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Abstract

Many universal features of extended oscillatory systems, i.e. dissipative systems that show

oscillations or traveling waves at the onset of pattern formation, are qualitatively described

in the framework of an amplitude equation, namely the complex Ginzburg-Landau equa-

tion (CGLE). In some recent experiments in hydrodynamical systems even a quantitative

description has been achieved with the CGLE.

Previous studies of the CGLE by numerical simulations revealed transitions from stable

wave solutions to different realizations of spatio-temporal chaos as parameters are varied.

The present bifurcation and stability analysis of some complex patterns facilitates a deeper

understanding of spatio-temporal chaos. A mechanism for the formation of space-time

defects is provided.

Depending on parameters in the CGLE the wave solutions may become unstable via the

Eckhaus instability. In its supercritical case stable modulated amplitude waves (MAWs)

coexist with the unstable waves above their instability.

Using continuation software (AUTO97), the MAWs are calculated and their existence and

stability properties analysed. They form a continuous two-parameter family of coherent

structures. Their shape does not change when described in a comoving reference frame. The

average phase gradient ν and the spatial period P of the modulation parametrize the family

of MAWs. MAWs bifurcate supercritically (subcritically) for small (large) wavenumber

and disappear in saddle-node bifurcations at larger values of the control parameters. The

saddle-node bifurcations occur first at infinite spatial period of the modulation and shift to

larger values of the control parameters as the period is decreased. MAW-like structures with

parameters ν, P beyond a saddle-node bifurcation may evolve to a defect,i.e. the local phase

gradient diverges and the resulting state has a different total ν. Secondary instabilities of

the MAWs enhance or reduce the probability of defect formation.

Numerical simulations are used to illustrate the discoveredmechanisms. Combining these

ingredients the transition from phase to defect chaos in the one-dimensional CGLE is studied

and explained in detail. We conjecture the saddle-node bifurcation for ν = 0, P → ∞ to be

a lower bound for this transition and phase chaos to persist in the thermodynamic limit for

parameter values below this line.

The obtained results for ν > 0 can be applied most directly to hydrodynamical experi-

ments. They also offer a new and consistent interpretation of the existence of super-spirals

as well as their breakup. Super-spirals have recently been observed by other authors as the

superimposed spiral modulation of a chemical concentration pattern.

In addition the bifurcation analysis is applied to a biological problem, an aspect of the

local calcium dynamics in the cell. The results on the existence and type of temporal bursts

of calcium concentration verify and support findings, recently obtained by other authors via

numerical simulations.



4 Zusammenfassung

Zusammenfassung

Zahlreiche universelle Eigenschaften von beliebigen räumlich ausgedehnten dissipativen Sys-

temen, die (fern des Gleichgewichts) Oszillationen oder laufende Wellen zeigen, lassen

sich qualitativ durch eine Amplitudengleichung, die komplexe Ginzburg-Landau Gleichung

(CGLE), beschreiben. Für einige Experimente der Hydrodynamik ist auch die quantitative

Modellierung durch die CGLE erfolgreich.

Im Rahmen der CGLE werden die Instabilitäten einfacher Muster und das Auftreten von

raum-zeitlichem Chaos untersucht, letzteres vorwiegend mittels numerischer Simulationen

der Gleichung. Die Bifurkations- und Stabilitätsanalyse einiger komplexer Muster in dieser

Arbeit ermöglicht ein tieferes Verständnis des raum-zeitlichen Chaos. Ein Mechanismus für

die Bildung von raum-zeitlichen Defekten wird vorgeschlagen.

In der CGLE können Wellen für bestimmte Parameterwerte instabil werden (Eckhaus

Instabilität). Falls diese Instabilität superkritisch ist, so koexistieren oberhalb der Insta-

bilität stabile modulierte Amplitudenwellen (MAWs) und die instabil gewordene Welle.

Wir benutzen die Software AUTO97, um diese modulierten Amplitudenwellen und deren

Instabilitäten zu berechnen. MAWs bilden eine kontinuierliche zweiparametrische Fami-

lie von kohärenten Strukturen, das sind Lösungen, deren Form sich in einem mitbewegten

Bezugssystem nicht verändert. Der mittlere Phasengradient ν und die räumliche Periodizität

P der Modulation parametrisieren die Familie der MAWs. Diese entstehen superkritisch

(subkritisch) bei kleinen (großen) Wellenzahlen nahe der Eckhaus Instabilität und enden in

Sattel-Knoten Bifurkationen bei größeren Werten der Kontrollparameter. Die Sattel-Knoten

Bifurkationen der MAWs mit P → ∞ liegen bei kleineren Parameterwerten als die Bifurka-

tionen der MAWs mit kürzerer Periode. MAW-ähnliche Strukturen mit Parametern ν, P ,

die größer sind als die kritischen Parameterwerte an der Sattel-Knoten Bifurkation, können

sich zu Defekten entwickeln. Defekte sind lokalisierte Ereignisse, bei denen der Phasengra-

dient divergiert und in deren Ergebnis ein Zustand mit verändertem ν entsteht. Sekundäre

Instabilitäten der MAWs können die Defektentstehung begünstigen oder verzögern.

Die entdeckten Mechanismen der Defektentstehung werden durch numerische Simula-

tionen illustriert. Eine Kombination dieser Argumente wird zur Erklärung des Überganges

von Phasen- zu Defektchaos in der eindimensionalen CGLE benutzt. Wir vermuten, dass

keine Defekte entstehen können, wenn für die jeweiligen Parameterwerte keine Sattel-Knoten

Bifurkation existiert. Hier kann der Zustand des Phasenchaos im Grenzfall unendlich aus-

gedehnter Systeme für unendliche Zeiträume bestehen. Dann bilden jene Parameterwerte

bei denen die Bifurkation mit P → ∞ auftritt, die untere Schranke für Defektentstehung.

Die gewonnenen Ergebnisse für ν > 0 lassen sich auf hydrodynamische Experimente

anwenden und erlauben eine Interpretation der Existenz und des Aufbrechens von Super-

Spiralen. Letztere wurden von anderen Autoren als überlagerte Modulation von spiralförmigen

chemischen Konzentrationsmustern beobachtet.

Die Bifurkationsanalyse wird darüber hinaus auf eine biologische Fragestellung der lokalen

Kalziumdynamik in Zellen angewendet. Dabei können die Erkenntnisse über “Kalzium-

Bursts” unterstützt werden, die andere Autoren durch numerische Simulation gewonnen

hatten.
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1 Introduction

1.1 The Topic

In order to convey some of the fascination of the topic “Complex Patterns in Extended Os-

cillatory Systems” let us begin by defining the title more explicitly. A thorough introduction

of the involved concepts and terms together with a selection of important References will

follow in Section 1.3.

Patterns denote nonuniform and often nonstationary states of a system driven away

from equilibrium and represent the spatial and temporal evolution of observable quantities,

e.g. the velocity field of a fluid, the concentration field of chemical reactands or biological

species. Simple patterns, e.g. nonlinear waves or pulse trains, often arise just above onset of

pattern formation (the primary instability) and may appear periodic in space and/or time.

Complex patterns in contrast may replace (via a secondary instability) simple patterns

as the system is driven further away from equilibrium. They show quasiperiodic or more

complicated even chaotic behavior. The focus will be set on existence and stability properties

of some particular complex patterns in model systems, i.e. modulated amplitude waves.

Their relations to chaos and to experiments will be discussed.

Oscillatory systems are a subclass of dissipative systems for which the primary instability

of the uniform state gives rise to traveling waves or homogeneous oscillations above onset.

This should be further restricted to the supercritical case without hysteresis of the primary

pattern, i.e. the amplitude of waves or oscillations continuously increases starting from zero

at the instability threshold. The above formulation excludes systems with an instability

towards a stationary pattern (Turing pattern) and excitable systems where a stable uniform

state coexists with patterns.

The study of the complex Ginzburg-Landau equation, i.e. a universal description of

oscillatory systems close to the onset, will reveal complex patterns and underlying principles

relevant for all oscillatory systems. In particular a fully nonlinear analysis of the secondary

Eckhaus instability will be presented.

Extended denotes systems of large spatial extension compared to the typical length scale

of the pattern. This offers the possibility of spatio-temporal chaos with the number of

excited degrees of freedom being proportional to the system size (extensive). The phase

space necessary to describe the state of the system becomes infinite-dimensional for an

extended system even in one spatial dimension. This is called the thermodynamic limit.

The properties of spatio-temporal chaos are very different from those of deterministic chaos
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in low-dimensional systems, e.g. the famous Lorenz system. In order to get a better un-

derstanding of spatio-temporal chaos the underlying mechanisms will be studied in some

selected systems.

1.2 Organization

The results of this Thesis are presented in the following way. The introduction will continue

with an overview of principles of pattern formation and related experiments in the next

Section. In Section 1.4 some analytical results on the model (CGLE) are summarized and

Section 1.5 introduces the technical tools used in this field. However, as a phenomenological

model system the CGLE is even sometimes studied just because of the diversity of states

and behavior it exhibits.

Chapter 2 will treat the transition between two spatio-temporal chaotic states (named

“phase” and “defect” chaos) in the one-dimensional complex Ginzburg-Landau equation

(CGLE). Previously the transition has been studied by numerical simulations but ques-

tions remained, e.g. at which parameter values the transition occurs as well as if phase

chaos even exists in the thermodynamic limit. We present the first systematic analysis of

modulated amplitude waves (MAWs), i.e. complex patterns that are exact solutions of the

CGLE. Their limit of existence will be shown to cause the above mentioned transition and

the open questions are answered.

Chapter 3 extends the analysis of MAWs and provides new insight into “wound-up” phase

chaos. Applying bifurcation and stability analysis the existence limits of wound-up phase

chaos are obtained which previously have been approximated by statistics on numerical

simulations in the groups of P. Grassberger and M. San Miguel. The results are compared

to stable MAWs experimentally observed in fluid dynamics.

Chapter 4 lists and shortly discusses promising experimental efforts that may be used

to observe the proposed scenarios including MAWs.

Chapter 5 concerns the breakup of spiral waves in two-dimensional systems which gives

rise to spatio-temporal chaos (STC). Recent observations of super-spirals in experiments

with an autocatalytic chemical reaction will be consistently interpreted. The coincidence of

two independent secondary instabilities causes stable super-spiral structures.

Chapter 6 is devoted to a biological system, a suggested model of signal encoding in cells

by variation of the calcium concentration. A bifurcation analysis will supplement results of

previous numerical simulations.

Each Chapter will introduce the examined phenomenon together with a discussion of

relevant experimental observations followed by semi-analytical investigations (bifurcation

and stability analysis) and closing with numerical simulations verifying the suggested mech-

anisms. It will become clear that the same mechanisms, i.e. bifurcations and instabilities

of complex patterns in oscillatory systems, can be found in many different fields of physics,

chemistry and biology.

A summary and an outlook are given in Chapter 7. Finally Appendices A-E provide

special details and data as well as explicit algebraic calculations that have been used.



1.3 Principles of Pattern Formation 15

Many uncommon terms used in the paragraphs above will be explained below. The first

appearance of an important term is emphasized by italic font. Several abbreviations (see

table 1.1) will be used throughout the Thesis.

abbreviation expanded phrase

i.e. that is, that means

e.g. for instance, for example

MAW modulated amplitude wave

CGLE (cubic) complex Ginzburg-Landau equation

QCGLE quintic complex Ginzburg-Landau equation

STC spatio-temporal chaos

PDE partial differential equation (here always nonlinear)

ODE ordinary differential equation (here always nonlinear)

BFN Benjamin-Feir-Newell criterion

c.c. complex conjugate

h.o.t. higher order terms

HB Hopf bifurcation

DP drift pitchfork bifurcation

SN saddle-node bifurcation

PD period doubling bifurcation

Table 1.1: List of abbreviations.

1.3 Principles of Pattern Formation

1.3.1 Dissipative systems

Pattern formation is possible far away from equilibrium in open systems under continuous

through flow of energy and/or matter. One may consider the diversity of life [1] on earth to

be the most overwhelming example of pattern formation. It relies upon the flux of energy

originating in the radiation of the sun. Within a closed system on the other hand patterns

may only survive as a transient in accordance with the second law of thermodynamics.

The necessary extension of thermodynamics to open systems far from equilibrium was

initiated by I. Prigogine and coworkers [2, 3, 4]. He characterized pattern forming systems

as dissipative systems : they take up energy with low entropy and export energy with

high entropy. Instead of the total amount of energy the rates at which energy or matter

are consumed by the system become important quantities characterizing the “distance”

from equilibrium. Away from equilibrium there is no free energy functional defined and

no minimization principle holds. As a result the well developed tools of classical statistical

mechanics are often not applicable for studying systems far from equilibrium.

Important tools have been provided by applied mathematicians in the fields of dynamical

systems and bifurcation and stability theory [5, 6, 7, 8, 9, 10]. The idea of pattern formation
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via the instability of a uniform state goes back to hydrodynamics in the second half of the

19th century and scientists as H. Helmholtz [11], Lord Kelvin [12], Lord Rayleigh [13], W.

Orr [14] and A. Sommerfeld [15]. The concept has been extended to reaction-diffusion sys-

tems in a seminal article by A. M. Turing [16]. He proposed a mechanism of local nonlinear

(autocatalytic, self-amplifying) kinetics and spatial diffusive coupling which was later ob-

served in a chemical reaction [17]. Another widely used tool, the iterative numerical solution

(simulation) of nonlinear model systems, became available due to the rapid development of

computer resources. This enabled the study of complex patterns [18], especially of spatio-

temporal chaos (STC) [19, 20, 21]. Thus over the past two decades many text books and

review articles [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] have been accumulated and give a

comprehensive overview of pattern formation in physical, chemical and biological systems.

1.3.2 Experimental observations

The first experimental studies of pattern formation were carried out by H. Bénard [33] in a

fluid placed between two horizontal plates and heated from below. The vertical temperature

difference ∆T = Tbottom−Ttop across the fluid is an external driving that can be adjusted

by the experimentalist. A control parameter, the Rayleigh number R (dimensionless ratio

of destabilizing and stabilizing forces and proportional to ∆T ), serves as a measure for the

“distance” from equilibrium which corresponds to ∆T = 0. A non-equilibrium state is

enforced as ∆T increases. Below a threshold Rc heat is transported solely by conduction

through the resting fluid. Above Rc convection sets in, i.e. the fluid moves as parallel

rolls. Heat is now transported by both conduction and convection. At higher Rc turbulent

behavior is observed.

Lord Rayleigh suggested a mechanism for the instability of the stationary conducting

state of the fluid [34]. The linear temperature field of the conducting state corresponds to

fluid layers of larger density above such of lower density; a situation that is intrinsically

unstable in the gravitation field. However, the viscosity of the fluid needs to be overcome

which stabilizes the resting fluid below ∆Tc. Above ∆Tc the stationary fluid is unstable

but the lower layers cannot raise as a whole. Amplifying small inhomogeneities fluid raises

and falls in alternating domains forming the convection pattern of parallel rolls. Further

analysis revealed the parameter-region of stable roll patterns above threshold, the so-called

Busse balloon [35].

This system is known as Rayleigh-Bénard convection. It was used for some of the most

accurate measurements on pattern formation and has become a paradigm. For a recent

review see [36]. The primary instability in Rayleigh-Bénard convection leads to a stationary

pattern of the velocity field,i.e. rolls at fixed position and orientation. Other examples of this

type are Bénard-Marangoni convection [37, 38], where the upper surface of a shallow fluid is

open to the air and temperature dependent surface tension destabilizes instead of buoyancy,

and Taylor-Couette flow [39, 40], where the fluid is placed in the gap between two vertical

concentrical rotating cylinders. There the centrifugal force replaces the buoyancy force and

circular rotating rolls (called Taylor vortices) are established in planes perpendicular to the

axis of the cylinder.
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left-         and         right-traveling wave

Fig. 1.1: Experimental setup (cross section and top view) and hydrothermal waves obtained by shadowg-
raphy in [44]. The fluid layer (silicon oil) is 1.7mm deap, 250mm long and 20mm across. A self-organizing
source emits a left- and a right-traveling wave.

In contrast the oscillatory systems by definition show homogeneous oscillations or trav-

eling wave patterns. Relevant physical systems again come from the field of fluid dynamics

where it is easier to visualize the patterns and to control geometrical constraints as well as

the distance from threshold. Visualization of the patterns in shallow fluid layers is achieved

via shadowgraphy, the optical observation of induced modulations of the refraction index

[41].

Hydrothermal waves are the most prominent example of oscillatory systems. They repre-

sent traveling modulations of the temperature field in the bulk of a fluid placed in a channel

[42, 43, 44, 45]. The velocity field and the local orientation of the free surface change ac-

cordingly. Fig.1.1 shows the side view (top) and a snapshot of the top view (bottom) of

the experiment by J. Burguete et al. [44]. A horizontal temperature gradient is applied

at the walls of the channel. The dependency of surface tension on temperature leads to a

primary convection roll (Marangoni effect) with fluid raising near the hot wall and falling

near the cold wall. Above a threshold ∆Tc ≈ 4.5K hydrothermal waves propagate on the

surface in a direction oblique to the temperature gradient [45]. The instability of the pri-

mary convection roll to hydrothermal waves has been described analytically on the basis

of Navier-Stokes and heat transport equations by M. K. Smith and S. H. Davis [46]. The

experimentally observed onset of hydrothermal waves is in satisfactory agreement with the

theoretical predictions [47].

The experimental setup can be designed quasi one-dimensional in the direction perpen-

dicular to the temperature gradient [43, 44]. The properties of the hydrothermal waves may

be changed by varying the geometrical and physical parameters. Regimes with irregular

dynamics were observed. The wavelength of the hydrothermal wave may no longer remain

constant but is modulated along the wave [43]. The subsequent maxima and minima in the

spatial profile of the wave will be called “humps” and “dips”. As time progresses subsequent

humps of the wave may come closer and merge when the dip between them disappears [44].
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(a) (c)(b)

Fig. 1.2: Space-Time plots of (a) local wavenumber q (bright: q > 0, dark: q < 0) and (b) local amplitude
|A| (white: |A| = 1, black: |A| = 0) derived from (c) the original data of hydrothermal waves emitted by a
source at x ≈ 120. The waves travel along a narrow channel in the experimental setup as shown in Fig.1.1
and data was collected along a horizontal (x) cut by [44]. Localized compressions of the wave sequence in (c)
result in pulses of local wavenumber (a) and depressions of the pattern amplitude (b). Events in space-time
where the original wave annihilates one wavelength appear as changes (bright to dark or vice versa) in the
local wavenumber (a) of black points (|A| = 0) in (b). These localized events are called defects and two
examples are marked by arrows in the different representations (a-c).

Then the phase of the wave is ill-defined for one moment in time at the position in space

where the humps merge and one wavelength of the wave is annihilated. This event is called

a space-time defect, a localized disturbance of the surrounding pattern. See Fig.1.2 for an

experimental observation.

Defects may also persist in time and act as organizing centers (e.g. as core of spiral

waves in two dimensions) and select certain properties (e.g. wave length) of the surrounding

pattern. Therefore the temporal process of creating or annihilating such defects is a major

influence on the state of the system. These processes determine many properties of STC.

For Rayleigh-Bénard convection this has recently been demonstrated [20]. In Chapter 2 we

will investigate the process of defect formation in detail.

Other examples of extended systems displaying such chaotic dynamics in one spatial

dimension include: heated wire convection [48, 49], printers instability and film drag ex-

periments [50], eutectic growth [51], binary convection [52], sidewall convection [53], the

Taylor-Dean system [54] and internal waves excited by the Marangoni effect [55].
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Fig. 1.3: Continuously stirred tank reactors (CSTR1 and 2) used to study two-dimensional pattern formation
of a chemical reaction A+B→C+D in the separating gel matrix.

Studying a secondary (oscillatory) instability of Rayleigh-Bénard convection in a cylin-

drical geometry B. Janiaud et al. [56] compared modulated waves from theory (CGLE) and

experiment. The separating plane between two adjacent fluid rolls in a Rayleigh-Bénard

convection pattern becomes unstable to a traveling wave locally modulating the size of the

rolls.

Such modulated waves will be studied in detail in Chapter 3 which supplements the

observation of these waves in experiments (Chapter 4) and simulations [57, 58, 59]. M. C.

Cross and P. C. Hohenberg have provided an extensive collection of experimental studies

with emphasis on fluid dynamics [30].

Early observations of propagating concentration waves in chemical systems go back to

R. Luther (in Leipzig) and were discussed in connection with signal transport along nerve

fibres [60]. First experimental studies were conducted with a chemical system which is

now known as the Belousov-Zhabotinsky reaction [61, 62, 63],i.e. the catalyzed oxidation

of citric acid by bromate. B. P. Belousov and A. M. Zhabotinsky observed oscillating

concentrations [64] of the reactands and propagating concentration waves [65]. Spiral wave

patterns were discovered by A. T. Winfree [66] in the same reaction. In much the same

way as Rayleigh-Bénard convection for physical systems the Belousov-Zhabotinsky reaction

became a paradigmatic model system for pattern formation in chemical systems. Here

the oscillatory variant of the reaction is of special importance but it also shows different

(excitable) behavior under specific conditions.

In recent experiments [67, 68, 69, 70, 71] the reaction zone is restricted to a planar
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Fig. 1.4: Transition from stable spiral wave to spiral defect chaos as the concentration of one chemical
increases in the Belousov-Zhabotinsky reaction [70]. (a) Stable spiral wave, (b) super-spiral and (c) super-
spiral breakup.

two-dimensional matrix (gel or porous glass disc). This simplifies optical measurements of

the patterns which appear as different colors depending on the binding structure of some

agents (e.g. ferroin) within chemical complexes. Possible convection due to reaction heat is

suppressed by the matrix but the chemicals may diffuse from and to adjacent compartments.

As reservoirs one uses continuously stirred tank reactors with continuous through flow of

the reactands. The adjusted ratio of supplied reactands provides control of the distance

from equilibrium. See Fig.1.3 for a schematic diagram.

In a wide range of concentrations the pattern consists of spiral waves rotating around

a core and continuously emitting waves in radial direction (see Fig.1.4a). For certain con-

centrations the spiral core (wave source) starts to move which imposes modulations on the

emitted wave field similar to the Doppler effect. The modulations of the wave length form

an overlaid structure, the super-spiral shown in Fig.1.4b . Further change of parameters

may lead to the breakup of the spiral structure into fragments of spirals. This state of spiral

defect chaos or defect mediated turbulence is a particular realization of STC (see Fig.1.4c).

In Chapter 5 we will analyse this phenomenon in detail and suggest a new mechanism for

the breakup of super-spiral waves.

An intensively studied field concerns catalytic reactions of gases on surfaces where the

local coverage with reactands exhibits traveling, spiral and target waves as well as spatio-

temporal chaos [72, 73, 74]. Another recent review of pattern formation in chemical systems

was published by A. DeWit [32].

Finally in biological systems similar dynamical phenomena appear. The most prominent

example of such systems is the aggregation of the slime mould Dictyostelium discoideum

under starvation conditions [75, 76, 77]. The individual cells communicate by releasing the

chemoattractant cAMP and move (chemotaxis) toward a common center where they form

a multicellular organism and differentiate to create surviving spores. The events of cAMP

release and of cell motion arrange on rotating spirals (see Fig.1.5).

Another system studied for a long time is the signal propagation in nerve cells [78, 79].
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(b)(a)

Fig. 1.5: (a) Dark field waves in Dictyostelium discoideum aggregation that represent the alternating cell
motion [77]. The bar at the bottom represents 100µm. (b) Bursting [Ca2+](t) derived from the intensity
signal of a bioluminescent Ca2+ indicator in incubated hepatocytes of rat [88]. This typical response to
agonist stimulation will be studied by means of bifurcation analysis in Chapter 6.

The cell membrane of nerve cells separates different concentrations of ions (Na+, K+, Cl−)

inside and outside. Voltage gated channels allow specific ions to penetrate the membrane

reducing concentration gradients and increasing the electrical potential difference. Pumps

slowly restore the initial condition. Given an excitation at the axon hump an action potential

with fixed shape and velocity will propagate along the axon.

Ventricular fibrillation in (excitable) cardiac tissue of the heart muscle is another strongly

debated phenomenon [80, 81, 82, 83, 84, 85]. Ventricular fibrillation may cause sudden car-

diac death and was suggested to be triggered by the breakup of spiral waves of electrophysio-

logical activity. If ventricular fibrillation is detected the common treatment is defibrillation;

high voltage pulses applied to the chest of the patient. Analysing the instability of the

electrophysiological pattern in suitable models could improve the therapy.

As a last example we want to mention the process of signal transduction which denotes

the response of a cell to very low concentrations of hormones delivered by the blood stream.

There are more than a thousand different hormones and specific receptors the organism

uses to control its actions. Inside a cell a particular process has to be activated by the

hormone which shortly binds to the specific receptor on the membrane and then detaches

to activate other cells as well. Hence there needs to be a second messenger that carries

the information inside the cell. There are only a limited number of such species, namely

cAMP, NO· radicals and Ca2+ ions. The information contained in the diversity of the

hormones and receptors must not be lost by encoding it in the intracellular concentration

of just a few second messengers. Ca2+ alone is activated by half of the hormones. This

has long been a puzzle. Nature solves the problem by facilitating the dynamics of the

concentration signal [Ca2+](t) [86, 87]. [Ca2+](t) was experimentally observed to oscillate

with the frequency and pulse shape encoding the specific hormone. In most cases [Ca2+](t)

can be treated homogenous within the cell. Hence this phenomenon, called bursting, is a

temporal rather than spatio-temporal pattern. In Chapter 6 we will study the bifurcation

structure of [Ca2+](t) oscillations in a model recently suggested and studied by U. Kummer

et al. [88].
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1.3.3 Modelling

Far from equilibrium all of the above mentioned (physical, chemical and biological) systems

share common features despite the different microscopic mechanisms. Similar patterns,e.g.

traveling waves and spiral waves, are observed in velocity, temperature, concentration, elec-

trophysiological potential and cell density fields. These self-organizing patterns represent

the stable asymptotic behavior for long times even when the system is maintained under ho-

mogeneous and stationary external conditions. The underlying mechanisms are very robust

and the patterns are only weakly influenced by noise.

The form of the final pattern,e.g. orientation of rolls or regular pattern versus STC,

often depends on initial conditions. There exist different attractors that represent coexisting

stable states of the system. Any initial condition lies in the basin of attraction of a specific

attractor and thereby determines the final state. This feature is called multistability.

It was mentioned for individual examples above : these coexisting asymptotic states of

the system may include chaotic dynamics,e.g. STC. This causes an additional dependence

on initial conditions within one basin of attraction. If two identical replica of such a system

evolve from similar initial conditions then their properties will be increasingly different, i.e.

the distance of their states in phase space increases exponentially. This feature prevents

detailed predictions of the future state of the system and was named deterministic chaos.

Although the underlying individual mechanisms involve interacting microscopic species

such as atoms and molecules or cells the patterns evolve on macroscopic scales. Thereby

large numbers of individual events or elements are contained within characteristic scales

of the pattern. Hence, noise becomes negligible on macroscopic scales. This enables the

modelling by deterministic evolution equations.

Most convenient is the formulation of the model in terms of nonlinear partial differential

equations (PDEs). 1 Note that nonlinearities in the equations prevent superposition of

solutions. We choose the vector u(x, t) to describe the evolving fields,e.g., temperature,

concentration or components of the velocity. x denotes coordinates in space and t denotes

time. A control parameter µ is selected out of a set of parameters µ. Then the evolution of

the system shall be given by a set of PDEs [30]. These may be the Navier-Stokes and heat

equations for Rayleigh-Bénard convection or rate equations determined by stoichiometry for

a chemical reactions mechanism.

∂tu(x, t) = F (u, ∂xu, . . . ;µ) (1.1)

Partial derivatives with respect to time or spatial coordinates are denoted by ∂t and ∂x.

Reaction-diffusion systems (1.2) constitute a prominent sub-class with purely diffusive

spatial coupling (tensor D of diffusion coefficients) that is appropriate for most chemical

systems. 2

1The alternatives,e.g. cellular automata or coupled map lattices which may be easier to study, will be
discussed later.

2The intensively studied FitzHugh-Nagumo equations [89, 90] and its variants [73, 104] belong to this
class. As further simplification one can in some cases identify fast amplifying (activator) and slow stabilizing
(inhibitor) processes.
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∂tu(x, t) = f(u;µ) +D∇2u (1.2)

Within a parameter range µ < µc 3 ,e.g. near equilibrium, there shall exist a stable

homogeneous stationary solution u0 of the PDEs (1.1). This corresponds to the relaxed

state of the system without any pattern.

The linear stability of u0 can be characterized by the growth or decay of small pertur-

bations expressed in Fourier modes. This concept goes back to Lord Rayleigh [13] and A.

M. Turing [16]. The ansatz for small ε and chosen wave vector k

u(x, t) = u0 + εu1e
ik·x+σt + c.c. , (1.3)

contains a growth rate σ with complex values and the eigenvector u1 which also describes

the dependence in transverse (to k,x) directions while c.c. stands for complex conjugate.

Inserting the ansatz (1.3) into the PDE (1.1) and expanding in powers (linear to lowest

order) of the small quantity ε yields an expression for the growth rate σ(k,µ). If Re[σ(k)]< 0

for all k then the solution u0 is linearly stable at the particular µ. If a control parameter is

increased to a critical value µ = µc then Re[σ(k)] shall be zero for a critical mode k = kc.

Above µc a whole band of modes around kc will have positive Re[σ(k)] and such modes will

grow in time and change the state. Hence u0 has become unstable. The point µ = µc in

parameter space is called the primary instability threshold.

The imaginary part Ωc =Im[σ(kc, µc)] at the instability is used to classify the type of

instability [30]. For zero frequency Ωc = 0 the instability is called stationary (type Is)

and a stationary pattern grows as in the case of Rayleigh-Bénard convection, whereas for

Ωc 	= 0 the instability is oscillatory. In the latter case and kc 	= 0 in addition (type Io)

traveling waves appear,e.g. hydrothermal waves. For kc = 0 the homogeneous mode be-

comes unstable (type IIIo) and the system will show homogeneous oscillations as in the

Belousov-Zhabotinsky reaction. See Fig. 1.6 for a schematic representation of the classifi-

cation scheme.

Above threshold ε = (µ− µc)/µc > 0 the perturbations grow and nonlinearities become

important since they couple different modes. There is no general method to predict the

eventual pattern. However, above but close to threshold the band of unstable modes (k)

has wavenumbers close to the critical one (kc). Compare the case ε > 0 in Fig. 1.6. Nonlinear

combinations of these modes will typically have modulations on longer scales ∼ |k − kc|−1

rather than on short scales ∼ |kc|−1. The same distinction between modulation (envelope or

amplitude) and primary pattern holds for the time scales. This universal feature allows the

separation of length and time scales to achieve an approximation close to threshold which

is a considerable simplification of the PDEs (1.1).

The concept called amplitude equations or envelope equations goes back to A. C. Newell,

J. A. Whitehead [91] and L. A. Segel [92]. It bears a strong resemblance to the perturbative

approach near second-order phase transitions by L. D. Landau [93, 94, 95, 96] and the

3In general a manifold µc separates the parameter space but to emphasize ordering with respect to µc

we choose an appropriate cut µ in that space.
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Fig. 1.6: Classification of primary instabilities [30] via σ(k). Left panels show Im[σ(k)] and right panels
Re[σ(k)]. (a) Stationary periodic instability (Ωc = 0,kc 	= 0), type Is, (b) oscillatory instability (Ωc 	= 0)
which has a periodic or wave type Io (kc 	= 0). For the uniform or homogeneous type IIIo shift the axis to
get kc = 0.

procedure of eliminating fast modes that adiabatically follow the slow modes that has been

referred to as “slaving” by H. Haken [97]. Detailed descriptions are contained in [22, 98, 99].

The form of the amplitude equation only relies on the type of instability and the symmetry

properties of the system. Far above threshold quantitative results of the amplitude formalism

differ from the full system but qualitative aspects are still captured ,e.g. the types of patterns

that coexist, regular or chaotic behavior or the mechanisms of instabilities and transitions

between different states [30]. This emphasizes the common principles of pattern formation

that underly both the real systems and their different levels of modelling. This might be a

reason for the observed universality [100] of features in nonequilibrium systems, although

they belong to different fields such as physics, chemistry or biology.

The lowest order approximations are only adequate for supercritical instabilities for which

the amplitude of the pattern continuously increases with µ. This case is also called forward

in contrast to subcritical or backward instabilities where the pattern sets in with a finite

amplitude and may show a hysteresis below µc. In the latter case higher order terms (h.o.t.)

have to be taken into account.

In order to separate the different length and time scales in the amplitude equation an

appropriate ansatz is used with the slow variables x̃, t̃ being the only arguments of the

complex valued amplitude A.

u(x, t) = u0 + A(x̃, t̃)u1e
i(kc·x+Ωct) + c.c. (1.4)
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The ansatz (1.4) is inserted into the full model (1.1) which then is expanded systematically

in the small quantity

ε =
µ− µc

µc
. (1.5)

The technically involved calculations use multiple scales expansions [101]. For the stationary

instability (Ωc = 0) in one spatial dimension this leads to

τc∂tA = εA + ξ2
c∂

2
xA− gc|A|2A (1.6)

with scales τc, ξc, gc of the modulation and x chosen in the direction kc The single PDE

(1.6) is called real Ginzburg-Landau equation because of real coefficients (apart from the

y-direction) whereas A has complex values. The coefficients can be scaled to unity by using

x̃, t̃ and Ã ∝ A/
√
ε.

The complex Ginzburg-Landau equation, the amplitude equation for the oscillatory case

will be discussed in the next Section. As for the real Ginzburg-Landau equation all mi-

croscopic details of the full system are condensed in the values of a few coefficients. The

results derived for the amplitude equation can in principle be applied to a huge variety of

systems that share the same instability. This corresponds to the universality of features in

the different systems.

The coefficients have been calculated for a wide range of systems [30, 102, 103, 104]. On

the other hand, in many examples from chemistry and biology it is not possible to derive

the complete set of PDEs (1.1) because the systems involve too many different species with

unknown influence upon each other, e.g. metabolic pathways. However, these systems

may show a simple instability as discussed above, e.g. oscillations in glycolysis [76], which is

described by a simple amplitude equation. In these cases the coefficients can be inferred from

properties of measured complex patterns [44],e.g. velocities, or determined from quenching

experiments [105, 106]. In the latter case one artificially changes the concentration of single

species and observes the recovery of the pattern.

The name “Ginzburg-Landau equation” is reminiscent of the formal similarity with the

Ginzburg-Landau theory of superconductivity. There a similar equation holds for the order

parameter near a second-order phase transition. See [107] for the original static formulation

while the dynamical extension (coupling to an electric field) was derived in [108, 109].

For an extensive history of the CGLE see [122]. Besides the most frequent stationary

and oscillatory instabilities there are other instabilities that involve additional slow modes

[110, 111]. Neither these nor excitable [73] or bistable [112] systems will be discussed in this

Thesis.

Within the amplitude equation the simple patterns may undergo secondary instabilities.

Typical examples are the Eckhaus instability [113], a longitudinal long wavelength instability

of stationary and traveling waves. If the wavenumber of the simple wave pattern becomes

too large then the Eckhaus instability relaxes the compression; either by close packing and

modulation of waves within a localised region in the supercritical case or by annihilation of

a finite number of waves to recover a stable wavenumber in the subcritical case. In the limit

of homogeneous oscillations the instability is called Benjamin-Feir instability [114]. A last

example is the zig-zag instability, a transverse long wavelength type.
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Similar to the amplitude equation near the primary instability one can derive phase equa-

tions that are valid near the secondary instability in the amplitude equation [22, 115, 116,

117]. The simplest and best studied phase equation is known as the Kuramoto-Sivashinsky

equation [22]. In Section 2.2.4 solutions of phase equations of different order are compared

with a fully nonlinear treatment of the Eckhaus instability in the CGLE. Above the sec-

ondary instability there may exist stable complex patterns (see Chapter 3) but even if these

complex patterns are unstable they determine the dynamics to a large degree (see Chapter

2). We name these complex patterns of the CGLE modulated amplitude waves (MAWs)

since the plane waves in the amplitude description acquire saturated modulations. The

MAWs will be shown to form a two-parameter family of solutions.

For many phenomena,e.g. breakup of spiral waves (see Chapter 5), it is helpful to

start the investigation in a one-dimensional system since there a wide range of tools is

available. In higher spatial dimensions the mechanisms identified in the one-dimensional

system may already explain much of the phenomenology but additional effects remain to be

explored. Following this approach we will study MAWs in the one-dimensional CGLE and

later interprete some results in a two-dimensional system.

Since hydrothermal waves were observed in quasi one-dimensional geometry these are

promising candidates for comparison with our theoretical predictions. In the CGLE the

primary patterns are analytically known plane waves and hence the characterization of the

complex patterns is easier than in other systems.

1.4 The Complex Ginzburg-Landau Equation

1.4.1 Derivation

The complex Ginzburg-Landau equation (CGLE) describes the long wavelength modula-

tions (envelopes or amplitudes) of both traveling waves (kc 	= 0, type Io) and homogeneous

oscillations (kc = 0, type IIIo). Here we shortly summarize the derivation in both cases

which is similar to the procedure (1.4-1.6) and discuss some general properties of the equa-

tion. Since many phenomena already occur in the one-dimensional system (see above) we

will restrict the analysis to one dimension.

For a single right-traveling wave the ansatz

u(x, t) = u0 + A ei(kcx−Ωct)u1 + c.c. . (1.7)

with slow variables x̃, t̃ of the complex valued amplitude A is inserted into the full model

(1.1). The resulting equations are expanded systematically in the small quantities (1.5) and

yield

τc∂tA + vc∂xA = ε(1 + ic0)A + ξ2
c (1 + ic1)∂

2
xA− gc(1 − ic3)|A|2A . (1.8)

The linear frequency shift c0 can be eliminated by A → Aeiεc0t/τc. The advective term

proportional to the group velocity vc of the primary wave can be absorbed in the ansatz by

introducing a moving coordinate frame x+ vct/τc → x. We assume ε > 0 (above threshold)
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and gc > 0 (supercritical instability) whereas τc > 0, ξc > 0 are fulfilled a priori. With the

scaling

x̃ =
√
ε
x

ξc
(1.9)

t̃ = ε
t

τc
(1.10)

and transformation

Ã =

√
gc
ε
A (1.11)

one derives the dimensionless form of the CGLE which reads after dropping the tildes

∂tA = A + (1 + ic1)∂
2
xA− (1 − ic3)|A|2A (1.12)

after dropping the tildes.

Now A is of order unity whereas the original amplitude scales like
√
ε. Also the long

length and time intervals in Eq. (1.8) rescale to order unity by multiplication with
√
ε and

ε to yield the slow variables x̃, t̃, respectively. All microscopic details of the studied system

(1.1) are now contained in the scales τc, ξc, gc and the two imaginary parts c1, c3 of the

coefficients, hence the name complex Ginzburg-Landau equation. Solutions of the CGLE

will be studied under variation of c1, c3. This corresponds to comparing realizations of the

studied system with different choices of the parameters in µ. The actual calculation of c1, c3

from µ is rather involved [30, 102, 103, 104]. The coefficients c1, c3 can alternatively be

obtained from quenching experiments [105, 106] (see above).

The CGLE (1.12) is invariant under translation in x and a constant phase shift A → Aeiθ.

The former shifts the long wave length modulation along the primary pattern and the latter

corresponds to a spatial shift of the primary pattern itself. The first term on the right hand

side of the CGLE (1.12) represents the growth of the unstable modes which is saturated

and stabilized by the last nonlinear term. Note the negative sign of the last term that

corresponds to the supercritical instability. In the subcritical case gc < 0 in Eq.(1.8) and

higher order terms have to be incorporated to balance the growth. The quintic complex

Ginzburg-Landau equation is such an extension [119].

The same strategy applied to the uniform instability of type IIIo with the ansatz

u(x, t) = u0 + A(x̃, t̃)e−iΩctu1 + c.c. (1.13)

also leads to the CGLE (1.12).

For an isotropic system with type Io instability one in general expects traveling waves

in both directions, left (L) and right (R), respectively. The appropriate ansatz reads

u(x, t) = u0 +
[
AL(x̃, t̃)e

i(−kcx−Ωct) + AR(x̃, t̃)e
i(kcx−Ωct)

]
u1 + c.c. . (1.14)

and yields two coupled CGLEs
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∂t̃AL − c0∂x̃AL = εAL + (1 + ic1)∂
2
x̃AL − (1− ic3)|AL|2AL

−g1(1− ic2)|AR|2AL (1.15)

∂t̃AR + c0∂x̃AR = εAR + (1 + ic1)∂
2
x̃AR − (1 − ic3)|AR|2AR

−g1(1− ic2)|AL|2AR (1.16)

The interaction of AL and AR via the last terms was studied theoretically [119] and

experimentally [120].

The CGLE (1.12) has two intensively studied limits : for c1, c3 → 0 it reduces to the

relaxational real Ginzburg-Landau equation (1.6) and for c−1
1 , c−1

3 → 0 it reduces to the

nonlinear Schrödinger equation which is used to describe electro-magnetic pulses in optical

fibres [121] and possesses soliton-like solutions.

1.4.2 Analytical results: solutions

A recent and detailed review of the CGLE has been presented by I.S. Aranson and L.

Kramer [122]. In the following we summarize previous results for simple patterns and their

instabilities. These will serve as starting point for the investigations in later Chapters.

The CGLE admits plane wave solutions

A0(x, t) =
√

1− q2 ei(qx− ωt) , (1.17)

with wavenumber q ∈ [−1, 1] and frequency ω = −c3 + q2(c1 + c3). The spatially uniform

oscillating solution A0(x, t) = eic3t is the limit case for vanishing q. In the full model (1.1)

the corresponding solution reads

u(x, t) = u0 +
√
ε

√
1− ξ2

c q
′2/ε

gc
ei[(kc+q′)x−ω̃t]u1 + c.c. + h.o.t. (1.18)

ω̃ = (Ωc − q′vcτc + q′2(c1 + c3)
ξ2
c

τc
− ε

c0 + c3

τc
) .

The solution departs from u0 as
√
ε which is typical for the supercritical oscillatory instability

and can easily be found in experimental data. The possible mode shift q′ ∈ [−√
ε/ξc,

√
ε/ξc]

is also of order
√
ε and measured in the original “fast” variables. Solutions with q′ 	= 0 have

a reduced amplitude.

Other known solutions are fronts, pulses, sources and sinks that are combinations of

different plane waves [119]. Well known examples are the Nozaki-Bekki hole solutions,

localized depressions of the modulus |A| emitting plane waves [125, 126]. Their stability

properties have been analysed in [127, 128, 129, 130].

1.4.3 Analytical results: stability

The linear stability analysis of the plane wave solution A0 (1.17) can be performed by

considering the perturbed solution

A(x, t) = (1 + a(x, t))A0(x, t) (1.19)
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a(x, t) = (δa+eikx + δa−e−ikx) eλkt . (1.20)

A straightforward but involved linearization in δa± gives the growth-rate λk [123]

λk = −k2 − 2iqc1k − (1− q2)±
√

(1 + c2
3)(1− q2)2 − [c1k2 − 2iqk− c3(1− q2)]2 . (1.21)

The first term (−k2) represents a typical feature of diffusive processes, perturbations of

short wavelength modes are quickly damped,i.e. their growth-rate λk has large negative

real part. Hence for most choices of c1, c3, q the secondary instability is of long wavelength

type. A Taylor-expansion of the growth-rate λk (1.21) up to fourth order in k leads to

λk = −ivgk −D2k
2 + iΩgk

3 −D4k
4 (1.22)

vg = 2q(c1 + c3) (1.23)

D2 = 1− c1c3 −
2q2(1 + c2

3)

1 − q2
(1.24)

Ωg = 2[c1(1 − q2) + 2c3q
2](1 + c2

3)
q

(1− q2)2
(1.25)

D4 = [c2
1(1− q2)2 + 12c1c3(1 − q2)q2 + 4(1 + 5c2

3)q
4]

1 + c2
3

2(1− q2)3
. (1.26)

The real part Re[λk] becomes positive (Re[λkHB
]=0) and the plane wave linearly unstable

for k < kHB =
√
−D2/D4 which is possible only for D2 < 0. This renders stable a band of

wavenumbers q ∈ [−qE, qE] with

q2
E =

1− c1c3

2(1 + c2
3) + 1 − c1c3

(1.27)

We will call this limit q = qE, k = 0 the Eckhaus instability [113] and reserve the term

Benjamin-Feir instability [114] for the uniform case qE = 0. See Fig.1.7 for an illustra-

tion. There appear other combinations of these terms in the literature. The homogeneous

oscillation is the most stable among these solutions and it becomes linearly unstable at

0 = 1 − c1c3 (1.28)

which is called the Benjamin-Feir-Newell criterion (BFN) [98]. In a two-dimensional CGLE

the transverse perturbations always satisfy Eq.(1.28) and are therefore never more unstable

than the longitudinal perturbations.

From Eq.(1.22) one easily obtains the wave length PHB of the mode with Re[λk]=0

beyond the Eckhaus instability

PHB = 2π

√
−D2

D4

(1.29)

and its velocity

vHB = −Im[λkHB
]/kHB . (1.30)

B. Janiaud et al. showed that the Eckhaus instability is supercritical only for small

enough wave number q and large PHB [56]. They experimentally observed stable modula-

tions of the underlying plane wave. For bigger q the instability is subcritical. See Chapter 3

for details.
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Fig. 1.7: Linear instability thresholds for plane wave solutions of the CGLE for c1 = c3. The curve denotes
the Eckhaus (1.27) and the square the Benjamin-Feir instability where the Benjamin-Feir-Newell criterion
(1.28) holds. Plane waves parametrized by their wavenumber q are stable to the left of the curve.

In general the Eckhaus instability is of convective nature [166, 124]. To lowest order

the perturbations travel with the group velocity vg of the plane wave. At larger values of

c1, c3 the instability becomes absolute [166, 124]. This distinction is less relevant for the

phenomena studied here since the latter involve perturbations of finite size and saturated

modulations very different from the plane waves. 4

1.4.4 Numerical results: phase diagram

As a function of c1 and c3, the CGLE exhibits two qualitatively different spatio-temporal

chaotic states known as phase chaos (when A is bounded away from zero) and defect chaos

(when the phase of A displays singularities where A=0). See Fig.1.8 for examples of these

states.

The transition from phase to defect chaos can either be hysteretic or continuous; in the

former case, it is referred to as L3, in the latter as L1 (Fig. 1.9). In order to characterize

defect chaos the concepts from low-dimensional deterministic chaos [131] had to be extended.

For STC the attractor dimension grows proportional to the system size [30, 20, 21] hence

one uses dimension densities,i.e. attractor dimension per volume. One may compute the

dimension density from the Lyapunov spectrum [132] using the Kaplan-York conjecture

[133]. The dimension density of defect chaos was shown to increase with the coefficients

c1, c3 [134, 135] and is larger than that of phase chaos [136]. Another concept is determining

the density of defects,i.e. total number of defects divided by system size and duration of the

4If a localized perturbation grows but travels away such that the perturbation decays at any fixed
positions for long times then the state is called convective unstable [165]. If the perturbation grows faster
and destabilizes the state at any fixed position then it is called absolute instability [29]. Transitions from
convective to absolute instability have been observed analytically [166, 167] as well as numerically [168, 169]
and experimentally [170, 120].
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Fig. 1.8: Gray-scaled representation of phase chaos: (a) the modulus |A(x, t)| (low values=dark,
high=bright), (b) the phase arg(A(x, t)) (0 and 2π=dark, π=bright) and defect chaos: (c) the modulus
|A(x, t)| with some defects labelled by white arrows and (d) the phase arg(A(x, t)) which jumps by 2π at
the same position in (x, t). Both states of STC are distinguished by the absence (phase chaos in a,b) or
presence (defect chaos in c,d) of space-time defects. Parameters are c1 = 3.5, c3 = 0.6 (a,b) and c3 = 0.8
(c,d), respectively.
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Fig. 1.9: Phase diagram of the one-dimensional CGLE [137, 138] showing the BFN, L1, L2 and L3 transitions.
The same transitions are observed in higher dimensions [146, 147] with L1, L3 closer to BFN. Between the
L2 and L3 curves, there is the hysteretic regime where either phase or defect chaos can occur; in the latter
case, defects persist up to the L2 transition.

simulation. The defect density increases above the transition to defect chaos [137, 138],i.e.

for increasing c1, c3. T. Bohr et al. compared typical length scales of structures finding

much smaller scales in defect chaos than in phase chaos [21]. Localized structures have

also been characterized in terms of their convective Lyapunov spectrum [140]. A. Torcini

and P. Grassberger [58, 141] as well as R. Montagne et al. [59, 142] characterized the

transition from phase to defect chaos by the vanishing of wound-up phase chaos,i.e. above

the transition the chaotic asymptotic state always has zero average phase gradient. The

transition was suggested [141] to resemble a crisis [143] that has been studied by C. Grebogi

et al. [144]. All these investigations showed that phase chaos can be considered a rather

“mild” realization of STC whereas defect chaos is a very “strong” one.

Despite these intensive studies [21, 58, 59, 119, 134, 135, 136, 137, 138, 139, 140, 141,

142, 145, 146, 147] , the phenomenology of the CGLE and in particular its “phase” diagram
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[137, 138] are far from being understood. Moreover, it is under dispute whether the L1

transition (see Fig. 1.9) is sharp, and whether a pure phase-chaotic (i.e. defect-free) state

can exist in the thermodynamic limit [135, 147]. Note that, since the CGLE is a universal

model system, the precise location of the transition curves is important. If future work

provides values of the coefficients for new experimental systems then the typical behavior can

be estimated from the location within the phase diagram. We focus on the main quadrant

of the phase diagram where the Benjamin-Feir instability occurs and the phenomena of

interest are observed. However, there exists a symmetry that maps two half planes of the

phase diagram onto each other c1 → −c1, c3 → −c3.

1.4.5 Analytical results: phase equation

Phase equations are based on the observation that close to the onset of phase chaos (near

the Benjamin-Feir-Newell curve) the amplitude is “slaved” to the phase dynamics, φ(x, t) =

arg(A). In this situation a phase equation can be obtained by a gradient expansion [22, 25].

To lowest order the expansion reads

∂φ(x, t)

∂t
= Ω(1)

2

∂2φ

∂x2
+ Ω(2)

2

(
∂φ

∂x

)2

+ Ω(1)
4

∂4φ

∂x4
(1.31)

and is known as the Kuramoto-Sivashinski equation [148, 149]. The coefficients are Ω
(1)
2 =

1− c1c3,Ω
(2)
2 =−(c1 + c3) and Ω

(1)
4 =−c2

1(1 + c2
3)/2.

Recently, Abel et al. [150] numerically quantified the increasing discrepancies between

the phase equation and the full dynamics in the CGLE with increasing distance from the

Benjamin-Feir-Newell curve.

There is no transition to defect chaos in the Kuramoto-Sivashinski equation [22] and

the phase in phase chaos is always well defined. On large scales the phase field has been

suggested [151] to follow the Kardar-Parisi-Zhang equation (KPZ) [152]

∂th(x, t)

∂t
= ν̃

∂2h

∂x2
+

λ̃

2

(
∂h

∂x

)2

+ η(x, t) (1.32)

which also models the kinetic roughening of stochastic interfaces h(x, t). For literature on

the Kardar-Parisi-Zhang equation see [153] or the comprehensive reviews [154, 155]. The

leading order terms of Eq.(1.31) are indeed equal to those of Eq.(1.32). The forth order term

in Eq.(1.31) and higher order terms in other phase equations give contributions that fluctuate

on short scales which may be accounted for by the noise term in Eq.(1.32). However, it is

not clear and has been tested only numerically [147] if the underlying deterministic processes

of phase chaos lead to a δ-correlated Gaussian noise η(x, t). Again the numerical approach

limits the study to large but finite systems which may still be smaller than crossover scales

of Eq.(1.32). Note the parameters ν̃, λ̃ need to be extracted from the same numerical study.
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1.5 Technical Tools

A standard tool in nonlinear science is the numerical simulation of the dynamics. That

involves a time stepping and a spatial discretization of the model (1.1). The steps need to

be chosen small enough to ensure a correct representation of the dynamics. This is often the

first and straightforward approach applied to a model. It reproduces phenomena and allows

one to test suggested mechanisms. The phenomena studied in the following Chapters (except

Chapter 5) have been observed in simulations before,e.g. the phase diagram (Fig.1.9) of the

one-dimensional CGLE was derived from simulations [137, 138].

However, for systems of large spatial size this approach is particularly demanding in

computation time. Especially if one studies STC that may involve large distances and long

transients. Therefore simulations provide (a large number of) examples at chosen values

of the parameters and specific to the size and duration of the simulation. This also is the

reason for ongoing discussions about the location and properties of the transition from phase

to defect chaos in the one-dimensional CGLE [21, 137, 138, 134, 135].

One possibility to circumvent this is the change to a coarse grained toy model with rough

discretization in space (coupled ordinary differential equations), or space and time (coupled

map lattice [156, 157]) or space, time and the field (cellular automaton [158, 159]). Such

models may be used to study universal mechanisms but require some experience in order to

incorporate the essential features and interactions. Throughout this Thesis such techniques

are not employed.

In order to get an understanding of the behaviour one has to facilitate additional more

efficient methods such as bifurcation and stability analysis [6, 7, 8, 9]. Applying this analysis

to complex patterns one often depends on numerical tools.

We will use the well established software package Auto97 [160, 161] to perform bifurca-

tion analysis and continuation of solutions under parameter variation. AUTO97 is free-ware

and can be downloaded from the URL http://indy.cs.concordia.ca/auto/. It treats a

set of nonlinear ordinary differential equations (ODEs) which restricts the class of solutions

to coherent structures that retain their shape while traveling. 5 Also the complex pattern

MAW will be expressed as coherent structure. Hence the calculation of coherent structures

to partial differential equations amounts to continuation of stationary (within a comoving

reference frame) solutions to a boundary value problem. Periodic boundary conditions are

applied and two constraints are needed to select a unique solution out of the two-parameter

family of MAWs.

We fix the spatial size of the system L = P and the average phase gradient ν by an

integral constraint for the solution. Thereby two equations are added to the system of

ODEs. On the other hand constraints require additional variables (free parameters) to

be adjusted. This is a special capability of Auto97. Often the primary continuation

parameter is c1 or c3 while parameters of the MAW ansatz (v and ω) are calculated. An

additional pinning condition (one derivative of the solution set to zero at the boundary) is

5Especially in the literature on hydrodynamics definitions of “coherent structure” are used that allow
an evolution in any comoving reference frame. In the field of pattern formation the term is defined more
restrictiv, as quoted here.
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used to suppress trivial spatial translation. See Appendix A for a detailed discussion. This

approach can be considered “quasi-analytical” and it provides numerical representations of

the exact solutions. Results,i.e. quantities of the solutions versus varied parameter, are

presented in bifurcation diagrams.

Many other continuation programs,e.g. CANDYS/QA [162] and RWPKV [163], only

allow one to set the system size but no additional constraints and therefore only compute

one free parameter (velocity v). This is sufficient for simple coherent structures and was ex-

tensively used in the field of pattern formation. The present systematic bifurcation analysis

of complex patterns (the two-parameter family of MAWs) is the first to our knowledge and

makes use of the additional capabilities of Auto97.

A subsequent investigation of the role of these solutions for the state of the system is

necessary. At this stage stability analysis of the computed solutions provides some answers.

The linear stability,i.e. against infinitesimal perturbations, is computed via a Fourier de-

composition of the eigenmodes which are functions of the spatial variables. This leads to

an eigenvalue problem. The eigenmodes partly determine in what manner a possible insta-

bility changes the solution. We will compute the eigenmodes with largest real parts of their

eigenvalues λ. For details see Appendix C.

In an infinitely extended system there are infinitely many eigenvalues and corresponding

eigenmodes. The set of eigenvalues forms the continuous spectrum which lies on continuous

curves in the plane (Re[λ],Im[λ]). We approximate this spectrum by analysing a finite

system with periodic boundary conditions. This procedure was shown to be exact [164].

Numerical simulations of a finite system with periodic boundary conditions always detect

the convective instability while boundary conditions that absorb perturbations will stabilize

the state until the absolute instability threshold. Simulations are needed to represent the

dynamics of a state that is not an infinitesimal perturbation of a known solution. We will

also use simulations to illustrate the mechanisms that are infered from the bifurcation and

stability analysis. The innovative time-splitting code of A. Torcini [141] was employed.

The dynamics of A(x, t) in a one-dimensional system may be presented as a movie [171]

showing the temporal evolution of a function,e.g. |A(x)|, or by a space time plot, a two-

dimensional graph with space x as the abscissa and time t as the ordinate. The values of

|A|(x, t) are encoded in gray-scale (black corresponds to small and white to large values) at

each pixel. This is the preferred representation throughout the Thesis.





2 Transition from Phase to Defect

Chaos

2.1 Introduction

In this Chapter the relationship between modulated amplitude waves MAWs and large scale

chaos is studied in detail, providing a comprehensive description of various aspects of the

CGLE chaotic dynamics. The focus is set on the transition from phase to defect chaos for

the one-dimensional complex Ginzburg-Landau equation (CGLE)

∂tA = A + (1 + ic1)∂
2
xA− (1 − ic3)|A|2A , (2.1)

where c1 and c3 are real coefficients and the field A = A(x, t) has complex values (same as

Eq.(1.12)).

In many cases the evolving patterns show an erratic behavior in space and time: such

behavior is commonly referred to as spatio-temporal chaos (STC) [22, 30, 25, 29, 122] and

was observed experimentally in a variety of systems [43, 44, 45, 48, 50, 51, 52, 53, 54, 55,

56, 67, 69, 70]. Compare also Section 1.3.2.

For different choices of the coefficients numerical investigations of the CGLE have re-

vealed the existence of various steady and spatiotemporally chaotic states [22, 30, 25, 29,

122, 56, 57, 58, 59, 119, 134, 135, 136, 137, 138, 139, 140, 141, 142, 145]. Many of these

states appear to consist of individual structures with well defined propagation and interac-

tion properties. It is thus tempting to use these structures as building blocks for a better

understanding of spatiotemporal chaos. Here we will essentially follow such an approach.

As a function of the coefficients c1 and c3, the CGLE (2.1) can exhibit two qualitatively

different spatiotemporal chaotic states known as phase chaos (when the modulus |A| is at

any time bounded away from zero) and defect chaos (when |A| can vanish leading to phase

singularities). Compare Fig. 1.8 in Section 1.4.4 and see the “phase diagram” Fig. 2.1. It is

under dispute whether the transition from phase to defect chaos is sharp or not, and if a pure

phase-chaotic, (i.e., defect-free) state can persist in the thermodynamic limit [135, 147]. We

will address these issues by suggesting a mechanism for the formation of defects related to

the range of existence of MAWs.

The outline of this Chapter is as follows: Section 2.2 is devoted to the study of the

coherent MAW structures. In Section 2.2.2 we study the bifurcation diagram of the MAWs,

starting from the homogeneous oscillation. In Section 2.2.3 the incoherent dynamics of
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Fig. 2.1: Phase diagram of the CGLE, showing the Benjamin-Feir-Newell curve (thin dot-dashed) where the
transition from stable homogeneous oscillations to phase chaos takes place. The curves L1 (long dashed),
L2 (thin dashed) and L3 (dashed) as obtained in [137, 138] separate the various chaotic states. Also the
results obtained in this Chapter 2 are included, for details see the text. The filled circles correspond to
our estimates of the L1 and L3 transitions based on direct simulations of the CGLE along the 17 cuts in
coefficient space that we studied. The open circles correspond to the location in coefficient space where
the maximal inter-peak spacing pmax is equal to the maximal MAW period PSN . Only small discrepancies
between these two can be observed. Finally the full curve shows the PSN → ∞ limit which we conjecture
to be a lower boundary for the transition from phase to defect chaos.
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near-MAW structures is presented. We show that for p > PSN , i.e., beyond the saddle-

node bifurcation, near-MAWs evolve to defects. To illustrate the origin of the saddle-node

bifurcations in Section 2.2.4 we compare bifurcation diagrams of coherent structures for

different phase gradient expansions of the CGLE. For the lowest order expansion (known

as the Kuramoto-Sivashinsky equation [22]) the saddle-node bifurcation is absent while it

is captured by expansions of higher order. This explains why the divergence of the phase

gradient was exclusively observed in simulations [139] of higher order expansions. In Section

2.3 we study various aspects of spatiotemporal chaos in the CGLE, and relate the observed

continuous (L1) and discontinuous (L3) transitions (see Figs. 1.9,2.1) to properties of the

MAWs. The transition to defect chaos takes place when near-MAWs with periods larger

than PSN occur in a phase chaotic state. In Section 2.3.4 the typical values of p in the

phase chaotic regime are related to the competition of two instabilities of the MAWs, and

it is possible to give a good estimate for the numerically measured transition from phase to

defect chaos from these considerations. A discussion of the presented results and some final

remarks are reported in Section 2.4.

2.2 Modulated Amplitude Waves

In this Section we study the main properties of modulated amplitude waves (MAWs) with

ν = 0. First, in Section 2.2.1 the coherent structure framework that we use to describe the

MAWs is introduced. The bifurcation diagram of MAWs is explored in Section 2.2.2, with a

particular focus on the saddle-node bifurcations that limit the range of existence of MAWs.

In Section 2.2.3 we study the nonlinear evolution of near-MAWs that are “pushed” beyond

their saddle-node bifurcation and show that this leads to the formation of defects. Finally, in

Section 2.2.4 a bifurcation analysis of MAW-like coherent structures is performed in various

phase equations that have been proposed as approximated models for the phase chaotic

dynamics of the CGLE, and we show that only higher order phase equations reproduce the

saddle-node bifurcation.

2.2.1 Coherent structures approach

Coherent structures in the CGLE are uniformly propagating structures of the form

A(x, t) = a(x− vt)eiφ(x−vt)eiωt , (2.2)

where a and φ are real-valued functions of z := x − vt. Coherent structures have been

studied extensively [141, 119, 145] and play an important role in various regimes of the

CGLE [57, 58, 59, 141, 142, 119, 145].

The restriction to uniformly propagating structures reduces the CGLE to a set of three

coupled nonlinear ordinary differential equations (ODEs) 1. These ODEs are readily found

1By substituting κ :=az/a one reproduces the form of the ODEs used in [119] which is more appropriate
for studies of fronts.
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Fig. 2.2: Examples of ODE solutions and corresponding amplitude and phase gradient profiles of MAWs.
(a) Homoclinic orbit for c1 =0.55 and c3 =2; (b,c) corresponding profiles. (d) Limit cycle for c1 =0.60, c3=2
and P = 30; (e,f) corresponding profiles. Dots in (a,d) denote the unstable fixed point (1, 0, 0) from which
these orbits emerged.

by substitution of Ansatz (2.2) into the CGLE (2.1) and read as:

az = b

bz = ψ2a− γ−1[(1− c1ω)a + v(b + c1ψa)− (1 − c1c3)a
3] (2.3)

ψz = −2bψ/a + γ−1[c1 + ω + v(c1b/a− ψ)− (c1 + c3)a
2] ,

where b :=az, ψ :=φz, and γ :=1 + c2
1. Solutions of the ODEs (2.3) correspond to coherent

structures of the CGLE.

The simplest relevant solutions of these ODEs are the fixed points given by (a, b, ψ) =

(
√

1− q2, 0, q); these correspond to plane wave solutions of the CGLE where A(x, t) =√
1− q2 exp i(qx + ωt) and ω = c3 − q2(c1 + c3). An example of more complex solutions

of the ODEs (2.3) are heteroclinic orbits which correspond to coherent structures that

asymptotically connect different states. Examples of such structures are fronts that connect

nonlinear plane waves to the homogeneous state A = 0 [119] and Nozaki-Bekki holes that

connect plane waves of different wavenumber q [119, 125].

Here we present an extensive study of the structures that are associated with the limit

cycles of the ODEs (2.3) 2. These limit cycles correspond to spatially periodic solutions of

the CGLE that we have already referred to as MAWs (Fig. 2.2). For appropriate choices of

2For completeness we point out that the ODEs (2.3) also contain complicated multi-loop orbits that
correspond to more complex coherent structures which have a small basin of attraction and little relevance
for the dynamics of the CGLE.
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c1 and c3, the period P of these MAWs can be made arbitrarily large, and in this limit the

limit cycles approach a homoclinic orbit connecting the stable and unstable manifold of one

of the plane wave fixed points (Fig. 2.2a). Some of these infinite period MAWs have also

been referred to as “homoclinic” holes, and have been studied extensively recently [145, 172];

they are qualitatively different from the well-known Nozaki-Bekki holes [125].

Even if the coefficients c1 and c3 are fixed, MAWs are not uniquely determined. Counting

arguments, similar to those developed in [119], yield that in general we may expect a two-

parameter family of solutions. Let us first perform the counting for the homoclinic orbits.

As shown in [145], these orbits connect the one-dimensional unstable manifold of a fixed

point with its two-dimensional stable manifold. In general, one needs to satisfy one condition

to make such a connection, in other words, such a homoclinic orbit is of codimension one.

Since the coherent structure Ansatz (2.2) has two freely adjustable parameters (ω and v),

we therefore expect a one parameter family of homoclinic orbits.

The situation for the limit cycles of the ODEs is even simpler. Limit cycles are of

codimension zero in parameter space, and so we expect a two parameter family of limit

cycles. In other words, if we have found a limit cycle for certain values of v and ω, then we

expect this limit cycle to persist for nearby values of the parameters v and ω.

Obviously, we can parameterize this family of limit cycle coherent structures by v and

ω, but this is not very insightful. Instead we will use the following two quantities that are

more directly accessible in studies of the CGLE: the spatial period P of the MAWs, and

their average phase gradient ν := (
∫ P
0 dxφx)/P . Note that for homoclinic holes, P simply

goes to infinity; thus homoclinic orbits and limit cycles are members of a single family.

The multiplicity of the MAWs can also be obtained by considering the instability of

the plane wave solutions from which the MAWs emerge [173] (see Section 2.2.2 below).

The plane waves form a one-parameter (q) family and undergo the well-known Eckhaus

instability when the coefficients c1, c3 are increased beyond certain critical values which

depend on q. In the unstable regime, a plane wave with wavenumber q is unstable to a

whole band of perturbations with wavenumbers k ∈ [0, kmax(q)] [25, 29]. For finite systems

of size L, this instability thus only appears when L > Lmin = 2π/kmax. Therefore for each

q there is a unique one-parameter (L) family of perturbations that can render the plane

wave unstable and at each of the corresponding bifurcations a new MAW solution emerges.

Hence also by this line of reasoning MAWs form a two-parameter family. Note that the

wavenumber q of the plane wave determines the average phase gradient ν and the length L

has to be compatible with the spatial period P . For L = Lmin, typically a MAW branch

with period P = L is born.

2.2.2 Bifurcation scenario for MAWs

The general counting arguments given in the previous Section do not provide information on

the range of existence of MAWs as a function of the coefficients c1 and c3 and the parameters

ν and P . Here we will focus our analysis on the ν = 0 case since this is most relevant for
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Fig. 2.3: Bifurcation diagrams for fixed c3 = 2 and P = 30, showing Hopf (filled square), drift pitchfork
(open diamond) and saddle-node (triangle) bifurcations. The dot-dashed line represents the homogeneously
oscillating solution of the CGLE, while lower and upper branch MAWs are represented by full and dashed
curves respectively. (a) Overview of the maximum phase gradient of the MAWs as function of c1, (b)
close-up, (c) the minimum of |A|, and (d) the velocity v. For details see text.
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the transition to defect chaos 3; the ν 	= 0 case will be treated in Chapter 3.

All bifurcation computations have been performed with the aid of the software package

AUTO97 [161]. AUTO97 can trace MAW solutions through parameter space, and when

it detects bifurcations it can follow the newly emerging branches. See Appendix A for

a detailed discussion of the method. AUTO97 discretizes the ODEs (2.3) on a periodic

domain of length L, and L will play the role of the period P of the MAWs. Control of

the average phase gradient ν = ν0 is implemented via the integral constraint
∫ L
0 ψdz =

Lν0. Since periodic boundary conditions result in translational invariance, we introduce an

additional “pinning” condition az(0) = 0 in order to obtain unique solutions.

Under these conditions, the continuation procedure works as follows. First of all, ν and

P are set to fixed values, and throughout this paper we will set ν=0. Starting from a known

solution such as a plane wave or a coherent structure obtained by other means, AUTO97 is

set up to trace the MAWs along trajectories in c1, c3 space, while calculating the parameters

ω and v of these MAWs.

The results of our bifurcation analysis are summarized in Fig. 2.3. When c1 or c3 is

increased, the uniformly oscillating state of the CGLE (A(x, t)=eic3t) becomes unstable via

a Hopf bifurcation, from which stationary MAWs emerge (Section 2.2.2). These stationary,

left-right symmetric solutions undergo a drift pitchfork bifurcation, which leads to left and

right traveling MAWs (Section 2.2.2, see also Fig. 2.3b); as discussed later, these are the

solutions relevant for the dynamics in the phase chaotic regime. Following these branches

of traveling MAWs, we encounter a saddle-node bifurcation where an “upper” and “lower”

branch of MAWs merge (Section 2.2.2, see also Fig. 2.4); this bifurcation limits the range

of existence of MAWs and is closely related to the formation of defects. The upper branch

MAWs can be continued back to negative values of c1, where they terminate in a solution

consisting of a periodic array of shocks and stationary Nozaki-Bekki holes [125]. Upper

branch MAWs with P → ∞ have been studied under the name homoclinic holes [145, 172].

It should be noted that, without loss of generality, we focus here on solutions with v>0,

for which the main peak of the phase gradient profile is positive (see Fig.2.4). Solutions with

v < 0 can be obtained from right moving MAWs by applying the mapping x → −x, z →
−z, v → −v, az → −az, φz → −φz.

Benjamin-Feir instability - Hopf bifurcation

Since the average phase gradient ν is conserved across bifurcations, we start the continuation

procedure from the uniformly oscillating solution A(x, t)=eic3t that has ν=0. On an infinite

domain this uniformly oscillating solution becomes unstable via the so-called Benjamin-Feir

instability when c1c3 ≥ 1 [30]. In a finite domain of size L, the onset of this instability is

3The maximal “conserved” (during time evolution) average phase gradient vanishes approaching the
transition to defect chaos [58, 59]. This result is rigorous only on scales of the system size but for smaller
portions ν can fluctuate around 0. Typically we observe quasi-coherent structures (near-MAWs) in the
phase chaotic regime with associate ν-values in the interval [−0.01,+0.01]. MAWs with such small ν do not
deviate much from the ν = 0 MAWs, therefore the comparison of the observed structures with the ν = 0
MAWs is satisfactory.
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Fig. 2.4: (a) Phase gradient and (b) amplitude profiles of a lower branch (full curve) and upper branch
(dashed curve) MAW, obtained for c1 =0.6, c3=2, P =30.

shifted to higher values of the product c1c3
4; this finite size effect is relevant for our studies

since the spatial period L = P is fixed in the continuation procedure.

In the ODEs (2.3), the fixed point (a, b, ψ)=(1, 0, 0) corresponds to the homogeneously

oscillating solution. For given values of the period P , this fixed point undergoes a Hopf

bifurcation (HB) at values of c1 and c3 where in the CGLE (2.1) the mode with wavenumber

2π/P becomes unstable (P = PHB). This Hopf bifurcation was analytically shown to be

supercritical for sufficiently small ν and large P in earlier studies [56, 173]; our numerical

results are consistent with this. For finite P , the solution bifurcating from the fixed point

is a limit cycle which approaches a homoclinic orbit in the limit P → ∞. The solutions of

the CGLE that correspond to these orbits are stationary, reflection symmetric MAWs; an

example of these is shown in Fig. 2.9a.

Drift pitchfork bifurcation

When the CGLE coefficients c1 and/or c3 are increased further, the stationary MAW under-

goes a drift pitchfork bifurcation [174] from which two new branches of asymmetric (v 	=0)

MAWs emerge (see Fig. 2.3b); one of these moves to the left, one to the right. The locations

of both the Hopf and the drift pitchfork bifurcation approach the Benjamin-Feir-Newell

curve for large P (Fig. 2.5a), while for smaller P the drift pitchfork occurs for increasingly

larger coefficients c1 and c3. However, only when these coefficient lie in the range shown as

the shaded area in Fig. 2.5b, the pitchfork bifurcation can occur. Otherwise, only station-

ary MAWs are found. For increasing c1 and c3 these MAWs become pulse-like and finally

approach the solitonic solutions of the nonlinear Schrödinger equation [119] (Fig. 2.5c,d).

After the branch of stationary MAWs has become unstable via the drift pitchfork bifur-

cation, it terminates in a period doubling bifurcation of a MAW branch with half the period.

In Appendix B an analytical approximation for the location of the drift pitchfork bifurcation

is derived. For the case ν 	=0, the initial plane wave already breaks the reflection symmetry,

4For finite size systems the smallest allowed wavevector is kmin = 2π/L, therefore the uniform oscillation
becomes unstable for kmin = kHB and this condition allows to derive the corresponding critical values of
the parameters c1 and c3. Compare Section 1.4.3 and Eq.1.29 for an approximation.
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infinite domains. (c) Example of a bifurcation diagram for large values of the coefficients c1 = 10, c3 = 5
where the drift pitchfork bifurcation does not occur. For increasing P the MAW solutions approach regular
arrays of stationary pulses; an example of such a pulse is shown in (d) for P = 30.
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the initial MAW has nonzero velocity and the drift pitchfork bifurcation is replaced by its

typical unfolding [6].

Saddle-node bifurcation

Along the branch of right traveling MAWs that we described above, the maximum of the

phase gradient grows with increasing c1 and c3 until a saddle-node (SN) bifurcation is

reached, where these MAWs merge with another branch of MAW-like solutions. To distin-

guish these branches we refer to them as the “lower” and the “upper” branch; for examples

see Figs. 2.3,2.8. The lower branch MAWs are the key to understand more of the phenom-

enology of phase chaos. The upper branch MAWs can, similarly to the lower branch MAWs,

be parameterized by ν and P , but for the same parameters, they present more pronounced

modulations (see Fig. 2.4).

The most important aspect of the saddle-node bifurcation is that it limits the range

of existence of MAWs, since we will show that this limit is responsible for the transition

from phase to defect chaos. Fixing ν = 0, the locations of these bifurcations form a two-

dimensional manifold in the three dimensional space spanned by c1, c3 and P . In Fig. 2.6a

the saddle-node curves are shown in the c1, c3 coefficient plane for a number of fixed periods

P ; for larger P , the values of c1, c3 where the bifurcation takes place decrease. In Fig. 2.6b

the saddle-node curves for a number of fixed values of c3 are shown in the P, c1 plane;

for larger c3 (c1), the saddle-node occurs for smaller values of P and c1 (c3) 5. Once the

coefficients c1 and c3 are fixed, we define PSN as the period for which the saddle-node

bifurcation occurs. Note that there is also a range of coefficients c1 and c3 (between the

P → ∞ and c1c3=1 curve where the saddle-node bifurcation does not occur.
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Fig. 2.7: Bifurcation diagram for aperiodic solutions at c3 = 2.0, L = 2 ∗ 30. The branch connects 2 PD
bifurcations of periodic MAWs with period P = 30.

Period doubling bifurcation

As a short side-remark some information shall be given on more complex combined MAWs

which are only important in short systems of a few periods P . 6 In systems of size L multiple

of P the branch of periodic MAWs undergoes a sequence of period doubling bifurcations

(PD). Branches of aperiodic solutions emerge which locally have a similar shape as the

periodic MAW but differ in the extent of the plateau region in the spatial profile. The

PD bifurcations may be sub- or supercritical depending on parameters. Fig. 2.7 shows an

example for L = 2∗30. The branch connects 2 PD bifurcations of MAWs with c3 = 2.0, P =

30 (Fig. 2.3). Their lower branch encounters 3 such pairs of PD bifurcations. In Sec. 2.3

the system size is chosen sufficiently large and the combined coherent structures have a

vanishing probability of surviving. We observe the single MAW description to be restored

for big system size.

2.2.3 Evolution of perturbed MAWs

In this Section we will show that many basic aspects of the phenomenology of the CGLE

can be understood from a typical bifurcation diagram of MAWs such as shown in Fig. 2.8.

We have chosen fixed coefficients c1 = 0.65 and c3 = 2 and varied the spatial period P

of MAWs that exist at these coefficients. Three families of solutions are represented: the

5An exception on this rule occurs for large c1, where the dependence of c3 on P at the saddle-node
becomes non-monotonic.

6If one studies phase chaos in short systems extending over a few periods P these combined coherent
structures play a role. Their existence can prevent defects up to their SN although the distance between
neighbouring humps exceeds the period of all existing single MAWs.
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Fig. 2.9: The evolution of an unstable homogeneous state towards lower branch MAW dynamics, for c1 =3
and c3 =0.6. The coefficients c1 and c3 are chosen such that no saddle-node bifurcation occurs for any P .
(a) Evolution towards a stable stationary lower branch MAW for system size L=25 and (b) towards a stable
drifting lower branch MAW for system size L=30. Note that for the coefficients chosen, the drift pitchfork
bifurcation occurs at P = 27.7. (c) Evolution towards phase chaos for system size L = 100. Incoherent
evolution of structures characterized by local concentrations of phase gradients can be clearly observed. We
think of these structures as “near” MAWs.

homogeneous oscillation, the lower branch (LB) and the upper branch (UB) MAWs. The

shaded area schematically indicates the near-MAW structures observed in phase chaotic

states such as shown in Fig. 2.19 (f,i,j). The arrows in Fig. 2.8 represent the dynamical

evolution of perturbed MAWs, and their direction can be obtained by performing a linear

stability analysis.

Linear stability - As discussed in Section 2.2.2, the homogeneous solution is stable

against short wavelength perturbations (arrow 1), and turns unstable via the Hopf bifur-

cation that also generates the lower branch MAWs (arrows 2). As discussed in [145, 172],

upper branch MAWs have at least one unstable eigenvalue, and the dynamical evolution of

perturbations is directed away from upper branch MAWs (arrows 3,4).

The linear stability of lower branch MAWs will be discussed in more detail in Section

2.3.4. It turns out that perturbations of lower branch MAWs can evolve in many ways, but

in almost all cases the ensuing dynamics remains close to the lower MAW branch (shaded

area in Fig. 2.8). The only exception we have found to this rule is when a MAW is pushed

beyond the saddle-node bifurcation (arrow 5).

Nonlinear evolution - Here we want to go beyond the linear analysis and study the

nonlinear evolution of MAWs along the arrows of Fig. 2.8. The examples (at different

choices of the coefficients) of the dynamics shown below are not exhaustive, but should

serve to illustrate typical behavior which appears to be very robust.

arrow 2 - When the uniform oscillation becomes linearly unstable perturbations grow.

To the left of the saddle-node, perturbations evolve to dynamics dominated by lower branch

MAWs (Fig. 2.9). For small system sizes, stable MAWs may occur (Fig. 2.9a,b), while

for larger systems periodic sequences of MAWs are unstable with respect to the so-called

interaction or splitting instabilities [176] that will be discussed in Section 2.3.4. Hence a

perturbed unstable homogeneous state typically does not converge to a train of coherent

MAWs, but instead evolves to phase chaos (Fig. 2.9c). In the context of the bifurcation

diagram, note that the disordered structures observed in the phase chaotic evolution are
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quite similar to lower branch MAWs. The shaded area in Fig. 2.8 represents this “near-

MAW” behavior.

arrows 3,4 - Upper branch MAWs are always unstable due to the positive eigenvalue

associated with the saddle-node bifurcation. The resulting incoherent dynamics has been

studied quite extensively in the context of hole-defect dynamics [145, 172]. (i) When a

perturbation has pushed an upper branch MAW towards the “lower” part of the bifurcation

diagram, the structure decays towards lower branch MAWs (arrow 3). An example of a

space time plot for the decay towards a lower branch MAW is shown in Fig. 2.10a. (ii)

When the perturbation pushes the MAW towards the “upper” side of the diagram, the

phase gradient peak that characterizes MAWs grows without bound, and at the same time

the minimum of |A| approaches zero: a defect is formed (arrow 4). The dynamics after

such a defect has formed depends on the values of the coefficients c1 and c3. Two different

examples are shown in Fig. 2.10b,c. For more details see Section 2.3.

arrow 5 - So far we have encountered two scenarios: if the phase gradient peak of a

structure is “larger” than that of an upper branch MAW, then it will grow out to form

defects. If it is “smaller”, it will decay back in the direction of the lower branch MAWs.

The latter process frequently occurs in phase chaos, preventing the formation of defects,

while the former process needs to be initiated by appropriate initial conditions. However,

when the upper and lower branches approach each other and disappear in a saddle-node

bifurcation, there are no structures left to prevent arbitrary small perturbations to grow out

to defects. This dynamical process, which is represented by arrow 5 in Fig. 2.8, is the core

of our argument: defect formation takes place beyond the saddle-node bifurcation.

2.2.4 Breakdown of phase description

An alternative approach to describe the creation of defects from phase chaotic states is via

blow-ups in so-called phase-equations [139]. Phase equations are based on the observation

that close to the onset of phase chaos (near the Benjamin-Feir-Newell curve) the amplitude
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is “slaved” to the phase dynamics. In this situation a phase equation can be obtained by

a gradient expansion [25, 29]. The expansion including all parity-symmetric terms up to

fourth order [139] reads

∂φ
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2

∂2φ

∂x2
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2
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3),Ω

(4)
4 =−2(1 + c2

3). The lowest order description of phase chaos is obtained when the

parameters Ω(2)
4 ,Ω(3)

4 and Ω(4)
4 are set equal to zero; the resulting equation is known as the

Kuramoto-Sivashinsky equation [22]. In this limit one can derive an analytic scaling relation

for the coefficients at bifurcation points, see Appendix B.

The phase equations with higher order terms included have been studied via direct

integration by Sakaguchi [139]. For the full Eq. (2.4), Sakaguchi observed finite time

divergences of the phase gradient for coefficients close to the transition from phase to defect

chaos in the CGLE. He attributed such divergences to the occurrence of defects in the

CGLE. No blow-up of the phase gradient is observed for Eq. (2.4) without the last term,

or for the simple Kuramoto-Sivashinsky equation. Recently, Abel et al. [150] quantified

the increasing discrepancies between the phase equations of different orders and the full

dynamics in the CGLE with increasing distance from the Benjamin-Feir-Newell curve and

identified the relative importance of the various terms in Eq. (2.4).

Since the essential ingredient of our theory is the occurrence of a saddle-node bifurcation,

we have investigated the bifurcation scenario for various truncations of the phase equations

(2.4). In the context of phase dynamics, our Ansatz (2.2) becomes of the form

φ(x, t) = φ̃(x− vt) + (ω − c3)t . (2.5)

We have studied MAW-like structures occurring in the phase equations by employing the

same methodology as for the CGLE; the average phase gradient value ν is fixed to 0 and P

parameterizes the spatial period of the MAW. In Fig. 2.11 we compare bifurcation diagrams

and MAW profiles for different expansions at the parameters c1 = 3.5, P = 50.

For all phase equations considered here the coherent structures are again born in a

Hopf and undergo a drift pitchfork bifurcation, beyond which the maximal phase gradients

increase. This leads to increasing discrepancies between different approximations. In par-

ticular, the coherent structures for Eq. (2.4) exhibit saddle-node bifurcations at parameter

values not far from those for corresponding MAWs in the CGLE; nevertheless the MAWs

of Eq. (2.4) deviate substantially from the CGLE MAWs for the upper branch of MAWs.

The Kuramoto-Sivashinsky equation, and Eq. (2.4) without the last term, do not exhibit

a saddle-node bifurcation. Since these latter two models do not experience blow-up, we

can safely conclude that these observations confirm our picture, and that the saddle-node

bifurcations of coherent structures play the same crucial role in both the full CGLE and its

phase equations.
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Fig. 2.11: Comparison of different phase expansions : Eq.(2.4) (dotted), Eq.(2.4) without the last term
(dot-dashed), Kuramoto-Sivashinsky Eq. (dashed) and CGLE (full curve). Parameters are c1 = 3.5, ν =
0, P = 50. (a) Bifurcation diagrams and (b) spatial profiles of lower branch coherent structures at c3 = 0.7.

2.3 Large scale chaos

In this Section we will study the dynamical evolution of the CGLE near the transitions from

phase to defect chaos. The transition between these two states can either be hysteretic or

continuous: in the former case, the transition is referred to as L3, in the latter as L1.

How are defects generated from phase chaos? Let us start to consider a small system in

which a stable lower branch MAWs has been created. When we fix the coefficients c1 and c3

and steadily increase the size of the system, and hence the period P of the MAW, we find

that as soon as we push P beyond PSN , the MAW structure blows up to form defects. An

example of this is shown in Fig. 2.12a. In a similar fashion, defects are created when the

system size L is fixed, and either c1 or c3 are increased until PSN <L (Fig. 2.19c,d).

How is this related to phase chaos? As shown in Fig. 2.12b, typical phase chaotic states

show much more incoherent dynamics, containing many MAW like structures but of much

smaller period. Our central conjecture is therefore that the transitions from phase to defect

chaos are triggered by the occurrence of near-MAW structures in a phase chaotic state with

ν = 0 and periods larger than PSN , the spatial period of the critical nucleus for defect

creation.

To test this conjecture, we have numerically investigated the distribution of inter-peak

spacings p of the phase gradient profile (see Fig. 2.19e,f). In Section 2.3.1 we discuss the

definition of p and the details of our numerical analysis. In particular, we have examined

in the c1, c3 plane 17 different “cuts” across the L1 and L3 transition lines. In Section 2.3.2

the results of our numerics along a cut through the L1 transition line are presented, while

Section 2.3.3 is devoted to the L3 transition. We will show that the presence of inter-peak

spacings p larger than PSN accurately predicts the transition from phase to defect chaos

(Fig. 2.1). In the last Section 2.3.4 we will show that a reasonable, parameter-free estimate

of the numerically observed transitions can be obtained via a linear stability analysis of the

MAWs.
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Fig. 2.12: Defect formation at c3 = 2, c1 = 0.7. (a) Defect formation. As initial condition we took a lower
branch MAW with P < PSN =26.8 which we embedded in a background of zero wavenumber. The system
size L here is equal to 28.8, which is larger than PSN and a defect is formed; for L < PSN this defect
formation does not take place. (b) Random initial conditions in general evolve to MAW like structures with
P < PSN which do not lead to defects; the “critical” nucleus that leads to defect formation has a rather
small basin of attraction here.

2.3.1 Identification of MAWs in the phase-chaotic regime

To verify our main conjecture, we have to characterize the MAW structures occurring in

the phase-chaotic regime. In general this is a complicated task, since the phase gradient

profile of a typical phase chaotic state (see Fig. 2.19e,f and 2.13) consists of many peaks

of different size, spacing and shape; a priori it is unclear how to compare these to MAW

profiles. However, a close inspection of the defect forming process reveals that while closely

spaced phase gradient peaks evolve in a quite erratic way, well spaced peaks appear to have

a more regular dynamics and frequently their overall shape resembles that of MAWs (see

Fig. 2.13). These large period near-MAWs modify their shape quite slowly with respect to

the other structures present in the chaotic field, and propagate over a disordered background.

Therefore we study the distribution of inter-peak distances p, keeping in mind that the tail

of this distribution is relevant for defect generation.

The phase gradient profile of a coherent MAW (see Figs. 2.19a and Fig. 2.4a) shows a

secondary maximum. To obtain the correct period P of a near-MAW, such small extrema

should be neglected when the inter-peak spacing p is measured. We introduce a cutoff for

the size of the phase gradient peak equal to the size of the secondary extremum of the

MAW with the largest P . As an additional result of this cutoff, small fluctuations are not

considered as MAW peaks. It should be noted that the tail of the distribution of p is rather

insensitive to the precise value of this cutoff.

In order to estimate the probability density D(p), for every time interval τ = 0.5, the

inter-peak periods p of the spatial profile of the phase gradient are determined. In addition,

for every snapshot the largest value pmax of the inter-peak spacing p is stored separately,

and this leads to the distribution D(pmax). From the spatial profile of |A| the distribution

D(|A|) and the minimal amplitude value |A|min can be derived. This latter quantity is used

to detect defects: when |A|min falls below a value of 0.1, we take this as an indication of a

defect.
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Fig. 2.13: Local phase gradient of the chaotic field just before defect formation for c1 = 0.65 and c3 = 2.
Panel (a) is a snapshot of the field at a time t = 120 before the occurrence of the defect, (b) , (c) and (d) are
successive snapshots taken at time intervals δt = 30. In (a) also the shape of the MAW at the saddle-node
is superimposed (thick dashed line) on the profile.

A. Torcini has conducted extensive simulations which have been possible thanks to ex-

cellent computer resources at the Max Planck institute for the physics of complex systems in

Dresden and an innovative time-splitting code which ensures precision and stability compa-

rable with pseudo-spectral codes, but is noticeably faster [141]. The spatial resolution ∆x

has been set to 0.5 and the integration time step to 0.05. Simulations have been carried out

for integration times ranging from t = 5 × 105 to t = 3 × 107 and for a typical system size

L = 512; occasionally, runs have been performed with L = 100, 200 and 5000. Typically,

our runs start from random initial conditions of the type Ak(t = 0) = |A|k(t = 0) · eiφk(t=0)

(where Ak(t) = A(k∆x, t) and φk(t) = φ(k∆x, t)) with

|A|k(0) = 1 + rk (2.6)

φk(0) = φk−1(0) ∗ 0.8 + qk (2.7)

where rk and qk are random numbers uniformly distributed in [−0.05,+0.05] and φ1(0) =

0.0005. This initial condition (2.7) leads to a smooth phase and the formation of defects

due to initial discontinuities is avoided.

In Sections 2.3.2 and 2.3.3 we will consider in detail two particular cuts in the (c1, c3)

coefficient space, one across the L1 and one across the L3 curve. In particular, we will analyze

the behavior of the probability densities D(|A|), D(p) and D(pmax) for both transitions.
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2.3.2 L1 transition

In this Section we concentrate on the L1 transition that is observed when the value of c1 is

fixed at 3.0 and c3 is varied.

Transition to defect chaos - Starting from random initial conditions we have integrated

the dynamics of the CGLE for long durations. For a fixed system size L we observe that, as

a function of the total integration time, the value of c∗3 for which defects are formed appears

to decrease. Similar behavior occurs when the system size L is increased for fixed integration

times. For example, for an integration time of 3 × 107 and c1 = 3 we find for system size

100, 200 and 512 critical values 0.82, 0.81 and 0.79, respectively. For a size L = 5000 and

integration times 3 × 106 a critical value of 0.79 is also found.

Note that even the lowest value of c∗3 for the numerically measured transition obtained

here is far above the lower bound c∞3 = 0.704 which is the value of c3 where the size of the

critical nucleus for defect formation diverges (PSN → ∞). Below, we will give an estimate

of the critical value ĉ3 for which the defect density should vanish in the thermodynamic

limit by extrapolating finite time and finite size data.

Distribution of p - Let us now consider the distribution of p’s for various coefficients

c3 near the L1 transition. It is clear from the data reported in Fig. 2.14 that the shape of

these distributions is quite insensitive to the presence or absence of defects. This can be

partly explained by the fact that just above the L1 transition defects arise in the system as

rare isolated events occurring during the spatio-temporal evolution, as shown in Fig. 2.10c.

This is fully consistent with earlier observations that the L1 transition is continuous [137,

138, 135]. We focus on the tail of the probability density D(p), since this gives information

on the probability to observe defects. Our numerical results suggest an exponential decay,

i.e., D(p) ∝ exp(−α · p) with α = 0.6 for sufficiently large p.

Similarly to the apparent transition value c∗3, the values associated to extremal events

|A|min and pmax depend on integration times and system sizes. By assuming that D(p)

remains finite (but likely exponentially small) for large p, we can expect that for long

enough times, rare events associated with large values p will occur, and hence, defects can

form after possibly very long transients.

Crossover behavior - A good order parameter to identify the occurrence of the transition

starting from the defect chaos phase near the L1 transition is the defect density δD which

measures the number of defects occurring per space and time unity. In the defect chaos

regime δD > 0, while it vanishes at the L1-transition. Now we can relate this order parameter

to the tail of the distribution of p. Our conjecture states that defects should arise when

p > PSN , therefore the defect density δD should be related to the probability to have

structures of period p > PSN , i.e.,

δd ∝
∫ ∞

PSN

dpD(p) ∝ e−αPSN ; (2.8)

where D(p) ∝ exp(−α · p) has been used. If we now assume that the distribution D(p) does

not vary significantly across the transition (as is evident from Fig. 2.14), then the change in

the probability to have p > PSN is dominated by the changes in PSN with c3. A reasonable
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Fig. 2.14: Probability densities (a) D(p) and (b) D(pmax) for c1 = 3 and various values of c3 on a lin-
log scale. The curves refer to c3 below c∗3 = 0.79 (namely to c3 = 0.77 and 0.78), as well as to values
corresponding to the defect chaotic regime: c3 = 0.79, 0.80 and 0.81. The system size was L = 512 and the
integration times where t = 5 × 105 for c3 = 0.81, t = 5 × 106 for c3 = 0.80 and t = 25 × 106 for all other
values.

fit of our bifurcation data for PSN (see Fig. 2.6) in the interval 30 ≤ PSN < 300 is

PSN ≈ β

c3 − c∞3
, (2.9)

where β ≈ 4.38. Combining this result with the Ansatz (2.8), we immediately obtain the

following expression for the defect density:

δd ∝ e−αβ/(c3−c
∞
3 ) . (2.10)

A similar expression was proposed in [137, 135] for the defect density near the L1 transition.

In order to verify if the expression (2.10) is reasonable also for our choice of the para-

meters, we have estimated the probability [141]

w(|Â|) =
∫ |Â|

0
d|A|D(|A|) , (2.11)

to observe an amplitude less than |Â|. This quantity gives a more precise characterization of

the L1-transition than δD, because it measures not only the extreme events corresponding

to true defects, but also the tendency of the system to generate structures characterized

by small |A|min. We estimated the quantity (2.11) for several |Â| values and for various c3

parameter values in the defect chaos regime. Reporting ln[w(|Â|)] as a function of 1/(c3− ĉ3)

a reasonable linear scaling is observed in the range 0.795 ≤ c3 ≤ 0.85, for 0.1 ≤ |Â| ≤ 0.5,

with the choice ĉ3 = 0.72. The value ĉ3 where the defect density should asymptotically

vanish is much smaller than c∗3 obtained via direct numerical simulations but still bigger

than c∞3 = 0.704 where PSN → ∞.

We can now easily estimate the integration time needed to observe a tiny shift of the

apparent value c∗3 towards the corresponding asymptotic value c∞3 ≈ 0.704. Limiting our

analysis to system size L = 512, a typical time-scale to observe a defect at c3 = 0.79 is

t ∼ 3 × 107. At this value of c3, PSN =46.5, while for c3 =0.739, PSN =105 . Invoking the

exponential decay of D(p), one immediately finds that the time scale to observe a defect at

c3 =0.739 is of order 1017, which is completely outside the reach of present day computers.
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Fig. 2.15: Probability densities (a) D(p) and (b) D(pmax) for c3 = 2 and various values of c1 reported in a
lin-log scale. The data are for a system size L = 512 and for integration times ranging from t = 5 × 105 for
c1 = 0.63,0.64,0.66 and 0.65 (PC)� to t = 2.5×106 for c1 = 0.65 (DC). The labels DC and PC indicate that
we are in presence or absence of defects, respectively. The label (PC)� refers to the regime before defect
formation at c1 = 0.65.

2.3.3 L3 transition

In order to characterize the L3 transition from phase to defect chaos in more detail c3 =2 has

been fixed, while the coefficient c1 is varied. The L3 transition is hysteretic [137, 138]: to the

left of L3 one may have phase or defect chaos depending on the initial conditions. Beyond

the L3 phase chaos breaks down and defects occur spontaneously for any initial condition.

In order to study the dynamics across this transition we therefore initialized the simulations

with initial conditions (2.6),(2.7) or used relaxed phase chaos configurations corresponding

to values of c1 far below the L3 line.

The probability densities D(p) and D(pmax) are shown in Fig. 2.15. For c1 <c∗1 = 0.65

all distributions collapse on a unique curve, but as soon as defects arise the distributions

change substantially. Whenever a defect is generated, hole-defect dynamics takes place (see

Fig. 2.10b). As a result phase chaos is replaced by defect chaos. The noticeable modification

of the distributions thus reflects the fact that the L3 transition is discontinuous. Also the

probability density for |A| changes abruptly across the L3 transition.

2.3.4 Mechanism for the selection of p

When approaching the transition to defect chaos from the Benjamin-Feir-Newell curve,

three parameter regions, corresponding to different dynamical regimes, can be distinguished

(Fig. 2.18). The first encountered region corresponds to infinite values of PSN : here we

expect no defects to occur, irrespectively of system size and integration time. The phase

chaos is the asymptotic regime in this first region. Then, when c1 and/or c3 are increased,

a crossover regime is reached where extreme events (large inter-peak spacings) may lead to

defect formation. Here phase chaos can persist as a long lived transient, but eventually we

expect it to break down. Then, when c1 and/or c3 are even further increased, we experience

a dramatic drop in transient times, and defect chaos sets in quite rapidly. We understand

this drop to occur when typical values of p (and not rare extreme events) become larger
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Fig. 2.16: Results of the linear stability analysis : (a) leading part of the eigenvalue spectrum (continuous
spectrum denoted by the full curve, Goldstone modes by a filled square, saddle-node by filled triangle,
interaction by open square and splitting modes in L = P by dots, respectively), (b) splitting eigenmodes
(dot-dashed and dotted, λsplit = 0.018 ± 0.28i) of the phase in L = P compared with spatial MAW profile
of the phase gradient (full curve). (c,d) Space time plots showing the splitting of a MAW initially perturbed
by small noise. Parameters are c1 = 3, c3 = 0.72, P = 43 near L1 for (a-c) and c1 = 0.65, c3 = 2, P = 35
near L3 for (d).
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than the corresponding PSN values.

An approximate prediction for the location of the apparent phase to defect chaos tran-

sition (numerically obtained from the defect density) can be achieved in terms of a simple

linear stability analysis of the MAWs (Figs. 2.16 and 2.17). See Appendix C for the method

and more detailed results. A key element in our framework is the “typical large value” of p

as a function of coefficients c1 and c3; below we will identify two linear instabilities that act

to either increase or decrease p, and their balance sets a scale for typical p that will predict

the location of the transition from phase to defect chaos rather well.

Due to translational and phase symmetries both MAW branches have neutral modes, i.e.,

Goldstone modes. The eigenvalue associated with the saddle-node bifurcation is positive for

MAWs of the upper branch and negative for the lower branch. In what follows the lower

branch MAWs are considered exclusively.

Splitting - The spatial structure of a MAW of large period consists, roughly, of a ho-

mogeneous plane wave part and a local peak part. For the parameter regime we consider

here, fully extended plane waves are linearly unstable, and so we may expect that the MAW

spectrum will be dominated by this instability for sufficiently large values of P . Our linear

stability analysis indeed shows that for appropriate parameters (L = P ) and small enough

P , all eigenvalues λi<0, but when we increase P , MAWs become linearly unstable (λsplit>0,

Fig. 2.16). The shape of the unstable eigenmodes (Fig. 2.16b) suggests that this instability

leads to the growth of a new peak in the homogeneous part of the MAW, and this is indeed

the behavior observed in numerical simulations of the perturbed MAW (Fig. 2.16c,d). As a

result two (or more) short MAWs with smaller P will appear. We interpret this process as

the splitting of a MAW in two or more smaller MAWs and we call the eigenmodes associated

to such instability “splitting modes”.

Clearly, this instability tends to reduce the peak-to-peak distances p and prevents MAWs

to cross the SN boundary; in the phase chaotic regime this instability tends to inhibit defect

generation.

Interaction - By using a Bloch Ansatz [177, 178], we extended the stability analysis to

systems with n identical pulses (L=nP ). For n> 1, an additional instability may appear

[179] (see Fig. 2.17). Eigenvalues λint>0 are found mainly for small P (typically P < 30).

The shape of the eigenmodes, i.e., an alternating sequence of positive and negative transla-

tional Goldstone modes (Fig. 2.17b), suggests that the instability is due to the interaction

between adjacent MAWs. This interaction shifts adjacent peaks into opposite directions,

thereby creating occasional larger values of p (Fig. 2.17c,d). In phase chaos this process

leads to an increase of the spacing p between some peaks, thus enhancing the generation of

defects.

Competition of Instabilities - Both the splitting and interaction mechanisms are similar

to instabilities observed in the Kuramoto-Sivashinsky equation [25, 29, 176]. We believe

that phase chaos is governed by the competition of these two mechanisms that tend to

increase or decrease the inter-peak spacings p. Almost independent of the coefficients the

splitting instability dominates for MAWs with P > 30. This can explain why large inter-

peak spacings p > 30 become rare as reported in Figs. 2.14,2.15.
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Fig. 2.17: Results of the linear stability analysis : (a) leading part of the eigenvalue spectrum (continuous
spectrum denoted by the full curve, Goldstone modes by a filled square, saddle-node by filled triangle
and interaction by open square at λint = +0.0048, respectively), (b) Goldstone mode (dot-dashed) and
interaction eigenmode (dotted curve) for the phase compared with spatial MAW profile of the phase gradient
(full curve) in L = 2P . (c,d) Space time plots showing the attraction of two periods of the same MAW
initially perturbed by the interaction eigenmode. Parameters are c1 = 0.7, c3 = 2, P = 25 near L3 for (a-c)
and c1 = 3, c3 = 0.85, P = 21 near L1 for (d).
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We suggest a connection between the interchanging dominance of these two different

instabilities and the sudden change of δD (near L1) or the transient times before defect

occurrence (near L3). We calculated the linear stability spectra for a variety of coefficients

and periods P close to PSN . From these we obtain a curve in coefficient space (Fig. 2.18)

where the real parts of interaction and splitting eigenvalues are equal. For larger c1 or c3,

PSN occurs in the range where interaction and defect formation dominate, while for smaller

c1 and c3, splitting dominates and defect formation becomes rare.

As shown in Fig. 2.18, the curve where the two instabilities are equally strong near the

saddle-node bifurcation gives a rather good estimate of where the apparent transition from

phase to defect chaos occurs. Notice that in this “balance of instabilities” picture, there is

no tunable parameter: once we have calculated PSN and the instabilities of the MAWs for

a range of coefficients, a precise prediction for the “transition” from phase to defect chaos

can be given.

2.4 Further refinements

In order to accurately test our results, we have measured for each of the 17 cuts and for

several values of the coefficients across the L1- or L3-lines the amplitude distribution D(|A|)
and the phase gradient peak-to-peak spacing distribution D(p). We conjectured that defects

occur if and only if p > PSN . Indeed, we observe that in 11 out of 17 points such conjecture

is fulfilled. On the remaining 6 points the theoretical conjecture leads to an estimation of

the transition lines within a maximal error bar of 3%. The points determined following

the conjecture are indicated as empty circles in Fig. 2.1. The small deviations may have

different reasons, that we summarize below:

(i) If fluctuations occurring during the phase chaotic dynamics are only moderate, such

as happens near the L3 transition line or for small system sizes, more complex coherent

structures can survive for a short time. Here we analyzed only the shortest coherent struc-

tures characterized by a single hump. We believe that this is sufficient to understand the

main aspects of the dynamics of large systems. However, longer combined MAWs with

more than one hump emerge from periodic MAWs via period doubling bifurcations. The

existence of the long combined MAWs is limited by saddle-node bifurcations analogously

to single MAWs, but these bifurcations occur at slightly bigger values of the parameters

c1 and c3. Therefore the appearance of these more complicated structures can delay defect

formation even if one inter-peak spacing within the structure is bigger than PSN of the single

MAW.

(ii) Near the L1 line the dynamical fluctuations in the phase chaotic regime are stronger

than in the proximity of the L3 line. In this case and for sufficiently high values of the

parameter c1 we observed situations where not only the structure with the longest inter-

peak spacing but also the neighboring structures were involved in the defect formation.

(iii) The assumption to consider MAWs with ν = 0 is only an approximation. If the

average phase gradient locally (on scales P ) deviates from 0 then the saddle-node bifurcation

slightly shifts towards smaller coefficients (see Chapter 3).
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Fig. 2.18: Space of (c1, c3)-coefficients for the CGLE with the Benjamin-Feir-Newell curve (dot-dashed),
the lower bound PSN →∞ (full) and the stability-based estimate (dotted) for the transition from phase to
defect chaos. The symbols refer to our numerical data for the appearance of defects.

As far as the (numerically) improved L3 and L1 lines are concerned, we observe that

both these lines lie to the left of the ones determined in earlier numerical studies [138].

This is due to the fact that our simulations are of longer duration then those performed

previously. This confirms the expectation that such transition lines will shift towards the

Benjamin-Feir-Newell curve for increasing systemsize and integration times [135]. Moreover,

some authors claim that indeed in the thermodynamic limit L1 and L3 will coincide with

the Benjamin-Feir-Newell curve and the phase chaos regime will disappear [147]. On the

basis of our simulations we cannot exclude such a possibility for higher space dimensions,

but based on the results presented in this paper we conjecture that the saddle-node line

for P →∞ provides a lower boundary for the transition from phase to defect chaos in the

one-dimensional CGLE.

2.5 Discussion

The main points of this Chapter are summarized in the following and illustrated in

Fig. 2.19. (i) Our investigation starts with the study of MAWs, which are uniformly prop-

agating, spatially periodic solutions of the CGLE. These MAWs are parameterized by the

average phase gradient ν and their spatial period P . Our study is confined to the case ν = 0

for reasons specified below. Spatial profiles and the stable propagation of a particular MAW

are presented in Fig. 2.19a-c. Isolated MAW structures consisting of just one spatial period
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Fig. 2.19: Summary of our main results which constitute a picture for the formation of defects from phase
chaotic states. (a,b) Example of a coherent structure: phase gradient and modulus of a period P = 30
MAW at c1 = 0.6, c3 = 2. (c) Space time plot showing the stable propagation of the MAW from (a,b) in
a small system of size P with periodic boundary conditions. Subsequent space time plots also show the
phase gradient encoded in gray-scale (minima appear dark, maxima bright). (d) The same MAW as initial
condition creates defects at c1 = 0.7, c3 = 2 where P > PSN = 26.8. Black bars above the x-axis denote the
size of PSN specific to the parameters of the panel. (e,g,h) Large scale chaos at c1 = 0.63, c3 = 2, L = 512.
(e) Snapshot of the phase gradient profile with individual inter-peak spacings p. (g) Space time evolution
of phase chaos and (h) distribution D(p) showing p � PSN and no defects. A transient of t≈ 104 is not
shown. (f,i,j) Large scale chaos at c1 = 0.65, c3 = 2, L = 512. (f) Snapshot of the phase gradient profile
t = 120 before the first defect forms and the MAW (dotted, P = PSN) overlayed onto the long structure.
(i) Transient phase chaos with a fast and long structure traveling through the system which eventually
nucleates defect chaos at t = 400, x = 360 (a transient of t≈104 is not shown). A snapshot of this structure
was shown in (f). (j) The tail of the distribution of p reaches p > PSN due to the long structure; this
leads to the break down of phase chaos. The distribution D(p) shown in (h) is also reported (dashed line).
From the comparison of the two it is evident that the distributions do not modify dramatically when c1 is
increased, while PSN decreases noticeably.
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P play an important role in defect formation. In particular, for fixed CGLE coefficients the

range of existence of coherent MAWs is limited by a saddle-node (SN) bifurcation which

occurs when P reaches a maximal period PSN . (ii) If the MAWs are driven into conditions

with P > PSN a dynamical instability occurs leading to the formation of defects (Fig. 2.19d).

(iii) Slowly evolving structures reminiscent of MAWs (“near-MAWs”) are observed in the

phase chaotic regime (Fig. 2.19e,f). In order to characterize such states, we have examined

the distribution D(p) of spacings p between neighboring peaks of the phase-gradient profile.

In particular for sufficiently long spacing p, the observed phase chaos structures are often

very similar to a single period of a coherent MAW (Fig. 2.19f). (iv) When a phase chaotic

state displays spacings p larger than PSN , phase chaos breaks down and defects are formed

(e.g. at t = 400, x = 360 in Fig. 2.19i). Thus, the MAW with P = PSN may be viewed as

a “critical nucleus” for the creation of defects. In phase chaos defect formation is similar

to the dynamical process by which isolated MAW structures generate defects (Fig. 2.19d).

Therefore purely phase chaotic states are those for which p remains bounded below PSN
(Fig. 2.19g), while defect chaos can occur when p becomes larger than PSN (Fig. 2.19i). (v)

A more detailed study of the probability distribution of the p’s shows that for large p the

probability decays exponentially (Fig. 2.19h,j). As long as PSN has a finite value, we expect

that, possibly after a very long transient time, defects will be generated. (vi) However, in

a finite domain of the phase chaotic region, MAWs of arbitrarily large P exist: we expect

that in this region, even in the thermodynamic limit, phase chaos will persist. The region

of persistent phase chaos is bounded by the Benjamin-Feir-Newell curve (thin dot-dashed)

and the curve along which PSN → ∞ (full curve in Fig. 2.18).

In the phase chaotic regime of the 2d CGLE the correspondence between long inter-peak

spacings (here diameter of cells) and the strength of the local modulation has already been

noticed numerically [147]. Additional mechanisms present in 2d remain to be explored.

Thereby it might turn out that phase chaos exists in the thermodynamic limit in 1d only

but not in 2d as previously conjectured [147].

Altogether, our study leaves little space for doubt that the transition from phase chaos

to defect chaos in the CGLE is governed by coherent structures and their bifurcations. From

a general viewpoint, our analysis shows that there is no collective behavior that drives the

transition. Instead, strictly local fluctuations drive local structures beyond their saddle-node

bifurcation and create defects.



3 Fully Nonlinear Analysis of the

Eckhaus Instability

3.1 Introduction

The Eckhaus instability of plane wave solutions has been introduced in Section 1.4.3. So

far the analysis has considered infinitesimal perturbations and is therefore a linear stability

analysis. In this Chapter arbitrarily large perturbations are included as the entire flow in

phase space is analysed, thus the title “fully nonlinear analysis”. This introductory Section

gives an outlook and summarizes previous numerical observations [56, 57, 58, 59, 141, 142,

173] on phase chaos with ν 	= 0.

In Section 3.2 the analysis of MAWs is extended to arbitrary average phase gradients of

A(x, t) = |A(x, t)|eiϕ(x,t) ∼ ei(qx−ωt). Again the two parameter family of MAW solutions is

parametrized by the spatial period P of the modulation and the average phase gradient

ν :=
1

P

∫ P

0
dxϕx . (3.1)

For plane wave solutions clearly ν equals the wavenumber q. In analogy, the phase gradient

ϕx is often called “local wavenumber”.

It will be shown that MAWs in infinitely large systems are stable within certain pa-

rameter regions 1. This is of special interest for experimentalists because in some recent

experiments in quasi-one-dimensional geometries, supercritical Eckhaus instabilities of plane

wave trains and the corresponding emergence of stable saturated MAWs have been observed

[43, 55, 70, 187]. For a discussion of the experimental implications of MAWs see Chapter 4.

Fig. 3.1 shows a typical transient from an Eckhaus unstable plane wave to saturated

modulations in the simulation. The average phase gradient ν selected by the initial plane

wave is maintained over the whole simulation. The dynamics approaches a state where

modulus and phase of the underlying plane wave are modulated by a traveling pulse train.

The pulse-like modulations of the modulus |A|(x, t) are visible in Fig. 3.1(a) and as wiggles

on Re[A(x, t)] in Fig. 3.1(b). The wiggles move to the right with the same velocity v as

the pulses while the underlying wave,i.e. locations of constant phase, move to the left with

the phase velocity ω/q. This illustrates that the traveling modulations can be described as

1Note, in the limit case ν = 0 stable MAWs only exist in short systems with L = P and periodic
boundary conditions.
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Fig. 3.1: Space-time plots of a numerical simulation were the Eckhaus instability saturates for c1 = 3.5, c3 =
0.5, initiated with noise added to a plane wave of q = 0.184. (a) The modulus |A| (high=bright, low=dark)
and (b) the real part Re[A] (positive=bright, negative=dark) are shown. Note the independent motion of
the underlying wave (only in (b)) and the modulations.
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Fig. 3.2: Portraits of modulus |A| and phase gradient ϕx of solutions after long time integration. Dotted
lines indicate the corresponding values for the initial plane wave. Solution (a),(c) has parameters as in
Fig. 3.1 and is identified as periodic MAW. Solution (b),(d) is a snapshot and the state keeps changing as
time goes on. It was initiated at c3 = 0.45 with a perturbed plane wave of wavenumber q = 0.0123. Its
trajectory has a positive Lyapunov exponent 0.00472 [180]. This is an example of wound-up phase chaos.
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Fig. 3.3: Maximum (dots) conserved average phase gradient νM(c3) for fixed c1 = 3.5 obtained from
numerical simulations (L ∼ 103, t ∼ 105) for 30 different initial conditions (noise added to plane wave with
wavenumber ν). Data is taken from Fig.1 in [58], Fig.3 in [141] and [180]. For ν ≤ νM no defects were
present while above νM at least one initial condition caused defects. The full curve denotes the Eckhaus
instability of plane waves with wavenumber ν and BFN at c3 = 1/c1 denotes the Benjamin-Feir instability
for ν = 0. For ν above the diamonds regular states were observed after transient phase chaos but below
the diamonds most initial conditions led to persistent spatio-temporal chaos [58, 141]. L denotes the lower
bound for defect chaos in the thermodynamic limit as obtained in Chapter 2.

coherent structures. In Fig. 3.2 the final state (a),(c) of the continued simulation is plotted

in comparison to the snapshot of a chaotic state (b),(d) with ν = 0.0123.

Some authors [59, 142] use the “winding number”

ν̃ :=
1

2π

∫ L

0
dxϕx (3.2)

instead of the average phase gradient ν to characterize phase chaos. The name “wound-up”

phase chaos (ν̃ 	= 0) stems from the winding number ν̃ which takes on integer values if

periodic boundary conditions are applied to a system of size L.

For systems with periodic boundary conditions the average phase gradient of the whole

system can only be changed, if a space-time defect occurs. In numerical simulations A.

Torcini et al. [58, 141] and R. Montagne et al. [59, 142] observed persistent phase chaos

with conserved ν 	= 0, ν ≤ νM (no defects). The maximum conserved average phase gradient

νM decreases as function of the coefficients c1, c3 (see Fig. 3.3) and vanishes above (and at)

the transition from phase to defect chaos (compare Chapter 2). νM was therefore suggested

[58] as an order parameter for this transition. In Section 3.3.2 lower and upper bounds

for this limit νM(c3) of wound-up phase chaos are derived from a stability analysis of the

MAWs.

Above νM a transient with a finite number of defects reduces ν from the initial νi to a

final νf < νM . The bigger νi the smaller νf will be (see Fig. 3.4). That a much smaller νf
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Fig. 3.4: Transient decrease ν̃(t) = 512∗ ν(t)/2π of the average phase gradient as observed by R. Montagne
et al. [59] for c1 = 2.1, c3 = 0.75, ν̃M = 9. The larger ν̃i = 10 (dashed), 15 (dotted), 19 (solid) the smaller
ν̃f .

results from the dynamics does not seem intuitive, since already ν ≤ νM is sufficient. In

Section 3.3.1 this paradoxon will be solved.

For increasing ν at fixed coefficients the positive Lyapunov exponents of the wound-up

phase chaos decrease (see Fig. 3.5). For c1 = 3.5, c3 < 0.6 and ν large enough the dynamics

even become regular and a stable MAW extends over the whole system. The diamonds in

Fig. 3.3 report this limit for fixed c1 = 3.5. The stability analysis in Section 3.2.3 will clarify

this observation.

The increased number of parameters c1, c3, ν, P calls for a restriction. Since a lot of

numerical data are available for c1 = 3.5 [135, 58, 141] we will restrict the detailed analysis

to c1 = 3.5 which shall be fixed throughout this Chapter. The results will be presented

by projection of the P direction onto the c3, ν plane as well as in cuts through the space

c3, ν, P of free parameters. A rough investigation of the existence domains of MAWs revealed

qualitatively the same results for fixed c1 = 0.4, c1 = 1.2, c1 = 2.1 and c1 = 5 as well as for

fixed c3 = 0.83 and varying c1. Two of these choices were treated in [59, 142] and the limits

of wound-up phase chaos agree well. One may also use a similarity transformation that

maps coherent structures along curves (c1 + c3)/(1− c1c3) = const in coefficient space [122].

By evaluating involved formulas (see [122]) for the transformed ν′, P ′, ω′, v′ the numerical

data on the existence domains can be extended to other coefficients. The Section 3.4 will

close the Chapter with a summary and discussion of the results on ν 	= 0 phase chaos.

3.2 Stable modulated amplitude waves

3.2.1 Coherent structures approach

Following the analysis of the Eckhaus instability of plane waves in Section 1.4.3 we extend

the ansatz (2.2) from Section 2.2.1 to

A(x, t) = a(z)eiφ̃(z)ei(qx− ω̃t) (3.3)

and immediately rewrite it

A(x, t) = a(z)eiφ(z)eiωt , (3.4)
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Fig. 3.5: Averaged maximum Lyapunov exponent 〈λ〉 in wound-up phase chaos as obtained by A. Torcini et
al. [141]. Zero 〈λ〉 reveals nonchaotic solutions for ν large but below νM . Parameters are c1 = 3.5, c3 = 0.5
and averages are performed over simulations with different realizations of noise added to a plane wave with
wavenumber q = ν as initial condition.

where a and φ are real-valued functions of z := x − vt and φ(z) = φ̃(z) + qz, ω = qv − ω̃.

Here a and φ also represent coherent structures and the ansatz (3.4) is equal to the form

(2.2).

Substitution of ansatz (3.4) into the CGLE (2.1) yields the same set of three coupled

nonlinear ordinary differential equations (ODEs) as Eqs. (2.3). The continuation software

AUTO97 [161] is used to compute the limit cycles of the ODEs (2.3) that correspond

to spatially periodic functions a(z), φ(z). In order to choose a unique solution out of the

continuous two-parameter family of limit cycles we fix the period of the limit cycle L = P

and its average phase gradient by
∫ L
0 ψdz = L ∗ ν with ψ :=φz.

The continuation procedure (see Appendix A) starts from an analytically known plane

wave solution (1.17) and detects a Hopf (HB) bifurcation (filled square) where the mode

with wave length P destabilizes the plane wave. Continuing the emerging branch of MAWs

the free parameters ω and v are adjusted by the continuation algorithm. The continuation

follows one unique branch by fixing ν = q and L = P . Fig. 3.6 shows examples of resulting

bifurcation diagrams. ω(q) is an even and v(q) an odd function of the wavenumber q hence

plane waves traveling to the left and right are both described by the same Eqs.(2.3) with

x → −x and q, v, z, b, ψ flip sign. Therefore it is sufficient to consider positive wavenumbers

q.

3.2.2 Existence limits of MAWs

Upon increasing c3 the modulations grow and develop a localized depression |A|min where

φx has a maximum (see Fig. 3.7). As for ν = 0 these MAWs are called the lower branch
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Fig. 3.6: Examples of bifurcation diagrams for MAWs with ν = 0.25, c1 = 3.5, P = 25. (a) Maximum of
the modulus, (b) oscillation frequency ω̃ = qv − ω, (c) minimum of |A| and (d) velocity v versus c3. The
plane wave that is stable (unstable) against models of wavelength P is represented by the thin full (dashed)
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HB denotes the Hopf bifurcation (square) of the plane wave solution while SN stands for the saddle-node
bifurcation (triangle) that limits the existence of MAWs. In (c) arrows represent the typical evolution of
initial profiles with a respective minimum of |A|, greek letters refer to simulations in Fig. 3.16. In (d)
the dotted line denotes the group velocity (k = 0) and the line below gives the velocity of the mode with
wavelength P . A, B and C mark parameter values where solutions are plotted in Fig. 3.7.
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in contrast to the coexisting upper branch MAWs. Examples of these lower branch MAWs

were obtained by numerical simulations earlier [56, 57, 58, 59, 141, 142] and were studied

in detail by G. Hager [173]. Numerical simulations could neither uncover unstable upper

branch MAWs nor elucidate the existence limit of MAWs. The bifurcation analysis presented

here reveals : both branches (upper and lower) meet and terminate in a saddle-node (SN)

bifurcation (filled triangle). Due to the SN bifurcation the upper branch MAWs always have

at least one unstable eigenmode and we will not consider them in the following. The upper

branch continues to negative c3 and there connects to another instability of the plane wave

with identical ν, P (see also Fig. 3.8).

For large ν and small P the Hopf bifurcation is no longer supercritical and the unstable

upper branch emerges directly from the plane wave. This is in agreement with analytical

predictions [56]. Fig. 3.8 shows an example which also includes the second HB at negative c3.

For ν = 0 the MAWs emerge stationary and acquire v 	= 0 above a subsequent drift pitchfork

bifurcation (compare Chapter 2). In the present case ν 	= 0 the plane wave already breaks

the reflection symmetry, the initial MAW has a nonzero velocity and the drift pitchfork

(DP) bifurcation (filled diamond) is unfolded. See Fig. 3.9 for an example at fixed c3 = 2

. The branch emerging at the HB corresponds to the MAWs discussed above. The second

branch emerges at the period doubling bifurcation of MAWs with half the period. It always

has unstable manifolds that lead the dynamics away from it to the coexisting MAWs of

shorter period. Therefore this branch plays no essential role and is not treated further.
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Fig. 3.9: Bifurcation diagrams showing the velocity v versus c1. (a) Branches with v 	= 0 emerge at the
drift pitchfork bifurcation for c3 = 2, P = 25, ν = 0. (b) The bifurcation is unfolded for ν 	= 0, here
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Fig. 3.10: Existence domains of MAWs with period P projected onto the (c3, ν) parameter plane. Thin
curves denote the Eckhaus instability and HB which occur supercritical (full curve) or subcritical (dashed)
depending on ν and P . The thick curves give the SN. Hence lower branch MAWs exist below the dotted
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Infinite system size

We analysed the existence of lower branch MAWs in the entire parameter space (c3, ν, P )

with fixed c1 = 3.5. The system size is assumed infinitely large in order to allow for arbitrary

periods P of MAWs. Fig. 3.10 shows examples of existence domains for P = 15, P = 30

and P → ∞. We find that both HB and SN shift to larger c3 as the period P is decreased.

The same was already observed in the limit case ν = 0.

Finite system size

Experimental setups and numerical simulations are restricted to finite system size L but

often use periodic boundary conditions (annulus) in order to study bulk effects of extended

systems and to minimize boundary effects. The periodic boundary conditions also restrict
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possible modes of perturbations 2. As described by Eq. (1.21) the instability threshold of

plane wave solutions depends on the wavelength 2π/k of the perturbation. Since in the

studied range of coefficients the Eckhaus instability is a long-wavelength instability the

plane waves will be stabilized by the finite size of the system. The instability threshold is

shifted to larger values of the coefficients c1, c3 and can be computed from Eqs. (1.21,1.22)

with k = 2π/L.

Clearly the selection of perturbations by periodic boundary conditions also restricts the

possible MAWs. Their average phase gradient ν and the period P of periodic MAWs have

to be consistent with the system size and this renders discrete the two-parameter family of

MAWs. A subset of the solutions shown in Fig. 3.10 can be observed. For existence domains

of MAWs in systems with intermediate size (L = 1 . . . 20 ∗ 2π/ν) see Appendix D.

Here we focus on the extreme case. The shortest system with periodic boundary condi-

tions only contains one wavelength of the plane wave hence L = 2π/ν. A. Torcini studied

this case by numerical simulations (νU in Fig.1 of [58]) and started from a set of initial

conditions (different realizations of noise added to a plane wave). The quantity νU denotes

the largest ν for which none of the initial conditions produced a defect in analogy to νM
for large systems. In the following these data (symbols in Fig. 3.11) are compared to the

existence domain of MAWs.

Whithin the light shaded area in Fig. 3.11 plane wave solutions with wavenumber ν

are stable in the short system. The stability area extends over the phase chaos and into

the defect chaos region. This effect is important for experiments where based upon the

observation of stable plane waves one can not necessarily infer coefficients c1, c3 in the

Benjamin-Feir stable regime. The dashed line denotes a subcritical instability and only

unstable upper branch MAWs exist to the left of this curve. For smaller ν the instability

again turns supercritical and stable lower branch MAWs exist above the instability inside

the dark shaded region. The thick full curve gives the SN bifurcation for MAWs with P = L.

The thin curves show the respective limits of periodic MAWs with shorter period. Defects

are expected beyond the SN and the subcritical instability which exactly reproduces the

data from earlier simulations (Fig.1 of [58]) except at small ν. A. Torcini reported [180]

that simulations with ν ≤ νU resulted in modulations with a single hump (squares) or with

two (triangles) or three (stars) humps of different size. The latter two are observed above the

SN of MAWs with P = L. Here the initial condition may fall into the basins of attraction of

MAWs with shorter period which only exist at small ν. In the next Section the appearence

of MAWs with many humps of different size (“aperiodic MAWs”) will be studied which

accounts for the observed states denoted by triangles and stars in Fig. 3.11.

3.2.3 Tertiary instabilities

Next we consider larger systems of size L = n ∗ P . MAWs with n subsequent periods P

attached to each other are trivial extensions of the results before. We call these periodic

MAWs. However, the effective interaction between adjacent periods is attractive in certain

2The wavelength of perturbations is an integer fraction of the system size.
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Fig. 3.11: For short system size L = 2π/ν plane waves are stable for parameter choices inside the light shaded
area. MAWs with a single hump (P = L) exist inside the dark shaded area bounded by the supercritical
HB to the left an the SN to the right. Thin curves give the limits of periodic MAWs with two humps
P = L/2 (dashed) and three humps P = L/3 (dotted). See the legend for the different cases. Symbols
denote maximal ν = νU that did not create defects but resulted in stable asymptotic states in simulations
of the short system. Plane waves and single MAWs (squares), aperiodic MAWs with 2 humps (triangles)
and aperiodic MAWs with 3 humps (stars) have been observed. Data are taken from Fig.1 in [58] and [180].
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Fig. 3.12: Bifurcation diagram for ν = 0.184, P = 17 and L = 4 ∗P hence 4 pulse-like modulations interact.
The maximum of the amplitude gradient is plotted since the interaction causes pulse shifts and the amplitude
of single humps changes little. Thicker lines correspond to smaller overall period of the modulation. The
insets show typical solutions.

parameter regions (see Figs. 3.14 and 3.15). This causes period doubling (PD) bifurcations

(open squares) at the transitions from repulsive to attractive interaction. Note, this cor-

responds to a tertiary instability in the original system. There new branches of aperiodic

MAWs emerge from the primary branch of periodic MAWs. M. Or-Guil et al. observed a

similar scenario caused by the interaction of pulses in an excitable reaction-diffusion system

[179]. The new solutions do not show equidistant modulations. Instead one puls gains more

space and the other ones are compressed. The new branches extend to larger c3 than the

corresponding periodic MAWs. Fig. 3.12 shows how these branches arrange in a system

with 4 interacting pulses (L = 4∗P ). As long as the PD bifurcations are supercritical, then

the aperiodic MAWs are stable again. They represent the saturated solution for attractive

interaction between subsequent modulations. For large systems a whole sequence of period

doublings will lead to aperiodic MAWs with an overall period of the system size. Hence they

may represent an erratic spatial sequence of humps and depressions. This spatial sequence

propagates coherently as a whole structure. We named these patterns aperiodic MAWs to

emphasize the connection among both types of coherent structures. Examples were already

observed in numerical simulations. R. Montagne et al. [59, 142] call them “frozen phase

turbulence” while A. Torcini et al. [58, 141] use the term “type β”.

The observed coexistence of a large number of stable aperiodic MAWs results in a strong

dependence of the final state in a numerical simulation on the initial conditions. Although

each regular final configuration must be consistent with a particular periodic or aperiodic
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Fig. 3.13: (a) Leading part of the eigenvalue spectrum with the SN eigenvalue at λSN = −0.013 denoted
by the triangle. (b) Blow-up of the spectrum close to the Goldstone modes. The corresponding eigenmodes
represent different combinations of pulse shifts that all relax back to the periodic MAW. Parameters are
c3 = 0.4, ν = 0.184, P = 2π/ν. The dots in (b) correspond to system size L = 100 ∗ P = 3415.

MAW it is difficult to reproduce averages over results obtained from different initial con-

ditions. The averages are convenient for a rough study of typical behavior by numerical

simulations and these numerical observations reported in Fig. 3.11 are only partially repro-

duced by the present analysis.

A linear stability analysis (see Appendix C) reveals that within certain parameter do-

mains periodic MAWs are stable even in the infinite system. Fig. 3.13 shows the eigenvalue

spectrum of an example. From Fig. 3.13b we conclude that for this example the entire

spectrum in the infinite system will be confined to the negative half-plane. 3 As in the limit

case ν = 0 also for ν 	= 0 MAWs of large P are unstable to delocalized eigenmodes that

create more humps on the plateau of the unstable MAW. This splitting reduces the periods

of MAWs.

Figs. 3.14 and 3.15 represent cuts through the parameter space at fixed ν = 0.25 and

c3 = 0.5, respectively. They show the typical arrangement of stable and unstable parameter

regions of MAWs. Other examined cuts for c3 = 0.1, 0.2, 0.3, 0.4, 0.6, 0.7 qualitatively show

the same order.

The cut through parameter space c3, ν, P at ν = 0.25 is shown in Fig. 3.14. The HB

(dashed) approaches the Eckhaus instability for P → ∞ as the lower bound of the existence

domain. From above the domain is limited by the SN (solid curve). For small P (large

c3) the HB is subcritical and no MAWs exist. In the infinite system L → ∞ MAWs are

found to be linearly stable for a broad range of parameters (dark shaded area). At low

P the interaction instability occurs (white area) 4 whereas at large P the long plateau

3Further increasing system size provides additional eigenvalues that fill the gaps of the existing set.
4Attraction is monotonic (white tongues) between pairs of PD bifurcations and oscillatory (temporary
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Fig. 3.14: Stability domain (dark area) of periodic MAWs for ν = 0.25, L → ∞. MAWs exist between
supercritical HB (dashed) and SN (full curve). The tickmarks at the right frame give the asymptotic values
for P → ∞. The dot-dashed curve denotes the subcritical HB. MAWs are unstable to splitting within
the light shaded domain at large P . Within the white domain at small P periodic MAWs are unstable to
interaction and aperiodic MAWs coexist.



3.2 Stable modulated amplitude waves 79

0 10 20 30 40 50 60 70 80 90 100
P

0

0.1

0.2

0.3

0.4

0.5

ν

Fig. 3.15: Stability domains (dark areas) of periodic MAWs for c3 = 0.5, L → ∞. Curves and instability
domains (splitting=light shaded, interaction=white) have the same meaning as in Fig. 3.14.

of the MAW is unstable to splitting (light shaded area). Typical initial conditions will

evolve to stable MAWs since spatial intervals of A(x, t0) that initially contain many closely

spaced perturbations will locally increase P while long unperturbed intervals will gain new

modulations. These instabilities are well separated and after a transient the numerical

simulation will show nonchaotic behavior.

A cut perpendicular to the previous one is shown in Fig. 3.15. Curves and shadings have

the same meaning as discussed above. Starting from random initial conditions at ν > 0.1

the two instabilities may again (after a long chaotic transient) lead to a stable MAW with

local periods P inside the stable windows. At lower ν < 0.1 the probability of approaching

a stable configuration dramatically decreases since only a third of the previous stable P

intervals remains. Below ν = 0.02 no stable state can be prepared at all. Instead one

observes wound-up phase chaos with increasing maximum Lyapunov exponent (Fig. 3.5).

As in the limit case ν = 0 (phase chaos) the dynamics is driven by the subsequent increase

of spatial periods (interaction) and annihilation of localized modulations together with the

splitting of long periods that produces new closely spaced modulations. This dynamical

process is the stronger the more dominant the instabilities are. For decreasing ν the splitting

instability extends to shorter periods P and significantly overlaps with the domain of the

interaction instability. Based on this consideration the observed large maximum Lyapunov

exponents below ν = 0.03 correspond to the dominance of the instabilities at low ν and

subsequent attraction/repulsion) between tertiary HB in the remaining intervals.
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the smaller maximum Lyapunov exponents for 0.03 < ν < 0.09 to the small probability of

approaching the single stable domain. At ν > 0.09 almost every simulation approaches a

stable MAW. A more quantitative characterization of the simulations is needed to test the

above conjecture.

3.3 Defect formation in wound-up phase chaos

In this Section the formation of defects and the resulting change of the average phase gradient

are presented. For ν 	= 0 Subsection 3.3.1 will confirm the scenario of defect formation past

the saddle-node bifurcation of the relevant MAW as discovered in the case of ν = 0 (compare

Chapter 2). Also earlier observations from numerical simulations (compare Fig. 3.4),e.g. the

dependence of νf on νi, can be interpreted. The Subsection 3.3.2 is then devoted to the limit

νM of wound-up phase chaos. For a certain range of parameters the limit νM is reproduced

by means of the stability properties of MAWs at the saddle-node bifurcation. Beyond this

parameter range,i.e. at low ν close to the transition to defect chaos, one is left with a

similar situation as in the case ν = 0 and again has to consider the competition between

two tertiary instabilities.

3.3.1 Beyond the saddle-node bifurcation

The role of the SN bifurcation for the dynamics has been studied in Section 2.2.3 for the

limit case ν = 0. For ν 	= 0 we find the same behavior. Fig. 3.16 gives examples for

ν = 0.25, P = 2π/ν that correspond to the arrows in the bifurcation diagram Fig. 3.6c.

Arbitrary small perturbations to a plane wave lead to defects only beyond the SN whereas

below the SN such perturbations have to be very large to overcome the saddle-type upper

branch MAW. Since for parameters below the SN of P → ∞ there are no SN we again

conclude : from typical initial conditions (noise added to a plane wave) defects may only

form above the SN of P → ∞. The SN of P → ∞ is again a lower bound for defect

formation.

For large systems the formation of defects depends on the local period of initial pertur-

bations in the same way as for ν = 0 (compare Chapter 2). For larger values of ν or c3 the

SN occurs for smaller P as shown in Figs. 3.14,3.15. Therefore local periods p beyond the

SN and subsequent defect formation are more probable at larger ν, c3.

In contrast to the case ν = 0 there is only a short transient of phase chaos in the

simulations with nonzero initial νi > νM (see Fig. 3.4). The distribution of local periods p

of the perturbations is determined by the realization of the noise in the initial condition.

For local periods above but close to the SN (as in Fig. 3.16δ) the perturbation increases to

a modulation similar to MAWs and remains almost saturated for some transient time. 5

This transient of defect formation is the shorter the further the SN is exceeded. If initial

5Clearly the existence of saturated solutions for nearby parameters leads to slow dynamics in these areas
of the phase space.
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Fig. 3.16: Numerical simulations illustrate the dynamics near the SN corresponding to the arrows (α - δ) in
Fig. 3.6c. (α) plane wave perturbed at one point and (β) unstable saddle-type MAW plus noise converge to
the stable MAW. (γ) unstable saddle-type MAW plus a different realization of noise evolves to a defect that
changes ν to 0. (δ) as (α) but beyond the SN which makes defect formation possible for arbitrary small
perturbations of the plane wave. Note the long living transient of a noncoherent modulation. (α - γ) are at
c3 = 0.5 below the SN and (δ) belongs to c3 = 0.55 above the SN for ν = 0.25, P = L = 2π/ν = 25.13.
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conditions are prepared with νi � νM then the same local periods are far beyond the

corresponding SNs. The transients of defect formation are short.

From these two observations it is clear why the curve ν(t) in Fig. 3.4 drops the earlier

for larger νi. On the other hand this is not sufficient to explain the observed final νf .

Another argument has to consider the time scales of competing processes. The result of the

strictly local defect formation will not instantaneously effect distant spatial locations in the

simulation. Instead the local change of the average phase gradient ν via a defect will take

a transient time to relax over the entire system. For large νi defect formation happens on a

short time scale and independently leads to defects at many different spatial locations before

the relaxation of the decreased average phase gradient νf � νM can stop defect formation.

For small νi defects form slowly and the reduced νf can relax the phase gradient at distant

locations before other defects occur.

This competition of two time scales, the transient of defect formation versus the spatial

relaxation of the phase gradient can explain the dependence of the final νf on the initial

average phase gradient νi (compare Fig. 3.4). This statement emphasizes the local character

of defect formation but is still qualitative and shall inspire further quantitative analysis and

simulations.

3.3.2 Limit of wound-up phase chaos

For random initial conditions with νi in the narrow range between the SN of P → ∞ and

the existence limit of MAWs (see Fig. 3.10) it depends on the specific realization of the noise

whether a defect can form or a stable MAW results. In order to understand the observed

limit νM (c3) of wound-up phase chaos ,i.e. no defects form below νM (c3), it is sufficient

to consider the SNs of periodic MAWs since these SNs occur at the lowest values of c3, ν.

Although initial conditions with large P beyond a SN could lead to defects this is prevented

if the splitting instability is present. Then the period is decreased before a defect can form.

Following the SN curve in Figs. 3.14, 3.15 one encounters a transition between SNs with a

splitting instability at large P and SNs without this instability at short P . Defect formation

in wound-up phase chaos mostly occurs for parameters where the splitting instability is not

active near the SN.

Fig. 3.17 summarizes the different bounds that we derived for the limit of wound-up phase

chaos. The domain of stable plane waves at low c3 is limited by the Eckhaus instability

(thin curve). Within the shaded area only HBs of different period P occur but no SNs

and this area is limited by the lowest SN curve of P → ∞ (thick solid). No defects can

form from random initial conditions within the shaded area. The dashed curve limits the

existence of MAWs. Saddle-node bifurcations exist in the window between this curve and

the thick solid curve for P → ∞. For any choice of initial conditions defects will always

form above the dashed curve. The dotted curve gives the transition from active (below)

to inactive (above) splitting at the SN as derived from linear stability analysis along cuts

like Figs. 3.14,3.15. Splitting can prevent defect formation below this curve. Filled circles

correspond to νM obtained from numerical simulations [58, 141]. Diamonds refer to the

transition from chaotic (below) to regular (above) asymptotic states.
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Fig. 3.17: Theoretical bounds for νM (c3) (filled circles) : SN of P → ∞ as lower bound (thick solid curve),
existence limit of MAWs as weak upper bound (dashed) and the onset of splitting at SN as strong upper
bound (dotted). Other curves as in Fig. 3.3. See text for details.
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The SN for P → ∞ (thick solid) is always a lower bound for defect formation which

also holds in the limit ν = 0 (L marks the transition from phase to defect chaos). As long

as the dynamics is regular (ν > 0.1) the upper bound for defect formation (no splitting

at SN, dotted curve) reproduces well the numerical observations. This indicates that the

splitting instability is an important mechanism. For chaotic states (ν < 0.1) defect formation

eventually becomes possible even despite the presence of the splitting instability. In this

regime one has the same phenomena as in the limit case ν = 0 and relies on the same

statistical considerations. Here we observe a smooth crossover (as ν decreases) from a sharp

to a statistical characteristic of the limit of wound-up phase chaos.

3.4 Discussion

The bifurcation analysis of modulated amplitude waves (MAWs) has been extended to

nonzero average phase gradient (ν 	= 0). Lower branch MAWs of specific spatial period P

exist between a supercritical Hopf bifurcation (HB) and a saddle-node (SN) bifurcation. We

encounter the SN at decreasing values of P as c1, c3 and ν are increased. As for ν = 0 the

SN that limits the existence of MAWs was shown to allow the formation of defects from

random initial conditions and to rule many of the phenomena in wound-up phase chaos.

The SNs restrict MAWs to a well defined area in parameter space. For parameter values of

c1, c3, ν below this area plane wave solutions are stable,i.e. below the Eckhaus instability,

whereas for parameters above this area defects will occur,i.e. above the SN. The strictly

local character of defect formation can explain the dependence of νf on νi.

The linear stability analysis revealed : MAWs are linearly stable for certain parameter

domains even in systems of infinite size. These domains are limited by the interaction

instability at low and the splitting instability at high values of the spatial period P of the

MAW. The competition of the two instabilities drives wound-up phase chaos and determines

the Lyapunov exponents of the dynamics. Wound-up phase chaos may in phase space be

characterized as evolution along the manifold of MAW solutions as for ν = 0.

The splitting instability can prevent defect formation if the SN occurs at large P . This

establishes a lower,i.e. the lowest SN for P → ∞, and an upper bound,i.e. the onset of

splitting at SN, for the maximum conserved ν. Earlier numerical observations on νM(c3) are

well reproduced except at low ν < 0.1, respectively large c3. There the description of phase

chaos relies on statistical considerations as in the limit case ν = 0 in Chapter 2. Further

work should characterize the crossover at ν = 0.1 by statistical means.



4 Experimental Observations of

MAWs

In general the experimental observation of MAWs is a difficult task [181]. The primary

goal of experimentalists has so far been the characterization of the initial plane wave state.

Triggered perturbations were used to determine adequat coefficients for the CGLE model.

M. van Hecke et al. inspired many experimental efforts by a recent publication [184] on

sources and sinks of plane waves. The observation of MAWs requires a precise measurement

of the local phase gradient of a traveling wave which calls for high resolution experiments.

The most promising candidates again are among hydrodynamic systems which shall be

listed and shortly discussed in the following. Previously published data will be shown in

space-time plots of the original unscaled coordinates.

4.1 Hydro-thermal convection

(i) An early experiment was performed by B. Janiaud et al. [56] studying the secondary

(oscillatory) instability of a Rayleigh-Bénard convection pattern. The annular gap between

two vertical concentrical cylinders was filled with argon under a pressure of 60 atm. The

apparatus was heated from below which due to buoyancy forces excited a pair of counter-

rotating convection rolls. Their axis lies in the horizontal plane and in order to force this

axis to follow the curvature of the gap a small horizontal temperature gradient was applied

across the gap. The horizontal cut through the gap can be described as a one-dimensional

system with periodic boundary conditions. For low vertical temperature gradient the two

convection rolls are stable tori with a circular separation zone. Upon increasing the vertical

temperature gradient this separation zone shows a traveling wave modulation according

to the oscillatory instability of Rayleigh-Bénard convection. This secondary instability is

oscillatory for fluids with low Prandtl number Pr< 1, therefore a gas was used. Fig. 4.1a

shows an example of the stable traveling wave with a constant local wavenumber. For further

increased vertical temperature gradient the plane wave undergoes the Eckhaus instability

and a modulation of the local wavenumber appears that almost saturates while moving

superimposed on the underlying traveling wave. In Fig. 4.1b a space-time plot of this

modulation is presented. After a long transient the modulation increased and the resulting

defect reduced the wavenumber of the underlying traveling wave. The Eckhaus instability

was concluded to be subcritical. Above a subcritical instability the perturbation is expected
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Fig. 4.1: (a) Top view of an annular channel with Rayleigh-Bénard convection inside. White arrows
represent raising and falling fluid forming two rolls. The bright curve separates fluid of the inner from that
of the outer roll. This separation zone has a stable sinusoidal modulation that travels along the annulus
as indicated by the black arrow. (b) The local wavenumber of the traveling wave from (a) is shown in
a space-time plot. A modulation travels on top of the underlying wave but does not saturate. After the
displayed transient the modulation grows and leads to a defect with corresponding change of the average
local wavenumber of the underlying wave. Both figures are taken from [56].

to exponentially grow which is not observed here. Instead the long living transient of a

finite modulation is surprisingly similar to the dynamics past the SN of a MAW (compare

Fig. 3.16δ). Repeating the experiment with different geomentrical dimensions may render

the Eckhaus instability supercritical and reveal the full scenario including stable MAWs.

(ii) Another well studied system are hydrothermal waves. For an overview see Section

1.3.2 and figures therein. N. Mukolobwiez et al. [43, 182] have used an annular convection

cell with horizontal temperature gradient. They indeed observed a supercritical Eckhaus

instability and a stable MAW (see Fig. 4.2a). Upon further increase of the temperature

gradient modulations grow and lead to defects that decrease the wavenumber of the un-

derlying wave (see Fig. 4.2b). After this transient a stable unmodulated plane wave is

recovered. The scenario is consistent with the role of the saddle-node bifurcation of MAWs

(see Section 3.3.1). Further experiments including laser-imprinting of initial conditions are

discussed [183, 182]. By preparing the wavelength of initial perturbations one should re-

cover the existence domains and instabilities of MAWs. Especially we conjecture short

wavelength perturbations to saturate (MAW) while for the same experimental parameters

a long wavelength perturbation leads to defects.

(iii) N. Garnier et al. [120, 182] observe hydrothermal waves emitted by a source at one

end of the channel in a linear convection cell. The wave source selects a fixed wavenumber

(see Chapter 5) and the wavelength of perturbations that grow while being advected away

from the source. Depending on the temperature gradient defects may be created by the

modulations. This scenario has a striking similarity with the simulations in Chapter 5. In
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Fig. 4.2: (a) Space-time plot showing the local phase gradient of a hydrothermal wave [43]. The modulation
(bright and dark bands) was stable for as long as the experiment was conducted. It moves on top of an
underlying traveling wave. (b) Defects (arrow) form at higher temperature gradients where no stable
modulation was found. Both figures are taken from [43].
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Fig. 4.3: (a) Top view of the rotating convection cell [53, 185] with 17 traveling convection rolls adjacent
to the side wall. (b) Angle-time plot showing the traveling wave and two defects (arrows) that increase
the number of rolls from 17 to 19. The Eckhaus instability of the initial wave is subcritical. (c) Another
example of defect formation in the same system where the modulus of the wave and the phase gradient are
displayed. (d) Stability diagram of traveling waves that exist above the open circles but are stable only
above the full circles. The existence limit (lower parabola) has been fitted to the data and from that the
Eckhaus instability limit (upper parabola) has been calculated in the CGLE model. The figures are taken
from [53, 185].
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the present setup both parameters ν and P of the MAWs are selected by nonlinear effects

at the source. Also here an additional mechanical of thermal forcing of the source could

provide control over the perturbations and thereby reveal the full scenario including stable

MAWs.

(iv) In order to study large systems W. van de Water [49] uses a narrow channel that

is 2 meters long and heated by a wire (resistor) underneath the fluid surface. He was able

to reproduce theoretical predictions by M. van Hecke et al. on wave sources [184]. Further

progress could reveal MAWs on the emitted waves.

(v) Y. Liu et al. [53, 185] studied rotating Rayleigh-Bénard convection in a convection

cell heated from below and mounted on a rotating plate. If the vertical temperature gradient

is increased above a threshold a traveling-wave sidewall mode appears near the boundary.

Fig. 4.3a shows the top view of the convection cell. The Eckhaus instability was found to be

subcritical and no stable modulated waves were observed. See Fig. 4.3b,c for examples. The

onset of the Eckhaus instability was in good agreement with predictions from the CGLE

(Fig. 4.3d). The authors report [53] that the velocity of perturbations was significantly

smaller than the expected group velocity. As a consequence they suggested higher order

corrections to the CGLE in order to decrease the theoretical group velocity. We think the

finite system size can account for this discrepancy since here the Eckhaus instability does

not set in as the long wavelength instability (k → 0). From Eq. (1.21) or (1.22) it is clear

that shorter wavelength modes travel at a speed different from the group velocity term which

the authors did not take into account. Hence the experiments on rotating Rayleigh-Bénard

convection are good candidates for testing further predictions of the CGLE. In the same

way as for the secondary instability of Rayleigh-Bénard convection one may observe stable

MAWs for different geometrical and hydrodynamical parameters in this experiment.

4.2 Other hydrodynamic and chemical systems

(vi) The Taylor-Dean system (Fig. 4.4a) was studied by P. Bot et al. [54, 186, 187]. It

consists of two concentrical horizontal cylinders where the gap is partly filled with a fluid

(Kalliroscope tracer particles added for visualization). As the inner cylinder rotates the

fluid is dragged upward on one side. The basic flow is a long roll parallel to the axis of the

cylinders (arrow in Fig. 4.4a). Above a critical rotation frequency the roll is unstable and

plane waves move along the roll axis. Above a second threshold the plane waves become

unstable to traveling modulations which have the threefold period of the underlying plane

wave. Therefore this state was named “triplet” [186]. The systematic study presented in this

Chapter suggests that the triplet state is only one out of many coexisting stable solutions

and it has been selected by the source and initial conditions,i.e., the specific realization

of the experimental setup. We conjecture that there are other modulated states than the

triplet that can be observed. Altering the initial condition by mechanical means should

excite a broader variety of states. Recently the generation of defects and spatio-temporal

chaos have also been observed in this system [54].

(vii) Finally, the oscillatory variant of the Belousov-Zhabotinsky reaction offers the pos-
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Fig. 4.4: (a) Vertical cut through the experimental setup of the Taylor-Dean system with the horizontal
data acquisition line x [54, 186, 187]. The gap between the two 55cm long concentrical cylinders has size
d=62mm. (b) Space-time (increases downward) plot of the triplet state. Clearly a source emitts waves to
both sides together with stable modulations. Both figures are taken from [187].
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sibility to observe MAWs in a chemical system. So far the reaction has mostly been studied

in planar two-dimensional geometry as in a petri dish or gel matrix. See Chapter 5 for

a detailed investigation of “super-spirals” in that medium. Also one can imagine a one-

dimensional setup with the reaction confined to a channel. Since the reaction-kinetics is

sensitive to light one can use optical imprinting to study perturbations of traveling waves.





5 Super-Spiral-Breakup

5.1 Introduction

In this Chapter a consistent interpretation of modulated spiral waves with a meandering

core and their breakup is presented. This work applies the results on modulated amplitude

waves (MAWs) from Chapter 3 to the radial dynamics of two-dimensional spiral waves.

Qualitative agreement with recent experimental observations in an extended oscillatory

chemical reaction is achieved. Stable “super-spirals” will be shown to be the cooperative

effect of a supercritical Eckhaus instability of the wave field and the meandering instability

of the tip trajectory. Often the meandering instability and the resulting dynamics occur on a

slower time scale than the emission of waves by the source (see Appendix E). This separation

of time scales allows their independent treatment. The emission of waves adiabatically

follows the slowly moving source. Alternatively one can study extensions of the CGLE in

order to get meandering by the saturation of the oscillatory core instability. I. Aranson et

al. studied this instability which occurs at c1 > 6 but is not saturated in the cubic CGLE

[188].

The asymptotically planar wave field far away from the source is modeled by an am-

plitude equation : the one-dimensional complex Ginzburg-Landau equation (CGLE). In

addition to plane wave solutions the CGLE possesses a two-parameter family of solutions

called modulated amplitude waves (MAWs). To parameterize this family we choose their

average phase gradient ν and the temporal period T of the modulation. MAWs originate

near the Eckhaus instability THB(ν) of the plane wave solutions and terminate in saddle-

node bifurcations TSN(ν). A stationary source |A|(x = x0, t) = 0 emits spiral waves with

an asymptotic wave number q. A subclass of MAWs with ν = q is selected.

In the core region an additional mechanism not present in the amplitude equation pro-

vides the instability of the wave source to meandering. Here the normal form approach

by D. Barkley [194] is applied. Below we will refer to it as “Barkleys normal form”. The

periodic meandering of the source selects the temporal period T = TM of the modulation.

For TM < THB(q) the modulations decay in radial direction and the common meandering

spiral is recovered. For THB(q) < TM < TSN(q) the modulations saturate in radial direction

and form the “super-spiral”. If TM > TSN(q) then the modulations grow without bounds as

they are convected away from the source and adjacent wave fronts annihilate in a finite dis-

tance RBU from the source (“super-spiral-breakup”). If the underlying plane wave solution

is convectively unstable and not absolutely unstable [124, 166] then RBU is much larger than
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Fig. 5.1: Data digitized from published experimental observations in the wave field far away from the spiral
core. Thick (thin) curves refer to Fig.3 in [70] (Fig.5 in [71]). (a) Maximum (dashed), minimum (dotted) and
mean (full, λC = 〈λlocal〉) local wavelength. (b) Spatial period P of the modulation of the local wavelength.
(c) Mean wave number ν = 2π/λC . (d) Ratio of length scales n = P/λC = P ∗ ν/2π.
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the size of the meandering tip trajectory and for further increasing TM the radius RBU of

regular spiral discs decreases. Within certain intervals the presented scenario is robust with

respect to parameter variation. Depending on parameters (e.g., with subcritical Eckhaus

instability) other breakup scenarios skipping the super-spirals are possible.

In Section 5.2 we comment on recent experiments in an extended oscillatory system.

The modelling of the observed wave field by an amplitude equation is performed in Section

5.3. There the relevant modulated amplitude waves (MAWs) are computed. Section 5.4

is devoted to the meandering tip motion modelled by Barkleys normal form approach.

Finally in Section 5.5 the two ingrediences (MAW in the wave field and meandering tip)

are combined. Simulations qualitatively reproduce the experimental observations on the

breakup of super-spirals.

5.2 Experimental observations

Ouyang et al. experimentally studied the oscillatory variant of the Belousov-Zhabotinsky

reaction [67, 68, 69, 70, 71]. The chemicals are supplied to two CSTRs (compartments

A and B) separated by a porous glass disc where the reaction pattern is observed (see

Fig. 1.3). Increasing the concentration [H2SO4] of sulfuric acid in compartment B while

fixing temperature (25±0.5◦C) and the concentrations of all other reactands ([MA]A=0.4M,

[KBr]B=30mM, [NaBrO3]A(B)=0.6M, [ferroin]B=1.0mM [70]) a transition from simple rigidly

rotating spiral waves to modulated spiral waves (above [H2SO4]=0.72M [70]) is observed (see

Figs. 1.4 and 5.7). As [H2SO4] is further increased the modulation of the emitted waves

developes as shown in Fig. 5.1a. Positions (move outward with v) of equal degree of com-

pression of the underlying wave (moves outward with vC) arrange on rotating super-spirals.

Above a threshold ([H2SO4]=0.94M [70]) the modulation near the periphery is strong enough

to break wave fronts and chemical turbulence establishes outside a disc of radius RBU . RBU

decreases as [H2SO4] is increased further.

Ouyang et al. distinguish meandering (with meandering sources but without super-

spirals) and modulated (with meandering sources and super-spirals) spirals [71]. They argue

the meandering tip motion in the case of modulated spirals is the result of perturbations

moving from the periphery towards the source. Perturbations should travel with a “convec-

tive velocity” Vg = v − vC that points inward (v < vC); the opposite direction of saturated

travelling (v) modulations [70].

In this picture it is not clear (i) why the Eckhaus instability (long wavelength) does not

appear with just one modulation n ≈ 20 in the system and (ii) why small perturbations

in the wave field should grow that fast and form saturated modulations within the system

although they are advected to the periphery or the source, respectively.

In Section 5.3 we will show that saturated modulations have a velocity similar to that of

infinitesimal perturbations to the underlying wave. In other words: saturated modulations

approximately move with the group velocity. For a convective instability as observed in the

experiment all perturbations travel in the same direction : outward. None of them travels

inward with Vg.
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Fig. 5.2: Snapshot (Re[A(x, y, t = t0)]) of a rigidly rotating (counterclockwise) spiral wave. The white
(black) arm of the spiral corresponds to Re[A] = |A|max (−|A|max). In the center |A| = 0. The white box
denotes the one-dimensional cut that we use below in order to study the radial dynamics of the spiral wave.
Parameters are c1 = 3.5, c3 = 0.4 and at the boundaries the normal derivative of A is set to zero.
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Fig. 5.3: Space time plots of |A| (left) and Re[A] (right) with A(x = 0, t) = 0 and ∂xA(x = 500, t) = 0 as
boundary conditions. The left boundary constitutes the source, note the darker gray level (low values of
|A|), and the waves travel to the periphery (open right boundary). Parameters are c1 = 3.5, c3 = 0.4.

We interpret the behaviour the other way around. The meandering tip motion has the

same origin in both cases, the meandering and the modulated spiral, respectively. This

implies that the tip motion is unstable in distinct domains of the parameter space but

stable between them. Hence the saturated modulation of the modulated spirals is the result

of the meandering tip motion in connection with the supercritical Eckhaus instability of the

emitted waves. In the case of the meandering spirals the emitted (non-modulated) waves

are stable, perturbations due to the meandering decay and super-spirals do not develop.

To provide a quantitative basis for the modelling, we collect the important experimental

data in Figs. 5.1,5.9 and 5.10. From Fig. 5.1d we get the ratio of length scales n = Pν/2π ≈ 3

with the spatial period P of the modulation and the average wavenumber ν = 2π/λC . In

our interpretation each measured n was selected by the meandering tip motion. Likewise the

time scale ratio T/TC of the temporal periods T of the modulation and TC of the underlying

wave (carrier) can be defined. The ratios Pν/2π and T/TC are independent of scaling when

deriving an amplitude equation. Therefore the same ratios are desired for the MAWs in the

CGLE below.

5.3 Eckhaus Instability of the Wave Field

Pattern formation in the oscillatory Belousov-Zhabotinsky reaction has been modelled by

the CGLE [30, 67, 71]. In order to ease reading we repeat the CGLE (1.12) in one spatial

dimension :

∂tA = A + (1 + ic1)∂
2
xA− (1 − ic3)|A|2A , (5.1)

describing amplitude and phase of oscillating chemical concentrations.

The computations follow the same scheme as in Chapter 3. To parameterize the two

parameter family of MAW solutions we choose the temporal period T (T = P/v) of the
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Fig. 5.4: Spatial profile of Re[A(x, t = t0)] (dashed), Im[A(x, t = t0)] (dotted) and |A|(x, t = t0) (full curve)
with the source at x = 0. Away from the wave source a plane wave with wave number ν = 2π/λC and
phase velocity vC establishes. Parameters and boundary conditions as in Fig. 5.3.

modulation and the average wave number ν := 1/T
∫ T
0 dt ∂x argA(x, t). This choice of

parametrization is more appropriate in the case of meandering spirals studied in this chapter.

In the particular experiments [67, 69, 70, 71] a self-organising source periodically emits

waves that travel to the periphery. Contours of the two-dimensional wave field form one-

armed spiral wave patterns (see Fig. 5.7). The self-organising source selects a unique asymp-

totic wave number q(c1, c3) of the emitted waves [189]. 1 This mechanism is qualitatively

the same in the modelled chemical system as well as in the two-dimensional CGLE. Along

any closed path around the source the phase of the wave field possesses a total jump of 2π .
2 The source is a topological defect associated to |A| = 0.

Simulations of the CGLE in two spatial dimensions also yield rigidly rotating spiral

waves as illustrated in Fig. 5.2. For a detailed discussion see [122]. An one-armed spiral

wave in polar coordinates (r, θ) is of the form

A(r, θ, t) = F (r)ei(−ωt + θ + f(r)) (5.2)

with the asymptotic behavior df(r)/dr → q, F (r) →
√

1 − q2 for r → ∞ (wave field) and

df(r)/dr ∼ r, F (r) ∼ r for r → 0 (|A| = 0 in the spiral core).

The parameters in Fig. 5.2 are chosen beyond the Eckhaus instability of the emitted wave

field but the spiral remains stable. This stability holds as long as the Eckhaus instability

is of “convective nature” and no perturbations are applied in the center. This scenario

has been described by I. S. Aranson et al. [124, 166]. In this section we will focus on

1It may be computed numerically in the two-dimensional case whereas it is known analytically for the
one-dimensional source, see below.

2In general a m-armed spiral posseses a phase jump of m ∗ 2π.
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Fig. 5.5: Bifurcation diagrams of MAWs in the CGLE. (a) Maximum and minimum modulus of the mod-
ulation for varying temporal period T . Full (dashed) curves denote stable (unstable) solutions and the
horizontal line is the plane wave solution. Arrows indicate transient dynamics of modulations that are not
uniformly propagating. (b) Spatial profiles for P = 23 which corresponds to T ≈ 8.5. (c) Velocity of the
underlying wave (carrier) increases as the modulation developes. (d) Velocity of the modulations. Dotted
lines give the analytical result for infinitesimal perturbations of long (upper) and short wavelength type
(P = 23, lower). All these structures (underlying wave, modulations and infinitesimal perturbations) travel
in the same direction. Parameters are c1 = 3.5, c3 = 0.4 and ν = q = 0.366 from Eq. (5.4).
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the radial dynamics away from the wave source neglecting concentration gradients in the

perpendicular direction, i.e., the small curvature of concentration contours is approximated

by planar wave trains. The white box in Fig. 5.2 marks the one-dimensional system that we

use below in order to study the radial dynamics of the spiral wave. Figs. 5.3 and 5.4 show

results of simulations of the CGLE along the one-dimensional cut with an artificial wave

source at the left boundary.

From now on we use the wave number selection by a Dirichlet boundary condition

A(x = 0, t) = 0 in a one-dimensional system representing a radial cut through the wave

source. Figs. 5.3 and 5.4 show a gray scaled space time plot and the spatial profiles of the

field A in the one-dimensional system. The wave number selection in both one and two

dimensions yields close results [166, 189]. If q becomes small (q < 0.3), the one-dimensional

approximation overestimates the selected wave number in two dimensions.

Matching asymptotic expansions, Hagan [189] analytically obtained an expression for the

selected wave number in the case c1 = 0. Using scaling relations this result was expanded

to arbitrary parameters [190]

α(c1, c3) =

√√√√3c1(8(c1 − c3)2 + 9(1 + c1c3)2 − 4c1c3)1/2 + c1(5− 9c1c3)− 4c3

4(−2c3 + 9c3
1 + 7c1)

(5.3)

0 = (c1 + c3)q
2 + 3α(c1, c3)q − c3 − 2c1α(c1, c3)

2 (5.4)

where the positive q(c1, c3) has to be chosen. Simulations as in Figs.5.3,5.4 are in good

agreement with the analytical result.

Due to reflection symmetry of the CGLE solutions exist for ν = ±q which only differ in

propagation direction. The presence of a wave source breaks this symmetry and one unique

solution remains. Without loss of generality we fix ν = q(c1, c3) at the value selected by the

source in the one-dimensional system.

For properly chosen fixed parameters c1, c3 and increasing T the branch of MAWs emerges

from the plane wave fixed point at a Hopf bifurcation in the ODEs which results from the

Eckhaus instability as discussed in Section 1.4.3. The modulation develops for T above the

period at the Hopf (HB) bifurcation THB. At a larger period TSN the stable branch (I)

meets with a second but unstable branch (II) in a saddle-node (SN) bifurcation. No MAWs

exist beyond TSN .

Figs. 5.5a,c,d show typical bifurcation diagrams for MAWs with parameters as in Fig. 5.3.

Full (dashed) curves denote stable (unstable) solutions. For these parameters the bifurca-

tions occur at THB = 8.0 and TSN = 9.12. Arrows in Fig. 5.5a,b denote the transient dynam-

ics of perturbations. Small perturbations of the plane wave (e.g. due to weak meandering)

can grow unbounded if T > TSN . Large perturbations (e.g. due to strong meandering) can

grow unbounded if their |A|min exceeds the corresponding value of the unstable (saddle)

MAW solution, which changes with T . Fig. 5.5b shows typical spatial profiles. Fig. 5.5c,d

give the velocities of the underlying wave (vC), of the modulation (v) and of infinitesimal

perturbations to the plane wave. They are all oriented in the same direction : outward.
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Saturated modulations and infinitesimal modulations always travel in the same direction

for all c1, c3 where the underlying wave is convectively unstable.

Repeating this bifurcation analysis for the whole parameter plane (c1, c3) we identify a

domain around 0.3 < c3 < 0.5 where MAWs exist with ν = q(c1, c3). To allow efficient

computations in this region we used a fit q(c1, c3) = 0.352 − 0.021c1 + 0.0006c2
1 + 0.22c3 −

0.008c1c3 to the wave number derived from Eq. (5.4).

Fig. 5.6 summarizes the results in the (c1, c3) parameter space. The emitted plane waves

of a spiral are convectively unstable above the thick full curve [166]. Stable super-spirals

can only exist (inside the shaded area) where this instability is supercritical hence only

above both (thick and thin) full curves. Increasing c3 inside the shaded area the instability

threshold THB monotonously decreases starting from ∞ at the lower boundary of the area.

Above the thick dot-dashed curve (THB = TSN ) the Hopf bifurcation is subcritical and super-

spirals are unstable, this marks the upper boundary of the shaded area. The thick dashed

curve inside the shaded area denotes the saddle-node bifurcation for TSN → ∞. Below

this curve all modulations with T > THB saturate but above this curve only modulations

with THB < T < TSN saturate. For higher T > TSN no MAWs exist and modulations will

grow unbounded causing super-spiral-breakup. Since the region of super-spirals entirely lies

inside the domain of convective instability (see Fig. 5.6) a finite perturbation is needed to

excite them. The meandering source will be sufficient. If the region of super-spirals and

absolute instability overlapped then super-spirals could exist in the absence of meandering

and the absolute instability would not immediately lead to spiral breakup. If such an overlap

occurs in other models has to be investigated by a fully nonlinear analysis as presented here.

The linear analysis for perturbations around the plane wave solutions [124, 166, 197] is not

sufficient to answer this question.

5.4 Meandering Instability of the Source

An additional mechanism not present in the amplitude equation provides the instability of

the wave source to “meandering”. The term meandering was introduced by A. T. Winfree

[191]. The phenomenon of meandering spiral waves has been studied intensively [192, 193,

194, 195, 196] but mostly focused on the core region. Far away from the core the disturbance

was previously assumed to exponentially decay or amplify depending on the stability of the

asymptotic wave field neglecting nonlinear effects.

The tip of the spiral wave is conveniently defined as the point of strongest curvature on

a contour Re[A] = a0 (often the wave front) [68]. This definition can easily be adapted

in the image processing of experiments. However, the wave source A = 0 has a position

different from but close to the tip. For the rigidly rotating spiral wave the tip trajectory is

a circle with the stationary wave source in the center.

D. Barkley introduced [194] the normal form approach Eq. (5.5) unfolding the me-

andering instability around a codimension-two point. If we write the position of the tip
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Fig. 5.6: Parameter space (c1, c3) of the CGLE with BFN curve (thin dotted), lower boundary of supercritical
Eckhaus instabilities for arbitrary ν (thin full) [56, 173], lower boundary of Eckhaus instabilities with
ν = q(c1, c3) (thick full) and lower boundary of absolute instability with ν = q(c1, c3) (thick dotted). Above
the thick dot-dashed curve (THB = TSN) the Hopf bifurcation is subcritical and no stable MAWs exist.
The thick dashed curve inside the shaded area denotes the saddle-node bifurcation for TSN → ∞.
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Fig. 5.7: Experimental observations of spiral waves emitted by a meandering wave source. The upper
panels show snapshots of the chemical concentration pattern for increasing [H2SO4] from (a) to (e). The
trajectory of the spiral tip is plotted below each snapshot. (f) schematically shows a tip trajectory (dotted)
as produced by a tip moving around a rotating source (solid circle). The figure was taken from [71].
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Fig. 5.8: Parameter space (α1, α2) of Barkleys normal form for the meandering instability at fixed γ0 = 6.
The full curve denotes the locus of Hopf bifurcations, the thick dashed curve separates outward (below) from
inward (above) meandering trajectories and the codimension-two point is given by the diamond. Along the
dotted curve the tip meanders outward with a period TM = 30 while TM diverges along the thick dashed
curve. The dot-dashed curve illustrates a possible parameter variation Eq. (5.6) from top-left to bottom-
right corresponding to experimental observations [70]. Insets show examples of tip trajectories all with the
same scale. The lowest inset also illustrates the quasi-periodicity of the trajectory.

p(t) = x(t) + iy(t) and its velocity v(t) =
√
ξ(t) exp iφ(t) then the normal form reads :

ẋ =
√
ξ cosφ , ẏ =

√
ξ sinφ , φ̇ = γ0

√
ζ ,

ξ̇ = 2ξ[−1/4 + α1ξ + α2ζ − ξ2] , (5.5)

ζ̇ = 2ζ[ξ − ζ − 1] .

α1, α2 are parameters, γ0 is a fixed constant and the subsystem (ξ, ζ) is decoupled from the

subsystem (x, y, φ).

Fig. 5.8 shows the (α1, α2) parameter plane for arbitrarily chosen γ0 = 6. The data was ob-

tained by means of Auto97. The insets are examples of tip trajectories. The codimension-

two point is denoted by the diamond. Along the full curve a Hopf bifurcation renders the

circular tip trajectory unstable and the meandering motion appears. This bifurcation is

always supercritical [194]. The thick dashed curve separates outward (below) from inward
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Fig. 5.9: The meandering frequency ω2 in a corotating frame as used in the normal form analysis by D.
Barkley. The full curve gives the most accurate result based on measured TM , TC with ω2 = 2π(1/TM +
1/TC). The two other curves are estimates based on the approximate number m of petals and TC . The
lower curve (dashed) used the wrong relation 2π/TC ∗ (m+ 1)/m (see Fig.7 in [71]). The filled squares give
the corrected result ω2 = 2π/TC ∗m/(m− 1). The latter matches the full curve at high [H2SO4] where m

becomes increasingly accurate.

(above) meandering trajectories. Variation of γ0 does not alter the former but the latter

curve and shifts the codimension-two point along the locus of Hopf bifurcations. The pri-

mary frequency of the spiral rotation ω1 = 〈φ̇〉 is proportional to γ0. The second frequency

ω2 is selected by a possible limit cycle in the (ξ, ζ) subsystem and can be observed in a

corotating (with ω1) coordinate system. For ω1−ω2 > 0 (or < 0) the tip rotates in the same

(opposite) direction as the source and the trajectory possesses inward (outward) petals.

Ouyang observed outward petals and ω2 > ω1. This epicycloidal trajectory has a period

TM = 2π/(ω2 −ω1) [68], see Appendix E. Since γ0 solely affects ω1 one has small (large) ω1

and larger domains with outward (inward) petals for small (large) γ0.

Ouyang et al. report TM , TC and the corresponding tip trajectories [71], see Fig. 5.7. They

count the number m of petals of the meandering tip trajectory. This is not reliable near the

onset of meandering where the tip trajectory is almost circular but m becomes increasingly

accurate at higher [H2SO4]. From these data the meandering frequency ω2 can be calculated

(Fig. 5.9). Relations depending on m will give only rough approximations at low values of

[H2SO4].

Per main loop m − 1 (m + 1) periods of the wave are emitted in the case of outward

(inward) meandering where the tip rotates in the opposite (same) direction as the main

loop. The reason is the one rotation on the main loop that annihilates (adds) one period

if the tip moves in the opposite (same) direction. Ouyang et al. assume TM = mTC which

looks intuitive but needs to be replaced by TM = (m−1)TC or TM = (m+1)TC for outward,

respectively inward, meandering.

Fig. 5.9 compares the different results. For [H2SO4] > 0.7 where m is rather accurate
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Fig. 5.10: The dependency TM ([H2SO4]) is reproduced by the meandering instability. Comparison of
experimental data (squares) from Fig.3 in [70] and theoretical data (dashed curve) obtained from numerical
integration of Eqs. (5.5) along the dot-dashed curve (5.6) in Fig. 5.8.

we observe satisfactory agreement between ω2 computed from TM , TC measured far away

from the source (full curve) and ω2 computed from m,TC (filled squares). Hence the tip

trajectory is in phase with the modulation in the far field. This supports the idea that the

meandering source triggers the modulations in the wave field of the spiral.

Fig. 5.10 shows the variation of TM along the dot-dashed curve in the parameter plane

Fig. 5.8. A parameter mapping

γo = 6

α2 = −18α1 + 31.6 (5.6)

[H2SO4] /M = 0.85α1 − 1.25

was chosen to reproduce the experimental data. The modulation period TM decreases

(increases) at lower (higher) [H2SO4]. If increasing concentration [H2SO4] changes the para-

meters α1 and α2 in a similar way as suggested by Eq. (5.6) then the observed dependency

of TM is caused by a single mechanism : the meandering instability; the minimum of TM ap-

pears naturally. Ouyang et al. mention the possibility of different mechanisms interchanging

at [H2SO4]=0.8M [70] to explain the minimum of TM . This is not necessary.

The tip of the rigidly rotating spiral moves along a circle around the stationary source

(xS, yS). For the meandering spiral past the Hopf bifurcation (full curve in Fig. 5.8) the

source is no longer stationary. To lowest order the source moves along a circle. This led to

the caricature [68] “Moon-Earth (-Sun)” for the relation of tip and source : the tip (moon)
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Fig. 5.11: Length scale ratio n = P ∗ ν/2π versus c3 for fixed c1 = 3.5. Stable MAWs exist between Hopf
(thin full) and saddle-node (thick full curve). Fixing T = TM selects MAWs along the dashed curve. The
inset shows the wavenumber ν as measured in one-dimensional simulations and calculated from Eq. (5.4).

orbits the source (earth) which moves around a center (sun). In Appendix E the trajectory

of the source

xS(t) = RS cos 2πt/TM (5.7)

is derived. In the one-dimensional simulations below we will force the wave source to oscillate

as Eq. (5.7). The movement in the perpendicular direction yS(t) has little influence on the

wave field far away from the source and we neglect this.

5.5 MAWs and Meandering in 1D Simulations

In this Section we will illustrate stable super-spirals and their breakup in one-dimensional

simulations with an appropriate choice of boundary conditions. As mentioned before di-

mensionless quantities such as length or time scale ratios are not altered by scaling of space

and time when deriving the amplitude equation. For the ratio of phase and group velocity

on can get a rough estimate.

vph = ω/q (5.8)

vgr = ∂ω/∂q (5.9)

vph
vgr

=
1

2
− c3

2q2(c1 + c3)
(5.10)
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Velocities of MAWs in the CGLE continuously deviate from the above result as their periods

become shorter and as the modulations develop past the Hopf bifurcations (see Fig. 5.5c,d).

Still vC/v stays close to or below 1/2. In the experiment vC/v ≈ 2 was observed [70].

Therefore it is only possible to either fit the ratio of spatial periods n = P ∗ ν/2π or the

ratio of temporal periods T/TC. Clearly this is a drawback of the amplitude equation.

The reasons for slower modulations or faster carrier waves in the experiments can be

curvature effects on the velocities, discrepancies in the wave number selection between the

one- and two-dimensional systems or a feedback of the meandering tip motion on the wave

number selection mechanism. Furthermore the amplitude description is rigorous only near

the onset of oscillations but may quantitatively deviate from the finite amplitude situation in

the studied experiment. These quantitative discrepancies may effect both the wave number

selection mechanism of the wave source as well as the properties of modulated amplitude

waves, e.g., their velocities.

However, we believe the mechanisms and solutions as well as their bifurcation structure

qualitatively are the same in the experimental oscillatory system and the amplitude de-

scription (CGLE). We consider these mechanisms as very robust with respect to parameter

variations since MAWs with ν = q(c1, c3) exist for a broad range of parameters (shaded area

in Fig. 5.6).

In order to illustrate the scenario we choose to fit the experimentally observed ratio of

length scales n (see thick curve in Fig. 5.1d) and will underestimate the time scale ratio. In

the following we arbitrarily fix the parameter c1 and vary c3 to include stable super-spirals.

In particular we choose the parameter mapping :

c1 = 3.5

c3 =
1

2
[H2SO4] /M − 0.1 (5.11)

TM = 42 − 135c3 + 215c2
3

where TM also possesses a minimum close to c3 = 0.3=̂ [H2SO4] = 0.8M (see Fig. 5.14).

The results of the bifurcation analysis of the MAWs with T = TM are summarized in

Fig. 5.11. Stable MAWs (dashed) only exist within an interval of c3 limited by Hopf (thin

full) and saddle-node (thick full curve) bifurcations. The inset compares the wavenumber

ν (dots) measured in the simulations below and the analytical result Eq. (5.4) used for the

bifurcation analysis. Both are in good agreement.

We performed simulations of the one-dimensional CGLE. Instead of fixing the left bound-

ary A(x = 0, t) = 0 as in Fig. 5.3 the boundary condition now mimics the moving source.

Since there exist no meandering spiral waves in the two-dimensional CGLE we can not use

a time series of a point close to the source of a two-dimensional simulation as the boundary

condition of the one-dimensional equivalent. We apply a temporal oscillation with period

TM following Eqs. (5.11). Eq. (5.7) xS = RS cos 2πt/TM is used to set A(x ≤ xS, t) = 0.

RS is chosen between 0 and 5 as indicated below. For large RS one can get additional

phenomena, e.g., breakup near the source. Fig. 5.12 shows the resulting space time plots

and Fig. 5.13 the corresponding profiles.
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Fig. 5.12: Space time plots of simulations with oscillating left boundary (A(x ≤ xS , t) = 0). (a) c3 =
0.22, RS = 5, TM < THB lies before the Hopf bifurcation and even strong disturbances decay. (b) c3 =
0.26, RS = 0, TM > THB and the unmodulated plane wave is recovered due to the convective instability.
Note, an initial disturbance grows and leaves the system. (c,d) c3 = 0.26, RS = 0.5, modulations grow and
saturate as soon as meandering sets in. (e) c3 = 0.4, RS = 0.5, TM > TSN lies beyond the saddle-node
bifurcation but breakup is not visible in the short system. (f) c3 = 0.4, RS = 5 gives breakup at x ≈ 300.
Note the strongly oscillating boundary (white).
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Fig. 5.13: Spatial profiles of the final state of the simulations with RS = 3. Full curves denote |A|(x, t = 500)
and dotted curves are guides to the eye. (a-c) correspond to c3 = 0.22, 0.3, 0.4, respectively.

If the period of the modulation would be selected solely by the stability properties of the

wave field then one would expect a period similar to the fastest growing mode independent

of the applied period TM . The short calculations uses Eqs.(1.22),(1.29),(1.30) and we get

THB = PHB/(vg−Ωgk2
HB) and for the fastest growing mode (maximum of Re[λk]) Tfastest =√

2PHB/(vg − Ωgk2
HB/2). This mode is denoted by the dot-dashed curve in Fig. 5.14. The

symbols representing the results of the simulations do not follow this prediction. Instead

from Fig. 5.14 it is evident that the periodic meandering of the source selects the temporal

period T = TM .

For small TM (Figs. 5.12a and 5.13a) the small disturbances caused by the oscillating source

decay and a nonmodulated wave field is emitted. The two-dimensional analogon is the

common meandering spiral. Note, the wave field may be convectively unstable against

long periods but these are not excited. For intermediate TM (Figs. 5.12c,d and 5.13b)

the disturbances grow and saturate. The wave field exactly represents a MAW (see also

Fig. 5.15). In two dimensions this corresponds to the modulated spiral wave with a super-

spiral structure of the modulation. For large TM (Figs. 5.12f and 5.13c) the disturbances

grow unbounded and lead to defects in a finite distance RBU where |A| occasionally reaches

zero. In the two-dimensional system this corresponds to the super-spiral-breakup.

Symbols in Figs. 5.14,5.16 correspond to individual simulations as in Figs. 5.12 and 5.13.

The leftmost circle corresponds to TM < THB and a stable unmodulated wave was ob-

served independent if RS = 0 or RS > 0. Measurements refer to the transient decay. The

second circle also corresponds to an unmodulated wave if RS = 0 as in the experiment

at [H2SO4]=0.70. However for RS > 0 we observe a saturated MAW in agreement with
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Fig. 5.14: Temporal period T of the modulation far away from the source. Hopf bifurcation (thin full curve)
and its analytical approximation (thin dashed), saddle-node bifurcation (thick full), fastest growing mode
(dot dashed) and the period of meandering (dotted) are shown. Symbols correspond to simulations and are
explained in the text.
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Fig. 5.15: Bifurcation diagram (curves) of MAWs with T = TM (c3). Full (dashed) curves denote stable
(unstable) solutions. Symbols denote measurements from the simuations with RS = 0.5. The Hopf bifurca-
tions occurs at c3 = 0.24 and the saddle-node bifurcation at c3 = 0.334. The rightmost dot corresponds to
a simulation with c3 = 0.338 where no breakup was observed in the finite system L = 10.000.

TM > THB. The dots also refer to saturated MAWs for RS > 0. For c3 ≥ 0.34 we observe

breakup of the modulated wave in a system of size L = 10.000. Here TM > TSN and mea-

surements in the transient are denoted by triangles. The agreement of transitions between

different states of the spiral and the bifurcation analysis of the MAWs is satisfactory. For

RS > 0 and TM < THB the modulations decay, for THB < TM < TSN super-spirals are

formed and for TM > TSN the super-spirals break up.

In the bifurcation diagram Fig. 5.15 the maximum and minimum modulus of MAW

profiles are plotted. The dots are measured values from simulations with RS = 0.5 and

are valid for any 0 < RS < 5. For c3 ≥ 0.34 the modulus does not saturate and defects

are formed that break up the wave. Also these quantities show satisfactory agreement. For

RS = 0 ,i.e., without meandering we always obtain the unmodulated plane wave.

The direct comparison with the experimental data is presented in Fig. 5.16. Increasing

[H2SO4] the supercritical Eckhaus instability appears first (at [H2SO4]=0.69M) while the

meandering instability occurs later (at [H2SO4]=0.72) where the wave train is convectively

unstable. In the experiment the convectively unstable spiral appears stable since the source

is stationary and relevant perturbations are missing. This is in agreement with early work

in the group of Kramer [166]. Above [H2SO4]=0.72M the modulation rapidly increases with

[H2SO4] since past the Hopf bifurcation MAWs already aquired a finite amplitude. Compare

Fig.4 in [70].

Fig. 5.17 shows the breakup radius RBU for fixed RS = 0.5. It decreases with the distance
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Fig. 5.16: Comparison of results from bifurcation analysis and simulations in terms of the length scale ratio
n. Curves are as in Fig. 5.11. Symbols refer to the simulations as in Fig. 5.14. Open squares denote the
experimental observations as in Fig. 5.1d which may be fitted by the numerics. However, the comparison is
not quantitative since the time scale ratio of the super-spirals is underestimated as discussed in Sec. 5.5.
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Fig. 5.17: The breakup radius RBU decreases with distance above threshold, the saddle-node bifurcation
(vertical line at c3 = 0.334). In systems of size within the shaded area one still observes (apparent) super-
spirals with a long plateau of MAWs similar to that at the saddle-node bifurcation. RS = 0.5 is fixed in
these simulations (triangles). The curve is a guide to the eye.

from the saddle-node bifurcation and with increasing RS. For x < RBU a long plateau of

an almost saturated modulation remains until it eventually developes defects. This is due

to the slow dynamics near the saddle-node bifurcation (see Fig. 5.15). In short systems of

size smaller than RBU one does not notice the breakup threshold (Fig. 5.12e). It apparently

shifts to higher values of the parameter. This is the reason why the experimental data of

saturated super-spirals extend beyond the saddle-node curve in Fig. 5.16. If RS is increased

then the breakup radius decreases at fixed c3. This is illustrated in Fig. 5.12f for RS = 5

and c3 = 0.4.

5.6 Conclusion

We have investigated super-spiral breakup in oscillatory media by means of normal forms.

Stable super-spirals are the cooperative effect of both the meandering instability (Barkleys

normal form) and the supercritical Eckhaus instability (complex Ginzburg-Landau equa-

tion). The period of meandering TM excites the mode with T = TM in the wave field. The

transition from rigidly rotating spirals to super-spirals and their breakup are determined by

the coalescence of TM with THB, TSN which all vary with the parameters. The scenario is

rather robust since it does not depend on details of the intersecting curves (TM , THB, TSN
as function of parameters).

Depending on parameters (e.g., with subcritical Eckhaus instability) other breakup sce-
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narios skipping the super-spirals are possible. Then no stable MAW solutions exist that

could bound the growth of perturbations. The properties of the plane wave although con-

vectively unstable then lead to breakup in a finite distance for TM > THB.

Only in rare cases the two required instabilities may occur at the same values of the

parameters. Interpreting the experiments [70, 71] we conjecture the Eckhaus instability to

occur before the onset of super-spirals (Fig. 5.16). The latter happens at the meandering

instability. Also we see no reason to distinguish areas C1 and C2 in the phase diagram Fig.1

in [71]. The period T = TM in the wave field is solely determined by a single mechanism,

the meandering.

In order to test our conjecture further experiments should study different geometries for

the same values of chemical concentrations. Since meandering is a purely two-dimensional

effect one can discriminate its onset from that of the Eckhaus instability which is present

in the one-dimensional system already. Stable MAWs should also persist in an annular or

linear reactive channel (see also Section 4).





6 Bifurcation Analysis of Calcium

Bursts

6.1 Introduction

Information encoding in the cell is one aspect of present day research on biological systems

that can benefit from a dynamical systems approach. There are more than a thousand

different hormones and specific receptors an organism uses to control its actions. Inside

a cell a particular process has to be activated by a hormone which shortly binds to the

specific receptor on the membrane and then detaches to activate other cells as well. Infor-

mation within the cell is encoded in the dynamics of the concentrations of a few messenger

species,e.g. cAMP, NO· radicals and Ca2+ ions, rather than in the presence or absence of

individuals out of a vast number of messengers [86, 87]. Ca2+ alone is the second messenger

for half of the hormones and the concentration [Ca2+](t) was experimentally observed to

oscillate with the frequency and pulse shape encoding the specific hormone [88]. At low

levels of stimulation [Ca2+](t) shows periodic spikes with increasing frequency as the stimu-

lation raises. This feature is called frequency encoding. At higher stimulation level [Ca2+](t)

develops complex bursts,i.e. periodic excitations with an intricate sub structure. Finally a

chaotic time series is observed before the cell turns into an overstimulated staedy state. See

Fig. 6.1 for an experimental example of bursting [Ca2+](t) derived from the intensity signal

of a bioluminescent Ca2+ indicator in incubated hepatocytes of rat. Many metabolic and

genetic processes in the cell depend on [Ca2+](t) and will be altered accordingly [198]. A

similar model of the calcium dynamics was recently analysed by T. Haberichter et al. [199].

Fig. 6.2 represents a schematic drawing of the cell with a few elements important for

[Ca2+](t) regulation. For more details see [200, 201]. The intracellular space (cytosol) is

heterogeneous containing networks of interior membranes and organelles. Moreover Ca2+

is released and taken up at discrete locations, channels and pumps. However, in the first

approach the heterogeneities may be neglected because the examined phenomenon occures

on a time scale slow enough for Ca2+ to diffuse and reach a rather homogeneous distribu-

tion. Here the bursting [Ca2+](t) is a temporal rather than spatio-temporal pattern. More

sophisticated attempts will also consider heterogeneities [202].

Recently a model was put forward by U. Kummer et al. [88] that captures the essential

mechanisms that regulate cytosolic calcium concentration [Ca2+](t) and thereby influence

signal transduction,i.e. the response of a cell to very low concentrations of hormones de-
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Fig. 6.1: Experimental observation of bursting calcium concentration in hepatocytes of rat. Note the smaller
secondary spikes following each large initial spike.

livered by the blood stream. Section 6.2 will introduce the model equations. U. Kummer

et al. studied this model by numerical integration. We will supplement their results by a

bifurcation analysis of the temporally periodic solutions that represent the oscillations of

[Ca2+](t). The results of the bifurcation analysis are presented in Section 6.3. The oscil-

lations emerge sinusoidal from a supercritical Hopf bifurcation of the steady state. Near

this onset of oscillations in an extended system with the same local kinetics could again be

described by the complex Ginzburg-Landau equation as studied in the previous chapters.

Away from the Hopf bifurcation the bursts deviate much from a simple oscillation and this

complex behavior is of special interest since it is supposed to encode information. Therefore

the dynamics has to be studied in the complete model and this system serves as an example

for a situation where the amplitude equations approach is not appropriate. Still the calcium

bursts may be considered complex patterns in an uniform oscillatory system. The bursts

at higher values of the control parameter correspond to complicated limit cycles that will

be analysed in more detail in Section 6.4. During a burst the individual variables change

on different time scales and this feature will be used to better understand and classify the

complicated dynamics. For an overview of bursting behavior and the classification scheme

see J. Keener and J. Sneyd [28].

6.2 The model

The model describes the temporal evolution of the concentrations of the four quantities that

are most relevant for the calcium dynamics (see Fig 6.2). As in other established models

[203, 204], it is supposed that through binding of a hormone to the extracellular side of a
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Fig. 6.2: Schematic drawing of the cell with a membrane bound receptor (top) and the endoplasmic reticulum
(ER). Dotted arrows denote the main influences on the Ca2+ fluxes (solid arrows) that control the dynamics
of [Ca2+](t) in the cytosol.

membrane-bound receptor molecule, the Gα-subunit of the receptor coupled G-protein is

activated. The activated G-protein in turn stimulates a phospholipase C (PLC) which cat-

alyzes formation of inositol-1,4,5-triphosphate (IP3). IP3 binds to receptors of intracellular

stores of Ca2+ (endoplasmic reticulum) opening their calcium channels. This results in an

increased flux of calcium ions into the cytosol. Besides IP3 also Ca2+ ions are needed to

activate the channels on the ER whereas a high concentration of Ca2+ inhibits the chan-

nels. This autocatalytic process is called calcium induced calcium release (CICR). Further

interactions inside the cytosol as well as uptake and release of Ca2+ across the membrane

have also been incorporated. A feedback loop couples the dynamics of intracellular Ca2+

back to the activation of the Gα-subunit. Thereby oscillations of [Ca2+](t) also influence the

PLC and the concentration of IP3. All individual processes have been observed experimen-

tally. The corresponding terms in the equations represent simple Michaelis-Menten kinetics

[24, 28] for enzyme catalysed reactions.

In the full model (6.1)-(6.4) below a(t) denotes the concentration of active Gα-subunits,

b(t) denotes the concentration of active PLC, c(t) denotes the concentration of free calcium

in the cytosol and d(t) denotes the concentration of calcium in the intracellular stores. IP3

is assumed to adiabatically follow the dynamics of active PLC and so it is not considered

as a separate variable.
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Fig. 6.3: Bifurcation diagram showing maximum and minimum of cytosolic [Ca2+](t) = c(t) (thick curves).
The steady state (thin curve) is stable below the Hopf bifurcation (square) and unstable above. The core
model (6.5)-(6.7) was used.

da

dt
= k1 + k2a− k3ab

a + k4
− k5ac

a + k6
(6.1)

db

dt
= k7a− k8b

b + k9
(6.2)

dc

dt
=

k10cbd

d + k11

+ k12b + k13a− k14c

c + k15

− k16c

c + k17

(6.3)

dd

dt
= − k10cbd

d + k11
+

k16c

c + k17
(6.4)

The model contains 17 parameters estimated from experimental data. In dimensionless

units the parameter values k1 = 0.09, k3 = 0.64, k4 = 0.19, k5 = 4.88, k6 = 1.18, k7 =

2.08, k8 = 32.24, k9 = 29.09, k10 = 5.0, k11 = 2.67, k12 = 0.7, k13 = 13.58, k14 = 153, k15 =

0.16, k16 = 4.85, k17 = 0.05 are fixed. We will study the behavior of this set of nonlinear

ODEs under variation of the parameter k2 which is of order 1. Parameter k2 describes the

stimulation from extracellular space, i.e. the concentration of the respective hormone. To

represent the calculated solutions we choose to display the concentration c(t) of Ca2+ in the

cytosol.

6.3 Bifurcation analysis

To calculate periodic temporal behavior of the system (6.1)-(6.4) we again use a continuation

scheme and the software package AUTO97 [161]. We start from a steady state solution

that corresponds to a fixed point in the phase space. In the Eqs. (6.1)-(6.4) this fixed point
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Fig. 6.4: Bifurcation diagram of the full model (6.1)-(6.4). Curves have the same interpretation as in
Fig. 6.3.

does not exist for arbitrarily weak stimulations k2. For k2 < 1.5 the model predicts Ca2+

to be continuously pumped into the stores (ER). Here the model needs to be modified to

saturate the increase of d(t).

U. Kummer et al. [88] also put forward a “core model” (6.5)-(6.7) which neglects the

influence of d(t) and drops the terms proportional to k12 and k16. The latter is justified by

the observation k14 � k16 but the other simplifications are crude approximations.

da

dt
= k1 + k2a− k3ab

a + k4

− k5ac

a + k6

(6.5)

db

dt
= k7a− k8b

b + k9
(6.6)

dc

dt
= k13a− k14c

c + k15
(6.7)

Using the model (6.5)-(6.7) we varied the control parameter 1 < k2 < 1.5 in Eq. (6.5). At

k2 = 1.32 the fixed point a = 1.01, b = 1.18, c = 0.016 undergoes a Hopf bifurcation. It is

stable at smaller k2 and unstable at larger k2. For k2 > 1.32 stable limit cycles coexist with

the unstable fixed point. In Fig. 6.3 the maximum and minimum Ca2+ concentration of the

oscillation are plotted together with the steady state.

For higher levels of the stimulation k2, we continue to use the full model (6.1)-(6.4).

In the interval 1.5 < k2 < 2.86 the oscillations become increasingly complex and develop

secondary maxima in c(t). At k2 = 2.86 the branch of limit cycles returns back to the steady

state branch and ends in another Hopf bifurcation. For 2.86 < k2 < 3.5 the steady state is

stable and corresponds to overstimulation with constant high concentration of Ca2+ in the

cytosol. Fig. 6.4 shows the bifurcation diagram of the full model (6.1)-(6.4).

As long as the limit cycle shows simple spiking at low stimulation level k2 the information

may be encoded in the frequency of the temporal oscillation. Fig. 6.5 shows this dependency
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Fig. 6.5: Frequency (1/period) of the temporal oscillation in the full model (6.1)-(6.4).

for the calculated limit cycles. For k2 < 1.8 the frequency increases with k2 whereas it has

a plateau and decreases for higher k2. In order to associate two signals with the same

frequency to a higher and lower k2, respectively, these signals have to be distinguishable by

their shape. This is possible due to the complex substructure that the bursts possess at

higher k2. As k2 increases the secondary spikes develop continuously.

The contrast of simple spiking and complex bursting is illustrated in Fig. 6.6. We com-

pare solutions of the full model (6.1)-(6.4) for k2 = 1.4 (a)-(d) and k2 = 2.7665 (e)-(h).

The secondary maxima of cytosolic [Ca2+](t) = c(t) are evident from Fig. 6.6(g). Hence

information encoding in the model suggested by U. Kummer et al. [88] is achieved in two

different ways, frequency encoding at low and additional shape encoding at higher stimula-

tion level. The systematic bifurcation analysis thereby supplements the results obtained by

U. Kummer et al. in numerical simulations.

6.4 Classification of bursting

In this section the complex bursting will be further analysed by separating the fast dynamics

from the slow variations. We display the dynamics in the phase space projected onto the

b− c plane and compare the exact limit cycle with an approximation that we derive in the

limit of a slow evolution in b(t) compared to c(t). From Fig. 6.6(f),(g) it is clear that the

smooth oscillations of b(t) evolve on a slower time scale than the secondary spikes of c(t).

Also a(t) and d(t) show fast but weak secondary spikes.

To derive an approximation to the burst we treat the variable b(t) as a slowly varying

parameter. This separation of time scales neglects feedback of the dynamic variables onto

b(t). The models simplify by dropping Eqs. (6.2) and (6.6). The remaining equations are

again solved by AUTO97 which yields bifurcation diagrams for the dependence of cytosolic

Ca2+ on the concentration of active PLC. Fig. 6.7 shows the results for the two models, the
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Fig. 6.6: Portraits of simple spiking (a)-(d) at k2 = 1.4 and complex bursting (e)-(h) at k2 = 2.7665 in the
full model (6.1)-(6.4). The ordinate labels apply to both panels in each row.
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full model (Fig. 6.7(a)) and the core model (Fig. 6.7(b)), respectively. Note, the parameter

k2 = 2.7665 is the same as in Fig. 6.6.

Both models (full and core) qualitatively show the same behavior. As b is varied the

steady state solution (thin curves) for c shows a hysteresis limited by two saddle-node

bifurcations (triangles). The lower branch is stable and the middle branch unstable. On the

upper branch a Hopf bifurcation (square) gives raise to fast oscillations at lower values of

b. The superimposed points denote the exact solution including the evolution of b(t). The

points should have followed the curves of the approximation if the time scale separation had

developed stronger. In the present model the time scale separation is moderate and the

points clearly deviate from the curves in Fig. 6.7.

However, we can gain a qualitative understanding of the complex structure of bursting

c(t) if we follow the points in clockwise direction as time progresses. Starting in a state

of the burst where c(t) is low (compare Fig. 6.6) the dynamics is close to the lower stable

branch of c(b). c(t) follows this branch as b decreases until the lower saddle-node bifurcation

is exceeded. Then no stable steady state exists any more and the dynamics approaches

the fast oscillation (thick curve) while b increases again. The crossing of the saddle-node

bifurcation triggers the burst of c(t) which starts with a large spike followed by secondary

spikes of decreasing amplitude. The spikes correspond to the oscillations in c(b) and at

larger b these oscillations become smaller and continuously vanish in a Hopf bifurcation

(square). After a short plateau (upper stable steady state) the saddle-node bifurcation at

large b is exceeded. The lower steady state is approached by c(t) and b starts to decrease.

This completes one period of the burst.

The bifuraction diagram of the approximation c(b) can be used to classify the bursting

behavior according to a scheme by J. Rinzel [205] and R. Bertram et al. [206]. See also

J. Keener and J. Sneyd [28]. Three types of bursting are distinguished which are often

observed in the electrical activity of membranes,e.g. of neurons. In type I the burst starts

in a homoclinic bifurcation where the branch of oscillations emerges with finite amplitude.

In type II the active phase ends in a homoclinic bifurcation. The model studied here does

not exhibit a homoclinic bifurcation in the parameter range of interest. Type III bursting

starts at a subcritical Hopf bifurcation. Here the burst starts by exceeding a saddle-node

bifurcation of the steady state branch and the first spike has the largest amplitude. The

secondary spikes are smaller and via a reverse supercritical Hopf bifurcation the spikes vanish

at an elevated level of Ca2+. Hence the studied model may be considered as an example of

a new type of bursting.

6.5 Conclusion

Two models of intracellular Ca2+ oscillations by U. Kummer et al. were studied by bifu-

raction analysis and by an analysis of the fast dynamics in phase space. The full model

should be slightly modified in order to saturate the Ca2+ concentration in the stores at

low stimulation level. Apart from this, both the full and the core model qualitatively yield

the same results. Frequency and shape encoding of the stimulation level were found which
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Fig. 6.7: Phase space representation of bursts for (a) k2 = 2.7665 in Eqs. (6.1)-(6.4) and (b) k2 = 2.5 in the
core model Eqs. (6.5)-(6.7). The points (crosses) denote the exact solution which is parametrized by time in
the clockwise direction following the arrow. The curves represent solutions after parametrization of b. Thin
(thick) curves stand for steady states (fast oscillations) and dashed (full) curves indicate unstable (stable)
solutions. The square denotes a Hopf bifurcation and the triangles denote saddle-node bifurcations.
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supports the results by U. Kummer et al..

The particular shape of intracellular Ca2+ bursts in both models were found to originate

at a saddle-node bifurcation of the unactivated state. This saddle-node bifurcation is ex-

ceeded when the concentration of active PLC drops below a critical value in the unactivated

phase of the oscillation. As the burst proceeds the concentration of active PLC increases and

a reverse Hopf bifurcation stops the secondary spiking. At another saddle-node bifurcation

the intracellular Ca2+ concentration returns to the unactivated state. To our knowledge this

type of bursting is yet unclassified.

Clearly many questions remain to be explored. Further experimental progress in de-

tecting low concentrations of intracellular substances will certainly uncover more dynamical

phenomena in biological systems. Complex bursting has for example been observed by M.

Hauser et al. [207] in the peroxidase-oxidase reaction as well as in the pH value of the hemin

- hydrogen peroxide - sulfite reaction. The tools used in this Thesis may help in testing

models and developing a deeper understanding of the mechanisms.



7 Summary and Outlook

The formation of complex patterns in extended oscillatory systems has been studied by

means of bifurcation and stability analysis as well as numerical simulations. The investiga-

tions are based on the one-dimensional complex Ginzburg-Landau equation (CGLE) which

constitutes a qualitative model system for many universal features of extended oscillatory

systems. Near the supercritical onset of oscillations or traveling waves the equation yields

quantitatively exact results.

In Chapter 1 an overview on pattern formation and previous results on the CGLE were

given. Depending on parameters in the CGLE waves may become unstable. This Eckhaus

instability was analysed by linear and weakly nonlinear approximations. In its supercritical

case stable modulated amplitude waves (MAWs) coexist with the unstable waves above their

instability. On the other hand spatio-temporal chaos has been observed in the CGLE for a

wide range of parameter values.

In Chapter 2 the mechanism for transitions from phase to defect chaos in the one-

dimensional CGLE was presented. Using the continuation software AUTO97 the MAWs

are calculated as coherent structures, i.e. their shape does not change when described in

a comoving reference frame. They form a continuous two-parameter family of solutions.

The average phase gradient ν and the spatial period P of the modulation parametrize the

family. Only MAWs with ν = 0 are relevant near the transition from phase to defect

chaos. The existence of these MAWs is limited by a saddle-node bifurcation (SN). For

decreasing periods the SN shifts to larger values of the parameters. MAWs of various

period P occur naturally in phase chaotic states. For periods beyond the SN, near-MAW

structures occur which evolve toward defects. The MAW at the SN may be viewed as a

critical nucleus for defect formation. The transition from phase to defect chaos takes place

when the periods of MAWs in phase chaos are driven beyond their SN. By a linear stability

analysis of MAWs two competing processes are identified. For MAWs of large P the splitting

instability tends to reduce the period an thereby delays defect formation. The interaction

instability increases some periods of MAWs with small P and promotes the formation of

defects. It was shown that even unstable solutions play an important role in simulations.

Arbitrary initial conditions quickly converge to the subset in phase space which is close to

the unstable solutions. Phase chaos may be viewed as evolution along the unstable manifolds

of MAWs. Comparing the linear growth rates of both instabilities yields an upper bound

on the transition in parameter space. The curve in parameter space with the SN occuring

at infinit period is established as lower bound on the transition. We conjecture that phase
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chaos persists in the thermodynamic limit for values of the parameters below the lower

bound,i.e. where no saddle-node bifurcations occur. This result answers many questions of

a controversial discussion in the literature. The existence of coherent structures and their

SNs have also been analysed in various phase equations. Their the SN was shown to play

the same role as a critical nucleus for the blow-up in the phase equation.

In Chapter 3 the results were extended to nonzero average phase gradient. Here MAWs

are quasi-periodic structures that correspond to saturated modulations of Eckhaus unstable

waves. Defect formation is again possible is the SN is exceeded. The SNs for MAWs with

infinite period was established as a lower bound and the onset of the splitting instability

at the SN as an upper bound for the limit of wound-up phase chaos. This explains the

earlier observations by other authors of a maximum conserved phase gradient. Further

investigations should consider the transition from regular to chaotic dynamics near the SN

at small ν. Here the statistical tools of Chapter 2 have to be applied.

In Chapter 4 various hydrodynamical experiments were discussed with emphasis on the

possibilities to observe MAWs in these systems. Hydrothermal waves seem to be the most

promising candidate. There the first MAWs have been obtained and further cooperation

with these groups is in progress. The control of the spatial period of perturbations in the

experiments will provide a much broader scenario than realized at present. The suggested

scenarios of defect formations should be tested by such methods.

In Chapter 5 the obtained results on MAWs were compared to experiments in a chemical

system, the oscillatory variant of the Belousov-Zhabotinsky reaction. Recently the observa-

tion of super-spiral concentration patterns has been reported in the literature. We presented

a new and consistent interpretation of the existence of super-spirals as well as their breakup.

In the radial direction the concentration pattern represents a MAW with ν determined by

the wavenumber selection of the source and the period P given by the frequency of the

meandering motion of the source. If these parameters are selected below the Hopf bifurca-

tion of the corresponding MAW then the perturbation decays in radial diraction and the

rigidly rotating spiral wave is recovered far away from the source. For parameters between

Hopf bifurcation and SN the perturbation saturates and a super-spiral structure results. If

the SN is exceeded the super-spiral breaks up far away from the source and this distance

decreases for parameters further above the SN.

In Chapter 6 a bifurcation analysis has been carried out for a model of a biological

system, the complex oscillations of local calcium dynamics in the cell. The results on the

existence of bursting calcium concentration verify and support findings that have recently

been obtained by other authors via numerical simulations. The specific type of bursting was

found to belong to a new yet unclassified group. Although the system is not extended it

gives an example of complex oscillations that can not be described by an amplitude equation

approach.

We found that the same tools as bifurcation and stability analysis may provide new in-

sight in such diverse fields as hydrodynamics, chemistry and cell biology. Pattern formation

and the dynamical systems approach will play a major role in the future exploration of

complex dissipative systems.



Appendix A Continuation software :

Auto97

First the principle of continuation is illustrated and then the application of Auto97 [161]

to the complex Ginzburg-Landau equation is explained including the developed Fortran

codes.

A.1 Continuation procedure

Given a nonlinear ordinary differential equation (ODE) with a selected parameter µ

dx

dt
= f(x, µ) (A.1)

and a known solution x0 at an arbitrarily chosen µ = µ̃ with

dx0

dt
= 0 (A.2)

then the stationary solutions x0(µ) for all other values of µ can be computed by “continua-

tion” in the parameter µ. Eq.(A.2) is the fixed point condition and x0 is called fixed point.

The continuation procedure is an iterative algorithm that progresses in small steps δµ. Each

step involves an approximate prediction of the yet unknown x0(µ̃ + δµ) and a subsequent

correction to satisfy Eq.(A.2).

The prediction is derived from a Taylor-expansion of x0(µ̃ + δµ) for small δµ

x0(µ̃ + δµ) = x0(µ̃) +
∂x0(µ)

∂µ

∣∣∣∣∣
µ̃

δµ+ h. o. t. (A.3)

where the derivative incorporates the fixed point condition Eq.(A.2) for all solutions x0(µ).

0 = f(x0(µ̃), µ) (A.4)

=
df(x0(µ̃), µ)

dµ
(A.5)

=
∂f(x0, µ)

∂µ
+

∂f(x0, µ)

∂x0

∂x0(µ)

∂µ
(A.6)
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In Eq.(A.6) the dependence of the system on the parameter b (first term) is compensated

by ∂x0(µ)/∂µ in the last term.

∂x0(µ)

∂µ
= −∂f(x0, µ)

∂µ
÷ ∂f(x0, µ)

∂x0
(A.7)

x0(µ̃ + δµ) ≈ x0(µ̃)−
∂f(x0, µ)

∂µ
÷ ∂f(x0, µ)

∂x0

∣∣∣∣∣
µ̃

δµ (A.8)

The correction step at fixed µ̃ + δµ applies the Newton- and/or Chord-method [9] to

reveal the higher order terms (h. o. t.) in Eq.(A.3).

The above scheme can be expanded to solve sets of ODEs. Auto97 can follow stationary

solutions to a boundary value problem (BVP) through parameter space. The spatial coordi-

nate is discretized on an adaptive mesh which results in a set of some hundreds of equations

and numerical algebra is necessary to treat the large matrices. In each step Auto97 also

computes eigenvalues of the linearization around the obtained solution. These eigenvalues

are used to detect bifurcations [9]. At a bifurcation Auto97 can be forced to switch to

an emerging branch of solutions. The numerical parameters of the discretization, bifurca-

tion detection and stepping procedures need to be carefully controlled which requires some

experience.

A.2 Codes for complex Ginzburg-Landau equation

Auto97 [161] is a software package that needs to include the following Fortran codes

that are specific to the CGLE. The first three files are used to compute the velocity v at HB

as function of the perturbation wave length P at the instability. Alternatively Eq.(1.30) can

be used but this requires additional software. In the present form the result is efficiently

obtained in Auto97 compatible format. Further steps are explained below.
1.1 eck.f :

C----------------------------------------------------------------------

C Numerical analysis of the Eckhaus instability

C of plane wave solutions to the CGLE.

C brusch@mpipks-dresden.mpg.de (2001)

C----------------------------------------------------------------------

SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)

IMPLICIT DOUBLE PRECISION (A-Z)

DIMENSION U(NDIM), PAR(*), F(NDIM), ICP(*)

C

C 3 ODE of 1st order

U1=U(1)

U2=U(2)

U3=U(3)

C

C parameters

C1=PAR(1)

C3=PAR(3)

K =PAR(4)

Z0=PAR(5)

EPS=PAR(8)

C

C phase and group velocity
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W =-C3+(C1+C3)*K*K

C0=2*K*(C1+C3)*(1-EPS)

C

C the equations

F(1)=U2

F(2)=-1/(1+C1**2)*((1+W*C1+Z0*C0*C1*U3)*U1

& +Z0*C0*U2+(C1*C3-1)*U1**3)/Z0**2+U1*(K/Z0+U3)**2

F(3)=1/(1+C1**2)*(C1-W+Z0*C0*C1*U2/U1-Z0*C0*U3

& -(C1+C3)*U1**2)/Z0**2-2*(K/Z0+U3)*U2/U1

C

RETURN

END

C----------------------------------------------------------------------

SUBROUTINE STPNT(NDIM,U,PAR)

IMPLICIT DOUBLE PRECISION (A-Z)

DIMENSION U(NDIM), PAR(*)

C

C Initialize the equation parameters

PAR(1)=3.5d0

PAR(3)=0.0d0

PAR(4)=0.25d0

PAR(5)=1.0d0

PAR(8)=0.01d0

C

C Initialize the plane wave solution

K=PAR(4)

U(1)=SQRT(1-K**2)

U(2)=0.000

U(3)=0.000

C

RETURN

END

C----------------------------------------------------------------------

SUBROUTINE BCND

RETURN

END

C

SUBROUTINE ICND

RETURN

END

C

SUBROUTINE FOPT

RETURN

END

C

SUBROUTINE PVLS(NDIM,U,PAR)

IMPLICIT DOUBLE PRECISION (A-Z)

DIMENSION U(NDIM),PAR(*)

C record the velocity

PAR(2)=2*(PAR(1)+PAR(3))*PAR(4)*(1-PAR(8))

RETURN

END

C----------------------------------------------------------------------

1.2 r.eck.1 :

3 1 0 0 NDIM,IPS,IRS,ILP

1 3 NICP,(ICP(I),I=1,NICP)

5 4 3 2 1 6 0 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

100 -1 5 -1 1 NMX,RL0,RL1,A0,A1

100 2 2 8 7 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

1e-8 1e-8 1e-7 EPSL,EPSU,EPSS

0.02 0.0001 0.5 1 DS,DSMIN,DSMAX,IADS

0 NTHL,((I,THL(I)),I=1,NTHL)
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0 NTHU,((I,THU(I)),I=1,NTHU)

0 NUZR,((I,UZR(I)),I=1,NUZR)

1.3 r.eck.2 :

3 1 2 0 NDIM,IPS,IRS,ILP

4 3 8 11 2 NICP,(ICP(I),I=1,NICP)

5 4 3 2 2 6 0 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

100 -1 5 -1 1 NMX,RL0,RL1,A0,A1

50 2 2 8 7 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

1e-8 1e-8 1e-7 EPSL,EPSU,EPSS

-0.02 0.0001 0.5 1 DS,DSMIN,DSMAX,IADS

0 NTHL,((I,THL(I)),I=1,NTHL)

0 NTHU,((I,THU(I)),I=1,NTHU)

1 NUZR,((I,UZR(I)),I=1,NUZR)

11 58.904862

The first run (> @R eck 1) detects a Hopf bifurcation (Eckhaus instability) with the cor-

responding wave length PAR(11) of the perturbation to the plane wave with wavenumber

PAR(4) and chosen velocity v via PAR(8). This result has to be saved (> @sv eck) and the

second run (> @R eck 2) computes a locus of all Hopf bifurcations for the different modes

PAR(11). The last command in file r.eck.2 records the bifurcation for a chosen value of

PAR(11). The parameters PAR(3), PAR(8) and PAR(11) are needed to start (> @r bif) a

branch of MAWs with the next two files.

2.1 bif.f :

C----------------------------------------------------------------------

C Computation of a restart solution for a MAW branch.

C brusch@mpipks-dresden.mpg.de (2001)

C----------------------------------------------------------------------

SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)

IMPLICIT DOUBLE PRECISION (A-Z)

DIMENSION U(NDIM), PAR(*), F(NDIM), ICP(*)

C

C 3 ODE of 1st order

U1=U(1)

U2=U(2)

U3=U(3)

C

C parameters

C1=PAR(1)

C3=PAR(3)

K =PAR(4)

Z0=PAR(5)

EPS=PAR(8)

C

C phase and group velocity

W=-C3+(C1+C3)*K*K

C0=2*(C1+C3)*K*(1-PAR(4))

C

C the equations

F(1)=U2

F(2)=-1/(1+C1**2)*((1+W*C1+Z0*C0*C1*U3)*U1

& +Z0*C0*U2+(C1*C3-1)*U1**3)/Z0**2+U1*(K/Z0+U3)**2

F(3)=1/(1+C1**2)*(C1-W+Z0*C0*C1*U2/U1-Z0*C0*U3

& -(C1+C3)*U1**2)/Z0**2-2*(K/Z0+U3)*U2/U1

RETURN

END
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C----------------------------------------------------------------------

SUBROUTINE STPNT(NDIM,U,PAR)

IMPLICIT DOUBLE PRECISION (A-Z)

DIMENSION U(NDIM), PAR(*)

C

C Initialize the equation parameters

PAR(1)=3.50d0

C start c3 a bit before the Hopf bifurcation

PAR(3)=3.034591E-01

PAR(4)=0.25d0

C 1/PAR(11) for the scaling of space to unit interval

PAR(5)=1/58.904862

PAR(8)=1.1321422551E-02

C

C Initialize the plane wave solution

K=PAR(4)

U(1)=SQRT(1-K**2)

U(2)=0.000

U(3)=0.000

RETURN

END

C----------------------------------------------------------------------

SUBROUTINE BCND(NDIM,PAR,ICP,NBC,U0,U1,FB,IJAC,DBC)

IMPLICIT DOUBLE PRECISION (A-Z)

DIMENSION PAR(*),ICP(*),U0(NDIM),U1(NDIM),FB(NBC)

C

C periodic boundary conditions and pinning

FB(1)=U0(1)-U1(1)

FB(2)=U0(2)-U1(2)

FB(3)=U0(3)-U1(3)

FB(4)=U0(2)

C

RETURN

END

C----------------------------------------------------------------------

SUBROUTINE ICND(NDIM,PAR,ICP,NINT,U,UOLD,UDOT,UPOLD,FI,IJAC,DINT)

IMPLICIT DOUBLE PRECISION (A-Z)

DIMENSION U(NDIM),UOLD(NDIM),UDOT(NDIM),UPOLD(NDIM)

DIMENSION FI(NINT),ICP(*),PAR(*)

C

C constraint on phase gradient

FI(1)=U(3)

C

RETURN

END

C----------------------------------------------------------------------

SUBROUTINE FOPT

RETURN

END

C----------------------------------------------------------------------

SUBROUTINE PVLS(NDIM,U,PAR)

IMPLICIT DOUBLE PRECISION (A-Z)

DIMENSION U(NDIM),PAR(*)

C

C write the velocities that will change along the MAW branch

K=PAR(4)

PAR(2)=2*(PAR(1)+PAR(3))*K*(1-PAR(8))

PAR(6)=-PAR(3)+(PAR(1)+PAR(3))*K*K

RETURN

END

C----------------------------------------------------------------------

2.2 r.bif :

3 4 0 0 NDIM,IPS,IRS,ILP
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4 3 2 6 7 NICP,(ICP(I),I=1,NICP)

150 4 3 2 1 6 3 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

1500 -1 5 -1 2 NMX,RL0,RL1,A0,A1

100 2 2 8 7 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

1e-7 1e-7 1e-5 EPSL,EPSU,EPSS

1e-8 1e-10 1e-8 1 DS,DSMIN,DSMAX,IADS

0 NTHL,((I,THL(I)),I=1,NTHL)

0 NTHU,((I,THU(I)),I=1,NTHU)

0 NUZR,((I,UZR(I)),I=1,NUZR)

Using small steps (1e-8) the same Hopf bifurcation is detected in the BVP. The result is

saved (> @sv maw) to be used (> @r maw) as restart solution by the next two files.

3.1 maw.f :

C----------------------------------------------------------------------

C Continuation of a MAW branch.

C brusch@mpipks-dresden.mpg.de (2001)

C----------------------------------------------------------------------

SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)

IMPLICIT DOUBLE PRECISION (A-Z)

DIMENSION U(NDIM), PAR(*), F(NDIM), ICP(*)

C

C 3 ODE of 1st order

U1=U(1)

U2=U(2)

U3=U(3)

C

C parameters

C1=PAR(1)

C0=PAR(2)

C3=PAR(3)

K =PAR(4)

Z0=PAR(5)

W =PAR(6)

C

C the equations

F(1)=U2

F(2)=-1/(1+C1**2)*((1+W*C1+Z0*C0*C1*U3)*U1

& +Z0*C0*U2+(C1*C3-1)*U1**3)/Z0**2+U1*(K/Z0+U3)**2

F(3)=1/(1+C1**2)*(C1-W+Z0*C0*C1*U2/U1-Z0*C0*U3

& -(C1+C3)*U1**2)/Z0**2-2*(K/Z0+U3)*U2/U1

C

RETURN

END

C----------------------------------------------------------------------

SUBROUTINE STPNT

C

C solution and parameters loaded from saved result of previous run: bif

RETURN

END

C----------------------------------------------------------------------

SUBROUTINE BCND(NDIM,PAR,ICP,NBC,U0,U1,FB,IJAC,DBC)

IMPLICIT DOUBLE PRECISION (A-Z)

DIMENSION PAR(*),ICP(*),U0(NDIM),U1(NDIM),FB(NBC)

C

C periodic boundary conditions and pinning

FB(1)=U0(1)-U1(1)

FB(2)=U0(2)-U1(2)

FB(3)=U0(3)-U1(3)

FB(4)=U0(2)

C
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RETURN

END

C----------------------------------------------------------------------

SUBROUTINE ICND(NDIM,PAR,ICP,NINT,U,UOLD,UDOT,UPOLD,FI,IJAC,DINT)

IMPLICIT DOUBLE PRECISION (A-Z)

DIMENSION U(NDIM),UOLD(NDIM),UDOT(NDIM),UPOLD(NDIM)

DIMENSION FI(NINT),ICP(*),PAR(*)

C

C constraint on phase gradient

FI(1)=U(3)

C

RETURN

END

C----------------------------------------------------------------------

SUBROUTINE FOPT

RETURN

END

C----------------------------------------------------------------------

SUBROUTINE PVLS

RETURN

END

C----------------------------------------------------------------------

3.2 r.maw :

3 4 2 1 NDIM,IPS,IRS,ILP

3 3 2 6 NICP,(ICP(I),I=1,NICP)

50 4 3 2 1 -1 4 1 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

1000 -1 5 -1 2 NMX,RL0,RL1,A0,A1

1000 2 2 8 7 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

1e-7 1e-7 1e-5 EPSL,EPSU,EPSS

0.01 0.0001 0.1 1 DS,DSMIN,DSMAX,IADS

0 NTHL,((I,THL(I)),I=1,NTHL)

0 NTHU,((I,THU(I)),I=1,NTHU)

4 NUZR,((I,UZR(I)),I=1,NUZR)

3 0.35

3 0.4

3 0.45

3 0.5





Appendix B Scaling of bifurcation

thresholds

Using a phase approximation to the CGLE one can analytically study the dependence of

bifurcation points on the coefficients c1, c3. As in the CGLE the drift pitchfork bifurcation

is present in all phase equations. A parameter free version of the Kuramoto-Sivashinsky

equation (KSE)

∂φ

∂t
= Ω

(1)
2

∂2φ

∂x2
+ Ω

(2)
2

(
∂φ

∂x

)2

+ Ω
(1)
4

∂4φ

∂x4
(B.1)

is derived by scaling of φ, t, x = x0ξ hence also P = P0ξ . Here Ω(1)
2 =1 − c1c3,Ω

(2)
2 =

−(c1 + c3),Ω
(1)
4 =−c2

1(1 + c2
3)/2,Ω

(2)
4 =−2c1(1 + c2

3),Ω
(3)
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3),Ω
(4)
4 =−2(1 + c2

3).
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√√√√Ω(1)
4

Ω
(1)
2

=

√√√√ c2
1(1 + c2

3)

2(c1c3 − 1)
(B.2)

The parameter values c1, c3 of any bifurcation present will also change according to Eq.(B.2)

as P ∝ ξ → ∞. Since ξ changes inverse to the Benjamin-Feir criterion the Hopf and drift

pitchfork bifurcations both will approach the Benjamin-Feir-Newell line in the limit P → ∞.

Fig.B.1 confirms this. At the Hopf bifurcation the homogeneous state φ = φ0 becomes

unstable against Fourier modes with wave number k = 2π/P and the branch of coherent

structures emerges. Comparison with the results on MAWs in the CGLE shows perfect

agreement at big P and small derivations at small P due to the size of max(φx) at the

bifurcations. The linear stability analysis up to order O(k4) of the homogeneous oscillation

in the CGLE also gives

P = 2π

√√√√ c2
1(1 + c2

3)

2(c1c3 − 1)
= 2πξ (B.3)

confirming the scaling result for the Hopf bifurcation. At infinite P one can also choose P0

to be infinite and construct the whole branch of coherent structures for c1c3 > 1 by rescaling

one unique solution. Hence there can be no bifurcations (i.e. no saddle-node bifurcation)

in the KSE for c1c3 > 1 and P → ∞. This is in contrast to the situation in the CGLE and

shows the limit of this simplest phase approximation.
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Fig. B.1: Locations of the instability of the homogeneous state in the CGLE (dotted) and in the KSE (full
curve) obeying P = 2π ∗ ξ(c3) . Locations of the drift pitchfork bifurcations in the CGLE (symbols) and in
the KSE fitted by P = 11 ∗ ξ(c3) (dashed curve) Parameters are c1 = 3.5, ν = 0 and ξ(c3) calculated from
Eq. B.2.



Appendix C Linear stability analysis

In this Appendix the Bloch method is summarized, the different instabilities of MAWs

are studied and their occurence is identified in the parameter space. The case ν = 0 is used

for illustrations while similar results are obtained for ν 	= 0.

The stability properties of periodic orbits in the ODEs do not give information on the

temporal evolution of perturbations to MAWs in the CGLE. From the stability analysis of

fixed points to the ODEs one can only deduce the spatial shape of solutions that approach

a homogeneous plateau. The 3 ODEs possess one real and one pair of complex conjugate

eigenvalues for the plane wave fixed point. For the “homoclinic holes” that approach the

fixed point value at infinity one tail decays exponentially while the other one is oscillating.

MAWs of large period P also show an exponential spatial decay on one side of the core

region while on the other side the profile alternates around the value of the plateau region.

C.1 Bloch method

In order to compute the linear stability of MAW solutions in the CGLE we discretize the

linearization of the CGLE around the MAW in the comoving reference frame z = x−vt. The

discretization is done in Fourier space since this already gives the basis of eigenmodes of plane

wave solutions. We use 64 modes for each component δa(z) and δφ(z) since perturbations

of higher wavenumber are damped by the diffusion terms.

To avoid diagonalization of huge matrices for many periods of MAW in big systems we

employ the Bloch method [177, 178]. Eigenmodes r(z) of the big system L = mP are

r(z) = eikzw(z) (C.1)

where w(z) is periodic with period P and k = n ∗ 2π/(m ∗ P ), n ∈N,n ∈ [1,m]. The

eigenvalue spectrum {λi} in the big system (L) is constructed by joining the m sets of

eigenvalues of e−ikzL(z)eikz where L(z) is the linearization in the small system (P ). Thereby

the system size parametrizes and one deals with a set of smaller matrices. Fig. C.1a shows

the arrangement of eigenvalues for the same MAW at the same parameters in different

system sizes. The spectrum of the big system always contains m− 1 additional eigenvalues

between 2 neighbouring eigenvalues of the short system L=P . Thereby the gaps in the

spectrum of the finite system close and a set of curves results for the infinite system.

For L = P the spectrum possesses 3 purely real eigenvalues. These we examine first. Next
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Fig. C.1: (a) Stability spectrum near L3 for c1 ≈ 0.652, c3 = 2.0, P =PSN =50. The Bloch method is
illustrated for a MAW at SN. Filled symbols denote eigenvalues obtained for L=P , while open symbols
denote additional eigenvalues for L=2P . Full curves show the spectrum for L → ∞. (b) Goldstone modes
for translational and phase- symmetry (dot dashed and dotted curves respectively) and derivative of SN
eigenmode d

dz δφSN(z) (dashed) compared with spatial profile φz(z) of the MAW (full curve).

we discuss the main part of the spectrum that arranges in pairs of complex conjugate values

followed by the discussion of interactions between subsequent humps of a MAW.

C.2 Goldstone modes and SN eigenmode

Due to the translational and phase- symmetries of the CGLE the linearization around any

solution has 2 neutral modes called Goldstone modes. The corresponding eigenvalues are

identically 0 and act as a proof of accuracy for the discretization. The phase symmetry is not

affected by the discretization and one eigenvalue is exactly 0. The corresponding Goldstone

mode is (δa = 0, δφ = const.). Depending on the degree of modulation (max(φz)) we obtain

the eigenvalue for the translational Goldstone mode (δa(z) = az(z), δφ(z) = φz(z)) between

10−7 and 10−3. As long as the system is translational invariant a Taylor expansion with

respect to a small spatial shift reveals

A(x + δx) = A(x) + δx ∗Ax(x) . (C.2)

Hence a perturbation of the form Ax(x) (the spatial Goldstone mode) will shift the solution

which is a solution again, the corresponding eigenvalue is 0. Fig. C.1b shows the spatial

profiles δφ(z) for the 2 Goldstone modes. The numerically obtained translational Goldstone

mode indeed equals the spatial derivative of the MAW profile d
dz
φ(z) = φz(z).

Besides these 2 there exists a third purely real eigenvalue which becomes 0 at both the

DP and SN bifurcations. We denote this eigenvalue λSN . Along the lower branch of MAWs

λSN < 0 while λSN > 0 for the upper branch. In Fig. C.1b the spatial derivative of the SN

eigenmode d
dz
δφSN(z) is shown by the dashed curve. The action of this localized eigenmode

can be deduced from a comparison with the spatial profile d
dz
φ(z) = φz(z) of the MAW

(full curve). Depending on its sign a perturbation proportional to the SN eigenmode will



C.3 Splitting instability 141

decrease or increase the modulation of the MAW. This manifold has been studied in the case

of “homoclinic hole” solutions [145, 172]. Also in the case of MAW initial conditions bejond

the upper branch (along this manifold) develop a defect while initial conditions between

the lower and upper branch decay towards the lower branch. In Section 2.2.3 this was

demonstrated in numerical simulations.

C.3 Splitting instability

Besides the core region in the spatial profile of a MAW there exists an almost homogeneous

plateau (compare Fig. 2.4) that is the longer for bigger P . This resembles a part of a plane

wave which is Eckhaus unstable in the PT regime. Regardless of deviations in the core

region similar eigenmodes also destabilize the MAW. Related to the extent of the homo-

geneous plateau this instability against delocalized eigenmodes is stronger for bigger P . It

also increases with the parameters c1, c3 as does the instability of the plane wave.

The spectrum of eigenvalues for these eigenmodes has a similar shape as for unstable

plane waves. The eigenvalues arrange in pairs of complex conjugate values. In the temporal

evolution (Fig. 2.16c,d in Section 2.3.4) a small perturbation oscillates between the two

corresponding eigenmodes shown by the dashed and dotted curves in Fig. 2.16b. Note that

especially the plateau part is disturbed. This initiates the growth of one (or more) new

humps on the plateau of the initial MAW. The resulting structure is a sequence of two (or

more) short MAWs with smaller P . We interpret this process as the splitting of a MAW

and we call the eigenmodes “splitting modes”.

In the limitL→∞ the splitting eigenvalues form a continuous curve. For small Im[λi] this

curve either includes the origin with the Goldstone eigenvalues (Fig. 2.16a) or the saddle-

node eigenvalue λSN (Fig. 2.17a,C.2a). The former is the case for parameter values near the

BFN line while the latter happens for bigger values of c1, c3.

Minor changes in the Bloch scheme (k → k+ iκ) allow for the computation of convective

or absolute instability properties [164]. We find the splitting instability to be convective in

a major part of the unstable regime. This becomes clear since the speed v of the MAW

increases towards the SN and the core of the MAW often travels faster then the splitting

modes grow. Only from onset (HB) to shortly past the DP bifurcation of the MAW it is

absolutely unstable.

C.4 Interaction instability

The previous instabilities (SN-eigenmode and splitting) already occur in a short system L=P

with periodic boundary conditions. Now we consider the interaction between several humps

in a bigger system. Such interaction modes are a sequence of normal and inverse Goldstone

modes. They shift humps in opposite directions depending on the sign of the Goldstone
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Fig. C.2: (a) Stability spectrum near L1 for c1 = 3.0, c3 = 0.85, P = 23. (b) Real and imaginary parts of
interaction eigenmodes (dashed and dotted) corresponding to λint = 0.0046 ± 0.078 compared with spatial
profile of the MAW (full) and Goldstone mode (dot-dashed curve) for L = 2P .

mode acting on the individual hump. Since the spatial profile of interaction modes is via

the Goldstone mode related to the profile of the solution itself these interaction modes will

always be localized around the position of the hump. In contrast the splitting modes are

delocalized and mainly disturb the plateau part of the MAW profile.

The 2 interaction eigenvalues present for L=2P may both be purely real (Fig. 2.17a)

hence distances between humps will exponentially increase or decrease. Or the 2 eigenvalues

are complex conjugate (Fig. C.2a) which results in an alternating attraction and repulsion of

the humps. Fig. 2.17b,C.2b show the interaction modes for L=2P . If a MAW of period P is

unstable to interaction modes these will dynamically produce (Fig. 2.17c,d in Section 2.3.4)

a sequence of different P ’s. Thereby MAWs with bigger P may occur locally.

In the limit L→∞ the interaction eigenvalues either form two separate loops if the

eigenvalues for L=2P are real. Or they form one joined curve near the origin of the spec-

trum when the eigenvalues for L=2P are complex conjugate (Fig. C.2a). The latter only

happens if the splitting eigenvalues include λSN and not the origin. This is the case for

bigger parameter values c1, c3. There part of the curve of interaction eigenvalues always has

positive real part while for c1, c3 near the BFN-line this only happens for special values of

the parameters and the period P . In the next Section we present the parameter dependence

of the encountered instabilities in more detail.

C.5 Parameter dependence of instabilities

We computed the domains of the above instabilities of MAW in several cuts across the

parameter plane fixing either c1 or c3. Fig. C.3 presents a representative cut across the L1

transition for c1=3.0 and Fig. C.4 shows a cut across the L3 transition for c3=2.0. MAWs of

the upper branch always are unstable to the SN-eigenmode in addition to possible splitting or
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Fig. C.3: Instabilities located in a cut near L1 for c1 = 3.0. Splitting modes are active everywhere to the
right of the drift pitchfork bifurcation (DP). Secondary period doubling bifurcations (PD) bound the shaded
stripes where periodic MAWs are unstable to interaction modes with purely real eigenvalue. Inside the white
stripes at big c3 pairs of Hopf bifurcations (HB) cause instability to alternating interaction (swinging). In
the limit L → ∞ interaction modes are active everywhere. To the right of the thin full line the eigenvalues
corresponding to splitting modes have bigger real parts than the eigenvalues corresponding to interaction
modes. The SN curve asymptotically approaches c3 = 0.704 for P → ∞. At small P a hysteresis of
the SN locations is present. Stars denote parameter values corresponding to stability spectra shown in
Figs. 2.16,C.2.
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Fig. C.4: Instabilities located in a cut near L3 for c3 = 2.0. Splitting modes are only active inside the shaded
area. To the right of the thin full line the eigenvalues corresponding to splitting modes have bigger real parts
than the eigenvalues corresponding to interaction modes. Note that Hopf-, drift pitchfork bifurcation and
BFN line coincide in the limit P→∞. Filled squares denote measured peak-to-peak distances in simulations.
If the squares lie above the SN curve then defects appear in the corresponding simulation.
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interaction instabilities. This explaines features of the spatio-temporal intermittency regime

[145, 172]. For phase chaotic dynamics the instabilities of MAWs of the upper branch are not

important. Therefore in the figures we include instabilities of the lower branch for infinite

system size L→∞.

Above their onset (HB) stationary MAWs with period P < L are unstable since they

emerge from an unstable homogeneous oscillation. The unstable eigenmodes are interaction

modes related to the unstable modes of the homogeneous oscillation which all have a bigger

period than P . The stationary MAW undergoes a sequence of secondary HBs that restabilize

the periodic MAW solution. New branches of time-periodically oscillating solutions emerge.

These noncoherent structures include more humps and carry the instabilities of the previous

MAW. They are not important and not discussed here.

Above the DP bifurcation the last two interaction eigenvalues are restabilized by 2 PD

bifurcations where the purely real eigenvalues separately cross the imaginary axes of the

spectrum. Approaching the SN curve the travelling MAW undergoes a sequence of pairs of

such PD bifurcations (compare Section 2.2.2) and can be stable against interaction modes

only between these pairs. In Fig. C.3 the locations of PDs bound the shaded stripes. Inside

the shaded areas one real interaction eigenvalue is positive and neighbouring humps of a

periodic MAW attract each other thereby increasing the period of one of the humps.

Between the shaded stripes in Fig. C.3 the interaction eigenvalues may also arrange

in complex conjugate pairs (Fig. C.2a). By pairs of HB of these interaction eigenvalues

the periodic MAW can also be unstable to oscillatory interaction modes. This is the case

for bigger values of c1, c3 where HBs occur between the shaded stripes but close to their

boundaries. For other cuts in the parameter space the interaction instabilities arrange in

the same way but in Fig. C.4 the corresponding stripes are omitted.

The interaction between neighbouring humps is the stronger for smaller P and bigger

c1, c3. The interaction eigenvalues dominate the dynamics for such parameter values. In

Fig. C.3,C.4 a thin full line denotes parameter values where the real parts of interaction and

splitting eigenvalues are of the same order. Below and to the right of this line the splitting

instability dominates.

Around the L1 transition all travelling MAW are unstable to splitting modes. Near L3

the splitting instability only occurs for some of the travelling MAW with P big enough.

In Fig. C.4 the parameter domain is shaded where MAWs are unstable to splitting in the

infinitely large system L→∞.

Near both L1 and L3 the interaction and splitting instabilities overlap for a wide range

of parameters. The resulting increase and decrease of periods of near-MAWs drive the phase

chaos. This dynamics breaks down if locally a period increases beyond the corresponding

PSN (compare Section 2.2.3). The following transition to defect chaos was investigated in

Chapter 2.
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For finite one-dimensional systems both the wavenumber of plane waves (thereby also ν

of MAWs) and the period P of MAWs are restricted to a discrete set by periodic boundary

conditions. In this case it is convenient to parametrize MAWs by the average phase gradient

ν and the ratio of wavelength

n :=
P

2π/ν
. (D.1)

The ratio n takes values of integer fractions where the numerator counts the number of

underlying wave fronts per system and the denominator the number of humps of the mod-

ulation. Hence this quantity is easy accessible in experiments.

Again fixing c1 = 3.5, the existence domains of MAWs with respective n are presented

in the (c3, ν) parameter plane.

0 0.2 0.4 0.6
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0.4

0.6
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0 0.2 0.4 0.6
c3

0 0.2 0.4 0.6 0.8
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(a) (b) (c)

Fig. D.1: Existence domains of lower branch MAWs are denoted by shaded areas and limited by HB (solid
curve) from below and by the SN (dashed curve) from above. (a) MAWs with n = 20 exist close to the long
wavelength instability whereas (b) n = 4 and (c) n = 2 shift to larger values of c3.
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Fig. D.2: Existence domains of lower branch MAWs are denoted by shaded areas in (a) n = 1, (b) n = 1/2
and (c) n = 1/4. They are limited by HB (solid curve) at small c3 and by the SN (dashed curve) at large
c3. Spatial profiles of MAWs at ν = 0.05, c3 = 0.5 are shown for (d) n = 1, (e) n = 1/2 and (f) n = 1/4,
corresponding to dots in (a-c).
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For rigidly rotating spirals (ξ1(α1, α2), ζ1(α1, α2)) are stationary solutions (fixed points

of the subsystem (ξ, ζ) ) and φ̇ = γ0

√
ζ1 gives φ = ω1t + φ1 with the rotation frequency

ω1 = γ0

√
ζ1 = 2π/TC. Choosing the integration constant φ1 = π/2 the tip uniformly rotates

x(t) =
√
ξ1/ω1 cosω1t + xS, y(t) =

√
ξ1/ω1 sinω1t + yS around the fixed wave source at

(xS, yS).

Beyond a Hopf bifurcation at αHB2 (α1) with frequency ω2 the fixed point (ξ1, ζ1) corre-

sponding to the rigidly rotating spiral is unstable and a stable limit cycle ξ2(t) = ξ1 +√
ε sin(ω2t + φ2), ζ2(t) = ζ1 +

√
ε cos(ω2t + φ2) emerges from the fixed point. Here

ε = (α2−αHB2 )/αHB2 should be small compared with 1 to permit the square root dependence

near the Hopf bifurcation and to allow further analytical treatment.

Expanding
√
ξ2 =

√
ξ1

√
1 +

√
ε/ξ1 sin(ω2t + φ2) ≈

√
ξ1 +

√
ε/2 sin(ω2t + φ2) and

√
ζ2

likewise yields φ(t) = ω1t + φ1 +
√
εγ0/(2ω2) sin(ω2t + φ2) with integration constant φ1 and

ẋ = (
√
ξ1 +

√
ε

2
sin(ω2t + φ2)) cos(ω1t + φ1 +

√
εγ0

2ω2
sin(ω2t + φ2)) (E.1)

=
√
ξ1 cos(ω1t + φ1) +

√
ε

2
sin(ω2t + φ2) ∗

[
cos(ω1t + φ1)−

√
ξ1γ0

ω2
sin(ω1t + φ1)

]

=
√
ξ1 cos(ω1t + φ1) +

√
ε

2
sin(ω2t + φ2) ∗

√√√√1 +
ξ1γ2

0

ω2
2

sin(ω1t + φ1 −
π

2
+ arctan

√
ξ1γ0

ω2
)

where trigonometrical functions of arguments proportional to
√
ε have been expanded

to order
√
ε and the equality a cosβ + b sinβ =

√
a2 + b2 sin(β + arctan a/b) has been used.

Assuming ω1 	= ω2 and using
∫
dτ sin aτ sin bτ = sin(a−b)τ

2(a−b) − sin(a+b)τ
2(a+b)

the integration yields
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x =

√
ξ1

ω1

sin(ω1t + φ1) +

√
ε

4

√√√√1 +
ξ1γ2

0

ω2
2

∗ (E.2)

[
1

ω1 − ω2
sin(ω1t + φ1 −

π

2
+ arctan

√
ξ1γ0

ω2
− ω2t− φ2)−

1

ω1 + ω2

sin(ω1t + φ1 −
π

2
+ arctan

√
ξ1γ0

ω2

+ ω2t + φ2)

]

=

√
ξ1

ω1
cosω1t +

√
ε

4

√√√√1 +
ξ1γ2

0

ω2
2

∗ (E.3)

[
1

ω1 − ω2
cos(ω1 − ω2)t +

1

ω1 + ω2
cos((ω1 + ω2)t + 2arctan

√
ξ1γ0

ω2
)

]

where the integration constants φ1 = π/2 and φ2 = 3π/2 + arctan

√
ξ1γ0
ω2

were fixed in

the second step. A similar expression follows for y(t). For the position p(t) of the tip in the

complex plane we get up to order
√
ε

p(t) =

√
ξ1

ω1
eiω1t +

√
ε

4(ω1 − ω2)

√√√√1 +
ξ1γ2

0

ω2
2

ei(ω1−ω2)t (E.4)

+

√
ε

4(ω1 + ω2)

√√√√1 +
ξ1γ2

0

ω2
2

e
i(ω1+ω2)t+2arctan

√
ξ1γ0
ω2 .

The first term again describes the fast rotation of the tip emitting waves with frequency

ω1. In the amplitude equation for the wave field this reflects the wave number selection

by ω1 = ω(ν). The other two terms describe the motion of the wave source. It has the

often discussed epicycloid form. For ω1 − ω2 > 0 (or < 0) the tip rotates in the same

(opposite) direction as the source and the trajectory possesses inward (outward) petals.

The excluded case ω1 = ω2 leads to secular terms due to
∫
dτ sinω1τ sinω2τ and describes

a travelling spiral. In excitable media the instability to meandering occures with ω2 close

to ω1 [192, 194]. We expect the same for the oscillatory system (TM > 5TC in [70]) and

find |ω1 − ω2| � ω1 + ω2 hence the third term in Eq. (E.4) is small compared to the first

two terms. Since these small perturbations on a short time scale (due to the fast oscillation

with ω1 + ω2) are damped in the wave dynamics (CGLE) we will neglect the last term.

xS(t) =

√
ε

4(ω1 − ω2)

√√√√1 +
ξ1γ2

0

ω2
2

∗ cos(ω2 − ω1)t (E.5)

xS(t) = RS cos 2πt/TM (E.6)
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