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1 Introduction

With the start-up of the Large Hadron Collider (LHC) at CERN in early 2008 accelera-

tor based particle physics will enter a new era. This machine will provide proton–proton

collisions at centre-of-mass energies of 14 TeV with tremendous luminosity. Designed like

this the LHC will allow for very precise tests of our current standard explanation theory

for particle physics phenomena, the Standard Model (SM), that provides a quantum field

theoretic description of the strong, weak and electromagnetic interactions.

The major task at the LHC will be to reveal the nature of electroweak symmetry breaking.

In the framework of the SM this is accomplished by the Higgs mechanism, leading to the

prediction of a fundamental scalar Higgs particle, which, however, has not been discovered

yet. There are strong reasons to believe that the SM is not the ultimate theory, in fact,

it can be expected that new physics will appear at the TeV scale, which will directly be

probed for the first time at the LHC. So despite the enormous success of the SM so far,

one must think about possible extensions of the theory. These extensions, however, have to

embed the SM as the effective field theory below the electroweak scale what yields stringent

bounds on the nature of physics beyond the SM.

Possible scenarios for new physics include extensions of the theory’s Higgs sector or the in-

troduction of additional heavy states like a fourth fermion generation or extra gauge bosons.

Lots of attention is currently being paid to models where additional spatial dimensions are

considered and that try to incorporate the fourth fundamental force in nature, gravity.

Maybe the most prominent and for sure the most studied new physics hypothesis is weak-

scale supersymmetry. It can account for the naturalness problem of the SM and provides

an attractive road towards a unification of the electroweak and strong interactions. Con-

sidering supersymmetry (SUSY) as a local symmetry it can naturally embed gravity. In its

minimal version global supersymmetry introduces a partner for each SM field with identical

quantum numbers and mass and differing only in spin by one-half unit. Since so far there

exists no experimental evidence for any supersymmetric particle – if realised in nature –

the symmetry must be broken. In typical supersymmetric models the newly introduced

particles then will obtain masses around the TeV scale.

The occurrence of additional heavy states that rapidly decay once produced in a collider

experiment is generic for many extensions of the SM. As a consequence the signatures for new
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physics will often consist of many-particle final states that need to be precisely understood in

order to gain some confidence about the existence of physics beyond the SM. The theoretical

modelling of such complex multi-particle final states is a rather complicated task. It requires

techniques for carrying out a multitude of multi-leg matrix-element calculations that have

to be supplemented with models that account for the experimental environment. This is an

issue especially at hadron colliders, where every hard production process is accompanied by

additional QCD radiation due to the presence of coloured partons in the initial state.

Besides the need for a sophisticated description of presumed physics beyond the SM the qual-

ity of the SM predictions, that will always constitute a “background” for new phenomena,

has to be considerably improved. The most urgent issue is to provide a better description

of QCD dynamics in the theoretical tools, that are used to develop strategies to look for

deviations from the SM in the data, or to extract SM parameters from the measurements –

the Monte Carlo event generators.

1.1 Physics simulation for future colliders

As indicated in the above, the new generation of collider experiments (being the LHC or a

potential new e+e− collider operated at
√
s = 500 GeV or higher) requires a new generation

of theoretical tools for the modelling of multi-particle final states from production processes

within or beyond the SM.

In the past decades, such simulation programs, known as multi-purpose Monte Carlo event

generators, have played a significant rôle in analysing the measured data and comparing

it with theoretical predictions. Event generators decompose the scattering process into a

sequence of different stages, which can be characterised by different energy scales. The

enormous success of these tools, like fortran PYTHIA [1, 2] or HERWIG [3, 4], in describing

a full wealth of various experimental data confirms this decomposition as a valid approach.

Typically a scattering event is considered to contain a 2 → 2 hard interaction at a rather

high scale. The coloured initial- and final-state particles participating in the scattering

then undergo parton showering, thereby accounting for QCD bremsstrahlung. The shower

evolution is stopped at scales of order ΛQCD, where phenomenological hadronisation models

are imposed to transform the produced partons into primary hadrons, that subsequently

decay into the final states as they are observed in the detectors. Besides the hard scattering,

in hadron–hadron collisions the interaction of the left-over beam remnants needs to be

considered, what is known as the underlying event.

To meet the new challenges posed by the new experiments, the traditional event generators

HERWIG and PYTHIA are being rewritten in C++. Their new versions are called HERWIG++

[5] and PYTHIA8 [6]. There exists now a third independent approach for a multi-purpose

Monte Carlo generator, called SHERPA [7], that will briefly be introduced in the next section.

Apart from the need for better transparency and modularity, the construction of new event
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generators is driven by the development of new physics models for the various aspects of

event generation.

For HERWIG++ a new parton-shower algorithm has been developed that uses an angular

variable for the ordering of subsequent emissions and has a sophisticated treatment of finite

parton masses [8]. Furthermore, a modified version of the old cluster hadronisation model

has been constructed [9]. The simulation of production processes beyond the SM will no

longer have to rely on the explicite implementation of a corresponding matrix element,

instead a library to automatically construct 2 → 2 processes from a set of generic interaction

vertices has been incorporated [10].

The PYTHIA8 project is less far developed. However, revised models for parton showering

and the underlying event, cf. Ref. [11], have been constructed and implemented into the

latest fortran version PYTHIA 6.4 [2] and will soon be incorporated also in PYTHIA8.

There have been lots of efforts over the past few year to incorporate also higher-order

corrections into event generators. One major research line thereby aims at the matching of

next-to-leading-order (NLO) QCD calculations with initial- and final-state parton showers

[12, 13, 14, 15]. Besides various feasibility studies [16, 17, 18, 19] this has led to the publicly

available MC@NLO generator [20]. Within MC@NLO NLO calculations for a decent list

of processes can be supplemented with the fortran HERWIG parton shower, hadronisation

and underlying event description. In this approach the inclusive production rate for a

given process is correct at the next-to-leading order and the first emission is appropriately

described through the exact real emission matrix element. An alternative approach relies

on the combination of tree-level matrix elements for different numbers of final-state partons

and their merging with the parton showers, cf. Chapter 2. This method yields inclusive

production rates at the leading order only but several final-state jets can be described

through corresponding tree-level matrix elements. Such an algorithm has been implemented

in the SHERPA generator, that will be discussed in the following.

1.2 The SHERPA Monte Carlo

Likewise HERWIG and PYTHIA, SHERPA, acronym for Simulation of High Energetic Reac-

tions of PArticles, is intended to be a full fledged multi-purpose event generator capable

of simulating particle production processes at lepton–lepton and hadron–hadron colliders

in the framework of the Standard Model and some of its prominent extensions. It has

and is being developed independently from the other approaches and from the beginning

has been written in C++. SHERPA is a publicly available code and can be obtained from

http://www.sherpa-mc.de.

As in all Monte Carlo event generators the simulation of an actual event is split into different

phases that correspond to the evolution stages of a scattering process from the high scale

of the hard interaction down to scales of order ΛQDC where hadronisation sets in and the
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Figure 1.1: Pictorial representation a tt̄h event in hadron–hadron collisions. Apart from

the hard signal process (dark red blob) followed by the decays of the unstable

top-quarks and the Higgs boson (red blobs), it also contains an additional hard

parton interaction (purple blob). The partons are dressed with secondary

radiation, before the parton ensemble is transformed into primary hadrons

which then decay further and eventually produce additional photons.

hadrons seen in the detectors are formed. A sketch of an fictitious tt̄h event produced in

a hadron–hadron collision, from an event generator’s point of view, is depicted in Fig. 1.1.

Within SHERPA the different stages of the event evolution are hosted by different physics

modules. The most important of them shall be briefly reviewed here.

For the description of the hard processes SHERPA relies on its built-in matrix-element gen-

erator AMEGIC++ [21] that is capable of calculating exact tree-level matrix elements with

up to ten final-state particles in various physics scenarios. From a given set of Feynman

rules, specifying the interactions present in a theory, the program automatically generates

all the Feynman diagrams contributing to a given process, translates those into helicity

amplitudes, and subsequently determines suitable phase-space mappings for cross section

evaluation and event generation. At present AMEGIC++ can be used to generate processes

in the framework of the Standard Model, the extension of the SM by a general set of anoma-

lous triple- and quartic gauge couplings [22, 23], the Two-Higgs-Doublet Model, the ADD

model of large extra spatial dimensions [24, 25] and the Minimal Supersymmetric Standard

Model (MSSM). Besides providing matrix elements for the hard process supplemented with

appropriate phase-space integrators AMEGIC++ is used to describe particle decays through

exact matrix elements.
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The perturbative initial- and final-state QCD parton showers, relating partons participating

in the hard interaction to partons at scales of order ΛQCD, are accounted for by the parton-

shower code APACIC++ [26, 27]. The shower evolution is organised through an ordering in

the parton’s virtual mass. QCD coherence effects are approximately included by enforcing

an ordering of the opening angles in subsequent parton branchings by explicite vetoes. One

of the key features of SHERPA is that it contains a general implementation of the Catani–

Krauss–Kuhn–Webber (CKKW) prescription to consistently combine multi-leg tree-level

matrix elements, describing the hard interaction, with the parton showers [28, 29, 30, 31].

Accordingly, SHERPA can deliver an improved description of QCD multi-jet production by

incorporating the advantages of both, the exact matrix elements and the parton-shower

approach.

The underlying event simulation within SHERPA is hosted by the program AMISIC++ [32].

It models additional semi-hard parton–parton interactions, occurring for the same hadron–

hadron collision that triggered the hard process, according to the approach outlined in

Ref. [33]. Since no factorisation theorem exists that covers the scattering of more than one

parton per hadron, the current modelling of multiple interactions relies on the incorporation

of subsequent 2 → 2 QCD processes, employing appropriately rescaled parton distribution

functions. The individual interactions, however, are treated in a perturbative way, and

in SHERPA actually undergo initial- and final-state showering. A new underlying event

description for SHERPA that relies on k⊥-factorisation is currently under development. First

steps into this direction have been reported in Ref. [34].

The last step to be accomplished in order to obtain a complete description of events as they

can be observed in collider experiments is the transition of the parton ensemble obtained

after parton showering to the experimentally observed hadrons. As up to now there is

no fundamental theory describing QCD confinement, one has to rely on phenomenological

approaches like the Lund string [35, 36] or the cluster fragmentation model [37, 38] for the

hadronisation process. Currently SHERPA uses an interface to the Lund string fragmentation

of PYTHIA 6.214 [39], but an own cluster hadronisation type of model has already been

developed, cf. Ref. [40], and will soon replace the interface. Per default the decays of unstable

hadrons are also accomplished by PYTHIA, but a library for all the possible τ -lepton decays

and a number of B and D meson decay channels has already been implemented. For their

modelling use is made of matrix-element methods and various form factor models.

It should be noted here, that the actual SHERPA program more or less just steers all the

different subprograms mentioned above, and thereby initialises, controls and evaluates the

different phases of event generation. It is this modularity that allows one to modify, improve,

or even replace a certain physics model within SHERPA, without loosing the functionality of

the complete event generator. Accordingly, SHERPA represents a very convenient framework

to develop, implement, and test new ideas in theoretical particle physics.
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1.3 Outline of this thesis

This thesis mainly deals with the development, implementation and validation of various

physics models in the framework of the SHERPA event generator.

In Chapter 2 the principles of methods to consistently combine tree-level matrix-element

calculations with initial- and final-state parton showers will be reviewed. The focus hereby

is on the CKKW prescription as implemented in SHERPA. The electroweak gauge boson

production channel is used to validate the method through various consistency checks, com-

parisons with higher-order calculations, and, ultimately, comparison with experimental data.

In the last part of Chapter 2 a detailed comparative study of all the currently existing tree-

level merging approaches is presented. Special attention is paid to the assessment of the

theoretical uncertainties of the various approaches.

Chapter 3 is devoted to the presentation of a newly developed parton shower algorithm that

relies on the Catani–Seymour dipole subtraction scheme. The construction principles of the

model are explained and the complete set of splitting operators and phase-space kinematics

for initial- and final-state branchings is derived. The obtained shower formulation is then

compared analytically with exact matrix-element calculations and an extensive comparison

with precise data taken at LEP and Tevatron is presented.

Chapter 4 of this thesis reports on the implementation of the Minimal Supersymmetric Stan-

dard Model into SHERPA. Some details about the working principles of the matrix-element

generator AMEGIC++ are given and the extensions necessary to allow for the simulation of

supersymmetric theories are discussed. The complexity of the MSSM Lagrangian makes

careful tests of the implementation unavoidable. Accordingly, several hundred supersym-

metric processes have been compared with the two other available programs capable of

calculating multi-particle processes in the framework of the MSSM. Finally, by studying

sbottom-quark production at the LHC and a future linear collider, it is illustrated that

accurate multi-particle final-state calculations are needed to properly account for off-shell

effects induced by QCD, photon radiation, or by intermediate on-shell states.

A summary and conclusions can be found in Chapter 5.



2 Merging matrix elements and

parton showers

2.1 Introduction

In the past decades, parton-shower Monte Carlo programs, such as PYTHIA [1, 2] or HERWIG

[3, 4] have been indispensable tools for planning and analysing particle physics experiments

at different colliders. There are a number of reasons for the success of these workhorses. One

of the most important ones rests in their ability to bridge the gap between few-parton final

states, as described by fixed-order perturbative calculations, and the real world, where a

multitude of hadrons, leptons and photons fills the detectors of the experiments. The trans-

formation of the partons of perturbation theory into the visible hadrons, hadronisation, is

a direct consequence of the confinement property of QCD. At present, this phenomenon

can be described in terms of phenomenological models only, which depend on various phe-

nomenological parameters tuned to data. These parameters and hence the validity of the

models in turn depends on the properties (such as the flow of energy and other QCD quan-

tum numbers) of the parton ensemble; therefore it is important that these properties are

kept under control. It is the merit of parton showers that they provide a well-understood,

theoretically sound and universal framework of translating the few-parton states of fixed-

order perturbation theory, calculated at some high scale, with multi-parton states at much

lower scales, of the order of a few ΛQCD, where hadronisation sets in. In so doing the parton

showers help guarantee the validity of the tuned parameters of the hadronisation models.

To achieve this translation of few-parton to multi-parton states, the parton-shower programs

rely on correctly describing QCD particle production in the dominant soft and collinear re-

gions of phase space, giving rise to the bulk of radiation. It is in this region, where the

complicated radiation pattern of multiple particle emission factorises into nearly indepen-

dent - up to ordering in terms of a suitably chosen parameter - individual emissions of single

partons. This approximation, namely expanding around the soft or collinear limit, ulti-

mately leads to the resummation of the corresponding leading logarithms, which are then

typically encapsulated in exponential form in the Sudakov form factors. Their probabilistic

interpretation in fact is the central feature allowing for a straightforward implementation
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in an event generator, producing unweighted events. Due to the resummation of leading

logarithms it should thus not be too surprising that the parton-shower programs more than

often produce answers for QCD-related questions, which approximate exact results very

well.

However, the quality of the answers provided by the parton-shower approximation alone

relies on whether the question is related to the soft and/or collinear region in the phase

space of particle production. Unfortunately, for many final states that need to be studied

at the LHC when looking for the appearance new physics, this will not be the case. They

can be classified by the occurrence of hard QCD jets or the relevance of non-trivial corre-

lations between final-state objects, such as leptons and jets. In such cases, evidently, a full

quantum mechanical treatment as provided by fixed-order calculations becomes mandatory.

Therefore, the problem of systematically including higher-order effects into parton-shower

programs is in the center of research since a few years. In principle, there are two major

avenues of investigation. One deals with the question of how to include the correct QCD

next-to-leading-order correction to total cross sections [12]-[19], and has led to an imple-

mentation ready for use by the experiments in form of the MC@NLO code [20]. The other,

that shall be discussed here, considers the inclusion of tree-level multi-leg matrix elements

into the simulation [28, 29, 41, 42, 43, 44].

The key idea of all prescriptions for merging tree-level matrix elements with the parton

showers is to separate the phase space for parton emission into a hard region of jet pro-

duction, accounted for by suitable matrix elements, and the softer region of jet evolution,

covered by the parton showers. In order for a merging prescription to give reliable results a

number of issues needs to be resolved:

(i) It has to be ensured that the full phase space for QCD radiation gets filled and no

phase-space regions are left out.

(ii) A double counting of perturbative terms present in both the parton shower and the

matrix-element calculation must be avoided.

(iii) A rather weak dependence on unphysical scales introduced by the merging procedure,

e.g. cut-off parameters, has to be accomplished.

At present there exist three solutions to the problem. One based on Catani–Krauss–Kuhn–

Webber (CKKW), that has been outlined in [28, 29] and forms a cornerstone of the SHERPA

[7] generator, an alternative formulation of the same algorithm, proposed in [41], that is

implemented in ARIADNE [45, 46], and the MLM scheme, based on [42, 44], that has been

incorporated in ALPGEN [47], MADGRAPH/MADEVENT [48, 49, 50], and HELAC [51, 52].
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In general, all those merging procedures follow a similar strategy:

1. A jet measure is defined and all relevant cross sections including jets are calculated

for the process under consideration. I.e. for the production of a final state X in pp-

collisions, the cross sections for the processes pp→ X +njets with n = 0, 1, . . . , nmax

are evaluated.

2. Hard parton samples are produced with a probability proportional to the respective

total cross section, in a corresponding kinematic configuration following the matrix

element.

3. The individual configurations are accepted or rejected with a dynamical, kinematics-

dependent probability that includes both effects of running coupling constants and

of Sudakov form factors. In case the event is rejected, step 2 is repeated, i.e. a new

parton sample is selected, possibly with a new number of jets.

4. The parton shower is invoked with suitable initial conditions for each of the legs. In

some cases, like, e.g. in the MLM procedure described below, this step is performed

together with the step before, i.e. the acceptance/rejection of the jet configuration.

In all cases the parton shower is constrained not to produce any extra jet; stated in

other words: Configurations that would fall into the realm of matrix elements with a

higher jet multiplicity are vetoed in the parton-shower step.

The three merging procedures differ mainly

• in the jet definition used in the matrix elements;

• in the way the acceptance/rejection of jet configurations stemming from the matrix

element is performed;

• and in details concerning the starting conditions of and the jet vetoing inside the

parton showering.

To begin with, the CKKW prescription as implemented in SHERPA will be discussed in some

detail in Sec. 2.2. In Sec. 2.3 the electroweak gauge boson production channel is used to

validate the CKKW implementation through various consistency checks, comparisons with

fixed-order calculations, and, ultimately, comparison with experimental data. Sec. 2.4 is

devoted to a large scale comparison of all the available tree-level merging approaches with

special emphasis being paid to the assessment of the systematic uncertainties of the different

algorithms.
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2.2 The CKKW merging prescription

The merging prescription proposed in [28, 29], known as the CKKW scheme, has been imple-

mented and further developed in the event generator SHERPA for SM production processes

at lepton–lepton and hadron–hadron colliders [30, 31].

For hadron–hadron collisions, that shall only be considered in what follows, the internal jet

identification of the SHERPA-merging approach proceeds through a k⊥-measure [53, 54, 55],

where Qcut denotes the internal separation cut, also called the merging scale. In that scheme

two final-state particles belong to two different jets, if their relative transverse momentum

squared

Q2
ij = 2 min {p⊥, i, p⊥, j}2 [cosh(ηi − ηj) − cos(φi − φj)]

D2
(2.1)

is larger than Q2
cut. In the above equation, η and φ denote the pseudo-rapidities and az-

imuthal angles of the two particles, respectively, and D is a parameter of order 1 [56]. The

transverse momentum of each jet is required to be larger than the merging scale Qcut. The

weight attached to the generated matrix elements consists of two components, a strong-

coupling weight and an analytical Sudakov form-factor weight. For their determination, a

k⊥-jet clustering algorithm guided by only physically allowed parton combinations is applied

on the initial matrix-element configurations. The identified nodal k⊥-values are taken as

scales in the QCD running coupling and replace the predefined choice in the initial genera-

tion. The Sudakov weight attached to the matrix elements accounts for having no further

radiation resolvable at Qcut. The NLL-Sudakov form factors employed are defined by [53]

∆q(Q,Q0) = exp




−
Q∫

Q0

dq Γq(Q, q)




 ,

∆g(Q,Q0) = exp




−
Q∫

Q0

dq [Γg(Q, q) + Γf(q)]




 , (2.2)

where Γq,g,f are integrated splitting functions q → qg, g → gg and g → qq̄ given through

Γq(Q, q) =
2CF
π

αS(q)

q

(
ln
Q

q
− 3

4

)
, (2.3)

Γg(Q, q) =
2CA
π

αS(q)

q

(
ln
Q

q
− 11

12

)
, (2.4)

Γf(q) =
Nf

3π

αS(q)

q
. (2.5)

They contain the running coupling constant and the two leading, logarithmically enhanced

terms in the limit Q0 � Q. The single logarithmic terms −3/4 and −11/12 may spoil an

interpretation of the NLL-Sudakov form factor as a non-branching probability. Therefore,
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without affecting the logarithmic order of the result, Γ(Q, q) is cut off at zero, such that

∆q,g(Q,Q0) retains its property to define the probability for having no emission resolvable

at scale Q0 during the evolution from Q to Q0. These factors are used to reweight in

accordance to the appearance of external parton lines. A ratio of two Sudakov form factors

∆(Q,Q0)/∆(q, Q0) accounts for the probability of having no emission resolvable atQ0 during

the evolution from Q to q. Hence, it can be employed for the reweighting according to

internal parton lines. The lower limit is taken to be Q0 = Qcut or Q0 = DQcut for partons

that are clustered to a beam or to another final-state parton, respectively.

The sequence of clusterings, stopped after the eventual identification of a 2 → 2 configura-

tion (the core process), is used to reweight the matrix element. Moreover, this also gives a

shower history, whereas the 2 → 2 core process defines the starting conditions for the vetoed

shower where all emissions above Qcut get rejected.

The very important feature of the CKKW approach as outlined above is the cancellation of

the dependence on Qcut to NLL accuracy, for which the formal proof has been given in [28]

considering the case of lepton–lepton initial states. This particularly is achieved through

the combination of the Sudakov-reweighted matrix elements with vetoed parton showers

subjected to appropriate starting conditions.

2.2.1 The actual algorithm

The merging prescription sketched above shall now be formulated in an algorithmic lan-

guage for the case of hadron–hadron collisions, with special emphasis given to details of

its implementation in SHERPA. The description of the preferred scale choices for different

process configurations will be exemplified for W boson production in Sec. 2.2.2. Details

on the treatment of matrix elements with the highest jet multiplicity will be considered in

Sec. 2.2.3.

The merging algorithm proceeds as follows:

1. One process out of all processes under consideration is selected according to the prob-

ability

P
(0)
i =

σ
(0)
i∑
i σ

(0)
i

. (2.6)

This choice provides the initial jet rates, subject to the additional Sudakov and cou-

pling weight rejection. For instance, a typical selection of processes for W−-boson

production at the Tevatron would include:

pp̄→ jet jet→ e−ν̄e ,

pp̄→ jet jet→ e−ν̄e + jet ,

pp̄→ jet jet→ e−ν̄e + jet jet ,

pp̄→ jet jet→ e−ν̄e + jet jet jet .
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The cross sections σ
(0)
i are calculated using the corresponding tree-level matrix ele-

ments; the only phase-space restriction is given by the k⊥-measure 1. The renormali-

sation scale µR and the factorisation scale µF are fixed to the cut-off scale Qcut, with

an exception only for the process with the highest number of jets, cf. Sec. 2.2.3.

2. Having chosen a single process, the respective momenta are distributed according to

the corresponding differential cross section.

3. The nodal values qi are determined. In doing so a corresponding parton-shower history

is reconstructed. The backward clustering procedure is guided by the k⊥-measure,

respecting additional constraints:

• Unphysical combinations like (qq) and (q̄q̄) are ignored. Within the SHERPA

framework this is implemented by employing the knowledge of the Feynman

diagrams contributing to the process under consideration. Thus, “unphysical”

translates into the non-existence of a corresponding Feynman diagram.

• When an outgoing parton of momentum pj is to be clustered with a beam, the k⊥-

measure does not provide the information as to which beam it has to be clustered.

In general the beam with the same sign as its longitudinal momentum component

is preferred. In addition the new incoming momentum given by p′i = pi−pj must

exhibit a positive energy in the frame where the initial-state shower is performed.

4. The backward clustering stops with a 2 → 2 process. The hardest scale of this “core”

process has to be found. It depends both on the process and its kinematics (cf. Sec.

2.2.2).

5. The weight is determined, employing the nodal values qi, according to the following

rules:

• For every internal (QCD) line with nodal values qi and qj for its production and

its decay, a factor ∆(qi, Qcut)/∆(qj, Qcut) is added. For outgoing lines, a factor

∆(qi, Qcut) is added.

• For every QCD node a factor αs(qi)/αs(Qcut) is added.

6. The event is accepted or rejected according to this weight. If the event is rejected, the

procedure starts afresh, with step 1.

1In cases where the matrix elements considered exhibit other than just the soft and collinear singularities

of QCD, these singular phase-space regions have to be avoided by applying suitable cuts. One such example

is inclusive Drell-Yan production of a pair of leptons mediated by an off-shell photon. This process has

a physical divergence as the invariant di-lepton mass tends to zero. This, however, is easily removed by

requiring a minimum virtuality for the photon propagator.



2.2 The CKKW merging prescription 23
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Figure 2.1: Two possible cluster configurations of a W+1 jet event. The dashed line

highlights the hard 2 → 2 process.

7. The initial- and final-state showers emerge from the core 2 → 2 process. The recon-

structed matrix-element branchings are included as predetermined splittings within

the shower. The starting conditions are determined by the clustering performed be-

fore (in step 3), i.e. the evolution of a parton starts at its production scale 2. The

first emission from the initial-state shower has to take the factorisation scale µF into

account, used during the matrix-element calculation.

8. Any parton-shower emission with a k⊥ above the jet resolution scale Qcut gets vetoed.

2.2.2 Example: W boson production at hadron colliders

The algorithm described above and, in particular, the incorporated scale choices, will be

illustrated with a few examples dealing with W-boson production at hadron colliders:

The leading-order contributions to W− production are of the Drell–Yan type, i.e. processes

of the form

q q̄′ → e−ν̄e .

Clustering does not take place, since this is already a 2 → 2 process. Furthermore, there is

no strong coupling involved, and the rejection weight is given by two quark Sudakov factors

only:

W = ∆q(Q,Qcut) ∆q̄′(Q,Qcut) . (2.7)

The hard scale Q is fixed by the invariant mass of the lepton-neutrino pair Q2 = M2
e−ν̄e

.

Possible configurations resulting from the clustering of W+1jet events are exhibited in Fig.

2.1. The hard 2 → 2 process either is again a Drell–Yan process (Fig. 2.1a) or of the type

qq̄′ → gW (Fig. 2.1b). The weight in the first case reads:

W = ∆q(Q,Qcut) ∆q̄′(Q,Qcut) ∆g(Q1, Qcut)
αs(Q1)

αs(Qcut)
, (2.8)

2Since a virtuality-ordered shower is employed within SHERPA, the virtuality of its predecessor, i.e. its

invariant mass, is used.



24 2 Merging matrix elements and parton showers

Q1
Q

Q2

Q1 Q

Q2

Q

Q1

a) b)

c)

Figure 2.2: Three possible cluster configurations of a W+2 jet event. The dashed line

highlights the hard 2 → 2 process, being either of Drell–Yan type (a), a vector

boson production (b) or a pure QCD process (c).

where Q2 = M2
e−ν̄e

and the nodal value Q1 is given by the k⊥-algorithm. For this config-

uration the gluon jet tends to be soft, i.e. Q1 preferentially is close to Qcut. The second

configuration differs from the first only by the result of the clustering. The transverse mo-

mentum of the gluon jet p2
T,g now is of the order of the W-boson mass or larger. The weight

looks still the same only the scale definitions are altered. In such a case, the hard scale is

now given by

Q2 = p2
T,g +M2

e−ν̄e
, (2.9)

i.e. the transverse mass of the W. Also, the nodal value Q1 has not been determined by the

cluster algorithm, since it belongs to the (in principle unresolved) core process. A natural

choice is the transverse momentum of the corresponding jet

Q1 = pT,g . (2.10)

These scale definitions guarantee a smooth transition between the two regimes, i.e. from the

case where the gluon is soft to a case where the gluon is hard.

More complicated processes involve the production of at least two extra jets. There are

many processes contributing to this category. Some illustrative examples are displayed in

Fig. 2.2. Cases a) and b) of Fig. 2.2 are very similar to the example with one extra jet only.

The corresponding weight reads:

W = ∆q(Q,Qcut) ∆q̄′(Q,Qcut) ∆g(Q1, Qcut) ∆g(Q2, Qcut)
αs(Q1)

αs(Qcut)

αs(Q2)

αs(Qcut)
. (2.11)
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The nodal value Q2 is given by the k⊥-algorithm. The scales Q1 and Q are chosen as in the

one-jet case.

In contrast a new situation arises when a pure QCD process has been chosen as the “core”

2 → 2 process, see Fig. 2.2c). Since the “core” process is not resolved, there is only one

scale available, Q2 = (2stu)/(s2 + t2 + u2) ≈ p2
T , the transverse momentum of the outgoing

jets. The correction weight consequently reads:

W = ∆q(Q,Qcut)
∆q(Q,Qcut)

∆q(Q1, Qcut)
∆q̄′(Q1, Qcut) [∆g(Q,Qcut)]

2

[
αs(Q)

αs(Qcut)

]2

. (2.12)

The extension to higher multiplicities is straightforward. However, the number of extra jets

accounted for by matrix elements is limited. This limitation in available matrix elements

enforces a specific treatment of the processes with the highest multiplicity.

2.2.3 Treatment for the highest multiplicity matrix element

In general, the initial cross sections σ
(0)
i used in step 1 of the merging algorithm above are

defined by

σ
(0)
i =

∫
dx1 dx2 dΩ f1(x1, µF )f2(x2, µF ) |Mi|2 , (2.13)

where dΩ represents the appropriate invariant phase-space element and Mi is the Feynman

amplitude for the respective process. The choice µF = Qcut together with the Sudakov

factors and the coupling weight leads to a modified cross section σi = W σ
(0)
i . Adding all

cross sections with the same number of strong particles yields the cross section for production

processes accompanied by – exclusively – n jets,

σ
(excl)
n−jet =

∑

i(n jet)

σi . (2.14)

Of course the number of extra jets that can be considered in this respect is limited by

the available matrix elements; in SHERPA, this number is usually in the range of three to

four. In order to compensate for all the omitted processes with more jets, the treatment of

processes with the highest number of extra jets differs slightly from the handling of lower

jet multiplicities. The changes are as follows:

• the factorisation scale is set dynamically to µF = Qmin ≥ Qcut, i.e. to the smallest

nodal value as determined by the k⊥-algorithm,

• the resolution scale Qcut of the Sudakov weights is also replaced by Qmin, and

• the shower veto is applied with Qmin instead of Qcut.

This guarantees that parton showers attached to matrix elements with the highest number

of jets are allowed to produce jets softer than Qmin. In other words: the merging procedure
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is meant to take into account quantum interference effects in jet production at leading

order up to a maximal number of jets; any softer jet is left to the parton shower. For the

configuration shown in Fig. 2.2a), the modified Sudakov and coupling weight reads:

W̃ = ∆q(Q,Qmin) ∆q̄′(Q,Qmin) ∆g(Q1, Qmin)
αs(Q1)

αs(Qcut)

αs(Q2)

αs(Qcut)
, (2.15)

with the lowest scale Qmin = Q2. Following this procedure, the sum of all cross sections

σ̃i = W̃ σ̃
(0)
i for a number of jets n can be interpreted as an inclusive cross section

σ
(incl)
n−jet =

∑

i(n jet)

σ̃i , (2.16)

i.e. the probability to find at least n jets. Adding all the exclusive cross sections for multi-

plicities lower than a maximal multiplicity nmax to the inclusive cross section for the highest

multiplicity yields the desired fully inclusive cross section. In the CKKW approach this

treatment ensures that the full phase space for jet production is consistently filled without

double counting any terms in the perturbative expansion.

2.3 Gauge boson production at the Tevatron

The production of electroweak gauge bosons, e.g. W± and Z0, is one of the most prominent

processes at hadron colliders. Especially through their leptonic decays they leave a clean

signature, namely either one charged lepton accompanied by missing energy for W bosons

or two oppositely charged leptons for the Z0 bosons. The combination of clear signatures

and copious production rates allows a measurement of some of their parameters, e.g. the W

mass and width, with a precision comparable with that reached at LEP2 at the Tevatron

[57]-[66], or even better at the LHC [67, 68]. The same combination, clear signature and

large production rate, renders them a good candidate process for luminosity measurements,

especially at the LHC [69]-[72]. This holds true in particular for W-bosons, since their pro-

duction rate is enhanced by roughly an order of magnitude with respect to Z0 production.

At present W+multi-jet production is one of the most studied final states because of its

important rôle as a background to top-quark studies at the Tevatron. Furthermore, at the

LHC, W+jets, as well as Z0+jets processes, will provide the main irreducible backgrounds

to signals such as multi-jet plus missing transverse energy, typical of supersymmetry and

of other manifestations of physics beyond the SM. The understanding of W+multi-jet pro-

duction at the Tevatron is therefore an essential step towards the validation and tuning of

Monte Carlo event generators, prior to their utilization at the LHC.

In the following the merging procedure implemented in SHERPA shall be validated and

benchmarked for single-boson production at the Tevatron collider 3. In a first step, the

3Similar studies for gauge boson production at the LHC have been presented in Ref. [73]



2.3 Gauge boson production at the Tevatron 27

self-consistency of the method will be checked by analysing the dependence of different

observables on the merging scale and on the maximum number of extra jets described

through matrix elements, see Sec. 2.3.1. This will be supplemented with a first comparison

of the predicted boson pT spectra with published Tevatron data. In Sec. 2.3.2 SHERPA

predictions for the extra jet transverse momentum spectra will be compared with full next-

to-leading-order QCD calculations for the processes W/Z0 + 1, 2 jets. Finally, Sec. 2.3.3

reports on a detailed comparison of DØ data for the Z0/γ∗+jets channel with Monte Carlo

simulations from PYTHIA and SHERPA. Special attention thereby is given to observables

sensitive to the modelling of QCD radiation in the generators.

2.3.1 Validation of the CKKW predictions

In this section the self-consistency of the results obtained with SHERPA is checked by

analysing the sensitivity of different observables on the key parameters of the merging pro-

cedure, namely the separation scale Qcut and the highest multiplicity of included matrix

elements nmax. Per construction these dependencies should be moderate and a wide range

of settings will be probed. However, in practice educated choices can be made, that are

guided by the event selection criteria in an analysis:

• The choice of Qcut should be related to the jet cuts. Requiring jets with transverse

momenta greater than pmin
T , the choice Qcut ≈ pmin

T is recommended. If Qcut � pmin
T

lots of the analysed jets will originate from the parton showers and will miss the

advantages of a full matrix-element calculation. However, choosing Qcut much smaller

than pmin
T results in a rather low event generation efficiency. Similarly, the choice of

the D parameter in Eq. 2.1 should be adapted to the analysis cuts. If the analysis is

to be carried out with a cone-jet algorithm, the choice D ≈ R, with R the jet-cone

radius, is advisable.

• A similar argumentation holds for the choice of nmax. If studying an n-jet observable

nmax should best be chosen equal or greater than n.

• The remaining dependencies on the concrete choices for the merging parameters have

to be accounted as systematic uncertainties of the prescription or can be used to tune

the Monte Carlo predictions to data.

In the following two paragraphs W− boson production at the Tevatron will be considered,

with
√
s = 1960 GeV and W− → e−ν̄e; the SM input parameters used can be found in

Appendix A.1.1, the D parameter of the internal jet algorithm has been fixed to D = 1,

SHERPA version 1.0.6 has been used 4. If not stated otherwise, the distributions shown

4The results presented here have been published in [30]. Similar studies for the pair production of W

bosons have been presented in [74].
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Figure 2.3: pT (W−) (upper row) and pT (e−) (lower row) for Qcut = 10 GeV, 30 GeV and

50 GeV in comparison with Qcut = 20 GeV (dashed curve).

are inclusive hadron-level results, i.e. no cuts have been applied. The last paragraph of

this section contains a first comparison of SHERPA predictions with experimental data, this

however will be largely extended in Sec. 2.3.3.

Variation of the separation cut Qcut

In all figures of this paragraph, the black, solid line represents the total inclusive result as

obtained by SHERPA. A vertical dashed line indicates the respective separation cut Qcut,

which has been varied between 10 GeV and 50 GeV. To guide the eye, all plots also show

the same observable as obtained with a separation cut of 20 GeV, shown as a dashed black

curve. The coloured lines give the contributions of different multiplicity processes. Note

that the separation cut always marks the transition between n-jet and n + 1-jet matrix

elements. Figs. 2.3 and 2.4 show the transverse momentum and the rapidity distribution

of the W− boson and the corresponding electron. For the transverse momentum of the W

below the cut, the distribution is dominated by the LO matrix element with no extra jet,

i.e. the transverse momentum is generated by the initial-state parton shower only. Around

the cut, a small dip is visible in Fig. 2.3. The pT distribution of the electron, in contrast,

is hardly altered. The rapidity distributions in Fig. 2.4 exhibit the asymmetry, which has

been anticipated when considering merely the negatively charged W boson. The shape of
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Figure 2.4: η(W−) (upper row) and η(e−) (lower row) for Qcut = 10 GeV, 30 GeV and 50

GeV in comparison with Qcut = 20 GeV (dashed curve).

these distributions is very stable under a variation of the separation cut. In all observables

a small increase of the total cross section of a few percent when changing Qcut from 10 GeV

to 50 GeV is visible. This underlines the fact that the dependence on the separation cut is

weak.

Differential jet rates with respect to the k⊥-algorithm are interesting observables, since

they basically exhibit the distributions of nodal values when running the cluster algorithm.

For simplicity the Run II k⊥-algorithm, cf. Ref. [56], has been used with D = 1 for the

analysis. Differential jet rates are of special interest, since the nodal values are very close to

the measure used to separate matrix elements from parton-shower emissions. Accordingly,

deficiencies with respect to the separation should immediately manifest themselves in these

distributions. In Fig. 2.5 the 1 → 0, 2 → 1 and 3 → 2 differential jet rates are shown.

The dependence of the results on Qcut is rather weak. The largest effects are observed

for Qcut = 50 GeV where the parton shower starts to fail in filling the phase space for

emissions of order Qcut. However, within the given approximations the independence on Qcut

is satisfactory. A more detailed assessment of the variations introduced by using different

values for the merging scale in the CKKW approach is presented in Sec. 2.4.
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Figure 2.5: Differential jet rates for the 1 → 0, 2 → 1 and 3 → 2 transition (top to

bottom), for Qcut = 10 GeV, 30 GeV, and 50 GeV (from left to right). In each

plot, the results are compared with those for Qcut = 20 GeV (dashed curve).

Variation of the maximal jet multiplicity nmax

For very inclusive observables such as transverse momentum and rapidity of the W boson, it

is usually sufficient to include the matrix element with only one extra jet in order to obtain

a reliable prediction. Consequently, the inclusion of matrix elements with more than one

extra jet in the simulation should not significantly change the result. This can be used as

another consistency check. Figs. 2.6 and 2.7 impressively picture the dependence on the

maximal jet number in the matrix elements included. They show that the treatment of the

highest multiplicity, cf. Sec. 2.2.3, sufficiently compensates for the missing matrix elements,

whereas the contribution of the lowest multiplicity is not altered.
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Figure 2.6: pT (W−) for Qcut = 15 GeV and different maximal numbers of matrix-element

jets included. The dashed reference curve corresponds to the case nmax = 2.
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Figure 2.7: η(W−) for Qcut = 15 GeV and different maximal numbers of matrix-element

jets included. The dashed reference curve corresponds to the case nmax = 2.

First comparison with data

The comparison with experimental data provides an ultimate test for a theoretical calcu-

lation. Unfortunately, so far only very few distributions measured at the Tevatron in the

gauge boson channel have been published. Amongst them are the transverse momentum

distributions of produced W and Z0 bosons. These distributions are very sensitive to both

hard and soft radiation that accompanies the produced gauge boson. Accordingly, they pro-

vide a very good testbed for the CKKW approach, that aims at describing the two regions

consistently in one sample.

Matrix elements with up to four (W) or three (Z0) extra jets have been included in the

calculation. The black line represents the sum of the different multiplicity contributions,

that are indicated by the different colours. For both samples Qcut = 20 GeV has been used.

In Fig. 2.8, the (inclusive) pT distribution of the W is compared with DØ data taken at
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Figure 2.8: The pT distribution of the W-boson in comparison with data from DØ at

the Tevatron, Run I [75]. The applied separation cut is Qcut = 20 GeV and

nmax = 4 has been used.

√
s = 1800 GeV [75]. The agreement with data is excellent. It can be recognised that

approaching the merging scale from below, the W+0jet contribution steeply falls and the

distribution for larger momenta is mainly covered by the W+1jet part, as expected. In order

to match the measured distribution, the SHERPA result has been multiplied by a constant

K-factor of 1.25.

Similarly, in Fig. 2.9, the (inclusive) pT distribution of the Z0 is compared with data, this

time taken by CDF, but also during Run I [76]. Again the overall agreement, both in the

soft and hard region, is excellent. This time the result has been multiplied by a constant

K-factor of 1.6 to match the measured cross section. The result is perfectly smooth around

the merging scale of Qcut = 20 GeV. This is especially highlighted in the right panel of Fig.

2.9, which concentrates on the low momentum region. It is interesting to note that the

description of the data for momenta smaller than the merging scale is almost only covered

by the Z0 + 0jet contribution and is therefore very sensitive to the details of the parton

showers and the treatment of beam remnants. A parameter of specific impact on the very

low momentum region therefore is the primordial (or intrinsic) k⊥ used for the interacting

partons. This is modelled through a Gaussian distribution with a central value of 0.8 GeV.

Nevertheless, the shower performance of SHERPA has not been especially tuned; the low

momentum behaviour may therefore still be improved once a detailed parameter tune is

available.
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Figure 2.9: The pT distribution of the Z0-boson in comparison with data from CDF at

the Tevatron, Run I [76]. The applied separation cut is Qcut = 20 GeV and

nmax = 3 has been used. The right plot just focuses on the low momentum

region of the left one.
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2.3.2 Comparison with higher-order calculations

The SHERPA predictions for W/Z0+1jet and W/Z0+2jet production at the Tevatron collider

shall be compared with corresponding parton-level next-to-leading-order calculations. For

this a two-step procedure is chosen. First matrix elements reweighted with Sudakov form

factors and a strong coupling weight according to the CKKW prescription are compared

with exclusive NLO results obtained with the parton-level Monte Carlo MCFM [77, 78]. In

the case of the next-to-leading-order calculation, the exclusiveness of the final states boils

down to a constraint on the phase space for the real parton emission. The exclusive SHERPA

results consist of appropriate leading-order matrix elements with scales set according to the

k⊥-cluster algorithm and made exclusive by suitable Sudakov form factors, cf. Sec. 2.2.1.

In a second step, the jet spectra for inclusive production processes are compared. For

the next-to-leading-order calculation, this time the phase space for real parton emission

is not restricted and the SHERPA predictions are obtained from a fully inclusive sample,

using matrix elements with up to two extra jets and the parton showers attached. If not

stated otherwise, all results have been obtained using the input parameters and phase-space

cuts summarised in Appendix A.1. Jets are found using the Run II k⊥-clustering algorithm

defined in [56] with a pseudo-cone size of D = 0.7 and a minimal pT of 15 GeV. The merging

scale in SHERPA is set to Qcut = 15 GeV. The results of this study have been published in

[30]. The case of gauge boson production at the LHC was considered in Ref. [73] where

similar results and conclusions than presented in the following have been found.

Exclusive jet pT spectra

In Fig. 2.10 the jet pT distribution for the exclusive production of W+1jet and Z0 +1jet are

shown. In both figures, the SHERPA prediction is compared with the exclusive NLO result

obtained with MCFM and with the naive LO prediction, which is the same for the two

programs. For the fixed-order NLO and LO result, the renormalisation and factorisation

scales have been set to µR = µF = mW = 80.419 GeV. All distributions have been

normalised to the corresponding total cross section. This allows for a direct comparison of

the distributions shape. As stated above, the SHERPA results stem from Sudakov and αs

reweighted W+1jet or Z0+1jet LO matrix elements. The change between the naive leading-

order and the next-to-leading-order distribution is significant. At next-to-leading order the

distributions become much softer. For a high-pT jet it is much more likely to emit a parton

that fulfils the jet criteria and therefore removes the event from the exclusive sample. The

SHERPA predictions show the same feature. The inclusion of Sudakov form factors and the

scale setting according to the merging prescription improves the LO prediction, resulting in

a rather good agreement with the next-to-leading-order result.

In the high-pT tail, however, the NLO calculations from MCFM tend to be a bit below the

SHERPA results. The reason is simply connected to the fact that relevant scales in the high-
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Figure 2.10: Jet pT distribution of exclusive W + 1jet (left) or Z0 + 1jet (right) events at

the Tevatron, Run II.
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Figure 2.11: Jet pT distribution of Z0 + 1jet events at the Tevatron where for the NLO

and LO calculation the renormalisation and factorisation scales have been

chosen to be µR = µF = 160.838 GeV.

pT tail are much larger than the default choice of µR = µF = mW . In order to highlight this,

Fig. 2.11 contains the jet pT distribution in Z0+1jet events. In this plot, the renormalisation

and factorisation scales have been chosen to be µR = µF = 2mW = 160.838 GeV. Changing

the scale in this manner indeed has quite a small impact on the total cross section at NLO,

but the tail of the distribution becomes considerably enhanced. With the above choice for

µR and µF the agreement of the NLO and the SHERPA result is impressive.

The pT distribution of the first and second jets in W + 2jet and Z0 + 2jet production

are presented in Fig. 2.12. Again, the next-to-leading-order distributions are softer than

the leading-order ones, for the same reason as for the 1jet case. In addition, at low-pT
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Figure 2.12: The pT distribution of the first and second jets in exclusive W + 2jet (left)

and in exclusive Z0 + 2jet (right) events at the Tevatron, Run II.
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Figure 2.13: The pT distribution of the first and second jets in exclusive W + 2jet events

at the Tevatron where for the NLO and LO calculation the renormalisation

and factorisation scales have been chosen to µR = µF = 160.838 GeV.

the leading-order result is smaller than the next-to-leading-order one. Taken together, the

curves have a significantly different shape over the whole interval. This situation clearly

forbids the use of constant K-factors in order to match the leading order with the next-to-

leading-order result. Nevertheless, as before, the SHERPA prediction reproduces to a very

good approximation the shape of the NLO result delivered by MCFM. Fig. 2.13 shows that,

similar to the Z0 + 1jet case for W + 2jet in the high-pT tail, the situation is even better

using higher renormalisation and factorisation scales (e.g. µR = µF = 160.838 GeV) in the

NLO calculation.
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Figure 2.14: The pT distribution of the hardest jet for inclusive W + 1jet (left) and for

inclusive Z0 + 1jet (right) production at the Tevatron, Run II.

Inclusive jet pT spectra

NLO results for inclusive boson plus jet(s) production obtained with MCFM are compared

with fully inclusive samples generated with SHERPA. There, the matrix elements for W/Z0+

0, 1, 2jet production have been used including the highest multiplicity treatment for the

W/Z0+2jet case. The Sudakov and αs reweighted matrix elements have now been combined

with the initial and final state parton showers. The hadronisation phase for the SHERPA

events has been discarded. As for the exclusive case the naive leading-order prediction is

given by the corresponding leading-order matrix element that is identical to the one in Figs.

2.10 and 2.12. For the NLO prediction again the renormalisation and factorisation scales

have been chosen to coincide, namely µR = µF = mW .

In Fig. 2.14, the pT spectra for the hardest jet in inclusive W/Z0 + 1jet production are

shown. Compared with the exclusive predictions, the high-pT tail is filled again and, hence,

the differences between the NLO calculations and the LO ones appear to be smaller. For

both cases the SHERPA result and the NLO calculation are in good agreement.

In Fig. 2.15 the pT spectra for the first and second hardest jets in inclusive W/Z0 + 2jet

production are presented. Considering the scale dependence of the next-to-leading-order

result in the high-pT region, as already studied in Fig. 2.13 for the exclusive result, the

curves are in pretty good agreement.

Altogether, the merging procedure in SHERPA, including the scale-setting prescription of

the approach and the Sudakov reweighting of the LO matrix elements, proves to lead to

a significantly improved leading-order prediction. Seemingly, it takes proper care of the

most relevant contributions of higher-order corrections. Although it should be stressed

that the rate predicted by SHERPA is still a leading-order value only, a constant K-factor

is sufficient to recover excellent agreement with a full next-to-leading order calculation for
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Figure 2.15: The pT distribution of the hardest two jets for inclusive W + 2jet (left) and

for inclusive Z0 + 2jet (right) production at the Tevatron, Run II.

the distributions considered. Furthermore, by looking at the inclusive spectra it is obvious

that this statement still holds true after the inclusion of parton showers and the merging of

exclusive matrix elements of different jet multiplicities.

2.3.3 Confronting Monte Carlo predictions with DØ data

This section reports on an experimental analysis to compare DØ data and predictions of

the event generators PYTHIA and SHERPA for the Z0/γ∗+ jets channel with Z0/γ∗ → e+e−.

The analysis focuses on the description of jet observables. For the production of additional

jets accompanying the produced gauge boson PYTHIA relies on a conventional parton-shower

model, whereas in SHERPA exact tree-level matrix elements are taken into account according

to the CKKW prescription. The main objective is to determine how accurately jet produc-

tion in Z0/γ∗ events is modelled by the two approaches. Preliminary results of this study

have been presented in [79].

Data and Monte Carlo samples

The data used for the analysis was collected during October 2002 and November 2005 by

the DØ experiment at the Fermilab Tevatron collider at
√
s = 1960 GeV. The integrated

luminosity corresponds to about 950 pb−1.

The PYTHIA sample was generated with version PYTHIA 6.319 [80]. For the parton densities

the CTEQ6l1 set was used and the parameters of the underlying event model correspond

to what is known as PYTHIA Tune A, cf. Ref. [81]. The SHERPA sample has been generated

with SHERPA version 1.0.6 and the CTEQ6l PDF set has been used. Tree-level matrix

elements with up to three final-state partons have been enabled. In correspondence with

the jet cuts to be applied the matching scale was chosen to be Qcut = 20 GeV. For the
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underlying event SHERPA’s default tune was used. Both Monte Carlo samples have been

overlayed with zero bias events to account for additional pp̄ collisions in the same beam

crossing. The samples had to pass the full DØ detector simulation and reconstruction chain

and have been normalised to the total number of Z0/γ∗ events found in the data sample.

Note, that no separate normalisation is used for subsamples of different jet multiplicity.

Event selection

Two oppositely charged electrons are required, both with a transverse momentum above 25

GeV. Both leptons have to be found in the pseudo-rapidity range |η| < 2.5, but at least one

of them is required to be reconstructed in the central detector, accordingly |η| < 1.1. The

di-electron invariant mass has to fulfil 70 GeV < Me+e− < 100 GeV. An efficient background

suppression of fake electrons from QCD jets has been employed, cf. [79].

Jets are reconstructed according to the DØ Run II cone algorithm with a cone parameter of

R = 0.5 and a required jet transverse momentum of pT > 15 GeV. To diminish backgrounds

from uninstrumented detector parts or electrons, certain additional criteria for jet candidates

have been included [79]. A Gaussian smearing of the jet energies in Monte Carlo events has

been applied.

Comparison between data and Monte Carlo

The transverse momentum distribution of the produced gauge bosons provides insight into

the jet production models of the theoretical tools without the need to actually reconstruct

jets. In fact the di-electron system has to compensate for the total transverse momentum of

the associated jet system. Fig. 2.16 contains a comparison of DØ data for the pT distribution

of the di-electrons with both PYTHIA (left panel) and SHERPA (right panel). The shaded

ranges in the histograms show the Monte Carlos central values ±1σ the statistic error. In

the lower half of each plot the bin wise ratio data over Monte Carlo is displayed. The slope of

the PYTHIA distribution indicates that PYTHIA predicts less high-pT gauge bosons compared

to what is seen in data, corresponding to less high-pT jets. SHERPA’s agreement with data

is good for pT < 100 GeV, above SHERPA tends to be harder than data. To quantify the jet

activity predicted by the two theoretical models Fig. 2.17 shows a comparison of the observed

exclusive jet multiplicities with the simulations. The red bands indicate ±1σ the statistical

error for the Monte Carlo predictions, whereas the combined red and blue bands show the

central values ± the statistical and systematic errors added in quadrature. Correspondingly,

the grey data points are given with statistical error only, whereas the black points include

the systematic errors from jet-energy scale uncertainties. The numbers of events found in

the data and predicted by the two Monte Carlos are collected in Tab. 2.1 for the different

multiplicity bins. The central values predicted by PYTHIA for the jet production processes

are lower than seen in data, corresponding to too few hard jets produced by PYTHIA’s parton-
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Figure 2.16: The transverse momentum distribution of the di-electron system (pT (Z0)).

Presented is a comparison of DØ data with PYTHIA (left panel) and SHERPA

(right panel). The lower part shows the bin wise ratio data/MC with the red

lines indicating factors of 2 and 0.5.

Figure 2.17: The jet-multiplicity distribution for e+e− + n jet events. Comparison of DØ

data and the PYTHIA (left panel) and SHERPA predictions.

shower model. SHERPA on the other hand slightly overshoots the data, however, giving fairly

good estimates for the n ≥ 3 bins, where PYTHIA is significantly lower. However, taking

into account the large systematic uncertainties arising from low-pT jets, the predictions of

both event generators agree with the data. To gain some further insight into the quality

of the modelling of jet physics with the two approaches the transverse momentum spectra

of jets accompanying the Drell-Yan pair have been considered. Figs. 2.18 - 2.20 show
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Sample Inclusive 0-jet 1-jet 2-jet 3-jet 4-jet

Data 50417 40624 7877 1552 306 52

PYTHIA 50417 41271 7604 1324 193 23

SHERPA 50417 39746 8410 1842 335 58

Table 2.1: Event numbers observed in data and predicted by PYTHIA and SHERPA after

normalisation [79].

Figure 2.18: The transverse momentum distribution of the hardest jet accompanying the

produced boson. Compared are DØ data and predictions made with PYTHIA

(left panel) and SHERPA (right panel).

the inclusive pT distributions of the three hardest jets. Accordingly, in Fig. 2.20 events

are included that possess at least one jet that passes the selection criteria stated above.

Correspondingly, events included in Fig. 2.19 (2.20) have to have at least two (three) jets.

When looking at the leading jet it is apparent that PYTHIA’s spectrum is much soft than

what is seen in data. SHERPA on the other hand follows the shape of the experimental

result, the predicted inclusive rate, however, is slightly larger than the measured value.

SHERPA’s second-jet and third-jet pT spectra show an equally good agreement with data.

Taking into account the experimental uncertainties SHERPA’s theoretical prediction clearly

is consistent with the experimental measurements over the whole region of phase space

covered. For PYTHIA the situation for the second and third jet is different, the plain parton-

shower approach used for the production of extra jets, clearly underestimates the amount

of hard radiation. This, however, could have been expected as the production of Drell-Yan

pairs accompanied by three hard jets all above 50 GeV is obviously beyond the soft and

collinear approximations used in a conventional parton-shower calculation, such as done
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Figure 2.19: Comparison of DØ data and predictions made with PYTHIA (left panel) and

SHERPA (right panel) for the pT distribution of the second hardest jet in

Drell-Yan events with at least two additional jets.

Figure 2.20: The pT distribution of the third hardest jet associated to an e+e− Drell-Yan

pair. In the left panel a prediction obtained with PYTHIA is compared to DØ

data, the right panel shows a comparison of SHERPA with this data set.

in PYTHIA. Besides allowing for additional hard radiation it is expected that the matrix-

element–parton-shower merging approach used in SHERPA yields an improved description

of observables sensitive to angular correlations. While such spatial correlations are are

not taken into account in a conventional parton-shower approach they are included in the

calculations of the full matrix elements. Fig. 2.21 contains a comparison for the azimuthal

angle between the two hardest jets, ∆φ = |φ1 − φ2|, with φi the azimuthal angle of the ith



2.3 Gauge boson production at the Tevatron 43

Figure 2.21: The azimuthal angle between the hardest and second-hardest jet, ∆φ =

|φ1 − φ2|, in inclusive Drell-Yan events. DØ data is compared to predictions

obtained with PYTHIA (left panel) and SHERPA (right panel).

Figure 2.22: The pseudo-rapidity distance between the hardest and second-hardest jet,

∆η = |η1 − η2|, in Drell-Yan events with at least two extra jets. DØ data is

compared PYTHIA (left panel) and SHERPA (right panel) predictions.

hardest jet. The SHERPA curve agrees quite nicely with data, but the PYTHIA result shows

a significant excess at ∆φ = π. This excess was traced back to originate from PYTHIA’s

underlying simulation [82]. In the model used, cf. Ref. [33], the underlying event activity

is described through additional semi-hard QCD 2 → 2 processes. In the version of PYTHIA

used for the comparison these processes are not equipped with a parton-shower simulations,

such that the produced outgoing partons of a single underlying event will remain back-
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to-back, correspondingly at ∆φ = π. When including parton showers for the multiple

interactions (as it is done for SHERPA) this structure would disappear. However, this result

reveals that in the PYTHIA sample a good fraction of the second and higher jets originate

from the underlying event and not from the parton shower off the Drell-Yan core process.

In the SHERPA approach the phase space for additional uncorrelated QCD 2 → 2 scatters is

restricted such, that the underlying event must not spoil the jet topologies described by the

hard event [32]. Although leaving much less phase space to multiple interactions, SHERPA

very satisfactory describes the underlying event activity found in dedicated analyses, cf.

Ref. [32].

In Fig. 2.22 the pseudo-rapidity distance between the hardest two jets is considered, namely

∆η = |η1 − η2|, with ηi the pseudo-rapidity of the ith hardest jet. Here both Monte Carlo

generators are within the uncertainties of the experimental data. The last observable to be

considered is the so called Zeppenfeld variable η∗, defined according to

η∗ = η3 −
η1 + η2

2
, (2.17)

where the jets have to pass the additional criteria

|η1 − η2| > 2.0 , (2.18)

and

η1 < η3 < η2 or η2 < η3 < η1 . (2.19)

The Zeppenfeld variable is of phenomenological interest as it constitutes a strong discrim-

inator in searches for the production of Higgs bosons in the weak-boson-fusion channel for

separating the signal from QCD backgrounds [83]. A good theoretical modelling of this

quantity is therefore of great importance especially at the LHC, where weak-boson-fusion is

dealt as one of the most promising Higgs discovery channels. In Fig. 2.23 the distribution of

η∗ as measured by DØ is shown. The used data sample contains only few events that pass

the above selection criteria. Accordingly, the statistical errors are sizable. SHERPA seems

to describe both the overall rate and the shape of the distribution seen in data. PYTHIA

predicts much less three-jet events but the shape of the distribution is in agreement with

data when taking into account the experimental uncertainties.

In this section it has been reported on a detailed comparison of DØ data and Monte Carlo

predictions obtained with PYTHIA and SHERPA for the inclusive production of e+e− Drell-Yan

pairs. Focusing on the description of jet quantities the theoretical models for jet production

in the two generators have been compared. It can be concluded that the incorporation of

exact tree-level matrix elements in the simulation of QCD radiation processes, as done in

SHERPA according to the CKKW prescription, yields an improved agreement with data for

both the overall rates and the shapes of jet distributions.
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Figure 2.23: The Zeppenfeld variable η∗. The left panel contains a comparison of DØ data

with the corresponding PYTHIA prediction, the right panel with SHERPA.

2.4 Comparison of various merging prescriptions

Besides the CKKW prescription for the consistent combination of multi-parton matrix-

element calculations with parton-shower simulations, over the past few years other solutions

to the problem have been developed. The most prominent one is the MLM procedure

developed by M. L. Mangano, that has been encoded in the ALPGEN generator [42, 47].

Only recently variants of the MLM method have also been employed for the MADEVENT

[50] and the HELAC [51, 52] generators. Another alternative approach, the Lönnblad scheme,

has been developed by L. Lönnblad for combining the dipole model implemented in ARIADNE

with tree-level matrix elements.

Here it will be reported on an extended comparison of all the presently available approaches.

The benchmark process chosen is W+jets production at Tevatron and LHC. Besides com-

paring various distributions and rates for the different approaches an attempt is made to

quantify the intrinsic systematic uncertainties of the different solutions to the same problem.

An extended version of this comparative study has been presented in [84].

After briefly reviewing the prescriptions alternative to CKKW in Sec. 2.4.1, the details of

the generator setups are discussed in Sec. 2.4.2. In Secs. 2.4.3 and 2.4.4 cross sections and

distributions predicted by the different approaches are compared for pp̄ (pp) collisions at

Tevatron (LHC) energies. Sec. 2.4.5 focuses on the assessment of the systematic uncertain-

ties intrinsic to these multi-scale calculations.
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2.4.1 Alternatives to CKKW

Combining matrix elements and the Dipole Cascade model

The merging prescription developed for the dipole cascade in the ARIADNE program [45]

is similar to CKKW, but differs in the way the shower history is constructed, and in the

way the Sudakov form factors are calculated. Also, since the ARIADNE cascade is ordered in

transverse momentum the treatment of starting scales is simplified and there is no need for

a vetoed parton shower. Before discussing the merging prescription it is useful to describe

some details of the dipole cascade, since it is quite different from conventional showers.

The dipole model [85, 86] as implemented in the ARIADNE program is based around iterating

2 → 3 partonic splittings instead of the usual 1 → 2 branchings in conventional parton

shower. Gluon emission is modelled as coherent radiation from colour–anti-colour charged

parton pairs. This has the advantage of eg. including first order correction to the matrix

elements for e+e− → qq̄ in a natural way and it also automatically includes the coherence

effects modelled by angular ordering in conventional showers. The process of quark–anti-

quark production does not come in as naturally, but can be added [87]. The emissions in

the dipole cascade are ordered according to invariant transverse momentum defined as

p2
⊥ =

s12s23

s123

, (2.20)

where sij is the squared invariant mass of parton i and j, with the emitted parton having

index 2.

When applied to hadronic collisions, the dipole model does not separate between initial-

and final-state gluon radiation. Instead all gluon emissions are treated as coming from

final-state dipoles [88, 89]. To be able to extend the dipole model to hadron collisions,

spatially extended coloured objects are introduced to model the hadron remnants. Dipoles

involving hadron remnants are treated in a similar manner to the normal final-state dipoles.

However, since the hadron remnant is considered to be an extended object, emissions with

small wavelength are suppressed. This is modelled by only allowing a fraction of the remnant

to take part in the emission. The fraction that is resolved during the emission is given by

a(p⊥) =

(
µ

p⊥

)α
, (2.21)

where µ is the inverse size of the remnant and α is the dimensionality. These are semi-

classical parameters which have no correspondence in conventional parton cascades, where

instead a suppression is obtained by ratios of quark densities in the backward evolution.

The main effect is that the dipole cascade allows for harder gluon emissions in the beam

directions, enabling it to describe properly eg. forward jet rates measured at HERA (see eg.

[90]).

There are two additional forms of emissions which need to be included in the case of hadronic
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collisions. One corresponds to an initial state g → qq̄ [91]. This does not come in naturally

in the dipole model, but is added by hand in a way similar to that of a conventional initial-

state parton shower [91]. The other corresponds to the initial-state q → gq (with the gluon

entering into the hard sub-process) which could be added in a similar way, but this has not

yet been implemented in ARIADNE.

When implementing CKKW for the dipole cascade [41, 46], the procedure is slightly dif-

ferent from what has been described above. First, rather than just constructing emission

scales using the k⊥-algorithm, a complete dipole shower history is constructed for each state

produced by the matrix-element generator, basically answering the question how would

ARIADNE have generated this state. This will produce a complete set of intermediate par-

tonic states, Si, and the corresponding emission scales, p⊥i. Note that this means that only

coloured particles are clustered, which differs from eg. SHERPA, where also the W and its

decay products are involved in the clustering.

The Sudakov form factors are then introduced using the Sudakov veto algorithm. The idea

is to exactly reproduce the Sudakov form factors used in ARIADNE. This is done by per-

forming a trial emission starting from each intermediate state Si with p⊥i as a starting scale.

If the emitted parton has a p⊥ higher than p⊥i+1 the state is rejected. This correspond to

keeping the state according to the no emission probability in ARIADNE, which is exactly the

Sudakov form factor.

It should be noted that for initial-state showers, there are two alternative ways of defining

the Sudakov form factor. The definition in Eq. (2.2) is used in eg. HERWIG, while eg. PYTHIA

uses a form which explicitly includes ratios of parton densities. Although formally equiv-

alent to leading logarithmic accuracy, only the latter corresponds exactly to a no-emission

probability, and this is the one generated by the Sudakov-veto algorithm. This, however,

also means that the constructed emissions in this case need not only be reweighted by the

running αs as in the standard CKKW procedure above, but also with ratios of parton densi-

ties, which in the case of gluon emissions correspond to the suppression due to the extended

remnants in Eq. (2.21) as explained in more detail in [46], where the complete algorithm is

presented.

The MLM procedure

The goal of this approach is to achieve leading logarithmic (LL) accuracy for the lowest-

order contribution to a given inclusive observable. This means correctly describing, for all

`, the coefficient of the αms × [αs L
2]` contributions to an observable that, at the partonic

leading-order level, starts at order αms . The absolute scale of the order αms term is set by the

matrix-element calculation of the parton-level event, while the series of logarithms is taken

care of by the shower evolution. The task is to make sure that none of the logarithms is

double counted. This is achieved by the so-called “matching” algorithm described below.
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1. The first step is the generation of parton-level configurations for all final-state parton

multiplicities n up to a given nmax (i.e. W + nmax partons). They are defined by the

following kinematical cuts:

ppart

T
> pmin

T
, |ηpart| < ηmax , ∆Rjj > Rmin , (2.22)

where ppart

T
and ηpart are the transverse momentum and pseudo-rapidity of the final-

state partons, and ∆Rjj is their minimal separation in the (η, φ) plane. The parameters

pmin

T
, ηmax and Rmin are called generation parameters, and are the same for all n =

1, . . . , nmax.

2. The renormalisation scale is set according to the CKKW prescription. The necessary

tree branching structure is defined for each event, allowing however only for branchings

which are consistent with the colour structure of the event, which in ALPGEN is

extracted from the matrix-element calculation [92]. For a pair of final-state partons i

and j the k⊥ measure defined by

k⊥ = ∆Rij min(pTi, pTj) , (2.23)

is used, where ∆R =
√

∆η2 + ∆φ2, while for a pair of initial/final-state partons this

becomes k2
⊥ = p2

T, i.e. the pT of the final-state one.

3. The k⊥-value at each vertex is used as a scale for the relative power of αs. The

factorisation scale for the parton densities is given by the hard scale of the process,

Q2
0 = m2

W + p2
T,W . It may happen that the clustering process stops before the lowest-

order configuration is reached. This is the case, e.g., for an event like uū → Wcs̄g.

Flavour conservation allows only the gluon to be clustered, since uū → Wcs̄ is a LO

process, first appearing at O(α2
s). In such cases, the hard scale Q0 is adopted for all

powers of αs corresponding to the non merged clusters.

4. Events are then showered, using PYTHIA or HERWIG. The upper cut-off to the shower

evolution is given by the hard scale of the process, Q0. After evolution, a jet cone

algorithm is applied to the partons produced in the shower. Jets are defined by a cone

size Rclus, a minimum transverse energy Eclus
T and a maximum pseudo-rapidity ηclus

max.

These parameters are called matching parameters, and should be kept the same for

all samples n = 0, 1, . . . , nmax. These jets provide the starting point for the matching

procedure, described in the next bullet. In the default implementation, the choices

Rclus = Rmin, η
clus
max = ηmax and Eclus

T = pmin

T
+ max(5 GeV, 0.2 × pmin

T
) are made,

but these can be varied as part of the systematics assessment. To ensure a complete

coverage of phase space, however, it is necessary that Rclus ≥ Rmin, η
clus
max ≤ ηmax and

Eclus
T ≥ pmin

T
.
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5. Starting from the hardest parton, the jet which is closest to it in (η, φ) is selected. If

the distance between the parton and the jet centroid is smaller than 1.5×Rclus, it is said

that the parton and the jet match. The matched jet is removed from the list of jets,

and the matching test for subsequent partons is performed. The event is fully matched

if each parton matches to a jet. Events which do not match are rejected. A typical

example is when two partons are so close that they cannot generate independent jets,

and therefore cannot match. Rejection removes double counting of the leading double

logarithms associated to the collinear behaviour of the amplitude when two partons

get close. Another example is when a parton is too soft to generate its own jet, again

failing matching. This removes double counting of some single logarithms.

6. Events from the parton samples with n < nmax which survive matching are then

required not to have extra jets. If they do, they are rejected, a suppression which

replaces the Sudakov reweighting used in the CKKW approach. This prevents the

double counting of events which will be present in, and more accurately described by,

the n + 1 sample. In the case of n = nmax, events with extra jets can be kept since

they will not be generated by samples with higher n. Nevertheless, to avoid double

counting, it is required that their transverse momentum is smaller than that of the

softest of the matched jets.

When all the resulting samples from n = 0, . . . , nmax are combined, an inclusive W+jets

sample is obtained. The harder the threshold for the energy of the jets used in the matching,

Eclus
T , the fewer the events rejected by the extra-jet veto (i.e. smaller Sudakov suppression),

with a bigger rôle given to the shower approximation in the production of jets. Using lower

thresholds would instead enhance the rôle of the matrix elements even at lower ET , and lead

to larger Sudakov suppression, reducing the rôle played by the shower in generating jets.

The matching/rejection algorithm ensures that these two components balance each other,

and that physical observables be independent of the generation parameters.

As stated above this algorithm is realised in the ALPGEN generator, where shower evolution

with both HERWIG and PYTHIA is enabled.

The MADEVENT approach

The approach used in MADGRAPH/MADEVENT [48, 49] is based on the MLM prescription,

but uses a different jet algorithm for defining the scales in αs and for the jet matching. The

phase-space separation between the different multi-jet processes is achieved using the k⊥-

measure as in SHERPA, while the Sudakov reweighting is performed by rejecting showered

events that are not matched to the parton-level jets, as in ALPGEN. The details of the

procedure are as follows.

Matrix-element multi-parton events are produced using MADGRAPH/MADEVENT version 4.1

[50], with a cut-off QME
min in clustered k⊥. The multi-parton state from the matrix-element
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calculation is clustered according to the k⊥ algorithm, but allowing only clusterings that

are compatible with the Feynman diagrams of the process. The factorisation scale is taken

to be the clustering momentum in the last 2 → 2 clustering (the “central process”), e.g.

in W-boson production this will corresponding to the transverse mass of the boson. The

k⊥-scales of the QCD clustering nodes are used as scales in the calculation of the various

powers of αs.

As in the ALPGEN procedure, no Sudakov reweighting is performed. Instead, Pythia 6.4 [2]

is used to shower the event, with the starting scale of the shower set to the factorisation

scale. In the present study the virtuality-ordered showers were used. The showered (but

not yet hadronised) event is then clustered to jets using the k⊥-algorithm with the cut-off

Qjet
min > QME

min, and the matrix-element partons are matched to the resulting jets. A parton is

considered to be matched to the closest jet if the jet measure Q(parton, jet) is smaller than

the cut-off Qjet
min. For events with the highest multiplicity nmax, the partons are considered

to be matched if Q(parton, jet) < Qparton
nmax

, the smallest k⊥-measure in the parton-level event,

which is similar to SHERPA’s highest multiplicity treatment, cf. Sec. 2.2.3. Events where

not all partons are matched to jets are rejected. For events with multiplicity smaller than

the highest multiplicity, the number of jets must be equal to the number of partons, while

for events from the highest multiplicity sample, extra jets are allowed.

HELAC implementation of the MLM procedure

The MLM procedure as described above has also been implemented in the HELAC generator

[51, 52]. HELAC thereby provides the matrix elements and parton showering is included via

an interface to the transverse momentum ordered shower of PYTHIA 6.4 [2].

The parton-level events are generated requiring pTj
> pTmin for all QCD partons, a minimum

parton separation, ∆Rjj > Rmin and a maximum pseudo-rapidity |ηj| < ηmax. The argu-

ments of the αs factors are reconstructed using a k⊥-algorithm as outlined above. The colour

flow information extracted from the matrix-element calculation is used as a constraint on

the allowed clusterings. The so generated parton-level events are interfaced to PYTHIA using

the latest Les Houches event file format [93]. After showering each event gets analyses by a

cone-jet algorithm. The reconstructed jets are defined by Eclus
Tmin, η

clus
max and by a jet cone size

Rclus. The partons from the parton-level events then are assigned to one of the constructed

jets. Starting from the parton with the highest pT the closest jet (1.5 × Rclus) is selected in

the η−φ space. All subsequent partons are matched iteratively to the remaining jets. If no

complete match is found the event is rejected. Additionally, for n < nmax, matched events

with the number of jets greater than n are rejected, whereas for n = nmax events with extra

jets are kept, only if they are softer than the nmax matched jets.
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2.4.2 Event generation setup for the study

The following two sections present results for the Tevatron (pp̄ collisions at 1.96 TeV) and

for the LHC (pp collisions at 14 TeV). The elements of the analysis common to all codes

are the following:

• Event samples. Tevatron results refer to the combination of W+ and W− bosons,

while at the LHC only W+ are considered. All codes have generated parton-level

samples according to matrix elements with up to four final-state partons, using the

the PDF set CTEQ6l, with αs(mZ) = 0.118. Further SM parameters used were:

mW = 80.419 GeV, ΓW = 2.048 GeV, mZ = 91.188 GeV, ΓZ = 2.446 GeV, the Fermi

constant Gµ = 1.16639 · 10−2 GeV−2, sin2 θW = 0.2222 and αqed = 1/132.51.

• Jet definitions. Jets were defined using Frank Paige’s GETJET cone-clustering algo-

rithm, with a calorimeter segmentation of (∆η, ∆φ) = (0.1,6◦) extended over the

range |η| < 2.5 (|η| < 5), and cone size of 0.7 (0.4) for the Tevatron (LHC). At the

Tevatron (LHC) jets are required to have ET > 10(20) GeV, and pseudo-rapidity

|η| < 2(4.5). For the analysis of the differential jet rates denoted as di, the Tevatron

Run II k⊥-algorithm [56] was applied to all final-state particles with |η| < 2.5(5).

In all cases, except the di plots (see below), the analysis is done at the hadron level, but

without including the underlying event. For all codes the systematic uncertainties are

investigated by varying the merging scale and by varying the scale in αs and, for some

codes, in the parton density functions. For ALPGEN and HELAC, the scale in αs has been

varied only in the αs-reweighting of the matrix elements, while in the others the scale was

also varied in the parton cascade. Note that varying the scale in the final-state parton

showers will spoil the tuning done to LEP data for the cascades. A consistent way of testing

the scale variations would require a retuning of the hadronisation parameters. However,

no strong dependence on the hadronisation parameters are expected in the observables

considered, and no attempt to retune them has been made.

The parameter choices specific to the individual codes are as follows:

• ALPGEN: The parton-level matrix elements were generated with ALPGEN [42, 47] and

the subsequent evolution used the HERWIG parton shower according to the MLM

procedure. Version 6.510 of HERWIG was used [4], with its default shower and hadro-

nisation parameters. The default results for the Tevatron (LHC) were obtained using

parton-level cuts (see Eq. (2.22)) of pmin

T
= 8(15) GeV, ηmax = 2.5(5), Rmin = 0.7(0.4)

and matching defined by Eclus
T = 10(20) GeV, ηclus

max = ηmax and Rclus = Rmin. The

variations used in the assessment of the systematics cover:

– Different thresholds for the definition of jets used in the matching: Eclus
T = 20

and 30 GeV for the Tevatron, and Eclus
T = 30 and 40 GeV for the LHC. These
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thresholds were applied to the partonic samples produced with the default gen-

eration cuts, as well as to partonic samples produced with higher pmin

T
values. No

difference was observed in the results, aside from an obviously better generation

efficiency in the latter case. In the following studies of the systematics, these two

settings will be referred to as ALPGEN parameter sets ALptX, ETwhere X labels

the value of the threshold. Studies with different values of Rclus and Rmin were

also performed, leading to marginal changes, which will not be documented here.

– Different renormalisation scale at the vertices of the clustering tree: µ = µ0/2

and µ = 2µ0, where µ0 is the default k⊥ value. In the following studies of the

systematics, these two settings will be referred to as ALPGEN parameter sets

ALscL (for “Low”) and ALscH (for “High”).

The publicly available version V2.10 of the code was used to generate all the ALPGEN

results.

• ARIADNE: The parton-level matrix elements were generated with MADEVENT and the

subsequent evolution used the dipole shower in ARIADNE according to the procedure

outlined in section 2.4.1. Hadronisation was performed by PYTHIA. For the default

results at the Tevatron (LHC) the parton-level cuts were pT,min = 10(20), Rjj <

0.5(0.4) and, in addition, a cut on the maximum pseudo-rapidity of jets, ηjmax =

2.5(5.0). The variations used in the assessment of the systematics cover:

– different value of the merging scales p⊥,min = 20 and 30 GeV for the Tevatron

(30 and 40 GeV for the LHC). In the following studies of the systematics, these

two settings will be referred to as ARIADNE parameter sets ARptX.

– The values of the soft suppression parameters in Eq. (2.21) were changed from

the default value of µ = 0.6 GeV and α = 1, to µ = 0.6 GeV and α = 1.5 (from

a tuning to HERA data). This setting will be referred to as ARs.

– Also in the ARIADNE case different values of the scale in αs were used: µ = µ0/2

and µ = 2µ0 (ARscL and ARscH). This scale change was used in all PDF and αs

evaluations in the program.

• HELAC: The parton-level matrix elements were generated with HELAC [51, 52] and

the phase-space generation is performed by PHEGAS [94]. The subsequent evolution

used the default k⊥-ordered shower in PYTHIA 6.4 [2] incorporated according to the

MLM procedure. Hadronisation was performed by PYTHIA. The default results for the

Tevatron (LHC) were obtained using parton-level cuts of pT > 8(15) GeV, |η| < 2.5(5),

Rjj < 0.7(0.4) and matching defined by ETmin = 10(20) GeV, |η| < 2(4.5) and

Rmin = 0.7(0.4). The variations used in the assessment of the systematics cover:
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– different thresholds for the definition of jets used in the matching: ETmin = 30

GeV for the Tevatron, and ETmin = 40 GeV for the LHC. In the following studies

of the systematics, these two settings will be referred to as HELAC parameter sets

HELptX, where X labels the value of the threshold.

– different renormalisation scale at the vertices of the clustering tree: µ = µ0/2

and µ = 2µ0, where µ0 is the default k⊥ value. In the following studies of

the systematics, these two settings will be referred to as HELAC parameter sets

HELscL and HELscH.

• MADEVENT: The parton-level matrix elements were generated with MADEVENT and

the subsequent evolution used the PYTHIA shower according to the modified MLM

procedure in Sec. 2.4.1. Hadronisation was performed by PYTHIA. For the default

results at the Tevatron (LHC) the value of the merging scale has been chosen to

k⊥,0 = 10(20) GeV. The variations used in the assessment of the systematics cover:

– different value of the merging scales k⊥,0 = 20 and 30 GeV for the Tevatron, and

k⊥,0 = 30 and 40 GeV for the LHC. In the following studies of the systematics,

these two settings will be referred to as MADEVENT parameter sets MEktX.

– different values of the scales used in the evaluation of αs in both the matrix-

element generation and the parton shower: µ = µ0/2 and µ = 2µ0, where µ0

is the default k⊥ value. These two settings will be referred to as MADEVENT

parameter sets MEscL and MEscH.

• SHERPA: The parton-level matrix elements used within SHERPA have been obtained

from the internal matrix-element generator AMEGIC++ [21]. Parton showering has

been conducted by APACIC++ [26, 27], whereas the combination of the matrix elements

with this parton shower has been accomplished according to the CKKW procedure.

The hadronisation of the shower configurations has been performed by PYTHIA, which

has been made available through an internal interface. For the default Tevatron (LHC)

predictions, the value of the merging scale has been chosen to Qcut = 10(20) GeV.

All SHERPA predictions for the Tevatron (LHC) have been obtained by setting the

internally used D-parameter (cf. Eq. (2.1) in Sec. 2.2) through D = 0.7(0.4). Note

that, these choices directly affect the generation of the matrix elements in SHERPA.

The variations used in the assessment of the systematics cover:

– first, different choices of the merging scale Qcut. Values of 20 and 30 GeV, and

30 and 40 GeV have been used for the Tevatron and the LHC case, respectively.

In the following studies of the systematics, these settings will be referred to as

SHERPA parameter sets SHktX where X labels the value of the internal jet scale.
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– and, second, different values of the scales used in any evaluation of the αs and

the parton distribution functions 5. Two cases have been considered, µ = µ0/2

and µ = 2µ0, where µ0 denotes the corresponding k⊥ values that appear in the

default Tevatron (LHC) run. The choice of the merging scale is as in the default

run. In the subsequent studies of the systematics they are referred to as SHERPA

parameter sets SHscL and SHscH. It should be stressed that these variations have

been applied in a very comprehensive manner, i.e. in both the matrix-element

and parton-showering phase of the event generation.

All SHERPA results presented in this comparison have been obtained with the publicly

available version 1.0.10.

2.4.3 Tevatron studies

Event rates

The comparison of the inclusive jet rates predicted by the different approaches shall be

presented here. They are collected in Tab. 2.2. For each code, in addition to the default

cross sections, the results of the various individual alternative choices used to assess the sys-

tematics uncertainty are presented. Fig. 2.24 shows graphically the cross-section systematic

ranges: for each multiplicity, the rates have been normalised to the average of the default

values of all the codes.

It should be noted that the scale changes in all codes lead to the largest rate variations. This

is reflected in the growing size of the uncertainty with larger multiplicities, a consequence

of the higher powers of αs. Furthermore is can be noted that the systematic ranges of all

codes have regions of overlap.

Kinematical distributions

The discussion shall be started with showing in Fig. 2.25 the inclusive E⊥ spectra of the

leading four jets. The absolute rate predicted by each code is used, in units of pb/GeV. The

relative differences with respect to the ALPGEN results, in this figure and all other figures of

this section, are shown in the lower in-sets of each plot, where for the code X the quantity

(σ(X) − σ0)/σ0 is plotted, σ0 being the values of the ALPGEN curves.

There is generally good agreement between the codes, except for ARIADNE, which predicts

harder E⊥ spectra for the leading two jets. There also SHERPA is slightly harder than

ALPGEN and HELAC, while MADEVENT is slightly softer. Fig. 2.26 shows the inclusive η

spectra of the leading four jets, all normalised to unit area. There is a good agreement

between the spectra of ALPGEN, HELAC and MADEVENT, while the ARIADNE and SHERPA

5For example, the analytical Sudakov form factors used in the matrix-element reweighting hence vary

owing to their intrinsic αs-coupling dependence.
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Code σ[tot] σ[≥ 1 jet] σ[≥ 2 jet] σ[≥ 3 jet] σ[≥ 4 jet]

ALPGEN, def 1933 444 97.1 18.9 3.2

ALpt20 1988 482 87.2 15.5 2.8

ALpt30 2000 491 82.9 12.8 2.1

ALscL 2035 540 135 29.7 5.5

ALscH 1860 377 72.6 12.7 2.0

ARIADNE, def 2066 477 87.3 13.9 2.0

ARpt20 2038 459 76.6 12.8 1.9

ARpt30 2023 446 67.9 11.3 1.7

ARscL 2087 553 116 21.2 3.6

ARscH 2051 419 67.8 9.5 1.3

ARs 2073 372 80.6 13.2 2.0

HELAC, def 1960 356 70.8 13.6 2.4

HELpt30 1993 373 68.0 12.5 2.4

HELscL 2028 416 95.0 20.2 3.5

HELscH 1925 324 55.1 9.4 1.4

MADEVENT, def 2013 381 69.2 12.6 2.8

MEkt20 2018 375 66.7 13.3 2.7

MEkt30 2017 361 64.8 11.1 2.0

MEscL 2013 444 93.6 20.0 4.8

MEscH 1944 336 53.2 8.6 1.7

SHERPA, def 1987 494 107 16.6 2.0

SHkt20 1968 465 85.1 12.4 1.5

SHkt30 1982 461 79.2 10.8 1.3

SHscL 1957 584 146 25.2 3.4

SHscH 2008 422 79.8 11.2 1.3

Table 2.2: Cross sections (in pb) for the inclusive jet rates at the Tevatron, according to

the default and alternative settings of the various codes.

spectra appear to be broader, in particular for the sub-leading jets. This broadening is

expected for ARIADNE since the gluon emissions there are essentially unordered in rapidity,

which means that the Sudakov form factors applied to the matrix-element-generated states

include also a log 1/x resummation absent in the other programs.

Fig. 2.27a shows the inclusive p⊥ distribution of the W boson, with absolute normalisation

in pb/GeV. This distribution reflects in part the behaviour observed for the spectrum of

the leading jet, with ARIADNE harder than SHERPA, which, in turn, is slightly harder than

ALPGEN, HELAC and MADEVENT. The region of low momenta, p⊥,W < 50 GeV, is expanded
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Figure 2.24: Range of variation for the Tevatron cross-section rates of the five codes, nor-

malised to the average value of the default settings for all codes in each

multiplicity bin.

in Fig. 2.27b. Fig. 2.27c shows the η distribution of the leading jet, η1, when its transverse

momentum is larger than 50 GeV. The curves are absolutely normalised, so that it is clear

how much rate is predicted by each code to survive this harder jet cut. The |η| separation

between the W and the leading jet of the event above 30 GeV is shown in Fig. 2.27d,

normalised to unit area. It is observed that ARIADNE has a broader correlation, while

HELAC and MADEVENT are somewhat more narrow than ALPGEN and SHERPA. Finally, in

Fig. 2.28, the merging scales di as obtained from the k⊥-algorithm are presented, where di

is the scale in an event where i jets are clustered into i − 1 jets. These are parton-level

distributions and are especially sensitive to the behaviour of the merging procedure close

to the merging/matching scale. Note that in the plots showing the difference the wiggles

stem from both the individual codes and from the ALPGEN reference. In Sec. 2.4.5 below,

the behaviour of the individual codes will be treated separately. Also shown in Fig. 2.28 is

the separation in ∆R =
√

(∆η)2 + (∆φ)2 between successive jet pairs ordered in hardness.

The ∆R12 is dominated by the transversal-plane back-to-back peak at ∆R12 = π, while for

larger ∆R in all cases the behaviour is more dictated by the correlations in pseudo-rapidity.

For these larger values a weaker correlation in ARIADNE and SHERPA is found, which can be

expected from their broader rapidity distributions in Fig. 2.26.
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Figure 2.25: Inclusive E⊥ spectra of the leading four jets at the Tevatron (pb/GeV). In all

cases the full line gives the ALPGEN results, the dashed line gives the ARIADNE

results and the “+”, “x” and “o” points give the HELAC, MADEVENT and

SHERPA results, respectively.
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Figure 2.26: Inclusive η spectra of the four leading jets at the Tevatron. All curves are

normalised to unit area. Lines and points are as in Fig. 2.25.
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Figure 2.27: (a) and (b) p⊥ spectrum of W± bosons at the Tevatron (pb/GeV). (c) Inclu-

sive η spectrum of the leading jet, for p
jet1
⊥ > 50 GeV; absolute normalisation

(pb). (d) Pseudo-rapidity separation between the W and the leading jet,

∆η = |ηW − ηjet1 |, for p
jet1
⊥ > 30 GeV, normalised to unit area. Lines and

points are as in Fig. 2.25.
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Figure 2.28: (a)–(c) di (i = 1, 2, 3) spectra, where di is the scale in a parton-level event

where i jets are clustered into i− 1 jets using the k⊥-algorithm. (d)–(f) ∆R

separations at the Tevatron between jet 1 and 2, 2 and 3, and 3 and 4. All

curves are normalised to unit area. Lines and points are as in Fig. 2.25.
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Figure 2.29: Range of variation for the LHC cross-section rates of the five codes, nor-

malised to the average value of the default settings for all codes in each

multiplicity bin.

2.4.4 LHC studies

Event rates

Table 2.3 and Fig. 2.29 of this section parallel those shown earlier for the Tevatron. The

main feature of the LHC results is the significantly larger rates predicted by ARIADNE (see

also the discussion of its systematics, Sec. 2.4.5), which are outside the systematics ranges

of the other codes. Aside from this and the fact that SHERPA gives a smaller total cross

section (see also the last part of the discussion of the SHERPA systematics in Sec. 2.4.5),

the comparison among the other codes shows an excellent consistency, with a pattern of the

details similar to what has been seen for the Tevatron.

Kinematical distributions

Following the same sequence of the Tevatron study, it is started by showing in Fig. 2.30 the

inclusive E⊥ spectra of the leading four jets. The absolute rate predicted by each code is

used, in units of pb/GeV.

Except for ARIADNE, good agreement among the codes is found, with ARIADNE having sig-

nificantly harder leading jets, wile for sub-leading jets the increased rates noted in Fig. 2.29

mainly come from lower E⊥. Among the other codes, HELAC and SHERPA have consistently
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Code σ[tot] σ[≥ 1 jet] σ[≥ 2 jet] σ[≥ 3 jet] σ[≥ 4 jet]

ALPGEN, def 10170 2100 590 171 50

ALpt30 10290 2200 555 155 46

ALpt40 10280 2190 513 136 41

ALscL 10590 2520 790 252 79

ALscH 9870 1810 455 121 33

ARIADNE, def 10890 3840 1330 384 101

ARpt30 10340 3400 1124 327 88

ARpt40 10090 3180 958 292 83

ARscL 11250 4390 1635 507 154

ARscH 10620 3380 1071 275 69

ARs 11200 3440 1398 438 130

HELAC, def 10050 1680 442 118 36

HELpt40 10150 1760 412 116 37

HELscL 10340 1980 585 174 57

HELscH 9820 1470 347 84 24

MADEVENT, def 10830 2120 519 137 42

MEkt30 10080 1750 402 111 37

MEkt40 9840 1540 311 78.6 22

MEscL 10130 2220 618 186 62

MEscH 10300 1760 384 91.8 27

SHERPA, def 8800 2130 574 151 41

SHkt30 8970 2020 481 120 32

SHkt40 9200 1940 436 98.5 24

SHscL 7480 2150 675 205 58

SHscH 10110 2080 489 118 30

Table 2.3: Cross sections (in pb) for the inclusive jet rates at the LHC, according to the

default and alternative settings of the various codes.

somewhat harder jets than ALPGEN, while MADEVENT is a bit softer, but these differences

are not as pronounced.

For the pseudo-rapidity spectra of the jets in Fig. 2.31 it is clear that ARIADNE has a

much broader distribution in all cases. Also SHERPA has broader distributions, although

not as pronounced, while the other codes are very consistent. The p⊥ distribution of W+

bosons in Fig. 2.32 follows the trend of the leading-jet E⊥ spectra. Increasing the transverse

momentum of the leading jet in Fig. 2.32a does not change much the conclusions for its

pseudo-rapidity distribution. Also the rapidity correlation between the leading jet and
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Figure 2.30: Inclusive E⊥ spectra of the leading 4 jets at the LHC (pb/GeV). In all cases

the full line gives the ALPGEN results, the dashed line gives the ARIADNE

results and the “+”, “x” and “o” points give the HELAC, MADEVENT and

SHERPA results respectively.

the W+ follows the trend found for the Tevatron, but the differences are larger, with a

much weaker correlation for ARIADNE. Also SHERPA shows a somewhat weaker correlation,

while HELAC is somewhat stronger than ALPGEN and MADEVENT. For the di distributions

depicted in Fig. 2.33, it is again observed that ARIADNE yields by far the hardest predictions.

The results given by the other codes are comparable, with the only exception that for the

d1 distribution, where SHERPA gives a somewhat harder prediction compared to the ones

made by the MLM-based approaches. For the ∆R distributions in Fig. 2.33 a behaviour is

found, which is consistent with the broader rapidity distributions predicted by SHERPA and,

in particular for ARIADNE cf. Fig. 2.31. While both SHERPA and ARIADNE are above the

other approaches for large values of ∆R, ARIADNE, however, much more pronounced, for

lower values they stay below the others with approximately the same amount.
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Figure 2.31: Inclusive η spectra of the four leading jets at the LHC. All curves are nor-

malised to unit area. Lines and points are as in Fig. 2.30.
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Figure 2.32: (a) and (b) p⊥ spectrum of W+ bosons at the LHC (pb/GeV). (c) η

spectrum of the leading jet, for p
jet1
⊥ > 100 GeV; absolute normalisation

(pb). (d) Pseudo-rapidity separation between the W+ and the leading jet,

∆η = |ηW+ − ηjet1 |, for p
jet1
⊥ > 40 GeV, normalised to unit area. Lines and

points are as in Fig. 2.30.
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Figure 2.33: (a)–(c) di (i = 1, 2, 3) spectra, where di is the scale in a parton-level event

where i jets are clustered into i− 1 jets using the k⊥-algorithm. (d)–(f) ∆R

separations at the LHC between jet 1 and 2, 2 and 3, and 3 and 4. All curves

are normalised to unit area. Lines and points are as in Fig. 2.30.
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2.4.5 Systematic studies

In this section the separate systematic studies for the ALPGEN, ARIADNE and SHERPA ap-

proach are presented for both the Tevatron and the LHC, followed by some general comments

on differences and similarities between the codes. The corresponding studies for MADEVENT

and HELAC can be found in Ref. [84]. In all cases a subset of the plots shown in the pre-

vious sections has been chosen: the transverse momentum of the W, the pseudo-rapidity

of the leading jet, the separation between the leading and the sub-leading jet, and the di

logarithmic spectra. As before, all spectra aside from p⊥,W are normalised to unit integral

over the displayed range.

ALPGEN systematics

The ALPGEN distributions for the Tevatron are shown in Fig. 2.34. The pattern of variations

is consistent with the expectations. In the case of the p⊥,W spectra, which are plotted in

absolute scales, the larger variations are due to the change of scale, with the lower scale

leading to a harder spectrum. The ±20% effect is consistent with the scale variation of αs,

which dominates the scale variation of the rate once p⊥,W is larger than the Sudakov region.

The change of matching scales only leads to a minor change in the region 0 < p⊥,W < 40 GeV,

confirming the stability of the merging prescription. In the case of the rapidity spectrum, it

is noticed that the scale change leaves the shape of the distribution unaltered, while small

changes appear at the edges of the η range. The di distributions show agreement among

the various options when di < 1. This is due to the fact that the region di < 1 is dominated

by the initial-state evolution of an n = i − 1 parton event, and both the matching and

scale sensitivities are reduced. The matching variation affects the region 1 < di < logEmin

T ,

but is reduced above that. This is because, when the jet transverse energies are above a

given matching scale, the sensitivity to lower matching scales is suppressed (the event will

“match” in all cases).

For the LHC, the ALPGEN systematics is shown in Fig. 2.35. The comparison of the various

parameter choices is similar to what was encountered at the Tevatron, with variations in the

range of ±20% for the matching-scale systematics, and up to 40% for the scale systematics.

The pattern of the glitches in the di spectra for the different matching thresholds is also

consistent with the explanation provided in the case of the Tevatron.
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Figure 2.34: ALPGEN systematics at the Tevatron. (a) and (b) p⊥ spectrum of the W. (c)

Pseudo-rapidity distribution of the leading jet. (d) ∆R separation between

the two leading jets. (e)–(g) Distribution in clustering scales as described in

Fig. 2.28. The full line is the default settings of ALPGEN, the shaded area

is the range between ALscL and ALscH, while the points represent ALpt20

and ALpt30 as defined in Sec. 2.4.2.
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Figure 2.35: ALPGEN systematics at the LHC. (a) and (b) show the p⊥ spectrum of the W,

(c) shows the pseudo-rapidity distribution of the leading jet, (d) shows the ∆R

separation between the two leading jets, and (e)–(g) show the distribution in

clustering scales as described in Fig. 2.33. The full line is the default settings

of ALPGEN, the shaded area is the range between ALscL and ALscH, while

the points represent ALpt30 and ALpt40 as defined in Sec. 2.4.2.
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ARIADNE systematics

The ARIADNE systematics for the Tevatron is shown in Fig. 2.36. Since the dipole cascade by

itself already includes a matrix-element correction for the first emission, no dependence on

the merging scale is seen in the p⊥,W , ηjet1 and d1 distributions, which are mainly sensitive to

leading-order corrections. The other distributions are sensitive to higher-order corrections,

and here the pure dipole cascade underestimates the matrix element and also tends to make

the leading jets less back-to-back in azimuth. The first effect is expected for all parton

showers, but is somewhat enhanced in ARIADNE due to the missing initial-state q → gq

splitting, and is mostly visible in the d2 distribution just below the merging scale. The

second effect is clearly visible in the ∆R12 distribution, which is dominated by low E⊥

jets. The changing of the soft suppression parameter in ARs has the effect of reducing the

available phase space of gluon radiation, especially for large E⊥ and in the beam directions,

an effect, which is mostly visible for the hardest emission and in the p⊥,W distribution. As

for ALPGEN, and also for the other codes, the change in scale mainly affects the hardness of

the jets, but not the ηjet1 and the ∆R12 distribution.

For the LHC, the ARIADNE systematics is shown in Fig. 2.37. Qualitatively the same

effects as in the Tevatron case are found. In particular the strong dependence on the soft

suppression parameters in ARs is to be noted, and it is clear that these have to be adjusted

to fit Tevatron (and HERA) data before any predictions for the LHC can be made. It should

be noted, however, that while eg. the high p⊥,W tail in Fig. 2.37a for ARs is shifted down to

be comparable to the other codes (cf. Fig. 2.32a), the medium p⊥,W values are less affected

and here the differences compared to the other codes can be expected to remain after a

retuning. This difference is mainly due to the fact that the dipole cascade in ARIADNE,

contrary to the other parton showers, is not based on standard DGLAP evolution, but also

allows for evolution, which is unordered in transverse momentum à la BFKL. This means

that in ARIADNE there is also a resummation of logs of 1/x besides the standard logQ2

resummation. This should not be a large effect at the Tevatron, and the differences there

can be tuned away by changing the soft suppression parameters in ARIADNE. However,

at the LHC quite small x-values contribute, x ∼ mW/
√
S < 0.01, which allow for a much

increased phase space for jets as compared to what is allowed by standard DGLAP evolution.

As a result one obtains larger inclusive jet rates as documented in Tab. 2.3. The same effect

is found in DIS at HERA, where x is even smaller as are the typical scales, Q2. And here,

all DGLAP-based parton showers fail to reproduce final-state properties, especially forward

jet rates, while ARIADNE does a fairly good job.

It would be interesting to compare the merging schemes presented here also to HERA data

to see if the DGLAP based shower would better reproduce data when merged with higher-

order matrix elements. This would also put the extrapolations to the LHC on safer grounds.

However, so far there exists one preliminary such study for the ARIADNE case only [95].
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Figure 2.36: ARIADNE systematics at the Tevatron. The plots are the same as in Fig. 2.34.

The full line is the default settings of ARIADNE, the shaded area is the range

between ARscL and ARscH, while the points represent ARpt20, ARpt30 and

ARs as defined in Sec. 2.4.2.
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Figure 2.37: ARIADNE systematics at the LHC. The plots are the same as in Fig. 2.35.

The full line is the default settings of ARIADNE, the shaded area is the range

between ARscL and ARscH, while the points represent ARpt30, ARpt40 and

ARs as defined in Sec. 2.4.2.
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SHERPA systematics

The systematics of the CKKW algorithm as implemented in SHERPA is presented in Fig. 2.38

for the Tevatron case. The effect of varying the scales in the PDF and strong coupling

evaluations by a factor of 0.5 (2.0) is that for the lower (higher) scale choice, the W-

boson’s p⊥ spectrum becomes harder (softer). For this kind of observables the uncertainties

given by scale variations dominate the ones emerging through variations of the internal

separation cut. This is mainly due to a reduced (enhanced) suppression of hard-jet radiation

through the αs rejection weights. The differential jet rates, d1,2,3, shown in Fig. 2.38e–g,

have a more pronounced sensitivity on the choice of the merging scale, leading to variations

at the 20% level. In the CKKW approach this dependence can be understood since the

k⊥-measure intrinsically serves as the discriminator to separate the matrix-element and

parton-shower regimes. Hence, the largest deviations from the default typically appear at

di ≈ Qcut. However, the results are remarkably smooth, which leads to the conclusion that

the cancellation of the dominant logarithmic dependence on the merging cut is well achieved.

Moreover, considering the pseudo-rapidity of the leading jet and the cone separation of

the two hardest jets, these distributions show a very stable behaviour under the studied

variations, since they are indirectly influenced by the cut scale only. The somewhat more

pronounced deviation at low ∆R12 is connected to phase-space regions of jets becoming close

together, which is affected by the choice of the merging scale and therefore by its variation.

Taken together, SHERPA produces consistent results with relative differences of the order of

or less than 20% at Tevatron energies.

The SHERPA studies of systematics for the LHC are displayed in Fig. 2.39. Compared to the

Tevatron case, a similar pattern of variations is recognised. The p⊥ spectra of the W+ boson

show deviations under cut and scale variations that remain on the same order of magnitude.

However, a noticeable difference is an enhancement of uncertainties in the predictions for

low p⊥. This phase-space region is clearly dominated by the parton-shower evolution, which

in the SHERPA treatment of estimating uncertainties undergoes scale variations in the same

manner as the matrix-element part. Therefore, the estimated deviations from the default

given for low p⊥ are very reasonable and reflect intrinsic uncertainties underlying the parton

showering. For the LHC case, the effect is larger, since the evolution is dictated by steeply

rising parton densities at x-values that are lower compared to the Tevatron scenario. The

pseudo-rapidity of the leading jet and the cone separation of the two hardest jets show

again a stable behaviour under the applied variations, the only slight exception is the region

of high |ηjet1| where, using a high k⊥-cut, the deviations are at the 20% level. The effect

of varying the scales in the parton distributions and strong couplings now dominates the

uncertainties in the differential jet rates, d1,2,3, which are presented in Fig. 2.39e–g. This

time, owing to the larger phase space, for the low scale choice, µ = µ0/2, the spectra become

up to 40% harder, whereas, for the high scale choice, the spectra are up to 20% softer. The
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variation of the internal merging scale does not induce jumps around the cut region, however

it has to be noted that for higher choices, e.g. Qcut = 40 GeV, there is a tendency to predict

softer distributions in the tails compared to the default. To summarise, the extrapolation

from Tevatron to LHC energies does not yield significant changes in the predictions of

uncertainties under merging-cut and scale variations; for the LHC scenario, they have to be

estimated slightly larger, ranging up to 40%. The results are again consistent and exhibit a

well controlled behaviour when applying the CKKW approach implemented in SHERPA at

LHC energies.

Giving a conservative, more reliable estimate, in SHERPA the strategy of varying the scales

in the strong coupling together with the scales in the parton densities has been chosen to

assess its systematics. So, to better estimate the impact of the additional scale variation in

the parton density functions, renormalisation-scale variations on its own have been studied

as well. Their results show smaller deviations wrt. the default in the observables of this

study with the interpretation of potentially underestimating the systematics of the merging

approach. Also, then the total cross sections vary less and become 9095 pb and 8597 pb for

the low- and high-scale choice, respectively. Note that, owing to the missing simultaneous

factorisation-scale variation, their order is now reversed compared to SHscL and SHscH,

whose values are given in Tab. 2.3. This once more emphasises that the approach’s uncer-

tainty may be underestimated when relying on αs-scale variations only. From Tab. 2.3 it

also can be noted that the total inclusive cross section given by the full high-scale prediction

SHscH is – unlike SHERPA’s default – close to the ALPGEN default. In contrast to the MLM-

based approaches, which prefer the factorisation scale in the matrix-element evaluation set

through the transverse mass of the weak boson, the SHERPA approach makes the choice

of employing the merging scale Qcut instead. This has been motivated in [29] and further

discussed in [30]. Eventually, it is a good result that compatibility is achieved under this

additional PDF-scale variation for the total inclusive cross sections, however it also clearly

stresses that there is a non-negligible residual dependence on the choice of the factorisation

scale in the merging approaches.
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Figure 2.38: SHERPA systematics at the Tevatron. The plots are the same as in Fig. 2.34.

The full line is the default settings of SHERPA, the shaded area is the range

between SHscL and SHscH, while the points represent SHkt20 and SHkt30

as defined in Sec. 2.4.2.



76 2 Merging matrix elements and parton showers

dσ
/d

p ⊥
W

 (
pb

/G
eV

)

(a)
Sherpa

SHsc
SHkt30
SHkt40

10-2
10-1
100
101
102
103

p⊥W (GeV)

-0.4
-0.2

 0
 0.2
 0.4

 0  100  200  300  400  500

dσ
/d

p ⊥
W

 (
pb

/G
eV

)

(b)

25

50
100

250

500
1000

p⊥W (GeV)

-0.4
-0.2

 0
 0.2
 0.4

 0  10  20  30  40  50

(1
/σ

)d
σ/

dη
1

(c)

 0.1

 0.2

η1

-0.4
-0.2

 0
 0.2
 0.4

-4 -3 -2 -1  0  1  2  3  4

(1
/σ

)d
σ/

d∆
R

12 (d)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

∆R12

-1
-0.5

 0
 0.5

 1

 0  1  2  3  4  5

 0.2

 0.4

 0.6

 0.8

 1

 1.2

(1
/σ

)d
σ/

dl
og

10
(d

1/
G

eV
)

(e)

-0.4
-0.2

 0
 0.2
 0.4

 0.5  1  1.5  2  2.5
log10(d1/GeV)

 0.2

 0.4
 0.6
 0.8

 1
 1.2

 1.4
 1.6

(1
/σ

)d
σ/

dl
og

10
(d

2/
G

eV
)

(f)

-0.4
-0.2

 0
 0.2
 0.4

 0.5  1  1.5  2  2.5
log10(d2/GeV)

 0

 0.5

 1

 1.5

 2

 2.5

(1
/σ

)d
σ/

dl
og

10
(d

3/
G

eV
)

(g)

-0.4
-0.2

 0
 0.2
 0.4

 0.5  1  1.5  2  2.5
log10(d3/GeV)

Figure 2.39: SHERPA systematics at the LHC. The plots are the same as in Fig. 2.35.

The full line is the default settings of SHERPA, the shaded area is the range

between SHscL and SHscH, while the points represent SHkt30 and SHkt40

as defined in Sec. 2.4.2.
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Summary of the systematics studies

Starting with the p⊥,W spectra, a trivial 20− 40% effect of the scale changes is found, with

the lower scale leading to a harder spectrum. In the case of ALPGEN, this only affects the

spectrum above the matching scale, while for ARIADNE and SHERPA there is also an effect

below, as there the scale change is also implemented in the parton shower. For all the codes

the change in merging scale gives effects smaller than or of the order of the change in αs

scale. For ARIADNE, the change in the soft suppression parameter gives a softer spectrum,

which is expected as it directly reduces the phase space for emitted gluons.

In the ηjet1 and ∆R12 distributions the effects of changing the scale in αs are negligible. In

all cases, changing the merging/matching scale also has negligible effects on the rapidity

spectrum, while the ∆R12 tends to become more peaked at small values for larger merg-

ing/matching scales, and also slightly less peaked at ∆R12 = π. This effect is largest for

ARIADNE.

Finally for the di distributions changes of the merging scales introduce wiggles of varying

size for all the approaches.

2.5 Summary and conclusions

A proper theoretical modelling of multi-jet final states will be of outstanding importance

at the LHC as many interesting production channels will manifest themselves through the

occurrence of a certain number of high-pT QCD jets. The description of these rather rare

events clearly is beyond the scope of conventional parton-shower simulations. To correctly

account for hard QCD emissions higher-order corrections need to be incorporated into the

shower algorithms. The general framework of how to combine exact tree-level matrix el-

ements with shower Monte Carlo generators has been presented. Special attention has

thereby been given to the CKKW scheme as it is implemented in the SHERPA program.

The underlying algorithm has been presented in some detail and careful tests of its imple-

mentation have been carried out. The focus here was on single gauge boson production, as

it constitutes an important background to many other interesting channels, e.g. top-quark

or Higgs boson production, or final states originating from the decays of supersymmetric

particles.

Where it must be expected, it was verified that the generator predictions only moderately

depend on the choices of the parameters introduced by the merging prescription, namely

the merging scale Qcut and the number of matrix element jets taken into account.

The Monte Carlo predictions of the PYTHIA and SHERPA generators have been compared

with DØ data for the channel pp̄ → e+e−+jets. The consequences of the two different

approaches for filling the phase space of additional QCD radiation have been studied. It can

be concluded that the inclusion of higher-order tree-level matrix elements clearly improves
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the agreement of the simulation with experimental measurements. A better description of

both rates and shapes of multi-jet observables is achieved with the SHERPA approach.

In the last part of this chapter a comparative study of all the currently available approaches

to the problem of merging matrix elements with parton showers has been presented. The

benchmark process chosen was W+jets production at Tevatron and LHC energies. Special

emphasis was given to the assessment of the systematic uncertainties of the various ap-

proaches. It was found that all the programs reasonably agree when taking into account

systematic uncertainties. And as the systematics at the Tevatron is similar to that at the

LHC, it is conceivable that all the codes can be tuned to Tevatron data to give consistent

predictions for the LHC.

In summary, it can be concluded that the inclusion of tree-level matrix elements into the

simulation of QCD jet production provides a very powerful tool for the description of multi-

jet final states. It can be anticipated that these methods will become a standard for the

modelling of signal and background processes at future colliders.



3 A parton-shower algorithm based on

Catani–Seymour dipole factorisation

3.1 Introduction

The enormous importance of parton-shower models for a realistic simulation of scattering

events at collider experiments has already been emphasised in the introduction of Chapter 2.

Parton showers relate the partons produced in an hard interaction to partons at the hadro-

nisation scale and thereby allow for the incorporation of universal hadronisation models.

This is achieved by accounting for the multiple production of additional QCD partons in

the dominant soft and collinear regions of phase space.

Triggered by the research on including higher-order corrections into parton-shower Monte

Carlos, it became apparent that in order to systematically improve the event generators,

also the parton-shower algorithms themselves must be ameliorated. Some developments in

this direction include an improved treatment of angular ordering and massive partons in

HERWIG++ [8] or the introduction of a new k⊥-ordered shower in PYTHIA [11]. More recently,

and motivated by the wish to include loop-level calculations in a more straightforward

and systematic manner, the application of subtraction terms, prevalent in QCD next-to-

leading-order calculations, has been proposed. This chapter is devoted to the presentation

of a new parton-shower model based on such subtraction terms, that has only recently

been presented in [96]. It uses the Catani–Seymour dipole formalism [97, 98] and the

corresponding subtractions as a starting point 1. This formulation of a parton shower has

been proposed for the first time in [100, 101]. A similar ansatz relies on antenna subtraction

terms [102, 103] and has been presented recently in [104].

The chapter is organised as follows: After briefly introducing the idea of parton shower

algorithms based on subtraction terms in Sec. 3.1.1 and a short review of the subtraction

formalism of Catani–Seymour in Sec. 3.1.2, Sec. 3.2 states the basic construction principles

of the proposed shower description. In Sec. 3.3 the actual parton shower built on Catani–

Seymour subtraction terms is constructed. The most general massive and the massless case

1This approach has also been employed by a second group, [99].
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for all the possible QCD splitting types are discussed in detail, and the modifications needed

to include splittings of supersymmetric particles are discussed. The analytic expressions for

the first shower emission from various core processes are compared with the corresponding

exact tree-level matrix-element calculations in Sec. 3.4. In Sec. 3.5 predictions obtained

with the developed shower formalism are confronted with experimental data and other

calculations. The focus hereby is on hadron production in e+e− collisions, and Drell-Yan

and QCD jet production at the Fermilab Tevatron. Sec. 3.6 is devoted to the summary and

conclusions.

3.1.1 Parton showers based on subtraction methods

Since its formulation almost a decade ago, the Catani–Seymour dipole formalism [97, 98]

has been widely used in the calculation of next-to-leading-order (NLO) corrections in QCD,

see for instance [105]-[111].

Such calculations typically face the problem of infrared divergences in both the real and the

virtual parts of the NLO correction. In principle, such divergences are not really a problem,

since for physically meaningful observables, the Kinoshita-Lee-Nauenberg theorem [112, 113]

guarantees their mutual cancellation. To technically perform this cancellation, however, the

divergences need to be regularised, which is usually performed by dimensional regularisation,

i.e. continuing the calculation to d dimensions. There, the infrared divergences manifest

themselves as poles in 1/(4 − d) or 1/(4 − d)2. To deal with the poles and achieve the

cancellation, subtraction methods may be used. In general, they rely on the fact that the

infrared divergences in the real correction part follow an universal pattern. This allows

to construct simplified terms in a process-independent way that encapsulate all infrared

divergences occurring in the full matrix element. Then, subtracting these terms from the

real-correction matrix elements will yield an infrared-finite result, such that this subtracted

matrix element can be safely integrated numerically in four dimensions. In addition, the

subtraction terms are chosen such that they can be analytically integrated in d dimensions

over the phase space of the additional soft or collinear particle causing the divergences. This

yields the poles in 1/(4 − d) or 1/(4 − d)2, which are then added to the virtual part of the

correction, and thus cancel the poles there.

The catch with the subtraction methods is that the subtraction terms can be constructed

locally from the (colour-ordered) Born matrix element. In the Catani–Seymour method,

for instance, pairs of particles are interpreted as emitting particle and spectator and are

subjected to a splitting kernel creating a third particle. In this splitting process, one of the

particles actually splits, while the recoil is compensated for by the spectator, which may

be interpreted as its colour partner. At the same time, the phase space factorises exactly

into a phase space over the original particles, already present at the Born level, and into

a phase space of the additional particle emerging in the splitting. This exact factorisation
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corresponds to an exact mapping of the two original momenta (emitter and spectator) onto

three four-momenta. At each point of the procedure all particles remain on their respective

mass shell.

This is why constructing parton showers based on such methods currently is being pursued

by different groups. It is clear that these showers, in full conformance with original formu-

lations employing the splitting of individual, single partons, are based on the universal soft

and collinear dominance of QCD radiation. Similar to the original shower algorithms, the

emerging large logarithms occurring with each individual parton emission can be resummed

in a straightforward way through a Markovian process. This, in principle, renders both for-

mulations formally equivalent. On the other hand, however, showers based on subtraction

terms have the practical advantage that the conservation of four-momentum is built in with

particles that remain on their mass shell at any given point 2. It can be anticipated that

these features ultimately will allow for a more transparent merging with multi-leg matrix

elements and a drastically alleviated matching with full NLO calculations.

3.1.2 Short review of the Catani–Seymour subtraction method

The Catani–Seymour subtraction method has been introduced in [97] for massless partons

and it has been extended to massive partons in [98]. To fix the notation for the rest of the

chapter, it will be briefly reviewed here.

The essence of this method is embedded in the dipole factorisation formula

|Mm+1|2 =
∑

i,j

∑

k 6=i,j

Dij,k +
∑

i,j

∑

a

Da
ij +

∑

a,i

∑

k 6=i

Dai
k +

∑

a,i

∑

b6=a

Dai,b + . . . . (3.1)

The individual dipole contributions D provide the correct approximation of the (m + 1)-

parton matrix element squared in the different singular regions of phase space 3. In each term

i, j and k denote final-state partons and a and b stand for initial-state partons. The first

sum always runs over the two particles to be combined, whereas the second sum takes care

of the spectators. Accordingly, the four terms correspond to the splitting of a final-state

parton accompanied by a final-state or initial-state spectator and emissions off incoming

particles in the presence of a final-state or an initial-state spectator, respectively. Finally,

the dots in the equation above denote some potential finite terms which do not exhibit any

divergence.

For the case of final-state emitters with a final-state spectator, for instance, the individual

2It is interesting to note that the latest refinements of the parton showers in HERWIG and PYTHIA also

put more emphasis on the notion of a colour-connected partner compensating recoils etc. [8, 11].
3Note that squared matrix elements shall always be understood as properly normalised with respect to

the colour degrees of freedom of incoming particles.
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dipole contributions read [97]

Dij,k = − 1

2pipj
〈m 1, . . . , ĩj, . . . , k̃, . . . , m+ 1|Tk · Tij

T2
ij

Vij,k|1, . . . , ĩj, . . . , k̃, . . . , m + 1〉m ,

(3.2)

when all the involved partons are assumed to be massless. The occurring m-parton states

are constructed from the original (m+1)-particle matrix element by replacing the partons i

and j with the new parton ĩj, the emitter, and the original parton k with k̃, the spectator.

In the massless case, their momenta are given by

p̃µij = pµi + pµj −
yij,k

1 − yij,k
pµk and p̃µk =

1

1 − yij,k
pµk , (3.3)

where the dimensionless, Lorentz-invariant quantity yij,k is given by

yij,k =
pipj

pipj + pipk + pjpk
. (3.4)

It is simple to show exact four-momentum conservation, i.e. p̃µij + p̃µk = pµi + pµj + pµk , with all

particles on their mass shell. In the matrix element on the right hand side of Eq. (3.2), the

Tij, Tk are the colour charges of the emitter and spectator, respectively, and the Vij,k are

matrices in the emitter’s spin and colour space, responsible for its branching. The operators

Vij,k also depend on the dimensionless, Lorentz-invariant quantities

z̃i =
pipk

pipk + pjpk
=

pip̃k
p̃ijp̃k

and z̃j =
pjpk

pipk + pjpk
=
pj p̃k
p̃ij p̃k

= 1 − z̃i . (3.5)

For instance, for the case of a quark splitting in the final state with a final-state spectator,

i.e. qij → qi + gj, where s and s′ denote the spins of ĩj and i, respectively, and where the

subscripts label the momenta,

〈s|Vqigj ,k(z̃i, yij,k)|s′〉 = 8πµ2εαsCF

[
2

1 − z̃i(1 − yij,k)
− (1 + z̃i) − ε(1 − z̃i)

]
δss′ . (3.6)

Here, ε = (4 − d)/2, with d the number of dimensions. Similar expressions emerge for

the other QCD splittings or when masses are included. However, as a general property,

the matrices Vij,k do not become singular, if any of the scalar products pipj, pipk or pjpk

vanishes, and therefore the only soft or collinear divergences in the dipole terms Dij,k are

related to pipj → 0.

The collinear limit of the two final-state partons i and j originating from a splitting ĩj →
i + j is defined through their relative transverse momentum k⊥ → 0. This limit can be

investigated by decomposing the momenta as

pµi = zpµ +
−k2

⊥

z

nµ

2pn
+ kµ⊥ , (3.7)

pµj = (1 − z)pµ +
−k2

⊥

1 − z

nµ

2pn
− kµ⊥ , (3.8)
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with z ∈ [0, 1] and the lightlike pµ defining the collinear direction. nµ is an auxiliary

lightlike vector that specifies the spacelike transverse momentum kµ⊥, with k2
⊥ = −k2

⊥,

through pk⊥ = nk⊥ = 0. Then, in the collinear limit, the scalar product pipj reads

pipj = − k2
⊥

2z (1 − z)
, k2

⊥ → 0 , (3.9)

and the dipole variables are given by

yij,k → − k2
⊥

2z(1 − z)ppk
, z̃i = 1 − z̃j → z ,

p̃µk → pµk and p̃µij → pµ . (3.10)

It can then be shown that in this limit the matrices Vij,k become proportional to the

Altarelli-Parisi splitting kernels,

Vij,k → 8πµ2εαs P̂(ij),i(z, k⊥; ε) . (3.11)

In this limit the only remaining dependence of the dipole contributions Dij,k on the spectator

k resides in its colour factor Tk and it can be shown that Eq. (3.2) reproduces the well-known

universal collinear behaviour of the (m+ 1)-parton matrix element,

〈m+1 1, . . . , i, . . . , j, . . . , m+ 1||1, . . . , i, . . . , j, . . . , m + 1〉m+1

k⊥→0−→ 4πµ2εαs

pipj
〈m 1, . . . , ij, . . . , m + 1|P̂(ij),i(z, k⊥; ε)|1, . . . , ij, . . . , m + 1〉m ,

(3.12)

where again, the kernel P̂ is a d-dimensional Altarelli-Parisi splitting function.

In contrast, the limit where pj becomes soft is given by pµj = λqµ with λ→ 0 and qµ some,

in principle arbitrary, four-vector. In this limit, the dipole variables become

yij,k → 0 , z̃i = 1 − z̃j → 1 ,

p̃µk → pµk and p̃µij → pµi , (3.13)

and Vij,k tends to

1

1 − z̃i(1 − yij,k)

λ→0−→ 1

λ
· pipk
(pi + pk)q

. (3.14)

Therefore,

λVij,k
λ→0−→ 16πµ2εαsT

2
ij

pipk
(pi + pk)q

. (3.15)

It can thus be shown that the well-known soft limit of the (m + 1)-parton matrix element

is recovered, namely

〈m+1 1, . . . , i, . . . , j, . . . , m + 1||1, . . . , i, . . . , j, . . . , m+ 1〉m+1

λ→0−→ −
∑

i,k 6=i

8πµ2εαs

λ2(piq)
〈m 1, . . . , ij, . . . , m + 1|Tk · Ti(pipk)

(pi + pk)q
|1, . . . , ij, . . . , m + 1〉m .

(3.16)
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Taken together, these considerations and similar reasoning for the other dipole contributions

translate into the dipole formula, Eq. (3.1), to provide a point-wise approximation to the full

(m+1)-parton matrix element, which exactly recovers all the soft and collinear divergences.

Before starting the discussion on the construction of a parton-shower algorithm from the

Catani–Seymour dipole formula in Sec. 3.2 the generalisation of Eq. (3.9) to the massive case

and the analogous result for the splitting of an initial-state parton shall be briefly repeated.

First, re-consider the splitting ĩj → i+ j from above. This time, however, both the emitter

and the splitting products are allowed to be massive, the corresponding mass shell conditions

read p2 = m2
ij, p

2
i = m2

i and p2
j = m2

j . However, in order to avoid on-shell decays it is

required that mij ≤ mi + mj. The momenta pi and pj can then again be written in a

Sudakov parametrisation according to

pµi = zpµ +
− k2

⊥ − z2m2
ij +m2

i

z

nµ

2pn
+ kµ⊥ , (3.17)

pµj = (1 − z)pµ +
−k2

⊥ − (1 − z)2m2
ij +m2

j

1 − z

nµ

2pn
− kµ⊥ , (3.18)

with n2 = 0 and k⊥ perpendicular to both p and n. Identifying k2
⊥ = −k2

⊥ the invariant

mass of partons i and j is now given by

(pi + pj)
2 =

k2
⊥

z (1 − z)
+
m2
i

z
+

m2
j

1 − z
, k2

⊥ → 0 . (3.19)

Accordingly, the collinear singularity is shielded when at least one of the two partons has a

finite mass.

Finally, consider the case when final-state parton i becomes collinear to an initial-state

parton a. This corresponds to the splitting a → ãi + i, with ãi the initial-state parton

that enters the m-parton process. Considering only massless initial states, all the partons

involved in the splitting are consistently taken to be massless. Decomposing the final-state

momentum pi according to

pµi = (1 − x)pµa +
−k2

⊥

1 − x

nµ

2pan
+ k⊥ , (3.20)

with x ∈ [0, 1], the collinear limit is reached for

papi =
k2
⊥

2(1 − x)
, k2

⊥ → 0 , (3.21)

with k2
⊥ the magnitude of the spacelike transverse momentum vector k⊥, namely k2

⊥ = −k2
⊥.

The definitions Eq. (3.19) and Eq. (3.21) constitute the basic relations for identifying the

transverse momentum vector for the different splitting types in terms of the respective

splitting variables used to describe the branchings, see Sec. 3.3.
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3.2 Construction of the algorithm

To formulate a parton-shower algorithm based on the Catani–Seymour dipole formulae, the

corresponding splitting operators D that describe the emission of an additional parton from

an arbitrary m-parton state have to be analyzed and rewritten in a suitable form, before

they can be used for a showering algorithm. To this end, a number of issues has to be

resolved:

• First of all, only the four-dimensional expressions of the splitting kernels D will enter

the parton shower. In addition, the splitting kernels are employed in their spin-

averaged form. This manipulation is straightforward and a detailed discussion is

therefore not necessary. The resulting splitting kernels depend on the actual configu-

ration of emitters and spectators in the initial- and final state and they will be listed

in the corresponding parts of Sec. 3.3.

• In order to keep the probabilistic notion enabling simulation, to use a Markovian

formulation for the showering process and to facilitate the hadronisation at the end

of the shower, issues concerning colour correlations have to be solved. While the

original Catani–Seymour dipole formulae consider all colour correlations, the shower

will account only for the leading terms in 1/Nc. This will be further discussed in Sec.

3.2.1.

• Also, the phase-space factorisation and the corresponding combination procedure is

effectively inverted to construct the kinematics of the individual splittings. This yields

splitting kernels for 1 → 2 QCD branchings that allow for the inclusion of finite par-

ton masses in quite a general way. Each splitting parton thereby is accompanied by a

single colour-connected spectator parton compensating the recoil of the splitting. The

only exception here are initial-state splittings in the presence of an initial-state specta-

tor, where the recoil is taken by all final-state partons of the event. The introduction

of the spectator allows to assemble the shower kinematics such that four-momentum

conservation can be ensured after each individual branching with all external partons

on their mass-shell. Accordingly, this parton shower algorithm can be stopped at

any intermediate stage as well as started again for a partially evolved parton ensem-

ble. However, the exact procedure for reconstructing the kinematics of each splitting

again depends on whether the emitter and spectator are in the initial- or final state,

respectively. The corresponding formulae are listed in Sec. 3.3.

• The actual shower evolution variable specifying and ordering subsequent emissions is

chosen to be the transverse momentum between the splitting products for branching

final-state partons and the transverse momentum with respect to the beam for emis-

sions from the initial state, collectively denoted by k⊥. The physics underlying this

choice will be further detailed in Sec. 3.2.2.
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• Furthermore, choices have to be made concerning the scales entering the QCD running

coupling constant, αs, and the parton distribution functions when initial-state partons

are present. This will be discussed in Sec. 3.2.3.

• Based on these considerations, appropriate Sudakov form factors are constructed that

determine the probability for a certain branching process not to occur for a given range

of the evolution variable, k⊥. These Sudakov form factors constitute the basis of the

actual Monte Carlo showering algorithm. Again, their specific form depends on the

details of emitter and spectator parton and they will thus be given in corresponding

parts of Sec. 3.3, too.

• This section closes with some general considerations concerning the treatment of par-

ton masses, cf. Sec. 3.2.4.

3.2.1 Colour factors and spectators

The starting point for every parton-shower evolution is a given set of partons and their

momenta from a fixed-order matrix-element calculation. In the large-Nc approximation a

colour flow can be assigned to each parton configuration. Since in most cases the initial

matrix-element calculation is already summed and averaged over the colours of final and ini-

tial partons, the assignment typically is performed a posteriori in different ways in different

codes. However, as a result the partons entering the parton shower after this assignment

have a well-defined colour, and, due to the large-Nc limit, one or two uniquely assigned

colour partners 4. Motivated by considerations on the colour dynamics for soft emissions in

the Catani–Seymour formalism, in a corresponding shower formulation the spectator parton

accompanying a given splitting is colour-connected to the emitter parton. For the case of a

splitting gluon/gluino then there are always two possible colour partners, whereas splitting

(anti-)quarks/squarks will have only one spectator parton candidate. Following this reason-

ing, the initial partons will enter the parton-shower stage in well-defined pairs of potential

emitters and spectators. The subsequent parton shower will not change this feature.

To formalise the treatment of colour inside the parton shower presented here, consider the

colour-operators present in the Catani–Seymour dipole contributions. In the large-Nc limit,

they are easily calculated for any m-parton state at the price of losing colour correlations

beyond 1/Nc. However, in this limit only two cases need to be considered. Independent of

4Representing the colour flow pictorially by coloured strings of partons, two configurations emerge,

namely open or closed strings. An open string consists of a colour-triplet state followed by colour octets and

ends with a colour anti-triplet. Mapping the colour flows, initial-state quarks (colour triplets) correspond to

final-state anti-quarks (colour anti-triplets), whereas initial-state anti-triplets can be treated as final-state

triplets. A closed colour string corresponds to a configuration of colour-octet partons only. Accordingly, the

end of a closed string is colour-connected to its beginning and therefore the whole colour string is invariant

under cyclic permutations of its individual constituents.
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the actual spectator flavour, the colour algebra for a splitting (anti-)quark/squark yields,

−Tk ·Tij

T2
ij

→ 1 + O(
1

N2
c

) , (3.22)

whereas a splitting gluon/gluino results in

−Tk ·Tij

T2
ij

→ 1

2
+ O(

1

N2
c

) . (3.23)

For convenience, these two results can be combined by introducing N spec
ij , the number of

possible spectators the emitting parton possesses, then

−Tk · Tij

T2
ij

→ 1

N spec
ij

+ O(
1

N2
c

) . (3.24)

3.2.2 Ordering parameter

Having the individual splitting process under control, i.e. having at hand the corresponding

splitting kernel with all relevant colour factors and the way the kinematics of the emission

is constructed, the full showering algorithm with its sequence of splittings can be addressed.

While the individual splitting kernel properly takes into account the soft and collinear

divergent regions, in the parton shower itself these regions are cut away and, formally

speaking, combined with the virtual bits to yield a probabilistic description of the splitting

process. The cut on the soft and collinear region implies the emergence of corresponding

logarithms of the cut parameter, which the parton shower aims to resum. Technically,

this resummation is achieved by arranging the individual emissions in a Markov chain,

treating each emission on the same footing, and by ordering the emissions with some ordering

parameter. This has been detailed in textbooks such as [114]. In different parton-shower

implementations, there are different ordering parameters realised, such as the invariant mass

of the splitting particle [115]-[117], the opening angle of the pair [8, 118], or their relative

transverse momentum [45, 11]. At the level of doubly leading logarithms, these choices are

all equivalent, but there are substantial differences on the level of next-to leading logarithms,

i.e. on the level of single soft logarithms. This is closely tied with the treatment of quantum

coherence effects [119]-[122], which are properly taken into account by ordering subsequent

emissions through their respective opening angles [118]. In [85] it has been shown that

another way of properly accounting for coherence effects is evolving in a dipole-like picture

with subsequent emissions ordered by transverse momenta.

In the implementation presented here, the parton shower will be ordered by transverse mo-

menta, i.e. by the k⊥ in Eqs. (3.19) and (3.21). Apart from the proper treatment of quantum

coherence effects, this choice has additional benefits: First of all, as will be discussed in the

next section, cf. Sec. 3.2.3, by ordering with k⊥ the ordering parameter also enters as the

relevant scale in the coupling constant and the parton distribution functions. Second, the
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definition used here allows for a shower formulation on the basis of Lorentz-invariant quan-

tities, see for instance e.g. Eqs. (3.4) and (3.5). Also, ordering by k⊥ immediately implies

that the parton-shower cut-off is related to some minimal transverse momentum necessary

to resolve partons, which seems quite appealing in terms of the physical interpretation of

such a resolution criterion. Last but not least an ordering by transverse momenta appears

to allow for quite a straightforward merging of the parton shower with multi-leg tree-level

matrix elements in the spirit of [28, 29]. The merging method presented there is based on

Sudakov suppression weights for matrix elements, which are constructed from the transverse

momenta of their nodes, and on a vetoed parton shower respecting the minimal scale of a

k⊥-jet definition.

In the parton-shower evolution each colour-singlet is separately evolved. To this end, all

emitter-spectator dipoles are iterated over and for each of those configurations a k⊥ is

chosen according to the corresponding Sudakov form factor. The dipole with the largest

k⊥ is selected to split according to the kinematics detailed below. As long as this largest

k⊥-value is larger than the infrared cut-off k⊥,0, the shower evolution will continue, and this

largest k⊥ of the current evolution step serves as the maximal scale for all dipoles in the

colour-singlet in the next splitting step.

3.2.3 Scales to be chosen

When discussing the details of a parton-shower implementation, some care has to be taken

in the choice of various, in principle undetermined, occurring scales. There are a number of

choices to be made, namely:

• The evolution variable and the related evolution cut-off:

As already discussed in the previous section, in this implementation the relative trans-

verse momentum of the produced parton w.r.t. its emitter has been chosen as the

relevant evolution variable. It is given by Eqs. (3.19) and (3.21). Correspondingly,

a cut-off has to be set as a tuning parameter, to stay away from phase-space regions

where the perturbative expansion for the running coupling is divergent. The choice of

this cut-off is dictated by two aspects. First of all, it seems to be more attractive to try

to assign as much phase space for particle creation to the, in principle, well-understood

perturbative parton shower rather than to a phenomenological hadronisation approach

such as the Lund string fragmentation [35, 36] or a cluster model [38, 40, 9]. This im-

plies that the cut-off should be as small as possible. On the other hand, it is clear that

perturbative QCD breaks down and loses its predictive power at small scales. This is

best exemplified by the infrared behaviour of the running coupling which exhibits a

Landau pole at ΛQCD. As will be discussed in the next item, since the running cou-

pling in the shower is evaluated at a scale related to k⊥, this feature of QCD prohibits
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cut-offs in the region of ΛQCD. Therefore, a suitable choice seems to be a cut-off k⊥,0

of the order of 1 GeV, sufficiently separated from the Landau pole.

• The argument of the running coupling constant, µR:

In the previous item it has been already hinted at the choice typically made in parton

showers, to take the running coupling at scales of the order of k⊥. The reason for this

choice is that it incorporates and resums some of the higher-order corrections to the

splitting. Specifically, in this implementation the choice is to take µF.S.
R = µR = k⊥ if

the emitter is a final-state particle and µI.S.
R = µR = k⊥/2 if the emitter is a parton in

the initial state.

• The argument of the parton density functions, µF :

Similar to the case of the running coupling constant, a choice has also been made at

which scale to take the parton distribution functions, if necessary. In parton showers,

there are typically two answers, namely to either again take the transverse momentum

or to use the virtual mass of the initial emitter. Here the choice again is to use µF = k⊥.

3.2.4 General considerations on massive particles

Taking into account finite quark mass effects in the Standard Model clearly is of importance

when producing heavy quarks, bottom or top quarks, in a hard scattering process. In addi-

tion, many extensions of the SM introduce new strongly-interacting heavy particles, whose

QCD radiation needs to be modelled to understand the patterns of particle and energy flows

in their production and eventual decays. Prime examples are scalar quarks and gluinos in

supersymmetric theories [123] or heavy excitations of the SM quark and gluon fields in

models with additional space-time dimensions [124]. While at lepton colliders heavy objects

only appear in the process’ final state, at hadron colliders charm and bottom quarks can

also constitute the partonic initial state. An example where these are of phenomenological

relevance is the associated production of heavy quarks and scalar Higgs particles in super-

symmetric models, which is a promising channel to gain deeper insight into the mechanism

of electroweak symmetry breaking, see for instance [125] and references therein.

In the following section, QCD splitting operators will be derived, that fully take into account

finite masses of partons in the final state. This includes both emission from heavy particles

but also the splitting of gluons into heavy quarks such as charm or bottom. Splittings

of gluons into heavier objects or branchings of heavy states into other heavy objects are

beyond the scope of this work as they are not well modelled by the soft or quasi-collinear

approximation and should rather be described with full matrix elements. For all the formulae

presented in Sec. 3.3, the massless limit is smoothly obtained when setting the parton masses

to zero. This will be explicitly examined for some of the important results there.

Throughout this work, incoming QCD partons will always be treated as massless. The
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leading logarithms that arise for emissions off incoming heavy quarks, logarithms of the type

(αs log(Q2/m2
Q))n, with Q2 the scale of the hard-scattering process and mQ the quark mass,

are summed to all orders in QCD when using heavy-quark parton distribution functions at

the factorisation scale µF ∼ Q and considering the incoming quarks as massless [126, 127].

A scheme to consistently incorporate explicit masses for incoming heavy quarks, relying on

modified heavy-quark density functions [128], has recently been presented in [129].

3.3 Kinematics of the individual splittings

In the following sections, Secs. 3.3.1-3.3.4, the actual parton shower built on Catani–Seymour

subtraction terms is constructed. To this end, all combinations of initial- and final-state

emitter and spectator partons are considered in detail, following closely the original pub-

lications on the subtraction method [97, 98]. First, the kinematic variables characterising

the individual splitting under consideration are discussed. Then the explicit form of the

phase-space element for the three-parton state under consideration is re-expressed through

the kinematic variables above, and their respective bounds are given. In a next step, the

polarisation-averaged splitting kernels for the respective emitter-spectator configuration are

listed. This allows to give the factorised form of matrix elements with one additional par-

ton in the soft and collinear limits of its production and the factorised form of the cor-

responding differential cross section, which includes both matrix-element and phase-space

factorisation. From there, it is quite straightforward to deduce the actual Sudakov form

factor for the emitter-spectator configuration. Finally, the actual kinematics of the splitting

is constructed, which may slightly differ from the evolution parameters due to mass effects.

For each case then also the more familiar massless limit is briefly discussed. In Sec. 3.3.5

the QCD splitting functions for supersymmetric particles are presented.

3.3.1 Final-state emitter and final-state spectator

The first case to be investigated is when both the emitter and the spectator parton are

in the final state, cf. Fig. 3.1. Accordingly, the splitting {ĩj, k̃} → {i, j, k} has to be

studied. When considering processes without colour-charged initial-state particles, such as

jet production in lepton-lepton collisions, this is the only QCD radiation process and thus

constitutes the basis of a corresponding final-state parton shower. However, the observed

factorisation of the differential cross section for producing an additional parton also holds in

the presence of initial-state partons, where only the additional branching channels discussed

below then have to be taken into account as well.



3.3 Kinematics of the individual splittings 91

ĩj

i

j

k

Vij,k

pk

pi

pj

Figure 3.1: Effective diagram for the splitting of a final-state parton connected to a final-

state spectator. The blob denotes the m-parton matrix element, and the out-

going lines label the final-state partons participating in the splitting.

Massive case

In the most general case all partons involved in the splitting can have arbitrary masses, i.e.

p̃2
ij = m2

ij, p̃
2
k = p2

k = m2
k, p

2
i = m2

i and p2
j = m2

j , respectively. In order to avoid on-shell

decays, which should be described by their respective proper matrix element, only those

situations are considered, where mij ≤ mi +mj.

• Kinematics:

Exact four-momentum conservation is ensured by the requirement

p̃ij + p̃k = pi + pj + pk ≡ Q . (3.25)

The splitting is characterised by the dimensionless variables yij,k, z̃i and z̃j. They are

given by

yij,k =
pipj

pipj + pipk + pjpk
, z̃i = 1 − z̃j =

pipk
pipk + pjpk

. (3.26)

With these definitions the invariant transverse momentum of partons i and j, defined

in Eq. (3.19), can be written as

k2
⊥ = (Q2 −m2

i −m2
j −m2

k)yij,k z̃i(1 − z̃i) − (1 − z̃i)
2m2

i − z̃2
im

2
j . (3.27)

For convenience, the rescaled parton masses

µn =
mn√
Q2

(n = i, j, k, ij) , (3.28)

and the relative velocities between pi + pj and pi (pk), vij,i (vij,k),

vij,i =

√
(1 − µ2

i − µ2
j − µ2

k)
2y2
ij,k − 4µ2

iµ
2
j

(1 − µ2
i − µ2

j − µ2
k)yij,k + 2µ2

i

, (3.29)

vij,k =

√[
2µ2

k + (1 − µ2
i − µ2

j − µ2
k)(1 − yij,k)

]2 − 4µ2
k

(1 − µ2
i − µ2

j − µ2
k)(1 − yij,k)

, (3.30)
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as well as the velocity between p̃ij and p̃k,

ṽij,k =

√
λ(1, µ2

ij, µ
2
k)

1 − µ2
ij − µ2

k

, (3.31)

are introduced.

• Phase space:

In the case of a final-state emitter with a final-state spectator, the corresponding three-

parton phase space dΦ(pi, pj, pk;Q) must be analyzed. It exactly factorises into a two-

parton contribution dΦ(p̃ij, p̃k;Q) and a single-parton phase-space factor [dpi(p̃ij, p̃k)],

dΦ(pi, pj, pk;Q) = dΦ(p̃ij, p̃k;Q) [dpi(p̃ij, p̃k)] Θ(1 − µi − µj − µk) , (3.32)

where the latter is given by

[dpi(p̃ij, p̃k)] =
(p̃ij + p̃k)

2

16π2

(1 − µ2
i − µ2

j − µ2
k)

2

√
λ(1, µ2

ij, µ
2
k)

(1 − yij,k) dyij,k dz̃i
dφ

2π
. (3.33)

Here and in the following, λ denotes the Källen function,

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz) . (3.34)

The boundaries of the full, unconstrained, phase space read φ ∈ [0, 2π], whereas the

lower and upper limits for z̃i and yij,k are

z∓ =
2µ2

i + (1 − µ2
i − µ2

j − µ2
k)yij,k

2(µ2
i + µ2

j + (1 − µ2
i − µ2

j − µ2
k)yij,k)

(1 ∓ vij,ivij,k) , (3.35)

y− =
2µiµj

1 − µ2
i − µ2

j − µ2
k

, and y+ = 1 − 2µk (1 − µk)

1 − µ2
i − µ2

j − µ2
k

, (3.36)

respectively.

• Splitting kernels:

The polarisation-averaged QCD splitting kernels 〈Vij,k〉 read

〈VQigj ,k(z̃i, yij,k)〉 = CF

{
2

1 − z̃i + z̃iyij,k
− ṽij,k
vij,k

(1 + z̃i +
m2
i

pipj
)

}
, (3.37)

〈Vgigj ,k(z̃i, yij,k)〉 = 2CA

{
1

1 − z̃i + z̃iyij,k
+

1

z̃i + yij,k − z̃iyij,k

+
z̃i (1 − z̃i) − z+z− − 2

vij,k

}
, (3.38)

〈VQiQj ,k(z̃i)〉 = TR
1

vij,k
{1 − 2 [z̃i (1 − z̃i) − z+z−]} . (3.39)
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Here, Eq. (3.37) describes the QCD splitting Q→ Qg, of a massive quark Q, the case

of a splitting anti-quark is formally identical. The corresponding expressions for the

splitting g → gg, or g → QQ̄ are given in Eqs. (3.38) and (3.39), respectively. Note

that in the above splitting kernels the free parameter κ that occurs in the full NLO

subtraction scheme [98] has been set to zero to obtain the simplest expressions for the

different 〈Vij,k〉.
It should be stressed here that the scalar product pipj present in Eq. (3.37) can be

written solely in terms of the splitting variables and the scale k2
⊥:

pipj =
k2
⊥

2z̃i (1 − z̃i)
+

(1 − z̃i)m
2
i

2z̃i
+

z̃im
2
j

2(1 − z̃i)
. (3.40)

However, in Eq. (3.37) the final-state gluon is massless and correspondingly m2
j = 0

such that the last term of Eq. (3.40) vanishes in this specific case.

• Matrix element:

Using the above splitting functions, the full (m+ 1)-parton matrix element factorises

in the soft and collinear limit according to

|Mm+1|2 = |Mm|2
∑

ij

∑

k 6=ij

1

(pi + pj)2 −m2
ij

1

N spec
ij

8παs 〈Vij,k(z̃i, yij,k)〉 , (3.41)

cf. [97], where the sum covers all the possible emitter-spectator pairs. When combining

this with the (m+1)-parton phase space a fully factorised expression for the differential

cross section is obtained, namely

dσ̂m+1 = dσ̂m
∑

ij

∑

k 6=ij

dyij,k
yij,k

dz̃i
dφ

2π

αs

2π

1

N spec
ij

J(yij,k)〈Vij,k(z̃i, yij,k)〉 , (3.42)

where the Jacobian

J(yij,k) =
1 − µ2

i − µ2
j − µ2

k√
λ(1, µ2

ij, µ
2
k)

1 − yij,k

1 +
µ2

i +µ2
j−µ

2
ij

yij,k(1−µ2
i −µ

2
j−µ

2
k
)

(3.43)

emerges from the phase-space factors of Eq. (3.33) combined with the propagator term

of Eq. (3.41).

• Sudakov form factor:

A first step toward the construction of the corresponding Sudakov form factor is

achieved by realising that the yij,k-integration in the equation above, Eq. (3.42), can

be replaced by an integration over the ordering parameter, the transverse momentum,

according to

dyij,k
yij,k

=
dk2

⊥

k2
⊥

. (3.44)
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Cutting the available phase space through the requirement of a minimal relative trans-

verse momentum squared k2
⊥ > k2

⊥,0 > 0 and some upper limit k2
⊥,max for the splitting

products i and j, the z̃i integration boundaries become

z−(k2
⊥,max,k

2
⊥,0) = Max

(
1

2

(
1 −

√
1 −

k2
⊥,0

k2
⊥,max

)
, z−

)
, (3.45)

z+(k2
⊥,max,k

2
⊥,0) = Min

(
1

2

(
1 +

√
1 −

k2
⊥,0

k2
⊥,max

)
, z+

)
, (3.46)

with z∓ taken from Eq. (3.35). Having chosen a valid pair for k2
⊥ and z̃i this can then

easily be solved for yij,k,

yij,k =
1

Q2 −m2
i −m2

j −m2
k

(
k2
⊥

z̃i(1 − z̃i)
+

(1 − z̃i)m
2
i

z̃i
+

z̃im
2
j

1 − z̃i

)
. (3.47)

If the calculated yij,k fulfils the requirement yij,k ∈ [y−, y+], with y∓ defined in Eq.

(3.36), a valid splitting has been constructed, i.e. a physical branching allowed by

phase space.

The Sudakov form factor corresponding to having no emission from one of the process’

final–final dipoles between the maximum transverse momentum squared k2
⊥,max and

the infrared cut-off k2
⊥,0 reads

∆FF(k2
⊥,max,k

2
⊥,0)

= exp


−

∑

ij

∑

k 6=ij

1

N spec
ij

k2
⊥,max∫

k2
⊥,0

dk2
⊥

k2
⊥

z+∫

z−

dz̃i
αs(k

2
⊥)

2π
J(yij,k)〈Vij,k(z̃i, yij,k)〉


 .

(3.48)

As already advertised in Sec. 3.2.3, the scale of the running coupling has thereby been

chosen equal to the current transverse momentum squared.

• Physical kinematics:

Having a valid set of splitting variables, the actual physical branching kinematics must

be constructed in order to fully specify the splitting {ĩj, k̃} → {i, j, k}. In the most

general case, both the emitter and the spectator parton are massive, prohibiting a

simple Sudakov parametrisation of pi and pj in terms of light-like momenta p̃ij and

p̃k. Instead they are expressed in light-cone kinematics with massive base momenta.

The new spectator momentum is determined in the emitter-spectator centre-of-mass
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frame,

pk =

√[
2µ2

k + (1 − µ2
i − µ2

j − µ2
k)(1 − yij,k)

]2 − 4µ2
k√

λ(1, µ2
ij, µ

2
k)

(
p̃k −

1

2

[
1 + µ2

k − µ2
ij

]
Q

)

+

[
1

2
(1 − µ2

i − µ2
j − µ2

k)(1 − yij,k) + µ2
k

]
Q . (3.49)

Then the situation is most easily discussed in a frame where Q− pk is at rest and the

momentum pk points along the z-direction. In this frame, the light-cone momenta of

Q− pk and pk can be written as

Q− pk = (M,M,~0) and pk = (mk e
x, mk e

−x,~0) . (3.50)

The ansatz for the light-cone momenta of the new emerging final-state partons reads

pi = (mi,⊥ e
y, mi,⊥ e

−y,~l⊥) , pj = (mj,⊥ e
z, mj,⊥ e

−z,−~l⊥) , (3.51)

with m⊥ being the transverse mass of the respective parton, defined according to

m⊥ =

√
m2 +~l2⊥ . (3.52)

The kinematics is fully determined through energy-momentum conservation and the

constraint

z̃i = 1 − z̃j =
pipk

pipk + pjpk
. (3.53)

Then,

~l2⊥ =

(
M2 +m2

i +m2
j

2M

)2

−m2
i −

(
M2 +m2

i +m2
j − 2M2z̃i

2M

(
cosh x

sinh x

))2

, (3.54)

and

cosh y =
M2 +m2

i −m2
j

2Mmi,⊥

, sinh y =
cosh x

sinh x

(
cosh y − Mz̃i

mi,⊥

)
, (3.55)

cosh z =
M2 −m2

i +m2
j

2Mmj,⊥

, sinh z =
cosh x

sinh x

(
cosh z − M(1 − z̃i)

mj,⊥

)
. (3.56)

Expressed through ordinary four-vectors the parton momenta in this frame read

pi = (mi,⊥ cosh y, l⊥ cosφ, l⊥ sinφ,mi,⊥ sinh y) , (3.57)

pj = (mj,⊥ cosh z,−l⊥ cosφ,−l⊥ sinφ,mj,⊥ sinh z) , (3.58)

with the angle φ not fixed by the splitting and therefore uniformly distributed in the

transverse plane. The kinematics is completed by rotating and boosting back the

momenta pi, pj and pk into the laboratory frame.
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If the spectator is massless, the new final-state momenta can alternatively be given in

a simple Sudakov parametrisation:

pi = z̃i p̃ij +
k2
⊥ − z̃2

im
2
ij +m2

i

z̃i 2p̃ijp̃k
p̃k + k⊥ , (3.59)

pj = (1 − z̃i) p̃ij +
k2
⊥ − (1 − z̃i)

2m2
ij +m2

j

(1 − z̃i) 2p̃ijp̃k
p̃k − k⊥ , (3.60)

pk =

(
(1 − µ2

i − µ2
j)(1 − yij,k)

1 − µ2
ij

)
p̃k , (3.61)

with the spacelike transverse-momentum vector k⊥ pointing in a direction perpendic-

ular to both the emitter and the spectator momentum.

Massless case

The case of a final-final splitting is considerably simpler in the massless limit, i.e. where all

occurring partons can be treated as massless, p̃2
ij = p̃2

k = p2
k = p2

i = p2
j = 0. In this case, of

course, the variables chosen to specify the splitting remain unchanged with respect to the

fully massive case. However, neglecting masses the ordering parameter reduces to

k2
⊥ = Q2yij,k z̃i(1 − z̃i) = 2p̃ij p̃k yij,k z̃i (1 − z̃i) , (3.62)

with the identification of Q2 = 2p̃ijp̃k this is identical with the transverse momentum defined

in Eq. (3.9). The full phase space for the emission of an extra parton extends to z̃i ∈ [0, 1],

yij,k ∈ [0, 1], whereas φ again uniformly covers the interval [0, 2π].

In the massless limit also the spin averaged splitting kernels 〈Vij,k〉 simplify considerably,

namely to

〈Vqigj ,k(z̃i, yij,k)〉 = CF

{
2

1 − z̃i + z̃iyij,k
− (1 + z̃i)

}
, (3.63)

〈Vgigj ,k(z̃i, yij,k)〉 = 2CA

{
1

1 − z̃i + z̃iyij,k
+

1

z̃i + yij,k − z̃iyij,k
− 2 + z̃i (1 − z̃i)

}
,

(3.64)

〈Vqiqj ,k(z̃i)〉 = TR {1 − 2z̃i (1 − z̃i)} . (3.65)

When combining the factorised form of the (m + 1)-parton phase space,

dΦm+1 = dΦm

∑

ij

∑

k 6=ij

2pipj
16π2

dyij,k
yij,k

dz̃i
dφ

2π
(1 − yij,k) Θ(z̃i (1 − z̃i)) Θ(yij,k(1 − yij,k)) , (3.66)

with the corresponding expression for the (m+ 1)-parton matrix element,

|Mm+1|2 = |Mm|2
∑

ij

∑

k 6=ij

1

2pipj

1

N spec
ij

8παs 〈Vij,k(z̃i, yij,k)〉 , (3.67)
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the fully factorised form of the (m + 1)-parton differential cross section is recovered

dσ̂m+1 = dσ̂m
∑

ij

∑

k 6=ij

dyij,k
yij,k

dz̃i
dφ

2π

αs

2π

1

N spec
ij

J(yij,k)〈Vij,k(z̃i, yij,k)〉 . (3.68)

However, in this case, the Jacobian J(yij,k) simply is given by

J(yij,k) = 1 − yij,k . (3.69)

With the transverse momentum defined according to Eq. (3.62) again the identity

dyij,k
yij,k

=
dk2

⊥

k2
⊥

, (3.70)

is found. Choosing k2
⊥ as the evolution variable with its lower cut-off given by k2

⊥,0 and the

upper limit by k2
⊥,max the z̃i integration range reduces to

z∓(k2
⊥,max,k

2
⊥,0) =

1

2

(
1 ∓

√
1 −

k2
⊥,0

k2
⊥,max

)
. (3.71)

Given a valid set of k2
⊥ and z̃i this can be solved for

yij,k =
k2
⊥

Q2z̃i(1 − z̃i)
, (3.72)

completing the determination of the splitting variables. Making the necessary replacements

when going from massive partons to massless the Sudakov form factor given in Eq. (3.48)

yields the corresponding non-branching probability. The massless kinematics can be derived

from Eqs. (3.59)-(3.61) by setting µij = µi = µj = 0, accordingly

pi = z̃i p̃ij +
k2
⊥

z̃i 2p̃ijp̃k
p̃k + k⊥ , (3.73)

pj = (1 − z̃i) p̃ij +
k2
⊥

(1 − z̃i) 2p̃ijp̃k
p̃k − k⊥ , (3.74)

pk = (1 − yij,k) p̃k . (3.75)

3.3.2 Final-state emitter and initial-state spectator

In this section, the case of a final-state emission with the spectator being an initial-state

parton a is worked out. The splitting schematically reads {ĩj, ã} → {i, j, a}, for a pictorial

representation of the configuration, cf. Fig. 3.2. This configuration emerges for the first

time when considering deep-inelastic lepton scattering (DIS), where one incoming line carries

colour charge, or in configurations like vector boson fusion, with no colour exchange between

the two hadrons. However, besides the singularity related to a final-state splitting, there is

also a singular region for the splitting of the initial-state QCD parton, which needs to be

included in such processes. This situation will be investigated in detail in Sec. 3.3.3.
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ĩj

i

j

a

Va
ij

pa

pi

pj

Figure 3.2: Sketch of the splitting of a final-state parton accompanied by an initial-state

spectator. The blob denotes the m-parton matrix element. The incoming and

outgoing lines label the initial- and final-state partons, respectively.

Massive case

The initial line is always assumed to be massless, however, all final-state particles can be

massive. Accordingly,

p̃2
ij = m2

ij p̃2
a = p2

a = 0 p2
i = m2

i , p2
j = m2

j . (3.76)

To avoid on-shell decays being described incorrectly, again mij ≤ mi +mj should hold true.

• Kinematics:

Four-momentum conservation is incorporated through the condition

p̃ij − p̃a = pi + pj − pa ≡ Q . (3.77)

Defining the Lorentz-invariants

xij,a =
pipa + pjpa − pipj + 1

2
(m2

ij −m2
i −m2

j)

pipa + pjpa
, (3.78)

z̃i =
pipa

pipa + pjpa
, z̃j =

pjpa
pipa + pjpa

= 1 − z̃i , (3.79)

the relative transverse momentum of the new emerging final-state partons is given by

k2
⊥ = 2p̃ap̃ij

1 − xij,a
xij,a

z̃i (1 − z̃i) − (1 − z̃i)
2m2

i − z̃2
im

2
j . (3.80)

• Phase space:

The factorised form of the three-parton phase space reads [98]

dΦ(pi, pj;Q + pa) =

1∫

0

dxdΦ(p̃ij;Q+ xpa) [dpi(p̃ij; pa, x)] Θ(x+ − x) , (3.81)

with the single-parton phase-space factor

[dpi(p̃ij; pa, x)] =
2p̃ijpa
16π2

dφ

2π
dz̃i dxij,a δ(x− xij,a) , (3.82)
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and the integration boundaries

x− = 0 , x+ = 1 + µ2
ij − (µi + µj)

2 , (3.83)

z∓ =
1 − x + µ2

ij + µ2
i − µ2

j ∓
√

(1 − x+ µ2
ij − µ2

i − µ2
j)

2 − 4µ2
iµ

2
j

2(1 − x+ µ2
ij)

. (3.84)

Here, again rescaled parton masses have been introduced,

µn =
mn√

2p̃ijp̃a/xij,a
(n = i, j, ij) . (3.85)

• Splitting kernels:

The polarisation-averaged QCD dipole splitting kernels 〈Va
ij(z̃i, xij,a)〉 read

〈Va
Qigj

(z̃i, xij,a)〉 = CF

{
2

1 − z̃i + (1 − xij,a)
− (1 + z̃i) −

m2
i

pipj

}
, (3.86)

〈Va
gigj

(z̃i, xij,a)〉 = 2CA

{
1

1 − z̃i + (1 − xij,a)
+

1

z̃i + (1 − xij,a)
− 2 + z̃i (1 − z̃i)

}
,

(3.87)

〈Va
QiQj

(z̃i)〉 = TR {1 − 2(z+ − z̃i)(z− − z̃i)} . (3.88)

The scalar product of the a priori unknown momenta pi and pj in Eq. (3.86) can again

be expressed according to Eq. (3.40). The two functions 〈Va
Qigj

〉 and 〈Va
gigj

〉 can take

negative values in non-singular regions of the emission phase space. Here they are

explicitly set equal to zero instead.

• Matrix element:

Combining the (m + 1)-parton phase space with the factorised form of the matrix

element,

|Mm+1|2 = |Mm|2
∑

ij

∑

a

1

(pi + pj)2 −m2
ij

1

N spec
ij

1

xij,a
8παs 〈Va

ij(z̃i, xij,a)〉 , (3.89)

one obtains the fully differential cross section for the emission of one additional parton

in that configuration

dσ̂m+1 = dσ̂m
∑

ij

∑

a

dxij,a
xij,a

dz̃i
dφ

2π

αs

2π

1

N spec
ij

1

1 − xij,a
〈Va

ij(z̃i, xij,a)〉 , (3.90)

where the sum covers all the possible colour-connected emitter-spectator pairings. The

Jacobian of the variable transformation in this case reads

J(xij,a) =
1

1 − xij,a
. (3.91)
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Taking into account that the initial parton actually stems from a hadronic initial state,

a corresponding parton distribution function (PDF) emerges. Absorbing it into the

Jacobian yields

J̃(xij,a;µ
2
F ) =

1

1 − xij,a

fa(ηa/xij,a, µ
2
F )

fa(ηa, µ2
F )

. (3.92)

Here, ηa is the momentum fraction of the spectator parton a and fa(ηa, µ
2
F ) the corre-

sponding hadronic PDF evaluated at some scale µ2
F . In Sec. 3.2.3 this scale has been

set to µF = k⊥. The parton distribution function fa(ηa/xij,a, µ
2
F ) corresponds to the

new incoming momentum and is also evaluated at scale µ2
F .

• Sudakov form factor:

Note that Eq. (3.80) implies that

dxij,a
xij,a

= (1 − xij,a)
dk2

⊥

k2
⊥

. (3.93)

With k2
⊥ taken as the evolution scale with an upper limit k2

⊥,max and the cut-off k2
⊥,0

the z̃i integration boundaries therefore are given by

z−(k2
⊥,max,k

2
⊥,0) = Max

(
1

2

(
1 −

√
1 −

k2
⊥,0

k2
⊥,max

)
, z−

)
, (3.94)

z+(k2
⊥,max,k

2
⊥,0) = Min

(
1

2

(
1 +

√
1 −

k2
⊥,0

k2
⊥,max

)
, z+

)
, (3.95)

with z± given in Eq. (3.83). Having determined k2
⊥ and z̃i the variable xij,a is calculated

through

xij,a = 1 − k2
⊥ + (1 − z̃i)

2m2
i + z̃2

im
2
j − z̃i(1 − z̃i)(m

2
ij −m2

i −m2
j)

k2
⊥ + (1 − z̃i)2m2

i + z̃2
im

2
j + z̃i(1 − z̃i)(Q2 + 2m2

i + 2m2
j)
, (3.96)

and has to fulfil the condition

xij,a ∈ [ηa/ηmax , x+] (3.97)

to yield a valid branching. Here, ηmax corresponds to the maximal allowed Bjørken-x

for the PDF (typically, ηmax = 1). Having at hand all ingredients, the Sudakov form

factor associated to the splitting of a final-state parton with an initial-state spectator

reads

∆FI(k
2
⊥,max,k

2
⊥,0)

= exp


−

∑

ij

∑

a

1

N spec
ij

k
2
⊥,max∫

k2
⊥,0

dk2
⊥

k2
⊥

z+∫

z−

dz̃i
αs(k

2
⊥)

2π

fa(ηa/xij,a,k
2
⊥)

fa(ηa,k
2
⊥)

〈Va
ij(z̃i, xij,a)〉


 .

(3.98)
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• Physical kinematics:

The actual branching kinematics can be given in a Sudakov parametrisation. In the

Breit-frame of the emitter and spectator the two final-state momenta can be written

as

pi = z̃i p̃ij +
k2
⊥ +m2

i − z̃2
i m

2
ij

z̃i 2p̃ijp̃a
p̃a + k⊥ , (3.99)

pj = (1 − z̃i) p̃ij +
k2
⊥ +m2

j − (1 − z̃i)
2m2

ij

(1 − z̃i) 2p̃ijp̃a
p̃a − k⊥ , (3.100)

with the spacelike-k⊥ being perpendicular to both the emitter and the spectator mo-

mentum. After the splitting the latter remains parallel to p̃a but is rescaled according

to

pa =
1

xij,a
p̃a . (3.101)

Massless case

The modifications emerging in the massless limit are briefly discussed. The splitting variable

xij,a simplifies to

xij,a =
pipa + pjpa − pipj

pipa + pjpa
, (3.102)

whereas the momentum fractions z̃i and z̃j are still defined according to Eq. (3.79). The

invariant spacelike transverse momentum is simplified and reads

k2
⊥ = 2p̃ap̃ij

1 − xij,a
xij,a

z̃i (1 − z̃i) . (3.103)

While the g → gg splitting function remains the same, the mass dependent terms drop out

in the q → qg and g → qq kernels,

〈Va
qigj

(z̃i, xij,a)〉 = CF

{
2

1 − z̃i + (1 − xij,a)
− (1 + z̃i)

}
, (3.104)

〈Va
qiqj

(z̃i)〉 = TR {1 − 2z̃i (1 − z̃i)} . (3.105)

Incorporating the factorisation of the (m+1)-parton matrix element and the corresponding

phase space the fully differential (m+1)-parton cross section is still given by Eq. (3.90), with

the appropriate Jacobian for hadronic initial states. In the massless limit the phase-space

boundaries are no longer constrained through finite mass terms, and therefore extend to

xij,a, z̃i ∈ [0, 1] . (3.106)

Eq. (3.103) still implies that

dxij,a
xij,a

= (1 − xij,a)
dk2

⊥

k2
⊥

. (3.107)
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ãi

a i

k

Vai
k

pk

pa pi

Figure 3.3: Splitting of an initial-state parton accompanied by a final-state spectator. The

blob denotes the m-parton matrix element. The incoming and outgoing lines

label the initial- and final-state partons, respectively.

When evolving in k2
⊥ from k2

⊥,max and asking for a minimum separation k2
⊥,0 the allowed z̃i

range is reduced to

z̃i ∈
[

1

2

(
1 −

√
1 −

k2
⊥,0

k2
⊥,max

)
,

1

2

(
1 +

√
1 −

k2
⊥,0

k2
⊥,max

)]
(3.108)

in the massless case. The expression of the Sudakov from factor, Eq. (3.98), of course

remains unaltered.

The kinematics of the new final-state partons simplify to

pi = z̃i p̃ij +
k2
⊥

z̃i 2p̃ijp̃a
p̃a + k⊥ , (3.109)

pj = (1 − z̃i) p̃ij +
k2
⊥

(1 − z̃i) 2p̃ijp̃a
p̃a − k⊥ , (3.110)

with k⊥ still being perpendicular to both the emitter and the spectator momentum. The

new spectator momentum is still given by

pa =
1

xij,a
p̃a , (3.111)

with xij,a taken from Eq. (3.102).

3.3.3 Initial-state emitter and final-state spectator

The case of an initial-state parton branching (ãi), accompanied by a final-state spectator (k̃)

is sketched in Fig. 3.3. This accounts for the situation where the emitter and the spectator

parton studied in Sec. 3.3.2 exchange their rôles.

Massive case

As stated above, treating initial-state particles as massless, final-state particles emitted from

the initial state are assumed massless as well, the spectator mass, however, is arbitrary.
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Accordingly, the momenta involved in the splitting {ãi, k̃} → {a, i, k} have to fulfil the

mass-shell relations

p̃2
ai = p2

i = p2
a = 0 , p̃2

k = p2
k = m2

k . (3.112)

and the momentum conservation condition

p̃k − p̃ai = pi + pk − pa ≡ Q . (3.113)

• Kinematics:

The splitting can be specified by the variables

xik,a =
pipa + pkpa − pipk

pipa + pkpa
, ui =

pipa
pipa + pkpa

. (3.114)

The transverse momentum squared parametrising the singular region where the emit-

ted parton i becomes collinear with the initial-state parton a then reads

k2
⊥ = 2p̃aip̃k

1 − xik,a
xik,a

ui(1 − ui) . (3.115)

To allow for a more compact notation, the rescaled spectator mass

µk =
mk√

2p̃aip̃k/xik,a
(3.116)

is introduced.

• Splitting kernels:

The QCD splitting kernels, taking into account possible non-zero spectator masses,

read

〈Vqagi

k (xik,a, ui)〉 = CF

{
2

1 − xik,a + ui
− (1 + xik,a)

}
, (3.117)

〈Vqaqi

k (xik,a)〉 = CF

{
xik,a + 2

1 − xik,a
xik,a

− 2µ2
k

xik,a

ui
1 − ui

}
, (3.118)

〈Vgagi

k (xik,a, ui)〉 = 2CA

{
1

1 − xik,a + ui
+

1 − xik,a
xik,a

− 1

+xik,a(1 − xik,a) −
µ2
k

xik,a

ui
1 − ui

}
, (3.119)

〈Vgaqi

k (xik,a)〉 = TR {1 − 2xik,a(1 − xik,a)} . (3.120)

Note that 〈Vqagi

k 〉 can turn negative outside the singular region and is set to zero for

those rare cases.

• Phase space:

The three-parton phase space is again obtained by a convolution of a two-parton piece

and a single-parton part,

dΦ(pi, pk;Q+ pa) =

1∫

0

dxdΦ(p̃k;Q+ xpa) [dpi(p̃k; pa, x)] , (3.121)
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where

[dpi(p̃k; pa, x)] =
d4pi
2π

δ(p2
i ) Θ(x) Θ(1 − x) δ(x− xik,a)

1

1 − ui
, (3.122)

or, more conveniently,

[dpi(p̃k; pa, x)] =
2p̃kpa
16π2

dφ

2π
dxik,a dui Θ(ui(1 − ui)) Θ(x(1 − x)) δ(x− xik,a) . (3.123)

The upper limit for the ui-integration contains a dependence on the spectator mass,

u+ =
1 − xik,a

1 − xik,a + µ2
k

. (3.124)

• Matrix element:

Using the factorisation property of the (m + 1)-parton matrix element

|Mm+1|2 = |Mm|2
∑

ai

∑

k

1

2papi

1

N spec
ai

1

xik,a
8παs 〈Vai

k (xik,a, ui)〉 (3.125)

in the soft and collinear limits and the relation

2p̃kpa
2papi

=
1

ui
(3.126)

the (m + 1)-parton fully differential cross section reads

dσ̂m+1 = dσ̂m
∑

ai

∑

k

dui
ui

dxik,a
dφ

2π

αs

2π

1

N spec
ai

1

xik,a
〈Vai

k (xik,a, ui)〉 . (3.127)

The integration range of the variables ui and xik,a is [0, u+] and [0, 1], respectively, and

[0, 2π] for φ. The Jacobian

J(xik,a) =
1

xik,a
(3.128)

for the parton matrix element again is changed in hadronic interactions to include the

effect of the PDFs, such that

J̃(xik,a;µ
2
F ) =

1

xik,a

fa(ηai/xik,a, µ
2
F )

fai(ηai, µ2
F )

, (3.129)

where again, in the implementation here the choice for the factorisation scale is µF =

k⊥, cf. Sec. 3.2.3. Note that the Jacobian takes into account not only a change in

Bjørken-x but also a possible flavour change in the process’ initial state.

• Sudakov form factor:

The integration over ui in Eq. (3.127) can be replaced by an integration over k2
⊥

according to

dui
ui

=
1 − ui
1 − 2ui

dk2
⊥

k2
⊥

. (3.130)
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The arising Jacobian is combined with the function J̃(xik,a;µ
2
F ) to

J̃(xik,a, ui;µ
2
F ) =

1 − ui
1 − 2ui

1

xik,a

fa(ηai/xik,a, µ
2
F )

fai(ηai, µ2
F )

. (3.131)

With k2
⊥ > 0 as the evolution variable and its cut-off being k2

⊥,0 the xik,a phase-space

boundaries are

xik,a ∈
[
ηai
ηmax

,
Q2

Q2 + 4k2
⊥,0

]
, (3.132)

with ηmax the maximal allowed Bjørken-x of the PDF. With k2
⊥ and xik,a given, ui can

be calculated and yields

ui =
1

2

(
1 −

√
1 − 4k2

⊥xik,a
Q2(1 − xik,a)

)
. (3.133)

When ui ≤ u+ an allowed branching is found. Thus the Sudakov form factor for

having no emission from an initial-state parton accompanied by a final-state spectator

between scales k2
⊥,max and k2

⊥,0 can be written down,

∆IF(k2
⊥,max,k

2
⊥,0)

= exp


−

∑

ai

∑

k

1

N spec
ai

k2
⊥,max∫

k2
⊥,0

dk2
⊥

k2
⊥

x+∫

x−

dxik,a
αs(k

2
⊥/4)

2π
J̃(xik,a, ui;k

2
⊥)〈Vai

k (xik,a, ui)〉


 .

(3.134)

• Physical kinematics:

The new initial-state particle a remains parallel to the original initial-state parton,

and is just rescaled by the splitting variable xik,a such that

pa =
1

xik,a
p̃ai . (3.135)

The two final-state momenta are most conveniently evaluated in the rest-frame of Q+

pa with pa pointing along the positive z-axis. The corresponding light-cone momenta

read

Q + pa = (M,M,~0) and pa = (2Ea, 0,~0) . (3.136)

Note that the massless vector pa only has a light-cone +-component, given by twice

the energy of the parton. For pi and pk the ansatz

pi = (l⊥ e
y, l⊥ e

−y,~l⊥) , pk = (mk,⊥ e
z, mk,⊥ e

−z,−~l⊥) , (3.137)
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is used, with m⊥ being the transverse mass. Besides the energy- and momentum--

conservation requirement the momenta are constrained by the splitting variables,

ui =
pipa

(pi + pk)pa
=
l⊥e

−y

M
. (3.138)

yielding

~l2⊥ = (M2 −m2
k)ui −M2u2

i , (3.139)

for the transverse momentum squared. This equals the physical transverse momentum

squared of parton i, k2
⊥. Employing the relations

cosh y =
M2 −m2

k

2Ml⊥
, sinh y =

1

2

(
l⊥
Mui

− Mui
l⊥

)
, (3.140)

cosh z =
M2 +m2

k

2Mmk,⊥
, sinh z =

1

2

(
mk,⊥

M(1 − ui)
− M(1 − ui)

mk,⊥

)
, (3.141)

the four-momenta of the final-state partons, in the frame specified above, read

pi = (l⊥ cosh y, l⊥ cosφ, l⊥ sinφ, l⊥ sinh y) , (3.142)

pk = (mk,⊥ cosh z,−l⊥ cosφ,−l⊥ sinφ,mk,⊥ sinh z) . (3.143)

Again, φ has been uniformly distributed in the transverse plane. The kinematics is

completed by rotating and boosting the momenta pa, pi and pk back in the laboratory

frame.

Massless case

The massless limit of the scenario above, initial-state splittings accompanied by final-state

spectators, {ãi, k̃} → {a, i, k}, corresponds to neglecting the spectator mass, p̃2
k = p2

k = 0.

Apart from that, the splitting variables remain unchanged and the dependence on mk, of

course, disappears in the corresponding phase-space boundaries.

Dropping the explicit mass terms present in 〈Vqaqi

k (xik,a)〉 and 〈Vgagi

k (xik,a, ui)〉 given in Eqs.

(3.118) and (3.119), respectively, the factorised form of the fully differential cross section

can completely be taken over.

Neglecting the finite spectator masses the splitting kinematics is significantly simplified. In

the emitter–spectator Breit-frame

pa =
1

xik,a
p̃ai , (3.144)

pi = (1 − ui)
1 − xik,a
xik,a

p̃ai + ui p̃k + k⊥ , (3.145)

pk = ui
1 − xik,a
xik,a

p̃ai + (1 − ui) p̃k − k⊥ , (3.146)

with k⊥ perpendicular to both the emitter and the spectator.
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ãi

a i

b

Vai,b

pb

pa pi

Figure 3.4: Schematical view of the splitting of an initial-state parton with an initial-state

parton as spectator. The blob denotes the m-parton matrix element. Incoming

and outgoing lines label the initial- and final-state partons, respectively.

3.3.4 Initial-state emitter and initial-state spectator

The last scenario to be studied is the splitting of an initial-state particle ãi, with the

spectator b being an initial-state parton as well, cf. Fig. 3.4. This type of branching occurs

when considering hadron-hadron collisions, where both the initial-state particles are colour

charged and therefore can be colour connected. The simplest example for this configuration

is the lowest order Drell-Yan process, where both the incoming quark and anti-quark can

serve as emitter and spectator.

In contrast to all other cases discussed before, as the new incoming particles shall finally

be aligned with the beam axes, it turns out to be convenient to preserve the spectator

momentum pb in this branching. Since also the emitter momentum remains parallel to pa,

p̃ai = xi,ab pa , with xi,ab =
papb − pipa − pipb

papb
, (3.147)

the transverse momentum of the emitted parton, pi, has to be balanced by all other final-

state momenta kj. This does not only include the QCD partons, but all non-QCD particles,

e.g. leptons, as well.

• Kinematics:

Defining the variable

ṽi =
pipa
papb

(3.148)

the transverse momentum squared of parton i is given by

k2
⊥ = 2p̃aipb ṽi

1 − xi,ab − ṽi
xi,ab

. (3.149)

The four-momenta of the m-parton ensemble fulfil

p̃ai + pb −
m∑

j=1

k̃j = 0 , (3.150)
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correspondingly the full set of m + 1 particles has to satisfy

pa + pb −
m∑

j=1

kj − pi = 0 . (3.151)

• Splitting kernels:

The polarisation-averaged splitting kernels 〈Vai,b〉 depend on xi,ab only and read

〈Vqagi,b(xi,ab)〉 = CF

{
2

1 − xi,ab
− (1 + xi,ab)

}
, (3.152)

〈Vqaqi,b(xi,ab)〉 = CF

{
xi,ab + 2

1 − xi,ab
xi,ab

}
, (3.153)

〈Vgagi,b(xi,ab)〉 = 2CA

{
1

1 − xi,ab
+

1 − xi,ab
xi,ab

− 1 + xi,ab(1 − xi,ab)

}
, (3.154)

〈Vgaqi,b(xi,ab)〉 = TR {1 − 2xi,ab(1 − xi,ab)} . (3.155)

• Phase space:

The final-state phase space can be written as follows [98]

dΦ(pi, k1, . . . ; pa + pb) =

1∫

0

dx dΦ(k̃1, . . . ; xpa + pb) [dpi(pa, pb, x)] , (3.156)

with

[dpi(pa, pb, x)] =
2papb
16π2

dφ

2π
dxi,ab dṽi Θ(x(1 − x)) Θ(ṽi) Θ

(
1 − ṽi

1 − x

)
δ(x− xi,ab) ,

(3.157)

where φ is the polar angle in the plane perpendicular to pa and pb.

• Matrix element:

Combining this with the expression for the (m + 1)-parton matrix element

|Mm+1|2 = |Mm|2
∑

ai

∑

b6=ai

1

2papi

1

N spec
ai

1

xi,ab
8παs 〈Vai,b(xi,ab)〉 , (3.158)

the differential cross section becomes

dσ̂m+1 = dσ̂m
∑

ai

∑

b6=ai

dṽi
ṽi

dxi,ab
dφ

2π

αs

2π

1

N spec
ai

1

xi,ab
〈Vai,b(xi,ab)〉 , (3.159)

where 1 − xi,ab − ṽi > 0 has to hold. The Jacobian can be read off as

J(xi,ab) =
1

xi,ab
, (3.160)

or, including again the PDFs,

J̃(xi,ab;µ
2
F ) =

1

xi,ab

fa(ηai/xi,ab, µ
2
F )

fai(ηai, µ2
F )

. (3.161)
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• Sudakov form factor:

Regarding the transverse momentum given by Eq. (3.149) the identity

dṽi
ṽi

=
1 − xi,ab − ṽi
1 − xi,ab − 2ṽi

dk2
⊥

k2
⊥

, (3.162)

can be employed to replace the ṽi integration with a k2
⊥-integral. The resulting Jaco-

bian, combined with J̃(xi,ab;µ
2
F ), amounts to

J̃(xi,ab, ṽi;µ
2
F ) =

1 − xi,ab − ṽi
1 − xi,ab − 2ṽi

1

xi,ab

fa(ηai/xi,ab, µ
2
F )

fai(ηai, µ2
F )

. (3.163)

When evolving in k2
⊥ the dependence of the xi,ab-integration boundaries on the cut-off

k2
⊥,0 read

xi,ab ∈
[
ηai
ηmax

,
2p̃apb

2p̃apb + 4k2
⊥,0

]
. (3.164)

ṽi can be calculated from k2
⊥ and xi,ab,

ṽi =
1 − xi,ab

2

(
1 −

√
1 − 2k2

⊥xi,ab
p̃apb(1 − xi,ab)2

)
. (3.165)

The Sudakov form factor then reads

∆II(k
2
⊥,max,k

2
⊥,0)

= exp


−

∑

ai

∑

b6=ai

1

N spec
ai

k2
⊥,max∫

k2
⊥,0

dk2
⊥

k2
⊥

x+∫

x−

dxi,ab
αs(k

2
⊥/4)

2π
J̃(xi,ab, ṽi;k

2
⊥)〈Vai,b(xi,ab)〉


 .

(3.166)

• Physical kinematics:

The momenta of the (m + 1)-parton ensemble, expressed through the emitter and

spectator momentum and the momenta of all other final-state particles of the m-

parton process, read

pa =
1

xi,ab
p̃ai , (3.167)

pi =
1 − xi,ab − ṽi

xi,ab
p̃ai + ṽi pb + k⊥ , (3.168)

kj = Λ(p̃ai + pb, pa + pb − pi) k̃j , (3.169)

with k⊥/
√

k2
⊥ uniformly distributed in the transverse plane and Λ(p̃ai + pb, pa + pb −

pi) = Λ(K̃,K) being a proper Lorentz transformation given by

Λµ
ν(K̃,K) = gµν −

2 (K̃ +K)µ (K̃ +K)ν

(K̃ +K)2
+

2KµK̃ν

K̃2
. (3.170)

Accordingly, the full set of final-state momenta compensates for the transverse mo-

mentum of pi, although they do not participate in the splitting.
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q̃, q̃∗

g

q̃, q̃∗

g̃

g

g̃

Figure 3.5: The SUSY QCD vertices corresponding to gluon emission off (anti-)squarks

and gluinos.

3.3.5 SUSY QCD splitting functions

In the minimal supersymmetric extension of the Standard Model the sector of strongly

interacting particles is extended by the superpartners of the ordinary quark- and gluon-

fields [123]. The new particles participating in the strong interaction are the scalar-quarks,

called squarks and the gluino. While the former are colour-triplets the gluino is a Majorana

fermion in the adjoint representation, a colour-octet.

In order to be consistent with todays experimental (non-)observations the assumed SUSY

particles have to be rather heavy. This renders the massless limit for these fields not appli-

cable when describing their QCD interactions at the energies of the forthcoming colliders.

Based on that argument it is beyond the present scope to describe possible branchings like

g → q̃q̃∗, g → g̃g̃ in a quasi-collinear limit. Rather, they are appropriately described using

exact matrix-element methods, as discussed in chapter 4 or Ref. [130, 131].

Since the spin and the flavour of the spectator parton do not enter the splitting functions, the

branchings of the Standard Model particles are not altered in supersymmetric extensions.

The only SUSY QCD splittings that appear to be relevant in the context of a parton-

shower formulation are related to the emission of a gluon off a squark or anti-squark and

off a gluino, cf. Fig. 3.5. Further, assuming that supersymmetric particles do not appear

as partonic initial states those are solely final-state splittings. The associated spectator,

however, can be either in the final state or in the initial state.

Due to its fermionic nature the splitting functions involving gluinos are equal to the corre-

sponding splittings of massive quarks, cf. Eq. (3.37) and Eq. (3.86), only the colour factors

have to be adapted from CF to CA.

The kernel of the branching q̃ → q̃g with the spectator also in the final state reads

〈Vq̃igj ,k(z̃i, yij,k)〉 = CF

{
2

1 − z̃i + z̃iyij,k
− ṽij,k
vij,k

(
2 +

m2
i

pipj

)}
, (3.171)

where all the variables have been defined in Sec. 3.3.1. If the spectator is in the initial state
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γ?(Q)

q(p2)

g(p3)

q(p1)

γ?(Q)

q(p2)

g(p3)

q(p1)

Figure 3.6: The two first order αs Feynman diagrams contributing to γ? → qqg.

this becomes

〈Va
q̃igj

(z̃i, xij,a)〉 = CF

{
2

1 − z̃i + (1 − xij,a)
− 2 − m2

i

pipj

}
, (3.172)

for the definitions of the variables used see Sec. 3.3.2.

Apart from the splitting kernels all the results derived in the corresponding sections describ-

ing the branchings of massive final-state partons with spectators in the final- or initial state

can be taken over without any alteration. This includes the exact phase-space factorisation

as well as the parton kinematics defined there.

3.4 Comparing the hardest emission with matrix elements

In the following, the predictions for the hardest (first) emission of the parton shower al-

gorithm will be worked out for different processes and compared with corresponding exact

tree-level matrix-element calculations. The set of processes to be considered covers three-jet

production in e+e− collisions, cf. Sec. 3.4.1, the first order real correction process to DIS, cf.

Sec. 3.4.2, and the production of a weak gauge boson accompanied by a light jet at hadron

colliders, cf. Sec. 3.4.3. These three examples constitute a full set of generic processes to

reliably test the first emission of the proposed parton-shower approach.

3.4.1 Three-jet production at lepton-colliders

In this example the production of three jets at a lepton-collider is investigated. Jet pro-

duction proceeds via the s-channel exchange of a colour-singlet particle, namely a γ? or

Z0-boson. The latter will be ignored in the discussion here. At first perturbative order in

αs, two Feynman diagrams contribute to the matrix element γ? → qqg, corresponding to

the emission of a gluon from either the final-state quark or the anti-quark, cf. Fig. 3.6.

For convenience, the centre-of mass energy

Ec.m. ≡
√
Q2 , (3.173)
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and the momentum fractions

xi ≡
2piQ

Q2
. (3.174)

are introduced. Neglecting the masses of the final-state particles the Lorentz-invariant

Mandelstam variables for the 1 → 3 process become

ŝ ≡ (p1 + p3)
2 = 2p1p3 = Q2(1 − x2) , (3.175)

t̂ ≡ (p2 + p3)
2 = 2p2p3 = Q2(1 − x1) , (3.176)

û ≡ (p1 + p2)
2 = 2p1p2 = Q2(1 − x3) . (3.177)

Energy-momentum conservation implies that

x1 + x2 + x3 = 2 and ŝ+ t̂ + û = Q2 . (3.178)

The partonic differential decay rate with respect to the quark and anti-quark momentum

fractions x1,2 reads

dΓ̂

dx1dx2

∣∣∣∣∣
ME

= Γ̂0
αs

2π
CF

[
x2

1 + x2
2

(1 − x1)(1 − x2)

]
, (3.179)

where Γ̂0 denotes the total decay rate for γ? → qq,

Γ̂0 = 2αqede
2
qEc.m. , (3.180)

see for instance [132].

In the parton-shower approach, two contributions occur as well. They correspond to the

timelike splitting of either the quark or the anti-quark, and the total result is just the

incoherent sum of the two pieces. To work this out, consider the case of the quark splitting

with the anti-quark being the spectator parton. Then, the shower variables are, cf. Sec.

3.3.1,

y13,2 =
p1p3

p1p3 + p1p2 + p2p3

=
ŝ

ŝ+ û+ t̂
=

ŝ

Q2
, (3.181)

z̃1 =
p1p2

p1p2 + p3p2
=

û

û+ t̂
, (3.182)

which, expressed in terms of the xi, translate into

y13,2 = 1 − x2 and z̃1 =
1 − x3

x2
= 1 − 1 − x1

x2
. (3.183)

Accordingly, the decay rate for the emission off the quark can be cast into the form

dΓ̂

dx1dx2

∣∣∣∣∣
PSq

= Γ̂0
αs

2π
CF

[
1

1 − x2

(
2

2 − x1 − x2
− (1 + x1)

)
+

1 − x1

x2

]
. (3.184)
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Figure 3.7: The two leading-order Feynman diagrams contributing to γ?q → qg.
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Figure 3.8: The two possible Feynman diagrams for γ?g → qq.

The result for the emission of a gluon off the anti-quark can be obtained from Eq. (3.184)

by 1 ↔ 2. Taken together, the parton shower decay rate yields

dΓ̂

dx1dx2

∣∣∣∣∣
PS

=
dΓ̂

dx1dx2

∣∣∣∣∣
PSq

+
dΓ̂

dx1dx2

∣∣∣∣∣
PSq

= Γ̂0
αs

2π
CF

[
x2

1 + x2
2

(1 − x1)(1 − x2)
+

1 − x1

x2
+

1 − x2

x1

]
. (3.185)

Obviously, the parton-shower reproduces the matrix-element calculation in both the soft

and the collinear limit. The only difference between the two results are two non-singular

terms in the parton shower result that vanish as x1,2 → 1.

3.4.2 Real corrections to leading-order DIS

The simplest physical process involving initial-state hadrons is deep-inelastic lepton-nucleon

scattering (DIS), i.e. e±p → e± + X. At leading order, two partonic processes contribute,

namely e±q → e±q and e±q → e±q, both of which must be convoluted with the initial

hadron’s PDF to obtain the hadronic cross section. The interaction is mediated by virtual-

photon and Z0-boson exchange. In the following, however, only the γ? channel is taken into

account, for which the two partonic cross sections are equal.
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At next-to-leading-order the quark can radiate a gluon before or after its interaction with

the virtual photon, cf. Fig. 3.7. Beyond this, at NLO the incoming quark may originate

from a gluon in the initial hadron that produces a quark–anti-quark pair which the γ? then

couples to, cf. Fig. 3.8. The real emission matrix elements can be expressed through the

kinematic variables

Q2 = −q2 , x =
Q2

2pq
, zi =

pip

pq
, (3.186)

where q denotes the four-momentum of the off-shell photon, p the incoming parton momen-

tum and the pi label the momenta of the final-state partons. The Mandelstam variables for

the 2 → 2 processes γ?(q)q(p) → q(p1)g(p2) and γ?(q)g(p) → q(p1)q(p2) are

ŝ ≡ (q + p)2 = 2pq −Q2 = Q2 1 − x

x
, (3.187)

t̂ ≡ (p1 − q)2 = −2p1q −Q2 = −Q2 1 − z1

x
, (3.188)

û ≡ (p2 − q)2 = −2p2q −Q2 = −Q2 1 − z2

x
. (3.189)

Momentum conservation implies that q + p = p1 + p2 and

ŝ+ t̂+ û+Q2 = 0 . (3.190)

In the following, the two real emission processes will be discussed in detail.

The gluon emission process

The matrix element of the gluon emission channel γ?(q)q(p) → q(p1)g(p2) reads [97, 132]

|M2,q(p1, p2; p)|2ME =
8παs

Q2
CF

[
x2 + z2

1

(1 − x)(1 − z1)
+ 2(1 − 3xz1)

]
· |M1,q(q + xp; xp)|2 ,

(3.191)

with M1,q(q + p; p) the matrix element of the lowest order process.

In the parton-shower approach two contributions to this final state emerge. First, the

emission of the gluon from the initial-state quark with the final-state parton serving as

spectator (IF) has to be considered. Second, the initial-state parton acts as the spectator

of the final-state splitting q → qg (FI).

• IF:

The “parton-shower”-matrix element of the initial-state splitting with final-state spec-

tator is obtained from Eq. (3.125) and is given by

|M2,q(p1, p2; p)|2PSif

=
1

2pp2

1

x21,p
8παsCF

[
2

1 − x21,p + u2
− (1 + x21,p)

]
· |M1,q(q + xp; xp)|2 ,

(3.192)



3.4 Comparing the hardest emission with matrix elements 115

where the appropriate splitting function, Eq. (3.117) with µ2
k = 0, has been inserted.

Employing the identities

x21,p =
p1p+ p2p− p2p1

p1p+ p2p
=
û+ t̂+ ŝ

û+ t̂
=

Q2

ŝ +Q2
= x , (3.193)

u2 =
p2p

p2p+ p1p
=

t̂

û+ t̂
= z2 = 1 − z1 , (3.194)

1

2pp2x
=

1

Q2pp2/pq
=

1

Q2(1 − z1)
, (3.195)

the expression above becomes

|M2,q(p1, p2; p)|2PSif =
8παs

Q2(1 − z1)
CF

[
2

2 − x− z1
− (1 + x)

]
· |M1,q(q + xp; xp)|2 .

(3.196)

• FI:

In full analogy the shower expression for the final-state emission process yields

|M2,q(p1, p2; p)|2PSfi

=
1

2p1p2

1

x12,p
8παsCF

[
2

1 − z̃1 + (1 − x12,p)
− (1 + z̃1)

]
· |M1,q(q + xp; xp)|2 .

With

x12,p =
p1p+ p2p− p1p2

p1p+ p2p
= x and z̃1 =

p1p

p1p+ p2p
= z1 , (3.197)

this can be cast into the form

|M2,q(p1, p2; p)|2PSfi =
8παs

Q2(1 − x)
CF

[
2

2 − x− z1
− (1 + z1)

]
· |M1,q(q + xp; xp)|2 ,

(3.198)

where in addition

2p1p2 = Q2 1 − x

x
(3.199)

has been employed.

Combining the two parton-shower contributions yields the final result, namely

|M2,q(p1, p2; p)|2PS = |M2,q(p1, p2; p)|2PSif + |M2,q(p1, p2; p)|2PSfi

=
8παs

Q2
CF

[
x2 + z2

1

(1 − x)(1 − z1)

]
· |M1,q(q + xp; xp)|2 . (3.200)

When comparing this with the exact perturbative result of Eq. (3.191), it can be inferred

that the parton shower exactly reproduces the soft and collinear singular structure of the

matrix element as z1 → 1 or x→ 1. The only difference is an additional finite non-singular

term present in the exact result.
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The initial-state gluon channel

Expressed in terms of the leading-order matrix element the exact real emission next-to-

leading-order result for the process γ?(q)g(p) → q(p1)q(p2) reads [97, 132]

|M2,g(p1, p2; p)|2ME

=
8παs

Q2
TR

[
(z2

1 + (1 − z1)
2)(x2 + (1 − x)2)

z1(1 − z1)
+ 8x(1 − x)

]
· |M1,q(q + xp; xp)|2 .

(3.201)

Starting from the leading-order matrix element γ?(q)q(p) → q(p1) there is only one possi-

bility in the parton shower to reach the 2 → 2 process, the splitting of an initial-state gluon

into qq and the q interacting with the off-shell photon. The second matrix-element diagram,

corresponding to the interaction of the anti-quark with the γ?, here has no parton-shower

counterpart. However, when starting the shower from the charge conjugated leading-order

process, namely γ?(q)q(p) → q(p1), this contribution will occur while the γ?q interaction will

be missing instead. The two terms are evaluated separately and then added incoherently.

• Emission off the quark:

The case of an internal quark propagator is discussed first. According to Eqs. (3.125)

and (3.120) the parton-shower approximation to the matrix element reads

|M2,g(p1, p2; p)|2PSq

=
1

2pp2

1

x21,p
8παs TR [1 − 2x21,p(1 − x21,p)] · |M1,q(q + xp; xp)|2

=
8παs

Q2(1 − z1)
TR [1 − 2x(1 − x)] · |M1,q(q + xp; xp)|2 . (3.202)

• Emission off the anti-quark:

Starting instead the shower from the q initiated process, and emitting the quark into

the final state yields, correspondingly,

|M2,g(p1, p2; p)|2PSq

=
1

2pp1

1

x12,p

8παs TR [1 − 2x12,p(1 − x12,p)] · |M1,q(q + xp; xp)|2

=
8παs

Q2z1
TR [1 − 2x(1 − x)] · |M1,q(q + xp; xp)|2 . (3.203)

Due to the charge conjugation invariance of the leading-order matrix element,

|M1,q(q + xp; xp)|2 = |M1,q(q + xp; xp)|2 , (3.204)

the two parton-shower contributions can directly be combined and yield

|M2,g(p1, p2; p)|2PS = |M2,g(p1, p2; p)|2PSq + |M2,g(p1, p2; p)|2PSq

=
8παs

Q2
TR

[
x2 + (1 − x)2

z1(1 − z1)

]
· |M1,q(q + xp; xp)|2 . (3.205)
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Figure 3.9: The leading-order Feynman diagrams contributing to the process qq′ → W±g.

Again the parton shower matches the soft and collinear behaviour of the matrix element

given in Eq. (3.201) and reproduces the exact result up to non-singular terms.

3.4.3 Associated production of a weak gauge boson and a light

parton

The lowest order production process of weak gauge bosons (W±, Z0, γ?) at a hadron collider

proceeds via the s-channel fusion of two initial-state quarks. Without losing generality W±

boson production will be investigated in the following. The leading-order process then

simply reads qq′ → W±. At order αs there are three processes emerging: qq′ → W±g,

gq′ → W±q and qg → W±q′. Considering on-shell W± bosons for simplicity5, only 2 → 2

processes have to be discussed, which can be described using the Mandelstam variables

ŝ ≡ (p1 + p2)
2 = 2p1p2 , (3.206)

t̂ ≡ (p1 − p3)
2 = −2p1p3 , (3.207)

û ≡ (p2 − p3)
2 = −2p2p3 . (3.208)

Momentum conservation then implies that

ŝ+ t̂+ û = m2
W , (3.209)

where mW denotes the W±-boson mass.

The gluon emission channel

The first channel to be discussed is the gluon emission process qq′ → W±g. At tree-level,

there are two Feynman diagrams contributing to the matrix element, cf. Fig. 3.9. The

5This corresponds to neglecting the off-shell gauge boson decays which, however, do not affect the QCD

dynamics of the processes under consideration. The decay products of the gauge boson can be introduced

into the process using the narrow-width-approximation, or by incorporating the full off-shell W± propagator.



118 3 A parton-shower algorithm based on Catani–Seymour dipole factorisation

partonic differential cross section can be written as [132]

dσ̂

dt̂

∣∣∣∣
ME

=
σ̂0

ŝ

αs

2π
CF

[
t̂2 + û2 + 2m2

Wŝ

t̂û

]
, (3.210)

with σ̂0 the cross section of the leading-order process qq′ → W±

σ̂0 =
π

3ŝ

g2
W

4
, (3.211)

where CKM-effects have been ignored. In the parton-shower approach there are two ways

to produce the final-state gluon, which have to be added incoherently: either the gluon can

be emitted from the initial-state quark or from the anti-quark.

• Emission off the quark:

As a first step, the kinematical variables used in the parton-shower approximation

should be related to the Mandelstam variables. In the first case, the initial quark as

emitter and the initial anti-quark as spectator, the parton-shower variables become,

cf. Sec. 3.3.4,

ṽ3 =
p3p1

p1p2

= − t̂

ŝ
and x3,12 =

p1p2 − p3p1 − p3p2

p1p2

=
ŝ+ t̂+ û

ŝ
=
m2

W

ŝ
. (3.212)

Using the appropriate splitting function of Eq. (3.152), the parton shower differential

cross section

dσ̂

dṽ3

∣∣∣∣
PSq

= σ̂0
αs

2π

1

ṽ3

CF

[
2

1 − x3,12

− (1 − x3,12)

]
(3.213)

can be cast into

dσ̂

dt̂

∣∣∣∣
PSq

= σ̂0
αs

2π
CF

1

−t̂

[
2

1 − x3,12
− (1 − x3,12)

]
. (3.214)

Using the relation

(1 − x3,12) = − t̂ + û

ŝ
(3.215)

and multiplying with ŝ/ŝ yields

dσ̂

dt̂

∣∣∣∣
PSq

=
σ̂0

ŝ

αs

2π
CF

[
ŝ2 +m4

W

t̂(t̂ + û)

]
. (3.216)

• Emission off the anti-quark:

Swapping the rôle of the emitter and the spectator parton amounts to only interchang-

ing t̂ and û in the results above. Accordingly, the differential cross section in this case

is given by

dσ̂

dt̂

∣∣∣∣
PSq

=
σ̂0

ŝ

αs

2π
CF

[
ŝ2 +m4

W

û(t̂+ û)

]
. (3.217)
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Figure 3.10: The leading-order Feynman diagrams contributing to the process gq′ → W±q.

The full parton-shower result is the sum of the two contributions and reads

dσ̂

dt̂

∣∣∣∣
PS

=
dσ̂

dt̂

∣∣∣∣
PSq

+
dσ̂

dt̂

∣∣∣∣
PSq

=
σ̂0

ŝ

αs

2π
CF

[
ŝ2 +m4

W

t̂û

]
. (3.218)

Again, the parton-shower approach provides the correct description for soft and collinear

phase-space configurations but misses non-singular terms. The difference of the parton

shower and the exact result can be quantified by the ratio

dσ̂/dt̂
∣∣
ME

dσ̂/dt̂
∣∣
PS

=
t̂2 + û2 + 2m2

Wŝ

ŝ2 +m4
W

= 1 − 2t̂û

ŝ2 +m4
W

, (3.219)

which can take values between 0.5 and 1 in full agreement with the result of the parton-

shower algorithm implemented in Pythia [133]. This indicates that the parton-shower

approximation tends to overestimate the matrix element - a feature also present in e+e− →
qq̄g, but not in the deep inelastic scattering processes.

The initial-state gluon case

There are two Feynman diagrams, cf. Fig. 3.10, contributing to the channel with an initial-

state gluon, i.e. to the process gq′ → W±q. The result of the full matrix-element calculation

reads [132]

dσ̂

dt̂

∣∣∣∣
ME

=
σ̂0

ŝ

αs

2π
TR

[
ŝ2 + û2 + 2m2

W t̂

−ŝt̂

]
. (3.220)

In the parton-shower approach only one emission process contributes to this channel, corre-

sponding to the t-channel diagram. The s-channel contribution is not realised in the shower

ansatz. Using the definitions of the shower variables as given above and the corresponding

splitting function, cf. Eq. (3.155), the parton-shower cross section reads

dσ̂

dt̂

∣∣∣∣
PS

=
σ̂0

ŝ

αs

2π
TR

ŝ

−t̂ [1 − 2x3,12(1 − x3,12)]

=
σ̂0

ŝ

αs

2π
TR

[
ŝ2 + 2m2

W(t̂+ û)

−ŝt̂

]
, (3.221)
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where

(1 − x3,12) = − t̂ + û

ŝ
and x3,12 = m2

W/ŝ (3.222)

has been used. The ratio of the parton-shower and the matrix-element result is

dσ̂/dt̂
∣∣
ME

dσ̂/dt̂
∣∣
PS

=
ŝ2 + û2 + 2m2

W t̂

ŝ2 +m4
W(t̂+ û)

= 1 +
û(û− 2m2

W)

(ŝ−m2
W)2 +m4

W

, (3.223)

varying between 1 and 3 [133]. Accordingly, the parton-shower ansatz tends to undershoot

the exact matrix element. However, the shower is constructed to give the correct answer in

the logarithmically enhanced phase-space regions and thus has the correct limiting behaviour

in the soft and collinear limits. The differences identified here are a result of differences in

the non-singular terms, contributing only in hard regions of phase space. The process

qg → W±q′ closely follows the above example solely t̂ and û have to be exchanged. This

leads to the same qualitative results and the same conclusions.

3.5 Applications

In this section, the abilities of the newly developed parton-shower formulation in describing

QCD dynamics will be highlighted by comparing its results for various physics processes

with experimental data and other calculations: In Sec. 3.5.1, the predictions for hadron

production in e+e− collisions as measured at LEP will be studied and some results related

to a future machine operated at
√
s = 500 GeV will be discussed. In Sec. 3.5.2, emphasis

is put on the capabilities of the shower to describe particle production at hadron colliders

such as the Tevatron or the upcoming LHC.

3.5.1 Jet production at e+e− colliders

Measurements of hadronic final states produced in e+e− collisions provide a very precise

probe of QCD dynamics in the final state and an excellent means to deduce its fundamental

parameters such as the value of αS(mZ), see for instance [134], and the colour charges

CF and CA in three- and four-jet events as discussed e.g. in [134]-[137]. Therefore it is

not surprising that in the past years calculations for relevant three-jet observables, such as

thrust, have become available at NNLO [138] and that full parton-level Monte Carlo codes

for four-jet final states at NLO have been constructed [139, 140]. Obviously such observables

also provide a critical test of the corresponding final-state radiation piece of a parton-shower

model. However, due to the fragmentation of partons into hadrons, which at the moment

can be simulated with phenomenological models only, the parton-shower predictions can not

directly be compared with experimental data but rather have to be supplemented with a

hadronisation model. The new parton shower presented here therefore has been interfaced
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to the Lund string fragmentation routines of PYTHIA version 6.2 [39] in the framework of the

SHERPA event generator. The large number of very precisely measured observables at various

energies allows tuning the intrinsic parameters of the parton shower in conjunction with

the phenomenological parameters of the fragmentation model. Such a procedure has been

performed, for instance, for the new parton-shower and fragmentation code in HERWIG++ [5].

In principle, such a tuning is a very time-consuming and delicate procedure, see for instance

[141], deserving a publication in its own right. Recent developments to automatise the task

of generator tuning and validation to a large extend are reported in [142]. Here, only a

very limited tuning based on few parameters and observables only has been performed. The

results of this tuning are presented in Sec. 3.5.1. In Sec. 3.5.1 the focus is on heavy-quark

production at LEP1 and ILC energies to validate the treatment of finite parton masses in

the shower model.

Comparison with LEP1 data

The most extensive data set available to validate QCD Monte Carlo predictions are LEP

measurements at the Z0 pole. A selection of event shape variables, multiplicity distributions,

differential jet rates, four-jet angle measurements and various particle momentum distribu-

tions have been used to select values for the unconstrained, phenomenological parameters

of the simulation, namely the value of the strong coupling constant at mZ , the infrared

shower cut-off k⊥,0 and the three Lund string hadronisation parameters a (PARP(41)), b

(PARP(42)) and σq (PARP(21)). For the results presented in the following, they have been

fixed to αs(mZ) = 0.125, k⊥,0 = 0.63 GeV, a = 0.33, b = 0.75 GeV−2, and σq = 0.358

GeV, respectively. This yields a mean charged multiplicity per event of 〈Nch〉 = 20.87 at√
s = mZ , in good agreement with the experimentally found value of 〈Nch〉 = 20.92 ± 0.24

[143].

Figures 3.11 to 3.14 show some exemplary results obtained with the new shower implemen-

tation compared to DELPHI LEP1 data at
√
s = 91.2 GeV [143].

In Fig. 3.11 the new algorithm, denoted as “CS shower” in the following, is compared with

some event-shape measurements by DELPHI [143]. The distributions of thrust, thrust-major,

thrust-minor and aplanarity are displayed. The lower panel of each plot contains the bin-

wise ratio (MC-data)/data, and the yellow bands show the statistical plus systematic error

of the respective measurements. All the observables are sensitive to the pattern of QCD

radiation probing both soft and hard emissions off the shower initiating qq̄ pair. The Monte

Carlo predictions agree very well with the event-shape data. There is some slight excess at

very low 1 − T corresponding to two-jet like events. This region of phase space, however,

is very sensitive to hadronisation corrections and therefore dominated by non-perturbative

physics. The same reasoning holds for the major and minor distributions at low M or m.

The transverse-momentum distribution within and out of the event plane defined by the
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Figure 3.11: The event-shape variables 1−Thrust (1 − T ), Aplanarity (A), Major (M)

and Minor (m) in comparison with DELPHI data [143].

thrust and thrust-major axes, (pin
T ) and (pout

T ), respectively, are presented in Fig. 3.12. While

pin
T is quite well modelled by the Catani–Seymour shower, pout

T is significantly underestimated

for values above 1 GeV. This tendency, however, is observed in other QCD Monte Carlo

simulations as well [143].

In Fig. 3.13 the predictions for the exclusive two-, three-, four- and five-jet rates in the

Durham algorithm [53] as a function of the jet resolution yDurham
cut are compared with data
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Figure 3.12: The pin
T and pout

T observables measured with respect to the thrust axis com-

pared to a DELPHI measurement [143].

taken by the DELPHI experiment [144]. They all exhibit a sufficient agreement with data

within the experimental uncertainty bands. For the four- and five-jet rate the shower seems

to underestimate the region of yDurham
cut ≈ 0.001, however, this region is also affected by

hadronisation effects and a more sophisticated tuning may provide an even better agreement

with data here. The dependence on the choice of hadronisation parameters is even more

pronounced for jet resolutions smaller than 0.001 where the results for the new shower

preferably lie on the upper side of the experimental uncertainty band.

The last observables to be considered are jet angular distributions in events with four jets.

These observables can not be expected to be too well described by a pure parton shower as

they should probe spin correlations of the produced partons. Such correlations, however, are

not taken into account in conventional showers but require full matrix-element calculations

(eventually combined with a parton shower) to be completely taken into account [28, 145].

In Fig. 3.14, the predictions for the Bengtsson–Zerwas [146] and the Nachtmann–Reiter

[147] angle are compared with DELPHI data [144] for events with four jets at a jet resolution

yDurham
cut = 0.008. Both results agree surprisingly well with data. A similar level of agreement

is observed for the other two prominent four-jet angles, α34 and the Körner–Schierholz–

Willrodt angle, that are not shown here.
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Figure 3.13: The n-jet rates Rn for the Durham jet algorithm as a function of the jet-

resolution parameter yDurham
cut . Data taken from [144].

Jet rates in heavy-quark production

The leading order of heavy-quark production at lepton colliders also proceeds through an

intermediate γ∗ or Z0 in the s-channel. Since pair production of top-quarks was outside

the kinematical reach of LEP, only the production of bottom-quarks is available at these

energies to discuss the treatment of heavy quarks in the new parton-shower algorithm. At

a future international linear collider (ILC), operating at or around
√
s = 500 GeV, pair
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Figure 3.14: The Bengtsson–Zerwas and Nachtmann–Reiter four-jet angles compared

with DELPHI data [144].

production of top-quarks will play a key rôle in the physics programme. This is also true for

the LHC where top-quarks will copiously be produced and constitute a major background

in nearly all searches for new physics. Therefore, a correct description of the radiation

pattern of heavy quarks will be of enormous importance. As already hinted at in Sec. 3.3.1,

radiation off massive quarks is suppressed with respect to the case mQ = 0, also known

as “dead-cone”-effect [114]. The impact is however rather small when considering b-quark

masses of 4.8 GeV at collider energies that are much larger. To illustrate the impact of

the finite b-quark mass in the shower approach the Durham two- and three-jet rates for

bb̄-production at LEP1 are presented in the left panel of Fig. 3.15. There, results are shown

for the fully massive case (i.e. the mass has fully been taken into account in the splitting

kernels, the phase-space boundaries and the splitting kinematics) and for the massless case

are depicted. As expected, in the massive case both R2 and R3 are slightly enhanced at

low values of yDurham
cut , corresponding to the suppressions of additional radiation that turns a

two-jet event into three-jet and a three-jet into a four-jet event at the scale of the emission.

In the right panel of Fig. 3.15 the same observables are presented, but this time for the pair-

production of 175 GeV top-quarks at a 500 GeV ILC. Obviously, the finite mass has to be

taken into account in the description of QCD radiation off top-quarks, since the differences

with respect to the massless case can exceed an order of magnitude for the two-jet rate.
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Figure 3.15: The exclusive Durham two- and three-jet rates in inclusive bb̄ production

at LEP1 (left panel) and tt̄ production at a 500 GeV linear collider (right

panel). The solid curves correspond to fully taking into account the quark

masses in the parton-shower simulation while for the dashed predictions the

finite masses have been neglected.

3.5.2 Particle production in hadron collisions

With the advent of the LHC era, the description and simulation of particle production

processes at hadron colliders gained even more relevance. Due to the colour-charged par-

tonic initial states, every hard process at hadron colliders is accompanied by initial- and

subsequent final-state radiation. In the following, only two examples shall be considered to

highlight the performance of the new parton-shower model in such situations. First, the in-

clusive production of Drell-Yan lepton pairs, the simplest process that features initial-state

emitter – initial-state spectator dipoles, and, second, QCD jet production are discussed. For

the latter, besides looking at some inclusive two-jet distributions, three-jet observables sen-

sitive to the inclusion of QCD colour coherence are considered and qualitatively compared

with data.

For all the predictions presented below, the CTEQ6L set of PDFs [148] has been used,

the strong coupling constant has been fixed to αs(mZ) = 0.118 with its running taken at

two-loop level, in accordance with the choice in the PDF, and the infrared cut-off of the

shower is chosen to be k⊥,0 = 2 GeV. Hadronisation of the partonic shower final states is

again accomplished by an interface to the Lund string routines of PYTHIA 6.2 [39].
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Inclusive gauge boson production

The production of electroweak gauge bosons, e.g. W± and Z0 bosons, and their subsequent

decay into leptonic final states, is one of the most prominent processes at hadron colliders

due to their clean signature. Although very interesting in their own right, their inclusive

production, i.e. their production together with additional QCD jets, represents a serious

background to many other interesting processes, like, e.g. the production and decay of top-

quarks or SUSY particles. Therefore, many theoretical efforts have been undertaken to

predict gauge boson production as precisely as possible, both at fixed order in the strong

coupling, see for instance [149]-[153], or focusing on the analytical resummation of large

logarithms from soft gluon emissions, see for example [154]-[158]. An important ingredient

in all cases have been parametrisations of the PDFs and a good perturbative control over

their scaling behaviour, which by now is known at the three-loop level [159]. In addition,

in the past few years, Drell-Yan production formed the testbed for approaches aiming at

the combination of tree-level matrix elements with parton-shower Monte Carlos [43, 30, 46,

73, 84]. Parton-shower Monte Carlos thereby have to deliver the correct description for the

bulk of the events where the bosons are accompanied by rather soft emissions only.

In the following, Drell-Yan production of γ∗/Z0 at Tevatron Run I energies is considered

with the bosons decaying into e+e−-pairs. They are constrained to fall into a mass-window

of 66 GeV < Me+e− < 116 GeV. The predictions of the new shower algorithm will directly

be compared to results obtained with the matrix-element–parton-shower merging approach

as implemented in SHERPA. To this end, an inclusive sample combining matrix elements for

no extra emission and one extra final-state QCD parton has been generated with SHERPA

version 1.0.10. In the figures this sample will be denoted by “SHERPA 1.0.10 CKKW (0+1

jet ME)”.

The discussion of the results starts with the rapidity- and pseudo-rapidity distributions of

the produced lepton-pair, see Fig. 3.16. As the shape of the former is already described

well at the leading order, i.e. without any radiation, there is hardly any difference visible for

the two results. The gauge boson pseudo-rapidity distribution however, only emerges when

there is some additional QCD radiation. The radiation pattern, and especially the hardest

emission, determines this leptonic observable. The pure shower result is in good agreement

with the merged result, which contains the exact tree-level matrix element for the first hard

emission. However, the shower distribution is somewhat lower at central pseudo-rapidity

and slightly exceeds the merged SHERPA result for the two maxima around ηe+e− ≈ ±4.

These differences can be traced back to the lack of sufficiently hard radiation in the shower,

which is constrained from above through the default shower start scale for this process,

namely the invariant mass squared of the initial dipoles, M 2
e+e−. Below that scale, however,

the parton shower can be expected to deliver reliable results, and in order to fill the phase

space above that scale, matrix-element–parton-shower merging techniques should be added.
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e+e− Drell-Yan pairs produced in pp̄ collisions at
√
s = 1800 GeV.
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Figure 3.17: The k⊥ differential jet rates d1 and d2 in e+e− +X at Tevatron Run I.
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The smaller amount of hard radiation can be further quantified by looking at the differential

jet rates d1 and d2 for the k⊥-jet algorithm [55], displayed in Fig. 3.17. These observables

determine the scales where the first (d1) and second (d2) additional parton gets resolved as a

jet from the core process. The results for the Catani–Seymour based shower and the merged

SHERPA sample agree well for small cluster scales but, as can be expected, the shower is

significantly lower for values of di > mZ .

The last observable to be considered is the transverse momentum distribution of the lepton-

pair. This distribution has been measured with high precision by the Tevatron experiments.

Like the Drell-Yan pseudo-rapidity it is very sensitive to both soft and hard radiation ac-

companying the produced boson. Fig. 3.18 contains a comparison of the prediction from the

new shower model with a CDF measurement [76] 6. The agreement between data and sim-

ulation is quite good up to pT ’s of approximately 80 GeV. The upper-right part of Fig. 3.18

contains a blow-up of the low transverse-momentum region of pT < 20 GeV, this time, how-

ever, on a linear scale. There, the parton shower describes the turn-on of the distribution

quite nicely, the actual peak, however, is slightly higher and a bit broader than seen in data.

To describe the very low transverse-momentum region a Gaussian-smeared intrinsic k⊥ was

introduced, with a mean of 0.52 GeV and a width of 0.8 GeV. A more detailed tuning of

these values combined with the shower cut-off k⊥,0 may yield an even better description

of the distribution’s peak. Above 80 GeV the parton shower dies off very rapidly due to

its phase space being constrained by the choice of the starting scale, k2
⊥,max = M2

e+e−. For

illustrative purposes a prediction has been added where the start scale has been enhanced

to 4M2
e+e−. While the results at low pT do not change significantly, the distribution contin-

ues in the tail, thereby following the experimental data. But, of course, with this choice of

parton-shower starting scale, there is a similar drop-off of the distribution at scales of around

4M2
e+e−. However, since there is no guarantee that the parton-shower kernels do perform well

enough at large scales, i.e. outside the soft- and collinear phase-space regions, it seems to be

overly optimistic to stretch its predictions to such high scales. Instead, the parton-shower

description should consistently be improved by incorporating exact higher-order corrections.

6A comparison of the merged SHERPA prediction with this data has been presented Sec. 2.3.1.
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Figure 3.18: The pT distribution of e+e− Drell-Yan pairs in comparison with data from

CDF at the Tevatron, Run I [76].

Inclusive jet production

The most obvious QCD production process to look for at hadron colliders is inclusive jet

production. However, from a theoretical point of view this is quite a complicated process.

Besides tree-level calculations for up-to six final-state jets, so far, there merely exist full

next-to-leading-order results up-to three-jet production [107], [160]-[163]. Despite of strong

efforts, culminating in evaluating the complete set of necessary matrix elements [164]-[168]

and in developing methods to isolate the infrared divergences in the real correction part

[169] a full NNLO calculation for inclusive jet production has not been finished yet. Also,

from the point of view of the parton shower presented here, jet production at hadron col-

liders is rather involved. This is because the 2 → 2 hard process will contain all possible

colour connections between initial-state and final-state partons. Hence, QCD jet produc-

tion constitutes a severe test of the entire shower algorithm. The input parameters for the

simulations have been chosen as specified above. The starting scale of the shower, however,

is related to the transverse momentum of the 2 → 2 core process’ outgoing partons, namely

k2
⊥,max = p2

⊥,j.

The first thing to be looked at is a very inclusive quantity, the dijet invariant mass. This has

been measured by DØ during Run I [170]. The jets considered there have been reconstructed

using a jet-cone algorithm with a cone opening angle of R = 0.7 in the η − φ space and

with jet transverse energies above 30 GeV. Dijet candidates have then been subjected to

the requirement that both jets satisfy |ηj| < 1.0. Fig. 3.19 exhibits the resulting dijet-mass

distribution starting at Mdijet > 200 GeV. It is a very steeply falling spectrum spanning

six orders of magnitude in the mass range under consideration. To compare with data the
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Figure 3.19: Dijet mass Mdijet measured by DØ at Tevatron Run I [170].

result of the (leading-order) simulation has been normalised to the cross section observed in

experiment. In fact, the prediction of the proposed shower algorithm then is in very good

agreement with the data and almost everywhere exactly hits the weighted bin centers.

Another interesting observable when studying dijet events is the azimuthal angle between

the two highest-pT jets. If there is no additional QCD radiation the two jets have equal

transverse momenta and they are oriented back-to-back. Thus, in this case, their azimuthal

separation ∆φdijet = |φ1 − φ2| equals π. In the presence of merely soft radiation the az-

imuthal angles remain strongly correlated, the strength of the decorrelation rises with the

presence of additional hard radiation. Therefore, the dijet decorrelation provides a testbed

for soft- and hard QCD emissions without the necessity to reconstruct further jets. Fig. 3.20

contains the results of a recent DØ measurement for cone jets found for R = 0.7 [171]. The

data fall into different ranges of the leading-jet transverse momentum and are then multi-

plied with different constant prefactors in order to display them in one plot. In all cases, the

second-leading jet was required to have a transverse momentum pT > 40 GeV and both jets

are constrained to the central-rapidity region, |yj| < 0.5. The data are overlayed with the re-

spective predictions of the Catani–Seymour dipole shower approach. The simulation agrees

very well with the data over the whole interval of ∆φdijet spanned by the experimental mea-

surements. This is a very satisfying result as it proves that the proposed shower formulation

not only correctly accounts for phase-space regions related to soft and collinear radiation

but also yields qualitatively and quantitatively correct estimates for rather hard emissions

as well. Furthermore, since this observable is quite sensitive to model-intrinsic scale choices

such as the shower start scale and scales entering the running coupling constant and parton

density functions, this agreement proves that the defaults have been chosen correctly.
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Figure 3.20: Dijet azimuthal decorrelation measured by DØ at Tevatron Run II [171].

The last item to be discussed are observables in QCD jet production at hadron colliders

that are known to be sensitive to the correct treatment of QCD soft colour coherence in

the parton-shower simulation. Colour-coherence effects have been widely studied for e+e−

collisions, for an early review see e.g. [172]. They manifest themselves in the fact that

soft emissions are forbidden outside a certain angular cone around the emitting particle’s

direction, known as angular ordering [114, 118]. To account for this in shower Monte Carlos

the phase space for allowed emissions has to be properly constrained. Within the HERWIG

Monte Carlo for instance this is realised by evolving the shower in terms of cone-opening

angles. While the situation for pure final-state showers is quite clear, in hadronic collisions

the situation is slightly more complicated due to the presence of more colour flows, among

them those that connect initial- and final-state partons. As colour-coherence here already

influences the first emission from the initial- and final-state partons QCD three-jet events

are the best place to look for the pattern of these phenomena at hadron colliders.

In one of the pioneering studies [173] three-jet events that feature a hard leading jet and

a rather soft third jet have been considered. Observables potentially sensitive to colour

coherence are spatial correlations between the third jet and the leading ones. In [173] such

discriminating variables have been found and by comparison with Monte Carlo simulations

evidence for the observation of colour coherence in hadron collisions has been provided. This

ultimately has led to a refinement of the PYTHIA shower algorithm in order to appropriately

model colour coherence in the spirit of [174]. In the CDF study [173] jets have been defined

through a cone algorithm with a cone radius of R = 0.7 and the following event selection
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Figure 3.21: The pseudo-rapidity distribution of the third-hardest jet (left panel) and the

distribution of the angle α (right panel) in inclusive QCD three-jet production

in comparison with CDF data taking during Tevatron Run I. Experimental

errors are statistical only. Histograms are normalised to one.

criteria have been applied:

• For the two leading jets the pseudo-rapidity is constrained to |η1| < 0.7 and |η2| < 0.7;

• they have to be back-to-back within 20 degrees in the transverse plane, corresponding

to |φ1 − φ2| > 2.79 radian;

• and the transverse energy of the leading jet, ET1, has to exceed 110 GeV, the third

jet is required to have ET3 > 10 GeV.

• Only for the study of the α variable defined below the additional cut 1.1 < ∆R23 < π,

where ∆R23 =
√

(η2 − η3)2 + (φ2 − φ3)2, is imposed.

A number of observables has been considered, the two most convenient and discriminat-

ing ones have been the pseudo-rapidity distribution of the third jet, η3, and the polar

angle in the space parametrised by ∆φ = φ3 − φ2 and ∆H = sign(η2)(η3 − η2), namely

α = arctan(∆H/|∆φ|) 7. It should be stressed that the published results, used for the com-

7A further observable considered in the CDF study is the spatial separation of the second- and third jet in

the η−φ space, ∆R23. This observable, however, seems to be less discriminatory between theoretical models.

In addition, and more importantly, detector effects seem to have a larger impact on its discriminating power.

Therefore it is not taken into account here.
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parison, are not corrected for detector effects, such as finite resolution and uninstrumented

regions, and therefore can only qualitatively be compared with theoretical calculations. The

results of the Monte Carlo simulations exhibited in [173] have passed the full chain of the

CDF detector simulation. In Fig. 3.21 the measurements are compared with simulated

events at the hadron level. In the left panel the η3 distribution is shown and the right panel

contains the comparison of the α distribution. Both predictions agree well with the data.

The η3 distribution tends to be broader in models that take into account colour-coherence

effects and only then theoretical calculations show the significant dip around η3 ≈ 0 seen in

data 8. The α variable is also very sensitive to the inclusion of colour coherence. It decreases

from α = −π/2 to α = 0 but then the slope changes and the distribution rises as α→ π/2.

This trend is clearly seen for the simulation with the new shower algorithm. Models not

taking into account coherence fail to describe the distribution’s rise towards α → π/2 and

have a clear excess of events at small |α|. Concerning the interpretation of these results the

missing detector smearing for the shower simulation has to be kept in mind. However, in

Ref. [173] estimates for the size of the detector effects are given, showing that the impact

of the finite detector resolution is much smaller than the size of the physical effects. The

generic features of the two observables presented here are not dependent on detector effects,

and they are well described by the new shower formulation.

The conclusion of this is that the proposed parton-shower algorithm with its notion of

emitter–spectator dipoles associated with the color flow of the event and using transverse

momenta as evolution variable accounts for soft colour coherence and yields a very satis-

fying description, both on the qualitative and the quantitative level. It can be anticipated

that such non-trivial quantum phenomena are of large importance at the LHC, since the

phase space for jet production is much larger and hard jets are produced copiously. For a

solid description of QCD therefore the systematic and correct inclusion of these effects is

paramount.

3.6 Summary and conclusions

A new parton-shower model based on Catani–Seymour dipole subtraction kernels has been

presented, which was sketched for the first time in [100, 101]. In the present implementation,

the original proposal is extended to cover also initial-state splittings, finite parton masses,

and QCD radiation off SUSY particles.

Choices concerning the evolution parameter of the parton shower and the various scales

entering running coupling constants, PDFs, etc. have been detailed, fixing the full algo-

rithm. The kinematics of massive splittings has been presented in some detail, and the

8The HERWIG Monte Carlo, incorporating colour coherence through explicit angular ordering, describes

the data very well. Switching on the approximate version of angular ordering in PYTHIA, realised by a veto

on rising opening angles during shower evolution, significantly improves PYTHIA’s agreement with data.
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corresponding massless limits have been discussed. By direct comparison with some bench-

mark processes, at first order in αs, the differences of the parton-shower approximation

with respect to exact results have been worked out. It has been shown that indeed the

parton-shower algorithm presented here reproduces the soft and collinear limits of the ex-

act matrix elements and that differences between both results are non-singular terms only.

Some first results with this new parton-shower formulation have been presented and show

very encouraging agreement with other models and with experimental data.

In the near future, this new algorithm will be fully incorporated into the SHERPA framework

and it will be made publicly available in the next releases of the code. This will also involve

a more careful tuning of the shower parameters and the inputs of the hadronisation models

provided by or linked to SHERPA, which surely will further improve the agreement with

data. Planned is a detailed comparison against another new shower ansatz that is based on

splitting colour dipoles [175], and that is also being developed in the SHERPA framework at

present. In addition, a full merging with multi-leg matrix elements in the spirit of [28] will

be implemented. It can furthermore be anticipated that this new shower implementation

will lend itself to incorporation of MC@NLO-techniques [12, 16].





4 Simulation of supersymmetric

processes

4.1 Introduction

The discoveries of the electroweak gauge bosons and the top-quark more than a decade ago

established perturbative quantum field theory as a common description of electromagnetic,

weak, and strong interactions, universally applicable for energies above the hadronic GeV

scale. The subsequent measurements of QCD and electroweak observables in high-energy

collision experiments at the SLAC SLC, CERN LEP, and Fermilab Tevatron have validated

this framework to an unprecedented precision. Nevertheless, the underlying mechanism of

electroweak symmetry breaking remains undetermined. It is not clear how the theory should

be extrapolated beyond the electroweak scale v = 246 GeV to the TeV scale or even higher

energies [176].

At the LHC (and an ILC) this energy range will be directly probed for the first time. If

the perturbative paradigm holds, it is expected to see fundamental scalar Higgs particles, as

predicted by the Standard Model. Weak-scale supersymmetry (SUSY) is a leading possible

solution to theoretical problems in electroweak symmetry breaking, and predicts many addi-

tional new states. The minimal supersymmetric extension of the Standard Model (MSSM) is

a model of softly-broken SUSY. The supersymmetric particles (squarks, sleptons, charginos,

neutralinos and the gluino) can be massive in comparison to their SM counterparts. Previous

and current high-energy physics experiments have put stringent lower bounds on supersym-

metric particle masses, while fine-tuning arguments lead us to believe they do not exceed a

few TeV. Therefore, a discovery in Run II at the Tevatron is not unlikely [177], and it will

fall to the LHC to perform a conclusive search for SUSY, starting in 2008. Combining the

energy reach of the LHC with precision measurements at a possible future electron–positron

collider ILC, a thorough quantitative understanding of the SUSY particles and interactions

would be possible [178].

Most realistically, SUSY will produce a plethora of particle production and decay channels

that need to be disentangled and separated from the SM background. To uncover the

nature of electroweak symmetry breaking not only have multi-particle production and decay
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signatures to be analysed experimentally, an accurate simulation of the model predictions

is also needed on the theory side.

Much SUSY phenomenology has been performed over the years in preparation for LHC and

ILC, nearly all of it based on relatively simple 2 → 2 processes [179, 180] or their next-

to-leading-order corrections. These approximations are useful for highly inclusive analyses

and convenient for analytical calculations, but should be dropped once interested in precise

measurements and their theoretical understanding. Furthermore, for a proper description

of data, Monte-Carlo event generators are needed that fully account for high-energy col-

lider environments. Examples for necessary improvements include: consideration of spin

correlations [181] and finite-width effects in supersymmetric particle decays [182]; SUSY-

electroweak and Yukawa interferences to some SUSY-QCD processes; exact rather than

common virtual squark masses; and 2 → 3 or 2 → 4 particle production processes such as

the production of hard jets in SUSY-QCD processes [183] or SUSY particles produced in

weak-boson fusion (WBF) [184].

The structure of this chapter is as follows: In Sec. 4.2 the basic requirements for realistic

SUSY simulations are considered, in particular a consistent setup of calculational rules and

conventions for obtaining correct and reproducible results has to be defined. In the follow-

ing the event generator AMEGIC++/SHERPA for SUSY processes is presented, cf. Sec. 4.3.

It properly takes into account various physics aspects which are usually approximated in

the literature, such as those listed above. It is build upon new methods and algorithms for

automatic tree-level matrix-element calculation and phase-space generation that have suc-

cessfully been applied to SM phenomenology. The involved structure of the MSSM requires

very extensive and advanced tests of an actual implementation of the theory’s Lagrangian

into a calculational tool. Accordingly, Sec. 4.4 is devoted to detailed checks of the generator’s

numerical results. Therefore, predictions for various hundred processes have been compared

with the two other existing approaches for calculating multi-particle production processes in

the MSSM, namely MADGRAPH/MADEVENT [48, 49, 50] and O’MEGA/WHIZARD [185, 186].

Secs. 4.5 and 4.6 cover one particular application, the physics of sbottom-quarks at the LHC

and ILC, respectively. The emphasis thereby lies on off-shell effects of various kinds which

for the first time are accurately described using the tools presented here. These phenomeno-

logical studies as well as the technical comparison of the three available approaches have

been published in [130].

4.2 The calculational framework

Throughout this chapter, it is assumed that the R-parity quantum number is conserved in

the MSSM. This assumption constrains both the physical spectrum of the theory and the

allowed interactions of the supersymmetric states. The SUSY particle content then consists

of the SM particles, the five Higgs bosons, and their superpartners, namely six sleptons,
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three sneutrinos, six up-type and six down-type squarks, two charginos, four neutralinos,

and the gluino. The MSSM is defined as the general TeV/weak-scale Lagrangian for the SM

particles with two Higgs doublets, with gauge- and Lorentz-invariant, R-parity-conserving,

renormalisable couplings, and softly-broken supersymmetry. Unfortunately, while this com-

pletely fixes the physics, it leaves a considerable freedom in choosing phase conventions.

The large number of Lagrangian terms leaves ample room for errors in deriving Feynman

rules, coding them in a computer program, and relating the input parameters to a standard

convention, cf. Secs. 4.2.1 and 4.2.2. Apart from that, building tools for the simulation

of multi-particle production in the MSSM, one is has to deal with Majorana fermions, not

present in the SM, and a multitude of unstable heavy particles that can decay through

several intermediate steps. The first problem necessitates the introduction of generalised

fermionic Feynman rules as discussed in Sec. 4.2.3, while the later requires careful consid-

erations on the treatment of off-shell effects in corresponding calculations, cf. Sec. 4.2.4

4.2.1 Parameters and conventions

As already indicated above no assumptions about the SUSY breaking mechanism shall be

made. The MSSM is just defined through a set of weak-scale parameters that serve as

inputs for the calculations of production and decay processes of relevance for future collider

experiments.

Since only recently there exists now a common format for the definition of a unique set

of conventions for inputs to supersymmetric calculations, the so-called SUSY Les Houches

Accord (SLHA) [187]. Associated with that is a generic file structure to pass

• supersymmetric model specifications and input parameters,

• electroweak scale supersymmetric mass and coupling spectra, and

• decay information like total and partial widths of supersymmetric particles,

between spectrum calculation programs, codes concerned with the calculation of SUSY

decays, and actual event generators. Here the focus shall be only on the last member in

the chain, the event generators, that use the output of highly specialised spectrum codes,

such as [188, 189], as input for the evaluation of cross sections or the generation of SUSY

production and decay events.

Since the SLHA defines weak-scale parameters in a particular renormalisation scheme, it has

to be specified how to use them for a tree-level calculations: the electroweak parameters are

fixed via the Fermi constant Gµ, mZ , and αqed. Using the tree-level relations (as required

for gauge-invariant matrix elements at tree level) parameters such as sin2 θw and mW are

obtained as derived quantities; mW and mZ are defined as pole masses.

The SLHA uses pole masses for all the MSSM particles, while mixing matrices and Yukawa

couplings are given as loop-improved DR values. From this input a set of mass and coupling
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parameters suitable for tree-level matrix-element calculations needs to be derived. This

can lead to violation of electroweak gauge invariance as discussed in Sec. 4.2.2. However,

numerically this is a minor problem, relevant only for very few processes (e.g. SUSY particle

production in weak-boson fusion [184]) at asymptotically high energies. Accordingly, in

practice the loop-improved SLHA masses and mixing matrices are used at face value also

in tree-level calculations.

For the bottom- and top-quarks the (running) Yukawa couplings and the masses are iden-

tified, as required by gauge invariance. The weak scale as the renormalisation point yields

realistic values for the Yukawa couplings. One might be concerned that the kinematical

masses are then off from their actual values. However, since the tree-level production cross

section should be regarded as the leading contribution to the inclusive cross section, the

relevant scale is the energy scale of the whole process rather than the scale of individual

heavy quarks. This necessitates the use of running masses to make reliable estimates.

Another delicate issue is related to the possible appearance of negative gaugino mass eigen-

values. Those can be treated on two distinct ways: the negative mass values can directly be

used in corresponding propagators and wave functions or the gaugino fields can be rotated

to positive masses, what yields complex mixing matrices, even in the case CP is conserved

in the SUSY sector.

4.2.2 Unitarity constraints

The MSSM is a renormalisable quantum field theory [190]. To any fixed order in pertur-

bation theory, a partial-wave amplitude calculated from the Feynman rules, renormalised

properly, is bounded from above. Cross sections with a finite number of partial waves (e.g.

s-channel processes) asymptotically fall off like 1/s, while massless particle exchange must

not lead to more than a logarithmic increase with energy. This makes unitarity a convenient

check for the Feynman rules used in a matrix-element calculator.

As an example, individual diagrams that contribute to 2 → 2 weak boson scattering rise like

the fourth power of the energy, but the two leading terms of the energy expansion cancel

among diagrams to ameliorate this to a constant. This property connects the three- and

four-boson vertices, and predicts the existence and couplings of a Higgs boson, assuming

the theory is weakly interacting to high energies [191]. For example, for weak boson fusion

to neutralinos and charginos, these unitarity cancellations can be neatly summarised in a

set of sum rules for the SUSY masses and couplings [184]. For generic Higgs sectors, the

unitarity relations were worked out in [192].

Many, but not all, terms in the Lagrangian can be checked by requiring unitarity. For

instance, gauge cancellations in WW scattering to two SUSY particles need not happen

if the final-state particle has an SU(2) × U(1) invariant mass term. In the softly-broken

SUSY Lagrangian, this property holds for the gauginos and higgsinos as well as for the
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second Higgs doublet in the MSSM. For these particles, it can be expected that unitarity

relations impose some restrictions on their couplings, but not a complete set of equations,

so some couplings remain unconstrained.

As mentioned above, although doing tree-level calculations often renormalisation-group im-

proved SUSY spectra are used in practice. In principle, these spectra then would need

to be adopted for the Higgs sector, where gauge invariance (or unitarity) relates masses,

trilinear and quartic couplings. While at tree-level all unitarity relations are automatically

satisfied, any improved spectrum will violate unitarity constraints unless the Higgs trilinear

couplings are computed in the same scheme. However, not all couplings are known to the

same accuracy as the Higgs masses [193]. Following the standard approach of computing

the trilinear Higgs couplings from effective mixing angles α and β unitarity violation can

be expected. Luckily, this only occurs in 2 → 3 processes of the type WW →WWH [192],

while in 2 → 2 processes of the type WW → HH where one might naively expect unitarity

violation, the values of the Higgs trilinear couplings change the value of total high-energy

asymptotic cross section but do not affect unitarity.

A similar problem arises in the neutralino and chargino sector. Unitarity is violated at high

energies in processes of the type V V → χ̃χ̃ (V = W,Z) [184]. If using renormalisation-group

improved DR neutralino and chargino mass matrices (or equivalently the masses and mixing

matrices) the gaugino–higgsino mixing entries which are equivalent to the Higgs couplings

of the neutralinos and the charginos implicitly involve mW,Z , also in the DR scheme. To

ensure proper gauge cancellations which guarantee unitarity, these gauge boson masses must

be identical to the kinematical masses of the gauge bosons in the scattering process, which

are usually defined in the on-shell scheme. One possible solution would be to extract a set

of gauge boson masses that satisfies all tree-level relations from the mass matrices. This

scheme has the disadvantage that while it works for the leading corrections, it will likely not

be possible to derive a consistent set of weak parameters in general. Moreover, the higher-

order corrections included in the renormalisation-group improved neutralino and chargino

mass matrices will not be identical to the leading corrections to, for example, the s-channel

propagator mass. However, an artificial spectrum that is specifically designed to fulfill the

tree-level relations can be used for technical tests of high-energy unitarity. Such detailed

checks have been performed for the MADGRAPH MSSM implementation [184].

4.2.3 Feynman rules for Majorana fermions

Majorana spinors are the crucial new ingredient for calculating helicity amplitudes in super-

symmetric field theories. The complication which arises can easily be seen for the process

e+e− → χ̃0
i χ̃

0
j with i, j = 1, 2, 3, 4. There are three types of Feynman diagrams contribut-

ing, an s-channel graph where a virtual Z0 is propagating, and t- and u-channels mediated

through scalar-electron exchange, cf. Fig. 4.1. If one näıvely follows the fermion number
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Figure 4.1: Feynman diagrams contributing to the process e+e− → χ̃0
i χ̃

0
j (i, j = 1, 2, 3, 4).

flow of the incoming fermions, the t-channel and u-channel amplitudes would require dif-

ferent external spinors for the final-state fermions. Apart from that, using conventional

Feynman rules the Relative Signs of Interfering Feynman graphs (RSIF) can not be read off

the diagrams but need to be determined using Wick’s theorem.

The most elegant algorithm known for evaluating amplitudes of fermion number violating

processes is presented in Ref. [194]. These Feynman rules are close to the rules for Dirac

fermions. They are based on the introduction of an (arbitrary) orientation for each fermion

line. Based on this fermion flow chains of Dirac matrices can be formed and the RSIF is

determined as done for Dirac fermions. Besides the well known expression for the Dirac

propagator only two analytical expressions for each vertex involving fermions have to be

introduced. The method shall be briefly reviewed here.

The basics

Consider a typical interaction term LI = χ̄Γχ where each χ can be either a Dirac or a

Majorana fermion and Γ denotes a generic fermion interaction including Dirac matrices,

coupling constants giabc and boson fields Φ:

χ̄Γχ = giabcχ̄a Γi χbΦc. (4.1)

The field Φ might denote scalar or vector fields and for Γi the sixteen matrices of the Clifford

algebra can be considered

Γi = 1, iγ5, γµγ5, γµ, σµν . (4.2)

Consider a matrix element with fermionic interactions,

〈
0
∣∣∣bi1 . . . dim T [(χ̄Γχ) . . . (χ̄Γχ)] b†im+1

. . . d†in

∣∣∣ 0
〉
. (4.3)

Here b†i , d
†
i are the creation operators of fermions and anti-fermions, respectively, and bi, di

the corresponding annihilation operators. The index i summarises momentum pi, spin si

and possible further quantum numbers. To a specific Feynman graph uniquely correspond

certain equivalent sets of contractions of the matrix element.



4.2 The calculational framework 143

In the case of Dirac fermions the continuous fermion number flow guarantees that the

interaction Lagrangians and the annihilation and creation operators of the external particles

can be reordered in such a way that two operators of a contraction are adjacent to each

other, e.g.

. . . (χ̄Γχ)(χ̄Γχ) . . . . (4.4)

For self-conjugated fields the contractions χχ and χ̄ χ̄ are non-vanishing and the fermion

number flow is no longer maintained. Nevertheless the interaction Lagrangians and anni-

hilation and creation operators can be reordered such that fields which are contracted are

in adjacent interaction Lagrangians. But now the contracted fields in general do not stand

next to each other. For instance the following contraction can occur

. . . (χ̄Γχ) . . . (4.5)

It is possible to reverse the interaction Lagrangian χ̄Γχ by introducing the charge-conjugated

fields

χ̃ = Cχ̄T , ¯̃χ = −χTC†, (4.6)

and the “reversed” vertex Γ′ ,

Γ′ = C ΓT C†. (4.7)

Using the properties of the charge conjugation matrix C,

C† = C−1 , CT = −C , C ΓTi C
−1 = ηi Γi , (4.8)

with

ηi =
{ 1 : Γi = 1, iγ5, γµγ5

−1 : Γi = γµ, σµν .
(4.9)

one obtains

χ̄Γχ = giabcχ̄a Γi χbΦc = giabc (χ̄a Γi χb)
T Φc = (−1) giabcχ

T
b ΓTi χ̄

T
aΦc

= giabc ¯̃χb C ΓTi C
−1χ̃aΦc = giabc ¯̃χb ηi Γi χ̃aΦc ≡ ¯̃χΓ′ χ̃. (4.10)

Note that the factor of (−1) originating from the anti-commutation of the fermion fields is

contained in the definition of Γ′. If both χ’s at an interaction vertex are Majorana fermions,

namely χ̃ = χ, Eq. (4.10) implies that ηi g
i
abc = gibac for all i, i.e. Γ = Γ′. Using Eq. (4.10)

each of the interaction Lagrangians within a fermion chain can be rearranged such that

all contracted fields stand next to each other (apart from the first and last field in a closed

fermion loop). This procedure replaces the fermion number flow by the more general fermion

flow that is equivalent to the orientation of a complete fermion chain. As usual the total sign
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Figure 4.2: The Feynman rules for fermionic vertices with orientation (thin arrows).

of an amplitude is obtained from the permutation of the external creation and annihilation

operators.

Using Eq. (4.8) the propagator for the charge-conjugate fermion fields can be derived

〈0 |T (χ̃ ¯̃χ)| 0〉 = C 〈0 |T (χχ̄)| 0〉T C−1 (4.11)

−→ C ST (p)C−1 = C
1

p/−m
C−1 =

1

−p/−m
= S(−p) ≡ S ′(p). (4.12)

For the spinors the following relations hold true

u(p, λ) = C vT (p, λ) , v(p, λ) = C uT (p, λ) . (4.13)

The rules

With the language of the last paragraph the new Feynman rules can be formulated. Fermions

are denoted by solid lines and Dirac fermions carry an arrow indicating the fermion number

flow. Majorana lines do not carry an arrow. Beside the direct expression of a fermionic vertex

obtained from the Lagrangian (Γ) the “reversed” one (Γ′) is needed as well, cf. Fig. 4.2.
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u(p, λ)

v(p, λ)

u(p, λ)
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Figure 4.3: The Feynman rules for external fermion lines with orientation (thin arrows).

In all cases the flow of the momentum p is from left to right.

i S(p)

i S(−p)

i S(p)

Figure 4.4: The Feynman rules for fermionic propagators with orientation (thin arrows).

Again, the momentum p flows from left to right.

For a pure Majorana fermion vertex only one expression is obtained since Γ = Γ′. Reflecting

the fermion number flow of Dirac fermions there exists the usual propagator S(p) and the

“reversed” one S ′(p) = S(−p). Similarly the usual spinors and their “reversed” counterparts

are needed for Dirac fermions. Majorana fermions possess only the usual propagator and

spinors. There is no need for reversed spinors. This is illustrated in Figs. 4.3 and 4.4.

The algorithm

Algorithmically, Feynman diagrams and their relative signs are constructed via:

• Draw all possible Feynman diagrams for a given process.

• Fix an arbitrary orientation (fermion flow) for each fermion chain.

• Start at any external leg (for closed loops at some arbitrary propagator) and write

down the Dirac matrices proceeding opposite to the chosen orientation through the

chain.

• For each internal propagator, external line and vertex insert the appropriate ana-

lytic expression as given in Figs. 4.2 -4.4, corresponding to the chosen fermion flow.

Accordingly, if the orientation is opposite to the fermion number flow the reversed

propagators S(−p), spinors and vertices Γ′ have to be used.
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• Multiply by (−1) for every closed fermion loop.

• Multiply with the permutation parity of the spinors in the obtained analytical ex-

pression with respect to some reference order (e.g. the first amplitude that has been

evaluated).

• Concerning the determination of combinatorial factors, Majorana fermions need to be

treated like real scalar or vector fields.

It should be noted that the analytical expressions are independent of the chosen orientation

(fermion flow). Therefore this set of rules guarantees that all sign ambiguities disappear

and the RSIF is determined exactly as in the case of Dirac fermions. In Appendix A.2

the application of these Feynman rules is illustrated for the example given above, namely

neutralino production at an e+e− machine.

The algorithm as presented above is easily applicable for an automated generation of Feyn-

man graphs and corresponding helicity amplitudes and has consequently been implemented

in e.g. AMEGIC++/SHERPA, MADGRAPH/MADEVENT and O’MEGA/WHIZARD.

4.2.4 Intermediate heavy states

During the initial phase of the LHC, narrow resonances can be described by simple 2 → 2

production cross sections and subsequent cascade decays. However, establishing that these

resonances are indeed the long-sought SUSY partners would call for more sophisticated

methods.

The identification of resonances as SUSY partners would require determination of their spin

and parity quantum numbers [181]. This in turn requires a proper description of the spin

correlations among the particles in the production and the decay cascades. The simplest

consistent approximation calculates the resonant Feynman diagrams for the 2 → n process

and forces narrow intermediate states on the mass shell without affecting spin correlations.

For fermions the leading term can be written in the (small) expansion parameter Γ/m as:

1

|s−m + iΓ|2 → π

mΓ
δ(s−m2) . (4.14)

The alternative approach of manually inserting the appropriate density matrices for pro-

duction and decay is more error-prone due to the need for consistent phase conventions.

The width of the heavy resonances are themselves observables predicted by SUSY for a

given set of soft breaking parameters and should be taken into account. A näıve Lorentzian

smearing of Eq. (4.14) will not yield a theoretically consistent description of finite-width

effects. Gauge and SUSY Ward identities are immediately violated once amplitudes are

continued off-shell. Since scattering amplitudes in gauge theories and SUSY theories exhibit

strong numerical cancellations, the violation of the corresponding Ward identities can result
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in numerically large effects. Therefore a proper description of a resonance with a finite

width requires a complete gauge invariant set of diagrams, the simplest of which is the set

of all diagrams contributing to the 2 → n process [195]. In Secs. 4.5 and 4.6 the numerical

impact of finite-width effects for the concrete example of sbottom production at high-energy

colliders is studied.

Intermediate charged particles with finite widths present additional gauge invariance issues,

which were studied at LEP2 in great detail for W boson production processes [196]. There

exist several prescriptions for introducing widths in matrix-element calculations the most

prominent one, the fixed-width scheme, is used in all what is described below. A careful

analysis on the impact of different choices, as done for SM four- and six-fermion production

in [197, 198], is beyond the scope of this work.

4.3 The MSSM implementation in SHERPA

SHERPA [7] is a new complete Monte Carlo event generator for collider physics including hard

matrix elements, parton showers, hadronisation and other soft physics aspects, written from

scratch in C++. As discussed in chapter 2, the key feature of SHERPA is the implementation

of an algorithm [28, 29, 30, 31], which allows for a consistent combination of tree-level matrix

elements for the hard production of particles with the subsequent parton showers that model

softer bremsstrahlung.

The simulation of supersymmetry with event generators such as SHERPA mainly concerns

the evaluation of corresponding partonic production processes and the description of the

decays of the produced rather heavy states. For strongly-interacting SUSY particles a

parton-shower simulation may sometimes need to be invoked. Some details on parton shower

simulations for supersymmetric particles have already been presented in chapter 3. It has to

be noted here, that for processes involving strongly-interacting SUSY particles the advanced

methods of merging matrix elements with parton showers are not yet realised but remain

subject of future research. In SUSY scenarios with R-parity conservation all the SUSY

states decay into SM particles and a number of the stable lightest supersymmetric particle

that, in order to be consistent with experimental observations, has to be weakly interacting.

Accordingly, no modifications to the hadronisation routines are necessary in the physical

framework considered here.

Due to the shear multitude of possible SUSY signatures and their calculational complex-

ity automatised tools for matrix-element calculations in the framework of the MSSM are

highly desirable. Especially when considering multi-particle final states, that need to be

evaluated to separate SUSY from other possible extensions of the SM, sophisticated tools

for exact multi-leg tree-level calculations are needed. These codes, called matrix-element

generators, are able to calculate nearly arbitrary processes from a given set of Feynman

rules for a certain physics model. In Sec. 4.3.1 SHERPA’s built-in matrix-element generator,
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AMEGIC++, will be briefly introduced. The Feynman rules for the MSSM, that have been

incorporated in the program, are discussed in Sec. 4.3.2. Sec. 4.3.3 gives some details about

the translation of the SLHA inputs to the parameter convention used for SUSY interactions

in AMEGIC++/SHERPA.

4.3.1 Introducing AMEGIC++

AMEGIC++ [21], acronym for (A Matrix Element Generator in C++), is a multi-purpose

parton-level generator. It provides a convenient tool for the calculation of cross sections

for nearly arbitrary scattering processes at the tree-level in the framework of the Standard

Model, the extension of the SM by a general set of anomalous triple- and quartic gauge

couplings [22, 23], the Two-Higgs-Doublet Model, the Minimal Supersymmetric Standard

Model, and the ADD model of large extra dimensions [24, 25]. Besides calculating produc-

tion and decay rates AMEGIC++ is used to generate single parton-level events within the

event simulation framework of SHERPA. With the help of SHERPA the partonic events can

consistently be supplemented with parton showers and linked to hadronisation, leading to

realistic hadronic final states.

Specifying a physics model and a certain process AMEGIC++ can automatically generate the

corresponding full set of tree-level Feynman diagrams from the complete set of interaction

vertices the model possesses. These Feynman diagrams then get translated into helicity

amplitudes relying on a formalism similar to the one described in [199, 200]. An extension

of the helicity amplitude techniques to incorporate also spin-2 particles has been presented

in Ref. [201]. The diagrams then get grouped into sets of amplitudes with a common

colour structure. Based on them, the exact matrix of colour factors between amplitudes is

calculated using the SU(3) algebra. A number of refinements of the helicity method have

been implemented within the code to speed up the matrix-element evaluation or to cope

with problems that arise when considering extensions of the SM [202, 203].

Concerning the latter the general set of fermion Feynman rules given in [194] and discussed in

Sec. 4.2.3 has been implemented, to unambiguously fix the relative signs amongst Feynman

diagrams involving Majorana spinors. Furthermore, explicite polarisations for massive or

massless external spin-one bosons are enabled, allowing to consider polarised cross sections.

Similar considerations help to replace numerators of spin-one propagators by summing over

suitably defined polarisations for off-shell particles, thereby disentangling nested Lorentz

structures emerging for amplitudes with many internal spin-one bosons. As a result, the only

basic helicity amplitude building blocks AMEGIC++ needs to construct arbitrary processes,

are the generic Lorentz structures present in the physics model under consideration. Using

the helicity formalism allows to accelerate the matrix-element evaluation by making use

of symmetries amongst different Feynman graphs. One example are diagrams with equal

colour structure, that possess common factors, as it is illustrated in Fig. 4.5. Accordingly the
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Figure 4.5: Factoring out common pieces of amplitudes with identical colour structure.

In the example above, the parts within the boxes are identical, hence terms

inside the box can be factored out and the two amplitudes can be added.

identical parts can be factored out and the cutted graphs can be added, thereby reducing

the number of complex multiplications to be carried out. Finally, the resulting helicity

amplitudes for the process under consideration are stored in library files.

Within AMEGIC++ unstable particles are treated in the fixed-width-scheme (FWS). Defining

the complex mass parameters of vector bosons, scalar particles and fermions in terms of the

real masses and the constant widths through

M2
V = m2

V − iΓV mV , M2
S = m2

S − iΓSmS , MF = mF − iΓF/2 , (4.15)

the corresponding propagators can be written as

Dµν
F (q) =

−gµν + qµqν/M2
V

q2 −M2
V

, DF (q) =
1

q2 −M2
S

, SF (q) =
q/+MF

q2 −M2
F

. (4.16)

For the integration over the phase space of the incoming and outgoing particles AMEGIC++

employs an adaptive multi-channel method according to [204, 205]. Correspondingly, generic

elements for phase-space mappings such as for instance propagator-like structures or decays

are provided. The individual Feynman diagrams are analysed individually, and one or

more suitable phase-space parametrisations for each diagram are automatically created and

stored in library files. As an example consider Fig. 4.6, which exhibits a diagram and its

translation into propagator- and decay-parametrisations. To further improve the efficiency

of the dominant integration channels vegas [206] is used to further optimised the found

phase-space mappings.

Both, the amplitude and the phase-space parametrisations need to be compiled and linked

to the code before the actual integration and event generation starts.

4.3.2 MSSM Feynman rules and conventions

In this paragraph the conventions used for specifying the MSSM interaction vertices in

AMEGIC++/SHERPA are presented, they follow closely those used in Ref. [207]. This includes
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4

1

2

3
Ds(12, 34) ×Da(1, 2) ×Da(4, 3) × P0(12) × P0(34)

Figure 4.6: Translation of a Feynman diagram into a phase-space parametrisation. Ds,a

denote symmetric or asymmetric decays - the latter ones reproduce the typi-

cal feature of collinear emission of particles notorious for gauge theories with

massless spin-one bosons. The propagator terms for massless particles P0 peak

at the minimal allowed invariant mass.

the definition of the theory’s field content, the specification of the possible interactions in

a supersymmetric extension of the SM, supplemented with a general set of terms that

explicitly break supersymmetry at the electroweak scale.

To account for the observed masses of the electroweak gauge bosons, and to establish finite

masses for the SM matter fields, the electroweak symmetry has to be broken. The principles

and consequences of the Higgs mechanism in the MSSM are briefly discussed in Sec. 4.3.2.

This paragraph concludes with considerations on the actual particle spectrum in the MSSM,

thereby focusing on the definition of the occurring mixing matrices in the various sectors

of the model. Having established the mass eigenstates of the theory a complete list of all

their interaction vertices can be specified. In Ref. [207] such a full set of Feynman rules is

given, and it is this set of vertices, that has been implemented in the AMEGIC++/SHERPA

generator.

The field content of the MSSM

As already stated above the MSSM field content consists of the SM fields, extended by a

second SU(2)L Higgs doublet with weak-hypercharge YW = −1, plus their superpartners

that differ in spin by one-half unit. In the following these fields shall be introduced explicitly,

to fix the notation used to write down the MSSM Lagrangian later on.

The gauge group structure of the Standard Model before electroweak symmetry breaking,

namely SU(3)c ⊗ SU(2)L ⊗ U(1)Y , is reflected by the massless gauge fields of the strong,

weak, and electromagnetic interaction. Each of these vector fields gets equipped with a

fermionic superpartner called gaugino, that is represented by a two-component Weyl spinor.

The resulting fields are listed in Tab. 4.1.

For the SM matter fermions new bosonic fields have to be introduced, the sfermions. The

gauge eigenstates of the MSSM matter fields are summarised in Tab. 4.2. The SU(2)L
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spin 1/2 spin 1 gauge group coupling

B̃ Bµ U(1)Y g1

W̃ i W i
µ SU(2)L g2

G̃A GA
µ SU(3)c g3

Table 4.1: The gauge and gaugino field content of the MSSM.

spin 0 spin 1/2

Q̃ =

(
ũL

d̃L

)
Q =

(
uL

dL

)

Ũ = ũ∗R U = (uR)c

D̃ = d̃∗R D = (dR)c

L̃ =

(
ν̃

ẽL

)
L =

(
ν

eL

)

Ẽ = ẽ∗R E = (eR)c

Table 4.2: The matter fields of the MSSM, expressed in terms of the interaction eigen-

states. The SU(3)c and generation indices are not written explicitly.

singlets are written in terms of the charge conjugated states. For the fermions charge

conjugation is denoted by the index c for the scalar superpartner a star is used.

The Higgs fields and their associated partners, the higgsinos, are summarised in Tab. 4.3.

Each higgsino doublet contains two Weyl spinors summing up to eight fermionic degrees of

freedom (dof) in total and therefore exactly compensating for the scalar dof associated to

the Higgs sector, as required by supersymmetry.

The supersymmetric Lagrangian

Having identified the field content of the MSSM its Lagrangian can be introduced. As stated

above its construction is guided by requiring invariance under gauge- and SUSY transfor-

mations supplemented with the conservation of R-parity.

Kinetic terms

Employing a very compact notation the kinetic terms of the MSSM Lagrangian can be
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spin 0 spin 1/2 YW

H1 =

(
H0

1

H−
1

)
H̃1 =

(
H̃0

1

H̃−
1

)
−1

H2 =

(
H+

2

H0
2

)
H̃2 =

(
H̃+

2

H̃0
2

)
1

Table 4.3: The MSSM Higgs fields and their superpartners, the fermionic higgsino fields.

condensed to

Lkin =
∑

i

{
(DµΦ

∗
i )(D

µΦi) + iψ̄iD/ψi
}

+
∑

A

{
−1

4
FA
µνF

µν
A +

i

2
λ̄AD/λA

}
, (4.17)

with Dµ the covariant derivatives of the three SM gauge groups. All scalar fields are de-

noted by Φ, whereas the fermion fields are summarised by ψ. The only exception are the

Majorana gauginos, denoted by λ, and λA = (B̃, W̃ i, G̃A). The sum i has to be understood

as a sum over all SM fermion fields and their scalar superpartners plus the Higgs fields and

their fermionic partners. The sum over A accounts for the gauge fields.

Gauge-type interactions

Not yet included are interactions of the gaugino fields with pairs of associated fermions and

scalars, these interactions are generated by the first term of Eq. (4.18),

Lint = −
√

2
∑

i,A

gA
{
Φ∗
iT

Aψ̄iλA + h.c.
}
− 1

2

∑

A

{
∑

i

gAΦ∗
iT

AΦi

}2

. (4.18)

Here TA are the generators of the corresponding gauge group. The second term is equiva-

lent to interactions of four scalars, the interaction strengths are given in terms of the gauge

couplings.

Non-gauge interactions, the superpotential

Finally, the superpotentialW incorporates non-gauge interactions, like, for instance, Yukawa

interactions of the Higgs and matter fields. It is a fully supersymmetric, gauge invariant

Lorentz scalar, that has the additional constraint to be analytic in the scalar fields Φ.

Conserving R-parity the superpotential is given by

W = εij
(
µH1

iH
2
j + lIJH1

i L̃
I
j Ẽ

J + dIJH1
i Q̃

I
jD̃

J + uIJH2
i Q̃

I
j Ũ

J
)
, (4.19)

where εij = −εji (with ε12 = 1) contracts the SU(2)L doublets. The capital letters I

and J are generation indices and µ is the Higgs-mass parameter. The matrices uIJ , dIJ
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and lIJ denote the ordinary SM Yukawa couplings. From the superpotential the remaining

interaction Lagrangian can be derived

LW = −
∑

i

∣∣∣∣
δW

δΦi

∣∣∣∣
2

− 1

2

∑

ij

{
ψ̄i

δ2W

δΦiδΦj
ψj + h.c.

}
. (4.20)

The first term represents quartic scalar interactions, i.e. four-squark- and four-slepton in-

teractions as well as interactions of two Higgs fields and two sfermion fields. Furthermore,

it provides mass contributions of the scalar Higgs fields and Yukawa-type interactions of

the scalar fields. The second term of Eq. (4.20) generates, apart from the SM Yukawa

interactions, mass terms for the fermionic higgsino fields and fermion–sfermion–higgsino in-

teractions. For the SM Yukawa interactions it is apparent that the field H0
1 couples (and

later on and gives masses) to down-type quarks and leptons only, while H 0
2 solely couples

to the up-type quarks. These two tasks cannot be accomplished by a single Higgs doublet,

as the superpotential has to be analytic in the scalar fields.

Explicit supersymmetry breaking

Exact weak-scale supersymmetry can’t be realised in nature but must be broken. Breaking

scenarios that preserve the desired cancellation of quadratic divergencies in the perturbative

expansion of the theory are denoted as soft. Since the underlying dynamics of SUSY breaking

is unknown, the most general set of such soft, R-parity conserving effective terms with

adjustable free parameters is introduced and defines the most general form of the MSSM.

The MSSM soft-breaking Lagrangian can be divided into four parts

Lsoft = Lg.m.
soft + Ls.m.

soft + LYuk.
soft + LHiggs

soft . (4.21)

In detail the contributions signify

• Majorana gaugino mass terms,

Lg.m.
soft = − (

1

2
M1B̃B̃ + h.c.) − (

1

2
M2W̃

iW̃ i + h.c.) − (
1

2
M3G̃

AG̃A + h.c.) , (4.22)

• Mass terms for the scalar fields,

Ls.m.
soft = − (m2

L̃
)IJL̃I∗

i L̃
J
i − (m2

Ẽ
)IJẼI∗ẼJ

− (m2
Q̃
)IJQ̃I∗

i Q̃
J
i − (m2

D̃
)IJD̃I∗D̃J − (m2

Ũ
)IJŨ I∗ŨJ , (4.23)

• Additional Yukawa-type couplings of the scalar fields,

LYuk.
soft = εij

(
lIJS H

1
i L̃

I
j Ẽ

J + dIJ
SH

1
i Q̃

I
jD̃

J − uIJ
SH

2
i Q̃

I
j Ũ

J + h.c.
)
, (4.24)
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• Masses for the Higgs fields

LHiggs
soft = − m2

H1H1
iH

1
i −m2

H2H2
iH

2
i − εij

(
hS H

1
i H

2
j + h.c.

)
. (4.25)

M1,M2,M3 are the complex bino, wino and gluino masses, respectively. In the second item

the m2
L̃

etc. are the slepton and squark hermitian 3 × 3 mass matrices in family space.

The most general form of the soft-breaking Lagrangian allows for a possible fifth kind of

contributions, namely Yukawa-type interactions different from that obtained by the super-

potential,

Ln.anal.
soft = kIJ

S H
2∗
i L̃I

i Ẽ
J + eIJS H

2∗
i Q̃I

i D̃
J + wIJ

S H
1∗
i Q̃I

i Ũ
J + h.c. . (4.26)

Usually such couplings are not considered since in the case of extending SUSY to super-

gravity (the local version of SUSY) they must be excluded [208]. If such terms are truly

absent once measurements are analysed, their absence provides a clue about how SUSY is

broken and how the breaking is transmitted to the low-energy theory.

In contrast to the Standard Model, the masses, flavour rotation angles or phases of the

SUSY fields have not yet been measured. So all of the new parameters introduced to

accomplish SUSY breaking are a priori unknown. However, just the absence of observations

of superpartners provides useful information about some of them.

The MSSM particle spectrum

To generate masses for the theory’s gauge bosons the electroweak symmetry has to be bro-

ken, providing mass terms for the matter fields as well. Out of the derived Lagrangian the

mass eigenstates of the theory have to be calculated, leading to the physical spectrum of

the model. This is not a trivial task, since any set of sparticles of a given spin, baryon num-

ber, lepton number and SU(3)c ⊗ U(1)Q quantum number can mix and the Feynman rules

involving these particles have to be inferred in terms of the corresponding mixing matrices.

An exception is the gluino. It is the only colour octet fermion, therefore it can not mix with

any other MSSM field even if R-parity is violated. In four-component notation there are

eight gluinos G̃A, which are Majorana fermions with a tree-level mass of M3.

Electroweak symmetry breaking and the MSSM Higgs bosons

As in the SM the minimum of the scalar potential of the Higgs fields has to break the

electroweak gauge symmetry, SU(2)L ⊗ U(1)Y → U(1)Q. This can be accomplished by

assigning finite vacuum expectations value (vev) to each of the fields H0
1 and H0

2 , namely

〈H0
1 〉 =

1√
2
v1 , 〈H0

2 〉 =
1√
2
v2 . (4.27)

If instead one of the scalar-squark or slepton fields would aquire a non-zero vev this would

directly lead to the breaking of colour or lepton number. Note also that even though using
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two Higgs doublets, without introducing soft SUSY breaking terms into the Lagrangian it

would be impossible to break spontaneously the electroweak gauge symmetry in the MSSM.

The ratio

tanβ ≡ v2/v1 (4.28)

is a parameter of the theory whose value is not yet fixed by experiment. However, both the

vevs cannot be chosen freely, instead they are fixed by the following tree-level condition,

mZ =
g2

2 cos θW

√
v2

1 + v2
2 =⇒

√
v2

1 + v2
2 = v ≈ 246 GeV , (4.29)

where θW denotes the Weinberg angle. The Higgs mechanism works in the same manner as

in the Standard Model. Before the symmetry is broken, the two complex SU(2)L doublets

have eight real scalar degrees of freedom. Choosing the unitary gauge, after the electroweak

symmetry breakdown, three of them are the would-be Nambu–Goldstone bosons G0, G±,

that become the longitudinal polarisation modes of the now massive Z0 and W± vector

bosons. The remaining five degrees of freedom form five physical Higgs particles, one CP -

odd neutral scalar A0, two charged scalars H±, and two CP -even neutral scalars h0 and

H0. The mass eigenstates are obtained by diagonalising the Higgs mass matrix

M2
ij =

1

2

∂2V

∂φi∂φj
, (4.30)

that is calculated from the Higgs scalar potential V . In Eq. (4.30) φi and φj denote the

eight real scalar degrees of freedom of the theory’s Higgs sector. M 2
ij splits into four 2 × 2

block-diagonal factors. The respective mass eigenstates read

(
G−

H−

)
= Z−1

H

(
H+∗

2

H−
1

)
, (4.31)

(
G+

H+

)
= Z−1

H

(
H+

2

H−∗
1

)
, (4.32)

(
G0

A0

)
=

√
2Z−1

H

(
Im[H0

2 ]

Im[H0
1 ]

)
, (4.33)

(
h0

H0

)
= Z−1

R

( √
2Re[H0

1 ] − v1√
2Re[H0

2 ] − v2

)
, (4.34)

with

ZH =

(
sin β − cos β

cos β sin β

)
, ZR =

(
cosα − sinα

sinα cosα

)
. (4.35)

The factors for the charged states and the neutral one in the basis (Im[H0
2], Im[H0

1 ]) each

have one zero eigenvalue, the mentioned would-be Nambu–Goldstone bosons. The tree-level
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masses of the physical particles are

m2
h0,H0 =

1

2

(
m2
A0 +m2

Z ∓
√

(m2
A0 +m2

Z)2 − 4m2
A0m2

Z cos2(2β)

)
, (4.36)

m2
A0 = m2

H1 +m2
H2 + 2|µ|2, (4.37)

m2
H± = m2

W +m2
A0 . (4.38)

Per definition h0 is the lighter of two neutral CP -even mass eigenstates. In terms of the

tree-level masses, the mixing angle α appearing in Eq. (4.35) is determined by

tan 2α = tan 2β
m2
A0 +m2

Z

m2
A0 −m2

Z

. (4.39)

To obtain the mass eigenstates of the SM quarks, leptons and gauge bosons the same steps

as in the SM have to be performed. The quark mixing is parametrised by the known

CKM-matrix, VCKM . Assuming neutrinos as massless the charged lepton interaction- and

mass eigenstates coincide. The masses of the SM matter fermions expressed in terms of the

diagonalised Yukawa couplings and the Higgs vevs read

mI
ν = 0 , mI

l = −v1l
I

√
2
, mI

u =
v2u

I

√
2
, mI

d = −v1d
I

√
2
, (4.40)

where lI and dI are defined as negative. The neutral gauge boson interaction eigenstates

mix to form the physical Z0 and γ bosons.

Neutralinos and charginos

Once the SU(2)L ⊗ U(1)Y symmetry is broken the higgsinos and the electroweak gauginos

mix with each other and form two mass eigenstates with charge ±1, the charginos, and four

neutral Majorana fermions, the neutralinos.

The neutralinos

In the fermion sector, the neutral fermionic partners of the B and W 3 gauge bosons, B̃

and W̃ 3, can mix with the neutral fermion partners of the Higgs bosons, H̃0
1 and H̃0

2 ,

to form four Majorana fermion mass eigenstates, the neutralinos. Working in the basis

ψ̃0 = (−iB̃, −iW̃ 3, H̃0
1 , H̃

0
2 ), the neutralino mass contributions are found to be

Lneut.
mass = −1

2
(ψ̃0)T Y ψ̃0 + h.c. (4.41)

At tree-level the corresponding 4 × 4 mass matrix reads

Y =




M1 0 −mZ cos β sin θW mZ sin β sin θW

0 M2 mZ cos β cos θW −mZ sin β cos θW

−mZ cos β sin θW mZ cos β cos θW 0 −µ
mZ sin β sin θW −mZ sin β cos θW −µ 0


 ,

(4.42)
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where the elements M1 and M2 originate from the soft-breaking Lagrangian, see Eq. (4.22),

and the entries −µ are the higgsino mass terms from the superpotential, see Eq. (4.20). The

terms proportional to mZ result from the Higgs–higgsino–gaugino interactions, Eq. (4.18).

The physical states are found by diagonalising the 4× 4 matrix with the help of the unitary

matrix ZN , such that

[ZT
NY ZN ]ij = ηimχ̃0

i
δij . (4.43)

The obtained mass eigenvalues can be either positive or negative. The sign of the mass

eigenvalues (ηi = ±1) is physically relevant and corresponds to the CP eigenvalue of the

neutralino state. The physical masses mχ̃0
i

are defined to be positive and fulfill mχ̃0
1
<

mχ̃0
2
< mχ̃0

3
< mχ̃0

4
. Within AMEGIC++/SHERPA, however, the signed masses are used within

propagators and spinors, instead of rotating the fields and using a complex mixing matrix.

The charginos

The charginos are a mixture of the charged higgsinos, H̃−
1 and H̃+

2 , and the fermionic

superpartners of the W± gauge bosons, W̃± = (W̃ 1 ∓ iW̃ 2)/
√

2. In the basis ψ̃± =

(−iW̃+, H̃+
2 − iW̃−, H̃−

1 ) terms in the Lagrangian can be rearranged into

Lchar.
mass = −1

2
(ψ̃±)T

(
0 XT

X 0

)
ψ̃± + h.c. . (4.44)

At leading order the 2 × 2 chargino mass matrix X reads

X =

(
M2

√
2mW sin β√

2mW cos β µ

)
. (4.45)

The diagonal chargino mass matrix is found employing two independent unitary matrices

Z− and Z+,

[(Z−)TXZ+]ij = ηimχ̃+

i
δij . (4.46)

Again the mass eigenvalues can be positive or negative (ηi = ±1). The physical masses are

chosen such that χ+
1 is lighter than χ+

2 .

The squark and slepton mass matrices

In principle any pair of scalars with identical quantum numbers can mix. Accordingly, when

assuming completely arbitrary soft-breaking terms, the mass eigenstates of the squarks and

sleptons have to be obtained by diagonalising three 6× 6 matrices, for the up-type squarks

(ũL, c̃L, t̃L, ũR, c̃R, t̃R), the down-type squarks (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R), and the charged

sleptons (ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R). The sneutrino eigenstates are obtained by diagonalisation

of the appropriate 3 × 3 mass matrix. Most often only the mutual mixing of the third gen-

eration charged sfermions is important, due to their large Yukawa couplings. However, in
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AMEGIC++/SHERPA generation mixing is implemented in the most general form and there-

fore the complete matrices will be presented here.

The up-type squarks

The fields Q̃I
1 and Ũ I with the generation index I = 1, 2, 3 form six up-type scalar squarks

Ũi. Diagonalisation of the up-type squark mass matrix is realised by the unitary matrix ZU ,

that connects the interaction and mass eigenstates,

Z†
UMUZU = Z†

U

(
A† D∗

DT B∗

)
ZU = diag{m2

Ũ1
, · · · , m2

Ũ6
} , (4.47)

Q̃I
1 = ZIi

U Ũ
+
i , Ũ I = Z

(I+3)i∗
U Ũ−

i . (4.48)

At lowest order the elements of the mass matrix are given by

AIJ = m2
Z cos(2β)

(
1

2
−Qu sin2 θW

)
δIJ + (mI

u)
2 δIJ + (m2

Q̃
)KL V KI∗

CKM V LJ
CKM ,(4.49)

BIJ = Qum
2
Z sin2 θW δIJ + (mI

u)
2 δIJ + (m2

Ũ
)IJ , (4.50)

DIJ = − 1√
2

[
v1(u

I µ∗ δIJ + wIJS ) + v2 u
IJ
S

]
, (4.51)

where Qu = 2/3 is the U(1)Q charge of the up-type squarks and V IJ
CKM are elements of the

CKM matrix. Note that the most general form of soft-breaking terms has been considered

and therefore contributions originating from Eq. (4.26) are taken into account as well.

The down-type squarks

For the case of the down-type squarks the procedure is simular. The six down-type squarks

are composed from the fields Q̃I
2 and D̃I. The diagonalisation matrix is denoted ZD and it

follows

Z†
DMDZD = Z†

D

(
AT C

C† B

)
ZD = diag{m2

D̃1
, · · · , m2

D̃6
} , (4.52)

Q̃I
2 = ZIi∗

D D̃−
i , D̃I = Z

(I+3)i
D D̃+

i , (4.53)

with

AIJ = −m2
Z cos(2β)

(
1

2
+Qd sin2 θW

)
δIJ + (mI

d)
2 δIJ + (m2

Q̃
)IJ , (4.54)

BIJ = Qdm
2
Z sin2 θW δIJ + (mI

d)
2 δIJ + (m2

D̃
)IJ , (4.55)

CIJ =
1√
2

[
v2(d

I µ∗ δIJ − eIJS ) + v1d
IJ
S

]
, (4.56)

at tree-level. Again Qd = −1/3 denotes the electric charge of the down-type squarks.
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The charged sleptons

The six charged sleptons L̃i are mixtures of the fields L̃I
2 and ẼI . The mass matrix is

diagonalised by the 6 × 6 matrix ZL,

Z†
LMLZL = Z†

L

(
AT C

C† B

)
ZL = diag{m2

L̃1
, · · · , m2

L̃6
} , (4.57)

with the mass matrix elements at leading order given by

AIJ = −m2
Z cos(2β)

(
1

2
− sin2 θW

)
δIJ + (mI

l )
2 δIJ + (m2

L̃
)IJ , (4.58)

BIJ = −m2
Z sin2 θW δIJ + (mI

l )
2 δIJ + (m2

Ẽ
)IJ , (4.59)

CIJ =
1√
2

[
v2(l

I µ∗ δIJ − kIJS ) + v1l
IJ
S

]
. (4.60)

Here it has been used that the electric charge of the charged sleptons is −1. The relation

between the interaction eigenstates and the mass eigenstates is

L̃I
2 = ZIi∗

L L̃−
i , ẼI = Z

(I+3)i
L L̃+

i . (4.61)

The sneutrinos

Out of the three complex scalar fields L̃I
1 one obtains three sneutrino mass eigenstates ν̃I.

Their masses are the eigenvalues of the 3 × 3 mass matrix Mν,

M IJ
ν =

1

2
m2
Z cos(2β) δIJ + (m2

L̃
)IJ . (4.62)

The diagonalisation matrix is called Zν and it provides

Z†
νMνZν = diag{m2

ν̃1
, m2

ν̃2
, m2

ν̃3
} , L̃I

1 = ZIJ
ν ν̃

J. (4.63)

Most often the slepton soft-breaking masses are considered as diagonal. In that case the

sneutrino mixing matrix is diagonal as well and the interaction eigenstates and the mass

eigenstates coincide.

4.3.3 Relating to the SLHA inputs

The inclusion of explicite supersymmetry breaking terms in the weak-scale MSSM La-

grangian introduces a wealth of new parameters that actually specify the model and its

particle spectrum, and that finally determine its phenomenology. It is the large number

of input parameters and the complexity of the MSSM Lagrangian that render setting up

a consistent framework for calculations in the MSSM a complicated task. To be able to

calculate arbitrary cross sections or decay rates in a certain SUSY scenario, the correspond-

ing set of particle masses, model parameters and mixing matrices needs to be specified

beforehand. There exist now various spectrum generator programs that determine the full
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set of weak-scale MSSM input parameters from a given high-scale physics supersymmetry

breaking scenario [189]. All of those codes use the SUSY Les Houches Accord format to

output their calculated spectra, such that they can then easily be used as inputs for cross

section calculations or event generation, cf. Sec. 4.2.1. However, in order to be able to make

use of the SLHA interface the conventions used there have to be translated to the ones

used in the actual calculation. In the following the conversion of the SLHA conventions

to the nomenclature used within AMEGIC++/SHERPA is worked out. This corresponds to

translating the SLHA output to the conventions used in Ref. [207].

In its present form the SLHA is limited to the case of supersymmetric extensions of the

Standard Model, where R-parity and CP are conserved. Apart from that, further assump-

tions on the structure of the MSSM Lagrangian made are: sfermion mixing is restricted to

left-right mixing of the third generation scalar-quarks and scalar-leptons, and the flavour

structure of the soft-breaking terms is trivial. Accordingly, the terms given in Eq. (4.26) are

not considered, and the slepton, and squark mass matrices (m2
i )
IJ with i = L̃, Ẽ, Q̃, D̃, Ũ

do not introduce additional sources of flavour violation.

Standard Model parameters

As mentioned in Sec. 4.2.1, the SLHA provides the electroweak parameters of the Standard

Model in the Gµ-scheme. From Gµ, the Fermi constant from muon decay, mZ , the Z0 boson

pole mass, and αqed(mZ) in the MS-scheme, the remaining two parameters can be derived,

according to

mW =

√√√√m2
Z

2
+

√
m4
Z

4
− m2

Zαqed(mZ)π√
2Gµ

, and sin2 θW = 1 − m2
W

m2
Z

. (4.64)

The strong interaction strength is fixed by αs(mZ) in the five-flavour MS-scheme.

Parameters defining the Higgs sector

The conventions for the parameters specifying the Higgs sector are almost identical for the

SLHA and Ref. [207]. The two fields H0
1,2 aquire non-zero vacuum expectation values as

given in Eq. (4.27), and the relevant parameter tan β is again defined as

tanβ ≡ v2/v1 , (4.65)

fixing the mixing matrix ZH of the charged and pseudo-scalar Higgs states. To guarantee

consistency with tree-level calculations, per default the running of tanβ is not taken into

account within AMEGIC++/SHERPA. Instead the parameter is fixed to its value at scale mZ .

The convention used for the Higgs mass parameter µ is same in both versions of the MSSM

Lagrangian. The last issue to be resolved for the Higgs sector is the parametrisation of the
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neutral scalar Higgs mixing. The SLHA defines the corresponding mixing angle α by the

mixing matrix
(
H0

h0

)
=

(
cosα sinα

− sinα cosα

)( √
2Re[H0

1 ] − v1√
2Re[H0

2 ] − v2

)
. (4.66)

Accordingly, the matrix elements of the mixing matrix ZR, defined in Eq. (4.34), are then

given by

ZR =

(
− sinα cosα

cosα − sinα

)
. (4.67)

Neutralino and chargino mixing

Neutralino mixing

The spinor basis used to describe the mixing in the neutral fermion sector is the same for the

SLHA conventions and what is used in the Sec. 4.3.2, namely ψ̃0 = (−iB̃, −iW̃ 3, H̃0
1 , H̃

0
2 ).

The corresponding neutralino mass matrix defined by

Lneut.
mass = −1

2
(ψ̃0)T Mψ̃0 ψ̃

0 + h.c. (4.68)

is diagonalised by the 4 × 4 matrix N according to

[N∗Mψ̃0N
†]ij = ηimχ̃0

i
δij . (4.69)

In case the mixing matrix is found to be complex, the phase gets absorbed into the definition

of the corresponding eigenvector. When CP violation is absent the mixing matrix can be

chosen strictly real, for the price of having signed masses. Comparing Eq. (4.69) with the

corresponding expression for the Feynman rules introduced above, cf. Eq. (4.43), the simple

relation

ZN = NT (4.70)

can be inferred.

Chargino mixing

As for the neutralinos the spinor basis state used to describe the mixing in the charged

fermion sector coincides for the AMEGIC++/SHERPA rules and the SLHA, namely ψ̃+ =

(−iW̃+, H̃+
2 ) and ψ̃− = (−iW̃−, H̃−

1 ). In the SLHA nomenclature the un-symmetric

chargino mass matrix gets diagonalised by the 2 × 2 matrices U and V according to

[U∗Mψ̃+V
†]ij = ηimχ̃+

i
δij , (4.71)

where in the absence of CP violation U and V can be chosen strictly real. Comparing

Eq. (4.71) and the corresponding relation for the Feynman rules of Ref. [207], cf. Eq. (4.46),

one can read off

Z− = UT and Z+ = V T . (4.72)
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Sfermion mixing

As stated above, at present sfermion mixing in the SLHA is restricted to the left-right mixing

of the third generation sfermion sector only. In contrast, the mixing matrices implemented

in AMEGIC++/SHERPA allow for a general mixing of all the slepton, up-type squark and

down-type squark states, respectively. Accordingly the charged sfermion mixing matrices

are 6× 6 instead of 2× 2 only. In the SLHA the interaction eigenstates are labeled by f̃L/R

for the SU(2)L doublet and singlet states, respectively, with f̃ ∈ {t, b, τ}. The resulting

mass eigenstates f̃1/2 then refer to the lighter and heavier physical particle, respectively.

The mixing is parametrised by the mixing matrix
(
f̃1

f̃2

)
=

(
F11 F12

F21 F22

)(
f̃L

f̃R

)
, (4.73)

whose determinant should be ±1. Comparing this with Ref. [207], this results in ZL/U/D

having the form

ZL/U/D =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 F11 0 0 F21

0 0 0 1 0 0

0 0 0 0 1 0

0 0 F12 0 0 F22




. (4.74)

As sneutrino mixing is not supported by the SLHA the general mixing matrix present in the

Feynman rules of Ref. [207], allowing for non-diagonal soft-breaking terms (m2
L̃
)IJ , is set to

[Zν]ij = δij . (4.75)

4.4 Comparison with other approaches

Besides AMEGIC++/SHERPA, at present, there exist only two more program packages that

can carry out exact tree-level calculations for multi-particle processes in the framework of the

MSSM, – MADGRAPH/MADEVENT and O’MEGA/WHIZARD. As AMEGIC++/SHERPA they

consist of two more or less independent programs, an automated matrix-element generator,

that generates helicity amplitudes for a chosen process, and a library for adaptive phase-

space integration and event generation, that produces integrated cross sections and weighted

or unweighted event samples.

Beneath these common general features, the similarities of the three tools quickly disappear:

they use independently derived Feynman rules with distinct conventions, different algorithms

for matrix-element generation, phase-space setup, and integration. Successfully testing these

vastly different programs against each other, with a Lagrangian as complex as that of the
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TeV-scale MSSM, should give confidence in the predictive power of these programs for SUSY

physics at the LHC and later at an ILC.

In Secs. 4.4.1 and 4.4.2 the generators MADGRAPH/MADEVENT and O’MEGA/WHIZARD

are briefly introduced. For the comparison of the three codes the MSSM with R-parity

conservation is considered. A general set of TEV-scale MSSM input parameters is allowed

for, with a few simplifying restrictions: (i) CP conservation is assumed, i.e. all soft-breaking

terms in the Lagrangian are real (cf. also (iii) below); (ii) masses and Yukawa couplings for

the first two fermion generations are neglected , i.e. left-right mixing occurs only for third-

generation squarks and sleptons 1; (iii) correspondingly, the SM flavour structure is assumed

to be trivial, VCKM = VMNS = 1; (iv) likewise it is assumed that the flavour structure of the

SUSY-breaking terms is trivial. In Sec. 4.4.3 an extensive set of 2 → 2 scattering processes is

considered, that involves and thereby tests all Feynman rules, that could be of any relevance

at the LHC and a future ILC. Sec. 4.4.4 focuses on the residual effects that emerge when

the above restrictions concerning the MSSM flavour sector are partially lifted.

4.4.1 MADGRAPH II and MADEVENT

MADGRAPH [48] was the first program allowing fully automated calculations of squared he-

licity amplitudes in the Standard Model and has been applied to many physics calculations.

MADGRAPH II is implemented in fortran77. It generates all Feynman diagrams for a given

process, performs the colour algebra and translates the result into a fortran77 procedure

with calls to the HELAS library [210]. During this translation, redundant subexpressions are

recognised and computed only once. While the complexity continues to grow asymptotically

with the number of Feynman diagrams, this approach generates efficient code for typical

applications.

The correct implementation of colour flows for hadron collider physics was an important

objective for the very first version of MADGRAPH, while the implementation of extensions of

the SM remained nontrivial for users. MADGRAPH II reads the model information from two

files and supports Majorana fermions, allowing fully automated calculations in the MSSM.

The MSSM implementation makes use and extends the list of Feynman rules that have been

derived in the context of [211, 212, 213].

MADEVENT [49, 50] uses phase-space mappings based on single squared Feynman diagrams

for adaptive multi-channel sampling [205]. The MADGRAPH/MADEVENT package has a

web-based user interface and supports shortcuts such as summing over initial-state partons,

summing over jet flavours and restricting intermediate states. Interfaces to parton-shower

and hadronisation Monte Carlos [214] are available.

1This includes neglecting light fermion masses in the neutralino and chargino sector, which would other-

wise appear via Yukawa-higgsino couplings. Physically, this is motivated by flavour constraints which forbid

large deviations from universality in the first and second generations [209].
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4.4.2 O’MEGA and WHIZARD

O’MEGA [185] and WHIZARD [186] were initially designed for e+e− linear colliders studies.

O’MEGA constructs numerically stable and optimally factorised scattering amplitudes and

allows the study of physics beyond the Standard Model. A general treatment of colour was

added to O’MEGA only recently and is currently available only in conjunction with WHIZARD.

O’MEGA constructs an expression for the scattering matrix element from a description of the

Feynman rules and the target programming language. The complexity of these expressions

grows only exponentially with the number of external particles, unlike the factorial growth

of the number of Feynman diagrams. Optionally, O’MEGA can calculate cascades: long-lived

intermediate particles can be forced on the mass shell in order to obtain gauge invariant

approximations with full spin correlations.

O’MEGA is implemented in the functional programming language Objective Caml [215], but

the compiler is portable and no knowledge of Objective Caml is required for using O’MEGA

with the supported models. The tables describing the Lagrangians can be extended by

users. Its set of MSSM Feynman rules was derived in accordance with Ref. [216].

WHIZARD builds a Monte Carlo event generator on the library VAMP [217] for adaptive

multi-channel sampling. It uses heuristics to construct phase-space parameterisations cor-

responding to the dominant time- and space-like singularities for each process. For processes

with many identical particles in the final state, symmetries are used extensively to reduce

the number of independent channels.

WHIZARD is written in fortran95, with some Perl glue code. It is particularly easy

to simulate multiple processes (i.e. reducible backgrounds) with the correct relative rates

simultaneously. It has an integrated interface to PYTHIA [80] that follows the Les Houches

Accord [214] for parton showers and hadronisation.

4.4.3 Pair production of SUSY particles

The setup

As long as R-parity is conserved, SUSY particles are only produced in pairs. Therefore,

SUSY phenomenology at the LHC and ILC amounts to essentially searching for all acces-

sible supersymmetric pair-production channels with subsequent (cascade) decays. Proper

simulations need to describe this type of processes as accurately as possible. This requires a

careful treatment of many-particle final states, off-shell effects and SUSY as well as SM back-

grounds. The complexity of this task and the variety of conventions and schemes commonly

used require careful cross-checks at all levels of the calculation.

As a first step, a comprehensive list of total cross sections for on-shell supersymmetric pair

production processes is presented in Appendix A.4. These results give a rough overview of

the possible SUSY phenomenology at future colliders, at least for the chosen point in SUSY
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parameter space. The second purpose of this computation is a careful check of the used sets

of Feynman rules and their numerical implementation. After testing the tools it is moved on

to a proper treatment beyond näıve 2 → 2 production processes. All numbers are computed

independently with MADGRAPH, WHIZARD, and SHERPA, using identical input parameters.

The MSSM parameter set used corresponds to the point SPS1a [218]. This point assumes

gravity mediated supersymmetry breaking with the universal GUT-scale parameters:

m0 = 100 GeV , m1/2 = 250 GeV , A0 = −100 GeV , tanβ = 10 , µ > 0 . (4.76)

The TeV-scale physical spectrum has been computed with SOFTSUSY [188]. For the purpose

of evaluating 2 → 2 cross sections, all SUSY particle widths have been set to zero. The final

states are all possible combinations of two SUSY partners or two Higgs bosons. The initial

states required to test all the SUSY vertices are:

e+e−, e−ν̄e, e
−e−, τ+τ−, τ−ν̄τ , uū, dd̄, uu, dd, bb̄, bt̄,

W+W−, W−Z0, W−γ, Z0Z0, Z0γ, γγ, gW−, gZ0, gγ, gg, ug, dg .

The (partonic) initial-state energy is always fixed. This allows for a comparison of cross

sections without dependence on parton structure functions, and with much-improved nu-

merical efficiency. Clearly, some of these initial states cannot be realised on-shell or are

even impossible to realise at a collider. They serve only as tests of the Feynman rules. Any

MSSM Feynman rule relevant for an observable collider process is involved in at least one

of the considered processes. For SM processes, comprehensive checks and comparisons were

performed in the past [198, 219].

The complete list of input parameters is given in Appendix A.3. The input is specified in

the SLHA format [187]. This ensures compatibility of the input conventions, even though

different conventions for the Lagrangian and Feynman rules are used by the different pro-

grams.

In Appendix A.4, the results for two partonic c.m. energies
√
s = 500 GeV and 2 TeV are

listed and compared. All results agree within a Monte Carlo statistical uncertainty of 0.1%

or less. These errors reflect neither the accuracy nor the efficiency of any of the programs;

the number of matrix element calls or the amount of CPU time required in the computation

is not specified. To obtain a precise 2 → 2 total cross section, Monte Carlo integration

is not a good choice. On the other hand these simple processes serve as the most efficient

framework to test the numerical implementation of Feynman rules and the MSSM spectrum.

It has to be emphasised that the three programs MADGRAPH, WHIZARD, and SHERPA, and

their SUSY implementation are completely independent. They use different conventions,

signs and phase choices for the MSSM Feynman rules; have independent algorithms and

helicity amplitude libraries; and use different methods for parameterising and sampling the

phase space. The results presented can be considered as a strong check that covers all

practical aspects of MSSM calculations, from the model setup to the numerical details.
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Specifically, the Feynman rules in Ref. [207] can be confirmed as they are used in SHERPA.

These Feynman rules do not use the SLHA format, so translating them is a non-trivial part

of the implementation. For MADGRAPH and WHIZARD, the Feynman rules were derived

independently.

Sample cross sections

The cross section results and their physical interpretation are briefly discussed. While the

numbers are specific for the chosen SUSY parameter point SPS1a [218] and its associated

mass spectrum, many features of the results are rather generic in one-scale SUSY breaking

models and depend only on the structure of the TeV-scale MSSM.

e+e− processes

All e+e−–induced SUSY production cross sections receive contributions from s-channel Z0

and (for charged particles) photon exchange. The couplings of the supersymmetric particles

to Z0 and photon are determined by the SU(2)L×U(1)Y gauge couplings and mixing angle.

As expected from perturbative unitarity, all s-channel-process cross sections asymptotically

fall off like 1/s. If the process in question includes t-channel exchange, all partial waves

have to be summed

m2

2p · k +m2
=

∞∑

n=0

(−2p · k
m2

)n
=⇒ σ ∝ 1

s
×





log s
m2 for no vector boson exchange,

s
m2 for vector boson exchange.

(4.77)

The implication of the second line is that Coulomb scattering, WBF, and in some sense all

hadronic cross sections, do not decrease with s.

The e+e− cross sections are listed in A.4.1. The largest, of up to a few hundred fb at√
s = 500 GeV, correspond to sneutrino and selectron production, χ̃0

1 and χ̃0
2, and chargino

pair production. These are the processes with a dominant t-channel slepton contribution.

In SPS1a the heavier neutralinos χ̃0
3, χ̃

0
4 are almost pure higgsinos. Higgsinos couple only

to the s-channel Z0, and diagonal pair production of χ̃0
3χ̃

0
3, χ̃

0
4χ̃

0
4 is suppressed because of

the inherent cancellation between the two higgsino fractions hu and hd; i.e. the amplitudes

are proportional to |hu|2 − |hd|2, which vanishes in the limit where they have the same

higgsino masses. Only mixed χ̃0
3χ̃

0
4 production has a significant cross section, because it is

proportional to the sum |hu|2 + |hd|2.
In the Higgs sector, SPS1a realises the decoupling limit where the light Higgs h0 closely

resembles the SM Higgs. The production channels Z0h, AH0, and H+H− dominate if

kinematically accessible, while the reduced coupling of the Z0 to heavy Higgses strongly

suppresses the Z0H0 and A0h0 channels.

For completeness, the e−ν̄e set of cross sections are also shown in A.4.3, even though such

a collider is infeasible.



4.4 Comparison with other approaches 167

W+W− and WZ0 processes

The cross sections for weak boson fusion processes, listed in A.4.6 and A.4.7, are gener-

ically of the same order of magnitude as their fermion-initiated counterparts, with a few

notable differences. In addition to gauge boson exchange, s- and t-channel Higgs exchange

contributes to WBF production of third-generation sfermions, neutralinos, charginos, and

Higgs/vector bosons. These processes are sensitive to a plethora of Higgs couplings to super-

symmetric particles. Furthermore, the longitudinal polarisation components of the external

vector bosons approximate, in the high-energy limit, the pseudo-Goldstone bosons of elec-

troweak symmetry breaking. This results in a characteristic asymptotic behaviour (that can

be checked by inserting
√
s values of several TeV, not shown in the tables): the total cross

sections for vector-boson and CP -even Higgs pair production in WBF approach a constant

at high energy, corresponding to t-channel gauge boson exchange between two scalars. Pro-

duction cross sections that contain the CP -odd Higgs or the charged Higgs instead decrease

like 1/s, because no scalar-Goldstone-gauge boson vertices exist for these particles.

In the cases involving first and second generation sfermions, t-channel sfermion exchange

with an initial-state W contributes only to left-handed sfermions, so the f̃Lf̃
∗
L cross sections

dominate over f̃Rf̃
∗
R. In the neutralino sector, χ̃0

1 is dominantly bino and does not couple to

neutral Higgs bosons, so χ̃0
1 production in W+W− fusion is suppressed. The other neutralinos

and charginos, being the SUSY partners of massive vector bosons and Higgses, are produced

with cross sections up to 100 pb. The largest neutralino rates occur for mixed gaugino

and higgsino production, because the Yukawa couplings are given by the gaugino–higgsino

mixing entry in the neutralino mass matrix. In the Higgs sector, the decoupling limit ensures

that only W+W− → Z0h0, WZ0 → Wh0 (almost 100 pb), and W+W− → h0h0 (6 pb) are

important, while the production of heavy Higgses is suppressed. For W+W− → A0h0 and

W−Z0 → H−h0 the decoupling suppression applies twice.

In reality, WW → XX and WZ0 → XY scattering occurs only as a subprocess of 2 → 6

multi-particle production. The initial vector bosons are emitted as virtual states from a

pair of incoming fermions. The measurable cross sections are phase-space suppressed by a

few orders of magnitude. A rough estimate can be made by folding the energy-dependent

WW/WZ0 cross sections with weak-boson structure functions. Reliable calculations require

the inclusion of all Feynman diagrams, as can be done with the three programs under

investigation — the production rates rarely exceed O(ab) at the LHC [184].

Other processes

For the remaining lists of processes with vector-boson or fermion initial states, similar

considerations apply. In particular, the photon has no longitudinal component, so γ-induced

electroweak processes (Secs. A.4.8, A.4.10 and A.4.11) are not related to Goldstone-pair

scattering. Even rather unrealistic fermionic initial states such as τ+τ−, τ−ν̄τ and bt̄ are
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listed in reference tables, cf. Secs. A.4.2, A.4.4 and A.4.5, because they involve Feynman

rules that do not occur in other production processes, but are relevant for decays.

Finally, the set of processes studied contains several lists with the coloured fermionic initial

states uū, dd̄ and bb̄ (Secs. A.4.16–A.4.18, plus Sec. A.4.20 for same-flavour fermions); gg-

fusion (Sec. A.4.15); qg-fusion (Sec. A.4.19); and mixed QCD-electroweak processes gA0, gZ0

and gW (Secs. A.4.12, A.4.13 and A.4.14). These (as full hadronic processes) are accessible

at hadron colliders, and comparing their cross sections completes the check of Feynman

rules of the SUSY-QCD sector and its interplay with the electroweak interactions. Note

that for a transparent comparison the quark- and gluon-induced processes are not folded

with structure functions.

The only Feynman rules not checked by any process in this list are the four-scalar couplings.

It is expected, and has explicitly been verified for the four-Higgs coupling in particular [220],

that these contact interactions are not accessible at any collider in the foreseeable future.

They have therefore been neglected for the comparison.

4.4.4 Flavour mixing

For most of this comparison the quark masses and the mixings of the first two squark and

slepton/sneutrino generations have been neglected . With very few exceptions, these effects

are numerically rather unimportant or irrelevant for the simulation of SUSY scattering

and decay processes. Here a brief account of the consequences of using a non-diagonal

CKM matrix shall be given. Full CKM mixing is available as an option for the WHIZARD

and SHERPA event generators. For MADGRAPH, it is straightforward to modify the model

definition file accordingly.

The CKM mixing matrix essentially drops out from most processes when summing over all

quark intermediate and final states. This is due to CKM unitarity, violated only by terms

proportional to the quark mass squared over
√
s in high energy scattering processes. For

the first two generations, such corrections are negligible at the energies considered here.

At hadron colliders, summation over initial-state flavours does not lead to cancellation

because the parton densities are flavour-dependent. In the SM, CKM structure matters only

for charged-current processes where a qq̄′ pair annihilates into a W boson. For instance,

the cross section for ud̄ → W+∗ → X is multiplied by |Vud|2, and the cross section for

us̄→ W+∗ → X is proportional to |Vus|2.
In the partonic final state, CKM unitarity ensures that a cross section does not depend on

flavour mixing. However, jet hadronisation depends on the jet quark flavour. Neglecting

CKM mixing can result in a wrong jet-flavour decomposition. In practice, this is not relevant

since jet-flavour tagging (except for b quarks, and possibly for c quarks) is impossible. In

cases where it is relevant, e.g. charm tagging in Higgs decay backgrounds at an ILC, the

problem may be remedied either by reverting to the full CKM treatment, or by rotating the
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CKM diagonal

uū→ d̃Ld̃
∗
L 166.621(8)

uū→ s̃Ls̃
∗
L 175.686(9)

dd̄→ ũLũ
∗
L 174.678(9)

dd̄→ c̃Lc̃
∗
L 178.113(9)

with CKM

uū→ d̃Ld̃
∗
L 160.547(8)

uū→ s̃Ls̃
∗
L 168.733(8)

dd̄→ ũLũ
∗
L 167.875(8)

dd̄→ c̃Lc̃
∗
L 170.984(9)

Table 4.4: Squark production cross sections computed using SHERPA/WHIZARD with and

without non-trivial CKM mixing.

outgoing quark flavours before hadronisation on an event-by-event basis.

To estimate the impact of CKM mixing on SUSY processes, the electroweak production

of two light-flavour squarks at the LHC: qq̄ → q̃′q̃′∗ is considered. Adopting the input of

Appendix A.3 and standard values for the CKM mixing parameters reduces the cross section

by about 4%, Tab. 4.4. This is negligible for LHC phenomenology, but ensures a correct

implementation of CKM mixing in the codes.

Finally, there can be nontrivial flavour effects in the soft SUSY-breaking parameters. That

is, if squark mixing differs from quark mixing, in the case of flavour-dependent SUSY break-

ing [209]. Non-minimal flavour violation predicts large signals for physics beyond the Stan-

dard Model, in particular flavour-changing neutral currents, in low-energy precision observ-

ables like kaon mixing. Their absence is a strong indication of flavour universality in a

SUSY breaking mechanism. The MSSM implementation in SHERPA allows for nontrivial

SUSY flavour effects, provided the SLHA input routines are adopted correspondingly (cf.

Sec. 4.3). In principle, these effects can be also be included in MADGRAPH and WHIZARD

with some minor modifications.

4.5 Sbottom production at the LHC

A SUSY process of primary interest at the LHC is bottom squark production. For this

specific discussion, a SUSY parameter point with rather light sbottoms and a rich low-

energy phenomenology is adopted. The complete parameter set is listed in Appendix A.5.

The sbottom masses are

mb̃1
= 295.36 GeV, mb̃2

= 399.92 GeV. (4.78)

In the following the focus shall be on the decay b̃1 → bχ̃0
1 with a branching ratio of 43.2%.

The lightest Higgs boson is near the LEP limit, but decays invisibly to neutralinos with

a branching ratio of 44.9%. The heavy Higgses are at 300 GeV. The lightest neutralino

mass is mχ̃0
1

= 46.84 GeV, while the other neutralinos and charginos are between 106 and

240 GeV. Sleptons are around 200 GeV. The squark mass scale is 430 GeV (except for mt̃2),
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and the gluino mass is 800 GeV. For all the LHC calculations presented in the following the

CTEQ5l parton distribution functions [221] have been employed.

A spectacular signal at this SUSY parameter point would of course be the light Higgs. Apart

from SUSY decays, the light MSSM Higgs sits in the decoupling region, which means it is

easily covered by the MSSM No-Lose theorem at the LHC [222]: for large pseudo-scalar

Higgs masses a light Higgs will be seen by the Standard Model searches in the WBF ττ

channel. Unfortunately, in most scenarios it would be challenging to distinguish a SUSY

Higgs boson from its SM counterpart, after properly including systematic errors. Here, the

SUSY parameter point used predicts a large light Higgs boson invisible branching fraction,

which would also be visible in the WBF channel [223]. There would be little doubt that

this light Higgs is not part of the SM Higgs sector.

It has been checked that the SUSY parameter point under consideration satisfies the low-

energy constraints for ∆ρ [224, 225], gµ−2 [226, 227], b → sγ [228, 229] and Bs → µ+µ− [230,

231], as well as the exclusion limits for Higgs and SUSY particles. The relic neutralino

density [232] is below the observed dark-matter density [233] and therefore allowed.

While this point might look slightly exceptional, in particular because of the large invis-

ible light Higgs branching ratio, the only parameters which matter for sbottom searches

at the LHC are the fairly small sbottom masses. The current direct experimental limits

come from the Tevatron search for jets plus missing energy, where at least for CDF the jets

include bottom quark tags [177]. However, for sbottom production the Tevatron limit has

to be regarded as a limit on cross section times branching ratio. The mass limits derived

in the light-flavour squark and gluino mass plane assume squark pair production includ-

ing diagrams with a t-channel gluino, which is strongly reduced for final-state sbottoms.

Moreover, strong mass limits arise from associated squark–gluino production, which is also

largely absent in the case of sbottoms [211].

Searching for squark and gluino signatures at the LHC as a sign of physics beyond the Stan-

dard Model (such as SUSY) has one distinct advantage: once asking for a large amount of

missing energy, the typical SM background will involve a W or Z0 boson. Because squarks

and gluinos are strongly interacting, the signal-to-background ratio S/B is automatically

enhanced by a factor αs/αqed. This means that for typical squark and gluino masses below

O(TeV) it is expected to see signs of new physics right before a light-Higgs signal. Most

SUSY mass spectrum information is carried by the squark and gluino cascade decay kine-

matics [181, 182], and though non-negligible, it can be assumed that QCD effects will not

alter these results dramatically [183]. The most dangerous backgrounds to cascade decay

analyses may not be SM Z0+jets events, but SUSY backgrounds, for example simple combi-

natorics with two decay chains in the same event. The (less likely) case that SUSY particles

are produced at the LHC, but do not decay within the detector, is an impressive show of the

power of the LHC detectors — finding and studying these particles does not pose a serious

problem at either ATLAS or CMS [234].
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Figure 4.7: The pmax
T,b (left) and pT/ (right) distributions for the signal process gg → bb̄χ̃0

1χ̃
0
1

and the main SM background pp→ bb̄νν̄, at the LHC. The missing transverse

momentum pT/ is defined as the transverse momentum of the χ̃0
1χ̃

0
1 or νν̄ pair

and does not include b decay products. Both processes are evaluated including

all off-shell diagrams.

4.5.1 Off-shell effects in sbottom decays

From a theoretical point of view, the production process pp → b̃1b̃
∗
1 with subsequent dual

decays b̃1 → bχ̃0
1 can be described using two approximations. Because the sbottoms are

scalars, their production and decay matrix elements can be separated by an approximate

Breit-Wigner propagator. Furthermore, the sbottom width Γb̃1 = 0.53 GeV is sufficiently

small to safely assume that even extending the Breit-Wigner approximation to a narrow-

width description should result in percent-level effects, unless cuts force the sbottoms to be

off-shell.

For this entire LHC section basic cuts for the bottom quark are required, whether it arises

from sbottom decays or from QCD jet radiation: pT,b > 20 GeV and |ηb| < 4. Any two

bottom jets have to be separated by ∆Rbb > 0.4. There are no additional cuts, for example

on missing transverse energy, because not a full signal vs. background analysis shall be

attempted. Instead, the focus is on the approximations which enter the signal process

calculation.

To stress the importance of properly understanding the signal process’ distributions, the

pmax
T,b and pT/ for the signal process gg → bb̄χ̃0

1χ̃
0
1 and for the main SM background pp→ bb̄νν̄

are depicted in Fig. 4.7. As expected, all final-state particles are considerably harder for the

signal process. This is due to heavy intermediate sbottoms in the final state. These kinds

of distributions for QCD backgrounds have played an important role illustrating progress
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Figure 4.8: The pT,b (left) and ηb (right) distributions for gg → bb̄χ̃0
1χ̃

0
1 at the LHC. The

blue (red) curves correspond to the harder (softer) of the two b-jets. The

dashed lines show the Breit-Wigner approximation for sbottoms; solid lines

include all off-shell effects.

in the proper description of jet radiation, a discussion turned to in the next section. The

pT/ distribution is only a parton-level approximation, i.e. the transverse momentum of the

χ̃0
1χ̃

0
1 or νν̄ pair and does not include b decays. However, the b-decay contributions can be

expected to be comparably small and largely balanced between the two sbottom decays.

The effects of the Breit-Wigner approximation compared to the complete set of off-shell

diagrams are shown in Fig. 4.8. After basic cuts the cross section for the process gg →
b̃1b̃

∗
1 → bb̄χ̃0

1χ̃
0
1 is 1120 fb. Because of the roughly 250 GeV mass difference between the

decaying sbottom and the final-state neutralino, even the softer b-jet pT distribution peaks

at 100 GeV. As expected from phase-space limitations, the harder of the b-jets is considerably

more central, but for both of the final-state bottom jets an additional tagging-inspired cut

|ηb| < 2.5 would capture most events. Including all off-shell contributions, i.e. studying

the complete process gg → bb̄χ̃0
1χ̃

0
1, leads to a small cross section increase, to 1177 fb after

basic cuts. The additional events are concentrated at softer jet transverse momenta (pT,b .

60 GeV) and alter the shape of the distributions sizeably. The diagrams which can contribute

to off-shell effects are, for example, bottom quark pair production in association with a

slightly off-shell Z0, where the Z0 decays to two neutralinos. The remaining QCD process

gg → bb̄ produces much softer b-jets, because of the lack of heavy resonances. Luckily, this

considerable distribution shape change is mostly in a phase-space region plagued by large

background, as shown in Fig. 4.7, therefore will be removed in an analysis. On the other

hand, there is no guarantee that off-shell effects will always lie in this kind of phase-space
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Figure 4.9: The pT,b distributions for the LHC process gg → bb̄bb̄χ̃0
1χ̃

0
1. The left panel

orders the jets according to their pT,b, while in the right panel they are ordered

by |ηb|. These peaks from left to right correspond to more central jets.

region, and from Fig. 4.8 it can be read off that the Breit-Wigner approximation is by no

means perfect.

4.5.2 Bottom-jet radiation

Just as with light-flavour squarks in qq̄ scattering, LHC could produce sbottom pairs from

a bb̄ initial state. Bottom densities [235] and SUSY signatures at the LHC are presently

undergoing careful study [236]. However, for heavy Higgs production it was shown that bot-

tom densities are the proper description for processes involving initial-state bottom quarks.

The comparison between gluon-induced [237] and bottom-induced [238] processes backs the

bottom-parton approach, as long as the bottom partons are defined consistently [127, 239].

The bottom-parton picture for Higgs production becomes more convincing the heavier the

final-state particles are [240], i.e. precisely the kinematic configuration one is interested in

for SUSY particles [236].

Sbottom pair production is the ideal process for a first attempt to study the effects of

bottom jet radiation on SUSY-QCD signatures. In the fixed-flavour scheme (only light-

flavour partons) the leading-order production process for sbottom pairs is 2 → 2 gluon

fusion. Following fixed-order perturbation theory, the radiation of a jet is part of the NLO

corrections [211]. This jet is likely to be an initial-state gluon, radiated off the gg or qq̄

initial states. Crossing the final- and initial-state partons, qg scattering would contribute

to sbottom pair production at NLO, adding a light-flavour quark jet to the final state. The
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Figure 4.10: The pmax
T,b (left) and pT/ (right) distributions for gg → bb̄bb̄χ̃0

1χ̃
0
1 (red) and

gg → bb̄χ̃0
1χ̃

0
1 (blue) at the LHC.

perturbative series for the total rate is stable, and as long as the additional jet is sufficiently

hard (pT,j & 50 GeV), the ratio of the inclusive cross sections is small: σb̃b̃j/σb̃b̃ ∼ 1/3 [183].

With the radiation of two jets (at NNLO in the fixed-flavour scheme), the situation becomes

more complicated. It is known that QCD jet radiation at the LHC is not necessarily softer

than jets from SUSY cascade decays [183]. This jet radiation can manifest itself as a

combinatorial background in a cascade analysis. Here the energy spectrum of bottom jets

from the decay b̃1 → bχ̃0
1 is investigated, so additional bottom jets from the initial state

lead to combinatorial background. Once radiating two jets from the dominant gg initial

state, bottom jets appear as initial-state radiation (ISR). In the total rate this process can

be included just by using the variable-flavour scheme in the leading-order cross section, as

discussed above.

As expected, the rate for the production process gg → bb̄bb̄χ̃0
1χ̃

0
1 of 130.7 fb is considerably

suppressed compared to the 1177 fb for inclusive (off-shell) sbottom pair production. Again,

pT,b > 20 GeV is required. The b-jet multiplicity is expected to decrease once asking for

harder b-jets in a proper analysis.

From a more conceptual point of view, the crucial question is how to identify the decay

b-jets, which carry information on the SUSY mass spectrum [182]. Because the ISR b-jets

arise from gluon splitting, they are predominantly soft and forward in the detector. To

identify the decay b quarks one can try to exclude the most forward and softest of the four

b-jets in the event, to reduce the combinatorial background. In Fig. 4.9 the ordered pT,b

spectra of the four final-state sbottoms are presented. Because of kinematics one may expect

that it should not matter if one orders the sbottoms according to pT,b or |ηb|, at least for
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grouping into initial-state and decay jet pairs. However, it is observed, that this kinematical

argument is not well suited to remove combinatorial backgrounds. Only the most forward

b-jet is indeed slightly softer than the other three, but the remaining three pT,b distributions

ordered according to |ηb| are indistinguishable.

After discussing the combinatorial effects of additional b-jets in the final state, the important

question is whether additional b-jet radiation alters the kinematics of sbottom production

and decay. In Fig. 4.10 the pmax
T,b and the pT/ distributions for bb̄χ̃0

1χ̃
0
1 and bb̄bb̄χ̃0

1χ̃
0
1 production

at the LHC are shown; those most likely to be useful in suppressing SM backgrounds. The

soft ends of the pT,b distributions do not scale because in the 4b case the hardest b-jet

becomes less likely to be a decay b-jet. Instead, a soft decay b quark will be replaced with a

harder initial-state b-jet. The 4b distribution peaks at lower pT,b because the minimum cut

on pT,b of the initial-state b-jets eats into the steep gluon densities. At very large values of

pT,b this effect becomes relatively less important, and the two distributions scale with each

other.

The pT/ distributions, however, are sensitive to
∑
pT,b. If both b-jets come from heavy

particle decays, the decay can alter their back-to-back kinematics. In contrast, additional

light particle production balances out the event, leading to generally smaller pT/ values. The

situation in the final analysis may be better, because a proper analysis after background

rejection cuts will be biased toward small pT/ , thus will be less sensitive to b-jet radiation

and combinatorial backgrounds.

4.6 Sbottom production at an ILC

At an ILC it would be possible to obtain more accurate mass and cross section measurements,

provided the collider energy is sufficient to produce sbottom pairs. This is due to the much

cleaner lepton collider environment, relative to a hadron collider – even though the lower rate

can statistically limit measurements. For this study again the parameter point described

in Appendix A.5 is chosen. There, the sbottom mass is low, but the appearance of various

Higgs and neutralino backgrounds complicates the analysis.

With sbottom production a process is encountered where multiple channels and their inter-

ferences contribute to the total signal rate; this is more typical than not. Off-shell effects

have to be well understood to perform a sensible precision analysis. Assuming 800 GeV col-

lider energy, the production channels b̃1b̃
∗
1 and b̃1b̃

∗
2 are open. From the squark-mixing matrix

it can be seen that the lighter of the two sbottoms, b̃1, predominantly is right-handed. Its

main decay mode is to bχ̃0
1. Therefore, as with sbottom production at the LHC, the principal

final state to be studied is bb̄ plus missing energy.

At the LHC, sbottom pair production dominates this final state because it is the only

strongly-interacting production channel. In contrast, sbottom pair production at an ILC

would proceed via electroweak interactions. Hence, all electroweak SUSY and SM processes
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Channel σ2→2 [fb] σ × BR [fb] σBW [fb]

Z0h0 20.574 1.342 1.335

Z0H0 0.003 0.000 0.000

h0A0 0.002 0.001 0.000

H0A0 5.653 0.320 0.314

χ̃0
1χ̃

0
2 69.109 13.078 13.954

χ̃0
1χ̃

0
3 24.268 3.675 4.828

χ̃0
1χ̃

0
4 19.337 0.061 0.938

b̃1b̃1 4.209 0.759 0.757

b̃1b̃2 0.057 0.002 0.002

Sum 19.238 22.129

Exact 19.624

w/ISR 22.552

Channel σ2→2/3 [fb] σ × BR [fb] σBW [fb]

Z0Z0 202.2 12.6 13.1

Z0h0 20.6 1.9 1.9

Z0H0 0.0 0.0 0.0

Z0ν̄ν 626.1 109.9 111.4

h0ν̄ν 170.5 76.5 76.4

H0ν̄ν 0.0 0.0 0.0

Sum 186.5 187.7

Exact 190.1

w/ISR 174.2

Table 4.5: SUSY cross sections contributing to e+e− → bb̄χ̃0
1χ̃

0
1 (left) and the SM back-

ground e+e− → bb̄νν̄ (right). The columns assume: on-shell production; same,

including the branching ratio into bb̄χ̃0
1χ̃

0
1 and bb̄νν̄; and with a Breit-Wigner

propagator. The incoherent sum is shown at the bottom. In the SM case, only

the 2 → 3 processes are summed, to avoid double-counting. The exact tree-level

result includes all Feynman diagrams and interferences. The last line shows the

effect of initial-state radiation (ISR) and beamstrahlung.

that contribute to the same final state need to be considered. In particular, the following

2 → 2 production processes contribute to e+e− → bb̄χ̃0
1χ̃

0
1:

e+e− → Z0h0, Z0H0, A0h0, A0H0, χ̃0
1χ̃

0
2, χ̃

0
1χ̃

0
3, χ̃

0
1χ̃

0
4, b̃1b̃

∗
1, b̃1b̃

∗
2 . (4.79)

All cross sections, in different approximations as well as in a complete calculation including

all interferences, are displayed in Table 4.5. Once folding in the branching ratios, fewer

processes contribute significantly, namely:

e+e− → Z0h0, A0H0, χ̃0
1χ̃

0
2, χ̃

0
1χ̃

0
3, b̃1b̃

∗
1, b̃1b̃

∗
2 . (4.80)

The SM process e+e− → bb̄νiν̄i (i = e, µ, τ) is dominated by WW fusion to Z0/h0 (followed

by Z0/h0 → bb̄) and by Z0h0/Z0Z0 pair production. It represents a significant irreducible

background, as a neutrino cannot be distinguished from the lightest neutralino in high-

energy collisions. Thus, this final state with neutrinos is referred to as SM background.
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4.6.1 Numerical approximations

It is instructive to compare various levels of approximation found in the literature before

moving to a complete treatment of the process. The simplest approximation for resonant

production and decay is to multiply the production cross section by the appropriate branch-

ing fraction. This narrow width approximation (NWA) is expected to hold as long as

Γ/m � 1. In traditional Monte Carlos, angular correlations are lost for scalar resonances

unless spin correlations along the lines of Ref. [241] are included.

It can be improved upon this by constraining the intermediate state to resonances (in the

case considered the two sbottoms) and inserting Breit-Wigner propagators. Such an ap-

proach takes into account off-shell corrections that originate from the nontrivial resonance

kinematics. However, the Breit-Wigner amplitude is not gauge-invariant off-resonance, thus

the precise result depends on the choice of gauge (here unitarity gauge). Both, this approx-

imation and the NWA neglect interferences with off-resonant diagrams.

To obtain the full tree-level result, all Feynman graphs and their interferences must be taken

into account, and an unambiguous breakdown into resonance channels is no longer possible.

Perturbation theory breaks down at the poles of intermediate on-shell states. The emerging

divergences have to be regularised, for example via finite particle widths which unitarise the

amplitude. Not surprisingly, näıvely including particle widths violates gauge invariance, but

schemes exist which properly address this problem [196]. Here the fixed-width scheme shall

be used, which includes the finite width even in the spacelike region and avoids problems of

gauge invariance in the processes considered here.

Finally, in many cases the effects of initial-state radiation (ISR) and beamstrahlung are

numerically of the same order of magnitude as the full resonance and interference corrections,

or even larger, and therefore need to be addressed.

4.6.2 Particle widths

As discussed before, the finite widths for all intermediate particles that can become on-shell

must be included. For the processes discussed here this includes the neutral Higgs and Z0

bosons, the neutralinos, and the sbottoms. It is tempting to merely treat the widths as

externally fixed numerical parameters. This, however, can lead to a mismatch: consider

a tree-level process with an intermediate resonance with mass M and total width Γ. The

tree-level cross section contains a factor

1

(p2 −M2)2 +M2Γ2
.

In the vicinity of the pole a factor 1/Γ is picked up. If Γ � M , this contribution to the

cross section can be approximated by the on-shell production cross section multiplied by

the branching ratio for resonance decay into the desired final state X, i.e. BRX = ΓX/Γ (cf.

Sec. 4.2.4). While the total width Γ is an external numerical parameter, the partial width
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Figure 4.11: The bb̄ invariant mass distribution for the χ̃0
1χ̃

0
3 contribution to e+e− →

bb̄χ̃0
1χ̃

0
1.

ΓX is implicitly computed by the integration program at tree-level during cross section

evaluation. This can lead to a noticeable mismatch, especially if the external full width is

calculated with higher-order corrections. Formally, the use of loop-improved widths induces

an order mismatch in any leading-order calculation, which, in principle, is allowed. However,

in reality, dominant corrections might reside in both the decay (width) calculation and the

production process, canceling each other in the full result. The NLO corrections to the

full process that would remedy the problem are generally unavailable, at least in a form

suitable for event generation [242]. To illustrate this reasoning, consider a case where the

resonance has only one decay channel. Then, in the narrow-width limit, the factorised result

is reproduced only if the tree-level width is taken as an input computed from exactly the

same parameters as the complete process.

While this looks like a trivial requirement, it should be stressed that most MSSM decay codes

return particle widths that include higher orders, either explicitly or implicitly through the

introduction of running couplings and mass parameters. Similarly, for the Z0 boson width

one is tempted to insert the measured value, which in the best of all worlds corresponds

to the all-orders perturbative result. To avoid the problems mentioned above, the relevant

particle widths are calculated in the same tree-level framework used for the full process.

For completeness, they are listed in Tab. A.1 of Appendix A.5, corresponding to the SLHA

input file used for the collider calculation. The corresponding leading-order widths agree

with those of SDECAY [243].

4.6.3 Testing the Narrow Width Approximation

An estimate of the effects of the NWA and of Breit-Wigner propagators is shown in Tab. 4.5.

In replacing on-shell intermediate states by Breit-Wigner functions in the SUSY processes
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(left panel) the total cross section increases by 15%. Breaking the cross section down

into individual contributions, it becomes apparent that this increase is mainly due to the

heavy neutralino channels. In contrast, the Z0, Higgs and sbottom channels are fairly well-

described by the on-shell approximation of Eq. (4.14). Including the complete set of all

tree-level Feynman diagrams with all interferences results in a decrease of 11%. Obviously,

continuum and interference effects are non-negligible and must be properly taken into ac-

count.

Similar considerations apply to the SM background, e+e− → bb̄νν̄, shown in the right panel

of Tab. 4.5. At a collider energy of 800 GeV, the SM process is dominated by weak boson

fusion, while pair production (Z0Z0/Z0H0) borders on negligible. For the total cross section,

the NWA works well: inserting Breit-Wigner propagators for the intermediate Z0, h states

increases the rate by a mere 0.6%, and including all diagrams with interferences leads to a

further increase of only 1.3%.

Finally, the effect of ISR and beamstrahlung is calculated: the SUSY cross section increases

by 15% — a general effect seen for processes dominated by particle pair production well

above threshold. (In that range the cross sections are proportional to 1/ŝ and therefore

profit from the reduction in effective energy due to photon radiation.) In contrast, for the

SM background, adding ISR and beamstrahlung amounts to a reduction by 8%. This is

expected for a t-channel-dominated process with asymptotically flat energy dependence.

Apart from total cross sections, it is crucial to understand off-shell effects in distributions.

They are significant in the neutralino channels e+e− → χ̃0
1χ̃

0
i (i = 2, 3, 4), the dominant

SUSY backgrounds to the sbottom signal. For this mass spectrum, the χ̃0
2 has a three-body

decay to qq̄χ̃0
1; here the focus is on q = b. The higgsino-like χ̃0

3 has a two-body decay

χ̃0
3 → Z0χ̃0

1 with a branching fraction close to 100% [243].

In the complete calculation, neither the decaying χ̃0
3 nor the intermediate Z0 is forced on-

shell. Continuum effects play a role. This explains the differences in the decay spectrum

between the full calculation and the approximation using Breit-Wigner propagators, as seen

in Fig. 4.11. There, neutralino pair production, e+e− → χ̃0
1χ̃

0
3, is included. In Fig. 4.11 the

bb̄ invariant mass spectrum for the process e+e− → χ̃0
1χ̃

0
3 → bb̄χ̃0

1χ̃
0
1 is depicted. Assuming

a two-body χ̃0
3 decay, a sharp Breit-Wigner Z0 resonance at 91.18 GeV may be expected.

Instead, the resonance is not Breit-Wigner-like and is surrounded by a nearly flat contin-

uous distribution at both high and low masses. Clearly, this would not be accounted for

by a factorised production–decay approximation. In fact, it stems from a highly off-shell

three-body decay χ̃0
3 → bb̄χ̃0

1 via an intermediate sbottom. As a background to sbottom

pair production, this process gives the dominant contribution, because it can be easily cut-

ted against on-shell neutralino production. The significant low-mass tail explains the 30%

enhancement for this channel seen in Tab. 4.5. Similar reasoning holds for other channels.

The results in Tab. 4.5 also demonstrate that photon radiation, both in the elementary

process (ISR) and as a semi-classical interaction of the incoming beams (beamstrahlung),
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Figure 4.12: Missing invariant mass spectrum for the full process e+e− → bb̄χ̃0
1χ̃

0
1: on the

left for the partonic process, on the right including ISR and beamstrahlung.

cannot be neglected. For the numerical results, ISR is included using the third-order leading-

logarithmic approximation [244], and beamstrahlung using the TESLA 800 parameterisation

in CIRCE [245]. In both cases the photon radiation is predominantly collinear with the

incoming beams and therefore invisible. Therefore, all distributions depending on missing

momentum, i.e. the momentum of the final-state neutralinos, are distorted by such effects. In

the left panel of Fig. 4.12 the missing invariant-mass spectrum for the full process e+e− →
bb̄χ̃0

1χ̃
0
1 without ISR and beamstrahlung is shown. Two narrow peaks are clearly visible,

corresponding to the one light and two (unresolved) heavy Higgs bosons. These peaks sit

on top of a continuum reaching a maximum around 500 GeV, dominantly stemming from

neutralino and sbottom pairs. ISR and beamstrahlung are included in the right panel of

Fig. 4.12. They tend to wash out the two sharp peaks, with a long tail to higher invariant

masses. Without explicitly showing it, it shall be emphasised that the same happens to the

SM background, where the Z0 boson decays invisibly into νν̄.

4.6.4 Isolating the sbottom-pair signal

According to Tab. 4.5, the dominant contribution to the bb̄χ̃0
1χ̃

0
1 final state at an ILC is neu-

tralino pair production. To study the sbottom sector, its contribution needs to be isolated

with kinematic cuts. In addition, vector boson fusion into Z0 and Higgs bosons represent

non-negligible backgrounds, and have to be reduced accordingly. It can be observed that

Higgs boson and heavy sbottom production are of minor importance.

An obvious cut for background reduction is on the reconstructed bb̄ invariant mass. Fig. 4.13

shows the distribution for the full process, with all Feynman diagrams and including ISR and

beamstrahlung. SM contributions (light gray) and the MSSM (dark) must be superimposed

to obtain the complete signal and background result, since neutrinos cannot be distinguished

from neutralinos. The spectrum depicted in Fig. 4.13 has several distinct features: there
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Figure 4.13: The bb̄ invariant mass spectrum for the full process e+e− → bb̄+E/ with ISR

and beamstrahlung. The SM background (Z0 → νν̄) with the Z0, h0 peaks is

light gray. Dark gray represents all MSSM processes, with two peaks from

heavy neutralino and heavy Higgs decays.

are narrow peaks at the h, Z0 and H/A boson masses, as well as a broader enhancement

around 50 GeV, associated with the χ̃0
2 three-body decay. (The b̃1b̃

∗
1 signal does not have any

resonance structure and populates the continuum at high invariant bb̄ masses.) To remove

all resonances certain invariant mass windows are cutted out:

Mbb̄ < 150 GeV , 250 GeV < Mbb̄ < 350 GeV . (4.81)

This cut retains mostly sbottom-pair signal events, with some continuum background. In

the crude NWA (just the simple production channels b̃1b̃
∗
1, χ̃

0
1χ̃

0
2, χ̃

0
1χ̃

0
3 and W+W− → Z0/h0,

Z0Z0, Z0h0, H0A0, . . .; times decay matrix elements), these cuts would remove the entire

background, while only marginally affecting the signal.

The effect of applying this cut is shown in Tab. 4.6 using the various approximations. In

the full calculation 60% of the signal rate is retained. While in the on-shell approximation

this cut would remove 100% of the peaked backgrounds, the complete calculation including

Breit-Wigner propagators retains a whopping 2.3 fb (SUSY) and 2.1 fb (SM). Surprisingly,

the exact tree-level cross section without ISR is considerably smaller than that: 0.5 fb

(SUSY, signal+background) and 1.8 fb (SM). Obviously, for the background SUSY processes

the Breit-Wigner approximation is misleadingly wrong if forcing the phase space into the

sbottom-signal region. Only the full calculation gives a reliable result.

In the absence of backgrounds, the b-jet energy spectrum from sbottom decays exhibits a

box-like shape corresponding to the decay kinematics of b̃1 → bχ̃0
1. Assuming that mχ̃0

1
is
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Channel σBW [fb] σcut
BW [fb]

Z0h0 1.335 0.009

Z0H0 0.000 0.000

h0A0 0.000 0.000

H0A0 0.314 0.003

χ̃0
1χ̃

0
2 13.954 0.458

χ̃0
1χ̃

0
3 4.828 0.454

χ̃0
1χ̃

0
4 0.938 0.937

b̃1b̃1 0.757 0.451

b̃1b̃2 0.002 0.001

Sum 22.129 2.314

Exact 19.624 0.487

w/ISR 22.552 0.375

Channel σBW [fb] σcut
BW [fb]

Z0ν̄ν 111.4 2.114

h0ν̄ν 76.4 0.002

H0ν̄ν 0.0 0.000

Sum 187.7 2.117

Exact 190.1 1.765

w/ISR 174.2 1.609

Table 4.6: SUSY cross sections contributing to e+e− → bb̄χ̃0
1χ̃

0
1 (left) and the SM back-

ground e+e− → bb̄νν̄ (right). The left column is the Breit-Wigner approxima-

tion without cuts. The right column is after the Mbb̄ cuts of Eq. (4.81). Shown

are the results for the incoherent sum of channels, the complete result with all

interferences, and the same with ISR and beamstrahlung.

known from a threshold scan, the edges of the box would allow a simple kinematical fit

to yield a precise determination of mb̃1
. The realistic Eb distribution appears in Fig. 4.14.

In the left panel the Eb spectrum for the full process without cuts is presented, including

all interferences, and taking ISR and beamstrahlung into account. The large background

precludes any identification of a box shape. The right panel displays the same distribution

after the Mbb̄ cuts of Eq. (4.81) and compares it with the ideal case (no background, no ISR,

no cuts) in the same normalisation.

The SUSY contribution after cuts (dark area) shows the same kinematical limits as the ideal

box, but the edges are washed out by the combined effects of cuts, ISR/beamstrahlung, and

continuum background. However, the signal sits atop a sizable leftover SM background. As

argued above, this background cannot be realistically simulated by simply concatenating

particle production and decays. Without going into detail, it shall be noted that for further

improvement of the signal-to-background ratio, one could use beam polarisation (reducing

the W+W− → bb̄ continuum) or a cut on missing invariant mass (to suppress Z0 → νν̄). For

a final verdict on the measurement of sbottom properties in this decay channel, a realistic

analysis must also consider fragmentation and hadronisation effects. NLO corrections to

the signal process must be taken into account to gain some idea about realistic event rates.



4.7 Summary and conclusions 183

dσ

dEb

[fb/GeV] e+e− → bb̄χ̃0
1χ̃

0
1

w. ISR + beamstr.

0

0.5

1

1.5

0 100 200 300 400
Eb [GeV]

dσ

dEb

[ab/GeV] e+e− → bb̄ + invis.
w. ISR + beamstr.

150GeV < Mbb̄ < 250GeV

350GeV < Mbb̄ < 800GeV

e+e− → b̃1b̃
∗

1 → bb̄χ̃0
1χ̃

0
1

0

2

4

6

8

10

0 100 200 300 400
Eb[GeV]

Figure 4.14: The Eb spectrum of the full process e+e− → bb̄+E/ , including all interferences

and off-shell effects, plus ISR and beamstrahlung. The light gray histogram

is the SM background, dark gray the sum of SUSY processes. The left panel

is before the cut of Eq. (4.81), while the right panel includes the cut. Also

in the right panel the idealised case (red) of on-shell sbottom production

without ISR or beamstrahlung is shown. The SM background is again shown

in light gray, while the dark gray shows the sbottom contribution alone.

4.7 Summary and conclusions

Phenomenological and experimental (Monte Carlo) analyses for new physics at colliders are

usually approached at a level of sophistication which does not match the know-how available

for the Standard Model. For supersymmetric signals at the LHC and an ILC effects which

occur beyond simple 2 → 2 cross section analyses have been carefully studied, using sbottom

pair production as a simple example process.

At the LHC, the reconstruction of decay kinematics is the source of essentially all information

on heavy new particles. Any observable linked to cross sections instead of kinematical

features is bound to suffer from much larger QCD uncertainties. Typical experimental

errors from jet energy scaling are of the same order as finite-width effects in the total cross

section. However, in relevant distributions, off-shell effects can easily be larger.

QCD off-shell effects also include additional jet radiation from the incoming state. Usually,

jet radiation is treated by parton showers in the collinear approximation. For processes with

bottom jets in the final state this approximation has been tested by computing the effects

of two additional bottom jets created through gluon splitting in the initial state. The effects

on the rate are typically below 10%, and kinematical distributions do indeed change. In the

considered case, distinguishing between initial-state bottom jets and decay bottom jets via
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rapidity and transverse momentum characteristics does not look promising.

Sbottom pair production at the LHC has the fortunate feature that most of these off-shell

effects and combinatorial backgrounds can be removed together with the SM backgrounds,

but this feature is by no means guaranteed for general SUSY processes.

At an ILC, the extraction of parameters from kinematic distributions is usually more precise

compared to more inclusive measurements. In contrast to the LHC, the typical size Γ/M

of off-shell effects exceeds the present ILC design experimental precision. It is therefore

mandatory for multi-particle final states to include the complete set of off-shell Feynman

diagrams in ILC studies, since they can alter signal distributions drastically. This was

impressively demonstrated by the study of sbottom pair production where corrections up

to 400% to production rates from off-shell effects have been found after standard cuts.

Irreducible SM backgrounds to missing energy signals can strongly distort the shapes of

energy and invariant mass distributions. Hence, if trying to attempt to extract masses and

mass differences from invariant mass distributions at an ILC, one finds that off-shell effects

and additional many-particle intermediate states must be taken into account which can

change cross sections dramatically. Simulation of initial-state radiation and beamstrahlung

is mandatory to describe shapes of resonances and distributions in a realistic linear collider

environment.

To be able to compute the effects described above the MSSM Lagrangian and the proper

description of Majorana particles have to be incorporated into event generators. The im-

plementation in the AMEGIC++/SHERPA Monte Carlo has been discussed in some detail and

the two other available solutions to the problem, the generators MADGRAPH/MADEVENT

and O’MEGA/WHIZARD, have been briefly introduced. To carefully check these tools several

hundred SUSY production processes have been compared numerically, as well as a number

of unitarity and gauge invariance checks were performed. All results, as well as the SLHA

input file, are given in the Appendix — this list of processes might serve as a standard

reference to check MSSM implementations in collider physics or phenomenology tools.



5 Summary

In this thesis new theoretical tools for the accurate simulation of scattering processes at

present and future collider experiments have been developed. Especially the next generation

of accelerators, the CERN LHC and a future e+e− machine, will set new standards for the

number and the complexity of final states to be studied and will allow for particle physics

measurements with an unprecedented precision. Accordingly, they provide a great challenge

for theorists concerned with the description of the scattering events to be observed.

Besides a precise modelling of Standard Model physics various scenarios of physics beyond

the Standard Model must be considered. Tools are needed for realistic studies of the sig-

natures for new physics and for the development of strategies to find these signals in the

presence of Standard Model or even new physics backgrounds. Special emphasis has thereby

to be given to multi-particle/multi-jet final states that often constitute signals for interesting

(new) physics.

Considering final states with a number of hard jets, there seems to be enough evidence

that the traditional simulation tools HERWIG and PYTHIA cannot fully accomplish their

description. Starting from a 2 → 2 core process, they account only for soft and collinear

QCD emissions through parton-shower models. Only recently, theoretical prescriptions have

been found to consistently combine tree-level matrix-element calculations with the existing

parton-shower algorithms. These methods avoid double counting of phase-space configu-

rations present in the matrix-element calculations and the parton-shower approach. They

can be understood as the automatic resummation of leading logarithms for the tree-level

matrix elements. The gain of such methods is that phase-space regions covered by hard

and by soft parton kinematics are simultaneously well described. In Chapter 2 of this the-

sis the working principles of such prescriptions have been discussed with special attention

being paid to the merging scheme implemented in the SHERPA Monte Carlo. This algo-

rithm, known as CKKW, has carefully been tested for single gauge boson production in

hadron–hadron collisions. Direct comparison with exact next-to-leading-order calculations

and experimental data confirmed that the CKKW merging prescription yields an improved

description of jet observables. To gain some more insight into the systematics of approaches

for combining matrix element calculations with parton showers, an extensive comparison

of all the presently available implementations of such prescription has been carried out for
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W+jets production at hadron colliders. It has been found that all the calculations rea-

sonably agree when taking into account systematic uncertainties. The systematics could

be reduced through a detailed tuning of the generators on current Tevatron data to yield

reliable predictions for the LHC.

To consistently match QCD higher-order calculations (at one-loop or tree-level) with par-

ton showers, a good analytical control over the perturbative terms present in the latter is

required. This has triggered the demand for improved parton-shower models that facilitate

the inclusion of exact matrix elements. In this line a completely new shower algorithm has

been presented in Chapter 3. It is based on the Catani–Seymour dipole subtraction formal-

ism, a universal method for calculating arbitrary processes at next-to-leading order in QCD.

The splitting kernels used in the shower are justified approximations of the Catani–Seymour

dipole functions. The kinematics of the individual splittings is accomplished such that ex-

act four-momentum conservation can be ensured for each single branching. Accordingly, the

shower can be stopped and started again at each intermediate stage of the evolution. The

model incorporates emissions from final- and initial-state partons and finite parton masses

are taken into account in a very general way. As ordering parameter for subsequent emis-

sions transverse momenta are used. The implementation of the new shower formulation has

been tested against a large set of experimental data. A very satisfactory agreement with the

measurements is observed and the model is apparently capable of describing QCD colour

coherence effects seen in three-jet events at the Tevatron collider. It can be anticipated

that this new shower implementation will be well suited for matching with higher-order

calculations.

In order to be adequately equipped for searches of phenomena beyond the Standard Model in

the experimental data, the theoretical models for their simulation also need to be improved.

One prime example is the supersymmetric extension of the Standard Model, the MSSM, that

yields rather complex signal topologies that will be hard to disentangle from the Standard

Model anyway. However, to be able to extract enough information from the measurements

to gain some confidence about the nature of the new physics, like masses, spins and other

quantum numbers of the new states, these multi-particle final states need to be simulated

quite precisely. So far, the description of SUSY production processes has relied on simple

2 → 2 matrix elements with possible decays of the new unstable particles modelled rather

crudely. To improve on that, only recently a new generation of Monte Carlo generators has

emerged that accomplish exact tree-level matrix-element calculations for multi-particle final

states in the framework of the MSSM. With these new tools it can correctly be accounted for

all kinds of off-shell effects, quantum interferences and angular correlations by calculating

the entire set of Feynman diagrams for a given final state. In Chapter 4 the framework

for consistent matrix-element calculations within the MSSM has been specified and the

incorporation of the theory’s most general Lagrangian into the generator SHERPA has been

discussed in detail. Extensive tests of the implementation have been carried out, all proving
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the correctness of the Feynman rules used. As an illustrative example for the importance

of off-shell effects in the simulation of SUSY particle production sbottom pair production

at the LHC and an ILC has been considered. While the impact of off-shell effects in the

considered SUSY scenario was found to be rather small at the LHC, for the corresponding

ILC analysis their inclusion is absolutely mandatory to get reasonable results, both for

production rates after selection cuts and differential distributions.

It can finally be concluded that the SHERPA generator in its present form is well prepared for

the challenges provided by the LHC, and that the course is set towards further improvements

of the simulation of final states as observed at collider experiments.
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Appendix A

A.1 Input parameters and phase-space cuts for

W±/Z0+jets at Tevatron

The PDF set used for all analyses is CTEQ6l [148]. The value of αs is chosen according

to the value taken for the PDF, namely αs(mZ) = 0.118. For the running of the strong

coupling the corresponding two-loop equation is used. Jets or initial partons are restricted

to the light flavour sector, namely g, u, d, s, c. In fact these flavours are taken to be massless

and the Yukawa couplings of the quarks are neglected throughout the entire analysis.

A.1.1 SM input parameters

The SM parameters are given in the Gµ scheme:

mW = 80.419 GeV , ΓW = 2.06 GeV,

mZ = 91.188 GeV , ΓZ = 2.49 GeV,

Gµ = 1.16639 × 10−5 GeV−2,

sin2 θW = 1 −m2
W/m

2
Z ,

αs = 0.118 . (A.1)

The electromagnetic coupling is derived from the Fermi constant Gµ according to

αqed =

√
2GµM

2
W sin2 θW
π

. (A.2)

The constant widths of the electroweak gauge bosons are introduced via the fixed-width

scheme. CKM mixing of the quark generations is neglected.

A.1.2 Cuts and jet criteria

The analyses of jet quantities the Run II k⊥-clustering algorithm defined in [56] have been

used. The parameter of this jet algorithm is a pseudo-cone of size D given below for the
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Tevatron analysis. For the charged leptons the following cuts have been applied:

plepton
⊥ > 20 GeV, |ηlepton| < 1, mll > 15 GeV. (A.3)

For the case of W production an additional cut on missing transverse momentum according

to the neutrino has been required, namely

pmiss
⊥ > 20 GeV. (A.4)

For the jet definition a pseudo-cone size of D = 0.7 has been used in addition to cuts on

pseudo-rapidity and transverse momentum:

pjet
⊥ > 15 GeV, |ηjet| < 2. (A.5)
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A.2 Feynman rules for Majorana fermions: neutralino

production

The usage of the Feynman rules presented in Sec. 4.2.3 is exemplified for the production

of two Majorana fermions, namely two neutralinos, in the process e− e+ → χ0
i χ

0
j with

i, j = 1, 2, 3, 4. There are three types of diagrams contributing to the total amplitude,

an s-channel graph with Z0 boson exchange and two t-channel and u-channel diagrams,

respectively, where both types of selectrons are exchanged, see Fig. 4.1. The s-channel

diagram and one of the t-channel contributions will be evaluated. Besides the determination

of the relative sign of the two graphs it will be shown that the expression for each diagram

is independent of the chosen orientation.

The s-channel diagram

Choosing the fermion flow within the s-channel graph according to Fig. A.1a the amplitude

reads

Ms
a = v̄(pe+) Γi u(pe−)DZ0 ū(pχ̃0

i
) Γj v(pχ̃0

j
) . (A.6)

Evaluating the same diagram but inverting the fermion flows, cf. Fig. A.1b, leads to the

expression

Ms
b = v̄(pe−) Γ′

i u(pe+)DZ0 ū(pχ̃0
j
) Γj v(pχ̃0

i
) . (A.7)

The coupling of the Z0 boson to the leptons has thereby been denoted by Γ
(′)
i whereas

Γj represents the appropriate coupling of the neutralinos to the Z0. The equivalence of

Eq. (A.6) and Eq. (A.7) can be shown employing the transposed fermion-boson interactions

and applying Eqs. (4.8) and (4.13),

Ms
a = uT (pe−) ΓTi v̄

T (pe+)DZ0 vT (pχ̃0
j
) ΓTj ū

T (pχ̃0
i
)

= v̄(pe−)CT ΓTi C
† u(pe+)DZ0 ū(pχ̃0

j
)CT ΓTj C

† v(pχ̃0
i
)

= v̄(pe−) Γ′
i u(pe+)DZ0 ū(pχ̃0

j
) Γj v(pχ̃0

i
)

= Ms
b. (A.8)

Both choices of the fermion flow lead to the same result. The value of the amplitude is

uniquely fixed and no sign ambiguities appear. According to the orientation of diagram (a)

the permutation of the fermion fields is found to be (e+, e−, χ̃0
i , χ̃

0
j).

The t- and u-channel diagrams

As an example for the t- and u-channel contributions the diagram depicted in Fig. A.2a is

considered. There the choice for the fermion flow leads to

Mt
a = ū(pχ̃0

i
) Γk u(pe−)DẽL

v̄(pe+) Γl v(pχ̃0
j
) . (A.9)
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Figure A.1: The s-channel diagram of the production of two neutralinos, depicted for the

two choices of the orientation.
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Figure A.2: The t-channel contribution to the production of two neutralinos, depicted for

the two choices of the orientation.

The coupling e− χ̃0
i ẽL is denoted by Γk, Γl represents the ẽL χ̃

0
j e

− coupling and DẽL
is the

propagator of the scalar electron. Inverting the fermion flow as displayed in Fig. A.2b leads

to the expression

Mt
b = v̄(pe−) Γ′

k v(pχ̃0
i
)DẽL

ū(pχ̃0
j
) Γl u(pe+) . (A.10)

To show that both equations yield the same, Eq. (A.9) is transformed similarly to Eq. (A.6),

Mt
a = uT (pe−) ΓTk ū

T (pχ̃0
i
)DẽL

vT (pχ̃0
j
) ΓTl v̄

T (pe+)

= v̄(pe−)CT ΓTk C
† v(pχ̃0

i
)DẽL

ū(pχ̃0
j
)CT ΓTl C

† u(pe+)

= v̄(pe−) Γ′
k v(pχ̃0

i
)DẽL

ū(pχ̃0
j
) Γ′

l u(pe+)

= Mt
b. (A.11)

Again the amplitude is independent of the fermion lines orientation. The permutations

of the fermion fields are either (χ̃0
i , e

−, e+, χ̃0
j) or (e−, χ̃0

i , χ̃
0
j , e

+). Comparing this with

the permutation for the s-channel diagram always an odd permutation parity is found.

Accordingly the two diagrams possess a negative interference. For the u-channel diagrams

where the final-state neutralinos are exchanged an additional minus sign is obtained such

that the total sign equals the one of the s-channel graph.
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A.3 Input parameters used in the SUSY comparison

Here the SLHA output of the SOFTSUSY program specifying the input parameters used is

listed:

# SOFTSUSY1.9

# B.C. Allanach, Comput. Phys. Commun. 143 (2002) 305-331, hep-ph/0104145

Block SPINFO # Program information

1 SOFTSUSY # spectrum calculator

2 1.9 # version number

Block MODSEL # Select model

1 1 # sugra

Block SMINPUTS # Standard Model inputs

# 1 1.27934000e+02 # alpha_em^(-1)(MZ) SM MSbar

2 1.16639000e-05 # G_Fermi

# 3 1.17200000e-01 # alpha_s(MZ)MSbar

# 4 9.11876000e+01 # MZ(pole)

# 5 4.25000000e+00 # Mb(mb)

# 6 1.74300000e+02 # Mtop(pole)

7 1.77700000e+00 # Mtau(pole)

Block MINPAR # SUSY breaking input parameters

3 1.00000000e+01 # tanb

4 1.00000000e+00 # sign(mu)

1 1.00000000e+02 # m0

2 2.50000000e+02 # m12

5 -1.00000000e+02 # A0

# Low energy data in SOFTSUSY: MIXING=-1 TOLERANCE=1.00000000e-03

# mgut=2.46245508e+16 GeV

Block MASS # Mass spectrum

#PDG code mass particle

24 8.04194155e+01 # MW

25 1.10762900e+02 # h0

35 4.00615086e+02 # H0

36 4.00247030e+02 # A0

37 4.08528577e+02 # H+

1000001 5.72715810e+02 # ~d_L

1000002 5.67266777e+02 # ~u_L

1000003 5.72715810e+02 # ~s_L

1000004 5.67266777e+02 # ~c_L

1000005 5.15224253e+02 # ~b_1

1000006 3.95930570e+02 # ~t_1

1000011 2.04280587e+02 # ~e_L

1000012 1.88661921e+02 # ~nue_L

1000013 2.04280587e+02 # ~mu_L

1000014 1.88661921e+02 # ~numu_L

1000015 1.36227332e+02 # ~stau_1

1000016 1.87777460e+02 # ~nu_tau_L
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1000021 6.07618238e+02 # ~g

1000022 9.72807171e+01 # ~neutralino(1)

1000023 1.80959888e+02 # ~neutralino(2)

1000024 1.80377023e+02 # ~chargino(1)

1000025 -3.64450624e+02 # ~neutralino(3)

1000035 3.83149239e+02 # ~neutralino(4)

1000037 3.83385634e+02 # ~chargino(2)

2000001 5.46084642e+02 # ~d_R

2000002 5.47013902e+02 # ~u_R

2000003 5.46084642e+02 # ~s_R

2000004 5.47013902e+02 # ~c_R

2000005 5.43980537e+02 # ~b_2

2000006 5.85709387e+02 # ~t_2

2000011 1.45527209e+02 # ~e_R

2000013 1.45527209e+02 # ~mu_R

2000015 2.08226705e+02 # ~stau_2

# Higgs mixing

Block alpha # Effective Higgs mixing parameter

-1.13731924e-01 # alpha

Block stopmix # stop mixing matrix

1 1 5.38076009e-01 # O_{11}

1 2 8.42896322e-01 # O_{12}

2 1 8.42896322e-01 # O_{21}

2 2 -5.38076009e-01 # O_{22}

Block sbotmix # sbottom mixing matrix

1 1 9.47748557e-01 # O_{11}

1 2 3.19018296e-01 # O_{12}

2 1 -3.19018296e-01 # O_{21}

2 2 9.47748557e-01 # O_{22}

Block staumix # stau mixing matrix

1 1 2.80949722e-01 # O_{11}

1 2 9.59722488e-01 # O_{12}

2 1 9.59722488e-01 # O_{21}

2 2 -2.80949722e-01 # O_{22}

Block nmix # neutralino mixing matrix

1 1 9.86069014e-01 # N_{1,1}

1 2 -5.46217310e-02 # N_{1,2}

1 3 1.47637908e-01 # N_{1,3}

1 4 -5.37346696e-02 # N_{1,4}

2 1 1.02047560e-01 # N_{2,1}

2 2 9.42730347e-01 # N_{2,2}

2 3 -2.74969181e-01 # N_{2,3}

2 4 1.58863895e-01 # N_{2,4}

3 1 -6.04553550e-02 # N_{3,1}

3 2 8.97014273e-02 # N_{3,2}

3 3 6.95501771e-01 # N_{3,3}

3 4 7.10335196e-01 # N_{3,4}
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4 1 -1.16616232e-01 # N_{4,1}

4 2 3.16590608e-01 # N_{4,2}

4 3 6.47203433e-01 # N_{4,3}

4 4 -6.83592537e-01 # N_{4,4}

Block Umix # chargino U mixing matrix

1 1 9.15543496e-01 # U_{1,1}

1 2 -4.02218978e-01 # U_{1,2}

2 1 4.02218978e-01 # U_{2,1}

2 2 9.15543496e-01 # U_{2,2}

Block Vmix # chargino V mixing matrix

1 1 9.72352114e-01 # V_{1,1}

1 2 -2.33519522e-01 # V_{1,2}

2 1 2.33519522e-01 # V_{2,1}

2 2 9.72352114e-01 # V_{2,2}

Block hmix Q= 4.64241862e+02 # Higgs mixing parameters

1 3.58355327e+02 # mu(Q)MSSM DRbar

# 2 9.75144517e+00 # tan beta(Q)MSSM DRbar

3 2.44921676e+02 # higgs vev(Q)MSSM DRbar

4 1.69588951e+04 # mA^2(Q)MSSM DRbar

Block au Q= 4.64241862e+02

1 1 0.00000000e+00 # Au(Q)MSSM DRbar

2 2 0.00000000e+00 # Ac(Q)MSSM DRbar

3 3 -5.04528807e+02 # At(Q)MSSM DRbar

Block ad Q= 4.64241862e+02

1 1 0.00000000e+00 # Ad(Q)MSSM DRbar

2 2 0.00000000e+00 # As(Q)MSSM DRbar

3 3 -7.97132778e+02 # Ab(Q)MSSM DRbar

Block ae Q= 4.64241862e+02

1 1 0.00000000e+00 # Ae(Q)MSSM DRbar

2 2 0.00000000e+00 # Amu(Q)MSSM DRbar

3 3 -2.56155534e+02 # Atau(Q)MSSM DRbar

Parameters used with a different value than specified in the above SLHA file are mW =

80.419 GeV, mZ = 91.188 GeV. All SUSY particle widths are set to zero, since there are

no SUSY particles in the s-channel. The only widths used in the comparison are set by

hand, ΓW = 2.048 GeV and ΓZ = 2.446 GeV. All Higgs widths have been set to zero, as

well as the electron mass. The third generation quark masses have been given the values

mt = 178.0 GeV and mb = 4.6 GeV. For the strong coupling αs(mZ) = 0.118 is used and all

remaining SM input parameters are calculated in the Gµ −mZ − αqed scheme.
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A.4 Cross section values for 2 → 2 SUSY processes

The following tables are also maintained at the web page

http://www.sherpa-mc.de/susy_comparison/susy_comparison.html.

A.4.1 e+e− processes

e+e− → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

ẽLẽ∗L 54.687(2) 78.864(6) 54.687(3) 78.866(4) 54.6890(7) 78.8670(8)

ẽRẽ∗R 274.69(2) 91.776(8) 274.682(1) 91.776(5) 274.695(3) 91.778(1)

ẽLẽ∗R 75.168(5) 7.237(1) 75.167(3) 7.2372(4) 75.1693(7) 7.23744(7)

µ̃Lµ̃∗
L 22.5471(7) 6.8263(2) 22.5478(9) 6.8265(3) 22.5482(2) 6.82638(7)

µ̃Rµ̃∗
R 51.839(2) 5.8107(2) 51.837(2) 5.8105(2) 51.8401(5) 5.81085(6)

τ̃1τ̃
∗
1 55.582(2) 5.7139(2) 55.580(2) 5.7141(2) 55.5835(6) 5.71399(6)

τ̃2τ̃
∗
2 19.0161(6) 6.5047(2) 19.0174(7) 6.5045(3) 19.0163(2) 6.50473(7)

τ̃1τ̃
∗
2 1.4118(4) 0.21406(1) 1.41191(5) 0.214058(8) 1.41187(1) 0.214067(2)

ν̃eν̃
∗
e 493.35(2) 272.15(2) 493.38(2) 272.15(1) 493.358(5) 272.155(3)

ν̃µν̃∗
µ 14.8632(4) 2.9231(1) 14.8638(6) 2.9232(1) 14.8633(1) 2.92309(3)

ν̃τ ν̃∗
τ 15.1399(5) 2.9246(1) 15.1394(8) 2.9245(1) 15.1403(2) 2.92465(3)

ũLũ∗
L — 7.6185(2) — 7.6188(3) — 7.61859(8)

ũRũ∗
R — 4.6933(1) — 4.6935(2) — 4.69342(5)

c̃Lc̃∗L — 7.6185(2) — 7.6182(3) — 7.61859(8)

c̃Rc̃∗R — 4.6933(1) — 4.6933(2) — 4.69342(5)

t̃1t̃
∗
1 — 5.9845(4) — 5.9847(2) — 5.98459(6)

t̃2t̃
∗
2 — 5.3794(3) — 5.3792(2) — 5.37951(6)

t̃1t̃
∗
2 — 1.2427(1) — 1.24264(5) — 1.24270(1)

d̃Ld̃∗L — 5.2055(1) — 5.2059(2) — 5.20563(2)

d̃Rd̃∗R — 1.17588(2) — 1.17595(5) — 1.17591(1)

s̃Ls̃∗L — 5.2055(1) — 5.2058(2) — 5.20563(2)

s̃Rs̃∗R — 1.17588(2) — 1.17585(5) — 1.17591(1)

b̃1b̃
∗
1 — 4.9388(3) — 4.9387(2) — 4.93883(5)

b̃2b̃
∗
2 — 1.1295(1) — 1.12946(4) — 1.12953(1)

b̃1b̃
∗
2 — 0.51644(3) — 0.516432(9) — 0.516447(6)
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e+e− → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

χ̃0
1χ̃

0
1 240.631(4) 26.3082(2) 240.636(7) 26.3087(9) 240.638(2) 26.3086(3)

χ̃0
1χ̃

0
2 62.377(1) 9.9475(1) 62.374(2) 9.9475(4) 62.3785(6) 9.94778(1)

χ̃0
1χ̃

0
3 7.78117(2) 0.64795(1) 7.78131(4) 0.64796(1) 7.78121(8) 0.647969(6)

χ̃0
1χ̃

0
4 1.03457(3) 1.36561(1) 1.03460(3) 1.36564(5) 1.03460(1) 1.36568(1)

χ̃0
2χ̃

0
2 70.730(2) 18.6841(3) 70.730(3) 18.6845(8) 70.7310(7) 18.6843(2)

χ̃0
2χ̃

0
3 — 1.85588(2) — 1.85590(4) — 1.85594(2)

χ̃0
2χ̃

0
4 — 3.03946(4) — 3.03951(9) — 3.03949(3)

χ̃0
3χ̃

0
3 — 4.2214(1)e-3 — 4.2214(2)e-3 — 4.22147(4)e-3

χ̃0
3χ̃

0
4 — 9.93621(8) — 9.9362(3) — 9.93637(1)

χ̃0
4χ̃

0
4 — 0.135479(1) — 0.135482(5) — 0.135479(1)

χ̃+

1 χ̃−

1 162.786(6) 45.079(2) 162.788(7) 45.080(2) 162.786(2) 45.0808(5)

χ̃+
2 χ̃−

2 — 26.9854(3) — 26.9864(6) — 26.9857(3)

χ̃+

1 χ̃−

2 — 4.01053(5) — 4.01053(9) — 4.01066(4)

Z0h0 59.377(2) 3.1148(2) 59.376(1) 3.11492(9) 59.3789(6) 3.11491(3)

Z0H0 6.17904(1)e-4 5.5060(3)e-4 6.179180(5)e-4 5.5058(2)e-4 6.17919(6)e-4 5.50607(6)e-4

A0h0 — 5.3434(2)e-4 — 5.3433(2)e-4 — 5.34350(5)e-4

A0H0 — 2.37418(7) — 2.37434(9) — 2.37422(2)

H+H− — 5.5335(2) — 5.5339(2) — 5.53374(6)
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A.4.2 τ+τ− processes

τ+τ− → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

τ̃1τ̃
∗
1 257.31(5) 79.63(4) 257.32(1) 79.636(4) 257.30(1) 79.638(4)

τ̃2τ̃
∗
2 46.368(6) 66.86(2) 46.368(2) 66.862(3) 46.372(2) 66.862(3)

τ̃1τ̃
∗
2 81.72(2) 18.96(1) 81.720(3) 18.9588(8) 81.726(4) 18.960(1)

ν̃τ ν̃∗
τ 502.26(7) 272.01(8) 502.27(2) 272.01(1) 502.30(3) 272.01(1)

χ̃0
1χ̃

0
1 249.94(2) 26.431(1) 249.954(9) 26.431(1) 249.96(1) 26.431(1)

χ̃0
1χ̃

0
2 69.967(3) 9.8940(3) 69.969(2) 9.8940(4) 69.968(3) 9.8937(5)

χ̃0
1χ̃

0
3 17.0387(3) 0.7913(1) 17.0394(1) 0.79136(2) 17.040(1) 0.79137(5)

χ̃0
1χ̃

0
4 7.01378(4) 1.50743(3) 7.01414(6) 1.5075(5) 7.0141(4) 1.50740(8)

χ̃0
2χ̃

0
2 82.351(7) 18.887(1) 82.353(3) 18.8879(9) 82.357(4) 18.8896(1)

χ̃0
2χ̃

0
3 — 1.7588(1) — 1.75884(5) — 1.7588(1)

χ̃0
2χ̃

0
4 — 2.96384(7) — 2.9640(1) — 2.9639(1)

χ̃0
3χ̃

0
3 — 0.046995(4) — 0.0469966(9) — 0.046999(2)

χ̃0
3χ̃

0
4 — 8.5852(4) — 8.5857(3) — 8.5856(4)

χ̃0
4χ̃

0
4 — 0.26438(2) — 0.264389(5) — 0.26437(1)

χ̃+

1 χ̃−

1 185.09(3) 45.15(1) 185.093(6) 45.147(2) 185.10(1) 45.151(2)

χ̃+
2 χ̃−

2 — 26.515(1) — 26.5162(6) — 26.515(1)

χ̃+

1 χ̃−

2 — 4.2127(4) — 4.21267(9) — 4.2125(2)

h0h0 0.3533827(3) 1.242(2)e-4 0.35339(2) 1.2422(3)e-4 0.35340(2) 1.24218(6)e-4

h0H0 — 5.167(4)e-3 — 5.1669(3)e-3 — 5.1671(3)e-3

H0H0 — 0.07931(3) — 0.079301(6) — 0.079311(4)

A0A0 — 0.07975(3) — 0.079758(6) — 0.079744(4)

Z0h0 59.591(3) 3.1803(8) 59.589(3) 3.1802(1) 59.602(3) 3.1829(2)

Z0H0 2.8316(3) 4.671(5) 2.83169(9) 4.6706(3) 2.8318(1) 4.6706(2)

Z0A0 2.9915(4) 4.682(5) 2.99162(9) 4.6821(3) 2.9917(2) 4.6817(2)

A0h0 — 5.143(4)e-3 — 5.1434(3)e-3 — 5.1440(3)e-3

A0H0 — 1.4880(2) — 1.48793(9) — 1.48802(8)

H+H− — 5.2344(6) — 5.2344(2) — 5.2345(3)
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A.4.3 e−ν̄e processes

e−ν̄e → X−

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

ẽLν̃∗
e 158.69(1) 67.096(5) 158.694(7) 67.095(3) 158.703(8) 67.100(3)

ẽRν̃∗
e 68.51(1) 6.547(4) 68.513(3) 6.5470(4) 68.508(3) 6.5469(3)

µ̃Lν̃∗
µ 58.492(3) 13.894(1) 58.491(2) 13.8935(5) 58.492(3) 13.8931(7)

τ̃1ν̃
∗
τ 8.5018(5) 1.1169(1) 8.5021(3) 1.11690(4) 8.5018(4) 1.11696(6)

τ̃2ν̃
∗
τ 51.792(3) 12.784(1) 51.790(2) 12.7836(5) 51.795(3) 12.7844(6)

χ̃−

1 χ̃0
1 137.414(5) 21.4202(6) 137.416(4) 21.4203(9) 137.426(8) 21.419(2)

χ̃−

1 χ̃0
2 58.797(3) 21.284(2) 58.795(1) 21.283(1) 58.794(3) 21.282(2)

χ̃−

1 χ̃0
3 — 2.2676(1) — 2.26760(7) — 2.2678(1)

χ̃−

1 χ̃0
4 — 3.5104(2) — 3.51046(6) — 3.5105(2)

χ̃−

2 χ̃0
1 1.16070(5) 1.73602(6) 1.16072(3) 1.73607(6) 1.16066(6) 1.73593(9)

χ̃−

2 χ̃0
2 — 3.6111(3) — 3.61122(6) — 3.6113(2)

χ̃−

2 χ̃0
3 — 26.9497(5) — 26.9511(7) — 26.952(1)

χ̃−

2 χ̃0
4 — 24.022(1) — 24.0223(8) — 24.022(1)

A.4.4 τ−ν̄τ processes

τ−ν̄τ → X−

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

τ̃1ν̃
∗
τ 84.13(2) 12.272(7) 84.129(3) 12.2724(4) 84.124(4) 12.2719(6)

τ̃2ν̃
∗
τ 139.86(1) 61.466(7) 139.852(6) 61.463(3) 139.858(7) 61.467(3)

χ̃−

1 χ̃0
1 146.263(6) 21.386(1) 146.265(4) 21.3863(9) 146.27(1) 21.389(2)

χ̃−

1 χ̃0
2 56.218(4) 21.338(3) 56.217(1) 21.336(1) 56.218(5) 21.339(2)

χ̃−

1 χ̃0
3 — 2.2049(1) — 2.2046(2) — 2.2050(2)

χ̃−

1 χ̃0
4 — 3.4436(3) — 3.44365(7) — 3.4434(3)

χ̃−

2 χ̃0
1 7.5231(2) 1.9569(1) 7.52316(6) 1.95691(6) 7.5234(8) 1.9570(2)

χ̃−

2 χ̃0
2 — 3.4953(3) — 3.49538(6) — 3.4955(3)

χ̃−

2 χ̃0
3 — 25.867(1) — 25.8690(7) — 25.866(3)

χ̃−

2 χ̃0
4 — 23.199(1) — 23.1989(8) — 23.201(2)

H−h0 — 0.002422(1) — 0.0024223(1) — 0.0024221(1)

H−H0 — 4.8560(5) — 4.8560(3) — 4.8564(2)

H−A0 — 4.8574(5) — 4.8578(3) — 4.8576(2)

W−h0 133.484(7) 7.537(1) 133.478(5) 7.5376(3) 133.476(7) 7.5377(4)

W−H0 57.988(7) 8.543(7) 57.989(2) 8.5432(4) 57.991(3) 8.5435(4)

W−A0 58.584(7) 8.567(7) 58.583(2) 8.5672(4) 58.586(3) 8.5679(4)

Z0H− 17.9854(1) 13.99(1) 17.9860(5) 13.9881(6) 17.986(1) 13.9881(7)
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A.4.5 bt̄ processes

bt̄ → X−

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

b̃1t̃
∗
1 — 667.4(2) — 667.45(2) — 667.53(4)

b̃1t̃
∗
2 — 609.5(1) — 609.52(2) — 609.53(3)

b̃2t̃
∗
1 — 692.7(1) — 692.66(2) — 692.73(4)

b̃2t̃
∗
2 — 775.7(2) — 775.71(2) — 775.69(4)

χ̃−

1 χ̃0
1 37.7535(4) 0.58472(5) 37.75442(7) 0.584741(6) 37.7542(1) 0.58473(2)

χ̃−

1 χ̃0
2 171.662(4) 6.1432(8) 171.6667(6) 6.1435(2) 171.6654(1) 6.1432(3)

χ̃−

1 χ̃0
3 — 7.2061(7) — 7.20626(9) — 7.2057(4)

χ̃−

1 χ̃0
4 — 9.7429(7) — 9.7429(1) — 9.7428(5)

χ̃−

2 χ̃0
1 17.9155(5) 2.8972(3) 17.91595(4) 2.89723(3) 17.9159(1) 2.8972(1)

χ̃−

2 χ̃0
2 — 8.1076(7) — 8.10775(8) — 8.1078(4)

χ̃−

2 χ̃0
3 — 54.043(2) — 54.046(1) — 54.050(4)

χ̃−

2 χ̃0
4 — 48.083(1) — 48.0844(9) — 48.083(2)

H−h0 — 26.660(8) — 26.660(1) — 26.666(4)

H−H0 — 2.0061(5) — 2.00611(8) — 2.0063(2)

H−A0 — 1.9083(5) — 1.90817(8) — 1.9084(2)

Z0H− 20.3530(1) 34.76(1) 20.3544(1) 34.766(1) 20.3543(1) 34.764(2)
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A.4.6 W +W − processes

W+W− → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

ẽLẽ∗L 192.14(2) 26.538(4) 192.145(1) 26.5380(6) 192.151(9) 26.538(1)

ẽRẽ∗R 14.215(3) 1.0297(3) 14.2151(4) 1.02966(4) 14.2153(7) 1.02968(5)

µ̃Lµ̃∗
L 192.14(2) 26.538(4) 192.146(1) 26.5380(6) 192.139(9) 26.540(1)

µ̃Rµ̃∗
R 14.215(3) 1.0297(3) 14.2145(4) 1.02972(4) 14.2153(7) 1.02975(5)

τ̃1τ̃
∗
1 7.926(2) 0.8328(3) 7.9266(2) 0.83284(3) 7.9269(4) 0.83286(4)

τ̃2τ̃
∗
2 168.05(2) 22.419(4) 168.046(1) 22.4195(5) 168.046(8) 22.419(1)

τ̃1τ̃
∗
2 17.852(3) 2.3294(4) 17.8521(1) 2.32935(5) 17.8518(9) 2.3293(1)

ν̃eν̃
∗
e 157.80(4) 23.487(6) 157.809(3) 23.486(1) 157.803(8) 23.489(1)

ν̃µν̃∗
µ 157.80(4) 23.487(6) 157.806(3) 23.487(1) 157.807(8) 23.488(1)

ν̃τ ν̃∗
τ 152.51(4) 23.427(6) 152.509(3) 23.429(1) 152.520(8) 23.429(1)

ũLũ∗
L — 41.59(1) — 41.590(1) — 41.588(2)

ũRũ∗
R — 1.0761(3) — 1.07608(3) — 1.07605(5)

c̃Lc̃∗L — 41.59(1) — 41.588(1) — 41.599(2)

c̃Rc̃∗R — 1.0761(3) — 1.07603(3) — 1.07596(5)

t̃1 t̃
∗
1 — 180.64(1) — 180.637(4) — 180.637(9)

t̃2 t̃
∗
2 — 204.46(1) — 204.461(3) — 204.47(1)

t̃1 t̃
∗
2 — 85.176(3) — 85.178(2) — 85.187(4)

d̃Ld̃∗L — 39.006(7) — 39.0067(4) — 39.007(2)

d̃Rd̃∗R — 0.26929(7) — 0.269305(8) — 0.26930(1)

s̃Ls̃∗L — 39.006(7) — 39.0062(4) — 39.007(2)

s̃Rs̃∗R — 0.26929(7) — 0.269291(8) — 0.26930(1)

b̃1b̃
∗
1 — 141.456(8) — 141.457(2) — 141.467(7)

b̃2b̃
∗
2 — 19.714(1) — 19.7133(4) — 19.715(1)

b̃1b̃
∗
2 — 61.090(4) — 61.090(1) — 61.093(3)

χ̃0
1χ̃

0
1 3.8822(2) 1.2741(4) 3.8824(1) 1.27423(8) 3.8821(2) 1.2741(1)

χ̃0
1χ̃

0
2 121.29(1) 24.47(1) 121.2925(7) 24.472(3) 121.296(6) 24.477(1)

χ̃0
1χ̃

0
3 6.8936(7) 12.880(7) 6.8934(2) 12.8790(8) 6.8938(3) 12.8793(6)

χ̃0
1χ̃

0
4 1.4974(1) 9.707(5) 1.4973(6) 9.7064(7) 1.49735(7) 9.7078(4)

χ̃0
2χ̃

0
2 5996.5(4) 1.0415(6)e3 5996.57(2) 1.04150(5)e3 5996.4(3) 1.04148(5)e3

χ̃0
2χ̃

0
3 — 365.6(2) — 365.615(6) — 365.63(2)

χ̃0
2χ̃

0
4 — 467.8(2) — 467.775(8) — 467.77(2)

χ̃0
3χ̃

0
3 — 82.35(3) — 82.347(8) — 82.352(4)

χ̃0
3χ̃

0
4 — 138.20(5) — 138.18(1) — 138.205(7)

χ̃0
4χ̃

0
4 — 117.78(4) — 117.80(1) — 117.786(6)

χ̃+

1 χ̃−

1 3772(1) 944.3(8) 3771.6(4) 944.2(1) 3771.8(2) 944.32(5)

χ̃+

2 χ̃−

2 — 258.3(2) — 258.37(4) — 258.36(1)

χ̃+

1 χ̃−

2 — 131.0(1) — 130.98(2) — 130.966(7)
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W+W− → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

h0h0 6023.6(9) 6.057(3)e3 6024.7(4) 6.061(1)e3 6025.0(3) 6.0587(3)e3

h0H0 — 2.174(1) — 2.1752(6) — 2.1752(1)

H0H0 — 6.7515(1) — 6.7509(11) — 6.7517(3)

A0A0 — 6.7270(1) — 6.7273(4) — 6.7274(3)

Z0h0 75520(13) 8.617(4)e4 75539(7) 8.620(2)e4 75528(4) 8.6181(4)e4

Z0H0 1.70948(2)16.390(8) 1.70944(8)16.3939(37) 1.70971(9)16.3933(8)

A0h0 — 6.0126(3)e-3 — 6.0123(7)e-3 — 6.0130(3)e-3

A0H0 — 3.4709(3) — 3.4708(7) — 3.4710(2)

H+H− — 19.605(1) — 19.6060(23) — 19.605(1)
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A.4.7 W −Z0 processes

W−Z0 → X−

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

ẽLν̃∗
e 96.635(6) 15.726(1) 96.639(2) 15.728(2) 96.632(5) 15.7249(8)

µ̃Lν̃∗
µ 96.635(6) 15.726(1) 96.638(2) 15.727(2) 96.631(5) 15.7264(8)

τ̃1ν̃
∗
τ 14.9542(8) 1.427(1) 14.952(1) 1.4268(2) 14.953(1) 1.42747(7)

τ̃2ν̃
∗
τ 85.875(5) 14.479(1) 85.875(2) 14.478(2) 85.870(4) 14.4780(7)

d̃Lũ∗
L — 24.220(3) — 24.220(1) — 24.219(1)

s̃Lc̃∗L — 24.220(3) — 24.221(1) — 24.220(1)

b̃1t̃
∗
1 — 40.676(2) — 40.676(4) — 40.677(2)

b̃2t̃
∗
2 — 8.3717(5) — 8.3706(7) — 8.3722(4)

b̃1t̃
∗
2 — 63.596(3) — 63.592(6) — 63.591(3)

b̃2t̃
∗
1 — 3.9242(2) — 3.9236(5) — 3.9244(2)

χ̃0
1χ̃

−

1 61.634(6) 16.389(5) 61.626(3) 16.389(1) 61.633(3) 16.391(1)

χ̃0
2χ̃

−

1 2.8355(7)e3 668.2(4) 2.8350(3)e3 668.1(1) 2.8356(2)e3 668.34(3)

χ̃0
3χ̃

−

1 — 278.5(1) — 278.53(1) — 278.58(2)

χ̃0
4χ̃

−

1 — 270.9(1) — 270.97(2) — 271.02(2)

χ̃0
1χ̃

−

2 11.7607(3) 12.379(4) 11.7619(7) 12.380(1) 11.7602(6) 12.380(1)

χ̃0
2χ̃

−

2 — 218.3(1) — 218.38(2) — 218.40(1)

χ̃0
3χ̃

−

2 — 76.50(3) — 76.494(5) — 76.497(4)

χ̃0
4χ̃

−

2 — 97.70(4) — 97.693(7) — 97.693(4)

h0H− — 4.439(6)e-3 — 4.4399(5)e-3 — 4.4395(2)e-3

H0H− — 6.1592(6) — 6.1592(2) — 6.1589(3)

A0H− — 5.9728(6) — 5.9726(5) — 5.9723(3)

W−h0 7.620(3)e4 8.29(1)e4 7.6213(6)e4 8.289(2)e4 7.6209(4)e4 8.2909(4)e4

W−H0 4.2446(2) 15.78(2) 4.2446(2) 15.783(3) 4.2445(2) 15.7848(8)

W−A0 1.07034(3) 0.24799(1) 1.07037(1) 0.24815(7) 1.07017(6) 0.24801(1)

Z0H− 0.177241(1) 0.25405(1) 0.17723(2) 0.25403(7) 0.17714(4) 0.25404(1)
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A.4.8 W −γ processes

W−γ → X−

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

ẽLν̃∗
e 92.93(2) 14.478(3) 92.927(7) 14.477(3) 92.933(5) 14.4789(7)

µ̃Lν̃∗
µ 92.93(2) 14.478(3) 92.942(7) 14.479(3) 92.934(5) 14.4782(7)

τ̃1ν̃
∗
τ 12.098(2) 1.2566(2) 12.100(1) 1.2566(3) 12.1035(6) 1.25669(6)

τ̃2ν̃
∗
τ 85.17(1) 13.373(2) 85.167(7) 13.372(3) 85.174(4) 13.3731(7)

d̃Lũ∗
R — 6.260(2) — 6.260(1) — 6.2605(3)

s̃Lc̃∗R — 6.260(2) — 6.262(1) — 6.2605(3)

b̃1t̃
∗
1 — 5.527(1) — 5.528(1) — 5.5279(3)

b̃2t̃
∗
2 — 0.5418(1) — 0.5417(1) — 0.54182(3)

b̃1t̃
∗
2 — 6.267(1) — 6.267(1) — 6.2680(3)

b̃2t̃
∗
1 — 0.8593(2) — 0.8595(2) — 0.85928(4)

χ̃0
1χ̃

−

1 15.824(4) 3.834(2) 15.821(2) 3.8332(6) 15.823(1) 3.8338(2)

χ̃0
2χ̃

−

1 1.2235(2)e3 303.1(1) 1.2235(1)e3 303.04(5) 1.22335(6)e3 303.11(2)

χ̃0
3χ̃

−

1 — 50.91(2) — 50.902(8) — 50.909(3)

χ̃0
4χ̃

−

1 — 52.64(2) — 52.648(8) — 52.643(3)

χ̃0
1χ̃

−

2 3.0373(3) 6.574(2) 3.03742(7) 6.5764(9) 3.0373(2) 6.5749(3)

χ̃0
2χ̃

−

2 — 34.00(1) — 34.003(5) — 34.000(2)

χ̃0
3χ̃

−

2 — 47.72(1) — 47.719(7) — 47.720(2)

χ̃0
4χ̃

−

2 — 59.64(2) — 59.636(8) — 59.639(3)

h0H− — 4.519(1)e-3 — 4.5192(8)e-3 — 4.5194(3)e-3

H0H− — 4.961(1) — 4.9610(9) — 4.9611(2)

A0H− — 4.966(1) — 4.9671(9) — 4.9668(2)

W−h0 1.2848(6)e4 1.580(2)e4 1.2855(3)e4 1.5811(4)e4 1.28512(7)e4 1.5801(1)e4

W−H0 0.5401(1) 3.016(4) 0.54011(6) 3.0172(7) 0.54016(3) 3.0170(2)
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A.4.9 Z0Z0 processes

Z0Z0 → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

ẽLẽ∗L 35.791(1) 3.78984(6) 35.7923(4) 3.8011(2) 35.792(2) 3.8009(2)

ẽRẽ∗R 22.9506(3) 1.92383(3) 22.9508(4) 1.9234(1) 22.950(1) 1.9239(1)

µ̃Lµ̃∗
L 35.791(1) 3.78984(6) 35.7920(4) 3.8008(2) 35.792(2) 3.8008(2)

µ̃Rµ̃∗
R 22.9506(3) 1.92383(3) 22.9509(4) 1.9239(1) 22.951(1) 1.9240(2)

τ̃1τ̃
∗
1 19.7282(2) 1.99982(4) 19.7282(3) 1.99985(8) 19.729(1) 1.9998(1)

τ̃2τ̃
∗
2 30.0569(7) 3.6161(1) 30.0574(2) 3.6161(1) 30.057(2) 3.6164(2)

τ̃1τ̃
∗
2 0.5145(1) 0.05745(1) 0.51455(2) 0.057456(2) 0.51455(3) 0.057455(3)

ν̃eν̃
∗
e 232.51(1) 32.0348(7) 232.517(3) 32.037(2) 232.51(1) 32.035(2)

ν̃µν̃∗
µ 232.51(1) 32.0348(7) 232.515(3) 32.037(2) 232.51(1) 32.036(2)

ν̃τ ν̃∗
τ 233.33(1) 32.0709(7) 233.341(3) 32.072(2) 233.34(1) 32.073(2)

ũLũ∗
L — 15.6788(4) — 15.6792(3) — 15.6799(8)

ũRũ∗
R — 1.20947(1) — 1.20948(2) — 1.20948(6)

c̃Lc̃∗L — 15.6788(4) — 15.6791(3) — 15.6792(8)

c̃Rc̃∗R — 1.20947(1) — 1.20949(2) — 1.20950(2)

t̃1t̃
∗
1 — 262.15(1) — 262.155(8) — 262.15(1)

t̃2t̃
∗
2 — 475.11(2) — 475.11(1) — 475.14(2)

t̃1t̃
∗
2 — 10.7125(2) — 10.7125(2) — 10.7128(5)

d̃Ld̃∗L — 30.546(1) — 30.5474(5) — 30.547(2)

d̃Rd̃∗R — 0.238111(1) — 0.238127(6) — 0.23812(1)

s̃Ls̃∗L — 30.546(1) — 30.5475(5) — 30.545(2)

s̃Rs̃∗R — 0.238111(1) — 0.238115(6) — 0.23811(1)

b̃1b̃
∗
1 — 20.7326(7) — 20.7329(2) — 20.734(1)

b̃2b̃
∗
2 — 10.68655(1) — 10.6865(2) — 10.6870(5)

b̃1b̃
∗
2 — 18.6452(1) — 18.6455(2) — 18.6454(9)

h0h0 7886(1) 7800(5) 7887.5(1) 7802.5(3) 7887.7(4) 7801.3(4)

h0H0 — 2.772(2) — 2.7726(2) — 2.7727(2)

H0H0 — 11.5202(2) — 11.5209(4) — 11.5206(6)

A0A0 — 11.3523(2) — 11.3528(4) — 11.3528(6)

H+H− — 3.17134(3) — 3.17136(5) — 3.1714(2)
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A.4.10 Z0γ processes

Z0γ → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

ẽLẽ∗L 64.062(2) 8.7331(2) 64.0633(7) 8.7333(5) 64.062(3) 8.7336(3)

ẽRẽ∗R 50.727(1) 6.0452(1) 50.7284(7) 6.0451(4) 50.728(3) 6.0453(3)

µ̃Lµ̃∗
L 64.062(2) 8.7331(2) 64.0628(7) 8.7327(5) 64.064(3) 8.7329(4)

µ̃Rµ̃∗
R 50.727(1) 6.0452(1) 50.7284(7) 6.0455(4) 50.728(3) 6.0450(3)

τ̃1τ̃
∗
1 36.4564(6) 4.13408(5) 36.4567(6) 4.1336(3) 36.455(2) 4.1339(2)

τ̃2τ̃
∗
2 46.604(1) 6.3910(1) 46.6053(5) 6.3907(4) 46.603(2) 6.3909(3)

τ̃1τ̃
∗
2 24.0433(2) 2.31001(2) 24.0446(3) 2.3102(1) 24.043(1) 2.3100(1)

ũLũ∗
L — 10.1947(3) — 10.1949(2) — 10.1949(5)

ũRũ∗
R — 1.86038(5) — 1.86042(3) — 1.8603(1)

c̃Lc̃∗L — 10.1947(3) — 10.1949(2) — 10.1950(5)

c̃Rc̃∗R — 1.86038(5) — 1.86039(3) — 1.8604(1)

t̃1t̃
∗
1 — 0.00126511(2) — 0.00126510(3) — 0.00126512(6)

t̃2t̃
∗
2 — 3.44658(6) — 3.44660(5) — 3.4465(2)

t̃1t̃
∗
2 — 19.0977(4) — 19.0982(7) — 19.098(1)

d̃Ld̃∗L — 3.70757(7) — 3.70773(5) — 3.7077(2)

d̃Rd̃∗R — 0.116431(3) — 0.116438(2) — 0.116431(6)

s̃Ls̃∗L — 3.70757(7) — 3.70774(6) — 3.7076(2)

s̃Rs̃∗R — 0.116431(3) — 0.116435(2) — 0.116431(6)

b̃1b̃
∗
1 — 3.1278(1) — 3.12782(6) — 3.1276(2)

b̃2b̃
∗
2 — 0.0114499(3) — 0.0114501(2) — 0.0114507(6)

b̃1b̃
∗
2 — 0.53387(1) — 0.533885(9) — 0.53388(3)

H+H− — 6.1846(2) — 6.1849(1) — 6.1848(3)
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A.4.11 γγ processes

γγ → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

ẽLẽ∗L 210.00(1) 29.058(1) 210.005(7) 20.056(5) 210.00(1) 29.060(2)

ẽRẽ∗R 250.32(1) 31.376(1) 250.321(11) 31.381(6) 250.324(12) 31.379(2)

µ̃Lµ̃∗
L 210.00(1) 29.058(1) 209.979(7) 29.041(5) 210.008(12) 29.058(2)

µ̃Rµ̃∗
R 250.32(1) 31.376(1) 250.322(11) 31.379(6) 250.313(13) 31.376(2)

τ̃1τ̃
∗
1 263.35(1) 31.715(1) 263.362(13) 31.714(6) 263.360(13) 31.719(2)

τ̃2τ̃
∗
2 207.62(1) 28.895(1) 207.618(7) 28.897(5) 207.625(10) 28.896(2)

ũLũ∗
L — 9.4531(3) — 9.4536(4) — 9.4530(4)

ũRũ∗
R — 9.7241(3) — 9.7244(5) — 9.7236(5)

c̃Lc̃∗L — 9.4531(3) — 9.4534(4) — 9.4531(4)

c̃Rc̃∗R — 9.7241(3) — 9.7230(5) — 9.7244(5)

t̃1t̃
∗
1 — 12.5153(5) — 12.5159(9) — 12.5157(6)

t̃2t̃
∗
2 — 9.2289(3) — 9.2298(4) — 9.2287(5)

d̃Ld̃∗L — 0.58654(2) — 0.58655(3) — 0.58655(3)

d̃Rd̃∗R — 0.60857(2) — 0.60853(3) — 0.60857(3)

s̃Ls̃∗L — 0.58654(2) — 0.58656(3) — 0.58656(3)

s̃Rs̃∗R — 0.60857(2) — 0.60863(3) — 0.60860(3)

b̃1b̃
∗
1 — 0.63761(2) — 0.63761(3) — 0.63759(3)

b̃2b̃
∗
2 — 0.61043(2) — 0.61045(3) — 0.61049(3)

χ̃+
1 χ̃−

1 1458.99(6) 274.0(1) 1459.04(6) 274.020(9) 1458.96(7) 274.01(1)

χ̃+

2 χ̃−

2 — 181.54(3) — 181.542(6) — 181.549(9)

H+H− — 20.650(1) — 20.644(2) — 20.649(1)

A.4.12 gγ processes

gγ → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

ũLũ∗
L — 55.427(1) — 55.4290(8) — 55.428(3)

ũRũ∗
R — 57.017(1) — 57.0184(9) — 57.020(3)

c̃Lc̃∗L — 55.427(1) — 55.4288(8) — 55.430(3)

c̃Rc̃∗R — 57.017(1) — 57.0175(9) — 57.019(3)

t̃1t̃
∗
1 — 73.382(2) — 73.382(2) — 73.383(4)

t̃2t̃
∗
2 — 54.113(1) — 54.1136(8) — 54.113(3)

d̃Ld̃∗L — 13.7565(4) — 13.7569(2) — 13.7560(7)

d̃Rd̃∗R — 14.2733(4) — 14.2737(2) — 14.2740(7)

s̃Ls̃∗L — 13.7565(4) — 13.7568(2) — 13.7575(7)

s̃Rs̃∗R — 14.2733(4) — 14.2735(2) — 14.2731(7)

b̃1b̃
∗
1 — 14.9542(4) — 14.9546(3) — 14.9540(7)

b̃2b̃
∗
2 — 14.3169(4) — 14.3171(2) — 14.3183(7)
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A.4.13 gZ0 processes

gZ0 → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

ũLũ∗
L — 59.776(2) — 59.7774(9) — 59.778(3)

ũRũ∗
R — 10.9082(3) — 10.9085(2) — 10.9079(5)

c̃Lc̃∗L — 59.776(2) — 59.7772(9) — 59.778(3)

c̃Rc̃∗R — 10.9082(3) — 10.9084(2) — 10.9088(5)

t̃1t̃
∗
1 — 0.0074179(2) — 0.0074179(2) — 0.0074182(4)

t̃2t̃
∗
2 — 20.2088(5) — 20.2091(3) — 20.208(1)

t̃1t̃
∗
2 — 111.978(3) — 111.986(4) — 111.980(6)

d̃Ld̃∗L — 86.956(2) — 86.9615(1) — 86.960(4)

d̃Rd̃∗R — 2.73075(7) — 2.73090(4) — 2.7308(1)

s̃Ls̃∗L — 86.956(2) — 86.959(1) — 86.956(4)

s̃Rs̃∗R — 2.73075(7) — 2.73078(4) — 2.7308(1)

b̃1b̃
∗
1 — 73.359(2) — 73.360(1) — 73.354(4)

b̃2b̃
∗
2 — 0.268544(7) — 0.268554(4) — 0.26857(1)

b̃1b̃
∗
2 — 12.5213(3) — 12.5214(2) — 12.5214(6)

A.4.14 gW − processes

gW− → X−

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

d̃Lũ∗
L — 187.611(5) — 187.616(3) — 187.604(8)

s̃Rc̃∗R — 187.611(5) — 187.617(3) — 187.619(8)

b̃1t̃
∗
1 — 138.625(2) — 138.625(4) — 138.624(7)

b̃2t̃
∗
2 — 16.5094(3) — 16.5095(3) — 16.5088(8)

b̃1t̃
∗
2 — 195.686(1) — 195.692(4) — 195.701(9)

b̃2t̃
∗
1 — 20.7535(5) — 20.7532(7) — 20.753(1)
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A.4.15 gg processes

gg → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

g̃g̃ — 13575(2) — 13575.6(1) — 13575.8(7)

ũLũ∗
L — 185.60(2) — 185.615(3) — 185.61(1)

ũRũ∗
R — 191.58(2) — 191.590(3) — 191.59(1)

c̃Lc̃∗L — 185.60(2) — 185.612(3) — 185.61(1)

c̃Rc̃∗R — 191.58(2) — 191.588(3) — 191.59(1)

t̃1t̃
∗
1 — 250.70(2) — 250.71(1) — 250.70(1)

t̃2t̃
∗
2 — 180.54(2) — 180.541(3) — 180.54(1)

d̃Ld̃∗L — 184.07(2) — 184.081(3) — 184.09(1)

d̃Rd̃∗R — 191.87(2) — 191.875(3) — 191.87(1)

s̃Ls̃∗L — 184.07(2) — 184.079(3) — 184.08(1)

s̃Rs̃∗R — 191.87(2) — 191.873(3) — 191.86(1)

b̃1b̃
∗
1 — 201.88(2) — 201.884(4) — 201.90(1)

b̃2b̃
∗
2 — 192.52(2) — 192.516(3) — 192.53(1)
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A.4.16 uū processes

uū → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

g̃g̃ — 1.1377(2)e3 — 1.1378(2)e3 — 1.1377(1)e3

ẽLẽ∗L 5.169(1) 1.5467(3) 5.1698(9) 1.5469(2) 5.1700(3) 1.54698(8)

ẽRẽ∗R 6.538(1) 0.7318(1) 6.538(1) 0.7318(1) 6.5379(3) 0.73179(4)

µ̃Lµ̃∗
L 5.169(1) 1.5467(3) 5.1687(9) 1.5466(3) 5.1693(3) 1.54679(8)

µ̃Rµ̃∗
R 6.538(1) 0.7318(1) 6.536(1) 0.7316(1) 6.5387(3) 0.73189(4)

τ̃1τ̃
∗
1 6.993(1) 0.7195(1) 6.992(1) 0.7194(1) 6.9935(3) 0.71949(4)

τ̃2τ̃
∗
2 4.1263(7) 1.3962(2) 4.1246(7) 1.3957(2) 4.1269(2) 1.39617(7)

τ̃1τ̃
∗
2 0.5420(1) 0.08218(1) 0.54193(9) 0.08217(1) 0.54199(3) 0.082184(4)

ν̃eν̃
∗
e 5.7063(5) 1.1222(2) 5.706(1) 1.1222(2) 5.7064(3) 1.12224(6)

ν̃µν̃∗
µ 5.7063(5) 1.1222(2) 5.704(1) 1.1217(2) 5.7070(3) 1.12237(6)

ν̃τ ν̃∗
τ 5.812(1) 1.1228(2) 5.813(1) 1.1229(2) 5.8126(3) 1.12282(6)

ũLũ∗
L — 799.6(1) — 799.6(1) — 799.63(4)

ũRũ∗
R — 879.7(1) — 879.7(1) — 879.75(4)

ũLũ∗
R — 784.1(2) — 784.16(3) — 784.15(4)

c̃Lc̃∗L — 178.39(1) — 178.39(2) — 178.398(9)

c̃Rc̃∗R — 185.63(2) — 185.62(2) — 185.655(9)

t̃1t̃
∗
1 — 245.12(2) — 245.11(3) — 245.10(1)

t̃2t̃
∗
2 — 169.22(1) — 169.22(2) — 169.223(8)

t̃1t̃
∗
2 — 0.47708(4) — 0.47714(8) — 0.47712(2)

d̃Ld̃∗L — 166.63(2) — 166.60(2) — 166.621(8)

d̃Rd̃∗R — 185.58(2) — 185.56(3) — 185.60(1)

s̃Ls̃∗L — 175.69(1) — 175.68(2) — 175.686(9)

s̃Rs̃∗R — 185.58(2) — 185.58(2) — 185.578(9)

b̃1b̃
∗
1 — 200.37(2) — 200.364(8) — 200.38(1)

b̃2b̃
∗
2 — 186.50(2) — 186.500(7) — 186.51(1)

b̃1b̃
∗
2 — 0.19827(2) — 0.198272(8) — 0.19827(1)
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uū → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

χ̃0
1χ̃

0
1 2.2483(1) 1.2164(1) 2.24829(2) 1.2165(1) 2.2483(1) 1.2165(2)

χ̃0
1χ̃

0
2 0.053855(3) 0.10850(1) 0.0538560(9) 0.10850(1) 0.053855(3) 0.108493(5)

χ̃0
1χ̃

0
3 0.524518(4) 0.096758(1) 0.524526(3) 0.096752(5) 0.52450(3) 0.096763(5)

χ̃0
1χ̃

0
4 9.8233(3)e-3 0.067303(3) 9.82339(8)e-3 0.067293(6) 9.8238(5)e-3 0.067308(3)

χ̃0
2χ̃

0
2 3.66463(5) 4.2298(3) 3.66472(3) 4.2296(4) 3.6646(2) 4.2298(3)

χ̃0
2χ̃

0
3 — 0.21148(3) — 0.211458(8) — 0.21147(1)

χ̃0
2χ̃

0
4 — 0.55025(5) — 0.55025(8) — 0.55028(3)

χ̃0
3χ̃

0
3 — 3.3843(1)e-4 — 3.3843(1)e-4 — 3.3844(2)e-4

χ̃0
3χ̃

0
4 — 4.4435(3) — 4.4433(2) — 4.4436(2)

χ̃0
4χ̃

0
4 — 0.016385(3) — 0.016389(3) — 0.016386(1)

χ̃+

1 χ̃−

1 153.97(2) 10.732(5) 153.977(2) 10.734(2) 153.964(8) 10.7329(5)

χ̃+
2 χ̃−

2 — 5.0402(5) — 5.0401(2) — 5.0400(3)

χ̃+

1 χ̃−

2 — 1.5363(2) — 1.5362(2) — 1.5363(1)

Z0h0 22.795(2) 1.1958(1) 22.797(2) 1.1960(2) 22.798(1) 1.19582(6)

Z0H0 2.37220(1)e-4 2.1138(2)e-4 2.37224(1)e-4 2.1142(4)e-4 2.3723(1)e-4 2.1141(1)e-4
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A.4.17 dd̄ processes

dd̄ → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

g̃g̃ — 1.1333(2)e3 — 1.1334(2)e3 — 1.13338(5)e3

ẽLẽ∗L 3.3467(6) 0.9844(2) 3.3472(6) 0.9845(2) 3.3473(2) 0.98453(5)

ẽRẽ∗R 2.0046(3) 0.21577(4) 2.0047(3) 0.21578(4) 2.0047(1) 0.21577(1)

µ̃Lµ̃∗
L 3.3467(6) 0.9844(2) 3.3465(6) 0.9843(2) 3.3469(2) 0.98435(5)

µ̃Rµ̃∗
R 2.0046(3) 0.21577(4) 2.0041(3) 0.21572(4) 2.0049(1) 0.21578(1)

τ̃1τ̃
∗
1 1.7274(3) 0.17266(3) 1.7271(3) 0.17264(3) 1.7273(1) 0.17265(1)

τ̃2τ̃
∗
2 2.4580(4) 0.8175(1) 2.4570(4) 0.8171(1) 2.4582(1) 0.81753(4)

τ̃1τ̃
∗
2 0.6951(1) 0.10539(2) 0.6950(1) 0.10538(2) 0.69505(4) 0.105383(5)

ν̃eν̃
∗
e 7.3174(1) 1.4391(2) 7.318(1) 1.4391(2) 7.3177(4) 1.43913(7)

ν̃µν̃∗
µ 7.3174(1) 1.4391(2) 7.314(1) 1.4385(3) 7.3186(4) 1.43930(7)

ν̃τ ν̃∗
τ 7.454(1) 1.4398(2) 7.454(1) 1.4400(2) 7.4539(4) 1.43987(7)

ũLũ∗
L — 174.67(4) — 174.67(2) — 174.678(9)

ũRũ∗
R — 185.21(2) — 185.19(3) — 185.228(9)

c̃Lc̃∗L — 178.11(1) — 178.10(2) — 178.113(9)

c̃Rc̃∗R — 185.21(2) — 185.21(2) — 185.212(9)

t̃1t̃
∗
1 — 244.45(2) — 244.45(3) — 244.44(1)

t̃2t̃
∗
2 — 168.81(1) — 168.80(2) — 168.812(8)

t̃1t̃
∗
2 — 0.61179(5) — 0.61183(8) — 0.61184(3)

d̃Ld̃∗L — 790.4(1) — 790.3(1) — 790.38(4)

d̃Rd̃∗R — 927.1(1) — 926.9(1) — 927.11(5)

s̃Ls̃∗L — 175.92(1) — 175.92(2) — 175.920(9)

s̃Rs̃∗R — 185.48(2) — 185.47(2) — 185.474(9)

b̃1b̃
∗
1 — 200.54(2) — 200.54(3) — 200.57(1)

b̃2b̃
∗
2 — 186.38(2) — 186.37(2) — 186.384(9)

b̃1b̃
∗
2 — 0.25425(2) — 0.25429(5) — 0.25426(1)
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dd̄ → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

χ̃0
1χ̃

0
1 0.118931(1) 0.079120(5) 0.1189331(7) 0.079125(4) 0.118938(5) 0.079118(5)

χ̃0
1χ̃

0
2 0.249928(5) 0.34310(3) 0.249935(1) 0.34310(2) 0.24992(1) 0.34309(2)

χ̃0
1χ̃

0
3 0.81721(1) 0.17387(1) 0.817225(4) 0.173875(3) 0.81722(5) 0.17387(1)

χ̃0
1χ̃

0
4 0.0212680(5) 0.140018(3) 0.0212673(2) 0.140020(3) 0.021268(1) 0.14003(1)

χ̃0
2χ̃

0
2 1.93986(1) 3.1013(3) 1.939907(9) 3.1011(2) 1.9399(1) 3.1012(2)

χ̃0
2χ̃

0
3 — 1.07903(5) — 1.07909(2) — 1.07910(5)

χ̃0
2χ̃

0
4 — 1.1685(1) — 1.16852(6) — 1.16868(5)

χ̃0
3χ̃

0
3 — 2.66293(3)e-3 — 2.66298(4)e-3 — 2.6631(1)e-3

χ̃0
3χ̃

0
4 — 4.7678(5) — 4.76810(9) — 4.7678(3)

χ̃0
4χ̃

0
4 — 0.08799(1) — 0.087994(6) — 0.087993(5)

χ̃+

1 χ̃−

1 137.16(2) 10.508(5) 137.161(3) 10.504(2) 137.17(1) 10.5073(5)

χ̃+
2 χ̃−

2 — 4.4960(5) — 4.4954(1) — 4.49605(5)

χ̃+

1 χ̃−

2 — 0.7742(2) — 0.77407(5) — 0.77420(5)

Z0h0 29.232(2) 1.5335(2) 29.235(3) 1.5337(3) 29.235(1) 1.53363(8)

Z0H0 3.04205(1)e-4 2.7107(3)e-4 3.0421(2)e-4 2.7112(5)e-4 3.0421(1)e-4 2.7109(1)e-4
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A.4.18 bb̄ processes

bb̄ → X

Final MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

state 0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

b̃1b̃
∗
1 — 896.9(1) — 896.92(3) — 896.96(4)

b̃2b̃
∗
2 — 933.1(1) — 933.08(3) — 933.09(5)

b̃1b̃
∗
2 — 742.4(1) — 742.46(2) — 742.48(4)

t̃1t̃
∗
1 — 475.0(1) — 475.02(2) — 475.05(3)

t̃2t̃
∗
2 — 178.05(2) — 178.057(7) — 178.072(9)

t̃1t̃
∗
2 — 50.580(6) — 50.581(2) — 50.583(2)

χ̃0
1χ̃

0
1 6.07876(2) 0.096781(3) 6.078898(4) 0.096786(2) 6.0788(3) 0.096782(4)

χ̃0
1χ̃

0
2 27.5227(1) 0.44563(1) 27.52342(2) 0.445637(9) 27.523(1) 0.44564(2)

χ̃0
1χ̃

0
3 11.19120(1) 0.13673(1) 11.191450(4) 0.1367346(7) 11.1909(6) 0.136730(7)

χ̃0
1χ̃

0
4 4.487214(3) 0.106440(6) 4.487316(1) 0.1064429(7) 4.4876(2) 0.106455(6)

χ̃0
2χ̃

0
2 31.52534(5) 3.5455(1) 31.52604(1) 3.54561(9) 31.525(1) 3.5458(2)

χ̃0
2χ̃

0
3 — 0.92863(6) — 0.928660(6) — 0.92869(5)

χ̃0
2χ̃

0
4 — 1.08817(1) — 1.08823(1) — 1.08829(6)

χ̃0
3χ̃

0
3 — 0.26420(1) — 0.264224(9) — 0.26421(1)

χ̃0
3χ̃

0
4 — 2.7853(2) — 2.78541(3) — 2.7856(1)

χ̃0
4χ̃

0
4 — 0.46431(1) — 0.46432(1) — 0.46431(2)

χ̃+

1 χ̃−

1 162.814(8) 13.912(2) 162.816(5) 13.9123(6) 162.802(8) 13.9123(7)

χ̃+
2 χ̃−

2 — 104.770(3) — 104.774(2) — 104.784(5)

χ̃+

1 χ̃−

2 — 6.7892(3) — 6.78942(9) — 6.7892(3)

h0h0 0.797127(4) 7.62(2)e-4 0.79711(4) 7.6246(1)e-4 0.79715(4) 7.6252(4)e-4

h0H0 — 0.06106(6) — 0.061079(3) — 0.061084(3)

H0H0 — 1.1850(5) — 1.18500(9) — 1.18503(6)

A0A0 — 1.1935(5) — 1.19373(9) — 1.19368(6)

A0h0 — 0.07681(6) — 0.076825(4) — 0.076823(4)

A0H0 — 2.406(1) — 2.4064(1) — 2.4066(1)

Z0h0 30.490(1) 1.782(1) 30.487(1) 1.78212(5) 30.492(2) 1.78209(9)

Z0H0 50.837(1) 16.98(2) 50.838(1) 16.9839(8) 50.840(3) 16.9849(8)

Z0A0 52.024(1) 17.01(2) 52.025(1) 17.0182(8) 52.023(3) 17.0163(9)

H+H− — 2.3187(6) — 2.31882(9) — 2.3188(1)

A.4.19 qg processes

qg → X

Process MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

ug → ũLg̃ — 3405.0(5) — 3405.2(3) — 3404.8(2)

ug → ũRg̃ — 3460.0(5) — 3460.0(3) — 3460.4(2)

dg → d̃Lg̃ — 3390.0(5) — 3390.5(3) — 3390.0(2)

dg → d̃Rg̃ — 3462.5(5) — 3462.5(3) — 3462.0(2)
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A.4.20 Two identical fermions as initial state

ff → X

Process MADGRAPH/HELAS O’MEGA/WHIZARD AMEGIC++/SHERPA

0.5 TeV 2 TeV 0.5 TeV 2 TeV 0.5 TeV 2 TeV

e−e− → ẽLẽL 520.30(4) 36.83(3) 520.31(3) 36.836(2) 520.32(3) 36.832(2)

e−e− → ẽRẽR 459.6(1) 28.65(3) 459.59(1) 28.650(3) 459.63(3) 28.651(2)

e−e− → ẽLẽR 160.04(1) 56.55(2) 159.96(2) 56.522(8) 160.04(2) 56.545(3)

uu → ũLũL — 716.9(1) — 716.973(4) — 716.99(4)

uu → ũRũR — 679.6(1) — 679.627(4) — 679.54(4)

uu → ũLũR — 1212.52(6) — 1212.52(5) — 1212.60(6)

dd → d̃Ld̃L — 712.6(1) — 712.668(4) — 712.68(4)

dd → d̃Rd̃R — 667.4(1) — 667.448(4) — 667.38(3)

dd → d̃Ld̃R — 1206.22(6) — 1206.22(5) — 1206.30(7)
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A.5 Input parameters for the LHC and ILC simulations

BLOCK DCINFO # Decay Program information

1 SDECAY # decay calculator

2 1.1a # version number

#

BLOCK SPINFO # Spectrum calculator information

1 SOFTSUSY # spectrum calculator

2 1.9 # version number

#

BLOCK MODSEL # Model selection

1 0 extSugra

#

BLOCK SMINPUTS # Standard Model inputs

1 1.27908957E+02 # alpha_em^-1(M_Z)^MSbar

2 1.16637000E-05 # G_F [GeV^-2]

3 1.18700000E-01 # alpha_S(M_Z)^MSbar

4 9.11876000E+01 # M_Z pole mass

5 2.50000000E+00 # mb(mb)^MSbar

6 1.70000000E+02 # mt pole mass

7 1.77699000E+00 # mtau pole mass

#

BLOCK MINPAR # Input parameters - minimal models

3 2.00000000E+01 # tanb

#

BLOCK EXTPAR # Input parameters - non-minimal models

34 5.68797374E+01 # meR(MX)

35 1.89750900E+02 # mmuR(MX)

36 8.00000000E+02 # mtauR(MX)

45 -5.16238332E+02 # mcR(MX)

#

BLOCK MASS # Mass Spectrum

# PDG code mass particle

24 7.98256000E+01 # W+

25 1.14451412E+02 # h

35 3.00156029E+02 # H

36 2.99997325E+02 # A

37 3.10961504E+02 # H+

5 2.50000000E+00 # b [running mass parameter]

1000001 4.41227652E+02 # ~d_L

2000001 4.37876121E+02 # ~d_R

1000002 4.33747239E+02 # ~u_L

2000002 4.35113863E+02 # ~u_R

1000003 4.41227652E+02 # ~s_L

2000003 4.37876121E+02 # ~s_R

1000004 4.33747239E+02 # ~c_L

2000004 4.35113863E+02 # ~c_R
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1000005 2.95364891E+02 # ~b_1

2000005 3.99917523E+02 # ~b_2

1000006 4.13841488E+02 # ~t_1

2000006 9.78880993E+02 # ~t_2

1000011 2.05024705E+02 # ~e_L

2000011 2.05651082E+02 # ~e_R

1000012 1.89267532E+02 # ~nu_eL

1000013 2.05024705E+02 # ~mu_L

2000013 2.05651082E+02 # ~mu_R

1000014 1.89267532E+02 # ~nu_muL

1000015 1.93593658E+02 # ~tau_1

2000015 2.16389302E+02 # ~tau_2

1000016 1.89240110E+02 # ~nu_tauL

1000021 8.00886030E+02 # ~g

1000022 4.68440180E+01 # ~chi_10

1000023 1.12408563E+02 # ~chi_20

1000025 -1.48090300E+02 # ~chi_30

1000035 2.36766770E+02 # ~chi_40

1000024 1.06599344E+02 # ~chi_1+

1000037 2.37250120E+02 # ~chi_2+

#

BLOCK NMIX # Neutralino Mixing Matrix

1 1 8.95603865E-01 # N_11

1 2 -9.72020087E-02 # N_12

1 3 4.04193897E-01 # N_13

1 4 -1.58343869E-01 # N_14

2 1 -4.03047040E-01 # N_21

2 2 -5.13608598E-01 # N_22

2 3 5.77552867E-01 # N_23

2 4 -4.90093846E-01 # N_24

3 1 -1.49313892E-01 # N_31

3 2 1.60265318E-01 # N_32

3 3 6.53298812E-01 # N_33

3 4 7.24721361E-01 # N_34

4 1 -1.14682879E-01 # N_41

4 2 8.37301025E-01 # N_42

4 3 2.76153292E-01 # N_43

4 4 -4.57727201E-01 # N_44

#

BLOCK UMIX # Chargino Mixing Matrix U

1 1 -3.90666525E-01 # U_11

1 2 9.20532273E-01 # U_12

2 1 -9.20532273E-01 # U_21

2 2 -3.90666525E-01 # U_22

#

BLOCK VMIX # Chargino Mixing Matrix V

1 1 -6.55146178E-01 # V_11
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1 2 7.55502141E-01 # V_12

2 1 -7.55502141E-01 # V_21

2 2 -6.55146178E-01 # V_22

#

BLOCK STOPMIX # Stop Mixing Matrix

1 1 9.92937358E-01 # cos(theta_t)

1 2 1.18639802E-01 # sin(theta_t)

2 1 -1.18639802E-01 # -sin(theta_t)

2 2 9.92937358E-01 # cos(theta_t)

#

BLOCK SBOTMIX # Sbottom Mixing Matrix

1 1 9.13760750E-02 # cos(theta_b)

1 2 9.95816455E-01 # sin(theta_b)

2 1 -9.95816455E-01 # -sin(theta_b)

2 2 9.13760750E-02 # cos(theta_b)

#

BLOCK STAUMIX # Stau Mixing Matrix

1 1 7.16384593E-01 # cos(theta_tau)

1 2 6.97705608E-01 # sin(theta_tau)

2 1 -6.97705608E-01 # -sin(theta_tau)

2 2 7.16384593E-01 # cos(theta_tau)

#

BLOCK ALPHA # Higgs mixing

-6.49713878E-02 # Mixing angle in the neutral Higgs boson sector

#

BLOCK HMIX Q= 6.12412338E+02 # DRbar Higgs Parameters

1 1.33393949E+02 # mu(Q)MSSM

2 1.94594998E+01 # tan

3 2.43561981E+02 # higgs

4 1.06061486E+05 # mA^2(Q)MSSM

#

BLOCK GAUGE Q= 6.12412338E+02 # The gauge couplings

1 3.61902434E-01 # gprime(Q) DRbar

2 6.48956611E-01 # g(Q) DRbar

3 1.09052463E+00 # g3(Q) DRbar

#

BLOCK AU Q= 6.12412338E+02 # The trilinear couplings

1 1 0.00000000E+00 # A_u(Q) DRbar

2 2 0.00000000E+00 # A_c(Q) DRbar

3 3 -5.80795469E+02 # A_t(Q) DRbar

#

BLOCK AD Q= 6.12412338E+02 # The trilinear couplings

1 1 0.00000000E+00 # A_d(Q) DRbar

2 2 0.00000000E+00 # A_s(Q) DRbar

3 3 -1.84431338E+02 # A_b(Q) DRbar

#

BLOCK AE Q= 6.12412338E+02 # The trilinear couplings
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1 1 0.00000000E+00 # A_e(Q) DRbar

2 2 0.00000000E+00 # A_mu(Q) DRbar

3 3 -3.54951850E-01 # A_tau(Q) DRbar

#

BLOCK Yu Q= 6.12412338E+02 # The Yukawa couplings

1 1 0.00000000E+00 # y_u(Q) DRbar

2 2 0.00000000E+00 # y_c(Q) DRbar

3 3 8.97145644E-01 # y_t(Q) DRbar

#

BLOCK Yd Q= 6.12412338E+02 # The Yukawa couplings

1 1 0.00000000E+00 # y_d(Q) DRbar

2 2 0.00000000E+00 # y_s(Q) DRbar

3 3 2.73916822E-01 # y_b(Q) DRbar

#

BLOCK Ye Q= 6.12412338E+02 # The Yukawa couplings

1 1 0.00000000E+00 # y_e(Q) DRbar

2 2 0.00000000E+00 # y_mu(Q) DRbar

3 3 2.03572357E-01 # y_tau(Q) DRbar

#

BLOCK MSOFT Q= 6.12412338E+02 # The soft SUSY breaking masses at the scale Q

1 5.67130636E+01 # M_1(Q)

2 1.89501347E+02 # M_2(Q)

3 8.04258574E+02 # M_3(Q)

21 7.62419102E+04 # mH1^2(Q)

22 -2.17208514E+04 # mH2^2(Q)

31 1.99736710E+02 # meL(Q)

32 1.99736710E+02 # mmuL(Q)

33 1.99710725E+02 # mtauL(Q)

34 5.68797374E+01 # meR(MX)

35 1.89750900E+02 # mmuR(MX)

36 8.00000000E+02 # mtauR(MX)

41 4.08231245E+02 # mqL1(Q)

42 4.08231245E+02 # mqL2(Q)

43 3.73390800E+02 # mqL3(Q)

44 4.07778323E+02 # muR(Q)

45 -5.16238332E+02 # mcR(MX)

46 9.51532103E+02 # mtR(Q)

47 4.08215309E+02 # mdR(Q)

48 4.08215309E+02 # msR(Q)

49 2.58317593E+02 # mbR(Q)
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Particle Γ [GeV] Particle Γ [GeV]

Z0 2.4148 χ̃0
2 5.1100 × 10−5

h0 5.0080 × 10−3 χ̃0
3 1.1622 × 10−2

H0 2.2924 χ̃0
4 1.0947

A0 2.7750 b̃1 0.53952

b̃2 3.4956

Table A.1: Relevant tree-level particle widths using the input of Appendix A.5.
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[2] T. Sjöstrand, S. Mrenna and P. Skands, JHEP 0605 (2006) 026.

[3] G. Corcella et al., JHEP 0101 (2001) 010.

[4] G. Corcella et al., arXiv:hep-ph/0210213.

[5] S. Gieseke, A. Ribon, M. H. Seymour, P. Stephens and B. Webber, JHEP 0402 (2004)

005.

[6] http://www.thep.lu.se/~torbjorn/pythiaaux/future.html
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[73] F. Krauss, A. Schälicke, S. Schumann and G. Soff, Phys. Rev. D 72 (2005) 054017.
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