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Vorwort des Herausgebers

Seit über 15 Jahren wird ernsthaft und in Breite an der Realisierung und
dem Einsatz von Parallelkinematik-Maschinen für die Fertigungstechnik
gearbeitet.

Die zunächst groÿen Ho�nungen in das damit erwartete Potenzial an
Steigerungsmöglichkeiten für Stei�gkeit und damit auch Genauigkeit sowie
Dynamik bei gleichzeitigen Aufwandssenkungen schlugen bald aufgrund
ernüchternder Anwendungsresultate in Skepsis um. Neben unzulässigen
Verabsolutierungen und unausgewogenen Konzepten erweisen sich ins-
besondere auch mangelhafte Anwendungsaufbereitungen als dafür verant-
wortliche Ursachen. Hierzu zählt � obwohl im Bereich der Roboteran-
wendungen seit Jahrzehnten behandelt � das nach wie vor unbefriedigend
gelöste Problem der Kinematischen Kalibrierung.

In diesem Umfeld einer Vielzahl bereits durchgeführter und gegenwärtig
in Arbeit be�ndlicher Untersuchungen mit einer Unmenge, teilweise un-
vollständig und widersprüchlich aussagefähiger, Verö�entlichungen liefert
die vorliegende Arbeit von Herrn Szatmári einen wertvollen Beitrag zur
Einordnung, Wertung, methodischen Begründung und algorithmischen
Untersetzung sowie praktischen Durchführung der Kinematischen Kalib-
rierung von Parallelkinematiken unter den besonderen Bedingungen und
Anforderungen eines Hexapod einfacher Bauart.

(1. Introduction)
Zunächst erfolgt in einer kurzen Einführung die Abgrenzung des Prob-
lembereiches und die Orientierung auf die sich aus den Besonderheiten des
Konzeptes der einfachen Bauart ergebenden Schwerpunktsetzungen sowie
eine Kurzansprache zu Zielstellung und Gliederung der Arbeit.

(2. State of the Art)
In dem folgenden Kapitel wird der themenrelevante Stand der Tech-
nik � bei all den, durch groÿen Umfang und geringe Aussagefähigkeit
der Quellen, gegebenen Schwierigkeiten sowie den daraus resultierenden
Unausgewogenheiten in der Detaillierungstiefe � letztlich tre�end und
aussagefähig dargestellt.
(2.1 The Calibration Task of the Parallel Kinematic Machines)
Die Darstellung wird mit einer einführenden Umschreibung und Prob-



lemcharakteristik der Kalibrieraufgabe an parallelkinematischen
Maschinen erö�net.
(2.2 Hexapod of Simple Design)
Danach folgt die Kennzeichnung des Konzeptes zum Hexapod einfacher
Bauart und die sich daraus ergebenden Besonderheiten hinsichtlich
Aufbau und Eigenschaften, womit später die Anwendungsbedingungen
und �anforderungen des zu entwickelnden Kalibrierverfahrens begründet
werden können.
(2.3 Techniques to Increase the Precision)
Ausführlich wird im Weiteren die Positioniergenauigkeit mit den
Genauigkeitskenngröÿen, der Grundgenauigkeit des betrachteten Hexa-
pod und einer systematischen Analyse der Fehlerquellen sowie den
Möglichkeiten zur Genauigkeitsverbesserung diskutiert.
(2.4 The Kinematic Calibration Problem)
Den Hauptteil des Kapitels umfassen � entsprechend dem Dissertation-
sthema � die Darstellungen, Systematisierungen und Bewertungen zu
Methoden, Aufwand und Anforderungen der Kalibrierung, womit bereits
ein wesentlicher Beitrag zur systematischen und objektiven Einordnung
der Vielzahl unterschiedlichster Ansätze zur Lösung des kinematischen
Kalibrierproblems geliefert wird.
(2.5 Calibration Methods)
Als Grundlage zur systematischen Charakteristik der Kalibriermethoden
werden die Merkmale: Zustand des Messobjektes, Erzeugung der Mess-
werte, Messwertverarbeitung, Gestaltung der Zielfunktion und Charakter
des Suchverfahrens de�niert und aussagefähig zur Einteilung und Zuord-
nung der existierenden Verfahren benutzt.
(2.6 The Calibration Outlay)
Wichtige und bislang vielfach überhaupt nicht betrachtete oder zumin-
dest vernachlässigte Aussagen liefert die erarbeitete Systematik für die
Einordnung und Bewertung zum Aufwand der Kalibrierung.
(2.7 Demands on the Calibration)
Ebenso bedeutsam ist die Einordnung der Unmenge publizierter Ver-
fahren unter den dafür aufgestellten Kriterien und Gesichtspunkten zu
den Anforderungen an die Kalibrierung sowie die vergleichende
Bewertung der Verfahren mit unterschiedlich gewichteten technischen und
wirtschaftlichen Aspekten.
(2.8 De�cits)
Mit dieser Systematik gelingt es, unter ganzheitlicher Betrachtung
Schwerpunkte für die spezi�schen Anwendungssituationen zur Verfahrens-



beurteilung herauszuarbeiten und für das spezi�sche Arbeitsfeld De�zite
im Stand der Technik abzuleiten.

(3. Proposed Objectives)
In dem anschlieÿenden Kurzkapitel wird die Zielstellung der Arbeit mit
den dafür existierenden Randbedingungen formuliert und eine schematis-
che Übersicht zu den Hauptschritten des Vorgehens gegeben.

(4. Kinematic Calibration)
Das folgende Kapitel untersucht und erarbeitet ausführlich die Grundlagen
und zu lösenden Teilprobleme für die Kinematische Kalibrierung und
kann sowohl hinsichtlich Umfang und Inhalt als auch der darin enthaltenen
und für die Problematik neuen und wertvollen Anteile als Kernkapitel der
Arbeit angesehen werden.
(4.1 The Calibration Problem)
Zunächst wird das Kalibrierproblem erläutert und systematisch in die
Teilaufgaben der Problemkreise von realer Struktur, Parameteridenti�ka-
tion und Messmodell mit kinematischem Modell, Messsystem und Mes-
sung zerlegt und es werden untersetzend deren Bestandteile und Bezüge
dargestellt.
(4.2 Model Based Measurement)
Anschlieÿend werden die Grundlagen für die modellbasierte Messung
behandelt. Dazu wird das Kalibriermodell, welches neben dem kine-
matischen Modell mit seinen unbekannten Geometrieparametern auch
das Messsystem und Messverfahren abbildet, erläutert sowie das Prinzip
der Simulation von Genauigkeitsmessungen beschrieben, welches einen
wesentlichen Bestandteil des entwickelten Kalibrieransatzes darstellt.
(4.3 Measuring Procedure)
Ein weiterer Abschnitt befasst sich mit dem Messverfahren. Hier wird,
ausgehend von den Anforderungen an das Messsystem, begründet, dass der
Double�Ball�Bar (DBB) am besten dem Konzept der einfachen Bauart
gerecht wird. Ausführlich werden Aufbau, Eigenschaften und Anwen-
dung des DBB beschrieben, wobei die Untersuchungen zu den Varianten
der Datenerfassung, wie statische Messung von Einzelwerten im Vergleich
zu kontinuierlicher Messung entlang einer Messbahn bei unterschiedlichen
Bahngeschwindigkeiten, wesentliche Ergebnisse für die Quali�zierung der
Messbedingungen liefern.
(4.4 Planning the Measuring Path)
Mit der im Weiteren behandelten Planung der Messbahn wird ein für
die wirksame Kalibrierung ganz wesentlicher und in vielen Verö�entlichun-



gen bisher vernachlässigter Aspekt aufgegri�en und gezeigt, dass die Iden-
ti�zierbarkeit der Parameter maÿgeblich auch von der Wahl der Messbahn
abhängt. Als Grundlage für die Festlegung der Messbahn wird dazu sys-
tematisch die Sensitivität und Orthogonalität der Parameter im Arbeits�
bzw. Messraum untersucht. Insbesondere die Betrachtungen zur Orthog-
onalitätsanalyse liefern einen wichtigen Beitrag und veranschaulichen sehr
deutlich den Ein�uss der Messbahn und des Bezugssystems der kinema-
tischen Parameter auf die Orthogonalität. Die aus der Sensitivitäts� und
Orthogonalitätsanalyse gewonnenen Erkenntnisse werden schlieÿlich unter
Berücksichtigung der von Messsystem (DBB) und Messwertaufbereitung
(FFT) bestimmten Randbedingungen in einem Ansatz zur Optimierung
der Messbahn zusammengeführt. Im Ergebnis lässt sich unter Ausnutzung
aller 6 Freiheitsgrade eine � für die Anwendbarkeit der FFT notwendig � in
sich geschlossene Bahn angeben, die � durch den Einsatz des DBB bedingt
� auf einer Halbkugelober�äche und zur Sicherstellung gröÿtmöglicher Sen-
sitivität in der Nähe der maximalen Wirkung der Parameterfehler verläuft,
wobei deren Orientierungsverlauf unter Anwendung genetischer Algorith-
men hinsichtlich maximaler Orthogonalität der Parameterfehler optimiert
wird.
(4.5 Processing the Measurement Data)
Im nächsten Abschnitt werden zum Verfahrensschritt der Messdaten-
verarbeitung Möglichkeiten zur Glättung und Kompression der mit dem
DBB über der Messbahn in groÿem Umfange erfassbaren Messdaten un-
tersucht. Über den Vergleich von Kompressionsrate und Approximations-
genauigkeit verschiedener Verfahren wird die FFT als am besten geeignet
begründet und vertieft hinsichtlich der geometrischen Interpretierbarkeit
und der optimalen Anzahl von Fourierkoe�zienten untersucht.
(4.6 Parameter Identi�cation)
Mit der Parameteridenti�kation wird schlieÿlich der letzte Schritt des
Kalibrierverfahrens behandelt. Nach Ansprache der charakteristischen Op-
timierungsprobleme konzentriert sich der Abschnitt auf die Erschlieÿung
des Potenzials genetischer Algorithmen für die Identi�kation der Kalibrier-
parameter. Hier werden ganz wesentliche Beiträge ur E�zienzsteigerung
und Problemanpassung durch gezielte Modi�kation der genetischen Al-
gorithmen geliefert. Dies betri�t zum Einen die Einführung wirksamer
Operatoren zur Bildung neuer Generationen, wobei mit der �Mittelwert�
funktion� bessere Konvergenz und Lösungsraumabdeckung erreichbar sind
und die �Gruppierungsfunktion� durch Zusammenfassung sehr ähnlicher
Lösungen die Reduzierung der Populationsgröÿe ermöglicht. Zum An-
deren liefern die Untersuchungen zum Ein�uss der Zielfunktionsgestal-



tung auf das Optimierungsergebnis die Aussage, dass insbesondere hin-
sichtlich der Genauigkeitsbegrenzung durch Messrauschen das Kriterium
�minimales Fehlermaximum� besser geeignet ist, als das üblicher Weise
verwendete �Fehlerquadratminimum�. Schlieÿlich liefern die Untersuchun-
gen zum Konvergenzverhalten, durch Variation von Populationsgröÿe und
Generationenanzahl, wichtige Aussagen für die Aufwandsminimierung bei
der praktischen Anwendung des Identi�kationsverfahrens.
(4.7 Work�ow of the Calibration)
Abschlieÿend wird der Ablauf der Kalibrierung schematisch zusammenge-
fasst und übersichtlich als modellbasierter Kalibrierungsprozess im Zusam-
menspiel von experimenteller Messwertgenerierung am realen Hexapod
und simulationsgestützter Parameteridenti�kation am erweiterten kinema-
tischen Modell dargestellt.

(5. Implementation of the Procedure and Experimental Results)
Das Kapitel behandelt die konkrete Umsetzung des Verfahrens und
experimentelle Ergebnisse aus der beispielhaften Anwendung am
Hexapod einfacher Bauart. An dieser Stelle wurde konsequent auf alle
Beschreibungen zu Equipment, Randbedingungen, Vorgehensweisen, Al-
gorithmen und dgl. verzichtet, da dies vollständig im vorangegangenen
Kapitel dargestellt wurde. Obwohl die Darstellungen daher im Verhält-
nis zum Gesamtumfang der Arbeit einen sehr geringen Raum einnehmen,
sind sowohl die erhaltenen Ergebnisse eindrucksvoll und überzeugend als
auch die zu ihrer Gewinnung zu leistende Arbeit hinsichtlich Qualität und
Quantität höchst beachtlich einzuschätzen.
(5.1 Applying the Measuring Path for the Hexapod �Felix�)
Unter Anwendung der für die Berücksichtigung von Sensitivität und Or-
togonalität der Fehlerwirkungen sowie der Berücksichtigung der Messbe-
dingungen entwickelten Vorgehensweise erfolgte zunächst die konkrete Er-
mittlung der Messbahn für den Hexapod �Felix� .
(5.2 Measurements, Results)
Die auf dieser im Positions� und Neigungsverlauf optimierten Mess-
bahn vor und nach der Kalibrierung erhaltenen Messergebnisse bele-
gen eindrucksvoll Wirksamkeit und Potenziale des entwickelten Kalibri-
erverfahrens, insbesondere wenn zudem der Vergleich mit den simulierten
Werten herangezogen wird.
(5.3 Accuracy Evaluation)
Der Genauigkeitsnachweis und damit die praktische Bewertung des
Kalibrierverfahrens erfolgt repräsentativ für den gesamten Arbeitsraum
des Hexapoden. Mit dem dazu benutzten Kreistest für mehrere, weit



auseinander liegende Mittelpunktskoordinaten, extreme Durchmesser und
alle drei Ebenenlage wurde ein Testumfang zum Nachweis des Kalibrier-
ergebnisses realisiert, der weit über die bisher publizierten Umfänge hin-
ausgeht und eine für den gesamten Arbeitsraum repräsentative Bewertung
ermöglicht.
(5.4 Limits of the Accuracy Correction)
Einen besonders wichtigen und arbeitsintensiven Beitrag stellt die ab-
schlieÿende Untersuchung zu den im Kalibrierverfahren begründeten
Grenzen der Genauigkeitskorrektur dar. Mit besonderem Aufwand,
z.B. 10000 simulierten Messungen, sind dabei die wertvollen Untersuchun-
gen zur Übertragungsfunktion zwischen den kinematischen Fehlerparam-
etern und den Bahnabweichungen verbunden. Hiermit gelingt die Ab-
schätzung der verbleibenden Parameterfehler anhand der messbaren Rest-
fehler über der Messbahn.

(6. Summary and Perspectives)
In einem abschlieÿenden Kapitel werden Zusammenfassung und Aus-
blick zum Themenbereich der Arbeit gegeben, wobei die systematische
Charakterisierung relevanter Problemstellung besonders hervorhebenswert
ist.

Prof. Dr.-Ing. habil. Knut Groÿmann Dresden, den 18.09.2007



Vorwort

Das Schreiben einer Dissertation erstreckt sich über mehrere Jahre in de-
nen man immer wieder mit zahlreichen Fragen konfrontiert wird, während
man in seinem manchmal zu warmen Büro sitzt und über die Lösung dieser
sinniert. Häu�g hilft dann ein klärendes Gespräch mit netten Kollegen, die
man mehr oder minder zufällig an der Ka�eemaschine tri�t, die als eine
der besten Wissensmanagementlösungen gilt. Das wurde sogar automa-
tisiert, wir haben täglich gespannt auf die �...hmmm, jetzt gibt's lecker
Ka�ee� � Meldung gewartet (siehe auch: |Pawlow, 1905|).

So habe auch ich meine orange�farbige Tasse genommen und bin vor dem
bisweilen lauten Krach des Kompressors von Thomas ge�üchtet um eine
Tasse Ka�ee zu trinken und als �Strafe� einen unerlässlichen, präzisen
Strich von Holger in die Ka�eeliste zu bekommen. Die Belohnung dagegen
waren recht oft konstruktive Gespräche, aber auch die �fachbeitragsfreien�
freitags Nachmittagsrunden, wo die endlose Kreativität von Jens und Lars
nur durch Michael oder Holger K. überboten werden konnte, haben zur
Fertigstellung dieser Arbeit beigetragen.

Besonders möchte ich mich bei meinem Doktorvater Prof. Dr.�Ing.
habil. Knut Groÿmann, Direktor des Institutes für Werkzeugmaschinen
und Steuerungstechnik der TU Dresden, bedanken für die sehr spannen-
den aber auch arbeitsreichen letzten Jahre , für die umfassende Betreu-
ung der Arbeit und die Vermittlung neuer Sicht� und Denkweisen. Dank
gebührt ihm auch für den gesetzten Maÿstab an Qualität und Genauigkeit,
der jede DIN�Norm übertri�t und den gezeigten Weg in die System-
atik, was sich nicht nur fachlich aber auch im Alltag als nützlich erwies.
Auÿerdem wurde durch ihn die Aufnahme meines Themas in das DFG
Schwerpunktprogramm (SPP 1099) �Fertigungsmaschinen mit Parallel-
kinematiken� ermöglicht. Dank bekunden möchte ich folglich ebenso der
Deutschen Forschungsgemeinschaft für die Unterstützung.

Weiterhin gilt Herrn Prof. Dr.�Ing. habil. Günter Binger mein Dank
für die Übernahme des Gutachtens sowie die wertvolle Diskussionen, vor
allem in der Endphase der Arbeit. Danken möchte ich auch Herrn
Prof. h.c. Dr.�Ing. Ferenc Alpek aus Budapest, der seine Promo-
tion vor Jahrzehnten ebenfalls in Dresden verteidigte, für die Übernahme
des Gutachtens und die stetige Hilfe während meines Aufenthaltes in
Budapest.



Mein Dank richtet sich auch an Prof. Dr. rer. nat. habil. Karl�
Heinz Modler, Vorsitzender der Promotionskommission, für die unendlich
positive Einstellung, sowie an allen weiteren Mitglieder der Promotions-
kommission.

Mein Dank gilt genauso Bernd für die sehr kompetente fachliche Betreu-
ung; Hajo für die Aufmunterung, wenn ich dachte es ginge nicht weiter;
Andreas M. � das lebendige Lexikon des Institutes; Ste�en und Mirko
� die bestimmt keinen Höhenangst haben; Andreas � Richter meines
�User�Account�-s, Christine Häusler, die �Seele� des Institutes, Kerstin
Wanstrath, die immer strahlende kleine�groÿe Hilfe, sowie auch allen an-
deren Mitarbeiter des IWM Dresden.

Ganz besonders danke ich meinen Eltern für ihre unerschütterliche Unter-
stützung. Nachdem diese ihre Frage: �Und, wann bist du endlich fertig
mit diesen parallelen Dingen?� letztendlich aufgegeben hatten, wurde ich
tatsächlich fertig.

Ein herzlicher Dank geht auch an meine Freundin Jana, die mich trotz
'Promotionsphase' ausgehalten hat.

Schlieÿlich geht eine Aufmunterung an meine Schwester Tünde, die sich
mit unaussprechbaren Sachen in Physik quält und in der letzten Phase der
Promotion kämpft: �Manche von euch denken, sie werden nicht kämpfen.
Und manche, sie können nicht kämpfen. Das behaupten alle. Bis sie da
draussen sind...� (Proximo, Gladiator)

Dresden, 16. Oktober 2007 Szabolcs Szatmári



�Wenn mehrere Wahrheiten einleuchtend sind

und sich unbedingt widersprechen,

bleibt dir nichts anderes übrig,

als deine Sprache zu wechseln.�

Antoine de Saint-Exupéry,
'Die Stadt in der Wüste'





Abstract

The aim of using parallel kinematic motion systems as an alternative of
conventional machine tools for precision machining has raised the demands
made on the accuracy of identi�cation of the geometric parameters that
are necessary for the kinematic transformation of the motion variables.
The accuracy of a parallel manipulator is not only dependent upon an
accurate control of its actuators but also upon a good knowledge of its
geometrical characteristics. As the platform's controller determines the
length of the actuators according to the nominal model, the resulted pose
of the platform is inaccurate. One way to enhance platform accuracy is by
kinematic calibration, a process by which the actual kinematic parameters
are identi�ed and then implemented to modify the kinematic model used
by the controller.

The �rst and most general valuation criterion for the actual calibration ap-
proaches is the relative improvement of the motion accuracy, eclipsing the
other aspects to pay for it. The calibration outlay has been underestimated
or even neglected for a long time. The scienti�c value of the calibration
procedure is not only in direct proportion to the achieved accuracy, but
also to the calibration e�ort. These demands become particularly stringent
in case of the calibration of hexapods of the so�called simple design.

The objectives of the here proposed new calibration procedure are based on
the de�cits mentioned above under the special requirements due to the cir-
cumstances of the simple design�concept. The main goals of the procedure
can be summarized in obtaining the basics for an automated kinematic ca-
libration procedure which works e�ciently, quickly, e�ectively and possibly
low�cost, all�in�one economically applied to the parallel kinematic ma-
chines. The problem will be approached systematically and taking step by
step the necessary conclusions and measurements through: Systematical
analysis of the workspace to determine the optimal measuring procedure,
measurements with automated data acquisition and evaluation, simulated
measurements based on the kinematic model of the structure and identi-
fying the kinematic parameters using e�cient optimization algorithms.

The presented calibration has been successfully implemented and tested
on the hexapod of simple design `Felix' available at the IWM. The ob-
tained results encourage the application of the procedure to other hexapod
structures.
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Symbols and Abbreviations

Symbols

Scalar quantities

An −− amplitude of the n�th Fourier wave
a, b −− real and imaginary share of the

Fourier coe�cient
B rad latitude angle (modi�ed Euler angle)
cond −− condition number (of a matrix)
D rad drill (twist) angle (modi�ed Euler angle)
i, k, l −− index
L rad longitude angle (modi�ed Euler angle)
li mm lengths of the strut i
li act mm actual lengths of the strut i
li nom mm nominal lengths of the strut i
n,N −− number of kinematic parameters
ok,l −− orthogonality between parameter k and l
Pi −− the i�th kinematic parameter
q mm position of the strut
qi mm ideal position of the strut i
r mm distance between the two balls of the DBB
R mm radius
t −− path parameter
∆l mm length o�set of the strut
∆ri mm simulated measurement with the

Double�Ball�Bar
ε mm error (deviation)
λ −− singular value
ϕ rad virtual angle between kinematic

parameter vectors
ϕn rad phase shift of the n�th Fourier wave
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Symbols and Abbreviations

Vectorial quantities

Vectorial quantities in this work are in bold text marked. Further the 3D�

vectors are notated with minuscule, co�ordinate systems and matrices are typed

in upper case. The corresponding base co�ordinate system can appear as index

on the top left side of the letter.

bi mm position of the base joint i
C −− Fourier coe�cient
G mm, rad base co�ordinate system
G∗ mm, rad simpli�ed base co�ordinate system
Gact mm, rad actual position of the base co�ordinate system
Gnom mm, rad nominal position of the base co�ordinate system
P hi mm spacial position of the platform joint i

expressed in the platform co�ordinate system
Ghi mm spacial location of the platform joint i

expressed in the base co�ordinate system
Gh7 mm position of the moving ball of the DBB
H mm, rad co�ordinate system of the joints on the

moving platform
ji mm, rad column i of the Jacobian matrix
J −− Jacobian matrix
Jcal −− Jacobian matrix of the calibration problem
Jk −− kinematic Jacobian matrix
Je −− Euler angles Jacobian matrix
Gli mm space vector from base� to platform joint i
M0 mm, rad position of the �xed ball of the DBB
O −− orthogonality matrix
GoP mm origin of the co�ordinate system P

expressed in G
P mm, rad platform co�ordinate system
P∗ mm, rad simpli�ed platform co�ordinate system
pi mm position of the platform joints
Pact mm, rad actual position of the platform

co�ordinate system
Pnom mm, rad nominal position of the platform

co�ordinate system
GP mm, rad platform co�ordinate system expressed in G
q mm vector of the actuator values
dq mm modi�cation of the actuator vector
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Symbols and Abbreviations

qk mm actuator values on the k�th iteration step
GRP rad rotation matrix of the co�ordinate

system P expressed in G
Gsi mm spacial position of the base joint i

expressed in the base co�ordinate system
Gs7 mm position of the �xed ball of the DBB
S mm, rad co�ordinate system of the base joints
V,S,U −− matrices of the singular value decomposition
v mm position of the mounting point of the

moved DBB�ball
x mm, rad Cartesian pose of the platform
x0 mm, rad initial value of the platform pose
dx mm, rad modi�cation of the platform pose
x∗ mm, rad approximation of the Cartesian platform pose
x mm vector of the error parameters
x∗ mm simpli�ed vector of the error parameters
xHi mm position deviation of the platform joints
xSi mm position deviation of the base joints
xli mm length o�set of the struts
Xideal mm ideal measurement set
Xreal mm real measurement set
∆b mm position deviation of the base joints
∆bx,y,z mm position deviation of the base joints along

X, Y, Z axes
∆br,t mm position deviation of the base joints along radial

and tangential direction to the base circle
∆p mm position deviation of the platform joints
∆px,y,z mm position deviation of the platform joints along

X, Y, Z axes
∆pr,t mm position deviation of the platform joints along

radial and tangential direction to the platform
circle

∆l mm length o�set of the struts
∆r mm length o�set of the Double�Ball�Bar
∆xk mm, rad correction of the actuator values on the

k�th iteration
w0 mm location vector of the �xed ball of the DBB
Θ̂ mm set of the kinematic parameters
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Symbols and Abbreviations

Abbreviations

3D three dimensional
AP pose accuracy
CAD Computer Aided Design
CNC Computerized Numerical Control
CW clockwise
CCW counter�clockwise
D diameter
DBB Double�Ball�Bar
DFG Deutsche Forschungsgemeinschaft

(German Research Foundation)
DOF Degrees of Freedom
ES Evolutionary Strategies
EP Evolutionary Programming
F radial deviation
FFT Fast Fourier Transformation
G circular deviation
GA Genetic Algorithm
GP Genetic Programming
H hysteresis
IK inverse kinematic transformation
IR industrial robot
ISO International Organization for Standardization
IWM Institute of Machine Tools and Control Engineering
LCS Learning Classi�er Systems
M midpoint of the hemisphere
NC Numerical Control
PC Personal Computer
PKM Parallel Kinematic Machine
RP pose repeatability
QC10 Quick Check 10 Renishaw DBB-System
SME Small and Medium Enterprise
TCP Tool Center Point
U�joint universal joint
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1 Introduction

Controlling the motion accuracy of a parallel kinematic machine in prac-
tice is still a scienti�c challenge although extensive research work has been
done in this �eld so far [Mer99]. Among the generally accepted bene�ts
displayed by parallel kinematic machines are a favorite sti�ness-mass ratio,
the comparatively simple generation of motions in up to six degrees of free-
dom (DOF) and modest requirements made on production and assembly
through the availability of correction methods [Gro99, Gro00c, Gro01a].
Here especially the hexapods have to be mentioned and as a result of their
dexterity in complex motion, similar platforms have been used as �ight
simulators, manipulators and recently as CNC milling machines [Zhu98].
Important especially in case of this last application, where a high accu-
racy is required, is the fact that the structure enables to compensate the
inaccuracies of the construction through the 6 DOF control of the six legs
[Cha02, Gro99, Gro02f, Kha99, Mer00]. However, the industrial exploita-
tion of these advantages is only possible if the desired precision is achieved
reliably and e�ciently. E�cient kinematic calibration procedures and in-
telligent approaches to counterbalance further errors are consequently of
vital importance, in particular for a hexapod of the so�called simple design
[Gro00a]. The strategic aims of this concept developed at the Institute of
Machine Tools and Control Engineering (IWM) of the Technische Univer-
sität Dresden are:

• making possible a wide range of applications for machining and han-
dling through structural �exibility and technological adaptability
[Gro00c, Gro01a],

• minimizing the realization outlay through simple, robust mechani-
cal solutions using thereby low�cost standard components as far as
possible,

• optimum use of control techniques to improve the principally worse
basics and initial values of motion accuracy.

In order to �t the concept, the calibration of the hexapod of the simple
design obviously has to meet high demands concerning minimum outlay,
feasibility and e�ciency [Gro01b, Gro02e, Gro02f]. The latter together
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Chapter 1. Introduction

with the characteristics mentioned above lead to the following decisions
about the selection, layout and design of a suitable calibration procedure:

• use of a simple measuring instrument with only one setup (if possible)
to generate the measured values from the motion space,

• analysis of the measured values to suppress measurement noise and
outliers using data �ltering,

• using a kinematic model of the structure to make computer simula-
tion of the measurements.

These demands will guide us further through planning the strategies for
measuring and identi�cation of the kinematic parameters like assembly
errors and manufacturing tolerances. Other in�uences, like the non-
geometric share of the motion errors (as elastic or thermal in�uences),
are not considered here, they are supposed to be previously model-based
corrected using control-integrated, structure-based models as the result of
a previous research at the IWM [Kau06].

Considering the simple design-concept, the goal of this work consists in
obtaining the basics for an automated calibration procedure which works
e�ciently, quickly, e�ectively and possibly low-cost, all-in-one economi-
cally applied to PKMs, in particularly hexapods, especially those of simple
design. Here the six motion DOFs of the hexapod are used for correction,
through the functionality of the controller. Special emphasis is laid on the
following points:

• systematical analysis to generate an optimal measuring procedure
customized for the given device

• automated measurements with the Double-Ball-Bar (DBB) along an
optimized path

• identifying the kinematic parameters by using optimization algo-
rithms like genetic algorithms (GA) �nally proving the results on
a hexapod structure available at the IWM

Working out these points, this document is guided as following:

Chapter 2 handles the State of the Art of the calibration, de�ning the
problem, analyzing and discussing the actual calibration approaches found
in the literature with their strengths and weaknesses.

2



Chapter 3 is phrasing the objectives of this work, limitations and pro-
posed procedure of the calibration.

Chapter 4 presents the substance of the calibration, describing a sys-
tematical approach to the problem, splitting down the calibration in their
sub-problems and elaborating a new method which embraces the merits
and overcomes the shortages of the actual calibration approaches. Ana-
lysis of the sensitivity and orthogonality of the parameters are made to
optimize the measuring path and the acquired data are prepared for the
identi�cation with genetic algorithms. Here the GA's are customized for
quick and robust solution to the problem.

Chapter 5 handles the implementation of the algorithm on a hexapod
structure available at the IWM. Experimental measurements are done and
the results are veri�ed under in standards speci�ed circumstances to obtain
a better reference in comparison with other manufacturing machines.

Chapter 6 presents the summary and perspectives of the work and open
possibilities for further research in this area.
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2 State of the Art

2.1 The Calibration Task of the Parallel

Kinematic Machines

The aim of using parallel kinematic motion systems as an alternative of
conventional machine tools for precision machining has raised demands
made on the accuracy of identi�cation of the geometric parameters which
are necessary for the kinematic transformation of the motion variables.
Therefore, researchers have been intensely working on the development and
advancement of suitable compensation methods since the middle of the 90s
[Mer99, Mer00]. Most of the works done and published by now deal with
the analysis and calibration of particular (specialized) kinematic structures
[Den04]. There are, however, no general statements on tested fundamental
methodical and algorithmic processes which can also be transferred to
other parallel kinematic structures and which can be used as a framework
for an automated operating sequence.

So far an e�cient calibration algorithm is still a challenge for the par-
allel kinematics. Developing an algorithm is a complex task. Con�icts
with problems, like choosing the measuring instruments and strategy,
data acquisition and processing the measured values and elaborating an
appropriate procedure, able to �nd the range of the calibration o�sets
[Mer02, Mer05].

An essential drawback of calibration is the great number of kinematic
parameters which are to be identi�ed and also the principally worst con-
ditioning of the calibration problem [Den04]. If the input data are dis-
crete measured values of poses in the workspace, this not only generates
inevitable measurement inaccuracies (measurement noise) but also other
in�uences (errors) that are not caused by deviations of the kinematic pa-
rameters. Unless these errors are eliminated from the measured data, the
obtainable calibration accuracy remains limited [Gro04]. These demands
become particularly stringent in case of the calibration of hexapods of the
so�called simple design [Gro01b].
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2.2 Hexapod of Simple Design

A typically parallel kinematics construction is the Gough platform [Gou57,
Gou62] which consists of six variable�length legs connected at one end to
a �xed base by U�joints and at the other end to a movable plate by ball�
joints [Mer00, Zhu98]. This six�leg�construction (hexapod) o�ers high
force/torque capability and high rigidity to the structure [Mer00].

In some papers is, although, considered that a hexapod is a mix of paral-
lel and serial structures. [Wil00] stipulates that, although, a hexapod is
globally parallel, the architecture is serial where you can �nd the greatest
number of mechanical pieces, in-between articulations.

As a result of their dexterity in complex motion, similar platforms have
been used as �ight simulators, manipulators and recently as CNC milling
machines [Zhu98]. Important especially in case of this last application,
where an e�ectual accuracy is required, is the fact that the structure
enables to compensate the inaccuracies of the construction through the
6 DOF control of the six legs [Cha02, Gro99, Gro01a, Gro02a, Kha99,
Mer00, Kau06]. This possibility is new compared to the 3 DOF mecha-
nisms (tripods) and means a milestone for future industrial applications
[Gro02b, Gro02c, Neu98, Neu00, Wec98b].

The above mentioned features can be exploited as accuracy bene�ts with
proper use of the controller facilities. That means there is no absolute need
of a high�end geometrical structure to obtain the desired accuracy, but a
simple construction can be intelligently programmed, doing the same op-
erations with a su�cient precision for the desired application. This simple
design construction would cover the application��eld between conventional
machine tools and universal robots.

When speaking about hexapod, beside the accuracy another important
point of view is the economical aspect. An ample description of the topic
and about the hexapod of simple design developed at the IWM (Fig. 2.1)
can be found in [Gro00a, Kau06].

Here is also mentioned that the e�orts to obtain the desired accuracy of
the machine have to be invested in two levels: the mechanical construction
and the control technique. For the motion control a kinematic model is
required which builds a virtual image of the physical structure. From this
point of view the following approaches can be de�ned:
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• Executing accurately the mechanical components so that a simple
model will be su�cient to guarantee the required motion accuracy.
This approach charges primarily the construction e�orts and spares
the performance of the control computer.

• The kinematic model on the control system is extended in order to
handle the complex behavior of a rudimentary mechanical construc-
tion. Here the e�orts are focused on the controller, charging the
computer performance, on the other hand spares the construction
e�orts of the mechanical structure.

Both variants have their bene�ts and drawbacks, but neither of them
presents a completely stand�alone ful�lling of the nowadays requirements,
especially applied in the SMEs. A possible solution can be seen more
in cleverly combining these approaches [Kau06]. Analyzing the problem
for more machines, especially in case of quantity production, the advan-
tages of a simple mechanical construction can be generally admitted by
transferring the already developed control software to the new structures.

Fig. 2.1: Hexapod of simple design
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2.2.1 Construction and Features

Designing a manipulator in the low�cost area begins with minimizing the
realization outlay of the mechanical structure. The concept of the hexapod
of simple design means to reduce as far as possible the mechanical e�ort
invested in constructing a parallel manipulator. The goal of this concept
is to develop a robust, low-cost, simple construction accessible to use in
the small and medium enterprises [Gro01a, Gro01b]. The motto of the
concept can be de�ned as following: �The machine has to be as good as the
work piece requires. � More accurate machines are mainly most expensive�
[Wec01].

The construction of the hexapod of simple design is based on choosing as
far as possible standard components like universal joints, simple section
steel of the platforms, struts without additional motion guide and simple
position measurement systems as rotary encoders. Fig. 2.1 demonstrates
the essential features of the simple design concept of the hexapod 'Felix'
which has been developed for various applications at the IWM [Gro00a,
Gro01b].

2.2.2 Main Characteristics

The hexapod 'Felix' is a 6 DOF � fully parallel kinematic machine, based
on the construction of a Gough�platform [Gou57, Gou62, Mer00]. It has
been designed using 6 length variable struts which link the base frame to
the platform frame (Fig. 2.2). For more details of the construction see also
[DPMA00, Gro00a, Gro01b, Kau06].

The base joints and the moving joints are situated each in a plain of a
circle with a 1500 mm and 600 mm radius respectively. The traversing
range of the struts, which hence the distance connecting a set of base and
moving joints, is situated between 1533.0 mm and 2513.0 mm absolute
length [Gro00a]. The origin of the strut co�ordinate system is de�ned by
an absolute length of the struts of 2000.0 mm. According to this, the
relative motion of the struts can be measured between �467 mm and +513
mm. The origin of the global co�ordinate system will be in the center of
the moving platform, de�ned in the pose where the struts are at null �
approximately in the middle of the workspace of the hexapod (Fig. 2.3).

8



2.2. Hexapod of Simple Design

Fig. 2.2: Hexapod 'Felix' at the IWM, Dresden

Fig. 2.3: Main characteristics of the hexapod 'Felix'
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2.2.3 Position Accuracy

2.2.3.1 Performance Criteria

Accuracy control is made usually for the �nal acceptance of a machine
or for their periodic veri�cation. To ensure a high accuracy of the ma-
chine, various measurement systems and processes have been created and
standards governing machine tool acceptance tests have been published,
summarized in [Ble06]. Here is related that the methods of machine ac-
ceptance can be mainly broken down into direct and indirect processes to
recognize the properties of the machine:

• Indirect examination of machine accuracy

The machine tool is tested by manufacturing sample workpieces with
de�ned geometric characteristics. The conclusions about machine ac-
curacy will be drawn on the basis of deviations between the required
and actual geometries. Due to the error overlap, a clear attribution
of deviations in the geometry of the sample workpiece to the individ-
ual properties of the machine is not trivial. Hence, indirect processes
will be more used for �nal functional tests to determine the accuracy
of the machine and therefore preferable used in acceptance tests. For
more detailed examinations the direct processes are rather used.

• Direct determination of machine properties

The direct determination of the properties of a machine tool allows
the identi�cation of error sources. Parameters are determined di-
rectly on the machine with the help of measuring instruments. Tests
of customized criteria and arbitrarily degrees of freedom can be car-
ried out to respond to more demanding accuracy requirements. The
results may be processed further in various ways, depending on the
kinematic structure.

Robot manufacturers, as an industry standard, publish the repeatabil-
ity of each machine. These speci�cations are determined by performing
stringent experiments in accordance with [ISO9283]. This international
standard depicts the performance criteria and related testing methods to
determine performance characteristics of manipulating industrial robots.
Here are described methods of specifying and testing the following perfor-
mance characteristics of manipulating industrial robots:

• pose accuracy and pose repeatability

• multi�directional pose accuracy variation
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• distance accuracy and distance repeatability

• position stabilization time

• position overshoot

• drift of pose characteristics

• exchangeability

• path accuracy and path repeatability

• path accuracy on reorientation

• cornering deviations

• path velocity characteristics

• minimum posing time

• static compliance

• weaving deviations

This International Standard does not specify which of the above mentioned
performance characteristics are to be chosen for testing a particular robot.
The tests described here are primarily intended for developing and verify-
ing individual robot speci�cations, but can also be used for such purposes
as prototype testing, type testing or acceptance testing.

To compare performance characteristics between di�erent robots, the fol-
lowing parameters have to be the same: test cube sizes, test loads, test
velocities, test paths, test cycles and environmental conditions [ISO9283].
This international standard can be applied to all manipulating industrial
robots as de�ned in [ISO8373]. However, for the purpose of this standard,
the term �robot� means manipulating industrial robot.

The most important accuracy relevant properties mentioned above in the
case of a parallel manipulator are mainly considered the:

• pose accuracy (AP): Di�erence between a command pose and the
mean of the attained poses when visiting the command pose from
the same direction.

• pose repeatability (RP): Closeness of agreement among the at-
tained poses for the same command pose repeated from the same
direction.

• path accuracy: Di�erence between a command path and its at-
tained path.

• path repeatability: Closeness of the agreement between multiple
attained paths for the same command path.
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The test equipments and metrology methods of operation for robot per-
formance evaluation are summarized amongst others in [ISO13309]. The
metrology approaches as presented in the ISO technical report, are:

• Positioning test probe methods

• Path comparison methods

• Trilateration methods

• Polar coordinate measuring methods

• Triangulation method

• Optical tracking methods

• Inertial measuring methods

• Cartesian coordinate measuring methods

• Path drawing methods

The presence of such a wide range of metrology solutions suggests that
industry has still to settle on any single method [Con00]. Each o�ers a
slightly di�erent approach to a similar problem, therefore the most ap-
propriate solution is subjected to the parameters each individual process
requires [Con00].

A broad�applied precision test of machine tools is the circular test with
the Double�Ball�Bar. The manufacturers, which produce the DBB [Ren],
base their tests on the [ISO230] reports. Here are �ve available views of
the accuracy presented:

G (CCW) � Circular deviation by counter-clockwise measurement
G (CW) � Circular deviation by clockwise measurement
F (CCW) � Radial deviation by counter-clockwise measurement
F (CW) � Radial deviation by clockwise measurement
H � Hysteresis

The mentioned tests will be used to determine the accuracy of the mani-
pulator in the actual case of the hexapod of simple design.

2.2.3.2 Position Accuracy of the Hexapod of Simple Design

The mechanical parts of a construction such as a hexapod have more or
less tolerances in manufacturing and assembling. This is generally valid
for mechanical structures, but especially stringent in case of the parallel
manipulators, particularly in case of the simple design hexapod [Gro00a].
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The simple mechanical construction of the hexapod involves a principally
worse basic and initial values of the motion accuracy [Gro01a, Gro01b].
One possible accuracy test is presented by [Kau06] (Fig. 2.4) where bi-
directional repeated measurement results have been made with the laser
interferometer along X and Y axes of the basic structure, through the
middle of the workspace (origin). Against the poor motion accuracy the
hexapod possesses a very good repeatability of the measurements. As
the error in�uences have a systematic character, they can be principally
corrected through the controller facilities.

Fig. 2.4: Positioning uncertainty and repeatability of the hexapod of sim-
ple design [Kau06]

Analyzing the accuracy of the hexapod measured along circles with 300
mm radius in the middle of the workspace on orthogonal planes, the mea-
surements can be observed in Fig. 2.5. Extensive measurements to estimate
the positioning uncertainty of the hexapod 'Felix' using the DBB will be
presented later in Chapter 6.

2.2.3.3 Error Sources

There are a huge amount of error sources which a�ect the accuracy of the
hexapod. They have to be investigated in order to know their in�uence and
the method to correct them. A possibly organized view of these in�uences
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Fig. 2.5: Circular deviation measured with the DBB (R=300 mm)

o�ers [Con00] analyzing the reasons which act on the overall accuracy and
originate the errors (Fig. 2.6).

Considering the location, where the errors occur, and complementing the
sorting proposal made by [Beh00], the following main error sources can be
mentioned:

• Errors in the joints and the drives

Errors in the joints and drives are probably the essential errors which
characterize the parallel kinematics. These errors can achieve di-
mensions of several millimeters, especially valid in the case of large
constructions. They are important �rstly due to the higher number
of joints relative to the serial structures and can arise due to:

� Manufacturing and assembly errors: the real position of the
joints is unknown due to uncertainties in manufacturing the
parts and the assembly tolerances

� Backlash: position uncertainty due to the internal clearance of
the joints

� Reversal errors: occurs with the reversal of the stress in joints

14



2.2. Hexapod of Simple Design

Fig. 2.6: Error tree [Con00]

� Eccentricities: deviations of the motion from the center of the
joint

� Elasticity: own weight and forces during the application change
the location of the joints

� Transmission errors: between the drives and the actuators

� Friction: the friction cause undesirable forces and phenomena
(e.g. stick�slip)

� Wear: the quality deterioration during the use of the joints
a�ects their precision

� Heating: thermal e�ects act on the position and dimension of
the joints

• Errors in the actuators

In the same manner as in the joints, the actuator's errors are domi-
nantly important while they occur directly where the motion is origi-
nated (e.g. in the struts). The errors in the struts can average tenths
but only up to some millimeters due to the mainly large construction
design of the structure and can be generated by:
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� Manufacturing and assembly errors: position errors due to un-
certainties in manufacturing and assembly tolerances of the ac-
tuator components

� Parallelism: deviation from the parallelism of the actuator's
components

� Orthogonality: deviation from orthogonality of the actuator's
components

� Elasticity: own weight and process forces deform the actuators

• Errors of the end�e�ector
The main problem of the end�e�ector is that even small error in-
�uences act directly on the precision of the manufactured workpiece
or on the measuring instrument. The magnitudes of these errors
are heavily dependent on the tool installed and have to be newly
measured or determined by tool change. Fundamentally, it can be
observed deviations derived from:

� TCP�determination: uncertainty of determining the TCP due
to the di�culty of a direct measurement mostly in a point with-
out a physical representation

� Model deviation: di�erences between the TCP location in the
model and the real structure

� Adjustment and calibration: due to incomplete adjustment (e.g.
of the TCP�o�set) or residual kinematic calibration errors

• Errors from the encoders and sensors

Due to these errors the encoders and sensors provide the controller
with false position information of the actuators. Hence, the con-
troller undertakes false steps to correct a non�existent error, causing
an invalid positioning of the machine. With the ever�developing
industrial standards and the improvement of the quality of the en-
coders and sensors, these errors are decreasingly signi�cant. They
come mainly from:

� Adjustment and calibration: uncertainty on adjusting and cali-
brating the encoders and sensors related to the manufacturer

� Error on de�ning the null position: systematic o�set to the
desired null position

� Resolution: rounding errors due to the resolution of the encoder
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� Standard deviation: uncertainty of the position information
given by the encoders and sensors

� Eccentricities: position deviations of the center point of a cir-
cular encoder from their nominal value

� Concentricity: radial deviation from the nominal value of a
circular encoder

� Force in�uences: external forces can false the acquired dimen-
sional value of the encoder or sensor

• Controller errors
The loop controller is responsible for managing the position of the
actuators through controlling the activities of the drives. It has per-
manently to correct and maintain the position information especially
during a programmed motion of the structure. The nowadays high-
performance controllers a�ord a very accurate control of a given po-
sition, although the problem is aggravated by a high�velocity motion
of the drives due to the limited bandwidth of the control frequency.
The magnitude of the controller errors depends on:

� Model of the robot: there are di�erences between the model
used in the controller and the real structure: on one hand, the
kinematic model contains simpli�cations and on the other hand,
the model parameters are not known exactly

� Transformations: errors transforming (interpreting) the signal
from the encoders and sensors

� Position control: positioning accuracy of the controller which
involves a position uncertainty of the physical structure

� Accuracy of the interpolation: interpolation errors between path
poses

� Rounding errors: numerical errors in the controller

� Incremental error: position errors due to rounding to the next
incremental step

� Contouring (cornering) error: dynamic path tracking problem
expressed in motion errors as path deviation between actual
and desired position due to the axis delay times over a bounded
frequency bandwidth
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• Errors during the application

The positioning accuracy of the manipulator is further dependent on
the in�uences during the application process. These are hardly to
be anticipated because of the high variety of the industrial purpose
and environment the manipulator has to face to. The structure has
to overcome undesired e�ects due to:

� Elasticity: elastic deformations of the structure due to forces
during the application

� Load ratio: errors due to pose speci�c forces of the manipulated
load

� Environmental in�uences: positioning uncertainties due to ex-
ternal in�uences e.g. vibration, temperature change of the en-
vironment

• Errors due to the programming

Further negative in�uences on the accuracy are the errors due to the
programming. These are mostly accidentally originated from the
human operator and can derive from programming:

� On-line: manual inaccuracies

� O�-line: robot model, environmental model, de�nition of the
base co-ordinate system

With experiments claimed by [Beh00], the relevance on the position accu-
racy of the in�uences from above can be sorted as presented in Tab. 2.1.

Inaccuracies due to the tool and work piece model can be eliminated with
proper use of TCP and base o�set corrections. The major systematic error
sources, hence, can be generally considered as following:

◦ Lengths o�set of the struts due to origin o�set of the indirect
measuring system, pitch error of the ball spindle, pose�dependent
back�twist of the ball spindle � discussed by [Kau06]

◦ Position deviation of the base and platform joints from their
nominal values due to construction and assembly tolerances

The other e�ects are considered less relevant, they cause either minor
position deviations or have a less systematic character, hence di�cult to
compensate � they have to be considered by the assembly and by start�up
� not considered deeply in the actual work. A constructive measure to
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Tab. 2.1: Relevance hierarchy of the error sources [Beh00]

reduce the joint clearance is proposed by [Lij04]. For detailed information
on correction of thermal and elastic errors refer [Schö00, Kau06].

2.2.4 Consequences

[Wil00] claims that any parallel mechanism is not linear and not isotropic.
That has in�uences on the error propagation, as described there:

• At one workspace point the error can yield negligible impact and at
another can have a signi�cant in�uence

• Between two points the error ampli�cation shall not evolve linearly

• The prediction law is complex, so one axis inaccuracy can be atten-
uated and another can be ampli�ed

• The error addition is hardly predictable, thus it is often impossible
to order them in a signi�cant hierarchy

Working with the hexapod of simple design implies the following conse-
quences to be analyzed:

• Complex kinematic model

The required improvement in precision will be done by exploiting the
controller functionality to apply structure�based correction models.
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This aspect of the error correction is nearly discussed in [Gro99,
Gro00b, Gro01a, Gro02a, Kau06].

• Complex error compensation algorithm

The resulting geometrical imprecision of the structure due to the
worse properties of the basic parts must be determined after the
assembly.

2.3 Techniques to Increase the Precision

To improve the motion accuracy of the hexapod, di�erent techniques based
on complex algorithms can be applied. They vary mainly through the be-
havior during the industrial application. From this point of view following
approaches can be mentioned:

• Continuous compensation of the in�uences of non�kinematic para-
meters

• One-shot correction of the kinematic parameters in the control model

2.3.1 Compensation of non�kinematic E�ects

The e�ects of the non�kinematic parameters have to be considered all over
the motion in each point of the trajectory. Here can be mentioned as an
example the elastic and thermal behavior. To consider these behaviors,
two concepts can be found in the literature:

• Minimizing the undesired in�uence

• Correction of the induced errors

Examples of the measures taken against, the thermal and elastic in�uences
can be seen in Tab. 2.2 and will be discussed below.

2.3.1.1 Minimizing the In�uence of Thermal E�ects on the Real
Structure

Thermal errors are an important source of decreased volumetric accuracy
of the parallel manipulator. The major starting place of the thermal drift
is the thermal expansion of the struts due to heat generated in the ball
screw drives [Wec00].
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Tab. 2.2: Measures taken against non�kinematic in�uences

Another important source of the thermal errors is the drift of the joints
due to thermal expansion of the base frame or the moving platform. The
moving platform is mainly thermally exposed by the heat generated by
the industrial process or the spindle bearings, whereas the base frame is
mainly in�uenced by the changes of the ambient temperature [Wec00].

One measure to reduce the thermal load is that the robot and all the mea-
surement devices have to be mounted inside of a thermal insulated box, in
which the temperatures are monitored and controlled [Faz06]. The tem-
peratures are acquired using temperature sensors placed in order to mon-
itor all the involved parts: robot, measuring device, work piece, ambient
air. Another special measure to reduce the thermal in�uences is proposed
by [Wec00], where the frame of the robot is thermally regulated through
pipes �ooded with cooled �uid. A thermally constant behavior of the robot
can be obtained with using thermally invariant materials especially on the
encoders as proposed by [Wec00].

Further literature about the in�uence and correction of the thermal e�ects
can be found as follows in [Gro99, Hei00b, Jun00, Kau06, Mai93, Neu02b,
Pri00, Pri02], but this list is not exhaustive.
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2.3.1.2 Minimizing the In�uence of Elastic E�ects on the Real
Structure

Elastic deformations result from the limited sti�ness of the kinematics,
when it is loaded with a force. Related to [Pri02], the main force cate-
gories, which act on the parallel manipulators and cause the most elastic
deformations, are:

• Weight forces

The weight of the tool platform leads to elastic deformations of the
real machine due to the �exibility in the machine kinematics. The
gravitation forces in parallel kinematics have a particular adverse
e�ect because of non-constant sti�ness in the workspace.

• Machining forces

High process forces are the reason for drive errors due to a low distur-
bance sti�ness of the drives (Fig. 2.7). A low sti�ness of the machine
kinematics results in higher positioning errors due to deformations.

Fig. 2.7: Reasons for positioning errors depending on the manufacturing
process [Pri02]
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• Inertial forces
Inertial forces caused by accelerated motion lead to deformations
resulting in considerable errors.

To minimize the elastic in�uences, rigidity aspects of the structure have
to be considered already by designing the robot. For a given parallel
manipulator, other elements have to be added which increase the sti�ness
of the structure, although the subsequent sti�ening of the kinematics is
often impossible to �nd and - because of the lightweight construction - it
has its limits [Pri02]. Another proposal suggests to limit the dynamical
load of the robot with low speed and low acceleration motions [Wei02].
Further authors, who consider measures to minimize the elastic in�uence,
are (without the claim of an exhaustive list) for example: [Meg98, Pri02,
Wec00, Wei02].

2.3.1.3 Model Based Correction of the Errors

For the model based correction of the errors the controller facility will
be used. Here, the accuracy-relevant behavior of the structure has to be
considered to choose the suitable correction model. [Kau06] summarizes
di�erent aspects about the behavior models, as seen in Fig. 2.8.

Fig. 2.8: Aspects about the behavior model [Kau06]
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Here the following considerations have to be mentioned [Kau06]:

• The manufacturing accuracy of a work piece will be a�ected only
from geometrical errors at the end-e�ector. Hence, relevant
are just that error shares which cause a deviation at the end-e�ector
at all.

• Furthermore relevant are only the error contingents which can be
corrected with economically justi�able outlay. Therefore will be
considered here only the static and quasistatic behavior.

The elastic and thermal e�ects cause deformations of the components and
act as geometrical errors at the end-e�ector (Fig. 2.9). Consequently, a
suitable construction of the correction models and their parameters have
to be considered and applied [Kau06].

The correction of elastic and thermally induced shares of the motion error
of the hexapod 'Felix' has been made on the basis of structure models. This
requires the development of models for the calculation of current�state de-
formations with adequate accuracy and, moreover, their integration into
the control system to update states at an adequate velocity [Kau06]. It is

Fig. 2.9: Accuracy relevant behavior range [Kau06]
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the aim that the principal solution is largely independent of the speci�c
character of the used particular control and which essentially �ts the 'sim-
plicity concept' also in this respect, i.e. no costly additional requirements
� e.g. concerning hardware, implementation, quali�cation etc.

The correction concept developed at the IWM departs from the assumption
that each parallel kinematic motion is reasonably preceded by a motion
check of the kinematic transformation � at least for the collision conditions
� and that the considered error in�uences are systematic. Having these
conditions, the correction concept can basically be implemented outside
the NC kernel and before processing starts. The concept is open to various
users, �exible and non�time�critical. Within the frame of this concept,
the elastic and thermal errors have been deeply analyzed and model�based
corrected by [Kau06], as an important prerequisite for the calibration. The
sequence of the model�based corrections of the non�kinematical in�uences
and the placement of the calibration can be seen in the �owchart presented
in the Fig. 2.10.

2.3.1.4 Limits and Consequences Correcting the non�kinematic Errors

The enhancement of the motion accuracy using model based corrections
is basically limited from the point of view of the correction principle and
economical aspects. The main reasons of these limits have been analyzed
and presented by [Kau06] as following:

• The accuracy�relevant behavior of the machine can not be com-
pletely modeled. There is always a residual error of the model, hence
principally the correction can be only approximated (Fig. 2.11)

• The determination and application of the correction is staggered in
time (delayed)

• Bounded resources on the control and computer technique

• The model based correction demands suitable adjusting axis

• The acceptable outlay on designing, implementing and parameteriz-
ing the models is restricted from an economical point of view

From these considerations there are always residual positioning errors
caused by uncorrected thermal and elastic in�uences. In case of the hexa-
pod 'Felix', the correction of the thermal errors averages 50�70% of the
initial value [Kau06]. It is again di�cult to make a general statement of
the residual elastic in�uence due to the complex character of the problem
and strong dependencies on the position and load of the manipulator.
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Fig. 2.10: Model based correction of the motion accuracy

Fig. 2.11: Representable behavior and rating [Kau06]
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The uncorrected non�kinematic e�ects cause residual positioning error of
the manipulator and determine the uncertainty of correcting the kinematic
parameters.

2.3.2 Correction of the Kinematic Errors

Principally, the kinematic errors can be handled in a correction, imple-
mented once after the assembly of the manipulator, before the �rst practi-
cal application. The kinematic errors can be distinguished into repeatable
and random errors [Meg98]:

• Systematic errors are errors which numerical value and sign are
constant for a given manipulator con�guration. An example of a
systematic error is an assembly error.

• Random errors are errors which numerical value or sign changes
unpredictably. At each manipulator con�guration, the exact magni-
tude and direction of random errors cannot be uniquely determined,
but only speci�ed over a range of values. Random errors cannot be
compensated using classical techniques. An example of a random
error is the error which occurs due to backlash of an actuator gear
train.

Classical kinematic correction methods can only deal with systematic er-
rors, as already observed by [Meg98].

The quasistationary pose errors are mainly caused by the systematic in-
�uences of the di�erences between the parameters which are used for the
kinematic transformation in the control system and the real parameters
which are e�ective in the machine (e.g. actual value of the joint's position).
There are several di�erent approaches which can be used to determine the
kinematic parameters of PKMs [Wav98]:

• measuring the geometry of the machine components directly: this is
not always practical to do, particularly for large frame components
(e.g. the joint locations for the machine) due to the virtual character
of the reference points

• measuring errors in the relative motion of machine components (e.g.
strut angles): installing the measuring system is not always obvious

• measurement of all errors in the platform pose can be obtained for a
number of di�erent locations and orientations throughout the work
volume (Space Error Compensation)
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• arbitrary performance evaluation tests (e.g. conventional Ballbar
tests) can be used to estimate kinematic parameters through indirect
measurements using a best��t linear combination of parametric error
shapes

Identi�cation methods (kinematic calibration) consist in calculating the
values of parameters which characterize the machine, so that the model
represents the real machine instead of the nominal one. The controller has
a better knowledge of the real dimensions of the kinematics, consequently
is more accurate [Fra06a].

2.4 The Kinematic Calibration Problem

�Calibration of parallel robots poses an important problem. This is the
price to pay for the good performance of parallel robots.� [Mer00].

The accuracy of a parallel manipulator is not only dependent upon an
accurate control of its actuators but also upon a good knowledge of its
geometrical characteristics. According to the fabrication tolerances, many
factors will play a role in the �nal accuracy of the robot. [Mas93] has
shown that up to 132 parameters will be necessary to describe the geo-
metrical features of a Gough platform. However, by a careful design these
parameters may be reduced to the set of coordinates of the joint centers
(36 parameters) and link o�sets (6 parameters). The calibration of paral-
lel manipulators remains an open question, as some papers have addressed
this issue [Mer99, Mer02, Roth87, Pri04, Bey04]. The degradation in ac-
curacy is mainly due to manufacturing tolerances used to construct the
platform, manifested as deviations between the nominal kinematic para-
meters of the platform model and the actual parameters. Since the plat-
form's controller has determined the length of the actuators according to
the nominal model, the resulted pose of the platform is inaccurate. One
way to enhance platform accuracy is by kinematic calibration, a process
by which the actual kinematic parameters are identi�ed and then used to
modify the kinematic model used by the controller. For active degrees
of freedom (actuated joints) the kinematic model in the controller can be
adjusted to the given machine geometry [Ble04]. The passive degrees of
freedom (passive joints), which are decisive for processing, have to be ad-
justed to the nominal position as well as possible. Thus, the controller will
use a more accurate model and as a result the accuracy of the platform will
be improved. The process of calibration basically consists of the following
steps [Ble04]:
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• Measurement of the actual position of the TCP at the desired posi-
tions

• Calculation of adapted kinematic parameters or adjustment values
from the measured deviations

• Implementation of the calculated parameters in the control or ad-
justment of the structure according to the values obtained

2.5 Calibration Methods

One of the di�culties of using parallel kinematic machine tools in industrial
applications is the lack of automated calibration methods which would en-
able a simple and quick calibration in manufacturing environment [Ble04].
The study of the calibration methods of parallel robots has become increas-
ingly important during the last years. This is shown by the rising number
of papers published on the topic and various approaches were tried by re-
searchers. Some of them have extended our knowledge about particular
aspects of the subject; however numerous topics still has remained open.
A systematic approach of the problem is still very modest; a narrow cir-
cle of scientists, like [Mer99, Roth87, Pri04, Bey04], tried to order the
topic, without o�ering a complete solution. [Schö00] sorts the calibration
approaches into the following two main categories:

• External calibration
An external measuring system is used to get additional information
about the manipulator;

• Self calibration
For the measurement are used exclusively the own internal sensors
of the manipulator. Related to [Schö00], the following methods can
be used to perform a self calibration:

� Measuring passive joints

Contrary to serial structures, the parallel kinematics possesses
always passive joints. Here a transducer can be mostly attached
or permanently installed [Wam95]. Advantage of the method is
that no external construction is needed and the calibration can
be repeated arbitrarily by demand.
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� Use the redundant actuators as transducer

Redundant actuators mean to increase the workspace and to
eliminate singularities or backlash. They can provide useful
measuring data for the calibration []Chiu04. The here men-
tioned redundant actuator can be interpreted also as mechanical
or optical sensors or ultrasonic transducers.

� Reduction of the structure

Through mechanical �xation of two struts [Dan98], the overall
DOF of the structure will be reduced to one. Three of the four
resident struts will be therewith redundant and can be used to
acquire additional data (measurement). The obtained accuracy
improvement is although limited to a multiple of the measuring
noise due to the narrowed measurements in a sub�space of the
hexapod. Another problem and imprecision source can be met
associated with the mechanical �xation of the struts.

On the other hand the calibration methods can be seen from the point
of view of the solving direction of kinematic problem. Principally can be
de�ned the calibration through the:

• Inverse kinematic of the manipulator

• Forward kinematic problem

2.5.1 Inverse Kinematic Calibration

The inverse kinematic transformation is needed to compute the actuator's
position from a given Cartesian pose of the TCP. For the hexapod of simple
design 'Felix', the inverse kinematic transformation has been described and
solved by [Kau06] as presented below, departing from the simpli�ed model
seen in Fig. 2.12.

The base co�ordinate system G builds the reference frame of the platform
pose GP. The parameters of the kinematical model are the location of
the moving joints P hi in the moving platform and the location of the base
joints Gsi in the base platform. A vectorial representation of the relation
between the pose GoP and the position of the actuator (length of the strut)
Gli can be expressed as:

GoP + Ghi − Gli − Gsi = 0 . (2.1)

where: Ghi is the location of the moving joints in the base platform.
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From here, the length of the strut for a given pose is:

Gli = GoP + Ghi − Gsi . (2.2)

To express the location of the moving joints in the relative coordinates of
the mobile platform P, the Ghi have to be transformed using the rotation
matrix GRP :

Gli = GoP +
(
GRP · P hi

)
− Gsi . (2.3)

The inverse kinematic transformation expresses the absolute value of the
strut's lengths as function of the pose of the mobile platform GoP and the
known design parameters P hi and Gsi as follow:

li =
∣∣Gli

∣∣
=

∣∣GoP +
(
GRP · P hi

)
− Gsi

∣∣ . (2.4)

An extensive analysis and solution of the inverse kinematic problem for
the hexapod 'Felix' can be found in [Kau06].

Many calibration methods based on inverse kinematics are proposed be-
cause of the analytically solvable equations, although, this approach may
not be optimal due to the small measurable workspace and the need of
computing separately the kinematic parameters of individual links [Mar04].
Moreover, as [Eco06] observes, for redundant PKMs the equation system
associated to the transformation from user-space to machine�space coor-
dinates (from Cartesian pose to the actuator position) is over�determined,

Fig. 2.12: Simple kinematic model of the hexapod 'Felix' [Kau06]

31



Chapter 2. State of the Art

hence the inverse transformation has no solution in the case of non�ideal
parameters. Thus, this transformation cannot be used as is for the calib-
ration � relates [Eco06].

2.5.2 Forward Kinematic Calibration

Considering the disadvantages of the calibration through the inverse kine-
matics problem, researchers have been working on methods based on for-
ward kinematics. These approaches involve the use of an external measur-
ing device to obtain the position and orientation of the moving platform.

The forward kinematic transformation is the counter piece of the inverse
transformation and is needed to obtain the TCP pose for the given posi-
tion of the actuators (lengths of the 6 struts). This is needed � between
others � for simulations, error analysis and the calibration. The forward
kinematic problem commonly can not be solved with symbolic computa-
tions as a closed analytical form in case of the parallel kinematic machines.
As indirect method can be used numerical approaches with successive ap-
proximations, solving iteratively the inverse kinematic transformation.

For the hexapod 'Felix' the forward kinematic problem has been solved
using the Newton iteration algorithm and implemented by [Kau06]. The
solution of the forward kinematics is approached here through linearization
of the inverse kinematic transformation (IK) simpli�ed described as:

q = IK(x) . (2.5)

The Taylor expansion till the �rst term in the pose x∗ (approximation for
x) gives us:

IK(x) ≈ IK(x∗) +
∂

∂x
IK(x∗) · (x− x∗) . (2.6)

The linearization is realized with the partial di�erential of the inverse
kinematic problem near the pose x∗ and results in the inverse Jacobian
matrix J(x∗)−1:

J(x∗)−1 =
∂

∂x
IK(x∗) . (2.7)

The direct Jacobian matrix is valid for a given pose of the hexapod and
gives us a statement about how a modi�cation at the actuators dq in�u-
ences the pose modi�cation dx on the moving platform:

dx = J(x) · dq . (2.8)
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As the obtaining of the Jacobian matrix directly is a di�cult problem
[Mer00], it will be computed indirectly from the expression of the inverse
kinematic Jacobian matrix.

The inverse Jacobian matrix expresses the problem from the opposite di-
rection, what kind of dx pose modi�cation at the moving platform demands
a dq modi�cation at the actuators:

dq = J(x)−1 · dx . (2.9)

[Mer00] describes two di�erent ways to obtain the inverse Jacobian matrix:

• The �rst possibility is to use the matrix relating the generalized ve-
locities of the end�e�ector to the articular velocities. This matrix
will be called the kinematic Jacobian matrix Jk. It is not a Jacobian
matrix in the strict mathematical sense of the term, while there has
no representation of the orientation of a rigid body, the derivative of
which - with respect to time - corresponds to the rigid body angular
velocities.

• The second possibility for de�ning the inverse Jacobian matrix �
having chosen a representation of the orientation � is to use the ma-
trix relating the end�e�ector Cartesian velocities and the derivatives
of the orientation representations to the articular velocities. If the
chosen orientation representations for the end�e�ector are the Euler
angles, we will obtain a matrix Je called the Euler angles Jacobian
matrix.

Having the inverse Jacobian matrix, the inverse kinematic transformation
can be formulated as follow:

IK(x) ≈ IK(x∗) + J (x∗)−1 · (x− x∗) . (2.10)

From here can be obtained x:

x ≈ x∗ + J (x∗) · [IK(x)− IK(x∗)] . (2.11)

The iteration steps to obtain the forward kinematic transformation are
summarized by [Kau06]:

x0 = x∗ ,

qk = IK(xk) ,

∆xk = J(xk) · (q− qk) ,

xk+1 = xk + ∆xk .

(2.12)

33



Chapter 2. State of the Art

More about the implementation of the procedure in case of the hexapod
of simple design 'Felix' can be found in [Kau06].

2.5.3 Overview of the Calibration Procedures

An overview of the calibration procedures can be meaningful de�ned and
structured as seen in Fig. 2.13.

Fig. 2.13: Characteristics of the calibration methods

The actual calibration approaches of the parallel kinematic machines found
in the literature can be sorted into the mentioned categories from the point
of view of:

• Behavior of the measuring object

• Generating the measuring path

• Processing the measuring data

• De�ning the cost function

• Character of the calibration procedure
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2.5.3.1 Behavior of the Measuring Object

Most of the authors neglect partially or completely to analyze the behavior
of the measured structure, which involves an increased uncertainty of the
obtained measuring data. As seen in the chapter 2.3.1.3, the correction
of the in�uences due to thermal and elastic behavior of the measured
object � in actual case the hexapod � means an important prerequisite for
the calibration. Especially for an e�cient enhancement of the accuracy
these e�ects have to be considered using compensations or special measures
to decrease the error in�uence. Some researchers have applied special
methods on:

• compensating thermally induced deformations

[Jyw03, Wav98, Wec00, Hei00b]

• considering elastic deformations

[Pri02, Wec00, Meg98, Eco06]

• special measures (e.g. using special materials)

[Wec00, Faz06]

2.5.3.2 Generating the Measurement Path

In order to evaluate the accuracy of the machine various performance cri-
teria are required, as already presented in the chapter 2.2.3. The measure-
ments can be prepared by:

• Touching an etalon [Beh00, Gon00, Bri06]

Within this method a previously carefully prepared etalon will be
touched and the real positioning data of the hexapod is compared
with the desired position. The deviation values are considered as
measuring data and will be used as input information for the calib-
ration. An example of this method is presented in the Fig. 2.14 (left
hand side) by [Bri06] where a special developed probing system is
used to e�ectuate measurements on a 3D ball plate.

• Executing a test workpiece [Alt04, Pri02]

The measurement data can be acquired through manufacturing of
a real workpiece and measuring its characteristics. Fig. 2.14 (right
hand side) presents measurements from a milling task from a classical
3D�milling application test piece [Alt04].
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Fig. 2.14: Measuring a ball plate [Bri06] (left) and executing a test work-
piece [Alt04] (right)

Other methods consider the system measurements performed by:

• Using a redundant measuring system [Alt04, Bai03, Bau06,
Bey02, Ble01, Ble04, Cha02, Dan98, Dan99, Dan02, Fas02, Hei00a,
Jyw03, Kha99, Kos98, Mar02, Pat00, Rau01, Rau04, Ren03, Ren04,
Ren05, Ryu01a, Wam95, Wav98, Wec00, Zhu97, Zhu98, Zhu00, Zou]

A redundant measuring system means to obtain additional position-
ing data of the construction components like struts or joints. An
example of a special set-up for a laser measurement of the relative
position error of a strut is presented by [Wav98] as seen in Fig. 2.15.
The redundantly obtained positioning data will be compared with
those obtained from the integrated sensors and used for computing
the corrections.

• Measuring with the Double�Ball�Bar [Chi02, Den04, Fas02,
Hei03, Iha00, Mar04, Ota00, Ryu01, Tak02]

Although, this measuring instrument is very simple and can measure
just 1 DOF, there is an increasing number of authors which employ it
for calibration exploiting the facilities in obtaining quick and robust
measurements. The measurement is made between the center points
of two balls: one �xed to the machine frame and another to the
moving platform or instead the tool (Fig. 2.16).

2.5.3.3 Processing the Measuring Data

The measuring data are acquired through:
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• Discrete single measurements [Alt04, Beh00, Bey02, Ble01,
Ble04, Bri06, Cha02, Chi02, Den04, Fas02, Fra06, Gon00, Hei00a,
Hei03, Jyw03, Kha99, Kos98, Mar04, Ota00, Pri02, Rau01, Rau04,
Ren03, Ryu01, Ryu01a, Wam95, Wav98, Wec00, Zhu97, Zhu98,
Zhu00, Zou]

The measuring data are considered to be a set of discrete deviations
between the ideal and real poses while repositioning the machine
and it is measured in 1. . .6 DOF. In Fig. 2.17 a DBB measurement
of given discrete points can be seen presented by [Fra06].

• Approximation of path parameters [Iha00, Tak02]

Instead of discrete points the measuring data can be processed as
compressed information of the measuring path with approximation
of the path parameters. In this case, we can speak about a so�called
integral measurement, where the accuracy information of the ma-
chine is supported in a transformed and compressed form. As an
example for the measurements with the DBB, the machine proper-
ties will be estimated from the character of the circular deviations
detected relative to an ideal circle, observing the shape of the real
measurement.

Fig. 2.15: Special set-up to measure the relative strut lengths error
[Wav98]
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Fig. 2.16: Double-Ball-Bar [Ren]

Fig. 2.17: Measuring with the DBB in discrete poses [Fra06]

2.5.3.4 De�ning the Cost (Target) Function

Analogously to the obtained measuring data, the cost function of the op-
timization will be de�ned with:

38



2.5. Calibration Methods

• Minimizing the deviations of discrete values [Alt04, Beh00,
Bey02, Ble01, Ble04, Bri06, Cha02, Chi02, Den04, Fas02, Gon00,
Hei00a, Hei03, Jyw03, Kha99, Kos98, Mar04, Ota00, Pri02, Rau01,
Rau04, Ryu01, Wam95, Wav98, Wec00, Zhu97, Zhu98, Zhu00, Zou]

The calibration will be made by reducing the deviations between the
measured discrete points.

• Minimization of integral parameter deviation [Iha00, Tak02]

The cost function is de�ned from the compressed path information of
the integral measurements. The cost function in this case is largely
independent of the number of measuring points captured by the mea-
surement.

2.5.3.5 Character of the Calibration Procedure

The calibration procedure is carried out with:

• Gradient-based methods [Alt04, Beh00, Bey02, Ble01, Ble04,
Cha02, Chi02, Den04, Fas02, Gon00, Hei00a, Hei03, Iha00, Jyw03,
Kha99, Kos98, Mar04, Ota00, Pri02, Rau01, Rau04, Ryu01, Tak02,
Wam95, Wav98, Wec00, Zhu97, Zhu98, Zhu00, Zou]

The kinematic parameters are optimized using gradient�based tech-
niques like the Quasi-Newton-method, Newton�Raphson�method,
Levenberg�Marquardt�algorithm or others. Common to these pro-
cedures is the iterative observation and minimization of the error
gradient departing from a given initial value of the desired parame-
ters.

• Neural networks [Faz06, Kuh06]
With neural networks the accuracy properties of the mechanical
structure will be predicted based on teach-in transformations (er-
ror transmission) stored in the controller. This learning information
has to be predetermined and it is obtained to analyze a large number
of sample measurements.

• Space Error Compensation [Bri06]

Space Error Compensation is mostly used by conventional machine
tools or kinematics with 3 DOF or less. The method consists in in-
terpolating the accuracy information stored in the controller. Con-
trarily to the neural networks, the error information is stored directly
from fully measurements of the workspace using a grid of measuring
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points. Here is no need to know the error propagation function or
the kinematic transformations of the structure. The procedure may
be ine�cient by more than 3 DOF where the stored information
quantity raises exponentially.

• Interval analysis [Dan04a, Dan05a, Dan06b, Mer06, Pott05]

This method breaks down the workspace into subspaces (intervals)
considering that the subspace is safe if satisfy the accuracy require-
ments or is unsafe in the contrary case (Trust�Region�method). If
the subspace is unsafe or no decision can be made due to singularities
or computational (numerical) problems, the subspace will be itera-
tively further divided till a desired resolution of the workspace is
obtained. This method can be used for optimizations or to evaluate
the worst case accuracy of the manipulator [Mer06].

• Statistical methods [Pott04, Boy06, Alt04]

Statistical methods use random simulated measurements to estimate
the error propagation function from the kinematic parameters to the
end�e�ector and to identify the probability of the unknown parame-
ters.

• Genetic algorithms [Ble04]

Genetic algorithms use a combined method to optimize (identify) the
kinematic parameters. They are based on stochastic random back-
ground which will be cleverly directed to speed up the convergence
[Gro03]. GA's are extremely robust to singularities or computational
problems and increase the global character of the search algorithm.
With the developing computer technique, the GA are expected to be
progressively more used in the optimization problems with numerous
parameters, like the calibration problem of the parallel kinematics.

2.6 The Calibration Outlay

The �rst and most general valuation variable for these di�erent procedures
is probably the relative improvement of the motion accuracy, eclipsing the
other aspects to pay for it. The calibration e�ort has been underestimated
or even been neglected for a long time. The scienti�c value of the calibra-
tion procedure is not only in direct proportion to the achieved accuracy,
but also in the calibration e�ort. This outlay has to be analyzed, a possible
systematical approach can be formulated as presented in Tab. 2.3.
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Tab. 2.3: Outlay of the calibration

To analyze the overall outlay of the calibration, the sum of all the compo-
nent characteristics have to be considered. The overall performance of the
procedure has to conform to the demands on the calibration for a speci�c
application.

2.7 Demands on the Calibration

Further criteria of evaluation of the calibration approaches can be formu-
lated if other issues, like minimization of the total outlay, feasibility for
practical applications or e�cient automatability, are added.

Fig. 2.18 shows possible resulting demands.
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Fig. 2.18: Demands on calibration

Analyzing the actual calibration approaches, they can be sorted into the
categories from above from the point of view of:

• The total e�ort of calibration (Tab. 2.4)

• Capability for application practice (Tab. 2.5)

• E�cient possibility of automation (Tab. 2.6)

An overall valuation of selected calibration approaches is presented in the
Tab. 2.8. Here the following notations have been used, as can be seen in
Tab. 2.7.
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Cost of the measuring device

low middle high
[Chi02, Den04, Hei03] [Bey02, Bri06, Fas02] [Alt04, Beh00, Ble01]
[Iha00, Kha99, Mar04] [Jyw03, Rau04, Zhu97] [Ble04, Cha02, Faz06]
[Ota00, Rau01, Ryu01] [Zou] [Gon00, Hei00a, Kos98]
[Tak02, Wam95, Zhu93] [Pri02, Wav98, Wec00]

[Zhu98, Zhu00]

E�ort to install the measuring device

easy middle complicated
[Ble01, Chi02, Den04] [Alt04, Beh00, Bey02] [Ble04, Bri06, Faz06]
[Hei03, Mar04, Rau01] [Cha02, Fas02, Hei00a] [Gon00, Kha99, Pri02]
[Ryu01, Tak02, Zhu93] [Iha00, Jyw03, Kos98] [Wec00, Zhu97, Zhu00]

[Ota00, Rau04, Wam95] [Zou]
[Wav98, Zhu98]

Duration of the measuring process

short middle long
[Den04, Hei03, Jyw03] [Alt04, Bey02, Ble04] [Beh00, Ble01, Bri06]
[Mar04, Rau01, Tak02] [Cha02, Fas02, Faz06] [Chi02, Gon00, Iha00]
[Wav98, Zhu97, Zhu98] [Hei00a, Kha99, Kos98] [Ota00, Pri02, Ryu01]

[Rau04, Wam95, Zhu93] [Wec00, Zhu00]
[Zou]

Request of quali�ed personal

low middle high
[Ble01, Den04, Hei00a] [Alt04, Bey02, Ble04] [Beh00, Bri06, Cha02]
[Hei03, Mar04, Ota00] [Chi02, Iha00, Jyw03] [Faz06, Gon00, Kha99]
[Rau01, Tak02, Zhu93] [Kos98, Rau04, Ryu01] [Pri02, Wam95, Zhu00]

[Zhu98] [Wav98, Wec00, Zhu97]
[Zou]

Tab. 2.4: The total e�ort of calibration
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Robustness of the calibration

poor middle high
[Beh00, Bri06, Den04] [Alt04, Bey02, Ble01] [Den04, Kha99, Mar04]
[Faz06, Gon00, Jyw03] [Ble04, Cha02, Chi02] [Rau01, Tak02, Wec00]
[Kos98, Pri02, Wam95] [Hei00a, Hei03, Iha00]
[Zhu93, Zhu97, Zhu00] [Ota00, Rau04, Ryu01]

[Zou] [Wav98, Zhu98]

Ability to generalize the procedure to other

manipulator structures

easy middle complicated
[Alt04, Chi02, Den04] [Beh00, Ble04, Bri06] [Bey02, Ble01, Faz06]
[Hei00a, Kos98, Mar04] [Cha02, Iha00, Ota00] [Gon00, Hei03, Jyw03]
[Pri02, Rau01, Tak02] [Rau04, Ryu01, Zhu93] [Kha99, Wam95, Wec00]

[Wav98, Zhu00] [Zhu98, Zou] [Zhu97]

Expected improvement of the accuracy

poor middle high
[Chi02, Jyw03, Ryu01] [Beh00, Bri06, Cha02] [Alt04, Bey02, Ble01]
[Wam95, Wav98, Zhu93] [Fas02, Hei03, Iha00] [Ble04, Den04, Faz06]

[Zhu98, Zhu00] [Kha99, Kos98, Mar04] [Gon00, Hei00a, Pri02]
[Ota00, Rau01, Tak02] [Rau04]
[Wec00, Zhu97, Zou]

Tab. 2.5: Capability for application practice
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Ability to automate the measuring procedure

easy middle complicated
[Alt04, Ble01, Den04] [Bey02, Ble04, Bri06] [Beh00, Cha02, Den04]
[Hei00a, Hei03, Kos98] [Chi02, Fas02, Faz06] [Gon00, Iha00, Kha99]
[Mar04, Rau01, Tak02] [Jyw03, Rau04, Zou] [Ota00, Pri02, Ryu01]
[Wav98, Zhu97, Zhu98] [Wec00] [Wam95, Zhu93, Zhu00]

Ability to integrate the calibration into the

controller of the machine

easy middle complicated
[Alt04, Ble01, Mar04] [Ble04, Chi02, Faz06] [Beh00, Bey02, Bri06]
[Rau01, Tak02, Wec00] [Den04, Hei00a, Hei03] [Cha02, Den04, Gon00]

[Zhu98] [Jyw03, Kos98, Ota00] [Iha00, Kha99, Pri02]
[Zou, Wav98] [Rau04, Ryu01, Wam95]

[Zhu93, Zhu97, Zhu00]

Tab. 2.6: E�cient possibility of automation

Notation Technical performance Economical aspect

Poor accuracy improvement High�cost device
• ◦ ◦ (1/3) or / complicated

no measurements made measurements
Good accuracy approvement Middle-cost device

• • ◦ (2/3) on certain areas, but not / e�ort on
representing the entire workspace installing
Good accuracy improvement Low-cost device /

• • • (3/3) in broad area of the easy to install /
workspace short measuring time

Tab. 2.7: Notations used for the overall valuation of the calibration ap-
proaches
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Overall valuation benchmark [%]
Calibration Technical Economical
Approach Perform. Aspect

Not Technic. Economic.
weighted weighted weighted

[Alt04] ••• •◦◦ 70 80 50
[Beh00] ••◦ •◦◦ 50 60 40
[Bey02] ••• ••◦ 80 90 80
[Ble01] ••• •◦◦ 70 80 50
[Ble04] ••• •◦◦ 70 80 50
[Bri06] ••◦ ••◦ 70 70 70
[Cha02] ••◦ •◦◦ 50 60 40
[Chi02] •◦◦ ••• 70 50 80
[Den04] ••◦ ••• 80 80 90
[Fas02] ••◦ ••◦ 70 70 70
[Faz06] ••• •◦◦ 70 80 50
[Gon00] ••• •◦◦ 70 80 50
[Hei00a] ••• •◦◦ 70 80 50
[Hei03] ••◦ ••• 80 80 90
[Iha00] ••◦ ••• 80 80 90
[Jyw03] •◦◦ ••◦ 50 40 60
[Kha99] ••◦ ••• 80 80 90
[Kos98] ••◦ •◦◦ 50 60 40
[Mar04] ••◦ ••• 80 80 90
[Ota00] ••◦ ••• 80 80 90
[Pri02] ••• •◦◦ 70 80 50
[Rau01] ••◦ ••• 80 80 90
[Rau04] ••• ••◦ 80 90 80
[Ryu01] •◦◦ ••• 70 50 80
[Tak02] ••◦ ••• 80 80 90
[Wam95] •◦◦ ••• 70 50 80
[Wav98] •◦◦ •◦◦ 30 30 30
[Wec00] ••◦ •◦◦ 50 60 40
[Zhu93] •◦◦ ••• 70 50 80
[Zhu97] ••◦ ••◦ 70 70 70
[Zhu98] •◦◦ •◦◦ 30 30 30
[Zhu00] •◦◦ •◦◦ 30 30 30
[Zou] ••◦ ••◦ 70 70 70

Tab. 2.8: Overall valuation of the calibration approaches
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The valuation has been carried out on the base of the demands on various
concepts (Tab. 2.9):

• High demands on technical performance

Technically weighted benchmark

• Low-cost (e.g. simple design)

Economically weighted benchmark

• For general purpose

Not weighted

Analyzed Not Technically Economically
aspect weighted weighted weighted

Technical 50 % 70 % 30 %
performance

Economical 50 % 30 % 70 %
aspect

Tab. 2.9: Weighted performances

From the analyzed overall valuation of the actual approaches seen in the
Tab. 2.8 can be found a decision on choosing the suitable calibration pro-
cedure considering the di�erent demands and goals:

• High demands on technical performance

The following approaches can be considered for a high�end calibra-
tion (technically weighted benchmark > 80 %): [Alt04, Bey02, Ble01,
Ble04, Faz06, Gon00, Hei00a, Pri02, Rau04]

• Low-cost concept
For a calibration task, where the overall e�ort is limited by econom-
ical aspects (e.g. simple design concept), the following authors have
developed the suitable concept (economically weighted benchmark >
80 %): [Chi02, Den04, Hei03, Iha00, Kha99, Mar04, Ota00, Rau01,
Ryu01, Tak02, Wam95, Zhu93]

47



Chapter 2. State of the Art

• General purpose calibration
Some of the above mentioned calibration approaches can be used as
well for multi�purpose mechanisms, particularly suitable are for this
the proposals of the following authors (not weighted benchmark >
80 %): [Bey02, Den04, Hei03, Iha00, Kha99, Mar04, Ota00, Rau01,
Rau04, Tak02]

A further valuation of the actual calibration approaches can be made by
analyzing the desired applications on the hexapod 'Felix' at the IWM and
formulating the advantages and drawbacks of the procedure to the given
case. The de�cits of the actual calibration procedures will be analyzed
under considering the simple design concept and presented below.

2.8 De�cits

As seen in the analyzed literature, it is still hard to �nd a calibration ap-
proach which �ts to the simple�design concept, their bene�ts are oriented
mainly on well�de�ned application areas. Major disadvantages of the ac-
tual calibration approaches applied to the simple�design concept can be
seen in the following points:

• regard to non-kinematic in�uences

Analyzing the literature, it can be observed that a surprisingly re-
duced number of authors consider the active deformations of the ma-
nipulator structure (e.g. thermal or elastic deformations) before the
calibration. Trying to obtain geometrical measuring data from non�
geometrical deformations will certainly limit the parameter identi-
�cation and causes that the calibration is valid just for the tested
environment under certain conditions [Jyw03, Wav98, Wec00].

• local measurements

Most of the researchers make measurements in discrete points and
optimize the single deviations of these data. In this way the mea-
suring noise is partially or fully neglected and could have drastically
in�uence on the obtained accuracy of the machine as observed by
[Rau01, Zhu93, Zhu97].

• quali�cation of the identi�cation methods

An other aspect to mention is the use of improper optimization meth-
ods to identify the kinematic parameters of the structure. It is well-
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known that for a huge amount of unknowns the deterministic meth-
ods cannot fully optimize a non-linear system of equations, observed
by [Iha00, Mer00, Tak02, Wam95]. Even if the closed form solution
exists, it is complex and di�cult to work with. Usually only a par-
tial (local) optimum is obtained which limits the achieved accuracy,
demonstrated by [Osy02].

• accuracy in the workspace

The good discussed results in accuracy refer mostly to a special part
of the working area. This part is usually in the supposed middle
of the manipulator's workspace and re�ects an extremely reduced
working volume. No information is available about the accuracy in
the rest of the workspace, which is usually the larger part. The
inaccuracy of the manipulator, when this moves in its work area, is
generally fully neglected.

• the economical aspect of the calibration

In spite that the obtained accuracy by some calibration approaches
could be satisfying for the analyzed prototype, an industrial appli-
cation wont be followed in the practice because their ine�ectual eco-
nomical aspect [Gro00c]. That means, the global e�ort on the ca-
libration (e.g. the cost of the measuring system, invested time, etc.)
is not justi�ed for the planed application on the robot. This is es-
pecially valid in case of the applications in the small and medium
enterprises (SME).

Even though numerous publications present di�erent kinds of calibration
procedures, the process of calibration is not yet fully understood. As
[Alt04] recognized, it can be said that the dissatisfying accuracy of the
PKM is still a problem and is one of the main barriers, preventing this
machine concept from �nding acceptance in practice. From an economi-
cal point of view, following the simple�design concept, beside the simple
mechanical construction, obviously the correction and error compensation
e�ort has to be situated in the low�cost area, too. That means, simple
measuring system, possibly short time of the measuring process and pa-
rameter identi�cation has to be in foreground by choosing the suitable
calibration procedure [Gro04, Tak02].

The next chapter formulates the objectives of the actual work with the
limitations and main steps of the proposed calibration procedure.
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3 Proposed Objectives

3.1 Objectives

The objectives of this work are based on the de�cits mentioned above under
the special requirements due to the circumstances of the simple design�
concept. Considering this concept, this work means to embrace the merits
and overcome the shortages of the actual calibration approaches. Here
the six motion DOFs of the hexapod are used for correction through the
functionality of the controller. The main goal consists in:

Obtaining the basics for an automated kinematic calibration procedure
which works e�ciently, quickly, e�ectively and possibly low�cost, all�
in�one economically applied to the parallel kinematics machines.

An exemplary measurement means to demonstrate the validity of the
procedure it will be made on the simple design hexapod at the IWM.

3.2 Limitations

This work deals with 6 DOF parallel kinematics while permits to make �
theoretically speaking � a fully kinematical correction of the 6 DOF error
of the TCP. With this a transparent and easy�to�test calibration method
will be guaranteed.

Because the stipulated economical aspect, the simple design construction
is analyzed and the measurements are made on the hexapod developed
at the IWM. The results and the main steps of the method can be easily
applied to other parallel kinematics structures.
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Following the demands on the calibration procedure from above, the limits
and boundary conditions of this work can be formulated as follow:

• Non�kinematic shares of the error (e.g. elastic or thermal deforma-
tions) are not subject of this work. They are considered to be pre-
viously model�based corrected [Gro02a, Kau06]. The actual work
presumes the e�ciency of these methods and bases the further ex-
periments on the already corrected measurement values.

• The kinematic calibration is based on simulations through an existing
kinematical model of the structure [Gro00b, Gro01a, Gro02e, Gro02f,
Kau06]. Numerical errors or inaccuracies of the computer model are
neglected here.

• Random (not reproducible) errors of the physical structure (e.g.
backlash of the joints, stick�and�slip in the struts) are considered
only in the limits of the data acquisition during the measurements
but not discussed deeply here. Generally they are considered not be
able to be corrected at all [Mer06].

3.3 Procedure

This work presents a systematic approach of the calibration problem. The
main concept of the calibration can be seen in the Fig. 3.1.

The objectives will be achieved by approaching the problem systemati-
cally and taking step by step the necessary measurements and conclusions
respectively. Here the following points can be mentioned:

• Systematical analysis of the workspace to determine an optimal mea-
suring procedure

• Measurements with automated data acquisition and evaluation

• Simulated measurements based on the kinematic model of the struc-
ture

• Identifying the kinematic parameters using e�cient optimization al-
gorithms

Considering the prerequisites presented in the chapter 2 (the concept of
simple design, model based correcture of the non�geometrical error e�ects),
the next chapter formulates the substance of the proposed objectives.
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Fig. 3.1: Basics, objectives and procedure of the calibration
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4 Kinematic Calibration

In this chapter the calibration problem is discussed, a splitting down in
sub�problems and a systematic way to solve the calibration will be pro-
posed.

4.1 The Calibration Problem

4.1.1 The Role of the Kinematic Model in the
Calibration Problem

In the literature the proposed calibration methods di�er from each other
regarding the use of the correction model. [Faz06] de�nes the following
two methods to calibrate a given robot:

• Model�based approaches

Here a corrected kinematic model or correction function has to be
computed, establishing an analytical relationship between actuator
co�ordinates and end�e�ector co�ordinates. This model has a given
number of parameters directly or indirectly related to the geometry
of the robot. In the calibration procedure these parameters are de-
termined as a result of a numerical optimization of a properly de�ned
error function.

• Non�model�based approaches

In this case the relationship between actuator and end-e�ector co�
ordinates is a pure numerical correspondence. This correspondence
can be obtained either by using spline interpolation (Space Error
Compensation) or by means of neural networks, without any physical
knowledge on the possible causes of inaccuracy.

The non�model�based approaches use mainly a complete measurement of
the working space with sophisticated measurements to create an exhaus-
tive map of the pose error [Faz06]. The limits of using such measuring
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instruments due to the calibration outlay will be discussed later. More-
over, data provided by high�precision measurement devices (in particular
interferometers) are strongly in�uenced by environmental perturbations,
in particular temperature variations [Faz06].

The model�based approaches use for the calibration a kinematic model.
The set of unknown parameter is estimated via measurements and a para-
meter identi�cation algorithm. As [Boy06] describes, every part of these
�ingredients� a�ects the result of the calibration. The kinematic model
means mathematical transformations and includes the forward kinematic
transformation and the inverse kinematic transformation. It represents the
relation between the driven joint coordinates and the world coordinates of
the manipulator.

The kinematic model has a central role in the control and correction of
parallel kinematic machines (Fig. 4.1). It is implemented and used in the:

Fig. 4.1: The role of the kinematic model in the calibration problem

• Controller of the real structure
The volumetric accuracy of the hexapod depends on how accurate
the controller model describes the real kinematic behavior of the
machine.

• Simulated measurements

Simulated measurements can be processed through the kinematic
model of the hexapod using the advantages of the computing speed
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of the nowadays technique and assuring a repeatably measurement
without noise. The measurement is done as a di�erence between the
pose computed for an ideal and a modi�ed parameter set [Kau06].

• Parameter identi�cation

The identi�cation of the kinematic parameters is realized using non�
linear optimization procedures which base on the real measurements
(kinematic model on the controller of the real structure) and on the
simulated measurements (simulated parameter set on the kinematic
model).

4.1.2 The Calibration and their Sub-Problems

In comparison with the serial kinematics, the kinematic parameters of a
PKM have to be considered as an integral problem. Separate calibration of
single parameters � commonly used by serial manipulators � is not possible
[Boy06]. By now many di�erent calibration methods and algorithms have
been introduced, they vary in the number of measured degrees of freedom,
the reachable measurement accuracy, the number of possible measurement
poses, the complexity of the kinematic model and the method used to
estimate the unknown parameters. Although a systematic approach of the
problematic is still very poor.

The actual work means to �nd an order and a hierarchy structure of the
calibration problem, to split up into sub�problems and to present a system-
atic way to approach the solution. Fig. 4.2 means to show a possible struc-
ture of a general calibration approach and to mark the interdependencies
and in�uences of the chosen method/instrument on the global problem.

The model based measurement means to gain pose information of the real
structure by using the measuring model and by obtaining the measuring
data set as base for the parameter identi�cation. From this meaning, the
calibration problem can be split up into the following sub�problems:

• The real structure
A detailed description of the real structure � in this case the hexapod
of simple design � can be found in [Gro00a] and [Kau06], the key
features have been already summarized in the chapter 2. The main
properties can be seen here in the:

� Kinematic behavior of the real structure: reducing the kine-
matic errors consists the subject of the actual work and is made
through identifying the kinematic parameters.
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Fig. 4.2: The calibration problem
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� Non�kinematic behavior: the elastic and thermal e�ects have
been widely model�based reduced by [Kau06].

� Residual non�kinematic e�ects: they are shares of the errors
not corrected due to limits of the technical outlay or from eco-
nomical considerations. Special measuring conditions have to
be applied to minimize these e�ects, they will be discussed in
the chapter 4.3.4.

• Measuring model

The measuring model means to gain measurement data of the hexa-
pod through real and simulated measurements to evaluate the accu-
racy of the structure, discussed in chapter 4.2. The main components
are here the:

� Kinematic model: is a simpli�ed image of the real structure
including only the relevant mathematical transformations and
parameters of the hexapod of simple design. The geometric
(kinematic) errors are transformed into 6 DOF pose deviations
expressed in position and orientation uncertainties of the end�
e�ector. Here the forward (direct) kinematic transformation of
the manipulator will be used.

� Measuring system: The choice of a measuring system has con-
sequences on planning the measuring procedure, including ad-
ditional parameters in the kinematic model and processing the
measuring data. An adequate measuring instrument under the
given circumstances can be seen in the Double�Ball�Bar, dis-
cussed in chapter 4.3.2.

� The measurement: In order to prepare the measurement, sys-
tematic analysis of the manipulator's workspace have to be
made under the conditions given by the Double�Ball�Bar. Suit-
able measuring path and measuring conditions have to be found
as discussed in the chapter 4.4. Finally the measurement will
be done and the obtained data are prepared for the parameter
identi�cation using data �ltering and compression methods.

• Parameter identi�cation

The parameter identi�cation happens on the base of the obtained
measuring data through optimization procedures. A suitable opti-
mization method for the problem must be found and a proper de�ni-
tion of the cost function has to be determined. The obtained quality
of the parameter identi�cation depends on:
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� the character of the optimization procedure, discussed in the
chapter 4.6.1.

� the convergence of the optimization method as presented in
chapter 4.6.4.

� the character of the cost function and stability against measur-
ing noise (including residual uncertainties due to uncorrected
non�kinematic e�ects) as described in chapter 4.6.3

� the limitations due to the calibration outlay, analyzed in chapter
4.6.5.

4.2 Model Based Measurement

The measuring model, as kernel of the model based measurement includes
the:

• Kinematic model

• Measuring system, and the

• Measuring procedure

These three components can be analyzed separately, although, a fully sep-
aration from each other is not always possible due to the strong inter-
dependencies � e.g. the measurement depends on the chosen measuring
instrument or the measuring system has impact on the kinematic model �
as seen in Fig. 4.2.

4.2.1 Ideal and Extended Kinematic Model

For error analysis and ampli�cation [Pott04] as well as for the calibration
of PKMs it is needed to analyze the impact of geometrical errors which
emerge on the TCP from manufacturing and assembly tolerances. An ideal
kinematic model neglects the tolerance uncertainties of the components.
To involve the e�ects of these errors, an extended kinematic model has
been developed for hexapod 'Felix' at the IWM of TU Dresden by [Kau06]
(Fig. 4.3).

The extended kinematic model means to establish the impact of the kine-
matic parameter including the geometrical errors/tolerances on the pose
accuracy of the manipulator. This mathematical transformation set in-
cludes the forward and the inverse kinematic problem of the hexapod to
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Fig. 4.3: Ideal and extended kinematic model of the hexapod 'Felix'
[Kau06]

compute the relation between the error parameter of the hexapod and the
errors measured on the TCP.

4.2.2 Error Parameters

As the elasto�static and thermal in�uences are considered already cor-
rected [Kau06], the subject of this work is limited to the analysis of the
geometric/kinematic error parameters of the hexapod. They are caused
mostly by the manufacturing uncertainty and assembly tolerances of the
physical structure [Gro00a]. The unknown parameters in case of a hexapod
are derived from (see Fig. 4.4):

• Kinematic structure

There are the standard kinematic error parameters of the hexapod,
like the position uncertainty of the joints on the base (3 x 6 para-
meter) and the moving platform (another 3 x 6 parameter) and the
lengths uncertainty (o�set) of the struts (6 parameter), summing 42
unknowns.

• Measuring procedure

Beside the standard kinematic parameters of the hexapod, there are
other unknowns derived from the measuring technique (measuring

61



Chapter 4. Kinematic Calibration

procedure). As an example, in case of a measurement with the
Double�Ball-Bar, the unknown are the o�set of the measuring point
on the moving platform (3 parameters). To assure a correct parame-
ter estimation, these unknowns have to be determined at the same
time with the kinematic parameters within the calibration procedure.

• Measuring instrument

Other unknowns are result of choosing the measuring instrument. As
the standard Double�Ball�Bar measures a relative deviation value,
for an absolute measurement with the instrument the o�set to the
nominal length is needed (1 parameter). This o�set can be directly
measured by using a calibration unit [Ren]. If this is not available on
the required length, the unknown parameter has to be additionally
included in the parameter estimation procedure.

Fig. 4.4: Parameters of the calibration problem
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The mentioned parameters are de�ned in the global co�ordinate system of
the hexapod. The choice of the reference system has impact on the para-
meter identi�cation, this alternative will be discussed later by analyzing
the orthogonality of the parameters. Furthermore, the identi�cation of
these parameters is conditioned by the invariance of the measurement to
the reference system of the kinematic parameters.

4.2.3 Invariance of the Kinematic Parameters

When speaking about invariance of the kinematic parameters in this work,
it will be meant the uniqueness of the measurement at the end�e�ector to
the kinematic parameters of the structure. With other words the following
question is put:

Does a given set of kinematic parameters cause a unique measurement data
set?

Or vice�versa:

Can be the kinematic parameters uniquely identi�ed through a given mea-
surement data set?

Especially this last question plays an important role in determining the
identi�able parameters through the calibration. In case of the hexapod
of simple design at IWM, the invariance has been discussed by [Mös06]
considering measurements with the Double�Ball-Bar. As shown here, the
statement of the problem depends on the kinematic con�guration of the
structure and the character of the processed measurements (e.g. measuring
system and measuring procedure).

[Mös06] formulates and demonstrates a lemma departing from the follow-
ing considerations:

Let be the standard kinematic parameters of the hexapod as the:

• position deviation of the joints on the base ZSi ∈ <3

• position deviation of the joints on the moving platform ZHi ∈ <3

• lengths o�set of the struts Zli ∈ <

where: i=1. . .6

This standard error set is summing 42 parameters, as discussed above, and
comprised in a vector Z ∈ <42
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Lemma: Through the calibration of the hexapod of simple design using
measurements with the Double�Ball�Bar, there are only 36 of 42 parame-
ters identi�able.

Proof: Let G∗ be a simpli�ed base coordinate system with origin in one
of the base joints (e.g. S1) and P∗ a simpli�ed platform coordinate system
with origin in a platform joint (e.g. P1) and let the struts be parallel to
G respectively P. Let Z ∈ <42 and Z∗ ∈ <36 be the set of kinematic
parameters which de�ne one and the same hexapod, each in their own
system. Through choosing G∗ or P∗ , some elements of Z∗ will be null).
For Y ∈ <6 constant strut lengths [Mös06] has proved that in the poses
X = g(Y,Z) and X∗ = g(Y,Z∗) is valid:

X = X∗ +
(

GRP · P Hl − GSl

0

)
. (4.1)

By the calibration the distance between H7 and S7 will be measured.
[Mös06] has proved furthermore that:

∣∣GS7 − GH7(X)
∣∣ =

∣∣∣G∗
S7 − G∗

H7(X∗)
∣∣∣ . (4.2)

That means that the measurements of both systems (both using 36 or 42
parameter) are the same. As the goal of the calibration is to determine
from the measured data the set of kinematic parameters, in consequence
through a measurement only 36 parameters can be identi�ed.

The rest of 9 parameters, which can not be identi�ed related to [Mös06],
comes from:

• the position and orientation of an arbitrary situated simpli�ed base
coordinates system (6 parameters)

• the orientation of an arbitrary situated platform co�ordinates system
(3 parameters)

A further, detailed appreciation of the number of identi�able parameters
will be presented in chapter 4.4.2 with the orthogonality analysis of the
kinematic parameters by using simulated measurements.

4.2.4 Simulation of the Position Accuracy

Measurements, using a conventional measuring instrument, acquire su-
perposed e�ects of the kinematic errors of the real structure and non�
kinematic behavior of the system including measuring noise. These e�ects
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cannot be separated by using a real measuring instrument or hit the eco-
nomical limit of the measurement due to cost� and time�intensive com-
plex procedures. Hence, the identi�cation and analysis of the uncertainty
sources could be very di�cult or nearly impossible by using a conventional
measuring system.

An alternative solution to the real measurement could be seen in simula-
tions implying a kinematic model of the structure. The main idea of the
simulated measurements is to create an environment where the repeatabil-
ity of the measurement and obtaining the 'clean' measuring data set can
be guaranteed.

The simulated measurement uses the kinematic transformations through
a kinematic model. From one hand, the inverse kinematic transformation
is computed for the ideal pose with the nominal kinematic parameters
(Fig. 4.5).

Fig. 4.5: Simulated measurement
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On the other hand, the obtained ideal values of the actuators are re�
transformed into pose information of the hexapod by using this time given
deviation of the parameters (simulated parameter errors). The information
obtained in this way is compared in 6 DOF with the appropriate ideal pose
and their di�erence is considered to be a simulated pose measurement. The
procedure can be repeated for a set of poses along a path.

The model based simulated measurement of the hexapod 'Felix' at the
IWM ensures, beside obtaining the clean measuring data, the repeatability
of the process, too. In this way the impact of pre�de�ned parameter
errors can be arbitrarily analyzed separate from the undesirable e�ects
and measuring uncertainty or measuring noise.

The software for the simulated measurement has been developed in Math-
CAD and has the following key features:

• Switch ON/OFF the compensation of the thermal e�ects (link to the
thermal model)

• Switch ON/OFF the compensation of the elastic e�ects (link to the
elastic model)

• Able to include the geometrical corrections from a previous measure-
ment or estimation

• Repeatability of the experiments

• Arbitrary de�nition of the sampling rate by a measurement

• Speed of the measurement is incomparably faster as in the real case

• Measuring noise can be simulated but also completely neglected

4.3 Measuring Procedure

4.3.1 Demands on the Measuring System

It is of common knowledge that measurement results are never perfectly
accurate. In practice the sources of systematic and random errors, which
can a�ect the results of measurement, are numerous (even for the most
careful operators). To describe this lack of perfection, the term uncertainty
is used. Although the concept of uncertainty may be related to a doubt,
in the real sense the knowledge of uncertainty implies increased con�dence
in the validity of results [Cen04, Gro06].
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A rough distinction of the measurement methods can be drawn between
one�dimensional and multi�dimensional measurement systems [Ble06]:

• One�dimensional measurement system

One�dimensional measurement systems cover one degree of freedom.
Well�known measurement systems include shaft encoders and linear
scales working according to inductive, magnetic or photo�electric
principles.

• Multi�dimensional measurement system

Multi�dimensional measurement systems are combinations of con-
ventional one�dimensional measuring instruments. The measure-
ment uncertainty of the total measurement system is composed of
the measurement uncertainties of the individual instruments. Hence,
here the obtained measurement accuracy is always lower than by an
one�dimensional system.

An example of the most used interferometric systems to perform one� and
multi�dimensional measurements can be seen in Fig. 4.6.

Measurement of the complete pose (6 DOF) simpli�es the identi�cation
process and requires fewer measuring points. But measuring just one co-
ordinate is considerably simpler and causes less outlay of the measure-

Fig. 4.6: Example of one� and multi�dimensional laser measuring system
[API07]
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ment (measuring and installation costs, personal quali�cation). Of course,
the information density is signi�cantly lower, therefore the identi�cation
process becomes more complex and more measuring points are necessary.
Hence, the information level of a measurement must be compared with the
required e�ort, the accuracy and the resolution of the measuring system.
As well observed by [Den04], due to the interdependency of the calibration
concept, an integrated view about the identi�cation about the optimization
of the measuring strategies is necessary.

Analogously to [Bey04], in the calibration mostly used measuring systems
and their characteristics can be consolidated as seen in Tab. 4.1.

For su�cient accuracy of the machine tool, measurement systems are usu-
ally required to have measuring accuracy, which is one power of 10 higher,
and resolution, which is two powers of 10 higher, according to [Ble06]. Here
is also evaluated that a realistically aimed degree of accuracy of the ma-
chine tools is roughly 10µm. Therefore, the measurement system should
have a measurement accuracy of 1mm and a resolution of 0.1µm up to
0.5µm, means the author.

Tab. 4.1: Characteristics of the most used measuring systems
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Considering the simple design concept of the hexapod, the applicability
criteria of the analyzed measuring systems can be embraced in the Tab.
4.2.

Tab. 4.2: Applicability of the measuring systems to the simple design

The measuring system, which fully ful�lls the mentioned requirements, is
the Double�Ball�Bar and it will be used further to gain the pose informa-
tion needed for the calibration.

This list is sure not exhaustive, other authors have proposed customized
measuring systems, prototypes which mean to measure a speci�ed PKM
under certain conditions [e.g. [Yua02, Bey02]. In the actual work it is
considered that designing a prototype measuring instrument exceeds the
measurement outlay of the simple design concept and will be not accepted
here. For other circumstances the choice of the measuring instrument has
to be reconsidered, although, the DBB permits very broad potentials in
calibration, as mentioned by [Tak02] and [Fra06].
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4.3.2 Double-Ball-Bar

The Double�Ball�Bar is a tactile lengths measuring system (Fig. 4.7). The
measurement happens between the center points of two ball joints centered
in magnetic cups with three�point holder (Fig. 4.8).

Fig. 4.7: The the Double�Ball�Bar

Fig. 4.8: Magnetic cup with ball joint

One of the magnetic cups is �xed (center mount) and gives the motion
center of the instrument around a circle (or a sphere). The other magnetic
cup at the opposite end will be connected to the machine (Fig. 4.9) � the
radial di�erence between the both ball joints is measured.
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Fig. 4.9: Con�guration of the Double-Ball-Bar system [Ren]

The applied Double�Ball�Bar is a QuickCheck QC10 produced by
Renishaw. According to the producer the system speci�cations of the
Ballbar transducer are presented in Tab. 4.3. Absolute radius can be
measured by calibrating the measuring system (Fig. 4.10).

Fig. 4.10: Double�Ball�Bar and Zerodur c© calibration unit
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Sample rate 250 samples/sec (maximum)
Nominal length 100 mm (between ball centers)

150, 300, 450 and 600 mm (with extension bar)
Stroke -1.25 to +1.75 mm
Resolution 0.1µm
Measuring range ±1mm
Accuracy ±0.5µm (at 20◦C)

±(0.8µm+ 0.4% reading (0-40◦C)

Tab. 4.3: System speci�cations of the Double-Ball-Bar [Ren]

The obtained accuracy is given by the summation of the relevant Calibrator
accuracy presented in Tab. 4.4 and of the radial variation accuracy above.

To assure a suitable accuracy of the measurements under real circum-
stances, a very careful set�up of the Ballbar system is required.

Nominal length Tolerance Calibration accuracy (at 20◦C)

100 mm ±50µm ±1.0µm
150 mm ±50µm ±1.0µm
300 mm ±50µm ±1.5µm

Tab. 4.4: Calibration accuracy and nominal lengths of the Double�Ball�
Bar [Ren]

4.3.2.1 Setting up the Ballbar System

The Double�Ball�Bar system has to be set up very carefully, considering
the following steps:

1. Load the magnetic tool cup into a suitable tool holder. Fit the tool
holder to the spindle.

2. Move the machine to the co-ordinates where the center mount is to
be located. The tool cup should be positioned that it has to be
approximately 65 mm (2.5 inches) above the point on the machine
bed where the center mount is to be located.

3. Slacken the knurled knob on the magnetic center mount to allow the
ball joint to drop to the base of the center mount. Slide the center
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mount under the tool cup. Visually align the center mount until it
is directly underneath the tool cup in the spindle. Lift the ball joint
up from the center mount until it snaps into the magnetic tool cup.
Lightly tighten the knurled knob on the center mount to grip the
ball joint (Fig. 4.11).

4. De�ne the current position of the machine as the origin (zero point)
of the machine's axes (X, Y and Z).

5. Drive the machine to pull the tool cup up and away from the cen-
ter mount ball joint, i.e. when calibrating the XY plane, drive the
machine along its Z axis in the positive direction.

6. Move the machine toward the start point of the test (i.e. X 300.0, Y
0.0) and run the CNC�program to move along the de�ned circular
path.

Fig. 4.11: Positioning the center mount on the machine [Ren]

4.3.2.2 Limits and Consequences of Measuring with the
Double�Ball�Bar

Measuring with the Double�Ball�Bar implies following limits and conse-
quences to be considered:

• incomplete pose measurement: at a moment just a partial pose
measurement, particularly one DOF (the length of the DBB) can be
gained [Fra06]

• the measuring direction is constrained by the actual pose and the
position of the center mount

73



Chapter 4. Kinematic Calibration

• relative position of the center mount before and after calibration:
after calibration a new position of the center mount (origin) has to
be taken

Under the circumstances of these considerations a new measuring strategy
has to be elaborated to capture the accuracy information of the manipu-
lator.

4.3.3 Data Capture with the Double�Ball�Bar

The measurement with the Double-Ball-Bar has an integral character.
That means, a completely set of measuring data has to be considered to
evaluate the accuracy of the machine. Contrarily, a single measured value
in 1 DOF contains very poor information about the accuracy behavior of
the machine.

From the point of view of the work �ow of a measurement, the measuring
data can be captured using static measurements in a discrete number of
points on a path or with continuous movement along the path.

4.3.3.1 Static Measurements

By static measurement the movement will be completely stopped at certain
measuring points while data capture. There are principally three main
steps while measuring one point:

1. Travel onto the desired pose

2. Wait to dying out (position stabilization)

3. Proceed the measurement

Advantages of this method are the clean tracking of the measured data
and that the measurement is free from the dynamical e�ects of the moving
structure. The number of the discrete points will be chosen high enough
to assure the information content of the path. A numerical method, to
determine the minimal number of measuring points on a curve, is proposed
by [Lin96]. On it, departing from a de�ned path, there are placed a number
of measuring points that de�ne a cubic spline. The maximal deviation
from the origin path is analyzed and compared to the goal accuracy of the
measurement as follow:
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1. Establish the data points to be measured on the curve

2. Calculate the angle between the two normal directions of the two
neighboring data points

3. Compare the relationship between this angle and the preset angle

4. Drawing the cubic spline curve made up of the obtained measuring
points

5. Comparing the distance errors in the normal directions of the curve
made up from data points, to be measured with that of the curve
made up of the obtained measuring points

6. Comparing the maximum distance in the normal direction with the
preset allowance error value

Measurements on the hexapod of simple design 'Felix' proved that the
hexapod has a good positioning repeatability relative to the reversal error
of the structure (Fig. 4.12). A good repeatability means a low positioning
uncertainty by measuring in one de�ned point approaching n�times from
one and the same direction. Reversal errors occur by approaching the
measuring point from other (e.g. opposite) directions.

The repeatability of the structure depends on the properties of the me-
chanical structure and the performance of the controller [Elb06].

Fig. 4.12: Reversal errors and the repeatability of the measurement

An excellent repeatability encourages for a continues path measurement �
without stop in each measuring point.
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4.3.3.2 Continuous Measurement

The DBB permits a high rate data capture, therewith data capture with-
out stopping in the measuring points. The measurement can be made
continuously, decreasing drastically the measuring time. The motion of
the machine has to be kept constant along the path and the use of an
overshoot is advised (Fig. 4.13).

Fig. 4.13: Data capture with the Double-Ball-Bar [Ren]

To guarantee the correctness of the measured data respectively the syn-
chronization between the data acquisition and the planed motion along
the measuring path, the controller facility has to be used. The controller
allows de�ning a constant velocity along the path and not depends from
the number of the reference points [Kau06]. From the other side the mea-
suring rate of the device (DBB) with 250 samples/sec is known [Ren]. In
this way the synchronization between the measured data and the position
of the end�e�ector along the path is assured.

By a continuous measurement some side e�ects due to the machine's move-
ment have to be considered. Although, a full correction of these error in-
�uences is not subject of the actual work, these e�ects have to be avoided
in the limits of obtaining a useful measurement data set. Fig. 4.14 and
Tab. 4.5 shows how the measurement uncertainty depends on the travel
speed of the platform.

On the one hand, a high�speed measurement is desired to reduce the mea-
suring time. On the other hand the measuring uncertainty increases with
the traveling velocity and cause inaccurate measurements. Optimal mea-
suring velocity from these two points of view can be formulated as:
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Fig. 4.14: The measurement speed vs. measuring uncertainty

0 (static
Measurement speed 2000 1000 500 100 measurements in

[mm/min] discrete points)

Uncertainty of the 54 36 22 22 15
measurement [µm]

Tab. 4.5: Measuring uncertainty due to the measurement speed

• Time�optimal solution: high speed for a quick measurement

• Minimum uncertainty of the measurement: quasi�static mo-
tion (low speed)

A compromise between this two opponent aspects can be found by deter-
mining the maximum speed of the motion where the accuracy keeps at
the feasible limits. The upper limit of the accuracy can be seen in the
positioning repeatability of the structure (10−15µm), as discussed above.
Therefore a suitable speed of the measurement (where the dynamical ef-
fects are reduced at minimum) for the hexapod 'Felix' can be seen with
quasi�static motion by at most 500 mm/min path velocity.

In order to minimize the undesired e�ects during the continuous measure-
ment, special measuring conditions have to be used.
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4.3.4 Special Measuring Conditions

The measuring uncertainty is determined further by other in�uences which
permanent correction is not subject of the actual work. Nevertheless,
they have to be taken into consideration during the measuring procedure
to minimize their e�ect on the measuring data. Here can be mentioned
residual in�uences due to:

• Dynamical e�ects of the machine

• Inaccuracy of the control system

• Uncorrected elastic errors

• Backlash of the joints

• Stick�slip e�ects on the struts

To minimize the in�uence of these residual e�ects, the following conditions
have to be applied during the measurement, as seen in the Tab. 4.6.

Residual error in�uences Adapted measures

• Dynamical e�ects of the machine
Static measurement or slow

• Inaccuracy of the control system traveling speed during the
continuous measurement

• Residual elastic errors

• Backlash of the joints Mean value of
forward/backward

• Stick-Slip e�ects measurements

Tab. 4.6: In�uences of the residual errors and adapted measures

4.4 Planning the Measuring Path

To determine the measuring path, a well�organized systematic analysis of
the error e�ects is needed. It is necessary to properly select a trajectory
o��line which:
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• Stays inside the workspace of the hexapod

• Is compatible with the actuator extrema

• Stays inside the measuring range of the measuring device

• It gains the required accuracy information over the workspace

The �rst two conditions are veri�ed by the controller system of the hexa-
pod, the second two has to be determined by the user. Below it will be
shown that measurements over an arbitrary chosen path do not consist
enough information to use for a practical parameter identi�cation.

When given a circular measurement with the DBB in an XY�plane without
inclining the platform, experiments demonstrate that some geometrical
parameters of the hexapod (e.g. value on the Z�coordinate of the base
respectively platform joint) have no in�uence on the measurement (see
Fig. 4.15).

Fig. 4.15: E�ects of the kinematic parameters on a circular path without
incline

This phenomenon has been already analyzed in the literature by [Iha00]
and observed by researcher like [Chi02, Fas02, Ota00]. The explanation
is obvious: the measurement is made perpendicular to the direction of
some parameters (in this case the Z�coordinate of the base joints). This
fact shows us that such kind of measurement is not suitable for a kine-
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matic calibration, because it cannot fully identify some of the geometrical
parameters of the hexapod.

Fig. 4.16 shows that a plane measurement with non�perpendicular tool
(platform with incline) permits the visualization of more kinematic para-
meters. It has to be mentioned, although, that the dimension of some of the
observed values is quite low, the narrow di�erences to the measuring noise
make di�cult a clear�cut distinction between useful data and noise. Other
researchers, confronted with the same problems, are e.g. [Iha00, Tak02].

Fig. 4.16: E�ect of the parameter on a circular path with a constant in-
cline

For a sharp identi�cation we need to obtain a 'better' set of measuring
data. In order to get these data, a systematic approach to obtain a suitable
measuring path will be analyzed. In the proposed method a two�step path
optimization procedure is presented that is based on the:

• Sensitivity analysis of the parameter in the workspace

Here the error propagation will be analyzed by the error parameters
to the TCP.

• Orthogonality analysis of the parameter

In this sense ortho-gonality means the independent e�ect of each
parameter and it will be determined by comparing the sensitivities
of all of the parameters.
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4.4.1 Systematic Sensitivity Analysis Within the
Workspace

The DBB does not permit only circulatory paths but any type of path
on the surface of hemispheres, the degree of freedom while choosing a
measurement path becomes obvious. This freedom can be deliberately
used to increase the e�ciency of the calibration procedure.

The construction of an 'ideal' measurement path for the use of the DBB has
obviously a direct connection with the property of the kinematic system.
This is in particular the sensitivity of the path deviations due to modi�ed
kinematic parameters which in�uences the cost function applied for the
parameter identi�cation. Important is here the signi�cance of the criteria
that are formulated to evaluate the path deviations, the design of the search
technique, type, the parameterization and the control of the optimization
procedure.

Determining an 'optimal' measuring path begins with �nding the poses
in the workspace where the TCP is most sensitive to the errors on the
kinematic parameters. The most sensitive poses � where an elementary
parameter maximal works � can be found with the following methods:

• Statistical analysis of the error transmission

[Pott04] proposes a statistical method, where is assumed that the
actual errors are Gaussian variables with a standard deviation pro-
portional to their tolerance. While the changes in the parameters
are small, the parameters are not correlated with each other and
can be treated independently � relates the author. Thus, the total
error is the sum of the single errors and an error propagation ap-
proach is used to calculate the variance of the TCP. This method is
estimation-based and tolerates a broad spreading of the results.

• Analyzing the Jacobian matrix and using iterative approx-
imation methods

[Den04] claims a method where the in�uence of the kinematic pa-
rameters is analyzed through examining the Jacobian matrix of the
manipulator. According to the author, the method allows the iden-
ti�cation of singular and linear dependent parameters which will be
eliminated from the calibration procedure, inasmuch can be seen
more likely as an orthogonality consideration.
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• Nonlinear optimization procedures

Optimization procedures are a very robust tool in analyzing the e�ect
of one or more parameters and the location in the workspace of their
maximal propagation.

The actual work proposes a complete determination of the poses within
the workspace which have the maximum sensitivity of the kinematic para-
meters measurable with the chosen measuring system. To �nd these poses
nonlinear optimization, procedures are used with simulated measurements
through the kinematic model of the hexapod. The e�ect of each prescribed
elementary error is simulated and maximized (Fig. 4.17).

Fig. 4.17: Searching for the most sensitive poses in the workspace

The sensitive poses are searched in the 6 DOF workspace of the manipula-
tor using genetic algorithms - the operation mode of the genetic algorithms
will be presented later. In Fig. 4.18 a possibly found result of the poses
can be seen within the workspace of the hexapod 'Felix'.

The orientation within the pose is de�ned by using the modi�ed Euler angle
B, L, D. The advantage of this convention is the better comprehensible
illustration of the orientation angles through geographical representation
as seen in Fig. 4.19.
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Fig. 4.18: Sensitivity analysis in the workspace

Fig. 4.19: Convention to represent the orientation through modi�ed Euler
angle

It is observed that the most sensitive poses (measurable in the direction
of the DBB) are symmetrically grouped � as expected � because of the
symmetrical structure of the hexapod. In ideal case the measuring path
should �t these tops, in practice, although, a fully ideal path through these
determined poses can not be realized due to path planning problems like:

• Constrains of the measuring instrument

The DBB has a constant nominal length; hence, the programmable
path must be situated on a hemisphere within the manipulator's
workspace.

• Constraints from the measuring procedure

The path has to be continuously in order to guarantee an automat-
able measuring process.
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• Constraints from the controller of the hexapod

Steadiness and applicability of the velocity pro�le of the actuators
has to be considered while planning the trajectory to obtain a smooth
motion in order to prevent huge measuring noise due to undesirable
dynamical behavior of the machine.

Applying these limitations, it is very di�cult to generate automatically a
path through the determined discrete poses in the workspace. A solution of
the problem can be seen in approximating the poses with a path which �ts
as good as possible the regions where the most of the points are situated
and e�ectuate an additional optimization step through the orientations
along the path.

4.4.2 Orthogonality Analysis

The second optimization step is made by searching for the best possible
orthogonality criterions of the parameters on the measuring path. Here the
orientations (3 DOF) of the platform will be optimized along the measuring
path on a hemispherical surface. Orthogonality means the independent ef-
fect of parameters and will be analyzed through the Jacobian matrix of the
calibration problem (to not confound with the Jacobian of the kinematic
transformation).

4.4.2.1 Jacobian Matrix of the Calibration

The calibration problem can be formulated as follows:

Jcal · ∂p = ∂x . (4.3)

Where:

Jcal � the Jacobian matrix of the calibration problem
p � parameter set vector
x � measurement data set
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Jcal =


∂x1/∂p1 ∂x1/∂p2 ∂x1/∂p3 . . . ∂x1/∂pn

∂x2/∂p1 ∂x2/∂p2 ∂x2/∂p3 . . . ∂x2/∂pn

∂x3/∂p1 ∂x3/∂p2 ∂x3/∂p3 . . . ∂x3/∂pn

...
...

...
. . .

...
∂xm/∂p1 ∂xm/∂p2 ∂xm/∂p3 . . . ∂xm/∂pn

 (4.4)

with p =


p1

p2

p3

...
pn

 and x =


x1

x2

x3

...
xm

.

Each column of the Jacobian Jcal can be seen as a measurement with a
parameter con�guration set where only one of the parameters is di�erent
from zero (pn = 1).

4.4.2.2 Orthogonality Matrix

To bear a physical meaning of its elements, the Jacobian matrix of the
calibration can be normalized to represent the virtual angle between the
e�ect of two parameters. The relation can be deduced from the equation
of the scalar product of two vectors and results the orthogonality matrix
O ∈ <m×n of the calibration problem:

ok,l =
|j<k>

cal · j
<l>
cal |

|j<k>
cal | · |j

<l>
cal |

= cos(ϕk,l) . (4.5)

Where:

k = 1 · · ·n and l = 1 · · ·n with n= number of parameters

A �good� orthogonality between two certain parameters can be observed
where the virtual angle between these is near to 90◦, that means an inde-
pendent impact on the measurement data. A �poor� orthogonality means
respectively nearly parallel vectors, in this case the parameters are increas-
ingly dependent (Fig. 4.20).
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Fig. 4.20: Orthogonality matrix to analyze the dependencies between pa-
rameters

The notations used in the �gure are:

∆bx,∆by, ∆bz � position deviation of the base joints on the
base co�ordinate system from the nominal position

∆px,∆py, ∆pz � position deviation of the moving (platform)
joints on the platform co�ordinate system
from the nominal position

∆l � length o�set of the 6 struts
∆v � TCP�o�set (x,y,z) in the platform

co�ordinate system
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In this sense the orthogonality matrix is symmetric to the main diagonal,
for a better overview the bottom part will be fade out. The elements on
the diagonal are the interdependencies between one and the same element
(full interdependency). The interpretation of the orthogonality matrix can
be seen in the Tab. 4.7.

Quality of the Interdependency Physical Value Color

orthogonality of the inter- in the in the

factor parameter pretation matrix �gure

good independent ϕ = 90◦ cos ϕ = 0 black

poor dependent ϕ = 0◦ cos ϕ = 1 white

Tab. 4.7: Interpretation of the orthogonality factor

The elements of the orthogonality matrix depend on the measuring path
(positions and orientations). A measurement along a random (not opti-
mized) circular path involves an orthogonality matrix as seen in Fig. 4.21
(top side). On the bottom side of the �gure is the orthogonality matrix of
an optimized path, as described in the chapter 4.4.3.

4.4.2.3 In�uence of the Parameter Co�ordinate System to the
Orthogonality

The co�ordinate system, where the kinematic parameters are de�ned, has
to be selected already by developing the kinematic model. Its impact
on the parameter identi�cation � although � will be seen �rst when the
measuring procedure is known by analyzing the orthogonality of the para-
meter on the measuring path. If the measuring direction is near parallel
with the direction of the pose error in the workspace of the speci�ed pa-
rameter, the e�ect of this parameter can be comfortably measured (see
also sensitivity analysis), a precondition to be identi�ed. In contrary case
an unfavorable measuring direction (co�ordinate de�nition) could cause a
bad identi�cation by the optimization. The in�uence of choosing the co�
ordinate system can be analyzed also with computing and optimizing the
orthogonality matrix under various conditions.
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Fig. 4.21: Impact of the measuring path on the orthogonality
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A meaningful de�nition of the kinematic parameter can be seen in de�n-
ing their work directions in cylindrical co�ordinates of the base and the
moving platform respectively. This consideration comes from the symmet-
rical construction of the hexapod and attempts to obtain a symmetrical
de�nition of the error e�ects, too.

With disclaim of an extensive systematic analysis in this work, �nding a
fully optimal frame to de�ne the kinematic parameters could be subject of
a further research analogously to other perspectives which will be presented
in chapter 6.

The impact of the co�ordinate transformation on the orthogonality matrix
is presented in Fig. 4.22. On the top of the �gure the orthogonality matrix
from the Cartesian de�nition of the kinematic parameters can be seen,
on the bottom side the interdependencies (orthogonality matrix) of the
parameters de�ned in a polar co�ordinate system as follows:

∆br � deviation of the base joints radial to the base circle
∆bt � deviation of the base joints tangential to the base circle
∆bz � deviation of the base joints along the Z�axes of the base

∆pr � deviation of the platform joints radial to the platform circle
∆pt � deviation of the platform joints tangential to the platform circle
∆pz � deviation of the platform joints along the Z�axes

of the moving platform

∆l � length o�set of the 6 struts
∆v � TCP�o�set (x,y,z) in the platform co�ordinate system

It can be easily observed by the last one that the worst-case dependencies of
the parameters (black cells) are drastically reduced, therewith the number
of the identi�able parameters has been increased.
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Fig. 4.22: In�uence of the parameter co-ordinate system
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4.4.2.4 Orthogonality of the Measuring Path

Departing from the orthogonality matrix, the goal of this section is to
�nd a suitable measuring path which allows a further identi�cation of the
parameters. Orthogonality criterion can be de�ned here e.g. the condition
number of the matrix [Fra06]. The condition number can be found from
the singular value decomposition of the analyzed matrix (in the literature
generally considered the Jacobian Jcal ∈ <m×n:

Jcal = V · S ·UT . (4.6)

where:

V ∈ <m×m , S ∈ <m×n , U ∈ <n×m

S =
{

0→ i 6= j
λi → i = j

with λi ≥ λi+1

The condition number gives us the scale between the maximum and min-
imum singular values:

cond =
λmax

λmin
=
λ1

λn
. (4.7)

This is considered mostly the measure of the �goodness� of the orthogonal-
ity on the measuring path or points. A drawback of the condition number
is that this gives no distinct physical representation of the worst case pa-
rameter - as would be desirable to evaluate the identi�ability of the worst
parameter.

A physical representation of the applicability of a speci�c measuring path
can be seen in analyzing directly the dependency between two parameters
in the orthogonality matrix O analyzed above. The number of the para-
meters, which can be identi�ed with the calibration, can be obtained by
calculating the rank of the Jacobian matrix. The rank gives us the number
of non�zero elements of the diagonal matrix S. The di�erence to the whole
number of elements represents the number of the parameters which can
not be identi�ed. Although, [Fra06] has shown that in spite of falling the
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condition number, the parameters can be still identi�ed while measuring
with the DBB.

4.4.3 Optimizing the Measuring Path

The construction of an 'ideal' measurement path for the use of the DBB
has obviously a direct connection with the properties of the kinematic
system � these are in particular the sensitivity of path deviations due to
the modi�ed kinematic parameters and their degree of orthogonality.

This section means to search for a measuring path, which includes suf-
�cient information to identify all of the kinematic parameters mentioned
above. The path optimization is made by determining suitable orientations
(Fig. 4.21) in N nodes along the path.

Fig. 4.23: Measuring path on the hemisphere

The optimization uses genetic algorithms (will be described later) where
the goal (cost function) is to obtain the best from the worst�case orthog-
onalities between each two parameters:

max (Ok,l)→ min, where k 6= l . (4.8)

The obtained path is prepared for the measurement according to the fol-
lowing considerations:
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• Assuring a continuous motion along the path

The path will be interpolated between discrete points by using cubic
splines to guarantee a continuous smooth measuring motion. The
implementation of the obtained measuring path will be presented in
the next chapter.

• Assuring a constant velocity during the measurements

To guarantee the correctness of the measured data respectively the
synchronization between the data acquisition and the planed motion
along the measuring path, the controller facility is used. The con-
troller allows de�ning a constant velocity along the path and it does
not depend from the number of the nodes de�ning the path.

• Checking the path for collisions

Collision problems have to be considered in advance by planning
the measuring path. Especially vital is to prove the unrestricted
motion between the moving platform and the measuring instrument
according to the maximal mounting angle of the Double�Ball�Bar
permitted by the magnetic cup.

4.5 Processing the Measuring Data

4.5.1 Data Smoothing and Compression Methods

During the measurement with the DBB, a huge amount of data is obtained
due to the high sensitivity/tasting rate of the measuring system (250 sam-
ples/sec) [Ren]. To use these data e�ciently and to extract the needed in-
formation for the calibration, a data compression is needed. That means,
a suitable method is required to reduce the useful number of parameters
without considerable lose of the path� and accuracy information.

Diverse approximation methods have been tested and compared for one
and the same measurement along a 300 mm radius circle in a XY plane.
Here can be mentioned the polynomial (Fig. 4.24 left hand side) and ellip-
tical (Fig. 4.24 right hand side) approximations (scaled to 1) or decompo-
sition in Fourier coe�cients seen in Fig. 4.25.
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Fig. 4.24: Polynomial (left hand side) and elliptical approximation (right
hand side) of the measuring data

Fig. 4.25: Fourier coe�cients of the measuring data
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With these methods an overview of the obtained results can be seen in
Tab. 4.8.

Number of
Approximation coe�cients Approximation

method used for the error
approximation

Elliptical
approximation 3 20 %
(for plane

measurements only)

Polynomial 12 25 %
approximation
Approximation
with low�order 7 ≤ 5 %

Fourier coe�cients

Tab. 4.8: Overview of the tested approximation methods

The overall characteristics with advantages and drawbacks of the analyzed
compression methods can be summarized as seen in the Tab. 4.9.

Approximation Compression Accuracy of the
method rate approximation

Elliptical approximation high very poor
(for plane measurements only)

Polynomial approximation medium medium

Approximation with low�order very high very good
Fourier coe�cients

Tab. 4.9: Overall characteristics of the approximation methods

Considering the good compression rate of the approximation using Fourier
coe�cients and the very good obtainable accuracy of the approximation
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in the following measured data will be processed by using the fast Fourier
transformation (FFT).

4.5.2 Data Smoothing Using FFT

An important characteristic by using the fast Fourier transformation is
that the measuring noise is re�ected in the high�level parameters. This can
be explained with the fact that the measuring noise causes a high 'vibration
rate' (frequency) in the measured data. Filtering out these parameters will
drastically reduce the measuring noise. Here is another facility of using
the Double�Ball�Bar, because this supports the Fourier�transformation
thanks to the periodical character of the measurement. Through this, it
permits the 'cleaning' of the measured data from noise without signi�cant
data lose.

From above results that the accuracy information is completely included
in the low�level parameters, they are relevant to evaluate the position un-
certainty of the hexapod [Tak02]. In Fig. 4.26 can be observed that the
high�level FFT parameters, in case of a real measurement, are fundamen-
tally smaller (nearly null) than the �rst values.

Fig. 4.26: Fourier coe�cients for a circular measurement

As a simulated investigation shows: from a measurement in 10.000 points
just the �rst 4�5 parameters are signi�cant and the rest of them represent
less than 5 % of the maximum amplitude. This value, although, deter-
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mined for a circular measurement, it depends further heavily from the
character of the path and the dimension of the error e�ects.

The Fourier coe�cients Cn bear a physical meaning of a circular mea-
surement. Departing from the de�nition of the Fourier transformation
[Wiki]:

f(t) =
a0

2
+
∞∑

n=1

(Ancos(nωt− ϕn)) . (4.9)

where:

An =
√
a2

n + b2n (4.10)

is the amplitude in the point (an, bn), particularly A0 = a0/2 , and

ϕn =

 arctan
(

bn

an

)
, an ≥ 0

arctan
(

bn

an

)
+ π , an < 0

is the phase shift which shows the quadrant of the point (an, bn).

As seen in the Fig. 4.27 � departing from the de�nition of the Fourier
transformation � each coe�cient means the amplitude An and phase shift
ϕn of the components

Fig. 4.27: Physical meaning of the Fourier coe�cients

97



Chapter 4. Kinematic Calibration

The notations used in Fig. 4.27 are:

A0 � radius deviation of the base circle
A1 , ϕ1 � displacement of the center point
A2 , ϕ2 � ovality with a �xed center point
A3 , ϕ3 � tri�lob form of the measurement
A4 , ϕ4 � quadratic form of the measurement
An , ϕn � magnitude and twist angle of the n-th component

Some examples of elementary errors and their in�uence on the Fourier
coe�cients can be seen in the Fig. 4.28. The analysis demonstrates further
the physical meaning of the Fourier coe�cients, encouraging to use them
in compression and smoothing the measurements.

Another bene�t property of the FFT is the computer�friendly algorithm
which assures a very quick computation. Tests show that up to 100�200
time of the computing speed can be saved, compared with conventional
smoothing algorithms.

4.5.3 Smoothing the Measuring Data

The choice of the adequate number of Fourier coe�cients has an important
role in preparing the data �ltering. In the Fig. 4.29 a data smoothing has
been analyzed by using di�erent number of low�order coe�cients. The
three regions seen in the �gure can be interpreted as following:

• Region A

The number of Fourier coe�cients is too low - the approximated
path is far away from the desired smooth path.

• Region B

It is met the right number of Fourier coe�cients, the path is properly
smoothed and the most part of measuring noise is eliminated.

• Region C

Too many coe�cients are used � no �ltering e�ect will be made. The
measuring noise remains as before, included in the data
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Fig. 4.28: Error examples and their in�uence on the Fourier coe�cients
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Fig. 4.29: Data smoothing using FFT

Because of the integral character of the FFT�analysis, this is robust related
to the amount of the measuring points. That means, measurements in less
points are as good as with high sampling rate. Here, although, a lower
limit have to be respected to guarantee that the full path information is
gained.

As the measurements are done, the measured data is smoothed and com-
pressed; the obtained accuracy information is used for the identi�cation of
the kinematic parameters.

4.6 Parameter Identi�cation

As the measuring data is acquired and processed, the �nal step in the
calibration is the identi�cation of the kinematic parameters on the basis
of the prepared data. These parameters have to be estimated now by
using di�erent optimization techniques for minimizing the di�erence be-
tween the measured and simulated parameter sets. The most used meth-
ods are mainly gradient-based deterministic optimization algorithms, al-
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though, other considerations, as neuronal networks or statistic methods,
have been tested, as already discussed in the chapter 2. The principal way
to identify the parameters can be seen in the diagram presented in the
Fig. 4.30.

Fig. 4.30: Parameter identi�cation

Firstly, a real measurement is made and than iteratively compared to the
results of the simulated measurements as long as a satisfying approxima-
tion between the two measurements data sets is observed. If the stop
criterion is achieved � the measured path is approximated by the simu-
lated path � inevitably the source of the path deviation (the kinematic
parameter set) has to be the same. So the kinematic parameters are now
identi�ed (estimated).

4.6.1 Optimization Methods

There exist more classical algorithms used to solve optimization problems.
They are very e�ectual applied for smooth, low-rank functions (an example
here are the broad�used gradient�methods). They use mostly the derivate
of the target function to prognose the direction of the optima. The whole
optimization process will be iteratively repeated till no more increase in
the value is possible, so that the maximum is found.

The classical optimization approaches show, although, some disadvantages
applied under certain circumstances:

• The problem of the local optima
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Once a local optimum is found, these algorithms trend to 'stick'
there, while no better solution exists in the near neighborhood.

• The problem of the huge search space

The bigger the space, which contains the optimizing parameters;
the worse will be the convergence to a solution. The ability of the
algorithm to �nd an optimum trends to depend more and more on
choosing the start values. An improper initial value could cause the
impossibility to �nd an optimum.

• The problem of the complex search space

By search space, which contains sharp tops or when no derivate of
the target function can be found, the classical algorithms trend to
jump to the very next random local optimum. Even a restart of the
process has no guarantee of �nding the global optimum.

The characteristics of the most used optimization procedures are resumed
by [Bey04] as seen in Tab. 4.31.

Fig. 4.31: Characteristics of the most used optimization procedures
[Bey04]
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As already seen, by the calibration of the hexapod, the dimension of the
optimization problem is to determine 45 kinematic parameters of the struc-
ture. The strongly nonlinear character of the problem causes a high risk
of the optimization to run into a local convergence. To avoid this dan-
ger, heuristic methods or evolutionary algorithms (genetic optimization)
have to be used. Especially this last one is considerably quicker in �nding
the solution without going into compromise on the very robust character
against noise and singularities in the search space.

4.6.2 Evolutionary Algorithms

In the last years a new concept raised on the horizon of the optimization
approaches: it's name is Evolutionary Algorithms (EA). This category
contains more optimization procedures and was inspired from the biological
evolutionary theory of Charles Darwin [May01, Osy02]. The Evolutionary
Algorithms could be split into following classes [Wal97]:

• Genetic Algorithms (GA)

• Genetic Programming (GP)

• Learning Classi�er Systems (LCS)

• Evolutionary Strategies (ES)

• Evolutionary Programming (EP)

4.6.2.1 Genetic Algorithms

A genetic algorithm approaches the problem by using the principles of
natural selection [May01, Osy02, Wal97]. First, a number of solutions (a
population) are created by setting the parameters randomly throughout
the search space. From this population of solutions the worst are dis-
carded and the best solutions are then 'bred' with each other by mixing
the parameters (genes) from the most successful organisms, thus creating
a new population. Additionally, every so often a gene will be slightly al-
tered to produce a mutation. As in the real life, this type of continuous
adaptation creates a very robust organism. The whole process contin-
ues through many generations, with the best genes being handed down to
future generations [Osy02, Wal97].

Fig. 4.32 shows the schematic algorithm of the simple genetic algorithm.
More information about the classical genetic algorithms can be found in
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the literature, numerous papers are already published in this direction
[Gro03, May01, Osy02, Wal97].

Fig. 4.32: Schematic algorithm of the simple GA

4.6.2.2 Genetic Algorithms Applied to the Parameter Identi�cation

Against the classical optimization methods, the genetic algorithms have
essential advantages on:

• Converging to the global optimum

The genetic algorithms have more possible solutions incorporated in
a parameter set, named 'population'. In this way a bigger search
space can be covered, improving the capability of the procedure to
�nd the global maximum.
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• Continuity of the search space

This method needs no assumption about the availability of a search
space without singular positions. Therefore, implementations on
complex search spaces or on functions without di�erential solutions
are also possible.

• De�ning the proper start values

Using a high number of populations can e�ectively cover a huge
search space. No special start value is needed; an amount of initial
values will be generated randomly.

• Possibly parallel application

The genetic algorithm can be easily split into more parallel processes.
So they can be run separately on di�erent computers, reducing the
computing time.

• Robustness
his algorithm is robust against noisy or incorrect input data sets
(see below the section �Cost function of the optimization� 4.6.3). No
special measures or conditions to use the GA are required.

4.6.2.3 Modi�ed Genetic Algorithms

To rise the e�ciency of the optimization procedure of the parameter iden-
ti�cation, the classical genetic algorithms were slightly modi�ed, and cus-
tomized for the purpose of obtaining a quickly convergent solution and a
better overall accuracy of the identi�ed parameters. Beside the classical
genetic operators (cross�over and mutation), two new functions have been
implemented and successfully tested:

1. mean function

An average value is computed between the chromosomes of two se-
lected individuals, which presents the following advantages applied
to the genetic algorithms:

• Results a very quick convergence of the solution if the parents
have only slightly di�erent chromosomes

• Works as an additional mutation between parents with very
di�erent chromosomes, in this case new parameter information
is created
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2. group function

The individuals with near properties (genes) are considered neighbors
and will be grouped into a colony. The best individual (with the best
�tness value) from them is selected, being the �chief magistrate� of
the colony and will represent alone his colony in the next generation.

The goal of the group function is to prevent a premature convergence
of the optimization and can be seen as an �antipole� of themean func-
tion. Against the mean function, the group function means to spread
the solutions over the search space increasing the global character of
the genetic algorithms.

The actual population is sorted by �tness and the best individuals are
subject to both the conventional and the new genetic functions and will
take part to rise the next generation. That guarantees the convergence of
the function: no worse results are possible since the best individuals from
the precedent generation are still �alive�.

4.6.3 Cost Function of the Optimization

Beside the qualities of the optimization procedure presented above, the
attributes of the used cost function have a signi�cant impact on the para-
meter identi�cation. To analyze this in�uence, several cost functions have
been implemented and tested on robustness and achieved accuracy after
the optimization. Meaningful was here the test of two approaches:

• Least squares method

Compute the sum of the deviation's square in each measuring point
along the path, this will be minimized:∑

(Xreal −Xideal)
2 → min . (4.11)

This is a broad-applied method of optimization procedures, although,
some disadvantages can be observed, e.g. the result is dependent on
the number of considered points.

• Minimum error peak

Here the error peak of the measurement set (the maximal value) will
be minimized:

max (Xreal −Xideal)→ min . (4.12)
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Both functions give good results if applied to ideal measured data, but
the robustness of the optimization has to be analyzed in case of measuring
noise. Fig. 4.33 shows the in�uence of these cost functions on the robust-
ness of the optimization, the results are compared with the situation when
an arti�cial noise is added to the simulated measurements.

Most of the calibration procedures use the method of least squares in
which the parameters are estimated in a way, that the sum of the squared
residuals is minimized. This has for linear models a minimum variance
and it is a good estimator of the motion quality. Hence, for the calibration
of a hexapod � where the error transmission is nonlinear � these methods
have to be reconsidered.

Fig. 4.33: Robustness of the optimization procedure with di�erent cost
functions
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Against the robust character of the error peak function under in�uence of
measuring noise the least squares deviation presents undesirable dispersion
of the results and a signi�cantly lower accuracy on the measuring path.
The linear dependency of the residual path deviation by minimizing the
error peak has the merit that this function will be used for the optimization
and it will be implemented as �tness function of the genetic algorithms.

4.6.4 Convergence of the Optimization

The residual error of the target function is limited mostly due to the tech-
nical outlay of the optimization given by the constraints imposed by the
concept of simple design. The outlay of the parameter identi�cation can be
evaluated with the convergence of the optimization procedure (Fig. 4.34).
As can be easily observed in the �gure, a low number of populations causes
a quick convergence to a rough solution but an accurate result cannot be
found. This problem is known in the literature as �premature convergence�
[Liu00].

Fig. 4.34: Convergence of the optimization with GA's

Minimizing the calibration outlay means to reduce the time spent for the
optimization, too. The optimization time can be roughly approximated as
following:

Topt = TFitness ·NrPopulation ·NrGenerations . (4.13)
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where:

TFitness = Computing time of the �tness function for one con�guration
(individual)

An absolute zero path deviation and with that an absolute parameter
identi�cation is not possible due to more reasons. One of them is the
principal character of the genetic algorithms which converge very slowly
to a solution - as price to pay for the global character of the optimization
(aspiring to �nd the global optimum). Other limits and considerations will
be discussed in the next chapter.

Best results of the parameter identi�cation can be obtained, in our case;
with a population number of 3000 individuals (parameter set) computed
over 100 generations (Fig. 4.35).

Fig. 4.35: Uncertainty of the optimization procedure

4.6.5 Admitted E�ort on the Optimization

As the overall outlay of the calibration is limited due to the directives im-
posed by the concept of simple design, the e�ort of the parameter identi�-
cation has to be kept within economical limits, too. The admitted e�ort of
the parameter optimization considers mainly the optimization outlay spent
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to �nd a solution of the problem, and also the computing time. From the
slow convergent character of the genetic algorithms is given a progressive
slow�down of the accuracy improvement of the solution. Hence, waiting
the optimization to �nd a high-accurate result may be economically inef-
�cient and could compromise the applicability of the whole procedure in
the industrial environment.

A possible way out can be seen in considering an admitted e�ort on op-
timization (Fig. 4.36) and break�down the procedure after reaching this
limit. Further, the obtained results (kinematic parameters) can be handled
as following:

• Accept the obtained uncertainty of the identi�ed parameters if they
are su�cient for the intended purpose (industrial application).

• Analyze the obtained uncertainty of the parameters and apply a sec-
ond optimization step with a di�erent, quicker convergent algorithm.

Fig. 4.36: Admitted e�ort on the optimization procedure

Given the fact that the main dangers of the parameter identi�cation have
been presented in the chapter 4.6.1 and that now, after an optimization
step the obtained result is inevitable closer to the global solution, a further
optimization procedure has not to ful�ll the previously imposed demands.
Near the global optimum a quicker deterministic method can be imple-
mented to �nalize the optimization. The two-step combined optimization
could be in this case:
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• Genetic algorithms to obtain a rough global approximation of the
solution

• Gradient based quick optimization methods on the neighborhood of
the global solution

The residual parameter errors and their impact on the global accuracy of
the hexapod will be analyzed in the chapter 5.

4.7 Work�ow of the Calibration

As the elastic and thermally induced shares of the motion error can be cor-
rected, the quasistationary pose errors are mainly caused by the systematic
in�uences of the di�erences between the parameters, which are used for the
kinematic transformation in the control system, and the real parameters,
which are e�ective in the machine. These parameter deviations, which are
unknown for the hexapod [Mer00], will be determined below during the
geometric calibration on the basis of suitable measurement data.

Fig. 4.37 illustrates the overall simulation-based calibration process which
has been developed and practically tested at the IWM. As shown in the
�gure, �rstly, initial values are de�ned for the geometrical parameters.
These values correspond to the ideal structure (no error) and are used to
make the �rst measurement. During the measurement with the DBB, the
model based corrections of the elastic [Gro01a] and the thermal [Gro02a]
errors are active in the controller to �lter out the mentioned e�ects [Kau06].
The measurement is made with low speed rate to minimize the dynamic
e�ects. The obtained data are transformed with FFT and the low�order
parameters are used as further reference for the inverse transformation.

Secondly, a simulation model is used to iteratively identify the above men-
tioned error peaks from the �ltered measuring data. Random initial values
of the geometric parameters (initialization of the genetic algorithms) are
transformed to the end-e�ector (direct kinematics. Simulated measure-
ment is made along the same given path (preliminarily optimized) and
simulated measurement data are obtained. This will be handled like the
real measurement and the two parameter sets are compared. The opti-
mization is made with the customized genetic algorithms, repeated until
the desired precision is obtained or till the limit of the optimization outlay
is reached.
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Fig. 4.37: Flowchart of the calibration

112



4.7. Work�ow of the Calibration

The implementation of the calibration procedure to the hexapod of simple
design 'Felix' and results with numerical examples are presented in the
next chapter.
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5 Implementation of the Procedure

and Experimental Results

The presented calibration procedure has been successfully implemented
and tested on the hexapod of simple design 'Felix' available at the IWM.
The kinematic calibration is principally valid to other hexapod structures,
although, the kinematic speci�cations of the given structure have to be
considered. These particularities of each structure come mainly from the
dimensions and the shape of the platforms, and base frame and arrange-
ment of the actuators. Furthermore, the location of the end�e�ector within
the moving frame plays a deciding role, too. According to these details by
implementing the calibration to a real machine, the following conditions
have to be ful�lled:

• Availability of a kinematic model of the structure just like as imple-
mented in the controller: in the case of the hexapod of simple design
the available model has been developed by [Kau06]

• An appropriate worst�case measuring path: the path for the hexapod
�Felix� has been computed departing from systematic analysis on the
sensitivity and orthogonality of the kinematic parameters

Insofar, the kinematic calibration of a new designed structure begins with
performing the measurements along the existing measuring path.

5.1 Applying the Measuring Path to the

Hexapod 'Felix'

The determination of a proper measuring path is non time-critical, has not
to ful�ll real�time requirements. It can be computed once by designing
the mechanical structure and it remains principally valid for arbitrarily
calibrations in the future.

The worst�case measuring path for the hexapod of simple design has been
determined by using optimizations with genetic algorithms as presented in
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chapter 4. Here the obtaining of a path with the worst-case sensitivity of
the parameters and a su�cient orthogonality along the path is desired. It
has been searched for suitable orientation angles B, L, D along the path,
optimized in interpolation points as seen in Fig. 5.1.

Fig. 5.1: The optimized measuring path for the hexapod 'Felix' at IWM

The path is situated on a hemisphere within the workspace of the hexapod,
with the center in the origin of the hexapod co�ordinate system (presented
in chapter 2) having a radius of 300 mm.

5.2 Measurements and Results

The Renishaw [Ren] Double�Ball�Bar has been applied to measure the
radius deviation along the determined measuring path before and after
the calibration, as seen in Fig. 5.2.

Unlike the initial path deviation up to 0.7 mm, the calibrated structure
measures an uncertainty of 0.170 mm along the same path. As the mea-
surements are performed along the worst�case path, this involves that
further measurements are expected to sit above the presented accuracy.

The good conformity of the real measurement with the previous simula-
tions demonstrates that the potentials to eliminate the residual errors are
hidden in a further correction of the non�kinematical parameters.
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Fig. 5.2: Measurements before and after the calibration along the opti-
mized path

5.3 Accuracy Evaluation

In the metrological identi�cation of the positioning accuracy of conven-
tional machine tools with serial layout of the kinematic structure it is
usually assumed that the axis�speci�c kinematical errors are decoupled.
In the more recent development of standards, the accuracy test is already
taken into account an overlay of axis movements. If an overview of all
errors at the TCP is desired, the six possible degrees of freedom have to
be evaluated on the end�e�ector throughout the entire workspace of the
machine tool [Ble04].

Hence, a complete evaluation of the workspace is not always possible due to
the limits of the measuring system, sample measurements have to be made
in subspace of the working area of the machine. In the actual work, the
cross�validation of the e�ectuated calibration is performed with measure-
ments on trajectories, di�erent from those used for the calibration step.
Exhaustive measurements have been made within the workspace under
circumstances o�ered by [Ren].

In Fig. 5.3 are de�ned the regions over the workspace where the accuracy
control is e�ectuated. In Fig. 5.4 circular measurements in these regions
can be seen before and after the calibration over 300 mm radius circles,
each in three perpendicular planes. The results are presented in Tab. 5.1.
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Fig. 5.3: Accuracy control in the workspace of the hexapod

5.4 Limits of the Accuracy Correction

5.4.1 Limits of the Calibration

It is generally admitted that a perfect error correction algorithm can not
be achieved considered more points of view. As [Wil00] a�rms, it would be
necessary to de�ne in each point an algorithm which chooses the optimized
solution for:

• the most accurate hexapod

• the most rigid hexapod

• the fastest hexapod

• the lowest energy of torque requirements

• the most realistic leg lengths variation
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Fig. 5.4: Measurements in the workspace of the hexapod
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Measurement Initial max circular Corrected max circular
in plane deviation [mm] deviation [mm]

Region A, M=(0,0,0)

XY 0.270 0.100
XZ 0.200 0.100
YZ 0.300 0.070

Region B, M=(400,0,0)

XY 0.280 0.090
XZ 0.240 0.110
YZ 0.260 0.080

Region C, M=(-200,346,0)

XY 0.310 0.180
XZ 0.190 0.150
YZ 0.320 0.140

Region D, M=(-200,-346,0)

XY 0.230 0.120
XZ 0.240 0.100
YZ 0.310 0.120

Tab. 5.1: Measurements in the workspace of the hexapod

Considering just the point of view of the accuracy, there are still huge
factors to be optimized. Given the fact that the attainable accuracy is
principally limited because of the internal clearance of the universal joints
(approximately 50 µm) and because of the existence of other residual er-
rors, those were not object of the calibration in the examined hexapod
structure of the simple design, the �ndings impressively con�rm the calib-
ration approach studied. At the same time, the remaining errors underline
that there are still potentials for examinations which are subject of current
and future research tasks at the IWM in Dresden.
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5.4.2 Residual Parameter Errors

The residual parameter errors can be deduced from the residual path error
with a study of the transmission factors from kinematic parameters to the
path deviation. A deterministic deduction is di�cult due to the complexity
of the transmission composed from the sum of:

• Kinematic transformation of the hexapod

In practice it is hardly possible to calculate analytically the kinematic
transformations even for simple kinematics. The reason is that either
the forward or the inverse transformation is involved in performing
the simulated measurement. The forward kinematics problem of the
hexapod can be solved only with complex numerical approximations.

• Sensitivity of the measuring instrument

Considering that the Double�Ball�Bar can acquire only a single DOF
measurement, the sensitivity of the DBB is a function of the mea-
suring direction in the current pose.

• Sensitivity of the determined measuring path

The actual calibration approach means to obtain a suitable path
to perform the parameter identi�cation, although, the integrality
of the measuring path is limited from the constraints given by the
measuring instrument, collision problems and the outlay demands of
the calibration.

• Residual errors of the non�kinematic e�ects

The measuring noise, but also the residual elastic and thermal in�u-
ences will make the error transmission function more complex and
unpredictable.

An evaluation of the error transmission can be made, although, by using
statistical studies. Mathematically the estimated (identi�ed) parameter
sets are values which are calculated from the measuring data Θ̂ = Θ̂(X).
It has to always be considered that an observation is a realization of a
random variable [Alt04], therefore the estimated parameters are random
variables as well. The random variables X have a particular distribution
which can be described by a mean <X> and a variance σ2

X . If the variance
σ2

x is known, the variance of the estimates can be calculated with a rule
which is known as the propagation of the error, as observed by [Alt04]:
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σ2
Θ =

N∑
i=1

σ2
X

(
∂Θ̂
∂X̂i

)2

. (5.1)

with notations used by [Alt04]:

N � the number of parameters
Θ̂ � set of the kinematic parameters
X � measured data

The same results can be obtained using the Monte Carlo simulation where
numerous sets of random data with variance σ2

X are produced. Each data
set is used for an estimation of the parameters leading to many realizations
of random variables Θ̂. Variances of the estimates can be calculated from
their distributions as follows:

1. a numerous set of random kinematic parameters is initiated

2. simulated measurements are done for each con�guration

3. the deviation peak (target function of the calibration) on each path is
observed and scaled to the mean value of the kinematical parameters
of the actual parameter set

4. statistical analysis of these values are made

A great advantage in calibrating PKM is that the estimated values are
known in advance quite accurately. For example, the position of a joint is
known already from the drawings. As the expected mean value is already
known, just the variances have to be determined.

Using the Monte Carlo simulation, by a su�cient large number of simu-
lated measurements (Fig. 5.5) a mean transmission function is obtained
(Fig. 5.6) which characterize the error propagation on the hexapod.

Departed from an uniform distribution of the given kinematic parame-
ters (Fig. 5.6, left side), through the error propagation function, a normal
distribution of the path errors is obtained (Fig. 5.6, right hand side).

Reversing the problem � e.g. the residual path deviation is known - the
distribution of the kinematic parameters can be estimated. Herewith, the
expected residual uncertainty of the parameter identi�cation can be found.

In the case of the hexapod of simple design 'Felix', the initial and the
residual uncertainties can be expressed as seen in Tab. 5.2.
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Fig. 5.5: Monte Carlo simulation to determine the transmission function
from the kinematic parameters to the path deviation

Fig. 5.6: Distribution of the path errors as result of the Monte Carlo sim-
ulation

Measured un� Estimated mean Estimated max.

certainty on the uncertainty of the uncertainty of the

worst�case path kinem. parameters kinem. parameters

Initial

(before 0.700 [mm] 0.700 [mm] 1.750 [mm]
calibration)
Residual

(after 0.170 [mm] 0.170 [mm] 0.425 [mm]
calibration)

Tab. 5.2: Uncertainties measured in the workspace of the hexapod 'Felix'
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A summary of the presented calibration procedure and perspectives for
further measures taken to correct the residual errors are discussed in the
next chapter.
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6.1 Summary

The position accuracy of parallel kinematic machines depends on how ac-
curate the controller model describes the real kinematic behavior of the
machine. Some error sources can be minimized by proper mechanical de-
sign or special construction measures, others can be predicted and com-
pensated by using an extended controller model. This work presents a new
calibration concept to identify these model parameters and it has been de-
veloped at the Institute of Machine Tools and Control Engineering (IWM)
at the Dresden University of Technology. It is a new approach to make
a kinematic calibration of the simple design hexapod 'Felix' and supports
the generalization of other parallel kinematics structures, too.

The calibration uses the measurement data from the Double�Ball�Bar
moving along a hemispherical path. The accuracy of the hexapod is prior
cleaned from elastic and thermal e�ects by running model-based correc-
tion algorithms on the CNC controller. The input data are cleaned from
the measuring noise by using Fourier transformations. To identify the
geometrical parameters of the hexapod, Genetic Algorithms are used as
optimization procedure. The results obtained so far con�rm a considerable
improvement of the motion accuracy over the whole workspace.

Summarized advantages of the mentioned procedure are:

• Cost�e�ective solution by using low�cost measuring instruments
(DBB)

• Short measuring time, the measurement happens continuously over
the programmed path, no stops are needed in these points

• Short computing time thanks to the very e�ective optimization al-
gorithm

• A considerably rise of the accuracy near to the limit with the tillage
precision of the component parts
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• The obtained accuracy is measured on a complex path over a signif-
icant share of the workspace

• The optimization algorithm supports the parameter identi�cation of
other hexapod structures

6.2 Perspectives

The following perspectives can be considered as subject of further research
on the topic:

• Finding the optimal measuring path with the Double�Ball�
Bar customized for a given PK structure

The measuring path presented in this work allows us to gather data
which will be used for the calibration. This measured data are su�-
ciently representative to identify most of the parameters, although,
not yet perfect. An optimal path would be that drives through the
most sensitive poses of each kinematic parameter. To �nd such a
path and by the same time to maintain his continuous character,
which can be measured by using the Double�Ball�Bar, makes place
for further research.

• Improvement of the calibration algorithm

Due to the empirical character of the function parameters of ge-
netic algorithms, the calibration process can be further optimized
to converge faster and quicker to the desired value. To handle the
individual parameters of the process and to analyze and eventually
improve the goal function presents the aim of further work.

• Obtain a completely autonomous calibration procedure

The automation of the procedure plays an important role considering
the practical applicability of the calibration for industrial use. This
would increase the e�ciency of the process and would permit to
process the calibration without human intervention. Further research
in this direction is a main topic at the IWM.

• Implement the software tools in the control panel of the
hexapod

Allowing the user to switch the calibration from the control panel
would be a very comfortable solution which would reduce the require-
ments on quali�cation of the user. Therefore, the implementation of
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the software tools in the machine control device is needed. Creat-
ing the software will allow the next user to repeat spontaneously the
calibration in order to improve or to check the accuracy of the device.

• Assessment of the calibration algorithm through the com-
plete measurement of the workspace

A complete measurement of the manipulators workspace is currently
not possible due to the limits given by the measuring instrument
and the economical aspect of the calibration outlay. More extensive
measurements on 6 DOF would assure a wide�ranging assessment of
the calibration procedure and the residual positioning uncertainty of
the hexapod.

• Generalize the calibration to other hexapod structures

This work has exemplarily proved the calibration of the hexapod of
simple design at the IWM. The procedure is, although, applicable
to other hexapods or other type of parallel robots. The presented
algorithm supports a generalization, nevertheless, some particular
properties of the analyzed structure have to be considered, such as:

� The geometrical construction of the analyzed device

� The possible error sources as result of the di�erent tolerances
of the component parts (parameters to be identi�ed)

� The presence of a kinematic model of the structure

� In�uences of other factors like thermal and elastic ones and their
preliminary correction
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