 24 A, lane 2)

and hSco2p∆cys-EGFP, respectively (Fig. 24 B, lane 2). The results show that the interaction

does not depend on the CxxxC motif.

Fig. 24. Homomerisation of hSco2p and hSco1p.
A. GST-hSco2p(C) was bound to GSH-Sepharose and incubated with lysate of HeLa cells expressing
hSco2p-EGFP (lane 1) or hSco2p∆cys-EGFP (lane 2). In lane 3, GST was bound to GSH-Sepharose
and incubated with lysate of HeLa cells expressing hSco2p-EGFP. B. GST-hSco1p(C) was bound to
GSH-Sepharose and incubated with lysate of HeLa cells expressing hSco1p-EGFP (lane 1) or
hSco1p∆cys-EGFP (lane 2). In lane 3, GST was bound to GSH-Sepharose and incubated with lysate of
HeLa cells expressing hSco1p-EGFP. Western blot analysis of the precipitates was done with anti-
EGFP antibody.
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3.6.4 Heterodimerisation between hSco1p and hSco2p

The interaction between hSco1p and hSco2p was tested by affinity chromatography and by

immunoprecipitation. In the first test, GST-hSco2p(C) was coupled to GSH-Sepharose and

incubated with lysate of HeLa cells expressing hSco1p-EGFP (Fig. 25, lane 1). In a parallel

experiment, GST-hSco1p(C) was coupled to GSH-Sepharose and incubated with lysate of cells

expressing hSco2p-EGFP (Fig. 25, lane 2). Sepharose-bound proteins were analysed by

immunoblotting with anti-EGFP antibody. The results show that hSco1p and hSco2p are able

to interact in vitro.

Fig. 25. Interaction between hSco1p and hSco2p.
hSco2p-GST was coupled to GSH-Sepharose and incubated with lysate of HeLa cells expressing
hSco1p-EGFP (lane 1). hSco1p-GST was coupled to GSH-Sepharose and incubated with lysate of
cells expressing hSco2p-EGFP (lane 2). Western blot analysis of the precipitates was performed with
anti-EGFP antibody.

This result was confirmed by coimmunoprecipitation. hSco1p-AU5 was immunoprecipitated

with anti-AU5 antibody from lysate of HeLa cells expressing hSco1p-AU5 and hSco2p-EGFP.

As negative control, immunoprecipitation with anti-AU5 antibody was performed from HeLa

cells lysate containing only hSco2p-EGFP. Immunoprecipitate was analysed with antibody

against EGFP produced in rabbit to avoid the detection of the light and heavy chain of the AU5

antibody. Fig. 26 shows that the hSco2p-EGFP band was detected in the precipitate of hSco1p-

AU5 expressing cells (lane 1), but not in the control (lane 2).
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Fig. 26. Coimmunoprecipitation of hSco1p and hSco2p.
Cell lysate containing hSco1p-AU5 and hSco2p-EGFP (lane 1) or hSco2p-EGFP (lane 2) was
immunoprecipitated with anti-AU5 antibody. Western blot analysis of the precipitates was done with
anti-EGFP antibody.

.
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3.6.5 FPLC analysis of hSco1p(C) and hSco2p(C)

The ability of the C-terminal portion of hSco1p(C) and hSco2p(C) to form dimers was also

tested with analytical gel filtration. hSco1p(C) and hSco2p(C) were affinity-purified as

described in section 3.5.1 and 500 µg purified proteins were loaded on a Sephadex 75 HR

10/30 column. Proteins were eluted in PBS-DTT at room temperature. The most part of

hSco2p(C) elutes as a monomer, hSco1p(C) elutes as a 1:1 mixture of the monomeric and

dimeric form (Fig. 27). No other proteins peaks have been detected, confirming the high purity

of the affinity-purified proteins. As molecular mass marker, carbonic anhydrase (29 kDa) and

BSA (66 kDa) were used.

Fig. 27. Elution profile of hSco1p(C) and hSco2p(C) on gel filtration column.
hSco2p(C) and hSco1p(C) were chromatographed in PBS-DTT under the same conditions. The
column was calibrated with molecular weight standards (MW) of 66 kDa and 29 kDa.
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3.7 Characterisation of pathogenic mutant proteins

The yeast system offers a wide spectrum of molecular genetic manipulation and has been

repeatedly used for analysing human mutations [40, 80, 81, 92]. Because the hSCO2 gene can

not substitute for the ySCO1 gene and the deletion of the ySCO2 gene does not result in a

phenotype, information about the role of the hSco2p mutations can be deduced only indirectly

from the yeast model for example by introducing the mutations in ySco1p [92]. To characterise

the role of the hSco2p mutations, analyses in HeLa cells and with the purified mutant proteins

were performed. hSco1p can substitute ySco1p in chimeras and the yeast model was used to

test the effect of the reported mutation on COX assembly.

3.7.1 Characterisation of pathogenic hSco2 mutant proteins

Compound heterozygotes for mutations in hSCO2 suffer from a fatal form of

cardioencephalomyopathy [95, 109, 110]. Three point mutations have been identified so far. In

this work, attention was focused on the E140K mutation and on the S225F mutation. In the

yeast system only one of the two missense mutations (S225F), introduced in ySco1p, had a

strong effect on COX-activity and COX-assembly, while the other (E140K) did not impair

COX-activity [92]. To elucidate the mechanisms, by which the two mutations affect the

function of hSco2p, the intracellular localisation, the copper binding and the homomerisation

were analysed. The mutations were introduced into hSCO2 by site-directed mutagenesis. C-

terminal-EGFP tagged versions of the two mutant proteins were created. The C-terminal

portions (Aa 79-266) of hSco2p(E140K) (hSco2p(C)(E140K)) and hSco2p(S225F)

(hSco2p(C)(S225F)) were purified as described for the wild type hSco2p(C). Fig. 28 shows

that a fragment of the expected molecular mass of 22 kDa was obtained, like the wild type

hSco2p(C) (see section 3.5.1). The amount of purified hSco2p(C)(E140K) was somewhat

reduced (Fig. 28 A). This can hint at an effect of the mutation on the stability of the protein.
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Fig. 28. Purification of the C-terminal portions of mutant hSco2 proteins.
hSco2p(C)(E140K) (A) and hSco2p(C)(S225F) (B) were expressed in BL21 and purified by affinity
chromatography. Lane 1, supernatant after cell lysis prior to incubation with GSH. Lane 2, GSH-
Sepharose bound GST-fusion protein. Lane 3, purified protein after cleavage with thrombin.

3.7.1.1 Mutant proteins localise to mitochondria

HeLa cells expressing hSco2p(E140K)-EGFP (Fig. 29) or hSco2p(S225F)-EGFP (Fig. 30)

were analysed by fluorescence microscopy. Both mutant proteins are targeted to mitochondria

as revealed by counterstaining with the mitochondria-specific stain MitoTracker Red

CMXRos. Therefore, mislocalisation due to the mutations can be excluded. The localisation

was confirmed by Western blot analysis. Mitochondrial and cytosolic fractions of HeLa cells

expressing hSco2p(E140K)-EGFP or hSco2p(S225F)-EGFP were prepared and probed with

anti-EGFP and anti-Cox2p antibodies. A band of the expected molecular mass was observed

only in the mitochondrial fraction of both constructs (data not shown).
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Fig. 29. Intracellular localisation of hSco2p(E140K)-EGFP.
The coding region of hSco2p(E140K) was fused to EGFP, the resulting plasmid transfected into HeLa
cells, and transfectants were visualised by fluorescence microscopy. Mitochondria were counterstained
with MitoTracker Red CMXRos. A. Green fluorescence. B. Red fluorescence. C. Overlay of green
and red fluorescence.
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Fig. 30. Intracellular localisation of hSco2p(S225F)-EGFP.
The coding region of hSco2p(S225F), was fused to EGFP, the resulting plasmid transfected into HeLa
cells, and tranfectants were visualised by fluorescence microscopy. Mitochondria were counterstained
with MitoTracker Red CMXRos. A. Green fluorescence. B. Red fluorescence. C. Overlay of green
and red fluorescence.
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3.7.1.2 Copper binding of mutant proteins

One of the mutations, E140K, is located next to the metal-binding motif. The other mutation,

S225F, is located next to a conserved histidine which was discussed as copper binding site

[179] and which was shown to be essential for the protein function [104, 179]. Purified

hSco2p(E140K)(C) and hSco2p(S225F)(C) from E. coli grown in 0,5 mM CuSO4 were

subjected to atomic emission spectroscopy. Fig. 31 shows that both mutant proteins are still

able to bind copper. However the exact stoichiometry of the bound copper has still to be

analysed.

Fig. 31. Atomic emission spectrum of the C-terminal portions of hSco2p mutants.
60 µg of purified C-terminal portions of hSco2p(S225F) and of hSco2p(E140K) were
analysed by atomic emission spectroscopy. The spectrum of iron was used as reference.
Wavelengths of the copper-specific lines are indicated.
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3.7.1.3 Mutant proteins can homomerise

The mutant proteins were also tested for their ability to homomerise. The C-terminal segments

of hSco2p(E140K) (Fig 32 A, lane 1) and hSco2p(S225F) (Fig 32 A, lane 2) were bound as

GST-fusions to GSH-Sepharose and tested for interaction with hSco2p-EGFP. In a parallel

assay wild type hSco2p(C)-GST was coupled to GSH-Sepharose and tested for binding to

hSco2p(E140K)-EGFP (Fig 32 B, lane 1) and to hSco2p(S225F)-EGFP (Fig 32 B, lane 2).

Both mutant proteins are able to form homomeric complexes. This result shows that the

mutations do not affect the homomerisation.

To mimic the situation in patients, who present with two independent hSCO2 mutant alleles,

the interaction between hSco2p(E140K) and hSco2p(S225F) was determined using GST-

hSco2p(C)(S225F) and hSco2p(E140K)-EGFP (Fig. 32 B, lane 3). Again the formation of

homomeric complexes by the mutant proteins was observed.

Fig. 32. Homomerisation of hSco2 mutant proteins.
A. GST-hSco2p(C)(E140K) (lane 1) and GST-hSco2p(C)(S225F) (lane 2), were bound to GSH-
Sepharose and incubated with lysate of HeLa cells expressing hSco2p-EGFP. B. GST-hSco2p(C) was
bound to GSH-Sepharose beads and incubated with lysate of HeLa cells expressing hSco2p(E140K)-
EGFP (lane 1) and hSco2p(S225F)-EGFP (lane 2). In lane 3, GST-hSco2p(C)(S225F) was bound to
GSH-Sepharose and incubated with lysate of HeLa cells expressing hSco2p(E140K)-EGFP.
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3.7.2 Characterisation of the pathogenic hSco1p mutant

Recently it was reported that mutations in the hSCO1 gene may result in COX-deficiency. A

substitution of proline at position 174 by leucine (P174L) was detected in compound

heterozygous patients suffering from hepatic failure and ketoacidotic coma [108]. However,

direct experimental proof for the pathogenicity of this mutation was lacking. Because the

authentic human gene is not capable to complement a ∆ysco1 strain, yeast/human chimeric

constructs were used to test the effect of this mutation on mitochondrial function in yeast. To

this purpose, two novel chimeric proteins were created. In both proteins the C-terminal portion

derived from hSco1p included the CxxxC motif.

3.7.2.1 Complementation of yeast/human Sco1p chimeras K1 and K2

Two novel chimeric SCO1 genes which differ in the carboxyl-terminal portion derived from

the human hSCO1 gene were constructed and cloned in YEp351 behind the ySCO1 promoter

(Fig. 33). In chimera K1 (ySco1p(1-134)/hSco1p(156-301)) the human portion comprises 145

amino acids, while in chimera K2 (ySco1p(1-117)/hSco1p(139-301)) 162 amino acids stem

from the human protein. In both chimeric proteins the conserved CxxxC-motif is derived from

hSco1p. Each of the proteins was expressed in the respiratory deficient ∆ysco1 strain GR20

and the transformants were tested for their ability to grow on the non-fermentable carbon

source glycerol at three temperatures (23°C, 30°C, 37°C) (Fig. 34). K2-transformants show a

faint cold-sensitive phenotype: at 30°C and 37°C they grow like wild type cells, while their

growth is somewhat reduced at 23°C. K1-transformants exhibit a strong temperature-sensitive

effect, they grow only at 30°C. Addition of 0.2 % copper sulphate to YPEG plates resulted in a

wild type-like growth of all transformants at all temperatures (Fig. 34).
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Fig. 33. Yeast/human Sco1p chimeras created to test the effect of the P174L mutation.
The arrow indicates the ySCO1 promoter, mTS the mitochondrial presequence, TM the transmembrane
domain, CPDVC the potential metal-binding site. Mutated amino acids are shown in Italics. Sequences
derived from ySco1p are given in white, those from hSco1p in dark. Growth of GR20 transformants on
YPGly or YPGly supplemented with 0,2 % CuSO4 (+ Cu) at 30° are indicated on the right: + = growth,
- = no growth.

Fig. 34. Effect of the P174L mutation on the complementation behaviour of yeast/human Sco1p
constructs in strain GR20.

∆ysco1 strain GR20 was transformed with YEp351 (2) or with plasmids encoding ySco1p (1), K1 (3),
K1L (4), K2 (5) or K2L (6). Growth on minimal medium (WO) and glycerol medium (YPGly) or
glycerol medium supplemented with 0,2 % CuSO4 (YPGly + Cu2+) was monitored after 3 days
incubation at the indicated temperatures.
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3.7.2.2 The P174L mutation impairs the function of the chimeras K1 and K2

The P174L mutation was introduced into chimeras K1 and K2 with directed mutagenesis. The

resulting mutant chimeras K1L and K2L, respectively, were expressed in strain GR20 and the

transformants were tested for their respiratory competence at 23°C, 30°C and 37°C (Fig. 34,

(4) and (6)). All transformants failed to grow on glycerol medium, indicating that the mutant

Sco-proteins are non-functional. Addition of copper sulphate to the YPGly plates resulted in a

wild-type like growth of K2L-transformants, whereas K1L-transformants still failed to grow.

These data show, that the P174L mutation is pathogenic in the yeast model and strongly

suggest that this mutational alteration may also be refractive for the function of the human

hSco1p.

To test whether the pathogenic nature of the mutation results from an instability of the mutant

proteins, mitochondria from the respective transformants were analysed for the presence of the

chimeric proteins. As shown in Fig. 35 all chimeric proteins are present in comparable

concentrations with the exception of construct K1L, the quantity of which is somewhat

reduced (lane 4). It seems unlikely that this reduction in the concentration can account for the

complete loss of function. Therefore, the inability of the mutant proteins to complement strain

GR20 does not result from instability, but rather from an impaired function.

Fig. 35. Influence of the P174L mutation on COX assembly.
10 µg of mitochondrial proteins were separated on a 12 % polyacrylamide gel, transferred to
PVDF membrane and probed with antibodies directed against ySco1p, Cox1p and Cox2p. The
∆ysco1 strain GR20 was transformed with the vector YEp351 (lane 2) or with plasmids encoding
ySco1p (lane 1), K1 (lane 3), K1L (lane 4), K2 (lane 5) or K2L ( lane 6).
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3.7.2.3 COX assembly is disturbed in strain GR20 expressing chimeras K1L or K2L

As described in the Introduction, lack of ySco1p results in the preferential degradation of

unassembled subunits Cox1p and Cox2p. The concentration of these subunits was determined

in GR20 cells, which express chimeras K1L or K2L. Mitochondria obtained from GR20 cells,

transformed with K1, K1L, K2, or K2L were analysed with antibodies directed against Cox1p

or Cox2p. As shown in Fig. 35, there is a very good correlation between the steady state

concentration of Cox1p and Cox2p and the COX activity: in K1- and K2-transformants both

subunits are present in concentrations similar to those of wild type cells (lanes 3 and 5). By

contrast, the two COX-subunits are almost completely absent in K1L-transformants (lane 4) or

only present in trace amounts in K2L-transformants (lane 6).

3.7.2.4 COX activity is affected by the P174L mutation

Mitochondria were prepared from strain GR20, expressing chimeras K1, K1L, K2, or K2L,

and assayed for COX activity as described in Material and Methods. Fig. 36 summarises the

results. As expected there is almost no COX-activity in the ∆ysco1 strain GR20 (1,5 % of wild

type activity, lane 2). After expression of chimeras K1 or K2, the COX-activities are 55 %

(lane 3) and 85 % (lane 5), respectively, of the wild type activity. These data correlate well

with the growth characteristics of the transformants on YPGly: growth of K2-transformants on

YPGly is almost indistinguishable from that of wild type cells, while growth of K1-

transformants is more severely affected. Expression of the chimeric proteins with the P174L

mutation results in a dramatic reduction of COX activity to 2,5 %  in the case of K1L (lane 4)

and to 30 % in the case of K2L (lane 6). Again these data correlate well with the growth

phenotype of the transformants on YPGly.
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Fig. 36. COX activity in strains expressing wild type ySco1p or ySco1p/hSco1p chimeras.
Mitochondria were isolated and cytochrome c oxidase activity was determined. Activities are mean values of
several independent experiments and are normalized to the value obtained for the transformant
expressing wild type ySco1p (= 200 nmol cytochrome c oxidised/min/mg  mitochondrial protein). The
∆ysco1 strain GR20 was transformed with the vector YEp351 (lane 2, negative control) or with
plasmids encoding ySco1p (lane 1, positive control), K1 (lane 3), K1L (lane 4), K2 (lane 5) or K2L
(lane 6).
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4 DISCUSSION

4.1 Structural analysis and localisation of hSco proteins

hSco1p and hSco2p belong to the family of Sco proteins, conserved from prokaryotes to

eukaryotes. The best characterised Sco proteins are from the yeast Saccharomyces cerevisiae.

ySco1p has a tripartite structure with a single transmembrane segment (TM) which anchors the

protein in the inner mitochondrial membrane (IM), a minor aminoterminal part, which is

oriented to the mitochondrial matrix [103], and a major carboxylterminal part, which is

exposed to the mitochondrial intermembrane space (IMS) and which carries the conserved

CxxxC motif. The structure of both human proteins is similar to that of the yeast protein.

Computer analysis predicts a N-terminal import signal and a transmembrane domain, the

CxxxC motif is present. The mitochondrial localisation of both human proteins was

demonstrated in this work by two methods. hSCO1 and hSCO2 were fused C-terminally with

EGFP and the localisation of the resulting fusion proteins was observed in vivo in HeLa cells

with fluorescence microscopy. In both cases the EGFP-fluorescence pattern hints at a

mitochondrial localisation, because it is the same as in the cells stained with a mitochondria-

specific dye. Western blot analysis of the EGFP-fusion proteins confirms the mitochondrial

localisation and hints at the existence of a cleavable import sequence. N-terminal cleavable

mitochondrial targeting sequences (MTS) represent the most common form of mitochondrial

protein import [209]. Other arrangements, however, have been described recently. The

mitochondrial DNA-helicase Hmi1p has a cleavable carboxyl-terminal targeting sequence

[210]. Bcs1p does not contain a N-terminal targeting sequence. A positively charged segment

of amino acids which is located immediately C-terminal to the transmembrane domain acts as

an internal targeting signal. This sequence co-operates with the transmembrane domain to form

a tight hairpin loop structure which is translocated across the inner membrane. This mechanism

of import and sorting of Bcs1p is proposed to represent a more general mechanism used by a

number of inner membrane proteins [211]. Interestingly a similar cluster of positive residues is

present in Sco proteins and it was shown that ySco1p without the putative N-terminal MTS is

still imported in mitochondria [203]. Moreover, this region was shown to be important for the

protein structure [203]. It cannot be excluded that the import of Sco proteins involves the

presence of two sorting informations. The cleavable N-terminal presequence therefore would

not be essential, but it would enhance the specificity and/or efficiency of import. This
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possibility was discussed for the phosphate carrier of mammalian mitochondria [212].

Preliminary experiments using the C-terminal portion of hSco proteins suggest that the human

homologues can also be imported in the mitochondria without the N-terminal import signal

(data not shown).

The involvement of Sco proteins in the COX deficiency suggests that both proteins are

localised in the inner membrane. This localisation was demonstrated so far only for ySco1p

[103]. In this case it was also shown that the C-terminal portion of the protein is oriented to the

IMS [100]. The importance of the orientation of the protein will be discussed later.

4.2 Complementation analysis in yeast

The ability of hSco proteins to substitute for the yeast homologue was tested in the ∆ysco1

strain GR20. The human proteins are per se not able to complement the GR20 strain.

Therefore, either the hSco proteins are not functional homologues or some parts of the yeast

protein cannot be replaced from their human counterparts. The N-terminal portion is the most

divergent between the Sco homologues. To exclude the possibility that differences in the

import machinery between yeast and human led to a mislocalisation of the human constructs in

yeast, chimeras were created in which the N-terminal portion and the TM domain were derived

from the yeast protein (ySco1p(1-95)/hSco1p(117-301) and ySco1p(1-95)/hSco2p(83-266)).

These constructs, too, were not able to complement the GR20 strain. Because the region

around the TM was shown to be important for the protein structure [203], further chimeras

were created. A construct in which the N-terminal portion, the TM domain, and a part of the C-

terminal portion up to the CxxxC motif was derived from ySco1p and the remaining C-

terminal portion from hSco1p (ySco1p(1-158)/hSco1p(180-301)) was able to complement.

This result suggests that the protein stretch between the TM and the CxxxC motif,

encompassing about 60 amino acids, is critical for function in yeast and must - at least in part -

be derived from the authentic yeast protein. This idea is supported from studies on ySco1p and

ySco2p chimeras [203]. The finding that two novel chimeras, K1 (ySco1p(1-134)/hSco1p(156-

301)) and K2 (ySco1p(1-117)/hSco1p(139-301)), in which the C-terminal portion derived from

hSco1p was progressively increased, are functional in yeast, allows the restriction of this

critical region to a stretch of about 20 amino acids. Possibly this protein part is involved in

protein-protein interactions or it is required for the correct steric positioning of functionally

important amino acids. Alternatively this part may be involved in protein import as discussed

above. Whatever the function of this segment may be, it obviously cannot be provided by the
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homologous stretch of hSco1p. Interestingly, chimera K2, in which the hSco1p-derived portion

is larger than in chimera K1, seems to be more functional as suggested by the higher COX-

activity and the growth characteristic of the respective transformants. This observation may

hint at a domain structure of the C-terminal portion of the Sco proteins. Perhaps, formation of a

functional three-dimensional structure is favoured, if most or all amino acids of such a domain

originate from a single protein. This interpretation is supported by the temperature-sensitive

growth phenotype of K1-transformants on YPGly, which may hint at the inability of the

protein to correctly fold at 23°C and 37°C, respectively.

Interestingly, in this work no chimeras between ySco1p and hSco2p were found which could

suppress the respiratory deficiency of the GR20 strain. Although it cannot be excluded that

improper folding of the chimeras interferes with their function in yeast, these data favour the

idea that the chromosome 17 homologue, hSco1p, represents the functional ySco1p

homologue. The chromosome 22 homologue, hSco2p, could represent the homologue of

ySco2p. This result is in agreement with the actual nomenclature proposed by Papadopoulou et

al. (1999) [95]. Because a ∆ysco2 strain does not show any mutant phenotype [84], it is not

possible to test if hSco2p can substitute for ySco2p. Even if hSco2p represents the homologue

of ySco2p, it would be expected that a chimera exists which can complement the GR20 strain,

as is the case for ySco1p/ySco2p chimeras [203].

Yeast has often been used as a model to analyse human mutations. Yeast provides special

advantages for studying mitochondrial proteins because – as a facultative anaerobe - it can

grow on fermentable media if the respiratory chain is deficient. Mutations in various mt

proteins found by sequencing DNA from patients have been engineered in the corresponding

yeast genes to assess the functionality of the mutant proteins. For example, the pathogenic

nature of the N204K mutation in Cox10p was confirmed in this way [80]. Yeast strains with

mutations in the hSURF1 homologue ySHY1 display inadequate electron transfer between

COX and other components of the respiratory chain [81]. Recently complementation study in

yeast confirmed the deleterious effect of mutations in hBCS1L, a nuclear gene involved in the

assembly of complex III [40]. Despite the fact that hSco2p is not a functional homologue of

ySco1p, the yeast system can be used to obtain valuable information on the effect of mutations

detected in patients. Dickinson et al. [92] described the effect of the S225F mutation of hSCO2

on COX-assembly, when introduced into the homologous ySCO1 gene. In this work, the yeast

system was chosen to analyse the effect of a hSco1p mutation. A substitution of proline at

position 174 by a leucine was recently detected in compound heterozygous patients suffering
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from hepatic failure and ketoacidotic coma [108]. However, direct experimental proof of the

pathogenicity of this mutation was lacking. Because the authentic human gene is not capable

of complementing the ∆ysco1 strain, the K1 and K2 yeast/human chimeric constructs, in which

the CxxxC motif is provided by the human homologue, were used to test the effect of this

mutation on mitochondrial function in yeast. The P174L mutation was introduced into

chimeras K1 and K2 with directed mutagenesis. The resulting mutant chimeras K1L and K2L

documented that the P174L mutation severely affects the function of the protein in the

assembly of COX. A dramatic reduction in the content of subunits Cox1p and Cox2p, which

are known to be susceptible to degradation in case of incorrect assembly [102, 106], was

observed. Concomitantly the COX-activity was severely reduced. Interestingly, the effect was

less pronounced in transformants expressing chimera K2L: their COX-activity was about 30 %

of wild-type activity and in line with this observation residual levels of Cox1p and Cox2p

could be detected. This suggests that the mutant protein has retained some of its function. The

possible role of this mutation will be discussed later.

4.3 Functional analysis of hSco proteins

ySco1p is essential for mitochondrial respiration. A ∆ysco1 strain is respiration deficient and

spectroscopic analysis shows a selective reduction of cytochrome a and a3, [92] which are

localised in COX. Western blot analysis of the COX complexes shows a specific reduction of

Cox1p and Cox2p while the other subunits are less affected [102]. The ability of the ∆ysco1

strain to synthesise the mitochondrial encoded subunits of COX and to accumulate the

nuclearly encoded subunits suggests that ySco1p is involved in the assembly pathway [100,

107]. Mutations in the two corresponding human genes also cause severe COX deficiencies.

Immunohistochemistry shows a specific reduction of Cox1p and Cox2p in hSCO2 patients

[95]. Besides, the data from this work showed that mutations in hSco1p, if engineered in

yeast/human chimeras, lead to a reduction of Cox1p and Cox2p. Therefore, it seems likely that

assembly of Cox1p and Cox2p is affected.

Both subunits carry the prosthetic groups essential for COX activity. Cox2p carries two copper

ions, Cox1p carries heme a and a3 and a copper ion. The assembly of the heme centre requires

Cox10p [118] and mutations in this gene have been detected in patients suffering from

tubulopathy and leukodystrophy [80]. Sco proteins are probably not involved in the assembly

of the heme centre. This can be deduced from the finding that in yeast, a specific ySCO1
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mutation leads to a partially assembled COX complex lacking only Cox2p, but showing the

absorption bands typical of the heme centres [92].

Since Cox1p and Cox2p are synthesised inside the mitochondria, the 3 copper atoms have to

be imported from the cytoplasm. As underlined in the introduction, different evidences

implicate that Sco proteins are involved in the assembly of copper centre. Overexpression of

ySco1p can compensate for the loss of yCox17p, which acts as a copper shuttle between the

cytosol and the mitochondrial intermembrane space [84]. Suppression of a ycox17 deletion by

over-expression of ySCO1 is more efficient in the presence of an elevated concentration of

copper ions in the growth medium [84]. Overexpression of ySCO2 can also complement the

∆ycox17 strain, but only in the presence of higher amount of copper. Furthermore, it has been

shown in this work that the chimeric construct between ySco1p and hSco1p carrying the

P174L mutation can be rescued by addition of copper to YPGly plates. Therefore, Sco proteins

are possibly involved in the transfer of copper ions to COX, and COX-subunits lacking copper

cannot be correctly assembled and are degraded. Importance of copper in the COX assembly is

confirmed by the observation of a decrease of COX level in heart mitochondria of copper-

deficient rats, due to a diminished content of assembled protein [213].

Sco proteins could act either as copper chaperones by binding copper and transferring it to

COX or as thioredoxins, required to maintain the cysteine residues of the copper binding site in

a reduced state. This last function can be postulated only for the CuA centre: the two copper

atoms of the CuA centre are coordinated by two His, one Met, a backbone carbonyl oxygen of

Glu, and two bridging Cys residues, while CuB is bonded by three His and a Tyr. A schematic

representation of both models is given in fig 37.
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Fig. 37. Two models for the function of Sco proteins.
Sco proteins are involved in the insertion of copper in COX. Sco proteins could perform this function
in two ways. In the upper picture, Sco proteins are shown as copper chaperones which acquire copper
for example from Cox17p and transfer it to COX. In the lower picture, Sco proteins are shown as
thioredoxins which reduce the disulfide bonds of the metal binding motif of COX, permitting the
insertion of copper from Cox17p.



Discussion

85

4.3.1 hSco proteins bind copper

To fulfil the role of copper chaperones, Sco proteins must be able to bind copper. In this work

it has been shown that hSco2p and hSco1p bind copper with two different analyses, the atom

emission spectroscopy and the atom absorption spectroscopy. To analyse copper binding, the

C-terminal portions of both proteins were purified with affinity chromatography in PBS-DTT

by using the GST system. The reducing condition was chosen to assure the specificity of

copper binding. In the case of hCcsp it was shown that the protein contains copper sites in

excess in an aerobic (oxidising) environment but approaches the expected ratio of 2 coppers

per protein under reducing conditions [164]. Proteins derived from a further purification step

with gel exclusion chromatography were not used for the analysis because it was observed that

multiple purification steps reduce the metal content of the protein. The atomic emission

spectroscopy performed in this work shows that hSco proteins specifically bind copper. No

other metals could be identified in the proteins purified from bacteria grown without addition

of copper in the medium. To determine metal binding specificity of hSco proteins other

methods could be used, like metal-chelate chromatography on resin equilibrated with different

heavy metals [48]. The specific affinity for copper reflects the inability of the metal binding

site of the domain to conform to the preferred ligation geometry of other metals. Treatment of

the fusion protein, eluted from the glutathione affinity column in the absence of DTT, with the

Cu(I) specific chelator BCS gives an orange colour indicative of the Cu(I)(BCS)2
- complex

(data not shown). This suggests that copper is bound in the +1 oxidation state. The +1

oxidation state of copper has been so far described for all copper chaperones.

With the atomic absorption analysis hSco2p was shown to bind copper with a stoichiometry of

1:1 (copper : protein) and hSco1p with a stoichiometry of 0,6:1 (copper : protein). The putative

copper binding site CxxxC is present only once and a 1:1 stoichiometry is expected for both

proteins. Other copper chaperones like hHah1p and yAtx1p contain one copper binding motif

CxxC and were shown to bind one copper ion. WND and MNK contain each six copper

binding motif and bind 6 copper ions.

The lower copper binding of hSco1p can have different reasons. First, it is possible that

hSco1p binds copper as a dimer, with one copper ion bound by four cysteines. The FPLC

analysis shows that the C-terminal portion of hSco1p exists as a mixture of monomers and

dimers. In this work the copper content was measured without separating the monomer form

from the dimer form. Second, the affinity of hSco1p to copper can be lower than that of

hSco2p and copper can be lost during the purification procedure. The fact that copper is lost by
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multiple purification steps suggests that copper is not tightly bound. The affinity of copper

proteins to the metal is different and it depends on the protein’s function. Metallothioneins

(MT) have a very high affinity for copper. A weaker bond can be necessary to allow copper to

be released and transferred to other proteins. Interestingly, affinity of copper binding can

depend on the copper concentration in the cell. MNK has a low affinity for copper at low

copper concentration, by increasing the copper concentration the affinity increases [214]. Thus,

addition of a higher copper concentration in the E. coli medium, before induction with IPTG,

could eventually result in an increase of bound copper in hSco1p. Third, it is possible that the

bacterial system used in the purification led to an altered protein fold with subsequent loss of

bound copper. Lutsenko et al. (1997) pointed to the importance of the three-dimensional

structure of the MNK and WND metal binding motifs for selectivity toward copper [215]. The

bacterial cytoplasm is known to be more reducing than its eukaryotic counterpart and thus it is

not an ideal environment for the production of properly folded eukaryotic proteins. In the case

of the purification of the MNK protein, a 0,0026 : 1 (Cu : protein) stoichiometry instead of the

expected 1 : 1 was found. To overcome this problem and to obtain a functional protein, a new

approach was reported [216] which required cotransfection of E. coli with a thioredoxin-

encoding plasmid. The expression of high levels of thioredoxin seems to change the redox

potential of E. coli cells, mimicking the environment in eukaryotic cells. This in turn facilitates

proper folding of eukaryotic proteins and increases their solubility. In this case, the

thioredoxin, which normally acts as a cytosolic reductant, acts as a protein oxidant [217],

consistent with its ability to act as an oxidant when exported to the periplasm [218]. Moreover,

new bacterial strains have been created which have an oxidising cytoplasm [219]. Another

possibility is in the in vitro loading of copper after protein purification. This system was used

to determine the in vitro stoichiometry of WND and MNK [157]. Fourth, it is possible that the

system used for the purification interferes with the properties of the protein. GST is an obligate

dimer and it was shown to influence the stoichiometry of copper in yCox17p [117]. Moreover,

it is possible that the protein cannot acquire the preferred ligation geometry of copper while it

is bound to the column matrix. Recently, the copper stoichiometry of ySco1p has been

determined [208]. ySco1p binds 1 copper ion per monomer. Because hSco1p can complement

the ∆ysco1 strain in chimeric constructs with ySco1p, it can be expected that the human gene,

too, can bind copper with this stoichiometry.
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4.3.1.1 Structure of the copper binding domain

To identify the ligands involved in copper binding, site direct mutagenesis was performed.

Thiol groups of cysteine residues are reactive Aa side chains forming complexes of varying

stability with many metal ions. In many cases cysteine residues have been described as copper

ligands. A CxxC motif has been found in the copper chaperones hHah1p, yCcc2p, Atx1p,

WND, MNK and in other metal binding proteins including zinc finger proteins, ferrodoxins

and metallothioneins. The CxxxC motif has been identified as a copper binding site so far only

in Cox2p. The involvement of the CxxxC motif of hSco proteins in the copper binding was

clearly shown in this work by the dramatic decrease of the copper content in the purified C-

terminal portion of mutants carrying alanines in place of cysteines. This was observed for both

proteins in the atomic emission spectroscopy and for hSco2p also with the atom absorption

spectroscopy. The stoichiometry for hSco2p(C)∆cys was 0,2 mole of copper per mole of

protein. The presence of residual copper hints at the presence of further copper ligands. Copper

can acquire different geometry. Atx1p can adopt a two or three coordinate copper ligand site

involving the conserved cysteines and either a methionine or an exogenous thiol, like GSH

[154]. X-ray absorption spectroscopy studies indicate that Cu(I) is two-coordinate in WND

[220]. EXAFS (X-ray absorption fine structure spectroscopy) analysis suggests the presence in

hCcsp of a binuclear cysteine-bridged dicopper cluster in which each copper is coordinated by

three cysteine ligands. The other hSco ligands are expected to bind copper weakly to allow

changes in geometry necessary for the copper transfer. ySco1p carries two further cysteines,

but they are not essential for the protein function [203]. hSco2p has a cysteine before the

copper binding motif and hSco1p has no further cysteines. A possible ligand in Sco proteins is

the histidine at position 260 in hSco1p, 224 in hSco2p and 239 in ySco1p. This histidine is

highly conserved and it was shown to be essential for the protein function in yeast and in

bacteria [104, 179]. Moreover, the environment of this histidine remembers the environment of

the two cysteines of the CxxxC motif containing a lot of acidic residues. The presence of a

negative charge around the metal binding site is perhaps important for controlling the affinity

or the geometry of the site. The trigonal coordination of Cu has been recently confirmed for

ySco1p with EXAFS analysis and the conserved histidine at position 239 was identified as the

third ligand [208]. The H239A mutant protein bound 0.14 ± 0.1 Cu per protein. In hSCO2

patients, a mutation in a serine next to the conserved histidine (S225F) is associated with lethal

COX deficiency. Atom emission analysis made in this work shows that this mutant protein is

able to bind copper. Quantification of the copper bound was not performed but the atomic
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emission data show that a dramatic reduction of copper content such as those observed in

mutants lacking cysteines is unlikely. The S225F mutation could interfere with the structure of

the coordination sphere of copper. Structural changes associated with altered geometries of the

Zn and copper binding site of Sod1p are associated with alterations in the reactivity of the wild

type enzyme, probably resulting from an altered copper binding affinity [221]. Histidines as

copper ligands have been described, for example, for Cox1p, Cox2p and hSod1p. Further

experiments, like EXAFS, are planned to identify the coordination state of the copper centre in

hSco1p and hSco2p.

In a recent model, transfer of copper involves docking of the two partner proteins with the

metal binding sites in close proximity and consequent formation of two- and three-coordinate

intermediates in which the copper ion is coordinated simultaneously from the ligand of the

chaperone and of the recipient protein [154]. This process requires the ability of the copper

centre of the chaperone to change its coordination sphere to become accessible from the ligand

of the recipient (see Fig. 38).

Fig. 38. Model of copper transfer between the chaperone and its partner protein.
The copper chaperone (yellow) binds copper (blue) for example with a trigonal geometry involving
two cysteines (C) and another ligand. The docking process between the chaperone and its partner (red)
involves electrostatic interactions between a domain of the chaperone containing for example positive
residues (+) and a domain of the partner containing for example negative residues (-). The copper
centre of the chaperone changes its conformation to become accessible for the ligands of the recipient.
Two- and three-coordinate intermediates are formed leading to a transfer of the metal centre to the
recipient protein, which can thus acquire its normal fold.
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The metal binding domain has to be at the surface of the protein, accessible for ligand

exchange reactions. An interesting question is the accessibility of the cysteines residues of the

CxxxC motif. The solvent accessibility can be deduced from the ability of the cysteines to be

oxidised and reduced. The accessible SH groups can be determined using Ellman’s reagent

[222]. Preliminary studies have shown that hSco2p is sensitive against oxygen from the air and

that the protein can be reduced by incubating in DTT-containing buffer (data not shown). This

means that the cysteine residues are readily accessible. The SH/protein ratio has yet to be

investigated. The accessibility of the metal centre is in accord with the three-dimensional

structure of Sco proteins suggested by Chinenov [176]. The proposed thioredoxin fold permits

the exposition of the two essential cysteines at a junction site between a loop and a helix (Fig.

39). A similar structure, but with another succession of the ß-sheet and α-helices, was found in

a variety of proteins that bind inorganic ions and also in copper metallochaperones.

Fig. 39. Accessibility of the cysteine residues in the metal binding site of hSco proteins.
The structural motif of the thioredoxin fold consists of a four-stranded central β-sheet and three-
flanking α-helices which are arranged in the order ß-α-ß-α-ß-ß-α. The two cysteines (in red) of the
metal binding site are solvent accessible (in part taken from [223]).
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Interestingly, copper transfer is facilitated by hydrogen bond interaction between a threonine in

hHah1p near the metal binding motif and a cysteine of the metal binding site in WND [224]. A

threonine at a distance of two Aa from the CxxxC motif is conserved in hSco proteins and

ySco1p. Site direct mutagenesis of this threonine could elucidate its function.

The E140K mutation in hSco2p changes a negative residue to a positive. Atom emission

analysis performed in this work shows that the E140K mutant protein is still able to bind

copper. Quantification of the bound copper was not carried out, but clearly the amount of

bound copper is not dramatically reduced. The influence of this mutation could be explained

by a deformation of the metal binding site. The coordination of metal in protein involves

normally the transfer of electrons of ligands to the outer orbitals of the metal. This causes an

accumulation of a partial negative charge on the metal and the presence of a positive Aa near

the copper site could contribute to an extreme stabilisation of the bond impeding the delivery

to another protein. It would be interesting to elucidate the affinity with which copper is bound

in the mutant protein. Patients carrying the E140K mutation show an accumulation of copper

as deduced from the increasing copper uptake and normal copper retention [110]. This could

mean that copper is imported in the mitochondria, transferred to hSco proteins, but it can be

more difficult to deliver it to COX. The cell responds by increasing the copper uptake and

copper concentrates in mitochondria reaching a toxic concentration. The E140K mutation, if

engineered in ySco1p, shows no effect on COX assembly [109]. However, COX activity is

slightly reduced and a small reduction was also observed in the steady-state level of the mutant

protein [109]. In human mitochondria this slight reduction might be just enough to be

deleterious in the complete absence of any other functional hSco2p. Deleterious consequences

can accumulate in time leading to a later appearance of the disease. The latter development of

the lethal COX deficiency is typical of patients carrying the homozygous E140K mutation.

The P174L mutation, which was found in hSCO1 patients and which was shown in this work

to affect the assembly of COX, is next to the CxxxC motif. This mutation was suggested to

interfere with the structure of the metal binding site [108]. Interestingly, respiratory growth of

transformants expressing K2L, but not K1L, can be rescued by adding copper to the growth

medium. The effect of copper could result from a copper-induced alteration in the overall

structure, which overcomes the interference of the P174L mutation with the three-dimensional

structure of the CxxxC-containing domain. This interpretation could also account for the

suppression of the temperature-sensitive growth phenotype of K1-transformants by addition of

copper to the YPGly medium. Alternatively - if the P174L mutation lowers the binding affinity
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of the protein for copper - an elevated copper concentration may be required to allow loading

of the protein with copper. The inability of copper to complement the K1L mutation may

reflect a suboptimal ability of K1 to substitute for ySco1p. This hypothesis is confirmed by the

lower COX activity of K1 transformants, which require copper to reach a wild-type like

growth behaviour. The K2 chimera is, therefore, the best construct to characterise hSco1p

mutations in the yeast model. The P174L mutation represents the first example of a COX

assembly mutant which can be complemented by adding copper. This finding strongly

confirms the importance of Sco proteins in the copper pathway. Interestingly, in the strain

carrying the K2L construct, the level of Cox1p and Cox2p is less reduced than in the null

mutant. The COX activity is 30 % of the wild type, suggesting that the mutated protein is able

to permit the assembly of a small quantity of COX. Therefore, the P174L mutation only

partially impairs the function of the K2L construct and its function can be completely restored

by adding copper.

Positive Aa residues could be involved in stabilising the metal centre. Clusters of lysine

residues have been described as a conserved motif in other human and yeast copper chaperones

[155]. NMR and structural analyses show that positive residues are located near the metal

binding site in Atx1p [154, 225] and are important in the activity of the metallochaperone.

Positive residues in the vicinity of the metal binding site in hHah1p have been shown to be

important for metal transfer by creating an electrostatic potential gradient that favours the

movement of the positively charged copper ion [151]. In the case of Atx1p, a lysine was

suggested to affect the kinetics or thermodynamics of copper/protein interaction through

hydrogen binding to a coordinate cysteine sulfur atom. This lysine is predicted to partially

neutralise the net negative charge that results from a coordination of two cysteinate anions to

Cu(I) and would, thereby, stabilise the copper chaperone complex. A working hypothesis is

that allosteric conformation changes at this lysine may occur during docking of the chaperone

with its partner Ccc2p [154]. A cluster of charged Aa is localised at the extreme C-terminal

portion of hSco proteins and could be implicated in this stabilisation process.

In hSod1p, mutations in a histidine ligand is associated with FALS-disease and mutant hSod1p

is devoid of copper. In this case it was suggested that the hCcsp interaction with an impaired

hSod1p target results in an inappropriate release of free copper [226]. It would be interesting to

test if all patient cells accumulate copper and if this copper is in a free or bound form.
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4.3.2 hSco proteins have no thioredoxin activity

The affinity-purified C-terminal portions of hSco proteins have also been used in an enzymatic

test to determine if the two proteins can act as thiol-disulfide oxidoreductase. The function of

Sco proteins as thioredoxin was deduced from the similarity of Sco proteins to bacterial thiol-

disulfide reductases [176]. Thioredoxins are able to reduce the disulfide bridges of insulin

faster than DTT. Reduction of insulin in presence of NADPH and thioredoxin reductase is a

widely used method to test the thiol-disulfide oxidoreductase activity. Both hSco proteins were

not able to reduce insulin, whereas a human thioredoxin, used as a positive control, was. It can

be argued that the recombinant proteins from E. coli don’t have the same properties as the

authentic human proteins. However, copper binding and enzymatic analysis of eukaryotic

proteins have often been performed using the bacterial system for the purification. Purification

of only the soluble part of the protein is also a common procedure in functional analysis [136,

227]. Insulin is a widely used substrate, because of the ability of a thioredoxin to substitute for

another with similar redox potential in vivo [228]. Another substrate used to test the

thioredoxin activity is lipoic acid, which is reduced slower by thioredoxin as compared to

insulin [229]. The insulin test was, however, shown to be ineffective in the case of two

periplasm-exposed proteins, HelXp and Ccl2p, involved in the thioreduction pathway of

cytochrome c in Rhodobacter capsulatus. In vitro studies with these purified proteins indicate

that although neither can reduce insulin, HelXp can reduce the Ccl2p cysteine residues which

in turn are oxidised by an apocytochrome c peptide containing the CxxCH domain [230].

Therefore, it can be supposed that, in the case of Sco proteins, too, the specific substrate has to

be added to detect a thiol-disulfide oxidoreductase activity. Thioredoxins have been shown to

be essential in the biogenesis of periplasm exposed proteins in bacteria. Thioredoxins-like

proteins can reduce cysteine bridges in the cytoplasm, which has reducing properties, or

oxidise proteins in the periplasm, which has oxidant properties. The ability of thioredoxins to

reduce or to oxidise depends on its redox properties and thioredoxins have been identified with

reducing properties in periplasm [134]. In eukaryotes, thioredoxins have also been found in

mitochondria where they are important in the defence against oxidative damage and stress,

acting as hydrogen donor for peroxiredoxines which catalyse the reduction of H2O2 [231, 232].

So far only one mammalian mitochondrial thioredoxin [136] and thioredoxin reductase [233]

have been identified. An interesting question is whether a thioredoxin system is required in the

biogenesis of the OXPHOS system. Formation of disulfide bonds during folding of proteins in

mammalian cells occurs in the lumen of the ER. The unique GSH/GSSG ratio (3:1) within the
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lumen of this compartment is thought to provide it with a redox potential that - in contrast to

cytosol (100:1) - is oxidising enough to favour disulfide bonds [234]. Moreover, the ER lumen

contains a variety of chaperones that assist and accelerate the folding reactions [235].

Cytoplasm is generally considered to be too reducing to allow the formation of disulfide

bonds. However, proteins from vaccinia virus (vv) are able to form disulfide bonds in the

cytoplasm of infected cells [236]. Since the redox state of cytoplasm of vv infected cells

remain normal, these proteins probably possess an inherent property to acquire disulfide bonds.

In vitro studies have shown that the formation of intramolecular disulfide bonds depends on

the conformation as well as on the inherent disulfide oxidation-reduction potential of the

protein [237]. The disulfide bond formation of the vv proteins under cytosolic (reducing)

condition can be rationalised by assuming that the redox potential of the these proteins

themselves must be higher than the cytosolic redox potential and that the conformation of the

proteins favours the intramolecular bonding and folding. These data show that the equilibrium

between disulfide bonds and sulfhydryl is a complicated pathway which can be independent on

the redox state of the compartment and which can occur spontaneously or catalysed by

chaperones. In yeast the only genes found to be necessary for cytochrome c biogenesis are the

heme lyases. So far disulfide reductase activity of the heme lyase was not shown and it is thus

possible that the cysteines of apocytochrome c and COX are already in a reduced state without

requiring assisting proteins.

4.4 Interaction analysis of hSco proteins

4.4.1 Interaction between hSco1p, hSco2p and Cox2p.

The results of the functional analysis strongly hint at the conclusion that the two hSco proteins

act as copper chaperones. Sco proteins could transfer copper to Cox1p and/or Cox2p. To test if

hSco proteins are involved in the transfer of copper to Cox2p, interaction was studied using

affinity chromatography and coimmnunoprecipitation. With the affinity chromatography

analysis no interaction was detected. It is possible that the in vitro test is not the best system to

study this interaction because only the C-terminal portion of hSco proteins fused to GST was

used in the test. The TM could be important for the protein-protein interaction and the N-

terminal portion may be necessary for the correct protein folding. Interestingly, the N-terminal
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portions of hSco1p and hSco2p are very different and bacterial Sco homologues like SenC and

YpmQ lack the N-terminal portion. It could be useful to repeat the test fusing the soluble part

of Cox2p to GST and incubating it with lysate of HeLa cells expressing a tagged version of the

full version of hSco proteins. Moreover, as GST is an obligate dimer, it can alter the properties

of the fused proteins. Therefore, it may be advantageous to use another tag like chitin binding

protein or maltose binding protein.

The results of the coimmunoprecipitation show a very weak interaction only between hSco1p

and Cox2p. Perhaps the interaction between hSco2p and Cox2p was too weak to be detected.

The interaction could be transient and, therefore, hard to detect. This possibility was suggested

for the interaction between hHah1p and WND and MNK, respectively. The transient nature of

the interaction would permit diffusion-driven movement of cellular copper via association and

dissociation of hHah1p with the ATPases. Such an interaction is consistent with

immunofluorescence data which reveal no detectable hHah1p concentrated at the trans-Golgi

network and by coimmunoprecipitation studies which indicated that only 3-5 % of hHah1p

coprecipitate with the ATPases [152]. Moreover, a transient interaction between ySco1p and

Cox2p was postulated [208]. Detergent-solubilized mitochondrial lysates were subjected to

size exclusion chromatography and column fractions analysed by SDS-PAGE and Western

blotting. ySco1p eluted in fractions corresponding to a molecular mass larger than 200 kDa.

The fractions containing ySco1p also contained Cox2p. However, if mitochondrial lysates

from strains lacking Cox2p were analysed under the same conditions, the size of the ySco1p

containing complex was unaffected, suggesting that these two proteins were not in the same

complex [208]. However, interaction between ySco1p and Cox2p was detected in the

immunoprecipitation test [104].

In this work about 1 mg of mitochondria was used for the in vivo test. In the case of the

immnunoprecipitation of hSco1p-EGFP, the cell line HeLa 17A3 was used, which express

hSco1p-EGFP stably. For the immunoprecipitation of hSco2p-EGFP, transfected HeLa cells

were used. Because the transformation efficiency is about 50 %, only half of the used

mitochondria will contain hSco2p-EGFP. Perhaps it can be useful in further experiments to use

more mitochondria to detect the interaction. One other problem can be the tag used for the

immunodetection of hSco proteins. EGFP is a 27 kDa protein, and it could destroy the

structure of the hSco proteins or interfere with the conformation necessary for the protein-

protein interaction. Smaller tags like AU5 or HA could be used in the place of EGFP. The HA

epitope seems not to be suitable because preliminary studies showed that the antibody against
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HA recognise a lot of unspecific bands in HeLa cell lysate. Moreover, it can be expected that

only copper-lacking Cox2p can interact with hSco proteins. If all proteins contain bound Cu(I),

the interaction may be destabilised. Therefore, it might be useful to remove copper from COX.

A copper chelator widely used to test copper dependent interaction is BCS. BCS was used to

reveal the interaction between hHah1p and MNK. In this case the interaction was copper-

dependent and immunoprecipitation was performed from lysate from cells grown in the

presence of BCS or in the presence of high copper concentration [152]. However, it cannot be

excluded that starvation of copper with BCS leads to an instable COX complex. Another

possibility may be to grow the cells in a medium with a small quantity of copper and add

copper immediately prior to the immunoprecipitation to have a higher amount of assembling

COX complexes.

4.4.2 Interaction between hSco1p, hSco2p and hCox17p.

ySCO1 and ySCO2 can rescue a ycox17 null mutant [84]. Since a ∆ysco1 strain is not rescued

by yCOX17, ySco1p is likely to act downstream of yCox17p [84]. Cox17p could target copper

specifically to mitochondria and transfer the metal to Sco proteins. yCox17p binds three

copper ions forming a polycopper cluster [115]. This cluster exhibits many features of the

copper thiolate cluster of the Cup1 metallothionein [238]. Each molecule forms a cluster with

trigonal Cu coordination by cysteinyl thiolates and the clusters are pH-stable. The difference

consists in the lability to ligand exchange reactions using BCS. Two of the three Cu ions are

very reactive to exogenous ligands, showing that yCox17p is implicated in copper transfer

rather than acting as a metal-scavenging protein in the mitochondria. Interaction between

hSco1p, hSco2p and hCox17p was detected only in the absence of DTT in the affinity

chromatography assay. The importance of DTT in the interaction probably did not result from

a negative influence of DTT on the structure of the proteins. DTT should not demetallate the

proteins, because it is a weak Cu(I) chelator. Moreover, the stoichiometry of yCox17p was

demonstrated using proteins purified in the presence of DTT [115] and in this work the

stoichiometry of hSco1p and hSco2p was performed in PBS-DTT. yCox17p was shown to

form oligomer complexes [115]. The oligomerisation state was independent of the presence of

DTT. The importance of DTT rather consists in its reducing properties. If the interaction

between Sco proteins and Cox17p occurs via disulphide bridges, DTT could disrupt this

interaction. This idea is supported by the observation that the interaction between hSco
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proteins and hCox17p is stronger in the presence of copper. Copper, like other transition

metals, can catalyse the formation of unspecific disulfide bridges in aerobic conditions.

Interaction between yCox17p and ySco proteins was demonstrated in the yeast system in vitro

[203]. Again, it can be postulated that the presence of a very large tag like EGFP (27 kDa

versus 8 kDa of hCox17p) destroys the native structure of hCox17p. EGFP dimerises at high

concentration and because of the very high expression of hCox17p-EGFP in Hela cells, it can

be expected that the EGFP part of the fusion protein form dimers and can induce a non-native

conformation of hCox17p, thereby altering the properties of the polycopper cluster. Moreover,

the oligomeric state of Cox17p in mitochondria could be an important feature for the

interaction with Sco proteins and the formation of oligomers could be impaired by the presence

of EGFP.

An interesting question is why overexpression of ySco proteins is able to complement a ycox17

deletion mutant. Sco proteins, if overexpressed, could bind copper directly in the cytoplasm

and overcome the absence of Cox17p. Moreover, the published null allele of yCOX17 is a

disruptant with three-fourth of the protein including 6 of the 7 cysteines still disposable [86].

Perhaps the remaining protein could bind copper with a reduced affinity and more copper (the

strain can be complemented too with a copper rich medium) or more partner protein could be

required to reach a good efficiency of the copper delivery. The question remains open if other

copper transporters for the mitochondria exist. Cu chaperones appear to be particularly

important at low concentration of extracellular copper. Under elevated copper concentration

their contribution to Cu transport is reduced, possibly because of the increasing role of non

specific Cu-binding carriers. The Cu/Zn-superoxide dismutase activity, for example, was

restored by addition of Cu (but not by addition of other metal cations) to the growth medium of

yeast strains lacking the ySod1p chaperone Lys7p [239]. GSH is a highly abundant thiol agent

in mammalian cells and can form very stable complexes with Cu(I). GSH was found to be a

more efficient copper donor to the copper-free enzyme Cu/Zn-superoxide dismutase than other

low molecular weight Cu(I) complexes in vitro [240]. Evidence was obtained for the

occurrence of a Cu(I)-GSH protein intermediate in the reconstitution process. On the contrary,

copper-thionein was unable to reconstitute Cu/Zn-superoxide dismutase. Copper-GSH

complexes were detected in hepatoma cells over-loaded with copper [241]. A majority of the

cytoplasmic copper (more than 60 %) was isolated as a GSH complex. Kinetic studies of 67Cu

uptake showed that GSH bound 67Cu before the metal was complexed by MT. These results

support a model of copper metabolism in which the metal is complexed by GSH soon after
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entering the cell. The complexed metal is then transferred to higher molecular weight

components such as metallothioneins, where it is stored, and as Cu/Zn-superoxide dismutase

[242]. Because the outer mitochondrial membrane is porous to small molecules, it is possible

that Cu(I)-GSH can act as a copper transporter for this compartment. Moreover, recent studies

suggest that the transfer of metals from MT to an acceptor is possible and GSH facilitates such

transfer reaction [243, 244]. These data suggest that MT could prevent metal toxicity and/or

donate the metal to metalloproteins. MT have been shown to localise inside mitochondria

when copper is in excess [245]. How Cox17p enters mitochondria is not clear because the

outer membrane is porous only for small molecules up to a size of 12 kDa [246] whereas

yCox17p is shown to be a dimer in the cytoplasm with a MW of 16 kDa [115]. Moreover,

transport of copper in other compartments, like the secretory pathway, is a very controlled

mechanism and it can be expected that in mitochondria, too, a specific copper pump is

required. Indeed it was demonstrated that a form of the WND is localised in the mitochondria

[48]. WND is localised normally in the Golgi and has a MW of 160 kDa. A version of 140 kDa

was detected in mitochondria of cultured hepatic cells and human tissues. The 140 kDa WND

product is formed as a result of proteolytic cleavage at the N-terminal portion of the full length

WND. The cleavage of the WND protein presumably removes one or two of the six metal-

binding repeats from the N-terminal domain [48]. WND and the other copper pump MNK

have been shown to move from their localisation in the Golgi in the presence of high

concentration of copper [148, 149]. If a parallel copper pathway exist in mitochondria, Sco

proteins would be able to receive copper from proteins other than Cox17p. Possibly the

alternative way is switched on in the absence of Cox17p. It will be interesting to look for other

copper containing proteins in mitochondria. Homologues of Cox17p were not found in bacteria

[179] and deletion of the bacterial Sco homologue YpmQ from Bacillus subtilis can be

overcome by supplementing the growth medium with copper [179]. This finding can reflect the

simpler structure of prokaryotic cells.
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4.4.3 Homomerisation and heterodimerisation of hSco proteins.

Affinity chromatography analysis performed in this work shows that the carboxyl-terminal

portion of hSco proteins can form homomeric complexes. Because HeLa cell lysates were used

in the experiments as the source of the tagged hSco proteins, it is not excluded that complex

formation is mediated by other proteins present in the lysate. The interaction - whether direct

or indirect - does not require the CxxxC motif, as shown by the formation of homomeric

complexes by the hSco∆cys mutant proteins. A further analysis with gel filtration

chromatography of the affinity purified hSco proteins leads to the conclusion that hSco1p

forms dimers directly because the protein eluted from the column as a 1:1 mixture of monomer

and dimer and no other component could be detected. In contrast hSco2p eluted mostly as a

monomer, with a small amount of dimer. This result can hint at the conclusion that other

factors can be involved in the dimerisation of hSco2p or that the C-terminal portion alone is

not sufficient to promote the dimerisation. In the in vitro assay hSco2p is present as a full-

length construct fused to EGFP and as a GST fusion of the C-terminal portion. Therefore, the

presence of one N-terminal portion could be sufficient to promote the formation of the dimer.

The dimeric state of hSco proteins is in agreement with the recent finding that ySco1p form

oligomers complexes. In this case, too, it was proposed that the formation of the oligomers

requires the presence of the N-terminal portion [208]. Dimerisation of copper binding proteins

is not without precedent: recently it was reported that the copper enzyme superoxide dismutase

as well as its chaperone Ccsp form homo- and heterodimers [165]. Dimerisation of yCcsp was

copper dependent in vitro [161]. The homodimerisation of hSco2p could explain the

correlation between genotype and phenotype in the patients. As outlined in the introduction, all

patients have a common mutation and a further stop mutation or point mutation. People

carrying only one mutation do not present a phenotype, showing that a single wild type copy is

sufficient. Patients with two E140K mutations have a milder phenotype, in that they develop

the disease at a later time point. Possibly hSco2p with the E140K mutation still can

homomerise. Patients with a further point mutation live only for three months, and patients

with a further stop mutation only for few days. In these cases the presence of the E140K

mutant allele is no longer sufficient to allow assembly of COX. Probably the E140K mutant

protein can dimerise with itself, but significant percentage will homomerise with the other

mutated protein leading to an inactive dimer. This suggests that the functionality of the

hSco2p(E140K) mutant form is disturbed by the presence of a further mutant protein and that

dimerisation is important for the protein activity.
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In this work, the hSco2p(E140K) and hSco2p(S225F) mutant forms were shown to be stable as

EFGP fusions, however their stability can derive from the presence of the EGFP tag. It was

observed that the concentration of the hSco2p(E140K) mutant form in the GST construct was

somewhat reduced, suggesting an effect of the E140K mutation on the stability of the protein.

It was demonstrated that the E140K and S225F mutations do not lead to a mislocalisation of

the two proteins. Mutants carrying the E140K mutation and the S225F mutation can dimerise

with the wild type protein and with each other. This supports the idea that the mutations do not

influence the dimerisation, but rather the formation of an active dimer. Moreover these

mutations could interfere with the heterodimerisation process. The importance of dimerisation

in copper delivery has been discussed for yCcsp (Lys7p) and yCox17p. In the case of Lys7p,

dimerisation of the protein is induced by the presence of copper [161]. On the basis of (a)

observations that full-length Lys7p can be dimeric in both crystalline and solute environments

[162], (b) features in the Lys7p structure that suggest a putative docking site for an ySod1p

dimer with a Lys7p dimer [247], and (c) the spatial arrangement of the putative copper

delivery domain(s) in the dimeric Lys7p structure [162], a model for Lys7p-ySod1p interaction

and copper delivery was suggested. It implicates a dimer-dimer interaction that obviates the

need to disrupt the very stable ySod1p homodimer and that allows simultaneous copper ion

delivery to both ySod1p subunits [247]. Bovine COX exists as a dimer [248] with the two

copper centres separated by 74 Å. The dimer interface is formed by Cox4p which also forms a

tight interaction with Cox2p [248]. Heaton et al. (2001) [115] suggested that the CuA site

formation, if the Cu insertion into CuA takes place in the assembled COX complex, may

involve the dimeric COX complex. Thus the oligomeric state of Cox17p may be important in

the Cu(I) delivery to two Sco molecules docked on Cox2p at the dimer interface.

The copper chaperone Ccsp directly interacts with copper/zinc superoxide dismutase [165].

Interestingly, Ccsp has a high degree of similarity to Sod1p, reminiscent of the situation with

hSco1p and hSco2p. In effect, hSco1p and hSco2p were shown to form heterodimers in vivo

and in vitro. Again no data are available to determine if the interaction is direct or mediated

from other factors present in the lysate of HeLa cells.

Docking of proteins involves generally electrostatic interaction. This interaction was described

for hHah1p and WND [151] as well as for Atx1p and Ccc2p [249]. In this case the docking

process was supposed to involve electrostatic interactions between the basic face of the

metallochaperone and the corresponding acid face in its target protein [225]. The R175W
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mutation in hSco2p is localised in a cluster of charged amino acids and could interfere with the

protein-protein interactions. This mutation was not examined in this work, analysis of its

copper binding and homodimerisation properties are planned. Interestingly, other clusters of

charged Aa are localised near the TM and at the extreme C-terminal portion of Sco proteins.

Both were shown to be essential for ySco1p function [203]. The interaction between Cox2p

and hSco proteins, both membrane proteins, could involve the TM and the positive charge of

hSco proteins next to the TM could mediate the protein recognition. Another chaperone/target

recognition mechanism implies a structural similarity between the two partner proteins, as

described for Ccsp and Sod1p. Sco proteins exhibit sequence homology with a 20 Aa portion

of the CuA domain of COX centred around the pair of cysteine residues of the copper binding

site but the structural similarity is too limited to support this mechanism.

A schematic overview of domains possibly involved in the action of Sco proteins is given in

Fig. 40.

Fig. 40. Schematic presentation of important domains of hSco proteins.
hSco proteins (yellow) are probably localised in the inner mt membrane (IM, grey). The C-terminal
portion could protrude in the intermembrane space (IMS) and the N-terminal portion is in the matrix,
as described for ySco1p. Copper (blue) is possibly bound by two cysteine residues (C) and one
histidine (H). Positively (+) and negatively (-) charged domains are indicated. Mutation identified in
human COX deficiency are shown with a red X. The possible role of the different domains is
indicated.
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4.5 Role of hSco1p and hSco2p

The results of the functional analysis strongly suggest that the two hSco proteins bind copper.

No thioredoxin activity was detected and it can be proposed that hSco proteins act as copper

chaperones.

Sco proteins could transfer copper to Cox1p and or Cox2p. In this work only the interaction

between hSco proteins and Cox2p was analysed. A weak interaction in vivo was found

between hSco1p and Cox2p. In yeast, an interaction between ySco2p and Cox2p was also

found [203], but it cannot be excluded that the high homology between ySco1p and ySco2p led

to an unspecific interaction or that the yeast and the human systems are not identical.

Several indications suggest that Sco proteins deliver copper to Cox2p. First, the deletion of the

Bacillus subtilis Sco1 homologous YpmQ suppresses the activity of the cytochrome c oxidase

but not of a second oxidase, the menaquinol oxidase, which only contains a CuB centre [179].

Second, the S225F mutation, when engineered in ySco1p, led to a partial COX assembly, with

reduction of only Cox2p [92]. The insertion of CuB requires the Cox11p protein. In

Rhodobacter sphaeroides, the deletion of the respective gene led to a cytochrome c oxidase

containing CuA but lacking CuB [87]. Deletion of yCOX11 eliminates the accumulation of

detectable COX in the mitochondrial membrane [250]. Cox11p has a conserved CxC motif

which resembles the metal binding region of other metal chaperones and can act in the binding

of copper. It cannot be excluded that Cox11p receives copper from Sco proteins. However, a

role for Cox11p in the formation of CuB does not require it to bind copper. It was also

proposed that by interacting with Cox1p, Cox11p permits a conformation receptive for copper

delivery by a different protein [87]. It would be interesting to test copper binding of Cox11p

and the eventual interaction between Cox17p and Sco proteins and Cox11p. The different

pathways of copper insertion for CuA and CuB can reflect the different structural features of the

two copper centres. For example, CuA is located in an aqueous environment exposed domain

about 5 Å from the surface of the protein, whereas CuB is bound within a transmembrane helix

of Cox1p at a distance of about 15 Å from the closest water-exposed surface of the protein

[248, 251]. Assembly of CuB occurs either in the matrix where Cox1p is synthesised, or in the

membrane. The analysis of the orientation of Cox11p and Sco proteins could help to reveal

whether the incorporation of copper takes place, before, in the matrix side, or after the

assembly of Cox1p and Cox2p. The extra membrane domain of ySco1p faces the

intermembrane space. This conclusion is supported by the sensitivity of ySco1p to proteinase

K in mitoplasts but not in intact mitochondria [113]. This suggests that the proposed copper
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binding site of ySco1p and the copper site of Cox2p face the same mitochondrial compartment.

Such a localisation would be in accord with the proposed model in which Cox17p targets

copper specifically to mitochondria by transferring the metal to Sco1p. In this work, an

interaction with hCox17p was not found. However, as discussed above, the condition of the in

vitro assay are possibly not optimal to test this interaction. Cox17p remains, therefore, a good

candidate for the transfer of copper to Sco proteins, even though it cannot be excluded that

other copper transporters, like WND, exist in human mitochondria. Sco proteins could also be

carriers that transport copper to the matrix. This theory would be in agreement with the

recently described oligomerisation state of ySco1p [208] which would allow to the Sco

proteins to form a pore in the inner membrane. If copper addition occurs after membrane

insertion of Cox2p, a role of Sco1p as a copper transferase would be more attractive than the

pore model. The S225F mutant, engineered in ySco1p (S240F), is the first reported yeast COX

assembly mutant that can partially complete the assembly pathway without complete

proteolytic loss of the catalytic core of the molecule [92]. The S240F mutant selectively lacks

Cox2p and it was proposed that the absence of the CuA centre led to unoccupied sites that are

susceptible to proteases. Unlike GR20, the strain bearing the S240F allele has a stable mutated

ySco1 protein, suggesting a stabilising influence of ySco1p on the assembling holoenzyme.

These results suggest that ySco1p acts perhaps at the last step in the assembly pathway since

all of the other subunits of the holoenzyme are present and assembled. However, it cannot be

excluded that copper is inserted but with a wrong coordination, allowing the assembly of the

others subunits but not protecting Cox2p from degradation.

The presence of two homologues raises the question whether they have the same function. The

diversity of the phenotypes resulting from hSCO1 and hSCO2 mutations suggest that the

proteins do not have the same role. So far mutations in two other assembly factors have been

correlated with COX deficiency and in each case the phenotype is different even though in all

cases the COX activity is reduced, pointing to a different mechanism of COX impairment.

Moreover, these mutations have different effects on the COX assembly: while the

concentration of all COX-subunits except for Cox5ap and Cox5bp is strongly reduced in

hSURF1 patients [98], mutations in the hCOX10 gene preferentially affect the level of Cox2p

[80]. In patients with hSCO2 mutations, immunohistochemistry revealed a severe reduction of

Cox1p and Cox2p, while Cox4p and Cox5ap were less affected [95]. The pathogenic hSCO1

mutation, if introduced in a ySco1p/hSco1p chimera, affect the level of Cox1p and Cox2p (this

work). Different assembly profiles are typical of COX deficiencies and reflect the genes which
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are potentially involved. Some patients have normal levels of all COX subunits and are

classified as candidates for mutations in nuclear encoded structural genes. Other patients have

reduced levels of several subunits and are classified as assembly mutants [252]. The decreased

steady-state level of the subunits observed in patients is likely the result of proteolytic

degradation of unassembled or misfolded subunits. Studies in yeast have revealed the existence

of an ATP-dependent proteolytic pathway responsible for the clearing of unassembled and

improperly folded polypeptides in the various subcompartments of mitochondria [175]. This

proteolytic system is responsible for the rapid degradation of COX subunits in yeast strains

unable to complete assembly of the holo-enzyme due to a lack of one of the subunits or of

assembly-assisting proteins [253]. In yeast COX assembly mutants are characterised by a

selective degradation of the mitochondrially encoded subunits 1 and 2, while the nuclearly

encoded subunits are normally present at or near wild type levels. The proteolytic system

appears to be conserved in mammals [45]. Low levels of nuclear-encoded COX subunits have

been found in human cell lines that do not express the mtDNA encoded subunits [254] and it

was demonstrated that these low steady-state levels are the result of an increased turnover rate

[255]. Furthermore, it was shown that the reduced COX content in fibroblasts cultures from

patients with COX deficiency suffering from Leigh syndrome was the result of an elevated rate

of degradation [172]. In most patients the steady-state levels of subunits 4, 5a and 5b were less

affected. Subunit 4 appears to have an intrinsic stability and is present at 40 % of control

values in human cell cultures depleted of mtDNA [256]. Subunits 5a and 5b do not span the

inner membrane and are located on the matrix site of the enzyme complex [62]. These subunits

may already be folded prior to assembly making them less prone to proteolytic degradation.

hSURF1, hCOX10 and hSCO1 mutations lead to an overall decrement of the COX activity,

only hSCO2 patients show a tissue specific reduction with strong involvement of myoblasts

and skeletal muscle. hSURF1 mutations cause lesions in cerebral basal ganglia, known as

Leigh syndrome. Age at onset is usually between 8 and 14 months. hSCO2 mutations are

associated with hypertrophic cardiomyopathy. Age at onset is generally between birth and the

first months of life with death occurring between 1 and 6 months. Interestingly, hSCO2

patients carrying the E140K mutation show a normal development in the first months, later

they develop a Leigh syndrome and the fatal cardiomyopathy occurs in the final stadium. In

these patients a predominant involvement of the peripheral nervous system was observed and it

was hypothesised that the progressive cardiomyopathy in hSCO2 patients is not necessarily an

early symptom of this disorder, but it may be indicative of a specific aerobic energy supply
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threshold for cardiac function [110]. Threshold effect of mitochondrial mutations is a well

investigate process [257]. Mitochondrial cytopathies present usually a tissue specificity. Even

if a mutation is present in all tissues, only some will be affected and show a pathology. The

tissue specificity can be explained with the expression of the defect in OXPHOS complexes

that present individual biochemical thresholds. The value of this threshold for a given

OXPHOS complex can vary according to the tissue; thus different tissues will display different

sensitivities to a defect in an OXPHOS complex. A classification of tissues according to their

response to a OXPHOS complex deficiency and, therefore, to their threshold values has been

proposed [258]. For a given OXPHOS complex, the lower the threshold value in a tissue, the

more sensitive this tissue is to a defect of this complex. For complex IV threshold values in the

muscle and in the heart are lower than in the kidney and brain. For example, it was shown that

an 80 % decrease in COX activity will induce a small decrease in mitochondrial respiration in

liver, while the respiration drops to 40 % in heart mitochondria [258].

Little information is available for hSCO1 mutations because so far they were found only in two

boys from the same family. However, the course of the disease was very fast, with death after

4 days from the birth in one case. The combined data from patients lead to the conclusion that

both hSCO genes are essential for COX assembly. The different involvement of tissues

addresses the question if both proteins are expressed in all tissues. Northern blot analysis

shows that both genes are expressed in the same tissues [95], but a post-translational regulation

could be postulated. There is no direct relation between steady-state transcript and protein

levels. Mechanism ensuring post-transcriptional or post-translational regulation must,

therefore, be envisioned to account for the discrepancy between these two parameters. In

human, three nuclear coded subunits of COX (6a, 7a and 8) occur as tissue-specific isoforms.

COX presents different kinetic parameters according to its L (liver) and H (heart) isoform

composition [259]. Subunit 6a has potential regulatory function [72, 260] controlling COX

activity in response to ATP binding. Mutations in such tissue- and developmental-specific

subunits have been proposed to account for some COX deficiencies [261, 262]. Mutations in

nuclear genes have so far not been reported, but they are strongly suspected to account for

COX deficiencies [252]. Specific isoforms could optimise the enzymatic activity to the

metabolic demands of different tissues. In analogy, hSco1p and hSco2p could represent

isoforms of high and low energy requiring tissues.

Even though fibroblasts are less affected than myoblasts in hSCO2 patients, they still show a

reduction of 50 % of the reference value, indicating an influence of hSco2p. It could be
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supposed that hSco1p represents the general way for copper delivery and that hSco2p is a

redundant protein in those tissues which do not require high energy, but it is indispensable in

tissues with a high energy demand. This would explain why in yeast the deletion of ySCO2

does not have any effect on the respiration and why hSCO1 mutations lead to an overall COX

deficiency, whereas hSCO2 mutations lead to a tissue specific COX activity reduction.

Because both proteins were shown to homomerise, it is possible that the transfer of copper

requires the formation of dimers. The presence of an assembled COX complex, lacking only

Cox2p [92], suggests that CuA is inserted in a last step of the assembling process, when COX

is already a dimer. Dimer or higher complexes of Sco would be required to interact with the

COX dimers. Alternatively, hSco dimers can be required to transfer at the same time two

copper atoms to the two-copper centre of Cox2p. Since oligomerization of Cox17p is

important for its function [115], the possibility exists that Cu(I) ions are donated from the

Cox17p tetramer to the Sco1p oligomer.

The detection of heterodimers complexes in vivo and in vitro underlines the importance of the

interaction between the two homologues. hSco1p dimers could receive copper inefficiently

from a mitochondrial copper chaperone like hCox17p or more efficiently from hSco2p dimers,

which may represent a high affinity binding site for hCox17p. In fibroblast, the less efficient

copper transfer from the chaperone to hSco1p is sufficient for the COX activity. The transfer

of copper from hSco2p to hSco1p becomes indispensable in high energy requiring tissues or

under conditions of limiting copper. Research in yeast has shown that the respiration

competence of a ∆ysco2 strain is reduced in a medium poor of copper (Lode, personal

communication). In the case of hCcsp, it was shown that a domain of the protein acts as

sequestering site only under the condition of copper limitation [161], and another domain as

translocation site. The sequestering site transfers the copper to the translocation site via a three

coordinate intermediate. A comparable situation could be represented in mitochondria by

hSco1p/hSco2p heterodimers. It can be expected that this specific copper pathway can be

bypassed in high copper condition by the presence of unspecific copper carriers like GSH.

Assembly of COX may differ in high and low energy requiring tissues. The finding that

hSURF1 mutations cause an overall COX deficiency shows that at least some of the assembly

steps are identical in the various tissues. hSurf1p is possibly implicated in the insertion of

Cox1p and Cox2p in the holoenzyme, a process that can be the same in all tissues. The

formation of the copper centres, instead, can require a more efficient pathway in tissues like

brain and heart. In these tissues more COX complexes have been expected to be produced and
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the copper disposability can be a limiting parameter. This hypothesis is supported by the tissue

distribution profile of hCOX17 mRNA. Hybridisation signals were detected in all tissue RNA

samples, but they were drastically more intense in heart, kidney and brain [263]. The tissue

distribution profile of hCOX17 mRNA is quite different from that of hHAH1 [145] and hCCS

[160]. The mRNA of these cytosolic chaperones has the same abundance in all tissues. The

mRNA distribution profile of hSCO1 and hSCO2 overlaps with that of hCOX17. This suggests

that in high requiring energy tissues the copper transport pathway is more active.

The presence of a parallel copper transfer pathway for high energy demand tissues cannot be

excluded. Different routes of copper transport could be used in different tissues. This

possibility was, for example, proposed in the case of MNK, because the mRNA transcripts

were found in all tissues except in liver [264]. In analogy, hSco2p could receive copper

specifically from a so far unidentified copper transporter which is expressed in high energy

requiring tissues and transfer it to hSco1p.

A model for the function of the hSco proteins under several conditions is represented in Fig.

41.
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Fig. 41. Possible mechanisms of copper transfer from Sco proteins to COX.
A. Copper (in blue) is imported in the mitochondria by hCox17p which forms oligomers and transfers
copper to the high affinity hSco2p-dimer and, partially, to the low affinity hSco1p-dimer. hSco2p-
dimers transfer copper selectively to hSco1p-dimers. The specific transfer of copper from hSco2p
dimers to hSco1p-dimers is indispensable in condition of low copper and/or in high-requiring energy
tissues. hSco1p-dimers interact with COX through the TM portion and transfer two copper ions to the
dicopper centre of Cox2p. B. In the presence of high amount of copper, hSco1p can receive copper
from non-specific Cu-binding carriers, like GSH.
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The finding that copper addition to the medium can complement the P174L mutation can

provide a strategy for the early treatment of infants carrying hSCO1 and hSCO2 mutations.

Treatment with copper-histidinate is recommended in Menkes disease and was tested with two

hSCO2 patients [110]. No beneficial effects were observed, but the copper supplementation

began at a late stage of the disease, when the damages were probably irreversible. Very

recently, it was shown that addition of copper-histidinate to the medium of cultured myoblasts

of patients, harbouring the E140K mutation and a stop mutation at Aa position 90, completely

restored COX activity [265]. This result supports the model proposed in this work, according

to which hSco1p can substitute for hSco2p in the presence of high copper concentration.
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5 SUMMARY

COX deficiency in human presents a plethora of phenotypes which is not surprising given the

complexity of the enzyme structure and the multiple factors and many steps required for its

assembly. A functional COX requires three mitochondrially encoded subunits (Cox1p, Cox2p

and Cox3p), at least 10 nuclearly encoded subunits, some of which are tissue specific, and a

yet unknown number of assembly factors. Mutations in four of these factors, hSco1p, hSco2p,

hCox10p and hSurf1p, have been associated with lethal COX deficiency in patients.

Sco proteins, conserved from prokaryotes to eukaryotes, are probably involved in the insertion

of copper in COX. The role of hSco1p and hSco2p in this process was investigated in this

work. Moreover the importance of some hSco mutations found in patients was analysed.

Both in vitro and in vivo analyses show that the hSco proteins are localised in the

mitochondria.

Both proteins are per se unable to substitute for ySco1p. However, a chimeric construct

consisting of the N-terminal portion, the TM and a part of the C-terminal portion of ySco1p

and the remaining C-terminal part derived from hSco1p was able to complement a ∆ysco1

strain. This construct was used to define the role of a point mutation (P174L) found in the

hSCO1 gene of infants suffering from ketoacidotic coma. These mutation was shown to affect

the COX activity and the levels of Cox1p and Cox2p. The fact that copper was able to suppress

this mutation, strongly outlined the importance of Sco proteins in the copper insertion in COX.

The C-terminal portions of recombinant hSco1p and hSco2p were purified from E. coli by

affinity chromatography. The purified proteins were subjected to atomic emission and

absorption analyses and were shown to specifically bind copper. A stoichiometry of 1:1 for

hSco2p and of 0,6:1 for hSco1p was determined.

To identify the Aa residues involved in copper binding, in vitro mutagenesis was performed.

hSco1p and hSco2p, lacking the cysteines of the predicted metal binding site CxxxC, show a

dramatic decrease in the ability to bind copper. A model for the structure of the metal binding

site in hSco proteins is proposed. hSco proteins could bind copper with trigonal coordination,

involving the two cysteines of the CxxxC motif and a conserved histidine.

The purified recombinant proteins were also used in an enzymatic assay to test their ability to

reduce disulfide bridges, similar to thioredoxin-like proteins involved in the assembly of
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bacterial COX. Both hSco proteins were not able to act as thioredoxins suggesting a role for

the hSco proteins as copper chaperones.

To define the pathway of the copper transfer to COX, hSco proteins were tested for their

ability to interact with hCox17p, a mitochondrial copper chaperone, and with Cox2p, which

contains two copper ions. An interaction between hSco1p and Cox2p was detected.

Both hSco proteins were shown to homomerise and to form heterodimers one with each other.

Two mutations found in hSCO2 patients suffering from hypertrophic cardiomyopathy, (E140K

and S225F) were shown not to affect the copper binding properties, the intracellular

localisation and the ability to form homomers.

In accordance to these data, a model is proposed in which hSco2p dimers transfer copper to

hSco1p dimers. hSco1p dimers interact with COX and insert copper in the binuclear centre of

Cox2p.
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