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Zusammenfassung

Das zentrale in dieser Arbeit behandelte Problem ist die automatische Bestimmung

der Abbildungsbedingungen im Elektronenmikroskop mit hoher Genauigkeit. Dies

ermöglicht die Rekonstruktion der Objektwelle, die direkte strukturelle Information

über die Probe enthält, aus einem Satz von Aufnahmen mit unterschiedlichen Ab-

bildungsfehlern.

Nach einem Überblick über die der Bildentstehung und Objektwellenrekonstruk-

tion zugrundeliegenden Theorie, wird der letzte Schritt in der Bildentstehung, d.h.

die Aufzeichnung des Bildes mit einer CCD-Kamera, genauer betrachtet. Frühere

Beschreibungen dieser Kameras beruhten oft auf der unbegründeten Annahme, daß

die Modulationstransferfunktion (MTF) auch die raumfrequenzabhängige Dämpfung

des Schrotrauschens der Elektronen korrekt beschreibt. Es wird daher eine neue

Theorie vorgestellt, die zwischen der Übertragung von Signal und Rauschen unter-

scheidet. Sie ermöglicht die Berechnung beider Eigenschaften mit Hilfe eines detail-

lierten Monte-Carlo Simulationsmodells für die Streuung von Elektronen und Photo-

nen im Szintillator der Kamera. Desweiteren werden Methoden zur genauen experi-

mentellen Bestimmung der für Signal und Rauschen gültigen Übertragungsfunktionen

vorgestellt. In Übereinstimmung mit den Monte-Carlo Simulationen zeigen Meßergeb-

nisse für kommerzielle CCD-Kameras, daß die Signalübertragung deutlich schlechter

ist als die des Rauschens.

Anschließend werden, nach einer Darstellung bekannter Methoden zur Aberra-

tionsbestimmung, neue Verfahren vorgestellt, um einerseits die Bildfehlerdifferen-

zen in einem Satz von Aufnahmen und andererseits den absoluten Wert der sym-

metrischen Aberrationskoeffizienten aus der rekonstruierten Bildwelle zu bestimmen.
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Bei beiden Verfahren wird lediglich die Phaseninformation im Frequenzraum genutzt,

so daß alle Fourierkomponenten mit einer von ihrer Stärke unabhängigen Gewichtung

in das Ergebnis eingehen. Dadurch ist die neue Methode im Gegensatz zu bekannten

Verfahren wie automatischer Diffraktogrammanalyse auch für Proben anwendbar, die

weitgehend kristallin sind und nur wenig amorphe Kontamination zeigen. Die Meth-

ode wird im weiteren auf die Bestimmung der asymmetrischen Aberrationen mittels

kombinierter Strahlverkippungs- und Fokus-Serien ausgeweitet.

Die Anwendbarkeit der neuen Methode wird anhand von Objektwellenrekonstruk-

tionen aus Kipp- und Fokus-Serien für Proben von komplexen anorganischen Oxyden

sowie Proben von mit eindimensionalen anorganischen Kristallen gefüllten Kohlen-

stoff Nanoröhrchen demonstriert. Die letzteren Proben ermöglichten dabei erstmals

einen direkten Vergleich der Phasenschiebung in der rekonstruierten Objektwelle einer

Probe von exakt bekannter Dicke mit dem durch Simulationen vorhergesagten Wert.

Ein praktisches Problem für die Anwendung der neuen Aberrationsbestimmungs-

methode zur Korrektur der Bildfehler oder sogar zur Rekonstruktion der Objek-

twelle in Echtzeit ist die langsame Kommunikation heutiger Mikroskope mit externen

Computern. Zur Abhilfe wurde im Rahmen dieser Arbeit DigiTEM entwickelt: ein

Microcontroller-Interface, das direkt in den digitalen Bus von dem im Mikroskop

eingebauten Microcomputer zu den für die Einstellung der Spulenströme zuständigen

Digital/Analog-Wandlern eingreift. Dies ermöglicht einem externen Computer, teil-

weise oder vollständig die Kontrolle über das Mikroskop zu übernehmen. Außerdem

wird der Computer in Echtzeit über alle Justierungen informiert, die der Anwender

am Mikroskop vornimmt.

Im abschließenden Ausblick wird diskutiert, wie die in dieser Arbeit beschriebenen

Entwicklungen zu einem System zur Rekonstruktion, Fehlerkorrektur und Anzeige der

Objektwelle in Echtzeit erweitert werden könnten.



Abstract

The main problem addressed by this dissertation is the accurate and automated

determination of electron microscope imaging conditions. This enables the restoration

of the object wave, which confers direct structural information about the specimen,

from sets of differently aberrated images.

Following a review of the theory of image formation and object wave restoration,

the last step in image formation, i.e. the recording of the image with a CCD camera,

is discussed in more detail. Previous characterisations of these cameras often relied

on the unjustified assumption that the Modulation Transfer Function (MTF) also

correctly describes the spatial frequency dependent attenuation of the electron shot

noise. A new theory is therefore presented that distinguishes between signal and noise

transfer. This facilitates the evaluation of both properties using a detailed Monte-

Carlo simulation model for the electron and photon scattering in the scintillator of the

camera. Furthermore, methods for the accurate experimental determination of the

signal and noise transfer functions are presented. In agreement with the Monte-Carlo

simulations, experimental results for commercially available CCD cameras show that

the signal transfer is significantly poorer than the noise transfer.

Following an account of existing methods of aberration determination in high-

resolution TEM, new methods for determining the relative aberrations in a set of

images and the absolute symmetric aberrations in the restored wave are presented.

Both are based on the analysis of the phase information in the Fourier domain and give

each Fourier component a weight independent of its strength. This makes the method

suitable even for largely crystalline samples with little amorphous contamination,
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where conventional methods, such as automated diffractogram fitting, usually fail.

The method is then extended to also cover the antisymmetric aberrations, using

combined beam tilt and focal series.

The applicability of the new method is demonstrated with object wave restorations

from tilt and focal series of complex inorganic block oxides and of carbon nanotubes

filled with one-dimensional inorganic crystals. The latter specimens allowed for the

first time a direct comparison between the phase shift in the restored object wave of

a specimen with precisely known thickness and the value predicted by simulations.

A practical problem for the application of the new aberration determination

method for the correction of aberration or even restoration of the object wave in

real time is the slow communication of present generation microscopes with exter-

nal computers. As part of this project, DigiTEM, a microcontroller interface that

directly connects into the digital bus from the built-in microscope computer to the

digital/analogue converters that control the coil currents, has been developed to al-

leviate this problem.

In the concluding chapter, the prospective applicability of the methods developed

in this work to a system that allows the real-time restoration, aberration correction

and display of the object wave is discussed.
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Introduction

Atomic resolution is now routinely achieved in electron microscopy (Smith, 1997).

However, the contrast observed in a single electron micrograph, which is in fact an

interference pattern formed by the superposition of the beams diffracted from the

sample, is difficult to interpret. This is firstly due to the very large aberrations

of electron lenses compared to optical lenses. A particular limiting factor is the

spherical aberration which cannot be avoided for round lenses with static fields that

have no charges in the beam path (Scherzer, 1936). This causes contrast reversals for

image detail finer than the point resolution. Recently, a corrector for this spherical

aberration based on hexapole lenses has successfully been implemented (Haider et al.,

1998; Urban et al., 1999), however, this corrector is still very expensive and difficult

to use. The direct interpretation of high resolution images is furthermore impeded

by the fact that the image intensity records solely the modulus squared |Ψ|2 of the

aberrated electron wave (image wave) and the phase information in the image wave is

lost. Due to this missing information, it is not possible to correct this single image for

the degrading effects of the lens aberrations and recover the full specimen information.

This phase problem can be solved in various ways. Gabor (1948) suggested recording

an interference pattern between the image wave and a reference wave that is coherent

with the image wave. As a phase shift in the object wave leads to a shift of the

interference fringes, the thus recorded hologram contains the full amplitude and phase

information of the image wave, and the object wave can reconstructed by light-optical

means, as in light optics, correctors for any lens aberration are readily available.

Gabor’s original idea of electron holography has taken a long route to fruition,
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mainly because electron sources were, for a long time, not sufficiently coherent to

produce good interference patterns. Only in the last two decades has electron holog-

raphy begun to be established as a useful technique for measuring, for instance, the

phase shift due to magnetic fields (Tonomura, 1992) or for restoring the object wave

at atomic resolution (Lichte, 1991; Orchowski et al., 1995; Lehmann et al., 1999).

Another solution to the phase problem is ‘ptychography’, where a focused conver-

gent probe is scanned across the specimen and the interference between overlapping

disks in the diffraction pattern is used to derive the relative phases of the diffracted

beams (Rodenburg and Bates, 1992; Nellist et al., 1995).

The most straightforward way to solve the phase problem in imaging mode, how-

ever, is to combine the complementary information available in images taken at differ-

ent imaging conditions to yield a restored wave as it exited from the specimen. This

was first suggested for series of images at different foci in 1968 by Schiske (1968), but

computing technology has only recently improved to a level where the fast restora-

tion of the object wave from these image series is possible. Subsequent improvements

described in more detail in section 1.6 of this thesis led to successful restorations from

both focal series and tilt-azimuth series (Kirkland et al., 1997).

However, the successful object wave restoration from a series of images requires

that the aberrations in each of the contributing images are known accurately. This is

because firstly, the starting conditions at which the first image is taken are generally

unknown and secondly because the actual changes in imaging conditions often do not

accurately reflect the expected ones due to drift or hysteresis in the lens or deflector

coils.

Furthermore, the whole process of image formation needs to be characterised ac-

curately, especially if quantitative information is to be extracted from the restoration.

Finally, the method will only find widespread use in practice if both the acquisition

and restoration are fully automated, with the ultimate goal being the real-time display

of the fully corrected restored wavefunction.

In this dissertation some mileage towards this goal is covered, especially in the
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formulation of a new technique for aberration determination that can be robustly

automated and works reliably for nearly arbitrary specimens. Aided by the ever

increasing computing power available at reasonable cost and the progress made in

image detection devices, this means that the realisation of real time object wave

restoration is probably only a few years away.

The dissertation is organised as follows. Chapter 1 gives an overview of the the-

ory of image formation and object wave restoration from sets of images. Most of

this theory has been understood for a long time, starting with the work of (Glaser,

1943) and (Scherzer, 1949) who were the first to treat the imaging process within a

wave optic framework. The last step of the image formation chain, i.e. the actual

recording of the image with a CCD-camera (or other electron detector) was found to

be less well described in the literature, as most authors based their measurements on

the unjustified assumption that shot noise and information in the image are equally

affected by the Modulation Transfer Function (MTF) of the camera. Therefore, ex-

tensive work on the characterisation of CCD cameras was carried out, leading to a

theoretical description that introduces a separate Noise Transfer Function (NTF) and

allows the calculation of both, and thereby the spatial frequency dependent Detection

Quantum Efficiency (DQE) from a Monte-Carlo model of the electron and photon

scattering in the scintillator of the camera. This is summarised in chapter 2.

In chapter 3, established methods for aberration determination are reviewed, in

particular diffractogram-based methods and the Tilt Induced Displacement method.

A new method for accurate automated determination of the symmetric aberrations

based on the analysis of phase information in the image Fourier transforms is pre-

sented in chapter 4 and additionally extended to cover the antisymmetric aberrations

in chapter 5.

This new method for automated object wave restoration is demonstrated in chap-

ter 6 with specimens including complex block oxides and carbon nanotubes filled with

inorganic nano-crystals.

A practical problem that needs to be addressed when the determined aberrations
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are to be corrected in real time on the microscope is the communication between

the microscope and an external computer. The manufacturer of most of our micro-

scopes (JEOL) has made provisions for this in form of a serial port to the microscope

computer by which an external computer can issue commands to the microscope.

However, communication via this port is very slow, with a maximum of about 10

commands per second. Furthermore, the communication is simplex and the exter-

nal computer gets no notification when the operator has changed any microscope

settings. A solution, presented in chapter 7, involves a small microcontroller based

circuit board, called DigiTEM, which has been developed and programmed.

Finally, conclusions are drawn and suggestions for further work are given in chap-

ter 8.



Chapter 1

Theory of image formation and

wavefront restoration

1.1 The wave aberration function

In an ideal lens, a point object at position (x, y) in the object plane leads to a

spherical wavefront in the diffraction plane, contracting to the image point in the

image plane. However, all real lenses and in particular electron lenses however suffer

from aberrations causing deviations from this ideal spherical wavefront hence reducing

the sharpness of the point object image much more severely than the diffraction limit

alone. The wave aberration function, W (x, y, u, v) describes the distance between

the ideal and the actual wavefront in the diffraction plane as a function of both the

position (x, y) of the point object in the image plane and of the scattering angle (u, v),

i.e. the position in the diffraction plane. At high resolution, only a very small part of

the specimen is in the field of view, hence the dependence of W on (x, y) is small and

usually neglected (isoplanatic approximation). The notation in this chapter follows

that given by Typke and Dierksen (1995), where a more detailed account of wave

aberrations can be found.

The wave aberration function can be expanded as a power series in x, y, u and

v about the origin of zero scattering angle. For this purpose it is convenient to

5
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Aberrat- Order Order Azimuthal
ion in ω in w symmetry Name and description
A0 1 0 1 Image shift
A1 2 0 2 Two-fold astigmatism
C1 2 0 ∞ Defocus, overfocus positive
A2 3 0 3 Three-fold astigmatism
B2 3 0 1 Axial coma
A3 4 0 4 Four-fold astigmatism
B3 4 0 2 Axial star aberration
C3 4 0 ∞ Spherical aberration
B31 3 1 1 Seidelian coma
A0c 1 0 1 Dispersion a

C1c 2 0 ∞ Chromatic aberration b

A11c 1 1 1 Chromatic magnification change

aChange of image displacement with electron energy.
bChange of focus with electron energy.

Table 1.1: The aberration coefficients used in equation 1.1.

describe the scattering angle with a complex variable1 ω = (u + iv) and the object

plane position with a complex variable w. Table 1.1 gives a comprehensive list of the

aberration coefficients important for high-resolution electron microscopy.2 In terms

of these coefficients, the expanded wave aberration function, Wc(ω) is given as:

1It is worth noting that this is not a power series in ω in the sense of complex analysis, as it
contains terms in ω∗ as well as terms in ω. The main advantage of the complex notation is that
it allows a simple transition between cartesian and polar form and that each aberration coefficient
uniquely corresponds to a particular order in ω and a particular azimuthal symmetry.

2The seemingly counter-intuitive notation (e.g. C1 for a second order term in W (ω)) stems
from the ray-optical theory of Seidel aberrations, which are described in terms of displacements of
ray-path intersections with the image plane as a function of (x, y) and (u, v). These displacements
are proportional to the gradient of the wave aberration function, hence an nth order Seidel aberration
will correspond to a term of order n + 1 in the wave aberration function.
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Wc(ω) = <
{
A0ω

∗ +
1

2
A1ω

∗2 +
1

2
C1ω

∗ω

+
1

3
A2ω

∗3 +
1

3
B2ω

∗2ω

+
1

4
A3ω

∗4 +
1

4
B3ω

∗3ω +
1

4
C3ω

∗2ω2 +
1

3
B31ω

∗2ωw

+
[
A0cω

∗ +
1

2
C1cω

∗ω + A11cω
∗w
]∆E
E0

}
. (1.1)

The terms in the last line of this equation are chromatic aberrations as they

depend on the variation ∆E of the electron energy E0. Terms with even order in

ω are referred to as ‘even’ or ‘symmetric’ aberrations, and the coefficients of the

odd order terms are called ‘odd’ or ‘antisymmetric’ aberrations. The spherical and

chromatic aberrations are sometimes referred to as “unavoidable aberrations” since,

according to the Scherzer theorem (Scherzer, 1936), their coefficients3 C3 and C1c are

always positive for round lenses with static fields and no charges in the beam path.

The defocus C1, adjusted by changing the objective lens current, is a free parameter

that can be used to control the transfer of object information.

All the other aberrations listed in table 1.1 are due to lens imperfections and

would not appear in a perfect round lens. They can be corrected by aligning the

instrument using stigmators and beam deflectors. The importance of these aberra-

tions generally decreases with increasing order in k, and the high-order aberrations

are only important for the highest resolutions. The effect of the two-fold astigmatism

A2 is a directional dependence of the focal length with maximum and minimum focal

lengths reached along the two orthogonal principal axes of the two-fold astigmatism.

This aberration can be corrected by a rotatable magnetic quadrupole field, which is

realised by two stationary quadrupoles at a mutual angle of 45◦. The importance

of the axial coma B2 was first realised by Zemlin et al. (1978), and as discussed

in section 1.2, axial coma can be avoided by a suitable choice of the illumination

direction. The effect of the three-fold astigmatism went unnoticed until the early

3Often, the alternative notations Cs = C3 and Cc = C1c are used for the spherical and chromatic
aberration coefficients.
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1990s, (Krivanek and Leber, 1993; Saxton et al., 1994; Chand, 1997), when it was

shown to lead to serious image degradations at resolutions approaching 0.1 nm. The

three-fold astigmatism can be corrected using the standard quadrupole stigmators,

provided they are re-wired to provide independent control of the current to each pole

(Overwijk et al., 1997).

The presence of the fourth order aberrations A3 and B3 has never been observed,

hence they are ignored in the further discussion. In addition, I will concentrate on

the non-chromatic isoplanatic aberrations, using a simplified form of the W (ω):

W (ω) = <
{
A0ω

∗ +
1

2
A1ω

∗2 +
1

2
C1ω

∗ω

+
1

3
A2ω

∗3 +
1

3
B2ω

∗2ω

+
1

4
C3ω

∗2ω2
}
. (1.2)

In polar notation, with ω = keiφ, An = |An|eiαn and Bn = |Bn|eiβn , this is

expressed as

W (k, φ) =|A0| k cos(φ− α0)

+
1

2
|A1| k2 cos 2(φ− α1) +

1

2
C1k

2

+
1

3
|A2| k3 cos 3(φ− α3) +

1

3
|B2| k3 cos(φ− β2)

+
1

4
C3k

4 ,

(1.3)

which makes the azimuthal dependence of the various aberration terms more obvious.

For the restoration of the object wave from a tilt or focal series of images, an

accurate knowledge of the aberration coefficients is paramount. Table 1.2 lists the

necessary accuracies for a range of target resolutions, based on the criterion that the

maximum RMS wave aberration due to each of the aberrations is less than λ/16, cor-

responding to a phase shift by π/8 for frequencies lower than the target resolution.

For symmetric aberrations this leads to a transfer of sin2 π/8 = 14% of the object
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Resolution Accuracy
kmax dmin A1, C1 A2, B2 A3, B3, C3 Tilt

[nm−1] [nm] [nm] [nm] [µm] [µrad]
11 0.09 0.5 35 2.1 21
10 0.1 0.6 47 3.1 27
9 0.11 0.8 64 4.8 38
8 0.125 1.0 92 7.6 54
7 0.14 1.3 137 13 80

Table 1.2: Accuracy to which the aberration coefficients need to be determined such
that each of them causes a maximum RMS wave aberration of less than λ/16, i.e. a
phase change of less than π/8 within the target resolution. The values are calculated
for an accelerating voltage of 300kV (λ ≈ 2pm). The necessary accuracy for the beam
tilt τ is calculated from that for B2 using ∆τ = ∆B2/(3C3) with C3 = 0.57mm.

power of a pure weak phase object into the amplitude image, whereas for antisym-

metric aberrations such a phase shift leads to a lateral contrast displacement by at

most dmin/8.

It should be noted that in practice the accuracy requirement for C3 is less than

listed in the table as the residual phase shift due to the an error in C3 is partially

compensated by a bias in the determined value of C1 (Steinecker and Mader, 2000).

This implies that the maximum deviation of the wave aberration function for 0 ≤
k ≤ kmax can be reduced by a factor of 3− 2

√
2 = 17.2%,4 which means that for C3,

an accuracy five times poorer than that listed in table 1.2 is sufficient, provided that

C1 is determined such that the maximum phase shift due to the residual aberrations

in the range of used spatial frequencies is minimized.

4 For ∆C1 = 0 the maximum error in the wave aberration due to ∆C3 alone is ∆γ =

π/2 ∆C3λ
3k4

max. For ∆C1 < 0, the residual wave aberration function ∆γ(k) has a minimum

at k1 =
√
−∆C1/∆C3/λ, and choosing ∆C1 = (1 −

√
2)λ2k2

max∆C3 yields ∆γ = −∆γ(k1) =

∆γ(kmax) = π/2 (3− 2
√

2)∆C3λ
3k4

max.
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1.2 Tilting the illumination

When the illuminating beam is tilted by a tilt angle τ = tx + ity, the origin of the

diffraction plane is shifted with respect to the wave aberration function, which can

be expressed as power series expanded about the new origin by

W ′(ω) = W (ω + τ)−W (τ)

= <
[
A′

0ω
∗ +

1

2
A′

1ω
∗2 +

1

2
C ′

1ω
∗ω

+
1

3
A′

2ω
∗3 +

1

3
B′

2ω
∗2ω

+
1

4
C ′

3ω
∗2ω2

]
, (1.4)

where the new aberration coefficients are given by:

A′
0 = A0 + A1τ

∗ + C1τ + A2τ
∗2 +

1

3
B∗

2τ
2 +

2

3
B2τ

∗τ + C3τ
∗τ 2

A′
1 = A1 + 2A2τ

∗ +
2

3
B2τ + C3τ

2

C ′
1 = C1 + <(

4

3
B2τ

∗) + 2C3τ
∗τ

A′
2 = A2

B′
2 = B2 + 3C3τ

C ′
3 = C3 . (1.5)

(1.6)

It is immediately apparent from the first line of this equation that the shift A′
0−A0

between two images taken at beam tilts differing by τ depends on all other aberration

coefficients. Hence, measuring image shifts induced by a suitable set of beam tilts

provides a method for measuring all aberration coefficients (section 3.2). Furthermore,

tilting the beam changes the values of C1 and A1 by an amount that depends on A2,

B2 and C3. This is exploited in the tilt-induced diffractogram method (section 3.3.2)

and also in the new method described in chapter 5 to determine the antisymmetric

aberrations.
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Equation 1.5 shows that tilting the beam by τc = −B2/(3C3) makes the axial

coma B′
2 zero. This new axis is called the coma-free axis and the beam direction

should always be aligned along to this axis for high-resolution microscopy.

In principle, it is also possible to compensate the axial coma with off-axial (Sei-

delian) coma (B13 in equation 1.1), i.e. centring the coma-free point of the object

plane for the given beam direction using the image shift coils. It is, however, even

better to use both τ and w to compensate the dispersion (table 1.1) as well as the

axial coma (Zemlin, 1979; Kunath et al., 1987). The dispersion and coma free axis,

defined in direction and position by

τ = − B2A11c −B31A0c

3C3A11c −B31C1c

(1.7)

w = − 3C3A0c −B31C1c

3C3A11c −B31C1c

(1.8)

can be designated as “the optical axis of the microscope”. However, finding this axis is

a cumbersome iterative process. For a given image position, however, the dispersion-

free axis is found easily using the standard voltage centre alignment procedure. In

the microscopes used in this work the coma-free axis was always within less than

1 mrad of the voltage centre, therefore for most of the image series presented here

the microscope was aligned to the voltage centre axis and remaining axial coma was

corrected for a posteriori in the object wave restoration procedure. When images are

taken without the possibility of any a posteriori aberration correction, the coma-free

axis is preferred, as discussed in section 1.5.2.

In the following, the aberrations are referred to with respect to the coma-free axis

and it is assumed that coma-free and dispersion free axes coincide. Additionally, the

wave aberration function is given in the dimensionless form

γ(k) =
2π

λ
W (kxλ, kyλ) , (1.9)

expressing the spatial frequency dependent phase shift of the aberrated wave.

With this wave aberration the intensity observed from a specimen with exit wave

ψ(x) under coherent illumination with beam tilt λk0 can be expressed as

C(x) =
∣∣FT−1

[
FT[ψ(x)]e−iγ(k+k0)

]∣∣2 . (1.10)
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Using the Wiener-Khinchin theorem, the Fourier transform of the image intensity

is

c(k) =

∫
dk′

[
ψ∗(k′)eiγ(k

′+k0)ψ(k′ + k)e−iγ(k′+k+k0)
]
. (1.11)

1.3 The effects of limited coherence

The coherence of real electron sources, however, is always limited. The finite source

size leads to a loss of spatial coherence as each point in the specimen is illuminated

with beams from slightly diverging directions, characterised by a beam profile Is(kd)

around the average incident beam direction, where kd is the deviation from this

direction.

Due to the presence of the chromatic aberration, the energy spread as the electrons

leave the source, together with instabilities in the accelerating voltage and the lens

currents, lead to a spread of the defocus value described by a distribution function

It(u) where u is the deviation from the mean defocus.

The actual form of these distribution functions is far less important than their

width and in general Gaussian distribution functions are used, as this makes integrals

in the further derivation analytically tractable.5 Hence the following distribution

functions are assumed:

Is(kd) =
λ2

πβ2
e−λ

2k2
d/β

2

(1.12)

It(u) =
1√
2πd

e−u
2/2d2 , (1.13)

where β = λ〈|kd|2〉1/2 is the beam divergence and

d = C1c
1 + eUa/m0c

2

1 + eUa/2m0c2

[(
∆E

eUa

)2

+

(
∆Ua
Ua

)2

+

(
2∆Bl

Bl

)2
]1/2

(1.14)

5For the defocus spread, the terms due to voltage and lens current instabilities are well described
by Gaussian function, whereas the intrinsic source energy spread would be more accurately described
by a Maxwellian distribution for thermionic emitters or the Fowler-Nordheim equation (Fowler and
Nordheim, 1928) for field emitters.
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is the defocus spread. In this expression (e.g Reimer, 1989), C1c is the chromatic

aberration (equation 1.1), E is the electron energy as it leaves the source, Ua is the

accelerating voltage and Bl is the strength of the objective lens magnetic field, which

fluctuates due to objective lens current fluctuations.6 7

As the electron density in the beam is low, treating them as independent quantum

mechanical particles is an excellent approximation. Therefore, the contrast under this

partially coherent illumination can be calculated as an incoherent superposition of the

image contrasts under coherent illumination with the range of beam tilts and defocus

values described above. This yields:

c(k) =

∫
dkd

∫
du Is(kd)It(u)

∫
dk′[

ψ∗(k′)ψ(k′ + k)eiγu(k′+k0+kd)e−iγu(k′+k+k0+kd)
]
, (1.15)

where the index in γu means that the wave aberration has to be calculated at an

defocus offset of u.

Changing the order of integration leads to:

c(k) =

∫
dk′ ψ∗(k′)ψ(k′ + k)T (k′ + k + k0,k

′ + k0) , (1.16)

with the ‘Transmission Cross-Coefficient’ (TCC) defined by

T (k1,k2) =

∫
dkd

∫
du Is(kd) It(u) e−iγu(k1+kd) eiγu(k2+kd) . (1.17)

Making the assumption that kd is sufficiently small that its influence on the chro-

matic term can be neglected, the integrals can be separated. Furthermore, γ can be

6Usually, the last term is written in terms of the objective lens current Il. However, this is
not strictly correct, as the lens is normally operated close to saturation and the field Bl is not
proportional to Il

7It may seem surprising that the objective lens current only influences the focus in the presence
of chromatic aberration. However, this is due to the general scaling rule that the trajectories are
identical when energy and magnetic field are changed according to E′ = k2E and B′ = kB. Hence,
in a microscope corrected for the chromatic aberration, the focus cannot be changed by changing the
currents in all lens elements by the same factor. Instead, for instance, lens and corrector currents
have to be change by different amounts.
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replaced by its first-order Taylor expansion, leading to

T (k1,k2) = e−iγ(k1)eiγ(k2)∫
dkd Is(kd) e−i(∇γ(k1)−∇γ(k2))·kd∫
du It(u) e−iπλ(k2

1−k2
2)u . (1.18)

Using the gaussian distribution functions from equations 1.12 and 1.13, these

integrals can be solved analytically. Equation 1.18 then simplifies to

T (k1,k2) = eiγ(k1)e−iγ(k2)e−|∇γ(k1)−∇γ(k2)|2β2/(4λ2)e−π
2λ2d2(k2

1−k2
2)2/2 . (1.19)

The TCC describes how contributions arising due to the interference of two beams

with angles λk1 and λk2 relative to the optic axis are transferred to the image contrast

Fourier transform. Apart from the phase shifts due to the wave aberration, it contains

the coherence envelope function

Ec(k1,k2) = Es(k1,k2)Et(k1,k2) = e−|∇γ(k1)−∇γ(k2)|2β2/(4λ2)e−π
2λ2d2(k2

1−k2
2)2/2 , (1.20)

that consists of the spatial and temporal coherence envelopes Es and Et.

1.4 The linear imaging approximation

When the beams scattered by the object are weak compared to the transmitted beam

(weak scattering approximation) terms due to interference between scattered beams

can be neglected. In this case, using T (k2,k1) = T ∗(k1,k2), equation 1.16 simplifies

to

c(k) = ψ(k)T (k0 + k,k0) + ψ∗−T
∗(k0 − k,k0)− FT[1] , (1.21)

where λk0 is again the tilt of the primary beam.8 In this expression the image con-

trast depends linearly on the electron wavefunction therefore this approximation is

also referred to as linear imaging approximation. Practical electron detectors such

8The last term is necessary because otherwise the cross term of the transmitted beam with itself
would be included twice.
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as photographic film or CCD cameras lead to an additional spatial frequency depen-

dent attenuation of the image contrast, described by a Modulation Transfer Function

MTF(k) and discussed in more detail in the next chapter. For the wave restoration

procedures used extensively in this work, it is convenient to include this MTF into a

total wave transfer function defined by:

w(k) =

{
MTF(k)T (k0 + k,k0) : k 6= 0

1/2 : k = 0 ,
(1.22)

where the exception at k = 0 serves to eliminate the last term in equation 1.21,9 so

that the equation for the linear image contrast including the MTF finally reads

c(k) = ψ(k)w(k) + ψ∗(−k)w∗(−k); . (1.23)

When working within the linear imaging approximation it is convenient to drop

the argument k and for a function f(k) define f = f(k) and f− = f(−k), simplifying

the above equation to

c = ψw + ψ∗−w
∗
− . (1.24)

1.5 The phase contrast transfer function

The primary effect of thin specimens on the electron wave is an advance of its phase at

the atomic positions due to the shorter electron wavelength in the attractive atomic

core potential. For very thin objects (weak phase objects) the phase shift Φ is pro-

portional to the projected atomic potential and the object wave can be described by:

Ψ(x) = 1 + iΦ(x) with |Φ(x)| � 1 , (1.25)

which leads to the symmetry relation

ψ = −ψ∗− (1.26)
9It is common practice in the theory of linear image to avoid this extra term by subtracting one

from both C(x) and Ψ(x) such that they describe the image contrast (fractional intensity variation)
and the deviation from the illuminating wave, respectively. However, this makes the non-linear
expression 1.16 less obvious.
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between the object wave and the conjugate object wave, further simplifying the ex-

pression for the image contrast to

c = ψ(w − w∗
−) (1.27)

Because the object only changes the phase of the wave, no contrast would be visible

in case of aberration-free imaging. The contrast when aberrations are present is now

discussed for the case of axial imaging.

1.5.1 Axial imaging

For axial illumination, the wave transfer function in equation 1.22 simplifies to

w = MTF(k)Ec(k)e−iγ(k) , (1.28)

where

Ec(k) = Ec(k, 0) = e−|∇γ(k)|2β2/(4λ2)e−π
2λ2d2k4/2 , (1.29)

following the definition in equation 1.20. Hence, the contrast is given by

c(k) = ψ(k)MTF(k)Ec(k)2 sin γe(k)e−iγo(k) , (1.30)

where γ has been split into symmetric (even order) and antisymmetric (odd order)

parts according to

γe = (γ + γ−)/2 and γo = (γ − γ−)/2 (1.31)

Equation 1.30 shows that the symmetric aberrations lead to a spatial frequency depen-

dent transformation of phase into amplitude contrast described by the phase contrast

transfer function

PCTF(k) = Ec(k) sin γe(k) . (1.32)

One favourable focus setting for imaging of weak phase objects is the Scherzer-

focus (Scherzer, 1949)10

C1,Scherzer = −1.2(C3λ)1/2 , (1.33)
10In this definition of the Scherzer focus, the passband in sin γ contains a local minimum with

sin γ = 0.7. The original definition, C1,Scherzer = (C3λ)1/2 avoids a local minimum in the passband
at the cost of a slightly poorer point resolution ρS = 0.707(C3λ

3)1/4.
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which leads to a relatively broad band of phase contrast transfer without zero-

crossings up to a frequency of kmax = 1.6(C3λ
3)−1/4. The reciprocal of this is called

the point resolution and given by

ρS = 0.625(C3λ
3)1/4 . (1.34)

The point resolution defines the maximum interpretable resolution. For higher

spatial frequencies the contrast is partially reversed because the PCTF starts to

oscillate as demonstrated in figure 1.1. The spatial and temporal coherence envelopes

are also shown, demonstrating that the resolution can be significantly enhanced if

information transferred by the oscillating part of the PCTF is made accessible. This

can done with the wavefront restoration procedures described in the next section.

Fig 1.1 also shows the PCTF at C1 = 0 (Gaussian focus), where very little phase

contrast is transferred at medium and low spatial frequencies. This means that the

Gaussian focus can be found by minimising the visible contrast of an amorphous

weak phase object, which is exploited in manual focusing and the minimum variance

method given in section 3.1.

More sophisticated methods of aberration determination directly exploit the zero-

crossings of the PCTF, as the diffractogram, i.e. the power spectrum |c|2 of an

amorphous weak phase object will display dark bands (Thon rings) at these positions

(Thon, 1966). This is exploited in diffractogram based aberration determination

methods, as described in section 3.3.1.

For most crystalline objects, both the phase and the modulus carry information

about the specimen, hence it is desirable to recover the full complex aberration free

object wave for a large range of spatial frequencies. This can be done by combining the

information from several images taken at different imaging conditions and is described

in detail in section 1.6.
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Figure 1.1: The phase contrast transfer function of the JEM3000F microscope in-
stalled in the Department of Materials in Oxford (C3 = 0.57 mm, focal spread
d = 4 nm and beam divergence β = 0.1 mrad). Solid graph: PCTF at Scherzer
focus; the first zero crossing defines the point resolution of 1.678 nm. Dotted graph:
PCTF at Gaussian focus. The coherence envelopes are also shown. The temporal
coherence envelope Et (long dashed) is far more limiting than the spatial coherence
envelope Es (short dashed, calculated at Scherzer focus) due to the extremely small
source size of field emitters.
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1.5.2 Voltage centre versus coma-free alignment

The above has been derived under the assumption that both the voltage centre and

the coma-free axis are at the origin of Fourier space. In practice these two axes do

not coincide, hence the effects of misalignment from each axis have to be studied sep-

arately. Misalignment from the voltage-centre axis alone only leads to an asymmetry

in the temporal coherence envelope, as this is centred around the voltage centre axis.

In case of the coma-free axis, the effects are more severe, as misalignment not only

affects the spatial coherence envelope, but also the wave aberration function directly.

Figure 1.2 shows the relative error, defined by

∆ =
2|ψτ − ψ|
|ψτ |+ |ψ|

, (1.35)

in the wavefunction ψτ due to the presence of a misalignment τ from either axis, in

which a misalignment from the coma-free axis induces more severe errors.

1.6 Restoring the object wave from sets of images

The possibility of restoring the complex object wave using a series of images at dif-

ferent foci was first discussed by Schiske (1968). However, this idea was ahead of

its time and significant progress both instrumentally and theoretically was needed to

put it to practical use. On the instrumental side, the coherence of the electron beam

was greatly increased by introduction of stable Schottky field emission source into

TEMs by Otten and Coene (1993) and Honda et al. (1994), pushing the information

limit well beyond the point resolution. This made wave restoration more attractive

because firstly the rapidly oscillating PCTF leads to a contrast delocalisation making

single images more difficult to interpret even at Scherzer focus and secondly, such

restoration now leads to a substantial gain in interpretable resolution from the point

resolution to the information limit. The second key improvement came with the in-

troduction of CCD cameras into electron microscopy (chapter 2), which provide an

almost perfectly linear and sensitive electron detector recording images directly in
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Figure 1.2: Relative error in the image wave for alignment conditions where the
voltage centre and the coma-free axis do not coincide. Solid line: The microscope is
aligned to the coma-free axis, which is 1 mrad off the voltage centre. Long dashed
line: The microscope is aligned to the voltage centre, which is 1 mrad off the coma-
free-axis. Short dashed line: The microscope is aligned to the voltage centre, which
is 0.05 mrad off the coma-free-axis.
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digital form. The third and probably most crucial development was the breathtaking

improvement of computing power available at ever decreasing cost.

Concomitant theoretical developments include the Wiener formulation of the prob-

lem (Schiske, 1973), which allows an optimum restoration in the presence of noise,

the incorporation of the effects of partial coherence (Wade and Frank, 1977) by (Sax-

ton, 1978), followed by a generalisation of the restoration scheme to nonlinear imag-

ing (Kirkland, 1984). Much later, an independent derivation of a linear restoration

scheme called ‘paraboloid method’ based on 3D-Fourier transforms was given (Coene

et al., 1992; van Dyck et al., 1993; Op de Beeck et al., 1996). Although this method is

inferior to the ones presented earlier in the suppression of the conjugate wave (Saxton,

1994b), it provides some intuitive insights into how the information from a series of

images is gathered to yield the complex object wave and for this reason the derivation

is briefly discussed here.

1.6.1 The paraboloid method

The basic features of the paraboloid method are illustrated in figure 1.3. Taking a se-

ries of images at different focus levels can be interpreted as taking a three-dimensional

sample of the image wave. In the three-dimensional Fourier transform of the image

wave itself, all contributions due to elastically scattered electrons are located on the

Ewald sphere with radius k = 1/λ corresponding to the incident energy (indicated as

solid circle section in figure 1.3). However, only the image intensity can be recorded,

which in the linear imaging approximation contains not only the interference term

between the incident beam and scattered beam, but also the conjugate thereof. The

former leads to contributions on the Ewald sphere shifted to the origin (long dashed),

and the latter is the complex conjugated point reflection of this (short dashed). Due

to the small scattering angles involved, the spheres are excellently approximated by

paraboloids, which is effectively equivalent to using the Fresnel approximation to

describe the propagation between the image planes.

As only data on the paraboloid corresponding to the direct wave is used in the
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Figure 1.3: Illustration of the paraboloid method. A focal series represents a measure-
ment of the intensity in the image waves in three dimensions (left). In the 3-D Fourier
transform of the image wave, contributions from elastically scattered electrons are lo-
cated on the Ewald sphere (solid curve). The 3-D Fourier transform of the recorded
intensities contains contributions from both the direct wave (long dashed) and the
conjugate wave (short dashed)
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restoration, calculating the 3-D transform in order to extract the restored wave would

be wasteful and also cumbersome due to the sparse sampling of the 3-D transform

in the z-direction. Instead, the required Fourier component at kz = 0.5λk2 can be

evaluated with a single integration∫
dz c(k, z)e−πiλk2z . (1.36)

However, c(k, z) is only known at a finite number N of equally spaced focus levels

zn = n ∗ dz, and hence the restored wave is evaluated as

ψ′ =
1

N

N−1∑
n=0

c(k, z)e−πiλk2zn . (1.37)

This discretisation introduces two numerical artifacts: aliasing due to the discrete

sampling and windowing due to the restriction of z to the range 0 ≤ z < Ndz. The

former effect leads to a periodic repetition of the Fourier spectrum in the z-direction,

effectively copying the pair of paraboloids in figure 1.3 from the origin to positions

kz = 1/(Ndz), thereby leading to additional overlaps of the direct and the conjugate

wave. The latter effect is equivalent to a convolution with a sinc-function, which

broadens the range of frequencies with significant transfer of the unwanted conjugate

wave. Together, both effects are equivalent to a convolution with the function

sin(Nπdzkz)

sin(πdzkz)
, (1.38)

which represents the wave diffracted from a N slit grating with spacing dz. This leads

finally to the restored wave

ψ′ = ψ +
sin(Nπλdzk

2)

sin(πλdzk2)
ψ∗− , (1.39)

when the effects due to limited coherence and noise are ignored.

1.6.2 Improved linear restoration filters

Equation 1.37 is an example of an equation describing a linear restoration filter, which

have the general form:

ψ′ =
∑

i
rici . (1.40)
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The aim of this section is to find restoring filters, ri that provide a better suppres-

sion of the unwanted conjugate wave, incorporate the limited coherence and take the

noise present in the images into account. The approach described here follows that

given by Saxton (1988), which has the further advantage that it is not restricted to

restoration from equally spaced focal series but can be applied to any set of differently

aberrated images with known wave transfer functions wi.

The most obvious solution to finding the two unknowns ψ and ψ− at each spa-

tial frequency k consists of minimising the least-squares difference between actual

predicted image transforms:∑
i

(
wiψ + w∗

i−ψ
∗
− − ci

)2 !
= min . (1.41)

The condition that the first derivative with respect to both ψ and ψ∗− vanishes

yields an equation for ψ in the form of equation 1.40 with restoring filters

ri =
W−w

∗
i − V ∗wi−

W−W − |V |2
(1.42)

where W =
∑

i |wi|2 and V =
∑

iwiwi−. This solution yields the best fit to the avail-

able data. However, obvious problems arise when this expression is singular, which

happens at frequencies where insufficient information is available, either because the

transfer functions wi are zero for all images, or wiwi− is identical for all images with

non-zero wi.

Furthermore, when the denominator of equation 1.42 is small, any noise present in

the image is strongly amplified. Due to this amplified noise, the agreement between

the restored wave and the actual wave can be poor in spite of the optimal agreement

between the experimental images and predicted images (where the noise is reduced

to its original value again). These problems are solved by an ingenious approach due

to Wiener, where the (unknown) noise ni is directly incorporated into the equations

for the observed image contrast:

ci = wiψ + w∗
i−ψ

∗
− + ni (1.43)
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Restoring filters ri are now sought such that〈
|ψ′ − ψ|2

〉
=
〈
|
∑
i

rici − ψ|2
〉

!
= min , (1.44)

where
〈
· · ·
〉

denotes an average over an ensemble of typical restorations, each char-

acterised by an experimental wavefunction ψ and image noise ni.

By differentiating by the real and imaginary parts of z separately it can be shown

that for an analytical function f(z)〈
|f(z)|2

〉
!
= min ⇐⇒

〈
f(z)

(
df

dz

)∗ 〉
= 0 , (1.45)

hence the minimum condition w.r.t. rk yields〈 (
ψΣriwi + ψ∗−Σriw

∗
i− + Σrini − ψ

)
(ψ∗w∗

k + ψ−wk− + n∗k)
〉

= 0 . (1.46)

Using the identities〈
ψ±n

∗
k

〉
= 0 (no correlation between object and noise) (1.47)〈

nin
∗
k

〉
=

〈
nkn

∗
k

〉
δik (noise in different images is not correlated) (1.48)〈

nkn
∗
k

〉
= PN (definition of mean noise power in images) (1.49)〈

ψ∗ψ
〉

= PS (definition of mean signal power in object wave) (1.50)〈
ψψ−

〉
= 0 (no assumption is made about the object type) (1.51)

equation 1.46 can be simplified to∑
i

PS(w
∗
kwi + wk−w

∗
i−)ri + PNrk − PSw

∗
k = 0 . (1.52)

This can be solved with the Ansatz

ri = aw∗
i + bwi− (1.53)

yielding

ri =
(W− + ν)w∗

i − V ∗wi−
(W− + ν)(W + ν)− |V |2

(1.54)
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in which W denotes
∑

i |wi|2, V denotes
∑

iwiwi−, and ν = PN/PS denotes an

estimate of the expected noise intensity in ci as a fraction of the expected signal

intensity in ψ.

Provided that the wave transfer functions, wi assumed in calculating the restoring

filters accurately represent the experimental imaging conditions, the transfer from the

object wave to the restored wavefunction can be described by

WTF =
∑

i
riwi =

(W− + ν)W − |V |2

(W− + ν)(W + ν)− |V |2
. (1.55)

This total wave transfer function is free of phase shifts and close to one where at

least two images that provide complementary information have a substantial transfer

function wi.

For some (especially very low) spatial frequencies, the conjugate wave is not com-

pletely suppressed due to a lack of phase information from any image. This unwanted

transfer of the conjugate wave is described by

WTFC =
∑

i
riw

∗
i− =

V ∗ν

(W− + ν)(W + ν)− |V |2
. (1.56)

The difference

Q = |WTF|2 − |WTFC|2 (1.57)

is hence a measure of the quality of the restoration and is used as a weighting function

in the following.

At this point, a few remarks should be made on the definitions of the mean signal

and noise powers PS and PN . While PN can be easily characterised (as discussed

in detail in chapter 2), PS depends on the choice of the “ensemble of typical wave-

functions”. Obviously, restricting this ensemble supplies prior information about the

object and will in general improve the signal-to-noise ratio in the restoration. In the

general case where prior assumptions about the object are not desirable, PS should

be chosen as constant. An alternative scheme involves the use of prior knowledge

about the elements present in the sample and their scattering factors and choose PS

to decay in proportion to a typical scattering factor. An attempt could also be made
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to estimate the signal power from the experimental images themselves. However,

a single experimental object is hardly a representative ensemble and for crystalline

specimens, PS will have sharp peaks at the positions of the crystal reflections, ef-

fectively leading to a Fourier filter that is biased towards the frequencies of crystal

reflections. This will reduce the noise, but it will also lead to an exaggeration of the

periodic information in the crystal and obscure aperiodic information

It is also instructive to re-investigate the assumption that the ensemble average

of ψψ− is zero. Here it is possible to incorporate prior knowledge that the object is

a pure phase object satisfying ψ− = −ψ∗. An ensemble containing only such objects

would yield 〈
ψψ−

〉
=
〈
ψψ∗

〉
= PS , (1.58)

giving restoring filters that yield a restoration with zero contrast in its modulus for

any object. Again, the noise is reduced due to the prior knowledge employed, as the

noise in the modulus is eliminated.

One item of prior knowledge always used by the Wiener filter is that the object

spectrum is bounded and hence ψ = 0 is the best estimate for frequencies where

no information is available. This sets it apart from the simple least-squares filter

discussed at the beginning of this section, as the least-squares approach assumes

that, a priori, all values in the complex plane are equally probable for ψ. In fact,

the least-squares restoration filters (equation 1.42) are reproduced from the Wiener

filter equation 1.54 when PN → 0 or PS → ∞, both of which are highly unrealistic

scenarios.

When comparisons with simulations are made, a simulated restored wave ψsimrest

according to

ψsimrest = WTF(k)ψsim(k) + WTFC(k)ψ∗sim(−k) . (1.59)

is calculated from the simulated back-propagated exit wave ψsim for direct comparison

(appendix A). This means that irrespective of how PS is chosen the experimental and

simulated waves are subject to identical transfer functions, and the only dependence

of this comparison on PS arises from the weight given to discrepancies at different
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spatial frequencies.

Computationally, the restoration process is not demanding, requiring little more

than a handful of Fourier transforms. The process also lends itself to iterative inclu-

sion of additional images to the restoration. For this, it is necessary to keep track of

the sums

W =
∑

i |wi|2 , V =
∑

iwiwi− ,

T =
∑

iw
∗
i ci and U =

∑
iwi−ci ,

(1.60)

whereby at any stage the restoration can be calculated as:

ψ′ =
(W− + ν)T − V ∗U

(W− + ν)(W + ν)− |V |2
. (1.61)

The object wavefunction itself is obtained simply by inverse transformation of this

estimate. An image can also be removed again from the restoration by subtracting

its contribution from the sums in equation 1.60.

A restoration of the object wave is only possible when the images are accurately

registered with respect to a common origin and when the imaging parameters for each

image, and hence the wave aberration functions wi, are known.

An estimate for the aberrated image wave can, however, already be obtained

when the relative aberrations between the images, i.e. in the case of a focal series

the relative focus levels and the image displacements, are known. This ensures that

the contributions from the individual images are summed with the correct phases.

In chapter 4, a method is presented for firstly obtaining the relative aberrations

and image shifts in a focal series and subsequently using a restored image wave to

determine the symmetric aberration coefficients.

1.6.3 Restoration from sets of tilted images

The Wiener filter restoration algorithm discussed in the previous section is sufficiently

general to allow a restoration of the object wave from nearly arbitrary sets of images

taken under different imaging conditions. The most obvious choice is a focus series

as discussed above, which offers interpretable resolution up to the information limit
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set by the imperfect temporal coherence. Limited spatial coherence does not reduce

the obtainable resolution as long as images at large enough underfocus values are

included so that their overlapping pass bands (occurring where the wave aberration

function gradient is small) provide the high spatial frequency information.

Resolution beyond this information limit can be achieved using sets of images with

tilted illumination. For light microscopes, this was suggested by Abbe (1873): when

the primary beam is placed close to one side of the aperture, it can interfere with

beams scattered by up to twice the aperture semiangle, which dictates the resolution

in axial mode. However, beams at different azimuth are masked completely, so that

information from several images recorded at different tilt azimuths must be combined.

The effect is similar in electron microscopy, even though the temporal coherence

envelope does not act as a solid aperture. It follows from equation 1.20 that for a

primary beam direction λk0 the transfer of a beam scattered by an angle λk is given

by

e−π
2λ2d2(|k0|2−|k0+k|2)2/2 . (1.62)

It is apparent from this equation that beams scattered into directions that subtend

the same angle with the voltage centre axis as the incident beam will not be affected

by the temporal coherence envelope. The circle defined by these directions is therefore

called the achromatic circle. Provided that the tilt angle is not very large, the transfer

inside the achromatic circle will also be good. As in optical microscopy, images taken

at tilted illumination show a one-sided transfer function extending to scattering angles

of approximately twice the tilt angle in one direction. However, the tilt angle is not

limited to the maximum transferred scattering angle under axial illumination. If tilt

angles larger than that corresponding to the axial information limit are chosen, the

contrast transfer on the achromatic circle is not reduced by the imperfect temporal

coherence, but a region of weak transfer appears within this circle and for very large

tilts. For tilts larger than 2Gl/Sch11 this transfer gap has to be filled with additional

images at smaller beam tilts.

111 Gl/Sch represents a unit tilt in reduced units, where Scherzer (1 Sch = (C3λ)0.5) and Glaser
(1Gl = C0.25

3 λ0.75) are the reduced units for longitudinal and transverse distances in the microscope.
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Spatial frequency [1/nm]

(a) Scherzer focus

(b) Focal series

(c) Tilt series 7.7 mrad

(d) Tilt series 14.3 mrad

Figure 1.4: (a) The phase contrast transfer function for a single axial image at Scherzer
focus (300kV, C3 = 0.57, focal spread d = 4 nm and beam divergence β = 0.1 mrad)
in comparison with the effective wave transfer function for (b) a 21 member focal
series with focus step 5nm; (c) a 21 member tilt/focus series with a tilt of 7.7mrad
(1Gl/Sch) and (d) a 21 member tilt/focus series with a tilt of 15.3mrad (2Gl/Sch).
In (b) to (d) the effective conjugate wave transfer function is also shown (dashed).
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Figure 1.5: The effective wave transfer function for (a) a 21 member focal series with
5nm focus step, (b) a tilt/focus series with three focus levels at each tilt and tilts
of 1 Gl/Sch =7.7 mrad with 6 different azimuths, (c) as for (b) but with tilts of 2
Gl/Sch=15.3mrad.

Figures 1.4 and 1.5 show simulations of the effective wave transfer function,

demonstrating how the resolution is improved by combining images with different

beam tilt directions.

1.6.4 The parallax problem

A potential problem of object wave restoration from images taken at different beam

tilts is that, in contrast to the case of a focus series, the images are not simply dif-

ferent measurements on the same exit wavefunction. Instead, each image records

the specimen projected along a slightly different direction. However, as illustrated in

figure 1.6, this parallax surprisingly improves the resemblance of the restored phase

to the projected potential, at least in the kinematic approximation. This effect can

be understood both in real space and Fourier space models. For axial illumination

there is a phase difference of δ = 2π(1 − cos θ)∆z/λ between the contributions to

scattering by an angle θ from two atoms in the same atomic column separated by

∆z. As the contributions from different specimen layers are increasingly out of phase

for increasing scattering angle, the high spatial frequency information is suppressed
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compared to that expected from the 2-dimensional Fourier transform of the full pro-

jected crystal potential. If the illumination is tilted by an angle Θ, contributions to

the beam scattered by 2Θ in the opposite direction from different specimen layers are

now in phase, and the phase shifts are strongly reduced for beams scattered in similar

directions. In Fourier space, tilting the beam corresponds to tilting the Ewald sphere

towards the crystal reflections that correspond to scattering in the opposite direction.

As the beams that are scattered in directions approximately opposite the tilting

direction are those transferred most strongly into the image contrast by the micro-

scope transfer functions, restoring a wavefunction from a tilt series has the effect of

reducing the curvature of the Ewald sphere and thereby, in the kinematical approxi-

mation, making the phase of the restored wavefunction more similar to the projected

potential than the phase of the exit surface wavefunction under axial illumination.

However, for thicker specimens, where the scattering is highly dynamical, the

structural interpretation of the object wave is expected to be more complicated when

it is restored from images with different beam directions, i.e. different specimen

excitations.
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Figure 1.6: (a) Diffraction at a slab of crystal. For axial illumination (left) there is a
phase shift between the beam paths into a specific scattering direction via different
atoms of one column. Under tilted illumination (right), the phase shift is reduced
to zero for scattering by twice the tilt angle. (b) Due to the finite thickness of the
crystal, the reflections in the reciprocal lattice are elongated in z-direction, which
allows some overlap between the kz = 0 reflections and the Ewald sphere under axial
illumination (solid arc). Under tilted illumination (dashed arc), the Ewald sphere is
tilted towards the beams scattered in directions opposite of the tilt direction.
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Chapter 2

Image detection: Characterisation

of CCD cameras

The image detection device is an essential part of the image formation chain and there-

fore its properties must be accurately characterised to allow quantitative restoration

of the object wavefunction as described in the last chapter. Extensive work that has

been carried out on the accurate characterisation of image detectors is presented in

this chapter. The work focuses on CCD cameras, the most widely used modern image

detector in electron microscopy, although most of the theory can also be applied to

other image detectors.

2.1 Introduction

2.1.1 Charge-coupled devices

Charge-Coupled-Devices, originally designed for early solid state memory chips, have

been in use as pixelated light detecting devices for several decades (Howell, 2000).

They exploit the internal photoelectric effect in semiconductors and the field effect

in Metal-Oxide Semiconductor (MOS) structures. Due to the photoelectric effect a

photon whose energy exceeds the semiconductor bandgap energy can excite a valence

35
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band electron into the conduction band thereby generating an electron-hole pair. In

a MOS structure, a thin oxide layer is used to insulate a metal (or polysilicon) gate

from the generally (for CCD chips) p-doped semiconductor. Due to the field effect

a positive voltage on this gate expels the majority charge carriers (holes) away from

the semiconductor surface, leaving a negative space charge due to the filled acceptor

levels.

Figure 2.1 shows the bending in the band structure that arises from this space

charge. If the applied voltage is high enough, the lower edge of the conduction band

will dip below the Fermi energy, and hence an inversion layer where the majority

charge carriers are electrons rather than holes is created. Electron-hole pairs gen-

erated within or close to the this p-n junction1 are separated, and the electrons are

collected in the inversion layer at the surface.

With an array of independent gates, the semiconductor surface can be split into

mutually insulated potential wells by applying different voltages to the gate electrodes

(figure 2.2(a)). When the camera is illuminated, each of these pixels accumulates a

charge that is proportional to the intensity for a given wavelength integrated over the

pixel area. By clocking the gate voltages, the pattern of stored charges can be moved

towards one end of the chain of pixels as illustrated in figure 2.2. This allows the se-

quential readout of the stored charge packets into a single readout amplifier, where the

collected charge is measured and converted to a digital number. In two-dimensional

arrays the most basic readout geometry is that of slow-scan CCD cameras. In these

cameras, the contents of the whole array can be moved vertically, so that the charge

in each pixel is shifted to the pixel directly below it. The charge from the lowest line

is transferred to a special transfer register, in which it can be transferred horizontally

to read a whole line of pixels. Subsequently, the next line is shifted into the transfer

register until the whole array is read.

1A detailed account of the physics of the p-n junction is given in may solid state and semiconductor
textbooks. Though slightly dated, the thorough description in Ashcroft and Mermin (1976) is
recommended.
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Figure 2.1: The band structure of a p-type semiconductor near a MOS interface. The
positive voltage on the metal gate repels the holes from the interface leaving a region
with negative space charge in which the band edges are bent. In this illustration the
voltage is high enough to push the conduction band edge below the Fermi level and
hence to create an n-type inversion layer.
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Figure 2.2: Charge transfer in a row of CCD pixels. There are three electrodes on top
of each pixel with equivalent electrodes of all pixels connected. During exposure, the
pattern shown in (a) is applied to the gates, yielding one deep potential well per pixel
where the electrons generated in the whole pixel area are collected. After exposure,
the pattern of collected charge can be shifted by clocking the voltage pattern applied
to the electrodes, which moves the charge in each potential well to the right into
a newly created potential well (b). In (c) the charge transfer is completed and the
whole pattern of stored charges has move by 1/3 of a pixel to the right.
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During readout the illumination must be blocked by a shutter, otherwise an im-

age feature illuminating a certain pixel will also contribute briefly to the charge read

out from all pixels above this pixel. Shutterless operation can be achieved with in-

terline transfer and frame transfer CCD cameras. In the former, each column of

light-sensitive pixels is interleaved with a column of pixels with opaque coating which

serve as memory only. During readout, the first step is the simultaneous charge trans-

fer from all light-sensitive pixels to the neighbouring memory pixels. The array of

memory pixels is then read out as usual, while the next frame is already accumu-

lated in the sensitive pixels. This loss of sensitive area reduces the sensitivity by a

factor of two and the rectangular sensitive pixel area results in an anisotropic mod-

ulation transfer function. These disadvantages are avoided in frame-transfer CCD

cameras, which function like ordinary CCD cameras, apart from separate vertical

clocking for the upper and lower halves of the array and an opaque coating on the

lower half, which serves as memory array. During readout, the image in the sensi-

tive array is first transferred to the memory array by fast vertical clocking of both

arrays. Then, the memory array is read out line by line as usual, while the sensitive

array accumulates the next frame. The shutterless operation of frame-transfer and

interline-transfer CCD cameras makes them attractive for electron microscopy as the

use of a pre-specimen beam blank can lead to specimen drift during exposure due to

local heating and charging effects and the use of the mechanical shutter can cause

vibrations. For the recording of image series, a frame-transfer camera allows 100% of

the specimen irradiation time to be used for image acquisition. Unfortunately, these

cameras are currently not available with array sizes and pixel numbers2 comparable

to conventional slow-scan cameras which is why most microscopes, including those

used in this work, are equipped with cameras using slow-scan CCD chips.

2Typical commercially available slow-scan cameras have 2048×2048 pixels with 30 µm spacing,
while typical frame-transfer cameras feature only 1280×1024 pixels with 14 µm spacing. However,
Fan et al. (2000) have reported the experimental design of a frame-transfer camera with 2560×2048
24 µm pixels.
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2.1.2 CCD cameras in electron microscopy

CCD-cameras for electron microscopy have been commercially available for about 10

years, following developments described elsewhere (Spence and Zuo, 1988; Daberkow

et al., 1991; Kujawa and Krahl, 1992; Daberkow et al., 1996; de Ruijter, 1995; Kri-

vanek and Mooney, 1993; Faruqi and Subramaniam, 2000). Their advantages include

practically linear response over an intrinsic dynamic range of approximately 104, high

sensitivity (making single-electron detection possible) and instant availability of the

recorded images in digital form.

Though early experiments using CCD chips as direct TEM electron detectors have

been performed (Roberts et al., 1982), this has not proved viable due to the sensitivity

of the gate insulator to radiation damage. For low energies (<10 keV), this damage

can be avoided using back-thinned CCDs (Ravel and Reinheimer, 1991), but higher

energy electrons would penetrate through to the sensitive gate oxide on the front side.

Moreover, in silicon a primary electron of energy E generates E/3.64eV electron-hole

pairs (Fiebinger and Müller, 1972), hence the CCD well capacity of typically 400000

electrons (de Ruijter, 1995) would be saturated after the detection of only a few

electrons at the energies used in TEM.

Therefore, an indirect approach is employed in all cameras used in TEM applica-

tions. The electrons impinge on a YAG single crystal3 or phosphor powder scintilla-

tor,4 and the generated light is relayed to the CCD chip via a lens- or fibre optical

coupling, as illustrated in figure 2.3.

2.1.3 Characterisation of CCD cameras

Scattering of both the primary electrons and the emitted photons blurs the recorded

image by attenuating its high spatial frequencies. This spatial frequency dependent

3YAG stands for Yttrium Aluminium Garnet Y3Al5O12, a transparent crystal which is made
scintillating by doping with impurity atoms, usually europium (YAG:Eu) or cerium (YAG:Ce).

4A wide range of materials is available for powder scintillators. Popular choices in CCD cameras
include: P22 (Y2O2S : Eu) and P43 (Gd2O2S : Tb or short GOS).
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signal transfer is described by the Modulation Transfer Function (MTF). The at-

tenuation alone does not impair the quality of an image; as long as all frequency

components are transferred, the image can, in principle, be perfectly restored by

deconvolution if the MTF is known. However, the Signal to Noise Ratio (SNR) is

reduced if the camera adds noise. The statistical performance of radiation detectors is

most conveniently described by the Detection Quantum Efficiency (DQE) (Herrmann

and Krahl, 1982), defined as the quotient of the squared SNR at the output and the

input of the camera (in general as a function of spatial frequency (de Ruijter, 1995))

and this spatial frequency dependent DQE is the most important figure of merit for

the performance of a CCD camera.

Two methods are used for measuring the MTF, deterministic methods and stochas-

tic methods. In the former the detector is illuminated with spatially varying intensity

and the MTF is determined by comparing the contrast between the input and the out-

put images at different spatial frequencies. In practice the use of a knife edge where

the input intensity can be assumed to be a step function is most commonly applied

(Daberkow et al., 1991; de Ruijter, 1995; Weickenmeier et al., 1995). Alternative

input signals include holographic fringes (de Ruijter and Weiss, 1992) and amor-

phous carbon (van Zwet and Zandbergen, 1996). In the stochastic or ‘noise’ method

(de Ruijter and Weiss, 1992; de Ruijter, 1995; Zuo, 1996; Weickenmeier et al., 1995),

the camera is evenly illuminated so that the input intensity is white noise. Due to

blurring effects, the intensities measured in two pixels are correlated if the distance

between the pixels is small and thus the noise power spectrum is no longer white,

but attenuated at high spatial frequencies. This attenuation of the noise signal is

usually assumed to be equal to the attenuation of a deterministic signal, and a ro-

tationally averaged magnitude of the Fourier transform of a uniformly illuminated

image is generally presented as the MTF measured by the noise method.

In general, however, the output noise of a stochastic scattering process is not

simply the product of the input noise and the MTF (Rabbani et al., 1987). Therefore

a new theoretical description is introduced in this work that clearly distinguishes
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between the transfer of signal (i.e. spatial intensity variation) and the transfer of the

inevitable Poisson noise into the recorded image by defining a separate Noise Transfer

Function (NTF). This theoretical model makes the direct evaluation of both transfer

properties with Monte-Carlo simulations possible (Meyer and Kirkland, 1998). In

addition, novel techniques have been developed to measure both properties accurately

(Meyer and Kirkland, 2000) and a range of commercially available cameras have

been tested (Meyer and Kirkland, 2000; Meyer et al., 2000a). These experiments, in

agreement with simulations, showed that at electron energies of 200 keV and above,

the NTF exceeds the MTF by up to a factor of 4, which implies that the DQE at

high spatial frequencies drops to 7% of its zero spatial frequency value. This problem

is now being recognised by camera manufactures and referred to as the ‘high voltage

problem’.5

2.2 Theory of signal and noise transfer

The aim of this section is to derive expressions for the MTF and NTF from the

statistical properties of the electron and photon scattering processes in the conversion

chain from the scintillator surface, on which the primary electrons impinge, to the

CCD chip, where electron-hole pairs are generated. Up to this step, the system is

translationally invariant, which greatly simplifies the analysis. Therefore the last

step, i.e. the collection of the electron in the pixelated CCD potential wells is treated

separately and the transfer functions up to this step are denoted MTFS, NTFS and

DQES to distinguish them from the overall transfer functions MTF, NTF and DQE,

which include pixelation effects (figure 2.3).

In an electron microscope, the specimen scatters the incident electron beam, caus-

ing spatial variations of the electron wavefunction Ψ. The aim of an image detecting

device is to yield an accurate representation of this spatial variation of the electron

detection probability |Ψ|2 in the image plane.

5Paul Mooney, Gatan, personal communication.
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Scintillator
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Lens coupling Fibre plate

CCD chip

MTFS,
NTFS

MTF,
NTF

Figure 2.3: Schematic diagram of a CCD camera for electron detection. The incoming
high-energy electrons are scattered and, along their trajectory within the scintillator,
they give rise to photon emission. Electrons that penetrate through the scintillator
may be back-scattered into the scintillator from the fibre plate or a mechanical support
layer. A lens-or fibre optical coupling system conveys the generated light to the CCD
chip, where the photons generate electron-hole pairs. The electrons of these pairs are
collected in pixelated potential wells. This integrated sampling is treated separately
here and the functions MTFS and NTFS describe the signal and noise transfer by
the scintillator and the support up to the point of generation of electron-hole pairs.
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In principle, electron detection in the camera is a quantum-mechanical position

measurement process. However, as the scintillator is a large macroscopic object,

decoherence occurs rapidly, which collapses the electron wavefunction into a localised

wavepacket as soon as the electron enters the scintillator. For all practical purposes it

is therefore sufficient to regard the electrons as classical particles that impinge on the

scintillator, but with the proviso that the events of electron arrival are fundamentally

random with the probability density for arrival at position (x, y) given by p(x, y) ∝
|Ψ(x, y)|2.

Due to this statistical nature of quantum mechanical observations, variations in

the output intensities Io(x, y) recorded in different exposures of identical duration

taken of the same object are always present, even with an ideal camera. Only in the

limit of averaging over an infinite number of exposures recorded by an ideal camera,

the intensity converges to the probability distribution |Ψ|2.

As the important properties of the camera do not depend on the position, but

strongly on the spatial frequency of object detail, it is most useful to investigate

the Fourier transform Îo(u, v) of the recorded intensity. For each (u, v) there are

variations of Îo(u, v) between different exposures, thus Îo(u, v) can be described as

a complex random variable whose expectation value E(u, v) describes the signal in

the image and whose variance V (u, v) describes the noise. The noise, i.e the random

fluctuations from the expectation value, limits the amount of information that can

be obtained from a single exposure.

Expressions for E(u, v) and V (u, v) will now be derived based on an analysis of

the statistical properties of the contributions of individual electrons to the output

signal Io.

The trajectories of electrons hitting the scintillator at the origin can be described

as members of a probability space M . Each element µ ∈ M describes the event of

one incident electron, i.e. a particular trajectory with photons emitted at particular

positions in particular directions. The probability for this event is dµ, and the con-

tribution of this event to the output signal is denoted gµ(x, y). For an electron that
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hits the scintillator (x′, y′) rather than the origin, the trajectory is simply translated,

contributing gµ(x−x′, y− y′) to the output signal. Hence the contribution to Îo(u, v)

is given by:

∆Îo(u, v) = e−2πi(ux′+vy′)ĝµ(u, v) (2.1)

An infinitesimal scintillator area dA at (x, y) therefore contributes to E(u, v) and

V (u, v) by

dE(u, v) = (1− p(x, y)dA) · 0 + p(x, y)dA

∫
e−2πi(ux+vy)ĝµ(u, v)dµ

= p(x, y)e−2πi(ux+vy)dA

∫
ĝµ(u, v) dµ (2.2)

and

dV (u, v) = (1− p(x, y)dA) · |0− dE(u, v)|2

+ p(x, y)dA

∫
|e−2πi(ux+vy)ĝµ(u, v)− dE(u, v)|2dµ

= p(x, y)dA

∫
|ĝµ(u, v)|2dµ + O(dA2) . (2.3)

The first and second term in each equation represent the cases of zero and one

electron impinging on dA, respectively. The contributions of electrons impinging on

mutually disjunct scintillator areas to the output signal are statistically independent,

which makes both the expectation value and the variance additive, hence E(u, v) and

V (u, v) can be evaluated by integration over the complete scintillator area:

E(u, v) = p̂(u, v)

∫
ĝµ(u, v) dµ (2.4)

V (u, v) = p̂(0, 0)

∫
|ĝµ(u, v)|2dµ . (2.5)

It is instructive to follow the discussion with two model examples:

1. An ideal camera: In this case, each electron generates a sharp signal exactly at

its incident position, hence gµ(x, y) = δ(x, y), with no dependence on µ. This

means that ĝµ(u, v) ≡ 1 and therefore

E(u, v) = p̂(u, v) and V (u, v) = p̂(0, 0) . (2.6)
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The variance of each Fourier component is therefore equal to the total electron

dose, independent of the spatial frequency and hence the noise is pure white

noise.

2. A randomly scattering camera: In this (practically useless) camera, each elec-

tron is scattered at random before detection and generates a sharp signal at

a position entirely unrelated to its incident position. This is described by

gµ(x, y) = δ(x − xµ, y − yµ) with dµ = dxµdyµ/A, where A is the total scin-

tillator area. The probability space M is a simple one in this case, with

each trajectory µ fully described by the displacement vector (xµ, yµ) and with

equal probabilities for all displacements within the scintillator. The result is

ĝµ(u, v) = e−2πi(uxµ+vyµ) and therefore E(u, v) is zero for all non-zero spatial

frequencies, whereas V (u, v) is the same as for the ideal camera.

2.2.1 The modulation transfer function

The MTFS is defined as the ratio E(u, v)/p̂(u, v) of the output to the input signal in

reciprocal space, normalised to unity at zero spatial frequency, hence

MTFS(u, v) =

∫
ĝµ(u, v) dµ/G (2.7)

This function is real as long as the scattering is isotropic. G, defined by

G =

∫
ĝµ(0, 0) dµ (2.8)

represents the total gain of the scintillator, i.e. the average number of detectable

CCD well electrons per primary electron.

The inverse Fourier transform of the MTFS is the Point Spread Function (PSF)

PSF(x, y) =

∫
gµ(x, y) dµ/G (2.9)

given by the average intensity generated by many electrons hitting the scintillator at

the origin.
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2.2.2 The noise transfer function

The NTFS is defined as the square root of the ratio between output and input vari-

ance, normalised to unity at zero spatial frequency. The input variance can be calcu-

lated as the output variance of an ideal detector with unit gain, i.e. with ĝµ(u, v) ≡ 1,

hence

Vin(u, v) = p̂(0, 0) (2.10)

The NTFS is therefore given by:

NTFS(u, v) =

√∫
|ĝµ(u, v)|2dµ∫
|ĝµ(0, 0)|2dµ

, (2.11)

where the integral in the denominator ensures normalisation to unity at zero spatial

frequency.

This expression is different from the MTFS, in that the NTFS represents an av-

erage over the power spectra of the intensity distribution generated by individual

electrons. Hence, whereas the MTFS is related to the extent of the intensity distri-

bution of many electrons with the same incident point, the NTFS is related to the

average area of the intensity distribution caused by single electrons. This is exem-

plified by the random scattering camera, where the NTFS is one for all frequencies

whereas the MTFS is zero for all non-zero frequencies.

2.2.3 The spatial frequency dependent DQES

The DQES is defined in terms of the signal to noise ratios of input and output signal:

DQES(u, v) =
SNR2

out(u, v)

SNR2
in(u, v)

. (2.12)

The square of the output SNR is given by:

SNR2
out(u, v) =

(E(u, v))2

V (u, v)
(2.13)

The input SNR is the SNRout of an ideal detector, hence the DQES is:

DQES(u, v) =
|
∫
ĝµ(u, v) dµ|2∫
|ĝµ(u, v)|2dµ

. (2.14)
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This equation shows that the DQES can never be larger than one and is one for a

given frequency iff ĝµ(u, v) is independent of µ, i.e. if there is no stochastic component

in the signal conversion.6

Equation 2.14 can also be re-written in terms of experimentally accessible quan-

tities:

DQES(u, v) =
p̂(0, 0)G2(MTFS(u, v))2

V (u, v)
, (2.15)

where p̂(0, 0) is the total number of electrons recorded in each exposure, V (u, v) is

the variance, here in units of ‘number of CCD well electrons squared’, and G is the

gain, i.e the average number of CCD well electrons generated per incident electron.

It should be noted that, unless the dose is very low, such that dose independent noise

sources such as readout noise become important, the observed variance V (u, v) is

proportional to the electron dose and hence the DQES is dose independent. A simple

rescaling of units into the digital numbers (DN) that are read out from the camera

finally gives the expression,

DQES(u, v) =
IDNGDN(MTFS(u, v))2

VDN(u, v)
, (2.16)

where GDN is the gain in digital numbers per incident electron, IDN = p̂(0, 0)GDN

is the total intensity in digital numbers and VDN(u, v) is the variance in (DN)2.

Usually, rotational symmetry can be assumed and it is furthermore advantageous to

introduce the dose independent Noise Power Spectrum NPS(k) = VDN(k)/IDN so

that the DQES becomes

DQES(k) =
GDN(MTFS(k))2

NPS(k)
. (2.17)

Both the MTFS and the NPS can be measured experimentally and are corrected

for sampling effects, as discussed in sections 2.4 and 2.5.

6Proof: with ĝ =
∫

ĝµdµ, the proposition follows from 0 ≤
∫
|ĝµ−ĝ|2dµ =

∫
ĝ∗µĝµdµ−2ĝ∗ĝ+ĝ∗ĝ =∫

|ĝµ|2dµ− |ĝ|2, where the equality holds iff ĝµ = ĝ ∀µ.
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2.2.4 Calculating the transfer properties by Monte-Carlo in-

tegration

The output signal of the image conversion chain in the CCD-camera is a continu-

ous distribution of CCD well electrons, hence Io(x, y) consists of δ-functions at the

positions where CCD well electrons are generated. These diffuse into pixelated po-

tential wells, but this pixelation is treated separately, as it destroys the translational

invariance of the problem.

A CCD well electron generated at position (xp, yp) in the image plane, contributes

δ(x− xp, y− yp) to the output signal collected and hence exp(−2πi(xpu+ ypv)) to its

Fourier transform ĝ(u, v). Thus

ĝµ(u, v) =
∑
p

e−2πi(xpu+ypv) , (2.18)

where the summation extends over all detected photons that are generated from a

primary electron with trajectory µ. The integrals
∫
ĝ(u, v)dµ and

∫
|ĝ(u, v)|2dµ can

be approximated by taking the average of ĝ(u, v) and |ĝ(u, v)|2 over a large number

of simulated trajectories. This can only be performed for a limited number of (u, v)-

values. In this work, the averaging was performed at discrete and equidistant sampling

points along the positive u-axis in Fourier space, which is sufficient because of the

rotational symmetry. It should be noted that the Fourier transform ĝ(u, v) evaluated

this way is not impaired by aliasing, as (xp, yp) are continuous co-ordinates and at

this stage, no sampling in real space has taken place.

2.2.5 Sampling effects

The electrons of the electron–hole pairs generated in the CCD-chip are collected

in relatively sharp sided, pixelated potential wells.7 Mathematically, this can be

reasonably described as a convolution with a top-hat function

Ip(x, y) = Io(x, y)⊗
[
χ[−1/2,1/2](x)χ[−1/2,1/2](y)

]
(2.19)

7In the following, all distances and spatial frequencies are given in units of the pixel spacing and
the sampling frequency, respectively



50

followed by a multiplication with an infinite 2-D array of δ-functions

ICCD(x, y) = Ip(x, y) ·

[∑
m,n

δ(x−m)δ(y − n)

]
. (2.20)

The first operation represents the integration over the pixel area, such that for any

(x, y), Ip(x, y) is the average value of Io in the unit square centred at x, y. The second

operation represents the sampling, discarding all information between the discrete

sampling points (m,n) with integer co-ordinates. In the Fourier domain, this is

equivalent to a multiplication with a sinc-function

Îp(u, v) = Îo(u, v)sinc(πu)sinc(πv) (2.21)

followed by a convolution with an array of δ-functions

ÎCCD(u, v) = Îp(u, v)⊗

[∑
m,n

δ(u−m)δ(v − n)

]
. (2.22)

The latter convolution leads to the well-known aliasing effect, which makes the dis-

tinction between frequencies that differ by an integer vector (m,n), impossible. The

applicability of the MTF concept to sampled systems has been the subject of some

discussion (de Ruijter, 1995, and references therein). Clearly, the apparent amplitude

of a sampled sinusoidal function is dependent on the positions of the maxima and min-

ima with respect to the sampling points. However, the sampling theorem (Jerri, 1977)

implies that as long as the input signal is bandwidth-limited to frequencies below the

Nyquist limit, i.e. (u, v) ∈ [−1/2, 1/2][−1/2, 1/2], the intensity at any point in the

image can be retrieved from the values at the discrete sampling points. Equation 2.22

shows that the sampling does not alter the amplitude of isolated Fourier components,

it only copies them across to different frequencies. This implies that the MTF is well

defined by the output/input ratio of the Fourier transform components. The MTF

concept is therefore fully applicable to sampled imaging systems (de Ruijter, 1995).

The MTF can even be sensibly defined for spatial frequencies above the Nyquist limit

as the amplitude of the output signal divided by the amplitude of a sinusoidal input
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signal. However, it is only possible to distinguish contributions from above and below

the Nyquist limit in specialised situations using prior knowledge about the image.

Relevant examples are images of skewed sharp edges (section 2.4.1), undersampled

images of crystals (Koeck, 1998) and electron holograms (Ishizuka, 1993). According

to equation 2.21 the total MTF is given by

MTF(u, v) = MTFS(u, v)sinc(πu)sinc(πv), (2.23)

with the additional caveat that frequencies above the Nyquist limit are aliased to

below the Nyquist limit.

The effect of sampling on the noise transfer

Distinction between noise from below and above the Nyquist limit is not possible.

As the contributions from different spatial frequencies mapped together by aliasing

are independent, their variances are additive. Therefore, the variance of the sampled

CCD image is:

VCCD(u, v) =
∑
m,n

V (u+m, v + n)sinc2(π(u+m))sinc2(π(v + n)) (2.24)

This immediately yields the total noise transfer function

NTF(u, v) =

{∑
m,n

NTFS2(u+m, v + n)sinc2(π(u+m))sinc2(π(v + n))

}1/2

(2.25)

and the DQE

DQE(u, v) = DQE(0, 0)
MTF2(u, v)

NTF2(u, v)
, (2.26)

where DQE(0, 0) = DQES(0, 0) provided that the pixel width is equal to the pixel

spacing, as assumed in this work.
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Figure 2.4: The DQE of an ‘ideal’ camera with independent pixels, plotted for axial
and diagonal directions (solid lines), is substantially smaller than 1 due to noise
aliasing. The dashed lines show how the DQE is improved when deterministic blurring
(in this example: MTFS(k) = NTFS(k) = e−4k2

, dotted line) is introduced into the
image chain before the sampling takes place.
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The DQE for a camera with no spreading in the scintillator

An application of equation 2.25 to the ideal camera (MTFS ≡ 1 and NTFS ≡ 1)

yields:

NTF(u, v) =

[∑
m

sinc2(π(u+m))

][∑
n

sinc2(π(v + n))

]
≡ 1 , (2.27)

using the identity∑
n

sinc2π(n+ k) =
1

π2

∑
n

sin2(π(n+ k))

(n+ k)2
=

sin2 πk

π2

∑
n

1

(n+ k)2
= 1 . (2.28)

with the standard sum (Riley et al., 1997, p 661)∑
n

1

(n+ k)2
=

π2

sin2 πk
. (2.29)

The total NTF of the ideal camera is hence identical 1, in agreement with the

fact that its pixels are independent of each other, giving rise to white noise in the

discrete Fourier transform. However, as the signal transfer is attenuated due to pixel

integration according to equation 2.23, the resultant DQE (figure 2.4) is substantially

smaller than 1:

DQE(u, v) = sinc2(π(u+m))sinc2(π(v + n)) . (2.30)

The additional noise that gives rise to this lowered DQE can be understood as quan-

tisation noise, which occurs when an analogue entity (incident position) is converted

into a digital one (pixel number). This detrimental effect of the sampling on the

DQE can be avoided when both MTFS and NTFS drop rapidly above the Nyquist

limit. This necessitates a degree of deterministic blurring in the imaging chain. Fig-

ure 2.4 shows an example where MTFS(k) = NTFS(k) = e−4k2
. This demonstrates

that it is beneficial for pixelated systems when blurring with a point spread function

width comparable to the pixel size occurs between amplification and sampling. This

spreads the signal from a single detected particle over a small number of pixels and

provides information about the incident position at sub-pixel accuracy, reducing the
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quantisation noise. However, in CCD cameras, the blurring occurs partly before the

amplification due to the random scattering of the incident electrons, leading to an

overall DQE that is substantially inferior to an ideal pixelated camera.

The effective pixel number

As a useful single figure of merit for pixelated image detectors, an “effective pixel

number” can be defined by:

Neff =
∑
k

DQE(k) , (2.31)

where the sum extends over all pixels in the discrete Fourier transform. This figure of

merit gives a good comparator of how much information can be obtained from a single

image in a given exposure time in spite of the presence of noise. When the number

of pixels is doubled by doubling the array size in one dimension, the effective pixel

number appropriately doubles. If instead the pixel number is doubled by reducing the

pixel size to half in one dimension, the increase in the effective pixel number is less

than a factor of 2. For a camera where the MTF and hence the DQE is already zero

beyond the Nyquist limit, this doubling of the pixel number would only add ‘dead

resolution’, reflected in an effective pixel number that remains constant. This figure

of merit also implies that doubling the average DQE is as valuable as doubling the

camera area by doubling the pixel number. This is a sensible assertion for noise and

dose limited applications, since doubling the DQE allows the use of half the exposure

time to get the same signal to noise ratio. Hence the smaller camera can capture

the same information as the larger camera in the same time by using two subsequent

exposures of adjacent areas.

As noted in section 20, the DQE of a camera for which both the MTFS and the

NTFS are identical 1, is substantially smaller than 1, and for this camera, Neff =

0.60Ntot. An effective pixel number equal to the total pixel number Ntot could only

be achieved with a camera where the MTFS and NTFS are equal and large below

the Nyquist limit and vanish above the Nyquist limit. This is nearly impossible to
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achieve, however, in the example with MTFS(k) = NTFS(k) = e−4k2
discussed in

section 20, Neff = 0.84Ntot, already a substantial improvement. In section 2.6, the

effective pixel number is calculated for commercially available cameras, giving values

that are in many cases below 10% of the actual pixel number.

2.3 The Monte-Carlo model

As discussed in the previous section, the signal and noise properties of the image

conversion chain can be evaluated by Monte-Carlo simulations. To this end, the

trajectories of a large number of electrons incident at the origin have to be calculated.

For each electron, all processes up to the generation of CCD well electrons have to be

simulated, with random numbers used for each stochastic process involved. For each

electron,

ĝµ(u, v) =
∑
p

e−2πi(xpu+ypv) , (2.32)

where (xp, yp) are the positions where CCD well electrons are generated. This ĝµ(u, v)

must be calculated at suitable sampling points (u, v). The averages of ĝµ(u, v) and

|ĝµ(u, v)|2 at these sampling points over a large number of simulated trajectories

approximate the integrals
∫
ĝ(u, v)dµ and

∫
|ĝ(u, v)|2dµ that are needed to evaluate

the signal and noise transfer properties.

2.3.1 The electron scattering model

The electron scattering model used in the simulations follows the description by Joy

(1995). In this model electron trajectories are straight lines between discrete elastic

Rutherford (1911) scattering events. Inelastic scattering is modelled by assuming a

continuous energy loss according to the Bethe (1930) formula along these trajectories,

neglecting the usually small directional change in inelastic scattering events. The

modifications to Joy’s original model used here and described subsequently include:
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1. More accurate relativistic corrections to the Rutherford formula for elastic scat-

tering are incorporated (section 2.3.1).

2. The relativistic Bethe formula is used instead of the non-relativistic one (sec-

tion 2.3.1).

3. The generation of fast secondary electrons is modelled by including both the

path of the secondary electron and the directional change of the first electron.

This means that large-angle electron-electron scattering is treated as a discrete

scattering event and is removed from the continuous Bethe energy loss (sec-

tion 2.3.1).

Discrete scattering events

When the total scattering cross section per atom is σ, the mean free path λ between

two scattering events in a material with atomic weight A and density ρ is given by

λ =
A

Naρσ
. (2.33)

As scattering events are mutually independent, the actual path length is governed

by a negative exponential distribution with mean λ, which can be implemented by

choosing the path length according to

l = −λ ln(RND) , (2.34)

where RND is a random number betweeen 0 and 1. A scattering event is further

characterised by the scattering angle θ and the azimuth φ. Figure 2.5 illustrates how

the unit direction vector cn after the scattering event n can be determined. The first

step is to evaluate the unit vectors u and v from the initial direction c = cn−1:

u =
c2z

1− c2z


cx

cy

− c2x+c2y
cz

 and v = c× u . (2.35)



57

x

y

z

cn−1

Pn θ
φ

cn

u

v

Pn+1

Pn−1

cxcy

cz

Figure 2.5: The modelled electron trajectory consists of straight lines between scat-
tering events at the points Pi. The momentary direction after the n-th scattering
event is described by a unit vector cn. Each scattering event is characterised by a
scattering angle θ, an azimuth angle φ and the free path length ln−1 since the last
scattering event at Pn−1.
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It can be shown by inspection that c, u and v are orthonormal and that u is in

the plane defined by c and the z-axis. In terms of these vectors, the new direction

c′ = cn can be expressed as

c′ = c cos θ + u sin θ cosφ + v sin θ sinφ . (2.36)

Elastic scattering

The main process leading to directional changes in the path of the electron is elastic

scattering by the nuclei. In the non-relativistic limit for a naked nucleus of charge Ze

this process is described by the Rutherford cross-section (Rutherford, 1911):

dσ

dΩ
=

(
Ze2

2 · 4πε0 mv2

)2
1

sin4(θ/2)
. (2.37)

The cross section diverges for θ → 0 and yields an infinite total cross section, which

is due to the infinite range of the coulomb interaction. When the field of the nucleus

is screened by the orbiting electrons, the cross section becomes finite. Relativistic

effects can be crudely incorporated by using the relativistic mass m = m0/
√

1− β2

with β = v/c. These modifications yield:

dσ

dΩ
=

(
Ze2

2 · 4πε0 m0c2β2v2

)2
1− β2

(sin2(θ/2) + αs)2
(2.38)

=

(
Ze2

2 · 4πε0 E2
k

)2
(Ek + E0)

2

(Ek + 2E0)2

1

(sin2(θ/2) + αs)2
, (2.39)

where E0 = m0c
2 is the rest energy and Ek = E0/

√
1− β2−E0 is the kinetic energy

of the electron. The screening parameter αs can be evaluated using an analytical

approximation (Bishop, 1976):

αs = 3.4×10−3Z0.67 keV

E
. (2.40)

For high energies, the relativistic correction given in equation 2.38 is no longer

sufficient. Instead, the Dirac equation for an electron in the Coulomb field of the

nucleus has to be solved. This has been performed by Mott (1929, 1932), giving an
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(a)

(b) 50µm

Figure 2.6: Three trajectories of 200kV electrons in a glass-supported 50µm thick
YAG scintillator in (a) x−z-projection and (b) x−y-projection. In (b), the positions
where photons are detected on the CCD-chip are also marked, with different symbols
for the three trajectories. As the stopping power increases with decreasing energy,
localised spots of illumination are generated where an electron is stopped in the
scintillator. The light generation can occur at a large lateral displacement from the
original incident point, especially if the electron is stopped after being back-scattered
from the supporting layer. This effect leads to a strong discrepancy between MTF and
NTF, as the former is determined by the area illuminated by many electrons incident
at the same point, while the latter is determined by the average area illuminated by
a single electron.



60

infinite series in powers of αZ = Zα, where α ≈ 1/137 is the fine structure constant.

When terms above the second order in αZ are ignored, the result can be expressed in

the form of equation 2.38 multiplied by a correction factor (Birkhoff, 1958, p. 103)

R = 1− β2 sin2

(
θ

2

)
+ παβ sin

(
θ

2

)[
1− sin

(
θ

2

)]
. (2.41)

Although this correction considerably reduces the cross-section for large angle

scattering (by up to 50% at 300kV), the change in the resulting MTF and NTF

was found to be less than 2%, as large angle scattering is sufficiently rare that the

precise cross section for large angle scattering has little impact on the overall result.

Nevertheless, the relativistically correct version of the Rutherford scattering formula

was used in all simulations shown.

Energy loss: The Bethe stopping power

The main process by which an electron loses energy in the energy range in question

(1keV ≤ E ≤ 400keV) is scattering by the electrons in the solid. Radiative loss by

bremsstrahlung is far less important and ignored in the following, as the ratio of these

two loss mechanisms is given by (Birkhoff, 1958, p. 63)

(dE/dx)rad

(dE/dx)coll

=
EZ

800MeV
< 2.5% for E < 400kEv, Z < 50. (2.42)

A full quantum mechanical treatment of inelastic scattering of electrons by atoms

was first performed by Bethe (1930), who treated atoms as assemblies of oscillators

with frequencies ωi and oscillator strengths fi with
∑
fi = 1. This yields the Bethe

equation for the energy loss:

−dE

dx
=

4πNAe
4ρ

m0v2A
ln
m0v

2

J
, (2.43)

where

J =

(∏
i

(~ωi)fi

)
1/Z (2.44)

is the average ionisation potential, which has been measured experimentally and is

tabulated. In this work, the values supplied with the program by Joy (1995) were
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used. At low energies, the logarithmic term in equation 2.43 diverges and the formula

becomes inaccurate. This can be overcome by adding 2cjJ with cj = 0.85 to the

numerator of this term (Gauvin and L’Esprance, 1992; Joy, 1995). At higher energies,

a full relativistic treatment is necessary. Bethe carried out this calculation and found

−dE

dx
=

2πNAe
4ρ

m0v2A

[
ln

(m0v
2 + 2cj)(E + cj)γ

2

2J2
− (

2

γ
− 1

γ
) ln 2 +

1

γ2
+
γ − 1

8γ

]
,

(2.45)

with the usual abbreviations γ = 1/
√

1− β2 and β = v/c. Equation 2.45 has been

amended with the low-energy correction mentioned above. In the simulations, cj =

0.85 is used, while the original equation is recovered for cj = 0.

Fast secondary electron generation: Möller scattering

Electron-electron scattering processes in which the primary electron loses an appre-

ciable fraction of its energy lead to the generation of fast secondary electrons. The

two electrons that emerge from this process are indistinguishable, but by convention,

the one that has more energy is called the primary electron and the other one the fast

secondary electron. The cross-section for a process with a fractional energy transfer

is approximately ∝ 1/ε2 and hence processes with relatively small energy transfer are

most important. These give rise to secondary electron emitted at nearly right angles

to the primary electron trajectory and hence the fast secondary electrons can lead to

a substantial broadening of the interaction volume for high-energy electrons in thin

films (Joy et al., 1982). Non-relativistic formulae for the Monte-Carlo modelling of

this process have been given (Joy et al., 1982; Joy, 1995). In this work, the rela-

tivistic model given in Gauvin and L’Esprance (1992) is used instead. It is based on

the cross-section derived by Møller (1932) for the interaction of an energetic primary

electron with a free electron at rest:

dσ

dε
=

2π

m0c2β2E

(
e2

4πε0

)
2

[
1

ε2
+

1

(1− ε)2
+

(
τ

τ + 1

)
2 +

2τ + 1

(τ + 1)2
· 1

ε(1− ε)

]
,

(2.46)
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where ε = ∆E/E is the fractional energy transfer, ε0 is the permittivity of free space

and τ = E/m0c
2. The total cross section for processes with an energy transfer larger

than a threshold εc is calculated by integrating equation 2.46:

σ =

∫ 1/2

εc

dσ

dε
(ε)dε . (2.47)

Similarly, a uniformly distributed random number RND can be converted into a

correctly distributed random value for ε by solving

RND =

∫ ε

εc

dσ

dε
(ε′)dε′

/∫ 1/2

εc

dσ

dε
(ε′)dε′ (2.48)

for ε (Gauvin and L’Esprance, 1992). The polar angles θp and θs of the primary and

fast secondary electron can be calculated from ε as (Møller, 1932):

sin2 θp =
2ε

2 + τ(1− ε)
(2.49)

sin2 θs =
2(1− ε)

2 + τε
. (2.50)

When the generation of fast secondary electrons with energies greater than εE is

treated separately, the contribution of this processes to the Bethe stopping power

(equation 2.45) has to be subtracted from the stopping power used to calculate the

continuous energy loss.

This contribution of fast secondary electron generation to the Bethe stopping

power is

−dE

dx

∣∣∣∣
FSE

=
ρNAZ

A

∫ 1/2

εc

εE
dσ

dε
dε

= − 2πρNAZ

m0c2β2A

(
e2

4πε0

)
2

[
3 ln 2− 1

8

(
τ

τ + 1

)
2 +

2τ + 1

(τ + 1)2
ln 2

+ ln εc +
ln(1− εc)

1− εc
+

1

2
ε2
c

(
τ

τ + 1

)
2 +

2τ + 1

(τ + 1)2
ln(1− εc)

]
. (2.51)
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2.3.2 Emission and scattering of photons

Photons emitted along the electron trajectories can reach the CCD chip directly or

after reflection at the top scintillator surface. As the photons are generally not emit-

ted in the focal plane of the optical system, the position where they are detected

is displaced from the projected trajectory. For YAG and other single crystal scin-

tillators an additional effect is important and must be considered. Due to its high

refractive index the crystal acts as a waveguide for photons emitted at small angles

to the scintillator surface. Some of these photons will eventually be scattered into the

aperture of the optical system and give rise to intensity at a large lateral distance d

from the place where they were produced, which leads to a characteristic tail in the

PSF.

Provided that the scattering of photons is isotropic and sufficiently rare that it is

only significant for light confined in the scintillator waveguide a simple model can be

used to calculate the additional intensity due to this effect. For a photon emitted or

scattered into a random direction, the probability of reaching the entrance aperture

without further scattering is

p1 =
1 + rus

2
(1− cosαaper) , (2.52)

where rus is the upper surface reflectivity for photons emitted into the upwards cone

subtended by the aperture semiangle αaper. The aperture semiangle is the acceptance

angle in the scintillator material with refractive index nscint. It is related to the

acceptance angle αair in air and the numerical aperture NA by

nscint sinαaper = sinαair = NA , (2.53)

hence P1 is

p1 =
1 + rus

2

(
1−

√
1− sin2 αair

n2
scint

)
=

1 + rus

2

(
1−

√
1−N2

A/n
2
scint

)
. (2.54)

Similarly, the probability for the photon trajectory to be in a direction that leads

to multiple internal reflections is

p2 = cosαlim , (2.55)
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where αlim is the limiting angle for total reflection at the scintillator/support interface.

With these notations, the probability that a photon emitted in a random direction

reaches the optical entrance aperture after exactly n scattering events is p1p
n
2 , so the

ratio of the intensities reaching the aperture with and without scattering is

Iindirect

Idirect

=

(
p1

∞∑
n=1

pn2

)/
p1 = p2/(1− p2) . (2.56)

For a YAG/glass interface,8 αlim = arcsin(1.5/1.83) = 55◦, thus p2 = cosαlim = 0.57

and hence the above ratio is 1.35 for a glass-supported YAG. The long-range blurring

associated with multiple total reflection and scattering cannot be avoided with a

dielectric anti-reflection coating, as this has no influence on the total reflection. A

light-absorbing coating on the top surface could be used to reduce the waveguide

effect, albeit at the penalty that the upper surface reflectivity rus, and hence the

conversion efficiency, is also reduced.

Amorphous phosphors have been modelled by passing the electron at random

between the active phosphor grains and inactive matrix, where the path length in

each material is a random number with negative exponential distribution and a mean

value given by the grain size and the fill factor.

The photon scattering in phosphor scintillators is modelled as a random walk

with a mean free path for scattering events (which are supposed to be isotropic) and

a different mean free path for absorbtion.

2.3.3 The Monte Carlo simulation program

Although the Monte Carlo simulation program used to predict the performance of

CCD cameras by simulations is based on an original program by Joy (1995) a signif-

icant number of changes were made over time such that almost none of the original

code remained unchanged. These significant changes include:

• Conversion to Visual C++ to make the program run under Microsoft Windows.

8Refractive indices nYAG = 1.83 (Daberkow et al., 1991) and nglass = 1.5 (Vogel, 1995).
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• Design of a graphical user interface for entering parameters.

• Implementation of a batch program interpreter. This allows calculations with

different values for the simulation parameters to be run as a batch job. The

batch programming language is described in appendix B.

• The simulation of electron passage through layers of different materials (coating,

scintillator, support).

• The simulation of photon trajectories.

• Integration of the detected light distribution to yield the MTFS and NTFS.

• Modifications to the electron scattering model as described in section 2.3.1.

2.3.4 Simulation results

The Monte Carlo simulation results presented in this section illustrate the influence of

some of the simulation parameters and the underlying physical effects on the transfer

properties of CCD camera.

The pulse height distribution

The distribution p(g) of the number g of photons produced by individual electrons is

called the pulse height distribution. It is directly related to the gain G and to DQE(0)

by

G = g (2.57)

DQE(0) =
g2

g2
. (2.58)

Daberkow et al. (1996) have measured this distribution for a 50 µm YAG scintilla-

tor on a glass support by illuminating it with a low-intensity electron beam, collecting
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Figure 2.7: Distribution of the number of photons generated by individual electrons
in an glass-supported 50 µm YAG scintillator.
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the produced light with a photo multiplier and analysing the pulse heights of the mul-

tiplier output with a multi-channel analyser. Figure 2.7 shows simulation results for

such a scintillator, which are in good agreement with the experimental findings in

(Daberkow et al., 1996). Most electrons with low primary energy lose their entire

energy in the scintillator. This gives rise to a pronounced peak in the distribution

function at a number of generated photons proportional to the primary energy. Only

the small fraction of electrons that are back-scattered from the scintillator give rise

to events with lower photon numbers. At higher energies, electrons can penetrate

through the scintillator, and as the energy increases, fewer electrons lose their entire

energy in the scintillator, hence the peak at the associated photon number vanishes

in figure 2.7 at energies larger than 200 kV. Instead another peak starts to emerge at

much lower photon numbers, corresponding to electrons that pass through the scintil-

lator on relatively straight path. As both the stopping power and the cross-section for

large-angle scattering events decrease with increasing energy, this peak shifts towards

lower photon numbers as the energy increases. There are, however, still events where

more photons are produced. These are partly due to electrons that are scattered at a

large angle, giving rise to a longer path length in the scintillator. The more important

contribution arises from electrons that are back-scattered into the scintillator from

the support layer, giving rise to a continuous spectrum of photon numbers due to the

unspecified energy lost in the inactive support layer.

This broad spectrum of photon numbers greatly increases the variance of the

pulse height distribution and therefore reduces the DQE, as shown in figures 2.8(a)

and (b). In figure 2.8(c), the probability for different types of trajectories is given

as a function of electron energy. At low energies, most electrons lose their entire

energy in the scintillator and the gain increases in proportion to the incident energy,

while the DQE is only limited by the Poisson spread of the photon number and by

back-scattering losses. At 150 kV, electrons start to penetrate the scintillator, and

the photon number starts to fall behind a linear increase. As the voltage increases
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further, the gain starts to decrease due to the decreasing stopping power and cross-

section for large angle scattering. At 300 kV, the probability of not reaching the

support layer is vanishingly small, but about 30% of the electrons are back-scattered

into the scintillator after reaching the support layer,9 reducing the DQE(0) to ca 0.5.

The effect of the support layer on the resolution

The back-scattering from the support layer not only reduces the DQE(0), but also the

MTF because the electron trajectories in the support layer can extend over relatively

large lateral distances.

To study the implications of this effect, simulations at a range of voltages have

been carried out for supported and unsupported scintillators. Results for a phosphor

scintillator with a thickness of 20 µm are presented in this section.

Figure 2.9 demonstrates how back-scattering from the support layer broadens the

point spread function at high energies.

The effect on the MTFS is shown in figure 2.10. At 100 kV, the support layer has

no influence, as very few electrons penetrate through the scintillator. With increasing

voltage, the MTFS of the supported scintillator shows an increasingly rapid decline

of the MTFS at low frequencies that is not present for the unsupported scintillator.

The NTFS, however, is largely unaffected, since the back-scattered electrons gen-

erate relatively sharp spots of illumination. Therefore, at high electron energies, the

DQE is strongly reduced at medium and high spatial frequencies by the presence of

a supporting layer, as demonstrated in figure 2.11.

2.4 Experimental determination of the MTF

In general, measuring the MTF of an imaging system requires nothing more than

analysing the response of the system to an input signal containing many spatial

9This may appear a high value for a back-scattering coefficient but it should be noted that most
electrons enter the support layer at an angle to the plane normal.
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Note that (d) is drawn at a different scale.
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frequencies of known strength. The most obvious choice of input signal is a sharp

step function, which can be achieved experimentally by partially covering the camera

with a sharp knife edge (Daberkow et al., 1991; de Ruijter, 1995; Weickenmeier et al.,

1995). As a step function contains all spatial frequencies, this allows the MTF to be

determined from a single image. Care must be exercised to avoid aliasing artefacts

as the spectrum of the input signal extends beyond the Nyquist limit, and effective

noise filtering must be applied, as the high spatial frequency components of a step

function are weak. Alternative input signals include holographic fringes (de Ruijter

and Weiss, 1992) and images of amorphous carbon (van Zwet and Zandbergen, 1996),

in these cases, however, the absolute contrast of the input signal is unknown and hence

only ratios of the MTF at different spatial frequencies can be obtained by comparing

images at different magnifications.

In the following a detailed account of the accurate MTF determination with the

knife edge method is given, as reported earlier (Meyer and Kirkland, 2000).

2.4.1 The knife edge method

The main challenge in using the knife edge method is the image processing needed to

avoid aliasing artefacts and to provide a noise-free MTF. De Ruijter [1995] describes

an elegant way to solve the former problem. Their solution makes use of an edge

that is slightly skewed with respect to the pixel columns, hence the contributions

from above and below the Nyquist limit are separated in the 2-dimensional Fourier

transform.

The approach developed in this work also uses an edge with a small skew relative

to the pixel columns, which means that the edge position varies slightly from line to

line in this image. This is used to extract an oversampled edge profile by combining

the data from all lines shifted to a common origin with sub-pixel accuracy. In the

following this process is outlined for an oversampling factor of 8, which is sufficient

to safely avoid any aliasing artefacts.

1. An image, I1, of a knife edge slightly skewed with respect to the pixel columns
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is recorded together with an image, I2, without the edge but with otherwise

identical illumination conditions and an image, I3, without illumination.

2. A normalised edge image (I1 − I3)/(I2 − I3) is calculated.

3. The edge position in each line of this image is determined to an accuracy of 1/8

pixel. This is achieved by multiplying the Fourier transform of the line with

a Gaussian filter (with a width of approximately half the Nyquist frequency)

and subsequently extending it over an 8-fold longer interval by zero padding.

Inverse Fourier transform yields an 8-fold oversampled, filtered edge profile and

the edge position is between the points where this function changes from below

to above 1/2.

4. An 8-fold oversampled averaged edge profile from the original linescans is ob-

tained by shifting the edge positions to a common origin as illustrated in fig-

ure 2.12(b). Each linescan contributes to the values at every eighth sampling

point of the oversampled edge profile and different linescans provide comple-

mentary information at the other sampling points because the edge is skewed.

5. The oversampled averaged edge profile already shows almost perfect point sym-

metry, i.e f(x) ≈ 1 − f(−x). However, the bright side is more affected by

noise than the dark side as for Poisson noise the variance is proportional to the

intensity. Therefore the accuracy of the MTF can be enhanced by a weighted

symmetrisation

f̃(x) =
w(x)f(x) + w(−x) (1− f(−x))

w(x) + w(−x)
(2.59)

where for each x, the weighting factor w(x) is the inverse standard deviation of

the individual linescan values contributing to f(x). With this modification, the

signal-to noise performance of the edge method is no longer inferior to the slit

method as reported by Cunningham and Reid (1992).



75

(a)

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100

(b)
0

0.2

0.4

0.6

0.8

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

(b)
0

0.2

0.4

0.6

0.8

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

(c)

0

0.1

0.2

0.3

-5 -4 -3 -2 -1 0 1 2 3 4 5

Distance from edge in pixels

Figure 2.12: (a) 8-fold oversampled edge profile from the image of a skewed edge
recorded at 100 kV on a camera with a YAG scintillator. (b) The central region of
this edge profile. Each individual linescan (one example shown with crosses) con-
tributes to the values at every eighth sampling point in the average oversampled edge
profile (diamonds). (c) After symmetrisation, a numerical differentiation according
to equation 2.59 yields the line spread function convolved with a top-hat function.
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6. The MTF is obtained as the Fourier transform of the Line Spread Function,

LSF(x). It should be noted that the edge profile f̃(x) can be expressed as

LSF(x) convolved with a step function:

f̃(x) = LSF(x)⊗ χ[0,∞](x) , (2.60)

where the characteristic function χI is 1 within the interval I and 0 elsewhere.

A numerical differentiation (figure 2.12(c)) now yields:

g(x) = −f̃(x+ 1/2)− f̃(x− 1/2) (2.61)

= LSF(x)⊗ χ[0,∞[(x)⊗ (δ(x+ 1/2)− δ(x− 1/2)) (2.62)

= LSF(x)⊗ χ[−1/2,1/2](x) (2.63)

This numerical differentiation involves subtraction only between values obtained

from the same set of linescans, which is important in reducing the noise. Fourier

transforming both sides yields

MTF(k) = ĝ(k)/sinc(πk) (2.64)

7. Correction for the integration over the pixel size is effected by a further division

by sinc(πk):

MTFS(k) = MTF(k)/sinc(πk) (2.65)

8. All the information about the MTF at high spatial frequencies is contained in

the central region of the function g. The stochastic inaccuracy in the extracted

MTF can be greatly reduced when, prior to calculating the MTF, the tails of the

function g are filtered with a real space averaging filter whose width increases

with increasing |x|.

Figure 2.13 gives an example of an MTF obtained by this method. Due to the

oversampling, the method yields meaningful values even above the Nyquist limit up to
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ca. 0.8 times the sampling frequency. Above this limit, the values become unreliable

as the denominator in equation 2.64 approaches zero. The MTF extracted with this

method is extremely reproducible as illustrated by the independence of the MTF on

the edge position relative to the camera found in this work.

2.4.2 Importance of oversampling

It should be noted that the MTF cannot be obtained without oversampling from a

single linescan, because in the latter case, the transferred signal at high spatial fre-

quencies is disturbed by aliased contributions from above the Nyquist limit. When the

edge coincides with a pixel centre, this interference is destructive, giving a measured

MTF of zero at the Nyquist frequency. For an edge position located exactly between

two pixels, contributions from above the Nyquist limit will enhance the apparent

transfer, giving an MTF with twice its correct value at the Nyquist limit.

These artefacts are even more severe in the method proposed by Weickenmeier

et al. (1995) in which the effect of the camera is modelled by a discrete LSF acting

on a sampled sharp edge. This effectively interchanges the sequence of blurring and

sampling, which is incorrect since the two operation do not commute. The effect of

this on the measured MTF is investigated in the following example.

A camera with a given total MTF and corresponding (continuous) line spread

function LSF is covered by an edge at x0 with 0 < x0 < 1/2. The intensity measured

at pixel n (at position x = n) is given by:

F (n) =

∫ ∞

x0

LSF(n− x)dx (2.66)

The effect of the camera is now modelled by a discrete LSF (DLSF) acting on an

pixel-integrated sampled edge FS(n) with

FS(n) =


0 : n < 0

1/2− x0 : n = 0

1 : n > 0

(2.67)
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Hence, the DLSF fulfils;

F (n) =
n−1∑

m=−∞

DLSF(m) + (1/2− x0)DLSF(n). (2.68)

Therefore,

F (n)− F (n− 1) = (1/2− x0)DLSF(n) + (1/2 + x0)DLSF(n− 1) (2.69)

Taking the Discrete Fourier Transform (DFT) on both sides, using the shift theorem

and rearranging yields:

DMTF(k) =
1

(1/2− x0) + (1/2 + x0)e2πik
DFT[F (n)− F (n− 1)], (2.70)

where the DMTF is the DFT of the DLSF. Figure 2.14 demonstrates that this function

differs significantly from the true MTF and is strongly dependent on the position of

the edge relative to the pixel columns.

2.4.3 MTF correction by deconvolution

Once the MTF is determined, its effect on the image can be reversed by a simple

deconvolution process. This will restore all Fourier components up to the Nyquist

limit with their original strengths. However, contributions from above the Nyquist

limit will not be correctly restored and therefore an MTF correction that restores

sharp edges at arbitrary positions is not possible, as demonstrated in the previous

section.

It nevertheless is instructive to apply the MTF correction to an image of an edge

and to subsequently extract an oversampled edge profile from this image as described

above.

The result is shown in figure 2.15. The edge profile shows oscillations of about 9%

of the step height. This is effect is known as Gibbs’ phenomenon and occurs when

the Fourier transform of a sharp edge is truncated at a certain spatial frequency.

The MTF extracted from this line profile (figure 2.16) represents the complete

transfer from the original object to the deconvolved image. It is apparent that all
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of the sampled sharp edge with this LSF yields the calculated intensities. The discrete
FT of this LSF is shown for an edge aligned with a pixel column centre (dashed line)
and for an edge aligned between two pixel columns (dotted line). This illustrates
the strong dependence of this apparent MTF on the position of the edge and the
significant over-estimation of the MTF when the edge is close to a pixel column
centre.
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Figure 2.15: Oversampled edge profile from an edge image that is fully MTF corrected
by deconvolution. Note the oscillation on both sides of the step due to the truncation
of frequencies above the Nyquist limit (Gibbs’ Phenomenon).
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Figure 2.16: MTF extracted from the edge profile in figure 2.15, representing the
complete transfer from the object to the deconvolved image. Frequencies below the
Nyquist limit are restored to their original strengths, while the transfer decays rapidly
above the Nyquist limit.

frequencies up to the Nyquist limit are indeed perfectly restored and that the transfer

decays rapidly above the Nyquist limit.

In practice, it is rarely favourable to extend the deconvolution to the Nyquist limit.

In order to avoid intolerable noise levels it is experimentally better to truncate the

total signal transfer at a lower frequency with a soft edged filter. This also eliminates

aliasing artefacts from components just above the Nyquist limit.
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r=1 r=2 r=5 r=10 r=20
N=1 40% 28% 18% 13% 9%
N=14 11 % 8 % 5 % 3.4% 2.4%
N=70 5 % 3.4% 2.1 % 1.5 % 1.1%
N=294 2.3 % 1.6 % 1.0 % 0.7 % 0.5%

Table 2.1: Statistical error in the NTF measured from a rotational average at Fourier
space radius r from N power spectra.

2.5 Experimental determination of the NTF

For each frequency (u, v) the image intensity Fourier transform Î(u, v) is a complex

random variable with Gaussian distribution and variance V (u, v). When the illumi-

nation is uniform,10 the expectation value E(u, v) is zero for all (u, v) 6= (0, 0). The

values |Î(u, v)|2 in the power spectrum are themselves random variables, with expec-

tation value V (u, v) and variance (V (u, v))2.11 Therefore, an average of M power

spectra of images with uniform illumination provides estimates of V (u, v) at each

(u, v) with an relative accuracy of 1/M corresponding to a relative error of 1/
√
M in

the NTF. If V (u, v) can be assumed to be rotationally symmetric, rotational averag-

ing can be used concommittantly, reducing the relative error in the NTF estimated

from M images with N ×N pixels to approximately 1/
√

2πkNM , where k is the

spatial frequency in 1/pixel and hence kN is the Fourier space radius in pixels.

Table 2.1 demonstrates that in order to achieve a high accuracy at low frequencies,

averaging over many power spectra is necessary.

Therefore, several series of M = 16 unprocessed images with uniform illumination

10For non-uniform illumination the difference I1−I2 of two images with identical illumination can
be used instead.

11Proof: A complex random variable z with Gaussian distribution and standard deviation σ has the
probability density p(z) = (1/πσ2) e−|z|

2/σ2
. Integration of |z|2p(z) and |z|4p(z) over the full complex

plane is simplified by changing to polar co-ordinates with r = |z| and substituting u = r2/σ2. This
yields |z|2 = (1/πσ2)

∫∞
0

2πrr2e−r2/σ2
dr =

∫∞
0

uσ2e−udu = σ2 and |z|4 =
∫∞
0

u2σ4e−udu = 2σ4.

Hence var(|z|2) = |z|4 −
(
|z|2
)2

= σ4.
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were recorded.12 After subtracting an average of the dark current images, the unpro-

cessed images were then gain-normalised by division by the mean of the series. This

also removes the effect of the illumination being slightly non-uniform. Subtracting the

average of the previous and the next image from each processed image in the series

effectively eliminated all remaining non-noise contributions to the power spectrum

due to drift in the illumination conditions. Each non-zero spatial frequency Fourier

component of these now truly uniform noise images has an expectation value of zero

and a variance 3(M − 1)/(2MĪ2)VCCD(u, v), where Ī is the average intensity prior to

gain normalisation.

The variance can be measured by averaging many power spectra of such images.

The averaged power spectrum must then be corrected for the effects of the CCD

sensor, namely attenuation by pixel integration and aliasing. The difficulty of aliasing

correction is that contributions from below and above the Nyquist limit cannot be

distinguished in a noise image, as discussed in section 2.2.5. This is expressed in

equation 2.24, for convenience re-iterated below.

VCCD(u, v) =
∑
m,n

V (u+m, v + n)sinc2(π(u+m))sinc2(π(v + n)) (2.71)

The aim of aliasing correction is to obtain an estimate for V (u, v) from the measured

values of VCCD(u, v). The method developed in this work relies on the assumption

that V (u, v) has rotational symmetry and that V (k) is small enough to be ignored

for k ≥ 3/2.13

This implies that

VCCD(1/2, 0) = 2 (2/π)2 V (1/2) + 2 (2/(3π))2 V (3/2) + . . .

= 8/π2 V (1/2) (2.72)

and VCCD(1/2, 1/2) = 4 (2/π)4 V (
√

2/2) + 8 (2/π)2(2/(3π))2 V (
√

10/2) + . . .

= 64/π4 V (
√

2/2) . (2.73)

12It is important that many uniformly illuminated images are recorded to achieve a high accuracy
at low frequencies. The number of dark images is less critical.

13The latter assumption allows to restrict the summation in equation 2.71 to m,n ∈ {−1, 0, 1}.
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For a good estimate of V(1/2,0) the pixels in the near neighbourhood of (1/2, 0)

should be utilised as well. This can be done by finding constants a, b, c such that the

function14 c+ a(u− 1/2)2 − bv2 best approximates the averaged experimental power

spectrum Vexp(u, v) in the neighbourhood of (1/2, 0). V (1/2) can then be obtained

as an average of cπ2/8 and the value obtained in the same manner from the pixels

near (0,1/2).15

Taking into account that aliasing increases the variance 4-fold at the corners of

the power spectrum, V (
√

2/2) can be obtained by fitting a paraboloid function to the

values around (1/2, 1/2). Fitting an exponential function through the values obtained

for k = 1/2 and k =
√

2/2 gives an estimate Vest(k) for V (k) above the Nyquist limit.

This is used to evaluate the expected contributions due to aliasing as

Valias(u, v) =
1∑

m=−1

1∑
n=−1

(1− δm0δn0)Vest(u+m, v + n)sinc2(π(u+m))sinc2(π(v + n))

(2.74)

and subtract them from the power spectrum. The corrected power spectrum, Vcorr(u, v)

is thus obtained as

Vcorr(u, v) = (Vexp(u, v)− Valias(u, v)) /
(
sinc2(πu)sinc2(πv)

)
. (2.75)

A rotational average of this function finally yields Vcorr(k) and the NTFS is evaluated

as

NTFS(k) =
√
Vcorr(k)/Vcorr(0) (2.76)

This method for aliasing correction is illustrated in figure 2.17. It should be noted

that an analytical model of the NTF is not required. An analytical function is fitted

only for the corrections and the consistency of this fit can be checked by comparing

the fitted function Vest and the resulting Vcorr for 1/2 ≤ k ≤
√

2/2. If the former was

too high, Valias would be over-estimated and the resultant Vcorr would be too low.

14For reasons of symmetry, this function is the complete second order Taylor expansion of VCCD

in (1/2, 0).
15It should be noted that the discrete Fourier transform is continued periodically, so that the

neighbouhood of (1/2,0) contains values from both the left and right border of the discrete Fourier
transform.
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Figure 2.17: Aliasing correction for the NTFS measurement. (a) At a given spatial
frequency k, the uncorrected experimental noise power spectrum Vexp contains con-
tributions from all frequencies k − (m,n) with integers m,n. Due to aliasing Vexp

is increased the 2-fold at the border centres (thin circles) and 4-fold at the corners
of Fourier space (thick circle). With this knowledge, the encircled regions can be
used to obtain estimates for V (0.5) and V (0.707). An exponential function Vest(k)
is fitted through these points and used to estimate aliasing contributions to Vexp,
which can then be subtracted. After correcting for pixel integration, a rotational
average is taken. (b) The root of the corrected noise power spectrum together with
the exponential function (thin line) that was used above the Nyquist frequency for
aliasing correction. The good match shows that the contributions from aliasing were
estimated with sufficient accuracy.
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An alternative aliasing correction, where an analytical function is fitted to the

NTF, has previously been proposed (Hülk and Daberkow, 1998). However, this

method leads to an over-estimate of the aliasing correction necessary at Nyquist

when compared to the method discussed here.

Figure 2.18 shows a typical corrected power spectrum, averaged over all series.

This averaging is essential for an accurate normalisation for which the root of the noise

power spectrum has to be extrapolated to zero spatial frequency. Experimentally, to

keep the data collection times and the total volume of data within acceptable limits,

most series were recorded with pixel binning and thus only contribute to the centre

regions of Fourier space, where data is most needed. In total 21 series were recorded,

one without binning, 4 with 2×2 binning and 16 with 4×4 binning. Each series

had 16 images and hence provided 14 power spectra.16 The aliasing correction has to

be performed separately for the 3 different binning conditions, as they have different

Nyquist frequencies. No systematic difference could be observed between the binned

an unbinned power spectra, even near the Nyquist limit of the binned ones, which

indicates that the aliasing correction is effective.

2.6 Experimental results

Using the methods described above, a number of cameras with different scintillators

at different voltages were investigated. Table 2.2 lists the cameras for which results

are presented and discussed in this section.

2.6.1 A camera equipped with YAG scintillator at 100 kV

The first experiments were carried out on camera 1 in table 2.2, a Gatan 679 CCD

camera with YAG scintillator fitted to a post-column imaging filter (GIF), which is

installed on a 100kV VG STEM in Cambridge to record energy spectra and energy-

filtered nano-diffraction patterns. The MTF was measured using the shadow image of

16For the first and the last image, the subtraction of (In−1 + In+1)/2 is not possible.
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Figure 2.18: Average of a large number of aliasing corrected power spectra obtained
from several series of images. The very long series were recorded with pixel binning
and contribute only to the centre region of Fourier space.
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No. Model Scintillator HT [kV] Microscope Page
1 Gatan 679 YAG 100 VG STEM, Cambridge 87
2 SIS BioCama Phosphor 100 Philips CM 100 94
3 Gatan 679 Phosphor 100-400 JEM 4000FX, Cambridge 95
4 Gatan 794 Multiscan Phosphor 300 JEM 3000F, Oxford 99
5 Gatan 794/IF20 Megascan Phosphor 300 JEM 3000F, Oxford 99
6 SIS Megaview Phosphorb 120-200 JEM 2010 102

aThe raw data for this measurement was provided by I. Daberkow (Hülk and Daberkow, 1998).
bLens-coupled.

Table 2.2: The key characteristics of the cameras investigated in this work.

the edge of a pneumatically retractable bright-field (BF) detector mounted between

the last GIF crossover and the CCD camera. The detector was stopped between

the inserted and retracted position by interrupting the airflow during retraction. To

avoid additional intensity due to electrons reflected from the side of the retractable

device, only images where the edge covered more than half of the field of view, as in

figure 2.19, were included in the analysis.

The results were first published in (Meyer and Kirkland, 2000) and have also been

used to illustrate the experimental methods described in the previous section.

Figure 2.20 shows a rapid decline of both the MTFS and the NTFS at low spatial

frequencies. This can be attributed to the waveguide effect described in section 2.3.2,

which affects both MTFS and NTFS as it takes place after amplification. This also

means that this effect has little influence on the DQE, which only declines slowly at

low spatial frequencies. Extrapolation to zero spatial frequency yields DQE(0)=0.87,

which closely agrees with the value reported by Daberkow et al. (1991) and also with

simulations (see below) and is close to the back-scattering limit of 0.93 discussed in

section 2.3.4. The high value of the DQE helps in achieving a high effective pixel

number of Neff = 392000 = 0.37Ntot, which is the highest percentage of the total

pixel number observed in any of the cameras measured.

Figure 2.21 shows a comparison of the experimental results and a simulation with

the parameters given in column 3 of table 2.3. Most of the parameters reflect known

characteristics of this camera. The scintillator thickness, however, was not known, as



90

Variable Description YAG Phosphor
Aperture Semi-angle of optical entrance aperture 33 60
AperWidth Width of soft aperture edge 0 0
E Incident energy [keV] 100 400
c Conversion factor 0.05 0.05
EPhot Average energy of generated photons 2.2 2.2
IncAngle Incident angle of the electrons 0 0
TopRefl Reflectivity of the top scintillator surface 1 0
BotRefl Reflectivity of the bottom scintillator surface 0 0
Focus Position of optical focus plane [µm] 31 41
DFrac Total reflection ration 1.35 0
DRad Mean displacement by multiple total reflection [µm] 600 0
KMax Maximum frequency kmax [mm−1] 25 25
KSamp Sampling step between k-values [mm−1] 0.25 0.25
N Number of primary electrons in simulation 20000 20000
TCoat Thickness of coating [µm] 1 1
TScint Thickness of scintillator [µm] 30 40
TSupp Thickness of support layer [µm] 2000 2000
MScint Scintillator material 71 (YAG) 83 (GOS)
MSupp Support layer material 73 (Glass) 73 (Glass)
MFill Filling material in phosphor scintillators 73 (Glass)
GrainSize Phosphor grain size — 3
FillFactor Phosphor fill factor 1 0.7
LamPhAbs Mean free path for photon absorbtion [µm] 0 80
LamPhSca Mean free path for photon scattering [µm] 0 80
NScint Refractive index of the scintillator 1.83 1.2
NSupp Refractive index of the support 1.5 1.5
Rob0 Width of optical PSF of the CCD camera 10 10
Rob30 Ditto, at 30 incidence angle 13.6 13.6
MtfFile File where MTF, NTF and DQE are recorded YAG.dat phos40.dat

Table 2.3: List of the variable names used in the batch language of the Monte Carlo
simulation program, together with the values used in the simulations that yielded the
best match to experimental data for a YAG scintillator (figure 2.21) and a phosphor
scintillator (figure 2.25).
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Figure 2.19: The edge of a pneumatically retractable bright-field detector in a half-
retracted position in front of the CCD camera was used to measure the MTF.

it is treated as proprietary information by the manufacturer. In simulations it was

found that the MTF at high spatial frequencies depends strongly on the scintillator

thickness, mainly because increasing the thickness increases the distance of the in-

cident point from the optical focus plane, which invariably is the back scintillator

surface for fibre-optically coupled systems. The best match of the simulation results

to the experimental data was achieved for a thickness of 30 µm, an estimate that was

confirmed to be reasonable by Gatan representatives. The second parameter that

was not known independently is the ‘mean displacement by multiple total reflection’,

which was determined by fitting the low spatial frequency part of the MTFS. The

good overall agreement of experiment and simulation suggests that the simulation

program is a useful predictive tool for optimising parameters in camera design.
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Figure 2.20: MTFS, NTFS and DQES for camera 1 at 100 kV. Both MTFS and
NTFS drop rapidly at low spatial frequencies due to the waveguide effect in the YAG
scintillator. The DQES, however, remains high over a wide range of frequencies.
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Figure 2.21: Comparison of the experimental results for camera 1 with simulations
with the parameters given in column 3 of table 2.3
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Figure 2.22: MTFS, NTFS and DQES for camera 2 at 100 kV. For comparison, the
DQES of camera 1 is also shown.

2.6.2 A camera with thin phosphor scintillator at 100 kV

This section presents results from a re-examination of the raw data taken by Hülk and

Daberkow (1998) on a SIS BioCam camera at 100 kV with the methods developed

in this work. The camera has a thin17 phosphor scintillator with is fibre-optically

coupled to a 1k×1k CCD chip with 24 µm pixel size.

The results in figure 2.22 show that the NTFS is substantially higher than the

MTFS at high frequencies, in contrast to the good agreement found by Hülk and

Daberkow (1998). This is mainly because in the determination of the NTFS in that

17The precise value of the scintillator thickness is proprietary information, but my estimate of 10
µm was confirmed to be a good estimate by company sources.
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paper aliasing was over-corrected as the correction procedure was based on the as-

sumption that the NTFS is increased 2-fold at the Nyquist limit, whereas in fact it

is the power spectrum that is increased 2-fold.

In comparison with camera 1 (figure 2.20), the MTFS is clearly superior due to the

lack of the waveguide effect and because the light is generated closer to the focus plane

due to the much thinner scintillator. However, this comes at the price of a reduced

zero-spatial frequency DQE due to the phosphor granularity and, more importantly,

because the electrons are able to penetrate through the thin scintillator. Both effects

widen the distribution of path length spent in scintillating material and hence the

pulse height distribution. The comparison of the DQES of both cameras in figure 2.22

shows that these disadvantages outweigh the benefits of having a thin scintillator, as

the DQES of camera 2 is only superior at the highest spatial frequencies, which are

of no practical importance as they only represent pixels at the corners of the 2-

dimensional Fourier transform. The effective pixel number Neff = 292000 = 0.28Ntot

is therefore slightly lower than for camera 1, but the difference is sufficiently small

that it might be outweighed by other benefits.

2.6.3 The high voltage problem

In order to investigate the long-range blurring predicted for high electron energies and

supported scintillators in section 2.3.4, measurements at voltages ranging from 100 kV

to 400 kV were performed on a Gatan 679 CCD camera with phosphor scintillator

fitted to a post-column imaging filter (GIF), which is installed on a JEOL 4000FX

in Cambridge (camera 3). The retractable TV camera mounted in front of the CCD

camera in this GIF was used as an edge in the same fashion as the BF detector for

camera 1.

Figure 2.23 shows that, as the voltage increases, the MTFS starts to drop increas-

ingly rapidly at low spatial frequencies due to the electrons back scattered from the

support layer. The influence of the accelerating voltage on the NTFS is much weaker

and therefore, the DQES in figure 2.24 drops increasingly rapidly from its zero spatial
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Figure 2.23: (a) MTFS and (b) NTFS of the 1k Gatan camera (camera 3) fitted to the
JEM4000FX microscope in Cambridge, measured at electron energies from 100keV
to 400keV in steps of 50keV
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Figure 2.24: DQES of the 1k Gatan camera (camera 3) fitted to the JEOL 4000FX
microscope in Cambridge, measured at electron energies from 100keV to 400keV in
steps of 50keV.

frequency value as the voltage increases.

The low values of the MTFS at high frequencies indicate that the scintillator is

thicker than in the simulations for 20 µm thickness presented in section 2.3.4. The

best match, shown in figure 2.25, was achieved with simulation at a thickness of

40 µm. The simulation parameters are given in column 4 in table 2.3 on page 90.

The figure shows that qualitatively, the voltage dependence of the MTFS and NTFS

is adequately described by the Monte-Carlo model, but disagreements at some spatial

frequencies and voltages show that the model is not entirely accurate.

The main problem is that many of the characteristics of the phosphor, such as the
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Figure 2.25: Comparison of the MTFS and NTFS measured for camera 3 (solid lines)
with simulations (dashed lines). The parameters used for the simulations are given
in table 2.3 (column 4).
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Camera Gain G DQE(0) Neff Neff/Ntot σr
Camera 4 (1k) 4.5 0.57 130000 12% 1.8
Camera 5 (2k) 16.6 0.76 470000 11% 1.1
Camera 5 (2k), binned 16.6 0.76 230000 22% 1.1

Table 2.4: Key characteristics of camera 4 and camera 5, where σr is the readout
noise per (binned) pixel in digital numbers.

grain size and the mean free paths for light scattering and absorbtion are unknown

proprietary information. Building a more accurate simulation model for phosphor

scintillators would require an accurate characterisation of the optical properties of

the phosphor first to reduce the number of unknowns in the Monte Carlo Simulation,

which was beyond the scope of this work.

2.6.4 Comparison of two Gatan cameras at 300kV

This section summarises results obtained for two CCD cameras that are both mounted

on a JEOL JEM-3000F FEG-TEM in Oxford (Meyer et al., 2000a). The first (cam-

era 4) is a Gatan 794 Multiscan 1k×1k camera with a pixel spacing of 27 µm. The

camera is retractable and mounted axially directly above the entrance aperture of a

GIF 2000 imaging filter. The second device (camera 5) is a Gatan 794/IF20 Megas-

can 2k×2k camera with 30 µm pixel spacing located at the end of the GIF, behind

a retractable TV camera. Both CCD cameras were equipped with polycrystalline

phosphor scintillators fibre-optically coupled to the CCD chip.

The retractable TV camera was used as an edge for the MTFS measurement on

camera 5. For the characterisation of camera 4, an aluminium insert containing an

1.2 mm thick aluminium edge was mounted on the lower flange of the microscope

photographic plate camera.

The results of these measurements are shown in figure 2.26 and table 2.4. Camera

5 has a higher gain and a higher zero spatial frequency DQE, but a lower high spatial

frequency MTFS than camera 4. This indicates that the scintillator of camera 5 is
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Figure 2.26: MTFS, NTFS and DQES of the post imaging filter Gatan 2k×2k camera
(camera 5) and the axially mounted Gatan 1k×1k camera (camera 4) attached to the
JEM3000F microscope in Oxford.
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Figure 2.27: The MTFS of camera 5 is slightly lower when measured from the edge
above the GIF, which indicates that the edge is not sufficiently sharp to be used with
20-fold magnification.

substantially thicker than for camera 4, which was confirmed by Gatan. Comparison

with simulations gave estimated thicknesses of 20 µm and 40 µm, respectively.

In order to assess whether the measured MTFS values are underestimated because

the knife-edges were insufficiently sharp, the MTFS of the lower camera was also

determined using images of the upper edge. In these images, the edge is magnified

20-fold due to the electron-optical magnification of the GIF. Figure 2.27 shows that

the MTFS is slightly under-estimated when determined from the upper edge, which

implies that the edge is not sharp enough to be used at a 20-fold magnifications. In

the shadow images used in the other measurements, the edge was at most magnified

3-fold, and as the ratio in figure 2.27 is larger than 0.97 for k < 0.1, this implies that

the relative error due to insufficient edge sharpness in those measurements is at most

3%.

The total DQE, calculated according to equation 2.26 to include the additional

noise due to aliasing is shown for both cameras in figure 2.28(a), and the effective
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pixel number, calculated 2-dimensional summation over this function, is quoted in

table 2.4.

At low electron dose, the readout noise18 becomes important, reducing the DQE

and the effective pixel number. The strength of the readout noise was determined by

calculating the power spectrum of a difference image between two dark field images.

An essentially white power spectrum was obtained,19 from which the readout noise

was measured, with the results quoted in table 2.4.

Figure 2.28(b) gives the total DQE of camera 4 at various electron doses, while

figure 2.29 shows how the effective pixel number deteriorates for low electron doses.

For very low electron doses, it can be beneficial to reduce the influence of the readout

noise by pixel binning, as n×n-binning increases the signal per binned pixel n2-fold,

while leaving the readout noise constant. This counterbalances the loss of information

and additional noise from beyond the new Nyquist limit at very low doses, as shown

in figure 2.29. It should however be noted that this applies only at extremely low

doses, which are hardly used in electron microscopy and at which useful information

can only be extracted using sophisticated averaging techniques.

2.6.5 A lens-coupled camera with phosphor scintillator

Measurements on a SIS Megaview camera (camera 4) were done while this camera was

temporarily installed on a JEM2010 in the department of chemistry in Cambridge.

The camera is a retractable device mounted on the 35 mm port. The phosphor

scintillator is mounted on a glass prism that serves to deflect the emitted light by

90◦ sidewards into a standard photo objective, which focusses the phosphor screen

onto the CCD chip with a magnification factor of M = 0.7. This demagnification is

18At the exposure times of about 1 s used, the dark current noise is small compared to the readout
noise. This is confirmed by the fact that there was no measurable difference between the noise in
dark images at exposure times of 0.1 s and 1 s, respectively.

19For most cameras this power spectrum also showed isolated peaks due to coupling of a parasitic
50 cycle signal into the readout signal. Therefore, the strength of the genuine readout noise was
estimated from the power spectra, where these peaks can be eliminated, rather than directly from
the standard deviation in the difference image.
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Figure 2.28: (a) Total DQE of camera 4 (1k×1k ) and camera 5 (2k×2k) including the
additional noise due to aliasing. (b) The total DQE of camera 4 at different electron
doses. At low dose conditions, the DQE is reduced as the readout noise becomes
important.



104

(a)

0

20000

40000

60000

80000

100000

120000

140000

0.01 0.1 1 10 100

E
ffe

ct
iv

e 
pi

xe
l n

um
be

r

�

no binning

2x2 binning

4x4 binning

(b)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0.01 0.1 1 10 100

E
ffe

ct
iv

e 
pi

xe
l n

um
be

r

�

Electron dose per pixel

no binning

2x2 binning

4x4 binning

Figure 2.29: (a) Effective pixel number Neff as a function of electron dose for (a)
camera 4 and (b) camera 5. At very low doses Neff is larger for 2×2 binning than
without binning, as the fourfold increase in the electron dose per superpixel reduces
the influence of the readout-noise and thereby compensates for the loss in resolution.
Camera 5 features higher gain and lower readout noise than camera 4, therefore the
deterioration of Neff at low dose is less pronounced.
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used to improve the match between the small pixel size (14 µm) and the width of

the scintillator point spread. Generally, the light collection efficiency of lens-coupled

systems is inferior to fibre-optical systems. For a lens characterised by its focal length l

and its f -number20 the lens-object distance is lo = l(M+1)/M and hence the aperture

semiangle is given by

tanα = M/(2f(M + 1)) . (2.77)

The Megaview camera has a lens with f = 1.4 (at l = 50 mm) and hence an accep-

tance angle αair = 8.4◦, which means, according to equation 2.54 that the collection

efficiency is reduced to 1.7% of that achieved with a fibreplate with NA = 1.21

The MTF measurements were carried with a custom-build edge mounted on top

of the scintillator. The focus of the coupling lens was adjusted manually for each

measurement by maximising the high frequency intensity in the power spectrum.

Figure 2.30 shows the MTFS at accelerating voltages of 120, 160 and 200 kV. The

graphs are very similar at high spatial frequencies, but the initial decline at low

frequencies becomes stronger with increasing accelerating voltage as for camera 3.

Figure 2.31 shows that, after an initial exponential decay, the spectra approach a

common asymptotic value of 0.19. This white noise background is due to the Poisson

noise of the generated CCD-well electrons, which gives a constant contribution equal

to GDN,w, which is the gain in digital numbers per CCD well electron, to the noise

power spectrum. From the asymptotic behaviour of the NPS graphs in figure 2.31, a

value GDN,w = 0.19 has been estimated.

This contribution can be subtracted from the NPS to yield a gain independent

NPS:

NPSg(k) = NPS(k)−GDN,w (2.78)

Simple exponential functions provided good fits to this NPSg for all voltages, and

these fitted functions, together with GDN,w, were used to calculate the DQES for

different voltages as shown in figure 2.32. Due to the small gain and therefore the

20f = l/d is defined as the ratio of focal length l and pupil diameter d.
21The ratio given is based on a phosphor matrix refractive index of nscint = 1.2. For YAG

(nscint = 1.83), this ratio is 2.0%.
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Figure 2.30: MTFS of the lens-coupled camera 6 at different voltages.



107

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
P

S�

Spatial frequency [1/pixel]

120 kV
160 kV
200 kV

Asymptotic level

Figure 2.31: Noise power spectra at different voltages converging to a common asymp-
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Figure 2.32: The DQES of camera 6 at high frequencies is mainly limited by the CCD
well electron Poisson noise.

large CCD well electron Poisson noise, the effective pixel number, given in table 2.5,

is lower than for the fibre-optically cameras.

The influence of this well electron Poisson noise on the DQE can be reduced by

increasing the efficiency GDN of the coupling where NPSg(k) increases by the same

factor, while GDN,w remains constant. Therefore, it is interesting to investigate if the

improved resolution that is achieved by demagnification is counterbalanced by the

loss in gain due to the smaller aperture angle according to equation 2.77. Figure 2.33

shows that the optimum trade-off between resolution and gain would be reached with

M = 0.35, i.e. a 3-fold demagnification. This maximum in the effective pixel number

would, however, move to larger values of M under low-dose conditions. In addition,
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Camera Gain G DQE(0) Neff Neff/Ntot

120 kV 0.52 0.66 65000 6%
160 kV 0.35 0.45 39000 3%
200 kV 0.33 0.51 41000 3%

Table 2.5: Key characteristics of camera 6 at different voltages.

the choice of M is restricted by other design constraints, like the maximum size of

the phosphor screen and the choice of commercially available lenses.

2.7 Summary and discussion

The experimental results and simulations presented in this chapter demonstrate that

it is very important to distinguish between signal and noise transfer for CCD cameras.

It has been shown that both the modulation transfer function and the noise transfer

function can be calculated by Monte-Carlo integration of the light distribution gµ

generated by single electrons over a large number of simulated trajectories µ using

the expressions

MTFS(u, v) =

∫
ĝµ(u, v) dµ∫
ĝµ(0, 0) dµ

(2.79)

NTFS(u, v) =

[∫
|ĝµ(u, v)|2 dµ∫
|ĝµ(0, 0)|2 dµ

]1/2

. (2.80)

These expressions imply that the signal transfer depends on the area illuminated

by many electrons with the same incident point, while the noise transfer depends on

the average area illuminated by a single electron. Importantly, the difference between

signal and noise transfer causes the detection quantum efficiency, given by

DQES(u, v) =
|
∫
ĝµ(u, v) dµ|2∫
|ĝµ(u, v)|2dµ

(2.81)

to be strongly spatial frequency dependent.
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As a useful single figure of merit for pixelated image detectors, an “effective pixel

number” can be defined by:

Neff =
∑
k

DQE(k) , (2.82)

where the sum extends over all pixels in the discrete Fourier transform.

The MTFS, which is the MTF corrected for the sampling effects of the camera, can

be measured using images of a sharp edge above the camera. Having the edge inclined

with respect to the pixel columns allows the accurate extraction of an oversampled

edge profile to avoid aliasing artefacts.

The measurement of the NTFS requires series of images with uniform illumination.

An averaged noise power spectrum is computed from power spectra of differences

between the images of the series after gain normalisation. Subsequently, the effect of

aliasing is corrected and the square root of the rotational average is normalised to

give the NTFS.

In agreement with the simulations, experimental results with different cameras

demonstrated a strong discrepancy between MTFS and NTFS, which is increasingly

severe for increasing electron energy.

This strong discrepancy at high voltages, even at moderate spatial frequencies, is

due to back-scattering of electrons into the scintillator from the fibre optic coupling

and causes the effective pixel number to be only about 10% of the actual pixel number

for electron energies of 300 and 400 keV, whereas at 100 keV effective pixel numbers

of up to Neff = .37Ntot were measured. Independently of this work, Downing and

Hendrickson (1999) also found at 400 keV that the signal transfer is much poorer than

the noise transfer. This ‘high-voltage problem’ has previously been largely obscured

since the noise method has often been used to measure the MTF (Zuo, 1996, 2000;

de Ruijter, 1995; Rabbani and van Metter, 1989; Sherman et al., 1996; Fan et al.,

2000).

Possible instrumental solutions to improve the DQE include the use of a tapered

fibre optics to enable the use of even larger scintillator areas with available CCD chips
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(Faruqi et al., 1999), or to use self-supporting lens-coupled scintillators (Fan et al.,

2000).



Chapter 3

Automated aberration

determination: existing methods

3.1 Minimum variance method

The earliest method used used for automated alignment is the minimum variance

method (Erasmus and Smith, 1982; Saxton et al., 1983). This relies on the fact

that the image variance for weak phase objects has an absolute minimum when the

misalignment and astigmatism are zero and the focus is Gaussian. The method

requires very little image processing and hence was the only one viable for on-line

automated alignment at the time. The main disadvantage is that the method is not

predictive, i.e. the minimum has to be found by trial and error, which is only possible

in a reasonable amount of time when the unknown parameters1 are initially close to

their correct values. Furthermore the method is only applicable to weak phase objects.

Within these constraints, the method still proved useful as an automated aid for the

fine-tuning of the microscope alignment.

The same method has also been used to determine the residual aberrations in

1In practice, five variable parameters have to be adjusted routinely. These are the focus (C1)
and the two components of the two-fold astigmatism (A1) and the axial coma (B2).

113
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restored wavefunctions obtained using holography (Fu et al., 1991) or from focal se-

ries (Tang et al., 1996) by minimising the variance in the restored modulus for an

amorphous specimen region. The fact that the method is not predictive in this case

increases the computation time rather than the exposure time. However, the compu-

tational effort required for each set of trial parameters now comprises a multiplication

with a correction phase plate and an inverse Fourier transform in addition to the sim-

ple variance determination, so this disadvantage can be quite substantial, even at the

computing speeds now available. Advanced multi-parameter optimisation algorithms

such as the genetic algorithm are therefore necessary to find the correct aberration

parameters from arbitrary starting positions (Lehmann, 2000).

3.2 Tilt induced displacement measurements

In this method, the required aberration parameters are derived from measurements of

the image displacements induced by different injected beam tilts. The measurement

of these image shifts requires the use of cross-correlations and hence more computing

power than the minimum variance method. The method was first introduced in 1987

(Koster et al., 1987) and more recent accounts can be found in Koster et al. (1989,

1992) and Typke and Dierksen (1995).

According to equation 1.5, the shift A of an image recorded with tilt τ relative to

the axial image is given by

A = A1τ
∗ + C1τ + A2τ

∗2 +
1

3
B∗

2τ
2 +

2

3
B2τ

∗τ + C3τ
∗τ 2 . (3.1)

As this depends on all aberration coefficients, these can be determined by min-

imising the least-squares difference between the measured and expected image shifts,

provided that a suitable set of beam tilts is used.

For sets of N beam tilts of the form τn = τ0e
2πin/N , the parameters can be sep-

arated analytically by calculating Fourier sums of the observed shifts A(n), defined
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by:

A((m)) =
1

N

N−1∑
n

e−2πinm/NA(n) , (3.2)

which automatically separates parameters of different azimuthal symmetry as:

A((0)) =
2

3
B2|τ0|2

A((1)) = C1τ0 + C3|τ0|2τ0

A((−1)) = A1τ
∗
0

A((2)) =
1

3
B∗

2τ
2
0

A((−2)) = A2τ
∗2
0

A((m)) = 0 : m 6∈ {−2,−1, 0, 1, 2} . (3.3)

The above equations apply for N ≥ 5 but for smaller N , the contributions from

coefficients that are equivalent modulo N have to be added. This implies that

A((2)) = A((−2)) =
1

3
B∗

2τ
2
0 + A2τ

∗2
0 for N = 4 . (3.4)

However, the parameters A2 and B2 that appear jointly in this expression can still be

separated with the help of A((0)) that contains B2 only. A separation of the imaging

parameters from observations of image displacements for fewer tilt azimuths N < 4,

however, is not possible.

The paramters C1 and C3 cannot be separated when beam tilts with only one

magnitude are used. The direction of τ0, i.e. the rotation between the tilt coil axes

and the camera axes can determined from A((1)), however a 2-fold ambiguity in this

direction remains unless the sign of C1 + C3|τ0|2 is known.

The accuracy to which the parameters can be estimated for a given accuracy σ in

the shift measurements is given in table 3.1.

Using N > 5 tilt azimuths not only reduces the error in proportion to 1/
√
N , but

also makes the dataset over-redundant and makes it possible to estimate the error σ

from the coefficients A((m)) that should be zero:

σ =
1

N − 5

[
N−3∑
m=3

(
A((m))

)2]1/2

. (3.5)



116

N ∆C1 ∆A1 ∆A2 ∆B2

N = 4 1/2 σ/τ 1/2 σ/τ 3/4 σ/τ 2
√

5/4 σ/τ 2

N ≥ 5 1/
√
N σ/τ 1/

√
N σ/τ 3/

√
5N σ/τ 2 1/

√
N σ/τ 2

Table 3.1: Accuracy to which parameters can be estimated from N -azimuth tilt
induced displacement measurements with tilt magnitude τ when the error in the
measured image shifts is σ.

A practical difficulty with the application of the tilt induced displacement is the

measurement of the image shifts using the peak position in the cross-correlation func-

tion

XCF(r) = FT−1[c∗1c2] (3.6)

The tilt-induced change of the parameter A0 in equation 1.5 introduces a linear phase

variation in the cross spectrum c∗1c2, which leads to a displacement of the XCF peak

to a position given by the shift vector between the images. However, equation 1.5 also

implies that the other imaging parameters also change as the beam is tilted. This

causes the phase-variation to become non-linear at higher spatial frequencies and

leads to distorted cross-correlation peaks, which in general do not have their highest

point at the peak centre. However, when the imaging conditions in both images

are approximately known, the non-linear phase shifts can be compensated and a

sharp XCF peak can be restored (Saxton, 1994a). Another problem with the tilt-

induced shift method is that the displacement by specimen drift is indistinguishable

from the tilt-induced displacement to be measured. This is why this method is most

frequently used at low resolution or for coarse alignment at high resolution (Krivanek

and Leber, 1994). Recently, however, Steinecker and Mader (2000) used the tilt

induced displacement method to determine the aberrations to an accuracy sufficient

for 0.1 nm resolution.
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Figure 3.1: Typical diffractograms from an amorphous germanium foil. (a) Axial im-
age with large underfocus (C1 = −300nm) (b) The beam is tilted along the horizontal
axis, giving rise to apparent astigmatism. (c) At larger beam tilts, the induced astig-
matism is so large that the focus along the axis parallel to the tilt direction changes
to overfocus, giving rise to a cross shaped diffractogram.

3.3 Diffractogram based methods

The optical diffractogram is defined as the power spectrum of the recorded image

intensity. As discussed in section 1.5.1, this diffractogram displays characteristic dark

rings at the zero crossing of the phase contrast transfer function for weak phase objects

(figure 3.1). Traditionally, diffractograms were generated by light optical means as

diffraction patterns of micrographs observed on an optical bench. This technique

has now been superseded by numerical calculation of the diffractogram using fast

Fourier transforms of digitally recorded data. With modern computers, it is possible

to perform this calculation fast enough to display a diffractogram on the computer

screen in real time at 25 frames per second, which provides a valuable tool for manual

focusing, stigmation and alignment. The use of diffractograms for the determination

of aberrations was first suggested by Thon (1966), who devised a method of measuring

the defocus from the ring positions in the diffractogram. The method was later

extended to additionally measure the spherical aberration C3 by Krivanek (1976).

Coene and Denteneer (1991) improved the accuracy of the C3 determination using a
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focus series of diffractograms under axial illumination. Zemlin et al. (1978) used a

tableau of diffractograms acquired with different beam tilt azimuths to additionally

access the antisymmetric aberrations, i.e. axial coma B2 and three-fold astigmatism

A2. They found A2 to be insignificant, but substantial axial coma was measured

in a microscope aligned using the then common current reversal centre alignment

procedure.2 However, the diffractogram tableau method was too time-consuming for

routine use at the time and was only used to demonstrate that the alignment achieved

with the current-reversal method was inadequate and to introduce a new alignment

method based on the visual comparison of the contrast observed from an amorphous

specimen at equal and opposite beam tilts (Zemlin, 1979).

3.3.1 Automated diffractogram fitting

Fitting the parameters C1 A1 such that simulated diffractogram patterns match the

experimental ones can be done manually to relatively high accuracy (Chand, 1997).

This, however, is a lengthy and tedious process and automation of this task is highly

desirable. The major challenges for implementing this are as follows:

1. The most abundant amorphous material in the microscope, carbon, is a very

weak scatterer. Hence, especially at high spatial frequencies, the signal is weak

compared to the noise background.

2. The strength of the observed signal depends on the object as well as the phase

contrast transfer function.

3. Diffractograms taken close to Scherzer or Gaussian conditions show no rings

and are difficult to fit.

2The current reversal centre alignment involves reversing the current of the objective lens and
is no longer practicable with the strong lenses used in modern instruments. This is not to be
confused with the current centre alignment, where the objective lens current is oscillated by a small
amount. Similarly, in the voltage centre alignment, the high tension is oscillated. Generally, the axes
found by the three methods are distinct (Chau, 1993) and usually the voltage centre is a workable
approximation to the coma-free axis, but for lattice images at high resolution coma-free alignment
should be used.



119

4. For some conditions, the diffractograms are cross rather than ring shaped (fig-

ure 3.1(c)), which leads to difficulties for algorithms based on the evaluation of

rotationally averaged sectors of the diffractogram.

5. It is sometimes difficult to distinguish between over and underfocus.

6. Most automated algorithms fail when a significant amount of crystalline mate-

rial is present, leading to strong reflections at positions unrelated to the ring

pattern.

.

Automation of the diffractogram analysis was first tackled by Baba et al. (1987).

Fan and Krivanek (1990) present an algorithm where the diffractogram is divided into

32 sectors and the defocus along the directions in each sector is determined by cross-

correlating the rotational sector average with an array of theoretical diffractograms. A

sinusoidal focus variation as a function of the azimuth angle is fitted to the measured

focus values to determine the defocus and the astigmatism. Using this automated

diffractogram analysis, automatic alignment is achieved using a tableau with 4 tilt

azimuths (Krivanek and Fan, 1992). Since Zemlin’s original paper, the resolution had

meanwhile improved sufficiently for A2 to become important and the accuracy of the

alignment was greatly improved when the hitherto neglected A2 term was included

into the auto-alignment procedure (Krivanek and Leber, 1994).

Many of the practical problems associated with diffractogram fitting are avoided in

an alternative method (Saxton, 2000a), which relies only on the determination of the

orientation of a set of diffractograms at different tilt azimuths. However, C1 cannot

be determined and because less information from each diffractogram is used, more tilt

azimuths are required than with conventional methods. Furthermore, the presence of

crystalline material hampers the automated determination of the symmetry axis of

the diffractograms.
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The advent of C3 corrected microscopes (Haider et al., 1998; Urban et al., 1999)

has made automated aberration determination even more important because the non-

round lens elements introduce a multitude of high-order aberrations (up to six-fold

astigmatism) that have to be corrected in an elaborate alignment procedure. Uhle-

mann and Haider (1998) have developed an algorithm that can evaluate the apparent

defocus and astigmatism from a diffractogram within 400ms. This is based on a

comparison of the experimental diffractogram with a large database of pre-calculated

diffractograms and is fairly robust to disturbances from the presence of crystalline

material (Haider, 2001).

3.3.2 The antisymmetric aberrations

As the antisymmetric aberrations have no influence on whether the object phase con-

trast is transferred into an amplitude contrast in the image, their effect is not visible

in a diffractogram of a single axial image. However, the change in the observed defo-

cus and astigmatism when the beam is tilted by τ does depend on the antisymmetric

aberrations. According to equation 1.5 tilting the beam by τ yields values for the

apparent defocus and astigmatism given by:

A′
1 = A1 + 2A2τ

∗ +
2

3
B2τ + C3τ

2 (3.7)

C ′
1 = C1 + <(

4

3
B2τ

∗) + 2C3τ
∗τ = C1 +

2

3
(B2τ

∗ +B∗
2τ) + 2C3τ

∗τ . (3.8)

Therefore the antisymmetric aberrations can be measured using tableaus of diffrac-

tograms taken with different injected beam tilts. Equations giving estimates for these

aberrations from the measured values of the apparent defocus and astigmatism have

been given elsewhere (Zemlin et al., 1978; Saxton, 1995). Here, a derivation based

on on Fourier sums of these parameters is given for datasets comprising N images

with equal tilt magnitudes at regularly spaced tilt azimuths (τn = τ0e
2πin/N). If the

observed aberrations are denoted C
(n)
1 and A

(n)
1 , Fourier sums of these parameters
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can be defined as:

A
((m))
1 =

1

N

N−1∑
n=0

e−2πimn/NA
(n)
1 (3.9)

C
((m))
1 =

1

N

N−1∑
n=0

e−2πimn/NC
(n)
1 (3.10)

Equations 3.7 and 3.8 for N ≥ 3 then yield

A
((0))
1 = A1 (3.11)

A
((1))
1 =

2

3
B2τ0 (3.12)

A
((2))
1 = C3τ

2
0 (3.13)

A
((−1))
1 = 2A2τ

∗
0 (3.14)

A
((n))
1 = 0 : n 6∈ {−1, 0, 1, 2} (3.15)

C
((0))
1 = C1 + 2C3τ

∗
0 τ0 (3.16)

C
((1))
1 =

2

3
B2τ0 (3.17)

C
((−1))
1 =

(
C

((1))
1

)∗
(3.18)

C
((n))
1 = 0 : n 6∈ {−1, 0, 1} (3.19)

Extraction of the parameters is now straightforward; B2 can be evaluated from

both the C1 and A1 measurements with an optimum estimate using both given by

B2 =
2

3τ

σ2
CA

((1))
1 + σ2

AC
((1))
1

σ2
A + σ2

C

, (3.20)

where σC and σA are the errors in the measured values for apparent defocus C1

and complex astigmatism A1, respectively. Two-fold and three-fold astigmatism are

determined as A1 = A
((0))
1 and A2 = A

((−1))
1 /(2τ ∗0 ) from the tilt-induced astigmatism

measurements. The axial value of C1 is best determined from an axial image, as

the estimate C1 = C
((0))
1 − C3|τ0|2 requires an accurate knowledge of C3 and the tilt

strength.

The angle between the tilt x-axis and the image x-axis, arg(τ0), can be determined

from A
((2))
1 , however, the sign of τ0 remains undetermined and the equations are
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invariant under a simultaneous change of the signs of τ0, A2 and B2. Furthermore, it

has been assumed in equations 3.11–3.19 that τn progresses counterclockwise when n

is increased. When the direction of the y tilt coil is reversed, the opposite is the case

and the sign of n has to be changed in the above equations. Both cases can easily be

distinguished for N > 4 by comparing A
((2))
1 and A

((−2))
1 , but this ambiguity remains

for N = 4. Both ambiguities can be resolved using tilt-induced shift measurements.

The measurements of |τ0| and C3 cannot be separated, hence C3 can only be

measured when the tilt coil strength is calibrated accurately. This calibration is

achieved by measuring the shift of the diffraction pattern of a known crystal when

the beam is tilted. As the apparent strength of the tilt coils for the JEOL3000F was

found to be a sensitive function of the lower condensor lens settings, these settings

must be identical for calibration and experiment. On the other hand, if C3 is known

accurately, |τ0| can be determined along with all the other parameters. Expressions

for the accuracy of the determined parameters are given in table 3.2 in terms of the

accuracies σC , σA of the estimates for the apparent C1 and A1 values. Finally, for over-

determined datasets, the RMS difference between the experimental values of C
(n)
1 , A

(n)
1

and the values predicted from the fitted parameters according to equations 3.7 and

3.8 is a measure of the quality of the fit. This can be used to estimate the accuracy

of the underlying C1 and A1 values as

σC =
1

N − 3

[
N−2∑
m=2

(
C

((m))
1

)2
]1/2

(3.21)

σA =
1

N − 4

[
N−2∑
m=3

(
A

((m))
1

)2
]1/2

. (3.22)

3.4 Phase cross-spectrum analysis

According to equation 1.5, all aberration parameters change when the beam is tilted.

In the cross-spectrum of two images recorded with different beam tilts the change
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∆C1 ∆A1 ∆A2 ∆B2

σC/
√
N σA/

√
N σA/(2τ

√
N) 3σAσC/[2τ

√
N(σ2

A + σ2
C)]

Table 3.2: Accuracy to which the aberrations can be estimated from an N -azimuth
(N ≥ 4) diffractogram tableau with tilt magnitude τ when the errors for the measured
values of C1 and the complex A1 are σC and σA, respectively.

in A0 leads to a phase variation that is linear in k. However, due the change in

the other parameters, there is also a nonlinear phase variation, which is a hindrance

in the application of the tilt induced displacement method presented in section 3.2.

This non-linear phase variation in the cross spectrum between two images taken at

different incident beam tilt can also be exploited for aberration determination. This

was first suggested by Koster et al. (1989), who derives expressions for the phase

cross spectrum expected for weak phase objects. The idea was successfully tested in

practice by Ichise et al. (1997), who were able to measure defocus C1, astigmatism

A1 and coma B2 using the phase cross spectra of two images with equal beam tilts in

perpendicular directions with an axial image. The method was found to give accurate

results with an amorphous germanium foil as a sample, however, even with this ideal

sample, the features in the phase cross spectrum are difficult to recognise due to the

presence of noise and it was not confirmed if the method was still applicable when

smaller amounts of amorphous material were present. An additional problem with

this method is that all unknown parameters have to be estimated simultaneously by

fitting a predicted phase cross spectrum with the experimental one. This makes the

method too slow to be considered for on-line use.
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3.5 Holographic measurement using Fourier trans-

form phases

Fu and Lichte (1995) present a method to measure the symmetric part γs of the wave

aberration γ directly rather than indirectly through the coefficients. This method

requires the holographic recording of the image wave for an amorphous weak phase

object. For such an object, all spatial variation of the object wave is purely imaginary,

therefore its Fourier transform fulfils the symmetry relation

ψobj− = −ψ∗obj . (3.23)

In terms of the image wave ψ, this implies that

ψ−e−iγ− = −ψ∗eiγ (3.24)

e2iγs = ψψ−
/
|ψ(k|2 (3.25)

γs =
1

2
arg[ψψ−] modulo π . (3.26)

Note that the last equation is only valid modulo π, whereas a correction of the sym-

metric aberrations requires γ to be known modulo 2π. Fu and Lichte (1995) resolve

this ambiguity using an algorithm similar to phase-unwrapping, based on the fact

that γs is a continuous function. As the method measures γs separately for each k

and therefore attempts to determine a large number of independent parameters, its

accuracy is mainly limited by the signal to noise ratio. Therefore, it is advantageous

to exploit the knowledge that γs can be approximated by

γs =
2π

λ
<
[1
2
A′

1ω
∗2 +

1

2
C ′

1ω
∗ω +

1

4
C ′

3ω
∗2ω2

]
(3.27)

where ω = λkx + iλky. This reduces the number of parameters to be determined to

4. A method that exploits the above symmetry relation to determine the symmetric

aberration parameters is presented in section 4.2.
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3.6 ‘Diffprop’: propagation of crystal reflections

in the diffraction plane

All the methods discussed thus far work best for amorphous objects and require at

least some irregularities in the object structure. In contrast, an alternative ingenious

approach (Malamidis and Lichte, 1998) allows the determination of the wave aberra-

tions from the holographically reconstructed image wave of a crystalline object. The

gradient ∇γ is determined at the positions of the crystal reflections by measuring

how these reflections shift as the image wave is defocused from the diffraction plane.

For an understanding of this method consider the image wave of a crystalline sample

with crystalline reflections at frequencies ki:

ψ = eiγ

(∑
i

Fi(k− ki)

)
(3.28)

where Fi(k) is the Fourier transform of the planar shape function fi(x). The

shape function describes how the complex amplitude of a diffracted beam varies as a

function of position in the object plane.3 These variations are slow compared with the

lattice spacing, hence Fi(k) is strongly localised at the origin and therefore the wave

aberration function γ(k) can be replaced by its first order Taylor expansion about ki,

yielding

ψi(k) = eiγ(ki)ei(k−ki)·∇γ(ki)Fi(k− ki) (3.29)

for the contribution of reflection i. The second exponential factor in this equation

represents a linear variation of the phase across the diffraction spot. This gives rise to

a lateral shift of the diffraction spot when the wave is propagated to planes below and

above the diffraction plane. The diffprop method relies on measuring the gradient of

γ at the positions of diffraction spots from this lateral shift.

It is evident that diffprop requires some inhomogeneity in the object, as a uniform

fi(x) would yield a sharp diffraction spot δ(k− ki) with no information on the wave

3|fi(x)|2 would be observed as the dark field image using reflection i. The phase of fi(x) is
constant across a crystallite with no grain boundaries.
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aberration gradient. A suitable object would be a small crystallite, as the spatial

restriction of fi(x) leads to a broadening of the diffraction spot and facilitates the

measurement of ∇γ(k) across the diffraction spot. For a diffraction pattern recorded

directly in the microscope, the diffraction spots are also broadened by the beam

divergence. This is, however, not the case for a diffraction pattern calculated from a

holographically or otherwise restored image wave. The recorded hologram (or image)

is an incoherent superposition of holograms (or images) recorded at different beam

directions. In each of these, the zero-order beam is tilted in the same way as the

diffracted beams in the object wave. Hence the beam divergence does not broaden

the diffraction spots in the restored diffraction patterns but instead reduces their

intensity due to the spatial coherence envelope. The necessary spatial restriction

of the shape function, however, leads to another problem. If fi(x) is not symmetric

about the origin, the shape function itself introduces a phase gradient in the diffraction

spot which is indistinguishable from that due to the wave aberration.4 This problem

can be alleviated when the shape functions of the investigated diffraction spots are

equal apart from constant factors,5 as in this case the shape function leads to equal

shifts of all diffraction spots and the aberration function can be evaluated from the

shift differences. This makes the method equivalent to evaluating the aberrations

by bringing the dark field images of a crystallite calculated from different diffracted

beams into registry, which is a viable approach as in the presence of aberrations, the

contributions from different diffracted beams are shifted relative to each other.6

It may be argued that a suitable shape function can be forced by restricting the

field of view with a window function w(x). This leads to the new wave function

ψ′(k) = ψ(k)⊗W (k) (3.30)

4This agrees with the fact that when a diffraction pattern is defocused in the microscope, the
diffraction spots widen and begin to show the patterns of dark field images. Hence for a crystalline
object covering only part of the selected area the diffraction spots appear to move laterally as the
diffraction pattern is defocused.

5This is the case for thin crystals, but does not hold for larger thicknesses since, with dynamical
scattering, the strength of different beams does not vary in proportion as the thickness increases.

6This is similar to the aberration determination method suggested by Budinger and Glaser (1976).
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and the phase gradient due to the shape function is compensated when w(x) is centred

on the shape function. However, a restricted window function is no substitute for

inhomogeneities in the object because while restricting w(x) does indeed broaden the

diffraction spots, it also smears out the phase gradient that is to be measured. This

can be illustrated in 1 dimension with Gaussian shape and window functions with

widths a and b, respectively, such that Fi(k) = e−a
2k2

and W (k) = e−b
2k2

.

This yields

ψ′i(k) = eiγ(ki)

∫
e−a

2(k′−ki)
2

ei(k′−ki)∇γ(ki)e−b
2(k−k′)2dk′ (3.31)

= eiγ(ki)

√
π

a2 + b2
exp

[
(kia

2 + kb2 + i∇γ(ki)/2)2

a2 + b2
− a2k2

1 − b2k2 − iki∇γ(ki)
]

which implies that the phase factor due to the wave aberration gradient is now given

by

exp

[
i

b2

a2 + b2
(k − ki)∇γ(ki)

]
, (3.32)

i.e. the phase gradient is reduced by a factor b2/(a2 + b2), which is small when the

window function is narrow compared to the shape function. This makes it problematic

to use the method for investigating the isoplanaticity by evaluating local values for

the wave aberration coefficients using small subimages of a crystal as reported in

(Malamidis and Lichte, 1998).

In summary, the calculations in this section suggest that while diffprop may be

useful for determining the aberrations in restored wavefunctions of relatively small

crystallites, the requirements on the object are too restrictive to make it a method of

choice for routine aberration determination.
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Chapter 4

A new method for aberration

determination

In this chapter, a new method for the accurate determination of the symmetric aber-

rations (C1, A1 and C3) is presented, based on the acquisition of a through-focus

series. The first step, described in section 4.1, involves accurate alignment of the

images within the series and refinement of the relative focus levels. Subsequently ,the

image wave in the plane of one of the images (reference image) is recovered using a

Wiener filter restoration as described in section 1.6.2. The next step (section 4.2)

relies on the assumption that the object acts as a weak phase object at most spatial

frequencies. A phase contrast index that provides a measure of how well the phase

modulation in the object wave is transferred to phase contrast in the image wave

is evaluated for each spatial frequency, and determining the aberrations amounts to

finding correction parameters C1 and A1 that maximise the phase contrast index

integrated over a suitable range of spatial frequencies.

The method works for datasets comprising a minimum of three images at different

focus levels, hence it is equally useful for fast aberration determination from a few

images for autotuning purposes (chapter 8), and for accurate off-line restoration of

the object wave from focus and tilt series datasets (chapter 6).

The antisymmetric aberrations cannot be determined directly using the phase

129
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contrast index, as they do not lead to an interchange of phase and amplitude con-

trast. The most successful conventional method for determining the antisymmetric

aberrations is based on the measurement of the tilt-induced defocus and astigma-

tism from diffractograms of images taken at different deliberately induced beam tilts

(section 3.3.2). In order to avoid the problems associated with diffractogram fitting

described in section 3.3.1, the method described in this chapter can be also used

to determine the apparent defocus and astigmatism from short focus series taken at

different beam tilts. This approach is presented in chapter 5.

In this chapter, the method is illustrated using a focal series of the complex oxide

Nb16W18O94 and figure 4.1 shows the Scherzer focus image of this series. The results

and interpretation of the restoration are presented in section 6.1.

4.1 Image registration

Image registration (to a common origin) is required to compensate for any drift

that may have occurred between the exposures. This is usually achieved by cross-

correlation techniques (Saxton, 1994a). In this work, the word ‘registration’ is used

in a wider context and refers to the determination of not only the shift, but also the

change in the aberration function between the images, i.e. the focus difference in case

of a focal series.

4.1.1 The phase correlation function

The Cross Correlation Function (XCF) between two images Ci(x) can be defined in

terms of their Fourier Transforms ci as:

XCF(x) = FT−1[c∗1c2] . (4.1)

Two related functions can also be defined. The first is the Mutual Correlation

Function (MCF) (van Heel et al., 1992), where the modulus of the cross spectrum is
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D

5 nm

Figure 4.1: Image recorded at the Scherzer defocus taken from a focal series of images
of Nb16W18O94 in the [001] projection. The two regions marked A and B were used
for aberration determination and regions C and D were used in the experimental
accuracy assessment.
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replaced by its square root and the phase is preserved:

MCF(x) = FT−1

[
c∗1c2√
|c∗1c2|

]
. (4.2)

This new method makes extensive use of the Phase Correlation Function (PCF)

(Kuglin and Hines, 1975; Horner and Gianino, 1984)),1

PCF(x) = FT−1

[
F
c∗1c2
|c∗1c2|

]
, (4.3)

in which the modulus of the transforms is set to unity and therefore the weight of each

Fourier component is independent of its magnitude. The real and positive weighting

factor F (k) is used to suppress the influence of the very high spatial frequencies which

in most cases are only noise.

Figure 4.2 illustrates the differences between XCF, MCF and PCF for two images

recorded at different focus levels. As shown in figure 4.2, the PCF between two images

recorded for different focus levels under otherwise identical conditions consists of a

centrosymmetric ring pattern, the form of which is determined by the focus difference

between them. As described later it is possible to compensate for defocus induced

phase shifts which give rise to these ring patterns under which circumstances the

compensated PCF comprises a single sharp peak at a position given by the shift vector

between the images. The main advantage in using the PCF is that the weight given to

each Fourier component is independent of its strength. Conversely, the conventional

XCF is dominated by contributions where the moduli of the image Fourier transforms

are large, i.e. the low frequencies and crystalline reflections. The low frequencies are

often due to shading patterns unrelated to the object, whereas the dominance of the

crystalline reflections leads to a periodic repetition of the cross-correlation peak. This

arises because the Fourier transform phases at the positions of crystalline reflections

are invariant under image translation by a lattice vector. These crystalline reflections

1The PCF was originally introduced for optical correlation techniques, where it has the additional
benefit that no intensity is lost in the correlator when only the phase is manipulated. Unaware of
this work, I initially found the usefulness of the PCF by serendipity when limiting the modulus in
image transforms in order to be able to use fast integer Fourier transforms for cross-correlation.
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Figure 4.2: Comparison of Cross- Mutual- and Phase Correlation Functions (XCF,
MCF and PCF) between two images from the focal series, using the region marked
as B in figure 4.1 for the compensated focus differences indicated. Due to the period-
icity of the crystalline specimen, the XCF peak repeats periodically. The PCF does
not show this repetitive pattern, but without phase compensation (left column) the
peak is broadened into concentric rings due to the focus difference. When the phase
compensation for the actual focus difference of 69 nm is applied, the PCF collapses
into a single sharp peak.



134

are strong, and therefore dominate the XCF, but they only cover a small proportion

of Fourier space and therefore have little influence on the PCF. This feature of the

PCF allows the approach described here to be used as readily with crystalline as with

non-crystalline specimens representing a significant advantage over existing methods.

4.1.2 Phase compensation of the PCF

As shown in figure 4.2, the PCF of two images taken at different focus levels shows

a concentric ring pattern rather than a single peak due to the difference in imaging

conditions. For images that differ only in defocus, Saxton (1994a) gives two alter-

native phase compensation methods which are both based on the weak phase object

approximation. The first consists in a multiplication of the cross spectrum with the

factor sin γ1 sin γ2 and hence requires the knowledge of the wave aberrations γ1 and γ2

in both images. In the second approach, the phases in the cross spectrum are simply

doubled, eliminating the sign changes in the cross spectrum due to contrast reversals

in the phase contrast transfer functions. This yields a single sharp peak at a position

2d, where d is the displacement. However, phase doubling was found to give poor

results for the PCF when little amorphous material was present, mainly due to the

poor signal to noise ratio at frequencies not corresponding to crystal reflections. The

doubling of the phase error also leads to a disproportionately poor performance of

the phase-doubled PCF for low signal-to noise ratios, as demonstrated in figure 4.3.

In this section a different phase compensation is introduced which

1. Does not rely on the weak phase object approximation.

2. Does not require any prior knowledge of the imaging conditions.

3. Additionally allows the determination of the focus difference.

In the linear imaging approximation the image contrast Fourier transform is given

by c = ψ + ψ∗− in terms of the image wave Fourier transform ψ. Hence the cross

spectrum between the image contrast Fourier transforms ci in the presence of a defocus
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Figure 4.3: The mean contribution of individual frequencies in the phase cross spec-
trum to the PCF peak with and without phase doubling as a function of the signal
to noise ratio. The performance when the SNR is low is strongly reduced by phase
doubling. The functions plotted are 〈cos(arg(x+Z))〉 (solid) and 〈cos(2 arg(x+Z))〉
(dashed), where x is the SNR and Z is an ensemble of Gaussian complex random
numbers with 〈Z〉 = 0 and 〈|Z|2〉 = 1.

difference D, a displacement vector d and otherwise identical imaging conditions is

given by:

c∗1c2 =
(
ψ + ψ∗−

)∗ (
e−2πikde−iγDψ + e−2πikdeiγDψ∗−

)
= e−2πikd×{

cos γD
[
|ψ|2 + |ψ−|2

]
− i sin γD

[
|ψ|2 − |ψ−|2

]
+ 2<

[
eiγDψψ−

]}
, (4.4)

where the wave aberration

γD = πDλ|k|2 (4.5)

describes the propagation from the first to the second image and ψ± = ψ(±k) is the

image wave Fourier transform in the plane of the first image.
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The first term in curly brackets in equation 4.4 is of particular interest as its sign is

independent of the wavefunction. When the sign changes of cos γD are compensated,

the first term therefore gives positive contributions at all spatial frequencies.

This is exploited in the phase-compensated PCF, defined as

PCFγ(x) = FT−1

[
F (k)

cos γ c∗1c2
| cos γ c∗1c2 + h|

]
, (4.6)

where the very small positive number h prevents a zero denominator. When the focus

difference used in the phase compensation factor cos γ matches the actual focus differ-

ence, the first term in the curly brackets of equation 4.4 yields positive contributions

to the PCFγ at a position x = d for all k for any image wave, giving rise to a strongly

localised correlation peak at this position.

For arbitrary objects, ψ and ψ− are unrelated and therefore the contributions

from both the second and the third term in equation 4.4 have oscillating signs and

hence largely cancel when the inverse Fourier transform in equation 4.6 is evaluated.

However, this may not be the case for a more restricted class of objects. For weak

phase objects, the image wave fulfils the condition ψe−iγs = −ψ∗−eiγs , where γs is the

symmetric wave aberration for image 1. Hence for weak phase objects, the second

term in equation 4.4 vanishes for all k. However, at a given k, the third term cancels

the positive first term under the condition

0
!
= cos γD − cos(γD + 2γs) = 2 sin γs sin(γs + γD) , (4.7)

where the equivalence on the right hand side can be inferred from the formula

2 sin x sin y = cos(x−y)−cos(x+y). Hence for weak phase objects the PCF peak will

only disappear if, at most spatial frequencies, the phase contrast vanishes in either

the first image (sin γs = 0) or the second image (sin(γs + γD) = 0).

As an illustration of this phase compensation, figure 4.2 shows how the concentric

ring pattern of the PCF collapses into a sharp peak when phase compensation for the

correct defocus difference is applied. The plot shown in figure 4.4 demonstrates that

the relative defocus difference between the images can be accurately determined by

maximising the PCF peak height as a function of the compensated defocus difference.
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Figure 4.4: The peak height of the XCF, MCF and PCF between two images for
region B in figure 4.1 as a function of the compensated focus difference. The PCF
(solid) shows a sharp maximum at the correct focus difference of 69 nm. When the
MCF is used (dashed), the maximum is less pronounced and the XCF (dotted) shows
little variation in the peak height with the maximum peak height occurring at a
different focus difference. This arises because the XCF is dominated by low spatial
frequencies where the defocus difference has little impact.

The position of this maximised peak in the PCF therefore measures the displacement

between the two images with high accuracy.

It is important to note that the phase compensation necessary to produce the

highest PCF peak depends only on the modulus of the focus difference (or in general

on the difference in the wave aberration function) and is not sensitive to the absolute

aberrations in each image.
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4.1.3 PCF with predicted images

Once at least two images within the focal series have been registered with the reference

image as described above, an initial restoration of the image wave in the plane of this

reference image can be calculated as described in section 1.6.2. From this restored

image wave ψi, the image contrast cD predicted for an image taken at any focus

difference D from the reference image can be evaluated as

cD = ψie
iγD + ψ∗i−e−iγD (4.8)

The registration of a further image can now be achieved by calculating the PCF

with images predicted from the restored image wave. The relative focus level of a

particular experimental image is then determined by maximising the PCF peak height

with respect to the defocus of an image predicted from the initial restoration without a

need to apply further phase compensation as illustrated in figure 4.5. Hence, an initial

restoration from a few images can be extended iteratively, where the displacement

and relative focus level of each new image is determined by calculating the PCF with

images predicted from the current restoration.

This successive addition of images and the use of images predicted from the current

restoration is more robust than simply using the phase compensated PCF with a

reference image for several reasons:

1. When the restoration already contains N images, the signal to noise ratio in

a predicted image is improved by a factor of
√
N compared to a single experi-

mental image.

2. The phase-compensated PCF cannot utilise information from spatial frequen-

cies near the zero crossings of cos γD (equation 4.4) because at these frequencies

the two images carry independent and complementary information as their wave

aberrations differ by (2n+ 1)π/2. This problem does not arise when the exper-

imental image is correlated with one predicted for the correct focus value.

3. The iterative method proceeds towards either end of the focal series, therefore,
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Figure 4.5: PCF between one experimental image and images predicted for various
focus levels from a restoration that includes all other images. The values ∆C1 indicate
the focus difference between predicted and experimental image. The PCF shows
concentric rings for a mismatched defocus and collapses into a sharp peak at the
correct value of 0. However, the peak quality is significantly improved compared to
figure 4.4 due to the better signal-to-noise ratio in the predicted image compared to
that in a single experimental image.
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for each image to be added, the restoration already contains the images ac-

quired immediately before or afterwards, yielding useable correlations even if

the specimen changes significantly during the total series acquisition.

Correlation with predicted images can also be used to refine previously determined

focus levels. In this case, the image to be refined must be temporarily removed from

the restoration as described in section 1.6.2. If this is not done, there is a bias

toward the original registration, since in this case even the noise in this image will

contribute to the correlation. Figure 4.6 shows the variation in the PCF peak height

as a function of predicted image focus levels, clearly demonstrating the improved peak

quality compared to that of the phase-compensated PCF.

4.2 Defocus and astigmatism determination

Once the complex image wave in the plane of the reference image is restored, the ob-

ject wave can be calculated by correcting for the wave aberration with an appropriate

phase plate in the diffraction plane. However, this requires accurate knowledge of the

aberration parameters. In this section a new method to determine the defocus C1

and astigmatism A1 in a restored image wave is described.

The determination of the aberrations from a restored image wave alone inevitably

requires some prior knowledge about the object. This is also the case for most of the

methods described in the previous chapter, notably the minimum variance method

(section 3.1) and diffractogram based methods (section 3.3), which rely on the weak-

phase approximation. This states that the object wave ψo satisfies

ψo− = −ψ∗o . (4.9)

The new method only requires that equation 4.9 is valid for the majority of spatial

frequencies k. As in the previous sections, contributions from crystalline areas are

suppressed by giving equal weights to all spatial frequencies. Therefore, even if the

specimen is crystalline with a thin amorphous contamination layer, the weak phase
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Figure 4.6: The variation in the PCF peak height of successive experimental images
with an image predicted from the restoration using all other images as a function of the
predicted image focus. Values on the x-axis are absolute focus values as determined
later. Note that the peaks are not evenly spaced, indicating small but detectable
deviations from the nominal focus levels. The dotted graph with its peak under that
for image 2 belongs to the final image taken with the nominal focus reset to the initial
value used for the first image providing an estimate of the total focal drift across the
entire series. The strongest peaks are observed for images in the middle of the series
indicating that the amorphous layer changes during acquisition.

approximation will still hold for all k that do not correspond to crystal reflection, i.e.

the vast majority, provided that multiple scattering involving both amorphous and

crystalline specimen layers can be ignored.

4.2.1 The phase contrast index

As a measure of the quality of aberration correction with a trial phase plate given by:

exp (−iγc(C1, A1)) (4.10)
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(with the spherical aberration C3 fixed), a Phase Contrast Index function

fPCI (C1, A1) = − cos [arg(ψi) + arg(ψi−) + 2γc (C1, A1)] (4.11)

is introduced. This function is 1 (-1) where the phase modulation in the object wave

is transferred into phase (amplitude) contrast in the corrected image wave, given by

ψc = ψi exp (−iγc(C1, A1)) . (4.12)

The function is hence a measure of the conjugate symmetry of ψc, being +1 where

ψc is conjugate antisymmetric and -1 where it is conjugate symmetric. When the trial

parameters C1, A1 match the actual aberration parameters, the fPCI will tend to be

1 (or at least close to 1 when noise is present) for all spatial frequencies, as shown

in figure 4.7(d). For mismatched parameters, the fPCI shows dark rings or bands

where the difference between actual and corrected wave aberration is π/2. Hence, the

function

FPCI (C1, A1) =
〈
fPCI (C1, A1)

〉
k
, (4.13)

is a good measure of the quality of the trial parameters C1, A1. Here the notation〈
· · ·
〉
k

has been introduced for averaging over k with the function Q(k) defined in

equation 1.57 as weighting function:

〈
f
〉
k

=

∫
dkf(k)Q(k)∫

dkQ(k)
. (4.14)

4.2.2 Defocus determination

When only the defocus (C1) is mismatched, the fPCI shows a pattern of concentric

circular rings (figure 4.7). The dark rings vanish for the correct defocus value, making

FPCI maximal. Figure 4.7(e) shows that the maximum is unique and very sharp,

hence the correct defocus value can be found automatically with high precision and

confidence. It can be estimated that a misfit in the wave aberration by π/4 at the

highest spatial frequency used is still easily detectable, as it reduces the fPCI from

positive values to zero. For the experimental dataset discussed here, this gives a
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Figure 4.7: The phase contrast index function fPCI. For mismatched values of C1 fPCI

shows dark rings ((a) to (c)), whereas at the correct value of C1, fPCI is close to one
(white) at all spatial frequencies (d). (e) fPCI plotted as a function of C1. From the
position of the sharp maximum, the focus value of the reference image is determined
as -128 nm. The values ∆C1 given in (a)-(d) are relative to this focus.
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conservative estimate of 2 nm for the accuracy in the defocus determination. A

more comprehensive account is given in section 4.3, showing that the actual accuracy

achieved is substantially better.

4.2.3 Astigmatism determination

In general, the twofold astigmatism is also unknown and the maximum of FPCI w.r.t.

three parameters has to be found. This subsection describes a method for the fast

and efficient location of this maximum.

Figure 4.8 shows the fPCI for various values of C1 and with A1 = (10 + 6 i)nm,

deliberately mismatched from its true value close to zero. A large defocus mismatch

now yields an elliptical ring pattern, as shown in figure 4.8(a). For a mismatch of

C1 = ±|A1| the fPCI is close to 1 in extended regions close to one of the principal

astigmatism axes.

The solid graph in figure 4.8(e) shows maxima at these values of C1, but these

maxima are far less pronounced than that in figure 4.7. When φ0 is the direction of

one of the principal astigmatism axes and φ is the polar angle of k,〈
fPCI · (cos 2(φ− φ0) + 1)

〉
k

(4.15)

has a more pronounced maximum as a function of C1. However, the astigmatism axes

are unknown, therefore the maximum of expression 4.15 w.r.t. C1 and φ0 needs to be

found.

For a fixed value of C1, the maximum w.r.t. φ0 can be found analytically. With

the abbreviations

FPCIC =
〈
fPCI cos 2φ

〉
k

(4.16)

FPCIS =
〈
fPCI sin 2φ

〉
k

(4.17)

the maximum condition can be expressed as

max
!
=

〈
fPCI · (1 + cos 2(φ− φ0))

〉
k

= FPCI + FPCIC cos 2φ0 + FPCIS sin 2φ0 . (4.18)
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Figure 4.8: The fPCI with deliberately mismatched astigmatism A1 = 10 + 6i. (a-d)
The fPCI at 4 different values for the defocus mismatch ∆C1. (e) The maximum
directionally weighted phase contrast index FPCIM exhibits stronger maxima than
the FPCI. (f) The angle φ0 that maximises this directionally weighted PCI is rela-
tively constant in vicinity of each maximum, and abruptly changes by π/2 between
them. (g) The directionally weighted PCI along either astigmatism axes has a single
pronounced maximum.
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This yields

2φ0 = arg(FPCIC + iFPCIS) (4.19)

with the maximum value

FPCIM = FPCI +
√
F 2

PCIC + F 2
PCIS . (4.20)

Using equations 4.15–4.20, the following procedure has been developed to determine

both C1 and A1:

1. For a range of values for C1, FPCI(C1), FPCIC(C1) and FPCIS(C1) are determined.

2. FPCIM is calculated according to equation 4.20.

3. The value C1a for C1 that maximises FPCIMis located

4. φ0(C1a) is calculated according to equation 4.19.

5. With this φ0, the value C1b that maximises FPCI−FPCIC cos 2φ0−FPCIS sin 2φ0

is found. This is the focus value in the direction φ0 + π/2.

6. At this stage of the process, the determined parameters are C1 = (C1a +C1b)/2

and A1 = A′
1 + 1.5 exp(2iφ0) · (C1a − C1b)/2, where A′

1 is the previous value of

A1.

7. Steps 1–6 are repeated with the new value of A1 and a small defocus range

around C1 until A1 and C1 are stable.

The factor 1.5 that appears in step 6 merits further explanation. If C1a and

C1b were the focus values along the two principal astigmatism directions, a factor 1

would be needed. However, C1a and C1b are measured from large sectors around the

principal direction, hence the astigmatic focus difference is underestimated. A factor

of 1.5 was found to give the fastest convergence, and with this value, the procedure

only has to be repeated 2 or 3 times to yield stable parameters.

The reliability and speed of the method is increased by using a weighting function

Q with a cut-off at a lower spatial frequency for the first iteration of the astigmatism
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determination. This is particularly beneficial when a large value of astigmatism is

present, as in this case, when the focus is matched along one of the principal axes, the

fPCI will have high values along a strip of width 1/|A1| directed along this axis. As

this strip represents an increasingly narrow sector for increasing spatial frequency, the

method becomes prone to spurious maxima due to noise when large spatial frequencies

are used while a large astigmatism is still present.

4.2.4 Optimisation of the algorithm

Even with the directed search described in the previous section to find the astigma-

tism, integrating the fPCI for each of a large number N of trial values for C1 is a

lengthy process and can be the rate-limiting step for a fast initial aberration determi-

nation where the relative focus levels are assumed to be correct. A reduction of the

problem to a single 2-D integration and a 1-D Fourier transform can be achieved by

defining the 1-D function

dPCI(n) =
∑

{k : n−1/2≤ k2/h< n+1/2}

Q
ψ + ψ−
|ψ + ψ−|

. (4.21)

For |C1| � λ/h, the FPCI is given to an excellent approximation by

FPCI(C1) = −1

2
<

[∑
n

e2πinC1h/λdPCI(n)

]
, (4.22)

where the definition of the dPCI is extended to negative n by dPCI(n) = dPCI(−n).

Hence, the real part of the inverse discrete Fourier transform of −dPCI(n)/2 over

the interval −N/2 ≤ n < N/2 yields the FPCI(C1) for −λ/(2h) ≤ C1 < λ/(2h) with a

sampling interval of ∆C1 = λ/(Nh). The functions FPCIC and FPCIS can be evaluated

in the same way when the argument of the sum in 4.21 is multiplied by (k2
x − k2

y)/k
2

or 2kxky/k
2, respectively.

4.2.5 Spherical aberration determination

The spherical aberration C3 is generally a constant of the microscope, and hence

does not need to be determined within a routine parameter determination method.
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However, it is still of interest to examine how accurately C3 can be estimated using

the phase contrast index. Figure 4.9(a) shows the FPCI as a function of C1 and C3. As

for all methods that determine C3 from axial images alone (Krivanek, 1976; Saxton,

1995; Fu and Lichte, 1995), the method suffers from a strong interdependence of

the estimated parameters C3 and C1, which causes the maximum in figure 4.9(b) to

be elongated in diagonal direction. Nevertheless, C3 can be determined as (0.55 ±
0.05)mm, which is close to the value of 0.57mm measured previously by tilt-induced

displacement and tilt-induced diffractogram measurements (Hutchison et al., 1999).

This is remarkably accurate considering that the specimen had only a small amount

of amorphous material. This good agreement with the value determined by other

methods also shows that the weak phase approximation is valid, which is discussed

in more detail in section 4.3.5.

4.2.6 Systematic errors in the PCI due to noise

Under certain circumstances, the noise present in the images may also contribute to

the conjugate antisymmetry measured by the PCI and thereby lead to artefacts. The

restoration filters

r′i = rie
iγs(C1,A1) (4.23)

restore the corrected image wave ψc for a particular set of trial parameters C1, A1.

The corrected image wave can then be written as

ψc =
∑

r′ici (4.24)

The measured intensities Ci(r) are real, hence the Fourier transforms ci are conjugate

symmetric and the noise contributions ni also have this symmetry. Therefore, the

contribution of noise to the expectation value 〈−ψcψc−〉, which determines the PCI,

can be written as

〈−ψcψc−〉n = −
∑

r′2i 〈nin∗i 〉 = −PN
∑

r′2i , (4.25)

where PN is the mean noise power in the images as a function of spatial frequency

as defined in section 1.6.2. This noise term can lead to systematic errors in the
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Figure 4.9: (a) Contour plot of FPCI(C1, C3) showing an elongated maximum at
(C1, C3) = (2nm, 0.55mm). The thick contour line indicates FPCI = 0. (b) The
FPCI for a fixed value of C1, FPCI(2nm, C3), shows a very sharp maximum at a par-
ticular value of C3 (thin line). However, C1 cannot be determined independently,
therefore the accuracy of the measured C3 is determined by the peak sharpness of the
function plotted with a thick line, which shows the maximum of FPCI(C1, C3) w.r.t.
C1 for each value of C3.
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determined parameters if it is comparable in strength to the signal component. This

is only the case when both of the following conditions are fulfilled:

1. The image signal spectrum is weak compared to the noise spectrum. Note that

this would also restrict visibility of diffractogram rings.

2. The number of images used in the restoration is small, since for longer series

|
∑
r′2i | � 1, at most frequencies, as contributions from different images cancel.

In practice, systematic errors due to this noise term can be avoided even for short

focus series by choosing unequal and sufficiently large focus steps.

4.3 Experimental accuracy

4.3.1 Relative focus level determination

The focus difference between any pair of images measured independently from differ-

ent subregions of the images should in general be equal and therefore the accuracy of

the relative focus levels can be determined by comparing the results obtained from

independent non-overlapping subregions of the image. Figure 4.10 shows the differ-

ences in the focus levels determined from the two subregions marked as C and D in

figure 4.1. The RMS difference between the measured relative focus values is 1.8 nm.

However, it is apparent from figure 4.10 that there is a systematic increase in this

focus difference by about 4 nm across the whole series. This implies that the total

focus change between the first and last image is 4 nm (1%) larger for region A. It

might be argued that this discrepancy is due to an accumulation of systematic errors

in the iterative relative focus determination. However, the discrepancy is confirmed

to be real by examination of the correlation of the last image with one predicted from

a restoration using only the first five images, which yields the same value. Therefore,

this 1% discrepancy in the total focus difference is attributed to a 0.5% difference

between the average sampling interval of the two regions caused by variations in the
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Figure 4.10: The difference between focus levels determined from the independent
regions C and D (figure 4.1) shows a small systematic increase across the series. The
remaining RMS difference from the fitted straight line is only 0.3 nm, demonstrating
the high accuracy of the relative focus determination.

local magnification due to image distortion by the projector and intermediate lenses.

This explanation is supported by the measured peak positions of equivalent crystal

reflections in the diffractograms from both regions.

When this linear increase in focus difference is corrected, the RMS difference

between the relative focus values measured from both regions is reduced to only

0.3 nm. However, this is atypically low and more typical values from other data sets

give RMS differences of 0.8 nm leading to a typical accuracy in the relative focus

values determined from each region of approximately 0.8 nm/
√

2 = 0.6 nm.
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4.3.2 Absolute focus levels

The accuracy of the absolute focus level and astigmatism determination cannot be

assessed using the above method, as the absolute defocus may genuinely be different

for the two subregions due to tilt or distortion of the sample across the image field.

Instead, the accuracy has been investigated using restorations of small subseries

of images. For each image n, the focus and astigmatism were calculated using a

restoration from the three images (n − 1, n and n + 2), which gives an unequally

spaced set of focus levels in order to avoid transfer gaps in the restoration. The RMS

differences between the C1 values established from the subseries and from the full

series was 0.5 nm for region C and 0.6 nm for region D and the difference between

the total focus change in these two regions was also confirmed (table 4.1). This table

also shows that although the RMS deviations in the measured values of the complex

astigmatism from a constant value is already small (1.5 nm), the data are more

consistent (RMS 0.8 nm) if a linear change in the astigmatism by 4 nm across the

series is incorporated. This change in astigmatism is equivalent to a 1% difference in

the total change in focus along two principal axes and can be attributed to a distortion

that leads to a 0.5% difference in the magnification along these axes.

It can be concluded that both C1 and A1 can be measured to an accuracy of

better than 1 nm from a focus series of only three images. It is worth noting that this

accuracy is independent of the starting condition and was also achieved for subsets

close to Scherzer and Gaussian focus where diffractogram based methods tend to fail.

A similar accuracy was also achieved from subsets of images that were all more than

300 nm underfocus, in this case representing a relative accuracy of 0.3%.

4.3.3 Comparisons with diffractogram fitting

The focus levels of the individual images determined using the new method described

here can be directly compared with results from automated or manual diffractogram

fitting procedures (Chand et al., 1995; Krivanek and Fan, 1992). In this work the
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Parameter Std. dev. σ fitted change σ from fitted line
CFC

1 N/A -334.9 1.3
CFD

1 N/A -331.2 1.4
CFD

1 − CFC
1 1.2 3.7 0.3

CC
1 − CFC

1 0.6 1.0 0.5
CD

1 − CFD
1 0.6 1.0 0.6

<(AC1 ) 1.2 3.9 0.6
=(AC1 ) 0.7 1.8 0.5
<(AD1 ) 1.2 3.7 0.7
=(AD1 ) 0.7 1.7 0.5

Table 4.1: Accuracy of the absolute focus determination. The absolute aberrations of
individual images were determined from image regions C and D, either from the full
series or from 3-member subseries. For instance, CFC

1 represents the value obtained
from the full series from region C. Column 1: σn−1 variation from a constant value.
Column 2: fitted linear change. Column 3: remaining σn−2 variation from the fitted
straight line.

astigmatism and defocus present in diffractograms were calculated both automati-

cally using the Semper program ‘dpfit’ (Saxton, 2000b) and also manually by visual

comparison of simulated and experimental diffractograms displayed as a merged im-

age. The ‘dpfit’ program first establishes the mirror axes of the diffractogram by

locating the maximum value in an orientation correlation function (OCF)2 between

the diffractogram and its mirror image. This reliably determines the principal axes of

astigmatism and reduces the number of unknown parameters to 2. Subsequently, the

agreement (measured as the correlation coefficient) between the experimental diffrac-

togram pattern and patterns simulated for a range of focus values varied along the

two principal astigmatism axes is tabulated in order to find the pair of focus values

that yields the best agreement. Since this method is not applicable when crystalline

material is in the field of view, diffractograms were calculated from images where only

the thin amorphous specimen edge was selected using a manually created mask.

2The OCF between two images is defined as the correlation coefficient between the first image
and a rotated version of the second image as a function of the rotation angle.
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Figure 4.11: Focus levels determined from region A (figure 4.1) using the new method
(line) compared to results from automated diffractogram fitting with the program
‘dpfit’ (crosses), using diffractograms calculated from the entire image fields with a
mask selecting only the amorphous specimen edge.

Figure 4.11 illustrates the typically good agreement between values calculated

using the new method and automated diffractogram fits for large underfocus val-

ues. However the automated diffractogram fitting routine fails for conditions close

to Gaussian and Scherzer defoci, which do not show clear rings. Furthermore, some

prior knowledge was required to restrict the automated search range to either over-

or underfocus values for each of the images.

Using the alternative process of manual (visual) diffractogram fitting, the heavy

streaking that results from masking out a narrow specimen region is usually more

disturbing than the regular pattern of crystalline reflections. Therefore, the diffrac-

togram patterns were in this case evaluated from the full specimen region marked A

in figure 4.1.
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Figure 4.12: Comparison of the experimental diffractograms of images 8, 11 and 29
from the focal series with simulated diffractograms for the manually measured focus
levels and for additional focus offsets of -5,-2,0,2 and 5 nm. It is apparent that a
defocus mismatch of 2 nm would be difficult to detect in manual diffractogram fitting,
whereas a mismatch of 5 nm is detectable, at least for the moderately underfocused
image (middle row).

Figure 4.12 shows an excellent match between these diffractogram patterns and

the ones expected from the manually determined defocus values. However deviations

of ±2 nm in the measured values give an equally good visual match, whereas a

mismatch is discernable for deviations of ±5 nm. It can therefore be concluded that

the accuracy in values determined manually is clearly no better than 2 nm, with

additional difficulties when no rings are visible, i.e. near Scherzer or Gaussian defoci.
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4.3.4 The specimen focal plane

As shown in the previous section the absolute focus level can now be determined with

an accuracy better than 1 nm, which is less than the typical TEM specimen thickness.

Therefore an important question arises as to which plane in the specimen the focus

level is determined relative to. This is of particular interest when the specimen

consists of crystalline material with amorphous contamination layers or damage on

both upper and lower surfaces.

To investigate this, multislice simulations (appendix A) were carried out for var-

ious sandwich structures comprising surface layers of amorphous carbon above and

below crystalline Nb16W18O94 in the [001] projection, matching the experimental data

discussed in section 6.1. For this particular investigation the phase contrast index was

used to determine the focus level in the calculated exit surface wavefunction according

to the procedures described in section 1.6.2.

Figure 4.13 summarises the results of these simulations. With only a single amor-

phous layer, the determined focus level that yields the maximum FPCI is located

accurately in the centre of that layer and is unaffected by the presence of a crystalline

layer. In case of amorphous contamination on both crystal surfaces, the determined

focus level deviates systematically from the centre of mass of the two amorphous

layers according to the following trends:

1. The focus level is biased towards the thicker amorphous layer.

2. The contamination layer on the specimen exit surface has a stronger influence.

Although the underlying reasons behind these trends remain at present unclear, this

systematic deviation in the location of the focal plane determined is noted here due

to its potential importance in the measurement of defocus values from thick speci-

mens. Figure 4.13 demonstrates that, depending on the relative thickness of the two

contamination layers, the determined focus level can be above or below as well as

within the crystal. However, for the important case where the crystal edge is within

the field of view, any contamination on this crystal edge is nearly at the same height
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Figure 4.13: Focus levels (thick horizontal lines) determined for different simulated
structures with amorphous layers (bars with a disordered pattern) and a crystalline
layer (bars with a regular pattern). In case of crystalline material contaminated on
both surfaces, the determined focus levels deviate systematically from the centre of
mass of the amorphous layers (indicated by asterisks).

as the crystal and the determined focus value is expected to be close to the centre

plane of the crystal.

4.3.5 Validity of the weak phase object approximation

The absolute aberration determination method discussed in the previous sections

relies on the weak phase object (WPO) approximation (section 1.5) to be valid at

most spatial frequencies, or, more precisely, it requires that −ψψ− has a positive real

part for a large majority of spatial frequencies, which is a weaker requirement. The

WPO approximation has been predicted to break down at high spatial frequencies for

all but very thin amorphous specimens due to a purely kinematic projection effect,
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with serious consequences for the determination of C3 from single diffractograms at

large underfocus (Gibson, 1994).

In the kinematic approximation, each slice of a thick specimen can be treated

independently as a WPO out of focus by a distance z. Hence, the expectation value

f = 〈−ψψ−〉 =

∫
dz ρ(z)ce−2πizλk2

(4.26)

for the contributions to the PCI can be evaluated, where c is real and positive and

incorporates scattering and structure factors, and ρ(z) is the density distribution of

the specimen.

For a uniform sample with thickness t and ρ(z) = ρ0 for |z| < t/2, the function

f = cρ0t sinc(πλtk2) (4.27)

is real and positive for λtk2 < 1, a requirement that is 4 times less stringent than

that for the validity of the WPO approximation given in Gibson (1994). This means

that for a typical kmax = 7 nm−1 used for the PCI, sample thicknesses of up to 10 nm

are still acceptable with 300 keV electrons.

4.4 Experimental Restoration Procedures.

With the theoretical tools and estimates of accuracy presented in the previous sec-

tions, various experimental imaging parameter estimation and wavefunction restora-

tion schemes can now be assembled.

Two typical possibilities are illustrated schematically in figures 4.14 and 4.15. The

first example (figure 4.14) shows a procedure for fast on-line focusing and astigmatism

correction. A series of only three images is used and the relative focus values are

assumed to be at their nominal levels,3 so that the registration for each image requires

the calculation of only one PCF, and the total computational effort is limited to 5

Fourier transforms.

3This assumption ultimately limits the accuracy of this fast on-line method when focus drift is
present.
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Acquisition and control Image processing
Acquire image 1

Change focus by 26 nm FT image 1

Acquire image 2

Change focus by 16 nm FT image 2

Acquire image 3 PCF between 1,2

FT image 3

PCF between 1,3

Restore FT of image wave

Use PCI to determine C1, A1

Change focus to target, correct A1

Acquire image 4

FT image 4

PCF image 4 with predicted image

Final correction of focus

Figure 4.14: A fast on-line focusing and stigmation routine, where part of the image
processing can be executed in parallel with the image acquisition. The last steps (in
italics) are only necessary if the required focus change is large. The specific focus
steps of 16 and 26 nm are suitable for the 3000F at high resolution.

The second example in figure 4.15 shows a flowchart for the off-line restoration of

a focus series where the aberrations have to be determined to a higher precision. In

this procedure the initial step is the determination of the relative defocus levels of two

images relative to one chosen as a reference image4 by maximising the peak height of

the phase-compensated PCF. From these three images the image wave in the reference

image plane is then restored. Additional images are subsequently included into the

restoration with relative foci and displacements established by maximising the peak

height of the PCF with images predicted from the current restored image wave. This

4The choice of the reference image is arbitrary as long as care is taken not to choose a low-contrast
image taken near Gaussian focus.
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Choose reference image n1.

Determine focus and registration of n2 and n3

relative to n1 using the phase-compensated PCI.

For Determine focus level of image n using the PCF
all with images predicted from the current restoration.

other ————————————————————————–
images n Add image n to the restoration.

Determine absolute C1 and A1 using the PCI.

Determine the antisymmetric aberrations.

Restore the object wave using the established absolute aberrations.

Figure 4.15: High precision off-line aberration determination for image restoration.
The determination of the antisymmetric aberrations requires additional data which
is discussed in detail in chapter 5.

initial phase therefore yields the registration of all images, i.e. their relative shifts

and focus levels to high accuracy.

In the second phase of the process the absolute focus and astigmatism are es-

tablished using the PCI of the restored image wave, and finally, the restoration is

repeated with the correct absolute imaging parameters. Repeating the restoration

is preferred over simply correcting the restored image wave for the absolute focus

and astigmatism, because in the latter case the focus-dependent spatial coherence

envelope (section 1.3) for the individual images is not accommodated correctly.



Chapter 5

Antisymmetric aberration

determination

The methods described in the previous chapter can also be used to measure the appar-

ent defocus and astigmatism from a short focal series taken under tilted illumination

conditions. The measurements of the apparent values of C1 and A1 for a number of

different deliberately injected tilts can then be used to determine the antisymmet-

ric aberrations as described in section 3.3.2 using a least squares fit or analytically

for symmetrical tilt arrangements. Apart from C3, only aberrations up to the third

order in k (i.e. up to A2 and B2) were taken into account, since this provided excel-

lent fits to the experimental data, indicating that a model that ignores higher order

aberrations is sufficiently accurate.

5.1 Acquistion of tilt-focus series datasets

The datasets used in this chapter (tiltf6 datasets) comprise 3-member focus series at 6

different tilt azimuth angles together with a 3-member series with axial beam direction

and additional axial images between each pair of tilted datasets, as illustrated in

figure 5.1.

The standard tiltf6 dataset comprises 27 images, although for routine aberration

161
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Figure 5.1: A schematic illustration of a combined defocus/tilt azimuth dataset tiltf6
with images numbered in recording sequence. A three-member focal series is recorded
for each of 6 different tilt azimuth angles and also for axial illumination. In addition,
an axial image is recorded between each pair of tilted datasets with the focus level
unchanged. This allows correction of the focus drift during acquisition. The order in
which the images are recorded (indicated by numbers 0 . . . 26) was chosen to minimize
the influence of focus drift and lens and deflector hysteresis by ensuring that focus
and tilt are not changed together between subsequent images and by recording series
with opposite tilts in immediate succession.

determination, smaller datasets can be used. The determination of both beam tilt

and three-fold astigmatism A2 requires 4 tilt azimuths, leading to a ‘tiltf4’ dataset

comprising 19 images, and if the usually constant value of A2 is known, a tiltf2 dataset

(11 images) with 2 orthogonal tilts can be used.

In this work only tiltf6 datasets were used, since the fitted parameters are over-

determined by data from 6 tilt azimuths, which allowed an investigation of the accu-

racy of both the apparent C1 and A1 values and the underlying aberration model. In

addition these datasets yield a uniform coverage of Fourier space when a tilt-series

restoration of the aberration-corrected object wave is performed (c.f. section 1.6.3).

Figure 5.2 illustrates the complete process of aberration determination and tilt series



163

(1) Register images 0 and 2 with image 1 using phase-
compensated PCFs.
(2) Restore image wave in plane of image 1.
(3) For all other
axial images

(a) Register image to current restoration using the PCF
with predicted images.
(b) Add image to restoration

(4) Determine absolute focus and 2-fold astigmatism using the PCI.

(5) For all tilted
focus series.

(a) Coarsely register the position of the central tilted
image
(b) Register first and last image to middle image using
PCFs.
(c) Restore aberrated wavefunction from the three tilted
images.
(d) Determine apparent absolute defocus and astigma-
tism using the PCI.

At this point, the apparent absolute defoci C1n and astigmatisms A1n

(n ∈ {0 . . . 26}) of all images are known.
(7) Determine drift-corrected aberrations for the tilted sets (n ∈ {0 . . . 5})
as A

(n)
1 = A1(4n+4) and C

(n)
1 = C11 + (C1(4n+3) + C1(4n+5) − C1(4n+2) −

C1(4n+6))/2.
(8) Determine the antisymmetric aberrations, including the beam tilt for
the axial images and the magnitude and direction of the injected tilt,
analytically or numerically.

(9) Re-calculate the restoration from the axial images
(10) For all
tilted focus
series.

(a) Calculate restoration from tilted images with beam
tilt corrected.
(b) Register with restoration from axial images using
PCF.

(11) Calculate the restoration from all images

Figure 5.2: Procedure for the determination of all aberration coefficients (steps (1)
to (8)) and subsequent tilt series restoration from a tiltf6 dataset (steps (9) to (11)).
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Set Specimen Mag. tilt [DAC] kt Mode Date Section
Ge1 amorphous Ge 250 kX 800–3200 2.95 ima. 23-08-2000 5.2
Ge2 amorphous Ge 250 kX 800–3200 2.89 ima. 23-08-2000 5.2
Ge3 amorphous Ge 250 kX 800–3200 2.72 ima. 23-08-2000 5.2

Ge4–Ge6 amorphous Ge 500 kX 800 1.69 ima. 19-11-2001 5.2.2
Ge7 amorphous Ge 300 kX 1600 1.53 ima. 19-11-2001 5.2.2

Ge8–Ge10 amorphous Ge 500 kX 1600 1.78 ima. 19-11-2001 5.2.2
dp1–dp4 Au foil 500 kX 800–4000 1.75 diffr. 19-11-2001 5.2.2

dp5 Au foil 40 kX 800–4000 5.79 diffr. 19-11-2001 5.2.2
dp6 Au foil 100 kX 800–4000 5.86 diffr. 19-11-2001 5.2.2
dp7 Au foil 120 kX 800–4000 5.99 diffr. 19-11-2001 5.2.2

NdSr100 Nd4SrTi5O17 [100] 600 kX 1600 2.56 ima. 15-03-2000 5.3
NdSr010 Nd4SrTi5O17 [010] 600 kX 800 2.34 ima. 15-03-2000 5.3

Table 5.1: Key parameters of the image series discussed in this chapter. The series
recorded in imaging mode are tiltf6 series while the ‘dp’ series, recorded in diffraction
mode, comprise images at 4 tilt azimuths with 5 different tilt magnitudes (tilt4m5
series). Sets Ge1–Ge3 each comprise 4 tiltf6 series with different tilt magnitudes. The
nominal injected tilts (in DAC units) have to be multiplied with the tilt calibration
factor kt (section 5.2.2) to yield the actual tilt (in µrad).

restoration from a tiltf6 dataset.

In the following, exemplary results from tiltf6 datasets of both crystalline specimen

with little amorphous contamination and amorphous germanium film are presented.

Table 5.1 lists key parameters of the series used as examples in this chapter.

5.2 Amorphous germanium sample

For a thorough investigation of the new method, 3 sets (Ge1–Ge3) of independent

tiltf6 series of a thin amorphous germanium foil were acquired. Each set comprised

4 series with injected tilts of 800, 1600, 2400 and 3200 DAC units taken from the

same specimen region. Between sets, a new specimen region was sought and the

illumination was recentred.

In order to observe any change in the aberration parameters over the field of

view and hence deviations from the isoplanatic approximation (c.f. section 1.1),
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the complete aberration determination procedure was repeated on 49 independent

128× 128 pixel subregions centred at 128(n,m) with n,m ∈ −3 . . . 3.1

In the datasets with large beam tilts, the astigmatism determination algorithm

failed to find the global maximum of the FPCI for some subregions. Instead, a local

maximum with a small value of A1 was found. This is due to the artefact described

in section 4.2.6. For the initial trial value A1 = 0, the noise in the images gives rise

to a false weak circular ring pattern in the fPCI in addition to the strongly elliptical

ring pattern, leading to spurious maxima in the FPCI. However, this effect can easily

be avoided by starting from a nonzero A1 trial value.

Table 5.2 summarises the results for the parameters that did not display any

systematic change over the field of view. The statistical errors given in brackets are

determined from the spread of the values measured from all regions. This does not

include any systematic errors that affect all subregions equally, e.g. deviations in the

injected tilts due to tilt coil hysteresis. Therefore, the variation of the parameters

from series to series is larger than the statistical errors given. Ignoring the values

from series with an injected tilt of 800 DAC units, which are the least accurate, the

best estimate for A2 is A2 = (805− 205i)nm with an accuracy of 20nm.

The variation of the tilt coil calibration is significantly larger from set to set

than within each set, suggesting that these calibration values depend slightly on the

illumination settings.

5.2.1 Illumination convergence

The beam misalignment was found to vary significantly across the field of view for

two of the datasets. Figure 5.4 shows that the variation of the beam tilt across the

field of view can be fitted linearly by tx(x) = tx + mxx and ty(y) = ty + myy with

nearly equal negative slopes (mx ≈ my). This implies that the beam was convergent

for sets Ge1 and Ge2 while a nearly parallel illumination condition was achieved for

1This leaves an unused 64 pixel wide strip around the reference image to ensure that all subregions
are fully contained in each image in spite of small specimen drift.
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set tilt C1 [nm] A1 [nm] A2 [nm] kt θ
Ge1 800 -55.61(21) -0.60(6) -1.94(10) 782(13) -169(12) 2.869(20) 1.431(8)
Ge1 1600 -44.31(22) -1.07(9) -1.75(8) 831(9) -188(10) 2.966(8) 1.435(2)
Ge1 2400 -41.10(17) -1.12(10) -1.91(8) 789(6) -218(5) 2.940(4) 1.431(1)
Ge1 3200 -33.75(28) -1.69(14) -1.39(12) 785(7) -210(6) 2.948(2) 1.433(1)
Ge2 800 -91.06(14) 0.09(8) -1.23(7) 763(15) -186(12) 2.928(17) 1.447(10)
Ge2 1600 -104.50(18) -0.35(7) -1.54(7) 781(7) -190(8) 2.886(6) 1.429(2)
Ge2 2400 -100.06(17) -0.32(8) -2.01(6) 801(5) -183(5) 2.889(2) 1.427(1)
Ge2 3200 -101.58(16) -0.50(8) -1.83(8) 802(5) -211(4) 2.893(2) 1.432(1)
Ge3 800 -133.61(17) 0.91(9) -0.83(9) 801(15) -236(19) 2.766(21) 1.410(8)
Ge3 1600 -136.37(19) 1.60(7) -1.22(7) 842(6) -211(6) 2.711(4) 1.406(2)
Ge3 2400 -134.46(16) 0.79(6) -1.51(6) 809(4) -224(4) 2.723(2) 1.411(1)
Ge3 3200 -138.08(17) -0.12(6) -1.34(7) 810(4) -214(3) 2.727(1) 1.410(1)

Table 5.2: Aberration parameters determined from 12 tiltf6 series. The values given
are averages obtained from 49 independent subregions with the statistical error in
the last digits given in brackets. The tilt coil calibration factor kt is given in
mrad/(1000DAC), and θ gives the direction of the tilt x axis in radians. The accuracy
of the A2 measurement and the tilt calibration increases with increasing injected tilt.

set Ge3. To avoid confusion, it is important to distinguish between three different

convergence angles as illustrated in figure 5.3.

Table 5.3 shows that this linear fit gives an excellent match to the experimental

data and, as with the three-fold astigmatism, the accuracy increases with increasing

injected tilt angle. The variation of the measured central beam tilt (tx, ty) within

each set is very small, indicating an accuracy of 0.02mrad, which is sufficient for

a resolution of 11nm−1 according to table 1.2. However, if the illumination is not

parallel, a large beam misalignment remains near the borders of the field of view. With

a beam convergence as in set Ge2 (mx = my = 1.9 mrad/1024 pixel) and the beam tilt

corrected in the image centre, only a central region with radius tmax/mx = 43 pixel

is aligned to an accuracy better than tmax = 0.08 mrad necessary for a resolution of

7 nm−1. It is possible to correct for this spatial variation of the axial coma a posteriori

by applying a parabolic phase plate on the real space restored image wave followed

by the usual correction phase plate in Fourier space and finally the conjugate of the

initial parabolic phase in real space (Lehmann, 2001).
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OL pre-field

Specimen

CM crossover
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Figure 5.3: Ray diagram to illustrate convergence angles. Due to the finite source size,
each point on the specimen is illuminated from a range of directions, characterised by
the beam divergence β, which gives the RMS spread of the beam direction at a given
specimen point. It is thereby defined by the angle subtended by the source at the
specimen and depends on the physical source size for a field emission source and on the
illuminated condensor lens aperture for a thermionic source. When the illumination
is not parallel, the mean beam direction varies with position on the specimen. This
is described by the convergence angle α between central and peripheral rays in the
illuminated patch. The field of view convergence angle αf < α is measured between
central and peripheral rays in the field of view. In this drawing, the objective lens
post-field is ignored and all angles are exaggerated.
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Figure 5.4: Measured beam tilt components as a function of position in the field of
view. The linear dependence with negative slope shows that the beam was convergent
for sets 1 and 2. In set 3, nearly parallel illumination has been achieved.
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set tilt tx ty mx my σt1 σt2

Ge1 800 -1.358(17) -0.327(12) -2.213(67) -2.276(50) 0.815 0.146
Ge1 1600 -1.263(6) -0.250(7) -2.388(26) -2.244(27) 0.830 0.066
Ge1 2400 -1.297(5) -0.212(5) -2.294(22) -2.206(21) 0.806 0.053
Ge1 3200 -1.282(6) -0.240(5) -2.301(24) -2.249(20) 0.815 0.055
Ge2 800 -1.278(10) -0.033(15) -1.812(40) -1.872(62) 0.670 0.128
Ge2 1600 -1.209(7) -0.152(9) -1.975(27) -1.881(35) 0.693 0.077
Ge2 2400 -1.207(6) -0.092(6) -1.963(23) -1.884(23) 0.689 0.057
Ge2 3200 -1.198(4) -0.058(4) -1.944(17) -1.881(17) 0.684 0.042
Ge3 800 -0.963(15) -0.533(15) 0.133(58) 0.096(62) 0.153 0.149
Ge3 1600 -0.973(6) -0.582(7) 0.097(23) 0.113(29) 0.075 0.065
Ge3 2400 -0.956(5) -0.576(4) 0.048(19) 0.118(17) 0.055 0.045
Ge3 3200 -0.945(4) -0.576(4) 0.081(15) 0.099(17) 0.051 0.039

Table 5.3: Linear fits tx(x) = tx +mxx and ty(y) = ty +myy to the variation of the
beam misalignment over the field of view. The fitted parameters tx,ty and mx,my are
given in mrad and mrad/(1024pixel), respectively, with the statistical error in the last
digit given in brackets. σt1 is the standard deviation of the measured misalignment
vectors and σt2 is the residual deviation from the fitted linear tilt variation.

It is however preferable to set up parallel illumination in the microscope, but the

presence of this strong beam convergence in two of the datasets even though the

microscope was carefully aligned shows that it is difficult to achieve parallel illumina-

tion. An automated procedure for measuring and correcting beam convergence would

involve measuring the beam tilt at the image corners. A faster alternative requiring

just two images exploits the fact that convergent or divergent illumination causes a

small change in magnification as the focus is changed. This can be detected by cal-

culating the phase compensated PCF on subregions near the image corners between

2 images with a large focus difference, providing a more rapid method for setting up

parallel illumination conditions.

5.2.2 Tilt calibration

The tilt magnitude calibration value kt = 2.80mrad/1000DAC established from the

amorphous germanium tiltf6 datasets discussed above is much smaller than the value
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N 1 2 3 4 5 6 7 8 9 10 11
x-tilt 0 1 -1 2 -2 3 -3 4 -4 5 -5
y-tilt 0 0 0 0 0 0 0 0 0 0 0

N 12 13 14 15 16 17 18 19 20 21 22 23
x-tilt 0 0 0 0 0 0 0 0 0 0 0 0
y-tilt 0 1 -1 2 -2 3 -3 4 -4 5 -5 0

Table 5.4: Order in which the diffraction patterns in a tilt4m5 dataset are recorded.
The injected tilts are in units of 800 DAC units.

Set CL2 setting illumination α [mrad] kt θ
dp1 42200 parallel <0.1 1.761 -0.950
dp2 42088 divergent 0.73 1.751 -0.950
dp3 42028 divergent 1.16 1.747 -0.952
dp4 42385 convergent 1.14 1.761 -0.950

Table 5.5: Tilt coil calibration at a magnification of 500 000 with an α-angle of 1.
The calibration factor kt varies by less than 1% as the CL2 setting is changed to
achieve parallel, divergent and convergent illumination. The convergence angle α is
determined from the diffraction disc radius. The tilt orientation θ varies by less than
2 mrad, but there is a rotation by -2.36 rad relative to the angle measured in imaging
mode using tiltf6 series.

4.66mrad/1000DAC measured earlier using diffraction patterns (Dunin-Borkowski,

1999). In order to investigate whether this is due to a systematic discrepancy be-

tween measurements from diffraction patterns and from tiltf6 Zemlin tableaus, the

experiment was repeated using both methods in succession. For the diffraction pat-

tern measurements, a gold 〈100〉 single crystal film was used and diffraction patterns

were recorded in tilt4m5 datasets, which comprise tilts in 4 directions with 5 tilt mag-

nitudes (table 5.4). The peak positions were analysed to measure the shift between

the diffraction patterns, with the camera length determined using the known spacing

of the gold crystal. To improve the accuracy, the shift vectors obtained from different

peaks were averaged, using only peaks that did not saturate the CCD camera.
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Set Magnification kt θ
dp5 40 000 5.789 -1.374
dp6 100 000 5.861 -1.376
dp7 120 000 5.992 -1.377

Table 5.6: Tilt coil calibration at magnifications within the medium magnification
range with an α-angle of 3. The calibration factor kt is larger by a factor of 3.3
compared with α-angle 1 and increases by 5% as the magnification is increased from
40 000 X to 120 000 X.

(a) (b) (c)

CL1

CL2

CM

OL pre-field

OL post-field
Specimen

Figure 5.5: Illumination system of a typical field-emission TEM in imaging mode.
For each lens, the focal planes are indicated by short horizontal lines. For a given
condensor mini-lens (CM) excitation, the brightness control (condensor 2, CL2) can
be adjusted such that the illumination is parallel. (a) For a large CM excitation, the
parallel illumination is concentrated on a small patch, suitable for high magnification.
(b) For lower magnification, a smaller CM excitation is used to yield a larger illumi-
nated patch. A stronger CL2 excitation is then needed for parallel illumination. (c)
The CL2 excitation is too strong for the given CM excitation, hence the CM crossover
is slightly above the objective lens pre-field focal plane, giving rise to a convergent
rather than parallel illumination. Similarly, divergent illumination results when the
CL2 excitation is too weak.
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In order to investigate the dependence of the tilt calibration on the illumination

conditions, series were recorded with different illumination settings. It is known that

the calibration factor depends strongly on the condensor mini-lens (CM) excitation

which can be controlled by the “α-angle setting” on JEOL microscopes.2 Figure 5.5

illustrates how the CM lens excitation determines the size of the specimen region

illuminated by a parallel beam. Table 5.5 lists the tilt calibration results obtained

with tilt4m5 sets of diffraction patterns at high magnification with an α angle setting

of 1 appropriate to high magnification imaging. The tilt calibration factor kt = 1.75

agrees well with the result kt = 1.71 obtained using tiltf6 series recorded the same day

(figure 5.6) and shows that kt does not change significantly when the illumination is

made convergent or divergent using CL2.

For comparison, data were also obtained with an α-angle of 3 at lower magnifi-

cation. Table 5.6 shows that kt increases by a factor of 3 at this setting and that it

varies by 5% as the magnification is increased across the range from 40 kX to 120 kX.

Figure 5.6 shows the good agreement of the calibration factors measured with

images and diffraction patterns. However, comparing all measurements shows a sig-

nificant change in the calibration factor over time. The reason for this is not known

although it may be due to movement or erosion of the emission tip. Since this sug-

gests that the tilt coil strength cannot be regarded as a constant for the microscope, it

should be included as free parameter in routine aberration determination. However,

when measurements of apparent C1 and A1 values in a tiltf6 or other Zemlin tableaus

are used to measure C3, it is necessary to independently calibrate the tilt coil strength

using diffraction patterns immediately before or afterwards.

5.3 Crystalline samples

The antisymmetric aberration determination method was also tested using largely

crystalline samples and two examples of tiltf6 series of the complex oxide Nd4SrTi5O17

2This α-angle setting should not be confused with the convergence angle α defined in figure 5.3.
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Figure 5.6: Calibration of the tilt coils of the JEM3000F microscope in Oxford. 1)
Calibration obtained in September 1999 using diffraction patterns (Dunin-Borkowski,
1999) 2) Data obtained from sets of tiltf6 series of amorphous germanium recorded
in August 2000. Plus signs and fitted solid line: results from 49 independent image
regions of a set Ge2. Crosses and fitted dashed line: the same for set Ge3. 3) Data
recorded in November 2001. Diamonds and solid line: calibration using diffraction
patterns (800 and 1600 DAC results not shown for clarity). Circles and dashed line:
results from tiltf6 series.
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set tilt C1 [nm] A1 [nm] A2 [nm] tx ty kt θ
NdSr100 1600 8.1 -3.6 1.1 863 -160 .68 -.52 2.56 1.39
NdSr010 800 -7.5 -5.3 5.7 944 -240 .43 -3.37 2.34 1.38

Table 5.7: Measured aberration coefficients for two tiltf6 datasets of Nd4SrTi5O17.

No tilt azimuth Defocus C1 Astigmatism A1

coils image obs. drift corr. fitted |Err| observed fitted |Err|
0 0 0 9.0 0.0 9.0 9.3 0.3 -0.5 1.4 -1.6 1.4 1.1
1 0 80 29.4 3.5 25.9 25.3 0.6 -7.5 -0.2 -7.9 0.7 0.9
2 180 -100 40.0 7.0 33.0 33.0 0.0 -14.2 8.4 -14.1 8.7 0.3
3 -60 20 41.8 9.0 32.8 33.1 0.4 14.9 3.6 15.4 3.3 0.5
4 120 -160 33.8 9.5 24.3 25.1 0.8 -3.3 12.8 -3.6 12.2 0.7
5 -120 -40 48.6 11.0 37.6 37.0 0.6 5.8 -8.7 6.5 -8.8 0.7
6 60 140 33.0 11.5 21.5 21.3 0.2 -6.7 -7.9 -6.2 -7.9 0.5

Table 5.8: Comparison of observed and fitted apparent aberration parameters for
dataset NdSr100. The apparent C1 values are corrected for the focus drift measured
using the intermediate axial images. The mean RMS misfit is only 0.5 nm.

recorded in March 2000 are analysed in this chapter. A detailed discussion of this

specimen is given in section 6.2 and only two series with injected beam tilts of 1600

and 800 DAC units, respectively, will be discussed here. Table 5.7 lists the aberration

parameters determined and table 5.8 shows the agreement between observed and fitted

parameters for datset NdSr100, with an RMS misfit of 0.5 nm. It should be noted

that a relatively large focus drift was detected using the intermediate axial images

and without focus drift compensation, the quality of the fit deteriorates (table 5.9).

For dataset NdSr010, the RMS misfit is 0.7 nm.

The deviations |∆A2| of 73 nm and 143 nm from the value A2 = 805− 205i estab-

lished from datasets Ge1-Ge3 indicated a lower accuracy than for the Ge datasets,

possibly due to the small injected tilt. However, values for A2 are in satisfactory

agreement with those measured using amorphous germanium. The tilt calibration

factors kt are slightly smaller than the value kt = 2.72mrad/1000DAC established

from dataset GGe3.
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No tilt azimuth Defocus C1 |Err| Astigmatism A1 |Err|
coils image obs. fitted observed fitted

0 0 0 9.0 14.0 5.0 -0.5 1.4 -1.6 1.4 1.1
1 0 81 29.4 32.3 2.9 -7.5 -0.2 -9.1 0.9 1.9
2 180 -99 40.0 41.6 1.6 -14.2 8.4 -15.9 9.2 1.9
3 -60 21 41.8 40.4 1.4 14.9 3.6 16.5 4.1 1.6
4 120 -159 33.8 33.5 0.3 -3.3 12.8 -2.5 13.7 1.2
5 -120 -39 48.6 45.0 3.6 5.8 -8.7 6.6 -10.5 2.0
6 60 141 33.0 28.9 4.1 -6.7 -7.9 -5.5 -9.3 1.9

Table 5.9: Raw data as in table 5.8, but fitted without focus drift compensation. The
RMS misfit is increased fourfold to 2nm, demonstrating the necessity of focus drift
correction.

An elegant way of demonstrating the beam-tilt induced change in imaging pa-

rameters is the Zemlin-tableau (Zemlin et al., 1978), a composite picture where the

diffractograms are displayed at a position appropriate to the beam tilt direction. Fig-

ure 5.7 displays such a tableau of diffractograms merged with simulated diffractograms

calculated using the automatically determined parameters. Automated fitting of the

diffractograms would have posed great difficulties due to the crystalline reflections.

Figure 5.8 shows a similar tableau of the uncorrected image wave PCI’s, where

no disturbing influence of the crystalline reflections is visible. Even in cases where

the beams diffracted by the crystal do not obey the symmetry relations expected for

weak phase objects, their influence on the integrated PCI used in the parameters

estimation is small, since all Fourier space pixels are used with equal weight.

The examples discussed in this section demonstrate that the method developed in

chapter 4 can successfully be applied to short focus series under tilted illumination.

This makes it possible to determine both symmetric and antisymmetric aberration

coefficients from a combined tilt/focus series, using the fPCI rather than diffractogram

fitting to determine the apparent aberrations at each beam tilt. The method can be

applied to small subregions, allowing investigations of the change in imaging param-

eters across the field of view. In two of the examples shown, a large unintentional

beam convergence was detected, which has implications for high resolution imaging.
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For crystalline samples, it has been demonstrated that the method is accurate even

if there is very little amorphous contamination under which conditions diffractogram

based methods would fail. The low RMS misfit between observed and fitted param-

eters in the highly overdetermined tiltf6 datasets confirmed that the accuracy of the

apparent C1 and A1 values at each beam tilt measured from 3-member focus series

using the method described in chapter 4 is better than 1 nm.
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Figure 5.7: Zemlin Tableau of dataset NdSr100, showing the diffractogram calculated
from the middle image of the short focal series at each tilt. These patterns are in
good agreement with diffractograms simulated using the automatically determined
apparent C1 and A1 values. The tilt magnitude is 1600 DAC units, corresponding
to 4.1 mrad. The equilateral triangle marks the coma-free axis and indicates the
direction of the three-fold astigmatism.
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Figure 5.8: Tableau in which the uncorrected image wave fPCI calculated from a
three-member focal series is displayed for each beam tilt of the tiltf6 dataset NdSr100.
The simulated patterns merged with the experimental ones are calculated using the
automatically determined aberration coefficients. The tilt magnitude is 1600 DAC
units, corresponding to 4.1 mrad. The equilateral triangle marks the coma-free axis
and indicates the direction of the three-fold astigmatism.



179

5 nm-1

0

1

2

3

4

5

6

Figure 5.9: Zemlin Tableau of dataset NdSr010, showing the diffractogram calculated
from the middle image of the short focal series at each tilt. This specimen was nearly
free of contamination. Although the eye is capable of recognising some of the ring
structures when guided by the simulated diffractograms, manual fitting would have
been virtually impossible for this dataset. The tilt magnitude is 800 DAC units,
corresponding to 1.9 mrad. In this dataset the axial coma is large and the coma-free
axis lies outside the tableau, close the upper page margin.
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Figure 5.10: Tableau in which the uncorrected image wave fPCI calculated from a
three-member focal series is displayed for each beam tilt of the tiltf6 dataset NdSr010.
The simulated patterns merged with the experimental ones are calculated using the
automatically determined aberration coefficients. The tilt magnitude is 800 DAC
units, corresponding to 1.9 mrad. Note that the coma-free axis lies outside the
tableau, close the upper page margin.



Chapter 6

Experimental examples of

automated object wave restoration

This chapter details examples of results obtained using the aberration determina-

tion and image series restoration methods discussed in the previous chapters. All

the restorations presented in this chapter are based on image series recorded on the

JEM 3000F microscope in the Department of Materials in Oxford using a 1024×1024

pixel CCD camera mounted axially with primary microscope magnifications between

300 kX and 600 kX. The calibration of this instrument has been given in chapter 5

and the transfer properties of the CCD camera have also been accurately measured

and are given in section 2.6.4 (camera 4).

6.1 Restoration from a focus series of the complex

oxide Nb16W18O94

This section describes the results of the focal series restoration of Nb16W18O94 that

served as an illustration in the discussion of the new method throughout chapter 4.

TEM samples were prepared by crushing and dispersion of the as-synthesised

material in propanol onto a holey carbon film, and individual crystals were oriented

181



182

along the [001] direction using selected area diffraction patterns.

The microscope was manually aligned to the coma free axis using on-line diffrac-

tograms of the amorphous carbon support film and the two-fold astigmatism was

also corrected manually. A focal series of 30 images was recorded of a thin crys-

tal edge at an initially overfocus condition and with a nominal focal increment of

12nm towards underfocus. In addition a final image at the nominal starting defocus

was also recorded in order to assess the overall focal drift across the entire data set.

Immediately following the acquisition of each focal series a tilt azimuth data set of

images of an adjacent area of amorphous carbon was recorded comprising an initial

and final axial image together with four images recorded with orthogonal beam tilts

of approximately 1 Gl/Sch (7.7 mrad) in order to determine the residual antisymmet-

ric objective lens aberrations. The acquisition of both focal and tilt series was fully

automated using a series of Digital Micrograph1 scripts with the microscope under

automatic control via the RS232 interface. All subsequent image processing was car-

ried out using programs written in the Semper image processing language (Saxton

et al., 1979).

Figure 6.1 shows a structural model of the complex oxide Nb16W18O94 projected

along the [001] direction. In this projection, the metal cation lattice comprises a

complex sequence of corner and edge sharing pentagonal columns built from MO6

octahedra some of which are filled with a central metal atom and some of which have

the central tunnel site vacant (Sleight, 1966). The exact distribution of Nb and W

within the various sites has not been unambiguously determined although High Angle

Annular Dark Field (HAADF) imaging in a TEM-STEM has provided evidence for

a degree of non-site specific cation segregation (Kirkland and Saxton, 2002).

This particular dataset was recorded before the aberration determination methods

described in this thesis were fully developed and hence, only a focal series rather than

a combined tilt/focus series was collected and it was necessary to determine the

antisymmetric aberrations via a conventional fitting of diffractograms taken at four

1Digital Micrograph, Gatan Inc., Pleasanton, CA, USA.
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Figure 6.1: Structural Model of Nb16W18O94 projected along [001] with the unit cell
marked. (a) Ball and stick model with the cations displayed as large gray spheres and
the oxygen anions as small black spheres. (b) Polyhedral model showing a complex
arrangement of 30 corner sharing MO6 octahedra and 4 MO7 decahedra that share
edges with neighbouring octahedra.
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different tilts from a nearby region of amorphous carbon as discussed in sections 3.3

and 3.3.2. The results of this determination of the antisymmetric aberrations give

values of (880,-60) nm for the three-fold astigmatism A2 and (0.5,0.3) mrad for the

beam misalignment.

Figures 6.2 and 6.3 show the restoration of the exit plane wavefunction as both

modulus (figure 6.2) and phase (figure 6.3), recovered to a transfer limit2 of 0.91nm−1.

It is immediately apparent that whilst the basic cation lattice can be determined from

the axial image recorded close to the Scherzer defocus (figure 4.1) the restored mod-

ulus shows the positions of the cation columns in projection at substantially higher

resolution due to the wider transfer in the total WTF compared with the conventional

Scherzer limit. Moreover the modulus remains directly interpretable to a greater

specimen thickness than the axial image, a feature that has also been noted in earlier

restorations and simulations (Kirkland et al., 1995, 1997; Saxton, 1988; Foschepoth

and Kohl, 1998). Thus the restored modulus alone provides a convenient route to

directly determining the cation lattice in complex materials though in this sample, a

distinction between different cations is not possible. For this purpose, the complemen-

tary technique of High Angle Annular Dark Field Imaging in the STEM (Pennycook

and Boatner, 1988; Pennycook and Jesson, 1990, 1991; Nellist and Pennycook, 2000)

provides a higher degree of chemical sensitivity (Kirkland and Saxton, 2002). Within

the restored modulus a stacking fault comprising a 1/3 unit cell translation along

[010] is clearly visible (figure 6.2).

The restored phase (figure 6.3) shows a more complex contrast than the modulus,

changing rapidly with specimen thickness as has been previously observed (Saxton,

1988). In the thinnest areas of the crystal in addition to the strong positive contrast

(white, corresponding to a phase advance) located at the cation sites and correspond-

ing directly to the strong negative black contrast in the modulus there is weak positive

contrast at positions between the cations. The origin of this weak contrast has been

2Throughout this chapter the transfer limit of a restoration is defined as the spatial frequency
where the total wave transfer function falls below 10%.
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Figure 6.2: Restored modulus of the exit plane wavefunction, which directly shows
the cation positions (black) with improved resolution compared to the axial image.
Unit cell perimeters are marked in the full image and in the enlarged and rotated
inset top left. The dashed line indicates a stacking fault with a shift of a third of a
unit cell along [010].



186

�����

�����

Figure 6.3: Restored phase of the exit plane wavefunction. The appearance of the
phase is much more thickness dependent than that of the restored modulus. The
cation sites are recovered in strong positive (white) contrast. The inset shows clearly
distinctive features present between the cation atomic columns which provide infor-
mation about the anion sublattice. In the main image, a surface reconstruction close
to the crystal edge is also clearly visible.
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investigated further by means of multislice image simulations (appendix A) to gen-

erate the exit surface wavefunction for various specimen thicknesses, and calculate

a simulated restored wave according to appendix A.3. Two structural models were

simulated, the first consisting of the bulk structure with atomic coordinates taken

from an earlier X-ray determination (Sleight, 1966) in which the structure is fully

oxygenated and the second consisting of a lattice fraction in which the entire oxygen

sublattice is absent.

The results of these simulations are shown in figure 6.4 for thicknesses of 2 nm

and 3.5 nm. It is immediately apparent that in the hypothetical deoxygenated model

the weak contrast visible in the experimental phase is absent and moreover could not

be reproduced for any specimen thickness considered. However, for the oxygenated

model, contrast at the anion sites is clearly present in figure 6.4(b), closely matching

that observed experimentally suggesting that some information due to the oxygen

anion lattice is recovered in the restoration. Finally it should be noted that the

restored phase shows evidence for a surface reconstruction wherein the parent material

is locally reduced to cubic WO3 at the surface (Smith and Bursill, 1985).

This example demonstrates the resolution enhancement in a focal series restoration

compared to a single axial image. Furthermore, it exemplifies the complementary

nature of the information provided by the modulus and phase. While the former

shows the cation column positions at high resolution, the latter provides information

on the weakly scattering oxygen columns.
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Figure 6.4: (a) Single unit cell section of the experimental restored phase, with the
thickness increasing from top to bottom. (b) Phase obtained from a multislice sim-
ulation of the complete structure with a thickness of 2 nm (top half) and 3.5 nm
(bottom half). (c) As in (b), but for a deoxygenated lattice fraction. Comparing (b)
and (c) to the experimental phase shows that contrast between the cation sites due
to the oxygen sublattice is clearly resolved.
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6.2 Focal and tilt series restorations of perovskite-

related layered titanates

This section describes the application of both tilt and focal series restorations with

automated aberration determination to refine an inorganic perovskite structure. Per-

ovskites ABO3, are known for a large variety of metallic cations A, B and often form

more complicated layered structures when the oxygen content is increased (Licht-

enberg et al., 2001). The composition dependence of these structures allows the

engineering of materials with desired properties and therefore a good understanding

of the structure/composition relationship is important. Perovskites find applications

as dielectric materials3 and the perovskite (La,Ba)2CuO4 was the first high Tc super-

conductor to be discovered (Bednorz and Müller, 1986). Another striking property of

some perovskites is an up to 1000 fold increase of the resistivity in strong magnetic

fields (colossal magneto resistance) discovered by Jin et al. (1994) for thin films of

La0.67Ca0.33MnOx.

In this work, two structures were investigated; the ternary structure Nd5Ti5O17

and the quaternary structure Nd4SrTi5O17, both prepared by J. Sloan and first de-

scribed in (Sloan and Tilley, 1994; Connolly et al., 1996). The effect of the partial

substitution of Nd by Sr manifests itself in the diffraction pattern in figure 6.5, where

the systematic (h0l) rows with odd h are replaced by continuous oscillating streaks,

an effect not present in the ternary structure or any other known perovskite structure

(Langley et al., 2002).

In this section, the wavefunction restoration methods developed in this thesis

are applied to deduce a structural model, starting from the known structure of the

parent perovskite NdTiO3, and in particular to understand the origin of the peculiar

diffraction phenomenon displayed by the quaternary phase.

3One classical example for this is the ferroelectric perovskite BaTiO3. Ferroelectricity up to
extremely high temperatures is displayed by some layered perovskites such as La2Ti2O7 (Nanamatsu
et al., 1974).
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Figure 6.5: Diffraction pattern of the quaternary Nd4SrTi5O17 in the [010] projection.
The systematic rows with odd h are replaced by wavy streaks.
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6.2.1 The structure of layered perovskites

The titanates investigated belong to the family of AnBnO3n+2 compounds (Lichten-

berg et al., 2001), which are based on the ABO3 perovskite structure. Perovskites can

be described as a cubic array of corner-sharing BO6 octahedra with A cations at the

cube centres, as shown in figure 6.6(a). When the oxygen content is increased, layered

AnBnO3n+2 structures are formed with layers n octahedra wide.4 The AnBnO3n+2

structure type was established by Galy and Carpy (1974) and studied in detail by

Nanot et al. (1981). It has some similarity with the more well-known Ruddlesden-

Popper phases (Ruddlesden and Popper, 1957, 1958) Am+1BmO3m+2 that are also

derived from perovskite but with the stacking direction parallel to the [001] rather

than the [011] perovskite direction. Ruddlesden-Popper phases have been observed

for many different B cations, whereas AnBnO3n+2 type structures are only known

for B ∈ {Ti,Nb,Ta} and n ∈ {4, 4.3, 4.5, 5, 6} (Lichtenberg et al., 2001). The mem-

bers with fractional n have ordered stacking sequences of n = 5, 4, 4, 5, 4, 4, . . . and

n = 5, 4, 5, 4, . . ., respectively. Figure 6.6(b) illustrates the n = 5 structure studied in

this work.

6.2.2 Experimental data

Figure 6.7 shows the modulus and phase for the quaternary compound in the [100]

projection, restored from the tiltf6 dataset (NdSr100) that was used as example in

section 5.3. Both modulus and phase reveal a ‘checkerboard’ pattern of stronger

scattering neodymium columns and weaker scattering titanium columns, which also

contain oxygen (c.f. figure 6.6(b)). However, neither in the modulus nor in the phase

is this contrast difference between these types of columns apparent at all thicknesses.

The restoration also reveals that within each perovskite layer the atomic columns

are slanted by a small angle away from the [001] direction in opposite directions for

neighbouring slabs.

4Note that n = ∞ corresponds to the parent perovskite ABO3 and that n decreases as the oxygen
content is increased.
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Figure 6.6: Simplified structural models of AnBnO3n+2 compounds represented by
corner-sharing BO6 octahedra and isolated A cations. Octahedra and cations drawn
with light grey shading are half a lattice plane below those with darker shading.
(a) The perovskite ABO3. (b) and (c) The n = 5 structure A5B5O17 with layers 5
octahedra wide, projected in the [100] and [010] directions.
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Figure 6.7: Restored modulus and phase for the quaternary compound in [100] di-
rection. The images have been rotated to show the perovskite slabs in a horizontal
direction to simplify the comparison with the structural models in figures 6.6 and
6.13. The inset shows an enlargement of the marked region together with a struc-
tural model where the oxygen is omitted and the slanting angle α is exaggerated.
In the enlarged region, the difference between Nd and Ti columns is visible in both
modulus and phase at certain thicknesses.
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Figure 6.8: Square root of the power spectrum of the complex restored exit wave for
the quaternary compound in the [100] projection. The transfer limit of this tilt series
restoration is 9.2 nm−1.
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This slant angle can be measured accurately by extracting a single slab centred at

an atomic site and then determining the angle by which the slab has to be slanted to

maximise the cross-correlation coefficient between the resulting image and its mirror

image. Such an analysis yields a slant angle of 2.5◦ ± 0.5◦ for both the ternary and

the quaternary phases.

The transfer limit for this restoration is 9.2 nm−1, and the diffraction pattern cal-

culated from the restored wave (figure 6.8) shows that reflections up to this limit are

included in the restored wave, demonstrating the resolution enhancement that can

be achieved using tilt series restorations. From this diffraction pattern the lattice

constant b = 0.59 nm and d001 = c cos β = 31.3 nm were measured. In the [100] pro-

jection, both diffraction patterns and images are indiscernibly similar for the ternary

and quaternary compounds, therefore no example for the ternary material is shown.

Figure 6.9 shows the modulus of the Fourier transform for two [010] exit wave

restorations. The restoration for the ternary phase was obtained from a 30-member

focal series and that for the quaternary phase was obtained from the tiltf6 dataset

NdSr010 that was used as example in section 5.3. The transfer limit of 6.7 nm−1

is lower than in figure 6.8, mainly because of the large initial mistilt of 3.4 mrad

(table 5.7), which also causes an asymmetry in the total transfer function.

The difference between the ternary and quaternary structure can be clearly seen

in this projection since reflections in systematic rows with odd h are replaced by a

straight streaked line for the quaternary compound. However, these streaks do not

oscillate as in the electron optical diffraction pattern (figure 6.5).

The diffraction pattern can be consistently indexed assuming a monoclinic unit

cell with a = 0.78 nm c = 3.16 nm β = 97.1◦, in agreement with the findings of

Williams et al. (1991) for the analogous compound, La5Ti5O17. The lattice constant

a corresponds to twice the Ti-Ti distance in the simplified model in figure 6.6(c).

However, this reduction in symmetry only manifests itself in the weak reflections

with odd h. The space group was determined by Langley et al. (2002) as P21/c (14

in the international tables).
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Figure 6.9: Modulus of the Fourier transform of restored exit waves. (a) Ternary
compound in the [010] projection, where the exit wave is restored from a 30 member
focal series with a transfer limit of 8.3 nm−1. (b) Quaternary compound in the [010]
projection, where the exit wave is restored from a tiltf6 series. The transfer limit in
this particular tiltf6 series is only 6.7 nm−1 due to a large unintentional initial beam
tilt, which also makes the total wave transfer function asymmetric.
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Figure 6.10 shows the restoration for the quaternary material in the [010] projec-

tion using a tiltf6 dataset (NdSr010), demonstrating that with accurate aberration

measurement and correction, a high quality restoration can be achieved even when a

large initial beam misalignment is present.

The cation sites, which are characterised by minima in the modulus and maxima

in the phase, are shown annotated in figure 6.11. Where the crystal is very thin

(bottom left corner), the Nd sites are easily identified as their contrast is much higher

than that of the Ti sites. The difference in the z-coordinate between the Nd4 and

Nd5 sites is a manifestation of the doubling of the a lattice constant compared to the

simplified model in figure 6.6(c).

6.2.3 Structural model

The simplified structural models in figure 6.6 assume that in the BO6 octahedra

are aligned with the perovskite unit cell axes. However this is generally not the

case and the octahedra are rotated to increase the packing density with a rotation

angle that depends on the ionic radii of the cations (Thomas, 1996). The structural

model developed here is based on the bulk NdTiO3 X-ray structure determined by

Amow and Greedan (1996) with the atomic positions given in table 6.1, and shown in

figure 6.12. Tilting of the octahedra strongly reduces the symmetry of the perovskite.

Since neighbouring octahedra are tilted in opposite directions, translational symmetry

is reduced and the new unit cell comprises 4 formula units and has base vectors [200],

[011] and [011] in terms of the original cubic cell. A distortion reduces the resulting

tetragonal symmetry to orthorhombic (b 6= c as determined for the X-ray structure).

The doubling of the x base vector agrees with the observed diffraction pattern for the

layered structure and it is also likely that the concerted rotation is responsible for the

difference in z-position between the Nd4 and Nd5 sites.

This bulk NdTiO3 structure is used as a starting point for a model of the layered

compounds. The fractional coordinates of a model consisting of undistorted slabs 5

octahedra wide of the bulk structure are listed in table 6.2. These were calculated
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Figure 6.10: Modulus and phase for the quaternary compound in the [010] projection,
restored from the tiltf6 dataset NdSr010. The horizontal lines separate the perovskite
slabs. The line style relates to the stacking order which is explained in section 6.2.4.
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Figure 6.11: Detail of the restored modulus and phase for the quaternary compound
in the [010] projection.

a=7.785(2), b=5.647(1), c=5.519(1)
α = β = γ = 90◦

Spacegroup: P n m a (62)
Atom Ox x y z
Nd +3 0.250 0.0598(8) 0.9927(13)
Ti +3 0.0 0.5 0.0
O1 -2 0.250 0.4770(11) 0.0900(13)
O2 -2 0.0501(6) 0.3005(8) 0.6992(7)

Table 6.1: Structure of the bulk perovskite NdTiO3, determined using X-ray diffrac-
tion by Amow and Greedan (1996). Compared to that reference, the a and b axis
have here been interchanged for consistency with the usual definition for the layered
structure.
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Figure 6.12: Structural model of bulk NdTiO3 according to Amow and Greedan
(1996), clearly showing the concerted rotation of the NdTiO3 octahedra and its effect
on the Nd cation positions.

using the bulk atomic fractional coordinates within the volume [0, 1[×[0, 1[×[0, 1.36[

and expressing the positions in terms of the monoclinic unit cell vectors using the

transformation

x′ = x+ z′/2 (6.1)

y′ = y (6.2)

z′ = zc/(c′ cos β′) , (6.3)

giving the positions of the sites within a half slab. The positions in the other

half are generated by the P21/c symmetry operator (x, y, z) → (−x,−y,−z) and the

symmetry operator (x, y, z) → (x, 0.5 − y, 0.5 + z) generates the second slab in the

unit cell.

This model is generally consistent with the experimental data except in two areas:

1. The slanting observed in the [100] projection is not taken into account.
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2. The experimental data show that the Nd cations closest to the layer interface

are displaced towards the interface and that the displacement is different for

the Nd4 and Nd5 sites.

. This basic model can therefore be modified to give the refined model in table 6.2,

which takes the above into account by

1. A further transformation y′′ = y′ + z′(c′ cos β′/b′) tanαs where αs = 2.5◦ is the

measured slant angle.

2. Substitution of the z-coordinates for Nd4 and Nd5 by the values measured from

the restored modulus.

All other coordinates are in good agreement with the experimental data and are

therefore not modified. The refined model is shown in figure 6.13(a) and (b), and

figure 6.13(c) illustrates an alternative perovskite slab stacking sequence, which is

only realised in the quaternary structure and which is discussed in detail in the next

section.

6.2.4 The stacking order of the perovskite slabs.

The model in figure 6.13 illustrates that there are two alternative positions for the

stacking of a perovskite slab onto the previous one and that they differ by an a/2

shift. This allows for a variety of stacking sequences apart from the regular monoclinic

structure shown by the ternary material. Due to the shift in the Nd positions closest

to the boundary induced by the octahedra tilting, it is possible to study the stacking

sequence by investigating the cation positions in the restored modulus or phase. In the

monoclinic ternary structure, the arrows linking the closest Nd sites across the layer

boundary are parallel for all boundaries (figure 6.13(b)). An alternative arrangement

where these arrows point in different directions in alternate layer boundaries leads to

the structure illustrated in figure 6.13(c) with an orthorhombic unit cell. However, a

completely random alternation of the two arrow directions is also possible.
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a=7.785(2), b=5.647(1), c=5.519(1)
α = γ = 90◦, β = 97.1◦

Spacegroup: P21/c (14).
Atom Bulk structure (1) Refined structure (2)

x y z x y z
Nd1 0.2506 0.5598 0.0013 0.250 0.5601 0.0013
Nd2 0.2930 0.0598 0.0861 0.2930 0.0813 0.0861
Nd3 0.7943 0.9402 0.0886 0.7943 0.9623 0.0886
Nd4 0.8367 0.4402 0.1734 0.8367 0.4835 0.2160
Nd5 0.3380 0.5598 0.1759 0.3380 0.6038 0.2030
O1 0.7579 0.0230 0.0157 0.7579 0.0269 0.0157
O2 0.7858 0.5230 0.0716 0.7858 0.5409 0.0716
O3 0.3015 0.4770 0.1030 0.3015 0.5028 0.1030
O4 0.3295 0.9770 0.1589 0.3295 0.0167 0.1589
O5 0.8452 0.0230 0.1904 0.8452 0.0706 0.1904
O6 0.0675 0.3005 0.0348 0.0675 0.3092 0.0348
O7 0.4673 0.3005 0.0348 0.4673 0.3092 0.0348
O8 0.4762 0.8005 0.0525 0.4762 0.8136 0.0525
O9 0.0764 0.8005 0.0525 0.0764 0.8136 0.0525
O10 0.6112 0.1995 0.1221 0.6112 0.2300 0.1221
O11 0.0110 0.1995 0.1221 0.0110 0.2300 0.1221
O12 0.0198 0.6995 0.1399 0.0198 0.7345 0.1399
O13 0.6200 0.6995 0.1399 0.6200 0.7345 0.1399
O14 0.1548 0.3005 0.2094 0.1548 0.3528 0.2094
O15 0.5546 0.3005 0.2094 0.5546 0.3528 0.2094
O16 0.5635 0.8005 0.2272 0.5635 0.8573 0.2272
O17 0.1637 0.8005 0.2272 0.1637 0.8573 0.2272
Ti1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ti2 0.5000 0.0000 0.0000 0.5000 0.0000 0.0000
Ti3 0.0437 0.5000 0.0873 0.0437 0.5218 0.0873
Ti4 0.5437 0.5000 0.0873 0.5437 0.5218 0.0873
Ti5 0.0873 0.0000 0.1747 0.0873 0.0436 0.1747
Ti6 0.5873 0.0000 0.1747 0.5873 0.0436 0.1747

Table 6.2: Structure of Nd5Ti5O17. Model (1) consists of slabs 5 octahedra wide with
the undistorted bulk perovskite NdTiO3 structure. Model (2) has been refined taking
into account the 2.5◦ slant observed in the [100] projection and substituting the z
positions of sites Nd4 and Nd5 with the values measured from the restored modulus.
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Figure 6.13: Refined model for Nd5Ti5O17 based on slabs of the bulk NdTiO3 struc-
ture. (a)[100] projection. (b)[010] projection. (c) An alternative stacking sequence
where the bottom perovskite slab is shifted by a/2, leading to an orthorhombic unit
cell. The closest Nd sites across the layer boundary are marked with arrows, and these
point in the same direction in (b) but in alternate directions in the two boundaries
in (c).
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Using the cation positions near the layer boundaries, the stacking sequence has

been studied for the quaternary compound using the restored wavefunction shown

in figure 6.10. For each layer boundary, the direction linking the Nd sites closest to

the boundary is marked. In the top and bottom regions, the two stacking directions

alternate, while a block of 8 layers at the centre is stacked in only one direction as in

the ternary phase. A diffraction pattern calculated from this central block only shows

the same separated maxima in the odd h systematic rows as the ternary diffraction

pattern in figure 6.9(a). Figure 6.14 shows diffraction patterns calculated with the

multislice method using the two regular models of figures 6.13(b) and (c). While the

reflections with even h are identical, the reflections with odd h appear at different

positions for the two models. For a sufficiently large region of a completely ran-

dom stacking sequence, these reflections would therefore form structureless straight

streaks.

More experimental data is required to investigate the origin of the wave-like oscil-

lations in the streaks observed in the electron diffraction patterns, as such oscillations

are not predicted by a random disposition of the stacking sequence alone and are also

not observed in the Fourier transform of the present restoration. This is probably

because the field of view is only 28 nm wide, while a selected area diffraction pattern

covers a far larger specimen area. The form of the wavy diffraction pattern suggests

that the a repeat distance is slightly altered as a function of the local stacking order,

with associated distortions at the layer boundaries. In order to investigate this, it will

be necessary to restore wavefunctions from larger fields of view at lower magnification

to give an area comparable to that sampled in the selected area diffraction pattern.

6.2.5 Multislice simulations

In order to validate the structural model established in the previous sections, multi-

slice simulations (appendix A) were carried out and the simulated restored wavefunc-

tions (appendix A.3) calculated from the exit surface wavefunctions were compared

with the experimental restored waves.
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Figure 6.14: Simulated diffraction patterns calculated using the multislice method for
two alternative models in the [010] projection. (a) For the model in figure 6.13(b),
where the stacking direction is the same in all layer boundaries. (b) For the model in
figure 6.13(c) with alternating stacking directions and an orthorhombic rather than
monoclinic unit cell. The positions of the reflections with odd h differ between the
two models, and a completely random stacking sequence would yield uniform streaks
in the systematic rows with odd h. The reflections with even h, however, occur at
identical positions for both models, although they are indexed differently due to the
different unit cells.
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Figure 6.15: Modulus (top) and phase (bottom) of the simulated restored wavefunc-
tion calculated from the model shown in figures 6.13(a) and (b) using the multislice
method. (a) [100] projection, where the thickness increases from 1 to 12 slices (0.57
to 6.84 nm) left to right. (b) [010] projection with thicknesses from 1 to 8 slices (0.78
to 6.24 nm).
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In the [100] projection, a good qualitative match is achieved, and the similarity of

the Nd and the Ti and O columns is confirmed, making a distinction between them

only possible at certain thicknesses.

In the [010] projection, the observed and predicted contrast are in good agreement

for the Nd sites. For the Ti and O sites, however, the simulations predict positive

contrast in the modulus, which is not observed. Furthermore, the simulated phase

contrast due to the O columns is nearly as strong as for the Ti columns, such that the

effect of the octahedra tilting is clearly visible as a alternating lateral displacement

of the O sites. This is not observed in the experimental phase image, where the

presence of the oxygen columns gives rise to a nearly straight streaking between the

Ti columns in the restored phase. Overall therefore, these simulations suggest that

further refinement of the structural model is necessary, particularly with regard to

the anion positions.
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6.3 Carbon nanotubes filled with inorganic crys-

tals

This section describes focal series restorations for inorganic crystals encapsulated in

Single-Walled carbon Nanotubes (SWNTs). These novel materials provide interest-

ing specimens for a quantitative comparison with simulations, since their very small

thickness is precisely known and they contain a number of different elements. The

application of the automated restoration methods to these specimen was particularly

challenging for several reasons:

1. The tubes are virtually free of contamination and disorder, making the focus

determination difficult.

2. A substantial movement of the tubes under the influence of the electron beam

could be observed between the exposures. This movement included bending

and rotation, hence the registration is only valid locally, and even small regions

of the tube have to be aligned rotationally as well as translationally.

3. Some of the investigated tubes were inclined with respect to the image plane so

that the absolute focus varies along the tube.

Following a brief review of carbon nanotubes, this section describes solutions to these

difficulties, enabling an exhaustive characterisation of both nanotube and inclusion

crystals.

6.3.1 Carbon nanotubes

Carbon nanotubes were first discovered by Iijima (1991) in the carbon soot produced

on the negative electrode by an arc-discharge evaporation method similar to that used

for fullerene synthesis. The discovery triggered an explosion of active research, fuelled

by the prospect of unique mechanical and electronic properties of these materials,
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namely phenomenal tensile strength and electronic properties ranging from metallic

to semiconducting (Saito et al., 1998).

However, the early arc-synthesis experiments provided only multi-walled nan-

otubes, with 2-50 (Iijima, 1991) concentric cylinders of rolled-up graphitic layers,

while theoretical studies predicted semiconducting behaviour only for single-walled

tubes. The first SWNTs were discovered by Iijima and Ichihashi (1993) and sub-

sequently, techniques to synthesise these have been refined to yield larger quantities

(Journet et al., 1997; Journet and Bernier, 1998). The nanotubes characterised in this

work were produced using the modified electric arc technique developed by Journet

et al. (1997).

The chiral vector

Apart from the hemispherical caps at both ends, a single-walled nanotube can be

defined as a strip of graphene sheet with an interatomic distance dC−C = 0.144 nm

and lattice vectors a1, a2 mapped onto a cylindrical surface.5

The chiral vector

Ch = na1 +ma2 ≡ (n,m), (6.4)

connects two lattice sites that coincide when the planar graphene strip is rolled

into a tube as shown in figures 6.16 and 6.17(a)-(c).

The integers n and m uniquely define the structure of the nanotube and, due to

the hexagonal symmetry, they can be chosen to satisfy the conventions n > 0 and

−n/2 < m ≤ n.6 The chiral angle is defined as the angle between Ch and a1, given

by

αc = arctan

( √
3m

2n+m

)
. (6.5)

5The interatomic distance in nanotubes is found to be slightly larger than in graphite, where
dC−C = 0.142nm (Saito et al., 1998).

6The lower limit for m differs from the definition given in Saito et al. (1998), but ensures that
the chiral angle is in the range −30◦ < αc ≤ 30◦.
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Figure 6.16: Definition of the chiral vector Ch. A nanotube can be constructed
when the strip between the lines perpendicular to Ch through its endpoints is rolled
into a cylinder such that these endpoints coincide. The translational vector T is the
shortest lattice vector perpendicular on Ch. These two vectors define the unit cell of
the nanotube. The figure corresponds to Ch = (4, 2) and T = (4,−5)
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Figure 6.17: (a)-(c) Strip of a graphene sheet (c.f. figure 6.16) rolled into a (4,2)
nanotube. The atoms on the strip borders that are merged as the graphene sheet is
rolled up are marked red. The zigzag line parallel to a1 forms a right-handed helix,
marked blue in (c). (d) (5,0) zigzag nanotube capped with half of a dodecahedron.
(e) (9,0) zigzag nanotube capped with half a C60 molecule with a hexagon at the
apex. (f) (5,5) armchair nanotube capped with half a C60 molecule with a pentagon
at the apex. In all cases, the end cap contains 6 pentagons, which are marked blue.
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The special cases (n, 0) and (n, n) represent the non-chiral zigzag and armchair7

configurations (figures 6.17(e) and (f)), while all other nanotubes are chiral with (n+

m,−m) being the mirror image of (n,m). Here the convention that a2 is 60◦ clockwise

from a1 is adopted. Though at odds with the usual crystallographic notation where

a2 is 120◦ counterclockwise from a1, this convention is widely used in the nanotube

community because it ensures that the tube diameter increases with increasing m

and that a tube where the zigzag line along the a1 direction describes a right-handed

screw has positive values for m and the chiral angle αc (figure 6.17(c)).

The chirality determines the orientation of the graphite hexagons w.r.t. the tube

axis and has a critical influence on the electronic properties of the nanotube. Armchair

(n, n) nanotubes are predicted to be metallic, all others are semiconducting, with a

narrow bandgap when n−m is a multiple of 3 and a wider bandgap otherwise (Saito

et al., 1998). This is due to the peculiar band structure of the graphene sheet, where

the conduction and the valence band coincide at isolated points, corresponding to the

corners K of the Brillouin zone (Elliot, 1998).

As synthesised, nanotubes are terminated with hemispherical caps, each contain-

ing 6 pentagonal rings and a number of hexagonal rings that depends on the tube di-

ameter (figures 6.17(d)-(f)). The smallest possible nanotube, shown in figure 6.17(d),

is a (5,0) nanotube with diameter d = 0.4 nm capped by half a C20 dodecahedron

(Qin et al., 2000).

6.3.2 Filling of carbon nanotubes

It is possible to fill the hollow cavity of carbon nanotubes with a range of materials.

For a multi-walled nanotube this was first achieved by Ajayan and Iijima (1993), and

for SWNTs by Sloan et al. (1998). This filling process offers interesting possibilities,

as the one-dimensional confinement is expected to change the properties of the filling

material compared to that of the bulk. Additionally the filling material, acting as

an electron donor or acceptor, is also expected to alter the electronic properties of

7These names arise from5the shape of the cross-sectional ring.
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the surrounding nanotube (Terrones et al., 1998). It has also been suggested to use

nanotubes as a mold to grow one-dimensional nanowires (Kiang et al., 1999).

Prior to the filling process, the terminating end caps of the nanotube have to

be opened. This is usually achieved by oxidation in the gas phase (Ajayan et al.,

1993; Tsang et al., 1993) or in solution (Tsang et al., 1994; Sloan et al., 1998), which

preferentially etches the 5-membered rings in the end caps. The filling material is then

drawn into the opened nanotube from a solution or melt aided by capillary action.

The nanotubes characterised in this work were prepared by the nanotube group in

the Oxford Inorganic Chemistry Laboratory using the capillary filling technique from

molten material.

6.3.3 A Nanotube filled with Potassium Iodide

Exit wave restoration

The techniques outlined in the previous chapters had to be refined in several ways

to deal with the particular difficulties of carbon nanotube samples. As they were

supported only on one end, the observed nanotubes were susceptible to bending, which

caused slight sample rotations between subsequent exposures, rendering the relative

focus determination unreliable. Therefore, the relative focus levels were determined

from a neighbouring small area of amorphous carbon that was also in the field of view.

The rotation of the tube between subsequent exposures also needed to be taken into

account in the registration process. Therefore, the displacements and rotation angles

of the images were determined separately for 12 subregions of size 200×200 pixel

by maximising the PCF peak height as a function of rotation angle with the focus

differences fixed. From the restoration subsequently calculated, the residual defocus

was determined and found to vary little along the tube, indicating that the tube is

oriented nearly parallel to the image plane.

Figure 6.18(b) shows the phase of the restored wavefunction constructed from the

restorations of the individual subregions. The structure of the encapsulated crystal

is more easily visible in figure 6.18(d), where the nanotube has been straightened
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Figure 6.18: Restoration of a nanotube filled with potassium iodide. (a) Subregion
of the Scherzer focus image. (b) Restored phase, constructed from 12 overlapping
subregions. For each subregion, the registration, absolute focus determination and
restoration was carried out individually. The area shown in (a) is marked. (c) Mod-
ulus and (d) phase after resampling to compensate for the bending of the tube. In
(c), |Ψ|−1 is displayed with the same contrast range as the phase arg(Ψ) in (d). The
modulus shows very little contrast, as the tube and the crystal are sufficiently thin
to form a nearly pure phase object. (e) Restored phase, averaged from 15 equivalent
subregions in 4 equivalent orientations. The four linescans displayed in figure 6.21
are marked.
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as discussed subsequently. The contrast in the restored modulus (c) is very low,

indicating that the filled nanotube is nearly a pure phase object. Figure 6.18(e)

shows the restored phase where the signal to noise ratio has been improved using

unit cell averaging over 15 suitable unit cells and averaging the result over the 4

orientations that are equivalent by symmetry.

Structural analysis

A careful examination of the atomic positions and the phase shifts at the measured

positions allowed the crystal to be identified as a 3 × 3 atom crystal fragment of KI

in a [110] projection, with the tube axis pointing in a [001] direction. This implies

that the alternate rows of the crystal perpendicular to the tube show in projection ar-

rangements of I-2K-3I-2K-I and K-2I-3K-2I-K, respectively. Since iodine is a stronger

scatterer than potassium, the former type of row is easily identified by the strong max-

imum in the centre. In the restored phase, the crystal is clearly resolved in the lower

and upper part of the tube, in the middle, however, the atomic rows are blurred,

probably because the crystal is twisted. Interestingly, the I-2K-3I-2K-I layers in the

upper part of the crystal are an odd number of rows above their counterparts in the

lower part, indicating that there is a stacking fault in the twisted region of the crystal.

The lattice spacings, measured from the peak positions in the restored phase,

are given in table 6.3. Significant lattice distortions are observed compared to the

bulk structure; most importantly, the 1I column is pushed inwards by the tube wall,

reducing the 3I-1I spacing by 5%. The resolution in the restoration is not sufficient to

fully separate the peaks for neighbouring atomic columns and the apparent position

of the weak 1K peak is shifted because it lies on the shoulder of the much stronger

2I peak. Therefore, this position had to be refined by comparison with simulations,

as discussed later.

In this focal series, no information about the tube conformation was recovered,

since no periodic pattern is resolved on the tube wall (c.f. section 6.3.5). The diameter

of the (12,12) armchair nanotube used in the model in figure 6.19 matches closely to
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Figure 6.19: Model for the potassium iodide filled (12,12) armchair carbon nanotube
with the refined inclusion crystal atomic positions listed in table 6.3. (a) Shown in
the experimental viewing direction, with the crystal in a [110] projection. (b) End on
view of the tube, showing the inward displacement of the outermost iodine ions. (c)
3-dimensional view of the composite.
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Spacing Bulk Measured Refined
3I-3I 0.705 0.690 0.690

3I-2K 0.249 0.251 0.251
3I-1I 0.498 0.474 0.474

3K-2I 0.249 0.273 0.273
3K-1K 0.498 0.510 0.474

Table 6.3: Measured interatomic spacings for the encapsulated KI crystal, compared
to those in bulk KI. The outermost iodine ions (1I) are displaced inwards, while the
2I columns are displaced outwards. The 1K columns are also displaced outwards,
albeit by a lesser amount. A small contraction along the tube axis (3I-3I) is also
observed. When the values measured directly from the linescan peak positions are
used in a multislice simulation, the resultant simulated phase shows a significant
outward shift of the peaks for the single potassium ion compared to the experimental
peak positions. This is accommodated in the 3I-1K spacing in the refined model,
which yields simulated peak positions in good agreement with the experimental ones.

the experimentally determined diameter of 1.6 nm, but other conformations with

similar diameters could also be chosen.

Figure 6.19 shows a model of the nanotube/KI composite using the refined KI

lattice spacings listed in table 6.3.

Comparison with simulations

Using the above model, multislice simulations (appendix A) were calculated and the

simulated restored wavefunctions (appendix A.3) were compared with the experi-

mental one. Initial comparisons (Meyer et al., 2000b) led to the conclusion that the

contrast in the experimental restored phase is lower by a factor of 2 than that in the

simulated one. However, a nearly Gaussian dependence of this discrepancy on spatial

frequency is observed when the moduli of the Fourier transforms of both waves at the

positions of prominent crystalline reflections are compared. This indicates that the

specimen vibration was underestimated in the original comparison.8

8Another possible explanation is that the focal spread or beam divergence have been underesti-
mated. However, this is unlikely, since a much better transfer was observed for different datasets
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Figure 6.20: Comparison of the restored exit wave with multislice simulation results.
The experimental/simulated modulus ratios of prominent reflections for the encap-
sulated 3 × 3 KI crystal are plotted as a function of the assumed lattice vibration.
The low frequency values are taken from the streak perpendicular to the tube axis.
The inset shows the Fourier transform modulus of the unit cell averaged, restored
wavefunction with the lattice reflections indexed.
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Figure 6.21: Line traces ((a) to (d) marked correspondingly in figure 6.18(e)) of the
unit cell averaged experimental restored phase compared with the simulations sim1
and sim2, based on the measured and refined spacings given in table 6.3, respectively.
Both restoration and simulations are calculated under the assumption of a specimen
vibration of 0.07 nm and in addition, the contrast in the simulation is reduced by a
frequency independent factor of 0.8.
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Figure 6.20 shows how the ratio between the experimental and simulated Fourier

transform modulus changes as a function of the of RMS specimen vibration included

in the restoration and the simulation. The modulus at low frequencies is nearly

unaffected by the lattice vibration, and was lower by a factor of 0.8 in the experiment

compared to the simulation. This contrast reduction for all frequencies can possibly

be attributed to inelastic scattering.9

Taking into account this spatial frequency independent contrast reduction, the

best match between experiment and simulation is achieved for an assumed lattice

vibration of 0.07 nm.

In the original comparison (Meyer et al., 2000b) a specimen vibration of 0.05 nm

was assumed, and figure 6.20 shows that under this assumption, the highest order

beam is weaker by a factor of 3 in the experimental restoration compared to the

simulated restored wave.

Figure 6.21 shows that a good match between experiment and simulation can

be achieved by assuming a lattice vibration of 0.07 nm together with an additional

frequency independent contrast reduction by a factor of 0.8.

Straightening of the tube

From the restoration, the straight nanotube shown in figures 6.18(c) and (d) was

extracted as follows as follows:

1. Two small templates were extracted from the restored phase, one centred at

a strong (3I column) and one at a weak spot (3K column) on the line in the

centre of the tube. Using orientational correlation with the mirror image, both

were rotated to display the tube vertically and then symmetrised by averaging

over 4 orientations. Figures 6.22(a) and (c) show these templates.

recorded with the same microscope under the same operating conditions, e.g. the datasets dis-
cussed in the previous section. This indicates that the contrast reduction is specimen rather than
microscope related.

9For thicker specimens of amorphous carbon, Boothroyd (2000) has found spatial-frequency inde-
pendent reduction by a factor of 0.33 in the contrast of experimental images compared to simulations.



221

����� ���	�


���

�����

����� ����� ��� � !�"$# %�&�'

Figure 6.22: Image processing to compensate for the tube bending. (a) Template
centred at a 3I column, cut out from the restored phase, (e) rotated and symmetrised.
(b) Template (a) rotated by θ = 0.2 rad clockwise. (c) Template centred at a 3K
column. (d) Template (c) rotated by θ = 0.5 rad clockwise. (e) Restored phase.
(f) Cross-correlation of (e) with (b). Strong correlation peaks (black) appear at the
3I sites at the lower end of the tube. g) Cross-correlation of (e) with (b). Strong
correlation peaks appear at the 3K sites at the upper end of the tube, where the
rotation angle is close to 0.5 rad. (h) Maximum of all correlation functions of (e)
with (a) and (b) rotated by angles in the range 0 ≤ θ ≤ 0.7 rad, yielding strong peaks
at all 3I and 3K sites. (i) Remapping grid calculated using the local rotation angle
determined at each of these sites.
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2. Images C(x, y), D(x, y) and T (x, y) were created and initialize with 0 values for

all pixels.

3. For both templates T∈ {1, 2} and a range of rotation angles (0 ≤ θ ≤ 0.7 rad,

step 0.01 rad) the following steps were repeated;

(a) The XCF CT,θ(x, y) was calculated between the restored phase and the

template T rotated clockwise by θ (figure 6.22(f) and (g)).

(b) D(x, y) := θ was updated for all (x, y) with CT,θ(x, y) > C(x, y).

(c) T (x, y) := T was updated for all (x, y) with CT,θ(x, y) > C(x, y).

(d) C(x, y) := max(C(x, y), CT,θ(x, y)) was updated.

4. C(x, y) now shows a line of peaks along the tube centre (figure 6.22(h)). At the

peak positions (x, y), D(x, y) gives the local rotation angle and T (x, y) is 1 or

2, respectively, if the peak corresponds to a 3I or 3K column.

5. The peak positions and local rotation angles were used to construct a grid

(figure 6.22(i)) to extract a straightened version of the tube.
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6.3.4 Encapsulated antimony oxide

In this section a focal series restoration of a single-walled nanotube filled with a anti-

mony oxide (Sb2O3) is discussed. This particular restoration has enabled a detailed

study of the nanotube conformation and the inclusion crystallography simultaneously.

Since the latter was determined in collaboration,10 I will focus here on the nanotube

conformation, highlighting the use of accurate focus determination to derive the in-

clination of the specimen with respect to the image plane by measuring the focus in

small subregions. A full account of this work has been published elsewhere (Friedrichs

et al., 2001).

As in the previous example, the lateral movement of the nanotube between ex-

posures made it necessary to perform the registration separately in small subregions.

The restored subregions were then combined to give the final restoration of the com-

plete nanotube in the same orientation and position as in the reference image (fig-

ure 6.23(a)). The measured focus levels plotted in figure 6.23(b) increase systemat-

ically by 4 nm towards the top end of the tube, indicating that the tube is inclined

with respect to the image plane, with the top end in figure 6.23(a) higher in the beam

path. Fitting a straight line to these values gives a standard deviation σn−2 = 1.1 nm

for the 6 individual focus values and yields an inclination angle of β = 17◦ ± 5◦.

6.3.5 Tube conformation

Careful inspection of the restored phase in figure 6.23(a) reveals a periodic contrast

in the right tube wall that is absent in the left tube wall. This is confirmed by power

spectra taken from linescans along the tube wall and plotted in figure 6.24, which

show a strong peak corresponding to a spacing of 0.224 nm for the right tube wall

only. This corresponds to the centre-to-centre spacing 1.5 dC−C = 0.216 nm between

neighbouring ‘zigzag’ rows of carbon atoms in the SWNT wall lattice when viewed in

projection.

10with Steffi Friedrichs, Inorganic Chemistry Department, Oxford University
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Figure 6.23: (a) Phase of the Sb2O3-filled carbon nanotube restored from a 20 member
focal series. The image is composed of 6 individually restored overlapping subregions
along the tube axis (uppermost subregion not shown). The lower part shows the
crystal clearly resolved and also regular fringe contrast along the right tube wall. (b)
The focus levels measured for the individual subregions show a systematic increase
along the tube, indicating that it is inclined w.r.t. the image plane. The gradient of
the straight line fitted to the 6 measured values (dashed) gives an estimate for the
inclination angle of 17◦ ± 5◦.
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Figure 6.24: Power spectra of one-dimensional linescans along the tube walls as indi-
cated in figure 6.23(a) The spectrum for the right wall (solid graph) shows a strong
peak corresponding to spacing of 0.224 nm. This peak is absent for the left wall (dot-
ted graph). Overall this indicates that the tube is chiral and inclined to the image
plane (see later).



226

The extent to which this periodic contrast along the tube wall is visible is deter-

mined by the image resolution, the nanotube conformation and the tilt of the tube

relative to the electron beam. In figure 6.25 this is illustrated with structure models

and corresponding simulations of three SWNTs that closely match the experimental

tube diameter of 1.45 nm.

For achiral tubes, the zigzag directions are parallel on both tube walls, leading to

equal contrast on both walls for all inclination angles.

For a ‘zigzag’ tube in the image plane (figure 6.25(a)), strong contrast is observed

on both tube walls, as the zigzag rows are aligned parallel to the beam direction.

This contrast gets weaker as the tube is tilted out of the image plane because the

rows start to stagger in projection.

For an ‘armchair’ tube, no wall contrast is observed when the tube lies in the image

plane, as the projected distance between carbon columns is now only dC−C/
√

3 =

0.125 nm, beyond the experimental resolution in the restoration. Some contrast along

the wall with a larger spacing becomes visible as the tube is tilted out of the image

plane, but a full alignment of the ‘zigzag’ columns with the projection direction

requires a tilt angle of β = ±30◦.

With its axis in the image plane, the chiral (21,-8) tube in figure 6.25(c) shows

little contrast on both tube walls. However, when the tube is tilted out of the image

plane, the alignment of the zigzag lines with the projection direction improves for one

tube wall and worsens for the other, giving rise to the asymmetric contrast observed

experimentally.

In general, the visibility of contrast in the left (right) tube wall depends on the

angle δ = |αc − β| (δ = |αc + β|) between the projection direction and the ‘zigzag’

lines, where αc is the chiral angle (equation 6.5) and the angle β between the tube

axis and the image plane is defined as positive if the top end of the tube is above

the image plane (as for this specimen). The observed contrast on the right wall

of the imaged tube in figure 6.23(a) therefore means that the tube is chiral with a

negative chiral angle α and hence a negative integer m. When the zigzag lines are



227

β

����

�
�� ��

	�
������������������� ��!#"%$&('*)

+-,�.0/�132547638:9�; <>=@?(ACB-DFEHGJI
ββββ KMLONQPRTS(U@VCW-XFY[Z(\ ββββ ]_^a`

bdcegf
h i jlk
m

	�����n�Qo��qpo���pr��!s"t$&(uv)

w�xy�z
{ | }�~
�

������
��� �� β

���
��

��
��

�

β

� �
�

�� ��
	��������Q���������v�����F�v!#"t$&( H)

¡�¢£�¤
¥¦§ ¨©

ª�«¬�
® ¯ °²±
³

Figure 6.25: Schematic illustration of the observable resolution of fringes within
SWNT walls, depending on the conformation and the tilt angle β. The columns
adjacent to the illustrated graphene sheet display modelled fractions of the SWNTs,
where the models on the right are tilted by β = 15◦ out of the image plane. The
outermost columns show the simulated phase of the displayed models. Asymmetric
wall contrast is only observed when the tube is chiral and tilted out of the image
plane ((c) right).
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Figure 6.26: Square root of the 2-dimensional power spectrum calculated from the
tube in the lower half of figure 6.23(a). The reflections marked by arrows are incom-
mensurate to the crystal reflections and arise from the tube itself.

not exactly aligned with the projection direction contrast along the tube wall remains

visible provided that the angle δ is smaller than ca. 10◦, because even though the

atoms start to stagger in projection, the contrast from neighbouring zigzag rows does

not overlap since the number of atoms in projection on the tube wall is small. The

observed spacing in this case is given by 1.5 dC−C cos β/ cosα as illustrated with the

model for Ch = (21,−8) in figure 6.25(c).

Further information on the tube chirality can be obtained from the Fourier trans-

form of the restored wave. The reflections marked by arrows in figure 6.26 are not

commensurate with the reflections due to the encapsulated crystal and further confir-

mation that these reflections arise from the nanotube itself is that the ky-component

of the more intense maxima corresponds to the spacing observed in the linescan along

the right tube wall. In order to determine the tube conformation multislice simula-

tions for all tubes with diameters d in the range 1.37 nm ≤ d ≤ 1.5 nm, tilted by
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Figure 6.27: Simulated object wave power spectra for (a) zigzag (b) armchair and (c)
chiral tube conformations. The first-order reflections are situated at the vertices of two
hexagons (due to the contributions from the upper and lower tube wall, respectively)
which are rotated by ±α w.r.t. the tube axis (Amelinckx et al., 1999). In case of
the achiral zigzag (a) and armchair (b) conformations, both hexagons coincide. In
all figures, the maximum spatial frequency shown is 11 nm−1. Since the projected
spacings perpendicular to the tube near the tube wall are reduced compared to a flat
graphene sheet, the reflections are elongated and extend from the hexagon vertices
towards higher frequencies.
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angles of 0◦, 5◦, 10◦, 15◦ and 20◦ were calculated. The only tubes with negative

chirality that reproduced the observed peaks in the power spectrum were (20,−7),

(20,−8) and (21,−8) with tilt angles of 15◦ and 20◦. As the diameter of the (21,−8)

tube (which is the mirror image of a (13, 8) tube) provided the best match to the

experimental diameter, this tube was used for all subsequent simulations. The simu-

lated power spectra in figure 6.27 demonstrate this dependence of the first order peak

positions on the chiral angle of the tube.11

Overall, the conformation of the tube is hence determined using a combination

of real space information (tube diameter, tube wall contrast) and Fourier space in-

formation (diffraction peaks) obtained from the restored image wave. In addition,

the accurate measurement of the change in focus along the tube made it possible to

determine the chirality sense. Figure 6.28 illustrates how the combination of these

three methods is used to derive the tube conformation.

6.3.6 The encapsulated crystal

The restored phase shows contrast due to the filling material in the SWNT over

the entire field of view. However only within the lower region of the tube is the

crystalline Sb2O3 sufficiently well resolved to provide useful structural information

(Figure 6.29(d)). The uninterpretable crystalline contrast in the remainder of the

tube is in part due to movement and rotation of the tube during data acquisition and

to misorientation and possible irregularity of the filling in some regions of the tube.

The regular structural motif of the imaged encapsulated Sb2O3 crystal can be

described as a repeating sequence along the tube of a row containing three columns

of antimony atoms followed by a row containing two columns of antimony atoms.

This pattern resembles the arrangement of Sb columns for an approximate 〈1 0 1̄〉
projection through a fragment of Sb2O3 derived from the orthorhombic polymorph

11The smallest angle between the tube axis and a diffraction maximum on either hexagon is given
by |αc|, giving a direct estimate for the chiral angle. However, as the diffraction spots are elongated
(figure 6.27) and their position also depends on the tube inclination, this estimate is not as accurate
as a comparison with simulations of tubes with different conformation and inclinations.
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(21,0)

(13,11)
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(20,2)

Wall contrast and tube inclination angle

Diffraction pattern match

Diameter measurement
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Figure 6.28: The tube conformation is determined by a combination of methods.
Measuring the tube diameter yields the length of the chiral vector. Conversely, the
diffraction pattern (calculated from the restored wave), is sensitive to the chiral angle
modulus |αc|, but not to the tube diameter. The diffraction pattern is also insensitive
to the chirality sense (the sign of αc), which can, however, be determined from the
asymmetry in the tube wall contrast when the tube is inclined with respect to the
image plane and the inclination angle is measured. This investigation of the inclina-
tion angle and wall contrast also yields an estimate for |αc|, albeit less accurate than
diffraction pattern matching.
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Figure 6.29: (a)-(d) Structural model of the encapsulated Sb2O3 crystal fragment
based on the bulk valentinite structure (a) Ball and stick model in the experimental
projection close to 〈101̄〉. The antimony atoms are represented by the larger balls. (b)
End-on view of the tube, corresponding to the 〈4 1̄ 2〉 direction of the encapsulated
Sb2O3 crystal. (c) Phase of the multi-slice simulated restored wave, neglecting lattice
vibrations (d) Experimental restored phase, assuming zero lattice vibrations. (e)-
(j) Simplified model for the cation sublattice. (e) In a model where the atomic
columns are perpendicular to the tube axis, tilting of the tube by 15◦ leads to a
visible staggering in projection. (f) Model with a monoclinic unit cell, where the
atomic columns are nearly parallel to the projection direction (g) End-on view of
both models. (h), (i) Simulated restored phase from models (e) and (f) with a lattice
vibration of 0.05 nm. (j) Experimental restored wave assuming a lattice vibration of
0.05 nm.
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valentinite form. This compound (Svensson, 1974)) is considered to be the high-

pressure form and consists of infinite double chains of Sb2O3 units, as opposed to

the cubic senarmonite form (Svensson, 1975), which consists of molecular units of

Sb4O6. In the bulk valentinite structure, the Sb2O3 double chains run parallel to

〈0 0 1〉 with the two chains linked at each antimony site by a shared oxygen, such that

each antimony atom is coordinated by three oxygen atoms.(Svensson, 1974)

The proposed structure model and an end-on view of the Sb2O3/SWNT composite

are shown in figure 6.29. In this model, the tube axis is aligned with the 〈4 1̄ 2〉
direction of the crystal, as this was the only possible tube axis that reproduced

the good alignment of Sb atomic columns along the centre line of the tube and

was consistent with the observed tube tilt angle. The angle between 〈4 1̄ 2〉 and

the optimum 〈1 0 1̄〉 viewing direction is 78.3◦. Small deviations from this viewing

direction make an insignificant difference to the observed contrast and hence a tube

inclination of 15◦ (rather than 11.7◦), as used in the simulation in figure 6.29(c) in

order to account for the observed contrast within the tube wall, is plausible.

Significant lattice distortions were observed in the Sb2O3. In comparison with the

bulk structure of valentinite, the encapsulated crystal shows a longitudinal contraction

of 13% along the 〈4 1̄ 2〉 direction (i.e. along the tube axis), a much larger distortion

than observed for the encapsulated KI crystal discussed in the previous section.

The repeat distance along the tube in the restored phase corresponds to 2 Sb rows,

whereas the model predicts a repeat distance of 8 Sb rows, indicating that the crystal

is forced into a state of higher symmetry due to the confinement by the tube walls.

This model of the inclusion crystal is discussed in more detail elsewhere (Friedrichs

et al., 2001).

Due to the apparent mismatch between the model based on the bulk valentinite

structure and the experimental images, an alternative simplified structural model was

also constructed where the cation positions are directly measured from the restored

phase and the anion sublattice is ignored, since it is likely to make no difference to

the contrast (figure 6.29(c)). Figures 6.29(i) and (j) demonstrate that a better match
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between experiment and simulation is achieved using this model and an increased

lattice vibration. A comparison with figure 6.29(h) shows that it is necessary to

include a tilt of the atomic columns with respect to the tube axis in order to account

for the sharp appearance of the atomic columns in spite of the measured tilt of the

nanotube out of the image plane.

The restoration in this section demonstrated that

1. The object wave restored from a focal series allowed a characterisation of both

the SWNT and the encapsulated crystal with an accuracy that could not be

achieved from a single HRTEM image.

2. The chiral tube conformation could be inferred from the measured tube diameter

and from peak positions in the power spectrum of the restored wave.

3. For the first time, the chiral sense of a carbon nanotube has been directly deter-

mined using HRTEM. This has been achieved by an analysis of the asymmetric

tube wall fringe contrast in combination with an accurate measurement of the

change in defocus along the tube.

4. For the encapsulated crystal, a model based on the valentinite form of Sb2O3

has been devised. However, compared to that model, a significant contraction

along the tube was observed and the translational symmetry along the tube axis

was found to be higher than in the bulk structure. As a starting point for an

alternative model, the cation positions measured from the restored phase can

be used, and a model using these positions and ignoring the anion sublattice

yields a good match to the experimental data.



Chapter 7

DigiTEM: A dedicated system for

external control of electron

microscopes

The extension of the automated aberration determination methods developed in the

previous chapters to fully automated microscope alignment requires direct access by

an external computer to all the microscope settings. The only facility provided on

most JEOL microscopes for such access is a relatively slow serial port, which suffers

from the following disadvantages:

1. Only ca. 3-5 commands per second can be transmitted to the microscope.

2. The external computer is not notified about local changes in the microscope

settings made directly by the operator. This makes it difficult for an external

auto alignment system to adapt to changes, for instance, in the magnification.

3. It is not possible for the external computer to take over complete control of

selected microscope settings.
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In order to overcome these difficulties, a piece of dedicated hardware, called ‘Digi-

TEM’ was developed, which is connected into the digital bus that links the micro-

scope’s internal computer (MC) with the deflector unit1 as shown in figure 7.1. In

order to also control the lens currents a second identical2 unit has to be connected

between the MC and the lens unit. Figure 7.2 demonstrates that the installation of

DigiTEM only requires minimal modification to the microscope.3 The external PC

is connected via an optically isolated fast (115200 baud) standard RS422 serial port

and hence only a standard dual RS422 board is required in the PC to control both

the deflector and the lens DigiTEM units.4

7.1 Firmware

The PIC17C43 microcontroller was programmed in assembler code using the mi-

crochip MPLAB integrated development environment.5

Figure 7.3 illustrates the program and dataflow for the DigiTEM firmware. Four

queues served by interrupt routines have been implemented to allow a quick reaction

to external events. Reaction to write commands from the MC is particularly time

critical, since the write pulse is only 12 µs long and hence, this interrupt is given the

highest priority and can be nested with other interrupts.

1The deflector unit contains the digital to analogue (D/A) converters that control the deflector
coil currents.

2Though the busses leading to the deflector and lens units are identical, the pin assignment of
the connectors is entirely different. These differences can, however, be fully accommodated by the
firmware, so that identical boards can be used for both purposes.

3Although DigiTEM was initially designed for general control purposes, its scanning features have
made it attractive for other research groups. At present, units are installed in the JEM 4000EX
and JEM4000FX microscopes in the Department of Materials Science in Cambridge, in a JEM 2010
in the Department of Chemistry in Cambridge and in a JEM 2010 in the electron microscopy unit
of the Lincoln University in Nebraska. These latter installations are mainly used by the respective
research groups for hollow cone (Kunath et al., 1985) and related work.

4In the RS422 standard, data are transmitted via a differential line pair, which makes it more
reliable than the single ended RS232 standard used in the built in serial ports on PCs. Macintosh
computers use the RS422 standard by default.

5MPLAB, as well as data sheets of all PIC microcontrollers are available free of charge at
www.microchip.com.
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Figure 7.1: Schematic diagram of the DigiTEM interface. The DigiTEM intercepts
write commands on the digital bus from the microscope computer to the deflector or
lens unit.
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Figure 7.2: A DigiTEM board installed in the deflector unit of a JEOL JEM4000
microscope. The standard cable from the MC to the DEF unit is connected to the
DigiTEM input, and a short ribbon cable connects the DigiTEM output to the DEF
unit.
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Figure 7.3: DigiTEM dataflow diagram. The microcontroller firmware is based on
interrupt routines that take prepared data from first in first out buffers (queues) or
put received data into queues. These queues are served at the other end by the
main loop of the program. In the diagram, the program flow is illustrated with thick
arrows, while thin arrows describe the data flow.
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In the main program loop, tasks from the different queues are executed in turn,

whilst DigiTEM maintains current information for each coil in the internal microcon-

troller memory. This information includes the mode, the MC value and the offset or

PC value, and the PC can read this information at any time. DigiTEM also sup-

ports the scanning of up to 4 coils with sinusoidal, triangular or saw-tooth shaped

waveforms. Scanning parameters such as the amplitude and the phase offset can be

changed from the PC in real time without interrupting the scan, which is important

for setting up complicated scan conditions.

In practice, DigiTEM has two basic modes of operation, the passive mode and

the active mode. In the passive mode, all commands from the MC are fed through

to the deflector or lens unit unaltered and DigiTEM only interprets these commands

to update its internal memory of the current microscope state. In the active mode,

each deflector coil can be operated in either MC, dual or PC submodes. In the MC

submode, the coil current is determined by the microscope only, whereas in the dual

submode, the PC can add an offset to the MC value and in the PC submode, the

value is given by the PC only and the respective control knob on the microscope has

no influence. In active mode, DigiTEM also sends messages to the PC whenever a

MC setting is changed, even if this change has no effect because the respective coil is

in PC mode. As a failsafe to avoid the microscope being left in a locked state when

the external PC is switched off or fails, a timeout mechanism is implemented such

that DigiTEM reverts back to passive mode when the PC fails to respond to a special

message sent by DigiTEM at one second intervals.

7.2 DigiControl software

The Windows based application DigiControl, written in Visual Basic, allows the con-

trol of all deflector and lens currents of the microscope using DigiTEM using an

external PC. The deflector page, shown in figure 7.4 lists the current digital values

for all deflector coils, updated in real time. For each coil pair the mode of operation
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Figure 7.4: The deflector page of the DigiControl software. Each coil pair can be
operated in MC, dual and PC submodes. In dual mode, the user can specify an
offset to the MC value, whereas in PC mode the coil setting is exclusively under
PC control. These values can be changed using the mouse wheel after clicking the
appropriate field. The numbers in the field change in real time when any setting is
altered at the microscope.
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can be selected, and in dual and PC mode, the value for the offset or the total coil

current can be changed by clicking the appropriate field and using the mouse wheel

for adjustment. Left and right mouse clicks then toggle between the x and the y coil.

This functionality is also provided for the stigmators and lenses on separate pages.

7.3 Scanning features

The scan page of the DigiControl software (figure 7.5) provides an interface to Digi-

TEM’s scanning features. Up to 4 coils can be scanned simultaneously with a choice

of 4 waveforms (figure 7.6). Scanning is performed in discrete steps, where the time

between steps is given by tstep = nstep ∗ 0.2713µs and is set globally for all coils in the

field ‘step time’ as an integer multiple, nstep of the instruction cycle. The waveforms

have a period of 1024 steps (sin and saw) and 512 steps (saw up and down). For

faster scans, it is possible to advance the phase by k in each scanning step, where k

is given in the field ‘step’ for each scan coil. For slow scans, a number j > 1 can be

entered in the field ‘interval’ with the effect that the phase is advanced only every j

scanning steps, so that the total period of the scan is given by

T =

{
1024 tstep j/k for sin and saw

512 tstep j/k for saw up and down.
(7.1)

Table 7.1 lists the parameters required for various scanning patterns. The maxi-

mum sampling frequency is limited by the speed of the microcontroller, which imposes

the limit nstep ≥ 850 (or nstep ≥ 750 when only two scan coils are used). For fast

scans, e.g. entry (a) in table 7.1 with f = 50s−1, the phase is advanced in larger steps

(13 in this example) so that in each scanning period only 79 points around the circle

are sampled. However, as 13 has no common factor with 1024, all 1024 points around

the circle are sampled after 13 periods.

Tools for the setting up of circular scans are implemented at the bottom of the

‘scan’ page. The controls on the left side simply group the coils together in pairs, with

a phase shift of 256 steps (π/2) between the x and y directions. The amplitude of



243

Figure 7.5: The scan page of the DigiControl software. Up to 4 scan coils can be set up
individually with various scanning functions. The scan setup feature at the bottom
right allows a compensated scan/descan condition to be set up. In this particular
screen shot, the user is performing step 4 in table 7.2.
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Figure 7.6: Four different scanning waveforms can be selected to facilitate circular
and elliptical scans as well as raster scans.

Scanning pattern nstep x y f [s−1]
Ampl. Phase k j Ampl. Phase k j

(a) Circular scan 936 1000 256 13 1 1000 0 13 1 50
(b) Elliptical scan 900 1000 128 1 1 1000 0 1 1 4
(c) Lissajoux scan 900 1000 256 5 1 1000 0 15 1 20
(d) Raster scan 937 1000 256 2 1 1000 256 2 256 0.06
(e) Raster scan 900 1000 256 8 1 1000 256 8 64 1

Table 7.1: Examples for scanning patterns using ‘sin’ ((a)-(c)) and ‘saw up’ ((d) and
(e)) waveforms. (a) Fast circular scan. (b) Slow elliptical scan with the long axis
along the x = y coil direction. (c) When the frequencies on both coils are different
a Lissajoux figure is produced (in this example described by (cos(ωt), sin(3ωt))). (d)
Raster scan with 256×256 sampling points. (e) Fast raster scan with 64×64 sampling
points.
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each pair and the phase shift between the pairs (e.g. to allow for a rotation between

a scanning and descanning coil pair) can be adjusted using the wheel mouse while

scanning.

Software to facilitate the setting up of compensated scan/descan conditions is also

provided. When the ‘setup’ button at the right hand side of the ‘circle scan’ frame

is clicked, the user is guided through a procedure in which only a single variable

has to be adjusted at each stage until an easily recognisable condition in the visible

scanning pattern is met (table 7.2). This is a useful simplification since for exact

compensation of the scanning by the descanning coil pair it is not only necessary to

match the amplitudes of the two pairs and compensate for the rotation between them

by a phase shift, but it is also necessary to take into account that the coils of each

pair are generally neither of equal strength nor exactly orthogonal. The setting up

procedure is based on first applying linear (one-dimensional) scanning patterns with

a 256 step phase shift to scanning and descanning coils. This leads to an elliptical

scanning pattern unless the directions of the linear scan and descan are parallel, in

which case the ellipse collapses into a line. This is used in step 3 to find the direction

of the x scanning axis with respect to the descanning coils and again in step 5 for

the y scanning axis. Once the direction is found, matching the amplitudes is simply

achieved by varying the descanning amplitude with fixed (now known) direction and

zero phase shift until the linear scanning pattern collapses into a point (steps 4 and

6).
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What the user needs to do Variable changed Pair 1 x Pair 1 y Pair 2 x Pair 2 y
1. Adjust scan amplitude A A sin(ωt) A cos(ωt) 0 0
2. Adjust scan ellipticity B from A A sin(ωt) B cos(ωt) 0 0
to yield circular scan
3. Adjust descan amplitude C(only coarse) 0 0 C sin(ωt) C cos(ωt)
for same deflection
as scan amplitude
4. Adjust descan x-direction p A sinωt 0 C cos p cosωt C sin p cosωt
until ellipse collapses to line
5. Adjust descan x-amplitude C from 0 A sinωt 0 C cos p sinωt C sin p sinωt
until line collapses to point (positive or negative)
6. Adjust descan y-direction q from p+ π/2 0 B sinωt C cos q cosωt C sin q cosωt
until ellipse collapses to line
7. Adjust descan y-amplitude D from 0 0 B sinωt D cos q sinωt D sin q sinωt
until line collapses to point (positive or negative)
8. Finished none A sinωt B cosωt C cos p sinωt+ C sin p sinωt+

D cos q sinωt D sin q sinωt

Table 7.2: The manual adjustment procedure through which the user is guided in
the ‘scan adjust’ feature of DigiControl. This feature greatly simplifies the setting up
of a compensated scan/descan condition, as at each stage of the adjustment, only a
single parameter is altered using the wheel mouse until the visible scanning pattern
fulfills an easily recognisable criterion.



Chapter 8

Conclusions and future work

8.1 Conclusions

The work in this thesis can be broadly divided into three areas and the main results

from within each area are summarised in this chapter.

8.1.1 Characterisation of CCD cameras

• It has been demonstrated that it is critical to distinguish between signal and

noise transfer for CCD cameras (2.1.3).

• The noise method that has frequently been used in the past to measure the Mod-

ulation Transfer Function (MTF) was found to be inadequate for this purpose,

as it in fact measures the Noise Transfer Function NTF (2.1.3).

• A mathematical framework that allows calculating both transfer functions using

Monte-Carlo simulations has been developed (2.2).

• The signal transfer depends on the area illuminated by many electrons with

the same incident point, while the noise transfer depends on the average area

illuminated by a single electron (2.2.2).
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• A detailed Monte-Carlo model for the conversion process in the scintillator

has been developed, including elastic and inelastic electron scattering, fast sec-

ondary electron generation and photon scattering, reflection and absorbtion

(2.3).

• A method has been developed for the accurate experimental measurement of

the MTF using images of a sharp edge, which is skewed with respect to the pixel

columns so that an oversampled edge profile can be extracted to avoid aliasing

artefacts (2.4).

• Without oversampling, aliasing can lead to a significant overestimation of the

MTF measured using the edge method (2.4.2).

• The noise method can be used to measure the NTF and an approach to aliasing

correction has been developed (2.5).

• The MTF, NTF and DQE have been measured for a number of commercially

available cameras at electron energies in the range 100-400 keV (2.6).

• A strong discrepancy between MTF and NTF has been found both experimen-

tally and in simulations. At high voltages, the high frequency MTF was up to

a factor of 4 times lower than the NTF (2.6.3).

• The DQE was found to be strongly spatial frequency dependent and often drops

below 10% at high frequencies (2.6.3, 2.6.4).

• The deterioration of the DQE is most pronounced at voltages above 200 kV

(high voltage problem). This is due to the increasing lateral range of electrons

that re-enter the scintillator after being back-scattered from the support layer

(22, 2.6.3).

• As a simple figure of merit, an effective pixel number has been introduced (20).

At high voltages, this was found to be typically only 10% of the actual pixel

number (2.6).
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• For YAG scintillators, the results of Monte-Carlo simulation were found to be

in good agreement with the experimental results (2.6.1).

• Due to the photon scattering and absorbtion, phosphor powder scintillators are

more difficult to simulate, and the agreement between experiment and simula-

tion is less perfect (2.6.3).

8.1.2 Automated aberration determination

• Existing methods for automated aberration determination have been reviewed

(3).

• The accuracy of the tilt induced shift method at high resolution suffers from

specimen drift (3.2).

• Automated diffractogram fitting requires extended regions of amorphous mate-

rial and the field of view must be free of crystalline material (3.3.1).

• The “DiffProp” method, which exploits the shift of crystalline reflections when

a holographically restored image wave is defocused in diffraction space, only

works for small crystallites (3.6).

• A new method for determining the symmetric wave aberrations from a focal

series of an arbitrary object has been developed (4).

• The first step in this new method is the accurate registration of the images,

including the determination of the relative focus levels using Phase Correlation

Functions PCF (4.1).

• In the PCF all spatial frequencies are given equal weight, whereas the con-

ventional cross-correlation function XCF is dominated by the strong Fourier

components, i.e. low frequencies and crystal reflections, leading to a periodic

repetition of the cross-correlation peaks for crystalline objects (4.1.1).
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• The focus difference between two images is determined by exploiting that the

PCF peak hight is maximised when a phase compensation for the correct focus

difference is applied (4.1.2).

• The accuracy of the relative focus determination is better than 1 nm (4.3.1).1

• The image wave in the plane of a reference image can be restored when at least

two images have been registered to this reference image (4.1.3).

• The symmetric aberration coefficients are determined by maximising Phase

Contrast Index (PCI) integrated over k. The PCI is a measure for the con-

jugate asymmetry of the image wave corrected with trial parameters (4.2.1).

• This approach gives equal weight to all pixels in Fourier space, and hence only

requires that the object wave is conjugate antisymmetric (weak phase) for a

majority of spatial frequencies. The presence of crystalline material has little

influence, since the crystalline reflections only cover a small fraction of the

Fourier space area (4.2, 5.3).

• Using directionally weighted integration of the PCI, the defocus C1 and the

two-fold astigmatism A1 can be determined simultaneously by only varying the

trial parameter C1 (4.2.3).

• The process of integrating the PCI over k for each trial value of C1 can be

replaced by 3 integrations and a 1-dimensional Fourier transform, which makes

the algorithm very fast (4.2.4).

• The accuracy of the determined parameters C1, A1 is better than 1 nm (4.3.2,

5.3).

• The spherical aberration C3 can also be determined with an accuracy of 0.05 mm

(4.2.5).

1All accuracies quoted in this section have been determined at magnifications between 250 kX
and 800 kX on a JEOL 3000F 300 kV microscope with field-emission gun.
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• Determining the asymmetric aberrations with the new method requires record-

ing a combined tilt-focus series, i.e. a short (3 member) focal series at a number

(e.g. 6) of tilt azimuth angles (5.1). For each tilt, the apparent defocus and two-

fold astigmatism are measured using the new method, and from these values,

the complete set of aberration coefficients is determined analytically or using a

least squares fit (3.3.2).

• The three-fold astigmatism can be measured with an accuracy of 20 nm (5.2),

and the accuracy of the measured beam tilt is 0.02 mrad (5.2.1). Both accuracies

are sufficient for a resolution of 11 nm−1 (table 1.2).

• The complete aberration determination can be carried out using small sub-

regions (e.g. 128×128 pixel). This allows the investigation of the position

dependent variation in the aberration parameters (5.2).

• For some datasets, a significant unintentional beam convergence was found,

resulting in a variation of the beam tilt by up to 2 mrad across the field of view

(5.2.1).

8.1.3 Experimental examples of automated object wave rest-

oration.

• An application of the new aberration determination method is the restoration

of the aberration corrected object wave from a focus or tilt/focus series (6).

• Since the relative focus levels are accurately determined, the restoration is not

affected by focus drift or deviations from the nominal focus step size (4.1.3).

• The automated aberration determination allows a reliable restoration even if

the microscope is not well aligned during data acquisition (6.2.2).

• Due to oscillations of the phase contrast transfer function, high-resolution im-

ages recorded with field emission gun electron microscopes suffer from contrast
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delocalisation, which makes interpretation of conventional individual images

difficult, especially near grain boundaries or other aperiodic features. This de-

localisation is not present in the restored object wave (1.6).

• The restored modulus shows the positions of atomic columns with heavier atoms

as sharp and pronounced minima up to relatively large thicknesses (6.1, 6.2).

• The weakly scattering oxygen columns in complex oxides were clearly identifi-

able in the restored phase (6.1, 6.2.2).

• A restoration of the layered perovskite Nd4Srti5O17 revealed the structural ori-

gin for streaks observed in diffraction patterns of this compound (6.2.4).

• In the restored phase of a carbon nanotube filled with a 3×3 crystal of potassium

iodide, atomic columns containing only a single potassium atom were visible

(6.3.3).

• For the 3×3 KI specimen the restored phase was found to be in good agreement

with multislice simulations, provided that a specimen vibration of 0.07 nm and

a general contrast reduction by 20% were taken into account (6.3.3).

• For a carbon nanotube filled with antimony oxide, the object wave restored

from a focal series was used for a simultaneous determination of the tube con-

formation and the structure of the filling material (6.3.4).

• For the determination of the chirality sense, the orientation of the nanotube

with respect to the image plane was determined by observing the change in

focus measured from small subregions along the tube using the new aberration

determination approach (6.3.5).
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8.2 Suggestions for future work

8.2.1 New digital electron detectors

The work presented in chapter 2 on the characterisation of CCD cameras for electron

detection shows that at intermediate voltages, the DQE of current CCD cameras at

medium and high spatial frequencies is low, leading to an effective pixel number that is

only 12% of the actual pixel number, and lower for very low electron doses. However,

it is also shown that this problem is caused mainly by the back-scattering of electrons

from the supporting fibre plate into the scintillator and is therefore common to all

fibre-optically coupled systems and cannot be solved by optimising the scintillator

material or thickness. While the problem can in principle be avoided with lens-coupled

cameras using self-supported scintillators (Fan et al., 2000), the low sensitivity of lens-

coupled systems (section 2.6.5) also severely reduces the DQE due to the photon shot

noise.

In order to overcome these intrinsic problems of indirect electron detection using

scintillators, alternative direct solid state detectors will be investigated.

8.2.2 Real time aberration correction and restoration

The automated aberration determination developed in this work is fast and robust and

therefore ideally suited for real time applications. This requires a frame-transfer CCD

camera (section 2.1.1) and a powerful computer to carry out the realtime restoration.

The aim of such a system is the display of modulus and phase of the aberration

corrected object wave. The fast restoration scheme presented in figure 4.14 is ideally

suited to this purpose, and a restoration comprising the last three images could be

continually displayed. The computational effort for each new frame is little more the

3 2-dimensional Fourier transforms (a forward transform of the image, then a reverse

transform of the product with the predicted image Fourier transform, and finally a

reverse transform to obtain the real space object wave).

Table 8.1 demonstrates that this can be achieved with a 512 × 512 pixel field
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Processor MHz t/µs Reference
SHARC 40 457 www.alacron.com/Products/boards/PB_FT2106xPCI.htm

8 x SHARC 40 72 www.alacron.com/Products/boards/PB_FT2106xPCI.htm

DSP-24 100 21 www.valleytech.com/vti_in_the_news.asp

FFT Engine 128 10 www.doublebw.com/FFTEngine.html

Pentium II 300 250 www.fftw.org/benchfft/results/pii-300-single.html

Pentium 4 1500 20 developer.intel.com/software/products/mkl/mklspecs_new.htm

Table 8.1: Time t required for a 1k 1-dimensional complex single precision floating
point FFT for various dedicated Fourier processors and 2 standard Pentium proces-
sors. The time required for a 2-dimensional 512× 512 pixel Fourier transform is 512
times the quoted time.

of view using a standard Intel Pentium 4 processor with 1.5GHz clock frequency,

predicting that this processor computes the 3 Fourier transforms required in 30 ms,

hence allowing a frame rate of 25 frames per second.

A practical problem for the implementation of this system is the rapid change of

focus required between frames in order to record the focal series. In order to improve

this response, the acceleration voltage rather than the objective lens current can be

changed to effect the focus change (Kimura et al., 1994).

8.2.3 Automated object wave restoration beyond the linear

imaging approximation

The restorations presented in this work have been calculated using linear Wiener

filters and ignoring the non-linear contributions to the image intensity. While the

artifacts in the restoration from N images caused by the neglected non-linear terms

is expected to be reduced by 1/
√
N compared to the effects in a single image (Sax-

ton, 1994b), it is likely that the non-linear terms are significant for thick crystalline

objects. A non-linear algorithm for restoration from an equally spaced focal series

has previously been developed by Coene et al. (1996), however, in order to be usable

with the automated aberration determination developed in this work, an extension

to the more general case of a tilt/focal series will be necessary.
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The multislice method

The multislice method is commonly used to compute the electron wave at the exit

plane of a specimen with known atomic structure. This approach was first suggested

by Cowley and Moodie (1957) and has found widespread use, especially since the re-

invention of the Fast Fourier Transform (FFT) algorithm (Cooley and Tukey, 1965;

Brigham, 1974) and the general increase in available computing power has made ear-

lier constraints on its accuracy due to limitations in the number of slices or the number

of diffracted beams immaterial. More recent accounts of the multislice algorithm can

be found in (Goodman and Moodie, 1974; Kirkland, 1998). The derivation presented

here is largely taken from (Kirkland, 1998).

The basis of the multislice method is the division of the specimen into a number

of thin slices perpendicular to the direction of the incident beam. The effects of the

specimen potential (transmission) and of Fresnel diffraction (propagation) are then

treated separately for each slice. Each slice used in the simulation must be thin

enough to be a weak phase object. All the atoms within the slice (i.e. between z and

z + ∆z) are compressed into a flat plane at z.

An alternative to the multislice method is the Bloch wave approach, first intro-

duced by Bethe (1928) and described in detail for instance in Buseck et al. (1988).

Analogous to the Bloch theorem in solid state physics (Ashcroft and Mermin, 1976),

the solution of the Schrödinger equation in the periodic crystal potential is written

255
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as a product of a plane wave and a function that has the same periodicity as the

crystal. The latter function is then expanded into its Fourier components and the

Schrödinger equation reduces to a matrix equation for these Fourier coefficients. For

simple crystals, relatively accurate solutions can be obtained using only a few of these

Bloch waves, in some cases only two (two beam approximation). This approach pro-

vides valuable insight into the working of dynamical electron diffraction and explains

phenomena such as thickness fringes. However, for more complex crystals with larger

unit cells, the method becomes unpracticable, as a large number of beams has to be

used in the calculation and the computation time for the matrix solution scales with

N3, where N is the number of beams included.

A.1 Derivation of the multislice equations

The equations of the multislice algorithm can be derived starting from the Schrödinger

equation for the wavefunction ψf an electron in the electrostatic potential V (x, y, z)

of the specimen:

[
− ~2

2m
∇2 − eV (x, y, z)

]
ψf (x, y, z) = Eψf (x, y, z) , (A.1)

where m is the relativistic electron mass of the electron. For the high-energy elec-

trons in the electron beam, the motion is predominantly in z-direction, hence it is

convenient to separate the full wavefunction ψf into a product of the solution of the

free Schrödinger equation (with V ≡ 0), which is a plane wave propagating in the z-

direction, and a wavefunction ψ that represents the small effects due to the specimen

and varies much more slowly with z:

ψf (x, y, z) = e2πikz · ψ(x, y, z) , (A.2)
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where k = 1/λ is the inverse wavelength of the free electron. Substituting this into

equation A.1 and using E = h2k2/2m yields1

− ~2

2m

[
∇2
xy +

∂2

∂z2
+ 4πik

∂

∂z
+

2meV (x, y, z)

~2

]
ψ(x, y, z) = 0 . (A.3)

In an elastic scattering process away from the z-direction, kx and ky are propor-

tional to the scattering angle, while the change ∆kz is proportional to its square.

For small scattering angles therefore the term
∣∣∣∂2ψ
∂z2

∣∣∣ is much smaller than �
∣∣∇2

xyψ
∣∣

and can be neglected in the paraxial approximation. What remains is a first-order

differential equation in z

∂ψ(x, y, z)

∂z
= [A+B]ψ(x, y, z) (A.4)

with the operators

A =
iλ

4π
∇2
xy (A.5)

B = iσV (x, y, z) (A.6)

where the interaction parameter σ is defined by

σ =
2πmeλ

h2
. (A.7)

This differential equation has the formal solution

ψ(x, y, z + ∆z) = exp

[∫ z+∆z

z

[A(z′) +B(z′)] dz′
]
ψ(x, y, z) . (A.8)

When ∆z is small, this can be simplified to

ψ(x, y, z + ∆z) = exp

[
iλ

4π
∆z∇2

xy + iσV∆z(x, y, z)

]
ψ(x, y, z) , (A.9)

where V∆z is the projected specimen potential between z and z + ∆z:

V∆z(x, y, z) =

∫ z+∆z

z

V (x, y, z′)dz′ . (A.10)

1It should be noted that k is defined as 1/λ rather than 2π/λ and therefore h rather than ~ must
be used in the expression for E.
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The two operators in the exponent in equation A.9 do not commute and therefore

this function cannot be re-written as a product of two exponential functions. However,

as both operators are small (to the order of ∆z), the approximation

eεA+εB = eεAeεB +
ε2

2
[B,A] +O(ε3) = eεAeεB +O(ε2) (A.11)

can be used. This leaves the expression

ψ(x, y, z + ∆z) = exp

(
iλ∆z

4π
∇2
xy

)
t(x, y, z)ψ(x, y, z) , (A.12)

where t(x, y, z) is the transmission function for the specimen slice between z and

z + ∆z:

t(x, y, z) = exp (iσV∆z(x, y, z)) . (A.13)

The first operator can be separated into components for x and y coordinates by

exp

(
iλ∆z

4π
∇2
xy

)
= exp

(
iα

∂2

∂x2

)
· exp

(
iα
∂2

∂y2

)
, (A.14)

where the abbreviation α = λ∆z/4π is introduced.

Considering the Fourier transform of the operator for the x-direction applied to a

function f(x):

FT

[
exp

(
iα

∂2

∂x2

)
f(x)

]
=

∫
e−2πikx exp

(
iα

∂2

∂x2

)
f(x)dx (A.15)

=
∑ (iα)n

n!

∫
e−2πikxf (2n)(x)dx (A.16)

=
∑ (iα)n

n!
(−2πik)2n

∫
e−2πikxf(x)dx (A.17)

= e−4iπ2k2αFT [f(x)] (A.18)

The same operation can be repeated for the y-direction, yielding

FT

[
exp

(
iλ∆z

4π
∇2
xy

)
f(x, y)

]
= exp

(
−iπλ∆z(k2

x + k2
y)
)
FT [f(x, y)] . (A.19)

Using this result the equation for a single multislice step (A.12) can be written as
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ψ(x, y, z + ∆z) = FT−1 {P (kx, ky)FT [t(x, y, z)ψ(x, y, z)]} , (A.20)

where the real space transmission function t(x, y, z) and the Fourier space propagation

function P (kx, ky) are given by

t(x, y, z) = exp (iσV∆z(x, y, z)) (A.21)

P (kx, ky) = exp
(
−iπλ∆z(k2

x + k2
y)
)
. (A.22)

It should be noted that the propagator has the same form as the wave aberration

due to a defocus of ∆z. The algorithm can be implemented very efficiently using fast

Fourier transforms, and is particularly suitable for simulations of crystals, as only

one unit cell has to be calculated and the periodic boundary conditions necessary for

the Fourier transforms are automatically fulfilled. The density of sampling points in

the unit cell determines the maximum spatial frequency in the Fourier transform and

therefore the maximum number of diffracted beams included in the simulation. To

avoid aliasing artifacts, it is necessary to exclude all beams above a limit less than

the Nyquist frequency in the propagation step.

A.2 Limitations and approximations

The multislice method is a very accurate method for calculating the exit plane wave-

function due to elastic scattering of electrons in a known specimen. The approxima-

tions made in the above derivation can, under certain conditions limit the accuracy

achieved with this method. Therefore the impact of these approximations is briefly

discussed here.

1. Limited number of beams. The number of beams included in the simula-

tion is limited due to the discrete sampling of the unit cell. Unlike the Bloch

wave approach (Bethe, 1928), which gives self-consistent results even with a rel-

atively small number of beams, the multislice method is only applicable when
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scattering into beams that are not included in the simulation is negligible. For

a given simulation, it can be tested if the number of beams included is suffi-

cient by verifying that the total intensity of the wavefunction does not decrease

significantly as the wave propagates through the specimen. A decrease by 5%

over the complete specimen is considered acceptable (Kirkland, 1998), but with

modern computers it is possible to choose the number of beams sufficiently high

to give a loss of intensity smaller than 0.1%.

2. Paraxial approximation. The paraxial approximation implies neglecting the

term
iλ

4π

∂2ψ

∂z2
(A.23)

from the RHS of equation A.4. A wave scattered by an angle θ towards the

x-direction can be written as:

ψ = e2πik(sin θ x+(cos θ−1)z) (A.24)

with k = 1/λ, hence ∣∣∣∣∂2ψ

∂z2

∣∣∣∣ < π2k2θ4
max . (A.25)

Therefore, the error due to the paraxial approximation accumulated over a

specimen thickness t can be estimated as

∆ψ <
λt

4π

∣∣∣∣∂2ψ

∂z2

∣∣∣∣
max

<
πt

4λ
θ4
max . (A.26)

As this term is very small for typical situations in high resolution electron

microscopy (e.g.: E = 300 keV, λ = 2 pm, t = 20 nm, θmax = 20 mrad yields

∆ψ = 0.16%), the error introduced by the paraxial approximation can generally

be neglected.

3. Weak phase approximation for individual slices. In principle, the error

due to this approximation can be made arbitrarily small by making the slices

sufficiently thin. However, as the full potential of each atom is usually projected
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into the slice that contains the atom centre, the accuracy is still limited when

propagation over the range of the atomic potential has a noticeable effect. In

this case, the atomic potential has to be divided across several slices, each

containing the potential projected over the slice thickness.

4. Relativistic effects. The derivation of the multislice algorithm is based on the

Schrödinger equation, whereas a fully relativistic treatment would require the

use of the Dirac equation. However, it has been shown (Fujiwara, 1962; Moodie

et al., 2001) that, provided relativistically correct expressions are used for both

electron mass and wavelength, the expressions derived from the Schrödinger

equation are an extremely good approximation those derived from the Dirac

equation.

Overall therefore, provided that the number of beams is large enough and the

slices sufficiently thin, the exit wave due to elastic scattering can be calculated to

high precision.

The most serious limitation in the accuracy of the multislice results, however, is

due to the fact that it only takes elastic interaction effects into account (Stobbs and

Saxton, 1988).

A.3 The simulated restored wave

The multislice simulations in this work were conducted for comparison with restora-

tions from focal and tilt series. In order to generate a simulated restored wave for

direct comparison with the experimental restored wave, the simulated exit surface

wavefunction is first back-propagated to the centre plane of the specimen, since this

is the focal plane determined by the automated focal determination. From this sim-

ulated wave ψsim, the simulated restored wave is calculated as

ψsimrest = WTF(k)ψsim(k) + WTFC(k)ψ∗sim(−k) (A.27)
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to take into account the attenuation by the total wave transfer function WTF and the

unwanted transfer of the conjugate wave present in the experimental restored wave.



Appendix B

The Monte Carlo batch

programming language

A batch programming language has been implemented as part of the Monte Carlo

simulation program (section 2.3.3), which allows a batch of simulations with different

parameters to be conveniently run. The batch program has access to all the param-

eters defined in the “Init Parameters” dialog box. The results of the simulations are

written into a datafile called “MTF file” containing the data listed in table B.1 in

columns separated by spaces. Optionally, datafiles describing the electron trajecto-

ries, the positions where photons are detected or the pulse height distribution can

also be produced. The datafiles can be used to generate plots using standard plotting

programs like “gnuplot”, which can be downloaded from www.gnuplot.org.

The key elements of the batch language are as follows:

Variables: Variable names are case-sensitive and may contain letters, numbers and

the underscore "_", but must start with a letter. Some variable names (see below) are

reserved for commands and constants and must not be used as variables. Variables

may be assigned numerical values with the statement

variable=expression

263



264

column value
1 Spatial frequency u [1/nm]
2

∫
ĝµ(u, 0) dµ

3
∫
|ĝµ(u, 0)|2 dµ

4 MTFS(u)
5 NTFS(u)
6 MTFS(u) with photon shot noise subtracted
7 DQES(u)

Table B.1: The columns of data written to the MTF data file.

where expression is a numerical expression that may contain variables and the op-

erators +, -, *, /, (, ) with their usual meaning. String values can also be assigned

to variables using the string assignment operator $=. This is mainly used to define

the filenames of the output files. String constants must be enclosed in double quotes

as in variable $= "text". Strings can be concatenated using the comma operator,

and numerical values can be converted into strings using C-type formatting strings.

Example:

E = 400

partfilename $= "gnuplot\MTF"

filename $= partfilename,$02d E/100,".dat"

will assign the string value "gnuplot\MTF04.dat" to the variable filename. The

batch language interpreter was written based on the expression evaluator and variable

database in the very elegantly programmed calculator example given by (Stroustrup,

1997).

Commands: Commands have uppercase names. Commands are: FOR, WITH, LOOP,

START, MTF_COLS, MTF_NEW, and MTF_APPEND. In detail, they have the following mean-

ings:

FOR variable=expr1,expr2[ , expr3]
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statements

LOOP

This sets variable to expr1, executes the statements, adds expr3 (default value 1)

to the variable and repeats the statements until variable>expr2 (or variable<expr2

if expr3<0). The expressions are only evaluated once and then used as constants while

the loop is repeated.

When the values for a particular parameter are not evenly spaced, the WITH state-

ment can be used:

WITH var = expr1[, expr2[, expr3[,...]]]]

statements

LOOP

This evaluates all the expressions and then repeats the statements with all the

evaluated values assigned subsequently to var as in the example below.

START: Starts the simulation for the current parameters.

MTF_APPEND: Switches to append mode. MTF and DQE calculated in subsequent

calculations are added to an existing gnuplot data file.

MTF_NEW: switches to overwrite mode. If a file with the current MtfFile name

already exists, it is overwritten by the results of the next simulation.

MTF_COLS var1[, var2[, var3[,...]]]: The values of the listed variables are

written as additional columns in the MTF data file. This distinguishes between the

results of different simulations concatenated into one file by MTF_APPEND. The first

added column has number 8. For documentation, the names of these variables are

also listed as a comment in the header of the output data file.

Example:

MTF_COLS E

MTF_NEW

MtfFile $= "AllEnergies.dat"

WITH E = 100, 120, 150, 200, 250, 300, 400
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START

MTF_APPEND ! Set to append mode after the first simulation

LOOP

Hence, multi-dimensional datasets can be created; in the above example the

MTFS, NTFS and DQES are given as functions of spatial frequency and energy.

The gnuplot command

plot [][0:1] ’AllEnergies.dat’ u 1:($8==150 ? $5 : 1/0) with lines

plots the NTFS as function of spatial frequency for electron energy E=150keV, while

plot [][0:1] ’AllEnergies.dat’ u 8:($1==5 ? $7 :1/0)

plots the DQES at a spatial frequency of 5 linepairs/mm as a function of the electron

energy. Note that the with lines option would not work in the latter case, as points

can only be connected with lines when they are defined in consecutive rows in the

datafile.

Reserved Variables: Some variable names are reserved and allow access to the

simulation parameters. The incident electron energy E used in the previous example

is one of these reserved variables. They are listed in table B.2. A non-integer value

assigned to an integer variables is rounded to the nearest integer.

All element and material names that can be found in the list boxes for choosing

the materials in the parameters dialog box (including Define1, Define2, Define3) are

reserved integer constants which give each material a unique index number.

The syntax of the batch job file is checked in an initial first pass before any

simulations are performed. This allows the debugging of a batch file quickly prior to

subsequent unattended running.

The choice of the output produced must be made manually in the “view” menu.

For batch processing this means in most cases that all trajectory and photon plotting

is disabled (as this is very time consuming) and all MTF and DQE plotting (including

”GnuPlot of MTFs”) is enabled.
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Variable Description

Floating point reserved variables:
Aperture Aperture semiangle of the optical system [degrees].
AperWidth Width of the soft edge for the aperture
E Incident electron energy [keV]
c Conversion factor (fraction of energy converted to photons
EPhot Mean photon energy
IncAngle Incident angle of the electron beam, in degrees
TopRefl Photon reflection ratio on the top scintillator surface
BotRefl Photon reflection ratio on the bottom scintillator surface
Focus Distance upper surface of the first layer to the optical focus plane.
DFrac Number ratio between the photons reaching the CCD indirecly/directly
DRad mean lateral displacement of indirect photons
KMax maximum k-value (in 1/mm) for MTF plots
KSamp sampling distance in k-space (in 1/mm)
TCoat Thickness of the coating layer
TScint Thickness of the scintillator
TSupp Thickness of the support layer
Z1 Mean atomic number of material Define1
ZS1 Mean square atomic number for material Define1
A1 Mean atomic weight of material Define1
Ro1 Density of material Define1
Z2,ZS2,A2,Ro2 Z,ZS A, Ro for material Define2
Z3,ZS3,A3,Ro3 Z,ZS A, Ro for material Define3

Integer reserved variables:
N Number of trajectories
MCoat Material of the coating layer (e.g. MCoat = Al)
MScint Material of scintillator (e.g. MScint = YAG)
MSupp Material of the support layer, (e.g. MSupp = Define1)

String reserved variables:
MtfFile Filename of the MTF datafile
TrajFile Filename of the trajectory datafile
PhotFile Filename of the photon datafile
PulseFile Filename of the pulse height distribution datafile

Table B.2: Reserved variables in the batch programming language. Typical values
for these parameters can be found in the table on page 90.
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