
To and Fro

Between Tableaus and Automata

for Description Logics

Dissertation

zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inform. Jan Hlad ik

geboren am 7. Oktober 1972 in Bad Godesberg

Gutachter:

Prof. Dr.-Ing. Franz Baader

Technische Universität Dresden

Prof. Dr. rer. nat. habil. Ulr ike Sattler

University of Manchester

Prof. Dr. rer. nat. habil. Michael Th i e l scher

Technische Universität Dresden

Tag der Verteidigung:
14. November 2007

Dresden, im Februar 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236363183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 7

1.1 Aim of This Thesis . 10

1.2 Outline of This Thesis . 11

1.3 Related Work . 12

2 Knowledge Representation with Description Logics 15

2.1 Knowledge . 15

2.2 Knowledge Representation . 17

2.3 Description Logics . 21

2.3.1 Syntax . 22

2.3.2 Knowledge Bases . 23

2.3.3 Semantics and Inferences . 24

2.3.4 Polynomial DLs . 25

2.3.5 PSpace DLs . 26

2.3.6 ExpTime DLs . 27

2.3.7 DL Systems . 29

3 Tableau Algorithms 33

3.1 Tableaus for Propositional Logic . 33

3.2 Tableaus for Description Logics . 35

3.2.1 A Tableau Algorithm for ALC Concept Satisfiability 36

3.2.2 A Tableau Algorithm for ALC with General TBoxes 40

4 Automata Algorithms 45

4.1 Finite Automata . 45

4.2 Automata for Description Logics . 47

4.3 Non-Deterministic Tree Automata . 48

4.3.1 An NTA Algorithm for ALC with General TBoxes 49

4.4 Alternating Tree Automata . 53

4.4.1 An ATA Algorithm for ALC with General TBoxes 59

5 Translation of Alternating Automata into DLs 65

5.1 Translation of One-Way Automata into ELU f 65

5.2 Translation of Two-Way Automata into FLEUIf 71

5.2.1 An ATA Algorithm for ALCIO 73

4 CONTENTS

5.2.2 Test Concepts . 76
5.2.3 Empirical Results . 77

5.3 Chapter Summary . 80

6 PSpace Automata 83
6.1 Segmentable Automata . 84

6.1.1 An AA for ALC with Acyclic and General TBoxes 84
6.1.2 The Framework for Segmentable Automata 86
6.1.3 An Application to ALC with Acyclic TBoxes 91

6.2 Blocking Automata . 92
6.2.1 An AA for SI with Acyclic and General TBoxes 92
6.2.2 The Framework for Blocking Automata 96
6.2.3 Satisfiability in SI w. r. t. Acyclic TBoxes 100
6.2.4 Segmentable Automata as a Special Case 104

6.3 Chapter Summary . 104

7 Tableau Systems 107
7.1 The Tableau Systems Framework . 107
7.2 ExpTime Automata Algorithms from Tableau Systems 115

7.2.1 Basic Notions . 116
7.2.2 Accepting Compatible S-trees Using Automata 120

7.3 Tableau Algorithms from Tableau Systems 124
7.4 Tableau Systems for SHIO and SHIQ 129
7.5 Chapter Summary . 137

8 Conclusion 139
8.1 Outlook . 142

List of Figures

2.1 DL constructors . 28
2.2 Description logics and corresponding constructors 29
2.3 Complexity of the satisfiability (subsumption) problem 30

3.1 Tableau algorithm for ALC concept satisfiability 36
3.2 Tableau rules for ALC . 37
3.3 Modifications of the ALC tableau algorithm to handle GCIs 41

4.1 The NTA AMother for the concept H u ¬M u ∃c.H 52
4.2 An input tree t and a successful run r of an alternating automaton . . 55
4.3 A strategy tree for t and r from Example 4.12 56
4.4 AC,T transition relation . 60

5.1 Translation of a tree and a successful run into a model 67
5.2 Translation of a model into a tree and a successful run 69
5.3 AC,T ,G transition relation . 76
5.4 A′

C,T ,G transition relation . 77
5.5 Test concepts . 78
5.6 Number of successful tests . 79
5.7 Runtimes of the satisfiability test for different patterns 80

6.1 Emptiness test for segmentable automata 87
6.2 A successful run and the corresponding data structures 88
6.3 Unravelling of a partial run . 98

7.1 Rules of the ALC tableau system . 110
7.2 Decision procedure for P . 126
7.3 Tableau rules for SHIO . 131
7.4 Tableau rules for SHIQ . 134

Chapter 1

Introduction

Description Logics (DLs) are a family of knowledge representation languages with a
well-defined logic-based semantics and practically usable inference algorithms, which
enable DL systems to deduce implicit information about the domain of interest from
the explicitly provided facts. The syntax of DLs is based on the notion of concepts,
which represent classes of individuals like Human, Animal or Machine, and roles, which
stand for relations between individuals like has-child or owns. A specific DL is charac-
terised by the constructors it provides for generating complex concepts from primitive
ones; e. g. using conjunction, negation, and existential quantification, we can express
the notion of “mother” as

Human u ¬Male u ∃has-child.Human (1.1)

i. e. a human being who is not male and has a child who is also a human being.

The semantics of DL expressions is defined in a set-theoretic way: concepts and
roles are interpreted as sets of individuals and sets of pairs of individuals, respectively,
where the semantics of complex concepts depends on the semantics of the primitive
concepts appearing in it, e. g. the concept Human u ¬Male is interpreted as all the
individuals from the interpretation of Human that do not appear in the interpretation
of Male. The standard DL inference problems are the satisfiability problem, i. e. the
question if a concept C can be interpreted as a non-empty set, and the subsumption
problem, i. e. the question if every individual in the interpretation of a concept C
necessarily belongs to the interpretation of another concept D.

Since in the presence of conjunction and negation it is possible to reduce subsump-
tion to satisfiability, most DL reasoners have at their core a satisfiability tester; thus
we will focus on the satisfiability problem in the following. In the area of description
logics, one of the most widely used methods for deciding the satisfiability problem
is the tableau approach, which is also the basis for the majority of current imple-
mentations. In order to test the satisfiability of an input, a tableau algorithm (TA)
tries to generate a tree-shaped (pre-)model, called tableau, by breaking the syntactic
structure of the input down thus going from the (complex) input problem to easier
sub-problems. For the “mother” example above, a TA starts by creating a root node
labelled with the entire concept term, then it adds the single conjuncts to the node

8 Chapter 1. Introduction

label, and finally it creates a successor node labelled with Human that is connected
with the root node by an edge labelled with has-child. If all relevant subconcepts have
been processed and the tree does not contain any obvious contradictions, this implies
that the input is satisfiable.

In addition to soundness and completeness, termination of the TA must be ensured
in order to obtain a decision procedure. For logics having the finite tree model property ,
the corresponding TA usually terminates “by itself”, i. e. without the introduction of
mechanisms with the sole purpose of guaranteeing termination. If additionally the tree
models have polynomial depth and the different branches are independent in the sense
that the possible labels for a node only depend on the label of its predecessors and
successors, but not on that of other nodes within the tree, then the tableau algorithm
can be shown to require only space polynomial in the size of the input by keeping only
one branch in memory at a time.

For logics without the finite tree model property, TAs require a cycle detection
mechanism in order to avoid constructing an infinite tableau. This is done by defining
a blocking condition: a node is said to be blocked if it can be replaced by (a copy
of) a predecessor node. Termination can then be ensured by avoiding the creation
of successors for blocked nodes. Regarding complexity in this case, it turns out that
the tableau algorithm usually requires exponential time in the worst case because
it may be necessary to create an exponential number of nodes before one of them
is blocked. Moreover, since TAs are usually non-deterministic (e. g. for logics with
disjunction), the complexity classes that can be obtained “naturally” from a TA are
non-deterministic, e. g. NExpTime.

In spite of this high worst-case complexity, implementations based on tableau
algorithms perform surprisingly well on knowledge bases originating from real-life
applications (see Section 2.3.7). The reasons for this behaviour are the following:

• Tableau algorithms are goal-directed : they only add new information to the tree
if it is likely to lead the tree closer to a tableau. They do not randomly add
concepts which may be irrelevant for the satisfiability of the input concept.

• Tableau algorithms are amenable to several well-known and efficient optimisa-
tions. Although a naive implementation may not show an acceptable perfor-
mance, these optimisations can improve the speed by orders of magnitude (see
Section 2.3.7).

• Knowledge bases resulting from real-life applications often do not make use of the
full expressive power provided by the system; in other words, the kind of concepts
occurring in an ExpTime-hardness proof rarely appears in “realistic” knowledge
bases. Together with the goal-direction characteristic mentioned above, this
allows the TA for an expressive DL to perform as well as a DL for an inexpressive
language on an “easy” input.1

However, from a theoretical point of view, tableaus have several drawbacks, which
were briefly sketched above and are described in more detail in the following.

1Other knowledge bases, e. g. ones resulting from automatic translation procedures, often do not
satisfy these properties. Section 5.2.3 shows an example for this unfavourable behaviour.

9

• Tableau algorithms are usually non-deterministic, which is caused e. g. by the
necessity to handle disjunction, thus giving rise to non-deterministic complexity
classes. Regarding space complexity, this is not a problem since, by a result
of Savitch (1970), the non-deterministic space complexity classes coincide with
the deterministic ones,2 and thus TAs are well-suited for obtaining worst-case
optimal results for PSpace-complete logics (see Section 2.3.5). However, many
expressive DLs are ExpTime-complete (see Section 2.3.6), and the upper bound
that can be obtained from a TA “naturally”, i. e. without tuning the algorithm
in order to improve time efficiency, is only NExpTime (or even 2-NExpTime,
see Section 3.2.2).

Although there exist approaches to define tableaus with ExpTime worst-case
complexity, the techniques necessary for achieving this result introduce a signif-
icant overhead in the algorithm, which makes the usability in practice question-
able and, to the best of our knowledge, no implementation realising an ExpTime

upper bound exists so far. (This issue is discussed in more detail in Section 3.2.2.)
In contrast, the recently developed hypertableau calculus (see also Section 1.3)
has been successful in avoiding non-deterministic rules and thus obtaining an
algorithm that requires deterministic exponential time in the worst case and
also performs well in practice, albeit only for knowledge bases having specific
characteristics.

• Since tableau algorithms try to generate a tree-shaped model, they only termi-
nate “naturally” for logics that have the finite tree model property. For other
logics, termination has to be ensured by detecting repetition patterns in the
generated model, i. e. by preventing the generation of nodes which are identi-
cal (or in some other way compatible) to other nodes that have already been
generated. This technique, called blocking , often makes the soundness proof of
the algorithm rather intricate. (Again, see Section 3.2.2 for a more detailed
discussion of blocking.)

A different class of decision procedures for the satisfiability problem without the
disadvantages of TAs is constituted by automata-based reasoning algorithms (AAs),
which translate a DL input either into a non-deterministic tree automaton (NTA) (see
Section 4.3) or into an alternating tree automaton (ATA) (Section 4.4). Satisfiability
of the input expression can then be reduced to non-emptiness of the language accepted
by the corresponding automaton. In the NTA case, the translation usually yields an
automaton of exponential size for which emptiness can be tested in polynomial time,
thus giving rise to an ExpTime complexity result. In the ATA case, the size of
the automaton is usually polynomial in the size of the input, but the emptiness test
requires exponential time (it implies a translation into an exponentially large NTA),
consequently it also leads to an ExpTime result. Automata algorithms have the
following advantages in comparison to tableaus:

2Since Savitch’s algorithm involves a quadratic blow-up of the required space, this statement only
holds for the classes PSpace and above, but this covers the space complexity classes for the logics
considered in this thesis.

10 Chapter 1. Introduction

• The translation into an automaton as well as the automata emptiness test is
deterministic. Therefore, the “natural” complexity class that can be obtained
from an AA is also deterministic (ExpTime), which makes them better suited
for achieving tight upper complexity bounds for ExpTime-complete logics.

• Since the emptiness test is performed on the (finite) automaton rather than a
(possibly infinite) model, the algorithm terminates automatically without the
need for a blocking condition. This makes an AA more elegant than the cor-
responding TA, and it significantly simplifies the proofs of soundness and com-
pleteness of the decision procedure (see Sections 3.2.2, 4.3.1, and 4.4.1).

However, these advantages come with a price. Automata algorithms have structural
disadvantages in comparison with tableau algorithms:

• Both the NTA and the ATA approach involve an exponential step. Thus autom-
ata, unlike tableaus, cannot easily be used to prove a tight upper complexity
bound for DLs in a lower complexity class, e. g. PSpace.

• Since, in the naive approach sketched above, the exponentially large automa-
ton has to be generated before the emptiness test is performed, the automata
algorithm will consume exponential time not only in the worst case, but in any
case, thus a direct implementation of the automata approach does not promise
acceptable performance in applications.

This problem cannot easily be circumvented by optimisations because the automata
emptiness test starts with the set of all states and then iteratively eliminates states
that cannot occur in a successful run of the automaton, which in turn depends on
the other states that still remain (see Section 4.1 for details). Therefore, it is difficult
to recognise “unnecessary” states in advance and avoid their generation. For the
“mother” concept in Formula 1.1, the NTA generated by the automata algorithm
described in detail in Section 4.3.1 has 14 states (see Page 52), only one of which
is required to verify the existence of a successful run. This illustrates the overhead
introduced by the automata approach.

1.1 Aim of This Thesis

The complementary advantages and disadvantages of the two decision procedures de-
scribed above often make it necessary to develop two algorithms in order to introduce
a new DL: an automata algorithm showing the ExpTime upper bound, and a tableau
algorithm promising to lead to acceptable performance in an implementation. The
necessity of this double effort is particularly displeasing because, from a higher level
of abstraction, tableaus and automata become similar again: the transitions of the
automaton somehow look like tableau rules, and a tableau generated by a TA some-
how looks like an input accepted by the automaton arising from the AA; a similarity
which is particularly strong in the case of alternating automata (see Section 4.4.1 for
details). Consequently, the proofs for TAs and AAs are usually also based on the same
ideas and observations.

1.2. Outline of This Thesis 11

However, this superficial similarity does not imply that it is easy to combine the
advantages because, upon closer examination of the details of the two approaches,
it becomes clear that their different properties result from the fact that the algo-
rithms work in opposite directions: TAs go from complex to simple problems, which
allows them to only consider subproblems relevant for the input, but this technique
makes backtracking necessary for non-deterministic decisions. A TA can therefore be
regarded as a non-deterministic top-down procedure. On the other hand, an autom-
ata algorithm is a deterministic bottom-up procedure: it starts by considering simple
problems (more precisely, types whose satisfiability does not depend on the satisfi-
ability of other types) and deduces the answer to complicated problems from these.
The bottom-up approach thus allows an AA to be deterministic, but it is (in a non-
optimised version) not goal-directed and will therefore compute a significant amount
of information that is irrelevant for the input problem, whereas the TA can restrict
attention to relevant information, but this implies that it has to non-deterministically
guess the right path to take.

The aim of this thesis is to attempt to reconcile the advantages of the two ap-
proaches in spite of these obstacles. In particular, we are trying to answer the following
questions:

1. What are the precise relations between the data structures used in the different
approaches? Can a tableau constructed by a TA serve as an input for the
corresponding AA?

2. Is it possible to achieve acceptable performance in practice with an automata
algorithm using techniques stemming from tableau algorithms?

3. Is it possible to transfer the complexity results in either direction, i. e. is it
possible to obtain a PSpace result from an AA or an ExpTime result from
a TA?

In order to answer these questions, we aim at obtaining a clear formalisation of the
similarities that are only vaguely sketched above and to use these observations in order
to transfer techniques and desirable properties between the two approaches.

1.2 Outline of This Thesis

In Chapter 2, we begin with formally introducing DLs and outlining the properties of
those logics that will be relevant in the remainder of the thesis. Chapter 3 describes
the origin of semantic tableaus for classical logic and the adaptation of this technique
for DLs. Similarly, Chapter 4 gives the relevant background of automata theory,
describing the two automata models which are particularly useful for DLs, namely
non-deterministic tree automata and alternating two-way tree automata.

In Chapter 5, we describe our first approach to transfer practical efficiency from
tableaus to automata by translating an automaton into a DL knowledge base, which
allows us to perform the automata emptiness test with a tableau-based reasoner.
Although the performance of this approach does not turn out to be satisfactory, it

12 Chapter 1. Introduction

emphasises the close relationship between the operation of tableaus and automata
algorithms as well as between the data structures used by the two methods. As a side
product, we gain a new ExpTime complexity result for the inexpressive DL ELU f ,
which is used for the translation.

Since this first attempt does not lead to an acceptable behaviour in practice, our
next aim is to improve the theoretical efficiency for the automata approach and to
lower the complexity class obtainable through an AA from ExpTime to PSpace

by adapting the blocking technique from tableaus. In Chapter 6, we develop two
frameworks for automata algorithms for PSpace logics: the first one is designed for
logics with the finite tree model property and comparably easy to use, whereas the
second one is more general, but requires more work from the user. With the help of
the more powerful framework, we are able to prove, using an automata algorithm, that
the concept satisfiability problem with respect to acyclic TBoxes (see Section 2.3.2)
for the DL SI is in PSpace.

In Chapter 7, we go in the opposite direction and investigate conditions under
which ExpTime complexity results can be transferred from automata to tableau algo-
rithms. For this purpose, we define the framework of tableau systems, which provides
a formal notion of tableau algorithms for ExpTime logics. From a tableau system, we
obtain an ExpTime automata algorithm and a terminating tableau algorithm that
is amenable to the well-known optimisations for TAs and likely to exhibit good per-
formance in practice. To achieve this goal, it is not necessary to define a blocking
condition; instead, an appropriate condition is derived from the parameters of the
tableau system. By defining a system for the DL SHIO, we illustrate the usefulness
of this framework and obtain a new ExpTime complexity result.

1.3 Related Work

To the best of our knowledge, no attempt has been made to achieve a practically
useable reasoner by directly implementing an automata algorithm (thus answering
Question 2 from the end of Section 1.1). However, there exist two approaches for
testing satisfiability in the modal logic K (which is a notational variant of the DL
ALC, see Section 2.3) which are based on algorithms that can be regarded as optimised
variants of the automata method:

• Baader and Tobies (2001) show that the so-called inverse method (Voronkov,
2001) for deciding satisfiability for K formulas can be viewed as an implementa-
tion of the automata-based approach, which suggests that it could also be useful
for DLs. The implementation Kk (Voronkov, 1999) performed well in practice
(Voronkov, 2001), but to the best of our knowledge, this reasoner has not been
extended to more expressive logics, and no results have been published recently.

• The satisfiability algorithm for K presented by Pan, Sattler, and Vardi (2006),
which is based on binary decision diagrams (BDDs), can also be regarded as an
optimised automata emptiness test. Like the inverse method, the BDD-based

1.3. Related Work 13

approach exhibited good results for K, but it has not been extended to more
expressive logics, and new results have not been published recently.3

Developing a tableau or automata algorithm is not the only method for obtaining a
complexity result or a practical decision procedure for the satisfiability problem of a
description logic. Some approaches use translation from the corresponding DL into
other formalisms with known complexity results or existing reasoners, and other ones
are based on the extension of reasoning mechanisms for less expressive formalisms like
propositional logic. In the following, we briefly describe some of these methods.

• The modal logic reasoner MSpass (Hustadt and Schmidt, 2000), which can
be regarded as a satisfiability tester for some DLs due to the relation between
MLs and DLs, translates an expression from modal into predicate logic and
uses the resolution-based reasoner Spass (Weidenbach, 1999; Weidenbach, Af-
shordel, Brahm, Cohrs, Engel, Keen, Theobalt, and Topić, 1999) to decide the
satisfiability problem.

• The more recent DL reasoner Kaon2 (Hustadt, Motik, and Sattler, 2004, 2007)
reduces a DL expression to a disjunctive datalog program, which allows the
developers to apply the known optimisation techniques for deductive databases
and thus to obtain a practically efficient ExpTime procedure (Motik and Sattler,
2006).

• The hypertableau calculus (Motik, Shearer, and Horrocks, 2007) can be regarded
as a hybrid of resolution and and the tableau approach: here a DL knowledge
base is translated into a clausal form, and reasoning is performed via resolution.
If the result of the translation is a set of Horn clauses (which requires the knowl-
edge base to have a specific shape) then this calculus gives rise to a deterministic
reasoning algorithm and thus to a (worst-case optimal) ExpTime result.

• Translation from DLs into converse PDL (Schild, 1991; De Giacomo and Lenz-
erini, 1994a,b) allows for the transfer of complexity results (e. g. that ALC aug-
mented with transitive-reflexive closure of roles is ExpTime-hard) and model
theoretic properties (e. g. that this DL augmented with role union, composition
and inverses has the finite model property).

• The reasoner Ksat (Giunchiglia and Sebastiani, 1996; Giunchiglia, Giunchiglia,
Sebastiani, and Tacchella, 1998) uses a method based on the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm (Davis and Putnam, 1960; Davis, Lo-
gemann, and Loveland, 1962) for satisfiability testing in propositional logic in
order to test the satisfiability of ALC concepts. Similar to the BDD algorithm
and the inverse method mentioned above, the Ksat approach has not been ex-
tended to logics that are more expressive than ALC, and no results have been
published recently.

3Although the cited paper was published in 2006, the work it is based on was performed in 2002
(Pan, Sattler, and Vardi, 2002) and 2003 (Pan and Vardi, 2003).

14 Chapter 1. Introduction

Translation into other formalisms has the clear advantage of allowing for the use of
optimised systems that are available for the target formalism. However, the limitations
are equally obvious: unlike for tableaus, where an existing algorithm can be extended
to a more expressive language with additional constructors by introducing new tableau
rules (and possibly modifying the existing ones), a translation approach can only be
extended if the additional constructors can also be expressed in the target formalism.

Chapter 2

Knowledge Representation with

Description Logics

In this chapter, we will first briefly recall some of the relevant philosophical discussion
regarding the term knowledge; we will then describe how the computer science disci-
pline of knowledge representation endeavours to store and retrieve knowledge with the
help of computers, and we mention some of the early attempts to achieve this goal and
their deficiencies, which eventually led to the introduction of description logics. We
describe in detail description logics of different expressivity, the formalisms that they
use to represent knowledge, and the mechanisms that they provide to make implicit
knowledge explicit. Finally, we give a brief overview of description logic systems.

2.1 Knowledge

“What, in your opinion, is knowledge?” (Plato, Theaetetus, 146b). The discussion
about a proper definition goes back to ancient Greece, more precisely to Plato’s Theae-
teus. Although this dialogue, like most of Plato’s early works, ends with the conclusion
that a satisfactory answer cannot be given (and thus, as hinted in the initial question,
we do not obtain knowledge about the idea of knowledge, but only opinions), several
necessary conditions for a definition of knowledge are found. For a person P to know
a fact F ,

1. F must be true,

2. P must believe F ,

3. P must have a justification for F .

The first two conditions are easy to accept as necessary for knowledge: it is impossible
to know something without assuming that it is true; and the truth of F is exactly
what marks the difference between knowledge and mere belief or opinion. Still, it is
possible to believe a true fact by coincidence without knowing it, and therefore the
third condition also is necessary. This one, however, shows in Plato’s opinion that

16 Chapter 2. Knowledge Representation with Description Logics

knowledge is impossible: since knowledge can only be achieved analytically, i. e. by
splitting a complex problem into several simpler ones, one either ends up in an infinite
analytical process or with atomic problems, which cannot be analysed. Consequently,
no knowledge about these problems (and thus also about the more complex ones) is
possible. This dead end, sometimes called the Münchhausen trilemma (Albert, 1991),
leaves only three alternatives: infinite regression, where one continuously passes from a
justification to the justification for the justification, and consequently sinks deeper and
deeper into the “swamp”; a circular argument , where one finds that the justification
for a fact is founded on the fact itself, and one therefore remains stuck at the same
place; and finally dogmatism, where one simply declares some fundamental facts to be
true and thus pulls oneself out of the swamp by his own hair. Like in the tale, the third
way, though it involves “cheating”, is the only viable one. For example, Aristotle does
not claim to prove the law of non-contradiction (Aristotle, Metaphysics, 1005b), but
he only argues that without it, a reasonable discussion is impossible, and subsequently
takes it as granted “for it shows a lack of education not to know of what things one
should demand demonstration, and of what one should not” (Aristotle, Metaphysics,
1006a). Similarly, in mathematics a set of axioms is assumed to be true, and one is
only interested in the truth of a theorem in the theory induced by these axioms.

Another problem with the definition of knowledge as justified true belief is the
vague notion of justification. Clearly, a true belief can also be justified by, e. g.,
prejudice or superstition, without being knowledge; an imprecision which has to be
attributed to the fact that Plato does not yet have a formal notion of the term “proof”.
Aristotle developed such a notion with the syllogisms: a proof is “an argument in
which, certain things having been supposed, something different from the supposed
things results of necessity because of their being so” (Aristotle, Prior Analytics, 24b).
With this, he was able to formulate stricter demands for justifications of knowledge:
“we believe that we know a single thing absolutely—and not in the sophistic way, which
is casual—whenever we believe to be aware of the reason by which the thing is, that it is
the reason of the thing, and that it does not allow the thing to be different.” (Aristotle,
Posterior Analytics, 71b). Thus, knowledge of a thing involves the awareness of a
sufficient reason, which rules out vague justifications. In mathematics, this claim is
reflected in the demand for soundness of a proof, i. e. the condition that for every step
in the argument, truth of the premisses implies truth of the consequence.

Within this thesis, we cannot attempt to present an detailed survey of the philo-
sophical discussion about the term “knowledge”. However, even this brief introduction
has revealed the fundamental assumptions that are still present in its contemporary
notion: we have established that knowing a fact F means believing F , being aware of
the axioms F depends on, and how these axioms necessarily entail F , which implies
that F is true if the axioms are true. Transferring this notion from humans to ma-
chines, this means that for a system S to represent the knowledge of a fact F , it is
necessary that

• F is true with respect to the given axioms and the semantics of S,

• S has a proof for F , i. e. S can derive F from the axioms.

2.2. Knowledge Representation 17

Thus, if the calculus of the system S is sound (i. e. it only derives true consequences),
complete (i. e. it can derive all true consequences), and terminating (i. e. does not run
infinitely), then S represents the knowledge of everything that is true with respect to
the given axioms.

2.2 Knowledge Representation

The discipline of knowledge representation (KR) is an area of artificial intelligence that
is concerned with computer-based storage and retrieval of knowledge about a part of
the world, called the domain of interest (Lakemeyer and Nebel, 1994; Owsnicki-Klewe,
von Luck, and Nebel, 1995). The immediate question is when it is justified to say that
a computer system represents knowledge. Certainly, in a very general sense, every
working program implicitly represents the knowledge necessary to perform its specific
task, but if this knowledge is not stored explicitly in a human-readable form, it is
hidden from the user and cannot be inspected, modified or extended by him.

Therefore, the knowledge representation hypothesis, as formulated by Smith (1982),
demands two properties from a knowledge representation system: firstly, the knowl-
edge has to be stored in a form that, for an external observer, represents the knowledge
exhibited by the system; and secondly, it has to play a causal and essential role in the
behaviour of the system. Without the first demand, as argued above, any software
system could be regarded as representing knowledge; without the second one, i. e. if
the represented knowledge did not have any influence on the system’s behaviour, the
system would not be guaranteed to behave according to the knowledge. As an exam-
ple, Levesque and Brachman (1985) mention knowledge contained in comments of a
program’s source code; a more recent example could be an online encyclopedia that
contains a huge amount of knowledge, but since it is not given in a machine readable
form, it is impossible for the system to answer questions regarding the content, to
derive new knowledge, or to detect contradictions. Thus, in a nutshell, knowledge
representation requires the knowledge to be represented in a form that is intelligible
by both humans and machines.

Consequently, a KR system consists of two parts: the knowledge base (KB), which
contains the axioms that the system knows about the domain, and the inference
engine, which derives new facts from the axioms and provides the proofs that are
required in order to represent knowledge. Thus, unlike a database, a KR system makes
the implicit knowledge explicit (Baader, 1999), i. e. it does not just return the axioms
that were previously entered, but it presents to the user the theory induced by the
axioms (Owsnicki-Klewe et al., 1995). In the words of Brachman and Levesque (2004),
the inference engine bridges the gap between the (necessarily finite) set of explicitly
stored axioms and the (possibly infinite) knowledge represented by the system. In
another paper (Levesque and Brachman, 1985), the same authors point out that the
expressive power of a KR formalism (in this case, predicate logic) determines not so
much what can be said, but what can be left unsaid. In many KR formalisms, it is easy
to express an infinite structure with few axioms. By contrast, in a database nothing

18 Chapter 2. Knowledge Representation with Description Logics

that should be returned to the user can be left unsaid, and thus databases cannot be
regarded as KR systems.

The separation of knowledge base and inference engine is one of the main features
of KR systems. It enables the knowledge engineer , i. e. the person concerned with for-
malising the knowledge about the domain, to work independently of the programmer ,
i. e. the person implementing the inference algorithms. The programmer thus does
not have to be an expert about the domain of interest, and the knowledge engineer
does not require experience in programming. It is, however, necessary for him to
understand how to express his knowledge in the KR language, the machine-readable
formalism of the knowledge base. The features of the KR language and of the infer-
ence engine determine the properties of the KR system: the expressive power of the
KR language determines what can be said in the system, the set of provided inference
tasks determines which kinds of questions the system can answer, and the complexity
of the reasoning tasks for the specific language determine how expensive (in terms of
processing time and memory used) a query is. Clearly, there is a tradeoff between
expressivity and efficiency (Levesque and Brachman, 1985): an inexpressive language
may prevent the knowledge engineer from adequately describing the domain, whereas
a very expressive one may lead to a high computational complexity of the reasoning
tasks or even to undecidability.

The semantics of the language determines which conclusions should be derived by
the inference engine or, in the words of the previous section, what is true for the KR
system. This semantics can be operational , i. e. defined by means of the procedures
that perform the reasoning tasks, or declarative, i. e. depending only on the represented
knowledge (Baader, 1999; Russell and Norvig, 2002). Only a declarative semantics
allows for a clear separation between the knowledge base and the inference engine,
which is desirable for several reasons:

• A declarative semantics is necessary for a clear separation between the tasks of
the knowledge engineer and the programmer. With an operational semantics,
the knowledge engineer is required to know about the inference algorithms, and
it may be necessary to modify the knowledge base if the algorithms change.

• It should be possible to use different inference engines (e. g. from different pro-
grammers, or optimised versions by the same programmer) on the same knowl-
edge base while still obtaining the same results.

• Syntactic variants of expressing the same knowledge should not lead to different
results. With an operational semantics, it is difficult to ensure that two syntactic
variants of expressing the same knowledge lead to the same results (it is even
difficult to use the term “syntactic variant”, since the behaviour of the algorithm
only depends on the syntax).

Already in the beginning of the AI era, McCarthy (1958) realised some of the advan-
tages of a declarative semantics, in particular the independence of syntactic variants
and of previous states of the program. He thus constrained that his AI project, called
the Advice Taker , would be instructed with declarative, as opposed to instructive,
sentences.

2.2. Knowledge Representation 19

Semantic Networks. An early KR system that did not have a declarative semantics
are semantic networks (Quillian, 1967). A semantic network is essentially a graph,
where nodes stand for individuals, classes of individuals, or properties. Edges can
either be IS-A links, which state that an individual is an element of a class or that
a class is a subclass of another one, or Has-Prop links, which assign a property to a
class or individual. Properties are inherited along IS-A links: if Spike IS-A Dog and
Dog Has-Prop has-ears, then Spike Has-Prop has-ears.

The syntax of semantic nets is (seemingly) very intuitive, because it allows for a
representation that is very similar to ordinary language (e. g. “Spike IS-A Dog IS-A
Mammal IS-A Animal”). The problem is that also ambiguity and imprecision of ordi-
nary language are present in semantic nets: IS-A can stand for “is an element of” or
“is a subclass of”, and a property edge can stand for “always has the property”, “usu-
ally has the property” or “has the property, if any”). Brachman (1983) distinguishes
six different meanings for “subclass” links and four for “element” ones. Clearly, it is
impossible to obtain predictable results from a KR system if one syntax is used with
different semantics.

Another problem arises with the interpretation of IS-A links as providing default
properties for the subclass, which can be overridden by more specific properties as-
signed to the subclass. This is used e. g. to express that ostriches are birds, birds
can fly, but ostriches cannot. If a subclass can override any property of the super-
class, however, then IS-A cannot be regarded as representing taxonomic knowledge
anymore: it is possible to say, e. g., that a Quadrangle IS-A Triangle with four instead
of (the default) three edges (see also Brachman, 1985), and thus every node can be
placed anywhere in the IS-A hierarchy.

Besides inheritance, spreading activation (Quillian, 1967; Collins and Loftus, 1975)
is another inference for semantic nets that, according to Quillian, is supposed to “dis-
cover various relationships between the meanings two words”. In principle, it is a
process that starts by marking the nodes representing the two words under consid-
eration and then iteratively marks all nodes connected with a marked node until an
intersection is found. The path between the two nodes is then transformed into a
sentence and returned to the user as a description for the relation between the words.
The number of nodes on this path is regarded as a measure of the semantic distance
between two words (Brachman, 1979). The problems with such a syntactic approach
are obvious: a “naive” network with an IS-A link from Dog to Animal would deduce
that dogs and animals are closely related concepts, whereas a “scientific” network with
nodes for all intermediate concepts (Canis,Canidae,Carnivora,Mammalia etc.) would
conclude that they are only remotely related.

Frames. The more complex KR formalism of frames was developed by Minsky
(1975). A frame is a data structure that is supposed to contain all the knowledge
relevant for a stereotypical situation. For this purpose, a frame contains slots that
can be assigned specific values (fillers), which can also be frames. In order to repre-
sent a specific situation, one instantiates a frame by assigning values to these slots.
For example, a Person frame could contain slots for Name,Age and Job, where Name
requires a text string as filler, Age requires an integer and Job refers to an instance

20 Chapter 2. Knowledge Representation with Description Logics

of the Job frame. A frame can be a sub-frame of another one (similar to the IS-A
construct of semantic nets), it can provide defaults for its slots, which are used unless
more specific information is available, and it can provide procedures describing how
to obtain the corresponding information.

An important inference is criteriality (see e. g. Hayes, 1979): if fillers can be found
for all slots, then it can be deduced that the current situation is really an instance of
the corresponding frame, i. e. having these fillers is a sufficient condition for being an
instance. In the example, if something has a name, an age and a job, then it must be
a person. Matching (Bobrow and Winograd, 1977) is another inference that decides
if an instance of one frame can also be seen as an instance of another frame. For
instance, if there is a frame Child that describes a Person whose Age is less than 14,
then one can try to match an instance of the Person frame against the child frame
and, if the matching is successful, deduce that the person is a child.

Minsky does not provide a formal semantics for frames; instead, he argues quite
strongly against any logical foundation and in particular against a strict separation of
the knowledge base and the inference services (which he calls propositions and syllo-
gisms). He claims (Minsky, 1975) that in order to simulate common-sense thinking,

• one has to go from an imperfect, flawed initial model of the world to a more
refined, less faulty one;

• it is necessary to restrict the application of inferences depending on the current
situation, thus the current data should determine which inferences to apply;

• one also has to allow for the representation of actions or assumptions that usually
apply, i. e. defaults;

• the notion of always-correct assumptions makes it impossible to capture a rele-
vant part the real world with an acceptable performance;

• soundness (called consistency by Minsky) is not necessary or even desirable,
since humans do not behave consistently.

However, Hayes (1974) argues that without a semantic theory, it is impossible to say
what a certain statement claims about the world. Conversely, the knowledge engineer
cannot know if the statement he wrote expresses what he has in mind. Moreover, it
is impossible to compare different representational formalisms, e. g. to demonstrate
that one formalism can express properties that another one cannot. Regarding the
need for soundness, McDermott (1986) stresses the importance of understanding the
system that one develops. Without a formal semantics, it is impossible to determine
if an unexpected answer of a KR system is the result of a faulty knowledge base,
a programming error in the inference engine or just an imperfection of the current
representation that may be repaired by further development. Like McDermott, Hayes
(1979) points out that it is possible to express defaults in classical logic, and he refers to
Reiter (1978) as an example for reasoning by default in a logic with formal semantics.

Hayes also emphasises the need to distinguish between representation languages
and programming languages (and thus between knowledge bases and inference en-
gines): if one allows knowledge to be represented by programming languages then, as

2.3. Description Logics 21

argued in the beginning of this section, this does not justify using the term knowledge
representation, since the expressions do not carry meaning; moreover, all (Turing-
complete) programming languages would be equally expressive. Additionally, Hayes
shows how the inferences of criteriality and matching can be decided using an intuitive
translation of frames into predicate logic, thus refuting Minsky’s claim that logic was
inherently incapable of capturing the capabilities of frames.

Hayes concludes with the observation that the power of frames is not in the repre-
sentational, but in the implementational level; and considering that the object-oriented
programming paradigm with the capabilities of inheritance, data members and mem-
ber functions resembles Minsky’s frames much more closely than present-day KR
systems do, this statement appears to have been very appropriate.

2.3 Description Logics

In order to overcome the problems of the early KR formalisms described above, Brach-
man and Schmolze (1985) developed the Knowledge Representation Language Number
One, KL-One, which has a declarative, logic-based semantics and is commonly re-
garded (Woods and Schmolze, 1990; Nardi and Brachman, 2003) as the ancestor of
the family of Description Logics, (DLs) (Baader, Calvanese, McGuinness, Nardi, and
Patel-Schneider, 2003a). Schmidt-Schauß (1989) discovered that KL-One is undecid-
able and defined the decidable language ALC (Schmidt-Schauß and Smolka, 1991).
Shortly after the introduction of ALC, Schild (1991) observed that it is in fact a syn-
tactic variant of the multi-modal logic Km (see e. g. Blackburn, de Rijke, and Venema,
2001), which led to the transfer of several extensions and the corresponding complex-
ity results from modal to description logics (e. g. inverse roles in DLs correspond to
converse modalities in modal logics).

In the early phase of DL research, an important goal was the development of logics
with polynomial-time inference algorithms. However, Nebel (1990) showed that even
very inexpressive logics do not satisfy this condition: for the DL FL0, which only
allows for conjunction and universal quantification, reasoning with respect to acyclic
terminologies is co-NP-complete. Moreover, the analogy between ALC and Km im-
plies PSpace-completeness of basic reasoning tasks in ALC. On the other hand, the
development of systems performing well in practice in spite of deciding intractable
problems (for details, see Section 2.3.7) showed that tractability is not an indispens-
able condition. (Levesque and Brachman (1985) note, in a general context, that “it
might be the case that for a wide range of questions, the program behaves properly,
even though it can be shown that there will always be short questions whose answers
will not be returned for a very long time, if at all.” This clearly applies to reasoning
for expressive DLs.) Consequently, the expressivity of DLs has been increased con-
tinuously to cover quantitative constraints on models (features, number restrictions,
nominals) or restrictions on roles (transitivity, hierarchies, inverse of roles). Although
these extensions lead to ExpTime- (or even NExpTime-)completeness, the existing
optimised algorithms still perform reasonably well on knowledge bases from real-life
applications..

22 Chapter 2. Knowledge Representation with Description Logics

This efficiency in practice, together with the high expressivity of these DLs, re-
cently has led to the acceptance of the language OWL-DL (Bechhofer, van Harmelen,
Hendler, Horrocks, McGuinness, Patel-Schneider, and Stein, 2004), which is based on
a NExpTime-complete DL, as a standard for the Semantic Web1, an extension of the
World Wide Web, whose goal is to allow software agents to perform reasoning based
on semantic annotation of web pages.

In parallel with the effort to increase the expressive power while still maintaining
decidability and usability “in practice”, the research of DLs with polynomial inference
algorithms has recently regained attention (see e. g. Brandt, 2004; Baader, Brandt,
and Lutz, 2005), and the polynomial subsumption algorithm has performed well on
existing very large knowledge bases (Baader, Lutz, and Suntisrivaraporn, 2007b).

Thus, in the 20 years since the development of KL-One, numerous decidable
DLs have been developed, with a wide range of expressivity (see the following sec-
tions) and various inference services (consistency, subsumption (Baader, 1999), least
common subsumer (Cohen, Borgida, and Hirsh, 1992; Baader, Küsters, and Moli-
tor, 1999), approximation (Brandt, Küsters, and Turhan, 2002), matching (Baader,
Brandt, and Küsters, 2001), conjunctive queries (Glimm, Horrocks, Lutz, and Sattler,
2007), conservative extensions (Ghilardi, Lutz, and Wolter, 2006)) whose computa-
tional complexity ranges from polynomial (e. g. subsumption in EL (Baader, 2003)) to
NExpTime (satisfiability in SHOIQ (Horrocks and Sattler, 2005)) and 2-ExpTime

(conservative extensions for ALC (Ghilardi et al., 2006)).

2.3.1 Syntax

The common core for all DLs are the notions of concepts, which stand for classes of
individuals, e. g. Animal or Human, and roles, which stand for a relations between two
individuals, e. g. has-part or eats. A specific DL is characterised by the constructors
it provides for the generation of complex concept and role terms from primitive ones.
Firstly, there are the Boolean constructors t (or), u (and) and ¬ (not) for concepts,
which have the same meaning as in propositional logic. Using these, we can describe
a male animal as Animal u ¬Female, and a concept for both mammals and fishes as
Mammal t Fish. Many DLs also allow for the top concept > and the bottom concept
⊥, which stand for “everything” and “nothing”, respectively. In the presence of con-
junction/disjunction and negation, they can be regarded as shortcuts for the concept
terms A t ¬A and A u ¬A for an arbitrary concept name A.

Using the quantifiers ∀ and ∃, we can talk about the relations between individuals
from one class with that of another one: an existential restriction ∃r.C describes a
class of individuals that are related via the role r to individuals belonging to the
concept C. Thus, the class of carnivores can be described by Animal u ∃eats.Meat.
This means that every individual belonging to this class is related via the role eats to
another individual from the class Meat, but there may also be other eats relations. In
contrast, a value restriction ∀r.C describes the class of individuals i for which it holds
that every individual to which i is related via the role r belongs to the concept C. A

1See www.semanticweb.org

2.3. Description Logics 23

freshwater fish could be described as Fish u ∀lives-in.(River t Lake). This means that
every location the individual lives in must be a lake or a river, but it leaves open
the possibility that there is no location given. Nominals are concept names that only
represent one single individual. This makes it possible to express that some concept
can only have one instance (e. g. God in a monotheistic knowledge base), or to give
names to individuals (e. g. Rome or John) and use these names in concept definitions
(Roman or Friend-of-John).

It is also possible to construct complex roles from role names using role con-
structors: the inverse operator ·− uses a role in the opposite direction. If we de-
scribe a predator with Animal u ∃eats.Animal, we can analogously describe a prey by
Animal u ∃eats−.Animal, meaning that it is an animal eaten by an animal. Qualifying
number restrictions denote the class of individuals i for that there exists a bound on
the number of individuals of a certain class that i is related to via a certain role. A
popular person could be described as Humanu(> 10 has-friend Human), a human with
at least ten friends. In order to capture transitivity of roles, there exist two important
approaches (Sattler, 1996): the transitive closure operator ·∗ allows for the expression
∃has-child∗.Male, which describes someone who has a male descendant. In contrast,
transitive roles only allow for a role to be globally declared as transitive, which means
that it is impossible to distinguish between direct and indirect successors. For exam-
ple, a woman who has only daughters as children but also one male descendant can
be described using transitive closure (as ∃has-child∗.Maleu∀has-child.¬Male), but not
with transitive roles. This higher expressivity comes with a price: concept satisfia-
bility in ALC with transitive roles is PSpace-complete, but with transitive closure it
becomes ExpTime-complete (Sattler, 1996).

Role Hierarchies are another way to express constraints about roles; they allow
to declare one role as a sub-role of another one, e. g. has-child v has-descendant. Fea-
tures are functional roles, i. e. they describe relations that can be fulfilled by at most
one individual, e. g. has-mother. Intersection, union, negation and composition (i. e.
chaining) of roles have also been considered (De Giacomo, 1995). Due to the rela-
tion between modal and description logics, ALC with transitive closure, union and
composition of roles can be shown to be a syntactic variant of PDL (Schild, 1991).

2.3.2 Knowledge Bases

In a DL system, the knowledge base consists of two components: the terminological
knowledge about the nomenclature of the domain of interest is contained in TBoxes
and RBoxes, and the assertional knowledge about individuals is contained in ABoxes.
A TBox contains information about the relation between concepts, which can be in
the form of concept definitions or general concept inclusion axioms (GCIs). A concept
definition assigns a name to a concept term. It has the form A

.
= C, where A is a

concept name and C is a concept term, meaning that every individual that belongs to
the class A also belongs to C and vice versa; thus, if we want to talk about freshwater
fish, we can define a concept Freshwater-fish

.
= Fish u ∀lives-in.(River t Lake). A GCI

expresses additional restrictions about the domain. It has the form C v D, where both
C and D are concept terms. The meaning is that every individual that belongs to the

24 Chapter 2. Knowledge Representation with Description Logics

class C also belongs to D, but both classes need not be equal. So we can say that all
mammals have hearts, but they are not necessarily the only such animals, with the
GCI Mammal v ∃has-part.Heart.

A concept definition A
.
= C can easily be expressed by the two GCIs A v C and

C v A, and it is also possible to express a GCI C v D using a new concept name
Z and the definition Z

.
= ¬Z t (¬C t D). This shows that without any restrictions,

concept definitions can express very strong conditions on the models instead of just
introducing a short name for a complex concept, and thus there exist two versions
of TBoxes: general TBoxes allow for arbitrary definitions and GCIs, whereas acyclic
TBoxes do not permit GCIs, multiple definitions of the same concept, or recursive
definitions. For many logics, it turns out that reasoning w. r. t. acyclic TBoxes is in a
lower complexity class than reasoning w. r. t. general TBoxes, see e. g. Chapter 6.2

Analogously to GCIs, which express axioms about concepts, there also exist role
inclusion axioms (RIAs) of the kind r v s, meaning that r is a subrole of s, e. g.
has-child v has-descendant.3 An RBox is a finite set of RIAs.

An ABox contains information about the concepts and roles that the single indi-
viduals of the domain of interest belong to. They have the form a : C or (a, b) : r for
individual names a and b, a concept C and a role r. Thus, we can say that Mary is
human and has a child named Jack as {Mary : Human, (Mary, Jack) : has-child}.

2.3.3 Semantics and Inferences

As mentioned above, a main motivation for the introduction of DLs was to overcome
the problems of semantic networks and frames by using a declarative, set-theoretic
semantics. Thus, the semantics is defined by using a set of individuals (the interpre-
tation domain) and assigning subsets of the interpretation domain to concepts and
binary relations over the domain to roles. The standard inference problems for DL
reasoning are satisfiability (“Is it possible to assign a non-empty set to the concept
C?”) and subsumption (“Is the set assigned to C necessarily a subset of the set as-
signed to D?”). A partial order representing all subsumption relations between the
concept names contained in a TBox T is called the subsumption hierarchy of T .

For an ABox A, the individual names are assigned to individuals of the interpre-
tation domain. Since DLs impose the unique name assumption on individual names,
different individual names have to be interpreted by different individuals. The most
important inference problems for ABoxes are the consistency problem and the entail-
ment problem: A is consistent if it is possible to assign individuals of the interpretation
domain to the individual names in such a way that the ABox constraints are respected,
and A entails an assertion C(a) if every assignment that respects the constraints of
A also satisfies C(a). In DLs allowing for negation of concept terms, the entailment
problem can be reduced to the consistency problem: A entails C(a) iff A ∪ {¬C(a)}
is inconsistent; and the same holds for the satisfiability problem of concepts: C is

2Logics that allow for the internalisation of GCIs (see Section 2.3.6) do not fall into this category.
3Even together with role hierarchies, transitive roles are not as expressive as the transitive closure

operator: the concept ∃has-descendant.Maleu∀has-child.¬Male and the RIA has-child v has-descendant

together do not enforce a chain of has-child roles between the mother and the male descendant.

2.3. Description Logics 25

satisfiable iff {C(a)} is consistent for some individual name a. Conversely, in logics
that allow for nominals (see Section 2.3.1), the ABox can be internalised in the TBox
by replacing individual names with nominals. Since we will focus on TBoxes in the
following, we will not go into details about ABox reasoning. Baader and Sattler (2001)
present a prototypical tableau algorithm for testing ABox consistency in the basic DL
ALC, and Horrocks, Sattler, and Tobies (2000b) do the same for the more expressive
logic SHIQ.

In the following, we will describe in detail some examples for description logics of
different expressivity.

2.3.4 Polynomial DLs

Since a DL allowing for all Boolean constructors (u,t and ¬) is at least as expressive
as propositional logic and therefore NP-hard, it is necessary to drop some of these
constructors in order to obtain a DL with polynomial inference problems. One of the
most basic DLs is called the Existential Language (EL) and provides only existential
quantification, conjunction, and the top concept (Baader et al., 1999).

Definition 2.1 (EL syntax). Let NC be a set of concept names and NR be a set of
role names. The set of EL concept terms is defined as follows:

• every concept name A ∈ NC is a concept term;

• if C and D are concept terms, then > and C u D are also concept terms;

• if C is a concept term and r is a role name, then ∃r.C is also a concept term. 3

In the following, we will sometimes simply use the word “concept” for concept
terms. The letters A,B will be used for concept names, whereas C,D etc. denote
arbitrary concepts.

Definition 2.2 (EL TBox). For an EL concept name A and an EL concept term C,
the expression A

.
= C is called an EL concept definition. For two EL concept terms C

and D, the expression C v D is called an EL general concept inclusion axiom (GCI).
An acyclic EL TBox is a finite set of concept definitions such that every con-

cept name occurs at most once as a left-hand side, and there is no cyclic de-
pendency between the definitions, i. e. there is no sequence of concept definitions
A1

.
= C1, . . . ,An

.
= Cn such that Ci contains Ai+1 for 1 ≤ i < n and Cn contains A1.

A general EL TBox is an acyclic TBox extended with a finite set of GCIs.4

A concept name is called defined if it occurs on the left-hand side of a concept
definition, and primitive otherwise. 3

Acyclicity of a TBox ensures that a concept name is not (directly or indirectly)
defined by itself, and that concept definitions are not “abused” to define equivalence
between complex concepts, e. g. as in {A

.
= ∃r.C; A

.
= ∃s.D}.

4This definition of general TBoxes is slightly non-standard since we do not allow for cyclic defini-
tions. However, a general TBox with cyclic definitions can easily be transformed into an equivalent
one without cyclic definitions by replacing concept definitions with GCIs as described in Section 2.3.1.

26 Chapter 2. Knowledge Representation with Description Logics

Definition 2.3 (EL Semantics and inference problems). For a set of concept
names NC and a set of role names NR, an interpretation I is a pair (∆I , ·I), where
∆I is a set of individuals and ·I is an interpretation function that maps concepts to
unary relations and roles to binary relations over ∆I . The interpretation function ·I

is extended to concept terms as follows:

• >I = ∆I ;

• (C u D)I = CI ∩ DI ;

• (∃r.C)I = {d ∈ ∆I | there is an e ∈ ∆I with (d, e) ∈ rI and e ∈ CI}.

An interpretation I is called a model for a concept C if CI 6= ∅. It is called a
model for a TBox T if, for every definition A

.
= D ∈ T and for every GCI E v F, it

holds that AI = DI and EI ⊆ FI . A model of C with respect to T is a model of C and
T . A concept C is called satisfiable (with respect to T) if there is a model of C (and
T). Similarly, we say that a concept C is subsumed by a concept D, written as C v D
(w. r. t. T) if, in every interpretation (every model for T), CI ⊆ DI holds. 3

Since EL does not allow for negation, the satisfiability problem is not interesting
(every concept term is satisfiable). However, subsumption is not trivial, and it was
shown by Baader, Küsters, and Molitor (1998) that the subsumption problem for
EL concept terms is decidable in polynomial time. This complexity result also holds
for a rather expressive extension of EL, named EL++, which additionally allows for
GCIs, role inclusion axioms, nominals, and concrete domains (Baader et al., 2005).
In Chapter 5, we will see that in ELU f , EL extended with disjunction and features,
satisfiability w. r. t. GCIs is ExpTime-hard. Recently, this result has been sharpened
by showing that satisfiability in EL augmented with either features or disjunction
becomes ExpTime-hard (Baader et al., 2005).

DLs that allow only for value restriction and not for existential restriction have
also been examined (Nebel, 1990; Donini, Lenzerini, Nardi, and Nutt, 1991; Baader,
1996; Kazakov and de Nivelle, 2003). Since these logics are not used in the remainder
of this thesis, we will not describe them in detail.

2.3.5 PSpace DLs

If we add negation of concept terms (¬) to EL, we can also express the constructors t,
∀, and ⊥ due to their duality to the EL ones. The language that is obtained by adding
all of these constructors to EL is called the Attributive Language with Complements,
ALC (Schmidt-Schauß and Smolka, 1991).

Definition 2.4 (ALC syntax and semantics). The set of ALC concepts is defined
as in Definition 2.1, with the following additions:

• if C and D are concept terms, then ⊥, ¬C, and C t D are also concept terms;

• if C is a concept term and r is a role name, then ∀r.C is also a concept term.

The semantics for the additional constructors is defined as follows:

2.3. Description Logics 27

• ⊥I = ∅;

• (¬C)I = ∆I \ CI ;

• (C t D)I = CI ∪ DI ;

• (∀r.C)I = {d ∈ ∆I | for all e ∈ ∆I with (d, e) ∈ rI , e ∈ CI holds}. 3

Subsumption and satisfiability are defined as for EL. Since ALC allows for conjunc-
tion and negation, these inference problems can be mutually reduced to each other:
C is satisfiable if it is not subsumed by ⊥, and C is subsumed by D if the concept
C u ¬D is unsatisfiable. In the following, we will therefore only consider the satisfi-
ability problem. ALC concept satisfiability is PSpace-complete: PSpace-hardness
can be shown via a reduction of the validity problem for quantified boolean formu-
las, QBF (Schmidt-Schauß and Smolka, 1991). A PSpace tableau algorithm deciding
ALC concept satisfiability is sketched in Section 3.2.1. In Chapter 6, we show how
the techniques used to achieve this result can be transferred to automata algorithms.

As mentioned in the beginning of this section, Schild (1991) discovered that ALC
is a notational variant of the multi-modal logic Km (see e. g. Blackburn et al., 2001)
and that, consequently, the ALC tableau algorithm is a reinvention of the the known
tableau algorithm for satisfiability in Km. Similarly, if we extend ALC with transitive
roles, we obtain a logic that, if all roles are transitive, corresponds to the modal logic
S4m. Due to this analogy, we will denote this DL by S in the following. PSpace-
completeness of S can be shown in a similar way as for S4m. A further extension of
S that remains within the same complexity class is SI, S extended with with inverse
roles: concept satisfiability for SI is PSpace-complete (Horrocks, Sattler, and Tobies,
1999), and we will see in Section 6.2 that this also holds in the presence of acyclic
TBoxes. The reason is that acyclic TBoxes only allow for more concise abbreviations,
and they can be handled in an algorithmically more efficient way than general TBoxes.

2.3.6 ExpTime DLs

The satisfiability problem for ALC w. r. t. general TBoxes is ExpTime-complete, which
can be shown by a reduction of the word problem for linear space bounded alternat-
ing Turing machines (McAllester, Givan, Witty, and Kozen, 1996), similar to the
method of Fischer and Ladner (1979) for PDL. In DLs that provide transitive roles,
role hierarchies, negation and disjunction, it is possible to internalise general TBoxes
(Horrocks and Sattler, 1999; Horrocks, Sattler, and Tobies, 2000a), in a way that is
similar to the one used by Baader (1991). Here, internalising a TBox T means trans-
lating T into a concept CT of polynomial size such that a concept D is satisfiable
w. r. t. T iff D u CT is satisfiable (w. r. t. the empty TBox). Before describing this
method in detail, we define the corresponding DL.

Definition 2.5 (SH syntax and semantics). Let NC and NR be as in Definition
2.1, with {C,D} ⊆ NC and {r, s} ⊆ NR. Additionally, let NR+ , the set of transitive role
names, be a subset of NR. The set of SH concepts is defined as for ALC.

A role inclusion axiom (RIA) has the form r v s. An RBox is a finite set of role
inclusion axioms. The semantics of transitive roles and RBoxes B is as follows:

28 Chapter 2. Knowledge Representation with Description Logics

Constructor Syntax Semantics

top > ∆I

bottom ⊥ ∅
conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

negation ¬C ∆I \ CI

existential r. ∃r.C {d ∈ ∆I | there is an e with (d, e) ∈ rI and e ∈ CI}
value r. ∀r.C {d ∈ ∆I | for every e with (d, e) ∈ rI , e ∈ CI holds}

qualif. at-most (6 n r C) {d ∈ ∆I | #{e | (d, e) ∈ rI and e ∈ CI} ≤ n}
qualif. at-least (> n r C) {d ∈ ∆I | #{e | (d, e) ∈ rI and e ∈ CI} ≥ n}
inverse roles r− {(d, e) | (e, d) ∈ rI}

transitive roles t ∈ NR+ tI = (tI)+

features f ∈ NF for every d ∈ ∆I ,#{e | (d, e) ∈ fI} ≤ 1

nominals C ∈ NO #CI = 1

concept def. A
.
= C AI = CI

GCI C v D CI ⊆ DI

RIA r v s rI ⊆ sI

Figure 2.1: DL constructors

• for every t ∈ NR+ , it holds that tI = (tI)+, i. e. for individuals a, b, and c,
{(a, b), (b, c)} ⊆ tI implies (a, c) ∈ tI .

• for every r v s ∈ B, it holds that rI ⊆ sI . 3

In SH, it is possible to internalise TBoxes as follows: one defines a new role u as a
transitive role that comprises all other roles, which implies that every individual j that
is reachable from another individual i is reachable from i via u. Moreover, since SH has
the connected model property , i. e. every satisfiable concept has a connected model,5

every relevant individual in a model for the concept C is reachable from the individual
that is a witness for C. Thus, if one defines, for a TBox T = {D1 v E1, . . . ,Dn v En}
and an RBox B, the concept CT := (¬D1 t E1) u . . . u (¬Dn t En) and the RBox
B′ := B∪{r v u | r ∈ NR}, then the size of CT is linear in the size of T , and a concept
C is satisfiable w. r. t. T and B iff the concept C u CT u ∀u.CT is satisfiable w. r. t. B′

(and the empty TBox).

SH allows for several ExpTime-complete extensions. For example, adding qual-
ifying number restrictions (QNR) and nominals gives SHOQ (Horrocks and Sattler,
2001), and adding QNR and inverse roles leads to SHIQ (Horrocks et al., 2000a),
which is the basis for most current implementations (see Section 2.3.7). In Section 7.4
we show that also SHIO, SH augmented with nominals and inverse roles, remains in
ExpTime. However, if all three constructors are combined, the resulting DL SHOIQ
becomes NExpTime-hard, which can be shown using a reduction from a bounded

5This holds since PDL has the connected model property (see e. g. De Giacomo, 1996), S is
a sublanguage of PDL, and adding role hierarchies clearly does not allow for the introduction of
non-connected individuals.

2.3. Description Logics 29

DL to
p

b
ot

to
m

co
n
ju

n
ct

io
n

d
is

ju
n
ct

io
n

n
eg

at
io

n

ex
is

te
n
ti

al
re

st
ri

ct
io

n

va
lu

e
re

st
ri

ct
io

n

in
ve

rs
e

ro
le

s

tr
an

si
ti

ve
ro

le
s

ro
le

h
ie

ra
rc

h
ie

s

Q
N

R
(a

t-
le

as
t/

at
-m

os
t)

fe
at

u
re

s

n
om

in
al

s

EL 3 3 3

ELUf 3 3 3 3 3 3

FLEUIf 3 3 3 3 3 3 3 3

ALC 3 3 3 3 3 3 3

ALCIO 3 3 3 3 3 3 3 3 3

SI 3 3 3 3 3 3 3 3 3

SH 3 3 3 3 3 3 3 3 3

SHIQ 3 3 3 3 3 3 3 3 3 3 3 (3)
SHOQ 3 3 3 3 3 3 3 3 3 3 (3) 3

SHIO 3 3 3 3 3 3 3 3 3 3 3

SHOIQ 3 3 3 3 3 3 3 3 3 3 3 (3) 3

Figure 2.2: Description logics and corresponding constructors

version of the domino problem (Tobies, 2000). An upper NExpTime bound follows
from the containedness of SHOIQ in C2, the two-variable fragment of predicate logic
with counting (Pacholski, Szwast, and Tendera, 1997).

Figure 2.1 gives an overview of the constructors described in this section and
their semantics; there #S denotes the cardinality of a set S. In Figure 2.2, we sum-
marise which languages allow for which constructors. The logics providing QNR (i. e.
SH(O)(I)Q) do not explicitly provide features, but it is possible to express function-
ality of a role f with QNR by replacing ∃f.C with (> 1 f C) u (6 1 f >) or, in the
presence of general TBoxes, by adding the GCI > v (6 1 f >). Although some of
the listed logics appear only in later chapters, they are included in the table for easier
reference. Figure 2.3 shows the known complexity results for these DLs. For EL, this
refers to the complexity of the subsumption problem (since satisfiability is trivial);
for all other DLs, the complexity result holds for both subsumption and satisfiability.
Known results are displayed in grey.

2.3.7 DL Systems

In order to use a DL in real-life applications, it should be possible to perform the
inference tasks in acceptable time, where “acceptable” usually means “polynomial”,
and NP-hard problems are already considered to be “intractable”. However, Nebel
(1990) early discovered that even rather inexpressive DLs are intractable, which raised
the question if DLs (at that time called KL-One-based languages) could be used in

30 Chapter 2. Knowledge Representation with Description Logics

DL concept acyclic TBox general TBox

EL P P P
ELUf ExpTime-complete

ALC PSpace-complete PSpace-complete ExpTime-complete
SI PSpace-complete PSpace-complete ExpTime-complete

SH ExpTime-complete
SHIQ ExpTime-complete
SHOQ ExpTime-complete
SHIO ExpTime-complete

SHOIQ NExpTime-complete

Figure 2.3: Complexity of the satisfiability (subsumption) problem

practice at all. Some early systems circumvented this obstacle by using only a very
inexpressive DL with a modified semantics and thus achieving tractability, as in the
case of Classic (Borgida, Brachman, McGuinness, and Alperin Resnick, 1989; Patel-
Schneider, McGuiness, Brachman, Alperin Resnick, and Borgida, 1991), or by using
incomplete reasoning algorithms, as in the case of Loom (MacGregor and Bates,
1987)6. However, the Kris system (Baader and Hollunder, 1991a,b) showed that it
is possible to achieve acceptable performance for an intractable DL (more precisely
ALCNF , i. e. ALC extended with non-qualifying number restrictions and features)
using a sound and complete tableau algorithm for the satisfiability test. Kris opti-
mises the computation of the subsumption hierarchy by exploiting information that is
explicitly contained in the TBox (so-called told subsumers), and by carefully choosing
the order in which subsumption tests are performed in order to avoid redundancy.

The FaCT system (Horrocks, 1997, 1998a) continued this work by showing that
even SHIQ can be handled efficiently. The most powerful optimisations implemented
in FaCT are backjumping, which avoids redundant tests during backtracking, and
semantic branching, which makes found contradictions explicit and thus aims at re-
ducing the search space (for a detailed description of these optimisations, see Sec-
tion 3.2.1). Subsequently, the SHIQ tableau algorithm was also implemented in the
systems Racer (Haarslev and Möller, 2001b), RacerPro (Haarslev, Möller, and
Wessel, 2005a), and Pellet (Sirin and Parsia, 2004) which, like FaCT, have exhib-
ited good performance on “realistic” knowledge bases (see e. g. Haarslev and Möller,
2001a; Haarslev, Möller, and Wessel, 2005b; Sirin, Parsia, Cuenca Grau, Kalyanpur,
and Katz, 2007). In their most recent versions, FaCT++ (Tsarkov and Horrocks,
2006), which is the successor of FaCT, and Pellet (Sirin et al., 2007) have been
extended to the DL SHOIQ, using the tableau algorithm developed by Horrocks and
Sattler (2005).

Due to the analogies between description and modal logics, satisfiability testers
for modal logics can also be used for testing satisfiability of DL expressions. Two ML
systems that do not follow the tableau paradigm are Kk (Voronkov, 1999, 2001) and

6At that time, the polynomial DLs of the EL family described in Section 2.3.4 were not examined
in detail because value restriction was regarded as indispensable.

2.3. Description Logics 31

the BDD-based procedure introduced by Pan et al. (2006) (see Section 1.3). In spite
of the fact that they are based on different ideas (Kk implements the inverse method,
which has no obvious relations with binary decision diagrams), both systems can be
seen as optimised implementations of automata algorithms. The DPLL-based reasoner
Ksat developed by Giunchiglia and Sebastiani (1996) exhibited good performance on
the test concepts generated by the developers, but the significance of these results is
questionable (Hustadt and Schmidt, 1997). However, some of the criticism of tableau
algorithms formulated by Giunchiglia and Sebastiani (1996) has led to improvements of
tableau algorithms, most notably by the introduction of semantic branching (Horrocks
and Patel-Schneider, 1999). As mentioned in Section 1.3, the MSpass system (Hustadt
and Schmidt, 2000) uses resolution to decide satisfiability for different modal logics.

The recently developed Kaon2 system (Hustadt et al., 2004) follows a different
approach: a SHIQ TBox is transformed into a disjunctive datalog program, such that
ABox reasoning can be performed using techniques developed for deductive databases.
Experiments have shown that this method is superior to tableau-based systems for
small TBoxes and large ABoxes, but inferior if the TBox is large (Motik and Sattler,
2006). It is an interesting open question whether this approach can be optimised for
large TBoxes and whether it can be extended to NExpTime-hard logics like SHOIQ.
Similarly, first results with the hypertableau calculus on real-life knowledge bases are
promising (Motik et al., 2007), but it is an open question how this algorithm will
perform on inputs that cannot be translated into horn clauses.

Chapter 3

Tableau Algorithms

Tableau algorithms (TAs) are a class of algorithms that are employed for testing satis-
fiability in various logics, e. g. “classical” propositional and predicate logic, modal and
temporal logics, intuitioninstic logic, and non-monotonic logics (D’Agostino, Gabbay,
Hähnle, and Posegga, 1999).

The term tableau algorithm originates from a method for disproving validity of
formulas, called semantic tableaus, introduced by Beth (1955). The name tableaus
results from the fact that such an algorithm sets up a special kind of table for the
variables and their truth assignments. These tableaus are called semantic because,
in order to test the validity of a formula ϕ, they attempt to find a counter-model for
ϕ and thus operate on a semantic level instead of the syntactic sequent calculus by
Gentzen (1935).

In this chapter, we will first describe tableau algorithms for propositional logic,
and then show how this mechanism is extended to deal with description logics. As
examples, we define TAs deciding concept satisfiability for ALC with and without
general TBoxes.

3.1 Tableaus for Propositional Logic

In order to test the validity of a propositional formula ϕ, a tableau algorithm exhaus-
tively searches for a valuation of the propositional variables in ϕ that evaluates ϕ to
false. For this purpose, a table with two columns is set up, one for sub-formulas of
ϕ that have to evaluate to true, and one for formulas that have to evaluate to false.
Starting with ϕ in the false column, every complex formula is split into simpler for-
mulas according to tableau rules; e. g. if a formula A∧B appears in a column, both A
and B are added to that column, and for ¬C, C is added to the other column. For a
disjunction A∨B, both alternatives have to be tested, and thus every column is split,
with A (and every formula resulting from further rule applications to A) being added
to the first sub-column, and B to the second.

A tableau rule is characterised by three properties: a precondition, which estab-
lishes when to apply the rule (e.g. “if A ∧ B appears in a column”); a postcondition,
which determines what to do (“add A and B to the column”); and an applicability

34 Chapter 3. Tableau Algorithms

condition, which prevents a rule from being applied infinitely often (“if A and B are
not both present in the column”). For propositional logic, the applicability condi-
tions are obvious, but in the presence of quantifiers, things become more involved (see
Section 3.2.1).

The algorithm terminates if, for every sub-column, a propositional variable A
appears on both the true and the false side, which implies a contradiction (the sub-
column is then called closed), or if in one of the sub-columns, all applicable rules have
been applied on both sides without causing a contradiction (i. e. there remains an open
column). In the former case, this means that ϕ is valid because no valuation can be
found that evaluates ϕ to false; in the latter case, we have found a counter-model, and
thus ϕ is invalid.

During the run of the tableau algorithm, two kinds of non-determinism occur:
if several rules are applicable, the choice which rule to apply first is don’t-care-non-
deterministic, i. e. either decision will lead to the same result, provided that every
applicable rule is applied eventually, a property which is referred to as fairness. On
the other hand, the decision which disjunct of a disjunction to test is don’t-know -non-
deterministic, i. e. one decision might lead to a counter-model, while the other one
might not. For this reason, the table columns have to be split for disjunctions, but
not for different sequences of rule application.

The image of this table recursively split into sub-tables created the impression
of a tableau. In present-day computer science, this might remind the viewer of a
binary tree rather than a tableau, with the first branch standing for the division of
true and false formulas, and every subsequent one standing for a disjunction. In fact,
an advanced version of semantic tableaus developed by Hintikka (1955) uses a tree
structure instead of a table. More importantly, Hintikka has simplified the mechanism
of tableaus by only allowing for formulas in negation normal form (NNF), i. e. only
atomic formulas can be negated, and by introducing downward saturated sets, i. e.
sets which are propositionally expanded and contradiction-free. Both techniques are
still standard for DLs: the TAs in this chapter and the remainder of this thesis are
defined for concepts in NNF, and the algorithm in 4.3.1 relies on the fact that every
downward saturated set (there called Hintikka set) is satisfiable, which was proved by
Hintikka (1955).

Smullyan (1968) avoided having to deal with two trees in parallel (one for true and
one for false formulas) by explicitly labelling every appearing formula with “T” or “F”
(signed tableau) or by using negation (¬) for formulas that have to evaluate to false

(unsigned tableau). He also coined the term analytic tableau to emphasise that, in the
tableau for ϕ, only subformulas of ϕ can appear (Beth (1959) had already shown the
subformula principle, i. e. only subformulas of ϕ are required to prove ϕ).

Fitting (1999) considers three features to be essential for all kinds of tableau al-
gorithms: they are refutation procedures, which try to find a counter-model for the
input; they operate by applying rules that break the input formula down syntacti-
cally; and they detect a contradiction in the generated formula set using closing cases.
These properties, which already characterised the first tableau systems by Beth, are
still present in current tableau algorithms for description logics (see e. g. Baader and
Sattler, 2001; Baader and Nutt, 2003).

3.2. Tableaus for Description Logics 35

3.2 Tableaus for Description Logics

In the context of modal and description logics, one usually does not describe the cur-
rent step in the generation of a model by a set of concepts (although this is possible—
see the ABox consistency algorithm by Baader and Sattler (2001)), but rather by a
data structure called completion tree, which suggests itself since most DLs have the
tree model property (i. e. every satisfiable input has a model in the shape of a tree),
or at least some kind of relaxed tree model property, e. g. SHOQ (Horrocks and Sat-
tler, 2001) has a forest model property, i. e. every satisfiable input has a model that
consists of a set of trees.

Such a completion tree consists of a set V of nodes and a set E ⊆ V × V of edges,
together with labelling functions n and `, which assign to every node a set of concept
terms and to every edge a set of roles or, in simple cases, just a single role. Intuitively,
a node stands for an individual and the node label for the concepts that the individual
satisfies, whereas an edge stands for a relation of two individuals by a role. The root
node of the completion tree is labelled with the input concept, and a successor w of a
node v stands for an individual that satisfies an existential restriction of v.

Using a tree as data structure for models has several advantages. From a theoret-
ical point of view, this shape is often helpful to achieve termination: for logics that
do not have the finite model property, it is necessary to avoid the generation of an
unbounded number of individuals. Since the subformula principle also holds for most
DLs, there can be only a finite number of different types for individuals, and it is
unnecessary to create two individuals with the same type (we say that one individual
blocks the generation of the other one). In order to show soundness of this approach,
it is necessary to ensure that two individuals do not mutually block each other, and
the partial order induced by the structure of the tree can be used for that purpose (for
details, see Section 3.2.2). From a practical point of view, the tree structure improves
efficiency because the applicability of most rules depends only on the concepts present
in one node and possibly its immediate predecessors or successors. Therefore, if a tree
structure is used, the time required to test for the presence of a certain concept in the
label of a certain individual will be independent on the total number of individuals,
whereas this time would increase if all concepts were kept in one set.

Thus, the data structure of a DL tableau algorithm is a tree of trees, where the
“outer” one is a binary tree that has a branching point for every non-deterministic
decision (as in propositional tableaus) and contains at every node an “inner” tree that
is a completion tree.

We will now look at two DL tableau algorithms in detail. The main features
mentioned in Section 3.1 for propositional tableaus also characterise DL tableaus:
they are refutation procedures since the satisfiability test is usually performed for a
concept C u ¬D in order to refute the subsumption C v D; they use a set of rules in
order to break the input down syntactically; and they detect unsatisfiability using a
set of closing cases which, in the DL context, are called clash-triggers.

36 Chapter 3. Tableau Algorithms

create a node v0 with n(v0) = C
while a rule is applicable to a node v do

apply a rule to v
if the completion tree is closed then

return “unsatisfiable”
end if

end while
return “satisfiable”

Figure 3.1: Tableau algorithm for ALC concept satisfiability

3.2.1 A Tableau Algorithm for ALC Concept Satisfiability

As a first example for a DL tableau algorithm, we will present an algorithm for ALC
concept satisfiability. For the sake of simplicity, we will assume that all concept
terms are in negation normal form (NNF), i. e. negation only appears directly before
concept names. All ALC concepts can be transformed into NNF in linear time by using
DeMorgan’s laws, the duality of the quantifiers and by removing double negation. We
will denote the NNF of a concept C by nnf(C) and nnf(¬C) by ¬̇C.

Let ALC be as in Definition 2.4. Then the satisfiability of an ALC concept C can
be tested by the algorithm in Figure 3.1 using the rules given in Figure 3.2. These
rules clearly show the three properties of tableau rules mentioned in Section 3.1: the
precondition is given in the first line, the applicability condition in the second one and
the postcondition in the third one. Note that the t-rule is non-deterministic since
it can add either of the two disjuncts to the corresponding node label. Regarding
non-deterministic rules, we assume that the output of the algorithm is “satisfiable” if
there exists a sequence of rule applications that leads to the output “satisfiable”.

Definition 3.1 (Subconcept, completion tree, tableau). Let NC and NR be as
in Definition 2.1, and let C be an ALC concept term in NNF. The set of subconcepts
of C, sub(C), is the minimal set S which contains C and has the following properties:

• if S contains ¬A for a concept name A, then A ∈ S;

• if S contains D t E or D u E, then {D,E} ⊆ S;

• if S contains ∃r.D or ∀r.D, then D ∈ S.

The set rol(C) is the set of role names appearing in C.
A completion tree for C is a tuple T = (V,E, n, `), where (V,E) is a tree and

n : V → sub(C) and ` : E → rol(C) are node and edge labelling functions, respectively.
A completion tree is closed if there exists a node v ∈ V with {A,¬A} ⊆ n(v) for some
A ∈ NC. Otherwise T is called open. Moreover, T is called saturated 1 if no rule is
applicable to a node of T . An open and saturated completion tree is called tableau.

If, for two nodes v, w, it holds that (v, w) ∈ E and `(v, w) = r, then w is called an
r-successor of v. 3

1Usually, this property is called “completeness”, however, in order to avoid confusion with the
notion of completeness of the decision procedure, we will use the term “saturated”.

3.2. Tableaus for Description Logics 37

u-rule If for a node v, n(v) contains a concept C u D
and {C,D} 6⊆ n(v)
then set n(v) := n(v) ∪ {C,D}.

t-rule If for a node v, n(v) contains a concept C t D
and n(v) ∩ {C,D} = ∅
then choose E from {C,D} and set n(v) := n(v) ∪ {E}.

∀-rule If for a node v, n(v) contains a concept ∀r.C
and there is an r-successor w of v with C /∈ n(w),
then set n(w) := n(w) ∪ {C}.

∃-rule If for a node v, n(v) contains a concept ∃r.C
and there is no r-successor w of v with C ∈ n(w),
then create a new r-successor w of v with n(w) = {C}.

Figure 3.2: Tableau rules for ALC

In the context of DLs, the presence of A and ¬A in a node label is also called a
clash because it indicates a conflict between two conditions that the completion tree
has to satisfy.

Although the TA for ALC concept satisfiability is well-known, we will formally
prove its correctness because the details of the proofs are part of our comparison of
tableau and automata algorithm.

Theorem 3.2. The tableau algorithm described in Figures 3.1 and 3.2 effectively
decides ALC concept satisfiability.

Proof. We have to show soundness, completeness, and termination.

Soundness. Let (V,E, n, `) be a tableau for C. We generate a model I = (∆I , ·I)
as follows:

• ∆I := V ;

• For a concept name D, DI := {v ∈ V | D ∈ n(v)};

• For a role name r, rI := {(v, w) | (v, w) ∈ E and `(v, w) = r}

It follows by induction over the structure of concept terms that the individual v
satisfies all concepts in the label of the node v, i. e. that D ∈ n(v) implies v ∈ DI :

• for a concept name D, this follows from the definition of DI ;

• for a negated concept name ¬D, since the tableau is open, n(v) does not contain
D, and therefore v /∈ DI holds by the definition of DI ;

• for a conjunction [disjunction] D u [t]E, since the tableau is saturated, n(v)
contains both [one of] D and E, and by induction v ∈ DI ∩ [∪]EI holds;

38 Chapter 3. Tableau Algorithms

• for an existential restriction ∃r.D, since the tableau is saturated, there exists an
r-successor w of v labelled with D. By construction, it also holds that (v, w) ∈ rI

and, by induction, w ∈ DI , which implies v ∈ ∃r.D.

• for a value restriction ∀r.D, let w be an individual such that (v, w) ∈ rI . (If
such an individual does not exist, there is nothing to show.) Then, by the
construction of I, w is an r-successor of v in the tableau, which implies that
n(w) contains D because the tableau is saturated, and by induction w belongs
to DI .

Completeness. Let I = (∆I , ·I) be a model for C. Then I can be used to find
a sequence of rule applications that the algorithm in Figure 3.1 can guess and thus
construct a clash-free and saturated completion tree (V,E, n, `). For this purpose, we
will define a function ϕ : V → ∆I such that

1. for a node v ∈ V, it holds that n(v) ⊆ {D ∈ sub(C, T) | ϕ(v) ∈ DI} and

2. for two nodes v, w ∈ V , if w is an r-successor of v, then (v, w) ∈ rI holds.

We start by mapping the root node of the completion tree to an element of CI .
Such an element exists because I is a model for C, and it obviously satisfies both
conditions. We now show, for every rule application, how the model can guide the
application of the corresponding rule in such a way that we can extend ϕ without
violating either condition:

The u-rule: If n(v) contains D u E, then ϕ(v) belongs to (D u E)I by Condition 1
and therefore also to (DI ∩EI). Thus both conditions are still satisfied after the
rule application.

The t-rule: Similarly, if n(v) contains DtE, then ϕ(v) belongs to (DI∪EI), and thus
the t-rule can choose a concept from {D,E} in such a way that the conditions
are preserved.

The ∃-rule: If n(v) contains ∃r.D, then ϕ(v) belongs to (∃r.D)I , i. e. there is an
element d ∈ DI such that (ϕ(v), d) ∈ rI . Thus we can apply the rule to add a
new r-successor w of v with n(w) = {D}. If we define ϕ(w) = d, then ϕ still
satisfies both conditions.

The ∀-rule: If n(v) contains ∀r.D and there is an r-successor w of v, then it holds that
ϕ(v) ∈ (∀r.D)I (by Condition 1) and (v, w) ∈ rI (by Condition 2). Together,
these observations imply w ∈ DI , thus we can add D to n(w) without violating
the conditions.

Finally, the completion tree resulting from this sequence of rule applications does
not contain a clash since all node labels are based on the sets of concepts that the
corresponding individuals satisfy, and these sets are clash-free because I is a model.

3.2. Tableaus for Description Logics 39

Termination. Each node label is a subset of sub(C) and thus polynomial in the
size of C. A rule application always adds and never removes concepts from node labels
and, after a rule has been applied to a node for a concept, it is not applicable anymore.
A new node can only be created by the ∃-rule, and the concepts that are added to its
label (by the ∀- and ∃-rule) are shorter than the concepts in the father node’s label,
which implies that the depth of the completion tree is linearly bounded by the size of
the input. There is also a limitation on the width of the tree because, for every node,
at most one child node can be created for every existential restriction in sub(C). Thus,
by König’s lemma, the algorithm generates a finite tree whose nodes are labelled with
finite sets. 2

Regarding space complexity, observe that we only need to store one path in memory
at a time if we traverse the tree depth-first, free the memory when returning to a
predecessor node, and remember, for each node along the path, which successors have
already been processed. Since the depth of the tree and each node label (including
the required backtracking information) are linearly bounded by the size of the input,
we obtain that ALC concept satisfiability is in PSpace. PSpace-hardness can be
shown by a reduction from the satisfiability problem of Quantified Boolean Formulas
(Schmidt-Schauß and Smolka, 1991), thus we obtain the following:

Corollary 3.3. Concept satisfiability for ALC is PSpace-complete.

The algorithm described above shows mainly the positive properties of TAs men-
tioned in Chapter 1: firstly, since ALC-satisfiability is PSpace-hard and the TA is
a PSpace algorithm, it provides a tight upper bound. Secondly, it is goal-directed
because every concept that is added by a rule application brings the algorithm closer
to finding a model or to showing that there can be no model. For the “mother”
example in Equation 1.1 on page 7, the TA terminates after three rule applications:
two applications of the u-rule add the three conjuncts to the root node, then the
∃-rule creates a has-child-successor labelled with Human, after which the completion
tree is saturated. Since it is also clash-free, we have obtained a tableau. Thirdly,
the algorithm is amenable to the known optimisations for tableau algorithms. In the
following, we will sketch two of the most efficient such optimisations, which deal with
branching and backtracking, i. e. with the handling of non-determinism.

Backjumping. After the detection of a clash, the default algorithm for backtracking
goes back to the most recent non-deterministic decision for which there exists another
alternative. Backjumping (Baker, 1995; Horrocks, 1997) goes back to the most recent
decision one of the clashing concepts depends on, skipping over those ones that did
not have any influence on the clash. For example, if a node label contains the con-
cepts (A t B), (D1 t E1), . . . , (Dn t En), (¬A u ¬C), the t-rule might first add A, then
D1, . . . ,Dn and finally ¬A and ¬C, causing a clash. The naive backtracking algorithm
would first try to add En instead of Dn, then En−1 instead of Dn−1 and so on, thus
testing 2n different combinations of Di and Ei concepts before changing the decision
that can actually remedy the clash. With backjumping, the concept A is labelled with

40 Chapter 3. Tableau Algorithms

“{1}” to indicate that it depends on the first non-deterministic decision, and ¬A is la-
belled with ∅ since it does not depend on any decision. When the clash between these
concepts occurs, the algorithm immediately goes back to the first decision, jumping
over the n intermediate ones.

Backjumping requires additional time and space in order to store the dependency
information, but its positive effects significantly outweigh this overhead (Horrocks and
Patel-Schneider, 1999; Hladik, 2002).

Semantic Branching. After backtracking due to a clash involving a concept C
that was added by the t-rule for a disjunction CtD, the naive (syntactic) branching
algorithm simply adds D. Thus the information that C is unsatisfiable in the current
node is lost, and later on the t-rule might add C again for another disjunction, say
C t E. In order to make the implicit information that C is unsatisfiable explicit,
the semantic branching heuristics, which was adapted from the DPLL procedure for
propositional logic (Davis et al., 1962), adds ¬CuD after a clash caused by adding C.
This technique aims at pruning the search space since a completion tree in which C
can be added to the corresponding node is never tested again.

Like backjumping, semantic branching introduces an overhead, in this case by
adding the concept ¬C. If C is a concept name, this may be negligible, but if adding
¬C necessitates the creation of additional nodes or leads to further non-determinism,
the time required for processing ¬C might be longer than the time saved by avoiding
a possible later addition of C. Empirical results show, however, that although a
slight performance decrease may occur for some concepts, semantic branching leads
to a significant speedup in the vast majority of the test cases (Horrocks and Patel-
Schneider, 1999; Hladik, 2002).

3.2.2 A Tableau Algorithm for ALC with General TBoxes

The tableau algorithm and its correctness proof become more difficult when testing
the satisfiability of a concept C w. r. t. a TBox T . Now we require an additional rule
to deal with GCIs (see Figure 3.3), and the node labels can also contain concepts
appearing in T , which is the reason why we have to modify the definition of the
completion tree.

Definition 3.4 (Completion tree for ALC with GCIs). For a concept C and a
TBox T , sub(C, T) is defined as follows:

sub(C) ∪
⋃

DvE∈T

sub(¬̇D t E)

Similarly, rol(C, T) is the set of all role names appearing in C or T . A completion
tree for C w. r. t. T is a tree whose nodes are labelled with subsets of sub(C, T) and
whose edges are labelled with edges from rol(C, T). 3

In this case, the size of each node label is still polynomially bounded by the size of
the input (C, T), but the maximum size of the concepts contained in a node label does

3.2. Tableaus for Description Logics 41

T -rule If there is a GCI C v D ∈ T
and there is a node v with (¬̇C t D) /∈ n(v)
then set n(v) := n(v) ∪ {¬̇C t D}.

∃-rule If for a non-blocked node v, n(v) contains a concept ∃r.C
and there is no r-successor w of v with C ∈ n(w),
then create a new r-successor w of v with n(w) = {C}.

Figure 3.3: Modifications of the ALC tableau algorithm to handle GCIs

not decrease with the depth of the node, as in Section 3.2.1, since it never falls below
the level of the concepts contained in the GCIs. For example, for C v ∃r.C, the rules
from Figure 3.2 would create an infinite chain of nodes if C appears in the completion
tree. However, since the nodes can only be labelled with sets of subconcepts of C
and T , we have a bound on the number of nodes with different labels. In order to
ensure termination, we have to avoid the creation of different nodes with the same
label (Buchheit, Donini, and Schaerf, 1993; Baader, Buchheit, and Hollunder, 1996).

Definition 3.5 (Blocked). Let T = (V,E, n, `) be a completion tree. A node v ∈ V
is called directly blocked if there is a predecessor node u of v such that n(v) = n(u)
and u is not blocked; v is called indirectly blocked if one of v’s predecessors is directly
blocked; and v is blocked if it is directly or indirectly blocked.2 3

We then modify the tableau algorithm by applying the ∃-rule only to non-blocked
nodes, see Figure 3.3. This way, we immediately obtain a new termination result since
there is only a finite number of different node labels possible. However, the soundness
proof becomes more difficult: when we try to find a witness for the satisfiability of
an existential restriction in a blocked node, we either have to introduce a relation
between the predecessor of a blocked node and the corresponding blocking node (as
in the proof for Theorem 3.6 below), or we have to create a copy of the blocking node
and its successors in place of the blocked node. Arguing why this procedure does not
lead to contradictions makes many of these proofs rather intricate, particularly in the
presence of inverse roles and number restrictions (see e. g. Horrocks et al., 2000a).

From a model-theoretic point of view, the reason why blocking is required to ensure
termination in one case and not in the other one is that ALC without general TBoxes
has the finite tree model property , i. e. every satisfiable concept has a model which
is a finite tree. ALC with general TBoxes has the finite model property , but a finite
model might be cyclic, and the tree model property , but a tree model might be infinite,
and using the rules from Figure 3.2, the TA attempts to build such a possibly infinite
model.

2In the case of ALC, it is possible to use subset blocking, i. e. “n(v) ⊆ n(u)” in the definition of
the blocking relation. However, for the sake of simplicity and consistency with blocking relations
for more expressive logics, e. g. in Chapter 7, we use the more general notion of equality blocking in
Definition 3.5.

42 Chapter 3. Tableau Algorithms

Theorem 3.6. The tableau algorithm for ALC with general TBoxes effectively de-
cides satisfiability.

Proof. We again show soundness, completeness and termination.

Soundness. Let (V,E, n, `) be a tableau for C w. r. t. T . We generate a model
I = (∆I , ·I) as follows:

• ∆I := {v ∈ V | v is not blocked};

• For a concept name D, DI := {v ∈ ∆I | D ∈ n(v)};

• For a role name r, rI := {(v, w) ∈ ∆I × ∆I | such that one of the two following
conditions is satisfied:

– (v, w) ∈ E, `(v, w) = r, or

– (v, x) ∈ E, `(v, x) = r, for some node x such that x is blocked by w.}

It follows by induction over the structure of concept terms that the individual v
satisfies all concept in the label of the node v and all GCIs in T :

• For concept names and Boolean operators, this follows as in the case without
GCIs (Theorem 3.2).

• For an existential restriction ∃r.D ∈ n(v) for a non-blocked node v, since the
tableau is saturated, there exists an r-successor x of v labelled with D. If x
is not blocked, then x belongs to ∆I , and thus it also holds that (v, x) ∈ rI

and x ∈ DI . Otherwise, there is a node w that blocks x. By construction, rI

contains (v, w) and, since n(x) = n(w) and w is not blocked, w belongs to DI .

• For a value restriction ∀r.D, assume there is an individual w such that (v, w) ∈ rI .
Then w is either an r-successor of v in the tableau, in which case n(w) contains
D because the tableau is saturated, or there is an r-successor x of v such that w
blocks x. Then n(x) contains D and, since n(w) = n(x) holds, w belongs to DI

by induction hypothesis.

• For a GCI D v E, assume v ∈ DI (otherwise there is nothing to show). As no
rule is applicable, n(v) contains ¬̇DtE, and thus ¬̇D or E. If v contains ¬̇D then,
by the induction above, v ∈ (¬̇D)I = ∆I \DI , which contradicts our assumption.
Otherwise, n(v) contains E, which implies v ∈ EI , and thus v satisfies the GCI.

Completeness. We will again show how a model I = (∆I , ·I) for C w. r. t. T can
be used to find a sequence of rule applications that leads to a clash-free and saturated
completion tree (V,E, n, `) by defining a function ϕ as in the proof for Theorem 3.2.
We only present the arguments for the rules in Figure 3.3 since the other ones do not
require modifications.

The ∃-rule: Let v be a node with ∃r.D ∈ n(v). If v is blocked, we have nothing to
show. Otherwise, the existence of an appropriate r-successor follows as before.

3.2. Tableaus for Description Logics 43

The T -rule: For a GCI D v E ∈ T , it holds that every individual in DI is also a
member of EI , i. e. it belongs to EI or to (¬D)I , and thus also to (¬̇DtE)I . We
can therefore add ¬̇DtE to the label of every node v ∈ V without violating the
conditions.

Termination. Each node label is a subset of the set sub(C, T), whose size is
polynomial in the size of C and T . Since we never remove any concepts from node
labels, the number of rule applications for a single node is bounded by the size of
sub(C, T), i. e. it is polynomial. The width of the tree is linearly bounded by the size
of C and T , similarly to the case of concept satisfiability (Theorem 3.2). However,
there can be an exponential number of different node labels on a path before a node
on the path is blocked, which means that the completion tree we construct can have a
depth that is exponential in the size of the input. The number of nodes in a tree can
be exponential in its depth, which leads to a double-exponential number of possible
nodes. Since the algorithm is non-deterministic, we obtain that the algorithm is in
2-NExpTime. 2

For this algorithm, the negative features of tableau algorithms also begin to show.
Most importantly, the 2-NExpTime result is far from optimal considering that concept
satisfiability w. r. t. general TBoxes is ExpTime-complete (see Section 2.3.6). Here,
the estimate of an exponential number of unblocked nodes on a path may seem overly
pessimistic, but in fact it is easy to construct an example in which this behaviour can
actually occur: when testing the satisfiability of a concept name A w. r. t. the GCI
> v ∃r.> u (A1 t B1) u (A2 t B2) u . . . u (An t Bn), there can be 2n unblocked nodes
with different labels on a path.

However, it is possible without major modifications to obtain a NExpTime result
by changing the blocking condition in such a way that a node can not only be blocked
by a predecessor within the tree, but also by other nodes. In this case, it must be
ensured that two nodes cannot mutually block each other, thus preventing successors
for both nodes from being created. This can be achieved by defining a total order on
the nodes and permitting nodes to be blocked by predecessors with respect to that
order (Baader et al., 1996). This way, the number of nodes in the entire completion
tree is exponentially bounded by the size of the input.

Obtaining an ExpTime result is much more involved. The worst-case optimal
tableau algorithm developed by Donini, De Giacomo, and Massacci (1996) requires
remembering satisfiability information gathered for different nodes in the current com-
pletion tree (via blocking), and additionally remembering constellations that will in-
evitably lead to a clash, i. e. unsatisfiability information, which was gathered previ-
ously from completion trees resulting from different non-deterministic decisions. In
the vocabulary of Section 3.2, this means that satisfiability information is propagated
between nodes of the inner tree, whereas unsatisfiability information is propagated
between different nodes of the outer tree. Thus, at most an exponential number of
types for nodes is ever considered during the run of the TA. The algorithm becomes
much more involved than the one sketched in this section, and the same holds for the
proofs. From a practical point of view, it is questionable whether the improvement on

44 Chapter 3. Tableau Algorithms

the worst-case complexity will also lead to a better performance in an implementation
since the algorithm relies on introducing a significant amount of non-determinism.
Although the methods by Donini et al. (1996) have recently been reconsidered for
reasoning in expressive DLs (Goré and Nguyen, 2007; Ding and Haarslev, 2007), their
influence on practical efficiency is still an open question.

The proof of Theorem 3.6 also shows how the blocking condition complicates the
soundness proof since the definition of the model I treats blocked and unblocked notes
differently, and so does the argument for the satisfaction of existential restrictions. For
more expressive logics, further problems arise: in the presence of qualifying number
restrictions and inverse roles, e. g. for the DL SHIQ, it is no longer possible to “bend”
the edges leading to blocked nodes back to the blocking nodes (thus transforming
a tableau with blocked nodes into a finite model that is not tree-shaped anymore)
because these additional edges might violate number restrictions in the blocking node.
Instead, it is necessary to unravel the completion tree, i. e. to create a copy of the
blocking node and all its successors, and thus transforming the finite tableau with
blocked nodes into an infinite tree-shaped model. Moreover, since in the presence of
inverse roles also the father node has an influence on the satisfaction or violation of
number restrictions, it is necessary to define the blocking relation not between nodes,
but between pairs of nodes (Horrocks et al., 2000a).3

With the blocking conditions becoming more complex, a tradeoff arises between
a blocking condition that is easy to handle in the proofs and one that will lead to
the best performance in practice. Horrocks and Sattler (2002) develop a blocking
condition that is as general as possible, i. e. it aims at detecting blocked nodes at a
very early stage, which promises to lead to a more efficient algorithm in practice, but
requires very involved arguments in the proofs.

3The issue of the size of the structures used in the blocking condition is addressed in detail in
Section 7.1 under the name of pattern depth.

Chapter 4

Automata Algorithms

Finite automata, which were introduced by Kleene (1956), are among the most basic
machine models: they provide a finite memory to remember the current state, a way
of switching from one state to another depending on the input, and only two possible
outputs, namely accepting or rejecting, which is determined by the last state that the
automaton reaches after reading the entire input. If the state belongs to a set of final
states, the input is accepted, otherwise it is rejected.

In comparison to other machine models (e. g. Turing machines, while-programs,
RAM machines), automata are restricted in the sense that they only allow a finite
memory (state space), independent of the size of the input. Yet they are powerful
enough to perform a variety of different tasks in computer science, e. g. lexical analysis
of formal languages for compilers, natural language processing, or modelling of parallel
processes (Perrin, 1990). In contrast to the more powerful machine models mentioned
above, important decision problems, like the emptiness problem, are decidable and
even tractable, i. e. they require only polynomial time in the size of the input.

In this chapter, we first give a brief introduction to automata in general, then we
introduce two kinds of automata that are frequently used in the area of description
logics, namely non-deterministic and alternating tree automata, and we give exam-
ples for automata algorithms deciding satisfiability for ALC concepts w. r. t. acyclic
TBoxes.

4.1 Finite Automata

Formally, for a given alphabet Σ (representing the elements of the input), an automaton
A consists of a finite set of states Q (the internal memory), a transition relation
∆ ⊆ Q × Σ × Q, a subset I ⊆ Q of initial states and another subset F ⊆ Q of final
states. The intuition behind a transition (q1, σ, q2) is that A, if it is in state q1 and
reads the letter σ, can switch to state q2 (and continue the computation with the
next letter of the input). A sequence of such transitions is called a run. A word over
the alphabet is accepted if, through reading the entire word from left to right, the
automaton can go from an initial to a final state according to the transition relation.

46 Chapter 4. Automata Algorithms

The automata introduced by Kleene (1956) operate on words, i. e. finite sequences
of symbols, which is not well-suited for structures in mathematical or computational
logic since these are often tree-shaped and also can be infinite. Büchi (1960) gen-
eralised Kleene’s automata to infinite words by redefining the acceptance condition,
and Rabin (1969) further generalised Büchi automata from words (i. e. unary trees) to
k-ary trees. These tree automata lend themselves to the use in satisfiability checking
for logics with the tree model property. The transition relation of a tree automaton is
a subset of Q×Σ×Qk, where k is the tree arity. The intuition is that the automaton
continues by operating on every child of the current node in the corresponding state.
Since this means that there are effectively k automata operating on the tree after the
transition, the notion of switching to a state does not make sense anymore, and thus
we will say that the automaton sends copies of itself to the children nodes.

Automata on infinite words and trees share many properties with automata on
finite trees: a finite set of states, a subset of initial states, and a transition relation.
However, since there is no last state after reading the entire input, the acceptance
condition sketched above for finite objects is not applicable, and several new condi-
tions were suggested. In the most basic version, called looping automata, an input is
accepted if the automaton does not reach a “dead end”, i. e. a state for which there
is no successor state. Büchi automata again introduce a set of final states and accept
an input if a final state is reached infinitely often while reading the input. This allows
for the modelling e. g. of “dangerous” and “safe” states, where it is required that after
each dangerous state, a safe state is reached eventually. Rabin automata additionally
allow for the restriction that certain states must not appear infinitely often.

It is easy to see that looping automata can be regarded as special Büchi automata
(where every state is final), and also that Büchi automata are a special case of Rabin
automata (without forbidden states). It turns out that these inclusions are strict:
Rabin automata are more powerful than Büchi ones (Rabin, 1970), which in turn
are more powerful than looping automata (since looping automata are not closed
under complement, i. e. the complement of a recognisable language is not necessarily
recognisable). For the logics considered in this thesis, looping automata are sufficient,
thus we will focus on this variant in the following. However, there are description
logics for which automata with more sophisticated acceptance conditions are useful,
e. g. DLs with fixpoint operators (Calvanese, De Giacomo, and Lenzerini, 1999; Sattler
and Vardi, 2001) or with a transitive closure operator on roles (see e. g. Baader, 1991),
which can be handled similarly to the star operator in PDL (Vardi and Wolper, 1986).

In order to decide the emptiness problem of looping automata on infinite struc-
tures, one computes the set Q⊥ of states that cannot appear in an infinite run: Q⊥

is initialised with those states from which there is no transition, and it is then ex-
tended with those states from which every transition involves a state q ∈ Q⊥, and
this procedure is iterated until no further states can be added. If all initial states are
contained in Q⊥ at the end of the iteration, the language accepted by the automaton is
empty (because every sequence of transitions from an initial state leads to a dead end).
Clearly, this test is polynomial in the size of Q, as there are at most #Q iterations
during which at most #Q states are tested. For Büchi automata, the emptiness test

4.2. Automata for Description Logics 47

is also polynomial (Vardi and Wolper, 1986); it is NP-complete for Rabin automata
(Emerson and Jutla, 1988).

If the transition relation is functional (i. e. there is only one transition from a state
and letter), the automaton is called deterministic because there is at most one possible
run for a specific input. Non-deterministic automata with several possible transitions
allow for different runs on one input and, by definition, the automaton accepts an input
if there exists an accepting run. Thus, the different transitions from a specific state
reading a specific letter can be regarded as different alternatives, i. e. a disjunction of
possibilities. Alternating automata are a further generalisation additionally allowing
conjunction, i. e. sending several copies operating in different states to the same node.

In our notation of automata, we will use ∆ for a transition relation and δ for
a function. Moreover, we will omit the set of final states F in the case of looping
automata and, if there is only one initial state q0, we will write (Q,Σ, q0,∆) instead
of (Q,Σ, {q0},∆).

4.2 Automata for Description Logics

Testing satisfiability of a DL expression E (e. g. a single concept or a concept and a
TBox) using tree automata is a two-step process: firstly, translating E into an automa-
ton AE that accepts all models for E as input, and secondly, testing the emptiness
of L(AE), the language accepted by AE.1 The idea is that the automaton recognises
tree models for the input, where each node represents an individual: the root node
stands for an individual satisfying the input, and the successors of a node v stand for
individuals related with v via a role. Thus, the input trees look similar to completion
trees generated by tableau algorithms, with the difference that the input trees have
a fixed arity, which is why input trees can contain “dummy” nodes, i. e. nodes that
do not correspond to an individual in a model. Moreover, the edges in an automata
input tree are not labelled (the information about the role connecting two nodes is not
contained in an edge label, but in the transition relation, see Section 4.3 below). Also,
since many DLs have the tree model property, but not the finite tree model property,
the input trees have an infinite depth, unlike completion trees.

In the case of non-deterministic automata, the first step, i. e. the translation of
a DL input into an automaton, usually requires time which is exponential in the
size of E, whereas the second step, i. e. the emptiness test described above, only re-
quires polynomial time. For alternating automata, the translation usually requires
only polynomial time (see e. g. Vardi, 1998; Calvanese et al., 1999), but the empti-
ness test involves a translation of the alternating automaton into a non-deterministic
automaton of exponential size (Kupferman and Vardi, 1998; Vardi, 1998), thus the
emptiness test again requires time exponential in the size of E. For ExpTime logics,
this does not seem too bad considering that the worst-case complexity of the intuitive
tableau algorithm usually is NExpTime (or 2-NExpTime, see Section 3.2.2) but with
automata algorithms the exponential step has to be performed in every case, i. e. the

1In the following, we will sometimes use the expression “emptiness of A” as an abbreviation for
“emptiness of the language accepted by A”.

48 Chapter 4. Automata Algorithms

worst-case complexity really is the any-case complexity. Therefore, one cannot expect
acceptable performance from a naive implementation that works by first creating the
entire automaton and then testing its emptiness.

On the other hand, termination of the satisfiability test is not an issue, even if the
underlying DL does not have the finite model property, because the emptiness test is
performed on the finite automaton rather than the infinite inputs of the automaton.
This makes automata attractive from the theoretical point of view, since the absence
of a blocking condition simplifies the necessary proofs significantly.

4.3 Non-Deterministic Tree Automata

We will now formally introduce the notation of non-deterministic tree automata and
the data structures they operate on, namely infinite k-ary trees, whose nodes are
labelled with Hintikka sets (see Section 3.1), i. e. contradiction-free and propositionally
expanded sets of concepts. We identify the nodes in a k-ary tree by words over the
alphabet {1, . . . , k} in the following way: the empty word ε denotes the root node,
and the i-th successor of a node v is identified by v · i for 1 ≤ i ≤ k.

Definition 4.1 (Set K). For a natural number k, let K be the set {1, . . . , k}. For
a set K, we denote by K∗ the set of all words over the alphabet K, and by K+ we
denote K∗ without the empty word ε. 3

Thus, the set of all nodes in a k-ary tree is K∗ and, in the case of labelled trees, we
will refer to the labelling of the node v in the tree t by t(v).

Definition 4.2 (Non-deterministic automaton, run, accepted language).
A non-deterministic tree automaton (NTA) over k-ary trees is a tuple (Q,Σ, I,∆),
where Q is a finite set of states, Σ is a finite alphabet, ∆ ⊆ Q×Σ×Qk is a transition
relation, and I ⊆ Q is a set of initial states.

A run of an automaton A = (Q,Σ, I,∆) on a k-ary tree t is a labelled k-ary tree
r such that, for all v ∈ K∗, it holds that:

(r(v), t(v), r(v · 1), . . . , r(v · k)) ∈ ∆

A run is called successful if r(ε) ∈ I. The language accepted by A, L(A), is the set of
all trees t such that there exists a successful run of A on t. 3

The idea behind this definition is that the automaton starts in an initial state on
the root node, chooses from the transition relation a transition compatible with the
current state and the tree label, and then sends copies of itself to the successor nodes,
where the state of each copy is determined by the transition. If there is a transition
for every node of t, then t is accepted. The non-determinism results from the fact
that ∆ may allow several transitions for a pair (r(v), t(v)).

It is obvious from this definition that the successful run r is isomorphic with the
tree t in the sense that both are k-ary and that the node v of the run refers to the
node v in the tree (i. e. if r(v) = q, then the automaton is in state q and reads t(v)),
thus the run is essentially a relabelling of the input tree.

4.3. Non-Deterministic Tree Automata 49

In the following section, we introduce an automata algorithm for ALC. Algorithms
for other logics were developed e. g. by Lutz and Sattler (2000) and Lutz (2002).

4.3.1 An NTA Algorithm for ALC with General TBoxes

When using NTAs for the satisfiability test of a DL expression E, the input trees are
candidates for models for E, with every node representing an individual of the domain.
Due to the definition of the transition relation, the automaton has to descend within
the tree with every transition, it cannot stay in the same node or go back to a lower
depth. Consequently, every node is processed by only one state, which means that we
have to check all concepts that the corresponding individual has to satisfy using this
state—unlike in tableaus, where we can use several steps to expand the node label
propositionally. Moreover, we do not need to consider nodes whose labels contain
obvious contradictions (clashes) because in a model every individual either belongs to
CI or to (¬C)I for a concept C. For this reason, it is useful not to allow random sets of
concepts in the node labels, but rather only propositionally expanded and clash-free
sets, i. e. Hintikka sets. Like in the previous chapter, we will assume for the sake of
simplicity that all concepts are in NNF.

Definition 4.3 (Hintikka set). Let C be an ALC concept and T be a TBox. A set
H ⊆ sub(C, T) is called a Hintikka set if the following three conditions are satisfied:

• if D u E ∈ H, then {D,E} ⊆ H;

• if D t E ∈ H, then {D,E} ∩H 6= ∅;

• there is no concept name A with {A,¬A} ⊆ H.

A Hintikka set H is called T -expanded if, for every GCI D v E ∈ T , it holds that
¬̇D t E ∈ H. 3

Note that #sub(C, T) is polynomial in the length of C and T . The set sub(C, T)
contains the concept C and one concept for each GCI; and the number of subconcepts
for each of those concepts is linear in their length.

We can now represent a tree model for an ALC concept C and TBox T as a
tree whose nodes are labelled with Hintikka sets: a node represents an individual,
the node label contains the concepts to which the corresponding individual belongs,
and the edges between a node and its children stand for the roles by which they
are related. Since our trees do not contain edge labels, we handle the edge labels
implicitly by enumerating all existential concepts in sub(C, T) and defining that the
leftmost child stands for the first existential restriction, the second child stands for
the second existential restriction, etc.

Definition 4.4 (Hintikka tree). For a concept C and TBox T , fix an ordering of
the existential concepts in sub(C, T) and let ϕ : {∃r.D ∈ sub(C, T)} → K be the corre-
sponding ordering function. Then, the tuple (Ω0,Ω1, . . . ,Ωk) is called C, T -compatible
if, for all 0 ≤ i ≤ k, Ωi is a T -expanded Hintikka set and, for every existential restric-
tion ∃r.D ∈ sub(C, T) with ϕ(∃r.D) = i it holds that

50 Chapter 4. Automata Algorithms

• if ∃r.D ∈ Ω0, then

1. Ωi contains D;

2. Ωi contains all concepts Ej for which there is a value restriction ∀r.Ej ∈ Ω0;

• if ∃r.D /∈ Ω0, then Ωi = #.

Moreover, the tuple where Ω0 = Ω1 = . . . = Ωk = # holds is also C, T -compatible.
Nodes labelled with # are called dummy nodes because they are not required in a
model. A k-ary tree t is called a Hintikka tree for C and T if, for every node v ∈ K∗,
the tuple (t(v), t(v ·1), . . . , t(v ·k)) is C, T -compatible. For a role r, we say that a node
w is an r-successor of a node v if w = v ·ϕ(∃r.D) for some concept D and ∃r.D ∈ Ω(v).3

Note that in a Hintikka tree t, the i-th successor of a node v stands for the in-
dividual satisfying the i-th existential restriction D if D ∈ t(v). The definition of
C, T -compatibility ensures that value restrictions are handled correctly. Using this
property, we can show that the existence of Hintikka trees characterises satisfiability
in ALC:

Theorem 4.5. An ALC concept C is satisfiable w. r. t. a TBox T iff there is a C, T -
compatible Hintikka tree t with C ∈ t(ε).

Proof. For the “if” direction, we will show how to construct a model (∆I , ·I) from t.
Let ∆I = {v ∈ K∗ | t(v) 6= #}. For a role name r ∈ NR, we define rI = {(v, w) |
w is an r-successor of v}. For a concept name A, we define AI = {v ∈ ∆I | A ∈ Ω(v)}.
Then it follows by structural induction that, for every concept D with D ∈ Ω(v), it
holds that v ∈ DI :

• if E u F ∈ Ω(v) then, since Ω(v) is a C, T -expanded Hintikka set, it contains E
and F, and by induction v ∈ EI ∩ FI holds,

• if E t F ∈ Ω(v) then v ∈ EI ∪ FI follows from an analogous argument,

• if ∃r.E ∈ Ω(v) for a role name r then, since t is a Hintikka tree, (v, v ·ϕ(∃r.E)) ∈ rI

and E ∈ Ω(v · ϕ(∃r.E)), thus v ∈ (∃r.E)I ,

• if ∀r.E ∈ Ω(v) for a role r and (v, w) ∈ rI then, since t(w) 6= #, there is a concept
∃r.F ∈ t(v) such that w = v · ϕ(∃r.F). Then E ∈ Ω(w) holds by definition of
C, T -compatible.

For a GCI E v F from T , Ω(v) contains ¬̇EtF for every node v. As Ω(v) is a Hintikka
set, it contains F or ¬̇E. If it contains F then, as we have just shown, v belongs to FI .
Otherwise Ω(v) contains ¬̇E, and v ∈ (¬̇E)I = ∆I \ EI holds, which implies v /∈ EI .
Therefore every node v ∈ EI is also contained in FI .

For the “only-if” direction, we show how a model (∆I , ·I) for C w. r. t. T can be
used to define a C, T -compatible Hintikka tree t with C ∈ t(ε). Let k be the number
of existential restrictions in sub(C, T) and ϕ be a function as in Definition 4.4. We

4.3. Non-Deterministic Tree Automata 51

inductively define a function ϑ : K∗ → ∆I ∪ {dummy} for a new individual dummy
such that t(v) contains all concepts that ϑ(v) satisfies.

Since (∆I , ·I) is a model for C, there exists an element d0 ∈ ∆I with d0 ∈ CI .
Thus we set ϑ(ε) = d0 and t(ε) = {E ∈ sub(C, T) | d0 ∈ EI}. Then we inductively
define, for every node v for which ϑ is already defined, the labels of v · i with i ∈ K
as follows: if t(v) contains the existential restriction ∃r.E with i = ϕ(∃r.E) then, since
ϑ(v) satisfies ∃r.E, there exists an individual d ∈ ∆I with (ϑ(v), d) ∈ rI and d ∈ EI ,
and thus we set ϑ(v · i) = d, t(v · i) = {F ∈ sub(C, T) | d ∈ FI}. If ϑ(v) does not
belong to (∃r.E)I , we define ϑ(v · i) = dummy and t(v · i) = #.

It follows by construction that the tuple (t(v), t(v·1), . . . , t(v·k)) is C, T -compatible.
Note that for every v ∈ K∗, t(v) is either # or a Hintikka set: since (∆I , ·I) is a model,
d ∈ (E t [u]F)I implies d ∈ EI ∪ [∩]FI , and d ∈ EI holds iff d /∈ (¬E)I holds. 2

With this result, we can use automata operating on Hintikka trees to test for the
existence of models, i. e. to perform the satisfiability test for ALC concepts w. r. t.
general TBoxes.

Definition 4.6 (Automaton AC,T). For an ALC concept C and a TBox T with
k existential restrictions in sub(C, T), fix an ordering of these existential restrictions
and let ϕ : {∃r.D ∈ sub(C, T)} → K be the corresponding ordering function. Then
the looping automaton AC,T = (Q,Σ, I,∆) is defined as follows:

• Q = Σ = {Ω ∈ 2sub(C,T) | Ω is a T -expanded Hintikka set} ∪ {#};

• ∆ consists of all tuples (Ω0,Ω0,Ω1, . . . ,Ωk) such that (Ω0,Ω1, . . . ,Ωk) is C, T -
compatible;

• I = {Ω ∈ Q | C ∈ Ω}. 3

Example 4.7. Figure 4.1 shows the automaton AMother generated according to Def-
inition 4.6 for the concept Human u ¬Male u ∃has-child.Human from page 7 (concept
and role names have been abbreviated). Transitions from one state to another are in-
dicated by arrows. In order to avoid drawing 49 arrows in the upper half of the figure,
we use the circle to indicate that there is a transition from every state with an arrow
toward the circle (these are the states containing the concept ∃has-child.Human) to
every state with an arrow from the circle (the states containing Human). Since there
is only one existential subconcept, AMother takes unary trees as input, i. e. it is in fact
a word automaton.

Even in this very simple example, the overhead introduced by the exponential
state space clearly shows:

• Out of the 14 states of the automaton, only one is required to verify the existence
of a successful run, namely the initial state at the top, which has a transition to
itself.

• Since there is a transition from every state, the emptiness test terminates after
the first iteration (Q⊥ is empty).

52 Chapter 4. Automata Algorithms

H, M, ∃c.H

H, ¬M, ∃c.H

H, ∃c.H

M, ∃c.H

¬M, ∃c.H

∃c.H

HH, M
H, ¬M

#

¬M
M ∅

H u ¬M u ∃c.H,
H,¬M, ∃c.H

Figure 4.1: The NTA AMother for the concept H u ¬M u ∃c.H

• Six states (those that do not contain Human) are not reachable from any other
state and therefore irrelevant.

These properties are only detected after the creation of the whole automaton because
emptiness is tested bottom-up. If one performed the emptiness test top-down and
generated only those states that are required, one could in fact terminate the test
after the first step, i. e. after detecting that the initial state has a transition to itself,
since this gives rise to a successful run where every node is labelled with the initial
state. However, this emptiness test would necessitate the introduction of a termina-
tion condition in order to avoid trying to actually generate an infinite run. Moreover,
even after ensuring termination, the emptiness test would be non-deterministic (be-
cause the automaton is non-deterministic) and therefore only yield a non-deterministic
complexity class.

Using AC,T , we can reduce the satisfiability problem for ALC to the (non-) empti-
ness problem of L(AC,T). Since the size of AC,T is exponential in the length of C
and T (because there is one state for every possible Hintikka set of concepts) and the
emptiness test of a looping automaton is polynomial in its size, we obtain an ExpTime

algorithm for the satisfiability test of ALC concepts w. r. t. general TBoxes.

It is interesting to note that the alphabet symbol in each transition is practically
redundant because it is always identical to the current state and also the sets Q and
Σ are equal. In Chapter 6, we make use of this property by omitting Σ entirely and
using automata on unlabelled trees.

Theorem 4.8. The language accepted by the automaton AC,T is empty iff C is un-
satisfiable w. r. t. T .

4.4. Alternating Tree Automata 53

Proof. Since the transition relation ∆ is defined exactly as the relation C, T -
compatible, this follows by a simple induction. 2

This theorem immediately yields a worst-case optimal upper bound for the corre-
sponding decision problem.

Corollary 4.9. The satisfiability problem for ALC concepts w. r. t. general TBoxes
is in ExpTime.

Proof. The automaton we constructed is exponential in the size of the input C, T .
Since the emptiness of a looping automaton can be tested in time polynomial in the
size of the automaton’s state space (see the beginning of this section), we require time
exponential in the size of the input. 2

Like the automata algorithm itself, which first translates an input C into an au-
tomaton AC and then tests AC for emptiness, the proof of soundness and completeness
of the automata algorithm is a two-step process: we first have to establish that the
existence of Hintikka trees is a criterion for satisfiability, then we show how automata
can be used to test for their existence.

This example for an automata-based decision procedure shows the positive and
negative properties of AAs mentioned in Chapter 1. The algorithm from Defini-
tion 4.6 provides a tight upper complexity bound, and it handles termination and
non-determinism implicitly: both the translation of the input C, T into AC,T and
the emptiness test of AC,T are terminating and deterministic. The non-determinism
related to constructors like t is handled by the construction of the automaton, and
termination results from the fact that the emptiness test is performed on the finite
automaton rather than a possibly infinite model. This means that we do not have to
define a blocking condition and deal with blocked nodes in the soundness proof. Thus
from a theoretical point of view, the NTA algorithm is more elegant than the tableau
one.

The disadvantages regarding the possibility for an implementation that displays ac-
ceptable performance in practice have already been pointed out in Example 4.7: since
the search for a run proceeds in bottom-up direction and therefore is not goal-directed,
it involves generating a significant amount of redundant information. Another draw-
back lies in the fact that the different constructors are handled with different mech-
anisms: conjunctions and disjunctions are dealt with by the definition of Hintikka
sets, whereas existential and value restrictions are handled by the transition relation.
Consequently, the connection between the constructors and the mechanisms dealing
with them is not as direct as in the case of tableaus where, at least in the case of ALC,
there is a one-to-one correspondence between rules and constructors.

4.4 Alternating Tree Automata

A translation that is more similar to tableau rules and more intuitive can be achieved
using alternating automata (Muller and Schupp, 1987). As hinted in Section 4.1,
alternating automata do not only allow for a disjunction of alternatives, but also

54 Chapter 4. Automata Algorithms

for a conjunction or a combination of both. For example, the transition δ(σ, q1) =
(1, q3) ∧ ((1, q2) ∨ (3, q1)) is to be read as follows: if the automaton is in state q1 and
operates on a node v that is labelled with the letter σ, then it sends one copy of itself
in state q3 to the first child of v and either another copy in state q2 to the first child or
a copy in state q1 to the third one. This example illustrates that it is possible to send
several copies to the same node and not to send any copies to others. This is reflected
in the transition function by allowing for positive Boolean formulas, i. e. propositional
formulas that do not contain negation.

As a further extension, alternating two-way automata (Vardi, 1989) additionally
allow for the automaton to send copies to the current node or its predecessor. Thus,
where the copies of an NTA as in Definition 4.2 march over the input tree in-line,
with every copy operating on a node of depth n after n transitions, two-way automata
can arbitrarily walk up and down on the input tree, and thus they can operate at any
depth up to n. In order to describe such transitions, two-way automata do not only
allow for the numbers in K in a transition, but additionally for 0 (representing the
current node) and −1 (for the father node).

Definition 4.10 (Positive Boolean formula). Let k and K be as in Definition
4.1. We define K− := K ∪ {0,−1}. For a word w = v · c with v ∈ K∗ and c ∈ K, we
define w · 0 := w and w · (−1) := v; ε · (−1) is undefined.

The set of positive Boolean formulas over a set V , B+(V), consists of formulas
built from V ∪{true, false} using the binary operators ∧ and ∨. A set R ⊆ V satisfies
a formula ϕ ∈ B+(V) if assigning true to all elements of R and false to all elements of
V \R yields a formula that evaluates to true. 3

Since non-determinism can be defined simply by using disjunctions, alternating
automata have a transition function δ instead of a relation ∆. A non-deterministic
automaton can be regarded as a special case of alternating automata in which every
transition is in disjunctive normal form, with every conjunction having width k and
every c ∈ K appearing exactly once in every conjunction. For example, an NTA with
the transitions {(q0, a, q1, q2), (q0, a, q3, q4)} ⊆ ∆ can be translated into an ATA with
δ(q0, a) = ((1, q1) ∧ (2, q2)) ∨ ((1, q3) ∧ (2, q4)).

Definition 4.11 (Alternating automaton, run). An alternating tree automaton
(ATA) A is a tuple (Q,Σ, q0, δ), where Q is a set of states, Σ is the input alphabet,
q0 ∈ Q is the initial state, and δ : Q × Σ → B+(K− × Q) is the transition relation.
The width of an automaton w(A) is the number of literals that can appear on the
right-hand side of a transition, i. e. w(A) := (#Q+ 1) · (k + 2).

A run r of A on a tree t is a w(A)-ary infinite tree over (K∗ × Q) ∪ {#} such
that, for each node x with r(x) = (v, q) 6= # and δ(q, t(v)) = ϕ, there is a set
S = {(v1, q1), . . . , (vn, qn)} ⊆ K− ×Q that satisfies the following conditions:

1. S satisfies ϕ and,

2. for all 1 ≤ i ≤ n, r(x · i) = (v · vi, qi).

4.4. Alternating Tree Automata 55

t r

cb

a

a

c

c

b

(ε,q0)ε ε

(2,q1)(ε,q3)

(23,q3)

11 2 3

21 22 23 21 22(2,q0)

2

Figure 4.2: An input tree t and a successful run r of an alternating automaton

A run r is successful if r(ε) = (ε, q0) holds. An automaton A accepts an input tree t
if there exists a successful run of A on t. The language accepted by A, L(A), is the
set of all trees accepted by A. 3

A run labels each node x either with a pair (v, q) or with #, where the latter
indicates that r(x) is not important for the acceptance of the input tree. Please
observe that, unlike for NTAs, there is no one-to-one correspondence between the
nodes of the tree t and the successful run r: t and r have different arity, and several
nodes of the run can refer to the same tree node, whereas other tree nodes are not
referenced at all within the run. Moreover, the ordering of successors is important in t,
but not in r: the definition of a run only requires the existence of certain successors.

Example 4.12. Let A = ({q0, . . . , q3}, {a, b, c}, q0, δ) with

δ(q0, a) = ((0, q3) ∧ (2, q1)) ∨ (3, q2)

δ(q1, b) = (0, q0) ∧ (3, q3)

δ(q3, a) = δ(q0, b) = δ(q3, c) = true

Figure 4.2 shows (the relevant parts of) an input tree t and a successful run r of A
on t. Nodes labelled with # are omitted. Obviously, both r(3) and r(31), which are
on different levels of depth within r, refer to node 1, but none refers to node 13.

We will now show that the emptiness problem for alternating tree automata is
in ExpTime. Although this result is well-known (Vardi, 1998), to the best of our
knowledge there exists no reference containing a detailed description of the decision
procedure for the special case of looping automata.2 We therefore present such a
construction in the following.

From Definition 4.11, it becomes clear that in order to test the emptiness for an
ATA it is necessary to search for an appropriate input tree t and a successful run r
on t, which can have a completely different structure from t. It is possible, however,
to test both of them at once: a strategy tree is, intuitively, an input tree t whose
nodes are labelled with elements of Σ, and where additionally the automaton has
left a “footprint” for every state in which (a copy of) the automaton has read the
corresponding node.

2Vardi (1998) focuses on the constructions required for handling more sophisticated acceptance
conditions.

56 Chapter 4. Automata Algorithms

1 (a,∅) (c,∅)3

s (a,{q0, q3})ε

2 (b,{q1, q0})

22 (c,∅)21 (b,∅) (c,{q3})23

Figure 4.3: A strategy tree for t and r from Example 4.12

Definition 4.13 (Strategy tree). Let A = (Q,Σ, q0, δ) be an ATA on k-ary trees.
A strategy tree for A is a k-ary tree s : K∗ → (Σ × 2Q) such that the following holds:

1. for s(ε) = (σ(ε), Q(ε)), Q(ε) contains q0;

2. for every node n with s(n) = (σ(n), Q(n)) and every q ∈ Q(n) with δ(σ(n), q) =
ϕ, there exists a set S = {(c1, q1), . . . , (cm, qm)} such that

(a) S satisfies ϕ,

(b) for every pair (ci, qi) ∈ S, s(n · ci) is defined and for s(n · ci) = (σ(i), Q(i)),
Q(i) contains qi. 3

Figure 4.3 shows a strategy tree generated from t and r from Figure 4.2. Note
that s is a relabelling of t, where the states of A that visit a node v have been added
to v’s label. The existence of a strategy tree guarantees the existence of an accepted
input tree t and a successful run r on t:

Theorem 4.14. For an ATA A = (Q,Σ, q0, δ) on k-ary trees, there exists a strategy
tree s iff there exists an input tree t and a successful run r of A on t.

Proof. For the “if” direction, let t be a k-ary tree which is accepted by A and r be the
corresponding successful run. We construct s incrementally by traversing r breadth-
first. The first component of every node n, σ(n), is taken directly from t(n). For the
second component, we add the appropriate states toQ(n) during the traversal, starting
with adding q0 to Q(ε), which satisfies the first condition in Definition 4.13. Since r is
a successful run, there is a set S = {(v1, q1), . . . (vm, qm)} that satisfies δ(q0, σ(ε)) and
for that r(ε · i) = (ε · vi, qi) holds. We therefore add, for every 1 ≤ i ≤ m, qi to Q(vi).
Then, the root node of s satisfies the second condition of Definition 4.13 for the first
element q0 of Q(ε), and we have added, for every successor of ε in r, the state qi to
the node vi which A reads in state qi.

Now assume we have traversed r up to a node x with r(x) = (v, q). By induction
hypothesis, we have added q to Q(v) in the strategy tree while processing the pre-
decessor of x. Again, since r is a run, there is a set S satisfying δ(q, t(v)), thus we
can add the corresponding states to the neighbours of v, which ensures that s satisfies
Condition 2 for the state q and that the states appearing in δ(q, t(v)) are added to the
Q sets of the appropriate neighbours of v. By induction, it follows that this condition
is satisfied for every state appearing in a set Q(v).

4.4. Alternating Tree Automata 57

For the “only-if” direction, we can read read the labelling of an accepted input
tree t directly off of the strategy tree s: for every node v, we define t(v) as the first
component of s(v). Then we can construct r iteratively, starting with setting r(ε) =
(ε, q0), which satisfies the first condition of Definition 4.11. Now let ϕ = δ(q0, t(ε)).
Since s is a strategy tree, there is a set S = {(c1, q1), . . . , (cm, qm)} which satisfies ϕ
and for which it holds that s(ε · ci) = (σ(i), Q(i)) with qi ∈ Q(i). We then label the
first m successors of ε in r with (c1, q1), . . . , (cm, qm) and the remaining ones with #,
which satisfies the second condition of Definition 4.11 for r(ε). By construction, r(i)
consists of t(ci) and {qi} for every 1 ≤ i ≤ m.

Now assume we have constructed a successful run up to node x with r(x) = (v, q).
By induction hypothesis, all predecessors of x satisfy the conditions in Definition 4.11.
Since the label of s(v) contains t(v) and q, there is a set S = {(c1, q1), . . . , (cm, qm)}
that satisfies δ(q, t(v)). We can therefore label the first m successors with (v · ci, qi),
which ensures that also the node x satisfies the conditions for a run. Moreover, since
s is a strategy tree, s(v · ci) contains qi. Thus it follows by induction that r is a
successful run and that t is accepted by A. 2

Due to Theorem 4.14, it suffices to test the existence of strategy trees in order to
decide the emptiness problem of ATAs, which is also the key to an effective decision
procedure. For an ATA A = (Q,Σ, q0, δ), the existence of strategy trees can be tested
using an NTA B: an alphabet symbol of B consists of an element of Σ and a subset
of Q. In order to deal with transitions to the current node and its father, we have
to remember the states contained in the father node’s label and the states required
for the current label, thus a state of B is a pair (QF , QS) of subsets of Q. Intuitively,
the first set QF consists of the states in the father node’s label and the second set QS

contains the required states (not necessarily all states) for the node itself. Since the
root node does not have a predecessor and must contain the state q0, the initial state
of B is (∅, {q0}).

The transition relation of B ensures that for every state in the node label, the
transition function is satisfied by the states contained in the current node, its father,
and its children. We therefore take the conjunction of the transition function for
all states, transform it into disjunctive normal form and take every disjunct as one
possible transition of B’s transition relation. For each of these transitions, which is
a conjunction of pairs of children nodes and states, the copy we send to each child
contains the corresponding states. This is formalised in the following definition.

Definition 4.15. Let A = (Q,Σ, q0, δ) be an ATA. The strategy automaton B =
(P,Ξ, p0,∆) is defined as:

• P = 2Q × 2Q;

• Ξ = Σ × 2Q;

• p0 = (∅, {q0});

and the transition relation ∆ is defined as follows: for a state (QF , QS) ∈ P and a
node label (σ,QC), if QS ⊆ QC , let QC = {q1, . . . , q`} and ϕ = δ(σ, q1) ∧ . . . ∧ δ(σ, q`)

58 Chapter 4. Automata Algorithms

and ϕ′ = ϕ1 ∨ . . .∨ϕm for some m be the disjunctive normal form of ϕ. Let ϕ′′ be the
formula ϕ′ where every occurrence of a literal (0, q) is replaced with true if q ∈ QC and
with false otherwise, and every occurrence of (−1, q) is replaced with true if q ∈ QF and
with false otherwise. If ϕ′′ ≡ false, there are no transitions from the state (QF , QS) and
the letter (σ,QC). If ϕ′′ ≡ true, ∆ contains ((QF , QS), (σ,QC), (QC , ∅), . . . , (QC , ∅)).

Otherwise, every disjunct ϕi of ϕ′′ is a conjunction (ci1, qi1) ∧ . . . ∧
(cin, qin) for some n. For every such conjunction, ∆ contains the transition
((QF , QS), (σ,QC), (QC , Q1), . . . , (QC , Qk)), where for k ∈ K, Qk is defined as
{qij | qij appears in a literal (k, qij)}.

Additionally, to deal with cases in which Qk is empty, ∆ contains the transitions
((QF , ∅), (σ,QC), (∅, ∅), . . . , (∅, ∅)) for all values of QF , σ and QC . 3

Since the size of 2Q is exponential in the size of Q and the length of ϕ′′ can be
exponential in the size of ϕ, both the state space and the transition relation of B are
exponential in the size of the corresponding elements of A. This blow-up cannot be
avoided since, as we will see later in this section, it is possible to decide satisfiability
for a DL with an ExpTime-complete logic satisfiability problem using an ATA of size
polynomial in the size of the input.

We will now show that B accepts exactly the strategy trees for A. Together with
Theorem 4.14, this shows how the emptiness problem for alternating automata can
be decided in time exponential in the size of the automaton.

Theorem 4.16. The strategy automaton B = (P,Ξ, p0,∆) for an ATA A =
(Q,Σ, q0, δ) accepts an input s iff s is a strategy tree for A.

Proof. For the “if” direction, we will show how to generate a successful run r of B on
s. As s is a strategy tree for A, it holds that s(ε) = (σ(ε), Q(ε)) with q0 ∈ Q(ε) and for
every qi ∈ Q(ε), the PBF ϕi = δ(q, σ(ε)) is satisfied by the labels of ε and the nodes
1, . . . , k. Then also the conjunction ϕε of all ϕi is satisfied or equivalently one disjunct
of the disjunctive normal form ϕε. Let that disjunct be (c1, q1)∧ . . .∧(cm, qm). If there
is a j with cj = 0 then the transition was replaced with true, which means that Q(ε)
contains qj (otherwise, the conjunction would evaluate to false). Then, by the con-
struction of ∆, there is a transition (∅, {q0}), ((σ(ε), Q(ε)), (Q(ε), Q1), . . . , (Q(ε), Qk)),
with every child node i ∈ K containing all q ∈ Qi. With r(ε) = (∅, {q0}) and
r(i) = (Q(ε), Qi) for i ∈ K, we obtain that r(ε) is labelled with an initial state and
there is a transition from ε, and the first component in the label of every child consists
of Q(ε).

Now assume we have constructed r up to a node v with r(v) = (QF , QS) and
s(v) = (σ(v), QC). Again we obtain that there is a conjunction of transitions (c1, q1)∧
. . . ∧ (cm, qm). If cj = −1 for some j then, since the conjunction evaluates to true,
we know that qj ∈ QF holds. By induction hypothesis, this implies that s(v · (−1))
contains qj . The labels of v’s children can then be obtained as before.

Conversely, let s be a tree accepted by B, and let r be the corresponding successful
run. Then, since r(ε) is labelled with the initial state p0 = (∅, q0), the set Qε in
s(ε) = (σε, Qε) contains q0, which satisfies Condition 1 of Definition 4.13.

4.4. Alternating Tree Automata 59

Moreover, since r is a successful run, Qε is the first component in the label of each
of ε’s children. Let (Qε, Q1), . . . , (Qε, Qk) be the labels of r(1), . . . , r(k), and for every
i ∈ K∪{ε}, let the set of states be Qi = {qi1, . . . , qimi

}, wheremi = #Qi. Then the set
of literals {(0, qε1), . . . , (0, qεmε), (1, q11), . . . , (1, q1m1), (2, q21), . . . , (k, qkmk

)} satisfies
the conjunction δ(q1, σε) ∧ δ(q2, σε) ∧ . . . ∧ δ(qm, σε). Since r is a run on s, it holds
for every i ∈ K with s(i) = (σi, Q

s
i) that Qi ⊆ Qs

i . Therefore, Condition 2 of
Definition 4.13 is satisfied for the root node of s.

Now assume we are at a node v with s(v) = (σv, QC), r(v) = (QF , QS), and
QF = {qF1, . . . , qFmF

}. By induction hypothesis, all predecessors of v in s satisfy
the conditions for a strategy tree for A, and the father node of v is labelled with
(σF , QF) for some σF . Then we obtain Condition 2 of Definition 4.13 in the same
way as before, with the only difference that the set of literals additionally contains
(−1, qF1), . . . , (−1, qFmF

). Since each of the states in these transitions is contained
in the label of the father node by induction hypothesis, the existence of a transition
from s(v) guarantees that v satisfies the conditions of a strategy tree. By induction,
this holds for every node of s. 2

In the following, we will develop an ExpTime algorithm for the satisfiability prob-
lem of ALC concepts w. r. t. general TBoxes that uses alternating automata. Similar
algorithms for different DLs were developed e. g. by Calvanese et al. (1999) and Cal-
vanese, de Giacomo, and Lenzerini (2002).

4.4.1 An ATA Algorithm for ALC with General TBoxes

Employing ATAs for the satisfiability test allows for a procedure that is more intuitive
and “tableau-like” than the NTA algorithm in Section 4.3.1. Since the automaton can
remain in the same node, we do not have to restrict the node labels to Hintikka
sets; instead, we can handle conjunctions and disjunctions with transitions. We can
also drop the restriction that the n-th child always stands for the n-th existential
restriction; instead, we can simply say that some child satisfies the corresponding
concept. Finally, a single child can be both an r- and an s-successor for two different
roles r and s.3

In order to deal with this additional freedom without using labelled edges, we
require additional alphabet symbols: for a role name r, the symbol sr in a node label
means that the node is an r-successor. To improve readability, we define, for a set of
role names NR and a TBox T , the following shortcuts:

RC = {sr | r ∈ NR} and CT =
l

DvE∈T

(¬̇D t E)

Thus, for an input C, T , the node labels contain concept names and role symbols. The
arity k is, as in the case of NTA, the number of existential restrictions in sub(C, T).
Nodes that are not needed for an existential restriction are labelled with the dummy

3This feature is not necessary for ALC, but it is included here in order to maintain consistency
with the ALCIO algorithm in Section 5.2.2.

60 Chapter 4. Automata Algorithms

δ(START , σ) = (0,C) ∧ (0,GCI)

δ(GCI , σ) = (0,CT) ∧
k∧

i=1

((i,GCI) ∨ (i,#))

δ(sr, σ) =

{
true, if sr ∈ σ
false, otherwise

δ(sr, σ) =

{
true, if sr /∈ σ
false, otherwise

δ(D, σ) =

{
true, if D ∈ σ
false, otherwise

δ(¬D, σ) =

{
true, if D /∈ σ
false, otherwise

δ(D u E, σ) = (0,D) ∧ (0,E)

δ(D t E, σ) = (0,D) ∨ (0,E)

δ(∃r.D, σ) =
k∨

i=1

((i, sr) ∧ (i,D))

δ(∀r.D, σ) =
k∧

i=1

((i, sr) ∨ (i,D) ∨ (i,#))

δ(#, σ) =

{
true, if σ = #
false, otherwise

δ(q,#) =

{
true, if q = #
false, otherwise

Figure 4.4: AC,T transition relation

symbol #. The sr states are used to ensure that sr is not contained in a node label,
i. e. that the corresponding node is not an r-successor.

The following construction of an automata algorithm for ALC is based on an
algorithm for the hybrid µ-calculus by Sattler and Vardi (2001).

Definition 4.17 (ATA for C w. r. t. T). Let C be an ALC concept and T be a
TBox in negation normal form, with k being the number of existential restrictions in
sub(C) ∪ sub(CT). Moreover, let NC(C, T) be the set of concept names occurring in C
or T , and let RC(C, T) = {sr | r occurs in C or T }. Then the ATA for C w. r. t. T is
defined as AC,T = (Q,Σ, q0, δ) with

• Q = sub(C) ∪ sub(CT) ∪RC(C, T) ∪ {sr | sr ∈ RC(C, T)} ∪ {START,GCI ,#};

• Σ = {σ | σ ⊆ NC(C, T) ∪RC(C, T)} ∪ {#};

• q0 = START ;

4.4. Alternating Tree Automata 61

• for q ∈ Q and σ ∈ Σ, δ is defined as in Figure 4.4. 3

Observe that the size of the automaton, i. e. the number of its states, is polynomial in
the size of C and T . This translation is more straightforward than in the case of an
NTA in the sense that for a concept name D, we simply have to check if D is contained
in the node label; conjunctions and disjunctions translate into conjunctions and dis-
junctions in the transition function, and the transitions for an existential restriction
∃r.C or value restriction ∀r.C ensure that there is a successor labelled with sr and C
or that all non-dummy successors which are labelled with sr are also labelled with C,
respectively. TBoxes are handled by enforcing that every node satisfying an existen-
tial restriction also satisfies all GCIs. The transitions bear a strong resemblance with
the tableau rules in Figure 3.2: there is one type of transitions for every constructor
and an additional one for GCIs. The main difference is that, since an automaton does
not generate, but recognise models, it sends a copy of itself to a node v in order to
make sure that t(v) contains a concept C, rather than adding C to t(v). For existential
restrictions, this involves testing every successor as a possible candidate. Additionally,
we require the transitions for dummy nodes because the automaton operates on full
k-ary trees.

Theorem 4.18. For an ALC concept C and TBox T , the automaton AC,T accepts a
non-empty language iff C is satisfiable w. r. t. T .

Proof. For the “if” direction, let I = (∆I , ·I) be a model for C w. r. t. T , and let k be
as in Definition 4.17. As I is a model, there is a dε ∈ ∆I with dε ∈ CI . We construct
a strategy tree s for AC,T by setting

s(ε) = ({D ∈ NC | dε ∈ DI}, {D ∈ sub(C, T) | dε ∈ DI} ∪ {sr | r ∈ NR}),

i. e. the first component (σε) contains all concept names to which dε belongs, and the
second one (Qε) contains all subconcepts of C and T to which dε belongs. Then, for
a node v that is already labelled using an individual d, we label v’s children nodes as
follows: for every concept ∃r.D ∈ Qv, we choose an individual di ∈ ∆I with (d, di) ∈ rI

and di ∈ DI (such an individual exists because I is a model), and label the child node
v · i in the way described above—with the only difference that, if (d, di) ∈ rI holds,
then σi and Qi additionally contain sr, and Qi does not contain sr. If the number
of existential restrictions in Qε is less than k, we label the remaining children with
(#,#).

It follows by induction over the length of the concepts in sub(C, T) that, for every
node v and every q ∈ Qv, the transition function evaluates to true: for concept names,
negated concept names, role symbols sr, and dummy nodes, this follows directly from
the construction of s. For conjunctions and disjunctions, it follows by structural
induction, and for existential restrictions, it again follows by construction that one
of the children nodes is labelled with the appropriate concept and role. For value
restrictions, assume there is a node v labelled with the concepts for an individual d
such that ∀r.D ∈ Qv, and that there is an i such that Qv·i ∩ {sr,D,#} = ∅. Then
there is an individual di ∈ ∆I such that (d, di) ∈ rI and di /∈ DI . This contradicts

62 Chapter 4. Automata Algorithms

the assumption that d ∈ (∀r.D)I . Finally, since I is a model, every individual satisfies
every GCI, and thus CT is in the label of every non-dummy node and, since dε ∈ CI ,
Qε contains C.

Conversely, let s be a k-ary strategy tree for AC,T . For a node v ∈ K∗ with
s(v) = (σ,Q) we will refer to σ and Q by σ(v) and Q(v). We define a model I =
(∆I , ·I) for C w. r. t. T by setting ∆I = {v ∈ K∗ | CT ∈ σ(v)}, for a concept
name A, AI is defined as {v ∈ ∆I | A ∈ σ(v)}, and for a role name r, rI is defined
as {(v, w) ∈ ∆I × ∆I | sr ∈ σ(w) and w = v · i for some i ∈ K}. We will show
by induction over the structure of the elements of Q that the individual v satisfies
all concepts contained in Q(v). For concept names and their negations, this follows
directly from the definition of δ and the fact that s is a strategy tree; for conjunctions
and disjunctions, a similar argument holds. For an existential restriction ∃r.D ∈ σ(v),
there exists an i such that Q(v · i) contains sr, D and CT . By the definition of I, ∆I

contains v · i and rI contains (v, v · i); and by induction, the individual v · i satisfies D.
For a value restriction ∀r.D ∈ σ(v) and every i ∈ K, Q(v · i) contains sr, D, or #.

In the first case, sr /∈ σ(v · i) holds and thus by construction also (v, v · i) /∈ rI . In the
third case, σ(v · i) = # holds and therefore v · i is not contained in ∆I . In the second
case, D ∈ σ(v · i) holds and v · i ∈ D follows by induction hypothesis. All elements of
∆I satisfy CT and thus all GCIs, and since Q(ε) contains both nnf(C) and CT , ε is
contained in ∆I and satisfies C. 2

From Theorem 4.18, we again obtain the ExpTime complexity result for ALC with
GCIs since the size of AC,T is polynomial in the size of C and T and the emptiness
test for AC,T is exponential in the size of AC,T .

Corollary 4.19. The satisfiability problem for ALC concepts w. r. t. general TBoxes
is in ExpTime.

The advantage of ATAs over NTAs is the more intuitive construction: in the ATA
algorithm, all language constructors are dealt with by the transition function whereas,
in the NTA algorithm, the propositional constructors and clashes are handled by the
definition of Hintikka sets, GCIs are handled by the definition of C, T -compatibility,
and only existential and value restrictions are handled by the transition relation.
Moreover, the handling of value and existential restriction is merged in the NTA,
where every r-successor required by an existential restriction is required to satisfy all
value restrictions concerning r, whereas in the ATA, existential and value restrictions
are tested independently. In the words of Muller and Schupp (1995), “alternating
automata really provide the ‘natural model’ for automata working on infinite inputs”.
Vardi (1997) argues that alternating automata “enable one to decouple the logic from
the algorithmics”, i. e. they allow the user to focus on the logical requirements of the
language under consideration and leave the combinatorial explosion of the state space
in the step that is handled automatically.

More specifically, for the application in the area of DLs, Calvanese et al. (2002)
note that ATA algorithms are intuitive like tableau rules, modular since they handle
each construct separately, short since the encoding is polynomial, and computationally
adequate since they are worst-case optimal for ExpTime-complete logics.

4.4. Alternating Tree Automata 63

Having described tableau and automata algorithms deciding satisfiability in ALC
in detail, we can take a closer look at their differences and the influence of these
differences on efficiency in theory and practice. The emptiness test for the NTA from
Definition 4.2 (and thus also the one for the NTA testing the existence of a strategy
tree for an ATA) goes in bottom-up direction: it starts with the set of all possible
node labels (i. e. Hintikka sets for the input) and removes those from which there
is no transition, e. g. sets containing ∃r.A and ∀r.¬A. In the next iteration, all sets
are removed that require a transition to one of the previously removed sets, e. g. sets
containing ∃s.(∃r.A u ∀r.¬A). If we continue this iteration until no further states are
removed and we can still find a set containing the input, then we know that there
exists a successful run (although the automata approach does not provide an accepted
input tree or a successful run as a witness for satisfiability).

Since this algorithm works bottom-up, it is deterministic in spite of the non-
deterministic transition relation: when testing the satisfiability of a set containing
C t D, it is only necessary to test for the existence of sets containing C or D, which
requires time linear in the size of the automaton. However, this procedure obviously
only works if it starts with all possible sets, and is therefore best-case exponential.
As mentioned in Example 4.7, it is possible to perform the emptiness test in top-
down direction, thus avoiding the generation of unnecessary states, but this requires
measures to ensure termination, and it leads to a non-deterministic procedure, which
does not provide an ExpTime complexity bound anymore. In Chapter 6, we show
how a non-deterministic top-down test can be useful to obtain PSpace results for
certain logics.

In contrast, the tableau algorithm works in a top-down manner: it starts by la-
belling a node with the initial concept and tries to generate successor nodes that do
not contain a clash, e. g. an r-successor labelled with C in order to satisfy an existential
restriction ∃r.C. This procedure is goal-directed because every node that is created
and every concept that is added to a node label is relevant for the satisfiability of
the input. However, like the top-down automata test sketched above, this requires
special measures in order to ensure termination, and it leads to a non-deterministic
procedure in the presence of non-deterministic rules, e. g. the t-rule or the T -rule.
The similarities between the rules and the definition of the transition relation raise
the question whether it is possible to automatically generate an ExpTime automata
algorithm from a tableau algorithm. In Chapter 7, we address this issue.

One can also ask if the relation between tableau and automata algorithms is so
close that the advantages of TAs, in particular the performance improvement by op-
timisations, can be transferred to AAs simply by translating an automaton into an
input for a tableau algorithm. This goal is pursued in the next chapter.

Chapter 5

Translation

of Alternating Automata

into Description Logics

In this chapter, we address the question if the good performance of tableau algorithms
in practice can be transferred automatically to automata algorithms through trans-
lation. To this end, we develop ways to translate alternating one-way and two-way
automata (see Section 4.4) into TBoxes in comparably inexpressive DLs, so that the
emptiness problem of the automaton can be reduced to satisfiability of a certain con-
cept w. r. t. the corresponding TBox. With this approach, we can use the existing
implementations of tableau algorithms to perform the emptiness test, and check if the
optimisations of the reasoners are able to achieve an acceptable calculation time.

In Section 5.1 we show how one-way alternating automata can be translated into
the inexpressive DL ELUf , from which we obtain that in this logic, concept satis-
fiability w. r. t. general TBoxes is ExpTime-hard. This translation is extended in
Section 5.2 to two-way automata and the more expressive DL FLEUIf . In Section
5.2.1, we define an ATA algorithm for the logic ALCIO, which, together with the
above-mentioned translation, enables us to use the existing SHIQ (Horrocks et al.,
2000a) implementations FaCT (Horrocks, 1998b) and Racer (Haarslev and Möller,
2001b) to reason about nominals although the SHIQ language does not provide this
constructor. Section 5.2.3 describes the empirical results obtained with this transla-
tion.

This chapter is based on work that was previously published by Hladik and Sattler
(2003); and Hladik (2003).

5.1 Translation of One-Way Automata into ELU f

The automaton AC,T in Definition 4.17 does not really exploit the possibilities of two-
way automata because it does not make use of (−1)-transitions leading to the father
node. This simplifies the translation of the automaton into a TBox significantly and
only requires an inexpressive DL. We will therefore call automata which use only

66 Chapter 5. Translation of Alternating Automata into DLs

transitions (c, q) with q ∈ Q and c ∈ K0 := {0, . . . , k} one-way alternating automata
and begin with a translation of one-way automata into the DL ELU f , which is formally
defined below.

Definition 5.1 (ELUf). Let NC be a set of concept names and NF a set of feature
names. The set of ELUf concepts over NC and NF is inductively defined as follows:

• >, ⊥, and all concept names C ∈ NC are concepts;

• if C and D are concepts, then C t D and C u D are concepts;

• if C is a concept and f ∈ NF is a feature name, then ∃f.C is a concept.

The semantics of these constructors is given in Figure 2.1 on Page 28. GCIs and
TBoxes are defined as for EL (Definition 2.2). 3

In the presence of GCIs, the constructors provided by ELU f are sufficiently expres-
sive to translate the transition relation of an alternating one-way automaton A into
a general TBox tr(A) in such a way that the concept Q0, which represents the initial
state of the automaton, is satisfiable w. r. t. tr(A) iff A accepts a non-empty language.
The idea is that, from a model IA for Q0 w. r. t. tr(A), it is possible to construct a
tree t accepted by A and a corresponding successful run r. For this purpose, both
alphabet symbols and states are represented with concept names. An individual of
IA represents a node in t and thus belongs to the interpretation AI of exactly one
alphabet symbol a. Moreover, it belongs to the interpretation QI

i for every state qi
in which the automaton operates on the corresponding node. The transition relation
of A is translated into a set of GCIs which ensure that, for every pair (A,Q) that the
individual belongs to, the corresponding neighbour nodes contain the required states.
The structure of this tree is represented by roles: fi stands for the relation between
the father node and its i-th child node. In order to ensure that there is a unique
individual for each child, these roles have to be features.

Definition 5.2 (Translation tr into ELUf). Let A = (Q,Σ, q0, δ) be an alternat-
ing one-way automaton with Q = {q0, . . . , qimax} and Σ = {σ0, . . . , σjmax}. The trans-
lation of A into an ELUf TBox tr(A) is defined as follows: for each qi ∈ Q we use a
concept name Qi, for each σj ∈ Σ, we use a concept name Aj , and we set

tr(A) := {G>,G⊥} ∪
⋃

q∈Q,σ∈Σ

tr(δ(q, σ)), where

G> := > v A1 t A2 t . . . t Ajmax ,

G⊥ := t
0≤i<j≤jmax

(Ai u Aj) v ⊥,

tr(δ(q, σ)) := tr(q) u tr(σ) v tr(ϕ) if δ(q, σ) = ϕ,

and the translation of ϕ, q, and σ is defined as follows:

tr(qi) := Qi for qi ∈ Q, tr(σi) := Ai for σi ∈ Σ,
tr(α ∧ β) := tr(α) u tr(β), tr(α ∨ β) := tr(α) t tr(β),
tr(true) := >, tr(false) := ⊥,
tr(0, q) := tr(q), tr(i, q) := ∃fi.tr(q) for 0 < i ≤ k. 3

5.1. Translation of One-Way Automata into ELU f 67

r

t

131211 a

1 a

cb

3 (1,q1)

31
(1,q4) (11,q2)

32

1

13

11
f3

I

f1

C

A,Q2

A,Q1,Q4

Figure 5.1: Translation of a tree and a successful run into a model

We will see that tr ensures that each model I of tr(A) corresponds to a successful
run r on some tree t. Firstly, a node x in r is labelled with a node v in t which, in turn,
is labelled with exactly one σ ∈ Σ. Thus each x in r is associated with one σ ∈ Σ. To
express this fact in tr(A), we use the extra GCIs G> and G⊥: they guarantee that
every individual of I is an instance of exactly one tr(σi).

1

Next, it will turn out to be useful to have the inverse tr−1 of tr , which is possible
since tr is “almost” injective: the only ambiguity concerns q and (0, q) since they are
both mapped to Q by the function tr . However, this ambiguity can easily be resolved
by agreeing to set tr−1(Q) to (0, q) if Q appears on the right hand side of a GCI and
to q otherwise.

Example 5.3. Figure 5.1 shows an example for the translation of a tree and a suc-
cessful run into a model for a single node. The automaton is in state q1 and reads
node 1 which is labelled with a. For δ(a, q1) = (1, q1) ∨ ((1, q2) ∧ (0, q4)), the transi-
tion function yields the GCI A u Q1 v ∃f1.Q1 t ((∃f1.Q2) u Q4). In our example, the
transition function is satisfied via the second disjunct, and thus the individual 1 in
the model I is an instance of both Q1 and Q4. Observe that a model I of tr(A) might
have a structure different from

• an input tree t since nodes in I might have no fi-successor for some i and I
might not be a tree; and

• a successful run r since different nodes of r that refer to the same node in t
are represented by the same individual in I: intuitively, we label an individual
d ∈ ∆I with the concept A of t(d) and “collect” all Qi concepts from nodes in r
that refer to t(d). Thus, some individuals are instances of several Qi concepts,
like 1, while others are instances of none, like 13.

Lemma 5.4. The language accepted by an alternating automaton A = (Q,Σ, q0, δ)
is non-empty iff tr(q0) its satisfiable w. r. t. tr(A).

1Since each node is labelled with exactly one alphabet symbol, it is also possible to translate the
alphabet symbols using a binary coding mechanism which requires only log2 n concept names for n

alphabet symbols. However, this would not reduce the number of GCIs in the TBox, which would
still be exponential in n. Hence, we stick with the linear translation, which also improves readability.

68 Chapter 5. Translation of Alternating Automata into DLs

Proof. We start with the “only-if”-direction. For this purpose, we fix some notation:
we use L (for “literal”) to denote the set of concepts appearing on the right-hand side
of GCIs in tr(A),

L := {∃fi.Qj | i ∈ K0, 0 ≤ j ≤ imax} ∪ {Qj | 0 ≤ j ≤ imax},

and we use B+(L) for the set of positive Boolean concepts analogous to positive
Boolean formulas in Definition 4.10, with the symbols ∧,∨, true, and false replaced
with u,t,>, and ⊥, respectively.

Let T = tr(A), Q0 = tr(q0), and let t be contained in L(A) where r is a successful
run of A on t. We construct a model I of Q0 w. r. t. T as follows:

∆I := {v ∈ K∗ | t(v) 6= #},
fIc := {(`, ` · c) | {`, ` · c} ⊆ ∆I} for every c ∈ K,
AI

i := {v | t(v) = σi}, for every σi ∈ Σ,
QI

i := {v | there is an x in r with r(x) = (v, qi)}, for every qi ∈ Q.

In order to prove that I is a model of Q0 w. r. t. T , we show that

1. QI
0 6= ∅ holds and

2. each individual t of I satisfies each GCI in T .

Now (1) holds by definition of I since the r(ε) = (ε, q0) and thus ε ∈ QI
0 . For (2), we

distinguish three classes of GCIs in T :

1. GCIs G> and G⊥,

2. GCIs of the form QuA v ⊥ resulting from the translation of transitions δ(q, σ) =
false, and

3. GCIs Q u A v C, for some concept C ∈ B+(L) \ {⊥}.

For the first class, I satisfies G> and G⊥ by definition since every node v in t is
labelled with exactly one letter σ. For the remainder, consider a GCI Qi u Aj v C in
T with pre-image δ(qi, σj) = ϕ and some v ∈ QI

i ∩AI
j . By definition of I, there exists

a node x with r(x) = (v, qi) and t(v) = σj . For the second class, if ϕ = false, then
C = ⊥, and the existence of v is a contradiction to r being a run. For the third class,
the definition of a run implies the existence of a set S = {i1, . . . , im} and functions a,
c, and s such that

• {(a(i), qc(i)) | i ∈ S} satisfies ϕ and

• there are successors x · s(i1), . . . , x · s(is) of x which are labelled with the corre-
sponding pairs, i. e. r(x · s(j)) = (v · a(j), qc(j)) holds for all j ∈ S.

By construction of I, there exist ft(j)-successors uj of v with uj ∈ QI
c(j) u AI for

A := tr(t(v · a(j))). This ensures that v ∈ CI , which concludes the proof of the
“only-if”-direction.

For the “if”-direction, we will show how to construct a tree t and a successful run
r of A on t from a model (∆I , ·I) of Q0 w. r. t. T . We define the auxiliary functions

5.1. Translation of One-Way Automata into ELU f 69

ri

node

(ε, q0)

(2, q2) (ε, q4) (ε, q0)

ti

ε

I
t

r

ε

1 2

1 2 3

z c

a

f2

C,Q2

A,Q0,Q4

Figure 5.2: Translation of a model into a tree and a successful run

• ti and ri , which map nodes of t and r, respectively, to individuals of ∆I ,

• node and state, which map a node of r to the node and state component of its
label, i. e. if r(x) = (v, q), then node(x) = v and state(x) = q, and

• letter : ∆I → {Ai | 1 ≤ i ≤ jmax} and states : ∆I → 2{Qi|1≤i≤imax}, assigning,
to each individual, the unique concept Ax and the set of Qi concepts it is an
instance of (letter is well-defined since I is a model of G> and G⊥).

Example 5.5. In Figure 5.2, we show a model I together with a tree t, a successful
run r, and some of the auxiliary functions. The tree node 1 is assumed to be related
to a dummy individual # and its letter z = letter(#), and only some nodes of r are
presented. In the run r, the nodes ε, 2, and 3 are labelled with the same tree node ε
since ri(ε) is an instance of Q0 and Q4, and we might need nodes 2 and 3 for a run
involving transitions δ(a, q0) = (0, q4) ∧ (0, q0) ∧ . . .

Intuitively, t is an an unravelling of I (which need not be tree-shaped), and r is
an unravelling with “duplicate” successors (in case several copies of the automaton
operate on the same node). Formally, t and r are defined as follows. We begin the
construction of t with an individual dε ∈ QI

0 . Such an individual exists since I is a
model of Q0 w. r. t. T . Moreover, we fix some dummy individual # ∈ ∆I . We define
t(ε) := tr−1(letter(dε)), i. e. the root node of the tree is labelled with the alphabet
symbol in the label of dε, and ti(ε) := dε, i. e. the root node is associated with dε.
Then, for each v such that t(v) is already defined and for each c ∈ K, we do the
following:

• if ti(v) has an fc-successor dc, define ti(v · c) := dc and t(v · c) := tr−1(letter(dc)),
i. e. we extend the labelling of t to cover the new individual (this is well-defined
since fc is functional);

• otherwise, define ti(v · c) := # and t(v · c) := tr−1(letter(#)), i. e. label the node
as a dummy.

After the input tree t, we now define a successful run r of A on t as follows. Firstly,
set r(ε) := (ε, q0) and ri(ε) := dε. Secondly, if ri(x) = d is already fixed, we define

70 Chapter 5. Translation of Alternating Automata into DLs

d0 := d and di as the fi-successor of d, if there exists one, and di := # otherwise.
Then we fix, for every di and every qij ∈ states(di), a different successor x · ij of x with
r(x · ij) = (node(x) · i, qij) and ri(x · ij) = di. Finally, if r(x · c) is not fixed through the
previous step, we set r(x′) = # for each node x′ in the sub-tree below x · c including
x · c. Thus, for every concept Qi that d or a successor of d is an instance of, there is
a successor of d in r labelled with qi and the corresponding node in t.

To prove that r is a run on t, we first prove that the ri and ti functions are defined
properly, i. e. if node(x) = v for a node v in the tree and a node x in the run, then
both v and x refer to the same individual in ∆I .

Claim: For all nodes x of r, if r(x) 6= #, then ri(x) = ti(node(x)).

Proof of the claim. The proof is by induction on the depth of nodes in r. For the root
node ε of r, the claim holds by definition. Now let x be a node of r with r(x) 6= # for
which the claim holds. Let r(x) = d and consider a successor x · c of x. If r(x · c) 6= #,
then there are i, j such that d has an fi-successor di ∈ QI

j , or ri(x · c) = d, which

means that d ∈ QI
j and i = 0. Then node(x · c) = node(x · i) and ri(x · c) = di hold

by definition of r. By induction, ti(node(x)) = d, and thus ti(node(x) · i) = di by
definition of t, which concludes the proof of the claim.

Now we can prove that r is a run on t, according to Definition 4.11: consider a
node x with r(x) = (v, q). Then there is an individual d ∈ ∆I with d = ri(x) and
d ∈ tr(q)I . Set Q = tr(q). Moreover, by definition, for letter(t(v)) = A, we have
t(v) = tr−1(A). The claim yields t(v) = r(x) = d, which implies A = letter(d) by
construction. Summing up, we obtain d ∈ AI ∩ QI .

Since I is a model of tr(A), d ∈ CI holds for A u Q v C, the translation of
δ(tr−1(A), q) = ϕ. As d is an instance of C, there exists a set N = {n1, . . . , n`} ⊆ L
which “satisfies” C. For every ni, 1 ≤ i ≤ `, we define a pi ∈ K0 ×Q as follows:

• if ni = ∃fc.Q for some fc,Q, then d has an fc-successor dc ∈ QI . By construction
of t, v has a c-successor v·c, and x has a successor x·c′ with r(x′) = (v·c, tr−1(Q)).
We set pi := (c, tr−1(Q));

• if ni = Q for some Q, then d ∈ QI . By construction, x has a successor x · j with
r(x · j) = (v, q). We set pi := (0, q).

It can easily be seen that set S := {pi | 1 ≤ i ≤ `} satisfies ϕ := tr−1(C), and therefore
Condition 1 from Definition 4.11 is satisfied. Condition 2 holds by construction of S,
thus r is a run. Additionally, r is successful by the definition of r(ε), which concludes
the proof of the “if”-direction. 2

Lemma 5.4 has two consequences: firstly, the emptiness of a language given by
an alternating automaton (and thus reasoning problems for various logics) can be
decided by translating it into an ELU f -concept and TBox and then deciding their
satisfiability using one of the existing DL systems, e. g. FaCT or Racer. Secondly,
we have obtained tight complexity bounds for ELU f : in Section 4.4, we have shown
how alternating automata can be used to decide ALC concept satisfiability w. r. t.
general TBoxes, which is an ExpTime-hard problem (shown by transfer from ALU

5.2. Translation of Two-Way Automata into FLEUIf 71

(Calvanese, 1996)). Since the automaton AC,T is polynomial in the size of C and
T , this yields ExpTime-hardness of the emptiness problem for alternating one-way
automata, and the translation into ELU f being polynomial implies that satisfiabil-
ity of ELUf -concepts w. r. t. TBoxes is ExpTime-hard, in contrast to EL, for which
satisfiability w. r. t. TBoxes is still polynomial (see Section 2.3.4).2

Finally, ELUf is a fragment of deterministic propositional dynamic logic which is
in ExpTime (Ben-Ari, Halpern, and Pnueli, 1982) and allows for the internalisation
of TBoxes (see e. g. Calvanese et al., 1999). Thus we have tight complexity bounds.

Corollary 5.6. Satisfiability of ELUf -concepts w. r. t. general TBoxes is ExpTime-
complete.

This concludes our treatment of one-way automata. We have seen that the trans-
lation of the transition function is rather intuitive and only requires a comparably
inexpressive DL. The translation of two-way automata, which is presented in the fol-
lowing section, is based on the same ideas, but capturing transitions to the father
node requires a more involved construction and also a more expressive DL.

5.2 Translation of Two-Way Automata into FLEUIf

In this section, we extend the translation in Definition 5.2 from one-way to two-way
automata. For (−1)-transitions to the father node, we require the inverses of the
features fi (see Figure 2.1). However, several issues about inverses have to be taken
into account: firstly, the inverse of a feature need not be functional, e. g. the concept
∃f−1 .Q1u∃f−1 .Q2 can have an instance d with two f1 predecessors that are labelled with
Q1 and Q2, respectively. Therefore, we cannot simply translate a (−1)-transition into
an existential restriction involving the inverse of a feature. Secondly, for a particular
node in the completion tree, we do not know the label of the edge by which it is
connected with the father node; thus we do not know which feature fi to use in the
translation of (−1, q0) into ∃f−i .Q0. Both of these problems can be solved by using value
restrictions instead of existential restrictions and thus enforcing that all predecessors
for all features satisfy the corresponding concept.

Since all nodes except the root node in a completion tree are created because of an
existential restriction in the predecessor node and all existential restrictions appearing
in our translation involve a feature (and not its inverse), all of these nodes have exactly
one predecessor for exactly one feature, thus this approach works for all nodes but
the root node. There, a value restriction involving the inverse of a feature would be
trivially satisfied, in contrast with the intended behaviour, namely being unsatisfiable,
since a transition to the father of the root node is impossible. We therefore have to find
another way of preventing these value restrictions for the root node: we use additional
concept names R for the root node and NR appearing only in non-root nodes and the

2Recently, Baader et al. (2005) have shown that EL augmented with either disjunction or functional
roles becomes ExpTime-hard.

72 Chapter 5. Translation of Alternating Automata into DLs

GCI R u NR v ⊥, which ensures that no node can be labelled with both concepts.
Then, we can translate a transition (−1, qi) into the concept

NR u
l

j∈K

∀f−j .Qi,

and we reduce the emptiness problem of an alternating two-way automaton A to the
satisfiability of the concept R u Q0 w. r. t. to the TBox resulting from the translation
of the transition relation of A.

The DL that is obtained from extending ELU f with inverse roles and value re-
strictions is called FLEUIf . This logic is still a fragment of SHIQ and therefore can
be decided using the implementations mentioned in the previous section.3

Definition 5.7 (FLEUIf , translation tr′ into FLEUIf). For a feature f, f− is
a called an inverse feature. The set of FLEUIf concepts is defined like the set of ELUf

concepts with the following addition: if f is a feature or an inverse feature and C is a
concept, ∀f.C and ∃f.C are also concepts. The semantics of the additional constructors
is defined as in Figure 2.1.

The translation tr ′(A) of a two-way automaton A into FLEUIf is defined like the
translation tr in Definition 5.2 with the following additions:

• tr ′(A) additionally contains the GCI R u NR v ⊥, where R and NR are concept
names that do not appear in the translation of states and alphabet symbols;

• (−1)-transitions are translated as follows: tr ′(−1, q) = NR u
d

i∈K ∀f−i .tr
′(q). 3

The following lemma uses this translation to reduce the emptiness problem of loop-
ing alternating two-way automata to FLEUIf concept satisfiability w. r. t. general
TBoxes.

Lemma 5.8. The language accepted by a two-way alternating automaton A =
(Q,Σ, q0, δ) is non-empty iff the concept R u tr ′(q0) is satisfiable w. r. t. the TBox
tr ′(A).

Proof. For the “only-if” direction, we show that the interpretation I defined as in the
proof of Lemma 5.4 also satisfies the GCIs involving value restrictions. We define the
interpretation of the new concept names as RI = {ε} and NRI = ∆I \ {ε}. Let t
be the tree and r be the run used to define I. Observe that the features fc induce
a tree-shaped structure over ∆I since the interpretations are defined by using the
father-child relation in t. Consequently, every individual v ∈ ∆I \ {ε} has exactly one
predecessor for exactly one feature.

Now let v be an individual with v ∈ QI
i ∩ AI

j with the corresponding GCI
Qi u Aj v C and transition δ(qi, σj) = ϕ. Since r is a run, there is a set
{(a(1), qc(1)), . . . , (a(m), qc(m))} of literals which satisfies ϕ and for which there exist

3It is also possible to use role hierarchies instead of value restrictions to represent transitions to
the father node: in this case, a “predecessor feature” f−1 is defined as a super-role of the inverses of
all features fi. This gives rise to a translation of alternating two-way automata into the DL ELUHIf .

5.2. Translation of Two-Way Automata into FLEUIf 73

appropriate nodes in r. If a(i) = (−1) holds for some 1 ≤ i ≤ m then the corre-
sponding node in r is labelled with (v · (−1), qc(m)) and consequently the individual
v ·(−1), which is the unique predecessor of v, is labelled with Qc(m). Therefore v satis-

fies
d

j∈K ∀f−j .Qc(m). Moreover, since r is a run and thus contains no (−1)-transitions

from the root node of t, v ∈ NRI holds.

For the “if” direction, let I be a model for R u Q0 w. r. t. tr ′(A). The tree t is
defined as in the proof of Lemma 5.4, with the only difference that we use an individual
dε from R u Q0 to define the label of the root node. In order to define the the label
for a node x of the run r, we have to consider the possibility that the individual
d = ri(x) may have several predecessors. For the labels for the children nodes of x,
we use the individual that the (unique) predecessor of node(x) refers to; formally:
d−1 := node(x) · (−1), if node(x) 6= ε, and d−1 := #, otherwise. As in the case
of one-way automata, we label one successor of x with (node(x) · (−1), qj) for every
qj ∈ states(d−1). Then, the claim ri(x) = ti(node(x)) follows as before.

In order to show that r is a run, we now consider a run node x with ri(x) = d
and a transition (−1, q) from x that translates into NR u

d
i∈K ∀f−i .Q. Since I is a

model, dx is not equal to dε (otherwise dx would be contained in RI ∩NRI). It follows
by construction of t that there exists at least one predecessor of dx for some feature
fc (otherwise dx would not appear in the range of ti and ri), and that one of these
predecessors relates to the predecessor of node(x). Moreover, all predecessors belong
to QI , and together with the claim above, this yields that one child node of x is
labelled with (node(x) · (−1), q). Consequently, r is a successful run of A on t. 2

Comparing a model I for tr ′(A) (as in Figure 5.1) with a strategy tree s for A (as
in Definition 4.13), it turns out that they are “almost” identical. More precisely, the
unravelling of I looks exactly like s with all dummy nodes removed : in both cases, we
obtain a tree in which every node is labelled with exactly one alphabet symbol and
a set of states. The alphabet symbols give rise to a tree that is accepted by A, and
the states in which A operates on a node v are contained in the label of v. Thus, the
intuitive translation of an alternating automaton into a DL leads to the result that
the tableau algorithm constructs a model that the automata algorithm accepts. This
illustrates the close relationship between tableaus and alternating automata, and it
supports the claim that alternating automata allow for a particularly “natural” way
of handling DLs.

This sums up the theoretical results of our translation. In order to test its practical
relevance, i. e. to to examine if the optimisations of tableau algorithms can compensate
for the overhead introduced by the automata construction, we evaluated the perfor-
mance of existing tableau-based DL reasoners on TBoxes resulting from the translation
of alternating two-way automata into FLEUIf in Definition 5.7. The automata that
were the source for the translation are described in the following section.

5.2.1 An ATA Algorithm for ALCIO

The automata we used for our experiments result from a decision procedure for the
DL ALCIO, i. e. ALC with inverse roles and nominals (see Figure 2.2). Sattler and

74 Chapter 5. Translation of Alternating Automata into DLs

Vardi (2001) describe an algorithm using two-way alternating tree automata to decide
satisfiability of formulas in the hybrid µ-calculus, a modal logic which corresponds
to ALCIO extended with fixpoints and the universal role. Extending the translation
of ALC to one-way automata in Definition 4.17 to inverse roles is comparably easy:
it requires (−1)-transitions to properly handle value restriction and additional role
symbols sr− in RC, indicating that a node is an r−-successor.

Capturing nominals is more involved: since every node can be labelled with a
nominal, but every nominal may only be satisfied by one individual, ALCIO does
not have the tree model property. However, a model for an input (C, T) containing
` nominals {N1, . . . ,N`} can be decomposed into a forest of ` + 1 trees by “cutting
off” subtrees whose roots are labelled with nominals. Thus the initial concept C and
each Ni are represented by one of the trees. Uniqueness of the nominals is ensured
by allowing nodes labelled with nominals only at the roots of these trees; at lower
levels, a node v which requires a successor labelled with a nominal is labelled with an
additional alphabet symbol

r
→ Ni, indicating that it has Ni as an r-successor. A model

can then be generated by introducing an r-edge between v and the root of the tree
representing Ni. In order to ensure that the nominal nodes appearing at lower levels in
the tree are labelled with the same concepts as the nominal nodes, this algorithm uses
a guess G of the types of the nominals and, since we do not impose the unique name
assumption for nominals, a mapping f between nominals to capture the possibility
that one individual represents two nominals. In addition, it is necessary to guess the
roles connecting two nominals to ensure that theses roles are represented consistently
in the two types.

Definition 5.9 (Guess G). Let NR,NC, and NO ⊆ NC be sets of role names, concept
names, and nominal names, respectively. For an ALCIO concept C and a TBox T ,
let NO(C, T) = {N1, . . . ,N`} be the set of all nominals occurring in C or T , and let
NR(C, T) be the set consisting of all occurring role names and their inverses. A guess
G = (G, f, C) consists of

• a guess list G = (γ1, . . . , γ`),

• a set of connections C ⊆ NO(C, T) × NR(C, T) × NO(C, T), and

• a guess mapping f : {1, . . . , `} → {1, . . . , `}

such that the following conditions are satisfied:

1. for each 1 ≤ i, j ≤ `, we have ∅ (γi ⊆ sub(C, T) or γi = #,

2. Ni ∈ γf(i), Ni /∈ γj for f(i) 6= j, NO ∩ γi = ∅ implies γi = #, and

3. (Ni, r,Nj) ∈ C iff (Nj , r
−,Ni) ∈ C. 3

The intuition behind this definition is that γi contains all the concepts from
sub(C, T) that the (unique) individual representing the i-th nominal satisfies (Condi-
tion 1); therefore it includes Ni. In order to allow for one individual satisfying several

5.2. Translation of Two-Way Automata into FLEUIf 75

nominals, we use the mapping f : for example, to express that the individual d be-
longs to the interpretations of both N1 and N3, one can define f(3) = 1, γ3 = #,
and γ1 = {N1,N3} (Condition 2). Finally, the set of connections C and the corre-
sponding restrictions on the γ sets ensures that di (the individual representing Ni)
is an r-successor of dj (the individual representing Nj) iff dj is an r−-successor of di

(Condition 3).

In order to test for the existence of a forest as described in the beginning of this
section with a tree automaton, the forest is transformed back into a tree by adding
a new root node (labelled with a new alphabet symbol ROOT) and n + 1 children.
Such a tree is called pre-model for (C, T ,G). Testing if a tree t is a pre-model for the
input (C, T ,G) requires two automata: the first one, AC,T ,G , is a modification of AC,T

in Definition 4.17, where the transition relation is extended to deal with inverse roles
and nominals. The second one, A′

C,T ,G , tests if the structure of the tree is as defined
above, i. e. if the tree can in fact be regarded as a pre-model consisting of several
trees. If t is accepted by both AC,T ,G and A′

C,T ,G , it is a pre-model for (C, T ,G). An
alternating automaton accepting the intersection of the languages accepted by A and
A′ is easy to construct: one simply introduces a new initial state from which one copy
is sent to each of the initial states of A and A′.

In the following, we describe these two automata in detail. In AC,T ,G , starting
from the root node, we ensure that each of the nominal trees can serve as a model for
the guess of the corresponding nominal and that one of the children is a model for C.
Similar to the state GCI , the state NOM ensures that if a node v is reachable via a
role r from a nominal node vi whose label contains a value restriction ∀r.D, then v’s
label contains D. Existential and value restrictions that involve dealing with nominals
require comparing the restriction with the guess G: if v’s label contains the concept
∃r.D, the nominal node vi is an r-successor of v, and the corresponding γ set contains
D, then the existential restriction is satisfied, and it is not necessary to ensure that
one of v’s r-successors in the tree is labelled with D. Similarly, if v’s label contains
∀r.D and vi is an r-successor, then there is no transition from the current state if D is
not contained in the guess for the corresponding nominal.

Definition 5.10 (Automaton AC,T ,G). For the sets NC, NR and NO defined as in
Definition 5.9 and an ALCIO concept C and TBox T , the automaton AC,T ,G =
(Q,Σ, q0, δ) is defined as in Definition 4.17, with the following modifications:

• the arity k of the input tree is the maximum of #NO(C, T) + 1 and the number
of existential restrictions in sub(C, T);

• Q additionally contains, for each r ∈ NR(C, T), the states sr− and sr− ;

• Σ additionally contains ROOT , and each set σ ∈ Σ can additionally contain, for
every r ∈ NR(C, T) and N ∈ NO(C, T), the symbols

r
→ N and sr− ;

• δ is modified as described in Figure 5.3. 3

The second automaton A′
C,T ,G ensures that the nominal nodes are labelled with

all concepts in the corresponding guess (states Q i), that the nodes in the first level do

76 Chapter 5. Translation of Alternating Automata into DLs

Γi =

{
(i,#) if γi = #∧

D∈γi
(i,D) otherwise

Nσ =
∧

r
→Ni∈σ and ∀r.D∈γf(i)

(0,D)

δ(START , σ) =
∧̀

i=1

Γi ∧
k∨

i=1

(i,C) ∧
k∧

i=1

((i,#) ∨ ((i,GCI) ∧ (i,NOM)))

δ(NOM, σ) = Nσ ∧
k∧

i=1

((i,NOM ∨ (i,#))

δ(∃r.D, σ) =

{
true if

r
→ Ni ∈ σ and D ∈ γf(i)∨k

i=1((i, sr) ∧ (i,D)) otherwise

δ(∀r.D, σ) =

false if
r
→ Ni ∈ σ and D /∈ γf(i)

((−1,D) ∨ (0, sr))∧ otherwise∧k
i=1((i, sr) ∨ (i,D) ∨ (i,#))

Figure 5.3: AC,T ,G transition relation

not contain the role symbols sr or sr (state FIRST), that ROOT only appears at the
root level, and that nominals only appear at the first level (state RN).

Definition 5.11 (Automaton A′
C,T ,G). Let C, T , G and ` be as in Defini-

tion 5.10. The automaton A′
C,T ,G is defined as (Q′,Σ, START ′, δ′) with Q′ =

{START ′,FIRST ,RN,Q1, . . . ,Q`} and δ′ as shown in Figure 5.4. 3

Thus, we have an ATA decision procedure for satisfiability in ALCIO which,
together with our translation of alternating automata into FLEUIf , enables us to
use reasoners for the logic SHIQ to perform reasoning in a language allowing for
nominals. The chain chain of translations is illustrated in the following:

ALCIO
Sattler and Vardi (2001)
−−−−−−−−−−−−−−−→

linear in #Q

exponential in #Σ

ATA
Def. 5.7

−−−−−−−−−−−→
polynomial in

#Q + #Σ

FLEUIf ; Reasoner

Although the size of the automaton AC,T ,G , i. e. the number of its states, is polyno-
mial in the size of the input (C, T ,G), the size of the automaton’s transition function
is exponential since there is one alphabet symbol for every possible set of concept
names. Together with our linear translation in Section 5.2, this yields a TBox whose
size is also exponential in the size of (C, T ,G).

5.2.2 Test Concepts

We have prototypically implemented the automata algorithm for ALCIO described in
the Definitions 5.10 and 5.11 and the translation of alternating automata into FLEUI f

5.2. Translation of Two-Way Automata into FLEUIf 77

δ′(START ′, σ) =

{ ∧`
i=1(i,Qi) ∧

∧k
i=`+1(i,RN) ∧

∧k
i=1(i,FIRST) if σ = ROOT

false otherwise

δ′(FIRST , σ) =

{
true if σ ∩ {sr, sr− | r ∈ NR} = ∅
false otherwise

for 1 ≤ i ≤ ` :

δ′(Qi, σ) =

∧k
i=1(i,RN) if σ ∩ NC = γi ∩ NC, σ 6= ROOT , and,

for each (N, r,N′) ∈ C with N ∈ σ,

σ contains
r
→ N′

false otherwise

δ′(RN, σ) =

{ ∧k
i=1(i,RN) if σ ∩ NO = ∅ and σ 6= ROOT

false otherwise

Figure 5.4: A′
C,T ,G transition relation

from Definition 5.7 in Lisp. As input for the translation, we used the empty TBox
and the ALCIO concepts shown in Figure 5.5. Here, the expression (∀r)i stands for
∀r . . .∀r︸ ︷︷ ︸

i times

. The tests were performed with the concepts for i ∈ {0, . . . , 5} for every

pattern. For satisfiable concepts containing the nominal N, the guess G was defined
such that it assigned to N the smallest possible set of concepts that is required to
ensure satisfiability. For unsatisfiable concepts, it assigned the set consisting of all
required concepts except for the one leading to a contradiction. For example, the set
γ1 for the nominal N in the pattern ex-nc consists of N and A for both the satisfiable
and the unsatisfiable variant.

The idea behind the structure of these patterns is the following:

• since nominals lead to a multiplication of the number of states, there are con-
cept patterns sharing the same structure, but one pattern uses only a concept
name (〈name〉-c), the second one uses only a nominal name (〈name〉-n), and the
third one uses both (〈name〉-nc), so that the influence of the mere existence of
nominals can be tested;

• there are concepts exploiting the special features of nominals, i. e. the fact that
there can be only one individual in the interpretation of a nominal (root-nc);

• there are concepts exploiting the interaction between a value restriction and and
an existential restriction (all-c/nc) as well as the interaction between a role and
its inverse (all-inv-c/nc).

5.2.3 Empirical Results

We tested our concepts with FaCT version 2.31.7 and Racer version 1.6.7 under
Linux on the following hardware: Pentium-IV 1.7GHz, 512MB RAM, 1.5GB swap-

78 Chapter 5. Translation of Alternating Automata into DLs

Name Satisfiable Concept Unsatisfiable Concept

ex-c (∃r)i.A (∃r)i.(A u ¬A)
ex-n (∃r)i.N (∃r)i.(N u ¬N)
ex-nc (∃r)i.(A u N) (∃r)i.(A u ¬A u N)
all-c (∃r)i.A u (∀r)i.B (∃r)i.A u (∀r)i.¬A
all-nc (∃r)i.A u (∀r)i.N (∃r)i.A u (∀r)i.(N u ¬A)
all-inv-c B u (∃r)i.(∀r−)i.A ¬A u (∃r)i.(∀r−)i.A
all-inv-nc N u (∃r)i.(∀r−)i.A (N u A) u (∃r)i.(∀r−)i.(¬A)
root-nc N u A u (∃r)i.(N u B) N u A u (∃r)i.(N u ¬A)

Figure 5.5: Test concepts

space. The Lisp system used is Allegro Common Lisp version 6.2 for FaCT and
version 6.1 for Racer. Figure 5.6 shows for every concept pattern the maximum i for
which the concept could be tested within the time limit of 1000 seconds. The adjacent
column shows the reason why the test of the next harder concept failed: “T” stands
for timeout, “M” for insufficient memory. The total in the bottom rows also includes
the concepts for i = 0 and is therefore (by the number 8) higher than the sum of the
above rows. Since tests with internalised vs. non-internalised TBox (see Section 2.3.6)
indicated that internalisation leads to a significant speedup, all results presented in
the following were produced with internalisation.

Comparing the 〈name〉-ex-c and 〈name〉-ex-n concepts, it is obvious that the over-
head introduced by nominals is significant. The same holds for every 〈name〉-c concept
in comparison with the corresponding 〈name〉-nc concept. Thus, even when the special
properties of nominals are not exploited, the mere presence of nominals slows down
the reasoners, and their optimisations are not able to compensate for the overhead
introduced. The situation is even worse for the concept pattern root-nc, which really
exploits the expressivity of nominals and therefore requires node labels to contain
r
→ N symbols, which interact with the guess. For this concept pattern, both reasoners
could only process the trivial concept for i = 0.

Moreover, Figure 5.6 shows that unsatisfiable concepts are significantly harder to
process than their satisfiable counterparts. This is characteristic for tableau algorithms
(see e. g. Horrocks, 1997; Hladik, 2002) because, in order to recognise a satisfiable
input, the algorithm only has to find one sequence of non-deterministic decisions (i. e.
one path through the “outer” tree described in Section 3.2) that leads to a model,
and the search for this path can be sped up by efficient heuristics. For unsatisfiable
inputs however, all sequences of decisions have to be tested, i. e. the entire search tree
has to be traversed. Comparing the performance of the two systems, one can see that
FaCT can handle more concepts than Racer.

Next, we examine if the calculation time does indeed increase exponentially in the
size of the input automaton or if this behaviour can be prevented by the optimisations
of the tableau algorithms. To this end, Figure 5.7 displays the processing times in
relation to the size of the input automaton’s transition function on a logarithmic
scale. Since it is impossible to recognise a particular behaviour (e. g. polynomial or
exponential runtime) from two or fewer measuring points, the figure only includes

5.2. Translation of Two-Way Automata into FLEUIf 79

FaCT Racer

Concept sat unsat sat unsat

ex-c 5 2 T 4 T 1 T
ex-n 3 M 1 T 1 T 0 T
ex-nc 2 M 0 T 0 M 0 T
all-c 3 M 2 T 3 T 1 T
all-nc 0 M 0 T 0 M 0 M
all-inv-c 3 T 2 T 1 M 1 M
all-inv-nc 0 M 1 T 0 M 0 M
root-nc 0 M 0 T 0 M 0 M

Total 24 16 17 11

40 28

Figure 5.6: Number of successful tests

formula patterns for which at least three concepts could be processed. Although
there are only few measuring points per pattern, the nearly linear graphs suggest
that the calculation time increases almost exponentially in the size of the transition
function/TBox (which in turn is exponential in the size of the input ALCIO concept).
This shows that the optimisations of tableau algorithms are not able to compensate
for the overhead introduced by an automata algorithm.

Berardi, Calvanese, and de Giacomo (2001) observed a poor performance of FaCT

and Racer on TBoxes resulting from an automatic translation of UML class diagrams
and identified three possible reasons for this behaviour:

• terminological cycles including existential restrictions,

• inverse roles,

• functional restrictions combined with existential restrictions.

Clearly, our translation contains all three kinds of problematic properties: we exten-
sively use features and their inverses, and terminological cycles involving features are
also not rare because every automaton AC for a satisfiable ALCIO concept C contains
cycles (otherwise, there would not exist an infinite run). Another possible reason is
the fact that the concept names are strongly connected in the sense there is a GCI
for every possible pair of an alphabet symbol and a state, and thus every concept
name added to a node causes a new GCI to fire and therefore to add new existential
restrictions to the node label.

The observation that several kinds automatic translations from other formalisms
into DLs lead to TBoxes that are very hard to process for existing reasoners, which
on the other hand often perform surprisingly well on knowledge bases from real-life
applications (Horrocks, 1997), supports the hypothesis that one reason for the good
performance of tableau algorithms on these TBoxes is that real-life knowledge bases
only exploit a small fraction of the expressivity of the underlying languages.

80 Chapter 5. Translation of Alternating Automata into DLs

 0.1

 1

 10

 100

 1000

 100 150 200 250 300 350 400 450 500 550 600

se
co

nd
s

size of transition function

FaCT ex-c
Racer ex-c
FaCT all-c
Racer all-c

FaCT all-inv-c
FaCT ex-n

Figure 5.7: Runtimes of the satisfiability test for different patterns

5.3 Chapter Summary

In this chapter, we have developed methods for the translation of alternating au-
tomata into DL TBoxes. For one-way automata, the rather inexpressive logic ELU f

suffices: states and alphabet symbols are translated into concepts, and transitions to
other states are encoded by existential restrictions involving features. For two-way
automata, inverse roles and value restrictions are needed to capture transitions to the
father node, thus target logic of the translation is FLEUIf .

In order to find out if the optimisations implemented in DL reasoners, which lead
to good performance for many TBoxes resulting from real-life applications, are able to
remedy the exponential blow-up induced by the automata algorithm, we have tested
the behaviour of two DL reasoners on alternating automata which in turn result from
a decision procedure for the logic ALCIO.

From this effort, we have obtained three main results:

• The tableaus generated during the satisfiability test of these TBoxes closely re-
semble strategy trees for the corresponding automata, which again demonstrates
the close relationship between two-way automata and tableau algorithms.

• Since our translation into ELU f is linear and the emptiness problem of alternat-
ing one-way automata is ExpTime-hard, we obtain that concept satisfiability
w. r. t. general TBoxes in the inexpressive DL ELU f is ExpTime-complete.

5.3. Chapter Summary 81

• Empirical evaluation shows that the optimisations of the DL reasoners we used
are not capable of compensating for the exponential blow-up introduced by the
automata algorithm. The steep increase in processing time in relation to the
size of the TBox supports previous observations that TBoxes resulting from
automatic translation procedures are significantly harder to process than TBoxes
resulting from real-life applications.

Chapter 6

PSpace Automata

In Chapter 5 we have seen that the efficiency of tableau algorithms cannot easily
be transferred to automata by simply translating an automaton into a DL for which
satisfiability can be tested by a tableau algorithm, thus making use of the TA’s efficient
optimisations. In this chapter, we use a different approach to improve the efficiency
of automata algorithms by employing methods stemming from the tableau paradigm:
instead of first constructing the automaton and then testing emptiness with a TA, we
modify the automata construction and the emptiness test itself using methods known
from TAs. Our focus is also not on performance in practice, as in Chapter 5, but on
the complexity class that can be obtained from an AA. As mentioned in Section 3.2.1,
the TA for ALC concept satisfiability is in PSpace because

• the maximum length of a path within the tableau is linear in the size of the
input and

• it is only necessary to keep one path in memory at a time.

The reason for the polynomial length of a path in a tableau is the fact that the role
depth, i. e. the maximum nesting depth of quantifiers, decreases from a node to its
child. Since the role depth of concepts for the root node is obviously bounded by the
size of the input, so is the maximum length of a path. From a model-theoretic point
of view, one can say that the reason why ALC satisfiability is in PSpace is that ALC
has the finite tree model property , i. e. every satisfiable concept has a model which is a
finite tree, and additionally that there is a polynomial bound for the maximum length
of a path in such a tree.

In the first part of this chapter, we use this observation to define segmentable
automata, a class of automata for which the state space is divided into a hierarchy
of segments, where each transition leads to a lower segment within the hierarchy.
If the number of segments is polynomial in the size of the input, we can show a
PSpace result with an argument that is similar to the one mentioned above for tableau
algorithms. Using this approach, we can provide an alternative proof based on an
automata algorithm for the known result that ALC concept satisfiability w. r. t. acyclic
TBoxes is in PSpace.

84 Chapter 6. PSpace Automata

There are, however, DLs for which the satisfiability problem is decidable in
PSpace, but which do not have the finite tree model property. For example, in
the DL SI (see Section 2.3.5), some concepts require cyclic or infinite models, but it
is possible to define a TA for SI concept satisfiability that is still in PSpace (Hor-
rocks et al., 1999). This result is achieved by using the blocking technique (see Section
3.2.2): a new node is only generated if there exists no predecessor node with the same
label. In the second part of this chapter, we adapt this technique by defining blocking
automata for which there is a blocking relation between the states of the automaton.
This allows us to obtain a new PSpace result for satisfiability of SI concepts w. r. t.
acyclic TBoxes.

For both approaches, the state space of the automaton under consideration is still
exponential in the size of the input. It is therefore impossible to construct the entire
automaton first and perform the bottom-up emptiness test afterwards as sketched in
Section 4.1. Instead, we have to perform the emptiness test top-down and interleave
it with the automaton’s construction, i. e. construct the automaton on-the-fly . This is
essential for obtaining a PSpace result because it allows us to avoid generating states
that are irrelevant for the result of the emptiness test. However, it also has two dis-
advantages: firstly, as the top-down emptiness test for automata is non-deterministic,
we obtain a non-deterministic complexity class, NPSpace. Since NPSpace is equal
to PSpace by the theorem of Savitch (1970), this is not an essential problem for our
approach. Secondly, the top-down emptiness test does not automatically terminate
(see Section 4.2). We therefore have to halt the test after reaching the lowest level in
the hierarchy (for segmentable automata) or a blocked state (for blocking automata).

This chapter is based on work that was previously published by Hladik and
Peñaloza (2006); and Baader, Hladik, and Peñaloza (2006, 2007a, 2008).

6.1 Segmentable Automata

In this first framework, the conditions that an AA has to fulfil in order to provide a
PSpace upper bound are rather strong. Consequently, it is not too difficult to prove
the complexity results for this framework and to apply it for a specific DL, but it
also covers only a limited class of automata (and thus logics). In Section 6.2, we will
define a more general framework that, as argued in Section 6.2.4, can be regarded as
a generalisation of this one.

6.1.1 An Automata Algorithm for ALC Concept Satisfiability w. r. t.

Acyclic and General TBoxes

For our aims in this chapter, we have to modify the definition of the automaton AC,T

in Definition 4.6 in two ways. Firstly, as indicated in Section 4.3.1, we will simplify it
by dropping the alphabet Σ: there is an obvious redundancy in the definition of the
transition relation because the first component (the initial state) is always identical
to the second component (the alphabet symbol). One can therefore omit Σ and work
on the (unique) infinite k-ary unlabelled tree as input, i. e. automata for satisfiable

6.1. Segmentable Automata 85

inputs will accept exactly one input. This also means that the input tree does not
correspond to a model anymore, but instead the successful run does, since it is a
relabelling of the input tree where every node is labelled with the corresponding state
of the automaton, which in turn is a Hintikka set. A looping automaton operating
on the unlabelled k-ary tree then consists only of three parameters: AC,T = (Q, I,∆)
with ∆ ⊆ Qk+1.

Secondly, the automata algorithm from Definition 4.6 only deals with general
TBoxes. Since satisfiability of ALC concepts w. r. t. general TBoxes is ExpTime-
hard, we will not be able to show PSpace results with this automata definition, but
we have to extend it in order to take advantage of the better computational properties
of acyclic TBoxes. In fact, the definition of the automaton AC,T is only modified in-
directly by a change in the definition of T -expanded Hintikka sets. For an acyclic set
of concept definitions of the kind A

.
= C (see Definition 2.2), the following definition

of expansion is sufficient:

Definition 6.1 (T -expanded for acyclic and general TBoxes T). For a TBox
T , a Hintikka set S is called T -expanded if, for every GCI C v D ∈ T , it holds that
¬̇C t D ∈ S and, for every concept definition A

.
= C ∈ T , it holds that A ∈ S implies

C ∈ S and that ¬A ∈ S implies ¬̇C ∈ S.
The definitions of C, T -compatible, Hintikka set, and Hintikka tree for C and T

are extended accordingly. 3

This technique of handling acyclic concept definitions is referred to as lazy unfold-
ing since, in contrast to GCIs, acyclic concept definitions are used only if the defined
concept name (or its negation) is explicitly present in a Hintikka set. Proceeding this
way is possible because in the construction of a model from a successful run, we can
determine for all individuals that do not contain A or ¬A for a defined concept name
A
.
= C if they belong to AI or (¬A)I by testing if they belong to CI or not. Due to

the acyclicity of T , this cannot lead to ambiguities or contradictions. Note that the
size of Hintikka sets is still polynomial in the size of the input (C, T): it may addi-
tionally contain one possibly complex concept for every concept definition, whose size
is trivially bounded by the size of the input, and thus also the number of additional
subconcepts required by the conditions for Hintikka sets is linear in the size of the
input.

In order to construct a model from a run, we therefore have to ensure that we
know the definition of CI before defining the set AI . This is made possible by the
following definition, which takes concept definitions into account:

Definition 6.2 (Expanded role depth). For an ALC concept C and an acyclic
TBox T , the expanded role depth rdT (C) is inductively defined as follows:

• rdT (A) = 0 for primitive concept names A;

• rdT (A) = rdT (C) for concept definitions A
.
= C;

• rdT (¬A) = rdT (A);

• rdT (D u E) = rdT (D t E) = max{rdT (D), rdT (E)};

86 Chapter 6. PSpace Automata

• rdT (∀r.D) = rdT (∃r.D) = rdT (D) + 1.

Please note that rdT (C) is polynomially bounded by the size of C, T . For a set of
concepts S, rdT (S) is defined as max{rdT (D) | D ∈ S}. The set of subconcepts of depth
up to n, sub6n(C, T), is defined as {D ∈ sub(C, T) | rdT (D) ≤ max{0, n− 1}}.1 3

Note that rdT is well-defined because T is acyclic. With the above modifications
of the definitions of expanded Hintikka sets and Hintikka trees, we obtain a result
analogous to Theorem 4.5. Since we prove a stronger result for an extension of ALC
in Section 6.2.1, we omit the proof of the following theorem here.

Theorem 6.3. An ALC concept C is satisfiable w. r. t. a TBox T iff there is a C, T -
compatible Hintikka tree t with C ∈ t(ε).

The automaton AC,T is then defined as in Definition 4.6, omitting the alphabet Σ
and using the modified definition of T -expanded from definition 6.1. Soundness and
completeness of the automata algorithm again follow directly from Theorem 6.3 and
the fact that the transition relation ∆ of AC,T uses the same notion of C, T -compatible
as the Hintikka tree.

Lemma 6.4. The language accepted by the automaton AC,T is empty iff C is unsat-
isfiable w. r. t. T .

Theorem 6.5. Satisfiability of ALC concepts w. r. t. general TBoxes is decidable in
ExpTime.

In the following, we show how this result can be improved for the special case of acyclic
TBoxes.

6.1.2 The Framework for Segmentable Automata

In this section we develop a framework for automata in which the state space can be
separated into a hierarchy of segments where every transition leads to a lower level in
the hierarchy. If there are m segments and each element of the lowest segment can be
the root of a successful run, then it is possible to restrict the emptiness test to runs of
depth m. Formalising these conditions is the purpose of the following definition. In
Section 6.1.3 we will then show how the role depth of concepts can be used to define
such a hierarchy for the ALC automata algorithm.

Definition 6.6 (Q0-looping, m-segmentable). Let A = (Q,∆, I) be a looping
automaton on k-ary trees and Q0 ⊆ Q. We call A Q0-looping if for every q ∈ Q0 there
exists a set of states {q1, . . . , qk} ⊆ Q0 such that (q, q1, . . . , qk) ∈ ∆.

An automaton A = (Q,∆, I) is called m-segmentable if there exists a partition
Q0, Q1, . . . , Qm of Q such that A is Q0-looping and, for every (q, q1, . . . , qk) ∈ ∆, it
holds that if q ∈ Qn, then qi ∈ Q<n for 1 ≤ i ≤ k, where Q<n denotes Q0∪

⋃n−1
j=1 Qj .3

1This seemingly over-complicated definition allows us to also use negative values for n and thus to
avoid case distinctions in the following proofs.

6.1. Segmentable Automata 87

1: if I 6= ∅ then
2: guess an initial state q ∈ I
3: else
4: return “empty”
5: end if
6: if there is a transition from q then
7: guess such a transition (q, q1, . . . , qk) ∈ ∆
8: push(SQ, (q1, . . . , qk)), push(SN, 0)
9: else

10: return “empty”
11: end if
12: while SN is not empty do
13: (q1, . . . , qk) := pop(SQ), n := pop(SN) + 1
14: if n ≤ k then
15: push(SQ, (q1, . . . , qk)), push(SN, n)
16: if length(SN) < m− 1 then
17: if there is a transition from qn then
18: guess a transition (qn, q

′
1, . . . , q

′
k) ∈ ∆

19: push(SQ, (q′1, . . . , q
′
k)), push(SN, 0)

20: else
21: return “empty”
22: end if
23: end if
24: end if
25: end while
26: return “not empty”

Figure 6.1: Emptiness test for segmentable automata

Note that it follows immediately from this definition that for every element q of
Q0 there exists an infinite tree with q as root which is accepted by A. The hierarchy
Qm, . . . , Q0 ensures that Q0 is reached eventually.

We will now show that the emptiness test for an m-segmentable automaton can
be performed using space logarithmic in the size of the automaton. In the following,
when we speak about a path of length m in a k-ary tree, we mean a sequence of nodes
(v1, . . . , vm) ∈ (K∗)m such that v1 is the root ε and vi+1 is a child of vi.

The algorithm performing the emptiness test form-segmentable automata is shown
in Figure 6.1. Essentially, it performs a depth-first traversal of a successful run.
Since A is m-segmentable, it is not necessary to descend to a depth larger than m.
Moreover, since the different paths within the run are independent in the sense that
the existence of transitions for one path does not affect the existence of transitions
for other paths, the algorithm only has to keep one path in memory at a time. Note
that the construction of the automaton is interleaved with the emptiness test, thus the

88 Chapter 6. PSpace Automata

�

q5

�

q4
�

q4
�

q0

�

q3
�

q2
�

q2

�

q1
�

q0
	

q1

SQ SN

(q4, q4, q0) 1

(q3, q2, q2) 3

(q1, q0, q1) 1

Figure 6.2: A successful run and the corresponding data structures

algorithm also never keeps the whole automaton in memory, but only the transitions
that are relevant for the current path.

In order to remember the backtracking information for the depth-first traversal, we
use two stacks: the stack SQ stores, for every node in the current path, the right-hand
side of the transition which led to this node, and the stack SN stores, also for every
node in the current path, on which component of this right-hand side the algorithm
is currently working. If we refer to the depth of SN by d and to the elements in SN by
SN(1)[the bottom element], . . . , SN(d)[the top element], the next node to be checked
is SN(1) ·SN(2) · . . . ·SN(d)+ 1. The entries of SQ and SN are elements of Qk and K0,
respectively, and the number of entries is bounded by m for each stack.

Example 6.7 (On-the-fly emptiness test). Figure 6.2 shows the values stored in
the stacks SQ and SN at the beginning of an iteration, and their relation with the
traversal of the run. The circled nodes represent the path that was followed in order
to reach the node about to be checked. The values of the elements of the stack are
shown next to the depth in the run to which they correspond. For this reason, the
stacks appear backwards, with their bottom element at the top of the figure, and vice
versa.

After starting, the algorithm first guesses an initial state and a transition from
that state. If it can find one, it pushes the labels of the nodes 1, . . . , k onto stack
SQ and the number 0 onto stack SN. Then it enters the while loop. As long as the
stacks are not empty, the algorithm takes the top elements of both stacks. If n > k
in line 14, this indicates that it has checked all nodes on this level, and it backtracks
without pushing anything on the stacks, which means that it will continue at the next
upper level in the next loop. Otherwise, the algorithm stores the information that it
has to check the next sibling by pushing the same tuple of states onto SQ and the
incremented number n onto SN. Next, the algorithm tests if it has already reached
the maximum depth in line 16. If the answer is yes, it backtracks, otherwise it tries
to find a transition from the current node. If there is one, it pushes the required node

6.1. Segmentable Automata 89

labels for the children of the current node onto SQ and the value 0 onto SN (line 18),
which means that it will descend to the first child of the current node in the next loop.
If there is no transition from the current state, the input is rejected.

Theorem 6.8. The emptiness problem of the language accepted by an m-
segmentable automaton A = (Q,∆, I) over k-ary trees can be decided by a non-
deterministic algorithm using space O(log(#Q) · m · k), under the condition that it
is possible to guess an initial state and a transition from a given state using space
logarithmic in #Q.

Proof. In order to show soundness, we will prove the claim “if the algorithm processes a
node n (or backtracks without visiting n), then there is a successful run r in which n is
labelled with the same state as in the algorithm (or a state q ∈ Q0)” by induction over
the iterations of the while loop. Initially, if the algorithm does not answer “empty”,
there is a transition (q0, q1, . . . , qk) from an initial state, which can serve as root of
the run r, and for which the states 1, . . . , k of r can be labelled with q1, . . . , qk.

If the algorithm has reached a node n = n0 ·n1 · . . . ·n` without answering “empty”,
it follows by induction hypothesis that each of the previously visited nodes corresponds
to a node in r. Now there are two possibilities: firstly, if depth m has been reached
then r(n) ∈ Q0 holds because A is m-segmentable. Moreover, since A is Q0-looping,
there exists a k-ary run rooted at n in which all nodes are labelled with states from Q0.
Otherwise there is a transition (r(n), q′1, . . . , q

′
k) because the algorithm does not answer

“empty”, and we can use the same transition in the labelling of r.

In order to show completeness, we will prove the claim “if there exists a successful
run, the algorithm can reach or skip every node in {1, . . . , k}∗ without returning
‘empty’ as result” by induction over the structure of the run r. Since there is a
successful run, we can guess an initial transition, and the nodes of the first level have
the same labels in the algorithm as in r. If we have reached a node n that corresponds
to the node n in r with r(n) = q, there are again two possibilities: if depth m has
been reached, the algorithm will backtrack and skip over all successor nodes of n.
Otherwise, since r is a successful run, there exists a transition (q, q′1, . . . , q

′
k), which

the algorithm can guess, and therefore it will not return “empty”.

Regarding memory consumption, observe that the stack SQ contains, for every
level, k states, each of which can be represented using space logarithmic in the number
of states, e. g. by using binary coding. Since we only descend into the depth m, there
can be at most m tuples on the stack, thus the size of SQ is bounded by log(#Q)·m·k.
SN stores at most m numbers between 0 and k. Since the guessing steps in the lines
2, 7, and 18 involve guessing one or k + 1 states, each of which can be represented
using space logarithmic in the size of Q, the entire algorithm uses space logarithmic
in the size of A. 2

The condition that an automaton A is m-segmentable is rather strong since it re-
quires that from every state within the automaton, only transitions to states having a
lower level in the hierarchy are possible. Therefore, the automaton AC,T from Section
6.1.1 cannot easily be shown to be segmentable even if the TBox is empty because

90 Chapter 6. PSpace Automata

AC,T does not enforce that the Hintikka sets of the successor states use only a lower
quantification depth: for example, if the current state is q0 = {∃r.∃s.A}, then one pos-
sible successor state is q1 = {∃s.A}, but a transition to the state q2 = {∃s.A, ∀r.∃s.B}
is also possible if ∀r.∃s.B is a subconcept of the input, and this transition does not
decrease the maximum role depth. However, in order to test emptiness, we only need
the existence of a transition leading to a lower class; therefore we will remove the
transition involving q2 from the transition relation and keep only the one to q1. This
means that the automaton does not accept all models for the input anymore, but it
does not change the result of the emptiness test because the transition to q1 is still
present. This is the idea behind the generalisation in the following definition.

Definition 6.9 (Weakly-m-segmentable, reduced). An automaton A =
(Q,∆, I) is called weakly-m-segmentable if there exists a partition Q0, Q1, . . . , Qm of
Q such that A is Q0-looping and for every q ∈ Q there exists a function fq : Q → Q
which satisfies the following conditions:

1. if (q, q1, . . . , qk) ∈ ∆, then (q, fq(q1), . . . , fq(qk)) ∈ ∆, and if q ∈ Qn, then
fq(qi) ∈ Q<n for all 1 ≤ i ≤ k;

2. if (q′, q1, . . . , qk) ∈ ∆, then (fq(q
′), fq(q1), . . . , fq(qk)) ∈ ∆.

If A = (Q,∆, I) is a weakly-m-segmentable automaton, then Ar, the reduced automa-
ton of A, is defined as follows:

Ar = (Q,∆′, I) with
∆′ = {(q, q1, . . . , qm) ∈ ∆ | if q ∈ Qn then qi ∈ Q<n for 1 ≤ i ≤ k}. 3

Note that the reduced automaton Ar is m-segmentable by definition. In order to
transform a tree accepted by A into one accepted by Ar, we replace, for all direct
and indirect successors of a node labelled with q, the node labels qi with fq(qi). The
conditions of Definition 6.9 guarantee that the tree obtained this way is accepted by
Ar: intuitively, Condition 1 ensures that the class decreases for the transition from q
to its direct successors, and Condition 2 ensures that there are still transitions for all
successor nodes after modifying the node labels according to fq. In order to show that
we can restrict the emptiness test to Ar, the first thing to show is that the removed
transitions are not required for the emptiness test, which is stated in the following
lemma.

Lemma 6.10. Let A = (Q,∆, I) be a weakly-m-segmentable automaton. Then L(A)
is empty iff L(Ar) is empty.

Proof. Since every successful run of Ar is also a successful run of A, L(A) can only be
empty if L(Ar) is empty, thus the “only if” direction is obvious. For the “if” direction,
we will show how to transform a successful run r of A into a successful run s of Ar.
To do this, we traverse r breadth-first, creating an intermediate run r̂, which initially
is equal to r. At every node v ∈ K∗, we replace the labels of the direct and indirect
successors of v with their respective fr̂(v) values (see Definition 6.9). More formally,

6.1. Segmentable Automata 91

at node v, we replace r̂(w) with fr̂(v)(r̂(w)) for all w ∈ {v · u | u ∈ K+} (recall that
K+ = K∗ \ {ε} by Definition 4.1).

By Definition 6.9, r̂ is still a successful run after the replacement (here, Condition 2
is necessary to ensure transitions from the successors of v), and all direct successors of
v are in a lower class than v (or Q0 if r̂(v) ∈ Q0). Note that the labels of v’s successors
are not modified anymore after v has been processed. We can therefore define s(n)
as the value of r̂(v) “in the limit”, i. e. after v has been processed. As argued before,
s is a successful run in which every node is in a lower class than its father node (or
both are in class 0). Consequently, all transitions used in s belong to the transition
relation of Ar. 2

Since the transitions from A that are not present in Ar do not have an influ-
ence on the answer of the emptiness test, we can transfer the complexity result from
segmentable to weakly-segmentable automata:

Corollary 6.11. The emptiness problem for a weakly-m-segmentable automaton
A = (Q,∆, I) on k-ary trees can be tested using space O(log(#Q) ·m · k).

6.1.3 An Application to ALC with Acyclic TBoxes

In order to apply our framework to ALC with acyclic TBoxes, we will us the role
depth to define the different classes, with the intuition that for a node q in a Hintikka
tree, any concept having a higher role depth than q is superfluous in successors of q
and thus the tuple without these concepts is also in the transition relation.

Lemma 6.12. Let C be an ALC concept, T an acyclic TBox, and (S, S1, . . . , Sk) a
C,T -compatible tuple. Then, for n = rdT (S) and every m ≥ 0, the following tuples
are C,T -compatible:

(S, sub6n−1(C, T) ∩ S1, . . . , sub6n−1(C, T) ∩ Sk)
(sub6m−1(C, T) ∩ S, sub6m−1(C, T) ∩ S1, . . . , sub6m−1(C, T) ∩ Sk)

Proof. We need to show that the conditions in Definitions 4.4 and 6.1 are satisfied
for both tuples. In the case of the first tuple, suppose that ∃r.D ∈ S. Then, Sϕ(∃r.D)

contains D and every concept Ei for which there is a value restriction ∀r.Ei ∈ S.
But since rdT (D) < rdT (∃r.D) ≤ n and rdT (Ei) < rdT (∀r.Ei) ≤ n, it holds that
sub6n−1(C, T) ∩ Sϕ(∃r.D) contains D and each of the Ei concepts.

For the second tuple, if we have ∃r.D ∈ sub6m−1(C, T) ∩ S, then it holds that
rdT (∃r.D) < m and D ∈ Sϕ(∃r.D). If additionally there is a concept term Ei such
that the value restriction ∀r.Ei ∈ sub6m−1(C, T) ∩ S, then again rdT (Ei) < m and
Ei ∈ Sϕ(∃r.D). Hence, sub6m−1(C, T)∩Sϕ(∃r.D) contains D and each such concept Ei.2

Using Lemma 6.12, we can apply the framework of segmentable automata to the
automata algorithm for ALC concept satisfiability w. r. t. acyclic TBoxes:

Theorem 6.13. Let C be an ALC concept, T an acyclic TBox and m = rdT (C).
Then AC,T = (Q,∆, I) is weakly-m-segmentable.

92 Chapter 6. PSpace Automata

Proof. We have to give the segmentation of Q and the functions fq and show that
they satisfy the conditions in Definition 6.9. The classes Qi for 0 ≤ i ≤ m and the
functions fq for q, q′ ∈ Q are defined as follows:

Qi := {S ∈ Q | rdT (S) = i}

fq(q
′) := q′ ∩ sub6n−1(C, T), where n = rdT (q)

By this definition, it is obvious that for every q and q′, fq(q
′) is in a lower class

than q (or in Q0 if q ∈ Q0). Lemma 6.12 shows that Conditions 1 and 2 of Definition
6.9 are satisfied. It remains to show that AC,T is Q0-looping. If q ∈ Q0 holds, then
there are no existential restrictions in q, and therefore (q, ∅, . . . , ∅) is contained in ∆.2

For an automaton AC,T = (Q,∆, I), the state space Q is exponential in the size of
the input (C, T). The arity k is obviously linear since it is bounded by the number of
existential quantifiers appearing in the input; and the number of segments m is also
linear since it is bounded by the expanded role depth of C. Thus, by Corollary 6.11, we
obtain that satisfiability for ALC concepts w. r. t. acyclic TBoxes can be decided by a
non-deterministic algorithm using space polynomial in the size of the input. Applying
the theorem of Savitch (1970) then yields a deterministic complexity class.

Corollary 6.14. Satisfiability of ALC concepts with respect to acyclic TBoxes is
PSpace-complete.

PSpace-hardness for this problem follows directly from the known PSpace-
hardness result for ALC concept satisfiability w. r. t. the empty TBox (Schmidt-Schauß
and Smolka, 1991).

6.2 Blocking Automata

Segmentable automata have the advantage that they are comparably easy to handle
and that the segmentation of the state space can be rather obvious, as in the case
for the role depth in ALC. There are, however, logics that are in PSpace but do
not have the finite tree model property and are also not segmentable. For example,
if there is a transitive role r, then the concept ∃r.A u ∀r.∃r.A does not have a finite
tree model. In order to obtain a PSpace result in this case, the tableau algorithm
for SI (Horrocks et al., 1999) uses blocking (see Section 3.2.2) and requires a rather
sophisticated blocking condition to ensure that a blocked node is reached after a
polynomial number of steps. In this section, we adapt this technique to automata
algorithms and extend it to acyclic TBoxes.

6.2.1 An Automata Algorithm for SI Concept Satisfiability w. r. t.

Acyclic and General TBoxes

We begin with formally introducing the DL SI, which extends ALC with transitive
and inverse roles.

6.2. Blocking Automata 93

Definition 6.15 (SI). Let NC and NR be sets of concept and role names as in Def-
inition 2.1 and let NR+ , the set of transitive role names, be a subset of NR. For a role
name r, r− is called an inverse role. The DL SI is defined as ALC (Definition 2.4)
with the addition that inverse roles can be used instead of roles in existential and
value restrictions.

The semantics of transitive and inverse roles is as defined in Figure 2.1, i. e. tran-
sitive role names have to be interpreted by transitive relations, and (r−)I consists of
the converses of all pairs in rI . As usual, in order to avoid having to deal with double
inversion as in r−−, we define the inverse of a role r, r, as r−, if r is a role name, and
as s, if r is an inverse role s−. We use the predicate trans(r) to express that r or r is
contained in NR+ . 3

The ALC automata algorithm from Section 6.1.1 has to be extended in two ways
in order to capture SI. Firstly, for inverse roles, the automaton has to guess in
advance which concepts will be required in the current node due to value restrictions
in the successors because it does not have the capability of two-way automata to go
upward in the tree. However, each transition involves guessing a complete type for
every successor, thus the value restrictions that the successors will contain are known
in advance. Therefore inverse roles only require a slight modification in the definition
of C, T -compatible. Secondly, for a transitive role r and a value restriction ∀r.C, the
transition relation does not only require C in the label of an r-successor, but also ∀r.C,
which ensures that all indirect r-successors also contain C.

For reasons which will be explained in Section 6.2.3, we will not use a single set of
concepts as a node label, but a quadruple (Γ,Π,Ω, %), where % is the role that connects
the node with its father node, Ω is the entire Hintikka set for the node, Γ ⊆ Ω contains
the unique concept D contained in Ω because of an existential restriction ∃%.D in the
father node, and Π contains only those concepts that are contained in Ω because of
value restrictions ∀%Ei in the father node. We will use a special role name λ for nodes
that are not connected to the father by a role, i. e. the root node and those (dummy)
nodes that are labelled with an empty set of concepts.

Definition 6.16 (C, T -compatible, Hintikka tree for SI). Let λ be a role
name that does not appear in C or T . Then the tuple ((Γ0,Π0,Ω0, %0), (Γ1,Π1,Ω1, %1),
. . ., (Γk,Πk,Ωk, %k)) is called C, T -compatible if, for all i ∈ K, Γi ∪ Πi ⊆ Ωi, Ωi is a
T -expanded Hintikka set and, for every existential restriction ∃r.D ∈ sub(C, T) with
ϕ(∃r.D) = i, it holds that

• if ∃r.D ∈ Ω0, then

1. Γi consists of D;

2. Πi consists of all concepts Ej for which there is a value restriction ∀r.Ej ∈ Ω0

and, if r is transitive, additionally ∀r.Ej ;

3. for every concept ∀r.Fj ∈ Ωi, Ω0 contains Fj and, if r is transitive, addi-
tionally ∀r.Fj ;

4. %i = r;

94 Chapter 6. PSpace Automata

• if ∃r.D /∈ Ω0, then Γi = Πi = Ωi = ∅ and %i = λ.

The term Hintikka tree for C and T is defined accordingly. In a Hintikka tree, we say
that a node w is an r-neighbour of a node v for a role r if w = v · ϕ(∃r.D) for some
concept D and ∃r.D ∈ Ω(v) or if v = w · ϕ(∃r.D) and ∃r.D ∈ Ω(w). 3

We will first show that this modification of the definition of C, T -compatible ensures
the correct treatment of transitive and inverse roles.

Theorem 6.17. The SI concept C is satisfiable w. r. t. the general TBox T iff there
exists a Hintikka tree for C and T .

Proof. This proof combines the handling of transitive and inverse roles by Horrocks,
Sattler, and Tobies (1998) with the handling of acyclic TBoxes in Section 6.1.1. For
a node v with t(v) = (Γ,Π,Ω, %), we will refer to the components as Γ(v), Π(v) etc.

For the “if” direction, we will show how to construct a model (∆I , ·I) from a
Hintikka tree t. Let ∆I = {v ∈ K∗ | t(v) 6= (∅, ∅, ∅, λ)}. For a role name r ∈ NR \NR+ ,
we define rI = {(v, w) | w is an r-neighbour of v}. If r ∈ NR+ , we define rI as the
transitive closure of this relation.

For a primitive concept name A, we define AI = {v ∈ ∆I | A ∈ Ω(v)}. In order
to show that this interpretation can be extended to defined concept names and that
it interprets complex concepts correctly, we define a weight function o(C) for concept
terms C as follows:

• o(A) = 1 for a primitive concept name A;

• o(A) = o(C) + 1 for a defined concept name A
.
= C;

• o(¬A) = o(A) + 1 for the negation of a (primitive or defined) concept name;

• o(C u D) = o(C t D) = max{o(C), o(D)} + 1;

• o(∃r.C) = o(∀r.C) = o(C) + 1.

Note that o is defined differently from the role depth (Definition 6.2) for the Boolean
operators and defined concept names in order to ensure that subconcepts or definitions
of a concept have a lower weight than the concept itself. However, o is also well-
founded if T is acyclic. We can now show by induction over the weight of the appearing
concepts that D ∈ Ω(v) implies v ∈ DI .

• If A ∈ Ω(v) for a primitive concept name A then v ∈ AI holds by definition.

• If A ∈ Ω(v) for a defined concept name A
.
= E then E ∈ Ω(v) holds because Ω(v)

is T -expanded. Since o(E) < o(A), it follows by induction that v ∈ EI holds.
Thus we can define AI = EI and obtain v ∈ AI .

• If ¬A ∈ Ω(v) for a negated concept name then A /∈ Ω(v) holds because Ω(v)
is a Hintikka set. If A is primitive, this implies that v /∈ AI holds and we are
done. If A is a defined concept name and A

.
= E then, as in the previous case,

¬̇E ∈ Ω(v) holds because Ω(v) is T -expanded. Again, o(¬̇E) < o(¬A) implies
v ∈ (¬̇E)I by induction and, since (¬̇E)I = ∆I \EI and AI = EI , it follows that
v /∈ AI holds.

6.2. Blocking Automata 95

• If E u F ∈ Ω(v) then Ω(v) contains E and F since it is a Hintikka set, and by
induction v ∈ EI ∩ FI holds.

• If E t F ∈ Ω(v) then v ∈ EI ∪ FI follows from an analogous argument.

• If ∃r.E ∈ Ω(v) for a role name r then, since t is a Hintikka tree, (v, v ·ϕ(∃r.E)) ∈
rI and E ∈ Ω(v · ϕ(∃r.E)) (inverse roles can be treated analogously), thus by
induction v ∈ (∃r.E)I holds.

• If ∀r.E ∈ Ω(v) for a role r and (v, w) ∈ rI then (v, w) ∈ rI holds either because
w is an r-neighbour of v in the Hintikka tree, in which case E ∈ Ω(w) holds
by definition of C, T -compatible, or r is a transitive role and (v, w) is in the
transitive closure of the relation defined above. In this case, there exists a
sequence of tree nodes v = v0, v1, . . . , vf−1, vf = w such that for every i < f ,
vi+1 is an r-neighbour of vi. Since trans(r) holds, every node label t(vi) for
1 ≤ i ≤ t contains ∀r.E and E because of the definition of C, T -compatible, thus
it follows by induction that w ∈ EI and v ∈ (∀r.E)I .

For a GCI E v F, Ω(v) contains ¬̇E t F for every node v. As Ω(v) is a Hintikka set,
it contains F or ¬̇E. If it contains F then, as we have just shown, v belongs to FI .
Otherwise, Ω(v) contains ¬̇E, which implies v /∈ EI as in the case of negated concept
names above. Consequently, every node v ∈ EI is also contained in FI .

For the “only-if” direction, we show how a model (∆I , ·I) for C w. r. t. T can be
used to define a C, T -compatible Hintikka tree t with C ∈ Ω(ε). Let k be the number
of existential restrictions in sub(C, T) and ϕ be a function as in Definition 4.4. We
inductively define a function ϑ : K∗ → ∆I ∪ {ψ} for a new individual ψ such that
ϑ(v) satisfies all concepts in Ω(v).

Since (∆I , ·I) is a model, there exists an element d0 ∈ ∆I with d0 ∈ CI . So we
define ϑ(ε) = d0 and set Γ(ε) = Π(ε) = ∅, Ω(ε) = {E ∈ sub(C, T) | d0 ∈ EI}, and
%(ε) = λ. Then we inductively define, for every node v for which ϑ is already defined,
the labels of v · i, 1 ≤ i ≤ k, as follows: if Ω(v) contains the existential restriction
∃r.E with i = ϕ(∃r.E) then, since ϑ(v) satisfies ∃r.E, there exists a d ∈ ∆I with
(ϑ(v), d) ∈ rI and d ∈ EI , and thus we define

ϑ(v · i) = d,
Ω(v · i) = {F ∈ sub(C, T) | d ∈ FI},
%(v · i) = r,
Γ(v · i) = {E}, and
Π(v · i) contains for every ∀r.F ∈ Ω, the concept F and,

if r is transitive, additionally ∀r.F.

If ϑ(v) does not belong to (∃r.E)I , we define ϑ(v · i) = ψ and (Γ(v · i), Π(v · i), Ω(v · i),
%(v · i)) = (∅, ∅, ∅, λ). It follows by construction that Γ(v · i) and Π(v · i) are subsets
of Ω(v · i) and that the tuple

((Γ(v),Π(v),Ω(v), %(v)),
(Γ(v · 1),Π(v · 1),Ω(v · 1), %(v · 1)), . . . , (Γ(v · k),Π(v · k),Ω(v · k), %(v · k)))

96 Chapter 6. PSpace Automata

is C, T -compatible. Note that for every v ∈ K∗, Ω(v) is a Hintikka set since it follows
from the fact that (∆I , ·I) is a model that if d ∈ (Et [u]F)I , then d ∈ EI ∪ [∩]FI , and
that d ∈ EI iff d /∈ (¬E)I . 2

We will now define an automaton AC,T that accepts Hintikka trees for C and T .
Adapting the automaton for ALC from Section 6.1.1 to handle SI only requires us-
ing the quadruples from Definition 6.16 and the corresponding definition of C,T -
compatible.

Definition 6.18 (Automaton AC,T). For an SI concept C and a TBox T , let k
be the number of existential restrictions in sub(C, T). Then the looping automaton
AC,T = (Q,∆, I) is defined as follows:

• Q consists of all 4-tuples (Γ,Π,Ω, %) such that Γ ∪ Π ⊆ Ω ⊆ sub(C, T), Γ is a
singleton set, Ω is a T -expanded Hintikka set for C, and % occurs in C or T or
is equal to λ;

• ∆ consists of all C, T -compatible tuples ((Γ0,Π0,Ω0, %0), (Γ1,Π1,Ω1, %1), . . . ,
(Γk,Πk,Ωk, %k));

• I := {(∅, ∅,Ω, λ) ∈ Q | C ∈ Ω}. 3

Soundness and completeness of the automata algorithm as well as the ExpTime

complexity result follow from arguments analogous to those for the ALC algorithm.

Lemma 6.19. AC,T has a successful run iff C is satisfiable w. r. t. T .

Theorem 6.20. Satisfiability in SI w. r. t. general TBoxes is in ExpTime.

It is easy to see that the automaton AC,T for SI is not segmentable in the sense
of Definition 6.6: the role depth does not decrease for concepts involving transitive
roles; as in the example from the beginning of this section, a state with Γ = {A},
Π = {∀r.∃r.A}, Ω = {A, ∃r.A, ∀r.∃r.A} and % = r can be repeated infinitely often along
a path in a run. We therefore develop a framework that is more powerful than the one
for segmentable automata and makes use of the property that the number of different
states on such an infinite path is limited.

6.2.2 The Framework for Blocking Automata

As mentioned in the beginning of Section 6.2, our aim in this section is to restrict the
automaton’s emptiness test to models of a bounded depth in a similar fashion as in
Section 6.1 by adapting the notion of blocking from tableau algorithms. Intuitively,
a node v in a completion tree is blocked by a node w if the subtree rooted at w can
replace the subtree rooted at v. In the automata scheme, the nodes in a successful
run are labelled with states, therefore blocking corresponds to the fact that within
the successful run, a subtree rooted at a node labelled with the state w can replace
a subtree whose root is labelled with v. This is the idea underlying the following
definition of ¾-invariant. The expression that an automaton is m-blocking denotes
the fact that on every path of every run of this automaton, a blocked state is reached
after at most m steps.

6.2. Blocking Automata 97

Definition 6.21 (¾-invariant, m-blocking). Let A = (Q,∆, I) be a looping tree
automaton and¾ be a binary relation over Q, called the blocking relation. If q¾ p,
then we say that q is blocked by p. The automaton A is called ¾-invariant if, for
every q¾ p with

(q0, q1, . . . , qi−1, q, qi+1, . . . , qk) ∈ ∆,

it holds that
(q0, q1, . . . , qi−1, p, qi+1, . . . , qk) ∈ ∆.

A ¾-invariant automaton A is called m-blocking if, for every successful run r of
A and every path v1, . . . , vm of length m in r, there are 1 ≤ i < j ≤ m such that
r(vj)¾ r(vi). 3

Obviously, any looping automaton A = (Q,∆, I) is =-invariant (i. e. every node
is blocked by itself) and m-blocking for every m > #Q. However, we are interested
in automata and blocking relations where blocking occurs earlier than after a linear
number of transitions.

As in the case of m-segmentable automata, it is only necessary to consider paths
of length m in order to decide the emptiness problem for m-blocking automata. This
result is formalised by the next definition and lemma.

Definition 6.22 (Partial run). For a set K as in Definition 4.1, we define K≤n :=⋃n
i=0K

i. A partial run of depth m is a mapping r : K≤m−1 → Q such that (r(v), r(v ·
1), . . . , r(v · k)) ∈ ∆ for all v ∈ K≤m−2. It is successful if r(ε) ∈ I. 3

Lemma 6.23. An m-blocking automaton A = (Q,∆, I) has a successful run iff it has
a successful partial run of depth m.

Proof. The “only if” direction is trivial, so only the “if” direction will be proved. For
this purpose, we will show how to construct a complete successful run from a partial
one by replacing, for every blocked node v ¾ w, the subtree starting at v with the
subtree starting at w.

Suppose there is a successful partial run r of depth m. This run will be used to
inductively define a function β : K∗ → K≤m as follows:

• β(ε) := ε,

• for a node v · i, if there is a predecessor w of β(v) · i such that r(β(v) · i)¾ r(w),
then β(v · i) := w; otherwise β(v · i) := β(v) · i.

The intuitive meaning of β(v) = w is “w stands for v”; we will therefore use the labels
of w and w’s successors in the partial run also for v and v’s successors in the complete
run. We call the complete run generated in this fashion the unravelling of the partial
run.

Figure 6.3 shows an example for a partial run of a 3-blocking automaton on a binary
tree on the left and its unravelling on the right, where the nodes in the unravelled tree
are labelled with their respective beta values. We assume that the nodes 1 and 21 are
blocked by ε and that node 22 is blocked by node 2. As an example, we consider the

98 Chapter 6. PSpace Automata

unravelling
ε

2

2 2

2 2 2 2

ε

εεε

ε

211211

1

ε

ε22

2

ε
;

Figure 6.3: Unravelling of a partial run

values of β for the successors of node 21, where β(21) = ε. To determine the values
of the successors, we have to test if the successors of ε are blocked. For node 211,
since ε · 1 is blocked by ε, it turns out that β(211) equals ε. On the other hand, for
node 212 the corresponding node ε · 2 is not blocked, thus β(212) equals 2.

In the following, we will refer to (direct or indirect) successors of blocked nodes
as indirectly blocked. Notice that the range of β does not contain any blocked or
indirectly blocked nodes, since we start with a non-blocked node and, whenever we
encounter a blocked node, we replace it and its successors with the blocking one and
its successors. Moreover, for every node v with β(v) 6= v, the depth of v, |v|, is larger
than |β(v)|, because β maps a blocked node to a predecessor and the child of a blocked
node to a child of the predecessor etc.

We will now show by induction over |v| that the function β is well-defined, more
precisely that |β(v)| < m for all v ∈ K∗, and that we can use β to construct a successful
run s from the successful partial run r by setting s(v) := r(β(v)) for every node v. For
the root, s(ε) = r(ε) holds, thus both s and r start with the same label. If, for any
node v, the successors of v are not blocked, then the transition (s(v), s(v·1), . . . , s(v·k))
is contained in ∆ because (r(β(v)), r(β(v) · 1), . . . , r(β(v) · k)) is a transition in the
run r. In this case, since β(v) is not blocked or indirectly blocked, |β(v) · i| < m
holds for all 1 ≤ i ≤ k because otherwise the path to β(v) · i would have a length
of at least m without containing a blocked node, in contradiction with the induction
hypothesis that the part of s constructed so far is part of a successful run and that
neither β(v) nor any of its predecessors is blocked.

If any successors of v are blocked, i. e. r(v · i)¾ r(w) then (r(β(v)), r(β(v) ·1), . . .,
r(β(v) · i), . . ., r(β(v) · k)) ∈ ∆ implies (r(β(v)), r(β(v) · 1), . . ., r(β(w)), . . . , r(β(v) ·
k)) ∈ ∆ because of the definition of¾-invariance. Hence, (s(v), s(v ·1), . . . , s(v ·k)) ∈
∆ holds, and s is a successful run of A. In this case, since w is a predecessor of β(v) · i
and |β(v)| < m, it holds that |w| < m, and thus |β(v · i)| < m. Observe that w
cannot be blocked itself because β(v) is a successor of w or equal to w and the range
of β does not contain blocked or indirectly blocked nodes, thus the range of β only
contains non-blocked nodes. 2

6.2. Blocking Automata 99

For k > 1, the size of a successful partial run of depth m is still exponential in m.
However, when checking for the existence of such a run, we can use the same algorithm
as for segmentable automata (Figure 6.1) to perform a depth-first traversal of the run
while constructing it, using space polynomial in the size of the input. This result will
now be shown in a more formal way.

Definition 6.24 (PSpace on-the-fly construction). Let I be set of inputs. A
PSpace on-the-fly construction is a construction that yields, for every input i ∈ I of
size n, an mi-blocking automaton Ai = (Qi,∆i, Ii) working on ki-ary trees such that
there is a polynomial P satisfying the following conditions:

• mi ≤ P (n) and ki ≤ P (n);

• every element of Qi is of a size bounded by P (n);

• there is a P (n)-space bounded non-deterministic algorithm for guessing an ele-
ment of Ii; and

• there is a P (n)-space bounded non-deterministic algorithm for guessing, on input
q ∈ Qi, a transition from ∆i with first component q.

The algorithms guessing an initial state (a transition starting with q) are assumed to
yield the answer “no” if there is no initial state (no such transition). 3

The following theorem shows that the conditions in Definition 6.24 are sufficient
to ensure a PSpace result. The argument in the proof is very similar to the one in the
proof of Theorem 6.8, but since we consider the space consumption of the emptiness
test in relation to the input i rather than the automaton AC,T , we present a formal
proof for the theorem.

Theorem 6.25. If the automata Ai are obtained from the inputs i ∈ I by a PSpace

on-the-fly construction, then the emptiness problem for Ai can be decided by a deter-
ministic algorithm using space polynomial in the size of i.

Proof. We will first show by induction that if the algorithm described in Figure 6.1
answers “not empty”, then the we can define a successful partial run r from the qi

values used by the algorithm. Since the algorithm answers “not empty”, there is an
initial transition (q, q1, . . . , qk), so we start with setting r(ε) = q and r(i) = qi for all
1 ≤ i ≤ k. Suppose now that the algorithm visits a node v ∈ K∗. Then, by induction
hypothesis, r is defined for the previously visited nodes. If length(SN) < m then the
algorithm guesses a transition (r(n), q′1, . . . , q

′
k), which defines the labels of v’s children

and thus a transition in the run. Otherwise the algorithm has reached depth m, thus
we have reached the maximum depth of the partial run.

Conversely, if there is a successful partial run r then it is possible to guess the
initial state and initial transition (r(ε), r(1), . . . , r(k)). By Definition 6.24, the space
required for guessing the initial state r(ε) and the transition from r(ε) is bounded by
P (n). When the algorithm visits one of these initial nodes, they have the same labels
as in r. Now suppose the algorithm visits a node v with r(v) = q. If the length of v

100 Chapter 6. PSpace Automata

is smaller than m, then there is a transition on r, (r(v), r(v · 1), . . . , r(v · k)) which the
algorithm can guess (using space bounded by P (n)) and so it will not return “empty”.
At any time, the stack SQ contains at most mi tuples of ki states and SN contains
at most mi numbers between 0 and ki. Since mi, ki and the size of each state are
bounded by P (m), the space used by these stacks is polynomial in the size of i.

It follows from Lemma 6.23 that this emptiness test is sound and complete. As in
the case of segmentable automata, we obtain the deterministic complexity class from
Savitch’s theorem. 2

6.2.3 Satisfiability in SI w. r. t. Acyclic TBoxes

It is easy to see that the construction of the automaton AC,T from a given SI concept
C and a general TBox T satisfies all but one of the conditions of a PSpace on-the-fly
construction: the condition that is violated is the one requiring that blocking must
occur after a polynomial number of steps. In the case of general TBoxes, this is not
surprising since we know that the satisfiability problem is ExpTime-hard. Unfortu-
nately, this condition is also violated if T is an acyclic TBox. The reason is similar to
the one that made the introduction of weakly-segmentable automata necessary: suc-
cessor states may contain new concepts that are not really required by the definition
of C, T -compatible tuples, but are also not prevented by this definition. In the case
of acyclic TBoxes, we can construct a subautomaton that avoids such unnecessary
concepts. It has fewer runs than AC,T but, similar to the case of weakly-segmentable
automata, it does have a successful run whenever AC,T has one.

In contrast to segmentable automata, where the notion of weakly-segmentable
incorporates both the reduction of the automaton (i. e. removal of unnecessary con-
cepts) and the enforcement of the framework’s conditions (i. e. the decrease of the role
depth), we separate these two aspects in the framework of blocking automata, i. e. we
will first construct a subautomaton and then show explicitly that the subautomaton
is m-blocking for an appropriate value m. The reason for this is that the definition
of segmentable automata requires that every transition has to lead to a lower class
in the hierarchy, and thus we can meet this demand by removing the inappropriate
transitions from the transition relation. In contrast, the notion of blocking makes it
necessary to consider paths of length m, i. e. sequences of transitions. In other words,
we gradually approach the level Q0 of segmentable automata with every transition,
but we do not gradually approach a blocked state, and thus it is not practical to satisfy
this need by modifying single transitions.

The first step, i. e. the construction of a subautomaton, is captured by the following
definition.

Definition 6.26 (Faithful). Let A = (Q,∆, I) be a looping tree automaton on k-
ary trees. The family of functions fq : Q → QS for q ∈ QS is called faithful w. r. t. A
if I ⊆ QS ⊆ Q, and the following two conditions are satisfied for every q ∈ QS:

1. if (q, q1, . . . , qk) ∈ ∆, then (q, fq(q1), . . . , fq(qk)) ∈ ∆;

2. if (q0, q1, . . . , qk) ∈ ∆, then (fq(q0), fq(q1), . . . , fq(qk)) ∈ ∆.

6.2. Blocking Automata 101

The subautomaton AS = (QS,∆S, I) of A induced by this family has the transition
relation ∆S := {(q, fq(q1), . . . , fq(qk)) | (q, q1, . . . , qk) ∈ ∆ and q ∈ QS}. 3

Please note that neither of the two conditions in the definition of “faithful” implies
the other one: Condition 1 does not imply Condition 2 because q0 need not be equal
to q. Without Condition 2, we could not be sure that there are still transitions from
the direct successor states of q in the reduced automaton AS. Conversely, Condition 2
does not imply Condition 1 because it is not required that fq(q) equals q. Intuitively,
the range of fq consists of those states that are still “allowed” after state q has been
reached. If we want to ensure that state q is reached only once, it makes sense to
define fq(q) to be different from q.

We can show equivalence of the emptiness of A and AS in the a way that is
analogous to the one for segmentable automata (Lemma 6.10).

Lemma 6.27. Let A be a looping tree automaton and AS its subautomaton induced
by the faithful family of functions fq : Q → QS for q ∈ QS. Then A has a successful
run iff AS has a successful run.

The main idea underlying the definition of the functions fq is similar to the one
for the state hierarchy in Section 6.1.3: if T is acyclic, then the definition of C, T -
compatibility requires, for a transition (q, q1, . . . , qk) of AC,T , only the existence of
concepts in qi = (Γi,Πi,Ωi, %i) that are of a smaller depth than the maximal depth n
of concepts in q if %i is not transitive. However, in the automaton for an SI concept, we
also have to allow for value restrictions of depth n in Πi if %i is transitive. All concepts
with a higher depth can be removed from the states qi while still maintaining C, T -
compatibility. By removing these unnecessary concepts, we can ensure that a blocked
node is reached after a polynomial number of transitions.

Definition 6.28 (Functions fq). Let AC,T be as in Definition 6.18. For a set S of
concepts and a role r, define S/r := {∀r.E ∈ S for some E}.

For two states q = (Γ,Π,Ω, %) and q′ = (Γ′,Π′,Ω′, %′) of AC,T with rdT (Ω) = n,
we define the function fq(q

′) as follows:

• if rdT (Γ′) ≥ rdT (Ω), then fq(q
′) := (∅, ∅, ∅, λ);

• otherwise, fq(q
′) := (Γ′,Π′′,Ω′′, %′), where

– P = sub6n(C, T)/%′, if trans(%′); otherwise P = ∅;

– Π′′ = Π′ ∩ (sub6n−1(C, T) ∪ P);

– Ω′′ = Ω′ ∩ (sub6n−1(C, T) ∪ Π′′). 3

The definition of Π′′ implies that we remove from Π′ all concepts with a higher
depth than the maximum depth in Ω and we allow for a concept of the same depth
as in Ω only if it has the shape ∀%′.E and %′ is transitive. Note that if T is acyclic,
then the set Ω′′ defined above is still a T -expanded Hintikka set.

Lemma 6.29. The family of mappings fq (for states q of AC,T) introduced in Defi-
nition 6.28 is faithful w. r. t. AC,T .

102 Chapter 6. PSpace Automata

Proof. We have to show that both conditions of Definition 6.26 are satisfied.
Condition 1. The case that a successor is replaced by (∅, ∅, ∅, λ) cannot occur

because in every successor qi of q, the role depth of Γi is strictly smaller than the
maximum depth of Ω (see Definition 6.16). Assume that (q, q1, . . . , qk) ∈ ∆. To prove
that (q, fq(q1), . . . , fq(qk)) is also contained in ∆, we have to show that this transition
satisfies the conditions for C, T -compatibility in Definition 6.16. Number 1 and 4 are
obvious. Number 3 holds because we do not remove anything from Ω. Finally, we do
not remove any concepts from the Πi sets because these concepts have a maximum
depth of rdT (Ω) if %i is transitive, or rdT (Ω) − 1 otherwise. Thus, we only remove
concepts from Ωi, and none of the removed concepts is required.

Condition 2. Let (q0, q1, . . . , qk) ∈ ∆. If for some i > 0 with ϕ(∃r.D) = i, qi is
replaced by (∅, ∅, ∅, λ) then this means that for the concept D ∈ Γi, rdT (D) ≥ rdT (Ω)
holds. This implies that the corresponding existential restriction ∃r.D in Ω0 has a
strictly larger depth than rdT (Ω) and therefore will be removed from fq(q0). Otherwise
we again have to show that the four conditions from Definition 6.16 hold. Number 1
and 4 are again obvious. For Number 3, observe that if ∀r.F ∈ fq(Ωi) holds with %i = r
then rdT (∀r.F) < n holds because r 6= %i and thus neither F nor ∀r.F will be removed
from Ω0. For Number 2, if ∀r.E ∈ fq(Ω0) then it holds either that rdT (∀r.E) < n
or that rdT (∀r.E) = n and trans(r). In the former case, neither E nor ∀r.E will be
removed from Πi. In the latter case, ∀r.E will not be removed because %i = r and
trans(r) holds. 2

Consequently, AC,T has a successful run iff the induced subautomaton AS
C,T has

a successful run. It remains to show that there is an appropriate blocking condition
that ensures that a blocked state is reached after a polynomial number of transitions.

Lemma 6.30. The construction of AS
C,T from an input consisting of an SI concept

C and an acyclic TBox T is a PSpace on-the-fly construction.

Proof. Let i = (C, T) be an input, i. e. an SI concept and TBox, and |i| be the length
of i. The blocking relation¾SI is defined as follows:

(Γ1,Π1,Ω1, %1)¾SI (Γ2,Π2,Ω2, %2)
if

Γ1 = Γ2,Π1 = Π2,Ω1/%1 = Ω2/%2, and %1 = %2.

The definition for the Ω component requires an explanation: why is it sufficient to
demand equality only for value restrictions involving the role %? These value restric-
tions are the ones that enforce certain concepts in the father node. Together with Π
and Γ, which consist of the concepts satisfying restrictions from the father node, these
concepts are the only ones that are relevant for C, T -compatibility. All other concepts
in Ω either result from propositional expansion of these concepts or are superfluous.
Hence, states that coincide on Γ, Π, and Ω/% are interchangeable.

We now have to show that there is a polynomial P (n) satisfying the conditions in
Definition 6.24.

Every element of Qi is of a size bounded by P (n). Every state label is a subset of
sub(C, T) and therefore has at most |i| elements. The size of each of these elements,

6.2. Blocking Automata 103

in turn, is bounded by |i|. Thus, the size of each node label is at most quadratic in
the size of the input.

There is a P (n)-space bounded non-deterministic algorithm for guessing an initial
state or successor states for a given state. This is obvious, since the size of every
state is bounded by |i|2 and all necessary information for the successor states can be
obtained from the current state.

The automaton AS
C,T is operating on ki-ary trees and mi-blocking, with mi ≤ P (n)

and ki ≤ P (n). The tree width ki is bounded by the number of existential subconcepts
of i and therefore by |i|. In order to show a polynomial bound for mi, we first have to
show that AS

C,T is ¾SI-invariant. For states {q, qi} ⊆ QS with q = (Γ,Π,Ω, %) and
qi = (Γi,Πi,Ωi, %i) let (q0, . . . , qj , . . . , qk) be a transition and qj ¾SI qi. Then the
tuple (q0, . . . , qi, . . . , qk) is also C, T -compatible since Γj = Γi, Πj = Πi, %j = %i and
Ωj contains the same value restrictions involving %j as Ωi.

What is the maximum depth of a blocked node in a successful run? Firstly, observe
that transitions (q, q1, . . . , q

′, . . . , qk) with q = (Γ,Π,Ω, %) and q′ = (Γ′,Π′,Ω′, %′)
where %′ is different from % or not transitive decrease the maximum depth of concepts
contained in the state: if %′ is not transitive, then rdT (Ω′) is smaller than rdT (Ω) by
definition. If %′ is transitive, but different from %, then Ω′ can only have concepts
of depth rdT (Ω) if these start with ∀%′. Similarly, Ω can only contain concepts of
the same depth as its predecessor state if they begin with ∀%, which implies that the
role depth decreases after two transitions. (This is the key to obtaining a polynomial
bound, and it does not hold for general TBoxes, where the GCIs maintain the same
role depth in every node.) This depth is bounded by the maximum depth in sub(C, T)
and therefore by |i|, and thus there are only |i| such steps possible before depth 0 is
reached. After this point, the path will contain a blocked node, since all further nodes
are labelled with (∅, ∅, ∅, λ).

Hence, the role depth can only remain the same along a subpath (a subpath
is a path which does not need to begin at ε) where every transition involves the
same transitive role r. From the definition of ∆, it follows for any subpath with
labels (Γ0,Π0,Ω0, r), (Γ1,Π1,Ω1, r), . . ., (Γ`,Π`,Ω`, r) that Πi ⊆ Πi+1 holds for all
1 ≤ i ≤ ` − 1, so there are at most |i| different sets Πi possible. By the same
argument, it also holds on this subpath that Ωi+1/r ⊆ Ωi/r for all 1 ≤ i ≤ `− 1. Once
again, it is only possible to have a subpath of length |i| with different sets. Finally,
since Γi contains only one concept, there are also at most |i| possibilities for this set.
In total, every r-subpath of length larger than |i|3 must have two nodes i < j such
that Γj = Γi, Πj = Πi and Ωj/r = Ωi/r, and hence (Γj ,Πj ,Ωj , r) ¾SI (Γi,Πj ,Ωi, r).
Thus, an r-subpath for a transitive role r either contains a blocked node or is shorter
than |i|3 and therefore is followed by a transition with a role different from r, which
decreases the maximum depth of concepts contained in Ω. Altogether, we obtain that
every path longer than |i|4 contains a blocked node.

This concludes the proof that the construction of AS
C,T is a PSpace on-the-fly

construction with P (n) = n4. 2

Since we know that C is satisfiable w. r. t. T iff AC,T has a successful run iff AS
C,T

has a successful run, Theorem 6.25 yields the desired PSpace upper-bound.

104 Chapter 6. PSpace Automata

Theorem 6.31. Satisfiability in SI w. r. t. acyclic TBoxes is in PSpace.

Thus, we have developed a framework for PSpace automata that is capable of
handling logics that do not have the finite tree model property. For an automaton to
fit into this framework, there has to exist a polynomial bound on the length of a path
before a state equivalent to a previous one is reached. This framework is based on
an adaptation of the blocking technique known from tableau algorithms and requires
more involved arguments in the proofs than the segmentable automata framework.
It can, however, capture logics that are outside the scope of segmentable automata,
as we have shown above for SI, and also all logics within the scope of segmentable
automata, as we will see in the next section.

6.2.4 Segmentable Automata as a Special Case

It is possible to regard the blocking automata framework as a generalisation of the
segmentable automata framework (and thus segmentable automata as a special case
of blocking automata) in the following way: for an m-segmentable and Q0-looping
automaton A = (Q,∆, I), all states q ∈ Q0 can be the root of a run. Therefore, it is
possible to construct an automaton A′ = (Q′,∆′, I ′) accepting a non-empty language
iff A does, where Q′

0 = {qacc} consists of only one state and every appearance of a
state q ∈ Q0 in Q,∆ and I is replaced with qacc in Q′,∆′ and I ′, respectively.

Then, using equality as the blocking relation¾, we can show that the automaton
A′ is (m+ 1)-blocking: after at most m transitions, every state belongs to Q′

0, which
implies that A remains in the state qacc forever.2

6.3 Chapter Summary

After the negative result of Chapter 5, in which it turned out that it is not possible
to transfer the practical efficiency from tableaus to automata by translation, we have
established in this chapter that it is possible to improve the (theoretical) complex-
ity results that can be obtained from automata algorithms by employing techniques
stemming from tableau algorithms. We have identified two classes of automata for
which emptiness can be tested by constructing a run

• interleaved with the automaton itself, i. e. the transitions of the automaton are
computed on-the-fly ;

• in a non-deterministic, top-down, depth-first manner, keeping only one path in
memory at a time;

• ensuring that the maximum depth that has to be checked is bounded polynomi-
ally by the size of the input.

2Note that this result cannot be shown by defining ¾ in such a way that any two elements of Q0

block each other because we cannot ensure that every state in Q0 can be replaced with every other
one in every transition.

6.3. Chapter Summary 105

This way, it is possible to obtain a PSpace complexity result instead of the ExpTime

result that can be achieved with the “standard” deterministic bottom-up emptiness
test.

For the first class, segmentable automata, the polynomial bound on the depth
results from the fact that every satisfiable input has a model in the shape of a finite
tree whose depth is polynomial in the size of the input. By defining a hierarchy over
the set of states that consists of a polynomial number of levels, and by restricting
that every transition of the automaton implies a descent within the hierarchy, we can
ensure that the result of the emptiness test can be determined after a polynomial
number of transitions.

The second class, blocking automata, is more general. Here, we do not require
that every model is a finite tree, but only that it is a periodical tree in the sense that
every path of a certain length contains two “equivalent” states. It then remains to
establish a polynomial bound for this length. This idea is an adaptation of the blocking
technique known from tableau algorithms, which allows to halt the construction of a
tableau after a blocked node has been reached. As an example for an application of
this method, we have shown how blocking automata can be used to decide satisfiability
of SI concepts w. r. t. acyclic TBoxes in PSpace.

In both cases, it was necessary to prevent the introduction of arbitrarily complex
concepts in a transition in order to apply these results to automata algorithms for
DLs. In the case of segmentable automata, we have shown that weakly-segmentable
automata satisfy these conditions, i. e. automata for which it is possible to reduce the
complexity in a transition. For blocking automata, we used the notion of a faithful
family of functions in order to define a subautomaton with an appropriate blocking
relation.

These results, however, do not imply that a tableau algorithm can be regarded
as an implementation of the top-down automata emptiness test: the automaton still
guesses a T -expanded Hintikka set for every node during the traversal, i. e. it has
to guess in advance a propositionally expanded node label, which additionally can
contain arbitrary subconcepts of the input concept and TBox (in the case of weakly-
segmentable automata and faithful subautomata, only the depth of the appearing
concepts is bounded). In contrast, the tableau algorithm can perform several ex-
pansion steps on a single node and thus satisfy the constraints for the node step by
step, avoiding non-deterministic decisions involving irrelevant concepts. Therefore, an
implementation of our improved automata emptiness test is not likely to perform as
well as a tableau algorithm. However, the possibility of transferring the techniques
described above from tableau to automata algorithms again emphasises the close re-
lationship between these two approaches.

Chapter 7

Tableau Systems

After establishing the possibility of transferring complexity results from tableau to
automata algorithms in Chapter 6, our aim is now to use automata in order to remedy
the two main drawbacks of tableau algorithms: firstly, the need to find a blocking
condition suitable for the corresponding logic and to prove soundness in the presence
of this blocking condition; and secondly, the problem that the “natural” TAs for logics
allowing for disjunction are non-deterministic and thus unsuited for proving tight
upper complexity bounds for DLs in deterministic complexity classes, e. g. ExpTime.
Since the determinism of automata algorithms results from the bottom-up emptiness
test which, in turn, is the main reason for the poor performance of AAs in practice,
modifying the TA itself in such a way that it runs in deterministic exponential time
is not a promising approach: it would sacrifice the main advantage of tableaus.

Instead, our aim in this chapter is to define a general framework for ExpTime

logics, called tableau systems, from which both a practically usable tableau algorithm
and a worst-case optimal automata algorithm can be derived, which avoids the need
to construct the AA by hand. In order to achieve this, it is necessary to begin with
a formalisation of the key properties of TAs such as tableau rules, clash-triggers etc.
Afterwards, we show how tableau systems yield automata- and tableau-based algo-
rithms. For the TA, an appropriate blocking condition can be obtained directly from
the properties of the tableau system. It is thus possible to prove the correctness of
blocking in general, which avoids the need to deal with it for each specific tableau
system. Finally, we illustrate the usefulness of tableau systems with two examples,
one involving the well-known logic SHIQ and the other one proving a new ExpTime

complexity result for the logic SHIO.

This chapter is based on work that was previously published by Baader, Hladik,
Lutz, and Wolter (2003b,c); Hladik and Model (2004); and Hladik (2004).

7.1 The Tableau Systems Framework

We begin with developing a general notion of tableau algorithms. It is in the nature of
this endeavour that our formalism will be a rather abstract one. We start with defining
the core notion: tableau systems. Intuitively, the purpose of a tableau system is to

108 Chapter 7. Tableau Systems

capture all the details of a tableau algorithm such as the one for ALC discussed in
Section 3.2.2. The set I of inputs used in the following definition can be thought of
as consisting of all possible pairs (C, T) of concepts C and TBoxes T of the DL under
consideration.

Definition 7.1 (Tableau system). Let I be a set of inputs. A tableau system for
I is a tuple

S = (NLE ,GME ,EL, d, ·S ,R, C),

where NLE , GME , and EL are sets of node label elements, global memory elements,
and edge labels, respectively, d is a natural number (the pattern depth), and ·S is a
function mapping each input Γ ∈ I to a tuple

ΓS = (nle, gme, el , ini)

such that

• nle ⊆ NLE , gme ⊆ GME , and el ⊆ EL are finite;

• ini is a subset of ℘(nle) × ℘(gme), where ℘(·) denotes powerset.

The definitions of R and C depend on the notion of an S-pattern. Such a pattern is
a pair (t, µ) consisting of a a finite labelled tree

t = (V,E, n, `)

of depth at most d with n : V → ℘(NLE) and ` : E → EL node and edge labelling
functions, and a subset µ of GME . Finally,

• R, the collection of completion rules, is a function mapping each possible S-
pattern to a finite set of non-empty finite sets of S-patterns; and

• C, the collection of clash-triggers, is a set of S-patterns. 3

In order to illustrate tableau systems, we now define a tableau system SALC that
describes the ALC tableau algorithm discussed in Section 3.2.2. As the set of inputs
I for SALC , we simply use the set of all ALC-concepts in NNF. Now for the tableau
system itself. Let CONALC be the set of all ALC concepts as in Definition 2.4. Intu-
itively, NLE is the set of elements that may appear in node labels of completion trees,
independently of the input. In the case of ALC, NLE is thus simply CONALC . Simi-
larly, EL is the set of edge labels, also independently of the input. In the case of ALC,
EL is thus the set of role names NR. The purpose of the global memory component
can be illustrated by the T -rule (Figure 3.3). In contrast to the other rules, which are
local in the sense that they are concerned with a single node of the completion tree
or a single node and its successor nodes, the T -rule is global: it considers an arbitrary
node v in the completion tree. The global memory component contains information
relevant for such global rules. For the T -rule, it is important to know which concepts
¬̇D t E must be propagated to all nodes because D v E is contained in the TBox.
Thus, the global memory component also contains concepts, which means that, in the

7.1. The Tableau Systems Framework 109

case of ALC, GME is also equal to CONALC . The number d restricts the size of the
trees in patterns. We will consider it in more detail when describing the rules and
clash-triggers.

The function ·S describes the influence of the input on the form of the constructed
completion trees. More precisely, nle fixes the node label elements that may be used
in a completion tree for a particular input, and el fixes the edge labels. Similarly, gme

fixes the possible elements of the global memory component for a particular input.
Finally, ini describes the possible initial node labels of the root of the completion tree
as well as the initial value of the global memory component. Note that the initial
root label and the initial value of the global memory component are not necessarily
unique, but rather there can be many choices—a possible source of (don’t-know-)non-
determinism that does not show up in the ALC algorithm.

To illustrate the function ·S , let us define it for the tableau system SALC . For
simplicity, we write nleSALC

(C, T) to refer to the first element of the tuple (C, T)SALC ,
gmeSALC

(C, T) for the second element, and so forth.

Definition 7.2 (Tableau system SALC). For an input (C, T) ∈ CONALC×℘({D v
E | D,E ∈ CONALC}), we define

nleSALC
(C, T) = sub(C, T);

gmeSALC
(C, T) = {¬̇D t E | D v E ∈ T };

elSALC
(C, T) = rol(C, T);

iniSALC
(C, T) = {({C}, {¬̇D t E | D v E ∈ T })}. 3

It remains to formalise the completion rules and clash-triggers. First observe that,
in the ALC tableau, every clash-trigger as well as every rule’s pre- and postcondition
(except for the T -rule) concerns only a single node either alone or together with its
successors in the completion tree. For this reason, we can restrict the depth of the
trees in patterns to d = 1. The global T -rule is handled through the global memory
component (see the description of the rules below).

The collection of completion rules R maps patterns to finite sets of finite sets of
patterns. Intuitively, if P is a pattern and {P1, . . . , Pm} ∈ R(P), then this means that
a rule of the collection can be applied to all completion trees “matching” the pattern P .
For this, the tree part of the pattern must match a subtree of the completion tree, and
the global memory component of the pattern must coincide with the global memory
component of the completion tree. If a rule matches a completion tree in this sense,
then it non-deterministically replaces the matched subtree of the completion tree with
a subtree matching the tree part of one of the patterns P1, . . . , Pm (we will give a
formal definition of this later on). In addition, the global memory component of the
completion tree is replaced by the global memory component of the right-hand side
pattern. If {P1, . . . , Pm} ∈ R(P), then we will usually write

P →R {P1, . . . , Pm}

to indicate the rule induced by this element of R(P).
Similar to the application of such a rule, a completion tree contains a clash if this

completion tree matches a pattern in C. To illustrate this, let us again consider the

110 Chapter 7. Tableau Systems

Ru if the root label n(v0) contains the concept C u D and {C,D} 6⊆ n(v0),
then R(P) contains the singleton set {((V,E, n′, `), µ)},
where n′(v) = n(v) for all v ∈ V \ {v0} and n′(v0) = n(v0) ∪ {C,D}

Rt if the root label n(v0) contains the concept C t D and {C,D} ∩ n(v0) = ∅,
then R(P) contains the set {((V,E, n′, `), µ), ((V,E, n′′, `), µ)},
where n′(v) = n′′(v) = n(v) for all v ∈ V \ {v0},
n′(v0) = n(v0) ∪ {C} and n′′(v0) = n(v0) ∪ {D}

R∃ if the root label n(v0) contains the concept ∃r.C,
u1, . . . , um are all the children of v0 with `(v0, ui) = r,
and C 6∈ n(ui) for all i, 1 ≤ i ≤ m,
then R(P) contains the set {P0, P1, . . . , Pm}, where

• P0 = ((V0, E0, n0, `0), µ), where u0 is a node not contained in V ,
V0 = V ∪ {u0}, E

′ = E ∪ {(v0, u0)},
n0 = n ∪ {u0 7→ {C}}, `′ = ` ∪ {(v0, u0) 7→ r}, and

• for i = 1, . . . ,m, Pi = ((V,E, ni, `), µ),
where ni(v) = n(v) for all v ∈ V \ {ui} and ni(ui) = n(ui) ∪ {C}

R∀ if n(v0) contains the concept ∀r.C, `(v0, v1) = r for some v1 ∈ V , and C /∈ n(v1),
then R(P) contains {((V,E, n′, `), µ)},
where n′(v) = n(v) for all v ∈ V \ {v1} and n′(v1) = n(v1) ∪ {C}

RT if µ contains the concept C and C /∈ n(v0),
then R(P) contains {((V,E, n′, `), µ)},
where n′(v) = n(v) for all v ∈ V \ {v0} and n′(v0) = n(v0) ∪ {C}

Figure 7.1: Rules of the ALC tableau system

case of ALC. Here the set of clash-triggers C consists of all patterns whose tree has
a root label containing both A and ¬A for some concept name A. The effect of this
is that a completion tree contains a clash iff one of its node labels contains A and ¬A
for some concept name A.

For each pattern P = (t, µ) with t = (V,E, n, `) being a tree of depth at most 1
with root v0, R(P) is the smallest set of finite sets of patterns such that the conditions
in Figure 7.1 hold. The collection of completion rules is defined by a straightforward
translation of the rules in Figures 3.2 and 3.3 with one exception, namely the treat-
ment of existential restrictions. The rule in Figure 3.2 is deterministic: it always
generates a new r-successor of the given node. In contrast, the rule handling existen-
tial restrictions introduced above (don’t-know-)non-deterministically chooses between
generating a new successor or re-using one of the old ones. Basically, this additional
non-determinism is the price we have to pay for having a very general framework. The
reason why one can always create a new individual when treating existential restric-
tions in ALC is that ALC is invariant under bisimulation (Blackburn et al., 2001),

7.1. The Tableau Systems Framework 111

and thus one can duplicate successors in models without changing validity. We could
have tailored our framework such that the deterministic rule for ALC can be used,
essentially by dropping the restriction that the function π in Definition 7.6 below,
which maps nodes from the pattern P to nodes in the completion tree T , has to be
injective. However, in this case we would have restricted the applicability of tableau
systems to DLs invariant under bisimulation, a property that is violated by other DLs
such as those providing for number restrictions (see Section 7.4 for an example).

Let us now continue with the general definitions. Tableau systems are a rather
general notion. In fact, as described until now they are too general to be useful for
our purposes. For example, tableau algorithms described by such tableau systems
need not be monotonic: completion rules could repeatedly (even indefinitely) add and
remove the same piece of information. To prevent such pathologic behaviour, we now
formulate a number of conditions that “well-behaved” tableau systems are supposed
to satisfy. For the following definitions, fix a set of inputs I and a tableau system
S = (NLE ,GME ,EL, d, ·S ,R, C) for I.

Before we can define admissibility of tableau systems, we must introduce an “in-
clusion relation” between patterns.

Definition 7.3 (Relations between patterns). Let P = (t, µ) and P ′ = (t′, µ′)
with t = (V,E, n, `) and t′ = (V ′, E′, n′, `′) be S-patterns. We write P - P ′ if the
following conditions are satisfied: µ ⊆ µ′ and there is an injection π : V → V ′ that
maps the root of t to the root of t′ and satisfies the following conditions:

• for all x ∈ V , we have n(x) ⊆ n′(π(x)); and

• for all x, y ∈ V , (x, y) ∈ E implies (π(x), π(y)) ∈ E ′ and
`(x, y) = `′(π(x), π(y)). 3

If π is the identity on V (and thus V ⊆ V ′), then we write P ¹ P ′ (and P ≺ P ′ if,
additionally, P 6= P ′). If µ = µ′, π is a bijection, and n(x) = n′(π(x)) for all x ∈ V ,
then we write P ∼ P ′. To make the injection (bijection) π explicit, we sometimes
write P -π P

′ (P ∼π P
′).

For an input i ∈ I we say that P = (t, µ) is a pattern for i iff µ is a subset of
gmeS(i), the labels of all nodes in t are subsets of nleS(i), and the labels of all edges
in t belong to elS(i). The pattern P is saturated iff R(P) = ∅.

Definition 7.4 (Admissible). The tableau system S is called admissible iff it sat-
isfies, for all S-patterns P and P ′, the following conditions:

1. If P →R {P1, . . . , Pm}, then P ≺ Pi for all i, with 1 ≤ i ≤ m.

2. If P →R {P1, . . . , Pm}, P ′ is saturated, and P - P ′, then there exists an i, with
1 ≤ i ≤ m, such that Pi - P

′.

3. For all inputs i ∈ I, if P is a pattern for i and P →R {P1, . . . , Pm}, then the
patterns Pi are patterns for i.

4. If P ∈ C and P - P ′, then P ′ ∈ C. 3

112 Chapter 7. Tableau Systems

It is in order to discuss the intuition underlying the above conditions. Condition 1
says that rule application always adds nodes, elements of node labels, or elements of
the global memory component. Condition 2 can be understood as follows. Assume
that a (non-deterministic) rule is applicable to P and that P ′ is a “super-pattern”
of P that is saturated (i. e. all applicable rules have already been applied). Then the
non-deterministic rule can be applied in such a way that the obtained new pattern
is still a sub-pattern of P ′. Intuitively, this condition can be used to reach P ′ from
P by repeated rule application. Condition 3 says that, by applying completion rules
for some input i, we stay within the limits given by the values of the ·S function.
Condition 4 states that applicability of clash-triggers is monotonic, i. e. if a pattern
triggers a clash, all its “super-patterns” also trigger a clash.

It is easy to see that these conditions are satisfied by the tableau system SALC

for ALC. For Condition 1, this is obvious since the rules only add nodes, elements of
node labels, or elements of the global memory component, but never remove them.
Condition 3 holds since rules only add subconcepts of existing concepts to the node
label or the global memory component. Condition 4 is also clear: if P = (t, µ) and
the label of the root of t contains A and ¬A, then the label of the root of the tree of
every super-pattern of P also contains A and ¬A.

The most interesting condition is Condition 2. We illustrate it by considering the
treatment of disjunction and of existential restrictions in SALC . Firstly, assume that
P →R {P1, P2} where the root label of the tree t of P contains C t D and the root
labels of the trees of P1 and P2 are obtained from the root label of t by respectively
adding C and D. If P - P ′, then the root label of the tree of P ′ also contains C t D.
If, in addition, P ′ is saturated, then this root label already contains C or D. Thus,
P ′ - P1 holds in the first case and P ′ - P2 holds in the second one.

Secondly, consider the rules handling existential restrictions. Let P - P ′, and
assume that the root label of the tree t of P contains the existential restriction ∃r.C
and that the root of t has m r-successors u1, . . . , um. Then the existential restriction
∃r.C induces the rule P →R {P0, . . . , Pm} where the patterns P0, . . . , Pm are as defined
above. If, in addition, P ′ is saturated, then the root of its tree has an r-successor whose
label contains C. If this is a “new” r-successor (i. e. one not in the range of the injection
π that ensures P - P ′), then P0 - P ′.1 Otherwise, there is an r-successor ui of the
root of t such that the label of π(ui) in the tree of P ′ contains C. In this case, Pi - P

′

holds.

We now introduce S-trees, the abstract counterpart of completion trees, and define
what it means for a pattern to match into an S-tree.

Definition 7.5 (S-tree, matching). An S-tree is a pair T = (t, µ) where µ ⊆ GME

and t = (V,E, n, `) is a labelled tree with finite out-degree, a countable set of nodes V ,
and the node and edge labelling functions n : V → ℘(NLE) and ` : E → EL.

Any node x ∈ V defines a pattern T |x, the d-neighbourhood of x in T , as follows:
T |x := ((V ′, E′, n′, `′), µ) where

1This shows that we cannot replace - by ¹ in the statement of Condition 2. In fact, we cannot
be sure that the new successor introduced in P0 has the same name as the new successor in P ′.

7.1. The Tableau Systems Framework 113

• V ′ = {x} ∪ {y ∈ V | there is a path from x to y of length at most d in t};

• E′, n′, `′ are the restrictions of E, n, ` to V ′.

The tree (V ′, E′, n′, `′) of T |x is denoted by t|x. If P is an arbitrary S-pattern and
x ∈ V , then we say that P matches x in T iff P ∼ T |x (see Definition 7.3). 3

For the tableau system for ALC introduced above, SALC-trees are basically the
completion trees defined in Section 3.2. The only difference is that SALC-trees have
an additional global memory component µ.

Later on, we need sub-tree relations between S-trees in analogy to the inclusion
relations “-” and “¹” between patterns introduced in Definition 7.3. These relations
are defined on trees exactly as for patterns, and we also use the same relation symbols
for them.

We are now ready to describe rule application on an abstract level. Intuitively,
the rule P →R {P1, . . . , Pm} can be applied to the node x in the S-tree T if P ∼ T |x,
and its application yields the new tree T ′, which is obtained from T by adding new
nodes to T |x and/or extending labels of nodes from T |x and/or extending the global
memory component, as indicated by some Pi. This intuition is formalised in the
following definition.

Definition 7.6 (Rule application). Let S be an admissible tableau system, T =
(t, µ) be an S-tree, and P →R {P1, . . . , Pm} be a rule of S. The S-tree T ′ = (t′, µ′) is
obtained from T by application of this rule to a node x of t iff the following conditions
hold:

1. P ∼π T |x for some bijection π.

2. There is an i, 1 ≤ i ≤ m such that T ′ is obtained from T by replacing T |x by Pi.
To be more precise, let t = (V,E, n, `), P = (t0, µ0) where t0 = (V0, E0, n0, `0),
and Pi = (ti, µi) where ti = (Vi, Ei, ni, `i), and assume (without loss of general-
ity) that V ∩ Vi = ∅. Let π′ be the extension of π to Vi that is the identity on
Vi \ V0. Then µ′ = µi and t′ = (V ′, E′, n′, `′), where

(a) V ′ = V ∪ (Vi \ V0);

(b) E′ = E ∪ {(π′(y), π′(z)) | (y, z) ∈ Ei};

(c) n′(y′) = n(y′) if y′ /∈ ran(π′) and n′(y′) = ni(y) if y′ = π′(y) for some
y ∈ Vi;

(d) `′(y, z) = `(y, z) for all (y, z) ∈ E, and
`′(y′, z′) = `i(y, z) if y′ = π′(y), z′ = π′(z), and (y, z) ∈ Ei. 3

For a fixed rule P →R {P1, . . . , Pm}, a fixed choice of Pi, and a fixed node x in
T , the result of the rule application is unique. It is easy to check that, in the case of
SALC , rule application as defined above captures precisely the intuitive understanding
of rule application employed in Section 3.2.

114 Chapter 7. Tableau Systems

To finish our abstract definition of tableau algorithms, we need some way to de-
scribe the set of S-trees that can be obtained by starting with an initial S-tree for an
input i, and then repeatedly applying completion rules. This leads to the notion of
S-trees for i.

Definition 7.7 (S-tree for i). Let S be an admissible tableau system, and let i be
an input for S. The set of S-trees for i is the smallest set of S-trees such that

1. All initial S-trees for i belong to this set, where an initial S-tree for i is of the
form (({v0}, ∅, {v0 7→ Λ}, ∅), µ), where v0 is a node and (Λ, µ) ∈ iniS(i).

2. If T is an S-tree for i and T ′ can be obtained from T by the application of a
completion rule, then T ′ is an S-tree for i.

3. If T0, T1, . . . is an infinite sequence of S-trees for i with Ti = ((Vi, Ei, ni, `i), µi)
such that

(a) T0 is an initial S-tree for i and

(b) for all i ≥ 0, Ti+1 can be obtained from Ti by the application of a completion
rule,

then the S-tree T ω = ((V,E, n, `), µ) is also an S-tree for i, where

• V =
⋃

i≥0 Vi,

• E =
⋃

i≥0Ei,

• n =
⋃

i≥0 ni,

• ` =
⋃

i≥0 `i, and

• µ =
⋃

i≥0 µi. 3

Rule application may terminate after finitely many steps or continue forever. The
last case of Definition 7.7 deals with such infinite sequences of rule applications. The
S-tree Tω can be viewed as the limit of the sequence T0, T1, . . . of S-trees. This
limit exists since admissibility of S implies that rule application is monotonic w. r. t.
the sub-tree relationship “¹”, i. e. it extends S-trees by new nodes or by additional
elements in node labels, but it never removes nodes or elements of node labels.

Let us now define when an S-tree is saturated and clash-free. Saturatedness says
that no completion rule is applicable to the S-tree, and an S-tree is clash-free if no
clash-trigger can be applied to any of its nodes.

Definition 7.8 (Saturated, clash-free). Let S be an admissible tableau system.
We say that the S-tree T is

• saturated if, for every node x in T and every pattern P , P ∼ T |x implies
R(P) = ∅;

• clash-free if, for every node x in T and every P ∈ C, we have P 6∼ T |x. 3

7.2. ExpTime Automata Algorithms from Tableau Systems 115

Finally, we define soundness and completeness of tableau systems w. r. t. a certain
property of its set of inputs. If the inputs are concepts (pairs consisting of a concept
and a TBox), the property is usually satisfiability of the concept (w. r. t. the TBox).

Definition 7.9 (Sound, complete). Let P ⊆ I be a property. The tableau system
S is called

• sound for P iff, for any i ∈ I, the existence of a saturated and clash-free S-tree
for i implies that i ∈ P;

• complete for P iff, for any i ∈ P, there exists a saturated and clash-free S-tree
for i. 3

It should be noted that the algorithmic treatment of tableau systems requires a
stronger notion of completeness: an additional condition is needed to ensure that the
out-degree of S-trees is appropriately bounded (see Definitions 7.10 and 7.22 below).

Taking into account the soundness and completeness results shown in Theorem 3.6
for the ALC tableau algorithm described in Figures 3.2 and 3.3, it is straightforward
to check that the tableau system SALC is sound and complete w. r. t. satisfiability of
concepts. Note, in particular, that saturated S-trees for an input i are precisely those
S-trees for i that can be obtained by exhaustive or infinite and fair rule application.

7.2 ExpTime Automata Algorithms from Tableau

Systems

In this section, we define the class of “ExpTime-admissible” tableau systems. If
such a tableau system is sound and complete for a property P, then it gives rise
to an ExpTime algorithm for deciding P.2 In the case where P is satisfiability of
description logic concepts (w. r. t. a TBox), this means that the mere existence of an
ExpTime-admissible tableau system for the DL implies an ExpTime upper-bound
for concept satisfiability (w. r. t. TBoxes) in this DL. The ExpTime upper-bound is
shown via a translation of the inputs of the ExpTime-admissible tableau system into
a special kind of non-deterministic tree automata. Since these automata operate on
infinite trees, ExpTime-admissible tableau systems need not deal with the issue of
termination. Indeed, non-terminating tableau algorithms such as the one for ALC with
general TBoxes introduced in Definition 7.2 may yield ExpTime-admissible tableau
systems.

Throughout this section, we consider a fixed set of inputs I and a fixed tableau
system S = (NLE ,GME ,EL, d, ·S ,R, C) for I, which is sound and complete w. r. t.
some property P. As usual, the exponential upper-bound of deciding P is assumed to
be in the “size” of the input i ∈ I. Thus, we assume that the set of inputs is equipped
with a size function, which assigns to an input i ∈ I a natural number, its size |i|.

2More precisely, we must demand a slightly stronger version of completeness, as introduced in
Definition 7.10 below.

116 Chapter 7. Tableau Systems

7.2.1 Basic Notions

Recall that a tableau system S is sound and complete for a property P if, for any
input i, we have i ∈ P iff there exists a (potentially infinite) saturated and clash-free S-
tree for i. The fundamental idea for obtaining an ExpTime upper-bound for deciding
P is to use non-deterministic tree automata as in Section 4.3 to check for the existence
of a clash-free and saturated S-tree for a given input i. Since these automata work
on trees of some fixed out-degree, this approach only works if the (size of the) input
determines such a fixed out-degree for the S-trees to be considered. This motivates
the following definition.

Definition 7.10 (p-complete). Let p be a polynomial. The tableau system S is
called p-complete for P iff, for any i ∈ P, there exists a saturated and clash-free
S-tree for i with out-degree bounded by p(|i|). 3

Throughout this section, we assume that there exists a polynomial p such that
the fixed tableau system S is p-complete w. r. t. the property P under consideration.
The tableau system SALC from Definition 7.2 is easily proved to be i-complete, with i
being the identity function on the natural numbers: using the formulation of the rules,
it is easily seen that the out-degree of every SALC-tree for the input C is bounded by
the number of concepts of the form ∃r.D in sub(C, T) and thus also by the length of
the concept C and the TBox T .

It should be noted that most standard description logic tableau algorithms also
exploit p-completeness of the underlying logic: although this is not made explicit in
the formulation of the algorithm itself, it is usually one of the central arguments in
termination proofs, as for Theorems 3.2 and 3.6.3 The intuition that p-completeness
is not an artefact of using an automata approach is supported by the fact that a
similar strengthening of the notion of completeness is needed in Section 7.3, where we
construct tableau algorithms from tableau systems.

To ensure that the automaton Ai can be computed and tested for emptiness in
exponential time, we require the function ·S of the tableau system S and the rules
of S to exhibit an “acceptable” computational behaviour. This is captured by the
following definition, where we assume that all patterns are appropriately encoded in
some finite alphabet, and thus can be the input for a decision procedure. The size of
a pattern P is the sum of the sizes of its global memory component and its node and
edge labels, where the size of a node label (global memory component) is the sum of
the sizes of its node label elements (global memory elements).

Definition 7.11 (ExpTime-admissible). The tableau system S is called ExpTime-
admissible iff all of the following conditions are satisfied:

1. S is admissible (see Definition 7.4);

2. iniS(i) and elS(i) can be computed in time exponential in |i|, and the size of each
edge label in elS(i) is polynomial in |i|;

3An exception are algorithms that treat qualifying number restrictions with numbers coded in
binary in a naive way (Hollunder and Baader, 1991; Tobies, 1999).

7.2. ExpTime Automata Algorithms from Tableau Systems 117

3. the cardinality of nleS(i) and the size of each node label element in nleS(i) is
polynomial in |i|, and nleS(i) can be computed in time exponential in |i|;

4. the cardinality of gmeS(i) and the size of each global memory element in gmeS(i)
is polynomial in |i|, and gmeS(i) can be computed in time exponential in |i|;

5. for each pattern P it can be checked in time exponential in the size of P whether,
for all patterns P ′, P ′ ∼ P implies R(P ′) = ∅;

6. for each pattern P it can be checked in time exponential in the size of P whether
there is a clash-trigger P ′ ∈ C such that P ′ ∼ P . 3

Note that Condition 2 of ExpTime-admissibility implies that, for each i ∈ I, the
cardinality of the sets iniS(i) and elS(i) are at most exponential in |i|. The cardinality
of the set of node label elements nleS(i) is explicitly required (in Condition 3) to
be polynomial. For the actual set of possible node labels (which are sets of node
label elements), this yields an exponential upper-bound on its cardinality, but the
size of each single node label is polynomial in |i|. The same is true for the global
memory component (Condition 4). ExpTime-admissibility ensures that the size of
each d-neighbourhood T |x is polynomial in |i| since

• p-completeness implies that we consider only S-trees T of out-degree bounded
by p(|i|), and thus the out-degree of each d-neighbourhood is polynomial in |i|;

• d-neighbourhoods have constant depth d (not depending on the input);

• the sizes of the global memory component and of edge and node labels are
polynomial in |i|.

Thus, the fifth condition ensures that the saturatedness condition can be checked in
time exponential in |i| for a given neighbourhood T |x of T . The sixth condition yields
the same for clash-freeness.

Most of the standard tableau algorithms for ExpTime-complete DLs trivially sat-
isfy the conditions of ExpTime-admissibility. For example, it is easy to show that the
tableau system SALC defined in Section 7.1 is ExpTime-admissible. We have already
shown admissibility of SALC , and Condition 2, 3, and 4 are immediate consequences
of the definitions of iniSALC

, nleSALC
, gmeSALC

, and elSALC
. To see that Conditions 5

and 6 are satisfied as well, first note that the definition of the rules and clash-triggers
in SALC is invariant under isomorphism of patterns. For this reason, the decision
problem in Condition 5 reduces to checking whether a given pattern P is saturated
(see the definition of this notion below Definition 7.3), and the decision problem in
Condition 6 reduces to checking whether a given pattern is a clash-trigger. As an ex-
ample, we consider the rule handling existential restrictions. Let P = ((V,E, n, `), µ)
be a pattern whose tree has root v0, and assume that ∃r.C ∈ n(v0). This existential
restriction contributes a set of patterns to R(P) iff C 6∈ n(u) for all r-successors u
of v0. Obviously, this can be checked in time polynomial in the size of the pattern.

The remainder of the present section is concerned with converting ExpTime-
admissible tableau systems into automata algorithms, as outlined above. The major

118 Chapter 7. Tableau Systems

challenge is to bring together the different paradigms underlying tableau and automata
algorithms, i. e. to transform the “constructive” tableau rules from the Definitions 7.6
and 7.7 into “accepting” automata transitions. Due to these different perspectives,
it is not straightforward to construct automata that directly check for the existence
of S-trees for an input i. To overcome this problem, we first introduce the (less
constructive) notion of S-trees compatible with i, and investigate the relationship of
this notion to S-trees for i, as introduced in Definition 7.7.

Definition 7.12 (S-tree compatible with i). Let i be an input and T =
((V,E, n, `), µ) an S-tree with root v0. Then T is compatible with i iff it satisfies
the following conditions:

1. µ ⊆ ℘(gmeS(i));

2. n(x) ⊆ ℘(nleS(i)) for each x ∈ V ;

3. `(x, y) ∈ elS(i) for each (x, y) ∈ E;

4. there exists (Λ, ν) ∈ iniS(i) such that Λ ⊆ n(v0) and ν ⊆ µ; and

5. the out-degree of T is bounded by p(|i|). 3

Below, we will show that, given an ExpTime-admissible tableau system S that is
sound and p-complete for some property P and an input i for S, we can construct a
tree automaton of size exponential in the size of i that accepts exactly the saturated
and clash-free S-trees compatible with i. Together with the emptiness test described
in Section 4.1, this shows that the existence of saturated and clash-free S-trees com-
patible with i can be decided in exponential time. Since S is sound and p-complete
for P, we have i ∈ P iff there is a saturated and clash-free S-tree for i. Thus, we must
investigate the connection between S-trees for i and S-trees compatible with i. This
is done in the next lemma.

Lemma 7.13. There exists a clash-free and saturated S-tree that is compatible with
i iff there exists a clash-free and saturated S-tree for i.

Proof. The “if” direction is straightforward: let T = ((V,E, n, `), µ) be a clash-free
and saturated S-tree for i. Since S is sound and p-complete for P, we can assume
w.l.o.g. that the out-degree of the tree of T is bounded by p(|i|). It is not hard to
show that T is compatible with i, i. e. satisfies Conditions 1 to 5 of Definition 7.12:

• Each initial S-tree satisfies Conditions 1, 2, and 3 of compatibility, and Con-
dition 3 of admissibility ensures that rule application adds only global memory
elements from gmeS(i), node label elements from nleS(i), and edge labels from
elS(i).

• Each initial S-tree satisfies Condition 4 of compatibility, and rule application
cannot delete elements from node labels or from the global memory component.

• Since we assume the out-degree of T to be bounded by p(|i|), Condition 5 of
compatibility is also satisfied.

7.2. ExpTime Automata Algorithms from Tableau Systems 119

For the “only if” direction, let T = (t, µ) be a clash-free and saturated S-tree that
is compatible with i, and let v0 be the root of the tree t = (V,E, n, `). To construct a
clash-free and saturated S-tree for i, we first construct a (possibly infinite) sequence

T1 ¹ T2 ¹ T3 ¹ · · ·

of S-trees for i such that Ti -πi
T for all i ≥ 1. The construction will be such that

the injections πi that yield Ti - T also build an increasing chain, i. e. πi+1 extends πi

for all i ≥ 1. In the construction, we use a countably infinite set V ′ from which the
nodes of the S-trees Ti are taken. We fix an arbitrary enumeration x0, x1, . . . of V ′,
and write x < y if x ∈ V ′ occurs before y ∈ V ′ in this enumeration. We then proceed
as follows:

• Since T is compatible with i, there exists (Λ, ν) ∈ iniS(i) such that Λ ⊆ n(v0) and
ν ⊆ µ. Define T1 to be the initial S-tree (({x0}, ∅, {x0 7→ Λ}, ∅), ν). Obviously,
T1 -π1 T for π1 := {x0 7→ v0}.

• Now, assume that Ti -πi
T is already constructed. If Ti is saturated, then Ti is

the last S-tree in the sequence. Otherwise, choose the least node x in the tree of
Ti (w. r. t. the fixed ordering < on V ′) such that P ∼ Ti|x for some pattern P that
is not saturated, i. e. there exists a rule P →R {P1, . . . , Pm}. Since Ti -πi

T ,
we have P - T |πi(x). Since T is saturated, the pattern T |πi(x) is saturated. By
Condition 2 of admissibility, we have Pj - T |πi(x) for some j with 1 ≤ j ≤ m.
We apply the rule P →R {P1, . . . , Pm} to x in Ti such that Pj ∼ Ti+1|x. If the
tree of Ti+1 contains new nodes, then they are taken without loss of generality
from V ′. Admissibility yields Ti ¹ Ti+1 and the fact that Pj - T |πi(x) implies
that we can define an injection πi+1 extending πi such that Ti+1 -πi+1 T .

In the definition of the clash-free and saturated S-tree T ∗ for i, we distinguish two
cases:

1. if the constructed sequence is finite and Tn is the last S-tree in the sequence,
then set T ∗ := Tn;

2. otherwise, let T ∗ be the S-tree T ω obtained from the sequence T1, T2, . . . as in
Case 3 of Definition 7.7.

In both cases, T ∗ is obviously an S-tree for i by definition. In addition, we have
T ∗ -π T where π is the injection obtained as the union of the injections πi for i ≥ 1.

It remains to show that T ∗ is clash-free and saturated. We concentrate on the
second case, where T ∗ = Tω, since the first case is similar, but simpler. Clash-freeness
is an easy consequence of T ∗ - T . In fact, by Condition 4 of admissibility, clash-
freeness of T implies that T ∗ - T is also clash-free.

In order to show saturatedness of T ∗, we must look at T ∗ and its relationship to
the S-trees Ti in more detail. Since Ti ¹ T ∗ - T and the out-degree of the tree of
T is bounded by p(|i|), the out-degrees of the trees of Ti and T ∗ are also bounded by
p(|i|). For a given node x of the tree of T ∗, we consider its d-neighbourhood T ∗|x.

120 Chapter 7. Tableau Systems

Since the rules of S only add nodes or elements of node labels or of the global memory
component (see Condition 1 in the definition of admissibility), and since the out-degree
of x is bounded by p(|i|) and the sets nleS(i) and gmeS(i) are finite, there is an i such
that x is a node of Ti and “the neighbourhood of x does not change after step i”, i. e.
Ti|x = Ti+1|x = . . . = T ∗|x.

Now assume that T ∗ is not saturated, i. e. there exists a node x in the tree of T ∗

to which a rule applies, i. e. P ∼ T ∗|x for some pattern P with R(P) 6= ∅. Let i be
such that Ti|x = Ti+1|x = . . . = T ∗|x. Thus, for j ≥ i, a rule applies to the node x
in the tree of Ti. In the construction of the sequence T1, T2, T3, . . ., we apply a rule
only to the least node to which a rule is applicable. Consequently, from the i-th step
on, we only apply rules to nodes y ≤ x. Since there are only finitely many such nodes
(see the definition of the order < above), there is one node y ≤ x to which rules are
applied infinitely often. However, each rule application strictly increases the global
memory component, the number of nodes in the d-neighbourhood of y, or the label of
a node in this d-neighbourhood. This contradicts the fact that the out-degree of the
trees of the Ti is bounded by p(|i|), all node labels are subsets of the finite set nleS(i),
and all global memory components are subsets of the finite set gmeS(i). 2

7.2.2 Accepting Compatible S-trees Using Automata

Recall that we assume our tableau system S to be sound and p-complete w. r. t. a
property P. By Lemma 7.13, to check whether an input has property P, it thus
suffices to verify the existence of a saturated and clash-free S-tree that is compatible
with i. In this section, we show how this can be done using an automata-based
approach.

In contrast to patterns, whose trees can have depth up to d, transitions of tree
automata (see Definition 4.2) consider only subtrees of depth 1. This property makes
it hard to give a direct translation of an input into an automaton that accepts the
saturated and clash-free S-trees that are compatible with this input. For this reason,
we first introduce a new type of tree automata “with transitions of depth d”, and
show that they can be translated into “ordinary” tree automata with transitions as
in Definition 4.2.

For a set Q and integers d, k, we denote the set of all (full) k-ary trees of depth d
with node labels in Q by Td

k(Q). If r is an infinite k-ary Q-tree and x a node in r,
then r|x denotes the d-neighbourhood of x, i. e. the full k-ary subtree of t of depth d
with root x.

Definition 7.14 (Tree automata with transitions of depth d). A tree automa-
ton A = (Q,Σ, I,∆) with transitions of depth d working on k-ary Σ-trees consists of
a finite set Q of states, a finite alphabet Σ, a set I ⊆ Td

k(Q) of initial trees, and a set
of transitions ∆ ⊆ Σ × Td

k(Q).
A run of A on an Σ-tree t is a mapping r : K∗ → Q (i. e. a k-ary Q-tree) such that

(t(v), r|v) ∈ ∆ holds for each node v in K∗. It is successful if r|ε ∈ I. The language
of k-ary Σ-trees accepted by A is

L(A) := {t | there is a successful run of A on the k-ary Σ-tree t}. 3

7.2. ExpTime Automata Algorithms from Tableau Systems 121

It is easy to see that normal tree automata (as introduced in Definition 4.2) consti-
tute the special case where the transitions are of depth 1. The following lemma shows
that tree automata of depth d > 1 are not more powerful than normal tree automata.
We define the size of a tree automaton A = (Q,Σ, I,∆) as |A| := |Q|+ |Σ|+ |I|+ |∆|.

Lemma 7.15. Any tree automaton A of depth d > 1 working on k-ary Σ-trees can
be reduced in time polynomial in |A|k to a normal tree automaton that accepts the
same language.

Proof. Let A = (Q,Σ, I,∆) be a tree automaton with transitions of depth d. The
normal tree automaton B = (P,Σ, J,Θ) is defined as follows:

• P := {t | (σ, t) ∈ ∆ for some σ ∈ Σ};

• J := I ∩ P ;

• (t0, σ, t1, . . . , tk) ∈ Θ iff (σ, t0) ∈ ∆ and t1, . . . , tk ∈ P are such that ti coincides
with the subtree of t0 at node i up to depth d− 1.

Clearly, |P | is bounded by |∆|, |J | is bounded by |I|, and |Θ| is bounded by |P |k · |∆|.
It is also easy to see that B can be computed in time polynomial in |A|k.

It remains to show that L(A) is equal to L(B). First, assume that t ∈ L(A) and
that r is a successful run of A on t. It is easy to see that the following is a successful
run of B on t:

S : K∗ → P : v 7→ r|v.

Second, assume that r′ is a successful run of B on t. If p is an element of P ⊆ Td
k(Q),

then we denote the label of its root by rl(p). We claim that the following is a successful
run of A on t:

S′ : K∗ → Q : v 7→ rl(r′(v)).

This is an easy consequence of the fact that S ′|v = r′(v) holds for all v ∈ K. 2

The next obstacle on our way towards translating an input into an automaton
that accepts the saturated and clash-free S-trees that are compatible with this input
is that the S-trees introduced in Section 7.1 are not of a fixed arity k and that their
edges are labelled, but not ordered.

It is, however, not hard to convert S-trees compatible with a given input into k-ary
Σ-trees for appropriate k and Σ. This is achieved by (i) “padding” with additional
dummy nodes as in Definition 4.4, and (ii) representing edge labels via node labels.

Definition 7.16 (Padding). Let i ∈ I be an input and t = (V,E, n, `) be the tree
component of an S-tree compatible with i. Let v0 denote the root of t. For each
x ∈ V , we use k(x) to denote the out-degree of x in t. We assume that the successors
of each node x ∈ V are linearly ordered and that, for each node x ∈ V \{v0}, s(x) = i
iff x is the i-th successor of its predecessor. We inductively define a function m from
{1, . . . , p(|i|)}∗ to V ∪ {#} (with # 6∈ V) as follows:4

4Note that the p used here stems from p-completeness.

122 Chapter 7. Tableau Systems

• m(ε) = v0;

• if m(v) = x ∈ V , (x, y) ∈ E, and s(y) = i, then m(vi) = y;

• if m(v) = x ∈ V and k(x) < i, then m(vi) = #;

• if m(v) = #, then m(vi) = # for all i ∈ {1, . . . , p(|i|)}.

Let tlS(i) denote the set (℘(nleS(i)) × elS(i)) ∪ {(#,#)}. The padding Πt of t is the
p(|i|)-ary tlS(i)-tree defined by setting

1. Πt(ε) = (n(v0), e0) where e0 is an arbitrary (but fixed) element of elS(i);

2. Πt(v) = (n(x),Θ) if v 6= ε, m(v) = x 6= #, and `(y, x) = Θ where y is the
predecessor of x in t;

3. Πt(v) = (#,#) if m(v) = #.

Given the tree component t of a pattern for i of out-degree at most p(|i|), its d-padding
Πd

t is the full p(|i|)-ary tlS(i)-tree of depth d obtained by adding the missing nodes
with label (#,#) and by representing edge labels via node labels, analogous to the
definition of Πt above. 3

The final obstacle on our way towards translating an input into an automaton that
accepts the saturated and clash-free S-trees that are compatible with this input is the
presence of the global memory component in our framework. Transitions of automata
(even if they are of depth d) are local, whereas the notion of saturatedness involves the
global memory component. For this reason, we define for each input i ∈ I and each
µ ⊆ gmeS(i) an automaton Aµ

i
that accepts a non-empty language iff there exists

a saturated and clash-free S-tree that is compatible with i and has global memory
component µ.

Definition 7.17 (Automaton for input i and global memory component µ).
Let i ∈ I be an input, h = p(|i|), and µ ⊆ gmeS(i). The automaton Aµ

i
= (Q,Σ, I,∆)

with transitions of depth d is defined as follows:

• Q := Σ := tlS(i);

• I consists of all elements t of Th
k(Q) whose root label is of the form rl(t) = (Ψ, e0)

where Ψ is such that there exists a tuple (Λ, ν) ∈ iniS(i) with Λ ⊆ Ψ and ν ⊆ µ.

• (σ, t) ∈ ∆ iff the following two conditions are satisfied:

1. σ = rl(t);

2. either all nodes of t are labelled with (#,#) or there is a pattern P ∗ = (s, µ)
that satisfies the following conditions:

(a) t = Πk
s ;

(b) for each pattern P with P ∼ P ∗, P is saturated (i. e. R(P) = ∅);

(c) for each pattern P ∈ C, we have P 6∼ P ∗. 3

7.2. ExpTime Automata Algorithms from Tableau Systems 123

The following lemma shows that the automaton Aµ
i

accepts exactly the paddings of
saturated and clash-free S-trees that are compatible with i and have global memory
component µ. Consequently, it accepts a non-empty set of trees iff there exists a
saturated and clash-free S-tree that is compatible with i and has global memory
component µ.

Lemma 7.18. Let i ∈ I be an input and µ ⊆ gmeS(i). Then

L(Aµ
i
) = {Πt | (t, µ) is a saturated and clash-free S-tree compatible with i}.

Proof. Firstly, assume that (t, µ) is a saturated and clash-free S-tree compatible with i.
We claim that Πt itself is a successful run of Aµ

i
on Πt. In fact, Πt|ε ∈ I is an immediate

consequence of Definition 7.16 (padding) and Condition 4 in Definition 7.12 (S-tree
compatible with i). Now, consider some node v of Πt. The first condition in the
definition of ∆ is satisfied since we have Πt as successful run on itself. Thus, consider
the second condition. If Πt(v) = (#,#), then the definition of padding implies that
all the nodes below v also have label (#,#), and thus the second condition in the
definition of ∆ is satisfied. Otherwise, it is easy to see that the pattern P ∗ defined by
Condition 2(a) of the definition of ∆ is a d-neighbourhood in t. Since t is saturated
and clash-free, P ∗ thus satisfies (b) and (c) as well. This completes the proof that Πt

is a successful run of Aµ
i

on Πt, and thus shows that Πt ∈ L(Aµ
i
).

Secondly, assume that t̂ is a tree accepted by Aµ
i
. Because of the first condition in

the definition of ∆, t̂ itself is a successful run of Aµ
i

on t̂. The definitions of Q, I, and
∆ imply that there is an S-tree T = (t, µ) compatible with i such that Πt = t̂. The
tree t can be obtained from t̂ by “reversing” the padding procedure, i. e. removing
dummy nodes and labelling the edges. It remains to show that (t, µ) is saturated
and clash-free. Thus, consider a node x of t, and let v be the corresponding node in
Πt = t̂. Since x is a node in t, the node v has a label different from (#,#). It is easy
to see that the pattern P ∗ defined by (a) in the second condition in the definition of
the transition relation coincides with T |x. Thus (b) and (c) in this condition imply
that no completion rule and no clash-trigger is applicable to x. 2

We are now ready to prove the main result of this section: the ExpTime upper
bound induced by ExpTime-admissible tableau systems.

Theorem 7.19. Let I be a set of inputs, P ⊆ I a property, and p a polynomial.
If there exists an ExpTime-admissible tableau system S for I that is sound and p-
complete for P, then P is decidable in ExpTime.

Proof. Let i ∈ I be an input. To decide whether i ∈ P, we construct for each
µ ⊆ gmeS(i) the automaton Aµ

i
. By Lemmas 7.13 and 7.18, i ∈ P iff at least one of

these automata accepts a non-empty language.
It remains to show that this algorithm can be executed in exponential time. Let

n = |i| and k = p(|i|). In order to see that each automaton Aµ
i

can be constructed
in time exponential in n, note that, by Conditions 2 and 3 of ExpTime-admissibility,
we can compute ℘(nleS(i)) and elS(i) in time exponential in n, and thus the same

124 Chapter 7. Tableau Systems

holds for tlS(i) = Q = Σ. By Condition 2, to show that I can be computed in
exponential time it suffices to show that Th

k(Q) is of size exponential in n. This is the

case since |Th
k(Q)| = |Q|k

h+1−1, |Q| is exponential in n, k is polynomial in n, and h
is a constant. The transition relation ∆ can be computed in exponential time due to
Conditions 5 and 6 of ExpTime-admissibility and the facts that |∆| ≤ |Σ| · |Th

k(Q)|,
p is a polynomial and h is a constant. Since the automaton Aµ

i
can be computed in

exponential time, its size is at most exponential in |i|. Thus, Lemma 7.15 and the fact
that the emptiness test for tree automata can be realized in polynomial time (Vardi
and Wolper, 1986) imply that emptiness of each automaton Aµ

i
can be tested in time

exponential in the size of the input. By Condition 4 of ExpTime-admissibility we can
enumerate all global memory components µ ⊆ gmeS(i) in exponential time, and there
are exponentially many of them. Thus, the algorithm performs exponentially many
ExpTime tests, which is still in ExpTime. 2

Since we have shown that the tableau system SALC is ExpTime-admissible as well
as sound and p-complete (for some polynomial p) for satisfiability of ALC-concepts,
we can immediately put Theorem 7.19 to work:

Corollary 7.20. ALC-concept satisfiability w. r. t. general TBoxes is in ExpTime.

This concludes the section dealing with determining the complexity class of al-
gorithms formalised as tableau systems. In the next section, our aim is to derive a
practically useable decision procedure from a tableau system.

7.3 Tableau Algorithms from Tableau Systems

The tableau systems introduced in Section 7.1 cannot immediately be used as tableau
algorithms since rule application need not terminate. The purpose of this section is
to show that, under certain natural conditions, the addition of a straightforward cycle
detection mechanism, similar to blocking (Definition 3.5), turns tableau systems into
(terminating) decision procedures. In contrast to the ExpTime algorithm constructed
in the previous section, the procedures obtained here are usually not worst-case opti-
mal, due to the difficulties of proving ExpTime upper bounds with tableau algorithms
described in Section 3.2.2.

Fix a set of inputs I and a tableau system S = (NLE ,GME ,EL, d, ·S ,R, C) for I. As
in the previous section, we require that S has a number of computational properties.
Since we do consider decidability rather than complexity issues in this section, it is
sufficient for our purposes to impose effectiveness (and not efficiency) constraints. We
start with modifying Definition 7.11 (ExpTime-admissible tableau system):

Definition 7.21 (Recursive tableau system). S is called recursive iff the follow-
ing conditions are satisfied:

1. S is admissible (see Definition 7.4);

2. iniS(i) can be computed effectively;

7.3. Tableau Algorithms from Tableau Systems 125

3. for each pattern P it can be checked effectively whether, for all patterns P ′,
P ′ ∼ P implies R(P ′) = ∅; if this is not the case, then we can effectively
determine a rule

P ′ →R {P1, . . . , Pm}

and a bijection π such that P ′ ∼π P .

4. for each pattern P it can be checked effectively whether there is a clash-trigger
P ′ ∈ C such that P ′ ∼ P . 3

The main difference between this definition and Definition 7.11 is Condition 3, which
now requires that, besides checking the applicability of rules, we can effectively apply
at least one rule whenever some rule is applicable at all. Another difference is that
we do not actually need to compute the sets elS(i), nleS(i), and gmeS(i) in order to
apply rules.

Analogously to the case of ExpTime-admissibility, it can be verified that the
tableau system SALC is recursive. In particular, for the second part of Condition 3
we can again use the fact that the rules of SALC are invariant under isomorphism of
patterns: this means that it suffices to compute, for a given non-saturated pattern P ,
a set of patterns {P1, . . . , Pm} such that P →R {P1, . . . , Pm}. It is easy to see that
this can be effectively done for the rules of SALC .

We now define a more relaxed variant of Definition 7.10 (p-complete).

Definition 7.22 (f-complete). Let f : N → N be a recursive function. The tableau
system S is called f-complete for P iff, for any i ∈ P, there exists a saturated and
clash-free S-tree for i with out-degree bounded by f(|i|). 3

Since we have already shown that SALC is p-complete for some polynomial p, SALC is
clearly f -complete for the (computable) function f induced by the polynomial p.

In order to implement a cycle detection mechanism, we introduce the notion of
blocking: given an S-tree T = (t, µ), where t = (V,E, n, `), we denote by E∗ the
transitive and reflexive closure of E and say that x ∈ V is blocked iff there exist
u, v ∈ V such that

• uE∗x and vE∗x;

• uE∗v and the path from u to v is of length ≥ d; and

• (T |u)d−1 ∼ (T |v)d−1, where (T |u)d−1 and (T |v)d−1 denote the d − 1 neighbour-
hoods of u and v in T , respectively.

Note that, for d = 1, this blocking condition reduces to u 6= v and n(u) = n(v),
which corresponds to the well-known “equality-blocking” technique that is employed
in Section 3.2.2 and appears in various DL tableau algorithms (see e. g. Horrocks
and Sattler, 1999; Baader and Sattler, 2001). For d = 2, we obtain a more general
variant of the “double-blocking” mechanism used for description logics such as SHIQ
(Horrocks et al., 1999). Our version is more general since, in the double-blocking

126 Chapter 7. Tableau Systems

Preconditions: Let I be a set of inputs, P ⊆ I a property, f a recursive function,
and S a recursive tableau system for I that is sound and f -complete for P.

Algorithm: Return true on input i ∈ I if the procedure tableau(T) defined below
returns true for at least one initial S-tree T for i. Otherwise return false.

procedure tableau(T)

If P ∼ T |x for some P ∈ C and node x in T or the out-degree of T exceeds f(|i|),
then return false.

If no rule is applicable to a non-blocked node x in T ,
then return true.

Take a a non-blocked node x in T and a rule P →R {P1, . . . , Pm} with P ∼ T |x.

Let Ti be the result of applying the above rule such that Pi ∼ Ti|x, for 1 ≤ i ≤ m.

If at least one of tableau(T1), tableau(T2), . . . , tableau(Tm) returns true,
then return true.

Return false.

Figure 7.2: Decision procedure for P

variant, the isomorphic 2-neighbourhoods in the third item above would be smaller
and contain only a single node on depth 1.

The tableau algorithm for P induced by the tableau system S is described in
Figure 7.2. Note that the selection of rules and nodes in the procedure tableau is
don’t-care-non-deterministic: for the soundness and completeness of the algorithm, it
does not matter which rule we apply when to which node.

Let us verify that the individual steps performed by the algorithm in Figure 7.2
are actually effective:

• the initial trees for an input i can be computed effectively, since iniS(i) can be
computed effectively by Condition 2 of Definition 7.21;

• the condition in the first “if” statement can be checked effectively by Condition 4
of Definition 7.21 and since f is a recursive function;

• the applicability of rules can be checked by the first part of Condition 3 of
Definition 7.21;

• finally, that we can effectively take a rule and apply it to a node x follows from
the second part of Condition 3 of Definition 7.21.

We now turn to termination, soundness, and completeness of the algorithm.

Lemma 7.23 (Termination). Suppose the preconditions of Figure 7.2 are satisfied.
Then the algorithm of Figure 7.2 terminates for any input i ∈ I.

7.3. Tableau Algorithms from Tableau Systems 127

Proof. Let i ∈ I. The number of initial trees for i is finite and can be computed
effectively. Hence, it is sufficient to show that the procedure tableau terminates on
any initial tree for i. For each step in which the procedure does not immediately return
true or false, nodes are added to the tree, n(x) properly increases for some nodes x,
or µ properly increases (due to Condition 1 of admissibility). Since n(x) ⊆ ℘(nleS(i))
holds for any node x and µ ⊆ ℘(gmeS(i)) holds for any tree constructed during a
run of tableau, it is sufficient to show that both the out-degree and the depth of the
trees constructed are bounded. The out-degree of the trees is bounded by f(|i|) (more
precisely, as soon as one rule application yields a tree with out-degree larger than
f(|i|), the algorithm returns false in the next step). Due to the blocking condition, the
length of E-paths does not exceed the number of pairwise non-isomorphic labelled trees
(V,E, n, `) of depth up to d−1 and out-degree up to f(|i|) such that ran(n) ⊆ ℘(nleS(i))
and ran(`) ⊆ elS(i)). 2

Lemma 7.24 (Soundness). Suppose the preconditions of Figure 7.2 are satisfied.
If the algorithm of Figure 7.2 returns true on input i, then i ∈ P.

Proof. Suppose the algorithm returns true on input i. Then the algorithm terminates
with a clash-free S-tree T = (t, µ), t = (V,E, n, `), whose out-degree does not exceed
f(|i|) and such that no rule is applicable to a non-blocked node in T . As S is sound
for P, it is sufficient to show that there exists a saturated and clash-free S-tree for i.
To this end, we construct a clash-free and saturated S-tree

T ′ = ((V ′, E′, n′, `′), µ)

that is compatible with i (from which, by Lemma 7.13, we obtain a clash-free and
saturated S-tree for i). Say that a node x ∈ V is directly blocked if it is blocked but its
predecessor is not blocked. For any such x pick a y with yE∗x such that the path from
y to x has length ≥ d and (T |x)d−1 ∼ (T |y)d−1, and say that x is blocked by y. Now,
we define V ′ by unravelling V , similar to the technique in the proof of Lemma 6.23:
V ′ consists of all non-empty sequences 〈v0, x1, . . . , xn〉, where v0 is the root of V , the
nodes x1, . . . , xn ∈ V are directly blocked or not blocked, and (xi, xi+1) ∈ E if xi is
not blocked or xi is blocked by some y ∈ V such that (y, xi+1) ∈ E. Define E′ by
setting, for ~x = 〈v0, x1, . . . , xn〉 ∈ V ′ and ~y ∈ V ′, (~x, ~y) ∈ E′ iff there exists xn+1

such that ~y = 〈v0, x1, . . . , xn, xn+1〉. Define n′ by setting n′(〈v0, x1, . . . , xn〉) = n(xn).
Finally, define `′ by

• `′(〈v0, x1, . . . , xn〉 , 〈v0, x1, . . . , xn, xn+1〉) = `(xn, xn+1) if xn is not blocked;

• `′(〈v0, x1, . . . , xn〉 , 〈v0, x1, . . . , xn, xn+1〉) = `(y, xn+1) if xn is blocked and y
blocks xn.

We show that T ′ is a clash-free and saturated S-tree that is compatible with i. Com-
patibility is readily checked using the definition of T ′. Since T is clash-free and no
rule is applicable to a non-blocked node of T , we can prove clash-freeness and satu-
ratedness of T ′ by showing that any S-pattern P that matches T ′|~x for some node ~x
in t′ also matches a neighbourhood T |x for some non-blocked node x in t. Then, one
can easily show by induction on m for 0 ≤ m ≤ d and any 〈v0, x0, . . . , xn〉 ∈ V ′ that

128 Chapter 7. Tableau Systems

• (T ′|〈v0,x1,...,xn〉)m ∼ (T |xn)m if xn is not blocked and

• (T ′|〈v0,x1,...,xn〉)m ∼ (T |y)m if xn is blocked by y.

The base case (m = 0) is trivial. Thus, consider the induction step from m− 1 to m
for m− 1 < d.5

Firstly, consider the case where xn is not blocked. By definition of T ′, the label
of the root node 〈v0, x1, . . . , xn〉 of (T ′|〈v0,x1,...,xn〉)m coincides with the label of the
root node xn of (T |xn)m. Thus, it is sufficient to show that the respective successor
nodes have isomorphic neighbourhoods of depth m − 1. Let z be a successor of xn

in T , and let 〈v0, x1, . . . , xn, z〉 be the corresponding successor of 〈v0, x1, . . . , xn〉 in
T ′ (which exists since xn is not blocked). If z is not blocked, the induction yields
(T ′|〈v0,x1,...,xn,z〉)m−1 ∼ (T |z)m−1 and we are done. Otherwise, z is blocked by some
node y. By induction, we know that (T ′|〈v0,x1,...,xn,z〉)m−1 ∼ (T |y)m−1. In addition,
the facts that y blocks z and that m − 1 ≤ d − 1 imply that (T |y)m−1 ∼ (T |z)m−1.
Thus, we also have (T ′|〈v0,x1,...,xn,z〉)m−1 ∼ (T |z)m−1 in this case.

Secondly, consider the case where xn is blocked by some node y. Let
〈v0, x1, . . . , xi, y〉 be the node in T ′ corresponding to y. By construction of T ′

we have (T ′|〈v0,x1,...,xi,y〉)m ∼ (T ′|〈v0,x1,...,xn〉)m. Thus, it is sufficient to show that
(T ′|〈v0,x1,...,xi,y〉)m ∼ (T |y)m. Since y is not blocked, this is an instance of the first case
in the induction step, which we have already shown.

This finishes the induction proof. It follows that for an S-pattern P , we can deduce
from P ∼ T ′|〈v0,x1,...,xn〉 that P ∼ T |xn holds if xn is not blocked and that P ∼ T |y
holds if xn is blocked by y. 2

Lemma 7.25 (Completeness). Suppose the preconditions of Figure 7.2 are satis-
fied. If i ∈ P, then the algorithm of Figure 7.2 returns true on input i.

Proof. Suppose i ∈ P. Since S is f -complete for P, there exists a clash-free and
saturated S-tree T = (t, µ), t = (V,E, n, `), for i whose out-degree does not exceed
f(|i|). We use T to “guide” the algorithm to an S-tree of out-degree at most f(|i|) in
which no clash-trigger applies and no rule is applicable to a non-blocked node. This
will be done in a way such that all constructed S-trees T ′ satisfy T ′ - T .

For the start, we need to choose an appropriate initial S-tree T1. Let v0 be the
root of t. Since S-trees for i are also compatible with i, the definition of compatibility
implies that there exists (Λ, ν) ∈ iniS(i) such that Λ ⊆ n(v0) and ν ⊆ µ. Define T1 to
be the initial S-tree (({v0}, ∅, {v0 7→ Λ}, ∅), ν). Clearly, T1 - T holds. We start the
procedure tableau with the tree T1.

Now suppose that tableau is called with some S-tree T ′ such that T ′ - T . If no
rule is applicable to a non-blocked node in T ′, we are done: since T ′ - T and T is
clash-free and of out-degree at most f(|i|), the same holds for T ′. Now suppose that
a rule is applicable to a non-blocked node in T ′. Assume that the tableau procedure
has chosen the rule P →R {P1, . . . , Pm} with P ∼ T ′|x. Since T ′ -τ T for some τ ,
we have P - T |τ(x). Since T is saturated, T |τ(x) is saturated. By Condition 2 of

5Note that the induction step can only be proved for m − 1 < d because the blocking condition
ensures isomorphism of neighbourhoods only up to depth d − 1.

7.4. Tableau Systems for SHIO and SHIQ 129

admissibility, we have Pj - T |τ(x) for some j, 1 ≤ j ≤ m. So we “guide” the tableau

procedure to continue exploring the S-tree T ′
j obtained from T ′ by applying the rule

P →R {P1, . . . , Pm} such that Pj ∼ T ′
j |x. Now, Pj - T |τ(x) implies T ′

j - T .

Since the tableau procedure terminates on any input, the “guidance” process will
also terminate and thus succeed in finding an S-tree of out-degree at most f(|i|) in
which no clash-trigger applies and no rule is applicable to a non-blocked node. Hence,
tableau(T1) returns true. 2

The three lemmas just proved imply that we have succeeded in converting the tableau
system S into a decision procedure for P.

Theorem 7.26. Suppose the preconditions of Figure 7.2 are satisfied. Then the
algorithm of Figure 7.2 effectively decides P.

This concludes the theoretical results of this chapter. In the following, we will illustrate
how the tableau systems framework can be put to use by defining tableau systems for
two expressive ExpTime-complete DLs.

7.4 Tableau Systems for SHIO and SHIQ

In this section, we develop the tableau systems SSHIO and SSHIQ, where the former
proves a new ExpTime complexity result for the logic SHIO and the latter pro-
vides an alternative proof of the known ExpTime result for SHIQ (Tobies, 2001).
These two tableau systems exploit different features of the framework: SSHIO uses
the global memory to store and retrieve information about nominals, whereas SSHIQ

uses patterns of size 2 to capture qualifying number restrictions in the presence of
inverse roles.

Both SHIO and SHIQ are extensions of the DL SHI, which was developed
by Horrocks and Sattler (1999) (under the name ALCHIR+). SHI extends ALC
with role hierarchies, transitive and inverse roles, and SHIO additionally allows for
nominals, whereas SHIQ allows for qualifying number restrictions (see Figure 2.2 on
Page 29). Since QNR together with role hierarchies and transitive roles lead to unde-
cidability (Horrocks et al., 2000a), it is necessary to prevent an interaction between
number restrictions and transitive roles. Therefore, roles that are not transitive and
do not have transitive sub-roles are called simple, and only simple roles may appear
in QNR.

Moreover, QNR can be used to express existential and value restrictions: ∃r.C is
equivalent to (> 1 r C), and ∀r.C is equivalent to (6 0 r ¬C). Therefore we will define
the syntax of SHIQ in a slightly non-standard way to keep the number of rules small
and thus improve the readability of the corresponding tableau system: we do not allow
for ∀ or ∃; instead, we allow for non-simple roles in QNR of the kind (6 0 r C) or
(> 1 r C). Since both SHIO and SHIQ allow for internalisation of GCIs as described
in Section 2.3.6, we allow only for RBoxes, but not for TBoxes.

130 Chapter 7. Tableau Systems

Definition 7.27 (SHIO and SHIQ). Syntax and semantics of SHIO and
SHIQ are defined as in Figures 2.1 and 2.2, with the modification for existential
and value restrictions in SHIQ mentioned above.

As in Definition 6.15, we refer to the inverse of a role r by r. Additionally, for an
RBox B, we define the role hierarchy B+ as B ∪ {r v s | r v s ∈ B}, and by v* B we
denote the reflexive-transitive closure of v on B+. A role r is called simple w. r. t. an
RBox B if there exists no role s ∈ NR+ with s v* B r or s v* B r.

In order to capture roles which are implicitly declared to be transitive (e. g. r if
r ∈ NR+), we use, for an RBox B, the predicate transB, and define that for a role r,
transB(r) holds iff there exists a role s such that s ∈ NR+ , s′ v* B r and r v* B s′′ for some
s′, s′′ ∈ {s, s−}. 3

As usual, we assume that all concepts are in NNF. Due to the possibility of role
inclusion axioms, we cannot restrict the possible node labels to the subconcepts as in
Definition 7.2; instead we will define the closure clos, which allows for additional value
restrictions. These are required by the ∀+-rule (see below), which in turn is necessary
to capture transitive sub-roles of non-transitive roles. The global memory is used for
three purposes: for transitive roles, role inclusion axioms, and for information about
concepts appearing in a node label together with a nominal.

Definition 7.28 (Tableau system SSHIO). For a SHIO concept C and RBox B,
we define the closure clos(C,B) as follows:

• sub(C) ⊆ clos(C,B);

• if ∀r.D ∈ clos(C,B) and the role s appears in C or B, then {∀s.D, ∀s.D} ⊆
clos(C,B).

We can now define a TS for SHIO, SSHIO = (NLESHIO,GMESHIO,ELSHIO,1, ·SSHIO ,
RSHIO,CSHIO).

• NLESHIO is the set of all SHIO concepts,

• GMESHIO = {(O,C) | O ∈ NOM and C ∈ NLESHIO} ∪
{trans(r) | r is a role} ∪ {r v* s | r and s are roles},

• ELSHIO is the set of all SHIO roles, and

• for an input i = (C,B), where C is a concept and B is an RBox, the function
·SSHIO maps i to a tuple i

SSHIO = (nle i, gme i, el i, ini i) with

– nle i = clos(C,B),

– el i = {r | r or r appears in C or B},

– gme i = {(O,D) | O ∈ NOM ∩ clos(C,B) and D ∈ clos(C,B)} ∪
{trans(r) | r ∈ el i} ∪ {r v* s | {r, s} ⊆ el i}, and

– ini i = {({C}, {trans(r) | transB(r) holds} ∪ {r v* s | r v* B s holds})}.

7.4. Tableau Systems for SHIO and SHIQ 131

Ru If C u D ∈ n(v) for a node v ∈ V and {C,D} 6⊆ n(v),
then R(P) contains {((V,E, n′, `), µ)},
where n′(x) = n(x) for all x 6= v and n′(v) = n(v) ∪ {C,D}.

Rt If C t D ∈ n(v) and {C,D} ∩ n(v) = ∅,
then R(P) contains {((V,E, n′, `), µ), ((V,E, n′′, `), µ)},
where n′(x) = n′′(x) = n(x) for all x 6= v,
n′(v) = n(v) ∪ {C} and n′′(v) = n(v) ∪ {D}.

R∃ If ∃r.C ∈ n(v0), v1, . . . , vm are all the children of v0 with `(v0, vi) = r,
and C /∈ n(vi) for all i, 1 ≤ i ≤ m,
then R(P) contains the set {P0, P1, . . . , Pm} with

• P0 = ((V0, E0, n0, `0), µ), where v′ /∈ V , V0 = V ∪ {v′},
E0 = E ∪ {(v0, v

′)}, n0 = n ∪ {v′ 7→ {C}}, `0 = ` ∪ {(v0, v
′) 7→ r}.

• for all i, 1 ≤ i ≤ m,Pi = ((V,E, ni, `), µ),
where ni(x) = n(x) for all x 6= vi and ni(vi) = n(vi) ∪ {C}.

R∀ If ∀r.C ∈ n(v) for some v ∈ V , v′ is an s-neighbour of v with C /∈ n(v′) and s v* r ∈ µ,
then R(P) contains {((V,E, n′, `), µ)},
where n′(x) = n(x) for x 6= v′ and n′(v′) = n(v′) ∪ {C}.

R∀+ If ∀r.C ∈ n(v), {trans(s), s v* r, q v* s} ⊆ µ,
and v′ is a q-neighbour of v with ∀s.C /∈ n(v′),
then R(P) contains {((V,E, n′, `), µ)},
where n′(x) = n(x) for x 6= v′ and n′(v′) = n(v′) ∪ {∀s.C}.

R↑ If {O,C} ⊆ n(v) for some O ∈ NOM and (O,C) /∈ µ,
then R(P) contains {((V,E, n, `), µ′)},
where µ′ = µ ∪ {(O,C)}.

R↓ If O ∈ n(v) for an O ∈ NOM, (O,C) ∈ µ and C /∈ n(v),
then R(P) contains {((V,E, n′, `), µ)},
where n′(x) = n(x) for x 6= v and n′(v) = n(v) ∪ {C}.

Figure 7.3: Tableau rules for SHIO

• The set of clash patterns CSHIO contains all patterns ((V,E, n, `), µ) of depth 0
with node v0 such that {A,¬A} ⊆ n(v0) for some concept name A appearing
in C.

• The set of rules RSHIO is defined in Figure 7.3. For each pattern P = (t, µ),
where t = (V,E, n, `) has v0 as root and depth at most 1, R(P) contains the
described sets. For {v, w} ⊆ V , we call w an r-neighbour of v if `(v, w) = r or
`(w, v) = r. 3

The rules Ru, Rt, R∃ and R∀ are similar to the corresponding rules in SALC (see
Definition 7.2), with a slight modification to handle role hierarchies properly. The
rule R∀+ takes care of transitive roles by propagating value restrictions along edges
labelled with transitive roles. Unlike in SALC , where the global memory is never
modified by a rule application, R↑ adds information about nominals to the global
memory during the construction of the tableau, which allows us to handle nominals

132 Chapter 7. Tableau Systems

in a more natural and goal-directed way than by initially guessing the type of each
nominal as in Section 5.2.2. From this definition, we obtain our first result:

Lemma 7.29. The TS SSHIO is admissible, sound and p-complete for SHIO satis-
fiability, where p = (x 7→ x2).

Proof. Since admissibility of the tableau system is easy to see, we prove only soundness
and p-completeness.

Soundness. From a saturated and clash-free S-tree (t, µ) with t = (V,E, n, `), we
generate a model I = (∆I , ·I) as follows: ∆I = {dO | O ∈ NOM} ∪ {dv | v ∈
V and n(v) ∩ NOM = ∅}, i. e. we have one individual for each nominal name and one
individual for every tree node that is not labelled with a nominal. A concept name
A is interpreted as follows: for every O ∈ NOM ∩ clos(C,B), dO ∈ AI iff there is a
node v ∈ V with {O,A} ⊆ n(v). Since R↑ and R↓ are not applicable, all nodes whose
labels contain the same nominal symbol have exactly the same label, and thus ·I is
well-defined. For all other individuals, dv ∈ AI iff A ∈ n(v). For a role name r, rI

is the smallest set satisfying the following conditions: if `(v, w) = r or `(w, v) = r,
then (dv, dw) ∈ rI ; if s v* r ∈ µ, then sI ⊆ rI ; if trans(r) ∈ µ, then rI is closed under
transitivity.

We will now show by structural induction that complex concepts are interpreted
correctly. By definition, all individuals belong to the interpretation of the concept
names in their labels, and the interpretation of a nominal contains exactly one element.
From our construction, it follows directly that the role hierarchy is respected and that
transitive roles are interpreted correctly. For a conjunct C u D (disjunct C t D) in a
node label n(v), since Ru (Rt) is not applicable, it follows that C and D (C or D) are
contained in n(v), and by induction, dv is contained in CI ∩ DI (CI ∪ DI).

If ∃r.C ∈ n(v), we assume w.l.o.g. that r is a role name (if it is an inverse role, the
argument is analogous). Since R∃ is not applicable, there exists an r-child w of v with
C ∈ n(w). By construction, it follows that (dv, dw) ∈ rI and by induction, dw ∈ CI .
If ∀r.C ∈ n(v), we again assume that r is a role name. There are two possible reasons
why (dv, dw) can be contained in rI : firstly, if w is an s-neighbour of v for some s with
s v* r ∈ µ. In this case, it follows that C ∈ n(w) because R∀ is not applicable, and thus
dw ∈ CI . Secondly, if there exist roles s, s1, . . . , sm such that {trans(s), s v* r, si v* s} ⊆ µ
for all i ∈ {1, . . . ,m} and there is an si-chain from v to w, i. e. a sequence of nodes
v1, v2, . . . , vn such that, for all edges e ∈ {(v, v1), (v1, v2), . . . , (vn, w)}, it holds that
e ∈ E and `(e) = si for some i. In this case, since R∀+ is not applicable, all nodes
v1, . . . , vm are labelled with ∀s.C and, since R∀ is not applicable to vm, n(w) contains
C. By induction, it follows that dv ∈ (∀r.C)I .

Completeness. We have to show that if there exists a model I = (∆I , ·I) for an
input i = (C,B), then there also exists a clash-free and saturated S-tree (t, µ) with
t = (V,E, n, `) for i, whose width is at most quadratic in |i|. We will create (t, µ) by
unravelling I: firstly, we add the appropriate transitivity axioms (trans(r) if transB(r)
holds) and role inclusion axioms (r v* s if r v* B s holds) to µ. The tree t is inductively

7.4. Tableau Systems for SHIO and SHIQ 133

defined as follows: since I is a model for i, there is an individual d0 in ∆I which
satisfies C. We start with V = {v0} and define n(v0) as the set of all concepts in
clos(C,B) which d0 satisfies. We define a function π : V → ∆I and set π(v0) = d0.

Then we iterate, for every node v, the following procedure: for every existential
restriction ∃r.D ∈ n(v) we choose a witness individual d ∈ ∆I with d ∈ DI and
(π(v), d) ∈ rI (such a witness exists by definition of n(v)). We create a new node w
with π(w) = d, (v, w) ∈ E and `(v, w) = r. Again, we label w with the appropriate
concepts in clos(C,B) and then continue the iteration. For every nominal concept O,
we add to µ the pair (O,D) for every concept D ∈ clos(C,B) that the unique element
dO of OI satisfies.

It is easy to see that (t, µ) is compatible with i and clash-free. We will now show
that it is also saturated: from the definition of clos, it follows that Ru and Rt are
not applicable. If a node label n(v) contains a concept ∃r.D then, by construction
of t, there is an r-successor of v labelled with D. Likewise, if ∀r.D ∈ n(v) then all
r-neighbours of v are labelled with D. If ∀r.D ∈ n(v) then µ contains s v* r, q v* s, and
trans(s), and there is a q-neighbour w of v then, since I is a model, (π(v), π(w)) ∈ sI

and, since sI is transitive, it also holds for every node u with (π(w), π(u)) ∈ sI that
(π(v), π(u)) ∈ sI , which implies π(u) ∈ DI . Thus it follows that π(w) ∈ (∀r.D)I and,
since s v* B r, v(w) contains ∀s.D, which means that R∀+ is not applicable. Finally,
since every node n with π(n) = dO for a nominal O is labelled with exactly those
concepts for which µ contains (O,C), R↑ and R↓ are not applicable.

The width of the S-tree is quadratic in the length of i because we create for every
node at most one successor for every existential restriction in clos(i) and the number
of such concepts is bounded by the product of the number of roles appearing in C or
B and the number of existential subconcepts of C. 2

From Lemma 7.29, we can derive that SHIO satisfiability is decidable through a
tableau algorithm, and we know that for the blocking condition, equality-blocking
suffices, i. e. we do not require double-blocking as e. g. for SHIQ (Horrocks et al.,
2000a), since we use only patterns of depth at most 1. We can also derive a complexity
result:

Theorem 7.30. Satisfiability for SHIO concepts w. r. t. RBoxes is ExpTime-
complete.

Proof. It is easy to see that S is ExpTime-admissible: e. g. the size of nleS(i) and
gmeS(i) is quadratic in the size of the input. Soundness and completeness have been
shown above. ExpTime-hardness follows from the fact that SHIO is an extension of
ALC with TBoxes, for which the satisfiability problem is known to be ExpTime-hard
(Schild, 1994). 2

For SHIQ, we need a TS with quite different properties: in order to handle QNR
in the presence of inverse roles correctly, we require patterns of size 2. However,
this makes a special treatment for the root node necessary since it does not have a
predecessor. We therefore introduce an additional concept name ROOT and a special

134 Chapter 7. Tableau Systems

Ru/Rt See RSHIO.

RC If (≷ m r C) ∈ n(v) (where ≷ is a placeholder for > or 6)
for some m and a node v ∈ V and {C, ¬̇C} ∩ n(w) = ∅ for an r-neighbour w of v,
then R contains the set {((V,E, n′, `), µ), ((V,E, n′′, `), µ)},
where n′(x) = n′′(x) = n(x) for all x ∈ V \ {w} and n′(w) = n(w) ∪ {C}
and n′′(w) = n(w) ∪ {¬̇C}.

R∀+ If (6 0 r C) ∈ n(v) for a node v ∈ V and there is a role s
with {trans(s), q v* s, s v* r} ⊆ µ and a q-neighbour w of v with (6 0 s C) 6∈ n(w),
then R contains {((V,E, n′, `), µ)},
where n′(x) = n(x) for x 6= w and n′(w) = n(w) ∪ {(6 0 s C)}.

R> If P is a pattern of depth 2 and (> m r C) ∈ n(w) for a successor w of v0

and there are less than m s-neighbours of w with s v* r ∈ µ and C ∈ n(ui),
then R contains the set {P1, . . . , Pn, Pn+1, . . . , Pn+h},
where u1 . . . un are the s-neighbours of w with s v* r ∈ µ and C 6∈ n(ui);
s1, . . . , sh are all roles such that si v* r ∈ µ; and

• For 1 ≤ i ≤ n, Pi = ((V,E, ni, `), µ) with ni(x) = n(x) for all x ∈ V \ {ui}
and ni(ui) = n(ui) ∪ {C}.

• For n+ 1 ≤ i ≤ n+ h, Pi = ((Vi, Ei, ni, `i), µ) with ui 6∈ V ,
Vi = V ∪ {ui}, Ei = E ∪ {(w, ui)}, ni(x) = n(x) for all x ∈ V , ni(ui) = {C},
and `i = ` ∪ {(w, ui) 7→ si−n}.

R>ROOT If {(> m r C),ROOT} ∈ n(v0) of the root node v0
and there are less than m s-successors of v0 with s v* r ∈ µ and C ∈ n(ui),
then R contains the set {P1, . . . , Pn, Pn+1, . . . , Pn+h},
where u1 . . . un are the s-successors of v0 with s v* r ∈ µ and C 6∈ n(ui);
s1, . . . , sh are all sub-roles of r; and P1, . . . , Pn+h are defined as for R>.

Figure 7.4: Tableau rules for SHIQ

>-rule for the root node. In contrast to the algorithm by Horrocks et al. (2000a), we do
not have a 6-rule, but a non-deterministic >-rule, which recycles existing neighbour
nodes if necessary, similar to the non-deterministic ∃-rules in SALC and SSHIO. (A
rule merging two nodes would violate Condition 1 of admissibility in Definition 7.4.)
Moreover, when generating a new successor in order to satisfy a concept (> n r C),
this rule non-deterministically chooses a sub-role of r (or r itself) for the edge label.
This is necessary e. g. to handle a concept like (> 1 r C) u (> 1 s D) u (6 1 r >), with
s v r properly: if the >-rule is applied first to (> 1 r C) then, if r was the only possible
edge label, it would be impossible to process (> 1 s D) without causing a clash.

As usual for logics allowing for QNR, we require the choose-rule RC (Baader et al.,
1996) in order to detect “hidden” clashes in concepts like (6 1 r C) u (6 1 r ¬C) u
(> 3 r >): if a node label contains an at-most-restriction involving a node r and a
concept C, then RC non-deterministically adds C or ¬̇C to every r-neighbour.

Obviously, we can again transform SHIQ concepts into NNF using the duality of
6 and >. The definition of closure is extended as follows in order to handle QNR: if
(6 m r D) or (> m r D) ∈ clos(C,B), then {D, ¬̇D} ⊆ clos(C,B), and if (6 0 r D) ∈
clos(C,B) and the role s appears in C or B, then {(6 0 s D), (6 0 s D)} ⊆ clos(C,B).

7.4. Tableau Systems for SHIO and SHIQ 135

Definition 7.31 (Tableau System SSHIQ). The TS SSHIQ = (NLESHIQ,
GMESHIQ,ELSHIQ, 2, ·

SSHIQ ,RSHIQ, CSHIQ) is defined like SSHIO, with the follow-
ing exceptions:

• NLESHIQ contains the additional element ROOT,

• GMESHIQ and gme i do not contain any “nominal elements” (O,C),

• ini i = {({C,ROOT}, {trans(r) | transB(r) holds} ∪ {r v* s | r v* B s holds})}, and

• the set of rules RSHIQ is as given in Figure 7.4,

• the set of clash triggers CSHIQ contains all patterns in CSHIO and additionally
all patterns of depth at most 2 such that (6 m s C) ∈ n(v) with v ∈ V and there
are at least m+ 1 r-neighbours of v with r v* s ∈ µ. 3

Please note that no rule modifies µ and that R> applies only to patterns whose depth
is exactly 2, whereas the other rules apply to patterns of depth up to 2. Here, we
obtain an explanation why double-blocking is necessary for SHIQ: the pattern depth
required to correctly handle QNR in the presence of inverse roles is 2 (see Section 7.3).
Observe also that we do not need a specific rule for concepts of the form (6 0 s D) to
propagate ¬̇D to all the appropriate neighbours (analogously to R∀), since this task
is performed by the rule RC. We also do not have a 6-rule, but only a corresponding
clash-trigger.

For the proof of p-completeness, we require that the numbers in number restrictions
are coded in unary, since otherwise the width of a model can be exponential in the size
of the input. We can then obtain alternative proofs for the known results of SHIQ
decidability and complexity:

Lemma 7.32. If unary coding is used in number restrictions, the TS SSHIQ is ad-
missible, sound and p-complete for SHIQ satisfiability, where p = (x 7→ x2).

Proof. Admissibility is again easy to see. The soundness proof is more immediate
than for SSHIO, since a completion tree corresponds directly to a model, and we do
not have to “merge” nodes labelled with nominals.

Soundness. From a saturated and clash-free S-tree (t, µ) with t = (V,E, n, `), we
generate a model I = (∆I , ·I) as follows: ∆I = {dv | v ∈ V }. For any concept name D
and any role r we have the same interpretation as in the proof of soundness for SHIO.
Thus, for u and t concepts, the proof is analogous to the one for Lemma 7.29.

We will now show that the QNR (6 m r D) and (> m r D) are also interpreted
correctly. Let (> m r C) be a concept in n(v) of a node v. Then, since the S-tree
is saturated, there exist at least m nodes u1, . . . , um where for every 1 ≤ i ≤ m,
there exists a role s such that ui is an s-neighbour of v, µ contains s v* r, and n(ui)
contains C. By induction, we obtain dui

∈ CI . From our construction, it follows that
(dv, dui

) ∈ rI for all i, and thus #{d | (dv, d) ∈ rI and d ∈ CI} ≥ m.
If (6 m r C) ∈ n(v) for a node v and a simple role r then, since the S-tree is

clash-free, there exist at most m si-neighbours u1 . . . um of v for some si such that

136 Chapter 7. Tableau Systems

si v* r ∈ µ with C ∈ n(ui) and hence dui
∈ CI . All other si-neighbours w contain the

concept ¬̇C because the rule RC is not applicable, and by induction their corresponding
individuals belong to (¬C)I . Since r is simple (and thus also all of r’s sub-roles), our
construction of rI does not introduce any further rI-neighbours. Therefore, it follows
that #{d | (dv, d) ∈ rI and d ∈ CI} ≤ m holds.

For a concept (6 0 r C) ∈ n(v) and a non-simple role r, the proof is similar to the
one for ∀-concepts in SHIO: for roles s, s1, . . . , sn with transB(s) and si v* B s v* B r, it
follows from saturatedness of the S-tree that (6 0 r C) ∈ n(w) for every node w that
is reachable from v via an si-chain, and thus all r-neighbours of w are labelled with
¬̇C since the tree is clash-free and the rule RC is not applicable.

Completeness. As for SSHIO, we will create a clash-free and saturated S-tree (t, µ)
with t = (V,E, n, `) for a satisfiable input i = (C,B) by unravelling a model I =
(∆I , ·I). The global memory µ is created as in the case of SHIO by adding all
appropriate transitivity and role inclusion axioms. The tree is inductively defined as
follows: we start with an individual d0 ∈ CI , create a node v0, and a function π with
π(v0) = d0. Moreover, we define, for this and all further nodes v, n(v) as the set of
all concepts D ∈ clos(C,B) which the individual π(v) satisfies. For the root node, we
add the marker concept ROOT to n(v0).

New nodes are added to the tree if there is a node v and a concept (> m r D) ∈
n(v): if there exist only n r-neighbours (or s-neighbours with s v* r ∈ µ) of v and
n < m, we choose appropriate individuals dn+1 . . . dm, i. e. individuals with di ∈ DI

and (π(v), di) ∈ rI to which none of the existing r-neighbours of v is mapped by π. For
these nodes, we create new neighbours un+1 . . . um of v and set π(ui) = di, n(v) = {E ∈
clos(C,B) | di ∈ EI}, and `(v, ui) = s for the smallest (w. r. t. B) role s with s v* B r and
(π(v), di) ∈ sI . Since I is a model, it always is possible to find appropriate individuals.
From this construction, it follows that R> and R>ROOT are not applicable. The rule
RC is not applicable by construction, since every node satisfies either D or ¬̇D for any
concept D ∈ clos(C,B), and for Ru, Rt and R∀+, saturatedness follows analogous to
the proof for SSHIO. Note that the out-degree of the S-tree is bounded by the number
of concepts of the form (> m r D) ∈ clos(C,B) and the highest number m occurring
in such a concept.

The resulting S-tree can neither contain a clash-trigger with {D, ¬̇D} ⊆ n(v) for
a node v and a concept D (since I is a model) nor a clash-trigger with a number
restriction of the form E = (6 m r D) ∈ n(v) of a node v ∈ V with π(v) = d (because
d ∈ EI and we create at most one r-neighbour of v for every rI-neighbour of d).

It is easy to see that (t, µ) is compatible with i and the width is at most quadratic
in length of i since we create only m successors for a concept (> m r D) ∈ clos(C,B),
the number m is coded in unary and the number of such concepts is quadratic in the
length of i. 2

Theorem 7.33. Satisfiability for SHIQ concepts w. r. t. RBoxes is ExpTime-
complete.

7.5. Chapter Summary 137

Proof. The tableau system SSHIQ obviously is ExpTime-admissible, e. g. the size
of nleS(i) and of gmeS(i) is quadratic in the size of the input. Soundness and p-
completeness have been shown above. ExpTime-hardness follows as for SSHIO. 2

Comparing these proofs with those from Theorems 3.2 and 3.6, which are for
significantly less expressive logics, or with the original proofs for the SHIQ tableau
algorithm by Horrocks et al. (1999), which require an involved unravelling procedure
of a completion tree with blocked nodes and the definition of structure (there called
tableau) ranging between a completion tree and a model, the benefits of defining
a tableau system become clear: an blocking condition suitable for the language L
can be derived directly from the tableau system SL; the proof of soundness does not
have to take blocking into consideration; and it is only necessary to show ExpTime-
admissibility in order to obtain an ExpTime upper bound.

7.5 Chapter Summary

We have developed tableau systems, a framework for tableau algorithms deciding sat-
isfiability (or another property under consideration) for ExpTime logics. From an
algorithm defined within this framework, we can derive

• an automata algorithm deciding satisfiability in ExpTime,

• an appropriate blocking condition and a terminating tableau algorithm that is
well-suited for implementation and likely to exhibit the good performance in
practice that is typical for tableau algorithms.

The properties that are required from tableau systems to achieve this result are es-
sentially the following:

• the node and edge labels and the global memory for a specific input can be
computed in time at most exponential in the size of the input;

• the width of the completion tree is bounded polynomially by the size of the
input;

• applicability of rules and containment of clashes are decidable in exponential
time;

• rule applications must add information, and they must do so in such a way that
the completion tree approaches saturation (i. e. a situation in which no rule is
applicable anymore).

With this framework, we are able to prove a new ExpTime result for SHIO and
provide an alternative proof of the known complexity result for SHIQ. It turns out
that these two logics make use of different features of the tableau framework: to
capture nominals, we store information in the global memory component, whereas a
higher pattern depth is needed to handle QNR properly.

138 Chapter 7. Tableau Systems

In order to prove termination of tableau systems in general, the framework stipu-
lates that rules always extend the completion tree—which means that we disallow e. g.
a 6-rule that involves merging two nodes in order to satisfy an at-most restriction.
This is necessary because allowing rules to merge nodes requires additional arguments
in the termination proof (see e. g. Horrocks et al., 2000a), whereas our aim is to
take the obligation to show termination away from the user of the framework and
prove termination in general. In order to achieve a framework that is as universal as
possible (and in particular not restricted to logics that are invariant under bisimula-
tion; see the corresponding discussion after Definition 7.2), it is necessary to formulate
“generating” rules (like R∃ and R>) in a non-deterministic way, i. e. they can either
generate new nodes or recycle existing ones. A straightforward implementation of the
tableau algorithm resulting from such a tableau system therefore would involve un-
necessary non-determinism and thus perform sub-optimal in practice. Consequently,
for an implementation these rules should be modified to their standard, deterministic
versions.

However, the correctness proofs for tableau systems are significantly simplified
by the fact that they do not need to take a blocking condition into consideration,
and therefore a large amount of work can be avoided, like finding an appropriate
blocking condition and proving soundness in the presence of blocking, i. e. unravelling
the blocked nodes in the tableau. This tedious and repetitive work was performed for
the framework in general (see Section 7.3). We therefore believe that the simplicity
of the proofs justifies the additional overhead resulting from the formalisation of the
algorithm within the tableau systems framework.

Chapter 8

Conclusion

In this thesis we have examined the relations between tableau and automata algo-
rithms used for deciding the satisfiability problem in the area of description logics.
While tableau algorithms test the satisfiability of an input by trying to construct a
model according to a set of rules, automata algorithms translate the input into an
automaton accepting all models for the input and subsequently test the language ac-
cepted by the automaton for emptiness. Although at first glance, the rules of a tableau
algorithm look similar to the transitions of the automaton, TAs and AAs behave quite
differently in practice and have complementary advantages and disadvantages, which
have been described in detail in Chapter 1 and are recapitulated here.

• Tableau algorithms are well-suited to show PSpace upper bounds, but require
considerable efforts in order to run in ExpTime. Proving termination for ex-
pressive logics that do not have the finite tree model property requires a cycle
detection mechanism, which significantly complicates the correctness proofs. In
practice however, TAs have the advantage of being amenable to a considerable
number of efficient optimisations. Therefore, implementations of tableau al-
gorithms perform surprisingly well on knowledge bases resulting from real-life
applications, even for logics with an “intractable” satisfiability problem.

• Automata algorithms employ a deterministic bottom-up emptiness test of the
(finite) automaton in order to decide satisfiability of the input. Thus, they
handle non-determinism and infinite structures implicitly, which makes them
very elegant from a theoretical point of view. Moreover, this property makes AAs
well-suited for proving ExpTime upper bounds, but not for lower complexity
classes. Their main disadvantage is that they require exponential time even in
the best case because the input is translated into an automaton of exponential
size. Consequently, one cannot expect acceptable performance in practice from
an unoptimised implementation of an automata algorithm.

In Section 1.1, we formulated three questions regarding the relation between tab-
leaus and automata and the possibility of transferring positive properties between the
two approaches. In the following, we will summarise the answers that can be obtained
from the work presented in this thesis.

140 Chapter 8. Conclusion

1. What are the precise relations between the data structures used in
the different approaches? Can a tableau constructed by a TA serve as an
input for the corresponding AA? It was observed by Calvanese et al. (2002)
that the similarity between tableau and automata algorithms is particularly strong in
the case of alternating two-way automata. In Chapter 5, we use a tableau algorithm
to perform the emptiness test of such an automaton. It turns out that a tableau
generated by the TA looks almost exactly like a strategy tree, which is used in the
automata framework as a witness for non-emptiness of the language accepted by the
automaton. More precisely, the unravelling of the tableau is identical to the strategy
tree without dummy nodes. This shows the close relationship not only between the
rules of a TA and the transitions of an AA, but also between the structures that these
algorithms operate on.

This similarity of the structures is also exploited by the tableau systems framework
in Chapter 7, where an S-tree that is generated by exhaustive application of the
tableau rules (i. e. an S-tree for an input i) also serves as an input that is accepted
by the corresponding automaton (i. e. an S-tree compatible with i).

2. Is it possible to achieve acceptable performance in practice with an
automata algorithm using techniques stemming from tableau algorithms?
The translation of automata into DLs in Chapter 5 allows us to perform the empti-
ness test for the automata with a tableau algorithm. However, our hope that the
optimisations of the tableau-based reasoners could compensate for the overhead in-
troduced by the automata construction have not materialised: empirical results show
that the computation time increases exponentially in the size of the TBox (which in
turn is of size exponential in the size of the input). Thus, the TBoxes generated by
this translation are particularly hard to process for a TA. Upon closer examination of
the structure of the TBox, it turns out that these TBoxes contain several properties
that were previously observed to cause poor performance (Berardi et al., 2001), e. g.
terminological cycles, inverse roles, and features.

Thus, our translation approach of alternating two-way automata into FLEUIf

does not lead towards a practically usable decision procedure for automata algorithms.

3. Is it possible to transfer the complexity results in either direction, i. e.
is it possible to obtain a PSpace result from an AA or an ExpTime result
from a TA? In order to answer the first question, we have developed the frame-
works of segmentable and blocking automata in Chapter 6. These frameworks avoid
the inefficiency of automata algorithms, which results from the fact that they first con-
struct an automaton of exponential size and then test its emptiness, by interleaving
the automata construction with the emptiness test and thus restricting the considered
transitions to those that are relevant for the emptiness problem. By establishing a
polynomial bound on the number of transitions that are kept in memory at a time,
we obtain a non-deterministic algorithm requiring space polynomial in the size of the
input, which, together with the theorem by Savitch (1970), gives rise to a PSpace

upper bound for the emptiness test.

141

In the case of segmentable automata, the polynomial bound results from the fact
that it is only necessary to keep one path of the run in memory at a time and that
the number of (non-dummy) nodes on such a path is polynomially bounded by the
size of the input. Hence, this framework is comparably easy to use, but it is restricted
to logics with the finite tree model property, like ALC. The framework of blocking
automata is more general: it allows for logics requiring paths of infinite length, as long
as there is a polynomial bound on the distance between two “compatible” states. The
key to obtaining this result is an adaptation of the unravelling technique, which is
used for tableau algorithms involving a blocking condition. By defining an automata
algorithm for SI concept satisfiability w. r. t. acyclic TBoxes, we establish a PSpace

upper bound for this logic.

This demonstrates the possibility of obtaining PSpace results with automata al-
gorithms by transferring techniques known from tableau algorithms.

We have also found a method to obtain an ExpTime result from a tableau algo-
rithm, thus answering the second question. Instead of modifying the algorithm itself,
however, we developed a formalisation of tableau algorithms such that an ExpTime

automata algorithm can be derived from a formalised tableau algorithm. The reason
why we took this approach, which is less direct than the one for PSpace automata,
is our goal to maintain the good performance of TAs in practice. Considering the
negative answer to Question 2 and the significant overhead introduced by enforcing
an ExpTime upper bound for a TA (Donini et al., 1996), it seems futile to aim for an
algorithm that is both worst-case optimal and efficient in practice.

Therefore, we designed the tableau system framework (Chapter 7) in such a way
that it is possible to derive from a tableau system both an ExpTime automata al-
gorithm and a tableau algorithm that is amenable to the known optimisations for
tableau algorithms and thus promises to exhibit a good performance in practice. The
features defining a specific tableau system are essentially the labels appearing in the
completion tree and the global memory, the completion rules, and the clash-triggers.
A tableau system gives rise to an ExpTime automata algorithm if these labels are of
size at most exponential in the size of the input, applicability of rules and containment
of clash-triggers can be tested in exponential time, and there is a polynomial bound
on the number of children of a node.

From the characteristics of the rules, we can derive an appropriate blocking con-
dition, which ensures that the tableau algorithm induced by the tableau system ter-
minates, although not necessarily in deterministic-exponential time. By defining a
tableau system for the DL SHIO, we obtain an ExpTime result for this logic and
illustrate the usefulness of our framework.

In summary, we have established that the structural similarity of tableaus and
automata is close enough to allow for the transfer of worst-case complexity results to
and fro. The question whether it is possible to combine the desirable properties of
both paradigms in such a way that a single algorithm is both worst-case optimal and
efficient in practice remains open and is a possible subject for further research.

142 Chapter 8. Conclusion

8.1 Outlook

This leads us to the question how the results presented in this thesis can be extended
in the future.

Firstly, the translation approach in Chapter 5 is not optimised: it translates every
possible transition into a GCI, with the consequence that the resulting TBox is of the
same size as the transition function of the automaton. Thus it is an open question
if it is possible to avoid such a large TBox, e. g. by developing techniques to identify
redundancy within the transition function, similar to the redundancy of the transi-
tion relations in Chapter 6. The question then will be whether the detection of this
redundancy can be performed efficiently enough to give a significant advantage over
the naive approach.

Secondly, the frameworks for PSpace automata developed in Chapter 6 naturally
can be used to obtain complexity results for new DLs or other logics by formalising
them within one of the frameworks. Furthermore, by identifying properties that ensure
polynomial depth but are different from segmentation and blocking, it is possible
to define further frameworks that allow for capturing PSpace logics for which the
corresponding automata cannot easily be shown to be segmentable or blocking.

Likewise, the Tableau Systems framework from Chapter 7 can be put to use for
developing tableau algorithms and obtaining complexity results for new ExpTime log-
ics. Moreover, tableau algorithms for SHOIQ (Horrocks and Sattler, 2005) and other
NExpTime-complete DLs have been developed recently (see e. g. Horrocks, Kutz, and
Sattler, 2006), which raises the question if a similar framework for NExpTime log-
ics can be developed. In principle, an exponential translation of a DL input into
a tree automaton with a Rabin acceptance condition (Rabin, 1970) would give rise
to a NExpTime result since the nonemptiness problem for Rabin automata is NP-
complete (Emerson and Jutla, 1988). However, SHOIQ does not have the tree model
property, and a tree automaton therefore would have to recognise an unravelling of
a model. It is unclear if this is practical with Rabin automata, whose computational
power lends itself to handling fixpoints or transitive closure rather than unravellings of
graphs (see Section 4.1). In order to extend the Tableau Systems framework to cover
the DLs mentioned above, it will therefore be necessary to either develop a notion of
tree-shaped pre-models for these logics that are recognisable by Rabin automata, or to
develop automata which operate on graphs rather than trees and for which translation
and emptiness test can be performed in non-deterministic exponential time.

Bibliography

Hans Albert (1991): Traktat über kritische Vernunft. Mohr Siebeck, Tübingen, 5th
edition. (p. 16)

James Allen, Richard Fikes, and Erik Sandewall, editors (1991): Proceedings of the
Second International Conference on the Principles of Knowledge Representation and
Reasoning (KR-91). Morgan Kaufmann, Los Altos. (p. 148, 150)

Aristotle (1995): The Complete Works, volume LXXI of Bollingen Series. Princeton
University Press. Edited by Jonathan Barnes. (p. 16)

Franz Baader (1991): Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. In Mylopoulos and Reiter (1991). (p. 27, 46)

Franz Baader (1996): Using automata theory for characterizing the semantics of ter-
minological cycles. Annals of Mathematics and Artificial Intelligence 18:175–219.
(p. 26)

Franz Baader (1999): Logic-based knowledge representation. In Artificial Intelligence
Today, Recent Trends and Developments, edited by Michael J. Wooldridge and
Manuela M. Veloso, volume 1600 of Lecture Notes in Computer Science. Springer-
Verlag. (p. 17, 18, 22)

Franz Baader (2003): Terminological cycles in a description logic with existential re-
strictions. In Proceedings of the Eighteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI-03), edited by Georg Gottlob and Toby Walsh. Morgan
Kaufmann, Los Altos. (p. 22)

Franz Baader, Sebastian Brandt, and Ralf Küsters (2001): Matching under side con-
ditions in description logics. In Nebel (2001). (p. 22)

Franz Baader, Sebastian Brandt, and Carsten Lutz (2005): Pushing the EL envelope.
In Kaelbling and Saffiotti (2005). (p. 22, 26, 71)

Franz Baader, Martin Buchheit, and Bernhard Hollunder (1996): Cardinality restric-
tions on concepts. Artificial Intelligence Journal 88(1–2):195–213. (p. 41, 43, 134)

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors (2003a): The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press. (p. 21, 145, 153)

144 BIBLIOGRAPHY

Franz Baader, Jan Hladik, Carsten Lutz, and Frank Wolter (2003b): From tableaux to
automata for description logics. In Proceedings of the 10th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2003),
edited by Moshe Vardi and Andrei Voronkov, volume 2850 of Lecture Notes in
Artificial Intelligence. Springer-Verlag. (p. 107)

Franz Baader, Jan Hladik, Carsten Lutz, and Frank Wolter (2003c): From tableaux
to automata for description logics. Fundamenta Informaticae 57:1–33. (p. 107)

Franz Baader, Jan Hladik, and Rafael Peñaloza (2006): PSPACE automata with block-
ing for description logics. LTCS-Report LTCS-06-04, Chair for Automata Theory,
Institute for Theoretical Computer Science, Dresden University of Technology, Ger-
many. Available from http://lat.inf.tu-dresden.de/research/reports.html.
(p. 84)

Franz Baader, Jan Hladik, and Rafael Peñaloza (2007a): Blocking automata for
PSPACE DLs. In Proceedings of the 2007 Description Logic Workshop (DL 2007),
edited by Diego Calvanese, Enrico Franconi, Volker Haarslev, Domenico Lembo,
Boris Motik, Sergio Tessaris, and Anni-Yasmin Turhan, volume 250 of CEUR Work-
shop Proceedings. Available from ceur-ws.org. (p. 84)

Franz Baader, Jan Hladik, and Rafael Peñaloza (2008): SI! Automata can show
PSPACE results for description logics. Information and Computation, Special Issue:
First International Conference on Language and Automata Theory and Applications
(LATA’07). To appear. (p. 84)

Franz Baader and Bernhard Hollunder (1991a): KRIS: Knowledge Representation
and Inference System. SIGART Bulletin 2(3):8–14. (p. 30)

Franz Baader and Bernhard Hollunder (1991b): A terminological knowledge repre-
sentation system with complete inference algorithm. In Proceedings of the Work-
shop on Processing Declarative Knowledge (PDK’91), edited by Harold Boley and
Michael M. Richter, volume 567 of Lecture Notes in Artificial Intelligence. Springer-
Verlag. (p. 30)

Franz Baader, Ralf Küsters, and Ralf Molitor (1998): Computing least common sub-
sumers in description logics with existential restrictions. LTCS-Report LTCS-98-09,
LuFG Theoretical Computer Science, RWTH Aachen, Germany. Available from
lat.inf.tu-dresden.de/research/reports.html. (p. 26)

Franz Baader, Ralf Küsters, and Ralf Molitor (1999): Computing least common sub-
sumers in description logics with existential restrictions. In Proceedings of the Six-
teenth International Joint Conference on Artificial Intelligence (IJCAI-99), edited
by Thomas Dean. Morgan Kaufmann, Los Altos. (p. 22, 25)

Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn (2007b): Is tractable
reasoning in extensions of the description logic EL useful in practice? Journal of
Logic, Language and Information, Special Issue: Methods for Modalities (M4M-4).
To appear. (p. 22)

BIBLIOGRAPHY 145

Franz Baader and Werner Nutt (2003): Reasoning algorithms. In Baader et al. (2003a),
chapter 2.3. (p. 34)

Franz Baader and Ulrike Sattler (2001): An overview of tableau algorithms for de-
scription logics. Studia Logica 69:5–40. (p. 25, 34, 35, 125)

Franz Baader and Stephan Tobies (2001): The inverse method implements the autom-
ata approach for modal satisfiability. In Goré, Leitsch, and Nipkow (2001). (p. 12)

Andrew B. Baker (1995): Intelligent Backtracking on Constraint Satisfaction Prob-
lems: Experimental and Theoretical Results. Ph.D. thesis, University of Oregon.
(p. 39)

Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn A. Stein (2004): OWL web on-
tology language reference. http://www.w3.org/TR/2004/REC-owl-ref-20040210/.
(p. 22)

Mordechai Ben-Ari, Joseph Y. Halpern, and Amir Pnueli (1982): Deterministic propo-
sitional dynamic logic: Finite models, complexity, and completeness. Journal of
Computer and System Science 25:402–417. (p. 71)

Daniela Berardi, Diego Calvanese, and Giuseppe de Giacomo (2001): Reasoning on
UML class diagrams using description logic based systems. In Proceedings of the
KI’2001 Workshop on Applications of Description Logics, edited by Günther Görz,
volume 44 of CEUR Workshop Proceedings. Available from ceur-ws.org. (p. 79,
140)

Evert Willem Beth (1955): Semantic entailment and formal derivability. Mededelin-
gen der Koninklijke Nederlandse Adademie van Wetenschappen, Nieuwe Reeks
18(13):309–342. (p. 33)

Evert Willem Beth (1959): The Foundations of Mathematics. North-Holland Publ.
Co., Amsterdam. (p. 34)

Patrick Blackburn, Maarten de Rijke, and Yde Venema (2001): Modal Logic, vol-
ume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press. (p. 21, 27, 110)

Daniel G. Bobrow and Terry Winograd (1977): An overview of KRL, a Knowledge
Representation Language. Cognitive Science 1(1):3–46. Republished in Brachman
and Levesque (1985). (p. 20)

Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori
Alperin Resnick (1989): CLASSIC: A structural data model for objects. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
edited by James Clifford, Bruce G. Lindsay, and David Maier. ACM Press and
Addison Wesley. (p. 30)

146 BIBLIOGRAPHY

Ronald J. Brachman (1979): On the epistemological status of semantic networks. In
Associative Networks, edited by Nicholas V. Findler, pages 3–50. Academic Press.
Republished in Brachman and Levesque (1985). (p. 19)

Ronald J. Brachman (1983): What IS-A is and isn’t: An analysis of taxonomic links
in semantic networks. IEEE Computer 16(10):30–36. (p. 19)

Ronald J. Brachman (1985): “I lied about the trees”. AI Magazine 6(3):80–93. (p. 19)

Ronald J. Brachman and Hector J. Levesque, editors (1985): Readings in Knowledge
Representation. Morgan Kaufmann, Los Altos. (p. 145, 146, 149, 152, 154)

Ronald J. Brachman and Hector J. Levesque (2004): Knowledge Representation and
Reasoning. Morgan Kaufmann, Los Altos. (p. 17)

Ronald J. Brachman and James G. Schmolze (1985): An overview of the KL-ONE
knowledge representation system. Cognitive Science 9(2):171–216. (p. 21)

Sebastian Brandt (2004): Polynomial time reasoning in a description logic with exis-
tential restrictions, GCI axioms, and—what else? In Proceedings of the 16th Eu-
ropean Conference on Artificial Intelligence (ECAI-2004), edited by Ramon López
de Mantáras and Lorenza Saitta. IOS Press. (p. 22)

Sebastian Brandt, Ralf Küsters, and Anni-Yasmin Turhan (2002): Approximation
and difference in description logics. In Proceedings of the Eighth International Con-
ference on the Principles of Knowledge Representation and Reasoning (KR-02),
edited by Dieter Fensel, Fausto Giunchiglia, Deborah McGuiness, and Mary-Anne
Williams. Morgan Kaufmann, Los Altos. (p. 22)

Martin Buchheit, Francesco M. Donini, and Andrea Schaerf (1993): Decidable rea-
soning in terminological knowledge representation systems. Journal of Artificial
Intelligence Research 1:109–138. (p. 41)

Julius Richard Büchi (1960): On a decision method in restricted second order arith-
metic. In Proceedings of the Internatinal Congress on Logic, Methodology and Phi-
losophy of Science, edited by Ernest Nagel, Patrick Suppes, and Alfred Tarski.
Stanford University Press. (p. 46)

Diego Calvanese (1996): Reasoning with inclusion axioms in description logics: Algo-
rithms and complexity. In Proceedings of the 12th European Conference on Artificial
Intelligence (ECAI-96), edited by Wolfgang Wahlster. John Wiley & Sons. (p. 71)

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini (1999): Reasoning
in expressive description logics with fixpoints based on automata on infinite trees. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence
(IJCAI-99), edited by Thomas Dean. Morgan Kaufmann, Los Altos. (p. 46, 47,
59, 71)

BIBLIOGRAPHY 147

Diego Calvanese, Giuseppe de Giacomo, and Maurizio Lenzerini (2002): 2ATAs make
DLs easy. In Proceedings of the 2002 Description Logic Workshop (DL 2002), edited
by Ian Horrocks and Sergio Tessaris, volume 53 of CEUR Proceedings. Available
from ceur-ws.org. (p. 59, 62, 140)

William W. Cohen, Alex Borgida, and Haym Hirsh (1992): Computing least common
subsumers in description logics. In Proceedings of the Tenth National Conference
on Artificial Intelligence (AAAI-92), edited by William Swartout. AAAI Press/The
MIT Press. (p. 22)

Anthony G. Cohn, Lenhart Schubert, and Stuart C. Shapiro, editors (1998): Proceed-
ings of the Sixth International Conference on the Principles of Knowledge Repre-
sentation and Reasoning (KR-98). Morgan Kaufmann, Los Altos. (p. 148, 150)

Allan M. Collins and Elizabeth F. Loftus (1975): A spreading-activation theory of
semantic processing. Psychological Review 6(82):407–428. (p. 19)

Marcello D’Agostino, Dov M. Gabbay, Reiner Hähnle, and Joachim Posegga, editors
(1999): Handbook of Tableau Methods. Kluwer Academic Publishers, Dordrecht.
(p. 33, 148)

Martin Davis, George Logemann, and Donald Loveland (1962): A machine program
for theorem-proving. Communications of the ACM 5(7):394–397. (p. 13, 40)

Martin Davis and Hilary Putnam (1960): A computing procedure for quantification
theory. Journal of the ACM 7(3):201–215. (p. 13)

Giuseppe De Giacomo (1995): Decidability of Class-Based Knowledge Representation
Formalisms. Ph.D. thesis, Dipartimento di Informatica e Sistemistica, Università
di Roma “La Sapienza”. (p. 23)

Giuseppe De Giacomo (1996): Eliminating “converse” from Converse PDL . Journal
of Logic, Language and Information 5(2):193–208. (p. 28)

Giuseppe De Giacomo and Maurizio Lenzerini (1994a): Boosting the correspondence
between description logics and propositional dynamic logics. In Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI-94). AAAI Press/The
MIT Press. (p. 13)

Giuseppe De Giacomo and Maurizio Lenzerini (1994b): Description logics with inverse
roles, functional restrictions, and n-ary relations. In Proceedings of the 4th European
Conference on Logics in Artificial Intelligence (JELIA-94), edited by Craig Mac-
Nish, David Pearce, and Luis M. Pereira, volume 838 of Lecture Notes in Artificial
Intelligence. Springer-Verlag. (p. 13)

Yu Ding and Volker Haarslev (2007): A procedure for description logic ALCFI. In
Olivetti (2007). (p. 44)

148 BIBLIOGRAPHY

Patrick Doherty, John Mylopoulos, and Christopher Welty, editors (2006): Proceedings
of the Tenth International Conference on the Principles of Knowledge Representa-
tion and Reasoning (KR-06). AAAI Press. (p. 148, 150)

Francesco Donini, Giuseppe De Giacomo, and Fabio Massacci (1996): EXPTIME
tableaux for ALC. In Proceedings of the 1996 Description Logic Workshop (DL’96),
edited by Lin Padgham, Enrico Franconi, Manfred Gehrke, Deborah L. McGuinness,
and Peter F. Patel-Schneider, number WS-96-05 in AAAI Technical Reports. AAAI
Press/The MIT Press. (p. 43, 44, 141)

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt (1991): The
complexity of concept languages. In Allen, Fikes, and Sandewall (1991). (p. 26)

E. Allen Emerson and Charanjit S. Jutla (1988): The complexity of tree automata
and logics of programs. In Proceedings of the Twenty-Ninth Annual Symposium on
the Foundations of Computer Science (FOCS-88). IEEE Computer Society Press.
(p. 47, 142)

Michael J. Fischer and Richard E. Ladner (1979): Propositional dynamic logic of
regular programs. Journal of Computer and System Science 18:194–211. (p. 27)

Melvin Fitting (1999): Introduction to tableau methods. In D’Agostino et al. (1999),
chapter 1. (p. 34)

Harald Ganzinger, editor (1999): Proceedings of the 16th Conference on Automated
Deduction (CADE-16), volume 1632 of Lecture Notes in Artificial Intelligence.
Springer-Verlag. (p. 155, 156)

Gerhard Gentzen (1935): Untersuchungen über das logische Schließen. Mathematische
Zeitschrift 39:176–210, 405–431. (p. 33)

Silvio Ghilardi, Carsten Lutz, and Frank Wolter (2006): Did I damage my ontology?
A case for conservative extensions in description logics. In Doherty, Mylopoulos,
and Welty (2006). (p. 22)

Enrico Giunchiglia, Fausto Giunchiglia, Roberto Sebastiani, and Armando Tacchella
(1998): More evaluation of decision procedures for modal logics. In Cohn, Schubert,
and Shapiro (1998). (p. 13)

Fausto Giunchiglia and Roberto Sebastiani (1996): A SAT-based decision procedure
for ALC. In Proceedings of the Fifth International Conference on the Principles
of Knowledge Representation and Reasoning (KR-96), edited by Luigia C. Aiello,
John Doyle, and Stuart C. Shapiro. Morgan Kaufmann, Los Altos. (p. 13, 31)

Birte Glimm, Ian Horrocks, Carsten Lutz, and Ulrike Sattler (2007): Conjunctive
query answering for the description logic SHIQ. In Proceedings of the Twen-
tienth International Joint Conference on Artificial Intelligence (IJCAI-07), edited
by Manuela M. Veloso. AAAI Press/The MIT Press. (p. 22)

BIBLIOGRAPHY 149

Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors (2001): Proceedings of
the International Joint Conference on Automated Reasoning (IJCAR-01), volume
2083 of Lecture Notes in Artificial Intelligence. Springer-Verlag. (p. 145, 149)

Rajeev P. Goré and Linh Nguyen (2007): EXPTIME tableaux with global caching for
description logics with transitive roles, inverse roles and role hierarchies. In Olivetti
(2007). (p. 44)

Volker Haarslev and Ralf Möller (2001a): High performance reasoning with very large
knowledge bases: A practical case study. In Nebel (2001). (p. 30)

Volker Haarslev and Ralf Möller (2001b): RACER system description. In Goré et al.
(2001). (p. 30, 65)

Volker Haarslev, Ralf Möller, and Michael Wessel (2005a): RacerPro Reference Man-
ual Version 1.9. Racer Systems GmbH & Co. KG. Available from: http://www.

racer-systems.com/products/racerpro/reference-manual-1-9.pdf. (p. 30)

Volker Haarslev, Ralf Möller, and Ralf Wessel (2005b): Description logic inference
technology: Lessions learned in the trenches. In Proceedings of the 2005 Descrip-
tion Logic Workshop (DL 2005), edited by Ian Horrocks, Ulrike Sattler, and Frank
Wolter, volume 147 of CEUR Proceedings. Available from ceur-ws.org. (p. 30)

Patrick J. Hayes (1974): Some problems and non-problems in representation theory.
In Proceedings of the AISB Summer Conference. University of Sussex. (p. 20)

Patrick J. Hayes (1979): The logic of frames. In Frame Conceptions and Text Un-
derstanding, edited by Dieter Metzing, pages 46–61. Walter de Gruyter and Co.
Republished in Brachman and Levesque (1985). (p. 20)

K. Jaakko J. Hintikka (1955): Form and content in quantification theory. Acta Philo-
sophica Fennica 8:8–55. (p. 34)

Jan Hladik (2002): Implementation and optimisation of a tableau algorithm for the
guarded fragment. In Proceedings of the International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2002), edited
by Uwe Egly and Christian G. Fermüller, volume 2381 of Lecture Notes in Artificial
Intelligence. Springer-Verlag. (p. 40, 78)

Jan Hladik (2003): Reasoning about nominals with FaCT and RACER. In Proceed-
ings of the 2003 Description Logic Workshop (DL 2003), edited by Diego Calvanese,
Giuseppe di Giacomo, and Enrico Franconi, volume 81 of CEUR Workshop Pro-
ceedings. Available from ceur-ws.org. (p. 65)

Jan Hladik (2004): A tableau system for the description logic SHIO. In Contributions
to the Doctoral Programme of IJCAR 2004, edited by Ulrike Sattler, volume 106 of
CEUR Workshop Proceedings. Available from ceur-ws.org. (p. 107)

150 BIBLIOGRAPHY

Jan Hladik and Jörg Model (2004): Tableau systems for SHIO and SHIQ. In
Proceedings of the 2004 Description Logic Workshop (DL 2004), edited by Volker
Haarslev and Ralf Möller, volume 104 of CEUR Workshop Proceedings. Available
from ceur-ws.org. (p. 107)

Jan Hladik and Rafael Peñaloza (2006): PSPACE automata for description logics. In
Proceedings of the 2006 Description Logic Workshop (DL 2006), edited by Bijan
Parsia, Ulrike Sattler, and David Toman, volume 189 of CEUR Workshop Proceed-
ings. Available from ceur-ws.org. (p. 84)

Jan Hladik and Ulrike Sattler (2003): A translation of looping alternating automata
into description logics. In Proceedings of the 19th Conference on Automated Deduc-
tion (CADE-19), edited by Franz Baader, volume 2741 of Lecture Notes in Artificial
Intelligence. Springer-Verlag. (p. 65)

Bernhard Hollunder and Franz Baader (1991): Qualifying number restrictions in con-
cept languages. In Allen et al. (1991). (p. 116)

Ian Horrocks (1997): Optimising Tableaux Decision Procedures for Description Logics.
Ph.D. thesis, University of Manchester. (p. 30, 39, 78, 79)

Ian Horrocks (1998a): The FaCT system. In Proceedings of the International Con-
ference on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX-98), edited by Harrie de Swart, volume 1397 of Lecture Notes in
Artificial Intelligence, pages 307–312. Springer-Verlag. (p. 30)

Ian Horrocks (1998b): Using an expressive description logic: FaCT or fiction? In
Cohn et al. (1998). (p. 65)

Ian Horrocks, Oliver Kutz, and Ulrike Sattler (2006): The even more irresistible
SROIQ. In Doherty et al. (2006). (p. 142)

Ian Horrocks and Peter F. Patel-Schneider (1999): Optimizing description logic sub-
sumption. Journal of Logic and Computation 9(3):267–293. (p. 31, 40)

Ian Horrocks and Ulrike Sattler (1999): A description logic with transitive and inverse
roles and role hierarchies. Journal of Logic and Computation 9(3):385–410. (p. 27,
125, 129)

Ian Horrocks and Ulrike Sattler (2001): Ontology reasoning in the SHOQ(D) descrip-
tion logic. In Nebel (2001). (p. 28, 35)

Ian Horrocks and Ulrike Sattler (2002): Optimised reasoning for SHIQ. In Proceed-
ings of the 15th European Conference on Artificial Intelligence (ECAI-2002), edited
by Frank van Harmelen. IOS Press. (p. 44)

Ian Horrocks and Ulrike Sattler (2005): A tableaux decision procedure for SHOIQ.
In Kaelbling and Saffiotti (2005). (p. 22, 30, 142)

BIBLIOGRAPHY 151

Ian Horrocks, Ulrike Sattler, and Stefan Tobies (2000a): Practical reasoning for very
expressive description logics. Logic Journal of the IGPL 8(3):239–264. (p. 27, 28,
41, 44, 65, 129, 133, 134, 138)

Ian Horrocks, Ulrike Sattler, and Stephan Tobies (1998): A PSPACE-algorithm for de-
ciding ALCNIR+-satisfiability. LTCS-Report LTCS-98-08, LuFg Theoretical Com-
puter Science, RWTH Aachen, Germany. Available from lat.inf.tu-dresden.

de/research/reports.html. (p. 94)

Ian Horrocks, Ulrike Sattler, and Stephan Tobies (1999): Practical reasoning for ex-
pressive description logics. In Proceedings of the Sixth International Conference
on Logic for Programming and Automated Reasoning (LPAR’99), edited by Harald
Ganzinger, David McAllester, and Andrei Voronkov, number 1705 in Lecture Notes
in Artificial Intelligence. Springer-Verlag. (p. 27, 84, 92, 125, 137)

Ian Horrocks, Ulrike Sattler, and Stephan Tobies (2000b): Reasoning with individuals
for the description logic SHIQ. In Proceedings of the 17th Conference on Automated
Deduction (CADE-17), edited by David MacAllester, volume 1831 of Lecture Notes
in Artificial Intelligence. Springer-Verlag. (p. 25)

Ullrich Hustadt, Boris Motik, and Ulrike Sattler (2004): Reducing SHIQ− description
logic to disjunctive datalog programs. In Proceedings of the Ninth International
Conference on the Principles of Knowledge Representation and Reasoning (KR-
04), edited by Didier Dubois, Christopher Welty, and Mary-Anne Williams. Morgan
Kaufmann, Los Altos. (p. 13, 31)

Ullrich Hustadt, Boris Motik, and Ulrike Sattler (2007): Reasoning in description
logics by a reduction to disjunctive datalog. Journal of Automated Reasoning
39(3):351–384. (p. 13)

Ulrich Hustadt and Renate A. Schmidt (1997): On evaluating decision procedures
for modal logic. In Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI-97), edited by Martha E. Pollack. Morgan Kaufmann,
Los Altos. (p. 31)

Ulrich Hustadt and Renate A. Schmidt (2000): MSpass: Modal reasoning by trans-
lation and first-order resolution. In Proceedings of the International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX
2000), edited by R. Dyckhoff, volume 1847 of Lecture Notes in Artificial Intelli-
gence. Springer-Verlag. (p. 13, 31)

Leslie Pack Kaelbling and Alessandro Saffiotti, editors (2005): Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-05).
Professional Book Center. (p. 143, 150)

Yevgeny Kazakov and Hans de Nivelle (2003): Subsumption of concepts in FL0 for
(cyclic) terminologies with respect to descriptive semantics is PSPACE-complete.
In Proceedings of the 2003 Description Logic Workshop (DL 2003), edited by Diego

152 BIBLIOGRAPHY

Calvanese, Giuseppe di Giacomo, and Enrico Franconi, volume 81 of CEUR Pro-
ceedings. Available from ceur-ws.org. (p. 26)

Stephen C. Kleene (1956): Representation of events in nerve nets and finite automata.
In Automata Studies, edited by Claude E. Shannon and John McCarthy. Princeton
University Press, Princeton, USA. (p. 45, 46)

Orna Kupferman and Moshe Y. Vardi (1998): Weak alternating automata and tree
automata emptiness. In Proceedings of the Thirtieth ACM SIGACT Symposium on
Theory of Computing (STOC-98). ACM Press and Addison Wesley. (p. 47)

Gerhard Lakemeyer and Bernhard Nebel (1994): Foundations of Knowledge Repre-
sentation and Reasoning, volume 810 of Lecture Notes in Artificial Intelligence,
chapter 1, pages 1–12. Springer-Verlag. (p. 17)

Hector J. Levesque and Ronald J. Brachman (1985): A fundamental tradeoff in knowl-
edge representation and reasoning. In Brachman and Levesque (1985). (p. 17, 18,
21)

Carsten Lutz (2002): Adding numbers to the SHIQ description logic—First results. In
Proceedings of the Eighth International Conference on the Principles of Knowledge
Representation and Reasoning (KR-02), edited by Dieter Fensel, Fausto Giunchiglia,
Deborah McGuinnes, and Mary-Anne Williams. Morgan Kaufmann, Los Altos.
(p. 49)

Carsten Lutz and Ulrike Sattler (2000): Mary likes all cats. In Proceedings of the 2000
Description Logic Workshop (DL 2000), edited by Franz Baader and Ulrike Sattler,
volume 33 of CEUR Proceedings. Available from ceur-ws.org. (p. 49)

Robert MacGregor and Raymond Bates (1987): The LOOM knowledge representation
language. Technical Report ISI-RS-87-188, USC Information Sciences Institute,
Marina del Rey, California, USA. (p. 30)

David A. McAllester, Robert Givan, Carl Witty, and Dexter Kozen (1996): Tarskian
set constraints. In Proceedings of the 11th Annual IEEE Symposium on Logic in
Computer Science (LICS-96). IEEE Computer Society Press. (p. 27)

John McCarthy (1958): Programs with common sense. In Mechanisation of Thought
Processes, volume 1, pages 77–84. National Physical Laboratory, London. Reprinted
in Brachman and Levesque (1985). (p. 18)

Drew McDermott (1986): Tarskian semantics, or no notation without denotation.
In Readings in Natural Language Processing, edited by Barbara J. Grosz, Karen
Sparck-Jones, and Bonnie L. Webber. Morgan Kaufmann, Los Altos. (p. 20)

Marvin Minsky (1975): A framework for representing knowledge. In The Psychology
of Computer Vision, edited by Patrick H. Winston. McGraw-Hill, New York. A
shorter version was republished in Brachman and Levesque (1985). (p. 19, 20)

BIBLIOGRAPHY 153

Boris Motik and Ulrike Sattler (2006): A comparison of reasoning techniques for
querying large description logic ABoxes. In Proceedings of the 13th International
Conference on Logic for Programming and Automated Reasoning (LPAR 2006),
edited by Miki Hermann and Andrei Voronkov, volume 4246 of Lecture Notes in
Artificial Intelligence. Springer-Verlag. (p. 13, 31)

Boris Motik, Rob Shearer, and Ian Horrocks (2007): Optimized reasoning in descrip-
tion logics using hypertableaux. In Proceedings of the 21st Conference on Automated
Deduction (CADE-19), edited by Frank Pfenning, volume 4603 of Lecture Notes in
Artificial Intelligence. Springer-Verlag. (p. 13, 31)

David E. Muller and Paul E. Schupp (1987): Alternating automata on infinite trees.
Theoretical Computer Science 54:267–276. (p. 53)

David E. Muller and Paul E. Schupp (1995): Simulating alternating tree automata by
nondeterministic automata: new results and new proofs of the theorems of Rabin,
McNaughton and Safra. Theoretical Computer Science 141:69–107. (p. 62)

John Mylopoulos and Raymond Reiter, editors (1991): Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence (IJCAI-91). Morgan Kauf-
mann, Los Altos. (p. 143, 155)

Daniele Nardi and Ronald J. Brachman (2003): An introduction to description logics.
In Baader et al. (2003a), chapter 1. (p. 21)

Bernhard Nebel (1990): Terminological reasoning is inherently intractable. Artificial
Intelligence Journal 43:235–249. (p. 21, 26, 29)

Bernhard Nebel, editor (2001): Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI-01). Morgan Kaufmann, Los Altos.
(p. 143, 149, 150, 154)

Nicola Olivetti, editor (2007): Proceedings of the International Conference on Auto-
mated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2007),
volume 4548 of Lecture Notes in Artificial Intelligence. Springer-Verlag. (p. 147,
149)

Bernd Owsnicki-Klewe, Kai von Luck, and Bernhard Nebel (1995): Wis-
sensrepräsentation und Logik - Eine Einführung. In Einführung in die Künstliche
Intelligenz, edited by Günther Görz, chapter 1.1. Addison-Wesley, 2nd edition.
(p. 17)

Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera (1997): Complexity of two-
variable logic with counting. In Proceedings of the 12th Annual IEEE Symposium
on Logic in Computer Science (LICS-97). IEEE Computer Society Press. (p. 29)

Guoqiang Pan, Ulrike Sattler, and Moshe Y. Vardi (2002): BDD-based decision pro-
cedures for K. In Proceedings of the 18th Conference on Automated Deduction
(CADE-18), edited by Andrei Voronkov, volume 2392 of Lecture Notes in Artificial
Intelligence. Springer-Verlag. (p. 13)

154 BIBLIOGRAPHY

Guoqiang Pan, Ulrike Sattler, and Moshe Y. Vardi (2006): BDD-based decision proce-
dures for the modal logic K. Journal of Applied Non-Classical Logics 16(1–2):169–
208. (p. 12, 31)

Guoqiang Pan and Moshe Y. Vardi (2003): Optimizing a BDD-based modal solver.
In Proceedings of the 19th Conference on Automated Deduction (CADE-19), edited
by Franz Baader, volume 2741 of Lecture Notes in Artificial Intelligence. Springer-
Verlag. (p. 13)

Peter F. Patel-Schneider, Deborah L. McGuiness, Ronald J. Brachman, Lori
Alperin Resnick, and Alexander Borgida (1991): The CLASSIC knowledge represen-
tation system: Guiding principles and implementation rational. SIGART Bulletin
2(3):108–113. (p. 30)

Dominique Perrin (1990): Finite automata. In Handbook of Theoretical Computer
Science, edited by Jan van Leeuwen, volume B. Elsevier Science Publishers (North-
Holland), Amsterdam. (p. 45)

Plato (1997): Complete Works. Hackett Publishing Company. Edited by John M.
Cooper. (p. 15)

M. Ross Quillian (1967): Word concepts: A theory and simulation of some basic
capabilities. Behavioral Science 12:410–430. Republished in Brachman and Levesque
(1985). (p. 19)

Michael O. Rabin (1969): Decidability of second-order theories and automata on infi-
nite trees. Transactions of the American Mathematical Society 141:1–35. (p. 46)

Michael O. Rabin (1970): Weakly definable relations and special automata. In Pro-
ceedings of the Symposium on Mathematical Logic and Foundations of Set Theory,
edited by Yehoshua Bar-Hillel. North-Holland Publ. Co., Amsterdam. (p. 46, 142)

Raymond Reiter (1978): On reasoning by default. In Proceedings of the 2nd Sympo-
sium on Theoretical Issues in Natural Language Processing. Association for Com-
putational Linguistics, Morristown, NJ, USA. (p. 20)

Stuart Russell and Peter Norvig (2002): Logical agents. In Artificial intelligence:
A Modern Approach, chapter 7. Prentice-Hall, Englewood Cliffs, New Jersey, 2nd
edition. (p. 18)

Ulrike Sattler (1996): A concept language extended with different kinds of transitive
roles. In Proceedings of the 20th German Annual Conf. on Artificial Intelligence
(KI’96), edited by Günter Görz and Steffen Hölldobler, number 1137 in Lecture
Notes in Artificial Intelligence. Springer-Verlag. (p. 23)

Ulrike Sattler and Moshe Y. Vardi (2001): The hybrid µ-calculus. In Nebel (2001).
(p. 46, 60, 73, 76)

BIBLIOGRAPHY 155

Walter J. Savitch (1970): Relationship between nondeterministic and deterministic
tape complexities. Journal of Computer and System Science 4:177–192. (p. 9, 84,
92, 140)

Klaus Schild (1991): A correspondence theory for terminological logics: Preliminary
report. In Mylopoulos and Reiter (1991). (p. 13, 21, 23, 27)

Klaus Schild (1994): Terminological cycles and the propositional µ-calculus. In Pro-
ceedings of the Fourth International Conference on the Principles of Knowledge
Representation and Reasoning (KR-94), edited by Jon Doyle, Erik Sandewall, and
Pietro Torasso. Morgan Kaufmann, Los Altos. (p. 133)

Manfred Schmidt-Schauß (1989): Subsumption in KL-ONE is undecidable. In Proceed-
ings of the First International Conference on the Principles of Knowledge Represen-
tation and Reasoning (KR-89), edited by Ronald J. Brachman, Hector J. Levesque,
and Raymond Reiter. Morgan Kaufmann, Los Altos. (p. 21)

Manfred Schmidt-Schauß and Gert Smolka (1991): Attributive concept descriptions
with complements. Artificial Intelligence Journal 48(1):1–26. (p. 21, 26, 27, 39, 92)

Evren Sirin and Bijan Parsia (2004): Pellet: an OWL-DL reasoner. In Proceedings
of the 2004 Description Logic Workshop (DL 2004), edited by Volker Haarslev and
Ralf Möller, volume 104 of CEUR Proceedings. Available from ceur-ws.org. (p. 30)

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz (2007): Pellet: a practical OWL-DL reasoner. Journal of Web Semantics
5(2):51–53. (p. 30)

Brian C. Smith (1982): Reflection and Semantics in a Procedural Language. Ph.D.
thesis, Massachusetts Institute of Technology, Laboratory for Computer Science,
Cambridge, USA. Technical Report No. MIT/LCS/TR-272. (p. 17)

Raymond M. Smullyan (1968): First Order Logic. Springer-Verlag, Berlin (Germany).
(p. 34)

Stephan Tobies (1999): A PSPACE algorithm for graded modal logic. In Ganzinger
(1999). (p. 116)

Stephan Tobies (2000): The complexity of reasoning with cardinality restrictions and
nominals in expressive description logics. Journal of Artificial Intelligence Research
12:199–217. (p. 29)

Stephan Tobies (2001): Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. Ph.D. thesis, RWTH Aachen, Germany. (p. 129)

Dmitry Tsarkov and Ian Horrocks (2006): FaCT++ description logic reasoner: Sys-
tem description. In Proceedings of the International Joint Conference on Automated
Reasoning (IJCAR 2006), edited by Ulrich Furbach and Natarajan Shankar, volume
4130 of Lecture Notes in Artificial Intelligence. Springer-Verlag. (p. 30)

156 BIBLIOGRAPHY

Moshe Y. Vardi (1989): A note on the reduction of two-way automata to one-way
automata. Information Processing Letters 30(5):261–264. (p. 54)

Moshe Y. Vardi (1997): Alternating automata: Unifying truth and validity checking
for temporal logics. In Proceedings of the 14th Conference on Automated Deduction
(CADE-97), edited by William McCune, volume 1249 of Lecture Notes in Artificial
Intelligence. Springer-Verlag. (p. 62)

Moshe Y. Vardi (1998): Reasoning about the past with two-way automata. In Proceed-
ings of the 25th International Colloquium on Automata, Languages, and Program-
ming, edited by Kim G. Larsen, Sven Skyum, and Glynn Winskel, volume 1443 of
Lecture Notes in Computer Science. Springer-Verlag. (p. 47, 55)

Moshe Y. Vardi and Pierre Wolper (1986): Automata-theoretic techniques for modal
logics of programs. Journal of Computer and System Science 32:183–221. (p. 46,
47, 124)

Andrei Voronkov (1999): Kk: A theorem prover for K. In Ganzinger (1999). (p. 12,
30)

Andrei Voronkov (2001): How to optimize proof-search in modal logics: new methods of
proving redundancy criteria for sequent calculi. ACM transactions on computational
logic 2(2). (p. 12, 30)

Christoph Weidenbach (1999): SPASS: Combining superposition, sorts and splitting.
In Handbook of Automated Reasoning, edited by J. Alan Robinson and Andrei
Voronkov, chapter 27. Elsevier Science Publishers (North-Holland), Amsterdam.
(p. 13)

Christoph Weidenbach, Bijan Afshordel, Uwe Brahm, Christian Cohrs, Thorsten En-
gel, Enno Keen, Christian Theobalt, and Dalibor Topić (1999): System description:
SPASS version 1.0.0. In Ganzinger (1999). (p. 13)

William A. Woods and James G. Schmolze (1990): The KL-ONE family. Technical
Report TR-20-90, Aiken Computation Laboratory, Harvard University, Cambridge
(MA, USA). Published in a special issue of Computers & Mathematics with Appli-
cations, Volume 23, Number 2–9. (p. 21)

Index

¾-invariant, 97

⊥, 22

>, 22

2-NExpTime, 9

TA for ALC, 43

A

ABox, 23, 24

admissible, 111

Advice Taker, 18

ALC, 21, 26, 141

with acyclic TBoxes, 91

ALCHIR+ , 129

ALCIO, 65, 73, 76, 80

ALCNF , 30

ALU , 70

applicability condition

of a tableau rule, 34, 36

approximation, 22

automata algorithm, 9, 12, 31

as bottom-up procedure, 11, 52, 63,
107

ATA for ALC, 60

NTA for ALC, 51

automaton

alternating, 9–11, 47, 53, 54

advantage over NTA, 62

emptiness test, 47, 58

one-way, 66

two-way, 54, 65

deterministic, 47

non-deterministic, 9–11, 47, 48,
115

emptiness test, 46

on trees, 46

on words, 45

with transitions of depth d, 120

axiom
in KR, 17
in mathematics, 16

B
backjumping, 30, 39
belief, 15
binary decision diagram (BDD), 12, 31
blocking, 8, 9, 35, 41, 84, 92, 104, 107,

124, 137, 141
double-blocking, 44, 125, 133, 135
equality-blocking, 125, 133
for automata, 84, 97, 99, 105, 140
for tableau systems, 125, 127

Boolean operators, 22
Büchi automaton, 46

C
C,T -compatible, 49
C2, 29
circular argument, 16
clash, 37
clash-free, 114, 133
clash-trigger, 35, 107, 108, 123, 141

for at-most restrictions, 135
Classic, 30
closure, 130
co-NP, 21
completeness

f -completeness, 125, 128
of a proof, 17
of tableau systems, 115
p-completeness, 116, 136

completion rule, 108, 123, 141
completion tree, 35, 112, 137, 141

for ALC, 36
for ALC with GCIs, 40
open/closed, 36

158 INDEX

concept, 22

defined, 25

primitive, 25

concept definition, 23, 25

conjunctive query, 22

connected model property, 28

conservative extension, 22

consistency, 24

criteriality, 20, 21

D

database, 17

declarative, 18

deductive database, 31

default logic, 20

default reasoning

in classical logic, 20

in frames, 20

in semantic nets, 19

DeMorgan’s laws, 36

disjunctive datalog, 13

dogmatism, 16

domain of interest, 17, 18

domino problem, 29

don’t-care-non-determinism, 34, 126

don’t-know-non-determinism, 34, 109,
110

downward saturated set, 34

DPLL, 13, 40

dummy node, 50, 60, 69, 73, 93, 121,
123, 140

E

efficiency of a KR formalism, 18

EL, 25, 71

EL++, 26

ELUf , 12, 26, 65, 66, 80

entailment, 24

existential restriction, 22, 25

expressivity, 21

of a KR formalism, 17, 18

of DLs, 21–23, 25

ExpTime, 9, 10, 12, 21, 28, 65, 107,
137

AA for DLs, 47

ATA for ALC, 62
NTA for ALC, 53
TA for ALC, 43, 141

ExpTime-admissible, 115, 116, 136
ExpTime-completeness

of ALC with GCIs, 53, 62, 124
of ELUf with GCIs, 71
of SHIO with RBoxes, 133, 141
of SHIQ with RBoxes, 136

F
FaCT, 30, 65, 70, 77
FaCT++, 30
fairness, 34, 115
faithful, 100, 105
feature, 21, 23, 28, 30, 79, 140
filler, 19
finite model property, 13, 41
finite tree model property, 8, 9, 12, 41,

83, 141
fixpoint, 46, 74
FL0, 21
FLEUIf , 72, 76, 80
forest model property, 35
frame, 19

G
GCI, 23, 25
global memory, 108, 130, 131, 137, 141
guess, 74

H
Has-Prop link, 19
Hintikka set, 34, 49, 85
Hintikka tree, 50, 91

for SI, 94
hybrid µ-calculus, 74
hypertableau, 9, 13, 31

I
inference engine, 17
inference problems in DLs, 24
infinite regression, 16
inheritance, 19
instantiation, 19
internalisation of a TBox, 27

INDEX 159

interpretation, 26
interpretation domain, 24
invariance under bisimulation, 110, 138
inverse feature, 72
inverse method, 12, 31
inverse role, 21, 23, 27, 28, 79, 93, 135,

140
IS-A link, 19

K
K, 12
k-ary tree, 48
Kaon2, 13, 31
Kk, 12, 30
KL-One, 21
Km, 21, 27
knowledge, 15
knowledge base, 17, 18

real-life vs. artificial, 79
knowledge engineer, 18
knowledge representation

hypothesis, 17
language, 18, 20
system, 17

König’s lemma, 39
Kris, 30
Ksat, 13, 31

L
language accepted by an automaton,

47, 52, 61, 66, 123, 139
for ATA, 55, 67, 72, 140
for NTA, 48, 86, 120
for segmentable automata, 89

lazy unfolding, 85
least common subsumer, 22
Loom, 30
looping automaton, 46

emptiness test, 46
on unlabelled tree, 85

M
matching

in DLs, 22
in frames, 20, 21
in tableau systems, 113

model, 26, 137
mother example concept, 7

automaton for, 51
tableau for, 39

MSpass, 13, 31

N
negation normal form, 34, 36
neighbour, 131
neighbourhood, 113, 117, 120
NExpTime, 8, 9, 21, 28

TA for ALC, 43
nominal, 21, 23, 28, 78, 130, 131
number restriction, 21, 30

qualifying, 23, 28, 116, 133, 135

O
on-the-fly emptiness test, 84, 104
OWL-DL, 22

P
padding, 122
partial run, 97
path, 87
pattern depth, 108, 133, 137
PDL, 23, 27, 46, 71

converse, 13
Pellet, 30
positive Boolean concept, 68
positive Boolean formula, 54
postcondition

of a tableau rule, 33, 36
pre-model, 75
precondition

of a tableau rule, 33, 36
programmer, 18
proof, 16
PSpace, 8–10, 12, 21
PSpace-completeness

of ALC concept satisfiability, 39, 83
of ALC with acyclic TBoxes, 92
of SI with acyclic TBoxes, 104

PSpace on-the-fly construction, 99,
102

Q
quantified Boolean formula, 27, 39

160 INDEX

R

Rabin automaton, 46, 142

Racer, 30, 65, 70, 77

RacerPro, 30

RBox, 23, 27

recursive, 124

reduced automaton, 90

RIA, 24, 27, 130

role, 22

simple, 130

role depth, 83, 91

expanded, 85

role hierarchy, 21, 23, 27, 130, 131

rule application, 113

run, 85

of an ATA, 54

of an NTA, 48

S

S, 27

S-pattern, 108

S-tree, 112

compatible with i, 118, 121, 133,
140

for i, 114, 140

S4m, 27

satisfiability, 7, 24, 26, 29

saturated, 36

for an S-pattern, 111

for an S-tree, 114, 133

Savitch’s theorem, 9, 84, 92, 100, 140

segmentable, 83, 86, 105, 140

weakly, 90, 91, 100, 105

semantic branching, 30, 31, 40

semantic distance, 19

semantic networks, 19

Semantic Web, 22

semantics

of a KR language, 18

operational, 18

sequent calculus, 33

SH, 27

SHI, 129

SHIO, 12, 28, 107, 129

SHIQ, 28, 30, 65, 72, 76, 107, 125,
129, 133

SHOIQ, 28, 142

SHOQ, 28

SI, 12, 27, 84, 92, 93, 105, 141

slot, 19

soundness

for KR systems, 20

of a proof, 16, 17

of tableau systems, 115, 136

space bounded alternating Turing ma-
chine, 27

Spass, 13

spreading activation, 19

strategy automaton, 57

strategy tree, 56, 73, 140

subautomaton, 101

subconcept, 36

of bounded depth, 86

subformula principle, 34

subsumption, 7, 24, 26, 29

hierarchy, 24

successor, 36

in a Hintikka tree, 50

syntactic variant, 18

T

T -expanded, 49

for acyclic and general ALC TBox,
85

tableau, 7, 33, 34, 36, 140

analytic, 34

closing case, 34

open/closed, 34

semantic, 33

signed/unsigned, 34

tableau algorithm, 7, 30, 33

as refutation procedure, 34

as top-down procedure, 11, 63

for ALC concept satisfiability, 36

for propositional logic, 33

in ExpTime, 9

tableau rule, 33, 34, 107

tableau system, 12, 107, 108, 141

for ALC, 109, 131

INDEX 161

for SHIO, 129, 130
for SHIQ, 129, 134

TBox, 23
acyclic, 12, 24, 25, 27, 85
general, 24, 25

termination
of a proof, 17
of AAs, 10
of TAs, 8, 39, 43, 124, 137

terminological cycle, 79, 140
told subsumer, 30
top-down emptiness test, 84, 104
transitive closure, 23, 46
transitive role, 21, 23, 27, 28, 93, 130,

131
tree model property, 35, 41, 142

U
unique name assumption, 24
universal role, 74
unravelling, 44, 73, 97, 137, 138, 140,

141
for tableau systems, 127

V
value restriction, 22, 26

W
weight, 94

