
TECHNISCHE UNIVERSITÄT DRESDEN

FAKULTÄT INFORMATIK

Advanced Concepts

for

Automatic Differentiation
based on Operator Overloading

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

eingereicht von

Dipl.-Inf. Andreas Kowarz
geboren am 26. Mai 1974 in Löbau

Betreuender Hochschullehrer: Prof. Dr. rer. nat. Wolfgang E. Nagel

Gutachter: Prof. Dr. rer. nat. Wolfgang E. Nagel, TU Dresden
Univ.-Prof. Dr. rer. nat. Uwe Naumann, RWTH Aachen
Prof. Ph. D. Andreas Griewank, HU Berlin

Eingereicht am: 16.11.2007
Tag der Verteidigung: 20.03.2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236363150?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To Daiwan,

who taught me the meaning of freedom.

1

Contents

1 Introduction 3

2 Automatic Differentiation 5
2.1 Basics . 6

2.1.1 Forward mode . 7
2.1.2 Reverse mode . 9

2.2 Basic implementation strategies . 11
2.2.1 Source-to-source transformation . 12
2.2.2 Operator overloading . 13
2.2.3 Common issues of tape based overloading strategies 15

3 Advanced concepts for operator overloading 17
3.1 Extended tape management . 17

3.1.1 Nested taping . 20
3.1.2 External differentiated functions . 22
3.1.3 Checkpointing . 24
3.1.4 Fixed point iterations . 28

3.2 Tape reduction based on activity-tracking . 31
3.2.1 Common augmentation strategies . 33
3.2.2 Augmentation using state-tracking variables . 34
3.2.3 Adapted taping procedure . 38
3.2.4 Reverse tape optimization . 46

3.3 Parallelization strategies . 54
3.3.1 State of the art . 55
3.3.2 Tapeless derivative computation . 56
3.3.3 Task-parallel AD-environment . 58
3.3.4 Data-parallel AD-environment . 61
3.3.5 Loop-level parallelization . 63

4 Concept validation 67
4.1 ADOL-C: a tool for automatic differentiation . 67

4.1.1 Initial state . 67
4.1.2 New tape management . 69
4.1.3 Augmented data type & activity tracking . 71
4.1.4 Facilities enabling parallel derivation . 73

4.2 Applications & numerical results . 75
4.2.1 Industrial robot . 75
4.2.2 Shape optimization of an airfoil . 78
4.2.3 Time propagation of a 1D-quantum plasma . 81

5 Conclusions & outlook 99

Bibliography 101

2

3

1 Introduction

Derivatives play a central role in sensitivity analysis (model validation), in-
verse problems (data assimilation), and design optimization (simulation pa-
rameter choice). At a more elementary level they are used for solving alge-
braic and differential equations, curve fitting, and many other applications.

Andreas Griewank, “Evaluating Derivatives: Principles and Techniques of Al-
gorithmic Differentiation”, Number 19 in Frontiers in Applied Mathematics,
SIAM, Philadelphia, 2000.

As summarized by the quote above, derivative information is used in many applications from science
and technology. In fact, a considerable part of the improvements achieved in many areas in the last
decades was only possible due to the availability of derivatives. Providing derivatives for a given function
sometimes turns out to be challenging. By applying the technique of symbolic differentiation, explicit
derivative formulas can be obtained either by hand or by use of specialized software. However, this
approach is only applicable if the formula of the function is known and the differentiation is “handleable”.
Whereas an accurate definition of the term “handleable” is not easily given, its practical meaning is
obvious: The effort of providing an explicit derivative formula of a function must not exceed the available
recourses. This is fulfilled only for a limited set of functions that feature a quite simple structure.

Automatic differentiation is a technique that has been developed and improved in the last decades. It
allows to compute numerical derivative values within machine accuracy for a given function of basically
unlimited complexity. Thus, unlike finite differences, no truncation errors must be taken into account.
When calculating first order directional derivatives, i.e., Jacobian-vector products, the computational ef-
fort is comparable to that of finite differences. This way, e.g., columns of the Jacobian can be computed
efficiently. However, if a vector-Jacobian product is to be computed, e.g., a specific row of the Jacobian,
the computational effort is proportional to the number of entries in the row when applying finite differ-
ences. The same task can be performed much more efficiently by use of automatic differentiation. In
particular, the computational effort is then independent of the rows dimension. As many applications
mentioned in the above quote rely on this type of information, automatic differentiation more and more
attains significant importance for their numerical handling.

Taking advantage of the mathematical properties of automatic differentiation requires the application of
a suitable tool. Many different tools have been implemented so far. This way, automatic differentiation
has been made available to several programming languages and mathematical software packages. Inde-
pendent of the provided functionality, the underlying approach belongs to one of the two implementation
strategies. Source-to-source transformation is performed by specialized compilers. This results in the
generation of source code for the derivative function. Using standard compiler technology, function and
derivative code are object to the binary creation and benefit from the applied compiler optimization. The
second approach of providing automatic differentiation is given by the use of the operator overloading
capabilities of many modern programming languages. By appropriate overloading of operators and in-
trinsic functions, an internal function representation can be generated that can later be reevaluated in the
derivation process. Whereas the overloading approach allows to apply automatic differentiation while
exploiting the full language standard, it suffers from the interpretative overhead belonging to the internal
function representation.

In practice, the choice of the applied approach is determined by a fact of more pragmatic nature: Source-
to-source transformation is mainly available for the FORTRAN programming language. This is due to

4 1. INTRODUCTION

the comparable expensive development and maintenance of the necessary tools. So far, the restricted
language features of the FORTRAN 77 dialect enable the most stable application of the source-to-source
approach. Additional facilities, e.g., dynamic memory management, provided by newer dialects and
other programming languages, e.g., C/C++, present a major challenge to this approach. As a result,
appropriate source-to-source tools are either not available or miss critical capabilities for many program-
ming languages of interest. Nevertheless, applications can benefit from automatic differentiation in such
environments due to the existence of the operator overloading approach. Provided that the considered
programming language facilitates the overloading concept, the implementation of automatic differentia-
tion based on this feature turned out to be comparable straightforward.

Independent of the applied approach, automatic differentiation must face an important fact: Theoretical
advantage on its own does not convince users to apply the technique. Rather, it must be accompanied by
considerable benefits observable in practice. Over the last years, significant effort has been invested in
improving source-to-source tools. In contrast, no substantial advance has been made in the development
of automatic differentiation based on operator overloading in this period. Considering its meaning for
the differentiation of functions written in modern programming languages, this situation seems inappro-
priate.

With this thesis, new techniques are presented that considerable improve the application of operator
overloading based automatic differentiation and allow higher serial performance. In addition, facilities
are discussed that enable the parallel derivation of parallel user functions. The presentation of the new
approaches is divided into three main chapters. In the following chapter, a short overview of the two
work modes of automatic differentiation and the basic implementation strategies is given. Thereafter,
the theoretical aspects of the newly developed techniques are discussed in detail. This chapter is again
divided into three large sections. The first section focuses on the exploitation of the function structure
for reducing the size of the internal function representation. Subsequently, an activity-tracking technique
is introduced that not only allows a more compact internal representation of the function but also sim-
plifies the application of automatic differentiation itself. The chapter is completed with the introduction
of parallelization techniques and the description of the required modifications to the overloading based
approach. Chapter four presents information on the validation of the developed concepts. Therefore, the
initial state of the applied tool ADOL-C is discussed briefly and the required modifications in more detail.
The main part of this chapter is then dedicated to three examples that benefit from the new techniques.
Each application is described briefly and the relevant aspects of the differentiation are emphasized. An-
alyzing the runtime behavior for all three examples clarifies the potential of the improved approaches. A
short summary of the thesis is given in the last chapter that also contains a schedule of further research
activities that, to the opinion of the author, must be addressed in the future.

5

2 Automatic Differentiation

Many modern techniques applied in industrial processes are directly based or are the result of challenging
mathematical simulations and optimizations that extensively use derivative information. Thereby, the
effort for setting up general formulas for the derivative computation is tightly coupled to the complexity
of the underlying functions. Deriving these general formulas by hand is often very time consuming and
error-prone.

With the appearance of powerful computer hardware several solution methods to this problem were
developed. All computations are based on a vector-valued function

F : IRn → IRm, y = F (x), (2.1)

that is given as source code in a certain programming language. In practice, many numerical algorithms
are based on the knowledge of derivative values in a certain direction only, instead on the computation
of the complete Jacobian F ′. The directional derivative ẏ is defined by

ẏ := F ′(x)ẋ = lim
h→0

F (x + h ∗ ẋ)− F (x)
h

. (2.2)

A common technique of approximating this value is known as the principle of finite differences (FD) that
can be described by

ẏ = F ′(x)ẋ ≈ F (x + h ∗ ẋ)− F (x)
h

=: ỹ, (2.3)

using a small h ∈ IR, with
ẋ ∈ IRn, ẏ ∈ IRm, F ′(x) ∈ IRm×n.

The computational cost ωFD for computing the derivative value ỹ this way is dominated by the two
evaluations of F for the two different arguments. It is determined for all non-trivial functions F by

ωFD =
TIME(ỹ)
TIME(y)

= 2. (2.4)

Here, TIME(y) is the time for evaluating the function value and TIME(ỹ) is the time required to compute
function and approximate derivative values. Due to the fact that the function F is evaluated at two
different base points an advantageous memory behavior can be achieved. With exception of the input and
output variables that have to be saved all internal storage can be reused. This way, the task of evaluating
the function and the derivative calculations are comparable in terms of the memory requirement.

︷ ︸︸ ︷p

︸ ︷︷ ︸︸ ︷︷ ︸Sign Exponent Fraction f

p∗ p− p∗

Figure 2.1: IEEE floating-point number

Derivative computations on modern computer hardware are mostly done with limited accuracy based on
the IEEE-floating-point arithmetic [Ins85]. Based on this standard, the difference between F (x + h ∗ ẋ)
and F (x) is determined for small values of h by the p − p∗ least significant bit positions of fraction f
of the two corresponding floating-point numbers, see Fig. 2.1. There, p represents the number of bit

6 2. AUTOMATIC DIFFERENTIATION

positions in the fraction f and p∗ with 0 ≤ p∗ ≤ p is the length of the bit sequence identical in the most
significant bit positions of f . With increasing p∗ due to changes in h and under assumption of the same
exponents and signs the difference F (x + h ∗ ẋ)− F (x) is determined by a decreasing number of bit
positions p − p∗ that is often not sufficient to represent the exact difference compared to calculations in
exact arithmetic. This truncation error inhibits better approximations of the derivatives even for situation
where carefully chosen smaller values of h could be encoded exactly.

Considering the computational effort, the technique of finite differences provides an efficient way to
approximate a column of the Jacobian F ′. However, gradient information is needed frequently, e.g.,
for parameter optimization. Each function according to (2.1) can be decomposed into its component
functions F1(x1, x2, . . . , xn) through Fm(x1, x2, . . . , xn) with Fi : IRn → IR, yielding

y = (y1, y2, . . . , ym) = (F1(x1, x2, . . . , xn), F2(x1, x2, . . . , xn), . . . , Fm(x1, x2, . . . , xn)). (2.5)

The gradient ∇Fi(.) of each component function Fi(.) is contained in the ith row of the Jacobian F ′.
Due to the finite differences technique, gradient information needs to be constructed using columns of
F ′. This means, the computation of full gradients is possible only by approximating the n columns of
F ′, i.e., the complete Jacobian. The effort for this task is dependent on the number n of arguments x.

In the following section a different technique called Automatic Differentiation is described that can be
used to compute derivative values without the previously described problems.

2.1 Basics

Unlike finite differences that are used to approximate derivative values, Automatic Differentiation (AD)
was developed to compute these values directly and within machine accuracy. A complete description
of mostly all basic techniques known in the field of AD can be found in Andreas Griewank’s book
Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation [Gri00]. Most of the
mathematical symbolism used within this thesis is based on this book.

As for finite differences, a function according to (2.1) given as source code in a certain programming
language is the object of the derivation procedure. The computation of derivative values for this function
is based on the chain rule, i.e. for two functions y = f(u) and u = g(x) the derivative y′ = (f(g(x)))′

can be determined as
dy

dx
= f ′(u)g′(x) =

dy

du
(g(x))

du

dx
(x). (2.6)

To apply the chain rule to the function under consideration, the function needs to be decomposed into
elemental functions ϕi ∈ Φ. The corresponding sequence of elemental functions is called evaluation
procedure. This is satisfied by the implementation as computer program, in general. The size of Φ may
vary over the programming languages but contains two kinds of operations and functions, respectively.
Prerequisite for both types is a straight-forward differentiation, i.e., the corresponding mathematical
formula must be known. The difference is determined in the number of arguments. Throughout this
thesis unary and binary operations/functions, respectively, are considered only. Typical representatives
of binary operations are addition, subtraction, multiplication and division. Most intrinsic functions as
sine, cosine, tangent, square root etc. and increment, decrement are examples of unary functions and
operations, respectively.

Throughout, it is assumed that each ϕi ∈ Φ is d-times continuously differentiable on its open domain
Di and the evaluation procedure is well defined at all points x of its domain D. For the result of each
elemental function ϕi one defines an intermediate variable vi with i = 1, . . . , l. Furthermore, it is
assumed in this section that no overwriting occurs, such that a variable vi is the result of an elemental
function exactly once. For information on the handling of overwritten intermediate variables see [Gri00].

2.1. BASICS 7

v−2 = x1

v−1 = x2

v0 = x3

v1 = v−1/v−2

v2 = v2
−2

v3 = v2
−1

v4 = v2
0

v5 = v2 + v3

v6 = v5 + v4

v7 =
√

v5

v8 = v7/v0

v9 =
√

v6

v10 = arctan(v8)
v11 = arctan(v1)
y1 = v9

y2 = v10

y3 = v11

v−2 v−1 v0

v1

v2

v3

v4

v5

v6

v7

v8

v11 v9 v10

Figure 2.2: Coordinate transformation – evaluation procedure and computational graph

In addition, the input variables xi with i = 1 . . . , n, called independents in terms of AD, are assigned to
the intermediate variables vi−n. It is further assumed that the last m intermediate variables receive the
function values that are copied to the output variables yi, i = 1, . . . ,m, called dependent variables in
terms of AD.

An example of an evaluation procedure is depicted in the left half of Fig. 2.2. Its origin is the well-known
transformation from Cartesian to spherical coordinates, given by

y1 =
√

x2
1 + x2

2 + x2
3, y2 = arctan

√
x2

1 + x2
2

x3
, y3 = arctan

x2

x1
.

In Fig. 2.2, the operations between the two dashed lines implement the actual performed arithmetic. At
the beginning and the end additional operations are used to copy the independent variables and to set the
dependent variables, as described before. The complete arithmetic is based on the internal representation
that way.

Using the variables vi, i = 1−n, . . . , l and the decomposed function, one can construct a computational
graph as depicted in the right half of Fig. 2.2. In this graph, each variable vi is represented by a vertex. In
addition, each elemental function ϕi with i = 1, . . . , l is characterized by its result vi and its arguments
vj with j < i, where a directed edge connects each argument vj with the result vi [Bau74]. Thus, the
number of incoming edges for a vertex vi is equivalent to the number of arguments of the corresponding
elemental function ϕi. To describe this setting mathematically, the dependence relation ≺ is used. For
two indices i and j, the term j ≺ i means that vi directly depends on vj . Using the dependence relation,
an elemental function ϕi is defined by

vi = ϕi(vj)j≺i. (2.7)

This way, the evaluation procedure for a decomposed function can be generalized as shown in Table 2.1
[Gri00, pp. 18].

2.1.1 Forward mode

The core idea behind the forward mode is to compute derivatives for each elemental function ϕi and
combine them according to (2.6). Therefore, a path x(t) in the domain IRn is considered that is mapped

8 2. AUTOMATIC DIFFERENTIATION

Table 2.1: General evaluation procedure

vi−n = xi i = 1, . . . , n

vi = ϕ(vj)j≺i i = 1, . . . , l

vm−i = vl−i i = m− 1, . . . , 0

by the function F onto a path in IRm:
y(t) = F (x(t)).

For an arbitrary but fixed t0, calculating the directional derivative of F at a given point x0 = x(t0) of
this path along x(t) yields the formula

ẏ :=
dy

dt
(t0) =

dF

dx
(x0)

dx

dt
(t0).

With F ′(x0) := dF
dx (x0) and ẋ := dx

dt (t0) one has

ẏ = F ′(x0)ẋ.

Now, the arguments vj and the results vi of the elemental functions ϕi are time dependent and their total
derivatives are determined by

v̇i :=
dvi

dt
=
∑
j≺i

∂ϕi(vj)j≺i

∂vj

dvj

dt
=
∑
j≺i

∂ϕi(ui)
∂vj

v̇j =
∑
j≺i

cij v̇j (2.8)

with ui := (vj)j≺i ∈ IRni and cij := ∂ϕi(ui)
∂vj

. Using formula (2.8), derivatives for all elemental functions
ϕi ∈ Φ can be determined easily. Some examples are given in Table 2.2.

Table 2.2: Tangent operations

v = c v̇ =0
v =u± w v̇ = u̇± ẇ

v =u ∗ w v̇ = u̇ ∗ w + u ∗ ẇ

v =1/u v̇ =(−1) ∗ u−2 ∗ u̇

v =uc v̇ = c ∗ uc−1 ∗ u̇

v =sin(u) v̇ =cos(u) ∗ u̇

Now, an algorithm for computing directional derivatives of the function F can be constructed, similar
to Table 2.1. First, the intermediate variables v̇i−n with i = 1, . . . , n need to be initialized with the
component values of ẋ. Afterwards, the derivatives are computed step by step using (2.8). Finally,
the components of ẏ are extracted from the intermediate variables v̇l−i with i = m − 1, . . . , 0. All
together, a general procedure for the forward mode of AD, computing the function value and exact first
order derivatives, can be constructed as summarized in Table 2.3. As for finite differences, a bound
for the computational cost of the forward mode of AD, as given by Table 2.3, can be derived using the
complexity theory of AD [Gri00, pp. 43]. In detail, one obtains

ωF =
TIME(ẏ)
TIME(y)

∈ [2, 2.5]. (2.9)

As for finite differences the memory requirement for the forward mode of AD can be estimated. Assum-
ing that the derivatives are computed together with the function values step by step, the necessary storage
is doubled.

2.1. BASICS 9

Table 2.3: Forward mode of AD – General procedure

vi−n = xi

v̇i−n = ẋi

vi = ϕi(ui)

v̇i =
∑
j≺i

cij ∗ v̇j

ym−i = vl−i

ẏm−i = v̇l−i

}
}

i = 1, . . . , n

i = 1, . . . , l

i = m− 1, . . . , 0

In summary, the forward mode of AD is comparable to finite differences in terms of the computational
effort but in contrast to the latter offers derivatives within system accuracy at the cost of an increased
memory requirement.

2.1.2 Reverse mode

Despite the fact that many problems involving derivative values can be solved efficiently using the for-
ward mode of AD, the efficiency of other algorithm, especially for numerical optimization, depends
on the computational cost for discrete adjoint information. Considering sensitivity information for the
dependent variable yi of a component Function Fi according to (2.5) with respect to all independents
xj , j = 1, . . . , n, the gradient is defined by

∇Fi(x) = eT
i F ′(x),

where ei is the ith Cartesian base vector. More general, one can define the vector matrix product

x̄T = ȳT F ′(x) with x̄ ∈ IRn, ȳ ∈ IRm. (2.10)

However, computing the whole Jacobian F ′(x) and then multiplying from the left by ȳ is not efficient. To
derive the reverse mode, (2.8) can be reinterpreted as mapping from IRn+l to IRn+l. Using the Cartesian
basis vectors in IRn+l, matrices Ai, i = 1, . . . , l, are defined by

Ai := I + en+i [∇ϕi(ui)− en+i]
T ∈ IR(n+l)×(n+l). (2.11)

Given a temporal snapshot V̇i−1 ≡ (v̇1−n, v̇2−n, . . . , v̇l−1, v̇l) of the intermediate variables prior to the
differentiation and a snapshot V̇i after the differentiation of the elemental function ϕi with i = 1, . . . , l,
the derivative (2.8) is given by

V̇i = AiV̇i−1.

Due to the definition in (2.11) the only difference between V̇i and V̇i−1 is the value of the ith element
v̇i. Consequently, the central part of Table 2.3, concerning the evaluation and derivation of the elemental
functions ϕi, can be written as matrix chain

V̇l = AlAl−1 . . . A2A1V̇0.

To obtain a matrix vector product representation for the complete procedure given in Table 2.3, two
projections P and Q with

P ≡ [I, 0, . . . , 0] ∈ IRn×(n+l), Q ≡ [0, . . . , 0, I] ∈ IRm×(n+l) (2.12)

10 2. AUTOMATIC DIFFERENTIATION

are used for the initialization and finalization part, respectively. Thereby, P serves to expand the vector
of independents to the dimension (n + l) by adding the required number of zeros. Finally, the dependent
variables can be extracted from V̇l using the matrix Q. Now, the sequence of matrix vector products,
representing the derivative calculations of Table 2.3, can be written as

ẏ = QAlAl−1 . . . A2A1P
T ẋ. (2.13)

Together with the definition (2.2) of ẏ this sequence of products yields a factorization of the Jacobian

F ′(x) = QAlAl−1 . . . A2A1P
T . (2.14)

Substituting F ′(x) within equation (2.10), yields a sequence of matrix vector products that will be used
for deriving a general procedure for the reverse mode of AD.

x̄T = ȳT QAlAl−1 . . . A2A1P
T

x̄ = PAT
1 AT

2 . . . AT
l−1A

T
l QT ȳ (2.15)

Compared to the matrix vector product representation of the forward mode, equation (2.15) uses the
reverse sequence of products based on the transposed matrices defined in (2.11) and (2.12), respectively.
Again, a temporal snapshot V̄i ≡ (v̄l, v̄l−1, . . . , v̄2−n, v̄1−n) of intermediate variables gets defined prior
to the differentiation and a snapshot V̄i−1 after the differentiation of ϕi with i = l, . . . , 1. Then, the
derivative procedure for each elemental function ϕi can be described correspondingly by

V̄i−1 = AT
i V̄i.

This matrix vector product yields an algorithm for updating the intermediate adjoint variables v̄n+l

through v̄1−n for each elemental function ϕi. Due to the structure of AT
i , one obtains

v̄i−1
k =

v̄i
k + v̄i ∗ ∂

∂vi
k

ϕi(vj)j≺i for k = 1− n, . . . , i− 1

0 for k = i
v̄i
k for k = i + 1, . . . , n + l

(2.16)

Hence, the last n + l − i intermediate variables remain unchanged and are ignored in practice. The
first i − 1 variables get updated according to the dependency relation and the ith intermediate is set to
zero. Having a closer look at the updating algorithm, a certain difficulty becomes obvious. The update
of the intermediate variables discussed for the reverse mode so far requires the knowledge of the values
of the corresponding intermediate variables that were computed during the function evaluation. Due to
this dependence, the reverse mode of AD can never be applied standalone but has to follow a function
evaluation.

The remaining two matrix vector multiplications involving QT and P , respectively, are mainly necessary
to adjust the dimension of the input vector ȳ to the size n + l and to extract the derivative solution x̄
from the intermediate variable set, respectively, but introduce no new mathematical difficulties. Taking
all dependencies into account the overall procedure of the reverse mode can be summarized as done in
Table 2.4.

As for the forward mode, the complexity theory of AD provides a bound for the cost of the derivative
computation [Gri00, pp. 56]

ωR =
TIME(x̄)
TIME(y)

∈ [3, 4]. (2.17)

Thus, complete gradients can be computed independent from the number of arguments of the given
function F , using one execution of the reverse mode of AD.

Considering the storage requirements, some important observations can be made. In addition to each
variable involved in the function evaluation a corresponding variable holding the derivative must be

2.2. BASIC IMPLEMENTATION STRATEGIES 11

Table 2.4: reverse mode of AD – General procedure

vi−n = xi i = 1, . . . , n

vi = ϕi(ui) i = 1, . . . , l

ym−i = vl−i i = m− 1, . . . , 0

v̄l−i = ȳm−i i = 0, . . . ,m− 1
v̄j = v̄j + v̄i ∗ cij ∀j ∈ {j : j ≺ i}
v̄i = 0
x̄i = v̄i−n i = n, . . . , 1

i = l, . . . , 1
}

available in the reverse mode, as observed for the forward mode before. According to the update al-
gorithm (2.16), partial derivatives for each elemental function ϕi need to be computed. This is only
possible by knowing the values of their input variables. Due to the common practice of variable reusage,
these values might have been overwritten meanwhile. To resolve this conflict, the value of the result
variable of each elemental function is copied to a temporal storage place, immediately before it gets
overwritten. During the reverse mode, the original values of overwritten variables can be restored using
this information. As one result of the backup of values in execution order of the elemental functions, the
temporal storage is often organized as sequentially accessed memory. A second observation concerns the
size of the temporal storage. Since a value is stored for every elemental operation, the overall size of the
sequentially accessed memory is a small multiple of the operation count of the underlying function F .
For many practical tasks this size is more important than the memory required for storing the function
and derivative variables. However, as long as the temporal storage can be kept within the main memory,
the reverse mode of AD can evolve its strength nearly unaffected.

Based on the two main work modes provided by AD solutions to related problem classes, e.g. computing
Jacobian matrices, can be provided. By extending and modifying the mathematical formulation, other
problem categories, e.g., higher order derivatives, sparse matrices, are supported, too. For more details
on these topics see [Gri00].

Despite the interesting theoretical complexity results, the applicability of Automatic Differentiation in
a practical fashion is tightly coupled to the quality of its implementation and the usability of the result-
ing tools. In the following subsection the two basic implementation philosophies are introduced and
discussed, briefly.

2.2 Basic implementation strategies

Automatic Differentiation has been implemented and used for more than 30 years. Though many obsta-
cles have been removed during this period of time, not all issues could be solved up to now. In addition,
the changing availability and popularity of computer programming languages has resulted in an hetero-
geneous foundation for the application of AD. A constantly growing collection of information on AD
tools, publications, etc. can be found at http://www.autodiff.org. Historically, as well as based
on the current research, most implementations belong to one of the two main strategies that are described
within the following subsections.

12 2. AUTOMATIC DIFFERENTIATION

2.2.1 Source-to-source transformation

To automatically create derivative code from a function given as source code in a certain programming
language one needs a tool that is able to analyze at least this certain language and after a defined set of
intermediate steps produces the intended output. For this purpose, the source code has to be scanned,
data and control flow need to be revealed and optimized, and finally, a derivative code version has to be
generated. Most of the inclosed work steps are well known from the field of compiler technology and
related areas, i.e., debugging. However, as can be seen

Simply stated, a compiler is a program that reads a program written in one language
– the source language – and translates it into an equivalent program in another lan-
guage – the target language . . .

. . . Target languages are equally as varied; a target language may be another pro-
gramming language, or the machine language of any computer . . .

[ASU86, p. 1]

a tool that can afford a derivative augmentation cannot be treated as a traditional compiler in the sense
of the quote above, as the target program is, of course, not equivalent to the source program. Since the
user expects exactly this behavior of the applied tool, it seems appropriate to subsume it into the class
of compilers, anyway. In practice, the process of generating derivative code this way is often called
Source-to-Source Transformation using an AD-enabled compiler.

source program

lexical analyzer

syntax analyzer

semantic analyzer

intermediate code
generator

code optimizer

code generator

target program

symbol-table
manager error handler

derivative
augmentation

Figure 2.3: Basic phases of a standard compiler + derivative augmentation

As depicted in Figure 2.3, a standard compiler operates in six phases. In practice, some of them may
be grouped together [ASU86, p. 10]. Figure 2.3 shows conceptually, where the derivative augmentation
process may enter the standard phase chain. Accordingly, the derivative code generation is based on the
intermediate code. This means in particular that the forgoing phases are common to both standard and
AD-enabled compiler. In most cases the intermediate code is extended or in some rare cases replaced in
parts [VGK04], respectively, by the derivative code through the derivative augmentation. Finally, after
a code optimization the target program is created. Though the generation of machine code would be
possible, current AD-enabled compilers generate source code in the programming language the source

2.2. BASIC IMPLEMENTATION STRATEGIES 13

program is written in. Then it is up to the user to combine derivative and function code in a meaningful
way before applying a standard compiler to the result, to create the final executable.

Implementing Automatic Differentiation as AD-enabled compiler is as challenging as and, in most cases,
as expensive as it is promising. As mentioned above, implementing a specialized compiler comprises
significant effort in areas of compiler technology not directly necessary for the application of AD. The
inherent complexity might be reduced by applying a sufficient level of abstraction, i.e., reusing standard
compiler technology. Currently, almost all available Source-to-Source projects known to the author fully
implement an own compiler. The OpenAD project [Utk04] can be seen as one exception.

On the other hand, due to this wide approach, full program information is available to the AD-part of the
compiler. This includes control flow information that can be applied to the derivative code in an adequate
manner. In theory, Source-to-Source transformation affords a maximal optimization, since all operations
not influencing the dependent variables can be safely ignored. The latter is achieved through an activity
analysis, i.e., by building the set of active variables that serves for identifying the relevant operations.
Traditionally, static analysis at compile time was used but turned out to be too restrictive. Therefore,
some ongoing research projects are focused on constructing an optimal set of active variables by taking
dynamic runtime information into account, too, see, e.g., [KRE+06].

The availability of Source-to-Source tools is currently restricted to a subset of the existing program-
ming languages. Historically, AD-enabled compilers were developed for the Fortran 77 programming
language due to its, compared to other languages, very restricted and easier to manageable set of instruc-
tions, programmers can use in their codes. Many of the additional language features, introduced with
Fortran 90/95, are now supported by many modern AD Source-to-Source tools, too. Examples of AD-
enabled compilers for the Fortran programming language are, e.g., ADIFOR [BCKM96], TAF [GKS05],
TAPENADE [HGP05, PH05]. AD-enabled compilers for C/C++ are under development and this work
introduces or intensifies, respectively, theoretical issues already known from the additional language con-
structs, specified in the recent Fortran standards. This includes, e.g., the handling of pointers, dynamic
memory, polymorphism, etc. Since many of these challenges are still unanswered, only two AD tools
for C/C++ are available, at the moment and some restrictions apply. ADIC [BRM97] handles ANSI-C
coded functions using the forward mode of AD and TAC++ [VGK04] affords forward and reverse mode
AD on a subset of C.

Another relatively new field of application for Automatic Differentiation is the tool MATLAB [Mat06],
enjoying increasing popularity in science and economy. This environment is basically a language for
technical computing, offering efficient mathematical programming on a high abstraction level, among
other things. Here, the Source-to-Source approach is characterized by the transformation of a MAT-
LAB program into an augmented program by usage of an external tool, e.g., MSAD [KF06] that can be
processed by MATLAB, afterwards.

Independent of the Source-to-Source tool further code optimizations are often wanted or needed, respec-
tively. This results in the application of mathematically proven methods, as for example the exploitation
of sparsity information of matrices [GK06]. Furthermore, known techniques are often extended, e.g.,
linearity analysis [SH06]. Likewise, new algorithms are developed that not necessarily follow the tra-
ditional forward and reverse schemes but implement AD in form of elimination techniques, applied to
computational graphs, e.g. [Nau02, Nau04, TFPR01, TFP03].

The remaining parts of this thesis are focused on the second AD implementation strategy, i.e., operator
overloading that is described in the following subsection.

2.2.2 Operator overloading

In contrast to developing an AD-enabled compiler as described in the previous subsection, the imple-
mentation of the forward and reverse mose, respectively, can be based upon a feature of many modern

14 2. AUTOMATIC DIFFERENTIATION

programming languages, e.g. C++, Fortran90+, etc., – the operator overloading. As described before,
the original function code has to be augmented to allow the derivative computation. Using the technique
of operator overloading, this can be done on the operation level. In principle, all overloading based
tools offer at least one AD-enabled data type, the user has to work with when starting the derivation
process. For the new data type, all basic operations corresponding to the set Φ are overloaded, to allow
the augmentation with derivative code directly or indirectly, respectively.

class ADtype {
protected:

Type value;
Type derivative;

public:
ADtype operator* (const ADtype &arg) {

ADtype result;
result.value = value * arg.value;
result.derivative = derivative * arg.value +

value * arg.derivative;
return result;

}
}

Figure 2.4: Example of an AD-enabled data type for the forward mode of AD

The most obvious approach to implement the derivative computation using the forward mode of AD is
exemplarily depicted in Figure 2.4. Using C++ notation, it shows the propagation of derivatives together
with function values. With this basic implementation, every occurrence of an elemental function ϕi ∈ Φ
in the source code is replaced during the compilation phase by the corresponding overloaded version.
This way, function and derivative value are available almost simultaneously, at runtime. After executing
the augmented function, derivative values for all variables of ADtype are available via the variables
derivative component. Though this approach offers an efficient implementation of the forward mode
of AD, it is not very useful for reverse mode differentiation. This is due to the fact that the necessary
program flow information, needed to be reversed, is no longer available as soon as the evaluation of the
function is completed.

class ADtype {
protected:

Type value;
Type ID;

public:
ADtype operator* (const ADtype &arg) {

ADtype result;
tapeOperation(MULT, result, ID, arg.ID);
result.value = value * arg.value;
return result;

}
}

Figure 2.5: Operator overloading based AD using a taping mechanism

Therefore, to provide reverse mode differentiation, AD tools based on operator overloading need to create
an internal representation of the function F . This can be done in various ways, e.g., graphs [BS96], tapes
[GJU96], etc. and will be described using the taping technique.

2.2. BASIC IMPLEMENTATION STRATEGIES 15

The basic strategy as well as the name of the technique itself is derived from the usage of magnetic tapes
with strictly sequential read/write access. Though the actual implementation varies, the core idea can be
found in many AD tools offering reverse mode computation based on operator overloading. Essentially,
only the function value is computed within the overloaded operator or intrinsic function, respectively. In
addition, information exactly describing the operation is recorded onto a tape. This information is the
type of the operation/function, e.g. MULT, SIN, etc., as well as representations of the involved result and
arguments. Using the C++ notation again, Figure 2.5 illustrates the essential structure of a corresponding
AD type featuring a taping mechanism. After the evaluation of the augmented function, the created
tape now holds the sequence of operations that have been processed, in execution order. Based on this
information, the program flow sequence can be easily inverted by evaluating the written tape in reverse
order.

The main advantage of the taping approach as well as its heaviest drawback can be found in the program
flow representation within the tape. Due to the taping process, all information is reduced to the level of
arithmetic operations. This means, information concerning complex program internals, such as heredity,
pointers, dynamic memory, etc., introducing significant difficulties to Source-to-Source transformation,
is completely excluded. Computing derivatives using the taped information is therefore straightforward,
at least theoretically. On the other hand, using the operator overloading approach, nearly all control
flow information is lost. This means in particular that all loops get unrolled. Additionally, only those
operations of program branches are taped that gets executed as result of the condition. Challenges arising
from the reduced control flow representation are discussed in the next subsection.

Tools for Automatic Differentiation based on operator overloading are mainly available for the pro-
gramming languages C++ and due to its covering also C, the mathematical environment MATLAB and
FORTRAN90/95. Many of them, e.g., ADMAT [BLV03], ADOL-C [GJU96], CppAD [Bel07], FAD-
BAD/TADIFF [BS96], and MAD [For06], are using an internal function representation and therefore
offer both forward and reverse mode differentiation. Additionally, many specialized tools are avail-
able that focus on one of the two basic modes of AD, e.g. AUTO_DERIV [SPF00], COSY INFINITY
[BM06], FAD [ADP01] for forward mode AD and RAD [Gay05, BGP06] for the reverse mode.

Depending on their implementation, all tools using a taping mechanism are effected by common issues
that are described in the following subsection.

2.2.3 Common issues of tape based overloading strategies

Though computing derivative values on an operation based log file, the tape, enables a simplified view
of the derivation problem, the performance of the resulting code suffers in many cases from exactly this
simplification. The reduction of the information flow to the level of executed operations is accompanied
by a nearly complete removal of control flow information. As a result, two main classes of important
information are no longer available.

Loop information Obviously, after restricting taping activities to executed operations an abstract view
of a loop’s body is no longer available. This includes information about begin and end of the body
as well as information on the loop indices and their usage.

Branch information Branches, not taken during the specific execution of a loop iteration, are not
written onto the tape and cannot be used in re-computations, therefore.

The primary consequence of the minimized control flow information is the increase in tape size, mainly
due to loop unrolling. Depending on the system, the feasible size of the written tape is often a limiting
factor when computing function and derivative values based on this information. Even in case, the tape
can be written, its storage nature, e.g., main memory, hard disc, etc., mainly defines the access cost of

16 2. AUTOMATIC DIFFERENTIATION

the inherent information. This cost is an important factor for the overall computation time, especially if
lower order scalar derivatives are to be computed.

Besides the unrolling problem several additional restrictions according to the tape usage arise from the
reduced control flow information.

• Recalculation of function values as well as computation of derivatives at different base points is
only possible as long as the original control flow information is unchanged. This means on the
one hand that the number of iterations for each reevaluated loop must match the taped number.
On the other hand and in more general, each control decision to be done must meet the taped
representative.

• Many parallelization strategies, such as OpenMP [DM98], allow parallel processing of loops. Ob-
viously, such an approach is not applicable without at least basic knowledge about the loop struc-
ture.

Computing derivative values in an adequate time often turns out to be a difficult tasks. Advanced con-
cepts, developed to increase the efficiency of Automatic Differentiation based on operator overloading,
are addressed in the following chapter.

17

3 Advanced concepts for operator overloading

Considered from a historical viewpoint, automatic differentiation based on a computational function rep-
resentation is a quite young technique of computing derivative values. As discussed in Chapter 2, many
challenges still have to be met and yet unknown problems may be revealed. Besides AD, additional
concepts assisting the evaluation might be contained in or be applied to the function under considera-
tion. Moreover, when using a tape based operator overloading approach, these concepts may enforce an
exchange of information and control between the AD-tool and other tools applied to the function. Basic
facilities applicable in such situations are discussed in this chapter.

In its simplest application, automatic differentiation based on a taping mechanism consists of two main
steps. First, an internal representation, i.e., the tape, of the function is created. Subsequently, derivative
values are computed using the generated tape and the forward or reverse mode of AD. If the problem
under consideration is sufficiently small, this basic strategy may work well. For larger problems, addi-
tional information about the structure of the function should be exploited and a more advanced handling
of tapes is desirable. Suitable facilities that have been developed in the scope of this thesis are discussed
in Section 3.1.

Due to its nature, AD using the concept of operator overloading often requires the user to possess a higher
level of code insight compared to application of source-to-source tools. In principle, all declarations of
floating point variables may be altered to use a provided data type, i.e., the type offering the overloaded
operators. Doing this is usually no optimal strategy in terms of code efficiency. Rather, only those
variables should be changed whose AD-counterparts propagate derivative values. However, identifying
this set of variables may be time consuming. To achieve a better trade-off between usability and runtime,
the newly designed technique of state-tracking variables is introduced. It may be utilized to reduce
the demands on the user when applying an overloading based AD-tool. Employing this approach in
the taping process, all floating point variables may be replaced by a special data type that enables the
AD-tool to identify the relevant variables at runtime. Details are given in Section 3.2. The development
of the state-tracking technique resulted in partial overlaps with an undocumented approach used in the
AD-tool CppAD [Bel07]. Differences to this technique are also discussed in Section 3.2.

One of the main challenges AD has to cope with is caused by the increasing availability of parallel
computer hardware. In the future, it will probably be a crucial aspect for the acceptance of AD-tools,
whether parallelism in the function can be exploited for the differentiation or not. Especially when
applying the reverse mode of AD, it is important to detect if the adjoint procedure can be parallelized.
Adequate parallelization strategies for tape based solutions that have been derived during the work for
this thesis are introduced in Section 3.3.

3.1 Extended tape management

Creating an internal function representation, as done by many operator overloading based AD-tools, is
a question of storing selected information, characterizing the evaluated function. This information must
be detailed enough to allow the application of the reverse mode of AD on the one hand and, in many
cases, allow a recalculation of the original function at the same or a different base point on the other
hand. Although the actual implementation may vary, the basic structure is common to most overloading
based AD-tools.

18 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

Considering a given vector-valued function y = F (x), three types of information must be included into
the corresponding tape. The vector x of independent variables has to be identified. Accordingly, the
vector of dependent variables y has to be represented. In most cases, the transformation of the mapping
F from x to y into an internal representation is the main part of the taping procedure.

This induces the question, in which way variables may be represented within a tape. In this context, two
types of variables shall be distinguished: Augmented variables are of the special data type that affords the
overloaded operators, whereas non-augmented variables are not. In the literature that addresses operator
overloading based AD, augmented variables are often called active variables. Throughout this thesis,
they are denoted by the term augmented to distinguish them from the results of the activity analysis.
Within that analysis, all active variables are determined, i.e., variables that influence derivative values.
Derivative instructions must then be performed only for those instructions that involve active variables. In
the context of operator overloading based AD, the set of active variables forms a subset of the augmented
variables.

The theory of the forward and reverse mode of AD, as discussed in Section 2.1, shows that for every
function variable v a corresponding variable v̇ and v̄, respectively, is used to propagate the derivative val-
ues during the specific AD mode. Furthermore, the two variables v, v̇ and v, v̄, respectively, are accessed
jointly, when handling operations in the derivation process. Using a unique ID for each augmented vari-
able and considering all function and derivative variables to be stored as vectors, it is possible to address
v, v̇ and v̄ safely. Such an ID is equivalent to the index within a vector but can also be treated as a unique
name of a function variable. The interconnection between function and derivative values is represented
by the ID across the vector borders. In other words, v, v̇ and v̄ share the same ID. If non-augmented
variables are involved in an operation, the numerical value is used instead of an ID.

Using only the IDs of the involved variables does not result in a complete representation of an opera-
tion. Additionally, the kind of the operation has to be stored. This can be done by including into the
representation an operation code (OPC) similar to that used in the binary format of computer programs.
It is obvious that the range of OPCs must comprise all arithmetic instructions that shall be usable in
any function to be differentiated. Though the declaration of independent and dependent variables of the
represented function is possible without an explicit operation code, it can be beneficial to forgo this po-
tential. That way, the complete tape is structured as a sequence of operations. Accordingly, the range of
operation codes needs to be extended with codes for assigning independent and dependent variables.

Taking all necessary information into account, the following basic structure of a taped operation can be
used:

operation := (OPC, ID, {ID | value, ID | value}). (3.1)

Within (3.1) all elements between the curly brackets are optional and “|” separates two alternatives.
Hence, a taped operation consists of an operation code and at least one ID of an augmented variable.
The declaration of independent or dependent variables can be considered as example. Additional IDs
are required when creating the representations of arithmetic instructions. Furthermore, the value is used
whenever a non-augmented variable is involved. Finally, it is assumed that at least one argument of an
arithmetic instruction is represented by an ID.

Limiting the function information contained in the tape to the discussed level implicates a major draw-
back: A switch in the control flow when evaluating the function at a different base point, will not be
noticed. It is very likely that function and derivative values will be incorrect, in return. To overcome this
problem, additional information is included into the tape that does not influence function or derivative
values directly but guaranties the correctness of the results. Whenever a branch point in the program is
reached where the decision depends on an augmented variable, a special operation is taped. The latter
signals that the value of the corresponding variable must fulfill a given condition, e.g., the value must be
less than zero. This condition is determined during the taping process and defines for which values of a
certain variable the taped branch is valid. Whenever the condition is violated, an error message can be
triggered and a re-taping process might be started if possible.

3.1. EXTENDED TAPE MANAGEMENT 19

Thus, the range of operation codes must be chosen to represent the following three kinds of program
statements:

• declaration of independent and dependent variables

• arithmetic instructions, i.e., elemental operations and intrinsic functions, including the assignment

• comparison instructions

Consider the following example and a corresponding source code depicted in the left half of Figure 3.1.
There, C++ programming notation has been used. Creating an internal representation while evaluating

EXAMPLE 3.1

y = F (x)

=
{

(0.5 ∗ x− 1)2 for x ≥ 2
−1 ∗ (0.5 ∗ x− 1)2 for x < 2

F at a point x ≥ 2 results in a tape as depicted in the right half of Figure 3.1. The meaning of the used

1 declare_indep(x); (DI , ID_0) 1
2 t1 = 0.5 ∗ x; (MUL, ID_2, 0.5, ID_0) 2
3 t2 = t1 − 1; (SUB , ID_3, ID_2, 1) 3
4 t3 = t2 ∗ t2; (MUL, ID_4, ID_3, ID_3) 4
5 if (x < 2) (GE , ID_0, 2) 5
6 y = −1 ∗ t3; 6
7 else 7
8 y = t3; (AGN, ID_1, ID_4) 8
9 declare_dep(y); (DD , ID_1) 9

Figure 3.1: Function vs. tape representation for x ≥ 2

operation codes is the following:

DI declare an independent variable
MUL multiplication
SUB subtraction
GE comparison for a variable to be greater or equal to a numerical value

AGN assignment
DD the declaration of a dependent variable

For the tape the following mapping between IDs and names of augmented variables has been utilized.

x y t1 t2 t3
0 1 2 3 4ID

augm. variable

Lines with the same number in the two parts of Figure 3.1 show the statements of the source code and
the corresponding internal representation. As mentioned above, the ordering of result and operands in
the statements is maintained in the tape. Notice also that the comparison operation at line 5 of the tape
asserts the validity of the created representation. Whenever the tape gets reevaluated at a point x < 2,
the assertion fails. Appropriate actions may be triggered in this case.

Currently, many applications that make use of AD benefit from a specific quality: The function to be
differentiated can in principle be separated and processed as a whole using an appropriate AD-tool.

20 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

However, according to the function structure, additional properties may be exploited for specific parts
of the function, e.g., fixed point iterations. This can be done either by using the same AD-tool or by
applying external software. The latter may also include other AD-tools. Due to the optimized handling
of every function part, a higher performance of the created code can be achieved. In some cases this may
also be necessary to afford derivative calculations at all. In the following subsections two possibilities of
handling different AD-strategies within the same program are discussed for the tape based AD-approach.
In this context, it is assumed that the function y = F (x) as given in (2.1) can be divided into smaller
parts G1 through Gk, such that

F = Gk ◦ . . . G2 ◦G1, (3.2)

with
y = xk+1, xi+1 = Gi(xi), x1 = x i = 1, . . . , k.

Thereby, the dimensions of the vectors xi do not need to be the same for the functions Gi. If different
AD-strategies are to be applied to the specific regions Gi, a high level of steering by the user would be
required. Reducing this burden by transferring as much work as possible from the user to the AD-tool
will increase the attractiveness of the tool on the one hand and offers a good chance of optimizing the
overall strategy on the other hand.

3.1.1 Nested taping

Throughout this thesis, the process of nested taping denotes the creation of several tapes by the same
AD-tool. It is assumed thereby that the creation of an (outer) tape is interrupted by the creation of
an (inner) tape. Hence, the taping process for an inner tape is always completed before the outer one
continues. The nesting may apply to the inner tape too and so forth, creating overall a structure similar
to the call tree of a computer program. The applied AD-tool must facilitate an appropriate infrastructure.

To afford the application of different AD-techniques for the various tapes, sufficient information concern-
ing the tape interconnection as well as the intended usage must be included within the internal function
representation. This way, no additional user interaction is necessary, once the overall taping process is
completed and the derivation procedure has been initiated for the outermost tape.

As one result of the nesting strategy, for a given function F as in (3.2) each non-innermost tape contains
at least two sub-functions Gi and Gj . To describe this setting mathematically, the derivative context is
defined as follows.

A Derivative context C contains one or several sub-functions Gi of a function F given by
(3.2) that are processed to either apply or guide a specific AD-technique. If an internal rep-
resentation of a context C is created, it is equivalent to exactly one tape. Re-taping a context
does not break this rule. Links to other contexts Cj may be part of the context Ci or its internal
representation, but may only occur between two consecutive sub-functions within Ci.

If a derivative context Ci does not need to or cannot be represented by a tape, the functionality necessary
to afford the belonging derivation process must be available as additional part of the AD-tool or the user
program. Context interaction must be included, accordingly. Contrarily, it is assumed that standard AD-
technique is applied to every created tape. Changing the technique always requires a context and tape
switch, that way. The techniques used for inner and outer context must comply in a meaningful way,
moreover. In most situations, e.g., it makes no sense to compute higher order derivatives for the outer
context and first order derivatives for the inner context.

For representing context switches within a tape a special operation code (CC - context change) is intro-
duced.

context change operation: (CC, CCID)

3.1. EXTENDED TAPE MANAGEMENT 21

Here, CCID is a unique number assigned for every context change, e.g., at the time of first occurrence.
It is assumed that for every CCID a structure of data is available, holding all information necessary to
perform the belonging context switches. This structure includes the ID of the context to switch to and the
AD-technique to be applied, e.g., checkpointing, as well as all information necessary for its application.

A context change consists of the two context switches that result from the inner–outer partitioning of
contexts. In terms of the outer tape, the context change can be treated as a way to transfer the control
of the execution to another context. The processing of the outer tape is delayed until the work of the
inner context is completed. Performing this switch from the outer to the inner context needs several
information: The ID of the context switch and the intended AD-technique for the inner context must be
known. Per definition, the ID is stored as argument of the representing operation. However, the intended
AD-technique for the inner context may not be known at this time. Therefore, the work mode for the
inner context is initialized with the current work mode. This information can then be used by the inner
context to adjust the applied technique if necessary. Valid work modes are taping and any basic standard
forward or reverse mode of AD. This information may not be included into the internal representation,
as tape creation and evaluation may differ on that score.

Switching back from the inner to the outer context after task completion again needs the same information
used on the way forth. However, the evaluated tape essentially offering this data is not visible at this
point of time. Due to this lack of information, the complete handling of context switches in the inner-
outer direction must be guided by the AD-tool. As tape information cannot be accessed directly, all
necessary details must be saved and recommitted correctly. Assuming a special data structure enclosing
all information belonging to a specific context change, a stack of these structures can be constructed. The
stack size increases with each switch from an outer to an inner context, since the information describing
the context change must be saved. In case the computations for a specific context are finished, the
AD-tool examines the stack size and switches the context according to the data on top of the stack.
Overall, the computations are finished as soon as the current context is completed and the stack is empty.

G1

G2

G3 . . . Gk−2

Gk−1

Gk

evaluation order context sequence

derivative context C3

context change CC2

derivative context C2

context change CC1

derivative context C1

C1 C2 C3 C2 C1

CC1 CC1 CC1

CC2

stack evolution

Figure 3.2: General context handling

Figure 3.2 illustrates the general handling of derivative contexts during the creation of an internal rep-
resentation of a function F , given in (3.2), for an example situation. Thereby, derivative context C3 is
considered to contain all sub-functions Gi, i = 3, . . . , k − 2. The left part of Figure 3.2 depicts the
interaction of sub-functions – solid rectangles, contexts – dashed rectangles, context switches – upward
or downward arrows, and context changes – dotted ovals. Beyond, the corresponding evolution of the
stack, which supports the context switches, is illustrated in the right part of the figure. Though exactly
one context change is used for all but the innermost derivative context C3 in this example, this setting is
not binding. In particular, a context may contain more than one context change. Assuming that a tape is
created for each of the three contexts, the basic tape structure depicted in Figure 3.3 follows.

Evaluating the generated tapes and computing derivatives using the forward or reverse mode of AD is
then nearly identical to the usage of standard tapes that do not include context switches. New to the

22 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

Tape 1
...

Calculation G1

(CC, 1)
Calculation Gk

...

Tape 2
...

Calculation G2

(CC, 2)
Calculation Gk−1

...

Tape 3
...

Calculation G3

through
Calculation Gk−2

...

Figure 3.3: Tape representation according to the example of Figure 3.2

derivation procedure is only the special operation forcing a switch of the context. During the taping
process, this operation is written at all points, where the user wants to enforce a context switch by
applying an advanced AD-technique. The same sequence of changes has to be recreated when evaluating
the tape forward and an exactly reversed sequence when applying the reverse mode of AD. The order of
context switches when handling a context change operation is always the same, nevertheless. This means
in particular that the context handling including the stack management is independent of the AD work
mode.

Another important question concerns the exchange of values when performing a context switch. Since
the sub-functions contained within all contexts are to be processed by the same AD-tool, a re-usage of
variables can be assumed. Accordingly, copy operations for transferring function information during the
taping process are not necessary. To guarantee the correctness of the computed derivative values, the
derivation procedure must follow the same strategy.

Overall, applying standard AD-techniques to the created tapes and using advanced routines for con-
texts not represented by tapes, offers a well-adapted computation of the desired derivative values for the
outermost tape, step by step.

3.1.2 External differentiated functions

Ideally, AD is applied to a given function as a whole. In practice, however, sophisticated projects usually
evolve over a long period of time. Within this process, a heterogeneous code base for the project results
quite often. This may include the incorporation of external solutions, i.e., different projects, as well as
changes in programming paradigms or even programming languages. Equally heterogeneous, the com-
putation of derivative values appears. Therein, different AD-tools may be combined with hand-derived
codes based on the same or different programming languages. To support such settings, it is highly
important that interoperability among the different tools is achieved. This can be provided for operator
overloading based AD by the concept of external differentiated functions that has been developed within
the scope of this thesis.

A sub-function Gj according to (3.2) is considered to be differentiated externally, if the control over
the derivation process must be given off by the AD-tool and is resumed afterwards. Thereby, it is not
necessary that another AD-tool is used to provide the derivative values. Using, e.g., lookup tables for
providing these values would be sufficient, as well. All in all, the applied technique for the external part
does not need to be known to the AD-tool.

The basic handling of external functions is quite similar to the nested taping approach. However, in-
stead of changing a context internally, the program control has to be transferred to an external tool. An
additional operation code (EF) is introduced to represent this special situation within a created tape.
Comparable to the operation (CC), used to represent a context switch when applying nested taping, only
one argument needs to be provided to enable the transfer of the program control to a different tool. This

3.1. EXTENDED TAPE MANAGEMENT 23

argument is a unique number (EFID), which is used to access a special data structure containing all
relevant information of the transfer. Accordingly, the structure of the taped operation is

(EF, EFID).

Assuming a sub-function xj+1 = Gj(xj) according to (3.2) to be differentiated externally, the corre-
sponding data structure would contain the following information:

• the IDs for all elements of the independent vector xj as well as the dependent vector xj+1,

• the number of independents and dependents, directly or indirectly,

• a handle of the external function, e.g., a function pointer.

As the external function should not be allowed to use internal variables of the AD-tool, copy operations
are necessary to pass independent and dependent values.

Using this data structure, the general handling of an external differentiated sub-function Gj , embedded
within two neighboring sub-functions Gj−1 and Gj+1, can be described as follows.

1. Taping step:

The process starts with the execution of all sub-functions up to Gj−1, creating an internal repre-
sentation. After the completion of Gj−1, a mechanism provided by the AD-tool gets activated that
controls the execution of the external function. This mechanism basically includes the following
actions:

• transfer the values of the independent vector xj to user provided memory, applying a data
type transformation from the internal to the external format,

• include the IDs of all involved variables into the data structure representing the external
function,

• append the operation for the usage of an external function to the tape,
• call the external function using the provided handle,
• copy the computed values xj+1 from the user allocated storage back into the internal vari-

ables, again doing a data type conversion.

Once the execution of the external function is completed, the interrupted taping process is resumed
with the evaluation of sub-functions Gj+1 through Gk.

2. Forward evaluation:

Two basic constellations require the reevaluation of the internal function representation. Firstly,
function values may need to be computed for the reverse mode differentiation at a different base
point. Secondly, function and derivative values have to be computed at the same or a different base
point utilizing the forward mode of AD. This may conclude the derivation procedure as well as it
may prepare a higher order reverse mode derivation. Independent of the motivation, the evaluation
order of the tape is equivalent to its creation order. Globally, derivative values for ẏ = Ḟ (x, ẋ) can
be computed as follows:

Ḟ = Ġk ◦ . . . Ġ2 ◦ Ġ1, (3.3)

with
ẏ = ẋk+1, ẋi+1 = Ġi(xi, ẋi), ẋ1 = ẋ i = 1, . . . , k.

First, function and derivative values, respectively, are computed for all sub-functions G1 through
Gj−1. The next operation that is read from the tape now signals the change into an external part.
Using the handle of the external function provided during the taping step and the IDs of the in-
dependent and dependent variables of sub-function Gj , control must be transferred to the external
function. The latter is responsible for computing ẋj+1 = Ġj(xj , ẋj) by whatever technique. It has

24 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

to be mentioned that intermediate values of the functions Gj and Ġj , respectively, that are needed
for a succeeding reverse mode derivation, have to be handled within the external function. With
the completion of the external part, the tape evaluation is resumed after transferring the computed
results into internal variables. Thereby, function and derivative values, respectively, are computed
for Gj+1 through Gk according to (3.2) and (3.3), respectively.

3. Reverse evaluation:

Compared to the handling of external functions when using forward mode differentiation, a few as-
pects are different when evaluating tapes in reverse order. During the derivation process, derivative
values for x̄ = F̄ (x, ȳ) are computed and propagated the following way:

F̄ = Ḡ1 ◦ . . . Ḡk−1 ◦ Ḡk, (3.4)

with
x̄k+1 = ȳ, x̄i = Ḡi(xi, x̄i+1), x̄ = x̄1 i = k, . . . , 1.

Due to the reversion, the evaluation starts with the derivation of the sub-functions Gk through
Gj+1. For the external part, again the handle provided in the taping step must be used to access
the external code. As in the forward evaluation, values to be transferred from the AD-tool to the
external program part are identified using the IDs contained within the data structure that describes
the external function. Derivatives for Gj are determined outside, using the function and derivative
values stored during the preceding steps under external control. With the completion of the external
part, computed derivatives are transferred back into internal variables. Afterwards, the interrupted
derivation process is resumed by the AD-tool and derivatives for the sub-functions Gj−1 through
G1 are computed.

All in all, by representing external program parts by a special operation within the created tape, the
cooperation between different tools in an AD-context can be handled more user friendly. By providing
all necessary information at the time of tape creation, the tape evaluation is just as comfortable as is the
standard AD handling.

3.1.3 Checkpointing

As described in Section 2.1.2, the reverse mode of AD provides an efficient method to compute discrete
adjoint information. Its main advantage is the bargain operation count necessary for computing the gra-
dient of a scalar-valued function. It is only a small multiple of the operation count needed to evaluate the
function itself (2.17). However, this advantage is accompanied by a memory requirement proportional
to the operation count of the function evaluation. For real-world problems, storing the necessary inter-
mediate values may result in extreme memory requirements. In this subsection, a technique is discussed
that was developed within the scope of this thesis and allows to combine the advantages of the binomial
checkpointing [Gri92, Wal99] and external differentiated functions.

To achieve a good measure between operation count of the reverse mode and its memory demand, a tech-
nique called checkpointing has been developed. Instead of storing all intermediate values necessary to
compute the desired derivatives, intermediates are stored only at specific points of the computational pro-
cess, called checkpoints. Whenever computed values are needed that have been overwritten meanwhile,
they are recomputed using the information forming the most recent checkpoint.

In practice, according to the specific tasks, several checkpointing strategies have been developed. If the
considered function evaluation has no specific structure, one may allow the user of an AD-tool to place
checkpoints somewhere during the function evaluation. This simple approach is provided for example
by the AD-tool TAF [GKS05]. Alternatively, the call graph structure of the function evaluation may be

3.1. EXTENDED TAPE MANAGEMENT 25

exploited to place checkpoints at the entries of specific subroutines. This so-called joint reversal, see,
e.g., [Gri00], leads to a reduction of the memory requirement. The subroutine-oriented checkpointing
is used for example by the AD-tools Tapenade [HGP05] and OpenAD [Utk04]. As soon as one can
exploit additional information about the structure of the function evaluation, an appropriate adapted
checkpointing strategy may be used. This is, in particular, the case if the function evaluation comprises
a time-stepping procedure, i.e., the state of the considered system evolves iteratively due to a direct
or pseudo-time dependence. If the number of time steps l is known a priori and the computational
costs of the time steps are almost constant, one very popular checkpointing strategy is to distribute the
checkpoints equidistantly over the time interval. However, it is shown in [WG04] that this approach
is not optimal. A more advanced approach is the binary checkpointing used for example in [Kub98].
However, optimal checkpointing schedules can be computed in advance, to achieve a minimal increase
in runtime for a given number of checkpoints [Gri92, GW00].

Due to its nature, operator overloading may benefit in a special way when using checkpointing tech-
niques that are based on the repeating of subtasks. Whereas source-to-source tools only need to take
care of intermediate values, basically, the complete internal function representation is to be considered
when estimating the memory requirements for the overloading approach. Accordingly, large problems
may encounter unacceptable runtime increases much earlier, due to the unrolling problem described in
subsection 2.2.3. Reusing tapes containing the internal representation of subtasks, e.g., by evaluating
sub-functions at different arguments, will decrease the memory requirements, considerably.

Common to all checkpointing techniques is the combination of the following activities.

• storing the system state at a given point of the execution – taking checkpoints

• restoring the system state using the memorized information – restoring checkpoints

• advancing the evaluation to a given state without recording intermediate values

• computing adjoint values using a combined forward and reverse step for a certain part of the
function

• combining the previous four aspects in an appropriate way

Having a closer look on these activities reveals that the combined forward and reverse steps may be
handled by applying standard AD techniques, i.e., forward and reverse sweeps for the taped function
parts. Without further knowledge about the structure of the function, the remaining activities could
be left to the user. The situation changes, once the application is based on a time-stepping procedure.
There, a given system is changed using a typically large number of transition steps until it reaches its final
state. Storing all intermediate values on the way forward when preparing a reverse mode differentiation
enforces the memory problem described above. Checkpointing techniques have been used for this type
of applications successfully.

Due to the setting, additional information can be exploited, overall minimizing the demands on the user
of an AD-tool by encapsulating the evolution part into a separate derivative context. Applying the nested
taping approach described in Subsection 3.1.1, only limited information is to be provided by the user
during the taping part. Describing the setting mathematically while adjusting (3.2), yields the function
y = F (x),

F = G3 ◦G2 ◦G1 (3.5)

with
x1 = x, xi+1 = G(xi) i = 1, 2, 3, y = x4.

Here, G1 represents some initial computation preparing the main part G2, i.e., the time-stepping pro-
cedure. Sub-function G3 may be used for completing the function F , e.g., by computing some target
values. G1 and G3 are assumed to be handled by standard AD in the outer derivative context C1, which
is represented by tape one. Sub-function G2 that contains the time-stepping part forms the derivative
context C2.

26 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

Context C2 / Tape 2

Context C1 / Tape 1

standard taping advanced taping

q q q
| {z } | {z } | {z } | {z } | {z } | {z }

G1 G2 G3 G1 G2 G3

Figure 3.4: Standard vs. advanced taping for time stepping procedures

Applying the notation used by Griewank in [Gri00], the relationship between F and its sub-functions
G1 through G3 is of type strong. Due to the standard taping approach, derivatives are computed using
the split mode for all functions with the exception of F , since the global function is always derived
in the joint mode. This means that all information concerning the work mode is handed down from
the global function F to its sub-functions. Accordingly, sub-functions are in taping, forward or reverse
mode, exactly when the global function F is, too. Whereas this is no problem for G1 and G3, which are
represented by tape one, G2 needs special attention.

In conformity with the definition of derivative contexts, C2 may not be represented by a tape as a whole
but must apply some advanced AD-technique. In this case, it is the application of checkpointing for
computing adjoint values for a sequence of time steps. Assuming that the number of time steps l is
known a priori a technique called binomial checkpointing may be applied, which has been proven to be
optimal for this class of functions [GW00]. To steer the checkpoint handling for the given cases, the
tool revolve [GW00] has been developed. However, its usage would suggest to encapsulate G2 into an
external differentiated function. Assuming that the applied AD-tool offers equivalent facilities, G2 can
be derived completely internally, that way avoiding the inflicted data copying.

Due to the contained time-stepping procedure, the sub-function x3 = G2(x2) has the following structure:

G2 = Tl ◦ . . . ◦ T2 ◦ T1 (3.6)

with
s1 = x2, si+1 = Ti(si) i = 1, . . . , l, x3 = sl+1.

Mostly, T = T1 = . . . = Tl holds, what means that the same function is used for all time steps. In
general, only the arguments and the results differ among the steps. Exploiting this property, a second,
significant reduction of the memory requirement can be achieved. Taking a step back and considering
the case that only a single tape would be created for F , reveals the reason. As depicted in the left half of
Figure 3.4, an internal representation of each individual execution of T would be written onto the tape.
Besides the fact that a reevaluation of smaller tape parts during the checkpointing procedure would not
be possible, a significant part of the tape would be redundant. As the execution of T only differs in the
propagated values, the internal representation would be the same for all time steps. Therefore, instead
of l identical representations of the time step function T , only a single step must be written as depicted
in the right half of Figure 3.4. With regard to the subsequent reverse sweep, the last step is taped as
representative and the resulting second tape may be evaluated every time the time step function is to be
used.

Though not mandatory, further assumptions can be made to allow an optimal internal handling of the
time-stepping part G2. With exception of the last time step, the result of a certain time step is used as the
argument of the succeeding step. Letting the result variables of a step overwrite the argument variables
of the same step eliminates the copy operation that would be necessary to transfer information between
two steps. From the computer science aspect, the time step function could then be written as s = T (s).
Further, it is assumed that the argument vector x2 of function G2 contains variables of augmented type

3.1. EXTENDED TAPE MANAGEMENT 27

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�������� ��������

��������������� ���������������

������������������������� �������������������������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
� �
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

��� ���

��������������� ���������������

����������������������������������� �����������������������������������

��������������� ���������������

�������� ��������

����������������������� �����������������������

��������������� ���������������

�������� ��������

�������� ��������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�� ��

�� ��

��� ���

Taping sweep Adjoint sweep

Fu
nc

tio
n

ev
al

ua
tio

n A
djointpropagation

Time

| {z }
G1

| {z }
G2

| {z }
G3

| {z }
Ḡ1

| {z }
Ḡ2

| {z }
Ḡ3

|{z}
|{z}

T
r

T
a

Figure 3.5: Embedded checkpointing – graphical representation

only and is equivalent to the state of the system to be changed by T . The checkpoints that are used during
the derivation of G2 can be handled completely internally, this way. If variables of non-augmented data
type are part of the state, additional facilities must be provided by the AD-tool. This means that user-
defined functions must be called at the time of checkpoint access to guarantee a correct mapping between
the systems state and the checkpoint and vice versa.

Common to all checkpointing strategies is the storing of the initial function state within the first check-
point. In terms of function G2, the state s1 has to be stored first. All remaining checkpoints are assigned
later according to the binomial scheme described in [GW00]. To minimize the period of time that state
information has to be stored, checkpoints should be written during the procedure that prepares the com-
putation of adjoints in the reverse mode of AD. The preparing step may be either the tape creation
including storing of intermediate values in case a first order reverse mode is to be executed subsequently
or the computation of derivative values for a written tape applying a higher order forward mode of AD.

Due to the computation of derivatives for G2 in split mode, the general checkpointing procedure as
described in [GW00] cannot be applied directly but needs some small changes. First, the checkpointing
procedure has to be split into two evaluation sweeps. Figure 3.5 depicts the procedure for the combination
of a taping and a reverse sweep on the function F , defined in (3.5). Checkpoints for G2 are created
during the taping sweep and are depicted by the red circles. Due to the splitting, checkpoints must not be
destroyed at the end of the taping sweep. The light blue line in the left half of Figure 3.5 represents the
tape creation for the last evaluation of the time step function, i.e., the recording motion Tr. Advancing
steps Ta that are depicted by the green lines, are used to transfer the system to a given state. The longer
the green lines, the more time steps are represented. Thereby, the length of the light blue line serves as
reference for the length of a time step. Adjoint values are propagated during the reverse evaluation for
the time steps, depicted by the dark blue line.

Whereas the taping step and the reverse steps can be handled by the AD-tool directly, the optimal strategy
for the advancing steps needs further investigation. Even though the version of the time step function T ,
provided for the taping case, can probably be used for the advancing steps too, this is likely aligned with
a runtime drawback. As only function values have to be computed, the user should be pushed to provide
a second version of the time step function, that is based on standard data types.

Following these facts, a successful implementation of the checkpointing approach using the context
change and nested taping approach needs at least the following information and functions:

• an implementation of the time step function using standard data types – Ta,

• an implementation of the time step function based on augmented data types – Tr,

28 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

• information on the size and location of the input and output parameters,

• the number l of time steps to be reversed,

• the number c of checkpoints to be used and

• a so far unused tape number ti for the inner tape.

Considering the situation from the users point of view, the complexity of the embedded checkpointing
part has decreased significantly. Assuming that the necessary functions Ta and Tr have been provided,
the derivation procedure for the global function F would follow the scheme below.

1. Initiate the taping process for F .

2. Declare the vector x as independent.

3. Evaluate the sub-function G1, which is based on augmented data types.

4. Advice the AD-tool to apply a checkpointing procedure to G2, using the provided functions Ta

and Tr, the numbers s, c and ti as well as the information exactly describing the input and output
vector s of the time step function T .

5. Evaluate the sub-function G3, which is based on augmented data types.

6. Declare the vector y as dependent.

7. Finish the taping process.

8. Evaluate the tape using the provided facilities of the AD-tool.

Considering point 3 and 5 of the above scheme to be handled the usual way when applying a tape based
AD-tool, the effort for handling the checkpointing part is reduced to the activities that are summarized in
4. In particular, no user intervention is needed when evaluating the created tape in the forward or reverse
mode of AD. With this technique, an improved usability of the AD-tool is achieved which also yields a
better maintainability and a higher error safety. Principally, every other checkpointing algorithm besides
the binomial checkpointing might be handled analogously.

3.1.4 Fixed point iterations

Another application that may benefit from the nested taping technique is the gradient calculation for
fixed point iterations [Chr94, SWGH06]. From the mathematical point of view, this type of task is well
investigated. However, the efficient practical handling in terms of AD did not received the same level
of attention. In the remainder of this subsection, a brief introduction to the mathematical aspects of the
differentiation of fixed point iterations is given, first. It is followed by the discussion of the integration
into AD-tools using the concept of nested taping and derivative contexts, which was an object to this
thesis.

Fixed point iterations are a common technique of solving partial differential equations (PDEs), e.g., in the
field of fluid dynamics. If a PDE cannot be solved directly, an additional time dependency is introduced
such that the solution can be computed iteratively for a given set of design parameters as a quasi-steady
state of the modeled system. Let the corresponding fixed point equation H : IRns × IRq → IRns for the
system be given by

s = H(s, u), (3.7)

where s ∈ IRns denotes the state of the system and u ∈ IRq is the vector of design parameters. The
evaluation of a solution for (3.7) is done by computing the iteration G2

G2 : sk+1 = H(sk, u) k = 0, 1, . . . , (3.8)

yielding a converging sequence {sk} that depends on the specific control u. Then, equation (3.7) is
fulfilled by the limit point s∗ of {sk}. Assuming that ||∂H

∂s (s∗, u)|| < 1 holds for any pair (s∗, u)

3.1. EXTENDED TAPE MANAGEMENT 29

satisfying (3.7), a differentiable function φ : IRq → IRns exists, such that φ(u) = H(φ(u), u). There,
the state φ(u) is a fixed point of H for a given control u.

In practice, fixed point iterations are often enclosed into a larger computational context that is given by
a function F : IRn → IRm, y = F (x), which can be described mathematically by a composition of
mappings

x
G17→ (s0, u) G27→ (s∗, u) G37→ y︸ ︷︷ ︸ .

y = F (x)

There, a startup calculation G1 is used to compute the initial state s0 of the fixed point iteration G2 as
well as the design vector u, based on the parameter vector x. Finally, after the fixed point iteration G2,
the target vector y is computed according to the function G3.

To optimize the system y = F (x), derivatives of F with respect to x are needed. Depending on the
ratio of the dimensions dim(y) and dim(x), either the forward or the reverse mode of AD is preferable
to compute these values. Below, dim(y) = 1 and dim(x) � 1 is assumed for the sake of clearness.
Thus, the gradient∇F (x) can be computed using the scalar reverse mode of AD. For information on the
application of the forward mode see [SWGH06].

Applying the reverse mode of AD onto the maps G1 and G3 is considered to be straightforward, i.e., black
box AD can be used. For the fixed point iteration G2 a more advanced handling might by appropriate.
Turning to function φ(u) again, the total derivative dφ/du is defined by

dφ

du
(u) =

ds∗
du

=
∂H

∂s
(s∗, u)

ds∗
du

+
∂H

∂u
(s∗, u). (3.9)

Due to its structure, (3.9) is a fixed point equation for ds∗/du, itself. Analytically, its solution can be
expressed by

dφ

du
(u) =

ds∗
du

=
(

I − ∂H

∂s
(s∗, u)

)−1 ∂H

∂u
(s∗, u). (3.10)

Performing calculations according to this scheme might be numerically too expensive. Then, equa-
tion (3.10) serves for a deeper analysis of the reverse mode of AD, for this specific type of application.
Applying the theory of the reverse mode described in Section 2.1.2 onto equation (3.10) yields for a
given vector s̄ ∈ IRns the identity

s̄T ds∗
du

= s̄T

(
I − ∂H

∂s
(s∗, u)

)−1 ∂H

∂u
(s∗, u).

Setting ζT := s̄T
(
I − ∂H

∂s (s∗, u)
)−1

and applying some transformation, reveals the following fixed
point equation for the adjoint information

ζT = ζT ∂H

∂s
(s∗, u) + s̄T .

Again, a fixed point iteration Ḡ2 can be used to compute a solution and one obtains for l = 0, 1, . . .(
ζT
l+1, ū

T
l+1

)
=
(

ζT
l

∂H

∂s
(s∗, u) + s̄T , ζT

l

∂H

∂u
(s∗, u)

)
. (3.11)

The converging sequence
{
ζT
l H ′(s∗, u) + (s̄T , 0T)

}
yields the unique fixed points

ζT
∗ = s̄T

(
I − ∂H

∂s
(s∗, u)

)−1

and ū∗ = ζT
∗

∂H

∂u
(s∗, u) = s̄T ds∗

du
.

It was shown in [Chr94] that the convergence rates are equal for the original fixed point iteration (3.8)
and the derivative fixed point iteration (3.11). However, this does not necessarily mean that the number of

30 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��

��
��
��

���
���
���
���
���

���
���
���
���
���

Taping sweep Adjoint sweep

Fu
nc

tio
n

ev
al

ua
tio

n A
djointpropagation

Time

| {z }
G1

| {z }
G2

| {z }
G3

| {z }
Ḡ1

| {z }
Ḡ2

| {z }
Ḡ3

H(sk, u) H̄(s∗, u, s̄l)

Figure 3.6: Derivation procedure for functions containing a fixed-point iteration

iterations k and l are the same. Computing as many iterations in the reverse mode as done in the forward
mode, i.e., in the black box application of AD, is not appropriate in most cases, therefore. Possible
negative effects are an unnecessary high number of iterations for the derivative fixed point iteration, an
insufficient accuracy of the derivative fixed point or even a missing convergence, in the worst case.

A solution to this problem can be found in a sufficient decoupling of the original and the derivative fixed
point iteration. This can be achieved by using a nested taping approach as described above, enabling
an advanced handling of the two fixed point contexts. Due to the decoupling, a reduction in the size of
the internal function representation is possible, in addition. The principle layout of the taping process is
equivalent to the strategy depicted in Figure 3.4, therefore. As for the checkpointing approach, the sub-
functions G1 and G3 are combined within the derivative context C1 that is represented by tape one. The
latter also contains the special operation that signals to switch to the second context C2 containing the
handling of the fixed-point iteration G2. Throughout this process a second tape is created, representing
the last step of the iteration G2, i.e., the approximation of s∗ = H(s∗, u).

The complete process of computing derivatives using the reverse mode of AD for a function containing
a fixed-point iteration is depicted in Figure 3.6. Thereby, it is assumed that a first order reverse mode is
applied. In preparation, the function evaluation including the recording of intermediate values and the
creation of the internal function representation are combined within the taping sweep. This is depicted
in the left half of Figure 3.6. Within a first step, sub-function G1 is handled the standard way, i.e., the
function is evaluated and an internal representation is created as the first part of tape one. After adding
the context change operator to the tape, an internal switch to a new context C2 is accomplished. There,
the fixed-point iteration (3.8) is used to solve the fixed-point equation (3.7). Throughout this process, no
internal representation of the involved function is created. In Figure 3.6, this process is depicted by the
dashed arrow around the box containing a green line that represents the evaluation of H at the kth base
point (sk, u). As soon as the fixed-point s∗ has been approximated, function H gets evaluated a last time
at the base point (s∗, u), this time to create an internal representation of H while recording intermediate
function values. During this process that is denoted by the light blue line in Figure 3.6, a second tape
is created. After returning to derivative context C1, an internal representation for sub-function G3 is
generated and appended to tape one. Again, intermediate values are recorded throughout this process.

To start the computation of adjoint values, the user provides the vector ȳ and initiates the evaluation of
tape one, e.g., by forcing a first oder reverse mode application. The remaining part of the derivation
procedure is now completely automatic, what means that no more user interaction is needed. After com-
puting the adjoint vector s̄∗ using the internal representation of G3, a context switch is performed. Within
the new context C̄2, the adjoint fixed-point iteration (3.9) is computed. Throughout this process that is
depicted by the dashed arrow around the box containing a dark blue line, tape two and the corresponding
intermediate values s∗ and u are reused. In contrast, the adjoint values s̄l corresponding to the systems

3.2. TAPE REDUCTION BASED ON ACTIVITY-TRACKING 31

state are changed iteratively. The result of the adjoint fixed-point iteration is the vector (s̄0, ū), that is
used as input vector for Ḡ1, after the first context has been resumed. Finally, as soon as tape one has
been processed completely, the result vector x̄ may be extracted the usual way.

The nested taping approach in conjunction with separate derivative contexts is capable to decrease the de-
mands on the user when applying AD to more complex functions. Besides this advantage, such complex
systems can be handled with adjusted copy overhead and based on a reduced function representation, in-
ternally. Another technique that is useful when addressing the latter issues is described in the following
section.

3.2 Tape reduction based on activity-tracking

To be suitable for large-scale applications, an AD-tool must afford the computation of derivative values
in a process that should be optimized in the highest possible degree. Operator overloading based tools are
often said to be not feasible for handling such applications due to their lack of an appropriate data, control
and activity analysis. The latter is a crucial aspect in the generation of derivative codes by AD-enabled
compilers. By using a static activity analysis at compile time, more efficient derivative codes can be
created in the way that the amount of trivial derivative computations is reduced considerably [CNR03].

When applying operator overloading based AD, a static activity analysis is not performed by the compiler
as exploiting activity information does not belong to the standard optimization techniques. However, a
similar analysis and an optimization of the derivation process based on the gathered results can be per-
formed at runtime. This also allows for recent results of the research in the field of hybrid static/dynamic
activity analysis [KRE+06]. In the remainder of this section, a technique is introduced that was devel-
oped in the scope of this thesis and allows to apply a runtime activity analysis.

Before going into details, reconsider the coordinate transformation example introduced in Section 2.1,
again. This time a situation more common to the application of AD shall be assumed, i.e., only a subset
of input and output variables of the user function is relevant for the derivative computation. Here, for the
given user function (y1, y2, y3) = F (x1, x2, x3), derivatives of y1 with respect to x1 and x2 shall be of
interest only.

An activity analysis carried out by an AD-enabled compiler would determine all variables of the given
user function F that derivatives must be computed for. This process results in the generation of the set
of active variables

AV := {v | ∃x ∈ XI : x ≺+ v ∧ ∃y ∈ Y D : v ≺+ y} ∪XI ∪ Y D. (3.12)

Thereby, v is an intermediate variable, XI is the set of independent variables
(
{x1, x2}

)
, and Y D is

the set of dependent variables
(
{y1}

)
. Furthermore, ≺+ is the transitive closure of ≺ as defined in

[SW89], i.e., ≺+= ∪∞i=1≺i, where ≺i is a composition of i times ≺. The process of activity analysis
starts with a differentiable dependency analysis [HNP05], wherein for each particular structure of the
function, i.e., instruction, basic block or subroutine, a dependency set Dep is determined. Denoting
by vb a variable before a specific program structure and by va a variable after it, the dependency set is
defined by Dep := {(vb.va) | vb ≺+ va}. Data flow equations are used to determine the set Dep within
this analysis. They are based on the more general equations introduced in [ASU86]. Further details on
activity analysis are given in [HNP05].

Once the set Dep has been determined for all structures of the function, activity information is propagated
along the computational graph using this dependency information. To generate a preferably small but
nevertheless correct set of active variables AV , activity information is propagated ideally along the graph
in two directions. In one pass, all varied variables are determined, i.e., the intermediate variables that
possibly depend on at least one element of XI . All useful variables, i.e., the intermediate variables that
at least one element of Y D depends on, are determined in a second pass. The final set AV is build as

32 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

v−2 v−1 v0

v1

v2

v3

v4

v5

v6

v7

v8

v11 v9 v10

v−2 v−1 v0

v1

v2

v3

v4

v5

v6

v7

v8

v11 v9 v10

v−2 v−1

v2

v3

v5

v6

v9

Figure 3.7: Forward, backward activity propagation as well as the intersection for the coordinate trans-
formation problem

union of independent, dependent and the intersection of varied and useful intermediate variables, thus
implementing (3.12).

The result of the activity analysis for the coordinate transformation example is depicted in Figure 3.7.
In the left part, activity information is propagated in evaluation direction for the determination of varied
variables. Thereby, dashed circles represent variables that do not need to be active and dashed arrows
depict operations that must not be cared about in the derivation process. The propagation of activity
information against evaluation direction to identify useful variables is depicted in the middle part of
Figure 3.7. Creating the set of active intermediate variables as intersection of the results leads to the
graph that is depicted in the right part of Figure 3.7. As can be seen, neither the forward nor the backward
propagation of activity information can yield the desired result on its own.

Considering the application of an AD-enabled compiler, only the set of independent variables, the set
of dependent variables and the function to be differentiated need to be provided. Extracting the activity
information and building an optimized code based on this information is then carried out by the com-
piler. The derivative code might be called at an appropriate point of the program, afterwards. Though
this approach can be summarized this easily, its application is limited due to the range of supported
programming languages, i.e., languages for that AD-enabled compilers are available. The compiler de-
velopment is typically extremely expensive and many challenges that result from the AD component are
still unanswered. Especially newer language constructs, e.g., pointers or heredity, are responsible for this
difficulties.

Applying an overloading based AD-tool follows the derivation scheme for AD-enabled compilers in
many aspects. Due to its nature, certain differences occur, nevertheless. The most important difference
in this context concerns the initial modifications of the source code. As mentioned in subsection 2.2.2,
all independent, relevant intermediate and dependent variables of the function have to be replaced by an
augmented data type. The meaning of this process is in some sense similar to the forward propagation
of activity information and, so far, presents the only option of an activity analysis in the overloading
approach. In the best case, the set of variables that gets redeclared is equivalent to the set of varied
variables. Whether this result can be achieved is mainly related to the way these variables are chosen by
the user.

3.2. TAPE REDUCTION BASED ON ACTIVITY-TRACKING 33

3.2.1 Common augmentation strategies

Up to now, two basic techniques have been used when preparing a given source code for the application
of operator overloading based AD. These two approaches mainly differ in the users effort and in the
accuracy when determining the minimal set of augmented variables.

Global change of the variable type

An obvious strategy that can be applied with minimal effort in many cases, is to redeclare every floating
point variable of a given source code to use a provided augmented data type. This can be done, e.g.,
by utilizing the MAKRO mechanism provided by many programming languages. Code changes are
necessary only for a limited part of the provided source files, e.g., header files, this way.

The advantage of obtaining an augmented version of the code very easily and fast is accompanied by
significant additional costs when evaluating the resulting code. As an internal representation is created
for every operation that involves variables of augmented data types, the size of the required memory to
keep this information may be increased drastically. Unfavorable memory access costs may be the result
on the one hand and the processing of operations that are irrelevant for the derivation, on the other hand.
This results in a higher overall runtime of both the function evaluation and the derivation calculations.

Compiler-aided augmentation

A more advanced technique of building the set of augmented variables is characterized by the usage
of the compiler for assisting the user in this process. Thereby, in the first step only those variables are
redeclared to an augmented data type that are independents in terms of AD. During the compilation
process of the program, the compiler will issue error messages concerning data type conversions that
are not allowed. Based on these error messages the user redeclares additional variables, i.e., certain
intermediates or dependents, to rely on an augmented data type. Then, the program compilation process
is invoked again, possibly issuing different error messages. The loop over changing the type of variables
and examining the result by using the compiler has to be carried out until the last error message has been
resolved. Compared to the global change strategy, a reduced set of augmented variables is created and a
smaller internal function representation is generated during the taping step. However, an overestimation
of the set of relevant variables can hardly be avoided, in most cases. Every operation that involves at least
one argument of augmented data type will enforce the result of the operation to be of augmented type,
too. This is even the case if the propagated derivatives do not influence any single dependent variable.
The consequences of this issue are illustrated in the left graph contained in Figure 3.7.

To better rate the effort of the compiler-aided augmentation process, reconsider the coordinate transfor-
mation example, again. For the function (y1, y2, y3) = F (x1, x2, x3) derivatives shall be computed only
with respect to x1 and x2. Applying the compiler-aided technique results in the sequence of augmentation
steps that is depicted in Table 3.1. Thereby, a compiler sweep and the augmentation of some variables
according to the issued error messages are the components of one step. For each operation, arguments of
augmented data type are set bold. As can be seen, even this small example takes seven compiler sweeps,
not counting step zero that does not need one. Using this technique for activating a large code that is split
across a significant number of files, often turns out to be exhausting or even impossible.

Comparing the compiler-aided augmentation technique and the compiler internal activity analysis reveals
several correlations. In particular, the forward propagation of activity information by the AD-enabled
compiler and the aided augmentation basically pursue the same goal. If the potentially frustrating com-
plexity of the compiler-aided augmentation technique could be overcome, its underlying idea would well
be beneficial to overloading based AD. An appropriate solution is described in the following subsection.

34 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

Table 3.1: Compiler-aided augmentation process

step augmented variables relevant operations
0 x1, x2 declare independent
1 v−2, v−1 v−2 = x1 v−1 = x2

2 v1, v2, v3 v1 = v−1/v−2 v2 = v2
−2 v3 = v2

−1

3 v5, v11 v5 = v2 + v3 v11 = arctan(v1)
4 v6, v7 v6 = v5 + v4 v7 =

√
v5

5 v8, v9 v8 = v7/v0 v9 =
√

v6

6 v10 v10 = arctan(v8)
7 y1, y2, y3 y1 = v9 y2 = v10 y3 = v11

3.2.2 Augmentation using state-tracking variables

The two augmentation strategies described above often have turned out to be not well suited for larger
real world problems. Instead, a technique would be necessary that affords to exploit the advantages of
the two approaches under extensive avoidance of their drawbacks. In particular, it should be possible
to redeclare all variables of floating point type to use an augmented data type without caring about an
appropriate activity structure but achieving the optimal structure, nevertheless. Whereas this seems to
be contradictory at first glance, it turns out to be possible on closer inspection. Up to now only pre-
compile time and compile time techniques have been used in the context of overloading based AD-tools.
To achieve the ambitious goal formulated above, runtime information must be taken into account, too.
This seems reasonable as the creation of an internal representation that is done, e.g., for tape based
overloading tools, is dedicated to the execution of the function rather than its compilation. Then, the
possibly repeated evaluation of the created tape is the key component for the runtime of the derivative
computations. Burdening the taping process with some additional checks for activity information seems
acceptable if the size of the created internal representation is reduced in return.

Reconsidering the activity analysis of an AD-enabled compiler, and comparing it to the taping process of
an overloading based AD-tool shows that only the process of determining varied variables can possibly
be integrated into the taping process due to the evaluation direction. As a result of the overloading strat-
egy, the global view of the source code that is utilized by the compiler is reduced to the level of individual
instructions that are processed at runtime. Selective equations and definitions from the compiler based
activity analysis can be transformed to reflect this situation and derive an appropriate strategy to achieve
a similar result at runtime.

In the differentiable dependency analysis, for every structure S of the source code a set of dependencies
Dep is determined, as mentioned before. With the tape based operator overloading approach, the range
of structures is reduced to individual instructions that are actually carried out and a sequence thereof,
respectively. An instruction can be either the declaration of an independent or a dependent variable, a
control flow command or an arithmetic statement. The control flow commands, e.g., comparisons, do
not influence the activity property of variables, whereas the declaration of independent and dependent
variables do, due to (3.12). Therefore, in an adapted differential dependency analysis, only the arithmetic
statements must be taken into account. For an arithmetic instruction Ik : v = e, the set Dep is defined
by

Dep(Ik) :=
{
(d.v) | ∀d ∈ DP (e)

}
∪
{
(w.w) | ∀w 6= v

}
. (3.13)

Thereby, v is the variable that takes the result of the instruction, w may be any other variable, e is an
expression that forms the right-hand side of the instruction and DP is the set of variables that occur in
differentiable position in e [HNP05]. Due to the overloading, the range of expressions is quite limited
and can be summarized as follows.

3.2. TAPE REDUCTION BASED ON ACTIVITY-TRACKING 35

e op(arg) op(arg1, arg2) ϕ(arg) v c

DP (e) {arg} {arg1, arg2} {arg} {v} ∅

From left to right, the expression e can be an unary operation, a binary operation, an intrinsic function,
another variable or a constant. Compared to the differential dependency analysis that is performed by
an AD-enabled compiler, two main differences occur. Firstly, the complexity of expressions is reduced
significantly and secondly, no array handling is required. The latter results from the individual inspection
of array elements and eliminates the overestimation of varied variables that is often necessary when
applying an AD-enabled compiler.

As no variables can be introduced or old ones can be deleted by an arithmetic instruction, the sets of
defined variables {vb} before and {va} after the instruction are identical. This is not true for a sequence of
instructions, in general. For the sequential composition ⊗ of two instructions I1 and I2, the dependency
set Dep(I1; I2) is defined as

Dep(I1; I2) := Dep(I1)⊗Dep(I2)
= {(vb.va) | ∃v : (vb.v) ∈ Dep(I1) ∧ (v.va) ∈ Dep(I2)}.

(3.14)

Once the dependency sets for all instructions have been determined, the set of varied variables V V (I)
of an arbitrary instruction I can be calculated by composition ⊗ with the input set XI . For this purpose,
the composition operator is overloaded such that it can be applied to a set of variables V and a set of
dependencies Dep(I), as follows

V ⊗Dep(I) := {va | ∃vb ∈ V : (vb.va) ∈ Dep(I)}. (3.15)

Due to the transformation of the program into a sequence of instructions, the set of varied variables
V V (Ik) of the kth instruction can be determined iteratively by building the composition

V V (Ik) = XI ⊗
(((

Dep(I1)⊗ . . .
)
⊗Dep(Ik−1)

)
⊗Dep(Ik)

)
. (3.16)

Equation (3.16) enforces a strict evaluation order that results in a high demand of storage and computation
when determining varied variables instruction by instruction. In particular, computing V V (Ik+1) reusing
the information gathered for instruction Ik would require the following steps:

1. determine Dep(Ik+1),
2. update Dep(I1 − Ik) :=

((
Dep(I1) ⊗ . . .

)
⊗Dep(Ik−1)

)
⊗Dep(Ik) by adding the self depen-

dencies (w∗.w∗) for all variables w∗ that have been declared between Ik and Ik+1,
3. update XI by adding all variables that have been declared as independent between Ik and Ik+1,
4. build the composition Dep(I1 − Ik+1) := Dep(I1 − Ik)⊗Dep(Ik+1),
5. identify the set of varied variables V V (Ik+1) by computing XI ⊗Dep(I1 − Ik+1).

To derive a more efficient algorithm for computing varied variables, associativity must be proved for the
two defined cases of ⊗ that are utilized in (3.16). The associativity of the dependency composition is
given, if(

Dep(Ik)⊗Dep(Ik+1)
)
⊗Dep(Ik+2) = Dep(Ik)⊗

(
Dep(Ik+1)⊗Dep(Ik+2)

)
(3.17)

holds. For the left part, definition (3.14) yields

Dep(Ik; Ik+1) =
{(

vb(k).va(k + 1)
)
| ∃v1 :

(
vb(k).v1

)
∈ Dep(Ik) ∧(

v1.va(k + 1)
)
∈ Dep(Ik+1) },

Dep(Ik; Ik+1)⊗Dep(Ik+2) =
{(

vb(k).va(k + 2)
)
| ∃v2 :

(
vb(k).v2

)
∈ Dep(Ik; Ik+1) ∧(

v2.va(k + 2)
)
∈ Dep(Ik+2) },

=
{(

vb(k).va(k + 2)
)
| ∃v1,∃v2 :

(
vb(k).v1)

)
∈ Dep(Ik) ∧(

v1.v2)
)

∈ Dep(Ik+1) ∧(
v2.va(k + 2)

)
∈ Dep(Ik+2) }.

36 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

There, vb(k) denotes an arbitrary variable before and va(k) denotes a variable after the kth arithmetic
instruction. In the transformation process the identity v2 = va(k + 1) has been utilized. Applying a
similar strategy for the right-hand side of (3.17) yields

Dk12 := Dep(Ik+1; Ik+2)
=
{(

vb(k + 1).va(k + 2)
)
| ∃v2 :

(
vb(k + 1).v2

)
∈ Dep(Ik+1) ∧(

v2.va(k + 2)
)
∈ Dep(Ik+2) },

Dep(Ik)⊗Dk12 =
{(

vb(k).va(k + 2)
)

| ∃v1 :
(
vb(k).v1

)
∈ Dep(Ik) ∧(

v1.va(k + 2)
)
∈ Dk12 },

=
{(

vb(k).va(k + 2)
)

| ∃v1,∃v2 :
(
vb(k).v1)

)
∈ Dep(Ik) ∧(

v1.v2)
)

∈ Dep(Ik+1) ∧(
v2.va(k + 2)

)
∈ Dep(Ik+2) }.

Here, the identity v1 = vb(k + 1) has been used. As can be seen, the two transformations yield the same
result and the composition of dependencies is associative, therefore.

Now, associativity must be shown for the composition of a set of variables and a composition of depen-
dencies, i.e., that the following identity holds:(

V ⊗Dep(Ik)
)
⊗Dep(Ik+1) = V ⊗

(
Dep(Ik)⊗Dep(Ik+1)

)
. (3.18)

Considering the left-hand side yields with (3.14) and (3.15)

V Dk := V ⊗Dep(Ik)
=
{
va(k) | ∃vb(k) ∈ V :

(
vb(k).va(k)

)
∈ Dep(Ik)

}
,

V Dk ⊗Dep(Ik+1) =
{
va(k + 1) | ∃vb(k + 1) ∈ V Dk :

(
vb(k + 1).va(k + 1)

)
∈ Dep(Ik+1)

}
,

=
{
va(k + 1) | ∃vb(k) ∈ V,∃v :

(
vb(k).v

)
∈ Dep(Ik) ∧(

v.va(k + 1)
)

∈ Dep(Ik+1)
}
.

Here, the identity va(k) = vb(k + 1) = v has been utilized. Similarly, the right-hand side of equation
(3.18) can be transformed as follows

Dk01 := Dep(Ik)⊗Dep(Ik+1)
=
{(

vb(k).va(k + 1)
)

| ∃v :
(
vb(k).v

)
∈ Dep(Ik) ∧(

v.va(k + 1)
)

∈ Dep(Ik+1)
}
,

V ⊗Dk01 =
{
va(k + 1) | ∃vb(k) ∈ V :

(
vb(k).va(k + 1)

)
∈ Dk01

}
,

=
{
va(k + 1) | ∃vb(k) ∈ V,∃v :

(
vb(k).v

)
∈ Dep(Ik) ∧(

v.va(k + 1)
)

∈ Dep(Ik+1)
}
.

As can be seen, left-hand and right-hand side of (3.18) yield the same result, what means that the com-
position is associative. Using the associativity property of ⊗, equation (3.16) can be rewritten to

V V (Ik) = XI ⊗Dep(I1)⊗ . . .⊗Dep(Ik−1)⊗Dep(Ik). (3.19)

Though it seems possible to determine varied variables for each instruction individually by carrying
out the composition above and checking if the result of the instruction Ik belongs to V V (Ik), it is not
efficient. Rather, the set of varied variables can be adjusted by considering the activity propagation
from instruction to instruction. Under this aspect, consider two successive arithmetic instructions Ik and
Ik+1 and assume that the set of varied variables V V (Ik) has already been determined. Exploiting the
associativity of ⊗ and utilizing (3.19) yields an adjusted formula for computing V V (Ik+1)

V V (Ik+1) = XI ⊗Dep(I1)⊗ . . .⊗Dep(Ik)⊗Dep(Ik+1),
= V Vb(Ik+1)⊗Dep(Ik+1).

(3.20)

3.2. TAPE REDUCTION BASED ON ACTIVITY-TRACKING 37

Thereby, V Vb(Ik+1) := XI ⊗Dep(I1) ⊗ . . . ⊗Dep(Ik) denotes the set of varied variables before the
execution of instruction Ik+1. At first glance, the identity V Vb(Ik+1) = V V (Ik) seem to hold. However,
due to the facilities of the considered programming languages, new variables may be declared between
the two instructions Ik and Ik+1. This may also include the declaration of additional independent vari-
ables xi∗ that are varied by definition. Accordingly, V V (Ik) must be updated to V Vb(Ik+1) according
to

V Vb(Ik+1) = V V (Ik) ∪ {xi∗}. (3.21)

With (3.21), equation (3.20) can be rewritten to

V V (Ik+1) =
(
V V (Ik) ∪ {xi∗}

)
⊗ Dep(Ik+1). (3.22)

Recalling the definition (3.13) of Dep(I) shows that by carrying out the composition (3.22) the only
change to the set of varied variables can follow from the result variable of the arithmetic instruction
Ik+1 : v = e. The state of all other variables w will remain unchanged due to the self dependency (w.w)
contained in Dep(Ik+1). With the execution of instruction Ik+1, three options of changing the set of
varied variables exist. They can be expressed in form of the following set differences.

1. V V (Ik+1) \ V Vb(Ik+1) = {v} :
Variable v was not in the set of varied variables before but has been varied by Ik+1. Reconsidering
the definitions of Dep and DP , one can see that this is only possible if at least one variable of
expression e is in differential position and is also element of V Vb(Ik+1).

2. V Vb(Ik+1) \ V V (Ik+1) = {v} :
Variable v is removed from the set of varied variables as result of Ik+1. This means that either a
constant c is assigned or no variable in differential position is element of V Vb(Ik+1).

3. V V (Ik+1) = V Vb(Ik+1) :
In this case no changes occur to the set of varied variables. This means that the varied property of
the result variable v is unchanged.

The second option reveals another important difference to the static activity analysis that is performed by
AD-enabled compilers. Determining varied variables at runtime gives the chance to change the state of
variables (varied or not) in either direction. When applying an AD-enabled compiler, similar results can
only be achieved when using a hybrid static/dynamic activity analysis as suggested, e.g., in [KRE+06].

Now, reconsidering the definition of V Vb(Ik+1) and allowing for all types of program statements that
have been given on page 19, an algorithm for creating and updating the set of varied variables at runtime
can be derived. Prerequisite is a new type of AD-variable that can store the varied information – the
state. The basic layout of the state-tracking algorithm is the following:

Evaluate the user function F instruction by instruction and do for all of them :

• if I is a control flow command:

⇒ keep the varied state of all variables

• if I is the declaration of an independent or dependent variable:

⇒ set the varied state of the argument variable to true

• if I is an arithmetic instruction:

⇒ either set the varied state of the result variable to true if the varied state of at least
one argument is true

⇒ or set the varied state of the result variable to false if the varied state of all argu-
ments is false or a constant value is assigned

38 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

The above algorithm shall be applied to determine the set of varied variables for the coordinate trans-
formation example. Table 3.2 summarizes the evaluation of this set as the function is computed step by
step. Thereby, variables that are added to the set of varied variables due to a certain instruction are set
bold in the corresponding row. It can be seen that at least one argument is element of the varied set in the
preceding row, in this case. The declaration of independent variables has been omitted for lack of space
but the result appears as the set of varied variables before the execution of instruction one. Similarly,
independents must be declared following the last instruction that is depicted in Table 3.2. By doing this,
no changes to the set of varied variables would occur, however.

Table 3.2: Building the set of varied variables at runtime

operation instruction varied variables
1 v−2 = x1 {x1, x2,v−2}
2 v−1 = x2 {x1, x2, v−2,v−1}
3 v0 = x3 {x1, x2, v−2, v−1}
4 v1 = v−1/v−2 {x1, x2, v−2, v−1,v1}
5 v2 = v2

−2 {x1, x2, v−2, v−1, v1,v2}
6 v3 = v2

−1 {x1, x2, v−2, v−1, v1, v2,v3}
7 v4 = v2

0 {x1, x2, v−2, v−1, v1, v2, v3}
8 v5 = v2 + v3 {x1, x2, v−2, v−1, v1, v2, v3,v5}
9 v6 = v5 + v4 {x1, x2, v−2, v−1, v1, v2, v3, v5,v6}
10 v7 =

√
v5 {x1, x2, v−2, v−1, v1, v2, v3, v5, v6,v7}

11 v8 = v7/v0 {x1, x2, v−2, v−1, v1, v2, v3, v5, v6, v7,v8}
12 v9 =

√
v6 {x1, x2, v−2, v−1, v1, v2, v3, v5, v6, v7, v8,v9}

13 v10 = arctan(v8) {x1, x2, v−2, v−1, v1, v2, v3, v5, v6, v7, v8, v9,v10}
14 v11 = arctan(v1) {x1, x2, v−2, v−1, v1, v2, v3, v5, v6, v7, v8, v9, v10,v11}
15 y1 = v9 {x1, x2, v−2, v−1, v1, v2, v3, v5, v6, v7, v8, v9, v10, v11,y1}
16 y2 = v10 {x1, x2, v−2, v−1, v1, v2, v3, v5, v6, v7, v8, v9, v10, v11, y1,y2}
17 y3 = v11 {x1, x2, v−2, v−1, v1, v2, v3, v5, v6, v7, v8, v9, v10, v11, y1, y2,y3}

Comparing the result of the state-tracking procedure with the compiler-aided augmentation process for
the coordinate transformation example verifies the theoretical assumptions. Both, the set of varied vari-
ables and the set of variables to be replaced with an augmented data type are identical. In contrast to
the compiler-aided approach, the state-tracking technique can benefit from the fact that only one compile
sweep is necessary and all variables might be redeclared with the state-tracking data type. Furthermore,
a smaller set of varied variables can be achieved due to the possibility of resetting the varied state of a
variable at runtime.

With the state-tracking technique, an efficient way of determining varied variables has been derived for
the application within the context of operator overloading. The integration of this concept into the overall
taping procedure as well as the resulting challenges are described in the following subsection.

3.2.3 Adapted taping procedure

In subsection 2.2.2, the basic layout for the creation of an internal function representation was discussed.
A small example can be found on page 19. However, the underlying approach had to be adjusted to prop-
erly reflect the state-tracking technique. In addition to the creation of the internal function representation
that mainly was discussed up to this point, another aspect of the derivation process must be considered.
Generally, values of certain function variables may be required for the calculation of the derivatives. This
is usually no problem when applying the forward mode of AD. There, each instruction of the code can
be combined with an appropriate derivative instruction. By carefully choosing the sequence of these two

3.2. TAPE REDUCTION BASED ON ACTIVITY-TRACKING 39

instructions, it can be ensured that the correct function values are used for the derivation. In particu-
lar, it must be guaranteed that the argument values of an operation are used in its derivation before the
assignment of the result possibly overwrites one of them.

A more challenging task has to be solved when applying the reverse mode of AD. Due to the reversal
of the program flow that succeeds the function evaluation, function values that are necessary for the
derivation of instructions might have been overwritten, meanwhile. This issue can be solved by either
recalculating the required values within the derivation process or by storing the relevant data during
the function evaluation and restoring them within the derivative calculations, accordingly. The latter
procedure is often called recording. Using tape-based operator overloading, the recalculation of function
values is in general only possible by reevaluating the created internal representation up to a desired
point. The computational effort for recalculating all function values needed in the derivation process this
way is unacceptable, in general. Therefore, the recording approach is applied for all overloading based
tools known to the author. Utilizing this technique, the value of each variable that is overwritten in an
assignment is stored onto a stack-like storage prior to the change of the value. Handling the assignments
within the derivation procedure then also comprises the restoring of the overwritten values, accordingly.

Considering the recording of overwritten values under the aspect of state-tracking techniques reveals that
this process must also be adapted. Up to now, the commonly applied technique enforces to backup the
value of the result variable of an operation prior to the assignment, if the result variable is of the special
AD data type. Only in this case, an internal representation of the operation is created. In the reevaluation
process, the overwritten value of the result variable is restored, accordingly. This way, the handling of
overwritten values is implicitly represented. To keep this one-to-one correlation, this approach must be
reduced onto those operations whose result variables have the varied state after the execution.

Creating the internal function representation

Taking the described requirements into account, an appropriate AD data type is proposed as depicted
in Figure 3.8. There, C++ notation is used again. The new type must at least allow to reflect the state
of the belonging variable, i.e., varied or not varied. For the AD data type depicted in Figure 3.8, this
information is represented by a discrete variable. The new data type must also afford the creation of an
internal function representation as well as the computation of the function values. As a representative of
the overloaded operators, the principal layout of the copy assignment has been given.

Basically, most overloaded operators and intrinsic functions follow a three phase approach. Within the
first step, it is determined for the result of the instruction, if it belongs to the set of varied variables.
This can be achieved by computing the varied state of the result as disjunction over the varied state
of all arguments. The determination of the varied state can be omitted for the class of comparison
operators. There, the result is of boolean type, typically. Once the state of the result is known, an internal
representation of the instruction can be created and the results value prior to the instruction may be
recorded. Due to the state-tracking, these two tasks are only performed if at least one argument belongs
to the set of varied variables. Finally, the standard intention of the instruction is addressed by evaluating
the operation or intrinsic function using the value components of the variables.

Within the taping process that is represented by the call to “tapeOperation” in Figure 3.8, the state
information of the argument variables must be taken into account once more. Simply using the ID to
represent a variable does no longer guarantee the correctness of the computed values. In fact, it is possible
that a variable has not been added to the set of active variables but enters the computation, nevertheless.
When reevaluating the generated internal representation, the value of this variable is undefined as not all
instructions might have been taped. Possible effects can be seen from the following example.

For the function c = f(a, b) = a∗ b2 +0.5∗ b, derivatives shall be computed with respect to a at the base
point (a, b) = (0.5, 2.0). An appropriate source code is given in the left part of Figure 3.9, the created

40 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

class ADtype {
protected:

Type value;
Type ID;
bool varied;

public:
ADtype operator = (const ADtype &arg) {

ADtype result;

varied = arg.varied;

if (varied) {
tapeOperation(AGN, ID, arg.ID);
push();

}

result.value = value * arg.value;
return result;

}
};

Figure 3.8: State-tracking AD-type including taping

internal representation is depicted in the middle part and a value history is presented in the right part.
Line 1 comprises the declaration of the independent variable a as well as the initial value assignment
for all variables. Thereby, α, β and γ denote arbitrary values that result from memory reusage. All five
variables are of the new state-tracking data type and variables with enabled varied state are set bold in the
source code. Within Figure 3.9, the internal representation for the declaration of the independent variable
a as well as line 6, corresponding to the declaration of the dependent variable c, have been omitted for
the sake of simplicity. For the internal function representation, the new operation code ADD - addition
is introduced.

a b t1 t2 c
1 0.5 2.0 α β γ
2 t1 = b ∗ b = 4.0 — 0.5 2.0 4.0 β γ
3 t2 = a ∗ t1 = 2.0 (MUL, t2, a, t1) 0.5 2.0 4.0 2.0 γ
4 t1 = 0.5 ∗ b = 1.0 — 0.5 2.0 1.0 2.0 γ
5 c = t2 + t1 = 3.0 (ADD, c, t2, t1) 0.5 2.0 1.0 2.0 3.0

Figure 3.9: Incorrect internal representation

Reevaluating the function at the given base point based using the created internal representation yields
the wrong result as can be seen from Figure 3.10. Again, the Greek letters denote arbitrary values that
result from memory reusage. Often, when reevaluating an internal function representation, the new base
point can only be chosen in terms of the independent variables. This basically depends on the facilities
provided by the applied AD-tool. When using the state-tracking technique this is no longer arbitrary as
the internal representation strongly depends on the varied state of the variables. It is very likely that even
by using the correct initial value of an “unvaried” variable, instructions based on this variable may use an
incorrect value. This is due to the fact that not all instructions changing the value of the variable might
have been included into the internal representation of the function. In the given example, it does not
matter if the correct value (2.0) of b is been supplied or not. Due to the instructions that have not been
included as a result of the state analysis, the value of t1 is arbitrary and the overall result c is not correct,
accordingly.

3.2. TAPE REDUCTION BASED ON ACTIVITY-TRACKING 41

a b t1 t2 c
1 0.5 δ ε ζ η
3 t2 = a ∗ t1 = 0.5 ∗ ε 0.5 δ ε 0.5 ∗ ε η
5 c = t2 + t1 = 1.5 ∗ ε 0.5 δ ε 0.5 ∗ ε 1.5 ∗ ε

Figure 3.10: Reevaluation of the function based on an incorrect internal representation

As for the reevaluation of the internal representation depicted in Figure 3.9, the application of the reverse
mode of AD based on it also yields wrong results. Assuming that the recording of overwritten values
is accomplished during the taping process, the stack would hold β (after line 3) and β, γ (after line 5),
respectively. These values are used in the reverse sweep, in which the restoring of a value is depicted by
the pop-function in Figure 3.11. Line 6 that has been omitted in the figures before, is now included and
can be treated as an initialization step. Therein, the adjoint values for all variables are set to zero with
the exception of c̄, which is set to 1.0 according to its state as dependent variable. In return, the adjoint
statements for line 1 are left out.

Calculating the required derivate analytically yields the formula ∂f/∂a = b2. Evaluated at the given base
point, the correct result is ā = ∂f/∂a = 4.0 which is different from the value depicted in Figure 3.11.
The main problem in the given example is caused by the incorrect value of t1 in the computation of ā
in line 3.2. On a first glance, this seems to be caused by a missing push/pop pair for t1. By including
these functions at the correct position in the taping process, i.e., the call to push before evaluating line 4
in Figure 3.9 and the call to pop before line 3.1 in Figure 3.11, the correct value would be computed.
However, this approach would fail if the reverse sweep is performed succeeding a reevaluation of the
function based on the created internal representation. As can be seen from Figure 3.10, the call to the
push function cannot be placed and, furthermore, the wrong value ε would be stored for t1 in any case.

a ā b b̄ t1 t̄1 t2 t̄2 c c̄
6 0.5 0.0 2.0 0.0 1.0 0.0 2.0 0.0 3.0 1.0
5.1 pop(c) 0.5 0.0 2.0 0.0 1.0 0.0 2.0 0.0 γ 1.0
5.2 t̄2 += c̄ = 1.0 0.5 0.0 2.0 0.0 1.0 0.0 2.0 1.0 γ 1.0
5.3 t̄1 += c̄ = 1.0 0.5 0.0 2.0 0.0 1.0 1.0 2.0 1.0 γ 1.0
5.4 c̄ = 0.0 0.5 0.0 2.0 0.0 1.0 1.0 2.0 1.0 γ 0.0
3.1 pop(t2) 0.5 0.0 2.0 0.0 1.0 1.0 β 1.0 γ 0.0
3.2 ā += t̄2 ∗ t1 = 1.0 0.5 1.0 2.0 0.0 1.0 1.0 β 1.0 γ 0.0
3.3 t̄1 += t̄2 ∗ a = 1.5 0.5 1.0 2.0 0.0 1.0 1.5 β 1.0 γ 0.0
3.4 t̄2 = 0.0 0.5 1.0 2.0 0.0 1.0 1.5 β 0.0 γ 0.0

Figure 3.11: Reverse propagation based on an incorrect internal representation

Turning back to the state-tracking, one can see that the variable t1 does not belong to the varied set
for all critical instructions. This means that this variable does not depend on any independent variable
at the considered points, per definition. In return, derivative values do not need to be computed or are
trivially zero. The only way such variables enter the function as well as the derivative calculation is by
means of their function values. Due to the missing connection to the independent variables, the value of
these variables can be treated as constants. Accounting for this attribute in the taping process, variables
without the varied state must be represented by their values rather than by their ID. Applying this result
in the taping process for the function c = f(a, b) yields the internal function representation that is given
in Figure 3.12.

With this corrected version of the internal representation, the reevaluation of the function as well as the
computation of derivatives yield the expected results. The two sweeps are depicted in Figure 3.13, the

42 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

3 (MUL, t2, a, 4.0)
5 (ADD, c, t2, 1.0)

Figure 3.12: Corrected internal function representation

reevaluation in the upper part and the derivative calculations in the lower part. Thereby, the same notation
is used as in the figures above. The recording of values that are overwritten is carried out during the
function reevaluation. Accordingly, the stack values are ζ after line 3 and ζ, η after line 5, respectively.
An additional benefit of the substitution of variables by constants becomes obvious when comparing the
computational effort of the reverse computations represented by the Figures 3.11 and 3.13. Due to the
substitution, some nonlinear dependencies have been transformed into linear dependencies. The latter
can be handled with reduced effort based on the inherent mathematics.

a b t1 t2 c
1 0.5 δ ε ζ η
3 t2 = a ∗ 4.0 = 2.0 0.5 δ ε 2.0 η
5 c = t2 + 1.0 = 3.0 0.5 δ ε 2.0 3.0

a ā b b̄ t1 t̄1 t2 t̄2 c c̄
6 0.5 0.0 δ 0.0 ε 0.0 2.0 0.0 3.0 1.0
5.1 pop(c) 0.5 0.0 δ 0.0 ε 0.0 2.0 0.0 η 1.0
5.2 t̄2 += c̄ = 1.0 0.5 0.0 δ 0.0 ε 0.0 2.0 1.0 η 1.0
5.4 c̄ = 0.0 0.5 0.0 δ 0.0 ε 0.0 2.0 1.0 η 0.0
3.1 pop(t2) 0.5 0.0 δ 0.0 ε 0.0 ζ 1.0 η 0.0
3.2 ā += t̄2 ∗ 4.0 = 4.0 0.5 4.0 δ 0.0 ε 0.0 ζ 1.0 η 0.0
3.4 t̄2 = 0.0 0.5 4.0 δ 0.0 ε 0.0 ζ 0.0 η 0.0

Figure 3.13: Computation of function and derivative values based on the corrected internal representation

A drawback of argument type replacement as described above is the increased complexity that must be
coped with when creating the internal function representation. Instead of only one constellation, i.e., all
variables involved in a specific instruction own a derivative counterpart, several different situations must
be handled. The more arguments are used by an instruction, the more complex this process is. In terms
of operator overloading, again the three basic types of instructions must be considered that have been
discussed in subsection 3.1, before. Each type requires adaptations that are given below.

• Declaration of independent or dependent variables
This type of instruction can be handled with minimal overhead. An internal representation of these
instructions is always created, independent if the considered variable is varied or not. Within the
created representation, the variables are never replaced by their numerical value. Special attention
must be paid if the variable that is marked as dependent does not have the varied attribute. In that
special case, an additional instruction must be included into the internal function representation.
Preceding the declaration as dependent variable, an assignment instruction must be taped that
induces the correct numerical value of the variable. Correspondingly, the derivative value is set
to zero within the derivation process as result of the assignment of a constant value. A warning
message may be issued to inform the user about this state, which is probably unintended.

• Arithmetic operations
The taping effort for this type of instruction is tightly coupled to the number of arguments. For
unary operations and intrinsic functions the varied state of the argument decides if the instruction

3.2. TAPE REDUCTION BASED ON ACTIVITY-TRACKING 43

is appended to the internal function representation. If the argument belongs to the set of varied
variables, an internal representation is created that is based on the IDs of argument and result
variable. Otherwise the instruction is ignored in terms of the taping process. A substitution of
variables by their numerical value is never enforced.

Compared to the unary case, binary operations and intrinsic functions need a relatively high num-
ber of additional checks. As described before, an internal representation gets only created if the
result of the instruction has the varied attribute. This is set to true if at least one of the arguments
has this attribute. When creating the internal representation, it must be determined which variables
are varied and where to apply the value based replacement. In principle, three cases have to be
distinguished, i.e., the two arguments have the varied state or only one of them. Each of these
cases has to be handled separately.

• Comparison instructions
A suitable internal representation of comparison instructions is the key for a reliable detection of
changes in the control flow when reevaluating the function at a different base point. To guarantee
the correctness in the sense above, varied state information has to be taken into account when
applying the state-tracking technique to comparison instructions. This includes to replace the ID
of each non-varied argument of the comparison by its numerical value computed so far. If none
of the involved variables is of varied state, no internal representation of the instruction must be
created. The latter would consist of the comparison of two constant values that always yields the
same results. By not creating this representation, a runtime improvement can be achieved when
reevaluating the tape.

With the additional complexity that results from the state-tracking technique, the internal implementation
of the overloaded operators and functions holds an significant meaning for the efficiency of the taping
process. However, considering the creation of the internal function representation as part of a larger
application diminishes its importance in the global view. There, runtime drawbacks that arise from the
more complex taping procedure will be compensated by a more efficient derivative calculation, most
probably. However, minimizing the preliminary steps that are necessary to afford the derivative calcula-
tions is one of the key ingredients to keep the overall runtime as small as possible. Accordingly, it must
be ensured that the created internal representation is evaluated as seldom as possible. Challenges that
must be handled in this context are discussed in the following subsections.

Three phase approach for reverse mode AD

As for the forward mode, an internal representation of the function must be created that can be used
to reverse the program flow in the derivation phase. Assuming that memory is reused for reducing the
overall storage requirements, the loss of important information due to overwriting must be taken into
account. Hence, AD-tools keep track of overwritten values in the forward sweep and restore them in
the reverse sweep. This process is called recording as described in Subsection 3.2.3. Integrating the
recording procedure into the taping phase that utilizes a state-tracking technique, inflicts the potential of
storing and restoring wrong values. The reason is found in the specific point of the taping process where
the recording takes place as illustrated by the following small example.

EXAMPLE 3.2

Function Stack Tape

1 t = a ∗ b push
(
value(t)

)
(MUL, t, a, b)

2 a = 1.0 — —
3 {use a} * *
4 a = c push

(
value(a)

)
(AGN , a, c)

44 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

There, the variables a, b and t in line 1 as well as c and a in line 4 belong to the set of varied variables.
In fact, a is removed from the set of varied variables as result of instruction 2 and is reinserted as result
of line 4. Line 3 may represent a larger block of code, but it is assumed that the numerical value of a is
not changed. Accordingly, the value of a is only effected by the instructions 1 and 4. As result of the
latter, the numerical value 1.0 is pushed onto the tape. The internal representation is extended according
to line 1 and 4 as well as block 3, depending on the involved instructions. Based on the created internal
representation, the following sequence of instructions is created within the reverse sweep.

EXAMPLE 3.3

Derivation code

4.1 pop
(
value(a)

)
⇐ a = 1.0

4.2 c̄ += ā
4.3 ā = 0.0

3 ∗̄
1.1 pop

(
value(t)

)
1.2 ā += t̄ ∗ b
1.3 b̄ += t̄ ∗ a ⇐ a = 1.0 is used here!
1.4 t̄ = 0.0

As can be seen, the wrong value of a is used in the computation of b̄ in line 1.3. This results from
the unnoticed overwrite of a in line 2 of the original function. The value that has been used in the
computation of t and that is also necessary to compute the correct derivative b̄ has been lost. An obvious
workaround is to create the stack of overwritten values based on the internal function representation.
There, the critical assignment to a does not happen and the correct values can be restored in the derivation
part. The corresponding basic layout of the overall derivation procedure is given below.

1. An internal representation of the evaluated function gets created. Thereby, no recording of values
needs to be performed.

2. The stack that holds all values of variables overwritten within the function evaluation is created
based on the internal function representation.

3. Derivative values are computed based on the reverse mode of AD using the internal representation
and the stack that have been generated before.

Employing this three phase approach, an increase of the overall runtime is very likely. In practice, the
application of AD should always be as efficient as possible since most of the handled problems are time
critical. For this reason, a technique is proposed that allows to combine step one and two of the procedure
above without loosing the correctness of the computed values.

Two phase approach for reverse mode AD

The main reason for creating the internal function representation and the value stack separately was the
unnoticed overwrite of variable values in the context of state-tracking. To combine the two tasks within
one phase, it must be ensured that the variable values recognized by the recording process do not change
between two consecutive instructions regarding the internal function representation. Computations in-
terfering with two such instructions need to operate on a different value. Accordingly, the state-tracking
data type must allow to access two different values that both belong to the represented variable. The AD
data type can be adjusted as given below.

3.2. TAPE REDUCTION BASED ON ACTIVITY-TRACKING 45

class ADtype {
protected:

Type value_varied;
Type value_unvaried;
Type ID;
bool varied;

public:

};

...

Now, the value of a variable declared of this type depends on the varied property. This means, the
component value_unvaried is used for the numerical calculations as long as the varied state is set
to false and value_varied otherwise. Creating the stack of overwritten values within the taping
phase now always relies on the value_varied component of the variables. Every time an assignment
to a variable with enabled varied property occurs, the value_varied is pushed onto the stack. Other
assignments, i.e., to an unvaried result variable, change the value_unvaried component only and
the overwritten value is not pushed onto the stack. This ensures that the recording process exactly uses
the value sequence that would be created when reevaluating the internal representation at the same base
point. Applying this technique to perform the recording within the taping phase for Example 3.2, yields
the following result.

EXAMPLE 3.4

Values

t a
Function unv. var. unv. var. Stack

α β γ 2.0
1 t = a ∗ b α 6.0 γ 2.0 push(β)
2 a = 1.0 α 6.0 1.0 2.0 —
3 {use a} α 6.0 1.0 2.0 *
4 a = c α 6.0 1.0 4.0 push(2.0)

For the sake of clearness, the specific values a = 2.0, b = 3.0 and c = 4.0 are used for the varied
versions of the variables. Using the two values for each variable of the AD data type, the correct values
are pushed onto the stack, i.e., β for t in line 1 and 2.0 for a in line 4. For this reason, the two separate
phases for generating the internal function representation and the stack of overwritten values can be
combined into one phase. The overall process of computing derivatives based on the reverse mode of
AD can be completed in a two phase approach, this way. This reduction in the number of program phases
is, however, not free of charge. Due to the two values of each variable, the memory consumption of the
program is increased and additional costs must be taken into account for accessing the values of the
variables based on their varied state. All in all, this is less expensive than the additional tape evaluation
necessary in the three phase approach that has been described above.

Alternative approach used in CppAD

The two techniques, i.e., the three and the two phase approach that have been discussed above were de-
veloped to provide the original values of overwritten function variables in the reverse sweep. A different
approach is used in the AD-tool CppAD [Bel07]. There, a strategy is utilized that avoids the overwriting
of Variable values completely. Variables in terms of CppAD belong to the set of varied variables whereas

46 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

Parameters do not. In the internal representation of the function, Variables are represented by their IDs
whereas Parameters are substituted by their values. The overwriting of values is avoided for the internal
representation by assigning an unused ID to the result of every operation. Consider Example 3.5 for the
basic layout of the approach. There, the arithmetic operation a = a ∗ b is handled by the usage of a
compiler generated temporary variable t.

EXAMPLE 3.5

Operation Int. representation Calculations

t = a ∗ b (MUL, 3, 1, 2) t.value = a.value ∗ b.value
t.id = 3

a = t − a.value = t.value
a.id = t.id

The technique for creating the internal function representation that this thesis is based on would result in
two tape entries: (MUL, 3, 1, 2) would be written for t = a ∗ b and (AGN, 1, 3) for a = t. These two
entries can be merged to (MUL, 1, 1, 2). Comparing this result to the internal representation created in
Example 3.5 reveals the major difference. Though the represented operation requires the overwriting of
the function value a, it is transformed by CppAD into an equivalent form that avoids the overwriting.
This also prevents the problem of restoring the wrong function values in the reverse sweep and allows to
avoid the explicit stack handling. In terms of the function values, the memory consumption of the two
approaches is nevertheless the same when reevaluating the created internal function representation for
preparing the reverse mode differentiation. Using CppAD, function values that would be overwritten in
the original function are preserved within the field of values that gets filled when reevaluating the internal
representation. In the overwriting approach, these values are stored and restored using the stack.

Though the CppAD approach allows to reduce the complexity of the implementation, it also has signif-
icant disadvantages. Most important, all values that have been computed during the evaluation of the
function are hold in a large vector of a specific size, denoted by s. This includes the values of variables
that would have been overwritten in the original function. However, these values are only used for re-
verse mode differentiation and are unnecessarily stored otherwise. Furthermore, memory for storing the
derivative information must be provided in the size of s or a multiple thereof, depending on the degree of
the derivation. This again increases the overall memory requirement significantly. The necessary storage
sizes are depicted in Figure 3.14. Overall, the approach applied in the AD-tool CppAD is an interesting
approach to handle the overwriting problem at the cost of a considerably higher memory demand.

So far, all optimizations where applied in terms of the forward evaluation of the function. Reconsidering
Figure 3.7 reveals an important fact. In addition to the forward propagation, a reverse analysis of the cre-
ated internal representation is necessary to create the set of active variables according to formula (3.12).
Appropriate facilities that allow this kind of optimization are discussed in the following subsection.

3.2.4 Reverse tape optimization

In contrast to the source-to-source approach where the complete analysis is performed at compile time,
operator overloading basically works at runtime. Consequently, this is true for the second analysis phase,
i.e., the propagation of activity information from the dependent towards the independent variables, too.
The reverse propagation of activity information must be implemented carefully to prevent a significant
increase in runtime for the average application. In contrast to the forward analysis where the internal rep-
resentation of the function, i.e., the tape, could be adjusted during its creation, two different approaches
for handling the tape may be pursued in the reverse analysis phase. On the one hand, the tape may not be
changed in the reverse sweep. Then, the propagation of activity information must be performed each time

3.2. TAPE REDUCTION BASED ON ACTIVITY-TRACKING 47

CppAD approach Stack based approach

Forward mode differentiation

Reverse mode differentiation

Function values (FV)

Derivative values (DV)

FV

DV

Function values

Derivative values

FV

DV

Stack

Figure 3.14: Memory requirements for the CppAD and the stack based approach

the tape is used but the correctness of the representation is obviously retained and effort for restructuring
the tape can be avoided. This approach, which is useful for applications evaluating the tape only once
or a few times, is considered first. On the other hand, the tape may be rewritten during the first usage
in a reverse sweep. Additional effort must then be invested for restructuring the tape and maintaining
the correctness of the tape for the function evaluation and forward mode differentiation, respectively.
However, once the tape has been rewritten correctly, it may be reevaluated in any mode without the need
to apply activity analysis. This approach is especially useful whenever the tape is reevaluated several
times, e.g., when computing derivatives for a function containing a fixed point iteration.

For deriving a general procedure that allows a reverse optimization without altering the tape, the internal
activity analysis of an AD-enabled compiler shall be reconsidered. Activity information is propagated in
two directions at compile time, overall yielding the set of variables that derivatives have to be computed
for. In the forward propagation the set V V of varied variables has been determined according to

V V =
{
v | ∃x ∈ XI : x ≺+ v

}
.

This process has been adapted in such a way that it could be applied within the taping process for
the operator overloading approach. Hence, all variables represented by an ID in the internal function
representation belong to the set V V if the state-tracking technique has been utilized. Another phase
of the activity analysis performed by AD-enabled compilers determines the set UV of useful variables
according to

UV :=
{
v | ∃y ∈ Y D : v ≺+ y

}
.

Finally, the set AV of active variables is constructed according to (3.12) by building the intersection of
V V and UV . Then, derivative code is generated only for those variables that belong to the set of active
variables.

So far, only the set V V of varied variables could be determined by operator overloading based AD-tools
when applying the state-tracking technique as described in Subsection 3.2.2. The internal function rep-
resentation that is created within the taping phase then only holds instructions for these variables. As
derivative values are computed based on the created tape it seems reasonable to develop a technique to
further optimize the derivation process by determining the set of active variables. This can be achieved
by reducing the set of varied variables in a reverse state-tracking phase that determines useful variables.
Due to the utilization of the varied information within this process, the set of active variables is the final
result.

The basic strategy of the reverse state-tracking approach is equivalent to the state-tracking technique
applied within the taping process. However, depending on the applied AD-tool, the useful property of

48 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

each variable may be stored as part of the variable or within a separate field. From the theory results
that the useful property is set for all dependent variables, initially. This perfectly matches the reverse
direction of the tape evaluation. Specific rules for the state propagation can again be derived from the
compiler theory. For reflecting the reverse propagation, the composition operator ⊗ is overloaded once
more:

Dep(I)⊗ V =
{
vb | ∃va ∈ V : (vb.va) ∈ Dep(I)

}
. (3.23)

Thereby, the notation of variables before and after an instruction used for the forward case is retained.
Due to the special structure of the internal representation, which is based on individual instructions, the
useful property of the variables is determined step by step. Accordingly, the set of useful variables can
be described as a sequence of compositions of dependency sets and the set of dependent variables by
utilizing (3.17) and (3.23). The set UV (Ik) for an instruction Ik is given by the formula

UV (Ik) = Dep(Ik)⊗ . . .⊗Dep(Il−1)⊗Dep(Il)⊗ Y D

=
⊗l

i=k
Dep(Ii)⊗ Y D

= Dep(Ik − Il)⊗ Y D.

(3.24)

Thereby, Il denotes the last instruction that has been added to the internal representation and l is the
overall number of instructions recorded within the tape. (3.24) already exploits associativity that can be
proven by utilizing (3.23) and (3.17). The basic layout of the proof is equivalent to the proof of (3.18)
and is therefore not given, here. Utilizing the associativity of (3.24), the sequence may be evaluated from
right to left. This enables the analysis to be done in reverse order, e.g., within the reverse mode phase of
AD.

The evolution of the set of useful variables can again be put down to the differences of the sets UV for
two consecutive instructions Ik−1 and Ik. In particular, the result of the preceding instruction in the
reverse evaluation order, i.e., Ik, can be reused for the computation of UV (Ik−1), yielding

UV (Ik−1) = Dep(Ik−1)⊗Dep(Ik − Il)⊗ Y D,

= Dep(Ik−1)⊗ UV (Ik).
(3.25)

As can be seen, the differences between the two sets of useful variables UV (Ik) and UV (Ik−1) can
only result from the dependency structure of the inspected instruction. Reconsidering definition (3.13),
general rules for the reverse state-tracking can be derived. Due to the reduced internal representation that
has been created in the taping phase the possible range of expressions has been reduced, in particular,
e can no longer be a constant. Furthermore, all taped arithmetic instructions have the result and at least
one argument of variable type. All known variables represented within the tape but not involved in the
considered instruction keep their useful state. This is a result of the self-dependency of all variables
with exception of the result v in the forward consideration. A more complex handling is applied to
all members of DP (e). These variables keep their useful state if v does not belong to UV (Ik) or the
property is set for all of them if v belongs to UV (Ik). Finally, the former result variable v is removed
from the set of useful variables if it does not belong to DP (e), itself.

Within the process of reverse state-propagation, the necessary derivative instructions are determined, in
addition. From the compiler based activity analysis one can see that derivative calculations are only per-
formed if the result of an instruction belongs to both the set of varied and the set of useful variables. This
approach can now be reused within the reverse state-tracking phase. Here, a variable that belongs to the
set of useful variables inevitably also belongs the set of varied variables. Otherwise it would have been
represented by a constant within the tape. Hence, a variable with enabled useful property automatically
belongs to the set of active variables. If this applies to the result of a represented instruction, derivative
calculations are to be performed. All in all, a general algorithm for updating the set of useful variables
can be generated.

3.2. TAPE REDUCTION BASED ON ACTIVITY-TRACKING 49

Reevaluate the created internal representation in reverse order instruction by instruction and
do for all of them:

• if I is a control flow command:

⇒ keep the useful state of all variables
⇒ do not perform any derivative calculation

• if I is the declaration of a dependent or independent variable:

⇒ set the useful state of the argument variable to true
⇒ perform appropriate derivative calculations depending on the internals of the ap-

plied AD-tool

• if I is an arithmetic instruction:

⇒ take a backup b of the useful state of the result variable v and set the property to
false for v

⇒ restore the function value of the instructions result variable
⇒ if b is true:

∗ set the useful property to true for all elements of DP (e)
∗ perform derivative calculations according to the represented instruction

Reverse state-tracking applied to the coordinate transformation example

For illustrating the reverse state-tracking, the coordinate transformation example as given in Figure 2.2
shall be reused. First, before addressing the reverse propagation of activity information, the optimization
based on the forward state-tracking is to be performed. Again, derivatives shall be computed for y1

with respect to x1 and x2. The resulting internal function representation is depicted in the left part of
Figure 3.15. Besides the known operation codes, DIV, SQRT and ATAN are introduced to represent the
division operator, the square root function and the arc tangent function. For reasons of clearness, the
internal representation is given in reverse order.

The next step in optimizing the derivative calculations is the application of the reverse state-tracking
to the created tape. Initially, the set of useful variables contains the dependent variable y1, only. This
information is then propagated in reverse order according to the derived reverse state-tracking algorithm.
In Figure 3.15, this process is depicted schematically.

As described before, derivative instructions are only to be performed for those instructions of the tape
whose result is in the current set of useful variables. In Figure 3.15, these variables have been set bold.
Since no variable overwrites occur in the function, all assignments of the value 0.0 to the active variable at
the end of the derivative handling for an instruction have been omitted. As can be seen from Figure 3.15,
the state-tracking considerably reduces the number of performed derivative instructions. Combining the
individual derivative operations and assigning ȳ1 = 1.0 yields the desired gradient

(
∂y1

∂x1
,
∂y1

∂x2

)
=
(

v−2√
v6

,
v−1√

v6

)
,

=

(
x1√

x2
1 + x2

2 + x2
3

,
x2√

x2
1 + x2

2 + x2
3

)
.

Consequently, a nearly optimal result could be achieved for the considered coordinate transformation
example.

50 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

Tape (reversed) Useful variables Derivative instructions

{y1} —
(AGN , y3, v11) {y1} —
(AGN , y2, v10) {y1} —
(AGN , y1, v9) {v9} v̄9+= ȳ1

(ATAN, v11, v1) {v9} —
(ATAN, v10, v8) {v9} —
(SQRT, v9, v6) {v6} v̄6+= v̄9 ∗ 1.0

2.0∗√v6

(DIV , v8, v7, v0) {v6} —
(SQRT, v7, v5) {v6} —
(ADD , v6, v5, value(v4)) {v5} v̄5+= v̄6

(ADD , v5, v2, v3) {v2, v3} v̄2+= v̄5, v̄3+= v̄5

(MUL , v3, v−1, v−1) {v2, v−1} v̄−1+= v̄3 ∗ v−1, v̄−1+= v̄3 ∗ v−1

(MUL , v2, v−2, v−2) {v−2, v−1} v̄−2+= v̄2 ∗ v−2, v̄−2+= v̄2 ∗ v−2

(DIV , v1, v−1, v−2) {v−2, v−1} —

(AGN , v−1, x2) {v−2, x2} x̄2+= v̄−1

(AGN , v−2, x1) {x1, x2} x̄1+= v̄−2

Figure 3.15: Propagation of the useful information for the coordinate transformation

Reverse activity analysis and adjusted internal representations

As mentioned before, it is possible to alter the internal representation of a function during the first appli-
cation of the reverse mode. All evaluations of the tape that take place thereafter may then be performed
without activity analysis. This way, function recomputation and derivation can be accomplished with a
highly reduced effort. However, compared to the reverse activity analysis described so far, i.e., without
altering the internal representation, the following issues must be considered:

• Depending on the applied AD-tool, rewriting the internal representation may be difficult to imple-
ment. In any case, additional effort at execution time results, which must be outperformed by the
reductions of later tape evaluations to achieve a reduction in the overall runtime.

• It must be ensured that changes in the control flow caused by the evaluation at a different base
point are detected reliably even if the tape has been adjusted.

• Removing operations from the internal representation also effects the stack of overwritten function
values. Correctly adjusting the stack when removing an operation from the tape is therefore crucial
for guaranteeing the correctness of derivatives computed with the reverse mode of AD.

Among these considerations, the control flow and the stack issue are of general interest. On a first glance,
the reduction of the tape could be achieved by removing an operation from the tape in the moment it is
considered in the derivation process if neither the result nor the argument variables of the operation
belong to the set of useful variables. This, however, may cause wrong results when reevaluating the
function based on the reduced tape. The underlying problem in removing control flow operations be-
comes apparent when considering Example 3.6. There, a function y = F (x1, x2, x3) is given on the
left-hand side. Evaluated and taped at a base point for that x1 >

√
5.0 holds, one obtains the inter-

nal representation depicted in the middle column of Example 3.6. Within the application of the reverse
mode, which is also applied for further tape reduction, the handling of the operations in line 2 and 1 is
critical. This situation is depicted by the question marks in the right part of the example. By examining
the function F , it can be seen that y does not depend on x1. Performing the pure removal approach, the
two mentioned instructions would be deleted from the tape. When reevaluating the function using the
reduced tape, branch switches cannot be detected, thus mostly yielding wrong results for x1 ≤

√
5.0.

3.2. TAPE REDUCTION BASED ON ACTIVITY-TRACKING 51

EXAMPLE 3.6

Function Tape - forward mode Tape - reverse mode

1 v = x1 ∗ x1 (MUL, 5, 1, 1) ?
2 if (v > 5.0) (GT , 5, 5.0) ?
3 y = x2 + x3 (ADD, 4, 2, 3) (ADD, 4, 2, 3)
4 else – –
5 y = x2 ∗ x3 – –

Hence, control flow instructions must not be removed from the tape even if only non-active arguments
are involved. However, keeping only the control flow instructions may not be sufficient, as can be seen
from Example 3.6, too. If the tape is reduced such that only the operations from line 2 and 3 remain,
the detection of branch switches is possible but not necessarily correct. In particular, it depends on the
randomly valued variable v whether a branch switch is signaled correctly or not. Hence not only the
control flow instructions but also the computation chains yielding their arguments must be kept. This can
be achieved by adding all argument variables of control flow instructions to the set of useful variables.

The second important issue concerns the correctness of the stack of overwritten function values. As has
been discussed in Subsection 3.2.3, each arithmetic instruction overwrites a variable storing the result
and is therefore associated with the recovery of the previous variable value in the reverse mode phase.
This is done by storing the values onto the stack and retrieving them as necessary. Simply skipping the
top element of the stack when removing an instruction from the tape does not guarantee the correctness
of the reverse mode computations as illustrated in Example 3.7. There, a tape is used that has been

EXAMPLE 3.7

Forward mode Reverse mode

Function Stack Derivation UV v1

1 v1 = x1 + 2 = 3 ∗ x̄1+= v̄1 {x1, x2} ∗
2 v2 = v1 ∗ x2 = 6 ∗ v̄1+= v̄2 ∗ x2, x̄2+= v̄2 ∗ v1 {v1, x2} 4
3 v1 = x2 ∗ 2 = 4 3 — {v2} 4
4 v3 = v1 + 1 = 5 ∗ — {v2} 4
5 v1 = v2 ∗ 3 = 18 4 v̄2+= v̄1 ∗ 3 {v2} 4
6 y1 = v1 = 18 ∗ v̄1+= ȳ1 {v1} 18
7 y2 = v3 = 5 ∗ — {y1} 18

{y1}

created for a function (y1, y2) = F (x1, x2) evaluated at the base point (1.0, 2.0). Derivatives are to be
computed for y1 with respect to x1 and x2. In the taping phase, a stack of overwritten function values
has been created. Values that are pushed onto the stack are depicted in the column “Stack” in the left part
of Example 3.7. The evolution of the set of useful variables and the performed derivative instructions
based on this information are shown in the columns “UV” and “Derivation”. For the sake of brevity,
all instructions explicitly setting variables to zero in the derivation phase have been omitted. These
instructions, e.g., v̄1 = 0 for line 5, are required due to the reuse of variables. For the tape adjustment, it
is assumed that the top element of the stack is skipped in case that the current instruction is removed from
the tape. In addition, no recovery operation is performed. The different values of the variable v1 resulting
from the adjusted recovery process are presented in the corresponding column in Example 3.7. Using the
mentioned skipping approach, the computed derivatives are definitely incorrect due to the calculations in
line 2. There, the wrong value v1 = 4 is used in the derivation. The correct value v1 = 3 would have

52 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

been restored during the handling of the operation in line 3 that, however, has been removed from the
tape due to the missing activity. Hence, a more sophisticated technique of adjusting the stack must be
found to guarantee the derivative correctness.

For the given example, the value of variable v1 is adjusted the first time during the handling of the
instruction in line 5 in the reverse computations. If the value v1 = 3 would be restored at this time
instead of the value v1 = 4, the correct value would be used in the computations for line 2. Then,
the calculated derivatives would be correct, finally. More generally, if an instruction is removed from
the tape, the corresponding overwritten value of the result variable must be removed from the stack. In
addition, the next instruction of the reduced tape that overwrites the same variable must be found and
the related value on the stack must be replaced by the value that just has been removed. This procedure
requires write access to stack elements that are not on top. Since the overwritten values may well be
organized as standard vector, this is no serious problem. The new replacement strategy, however, is only
applicable under a specific condition. It must be ensured that the actually skipped value is not required by
any derivative instruction corresponding to the reduced tape between the removed instruction and the next
instruction manipulating the same variable. Considering the elimination of line 3 in Example 3.7, one
observes that the variable v1 must not be used as argument of any derivative instruction corresponding to
line 4. If such an operation would be part of the reduced tape, all arguments would be elements of the set
of useful variables, in particular the critical variable. Hence, the instruction manipulating this variable
cannot be object to removal. This contradiction proves that, considering the removal of an operation,
up to the previous operation changing the same variable no instruction exists that uses this variable as
an argument. Thus, the replacement strategy for correcting the stack of overwritten variables may be
utilized.

Implementing this approach requires the AD-tool to fulfill some special properties. Firstly, as said be-
fore, the adjusted sequence of overwritten values must be arranged in a structure that allows the access
to all elements at any given time. If the original structure exhibits the same property, the adjusting al-
gorithm may be performed in place, i.e., the original is overwritten. In the remainder of this subsection,
it is assumed that this property holds. Secondly, the structure must consist at least semantically of the
sequence of values that are overwritten during the function evaluation appended by the vector of the final
values of all variables used in computation of the function. Thereby, the sequence of overwritten values
is denoted by ov and the vector of final values by fv. Even though the overall structure is not a stack
due to the required free access to all members, it is called stack in the remainder of this section and is
referred to by st. Denoting by ◦ the concatenation of variable sequences, the following property holds

st = ov ◦ fv.

In preparation of the reverse activity analysis, a new vector referred to by str is allocated for holding
references to the stack. Its size must be chosen such that for all independent, intermediate and dependent
variables of the function a reference can be stored. The elements of str initially point to the corresponding
elements of fv. An additional reference, denoted by stn, is used to mark the base of the reduced stack
and initially points to the first element of fv. Furthermore, a reference stc is defined. It points to the
stack value that is used in the recovery process corresponding to the currently handled instruction of
the tape. This reference is initialized with the same value as stn. In the stepwise handling of the taped
instructions, stc is changed to traverse ov, accordingly. If the considered instruction is removed from
the internal function representation, the value referenced by stc is copied to the stack position referenced
by the ith element of str, where i is the index of the corresponding result variable. Otherwise, stn is
adjusted to reference the preceding element of st, i.e., stn is decremented, and the value referenced by
stc is copied to the stack position referenced by stn. Additionally, the ith component of str is updated
by assigning it the value of stn. Updating str this way maintains a vector of references to stack positions
that the last recovered value of a certain function variable is taken from. While adjusting tape and stack
using the activity information, the recovery of function values is always performed. This ensures that the
derivative calculation yields correct results during the reverse activity analysis.

3.2. TAPE REDUCTION BASED ON ACTIVITY-TRACKING 53

The application of the described algorithm to Example 3.7 is depicted in Figure 3.16. The evolution of the
new stack is presented in the left half. Based on the stack created in the taping phase, the adjusted version
is created reusing the stack memory, illustrated by the gray background. Asterisks are used to represent

Instr. st stc stn str

0 1 2 3 4 5 6 7 8 9 10 11 12 13 x1 x2 v1 v2 v3 y1 y2

∗ ∗ 3 ∗ 4 ∗ ∗ 1 2 18 6 5 18 5 7 7 7 8 9 10 11 12 13
line 7 ∗ ∗ 3 ∗ 4 ∗ ∗ 1 2 18 6 5 18 ∗ 6 7 7 8 9 10 11 12 13
line 6 ∗ ∗ 3 ∗ 4 ∗ ∗ 1 2 18 6 5 18 ∗ 5 6 7 8 9 10 11 6 13
line 5 ∗ ∗ 3 ∗ 4 4 ∗ 1 2 18 6 5 18 ∗ 4 5 7 8 5 10 11 6 13
line 4 ∗ ∗ 3 ∗ 4 4 ∗ 1 2 18 6 ∗ 18 ∗ 3 5 7 8 5 10 11 6 13
line 3 ∗ ∗ 3 ∗ 4 3 ∗ 1 2 18 6 ∗ 18 ∗ 2 5 7 8 5 10 11 6 13
line 2 ∗ ∗ 3 ∗ ∗ 3 ∗ 1 2 18 6 ∗ 18 ∗ 1 4 7 8 5 4 11 6 13
line 1 ∗ ∗ 3 ∗ ∗ 3 ∗ 1 2 18 6 ∗ 18 ∗ 0 3 7 8 3 4 11 6 13

Figure 3.16: Stack adjustment for Example 3.7

arbitrary values that may reside in uninitialized memory. Changes to the stack st and the vector str are
set bold within the corresponding lines. Additionally, the considered values of the original stack are set
bold. The different elements of the stack are numbered from 0 through 13. These numbers are used as
entries of str representing memory addresses. Once the adjustment of tape and stack is completed, the
evaluation in the reverse mode of AD can be performed without any activity analysis. This is depicted
in Figure 3.17. In the first step the vector of function values is initialized using the values of the vector

Derivation Recovery Functions values

x1 x2 v1 v2 v3 y1 y2

init 1 2 18 6 ∗ 18 ∗
line 6 v̄1+= ȳ1 y1 = ∗ 1 2 18 6 ∗ ∗ ∗
line 5 v̄2+= v̄1 ∗ 3 v1 = 3 1 2 3 6 ∗ ∗ ∗
line 2 v̄1+= v̄2 ∗ x2, x̄2+= v̄2 ∗ v1 v2 = ∗ 1 2 3 ∗ ∗ ∗ ∗
line 1 x̄1+= v̄1 v1 = ∗ 1 2 ∗ ∗ ∗ ∗ ∗

Figure 3.17: Derivation for Example 3.7 based on the reduced tape and stack

fv. Thereafter, derivation instructions are performed for each operation of the reduced tape. Column
“Recovery” in Figure 3.17 depicts the restoring of the result variable of the taped instruction within each
step. As can be seen, the correct values of all arguments of each operation are available in the considered
line. When all instructions are performed, the initial state of all function variables is reproduced.

Taking the solutions to the control flow and the stack issue into account, a new algorithm evolves that
is suitable for applying activity analysis in the reverse mode phase for operator overloading based AD.
The algorithm is presented in Figure 3.18. Due to the higher complexity of this algorithm compared to
the variant without tape and stack adjustment, runtime improvements can only be achieved under certain
conditions: The new tape and stack must be evaluated preferably without applying activity analysis.
Furthermore, the higher the number of reevaluations, the more likely is a decrease in the overall runtime.
Therefore, the decision in favor of one of the three possibilities, i.e., plain reverse mode, activity analysis
every time or activity analysis only the first time, is highly dependent on the properties of the considered
application.

54 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

Initialize the variables stc and stn to reference the first element of fv, the vector storing the
function values using the corresponding elements of fv and the elements of the vector str to
reference the corresponding element of fv. Reevaluate the created internal representation in
reverse order instruction by instruction and do for all of them:

• if I is a control flow command:

⇒ set the useful state for all involved variables to true
⇒ do not perform any derivative calculation

• if I is the declaration of a dependent or independent variable:

⇒ set the useful state of the argument variable to true
⇒ perform appropriate derivative calculations depending on the internals of the ap-

plied AD-tool

• if I is an arithmetic instruction:

⇒ take a backup b of the useful state of the result variable v and set the property to
false for v

⇒ update stc to reference the preceding position of st

⇒ restore the function value of the instructions result variable
⇒ if b is true:

1. set the useful property to true for all elements of DP (e)
2. perform derivative calculations according to the represented instruction
3. update stn to reference the preceding position of st

4. copy the value referenced by stc to the stack position referenced by stn
5. update the component of str that corresponds to the result variable of the

instruction to the stack position referenced by stn

else
1. remove the instruction from the internal function representation
2. copy the value referenced by stc to the stack position referenced by the ith

component of str where i corresponds to the results variable of the instruction

Figure 3.18: Algorithm for the reverse mode activity analysis including tape and stack adjustment

3.3 Parallelization strategies

So far, the emphasis of the newly developed techniques laid on the optimization of the tape creation and
the sequential computation of derivative information, respectively. To solve most challenging projects
in science and technology in a limited period of time, an additional component is required. The com-
putations involved in these projects are often too expensive to be solved in a serial environment. They
can only be handled efficiently using parallelism. Due to increasing availability of small-scale parallel
computing platforms, i.e., the new standard office and home PC’s, parallelization approaches will be
considered more often even for middle scale or small tasks. Therefore, like many other techniques, au-
tomatic differentiation based on operator overloading must be extended in a way that allows to benefit
from parallel computing facilities.

In the following subsection, an overview of so far available parallelization techniques for AD is given.
Subsequently, methods that have been investigated and developed for this thesis are discussed. They are
presented by the increasing order of inherent requirements.

3.3. PARALLELIZATION STRATEGIES 55

3.3.1 State of the art

While analyzing the approaches that have been developed within the last decades, it turned out that all
work done in the field that is known to the author is dedicated to the source-to-source technique for
automatic differentiation. Several streams of ideas have been investigated. Sometimes, the mapping
of a certain contribution is difficult due to the fact that it benefits from several ideas. Nevertheless, a
classification is given in the following.

Uninterrupted reverse computation
As discussed in Subsection 3.1.3, a major decrease in the memory requirement of the reverse mode
can be achieved by the application of checkpointing. However, this is only possible by increas-
ing the computational effort. Due to the required recomputation of function values, the reverse
propagation of adjoint information is performed piecewise at the frequency the required function
values are available. By utilizing parallel computing facilities, the required recomputations can be
performed by additional processors. Thus, the overall runtime of checkpointing based derivations
can be reduced considerably. Correctly timed, all function information needed for the specific ad-
joint phases can be provided such that a single processor can compute these phases uninterruptedly
[Ben96, Wal99].

Pipelined forward mode of AD
A comparable new approach is dedicated to the concurrent derivation of loop-iterations [Man02].
In contrast to the standard approach, the computation of directional derivatives immediately starts
after the completion of the specific loop iteration rather than after the completion of the loop.
Then, the runtime ratio ωF ∈ [2, 2.5] of the forward mode can be exploited for parallelization.
Without any restriction in terms of the loop dependencies, the second iteration of the loop can be
started as soon as the derivation procedure for the first iteration has been initialized. This way, a
software-pipelining model results. Exploiting the associativity of the chain rule, global derivative
values are finally assembled using the computed local derivatives of each loop iteration. However,
the limited degree of parallelism that results from the small ratio ωF ∈ [3, 4] significantly restricts
the application of this technique for parallel scalar forward mode derivation. As soon as the vector
forward mode using p directions is to be applied, e.g., for the computation of sparse Jacobian’s,
the more convenient ratio ωVF ∈ [1 + p, 1 + 1.5p] [Gri00] allows a higher degree of parallelism.

Function/AD-inherent parallelism
Significant effort has been invested to construct techniques that allow to benefit from parallelism
inherent in either the function itself and the corresponding derivative computation, respectively.
The key aspect of these approaches is to be seen in the uncoupled consideration of the function
and its derivation. To be more precise, parallelism inherent in the function is not used as basis for
constructing a parallel derivative procedure.

Early work in this field has been focused on computational graphs, e.g., [JG90, BGJ91]. There,
optimized graphs are generated for the function as well as the related derivative function. Oper-
ations that can be handled in parallel are located at the same level of the considered graph. This
insight is then exploited in the generation of optimized parallel forward or reverse mode program
code.

Another approach [BBH02] has been developed for the automatic differentiation and paralleliza-
tion of straight-line code that can be represented by an arithmetic circuit. The latter is a special
directed, acyclic graph that consists of only leaves, addition and multiplication nodes. For this
type of graph, the derivation procedure can be formulated as a sequence of graph transforma-
tions. They can be described by basic operations of linear algebra, mentioning the matrix×matrix-
multiplication as the most important within this context. Standard techniques for parallelizing
these operations then lead to the parallel derivation procedure.

56 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

In addition, attention has been payed to parallelism that is available only for special versions of
derivative computations. There, independent operations of the same type are executed in parallel
when computing the Hessian of a given function or applying the vector forward mode of AD. For
details, see [BLR+02, BRV06].

Transferred parallelization
Many approaches of implementing parallel AD try to utilize or transform user-provided paral-
lelization information belonging to the function in a way that allows to benefit in the associated
derivative computation, too. Accordingly, function and derivative computations possess roughly
the same degree of parallelism. Data partitioning techniques are mostly exploited to achieve this
result in the forward and reverse mode of AD.

Depending on the memory organization of the targeted computing platform, i.e., shared or dis-
tributed memory, different parallelization strategies are considered. Shared memory parallel pro-
gramming often relies on OpenMP [DM98] whereas message-passing strategies like MPI [HW99]
or PVM [DGMS94] are used for systems featuring distributed memory. At first glance, apply-
ing AD to OpenMP-based parallel functions is comparably straightforward when exploiting the
forward mode [BLR+02]. Parallel AD based on message-passing systems, however, needs a
higher level of attention. Especially data-flow analysis has been object to several investigations
[Hov97, HB98, SKH06].

Message passing has been used for derivative computations in several projects. In many cases,
hand-written parallelization functions have been provided for the derivation to serve as counter-
parts for the parallelization directives used within the function [CLGM96, HM00, HHG05]. In
contrast, source-to-source compilers may be implemented to detect and replace MPI communica-
tion routines by special derivative counterparts automatically [FD99a, FD99b].

In addition to the approaches summarized above, the technique of Computational Differentiation (CD)
may be exploited. CD combines available high level mathematical knowledge about the function and AD.
Thus, by avoiding the black-box application of AD, improvements in memory usage or result accuracy
can be achieved [HNRS99, BBH00]. If CD is used for transforming the function in a way that reveals
independent subtasks, parallelization techniques will benefit as well.

For further details on the presented techniques, the reader is referred to the mentioned publications as
well as the references given therein.

Analyzing the methods that have been used so far, a special conclusion can be drawn: All approaches
known to the author focus on the source-to-source approach of implementing AD. However, a steadily
growing number of applications from science and engineering is written in programming languages that
are currently either not or at least not well supported in terms of source-to-source AD. Nevertheless,
parallelization in combination with AD is often desired and can be provided in many cases by the use of
operator overloading. Appropriate techniques are discussed in the remainder of this section.

3.3.2 Tapeless derivative computation

The two basic modes of AD, forward and reverse, are often provided by the same AD-tool. Therefore,
the underlying implementation is usually tailored to the higher complexity of the reverse mode when
applying operator overloading based AD. For tasks that allow to compute derivative information based
on the forward mode of AD, e.g., when computing sparse Jacobian’s, a more efficient implementation
strategy exists. It is called tapeless AD and has been described in Section 2.2.2. Exemplarily, the mul-
tiplication operator is depicted in Figure 2.4. The approach is mainly characterized by the replacement
of the arithmetic operations that propagate function values by operations that compute both function and
derivative values. Due to the fact that the function value is also computed once the replacement has

3.3. PARALLELIZATION STRATEGIES 57

been performed, this process is also called augmentation. Though a reverse mode differentiation based
on this approach is not possible, it offers a second, important property besides the good compiler opti-
mization: It is well suitable for a parallelization of the resulting code, no matter which paradigm, e.g.,
OpenMP [DM98], MPI [Hem94, HW99], is applied.

Applying a given parallelization strategy to spread computations among several processing elements, i.e.,
processors or cores of multi-core processors, always preserves the structure of the augmented operators
and functions. This results from the specific time that the parallelization instructions are inserted into
the source code. Based on the tapeless approach, the original function is the object of the parallelization
efforts. The augmentation of the code for providing derivative information is done within the compilation
process, subsequently. At this time, the parallelization is already complete. Hence, the more important
question concerns the correctness of the augmented parallel code.

Assuming that the user function is parallelized correctly, i.e., no data access conflicts occur, the cor-
rectness of the parallel derivation procedure can be shown. In this context, correctness of the parallel
derivation means that the correct derivative values are computed for the given user function, no matter
whether the latter itself is correct or not. Due to the chain rule of calculus, derivatives may be computed
on the basis of elemental operations and intrinsic functions. Therefore, the computed derivative infor-
mation is correct if no data conflicts are introduced by the augmentation. As can be seen from (2.8), the
derivative component of the result of an instruction is computed as the total derivative with respect to the
constructed time dependence t, i.e.,

v̇i =
∑
j≺i

∂ϕi(vj)j≺i

∂vj
v̇j .

From this setting, several conclusions for the derivation can be drawn:

1. For each argument of the original instruction, the derivative component of the augmented variable
is accessed.

2. The derivative value of the result is changed in any case.

3. The function values of the arguments are needed frequently but not always.

4. In general, argument variables are only read-accessed whereas result variables are only write ac-
cessed.

In summary, one can conclude that the access structure of the augmented instruction is the same as that
of the original instruction. Due to this property, data access conflicts are excluded as long as the original
function does not exhibit such problems. In this case, the computed derivatives are correct.

Despite the high compatibility to the parallelization models, some limitations occur nevertheless. Firstly,
care must be taken when optimizing the code for a given computing platform, e.g., cache optimization,
as the applied derivative augmentation most probably breaks the intended technique. This applies to both
the application of tapeless derivative computations for serial and parallel source codes. The most efficient
solution to this drawback is the use of an “inlining” approach. Most high level programming languages
that provide operator overloading also offer a technique for replacing calls to functions and operations
by the corresponding definitions. Using this technique results in a code that contains both function and
derivative instructions within the same compilation unit. It is then up to the compiler to exploit the more
global view on the source code and provide highly optimized binaries.

A second limitation must be accepted for some less frequently used constructs of certain parallelization
techniques. Reduction operations provided by MPI are a convenient example. They are only defined for
a given set of data types that do not include AD data types. The only solution available at the moment
is to provide a user written version of the reduction operation that can handle AD type variables. Hence,
the desired functionality can be provided but induces additional efforts on the user side.

58 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

All in all, the tapeless variant of operator overloading based AD offers high compatibility to all paral-
lelization techniques known to the author. Furthermore, due to the “inlining” technique and the avoidance
of the tape handling, a comparably high efficiency of the derivative code can be achieved. The tapeless
derivation should be preferred for all types of application for that derivatives can be computed efficiently
using the forward mode of AD. However, reverse mode differentiation is often to be preferred due to
the inherent advantages that have been described in Section 2.1.2. Appropriate solutions to handle tape-
based reverse mode derivation processes in parallel are discussed in the following subsections.

3.3.3 Task-parallel AD-environment

As indicated by the name, the task-parallel approach basically identifies program parts – tasks – that
can be handled independently of each other and may thus be executed simultaneously. Accordingly, the
achieved execution type is often called task parallelism. It is to be distinguished from data parallelism
where the same task is performed by many cooperators on a certain subset of the available input data,
see subsection 3.3.4. For many parallel computer programs, a mixture of these two techniques is applied
[DFF+03, GR03, GGKK03].

Throughout this subsection, pure task parallelism is addressed. Accordingly, the following properties
arise from the combined application of this technique and automatic differentiation based on operator
overloading:
• Computations for each task are done in serial.

• Data allocation is done by the tasks individually.

• Tape creation and evaluation is done by the same task without interruption by the enclosing pro-
gram.

• Computations that do not concern AD and therefore do not involve facilities of the AD-tool may
be handled within the preceding or subsequent phases.

The basic layout of this approach is depicted in Figure 3.19. There, the non-AD-phases are illustrated by
white objects whereas AD-specific actions are represented using different shades of gray. Furthermore,
the abbreviation “DA” points to the different data allocation phases.

pr
og

ra
m

in
iti

al
iz

at
io

n

pr
og

ra
m

fin
al

iz
at

io
nDA

DA

DA

Task 1: forward sweep Task 1: reverse sweep

Task 2: forward sweep Task 2: reverse sweep

...
...

...

Task p: forward sweep Task p: reverse sweep

Time

Figure 3.19: Basic layout of task-parallel calculations in an AD-environment

As can be seen, the demands on the AD-tool are quite reasonable and can be summarized as the supply of
a task-safe environment. The term task-safe is abutted to the well-known paradigm thread-safety. This
means in particular that the execution of a program containing several scheduling entities, i.e., processes
or threads, must terminate with the correct result. A prominent example of missing thread-safety is given
by the combination of OpenMP and static variables in C/C++. Static variables are implemented as shared
variables in the common address space of all threads. Write-access to this variables possibly inflicts a
data race that may in return cause the computation of wrong results.

3.3. PARALLELIZATION STRATEGIES 59

Task-safety only requires a limited set of properties. Firstly, it must be ensured that a tape generated
by a specific task cannot be overwritten or forged by another task. Secondly, the data integrity must
be ensured by dedicating used function and derivative variables to the specific tasks. Parallelization by
use of MPI does only need to take care of the first point as the separated address space of the involved
processes provides the data integrity automatically. This is not true for OpenMP-based parallelizations
where all threads operate in the same address space. Due to the structure of the program, it seems fairly
obvious to create a separate copy of the AD-environment for every working thread. This must include
all relevant control information that is involved in the creation of variables of AD data type. Variables
declared and defined within parallel regions are treated private when using OpenMP. AD-type variables
must be implemented such that this condition is satisfied. This is especially true for compiler generated
temporaries that are used when dividing composed arithmetic instructions into elemental operations and
functions as illustrated int the following example.

EXAMPLE 3.8 Instruction Elemental operations

d = a ∗ b ∗ c t1 = a ∗ b
t2 = t1 ∗ c
d = t2

There, assuming several threads performing the same instruction, it must be ensured that the compiler
generated temporaries t1 and t2 are unique to the treads. Otherwise, a race condition is possible that
may cause the computation of wrong results. Whereas compiler generated temporaries of standard data
type are always thread-safe, variables of AD data type need special attention. It must be ensured that
the ID representing the variable within the internal function representation is unique when executing in
serial as well as in parallel. Without the copying of the AD-environment, the assignment of the ID must
be protected within the parallel environment. This could be done by use of a critical section but would
result in a major drawback. Due to the nature of the critical section, only one thread can execute the
guarded code at a specific time. All other threads would be forced to wait at the beginning of the critical
section. Overall, a time shifted behavior would result that is illustrated in Figure 3.20. There, the critical

Time

ID assignment
︸ ︷︷ ︸

Operation

Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

Figure 3.20: Layout of a parallel execution with critical section protected ID assignment

section protected generation of the temporary variables is depicted by the dark gray boxes whereas the
arithmetic instructions producing their results are represented by the light gray boxes.

Determining the maximal benefit that can be drawn from the parallelization is somewhat difficult for this
setting. A common measure for qualifying the result of the parallelization is given by the speedup Sp(p)
that is defined as the ratio of the serial and the parallel runtimes, i.e.,

Sp(p) :=
T (1)
T (p)

. (3.26)

60 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

Thereby, Sp(p) denotes the speedup using p processing elements and T (1) and T (p) are the serial
and parallel runtimes, respectively. A well known limitation of the speedup is called Amdahl‘s law
identifying the maximal speedup max

(
Sp(p)

)
as the ratio of the serial runtime T (1) and runtime Ts of

the serial program parts [Amd67], i.e.,

max
(
Sp(p)

)
=

T (1)
Ts

. (3.27)

This result can be derived by determining the limit p →∞ for equation (3.26) and substituting T (1) by
Ts + Tp and T (p) by Ts + Tp

p , yielding

lim
p→∞

T (1)
T (p)

= lim
p→∞

Ts + Tp

Ts + Tp

p

=
T (1)
Ts

.

Thereby, Tp denotes the serial runtime of the program parts that might be run in parallel. Assuming that
the original function could be evaluated in a complete parallel and balanced manner, thus eliminating the
speedup limitation, Amdahl‘s law would nevertheless be the limiting factor when computing derivatives
according to the scheme depicted in Figure 3.20. Due to the required critical section that protects the ID
assignment during the creation of variables, a program part is generated that can be handled only serially.
Though this serial part is introduced at instruction level, the average ratio between serial and parallel
code handling the specific instructions determines the ratio for the overall program. This is caused by
the property that all arithmetic instructions with exception of assignment based operations, e.g., =, +=,
. . . , involve compiler generated temporaries. However, the main limitation of the speedup is not caused
by the frequently used critical sections but by their high costs compared to the relatively small guarded
instructions. The resulting ratio between serial and parallel parts of the program is thus unfavorable.
Accordingly, it is very unlikely that a significant speedup can be achieved using this approach. For that
reason, the environment copying approach is to be preferred.

Mostly, a specific function of the tool has to be called that prepares the application for the parallel
execution. This function may be called prior to the parallel region, see e.g., CppAD, and sets the maximal
number of tapes to be handled simultaneously or is called via the constructor of a tool provided private
variable, e.g., ADOL-C (see Section 4.1).

Taking all demands into account, the skeleton of a corresponding application can be derived:

1. program initialization

2. preparing calculations – this may include parallel computations away from AD

3. call to the special function of the AD-tool that prepares the parallel execution – this may include
the copying of the control structures of the AD-tool

4. buildup of the parallel environment if not done in the previous step

5. data allocation – task private

6. forward sweep – task private

7. reverse sweep – task private

8. destruction of the parallel environment – possibly including data exchange from the parallel to the
serial part of the program

9. final computations – this may include parallel computations not differentiated automatically

10. program termination

3.3. PARALLELIZATION STRATEGIES 61

Using this schedule, the task parallelism can be exploited by applications that employ automatic differen-
tiation. However, as pointed out in [DFF+03, p. 50]: “. . . — task parallelism is typically limited to small
degrees of parallelism”. Restricting parallelization strategies to this level would be too strong and would
prevent higher speedups for many applications. Techniques for exploiting data parallelism contained in
AD-based computations are studied in the following subsections.

3.3.4 Data-parallel AD-environment

As mentioned in the previous subsection, data parallelism describes the subdivision of the data domain
of a given problem into several regions. These regions are then assigned to a given number of processing
elements, which apply the same tasks to each of them. Data parallelism is commonly exploited in many
scientific and industrial applications and exhibits a “natural” form of scalability. Since the problem size
for such applications is normally expressed by the size of the input data to be processed, an upscaled
problem can typically be solved using a correspondingly higher number of processing elements at only
a modestly higher runtime [DFF+03].

In the remainder of this section, data parallelism is extended beyond the pure nature that has been de-
scribed above. Accordingly, it shall be allowed that the complete set of independent variables XI of the
given function F may be used by all p processing elements PEi, i = 1, . . . , p, for reading. Denoting by
XI

(i)
r and XI

(i)
w , respectively, the read and write accessed subsets of XI , respectively, for the various

processing elements, it holds that

∀PEi : XI(i)
r ⊆ XI, XI(i)

w = ∅. (3.28)

This allows for parallel functions that, e.g., handle the evolution of systems consisting of many compo-
nents. There, computations for the individual components can be performed independently, provided that
the interaction among them can be determined using XI . Derivative information for such applications
can be provided using the scheme depicted in Figure 3.21. Compared to the task-parallel approach de-
picted in Figure 3.19, the data-parallel layout discussed here exhibits only a small number of differences:

• All processing elements perform the same task.

• A single input data allocation phase is dedicated to the whole program.

• An additional AD finalization phase is appended to the derivation process.

In contrast to the general read access in terms of the independents, write access may only be allowed
for distinct subsets Y D(i) of the dependent variables. For a given number p of processing elements it is
required that

Y D =
p⋃

i=1

Y D(i) and Y D(i) ∩ Y D(j) = ∅ with i, j ∈ [0, p], i 6= j.

The set of intermediate variables IV (s) associated with the serial function evaluation is considered to
be reproduced for all processing elements yielding p sets of variables IV (i), i = 1, . . . , p. In this
way, intermediate values can be used at the certain processing element without the potential of memory
conflicts. Overall, considering the subset Y D(i) and the set of intermediate variables IV (i), which are
used exclusively by the processing elements PEi, it holds that

∀PEi ∀PEj :
{

Y D(i) ∩ Y D(j) = ∅ IV (i) ∩ IV (j) = ∅ for i 6= j

Y D(i) = Y D(j) IV (i) = IV (j) for i = j
. (3.29)

Any function exhibiting the properties (3.28) and (3.29) is considered correctly parallelized in the sense
that data races are debarred.

62 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

pr
og

ra
m

in
iti

al
iz

at
io

n

da
ta

al
lo

ca
tio

n

A
D

fin
al

iz
at

io
n

pr
og

ra
m

fin
al

iz
at

io
nPE 1: forward sweep PE 1: reverse sweep

PE 2: forward sweep PE 2: reverse sweep

...
...

PE p: forward sweep PE p: reverse sweep

Time

Figure 3.21: Basic layout of data-parallel calculations in an AD-environment

Obviously, equation (3.29) allows to compute derivatives for the given function as long as only the sets
IV (i) and Y D(i) are involved. Due to the distinct nature of the sets defined for the processing elements,
forward and reverse mode of AD can be applied safely. A less obvious situation is given as soon as
independent variables are involved in the computation. As known from the theory of the reverse mode,
see Subsection 2.1.2, read accessed function variables result in write accessed derivative variables. More
precisely, the following relation holds

Function Derivative (reverse mode)

vi = ϕi(vj)j≺i v̄j+= v̄i ∗ ∂ϕi(vj)j≺i

∂vj
∀j ∈ {j : j ≺ i}.

As can be seen, due to the required instructions in the reverse mode, the data access layout of the function
variables is reversed for the adjoint variables. Hence, read accesses on the independent variables xk,
k = 1, . . . , n, induce the potential of data races in the adjoint computations. Consider the following
example given as C-code.

EXAMPLE 3.9

Function Derivative (reverse mode)

for (i = 0; i < p; ++i) for (i = p - 1; i >= 0; --i)

IV[i] = 2 * XI[0]; XI_bar[0] += IV_bar[i] * 2;

Here, the various IV[i] are intermediate variables and XI[0] is an independent variable. The corre-
sponding counterparts in the derivation phase are IV_bar[i] and XI_bar[0]. As long as function and
derivative computations are performed in serial, no data access conflicts occur. This is no longer true if
the two phases are executed in parallel. Then, a data race results for XI_bar[0]. A common solution to
this problem is to declare the critical incrementation operation, i.e., +=, as atomic. Data access conflicts
due to the concurrent use of the same variable are impossible thereby. However, this most likely causes
a increase in runtime as the parallel code may serialize at the atomic operation. For the given class of
applications featuring the properties (3.28) and (3.29), a better solution can be constructed.

Similar to the handling of intermediate variables, different sets of adjoint variables XI (i) can be provided
for each processing element corresponding to the set XI . Adjoint values may then be updated locally
by each processing element independently and thus globally in parallel. Due to the additive nature of
the derivative computations, global adjoint values may later be assembled using the local information
produced by the various processing elements. As this assembling requires additional communication
in a distributed memory environment, it should be executed for all relevant adjoints in a single step.
Thus, the assembling step must be performed after the last update of an adjoint variable x̄

(i)
k ∈XI (i).

3.3. PARALLELIZATION STRATEGIES 63

However, updates of adjoints x̄
(i)
k are principally possible at any point of the reverse computations. This

results from the property of the function that independent variables may be accessed at any given time
of the function evaluation. Thus, a single adjoint assembling step is only possible if no x̄k is used as an
argument of a derivative instruction before all updates on the set XI (i) have been performed. For the
considered type of applications that feature the properties (3.28) and (3.29), this potential conflict can
never occur. Since the individual independent variables are accessed for reading only, their derivative
counterparts cannot appear on the right-hand side of any derivative instruction. Hence the assembling
phase that computes the global derivative values can be safely moved to the end of the derivation process.
This is depicted by the AD finalization phase in Figure 3.21.

The parallel computation of derivatives for the considered type of applications is demonstrated in Ex-
ample 3.10. There, the considered function and the examined base point are presented in the upper left
part. In the upper right part a schematic source code, e.g., the main computation routine, is given in a
C-like programming style. Based on this scheme, the evaluation procedures for the serial and the parallel
execution can be created as depicted in the central part of Example 3.10. Finally, the corresponding
derivation procedures are shown in the lower part. In Example 3.10, result values of the function and
derivative evaluation have been marked by use of circles. Furthermore, variables that are updated in the
derivation process and have been used before are set bold.

The additionally introduced AD finalization phase that is used for assembling the global derivatives is
depicted by a gray box in the parallel derivation (line 9). Having a closer look on potential runtimes
reveals an important aspect on the use of the assembling phase: It reduces the speedup of the parallel
computation. Assuming each operation depicted in Example 3.10 to consume exactly one clock cycle,
speedups can be computed for the function and the derivation phase.

Function Derivation

Sp(2) = T (1)
T (n) Sp(2) = T (1)

T (n)

= 8 cycles
4 cycles = 16 cycles

9 cycles

= 2 ≈ 1.8

Here, the linear speedup of the function parallelization cannot be achieved when parallelizing the deriva-
tion procedure. The assembling phase that is responsible for this decrease can however not be omitted
as it allows the execution of the main computations concurrently. As can be seen, using the same set of
adjoint variables XI for the two processing elements in Example 3.10 would result in an unsafe deriva-
tion procedure. Data races would result for line 5 up to line 8. By utilizing the adjoint assembling,
only a single synchronization after line 8 becomes necessary. Then, the correctness of the result can be
guaranteed.

Data parallelism in many programs is often implemented using loops. Assuming that the special data
access structure that results from (3.28) and (3.29) applies to the mentioned function, a technique can be
constructed that allows to parallelize the corresponding derivation procedure appropriately. The details
are discussed in the following subsection.

3.3.5 Loop-level parallelization

Using the data-parallel derivation approach described in the previous subsection and the concept of the
external differentiated functions, a technique can be designed that allows to compute derivatives for
functions containing parallel loops. This implies that an explicit loop-handling approach is applied, i.e.,
OpenMP. In contrast to the simplified application that has been considered in the previous subsection, i.e.,
that the complete function is parallelized, in practice parallel parts of the function are often embedded
in a serially handled context. In particular it is assumed that the loop is preceded by a serial startup

64 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

EXAMPLE 3.10

n n

n
n

n nn

n

Function

(y1, y2) = F (x1, x2)

with

yi = (xi ∗ x1 + xi ∗ x2) ∗ xi i = 1, 2

x1 = 1, x2 = 2

C-like source code

for (i = 1; i < 3; ++i) {
vi1 = xi ∗ x1

vi2 = xi ∗ x2

vi3 = vi1 + vi2

yi = vi3 ∗ xi

}

Reduced evaluation procedure

parallel
serial PE 1 PE 2

1 v11 = x1 ∗ x1 = 1 v11 = x1 ∗ x1 = 1 v21 = x2 ∗ x1 = 2
2 v12 = x1 ∗ x2 = 2 v12 = x1 ∗ x2 = 2 v22 = x2 ∗ x2 = 4
3 v13 = v11 + v12 = 3 v13 = v11 + v12 = 3 v23 = v21 + v22 = 6
4 y1 = v13 ∗ x1 = 3 y1 = v13 ∗ x1 = 3 y2 = v23 ∗ x2 = 12
5 v21 = x2 ∗ x1 = 2
6 v22 = x2 ∗ x2 = 4
7 v23 = v21 + v22 = 6
8 y2 = v23 ∗ x2 = 12

Reduced reverse mode derivation procedure for ȳ1 = ȳ2 = 1

parallel
serial PE 1 PE 2

1 v̄23 += ȳ2 ∗ x2 = 2 v̄13 += ȳ1 ∗ x1 = 1 v̄23 += ȳ2 ∗ x2 = 2
2 x̄2 += ȳ2 ∗ v23 = 6 x̄11 += ȳ1 ∗ v13 = 3 x̄22 += ȳ2 ∗ v23 = 6
3 v̄21 += v̄23 = 2 v̄11 += v̄13 = 1 v̄21 += v̄23 = 2
4 v̄22 += v̄23 = 2 v̄12 += v̄13 = 1 v̄22 += v̄23 = 2
5 x̄2 += v̄22 ∗ x2 = 10 x̄11 += v̄12 ∗ x2 = 5 x̄22 += v̄22 ∗ x2 = 10
6 x̄2 += v̄22 ∗ x2 = 14 x̄12 += v̄12 ∗ x1 = 1 x̄22 += v̄22 ∗ x2 = 14
7 x̄2 += v̄21 ∗ x1 = 16 x̄11 += v̄11 ∗ x1 = 6 x̄22 += v̄21 ∗ x1 = 16
8 x̄1 += v̄21 ∗ x2 = 4 x̄11 += v̄11 ∗ x1 = 7 x̄21 += v̄21 ∗ x2 = 4
9 v̄13 += ȳ1 ∗ x1 = 1 x̄1 = x̄11 + x̄21 = 11 x̄2 = x̄12 + x̄22 = 17

10 x̄1 += ȳ1 ∗ v13 = 7
11 v̄11 += v̄13 = 1
12 v̄12 += v̄13 = 1
13 x̄1 += v̄12 ∗ x2 = 9
14 x̄2 += v̄12 ∗ x1 = 17
15 x̄1 += v̄11 ∗ x1 = 10
16 x̄1 += v̄11 ∗ x1 = 11

3.3. PARALLELIZATION STRATEGIES 65

calculation and followed by a serial finalization phase. Computing derivatives for this type of functions
applying the reverse mode of AD and utilizing a tape- and operator overloading-based AD-tool inflicts
two major challenges:

• The parallelization directives of OpenMP are not part of programming languages such as, e.g.,
C++. Accordingly, these directives cannot be overloaded and, therefore, cannot be recognized by
the AD-tool.

• All tape- and operator overloading-based tools known to the author do not create an internal func-
tion representation that includes the loop structure itself. Rather, loops are always unrolled, creat-
ing a long sequence of instruction.

All in all, a situation occurs that prevents the recognition of both the loop structure and the parallelization
statements. Without appropriate user interaction, a parallelization of the derivative calculation is impos-
sible under these circumstances. User steering can be provided by employing the concepts of external
differentiated functions and nested taping. The resulting layout of the computation of function values
and derivative information is depicted in Figure 3.22. To overcome the problem of missing information

PI D
A

de
riv

at
iv

e
as

se
m

bl
in

g

PFSF
C

SF
C

SD
C

SD
C

PE 1: forward sweep PE 1: reverse sweep

PE 2: forward sweep PE 2: reverse sweep

...
...

PE p: forward sweep PE p: reverse sweep

Time

external diff. function
forward phase

external diff. function
reverse phase

PI - program initialization SDC - serial derivative computation
DA - data allocation PF - program finalization
SFC - serial function computation

Figure 3.22: Loop level parallelization for data parallel applications

concerning the loop structure and the parallelization, the serial taping process must be interrupted at the
begin of the parallel loop contained within the function. Then, the external differentiated function con-
cept allows to switch to a user provided function that can be used to create separate tapes for the single
loop iterations or chunks thereof. Once the loop has been performed, the interrupted taping process is
resumed. Computing derivatives applying the reverse mode of AD basically follows the same strategy
but in reverse order. Therefore, the initial step in the derivation phase is the application of the appropriate
reverse variant to the first tape. At the position where the parallel loop has been completed during the
function evaluation, the derivative handling is interrupted and a second user provided function is called.
The latter is responsible for handling the derivation of the parallel loop. This can easily be accomplished
by applying the technique that has been described in the previous subsection. As soon as the derivative
assembling phase has been completed, control is given back from the user routine to the AD-tool that
resumes the derivation of the outer, serial tape.

Conceptually, to allow the application of the data-parallel approach discussed in the previous subsection,
the requirements (3.28) and (3.29) must be met by the parallel loop. In particular, all processing elements

66 3. ADVANCED CONCEPTS FOR OPERATOR OVERLOADING

may access the complete input data set of the loop for reading. This includes the independent variables of
the overall user function and the function values computed up to this time. Therefore, the applied AD-tool
must feature a mechanism to provide these data to all processing elements. As the data are only accessed
for reading, a simple copying function might be used for this purpose. The remaining variables, i.e.,
intermediates and output variables of the loop iterations, local to each processing element are considered
to be private anyway. Overall, this allows a safe derivative calculation within the parallel environment.
Data transfer between the different stages of the derivation process is handled using derivative context
switches. This way, the demands on the user are reduced significantly. Furthermore, this allows not only
to handle derivative calculations in parallel but also to couple this approach with the other techniques
that have been described in this chapter. Details on the implementation, the applied AD-tool and the
considered applications are presented in the following chapter.

67

4 Concept validation

After deriving the new concepts for Automatic Differentiation (AD) in Chapter 3, this chapter focuses
on the aspects of the integration into an existing AD-tool and the application to selected numerical ex-
amples. ADOL-C, a package for the automatic differentiation of algorithms written in C/C++ [GJU96],
has been chosen for being the base of the tool-based work. In the following section, a short overview of
the tool and the provided infrastructure are given first. Thereafter, adoptions for enabling the techniques
presented in Chapter 3 are discussed in more detail. The second section is then dedicated to three appli-
cations that make use of the newly provided facilities of ADOL-C. For each of them an introduction to
the background of the application is presented and resulting challenges are revealed. Observations and
consequences from the results gathered during runtime studies conclude this chapter.

4.1 ADOL-C: a tool for automatic differentiation

ADOL-C is an operator overloading based AD-tool that allows to compute derivatives for functions given
as C or C++ source code. The development was started by Andreas Griewank in the early 1980s and
has been continued up to the present. Thus, ADOL-C exhibits a longer history than many other tools
used among the AD community and is considered highly valuable. The clear structure of the tool and the
underlying approach always guaranteed an adequate entrance to the world of AD. In return, ADOL-C
often benefited from the talented developers by being raised to the highest level of available techniques.

Applications that utilize ADOL-C can be found in many fields of science and technology. This includes,
e.g., fish stock assessment by the software package CASAL [BFD+05], computer-aided simulation of
electronic circuits by fREEDA [HKL+05] and the numerical simulation of optimal control problems
by MUSCODII [BLSS03]. Currently, ADOL-C is further developed and maintained at the TU Dresden,
Institute of Scientific Computing by a research group that is guided by Andrea Walther. Many techniques
that are discussed in Chapter 3 are meanwhile incorporated into the tool and will be available with the
next version.

4.1.1 Initial state

ADOL-C provides facilities for the creation and evaluation of tapes, i.e., the internal function represen-
tations, created during separate so-called taping phases. A taping phase encapsulates the evaluation of
the implemented function or a part thereof at a given base point. The creation of the tape is started with a
call to the tool-provided routine trace_on and finalized by calling trace_off. When referring to the tape, a
unique identifier tag is used that is passed to trace_on. Between the two calls, an internal representation
of every operation is created that involves variables of an augmented data type. This special data type
is called adouble and is used for the representation of scalar values. Choosing the set of variables that
has to be declared of an augmented data type is basically up to the user. However, the compiler-aided
augmentation strategy that has been described in Subsection 3.2.1 may be utilized to significantly reduce
the set of relevant variables. Two rarely used binary shift operators, <<= and >>=, are used to identify
independent and dependent variables, respectively. As soon as the taping phase is completed, specific
drivers provided by ADOL-C may be applied. The basic drivers allow to reevaluate the function at the
same or a different base point and to compute derivative information of any order using the forward or
reverse mode of AD based on the created internal function representation. In addition, advanced drivers

68 4. CONCEPT VALIDATION

are available for determining and exploiting the sparsity structure of derivative matrices, for solving Or-
dinary Differential Equations (ODEs), determining higher order derivative tensors and for computing
derivatives of implicit or inverse functions. A corresponding source code that takes into account all re-
quirements is given in Example 4.1. There, a tape with number 1 is created while evaluating the function

EXAMPLE 4.1

...

adouble xa[2], ya; // augmented variables
double xp[2], yp, xp_bar[2], yp_bar; // standard variables
xp[0] = 1.0; xp[2] = 2.0; // initialization

trace_on(1, 1); // start taping
xa[0] <<= xp[0]; xa[1] <<= xp[1]; // declare independent variables
ya = xa[0] * xa[0] + xa[1] * xa[1]; // evaluate the function
ya >>= yp; // declare dependent variables
trace_off(); // stop taping

yp_bar = 1.0; // initialize adjoint variables
fos_reverse(1, 2, 1, &yp_bar, xp_bar); // compute gradient in reverse mode
...

y = f(x) = x2
1+x2

2 at the base point (1.0, 2.0). The second argument to trace_on enforces the recording
of overwritten function values and prepares the immediately following call to fos_reverse that computes
the derivative values. At this point any other driver routine provided by ADOL-C may be called as well,
assuming that an appropriate initialization is performed before.

Internally, each variable of an augmented data type stores a unique identifier, the so-called location.
Locations are acquired during the variables construction and are released during destruction. Variable
values are stored within a large field referred to as store. Within the store, the individual values are
addressed using the location of the corresponding adouble variable. Due to the arrangement in form of
a large vector, the final values of all variables that have been used at any given point of the function, are
still available when the evaluation and reevaluation, respectively, is completed. These values can then be
appended to the stack of overwritten function values and form the initial point of the restoring activities
in the reverse mode differentiation.

The internal representation created by ADOL-C consists of up to four different sub-tapes. They are
denoted by operation, location, value and Taylor tape. The latter represents the stack of overwritten
function values and is only created if explicitly requested. When creating the internal representation of a
given elemental function, several actions are performed. First, a specific code identifying the elemental
function is written onto the operation sub-tape. Then, the locations of involved variables are written onto
the location sub-tape and the constant values used by the elemental function are written onto the value
sub-tape. Finally, if the creation of the stack has been requested, the value of the result variable is written
onto the Taylor tape before it is overwritten. During the evaluation of the tape, the involved drivers read
back the codes from the operation tape and extract the corresponding elements from the other tapes. It
is ensured by the implementation of ADOL-C that the same quantity of information is taken from the
sub-tapes that has been written during creation. Thus, a correct evaluation of the created tapes can be
guaranteed.

So far, ADOL-C could only create several tapes within the same program as long as the different taping
phases did not overlap. This results from the status information being dedicated to the whole program
rather than individual tapes. The key features that allow to eliminate this restriction are discussed in the
following subsection.

4.1. ADOL-C: A TOOL FOR AUTOMATIC DIFFERENTIATION 69

4.1.2 New tape management

Tape status information utilized by ADOL-C can be classified into two groups. On the one hand, one
has information that are only required when creating or evaluating a specific tape. This includes data
for controlling the employed buffers, e.g., size and current position as well as general information, e.g.,
hard disc access status and overall sub-tape sizes. These data referred to as dedicated tape information
(DTI) may be reset as soon as the tape is recreated. In addition, static information, e.g., sub-tape names
are maintained that are created only once, at first access. On the other hand, information that is shared
amongst all tapes must be handled. The most prominent representative is the store as well as the control
information for handling it. These data is referred to as global tape information (GTI) and its life time
and handling are dedicated to the whole program.

In principle, all information could be dedicated to the individual tapes. In that case, a store containing
the values of augmented variables must be provided for every tape. This would provide a dedicated
working environment for every tape and the context switch would be reduced to the switch of the tape
information. However, the distinction between dedicated and global tape information as implemented in
ADOL-C offers two advantages.

• Due to the dedication of the global tape information to the whole program rather than to individual
tapes, augmented variables are usable outside the taping phases. This is true even if no tape is
created during the whole program. In addition, this allows the commonly use of global variables
that are initialized before the first statement of the program entry routine is executed.

• Sharing the store amongst all tapes also enables the calculations for a tape to directly benefit from
computations done in earlier phases of the program. In particular, no copy operations are necessary
to transfer the results or, if necessary, any other values of the preceding tape to the current tape.
Especially in a situation where the creation of tapes is nested, the reuse of variable values is very
likely.

To support the techniques described in Chapter 3, several changes had to be applied to the internals of
ADOL-C. First, all variables containing status data have been united into two structures representing
dedicated and global tape information. One instance of the global tape information is created prior to the
execution of the program entry routine. As long as computations are performed serially, no additional
instance is necessary. For each tape, an instance of the dedicated tape information is created. In addition,
a vector and a stack storing references to these DTI instances are available. A reference is appended
to the vector each time a new tape and the corresponding DTI instance are created. Using this vector,
the control information of the individual tapes are addressable at any time. The stack on the other hand
records references to the DTI instances of tapes that have been superseded in a nested environment. As
can be seen from Figure 4.1, an additional DTI instance is available. This special instance (cDTI) stores a
copy of the control information of the current tape and is used during the whole computations. In the case
that a context switch occurs during a nested taping or evaluation process, all information contained in
this structure is copied to the DTI instance of the superseded tape. Afterwards, the information contained
in the DTI instance of the replacing tape is copied into cDTI. For enabling this setting, a reference to the
DTI instance of the current tape is stored as part of the global tape information. Context switches may
occur as part of the routines trace_on and trace_off. In the first case, a reference to the DTI instance of
the superseded tape is pushed onto the stack. Otherwise, the reference to the DTI instance of the previous
tape is popped from the stack and is used to continue the work on this tape.

When evaluating tapes by applying the reverse mode of AD, ADOL-C allocates two basis vectors. One
vector holds the derivative values and the other is used for restoring the intermediate function values.
The allocation is repeated for every tape. Based on this setting, ADOL-C currently faces a significant
challenge when determining derivatives in a nested environment: Function values that are stored via
the stack all emanate from the same source, the store. However, in the restoring process activities are
distributed across several tapes and, thus, function values may be stored in different vectors, accordingly.

70 4. CONCEPT VALIDATION

store GTI

D
T

Is
ta

ck D
T

Ivector

DTI 1

DTI 2

DTI 3

DTI 4

DTI 5current DTI

Figure 4.1: New tape management of ADOL-C

This induces the possibility of restoring function values by the correct tape but in the wrong vector.
Example 4.2 depicts a corresponding situation where two tapes are created in a nested manner and the
corresponding derivation process yields incorrect results due to a wrong restore of a function value.
There, Stack 1 is associated with Tape 1 and Stack 2 with Tape 2, accordingly. In contrast, the store is

EXAMPLE 4.2

Tape 1 Tape 2 Store Stack 1 Stack 2

trace_on(1, 1);
. . . v1 = 2.0 ∗
v2 = v1 ∗ v1 ∗
. . . ∗

trace_on(2, 1);
. . . ∗
v1 = 1.5; v1 = 1.5 2.0
. . . ∗
trace_off();

. . . ∗
trace_off();

-

�

shared by all of them. Performing a reverse mode differentiation, two vectors ST1 and ST2 that hold
the function values corresponding to the individual tapes are created. Initially, the value 1.5 would be
assigned to the variable v1 contained in both vectors. Evaluating the tapes and restoring function values
using the stack, v1 contained in ST2 would be set to 2.0. This step yields the correct value for Tape
2, as can be seen from the evolution of the store. However, the value of v1 contained in ST1 is not
corrected. As soon as the evaluation of Tape 1 reaches the representation of v2 = v1 ∗ v1, the derivative
computation uses the wrong value 1.5 instead of the correct 2.0. Therefore, it is necessary to adjust the
internal restoring strategy of ADOL-C to obtain the correct derivative values. This can be achieved by
using the same vector for restoring the function values at least as long as the computation is performed

4.1. ADOL-C: A TOOL FOR AUTOMATIC DIFFERENTIATION 71

within a nested environment. All tapes automatically benefit from restoring a function value, accordingly.
In this case, the size of the store that has been reached at the completion of the outermost tape can be
utilized in the allocation of the vector that holds the function values in the reverse mode.

Taking these facts into account, the derivation process may be nested and will nevertheless yield correct
results. Then advanced techniques like checkpointing and fixed point iterations can be exploited, signif-
icantly reducing storage and runtime. However, this always requires user steering. Facilities that enable
ADOL-C to automatically reduce tape sizes are described in the following subsection.

4.1.3 Augmented data type & activity tracking

The basic idea of activity tracking and its application to operator overloading based AD as described in
the Sections 3.2.3 and 3.2.4 has been implemented in two phases. Forward activity tracking has been
incorporated into the taping facilities of ADOL-C as result of the work for this thesis. In contrast, routines
enabling optimizations in the opposite manner are available as part of the tape evaluation drivers. For
practical reasons, only the variant of the reverse technique has been implemented that does not result in
an adjusted tape.

To enable the activity tracking during the taping process, the meaning of the location stored within the
augmented variables is extended. Now, the location is not only used to address individual values within
the store but is also used as index into the field of state information. This field that is referred to as
state_vector evolves in the same way as the store. In particular, if the size of the store is doubled the size
of the state field is doubled too. Possible values stored within the state field are 0 – variable not varied –
and 1 – variable varied. These values are stored using the C/C++ data type char.

The two different numerical values that are stored for each variable are also addressed using the single
location. For this purpose two types of stores are available that are located one after another. These
two fields are referred to as store_varied and store_unvaried. They are always of the same size and are
allocated and deallocated together. Figure 4.2 summarizes the relations between an augmented variable
and its location on the one hand and the two stores and the state vector on the other hand.

augmented variable

location state vector

store store
unvaried varied

Figure 4.2: Relationship between the ADOL-C provided augmented variable, its location, the two stores
and the state vector

For managing the stores, ADOL-C uses a global counter called ADOLC_NUM_ALIVE that stores the
number of augmented variables that are currently used in the program. In addition, two pointers to the
stores and a variable storing the store size are utilized. When allocating a new augmented variable,
ADOL-C increments ADOLC_NUM_ALIVE and checks if more values have to be retained than can be
managed by the store. In this special case, the store must be extended. Accordingly, ADOL-C doubles
the stores in the following way. A new vector is allocated in the dimension of four times the current
store size. If this allocation succeeds, two copy processes are invoked. One process copies the values

72 4. CONCEPT VALIDATION

from store_unvaried to the beginning of the new vector. The second process transfers the values from
store_varied to the second half of the new vector. By doing so, the second and the fourth quarter of the
new vector remain unchanged. Finally, the memorized store size is doubled, the old stores are deallocated
within one call of the appropriate routine of the operating system and the two pointers to the stores are
updated.

Addressing the correct numerical values associated with the augmented variables can now be accom-
plished by simple calculations. For this purpose, a preprocessor macro STORE is defined for addressing
the correct value in dependence of the current activity state. The definition of the macro is given below
using C/C++ syntax.

#define STORE(X) store_unvaried[state_vector[(X)] * store_size + (X)]

Example 4.3 presents the definition of the overloaded multiplication operator provided by the adouble
data type that uses this macro. The first step within the overloaded multiplication operator (Line 2) is

EXAMPLE 4.3

1 adouble adouble::operator * (const adouble &arg) {
2 locint location = next_loc();
3 if (!state_vector[loc] && !state_vector[arg.loc])
4 state_vector[location] = 0;
5 else {
6 state_vector[location] = 1;
7 if (state_vector[loc] && state_vector[arg.loc]) {
8 put_op(mult_a_a);
9 put_loc(loc);
10 put_loc(arg.loc);
11 put_loc(location);
12 } else {
13 if (state_vector[loc]) {
14 put_op(mult_d_a);
15 put_loc(loc);
16 put_loc(location);
17 put_val(store[arg.loc]);
18 } else {
19 put_op(mult_d_a);
20 put_loc(arg.loc);
21 put_loc(location);
22 put_val(store[loc]);
23 }
24 }
25 write_scaylor(store_varied[location]);
26 }
27 STORE(location) = STORE(loc) * STORE(arg.loc);
28 return location;
29 }

to acquire an unused location. It is stored in the variable location of type locint that is ADOL-C’s
location type. Store adjustments that may be necessary due to the new location are handled within the
call to next_loc(). Thereafter, it is checked if the two arguments are of unvaried state (Line 3) and
if so, the state of the result variable is set to unvaried, too (Line 4). In any other case, the results state

4.1. ADOL-C: A TOOL FOR AUTOMATIC DIFFERENTIATION 73

is set to varied (Line 6). Only then, the taping process is invoked. Different internal representations are
created depending on the specific constellation of the arguments varied properties. If both arguments
are varied, a multiplication of two variables is represented. The arguments and the result are identified
by their locations in that case (Line 8 through 11). If only one argument is varied, a multiplication of
a variable and a constant is represented. In that case, only the location of the specific argument and the
result is added to the tape. In contrast, the value of the unvaried argument is used. The two possible
constellations are represented by Line 14 through 17 and Line 19 through 22, respectively. Within
the process of creating the internal representation, the three ADOL-C-provided functions put_op(),
put_loc() and put_val() are utilized to store either an operation code, a location or a constant
value onto the appropriate sub-tape. By calling the write_scaylor() function of ADOL-C (Line
25), the value of the result variable is written onto the stack before it is changed. Taking the value
from the store_varied ensures that the value of the variable represents their last varied state. Finally
and independent of the varied state of the result, the original meaning of the operation is realized by
computing the multiplication of the variable values. Here, the STORE macro is applied to increase the
readability and maintainability of the code (Line 27). The overloaded operator is completed by returning
the location of the result, implicitly constructing the augmented result variable by calling the appropriate
constructor.

Reverse state tracking in ADOL-C

The reverse state tracking as discussed in Subsection 3.2.4 has been implemented only partially. In
particular, only the drivers for the first order reverse tape evaluation have been adapted. For complexity
reasons, only the special version has been implemented, that does not result in an adjusted tape. Rather,
the state tracking results in the skipping of unneeded derivative computations and counting of the number
of relevant operations. The second version with tape adjustments is principally also within reach but
requires much more fundamental changes of ADOL-C. For this reason, it has been decided not to
include this task into the scope of this thesis. It should however be addressed in a later project.

Changes that are necessary to enable the reverse state tracking are comparable to the forward variant.
First, a new vector containing the state information must be provided. Its elements are again addressable
using the locations stored within the tape. Based on this information, the useful property of the result can
be determined. If the state is not set, all derivative instruction belonging to the handled operation are sim-
ply skipped. Furthermore, a global variable that holds the number of skipped operations is incremented.
This counter and runtime measurements may later be interpreted as done in Subsection 4.2.1.

4.1.4 Facilities enabling parallel derivation

ADOL-C has been developed over a long period of time under strict sequential aspects. Although the
generated tapes have been used for a more detailed analysis and the construction of parallel derivative
code, e.g., [Bis91], ADOL-C could hardly be applied out of the box within a parallel environment, so
far. The most convenient chance in this context is dedicated to the use of ADOL-C in a message passing
system based on distinct processes for all cooperators. This requirement is fulfilled by, e.g., MPI. Due
to separated address space and the realization of cooperators as processes of the operating system, the
ADOL-C environment is multiplied. In particular, all control variables used in ADOL-C are available
within each process exclusively. From the users point of view, only two conditions must be met to allow
a successful application of ADOL-C. Firstly, the uniqueness of the created tape name must be ensured.
This can be achieved by carefully choosing the tag, e.g., in dependence of the process’ rank. Secondly,
it must be considered that data transfer between the working processes is not reflected by the internal
representation crated by ADOL-C. Besides of these restrictions, ADOL-C may be applied as usual. This
allows to compute derivatives for functions that implement data partitioning techniques, especially when
only a limited degree of communication is necessary.

74 4. CONCEPT VALIDATION

Many parallel applications rely on a high amount of synchronization to communicate computed infor-
mation at given points among involved cooperators. In a message passing environment this would also
means to invoke more or less expensive transfer routines. Therefore, such applications are typically
parallelized for a shared memory environment using OpenMP. Within the scope of the work for this
thesis, extensive enhancements have been added to ADOL-C that allow the application in such cases.
Originally, the location of an augmented variable is assigned during its construction utilizing a specific
counter. Creating several variables in parallel results in the possibility to loose the correctness of the
computed results due to a data race in this counter. Initial tests based on the protection of the creation
process by use of critical sections yielded unambiguous facts. Even when using only two threads in the
parallel program, runtime increased by a factor of roughly two rather than being decreased. For this
reason, a separate copy of the complete ADOL-C environment is provided for every worker thread, as
described in Subsection 3.3.3.

In addition to this decision, another issue had to be answered. As already identified by G. M. Amdahl
[Amd67], every parallel program possesses a certain fraction that can only be handled serially. In many
situations not only the parallel part of the function is object to the derivation efforts but also the serial
parts. This entails the question of how to transfer information between the serial and parallel program
segments and vice versa.

From serial to parallel
Data transfer is this direction can be performed quit easily. For all variables alive at the moment
when the parallel region starts, a copy may be created for each thread.

From parallel to serial
This is the more difficult direction as it requires to decide which values from which thread should
be copied to the serial part. Furthermore, the handling of variables created within the parallel part
must be solved.

For the current implementation the following decisions have been made.

• The handling of parallel regions by ADOL-C comprises only augmented variables but not user
variables of standard data type.

• Control structures utilized by ADOL-C are duplicated for each thread and, with exception of the
global tape information, are default initialized during the first creation of a parallel region. The
values of these control variables are then handed on from parallel region to parallel region.

• For performance reasons, two possibilities of handling the global tape information have been im-
plemented. In the first case, control information including the values of augmented variables are
transferred from the serial to the parallel variables every time a parallel region is created. Other-
wise, this process is invoked only during the creation of the first parallel region. In either case, the
master thread creates a parallel copy of the variables for its own use, too.

• No variables are copied back from parallel to serial variables after completion of a parallel region.
This means, results to be preserved must be transferred using variables of standard data type.

• The creation or destruction of a parallel region is not represented within the initiating tape. Cou-
pling of serial and parallel tapes must therefore be arranged explicitly by using the construct of
external differentiated functions.

• Different tapes are used within serial and parallel regions. Tapes begun within a specific region,
no matter if serial or parallel, may be continued within the following region of the same type.

• Tapes created during a serial region can only be evaluated within a serial region. Accordingly,
tapes written during a parallel region must be evaluated there.

• Nested parallel regions are not supported and remain object to later enhancements.

4.2. APPLICATIONS & NUMERICAL RESULTS 75

All in all, the described facts result in augmented variables with a special property that depends on
the specific handling of the global tape information. With the start of a new parallel region either a
threadprivate or a firstprivate behavior, respectively, [DM98] is simulated. This means that the value
of the augmented variable is taken either from the previous parallel region or from the serial region,
respectively. In either case, the value used within the parallel region is invisible from within the serial
region.

Initializing the OpenMP-parallel regions for ADOL-C is only a matter of adding a macro to the outermost
OpenMP statement. Two different macros are available that are only different in the way the global
tape information are handled. Using ADOLC_OPENMP, these information including the values of the
augmented variables are always transferred from the serial to the parallel region. In the other case, i.e.,
using ADOLC_OPENMP_NC, this transfer is performed only with the encountering of the first parallel
region. An application that benefits from the avoided copy effort is described in Subsection 4.2.3. Due
to the inserted macro the OpenMP statement has the following structure:

#pragma omp ... ADOLC_OPENMP or #pragma omp ... ADOLC_OPENMP_NC

The remaining source code representing the function does not need to be changed. However, appropriate
actions may be necessary to combine the evaluation of the created tapes in meaningful way.

Applying the newly created facilities of ADOL-C, derivatives for more sophisticated functions can be
computed. Three examples, corresponding runtime information and their interpretation are presented in
the following section.

4.2 Applications & numerical results

Numerical results that allow to evaluate the techniques that are described in Chapter 3 have been gathered
using examples of different complexity and with different properties. First, the possible advantages
of checkpointing facilities are demonstrated by means of the optimization for an industrial robot. The
application of state-tracking facilities is demonstrated thereafter with the shape optimization of an airfoil.
Finally, the parallelization of derivative information is examined using the numerical expensive time
propagation of a quantum plasma. This concluding example also demonstrated in which way the new
advanced techniques can be combined since the successful handling of the derivation is only possible by
applying both the checkpointing facilities and the concept of external differentiated functions.

4.2.1 Industrial robot

The numerical example that serves to illustrate the runtime effects of the checkpointing procedure is an
industrial robot as depicted in Figure 4.3 that has to perform a fast turn-around maneuver. This kind of
robot is typically used in the automobile industry performing spot welding tasks. It features a low power
consumption and allows to move workpieces with a maximum weight of 200 kg at a speed of up to 5 m/s.
Angular coordinates q = (q1, q2, q3) that are associated with the robots joints are utilized in the modeling
of the system. Figure 4.3 clarifies the meaning of q2 and q3 whereas the remaining coordinate q1 refers to
the angle between the base and the two-arm system. The robot is controlled via three control functions
u1 through u3 that denote the respective angular momentums applied to the joints (from bottom to top)
by electrical motors. Minimizing the energy-related objective

J(q, u) =
∫ tf

0
[u1(t)2 + u2(t)2 + u3(t)2] dt

76 4. CONCEPT VALIDATION

q3

q2

90◦ + q2 − q3

q3

Figure 4.3: Industrial robot ABB IRB 6400

where the final time tf is given, forms the control problem that shall be considered. The robots dynamics
obeys a system of three differential equations of second order:

M(q) q̈ = v(q, q̇) + w(q) + τfriction(q̇) + τreset(q) + u (4.1)

where M(q) is a 3× 3 symmetric positive definite matrix containing moments of inertia, called a gener-
alized mass matrix. Thereby, centrifugal and Coriolis force entries are represented by the vector v and w
contains the gravitational influence. Forces that are induced by dry friction and reset forces are modeled
by means of τfriction and τreset, respectively. For a complete description of the motion, see [BK03].

The robots task to perform a turn-around maneuver is expressed by means of initial and terminal condi-
tions as well as control and state constraints. A state/control solution (x0, u0) for the inherent optimal
control problem may be computed in advance, i.e., before performing the motion. In practice however,
perturbations p = (p1, p2, p3, p4) to various components of the equation system may occur. Thereby, p1

through p3 model perturbations of the angular coordinates, whereas p4 characterizes changes in the tool
weight that enter into (4.1) at various points. In an unperturbed system each component of p takes the
zero value. In real-time applications as the given robot, computing a new optimal solution (xp, up) for a
perturbed system is often too time-consuming. Instead, parametric sensitivities, i.e., dx0/dp and du0/dp,
are used to approximate the new optimal state trajectory xp and the new optimal control up according to

xp ≈ x0 +
dx0

dp
4p, up ≈ u0 +

du0

dp
4p.

Thereby, 4p = p − p0 is utilized. The required parametric sensitivities may be computed in advance
along with the solution for the unperturbed system. For further details on the approach, see [GW03].
However, for illustrating the runtime effects of the checkpointing facilities integrated in ADOL-C, only
the gradient computation of J(q, u) with respect to u is considered throughout the remainder of this
subsection.

To compute an approximation of the trajectory x, the standard Runge-Kutta method of order 4 is applied
for the integration. This results in about 800 lines of code. Due to ratio of input and output variables,
the reverse mode of AD is indicated for computing the required derivatives. Thereby, the iterative nature
of the Runge-Kutta method allows to apply and benefit from the checkpointing technique. For details on
the checkpointing interface provided by ADOL-C, see [KW06].

Function and derivative computations were performed using an AMD Athlon64 3200+ (512 kB L2-cache)
and 1GB main memory. The resulting averaged runtimes in seconds for one gradient computation are
shown in Figure 4.4, where the runtime required for the derivative computation without checkpointing,

4.2. APPLICATIONS & NUMERICAL RESULTS 77

i.e., the basic approach (BA), is illustrated by a dotted line. In contrast, the runtime needed by the check-
pointing approach (CP) using c = 2, 4, 8, 16, 32, 64(, 128, 256) checkpoints is given by the solid line.
To illustrate the corresponding savings in the memory requirements, Table 4.1 shows the tape sizes for
the basic approach and the tape and checkpoint sizes required by the checkpointing version, respectively.
The tape size for the latter varies since the number of independents is a multiple of the number l of
discretization steps used in the approximation of x and u.

10
1

0.04

0.05

0.06

0.07

0.08

0.09

number of checkpoints

ru
n

tim
e

in
 s

ec

l = 100

CP
BA

10
1

10
2

0.55

0.6

0.65

0.7

0.75

0.8

number of checkpoints
ru

n
tim

e
in

 s
ec

l = 500

CP
BA

101 102

2

2.5

3

3.5

number of checkpoints

ru
n

tim
e

in
 s

ec

l = 1000

CP
BA

101 102

100

150

200

number of checkpoints

ru
n

tim
e

in
 s

ec

l = 5000

CP
BA

Figure 4.4: Comparison of runtimes for l = 100, 500, 1000, 5000

One basic checkpointing assumption, i.e., the more checkpoints are used the less runtime the execution
needs, is clearly depicted by case l = 1000 in Figure 4.4. The smaller runtime for the basic approach
completes the setting. Analyzing the provided memory architecture and comparing against the required
tape and stack sizes clearly reveals the underlying problem. In the sum, the tape and even only one
checkpoint cannot be hold within the L2-cache at the same time. According to its usage, the tape quite
often displaces the checkpoint within the cache. Contrary, when accessing a checkpoint, the tape is
partially displaced within the cache. Due to this behavior, only a small quantity of tape and nearly no
checkpoint data can be used out of the cache. The missing data need to be loaded from main memory
every time it is required. In presence of the checkpointing-induced recomputations of function values,
no runtime reductions can be achieved, accordingly. All in all, these properties characterize situations
that do not benefit from the checkpointing approach when considering runtime aspects. Nevertheless,
the memory requirement is reduced significantly. Therefore, it is recommended to not use the technique
for this constellations unless the saved memory is required for the computation of other information.

Analyzing the remaining three cases reveals an important consistency – the possibility to achieve a run-
time improvement. Most clearly, this is obvious from the cases l = 100 and l = 5000, respectively. In

78 4. CONCEPT VALIDATION

time steps l 100 500 1000 5000
without checkpointing

tape size (Byte) 4.388.720 32.741.979 92.484.730 1.542.488.152
with checkpointing

tape size (Byte) 79.367 237.367 434.867 2.014.912
checkpoint size (Byte) 11.440 56.240 112.240 560.240

Table 4.1: Memory requirements for l = 100, 500, 1000, 5000

these situations a smaller runtime was achieved consistently even though checkpointing was used. These
results are affected by an insight well known, i.e., computing from a level of the memory hierarchy that
offers cheaper access cost may result in a significant smaller runtime. In the case of l = 100 checkpoints,
the computation could be redirected from mostly main memory access to the L2-cache for a significant
part of the checkpointing information. Furthermore, the cache handling entails the storing of the most
recently used checkpoints within the cache whereas the seldom accessed checkpoints reside in main
memory. A partially different situation is given by the use of l = 5000 checkpoints. There, the runtime
reduction is not caused by a smart cache handling rather than by the avoidance of hard disk access. Using
the basic approach, a significant part of approximately 50 percent of the tape must be reloaded from hard
disk during the derivation process. Applying the checkpointing technique, this drawback could be com-
pletely eliminated, and computations where performed from main memory. In both cases, l = 100 and
l = 5000, the savings in the memory access costs were high enough to compensate the recomputation of
intermediate values, which were necessary due to the checkpointing. These results clarify the usefulness
of the checkpointing technique. They also reveal that this approach is not restricted to the avoidance of
hard disk access as it is typically used for.

The remaining case from Figure 4.4 (l = 500) depicts, to the estimation of the author, the most interest-
ing situation of the robot example. There, a runtime reduction is not guaranteed. It is rather a result of
carefully choosing the simulation criteria to achieve the desired profit. For the different number of check-
points utilized in this case, the tape and a small number of checkpoints can be hold within the L2-cache
of the processor. Again, the caching strategies guarantee that the most frequently used checkpoints at-
tain this advantage. It is then a question of the ratio between the rate of recomputation and the saving
from the cheaper memory access if the basic approach can be outperformed. With increasing number of
checkpoints, the recomputation rate drops significantly and the runtime benefits accordingly. As can be
seen from Table 4.1, the runtime of the basic approach could be undercut using c = 128 and c = 256
checkpoints. Once more a reduction in runtime could be obtained although a significant higher number
of operations were performed.

All in all, the robot examples clarifies the value of the checkpointing approach. It also becomes obvious
that the methods control possibilities must be used carefully so that the technique can play to its strength.

4.2.2 Shape optimization of an airfoil

The second example that serves to illustrate the state-tracking approach derived in Section 3.2 is chosen
from the field of aerodynamics and addresses the shape optimization of an airfoil with respect to given
design parameters. Numerical calculations are dedicated to an inviscid RAE2822 airfoil, simulated for
a flight at a Mach number of 0.73 and an angle of attack of 2◦. Within the optimization process, the
given initial shape of the airfoil is changed by a parametrized deformation using a design vector referred
to as P . The aim of the optimization is to minimize the drag of the airfoil that depends on its shape,
which itself can be described in terms of P . In this process, sensitivity information regarding the drag
with respect to the design vector are used for the deformation of the airfoil. Accordingly, the whole

4.2. APPLICATIONS & NUMERICAL RESULTS 79

computation chain from the static initial shape to the drag coefficient is the object of the derivation. This
chain is implemented using four different tools. First, the surface deformation using the current design
vector P is computed by a tool called defgeo. Thereafter, the difference vector to the original shape is
calculated utilizing the program difgeo. Based on this information, the grid that is used during the flow
computation is adjusted. This is done by a tool called meshdefo. Finally, the drag resulting from the
investigated shape is computed using the DLR’s flow solver TAUij. The complete chain for computing
the drag coefficient including the input and output of each step is depicted in Figure 4.5. All of the four

defgeo

difgeo

meshdefo

TAUij

design vector (P) initial surface (xs)

(x)

initial surface (xs)

(dx)

initial computational grid (ms)

(m)

(drag)

Figure 4.5: Drag of the RAE2822 airfoil: complete computation chain

programs are written in C. The TAUij code comprising about 6000 lines of code is a quasi 2D version
of the TAUijk tool that itself is based on the well-known DLR TAU code. [GMWW07]

Due to the compatibility to the programming language C++, the derivation of the computation chain
could be performed using the AD-package ADOL-C. Differentiating the four steps depicted in Figure 4.5
yields the formula

∂drag

∂P
=

∂drag

∂m
· ∂m

∂dx
· ∂dx

∂x
· ∂x

∂P
. (4.2)

Therein, the first term on the right hand side represents the differentiation of TAUij, the second term
the differentiation of meshdefo, the third term the differentiation of difgeo and the last term the
differentiation of defgeo. In the computation chain yielding the draft coefficient, difgeo computes
the difference dx = x − xs. The differentiation of this step, i.e., ∂dx

∂x yields the identity matrix. Taking
this fact into account, formula (4.2) can be reduced to

∂drag

∂P
=

∂drag

∂m
· ∂m

∂dx
· ∂x

∂P
. (4.3)

Out of the three partial derivatives, ∂m
∂dx and ∂x

∂P can be computed applying black box AD. In contrast,
∂drag
∂m contains a fixed point iteration that can be handled more efficiently using the corresponding tech-

nique described in Subsection 3.1.4. The layout and properties of the employed ADOL-C facilities are
discussed in [SWGH06]. This paper also presents results of the complete optimization process. How-
ever, in the remainder of this subsection, the application of the state-tracking facilities of ADOL-C shall
be illustrated. For this purpose, the complete optimization process is reduced to roughly one optimiza-
tion step, i.e., the computation of the drag coefficient and the corresponding gradient. Furthermore, the
inherent fixed point iteration is relaxed by removing the convergence control, i.e., a fixed number of
steps is used for the original and the derivative fixed point iteration. Analyzing the properties of the
state-tracking approach utilizing this framework yields some important advantages.
• Applying the state-tracking technique requires only an exchange of the ADOL-C library as the

user code already contains all changes to benefit from ADOL-C.

80 4. CONCEPT VALIDATION

• The results produced by the state-tracking code can easily be validated using the original code and
its intermediate results.

• Significantly less runtime must be invested but the gathered results concerning the state-tracking
nevertheless reflect the achievable benefits to the original program.

All computations have been performed on the SGI ALTIX 4700 installed at the Center for Information
Services and High Performance Computing (ZIH), TU Dresden. The characteristics of this system are
summarized in Table 4.2.

Processors 1024 × Intel Itanium II Montecito @ 1.6 GHz (Dual Core)
2 × 9 MB L3-cache each

Peak performance 13.1 TFlop/s for the whole system
Main memory 4 GB per core and 6.5 TB total
Interconnection NumaLink4 (SGI proprietary)

Table 4.2: Characteristics of SGI ALTIX 4700 as installed at the ZIH, TU Dresden

Computing the derivatives used in an optimization step based on the relaxed fixed point iteration requires
ADOL-C to maintain three tapes. The memory requirements and runtimes of one optimization step are
summarized in Table 4.3. All computations are based on the grid resolution of 321 × 65 points. The
first observation that arises from Table 4.3 classifies the impact of the tape size on the overall memory
requirements. As can be seen, the total tape size forms the major part of the program memory. Obviously,
reducing the tape sizes is the best way of controlling the overall memory requirements. Using the state-
tracking approach, an average reduction of about 13 % can be achieved for the tape size and about 11 %
overall. The difference between these two values results from the additional memory that is related to
the maintenance of the state information.

Analyzing the observed runtimes allows a more detailed view on the advantages and disadvantages of
the state-tracking approach in its current implementation. Due to the inherent fixed point iteration, which
presents the most expensive part of the function, the handling of Tape 2 is of special interest. In contrast,
the runtimes for the 10000 iterations of the original fixed point iteration are not compared against each
other since this code is based on the standard double data type. Therefore, the time difference is
dedicated to the runtime environment. Comparing the reduction of the size of Tape 2 and the reduction
of the runtime when evaluating it reveals an interesting but nevertheless not unexpected result: The
runtime decreased by a factor that considerably exceeds the tape size reduction. This is caused by the
replacement of nonlinear operations from the original program with linear operations in the tape that
can occur when not all arguments are in the varied state. During the tape evaluation, less expensive
formulas can be exploited to derive these linear operations. Additionally and truly surprising, also the
taping time could be reduced by applying the state-tracking approach. This means that the definitely
expensive checks for the state of a variable are more than compensated by the avoidance of the taping
routines. However, it seems reasonable that a considerably reduction must be achieved to allow this
effect. Whenever no or only a small reduction in the tape size is possible, the taping time is likely to
increase. Considering the creation and evaluation of the remaining tapes, i.e., Tape 1 and 3, yields a result
similar to the observations for the fixed point iteration. Again, a runtime reduction could be achieved
for these calculations, which provide the major part of the remaining derivative computations that are
referred to as “Minor calculation” in Table 4.3.

The higher effort of the overloaded operators that include state-tracking can clearly be seen from the
evolution of the runtime that is necessary to perform the initialization of the drag computation. During
the initialization phase specific computations are performed using double and adouble variables.
However, no tape is created during this step. As can be seen, the runtime increases significantly when
switching from the standard version to the state-tracking. Two major consequences result from this ob-

4.2. APPLICATIONS & NUMERICAL RESULTS 81

Standard version State-tracking Reduction
Tape sizes

Tape 1 ≈ 90 MB ≈ 80 MB ≈ 11 %
Tape 2 ≈ 2330 MB ≈ 2030 MB ≈ 13 %
Tape 3 ≈ 2380 MB ≈ 2040 MB ≈ 14 %
Total ≈ 4800 MB ≈ 4150 MB ≈ 13 %

Program memory ≈ 4950 MB ≈ 4400 MB ≈ 11 %
Runtimes

Initialization 84 s 117 s ≈ -39 %
Fixed point (10000 iterations) 1981 s 1997 s –
Creation tape 2 15 s 13 s ≈ 13 %
Reverse (2000 × tape 2) 18114 s 14932 s ≈ 18 %
Minor calculation 61 s 56 s ≈ 8 %
Program 20255 s 17115 s ≈ 15 %

Table 4.3: Measurements for one step of the optimization of the RAE2822 airfoil

servation. Firstly, from the users view, it should be ensured that computations on adouble variables
are only performed during a taping phase, especially when applying state-tracking. Secondly, address-
ing the internals of ADOL-C, the implementation of the state-tracking should be analyzed regarding the
non-taping mode. It might be possible to reduce the effort in this mode and complete the overall positive
results of the state-tracking technique. In summary, considering the whole computation chain, a signifi-
cant reduction of the program runtime could be achieved that confirms the potential of the technique.

Reductions similar to the forward state-tracking can also be expected from the reverse activity-tracking.
Respective conclusions could be drawn from the use of an appropriate implementation. However, the
latter only comprises a few selected operations and is therefore not applicable to the airfoil optimization
program. It has mainly been implemented to approve the correctness of the algorithm derived in Sub-
section 3.2.4. The completion of the code and the integration into the other concepts developed for this
thesis remain subject to future work. The necessary effort to perform this task is far beyond the scope of
this thesis.

All in all, the state-tracking technique allows a significant reduction of the internal function representa-
tion used in the derivation of C/C++ codes. When applied carefully, it directly yields a runtime reduction.
This is even true for programs that have been adjusted extensively for the use of standard operator over-
loading before, as can be seen from the airfoil optimization example. Furthermore, it allows to initially
prepare a given code for a subsequent derivation without even thinking about activity evolution. There-
after, more or less expensive optimizations may be used to identify calculations that does not need to rely
on the provided augmented data types. With the state-tracking facilities, a technique hitherto exclusively
dedicated to source-to-source transformation is now also available for operator overloading.

4.2.3 Time propagation of a 1D-quantum plasma

The last example discussed in this thesis is taken from physics and mainly demonstrates the parallel
derivation of a given function. However, due to its complex structure it is also necessary to apply most
of the techniques derived in Section 3, in particular, nested taping, external differentiated functions and
checkpointing facilities. Only the combination of these techniques allows the derivation based on the
reverse mode of AD for this example. For better comparison and to clarify the need of reverse mode
differentiation, runtimes are compared against the fasted forward mode that can be provided by operator
overloading, i.e., the tapeless forward mode. It shall be noted that the properties of the given application
significantly influenced the layout of the parallelization techniques developed in Subsection 3.3. The

82 4. CONCEPT VALIDATION

implementation of the function was performed by N. Gürtler for his diploma thesis [Gür06], and the
differentiation was realized in a cooperation between the Rheinisch-Westfälische Technische Hochschule
(RWTH) Aachen and the TU Dresden. To the knowledge of the author, the parallel derivation of the
given function including the coping with the high internal complexity and inherent challenges currently
features uniqueness and establishes a new level of the application of operator overloading based AD.

Often referred to as the “forth” state of matter, the term plasma describes an (partially) ionized gas con-
sisting of neutral and positively and negatively charged particles, i.e., atoms, electrons and ions. Thereby,
electrons and ions appear with approximately equal charge density. According to some estimates, up to
99 % of the material in the visible universe is in the plasma state. Therefore, plasma research is espe-
cially relevant to astrophysics but also in the analysis of effects of smaller scale. The probably most
common phenomena in the Earth’s atmosphere that involves plasmas is lightning. Other natural plasmas
occur, e.g., in the ionosphere and the magnetosphere. Plasma physics also plays an important role in
many applications from human hand. The most noticeable representative is probably the attempt to gain
control of the thermonuclear fusion. Any progress in this field marks a step towards a clean and nearly
unlimited power supply. One of the major challenges in controlling fusion is the establishing of mag-
netic confinements to contain the plasma. Hence, understanding the correlations between the plasma and
interacting fields is often the key component for analyzing plasma effects. [BG05]

Here, in contrast to classical plasma physics, the particles are represented by a N -particle wave function
Ψ(1, . . . , N) and the system can be described by multi-particle Schroedinger equations. For reduction of
the complexity, spin effects are neglected. A direct solution, however, is numerically highly expensive.
Since an approximation is often sufficient to describe the physical behavior, the simulation is based
on Quantum-Vlasov equations that neglect interchange and correlation effects. As an entry point into
quantum plasma simulations and for reasons of complexity only the one-dimensional case is modeled.
However, due to the necessary discretization in the order of N dimensions, the direct solution is still
very expensive. For the analysis of expected values for many distributions, calculations based on a
representative ensemble of quantum states are sufficient. Then the following equation system can be
exploited:

ı∂Ψi
∂t = −1

2
∂2Ψi
∂z2 + ViΨi i ∈ [1, N]

∆Vi = ∆(qeΦ) = −4πτi i ∈ [1, N]

τ = τe + τI

(4.4)

There, ı is the imaginary unit, Ψi(z, t) is the wave function of the particle i, Vi is the interaction potential
of the ith particle, qe is the electron charge, Φ is electrostatic potential and τ , τe and τI , respectively,
are the charge density of the overall system, the electrons and the ions, respectively. Furthermore, τi

represents the charge density τ of the overall system reduced by the charge density of the ith particle.
Prior to the numerical simulation, (4.4) needs to be discretized in t and z using tn = t0 + n∆t with
n = 1, . . . , T and zj = z0 + j∆z with j = 1, . . . ,K. Applying cyclic boundary conditions yields the
sparse cyclic tridiagonal system

U+,n+1
i Ψn+1

i = U−,n
i Ψn

i . (4.5)

For details on the discretization and the definition of the operator U , the reader is referred to [Gür06,
Gür07]. With (4.5), a complete description of the time propagation of the discretized wave function Ψ is
given. Therein, the term Ψn

i denotes the wave function of the ith particle at time n. Directly calculating
the interaction potential Vi that is part of the operator U turns out to be difficult. This is due to the
determination of the necessary boundary conditions for Vi, while cannot easily be found while keeping
the potential V for the entire system cyclic. Rather, Vi is computed as the difference between the potential
V of the complete system and the self-contribution of the particle. For details see [Gür06]. Taking all

4.2. APPLICATIONS & NUMERICAL RESULTS 83

computations into account, an equation set is formed, which must be solved for each wave function for
each time step. This set is given in Figure 4.6, ordered according to the inherent dependencies. There,
ωP complies to the classical plasma frequency, L is the length of the simulation interval and N denotes
the number of particles. Wherever necessary, an additional index j is used for a variable if it represents

No. Equation

1 MV xV = ω2
P

[
1− L

N

N∑
l=1

|Ψl|2
]

2 MV yV = uV

3 V = xV − vV ·xV
1+vV ·yV

yV

4 Vi,j = Vj − 2πq2
e

[
j∆z − 2∆z2

j−1∑
m=1

m∑
k=1

|Ψi,k|2
]

5 Mx = U−Ψn

6 My = u

7 Ψn+1 = x− v·x
1+v·yy

Figure 4.6: Equation set for one iteration and one particle

the value valid for the cell j. The equations summarized in Figure 4.6 are the result of transformations
using the Sherman-Morrison formula and allow to compute the solution of the system on the basis of
tridiagonal matrices. Accordingly, the definition of MV , uV and vV as well as M , u and v satisfy:

U = M + u⊗ v (4.6)

diag(1,−2, 1) + e1 ⊗ eK + eK ⊗ e1 = MV + uV ⊗ vV (4.7)

Thereby, ⊗ denotes the tensor product. In each step of the time integration according to Figure 4.6, the
potential V for the entire system is computed first. This involves the equations 1 through 3. To allow
for different charge densities for each wave function, V is computed for each wave function separately.
Using the value of V , the interaction potential Vi is determined subsequently according to equation 4.
Thereafter, the actual propagation of the wave function is performed based on the equations 5 through 7.

The final step that follows the time propagation of the plasma computes the expected value < η > of the
particle density. Equation (4.8) presents the discrete version of this target functions.

< η >=
N∑

i=1

K∑
j=1

z(j)∆z|Ψi,j |2 (4.8)

The reduction of the high amount of output information resulting from the time propagation to a single
value allows an easier evaluation of the entire system.

Reconsidering Figure 4.6 for challenges resulting from the parallelization of the code reveals an impor-
tant fact: Equation 1 requires read access to all wave functions Ψi at the current time step n. Since the
time propagation is performed in situ, it must be ensured that no Ψn

i is replaced with Ψn+1
i before its

value has been processed. Hence, it is necessary to synchronize the work among the threads. Due to this
insight, the computations for one time step are split into two sections that are implemented using two
separate loops. The first loop is responsible for the determination of potential V of the entire system and
the calculation of interaction potential of each wave function. Thereafter, the second loop propagates the
wave functions for one time step. Synchronization is achieved automatically due to implicit barrier at the
end of each OpenMP parallelized loop.

84 4. CONCEPT VALIDATION

With [Gür06], a code for simulating the time propagation of a one-dimensional ideal quantum plasma
has been developed that is based on the equation described above. It creates the source of the differen-
tiation efforts and features the program layout that is depicted in Figure 4.7. There, all parallelization

...
startup_calculation(..);
for (n = 0; n < T; ++n) {

#pragma omp parallel
{

#pragma omp for
for (i = 0; i < N; ++i)

part1(..);
#pragma omp for
for (i = 0; i < N; ++i)

part2(..);
}

}
target_function(..);
...

Figure 4.7: Basic layout of the plasma code including parallelization statements

statements are already included. The layout is presented using C++ notation and the OpenMP statements
are adjusted accordingly.

Simulation details

Simulations based on the given plasma code turned out to be extremely costly for a reasonably realistic
plasma of at least 1000 wave functions. For the proof of concept of the code as well as its derivation a re-
duced constellation is however sufficient. The following conditions are met for all runtime measurements
that are discussed in this subsection.

• number of wave functions N = 24

• simulation time t = 30, discretized with T = 40000 time steps

• length of the simulation interval L = 200, discretized with K = 10000 steps

• plasma frequency ωP = 1.23

All units are transformed to the atomic scale, see [Gür06]. Proper simulations require the study of several
plasma periods that is, related to the electron charge density, given by 2π/ωP . The most important
runtime reduction, however, results from computing only the first 50 of the 40000 time steps. After this
period, the correctness of the derivatives can already be validated and the characteristics of the runtime
behavior that are of special interest are already fully visible. To preserve the numerical stability of the
code, the time discretization is based on T = 40000 steps nevertheless.

Differentiation aspects

Before the actual derivation strategy can be determined, the given function must be analyzed regarding
the number of input and output variables. Overall, the plasma code computes the expected value of the
particle density using the given N wave functions and the two global parameters ∆t and ∆z. The wave

4.2. APPLICATIONS & NUMERICAL RESULTS 85

functions are given as normal distribution with an expected value zi and a standard deviation σi. Initially,
they satisfy the equation

Ψi =
1√√
πσi

e
− (z−zi)

2

2σ2
i eıkiz. (4.9)

Accordingly, each wave function features an initial impulse ki. All in all, this leads to 3N + 2 input
variables and one output variable. For an analysis of the physical dependencies as well as the quality of
the discretization, derivatives of the single output with respect to all inputs may be of interest. Recalling
the theory described in Chapter 2, a clear conclusion regarding the work mode of AD to be applied can
be drawn: For the given ratio of input and output variables, derivatives should be computed using the
reverse mode of AD.

As already discussed in Chapter 2, performing a reverse mode differentiation always entails the question
regarding the management of the overwritten function values. Roughly speaking, about the same number
of overwritten values must be handled as operations are performed during the execution of the function.
Furthermore, when applying the operator overloading based AD-tool ADOL-C for the reverse differen-
tiation, an internal function representation must be stored that also requires memory in a multiple of the
operation count. Altogether, this creates a high memory demand that must be rated carefully. Consid-
ering the given 24-particle-plasma and the derivation of only one time step serially, the storage of about
2.4 GB data is required. Multiplying this value with the number of time steps to be performed, yields
the impressive memory requirement of roughly 96 TB. This amount of data cannot be stored within the
main memory of any existing computer known to the author. Scaling the plasma to a more realistic
size of more than 1000 wave functions requires to adjust the memory guess accordingly. Furthermore,
parallelizing the code such that each particle is processed by a different thread increases the memory
demands once more. Though only the computations for one wave function must be represented by the
created tape on each thread, certain operations at the beginning and the end of the tape must now be
performed on each thread. Summing up over all threads leads to the mentioned increase in the memory
requirements. In any case, the black box application of operator overloading based AD is not advisable
or is even impossible. The only applicable solution to this challenge yields the first and most important
demand on the derivation of the code – checkpointing techniques as discussed in Subsection 3.1.3 need
to be incorporated.

Analyzing the parallelization aspects of the code reveals the second, important challenge. Applying
ADOL-C results in the creation of internal functions representations that neither contain the loop struc-
ture nor the parallelization statements. A possible solution that may be exploited to overcome this situa-
tion is described in Subsection 3.3.5. However, this approach cannot be used directly due to the presence
of the checkpointing facilities. To be more precise, ADOL-C currently considers the provided time step
function to be of serial nature. This means in particular that if a parallel time step function is provided,
the differentiation by use of ADOL-C would fail as representing parallel functions by a single tape is
currently not possible. Hence, the time step function must be provided in a way that allows to influence
the execution schema of the function itself as well as its derivation. Again, a technique developed in Sec-
tion 3.1 answers the challenge. Using an external differentiated function within each time step, control is
given to the user during the function calculation and the corresponding derivation. In this situation, the
parallelization approach described in Subsection 3.3.5 is applicable. Combining all techniques for the
given program and considering the execution using p processors yields p + 3 derivative contexts, both
during the function evaluation and its derivation.

Function evaluation
C1 The outermost derivative context is used for the function initialization and the computation of the

target function. All calculations are recorded onto tape 1. In this phase, the checkpointing facilities
of ADOL-C are invoked causing the switch into context C2 and back.

C2 This context serves for performing the actual time propagation of the plasma. Thereby, T − 1
time steps are executed based on the original, non-augmented version of the time step function.

86 4. CONCEPT VALIDATION

These computations are performed in parallel due to the layout of the provided code. No tape is
created during this period. However, checkpoints are taken according to the steering of revolve.
Finally, an augmented version of the time step function is executed for computing the last time
step. Thereby, an internal representation, i.e., tape 2, is created. To prepare the parallel execution
of this time step, an external function is called. This enforces another context switch.

C3 At this point of the program execution the ADOL-C-provided macro ADOLC_OPENMP_NC in-
vokes a special internal routine that is responsible for the creation of p new derivative contexts.
Each of them is associated to one of the involved working threads. Thereby, each thread is respon-
sible for the propagation of one or several wave functions depending on the work load distribution.
For this reason, the two inner loops depicted in Figure 4.7 are replaced by user guided codes that
manage the assignment of wave function to threads.

* The term “*” denotes the remaining p inner contexts that exist concurrently. Within each context
the assigned wave functions are propagated serially. Thereby, p new tapes are created whose
identifier are chosen by the user.

Derivation

C1 The differentiation of the function is started with the outermost context C1. Applying the standard
reverse mode drivers of ADOL-C, derivatives are computed using tape 1. This process is inter-
rupted once the special operation signaling the context switch is reached. Then, control is given to
context C2 for deriving the actual time propagation of the plasma.

C2 Based on the preliminary work done during the function evaluation, the derivation of the time
propagation is performed under the steering of revolve. The actual layout of this derivation
procedure depends on the considered number of time steps and number of checkpoints. An exam-
ple is depicted in Figure 3.5. Parallelization of the forward sweeps is achieved either directly when
executing the non-augmented version of the time step function or user guided as described for the
function evaluation. In the latter case, additional contexts are created again. Due to the layout of
the augmented version of the time step function, tape 2 mainly consists of the call of the external
function. During the derivation using this tape, a context switch is enforced accordingly.

C3 This context is responsible for providing the parallel derivation environment and the subsequent
assembling of the final derivatives of a time step. Similar to the function evaluation, the ADOL-C-
provided macro ADOLC_OPENMP_NC is utilized to recreate the required p derivative contexts.
Subsequent to the decomposition of this environment due to the completion of the inner computa-
tions, the AD-assembling phase is invoked.

* The p concurrent, innermost contexts are used to calculate preliminary derivatives for the tapes
associated with each thread. Here, standard AD-technique is applied by calling the appropri-
ate reverse mode driver of ADOL-C. These preliminary information create the base of the AD-
assembling phase.

Most aspects of the context handling are hidden from the user and the appropriate actions are performed
internally by ADOL-C. However, four different functions are required during the derivation process
to enable the parallelization facilities. Along with the main program, they are depicted in Figure 4.8
using C++ notation. There, the call structure is partially represented by the plotted arrows. Note that
an arrow does not necessarily represent a direct call between two functions as internal functions of
ADOL-C may by executed in-between. Rather, an arrow connects the two points where the control
leaves and reenters the user code, respectively. Considering the code structure presented in Figure 4.8
clarifies that the provided layout of the original code as given in Figure 4.7 was changed significantly.
The smallest adjustments were necessary to provide the time step function timestep(..) based on
non-augmented data types. In particular, only the outermost loop controlling the time propagation was
removed. However, the numerical counterpart based on the adouble data type, i.e., timestep_AD,
only contains the call of the external function, i.e., ext_timestep_AD. The latter firstly creates the

4.2. APPLICATIONS & NUMERICAL RESULTS 87

main(..) {
< program initialization >
trace_on(1,1);
< function initialization >
checkpointing(..);
< target function >
trace_off();
fos_reverse(1, ..);
...

}

timestep(..) {
#pragma omp parallel
{

#pragma omp for
for (i = 0; i < N; ++i)

part1(..);
#pragma omp for
for (i = 0; i < N; ++i)

part2(..);
}

}

timestep_AD(..) {
call_ext_fct(..);

}

ext_timestep_AD(..) {
#pragma omp parallel ADOLC_OPENMP_NC
{

< work distribution >
trace_on(..);
part1(..);
part2(..);
trace_off();

}
}

fos_rev_ext_timestep_AD(..) {
#pragma omp parallel ADOLC_OPENMP_NC
{

fos_reverse(..);
}
< AD-assembling >

}

-

?

-

-

?

?

Figure 4.8: Derivation of the plasma code – function layout

parallel AD-environment as soon as the ADOLC_OPENMP_NC code is reached. Within this environment
each participating thread determines a set of wave functions that it processes. Thereby, the applied
distribution algorithm guaranties that each wave function is propagated only once and that load balance
is achieved among all threads. Accordingly, the two main loops controlling the work distribution in
timestep are not contained in ext_timestep_AD. Furthermore, the implicit barrier of the first loop
that is used for the thread synchronization in timestep does not need to be replaced with an explicit
barrier as the dedicated environment of each thread prevents race conditions. Compared to this setting,
the layout of the derivation routine fos_rev_ext_timestep_AD is quite simple. After creating the
parallel environment the tape generated in ext_timestep_AD is evaluated and the derivatives of the
whole time step are assembled using the results of all threads. Synchronization efforts during the tape
creation are not necessary for the derivation since each thread works in its own dedicated environment.

Due to the properties of the checkpointing facilities provided by ADOL-C, two work modes can in prin-
ciple be utilized for the derivation of the time propagation. On the one hand, one may reuse the tape
written for a specific time step as often as possible. Then creating a new tape is only necessary if a
branch switch is detected during the evaluation of a tape. On the other hand, one may enforce the cre-
ation of a new tape every time the stack of overwritten function values is created. This results in a higher
computational effort but also guaranties the correctness of the computed derivatives if a branch switch

88 4. CONCEPT VALIDATION

results from calculations based on non-augmented data types. In the given example of the plasma code,
an LU-decomposition with pivoting is performed that is based on non-augmented information. As soon
as this information changes, a new tape must be created. However, due to utilized data type, such situa-
tions cannot be detected by ADOL-C. The restructuring of the code, such that changes in the pivoting are
detectable from the tape, requires significant effort and has not been done so far. Therefore, all runtime
measurements described in following subsection are based on a version of the plasma code that enforces
the retaping of the time step function for every time step. It should be noted that once appropriate changes
allow to avoid the strict retaping, the runtime behavior of the reverse mode differentiation will benefit
accordingly.

Runtime results

All runtime measurements have been performed using the SGI ALTIX 4700 system installed at the TU
Dresden. The hardware specifications of the system are given in Table 4.2. For performance analysis the
software VNG – Vampir Next Generation [BNM03, BN03] has been used. VNG was designed at the
TU Dresden based on the experiences gained from the performance analysis tool Vampir [AHN+96]. It
features a client-server architecture and allows to analyze large program traces in parallel. The tracing
system recognizes both MPI and OpenMP directives and, therefore, is well-suited to analyze the runtime
behavior of the plasma code.

Three different code versions for computing derivatives are analyzed in the remainder of this subsection.
Two of them implement the reverse mode of AD including the described checkpointing and paralleliza-
tion schema. The difference between these two codes emerges from the way that information is addressed
within the parallel environment created by ADOL-C. First, a version was implemented that duplicates
all data of the serial environment and stores it in appropriate vectors of p times larger size. Each of the
p threads that lives in a parallel section may then access its data using its numerical identifier. How-
ever, this requires the OMP_GET_THREAD_NUM function to be called for each data access. The second
approach that is applicable for reverse mode differentiation utilizes the OMP_THREAD_PRIVATE di-
rective of OpenMP. Satisfying the required constraints, this directive allows to dedicate specific memory
to threads exclusively. Furthermore, threads are not decomposed at the end of a parallel region. Rather,
they are deactivated only and are reactivated at the beginning of the next parallel region. Memory that
has been dedicated to threads is then accessible again and its contents is guaranteed to not be changed.
The principle layout of the data access for these two implementations is depicted in Figure 4.9. There,
an integer variable example is created for every thread. A unique value – the thread number – is as-
signed to it in the first parallel region. This value is then written out to the standard output stream in the
second parallel region. On the left hand side of of Figure 4.9, the code version is depicted that requires
the omp_get_thread_num function to be called in each parallel region at least once. In contrast, this
function is only used for the creation of the unique value of the variable example on the right hand side.
The specific implementation of threadprivate variables is up to the applied compiler and is hidden
from the user. Two separate versions of the reverse mode code have been implemented for reasons of
compatibility as not all used compilers handle the threadprivate directive correctly.

The third code version that serves the validation of the derivative values has been implemented to use
the tapeless forward mode provided by ADOL-C. Thus, derivative values are computed during the
evaluation of the function as described in Subsection 3.3.2. Detailed information on the tapeless forward
mode provided by ADOL-C can be found in [KW07]. There, runtime observations and usage details
are discussed, in addition. The correctness of the derivatives computed by this code has been validated
against a code that is based on analytical differentiation. For information regarding the underlying mathe-
matical approach as well as the analysis of the runtime behavior the reader is referred to [Gür07]. To
allow a direct comparison between the versions of the plasma code, the forward mode based version
applies the vector forward mode of AD. Thus, computing the full gradient requires 3N + 2 directions to
be propagated within the single forward sweep.

4.2. APPLICATIONS & NUMERICAL RESULTS 89

Using the thread number

int example[NUM_THREADS];

...
#pragma omp parallel
{

int num = omp_get_thread_num();
example[num] = num;

}
...
#pragma omp parallel
{

int num = omp_get_thread_num();
cout « example[num] « endl;

}

Using threadprivate variables

int example;
#pragma omp threadprivate(example)
...
#pragma omp parallel
{

int num = omp_get_thread_num();
example = num;

}
...
#pragma omp parallel
{

cout « example « endl;
}

Figure 4.9: Layout of the internal data access for the two reverse mode implementations

All three code versions apply the same parallelization approach, i.e., every participating thread of the
parallel environment performs all calculations for a specific number of the considered N wave func-
tions. An equal distribution of the workload is tried to be achieved by the program logic. Nevertheless,
situations may occur where the number of threads is not a factor of N and where load balance cannot
be ensured, accordingly. By careful simulation design, this situation has been avoided. Figure 4.10 de-
picts the speedup and runtime results measured for the derivation of 24 wave functions. Considering

Figure 4.10: Speedups and runtimes for the parallel differentiation of the plasma code for N = 24 wave
functions

the achieved speedups reveals an interesting result. With exception of the thread number based variant
of the code, all derivative calculations achieved a higher speedup than the original code that they are
based on. This allows the conclusion that, carefully implemented, the derivative calculations decrease
the distracting effect of the necessary synchronization within the parallel environment. However, as can
be seen from the code version that extensively uses the omp_get_thread_num function, this gain
is by no way mandatory. Rather, the mentioned program version suffers from an unfavorable behavior
of the considered OpenMP function. This is getting much clearer from the runtime results that reveal a

90 4. CONCEPT VALIDATION

volatile evolution of the required execution time. Since the difference to the threadprivate based
code results from the usage of the omp_get_thread_num function, the cause of the perturbation is
identified.

Although investigating the evolution of speedups allows to predict the program behavior for upscaled
tasks and parallel environments, it cannot be the only criteria when rating the applied derivation tech-
nique. In terms of speedup, the best results are achieved using the tapeless forward mode. However, the
truly superior technique for the differentiation of the plasma code is revealed by the examination of the
necessary program runtimes that are depicted in the right part of Figure 4.10. For further clarification,
the runtimes of the tapeless forward variant and the threadprivate reverse variant are depicted and rated
in Table 4.4. As can be seen, the tapeless version of the code requires significant more execution time.

procs Tapeless Threadprivate Ratio
1 23816 s 3299 s 7.2
2 12050 s 1878 s 6.4
3 8193 s 1210 s 6.8
4 6138 s 905 s 6.8
6 4128 s 634 s 6.5
8 3112 s 529 s 5.9

12 2029 s 395 s 5.1
24 1077 s 271 s 4.0

Table 4.4: Runtimes of the tapeless forward and the threadprivate reverse version of the plasma code

Hence, reverse mode differentiation is to be preferred for the plasma code. This strongly corresponds to
the theoretical assumptions described in Chapter 2, i.e., reverse mode differentiation is suggested if the
number of input variables significantly exceeds the number of output variables. Even the application of
checkpointing strategies and, thus, the recalculation of function values does not change this fact. Up to
the use of 6 processors, the ratio between the two corresponding runtimes is quiet stable and then drops
for the benefit of the tapeless code.

To identify the relevant reasons for these results, more detailed information about the program behavior is
required. For this purpose, the computational effort of the simulation has been reduced once more. Only
eight particles have been computed within four iterations of the time propagation of the plasma. Fur-
thermore, relevant information describing the runtime behavior has been gathered using the performance
analyzing tool VNG.

Since automatic differentiation always computes derivatives for a given user code, understanding the
properties of this code must be the basis of the analysis of its AD-counterpart. Figure 4.11 depicts the
runtime behavior of the plasma code using a specific distribution of the wave functions that is referred
to as the original particle sequence. It is characterized by its special starting arrangement of the wave
functions that is given in terms of their peak positions.

1111 2222 3333 4444 5555 6666 7777 8888 (4.10)

Wave functions and threads are associated from left to right, i.e., thread 0 handles the wave function with
peak 1111, thread 1 handles the wave function with peak 2222 and so on. In the resulting VNG-images,
thread 0 is always denoted by Process 0. Analyzing Figure 4.11, the sectioning of the time propagation
loop into part1 and part2 is clearly visible. Furthermore, two important observations can be made.
Firstly and dedicated to the strongly reduced number of time steps, the computation of the expected
value of the particle density requires a significant fraction of the runtime. Even though its influence
will decrease as the number of time steps increases, a parallelization of the target function should be

4.2. APPLICATIONS & NUMERICAL RESULTS 91

Figure 4.11: Undifferentiated version of the plasma code - original particle sequence

Figure 4.12: Undifferentiated version of the plasma code - particle one and four swapped

Figure 4.13: Differentiated version of the plasma code based on the tapeless mode of ADOL-C

92 4. CONCEPT VALIDATION

considered. Thereby, tree-based reduction algorithms may be of interest. Secondly, an imbalance of the
work load is observable among the involved processing elements. Even though the equation set depicted
in Figure 4.6 suggest the same amount of work to be done for each wave function, the required runtime to
perform these computations is different in practice. As a result, different waiting times - orange colored
in Figure 4.11 - are required in the synchronization among all threads. These waiting times further
reduce the possible speedup and should be minimized. Accordingly, the most important question is to
determine if this behavior is algorithm or system dependent. For this purpose, a second particle sequence
has been constructed that is given in (4.11). It is derived from the original sequence by exchanging the
peak positions of the wave functions one and four.

4444 2222 3333 1111 5555 6666 7777 8888 (4.11)

By comparing the Figures 4.11 and 4.12, the influence of the position of the wave function on the com-
putational effort becomes visible. As can be seen, thread 0 (depicted by Process 0) and thread 3 not
only swapped their handled particles but also swapped the computational effort for performing the time
propagation. Hence, it can be concluded that the effort for the propagation of a specific wave function
is mainly bound to its “position” in the simulation interval rather than being bound to the distribution
onto the computer hardware. This property must be taken into account for all variants of derivative
computations based on the given plasma code.

Regarding to the speedup diagram depicted in Figure 4.10, the tapeless derivation draws the highest ben-
efit from the parallelization. It is therefore a good entry point for the analysis of the runtime behavior
of the different differentiation approaches. As for the original function, the tapeless derivation has been
performed for eight wave functions and four time steps. A corresponding visualization of the execution
created using VNG is given in Figure 4.13. Comparing to Figure 4.11, the identical basic layout of the
computation is clearly visible. However, a major difference is observable that also give reasons for the
higher speedup. This is, a much more favorable ratio between computing time (dark green) and OpenMP
synchronization time (orange) could be achieved due to additional effort introduced for the vector for-
ward mode differentiation. Here, 26 directional derivatives have been computed for every operation of
the original code that is based on the augmented data type adouble. Also clearly observable is the prop-
erty of the differentiation that the additional effort is not equally distributed. In Figure 4.13, a significant
higher ratio between the runtime of part2 and part1, i.e., ratio = TIME(part2)/TIME(part1),
is depicted compared to the original function presented in Figure 4.11. This means that more complex
computations are performed during part2, based on a higher fraction of non-linear operations. All
in all, using the tapeless vector-forward mode provided by ADOL-C, the overall program structure is
preserved but the parallelization potential is increased.

Reconsidering Figure 4.10, the results of the two reverse mode based versions of the differentiated plasma
code remain for analysis. With exception of the variable access in the parallel environment, the two
versions apply the same differentiation technique. Therefore, the lower speedup of the threadnumber-
based version cannot result from properties of the derivation. For this reason, it is not considered any
further and the version of the plasma code using threadprivate variables is analyzed in the remainder of
this subsection, exclusively.

Allowing for the advantages of a graphical representation of a programs runtime behavior, the tool VNG
has been utilized to create the illustration given in Figure 4.14. By comparing the layout of the original
function with the tapeless forward differentiation considerable differences are observable. This is, a much
higher fraction of the program is executed serially and, moreover, the parallel computations are often
interrupted by serial calculations. The impact of these sequential phases on the speedup is the higher
the shorter the parallel phases are. Improving the benefit that can be drawn from the parallelization
of the code is thus be bounded to the reduction of the serial program parts. For determining relevant
locations of the program that should be object to reduction or parallelization, a strict coloring scheme
has been applied in Figure 4.14. All program parts that are either responsible for computing function
values on standard data type or propagate derivatives are depicted dark green. Thereby, the green blocks

4.2. APPLICATIONS & NUMERICAL RESULTS 93

Figure 4.14: Threadprivate version of the differentiated plasma code – overview

at the time positions of about 5, 9, 12 and 15 seconds represent the reverse mode differentiation for
a single time step. Further, it should be noted that the time propagation based on standard data types
exhibits only subordinate impact. This is due to the quite small fraction of the overall runtime spent
with this specific task. The propagation of wave functions based on standard data types is performed
three times – three time steps at time position 2s, two time steps at time position 6s and one time step at
time position 9s. Program sections that result from the creation of internal function representations by
ADOL-C are blue colored. As discussed before, a strict retaping strategy is applied for the derivation of
the plasma code. This is visualized by the corresponding four blue phases in the propagation of the wave
functions over four time steps. The benefit of avoiding the strict retaping is thus clearly visible, knowing
that the creation of the stack of overwritten function values using an existing tape is less expensive
than computing derivatives using reverse mode AD. Although reusing tapes will significantly reduce the
overall runtime, it does not allow to increase possible program speedups. Hence, a more detailed view
on the serial program parts is required that are introduced due to the differentiation. A visualization of
one such program section is given in Figure 4.15. There, the serial computations are depicted that are

Figure 4.15: Threadprivate version of the differentiated plasma code – zoomed in

performed between the differentiation of the last time step and the reevaluation of the function from the
last checkpoint. Comparing the layout of the reverse mode calculation (left part) and the time propagation

94 4. CONCEPT VALIDATION

using the original user function (right part) reveals an interesting fact: In terms of wave functions, the
highest effort for the propagation of function values does not necessarily causes the highest effort for
the propagation of derivatives. This gets especially clear when comparing the runtime behavior of the
threads three and four with the behavior of the threads 2 and 5. Even though this is an interesting result,
it is not the key information that shall be taken from Figure 4.15. Rather, it shall be noted that the serial
program part depicted there mainly is composed of two phases, the derivative assembling (light green)
and the handling of the external function performing the differentiation of the next time step (light blue).
The two of them offer optimization potential.

Initially, the derivative assembling phase has been designed to be performed purely serial. As described
in Subsection 3.3.4, each participating thread owns a set of local derivatives that it works with throughout
the parallel region. Once the region is completed, the master thread assembles the global derivative values
by computing the sum over the corresponding local information of all threads. However, there is no need
to perform this task in serial. Rather, the threads can be advised to handle specific, distinct subsets of the
output data in parallel. An appropriate algorithm is given in Example 4.4.

EXAMPLE 4.4

double *global_der = new double[NUM]();
double *local_der[NUM_THREADS];
#pragma omp parallel
{

int myID = omp_get_thread_num();
int chunk_size = NUM / NUM_THREADS;
int chunk_start = myID * chunk_size;
int chunk_end = chunk_start + chunk_size;
local_der[myID] = new double[NUM];
< compute derivatives >
double *tmp;
for (int i = 0; i < NUM_THREADS; ++i) {

tmp = local_der[i];
for (int j = chunk_start; j < chunk_end; ++j)

global_der[j] += tmp[j];
}

}

There, it is assumed that the number of derivative values to be computed is a multiple of the number
of threads. Using this kind of algorithm, a near ideal speedup can be expected. This way, the deriva-
tive assembling phase cannot prove to be the parallelization bottleneck when increasing the number of
simulated wave functions.

Recalling the parallelization approach depicted in Figure 4.8 reveals the reason for the comparable high
computational effort for handling the external differentiated function: Before actually performing the par-
allel taping or the parallel derivation of the provided time step function, the program must pass through
two derivative contexts. The first context is given by the checkpointing algorithm itself. From within this
context a second one is entered that allows the parallelization of the code. This basically means that the
internal checkpointing functions call user wrapper functions that call the actually required work func-
tions. Accordingly, the tape internally created by the checkpointing algorithm basically only contains the
operation representing the external differentiated function. Significant effort is required to reevaluate or
differentiate the complete tape that actually does nothing more than calling the appropriate parallelized
user function. Instead of applying this strategy, the required functions can be called directly by the
checkpointing facilities, thus avoiding the extra costs resulting from the internal tape handling.

4.2. APPLICATIONS & NUMERICAL RESULTS 95

Figure 4.16 presents the visualization of the runtime behavior of a program version that implements the
parallel AD-assembling and features the reduced complexity of handling the parallelization. The most

Figure 4.16: Adjusted version of the threadprivate variant of the differentiated plasma code – overview

notable difference to Figure 4.14 is the reduction of the serial program parts interrupting the parallel
process. As for the original version of the code, a more detailed view on the change from one time step to
another was created. Figure 4.17 provides a graphical representation that depicts the same position of the
computation that has also been visualized in Figure 4.15. As can be seen, the derivative assembling phase
is now performed in parallel and the effort for handling the external function is reduced considerably.
However, the load balance during the assembling phase is not as good as expected. This cannot be

Figure 4.17: Adjusted version of the threadprivate variant of the differentiated plasma code – zoomed in

caused by the algorithm itself that essentially complies to the structure depicted in Example 4.4. Rather,
hardware effects must be considered in the search for an answer. Different runtime behaviors of a small
test program implementing the assembling algorithm are given in the Figures 4.18, 4.19 and 4.20. The
first figure marks the initial situation that is characterized by three properties of the code. Firstly, each
thread performs the same number of operations and, secondly, each thread allocates the memory for

96 4. CONCEPT VALIDATION

Figure 4.18: AD-assembling example program - all variable hold the numerical value 1.0

Figure 4.19: AD-assembling example program - increasing number of zeros in the computations

Figure 4.20: AD-assembling example program - different data placement

4.2. APPLICATIONS & NUMERICAL RESULTS 97

holding its local derivatives and the chunk of global derivatives it computes. Finally, all local derivative
values are initialized with the numerical value 1.0. The test program was compiled without optimization
to avoid disturbing changes by the compiler. As expected, providing this special scenario results in the
depicted, nearly fully balanced runtime behavior.

By investigation of the intermediate results produced by the plasma code, a significant number of zero
elements in the computed local derivatives was observable. Furthermore, different number of zero ele-
ments are produced by different threads. The second test case has been adjusted to widely reflect this
situation by partially initializing the local derivatives to zero. Thread zero encounters 7/8 zero elements,
thread one 6/8 zero elements and so on. By analyzing the runtime behavior depicted in Figure 4.19,
it becomes clear that the higher is the number of zero elements, the lower is the required runtime for
the computation. The only exception to this observation is marked by thread seven that performs all
computations on non-zero local derivatives. Due to the missing information about the underlying pro-
cessor internal optimizations, this exception cannot be further analyzed. However, it can be concluded
that the number of zero elements in the derivative assembling phase has a considerable influence on the
per-thread performance.

The optimal memory placement with respect to the algorithm and the involved threads that was applied
so far currently does not represent the layout of the original plasma code. There, memory for global
and local derivatives is allocated by the master thread. To reflect this setting, the initial version of the
test program has been adjusted such that the master thread allocates all memory and initialized it to 1.0.
Figure 4.20 depicts the runtime behavior of this new test program. As can be seen, two threads complete
their work significantly earlier than all others. With exception of thread four, the runtime spent for the
computations by all threads complies to the expectations that can be made from the properties of the test
case. Therefore, the reduced computation time of thread four must be hardware dependent. The SGI
ALTIX 4700 installed at the TU Dresden features Intel Itanium II Montecito dual core processors. Each
processor is accompanied by local memory and communication components. Globally, every processor
may access its local memory as well as the remote memory of all other processors. Fastest access is
bound to the local memory, naturally. In the considered test case of eight threads, four dual core proces-
sors are involved in the computations. All data is allocated in the local memory of the processor handling
the master thread. Due to the dual core architecture, two cores and, thus, two thread can benefit from
the faster access to the local memory. All other threads must access their data using the communica-
tion components what results in a higher effort. Hence, six of eight threads require a significant higher
runtime for performing their computations.

Taking the much higher complexity of the plasma code into account, the derivative assembling phase is
not only sensitive to the number of zero elements and the data allocation scheme but is also influenced
by the actual cache layout of the involved data. This causes the runtime layout depicted in Figure 4.17
instead of the expected behavior visualized in Figure 4.18. Nevertheless, compared to the overall differ-
entiation effort, the derivative assembling phases cover only a minor fraction of the runtime. A not fully
balanced parallel computation in these special program parts is not relevant, therefore.

In the global scheme, the scalability of the differentiated plasma code is bound to the load balance in
the program parts handling the differentiation of the code and the interruption time of these parts. The
load balance of the derivative computation was very good from the beginning, compare Figure 4.14.
Due to the code adjustments regarding the removal of the external differentiated function context, a
considerable reduction of the interruption times could be achieved (Figure 4.16). This suggests preferable
runtime results compared to the unadjusted version of the plasma code based on threadprivate variables.
To verify this assumption, the runtime measurements were repeated using the new code version. The
corresponding speedups and runtimes are presented in Figure 4.21. As can be seen, the runtime results
confirm the better scalability of the new code. This allows to perform the computation of derivatives for
the plasma code using a much higher number of processing elements without sacrificing a significant
fraction of the efficiency. It shall be noted that, once performing the number of time steps targeted

98 4. CONCEPT VALIDATION

Figure 4.21: Speedups and runtimes for the adjusted threadprivate version of the plasma code for N = 24
wave functions

originally, the parallel fraction of the code will be quite near to 100 percent. Speedup expectations for
the full simulation can be scaled up accordingly and will be near to the level called “perfect” in theory.

The results attained through the parallelization of the differentiation of the plasma code clarify that op-
erator overloading based AD is prepared to meet the challenges that are brought up by the most complex
codes applied in science and engineering. Thus, for the parallelization of derivative calculations us-
ing operator overloading AD, an answer has been found to a question that is still open for many other
applications.

99

5 Conclusions & outlook

Automatic differentiation based on operator overloading features a long history and has shown to be
highly valuable for most derivation tasks. Especially for programming languages for which AD-enabled
compilers are not available or miss a critical feature, the operator overloading based approach often
presents the only reasonable technique. However, the need to create an internal function representation
to allow reverse mode differentiation, the introduced interpretive overhead when evaluating it, and the
lower optimization level are often mentioned against its application. With the presented thesis, the author
develops new techniques in the field of operator overloading based AD that improve the usability of the
approach, reduce computational effort, and open up new application areas.

When applying operator overloading based AD, the dominating factor in terms of achievable runtime
is given by the size of the created internal function representation. Therefore, reducing the size of the
tape offers the best way of increasing the efficiency of the differentiation. Two different techniques were
developed in this thesis that, independent of each other, serve this purpose. Firstly, introducing separate
derivative contexts, the derivation procedure can be divided into subtasks. Each of these subtasks can thus
be handled optimally using an accordingly adjusted approach. Based on this technique, the black box AD
model can be displaced in favor of more sophisticated solutions that often also reduce the demands on
the user. This was demonstrated using the robot application, which serves as a representative example.

Although the exploitation of specific structures allows significant reductions in the computational effort
for many function, it is not the only technique that can be used. Independent of this approach, significant
benefit can be drawn from taking activity information of the function into account. Then, operations
only need to be represented in the tape if the propagated information influences derivative values. With
this thesis, a technique was developed that allows to benefit from an activity analysis during the tape
creation and evaluation phase, respectively. Reducing the differentiation effort this way was dedicated
to the source-to-source approach, so far. As could be verified by use of the airfoil optimization, the
state-tracking approach results in the creation of a smaller internal function representation, which can be
further evaluated with reduced effort. In this special case, a reduction could be achieved even though the
initial code was based on an already highly optimized AD-version.

The increasing complexity of the investigated functions more and more requires the application of paral-
lelization techniques. It is obvious that automatic differentiation must face this fact and provide adequate
differentiation strategies. Whereas parallelization is comparably simple if the overall computation can
be divided into independent subtasks, the challenge is to be found in applications that do not feature this
property. An appropriate technique for performing parallel reverse mode differentiation was developed
in this thesis. It has been validated using the time propagation of a 1D quantum plasma. The resulting
speedups confirm that automatic differentiation based on operator overloading can be applied in high
performance computing environments, and that high speedups and drastically reduced runtimes can be
gained.

In this thesis, all three techniques were developed and investigated as independently as possible. How-
ever, for further improvement, the combination of the approaches will be of interest in the near future.
Especially the state-tracking offers a high potential of runtime reductions when being applied to tapes
that are frequently reused. Checkpointing strategies and fixed point iterations are two examples of tasks
that directly benefit. Furthermore, most improvements done for the serial approach will most probably
increase the performance achieved by parallel derivation.

Using the newly developed techniques, operator overloading based AD may be applied to a wider range
of applications, or may be applied with higher efficiency. Independent of the considered approach,

100 5. CONCLUSIONS & OUTLOOK

the main limitation of AD utilizing the overloading facilities of programming languages is always to
be found in the size of created internal function representation. Within this context, the unrolling of
loops presents a major drawback that may result in an unfavorable runtime behavior. Hence, one of the
main challenges to be answered in the future is the development of techniques that allow a much more
compact representation of loops. This not only avoids the expensive storing of every loop iteration, but
also presents a major step towards an automatic parallel differentiation of parallelized user functions.

In this thesis, a specific subset of parallel functions has been considered for parallel AD. Utilizing the
special properties of the differentiation environment as described in Subsection 3.3.4, an algorithm was
developed that allows parallel differentiation. However, the general proof that derivatives can be com-
puted using both the reverse mode of AD and parallelization techniques is not yet found. To the opinion
of the author, significant effort must be invested to the analysis of this task. It will be important for the
acceptance of AD that parallelism in the derivative calculation cannot only be exploited as widely as
possible. Furthermore, the parallel differentiation should also be achieved with minimal user effort.

Many new challenges can be expected in the further development of automatic differentiation. Some
known limitations could be removed with this thesis. Many other questions are still unanswered and will
require additional effort to be invested in the future. Steady improvement of the technique and its tools
will allow AD to preserve its acceptance for most differentiation tasks.

101

Bibliography

[ADP01] P. Aubert, N. Di Césaré, and O. Pironneau. Automatic differentiation in C++ using expres-
sion templates and application to a flow control problem. Computing and Visualization in
Science, 3:197–208, 2001.

[AHN+96] A. Arnold, H.-C. Hoppe, W. E. Nagel, K. Solchenbach, and M. Weber. VAMPIR: Visual-
ization and Analysis of MPI Resources. Supercomputer, 12(1):69–80, 1996.

[Amd67] G. M. Amdahl. Validity of the single processor approach to achieving large scale comput-
ing capabilities. volume 30 of AFIPS conference proceedings, pages 483–485, National
Press Building, Washington, D.C. 20004, USA, 1967. Thompson Book Co. Spring joint
computer conference, Atlantic City.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[Bau74] F. L. Bauer. Computational Graphs and Rounding Error. SIAM Journal on Numerical
Analysis, 11(1):87–96, 1974.

[BBH00] C. H. Bischof, H. M. Bücker, and P. D. Hovland. On Combining Computational Differ-
entiation and Toolkits for Parallel Scientific Computing. In A. Bode, T. Ludwig, W. Karl,
and R. Wismüller, editors, Euro-Par 2000 – Parallel Processing, Proceedings of the 6th
International Euro-Par Conference, Munich, Germany, August/September 2000, volume
1900 of Lecture Notes in Computer Science, pages 86–94, Berlin, 2000. Springer.

[BBH02] H. M. Bücker, K. R. Buschelman, and P. D. Hovland. A Matrix-Matrix Multiplication
Approach to the Automatic Differentiation and Parallelization of Straight-Line Codes.
In U. Brinkschulte, K.-E. Großpietsch, C. Hochberger, and E. W. Mayr, editors, Work-
shop Proceedings of the International Conference on Architecture of Computing Systems
ARCS 2002, Germany, April 8–12, 2002, pages 203–210, Berlin, 2002. VDE Verlag.

[BCKM96] C. H. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR 2.0: Automatic Differenti-
ation of Fortran 77 Programs. IEEE Computational Science & Engineering, 3(3):18–32,
1996.

[Bel07] B. M. Bell. CppAD: A Package for C++ Algorithmic Differentiation, 2007.
http://www.coin-or.org/CppAD.

[Ben96] J. Benary. Parallelism in the Reverse Mode. In M. Berz, C. H. Bischof, G. Corliss, and
A. Griewank, editors, Computational Differentiation: Techniques, Applications, and Tools,
pages 137–147. SIAM, Philadelphia, PA, 1996.

[BFD+05] B. Bull, R. I. C. C. Francis, A. Dunn, A. McKenzie, D. J. Gilbert, and M. H. Smith.
CASAL (C++ algorithmic stock assessment laboratory) – User Manual. Technical Report
127, NIWA, Private Bag 14901, Kilbirnie, Wellington, New Zealand, 2005.

[BG05] A. Bhattacharjee and D. A. Gurnett. Introduction to Plasma Physics - With Space and Lab-
oratory Applications. Cambridge University Press, The Edinburgh Building, Cambridge,
CB2 2RU, UK, 2005.

102 Bibliography

[BGJ91] C. H. Bischof, A. Griewank, and D. Juedes. Exploiting parallelism in automatic differ-
entiation. In E. Houstis and Y. Muraoka, editors, Proceedings of the 1991 International
Conference on Supercomputing, pages 146–153. ACM Press, Baltimore, Md., 1991. Also
appeared as Preprint MCS–P204–0191, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, Argonne, Ill., January 1991.

[BGP06] R. A. Bartlett, D. M. Gay, and E. T. Phipps. Automatic Differentiation of C++ Codes for
Large-Scale Scientific Computing. In V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot,
and J. Dongarra, editors, Computational Science – ICCS 2006, volume 3994 of Lecture
Notes in Computer Science, pages 525–532, Heidelberg, 2006. Springer.

[Bis91] C. H. Bischof. Issues in Parallel Automatic Differentiation. In A. Griewank and G. F.
Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation, and
Application, pages 100–113. SIAM, Philadelphia, PA, 1991.

[BK03] C. Büskens and M. Knauer. Real-Time Trajectory Planning of the Industrial Robot IRB
6400. PAMM, 3:515–516, 2003.

[BLR+02] H. M. Bücker, B. Lang, A. Rasch, C. H. Bischof, and D. an Mey. Explicit Loop Scheduling
in OpenMP for Parallel Automatic Differentiation. In J. N. Almhana and V. C. Bhavsar,
editors, Proceedings of the 16th Annual International Symposium on High Performance
Computing Systems and Applications, Moncton, NB, Canada, June 16–19, 2002, pages
121–126, Los Alamitos, CA, 2002. IEEE Computer Society Press.

[BLSS03] H. G. Bock, D. B. Leineweber, A. Schafer, and J. P. Schloder. An Efficient Multiple Shoot-
ing Based Reduced SQP Strategy for Large-Scale Dynamic Process Optimization – Part II:
Software Aspects and Apllications. Computers and Chemical Engineering, 27(2):167–
174, 2003.

[BLV03] C. H. Bischof, B. Lang, and A. Vehreschild. Automatic Differentiation for MATLAB
Programs. Proceedings in Applied Mathematics and Mechanics, 2(1):50–53, 2003.

[BM06] M. Berz and K. Makino. COSY INFINITY Version 9.0 — Programmer’s Manual. Tech-
nical Report MSUHEP-060803, Department of Physics, Michigan State University, East
Lansing, MI 48824, USA, 2006.

[BN03] H. Brunst and W. E. Nagel. Scalable Performance Analysis of Parallel Systems: Concepts
and Experiences. In G. R. Joubert, W. E. Nagel, F. J. Peters, and W. V. Walter, editors,
PARALLEL COMPUTING: Software Technology, Algorithms, Architectures and Applica-
tions, volume 13 of Advances in Parallel Computing, pages 737–744, Dresden, Germany,
2003. Elsevier.

[BNM03] H. Brunst, W. E. Nagel, and A. D. Malony. A Distributed Performance Analysis Architec-
ture for Clusters. In IEEE International Conference on Cluster Computing, Cluster 2003,
pages 73–81, Hong Kong, China, dec 2003. IEEE Computer Society.

[BRM97] C. H. Bischof, L. Roh, and A. Mauer. ADIC — An Extensible Automatic Differentiation
Tool for ANSI-C. Software–Practice and Experience, 27(12):1427–1456, 1997.

[BRV06] H. M. BÃ1
4cker, A. Rasch, and A. Vehreschild. Automatic Generation of Parallel Code for

Hessian Computations. Preprint of the Institute for Scientific Computing RWTH-CS-SC-
06-01, 2006.

[BS96] C. Bendtsen and O. Stauning. FADBAD, a Flexible C++ Package for Automatic Differen-
tiation. Technical Report IMM–REP–1996–17, Department of Mathematical Modelling,
Technical University of Denmark, Lyngby, Denmark, 1996.

Bibliography 103

[Chr94] B. Christianson. Reverse Accumulation and Attractive Fixed Points. Optimization Meth-
ods and Software, 3:311–326, 1994.

[CLGM96] D. Conforti, L. De Luca, L. Grandinetti, and R. Musmanno. A parallel implementation of
automatic differentiation for partially separable functions using PVM. Parallel Computing,
22(5):643–656, 1996.

[CNR03] M. Cohen, U. Naumann, and J. Riehme. Towards Differentiation-Enabled Fortran 95
Compiler Technology. In Proceedings of the 18th ACM Symposium on Applied Computing,
Melbourne, Florida, USA, March 9–12, 2003, pages 143–147, 2003.

[DFF+03] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White, editors.
Sourcebook of Parallel Computing. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003.

[DGMS94] J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. The PVM concurrent com-
puting system: evolution, experiences, and trends. Parallel Computing, 20(4):531–545,
1994.

[DM98] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for Shared-Memory Pro-
gramming. IEEE Computational Science and Engineering, 05(1):46–55, 1998.

[FD99a] C. Faure and P. Dutto. Extension of Odyssée to the MPI library - Direct mode. Rapport de
recherche 3715, INRIA, Sophia Antipolis, jun 1999.

[FD99b] C. Faure and P. Dutto. Extension of Odyssée to the MPI library - Reverse mode. Rapport
de recherche 3774, INRIA, Sophia Antipolis, oct 1999.

[For06] S. A. Forth. An Efficient Overloaded Implementation of Forward Mode Automatic Dif-
ferentiation in MATLAB. ACM Transactions on Mathematical Software, 32(2):195–222,
2006.

[Gay05] D. M. Gay. Semiautomatic Differentiation for Efficient Gradient Computations. In
M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors, Automatic Dif-
ferentiation: Applications, Theory, and Implementations, volume 50 of Lecture Notes in
Computational Science and Engineering, pages 147–158. Springer, 2005.

[GGKK03] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel Computing.
Pearson Education Limited, Harlow, Essex CM20 2JE, 2. edition, 2003.

[GJU96] A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C: A Package for the Auto-
matic Differentiation of Algorithms Written in C/C++. ACM Transactions on Mathemati-
cal Software, 22(2):131–167, 1996.

[GK06] R. Giering and T. Kaminski. Automatic Sparsity Detection Implemented as a Source-
to-Source Transformation. In V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and
J. Dongarra, editors, Computational Science – ICCS 2006, volume 3994 of Lecture Notes
in Computer Science, pages 591–598, Heidelberg, 2006. Springer.

[GKS05] R. Giering, T. Kaminski, and T. Slawig. Generating Efficient Derivative Code with TAF:
Adjoint and Tangent Linear Euler Flow Around an Airfoil. Future Generation Computer
Systems, 21(8):1345–1355, 2005.

[GMWW07] N. R. Gauger, C. Moldenhauer, A. Walther, and M. Widhalm. Automatic Differentiation of
an Entire Design Chain for Aerodynamic Shape Optimization. Notes on Numerical Fluid
Mechanics and Multidisciplinary Design. Springer, 2007. To appear in Vol. 96.

104 Bibliography

[GR03] S. Gorlatch and F. A. Rabhi, editors. Patterns and Skeletons for Parallel and Distributed
Computing. Springer, London, UK, 2003.

[Gri92] A. Griewank. Achieving Logarithmic Growth of Temporal and Spatial Complexity in
Reverse Automatic Differentiation. Optimization Methods and Software, 1:35–54, 1992.

[Gri00] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differen-
tiation. Number 19 in Frontiers in Applied Mathematics. SIAM, Philadelphia, PA, 2000.

[Gür06] N. Gürtler. Simulation eines eindimensionalen idealen Quantenplasmas auf Parallelrech-
nern, 2006. Diploma thesis in physics, Rheinisch-Westfälische Technische Hochschule
(RWTH) Aachen, Germany.

[Gür07] N. Gürtler. Parallel Automatic Differentiation of a Quantum Plasma Code, 2007. Diploma
thesis in computer science, Rheinisch-Westfälische Technische Hochschule (RWTH)
Aachen, Germany.

[GW00] A. Griewank and A. Walther. Algorithm 799: Revolve: An Implementation of Checkpoint
for the Reverse or Adjoint Mode of Computational Differentiation. ACM Transactions on
Mathematical Software, 26(1):19–45, mar 2000. Also appeared as Technical University of
Dresden, Technical Report IOKOMO-04-1997.

[GW03] R. Griesse and A. Walther. Parametric Sensitivities for Optimal Control Problems using
Automatic Differentiation. Optimal Control Applications and Methods, 24(6):297–314,
2003.

[HB98] P. D. Hovland and C. H. Bischof. Automatic Differentiation of Message-Passing Parallel
Programs. In Proceedings of the First Merged International Parallel Processing Sympo-
sium and Symposium on Parallel and Distributed Processing, pages 98–104, Los Alamitos,
CA, 1998. IEEE Computer Society Press.

[Hem94] R. Hempel. The MPI Standard for Message Passing. In W. Gentzsch and U. Harms, editors,
High–Performance Computing and Networking, InternationalConference and Exhibition,
Proceedings, Volume II: Networking and Tools, volume 797 of Lecture notes in computer
science, pages 247–252. Springer, 1994.

[HGP05] L. Hascoët, R.-M. Greborio, and V. Pascual. Computing Adjoints by Automatic Differen-
tiation with TAPENADE. In B. Sportisse and F.-X. Le Dimet, editors, École INRIA-CEA-
EDF “Problèmes non-linéaires appliqués”. Springer, 2005.

[HHG05] P. Heimbach, C. Hill, and R. Giering. An efficient exact adjoint of the parallel MIT general
circulation model, generated via automatic differentiation. Future Generation Computer
Systems, 21(8):1356–1371, 2005.

[HKL+05] F. P. Hart, N. Kriplani, S. R. Luniya, C. E. Christoffersen, and M. B. Steer. Streamlined
Circuit Device Model Development with fREEDA R© and ADOL-C. In H. M. Bücker,
G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors, Automatic Differentiation:
Applications, Theory, and Implementations, Lecture Notes in Computational Science and
Engineering, pages 295–307. Springer, 2005.

[HM00] P. D. Hovland and L. C. McInnes. Parallel Simulation of Compressible Flow Using Auto-
matic Differentiation and PETSc. Technical Report ANL/MCS-P796-0200, Mathematics
and Computer Science Division, Argonne National Laboratory, 2000. To appear in a spe-
cial issue of Parallel Computing on “Parallel Computing in Aerospace”.

Bibliography 105

[HNP05] L. Hascoët, U. Naumann, and V. Pascual. “To Be Recorded” Analysis in Reverse-Mode
Automatic Differentiation. Future Generation Computer Systems, 21(8), 2005.

[HNRS99] P. D. Hovland, B. Norris, L. Roh, and B. F. Smith. Developing a Derivative-Enhanced
Object-Oriented Toolkit for Scientific Computations. In Proceedings of the SIAM Work-
shop on Object Oriented Methods for Inter-operable Scientific and Engineering Comput-
ing, pages 129–137, Philadelphia, PA, 1999. SIAM.

[Hov97] P. D. Hovland. Automatic differentiation of parallel programs. PhD thesis, 1997. Advisers:
M. T. Heath and C. H. Bischof.

[HW99] R. Hempel and D. W. Walker. The Emergence of the MPI Message Passing Standard for
Parallel Computing. Computer Standards & Interfaces, 21:51–62, 1999.

[Ins85] The Institute of Electrical and Electronics Engineers, Inc, 345 East 47th Street, New York,
NY 10017, USA. IEEE Standard for Binary Floating-Point Arithmetic, 1985.

[JG90] J. Juedes and A. Griewank. Implementing Automatic Differentiation Efficiently. Tech-
nical Memorandum ANL/MCS–TM–140, Mathematics and Computer Sciences Division,
Argonne National Laboratory, Argonne, Ill., 1990.

[KF06] R. V. Kharche and S. A. Forth. Source Transformation for MATLAB Automatic Differen-
tiation. In V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, editors,
Computational Science – ICCS 2006, volume 3994 of Lecture Notes in Computer Science,
pages 558–565, Heidelberg, 2006. Springer.

[KRE+06] B. Kreaseck, L. Ramos, S. Easterday, M. Strout, and P. Hovland. Hybrid Static/Dynamic
Activity Analysis. In V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra,
editors, Computational Science – ICCS 2006, volume 3994 of Lecture Notes in Computer
Science, pages 582–590, Heidelberg, 2006. Springer.

[Kub98] K. Kubota. A Fortran77 Preprocessor for Reverse Mode Automatic Differentiation with
Recursive Checkpointing. Optimization Methods and Software, 10(2):315–335, 1998.

[KW06] A. Kowarz and A. Walther. Optimal Checkpointing for Time-Stepping Procedures in
ADOL-C. In V. N. Alexandrov, G. Dick van Albada, P. M. A. Sloot, and J. Dongarra,
editors, Computational Science – ICCS 2006, volume 3994 of Lecture Notes in Computer
Science, pages 541–549, Heidelberg, 2006. Springer.

[KW07] A. Kowarz and A. Walther. Efficient Calculation of Sensitivities for Optimization Prob-
lems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization,
27:119–134, 2007.

[Man02] M. Mancini. A Parallel Hierarchical Approach for Automatic Differentiation. In
G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors, Automatic Dif-
ferentiation of Algorithms: From Simulation to Optimization, Computer and Information
Science, chapter 27, pages 231–236. Springer, New York, NY, 2002.

[Mat06] The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098. Getting Started with
MATLAB Verison 7, 2006. http://www.mathworks.com.

[Nau02] U. Naumann. Elimination Techniques for Cheap Jacobians. In G. Corliss, C. Faure,
A. Griewank, L. Hascoët, and U. Naumann, editors, Automatic Differentiation of Algo-
rithms: From Simulation to Optimization, Computer and Information Science, chapter 29,
pages 247–253. Springer, New York, NY, 2002.

106 Bibliography

[Nau04] U. Naumann. Optimal Accumulation of Jacobian Matrices by Elimination Methods on the
Dual Computational Graph. Mathematical Programming, Ser. A, 99(3):399–421, 2004.

[PH05] V. Pascual and L. Hascoët. Extension of TAPENADE toward Fortran 95. In M. Bücker,
G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors, Automatic Differentiation:
Applications, Theory, and Implementations, Lecture Notes in Computational Science and
Engineering. Springer, 2005.

[SH06] M. Strout and P. Hovland. Linearity Analysis for Automatic Differentiation. In V. N.
Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, editors, Computational
Science – ICCS 2006, volume 3994 of Lecture Notes in Computer Science, pages 574–581,
Heidelberg, 2006. Springer.

[SKH06] M. Strout, B. Kreaseck, and P. Hovland. Data-Flow Analysis for MPI Programs. Interna-
tional Conference on Parallel Processing (ICPP), 0:175–184, 2006.

[SPF00] S. Stamatiadis, R. Prosmiti, and S. C. Farantos. AUTO_DERIV: Tool for automatic differ-
entiation of a FORTRAN code. Computer Physics Communications, 127(2&3):343–355,
2000. Catalog number: ADLS.

[SW89] D. F. Stubbs and N. W. Webre. Data structures with abstract data types and Pascal.
Brooks/Cole Publ. Co., Pacific Grove, CA, 2. edition, 1989.

[SWGH06] S. Schlenkrich, A. Walther, N. R. Gauger, and R. Heinrich. Differentiating Fixed Point It-
erations with ADOL-C: Gradient Calculation for Fluid Dynamics. Technical report, Tech-
nische Universität Dresden, Dresden 01062, Germany, 2006.

[TFP03] M. Tadjouddine, S. A. Forth, and J. D. Pryce. Hierarchical Automatic Differentiation by
Vertex Elimination and Source Transformation. In V. Kumar, M. L. Gavrilova, C. J. K. Tan,
and P. L’Ecuyer, editors, Computational Science and Its Applications – ICCSA 2003, Pro-
ceedings of the International Conference on Computational Science and its Applications,
Montreal, Canada, May 18–21, 2003. Part II, volume 2668 of Lecture Notes in Computer
Science, pages 115–124, Berlin, 2003. Springer.

[TFPR01] M. Tadjouddine, S. A. Forth, J. D. Pryce, and J. K. Reid. On the Imple-
mentation of AD using Elimination Methods via Source Transformation: Deriva-
tive Code Generation. Technical Report AMOR Report No 2001/4, Cran-
field University (RMCS Shrivenham), Swindon SN6 8LA, UK, 2001. online at
www.rmcs.cranfield.ac.uk/esd/amor/filestore/mt_amor0104.pdf.

[Utk04] J. Utke. OpenAD: Algorithm Implementation User Guide. Technical Memorandum
ANL/MCS–TM–274, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, Ill., 2004.

[VGK04] M. Voßbeck, R. Giering, and T. Kaminski. Towards a tool for forward and reverse mode
source to source transformation in C++, 2004.

[Wal99] Andrea Walther. Program Reversal Schedules for Single- and Multi-processor Machines.
PhD thesis, Institute of Scientific Computing, Technical University Dresden, Germany,
1999.

[WG04] A. Walther and A. Griewank. Advantages of binomial checkpointing for memory-reduces
adjoint calculations. In M. Feistauer, V. Dolejsi, P. Knobloch, and K. Najzar, editors,
Numerical mathematics and advanced applications, Proceedings ENUMATH 2003, pages
834–843. Springer, 2004.

107

Acknowledgments

I would like to express my gratitude to all those who supported my work on this thesis. First of all, I
would like to thank my supervising tutors Prof. Andrea Walther and Prof. Wolfgang E. Nagel for many
fruitful discussions, suggestions and encouragement. Special thanks to Andrea Walther for helping me
putting this thesis into shape. Furthermore, I would like to thank the German Research Foundation
(DFG) for the financial support within the project “Effiziente Berechnung von Adjungierten für kom-
plexe, C/C++-basierte Programmpakete”.

Moreover I would like to thank the Center for Information Services and High Performance Computing
(ZIH), Technische Universität Dresden for providing the computational environment for the expensive
numerical simulations and tests. Especially, I am indebted to the administrators Michael Kluge and
Guido Juckeland for the technical support. For cooperation on the numerical examples, especially for
providing the source codes, I am grateful to the German Aerospace Center (DLR) and the Rheinisch-
Westfälische Technische Hochschule Aachen. Special thanks belong to Niels Gürtler, who kept track of
the physical background of the plasma simulation and cooperated on the parallelization of the code. Fur-
thermore, I wish to thank my colleagues at the Institute of Scientific Computing, Technische Universität
Dresden for providing the stimulating working atmosphere.

Moreover, I am grateful to my parents for moral encouragement, especially in the final phase of the work.
Last but not least, I wish to thank the members of the Pillnitzer Reiterhof for guiding the scientist back
to reality whenever necessary or appropriate.

