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Abstract

Dynamic light scattering (DLS) is a method to size submicron particles by measuring their

thermal motion (diffusion) in suspensions and emulsions. However, the validity of the Stokes-

Einstein equation that relates the diffusion coefficient and the particle size is limited to spherical

particles and very low concentrations. Within this thesis, DLS is used for the characterization

of diluted and concentrated suspensions of pyrogenic silica which consists of fractal-like aggre-

gates composed of sintered spherical primary particles. Additionally, both the primary particle

sizes and the aggregate sizes show polydispersity. These structural features clearly complicate

the understanding of DLS experiments and have been a severe obstacle to employing DLS as

routine standard tool for the characterization of pyrogenic silica. Nevertheless, the method is

fast, robust, easy-to-use and in principal sensitive to the structural properties of pyrogenic sil-

ica. The main objective of this thesis has therefore been to evaluate the application of DLS in

product development and quality assurance of pyrogenic silica industry, what essentially means

to identify those structural properties of fractal aggregates which are measurable with DLS and

to quantify the method’s sensitivity to changes in these properties. The investigations presented

here are split up into four parts.

Firstly, simulations are employed to establish a relation between structural (i.e. fractal) proper-

ties of the aggregates and their hydrodynamic behavior. Therefore, an algorithm is developed

that enables the generation of aggregates with a tunable fractal dimension while the number

of primary particles per aggregate remains arbitrary. The calculated hydrodynamic diameters

of translation are then compared to the structural radii of gyration for pyrogenic silica. The

concept of hydrodynamic dimensions is introduced to account for a different scaling of the

hydrodynamic radii. Furthermore, the effect of rotational aggregate diffusion is shown to be

important for the interpretation of DLS data.
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The theoretical results are then verified in experiments. The structure of different pyrogenic

silica grades is, therefore, characterized by static light and X-ray scattering. The hydrody-

namic radii are obtained from multi-angle DLS measurements where the effect of rotation is

reflected in the scattering-angle dependence of the effective diffusion coefficient. It is evinced

that the generation of pyrogenic silica aggregates can be described as a diffusion-limited cluster

aggregation but that a complete description should include the change of sintering during aggre-

gation. Finally, the influence of rotational diffusion is characterized in terms of a master-curve.

The existence of such a curve has already been predicted by simulations in the literature.

The third part of this thesis deals with the characterization of concentrated suspensions. As

theoretical models only exist for spherical particles, the results of pyrogenic silica are analyzed

in comparison to spherical silica sols. It is shown, that the diffusion coefficient spectra obtained

by an inversion of the DLS data represent different concentration effects such as collective

diffusion and suspension structuring. The influence of interparticle interactions is obtained by

a screening of the counterionic repulsion forces in the suspensions.

Eventually two specific measurement tasks are addressed, which are highly relevant for pyro-

genic silica suspensions: the observation of fluid-solid phase transitions and the detection of

smallest fractions of unwanted coarse particles in the suspension. For the gelation of pyrogenic

silica a literature approach is adapted to neglect non-ergodic contributions in the measured sig-

nals. The use of a combined exponential/stretched-exponential fit of consecutive DLS runs then

enables the determination of the phase transition time and the transition kinetics. The detection

of coarse particles is of great relevance, e.g. for the process of Chemical-Mechanical Planariza-

tion in the microelectronics industry. It is experimentally shown that the state-of-the-art analysis

techniques of DLS do not provide sufficient sensitivity. By the use of a principal components

analysis the sensitivity is enhanced by two orders of magnitude.



Zusammenfassung

Die Dynamische Lichtstreuung (DLS) ist eine Messmethode zur Größenbestimmung submikro-

ner Partikel. Dabei wird primär die stochastische Bewegung der Teilchen (Diffusion) in Suspen-

sionen und Emulsionen bewertet. Die Stokes-Einstein Gleichung, die das Verhältnis zwischen

gemessenem Diffusionskoeffizienten und Partikelgröße wiedergibt, ist jedoch nur für kugelför-

mige Teilchen, die in sehr niedriger Konzentration vorliegen, gültig. In der vorliegenden Arbeit

wird die dynamische Lichtstreuung zur Charakterisierung von verdünnten und konzentrierten

Suspensionen pyrogener Kieselsäure eingesetzt. Diese besteht aus fraktalen Aggregaten, die

wiederum aus versinterten aber meist kugelförmigen Primärpartikeln zusammengesetzt sind.

Zusätzlich liegen sowohl die Primärpartikelgrößen als auch die Aggregatgrößen verteilt vor.

Diese strukturellen Eigenschaften erschweren die Anwendbarkeit der DLS bzw. die Interpre-

tation der Messergebnisse und verhinderten bisher den Einsatz der DLS als Routinemethode

zur Charakterisierung pyrogener Kieselsäuren. Gleichwohl ist das Messverfahren prinzipiell

sensitiv für die strukturellen Eigenschaften und aufgrund der einfachen, schnellen und robus-

ten Funktionsweise prädestiniert für den industriellen Einsatz. Das Hauptziel dieser Arbeit ist

daher eine Bewertung der Möglichkeiten der DLS für die Produktentwicklung und Qualitätssi-

cherung in der Herstellung pyrogener Kieselsäuren. Das bedeutet im Besonderen, dass sowohl

die messbaren granulometrischen Eigenschaften als auch die Sensitivität der Methode bei Ei-

genschaftsänderungen ermittelt werden müssen. Die hier durchgeführten Arbeiten können in

vier Teile gegliedert werden.

Zuerst werden Simulationen beschrieben, die eine Beziehung zwischen strukurellen (d.h. frak-

talen) Eigenschaften der Aggregate und ihrem hydrodynamischen Verhalten herstellen. Dazu

wird ein Algorithmus entwickelt, der die Erstellung von Aggregaten mit frei wählbarer frak-

taler Dimension ermöglicht, wobei auch die Anzahl der Primärpartikel im Aggregat nicht ein-

geschränkt wird. Die berechneten hydrodynamischen Translationsradien für pyrogene Kiesel-

säuren werden dann mit den jeweiligen Gyrationsradien verglichen. Um eine unterschiedliche
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Skalierung der hydrodynamischen Radien zu berücksichtigen, wird das Konzept der hydrody-

namischen Dimensionen eingeführt. Des Weiteren wird gezeigt, dass die Rotationsdiffusion der

Aggregate einen starken Einfluss auf die DLS-Daten hat.

Die erhaltenen Resultate werden im nächsten Teil mit experimentellen Befunden verifiziert. Da-

zu wird die Struktur verschiedener pyrogener Kieselsäuren mittels statischer Licht- und Rönt-

genstreuung charakterisiert. Die hydrodynamischen Radien werden durch Mehrwinkel-DLS be-

stimmt, wobei der Einfluss der Rotationsdiffusion aus der Abhängigkeit der Ergebnisse vom

Streuwinkel erhalten wird. Es wird aufgezeigt, dass die Erzeugung von Aggregaten pyrogener

Kieselsäure am Besten durch eine diffusionslimitierte Clusteraggregation beschrieben werden

kann, wobei eine vollständige Beschreibung die Veränderung des Versinterungsgrades während

der Aggregation berücksichtigen muss. Schließlich wird der Einfluss der Rotationsdiffusion in

Form einer Masterkurve charakterisiert. Die Existenz einer solchen Kurve wurde bereits in der

Literatur vorhergesagt.

Der dritte Schwerpunkt dieser Arbeit ist die Charakterisierung konzentrierter Suspensionen. Da

theoretische Modelle nur für kugelförmige Partikel existieren, werden die Ergebnisse für py-

rogene Kieselsäuren im Vergleich zu Daten sphärischer Kieselsole betrachtet. Es wird gezeigt,

dass in den durch Inversion der primären Messdaten erhaltenen Diffusionskoeffizientenvertei-

lungen verschiedene Konzentrationseffekte wie Kollektivdiffusion und eine Strukturierung der

Suspensionen beobachtet werden können. Der Einfluss von Zwischenpartikelwechselwirkungen

wird durch eine Abschirmung der abstoßenden Doppelschichtkräfte näher betrachtet.

Der letzte Teil berichtet über die problembezogene Analyse von DLS-Daten am Beispiel der

Charakterisierung von Fest-Flüssig Phasenübergängen sowie zur Detektion kleinster Fraktio-

nen unerwünschter Grobpartikel in den Suspensionen. Zur Beobachtung der Gelierung von

pyrogenen Kieselsäuren wird ein Literaturansatz adaptiert, um nichtergodische Signalanteile

vernachlässigen zu können. Der Einsatz eines kombinierten Exponential-/Potenzansatzes er-

möglicht dann die Bestimmung des Phasenübergangszeitpunktes und der Übergangskinetik.

Die Detektion von Grobpartikeln ist von hoher technischer Bedeutung, z.B. beim Prozess des

Chemisch-Mechanischen Planarisierens in der Mikroelektronikindustrie. Es wird experimentell

gezeigt, dass die Standardanalysealgorithmen der DLS keine genügende Sensitivität für diese

spezielle Fragestellung aufweisen, während diese durch den Einsatz einer Hauptkomponenten-

analyse um zwei Größenordnungen verbessert werden kann.
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Nomenclature

Latin Variables

a Scattering amplitude [-]

A131 Hamaker constant between particles (1) through medium (3) [J]

B Intensity level constant [a.u.]

b Coherence factor [-]

C Constant [-]

c Molar concentration [mol l−1]

Cv Coefficient of variation [-]

D Dimension [-]

E Electric field [Vm−1]

erf Gauss error function [-]

F F-test variable [-]

f Heywood factor [-]

Fs Self-intermediate scattering function [-]

G′ Storage modulus [Pa]

G′′ Loss modulus [Pa]

G∗ Complex shear modulus [Pa]

G1 First-order electric field correlation function [V2m−2]

g1 Normalized field-correlation function [-]

G2 Second-order intensity correlation function [a.u.]

g2 Normalized intensity autocorrelation function [-]

h Height [m]



xii Nomenclature

I Intensity [a.u.1]

Im Moment of inertia [kgm2]

Is Ionic strength [mol l−1]

K Cumulant of a distribution [a.u.]

k Wave number [m−1]

k f Fractal prefactor [-]

kh Hydrodynamic prefactor [-]

kp Permeability [m2]

l Length scale [m]

M Moment of a distribution [a.u.]

m Mass [kg]

N Number [-]

n Medium refractive index [-]

P Particle form factor in Rayleigh-Debye-Gans scattering [-]

p Pressure [Pa]

pr Probability of rejection [-]

PDI Polydispersity index [-]

q Probability density [a.u.]

R Radius [m]

r Distance or position [m]

Re Reynolds number [-]

S Spectral density [-]

s Magnitude of the scattering vector [m−1]

Sm Mass-specific surface area [m2 kg−1]

T Temperature [K]

t Time [s]

u Complex scattering amplitude [Vm−1]

1 The SI-Unit of Intensity is [W/m2] but in the scattering experiments treated in this thesis an equivalent to intensity

is measured either as a total photon count which is dimensionless or as a photon count rate [Hz]. The conversion

to the SI-unit is not helpful and is therefore neglected in the relevant literature.
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V Potential of interaction [J]

v Velocity [ms−1]

Var Variance [-]

x Particle size [m]

xST Sauter diameter [m]

z Valency of ions [-]

Greek Variables

α Regularization parameter [-]

β Stretch parameter [-]

γ Strain [-]

δ Sliplength [m]

ε Porosity [-]

εr Relative permittivity [-]

ζ Zeta potential [V]

η Dynamic viscosity [Pas]

θ Observation (scattering) angle [-]

Θrot Rotational diffusion coefficient [s−1]

κ Debye-Hückel parameter [m−1]

λ Wavelength [m]

λi Eigenvalue [-]

µ Fit parameter [-]

ν Interaction parameter [-]

Ξ1,2,3 Eigenvalues of the rotation matrix ΞΞΞ [-]

ρ Density [kgm−3]

σ Stress [Pa]

τ Lag time [s]

τ1,2 Decay times [s]

ϕ Volume fraction [-]

Ψ Sphericity of Wadell [-]



xiv Nomenclature

Ψ1,2,3 Eigenvalues of the translation matrix ΨΨΨ [-]

ω Circular frequency [s−1]

Vectors and Matrices

D Data matrix for principal components analysis [-]

E Electric field vector [Vm−1]

e Unit vector [-]

F Force vector [N]

K Kernel matrix [-]

k Wave vector [m−1]

M Covariance matrix [-]

R Displacement vector [m]

r Position vector [m]

Reg Regularizor [-]

s Scattering vector [m−1]

T Torque vector [Nm]

v Velocity vector [ms−1]

ΓΓΓ Transformation matrix [-]

γ Eigenvector to eigenvalue λi [-]

ε Error vector [-]

ΘΘΘ Inertia tensor [Nm]

ΞΞΞ Rotation matrix [-]

ΠΠΠ Pressure tensor [Pa]

φ Rotation angle [-]

ΨΨΨ Translation matrix [-]

Constants

e Euler’s number [≈ 2.71828]

kB Boltzmann’s constant [1.380658 ·10−23 JK−1]

NA Avogadro constant [6.0221367 ·1023 mol−1]

e0 Elementary charge [1.60219 ·10−19 C]



Nomenclature xv

g Acceleration due to gravity [9.81 ms−2]

i Imaginary unit [
√
−1]

ε0 Vacuum permittivity [8.854 ·10−12 C2 N−1 m−2]

π Ratio of a circle’s circumference to its diameter [≈ 3.14159]

Common Indices

agg Aggregate

c Static

f Fractal

f l Fluctuating

g Gyration

h Hydrodynamic

i Counting index

inc Incident

j Counting index

l Liquid

m Mass-related

prim Primary particle

pt Phase transition

S Surface-related

s Solid

sca Scattered

Abbreviations

a.u. Arbitrary units

ACF Auto-Correlation Function

APD Avalanche Photodiode

BET Brunauer-Emmett-Teller model for gas adsorption

CFF Correlation Function of the Fluctuating field

CMP Chemical-Mechanical Planarization

CONTIN Constrained Regularization Method for Inverting Data



xvi Nomenclature

DLCA Diffusion-Limited Cluster Aggregation

DLS Dynamic Light Scattering

FCF Field Correlation Function

FOQELS Fiber-Optic Quasi-Elastic Light Scattering

HPPS High Performance Particle Sizer

HS Hard-Sphere

NNLS Non-Negative Least Squares

PCA Principal Components Analysis

PCS Photon Correlation Spectroscopy

PMT Photomultiplier Tube

QELS Quasi-Elastic Light Scattering

RLCA Reaction-Limited Cluster Aggregation

ROI Region of Interest

rpm Revolutions per Minute

SANS Small-Angle Neutron Scattering

SAXS Small-Angle X-ray Scattering

SLS Static Light Scattering

TEM Transmission electron microscope / microscopy

Vectors and Matrices are printed in bold throughout the thesis.



1 Introduction

1.1 Dynamic Light Scattering

This thesis addresses the application of Dynamic Light Scattering (DLS) in industrially rele-

vant systems and processes. In particle size analysis DLS has been established over several

years for the characterization of sub-micron particles and macromolecules [1–3]. The names

Quasi-Elastic Light Scattering (QELS) and Photon Correlation Spectroscopy (PCS) are treated

as synonyms for DLS in publications, though this is not fully correct for PCS. The measure-

ment principle is based on a time-resolved measurement of the scattered light intensity from a

sample cell that contains the particle system in a solvent. Due to the erratic motion of the parti-

cles caused by non-compensated impacts of the solvent molecules (so-called Brownian motion

or diffusion [4]) the intensity oscillates round an average value. The frequency of these fluc-

tuations contains information about the diffusion coefficient of the particles, which in turn is

size-dependent.

The measurement principle requires that diffusion is the only cause of motion in the sample,

i.e. that effects of sedimentation, thermal convection and fluid flow have to be avoided. This

usually limits the upper particle size that can be measured with DLS to some micrometers. The

lower size limit is determined by the time resolution of the specific measurement device and

lies typically in the range of a few nanometers. Therefore, DLS is an addendum to the laser

diffraction technique (which is the workhorse for particle scientists in the micrometer range)

for particle sizing in the sub-micrometer scale.

The interpretation of DLS data has to be carried out with care, since an unambiguous rela-

tionship between the measured diffusion coefficient and the particle size can only be found for

dilute dispersions of spherical particles [1, 5, 6]. Hence, there are limitations regarding sample

concentration and particle shape.
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In conventional DLS high sample concentration is a big problem. If the scattered light from

one particle encounters other particles before it is registered at the detector (so-called multiple

scattering) the size information of the signal is lost. In the last years commercially available

instruments that suppress multiple scattering effects have been developed. Thus, the measurable

concentration range is now remarkably extended.

1.2 Pyrogenic Silica

Pyrogenic is a composition of the two Greek words pyro, which means fire or heat, and genes,

which means to generate or to produce. In the sense of a material description it means that the

material is produced by burning or high temperature processes. The term fumed is also widely

used as a synonym to pyrogenic.

There are many materials in industry today, whose production may be called pyrogenic. Prob-

ably the one with the highest annual production is carbon black (∼ 7.000.000 tons in 1997 [7])

followed by pyrogenic silica with an annual production of roughly 180.000 tons and pyrogenic

alumina (no more than 20.000 tons/year). Production rates of pyrogenic titania, ceria or zir-

conia are much lower. In the last years many high temperature processes for the production

of other materials have been developed but these have not yet reached a remarkable market

volume [8].

Pyrogenic silica has many applications in suspensions as thixotropic or thickening agent and as

anti-settling agent, e.g. in paints, resins or inks [9]. Additionally, pyrogenic silica suspensions

are used in the microelectronics industry in the process of Chemical-Mechanical Planarization

(CMP). Thus, there is a need for the characterization of pyrogenic silica suspensions for the

purpose of quality assurance as well as in product development. As shown later in this work,

dynamic light scattering techniques provide a multitude of possibilities in the accomplishment

of these targets.

The production process of pyrogenic silica is a high temperature hydrolysis. Gaseous silicon

tetrachloride reacts in a hydrogen/oxygen flame to produce pyrogenic silica and hydrogen chlo-

ride.

SiCl4 (g)+2H2 +O2 ⇒ SiO2 (s)+4HCl(g)
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First, very small protoparticles containing only few SiO2 molecules are formed, which sinter

completely in the hot zone of the flame to give primary particles with sizes of 5−100 nm. These

primary particles sinter further in flame zones with lower temperature. Here, the sintering is not

complete, i.e. colloidal aggregates with a size of ∼ 100− 500 nm are formed instead of larger

primary particles.1 By the virtue of van-der-Waals forces these aggregates form micron-sized

agglomerates.2 Figure 1.1 shows the production process schematically.

Figure 1.1: Scheme of the production of pyrogenic silica by high temperature hydrolysis

The hydrogen chloride remains partly adsorbed onto the silica surface after the generation pro-

cess. It has to be removed by flushing air in a fluidized bed. The final product then contains

only minor portions of hydrogen chloride (∼ 50 ppm). Other contaminations lie in the lower

ppm or even in the ppb-region [12], so pyrogenic silica can be considered a chemically very

pure product.

Changing the feed composition of the burner results in different flame temperatures as well as

different residence times of the primary particles in the flame. This finally leads to different

silica grades that are most often distinguished by their different specific surface area Sm and the

corresponding Sauter diameter xST ,3

xST =
6

Smρs
(1.1)

1 Colloids have at least one dimension in space whose extension is lower than 1 µm and larger than 1 nm. Thus, thin

films, low diameter fibres and of course small particles such as pyrogenic silica aggregates are called colloidal.

2 The terms aggregate and agglomerate are used in this work in compliance with [10, 11], i.e. an aggregate and an

agglomerate are both composed of smaller primary particles but while an agglomerate can be decomposed under

the expense of (mostly) mechanical energy such as shear stress or ultrasound, an aggregate cannot be further

disintegrated.

3 The formal definition of the Sauter diameter [13, 14] includes a shape factor, either the Heywood-factor f [15]

or the sphericity of Wadell Ψ [16], which are inverse pairs. However, these shape factors are not used to describe

fractal aggregates, so they are avoided here.
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where ρs is the solid density. The Sauter diameter can be understood as a mean diameter of the

primary particle size distribution. However, one has to keep in mind that the primary particles

are sintered in an aggregate and therefore do not possess their whole surface area, so the use of

the Sauter diameter is slightly questionable.

Powders with specific surface areas ranging from 50 m2/g to 400 m2/g are commercially avail-

able. Analysis of the different grades with transmission electron microscopy (TEM) reveals that

samples with low specific surface area have a broad distribution of primary particle sizes (typ-

ically from 5− 100 nm) while this distribution becomes narrower for the samples with higher

specific surface area. Figure 1.2 illustrates the difference for two silica grades. Interestingly, it

seems that the size of the primary particles in a single aggregate does not vary much.

(a) (b)

Figure 1.2: Transmission electron micrograph of pyrogenic silica with (a) Sm = 50 m2/g and

(b) Sm = 300 m2/g, please note the different scales of the images.

It is this intrinsic polydispersity of the primary particle sizes as well as the occurrence of the

particle aggregates which hampers the analysis and definition of equivalent particle sizes. On

the other hand a characterization of the state of dispersion is greatly demanded by today’s re-

quirements in product quality assurance as well as in the development of new products.

1.3 Aim of the Work and Outline

The primary goal of this work is to highlight and extend the potential of applications of dynamic

light scattering techniques for the characterization of polydisperse fractal systems. Attention

will be paid to industrially relevant, i.e. mainly concentrated systems. Therefore, it is necessary
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to deal with the specifics and details of the measurement principle in concentrated suspensions

on the one hand and with the particular diffusive behavior of polydisperse fractal aggregates on

the other hand.

The following tasks will have to be addressed:

• Which (geometrical) property of a fractal aggregate of pyrogenic silica determines the

diffusional behavior?

• How is the diffusional behavior of pyrogenic silica aggregates reflected in DLS measure-

ment results?

• Which effects are to be ascribed to the solids concentration and how are these related to

the properties of the suspensions?

• How can DLS be used to investigate fluid-solid phase transitions that often occur in con-

centrated dispersions?

• What analysis technique is feasible to provide information on contaminations of pyro-

genic silica suspensions with particles in the micrometer range which is an important

issue in quality assurance?

In order to define the subjects of this work more precisely first a review on the state-of-the-art in

DLS techniques and their application to interacting and fractal suspensions will be given. The

results of the experimental and theoretical work will be presented in parts that handle a specific

characterization task. This enables the reader to identify the relevant issues with more ease.

It is not the intention of this work to develop a new DLS instrument. A commercially available

instrument is used for the majority of the conducted measurements since it is established in in-

dustry though it is restricted to a single scattering angle. This is a slight disadvantage compared

to DLS goniometers which are often used in academic research. However, this is outweighed by

a compact and easy-to-use set-up that additionally enables a suppression of multiple scattering

effects.

Pyrogenic silica will be treated as the most relevant example for polydisperse fractal systems but

the results can also be extended to other systems. The industrial manufacturers, the developers

of suspensions containing pyrogenic materials and also the end-users of these suspensions will

gain more insight into the underlying mechanisms that affect the measurement results and the
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possible data analysis techniques for specific applications. This can extend the usage of dynamic

light scattering in the laboratory and on-site4 or even open up new ranges of applications.

4 On-site is meant as a permanent process quality control during the manufacture of suspensions. As DLS instru-

ments are not able to be mounted in the process line, the characterization has to take place in the vicinity.
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2.1 Structure Description of Pyrogenic Silica

2.1.1 The Principle of Fractality

The word fractal stems from the Latin word fractus which means broken and was firstly intro-

duced by B.B. Mandelbrot [17]. A fractal object is meant to be self-similar or scale-invariant,

i.e. under magnification always the same basic elements of the structure are found. Perfect frac-

tals are found in mathematics (Koch’s snowflake, Cantor set). In nature many objects can be

approximately described as fractals (clouds, trees, leaves, coastlines). The scale of a self-similar

object obeys a power law between the number of basic elements N and their length scale l.

N ∼ lD f (2.1)

D f is called the Hausdorff-Besicovitch-dimension or more frequently the fractal dimension

[17]. Many regular objects such as a line, a disc or a sphere have integer fractal dimensions that

are identical to their dimension of the Euclidean space, i.e. 1, 2 and 3, respectively. Fractals

mostly have non-integer Hausdorff dimensions. The power-law behavior was firstly found by

Richardson [18] when he investigated the length of different borders between countries but he

did not recognize them as fractals. In memorial of this fundamental finding the log-log plots to

determine D f are also called Richardson-plots [19].

2.1.2 Relevance of Fractal Description for Pyrogenic Silica

The shape description of pyrogenic silica aggregates is clearly dependent on the magnification

one looks at it [20]. On a molecular length scale the chemical structure of a primary particle is

observed. If the scale is reduced the shape of the primary particles is firstly discovered. Though
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it is considered that the primary particles are spheres, under this magnification the surface struc-

ture can be modelled as a fractal. Thus, the surface area shows a power law dependence with

the radius of the primary particle with an exponent called DS
f , the surface fractal dimension with

values between 2 (perfect sphere) and 3 (very rough surface). Indeed, it could be shown that

different grades of pyrogenic silica show varying surface fractality [21].

Further reducing the magnification reveals the structure of a single aggregate of sintered primary

particles. On a certain length scale, the structure is self-similar and can be described as a

fractal [20]. Now the power-law exists between the volume or mass of the aggregate and the

length scale Rg, the radius of gyration.

m∼ Rg
Dm

f (2.2)

Rg is defined as the square root of the moment of inertia divided by the total mass of a particle

aggregate.

Rg =

√
Im

m
(2.3)

If the primary particles of the aggregate are considered as point masses, the following general

formula is derived:

Rg =

√√√√√√√√√
Nprim

∑
i=1

mi
∣∣~ri− ~rcg

∣∣2
Nprim

∑
i=1

mi

−−−−−−−−−−→
for mi = const. Rg =

√√√√ 1
Nprim

Nprim

∑
i=1

∣∣~ri− ~rcg
∣∣2 (2.4)

where N is the total number of primary particles in the aggregate,~ri is the position vector of the

i-th particle and ~rcg is the position vector of the center of gravity of the aggregate.

The fractal dimension of single pyrogenic silica aggregates varies considerably due to the small

number of primary units. However, if fractal analysis is performed at powders or suspensions

the sample volume usually contains a huge number of different aggregates. Thus, averaging

gives reproducible shape descriptions with only a few parameters. This also enables a compar-

ison of differently produced powders.

An alternative way of describing a single aggregate employs its smallest circumsphere. The

aggregate is then considered as a porous sphere with size x and porosity ε which also enables

the comparison of different pyrogenic powders. However, it is inherent in the assumption that

two aggregates cannot interpenetrate and that the porosity will always be the same in the whole
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sphere. This must lead to physically wrong conclusions as the porosity of an aggregate is

smallest in the center while it enlarges to the outer regions [22]. Therefore, the concept of the

porous sphere approximation is not adequate for the characterization of pyrogenic silica and

will not be examined further.

In the succeeding chapter 2.1.3 it will be demonstrated that the fractal description is natural for

pyrogenic silica due to the production process.

2.1.3 Theoretical Description of Fractal Formation

Generally, every aggregate starts with a single seed particle. Aggregate growth is now accom-

plished by adding other primary particles to the seed particle. This scheme can also be easily

realized in a computer simulation. Mostly Monte-Carlo algorithms [23] are used.

There are four different parameters that can be varied to achieve different types of aggregates:

Aggregate formation Aggregation is allowed only from primary particles to an existing ag-

gregate (particle-cluster aggregation) or different clusters may also collide and stick to-

gether (cluster-cluster aggregation). The first option is very easy to implement in a simu-

lation as the growing aggregate can be kept fixed in the center of a simulated box, while

only the primary particle moves in the box until it sticks to the aggregate. Afterwards, the

next primary particle is introduced. The second option involves more computational ef-

fort, since all clusters in the simulated box have to move simultaneously in a time step of

the simulation. Thus, each time step involves multiple operations. Furthermore, the check

for an occurring sticking event is more extensive. However, it is immediately obvious that

the second option is closer to reality than the first one.

Particle trajectories The trajectories of the moving particles in the box may be linear (ballis-

tic aggregation) or random and erratic, respectively (diffusive aggregation). The second

option is accomplished by randomly choosing the direction of the motion vector in ev-

ery time-step. Both modes have their physical interpretation. As diffusion is induced by

impacts of solvent molecules, ballistic aggregation will occur in the gas phase at low sol-

vent densities (i.e. low pressure) while at higher densities or in the fluid phase diffusive

aggregation takes place.
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Simulation lattice Particles might move only on specified positions in the simulated box (on-

lattice simulations) or they may take every position (off-lattice simulations). Surely, off-

lattice aggregation is more realistic but also more time-consuming in simulations.

Sticking probability A particle (or cluster) may stick to another particle immediately when

they come in contact (diffusion-limited aggregation) or a sticking probability might be in-

troduced (reaction-limited aggregation). Again, both possibilities have physical reasons.

When a strong attractive force acts between two particles, they will have a 100 % sticking

probability. On the other hand, when there are also some repulsive forces, the sticking

probability will be reduced.

Definitely, there are other influencing parameters such as a distribution in the sizes of the pri-

mary particles, non-spherical primary particles, breakage of weak agglomerates or sintering

of primary particles. However, as it was shown in Chap. 1.2 the primary particles in a single

aggregate of pyrogenic silica are mostly spherical and of uniform size.

Breakage often occurs in liquid agglomeration [24–26]. If the breaking agglomerate is a true

fractal then breakage results in two smaller agglomerates of the same mass-fractal dimension.

Thus, it is not necessary to incorporate breakage in an aggregate generation simulation but

it must not be neglected in population balances for agglomerating systems. Sintering indeed

leads to other types of aggregates and it is also relevant for pyrogenic silica (c.f. Chap. 1.2).

However, when calculations are performed at the simulated aggregates, the definition of the

boundaries and the application of boundary conditions is hampered. Thus, sintering is mostly

not considered in aggregate formation algorithms.

The interest in structure formation by aggregation of small particles, either in a dry or in a wet

process, has early motivated researchers to find suitable simulation algorithms that give compa-

rable results to experimental observations. Schaefer [27] and Meakin [28] give an overview of

the six mainly used concepts that combine the above named parameters.

The first model proposed for pyrogenic silica growth was diffusion-limited aggregation intro-

duced by Witten and Sander [29–31]. It incorporates particle-cluster aggregation, diffusive

motion of the particles, on-lattice simulation (in later versions also off-lattice aggregation was

accomplished) and 100 % sticking probability.

Schaefer and Hurd [20] later tried to give a complete explanation of the generation of silica ag-

gregates in the flame process by the use of fractal growth models. They describe the formation
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of the primary particles by a ballistic polymerization of protoparticles. The linear trajectories

result from a mean free path estimation in the flame of about 5000 Å which is much larger than

the size of the protoparticles. The growth mechanism is explained as particle-cluster aggrega-

tion as the probability of cluster-cluster collisions is very low [20].

In flame zones of lower temperature, when all the reactants have been exhausted, the concentra-

tion of protoparticles has dropped. The evolving primary particles begin to solidify. Resulting

collisions still lead to an immediate sticking while the sintered area is reduced. This mechanism

describes the aggregate formation. The mean free path of the molecules in the background gas

(∼ 50Å) is now smaller than the particle size of the primary particles, hence the particles motion

becomes diffusive. This growth process (cluster-cluster aggregation, diffusive motion, 100 %

sticking probability) is usually called Diffusion-Limited Cluster Aggregation (DLCA) simul-

taneously introduced by Meakin [32] and Kolb et al. [33]. DLCA and the reduced sticking

probability algorithm of the same model (Reaction-Limited Cluster Aggregation, RLCA) [34–

36] have become the most popular kinetic growth models for particle scientists not only in the

gas phase but also in a vast number of agglomeration studies of liquid suspensions, see e.g. [24–

26, 37–46].

Batz-Sohn [11] describes another algorithm for the generation of fractal aggregates to be used

for pyrogenic oxide materials. Here, a particle-cluster aggregation is performed in a way, that

the next primary particle always occurs randomly at the envelope of the existing aggregate and

then linearly adds to the nearest primary particle in the aggregate. Batz-Sohn also was the first

to add a sintering factor in the generation algorithm.

If DLCA and RLCA are processed with a huge number of primary particles (Nprim → ∞) or

an averaging of many different aggregates is conducted, fractal analysis yields values for the

mass-fractal dimension Dm
f of 1.86 and 2.05, respectively [24, 39, 40, 42, 46, 47]. As in RLCA

a primary particle needs many collision events to stick to the aggregate nearly all positions in

the aggregate are probed while in DLCA the outer regions are preferred. Thus, RLCA leads to

denser clusters than DLCA which is reflected in the fractal dimensions. The fractal dimension of

the Batz-Sohn aggregates is not unique but seems to depend on the number of primary particles

in an aggregate. Thus, the algorithm does not show scale-invariant behavior.

Summarizing, it could be shown that the fractal structure of pyrogenic silica aggregates is in-

herent in its production process. Models that are able to reproduce the structure formation have
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been developed and widely used in the past years. DLCA is suggested to be the most probable

mechanism for pyrogenic silica though also a reduced sticking probability is conceivable.

2.1.4 Determination of Fractal Properties

2.1.4.1 Scattering Techniques

The most frequently used methods to examine the structure of fractal materials are based on

static light scattering (SLS) and small-angle X-ray (SAXS) or neutron scattering (SANS) be-

cause they are quite fast, reproducible and non-intrusive. A prerequisite for the application of

these techniques is a difference in refractive index between medium and particles in SLS while

for SAXS a difference in the electron density and for SANS a difference in the mass of the

atomic nuclei is required. With SLS only low-concentrated solutions can be examined1, while

SAXS and SANS provide the opportunity to measure dry powders, concentrated suspensions

or even dispersed particles in cured epoxy-resins [21]. As the suspension medium contributes

to the scattering signal background corrections with the pure medium are necessary.

For the structural investigation of matter a collimated beam is incident on the sample. It is

scattered by interactions with the particles in the sample, the dispersed particles as well as the

solvent molecules. The mean scattered intensity Īsca is recorded in dependence of the obser-

vation angle θ . The momentum transfer between the incident field and the scattered field is

characterized by the vectorial difference of the respective wave vectors, kinc and ksca. The re-

sulting vector is called the scattering vector s (see Fig. 2.1). Its magnitude can be computed

from triangular relations under the assumption of elastic scattering (i.e. no frequency change

of the scattered wave compared to the incident wave). Then the magnitudes of the two wave

vectors are the same and equal:

|kinc|= |ksca|=
2π

λ
=

2πn
λ0

(2.5)

where n is the refractive index of the medium and λ0 is the wavelength of the incident beam in

vacuum. The magnitude of the scattering vector s can then be computed to give:

|s|= s =
4πn
λ0

sin
(

θ

2

)
(2.6)

1 This is due to multiple scattering effects at higher concentrations.
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Figure 2.1: The geometrical definition of the scattering vector with respect to the wave vectors

of the incident and the scattered field.

It is obvious from eq. 2.6 that s is changed when either the wavelength of the radiation or the

scattering angle is altered. The inverse of the magnitude of the scattering vector has a unit

of length and can be understood as the structure size of matter under investigation. By using

SAXS or SANS (s-range: 0.01−1 nm−1) and SLS (s-range: 0.002−0.03 nm−1) several orders

of magnitude can be spanned.

To get an impression of the scattering behavior of fractal aggregates in suspension Fig. 2.2

shows a model scattering pattern. If this pattern is investigated from low to high s-values the

same happens as when the magnification of a microscope is increased. At high s the material

is probed at atomic levels. Structural investigations reveal crystallinity and crystal structures.

These features are not of interest here and are thus not shown in Fig. 2.2. If s is lowered the

atomic structure of the materials is no longer resolved, rather the surface of the primary parti-

cles. According to Porod [48, 49] the surface of a particle (i.e. a sphere in Porod’s investiga-

tions) can be decomposed into small spherical scattering elements bisecting the particle/matrix

interface. From the proportionalities of the number of such spheres to the surface area and the

number of electrons per particle (for X-ray scattering) Porod yielded:

I(s)∼ s−4 (2.7)

In memorial this relation is called Porod’s law. If now fractal instead of smooth surfaces are

considered eq. 2.7 can be generalized to give:

I(s)∼ s−(6−DS
f ) (2.8)

This power-law decay can be linearized by a log-log plot of the measured intensity versus the

scattering vector. It is marked in Fig. 2.2.

If s is further reduced the scattering vector may fall into one primary particle. Thus, scattering

arises from interference in one solid particle. Guinier [52] was the first to investigate the scat-
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Figure 2.2: A model scattering pattern of fractal aggregates with primary particle size of

31.6 nm, aggregate radius of gyration 200 nm, mass and surface fractal dimen-

sions 1.8 and 2.2, respectively. Calculated using the unified equation (c.f. eq. 2.11)

of Beaucage [50, 51].

tering behavior. He obtained an exponential decay of the scattered intensity with increasing s

depending on the radius of gyration Rg of the solid particle:

I(s)∼ exp

(
−s2 R2

g

3

)
(2.9)

There are two exponential regions in the scattering pattern (Fig. 2.2). The first one arises from

the primary particles while the second one is a measure of the radius of gyration of an aggre-

gate. In between these two regions one can again observe a power-law decay. This is due to

dimensional scaling. For a disk it can be shown that the scattering is proportional to s−2, for a

rod there is a proportionality to s−1 or in general:

I(s)∼ s−Dm
f (2.10)

For s-values below the exponential decay of the aggregate radius of gyration the scattered in-

tensity remains unchanged because here it is proportional to the aggregate volume which does

not change.

It was shown that the fractal properties of an aggregate as well as two size parameters can

be obtained from scattering data of SLS, SAXS or SANS if the s-range is sufficiently large.
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In practice, the different exponential and power-law regions cannot be easily distinguished.

Therefore, Beaucage [50, 51] developed a unified equation that is able to fit a whole measured

scattering pattern to give the fractal dimensions and the size parameters:

I(s)'B1 exp

(
−s2 R2

g,agg

3

)
+B2 exp

(
−s2 R2

g,prim

3

)
(

erf
(

C sRg,agg√
6

))3

s


Dm

f

+

+B1,S exp

(
−s2 R2

g,prim

3

)
+B2,S


(

erf
(

CS sRg,prim√
6

))3

s


6−DS

f

(2.11)

Here, the B’s are constants of the intensity level, where the respective scattering region starts.

The function erf is the Gauss error function. The constants C and CS account for an approxima-

tion in the power-law limit and are usually close to 1 (1.06 is used in [50, 51]). Eq. 2.11 is now

mostly used to determine fractal properties of aggregates from scattering experiments.

2.1.4.2 Dynamic Rheological Measurements

Dynamic rheological measurements mean the application of oscillatory shear or strain γ(t) on

a sample [53]:

γ(t) = γ0 exp(iωt) (2.12)

where γ0 is the strain amplitude, ω is the circular frequency and t is the time. The response to

the strain is a time-dependent stress σ(t) that is measured by the rheometer. A complex shear

modulus can then be obtained by the following relation:

σ(t) = G∗(ω)γ(t) (2.13)

The real part of this modulus is termed G′, the storage modulus and the imaginary part is referred

to as G′′, the loss modulus. The storage modulus characterizes the elastic portions of a sample

while the loss modulus stands for the viscous portions.

From a frequency sweep the microstructure of a suspensions can be obtained. At low frequen-

cies the energy of the deformation is dissipated by Brownian motion and thus the loss modulus

is higher than the storage modulus. At high frequencies the energy is elastically stored in the

suspension and the storage modulus increases.
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In a dynamic strain sweep the amplitude of the oscillation instead of the frequency is varied. At

low amplitudes the storage modulus is independent of strain. This is called the linear viscoelas-

tic region. At a certain critical strain γc the independency is lost. Systems of pyrogenic silica

then often show strain softening [54], i.e. the storage modulus decreases with increasing strain.

This is also referred to as the Payne effect.

From the dependency of G′ and γc on the solids volume fraction ϕ in a suspension also fractal

properties can be determined. A scaling relationship G′ ∼ ϕC predicted from the calculation

of the elasticity of a fractal cluster is often found [55] with C varying from 3.5 for DLCA

aggregates (Dm
f = 1.75−1.85) to 4.5 for RLCA aggregates (Dm

f = 2−2.1).

Wu et al. [56] developed a model that directly determines the mass-fractal dimension of aggre-

gates from the scaling exponents of G′ ∼ ϕC1 and γc ∼ ϕC2 . This is based on the earlier work of

Shih et al. [57]. The following relations for the exponents C1 and C2 apply:

C1 =
µ

3−Dm
f

(2.14)

C2 =
3−µ−1
3−Dm

f
(2.15)

The parameter µ is determined by the arrangement of the fractal aggregates, e.g. in a colloidal

gel and by the relative contributions of interfloc and intrafloc linkage to the elastic properties of

the examined sample.

Using the above equations Gottschalk-Gaudig [54] determined fractal dimensions of 2.01 and

2.03, respectively, for two samples of hydrophobic pyrogenic silica in a UP-resin, which is

larger than the values returned from scattering techniques (Dm
f ≈ 1.8) [58, 59] but is in good

agreement with other rheological investigations on pyrogenic silica gels [60–63]. Gottschalk-

Gaudig explains the difference by different aggregation mechanisms during the gel formation

when different aggregates of pyrogenic silica are grouped together.

Compared to scattering techniques, the determination of fractal properties using dynamic rhe-

ological measurements is rather elaborate. Additionally, only the mass-fractal dimension can

be determined and no conclusion can be drawn concerning surface fractality and the size of the

aggregates and primary particles.
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2.1.4.3 Sedimentation

The sedimentation of solid colloidal particles can be described by Stokes’ law which predicts

a proportionality of the square of the diameter of a spherical particle to its creeping flow (i.e.

no recirculation or turbulence). Limitations are, that the flow field has to be undisturbed, i.e.

solid concentration must be low and that Brownian motion can be neglected compared to the

sedimentation velocity. In the case of fractal aggregates there is still a power-law dependence

of some characteristic size to the sedimentation velocity, though it need not to be an integer

power [64].

In a concentrated suspension sedimentation is hindered due to particle interactions. At a high

enough concentration all particles in a suspension sink with the same speed. This is called the

zone sedimentation regime. Still the reduced sedimentation velocity seems to obey a power-law

dependence on the size of the fractal aggregates in the system. Gmachowski [64–68] therefore

supposes that the two sedimentation velocities are interrelated by the fractal structure.

To derive a relationship for the settling velocity of a single aggregate, Gmachowski equates the

force balance of buoyancy and gravitation to derive:

vs,agg =
2
9

(ρs−ρl)g
η

Nprim R3
prim

Rh
(2.16)

where ρs and ρ f are the respective densities of the solid and the fluid, η is the fluid dynamic

viscosity, g is the acceleration due to gravity and Rh is the radius of a sphere with the same mass

and the same hydrodynamic properties as the aggregate. Using a mass-radius relation of fractal

aggregates:

Nprim =
(

Rh

Rprim

)Dm
f

(2.17)

Gmachowski arrives at:
vs,agg

vs,prim
=
(

Rh

Rprim

)Dm
f −1

(2.18)

In the zone sedimentation regime the concentration of the aggregates is supposed to be high such

that the fluid flow can be approximately described by a flow through a porous network. Then

the Brinkman equation [69] applies, which gives the following dependence of the permeability

kp to the solid volume fraction ϕs:

kp = C1 ·ϕ
2

Dm
f −3

s (2.19)



18 State of the Art

Gmachowski [68] determined the constant C1 to be:

Rprim√
C1

=
11.6(

3−Dm
f

)1.82 (2.20)

The relation between kp and the cluster sedimentation velocity vs,C is given by:

kp =
η

(ρs−ρl)g
vs,C

ϕs
(2.21)

Using eqns. 2.18-2.21 and a fractal scaling law for ϕs Gmachowski yields [64]:

vs,agg

vs,C
=

2
9

2
(

4−Dm
f

)
Dm

f −1


Dm

f −1

Dm
f −3

135(
3−Dm

f

)3.64 (2.22)

Eq. 2.22 is the basis for the determination of fractal properties using sedimentation experi-

ments. Measurements have to be conducted in a very dilute suspension to obtain the single

aggregate sedimentation velocity and in a concentrated suspension in the zone sedimentation

regime. From the relation of the two velocities, the mass-fractal dimension can be determined.

If additionally the size of the primary particles is known, eq. 2.16 can be used to compute a

hydrodynamic diameter of the aggregate.

Thus, with medium effort compared to dynamic rheology experiments and scattering tech-

niques, two parameters of fractal aggregates are accessible via sedimentation techniques. On

the other hand, it is not an easy task to accomplish the condition of measuring the sedimen-

tation velocity of aggregates in a very dilute suspension, since the measurable quantities (e.g.

light extinction or X-ray absorption) also vanish. Gmachowski overcomes this limitation by the

observation of single aggregates with a video camera [64] but this technique is only suitable for

comparably large aggregates or agglomerates.

2.2 Interactions in Suspensions

In a suspension of micron-sized particles the behavior is mostly controlled by volume forces

such as gravity. If the size of the particles is lowered, their surface is reduced with x2 while their

mass shrinks with x3. Thus, the portion of surface atoms that are in contact with the suspension

medium compared to the bulk atoms that are only neighbored with their own kind, rises. As

a consequence, the influence of surface-mediated forces between the particles and with the



State of the Art 19

suspension medium on the suspensions behavior becomes larger. As an example, a colloidal

suspension with properly controlled surface interactions may remain macroscopically stable

for months or years, i.e. no phase separation will occur as sedimentation and diffusion are in

equilibrium. If the surface properties are changed instead, fast agglomeration and sedimentation

will occur in the time of seconds to minutes.

For pyrogenic silica, most industrial applications rely on specific interactions that lead to the use

e.g. as a thickening agent. Additionally, these interactions have a significant impact on measure-

ment results in particle sizing with DLS especially at high solids concentrations. Hence, a brief

introduction into the relevant interaction energies for colloidal systems in general (Chap. 2.2.1

and 2.2.2) and specifically for pyrogenic silica (Chap. 2.2.3) is necessary.

2.2.1 Interparticle Interactions

Most particles in aqueous solution carry an electric charge. This is due to the dissociation of

surface groups, to imperfect crystal lattices with ending ions or the specific adsorption of ions

from the solution medium. As equal particles are supposed to be equally charged, they should

repel each other. In practice, the surface charge is compensated by an excess of counterions

in an adjacent liquid layer surrounding the particles. This layer may be structured in a fixed

part where ions are directly attached to the surface of the particle (Stern layer) and a diffusive

layer where the ions remain mobile and are subject to Coulomb and osmotic forces. Both layers

together are often referred to as the dielectric double layer [70]. The extent of the diffusive

layer may be as small as several layers of solvent molecules but may also be enlarged up to

several hundreds of nanometer. The potential decreases in general from the particles surface to

the bulk (differences may appear for specific adsorptions e.g. of multivalent ions that may even

lead to a charge inversion). Elimelech et al. [71] give the following exponential for the energetic

interaction potential between two spheres of equal size x at surface-to-surface distance r:

Vel = 16πεrε0x
(

kBT
ze0

)2[
tanh

(
ze0ζ

4kBT

)]2

exp(−κr) (2.23)

Here, ε0 is the permittivity of free space, εr is the relative permittivity, kB is the Boltzmann

constant, T is the temperature, e0 is the elementary charge and z is the valency of the dissolved

ions in the bulk solution. The zeta potential ζ is a potential induced from a charge separation

in the dielectric double layer by external forces (e.g. an electric or acoustic field) [72, 73]. It is

measured at the shear plane between surface and liquid. The inverse of the exponent κ , which is
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usually referred to as the Debye-Hückel parameter, gives the distance from the particles surface,

where the potential has decreased to 1/e of the surface value. It is defined as:

κ =

√
2e2

0NA

εrε0kBT
Is (2.24)

where NA is the Avogadro constant and Is is the ionic strength that is computed from the molar

concentration ci and the respective valency zi of each ionic species in the bulk solution:

Is =
1
2 ∑

i
ciz2

i (2.25)

It is readily available from eq. 2.24 and eq. 2.23 that an increase of the salinity leads to screening

of the electrostatic potential, i.e. the thickness of the double layer decreases (see Fig. 2.3). The

temperature has a reversed effect. An increase in T leads to an extension of the double layer

due to an increased mobility of the dissolved ions. Strictly speaking, eq. 2.23 is only valid for

distances r large compared to κ−1 (κr > 5) and for r� x but it is often applied in more general

cases.
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Figure 2.3: Characteristics of the electrostatic repulsion potential for different values of the

ionic strength Is, computed from eq. 2.23 with x = 50 nm, ζ =−15 mV, εr = 80

(water), T = 298 K and monovalent ions with marked ionic strength.

If the double layers of two approaching particles begin to overlap the increase of ion concentra-

tion in the overlap zone leads to an osmotic pressure that drives the particles apart. Moreover,

local repulsion of the equally-charged counterions may occur. This is the main reason why

colloidal suspensions may remain microscopically stable.
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To this point, it has not been discussed why a stabilization of colloidal particles is needed to

prevent aggregation. The attractive potential is due to van-der Waals forces. These forces are

always present between molecules and atoms. They result from the fluctuations in the electron

orbitals that may be described as a dipole. A fluctuating dipole emits an electromagnetic wave

that induces other fluctuating dipoles if it encounters other molecules or atoms. The computa-

tion of the resulting potential leads to a proportionality in distance to∼ r−6 [70]. The interaction

potential in colloids can be obtained by summing over all possible atom or molecule pairs in

two particles (Hamaker theory) [70, 74]. This leads to the following relation for the attractive

potential between two spheres of size x at distance r:

VvdW =−A131

12

{
x2

r2 +2rx
+

x2

(r + x)2 +2ln

[
1−
(

x
r + x

)2
]}

(2.26)

In this equation A131 is the Hamaker constant, which is dependent on the material of the particles

and the medium between them. For amorphous silica in water very different values can be

found (e.g. 0.849 ·10−20 J [70], 0.46 ·10−20 J [75]). These are due to the variety of methods to

determine the Hamaker constant and the assumptions and measurement errors therein [76].

Additionally, at large interparticle distances a correction factor to eq. 2.26 has to be intro-

duced [70]. This is due to a retardation effect, as the electromagnetic wave and thus the in-

duction of the dipoles travels just with the speed of light.

The DLVO-theory (named after Derjaguin, Landau, Verwey and Overbeek [77, 78]) was the

first attempt to describe the stability behavior of colloids in aqueous dispersions. It is assumed

that the interaction potential of the counterionic stabilization and the van-der-Waals attraction

can be superimposed:

VDLVO = VvdW +Vel (2.27)

Fig. 2.4 shows the progression of the superposed interaction potential calculated with the same

values as in Fig. 2.3 and a Hamaker constant of 0.8 · 10−20 J for silica. The characteristics of

the van-der-Waals attraction and the electrostatic potential have been highlighted additionally.

At short distances, the attractive potential dominates, i.e. particles at these distances aggregate

irreversibly. At intermediate distances, Vel causes a potential barrier that stabilizes the suspen-

sion. Usually, if the barrier is about 15 kBT in height, the suspension will not aggregate. At

large distances and with a large attractive potential a secondary minimum may occur that leads

to a very weak agglomeration. However, this is not observed for suspensions of amorphous

silica.



22 State of the Art

0 0.1 0.2 0.3 0.4 0.5
−5

0

5

−4

−3

−2

−1

1

2

3

4

normalized interparticle distance r/x 

in
te

ra
ct

io
n 

po
te

nt
ia

l V
/(

k B
T

) 
V

DLVO
, I

s
 = 0.001M

V
DLVO

, I
s
 = 0.01 M

V
DLVO

, I
s
 = 0.05 M

V
vdW

V
el

, I
s
 = 0.001 M

V
el

, I
s
 = 0.01 M

V
el

, I
s
 = 0.05 M

Figure 2.4: Computed interaction potentials (same values as in Fig. 2.3 and A131 = 0.8 ·

10−20 J) for different values of the ionic strength Is; VDLVO: solid lines; Vel: dotted

lines; VvdW : dashed line.

The effect of the salinity can be clearly observed in Fig. 2.4. As the thickness of the double

layer is reduced, also the potential barrier is lowered so that other particles may overcome the

barrier by diffusion and thus aggregate. As a rule of thumb, the higher the ionic strength of a

suspension the more likely are the particles to aggregate. In this consideration it is assumed that

the van-der-Waals attraction does not change with Is. In general, this is not exactly the case but

the changes can be neglected in comparison to Vel .

Nowadays, still the DLVO-theory is the basis to describe the stability behavior of colloids in

aqueous solutions. Additional influencing effects are incorporated in terms of additional poten-

tials. One self-evident extension shall be shortly described here since it is relevant in the further

progression. When two approaching particles are in very close contact the electron orbitals of

the respective surface atoms begin to overlap. This leads to a strong repulsive potential known

as Born repulsion. The exact potential can only be obtained from elaborate calculations of the

molecular or atomic structure [79]. In many cases a general treatment with a proportionality to

∼ r−C where C is in the range of 7−16 is used [80–82]. Another possibility is the application

of the Hard-Sphere model (HS). The potential is then described as:

VHS =

∞ for r = 0

0 for r > 0
(2.28)



State of the Art 23

i.e. the potential is in fact a delta function at zero distance. This model has its origin in the

treatment of ideal gases and molecules. The advantage that it can be most easily applied in

simulations (Molecular Dynamics, Brownian Dynamics) as a non-overlap condition of the sim-

ulated atoms or colloidal particles has made it very familiar. Some colloidal model systems

such as spherical latices and silica have been tuned to possess the behavior of a HS-suspension

to prove simulation results. Therefore, many theoretical models rely on the HS-model rather

than on a DLVO-potential as will be seen in later chapters. Their transferability to the more

realistic DLVO-type interaction has always to be scrutinized.

In suspensions of pyrogenic silica also non-DLVO effects are present. They will be further

reviewed in Chap. 2.2.3.

2.2.2 Hydrodynamic Interactions

Hydrodynamic interactions are forces between particles that are mediated via the suspension

medium and that do not have their origin in the molecular properties of the particles itself.

Herein, mainly forces that arise from a relative movement between particles and medium are to

be considered. This movement generates disturbances in the flow field around the particle that

extend into the bulk phase by multiples of the particle size. Fig. 2.5 shows the flow fields of two

moving particles. Though the particles are far from contact, their respective flow fields interact

with each other.

(a) (b)

Figure 2.5: Interacting flow fields of two spheres moving in a quiescent solution, a) top-down

movement b) left-right movement; fluid velocity increases from yellow to violet.

Since colloidal particles are in a permanent movement due to Brownian motion, hydrodynamic
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effects are always present. Additionally, these effects have to be accounted for in methods that

require a relative movement such as sedimentation or centrifugation.

As long as a particle can be considered to be alone in the fluid, the regard to hydrodynamics

is expressed in the solvent friction characterized by the viscosity. This regime is called the

dilute limit. Hence, hydrodynamic interactions have to be considered in suspensions at higher

concentrations of the disperse phase. In a theoretical treatment of the problem there is another

transition in the modelling approach. While at low concentration (ϕ < 0.1 for HS systems) only

pairwise interactions are important (see e.g. [83]), multi-body interactions have to be taken into

account at higher concentrations [84–87].

2.2.3 The Stability Behavior of Aqueous Pyrogenic Silica

Suspensions

The stability of aqueous suspensions of pyrogenic silica depends on specific properties of the

suspension medium, namely the pH value, the salinity and the type of dissolved ions [88]. The

chemical structure of pyrogenic silica consists of SiO4/2 tetrahedrons that are interconnected by

siloxane bridges (Si−O−Si). Surface atoms must show a discontinuity in this structure. Thus,

nearly every second surface atom carries a hydroxyl group (Si−O−H) which is also called a

silanol group. These silanol groups are able to establish hydrogen bonds with the surrounding

water molecules. Hence, they make pyrogenic silica hydrophilic. Depending on the suspension

properties the silanol groups can be deprotonated. The remaining SiO− groups cause a negative

surface charge. This dissociation reaction is mainly favored under alkaline conditions (pH≥ 9).

Thus, silica suspensions in this regime are stabilized by counterionic stabilization that can only

be screened at very high ionic strengths.

If the pH is lowered, the surface charge is reduced. Thus, the effect of counterionic stabiliza-

tion diminishes and is completely absent at the isoelectric point which lies around pH 2 for

amorphous silica. Here, the so-called hydration forces which are a non-DLVO interaction pre-

vent the silica particles from agglomeration. The formation of hydrogen bonds between the

silanol groups lead to ordered layers of water molecules at the particles surface which in turn

give rise to a hydration pressure driving approaching particles apart [89, 90]. As the attractive

van-der-Waals forces are of low strength due to the low Hamaker constant for silica in water,

this hydration force is sufficient to keep a suspension stable.
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In the light acidic to light basic range, the hydration layer is disturbed by the beginning depro-

tonation of the silanol groups and the surface charge has not yet gained a high enough value,

i.e. here, silica suspensions can be most easily destabilized e.g. by increasing the ionic strength

of the suspension. At specific solid concentrations this might even lead to a liquid / solid phase

transition, most favorably at pH 6 [91].

2.3 The Principle of Dynamic Light Scattering

2.3.1 Measurement Principle

2.3.1.1 Brownian Motion

Colloidal particles in suspension are in permanent motion due to non-compensated impacts of

the solvent molecules. The kind of motion is erratic as the motion of dissolved species such as

ions or the solvent molecules itself. This fundamental finding of Albert Einstein [92, 93] led

to a first description of the previously only experimentally asserted phenomenon of Brownian

motion. When a particle is moving in space, Einstein showed that its mean square displacement

in time t is equal to:

〈∆r2〉= 6Dtt (2.29)

although eq. 2.29 is the general three-dimensional result while Einstein considered only the

one-dimensional case [93]. A relation between the translational diffusion coefficient and the

particle size can be obtained from a force balance between the thermodynamic osmotic force

and the fluid friction. This gives the famous Stokes-Einstein equation:

Dt =
kBT

3πηx
(2.30)

which is the fundamental equation for particle sizing using DLS techniques.

2.3.1.2 The Dynamic Light Scattering Effect

If a light beam impinges on particles they interact with the electromagnetic radiation, the light

is scattered. A basic assumption in the theory of DLS is that the scattered light has the same

frequency as the incident light beam (cf. Chap. 2.1.4). However, due to the motion of the
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particles an optical Doppler effect occurs for the resting observer. The frequency of the scattered

light is shifted by a small portion that is proportional to the velocity of the particle [94]:

∆ω = s ·v (2.31)

Thus, the scattered light intensity is not constant but fluctuates about a mean value 〈I〉 (see

Fig. 2.6). The brackets 〈. . .〉 denote a time average.
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Figure 2.6: Fluctuations in intensity of scattered light due to thermal motion of dispersed

particles.

The incident beam encloses a huge number of particles2 all moving in different directions with

different velocities. Thus, a continuous spectrum of frequency shifts S(ω) which is centered

above the frequency of the impinging beam ω0 is obtained. Fig. 2.7 shows an example of such

a power spectrum. This is the basic principle of a dynamic light scattering experiment.

2.3.1.3 Assembly of a DLS Measurement

In a typical set-up of a DLS experiment the sample is contained in a fixed holder. It is il-

luminated from a coherent monochromatic light source. Typically, lasers (often He-Ne with

632.8 nm or Ar-ion with 592 nm wavelength) with vertical polarization are used. The scattered

light from the particles is collected by a detector under the scattering angle θ . In industrially

relevant commercial instruments usually one or a set of fixed scattering angles is used while in

academic applications goniometers that allow for measurements at different scattering angles

2 Focused beams that are most often used in DLS devices have a waist diameter of about 100 µm.
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Figure 2.7: Spectral density of frequency shifts in scattered light due to Brownian motion of

the particles in suspension.

can be found. In recent developments also fiber optics are used that act simultaneously as illu-

minating and detection optics (θ = 180°) [94, 95].3 The scattered light is then coupled out in a

Y-coupler and led to the detector.

Photomultiplier tubes (PMT) or Avalanche Photodiodes (APD) are used as detectors in DLS set-

ups. A photomultiplier has a photocathode at the entry window. When a photon of the scattered

light hits the photocathode, an electron is produced by the photoelectric effect. This electron

is then multiplied at the following dynodes by secondary emission which finally leads to a

measurable current at the anode. Avalanche photodiodes can be regarded as the semiconductor

analogue to photomultipliers. A high barrier voltage leads to an enormous internal gain of an

incoming photon by ionization in the barrier layer.

From the functional principle of a PMT and an APD it is clear that the measurement of the

scattered intensities means counting the impinging photons. The photon count rate (Number of

photons per unit time in kHz) is taken as an equivalent to the intensity.

The detected scattering signal is processed to obtain information on the diffusional properties

of the sample. The underlying theory and data treatment will be reviewed in the next chap-

ter 2.3.1.4. Finally, a computer is used for data output and handling. A principal scheme of a

DLS set-up is given in Fig. 2.8.

3 This technique is usually denoted as Fiber-Optic Quasi-Elastic Light Scattering (FOQELS)
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Figure 2.8: Scheme of a typical DLS set-up.

2.3.1.4 From Scattered Light to the Diffusion Coefficient

The incident light that illuminates the particles can approximately be described as a plane wave

in a cartesian coordinate system (X , Y , Z) where the beam propagates in Z-direction [96]:

E(r, t) = eY Einc(X ,Y )exp(ikZ− iωt) (2.32)

Here, E is the electric field vector, Einc is the magnitude of the incident electric field, r is a

position vector and eY is the unit vector in Y -direction. The scattered light wave of particle i

can then be described by a scattering amplitude ai and an optical phase ∼ ri · s:

Esca,i(s, t) = eY Einc(Xi,Yi)ai exp(isri− iωt) (2.33)

Next, the scattered light contributions are summed over all particles in the scattering volume. If

the explicit time dependence is suppressed a complex scattering amplitude is obtained [96]:

u(s, t) =
N

∑
i=1

Einc(Xi,Yi)ai (ri)exp(isri) (2.34)

Modern DLS instruments use one of two different strategies to get information about the diffu-

sion coefficient and thus the size of particles out of the frequency shift spectra.

Most systems compute the intensity auto-correlation function G2(τ) from the measured photon

counts:

G2(τ) = 〈I(t)I(t + τ)〉 (2.35)

= lim
tmeas→∞

1
tmeas

∫ tmeas

0
I(t)I(t + τ) dt

where the angle brackets 〈. . .〉 denote a time average, τ is the lag time between the two points

in time where the correlation is performed and tmeas is the duration of a DLS measurement.
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The calculation of this function requires extremely fast operating devices since the region of

interest in lag times τ starts at 10−9 s. In the 1970’s and 80’s only hardware correlators were

used. Simply speaking, these are simple computers that are only able to perform additions and

multiplications. Their output is directly the correlation function. A review on the development

und functional principal of hardware correlators is given by Schätzel [96]. Today, the power of

modern computers is sufficient to obtain the correlation function from software correlators.

It is easy to show that G2(τ) decays from 〈I(t)2〉 to 〈I(t)〉2 [97]. Assuming photon counting

as a Gaussian process, Schätzel [96] showed that the intensity autocorrelation function can be

expressed in terms of the scattered field amplitudes:

G2(τ) =
〈
|u(t)|2

〉〈
|u(t + τ)|2

〉
+ 〈u(t)u(t + τ)∗〉〈u(t)∗u(t + τ)〉 (2.36)

The expression in the second term on the right hand side is just the square of the autocorrelation

function of the electric field amplitudes, the so-called field correlation function (FCF) G1(τ).

Eq. 2.36 was firstly derived by Siegert [98] and is therefore called the Siegert-relation. Today,

usually the form:

g2(τ) = 1+bg1(τ)2 (2.37)

is used. Here, g2 and g1 are auto- and field-correlation functions normalized by G2(∞) and

G1(0), respectively. The parameter b is referred to as the coherence factor and is dependent on

the detector area, the optical alignment and the scattering properties of the system. Typically,

values of 0.9−1 can be achieved.

For monodisperse particles of size x and translational diffusion coefficient Dt the field correla-

tion function is a simple exponential:

g1(τ) = exp
(
−Dts2

τ
)

(2.38)

The derivation of eq. 2.38 requires some elaborate mathematics and has therefore been for-

warded to Annex A. This equation is the basis to obtain diffusional properties of the system

under consideration using the correlator method.

Early in the development of PCS, spectrum analyzers where used to determine the spectrum

of the frequency shifts S(ω) directly. The relation of S(ω) and the diffusion coefficient can be

obtained from eq. A.3 making use of the Wiener-Khinchine theorem [96]:

S(iω) =
∫

∞

0
G1(τ) exp(−iωτ) dτ (2.39)
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that states that the power spectrum and the first-order amplitude correlation function are Fourier

transform pairs. After some manipulation this yields [94]:

|S(iω)|= S(ω) =
〈Isca〉

π

[
Dts2

(Dts2)2 +(ω0−ω)2

]
(2.40)

This equation describes the shape of the curve in Fig. 2.7 which is a Lorentzian or Cauchy

distribution centered at the frequency of the incident beam ω0 and with half-width at half-height

Dts2. However, spectrum analyzers were not able to accurately determine both the spectral

density and the frequency [1].

Today, the direct determination of the frequency spectrum has again come into focus by the use

of light emitting fibres in the devices that act simultaneously as incident and detecting fibre.

The signal is then coupled out in a Y-connector and led to the detector. Since the coupling is

not ideal the detected scattered light is mixed with a portion of the incident beam.4 The signal

then shows a light beating effect, i.e. a variation of the signal with a frequency that equals the

shift frequency ω−ω0. Thus, the determination of S(ω) can be carried out with more ease.

2.3.2 Data Analysis

The data analysis techniques are different in some aspects for devices operating with the corre-

lation method and those working with the frequency spectrum. As the devices used in this work

operate with a correlator, data analysis will be described specifically for this purpose.

The primary measurement result is the unnormalized autocorrelation function (ACF) G2(τ).

The first step in data analysis is the normalization with the baseline-term G2(∞) [6]. This

can either be done experimentally with long-time correlator-channels that measure the value

limτ→∞ G2(τ) or with monitor channels that determine the total photon count and average by

the measurement run-time (computed baseline) [96]. Xu [5] proposes to use the difference of

both values as an estimate of the accuracy of a DLS experiment since they should be identical

under ideal conditions.

Secondly, most analysis algorithms require g2(τ) to be converted to g1(τ). This introduces

some difficulties for the handling of negative values that may arise due to noise in the measured

4 This detection mode is called heterodyne mode while the detection of only scattered light is called homodyne

mode.
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signal [99]. The most appropriate way of conversion is:

g1(τi) =


√

g2(τi)−1
b for g2(τi)−1≥ 0

−
√

|g2(τi)−1|
b for g2(τi)−1 < 0

(2.41)

Now, if the particles are monodisperse eq. 2.38 can be used to determine the diffusion coeffi-

cient. If on the other hand, as is mostly the case, the system is polydisperse the exponential

decay of each particle’s diffusion coefficient contributes and the normalized FCF reads (for

spherical particles):

g1(τ) =
∫

∞

0
q(Dt)exp

(
−Dts2

τ
)

dDt (2.42)

Here, q(Dt) is a density distribution of translational diffusion coefficients. The question arises

with which weight a particle contributes to the measured distribution. As DLS measures the

stray light of the particle ensemble this results to be the scattering efficiency. Thus, primarily

distributions obtained by DLS are weighted by scattered light intensity.

The determination of q(Dt) from eq. 2.42 poses some mathematical difficulties. This type of

equation is known as a Fredholm integral equation of the first kind. In principal, the solution is

possible if the equation is discretized by an appropriate quadrature such as the trapezoidal rule.

Eq. 2.42 then reads:

g1(τi) =
Ncl

∑
j=1

∆Q(Dt, j)exp
(
−Dt, j s2

τi
)

(2.43)

g1 = K ·∆∆∆Q (2.44)

where Ncl is the number of discrete diffusion coefficient classes. The matrix K contains the

relation between the diffusion coefficients and the lag times and is usually designated as the

kernel of the matrix equation. A discrete distribution ∆∆∆Q can now be obtained from an inversion

of the kernel. For an experimentally obtained FCF an additional term to eq. 2.44 has to be taken

into account:

g1 = K ·∆∆∆Q+ε (2.45)

where ε stands for the a priori unknown measurement error contribution to the measured signal.

This term makes the inversion of measurement data to a distribution of diffusion coefficients an

ill-posed problem [1, 5, 6, 94, 100], i.e. that in the range of the measurement error usually an

infinite number of equally probable solutions to q(Dt) may be found. Even very small variations

in g1(τ) may result in a completely different distribution [101], it is said that the inversion errors
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are unbounded. Thus, data analysis algorithms have to cope with the mathematical nature of the

inversion problem. There are, in general, three different approaches to deal with DLS data:

Algorithms requiring no a priori information Here, mostly no distribution of diffusion co-

efficients is determined but only some mean values and moments of it. The one best

known in DLS data analysis is the method of cumulants originally developed by Kop-

pel [102]. This method is fast and easy-to-use and is therefore even incorporated in the

International standard ISO 13321 [3]. The processing, the advantages and disadvantages

of the cumulants method will be treated in the next chapter 2.3.2.1. Finsy et al. [103, 104]

developed the singular value and reconstruction method (SVR) that also requires no ad-

ditional information but has not gained significant value in DLS data analysis.

Functional fitting A known distribution type with only a few adjustable parameters is as-

sumed. The parameters are then estimated by a nonlinear optimization procedure such

as a Levenberg-Marquardt method. The goodness of the optimization relies on the initial

guesses of the variables. Commonly used functionals are single and double exponen-

tials, normal and log-normal distributions (mono- and bimodal) or Schulz-Zimm distri-

butions [5].

Laplace inversion schemes Algorithms of this kind do not assume a certain type of the

distribution of diffusion coefficients so they are the most general. Several assumptions

are made to deal with the mathematical problem. Since these algorithms are of great

value for the purpose of this thesis, they will be discussed in more detail in Chap. 2.3.2.2.

2.3.2.1 Method of Cumulants

In statistics, the cumulant generating function K (t) is defined as the natural logarithm of the

characteristic function Φ(t) of a probability distribution q(X) [105]:

K (t) = ln(Φ(t)) = ln
[∫

∞

−∞

exp(itX)q(X)dX
]

(2.46)

For the purpose of DLS data analysis Koppel [102] used:

q(X) = q(D) (2.47)

Φ(−τ,s) =
∫

∞

−∞

exp(−Ds2
τ)q(D)dD = g1(τ,s) (2.48)

K (−τ,s) = ln |g1(τ,s)| (2.49)
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The cumulants Ki(s) are defined as the coefficients of a series expansion of K (−τ,s) in a

MacLaurin series [105]:

K (−τ,s) =
∞

∑
i=1

Ki(s)
(−τ)i

i!
(2.50)

Hence, the cumulants can be related to the moments Mi of q(D) where M1 is the mean and

Mi,i>1 are central moments about the mean:

K1 = M1 = D̄ =
∫

∞

0
Dq(D)dD

K2 = M2 =
∫

∞

0
(D− D̄)2 q(D)dD

K3 = M3

K4 = M4−3(M2)2

(2.51)

i.e. the first cumulant describes a mean diffusion coefficient, while the second describes the

relative width of the distribution q(D) if normalized by (K1)2. The normalized variable is

usually referred to as the polydispersity index PDI:

PDI =
K2

(K1)2 (2.52)

Similarly, K3 and K4 contain information about the skewness and the curtosis, respectively, of

the measured distributions.

The procedure of performing a cumulants analysis on measured DLS data should now be clear.

From the ACF perform a conversion to g1(τ) (c.f. eq. 2.41), then take the natural logarithm

(eq. 2.49). Afterwards ln |g1(τ)| is fitted by a polynomial (eq. 2.50) to obtain the cumulants.

However, some help warnings have to be given in using this simple procedure. Firstly, the

correlation function has to be cut at a certain data point (i.e. lag time), otherwise the results are

distorted by the fit algorithm itself and measurement errors. Usually the cut is done when the

autocorrelation has decayed to 10 % of the maximum value. This is obviously a rather simplistic

approach as it may ignore important contributions to the distribution of diffusion coefficients or

introduce measurement errors if the maximum value of the correlation function is already low.

On the other hand, a manual cut-off can only be done by experienced users so this compromise

is still used in commercially available instruments.

Secondly, even with a very accurate measurement device, random errors induce variations in

the fitted cumulants. Thus, while K1 can usually be determined within 1 % uncertainty, already

K2 induces errors up to 20 % so that the determination of K3 and K4 is not recommended in

most cases [102].
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Thirdly, in taking the logarithm of the FCF the weights of the data points are altered. Thus,

either a proper weighting function has to be introduced or the field correlation function has

to be fitted directly without taking the logarithm [5, 106]. Here, the opportunity of using a

linear least squares algorithm is lost. A nonlinear method such as Gauss-Newton or Levenberg-

Marquardt has to be applied instead. Fortunately, the results of the non-weighted linear fit may

serve as good initial guesses for the nonlinear fit.

2.3.2.2 Inversion of the Measured Spectra

As already noted, constraints or a priori information have to be introduced to obtain a solution

to the mathematical ill-posed problem of a general inverse Laplace transformation of g1(τ). In

general, after discretization of eq. 2.42 one is left with a vector of the FCF measured at i data

points in τ and a vector of j classes of the distribution of diffusion coefficients where i Q j.

This shows that already the step of discretization involves a constraint on the algorithm, i.e.

the range of diffusion coefficients to be expected and the spacing of the classes. Often, geo-

metrical spacing is preferred over linear spacing based on a eigenvalue analysis of the Laplace

transform [107].

The first and most evident constraint introduced by nearly all inversion algorithms is the de-

mand of all values ∆Q(D j) ≥ 0. This nonnegativity constraint greatly confines the set of pos-

sible solutions and is physically true for all imaginable types of distributions. Grabowski and

Morrison [108, 109] developed an algorithm that uses just this constraint and the geometrical

spacing of the distribution. It is usually referred to as NNLS, Non-Negative Least Squares.

However, it turned out that this algorithm is very sensitive to small variations in the measured

data and the measurement errors. Thus, additional constraints were looked for. Two approaches

have gained significant value in DLS data analysis. The first one is the Maximum-Entropy

method originally developed by Livesey, Licinio and Delaye [110] and modified for geometri-

cal spacing by Nyeo and Chu [111]. It makes use of the Shannon-Jaynes entropy formulation

invented in statistical mechanics. The solution adopted for DLS data analysis is the one maxi-

mizing the entropy. As this algorithm is not used throughout this thesis, it will not be explored

in detail.

Another algorithm which is widely used to reveal distributions of diffusion coefficients from

DLS data is CONTIN (Constrained Regularization Method for Inverting Data) developed by
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Provencher [112–115]. In NNLS the term which is minimized with respect to the non-negativity

constraint is:

χ
2 =

∥∥∥M−0.5 · (g1−K ·∆∆∆Q)
∥∥∥2

(2.53)

where M is the positive-definite covariance matrix of the measured data.5 To further constrain

the solution Provencher uses Tikhonov regularization [116] which introduces an additional term

to be minimized:

χ
2(α) =

∥∥∥M−0.5 · (g1−K ·∆∆∆Q)
∥∥∥2

+α
2∥∥Reg ·∆∆∆Q

∥∥2 (2.54)

Here, Reg is the regularizor which introduces an additional constraint on the solution. Proven-

cher [113] devised the role of the regularizor to introduce parsimony in the solution. Effectively,

this means that the most probable solution is the one which "reveals the least amount of detail

or information that was not already known or expected" [113]. Thus, CONTIN looks for a

smooth distribution rather than for multimodal solutions. In consequence the second derivative

of the distribution q(D) is mostly chosen as regularizor to penalize changes of the gradient of

the distribution. CONTIN also incorporates the choice of other derivatives but these have not

gained significant value in DLS data analysis.

The regularization parameter α controls the strength of the constraint. If α is set zero, CONTIN

behaves as a NNLS algorithm. If on the other hand α is chosen to be very high, the data are

underestimated in the solution, so that not all extractable information is achieved. From this

point of view it is clear that the selection of an optimum regularization parameter is the main

problem in regularization methods. Different attempts to deal with the problem have been

developed. Provencher [113, 114] used a Fisher F-test between a reference solution where

α0 ≈ 0 and a penalized solution with α > 0. The test calculates a probability of rejection if

the standard deviation of the smoothed solution differs too much from the reference standard

deviation. The formulation is:

pr(α) = QF (F(α),NDF(α0),Ng1 −NDF(α0)) (2.55)

F(α) =
χ2(α)−χ2(α0)

χ2(α0)
·

Ng1 −NDF(α0)
NDF(α0)

(2.56)

where pr(α) is the probability of rejection, F(α) is the F-test variable, NDF is the number of

degrees of freedom which is effectively the number of significant singular values of the kernel in

5 In CONTIN it is assumed that M is diagonal so that each row of g1−K ·∆∆∆Q is only multiplied with a constant

factor.



36 State of the Art

the NNLS solution and Ng1 is the number of data points in the FCF. It is obvious that for small α

pr will have a number close to zero (corresponding to a NNLS solution), while for large values

pr approaches 1 and the solution is oversmoothed. Thus, Provencher [113, 114] recommends

to use a probability of rejection of 0.5, though reasonable results may also be obtained with

slightly smaller and larger values depending on the amount of other a priori information on the

distribution [6].

Another commonly applied procedure to find an optimum α is the L -curve criterion [117].

Here, different solutions with varying α are computed. Afterwards, the logarithmic norms

log‖g1−K ·q‖2 and log
∥∥Reg ·q

∥∥2 are plotted against each other. Fig. 2.9 shows an example.
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Figure 2.9: L -curve of the regularized solution for the distribution of diffusion coefficients

for a bimodal suspension of 15 nm and 100 nm spheres.

When increasing α the norm of the regularizer term is reduced accounting for the penalization of

the solution. The norm of the kernel is kept nearly constant. At a certain point, the regularization

begins to affect the norm of the kernel (left side of the diagram), hence, the solution begins to

get oversmoothed by the regularization. An optimum α is obtained at the inflexion of the two

legs of the L -curve.

As shown above, the regularization of the inverse problem greatly enhances its solvability and

the stability of the solution. CONTIN was the first set of algorithms that used this concept

for DLS data analysis. Due to its modular concept the user was able to completely specify

the parameters for the regularized fit and to incorporate all the a priori information that was

available.
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However, CONTIN still operated with the FCF which had to be derived from the ACF using

eq. 2.41. This procedure deteriorates the inversion problem due to the earlier discussed problem

with negative values. Therefore, Honerkamp et al. [118–121] and Weese [122] developed the

NLREG program that is able to directly process the autocorrelation function. The inversion

problem is now reformulated as:

g2(τ)−1 = b ·
[∫

exp
(
−Ds2

τ
)

q(D)dD
]2

(2.57)

This makes the integral equation nonlinear and thus Tikhonov regularization may not be used.

The implemented method in NLREG, however, uses an equivalent (NLREG = Nonlinear Reg-

ularization) [122]. Additionally, a complicated error model developed by Schätzel [123] is

implemented to compute the covariance matrix M. The results are shown to fit simulated data

better than linear regularization methods such as CONTIN [118]. Thus, nonlinear regularization

offers to be the best choice to extract distributions of diffusion coefficients from DLS data.

2.3.3 Concentration Effects

Most industrially relevant suspensions are concentrated (i.e. solid content > 1 v.-%). When

DLS experiments are conducted at such systems without previous dilution, data interpretation

has to account for several limitations. Firstly, with an increasing number of particles in the

scattering volume, the probability, that a photon scattered at a certain particle encounters another

particle before it is registered at the detector, rises. This so-called multiple scattering effect will

be shortly reviewed in the following chapter 2.3.3.1. Other effects stem from the particles

itself. The theory of Brownian motion as outlined in Chap. 2.3.1.1 assumes the motion of one

particle in a quiescent fluid with no contact to neighboring particles. This holds only for very

dilute systems. In concentrated systems the particles interact via interparticle and hydrodynamic

interactions and thus their motion, i.e. their respective diffusion coefficient, changes. These

effects will be explained in Chap. 2.3.3.2.

2.3.3.1 Multiple Scattering

Multiple scattering leads to complications in DLS data analysis due to averaging effects that

cannot be easily retrieved [124]. The net effect of multiple scattering contributions on measured

autocorrelation functions is shown in Fig. 2.10. Firstly, the coherence factor b of the ACF
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drops due to a destructive interference of the multiply scattered light [1] and secondly, the

significant decay of the ACF is shifted towards smaller lag times. Additionally, the spectrum

is broadened [125]. If such measurements are analyzed, broad distributions with a larger mean

diffusion coefficient are obtained. Therefore, ISO 13321 [3] suggests a minimum value of b

to be 0.8 in a measurement, so that multiple scattering contributions may be neglected in data

analysis. In the past, when multiple scattering occured during a DLS experiment, the only way

to overcome the problem was to dilute the sample and repeat the measurement.
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Figure 2.10: Net effect of the contribution of multiple scattering to the measured autocorre-

lation functions at different solid concentrations from an aqueous suspension of

silica spheres with a size of 220 nm.

Today, there are three modifications to a classical DLS experiment dealing with the problem.

The first uses a diffusion model to describe the way of a photon in the sample. Therefore, very

strong multiple scattering is required. The so-called Diffusing-Wave Spectroscopy is then able

to determine a mean particle diffusion coefficient in the sample while the information about the

distribution is lost [5, 126, 127].

In the second case X-rays instead of visible light are used as impinging beam [128]. Most

of the particles to be examined show a very low scattering cross section for X-rays. Thus,

the contribution of multiple scattering to the measured signal drops significantly and reliable

measurements can be attained in suspensions of up to 30 v.-% [129]. However, the costs for

such a dynamic X-ray scattering set-up and the effort of conducting the experiments is not

acceptable for standard analyses.
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A third way to deal with multiple scattering of light is to suppress its contribution in the mea-

sured signal as much as possible. In general three approaches are pursued to achieve this:

Photon Cross-Correlation Techniques These are based on the basic idea of Phillies [130]

to conduct two distinct scattering experiments at the same time and to compute the

second-order intensity cross-correlation function as:

Gcc
2 (τ) = 〈I1(t)I2(t + τ)〉 (2.58)

It can be proven that Gcc
2 involves the same function for single scattering events while

multiple scattering does not contribute in a perfect geometry of the set-up [124]. Perfect

in this regard means an alignment of the two scattering vectors s1 and s2 so that either

s1 = s2 or s1 = −s2. In practice this is not achieved but still the suppression ratio of

multiple scattering is at least [124]: √
π
2

Rbδ s
≈ 1.25

Rbδ s
(2.59)

where Rb is the beam radius of the impinging laser and δ s is the misalignment of the scat-

tering vectors. In principle there are three different set-ups that can be thought of [124]

but only two of them have been incorporated in commercially available instruments [131–

133].

However, due to practical requirements in the alignment procedures the suppression ratio

of multiple scattering is finite. Additionally, the decorrelation leads to a decrease of the

coherence factor. For samples with strong multiple scattering the coherence factor can

take values in the range of the electrical noise of the device. Then, no cross-correlation

function can be found and the measurable concentration range is limited.

Non-Invasive Back-Scattering This technique uses a laser-detector installation with a fixed

scattering angle of 173° [134]. In the backscattering regime multiple scattering is much

less pronounced due to the shorter paths that a photon travels through the suspension and

because the decay rates of doubly and singly scattered light are equal [135] i.e. that the

first occurring multiple scattering mode does not influence the DLS result. Additionally,

this technique uses a movable sample-holder that enables the user to change the position

of the scattering volume in the sample and thus the optical path lengths (see Fig. 2.11).

Hence, it is possible to observe the reduction of multiple scattering contributions by the

value of the coherence factor in a measurement without diluting the sample [136]. Of
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Figure 2.11: Scheme of the movable sample holder used in the non-invasive backscattering

technique. The measurement volume is displayed in gray as the overlap of the

incident beam and the aperture of the detection optics.

course, the suppression factor is also limited. In suspensions with a high optical contrast,

the coherence factor drops below 0.8 and the sample has to be diluted. However, the

measurable concentration range is comparable to cross-correlation techniques.6

Fiber-Optic Quasi-Elastic Light Scattering The idea of using fiber optics in Dynamic Light

Scattering is not new [137]. However, substantial contributions from multiple scattering

were reported in the first experiments by Auweter and Horn. Wiese and Horn used Single-

Mode fibers that overcame the problem [135]. The basic idea is quite simple. The set-up

uses a 3-port fiber optical coupler. The illuminating light beam passes the coupler and

enters the suspension through an optode. The backscattered light enters the optode and is

led to the photomultiplier tube by the optical coupler. Therefore, the scattering angle of

such an experiment is ≈ 180°. To reduce the reentrance of reflections of the impinging

beam and thus circumvent a heterodyne measurement, the optode may be slanted.

This set-up guarantees very short path lengths of the photons in the sample and conse-

quently a very good suppression of multiple scattering is achieved. On the other hand the

path length varies with concentration and so does the measurement volume which implies

some complications. A second disadvantage is that the scattering vector s is not well de-

6 This result has been obtained by the author and his colleagues of the Research Group Mechanical Process Engi-

neering of TU Dresden, who had the opportunity to directly compare non-invasive backscattering and 3D-cross-

correlation instruments. As these devices are not yet widespread such parallel experiments could not be found in

literature.
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fined since the immersed fiber does not constitute a far-field measurement but averages

over some scattering angles.

Due to the relatively cheap and easy assembly the FOQELS technique has been used in

several scientific self-constructions, see e.g. [94, 138]. Today, there are two commercial

instruments that use this technique as well.

2.3.3.2 Effects of Interactions

The effect of interactions (interparticle and hydrodynamic) on the measured diffusion coeffi-

cient is not easily accessible. At first the probing scale of the actual experiment needs to be

known. The inverse of the scattering vector gives the length scale of observation just as in

static scattering experiments. This is compared to the mean interparticle spacing rm which is

concentration dependent. If s−1 � rm a large number of individual particle motions is mea-

sured simultaneously. Thus, a mutual or collective diffusion coefficient is determined by DLS.

If on the other hand s−1 ≤ rm the individual motion of one particle in a suspension of others

is measured. Hence, the obtained diffusion coefficient is the self-diffusion coefficient. For

monodisperse particles the interparticle spacing can be readily computed from the number con-

centration. Fig. 2.12 shows the regimes of self and collective diffusion in dependence of the

particle size and the particle volume fraction for monodisperse particles at a scattering angle

of 173° and 632.8 nm wavelength (NIBS technique). It is readily identifiable that for particles

larger than about 100 nm self-diffusion is measured over the whole concentration range. Col-

lective diffusion is measured for particles smaller than 10 nm. In between these size ranges

crossovers from self to collective motion occur.

Self and collective diffusion show different dependencies on hydrodynamic interactions. These

can be calculated for hard sphere systems where interparticle interactions are absent. Batche-

lor [83] probably was the first to arrive at an analytical solution for the concentration depen-

dence of the collective diffusion coefficient Dc
t that accounted for the pairwise hydrodynamic

interactions of hard spheres:
Dc

t

D0
t

= 1+1.45ϕ +O(ϕ2) (2.60)

For simplicity he used a virial expansion that was cut after the linear term. This restricts the va-

lidity of eq. 2.60 to volume fractions smaller than 0.05. Later on, Felderhof [139] and Ohtsuki
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Figure 2.12: Measurement regimes of self and collective diffusion for suspensions of mono-

disperse particles of different sizes and concentrations. The scattering vector has

been calculated for a scattering angle of 173°, 632.8 nm wavelength and water

refractive index 1.332 (25 °C).

and Okano [140] slightly corrected the result of Batchelor to a value of 1.56 for the virial coef-

ficient. For the self-diffusion coefficient Ds
t Ohtsuki and Okano obtained a similar expression:

Ds
t

D0
t

= 1−1.73ϕ +O(ϕ2) (2.61)

It is remarkable that self-diffusion slows down with concentration while collective diffusion is

enhanced.

As already mentioned at higher concentrations many-body hydrodynamic interactions have to

be considered to correctly describe the diffusion behavior. In a pioneering work Beenakker

and Mazur [84–87] incorporated these for hard sphere suspensions. In the case of three-body

interactions another virial expansion was given [84]:

Dc
t

D0
t

= 1+1.56ϕ +0.91ϕ
2 +O(ϕ3) (2.62)
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Ds
t

D0
t

= 1−1.73ϕ +0.88ϕ
2 +O(ϕ3) (2.63)

Later, Mazur and Geigenmüller [141] revised the equation for the self-diffusion coefficient

using an effective viscosity approach of Saitô [142]:

Ds
t

D0
t

=
1−ϕ

1+1.5ϕ
(2.64)

Eq. 2.64 can be brought in the same form like eq. 2.63 by expanding in a Taylor series:

Ds
t

D0
t

= 1−2.5ϕ +3.75ϕ
2 +O(ϕ3) (2.65)

which gives good approximations for ϕ < 0.1. The original equations 2.63 and 2.64 differ

slightly for ϕ > 0.15 but are both supported by experimental results of different authors (see

[141] for details). The validity range was given to ϕ ≈ 0.3 but still no polydispersity and no

direct interactions between the particles were considered. Pusey [74] was the first to give a

correlation for polydisperse HS systems with a small polydispersity:

Dc
t

D̄0
t

= 1+ϕ
(
1.56−9.80C2

v
)

(2.66)

Ds
t

D̄0
t

= 1−ϕ
(
1.73+0.21C2

v
)

(2.67)

where Cv is the coefficient of variation of the size distribution. It is remarkable that polydis-

persity nearly has no effect on self-diffusion but makes a remarkable contribution to collective

diffusion. Unfortunately, research has not gone any further in this.

Batchelor [143] expanded his model in 1983 to incorporate direct interactions in the virial ex-

pansion of the collective diffusion coefficient:

Dc
t

D0
t

= 1+(1.45−0.56ν)ϕ +O(ϕ2) (2.68)

Here, ν is a dimensionless interaction parameter which is positive for dominant repellent forces

and negative for dominant attractive forces. This concept has later been used by Finsy [144] to

generally describe interaction effects in DLS measurements.

Nägele [145] reviewed the existing theories for HS systems for their use in counterionic stabi-

lized suspensions of monodisperse spheres. He finds that for small repulsive forces and mod-

erate concentrations (ϕ ≤ 0.1), the behavior can be predicted equally well with the hard sphere

results. For larger concentrations deviations are found that are due to excluded volumes of the
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suspension medium by a strong double layer repulsion. Nägele introduces the concept of an

enhanced hard sphere diameter xEHS and gives the following expression:

Ds
t

D0
t

= 1+ϕ ·
[
− 15x

8xEHS
+

9x3

64x3
EHS

+O
((xEHS

x

)−5
)]

(2.69)

Four possibilities to determine xEHS are given, the simplest is obtained in dependence of the

DLVO repulsive potential Vel:

(xEHS

x

)3
= 1+3

∫
∞

1
r2
(

1− exp
(
−Vel(r)

kBT

))
dr (2.70)

These results are confirmed by experiments of Nägele [145]. Experimental results for bidis-

perse systems are also given. They can be modeled if the number of effective charges on the

particles surface is left as an optimization parameter. However, simplistic conclusions for true

polydispersity cannot be drawn.

To shortly summarize this chapter the following general guidelines, how diffusion is influenced

by interaction effects, can be given:

1. One should at least have a crude idea what the size of the particles in a concentrated

suspension is. Then it can be concluded from the measurement conditions whether the

self or collective diffusion coefficient is measured.

2. Self-diffusion is generally hindered in concentrated suspensions with little effect of poly-

dispersity. Collective diffusion is enhanced. This is counteracted by the polydispersity of

the particles.

3. The effect of direct interactions can be simplified as follows:

a) Attractive forces act as an additional drag force on the particles, therefore diffusion

is hindered and slows down with decreasing interparticle distance, i.e. concentration.

b) Repulsive forces act as a diffusion enhancement in moderate concentrations when

only two-particle interactions are significant [146]. This is due to the repellent effect

of the double layers. In high concentrations, where many-particle effects have to be

accounted for, diffusion is again hindered by an increasing caging of particles. A

pseudo-lattice is formed.
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2.3.4 Dynamic Light Scattering for Fractal Aggregates

2.3.4.1 Relevance of the Hydrodynamic Particle Size

The analysis of dynamic light scattering data from fractal aggregates bears some complications.

First of all it is necessary to scrutinize how the hydrodynamic particle size determined from

eq. 2.30 can be related to structural properties of the aggregates. It is a difficult task to access

this feature experimentally. A monodisperse distribution of clusters all having the same number

and size of primary particles is required. Thus, theoretical models and simulations have been

used as a tool for clarification.

One approach is based on the porous sphere model, where the Stokes equation outside the

cluster is coupled with the Brinkman equation inside the cluster to model the hydrodynamic

behavior [147–149]. As already pointed out in Chap. 2.1.2 this model leads to unphysical pre-

dictions. Therefore, Veerapaneni and Wiesner [22] introduced an onion model where a spherical

aggregate is composed of shells with a varying permeability.

Another approach to model the hydrodynamic behavior is the Kirkwood-Riseman theory [150].

It has been used by many researchers to predict the hydrodynamic particle size of computer-

generated aggregates in dependence of their radius of gyration and their fractal dimension [151–

155]. It was found that the hydrodynamic radius is proportional to the radius of gyration for

a fractal aggregate but the proportionality constant Rh/Rg differs between 0.765 for D f = 1.85

and 0.831 for D f = 2.05 [153]. This is consistent with the upper limit of Rh/Rg =
√

5/3 for

a sphere with D f = 3. However, the exact values of the proportionality constant are still under

debate since the Kirkwood-Riseman theory is also just an approximation.

Based on the proportionality relation Griffin and Griffin [156] and Ju et al. [157] have developed

analysis schemes for DLS measurements that allow for the monitoring of aggregation processes

in terms of aggregate size and fractal dimension either via the second cumulants analysis or the

CONTIN inversion.

Filippov [158] used a direct method to integrate the Stokes equation and to derive the com-

plete friction and torque tensors of an aggregate. This approach is the most accurate and has

become quite popular but involves the solution of a large system of equations and is, therefore,

computationally expensive.
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Simulations based on finite volumes [159], Lattice-Boltzmann or Stokesian Dynamics [160]

may also be used to obtain the hydrodynamic properties. Especially, Lattice-Boltzmann meth-

ods have the charm that also sintered structures may be examined but to the expense of an

enormous computational effort.

2.3.4.2 Influence of Rotational Diffusion

As fractal aggregates do not show a homogeneous structure the impacts of the solvent molecules

induce stochastic torques. This so-called rotational diffusion also leads to fluctuations of the

scattered light intensity and thus influences the decay of the auto- or cross-correlation function.

Xu [5] gives a relation for this contribution for regular particles where the particle form factor

P(s,x) = ∑i Pi(s,x) may be defined using the Rayleigh-Debye-Gans approximation to describe

the scattering behavior:

g1(τ,s) = ∑
i=0,even

Pi(s,x) exp
[(
−Dts2− i(i+1)Θrot

)
τ
]

(2.71)

where Θrot is the rotational diffusion coefficient. In the small s-limit (s → 0) all Pi(s,x) = 0,

except for i = 0. Therefore, rotational diffusion does not contribute in this region. Xu [5]

recommends to conduct multi-angle measurements and to extrapolate the results to s = 0 to

overcome the effect.

For fractal aggregates there have been very limited investigations concerning rotational diffu-

sion. The first consideration was by Lindsay et al. [47, 161]. Through a multipole expansion

they were able to calculate the rotational contribution of computer-generated clusters. By aver-

aging over several aggregates they obtained master-curves that are shown in Fig. 2.13.

It can be obtained that independent of aggregate size, the effect of rotational diffusion leads to

an overestimate of their diffusion coefficient by about 70 % and thus to an underestimate of their

hydrodynamic particle size. The condition of measuring at least 50 pairs of aggregates simul-

taneously to obtain a good averaging is easily fulfilled in DLS experiments. It can additionally

be concluded that if the master-curve is known for a certain sample, measurements at a single

scattering angle might be corrected for the effect of rotational diffusion. Lindsay et al. [161]

proved this with experiments on agglomerating gold particles.

Recently, Lattuada et al. [155] revised the results of Lindsay et al. using an extension of the

Kirkwood-Riseman theory [162] to compute the rotational diffusion coefficient Θrot of sim-
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(a) Evolution of the decay rate Γ1 = Ds2 for 1, 2,

5 and 50 pairs of DLCA aggregates consisting

of 100 and 1000 primary particles.

(b) Master-curve of the first cumulant for

DLCA aggregates of 100, 200, . . . , 1000

primary particles. Proportionality con-

stant Rh/Rg = 0.87.

Figure 2.13: Effect of rotational diffusion of DLCA aggregates on DLS data obtained by a

second cumulants analysis. The wave vector s is designated as k and D0 is the

Stokes-Einstein diffusion coefficient measured at s = 0. Reprinted with permis-

sion from [161]. Copyright (2007) by the American Physical Society.7

ulated aggregates. The rotational hydrodynamic radius Rh,rot can also be obtained from this

diffusion coefficient using an equivalent to the Stokes-Einstein equation:

Θrot =
kBT

8πηR3
h,rot

(2.72)

Typically, to compute the effect of rotational diffusion on DLS results Rh,rot = Rh is assumed.

Lattuada et al. [155] showed that this underestimates the rotational hydrodynamic radius and

thus the overestimate of the diffusion coefficient in the large s-range of the master-curve (Fig.

2.13) is not 70 % as obtained by Lindsay et al. [155] but only about 40− 42 %. The principal

shape of the master-curve is not influenced by these results so that corrections of DLS data can

be altered accordingly.

7 Readers may view, browse, and/or download material for temporary copying purposes only, provided these

uses are for noncommercial personal purposes. Except as provided by law, this material may not be further

reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or

part, without prior written permission from the American Physical Society.

Abstract available online at: http://prola.aps.org/abstract/PRA/v38/i5/p2614_1

http://prola.aps.org/abstract/PRA/v38/i5/p2614_1




3 Motivation

Hitherto, investigations on the explanatory power of DLS measurements for the characterization

of polydisperse fractal aggregates are insufficient. At first sight, it is an important prerequisite

to obtain an understanding of the granulometric properties that are measurable with DLS for

e.g. pyrogenic silica. Additionally, the available sensitivity is of great relevance.

As can be deduced from the state of the art, experimental studies will not provide enough insight

into the relevant mechanisms. Therefore, simulations are used. These have to make several

assumptions about the particle system such as a known and monodisperse size of the primary

particles, the generation mechanism of the aggregates and the number of primary particles per

aggregate. Averaged values are obtained from different aggregates but with the same size and

number of primary particles. Mostly, approximate methods such as Kirkwood-Riseman theory

are afterwards used to evaluate the hydrodynamic properties.

However, there are two aspects that have not been considered in the past. First, all the genera-

tion mechanisms mentioned produce aggregates whose fractal dimension scatters round a mean

value for finite numbers of primary particles. Thus, the true effect of the structural parameters

on the hydrodynamic properties could never be investigated. Then, a second restraint is that the

alterations introduced by the approximations cannot be separately observed.

Therefore, in this thesis another approach will be pursued. The hydrodynamic behavior will be

computed using the direct method of Filippov [158] to avoid any unnecessary assumptions (c.f.

Chap. 5). The generation mechanism that is most probable for pyrogenic silica (DLCA [20])

will be compared to model aggregates with fixed structural properties.

The results obtained in the simulations will be verified with experiments since not all practi-

cally relevant aspects (sintering, aggregate polydispersity) can be taken into account due to the

computational effort (Chap. 6). Structural properties will be determined from SAXS and SLS
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measurements while the diffusional properties will be obtained from multi-angle DLS to deter-

mine the influence of rotational diffusion. Simulations and experiments together will firstly give

an insight into the relation between structure and diffusion for polydisperse fractal systems.

The third large concern of this work is the characterization of industrially-relevant systems, i.e.

concentrated suspensions. Here, effects of interparticle and hydrodynamic interactions have to

be taken into account. These have attracted much attention in the past for hard-sphere systems

and counterionic-stabilized spherical suspensions. However, the theoretical treatment is limited

to monodisperse or at maximum bidisperse spherical particles.

It is at least questionable whether the models developed for such systems are applicable for

polydisperse fractal aggregates. As a theoretical treatment of this problem is not feasible, an

experimental approach will be pursued in Chap. 7. A detailed comparison between mono- and

polydisperse silica sols and pyrogenic silica suspensions will reveal the origin and extent of

interaction effects that have to be considered in DLS data analysis.

The solution of these principal characterization tasks of suspensions of fractal aggregates is

essential for the understanding of DLS. However, the analysis of well dispersed and stabilized

suspensions covers only a small part of the relevant technical applications. Often problems

concerning e.g. the dispersibility of a powder, the detection of smallest off-specification shifts

of a product or the observation and quantification of a gelation process e.g. in product design

have to be solved since these bother the application process of a suspension at the end-user.

On the other hand, these tasks can hardly be handled using standard analysis techniques. Two

examples will be investigated in Chap. 8. It will be shown how a sophisticated treatment of

the measured DLS data can be used to explore new fields of application for DLS techniques.

DLS might afterwards be used to predict gelation times and kinetics or to detect coarse grained

contaminants that evolve e.g. from product handling and storage.



4 Materials and Methods

4.1 Pyrogenic Silica

The investigations in this thesis were conducted in cooperation with Wacker-Chemie AG, Burg-

hausen, Germany. Therefore, the used pyrogenic silica samples (Wacker HDKr) were produced

in Burghausen, Germany and afterwards sent to TU Dresden for analysis as powder material in

containers of 200 g each. Table 4.1 gives an overview of the samples that were employed for

DLS characterization and their properties:1

Table 4.1: Employed pyrogenic silica samples and their relevant physical properties.

HDKr

Grade

Spec. Surface Area

Sm (BET)
[
m2/g

]
(Mean of Specification)

Mean Sauter

Diameter xST

[nm] (eq. 1.1)

Bulk

Density ρB[
kg/m3]

Refractive

Index np

D05 50 54.5 ≈ 50 1.46

C10P 100 27.3 ≈ 100 1.46

S13 125 21.8 ≈ 50 1.46

V15 150 18.2 ≈ 50 1.46

N20 200 13.6 ≈ 40 1.46

T30 300 9.1 ≈ 40 1.46

T40 400 6.8 ≈ 40 1.46

1 Excerpt from the product descriptions of Wacker HDKr that are available online at http://www.wacker-hdk.com

(Reprinted with permission). Only the mean of the specific surface area specification is given since all employed

samples were selected at mid values by Wacker-Chemie AG. The BET method is used to determine the spe-

cific surface area by gas adsorption (mostly nitrogen). The adsorption isotherm is exploited using the model of

Brunauer, Emmett and Teller.
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The solids density is not explicitly given in the table, since there is still debate about the exact

value (between 2150− 2250 kg/m3) for each grade. Wherever necessary in this work a value

of 2200 kg/m3 has been used.

The most important property for the DLS investigations is the specific surface area. As already

mentioned in Chap. 1.2 grades with a high specific surface area (i.e. HDKr N20 or T30) pos-

sess a very small distribution width of primary particle sizes while those with a small specific

surface area (i.e. HDKr D05 or C10P) generally have a broad distribution. Thus, the effect of

polydispersity may be studied using different silica grades. HDKr T40 is an exception. Here,

the very high specific surface area is not only obtained by very small primary particles but also

by an intrinsic porosity of these primary particles. Therefore, differences in the analysis results

might be due to this structural difference.

All the grades used in this thesis were hydrophilic and could, therefore, be well dispersed in

aqueous solutions. Though, there were some differences in required dispersion energy that will

be addressed in Chap. 4.3. Attention has to be paid to HDKr C10P since this grade has been

compacted in the dry phase to gain a higher bulk density.

4.2 Colloidal Silica Sols

To get an impression of the influence of the fractality of pyrogenic silica aggregates in DLS

experiments, complementary investigations have been concucted with four different samples of

colloidal silica sols (Table 4.2). These samples were delivered in stabilized aqueous solutions

from the manufacturers. Thus, they contained unknown dispersing agents that influence the

interactions between the particles. Therefore, the sample Fuso PL-3 has been purified for a

clarification of these influences (for details see Chap. 4.3).

Size and polydispersity information have been obtained from a second cumulants analysis of

DLS measurements in highly diluted samples. To keep the suspensions stabilized the pH and

the conductivity of the original was kept constant during dilution with KOH and KNO3, respec-

tively. The results are listed in Table 4.2.

It can be deduced from these results that the Levasil samples are nearly monodisperse while

the Köstrosol and Fuso samples show a broad distribution of particle size. Thus, the effect of

polydispersity can again be separately observed in the DLS experiments.
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Table 4.2: Employed colloidal silica sols, size information has been obtained by DLS ex-

periments in highly diluted suspensions by keeping the pH and the conductivity

constant.

Sample Harmonic
mean size
xDLS [nm]

Polydisper-
sity Index

PDI

Original
concentration

[wt.%]

Manufacturer

Levasil
02T063

42.5 0.074 31.2 H.C. Starck GmbH & Co. KG,
Goslar, Germany

Levasil
02T144

91.8 0.071 30.7 H.C. Starck GmbH & Co. KG,
Goslar, Germany

Köstrosol
AD

28.4 0.286 31.1 CWK Chemiewerk Bad
Köstritz, Bad Köstritz, Germany

Fuso
PL-3

73.6 0.127 10.0 Fuso Chemical Co., Ltd.,
Osaka, Japan

4.3 Sample Preparation Procedures

The exact and reproducible dispersion of the pyrogenic silica powders in an aqueous solution

is an important prerequisite for the DLS experiments and data analysis. Effects of imperfect

dispersion such as smaller diffusion coefficients due to agglomerates have to be avoided.

Based on earlier dispersion experiments with agglomerated colloidal spherical silica powders

at the TU Dresden [163, 164] a sample preparation procedure for pyrogenic silica has been

developed together with Vorbau [165] that contains the following general steps:

1. Depending on the desired solids concentration the appropriate amount of pyrogenic silica

was suspended in the electrolyte solution using a magnetic stirrer.2 This solution was

produced from deionized water and a mother solution of high electrolyte concentration.

In this thesis, only KNO3 was used as electrolyte since the dissolved ions do not react

specifically (e.g. adsorption to the surface) with the silica surface at low salt concentra-

tions. The employed salt concentrations ranged from 10−3 M to 10−1 M.

2 It has to be noted, however, that magnetic stirrers are not appropriate for a long-term homogenization of pyrogenic

silica suspensions. At higher pH, PTFE from the stirring bars is released which attaches to the silica surface and

leads to hydrophobic behavior. Thus, flocs of silica are generated that float to the surface of the suspension.
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2. Subsequently, a first dispersion was carried out using a rotor-stator disperser (UltraTurrax

T50, IKA Werke GmbH & Co. KG, Germany with dispersion tool S50N-G40F). Here,

agglomerates are destroyed in the shear slit between rotor and stator (slit width 0.5 mm,

Ø 32 mm). Dispersion lasted for 10 min at 7000 rpm.

3. The pH of the solution was adjusted to the desired value. The pH of a freshly dispersed

pyrogenic silica suspension is approximately 4.5, a counterionic stabilized suspension is

obtained at pH ≥ 9. KOH was used for the alkalification. Since at a too high pH the

ionic strength of the total suspension changes strongly due to dissociation of the base a

maximum of pH 9 was used in the experiments.

4. State of dispersion was controlled (baseline) via laser diffraction (measurement instru-

ment HELOS 12 KA/LA, Sympatec GmbH, Clausthal-Zellerfeld, Germany). The dis-

persed sample was diluted for the measurement with distilled water and a focal length

of 20 mm was used. Although laser diffraction techniques are not able to measure the

size distribution of pyrogenic silica aggregates the progress of dispersion may well be

followed by observing the diminishment of particles larger than 1 micron (agglomerates).

Fraunhofer diffraction model was used for data analysis. Though this is not fully correct

for smallest particles, it offers the charm of a continuous change of particle size while the

often applied Mie model cannot follow small deviations in the particle size distributions

due to numeric problems.

5. Afterwards, further dispersion was carried out using an ultrasonic disintegrator (VibraCell

VCX 600, 600 W, Sonics & Materials Inc., Newtown, USA). Here, the dispersion effect

is mainly due to highly turbulent flow fields induced by cavitation. Sonification lasted

2 min with full power of 600 W. To avoid a too strong heating, the probe was used in

pulse mode, i.e. after 2 s of sonification the sonifier was stopped for 2 s.

6. After sonification, the suspension was cooled to room temperature in a water bath and the

state of dispersion was again controlled with laser diffraction.

7. Steps 5 and 6 were repeated until no alteration of the measured size distributions was

recognized between two consecutive measurements.

8. The pH was again controlled and corrected if necessary.

9. The sample was finally homogenized for at least 12 hours using an overhead stirrer (EU-

ROSTAR Digital, IKA Werke GmbH & Co. KG, Germany). Directly before the mea-

surement, pH and conductivity were checked again.
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At high solids concentration (≈ 15 wt.%) a good suspension of the powder is not achievable

using a magnetic stirrer in step 1 because a gel is formed that cannot be broken by the power of

these instruments. Thus, the powder was directly fed into the rotor-stator disperser.

Fig. 4.1 exemplarily shows two dispersion processes of HDKr D05 and S13, respectively. Plot-

ted are the size distributions as obtained from laser diffraction. The shift towards smaller particle

sizes with increasing dispersion energy can very well be observed. Additionally, it can be seen

that different silica grades may require a varying number of sonification steps to get a good

dispersion. Thus, the permanent control of the state of dispersion is a duty for correct analysis

results. Laser diffraction techniques are preferred for their quick and easy implementation.
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(a) HDKr S13, easily dispersable
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(b) HDKr D05, difficult to disperse

Figure 4.1: Observation of the dispersion process of pyrogenic silica samples via laser diffrac-

tion. Particle size distributions obtained after subsequent dispersion steps that are

marked in the diagrams. (Abbr.: UT = UltraTurrax, US= Ultrasonic Disintegra-

tor).

As already mentioned in Chap. 4.2 the silica sols did not need to be dispersed because they

were already in the liquid phase. However, since the original concentration of Fuso PL-3 was

too low to obtain a good concentration series in DLS it was concentrated and thereby purified by

centrifugation. Centrifugation was carried out with a Labofuge I (Heraeus Christ GmbH, Hanau,

Germany) at 4500 rpm for 10 h. Subsequently, the supernatant was removed and the beakers

filled up with an electrolyte solution (10−3 M KNO3 at pH 9). Suspension was homogenized

and dispersed using sonification. The state of dispersion was controlled via DLS measurement

(second cumulants analysis). This procedure was carried out 3 times. Finally, the total solids
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concentration of the purified sample was 35.24 wt.%.

If dilution was necessary during the experiments it was carried out using a dilution medium

of exactly the same composition (electrolyte, pH) as the original suspension. However, this

was not possible for the silica sols where unknown dispersing agents existed. Here, dilution

was accomplished by keeping the pH and the conductivity constant with KOH and KNO3,

respectively. Before measurements that required a high purity of the suspension, the dilution

medium was filtered through a 0.2 micron membrane. The suspension itself had to pass a

20 micron paper filter to remove unwanted coarse particles that may originate from drying

agglomerates, dispersion tool abrasion or dust contamination.

4.4 Dynamic Light Scattering - HPPS

Within this thesis a Malvern HPPS DLS instrument (Malvern Instruments Ltd., Worcestershire,

UK) was used as a commercially available device. In the meantime, the name HPPS, which

means High Performance Particle Sizer, has been replaced by the name Zetasizer Nano. Despite

several changes in the mechanical set-up, the measurement procedure remains the same.

The system uses a vertically polarized He-Ne gas laser (632.8 nm wavelength in vacuum). The

power of the laser can be attenuated by neutral gray filters to 22 different intensity levels so that

strongly and weakly scattering samples can both be measured. For laser power stabilization, the

instrument had to run at least 1 h before the first measurement.

To suppress multiple scattering contributions in concentrated systems the instrument is equipped

with NIBS (Non-Invasive Backscattering) technology. The scattered light is registered at a

scattering angle of 173°. A movable sample holder set-up additionally enables the change of

the measurement volume for further reduction of multiple scattering (c.f. Chap. 2.3.3.1).

The detector is an avalanche photodiode that works in homodyne mode. The registered photon

counts are processed by a hardware correlator (ALV 5000E, ALV Laservertriebsgesellschaft

mbH, Langen, Germany). The smallest sampling time of the instrument, i.e. the first data point

of the autocorrelation function, is only 125 ns. The patented multiple-tau technology allows

for a nearly perfect logarithmic spacing of lag times so that fast and slow fluctuations can be

acquired in a single experiment. Further on, this spacing stabilizes the solution of the inversion

problem in data analysis.
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The sample holder includes a Peltier element that can be used to keep the sample temperature

at a fixed value in the range of 8 °C to 55 °C. Polystyrene cuvettes of 10 x 10 x 48 mm size

(Sarstedt AG & Co., Nümbrecht, Germany) were applied in the investigations. Sample volume

per measurement was about 2 ml. Temperature equilibration typically lasted for 15 min in these

cells.

Control of the instrument parameters such as cuvette position, temperature, measurement time

and repetitions as well as data acquisition and analysis was attained via the ALV Correlator

Software V.3.0. The software includes cumulants analysis (linear, second and third cumulants),

inversion via CONTIN, a nonlinear regularization method and a nonlinear fit tool with a model

data base. Within this thesis, only second cumulants and the nonlinear regularization method

were used.

Each measurement is separately written to an ASCII-file that can also be used for further anal-

ysis with external programs.

4.5 Multi-Angle DLS

To reveal the s-dependence of the measured diffusion coefficients in pyrogenic silica, angle-

dependent DLS measurements were conducted at the Faculty of Science, Department of Chem-

istry and Food Chemistry, Professorship Physical Chemistry of Polymers of the TU Dresden.

The employed instrument was an ALV/DLS/SLS-5000 laser light scattering spectrometer (ALV

Laservertriebsgesellschaft mbH, Langen, Germany) with a ALV-5000/EPP multiple tau corre-

lator and a ALV/CGS-8F S/N 025 goniometer system. The goniometer provides an angular

range of 10°-150° with a resolution of 0.003°. A He-Ne gas laser (Uniphase 1145P, output

power 22 mW, JDS Uniphase Corp., Milpitas, USA) at 632.8 nm wavelength in vacuum, that

could be mitigated by a compensated optical attenuator, was used as light source. Laser power

stabilization lasted for at least 1 h before a measurement.

The sample was contained in a cylindrical glass cell (Ø 10 mm), sample size was about 5 ml.

The cell was placed in an index-matching vat (toluene) with an accuracy of centricity of± 5 µm

to avoid light scattering effects at the sample/cell interface. The vat is also used to keep the

temperature of the sample. Before, a measurement run was started, temperature of vat and
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sample were equilibrated for 15 min. For each measured scattering angle the data aquisition

time was changed according to eqns. 2.38 and 2.6:

t1
meas

t2
meas

=
sin
(

θ2
2

)
sin
(

θ1
2

) (4.1)

to probe the same dynamic range and yield the same statistics for each data point of the mea-

sured ACF. As a starting time 90 s duration for θ = 173° was chosen.

Data acquisition and analysis was again carried out with the ALV Correlator Software V.3.0.

4.6 Static Light Scattering

Static light scattering was employed to examine structural properties of diluted aqueous pyro-

genic silica suspensions. Measurements were also conducted at the polymer characterization

lab of the Professorship Physical Chemistry of Polymers at TU Dresden.

A modified FICA 50 (Applied Research Laboratories GmbH, Neu-Isenburg, Germany, modified

by SLS Systemtechnik G. Baur, Denzlingen, Germany) equipped with a He-Ne gas laser was

used. The angular range of the instrument is 15°-145°.

The samples (≈ 10 ml) were again contained in a temperature-controlled index-matching vat.

No background signal and no refractive index increment was measured since this is not neces-

sary for the determination of the radius of gyration.

4.7 Small Angle X-ray Scattering

In addition to SLS, SAXS measurements of pyrogenic silica suspensions were conducted at the

Institute of Mechanical Process Engineering and Mechanics, Faculty of Chemical Engineering

and Process Engineering of the University of Karlsruhe.

The experimental set-up is a modified Kratky camera with a block collimation system as de-

scribed by Dingenouts [166]. The measurable s-range is 0.04 nm−1 – 1 nm−1. A disadvantage

to synchrotron SAXS measurements is the finite width of the primary beam which leads to a

smearing of the intensity. Thus, desmearing is a very important step in data analysis.
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Samples are measured in a glass capillary in the beam. As the capillary itself and the suspension

medium contribute to the scattering signal, background measurements are necessary.

Data acquisition and analysis have been carried out in the following way:

1. Background measurement and measurement of sample, duration ≈ 8 h per sample

2. Correction of the measured scattering intensity for background scattering and desmearing

3. Structural analysis using the Irena 2 package (Argonne National Laboratory, Argonne,

USA) for Igor Pro (WaveMetrics Inc., Lake Oswego, USA).





5 Simulation of Single Aggregate

Diffusion Behavior

5.1 Objectives

The simulations conducted in this work shall reveal the connection between structural proper-

ties of pyrogenic silica aggregates and their respective hydrodynamic properties, i.e. the trans-

lational and rotational diffusion coefficient. Therefore, it is a prerequisite to virtually generate

aggregates. With respect to Chap. 2.1.3, relevant mechanisms will be chosen. Afterwards, the

structure of the simulated aggregates must be characterized in terms of size and fractal dimen-

sion. There are different methods to obtain these parameters. It will be shown that for simulated

aggregates resembling pyrogenic silica only one approach gives reliable results (Chap. 5.2.2).

To reveal a basic understanding of the relations between the fractal parameters (esp. the frac-

tal dimension) and the diffusional behavior another algorithm has been developed together with

Bedrich [167] (Chap. 5.2.3). Here, aggregates with predefined structural properties may be gen-

erated without large variations in fractal dimension that are inherent in the previously described

algorithms (c.f. Chap. 2.1.3).

The determination of hydrodynamic properties of fractal aggregates has also been pursued

by different approaches in the literature (c.f. Chap. 2.3.4). Here, the direct computation us-

ing a multipole expansion of the flow field around an aggregate originally developed by Fil-

ippov [158] will be used to obtain an as exact as possible solution. For large aggregates

(Nprim > 1000 at the moment) this method is not recommended since the computational effort

rises significantly with the number of primary units per aggregate [167]. However, transmis-

sion electron micrographs of single pyrogenic silica aggregates obtained by Wacker-Chemie

AG, Burghausen, Germany, have shown that the number of primary particles per aggregate is
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typically in the range of 20− 1000. Thus, the restriction of the multipole method is not ob-

structive. The implementation of the algorithm has been conducted by Bedrich [167] and will

therefore only be described in excerpts in Chap. 5.3. To describe the structural dependence of

the hydrodynamic behavior a power law comparable to eq. 2.2 will be chosen.

A comparison of the results obtained with the used algorithm with former results will be given

in Chap. 5.4. The consequences that arise in the analysis of DLS measurements will be de-

scribed.

5.2 Aggregate Formation

5.2.1 Algorithms

As described by Schaefer and Hurd [20], the most relevant algorithm for pyrogenic aggregates is

the Diffusion-Limited Cluster Aggregation (DLCA). The implemented Monte-Carlo simulation

works as follows:

1. The number of primary particles the generated cluster shall consist of must be chosen.

2. All the particles are placed randomly in a virtual cubic box so that no overlap occurs.

Particles are equally sized with a normalized size of 1. The size of the box is essential

for the computation speed of the algorithm. If the box is too small the particles cannot

perform a random-walk, the discrete equivalent to Brownian motion. If it is too large, too

many steps of the algorithm must be run through until a collision occurs. Here, the length

of one side of the cube is determined by:

l = 12.6 3
√

Nprim (5.1)

to guarantee a constant particle density independent of the number of primary particles.

3. A uniformly distributed direction vector is assigned to each particle.

4. All the particles move along their respective direction vector with a step width of 0.5.

5. The distance matrix of all particles is computed. This matrix is of size Nprim×Nprim so

that N2
prim−Nprim distances have to be checked for an occurring collision. This makes the

algorithm slow for large aggregates.
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6. If a collision happened, the particles stick together, a small aggregate occurs. If no sinter-

ing is included, the particles touch each other in a single point. Additionally, a sintering

factor Csint can be predefined which is:

Csint = 1− lcc

xprim
(5.2)

where lcc is the center-to-center distance of the two colliding particles and xprim is the size

of these particles.

7. Aggregates are treated like primary particles in the subsequent steps of the algorithm.

They are assigned a unique direction vector and move with the same step width.

8. Aggregation continues until only one large aggregate remains. Fig. 5.1 shows an example

of this generation process. The coordinates of the primary particles with respect to the

center of gravity of the aggregate are finally computed and saved to a file.

It might happen that particles hit the wall of the box during the aggregation process. Then,

periodic boundary conditions are applied, i.e. the particle leaves the box and enters it again at

the opposite side.

Figure 5.1: Representation of the DLCA generation process with Nprim = 1000 [167]. In (a)

300, (b) 100, (c) 30 and (d) 1 cluster is formed.

As already noted, the DLCA algorithm becomes very slow for large aggregates. With 1000

primary units a state-of-the-art computer needs about 2 days for the generation process. This is
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unsatisfactory if relations have to be checked with large aggregates. Therefore, Bedrich [167]

developed a new algorithm where the generated aggregates resemble DLCA formation but with

an enormously increased generation speed. This cluster-cluster aggregation (CCA) process re-

quires the aggregate to consist of Nprim = 2i primary particles where i is a natural number. Then,

the first step includes the combination of every 2 particles under a random angle. Afterwards,

the two-particle-aggregates are grouped together to form 4-particle-aggregates and so forth. As

the random-walk is omitted in this procedure, this algorithm is faster by far than DLCA with

the restriction that only specific numbers of primary particles are possible.

5.2.2 Determination of Fractal Properties of the Generated

Aggregates

There are two structural properties of the simulated aggregates that are important for the further

processing, the radius of gyration Rg and the mass-fractal dimension Dm
f . The surface fractal

dimension DS
f is set to 2 since the generation algorithm considers perfect spheres as primary

particles.

The radius of gyration is readily accessible from the formation process. It can be computed

from eq. 2.4. Therefore, only the coordinates of the primary particles have to be read from the

file, since all primary particles possess the same size.

The fractal dimension can be determined in three different ways. First, as already shown by

Witten and Sander [29], the particle-density correlation function shows a power-law behavior

such as:

Gρ =
1

Nprim
∑
r′

ρ(r′)ρ(r′+ r) (5.3)

Gρ ∝ rDm
f −Deu (5.4)

Here, Dm
f is directly the fractal dimension and Deu is the normal dimension of the Euclidian

space under consideration.

A second method is the so-called Boxcounting. The aggregate is overlaid with small boxes of

edge length l and the number of boxes NB needed to completely cover it is determined. In the

limit of infinitely small edge length, the fractal dimension is obtained:

Dm
f =− lim

l→0

log NB

log l
(5.5)
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These two methods are the standard procedures in physics but, unfortunately, only work for

very large aggregates. As the number of primary particles in this concern is almost all times

smaller than 1000 they cannot be applied here.

The radius of gyration also shows a power-law behavior with the mass of the aggregate already

at small numbers of primary particles (see eq. 2.2). As all primary particles have the same size

and density, this equation can be simplified to:

Nprim = k f

(
Rg

Rprim

)Dm
f

(5.6)

where k f is the fractal prefactor. For large Nprim the so-determined fractal dimension is equal

to the other methods. However, in the region of interest considerable fluctuations between

different aggregates are to be expected. To obtain an impression for DLCA 100 aggregates

with Nprim = 150 and for CCA 100 aggregates with Nprim = 128 have been generated and the

fractal dimensions calculated from eq. 5.6.1 Fig. 5.2 displays the distribution function of the

determined dimensions for the two algorithms.
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Figure 5.2: Frequency distributions of fractal dimension Dm
f for DLCA and CCA aggregates

with 150 and 128 primary particles, respectively [167].

CCA shows slightly larger fractal dimensions than DLCA with a broader distribution width.

The overlap between both algorithms is, however, better than with any other method tested by

1 As this determination requires a linear fit in a double-logarithmic plot of Nprim vs. Rg pairs of Nprim and Rg need

to be determined. For CCA this can be easily achieved since these aggregates grow from smaller sub-aggregates.

For DLCA, one aggregate for each Nprim needs to be generated and the respective radius of gyration computed.

The fractal dimension determined in this way is, therefore, an average over several aggregates and not a property

of a single aggregate.



66 Simulation of Single Aggregate Diffusion Behavior

Bedrich [167] (Diffusion-limited aggregation, Ballistic aggregation) so CCA can be used as a

complement to DLCA at primary particle numbers larger than 1000. Nevertheless, it has to be

concluded that the fluctuations in Dm
f will cause problems when trying to find general relations

between structural and hydrodynamic, i.e. diffusional, properties. Therefore, another algorithm

has to be developed.

5.2.3 Generation of Aggregates with Fixed Structure

In fact, the concept of a generation procedure with predefined fractal dimension is straightfor-

ward. Contrary to DLCA the algorithm starts with one seed particle. Before the addition of

the next primary particle, the fractal dimension of the emerging aggregate has to be calculated.

Therefore, a lattice of points is placed around the existing cluster with equal distance of the

lattice points and a distance of one primary particle radius from the aggregate. Now, the fractal

dimension of each lattice point can be computed and the next primary particle is added at the

point that accords closest with the predefined value. If multiple attachment points are possible

one is chosen randomly. Fig. 5.3 shows four generated aggregates of this algorithm with varying

fractal dimension Dm
f . A verification of the results can be concluded from this picture since for

Dm
f → 1 the aggregate resembles a chain while for Dm

f → 3 a hexagonally close packed structure

occurs.

The morphology of the generated aggregates generally depends on the choice of the lattice.

However, Bedrich has shown that the computed hydrodynamic and structural properties are

independent of the lattice (a lattice with 12 points and 120 points per primary particle was

compared) so this poses no restraint on the algorithm [167]. For large Nprim the number of lattice

points naturally rises and the algorithm becomes very slow. This disadvantage is outweighed

by the fact that the fractal dimension is nearly independent of the number of primary particles

with this algorithm. In Fig. 5.4 the evolution of the fractal dimension is compared to DLA

aggregation (Witten and Sander [29]). DLA has been chosen as this algorithm also starts with

a seed particle and the fractal growth can be followed with each added primary particle.

While DLA generally shows large variations at small Nprim, the fractal dimension of the model

aggregate remains nearly constant even for only a few primary particles. This fast adjustment

to the desired value is, however, not always obtained, especially in the extreme cases Dm
f → 1
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(a) (b)

(c) (d)

Figure 5.3: Generated aggregates (Nprim = 150) with predefined fractal dimension of a) 1.10,

b) 1.70, c) 1.90 and d) 2.76 [167].
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Figure 5.4: Evolution of the fractal dimension Dm
f with the number of primary particles in a

DLA aggregate [29] and a model aggregate with predefined Dm
f = 2 [167].

and Dm
f → 3. With this algorithm at hand, it should be possible to determine general relations

between the structure of fractal aggregates and their hydrodynamics.
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5.3 Determination of Diffusional Properties

5.3.1 The Simulation Algorithm

To determine the diffusion coefficients of fractal aggregates their Brownian motion has to be

simulated. For this purpose generalized Langevin equations can be applied for the translation

and rotation, respectively [168]:

m
d2r
dt2 =−6πηRprimΨΨΨ

dr
dt

+Fstoch (5.7)

ΘΘΘ
d2φ

dt2 =−8πηR3
primΞΞΞ

dφ

dt
+Tstoch (5.8)

where m is the mass of the fractal aggregate, ΨΨΨ is the dimensionless translation matrix which

is obtained from the total drag force on the aggregate, ΘΘΘ is the inertia tensor, φ is the three-

dimensional rotation angle and ΞΞΞ is the rotation matrix, an analogue to ΨΨΨ obtained from the

total torque on the aggregate. When looking at these two equations they resemble Newton’s

second law of motion. The Brownian behavior is introduced by the stochastic contributions of

the force vector Fstoch and the torque vector Tstoch.

The translation matrix in eq. 5.7 can be diagonalized by a principal axis transformation. Af-

terwards, the three-dimensional equation can be split into three one-dimensional equations and

solved straightforwardly. This is not the case for eq. 5.8 since the principal axes of ΘΘΘ and ΞΞΞ are

normally not equal and thus only one matrix can be diagonalized. However, Bedrich [167] gave

an explanation to overcome this restriction. The inertia tensor is only relevant for very short

time scales smaller than the typical observation time in a DLS experiment. Thus, it is possible

to choose a matrix with the same principal axes as the rotation matrix and even the identity ma-

trix for the inertia tensor. Then, the separation can also be conducted and the translational and

rotational diffusion coefficient of the aggregate can be determined from the eigenvalues (which

are just the diagonal elements if the matrix is diagonalized) of ΨΨΨ and ΞΞΞ, respectively [167]:

Dt =
kBT

3πηRprim

1
3

(
1

Ψ1
+

1
Ψ2

+
1

Ψ3

)
(5.9)

Θrot =
kBT

8πηR3
prim

1
3

(
1

Ξ1
+

1
Ξ2

+
1

Ξ3

)
(5.10)

These equations resemble the Stokes-Einstein formulation (eq. 2.30 and 2.72) so the hydrody-



Simulation of Single Aggregate Diffusion Behavior 69

namic radii can be defined accordingly:

Rh,t = 3Rprim

(
1

Ψ1
+

1
Ψ2

+
1

Ψ3

)−1

(5.11)

Rh,rot = Rprim
3

√
3
(

1
Ξ1

+
1

Ξ2
+

1
Ξ3

)−1

(5.12)

As a consequence, to determine the hydrodynamic radii of a simulated aggregate, the translation

and rotation matrix have to be computed. This can be done by calculating the total drag force

and the total torque acting on an aggregate for three independent directions of flow, e.g. in

cartesian coordinates the X-, Y - and Z-direction.

For this computation a solution of the governing equations of the flow field around an aggregate

is required. For Newtonian media this can be described by the Navier-Stokes equation [169].

In the case of the diffusion of submicron particles in liquid media several simplifications can

be made, e.g. creeping (Re � 1) and incompressible flow. The partial differential equation

obtained is typically called the Stokes equation:

η f ·divgrad v = grad p (5.13)

Additionally, the mass conservation law must be fulfilled:

div v = 0 (5.14)

To solve this system of partial differential equations boundary conditions have to be estab-

lished:

1. The fluid velocity in a large distance from the aggregate shall be the mean fluid velocity.

v∞ = v̄ (5.15)

In the specific case of diffusion v∞ = 0.

2. Another boundary condition is the specification of the fluid velocity at the surface of a

primary particle in the aggregate. Typically, sticky-boundaries are applied, i.e. v(Rprim) =

0. However, the solution of the equations is easier if at first a fluid slip is allowed [167].

Then, the second boundary condition can be formulated as:

vslip =
δ

η f
ΠΠΠrt (5.16)

where ΠΠΠrt is the tangential component of the pressure tensor in spherical coordinates (the

tangential shear stress). The sliplength δ designates the penetration depth of the linear
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velocity profile into the primary particle. After the solution of the velocity field, the limit

of δ → 0 can be carried out.

It is obvious that the implementation of sintered primary particles circumvents the analytical

solution of the problem since the second boundary condition (v(Rprim) = 0) cannot be applied.

Here, a discretization of the surface, e.g. via DEM or CFD would have to be used which is also

a computationally expensive solution especially for 3D-aggregates. Another approach which

might be implemented in the future is the use of rotating epicycloids to simulate sintered parti-

cles in an aggregate.

Having formulated the boundary conditions, the system of partial differential equations can be

solved. The principle applied here is a multipole expansion of the flow field as implemented

by Lamb [169]. As proposed by Filippov [158] this one-sphere solution can be expanded to

aggregates of N spheres by the use of addition theorems to transfer the origin of the applied

solid spherical harmonics from the i-th particle to the j-th particle. These addition theorems

are also used to compute the scattering behavior of agglomerates [164]. The derivation of the

solution is quite elaborate and has been conducted by Bedrich [167]. The solution without

derivation is given in Annex B. The functionality of the developed algorithm was tested using

aggregates resembling linear chains and hexagonally close-packed spheres. A good agreement

with theoretically expected values has been found so the program may be applied for the fractal

aggregates that are of interest here.

5.3.2 Results

The first objective of the simulations was to find a relation between the structural properties

(Dm
f , Rg) and the hydrodynamic properties, namely the hydrodynamic radius Rh for DLCA and

CCA aggregates since these generation procedures are typical for pyrogenic silica. However,

not one simulated aggregate gives the same values as another even when the number of primary

particles is kept constant. Thus, the results have to be averaged over many single aggregates to

obtain reliable data for low numbers of primary particles. For DLCA 19×100 aggregates were

generated with logarithmically spaced numbers of primary particles. For CCA the same was

done for 100 aggregates, the numbers of primary particles have to be spaced here as powers of

2 due to the generation procedure. Tables 5.1 and 5.2 show the computed hydrodynamic radii

of translation and rotation in comparison to the obtained radius of gyration.
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Table 5.1: Relation between the hydrodynamic radii and the radius of gyration for DLCA

aggregates. Values have been averaged over 100 aggregates per primary particle

number. Standard deviation is given in the table [167].

Nprim Rh,t/Rprim [-] Rh,rot/Rprim [-] Rg/Rprim [-]

2 1.39 1.40 1.0
3 1.70 ± 0.03 1.72 ± 0.02 1.43 ± 0.14
4 1.95 ± 0.04 2.00 ± 0.04 1.76 ± 0.17
5 2.18 ± 0.07 2.24 ± 0.06 2.04 ± 0.26
6 2.38 ± 0.08 2.45 ± 0.08 2.27 ± 0.29
8 2.76 ± 0.09 2.87 ± 0.11 2.73 ± 0.33
10 3.09 ± 0.12 3.22 ± 0.13 3.11 ± 0.39
12 3.37 ± 0.13 3.53 ± 0.17 3.41 ± 0.38
15 3.77 ± 0.17 3.94 ± 0.18 3.91 ± 0.56
19 4.30 ± 0.18 4.52 ± 0.22 4.59 ± 0.59
24 4.80 ± 0.22 5.05 ± 0.27 5.08 ± 0.64
31 5.52 ± 0.24 5.85 ± 0.31 5.92 ± 0.72
38 6.10 ± 0.28 6.45 ± 0.35 6.56 ± 0.86
48 6.87 ± 0.34 7.28 ± 0.41 7.42 ± 1.04
60 7.79 ± 0.38 8.28 ± 0.47 8.52 ± 1.15
76 8.79 ± 0.43 9.35 ± 0.54 9.71 ± 1.28
95 9.81 ± 0.44 10.5 ± 0.53 10.7 ± 1.35
120 11.2 ± 0.50 11.9 ± 0.60 12.4 ± 1.61
150 12.5 ± 0.57 13.3 ± 0.75 13.7 ± 1.60

Table 5.2: Relation between the hydrodynamic radii and the radius of gyration for CCA aggre-

gates. Values have been averaged over 100 aggregates per primary particle number.

Standard deviation is given in the table [167].

Nprim Rh,t/Rprim [-] Rh,rot/Rprim [-] Rg/Rprim [-]

2 1.39 1.40 1.0
4 1.91 ± 0.10 1.96 ± 0.11 1.64 ± 0.25
8 2.66 ± 0.14 2.76 ± 0.16 2.52 ± 0.37
16 3.64 ± 0.21 3.80 ± 0.23 3.49 ± 0.52
32 5.07 ± 0.27 5.31 ± 0.30 5.04 ± 0.69
64 7.11 ± 0.35 7.49 ± 0.44 7.15 ± 0.84
128 9.90 ± 0.51 10.4 ± 0.61 10.0 ± 1.24

If now the radii are plotted against the number of primary particles (see Fig. 5.5) it can be

concluded that similarly to the fractal dimension for the radius of gyration (c.f. eq. 2.2) there

can as well power laws be defined for the hydrodynamic radius of translation and rotation,

respectively:

Nprim = kh,t
f

(
Rh,t

Rprim

)Dh,t
f

= kh,rot
f

(
Rh,rot

Rprim

)Dh,rot
f

(5.17)

The exponents Dh,t
f and Dh,rot

f will be called hydrodynamic dimensions. For the simulations con-
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Figure 5.5: Power law behavior of the hydrodynamic radii for (a) DLCA and (b) CCA aggre-

gates compared to the radius of gyration [167].

ducted here, the following numbers have been recieved for DLCA (from a linear fit in Fig. 5.5):

Nprim = 1.57
(

Rg

Rprim

)1.71

= 1.09
(

Rh,t

Rprim

)1.96

= 1.07
(

Rh,rot

Rprim

)1.91

(5.18)

and for CCA:

Nprim = 1.73
(

Rg

Rprim

)1.83

= 1.01
(

Rh,t

Rprim

)2.12

= 0.99
(

Rh,rot

Rprim

)2.07

(5.19)

From Fig. 5.5 and the equations above it can be concluded that the two hydrodynamic radii are

nearly the same over the entire range considered here. The radius of gyration instead deviates

for very small aggregates but is comparable to the hydrodynamic radius for N ' [10,100]. For

larger aggregates the deviation will again grow due to the difference in the exponents of the

power law, the fractal and hydrodynamic dimension.

It is a very interesting fact that the hydrodynamic dimensions show a distinct off-set to the fractal

dimension. If this is a generous finding it could explain the differences measured in the fractal

exponents for pyrogenic silica with static scattering techniques (∼ 1.8 [58, 59]) which measure

the structural properties and rheometric experiments (∼ 2.0 [54]) that measure hydrodynamic

properties. To verify the generality of this relation, model aggregates (c.f. Chap. 5.2.3) with

Dm
f = [1,3] and ∆Dm

f = 0.025 were generated and their hydrodynamic properties computed.

Fig. 5.6 shows the relation of the hydrodynamic dimensions and the fractal dimension.

Indeed, the hydrodynamic dimensions are always larger than the fractal dimension (in fact the

curves touch each other at Dm
f = 3 which is the expected behavior for spheres) and except for

low fractal dimensions (i.e. chain-like aggregates) the dimension of translation is very close to
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Figure 5.6: Hydrodynamic and fractal dimensions of model aggregates with Nprim = 150. The

scatter in the region Dm
f < 1.75 results from slight deviations from the power law

behavior for the rotational diffusion [167].

the dimension of rotation. Bedrich [167] additionally examined whether the obtained relation

between the hydrodynamic and geometric properties of the aggregates can be considered a

general rule for fractal aggregates by comparing Fig. 5.6 with DLA, DLCA, CCA and ballistic

aggregates. A very close agreement was found. A similar behavior can also be found for the

hydrodynamic prefactors.

Thus, it is possible to find a general function that relates the hydrodynamic properties Dh
f and

kh
f to the geometric property Dm

f . The fit function in general form is:

f (Dm
f ) = C0 +C1 Dm

f +C2 Dm
f exp(−C3 Dm

f ) (5.20)

and in the specific forms determined from nonlinear least squares:

Dh,t
f =−4.01+2.10Dm

f +11.51Dm
f exp(−1.22Dm

f ) (5.21)

kh,t
f = 5.60−1.41Dm

f −8.56Dm
f exp(−1.15Dm

f ) (5.22)

Dh,rot
f =−0.37+1.16Dm

f +14.04Dm
f exp(−2.50Dm

f ) (5.23)

kh,rot
f =−0.56−0.14Dm

f +3.15Dm
f exp(−0.61Dm

f ) (5.24)

The relative error of the above equations is smaller than 2 % for the model aggregates and

always smaller than 10 % for DLCA and CCA aggregates. Thus, it is now possible to compute

the hydrodynamic properties of a given aggregate, once the fractal dimension Dm
f , the size of

the primary particles Rprim and the number of primary particles per aggregate Nprim is known.
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Additionally, with these simulations an explanation of the difference in fractal dimensions mea-

sured with static scattering techniques and hydrodynamic (rheometric) techniques could be

found and proven. This will open up more characterization possibilities for fractal aggregates

and increase their intercomparability.

5.4 Relation to Dynamic Light Scattering

The main concern for the analysis of dynamic light scattering is the relation of the measured

hydrodynamic radii to the structural radius of gyration and the influence of rotational diffusion

on the obtained results. From the simulations in the previous chapter both relations can be

deduced in dependence of the fractal dimension Dm
f (see Fig. 5.7 and Fig. 5.8).
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Figure 5.7: Relation between the hydrodynamic radius of translation and the radius of gy-

ration in dependence of the number of primary particles and the fractal dimen-

sion [167]. The results of Lattuada et al. [153] have additionally been given for

comparison.

As the most relevant generation process for pyrogenic silica is diffusion-limited cluster aggre-

gation, the region of interest is Dm
f = [1.5; 1.85]. The number of primary particles per aggregate

has been estimated from TEM images of pyrogenic silica. It is usually in a range of [10; 1000].

Therefore, simulations have not been conducted for larger aggregates.

Contrary to the results of Lattuada et al. [153] who used Kirkwood-Riseman theory for their

calculations, no plateau value is obtained but a continuous decrease of the relation between
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translational diffusion and the radius of gyration. This is due to the simulation result that the hy-

drodynamic dimension is always larger than the fractal dimension. This effect is largest for low

fractal dimensions. In the region of interest it can be concluded that the hydrodynamic radius of

translation is somewhat smaller than the radius of gyration with values between (0.7 . . .1) ·Rg.

Thus, the radius of gyration can be determined from DLS measurements if the measurement

result contains only translational contributions.
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Figure 5.8: Relation between the hydrodynamic radius of translation and the hydrodynamic

radius of rotation in dependence of the number of primary particles and the fractal

dimension [167].

To evaluate the influence of rotational diffusion on DLS results it is necessary to resort to

the simulations of Lindsay et al. [161] and Lattuada et al. [155]. Lindsay et al. obtained an

overestimation of the measured mean diffusion coefficient up to 70 % if sRg > 1 provided that

Rh,t = Rh,rot . Based on their result that Rh,t = 0.8Rh,rot for DLCA aggregates (again using

Kirkwood-Riseman theory) Lattuada et al. concluded that this overestimate rises only up to

45 %. In view of Fig. 5.8 it can be seen that the hydrodynamic radius of translation is smaller

than the radius of rotation but varies just between (0.88 . . .0.95) ·Rh,rot . Thus, without con-

ducting the same simulations as Lindsay et al. and Lattuada et al. it can be deduced that the

influence of rotational diffusion leads to an overestimation of the measured diffusion coeffi-

cients by ∼ 55−65%.

This still is a remarkable effect. For the determination of the true hydrodynamic diameter

of translation s-dependent measurements have to be conducted and the results extrapolated to

s = 0. Since the effect of polydispersity is superimposed, it is questionable whether these

theoretically expected values can be found in static and dynamic scattering experiments.





6 Experimental Verification of

Simulation Results

6.1 Preliminary Considerations

As derived in the last chapter there is one main objective to pay attention to in experiments

with pyrogenic silica, the relation between the structural and the hydrodynamic properties. To

account for the effect of different primary particle sizes and polydispersity different grades

of pyrogenic silica with specific surface areas (BET) ranging from Sm = 50 - 400 m2/g were

used.

The characterization of the samples then involves two different experimental tasks. Firstly, the

structure was characterized using static scattering techniques. The s-range of interest required

that both SAXS and SLS measurements had to be conducted.

To accomplish a comparison of the obtained structural properties with hydrodynamic (i.e. DLS)

measurements the influence of rotational diffusion has to be accounted for. Therefore, DLS

measurements on the goniometer system were conducted (angular range 30°- 150°). The HPPS

system was used additionally with a scattering angle of 173°. Finally, the results can be com-

pared and related to the simulations of the previous chapter.

6.2 Structural Properties

6.2.1 SAXS

Measurements were conducted in 0.1 wt.-% suspensions stabilized at pH 9 with KOH and an

ionic background of 0.001 M KNO3. The SAXS experiments took place at the University of
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Karlsruhe. However, the samples were prepared at the TU Dresden with their state of disper-

sion characterized via laser diffraction. All measurements were finished during one week after

preparation. Reference analyses at the TU Dresden confirmed that the samples remained sta-

ble during this period. Fig. 6.1 shows the measured scattered intensity in dependence of the

scattering vector s.
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Figure 6.1: Measured X-ray scattering intensity profiles for 0.1 wt.-% samples of HDKr in

0.001 M KNO3 solution at pH 9: (a) Mean intensity and data scatter for HDKr

N20, (b) Comparison of different HDKr grades.

In Fig. 6.1(a) a single scattering profile has been given and the relevant regions designated. Ob-

viously, the determination of the surface fractal dimension and the primary particle size is ham-

pered by the larger uncertainty of the data in this region. Additionally, it is not easy to conclude

a mass-fractal dimension Dm
f for low specific surface area grades since the polydispersity of the

samples affects the linearity of the fractal scaling (see Fig. 6.1(b)). This difficulty also holds for

the aggregate radius of gyration as the Guinier regime cannot be easily distinguished.

The unified equation of Beaucage [50, 51] (c.f. eq. 2.11) was used to fit the data and to obtain

the fractal parameters. Additionally, the specific surface area has been computed (for details

see e.g. [170]) to enable a comparison with the gas adsorption values (BET). The results are

given in Tab. 6.1. These data do not correspond to the expectations at first sight. The most

controversial feature is the large difference between the fractal dimension determined here and

the fractal dimension which is expected from the generation mechanism and measurements of

other authors for pyrogenic silica [58, 59]. This deviation is not only due to the deformation of
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the profile caused by polydispersity. There must be other reasons for this behavior.

Table 6.1: Structural properties of pyrogenic silica samples determined from SAXS.

Sm (BET)
[
m2/g

]
Sm (SAXS)

[
m2/g

]
Rg [nm] Dm

f [-]

50 95.1 37.25 -

100 145.4 >80 2.46

125 158.1 48.92 2.51

150 177.4 30.85 -

200 271.4 31.06 2.48

300 361.7 29.29 2.36

400 297.9 67.25 2.33

A second observation, which can be made, is that the radius of gyration measured with SAXS

does not correspond to the aggregate size that can be estimated from TEM (c.f. Chap. 1.2).

On the other hand, the data can be compared to the SANS results of Bugnicourt et al. [21]

who used the same silica grades as in this work. They also obtained fractal dimensions in the

range of 2.23−2.61 and radii of gyration between 25−32 nm. However, for one sample they

also obtained another radius at low s (∼ 210 nm for a HDKr N20) that was interpreted as an

interparticle distance. This order of magnitude is, however, expected for the aggregate radius

of gyration from TEM images. Regarding this expectation it has to be noticed that the available

s-range in the SAXS experiments is not sufficient and even for SANS this is the edge of the

measurable range. Thus, it can be assumed that the observable structure of the pyrogenic silica

samples with SAXS is not representative for the whole aggregates since only an incomplete

scattering profile is recorded in the experiments (c.f. Fig. 2.2).

This hypothesis is additionally supported by the comparison of the specific surface areas. If

large primary particles and aggregates were excluded in the static scattering experiments, the

value should actually be higher as with gas adsorption measurements. That this is truly the

case can be easily concluded from Tab. 6.1. HDKr T40 has to be excluded here, since the

primary particles are intrinsically porous for this grade, so the specific surface area value is

underestimated.

To further substantiate the above hypothesis, a comparison with SLS and DLS has to be drawn,

since smaller s values are probed with these techniques. Finally, the question which radius of

gyration is determined from SAXS and SANS, respectively, may be answered.
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6.2.2 Static Light Scattering

Static light scattering results are often hampered by multiple scattering contribution. Thus, only

highly diluted samples may be examined. This increases the purity requirements for the sample

since already some dust contributions may affect the measurement results.

On the other hand, a higher sample concentration is advantageous for the dispersion of the py-

rogenic silica powder. Thus, 5 wt.-% suspensions have been prepared. Afterwards, a single

droplet of these suspensions was added to 100 ml of deionized water. To further remove dust

contributions the suspensions were filtered through a 20 µm paper filter under clean room con-

ditions. Silica drying agglomerates were removed from the flask and the filter housing with 1M

NaOH in advance. Finally, the flask was sealed and the sample characterized.

The measurement signal again is the scattering intensity in dependence of the scattering vector

s. Fig. 6.2 shows the results as a double-logarithmic plot to visualize the fractal features.
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Figure 6.2: Measured scattered light intensity (SLS) over scattering vector s. Curves have

been shifted on the y-axis for visual discrimination. Relevant regions are marked

in the diagram.

There are three regimes that can be distinguished among the grades. For high surface area

grades at low s a transition to volume scattering is observed, i.e. the intensity approaches a

constant value. A Guinier regime related to a radius of gyration is visible for all pyrogenic

silica grades. However, this exponential decrease is shifted to lower s-values with decreasing

specific surface area of the grades, thus indicating a larger size. The radius of gyration has been

computed from the profiles by fitting a Guinier plot (which is the standard procedure for SLS,
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see Fig. 6.3) of the data with:

ln
(

1
I

)
= (sRg)

2 +C1 s4 +C2 s6 (6.1)

The constants C1 and C2 do not have a physical meaning here, but are used to deal with the

curvilinear shape of the intensity profiles.

Figure 6.3: Guinier plot of the measured scattered light intensity with SLS for different grades

of pyrogenic silica.

Furthermore, in Fig. 6.2 at large s a power-law behavior can be observed corresponding to a

fractal scaling of the measured size. A fractal dimension has been determined from the slopes

in the log-log plot. The radii of gyration and the fractal dimensions are given in Tab. 6.2.

Table 6.2: Structural properties of pyrogenic silica samples determined from SLS.

Sm (BET)
[
m2/g

]
Rg [nm] Dm

f [-]

50 202 1.77
100 187 1.78
125 167 1.76
150 163 1.77
200 140 1.72
300 116 1.54
400 117 1.58

Though this procedure gives reliable results for low surface area grades (up to 150 m2/g) since

more than 15 data points can be fitted, uncertainties occur for the high surface area grades.

Here, only 4 or 5 points can be incorporated in the analysis but as can be seen for HDKr T30

and T40 they are still affected by the Guinier regimes.
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Interestingly, both values (Rg, Dm
f ) differ remarkably from the SAXS and SANS results [21].

The radii of gyration are much larger which is obviously due to the accessible s-range of the

methods. Contrary, the fractal dimensions are smaller than those obtained by X-ray or neutron

scattering. Additionally, there is a clear decrease of the radius of gyration with increasing

surface area of the grades which was not obtained for SAXS and SANS. As with SLS for

some grades the volume scattering plateau is reached, it is likely that the radii of gyration

determined here are the true aggregate radii. Also, the fractal dimension rather corresponds

to the theoretically expected DLCA generation than Dm
f obtained from SAXS. However, the

SAXS and SANS results cannot just be dismissed. Clarification can only be anticipated from

the DLS results since the hydrodynamic diameter should scale with the radius of gyration of the

aggregates.

6.3 Hydrodynamic Properties

The sample preparation for the DLS goniometer was the same as for the SLS measurements.

For the HPPS a slightly larger solids concentration was used (∼ 0.01 v.-%). Then, due to the

larger contribution of scattering aggregates, no dust filtration was necessary. Fig. 6.4 shows

the primary measurement result, the autocorrelation functions, for a HDKr V15. It is readily

available from the figure that a reduction of the scattering angle leads to a shift of the measured

ACF to larger lag times. Thus, the adjustment of the measurement duration (see Chap. 4.5) is

verified.

For each scattering angle 9 single runs have been conducted. Afterwards, a unique ACF was

obtained by a randomization procedure carried out with a MATLABr script where for each lag

time an autocorrelation value was chosen randomly from the single measurements. Therefore,

all single runs had to be normalized by the maximum value of the according correlation function

to neglect deviations in the coherence parameter b. This method stabilizes the subsequent data

analysis since covariant measurement errors are minimized.

As a first analysis step a mean diffusion coefficient for each scattering angle has been deter-

mined by a cumulants analysis of the randomized ACF’s. For this purpose a MATLABr script

was used. In the program the cumulants expansion is cut after the quadratic term as supposed in

Chap. 2.3.2.1. Additional to the standard algorithm the baseline for the normalization of G2(τ)
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Figure 6.4: Autocorrelation functions for a diluted HDKr V15 suspension at different scat-

tering angles. The scattering angles 35°, 45°, 55°, 65°, 75°, 80°, 85°, 95°, 100°

and 105° have been omitted here but fit in the shown trend.

is corrected accounting for dust contributions in the samples that have a large decay time. There-

fore, the gradient of the correlation function is computed and high frequency noise is removed

using a low-pass filter in the power spectrum obtained from a Fast-Fourier transformation. Af-

terwards, the baseline may be found in the ACF when the smoothed gradient is firstly reduced

to zero after its maximum value. The ACF is then again normalized to a maximum of 1 after

the baseline is subtracted. Now, data truncation can be performed at a correlation value of 0.1

since all correlation functions have the same appearance and thus the comparability of the re-

sults is guaranteed. The further processing of the cumulants analysis resembles the description

in Chap. 2.3.2.1.

The obtained mean diffusion coefficients are shown in Fig. 6.5(a) for the HDKr grades D05 up

to V15 and in Fig. 6.5(b) for HDKr N20 – T40. The numerical values of the harmonic mean

particle size and the polydispersity index are given in Annex C.

There is a strong variation of the mean diffusion coefficients when the scattering angle is

changed. Thus, the influence of rotational diffusion has to be considered here. In view of the

evolution of the scattering vector dependence two interesting features can be observed. First,

at any scattering vector the different product grades can be distinguished by their diffusion co-

efficient. This is an important prerequisite for quality assurance purposes since there only one

scattering angle is mostly used due to time requirements.

Secondly, for the high surface area grades HDKr T30 and T40 the mean diffusion coefficient



84 Experimental Verification of Simulation Results

0.01 0.02 0.030.005 0.007 0.015
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

−8

s [nm−1]

D
m

ea
n [c

m
2 /s

]

50 m2/g

100 m2/g

125 m2/g

150 m2/g

(a) Low specific surface area grades

0.01 0.02 0.030.005 0.007 0.015
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

−8

s [nm−1]

D
m

ea
n [c

m
2 /s

]

200 m2/g

300 m2/g

400 m2/g

(b) High specific surface area grades

Figure 6.5: Mean diffusion coefficients of the pyrogenic silica samples determined from a sec-

ond cumulants analysis. The influence of rotational diffusion can be recognized

from the scattering vector dependence. Note the different scales of the y-axes in

the subfigures.

seems to approach a plateau at low scattering vector while for low surface area grades the

plateau is not obtained. Additionally, the curves resemble the theoretically obtained trend of

Lindsay et al. [161] (for DLCA aggregates, c.f. Fig. 2.13(b)). Therefore, the following empirical

equation that approximates the step behavior with two plateaus in Fig. 2.13(b) was used to fit

the measured data:
D̄

10−8 cm2

s

= C1 +
C2

1+
(

log10(s·µm)
C3

)C4
(6.2)

An extrapolation to s = 0 gave the hydrodynamic diameter of translation. Fig. 6.6 shows the fits

to three HDKr grades exemplarily. The y-axis has been changed to the harmonic mean size to

enable the reader to obtain the hydrodynamic diameter visually.

The obtained hydrodynamic radii and diameter are finally summarized in Tab. 6.3. Additionally,

the ratio between the upper and lower plateau is given. The hydrodynamic radii are always

smaller but comparable to the radii of gyration determined from static light scattering. This

result substantiates the above made hypothesis that the size measured with SLS corresponds to

the true aggregate radius. A final conclusion will be drawn in the next chapter. It has to be noted

that only for HDKr D05 and C10P the plateau can be extrapolated with small uncertainty. The

upper plateau D(s→∞) in Fig. 6.5 cannot be determined exactly for larger specific surface area
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Figure 6.6: Fit of the effective hydrodynamic diameter of pyrogenic silica obtained from a

second cumulants analysis of the DLS goniometer data with eq. 6.2 to obtain the

hydrodynamic diameter of translation.

Table 6.3: Hydrodynamic radius and diameter of pyrogenic silica grades determined from

multi-angle DLS. The ratio D(s→∞)/D(s→ 0) determined from eq. 6.2 account-

ing for the influence of rotational diffusion is additionally given.

Sm (BET)
[
m2/g

]
xh,t [nm] Rh,t [nm] D∞/D0 [-]

50 398.8 199.4 1.55
100 341.7 170.9 1.66
125 314.5 157.2 1.95
150 280.2 140.1 1.83
200 229.6 114.8 2.15
300 193.9 97.0 1.92
400 184.3 92.1 2.20

grades due to the limited range of scattering vectors.

In a second analysis the intensity-weighted size distributions were obtained via nonlinear regu-

larization. Fig. 6.7 shows the results for a HDKr C10P. Again, the trend that the distributions

are shifted to smaller sizes with increasing scattering angle can be observed.

Additionally, at small angles a bimodal distribution is obtained. The small peak is due to rota-

tional diffusion and the second due to translational diffusion, i.e. a differentiation is possible. At

larger angles, however, the contribution of rotation increases and the two peaks can no longer

be distinguished by the inversion procedure. Thus, it seems that the whole distribution is shifted

to smaller sizes. If on the other hand the distribution width is considered, it can be recognized



86 Experimental Verification of Simulation Results

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6
x 10

−3

x [nm]

q in
t [n

m
−

1 ]

 

 

30°
50°
90°
173°

Figure 6.7: Intensity-weighted size distributions of a HDKr C10P at various scattering an-

gles.

that the smallest and largest particle size is nearly constant for all angles. The deviations here

are only due to the smoothing of the regularization.

Unfortunately, as rotational diffusion cannot be neglected even for the smallest angles measured

it is not possible to obtain a distribution of hydrodynamic diameters of translation for pyrogenic

silica with small specific surface areas. This is only accessible for a HDKr T30 or T40 at the

smallest scattering angles (see Fig. 6.8).
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Figure 6.8: Intensity-weighted size distributions of a HDKr T30 at small scattering angles.

It is readily available from the figure that even though the primary particles have a narrow

distribution of size for HDKr T30 the aggregate sizes show a broad distribution. Thus, the
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question arises whether a comparison between structure and hydrodynamics can be drawn only

in view of the mean diffusion coefficient and the harmonic mean diameter, respectively.

6.4 Comparison and Conclusion

The results of the structural analysis with SAXS and SLS show a distinct difference in the

aggregate radius of gyration. Additionally, the values of the fractal dimension suggest different

structures measured with the two methods.

The DLS data obtained at the same samples in the same medium gives hydrodynamic radii of

translation (after extrapolation to s = 0) that are of the same order of magnitude as the SLS

radii of gyration (see Tab. 6.4). The experimental ratios Rh,t/Rg (values between 0.787 and

0.987) lie in the range of 0.7 to 1 which was predicted from simulation results in Chap. 5.4.

This supports the assumption, that the best description of the generation of pyrogenic silica

aggregates is a DLCA mechanism. Thus, the ratios may be employed to estimate the average

number of primary particles per aggregate from Fig. 5.7. A mass-fractal dimension of 1.8 has

been used as obtained from the SLS measurements. The results conform with the observations

made in TEM images (Nprim ≈ [10;1000]).

Table 6.4: Ratio of the hydrodynamic radius of translation to the radius of gyration (SLS)

of the pyrogenic silica samples and the estimated number of primary particles per

aggregate from simulation results.

Sm (BET)[
m2/g

] Rh,t/Rg N̄prim estimated from

Fig. 5.7 using Dm
f = 1.8

50 0.987 90

100 0.914 220

125 0.941 180

150 0.856 300

200 0.820 550

300 0.836 450

400 0.787 > 1000

If the ratio between the mean diffusion coefficient determined from cumulants analysis and the

mean translational diffusion coefficient D0(s = 0) is plotted against the scaled structural axis
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s ·Rg (see Fig. 6.9), where Rg is the value obtained with static light scattering, an interesting

observation can be made. The measured data points form a master curve for all silica grades

except HDKr T40. Such a master curve has already been predicted in simulations of DLCA

aggregates by Lindsay et al. [161].
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Figure 6.9: Master-curve of the influence of contributions of rotational diffusion on the mean

diffusion coefficient D measured with DLS for pyrogenic silica. The values are

scaled with the corresponding translational diffusion coefficient D0 obtained at

s = 0. The scattering vector s is scaled with the radius of gyration Rg from SLS.

Plot as in the simulations of Lindsay et al. [161].

These measurement results can now be used to conclude the following:

1. Static light scattering measures the aggregate radius of gyration as well as the aggregate

mass-fractal dimension Dm
f while the SAXS values remain ambiguous. A hypothesis for

clarification will be given below.

2. The theoretically suggested generation procedure of diffusion-limited cluster aggregation

has now been verified as a good description of pyrogenic silica powders (Dm
f determined

with SLS ≈ 1.8, ratio Rh,t/Rg between 0.7 – 1.0).

3. The fit equation (eq. 6.2) is a good approach to determine the hydrodynamic radius of

translation from multi-angle DLS.

4. The intrinsic polydispersity of the pyrogenic silica grades does not hamper the compari-

son between static and dynamic scattering experiments. As shown in Fig. 6.9 the respec-

tive mean values give a good correlation.
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5. The upper plateau of Lindsay et al. [161] in Fig. 2.13 cannot be determined exactly in the

measurements here. The theoretical prediction of 1.55-1.65 (see Chap. 2.3.4) holds for

HDKr D05 and C10P (see Tab. 6.3) and no data point is above the limit of 1.7. On the

other hand, the limiting value of 1.45 of Lattuada et al. [155] is exceeded for nearly all

grades. Thus, the simulation results are again verified.

The deviations of HDKr T40 can be explained in view of the porous structure of the primary

particles which gives rise to doubts in the static as well as in the dynamic properties.

The interpretation of the SAXS and SANS results is still an open question. An explanation may

be found in the generation process. Firstly, the primary particles are generated, so there is a

large number concentration and, additionally, the particles are still solidifying. Thus, the aggre-

gation is mostly driven by primary particle – primary particle collisions with a large sintering

factor, small but strongly sintered aggregates are generated. Further down the flame, the tem-

perature drops as well as the primary particle concentration. Now, cluster – cluster aggregation

predominates. Besides, sintering is reduced but still existent. Now, the final aggregates evolve

but only with a loose sintered contact. To conclude this hypothesis, the SAXS results represent

another fractal scale in the aggregates with a specific radius of gyration and a fractal dimension

that is larger than the aggregate fractal dimension, i.e. strongly sintered sub-aggregates.

This suggestion has to be substantiated so the following points are proposed for further investi-

gations:

1. In static scattering the gap in the range of scattering vectors between SLS and SAXS has

to be closed so that an unified analysis of the scattering intensity profile becomes possi-

ble. A feasible measurement technique for this purpose would be ultra-small angle X-ray

scattering (USAXS). This is, however, a very laborious method that is only available at

a few large laboratories with an own synchrotron source (e.g. the European Synchrotron

Radiation Facility, Grenoble, France, or the German Electron Synchrotron DESY, Ham-

burg).

2. The DLCA generation mechanism has to be adapted to use varying sintering factors when

the aggregates in the simulation box grow. Afterwards, the scattering behavior of these

aggregates has to be computed using Rayleigh-Debye-Gans theory [171] where the ag-

gregate scattering form factor can be derived from the computation of the radial density



90 Experimental Verification of Simulation Results

distribution function. Then, the experimental values can be used to obtain a better theo-

retical understanding of the generation process of pyrogenic silica.

A broadening of the measurable range of scattering vectors would also be highly desirable for

dynamic light scattering investigations. This would lead to an efficient determination of the

upper (s → ∞) and lower (s → 0) plateau values to finally prove the simulation results and

possibly improve the fit equation (eq. 6.2). However, at the moment dynamic X-ray scattering

still gives a bad signal quality even with a synchrotron source. Dynamic light scattering with

infrared and blue light from small angles up to the backscattering regime could possibly give

the desired results.

That dynamic light scattering in the backscattering regime can be used unambiguously has

been proven with the results of the HPPS system. The measured data points fit well within

the trends obtained with the goniometer. Different HDKr grades can easily be distinguished.

Additionally, a backscattering system has some advantages for the usage of DLS as a quality

assurance tool:

1. As in this regime translational and rotational diffusion contributes to the measurement

signal, changes in size of the aggregates as well as changes in the structure (e.g. resulting

from different flame conditions) can be detected.

2. The measurement time needed to obtain the same photon count statistics is lowest in the

backscattering regime.

In view of these features backscatter DLS is an ideal tool for quality assurance purposes.



7 DLS-Characterization of Interacting

Suspensions

7.1 Introduction

The characterization of pyrogenic silica suspensions at moderate to high concentrations is

highly desirable since these are industrially relevant. However, as outlined in Chap. 2.3.3 the

measured distribution of diffusion coefficients is altered by hydrodynamic and interparticle in-

teractions. Thus, it has to be examined which precautions in a measurement have to be thought

of and what information can be deduced from such samples. As already the computation of

the diffusion of a single aggregate as well as the calculation of the influence of interactions for

hard-spheres are very elaborate, a theoretical approach is not considered here. Rather, a com-

prehensive experimental investigation will be conducted. Details of the experimental program

will be depicted in the next section.

The following tasks will be adressed:

• How is the mean diffusion coefficient influenced by an increase in concentration for py-

rogenic silica? Is it increased or decreased? What diffusion regime (self- or collective

diffusion) is therefore observed?

• What is the largest tolerable concentration where interaction effects can be neglected?

Can a simple method be found to recognize deviations already in the measurement data,

i.e. the correlation functions?

• Is DLS in high concentrated pyrogenic silica suspensions applicable for quality assurance

purposes or are there ambiguities in the data? Which parameters of the suspension should

additionally be controlled?
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• Can the concentration effects be approximated by the use of the models in Chap. 2.3.3.2?

How should these be modified to attain validity for fractal aggregates?

• What conclusions can be drawn from the measurement results on the impact of interpar-

ticle interactions for pyrogenic silica suspensions?

• The present models only use the mean diffusion coefficient obtained from a cumulants

analysis. Is additional information obtainable by an inversion of the measurement data?

7.2 Experimental Program

As a theoretical approach is not feasible, the experiments have to cope with all the above de-

fined tasks. Therefore, a detailed description of the measurement program shall be given. First

of all, it has to be ensured that the dispersed state of the examined suspensions is equal and

independent of concentration. Therefore, suspensions of pyrogenic silica at two different solids

concentrations (5 wt.-% and 15 wt.-%) were prepared and dispersed. The dispersed state was

verified with DLS measurements at high dilution. For all HDKr grades a unique dispersion was

obtained except for HDKr T40 which could not be completely dispersed at 15 wt.-% with the

available dispersion techniques. Thus, care has to be taken in the interpretation of results for

HDKr T40 at concentrations exceeding 5 wt.-%.

Concentration series were then conducted using a mother solution of 15 wt.-%. The required

concentration was obtained by dilution. Thereby, pH 9 and the salinity of the dilution medium

was kept constant to not alter the effect of interparticle interactions. As in these concentrated

samples multiple scattering is present only the HPPS could be used as measurement instru-

ment. Thus, the scattering angle was fixed at 173° and a scattering vector of 0.0264 nm−1, i.e.

the influence of rotational diffusion could not be considered separately. Again, for each con-

centration 9 single runs were measured from which a re-randomized ACF was achieved for data

analysis.

In view of the impact of interparticle interactions pyrogenic silica suspensions with different

ionic strengths were used in comparison to spherical colloidal sols. By varying the salinity the

extension of the dielectric double layer (i.e. the range of the interparticle interactions) around

the particles is varied as well as the maximum repulsion because the van-der-Waals attraction
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remains essentially constant (c.f. Fig. 2.4). Here, ionic strengths of 10−3 M and 10−2 M cor-

responding to double layer thicknesses of 9.8 nm and 3.9 nm (eq. 2.24), respectively, were

adjusted with KNO3. This should lead to significant differences in the measurement results

since the double layer thickness at low ionic strength is already of the order of the primary

particle size. The higher ionic strength has been chosen so that the suspensions still remained

stable even at high concentrations. It is assumed that a change in the measurement data upon

dilution is mainly due to hydrodynamic interactions, i.e. these samples are taken as reference.

Of course, a further reduction of the range of interparticle interactions would be desirable but

this leads to a destabilization as will be shown in Chap. 8.1.

The use of colloidal silica sols enables the neglect of the influence of the fractal structure and

the polydispersity of the primary particles and aggregates, respectively. Thus, interaction effects

can be associated unambiguously.

7.3 Results and Discussion

7.3.1 The Principal Effect of Increasing Concentration

Fig. 7.1 shows the changes in the measured correlation functions when the concentration is

increased. A HDKr V15 has been chosen exemplarily but the trend holds for all grades. The

volume fractions in the figure have been computed from the mass concentrations using a solids

density of 2200 m2/g. The displayed ACF’s are again composed of 9 single runs using the

re-randomization procedure mentioned earlier.

It is readily available that with increasing concentration the autocorrelation functions are stretched

and decay to zero only at lag times much larger than in diluted samples. Thus, the diffusion

process is slowed down. If these ACF’s would be used to compute a hydrodynamic diameter,

a larger value would be obtained. However, this computation is not feasible since the require-

ments of the Stokes-Einstein relation (particles alone in a quiescent fluid) are violated. There-

fore, results in this chapter will only be presented in terms of the diffusion coefficient which is

the only available quantity in high-concentration DLS.

This decrease of the diffusion process in the suspension can be interpreted in two ways. First of

all, self-diffusion can be considered as the relevant diffusion regime. As shown in Chap. 2.3.3.2
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Figure 7.1: Autocorrelation functions of a concentration series for a HDKr V15 at pH 9 and

0.01 M KNO3. The volume fraction φ is marked in the diagram.

this leads to a decrease. Additionally, interparticle interactions are superimposed. In a first

consideration an attractive potential can be imagined as a source of the slow-down. This should

be verified in further examinations.

In view of Fig. 7.1 up to a concentration of ϕ = 0.0065 (i.e. 1.42 wt.-%) no visible difference

in the ACF is observed. If, however, the data are processed with a second cumulants analysis

another result is obtained. In Fig. 7.2 the mean diffusion coefficient is plotted against the volume

concentration.
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Figure 7.2: Concentration dependence of the mean diffusion coefficient of a HDKr V15 at

pH 9 and 0.01 M KNO3 determined by second cumulants analysis. Values relating

to the effective particle diffusion coefficient at high dilution.
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Here, a reduction of the mean diffusion coefficient by 7 % at ϕ = 0.0065 has to be recognized.

This shows that a visual inspection of the ACF alone is not sufficient since a concentration

influence cannot be easily recognized.

7.3.1.1 Principal Components Analysis

A visual inspection of the measured data is, however, desirable as it is the first detail of the data

the user obtains. Any more elaborate data analysis incorporates knowledge of the system and

of the algorithms behind. A cumulants analysis, for instance, can be fully distorted by choosing

the wrong lag time for data cut-off (c.f. Chap. 2.3.2.1). The autocorrelation function in the

present display is inappropriate since the region of interest (ROI), i.e. the decay, is only shown

in a squeezed format.

Ideally, the coordinate system needs to be rotated so that the ROI can be optimally adjusted. For

this purpose a principal components analysis (PCA) is used. This is a statistical method origi-

nally intended for finding patterns in multidimensional data where graphical representations are

not available. It performs a linear transformation of the data in a way that the greatest variance

in the data is assigned to the first factor, the first principal component. The second principal

component then incorporates the second greatest variance and so forth. Basics of the method

and applications may be found in the book of Jolliffe [172].

The PCA of the autocorrelation function is conducted in the following sequence:

1. The region of interest is defined. As this shall be the main decay of the ACF the correla-

tion data bounded between g2(τ)−1 = [0.2; 0.8] is used to determine the transformation

matrix.

2. In the measurement as well as in the present display the lag times are spaced logarithmi-

cally whilst the principal components are displayed linearly. Thus, the logarithm of the

lag times log10(τi) is used.

3. Now the data are centralized according to:

(g2−1)c
i =

(g2−1)i

g2−1
(7.1)

logτc
i =

log10(τi)
log10(τ)

(7.2)
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where the overline designates the mean value of the data vector. Now the boundaries

determined in Step 1 are applied and the two centralized data vectors are assigned to the

(Ndata×2)-matrix D.

4. The covariance matrix of the centralized and bounded data is computed:

M =
DT ·D

Ndata−1
(7.3)

5. The eigenvalues of the covariance matrix give the variance of the data in the direction

of the eigenvectors. If the eigenvalues are sorted in descending order (λ1 > λ2), the

corresponding eigenvectors γ1 and γ2 give the basis of the rotated coordinate system so

that the main variance is shown parallel to the x-axis and the second main variance is on

the y-axis. Thus, the transformation matrix ΓΓΓ contains the first two eigenvectors in the

columns:

ΓΓΓ = [γ1 γ2 ] =

 γ1,1 γ2,1

γ1,2 γ2,2

 (7.4)

6. Now, the original data can be transformed to give the principal components:

[PC1 PC2 ] = [ logτ g2−1 ] ·ΓΓΓ (7.5)

Fig. 7.3 shows the resulting transformed correlation functions for 4 HDKr grades.

Of course, the above computation leads to varying transformation matrices for each correlation

function and, especially, for each concentration. Thus, the comparison in a concentration series

would be hampered. However, as the variations are generally small for each silica grade a single

transformation matrix obtained at ϕ = 0.0254 was used for data analysis.

The diagrams in Fig. 7.3 have to be read in the following way. The initial plateau of the corre-

lation function (τ → 0) is in the upper right corner. The main decay is nearly horizontal in the

range (2;4) since it designates the largest variance of the data and is therefore assigned to the

first component. The long time tail can then be found in the lower left corner.

Now, the following conclusions can be drawn:

• Differing from the presentation in Fig. 7.1 a concentration dependence can be deduced

from a visual inspection even for the lowest concentrations measured. However, the vari-

ations here are in the range of analysis uncertainty, e.g. of a cumulants analysis, so no

further dilutions have been conducted.
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(b) HDKr C10P
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(c) HDKr V15
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(d) HDKr T30

φ = 0.0743 φ = 0.0495 φ =  0.033 φ =  0.022 φ = 0.0147 φ = 0.0098
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Figure 7.3: Correlation functions of a concentration series of different HDKr grades. The

data have undergone a principal components analysis and, therefore, the functions

are presented in terms of their principal components. The transformation matrix

has been determined exclusively for each grade at a concentration of ϕ = 0.0254.

• While for the grades C10P, V15 and T30 a continuous trend can be deduced, there is a

reversal for HDKr D05 at concentrations below ϕ = 0.0029. This might indicate a differ-

ent interaction mechanism than can be suggested from the principal tendency. Clarifying

experiments will be presented in the succeeding sections.

• The long-time stretching behavior is again observed for all grades. However, it is imme-

diately accessible from Fig. 7.3 that this behavior grows with the specific surface area. A

possible explanation is that since interparticle interactions act via the particles surfaces, a

larger impact must be obtained when a larger total surface area is present in the suspen-

sion.



98 DLS-Characterization of Interacting Suspensions

The above results prove the benefit of a principal components analysis of the measured auto-

correlation functions. Differences between samples might be deduced without having to know

how to handle data analysis algorithms. These advantages naturally arise only in the comparison

of multiple data sets, single measurements are unaffected.

7.3.2 Are Models for Spheres Adequate?

After it has been shown that there are indeed strong concentration effects in the measurement

data, it is necessary to quantify the strength of these impacts. Referring to Chap. 2.3.3.2 the

state of the art is to perform a second cumulants analysis and observe the behavior of the mean

diffusion coefficient when the concentration is increased.

The principal behavior has already been shown for a HDKr V15 in Fig. 7.2. Fig. 7.4 now shows

the results of the second cumulants analysis for all grades at pH 9 and 0.01 M KNO3.
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Figure 7.4: Concentration dependence of the mean diffusion coefficient determined by sec-

ond cumulants analysis for all HDKr grades at pH 9 and 0.01 M KNO3. Values

relating to the effective diffusion coefficient at high dilution.

A nearly linear behavior is obtained for all samples except for HDKr T40. Again, these aggre-

gates show differences that can be assigned to the porous structure of their primary particles.

The linearity corresponds to the models in Chap. 2.3.3.2 for low concentrated systems. How-

ever, if pyrogenic silica could be compared to those HS models, all data should form a single

line with slope [−1.73→−2.5] depending on the chosen reference [74, 84–87, 141, 145]. This

is not the case and, moreover, the obtained slopes in Fig. 7.4 exceed the HS values by far (see



DLS-Characterization of Interacting Suspensions 99

Tab. 7.1). Additionally, as already recognized in Fig. 7.3 for HDKr D05 firstly an increase

in the mean diffusion coefficient is measured which is also not explainable with a HS model.

Therefore, there is a need for a model adaption. A possible approach will be depicted in the

next section.

Table 7.1: Slopes of linear regression to the concentration dependence of the diffusion coeffi-

cient ratio D/D0 for HDKr suspensions at pH 9 and 0.01 M KNO3.

Sm (BET)[
m2/g

] Slope of
D/D0 vs. ϕ

Coefficient of
Determination R2

50 −5.135 0.9866
100 −6.130 0.9989
125 −7.418 0.9915
150 −7.375 0.9975
200 −8.023 0.9993
300 −8.374 0.9909
400 −7.719 0.9725

7.3.2.1 Effective Concentration Approach

The solids volume fraction in Figs. 7.1–7.4 has been computed using a density of 2200 m2/g,

i.e. assuming that pyrogenic silica aggregates are compact solid spheres. Obviously, the frac-

tality of the aggregates requires that they occupy a larger volume in the suspension than is

accounted for by the volume fraction. Thus, an effective volume fraction needs to be consid-

ered.

However, care has to be taken in the definition of the effective volume fraction. As the effect of

interactions is measured as an increase or decrease of diffusivity it is a first approach to define

the hydrodynamic diameter of an aggregate as an effective diameter. Then, the open fractal

structure of an aggregate can firstly be expressed in terms of a porosity that gives the effective

volume fraction for a HDKr grade:

ϕeff =
ϕ

1− ε
(7.6)

Still, the question remains, how such a porosity can be determined. Two different approaches

have been pursued in this work. The first used centrifugation of the pyrogenic silica samples.

The porosity was then determined from the porosity of the sediment. A second approach used

the results of Chap. 5 and 6 to obtain the mass of a single aggregate and the hydrodynamic

diameters of translation determined from multi-angle DLS. The details of the centrifugation



100 DLS-Characterization of Interacting Suspensions

experiments would lead too far in this context and have, therefore, been shifted to Annex D.

Tab. 7.2 lists the resulting porosities for the different silica grades obtained from the second

approach. The first approach gives similar values but cannot be used for all silica grades.

Table 7.2: Hydrodynamically equivalent aggregate porosities of the pyrogenic silica grades.

HDKr grade D05 C10P S13 V15 N20 T30 T40

Porosity ε̄ 0.895 0.935 0.928 0.944 0.960 0.955 0.971

Fig. 7.5 shows the same data as in Fig. 7.4 but plotted over the respective effective volume

fraction for each grade. Obviously, ϕeff does not bear a direct physical meaning since values

up to 2.65 are obtained. However, it is possible to think of the meaning of this behavior in

terms of interpenetration probability, i.e. at an effective volume fraction of 1 the aggregates are

very likely to interpenetrate. Again the data of HDKr T40 show an unsual trend. This can

be explained in view of the approach made in Annex D. The determined porosity additionally

expresses the intrinsic porosity of the primary particles. The effect overscales the curve so the

data will be neglected in the further progression.
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Figure 7.5: Concentration dependence of the mean diffusion coefficient determined by second

cumulants analysis for all HDKr grades at pH 9 and 0.01 M KNO3. An effective

volume fraction determined from the aggregate porosities is used. Note, that now

volume fractions larger than 1 are possible, this is only a scale effect but bears no

direct physical meaning.

On the other hand, also the data of the other HDKr grades do not show a unique behavior which

has been expected for the effective concentration approach. May this be explained with uncer-
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tainties introduced in the determination of the volume fraction and the porosity, respectively?

The values 1− ε in eq. 7.6 are quite small so that even a small uncertainty should have a sig-

nificant impact. Therefore, an error propagation of eq. 7.6 has been computed to determine the

relative error in ϕeff:

∆ϕeff =

√(
1

1− ε̄

)2

·∆ϕ2 +
ϕ̄2

(1− ε̄)4 ·∆ε2 (7.7)

Indeed with a supposed error of ∆ϕ = 0.0002 and ∆ε = 0.01 relative deviations of ϕeff between

9 % and 25 % are obtained, ∆ε = 0.015 already gives more than 40 % uncertainty. These errors

in the determined porosity are still very small in view of the assumptions made in Annex D.

The principal effect is shown in Fig. 7.5 where the two dashed lines show the data of HDKr

C10P with ε̄−0.015 and ε̄ + 0.015, respectively. These two lines enclose nearly all measured

data points except for HDKr T40.

Summarizing, it has to be said that a master-curve behavior using the effective concentration

approach could not be completely approved. However, the data show that a scaling seems to

be possible but the uncertainties introduced in the determination of the aggregate porosities are

too large. Further progress may be achieved in future work when a more exact determination of

the structural and hydrodynamic properties of pyrogenic silica enables a better estimate of the

aggregate porosities.

The slopes determined in Fig. 7.5 are in a range of [−0.3; −0.6]. This is well below the known

values for hard spheres which should be the lower boundary. For charged spheres a smaller

slope is obtained [146] but the models only have a validity for low volume fractions so they

cannot be applied in this case. Therefore, the meaning of the slope, i.e. the type of interactions

that are dominant in pyrogenic silica suspensions, remains to be explained.

7.3.3 The Effect of Interparticle Interactions

7.3.3.1 A Comparison to Spherical Silica Sols

As a data treatment based on theoretically derived models in the previous section could not give

exact information on the cause of the diffusivity change in concentrated pyrogenic silica sus-

pensions explanations have to be sought by simplifying the material under consideration. Silica

sols are ideal for this purpose since they show very similar interfacial properties as pyrogenic
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silica but are mostly spherical. Additionally, the influence of polydispersity may be neglected

for the two Levasilr samples. It can then be taken into account by using the Fuso and Köstrosol

sample.

Firstly, the results of the cumulants analysis for the sample Levasilr 02T062 are given in

Fig. 7.6.
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Figure 7.6: Concentration dependence of the mean diffusion coefficient and the polydispersity

index determined by second cumulants analysis for Levasilr 02T062.

Contrary to the pyrogenic silica samples the diffusivity increases with concentration. Only at

volume fractions above ϕ = 0.12 this trend is reversed. An explanation can be given simplis-

tically by saying that below ϕ = 0.1 only pairwise interactions are present. The counterionic

stabilization of the particles then results in an additional acceleration of the particles that causes

the increase in diffusivity. Multi-body interactions at higher concentrations then lead to a struc-

ture formation in the suspension, a pseudo-lattice with lower individual particle mobility is

formed. However, the situation is more complex, as can already be deduced from the behavior

of the polydispersity index. As the particles are rather monodisperse, their change of diffusivity

should not result in such a drastic increase of the PDI. Therefore, an inversion of the autocorre-

lation functions has been conducted to obtain the diffusion coefficient spectra (see Fig. 7.7).

The large alterations of the distribution functions with increasing concentration can easily be

recognized. Firstly, a very narrow distribution is measured which shows the real distribution

of Stokes-Einstein diffusion coefficients D0. Only for this distribution eq. 2.30 can be used

to compute a particle size distribution. When the concentration is increased to ϕ = 0.0506

faster diffusion components occur in the distribution. These can be at least partly attributed
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Figure 7.7: Intensity-weighted transformed density distributions of diffusion coefficients for

Levasilr 02T062 at different concentrations. The Stokes-Einstein equation is

valid only for the lowest concentration.

to the additional repulsion of the charged particles. Additionally, the observation range of the

measurement instrument changes from self-diffusion to collective diffusion (c.f. Chap. 2.3.3.2).

As collective diffusion coefficients are always smaller than self diffusion coefficients, the shift

can also be attributed to this transition. This change of diffusion regime is even more visible at

ϕ = 0.1139. Additionally, the distribution shows a stretch at lower diffusion coefficients. Here,

the above mentioned structuring of the suspension occurs and a long-time diffusion coefficient1

is measured that can be associated with structural relaxations. This structure is finally fully

developed at ϕ = 0.1708, the original peak has disappeared, only collective diffusion and long-

time diffusion remains.

If the primary particle size is increased (from 42.5 nm to 91.8 nm) by using the second Levasil

sample 02T144 (see Tab. 4.2), the critical concentration ϕkrit for the self-diffusion/collective

diffusion transition is increased from 0.024 to 0.24 for the HPPS instrument. Therefore, collec-

tive diffusion is not measurable and only the structuring of the suspension should be visible in

the diffusion coefficient spectra (see Fig. 7.8).

Indeed, the expectations are fulfilled. An increase in concentration does not lead to shifts

of the distribution function to larger diffusion coefficients, the obtained portions larger than

10−11 m2/s are only due to the smoothing of the inversion algorithm. The structuring at large

1 The term long-time in this context means that the decay time of this process is large compared to the time

necessary for a single particle to diffuse a distance comparable to the mean hydrodynamic particle size [141].
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Figure 7.8: Intensity-weighted transformed density distributions of diffusion coefficients for

Levasilr 02T144 at different concentrations.

concentrations, however, does not show a comparable impact to the smaller Levasilr sample.

Two reasons can be given. Firstly, the interparticle distance is larger for the Levasilr 02T144

(42.5 nm compared to 19.7 nm at ϕ = 0.17) and additionally the larger particles have a lower

mobility, i.e. the same degree of interaction is only obtained for a higher concentration. Sec-

ondly, the range of the counterionic repulsion is lower for the larger sample, since the suspen-

sion shows a higher conductivity (8.6 mS/cm compared to 1.9 mS/cm) that can be associated

with a larger compression of the dielectric double layer. Thus, the structuring range is again

increased.

Next, silica sols showing a considerable polydispersity in particle size were examined, again

the systems differed in their mean particle size.. The behavior of distributed systems is diffi-

cult to predict since the transition range to collective diffusion is broader and the interparticle

distance cannot be easily achieved. Fig. 7.9 shows the obtained distributions for comparable

concentrations as for the Levasilr samples.

The relatively broad distributions at ϕ = 0.0002 can be readily identified from the diagrams.

The effect of particle concentration is principally the same as for the Levasilr samples. Both

mechanisms, collective diffusion and structuring, occur simultaneously when the concentration

is increased. As already known from theoretical considerations (c.f. Chap. 2.3.3.2) the collec-

tive diffusion coefficients then increase with concentration while the structuring decreases the

diffusion coefficients. Thereby, the whole measured distribution is broadened. This is the rea-

son for the large increase of the polydispersity index when the cumulants method is used for
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Figure 7.9: Intensity-weighted transformed density distributions of diffusion coefficients for

a) Köstrosol AD and b) Fuso PL-3 at different concentrations.

data analysis. The same results can also be obtained for the Levasilr samples, however, the

impact of the effects seems to be even more pronounced for the polydisperse samples.

Certainly, the question could be raised whether this larger effect could again be due to the coun-

terionic repulsion of the particles. While this would be a good explanation for the Fuso sample

(conductivity≈ 0.2 mS/cm), the Köstrosol sample showed the same conductivity (1.9 mS/cm)

as the small Levasilr sample.

Summarizing, there are a lot of impacts on the particles diffusivity that have to be considered

when DLS measurements in concentrated suspensions are conducted. Examples are the dif-
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fusion range, the structuring of the suspension and the effect of particle repulsion which acts

as an additional structuring effect at high concentrations (an attraction is neglected for stable

suspensions). Unfortunately, only for ideal particles the transition to collective diffusion and

the structuring of the suspension can be predicted. The results show that the same effects also

work for polydisperse sample, though, in a complicated mixed manner. It has to be noticed that

the consideration of the mean diffusion coefficient alone does not give satisfying explanations

of the underlying mechanisms. The width of the distribution of diffusion coefficients, either

obtained from a second cumulants analysis or via an inversion of the data has been identified

as an important carrier of information. Still, there are some open questions remaining. As the

silica sols were already delivered as suspensions, unknown dispersing agents may have a signif-

icant impact on the stabilization mechanisms in the suspension. If there are adsorbed polymer

chains or surfactants on the particles, even a centrifugation as carried out for the Fuso sample

(c.f. Chap. 4.3) cannot remove all sterically acting substances. Therefore, the consideration of

interparticle interactions could only be conducted with the pyrogenic silica suspensions as will

be shown in the next section.

7.3.3.2 Pyrogenic Silica Revisited

If the questions from Chap. 7.1 are recalled, only two of them still need to be answered. What

is the direct impact of interparticle interactions in pyrogenic silica suspensions and can high

concentration DLS be applied for quality assurance purposes? As could be deduced from the

last section the width of the distribution gives valuable information concerning these issues. So

far, only the mean diffusion coefficient and its concentration dependence has been considered.

Fig. 7.10 shows the corresponding values of the polydispersity index PDI for the suspensions

at pH 9 and 0.01 M KNO3. As the effective concentrations bear a too large uncertainty (c.f.

Chap. 7.3.2.1) the results are again plotted versus the solid volume fractions. The data have

been normalized to the PDI determined in high dilution to enable a comparison of the silica

grades. As expected, the polydispersity index grows with increasing concentration, i.e. there

are obviously again different interaction mechanisms present. Though, the trend is not that

unambiguous as for the mean diffusion coefficient, it can be deduced that low surface area

grades show a smaller increase than large surface area grades. However, it has to be noted that

low surface area grades already show a larger PDI in high dilution.

Suppose that the same interaction mechanisms act in pyrogenic silica suspensions as in the
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Figure 7.10: Concentration dependence of the normalized polydispersity index determined by

second cumulants analysis for all HDKr grades at pH 9 and 0.01 M KNO3.

colloidal silica sols. Then, taking the hydrodynamic diameter into account, no transition to

collective diffusion should be visible since the critical volume fraction is larger than ϕ = 1. The

only visible effect should be a structuring of the suspension associated with a distribution of

long-time diffusion coefficients. An inversion of the data has, therefore, been conducted. The

results of four exemplary HDKr grades are given in Fig. 7.11. HDKr T40 has been omitted

in this discussion since the ambiguities already shown in Chap. 7.3.2 would complicate the

interpretation of the results.

The results of the low surface area grade D05 are as expected. No collective diffusion is ob-

served but the distribution is shifted to smaller diffusion coefficients that account for the struc-

turing of the suspension. Contrarily, already in HDKr S13 at the highest measured concentra-

tion, a small peak is obtained accounting for a faster diffusion component. This shows that also

for the consideration of collective diffusion an effective volume fraction needs to be used. As

the aggregate sizes decrease with increasing specific surface area, collective diffusion compo-

nents are more characteristically shown for the grades N20 and T30. Additionally, the increase

of collective diffusion with concentration is visible. The structuring effect becomes more pro-

nounced with increasing surface area. Two reasons may be given for this behavior. Firstly, as

obtained in Annex D, the smaller aggregates show a more open structure than the larger aggre-

gates of the low surface area grades. Thus, the hydrodynamic interactions are increased that

lead to the observed effect. Secondly, the interparticle interactions act via the particles surfaces,

i.e. that additionally the repulsive forces become larger with increasing specific surface area.
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Figure 7.11: Intensity-weighted transformed density distributions of diffusion coefficients of

different HDKr grades at pH 9 and 0.01 M KNO3. Respective concentrations

are denoted in (a).

To distinguish between the two structuring effects, the interparticle repulsion has been increased

by using samples with reduced ionic strength (0.001 M instead of 0.01 M KNO3). If hydro-

dynamic constriction outweighs the repulsive forces the measured structuring should not be

changed while it should be more pronounced if the counterionic repulsion has a strong influ-

ence. Fig. 7.12 shows the results of the cumulants analysis of the concentration series with pH 9

and 0.001 M KNO3. Tab. 7.3 again gives the values of the slopes of the linear fits.

At first sight a similar behavior is obtained as for the higher salinity samples. Only the linearity

of the measured data points is somewhat reduced. In view of the slopes of the linear regression,

however, an increase is obtained, i.e. the mean diffusivity is reduced more strongly when the

dielectric double layer is extended. This shows that indeed the counterionic repulsion increases

the structuring of the suspensions. The same results should be obtainable from an inversion
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Figure 7.12: Concentration dependence of the mean diffusion coefficient determined by sec-

ond cumulants analysis for all HDKr grades at pH 9 and 0.001 M KNO3. Values

relating to the effective diffusion coefficient at high dilution.

Table 7.3: Slopes of linear regression to the concentration dependence of the diffusion coeffi-

cient ratio D/D0 for HDKr suspensions at pH 9 and 0.001 M KNO3. The values

from Tab. 7.1 determined at pH 9 and 0.01 M KNO3 are additionally given for

comparison.

Sm (BET)[
m2/g

] Slope of
D/D0 vs. ϕ

Coefficient of
Determination R2

Slopes at
0.01 M KNO3

50 −6.860 0.9971 −5.135
100 −6.575 0.9816 −6.130
125 −9.403 0.9961 −7.418
150 −10.133 0.9914 −7.375
200 −12.244 0.9530 −8.023
300 −12.472 0.9804 −8.374
400 −12.171 0.9794 −7.719

of the measured autocorrelation functions. Fig. 7.13 gives a comparison of the distributions

of diffusion coefficients. Each sub-figure draws the difference between the two ionic strengths

while the effect of increasing concentration can be viewed in the rows of sub-figures and the

effect of increasing specific surface area in the columns.

In the left column highly diluted samples are shown. The obtained distributions should, there-

fore, be independent of the increase in double layer thickness except when this thickness itself

would be measurable with DLS as e.g. Xu proposed for small spherical particles [173]. In view

of the obtained results this cannot be established for pyrogenic silica suspensions. The differ-
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Figure 7.13: Influence of the suspensions ionic strength on the concentration dependence of

the distribution of diffusion coefficients for pyrogenic silica suspensions. The

X-axes show the diffusion coefficient in m2/s and the Y-axes show the intensity-

weighted transformed density distribution q∗int(D). The solid line denotes sus-

pensions at pH 9 and 0.01 M KNO3, the dashed line corresponds to pH 9 and

0.001 M KNO3.
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ences in the distributions are very small what can be assigned to uncertainties introduced by

the inversion algorithm. This again verifies the reproducibility of the sample preparation pro-

cedures so that the differences in higher concentration can clearly be ascribed to interparticle

interactions.

The middle column shows samples at an intermediate concentration. For the low surface area

grades only very small alterations occur at lower salinity. Again, the structuring is increased

but no collective diffusion occurs. For HDKr N20 and T30 instead, collective diffusion is

measured but these peaks show no dependence on the extension of the dielectric double layer.

The structuring effect is, however, more pronounced. The same holds for the samples at ϕ =

0.0743 except for smoothing effects of the regularization procedure (samples HDKr S13 and

T30).

These results depict the principal influence of interparticle interactions on the diffusivity in con-

centrated pyrogenic silica suspensions. For stable suspensions only a repulsive total interaction

potential can be considered. At large concentrations the aggregates are hydrodynamically hin-

dered in their mobility. The interaction is superimposed on that general effect and aggravates

it. Additional to the diffusion coefficient spectrum that accounts for the different hydrody-

namic size of the aggregates (though influenced by rotational contributions) a second distribu-

tion occurs. These so-called long-time diffusion coefficients describe the restricted movement

of the aggregates past one another. Obviously, they are more pronounced when the concen-

tration increases (i.e. the interparticle distance decreases) and the particles repel each other. It

is, therefore, desirable to suppress the interparticle interactions to measure the pure hydrody-

namic effect. Possibly, a steric stabilization combined with a high salinity of the suspension

could produce stable suspensions with vanishing double layer interaction. Hitherto, a success-

ful preparation of such suspensions of pyrogenic silica has not been reported and should thus

be subject to further investigations.

7.4 Summary

The development of DLS instruments that can suppress multiple scattering contributions in

the measurement signal has facilitated the measurement of colloidal suspensions at industrially

relevant concentrations. For instance, suspensions of pyrogenic silica can be characterized at

a solid content up to 15 wt.-% using the non-invasive backscattering technique of the HPPS.
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It has been, however, shown that some precautions are necessary concerning data analysis and

interpretation in terms of quality assurance purposes.

The results for a single grade are unambiguous so that the whole concentration range can be

used. However, while for diluted measurements nearly no suspension data needs to be recorded

in concentrated suspensions the solids concentration, the pH and amount and type of added

electrolyte are important parameters that can alter the measurement result so they should addi-

tionally be controlled. The largest solids concentration where pyrogenic silica suspensions can

be considered to show free diffusion is below ϕ = 0.001, i.e. the above mentioned parameters

are important already at very low concentrations. A principal components analysis introduced

in Chap. 7.3.1.1 may be used to compare measured autocorrelation functions for a concentra-

tion influence without any model describing the dependence of the ACF from the diffusional

behavior of the particle system.

At high particle concentration the mean diffusion coefficient cannot be used as an unambigu-

ous tool for the distinction of different silica grades. This is due to the stronger influence of

hydrodynamic and interparticle interactions for high surface area grades. The mean diffusion

coefficient might be equal or even larger than for a low surface area grade at a certain concen-

tration. If further parameters, such as the polydispersity index or the distribution of diffusion

coefficients, are additionally considered in such a comparison this problem can be solved so

that DLS remains a valuable tool for quality assurance.



8 Application-Oriented Analysis of DLS

Data

8.1 Gelling Suspensions

8.1.1 Introduction

Interparticle interactions influence the stability of suspensions. As shown in the previous chap-

ter they additionally alter the diffusivity. If the counterionic repulsion between pyrogenic silica

aggregates is screened by a high ionic strength and the concentration of the suspension is large

enough a specific destabilization behavior occurs. The aggregates flocculate but due to their

large occupied volume they do not settle. Instead, an interconnected network is formed that

spans the whole suspension and entraps the liquid phase [174]. Thus, the suspension solidi-

fies.

This phase transition process is called gelation. Research on phase transitions has gained much

attention in the last years. Depending on the acting mechanisms, the solid phases are distin-

guished in gels, Wigner glasses and attractive glasses [175]. The best examined colloidal sys-

tem undergoing phase transitions is a synthetic clay material named Laponite (Southern Clay

Products Inc., Gonzales, USA) because it is able to form all three solid phases only by changing

the salinity of the suspension [175–182].

The process of gelation as observed for pyrogenic silica suspensions is important for many

industrial applications. While a fast transition is wanted, e.g., for cosmetic or medical appli-

cations, it has to be completely avoided when stable paints or abrasives are to be produced.

The most important parameter describing the gelation process is the phase transition time. It

should be controllable and short for wanted transitions and very long if a solidification needs
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to be obviated. The solids concentration, the salinity and the pH of a suspension are important

parameters that can influence the phase transition time.

Dynamic light scattering techniques are often used for the observation of phase transitions [176,

177]. However, it has to be noticed that the principles of DLS are hurt when such systems are

measured. The ergodic hypothesis of Boltzmann [183] is an inherent assumption for the validity

of the field correlation function as obtained in Annex A. It assumes that the system under study

is ergodic, i.e. that every particle is free to diffuse in the whole suspension space. This is

obviously not the case for solidifying samples. Therefore, special data treatment is necessary to

quantify structural changes from the measured autocorrelation functions (see Chap. 8.1.2).

The examinations in this work aimed at a first understanding of phase transitions in pyrogenic

silica suspensions. Therefore, a parameter study was conducted to elicit the most important

influences on the phase transition time. As known from Iler [184] and Knoblich and Gerber [91]

pyrogenic silica is most likely to form gels at a pH of 6. Thus, this parameter was kept constant

in the examinations. Additionally, also the solids concentration remained almost unchanged

since at too low concentrations the phase transition lasts very long and the resulting gel might

not span the whole suspension space so that water is squeezed out after a certain waiting time.

This process is called syneresis and is best known in the production of cheese where the whey

is separated from the cheese curd. If on the other hand the concentration was chosen too high,

multiple scattering occured that could not be completely suppressed with the NIBS technique

of the HPPS.

8.1.2 Analysis of Time-Dependent Correlation Functions

As DLS needs a non-changing spectrum of diffusion coefficients to obtain a reliable autocorre-

lation function, measurements can only be conducted for rather slow phase transitions. Then, a

single measurement monitors the quasi-stationary state of the dispersion. By viewing analysis

results over a multitude of autocorrelation functions the phase transition can be followed with

DLS. Fig. 8.1 shows the typical progression of the measured ACF’s during solidification for a

HDKr V15.

It can be readily recognized from the diagram that with proceeding solidification of the sus-

pension the measured exponential decay of the ACF is stretched to longer decay times. Thus,

the data acquisition time has to be increased to obtain a good statistics of the correlation data.
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Figure 8.1: Characteristic progression of the autocorrelation functions measured at pyrogenic

silica. HDKr V15, 9.9 wt.-%, pH 6, Is = 0.03 M, total data acquisition time 42 h.

This has been done by using the script programming language of the ALV Correlator Software

that enables a continuous change of the measurement parameters for each single run. Addition-

ally, after long time spans the intercept of the ACF starts to decrease and the decay ends at a

plateau value larger than 0. This behavior is associated with the increasing non-ergodicity of

the sample [185, 186].

As stated in the last section non-ergodic systems disagree with the concept of DLS and, there-

fore, clearly non-ergodic ACF’s must not be analyzed. Kroon et al. gave a possible circumven-

tion of the problem [176]. The measured scattered intensity signal has to be decomposed into a

fluctuating (and thus ergodic) part and in a static part:

〈I(t)〉=
〈
I f l(t)

〉
+ Ic (8.1)

The condition for the definition of the fluctuating intensity
〈
I f l(t)

〉
is that the mean of the

complex fluctuating electric field is zero [186]. The static scattered intensity can then be defined

as:

Ic =
√

2 〈I(t)〉2−〈I(t)2〉 (8.2)

A comparison to the definition of the autocorrelation function shows that if the static intensity

is 0 a perfect correlation is obtained:

g2(τ) =
〈I(t)I(t + τ)〉
〈I(t)〉2

⇒ τ → 0 ⇒ g2(0) = 2 =

〈
I(t)2〉
〈I(t)〉2

⇒ I2
c = 0 (8.3)

As the structuring of the phase transition is not unique in the suspension Ic is dependent on

the position where the intensity is measured. Contrary, the fluctuating intensity is position
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independent as it is an ergodic property. Fig. 8.2 shows the evolution of the two intensities

during a phase transition of a HDKr C10P.
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Figure 8.2: Evolution of the static scattered intensity Ic and the fluctuating scattered intensity

〈I f l〉 during the gelation of a HDKr C10P at pH 6, 10.8 wt.-% and Is = 0.1 M.

As the total scattered intensity is measured as a photon count rate, the unit of the

Y-axis is kHz.

As predicted, the fluctuating scattered intensity shows a continuous decrease during the solidifi-

cation of the sample. This is due to the reduced free diffusion of the interconnecting pyrogenic

silica aggregates. The static scattered intensity should ideally be zero at the beginning of the ex-

periment, however, since the coherence factor is never 1 in the backscattering regime a plateau

value is measured instead. After a certain period of time Ic starts to show strong variations

between different measurement runs. This is a strong indication of non-ergodicity in the sam-

ple when Ic becomes position-dependent while the HPPS only measures at a fixed position.

Kroon [186] considers this point to demark the phase transition time tpt , i.e. the time when the

system has completely come to arrest. However, the further decrease of 〈I f l〉 shows that this is

not the case and other analyses have to be conducted.

Thus, Kroon et al. [176] suppose to compute a correlation function solely for 〈I f l〉 which is

called CFF (Correlation Function of the Fluctuating field):

g f l(τ) =

〈
I f l(t) · I f l(t + τ)

〉〈
I f l(t)

〉2 (8.4)

The CFF can be directly computed from the measured autocorrelation function (see Annex E).
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It can then be processed by data analysis algorithms. However, the question remains which

analysis is best suited since in such dynamic processes it has to satisfy specific requirements:

• As for one phase transition up to 500 single measurement runs are recorded, data analysis

must be fast and automated.

• The results of the analysis should scale with the progression of the solidification to elicit

information e.g. on the phase transition time tpt .

Thus, an inversion of the data is not helpful since the computational effort is too high and too

much data are produced. Additionally, there are many parameters that can be altered so an

automated comparison cannot be achieved. Cumulants analysis is fast and produces solely two

parameters that describe the distribution of diffusion coefficients. Unfortunately, the expansion

does not give good fits when the exponential decay is stretched. Therefore, other analysis

schemes have been developed.

Often, the Kohlrausch-Williams-Watts approach introduced in 1863 to describe dielectric relax-

ations in polymers is used to fit the measured correlation functions [176, 179]:

g1(τ) = exp
[
−(τ/τ1)β

]
or g f l(τ) = exp

[
−(τ/τ1)β

]
(8.5)

The difference to a linear cumulants analysis is the parameter β that accounts for the stretching

of the ACF’s at long lag times. However, Kroon et al. [176] could only fit their results at large

lag times using this equation. The approach differed at short lag times.

In 2001 Abou et al. [187] modified the above approach with an additional exponential term:

g1(τ) = C1 exp [−(τ/τ1)]+(1−C1) exp
[
−(τ/τ2)β

]
(8.6)

This gives a better fit to the measured data since the exponential accounts for remaining freely

diffusing portions (rotational and translational). Thus, the decay time τ2 and the stretching

parameter β can be determined with more precision.

Ruzicka et al. [177] finally presented a mostly empiric approach to elicit the phase transition

time and the transition kinetics from eq. 8.6. Therefore, the stretched exponential decay is

supposed to be caused by a distribution of decay times. The mean decay time τm can then be

obtained by:

τm = τ2
1
β

Γ

(
1
β

)
(8.7)
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where Γ(1/β ) is the Gamma function. The mean relaxation time increases during the solidifi-

cation and diverges for long time periods. The phase transition time is, therefore, obtained from

the fit equation:

τm = τ0 exp
[
C

t
tpt − t

]
(8.8)

Certainly, other empirical equations might be found that fit the experimental values equally well

but Ruzicka et al. [177] were able to correlate their obtained phase transition times for Laponite

samples with the manually determined time when the suspension beaker was tilted without the

suspension flowing.

For this reason, the above approach has been adopted here for the analysis of the phase transi-

tions of pyrogenic silica. Differently to Ruzicka et al. and Abou et al. not the field-correlation

function was fitted but the correlation function of the fluctuating field. This seems to be quite

obvious since the ergodic hypothesis is never violated in data analysis which is a prerequisite

for DLS. However, it has to this time not been carried out so a comparison of the fits to the FCF

has additionally been conducted.

For this purpose a set of MATLABr routines has been developed together with Richter [188]

that offer the following analyses:

• Import of measured correlation functions and display. For large data sets, only every j-th

set can be read.

• A second cumulants analysis with additional baseline correction as described in Chap. 6.3

using either the ACF or the CFF.

• A fit based on Ruzicka et al. [177] to determine τ1, τ2 and β as well as τm and tpt either

for the ACF or the CFF. Again, an additional baseline correction can be conducted.

• Decomposition of the measured count rates in static and fluctuating intensities and plot

of the evolution of the mean count rate over the phase transition process. This option is

not available if the sample was removed from the instrument during different runs as the

laser attenuation may be changed by this procedure.

Richter [188] extended eq. 8.6 by an additional term that accounts for the plateau formation at

long lag times:

g f l(τ) = (1−C2) ·
{

C1 exp [−(τ/τ1)]+(1−C1) exp
[
−(τ/τ2)β

]}
+C2 (8.9)



Application-Oriented Analysis of DLS Data 119

However, it could be shown that the analysis of such clearly non-ergodic behavior leads to

deviations of the expected evolution of τm as shown in Fig. 8.3. Thus, the use of eq. 8.9 does

not reveal additional information on the phase transition behavior.
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Figure 8.3: Determination of the phase transition time tpt using eq. 8.8 from experimental

data. The used τm-values deviate if autocorrelation functions with a plateau at

long lag times are included in the analysis.

Finally, it should be noticed that all the above mentioned fits require nonlinear least squares

algorithms. A reflective Newton method has been chosen due to the more robust results obtained

compared to e.g. a Levenberg-Marquardt algorithm.

8.1.3 Measurement Results

In the conducted experiments pyrogenic silica grades HDKr D05, C10P, V15 and T30 were

used to investigate the influence of the specific surface area and the respective primary particle

and aggregate sizes. Each grade was suspended in water at pH 6 (KOH). The ionic strength

was adjusted at 0.1 M and 0.03 M KNO3 to disclose the effect of screening the counterionic

repulsion. All samples revealed a phase transition in time periods ranging from 3 hours to

6 days. When weak ultrasound (50 W) was applied in a water bath only those with low ionic

strength could be liquefied again. This already shows that the stability of the gels depends on the

interparticle interactions. Tab. 8.1 shows the determined phase transition times for all examined

samples except for HDKr T30 at Is = 0.1 M because the phase transition was too fast to be
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observed with DLS and for HDKr D05 at Is = 0.03 M because the phase transition lasted too

long (more than a week).

Table 8.1: Calculated phase transition times of pyrogenic silica samples. The approach of

Ruzicka et al. [177] was applied to either the measured ACF’s or the decomposed

CFF’s.

HDKr sample phase transition time (tpt) [h]
Sm (BET)

[m2/g]
Concentration

[wt.-% ]
Is

[M]
ACF CFF

50 11.0 0.10 22.4 23.6
100 10.8 0.10 22.7 24.7
100 10.0 0.03 116.5 136.8
150 13.4 0.10 2.8 3.0
150 10.7 0.10 3.3 3.3
150 9.9 0.03 49.0 50.4
300 10.1 0.03 5.3 5.6

The first obvious result that can be obtained from the table is that always the phase transition

time computed using the ACF is smaller than tpt from the CFF [189]. This can be attributed to

the analysis of partly non-ergodic spectra when the ACF is used. The erroneously considered

static intensity Ic results virtually in a faster solidification.

Generally, an increase of the specific surface area and the ionic strength, respectively, leads to

a faster phase transition. The solids concentration was only varied for the HDKr V15 samples.

The results show that an increase here also speeds up the solidification. An explanation for this

behavior can be given in view of the gelation model proposed by Sandkühler et al. [174]. As

gelation is a two-step scenario where firstly agglomerates are generated that finally interconnect,

the velocity of the second process has to depend on the available interconnection points on the

pyrogenic silica aggregates. These should clearly scale with the total particle surface area in

the suspension. Thus, an increase in concentration as well as an increase in specific surface

area leads to a faster phase transition. This model shows that the two parameters need not to

be discussed separately so further investigations can make use of this finding to circumvent the

solids concentration problems mentioned in Chap. 8.1.1.

The influence of the suspension’s ionic strength is explicable by the screening of the counteri-

onic repulsion forces. These affect the first gelation step, the agglomeration. At a higher ionic

strength an aggregate needs less impacts with neighboring aggregates until it attaches. This
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property may be the best process variable to influence phase transitions in technical applica-

tions.

To reveal the phase transition kinetics for all pyrogenic silica samples the evolution of the fit

results τm, τ2 and β are displayed versus the relative waiting time t/tpt in Fig. 8.4.
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Figure 8.4: Evolution of the stretched exponential decay of the CFF characterized by (a) the

decay time τ2 and (b) the stretch parameter β . In (c) the mean decay time τm

derived from eq. 8.7 is given. HDKr samples (at pH 6) with different specific

surface area Sm, solids fraction and ionic strength Is marked in the legend.

The plots of τ2 and τm show a classification into two groups. The stretch parameter β decreases

for t/tpt > 0.2 but shows strong variations for a beginning phase transition. This is due to the

applied fit equation (eq. 8.6). At the start of a gelation β takes values around 1, i.e. the CFF

is not stretched yet. The two decays in the fit may then represent nearly the same section of

the correlation function and, therefore, the algorithm has many variables (τ1, C1, τ2 and β ) to

minimize the residual. Thereby, the influence of measurement errors is strongly enhanced which
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leads to variations in the fit parameters. However, also at t/tpt > 0.2 no clear classification for

β is obtained. Only, the HDKr C10P sample differs slightly.

The two obtained phase transition kinetics have also been measured for clay samples [177].

This suggests an universal character of the phase transition. However, an explanation of this

effect would lead too far here but should be part of further investigations. Ruzicka et al. [177]

did only vary the solids concentration when the transition from one regime to the other occured.

According to the above made assumption, the same effect should be visible when either the

concentration or the specific surface area is changed in the experiments. However, the diagram

shows a more complex correlation. Seemingly, the main influence has to be attributed to the

ionic strength of the suspension. All samples with Is = 0.03 M show a relatively slower kinetic.

Due to the stronger repulsion of the aggregates at lower ionic strength, the agglomeration of

pyrogenic silica aggregates is hindered. As reported by Sandkühler et al. [174] this step deter-

mines the speed of the total gelation process because the interconnection step is faster by far.

The same assertion holds true for the two samples of HDKr V15 at Is = 0.1 M. The higher

solids content causes a smaller inter-aggregate distance, thus, agglomeration is enhanced sim-

ply by the shorter diffusion paths. However, the formation of two kinetic groups remains to be

explained.

Summarizing, it can be concluded that the analysis of time-series of DLS measurements enables

the observation of dynamic processes such as a solid-liquid phase transition. Using the approach

of Ruzicka et al. [177] it is possible to determine the phase transition time and the kinetic of the

solidification. In technical applications the method may be used to detect the onset of sample

alterations so that a shelf-life control can be achieved. For this purpose it is not necessary to

keep the samples in the DLS instrument. They may just be stored as usual and only measured

in distinct periods. Of course, the influence of storage temperature should be accounted for in

the measurement settings.

The experiments conducted here reveal the total available particle surface area and the ionic

strength of the suspension to be significant factors that affect the phase transition time. To ex-

plicitly explain the underlying mechanisms of the gelation of pyrogenic silica further investiga-

tions are necessary. The model of Sandkühler et al. [174] offers a good starting point as the two

step scenario is represented in the phase transition kinetics. Continuative experiments should

include variations of the solids content1 as the HDKr V15 results show that an alteration may

1 This parameter is, however, limited as already pointed out in Chap. 8.1.1.
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lead to different kinetics. Additionally, the two transition groups have to be verified by conduct-

ing measurements in samples with ionic strengths > 0.1 M so that finally the universal behavior

of phase transitions can be validated or vitiated.

8.2 Determination of Contaminations by Coarse

Particles

8.2.1 Purity Requirements in Colloidal Suspensions

Technical applications involving colloidal material systems often require a high purity of the

product. The term purity in this context does not only apply to chemical substances such as

e.g. precursors in sol-gel processes but particularly to unwanted coarse particles (normally par-

ticles > 1 µm are called coarse in these applications) since they affect the product properties

in a negative manner. Examples are the disturbance of the generation of colloid crystals, the

alteration of gloss and opacity of pigment dispersions or paper coatings and the perturbation of

self-organizing colloidal layers.

Another important process that probably raises the highest purity requirements to this time is

Chemical-Mechanical Planarization (CMP). It is chiefly used in the microelectronics and optics

industry to achieve planar surfaces (e.g. on integrated circuits or mirrors) with tolerances in the

range of a few nanometers. The occurrence of unwanted coarse particles in the suspensions

used for the CMP process leads to defects on the surfaces such as micro-scratches and gouges.

These in turn impair the functionality of the product. Kuntzsch [163] showed that the defects

can be related to the content of coarse contaminants and hard agglomerates of the colloidal

particles. With continuing reduction of the average feature size (currently (2006) 65 nm, the

next steps are 45 nm (announced for mid 2007), 32 nm, . . . ) the purity requirements will even

increase, the term coarse may then already apply to particles > 100 nm.

Current control of coarse particle fractions is carried out using single particle counters and even-

tually DLS techniques [163]. Particle counters have a high sensitivity to particles > 1 µm but

bear some intrinsic disadvantages. As only one particle may be present in the measurement

volume to be counted, the suspensions mostly need to be diluted which may lead to a desta-

bilization of a CMP slurry. The measured number of coarse particles is, therefore, difficult to
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interpret. The measurement principle can on the other hand not be extended down to sizes of

100 nm for unwanted particles. The scattering of light by particles being of the same size as the

wavelength of light hampers the measurement.

DLS on the other hand measures diffusion coefficients of the whole particle ensemble in the

measurement volume. The contributions of only a few coarse particles to the ensemble av-

erage diffusion coefficient or the polydispersity index in a second cumulants analysis is min-

imal. Thus, in the practical applications suspensions deviating just one or two nanometer in

the harmonic mean particle size from the standard are considered to be suspicious in principle.

However, to this time neither the sensitivity of the common data analysis techniques to coarse

particles has been thoroughly investigated nor have other analyses been developed specifically

for this purpose. Therefore, this task will be treated in the present chapter.

8.2.2 Current Possibilities of DLS Data Analysis

To quantify the measurable impact in a HDKr slurry using standard analysis algorithms (cumu-

lants and inversion techniques), the amount of coarse particles needs to be known from prepa-

ration. Therefore, a suspension of HDKr S13 (which is the standard grade for preparing CMP

slurries) was doped with different fractions (ranging from ϕ = 10−5, . . . ,10−1) of a monodis-

perse spherical silica sol (Geltech 1500, LightPath Technologies Inc., Orlando, USA) with a

size of 1.45 micron. Both powders were dispersed in advance and counterionic stabilized at

pH 9 (KOH) and Is = 0.001 M (KNO3). The doping was then conducted using mother solutions

of HDKr S13 (ϕ = 2.40 v.-%) and of GT1500 (ϕ = 1.0 v.-%) to finally obtain a suspension of

ϕtotal = 0.02. These samples were then measured in the HPPS.

Fig. 8.5 shows the results of the cumulants analysis of the doped suspensions. A mean value

and standard deviation has been computed from the results of the 12 single runs. It can be

readily obtained from the diagrams that although xDLS as well as PDI begin to increase at

ϕdoped = 3 · 10−3 an unambiguous proof of the existence of coarse particles can only be evi-

denced for ϕdoped > 1 ·10−1 due to the variance of the data. This is, however, unsatisfactory. In

the application of CMP typically a purity in the ppm-region is required. This can clearly not be

measured using DLS with cumulants analysis. Additionally, the results show that a small vari-

ation in the mean particle size can simply be due to random errors in the correlation function

and is not indicative to coarse fractions in the sample.
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Figure 8.5: Sensitivity of second cumulants analysis (harmonic mean particle size (a) and

polydispersity index (b)) to fractions of coarse particles of 1.45 micron in a sus-

pension of HDKr S13.

An explanation of the obtained results can be given in view of the truncation of the auto-

correlation function that is carried out before the fit of the second cumulants function (c.f.

Chap. 2.3.2.1). In the present investigations, the standard 10 % cut-off was used (i.e. g2(τ)/g2(τ =

0) = 0.1). As coarse particles have a larger decay time than the main distribution they contribute

to the ACF only at large lag times that are mostly neglected by the data cut-off. Thus, the mea-

sured insensitivity is inherent in this data analysis technique.

Inversion techniques do not use such an early cut-off of the correlation function. Thus, they
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should be more sensitive to coarse particles in principle. Fig. 8.6 shows the obtained cumulative

distributions of particle size for the differently doped suspensions.
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Figure 8.6: Sensitivity of an intensity-weighted cumulative size distribution obtained by non-

linear regularization to fractions of coarse particles (GT1500) marked in the dia-

gram in a suspension of HDKr S13.

However, the same result as for cumulants analysis is obtained. Even worse, for ϕdoped < 0.1

no trend is obtained and all distributions look similar in the range of uncertainty introduced

by the inversion. It has to be concluded that the principle of parsimony used to constrain the

possible solutions in the inversion process rather neglects small fractions of coarse particles than

to produce a multi-modal distribution. In the literature a typical statement is that regularization

procedures are able to distinguish between two different modes when the size of the larger mode

is at least twice the size of the smaller mode [1, 6]. However, these results have been obtained

by mixing two monodisperse samples. In the measurements conducted here, the smaller peak

shows a non-negligible distribution width. Therefore, a multimodal solution becomes even

more unlikely. Additionally, in the investigations mentioned above the necessary portion of the

larger peak to be distinguished has not been examined.

Summarizing, it has to be stated that the currently available data analysis algorithms in com-

mercial DLS instruments do not provide a sensitive measure on unwanted fractions of coarse

particles in a colloidal suspension. The situation changes when the main distribution is shifted

to smaller sizes, since the difference in scattered intensity is increased. Thus, a colloidal sol

of 20 nm in size might be controlled using the above mentioned analyses but they will never

become available for suspensions of pyrogenic aggregates.
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8.2.3 A New Approach - Principal Components

8.2.3.1 Principle

Up to this time, the whole correlation function has been analyzed to get information on un-

wanted coarse particles. As already stated in the last section, they mostly have an influence

at large lag times, i.e. at the long time tail of the decaying ACF. Thus, the sensitivity can be

increased for an analysis that treats specifically this region.

In a technical application slurries are produced each day from different charges of pyrogenic

silica powders. In most cases, the product is good, i.e. it does not contain significant fractions

of coarse particles and thus the CMP process works as usual. Only in some lots unwanted

fractions occur. These have to be recognized and rejected. In the end this scenario means that it

is possible to use known-good products and their measurement results as reference data. Then,

every new product can be compared to the reference to check for significant alterations in the

ROI, e.g., of the correlation function.

In Chap. 7.3.1.1 principal components analysis has been used to conduct a principal axes trans-

formation in the correlation functions to highlight small differences between suspension data

that are due to concentration effects. However, the same principle may be used to check for

changes between different ACF’s that are due to unwanted fractions in the product. Fig. 8.7

compares the resolution of the long-time tail of an ACF in the standard representation and after

undergoing a principal axes transformation for a suspension of HDKr S13. The PCA enables a

better representation of the ROI also in the case of the long-time tail. An additional existence of

coarse fractions should result in a shift of the relative maximum marked in Fig. 8.7(a) to lower

values. This can then be used for a comparison to reference data.

8.2.3.2 Simulations

Before an analysis method based on principal components can be implemented, it should be

known which improvement in sensitivity can be achieved. Therefore, field correlation functions

of a mixture of two particle fractions resembling HDKr S13 and a typical spectrum of unwanted

coarse particles have been computed. Tab. 8.2 gives the simulation input data. The computation

of the FCF is straightforward and follows an integration scheme described elsewhere [6].
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Figure 8.7: Transformation of the long-time tail of the autocorrelation function (a) indicative

for coarse particle fractions of a HDKr S13. In (b) the principal axes transforma-

tion is shown. ROI marked in the diagrams.

Table 8.2: Input data for the computation of field correlation functions simulating an increas-

ing fraction of coarse particles.

Parameters Main Distribution Coarse Particles

Distribution type log-normal log-normal

x50 165 1500

σln 0.3 0.3

intensity fraction 1; 0.99999 . . .0.999 0; 1 ·10−5 . . .1 ·10−3

The transformation matrix was then determined from the FCF with ϕdoped = 0 using the correla-

tion data between g1(τ) = 0.2 and g1(τ) = 0.05 via a PCA as described in Chap. 7.3.1.1. As the

components of the matrix do not change much for the doped FCF’s, the same matrix has been

used for the transformation of all functions to obtain a maximum comparability. Fig. 8.8 shows

the transformed long-time tail of the correlation functions for the different simulated correla-

tion functions. It is conceivable from the diagram that already at ϕdoped = 1 ·10−4 a significant

difference in the spectra can be distinguished.

However, up to this time the simulations have been conducted using ideal field correlation func-

tions that only incorporate rounding errors from the computation of the FCF. In contrast, a

measurement always involves errors consisting of electronic noise, finite detector area, imper-

fect alignment of the set-up and so forth. These will have an impact on the distinguishable
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portion of coarse particles. Fig. 8.9 shows the transformed long-time tail of simulated FCF’s

that have been superimposed with white noise (i.e. a random number with expectation value 0)

with a standard deviation of 0.001.
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ticle fractions.

The clear correlation obtained above is lost when errors are introduced in the spectra. How-



130 Application-Oriented Analysis of DLS Data

ever, there still seems to be a shift of the maximum to smaller values of the second principal

component with increasing coarse fractions. To reveal the possibilities of the principal axes

transformation, now two further questions have to be answered:

• What is the noise level one is faced with in standard DLS experiments and how can it be

influenced by the measurement parameters?

8.2.3.3 Determination of Random Error in Correlation Functions

The single data points in the autocorrelation function are obtained by simply multiplying in-

tensity values that have a distinct lag time. The results are then averaged over the whole mea-

surement run-time. Thus, in principle a data point at lag time τ is the average of tmeas/τ single

values. From this point of view, the measurement error should rise with increasing lag time

since there are less values measured in a single run. This thought additionally reveals two meth-

ods to minimize the measurement error. One is to prolong the run time of a single measurement,

the other is to conduct multiple runs and average the correlation functions afterwards. If the er-

rors in the correlation function would be statistically independent, then both methods should

produce identical results.

To prove these theoretical considerations, measurements with diluted HDKr suspensions were

conducted. As statistical confidence of the mean value and the standard deviation can only be

obtained for a large number of measured correlation functions, overnight runs were established.

The same sample was measured 200 times with the standard run-time of 90 s. Afterwards, the

run-time was increased to 180 s and 360 s, respectively. To keep the total experiment duration

comparable, only 100 and 50 runs, respectively, were conducted. This scheme was again set

with the script programming language of the ALV correlator software.

From the data a mean correlation function as well as the standard deviation of each data point

has been computed. Fig. 8.10 gives the results for different HDKr grades. This shows that the

above made assumption of a noise standard deviation of 0.001 was a good estimate for the total

ACF. Unfortunately, in the region of interest (i.e. for g2(τ)− 1 < 0.1) the standard deviation

reaches a maximum value and keeps nearly constant afterwards. It is, however, interesting

that although the total experiment time is the same for the three run times the random error

is minimized when the duration of a single run is increased. This shows that the errors are

not statistically independent which is an important feature in DLS measurements. A deeper
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Figure 8.10: Mean autocorrelation function (left y-axis) and standard deviation (right y-axis)

computed from 200 single runs with 90 s duration (blue), 100 single runs with

180 s duration (green) and 50 runs with 360 s duration (red), respectively.

understanding of the error correlations is desirable in terms of the information content of the

autocorrelation function but would lead too far in this context. It should therefore be subject to

further investigations. For the purpose of quality control a simple but important conclusion can

be drawn. If the sensitivity to coarse particle fractions in the spectrum shall be enhanced it is

favorable to choose a long run time of the DLS measurement instead of averaging many short

runs.

8.2.3.4 Doped Suspensions

Based on the simulations in Chap. 8.2.3.2 and on the error estimates made above a MATLABr

script named Coarsealert has been developed that incorporates the following:
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1. Read the autocorrelation data (in ASCII files exported from the HPPS) of a reference

suspension.

2. Read the autocorrelation data of the sample to be tested against the reference.

3. Perform a principal axes transformation as described in Chap. 7.3.1.1. The transformation

matrix is kept constant in this procedure and has been chosen from the simulations.

4. In transformed coordinates the long-time tail occurs as a relative maximum. This is the

ROI where coarse particles are most likely to contribute to the ACF’s. Therefore, in the

next step this relative maximum is sought.

5. In the vicinity of the maximum (currently −6 and +8 data points from the maximum

optimized at the simulated data, i.e. NData = 15) the deviations of the measured ACF’s

have to be checked for statistically significant differences between reference and test data.

For this purpose a Fisher F-test is used. For each single data point the variance of the

second principal component of the reference values as well as the mean-square distance

between the data points of the test ACF’s and the mean of the reference is computed:

Var1 =
NData, Ref

∑
i=1

[
PC2,i−

1
NData, Ref

NData, Ref

∑
j=1

PC2, j

]2

(8.10)

Var2 =
NData, Test

∑
i=1

[
PC2,i−

1
NData, Ref

NData, Ref

∑
j=1

PC2, j

]2

(8.11)

F =
Var2

Var1
(8.12)

The F value gives the relation between both terms and is compared to the F-distribution

with a probability of rejection pr = 0.05 and degrees of freedom 15 ·NTest ACF’s and 15 ·

NRef ACF’s−15.

6. If the F test variable is larger than the value obtained from the F-distribution the hypothe-

sis that both data sets represent the same suspension must be rejected. If, additionally, the

test ACF’s show smaller second principal components than the reference a contribution

of coarse particle fractions is likely. The script therefore generates an alert and plots the

analyzed long-time tail for a visual inspection by the user. A probability of rejection of

5 % is the best alternative between the error of the first kind (i.e. accepting the hypothesis

although coarse particle fractions are present) and second kind (i.e. rejecting the hypoth-

esis although no significant coarse particle fractions are present) and is chiefly used in

statistical data analysis.
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Of course, a final decision on the rejection of the respective sample that produces an alert is

still up to the user. This program at least enables another indicator that alleviates quality control

together with the currently used methods such as particle counting.

The HDKr S13 suspensions doped with the monodisperse GT1500 particles as used in Chap. 8.2.2

have been applied to reveal the achievable differentiation of coarse particle amounts with the

new approach. Fig. 8.11 shows the results of Coarsealert. The reference here was a HDKr S13

suspension without added GT1500.
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Figure 8.11: Transformed long-time tail of autocorrelation functions of a HDKr S13 doped

with different fractions of coarse GT1500 particles (red circles) in comparison

to a pure HDKr S13 suspension (black crosses). Fractions are marked in the

subfigures.

Coarsealert produces an alert already at ϕdoped = 1 · 10−3, the variance between test ACF’s

and the reference is significantly larger than the variance in the reference data. The same can

be obtained by visual inspection, however, it is difficult to conclude a statistical significance
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for the user. With this result, the method has been proven to successfully check colloidal sus-

pensions for coarse particles. In comparison to the hitherto existing cumulants analysis and

inversion techniques the sensitivity is enhanced by two orders of magnitude. This can also be

obtained from Fig. 8.11 since at ϕdoped = 0.1 (the recognizability limit of the standard analyses)

already a visual inspection shows a very large difference between the reference and the test

autocorrelation functions.

8.2.3.5 On-Road Test in Quality Assurance

The successful test at model doped suspensions shall now be transferred to an industrial applica-

tion. Therefore, a test run was conducted together with Wacker-Chemie AG, Burghausen. Two

commercially applied slurries of which the end-user had given a feedback that they are mis-

behaving in the CMP process (i.e. the wafers polished with these slurries showed an increased

number of micro-scratches and gouges) underwent an overnight run where 240 ACF’s were

measured with a Zetasizer Nano (Malvern Instruments Ltd., Worcestershire, UK) which is the

successor of the HPPS. Reference data were obtained from a retained sample that was known-

good concerning the response of the end-user as well as all currently available characterization

techniques. To include variances that may result from different measurement instruments the

reference data were measured on two Zetasizer Nano. Fig. 8.12 shows the results of Coarseal-

ert.

For the first sample a significant fraction of coarse particles is obtained while the second sample

does not show any conspicuousness compared to the known-good slurry. Though the obtained

result militates against the introduced method, it is qualitatively verified by the results of particle

counting conducted at the slurry manufacturer. The first sample showed an increased large-

particle-count while the second was within the required limits. This strengthens the significance

of Coarsealert. However, the reason why slurry B was characterized as bad by the end-user

remains an open question.

To further elucidate this question, overnight runs were as well conducted for the HDKr S13

suspensions that were the basis of the above mentioned slurries. Fig. 8.13 displays the results.

Again, the same principal effect is obtained. The deviation of sample A is even more pro-

nounced for the HDKr suspensions. In view of these results it is quite assured that there are

some unwanted fractions in sample A. On the other hand, for the second sample this conclusion
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(a) CMP slurry A, known-bad, significance test pos-

itive
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(b) CMP slurry B, known-bad, significance test neg-

ative

Figure 8.12: Transformed long-time tail of autocorrelation functions for two known-bad CMP

slurries (end-user response) (red circles) in comparison to a known-good slurry

(black crosses). In (a) Coarsealert produces an alert while in (b) the test ACF’s

fit nearly perfectly on the reference data.
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(a) HDKr suspension A, known bad, significance

test positive
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(b) HDKr suspension B, known bad, significance

test negative

Figure 8.13: Transformed long-time tail of autocorrelation functions for two known-bad

HDKr suspensions (end-user response of the manufactured CMP slurries) (red

circles) in comparison to a known-good HDKr suspension (black crosses). In

(a) an alert is produced while in (b) no significant contamination with unwanted

coarse particles is obtained.

cannot be drawn. Possibly, coarse fractions were generated in the slurries after the manufacture.

This is, however, speculative and cannot be proven from the current point of view.

Concluding, Coarsealert has proven its reliability in an industrial application. An increased
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sensitivity to coarse particles can be certified as results of second cumulants analysis did not

show significant increases, neither of xDLS nor of the PDI. However, a warning needs to be

given for the use of Coarsealert. When choosing a reference data set it is extremely important

to check for a product that has undergone the same manufacturing steps as the test data. In

Fig. 8.14 an example is shown where a HDKr suspension has been erroneously tested against

a reference CMP slurry. Slurries are pretreated by depth filtration to remove coarse particles.

The employed filter removal characteristics show that they also remove wanted particles from

a HDKr suspension. Thus, both systems cannot be compared using Coarsealert since then the

effect of filtration is measured instead of coarse particle fractions.
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Figure 8.14: Effect of erroneously choosing a wrong reference data basis for Coarsealert.

Here, a reference CMP slurry was used to be tested against a HDKr suspension.

8.3 Conclusions

The preceding sections show that DLS is not only a method to obtain distributions of diffusion

coefficients or mean diffusion coefficients that may be used for particle sizing in dilute disper-

sions. If specific applications are to be considered customized data analysis techniques open up

a variety of characterization tasks. The tracing of dynamic gelation processes and the detection

of contaminations by coarse particles are only two examples that have been chosen due to their

high relevance for industrial processes.

In gelling systems data pretreatment may be used to even neglect non-ergodic contributions in

the scattering signal up to a certain level that hamper the principle of DLS. The constriction
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of the analysis method to only a few parameters to be obtained from a single CFF enables the

analysis of several thousands of single runs in an acceptable computation time. Using a model of

Abou et al. [187] and Ruzicka et al. [177] the phase transition time and kinetics can be obtained

that readily reveal the influence of suspension parameters such as solids concentration, ionic

strength and specific surface area on the gelation process. However, the underlying mechanisms

of the gelation process for pyrogenic silica still need to be explained in detail.

The control of suspension purity is an ever growing necessity in the application of colloidal

suspensions. The applied principal axes transformation together with a Fisher F-test to reference

measurements enables a product control that may be established alongside with the existing

particle counting methods. The sensitivity in comparison to DLS standard analysis techniques

is improved here by two orders of magnitude for suspensions of pyrogenic silica. Moreover,

this sensitivity will even rise if the size of the main distribution is decreased as is the case

for CMP slurries made from colloidal silica sols. Here, the increasing difference in scattered

intensity between contaminants and product will possibly extend the recognizability to the ppm-

region which should be verified in further investigations. Such advance finally implies that with

ongoing decrease of feature size in the microelectronics industry, DLS may even replace particle

counters as standard quality assurance measurement method.





9 Summary and Outlook

9.1 Results Recapitulation

The present thesis adresses the application of dynamic light scattering for the characterization

of suspensions of polydisperse fractal materials. As an important and representative industrial

example different grades of pyrogenic silica were used. This work pursued two main goals. The

first was to give an understanding of the measured spectrum of diffusion coefficients in terms

of the relation to the fractal structure of the aggregates and of the dependency on hydrodynamic

and interparticle interactions in concentrated suspensions. The second goal was to develop

application-based analysis schemes of the measured autocorrelation functions to extend the po-

tential of DLS to industrially relevant applications. Concerning these issues five questions have

been formulated at the beginning of this thesis. They will now be discussed consecutively.

The first question was, which geometrical property of a single pyrogenic silica aggregate deter-

mines the diffusional behavior. Computer simulations have been employed to generate virtual

aggregates with defined structural properties and to study the hydrodynamic behavior of these

aggregates. The choice of an adequate aggregate generation algorithm is crucial for the transfer-

ability of the simulation results to pyrogenic powders. In earlier investigations diffusion-limited

cluster aggregation has been proposed as the best description of the production process of py-

rogenic powders. As this Monte-Carlo simulation inherently involves a certain variability of

the structural properties of the generated aggregates, a clear relation to hydrodynamics has not

yet been achieved. In this work a new algorithm was developed that enables the generation of

fractal aggregates with a predefined fractal dimension. This algorithm has been compared to a

standard DLCA and another cluster generation algorithm for large clusters (CCA).

The total force and torque on an aggregate were determined by a multipole expansion of the

Stokes equation around the generated aggregate with a no-slip boundary condition at the pri-
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mary particles surfaces. From the eigenvalues of the translation and rotation matrix the respec-

tive diffusion coefficients and hydrodynamic radii could be calculated. It was a new result that

the hydrodynamic radii of translation and rotation show a power law behavior similar to the

structural radius of gyration but with a larger exponent (which represents the fractal dimension

Dm
f for the radius of gyration). To account for this off-set the concept of a hydrodynamic di-

mension of rotation and translation, respectively, has been introduced. This simulation result

is supported by experimental results in the literature for methods that determine such a power

law behavior (rheometric and static scattering techniques). Finally, a general function relating

the fractal dimension Dm
f to the hydrodynamic dimension Dh

f and the fractal prefactor kh
f could

be found. The Monte Carlo generation algorithms fit well within this relation so that it is now

possible to determine the diffusional behavior from structural properties of a given aggregate.

Based on these simulation results it was examined to which degree the structural properties

can be elicited in a conventional DLS experiment. This is the second question formulated in

the introduction. Depending on the number of primary particles per aggregate and the fractal

dimensions, the hydrodynamic radius determined with DLS should be of the order (0.7 . . .1) ·

Rg. However, this relation only holds if contributions of rotational diffusion to the ACF can

be neglected. Otherwise, due to the fast decay of rotational diffusion the mean decay rate is

overestimated by ∼ 55−65% as has been obtained by a consideration of the ratio Rh,t/Rh,rot =

(0.88 . . .0.95) in comparison to literature. The results obtained in the simulations therefore had

to be verified by experiments revealing the structural and hydrodynamic properties of pyrogenic

silica aggregates.

The radius of gyration and the fractal dimension were determined by SAXS and SLS, respec-

tively. The hydrodynamic aggregate radii determined from multi-angle DLS (results extrapo-

lated to s = 0) scale with the SLS radii of gyration (ratio Rh,t/Rg between 0.787 and 0.987)

which supports the simulation results (see above) for a DLCA-like generation mechanism. The

fractal dimension (Dm
f (SLS) ≈ 1.8) gives an additional indication. However, the structural

properties determined with SAXS differ remarkably from the SLS results. Since both meth-

ods measure at different ranges of the scattering vector this suggests that different details of

the aggregate structure are observed. For SAXS, the strong sintering of primary particles at the

beginning of the aggregation in the production process has been hypothesized to explain the

large fractal dimensions measured at sub-structures of the aggregates.

The results of DLS show a strong angular dependence caused by influences of rotational diffu-
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sion. If the ratio D/D(s = 0) is plotted versus the dimensionless structure size s ·Rg pyrogenic

silica grades form a master-curve if the primary particles in the aggregates are non-porous. Such

a behavior had been predicted from the simulations, the maximum overestimate was roughly

verified to be in the range of 60 %. This shows that the polydispersity of the primary particles

and of the aggregate sizes does not influence the comparability of structural and diffusional

analysis of pyrogenic silica. Thus, both simulations and experiments gave a valuable insight

into the relation between structure and hydrodynamics and their impact on measurement results

for polydisperse fractal systems.

The simulation and experimental study of the structure-diffusion-relationship were conducted

for highly diluted suspensions of pyrogenic silica. A further question, which is of great rele-

vance for industrial systems, is the influence of solids concentration on DLS results for fractal

materials. Therefore, a comprehensive experimental investigation has been conducted. Firstly,

a principal axes transformation of the autocorrelation function was used to enable a fast compar-

ison of measured ACF’s for occurring interaction effects. This is an important prerequisite for

data analysis. The method does not require any a priori information, what makes it particularly

suitable for routine analyses.

A detailed comparison of concentration series in mono- and polydisperse silica sols and pyro-

genic silica suspensions then highlighted the origin of the interaction effects that have an impact

on the measured autocorrelation functions. The mean diffusion coefficient obtained by a second

cumulants analysis generally decreases with increasing concentration for pyrogenic silica. An-

other influencing factor is the specific surface area of the pyrogenic silica grade. A scaling of

the decrease in diffusivity was tested, which accounts for the porous structure of the aggregates

using an effective volume fraction. Due to the uncertainties introduced in the determination of

the aggregate porosities the validity of this scaling law could not be proven.

Hence, it became necessary to consider the whole distribution of diffusion coefficients deter-

mined by an inversion of the measured ACF’s. In monodisperse sols the effects of the measured

diffusion regime (i.e. self- or collective diffusion), of hydrodynamic hindering and of the struc-

turing of the suspension by counterionic repulsion could be clearly distinguished as different

modes in the distribution function. For polydisperse sols these effects cannot be separated in

the experimental data and occur over a larger concentration range but are the same in princi-

pal. Counterionic stabilized pyrogenic silica suspensions are expected to behave similarly to

polydisperse sols. Indeed, at large concentrations pyrogenic silica aggregates are hindered in
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their mobility by hydrodynamic constriction and multi–body repulsion. Thus, a second peak ac-

counting for long-time diffusion coefficients is measured with DLS that gets more pronounced

when the range of the counterionic repulsion is extended. For high surface area grades a third

peak occurs that can be associated with collective diffusion of smaller aggregates. This finally

concludes that the measured distribution of diffusion coefficients is no longer a single aggre-

gate property but reflects the state of the whole suspension including aggregate sizes and their

distribution, solids concentration, pH and salinity.

If the counterionic repulsion is screened pyrogenic silica suspensions form gels at a high enough

solids concentration. Thus, another question was the observation of the gelation process with

DLS. This facilitates the determination of the phase transition time which is the most important

process variable. DLS is best suited for this purpose as it offers a non-intrusive measurement.

Within this thesis DLS was used the first time to observe phase transitions for pyrogenic silica.

Consecutively measured ACF’s were converted to correlation functions of the fluctuation field to

neglect non-ergodic contributions in the measurement signal. An automated fit procedure based

on a literature approach then gave the phase transition time and the transition kinetic. Important

parameters influencing the total phase transition time are the total available surface area of

the particles in suspension (i.e. either varied by the solids content or the specific surface area)

and the ionic strength of the suspension as it controls the screening of the stabilizing repulsive

interparticle forces. The two obtained kinetic regimes that also occur for clay suspensions

finally suggest a universal behavior of phase transitions, which, however, has to be further

substantiated.

A further point to be discussed is the determination of coarse particle fractions in the measured

spectrum since this control of suspension purity is of great relevance for many colloidal sys-

tems. By conducting experiments with a HDKr suspension doped with coarse silica spheres it

was shown that the commonly applied data analysis techniques, second cumulants and inver-

sion, are not sensitive to such contaminations (minimum detectable coarse fraction ≈ 10 %).

The sensitivity can, however, be enhanced by two orders of magnitude (≈ 0.1 %) by applying a

principal axes transformation of the long-time tail of the autocorrelation function together with

a Fisher F-test of the deviations of a test sample to a reference sample. This enables a product

quality control that gives precious additional information on contaminations in colloidal sus-

pension besides the hitherto mostly used particle counting techniques. This has been verified in

an on-road test of slurries for Chemical-Mechanical Planarization.
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9.2 Implications for the Technical Application of DLS for

Fractal Materials

The results summarized in the previous section will now be discussed with regard to their rele-

vance for product development and quality assurance of polydisperse fractal aggregates such as

pyrogenic silica. Typical objectives of suspension characterization are:

1. Control of hydrodynamic particle size and state of dispersion. Typically, measurements

in diluted suspensions are carried out for this purpose.

2. Control of the suspension state in concentrated dispersions.

3. Shelf-life control of suspensions. Check for alterations that may lead to a solidification

over time of storage. A contrary goal of product development might be a fast gelation of

the final product.

4. Control of suspension purity in terms of coarse particle contaminations.

For all these goals, a high precision and repeatability of the DLS autocorrelation data is neces-

sary. As obtained in this work it is therefore better to prolong the run time of a single run than

to conduct multiple runs of short lengths. This minimizes random error contributions. Addi-

tionally, the statistics at the same run time are better for large scattering angles as this shifts the

decay of the ACF to smaller lag times.

Concerning point 1 it has to be stated that a neglect of contributions of rotational diffusion

is justified only by using very small scattering angles for pyrogenic aggregates with sizes of

100−500 nm. The determined effective hydrodynamic radius in all other measurement set-ups

reflects translational as well as rotational contributions and is, therefore, always smaller than

the hydrodynamic radius of translation. However, this is not necessarily a drawback for quality

assurance purposes as it enables the detection of deviations in size as well as in structure of the

aggregates with a single measurement, though it should be kept in mind.

In concentrated suspensions the measurement results of DLS only remain unambiguous if ad-

ditionally the solids concentration, pH and amount and type of added electrolyte are controlled.

The principal axes transformation may be used in advance of any data analysis algorithm to

check for concentration influences.
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The developed strategy of analyzing time-series of DLS measurements can be readily applied

to a shelf-life control when the measurement temperature is set to the storage temperature. It

has to be noted, however, that an analysis of the ACF may include non-ergodic contributions

so that the decomposition in the CFF is advised. The developed analysis scheme may then be

used to detect the onset of an occurring phase transition. The property that may be best used to

control the speed of solidification is the ionic strength of the suspension medium.

In view of the control of suspension purity the developed program Coarsealert may be used

as an additional indicator. Though it does not reach the required ppm-sensitivity for pyrogenic

silica, it gives another clue whether coarse particle fractions are present in a suspension.

9.3 Proposal for Future Investigations

Based on the results acquired in this thesis suggestions for further research may be deduced that

can be divided into two general groups:

• Theory and simulations

• Continuative experiments

In the simulations conducted here, possibly the largest restraint was the limitation to non-

sintered primary particles in the aggregates since the no-slip condition at the surface may not

be described analytically for sintering. Thus, in the future either a discretization of the surface

combined with a numerical solution of the Stokes equation (via DEM or CFD) has to be sought

or sintered particles have to be represented by analytically describable bodies such as rotating

epicycloids. Another simulation method to be used could be the Lattice Boltzmann simulation

method developed by Binder et al. [160].

Further, as obtained from the static scattering experiments, the structure of pyrogenic aggre-

gates may vary when they are viewed from different length scales (i.e. scattering vectors). A

decreasing sintering factor of the aggregates has been hypothesized as they grow and move to-

wards lower flame temperatures. Thus, the DLCA algorithm should be altered to use different

sintering factors. The scattering behavior of the resulting aggregates should then be computed

and compared to static scattering results.
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This in turn requires that a scattering profile of pyrogenic silica should be measurable without

a gap in the scattering vector range. Therefore, USAXS measurements are proposed. Though,

these are quite laborious and expensive, it is the only available technique covering the whole

necessary range for pyrogenic silica aggregates.

The primary goal of these investigations is to further elucidate the structure of pyrogenic aggre-

gates and their origin from the production process. For an improvement in the relation to the

DLS measurements, also an extension of the measurable angular range is suggested for a more

precise determination of the hydrodynamic radii of translation and the influence of rotational

diffusion. Amendatory computations of this impact compared to hitherto existing literature

models with the use of the developed fixed-structure model aggregates are desirable to high-

light the influence of structure on the contribution of rotational diffusion to DLS results.

In concentrated suspensions a theoretical treatment is not likely to become available in the near

future. Therefore, the experimental framework should be further substantiated. The effective

volume fraction approach shall not be dismissed but a more exact determination of the aggre-

gate porosities should be sought. Also a differentiation between the impact of hydrodynamic

and interparticle interactions would be beneficial. This will possibly provide further insight into

the diffusional behavior of pyrogenic silica and their respective rheological behavior. However,

mostly interparticle interactions may not be suppressed since this would destabilize the suspen-

sions. Steric stabilization (e.g. with adsorbed short polymer chains) has only a limited range of

a few nanometers, so this can possibly be used as a reference.

In gelling pyrogenic silica suspensions investigations are necessary to explain the underlying

mechanisms. Based on literature models the phase transition kinetics should be further exam-

ined by varying the solids content and adding more data points for different ionic strengths

of the suspensions. Finally, the universality of phase transitions can also be proven by using

further material systems.

Concerning the sensitivity of DLS measurements for coarse particles, experiments should be

conducted for differently doped CMP slurries consisting of colloidal silica sols. As the size

of these sols is much smaller than for pyrogenic silica aggregates the difference in scattered

intensity to coarse contaminants is drastically increased so that the sensitivity of the developed

program Coarsealert should be enhanced.
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9.4 Conclusion

The examination of the diffusional behavior of colloidal particles in suspension with dynamic

light scattering techniques spans a multitude of characterization tasks. In this thesis the spe-

cific application to polydisperse fractal systems was treated by the example of pyrogenic silica

suspensions.

In diluted samples it is possible to reveal information on the structure of the fractal aggregates

in terms of their translational and rotational diffusion though it is at the moment not possible to

distinguish between both effects at an arbitrary scattering angle.

The development of measurement instruments that may physically suppress the contributions

of multiple scattering has enabled experiments in concentrated suspensions of up to 15 wt.-%

for pyrogenic silica. Here, DLS does not only measure a single aggregate or particle property

but the behavior of the whole suspension under consideration since the measured spectra of

diffusion coefficients are influenced by hydrodynamic and interparticle interactions that are in

turn dependent on suspension properties such as pH and ionic strength.

Thus, DLS techniques are best suited for measurement tasks that deal with the characterization

of the size distribution and the suspension structure of colloidal suspensions. It was shown in

this thesis that the specific structural properties of polydisperse fractal materials such as py-

rogenic silica can be measured with good resolution for the requirements of industrial quality

assurance or product development. Specific applications then necessitate the development of

new data analysis algorithms for the interpretation of the correlation functions as was success-

fully realized in this thesis for the observation of gelation processes and for the detection of

coarse contaminants.
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A Relation between Diffusion

Coefficients and the Field Correlation

Function

The field correlation function is defined as the first-order correlation of the far field amplitudes

of the scattered electric field:

G1(τ) = 〈u(s, t) ·u(s, t + τ)∗〉 (A.1)

where the asterisk denotes the complex conjugate value. This equation can now be explicitly

expressed as a sum over N particle contributions (see eq. 2.34):

G1(τ) =

〈
N

∑
i=1

Einc(Xi,Yi)ai exp [isri(t)] · . . . (A.2)

. . . ·
N

∑
j=1

Einc(X j,Yj)a∗j exp
[
−isr j(t + τ)

]〉

=
N

∑
i=1

N

∑
j=1

E2
inc
〈
aia∗j

〉
〈exp [is∆ri(τ)]〉

The first term in the double sum is just the average scattering amplitude squared times the

average number of particles in the intersection of the incident beam and the aperture of the

detection optics, the measurement volume. The second term is an ensemble average over all

particles in the measurement volume. Thus, it gives identical values for each particle and can

be factored out:

G1(τ) = N E2
inc

〈
|ai|2

〉
〈exp [is∆r(t)]〉 (A.3)

= N E2
inc

〈
|ai|2

〉
Fs(s,τ)
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Note, that in going from eq. A.2 to A.3 it is implicitly assumed that the time average is equal

to the spatial ensemble average. This assumption is known as the ergodic hypothesis of Boltz-

mann [183] and as such is only valid for ergodic systems, i.e. a system where each particle can

capture every point in space. This is usually the case in suspensions except for high concentra-

tions or systems undergoing a phase transition.

The self-intermediate scattering function Fs(s, t) is the Fourier transform of the probability dis-

tribution q(R,τ) which describes the probability that a particle i will experience a displacement

R in time τ:

q(R,τ) = 〈δ(R− [ri(τ)− ri(0)])〉 (A.4)

Fs(s,τ) =
∫

∞

0
exp(isR)q(R,τ) d3R (A.5)

where δ is the Delta function. Since ∆r(0) = 0:

q(R,0) = 〈δ(R)〉= δ(R) (A.6)

⇓

Fs(s,0) = 1 (A.7)

If a particle with size x and translational diffusion coefficient Dt can move freely in space (dilute

limit) then q(R,τ) can be considered to be a solution to Fick’s second law of diffusion [97]:

∂

∂τ
q(R,τ) = Dt ∇

2q(R,τ) (A.8)

Application of a Fourier transformation to eq. A.8 yields:

d
dτ

Fs(s,τ) = Dts2Fs(s,τ) (A.9)

This equation can be solved by a separation of variables and the use of the initial condition

eq. A.7 to give:

Fs(s,τ) = exp
(
−Dts2

τ
)

(A.10)

By combination of eq. A.10 with eqns. A.3 and 2.37 the usual forms of the normalized electric

field and intensity autocorrelation functions are obtained:

g1(τ) = exp
(
−Dts2

τ
)

(A.11)

g2(τ)−1 = b exp
(
−2Dts2

τ
)

(A.12)



B Computation of the Translation and

Rotation Matrix for a Given Aggregate

Here, the solution of the Stokes equation for a predefined aggregate is given. Derivation has

been carried out by Bedrich [167] following Filippov [158]. Symbols used here do not neces-

sarily correspond to the list of symbols in the front matter of this thesis, relevant connections

will be explained.

The translation and rotation matrix are computed from the total drag force and the total torque

on an aggregate considering flow in three independent directions, e.g. the X-, Y- and Z-direction

in Cartesian coordinates.

F =−6πη f RprimΨΨΨ ·v (B.1)

T =−8πη f R3
primΞΞΞ ·ω (B.2)

In the program, the algorithm is run six times with different initial velocities v and rotations ω,

respectively (e.g. v1 = [1, 0, 0] then v2 = [0, 1, 0], . . . ).

The total force on an aggregate is calculated as a superposition of the forces on the single

primary particles:

F =
Nprim

∑
i=1

Fi (B.3)

Similarly, the total torque can be computed from the single torques and the drag forces together

with the distance of the primary particle to the center of gravity of the aggregate:

T =
Nprim

∑
i=1

Ti + ri×Fi (B.4)

As the center of gravity is assigned the null vector after the generation of the aggregate, only
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the position vector ri is needed. The multipole expansion solution for Fi and Ti is given by:

Fi =−4πη f

[
−
(

bi
11−

1
2

bi
−11

)
ex− i

(
bi

11 +
1
2

bi
−11

)
ey +bi

01ez

]
(B.5)

Ti =−8πη f

[
−
(

ci
11−

1
2

ci
−11

)
ex− i

(
ci

11 +
1
2

ci
−11

)
ey + ci

01ez

]
(B.6)

where e is the unit vector. The expansion coefficients can be determined from the solution of a

system of linear equations as given by the matrix equation:
Di j

klmn E i j
klmn F i j

klmn

Gi j
klmn H i j

klmn Li j
klmn

0 Mi j
klmn Ni j

klmn

 ·


ai
mn

bi
mn

ci
mn

=
1

Rn
i


X i

mn

0

Zi
mn

 (B.7)

The size of the equation system is determined by the indices k, l, m, n and i, j. While i and j run

over the number of primary particles in the aggregate and are, therefore, restricted, n and l are

typically infinite, i.e. l, n = [1,∞) and k = [−l, l] as well as m = [−n,n]. Thus, a cut parameter

L has to be defined to make the summation finite:

∞

∑
l=1

⇒
L

∑
l=1

(B.8)

The cut parameter influences the accuracy of the solution on the one hand and the computational

effort on the other hand. The number of coefficients that have to be determined for the solution

of the equation are [167]:

NCoe f = 3Nprim L(L+2) (B.9)

i.e. the accuracy shows a square dependence while the number of primary particles is linearly

correlated. Bedrich [167] has conducted examinations on the convergence of the algorithm in

dependence of L and found that already for L = 2 the relative error compared to high L-values is

smaller than 1%. All results presented in this work have been carried out using a cut parameter

of L = 2.

If now the number of unknown coefficients is determined, it is possible to compute the matrix

elements of eq. B.7. If j = i then:

F ii
klmn = Lii

klmn = Mii
klmn = 0 (B.10)

If additionally k 6= m or l 6= n:

Dii
klmn = E ii

klmn = Gii
klmn = H ii

klmn = Nii
klmn = 0 (B.11)
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else:

Dii
mnmn =−(n+1)R−2(n+1)

i (B.12)

E ii
mnmn =

n+1
2(2n−1)

R−2n
i (B.13)

Gii
mnmn = (n+1)(n+2)

(
1+2n

δ

Ri

)
R−(2n+3)

i (B.14)

H ii
mnmn =− n+1

2(2n−1)

(
n+2(n2−1)

δ

Ri

)
R−(2n+1)

i (B.15)

Nii
mnmn = n(n+1)

(
1+(n+2)

δ

Ri

)
R−(2n+1)

i (B.16)

Here, Ri is the radius of the i-th primary particle and δ is the sliplength as defined in Chap. 5.3

which may now be set to zero to obtain a sticky boundary.

If now interactions between particles i 6= j are to be considered, the expansion coefficients are

defined based on the addition theorems for solid spherical harmonics that lead to [167]:

Ci j
mnkl = (−1)l+k (n+ l−m+ k)!

(l + k)!(n−m)!
u(m−k)(n+l)(ri j) (B.17)

where umn(ri j) is the irregular solid spherical harmonic defined as:

umn(ri j) =
1

rn+1 Pm
n (cosθ)exp(imϕ) (B.18)

Here, the distance vector ri j between particle i and particle j has to be given in spherical co-

ordinates ri j(r,θ ,ϕ). Pm
n (x) is the associated Legendre polynomial in the following notation:

Pm
n (x) = (−1)m 1

2n n!
(1− x2)

m
2

dn+m

dxn+m (x2−1)n (B.19)

Based on this definition there are some special cases in which:

Ci j
klmn = 0 ⇐⇒

|k|> l

|m|> n
(B.20)

Once the Ci j
klmn are computed all the other coefficients D, E, F , G, H, L, M and N can be

obtained:

Di j
klmn =

n
Ri

Ci j
klmn (B.21)
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E i j
klmn =

(2(l +1)−n(l−2))R2
i −n(l−2)r2

i j

2l(2l−1)Ri
Ci j

klmn (B.22)

− (n−m)ζi j
1
Ri

Λ
−
lnCi j

klm(n−1)− (n+m+1)ζi j Ri Λ
+
lnCi j

klm(n+1)

+ηi j
1
Ri

Λ
−
lnCi j

kl(m−1)(n−1)−ηi j Ri Λ
+
lnCi j

kl(m−1)(n+1)

− (n−m)(n−m−1)ξi j
1
Ri

Λ
−
lnCi j

kl(m+1)(n−1)

+(n+m+2)(n+m+1)ξi j Ri Λ
+
lnCi j

kl(m+1)(n+1)

F i j
klmn =

i
Ri

[
(n+m+1)(n−m)ξi j C

i j
kl(m+1)n +mζi j C

i j
klmn +ηi j C

i j
kl(m−1)n

]
(B.23)

Gi j
klmn =

n
R2

i

[
n−1−2

δ

Ri

(
n2−1

)]
Ci j

klmn (B.24)

H i j
klmn =

(
n+1−2

δ

Ri
n(n+2)

)[
2(l +1)−n(l−2)

2l (2l−1)
Ci j

klmn (B.25)

− (n+m+1)Λ
+
ln ζi j C

i j
klm(n+1)−Λ

+
ln ηi j C

i j
kl(m−1)(n+1)

+(n+m+2)(n+m+1)Λ
+
lnξi jC

i j
kl(m+1)(n+1)

]
− 1

R2
i

(
n−1−2

δ

Ri

(
n2−1

)) [n(l−2)r2
i j

2l (2l−1)
Ci j

klmn

+(n−m)Λ
−
ln ζi j C

i j
klm(n−1)−Λ

−
ln ηi j C

i j
kl(m−1)(n−1)

+(n−m−1)(n−m)Λ
−
ln ξi j C

i j
kl(m+1)(n−1)

]

Li j
klmn =

1
Ri

(
n−1−2

δ

Ri

(
n2−1

))
F i j

klmn (B.26)

Mi j
klmn =

Ri

l

(
1+

δ

Ri
(n−1)

)
F i j

klmn (B.27)

Ni j
klmn =

(
1+

δ

Ri
(n−1)

)[
n(n+1)Ci j

klmn +n(n+m+1)ζi j C
i j
klm(n+1) (B.28)

−n(n+m+1)(n+m+2)ξi j C
i j
kl(m+1)(n+1) +nηi j C

i j
kl(m−1)(n+1)

]
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In the eqns. B.21-B.28 Ri means the radius if the i-th sphere, δ is the sliplength and ri j the

shortest center-to-center distance between particle i and j.

The terms Λ
+
ln, Λ

−
ln, ξi j, ηi j and ζi j are auxiliary variables defined as:

Λ
+
ln =

(n+1)(l−2)− (l +1)
(2n+3) l (2l−1)

(B.29)

Λ
−
ln =

(n−1)(l−2)− (l +1)
(2n−1) l (2l−1)

(B.30)

ξi j =
1
2

(
rx

i j + iry
i j

)
(B.31)

ηi j =
1
2

(
rx

i j− iry
i j

)
(B.32)

ζi j = rz
i j (B.33)

Here, rx
i j, ry

i j and rz
i j are the x-, y- and z-component of the distance vector ri j in Cartesian

coordinates.

Now, the matrix on the left-hand side of eq. B.7 is defined. The vector on the right-hand side

incorporates the initial velocities and rotations in the following form:

X i
01 = vi

0z (B.34)

X i
11 =−1

2
(
vi

0x− ivi
0y
)

(B.35)

X i
−11 = vi

0x + ivi
0y (B.36)

Zi
01 = 2Ri ω

i
oz (B.37)

Zi
11 =−Ri

(
ω

i
ox− iω

i
0y
)

(B.38)

Zi
−11 = 2Ri

(
ω

i
0x + iω

i
0y
)

(B.39)

All other coefficients X i
mn and Zi

mn are equal to zero.

This is the principal solution of the Stokes equation. Special attention has to be paid to the

cut parameter L. As it was sufficient in these examinations to use L = 2 it might be necessary

to increase the value in other computations, e.g. when the primary particles are not equal in

size.





C Scattering Angle Dependent Results

of Cumulants Analysis

Table C.1: Harmonic mean diameter and polydispersity index of HDKr D05, C10P, S13 and

V15 for scattering vectors from 0.0068 nm−1 – 0.0264 nm−1.
HH

HHHH
HHH

Angle

HDKr

D05 C10P S13 V15

θ [°] s [nm−1] xDLS [nm] PDI xDLS [nm] PDI xDLS [nm] PDI xDLS [nm] PDI

30 0.0068 350.4 0.142 312.0 0.154 295.7 0.137 265.0 0.174

35 0.0080 341.0 0.157 301.2 0.127 284.6 0.140 251.7 0.179

40 0.0090 320.3 0.137 291.1 0.123 274.8 0.143 246.1 0.166

45 0.0101 312.9 0.150 280.5 0.143 265.5 0.122 237.7 0.179

50 0.0112 304.3 0.146 272.1 0.142 258.2 0.138 233.0 0.122

55 0.0122 299.1 0.162 263.9 0.147 252.5 0.125 228.2 0.146

60 0.0132 296.4 0.148 260.7 0.136 245.1 0.132 221.7 0.085

65 0.0142 289.2 0.137 255.2 0.128 240.1 0.137 217.2 0.116

70 0.0152 — — — — 236.5 0.133 216.1 0.114

75 0.0161 — — — — 232.1 0.114 210.3 0.125

80 0.0170 272.8 0.154 242.0 0.137 226.4 0.119 209.0 0.104

85 0.0179 272.5 0.148 239.7 0.133 225.0 0.112 208.5 0.108

90 0.0187 271.5 0.141 238.5 0.139 221.9 0.093 202.9 0.120

95 0.0195 271.8 0.132 236.1 0.134 219.0 0.137 202.7 0.154

100 0.0203 270.7 0.150 233.7 0.136 216.5 0.119 198.5 0.095

105 0.0210 271.6 0.141 232.7 0.143 214.7 0.128 197.1 0.130

110 0.0217 269.7 0.139 232.5 0.143 217.0 0.113 196.1 0.128

173 0.0264 249.6 0.219 224.3 0.158 197.4 0.142 185.0 0.119
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Table C.2: Harmonic mean diameter and polydispersity index of HDKr N20, T30 and T40

for scattering vectors from 0.0068 nm−1 – 0.0264 nm−1.
HHH

HHH
HHH

Angle

HDKr

N20 T30 T40

θ [°] s [nm−1] xDLS [nm] PDI xDLS [nm] PDI xDLS [nm] PDI

30 0.0068 220.5 0.199 186.9 0.190 173.7 0.181

35 0.0080 214.0 0.157 186.4 0.169 168.9 0.182

40 0.0090 212.9 0.120 181.8 0.185 162.9 0.154

45 0.0101 204.9 0.159 180.3 0.205 161.2 0.155

50 0.0112 200.6 0.124 175.8 0.141 156.4 0.180

55 0.0122 196.0 0.152 173.0 0.156 157.4 0.147

60 0.0132 193.6 0.120 168.9 0.131 152.6 0.114

65 0.0142 190.6 0.107 166.0 0.158 150.4 0.159

70 0.0152 186.7 0.146 163.3 0.165 148.1 0.111

75 0.0161 180.7 0.146 160.9 0.120 147.0 0.138

80 0.0170 179.4 0.115 158.3 0.140 143.7 0.152

85 0.0179 176.6 0.131 156.9 0.126 141.7 0.148

90 0.0187 173.7 0.117 156.0 0.114 140.6 0.127

95 0.0195 171.9 0.114 152.9 0.131 138.8 0.142

100 0.0203 169.6 0.132 151.4 0.139 136.2 0.154

105 0.0210 168.6 0.127 150.4 0.136 136.2 0.124

110 0.0217 165.0 0.132 147.8 0.138 132.7 0.113

173 0.0264 155.8 0.187 140.0 0.162 129.4 0.174



D Computation of the Mean Aggregate

Porosity

D.1 Sediment Porosity after Centrifugation

For this purpose a photocentrifuge (LUMiFuge 116, L.U.M. GmbH, Berlin, Germany) was used

that allows for an online tracking of the sedimentation process by measuring space-resolved

transmission profiles at fixed time intervals along the sedimentation cuvette. Two examples of

the measured transmission profiles are given in Fig. D.1.
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(b) ϕ = 0.0200, 3000 rpm, 3:30 h total centrifugation time

Figure D.1: Transmission profiles of the sedimentation of a HDKr D05 at pH 9, 0.01 M

KNO3 and (a) ϕ = 0.0743 and (b) ϕ = 0.02.
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These profiles have to be read in the following way. The center of rotation (i.e. the axis of the

rotor) is located on the left-hand side of the diagram. The meniscus designates the air/water

interface in the cuvette. At the beginning of the centrifugation, the transmission drops imme-

diately after the meniscus and attains a constant value down to the bottom of the cuvette, i.e. a

constant particle concentration is measured. When centrifugation continues the suspension clar-

ifies, a supernatant with a constant transmission is measured. The particles move to the bottom

of the cuvette, where a sediment is built up (see Fig. D.1(a)). Since the position of the bottom

of the cuvette is known on the x-axis, the height of the sediment hSed can be easily measured.

From the volume fraction ϕ and the position of the meniscus (i.e. the height of the suspension

in the cuvette hSusp) the porosity of the sediment is computed by :

ε = 1−ϕ
hSusp

hSed
(D.1)

Obviously, the determination of the sediment height is most accurate for high concentrated sam-

ples. This is counteracted by the long necessary centrifugation time. Therefore, a concentration

of ϕ = 0.02 was used that gives a good compromise. To determine the compressibility of the

sediment, suspensions of HDKr D05, S13 and V15 were used. Centrifugation was carried out

at 1000 rpm until the suspension had completely settled. Then the number of revolutions was

increased stepwise up to 3000 rpm and decreased again. Fig. D.2 shows the result exemplarily

for a HDKr S13, the trend is the same for the other grades.
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Figure D.2: Compressibility of the sediment determined at a HDKr S13 with ϕ = 0.02.

There is indeed a large dependence of the sediment volume on the force acting on the aggre-

gates. The question arises, which sediment porosity can be chosen to describe pyrogenic silica
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in suspension. The answer has to consider the fractal structure of the aggregates. Since the

particles are rather open than compact they can interpenetrate if they come close enough. This

will obviously decrease the determined porosity. This interpenetration increases when the force

is increased. Therefore, a comparison has to be made concerning the force acting on the aggre-

gates in suspension which is exactly magg · g. In Fig. D.3 the determined sediment porosities

are plotted against the number of revolutions of the centrifuge. The number of revolutions

resembling 1 g has been determined from the definition of the centrifugal number:

z =
r ω2

g
⇒ n(z = 1) =

√
g

4π2 rSed (D.2)

Then, a simple fit equation that approximates all three data sets equally well was used to deter-

mine the sediment porosity at 1 g:

ε = C1 +C2 ln
(

Nrev

s−1

)
(D.3)
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Figure D.3: Determination of the porosity of pyrogenic silica aggregates via extrapolation of

sediment porosities.

The obtained porosities for pyrogenic silica aggregates are:

• ε = 0.8891 for HDKr D05

• ε = 0.9288 for HDKr S13 and

• ε = 0.9650 for HDKr V15.

These values show that pyrogenic silica indeed has a very open structure. With increasing size

of the primary particles, the structure becomes denser. This is additionally verified by Tab. 6.4
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since the grades with a small number of primary particles per aggregate should show a smaller

porosity.

However, there are two constraints with the determination of the aggregate porosity using the

centrifugation approach. Firstly, the results are obviously dependent on the chosen fit equation,

an uncertainty of at least ±0.02 is introduced. Additionally, it is not possible to conduct the

same experiment for grades with a specific surface area larger than 150 m2/g. Here, the sedi-

mentation velocity at ϕ = 0.02 is so low that the maximum centrifugation time of ≈ 42.5 h for

the LUMiFuge 116 is exceeded by far.

D.2 Porosity Estimate from Hydrodynamic and Structural

Properties

This second approach uses the results of Chap. 5 and 6. Considering that an aggregate in suspen-

sion is equivalently described by a sphere having the same hydrodynamic radius of translation

(see Tab. 6.3 and that it consists of a number of primary particles determined in Tab. 6.4, the

mean radius of a primary particle can be determined from eq. 5.18 assuming DLCA generation

mechanism for the aggregates:

Rprim = Rh,t

(
Nprim

1.09

)− 1
1.96

(D.4)

Then, the radius of the volume-equivalent sphere RV of an aggregate can be determined with:

RV = Rprim
3
√

Nprim (D.5)

and finally the porosity ε is defined as:

ε = 1−
R3

V

R3
h,t

(D.6)

Tab. D.1 lists the results of the above equations. For comparison the primary particle size

determined from gas adsorption (eq. 1.1) is given. Interestingly, the two radii are in good

accordance, i.e. the porosity is not strongly dependent on the respective choice.

Again, the determined porosities show a very open structure of pyrogenic silica aggregates.

Compared to the centrifugation results the porosities of HDKr D05 and S13 are very close but

deviate slightly for HDKr V15. This, however, proves that both approaches give reliable values

that can be used to determine effective concentrations of pyrogenic silica.
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E Relation between the Autocorrelation

Function and the Correlation

Function of the Fluctuating Field

The HPPS produces two results, the normalized autocorrelation function and a mean photon

count rate that can be considered as mean scattered intensity Ī = 〈I(t)〉. Then, the formulation

of the static scattered intensity Ic can be reformulated using eq. 8.2 and eq. 8.3:

Ic =
√

2 〈I(t)〉2−g2(0) · 〈I(t)〉2 = Ī
√

2−g2(0) (E.1)

The fluctuating intensity may now be substituted in eq. 8.1:

〈I f l(t)〉
〈I(t)〉

=
〈I(t)〉− Ic

〈I(t)〉
= 1−

√
2−g2(0) (E.2)

Kroon et al. [176] give the following equation for the computation of the CFF:

h(τ) = 1+
〈I(t)〉
〈I f l(t)〉

·
{√

g2(τ)−g2(0)+1−1
}

(E.3)

If eq. E.2 is now inserted the following relation is finally obtained:

h(τ) = 1+

√
g2(τ)−g2(0)+1−1

1−
√

2−g2(0)
(E.4)

Note that in going from the ACF to the CFF already a transformation of the second-order cor-

relation to first-order has been conducted. Therefore, the CFF can be directly processed with

algorithms requiring the field correlation function as input.
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