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Introduction 

 
After the theoretical prediction of channeling radiation (CR) and the first exact description of the 

main features expected for this new type of electromagnetic radiation by M.A Kumakhov in 1976, 

an intense experimental investigation of CR has been started in many research centers of the world. 

This effort aimed at the verification of the effect and the validation of the properties of CR as well. 

While CR has been proclaimed as a unique source of quasi-monochromatic X-rays already in the 

first works published, suggestions for some practical realization of such a nonconventional X-ray 

source appeared in the 1990ies, not least stimulated also by the development of brilliant 

superconducting linear electron accelerators of relatively moderate energy, i.e., several tens of 

MeV.  

The first measurements of CR at the Radiation source ELBE of the Forschungszentrum Dresden-

Rossendorf have been performed in the fall of 2003, where the most important attempt for an 

application of CR in radiobiological research was the optimization of its yield and spectral line 

width as well. Since diamond single crystals have been found to probably be the most suitable ones 

for an intense CR production because of their outstanding properties to withstand rather high 

average electron currents, a first measurement series was directed to the studying of the dependence 

of the yield of planar CR on the thickness of the diamond crystal.  

The processing of the experimental data obtained and their physical interpretation needed an 

effective interactive computer code for theoretical calculations and simulation of CR. The well-

known many-beam formalism had to be applied for this purpose on the base of the commercial 

software package Mathematica. Instead of phenomenological potentials with best-fit parameters, 

real thermally averaged continuum potentials of the crystal planes considered had to be 

implemented. The method of the complex optical potential should be applied for the estimation of 

the intrinsic CR line widths, but a variety of other line-broadening mechanisms had to be taken into 

account for a realistic simulation of the principally asymmetric and energy-shifted CR lines as 

registered in CR measurements. Furthermore, concerning the formation of the CR line shape, 

different approaches could be found in the literature, where the influence of electron multiple 

scattering during channeling, which plays an increasing role with increasing crystal thickness, was 

rather poorly known. Finally, the calculation of the CR intensities had to be performed by numerical 

integration of the population of the channeling states over the crystal thickness and combined with 

the transition probabilities between transversely bound states.  

Motivated by the challenge to install the first tunable quasi-monochromatic CR X-ray source for 

practical application at the ELBE facility, the results of the forthcoming theoretical as well as 

experimental investigations of planar electron CR produced on diamond crystals should provide the 
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necessary data for its design and construction.  This X-ray source came into operation at the end of 

2006.  

Since recent activities in CR research are even directed to probing an active stimulation of CR 

emission by means of ultrasonic vibrations excited in the crystal, the measurement of the up to now 

unknown undisturbed CR spectra, generated on piezoelectric crystals such as, e.g., quartz at low 

electron energy, became a highly actual topic. The developed theoretical instrument checked in the 

more simple measurements of CR on diamond crystals should be applied for disentangling the 

expectedly more complicate CR spectra to be obtained from channeling of electrons in polyatomic 

crystals. To start with the investigation of CR on quartz crystals was reasonable because the 

combination of a pillbox resonator with easily available piezoelectric quartz crystals should provide 

a suitable method for the excitation of GHz-frequent ultrasonic waves in the source crystal used for 

CR production. Although quantum calculations of the influence of ultrasound on CR emission 

predict intensity amplification effects only near to a rather narrow resonance region, a systematic 

investigation of CR stimulation by ultrasound seemed to be unpreventable for the deeper 

understanding of the acting mechanism, and this the more, because relevant theories available to 

date proclaim slightly different results.  

After a brief historical outline on the discovery of CR, comprising the above described topics, the 

present work deals in chapter 1 with a comprehensive demonstration of the theory of CR and its 

application and implementation into the current research carried out by the Department of Radiation 

Physics of the Institute of Radiation Physics of the Forschungszentrum Dresden-Rossendorf. The 

measurements of CR on diamond crystals, performed at the electron beam of ELBE, are described 

and compared with theoretical calculations in chapter 2. The application of the developed 

experimental and theoretical methods for the spectrometric investigation of CR on quartz, which 

has for the first time been realized in the frame of this work, is explained in chapter 3. The principle 

used for the excitation of ultrasonic waves in a piezoelectric quartz crystal is described in chapter 4. 

Finally, chapter 5 of the present work deals with the theoretical description of the influence of 

ultrasound on CR emission and expected effects as well as with the first experiments of CR 

stimulation performed at ELBE in 2007. Important conclusions could be drawn for the refined 

investigation of CR stimulation by ultrasound, where, at present, the possible practical output of the 

research in this field cannot be overseen yet.   

 

  
 



 

 

 

Chapter 1 

 

 

Theory of channeling radiation 
  

1.1  Essential historical moments 

 

The channeling effect of charged particles, i.e. the steering of their motion through single crystals 

along crystallographic strings or planes, has astonishingly been discovered by computer simulations of 

the motion of ions in crystals in the early 1960ies [Rob62, 63]. The principal description of channeling 

succeeded with the introduction of the continuum approximation for the interaction potential by 

Lindhard [Lin65]. Channeling of both low-energy electrons as well as positrons was first observed 

experimentally by Uggerhøj who used the β+/β–-decay of radioactive 64Cu ions which were implanted 

into a copper single crystal [Ugg66].  

In 1976 Kumakhov published a work where the emission of intense electromagnetic radiation by 

channeled relativistic electrons or positrons was theoretically predicted [Kum76]. The exact treatment 

of relativistic effects led him conclude that the “channeled particle radiation” is more “powerful” than 

bremsstrahlung, more “monochromatic” than synchrotron radiation, directed into a narrow forward 

cone and energetically shifted into the domain of X- or γ-rays. The idea of a new (nonconventional) 

radiation source was born.  

This prediction stimulated a sedulous search for the channeling radiation (CR) in many accelerator 

laboratories of the world and a large interest in the further investigation of this type of radiation. In 

1977 Andersen et al. presented a classical and also quantum mechanical description of the effect 

[And77], and only little later CR has been observed from channeled 56 MeV positrons [Alg79] as well 

as from ultra-relativistic positrons [Mir79]. Measurements of CR using positron and/or electron beams 

of low (several MeV), medium (tens of MeV) and high energy (from about 100 MeV to several GeV) 

and single crystals such as Ni, Si, diamond, Ge, LiF, LiH, SiO2, Au, W etc. followed at research 

centers such as Århus, CERN, TU Darmstadt, Kharkov, Lawrence-Livermore, Mainz, Saclay, 

Sepukhov, Stanford, Tokyo, Tomsk and Yerevan, aimed at the investigation of the fundamental 
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characteristics of CR. At present, most of the results of those pioneering works are reviewed in 

monographs (see, e.g., Sae85, Kum89, Kum91) containing numerous references to original works, and 

CR (as well as other phenomena of radiation physics) is included into textbooks.   

It is necessary to mention that an increased interest in CR appeared again during the 1990ies, when 

dedicated suggestions have been made to eventually apply CR as an easily tunable, rather intense 

quasi-monochromatic source of X-rays at medium electron energies [Gen90, Gary91]. The newly-

developed superconducting linear electron accelerators (e.g. S-DALINAC Darmstadt) provide beams 

of low transverse emittance advantageous for effective CR generation. For the purpose of application, 

the optimization of the yield and the spectral line width of CR became an issue of intensive 

investigation [cf. Gou82, Bur84].  

Diamond crystals have been discovered to be probably the most suitable ones for the production of 

intense CR because of their outstanding parameters such as low atomic number, nearly perfect 

structure, high Debye temperature, large thermal conductivity, etc. Unfortunately, most of the 

experimental investigations, which have been performed on diamond up to now, were restricted to 

either relatively high [Gou82, Kep91] or low electron energies [Gen90, Net94, Rei99]. Furthermore, in 

these works, only relatively thin crystals (from several μm up to about 50 μm) were considered.  

The influence of the thickness of diamond crystals on the yield as well as on the line width of CR still 

needed a systematic quantitative investigation for proving of different hypotheses (cf. Net94, Rei99), 

where the available range of electron energy at ELBE (10 ÷ 35 MeV) provided ideal preconditions to 

perform such measurements in the frame of the present work.  

The theoretical concept of CR at electron energies less then 100 MeV will be discussed in detail in the 

following paragraphs. The computer codes developed in this work were applied for the numerical 

calculation of the expected CR photon energies, line widths and photon yields and enabled the direct 

comparison with the measured data.  

 

1.2  Theoretical description of channeling radiation at medium electron energies 

 

When a beam of relativistic electrons passes through a randomly oriented single crystal, it will be 

incoherently scattered (like in an amorphous material) due to interactions of the particles with the 

individual crystal atoms. The continuous transfer of transverse momentum to the charged particles 

results in the emission of the ordinary polychromatic spectrum of bremsstrahlung.  

Channeling occurs when the beam enters into the single crystal in direction near to a crystallographic 

axis or plane, being elements of high symmetry in the crystal lattice. In the frame of the classical 

model, the scattering at the ordered crystal atoms becomes coherent now, causing an oscillatory 

motion of the electrons along the corresponding string or plane of atoms. Considering this oscillatory 

motion as an accelerated one in the rest frame of the electron, it emits electromagnetic radiation called 
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channeling radiation (CR). Although the oscillation frequency ω0 is rather low and correspond to a 

radiation energy ħω0 in the optical region, relativistic effects such as the Lorentz contraction of the 

longitudinal coordinate and the Doppler effect transform the energy of emitted CR photons observed 

in beam direction into the domain of X-rays.  

At the electron energies considered, the phenomenon of CR emission has to be described by a 

quantum mechanical formalism. The steering of the electrons to crystal axes or planes is modeled by 

the interaction of the particles with a continuous axial or planar potential formed by the spatially and 

thermally averaged action of the individual electrostatic potentials of the crystal atoms positioned in 

the corresponding axis or plane [Lin65]. Despite their relativistic energy, the transverse motion of the 

channeled electrons of mass mγ, where γ denotes the Lorentz factor, stays being nonrelativistic and can 

be described by a one (planar) or two dimensional (axial) Schrödinger equation which contains the 

averaged potential of the crystal plan or axis. The transverse motion of the channeled electrons is, 

therefore, restricted to discrete (bound) channeling states of the so called continuum potential. 

Spontaneous transitions between these eigenstates lead to the emission of CR, the energy spectrum of 

which is, consequently, characterized by a line structure of possible photon energies. Since usually the 

number of bound states is relatively small at electron energies less than 100 MeV, the quantum 

mechanical approach for the description of CR proves to be necessary.   

 

1.3  Continuum potential 

 

Let us exemplarily consider planar electron channeling. Since the longitudinal component of the 

velocity of the relativistic particle is assumed to be  v ≈ c,  where  c  denotes the velocity of light  (i.e. 

β ≈ 1 or γ  » 1), according to [Lin65] the electron perceives the common action of the individual 

atomic potentials of the plane as such of a continuous one. This means that the crystal plane is 

assumed to be charged continuously, forming an average one dimensional transverse continuum 

potential. Supposed the electron moves along the plane in direction z, this potential is given for a 

single plane by  

 

 

r dr 

 

 

 

Fig.1.1   Geometry for the derivation of the continuum potential for planar channeling. 
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where x is the vertical distance from the plane, N  is the atomic density in the plane, and dp is the 

interplanar distance [Kum89]. The atomic interaction potential Vatom introduced in Eq. (1.1) may be 

taken in different form or approximation, respectively. The Moliere potential (cf. [Atk82]) is one of 

the most commonly used potentials, which predicts the channeling states as well as CR energies rather 

well. The Moliere approximation to the Thomas-Fermi potential is a screened Coulomb potential with 

the screening function given by 
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where ai  = {0.1,0.55,0.35}, bi = {6.0,1.2,0.3}, z1 and z2 are the atomic numbers of projectile and target, 

respectively, r is the distance between the particle and the crystal atom, e2 = 14.4 eV Þ, and aT is the 

Thomas-Fermi screening length given by   
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with a0 being the Bohr radius (0.529 Þ). 

A more accurate approach is that of Doyle-Turner [Doy68]. Here the interatomic potential is obtained 

by fitting the electron scattering factor determined by a Hartree-Fock calculation to experimental 

results  
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where ai and bi are tabulated coefficients [Doy68].  

Substitution of expression (1.2) into (1.1) leads to the planar-averaged static Moliere potential for a 

single crystallographic plane     
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Similarly, the planar static continuum potential according to Doyle-Turner reads 
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with bi  = bi / 4p2. 

The obtained static continuum potential must be corrected yet for thermal vibrations of the lattice 

atoms. This can be performed by convolving the expressions given by Eqs. (1.5) and (1.6) with a 

Gaussian distribution which describes the thermal displacements of the atoms from the plane. Since 

each individual atom vibrates independently, the one-dimensional thermal vibration amplitude is 

characterized by a root-mean-squared (rms) displacement u1. With this assumption, the operation of 

thermal averaging is given by 
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with  

                                                  ( )2
1

22/12
1 2/exp)2()( uxuxP ′−=′ −π .                          (1.8) 

 

This transformation converts the static Doyle-Turner potential into a thermally averaged form which 

reads 

 

            ( ))2/(exp
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and will be applied in the following paragraphs for the calculation of the planar CR photon energies 

and yields.    

 

1.4  Transverse wave equation of channeled electrons 

 

At planar channeling the relativistic particle enters the crystal under a small incidence angle relative to 

the crystal plane considered. The description of planar CR bases on the division of the particle motion 

into a longitudinal and a transverse component. Since the longitudinal motion along the plane is not 

affected by the above given continuum potential, the velocity in z direction is actually nearly constant 

and amounts to vz ≈ c. However, under channeling condition, the transverse momentum px of the 

channeled particle is small compared with the longitudinal one pz and, therefore, its transverse energy 
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can be defined by the nonrelativistic expression  

                                                          )(
2

2

xV
m
pE x

x +=
γ ,                                                   (1.10) 

 

but taking into account the relativistic particle mass mγ  [Kum91]. 

In order to describe the radiation emitted by the charged particle during channeling, the applicability 

of both the classical and quantum theory has to be considered. At medium particle energy (≤ 100 

MeV), the motion of the particle has quantum characteristics, i.e., it is bound to discrete transverse 

channeling states, and the number of bound states is small. So CR is emitted in result of a transition of 

the channeled particle between to energy levels. With increasing particle energy, the density of bound 

states increases leading to an overlap of states. This situation can be handled by a classical calculation. 

In the present work, the energy of the electrons was limited between 10 and 40 MeV.  Therefore, the 

quantum mechanical solution of Eq. (1.10) will be discussed in detail in the next paragraph.   

 

1.5  Quantum mechanical description of planar channeling   
 

As mentioned above, the planar interaction potential is one-dimensional, and the transverse motion of 

the electron along the coordinate x can be described by a Schrödinger equation (rather than by a Dirac 

equation) which reads       

                                                )()()(
2

2

xuExuxV
m
p

x
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⎦
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+

γ                                       (1.11) 

 

where Ex and u(x) are the transverse energy and wave function of the electron, respectively, and V(x) is  

the transverse planar continuum potential in the laboratory frame.  

Since the planar potential is periodic, it can be expanded to a Fourier series  

   

                                                                    (1.12) ,...)2,1,0,1...,()( −== ∑ nevxV ingx

n
n

 

where νn are the Fourier coefficients of the potential (which will be explained in section 1.6.), and ng 

are the reciprocal lattice vectors normal to the planes as shown in Fig. 1.2.  

The eigenfunctions of Eq. (1.11) are one dimensional Bloch waves of the form 
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where k is the transverse crystal momentum lying in the first Brillouin zone, i. e., 0§k§g/2. Since the 

potential as well as the eigenvalues converge very fast, the sum over n can be truncated after a finite 

number of terms. By substituting the expressions (1.12) and (1.13) into Eq. (1.11) the problem reduces 

to the finding of the eigenvalues and eigenfunctions of a matrix A which in the planar case consists of 

the components  

                                                              mnnm vA −=                    (m∫ n) 

                                                             0
2

2

)(
2

vngk
m

Ann ++=
γ

h
.                                  (1.14) 

 

If the origin of coordinates in the crystal is chosen such that the transverse potential is symmetric, i.e., 

V(x) = V(-x), then the matrix A is Hermitian, i. e., , the eigenvalues are real, and for k = 0 

the eigenfunctions have a definite parity and alternates from even to odd, where the ground state has 

even parity. 

mnnm AA =∗

 plane 
 

2π/dp  

 g-3 g-2 g-1 g0 g1 g2 g3 

 

        

Fig.1.2 Illustration of the reciprocal lattice vectors normal to the crystal plane 

 

1.6  Fourier coefficients of the continuum potential 

 

Since the transverse potential has the periodicity of the lattice, its expansion to a Fourier series 

represents the most general form of the continuum potential. In order to define the Fourier 

coefficients, one has to consider some properties of the structure of the crystal lattice.    

    

1.6.1 Reciprocal lattice vectors  

The position of an atom in the crystal lattice can be defined by a vector R  
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where  are primitive vectors and { 321 ,, aaa rrr } ( )321 ,, uuu  are integers. For every crystal lattice there 

exists an equivalent reciprocal lattice which is important for the description of the scattering of 

particles in the crystal. Every reciprocal lattice vector g  represents a set of parallel crystal planes 

perpendicular to g . The distance between these adjacent planes is dp = 2p/g, and equivalent planes are 

usually denoted by the Miller indices (hkl). The reciprocal lattice vector associated with these Miller 

indices is given by 

             

                                                         321 blbkbhg ++=                                                        (1.16) 

 

where{ }321 ,, bbb
rrr

 are primitive vectors of the reciprocal lattice. The primitive vectors of the reciprocal 

lattice are related to those of the real lattice by the expressions 
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For a cubic crystal structure such as that of diamond (see Fig. 1.3), the set of primitive vectors is given 

by the expressions 

                                                      zaayaaxaa ˆ,ˆ,ˆ 321 ===
rrr

                                            (1.18) 

                                              z
a

by
a

bx
a

b ˆ2,ˆ2,ˆ2
321

πππ
===

rrr
,                                     (1.19) 

and the interplanar distance is defined by  

 

                                                         222 lkh
ad p

++
= .                                                     (1.20) 

 

In the simplest crystal structure, there is only one atom at each lattice site. More complicate crystal 

structures may be described by more than one atom at each lattice site.  

For example, the crystal structure of diamond may be represented by an fcc lattice with a 2-atom basis 

{(0,0,0),(1/4,1/4,1/4)} or, equivalently, by a cubic lattice with an 8-atom basis {(0,0,0), (1/4,1/4,1/4), 

(0,1/2,1/2), (1/4,3/4,3/4), (1/2,0,1/2), (3/4,1/4,3/4), (1/2,1/2,0), {3/4,3/4,1/4)}. For this structure given 
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in the 8-atom basis, the primitive vectors are those of Eqs. (1.18) and (1.19), but in the 2-atom basis 

they are given by the relations  
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ne can notice that the Miller indices for the (111) plane of diamond are indeed (111), when this basis 

l of the cubic diamond structure contains 8-atoms as shown in Fig. 1.3.  

         

 

Fig.1.3 Unit cell of the diamond structure with 8-atoms 

 

.6.2 Structure factor of the crystal 

a crystal, it will be scattered on the individual crystal atoms. 

 factor, and if the atomic potential Vatom(r) is 

                                        

 

O

is used. For the (110) plane, however, the Miller indices then are (211), and for the (100) plane they 

are (101).  

The unit cel

 

  

 

 

  

  

 

 

 

1

When a charged particle (electron) enters 

Depending on the direction of the incident electron beam as well as on the spatial spacing of the atoms 

in a crystal plane, there will be different planar interaction potentials. In order to describe these 

potentials, one can split the problem in two parts. First one considers scattering on a single atom, and 

secondly one describes scattering on the crystal lattice.  

The scattering on a single atom leads to a scattering form

spherically symmetric with respect to the nucleus, it is defined by [Doy68]              

dr
sr

srm π )4sin(2 ∞

rVrsf atomel π4
)()(

0

2
2 ∫=
h                                   (1.23) 
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sπ4

tical

where  denotes the change of the magnitude of the electron wave vector in a scattering event, and   

 means the angle between the incident and the ref

An analy  approximation of  is 

 

 

ined by the curve fitti

Turner [Doy68]. However, this approximation is valid only for s ≤ 2Å , and calculations must fail at 

creasing number of Bloch waves. Therefore, a non-linear least-squares-fit of  to six Gaussians 

i i

s = sin(θ)/l (Þ-1 ) where θ lected electron wave vector.  

)(sfel

                                                           
2

4

)( sbieasf −∑=                                                      (1.24) 
1i

iel
=

where ai and bi are parameters determ ng procedure performed by Doyle and 
-1  

in )(sfel

[Cho99a] has been applied in this work (see Table 1.1). If the potential for planar channeling 

converges fast, the application of different sets for the coefficients a  and b  leads to the same result.  

In order to describe scattering at the lattice, a structure factor S  is involved 

                                                                  ∑ ⋅= rgi jeS
rr1

                                                   (1.25
jcV ) 

 

 the unit cell. The str

Miller indices, the reflections from the corresponding planes are strong. It can be shown that S 

anishes for every value  different to 

where the sum extends over all atoms in ucture factor determines those sets of 

s π4/ngs =v . Therefore, the atomic scattering form factor can 

                                         

be written in the following form                     

drgrrVr
V

ngf atom
rgi

c
el

j )sin()()
4

( 2∫
∞

⋅=
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hπ gr
em

j

2

0
2 ∑ .                (1.26) 

 

f the planar continuum potential can be computed using ta

scattering form factors  which are proportional to the Fourier transforms of the atomic potential. 

s an analysis shows, the Fourier components of the planar continuum potential can be written   

The Fourier components o bulated electron- 

)(sfel

A

 

                                                                  )
4

(
2

2

ππ
f

m
v eln = .                                                 (

ngh
1.27) 

n into account, t

 

If the thermal vibrations of the lattice atoms are take hen the Fourier coefficients read 
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where Vc denotes the volume of the unit cell, 

 

jr  is the lattice site of atom j in the unit cell, 

22

2
)( jj uggM =  is the Debye-Waller factor for atom j taking into account its thermal motion, and 

plitude.  

 used for the electron-atom interaction may be the screened Coulomb potential 

given by Eq. (1.2) or the more accurate Doyle

1

uj is the one-dimensional vibration am

The potential Vatom(r)

-Turner potential given by Eq. (1.4). For the screened 

  

Coulomb potential, the Fourier coefficients defined by Eq. (1.28) read 
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and for the Doyle-Turner potential they are given by the expression  
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Table 1.1 Values of the parameters ai and bi as determined for diamond by different authors. 

Reference a1(Å) a2(Å) a3(Å) a4(Å) a5(Å) a6(Å) 

 

[Doy68] 0.7307 1.1951 0.4563 0.1247   

[Cho99a] 0.4370215 1.08 0.68 0.07 0.01  0.21 35384 448047 16327 66049 303

 b1 ) b2 ) b3 ) b4 ) b5(Å2) b6(Å2) (Å2 (Å2 (Å2 (Å2

[Doy68] 36.9951 11.2966 2.8139 0.3456   

[Cho99a] 46.3  16.7 5.61 0.32 0.04  1.5053418 26551 37232 70024 06705 8868
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1.7  Numerical calculation of CR photon energies for different crystal planes of diamond  

he theoretical approach to planar electron channeling explained in the previous paragraphs has been 

 

.7.1 Continuum potential 

tinuum potential and, consequently, of the corresponding eigenvalues 

 calculated using Eq. (1.30). A value of 0.042 

 (100), (110) and (111) planes of diamond are shown in 

 

T

applied in this work for the establishment of an interactive computer code based on the software 

package Mathematica 4.1. In the frame of the many-beam formalism, the program calculates planar 

continuum potentials as well as wave functions and eigenvalues of channeled electrons. From these 

data, transition energies between transversely bound states and, hence, CR photon energies are  

deduced. The calculations have been performed for such electron energies as well as crystal planes in 

diamond which had been chosen for experimental investigation of CR at ELBE. The results of the 

calculations and a comparison with measured CR data are presented in the following paragraphs, even 

if the CR measurements will be described in detail in chapter 2. 

 

1

The convergence of the con

depends on the number of reciprocal lattice vectors (i.e. the number of planes) which contributes to the 

numerical value of this potential. The number of the planes is always odd because positive and 

negative reciprocal lattice vectors have to be included.  

The Fourier coefficients of the continuum potential were

Þ was assumed for the one-dimensional (rms) vibration amplitude of diamond at room temperature. 

The structure factors of diamond were calculated for both the 2-atom and the 8-atom basis (cf. 1.6.1). 

Since in the case of diamond the potential and the eigenvalues converge very fast, the continuum 

potential was calculated for 21 Bloch waves.  

For illustration, the continuum potentials of the

Fig. 1.4. From these figures one can realize that the interplanar spacing between (110) planes is a 

factor of 2  larger than that for (100) planes. Therefore, the potential of the (110) plane is twice as 

deep as that of the (100) plane and, at fixed electron energy, the number of bound states for the (110) 

plane is larger than that for the (100) plane. Furthermore, the potential of the (111) plane shows two 

minima which correspond to the unequally spaced crystal planes. The spacing of the (111) planes by 

turns amounts to 
34

a
 and 

34
3a

. Therefore, the interplanar distance within the same family of planes 

is 
3

a
. 

 

1.7.2 Eigenvalues 

f the channeled electrons have been calculated for the electron energies of 14.6, 17, 

25, 30 and 34 MeV as chosen in the measurements. The truncation to 21 Bloch waves defines the   

The energy levels o
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ig.1.4 Potentials of crystal planes in diamond calculated for 21 beams.  (a) (100), (b) (110), (c)  

11). The potentials are plotted for one period of planes. 

nar channeled in diamond at a transverse 

rystal momentum k=0. The energies are given in  unit of eV.   
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Table 1.2 Lowest eigenvalues for 14.6 MeV electrons pla

c

Plane E0 E1 E2 E3 E4 E5 

(111) -32.09 -29.07 -21.91 -16.24 -12.06      -7.95 

(110) -29.27 -18.95 -14.41 -12.89 -11.40      -6.98 

(100) -23.30 -17.25 -16.34 -14.25 -13.67 -10.46 
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dimension of the mat 21ä2 er inp of th ter c the e nergy 

                                                            

rix A to 1. Furth ut data e compu ode are lectron e

and the Miller indices (hkl) of the plane considered. Output data are the eigenvalues and 

eigenfunctions of the electrons channeled in the corresponding planar continuum potential. The 

eigenvalues for 14.6  MeV  electrons channeled in different planes of diamond are listed in Table 1.2.  

The energy of the emitted CR photons in the laboratory frame is given by 

  

)cos1( θβ
ω

−
= if

ifE
h

                                                              (1.31) 

here ωif  is the frequency of CR in the electron rest system, θ  denotes  the  angle  of  observation  

 

w

with  respect  to  the  direction of the electron beam and b = v/c = 2/11 γ− . For θ = 0 Eq. (1.31) can 

be approximated by  

 

                                                                                                    (1.32) 

ith Ei and Ef being the eigenvalues of the initial and final state, respectively. Since the planar 

able 1.3 CR photon energies for the lowest transitions of 14.6 MeV electrons planar channeled in 

Transition CR photon energy 

(keV) 

CR photon energy 

Con el  

CR photon Energy 

Si al 

)(22 22
fiifif EEE −== γωγ h

 

w

continuum potential is one-dimensional, the eigenvalues and eigenfunctions are characterized by a 

single quantum number n. As shown in Fig. 1.4, the continuum potentials are symmetric. Therefore, 

the eigenfunctions for the transverse crystal momentum k = 0 have a definite parity, starting from n = 

0 with even parity and alternating between even and odd.  

 

T

diamond. 

Plane 

measured 

 

calculated 

tinuum mod

(keV) 

calculated 

ngle potenti

(keV) 

(100) 1Ø0   9 4  .38≤0.0 9.56 10.73 

1Ø0 16.54≤0.05 17.06 17.48  

(110) 2Ø1   7.89≤0.04  7.13   8.06 

2Ø1 11.07≤0.04 11.69  

3Ø2   8.14≤0.03  9.26  

 

(111) 

4Ø 4 6. 1 3, 5Ø   6.05≤0.05 83, 6.7  
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The CR photon energies calculated for the lowest transitions of 14.6 MeV electrons channeled in the 

(100), (110) and (111) planes of diamond are compared with measured data in Tab. 1.3. The errors of 

the measured values given in Tab. 1.3 result from the fitting procedure only (see chapter 2). The 

uncertainty of the electron beam energy (assumed to be ≈ 200 keV) governs the maximum error of the 

measured CR photon energies which amounts to about 0.4 keV. Therefore, the calculated CR photon 

energies are in good agreement with the measured ones. 

         

1.7.3 Single potential approximation  

For electron energies E > 10 MeV, the potentials of simple planes can be approximated by an 

analytical expression of the form  

                                                        
bx

u
xV

/cosh
)( 2

0−=                                                               (1.33) 

 

where u0  and  b are parameters. They amount to u0 = 22.8 eV, b = 0.215Þ  for the (110) plane and to 

u0 = 12.4 eV, b = 0.168Þ for the (100) plane of diamond [Kum89].  

The transverse energies of planar channeled electrons can be calculated by  

                              

2

2

2
0

2

2 2
4
1

2
1

2 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−++−−= nbum

bm
E xn

h

h γ
γ          (1.34)    

with 2

2
02

4
1

2
1

h

bumn γ
++−≤ .  

The transition energies calculated in the single potential approximation for 14.6 MeV electrons 

channeled along the (110) and (100) planes of diamond are included in Table 1.3 for comparison with 

the results obtained by means of the continuum model. Note that this method is not applicable for the 

(111) plane because of the more complicate shape of its planar potential (see Fig. 1.4c).  

 

1.8  Line width of quasi-monochromatic channeling radiation 

 

Several mechanisms contribute to the residual width and the line shape of CR as registered by means 

of an X-ray spectrometer. They will briefly be considered in the following. 
 

1.8.1 Coherence length 

The intrinsic line width of CR is connected with the finite lifetime of the channeling states. In the case 

of diamond, it is mainly determined by incoherent scattering of the channeled electrons on phonons 
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(thermal scattering) [Rad70, Whe65], but also by scattering on the crystal atoms [Cho99, Bur84, 

And83, Bir82, Web95]. The resulting CR line shape is a Lorentzian with a width given by  

 

                                                                        
l

c
coh

h22γ
=Γ .                                                          (1.35) 

 

The total coherence length l is defined by  

 

                                                                          
21

111
lll

+=                                                              (1.36)  

 

where l1  and l2 are the coherence lengths of the initial and final states of some transition considered. In 

the framework of the theory of the complex potential, )()()( xiWxVXU += , the coherence length reads  

 

                                                                        
j

j W
cl

2
βh

−=                                                            (1.37)  

 

where jjj
WW ψψ=  is the expectation value of the imaginary part of the complex potential for 

the state j.  

Such as the real part V(x) [cf. Eq. (1.12)], the imaginary part W(x) can be expanded into a Fourier 

series   

                                                          ingx

n

i
nevxW ∑=)(     (n=…,-1,0,1,2,..)                                    (1.38) 

 

where the Fourier coefficients are given by [Cho99a, Rad70]   
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rrr

−=  is the change of the electron wave vector, and )( qfel
r

is the scattering amplitude. Equation 

(1.39) can be reduced to the form [Cho99a] 
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with Bi = bi /(16π2) and Ci = Bi + 0.5<ui
2> using the Gaussian approximation of the electron-scattering 

form factor  [Doy68]. Nv denotes the atomic density, and Vc is the volume of the unit cell. The 

expectation value 

)(sfel

j
W , therefore, describes the decay of a particular eigenstate due to incoherent 

scattering, where lj gives the characteristic length for attenuation of the initial electron wave function. 

The lifetime of that channeling state is then τ = lj /c.  

As already discussed in § 1.6.2, the approximation of the electron-scattering form factor  given 

by Doyle and Turner is valid for values of s < 2 Å-1. When this may be acceptable yet for the 

calculation of the eigenvalues, it, however, will lead to inaccurate coherence lengths because 

incoherent scattering is effective at short distances from the channeling plane. Consequently, the 

Fourier components of W(x) have to be evaluated for sufficiently large values of s. With reference to 

the results of  Ref. [Cho99], which apply for values of  s ≤ 6 Å-1, calculated coherence lengths for the 

1→0 and 2→1 transitions of electrons channeled in the (110) plane of diamond are listed in Table 1.4.   

With these values one obtains intrinsic line widths increased by about 15 ÷ 20   %.  

)(sfel

 

Table 1.4 Coherence lengths (µm) calculated for the two lowest transitions of electrons of energy Ee 

channeled in the (110) plane of diamond. 

Ee (MeV) 1→0 2→1 
14.6 1.11 3.21 
17 1.06 2.91 
30 0.90 1.99 
34 0.87 1.86 

 

The complex potential and the probability density distributions calculated for channeling of 17 MeV 

electrons in the (110) plane of diamond (Figs. 1.5 − 1.7) demonstrate important features:  

(i) The imaginary part of the complex potential is weaker than the real continuum potential and more 

strongly located at the channeling plane.       

(ii) Scattering acts differently on different channeling states described by the corresponding 

probability densities (or wave functions).  

(iii) The coherence length (or lifetime) of a more tightly bound channeling state is shorter than that of 

a weaker bound one.  

(iv) The coherence lengths become shorter with increasing electron energy, because the wave 

functions of channeled electrons become more constrained to the plane.  

(v) The intrinsic CR line widths for transitions between low lying channeling states are larger than 

those for higher transitions. 

(vi) The intrinsic CR line width increases with increasing electron energy.  
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Fig. 1.5 Real part of the continuum potential of the (110) plane of diamond and eigenvalues (bands) 

calculated for channeled electrons of energy17 MeV.   
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Fig. 1.6 Probability density distributions calculated  for electrons of energy 17 MeV channeled in the 

(110) plane of diamond. Ground state with n = 0 (full line) , channeling states with n = 1 (dashed line) 

and n = 2 (dotted line).  

 

 

 

 

 

 

 

Fig.1.7 Imaginary part of the potential of the (110) plane of diamond calculated for 17 MeV electrons.   

 

1.8.2 Finite crystal thickness 

The contribution to line broadening due to the finite thickness L of the crystal [Bur84, Cho99] reads 

  

                                                                     
L

c
L

h24πγ
=Γ .                                                            (1.41) 

 

It also relates to the life time of the channeling states but can be neglected at larger L.   
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1.8.3 Bloch-wave broadening 

It is inherent to the many-beam approach of channeling that the eigenvalues depend upon the electron 

wave vector k which can vary such as 2/2/ gkg ≤≤− . This effect causes a band structure of the 

channeling states (see Fig. 1.5). The variation of the transverse energy with the electron wave vector is 

small for tightly bound states. For states near the top of the potential and within the continuum, 

however, this effect becomes the dominating line-broadening mechanism. 

At small observation angles, Bloch-wave line broadening is given by the sum of the band widths of the 

initial and the final states  

 

                                                  )(2 20202
gk

f
k
f

gk

i
k
iBloch

==== −+−=Γ εεεεγ                            (1.42)  

 

or, accurately speaking, by the band dispersions [Cho99].  

Apart from line broadening inherent to channeling, the experimental conditions of production as well 

as registration of CR involve further components affecting the observed CR line shape.  

 

1.8.4 Energy spread of the electron beam 

The energy Ex of a CR line scales with the electron energy Ee such as 

 

                                                                                                                                           (1.43) a
xE γ∝

  

where a is a constant ranging from 1.5 to 2 in dependence on the transition considered [Kle85].  

Therefore, an initial beam-energy spread ∆Ee causes the energy spread of the observed CR photons 

 

                                                                        
e

e
x E

EaE Δ
=Δ .                                                          (1.44)  

   

While ΔEe of the ELBE beam is small and can be neglected, an exact tuning of the beam energy is, 

however, an important requirement [cf. Eq. (1.43)].   

 

1.8.5 Detector resolution 

If the response function of the X-ray detector applied for CR spectrometry is a Gaussian, its width 

contributes to the CR line width observed, and the CR line shape now represents a convolution of the 

(intrinsic) Lorentzian with this Gaussian, a so called Voigt profile.       
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1.8.6 Doppler broadening 

Since the channeled electron is relativistic, the Lorentz transformation deepens the crystal potential by 

a factor γ.  The dipole emission pattern of CR in the electron rest system transforms into an extremely 

forward directed cone. Due to the Doppler shift, the CR photon energy Ex observed at an angle θ with 

respect to the axis of the electron beam becomes 

 

                                                              22

2

1
2

)cos1( θγ
ωγ

θβ
ω

+
≈

−
= ifif

xE
hh

                                          (1.45)  

 

where the transition energy ifωh  relates to the transverse energy difference of the channeling states 

involved (cf. Fig. 1.5). Consequently, the CR photons with maximum energy are emitted into the 

direction θ = 0, and Ex decreases with increasing observation angle. For the electron energies available 

at ELBE, the residual CR photon energies reach values between about 10 and 100 keV. 

Concerning the measurement of the CR photon energy, it directly follows from Eq. (1.45) that an 

accurate adjustment of the detector position is very important. The finite solid angle of the X-ray 

detector principally also influences the observed CR line shape. However, this effect is mostly 

negligible at typical measurement conditions. Otherwise, a large beam divergence may cause CR line 

broadening because the average observation angle then becomes different from zero. In accordance 

with Eq. (1.45), line broadening due to θ ∫ 0 is always directed towards smaller photon energy. 

Therefore, the registered CR line shape becomes asymmetric.  

 

1.8.7 Multiple scattering 

Multiple scattering of the electrons in the crystal effectively affects the beam divergence at a depth z 

and, consequently, contributes to CR line broadening and asymmetry. For diamond crystals this line-

broadening mechanism becomes relevant at a thickness of several tens of μm. 

Multiple scattering of electrons in amorphous materials (or randomly oriented crystals) is well 

understood. Its effect on the line shape of planar CR, i. e., when the channeled electron moves parallel 

to a crystal plane, is less investigated. The asymmetry of the line shape of planar CR from diamond at 

electron energies of 54.2 and 80 MeV was first studied in Ref. [Gou88]. Measured CR spectra on Si 

crystals could be interpreted by introducing some mean multiple-scattering angle in Ref. [Kep91]. The 

asymptotic behavior of CR spectra at large crystal thicknesses has been considered in Ref. [Ogn94].  

The angular distribution of multiple scattering can be described by a Gaussian  
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The (rms) multiple-scattering angle of electrons in amorphous media is given by [Hig79] 
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where L0 denotes the radiation length, and z is the thickness of the layer. For a randomly oriented 

diamond crystal, the radiation length amounts to 12.23 cm [Tsa74, Eid04].  Note that L0 means the 

path length in matter after which the electron energy was diminished by a factor of 1/e due to radiation 

losses. The Doppler broadening of planar CR due to multiple scattering can be evaluated by [Cho99a]  

 

                                                                                                                         (1.48) CRchmsDopp E2
,

2Θ=Γ γ

 

Here is an effective mean-squared multiple-scattering angle relevant for the conditions of CR 

production and measurement. The mean-squared multiple-scattering angle during planar channeling is 

expected to be less than that determined by Eq. (1.47) because the channeled particle is transversely 

bound in discrete states.  

2
,chmsΘ

To clarify the matter of investigation, let us depict the effect of multiple scattering classically. When 

scattering in the crystal spreads the incoming electron beam of low emittance over a solid 

angle ),;( θφzeΔΩ , where φ  denotes the azimuth with respect to the normal of the plane and θ  

means the scattering angle of the electron, planar channeling proceeds in the plane )θ,
2

;( πφ =z . 

Formally, there is no limit for θ , but the CR observation angle ϑ  changes with θ . In accordance with 

Eq. (1.45), this causes a CR energy spread  2ϑγ− h Eq. (1.47) one can find that Θms for thick 

crystals may become even larger than 1/γ. On the other hand, dechanneling is connected with 

scattering components directed perpendicular to the channeling plane. Such components may also lead 

to intra-band or inter-band scattering which governs the occupation dynamics due to migration of the 

channeled electrons to other states. Independent on the initial population, equilibrium occupation of 

bound states is assumed to be reached already after several μm of traveling of the electrons through the 

crystal.  

2 . Wit

Avoiding any assumptions about the scattering angleθ , in the present work the effect of multiple 

scattering on the line shape of planar CR has for the first time been investigated consistently, i.e., only 

relating to experimental data measured at ELBE. The method consists in the following. If some CR 
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line in a measured CR spectrum is sufficiently well separated from CR lines resulting from other 

transitions, it is possible to determine the effective (rms) multiple-scattering angle Θms,ch (z) by fitting 

an appropriate asymmetric spectral distribution function to the observed line shape. 

It must be mentioned that such an ansatz has already been drawn up in Refs. [Gou88, Kep91]. 

Furthermore, an analytical expression was suggested in Ref. [Cho99a] but it is erroneous, and a 

corresponding fit procedure does not converge. In the frame of this work, the correct analytical 

expression for the CR line shape has been deduced [Aza06], and an interactive computer code has 

been established and applied for the processing of the measured CR data.  The dependence of the ratio 

Θms,ch / Θms on the crystal thickness will be investigated in the following paragraphs.  

 

1.8.8 Line shape of CR lines 

All the line-broadening mechanisms discussed above contribute simultaneously to the residual shape 

of a measured CR line. The δ-function characterizing the differential transition rate between 

channeling states [Kep91, Gen96, And83, Web95] converts to a Lorentzian representing the intrinsic 

CR line shape. This Lorentzian is convolved by a Gaussian-like distribution which accounts for the 

detector resolution, the Bloch-wave broadening and the effect of multiple scattering. Therefore, as 

mentioned in Ref. [Gen96], the total CR line width cannot be simply determined neither by a linear 

nor by a quadratic summation of the partial widths. Indeed, the widths of two convolved Lorentzians 

add linearly, those of two Gaussians add quadratic. The width of a Voigt profile, however, has no 

adequate analytical expression and can be given only. 

The often used estimation of the total width Γ of a registered CR line [Cho99, Net94] 

 

                                                                                (1.49)     222
det

2222
DoppbeamBlochLcoh Γ+Γ+Γ+Γ+Γ+Γ=Γ

 

ignores these circumstances and, hence, is not accurate but only an approximation. 

In the present analysis, diamond crystals of rather large thickness (42,5 ÷ 500 μm) are considered 

where effects due to multiple scattering are expected to considerably influence the CR line shapes and 

photon energies. Therefore, the registered spectral lines of (110) planar CR have been approximated 

by a convolution of a Lorentzian of bandwidth ΓT with a Gaussian-like distribution with the standard 

deviation θms,ch accounting for multiple scattering during channeling [cf. Gou88, Cho99a] 
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                      α2 = γ2θ 2ms,ch , 

where Ex denotes the registered CR peak energy, and E0 is the maximum CR photon energy obtained 
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at θ = 0. In such a representation of the CR line shape, the involved asymmetry parameter α  relates to 

the energy spread due to multiple scattering, which causes a peak-energy shift and an asymmetric CR 

line shape as well. Note that the width ΓT in Eq. (1.50) is a fit parameter incorporating all contributions 

to line broadening except Doppler broadening.  

 

1.9  Intensity of channeling radiation 

 

1.9.1 Selection rules and matrix elements 

The electric field of the atomic planes of the crystal forces dipole oscillations of the charged particles 

during channeling. In a quantum mechanical approach, the transition strength between the channeling 

states depends on the magnitude of the dipole matrix element defined by >< ixf upu . In the 

considered case, px is the transverse momentum of the electron.  

As discussed above, the eigenfunctions have definite parities for k = 0. The symmetry of the 

eigenfunctions leads to the selection rules for the transition matrix element. Dipole transitions of 

channeled electrons are allowed between such initial and final eigenstates, the eigenfunctions of which 

have opposite parities.  Normally,  the  transitions with  Δn = 1 are the strongest ones. Transitions with 

Δn ≥ 3 are usually weak, but they may be observed in measured spectra.  

The eigenfunctions normalized to one interval of planes read 
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and 2m+1 is the number of Bloch waves. In the framework of the many-beam formalism, the matrix 

elements read 
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The eigenfunctions of low lying channeling states the (110) plane of diamond are shown in Fig. 1.8 for 

14.6 MeV electrons. As can be seen, the ground state with n = 0 has even parity, the state with n = 1 

has odd parity etc. 
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Fig. 1. 8 Eigenfunctions of low lying states in the potential of the (110) plane of diamond for 14.6 MeV 

electrons at k=0. 

 

 

 

 

1.9.2 Population of channeling states 

Channeling occurs if the electrons are incident to the crystal under a small angle θ0 with respect to a 

crystal plane. The critical angle θc obtained from the equation )(
2
1

max
2 xVpv c =θ  reads 
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For θ0 > θc the transverse energy of the electron is too large to be captured by the planar potential. 

Such particles cannot populate bound channeling states but are scattered into the continuum. It is 

convenient that states near the top of the potential are called quasi-free.  

Obviously, CR can only occur if transverse eigenstates of the continuum potential were populated. 

This means that the incident plane wave (of the electron) must at the crystal surface match with 

eigenfunctions of the planar continuum potential. Hence, the initial population Pj(θ) of transverse 



states j is determined by the overlap of these eigenfunctions with the incident plane wave [And83, 

Tul81]     
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where k is the crystal momentum, p is the momentum of the incident electron, kx = pθ0/ћ is the 

transverse momentum of the incident electron, and θ0 is the angle of incidence relative to the plane. As 

can be seen from Eq. (1.55), the matrix element differs from zero only if the condition 

ngkp +=h/0θ  is fulfilled. Note that the integral of the initial population over θ is twice the Bragg 

angle pedEbrag c /hπθ = .  

The initial population of bound and quasi-free states drawn versus the angle of a 14.6 MeV electron 

incident to a diamond crystal nearly along the (110) plane is shown in Figs. 1.9a and 1.9b. The same is 

shown in Fig. 1.10 for 30 MeV electrons. It can be seen that electrons incident exactly at θ = 0 may 

populate states with even quantum number n only. The population probability varies remarkably with 

θ. For incidence angles larger than the critical angle θc, the population of bound states is substantially 

reduced, and the population of quasi-free and free states increases. According to Eq. (1.54), the critical 

angles for channeling along the (110) plane of diamond and for the electron energies of 14.6 and 30 

MeV amount to 2.25 and 1.57 mrad, respectively, and are indicated by arrows in Figs. 1.9a and 1.10.   

In order to maximum populate the channeling state n = 1 in the (110) plane of diamond, which 

represents the initial state of the strongest transition 1Ø0 with CR emission, the electron beam must 

enter the crystal close to incidence angles of 0.7 mrad and 0.42 mrad at electron energies of  14.6 and 

30 MeV, respectively.  

Since a real electron beam has a nonzero beam divergence σθ, it must be taken into account in a many- 

beam calculation. Assuming a Gaussian distribution of the incidence angle centered at θ0  
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  the initial population Pj(θ) has to be average over f(θ). 
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Fig. 1.9 Initial population of bound states (a) and quasi-free states (b) in the (110) plane of diamond 

drawn versus the incidence angle of 14.6 MeV electrons.  
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Fig. 1.10 The same as shown in Fig. 1.9a but for 30 MeV electrons. 
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Fig. 1.11 Initial population of bound states in the (110) plane of diamond drawn versus the incidence 

angle θ of a 14.6 MeV electron beam at a beam divergence of 0.3 mrad.   

                                                                             

The variation of the initial populations of bound states with the incidence angle for an electron beam 

of energy 14.6 MeV and with an angular divergence of 0.3 mrad is shown in Fig. 1.11. The 

comparison of Fig. 1.9a with Fig. 1.11 reveals that odd states are also populated at this given beam 

divergence just for θ0 = 0, and odd-even transitions with CR emission may occur.       

The formula for the spectral density of CR has been derived from the dipole approximation to 

radiation emission. The spectral-angular density of planar CR per unit of crystal thickness dz, per unit 

of photon energy dEγ, per unit of solid angle dΩ, and per electron [And81] reads  
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where λc is the Compton wave length, and Pi(z) is the occupation function of the state i at the crystal 

depth  z. The angles θ and j are the polar and azimuth angles of the emitted CR photons with respect 

to the direction of the incoming electron beam. It follows from Eq. (1.57) that the energy of the CR 

photons is given by the Doppler formula  
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By expanding b in terms of γ and cosθ into a Taylor series one finds, that the maximum CR photon 
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energy observed in forward direction at θ = 0 is approximately 2γ2 (Ei –Ef).   

Taking the non-zero intrinsic CR line width (see § 1.8) into account, the δ-function in Eq. (1.57) has to 

be substituted by a Lorentzian. Multiple scattering has been involved by the convolution of this 

Lorentzian with a Gaussian given by Eq. (1.46). If CR is registered at zero degree within a narrow 

aperture ΔJ á γ-1, one can set θϑ ≅ , and with the commonly used approximation 
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one finally obtains   
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Note that the first integral in Eq. (1.59) refers to the occupation of the state i over a chosen crystal 

thickness L, and the second one describes the shape of the registered CR line. The exponential factor 

in the first integral of Eq. (1.59) accounts for self absorption of CR photons in the crystal, and μ(Eγ) 

denotes the absorption coefficient of X-rays with energy Eγ. 

The number of CR photons from the transition i→f is obtained by integration over the photon energy 

range related to the residual CR line shape 
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This equation gives the CR photon yield per sr and per electron.  

According to equation (1.59), the intensity of a CR line is proportional to the integral over Pi(z). The 

occupation Pi(z) of a channeling state i at the crystal depth z depends on the initial population, which is 

a function of the beam divergence and of the entrance angle of the beam into the crystal as well. 

Furthermore, Pi(z) depends on various scattering processes during channeling, which may populate as 

well as depopulate the state under consideration. This population dynamics has been described by 

Anderson [And83] using a series of coupled differential equations  

 

                                                                   )( '
'

,' nn
n

nn
n PPT

dz
dP

−= ∑                                                 (1.61) 

 

 28



where Tn,n΄ denotes the transition rate per unit length for a transition between states n and n΄, and the 

sum is taken over all bound, quasi-free and free states. Considering thermal scattering as the 

dominating process, the transition rate Tn,n΄  reads  

                                                             nnnnnn uWu
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h

==                                               (1.62) 

 

where v is the velocity of the electron, and W is the imaginary part of the complex potential given by 

Eq. (1.38) [And83, Cho99]. For a small interval of crystal depth δz, the occupation of the state n can 

be approximated by a Taylor series 
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The term Tn,n΄Pn΄(z) in Eq. (1.63) describes the feeding of state n, and the term Tn,n΄Pn(z) describes the 

depopulation of state n respective the feeding to other states.  

The depth dependence of the occupation Pn(z) of bound and quasi-free states determined for δz = 0.01 

μm at an electron energy 14.6 MeV is shown in Figs. 1.12a and 1.12b, where an zero incidence angle 

of the electron beam has been assumed, and the beam divergence amounts to zero and σbeam = 0.3 

mrad, respectively. These figures demonstrate that  

(i) at σbeam = 0 only even states are populated at the crystal surface, 

(ii) at σbeam = 0.3 mrad several odd states are also populated although θ0 = 0,  

(iii) with increasing penetration depth of the electrons into the crystal, bound states are depopulated 

and quasi-free states are fed by interband scattering,  

(iv) at a depth of about 8 μm, statistical equilibrium of occupation of states is reached,  

(v) due to the selection rules for radiative transitions, no transition will be observed for σbeam = 0 as 

well as for σbeam = 0.3 mrad  (i.e., the CR emission will be extremely weak).  

The variation of the population of bound and quasi-free states for 14.6 MeV electrons incident at an 

angle of θin = 0.69 mrad (there the initial population of the state n = 1 reaches its maximum) is 

illustrated in Figs 1.13a and 1.13b for σbeam = 0 and σbeam = 0.3 mrad, respectively. As one can see, in 

these cases the odd states are also populated and, therefore, CR from the transitions 1→0 and 2→1 

will be observed.  

With an electron beam of small angular divergence, the variation of the population of different states 

with the incidence angle should be measurable by scanning θin with respect to the plane considered, 

but only if a sufficiently thin crystal is used. The latter condition is necessary because equilibrium 

occupation of states is reached within a relatively small penetration depth (as seen in Figs. 1.13a and 

1.13a). Hence, measurements of CR on thicker crystals are insensitive to such variation. Otherwise, a 
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large beam divergence also leads to nearly equilibrium occupation of channeling states at the surface 

of the crystal. According to Eq. (1.61), this occupation is stable over the crystal depth. 
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Fig. 1.12 Depth dependence of the occupation of states drawn versus the crystal thickness for 14.6 

MeV electrons at  zero incidence angle and  zero beam divergence (a) and  for a beam divergence of 

0.3 mrad (b).  

 

Finally, at fixed crystal thickness, the total CR photon yield can be obtained by integration of the 

occupation function over the entire crystal thickness. In order to illustrate the variation of the CR 

photon yield with the crystal thickness, a numerical integration has been performed for the 1→0 

transition at the electron energy of 14.6 MeV. The result is shown in Fig. 1.14.  

It is obvious that there are different dependences of the CR photon yield at small and large crystal 

thicknesses. It is hard to find an analytical function valid for a wide interval of crystal thickness, but 

for thin crystals both and  can be considered as approximate solutions of 

Eq. (1.61)  which allow reasonable fits to the experimental data. 
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Fig. 1.13 Depth dependence of the occupation of states drawn versus the crystal thickness for 14.6 

MeV electrons at an incidence angle of 0.69 mrad for zero beam divergence (a) and for a beam 

divergence of 0.3 mrad (b).  
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Fig. 1.14 Total CR photon yield from the 1→0 transition of 14.6 MeV electrons channeled in the (110) 

plane of diamond drawn versus the crystal thickness. 
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The experimental data obtained in Ref. [Kep89] for 17 MeV electrons channeled in Si crystals have 

been fitted to an integrated exponential as well as to a square-root function. The largely spread data 

did, however, not allow to distinguish between them, possibly because the beam divergence was too 

large. The data measured in Ref. [Kep91] for Si crystal thicknesses less than 500 μm at electron 

energies of 52.2 and 82.23 MeV can be approximated by an integrated exponential function.  

The experimental results of Genz [Gen96] obtained for diamond crystals of thicknesses between 13 

and 55 μm can also be fitted by an integrated exponential function, but recent measurements 

performed on a 200 μm thick diamond crystal [Rei99] did not merge with earlier measurements and, 

despite an empirically determined scaling factor of 3.45, could be interpreted only by a square-root-fit, 

which has been explained by the influence of multiple scattering.  

From these works one can conclude, that the choice of one of the expressions given in Fig. 1.14 for the 

CR photon yield is connected with the interval of crystal thickness considered, where the initial 

population of bound states is influenced by the divergence of the electron beam.  At small crystal 

thickness, the experimental data satisfy both expressions, but over a broader interval of crystal 

thickness the square-root function should be applied.  

Note that only thermal scattering has been considered up to now. Although this is the main scattering 

process for thin crystals, at larger crystal thickness multiple scattering becomes important. As found 

above, equilibrium occupation is reached after a small penetration depth, but this does not mean that it 

holds over the entire crystal thickness because the channeled particles will be dechanneled, i.e., they 

will be scattered into the continuum and leave the channeling regime. Andersen already mentioned 

that for electrons of MeV energies the statistical equilibrium between channeling states and free states 

is quickly established [And83]. The depth dependence of the occupation of the low number of 

channeling states then may be obtained from random multiple scattering only, since a major fraction of 

beam particles populates states in the continuum where electron scattering dominates. In this case, it 

can be shown that the occupation of channeling states at the crystal depth z is proportional to z-1/2.  

In preparation of an application of CR as a tunable quasi-monochromatic X-ray source at ELBE, a 

series of CR measurements has been performed at electron energies between 14.6 and 34 MeV using 

diamond crystals of thicknesses between 42.5 and 500 μm. These experiments will be described in the 

following chapter. Simulations of the expected CR spectra have been carried out applying the 

mathematical instrument of the CR theory developed in the frame of this work. 

For illustration, CR spectra calculated by means of Eq. (1.59) for channeling in the (110) plane of a 

42.5 μm thick diamond crystal are shown in Figs. 1.15 and 1.16. 
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Fig. 1.15 Simulation of the CR spectrum for channeling of 14.6 MeV electrons in the (110) plane of a 

42.5 μm thick diamond crystal.  
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Fig. 1.16 Simulation of the CR spectrum for channeling of 30 MeV electrons in the (110) plane of a 

42.5 μm  thick diamond crystal. 

 

1.10  Application 

 

At some application of CR as an X-ray source, it is advantageous to use scaling laws which allow 

extrapolations of important parameters of CR such as, e.g., the CR photon energy, the CR line width 

or the CR photon yield to other electron beam energies.  

As can be seen in Table 1.4, there is no explicit dependence of the coherence length on the electron 

energy, but according to Eq. (1.35) Γcoh is proportional to γ2. The number of bound states increases 

with increasing electron energy, but discrete states at planar channeling are only observed at electron 

energies up to about 100 MeV. The reason is that the spacing between the transverse energy levels in 
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the continuum potential decreases with increasing particle energy due to the relativistic mass mγ 

contained in the Hamiltonian [see Eq. (1.11)]. As it is well known, the frequency of transverse 

oscillations of a channeled electron in its rest system is given by Mk /=ω  for a harmonic 

potential. Due to M = mγ its transverse energy ħω is proportional to γ-1/2. Therefore, the maximum CR 

photon energy observed at θ = 0 scales such as ~γ3/2 [cf. Eq. (1.32)]. As a consequence, the relative CR 

line width, i. e., Г/E0 theoretically scales with the electron energy such as ~γ1/2, and the CR photon rate 

such as ~γ5/2. 

The energy of the 1→0 transition at planar channeling along the (110) plane of diamond, calculated by 

means of the many-beam formalism, and the corresponding CR photon yield for a crystal thickness of 

5 μm, however, scale with the electron energy such as ~γ1.73 (Fig. 1.17) and ~γ1.92 (Fig. 1.18), 

respectively, because the continuum potential of this plane is by far no harmonic one.   
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Fig. 1.17 Calculated CR photon energy for the 1→0 transition of electrons channeled in the (110) 

plane of diamond as a function of the electron energy (given in units of γ). 
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Fig. 1.18 Calculated CR photon yield for the 1→0  transition of electrons channeled in the (110)  

plane of a 5 μm thick diamond crystal as a function of the electron energy (given in units of γ). 
 

The crystal thickness which is effective for CR production at channeling is limited due to the action of 

different scattering processes. As discussed above, thermal scattering is the main process for thin 

 34



crystals. Multiple scattering increasingly influences the occupation of transversely bound states in 

thicker crystals. Therefore, the equilibrium occupation becomes instable at larger crystal depth,  and 

the CR photon yield follows a square-root function. 

 

1.11  Summary 

 

In this chapter, a detailed theoretical description of planar channeling for electron energies less than 

100 MeV has been presented. Transverse transition energies of channeled electrons have been 

calculated numerically applying the many-beam formalism with the thermally averaged Doyle-Turner 

potential.  

Processes which contribute to the broadening of the CR lines were investigated. Intrinsic CR line 

widths have been calculated using the method of the complex optical potential, which describes the 

incoherent scattering of channeled particles on the thermally vibrating crystal atoms. The influence of 

multiple scattering on the spectral distribution of CR, resulting in both a CR peak-energy shift towards 

smaller energy and an asymmetric CR line shape, could be successfully simulated by the convolution 

of the intrinsic Lorentzian CR line shape with a Gaussian-like distribution accounting for electron 

multiple scattering during channeling.  

The variation of the occupation of channeling states with the penetration depth of the electrons into the 

crystal has been calculated for different incidence angles as well as angular divergences of the 

incoming electron beam.  

Applying the developed mathematical instrument, CR spectra for the measurements at ELBE could be 

simulated for electron energies between 14.6 and 34 MeV and for thicknesses of the used diamond 

crystals between 42.5 and 500 μm.  

Scaling laws for the dependence of important CR parameters on the electron beam energy have been 

deduced from theoretical calculations.    
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Chapter 2 

 

 

Measurements of channeling radiation at ELBE 

 

The realization of an intense quasi-monochromatic CR X-ray source requires an electron beam of high 

quality. The new generation of relatively compact superconducting electron accelerators such as 

ELBE, which are able to deliver brilliant electron beams, i.e., beams of high average current at low 

emittance, make allowance for this demand. In order to accomplish a CR source aimed at its 

application in biophysics research, a setup for preceding measurements of CR has been established at 

the electron beam of ELBE in 2003.  

Although CR is a well-investigated phenomenon, specific features such as, e.g., the CR line width or 

the dependence of the CR yield on the crystal thickness were poorly known. Since diamond has earlier 

been found to be the most suitable single crystal for intense CR production [Gar91], diamond type IIa 

crystals of different thickness were used in the experiments. After a brief description of the radiation 

source ELBE [Elb06] and of the experimental setup for CR measurement, the following paragraphs 

give main attention to the method of CR data processing [Wag04, Wag05] and to the comparison of  

experimental data with the results of theoretical calculations presented in chapter 1 of this work.  

 

                      

 

 

 

 

 

 

 

 

Fig. 2.1 Floor scheme of the radiation source ELBE. 
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2.1  Radiation source ELBE 

  

The radiation source ELBE bases on a superconducting linear electron accelerator which operates at a 

frequency of 1.3 GHz and delivers beams with micropulse repetition rates of 260 (cw), 26 and 13 

MHz. The beam energy can be set between about 6 and 35 MeV at a maximum average beam current 

of about 1 mA. The arrangement of the ELBE facility with the experiment areas is schematically 

shown in Fig. 2.1.   

The accelerator consists of a pulsed thermionic DC electron gun, an injector stage pre-accelerating the 

electrons to 250 keV, two RF bunching sections forming micropulses of about 2 ps duration and four 

superconducting RF cavities operating at a temperature of 1.2 K. Via a switching magnet which 

controls the beam energy, the beam can be provided through different electron beam lines to the 

experiment caves, where it mainly serves for the production of secondary radiation such as 

bremsstrahlung (BS), X-rays, FIR radiation from a free-electron laser, neutrons and positrons.  

In the radiation physics cave, where the setup for CR production is situated, the maximum available 

beam current is restricted to 200 μA for the reason of radiation protection. The limitation of the 

average current can be managed by introducing diaphragms of different aperture into the injector beam 

line. This method has the advantage that the transverse emittance of the electron beam can be 

diminished to values of about 3 π mm mrad (rms) at a beam divergence of the order of 0.1 mrad, a 

main requirement for an effective CR generation. The beam-energy spread amounts to 1.3μ10-3, and 

the beam energy can be tuned with an accuracy of about 200 keV.  

 

2.2  Setup for CR measurement    

  

After deflection of the electron beam from the accelerator hall into the radiation physics cave, it passes 

the UHV vacuum chamber positioned in a straight part of the beam line between the dipole magnets 1 

and 2 (see Fig. 2.2). This chamber houses a 3-axes goniometer [Wag05b] used for the precise 

alignment of the diamond crystals with respect to the electron beam. After traversing the crystal target, 

the electron beam is deflected by the dipole magnet 2 into the beam dump.  

Directly behind the crystal target, a secondary emission monitor (SEM) and a small Faraday cup can 

be moved into the beam line. The construction and operation of these devices which are applied for the 

accurate measurement of the beam current through the target are described in detail in Ref. [Neu07]. 

The method of beam transmission monitoring in a short geometry seems to be more suitable than the 

measurement of the beam transmission through the target into the beam dump, because the latter 

method is rather sensitive with respect to a stable beam setting. It should be mentioned that the 

transmission of the electron beam into the beam dump is incomplete due to electron scattering in the 
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target material. Especially for target thicknesses of several hundreds of μm, the transmission is 

reduced to only several percent. 
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Fig. 2.2 Scheme of the radiation physic cave at ELBE. 

    

The CR and BS generated in the crystal and emitted in direction of the passing electron beam has to 

penetrate a thin Be window (127 μm), which separates the UHV beam line from an auxiliary vacuum 

tube evacuated to 1.5 mbar. After traversing about 45 cm of air, the radiation is registered by an X-ray 

spectrometer. The materials positioned in the path between target and detector limit the lower 

registration threshold to about 5 keV. A massive Pb collimator with an entrance aperture of only 1 mm 

shields the detector from intense direct and background radiation and defines the solid angle for 

radiation measurement to 7.2μ10-8 sr.          

 

2.3  X-ray detectors   

 

The CR as well as the accompanying BS has been registered by means of different solid state 

detectors. Silicon-PIN diodes of dimension 2.4×2.8 mm2 (Amptek XR-100T) and cadmium telluride 

(CdTe) detectors of dimension 3×3 mm2 (Amptek XR 100T-CdTe) have been used [Amp07]. Their 

different sensitive thicknesses (300 μm and 1 mm, respectively) defined the dynamic range for X-ray 

registration. Since the detectors are equipped with thin Be entrance windows (25 µm and 250 µm, 

respectively), the registration threshold also depends on the detector type, and radiation absorption in 

these windows has also to be taken into account.  

X-rays incident to the detector interact with the Si, Cd and Te atoms via the photoelectric effect or via 

Compton scattering creating in the average one electron/hole pair per energy loss of 3.62 eV or 4.43 

eV, respectively. Since the charge collection for events proceeding near to the rear contact of the 
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detector is more slowly than for events in the bulk material, false peaks and an additional background 

can occur in the measured spectrum. Since these events are characterized by a slower pulse rise-time, 

they can be excluded by activation of a rise-time-discrimination (RTD) circuit incorporated in the 

commercial preamplifier. 

The most important properties of the detectors with respect to radiation measurement are their energy 

resolution and registration efficiency. 241Am, 55Fe, 133Ba, and 210Pb photon sources have been applied 

for the energy calibration of the detectors. The full width at half maximum (FWMH) of the Si-PIN 

diode amounted to (470±2) eV for the 13.93 keV line of 241Am.  

The registration efficiency can be estimated by accounting (i) for the probability of photon 

transmission through the Be window and (ii) for the probability of interaction with the detector 

material. The product of these probabilities reads 

  

                                 )]exp(1)[exp( detdetttp BeBe μμ −−−=                           (2.1) 

 
where µBe and µdet are the total attenuation coefficients of Be and of the detector material, respectively.   

The corresponding registration efficiencies as a function of the photon energy [Amp07] are shown in 

Fig. 2.3.      

                            

 

Fig. 2.3 Plots of the registration efficiency as a function of the photon energy for the Si-PIN diode (left 

panel) and for the CdTe detector (right panel). 

 

At operation of the CdTe detector in the RTD regime, its registration efficiency was found to be 

significantly lower than expected for its dimensions (see Fig. 2.4). Since the effective thickness of the 

detector depends upon its charge transport properties and of the RTD setting, RTD has not been used 

for this 1 mm thick detector. 
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To explain the curves shown in Fig. 2.4, the following consideration is worthwhile. Usually, the 

registration efficiency of a detector is determined by the use of calibrated radiation sources in a well 

defined geometry. Since for the CR measurements the actual efficiency within an energy range of  0 ÷ 

100 keV is of interest, another method has been applied.  

It is well known that for photon energies less than mc2 the differential BS cross-section in forward 

direction is reciprocally proportional to the photon energy [Jac75]. Therefore, a channel-by-channel 

multiplication of some measured and energy-calibrated BS spectrum with the corresponding energy 

values, should result in a flat distribution. Each deviation from such a flat distribution points to a 

reduced registration efficiency, which may be caused by different processes such as, e.g., radiation 

absorption on the path from the source to the detector, nonlinearities of photon detection or incomplete 

energy absorption in the detector material. In the present measurement geometry (see Fig. 2.2), 

attenuation of low-energy photons occurs due to absorption in the crystal depth, in the Be window of 

the beam line, in the foil separating the auxiliary vacuum tube from atmosphere, along the path 

through air to the detector, and in the Be window of the detector. As already mentioned, absorption in 

these materials defines the lower registration threshold, but it also modifies the actual registration 

efficiency up to photon energies of about 10 keV due to a reduced radiation transmission. Otherwise, 

the diminished efficiency at higher photon energies is mainly connected with the finite detector 

thickness.  

The total registration efficiency for the given experimental setup has been calculated in accordance 

with Eq. (2.1) and is drawn in Fig. 2.4 as a full line. The measured BS spectra, multiplied with the 

corresponding photon energy and scaled to the calculated curves, are also shown in Fig 2.4 for both 

detectors used. Note that two peculiarities can be realized. In the upper panel corresponding to the Si-

PIN diode, additional photon peaks occur in the measured spectrum due to fluorescence from the Ag 

contacts of the diode. In the lower panel corresponding to the CdTe detector, deviations of the energy-

multiplied BS spectra from the calculated one occur at the K-absorption edges of the detector 

materials Cd and Te.  

For the CdTe detector, the registration efficiency is given with and without RTD. The observed 

difference between the two measurement regimes has also been proven by the use of a 241Am source. 

The ratios of the counting rates registered in the RTD “off” and RTD “on” regime at the photon peak 

energies 17.67 keV, 26.34 keV and 59.54 keV of 241Am were found to be 0.75, 0.62 and 0.54, 

respectively. Obviously, the difference is larger at higher photon energy what points to a reduced 

effective depth of this detector in the RTD regime.   

Uncertainties of the effective depth of the used detectors needed an independent method for the more 

exact determination of this depth. Otherwise the calculation of the registration efficiency would fail. In 

the absence of calibrated sources, a single photon source which emits two lines of X-rays with a well 

known intensity ratio can be used. If these photon energies are large enough to avoid attenuation in the 
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Be window of the detector, the ratio of the counting rates should be   
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where P1 and P2 are the emission probabilities of the two lines, and μ1 and μ2 are the linear attenuation 

coefficients at the corresponding photon energies. The solution t of Eq. (2.2) is the effective detector 

thickness. 
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Fig. 2.4 Calculated total registration efficiencies (full lines) and efficiencies obtained from the energy-
multiplied bremsstrahlung spectra. Upper panel: Si-PIN diode. Lower panel: CdTe detector in  two 
operation regimes. 
 

Equation (2.2) has also been applied for the determination of the effective depth of the Si-PIN diode 

using a 241Am source. A value of 275 μm was found instead of 300 μm reported by the producer.  
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2.4 Diamond crystals  

 

All diamond crystals utilized in the experiments are of type ІІа and were cut normal to the [110] axis 

(x-cut). The crystal thicknesses measured by means of a submicron stylus profiler (VEECO DEKTAK 

8) amount to (42.5 4.0) μm, (102.2 4.7) μm, (168± ± ± 3.9) µm and (500 ± 25) µm. The miscut angle 

and the orientation of the reciprocal lattice vectors of main crystal planes have been determined in 

previous X-ray diffraction measurements.  
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Fig. 2.5 Tilt-angle scan of a 42.5 μm thick diamond crystal registered near the (110) plane at an 

electron energy of 14.6 MeV (a). Crystal map constructed from a series of angular scans and the 

corresponding crystal planes (b). V and H denote the rotation and tilt angle in goniometer 

coordinates, respectively. 

 

 

The exact alignment of the crystal with respect to the direction of the electron beam is achieved by 

means of angular scans. The crystal mounted to the goniometer is rotated or tilt around its vertical or 

horizontal axis, respectively, and the counting rate of registered radiation is draw versus the 
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goniometer coordinate. Maxima of the obtained distributions correspond to crystal positions where the 

channeling condition is fulfilled for a certain crystal plane as exemplarily shown in Fig. 2.5a for the 

(110) plane of a 42.5 μm thick diamond crystal. From a series of angular scans, the orientation of the 

crystal with respect to the electron beam can be reconstructed by mapping the found maxima in  

goniometer coordinates. With the help of such a crystal map (Fig. 2.5b), the channeling condition 

along the chosen plane can easily be set.       

 

2.5  Measurements and data processing     

 

Measurements of planar CR have been measured on diamond crystals at the electron energies 14.6, 17, 

25, 30 and 34 MeV. The electron energy (Ee) was determined by means of beam deflection in the 

switching magnet of ELBE with a typical error of about 200 keV. One should notice that this method 

provides a value for the electron momentum pe, whereus the relation is valid 

for relativistic electrons. It follows

2222 )()( cmcpE eee +=

cpcpE e
e

e ≈=
β

, where 2
11

γ
β −=  ≈ 0.999387 ÷ 0.999887 for 

the above given values of the total electron energy Ee. Note that Ee differs from the kinetic electron 

energy  by the rest energy of the electron mc2. 2cmcpT eee −≈

Since CR is always accompanied with BS, this background has to be measured at a sufficiently 

misaligned crystal position and subtracted from the spectrum obtained in the aligned crystal position  

For that  both spectra  have to be normalized to the same number of incident electrons (see § 2.3). 

In the frame of this work, a consistent procedure for CR data reduction has been developed and 

implemented into an interactive computer code based on the package Matematica 4.1. This program 

subsequently accomplishes the following steps of data reduction:  

(i) Data input operations concerning the corresponding CR and BS spectra as well as the conditions 

given by the measurement geometry. 

(ii) Normalization of the spectra to equal number of incident electrons (see § 2.3). 

(iii) Correction of the normalized spectra for the total registration efficiency. The procedure described 

in § 2.4 is first executed for the BS spectrum, where self-absorption in the crystal is ignored. The 

result obtained for a 168 μm thick diamond crystal is illustrated in Fig. 2.6. The deviation of the 

energy-multiplied spectrum from a flat behavior at low photon energy reveals the effect of self-

absorption of radiation in the crystal which depends on its thickness.  

(iv) Correction for self-absorption of radiation in the crystal. The flat behavior of the energy-

multiplied spectrum obtained in a broad interval of photon energy down to the registration threshold 

(Fig. 2.6) indicates the accuracy of the correction procedure.  
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(v) Reproduction of the real shapes of the BS as well as CR spectrum by dividing the normalized 

spectra by the obtained total registration efficiency. For illustration, normalized BS and CR spectra for 

(110) planar channeling of 17 MeV electrons in a 42.5 μm thick diamond crystal are shown in Fig. 2.7, 

where the two prominent peaks correspond to the transverse transitions 1→0 and 2→1 possible at this 

electron energy. The corresponding corrected BS and CR spectra are shown in Fig. 2.8. It should be 

mentioned that the corrected BS spectrum follows the known 1/Ex dependency.   
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Fig. 2.6 Energy-multiplied spectrum of BS, corrected for detector efficiency, attenuation in window 

materials and self-absorption, normalized to a total efficiency of 100%, from a measurement with 14.6 

MeV electrons traversing a randomly oriented, 168 μm thick diamond crystal (SI-PIN diode). 

Deviations from one occur at photon energies between 5 and about 13 keV due to exclusion of self-

absorption from the correction procedure.  

 

 (vi) Subtraction of BS background. Since during electron channeling the production of BS is 

enhanced by a factor of about 1.3 ÷ 1.6, the corrected BS spectrum has to be normalized within a 

suitable interval of photon energy to the measured CR spectrum. This enhancement effect is caused by 

the prolonged time the channeled particle stays in close vicinity to the atoms of the channeling plane 

[Kum89]. Additionally to the CR lines, some background components may remain after subtraction of 

BS. Such components represent free-to-bound transitions.   

(v) Accomplishment of a least-squares curve fit to the BS-subtracted CR spectrum by application of 

the Levenberg-Marquardt method for the minimization of the χ2-function. For this procedure, every 

CR line is approximated by a spectral distribution of the form given by Eq. 1.50, possible additional 

peaks from free-to-bound transitions are modeled by Gaussians, and the remaining background is 

included by a low-order polynomial distribution. The values obtained from calculations of the CR 

 45



photon energies by means of the many-beam method (see chapter 1) can be used as starting parameters 

for the fit procedure. Simultaneously for all CR lines contained in a measured CR spectrum, one 

obtains a best value for the measured CR peak energy Eexp, the maximum CR energy E0, the line width 

ΓT, the asymmetry parameters α, the peak magnitude, and also the coefficients of the background 

function. It must be mentioned that due to multiple scattering the measured peak energy Eexp differs 

from the maximum energy E0 by some δE.  
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Fig. 2.7 Spectra of (110) planar CR (upper one) and BS (lower one) measured on a 42.5 μm thick 

diamond crystal at the electron energy of 17 MeV and normalized to equal number of incident 

electrons.    
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Fig. 2.8 Spectra of (110) planar CR (upper one) and BS (lower one) as shown in Fig. 2.7 but 

corrected for the total registration efficiency. 

     

As an example, the CR line shapes obtained from the described fit procedure performed for three 

transitions of (110) planar CR observed at an electron energy of  30 MeV on a 168 μm thick diamond 

crystal are drawn in Fig. 2.9. 
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Fig. 2.9 Line shapes of three transitions of (110) planar CR registered on a 168 µm thick diamond 

crystal at the electron energy of 30 MeV. 

 

In order to examine the influence of multiple scattering on the CR line shapes, the CR peaks have also 

been approximated by Voigt profiles, which represent convolutions of the intrinsic Lorentzians with 

Gaussians. Since a Voigt profile is a symmetric distribution, the fits to the measured CR lines involve 

some possible peak energy shifts but not the effect leading to an asymmetric line shape.  

For illustration, the background corrected spectrum of (110) planar CR registered on a 168 µm thick 

diamond crystal at the electron energy of 17 MeV is shown in Fig. 2.10 together with two 

approximated Voigt profiles, while the same spectrum approximated by two asymmetric spectral 

distributions given by Eq. (1.50) is shown  in Fig. 2.11. 

To compare the quality of these two approximations of the CR line shapes, the weighted deviations 

between the measured and modeled spectral distributions (residuals) are shown in the lower panels of 

Figs. 2.10 and 2.11.  The systematic deviations of the residuals from zero near the position of the 

prominent peak observed in the lower panel of Fig. 2.10 indicate a remarkable asymmetry of this CR 

line. It is obvious from Fig. 2.11 that the asymmetric line profile given by Eq. (1.50) nearly perfectly 

fits to the data because the corresponding residuals are spread uniformly around zero, thus providing 

confidence in the resulting values of the fit parameters.  
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Fig. 2.10 Spectrum of (110) planar CR measured on a 168 µm thick diamond crystal at the electron 

energy of 17 MeV and approximated by two Voigt profiles. The lower panel shows the residuals 

between the measured and the approximated line shapes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11 The same spectrum as shown in Fig. 2.10 but approximated by two asymmetric spectral 

distributions given by Eq. (1.50). The lower panel shows the residuals between the measured and the 

approximated line shapes. 
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2.6  Results of CR measurements on diamond 

 

The results of the data analysis performed for the CR measurements carried out at ELBE will be 

presented in this paragraph. They will also be compared with values obtained in many-beam 

calculations for the (100), (111) and (110) planes of diamond. In the subsequent figures, measured CR 

spectra are shown, which have been corrected as described in § 2.6, and the calculated CR photon 

energies are indicated by vertical lines of lengths chosen proportional to the relative transition rates 

obtained by the use of Eq. (1.60). The corresponding planar continuum potentials are drawn including 

the possible eigenvalues and Bloch bands.   

 

2.6.1 The (100) plane 

The (100) plane of diamond has a rather shallow potential (Fig. 2.12). At an electron energy of 14.6 

MeV, only the two states with n = 0 and n = 1 are bound. Therefore, only one CR line corresponding 

to the transition 1→0 is observed. The line shape indicates that the second energy level already 

touches the continuum. The calculated transition energy well agrees with the measured CR photon 

energy.      
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Fig. 2.12 Planar potential of the (100) plane of diamond and eigenvalues (Bloch bands) calculated for 

the electron energy of 14.6 MeV (left panel). Corresponding CR spectrum measured on a 42.5 μm 

thick crystal (right panel). 

 

2.6.2 The (111) plane 

Due to the unequally spaced crystal planes, the potential of the (111) plane of diamond is rather broad 

and has two minima. Only transitions between sufficiently spaced energy states are resolved as single 

CR lines in the spectrum of Fig. 2.13, whereus transitions between narrow bound states overlap. The 

much weaker transition 3→0, i.e. Δn = 3, is also observed. The agreement between calculated and 

measured CR photon energies is somewhat poorer than for the (100) plane. Possible reasons for a shift 

of measured CR peak positions towards lower energy were already discussed in Ref. [Kle85] and 
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attributed to non-spherical electron distributions of the atoms forming this plane.  
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Fig. 2.13 Planar potential of the (111) plane of diamond and eigenvalues (Bloch bands) calculated for 

the electron energy of 14.6 MeV (left panel). Corresponding CR spectrum measured on a 42.5 μm 

thick crystal (right panel). 

 

This leads to modified electron scattering form factors as well as Fourier coefficients of the planar 

potential (cf. chapter 1), and the potential becomes shallower. Consequently, the transition energies 

become slightly smaller. This effect has not been taken into account in the present calculations. 
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Fig. 2.14 Planar potential of the (111) plane of diamond and eigenvalues (Bloch bands) calculated for 

the electron energy of 30 MeV (left panel). Corresponding CR spectrum measured on a 42.5 μm thick 

crystal (right panel). 

 

At the electron energy of 30 MeV (Fig. 2.14), a broad intense peak of CR is observed, which 

represents a superposition of a variety of possible transitions. Since the individual CR lines become 

broader at increasing beam energy, they cannot be resolved any longer.       
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2.6.3 The (110) plane 

As the (100) plane, the (110) plane of diamond has a simple potential, but it is about twice deeper than 

that of (100) plane. For channeled electrons of energy 14.6 MeV, three well separated transverse states 

exist, and intense CR lines are observed from both the two possible transitions (Fig. 2.15).  

For the electron energy of 30 MeV, a third CR line from the transition 3→2 occurs (Fig. 2.16). The 

CR photon energies are shifted to higher energy compared with the spectrum shown in Fig. 2.15 (cf.  

also Figs. 1.17 and 1.18), and due to the broader line widths, the CR lines from the higher transitions 

begin to overlap. The energy of the 3→0 transition amounts to 120.88 keV being out of the dynamic 

range set for the detector. The small deviations between the measured and the calculated CR photon 

energies may be caused by the effect of multiple scattering, but are most likely due to changed beam 

energy.  

According to the theory of CR, the 1→0 transition of channeled electrons in the (110) plane is the 

most intense one found for diamond. Therefore, it should be most suitable to be used for some 

application of CR as an intense quasi-monochromatic X-ray source.  
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Fig. 2.15 Planar potential of the (110) plane of diamond and eigenvalues (Bloch bands) calculated for 

the electron energy of 14.6 MeV (left panel). Corresponding CR spectrum measured on a 42.5 μm 

thick crystal (right panel). 
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Fig. 2.16 The same as shown in Fig. 2.1 but for the electron energy of 30 MeV. 
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2.6.4 Asymmetry parameters   

The values of the asymmetry parameter α resulting from the analysis of the performed CR 

measurements are presented in Tab. 2.1. The effective (rms) multiple-scattering angles Θms,ch for 

electrons channeled in the (110) plane and generating CR by the transition 1→0 are listed in column 3 

of Tab. 2.1. The mean multiple-scattering angles Θm for non-channeled electrons (i.e., for a misaligned 

crystal) have been calculated by the use of Eq. (1.47). The corresponding ratio Θms,ch / Θms is given in 

column 4 of Tab. 2.1.  

One can conclude that the asymmetry parameter does not change significantly with the electron 

energy. This is true for each crystal thickness considered. Consequently, the dependence Θms,ch ~ 1/Ee 

holds as given by Eq. (1.47) for amorphous targets. The slightly higher value of α  obtained for the 

crystal thickness of 500 μm at the electron energy of 30 MeV can be understood because, in this case, 

one observes a small overlap of the CR lines resulting from the transitions 1→0 and 2→1.  

  

Table 2.1 Asymmetry parameters and mean multiple-scattering angles obtained by fits of asymmetric 

line profiles to the CR lines measured for the 1→0 transition of electrons channeled in (110) plane of 

diamond.  

Ee (MeV) α Θms,ch (mrad) Θms,ch / Θms 

42.5 µm 

14.6 0.172 6.03 0.55 

17 0.177 5.32 0.56 

30 0.168 2.87 0.54 

34 0.175 2.60 0.56 

102 µm 

17 0.211 6.33 0.41 

30 0.216 3.69 0.42 

168 µm 

14.6 0.246 8.62 0.36 

17 0.230 6.91 0.33 

30 0.226 3.84 0.33 

500 µm 

14.6 0.278 9.73 0.22 

17 0.281 8.46 0.22 

30 0.311 5.31 0.24 

 



The values obtained for the squared asymmetry parameter α2 at the electron energy of 17 MeV are 

drawn versus the crystal thickness in Fig. 2.17. It is obvious that this dependence, which has for the 

first time been investigated in the frame of this work [Aza06], is not linear, as one would expect from 

Eq. (1.47), but can be described by a function of the form α2
 = s Lb, where the coefficient s merges the 

ordinate scale and b = 0.37. This means that the multiple-scattering angle effective for CR observation 

increases more slowly with the crystal thickness than given by Eq. (1.47). Note that Θms,ch is 1.5 ÷ 4 

times larger than the critical angle for channeling along the (110) plane of diamond. Therefore, the 

observed shift of the CR photon energy, the line-broadening and the line asymmetry are caused by 

multiple scattering of channeled electrons within the channeling plane.  

Since the values found for Θms,ch are much less than 1/γ, all transitions proceeding at Θ ≤ Θms,ch 

contribute to the observed CR line and modify its shape as described by Eq. (1.50). 
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Fig. 2.17 Squared asymmetry parameter as function of the crystal thickness for electrons of energy 17 

MeV channeled in the (110) plane of diamond. 
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Fig. 2.18 Measured CR photon energy as function of the electron energy (given in units of γ) for the 

1→0 transition of electrons channeled in the (110) plane of diamond. 
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Table 2.2 Measured and calculated CR photon energies of the 1→0 transition in the (110) plane of 

diamond. Since these values are congenerously afflicted with uncertainties and possible systematic 

deviations, errors are not given. 

L (µm) Eexp (keV) E0 (keV) δE (keV) δE / E0 Ecalc (keV) 

14.6 MeV 

42.5 16.58 16.76 0.18 0.011 17.06 

168 16.99 17.21 0.22 0.013  

500 16.47 16.75 0.28 0.017  

17 MeV 

42.5 21.72 21.96 0.24 0.011 22.23 

102 21.42 21.70 0.28 0.012  

168 22.37 22.65 0.28 0.012  

500 21.38 21.68 0.30 0.014  

30 MeV 

42.5 56.19 56.87 0.68 0.012 59.49 

102 56.72 57.71 0.99 0.017  

168 56.22 57.00 0.78 0.014  

500 55.06 56.61 1.55 0.027  

34 MeV 

42.5 70.02 70.96 0.94 0.013 73.78 

 

 

2.6.5 Transition energies 

Table 2.2 lists the CR photon energies Eexp obtained from the fits of asymmetric profiles to the 

experimental data, the maximum energies E0 and the transition energies Ecalc calculated for different 

crystal thicknesses L. Column 4 of Tab. 2.2 reveals that the shift of the CR photon energy δE caused 

by multiple scattering increases with increasing crystal thickness at a given electron energy, but it also 

increases with the electron energy at a given thickness.  

The shift of the CR photon energy due to multiple scattering can be estimated by convolving the 

expression given by Eq. (1.45) with the one-dimensional multiple scattering distribution described by 

Eq. (1.46)  
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After changing the variable Θ in Eq. (2.3) to chms,2/ θθφ = , the relative shift of the CR photon 

energy due to multiple scattering reads  
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As came out (see Tab. 2.1), the asymmetry parameter, being defined as α = γθms,ch, does not depend on 

γ for a fixed crystal thickness because θms,ch ~ 1/γ. Therefore, the relative shift of the CR photon energy 

δE/E0 should also not vary with the electron energy. Within certain accuracy, this is confirmed by the 

values given in column 5 of Tab. 2.2. Note that the maximum photon energy E0 is also a fit parameter, 

which is modified by the actual shift of the CR photon energy due to multiple scattering. Hence, the 

difference between E0 and Ecalc can only result from some difference between the actual electron 

energy and that defined by the beam tuning. The relative discrepancy amounted to 2.3% at 14.6 MeV 

and to 5.1% at 34 MeV, corresponding to values of 0.36 MeV and 1.73 MeV, respectively.  

It was explained in chapter 1, the CR photon energy for the 1→0 transition of electrons channeled in 

the (110) plane of diamond scales with the electron energy such as E0 ~ γc. The exponent c has been 

defined by a least-squares fit to the measured CR photon energies. The obtained value amounts to 

1.700 0.016 (Fig. 2.18) and is very close to the value 1.73 found from calculations performed on the 

base of the Doyle-Turner potential. However, both values are far from 1.5 which corresponds to a 

harmonic potential.       

±

 

2.6.6 CR line widths   

The contributions to the residual CR line widths, as calculated in accordance with chapter 1, are listed 

in Tab. 2.3 for the crystal thickness of 42.5 µm. The partial widths due to Doppler broadening ΓDopp, 

resulting from the effect of multiple scattering during channeling, are calculated by means of Eq. 

(1.48) using the values for Θms,ch given in Tab. 2.1. The total CR line width Γcalc evaluated by means of 

Eq. (1.49) is given in column 6 of Tab. 2.3. The residual line widths Гexp (FWHM), obtained from the 

approximation of asymmetric profiles to the measured CR lines, and the values of ΓT, resulting from 

this fit procedure, are listed in Tab. 2.4. 

As an effect of multiple scattering, the total line width considerably increases with increasing crystal 

thickness at a given electron energy, while ΓT has been found to be rather constant. Such behavior can 

be expected, if the leading term of ΓT is that given by Eq. (1.35). The increase of ΓT with increasing 
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electron energy for a given crystal thickness is more pronounced than that of ΓDopp. The experimental 

line widths are larger than those estimated by Eq. (1.49), because the quadratic additive of the partial 

widths underestimates the width obtained by the convolution given by Eq. (1.50). Otherwise, the 

values of Γexp are slightly smaller than those resulting from the summation ΓT + ΓDopp.  

After a small correction for the detector resolution and the Bloch-wave broadening, the values of ΓT 

obtained from the fit procedure also allow an estimation of the coherence length [see Eq. (1.35)]. A 

comparison between calculated and experimentally found coherence lengths is given in Tab. 2.5, 

where the data of Ref. [Gen96] obtained at electron energies of 5.2 and 9 MeV and those of Ref. 

[Gou88] obtained at 53.2 and 80.3 MeV are adjoined.  

From the values given in columns 3 and 4 of Tab. 2.5 one can conclude that the coherence length 

relating to the 1→0 transition of (110) planar CR is nearly independent on the electron energy and in 

the average amounts to (0.64 ± 0.04) μm. 

Following the arguments of Ref. [Gou88] that thermal scattering is not localized, a mean value of 

(1.28 ± 0.02) μm has been estimated for the coherence length at room temperature of the two most 

tightly bound channeling states in the (110) plane of diamond.  

The comparison of the values given in columns 2 and 4 of Tab. 2.5 reveals that the coherence lengths 

calculated by means of the optical potential method are about 1.5 times larger than the observed ones. 

Although thermal scattering dominates during channeling in diamond crystals, incoherent scattering of 

the channeled electrons on the electrons of the crystal atoms should also contribute, especially for 

those particles occupying the low lying tightly bound channeling states. According to Ref. [Bur84], 

the relation between these two scattering mechanisms is roughly 4 : 1 at an electron energy of 54 

MeV, and this ratio should slightly decrease with decreasing electron energy. 

 

 

Table 2.3 Partial and residual line widths as calculated for the 1→0 transition of (110) planar CR 

generated in a 42.5 µm thick diamond crystal. 

Ee (MeV) Γcoh (keV) ΓBloch (keV) ΓDopp (keV) Γdet (keV) Γcalc (keV) 

14.6 0.29 0.26 0.50 0.47 0.87 

17 0.41 0.17 0.69 0.49 0.95 

30 1.51 0.02 1.61 0.60 2.29 

34 2.01 0.01 2.15 0.63 3.01 

 



Table 2.4. Measured and calculated line widths of CR from the 1→0 transition in the (110) plane of 

diamond. 

L (µm) Γexp (keV) ΓT (keV) ΓDopp (keV) Γcalc (keV) 

14.6 MeV 

42.5 1.51 1.09 0.50 0.87 

168 1.80 1.07 1.02 1.25 

500 2.20 1.31 1.30 1.48 

17 MeV 

42.5 2.00 1.45 0.69 0.95 

102 2.19 1.45 0.98 1.18 

168 2.47 1.44 1.16 1.39 

500 2.77 1.26 1.74 1.90 

30 MeV 

42.5 5.88 4.25 1.61 2.29 

102 7.94 5.75 2.67 3.13 

168 6.12 3.94 2.89 3.32 

500 11.98 7.99 5.53 5.77 

34 MeV 

42.5 7.84 6.00 2.15 3.01 

 

 

Table 2.5. Coherence lengths lcalc calculated for the 1→0 transition of (110) planar CR by means of 

the optical potential method. The values lref are taken from Refs. [Gou88, Gen96]. The values given in 

columns 4÷7 have been estimated from the measurements performed on diamond crystals of 

thicknesses 42.5, 102, 168 and 500 μm. 

Ee (MeV) lcalc (μm) lref  (μm) l42.5 (μm) l102 (μm) l168 (μm) l500 (μm) 

5.2  0.64     

9.0  0.68     

14.6 1.11  0.68  0.69 0.54 

17 1.06  0.66 0.65 0.65 0.76 

30 0.90  0.65 0.48 0.70 0.34 

34 0.87  0.59    

53.2  0.59     

80.3  0.62     

 

 57



2.6.7 CR photon yields 

The CR photon yields Yexp obtained from the fits of asymmetric profiles to the measured CR lines from 

the 1→0 transition of electrons channeled in the (110) plane of diamond crystals of different thickness  

and the values calculated as described in chapter 1 are listed in Tab. 2.6.  

The total errors of the photon yields are determined by the statistical errors obtained in the fit 

procedure, by uncertainties of the electron energy and of the beam current, by the tolerances of the 

crystal thicknesses, and by the error of the solid angle of CR registration. While the statistical errors 

are negligible, the typical value estimated for the accuracy of the measured CR photon yields amounts 

to about 20%. Indeed, if the crystal thickness of thinner crystals can usually be determined with lower 

accuracy than that of thicker crystals, the error of the measurement of the number of electrons, which 

transmitted the crystal behaves reversely [cf. Neu07]. Independently from the crystal thickness, the 

remaining components contributing to the total error of the CR photon yields are of the same order for 

all electron energies.  

The CR photon yields obtained in the measurements performed at the electron energy of 14.6 MeV are 

shown in Fig. 2.19 as a function of the crystal thickness z. The curve drawn through the experimental 

values represents a least-squares fit of a model function za to the data. It can be concluded that 

multiple scattering obviously governs the CR photon yield at crystal thicknesses between 42.5 and 500 

μm. If thermal scattering leads to equilibrium occupation of channeling states within the first 5 ÷ 10 

μm of traversed crystal depth (see § 1.9.2), one may assume that, in the case of diamond, multiple 

scattering determines the CR photon yields even starting from a much smaller crystal depth (cf. Ref. 

[Gen96]).  
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Fig. 2.19 Measured CR photon yield as function of the crystal thickness for the 1→0 transition of 14.6 

MeV electrons channeled in the (110) plane of diamond. 
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Fig. 2.20 Measured CR photon yield as function of the electron energy (given in units of γ) for the 

1→0 transition in the (110) plane of a 42.5 μm thick diamond crystal. 

 

Table 2.6 Measured and calculated photon yields for the 1→0 transition of (110) planar CR generated 

in diamond crystals of thicknesses 42.5, 102, 168 and 500 μm.  

L (µm) Yexp (photons/e sr) Ycalc (photons/e sr) 

14.6 MeV 

42.5 0.048 0.112 

102 0.065 0.173 

168 0.090 0.223 

500 0.149 0.384 

17 MeV 

42.5 0.059 0.148 

102 0.09 0.230 

168 0.13 0.295 

500 0.30 0.509 

25 MeV 

  42.5 0.159 0.318 

30 MeV 

42.5 0.229 0.448 

102 0.406 0.693 

168 0.52 0.890 

500 1.012 1.535 
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The CR photon yields obtained for the 1→0 transition in the (110) plane of a 42.5 μm thick diamond 

crystal are shown as a function of the electron energy in Fig. 2.20. The curve drawn through the 

experimental values represents a least-squares fit of a model function  to the data. The exponent c 

was found to be 2.12 0.09. This value is smaller then the value of 5/2, which can be determined for a 

harmonic potential, but it is remarkably larger than the value of 1.92 obtained from a calculation on 

the base of the Doyle-Turner potential for the very small crystal thickness of 5 μm (see Fig. 1.18).  

cbγ

±

 

2.7  Conclusions from the CR measurements 

  

For electron energies between about 15 and 35 MeV, the transition energies calculated by means of 

the many-beam formalism using the Doyle-Turner potential are generally in good agreement with the 

measured CR photon energies for channeling in the (100) and (110) planes of diamond. The number of 

bound states in the broader potential of the (111) plane is larger. This fact leads to an overlap of CR 

lines from a variety of possible transitions at higher electron energy what complicates a detailed 

analysis. At the electron energy of 14.6 MeV, where several CR lines can be resolved, the calculated 

transition energies are, however, remarkably larger than the CR photon energies observed. Probably, 

as discussed in Ref. [Kle85], the reason for this discrepancy is the non-spherical electron distribution 

of the atoms positioned in this crystal plane. 

The theoretical calculations as well as the measurements reveal that the 1→0 transition of electrons 

channeled in the (110) plane is the most intense one in diamond. Hence, this transition is most suitable 

for the application of planar CR as an intense quasi-monochromatic X-ray source. Therefore, the 

investigations concerning the line shape and photon yield presented in the preceding paragraphs have 

been focused to this CR line.                    

The analysis of different line-broadening mechanisms contributing to the total width of a registered 

CR line showed that multiple scattering increasingly affects its spectral shape with increasing crystal 

thickness. For the first time, the influence of multiple scattering within the channeling plane has been 

investigated systematically for relatively large variations of the crystal thickness and the electron 

energy as well [Aza06]. The method of fitting a convolution of an intrinsic Lorentzian line shape with 

a Gaussian-like distribution accounting for multiple scattering to the registered spectral distributions of 

CR provided a consistent picture of the consequences of the line-broadening mechanisms.    

It could be shown that the mean value of the multiple-scattering angle effective for the observation of 

planar CR in forward direction is weaker than earlier assumed and calculated from multiple-scattering 

in an amorphous target. The ratio Θms,ch / Θms decreases with increasing crystal thickness and does not 

depend on the electron energy. Since the angle Θms,ch depends in the same manner on the electron 

energy as Θms valid for an amorphous target does, the underlying scattering mechanism seems to be 
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the same in both cases. At increasing crystal thickness it should, however, become less probable that 

the electrons remain in the channeling condition after a certain number of scattering events. Since in 

terms of an occupation length, the electrons are dechanneled, the mean multiple scattering angle, 

which is effective for CR observation and the formation of the residual CR line shape, is smaller than 

calculated by means of Eq. (1.47).         

It must be mentioned that the formal application of Eq. (1.47) in Ref. [Kep91] allowed a satisfactory 

interpretation of the measured spectra of planar CR generated in Si crystals. However, in this work 

only crystal thicknesses between 10 and 20 μm have been considered. Furthermore, the results 

obtained in the present work could not confirm those found in Ref. [Gou88], where (at that time) a 

somewhat simplified method had to be applied because the measured spectra were rather complex. 

The statement Θms,ch = 0.3 × Θms made in Ref. [Cho99] has also no general validity.    

The asymptotic behavior of channeled electrons in thick crystals has been theoretically investigated in 

Ref. [Ogn94]. The calculation of CR spectra measured by other authors, however, made several 

assumptions necessary, where that of an uniform line-broadening principally differs from the aproach 

applied in the present work. As has been shown, multiple scattering causes a remarkable CR line-

broadening as well as a small shift of the CR photon peaks towards lower energy. Hence, the residual 

width of a planar CR line is modified by multiple scattering what is ignored in Eq. (5) of Ref. 

[Ogn94]. Since the comparison of calculated spectra with measured ones has been made in Ref. 

[Ogn94] for the rather large electron energy of 54 MeV, the intrinsic line width there dominates, and 

the effect of multiple scattering becomes relatively weaker and can be easily overseen.    

As expected, the residual line width of planar CR is described neither by a linear [Bur84] nor by a 

quadratic [Net94] additive of the contributing partial widths, because it results from the convolution of 

different distribution functions. This basic idea expressed in Refs. [Gou88] and [Cho99] has in the 

present work been consequentially applied for the processing of the measured CR data, because the 

observed CR line shapes were asymmetric to a remarkable degree. Note also that Eq. (4.64) of Ref. 

[Cho99] is very similar to Eq. (1.50), but nevertheless it is incorrect and does not converge if used in a 

fit procedure for the approximation of measured CR lines.  

The line-broadening of planar CR due to multiple scattering amounts to 1 ÷ 2 keV, even for diamond 

crystals of relatively large thickness. Compared with the line-broadening, the peak-energy shift is 

much smaller. Concerning the application of CR as a quasi-monochromatic X-ray source, this turns to 

be an advantageous precondition for the use of thicker crystals for intense CR production [Rei99, 

Wag05].  

Since the applied method automatically provides realistic approximations for the intrinsic line width of 

CR, coherence lengths relating to the considered CR transition could be deduced and were found to be 

in good agreement with the results of earlier investigations [Gou88, Gen96]. This supports the 
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conclusion that the coherence length of tightly bound channeling states is to a high degree insensitive 

to the electron energy.  

Certain uncertainties in earlier investigations of the CR photon yield (cf. Ref. [Kep89]) did not allow 

confident conclusions about the dependence of the CR photon yield on the crystal thickness. Later 

measurements performed on diamond crystals of a thickness up to 55 μm at electron energies of 5.2 

and 9 MeV [Net94, Gen96] yield experimental values which differ by a factor of 20 for the both  

electron energies, while the scaling of the CR photon yield with the electron energy claimed to be such 

as ~γ5/2 results in a factor of only four. In these experiments, the electron current has been determined 

by the transmission through the crystal into a Faraday cup situated inside the beam dump. At low 

electron energy, the actual transmission is, however, considerably smaller than 100%. It has been 

concluded that for the electron energies considered the CR intensities depend on the crystal thickness 

such as . The occupation length l /λ  has been determined to be 17.5 μm and 27.6 μm 

for 5.2 MeV and 9 MeV electrons, respectively.  

)1( zeI λ−−∝

In subsequent measurements of CR yields performed at electron energies of 9 and 10 MeV on 

diamond crystals of thickness 42 and 204 μm [Rei99], the obtained values were smaller by a factor of 

3.45 compared with the former measurements [Net94]. Impurities of the used diamond crystals have 

been made responsible for such a discrepancy. After empirical scaling of the CR yields found in Ref. 

[Rei99] to the results published earlier in Ref. [Gen96], a dependence of the CR photon yield on the 

crystal thickness such as has been deduced for crystal thicknesses between 13 and 204 μm and 

explained by the effect of multiple scattering. On this limited data base, an optimal crystal thickness of 

even 1 mm has been extracted for maximum CR yield from the 1→0 transition of  20 MeV electrons 

channeled in the (110) plane of diamond. Such a large value, however, follows only from an 

extrapolations to a higher electron energy and with the assumption that the increase of the CR photon 

yield in accordance with its proportionality to z1/2  is solely limited by self-absorption in the crystal. 

A serious resume of this brief review of earlier published results of investigations of the dependence of 

the CR photon yield on the electron energy as well as on the crystal thickness can only state that 

confident absolute values of CR yields were not yet been available up to now. 

Therefore, the systematic study of the mentioned dependences performed in the frame of this work on 

diamond crystals of type IIa can by all means be understood as a substantial contribution to a more 

complete and confident knowledge of important features of planar CR. Since the experimental data 

obtained in the CR measurements at ELBE cover the interval of electron energy between about 15 and 

35 MeV and a range of crystal thickness between about 40 and 500 μm, it nevertheless seems to be 

worthwhile to limit all conclusions made to the investigated intervals of the given parameters.  

For example, it has been found that the measured CR photon yields are lower by a factor of about two 

compared with the calculated values. In agreement with the theory of CR, the CR photon yields 

measured for channeling in the (110) plane of diamond scale with the electron energy such as ~γ 

2.12, 
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and with the crystal thickness as ~z1/2. Extrapolations of these trends out of the above mentioned 

intervals would have the character of theoretical prediction, because they would include the 

assumption that all effects which may influence the CR emission are exactly described.  

Finally, one can conclude that the scaling laws extracted from the measured CR data are of advantage 

for estimating main parameters of a non-conventional X-ray source based on the production of CR on 

diamond crystals. 
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Chapter 3 

 

 

Planar channeling radiation from electrons channeled in quartz 
 

3.1  Introduction 

 

Channeling radiation emitted from electrons of medium energy has mainly been studied on 

monoatomic crystals such as diamond [Gou82, Rei99], Si [Gou88, And80, Kep92], Ge [Par83, 

Cho99], and on metals (e.g. Be, Ni, Sb, W [And83, Gar91, Bus77]). Binary or polyatomic crystals 

(e.g. LiH [Gar91], LiF [Ber82, Swe84], GaAs, ruby [Fre96]) have scarcely been utilized.  

Most of the above mentioned crystals are characterized by a cubic lattice. In such crystals, intense CR 

is observed from planes with small indices such as (100), (110) and (111). A unique feature of CR has 

been observed on the binary crystal of LiF [Swe84]. Its halite structure leads to mixed as well as 

segregate planes, where the former ones consist of Li and F ions, and the latter ones are built from 

only one sort of ions. Since channeling along crystal planes is governed by the continuum potential, 

CR emitted by relativistic charged particles channeled in mixed planes resembles that from particles 

channeled in planes of monatomic crystals. The continuum potential of segregate planes of binary 

crystals, however, has usually two dips of different strength formed by one or the other sort of crystal 

atoms, respectively. Consequently, the CR spectrum can contain a mixture of CR lines originating 

from transverse transitions of channeled electrons between states localized in the different potential 

wells. This effect has first been observed in Ref. [Swe84].               

There are several applications of CR which forced the interest in studying CR emission on single 

crystals:  

(i) CR provides a method for characterizing of crystal properties such as, e.g., different sorts of crystal 

defects, impurities [Kum89], thermal vibration amplitudes of the crystal atoms [Kep91] etc.  

(ii) CR provides a method for characterizing of properties of the channeled particles, e.g., their energy 

or energy spread.  

(iii) CR can be applied for the production of intense quasi-monochromatic X-rays [Gen90, Gar91, 

Gen96].  

 65



A further perspective of CR, recently widely discussed in a series of theoretical works, is connected 

with the principal possibility to stimulate the CR emission by means of ultrasonic waves excited in the 

crystal. The non-uniform charge distribution within the unit cell of a quartz (SiO2) single crystal 

causes certain structural asymmetries which make quartz a piezoelectric. By the use of the reverse 

piezoelectric effect, the excitation of longitudinal ultrasonic vibrations of GHz frequencies in the 

quartz crystal should, therefore, be practicable. The stimulation of CR emission is predicted to proceed 

via local modulations of the extremely strong (≈ 100 GeV/m) crystal potential. Theoretical studies of 

this process have been published in Refs. [Bar80, Mkr86, Mkr87, Mkr88, Ded94, Ave97, Gri00a÷c, 

Gri01a÷e, Gri03a÷b, Ava06a÷b]. Different effects induced by the influence of ultrasound (US) on CR 

emission are predicted, e.g., CR line splitting, modulation of the CR spectrum, and even a possible 

amplification of the CR intensity at US frequencies near to a well defined resonance region. 

These predictions motivated the experimental investigation of CR emission especially on quartz 

crystals, because they are easily available commercially. The first experiments were performed at 

ultra-relativistic electron energy [Ava88, Ava90]. Recent calculations [Avao6a÷b], however, consider 

lower electron energies in the MeV region.  

The implementation of US for a dedicated stimulation of CR in quartz crystals at medium electron 

energies, however, needs in a detailed knowledge of the properties of CR generated in the undisturbed 

crystal. The spectrometry of CR on quartz provides information about the suitability of different 

crystal planes for US impact.  

Up to now, the generation of CR in quartz at medium electron energies has not been studied. In the 

frame of the present work, calculations of planar continuum potentials, transverse transition energies, 

CR line widths and CR intensities for medium-energy electrons channeled in different planes of quartz 

have for the first time been carried out [Aza07]. First such CR measurements on quartz have been 

performed at ELBE [Wag07]. The results of these investigations as well as a comparison of the 

theoretical and experimental data are presented in the following paragraphs.   

 

3.2  Quartz single crystal 

 

The stoichiometry of SiO2 causes a fluorite structure of an α-quartz single crystal (Fig. 3.1a). The unit 

cell of its lattice contains three Si and six O atoms (Fig. 3.1b). The hexagonal lattice is defined by the 

two primitive vectors ,  of equal length opening an angle of 120°, and the third coordinate is 

given by the vector c  perpendicular to both the others (Fig. 3.1c). In Cartesian coordinates, these 

vectors are expressed such as 
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with a = 4.913 Å and c = 5.405 Å at room temperature. The hexagonal coordinates of the atoms in the 

unit cell are given by 
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with u = 0.465, x = 0.415, y = 0.272, and z = 0.12. The primitive vectors in the reciprocal lattice read   
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With these conventions, a crystal plane in a hexagonal lattice is defined by four indices (hkil) where 

(h,k,l) are Miller indices and i = – (h+k). The interplanar distance dp is then given by 
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Because of the asymmetry of the quartz single crystal, the planes given by the indices (hkil) and (khil) 

have the same interplanar distance, but they have different planar potentials due to different positions 

of the Si and O atoms in these planes.  

Since for channeling the depth and shape of the planar potential as well as the interplanar distance are 

important, a larger number of bound states can be localized in a deeper potential well, but a large 

interplanar distance together with a narrow potential well lead to poor initial population of transverse 

states in this plane. This interplay is very pronounced for quartz and enables the observation of CR 

even from planes with indices larger than one. The large variety of crystal planes in quartz is 

illustrated in Fig. 3.2 which shows the zone of the x-cut axis ]0112[ .   

 

3.3  Many-beam calculations for crystal planes of quartz 

 

The Fourier coefficients of the continuum potential were, as in the case of diamond, calculated using 

the Doyle-Turner approach. The coefficients ai and bi in Eq. (1.30) [Doy68] are listed in Tab. 3.1 for 

the Si and O atoms. 
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 (a) (c) (b) 
 

Fig. 3.1 Tetrahedral structure of an α-quartz single crystal (a). The small spheres represent the Si 

atoms and the large spheres the O atoms. Unit cell of the quartz crystal (b). Hexagonal structure of 

quartz with the primitive vectors a1, a2, a3 and c (c). 

 

 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
 

 
Fig. 3.2 Zone of crystal planes perpendicular to the axis ]0112[ . 

 
    Table 3.1 Values of  the coefficients ai and bi  for the Si and O atoms in quartz 

 a1(Å) a2(Å) a3(Å) a4(Å) 

Si 2.1293 2.5333 0.8349 0.3216 

O 0.4548 0.9173 0.4719 0.1384 

 b1(Å2) b2(Å2) b3(Å2) b4(Å2) 

Si 57.7748 16.4756 2.8796 0.3860 

O 23.7803 7.6220 2.1440 0.2959 
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Note that the continuum potential is given by a linear combination of the atomic potentials of the Si 

and O atoms in the unit cell. The thermal vibrations of the crystal atoms are taken into account by the 

corresponding Debye-Waller factors 22

2
1)( jj uggM = . Since the mean-squared vibration 

amplitudes 2
ju  are different for the Si and O atoms of a quartz crystal, the values given for room 

temperature in Ref. [Smi63] and amounting to 0.00507 Å2 and 0.00886 Å2, respectively, have been 

adopted.  

For illustration, the shapes of the continuum potentials calculated for the )2320(  and )0101(  planes 

of quartz are shown in Fig. 3.3. The eigenvalues and Bloch bands correspond to the energy of the 

channeled electrons of 32 MeV.  The potential of the mixed plane )2320( is formed by a combination 

of Si and O atomic potentials (Fig. 3.3a). The potential of the )0101(  plane shows alternating 

segregate potential wells, where the deep ones are formed by Si atoms, and the smaller modulations 

are caused by the O atoms (Fig. 3.3b). When the strengths of the potentials presented in Fig. 3.3 are 

comparable, the interplanar distances of these two planes differ considerably and amount to 1.375 Å 

and 4.255 Å, respectively.  

 

  

 

 

 

 

 

 

 

Fig. 3.3 Calculated planar potentials, eigenvalues and Bloch bands for 32 MeV electrons channeled in  

the )2320(  plane (a) and in  the )0101(  plane (b) of quartz. 

 

The probability densities of the first three bound states in the )2320( and in the )0101(  plane of 

quartz are drawn in Fig. 3.4. From the present calculations one should expect that the intensities of CR 

generated in these two planes will differ remarkably. The initial populations (i.e., those at the crystal 

depth z = 0) of the first three bound states in the )2320( and )0101( planes of quartz are shown in 

Fig. 3.5. Note that the initial population of states in the )0101(  plane is considerably smaller than 
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that of states in the )2320(  plane. This effect is caused by the larger interplanar spacing in the 

)0101(  plane.   
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Fig. 3.4 Probability densities of the first three bound states calculated for 32 MeV electrons channeled 

in the )2320(  plane (a) and in the )0101(  plane (b) of  quartz  (n = 0 – full line, n = 1 – dashed 

line, n = 2 – dotted line). 

 

 

 

    

 

             

 

 

 

Fig. 3.5 Initial populations calculated for the first three bound states in the )2320(  plane (a) and in 

the )0101(  plane (b) of quartz. 

 

3.4  Measurements of planar CR generated in quartz 

 

Measurements of planar CR out of different crystal planes of quartz have for the first time been carried 

out at ELBE [Wag07]. The parameters of the electron beam, the experimental setup and the 

procedures of data reduction and analysis were the same as already described in chapter 2 of this work.  

Two x-cut quartz crystals of diameter 20 mm and of thicknesses (200 ± 4) μm and (500 ± 5) μm were 

available for the measurements.  

Before mounting the crystals to the goniometer, stereographic projections of the reciprocal lattice 

vectors have been generated by means of dedicated x-ray diffraction measurements. The knowledge of 

HA
ë
L

1

2

3

»uH
xL

»2
Ha

.u
.L H02

êê
23L

HaL

-dpê4 -dpê8 0 dpê8 dpê4
Interplanar position HA

ë
L

1

2

»uH
xL

»2
Ha

.u
.L H011

êê
0L

HbL

0 0.2 0.4 0.6 0.8 1.0 1.2
Angle q mradH L

0.1

0.2

0.3

0.4

0.5

0.6

laitinI
noitalupop

H02
êê

23L
HaL

0 0.2 0.4 0.6 0.8 1.0 1.2
Angle q mradH L

0.05

0.1

0.15

0.2

laitinI
noitalupop

H011
êê

0L
HbL

 70



the orientation of crystal planes with respect to the crystal surface is of particular advantage in the case 

of quartz crystals. As illustrated in Fig. 3.2, there are many narrow planes, and the assignment of 

registered CR to a definite crystal plane is more difficult than on diamond crystals.     

For illustration, spectra of planar CR and BS normalized to the same number of incident 34 MeV 

electrons and representing a measurement of channeling in the )1101( plane of a 200 μm thick quartz 

crystal are shown in Fig. 3.6. The same spectra but corrected for the total registration efficiency (see § 

2.6) are shown in Fig. 3.7.    
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Fig. 3.6 Spectra of )1101( planar CR  (upper one) and BS (lower one) measured at the electron 
energy of 34 MeV on a 200 µm thick quartz crystal.  
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Fig. 3.7 The same spectra as shown in Fig 3.6 but corrected for the total registration efficiency.   
 
 
The following figures represent background-subtracted spectra of planar CR obtained for 17, 25 and 

32 MeV electrons channeled in different planes of quartz. For comparison with the calculations, the 

corresponding continuum potentials, eigenvalues and Bloch bands are shown aside. The relative 

orientation of these planes can be found in Fig. 3.2. The calculated transition energies are again 

indicated in the spectra by vertical lines, the lengths of which are chosen proportional to the values 

determined by means of Eq. (1.60) assuming equilibrium population of the states.  

A first family of planes being accessible for CR measurement on an x-cut quartz crystal is given by the 

Miller indices h = 0, k = 1, l = 0,1,2,… (see Figs. 3.8 ÷ 3.11). With increasing value of the index l, the 
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planar potential simplifies and becomes shallower. As a result, the number of bound states quickly 

decreases. Therefore, the CR lines from single transitions in the )0101(  plane and in the )1101(  

plane cannot be resolved but superimpose and form broad CR peaks. 
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Fig. 3.8 Planar potential of the )0101(  plane of quartz (a) and measured CR spectrum for 34 MeV 

electrons (b) at a crystal thickness of 500 μm. 

 

 

 

 

 

 

 

 

Fig. 3.9 Planar potential of the )1101(  plane of quartz (e) and measured CR spectrum for 32 MeV                         

electrons (f) at a crystal thickness of 200 μm. 

 

 

 

 

 

 

 

 

Fig. 3.10 Planar potential of the )3101(  plane of quartz (a) and measured CR spectrum for 32 MeV 

electrons (b) at a crystal thickness of 200 μm. 
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Fig. 3.11 Planar potential of the )5101(  plane of quartz (a) and measured CR spectrum for 32 MeV 

electrons (b) at a crystal thickness of 200 μm. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Fig. 3.12. Planar potential of the Fig. 3.12. Planar potential of the )1110(  plane of quartz (a) and measured CR spectrum for 32 MeV 

electrons (b) at a crystal thickness of 200 μm. 
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Small deviations between measured and calculated energies may be caused by slight remaining 

misalignment of the crystal although multiple scattering also leads to shifts of the CR photon energy 

towards lower values.  

In  general,  the properties  of  CR  observed  for  another family of planes given by the Miller indices 

h = 0, k = –1, l = 0, 1, 2,… (Figs. 3.12 ÷ 3.15) are similar. Note that the )1010( and )0101( planes 

are parallel in a hexagonal lattice. However, compared with the family of planes considered before, the 

tilt of planes at l ≠ 0 goes reversely in the second family.   

The )1110(  plane is of special interest (Fig. 3.12). Here the Si and O atoms causing the local minima 

and bents of the planar potential are located narrower to the central position of this plane than it is the 

case, e.g., in )0101(  plane (see Fig. 3.8a). Therefore, the continuum potential of the )1110( plane 

has a broad shape, while the )0101(  plane consists of parallel segregate planes. The broader the 

potential well is, the larger is the number of bound states and the more CR lines contribute to the CR 

spectrum observed. As in the )1101( plane (see Fig. 3.9), the CR lines corresponding to transitions 

with ∆n = 1 cannot be resolved. However, more energetic transitions with ∆n = 3 lead to two bumps 

observed in the CR spectrum. 

The present measurements manifest a further difference between the two families of planes 

considered. Namely, for k = 1, CR is observed in planes with odd indices l. Otherwise, for k = – 1, CR 

is observed in planes with even indices l > 1. This effect another time reveals the asymmetry of the 

quartz crystal. Generally, the planes out of which CR has not been observed have narrow potentials of 

small depth (< 5 eV).  

The trend to shallower potentials with increasing index l exists in both families of planes. Indeed, the 

tilt of these planes with respect to the primitive vector  cr  increases with l, and the planes approach the 

basis plane  of the hexagonal lattice (see Fig. 3.2). The planar potential of the  plane 

has also a small depth. In addition to that, the interplanar distance of the plane is large (5.405 

Å). Therefore, CR from this plane could not be observed. Note also that at small photon energies the 

corrections for self-absorption in the crystal are large diminishing the reliability of the data at these 

energies considerably, although the registration threshold amounted to about 5 keV.     

)0001( )0001(

)0001(

On the other hand, the somewhat more complicate crystal structure of the binary quartz crystal 

(compared with cubic crystals such as, e.g., diamond, Si or Ge) allows for planes with relatively large 

indices, which have rather deep potentials and out of which CR can be observed. The continuum 

potential of the )2320(  plane and CR spectra measured from channeled electrons of energies 17, 25 

and 32 MeV are shown in Fig 3.15. At the electron energy of 17 MeV, only the two states with n = 0 

and n = 1 are bound, and the one CR line from corresponding transition 1→0 is observed. Electrons of 

energies 25 and 32 MeV can populate three well separated transversal states in the )2320(  plane and 
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produce rather intense CR lines corresponding to the two possible transitions. In such a case, the 

scanning procedure for the alignment of the crystal plane with respect to the electron beam can be 

carried out distinctively for maximum population of a chosen initial state. Therefore, the calculated 

and measured energies of the observed CR lines agree nearly perfectly (Fig. 3.15). 
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Fig. 3.13 Planar potential of the )1210( plane of quartz (a) and measured CR spectrum for 32 MeV 

electrons (b) at a crystal thickness of 200 μm. 
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Fig. 3.14 Planar potential of the )1410(  plane of quartz (a) and measured CR spectrum  for 32 MeV 

electrons (b) at a crystal thickness of 200 μm. 

 

The photon energy of the 1→0 transition scales as γ1.7 with the electron energy which is similar to the  

diamond crystal. Another example for observation of CR from a plane with large indices is 

demonstrated in Fig. 3.16. At electron energy of 32 MeV, there are only three bound states inside the 

potential affording the transitions 1→0 and 2→1 which have been resolved (Fig. 3.16b). 
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Fig. 3.15 Planar potential of  the )2320(  plane of quartz and eigenvalues and Bloch bands calculated 

for channeled electrons of energy 17 MeV (a), 25 MeV (c), 32 MeV (e) and the corresponding CR 

spectra (b), (d), (f), respectively,  measured at a crystal thickness of 200 μm.  

 

3.5  Results of CR measurements on quartz 

 

The experimental values obtained for the CR photon energies, line widths and yields of separated 

transitions of channeled electrons of different energy in different crystal planes of quartz are presented 

in this paragraph and will be compared with the results of many-beam calculations.     

 76



 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Interplanar position HÅL

0

-2.5

-5

-7.5

-10

laitneto
P

H
Ve

L

Quartz
H033

êê
1L

HaL
32 MeV

n=0

n=1

n=2

5 10 15 20 25 30 35 40
Photon energy H keV L

0

0.4

0.8

gnitnuo
C

etar
Ha

.u
.L HbL

32 MeV

2ö1

1ö0

Fig. 3.16 Planar potential of the )1303(  plane of quartz (a) and measured CR spectrum for 32 MeV 

electrons (b) at a crystal thickness of 200 μm. 

 

3.5.1 Transition energies 

The photon energies of several CR lines separated in the corresponding spectra are compared with 

calculated transition energies in Tab. 3.2. The errors given in column 4 of Tab. 3.2 reflect only the 

accuracy of the fit procedures performed for approximation of Lorentzians to the experimental data.   

 

Table 3.2 Measured and calculated energies of separated CR lines from planar electron channeling in 

quartz. 

Ee 

(MeV) 

Plane Transition Measured energy 

(keV) 

Calculated energy 

(keV)  

17 )2320(  1→0 9.20±0.02 10.04 
  2→1 —  4.99 

25 )2320(  1→0 18.53±0.04 18.42 
  2→1 13.44±0.05 12.08 

32 )2320(  1→0 27.52±0.04 27.26 
  2→1 20.21±0.03 20.16 

32 )1110(  3→0 24.57±0.15 25.91 
  4→1 33.65±0.14 34.87 

32 )1210(  1→0 20.59±0.16 23.11 
  2→1 15.60±0.15 16.99 
  3→2 — 11.88 

32 )3101(  1→0 26.03±0.03 27.83 
  2→1 —  4.23 

32 )5101(  1→0 19.80±0.04 23.95 
32 )1303(  1→0 23.44±0.06 26.73 

  2→1 17.87±0.06 18.09 
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The uncertainty of the measured CR photon energies, however, is mainly determined by the accuracy 

of the energy tuning of the electron beam that was evaluated to be less than 1.5 %. Therefore, taking 

the scaling of the CR photon energy with the electron energy into account, the accuracy of the 

measured energies should not be better than about 2.5 %, i.e., the absolute errors amount to values 

between 0.4 and 0.6 keV. Remaining small discrepancies may be attributed to slight crystal 

misalignment during the measurements, to the effect of multiple scattering, and also to the 

imperfectness of the quartz crystals used.    

 

3.5.2 CR line widths 

As explained in chapter 1, the CR line shape registered in a CR measurement is governed by several 

line-broadening mechanisms. In the case of quartz, the intrinsic CR line width dominates the total line 

width to a higher degree than in diamond crystals because of the lower Debye temperature (≈1000 K). 

The imaginary part of the complex potential of the )2320(  plane is shown in Fig. 3.17 for 32 MeV 

electrons. A comparison of Fig. 3.17 with, e.g., Fig. 1.7 valid for diamond reveals that the imaginary 

part of the continuum potential of quartz is not strongly located at the channeling plane and it is 

broader. Therefore, the coherence lengths for quartz crystals are much smaller than for diamond.  

 

Table 3.3 Partial contributions to the total CR  line widths calculated by the many-beam formalism 

and measured  line widths for electrons channeled in different planes of  quartz. 

Ee  
 

(MeV) 

Plane Transition Гin  
 

(keV) 

ГBloch  
 

(keV)  

ГDop  
 

(keV) 

Гdet  
 

(keV) 

Calculated  
line width 

(keV) 

Observed  
line width 

(keV) 
17 )2320( 1→0 0.92 0.64 0.60 0.50 1.37 1.62±0.05 

  2→1 0.59 4.15 0.30 0.50 4.23 — 
25 )2320( 1→0 2.09 0.31 1.10 0.50 2.43 3.38±0.13 

  2→1 1.47 3.27 0.72 0.50 3.69 3.28±0.15 
32 )2320( 1→0 3.27 0.15 1.63 0.50 3.90 4.65±0.12 

  2→1 2.67 2.27 1.21 0.50 3.74 4.88±0.10 
32 ( )1210 1→0 2.88 0.00 1.38 0.50 3.23 4.23±0.55 

  2→1 1.99 0.05 1.02 0.50 2.29 5.01±0.47 
  3→2 1.81 1.75 0.71 0.50 2.66 — 

32 )3101( 1→0 3.13 0.72 1.67 0.50 3.65 4.85±0.10 
  2→1 2.21 2.99 0.25 0.50 3.76 — 

32 ( )5101 1→0 2.97 4.31 1.43 0.50 5.45 5.02±0.11 
32 )1303( 1→0 3.29 0.22 1.60 0.50 3.70 3.65±0.22 

  2→1 2.55 2.76 1.08 0.50 3.94 4.88±0.19 
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Fig. 3.17 Imaginary part of the complex potential of the )2320(  plane of quartz calculated for the 
electron energy of 32 MeV. 
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The partial contributions to the total CR line width Гtot are listed in Tab. 3.3 for a 200 μm thick quartz 

crystal. The Doppler broadening is calculated by mean of Eq. (1.48). As discussed in chapter 1, the 

mean multiple-scattering angle may be found by a peak shape analysis of measured CR lines. In the 

case of quartz, the statistics of the measured CR peaks as well as the overlap of CR lines prevent an 

application of this method. Therefore, the mean multiple scattering angle could be deduced for the 

)2320(  plane only. The obtained value amounts to about (0.3 ÷ 0.5) μ θms, where θms means the root-

mean- squared multiple-scattering angle for non-channeled electrons. 

The coherence length is the main source of CR line-broadening for transitions between tightly bound 

states. Otherwise, for transitions from states located near to the top of the continuum potential, the 

main contribution to the total line width results from Bloch wave broadening. The total line width 

given in column 8 of Tab. 3.3 is a quadratic additive of all partial contributions. Nevertheless, the 

observed values of the CR line with are in a reasonable agreement with the calculated ones, but they 

are consistently larger.     

 

3.5.3 CR photon yields  

According to Eq. (1.59) the photon yield of CR is proportional to the integral of the occupation 

function Pi(z) along the crystal depth z. This depth dependence has been determined for the )2320(  

plane of quartz and the electron energy of 32 MeV by solving the system of coupled differential 

equations given in  Eq. (1.63) numerically for δz = 0.01 μm. The occupation of bound states as 

function of the crystal depth is shown in Fig. 3.18 for an electron beam with an angular divergence of 

σbeam = 0.3 mrad incident to the quartz crystal under an angle θ = 0.3 mrad.  

In order to investigate the variation of the CR yield with the crystal thickness, a numerical integration 

has been performed for the transitions 1→0 and 2→1 (Figs. 3.19 and 3.20).       
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Fig. 3.18 Occupation of bound states in the )2320(  plane of quartz as function of the crystal 

thickness at an electron beam divergence of 0.3 mrad and for the incidence angle of 0.3 mrad.   
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Fig. 3.19 Total CR photon yield for the 1→0 transition in the )2320(  plane of quartz as function of 

the crystal thickness for 32 MeV electrons. The dots represent calculated values. The line corresponds 

to an exponential decay of the occupation probability. 
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Fig. 3.20 The same as shown in Fig 3.19. but r the 2→1 transition. fo
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As has been found for diamond, the occupation of bound states quickly decreases with increasing 

crystal depth and reaches equilibrium near to a penetration depth of 20 μm (see Fig. 3.18). Therefore, 

the calculated CR yields further on change linearly (see Figs. 3.19 and 3.20). However, due to multiple 

scattering, the equilibrium occupation of states can actually not survive, and the channeled electrons 

will successively be dechanneled.  

The calculated CR photon yields have been approximated at small crystal thicknesses by a curve 

representing the function , where the occupation length locc was found to amount to 

7.337 μm and 6.268 μm for the initial states with n = 1 and n = 2, respectively.   

)1)(0( / occlz
n eP −−

The CR photon yields obtained for resolved CR lines and for different planes in quartz are listed in 

Tab. 3.4. and compared with values estimated by the use of corresponding functions as drawn in Figs. 

3.19 and 3.20. Surprisingly, the measured and estimated yields mostly agree with acceptable accuracy. 

It is obvious from Figs. 3.19 and 3.20, that a direct comparison of measured and calculated CR photon 

yields should be performed for real crystal thicknesses being less than 20 μm. The found reasonable 

agreement between measured and estimated yields probably points at the fact that in-plane multiple 

scattering plays for quartz a less role than for diamond. The de-population of states proceeds similar to 

an exponential decay with a short occupation length.  

 

Table 3.4 Calculated and measured yields of CR from 32 MeV electrons channeled in quartz.  

Ee  

(Me

Plane 

 

Transition 

(i→f) 

Pi(0) locc
calc 

(μm) )/(

/2

srephotons

dzdNd calc
fi

−

→ Ω  
)/(

exp

srephotons
Yield

−
 

32 )2320( 1→0 0.087 7.34 0.087 0.122 
  2→1 0.088 6.27 0.088 0.081 

32 ( )1210 1→0 0.125 5.91 0.036 0.032 
  2→1 0.118 5.97 0.036 0.045 

32 ( )5101 1→0 0.245 7.06 0.075 0.069 
32 ( )3101 1→0 0.173 6.38 0.075 0.069 
32 )1303( 1→0 0.195 7.75 0.098 0.041 

  2→1 0.184 6.84 0.081 0.075 
 

 

3.6  Conclusions  

 

Planar CR generated by electrons of medium energies in different crystal planes of quartz has for the 

first time been measured and analyzed. The hexagonal structure of α-quartz provides a variety of 

crystal planes which are very close to each other. Compared with the diamond structure, this feature 

complicates the mapping of planes and the assignment of relevant indices to observed CR spectra. The 
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calculations of the planar continuum potentials as well as the corresponding channeling states by 

means of the many-beam formalism considerably facilitated the identification of the measured CR 

data. 

The analysis of different line-broadening mechanisms contributing to the total CR line width has been 

investigated for CR line separated in the measured spectra. The intrinsic CR line widths were 

estimated by the use of the complex optical potential. Compared with diamond, the imaginary parts of 

the planar potentials of quartz are broader. Therefore, the intrinsic CR line widths are nearly two times 

larger than those found for diamond and dominate for the tightly bound states. The values of transition 

energies and line widths obtained from many-beam calculations are in reasonable agreement with 

measured values.   

The occupation functions of bound states have been calculated by solving the system of coupled 

differential equations numerically. It has been found that equilibrium occupation of bound states is 

reached in quartz at a penetration depth of nearly 20 μm. Since the thickness of the quartz crystal 

amounted to 200 μm, accurate adjustment between experimental and theoretical CR yields was not 

possible.  

Reminding the suggestion to stimulate CR emission by US excited in the crystal, the CR data obtained 

in the present work for quartz are of fundamental interest for a dedicated evaluation of the effect of US 

and the choice of suitable crystal planes. The relatively large crystal thickness used for the CR  

measurements was also chosen in view of such investigations.  



 

 

 

Chapter 4 

 

 

Resonator cavity 
  

4.1  Introduction 

 

In order to investigate the influence of US on CR emission, acoustic vibrations have to be excited in the 

quartz single crystal by means of ultrasonic waves propagating through the crystal. From Refs. [Gri00a÷c, 

Gri01a÷e, Gri03a÷b, Ava06a÷b], and also from the results of CR measurements on quartz described in 

chapter 3 of this work, it is clear that US frequencies in the GHz region are necessary. A brief survey of 

electromagnetic cavity resonators and its application for the generation of ultrasonic waves in a 

piezoelectric crystal will be given in the present chapter.    

Cavity resonators are metallic enclosures that can trap electromagnetic high-frequency fields. The 

boundary conditions at the cavity walls force the field to be exit only at certain quantized resonant 

frequencies.  

The source-free Maxwell equations read 
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transverse electric (TE) or transverse magnetic (TM) modes are defined in accordance with the 

longitudinal field components. 

In our case, the so called accelerating mode of a cylindrically symmetric cavity is of interest. In TM mode, 

the radial (r) and longitudinal (z) components of the magnetic field and the azimuthal component (φ) of 

the electric field vanish. If one assumes     

                   
                                                                                                                                                                   (4.3)  tzr ωHtzrH φφ cos),(),,( =
 
and defines the wave number k = w/c, then the Maxwell equations in cylindrically symmetric geometry 

can be written in the form 
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(4.5) 
 

(4.6) 
 

    
 

Here Eq. (4.4) is the Helmholtz eigenvalue equation, and the other two equations define the components 

of the electric field. The Helmholtz equation is an elliptic partial differential equation. Hence, the same 

type of boundary conditions are required for its solution as for the generalized Poisson equation. Namely, 

Φ(x) or its derivative must be specified at all boundary positions, but not both at the same position. The 

Helmholtz equation can be solved analytically for simple geometries or numerically for complex 

geometries. 

 
4.2  Pillbox cavity  

 
A pillbox resonator (Fig. 4.1) is a cylindrical cavity, for which analytical solutions of the Helmholtz 

equation can be deduced, and the resonant frequency, stored energy, quality factor, etc. can be defined.   

 
 
   
 
 
 
 
                                                               
 
                                                                     Fig. 4.1 Pillbox cavity 
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The accelerating modes TMmni for the pillbox cavity are denoted by three subscripts, where m is the 

number of full periods in azimuth φ , n is the number of radial zeros of the field, and  i is the number of 

half–period  variations in the z direction.  

The analytical solutions of the Helmholtz equation for TMmni read  
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where likz π= , i ≥ 0, xmn are roots of the Bessel function, and a and l denote the radius and the length of 

the cavity, respectively. The resonant frequency is given by 
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Several TMmni and TEmni modes of a pillbox cavity are shown in Fig. 4.2.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 TMmni and TEmni modes of a pillbox cavity 

 

The dependence of the resonance frequency fr on the diameter and the length of a pillbox cavity are shown 

in Fig. 4.3 for TMmni modes.  
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Fig. 4.3 Resonance frequency of the pillbox cavity as function of the diameter D (blue curves with L=2 

cm) and length L (red curves and D=6 cm) for different TMmni modes.   

 

For the calculation of the field distribution in a pillbox, the program package Superfish [Bil03] has been 

applied. Depending on the given boundary conditions, the solutions of the Helmholtz equation for a 

definite cavity are either TMmni or TEmni modes. The program Superfish provides plots of the electric field, 

calculates the quality factor, the power losses in the walls of the cavity, and the sensitivity of the 

eigenfrequencies to small perturbations of the structure of the cavity.  

For the excitation of longitudinal acoustic waves in the piezoelectric quartz crystal, only the TM0n0 modes 

are of interest. At these modes, the r and φ components of the electric field are zero. The electric field is 

always directed parallel to z, and the resonance frequency depends only on the radius of the cavity. The 

electric field, being directed perpendicular to the surface of a piezoelectric crystal positioned inside the 

pillbox cavity, excites longitudinal acoustic vibrations in the crystal.  

For illustration, the output from the program Superfish is shown in Figs. 4.4 ÷ 4.9 for a cylindrical cavity 

and for different modes, where the arrows indicate the magnitude and direction of the electric field. In 

Figs. 4.8 and 4.9, the field distribution is shown for a coaxial cavity without and with a quartz crystal, 

respectively. Here an electric field exists only in the volume V’ at the end of the coaxial hollow pipe near 

to the crystal surface, and in the remaining volume V of the cavity the electric field is nearly equal to zero. 

The strength of the electric field is stronger than for the other configurations. Therefore, this geometry has 
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been chosen for the prototype of a resonator cavity to be used in first experimental investigations of the 

influence of US on CR emission in quartz.   
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Fig. 4.5 TM020 mode , f=8779.4676 MHz. Fig. 4.4 TM010 mode , f=3824.4785 MHz.  
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 Fig. 4.6 TM011 mode , f=8414.4654 MHz. Fig. 4.7 TM021 mode , f=13763.7400 MHz. 
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Fig. 4.8 Coaxial cavity without quartz crystal, 
 f=2150.9909  MHz.  

Fig. 4.9 Coaxial cavity with quartz crystal, 
f=2070.9751  MHz.   
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Chapter 5 

 

 

Influence of ultrasound on planar channeling radiation 
 

This chapter is devoted to the evaluation of the influence of US on planar CR from electrons 

channeled in the piezoelectric quartz crystal.  

The quantum mechanical description of CR under the influence of ultrasonic waves excited in a single 

crystal has been considered in Refs. [Bar80, Mkr86, Mkr88, Ded94, Ave97, Gri00a÷c, Gri01a÷e, 

Gri03a÷b]. In the framework of the perturbation theory it has been shown that resonance effects are 

possible, if the frequency of US approaches values corresponding to some difference between 

transversely bound states in the planar continuum potential.  

The perturbation theory is, however, not applicable at resonance. Therefore, theoretical methods from 

the non-linear optics have been adopted in Ref. [Ava06a] and applied in Ref. [Ava06b] for the 

description of CR emitted by 20 MeV electrons channeled in a vibrating quartz crystal. These 

calculations, performed for the )1101( , )0101(  and )1110(  planes of quartz, predict a spectral 

redistribution of CR emitted under the influence of resonant US.  

In the following paragraphs, both above mentioned theoretical approaches will be applied for the 

calculation of US-influenced CR generated in different planes of quartz, aiming at the deduction of 

prerequisites for experimental investigations. Further on, the setup and the results of a first 

measurement of CR with US excitation of the quartz crystal will be presented, which has been carried 

out at ELBE. 

 

5.1 Perturbation theory  

 
In Ref. [Gri03b] a standing acoustic wave is assumed to be excited in the crystal along the direction of 

the relativistic motion of the channeled particle (z-axis).  The planar transverse potential 

 

                                                               )()(),( zxVzxV Λ=                                                         (5.1) 
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is modulated by the factor ( )[ ]ϕ+−+≅Λ ∗

=
∑ zkmamkJz s
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m cos)()1(21)(
,..2,1

, where )(xV is the 

undisturbed continuum potential of the plane considered, ( )taa sωsin=∗ , Jm(z) denotes the Bessel 

function, and ks is the wave number of US. According to Eq. (5.1), the factor Λ does not dependent on 

the crystal parameters.  The wave function of a channeled particle is then determined by a two 

dimensional Schrödinger equation 
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This equation describes the quantum states of the channeled particle in the ultrasonic field, where the 

variables x and z in the wave function ),( zxψ  are not separable. Therefore, an accurate solution of 

Eq. (5.2) is difficult, and some approximations have to be made. In accordance with the perturbation 

theory, the wave function ),( zxψ  can be expanded into a series of orthogonal functions Ukn(x) of the 

non-disturbed system (i.e., in the absence of US) 
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The coefficients Ckn(z) are calculated in Ref. [Gri01e]. In a linear approximation, the wave function  of  

the  channeled  particle represents  a  superposition of three plane waves with the phases (pz - νħks) z/ħ, 

ν=0,±1. The interaction of the channeled relativistic charged particle with the standing ultrasonic wave 

excited in the crystal leads to the splitting of the projection of its momentum in channeling direction 

into three components:  pz-ħks, pz, pz+ħks. The term ħks denotes the momentum associated with an 

acoustic phonon. The Doppler formula for the frequency of CR photons [cf. Eq. (1.58)] emitted in the 

presence of US takes the form 
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Theoretical considerations of the influence of US on CR [Gri01e] predict additional radiative 

transitions, which may lead to an amplification of the total CR intensity.  It has been shown in Ref. 

[Gri01e] that a resonance effect can take place, if the frequency of US approaches some critical value. 

This value corresponds to the energy difference between the bound states i and f of transverse motion 

of the channeled particle, i. e., ck fis h/εε −= . The frequency of US necessary for resonance reads  
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where Vs is the velocity of US inside the crystal. Values calculated for the resonance frequency of US 

for planar channeling of 30 MeV electrons in selected planes of quartz are listed in Tab. 5.1. 

 

Table 5.1 Calculated resonance frequencies for 30 MeV electrons channeled in selected planes of 

quartz.  

Plane Transition Frequency of US 

(GHz) 

)1101(  1→0 15.26 

)2320(  1→0 14.33 

 2→1  9.62 

)5101(  1→0 12.44 

 

In Ref. [Gri01c] two types of transitions of channeled electrons are indicated, namely direct transitions 

given by ni  – nf  > 0 and inverse transitions given by ni – nf  < 0 for ν = –1 [cf. Eq. (5.4)]. It has been 

shown that the impact of US on direct radiative transitions of channeled electrons is negligibly small, 

but for inverse transitions some resonance effect can occur. In the simplest case of resonance, three 

transversely bound states of the channeled electron are involved (see Fig. 5.1). Note that resonance for 

inverse transitions occurs when  13 εε −→skh . Therefore, the resonance frequency increases in this 

case by nearly a factor of two. 
   

 

 
n=3 

ω

 
 n=2 ωεεεε hh +−==− 2313 sk   
 n=1
 

 
Fig. 5.1 The channeled electron in the state n=2 absorbs the energy of an US phonon, fulfills the 
inverse transition 2→3 and emits a CR photon of energy 

skh
ωh . 
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5.2 Non-linear optics method  

 
The effect of a driving external electric field on the spectrum of spontaneous radiation emission from a 

simple physical system has been developed in Refs. [Mol69, Mol70]. It has been shown that the 

external field splits the Lorentzian line shape observed for spontaneous emission of the undisturbed 

system into several components. This method has been adopted in Ref. [Ava06a÷b] for the description 

of CR emitted under the influence of US.  

The details of the non-linear optics method are out of the scope of this work, but results obtained by 

formal application of this method for the calculation of the spectrum of CR in the presence of US will 

be presented in the following.  

The spectral distribution of CR photons emitted in forward direction for a crystal momentum k = 0 is 

given by Eq. (1.59). In order to include the crystal momentum k into Eq. (1.59), the integration over all 

Bloch momenta in the first Brillouin zone is performed 
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where, unlike Eq. 1.59, the Doppler broadening can be neglected, because for a quartz crystal the 

condition γ2θ2
ms,chá1 is valid. The occupation of the initial state i at the crystal depth z is described by 

the function ),( zkiβ . Both the integrals over the Bloch momenta and over the crystal thickness L 

have been taken numerically.  

According to Ref. [Ava06b], the spectral distribution of CR at the resonance condition fisk εε −=h  

is given by 
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where the following conventions have been made: 
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Here X0 denotes the magnitude of transverse deformation of the planes by US,  and  are the 

initial populations of the states ki and kf, respectively, and and  are parameters used for the 

approximation of the occupation function β(z) without crystal deformation  

0
kiβ 0

kfβ

0
kρ IIk
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For R → 0, i.e., when the crystal deformation X0 → 0, Eq. (5.7) approaches Eq. (5.6). The effect of  

US consists in the splitting of the undisturbed Lorentzian line shape of CR into three components. One 

component is centered at the usual CR energy, the two other ones have lower magnitude and form 

satellite lines positioned symmetrically to both sides from the main CR line, shifted by the amount of 

the saturation parameter Ω. Each of these three Lorentzians has the line width ΓT characteristic for 

spontaneous CR emission.  

The spectral distribution of CR from the transition 1→0 of 9 MeV electrons channeled in the (110) 

plane of a 13 μm thick diamond crystal has been calculated in Ref. [Ava06a] for various assumed 

values of the ratio of the deformation magnitude to half the interplanar distance. Note that this is a 

formal model calculation to compare the obtained results with experimental spectra measured in Ref. 

[Gen96]. Since diamond is no piezoelectric crystal, the excitation of ultrasonic vibrations in this 

crystal is not possible by means of external electromagnetic RF fields as described in chapter 4 of this 

work, and no other method has been specified which could be applied to deform a diamond crystal.  It 
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could, however, been demonstrated by these calculations that the assumed crystal deformation leads  

to a modification of the emitted CR spectrum.    

Another somewhat more realistic example concerns the spectral distribution of CR from the transition 

6→5 of 20 MeV electrons channeled in the )1110( plane of quartz [Ava06a]. It has been shown that 

the distance between the satellite lines and the main CR line increases with increasing magnitude of 

deformation, but the total number of emitted CR photons varies insignificantly. It has been concluded 

in Ref. [Ava06a] that some influence of the crystal deformation on the spectral distribution of CR 

generated by electrons channeled in quartz could not so clearly been demonstrated as has been done in 

the case of diamond.  

The CR line splitting caused by the effect of US is associated with the sinusoidal modulation of the 

occupation function of the initial state i due to the coupling with the driving field. According to Eq. 

(5.7) the CR rate should increase, if the initial population of the final state f considered for some 

assumed transition is larger than that of the initial state i. In order to prove this hypothesis, numerical 

calculations have been carried out in this work for the effect of US on the spectral distribution of CR 

from the 1→0 transition of 30 MeV electrons channeled in the )5101(  plane of quartz. As has been 

shown in chapter 3, there are only two bound transversal states in this plane at the energy of the 

channeled electrons considered. Moreover, the initial state for the 1→0 transition is rather close to the 

top of the planar continuum potential. Therefore, the initial state i is characterized by a rather broad 

Bloch band. The depth dependence of the occupation function of this state is shown in Fig 5.2 for 

different values of k. As can be seen in this figure, equilibrium occupation of transversal states is 

reached after a penetrating depth of about 10 μm. Therefore, some redistribution of the CR spectrum 

due to US impact should be observed, if the crystal thickness is of the same order of magnitude.  

For illustration of the results of the preformed calculations, the spectral distribution of CR from the 

1→0 transition of 20 MeV electrons channeled in the )5101(  plane of quartz at resonant US impact 

is shown in Fig. 5.3 for Bloch momenta k = 0.1g. As can be seen, the crystal deformation due to US 

results in a splitting of the main CR line. For the estimation of the full effect of US, the spectral 

distribution of CR obtained at resonance has to be integrated over all Bloch momenta k. If the strength 

of the driving field is assumed to be large enough, every Lorentzian CR line corresponding to some 

Bloch momentum k will be split into three Lorentzians, and the resulting spectral distribution observed 

for CR out of the )5101(  plane of quartz is more complicate (Fig. 5.4). 

Due to the larger interplanar distances and the broader continuum potentials of the )1101( and 

)1110(  planes of quartz (see chapter 3), a larger number of CR lines contribute and superimpose in 

the observed CR spectrum. When the effect of US on CR out of these planes should principally be the 

same as discussed for the )5101( plane, its observation and interpretation should be more difficult.   
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Fig. 5.2 Depth dependence of the occupation function of the state n=1 calculated for different values 

of the Bloch momentum k for channeling of 20 MeV electrons in the )5101( plane of quartz. 
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Fig. 5.3 Spectral distribution of CR from 20 MeV electrons channeled in the )5101( plane of a 20 μm 

thick quartz crystal calculated for a Bloch momentum k=0.1g and values of  the relative deformation 

X0 = 0,  0.025 and  0.05. 
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Fig. 5.4 Spectral distribution of CR from 20 MeV electrons channeled in the )5101( plane of a 20 μm 

thick quartz crystal calculated for the entire interval of Bloch momenta –g/2 ≤ k ≤ g/2 and values of  

the relative deformation X0 = 0,  0.025 and  0.05 at resonant US impact.  

 
 

5.3 Experimental investigation of the influence of US on CR  
 
In a first series of experiments performed at the electron beam of the radiation source ELBE, the 

influence of non-resonant US on the CR generated in different planes of a 500 μm thick quartz crystal 

should be investigated. A coaxial cavity designed for a resonance frequency of 2.5 GHz has been 

constructed (see chapter 4) and carefully matched to the small-band RF amplifier which delivered a 

maximum output power of 20 W. Since the calculated Q-value of the cavity amounted to 4000, the 

input frequency had to be tuned carefully by means of a stabilized RF signal generator.   

  

 
 
 
 
 
 
 
 

Coaxial cavity 
with quartz 
crystal 

Electron 
beam  

 
 Goniometer
 

 

Fig. 5.5 Experimental setup for the generation of ultrasonic vibrations in the quartz crystal. 

 

 96



A photograph of the goniometer with mounted cavity is shown in Fig. 5.5. The electron beam enters 

the coaxial cavity (cf. Fig. 4.9) from the left side through an entrance pipe of diameter 15 mm and a 

hole of diameter 5 mm. The quartz crystal positioned inside the cavity is elastically pressed on the Cu 

cap of the resonator, where another hole of diameter 5 mm is left as beam exit. The gap between the 

entrance hole and the surface of the crystal is variable within certain limits for tuning the cavity to the 

chosen resonance frequency. The RF waves were magnetically coupled into the resonator by means of 

a loop fed through its cylindrical surface. In this type of cavity, a strong electric field exists only in the 

mentioned gap, which actually amounted to ≈1.5 mm.    

The RF power dissipated to the walls of the cavity leads to some heating-up of the crystal during 

resonator operation, where the contribution from energy losses of the beam inside the crystal can be 

neglected at average beam currents of several tens of nA used in the measurements. Therefore, the 

actual temperature of the cavity has been measured during the experiments by means of a 

thermoelectric sensor. Within a typical measurement time of 1800 s, the temperature of the cavity 

increased by about 30 K.  

Spectra of planar CR registered from 30 MeV electrons channeled in the )1101( plane of a 500 μm 

thick quartz crystal with and without excitation of ultrasonic vibrations of frequency 2.5 GHz and the 

corresponding BS spectrum are shown in Fig. 5.6. Background-subtracted and efficiency-corrected CR 

spectra measured for channeling in the )1101( , )5101( and )2320( planes of this quartz crystal with 

and without US excitation are shown in Figs. 5.7, 5.8 and 5.9.    

It is inherent in all these figures that the CR rate decreases in the presence of non-resonant ultrasonic 

waves proceeding through the crystal. This means that the occupation lengths of the initial states 

contributing to the observed radiative transitions are effectively shortened due to the impact of US. 

Such an effect can be interpreted by the action of an additional scattering mechanism introduced by 

the US. If thermal scattering is an incoherent interaction with phonons of the crystal lattice, the 

observed behavior of CR in the presence of non-resonant US might be of similar nature.  

The microbunches of the electron beam, having the duration of about 2 ps at a repetition rate of 13 

MHz, pass the crystal within about 1.5 ps. Due to their relativistic velocity, the electrons of a 

microbunch channeled in some plane practically interact with a frozen deformed crystal potential. 

However, there is no phase correlation with the ultrasonic waves generated in the crystal. Therefore, 

the observed spectra represent some average over all possible phase relations between the pulsed 

electron beam and the US. In other words, coherence between the incoming plane waves of electrons 

and the US waves in the crystal persists for every single microbunch only, but it is lost for the 

sequence of microbunches.  

The high-frequency vibrations in the crystal lattice are commonly referred to phonons, where thermal 

phonons are characterized by Gaussian distributions with respect to their vibration frequencies. The 
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ultrasonic vibrations induced in the crystal lattice by the action of the external electric RF field can 

also be understood as phonons propagating through the crystal. For a 500 μm thick crystal, the 

damping of the US wave is of the order of 30%. Reflection of the US wave from the rear surface of the 

crystal leads to a superposition of the damped induced and reflected US waves in the crystal. A formal 

calculation of the number of US wave lengths fitting at a frequency of 2.5 GHz into the crystal 

thickness gives the number of 211.5, if the velocity of sound is assumed to be 5.12×103 ms-1 in an x-

cut crystal. Taking the thickness tolerance of the crystal and the exact value of the RF frequency into 

account, it is obvious, that the condition for a damped standing longitudinal US wave in the crystal is 

at most fulfilled accidentally or locally. Hence, the US field in the crystal is formed by the interfering 

damped US waves propagating in both directions, where there is generally no fixed phase correlation. 

Standing waves can be excited in a quartz crystal in the MHz frequency region, known as the 

eigenfrequencies of vibrating quartz crystals in a resonant circuit. At GHz frequencies of the exciting 

external electric field, a mechanical disturbance generated at the surface of the quartz crystal via the 

reverse piezoelectric effect propagates through the crystal as a damped US wave. Hence, the resulting 

US field in the crystal is time-dependent. Therefore, the effect on the CR emission observed for non-

resonant US excited in the crystal might, to some degree, be understood as caused by a quasi-

temperature.  

One must also keep in mind that the frequency of 2.5 GHz is far from the resonance frequencies given 

for some crystal planes in Tab. 5.1. As has been shown in Ref. [Gri03b], the resonance between CR 

and US frequencies is characterized as a parametric one. This means that in the denominator of Eq. 

(5.5) occurs an additional parameter j which can take the integer values j = 1,2,3,…  However, it is 

clear that the resonance effect will be less for values  j > 1.  

If the temperature of some crystal increases, the depth of the planar continuum potential is diminished 

[And83, Gar90]. Therefore, the energy difference between transversally bound states slightly 

degreases, and so the energy of the emitted CR photons does. The peak positions of all CR lines 

observed with US are shifted towards lower energy compared with the positions registered without 

US. However, as many-beam calculations with an assumed higher crystal temperature, i.e., larger 

mean-squared vibration amplitudes of the crystal atoms, showed, the observed shifts cannot be 

explained with the slight rise of the temperature of the resonator (20 ÷ 30 K) during the measurements 

with US. Hence, the effect is not caused by the increase of the temperature of the resonator. The local 

temperature of the vibrating crystal, however, could not be measured. At higher crystal temperature, 

thermal scattering increases, the occupation lengths shorten, and the CR rate falls, as observed in the 

measurements with US. Consequently, to exclude some temperature effects, cooling of resonator and 

crystal is highly desirable, because operation of the cavity in vacuum enables only some heat transport 

via the holder of the resonator to the mechanics of the goniometer. 
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Fig. 5.6 Spectra of CR emitted by 30 MeV electrons channeled in the )1101( plane of a 500 μm thick 

quartz crystal without (upper one) and with (lower one) US of frequency 2.5 GHz excited in the crystal 

and the corresponding BS spectrum. 
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Fig. 5.7 Background-subtracted and efficiency-corrected spectra CR from 30 MeV electrons 

channeled in the )1101( plane of a 500 μm thick quartz crystal without (upper one) and with (lower 

one) US of frequency 2.5 GHz excited in the crystal. 
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Fig. 5.8 Analogous to Fig. 5.7 but for channeling in the )5101(  plane of quartz. 
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Fig. 5.9 Analogous to Fig. 5.7 but for channeling in  the )2320(  plan of quartz. 
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5.4 Conclusions   

 

Two different theoretical approaches to planar CR emission influenced by ultrasonic waves excited in 

the crystal are available and have been applied in this work for numerical calculations of CR line 

splitting and modulation of the CR photon spectra for channeling of electrons in different crystal 

planes of quartz. The resonance frequencies of US vibrations evaluated for transitions resolved in the 

measured CR spectra (see chapter 3) take values near to or higher than 10 GHz. Although the 

perturbation theory predicts a parametric character of the resonance, the effect should be diminished 

remarkably for integer-divided values of the resonance frequency.  

On the base of the non-linear optics theory, spectral distributions of planar CR expected for channeling 

of 20 MeV electrons in the )5101( plane of a 20 μm thick quartz crystal have been calculated at 

resonant influence of US and for various values of the relative deformation of the crystal lattice. The 

integration performed over the entire interval of Bloch momenta changes the resulting spectral 

distribution of CR substantially. In general, the deformations of the crystal lattice caused by the 

influence of resonant US leads to specified modifications of the CR spectrum.   

First experimental investigations of the influence of non-resonant US on the CR emission from 30 

MeV electrons channeled in different crystal planes of quartz have been carried out at the radiation 

source ELBE. A coaxial cavity for the excitation of ultrasonic waves of frequency 2.5 GHz has been 

designed, constructed and applied in the measurements.  

It has been expected and was found experimentally that the excitation of US vibrations in the quartz 

crystal leads for all planes considered to a decreased CR emission rate. Small shifts observed for the 

CR photon energies have been discussed as probably caused by an additional scattering mechanism 

involved due to ultrasonic vibrations of the crystal lattice, because they could not be reproduced by an 

assumed higher temperature of the crystal. Nevertheless, confident measurements need cooling of the 

used cavities.  

Since the resonance frequency of the used cavity was still far from satisfying the resonance condition 

for dedicated transverse transitions of channeled electrons, the measured spectra could principally not 

demonstrate the calculated modifications of the spectral distribution of CR. Enhancement of CR 

emission by the influence of US is predicted for much higher US frequencies.  

In continuation of the present investigations, the applied technique has to be modified for reaching 

larger US frequencies, but it seems to be a challenging task to design a resonant cavity which operates 

at frequencies near to or even larger then 10 GHz. Therefore, concluding from the performed 

measurements, it is suggested to carry out similar CR measurements for dedicated crystal planes of 

quartz with US excitation at frequencies of several GHz but at several times higher electron energy. 

The quantum character of CR emission should, however, be preserved yet to enable a detailed 

interpretation of the influence of US on the measured CR spectra. 

 101



 102

 



Summary 
 

 

In the fall of 2006, an intense tunable quasi-monochromatic X-ray source based on electron CR came 

into operation at the radiation source ELBE. This source provides photon fluxes up to about 1011 s-1 at 

photon energies between 10 and 100 keV within a bandwidth of 10% and is to be applied in 

radiobiological investigations. Although research in radiation physics concentrated on CR after its 

theoretical prediction in 1976, and feasibility studies for a non-conventional X-ray source followed at 

the beginning of the 1990ies, such a project had not been put into practice. Part of the present work 

aimed at laying the foundations for the built up of an intense CR source at ELBE. 

This concerns theoretical as well as experimental investigations of CR emission from diamond crystals 

found to be most suited for intense CR production. Based on the many-beam formalism of CR, a 

computer code has been developed and applied for the calculation of planar continuum potentials, 

transversely bound channeling states, transition energies, CR line widths and photon yields.      

Measurements of planar CR have been performed at the electron beam of ELBE within an energy 

range between 14 and 34 MeV and for thicknesses of the diamond crystals between 42.5 and 500 μm. 

The newly developed program for data processing incorporates correction procedures for the 

registration efficiency of the detectors, self-absorption in the crystal, radiation attenuation in window 

materials, background subtraction and the approximation of asymmetric CR line profiles to the 

measured data. Absolute CR photon yields have for the first time been obtained for the above given 

ranges of electron energy and crystal thickness. The comparison with calculations performed show a 

reasonable agreement.  

The square-root dependence of the planar CR photon yield on the thickness of diamond crystals, 

which has been concluded from an earlier work, has been confirmed. A systematic quantitative 

investigation of the influence of the crystal thickness on the CR line shape has for the first time been 

performed. The mean-squared multiple-scattering angle effective for planar CR observed in forward 

direction has been found to be weaker as assumed from scattering in amorphous targets. This finding 

justified the application of thicker diamond crystals in a CR X-ray source for optimization of the CR 

intensity. Scaling laws deduced from the measured CR data are of advantage for the operation of a CR 

source.   

The second part of this thesis deals with the possibility of stimulation of CR emission by means of 

ultrasonic vibrations excited in a piezoelectric single crystal. From theoretical calculations, certain 

modifications of the CR spectrum emitted under the influence of US and probable amplification of the 

CR intensity are predicted.   
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The developed mathematical instrument, successfully tested in the preceding experiments on diamond 

crystals, has been applied for corresponding calculations of the CR emission from electrons channeled 

in different planes of the binary hexagonal piezoelectric quartz crystal. Since the knowledge of the CR 

spectra generated on undisturbed quartz crystals is a necessary precondition for some investigation of 

the influence of US, planar CR has for the first time been measured at medium electron energies for a 

variety of planes in quartz. As a consequence of the hexagonal structure of this crystal, relative intense 

CR could be registered even out of planes with indices larger than one.   

The CR data obtained in the present work for quartz are of fundamental interest for a dedicated 

evaluation of the effect of US on CR and for the choice of crystal planes suitable for experimental 

investigations. Two different theoretical approaches to planar CR emission influenced by US were 

available and have been applied in this work for relevant calculations. On the base of the non-linear 

optics method, occupation functions and spectral distributions of planar CR have been calculated for 

channeling of 20 MeV electrons in the )5101(  plane of a 20 µm thick quartz crystal at resonant 

influence of US. The resonance frequencies have been deduced from the measurements of CR spectra 

performed on quartz. It has been shown that the deformation of the crystal lattice caused by the action 

of resonant US may lead to a remarkable modification of the CR spectrum.  

First experimental investigations of the influence of US on CR started at ELBE aimed at the study of 

the effect of non-resonant ultrasonic vibrations excited in a 500 μm thick quartz crystal. A coaxial 

cavity with a resonance frequency of 2.5 GHz has been designed, constructed and applied in a series 

of CR measurements carried out at the electron energy of 30 MeV. The excitation of non-resonant US 

in the quartz crystal led to a decreased CR emission rate for all planes investigated. Such effect may be 

caused by an additional scattering mechanism which is involved by the periodic deformation of the 

crystal lattice and resembles thermal scattering. Since the frequency of the used cavity was still far 

from satisfying the resonance condition for dedicated transverse transitions of electrons channeled in 

crystal planes of quartz, the calculated modification of the spectral distribution of CR could principally 

not yet be demonstrated experimentally.  

In continuation of these investigations, the technique applied for the excitation of US in quartz should 

be modified to reach US frequencies near to 10 GHz. Another, probably more effective way might 

consist in performing measurements at US frequencies of several GHz but at a several times larger 

electron energy. The quantum character of CR emission should, however, still be conserved.    
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