
Quality-of-Service-Aware Data Stream Processing

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Dipl.-Inf. Sven Schmidt
geboren am 6. März 1978 in Zwickau

Gutachter: Prof. Dr.-Ing. habil. Wolfgang Lehner
Technische Universität Dresden, Fakultät Informatik
Institut für Systemarchitektur, Lehrstuhl für Datenbanken
01062 Dresden

Prof. Dr.-Ing. habil. Klaus Kabitzsch
Technische Universität Dresden, Fakultät Informatik
Institut für angewandte Informatik, Lehrstuhl für Technische Informationssysteme
01062 Dresden

Prof. Dr. Bernhard Seeger
Philipps-Universität Marburg, FB Mathematik und Informatik
AG Datenbanksysteme
Hans-Meerwein-Straße
35032 Marburg

Tag der Verteidigung: 13. März 2007

Dresden im Oktober 2006

Abstract/Kurzfassung

Quality-of-Service-Aware Data Stream Processing

Data stream processing in the industrial as well as in the academic field has gained
more and more importance during the last years. Consider the monitoring of industrial
processes as an example. There, sensors are mounted to gather lots of data within a short
time range. Storing and post-processing these data may occasionally be useless or even
impossible. On the one hand, only a small part of the monitored data is relevant. To
efficiently use the storage capacity, only a preselection of the data should be considered.
On the other hand, it may occur that the volume of incoming data is generally too high
to be stored in time or–in other words–the technical efforts for storing the data in time
would be out of scale.

Processing data streams in the context of this thesis means to apply database opera-
tions to the stream in an on-the-fly manner (without explicitly storing the data). The
challenges for this task lie in the limited amount of resources while data streams are
potentially infinite. Furthermore, data stream processing must be fast and the results
have to be disseminated as soon as possible.

This thesis focuses on the latter issue. The goal is to provide a so-called Quality-of-
Service (QoS) for the data stream processing task. Therefore, adequate QoS metrics like
maximum output delay or minimum result data rate are defined. Thereafter, a cost model
for obtaining the required processing resources from the specified QoS is presented. On
that basis, the stream processing operations are scheduled. Depending on the required
QoS and on the available resources, the weight can be shifted among the individual
resources and QoS metrics, respectively.

Calculating and scheduling resources requires a lot of expert knowledge regarding the
characteristics of the stream operations and regarding the incoming data streams. Often,
this knowledge is based on experience and thus, a revision of the resource calculation and
reservation becomes necessary from time to time. This leads to occasional interruptions
of the continuous data stream processing, of the delivery of the result, and thus, of the
negotiated Quality-of-Service. The proposed robustness concept supports the user and
facilitates a decrease in the number of interruptions by providing more resources.

Datenstromverarbeitung unter Beachtung von
Qualitätsanforderungen

Die Verarbeitung von Datenströmen erlangte in den letzten Jahren sowohl im akademis-
chen als auch im industriellen Umfeld immer mehr Aufmerksamkeit. Zum Beispiel
entstehen bei der Überwachung industrieller Prozesse durch geeignete Sensoren eine
enorme Menge von Daten in kürzester Zeit. Eine Aufzeichnung und nachträgliche
Auswertung ist nicht immer sinnvoll und vor allem mitunter nicht möglich. Zum einen
sind nicht alle Daten relevant und es ist wichtig, eine geeignete Vorauswahl zu tref-
fen, um Speicherplatz effizient zu nutzen. Zum anderen können – je nach Umfang der
Datenerfassung – so viele Daten erzeugt werden, dass eine zeitgerechte Speicherung mit
enormem technischen Aufwand verbunden wäre.

Datenstromverarbeitung in diesem Kontext bedeutet, die Daten ohne explizite Spe-
icherung (’on-the-fly’) durch Operationen angelehnt an die klassische Datenbanktech-
nologie zu verarbeiten. Die Herausforderungen dabei sind die nur begrenzt zur Verfügung
stehenden Ressourcen bei potenziell unendlich langen Datenströmen sowie die Not-
wendigkeit der schnellen und frühzeitigen Ausgabe von Verarbeitungsergebnissen.

Letzterem widmet sich die vorliegende Arbeit. Ziel ist es dabei, eine vom Anwender
festgelegte Dienstgüte (’Quality-of-Service’, QoS) für den Verarbeitungsprozess einzuhal-
ten. Dabei werden zunächst geeignete QoS-Merkmale wie maximal zulässige Ausgabev-
erzögerung und minimal notwendige Ausgabedatenrate definiert. Danach wird ein Kosten-
modell zur Berechnung der benötigten Verarbeitungsressourcen bei gegebener Dienstgüte
abgeleitet. Auf dieser Basis erfolgt eine Einplanung der einzelnen Verarbeitungsopera-
tionen; in Abhängigkeit der geforderten Dienstgüte und der im System verfügbaren
Ressourcen kann das Gewicht zwischen den einzelnen Ressourcen bzw. zwischen den
einzelnen QoS-Merkmalen verschoben werden.

Eine Einplanung von Ressourcen setzt genaue Kenntnis über die Charakteristik der
Verarbeitungsoperationen und der eintreffenden Datenströme voraus. Da die Kennt-
nis der Datenströme in den meisten Fällen nur auf Erfahrungswerten beruht, ist eine
Änderung der Planung und damit eine Revision der Ressourcenreservierung von Zeit
zu Zeit notwendig, was zu einer Unterbrechung der kontinuierlichen Datenstromauswer-
tung und der zugesicherten Dienstgüte führt. Das in der Arbeit vorgestellte Robust-
heitskonzept dient als Unterstützung für den Anwender und ermöglicht ihm, die Unter-
brechungen der Datenstromauswertung durch Zugabe von Ressourcen zu verringern.

Acknowledgments

I would like to express my gratitude to the people at the database chair of our university.
The excellent working atmosphere there helped me through the ups and downs during
my work and made this thesis possible at all.

Most importantly, I would like to thank my supervisor, Professor Wolfgang Lehner,
for nearly four years of supervision and critical as well as constructive commentary on
my work. He supported me with outstanding guidance through my doctoral research,
which included countless discussions on the individual aspects of data stream process-
ing. My special thanks regarding the creation of this thesis go to Simone Linke. She
was an invaluable help in revising the thesis’ text modules in terms of finding typos and
correcting their grammar. Furthermore, I would like to thank my colleagues Henrike
Berthold, Dirk Habich and Marc Fiedler. They provided lots of motivations and sug-
gestions during our ’coffee break discussions’ and ’white-board sessions’. Also, this work
would not have been possible without the help of all the students who worked at the
database chair or dedicated their seminar papers or diploma theses to issues in the data
stream research area. My thanks to all of them!

Finally, I thank my parents. They encouraged me to choose my own way in life, to
make my own decisions and to bear the consequences. They stood by me in my personal
as well as in my academic life. Therefore, I dedicate this thesis to them as a small symbol
of my gratitude.

Dresden, October 2006

Sven Schmidt

Contents

1. Introduction 1

I. Related Models and Systems 9

2. Fundamental Prerequisites for Data Stream Processing 11
2.1. Data Stream Modeling Aspects . 11

2.1.1. Internal Structure of Data Stream Items 11
2.1.2. Temporal Relationship of Consecutive Data Items 12
2.1.3. Attribute Evaluation Over Time 14

2.2. Characteristics of Standing Queries . 14
2.2.1. Type of Query Specification . 15
2.2.2. Standing Query Extensions . 15
2.2.3. Query Plans . 17
2.2.4. Operators . 21

2.3. Quality-of-Service in Data Stream Processing 22
2.3.1. QoS Metrics Classification . 23

2.3.2. QoS-Oriented Classification of DSMS 24
2.4. Perspectives of Data Stream Query Optimization 27

3. Structural Query Optimization 29
3.1. Optimization Steps . 29

3.1.1. Logical Query Optimization . 29
3.1.2. Physical Query Optimization . 30
3.1.3. Multi-Query Optimization for DSMS 30

3.2. Cost Models and Functions . 33
3.2.1. Operator-Specific Cost Models . 33
3.2.2. Generic Cost Models . 34

3.3. Structural Optimization Techniques . 34
3.3.1. Minimizing Resource Consumption 34
3.3.2. Maximizing QoS . 35

3.4. Summary . 36

4. Temporal Query Optimization 37
4.1. Preliminaries . 37

4.1.1. Operator States . 37
4.1.2. Continuously Running Operators 38

i

Contents

4.1.3. Scheduling Classification . 39

4.2. Scheduling Mechanisms . 39

4.2.1. DSMS Level Scheduling Mechanism 39

4.2.2. OS Level Scheduling Mechanism and Optimizations 40

4.2.3. Scheduling Granularity . 41

4.3. Scheduling Strategies . 42

4.3.1. Scheduling for Minimizing Resource Consumption 43

4.3.2. Scheduling for Maximizing Quality-of-Service 45

4.3.3. Scheduling for Guaranteed Quality-of-Service 46

4.4. Summary . 46

5. Runtime Management 47

5.1. Re-Optimization . 48

5.2. Adaptation . 49

5.2.1. Adaptation for Resource Minimization and QoS Maximization . . 49

5.2.2. Adaptation for Time-Based QoS Guarantees 51

5.3. Approximation . 51

5.3.1. Generic Approximation . 52

5.3.2. Operator-Specific Approximation 53

5.4. Summary . 55

II. QStream: Towards a Robust, Quality-of-Service Guarantee Data Stream
Management System 57

6. QStream Modeling Aspects 59

6.1. Data Stream Model . 59

6.1.1. Data Streams and Stream Tuples 59

6.1.2. Partial Streams and Stream Classes 60

6.1.3. Stream Punctuation . 63

6.2. QoS Model . 64

6.2.1. QoS Negotiation Concept . 64

6.2.2. Content-Based QoS Metrics . 65

6.2.3. Time-Based QoS Metrics . 67

6.2.4. Quality Request . 67

6.3. Operator Model . 68

6.3.1. Generic Operator Model . 68

6.3.2. Standing Query Representation . 70

6.3.3. Quality Propagation . 71

6.4. Summary . 71

ii

Contents

7. QStream Operators 73
7.1. Helper Operators . 74

7.1.1. Resample . 74
7.1.2. Reconstruct . 78

7.2. Stateful Operators . 80
7.2.1. Aggregation . 80
7.2.2. Sync-Join . 87
7.2.3. Sampling . 96

7.3. Stateless Operators . 97
7.3.1. Filter . 98
7.3.2. Projection . 99

7.4. Summary . 101

8. Integrated Cost Model and Scheduling Approaches of QStream 105
8.1. The JCP+ Cost Model . 105

8.1.1. Cost Model Assumptions . 106
8.1.2. Generic JCP+ Calculation . 111
8.1.3. JCP+ Calculation for a Standing Query Instance 116

8.2. Scheduling Strategies . 118
8.2.1. Run Time Scheduling Strategies 119
8.2.2. Data Rate Scheduling Strategy . 128
8.2.3. Scheduling Optimization: Concept of Microperiods 129

8.3. JCP+ Adaptation . 130
8.3.1. Scheduling-Strategy-Specific Resource and QoS Calculation 131
8.3.2. JCP+ Extension for the Max Throughput Run Time Strategy . . 134
8.3.3. Overall Resource Calculation and QoS Negotiation Steps 138

8.4. Summary . 140

9. The QStream Robustness Concept 141
9.1. Robustness Calculation . 141
9.2. The Macro Jitter Adaptation Concept . 142

9.2.1. Adaptation Procedure . 143
9.2.2. Adaptation Effects on QoS and Resources 144

9.3. Collecting Data Stream Characteristics . 145
9.3.1. Conceptual DSC Monitoring Architecture 146
9.3.2. DSC Measurement and Collection Concepts 148

9.4. Prediction Models and DSMS Parameters 150
9.4.1. Prediction Models . 150
9.4.2. Scheduling Parameter Determination 152

9.5. Summary . 157

iii

Contents

III. QStream Prototype and Evaluation 159

10.The QStream Prototype 161
10.1. Application Concept . 161
10.2. Architecture . 162
10.3. Sensor Data Acquisition . 165

10.3.1. The Comedi Device Interface . 166
10.3.2. QStream Data Acquisition Techniques 167
10.3.3. QStream Data Acquisition Strategies 169

10.4. Summary . 170

11.Evaluation 171
11.1. Test Environment Setup . 171
11.2. Scheduling Parameter Determination . 171

11.2.1. Operator Instance Processing Times 172
11.2.2. Operator Instance Output Volume 174

11.3. Scalability of Scheduling Strategies . 177
11.3.1. Run Time Scheduling Strategy Comparison 177
11.3.2. Data Rate Scheduling Strategy Comparison 178

11.4. Example Query Resource Consumption 183
11.4.1. Description of Operators and Operator Instances 183
11.4.2. Example Query Resources and Quality-of-Service 185

11.5. Adaptation and Robustness . 189
11.6. Summary . 191

IV. Summary 193

List of Figures 197

List of Tables 201

Glossary 201

Bibliography 205

iv

1. Introduction

Processing data from a variety of different heterogeneous sources has gained more and
more importance over the last years. For this reason, nearly all commercial database
vendors have added support for managing distributed data originating from different
sources. Nevertheless, Database Management Systems (DBMS) aim at storing or at
least registering and indexing a more or less static data repository, which is said to be
of permanent nature. If data sources continuously disseminate data, and if applications
continually run so-called continuous or standing queries on that data, the principle of
query processing of database systems does not directly meet the application’s require-
ments.

Data Stream Management Systems (DSMS) focus on application scenarios to which
the traditional query processing model of DBMS does not apply; the following three
reasons can be given: First of all, the volume of the disseminated data may be so
high that the cost for storing these data sets (even temporarily) would be out of scale.
Second, the data set may be infinite and thus cannot be stored completely. Third, query
processing results are supposed to be available to the application as soon as the first data
item arrives. In such a scenario, data is said to be transient, whereas the application’s
queries are treated as permanent. More generally, while a DBMS works in a query-driven
fashion, a DSMS puts the focus on data-driven query evaluation.

Stream Processing Example

This paragraph discusses the motivation behind data stream processing by reviewing
two typical application cases selected from the previously mentioned area of interest.

In today’s modern electrical train services, an uninterruptible, reliable and safe power
supply from the overhead cable to the train via a current collector (sometimes also
called pantograph) must be guaranteed (Figure 1.1). However, the big challenge when
attempting to meet this goal is that one of the two partners, the train, is moving. Thus,
it is the task of the current collector to stay in permanent contact with the overhead
cable, which means that it must press strongly enough against the cable. Now, on the
one hand, the pressure must not be too high because it would wear off the cable of the
collector. On the other hand though, the pressure must not be too low, so that the
collector will not lose contact, not even for a short time, because this could cause arcs,
which then again would lead to an enormous wear-off. The goal here is to achieve an
optimal pressure to keep the collector’s and the overhead cable’s wear as low as possible.

There are numerous causes which may hinder the implementation of this requirement.
This includes varying distances between the train and the overhead cable, or crosswinds
which move the overhead cable or set it swinging. Today’s current collectors are complex

1

1. Introduction

Figure 1.1.: Overhead Cable with a Current Collector

mechanical systems, which are the result of long-lasting research activities and countless
experiments. In this context, one also refers to the adjustment of the current collector as
passive controlling. However, mechanical systems have their limits, which are attributed
to the laws of nature. These limitations can be illustrated by a simple example: A
high-speed train runs at 250 km/h, that means it passes about 69,5 m per second, or
vice versa, it takes only 14,5 ms to pass one meter. The problem is that a passively
controlled current collector is too slow to react in such a short time if an adjustment
becomes necessary.

One possible and promising solution might be an actively controlled current collector.
That means that the entire train is equipped with a sensor network, which measures
different environmental and technical conditions, including the distance between the
train’s top and the overhead cable. All those sensors produce a constant stream of data,
which has to be processed and analyzed before any further calculations and/or decisions
can be made. That means in detail: If it is assumed that the distance, for example,
is measured four meters before the current collector passes that particular place, there
will be less than 60 ms time to process and analyze the data stream produced by the
sensors. In addition, the calculation for the optimum pressure must be done within
this time, as well as the adjustment of the current collector itself. A DSMS might be
the first choice for that purpose for several reasons, such as low running costs, or more
flexibility compared to a hardware-based solution. Moreover, a software solution is easier
to administrate and to adapt to changes ([SLL05]).

As another example, consider an industrial process of casting metal workpieces. To
achieve optimal results in the casting quality and in the lifetime of the casting molds,
modern foundries currently experiment with equipping the casting mold with sensors.
Figure 1.2 illustrates the experimental arrangement of such an industrial processes. The
casting mold on the left side is equipped with sensors. The sensors mainly measure
temperature and pressure (analog signals) at different points of the casting mold and
many switcher signals (digital signals) describing the progress of the casting procress
([SFL05]). These signals form a data stream which is to be queried by a DSMS for
filtering the relevant data. The DSMS can be run by an ordinary computer system,
which is shown on the right side of the figure.

To keep up with the amount of measured sensor values, the DSMS is supposed to
provide a minimum data rate at which it can process the analog and digital signals.

2

Figure 1.2.: Casting Mold Sensor Equipment

Otherwise, if sensor values get lost in situations of high load, the costly experiments
would have to be repeated, as the observed data sets are incomplete.

Based on the motivation of these and many other examples, systems suited for process-
ing transient data streams have been developed during the last years. These Data Stream
Management Systems are based on an architecture slightly different from a DBMS, which
allows to satisfy the application’s needs mentioned above. Therefore, existing DBMS
concepts are exploited on a conceptual as well as on an implementational level; this
includes data models as well as the concept of logical and physical operators or query
optimization strategies.

To put it into a global perspective, Data Stream Management Systems can be seen
as a supplement to Database Management Systems (Figure 1.3). Within this global
picture, the DSMS takes on the role of a pre-processor for incoming data. If an answer
to a continuous query is required as a reaction to the incoming data, the DSMS may
return the information to the application in an immediate and continuous fashion. In
addition, lookup queries to the central repository may be necessary to weave permanent
data into query processing. If the DSMS only plays the role of a filter regarding the
DBMS, the pre-processed data (often reduced in cardinality) is finally stored in the
DBMS repository for being queried by the user at a later time in an ad-hoc manner.
Using this concept, the data management facilities are tailored to the specific application
scenario’s requirements.

Up to now, a variety of research activities have been directed towards different aspects
of managing data streams. Data Stream Management Systems like Aurora [TcZ+03],
STREAM [BDM04], PIPES [KS04], Gigascope [CJSS03b], TelegraphCQ [CCD+03] and
NiagaraCQ [CDTW00] have been developed within the last decade. Within the con-
text of this thesis, the QStream DSMS ([BSLH05, SFL05]) acts as implementational
framework and environment for conducting experiments.

3

1. Introduction

Figure 1.3.: DSMS versus DBMS

DSMS Challenges and Motivation of This Thesis

The challenges imposed by Data Stream Processing Systems are manifold. Survey pa-
pers like [GÖ03b], [BBD+02] and [KS03] present a good and broad overview on this
topic. Two crucial points need to be mentioned. First, DSMS operators must not be
blocking, and second–even though the incoming data streams are infinite–operators are
only allowed to maintain an internal state of limited size.

The former requirement generally means that, if data continuously flow into the data
stream system, the user also expects query results in a continuous fashion. Operators like
join and aggregation, which are based on blocking implementations in database systems,
must be available in an unblocking version. That is, a join must produce output tuples
even if it has not yet seen the entire input. Also, the aggregation operator has to output
the aggregate value even if the data source still delivers data.

The reason for the requirement of limiting the size of the internal state is the finite
storage capacity within a DSMS. Therefore, historical data is often stored at a coarser
granularity, which enables a trade-off between storage capacity and the accuracy of the
query result.

In addition to the general DSMS requirements, Quality-of-Service management (in
conjunction with real-time data stream processing) is of particular interest and thus re-
ceives the focus of this thesis. Within database systems, data is acquired by the DBMS
depending on the speed of the query processor (pull-based processing). In compari-
son, data stream processing works in a push-based manner. On that basis, real-time
processing–in a broader sense–means that the DSMS has to adapt to the data delivery
characteristics of the sources to come up with the arriving data ([ScZ05]). In a narrower
sense, this means that data stream processing may be used in time-critical environments
like production control or sensor data acquisition. There, stream processing must be
fast and predictable regarding the timeframe. For that reason, the user is supposed to
specify Quality-of-Service (QoS) requirements along with the respective standing query.
These requirements instruct the DSMS how fast the standing query is to be evaluated
or what fraction of the input data is of particular interest and should therefore not be
dropped during overload situations.

4

The use case of the train’s current collector and the industrial data acquisition process
are such applications with typical QoS requirements: Working with hard time limits
should guarantee that the standing queries can be executed in time. The sensor data are
to be processed with a minimum data rate, which is oriented at the train’s speed and the
casting mold sensor data rate, respectively. Furthermore–within the train example–the
adjustment of the current collector’s pressure against the overhead collector has to take
place very shortly before the collector passes the particular place. Thus, a maximum
output delay is also given as a QoS requirement for the standing query, which calculates
the current collector’s pressure from the measured sensor values.

Structure and Organization of this Thesis

The fundamental guideline for the main part of this thesis is based on the operational
perspective of Data Stream Management Systems (Figure 1.4). It incorporates an ex-
plicit distinction between different optimization steps and strategies with regard to their
purpose and the time at which they are applied. Individual DSMS optimization ap-
proaches are compared while considering their impact on the resource consumption and
Quality-of-Service management. The latter receives particular attention because–due to
the data-driven query evaluation–it imposes new challenges compared to DBMS query
processing. Now, each operational step is described in conjunction with its impact on
resource consumption.

Figure 1.4.: Overview of the DSMS Operational Perspective

• Modeling: The evaluation of standing queries has to follow a certain data pro-
cessing model. This includes the classification of Quality-of-Service metrics as well
as the definition of data streams, standing queries and basic operators. The sub-
sequent optimization steps and the execution phase build on these definitions for
creating effective strategies and managing runtime activities, respectively.

• Specification: Prior to the query evaluation, the data streams have to be reg-
istered at the DSMS along with their type or their schema. In addition to that,

5

1. Introduction

standing queries have to be specified by the user and added to the query pool of the
DSMS. Existing systems offer different possibilities, for example, SQL-like declar-
ative query languages or procedural methods like the specification of the dataflow
using a graphical query representation. Additionally, some QoS requirements or
preferences may be given along with the standing query.

During the step of the input specification, the DSMS workload, and thus the re-
source consumption, is influenced the most. The number of concurrently registered
queries, the query complexity, and the data streams with their typical properties
(like arrival rate and bursts) form the basis for any resource estimation or calcu-
lation approaches.

• Structural Optimization: During the structural optimization, the specified
queries are transferred to some kind of internal representation (query graphs, for
example). Different optimization techniques are applied on that basis. Eventually,
they lead to a structurally optimized query network (containing all the standing
queries which are to be evaluated). Optimization goals in this context are mani-
fold. For example, the focus may be on increasing the performance or on lowering
the resource consumption.

• Temporal Optimization: Temporal optimization is exclusively applied in data
stream systems. It takes a query network whose structure has previously been op-
timized and decides for each component when, how long and how often it should be
executed to continuously produce results for the given standing queries. The tem-
poral optimization may be directed towards different goals, which should conform
to the optimization goal of the former structural optimization.

• Standing Query Execution: Standing queries are evaluated continuously after
they have been specified and optimized. Aside from the query evaluation, the
DSMS has to collect statistics of the data stream and query processor in order to
adapt to new environmental situations if the statistics change too much. In general,
the better the DSMS considers and exploits the statistics during the execution,
the lower the resource consumption will be. Contrary, the overhead of runtime
activities itself consumes resources and is therefore subject to regular optimization
approaches.

The structure of this thesis is illustrated in Figure 1.5. After this introduction, Part
I gives a comprehensive overview of the state of the art in data stream management. It
starts with fundamental DSMS modeling aspects and general QoS management issues.
Thereafter, the related work part is divided into sections on standing query optimization
techniques (Chapters 3 and 4). The resource management techniques leading to the
appropriate optimization goal are interleaved appropriately. The related work part ends
with a review of re-optimization and adaptation techniques which are to be applied at
runtime during query evaluation. Last but not least, approximated query results for
lowering the resource consumption are discussed. Their connection to the work of this

6

Figure 1.5.: Structure of This Thesis

thesis is stressed during the related work chapters by making a forward reference to the
respective chapter of the thesis’ main part.

Part II contains QStream’s novel concepts for realizing QoS guarantees within a DSMS.
It follows the operational perspective with the exception that the structural optimization
aspect is not covered by QStream. Part II starts with presenting the date stream model,
the QoS model and the query and operator model, respectively, in Chapter 6. Thereafter,
Chapter 7 announces the individual QStream operators. The a-priori resource calculation
approach as well as the scheduling strategies allowing for query evaluation with QoS
guarantees are combined and presented in Chapter 8. At the end of Part II (Chapter
9), the runtime management of QStream is discussed in the context of the robustness
concept.

The implementation part (Part III) contains, first, the description of the QStream
prototype along with its program components and the sensor data acquisition concept
(Chapter 10). Then, Chapter 11 provides the experimental evaluation of the cost model,
scheduling strategies and the robustness concept.

The thesis concludes with Part IV. It summarizes the main contribution and stresses
how the challenges of QoS-guaranteeing data stream processing are fulfilled with the
proposed concepts in terms of modeling, resource management, scheduling and robust-
ness.

7

1. Introduction

8

Part I.

Related Models and Systems

9

2. Fundamental Prerequisites for Data
Stream Processing

This section covers the modeling aspects of data stream management systems in an in-
formal way. The goal is to give an overview of the basic structures of the streaming data
as well as of query specification techniques including the concept of annotating QoS re-
quirements at standing queries. First, Section 2.1 describes data streams from different
points of view. Second, Section 2.2 discusses the concept of the standing queries. Third,
Section 2.3 provides an overview of Quality-of-Service management and an appropri-
ate classification of data stream systems. Finally, the optimization approaches of the
following chapters are announced in Section 2.4.

2.1. Data Stream Modeling Aspects

Intuitively speaking, a stream is a potentially infinite sequence of data items. Each of
the data items is annotated with timestamp information from a completely ordered and
discrete time domain ([BDE+97, MWA+03]). The order of the stream elements is defined
by the order of the timestamp attribute. A data item may be timestamped either by the
data source when it is produced or by the DSMS when it arrives. In the former case,
data items may arrive in disorder due to transmission latencies. Furthermore, in both
cases, there may be duplicates with regard to the timestamps, depending on the chosen
time granularity.

The following subsections go into more details by discussing, first, the layout of single
data items, second, the temporal relationship of consecutive data items, and third, the
evaluation of the data items’ attribute values over time.

2.1.1. Internal Structure of Data Stream Items

The structure of data stream items is classified in two independent ways.

First of all, items change their format and content on the way from the data source
to the data sink (transformation). For example, a stream containing items directly from
the data source is denoted as raw in PIPES ([KS05b]) and as base stream in STREAM
([ABW03]). As soon as some kind of pre-processing is performed, the stream changes
to a physical stream or a derived stream, respectively. A similar concept is used in
Gigascope ([CJSS03b]). There, a two-level query architecture is established, where low-
level queries work on raw packet sources and hand over pre-processed data streams
either to an application or to high-level queries. The benefit of this data stream or item
classification is that operations dedicated to a specific kind of input data can be defined.

11

2. Fundamental Prerequisites for Data Stream Processing

Furthermore, the low-level queries of Gigascope can exploit the network card hardware
capabilities.

Second, different views on the data stream items may be established, which allows
for abstraction from implementational details of the data exchange. This is similar to
the concept of defining different protocol layers as views on network traffic. Within the
related work, a physical and a logical view on data items is distinguished.

Within the physical view, a data item consists of a timestamp and an arbitrary portion
of additional data. The physical view allows the support of delta data items, that is to say,
a data item may provide full information on a sensor value or any other real-world event,
or it may only provide the difference to the item that arrived last. As an advantage of the
latter, the transmission requires lower bandwidth. A disadvantage lies in the increased
processing complexity because each operator has to reconstruct the complete data item
value or–alternatively–the reconstruction of an item is done only once per item at the
beginning of the DSMS processing.

In current DSMS, the approach of incremental transmission of data is used in the
field of XML stream data processing (SPEX [OFB04, OMFB02]) where the items are
complex XML data structures and updates are considered for processing, too. Similarly,
the approach of the Borealis DSMS for invalidating tuples retrospectively ([AAB+05])
incorporates an incremental update mechanism with the help of deletion or replacement
messages. Both of these approaches aim at breaking with the append-only nature of
data streams. Furthermore, the SPEX approach saves bandwidth by avoiding the re-
peated sending of the whole XML document. The larger the data items, the higher the
bandwidth savings. For example, in the field of multimedia data streams, bandwidth
can be reduced dramatically by transmitting only changes of objects (like MPEG layers,
described in [NS95]).

Aside from the physical view, the logical view facilitates the correct interpretation
of the data item, which has to be based on a certain data model and has to follow a
certain schema. For example, many DSMS (Aurora, STREAM, Gigascope etc.) consider
data as relational tuples, whereas other DSMS (TelegraphCQ, StreamGlobe, NiagaraCQ
etc.) focus on processing XML data. In the former case, the tuples must be based on a
relational schema, whereas in the latter case, XML fragments should be valid regarding
a DTD or an XML schema. Without loss of generality, one uses the term ’tuple’ as a
synonym for the items of the logical layer. A definition for logical-layer data is given
in [ABW03], where a tuple is denoted as < s, τ >, with s being the tuple’s content
following a certain (relational) schema and τ being the associated timestamp.

2.1.2. Temporal Relationship of Consecutive Data Items

Stream items may be closely related to each other with regard to a (temporal) session,
which is implicitly marked within the data stream. A session is characterized by certain
elements signaling the beginning and the end of a real-world event. The advantage
of sending the tuples individually instead of waiting for the event’s completion (and
building one larger data item/object) is the opportunity for producing early results,
even if the event (such as a telephone call) is a long-lasting one. Two examples for the

12

2.1. Data Stream Modeling Aspects

incorporation of this concept based on the example of AT&T call records are Hancock
[CFPR00] and NESTREAM [CA04]. Both provide a session layer by connecting the
individual tuples from the logical stream layer. While Hancock deals with relational-like
data, NESTREAM focuses on XML fragments.

Programmer supplied code for
responding to events.

Control flow managed by Hancock.

npa_begin

nxx_begin

line_begin line_end

nxx_end

npa_end

call

Figure 2.1.: Session Constitution in Hancock ([CFPR00])

Figure 2.1 illustrates the events belonging to the recorded AT&T telephone call data.
The events npa begin, nxx begin, line begin, call, npa begin, nxx begin and line begin
belong to a telephone call and are defined by Hancock’s event-detection functions. First,
a new area is detected (npa begin), followed by a new exchange (nxx begin) and a new
phone number (line begin). The bottom-level event is the individual call. If the last call
record of a phone number has been seen, the line end event is triggered. For reacting
to the various data stream events, actions for responding to the events are specified.

Similarly to a session, the beginning of new episodes of data delivery can explicitly be
marked by the insertion of punctuation messages into the data stream. This concept was
introduced by [TMSF03]. A sample scenario is an online auction, where punctuation
messages indicate that no more tuples with bids appear in the data stream, when an
auction item has finally been sold.

More formally, punctuations are annotations embedded within a data stream, which
annotate the end of a specific subset of data. They can be seen as predicates on the
stream elements, which have the form of an ordered set of patterns, with each pattern
corresponding to an attribute of a tuple. The punctuation predicate must evaluate to
false for every stream element following the punctation. Thus, the former infinite data
stream can be viewed as a mixture of concatenated finite streams.

The punctuation concept was implemented in the NiagaraCQ DSMS, where punctu-
ations can be defined for XML data. The operators union, group-by and join have been
extended to consider the punctuation semantics.

13

2. Fundamental Prerequisites for Data Stream Processing

To compare the two concepts, sessions aim at representing complex (nested) real-world
events, whereas the main intention of punctuation messages is to support stream oper-
ations to work on finite data sets. For example, with the help of punctuation messages,
it is now possible to unblock operators like join or aggregation. To emphasize the latter,
[GÖ03b] punctuations are classified as constraints on the data level because they appear
as physical items in the data stream. In contrast, so-called schema-level constraints
(like k-constraints of STREAM) are discussed later in Section 2.2.4 in conjunction with
allowing a bounded disorder of the stream elements.

Another concept for annotating the temporal relationship of tuples, heartbeat messages
([SW04a]) can be inserted into the data stream. The heartbeats are sent by the data
sources even if no or only a few data items are produced. That is, heartbeats can be
used for providing fault tolerance. They signal that data sources within a distributed
DSMS are still alive, even if they do not deliver any real data at the moment ([ZSC+03]).
Furthermore, the heartbeat information can be used to ensure that–if out-of-order arrival
is assumed–all tuples are sorted by their timestamps before they are sent to the query
processor ([SW04a]): Heartbeat messages from the data source including a timestamp
τ indicate that no more tuples with a timestamp smaller than τ will arrive from that
source. That is, the input tuples are buffered and sorted (following the given contraints
of out-of-order arrival) and then handed over to the query processor, even if no actual
input data has been delivered. The incorporation of the heartbeat mechanism into the
Gigascope ([JMSS05]) DSMS aims at unblocking multi-stream operators such as join
and merge. The heartbeat messages–which are generated by low-level query nodes and
propagated upwards the query graph–signal each high-level operator the progress of the
stream, even though no tuples might arrive at the specific operator (e.g. due to previous
filtering operations). Based on this additional information, multi-stream operators can
continue processing even if no input data arrive at one of their inputs.

2.1.3. Attribute Evaluation Over Time

Aside from the temporal relationship of consecutive data items, a classification of the
attribute evaluation over time would be helpful to provide proper application semantics.
For that reason, this thesis provides a classification of so-called partial data streams,
which will be discussed in the model chapter of QStream (Chapter 6) in Part II.

2.2. Characteristics of Standing Queries

Now, the operations of a DSMS are reviewed on the basis of the data stream model. It
ranges from the query specification to individual DSMS operators. This section opens
with a description of the specification of standing queries, which is based on the illustra-
tion in Figure 2.2. Then, the extensions of standing queries to account for transient data
streams are summarized in Section 2.2.2. Finally, one ’drills down’ and the specifics of
DSMS query plans (Section 2.2.3) as well as the elementary operators of the various data
stream systems (Section 2.2.4) will be discussed. The points mentioned above, together

14

2.2. Characteristics of Standing Queries

with a discussion of existing QoS metrics in Section 2.3, are prerequisites for realizing
non-blocking, QoS-capable DSMS operators.

Figure 2.2.: Query Extensions for DSMS

2.2.1. Type of Query Specification

Most DSMS rely on the user’s knowledge and experience with query languages of database
systems and build on their specific query approaches. A first classification for standing
queries is given in [GÖ03b]; they distinguish between:

• Relation-based languages: Data streams are treated as infinite relations (with
a timestamp attribute). Example languages are CQL in STREAM [ABW03],
StreaQuel in TelegraphCQ [CCD+03] and AQuery [LS03].

• Object-based languages: Here, data sources are treated as hierarchical (Tribeca,
[Sul96, SH98]) or abstract data types (COUGAR, [BGS01]) containing a timestamp
attribute.

• Procedural languages: In comparison to the former declarative query language
approaches, a procedural query specification directly orchestrates the data flow.
An example is the Boxes-and-Arrows principle from Aurora [CcC+02].

2.2.2. Standing Query Extensions

The evaluation of standing queries requires additional information or instructions for the
query processor. It is independent from the query specification of the previous section.
The extensions of standing queries are described in the following.

• Selecting the relevant stream fragment: The challenge of processing an in-
finite data stream is met by separating the stream into portions which can be
processed one at a time. That is, a window is defined on the stream data.

A first window classification is given in [GÖ03b], where the window’s beginning
and its end are defined either on the basis of the number of tuples (logical window)
or directly on the basis of the tuples’ timestamp information (physical window).

Further classification criteria are the movement of the window’s endpoints and
the window update interval. Using a fixed window, both the start and the end

15

2. Fundamental Prerequisites for Data Stream Processing

timestamp do not move. In contrast, a sliding window conceptually moves over the
data stream, and a landmark window is constrained by one fixed and one moving
endpoint. Depending on the update interval, the window either conceptually slides
over the data stream tuple by tuple (sliding window) or it moves by a larger number
of tuples (jumping window).

With this concept, stream fragments ranging from a single tuple to a large se-
quence of tuples may be specified. The length of a window depends on the specific
application requirements. The amount of tuples kept in the window influences the
required memory resources for the query evaluation considerably. The window’s
length should be determined by either of the following two factors:

– Calendar-oriented window length: In this case, the window length is defined
by the user who is aware of the semantics of the query result with the chosen
window length. The basis are calendar-like time spans such as month, day or
even hour, minute and second; a possible scenario is the evaluation of business
data streams.

– Quality-driven window length: If sophisticated stream processing algorithms
are applied (e.g. to perform signal processing on continuous data streams),
it becomes difficult for the user to specify the window’s length because the
impact on the result is not as clear as in the previous case. In such a sce-
nario, abstract measures, e.g. the operation-specific result quality, determine
the window length. For example, the length of an aggregation window of
sensor values is influenced by the allowed deviation of the aggregate value.
In [BSLH05] and [Haa97, HHW97], it is shown that for given characteristics
of the sensor values (minimum and maximum) and an upper bound for the
deviation of the aggregate value (which is held with a certain probability),
the required (worst-case) length of the aggregation window can be calculated.
In general, the quality of the operation’s result improves with an increas-
ing number of tuples within a window. Also, interpolation and resampling
operators benefit from larger window sizes: If more tuples are available for
computation, more complex interpolation functions can be applied to produce
more accurate results.

Window size as a Quality-of-Service criterion is described later in Section
2.3. Moreover, it involves aspects of approximation and is therefore topic of
Section 5.3.

• Specifying periods of query evaluation: Following [GÖ03b], a standing query
may be evaluated either in a data-driven way (streaming) or periodically with a
user-determined execution frequency. If a query is to be evaluated only once (at a
specific point in time), it is denoted as ad-hoc query.

• Choosing initial sampling rates: Some DSMS allow the specification of an
initial stream sampling rate to cope with the stream load in a push-based processing

16

2.2. Characteristics of Standing Queries

model. This comes along with a reduction of the result quality and is discussed in
the next paragraph.

• Annotation of QoS requirements: If the DSMS supports Quality-of-Service
parameters for query evaluation (beyond the window length), the DSMS should
enable users to specify their quality requirements along with the standing queries.
The QoS specification may be annotated like the sampling clause in STREAM
(Sample(2)), which describes that, on average, every n-th (in this case every
other) tuple is passed through the sample operator ([MWA+03]). As another ex-
ample, sliding window size requirements in PIPES are specified as a range within
each query ([Range Min 2 hours, Max 5 hours], [CKSV06]). In more abstract
terms, Aurora requires a graphical specification in form of different QoS graphs
(Figure 2.3) for each result of standing queries ([CcC+02]). The delay-based QoS
graphs describe how the QoS of a query answer slowly degrades with increasing
delays of the result. Similarly, the drop-based graph indicates how the result qual-
ity depends on the amount of dropped tuples. Finally, with the value-based QoS
graph, the user signals which value range is of most importance and will thus lead
to the highest QoS. For example, the temperature values within a critically high
range are more important for fire detection than room temperature values.

QoS

delay

1

0

good zone

QoS

% tuples delivered

1

0

100 0

QoS

Output value

1

0

(a) Delay-based (b) Drop-based (c) Value-based

Figure 2.3.: Specification of QoS Diagrams in Aurora ([CcC+02])

2.2.3. Query Plans

Once a standing query has been specified and submitted to the DSMS, it has to be
transformed into a query execution plan (QEP). This is done in a way that is analog
to the procedure for database systems. First, a logical query plan is created based on
operator algebra, and second, a physical query plan or dataflow plan is constructed by
choosing and inserting physical data stream operators. The benefit of this stepwise query
translation is the abstraction from physical details on the one hand, and the potential
optimization on the logical as well as on the physical layer on the other hand. The general
procedure is closely related to query translation and optimization in regular database
systems ([Gra93]). In the following, specific examples for query representations on the
logical and on the physical layer are given.

• Query representation on the logical layer: On the logical layer, queries are
represented as expressions using appropriate algebra of the particular DSMS. The

17

2. Fundamental Prerequisites for Data Stream Processing

basis is a set of logical operators. The specified query determines which opera-
tors are used and what the algebraic expression looks like. For example, Aurora
([ACc+03]) uses Stream Query Algebra (SQuAl), which consists of seven primitive
operations. These are Filter, Map, Union, Sort, Aggregate, Join and Resample.
The logical query specification is done on a graphical basis where the operator
boxes are connected using edges. As another example, STREAM uses a ’logi-
cal plan generator’ to transform Continuous Query Language (CQL) expressions
into expressions of relational algebra. Some CQL-specific operators are included
for expressing windows and transforming streams into relations and vice versa
([MWA+03, Sta04]).

Finally, the PIPES DSMS uses temporal algebra ([KS05b]) for the query represen-
tation. The logical operators are defined with logical operator algebra. A dedicated
sliding window operator ωs

w restricts the validity (time interval) of each tuple of
the stream to the value w. A logical query expression to perform a selection on
two windowed streams followed by a union operation may be given as

σ(ωs
w(Sl

1)) ∪+ σ(ωs
w(Sl

2))

where, first, a window is applied to both input data streams Sl
1 and Sl

2; second,
an independent selection σ is performed on both window streams; and finally, the
(schema-compliant) partial results are merged using the union operator ∪+.

[GV04] use logical level expressions similar to the extended relational algebra and
provide seven logical operators. Each of the logical expressions is implemented as
a set of dataflow expressions (on the physical layer). Windows are not considered
in expressions on the logical level. In the following example, the input streams r
with schema (ab), s with schema (bc) and t with schema (ac) are joined

r(ab) ⋊⋉b s(bc) ⋊⋉ac t(ac)

• Query representation on the physical layer: If the logical query plan has been
selected (and possibly optimized), it then is transformed into a physical one. In
STREAM, for example, this is done by the ’physical plan generator.’ A physical
query plan is a network describing the data flow from the data sources to the
data sink. It contains physical operators, FIFO queues for connecting them and
occasional repositories for the materialization of intermediate results. Now, the
physical query plans are discussed for the DSMS examples already mentioned in
the previous paragraphs.

First, the logical level expression example r(ab) ⋊⋉b s(bc) ⋊⋉c t(ac) from [GV04]
is translated into a set of dataflow expressions. Three alternative paths leading
to the same query result are given. The consecutive dataflow expressions of each
single query path are listed, separated by commas:

δr :→ (wr), ⋊⋉b (ws), ⋊⋉ac (wt),→ (wout)

18

2.2. Characteristics of Standing Queries

δs :→ (ws), ⋊⋉b (wr), ⋊⋉ac (wt),→ (wout)

δt :→ (wt), ⋊⋉c (ws), ⋊⋉a (wr),→ (wout)

In this specific case, the expression → (wr) denotes that–during a ’recorder operation’–
the result of the previous step is written to a window wr, which has the meaning
of a synopsis. The operation ⋊⋉b (ws) represents a join operation of the previous
result with the specified window (ws). The symbols δr, δs and δt specify the three
input data streams, and the following join and window expressions describe the
data flow strategy. Finally, the result is written to the window wout. Due to the
join associativity, three different execution plans exist. One option would be to
write the input of streams δs and δt to the windows ws and wt, respectively, and
to evaluate them in the order of the set of dataflow expressions shown in the first
line:

δr :→ (wr), ⋊⋉b (ws), ⋊⋉ac (wt),→ (wout)

δs :→ (ws)

δt :→ (wt)

The resulting and semantically equivalent data flow graph, including all execution
alternatives, is illustrated in Figure 2.4.

out
w

t

ac

ac

ac

b

b

s

r

s
w

t
w

r
w

Figure 2.4.: Example Dataflow Implementation ([GV04])

Within the STREAM DSMS, a physical query plan consists of operators, queues
and synopses (Figure 2.5). For example, a join operator maintains two synopses
S4 and S5, one for each input stream (provided by the queues q3 and q4). Further-
more, synopses may be used to apply compression and approximation techniques
to reduce the resource consumption (Section 5, runtime management) as well as
to enable multiple standing queries to share intermediate results (Section 3, struc-
tural optimization) with the help of so-called ’stubs.’ In the example, the synopses
S1, S3, S4 and S2, S5, respectively, share their contents.

As a final example, Figure 2.6 shows the physical query plan components of the
Aurora system. The three different paths belong to different types of queries: the
topmost path represents a standing query, the middle path shows a view, and the

19

2. Fundamental Prerequisites for Data Stream Processing

S3 S

S1 S2

S

Q Q1 2

q

q

q q

q

q
1 2

3 4

65

JoinMax

SW SW

R S

54

1 2

Figure 2.5.: Query Plan Components of STREAM ([ABB+03])

bottom path stands for an ad-hoc query. All query types are based on the same
query plan components. They include operators, connection points (dark circles;
they allow for the connection of boxes and offer storage capacity for data of the
recent past), storage capacities independent from connection points (like S3 in the
view path; this can be seen as a materialized view), and QoS specifications at the
end of each path.

b1

b4

b3b2

b5 b6

continuous query

view

QOS spec

Persistence spec:

“Keep 1 hr”

app
storage

b7 b8 b9

Connection

point

ad-hoc query

storage

app

Persistence spec:

“Keep 2 hr”

S1 S2

S3

QOS spec

QOS spec

Figure 2.6.: Query Plan Components of Aurora ([CcC+02])

To summarize, data stream systems allow to distinguish between different layers of the
query representation with the goal of optimization and abstraction. In comparison to
DBMS, components like synopses, buffers and connection points are explicitly required
to support the transient nature of data streams as well as of multiple standing queries
which are to be evaluated concurrently.

20

2.2. Characteristics of Standing Queries

2.2.4. Operators

Query plans are composed of elementary operators. They provide basic functionality
with the goal of maximum reusability. In the next sections, the operators are first
classified depending on the necessity of maintaining an internal state. Then, their order
sensitivity is discussed, and finally, some example operators are provided which are novel
in the context of Data Stream Management Systems.

• Operator state characteristics: A first classification criterion of DSMS oper-
ators is the necessity of maintaining an internal state for successful operation. A
stateless operator is able to immediately produce a query result without accessing
any kind of internal structures and without waiting for the arrival of future tuples.
Examples for stateless operators are selection, projection, and map.

In contrast, a stateful operator has to maintain a state using a storage structure
(synopses). For the storage structure, efficient access must be guaranteed (for
example, with the help of indexes). An operator may have access to one or more
synopses. For example, a binary window join operator has to maintain the state of
two windows on the input streams, whereas the aggregation operator only needs a
single synopsis for buffering input tuples.

• Order sensitivity: If a specific operation depends on ordered input data, opera-
tors are classified to be either order-agnostic operators or order-sensitive operators
([ACc+03]). An order-agnostic operator is able to process tuples in the order in
which they arrive, which is true for all stateless operators, as they process the
tuples independent from each other. Order-sensitive operators require ordered
input for an execution to produce valuable results. Examples are stateful opera-
tors like sort, aggregation, and join. Also, a bounded disorder may be tolerated
for order-sensitive operators; this has to be specified as a schema-level constraint
and indicates an upper bound for the slack in terms of timestamp differences in
the tuple order (scrambling bounds [GÖ03b], ordering constraints [ACc+03], and
k-constraints [BSW04]).

• Relational Operator adjustment: To account for the specific requirements of
data stream processing (non-blocking behavior and limited internal state), rela-
tional operators have been adjusted. Particularly, join and aggregation have been
adapted to cope with the unbounded nature of the data streams.

Join operators are extended to maintain windows of input tuples, to regularly up-
date these windows following a specific update strategy (for example FIFO or age
curves, [SW04b]), to check new tuples against existing content of the partner win-
dow (either symmetrically or asymmetrically, [KNV03]), and to use new similarity
metrics to find matching partner tuples ([KS05a]). Generally, a stream join based
on windows of the input data can only produce an approximate result ([DGR03]).

Similar to joins, it is a challenge for aggregation operators to handle the continuous
and possibly infinite data streams ([SW04b]). A window of input tuples contribut-
ing to an aggregate value must be maintained because the input data is only seen

21

2. Fundamental Prerequisites for Data Stream Processing

once. If there exist annotations within the data stream which signal the end of the
aggregation group (sessions, punctuations, heartbeats), approximate results are
produced only. For aggregation operations involving large time spans, the granu-
larity of the data may be reduced to save some storage space within the synopses
([ZGTS03]); this constitutes a trade-off between storage space and aggregation
detail.

Aside from the extension and adaptation of traditional operators, various new op-
erators have been introduced. For example, the data rate reduction is an important
issue for nearly every DSMS implementation, and thus, sampling and load-shedding
operators have been proposed and implemented ([TcZ+03, BDM03, BDM04]). In
order to combine the querying of streams and of relations at the same time and
to re-use existing relational operators, [ABW03] the mapping is described with
stream-to-relation and relation-to-stream operators.

To account for the temporal nature of the stream items in particular, operators
like ’coalesce’ and ’split’ are used by PIPES ([KS05b]). Coalesce merges value-
equivalent stream tuples with adjacent time intervals into a single tuple with a
larger validity interval. This decreases the data rate but enlarges the validity of
the corresponding tuple, which may lead to higher memory consumption of stateful
operators. In contrast, the split operator splits up a stream element into several
value-equivalent elements with adjacent time intervals at the cost of an increased
data rate. Thus, coalesce and split may be used during the optimization process.

To bridge the gap between processing streams consisting of independent tuples
and more or less continuous signals, Aurora ([ACc+03]) proposes a ’resample’
operator, which is similar to the resample helper operator which will be presented
in this thesis in Chapter 7. With that concept, tuple values which existed in
the real-world scenario between two tuples can be reconstructed approximately
using an interpolation function. Furthermore, the QStream tuple interpolation
concept forms the basis for join processing on continuous data streams. Thereby,
the attribute values of the join input streams can be reconstructed for an arbitrary
point in time, which is an attempt to achieve maximum result consistency.

2.3. Quality-of-Service in Data Stream Processing

If quality-aware data stream processing is required, different aspects ranging from the
QoS specification (and annotation) to the implementation of the operator execution must
be considered. Within this section, first, the meaning of ’better’ results is discussed while
introducing different QoS metrics (Section 2.3.1). Second, one differentiates between two
general ways of QoS support and classifies existing DSMS on that basis (Section 2.3.2).

Some DSMS like Aurora, STREAM, PIPES and QStream already provide useful so-
lutions, which act as a basis for this section. Generally, the more resources are available
for data stream processing, the ’better’ the answers to the standing queries will be.

22

2.3. Quality-of-Service in Data Stream Processing

2.3.1. QoS Metrics Classification

Due to the widespread interpretation of the term ’quality,’ a variety of QoS metrics have
been introduced by existing DSMS which incorporate the notion of Quality-of-Service.
Some of the QoS metrics are dedicated to specific operators; others are more generic and
thus applicable to the whole operator network. As illustrated in Figure 2.7, a distinction
of QoS metrics with regard to the temporal aspects of query evaluation is proposed.
This is justified by the data-driven query processing: there are time constraints which
have to be met to keep pace with the arriving data.

Figure 2.7.: QoS Metrics Classification

Time-Based QoS Metrics

Time-based QoS metrics receive the focus of this thesis and indicate the DSMS’s ability
to adapt to the push-based data delivery and to the processing speed of the DSMS.
There exists a distinction between:

• Throughput: Throughput (or data rate) indicates the amount of stream input
which a DSMS is able to handle with bounded resources. The larger the value, the
higher the QoS. The user may specify a throughput requirement on a per-query
basis (explicit), or the DSMS just tries to keep pace with arriving data (implicit). A
variety of DSMS include throughput in their optimization strategies and therefore
try to maximize the throughput with a given standing query configuration.

• Delay: Delay (latency) describes the time distance from the arrival of an input
tuple until this very input tuple has been processed by all the operators which
are in the appropriate operator path (or which belong to a certain query). Even
though not every tuple may reach the output of the query network, the time from
the tuple’s arrival until the time of the tuple’s first influence on the query result is
taken as a measure. A well-established approach is to accumulate processing and
buffering times of consecutive operators and FIFO queues, respectively. A smaller
delay value indicates better QoS.

23

2. Fundamental Prerequisites for Data Stream Processing

Content-Based QoS Metrics

Aside from throughput and delay, content-based QoS metrics exist. They do not involve
temporal query evaluation aspects but focus on the problems caused by the handling of
infinite streams or too high input volumes. A list of them, along with a short description,
is given below:

• Sampling rate: The sampling rate describes the fraction of the input stream that
has to be sampled out (thrown away). There is a distinction between sampling and
load shedding. The former method probabilistically throws away tuples, whereas
the latter is supposed to drop tuples deterministically and based on properties like
the tuple’s value or its priority. Load-shedding techniques are extensively discussed
in [TcZ+03].

• Output value: Some attribute values are more important than others and thus
lead to a higher result quality.

• Sliding window size: In Section 2.2.2, different possibilities of determining the
window size of stateful operations were discussed. The larger the window, the
higher the precision of the operation and the higher the resource consumption.
Sliding window size as a quality metrics is explicitly introduced by [CKSV06].

• Quality of approximation: If stream elements have to be stored for further
calculations, synopses are used to materialize the data stream content. When doing
so, approximation techniques (for example randomized sketch synopses [AMS96]
or histograms [JKM+98], [GG02]) are used to reduce and limit the size of the
synopses. If the appropriate compression technique provides quality guarantees or
probabilistic error guarantees, the quality of approximation can be considered as
content-based QoS-metrics.

• Data mining quality: QoS measures for mining data streams are proposed by
[FHKS05]. They associate different QoS metrics like methodical quality (which
includes quality of approximation and quality of interestingness in the case of
frequent itemset analyses) and temporal quality (which includes time ranges, time
granularity and reaction time) with the stream mining techniques.

The QoS metrics mentioned above are just examples. Depending on specific operators
or application areas, other non-time-based QoS metrics may be considered.

2.3.2. QoS-Oriented Classification of DSMS

There are different possibilities of negotiating and assuring Quality-of-Service require-
ments. This thesis concentrates on the time-based QoS metrics. Thus, Data Stream
Management Systems are classified on this basis. A DSMS may either ’try its best to
reach the QoS’ or it may ’guarantee the QoS.’ DSMS which incorporate the former prop-
erty are called best-effort systems, whereas the latter are named QoS guarantee systems.
The characteristics of both systems are described in the following.

24

2.3. Quality-of-Service in Data Stream Processing

Best-Effort DSMS

Based on the QoS specification, best-effort DSMS try to meet the user-given QoS require-
ment as closely as possible. Different runtime strategies exist which aim at increasing
or maximizing the quality. With such, the preferred result quality may be specified ex-
plicitly, like it is done with the delay-based QoS graph of the Aurora system. Another
possibility is to put the focus on a certain quality measure (like query result deviation)
and to consider it during the optimization ([BDM04]).

Due to the system’s architecture, a best-effort system is not able to give any quality
guarantees on time-based QoS metrics. There may always be concurrent activities in
addition to the DSMS operation which have influence on the processing times of the
operators belonging to a query. Furthermore, the queries cannot be shielded effectively
from each other and from concurrently running applications. Thus, other applications
may be preferred (for example, due to user interaction), or too much processing time is
consumed for the evaluation of DSMS queries with low importance. As a result, neither
an upper bound for the delay of a single query’s operator graph can be given nor a
minimum or constant result data rate of a query can be assured.

QoS Guarantee DSMS

In comparison, a QoS guarantee system is able to fulfill or guarantee a negotiated QoS
requirement during the complete lifetime of the standing query. The only prerequisite
is a successful QoS negotiation process (Figure 2.8).

Figure 2.8.: QoS Negotiation in QoS Guarantee DSMS

It incorporates, first, the required resources for fulfilling the QoS requirements; they
are calculated using an adequate cost model. In a second step, these resources have to be
reserved at a resource manager and are available for use in standing query evaluations.
If the statistics of the data stream do not change in an unforeseen manner, the required
QoS in terms of output delay as well as the throughput can be guaranteed.

From the perspective of a system’s architecture, only a real-time operating system
underneath the DSMS can handle the challenge of time-based QoS guarantees. This
issue is discussed in very detail in Section 4.3.3.

The two DSMS QoS approaches are compared in Table 2.1. QoS-guarantee data
stream systems meet time-based quality requirements more strictly and thus clear the

25

2. Fundamental Prerequisites for Data Stream Processing

way for new application areas for DSMS. Non of the existing DSMS are able to quarantee
time-based QoS requirements. Therefore, this thesis puts the focus on time-based QoS
guarantees and aims at establishing the QStream DSMS as a representative.

Best-Effort DSMS QoS Guarantee DSMS

user input quality requirement (based on QoS metrics)

optimization
goal

maximize QoS value /
approximate QoS require-
ment as much as possible

do not violate QoS require-
ment

required DSMS
facilities

optimizer with appropriate
strategy

resource manager, QoS ne-
gotiation, resource reserva-
tion, optimizer with appro-
priate strategy

required OS fa-
cilities

- real-time support

example sys-
tems

Aurora [TcZ+03],
STREAM [BDM04],
PIPES [KS04], Gigascope
[CJSS03b], TelegraphCQ
[CCD+03]

–

Table 2.1.: Comparison of QoS Management Approaches

26

2.4. Perspectives of Data Stream Query Optimization

2.4. Perspectives of Data Stream Query Optimization

The fourth issue in reviewing the fundamental prerequisites for data stream processing
is an overview of ’optimization’ in the context of Data Stream Management Systems.
It clearly separates structural from temporal optimizations, which are two consecutive
steps regarding the operational DSMS perspective proposed in the introduction of this
thesis.

First, structural optimization represents the process of arranging the operators of the
operator network in the optimal way. This is mainly accomplished on the physical query
representation layer; nevertheless, the logical layer acts as the basis for physical operator
arrangement and should therefore be considered, too. As a result of the structural
optimization, a query execution plan (QEP), following a user-defined optimization goal,
is created.

Second, due to the fact that within a DSMS, data must be processed in a push-
based manner, the temporal aspect of the query execution is more important than for
pull-based query executions in a database system. Therefore, the execution (and re-
execution) order of each operator of the query execution plan should be defined more
or less strictly (to continuously produce query answers, the DSMS operators have to
perform their work repeatedly). This temporal optimization is based on the QEP of the
previous optimization step and results in a scheduling plan (SP). Both optimization issues
are illustrated in Figure 2.9. Furthermore, structural as well as temporal optimizations
may be repeated at runtime of the DSMS, either due to changes in the set of standing
queries or due to changes in the characteristics of the incoming data stream.

Figure 2.9.: DSMS Optimization Steps

Based on the different purposes of structural and temporal optimizations, this thesis
proposes two different views of the DSMS operators: Regarding the structural opti-
mization, the operators should be seen as white boxes because the optimizer should be
aware of the semantics and the internally used algorithms to produce a good (optimized)

27

2. Fundamental Prerequisites for Data Stream Processing

result. In comparison, operators are treated as black boxes during the temporal opti-
mization phase, since only the generic operator behavior (like periodicity or runtime) and
its generic input/output characteristics (like input and output rates, general selectivity,
batch sizes, etc.) are of interest. In the section on related work, the terms optimiza-
tion and scheduling are used when discussing optimization aspects. This is confusing
in so far as often no clear distinction is made between the structural and the temporal
optimization issues.

Based on [KS03] and [GÖ03a], different optimization goals can be identified, which fall
into the categories minimization of resource consumption, maximization of Quality-of-
Service, efficient multi-query optimization, and adaptivity with regard to environmental
changes.

The first two goals are considered in Section 3 (structural optimization) as well as
in Section 4 (temporal optimization). Multi-query optimization is covered in Section 3,
and issues of adaptivity are discussed in Section 5 (runtime management). Time-based
Quality-of-Service guarantees are not considered as optimization goal by recent related
work. For that reason, they will be intensively discussed in the main part of this thesis
in Chapter 8.

28

3. Structural Query Optimization

This section focuses on the structural optimization aspect. It starts with a review of the
optimization steps of classical database systems and points out their relevance and exten-
sions for DSMS with special consideration given to Multi-Query Optimization (MQO).
Then, in Section 3.2, cost models are presented which allow to evaluate and to compare
different query execution plans. Finally, Section 3.3 discusses concrete techniques for
structural DSMS optimization along with the aspired optimization goals, and illustrates
them with examples from existing data stream systems.

3.1. Optimization Steps

Aside from parsing and translating a query to an internal representation, the basic op-
timization steps–namely the logical query optimization and the physical query optimiza-
tion–should be emphasized. Both originate from the database field ([Dat00]) but are of
importance for data stream systems as well. Moreover–and in comparison to database
systems–Multi-Query Optimization is a fundamental technique used for the execution of
standing queries. The increased optimization potential of MQO has two reasons: First, a
high number of standing queries is supposed to be evaluated in parallel, and second–due
to the principle of a DSMS–the lifetime of a query is definitely longer than in traditional
database environments. The query model discussion of Section 2.2 with the distinction
between a logical and a physical query representation acts as the basis for these opti-
mization steps. However, Multi-Query Optimization cannot be clearly identified as part
of the physical or of the logical optimization step–it is involved in both of them.

3.1.1. Logical Query Optimization

Logical query optimization is based on heuristics, including techniques like early selection
operations, early or invariant aggregation operations, or occasional early projections.
Query expressions may be simplified and unnested, and common subexpressions can be
recognized as well. This is topic of MQO and will be described later in this section.
Explicit logical optimization should be performed by every DSMS, even though it is
rarely mentioned explicitly. For example, from [Sta04], it is known that STREAM
applies techniques like pushing down selections below joins, or eliminating redundant
’istream’ operators as well as redundant projection operators.

A different approach is used by the NiagaraCQ system ([CDTW00]), where selections
are pulled up and joins are pushed down to allow for maximum sharing of common
subexpressions ([CDN02]).

29

3. Structural Query Optimization

3.1.2. Physical Query Optimization

The physical query optimization primarily considers the statistics of the data streams
which are to be processed. The challenges at this point are manifold: In the style
of database systems, different physical counterparts may exist for one logical opera-
tor. For example, join operators can be accelerated if one of their inputs is blocked
([HAE05]) or if the input stream rates are different ([KNV03]). In contrast to database
systems, access path information, like indices, are not required for accessing the input
data (stream) but for retrieving intermediately materialized data (stored in synopses)
efficiently. Additionally–and this is very important for cost estimations–statistics like
cardinalities do not make much sense in the stream context; new measures like stream
data rates must be defined for the optimizer to work with. Furthermore, on the phys-
ical layer, operators performing complementary work may be combined to reduce the
runtime overhead in terms of intermediate queues and computational resources.

3.1.3. Multi-Query Optimization for DSMS

The goal of Multi-Query Optimization is to save computational resources by re-using
intermediate results. It is based on similarities among the standing queries concurrently
present in the DSMS. According to the isolation principle of transactional query pro-
cessing, a challenge for MQO is that the result of a single query must not be influenced
by concurrent standing queries, not even if execution plans are shared. An overview of
MQO for DSMS is given in [KS03].

General MQO approaches aim at identifying and re-using common parts of the query
tree and are independent of the individual stream operators. Basic work was done in
the NiagaraCQ system ([CDTW00]), where common parts of queries to XML data have
been identified based on query signatures. Furthermore–and in contrast to the general
optimization approach–selections may be pulled up in the query graph to enable more
general query subexpressions near the leaves to be shared. Furthermore, dynamic re-
grouping is favored as new queries enter the DSMS and old queries are dropped.

The MQO concept of STREAM ([MWA+03, ABB+04]) is illustrated in Figure 3.1.
Synopses (like store1 and store2) may be shared among multiple standing queries. So-
called ’stubs’ are used to facilitate the connection of multiple partial query graphs to a
single synopsis (store) and thus the re-use of intermediate query results. In the example
in Figure 3.1, the FIFO queues q3 and q4 feed the binary join operator’s input windows
which are materialized within the shared strores store1 and store2.

Aside from the general MQO approaches, some strategies focus on exploiting query
similarities at the level of single operators like join or aggregation.

MQO Approaches for Aggregation

[ZKOS05] describe the hierarchical computation of aggregates. As shown in Figure 3.2,
fine-grained aggregates ABCD are computed first. Then, they are used by multiple
queries to create coarser aggregates (grouping by ABC, ABD, BCD and AB, BC, BD,
CD, respectively) in a hierarchical manner. A similar concept is applied during CUBE

30

3.1. Optimization Steps

Figure 3.1.: Sharing Synopses in STREAM ([ABB+04])

computations [GBLP96, SAM98], except that only one query is involved which requires
various grouping combinations.

BC BD CD

ABC ABD BCD

ABCD

AB

Figure 3.2.: Sharing Computational Efforts for Aggregation Operations ([ZKOS05])

MQO approaches for joins

Aside from aggregation, concurrent join operations can benefit from sharing resources,
too. [HFAE03] propose to share join windows as illustrated in Figure 3.3. If the input
signatures of two join operators are the same, only one physical window per join input
(which is W3 in this case) is required. The windows W1 and W2 form the basis for
the evaluation of two other joins which have the same input signature but vary in the
window length specification. Different join evaluation techniques, such as largest window
only (LWO), shortest window first (SWF) and maximum query throughput (MQT),
may now be applied to produce join results for the tree queries. Using LWO, each
new tuple is probed against all tuples of the largest window of the partner stream (the
black tuples in the figure match the join predicate). Based on the timestamps of the
tuples which contribute to a join result, the output tuple is routed to the appropriate
query. To overcome the drawback of a delayed output for short windows, the SWF

31

3. Structural Query Optimization

strategy preferably probes new tuples against the shortest window, then against the
next larger window, and so on. Due to the fact that probing in one of the larger
windows is interrupted every time a new tuple arrives, the SWF strategy comes at the
cost of delays for joins in larger windows. As a compromise, the MQT strategy does not
unconditionally interrupt the probing procedure in larger windows if new tuples arrive:
it additionally takes into account how many queries are likely to be served by the larger
window probings and is thus more flexible.

Figure 3.3.: Sharing Windows for Executing Different Join Operations ([HFAE03])

With their TelegraphCQ system,[CCD+03] and [MSHR02] propose a so-called CACQ
(continuously adaptive, continuous query) approach, which is a modification of their
eddies query processing framework (details in Section 5) and allows for the simultaneous
execution of multiple queries. For multiplexing the intermediate query result, an extra
state (tuple lineage, [CCD+03]) is maintained. With the concept of the ’grouped filter’
operator, computational efforts for filters with similar predicates may be shared by using
only one single operator. A grouped-filter index is maintained for each attribute of each
standing query, which helps to efficiently compute overlapping portions of range queries
by returning only those queries a tuple matches with (regarding the indexed attribute).
To scale with the number of queries, multiple pipelined hash joins are optimized in a
way that they share their index structures.

MQO results in different logical plan alternatives, which may originate from generic as
well as from specific MQO approaches. On this basis, semantically equivalent QEPs are
created and evaluated on the basis of a cost model, which is topic of the next section. The
naive approach is to start with an initial plan, to apply all possible transformation rules
and thus, to create a variety of plan alternatives (as presented in [RSSB00, CDN02]).
After subsuming and comparing the costs of the individual plans, the ’best plan’ is
chosen for execution.

To reduce the optimization overhead, often only a limited number of transformations
are applied which aim at reducing a certain cost measure or at increasing certain QoS
metrics. The focus is on this direct approach whenever existing optimization techniques
are presented in the remainder of this chapter.

32

3.2. Cost Models and Functions

The optimization approaches presented later in this section are supposed to work on
the basis of a query network, which is the result of the Multi-Query Optimization.

3.2. Cost Models and Functions

This subsection reviews the cost models and resource calculation approaches proposed in
the literature. It starts with considering cost models for specific operators and continues
with models which allow for obtaining the costs of a whole operator graph.

The result of the cost model application can be either an abstract or a concrete measure
of the required resources. The former may consist of ’tics,’ ’timerons’ or ’tuples’ and
only impacts the preference of a certain query execution plan over another. The latter
contains the processing times of operators and the memory consumption of operators or
queues specified in bytes. It additionally enables us to check available against required
resources and thus, to perform some sort of admission control or resource reservation.

Generally, costs within a DSMS are based on data rates and on processing costs of
single tuples, respectively, rather than on cardinalities of relations. The processing costs
of a single tuple consist of costs for storing or filtering it, costs for probing them within
a join opperation, etc. To determine the total costs required for a query plan, the per-
tuple costs are multiplied by the data rates of the respective operators the tuples pass.
The particular DSMS cost models differ in the per-tuple cost metrics and are denoted
as unit-time-based.

3.2.1. Operator-Specific Cost Models

Most work towards operator-specific cost models has been done for the join operation,
which is costly in database systems as well as in data stream systems. For example,
[VN02] propose a data-rate-based cost model suitable to find the optimal join order
within a query graph. The cost calculation in terms of processing time is based on the
steps leading to the join result: costs of input projection and selection are considered
together with the per-tuple handling cost for each of the join inputs. The cost model is
adapted for cost estimation of different join implementations like nested loop join and
symmetric hash join.

In [KNV03], a unit-time-based cost model is proposed, which–similar to the previous
one–focuses on the cost of single join steps like probing, insertion and invalidation.
Different cost calculation approaches are used for different scenarios; for example, limited
CPU resources are used for join computations, or limited memory resources are used for
holding join input windows. Furthermore, this unit-time-based cost model acts as the
basis for the cost estimation of sliding window multi-joins in [GÖ03c].

Another unit-time-based cost model for join and filter operations is presented in
[SMW05]. Based on the assumption that higher nodes in the distributed query tree
have larger processing capabilities, their cost model for filter operations considers the
filter’s selectivity, the per-tuple costs of the filter scaled by a factor describing the oper-
ator level, and the network transmission costs between two nodes of the QEP. For join
operations, the join selectivity as well as the per-tuple processing costs are considered.

33

3. Structural Query Optimization

3.2.2. Generic Cost Models

The generic cost models proposed here aim at covering the resource computation for
arbitrary operators which are present in the query graph. When doing so, statistics like
data rates, processing times and selectivities are taken into account.

The cost model proposed in [GV04] is used for optimizing QEPs, first, by creating the
optimal dataflow plan regarding the data rates, and second, by reducing or eliminating
conflicts regarding data handed over from operator to operator. Such conflicts (blocking)
occur if a consumer operator has to wait for data from its predecessor operator. In
detail, this unit-time-based cost model calculates the total processing time of a dataflow
expression, which includes the time required for each operator as well as the operator
selectivities.

[CKSV06] proposes a cost model which assumes stream rates to be constant on av-
erage. On the basis of stream characteristics, like the tuple validity interval lengths,
the memory requirements of an operator’s internal state can be calculated. [CcR+03]
describe the cost of an operator graph with the measures ’processing costs per tuple’
and ’box call overhead.’ Due to the abstract character of the resource description, this
simple cost model is only used for the qualitative comparison of QEPs. In [BBDM03],
costs are considered in terms of generic operator selectivity and per-tuple execution costs
of a certain operator. In analogy to [CcR+03], the resulting cost measure is an abstract
number and therefore only suitable for comparing query plans or execution strategies.

The cost model of QStream favors the non-blocking data exchange and provides re-
sources suitable for giving QoS guarantees. It is presented later in Section 8.1.

3.3. Structural Optimization Techniques

Goals like minimizing the resource consumption and maximizing the Quality-of-Service
are targeted during the physical stage of the structural optimization. Often, it is dif-
ficult to distinguish between these two goals: If computational resources are saved by
efficiently structuring the operator network, these resources are automatically available
for increasing the processing quality and vice versa. The general approach is to maximize
the result quality if the resources are limited and to minimize the resource consumption
if a certain result quality is expected by the user. In the following, these two goals are
considered independent from each other.

3.3.1. Minimizing Resource Consumption

In [CcR+03], the execution overhead is reduced by grouping operators together to cre-
ate so-called ’superboxes.’ Thereby, the intermediate queues are eliminated, which is
beneficial for the memory consumption as well.

Most of the other strategies aim at minimizing the processing time of a standing query.
For a single join operation, [KNV03] try to reduce the per-tuple costs for processing
sliding window joins. They propose different join strategies for the case that resources
like CPU or memory, or even both, are limited. Furthermore, they optimize the system

34

3.3. Structural Optimization Techniques

for different stream arrival rates of the two join input streams by using join algorithms
(like hash, nested loop) asymmetrically. [HAE05] aim at reducing the blocking behavior
of the window join in case of delayed arrivals by performing suitable join operations
while waiting for certain input tuples and then buffering and ordering the join result.
Their approach is implemented in the NILE system ([HMA+04]).

If more than one join operation is present, [BMM+04] aim at finding the optimal
join order. They suppose many joins to be part of the query execution plan and use
a greedy algorithm to find the globally optimal order in terms of minimal processing
time. More general, [AN04] define a framework for static query optimization. Their
goal is to minimize the processing time of a standing query containing operators with
join or filter characteristics. The optimization is based on the processing time as well
as on the selectivities of each of the operators. The cost of a join operation specifically
contains detailed measures like the time required for window insertion or for probing
tuples against windows.

The Gigascope DSMS ([CJSS03a]) optimizes query processing by breaking the query
into high-level query nodes (HFTA–High Filtering, Transformation, and Aggregation)
and low-level query nodes (LFTA–Low Filtering, Transformation, and Aggregation).
The LFTAs accept network protocol data as input, whereas the HFTAs work on stream
data. The optimization goal is to push as much query evaluation work as possible down
to the network interface card (NIC) to reduce the stream load early by exploiting the
NIC processing capabilities. More complex query evaluation work is then performed by
the DSMS, where available resources (especially in terms of memory) are considerably
higher.

3.3.2. Maximizing QoS

Maximizing Quality-of-Service incorporates the achievement of a high (output) data rate
and the reduction of the query answer delay time as much as possible.

In [VN02], a function for describing each operator’s impact on the data is derived from
the costs for the single processing steps an operator has to perform. In their work, they
include operators like selection, projection, Cartesian product and join. For the latter,
specific implementations like nested-loop join or symmetric-hash join are considered.
The optimization goal is either to maximize the amount of produced tuples for a certain
point in time or to minimize the time required to produce a fixed amount of output
tuples. Thus, their strategy–which is implemented in the NiagaraCQ DSMS–generally
aims at maximizing the data rate.

Within the previous section, [AN04]’s work was mentioned as an approach to minimize
query processing times. If resources are limited, it is also possible to put the optimization
focus on maximizing the result data rate with the given (limited) resources. A maximum
processing rate is also targeted by [GV04]. Out of various QEPs, the one with minimum
processing time requirements (including waiting (blocking) times) can be chosen by
applying their cost model. It is based on operator characteristics like selectivity and
processing time.

35

3. Structural Query Optimization

For multiple join operations present in a query graph, [VNB03] propose an MJoin op-
erator, which has the potential for maximizing the result data rate. [GÖ03c] advance in
the same direction by using a multi-directional nested-loop join for n-ary join processing.
The join evaluation may be done in an ’eager’ or in a ’lazy’ way, which results in lower
or higher output delays and in more or less required resources, respectively.

3.4. Summary

Within this section, structural optimization was considered on the logical as well as
on the physical level of the query representation. Depending on the application re-
quirements, different optimization goals like resource minimization or Quality-of-Service
maximization may be met by arranging operators in the optimal way. Furthermore,
computational efforts in evaluating standing queries can often be shared. For adjacent
application areas, many other optimization techniques exist.

The thesis refers to related optimization work on accessing stored relations on disk,
including the swapping during operations ([UF00]), on the optimization of distributed
data stream processing as in Borealis ([AAB+05, HBR+05, ABc+05]) or StreamGlobe
([SKK04, KSKR05]), and on aspects of sensor network optimization ([YG02, MFHH03,
MFHH05]).

The cost models proposed so far all aim to obtain resource requirements and use
them for optimization purposes. In contrast, an integrated cost model for obtaining
concrete, operator- as well as stream-based resources is the precondition for providing
QoS guarantees. Furthermore, the calculated resources must allow for being mapped to
the basic allocation procedure provided by the operating system underneath. None of
the existing cost model offers such flexibility, and therefore, the thesis proposes a new
cost calculation approach for the use within QStream in Section 8.1.

36

4. Temporal Query Optimization

After a discussion on achieving optimization goals by efficient operator arrangement in
Section 3, the focus is now shifted to optimization through changing the execution order
of the operators within a QEP. For evaluating standing queries, each of the operators has
to be executed repeatedly to continuously process parts of the incoming data stream. The
execution order covers aspects like when, how long and how often each of the operators
is executed.

The following subsection uses the term scheduling as a synonym for the temporal
operator arrangement and presents some introductory remarks from a general point of
view. Thereafter, Section 4.2 and Section 4.3 emphasize the difference between schedul-
ing mechanisms and scheduling strategies. The latter includes a discussion of the specific
scheduling goals of minimizing resources, maximizing QoS, and guarantee QoS.

4.1. Preliminaries

Scheduling is well known in the context of operating systems. Hence, the DSMS schedul-
ing concepts should be seen in comparison to or as an extension of the operating system’s
scheduling approaches.

4.1.1. Operator States

The states of operators can be compared to the states of processes, even though the
concept may be applied on a higher level. Section 4.2 discusses different possibilities of
mapping operator states to process states.

If a standing query is admitted, a number of operators (representing the query graph)
are created and are ready for execution. The operators are mapped to processes or
threads of the operating system. Generally, multiple operators run in parallel.

The operating system together with a scheduler component is responsible for frequently
switching among them to enable a pseudo-parallel execution. The scheduler work can
be described using a simplified state diagram of process execution as in Figure 4.1.

After successful admission, the operator is ready for execution and thus considered by
the scheduler. The scheduler decides when to let the operator perform its work (running)
and when to interrupt the operator. This depends on the number of other operators in
the ready state as well as on the applied scheduling strategy. If a running operator is
blocked due to input or output operations, it is moved to the waiting state, which enables
other ready operators to become running operators. After I/O completion (if the input
data has been read or the output data has been written), the waiting operator is marked
as ready and the whole cycle starts again. This procedure lasts as long as the standing

37

4. Temporal Query Optimization

Figure 4.1.: Process State Transitions ([SGG02])

query is running. If the query is removed from the DSMS, its operators are terminated
unless they are shared with other queries.

4.1.2. Continuously Running Operators

To continuously evaluate a standing query, each operator has to perform its work repeat-
edly as long as the standing query is present. Although, in general, a DSMS incorporates
a push-based processing model, a distinction is made between the periodic and the ape-
riodic operator execution modes, which resemble pull-based and push-based processing
models, respectively. The distribution of the operator work from the timeline perspec-
tive is illustrated in Figure 4.2. There, the shaded boxes represent the single runs of an
operator. For sake of simplicity, other concurrently running operators are left out.

(a) periodic (b) aperiodic

Figure 4.2.: Operator Execution Modes

One way to handle repeated operator execution is to set up periods of work for each
operator and to re-execute them periodically (periodic operator execution, Figure 4.2a).
In this case, temporal query optimization has to ensure that each of the operators is
executed or re-executed once within the defined period of time. Thus, in a broader sense,
the periodic execution of operators resembles a pull-based execution model because the
input data are ’fetched’ from the stream sources. This requires intermediate buffers in
between of every two operators. The operator execution frequency and the operator
runtime within a single period should scale with the amount of input data.

In a push-based execution model, no periods are defined for the runs of the operators,
and the operator execution must be directly triggered as the stream data arrive. Within
such an aperiodic operator execution (Figure 4.2b), no explicit execution order is defined

38

4.2. Scheduling Mechanisms

but–due to the incoming data–the time the operator spent in the running state should
be proportional to its amount of work.

4.1.3. Scheduling Classification

Regarding the scheduling activities, a differentiation between mechanism and strategy
is commonly accepted ([Tan92]). The scheduling mechanism describes how scheduling
is implemented within the system. In contrast, the scheduling strategy determines the
execution order of the individual processes. Scheduling mechanisms and strategies are
topics of subsections 4.2 and 4.3, respectively.

4.2. Scheduling Mechanisms

The scheduling mechanism is concerned with the point where the scheduling decisions
regarding the DSMS operators are made. On the one hand, scheduling can be con-
trolled by an application program which is part of the DSMS (DSMS level scheduling
mechanism). On the other hand, the scheduling actions may be handled entirely by
the scheduler of the operating system (OS level scheduling mechanism). The mapping
of DSMS operators to OS processes (Figure 4.3) is restricted by the applied scheduling
mechanism as described below.

(a) DSMS level scheduling (b) OS level scheduling

Figure 4.3.: Scheduling Levels

4.2.1. DSMS Level Scheduling Mechanism

DSMS level scheduling (Figure 4.3a) means that one thread or process contains one or
more DSMS operators. The DSMS scheduling decisions are entirely made by the DSMS
scheduler ; it decides which operator to run at what time by handing over the control to
the operators. For example, the scheduler could directly call a function of an operator
which–in turn–is responsible for performing one run. The work of the OS scheduler is
not exploited by the DSMS and should therefore be invariant to the application.

Most of the current data stream systems (like Aurora [CcC+02], STREAM [ABB+03],
PIPES [KS04], TelegraphCQ [CCD+03], Gigascope [CJSS03a]) incorporate the DSMS
level scheduling mechanism. In Figure 4.4, the benefit of running multiple DSMS op-
erators within a single OS thread within the Aurora DSMS ([CcC+02, CcR+03]) is

39

4. Temporal Query Optimization

illustrated. The ’average latency’ stands for the delay of output tuples using a specific
system configuration that contains multiple standing queries. It is shown qualitatively
that the runtime overhead using DSMS level scheduling can be reduced significantly
because operating systems lack the facility for efficiently managing a large number of
concurrent threads.

0

5

10

15

20

25

30

100 200 300 400 500 600 700 800 900 1000

A
v

e
ra

g
e

 L
a

te
n

c
y

 (
s

e
c

o
n

d
s

)

Number of Boxes

Thread-per-box
Aurora

Figure 4.4.: Overhead of Thread Execution in Aurora ([CcR+03])

Within Aurora’s so-called ’state-based execution model,’ separate threads for the op-
erators (worker threads) exist besides the scheduler thread. There, each worker thread is
responsible for executing multiple operators. This results in higher flexibility at runtime
due to the ability to group operators dynamically.

In comparison, only a single thread exists within the STREAM DSMS. Thus, no
context switches are necessary on the operating system level for realizing the DSMS
functionality; only procedure calls as high-level context switches are issued ([BBDM03]).

In the same manner, the Java implementation of TelegraphCQ ([SMFH01]) shares
one thread among its operators (the eddy operator and the modules; more details on
the TelegraphCQ architecture are given in Section 5.2). Furthermore, there exists an
external thread pool for dispatching long-running system calls as well as specific threads
for all user-defined operators.

Similar to the runtime architecture of Aurora, the PIPES system ([KS04]) can also
adjust the execution overhead by mixing strategies from ’execute all operators in one
thread’ to ’execute each operator in its own thread.’ This system incorporates a three-
layer architecture to provide flexibility: On the first layer, operators are merged into a
more complex node. On the second layer, one or more nodes are allocated to a thread.
The third layer, finally, is responsible for scheduling the single threads.

4.2.2. OS Level Scheduling Mechanism and Optimizations

With OS level scheduling, a strict 1:1 mapping from operators to threads is applied. In
comparison to DSMS level scheduling, the scheduling runtime activity is entirely handled
by the operating system scheduler (Figure 4.3b). A controller component on the DSMS

40

4.2. Scheduling Mechanisms

layer is responsible for setting up and re-configuring the network as well as for initializing
the OS scheduler with the user-defined parameters.

The benefits are, first, that the DSMS does not have to worry about scheduling mech-
anisms like switching over from one operator to another; it can focus on the scheduling
strategy on top. Second, OS level scheduling allows for a very fine-grained time allo-
cation (< 1ms) for the runs of the operators, which in turn allows for the negotiation
of small output delays as Quality-of-Service requirements. The drawback of OS level
scheduling is the high overhead at runtime due to the management of the large number
of threads.

To reduce the scheduling or execution overhead of both DSMS and OS level scheduling
mechanism, some optimizations have been proposed: On the one hand, operators can
be batched or grouped like the superboxes of Aurora. The three-layer architecture of
PIPES also targets this goal by being flexible in grouping operators on different levels.

On the other hand, tuples may be batched and thus processed during a single (larger)
run of an operator. It leads to a lower overhead due to a smaller number of operator
invocations and offers the potential for internal processing optimizations of the operator.
This idea was proposed as Train Scheduling of the Aurora DSMS ([CcR+03]).

Furthermore, this thesis proposes a novel concept of batching input and output tuples,
which is an integral part of the QoS guarantee DSMS concept. It is called microperiods
and will be presented later in Section 8.2.3.

4.2.3. Scheduling Granularity

The scheduling levels outlined above focus on the layer on which the scheduler of the
DSMS operators works. In addition, one may classify scheduling activities by the gran-
ularity at which the scheduler makes its decisions (Figure 4.5). The finest scheduling
granularity is the single DSMS operator. A coarser granularity–like making schedul-
ing decisions for operator groups or whole queries and applications–often comes with
an inherent reduction of the scheduling overhead but goes at the cost of a fine-grained
execution control.

Figure 4.5.: Scheduling Granularity

Following the scheduling terminology from the operating system field, one can dis-
tinguish short-term and long-term scheduling. Some DSMS only support the finest
scheduling granularity ([SLL05]); others support scheduling at multiple granularities
(e.g. [CJSS03a, KS04]).

41

4. Temporal Query Optimization

For example, Aurora’s Application-at-a-Time (AAAT) strategy makes long-term schedul-
ing decisions for the superboxes. Within a superbox, Box-at-a-Time (BAAT) scheduling
(short-term) is used to determine the execution order of single operators.

Within STREAM, long-term scheduling refers to the operator chains, and short-term
scheduling refers to the operators within a single chain. Following this concept, [JC04]
use Path Capacity Scheduling to make long-term decisions for paths of operators. To
the finer granularity of an individual operator (short-term), FIFO scheduling is applied
in a bottom-up fashion from the last operator (of the path) to the first.

To summarize, scheduling of a DSMS cannot be treated independent from schedul-
ing the operating system underneath. Different possibilities for the implementation of
scheduling capabilities should be taken into account, which include periodicity, schedul-
ing layer and scheduling scope.

4.3. Scheduling Strategies

The huge variety of applications which work on transient data requires a classification
of the timely behavior of data stream processing systems. The goal is to ensure that
the DSMS properties meet the requirements of applications and users. On the operating
system layer, [SGG02] proposed three classes of application programs (interactive, batch,
real-time) and derived scheduling criteria on that basis. In the same manner, the DSMS
can be classified: An interactive DSMS requires a quick response to standing queries;
so, the scheduling goal here is to minimize the response time. A batch DSMS would aim
at processing as many data as possible within a given amount of time; thus, the focus
is clearly on achieving a high data throughput. Last but not least, a real-time DSMS is
supposed to guarantee certain QoS metrics like throughput or output delay. There, the
maximization of single metrics is not that important.

As a result, each of the DSMS classes has specific requirements regarding the schedul-
ing of their operators, which is determined by the concrete DSMS application.

To meet the specific scheduling requirements, a variety of scheduling strategies, which
may be used for long-term as well as for short-term scheduling, have been established in
the literature ([Tan92, SGG02]). Most of these strategies have been adopted for DSMS.
An overview of the DSMS strategies along with their counterparts from the operating
system field follows:

• First-In-First-Out (FIFO) focuses on the arriving tuples and feeds them through
the operator network in arrival order.

• Round Robin (RR) iterates over the operators of the operator network and lets
each of the operators work for a certain time quantum.

• Greedy/Chain preferably executes the most selective operators. It aims at
achieving the minimum overall memory consumption for a given set of opera-
tors. Therefore, it relies on the operators’ selectivities and risks the starvation of
unselective operators. The comparable OS strategy is called Shortest Process First

42

4.3. Scheduling Strategies

(SPF) with the estimated process run times as scheduling criterion. The goal of
SPF is a minimum waiting time for a given set of processes. In analogy to the
Greedy algorithm, SPF bears the risk of the starvation of longer processes.

• Priority-based scheduling is a generalization of the three strategies mentioned
above. The priority of an operator is determined by the user or by operator
statistics like selectivity and arrival time. As a result, operators with a high priority
are preferably scheduled.

More sophisticated scheduling strategies can easily be established, for example, in
combination with different scheduling granularities. Furthermore, one can derive four
criteria for evaluating and comparing DSMS scheduling strategies (Table 4.1): CPU
utilization, memory usage, throughput and output delay. For sake of completeness, the
corresponding criteria from the operating system field are also given in the table below.

OS Criteria DSMS Criteria topic of scheduling
objective

CPU utilization CPU utilization
keep the CPU as busy as
possible; higher utilization
is better

for a given number of queries, try
to use as few CPU resources as
possible; less is better

minimizing resource
consumption,
→ Section 4.3.1

Memory Usage
for a given number of queries, try
to use as little memory as possi-
ble; less is better

minimizing resource
consumption,
→ Section 4.3.1

Throughput Throughput
number of processes com-
pleted per time unit

amount of result data per time
unit; higher is better

maximizing QoS,
→ Section 4.3.2

Response Time Output delay
time until the process re-
sponds first

time the data need to pass
through the network; smaller is
better

maximizing QoS,
→ Section 4.3.2

Table 4.1.: DSMS Scheduling Criteria and Optimization Goals

The optimization following these criteria in terms of either minimizing or maximizing
CPU utilization, memory usage, throughput or Quality-of-Service is topic of the following
subsections.

4.3.1. Scheduling for Minimizing Resource Consumption

In comparison to the OS scheduling criteria, a DSMS scheduler has to consider the
transferred volume of data. For example, within a DSMS, throughput is not a measure of
the number of served processes but for the amount of processed data. Within this section,
the various scheduling strategies are classified regarding the scheduling objectives.

43

4. Temporal Query Optimization

Minimizing Memory Consumption

The memory consumption depends on the operator’s queue length and the size of each
operator’s internal state. The former is required for handing over the tuples from one
operator to another. The latter is determined by the number of tuples which the operator
requires for performing its operation (join, aggregation, duplicate elimination, etc.). It
can differ due to the appropriate algorithms and should be limited by incorporating
window semantics; it was discussed in Section 2.2.2.

To minimize the queue sizes, the scheduler has to take the amount of transferred
data into account. Each operator has a general selectivity assigned, which is based on
DSMS statistics. It describes the relationship between the amount of input and output
data during each processing step. Based on that selectivity, the scheduler calls the
operator which reduces the amount of data most within the shortest time period. This
strategy is implemented in Aurora and STREAM and is called Min-Memory [CcR+03]
and Greedy [BBDM03], respectively. In Figure 4.6, the ’lower envelope simulation’ of
STREAM is shown. The circled corner marks (tuple states) denote the size of a tuple,
which conceptually decreases during the processing. An operator execution changes the
tuple state: it requires an amount of processing time (x-axis) and leads to further tuple
size reduction (y-axis). The idea of the Greedy scheduling strategy is to schedule the
operators with the steepest slope first.

Tuple Size

lower envelope

Time

(0,0)

(t1, s1)

(t2, s2)

(t8, s8) = (25,0)

(t5, s5)

(t0, s0) = (0,1)

Figure 4.6.: Lower Envelope Dataflow Simulation ([BBDM03])

Further optimizations are produced by the Chain strategy, grouping adjacent opera-
tors together. The scheduling decision is then based on the coarser granularity of the
chains. This is represented by the dotted lines in Figure 4.6. Thereby, Chain overcomes
the problem of starvation which may occur with the Greedy approach, because Greedy
does not take into account the data dependency between individual operators. Follow-
ing the Greedy strategy, operators more downstream may receive a higher priority than
operators near the data sources. As a result, the downstream operators may starve due
to missing input.

44

4.3. Scheduling Strategies

A similar approach is presented by [JC04]. Their so-called Segment Strategy partitions
an operator path. The partitioning criterion is the amount of memory which an operator
is supposed to free up after a unit of work (memory release capacity). The segment
construction along each operator path starts at the operators near the data sources and
groups operators as long as the memory release capacity increases. Compared to the
Greedy-like approaches, the Segment strategy is not the optimal approach with regard to
memory consumption but achieves a smaller tuple delay. Furthermore, [JC04] propose a
modified version of their scheduling strategy (Simplified Segment Scheduling Strategy),
where only two segments per operator path are established. It is based on a user-defined
threshold regarding the memory release capacity. The PIPES DSMS also implemented
Segment Strategy scheduling ([CHK+03]).

In general, the Segment strategy as well as Greedy, Chain and Min-Memory rely
on priority-based scheduling, where the priorities are defined internally following the
potential memory reduction.

Minimizing CPU Utilization

The amount of processing time of an operator depends on the hardware, the applied
algorithms, and the efficiency of the scheduling itself. The focus is put on the third issue
and the minimization of CPU utilization is entirely associated with the reduction of the
scheduling overhead by reducing the number of operator calls. This can be achieved by
optimizing the scheduling mechanism (Section 4.2.2). Examples are Aurora’s superboxes
and tuple trains ([CcR+03]) as well as QStream’s microperiod concept ([BSLH05]).

In addition, Aurora’s Min-Cost (MC) strategy ([CcR+03]) aims at reducing the exe-
cution overhead by traversing the operator graph (of one superbox) in post order and
by calling each operator exactly once during a cycle.

4.3.2. Scheduling for Maximizing Quality-of-Service

In the context of scheduling, maximum QoS metrics are associated with minimizing the
output delay and with maximizing the throughput. Both issues are considered here.

Minimize Delay

Based on the FIFO strategy, the optimization goal within a DSMS may be to push or
to pull a single tuple through the network of operators as fast as possible. Thereby,
the response time is reduced and the initial output is produced early. The appropriate
scheduling strategy (FIFO) used by the STREAM system ([BBDM03]) executes one
operator after another, from the data source to the data sink.

Aurora’s Min-Latency strategy ([CcR+03]) also aims at producing initial output as
fast as possible. Output costs are assigned to each operator. This reflects the time which
an operator and all its predecessors (of the same operator path) require to produce one
output tuple. Thereby, operators with low output cost are preferably scheduled if tuples
are waiting in their input queues. This increases the number of operator calls and thus
the scheduling overhead.

45

4. Temporal Query Optimization

The Path Capacity Strategy ([JC04]) picks the operator path with the largest pro-
cessing capacity. Within the selected path, all tuples waiting in the input queue are
processed one after another by the operators, from the data source to the data sink.
The path processing capacity is a measure for the amount of tuples which can be fed
through an operator path during one time unit. It is based on the operator processing
capacity (tuples per time unit) and on the operator selectivities.

Maximize Throughput

If a scheduling strategy aims at minimizing the CPU utilization, it automatically enables
a higher throughput with given resources. For example, in [CcR+03], Aurora optimizes
the throughput by applying the Min-Cost strategy to reduce the scheduling overhead.

4.3.3. Scheduling for Guaranteed Quality-of-Service

For control and monitoring applications, it is important to require guarantees regarding
the evaluation of standing queries. For example, the DSMS has to guarantee a minimum
throughput of result data or it has to guarantee a maximum output delay as an upper
bound for standing query evaluation.

The strategies of the previous section only focus on QoS optimization. There, the
DSMS does its best to fulfill the QoS requirements but it may happen that–depending
on the system’s load–the QoS is lower than required. Even if the DSMS scheduling
mechanism reacts quickly and the QoS guarantee is broken only for a short amount of
time, this may not be tolerable for some applications.

To overcome this limitation, a DSMS can be designed to guarantee time-dependent
QoS metrics. This is topic of QStream’s different scheduling strategies, which are pre-
sented later in Section 4.3.

4.4. Summary

Scheduling is closely related to the concepts of the operating system underneath. For
scheduling optimization, a distinction between ’mechanism’ and ’strategy’ is useful. The
scheduling goal may be to either minimize resources, to maximize Quality-of-Service
or even to give Quality-of-Service guarantees on time-dependent QoS metrics. The
scheduling strategies incorporated by existing DSMS either aim at maximizing Quality-
of-Service or minimizing the standing query’s resource consumption. They are not ade-
quate for providing QoS guarantees based on a respective user specification. Therefore,
novel scheduling concepts for QoS guarantee DSMS are required; they are presented in
Section 4.3 of this thesis.

46

5. Runtime Management

Within this section, different aspects of managing the DSMS during runtime will be
discussed. The steps of the operational perspective are extended by runtime activities
(Figure 5.1) which may be triggered by changes of the DSMS environment: Thereby, a
clear distinction between re-optimization and adaptation of the DSMS is made. A re-
optimization is caused by dynamically adding or removing standing queries, whereas the
reason for an adaptation is changed operator statistics and data stream characteristics.
Furthermore, an adaptation may only require a new temporal optimization, whereas a
re-optimization mostly involves structural optimization as well.

Figure 5.1.: DSMS Operational Perspective / Runtime Processes

Both runtime processes have influence on the resource consumption. Depending on
the environmental changes, the DSMS may require either more or less resources for
query evaluation. Generally, a lowered resource consumption is easier to manage than
an increasing one because additional resources may not be available. The reason can be
a lack of global resources or application-specific resource constraints. In both cases, the
DSMS should continue working as efficiently as possible; thus, approximation techniques
are used (Figure 5.2). Starting with a ’stable’ system where sufficient resources for
the query evaluation tasks are available, adaptation and re-optimization may lead to
higher resource requirements and thus, to the application of approximation if the global
resources are limited. All the runtime activities should make a ’stable’ system again.

The rest of this section is structured as follows: First, Sections 5.1 and 5.2 give an
overview of the re-optimization and adaptation techniques, respectively. Then, Section
5.3 summarizes current techniques of approximating the query result.

47

5. Runtime Management

Figure 5.2.: Runtime Resource Management

5.1. Re-Optimization

Re-optimization must be applied if the set of standing queries changes. If no MQO
was performed, the DSMS may simply add or remove queries with regard to resource
limitations. With MQO, the situation becomes more complicated: On the one hand, if
a query is selected to be removed, attention must be paid to those parts of the query
graph which are used by other standing queries as well. Only the query graph which
was solely used by the selected query can be dropped. On the other hand, a new query
should be examined to use as many of the existing intermediate results as possible. In
the following, three approaches are discussed which are directed towards re-optimization.
The basis is data stream systems which are already capable of multi-query optimization.

First, the incremental query grouping technique of the NiagaraCQ system ([CDTW00])
allows the creation of groups of similar queries based on query signatures. If a new query
is submitted and matches a certain group, the corresponding part of the query plan is
replaced by the result of the identified group. If no existing group matches, the submit-
ted query creates a new group. Dynamic regrouping, which includes merging existing
groups if the workload has changed and queries were removed, is discussed in [CD02].
In [CDN02], a cost model for NiagaraCQ’s incremental group optimization technique is
proposed, which is based on characteristics like the number of queries, characteristics of
queries, the distribution of distinct constant values, the update frequency and the up-
date distribution. On that basis, the two alternative strategies of either pushing down
or pulling up selections are evaluated.

Second, the CACQ (Continuously Adaptive Continuous Queries) concept of Tele-
graphCQ ([MF02]) offers some basic facilities for managing and optimizing the execution

48

5.2. Adaptation

of multiple standing queries but is restricted to Selection-Projection-Join (SPJ) queries.
New queries may share the same scan operator if they address the same input data.
Also, a single filter operator can be shared dynamically by adding multiple predicates to
it. For sharing computational efforts at the join operator, new queries may be connected
to existing stream indexes (which are implemented as State Modules (SteMs)) if the
source stream matches.

The third approach is directed towards peer-2-peer networks. Their re-optimization
aspect is similar to DSMS. For example, StreamGlobe ([SKK04, KSKR05]) focuses on
adaptive query processing and optimization in streaming P2P environments. Therefore,
the FluXQuery XML query engine ([KSSS04a, KSSS04b]) is used. A so-called ’Speaker
Peer’ is responsible for the optimization of a sub-network and for the coordination with
the peer neighborhood. It continuously re-structures the network based on query com-
monality and load-balancing issues as well as on peer capabilities.

5.2. Adaptation

Based on changed characteristics of the data streams, it may be necessary to adapt the
parameters of the running operator network. Both runtime activities–re-optimization
and adaptation–take place independent of each other. The goal of the adaptation process
is either resource minimization and QoS maximization (Section 5.2.1) or keeping the QoS
guarantees (Section 5.2.2).

5.2.1. Adaptation for Resource Minimization and QoS Maximization

The most popular representative of data stream systems which incorporate adaptation
is the TelegraphCQ system ([CCD+03]), which can be considered as an extension of the
Telegraph system ([SMFH01]) to evaluate standing queries.

Regarding continuous adaptation, TelegraphCQ uses eddies ([AH00]) as its technical
basis for implementing adaptive query plans. An eddy is an n-ary tuple router interposed
between the data sources and the query processing operators. It reads the tuples from
the data sources and routes them to the participating operators. When doing so, the
eddy can adaptively change the routing to resemble different operator orderings. This is
based on selectivities and costs of the operators as well as on the input data rates. The
optimization goal is to favor adaptivity over best-case performance (due to the runtime
overhead).

Figure 5.3 illustrates the interaction of eddies with ’State Modules’ (SteMs) to re-
semble a join operator. A SteM is a temporary repository of tuples which supports
the operations insert (build), search (probe) and delete. The input tuples are first sent
as insert tuples to the first SteM and then as a probe tuple to the second SteM. The
matching tuples returned by the SteMs are sent to the output. This provides flexibility
and maximum query plan adaptation, as the eddy can route incoming tuples to either
of the SteMs depending on their processing capability.

A list of ready and done bits within the eddies maintains the tuples’ processing
progress. Tuples obtain a low priority when they enter the eddy, and their priority

49

5. Runtime Management

Figure 5.3.: Flexible Query Plans of TelegraphCQ ([CCD+03])

is increased each time they return from an operator. This ensures that tuples are pro-
cessed completely, even if new tuples arrive. This can be compared with the aging
concept of scheduling, which causes a stepwise decrease in the priority of processes to
preserve low-prioritized processes from starvation.

The routing strategy of an eddy is based on the priority of the TelegraphCQ opera-
tors, which in turn is determined by each operator’s consumption and production rate.
Operators with higher efficiency at draining tuples from the system are preferred fol-
lowing the Lottery Scheduling ([WW94]). To quickly respond to dynamic fluctuations,
a window approach is used for maintaining the statistics. This allows for more sponta-
neous reactions to changing input characteristic, as only the most recent statistics are
considered. The operators have to ’re-prove’ themselves for each window.

In comparison to TelegraphCQ, the work of [ZRH04] is directed towards changing a
formerly fixed query execution plan as statistics change. They propose two different
strategies of migrating from one QEP to another if stateful operators like joins are
involved. The challenge at this point is to consider tuples which are contained in the
operator windows: The moving state strategy moves these tuples from the old QEP’s
operator states to the appropriate operator states of the new QEP. This causes a short
delay at migration time. To avoid this, the parallel track strategy sets up the new QEP
in parallel to the old one and runs both QEPs until the result tuples of the old QEP are
not needed any longer (old states are ’expired’). Their solution is implemented in the
CAPE DSMS ([LZJ+05, RDZ+05]).

Aside from the TelegraphCQ and the CAPE system, other DSMS incorporate adapta-
tion without changing the query execution plan. [AN04] use a framework for determining
the position of drop boxes triggered by continuously changing statistics. Within Aurora,
the composition of superboxes can be changed dynamically based on the priorities of the
operators, which are determined following current statistics and the QoS specification
([CcR+03]).

The STREAM DSMS uses profiler and re-optimizer components to monitor and to
influence the query executor. Three different ’adaptation cycles’ exist for optimiza-
tion based on statistics like filter selectivities, k-constraints, and join selectivities from
streams and operators, respectively (Figure 5.4). In each adaptation cycle, the profiler
is responsible for collecting statistics. Then, the re-optimizer tries to find the optimal
query execution and scheduling plan based on the optimization strategies of Sections

50

5.3. Approximation

Figure 5.4.: Adaptation Cycles of STREAM ([ABB+04])

3 and 4. Finally, the executor puts the plan into effect. The runtime overhead is a
trade-off between the speed and precision of the adaptation.

5.2.2. Adaptation for Time-Based QoS Guarantees

At runtime, specific attention must be paid to the operator network’s behavior to perma-
nently fulfill the QoS guarantees. The general problem is that the resource reservation
in a QoS-guarantee DSMS is based on query and data stream statistics which were
supposed to remain constant over time. Within realistic application scenarios, both as-
sumptions do not hold. First, statistics of incoming data can only be estimated based on
historical data and on experiences of the application administrator. Second, statistics
will change over time as data stream characteristics change, too. Thus, the forecast
of statistics becomes a challenging technique in the DSMS context. In particular, the
adaptation for time-based QoS guarantees is presented in Chapter 9. It is part of the
QStream robustness concept.

5.3. Approximation

Approximation techniques like sampling, window reduction and synopsis compression are
required to lower the DSMS’s resource consumption and to keep up with the arriving
data. For example, queries can be evaluated with decreased quality, for example with
regard to the precision or output data rate. The optimization goal at this point should
be to deliver best result quality with the limited amount of resources. In order to do so,
the administrator may define which quality metrics may be reduced without affecting
the ability to still deliver valuable results.

Approximation may either be applied to the whole operator network, which means, for
example, to sample the stream or to reduce window sizes, or it may target only specific
(costly) operators for which the potential resource savings are maximal.

51

5. Runtime Management

5.3.1. Generic Approximation

In [TcZ+03], the approximation strategy is based on dropping tuples within the query
graph. They propose different placement strategies for so-called drop boxes. For only a
single query, the drop box should be placed as far upstream as possible to reduce the
stream load for all consecutive operators. If two or more queries share portions of the
query plan, the drop box should be pushed as far upstream as possible until it reaches
a connection point.

Figure 5.5 gives an example: If load shedding is only allowed for one of the connected
queries Q1 or Q2, the drop box must reside downstream after the connection point B
or D, respectively. If similar load shedding for both connected queries Q1 and Q2 is
required, the drop box can be pushed further upstream to the connection point A.

O

B
C

E

H

D

GF

I1

I2

% tuples

1

0
100 50 0

1

% tuples0
100 50 0

1

0 % tuples
050100

0.9

0.8

0.7

utility

utility

utility

1

2
O

O
3

A op1

op2

op3

op5op4

Figure 5.5.: Example Drop Box Placement ([TcZ+03])

A drop box may shed stream load based on three types of QoS specifications, as
discussed in Section 2.2.2. In comparison to sampling approaches (like chain sampling
or Bernoulli sampling [Haa05]), load-shedding decisions are not required to be of random
nature. The general goal is to drop the tuples with the smallest benefit (’utility value’)
for the overall query result.

More general approximation techniques are proposed by [MWA+03]. They distinguish
between static and dynamic approximation. The first technique is applied at the op-
erator network’s creation time and includes the reduction of window sizes for stateful
operators as well as the initial reduction of the sampling rate. The second technique is
applied at runtime and is thus suited for covering fluctuations in data rates, in the data
distribution as well as in the query workload and the resource availability. In detail, on
the one hand, the size of synopses (which keep the state of a stateful operator) may be
reduced by incorporating sliding windows to limit the state or by only storing a sample
of the synopses (histogram, compressed wavelet for aggregation and join; Bloom filter
for duplicate elimination, set difference and intersection). On the other hand, additional
sampling operators may be inserted into the query plan, or the sampling rate of exist-
ing operators may be reduced further. To summarize, STREAM offers a wide range of

52

5.3. Approximation

different approximation techniques, whereas the Aurora DSMS is more flexible through
its quality-driven load-shedding specification.

Aiming at adaptive memory management during query processing, [CKSV06] present
an approach to reduce the window size during runtime. An initial window size is specified
by the user (within the query) and is implemented as a window operator at the beginning
of each path of the query plan. This determines the amount of tuples each subsequent
stateful operator has to keep. In case of resource shortness, the window size is simply
reduced.

The granularity of the tuples’ timestamps additionally influences the memory con-
sumption of the PIPES system: The PIPES aggregation algorithm is sensitive to time
granularities, and thus, it has to store less aggregation values at a coarser time granu-
larity.

Finally, all DSMS which support at least a sampling operator for accessing the data
streams or for reading an analog sensor’s value allow for approximation in terms of
sampling rate reduction.

5.3.2. Operator-Specific Approximation

Aside from the general approximation approaches listed above, more specific load-re-
duction techniques can be implemented on the level of stateful operators.

Approximating Aggregation Operations

[BDM04] consider load shedding as an optimization problem of where and how much
load to shed in order to achieve the optimal result in terms of maximum answer accuracy.
Accuracy is measured as the deviation of the estimated answer produced by the system
from the actual answer (without approximation). The concept of placing load shedders
is similar to Aurora: if a standing query without shared segments is present, the optimal
solution is to place the load-shedding operator in front of the first query operator. If
an operator’s output is shared among different queries, as shown in Figure 5.6, load
shedders may be placed before and after operator B, which serves multiple queries. An
exception is the query path which has the lowest sampling rate requirements (P4 = 0.5)
and thus the largest result quality qmax. In this path, only one load shedder is placed
before operator B.

More specifically, [DGGR02] approximately answer aggregate queries by using sketch
summaries if the available memory is insufficient. They are able to give guarantees on
the approximation error.

Approximating Join Operations

Join operations are also subject to approximation processes if computational or memory
resources are limited. [KNV03] propose different techniques to deliver the best result
quality in terms of a maximum subset of the actual join result in case that either com-
putational or memory resources–or both–are insufficient. They divide the join cost into

53

5. Runtime Management

P1=0.1 P2=0.3

B

S

P3=0.25 P4=0.5 P5=0.4

Pmax=0.5

=0.6

=0.5

0.3

0.5
0.25

0.5

No load

shedder

qmax

Figure 5.6.: Drop Box Placement in STREAM ([BDM04])

two independent terms, each corresponding to one join direction. This allows for grace-
ful distribution of the limited resources depending on the input stream characteristics.
First, if the join operator cannot keep up with the high stream arrival rates, they suggest
to allocate the maximum amount of CPU resources to the join direction that evaluates
the join from the smaller window to the larger one. Second, if not enough memory for
holding both windows of the preferred size is available, most of the memory should be
allocated to the window for the stream with the smaller input rate. Third, if both types
of resources are insufficient, the largest subset of the result will be produced if the size
of one window (memory resources) is maximized, with the effective input rate for the
join partner (computational resources) being maximized, too.

[DGR03] also treat the size of the produced subset of join results as a quality measure
which is to be maximized. They use semantic load shedding techniques to reduce the
number of tuples buffered in input windows. Their tuple replacement strategy is priority-
driven, where the priority correlates with the probability of a tuple to arrive in one of
the input streams.

[SW04b] go one step further and propose two different approximation scenarios for
sliding window join operators: Their approximation goal is either to deliver as many join
results as possible (max-subset) or to create a random sample of the join result which
may be more suitable for queries which involve an aggregation operation following the
join. For both scenarios, an age-based stream model is supposed to be more suitable
for many applications in comparison to the frequency-based stream model of the two
former approaches: Using the age-based stream model, in case of memory shortness,
not necessarily the oldest tuples within the join’s sliding input windows are discarded.
Instead, age curves indicate how likely a tuple is to produce join results if it becomes
older; only tuples with a low utility value are discarded.

To summarize, approximation at a join operator (in terms of producing only a uniform
sample as a subset) is often tolerated if an aggregation operation follows and uses the
sample to provide a consistent and unbiased estimate of the true aggregate ([SW04b]).

54

5.4. Summary

5.4. Summary

Adaptation as well as re-optimization activities change the configuration of the DSMS.
The challenges are the number and complexity of the standing queries and the char-
acteristics of the incoming data streams–both change over time. If resources for query
evaluation are insufficient, approximation techniques help reduce the workload to an
acceptable level.

From the viewpoint of a QoS-guarantee DSMS, the adaptation as well as re-optimization
procedure is of particular interest. The more often the DSMS configuration has to be
changed (in either of the two ways), the more often the QoS guarantees are interrupted.
This aspect did not receive adequate attention in the data stream community. For that
reason, the QStream robustness concept was developed. It allows to trade the number of
DSMS adaptations over time against the resources spent for standing query evaluation
(Chapter 9).

Summary of Related Models and Systems

Existing DSMS focus on efficient and flexible processing of data streams. They are based
on stream-oriented data and query models and provide a variety of optimization tech-
niques which are dedicated to increase the content-based result quality and to decrease
the required resources. Both optimization aspects are targeted at the query construction
and query submission time as well as at runtime of the DSMS.

The optimization goal of providing guarantees especially for time-based QoS metrics
has not been considered so far. Therefore, strategies and techniques completely dedi-
cated to providing QoS guarantees have been developed and are presented within the
main part of this thesis. This includes all DSMS aspects ranging from an adequate
model for standing queries, QoS and data streams to scheduling strategies, appropriate
optimization techniques and runtime management.

55

5. Runtime Management

56

Part II.

QStream: Towards a Robust,
Quality-of-Service Guarantee Data

Stream Management System

57

6. QStream Modeling Aspects

Within this section, the terminology of data streams, Quality-of-Service, operators and
operator instances is formalized for the QStream context. It goes beyond the scope of
existing definitions, which–in most cases–define the data stream as a sequence of data
items with only one schema associated. Contrary to other DSMS, QStream particularly
pays attention to the evaluation of the attribute values over time. The DSMS tuples
only play the role of ’representation points’ of the input signal; with some additional
knowledge of the input data characteristics, one can exploit attribute evaluation prop-
erties for enabling more powerful and more meaningful operations on the data streams,
which leads to a more valuable result. The result in turn can be described qualitatively
using novel Quality-of-Service (QoS) metrics. Section 6.1 starts with presenting a formal
definition of data streams based on the classification in [SFL05]. Thereafter, Section 6.2
introduces QStream’s QoS metrics, and finally, Section 6.3 describes the operator model
based on the data stream formalization.

6.1. Data Stream Model

The QStream data stream model describes the data structures on which a DSMS per-
forms its operations. Therefore, a stream descriptor is handed over from one operator
to another.

Definition 6.1. A stream descriptor Ŝ is a quadruple consisting of a data stream S, a
schema E and a stream type C and the minimal time distance ∆T between two consec-
utive stream tuples.

Ŝ := (S,E,C,∆T)

A definition for the stream S, the schema E and the type C is given next. The
minimum timestamp distance ∆T acts as an upper bound for the number of attribute
value changes per time unit and is thus important for resource planning. Furthermore,
a data stream S can be decomposed into partial streams which describe the evaluation
of single attribute values over time. Orthogonally, the decomposition of a single stream
tuple results in several attribute values.

6.1.1. Data Streams and Stream Tuples

To describe the layout of an individual stream tuple, the notion of a stream schema is
introduced first.

Definition 6.2. A tuple schema E is a sequence of attributes E := (e1, ..., ei, ..., em).

59

6. QStream Modeling Aspects

Each attribute ei ∈ E has a domain assigned, which is denoted as dom(ei) and defines
the range of all possible attribute values along with an order relation.

Tuple Timestamps

In particular, the time domain (M,<) used by QStream is a non-empty set of time
instances M together with a total strict order < (based on [BDE+97]). As a consequence,
no duplicates regarding the tuple timestamps are allowed within QStream.

Definition 6.3. A stream tuple T is a finite, ordered collection of attribute instance
values a. It corresponds to a schema E and is defined as:

T := (a1, ..., ai, ..., am)

There, m specifies the cardinality of the stream tuple T and the notation is m = |T |.
The operation |=E: T 7→ E denotes the affiliation of T to a certain schema E. The
notion ai (1 ≤ i ≤ m) specifies the i-th attribute instance value of the stream tuple T .
The first attribute instance value of a stream tuple T is always the tuple’s timestamp:

∀T : dom(e1) = (M,<)

Definition 6.4. A data stream S is a potentially infinite sequence of stream tuples Tj

following the same schema E. An ascending order is defined on the timestamp attribute
of the stream tuples:

S := (T1, ..., Tj , ..., Tn | ∀j(1 ≤ j ≤ n ∧ n → ∞) : Tj |=E E

The schema assignment can be extended to the whole stream: S |=E E denotes that
the whole data stream S (all of its tuples) follows the schema E.

For simplicity, the stream may also be seen as a two-dimensional array with the
first dimension describing the attributes of a stream tuple and the second dimension
describing the consecutive tuples:

S := (T1, ..., Tj , ..., Tn)

:= ((a1, ..., ai, ..., am)1, ..., (a1, ..., ai, ..., am)j , ..., (a1, ..., ai, ..., am)n)

:= ((a1,1, ..., ai,1, ..., am,1), ..., (a1,j , ..., ai,j , ..., am,j), ..., (a1,n, ..., ai,n, ..., am,n))

Consequently, ai,j specifies the i-th attribute instance value of the j-th stream tuple
of stream S.

6.1.2. Partial Streams and Stream Classes

QStream allows for a description of the attribute value behavior over time. Therefore,
first, the entity of a partial stream is introduced and second, different partial stream
classes are proposed which can be assigned to the former.

60

6.1. Data Stream Model

Definition 6.5. A partial stream is a stream of two tuples.

SP := S(T1, ..., Tj , ..., Tn) with Tj(a1, a2)

A partial stream SP is said to be contained in a stream S(SP ∈ S) if the tuples of
SP pairwise correspond to the tuples of S and each tuple of SP is a projection on the
timestamp attribute e1 and on one further attribute ei of stream S.

(SP ∈ S) ⇔ SP := Πe1,ei
(S) with S |=E (e1, ..., ei, ..., em)

There, it is assumed that the semantics of the relational projection operator Π are
known from the context of database systems so Π can be applied to stream tuples in a
straightforward manner.

Going one step further, the notion

S[SP
1 , ..., SP

i , ..., SP
x]

denotes that all partial streams SP
i make up the stream S. There, x equals the number

of attributes of S decreased by one (x = |S|−1) because each partial stream corresponds
to a stream of attribute values. An exception is the first attribute of S - it is always the
timestamp attribute. Orthogonal to the composition of partial streams, the notion

S(T1, ..., Tj , ..., Tn)

expresses that a stream S contains a (possibly infinite) sequence of stream tuples
Tj . The concept of partial streams is illustrated in Figure 6.1. The tuples a1,1, ..., a1,n

denote the timestamp of consecutive stream tuples. The other attributes form the partial
streams 2, ...,m.

Figure 6.1.: Relationship between Stream, Partial Stream and Stream Tuple

The attribute evaluation characteristics are assigned as a stream class to each partial
stream. Therefore, QStream relies on the stream classes which have been introduced in
[SFL05]. The motivation is the presentation of real-world data by a sequence of DSMS

61

6. QStream Modeling Aspects

tuples. In some cases this does not sufficiently reflect the (behavior of the) input data,
because the attribute values in between of two tuples might have a certain behavior–for
example, it can be a constant or it may change smoothly.

t

y

t

y

t

y

a) continuous b) discontinuous c) event

Figure 6.2.: QStream Stream Classification

As shown in Figure 6.2, the partial data streams are classified with regard to the
steadiness of their attributes. The stream tuples are considered to be representation
points of the source signal (with a minimum time distance of ∆T). The attribute value
behavior between two consecutive tuples is an important application characteristics and
therefore, the following three partial stream classes are defined:

• Continuous Partial Streams (CS): A continuous partial stream, originating
from a sensor measuring physical values such as temperature or pressure of a
natural or an industrial process, shows uniformly continuous characteristics (Figure
6.2a). The sensor is supposed to output analog values which have to be discretized
regarding time and quantized regarding their values to create the DSMS tuples
(Figure 6.3).

sampled signal courve

t

y

equidistant sampling points

Figure 6.3.: Creating Tuples from the Sensor Signal

• Discontinuous Partial Streams (DS): A discontinuous partial stream repre-
sents data values which are constant during certain time intervals, e.g. aggregated
data, like sum or average values (per day, month, year). There, data such as super-
market prices with daily updates, or stock exchange rates disseminated every hour,
minute or second, impose regular attribute value changes and other streams–for
example the placed bids of an auction–impose irregular attribute value changes
with the exception that auction prices can only be increased.

• Event Partial Streams (ES): Event partial streams depend on sporadic real-
world events and are only defined at the time of the event (as opposed to the
former classes). Such streams consist, for example, of tuples coming from network
traffic observations or from the monitoring of click-streams (Figure 6.2d).

62

6.1. Data Stream Model

Definition 6.6. A partial stream class c ∈ {CD,DS,ES} of a partial stream SP
i ∈ S

describes the attribute evaluation characteristics of the i + 1-th attribute of stream S,
formally described as:

SP
i |=c c | c ∈ {CD,DS,ES}

The first attribute of a stream is always the timestamp; thus, the i-th partial stream
SP

i corresponds to the i+1-th attribute of the stream S. The class of a partial stream is
maintained as additional metadata. As a benefit of the above classification, stream ele-
ments may be processed using operators especially suited to appropriate partial stream
classes. For example, the data rate of a continuous partial stream should only be re-
duced using a resample operation instead of applying traditional probabilistic sampling
algorithms in order to keep the continuous characteristics and to reason about the band-
width property which is typical for data streams and signals of analog origin (see Section
6.2 of the QoS model).

The partial stream classes ci of partial streams SP
i belonging to stream S are summa-

rized as the stream type C.

Definition 6.7. The stream type C summarizes the partial stream classes ci of all partial
streams SP

i belonging to a stream S. The notation is:

S |=C C(c1, ..., ci, ..., cm) ⇔ ∀SP
i (1 ≤ j ≤ m) ∈ S : SP

i |=c ci

6.1.3. Stream Punctuation

If a partial stream is continuous or discontinuous, it is assumed that the attribute value
is defined even though no actual tuples arrive. Consequently, the most recent attribute
value is assumed to stay valid until the next stream tuple arrives. Operators like join
and aggregation are sensitive to the input stream classes. The problem at this point is
that–if previous stream operations did not forward the stream due to its operation–so-
called ’gaps’ arise within the stream. Figure 6.4 illustrates an example where a filter
operator only passed by stream tuples with a value smaller than x. The consecutive
stream operators must be informed about the beginning of such a gap.

a) original discontinuous partial stream b) values above x deleted

Figure 6.4.: Necessity of Punctuation Messages

63

6. QStream Modeling Aspects

This is achieved by a punctuation message at the beginning of a gap. The punctuation
message indicates that–although the attribute value is not changed explicitly by a new
tuple–the partial stream attributes are not defined any longer.

Punctuation messages are explicitely required if discontinuous partial streams are
involved: For continuous partial streams, equidistant tuple arrival is expected and thus
an operator can ’automatically’ detect a gap if no tuple arrives after a time of ∆T has
elapsed. In the case of event streams, punctuation messages are not necessary, since an
event partial stream is only defined at the points where tuples occur explicitly (not in
between). Thus, each of the QStream operators has to consider punctuation messages
during its operation and is supposed to insert a punctuation message into the output
stream if a gap arises.

If gaps within the appropriate streams (partial streams) occur very frequently, the
class of these partial streams can be considered as an event stream if the continuous or
discontinuous characteristic is not given anymore.

Formally, a punctuation message is a tuple T p(ts,NULL, ...,NULL) which follows
the current stream’s schema. It contains the timestamp of the first deleted stream tuple
and NULL values for all other attributes.

6.2. QoS Model

One important design goal of QStream is to give Quality-of-Service guarantees. The
implementation of that concept requires, first, the definition of QoS metrics suitable for
data stream processing, second, the propagation of QoS metrics across all defined DSMS
operators and third, the use of the result QoS metrics for QoS negotiation with the user.

The remainder of this section introduces the QoS negotiation concept and defines
content- as well as time-based QoS metrics. The QoS propagation across the individual
operators is described in Chapter 7, where the individual QStream operators are defined.

6.2.1. QoS Negotiation Concept

A variety of QoS metrics have been proposed for the use in data stream systems (related
work, Section 2.3.1). The negotiation process is illustrated in Figure 6.5).

Figure 6.5.: QoS Negotiation Process

If the QoS delivered by the DSMS is equal or higher to the QoS requirement of the
user, the negotiation is said to be successful. Otherwise, either the user reduces his QoS

64

6.2. QoS Model

requirements or the DSMS tries to trade the requirements against each other to come
to an agreement.

The problem with well-established QoS metrics like ’sampling rate’ ([MWA+03]) or
’aggregation precision’ ([BSLH05]) is that it is nearly impossible to propagate them down
the query graph through arbitrary operators and to include them in the QoS negotiation.

Therefore, it is absolutely required to establish novel QoS metrics which can be propa-
gated through the query graph and thus also included into the QoS negotiation process;
they are described in the remainder of this section.

6.2.2. Content-Based QoS Metrics

The content-based metrics may be assigned to data streams and describe the information
they contain. We use the metrics signal frequency and inconsistency which are (a)
novel QoS metrics in the DSMS context and (b) well-suited to describe the semantically
enhanced data streams of the previous section.

Definition 6.8. The signal frequency F is a measure for the amount of information
contained in a continuous partial data stream. Only if all partial streams SP of a data
stream S are continuous (SP |=C CS), the signal frequency property can be assigned to
the whole stream.

The signal frequency stands for the highest frequency which may be contained within
the partial continuous stream. The inverse of the minimum timestamp distance between
two consecutive tuples, 1

∆T
, acts as an upper bound for F : Following the sampling

theorem ([SW98]), it holds that F ≤ 1
2·∆T

with 1
2·∆T

being the bandwidth; this term is
commonly used in the signal processing area. The signal frequency of a stream can only
be decreased during stream processing as no new information can be ’created.’

Based on a continuous partial stream SP , the signal frequency F of data stream S
is the minimum of all signal frequencies contained in the participating partial streams
SP belonging to S. The reason is that F represents a lower bound regarding the whole
stream. It must be considered during the negotiation process, as users are supposed to
always require a minimum signal frequency with regard to data stream S.

FS =
x

min
i=1

FSP
i

(6.1)

It would also be possible to assign a signal frequency to each participating partial
stream and propagate them individually through the operator network. The drawback
would be increased costs and complexity of maintaining the stream descriptors.

Definition 6.9. The inconsistency I of a data stream describes the maximum devia-
tion of the tuple’s timestamp from the real-world event which is represented by the tuple’s
attribute values.

An example is illustrated in Figure 6.6: A sensor delivers tuples of the form T1(t1, a)
and two other sensors deliver tuples like T2(t2, b) and T3(t3, c), respectively. These sensor

65

6. QStream Modeling Aspects

streams are partial streams SP
1 , SP

2 and SP
3 , as their tuples contain only one attribute

value in addition to the tuple’s timestamp. The inconsistency values I1, I2 and I3 of
each original sensor stream are supposed to be zero.

Figure 6.6.: Inconsistency at Join Operations

The goal is to merge the three sensor streams. A stream join would probe for join
partners within a user-defined window and–if the input tuples match–it would output
a quadruple like (t, a, b, c). Obviously, each result tuple can only have one timestamp,
which is supposed to be t = t1 in the example. The timestamp t does not exactly
reflect the acquisition time of the attribute instance values b and c–the result quadruple
Tresult(t1, a, b, c) is inconsistent regarding time. The amount of inconsistency which is
added to each of the partial streams contained in the join result depends in this case, first,
on the join window size, and second, on the strategy of assigning the output timestamp.

In the example scenario, timestamp t1 is used as the resulting timestamp and thus
the inconsistency incurred by the join operation is I1 = 0 for the first partial stream,
I2 = abs(t2 − t1) for the second and I3 = abs(t3 − t1) for the third partial stream.
The inconsistency either remains constant or increases during a stream operation. It is
measured in units of time (e.g. in seconds).

Both content-based QoS metrics are summarized in a content quality descriptor.

Definition 6.10. The content quality descriptor Q̂content of a data stream S is a tuple
containing the minimum signal frequency F as well as the maximum inconsistency I of
all partial streams SP

i ∈ S:

Q̂content := (F, I | F =
x

min
i=1

(FSP
i
) ∧ I =

x
max
i=1

(ISP
i
))

If no signal frequency property can be assigned due to the occurrence of discontinuous
or event partial stream classes, the value of F included in Q̂content is simply NULL and
can therefore not be included into the quality negotiation.

An additional, but rather implicit goal of QoS-aware stream processing is to retain the
stream classes of the partial streams. That is, keeping the characteristics of a continuous
or discontinuous partial stream is supposed to be more valuable than simply changing
the classes of all incoming partial streams to ES, although the latter would obviously
decrease the processing complexity.

66

6.2. QoS Model

6.2.3. Time-Based QoS Metrics

In comparison to the content-based metrics, time-based QoS metrics refer to the run-
time process of the query evaluation. In general, they address the speed of the query
processing and consist of the data rate and the delay of a stream (of the result stream).

Definition 6.11. The data rate R of a data stream S describes how many stream
tuples per second occur in stream S.

QStream works in ’real application time,’ meaning that the timestamp distance be-
tween two stream tuples equals the elapsed time between the arrival of these two tuples
at the DSMS. Thus, the data rate R a stream must be processed with is at maximum
R ≤ 1

∆T
. In case of equidistant tuple timestamps (continuous streams or regular dis-

continuous streams), a data rate of exactly R = 1
∆T

is required to keep pace with the
incoming data.

A stream will be delayed by each processing step independent from the data rate
property: An operator reads a stream S, processes it and outputs a result stream S′.
Thereby, the tuples formerly contained in stream S move to stream S′ either in their
original form or in a pre-processed form.

Definition 6.12. The delay D of a stream S denotes the time distance between a stream
tuple arriving at the DSMS and the insertion of this tuple into stream S′.

The data rate as well as the delay are summarized as a time quality descriptor. It
is assigned to a data stream descriptor Ŝ and refers to the runtime process of query
evaluation.

Definition 6.13. The time quality descriptor Q̂time of a data stream S is a tuple
containing the data rate R and the delay D of a data stream:

Q̂time := (R,D)

6.2.4. Quality Request

The user may specify a quality request Req(Fmin, Imax, Rmin,Dmax) containing time-
based as well as content-based QoS metrics. The parameters refer to the query result
stream descriptor Ŝresult and have the following meaning:

• If the result stream entirely consists of continuous partial streams, it must be
qualified for containing frequencies of Fmin at least.

• The inconsistency of the result stream must not exceed a value of Imax.

• The result data has to be delivered at least with a data rate of Rmin and

• The delay of the query result must not exceed the time Dmax.

67

6. QStream Modeling Aspects

Thus, the query result quality (Q̂content(F, I) and Q̂time(R,D)) has to meet the user’s
requirements Req(Fmin, Imax, Rmin,Dmax):

• Req meets Q̂content :⇔ F ≥ Fmin ∧ I ≤ Imax and

• Req meets Q̂time :⇔ R ≥ Rmin ∧ D ≤ Dmax

6.3. Operator Model

Within this section, the QStream operator as well as the query model are presented.
Thereafter, the concept of propagation of quality metrics is sketched.

QStream distinguishes between a specification and a runtime layer of operators and
queries. Figure 6.7 illustrates that concept: on the specification layer, a set of operators
is provided by the DSMS. Standing queries are specified by the user and composed of
these operators. The runtime layer covers all aspects of standing query evaluation. If
a standing query is to be executed, an instance of all its operators (operator instances)
has to be created on a specific system. There, runtime properties are assigned. Finally,
the operator instances make up the standing query instance which processes the data
streams and delivers the result to the user.

Figure 6.7.: Specification and Runtime Layer

6.3.1. Generic Operator Model

An operator is seen as the basic unit of work. Elementary operators are provided by the
DSMS and enable the users to build their queries on that basis.

Operators

Definition 6.14. An operator O(f
Ŝ
, f

Q̂content
, β) is a unit of work which processes

either one or two input streams and results in one output stream. It is characterized
by the two transfer functions f

Ŝ
(functional description) and f

Q̂content
(non-functional

description). Furthermore, β holds the set of operator-specific parameters.

The transfer function
f

Ŝ
: (Ŝ1[, Ŝ2]) 7→ Ŝ′

68

6.3. Operator Model

states the operator’s impact on the stream content, whereas

f
Q̂content

: (Q̂content,1[, Q̂content,2]) 7→ Q̂′
content

describes the operator’s influence on the content-based stream quality. The issues are
illustrated in Figure 6.8. There, a source stream with the descriptor Ŝ and the content-
based quality Q̂content is processed by an operator O using the transfer functions f

Ŝ
and

f
Q̂content

. The result is a modified stream descriptor Ŝ′ and a reduced set of content-based

QoS metrics Q̂content.

Figure 6.8.: Illustration of Operator Transfer Functions

Operator Instances

If an operator is to be executed within the DSMS, several operational parameters (like
execution times, FIFO queue access characteristics, execution speed, etc.) are assigned.

Definition 6.15. An operator instance OI(f
Ŝ
, f

Q̂content
, f

Q̂time
,Φ, β) is an operator

O along with a transfer function f
Q̂time

of the time-based quality metrics and a set of
operational parameters Φ.

The transfer function

f
Q̂time

: (Q̂time,1[, Q̂time,2]) 7→ Q̂′
time

describes how the operator instance influences the delay D and the data rate R of a
stream. The operational parameters Φ((bi1[, bi2]), bo, t, P, s) extend the parameter set
given in [BSLH05] and are mainly used for resource calculation and scheduling (Chapter
8). They refer to a single run of the operator instance and consist of

• the number of tuples bi (batch input) which an operator instance reads during each
of its periods (during one buffer access)

• the average number of tuples bo (batch output) which the operator instance writes
during each of its periods (during one buffer access),

• the operator’s average processing time t per period,

• the period length P , and

69

6. QStream Modeling Aspects

• the size of the internal state (memory) s which an operator instance is allocated.

The ratio of bo and bi implicitly stands for an operator instance’s ’selectivity.’ It
describes the data reduction between each input stream and output stream. For some
operator instances, this quotient is a fixed value. For other operators, the average output
size bo is data-dependent and thus subject of either estimation or statistics monitoring.
Within Chapter 7, an operational description of all QStream operators is given. There,
the necessity of a statistics-based selectivity value is stressed at the appropriate opera-
tors.

6.3.2. Standing Query Representation

The representation of a standing query is based on a directed acyclic graph (DAG) and
relies on a set of elementary operators

Definition 6.16. A standing query Q is a directed acyclic graph ([BBD+04, CcR+03,
JC04]) with operators as nodes. The edges between every two nodes represent the data
flow. An edge Ep < Oi, Oj > indicates that the output data from operator Oi are taken
as input for operator Oj . Thus, a query Q is described by a finite number of Operators
Oi and a finite number of edges Ep:

Q({O1, ..., Oi, ..., Ox}, {E1, ..., Ep, ..., Ey})

The first operators are leaf nodes of the DAG. They have an incoming edge but no
predecessor operator. In contrast, the output operator (root node) has an outgoing edge
but no successor operator.

Definition 6.17. An operator path P is a set of operators and edges which describe
the data flow from one single leaf node (first operator) to the root node (last operator).

Figure 6.9 illustrates an example of a standing query. There, two operator paths

Figure 6.9.: Example Query Representation by a DAG

P1({O1, O2, O4}, {E1, E2, E3, E6}) and P2({O3, O4}, {E4, E5, E6}) are shown.
The concept of query specification can easily be transferred from the specification to

the runtime layer by replacing all operators with their corresponding operator instances.

Definition 6.18. A standing query instance QI is a standing query where all oper-
ators are replaced by the corresponding operator instances:

QI({OI1, ..., OIx}, {E1, ..., Ey})

70

6.4. Summary

6.3.3. Quality Propagation

The negotiation of content-based QoS metrics can be performed on the basis of a standing
query Q, whereas the negotiation for time-based QoS metrics can only be made for a
standing query instance QI. The negotiation basis is the quality descriptors of the result
stream (of the standing query and standing query instance, respectively). The resulting
QoS descriptors have to be compared with the user’s QoS requirements as described in
Section 6.2.4.

Calculation of Content-Based Result Quality

The content-based quality Q̂content(Fsource, Isource) of the data source(s) is given by the
incoming data stream(s). There, the initial inconsistency value of Isource depends on the
data acquisition strategy as well as on the timestamp granularity which was used by the
data source (e.g. by the sensor device). For sake of simplicity and due to the fact that
data acquisition is generally out of scope of DSMS processing, an initial inconsistency
of Isource = 0 is assumed. The initial signal frequency value Fsource depends on the
sample frequency which was used while reading the analog sensor values and creating
the continuous input stream.

The quality transfer functions f
Q̂content

of all operators are applied along the appropri-
ate operator path from the leaf node operators to the root operator in order to calculate
the content-based result quality.

Q̂content,result(F, I) = f
Q̂content,n

(f
Q̂content,n−1

(...f
Q̂content,1

(Fsource, Isource)))

If a binary operator (which is the join operators in the case of QStream) is involved,
its quality transfer function requires two quality descriptors of the appropriate input
streams. Thus, the formalization is simply extended in that manner.

Calculation of Time-Based Result Quality

The time-based result quality consists of the result data rate R and an overall delay D.
To determine R, the input data rate must be propagated across all operator instances
using the implicitly given operator instance selectivity. Thereafter, the result data rate
and the period length of all operator instances are available. The overall delay consists
of the sum of all operator instances processing times plus the times required for data
exchange. For obtaining both time-based QoS values, the QStream resource calculation
has to be applied first. This will be described later in Section 8.

6.4. Summary

Within this chapter, the notion of data streams, Quality-of-Service, standing queries
and elementary stream operators have been introduced. Each of the operators exerts
influence on the data stream and its associated QoS properties. More specifically, on a
specification layer of a standing query, the influence on content-based QoS metrics can

71

6. QStream Modeling Aspects

be described. Complementary, the propagation of time-based QoS metrics is subject
to the runtime layer containing the standing query instance. Two issues are important
regarding the QoS-aware data stream processing: First, the classification of data streams
into different stream classes allows for specifically annotating QoS metrics depending on
the application semantics. Second, the distinction between time-based and content-
based QoS metrics points out QStream’s efforts to close the gap in quality management,
especially for time-based QoS metrics.

72

7. QStream Operators

This chapter addresses the individual QStream operators according to the formal intro-
duction of operators. First, there are the helper operators Oresample and Oreconstruct (Sec-
tion 7.1), second, there are the stateful operators Oaggregation, Osync−join and Osampling

(Section 7.2) and third, the stateless operators Ofilter and Oprojection (Section 7.3) com-
plement the list. The focus lies on explaining the appropriate operators with a functional
and a non-functional description. Furthermore, an operational description is given; it
belongs to the operator instance OI and not to the operator O though.

• The functional description is represented by a transfer function for the stream
content f

Ŝ
: (Ŝ1[, Ŝ2]) 7→ Ŝ′. It describes how the tuples of the result stream

(descriptor) Ŝ′ are created from the tuples of the input stream Ŝ.

• The non-functional description consists of a transfer function
f

Q̂content
: (Q̂content,1[, Q̂content,2]) 7→ Q̂′

content for the content-based quality in terms
of signal frequency and inconsistency. A transfer function for time-based quality
metrics is left out here, since it is topic of the resource calculation and scheduling
sections.

• An operational description Φ(bi1[, bi2], bo, t, P, s) belonging to each operator
instance resembles the operational parameters Φ which have been introduced in the
previous section. Concrete values of period length P and of the average processing
time t are not included in the operational description because these values are
obtained from the JCP+ resource calculation and from statistics, respectively.

The only QStream operator which processes two input streams is the join operator.
All other operators consume from a single stream and produce to a single stream. There-
fore, for these unary operators, the functional, the non-functional, and the operational
descriptions can be simplified as f

Ŝ
: Ŝ 7→ Ŝ′, f

Q̂content
: Q̂content 7→ Q̂′

content and
Φ(bi, bo, t, P, s).

Timestamp Semantics

Different types of timestamps are of interest within QStream: The tuple timestamps
(contained as the first attribute instance value) are considered to process the input data
following the operators’ semantics. They are used for the functional as well as for the
non-functional operator description. In contrast, the tuples’ arrival timestamps at the
appropriate operator are decisive for the operational description. On this ’lower level,’
the goal is always to provide sufficient input data for an operator and to always allow
the operator to write its output data without being blocked.

73

7. QStream Operators

7.1. Helper Operators

Two helper operators Oresample and Oreconstruct are used internally by other operators like
join and aggregation. Helper operators are similar to ordinary operators. A functional,
a non-functional and an operational description are included.

7.1.1. Resample

The resample operator applies downsampling as well as interpolation techniques to con-
tinuous partial streams. This allows the perfect reconstruction of intermediate tuples
(interpolation, Figure 7.1 (a)) on the one hand and stream load reduction with a well-
constrained loss of information (downsampling, Figure 7.1 (b)) on the other hand.

0

200

400

600

800

1000

 1 1.5 2 2.5 3 3.5 4
150

200

250

300

350

400

450

500

550

pr
es

su
re

 /
ba

r

te
m

pe
ra

tu
re

 /
de

gr
ee

 C
el

si
us

time / s

temperature stream
...sampled up to 1000 Hz

0

200

400

600

800

1000

 1 1.5 2 2.5 3 3.5 4
150

200

250

300

350

400

450

500

550

pr
es

su
re

 /
ba

r

te
m

pe
ra

tu
re

 /
de

gr
ee

 C
el

si
us

time / s

pressure stream
...sampled down to 2 Hz

(a) Interpolating a continuous
partial data stream

(b) Downsampling a continuous par-
tial data stream

Figure 7.1.: Resample Operator Examples

Internally, the resample operator applies bandwidth-aware resampling, which was in-
troduced in [SFL05] and must only be applied to partial streams SP which are continuous
(SP |=c CS).

The underlying concepts are bandwidth-aware resampling techniques [SG84]. They
make possible the interpolation of tuple values between consecutive timestamps or the
reduction of the amount of tuples of data streams with well-constrained loss of infor-
mation content. Signal interpolation and digital filter design is a well-known domain
and [SH90] is recommended for further information. Specific resampling techniques for
digital signals are described in [SG84, Mat04].

The basis for this operation is a resampling factor p
q
(p, q ∈ N), where p is the interpola-

tion factor and q is the downsampling factor. If p
q

< 1, a low-pass filter has to be applied
first to avoid aliasing effects. Depending on the required resampling factor, either p or
q may be equal to 1 and thus, one of the sub-operations (interpolation, downsampling)
can be left out.

The resampling operation uses a finite impulse response (FIR) low-pass filter represen-
tatively for many available digital filter algorithms ([SH90]). It has a cut-off frequency fc

for interpolating or bandlimiting a tuple stream. In both cases, a FIR filter kernel with

74

7.1. Helper Operators

L coefficients of its transfer function is calculated. The cut-off-frequency fc of the digital
low-pass filter depends on the parameters p and q. Both resample steps are described in
the following sections:

• Bandlimited signal interpolation: Interpolation is needed to reconstruct tuple
values between tuples of consecutive timestamps. This is done in two steps. First,
a number of (p − 1) so-called ’zero tuples’ are padded between tuples Tj(a1, a2)
and Tj+1(a

′
1, a

′
2). These are tuples whose attribute values (besides the timestamp

attribute) are set to zero. Second, the zero-padded stream is convoluted with a
filter kernel (cut-off frequency fc = p · 1

∆T
). The timestamps of the inserted tuples

are distributed equidistantly between the timestamps of the tuples Tj and Tj+1.

This results in a tuple stream with a smaller minimum distance of tuple timestamps
∆T ′ and exactly interpolated attribute values (Figure 7.1 (a)). The application
of bandlimited signal interpolation is appropriate for handling signals of analog
origin. This operation does not increase the stream’s information content in terms
of contained signal frequencies F .

• Bandlimited downsampling: Bandlimited downsampling is a combination of
two steps: first, the tuple stream is bandlimited by applying a low-pass filter with
the desired cut-off frequency fc (again, a convolution with a filter kernel is applied),
and second, only every q-th tuple (with its original timestamp) is passed by, since
it is sufficient to represent the attribute value behavior of the bandlimited stream.
Furthermore, the result tuples do not necessarily lie on the original signal curve,
because the information content (the maximal frequencies which may occur) of the
stream was reduced and only the trend of the signal remains after downsampling
(Figure 7.1 (b)).

Both, interpolation and downsampling functionality are used by the resample operator.
They are represented by the two functions and require a partial continuous stream SP

and the interpolation and downsampling factors p and q, respectively, as input.

S′P = interpolate(SP , p)

and

S′P = downsample(SP , q)

The resample helper operator instance OIresample(fŜ
, f

Q̂content
, β) has the input param-

eters β = (p, q). The quotient of p and q stands for the resample factor. If p
q

> 1, the

amount of stream tuples is increased by that factor. Otherwise, if p
q

< 1, the amount of
stream tuples is reduced, which may come along with a reduction of the signal frequencies
F contained in the stream.

Functional Description

The functional description of the resample operator is given as

75

7. QStream Operators

f
Ŝ
(Ŝ) := (S′, E,C,∆T ′) | f

Ŝ,S
(S) = S′ , f

Ŝ,∆T
(∆T) = ∆T ′

where f
Ŝ,S

describes the data stream transformation and f
Ŝ,∆T

denotes the transfor-
mation of the minimum timestamp difference. The schema E and the stream type C
remain unchanged.

Result stream: The stream content transformation function f
Ŝ,S

: S 7→ S′ transforms

a continuous partial stream SP contained in S into another continuous partial stream
S′P . A description is given as follows:

f
Ŝ,S

(S, p, q) := [S′P] | S′P = downsample (interpolate(SP , p), q)

Here, downsample and interpolate are the two elementary signal processing functions
described above. Both are supposed to work on the basis of continuous partial streams
and also deliver a continuous partial stream as result. If a punctuation message arrives
from the input stream, both interpolation and downsample do not output result tuples
any longer. The punctuation message is forwarded. After the gap has occurred, a
number of L consecutive stream tuples are required before the first results will become
available.

Result minimum timestamp distance: The new minimum timestamp distance ∆T ′

directly scales with the inverse of the resampling factor p
q
:

f
Ŝ,∆T

(∆T, p, q) := ∆T ·
q

p

Non-functional Description

To propagate the QoS metrics properly, a non-functional description is given accordingly.
The stream operators which internally use resample may also make use of these functions
to ’propagate’ the (partial) stream’s quality.

Signal frequency F : The resampling factor p
q

may influence the frequency of each of

the partial input streams. If p
q

> 1, only interpolated tuples are inserted into the data
stream but no higher frequencies (no new information) are added. F remains unchanged
in this case. Otherwise, if p

q
< 1, the stream’s frequency F is decreased in case that the

new minimum timestamp difference ∆T ′ is not sufficient to represent F .

F ′ := min

(

F,
p

2 · ∆T · q

)

76

7.1. Helper Operators

Inconsistency I: The interpolation step does not increase the stream’s inconsistency
value as only new tuples are created and their inconsistency value is assumed to be
zero. In comparison, during the downsampling step, a number of formerly independent
stream attribute values become represented by one new attribute value. Thereby, the
new inconsistency value is the overlaid time span of the inconsistency values of a number
of q tuples.

Figure 7.2 illustrates the inconsistency propagation for a resampling factor of p
q

= 2
3 .

The input tuples are T1, T2 and T3. Their timestamps constantly differ by an amount
of 1

F
with F denoting the input stream’s signal frequency. The tuples’ inconsistency

interval is annotated above the time axis in gray color. In a first step, the interpolation
function (with p = 2) creates one new tuple with a timestamp between every two existing
tuples. The inconsistency intervals of the new tuples are generally not known; they are
assumed to be zero. After the interpolation step, the tuples’ timestamps differ only by
a value of 1

p·F
and are equidistant, too.

Now, within a second step, a number of q = 3 tuples are ’merged’ into one result
tuple. The result tuple’s timestamp can be determined arbitrarily from the timestamps
of the merged tuples; the only requirement is that the result tuples’ timestamps must be
equidistant again. The result stream’s inconsistency is at two times the former stream’s
inconsistency value (inconsistency of the first and the last merged tuple: 2 · I) plus the

time distance between these two tuples, which can be expressed as
(

(q − 1) · ∆T
p

)

. The

Figure 7.2.: Example of Resampling Operator Inconsistency Propagation

77

7. QStream Operators

upper bound of the final inconsistency value can be calculated as

I ′ := 2 · I +
(q − 1) · ∆T

p
(7.1)

There are certain special cases regarding the resampling factors p and q, which allow to
define a closer upper bound for the final inconsistency:

• q = 1: Only the interpolation step is required. The formerly existing tuples
are passed through together with some new tuples. The overall (partial) stream
inconsistency remains unchanged as interpolated tuples are supposed to have an
inconsistency of zero and the stream’s inconsistency is the maximum inconsistency
across all stream tuples: I ′ = I.

• q 6= p + 1: For that specific case, during the downsampling step, at least one of
the merged tuples is a newly created one and thus has an inconsistency of I = 0
assigned. The resulting inconsistency is reduced to I ′ = I + (q−1)·∆T

p
in this case.

Operational Description

From an operational point of view, the resample operator reads the input stream tuple
by tuple and outputs on average a number of p

q
tuples during each processing step. It is

a stateful operator which has to buffer a number of 2 ·L tuples, where L is the number of
filter coefficients. The memory consumption is set to 2 · L because a number of L filter
coefficients as well as L stream tuples must be hold. Within QStream’s implementation,
L is assumed to be constant. An alternative would be to acquire L as a parameter
provided by the user.

Φ := (bi, bo, t, P, s)

:=

(

1,
p

q
, t, P, 2 · L

)

7.1.2. Reconstruct

The helper operator Oreconstruct(fŜ
, f

Q̂content
, β) exclusively works on discontinuous streams

DS. As input parameters, it takes a sequence of timestamps together with the associ-
ated minimum timestamp difference: β = (SeqTS,∆TSeqTS). As illustrated in Figure
7.3, it creates intermediate tuples on the basis of the timestamps given by the sequence
SeqTS. The attribute value of such an intermediate tuple is the same as the attribute
value of the last arrived tuple.

Functional Description

The content transformation function f
Ŝ,S

consists of adding tuples to the stream and
assigning a new minimum timestamp difference f

Ŝ,∆T
:

78

7.1. Helper Operators

Figure 7.3.: Tuple Reconstruction within a Discontinuous Partial Stream

f
Ŝ
(Ŝ, SeqTS) := (S′, E,C,∆T ′) | f

Ŝ,S
(S) = S′ , f

Ŝ,∆T
(∆T) = ∆T ′

The schema E and the stream type C are not changed.

Result stream: The stream content transformation function f
Ŝ,S

: S 7→ S′ transforms

a discontinuous partial stream SP contained in S into another discontinuous partial
stream S′P , no matter if SP is of regular or irregular nature. A description is given as
follows:

f
Ŝ,S

(S(T1, ..., Tj , ..., Tn), SeqTS(t1, ..., tu, ..., tv)) := [S′P |

S′P = (T1, ..., Tu, ..., Tv | ∀u(1 ≤ u ≤ v) :

Tu = (tu, a2,j | (a1,j) ≤ tu < a1,j+1) ∧ Tj 6= TP)]

Each of the timestamps tu of the result stream tuples Tu corresponds to a given
timestamp of SeqTS. The attribute value a2,j of Tu equals the attribute value of the
last stream tuple (a1,j , a2,j) which is still valid at time tu (due to the discontinuous
character). The timestamps of the ’vertices’ of the discontinuous partial stream are
contained in SeqTS and thus the characteristic stream behavior does not change.

If a punctuation message occurs, tuples are neither produced nor forwarded for the
duration of the gap (except for the punctuation message itself).

Result minimum timestamp distance: The new minimum timestamp distance ∆T ′ is
equal to the minimum timestamp distance of SeqTS, is provided by the calling operator
as an additional input parameter, and is thus passed through:

f
Ŝ,∆T

(∆T) := ∆TSeqTS

79

7. QStream Operators

Non-Functional Description

The reconstruct operator only creates additional tuples. Their inconsistency values are
set to zero; thus, the inconsistency I is not changed at this point.

I ′ = I

Furthermore, the signal frequency F is not considered because the reconstruct operator
does not handle continuous partial streams.

Operational Description

The reconstruction operator reads the input stream tuple by tuple (bi = 1). The num-
ber of created intermediate tuples, and thus the average output batch size bo, strongly
depends on the content of SeqTS and is assumed to be given in statistical terms.
Furthermore–as the reconstruction operator is supposed to work in pipeline mode–it
has to keep only one ’regular’ stream tuple as well as one tuple of the timestamp se-
quence. The timestamp sequence tuples will arrive more frequently than regular stream
tuples. Every time a timestamp sequence tuple is available, its timestamp is ’paired’
with the attribute value of the last regular stream tuple. Thus, an internal memory of
two tuples is sufficient.

Φ := (bi, bo, t, P, s)

:= (1, boreconstruct, t, P, 2)

7.2. Stateful Operators

Within the QStream system, the stateful operators aggregation (Oagg), join (Osync−join),
and sampling (Osampling) are considered. They are described in detail in the following
three subsections.

7.2.1. Aggregation

The aggregation operator Oagg(fŜ
, f

Q̂content
, β) allows the computation of different ag-

gregates of a data stream S. The operator-specific parameters are the length of the
aggregation window twin, a data rate reduction factor f and an aggregation function for
each partial stream contained in S:

β = (twin, f, (fagg,1, ..., fagg,x) ∈ {AV G,SUM,COUNT,MIN,MAX})

The aggregation operator entirely works on the basis of the tuples’ timestamps. A
so-called re-evaluation period tre−eval is implicitly determined by the result data rate
requirement Rmin (assume that Rmin directly refers to the output data rate of Oagg)
as tre−eval = 1

Rmin
. Based on the window length and the data rate reduction factor,

80

7.2. Stateful Operators

the QStream aggregation operator is restricted to resemble either sliding or jumping
aggregation windows. In each case, the aggregate is computed every 1

Rmin
time units.

If a factor of f = 1 was selected, a sliding window is applied. The window length twin

determines which historical time span is to be involved in the aggregation.
If a factor of f > 1 was selected, the aggregation operation incorporates a jumping

window. The window length twin is fixed and implicitly determined by the result data
rate: twin = tre−eval = 1

Rmin
. The window is non-overlapping and there are no gaps

regarding time. The factor f determines the required input data rate (Rinput = f ·Rmin)
and thus the number of input tuples which arrive during the time span of twin. f can
be chosen arbitrarily by the user.

Functional Description

The aggregation operation is formally described as

f
Ŝ
(Ŝ) := (S′, E′, C ′,∆T ′) | f

Ŝ,S
(S) = S′ , f

Ŝ,E
(E) = E′ , f

Ŝ,C
(C) = C ′ , f

Ŝ,∆T
= ∆T ′

where f
Ŝ,S

describes the data stream content transformation and f
Ŝ,E

and f
Ŝ,C

denote
the transformation of the stream’s schema and type, respectively.

Result stream: The aggregation result is computed individually for each partial stream.
This is illustrated by the aggregation functions fagg,1, ..., fagg,x in Figure 7.4.

Figure 7.4.: Functionality of the Aggregation Operator

The appropriate aggregation function is applied to stream tuples within a window of
length twin. The maximum number of tuples contained in twin depends on the stream’s
minimum timestamp distance ∆T and can be calculated as n = twin

∆T
. The concept is

illustrated in Figure 7.5. Per aggregation group, one result tuple with the end timestamp
of the window is produced.

In general, no aggregate value is produced during the time of a gap, even if the gap
overlaps with the aggregation window. The punctuation message is forwarded to the
result stream and the first aggregate values become available at the time where the gap
does not overlap with the aggregation window any longer.

The transformation function f
Ŝ,S

takes a stream S[SP
1 , ..., SP

j , ..., SP
x] as input and

produces an output stream S′[S′P
1 , ..., SP

j

′
, ..., S′P

x]. When doing so, each partial stream

SP
j is aggregated separately using the appropriate aggregation function fagg,j.

81

7. QStream Operators

Figure 7.5.: Sliding Window Example of the Aggregation Operator

f
Ŝ,S

(S, Teval, twin, (fagg,1, ..., fagg,j , ..., fagg,x)) := [SP
1
′
, ..., SP

j

′
, ..., SP

x

′
|

∀j(1 ≤ j ≤ x, x = |S| − 1) : SP
j

′
= fagg,j(S

P
j , Tre−eval, twin) ∧ SP

j ∈ S]

The restriction within QStream is that not all of the aggregation functions
(fagg ∈ AV G,SUM,COUNT,MIN,MAX) are applicable to each partial stream class.
The following distinction is made:

• Continuous partial streams: Here, MIN , MAX and COUNT can be applied
in a straightforward manner on the basis of the individual tuples contained in
the interval. One must consider, however, that all three aggregation functions do
not keep the continuous partial stream’s characteristics. Instead, they result in
a discontinuous stream where the aggregate value is valid for the duration of a
re-evaluation period Tre−eval (independently of sliding or jumping window aggre-
gation).

The SUM aggregate is not allowed as it would not reflect any useful semantics
regarding the attribute values of analog (sensor) origin.

The standard AV G aggregation function is not available for use either, since it
would ’smoothen’ the partial stream indefinitely without keeping the continuous
characteristics. Instead, the resample helper operator is proposed to smoothen the
attribute values, to reduce their cardinality, and to reduce the continuous partial
stream’s information content in terms of the signal frequency:

AGG(SP
j , Tre−eval, twin) = resample(SP

j , p, q) = resample(SP
j ,∆T, Tre−eval)

The resampling factor is
Tre−eval

∆T
, where Tre−eval equals the new (minimum) dis-

tance between the timestamps of two consecutive stream tuples. The window

82

7.2. Stateful Operators

length twin is not used for the resample operation; the number of required tuples
for resampling is implicitly determined by the resample operator and its accuracy
property in terms of the number of filter coefficients. Moreover, for the AVG ag-
gregation of a continuous partial stream, the resample operator implicitly applies
a sliding window in each case.

• Discontinuous partial streams: The standard MIN and MAX aggregation
functions can be used for determining the time window’s minimum and maximum
attribute value of a discontinuous partial stream. SUM and COUNT should only
be used if the application context provides proper semantics for the appropriate
results. The AV G aggregation is not allowed to work on the basis of the individual
tuples contained in the aggregation window. Instead, AV G must consider the
validity intervals of attribute values within the aggregation window. If the example
data stream of Figure 7.6 shall be aggregated within the time span of twin, three
different intervals I1, I2 and I3 must be considered. The time point tnow stands
for the current time at which the aggregate is to be computed.

The appropriate attribute values must be weighted with the length of their validity
intervals. The length of I1 is determined by the time difference between the window
border and the first tuple arriving within the aggregation window. I2 equals the
time distance between the first and the second tuple of twin. Finally, I3 starts at
the arrival time of the second input tuple but ends at the window border.

Figure 7.6.: Example for the Aggregation of a Discontinuous Partial Data Stream

To summarize, the aggregation operator considers both the set of tuples M (|M | =
n) contained in the aggregation window twin and the previously arrived tuple:

M(Ti−1, Ti, ..., Ti+n)

The AVG aggregate is computed by cumulating all tuple attribute values a2,x

(weighted by their validity time span, which in general is a1,x−a1,x−1) and dividing
the result by the window length twin. One must pay particular attention to the first

83

7. QStream Operators

and the last time interval, both of which are limited by the aggregation window
borders. They have a length of a1,i − (tnow − twin) and tnow − a1,i+n respectively.

AGG(SP
j , Tre−eval, twin) =

1

twin
· (a2,i−1 · (a1,i − (tnow − twin)) +

ai · (a1,i+1 − a1,i) + ... + ai+n · (tnow − a1,i+n))

The aggregate values are produced with a timestamp distance of Tre−eval and
thus are equidistant. This is similar to the previous aggregation operations on
discontinuous partial streams.

• Event partial streams: For event partial streams (SP
j |=c ES), all aggregation

functions can be applied by default. The result stream changes to a discontinuous
stream, as each aggregate value is valid until the next tuple’s timestamp.

Result schema: If individual partial streams shall be excluded from the aggregation
operation, the value of the appropriate aggregation functions must be given as NULL
(Fagg,j = NULL). The stream’s schema E changes in a way that partial streams whose
aggregation function is NULL are not processed and therefore not part of the result
stream.

f
Ŝ,E

(E(e1, ..., ej , ...ex)) = (e′1, ..., e
′
j , ...e

′
x|e

′
j =

{
∅ if fagg,j = NULL
ej otherwise

)

Result stream type: The stream type is changed depending on the applied aggregation
function fagg. Table 7.1 summarizes the stream class transformations.

class ci of SP
i aggregation function class ci

′ of SP ′

i

CS AGG (→ resample) CS

CS MIN , MAX DS

DS all DS

ES all DS

Table 7.1.: Stream Class Transformations of the Aggregation Operator

If a continuous partial stream is AVG-aggregated (resampled), its continuous charac-
teristics remain. If other aggregation functions are applied to continuous partial streams,
the stream class changes to DS. Discontinuous and event partial streams change their
stream class to DS in each case due to the repeatedly applied aggregation and the fixed
re-evaluation period Tre−eval.

f
Ŝ,C

(C(c1, ..., cj , ..., cx)) =
(

c1
′, ..., cj

′, ..., cx
′ | cj

′ =

{
CS if cj = CS and fagg = AV G
DS otherwise

)

84

7.2. Stateful Operators

Result minimum timestamp distance: The result streams’ minimum timestamp dis-
tance ∆T ′ equals the re-evaluation period Tre−eval:

f
Ŝ,∆T

(∆T) = Tre−eval

Non-Functional Description

Signal frequency F : For a continuous partial stream, an AVG aggregation may de-
crease the stream frequency as only one aggregate value is produced at re-evaluation
time. Thus, the signal frequency F ′ which is contained in the result stream is oriented
towards the signal frequency propagation of the resample operator: It is the minimum of
the former signal frequency F and the inverse of the half of the new minimum timestamp
difference ∆T ′.

F ′ = min(F,
1

2 · Tre−eval

) = min(F,
1

2 · ∆T ′
)

Inconsistency I: The inconsistency propagation is treated separately for continuous
partial streams on the one hand and for discontinuous and event partial streams on the
other hand.

If a continuous partial stream is AVG-aggregated, it directly follows equation 7.1 of
Section 7.1. The resulting inconsistency value can be obtained as:

I ′SP = 2 · I +
(q − 1) · ∆T

p

and equals the inconsistency propagation of the resample operator, where p
q

is given

as the pruned fraction ∆T
∆T ′ . The aggregation window length twin does not have any

influence on the inconsistency propagation in that case.

The inconsistency propagation of a discontinuous or an event partial stream is also
oriented towards the resample operator. The timestamps of the created tuples (aggregate
values) may have a maximum inconsistency of the aggregation time span twin plus two
times the former inconsistency value–under the assumption that stream tuples have been
present at exactly the beginning and at the end of the aggregation time span (upper
bound). This is illustrated in Figure 7.7, where tuples T1, T2 and T3 are present within
the aggregation window of length twin. The inconsistency interval is therefore calculated
as:

I ′SP = 2 · I + twin

The resulting inconsistency of the whole stream S′ is the maximum of the resulting
inconsistencies ISP of the aggregated partial streams. It is independent of whether or
not a sliding or a jumping window aggregation has been applied:

I ′ = max(ISP
1

, ..., ISP
j
, ..., ISP

x
)

where

85

7. QStream Operators

Figure 7.7.: Inconsistency Propagation of Aggregation Operator

ISP
j

= 2 · I +

{
(q−1)·∆T

p
if SP

j |=C CS and fagg = AV G

twin otherwise

Operational Description

For the AVG aggregation of continuous partial streams, the operational description of
the resample operator is used. The input stream is consumed tuple by tuple (bi = 1),
where on average, a number of bo = ∆T

∆T ′ tuples are produced as output. Again, the
internal state depends on the (constant and predefined) number of filter coefficients L.

Φ = ((bi, bo, t, P, s)

= (1,
p

q
, t, 2 · L)

= (1,
∆T

∆T ′
, t, 2 · L)

For other kinds of aggregations, different operational descriptions for handling sliding
and jumping windows must be given. In both modes, the input stream is read tuple
by tuple (bi = 1). The tuples are internally stored; therefore, a maximum internal
memory of s = twin

∆T
is required. For jumping window aggregation, the aggregate could

also be computed incrementally without storing the individual tuples which belong to
an aggregation window.

The average number of output tuples produced during each run depends on the length
of the aggregation window twin and on the re-evaluation period Tre−eval. Note that the
applied re-evaluation period tre−eval can only be an integer multiple of an operator period

86

7.2. Stateful Operators

P due to the QStream operator implementation as periodically running components:

tre−eval :=
⌈

tre−eval

P

⌉

· P . Thus, the smallest re-evaluation period is the period length of

the aggregation operator, which in turn is calculated from the data rate requirements
(Chapter 8).

• Sliding window aggregation: Here, one output tuple is produced per operator
run (bo = 1).

Φ := (bi, bo, t, P, s)

:=

(

1, 1, P, t,
twin

∆T

)

• Jumping window aggregation: Here, one output tuple is produced during each
re-evaluation period (independently of how many tuples lie within the time window
twin). As a number of n =

⌈
twin

P

⌉
tuples have been read during one re-evaluation

period, the inverse of n is the average output per operator run.

Φ = (bi, bo, t, P, s)

=

(

1,
1

n
, t, P,

twin

∆T

)

=

(

1,
1

⌈
twin

P

⌉ , t, P,
twin

∆T

)

7.2.2. Sync-Join

The sync join operation Osync−join is a binary operation which takes two stream descrip-
tors Ŝa and Ŝb as input. As a fundamental difference to existing database or data stream
joins, it aims to produce meaningful output by joining only tuples which have the same
production timestamp. First, different join strategies are compared for classification
purposes.

Stream Joins in General

Table 7.2 describes existing joins based on the two conceptual steps merge and probe,
and based on the semantics of their results. This can be seen as a small piece of related
work.

Joins over database relations do not require an explicit merge step. The input relations
are completely available at join execution time. All tuples of both relations have to be
considered for probing. Thus, the probe step is complex because of the potentially high
number of tuples.

Joins over data streams can be divided into sliding window joins and sync joins.
Sliding window joins on data streams are well-known. They extend joins over database
relations in two steps: first, they make them non-blocking and second, they limit the

87

7. QStream Operators

Database Join Stream Join

sliding window
join

sync join

merge
step

not required;
whole database
relation available
for joining;
timestamp not an
explicit attribute

simple; restrict
the possibly infinite
input streams by a
window on each

complex; find the
tuples that
(temporally) fit
together based on
their timestamps
(1:1 relationship);
use interpolation
and downsampling
techniques

probe
step

complex; probe
all tuples of the
first relation
against all tuples of
the second relation

less complex;
probe all tuples of
the first window
against all tuples of
the second window

simple; for the
identified 1:1 tuple
relationship make
an additional test
of the join
predicate

quality
metrics

window size; the
larger the window
on the input
streams, the larger
the result set and
the higher the
associated result
quality

inconsistency;
the more the tuple
timestamps are
’tampered’ with to
associate the
partner tuple, the
lower the result
quality (contrary
to sliding window
joins)

Table 7.2.: Join Classification

degree of the internal state the join operator has to maintain. Both objectives are
achieved by applying a window (tuple-based or time-based) on the input streams and
by performing the probe operation based on the data of the window. The larger the
subset of the current stream, the more result tuples will be produced, which in turn is a
measure for the result quality and optimization goal, respectively.

88

7.2. Stateful Operators

Sync Join Definition

The QStream model entirely focuses on the sync join approach. In this context, the
concepts of [SFL05] are extended to select particular join strategies based on the stream
types Ca and Cb of the stream descriptors Ŝa and Ŝb respectively.

In comparison to window joins, the sync join mechanism aims at producing consistent
and semantically meaningful output–in particular by paying attention to the tuples’
timestamps. The goal is to enable a time-consistent view on the modeled application
scenario. This means that each output tuple consists of data which match the input
tuples’ timestamps as closely as possible. Consider the example stream data of Figure
7.8. There, two data streams of different sensors have to be joined. The temperature

0

200

400

600

800

1000

 1 1.5 2 2.5 3 3.5 4
150

200

250

300

350

400

450

500

550

pr
es

su
re

 /
ba

r

te
m

pe
ra

tu
re

 /
de

gr
ee

 C
el

si
us

time / s

pressure stream
temperature stream

0

200

400

600

800

1000

 1 1.5 2 2.5 3 3.5 4
150

200

250

300

350

400

450

500

550

pr
es

su
re

 /
ba

r

te
m

pe
ra

tu
re

 /
de

gr
ee

 C
el

si
us

time / s

pressure stream
temperature stream

transformed temperature stream

(a) continuous streams with
extremely different tuple timestamp

distance (and data rate)

(b) create temperature stream tuples
for each tuple contained in the pres-
sure stream

Figure 7.8.: Sync Join Motivation

data stream contains only two tuples per second, whereas the pressure stream consists of
about 1,000 tuples per second. The join’s goal is to output triples containing a timestamp
as well as an attribute instance value from both streams. If one does not want to lose
data stream details, the result production should be oriented towards the stream with
the higher tuple density (the pressure stream in the example). For that reason, the
intermediate (missing) values of the temperature data stream are obtained using the
resample operator. Then, the pressure and the temperature values are ’paired’ and the
result can be returned.

The general idea is to only include those attribute values in the result tuple which
were produced at the same point in time. If one of the input streams cannot contribute
data for that time point, two possibilities arise: Following inner join semantics, no result
tuple is produced during the gap of one input stream. Instead, a punctuation message
is created and written to the output stream.

Following the (full) outer join semantics, an output tuple will be produced but the
missing attribute values are marked as NULL values. If neither of the partial streams
contributes any data, the output is terminated by a punctuation messages until new
input data arrive.

89

7. QStream Operators

The sync join operator Osync−join : (f
Ŝ
, f

Q̂content
, β) has a mode and a predicate as

input parameters: β = (mode ∈ {INNER,OUTER}, predicate). The mode parameter
controls the inner/outer join procedure and the predicate reflects a join predicate which
the sync join applies in addition to the timestamp comparison. The join works symmet-
rically on the basis of the partial streams SP

a,k ∈ Sa (1 ≤ k < |Sa| − 1) and SP
b,l ∈ Sb

(1 ≤ l < |Sb| − 1). In general, the number of partial streams contained in each of the
input streams is greater than one. This extends the sync join to an n-nary join between
a number of n = |Sa| − 1 + |Sb| − 1 partial streams with arbitrary stream classes.

An additional goal of the sync join is to keep the stream classes of each partial stream
in the result. The only exception here is that–if partial event streams are involved in the
sync join and the inner join mode is chosen–all other partial join streams (class CS or
DS) change their classes to ES with tuples only defined at the timepoints of the tuples
of the involved event partial stream.

Functional Description

The sync join procedure is divided into four consecutive steps, which are illustrated in
Figure 7.9. After a short overview, each of the steps will be described individually.

Figure 7.9.: Sync Join Processing Steps

1. Scan determines the timestamp candidates of the result stream by considering
all partial input streams. The new minimal timestamp distance ∆T ′ is obtained
based on the minimum timestamp distance of both input streams.

2. The transformation step pushes the partial stream either through the helper
operator resample or through reconstruct–depending on whether the partial input
streams are continuous or discontinuous. The goal here is to create all attribute
values of all partial streams according to the result timestamp candidates acquired
in the previous step. The exceptions are the event partial streams–they do not
allow tuple reconstruction.

90

7.2. Stateful Operators

3. Thereafter, the transformed partial streams are merged into the result stream by
paying attention to the inner/outer join mode, to the new minimum timestamp
distance, and to the punctuation messages which may be included into the stream.

4. The probe step finally filters the join result following a user-given join predicate
on another attribute than the timestamp. The probe step complies with the filter
operator which is discussed at the end of this chapter.

The functional description of the sync join is given as

f
Ŝ
(Ŝa, Ŝb) := Ŝ′

:= fprobe(fmerge(ftrans,1((fscan(Ŝa, Ŝb))1, ..., (ftrans,x+y(Ŝa, Ŝb))n)))

The transformation functions of the individual steps are now described in detail. Note
that the appropriate program components for scanning, transforming, merging and prob-
ing are pipeline-capable: they continuously read input data and continuously produce
intermediate and final results respectively.

Scan Step

The goal of the scan step is to acquire timestamp information of all partial input streams
for creating intermediate tuples during the following transformation step. The scan
function

fscan : (Ŝa, Ŝb) 7→ (X1, ...,Xw , ...Xn)

takes two stream descriptors Ŝa and Ŝb as input and creates a number of n intermediate
results Xw. Such an intermediate result Xw(SP

w , ew, cw,∆T,∆T ′, SeqTS) consists of a
partial stream SP

w of one of the source streams, the attribute ew and the stream class cw

(both of which belong to the corresponding source attribute), the minimal timestamp
distance ∆T of the respective source stream, the timestamp distance ∆T ′ of the join
result stream, and finally, a list of timestamp candidates SeqTS of the join result.

The procedure of fscan is the following: It iterates over all partial input streams SP
w

and considers each occurring timestamp as a result timestamp candidate by appending
it to sequence SeqTS. The result stream’s minimum timestamp distance ∆T ′ is simply
determined as

f
Ŝ,∆T

(∆T Sa,∆T Sb
) = min(∆T Sa ,∆T Sb

)

Note that ∆T ′ is determined only on the basis of the input meta data instead of the
actual stream tuple timestamps. Tuple timestamps of the different partial streams may
be closer together but the second-to-next merge step considers them to be equal within
a time span of ∆T ′. Thus, the sync join result stream will definitely not contain tuples
with timestamps closer than ∆T ′.

91

7. QStream Operators

Transformation Step

During the transformation step, each partial stream SP
w is transformed using the pa-

rameters SeqTS, ∆T and ∆T ′, which were provided by the previous scan step. When
doing so, all tuples which may potentially be useful (which may potentially find a ’join
partner’ with regard to the join predicate) are created for the consecutive merge step.

The transformation function ftrans : Xw 7→ Yw maps each intermediate input item
Xw to output items Yw (S′P

w , ew, cw,∆T ′) by changing the partial stream’s content in
terms of creating intermediate tuples. The partial stream S′P

w follows the timestamp
candidates SeqTS and the new minimal timestamp distance ∆T ′. The input partial
stream’s schema ew and stream class cw are only passed by. Depending on cw, the
transformation step shows different behavior:

ftrans(S
P
w , ew, cw,∆T,∆T ′, SeqTS) :=

S′P
w , ew, cw,∆T ′ | S′P

w =

resample(SP
w ,∆T,∆T ′) if SP

w |=C CS
reconstruct(SP

w , SeqTS) if SP
w |=C DS

— if SP
w |=C ES

If SP
w is a continuous stream, the required intermediate tuples are created using the

resample helper operation. This ensures that the partial stream’s class stays the same
when interpolating additional tuples. The resampling factor p

q
is determined using the

old and the new minimum tuple distance: p
q

equals the pruned fraction of ∆T
∆T ′ .

If SP
w is discontinuous, additional DS tuples are created following the timestamp

sequence SeqTS by using the reconstruct helper operator.

For event streams (SP
w |=C ES) no tuples must be reconstructed because no attribute

instance value is valid between two tuples of consecutive timestamps.

Merge Step

During the merge step, the partial streams are combined following either the inner or
the outer join semantics. Thereafter, it constructs the result stream descriptor.

The merge function fmerge takes a number of n intermediate items Yw containing

elements of the form (S′P
w , ew, cw,∆T ′) as input. It produces one result stream denoted

by the stream descriptors Ŝ′(S′, E′, C ′,∆T ′), where S′ stands for the merged result
stream, E′ and C ′ denote the result streams’ schema and stream type, respectively, and
∆T ′ is for the new minimal tuple timestamp distance:

fmerge((Y1, ..., Yw, ..., Yn),mode) := (S′, E′, C ′,∆T ′)

Result stream: The result stream S′(T1, ..., Tj , ..., Tn) contains tuples Tj where a tuple
Tj(a1,j , ..., an,j) may be constructed depending on the occurrence of a continuous partial
stream within one of the source streams Sa and Sb respectively. The reason for the

92

7.2. Stateful Operators

dependency on continuous partial input streams is that–if a continuous partial stream
exists–its timestamps must stay equidistant due to its stream class and thus–during
the sync join process–other partial streams’ tuples have to be adapted to the existing
timestamps of the continuous partial stream. Therewith, QStream accomplishes its
implicit goal of retaining the source stream characteristics as much as possible. The
merge step may work

1. asymmetrically, based on a continuous stream: If at least one continuous
partial stream SP

w is involved, take the timestamp from each of its tuples as times-
tamp a1,j of the potential result stream tuple Tj.

Then, ’wait’ for tuples from the other partial streams for the time interval [a1,j , a1,j+
∆T ′).

If a tuple from another partial stream SP
w (1 ≤ w ≤ n) arrives within that interval,

set aw,j of the result tuple Tj to its attribute value.

If no tuples from other partial streams SP
w with a timestamp in [a1,j , a1,j + ∆T ′)

exists and an outer join is to be applied (mode = OUTER), insert the value NULL
as aw,j of Tj . Otherwise, if an inner join is required (mode = INNER), throw
away the prepared result tuple Tj and only output a punctuation message. Repeat
the procedure with the next tuple from the selected partial continuous stream.

2. symmetrically, if no continuous stream is involved: If no continuous partial
stream is involved in the join, take the timestamp of each arriving tuple as the
timestamp a1,j of the potential result stream tuple Tj .

Then, wait for tuples from the other partial streams for the time interval [a1,j , a1,j+
∆T ′). Note that not more than one tuple per partial input stream can occur
within ∆T ′, as ∆T ′ was selected to be the minimum of both input streams. If a
gap is contained in one of the input streams, it is recognized by the occurrence of
punctuation messages.

Proceed as in the former case, in dependence on whether or not a tuple from each
partial stream has arrived (regarding the inner/outer join mode and regarding the
handling of punctuation message).

After the result tuple has either been written to the result stream or thrown away,
take the tuple with the next timestamp (no matter from which partial stream of
S′) and repeat the procedure.

The result of the merge step is a pre-final stream descriptor Ŝ′ which still has to be
probed using the filter predicate (next step). The final schema E′ as well as the final
stream type C ′ are already assigned here:

Result schema: The resulting schema E′(e1, ..., ew, ...en) is a sequence of the single
attributes with ew corresponding to the appropriate attribute of the partial stream from
either Sa or Sb.

93

7. QStream Operators

Result stream type: The result stream type C is determined on the basis of the former
classes of the individual partial streams. If an outer join was applied, the stream classes
do not change and C = (c1, ..., cw , ..., cn) with cw corresponding to the appropriate stream
class of the partial stream from either Sa or Sb. For an inner join, two cases must be
distinguished:

• Only continuous and discontinuous partial streams have been involved: The stream
classes of all partial streams remain continuous and discontinuous, respectively.

• Event partial streams are involved: As these partial streams could not be trans-
formed to contain more tuples, the result stream’s tuples are restricted to the event
stream’s tuples at maximum. Thus, the stream class of other participating par-
tial streams–no matter if continuous or discontinuous–changes to ES as only the
required amount of attribute values is ’picked out’ of them for merging.

Probe Step

During the probe step, the function fprobe : (Ŝ′, predicate) 7→ Ŝc applies a user-given
join predicate to the result stream descriptor:

fprobe(Ŝ
′, predicate) := Ŝc(S

′′, E′, C ′,∆T ′)

The stream S′′ is built from S′ by filtering out all tuples which do not follow the join
predicate predicate. The resulting and final stream descriptor is denoted as Ŝc

Non-Functional Operator Description

Based on the content-based quality description of the input stream descriptors Ŝa and
Ŝb, the content-based result quality descriptor Q̂content(F, I) is determined.

Signal frequency F : The signal frequency is not reduced by the sync join operator.
The result stream contains signal frequencies which are as high as the signal frequencies
contained in its input streams. Nevertheless, the probe step at the end of the sync join
procedure may have dropped individual tuples, but the probe step semantics comply
with the filter operator and thus, the arising gaps do not reduce the signal frequencies
by definition. For the result stream, the minimum of both input signal frequencies FSa

and FSb
is assigned as lower bound.

F ′ = min(FSa , FSb
)

Inconsistency I: The inconsistency is increased only by the merge step. The amount
of increase depends first, on the inconsistencies ISa and ISb

of the source streams and
second, on the duration which the merge step waits for tuples of the individual partial
streams to arrive (this is the time ∆T ′). The partial streams’ tuples of this time span
are furtheron represented by only one new tuple with one timestamp assigned - this is

94

7.2. Stateful Operators

the reason for the inconsistency increase, which equals the new minimum tuple distance
∆T ′.

I ′ = ISa + ISb
+ ∆T ′

Figure 7.10 illustrates the upper bound of the inconsistency increase, simplified for
the merge of two partial streams SP

u and SP
v originated from the source streams Sa and

Sb, respectively. The tuples Tu(tu, au) and Tv(tv, av) of the partial streams SP
u and SP

v

are selected to be joined. The tuples’ timestamp difference is ∆T ′ = tv − tu.

Figure 7.10.: Inconsistency Propagation for Sync Join

Operational Description

For the sync join, three different components are proposed to work in parallel. One for
scanning and transforming each of the two input streams and one for the merge and the
probe step together. The reason lies with the different processing speed requirements
(in terms of periodicity) of the two input streams. The first and the second component
(scanning and transforming) incorporate either the execution of the resample or the
reconstruct operator–depending on the partial input streams’ classes. The whole proce-
dure works pipeline-based. The independently running components require individual
operational descriptions. First, the operational description for components for scanning
and transforming are given as

ΦOresample
= (bia, boa, ta, Pa, sa)

= (1,
p

q
, t, P, 2 · L)

= (1,
∆T

∆T ′
, ta, Pa, 2 · L)

and

95

7. QStream Operators

ΦOreconstruct = (bib, bob, tb, Pb, sb)

= (1, boreconstruct, tb, Pb, 2)

The number of average output tuples bob is based on statistics. It depends on the
timestamp characteristics of the respective other stream. Due to the fact that Oreconstruct

may only insert tuples (no deletions), bob will be greater or equal to one.
Second, the component for merge and probe has to read two input streams and is

described as

Φ = (bia, bib, boc, tc, Pc, sc)

= (1, 1, bomerge−probetc, Pc, 2)

The merge-and-probe component reads the transformed input streams tuple by tuple
and tests whether or not their tuple timestamps match (whether they are within a time
span of ∆T ′

2 at maximum). Therefore, it only has to store the two input tuples of the
respective input streams (sc = 2).

The overall join selectivity (figuratively speaking) is influenced first, by the timestamp
characteristics of the two input streams, second, by the input stream classes (CS, DS
or ES), and third, by the selectivity of the join predicate.

7.2.3. Sampling

QStream proposes the sampling operator for probabilistically dropping stream tuples.
It implements the Stratified Random Sampling technique ([Coc77]). There, a number of
N input tuples (population) are read and n of them (randomly chosen) are passed by.
The sampling operator Osampling(fŜ

, f
Q̂content

, β) requires the population size N and the
number of tuples, n, to forward them as input parameters: β = (n,N).

Functional Description

The sampling operator, changes the stream’s content as well as the stream type using
the transformation functions f

Ŝ,S
and f

Ŝ,C
respectively.

f
Ŝ
(Ŝ) := (S′, E,C ′,∆T | f

Ŝ,S
(S) = S′ , f

Ŝ,C
(C) = C ′)

The stream schema E and the minimum timestamp distance ∆T are passed by without
being changed.

Result stream: The stream content transformation function f
Ŝ,S

: S 7→ S′ decides

which tuples T ′
j of the input stream S will be written to the output stream S′. Formally,

f
Ŝ,S

can be described as follows:

96

7.3. Stateless Operators

f
Ŝ,S

(S((T1, ..., TN), (TN+1, ..., T2N), ..., (T(x−1)N+1 , ..., TxN)), n,N) :=

((T ′
1, ..., T

′
n), (T ′

n+1, ..., T
′
2n), ..., (T ′

x−1, ..., T
′
xn)) |

T ′
j ∈ {TyN+1, ..., T(y+1)N } ∧ y =

⌊
j

n

⌋

+ 1

From the tuples of each population (T(a−1)N+1, ..., TaN) with (1 ≤ a ≤ x), a sample
T ′

a−1, ..., T
′
an is taken. Thereby, each of the result tuples T ′

j must be equal to one of the
N tuples of the appropriate population {TyN+1, ..., T(y+1)N } of the source stream.

Result stream type: The stream class of each partial input stream changes to an event
stream ES because the temporal relationship of consecutive tuples gets lost if tuples are
arbitrarily discarded:

f
Ŝ,C

(C) := (ES, ..., ES)

The sampling operator does not need to consider (forward or create) any punctuation
messages, because it only outputs event streams. For ES, it is implicitly assumed that
a ’gap’ occurs after each tuple.

Non-Functional Description

The signal frequency cannot be propagated any longer, as it can only be assigned to
continuous (partial) streams, and during sampling, the class of all partial input streams
is changed to ES. In comparison, the inconsistency does not change as no tuples are
merged and no timestamps are tampered with:

I ′ = I

Operational Description

The resample operator reads the input tuples in batches; each batch contains N tuples
(bi = N). Then, within each period, a number of n tuples is written to the result stream
(bo = n). In total, N tuples need to be stored in internal memory units:

Φ = (bi, bo, t, P, s)

= (N,n, t, P,N)

7.3. Stateless Operators

The operator repertoire of QStream is completed by the stateless operators filter (Ofilter)
and projection (Oprojection). Both are described within the following section.

97

7. QStream Operators

7.3.1. Filter

The filter operator Ofilter(fŜ
, f

Q̂content
, β) applies a user-given predicate to the attribute

values of the stream tuples. The user-given parameter is the filter predicate: β =
(predicate).

Functional Description

The content transformation f
Ŝ,S

drops tuples which are not conform with the predicate:

f
Ŝ
(Ŝ, predicate) := (S′, E,C,∆T | f

Ŝ,S
(S) = S′)

The schema E and the minimum timestamp distance ∆T are not changed. Further-
more, the stream type C also remains unchanged by definition because–if the gaps do
not occur very frequently–the stream class can still be assigned to the remaining stream
fragments. Otherwise, if the original attribute value behavior is not clear any longer
due to frequents gaps, the class of continuous or discontinuous partial streams could be
changed to ES. The problem there is that one must know the stream behavior (or the
gaps, respectively) over a longer time period to reason properly.

Result stream: The stream content transformation function f
Ŝ,S

: S 7→ S′ applies a
filter predicate to all attribute values contained in the tuples of S. If the predicate
evaluation delivers true, the tuple passes by. Otherwise, it is dropped. In case of the
latter, a punctuation message TP is inserted at the time the first tuple is dropped (Figure
7.11). The end of the gap is implicitly signaled by the occurrence of the next regular
stream tuple.

Figure 7.11.: Filter Operator Creating a Punctuation Message

A formal description of the content transformation is given as follows:

f
Ŝ,S

(S(T1, ..., Tj , ..., Tn), predicate) :=

Tj if eval(Tj , predicate) = true
TP if eval(Tj , predicate) = false ∧

eval(Tj−1, predicate) = true ∧
∃i(1 ≤ i ≤ m) : SP

i |=C (CS ∨ DS)
∅ otherwise

98

7.3. Stateless Operators

Non-Functional Description

The signal frequency contained in continuous partial streams is not reduced, even though
tuples which do not conform to the filter predicate have been dropped.

F ′ = F

The motivation is similar to the partial stream classes, which do not change by default:
If the remaining stream fragments become too short, the partial stream’s class may be
explicitly changed to ES and thus, no signal frequency property can be assigned any
longer.

Furthermore, no tuples are merged and no timestamps are tampered with. The
stream’s inconsistency remains unchanged, although the tuples which were responsi-
ble for the maximum inconsistency may have been dropped (the inconsistency property
was not stored individually for each stream tuple and thus, it cannot be decreased if
individual tuples are removed).

I ′ = I

Operational description: The filter operator reads the input stream tuple by tuple
(bi = 1). The filter’s selectivity determines how many tuples are written to the output
stream. Thus, bo has to be obtained from statistics.

OOP := (bi, bo, P, t, s)

:= (1, bofilter, P, t, s)

7.3.2. Projection

The definition of the projection operator Oprojection(f
Ŝ
, f

Q̂content
, β) reflects the semantics

of the projection operator Π of the relational algebra. It transforms the tuples to a
state conforming to the projection goal given as parameter β = (attributes(e1, ..., ex)).
Thereby, partial streams whose attributes are not contained in the attribute list are
deleted.

Functional Description

The content transformation function f
Ŝ,S

removes attributes which are not contained in
the projection goal attributes. Thereby, the stream’s schema E and the stream’s type
C are also changed by the transformation functions f

Ŝ,E
and f

Ŝ,C
respectively. The

minimum timestamp distance ∆T remains unchanged:

f
Ŝ
(Ŝ, SeqTS) := (S′, E′, C ′,∆T | f

Ŝ,S
(S) = S′ , f

Ŝ,E
(E) = E′ , f

Ŝ,C
(C) = C ′)

99

7. QStream Operators

Result stream: The stream content transformation function f
Ŝ,S

: S 7→ S′ passes by
the timestamp attribute together with the attributes listed in attributes. A description
is given as follows:

f
Ŝ,S

(S, attributes) := [SP
1 , ..., SP

i , ..., SP
m | ∀i(1 ≤ i ≤ m) :

SP
i |=E E(e1, e2) ∧ e2 ∈ attributes]

Punctuation messages do not need to be considered by the projection operator.

Result schema: The resulting stream schema equals the original schema, except for
the attributes which are not in the attributes list.

f
Ŝ,E

(E(e1, ..., em), attributes(ex, ..., ey)) := (e1, ex, ..., ey |ex, ..., ey ∈ attributes)

Result stream type: The resulting stream type is the sequence of stream classes of the
remaining partial streams.

f
Ŝ,C

(C(c1, ..., cm), attributes(ex, ..., ez , ..., ey)) := (cx, , ..., cz , ..., cy |∀z(x ≤ z ≤ y) :

SP
z |=C cz ∧

SP
z |=E ez ∧

ez ∈ attributes)

Non-Functional Description

The signal frequency of the remaining part of S is not reduced as only certain partial
streams are removed.

F ′ = F

No tuples are merged and no timestamps are tampered with. The stream’s inconsis-
tency remains unchanged.

I ′ = I

Operational Description:

Similar to the filter operator, the projection operator reads the input stream tuple by
tuple (bi = 1) and writes the projected tuples immediately to the output stream (bo = 1).

Φ := (bi, bo, P, t, s)

:= (1, 1, P, t, s)

100

7.4. Summary

7.4. Summary

Finally, an example query is used to illustrate the standing query modeling aspects. A
procedural query definition is given by Figure 7.12.

Figure 7.12.: Example Standing Query Q

The query Q contains a sync-join and an aggregation operator. The input streams
are event streams and contain tuples of the form (tsa, a) and (tsb, b), respectively. The
minimum timestamp distance is ∆Ta = 1s and ∆Tb = 2s. The stream descriptors are

Ŝa(Sa, (tsa, a), (ES), 1s)

Ŝb(Sb, (tsb, b), (ES), 2s)

Furthermore, the content-based quality descriptors Q̂content,a(Fa, Ia) = (−, 100ms)
and Q̂content,b(Fb, Ib) = (−, 75ms) belong to the stream descriptors Ŝa and Ŝb, respec-
tively. A signal frequency property F cannot be assigned to the input streams due to
the event stream characteristics.

The dataflow through the operators is described by the edges of the DAG. They are
annotated in Figure 7.12. There are

E1 < −, Osync−join >

E2 < −, Osync−join >

E3 < Osync−join, Oagg >

E4 < Oagg,− >

Formally, the standing query Q is defined as

Q({Osync−join, Oagg}, {E1, E2, E3, E4})

Within this example, the individual operator descriptions are

Osync−join(f
Ŝ
, f

Q̂content
, β) , β = (mode) = (OUTER)

Oagg(fŜ
, f

Q̂content
, β) , β = (twin, f, (fagg,1fagg,2)) = (10s, 1, (AV G,AV G))

The sync join operator reads two input streams Sa and Sb and performs an outer join.
Thereafter, the aggregation operator calculates the average values of a and b within a
sliding window of 10s. The result stream descriptor is denoted as Ŝc and is of the form

101

7. QStream Operators

Ŝc(Sc, (ts, a, b), (DS,DS), 10s)

The stream content has been changed to Sc by the query. The result schema is Ec and
contains the timestamp as well as the attributes a and b. Both remaining partial streams
are discontinuous due to the aggregation operation; thus, the stream type changes to
(DS,DS).

The output of the sync join operator comes with a minimum timestamp distance
of ∆Tsync−join = min(∆Ta,∆Tb) = 1s. The consecutive aggregation operator re-
evaluates the join window after every 10 seconds, which changes the timestamp distance
to ∆Tagg = Tre−eval = 10s. The resulting inconsistency of the sync join operator is
calculated as

Isync−join = Ia + Ib + ∆Tsync−join = 100ms + 75ms + 1000ms = 1175ms

The aggregation operator increases the stream inconsistency further, which leads to a
final inconsistency value of

Iagg = 2 · Isync−join + twin = 2 · 1175ms + 10000ms = 11175ms

Thus, the resulting content-based quality descriptor is Q̂content(F, I) = (−, 11175ms),
meaning that the attribute instance values a and b of the result stream do not necessarily
match their result timestamp ts exactly; the appropriate attribute values may have been
valid within the interval of [ts − 11175ms, ts + 11175ms].

To summarize, all QStream operators are listed in Table 7.3 along with the user-given
parameters and with the statistics they require. The QStream operators are QoS-aware
and propagate the QoS metrics whenever possible. This allows for QoS negotiation by
considering the resulting partial streams and the user-given QoS requirements. Fur-
thermore, the operational description Φ provides the basis for resource calculation as it
includes the internal operator resource requirements as well as the operator’s input and
output characteristics.

102

7.4. Summary

Operator Parameters Statistics Resulting
Signal Fre-
quency

Resulting In-
consistency

helper

Oresample p, q min(F, p
∆T ·q

) 2 · I + (q−1)·∆T
p

Oreconstruct SeqTS,∆TSeqTS boreconstruct — I

stateful

Oagg twin, Tre−eval,
(fagg,1, ..., fagg,x)

min(F, 1
Tre−eval

) 2 · I + twin (not
for CS average
aggregation)

Osync−join mode, predicate boreconstruct,
bomerge−probe

max(FSa , FSb
) ISa +ISb

+∆T ′

Osampling N,n — I

stateless

Ofilter predicate bofilter F I

Oprojection attributes(e1, ..., ex) F I

Table 7.3.: Overview of QStream Operators

103

7. QStream Operators

104

8. Integrated Cost Model and Scheduling
Approaches of QStream

This section covers the QStream resource calculation approach for individual operators
and queues as well as for whole standing queries. First, Section 8.1 introduces the
extensions of the model of jitter-constrained periodic streams, which is denoted as JCP+.
Thereafter, Section 8.2 presents different alternatives for scheduling a standing query
instance and for trading off required resources for Quality-of-Service. The last part
(Section 8.3) discusses the overall steps of the QStream resource calculation. It extends
the generic resource calculation approach from Section 8.1 by including the alternative
scheduling strategies from Section 8.2. Thus, final reasoning about resources required
by a standing query instance is made possible.

8.1. The JCP+ Cost Model

The QStream resource calculation approach is based on the model of jitter-constrained
periodic streams (JCP, [Ham97]), which attempts to obtain the inter-operator FIFO
buffer as well as the delay time a producer operator needs to start ahead of its connected
consumer operator; the eventual goal in this approach is to enable a continuous data
flow. To extend this very generic approach, the specifics of the QStream application
scenario are described in Section 8.1.1. Then, in Section 8.1.2 JCP is extended to
JCP+ by considering the calculation of specific resources and QoS metrics based on the
data stream application requirements. A basic idea of that task was already given in
[BSLH05]. In the last part, in Section 8.1.3, the cost approach is generally extended
from a binary operator-operator relationship to a complete standing query instance.

The first purpose of JCP+ is to obtain resources which can be reserved at a resource
manager of the operating system (OS) underneath. The resource calculation results
must be compliant with the OS APIs, and the resulting QoS values must be suitable
for negotiating user-specific requirements. For the sake of simplicity, FIFO buffer sizes
as well as internal operator memory are always given in ’number of tuples.’ In prac-
tice, these values can easily be converted into bytes considering each stream’s schema
information. Furthermore, delay and processing times are given in seconds and CPU
utilization is described in percent.

The second and much more important purpose of JCP+ is to determine resource values
that are sufficient to perform the planned query evaluation task: the lowest upper bound
based on the input parameters is needed to cover the worst case and to provide QoS
guarantees. Reserving resources without them being used would unnecessarily result in
the rejection of standing queries or in the negotiation of a lower QoS than possible.

105

8. Integrated Cost Model and Scheduling Approaches of QStream

To summarize, the JCP+ model provides the worst-case resources in terms of memory
and processing time / CPU utilization as well as the result QoS in terms of output delay.

8.1.1. Cost Model Assumptions

The calculation is divided into an operator-based and a stream-based part. The former is
a rather trivial issue and consists of an operator’s internal memory s and the processing
time t, which an operator requires periodically; both are given by the operational param-
eter set Φ. Under the assumption of a constant average data rate, the operator-based
calculation part simply consists of accumulating the costs required for the operators
involved.

The stream-based calculation consists of determining intermediate buffer sizes as well
as delays between the individual operators. Therefore, atomic buffer access of producer
and consumer is assumed (no explicit buffer access time).

Extending the Runtime Description by Jitter Tolerance

To perform calculations for realistic application scenarios, QStream operators are allowed
to jitter with regard to their data production process in the processing time t and in the
amount of produced output data bo.

The time jitter is motivated by the fact that tuples will not be disseminated by a
producer at equidistant points in time. Within the sensor streaming scenario, the sensor
(as the first producer) may send the measured values a bit too early or too late (regarding
the assumed constant data rate). Besides, the task of processing a fixed number of input
tuples is not completely deterministic regarding time.

A volume jitter is caused by a varying number of produced tuples per run (bo is only an
average value). Depending on the input data and on indeterministic operator functions,
the operator may produce too many or too few tuples.

Generally, the amount of jitter (time as well as volume) is caused by changing en-
vironmental conditions in terms of input data streams. It is impossible to make a
QoS-guarantee DSMS completely resistant to this influence as environmental changes
cannot be foreseen in each case. Therefore, a pragmatic distinction between micro jitter
and macro jitter is necessary. Micro jitter is included in the resource calculation and
thus subject to JCP+. For that amount of jitter, the QStream DSMS can give guaran-
tees regarding time-based QoS requirements. In comparison, resources for covering the
macro jitter are not calculated by JCP+ and are thus not included in QStream’s a-priori
resource reservation.

Furthermore, the temporal scope of micro and macro jitter is different: Macro jitter
rather refers to long-term changes of the input data (trends, periodic behavior). In con-
trast, daytime changes of acquired sensor data belong to macro jitter, whereas network
delays or DSMS-specific processing time jitter are classified as short-term.

Considering micro jitter: We assume that the maximum deviation in time and in size
of the micro jitter is known. Furthermore, the size jitter is a cumulated value. It means

106

8.1. The JCP+ Cost Model

that–if the operator has produced too much data during some of its runs–the operator
has to produce fewer data during some of its other runs. Otherwise, the intermediate
data rate would not be constant on average. In comparison, the maximum time jitter is
maintained as a cumulated and as an absolute value. The concrete scheduling strategy
determines which jitter characteristics to use.

In order to consider micro jitter by JCP+, the operational description

Φ(bi1[, bi2], bo, P, t, s)

is extended to cover a time jitter regarding the average processing time t as well as a
size jitter regarding the output batch size bo:

The triple (τ ⊥, τ ⊤, τ ⊕) denotes the time taken by an operator when finishing a
single production process too early (τ ⊥) and too late (τ ⊤), respectively. τ ⊕ stands for
the cumulative maximum processing time, which may be ’dammed up’ at the operator.
In the same manner, the parameters (σ ⊖, σ ⊕) stand for the minimum and maximum
cumulative volume jitter. The extended operational description is

Φ∗(bi1[, bi2], bo, (σ
⊖, σ ⊕), t, (τ ⊥, τ ⊤, τ ⊕), P, s)

The operational parameters bi, bo and s are supposed to be known from the inter-
nally used algorithms. The other parameters–and sometimes also bo–depend on system
characteristics (hardware capabilities) or on input data (data distribution). Therefore,
an exhaustive set of statistics is supposed to be available which includes the processing
time t and its time jitter (τ ⊥, τ ⊤, τ ⊕) as well as the volume jitter (σ ⊖, σ ⊕). Finally,
the period length P is subject to the standing query instance evaluation speed, which is
obtained in conjunction with the resource calculation and QoS negotiation.

Chapter 10 extensively explains the functioning of the QStream statmon component,
which is responsible for gathering and maintaining operator instance and data stream
statistics. Resource calculation for covering micro jitter within JCP+ is topic of Section
8.1.2. During this process, the amount of required resources generally increases with the
size of the considered jitter.

Considering macro jitter: In comparison to micro jitter, macro jitter is intentionally
not covered by the JCP+ calculations and thus not included in the worst-case resource
reservation. Macro jitter is considered on a ’higher’ level of standing query evaluation:
If macro jitter in terms of longlasting changes occurs, the reserved resources for the
standing query evaluation are not sufficient any longer and the DSMS signals exceptions
in terms of buffer overflow or underrun. Thus, from time to time the query evalua-
tion process must be adapted to new environmental situations. This includes new QoS
negotiation as well as new resource reservation.

As a result, the principle of ’worst-case resource reservation’ is weakened because it
only holds for micro jitter. It follows that it is impossible to give any QoS guarantees
regarding the macro jitter, because the macro jitter’s reason lies in the unforeseeable
input data stream. The issue of managing macro jitter through DSMS adaptation is
topic of Chapter 9.

107

8. Integrated Cost Model and Scheduling Approaches of QStream

Standing Query Evaluation Speed

A standing query requires a fast, continuous and (with regard to QoS-guarantee sys-
tems) also a predictable evaluation. Moreover, a basic requirement of on-the-fly query
evaluation is to keep up with the arriving data.

Connecting application time with real time: Within QStream, it is assumed that the
time information within the tuples’ timestamp attributes is directly ’connected’ to the
ongoing system time. In other words, this means that–if two source tuple timestamps
differ by an amount of time x–these two tuples arrive at the DSMS with the same
distance x (disregarding network delays) and thus must be processed in that manner. It
is one of QStream’s characteristics to work in real application time. Fast or slow motion
as a kind of replay are not considered, only live data streams are.

Therefore, a standing query instance is scheduled for a fixed and pre-determined ex-
ecution speed. The push-based processing paradigm of stream processing systems is
resembled by pull-based (periodic) work of operator instances with all of them grace-
fully adjusted to the accurate speed.

The basis of the query evaluation speed is the data rate requirement Rmin given by
the user. It is part of the user’s quality requirement Req(Fmin, Imax, Rmin,Dmax). Here,
Rmin may either be given as an average or as a maximum value, depending on the data
rate scheduling strategies, which will be discussed in Section 8.2.

Determining operator instance period length and intermediate data rates: The data
rate requirement Rmin equals the output data rate of the last operator instance of a query.
The speed of all predecessor operator instances must be determined on that basis. The
operator instance speed is described by its period length P . The smaller the period
length, the more often the operator instance is executed and the faster the operator
instance processes the input data stream. A lower bound for P is given by the time t,
which is how long a run of the periodic operator work lasts. Obviously, t must be smaller
than P .

Based on the required result data rate Rmin of an operator instance and based on the
amount of data bo which OI produces during each of its periods, the period length P can
be calculated as P = bo

Rmin
. Then, the required input data rate R′

min of OI’s predecessor

can be determined by using the input batch size bi as R′
min = bi

P
. Thereby, the data

rate requirement Rmin is propagated upwards the standing query instance from the last
to the first operator(s) (through each operator path). This is illustrated in Figure 8.1.
Assume a result data rate requirement of 100T/s. The data rate reduction is given as
bo3

bi3
= 1

2 , bo2

bi2
= 2

5 and bo1

bi1
= 1

2 . Thus, input data rates of 200T/s, 500T/s and 1000T/s
are required for operators O3, O2 and O1 respectively.

With that concept, the required overall input data rate R∗
min for fulfilling Rmin can

easily be obtained individually for each operator path OP containing the operator in-
stances OI1, ..., OIn:

108

8.1. The JCP+ Cost Model

Figure 8.1.: QStream Data Rate Propagation Example

R∗
min =

Rmin
∏n

i=1
boi

bii

Here, bii and boi belong to the respective operator instance OIi and the ratio boi

bii
describes the data rate reduction of OIi. In case of join operators, each path from the
join input to source operators has to be considered separately.

Initial data rate adaptation: After R∗
min has been calculated, it must be adapted to

the data rate provided by the data source. QStream favors sensor input data gathered
by data acquisition hardware; thus depending on the peripheral devices, the adaptation
may be done in either of the following two ways:

1. Controllable data sources can be parameterized and adjusted by the DSMS.
Examples are Data Acquisition (DAQ) devices mounted locally. Such devices can
be initialized and controlled by the DSMS - i.e. the source data rate requirements
can be pushed up to the device and the QoS data rate requirements can be fulfilled
as long as the device (hardware) is fast enough. Controllable data sources may be
directly adapted to R∗

min.

2. A non-controllable data source sends its tuples independently from the require-
ments of the DSMS; the DSMS can only try to adapt to the source. Examples are
distributed motes1 or applications which just disseminate data in a broadcasting
manner. Supposing that the data source works independently (delivering data at
a rate of Rsource), the DSMS (QStream) has to be adjusted initially to the data
source properties.

In the case of non-controllable data sources, the adjustment has to be performed
within the DSMS. Three possibilities arise:

1. If Rsource equals R∗
min, obviously no adjustment is required.

2. If Rsource is smaller than R∗
min, there is no chance to meet the data rate QoS

requirements and QI must be rejected. Interpolating or reconstructing input tu-
ples using the respective helper operators is not a good choice at this point: Even

1small independently working hardware devices equipped with sensors and processing units

109

8. Integrated Cost Model and Scheduling Approaches of QStream

though the input data rate could be increased, this does not hold for the informa-
tion content and would thus not be beneficial in terms of QoS.

3. If Rsource is larger than R∗
min, a compensation operator is inserted between the

data source and the first operator of the appropriate path of QI.

The compensation operator’s task is to reduce the data rate by the factor
R∗

min

Rsource
. The

query example of Figure 8.2 differs from the previous example (Figure 8.1) in that it
has a higher data rate of the non-controllable source, which is Rsource = 2000T/s. The
data rate requirement of the first query operator remains constant at R∗

min = 1000T/s.
Thus, a compensation operator for reducing the data rate by one half must be inserted
between the data source and the first query operator.

Figure 8.2.: Insertion of a Compensation Operator for Data Rate Adjustment

Depending on the stream class of the source stream descriptor Ŝsource, different tech-
niques may be applied to accomplish the data rate reduction. For example, a sampling
operator Osample can be applied, Then, the sample operator’s parameters β = (n,N)

are set equal to the pruned fraction of
R∗

min

Rsource
.

QStream proposes to use the sampling operator only in case of event streams or if
the input stream’s attributes do not allow any aggregation. The reason is that the
sampling operator would not maintain the data stream characteristics of continuous and
discontinuous partial streams.

In case of continuous and discontinuous streams, the aggregation operator Oagg with
the AV G aggregation function (jumping mode) should be used for data source adjust-
ment instead of sampling. Due to the fact that QStream works in real application time,
the window length twin is set to the inverse of the required output data rate and the
data reduction factor f must be equal to the quotient of the source data rate and the
output data rate of the aggregation operator:

β = (twin, f, (fagg,1, ..., fagg,x)

=

(
1

R∗
min

,
Rsource

R∗
min

, (AV G, ..., AV G)

)

For continuous partial streams, a resampling operation is implicitly applied as a sub-
stitute to AV G. The resampling helper operator parameters β = (p, q) are equal to the
pruned fraction of Rsource

R∗

min
.

110

8.1. The JCP+ Cost Model

The insertion of a compensation operator changes the structure of the standing query
instance QI. Therefore, the standing query instance which results from the initial data
rate adjustment is furtheron denoted as QI∗.

8.1.2. Generic JCP+ Calculation

The calculation of resources and QoS is based on the operator instances’ behavior (peri-
odicity, run times, jitter in time and in size) and results, first, in an amount of required
intermediate buffer space B (resource value), and second, in the inter-operator start
delay d (QoS value).

Data Exchange Concept

A key concept regarding QStream’s data exchange is the continuous data flow through
the standing query instance. It means that the data exchange must not be blocking.
This is the basis of both, the original JCP cost model and QStream’s JCP+.

Therefore, the main focus at this point lies on the combination of two consecutive
operators (denoted as producer and consumer, or more formally, OIi and OIi+1; Figure
8.3). The producer periodically produces data and writes them to the buffer. The
consumer reads the data periodically from the buffer. The producer is assumed to start
its work earlier than the consumer (delay) to fill the buffer up to a certain level to ensure
that the appropriate amount of data is available for consumption. The basic requirement
for non-blocking behavior is that, on average, the output data rate of the producer equals
the input data rate of the consumer.

Figure 8.3.: Producer-Consumer Relationship Example

The intermediate buffer is required for two reasons: First, the read and write gran-
ularities of producer and consumer respectively have to be adjusted: For example, the
producer may write single tuples to the buffer whereas the consumer may always try to
read a batch of 10 tuples at once. In this case, the consumer would have to wait at least
10 times the producer’s period length until it can successfully read the first data from
the buffer.

111

8. Integrated Cost Model and Scheduling Approaches of QStream

The second reason for establishing a buffer is the considered micro jitter. There may
be phases of high activity as well as phases of rather low activity regarding the data
production process; both must be compensated by buffering data.

Describing the Operator Behavior by Traces

The behavior of a periodically running operator instance which consumes and produces
at a constant average data rate can easily be visualized with traces drawn in a processing-
time / data-volume diagram as illustrated in Figure 8.4(a) for a consumer operator.
The time-axis shows the elapsed processing time, whereas the amount of produced or
consumed tuples T is marked in direction of the y-axis.

(a) Operator instance (consumer)
works periodically

(b) Operator instance (producer)
works with jitter

Figure 8.4.: Operator Traces

The producer trace in Figure 8.4(b) extends the first diagram by annotating jitter of
OI in time and size. The dotted line is the real trace and the solid line is the optimal
trace, i.e. a trace without jitter in time or size. The difference between the two traces
in direction of the time-axis is the time jitter. The difference in direction of the y-axis
stands for the batch jitter.

If two operator instances (producer and consumer) are to be connected, the traces of
both can be plotted in one single diagram of the same style (Figure 8.5). The dotted
line is the trace of a producer, which produces on average one single tuple during each
period. There is a producer jitter in time and size. The solid line is the jitter-free trace
of a consumer which reads bii+1 = 2 tuples from the buffer at constant time intervals.
The traces are given for the case that both operator instances start working at time 0:
the consumer’s first action would be to read bii+1 = 2 input tuples, whereas the producer
would first process and then (after its processing time t) output boi = 1 tuple on average.

Obviously, the data exchange cannot work that way: To schedule the execution of
both operator instances precisely, one has to ensure that every time the consumer reads
a number of bii+1 tuples, these tuples are already available in the buffer to avoid blocking.

112

8.1. The JCP+ Cost Model

Figure 8.5.: Producer / Consumer Traces

Therefore, the consumer trace must be shifted to the right of the producer trace. This
amount of time–the required consumer delay d–is represented by the maximum distance
of the two graphs in direction of the time-axis. The maximum distance between the two
graphs in direction of the y-axis represents the minimum required intermediate buffer
size B. Both values are annotated in Figure 8.5.

Calculation Approach

In the first step, the delay and the buffer size are calculated without considering any jit-
ter. To obtain both values in an easy fashion, one makes use of two linear approximation
functions u(t) and l(t), which are shown as dotted lines in Figure 8.6.

Figure 8.6.: Approximations

Function u(t) describes the upper limit of the consumer trace, and function l(t) stands
for the lower limit of the producer trace. As lower bound, the delay d is determined as the
maximum difference of these two linear functions in direction of the time-axis, whereas

113

8. Integrated Cost Model and Scheduling Approaches of QStream

the minimum buffer size B is set to the maximum difference of the two linear functions
in direction of the y-axis.

The gradient of both linear functions u(t) and l(t) is the average data rate denoted as
r. To obtain the complete description of these linear functions, an additional point for
each function is required.

For the upper limit function u(t), the point P (t, y) = P (0, bii+1) is known, because at
time t = 0 the consumer starts to read a number of bii+1 tuples, yielding the function
u(t) = r · t + bii+1. For the lower limit function l(t), the point P (t, y) = P (ti+1, 0) is
used, where ti is the estimated run time of the producer obtained from OIi’s operational
description. The lower limit function is l(t) = r · t − r · ti. The delay may now be
calculated using the horizontal distance of the two functions (given by the distance
of the two functions’ null values) with Pi+1 being the period length of the consumer
operator:

d = t0,l − t0,u = ti + Pi+1 (8.1)

The distance u(t) − l(t) of two traces in the direction of the y-axis yields a lower
bound of the buffer size B, which can be calculated as follows (using the two functions’
intersection points with the y-axis):

B = y0,u − y0,l = bii+1 + r · ti (8.2)

In order to consider time and size jitter, the calculations are extended. The time jitter
is restricted to the absolute values τ ⊥ and τ ⊤ because saved execution time cannot be
effectively used in consecutive runs (due to the periodic operator work) and a working
time longer than the period length P is not allowed for the time being. The cumulative
time jitter τ ⊕ will be considered later together with the description of the particular
scheduling strategies in Section 8.2.1. In contrast to the time jitter, the size jitters σ⊖

and σ⊕ are always used as cumulative values. In the operator trace in Figure 8.7, each
vertex of the producer operator trace can be influenced by both kinds of jitter.

Figure 8.7.: Possible Occurences of Producer Jitter

114

8.1. The JCP+ Cost Model

Delay calculation: For delay calculation, only τ⊤ and σ⊖ must be considered to avoid
that the consumer tries to read data which has not yet been produced. The worst-
case assumption here is that the maximum jitter of τ⊤ (producer is too late) and σ⊖

(producer does not deliver enough data) occur at the same time, for example, at the
beginning of the data exchange (Figure 8.8). There, the operator trace l(t) passes into
l′(t).

Figure 8.8.: Jitter Accumulation for Worst-Case Delay

The distances of the functions u(t) and l′(t) are again the basis for the calculation of
d. For l′(t), one uses the fixed point P (t, y) = P (ti + τ⊤,−σ⊖), thus

l′(t) : y = r · t − (σ⊖ + r · (tOproducer
+ τ⊤)

The consumer is not allowed to jitter in any way, so u(t) remains unchanged, as

u(t) = r · t + bii+1

Thus, by determining the distances of the two linear functions with the producer trace
shifted to the maximum lower right position, one gets the following lower bound for delay
d (as an extension of Formula 8.1).

d = ti + τ⊤ +
bii+1 + σ⊖

r
(8.3)

Buffer size calculation: For buffer size calculations, τ⊥ and σ⊕ are important. Both
values require an increase of the buffer size to avoid overflow. The worst-case assump-
tion here is that the maximum jitters of τ (producer is too early) and σ⊕ (producer
produces too much data) occur at the same time, for example at the beginning of the
data exchange. Figure 8.9(a) depicts this situation.

In addition to the jitter values τ⊥ and σ⊕, the delay increment of the previous calcu-
lation step has to be factored in. A time jitter of τ⊥ + τ⊤ and a size jitter of σ⊖ + σ⊕

must be considered as shown in Figure 8.9(b). The overall intermediate buffer size B is
an extension of Formula 8.2 and can be calculated as

B =
⌈

bii+1 + σ⊖ + σ⊕ + r · (ti + τ⊥ + τ⊤)
⌉

(8.4)

The calculation of the final values of d and B has to be performed individually for
each producer-consumer-relationship of the standing query instance in order to obtain
the overall query resources. It is described in detail within the next section.

115

8. Integrated Cost Model and Scheduling Approaches of QStream

(a) Jitter accumulation for worst-case
buffer enlargement

(b) overall buffer-influencing jitter

Figure 8.9.: QStream Jitter Accumulation

8.1.3. JCP+ Calculation for a Standing Query Instance

JCP+ attempts to be an integrated cost and QoS calculation approach including the
overall resource requirements for a standing query instance QI∗ as well as the query
result QoS. Figure 8.10 is a generalization of Figure 8.3 and illustrates the necessary
extension of the calculation approach (Formula 8.3 and 8.4) for obtaining the overall
memory consumption M , the total delay D and the overall processing time requirements
C caused by QI∗.

Figure 8.10.: QStream Overall Resources

The buffer Bi as well as the delay di are associated with the i-th producer operator
OIi of the query instnce (1 ≤ i ≤ m).

Delay

For obtaining the final delay D of a standing query instance QI∗, the DAG spanned by
QI∗ has to be traversed. For each operator path OPj ∈ QI(1 ≤ j ≤ u), the processing
time ti and the delay di of all n operator instances OIi ∈ OPj (1 ≤ i ≤ n) has to be
accumulated:

∀OPj ∈ QI∗ : Dj =

n∑

i=1

(ti + di) (8.5)

The total delay is obtained by taking the maximum of all path delays Dj :

116

8.1. The JCP+ Cost Model

DQI∗ = maxu
j=1Dj

= maxu
j=1

n∑

i=1

(ti + di) (8.6)

If different operator paths have different total delays (this is the general case), the
sync join operators Osync−join at the branches of QI∗ are unable to produce the desired
result data. If the delay from the data source to the join operator of input tuples from
the two join input streams differs, the corresponding tuples rarely have a chance of being
joined as they arrive at the join in a time-shifted manner.

To overcome this problem, the tuples of the ’shorter’ join input path can be delayed
intentionally and directly before the join operator. The additional delay equals the delay
difference of the two join input delays. As result, the total delay Dj of all operator paths
OPj is the same:

DQI∗ = D1 = ... = Du (8.7)

In the example in Figure 8.11, three operator instances OI1, OI2 and OI3 are shown.
OI3 is a sync join operator and OI1 as well as OI2 are connected to one of the join’s
input. The path delay after OI1 is D1 = 100ms whereas the path delay after OI2 is only
d2 = 50ms. An additional 50ms delay is added after OI2 to ensure, that the respective
tuples from both input streams arrive at the same time at the join (D1 = D3 = 100ms).

Figure 8.11.: QStream delay adaptation for a standing query instance QI∗

Applying this delay adjustment, the standing query instance QI∗ does not need to
be changed structurally as only an intermediate delay is increased. Also, this second
adjustment does not conflict with the data rate adjustment of Section 8.1.1, as the extra
delay does not influence the data rates and period length of other operators.

117

8. Integrated Cost Model and Scheduling Approaches of QStream

Memory

The overall memory consumption of the adjusted query instance QI∗ consists of travers-
ing QI∗ and accumulating the internal memory si of all m operator instances OIi ∈ QI∗

as well as the outgoing FIFO queue sizes Bi:

MQI∗ =
m∑

i=1

(si + Bi) (8.8)

Processing Time

The overall processing time consumption C is also based on the traversation of the
query instance QI∗. The individual processing times of the operator instances are not
directly accumulated; only the relative utilization ti

Pi
caused by each operator instance

OIi is considered. It follows that processing time requirements can only be given for a
specific DSMS system environment as the individual processing times ti are based on
measurements of a specific system. The total average processing time requirement (in
percent) of QI∗ can be calculated as:

CQI∗ =

m∑

i=1

ti
Pi

(8.9)

In this context, the operators’ processing time jitters have not yet been considered.
The calculation of the overall processing time will later be adapted to each of the specific
scheduling strategies in Section 8.2.

To summarize, the resources have been considered in close relation to the Quality-of-
Service requirements of a standing query instance. The overall resource requirements
have to be tested against the system’s available resources and the result QoS (delay)
must be compared to the user-given QoS requirements.

Both, standing query instance resources as well as the associated QoS can be illustrated
in a time/data volume-diagram. As can be seen in Figure 8.12, three example operator
instances (sampling, filter and aggregation) are given along with their consumer and
producer traces. The FIFO buffer as well as the intermediate delay are implicitly given
by the distances between the operator traces of consecutive operators. Furthermore, the
input data rate, the result data rate and the appropriate delays are annotated. To fulfill
the QoS requirements, the ’final delay’ must match the delay QoS requirement and the
annotated ’result data’ rate must match the standing query’s data rate requirement.

8.2. Scheduling Strategies

Different possibilities exist for reserving the resources calculated with JCP+. The use of
the processing time t as basis for JCP+ calculation, for example, is not the only available
option; the sum of t + τ⊤ as the worst-case execution time could be used as well. As

118

8.2. Scheduling Strategies

Figure 8.12.: Integrated Resource Management

another example, the maximum source data rate could be used for JCP+ instead of
considering the average rate plus source jitter in time and volume.

Within the following subsections, a distinction is made between run time schedul-
ing (Section 8.2.1) and data rate scheduling (Section 8.2.2). Both aim at mapping the
JCP+ results to the operating system resource reservation API. In particular, the for-
mer handles different processing times as reservation basis, whereas the latter considers
alternative data rates for planning. In addition, Section 8.2.3 announces a general opti-
mization concept by considering microperiods.

The basis of scheduling the periodic operator work in QStream’s scheduling strategies
is Rate Monotonic Scheduling (RMS). It was described in the related work part of this
thesis. With RMS, all operators receive fixed execution priorities inversely proportional
to their respective period length. As a matter of fact, only one operator instance can
occupy the CPU at a time. In this regard, operator instances with high priority may
interrupt lower-prioritized ones but not vice versa.

8.2.1. Run Time Scheduling Strategies

The basis for scheduling an operator to work periodically is its period length and the
working time within this period. The appropriate processing time of a run is called the
run time trun and lies in the range of

t − τ⊥ ≤ trun ≤ t + τ⊤

The first question of scheduling processing times is concerned with the deadline not
to be exceeded, and the second question focuses on the scenario that the deadline is
exceeded anyway. Within the context of QStream, an operator’s processing time deadline
is associated with the beginning of its next period. Not every time an operator exceeds
its average processing time, the deadline of this and of other operators is exceeded, too.
First, only the respective operator and all lower-prioritized operators are influenced by
an overextended working time. Second, it depends on the size of the jitter. If there is

119

8. Integrated Cost Model and Scheduling Approaches of QStream

enough processing time left until the next period start of an operator (if the CPU is not
fully utilized), this time may be used for jitter compensation.

The goal of QStream’s QoS-guarantee scheduling is to strictly avoid any miss of a
deadline. If a deadline regarding the produced result tuples is exceeded anyway, the
QoS cannot be guaranteed any longer and is considered broken. Then, it would be
impossible to guarantee a certain system’s reaction time or a minimum data rate of the
output stream.

QStream proposes two run time scheduling strategies, both of which aim at meeting
QoS guarantees in terms of maximum delays and minimum output data rates.

They are explained within the following two paragraphs.

Min Delay Strategy

Here, the jitter τ⊤ is seen as an integral part of the processing time trun, and thus, the
time t + τ⊤ has to be scheduled as run time during each period (Figure 8.13).

Figure 8.13.: Scheduled Processing Time in Min Delay Strategy

The jitter τ⊤ may arise spontaneously and in full length within each of an operator’s
runs. This worst-case processing time reservation results in a higher calculated CPU
utilization for a given data rate and lower data rates for given resources, respectively
(because the scheduled processing times are given as worst-case processing times). The
concrete formulas for obtaining C, D and M for the Min Delay runtime scheduling
strategy are given later in Section 8.3.1. The advantage of the Min Delay strategy is
that each operator instance finishes its run within the calculated worst-case time and no
deadline is exceeded. This leads to a minimal inter-operator delay.

Max Throughput Strategy

In contrast to the previous approach, only the estimated operator run time trun = t
within the operator’s period is considered (Figure 8.14). Besides, the jitter component,
which represents an exceeding of t, must now be cumulative constrained over all consec-
utive runs and is furtheron denoted as τ⊕.

A benefit of the Max Throughput strategy is that either more operator instances (or
standing query instances) are admitted or a faster network operation is achieved. The
detailed resource calculation is given later in Section 8.3.1.

The drawback of considering only t is that–in situations of high load–operator in-
stances will regularly and frequently exceed the given deadline in terms of the end of
their current period. If such a deadline is exceeded at some point, there must be enough

120

8.2. Scheduling Strategies

Figure 8.14.: Scheduled Processing Time in Max Throughput Strategy

free processing time within the following periods, so that this operator instance has the
chance to get back to its ’normal operation’. An operator instance is in ’normal opera-
tion’ if it works exactly in the prescribed period number at the current time, seen from
an absolute starting point in time. If it is behind that expected period number, it is
supposed to ’compensate its period’ until it is back in ’normal operation.’

Although single operator deadlines may be exceeded, it is the absolute goal the keep
the QoS guarantees. The consequences are:

1. All DSMS operator instances which exceeded their deadline must be brought back
to a normal operation state. There must be no durable effects of any deadline
exceeding and of the subsequent compensation process.

2. It must be possible to calculate the upper (time) bound for the compensation
process.

The remainder of this section aims to find solutions for both these requirements. In
general, two possibilities arise if the time limit of the period is reached when executing the
operator: the respective operator instance could be suspended if its period has elapsed
(preemptive scheduling) or one could let the operator work until it has finished its run.

For data stream processing, it is not satisfying to interrupt an operator instance, even
if too much processing time is consumed. The reason is that within a DSMS, there are
dependencies between the operator instances reflecting the continuous data flow. If an
operator instance cannot finish its work during its run and thus, is not able to output
the result data, all other operator instances will be influenced by this situation: the ones
which are positioned upstream to the suspended one may be blocked during their data
exchange due to full intermediate buffers. Other operators located downstream to the
suspended operator instance may be blocked due to empty buffers, i.e. due to missing
data.

Instead of suspension, operators are given enough time to finish their work. This raises
questions related to the time at which an operator will start its next run after it missed
one or more deadlines. Figure 8.15 illustrates two possibilities. The operator could
wait until its next regular period starts (Figure 8.15(a)). If so, it would lose a whole
period every time a deadline was exceeded and thus it could not consume or produce
enough data. The continuous data flow, and thus the QoS guarantees, would be broken.
Furthermore, the time denoted as ”wasted” processing time in Figure 8.15(a) would not
be available for DSMS operators.

121

8. Integrated Cost Model and Scheduling Approaches of QStream

(a) start at next regular period (b) start immediately

Figure 8.15.: Period Exceeding

Therefore, an exceeded deadline is handled as shown in Figure 8.15(b). The operator
is not suspended until it has caught up with all its missing period deadlines. Depending
on the size of the jitter, an operator may not stop working for several consecutive periods.
With Rate Monotonic Scheduling, all other operator instances with lower priority are
suspended from work during that time. This requires specific buffer and delay extensions,
which are described later in Section 8.3.

As a consequence of RMS and deadline exceedings, other lower prioritized operators
may miss their deadlines, too. They do not necessarily work too long, but they are
unable to start their next run at the scheduled point in time and therefore, they might
not be able to finish before their period is finished either. It has to be clarified where
each of the disturbed operator instances gets the time for compensating its period from.
First, following QStream’s assumptions, the jitter τ⊕ is cumulatively constrained. This
means, that if an operator instance has worked too long once, the same operator instance
has to prematurely end one or several of the following run(s) for compensation. Second,
if the CPU resources are not utilized 100%, there will be some processing time left during
each period, which all disturbed operator instances may leverage for compensating their
periods. This is a realistic assumption because due to running non-real-time processes,
the CPU resources must never be completely occupied by running operator instances.

Jitter Compensation with the Maximal Throughput Strategy

One of the goals of the Max Throughput strategy is to give an upper bound of how
much time it takes until all operator instances have finished their compensation process
after one operator instance received a certain jitter and thus exceeded its deadline. This
amount of time must always be compensated between each pair of consecutive operators;
this means that even if a single operator instance consumes too much working time within
its period, the arising jitter must not effect any of the following operators. Again, this
is a criterion of the continuous data flow and for a QoS-guarantee DSMS.

It is impossible within the JCP+ resource model to describe the compensation process
on the basis of the cumulative constrained jitter, because the jitter characteristic is not

122

8.2. Scheduling Strategies

known; only its (cumulated) maximum is avilable. Thus, one relies on the remaining
CPU time for compensating a certain jitter and gives an upper bound of how long the
compensation process takes. In a first step, the focus lies on a single operator instance
OI with an average processing time t and a period length P . The task is to determine
the time tcomp after which OI has compensated a jitter of length τ⊕ (the maximum is
assumed; thus, τ⊕ may occur in full size during one run). A second step generalizes to
an arbitrary number of concurrently running operator instances.

One-Operator approach: If a time jitter τ⊕ outlasts one or more of the following
operator instances’ periods, OI will not be able to perform its regular work during that
time. Figure 8.16 depicts that situation. The operator instance receives a jitter of length
τ⊕ which outlasts the first and the second period. Now, the time denoted as ”lost” time
must be compensated to bring the operator back to its normal operation state.

Figure 8.16.: Compensation Time Using Max Throughput Strategy

Therefore, first, the CPU time tremain, which remains idle during each of OI’s periods
P (the time the operator instance may use for the compensation process), is expressed
as the difference of the operator instance’s period length P and the average run time t:

tremain = P − t (8.10)

Second, the compensation time is determined. It consists of n times the operator
instance’s period length P (if the jitter τ cannot be compensated until the end of the
current period) plus a remainder. In the example in Figure 8.16, the compensation
process is finished after one period (n = 1) plus three quarters of the second period
(due to the operator instances’ regular work within the second period). Formally, tcomp

is calculated as stated in Formula 8.12. The length of the compensation time tcomp is
based on two summands, with the first summand denoting the whole-numbered operator

123

8. Integrated Cost Model and Scheduling Approaches of QStream

instance period lengths P which the jitter compensation time outlasts. The second
summand represents the remainder regarding the jitter compensation time and the first
summand.

tcomp = n · P + (τ⊕ − n · tremain)

=

⌊
τ⊕

tremain

⌋

· P +

(

τ⊕ −

⌊
τ⊕

tremain

⌋

· tremain

)

(8.11)

Multiple-operator approach: The calculation is now extended to an arbitrary number
of operator instances OI2, ..., OIp, which are influenced by OI1’s deadline exceeding. It
is assumed that the number of an operator instance is in reverse order to its priority;
thus, OI1 has highest priority and OIp the lowest one. There, p refers to the operator
priority instead of the operator position.

Figure 8.17 illustrates the orthogonality between operator position and order of prior-
ity: A tuple (xi, pi) can be annotated at each operator instance. xi defines the position of
the operator instance regarding the data flow, whereas pi stands for the execution order
of the operator instance runs within a global repetitive cycle. The operator position xi is
independent of the operator priority pi. If an example standing query instance is given as
QI({OI1, OI2, OI3, OI4}, {(−, OI1), (OI1, OI2), (OI2, OI3), (OI3, OI4), (OI4,−)}), the dataflow
order is given as x1 < x2 < x3 < x4, whereas the priority order could be p3 < p4 < p1 <
p2, for example.

Figure 8.17.: Orthogonality of Dataflow Order and Priority Order

Furthermore, a distinction is made between an operator instance’s jitter τ⊕
p (part of

the operational description) and the overall jitter τall
p . The overall jitter τall

p of operator
instance OIp is caused by the jitter of other operators which are higher prioritized than
the current one. These higher-prioritized operators exert influence due to their priority
and due to the applied scheduling algorithm. The overall jitter τall

p may be recursively

124

8.2. Scheduling Strategies

expressed as the sum of the jitter τ⊕
p of operator instance OIp, the overall jitter of

operator instance OIp−1, and the compensation time which OIp−1 needs:

τall
p = τ⊕

p + τall
p−1 + tcomp,p−1

Figuratively speaking, operator instance OIp may start its next regular run (and its
own compensation) when the delay and the compensation of its predecessor (in priority)
have finished. Now, the compensation time tcomp,p of the p-th operator is derived.
The remaining CPU time is Pp − tp if no other operator instances with higher priority
run concurrently. Otherwise, the processing times of these higher-prioritized operators
have to be considered, too. This implies that the remaining CPU time tremain,p has
to be determined depending on all higher-prioritized operators by simply subtracting
their accumulated processing time (per period) from the available time (period length).
Algorithm 1 describes this procedure.

Algorithm 1 Determining free processing time

Require: current operator Op,
higher-priorized operators O1, ..., Op−1,
initialization tremain,p = Pp − tp

2: for i := 1; i ≤ p − 1; i = i + 1 do
x := Pp DIV Pi

4: y := Pp MOD Pi

tremain,p := tremain,p − x · ti
6: if y ≥ ti then

tremain,p := tremain,p − ti
8: else

tremain,p := tremain,p − y
10: end if

end for

Additionally, Figure 8.18 illustrates how processing times of higher-prioritized opera-
tor instances decrease the free CPU time which OIp could have used for its compensation
process. The operator instances’ period lengths and run times are annotated as P and
t respectively.

Initially, the remaining time of operator instance OIp is Pp−tp. The higher-prioritized
operator instances (OIp−1 and OI1 in this case) decrease the remaining time as these
operator instances continue working unpersuaded.

In analogy to the situation of an independently running operator instance, the time
for compensating the jitter is expressed similar to Formula 8.12 with the exception that
the overall jitter τa

p ll is used instead of τ⊕.

125

8. Integrated Cost Model and Scheduling Approaches of QStream

Figure 8.18.: Determining Free Processing Time

tcomp,p = n · Pp + (τall
p − n · tremain,p)

=

⌊

τall
p

tremain,p

⌋

· Pp +

(

τall
p −

⌊

τall
p

tremain,p

⌋

· tremain,p

)

(8.12)

The formulas for calculating the intermediate delay d and buffer size B as well as
the total delay, the overall memory consumption M , and the CPU utilization C of a
standing query instance QI∗ running at Max Throughput strategy are more complex
than with Min Delay strategy. Therefore, they are presented later in Section 8.3.1,
where the resource calculation depending on both the selected run time and the data
rate scheduling strategy is given.

Example of a Compensation Process

To get a better impression of how a compensation process in MT strategy works, an
example is given (Figure 8.19): Three operator instances (source, OIfilter and sink)

Figure 8.19.: Example Standing Query Instance

work concurrently. The filter operator has the highest priority, i.e. the data flow order
(source → OIfilter → sink) is different from the order of priorities (OIfilter → source →
sink). If the standing query instance receives an extraordinarily high jitter, the filter
will start the compensation process first, followed by the data source and the data sink.
The compensation process itself is illustrated within the diagrams of Figure 8.20 with a
query running at different data rates (Rmin = 100, 250, 600tuples/second). The x-axis
denotes the runtime and the y-axis denotes the time an operator instance still has at its
disposal for the compensation to get back to normal operation.

126

8.2. Scheduling Strategies

 0

 200

 400

 600

 800

 0 10 20 30 40 50

T
im

e
to

 c
om

pe
ns

at
e

/ m
s

Run time / ms

Datasource
Filter

Datasink

 0

 200

 400

 600

 800

 0 50 100 150

T
im

e
to

 c
om

pe
ns

at
e

/ m
s

Run time / ms

Datasource
Filter

Datasink

(a) Rmin = 100 tuples
s

(b) Rmin = 250tuples/s

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600

T
im

e
to

 c
om

pe
ns

at
e

/ m
s

Run time / ms

Datasource
Filter

Datasink

(c) Rmin = 600tuples/s

Figure 8.20.: Example Compensation Process of MT Strategy (from [SLL05])

Each of the three compensation processes is initiated by a filter jitter τall = 400ms.
Thereafter, the filter starts the compensation process, which last from 20ms (Figure
8.20(a)) up to 130ms (Figure 8.20(c)), depending on the remaining CPU time (and
thus on the current data rate). The compensation processes of the other two operator
instances start immediately after the filter jitter has been compensated. The length
of the compensation time (tcomp) depends first, on the amount of τall, second, on the
remaining CPU time and third on the time which an operator instance has lost during
the jitter τall. Therefore, in all example configurations, the compensation time of the
data source takes longer than the compensation time of the data sink, even though the
data source received the smallest jitter.

Comparison of Run Time Scheduling Strategies

A standing query instance running in Max Throughput strategy may achieve a high data
throughput due to the fact that only the average processing times t have influence on
the calculation of the CPU utilization. Compared to the Min Delay strategy, this comes
at the cost of the output delay, which has to be calculated as the sum of the operators’
processing times and the enlarged delays in between the operator instances (which have
to be planned to compensate an overall jitter τall).

127

8. Integrated Cost Model and Scheduling Approaches of QStream

8.2.2. Data Rate Scheduling Strategy

To use JCP+ in a flexible way in various application scenarios, the data rate basis for
planning and for calculation is determined by the data rate scheduling strategy. Up to
now, the standing query evaluation speed and the initial data rate adjustment have been
based on average rates Rmin and Rsource, respectively. The average incoming as well as
all intermediate data rates had to be constant but the considered jitter in processing
time and in the amount of output data implicitly caused a data stream jitter, too. The
larger the jitter, the more resources were additionally required to enable continuous data
flow.

Thus, to efficiently handle even large jitter and to support more sporadic data ex-
change behavior (like event signaling by a data stream), QStream proposes two different
strategies for handling data rates, which are compared in Figure 8.21.

(a) average data rate scheduling (b) maximum data rate scheduling

Figure 8.21.: Data Rate Scheduling Strategies

Avg Data Rate Strategy

The ADR strategy schedules for continuous data flow. The jitter is supposed to be small
in comparison to the average data rate. The speed of the operator instances and the
intermediate queues are set up in a way that the operator instances are not blocked due
to a full output buffer or due to an empty input buffer at any time.

The ADR strategy can be combined with both of the run time scheduling strategies
(MD and MT). Details on how to obtain the specific resources in either case are presented
in Section 8.3.1.

Max Data Rate Strategy

If the data is assumed to flow through the DSMS sporadically, the MDR strategy is more
appropriate. The DSMS schedules and reserves resources for the maximum occurring
data rate. Thereby, the query instance evaluation speed is generally higher than with
ADR strategy, as it is based on a higher data rate assumption. This results in shorter
period lengths and thus in higher CPU utilization.

Due to the scheduled maximum, most of the time, the input queues of operators are
empty (and thus cause blocking). In contrast, the output queues must always allow for
the operator to write data without blocking. The calculation formulas of C, D and M
are given later in Section 8.3.1.

128

8.2. Scheduling Strategies

Comparison of Data Rate Scheduling Strategies

On the one hand, with the Average Data Rate strategy, the operators may run slower
than with the Max Data Rate strategy, which causes lower CPU utilization. On the other
hand, intermediate FIFO queues have to be allocated more space with the Average Data
Rate Strategy. Thus, the user can select an appropriate data rate strategy as well as a
run time strategy depending on the application requirements and available resources.

8.2.3. Scheduling Optimization: Concept of Microperiods

During their runs, the operators perform some work like filtering, manipulating or join-
ing tuples. Focused on a single tuple, the scheduling overhead exceeds the time required
to perform the operator instance runs. The concept of microperiods avoids scheduling
overhead by considering a whole group of operator instance runs for calculating resources
and for scheduling. Microperiods are the runs which an operator instance performs dur-
ing one larger period of time. Only the larger period is scheduled by applying QStream’s
scheduling concept. If the user is not interested in QoS guarantees for each individual
output tuple, QoS requirements may be specified for a whole group of tuples instead by
choosing an appropriate number of microperiods.

When considering a group of operator instance runs, the processing time t refers to
the processing of the whole group, and the length of an operator instance’s period may
be determined on that basis. In detail, this means that an operator reads, processes,
and writes a whole group of tuples during one run. The operator description’s values for
input and output batch sizes, bi and bo, may only be seen as one factor for the number
of group elements which are to be read or written. The other factor is the number of
microperiods MP which are performed within one (larger) period.

Figure 8.22.: Operator Trace with Microperiods

Figure 8.22 illustrates the traces of a producer and its connected consumer. The x-
axis shows the elapsed time, and the y-axis represents the amount of transferred tuples.
For each of the two operator instances, the real traces of producing or consuming, re-
spectively, as well as the scheduled traces are shown. The synchronization points define
the granularity of scheduling an operator instance’s work. A step in direction of the

129

8. Integrated Cost Model and Scheduling Approaches of QStream

x-axis symbolizes the time of a period, and a vertical step stands for reading or writing
a number of tuples.

Regarding the QoS negotiation process, the user may specify the maximum number of
microperiods, MPmax, as a measure for the amount of data which other (time-dependent)
QoS requirements refer to. The quality request which was introduced in Section 6.2.4 is
extended to

Req(Fmin, Imax, Rmin,Dmax,MPmax)

Figure 8.23 sketches the relationship between the number of microperiods, MP , the
required resources for query evaluation and the Quality-of-Service (regarding the mi-
croperiods): The larger MP , the smaller the QoS becomes, as time-based QoS guaran-
tees refer to the large MP and fine-grained QoS negotiation is not possible any longer.
The benefit of a larger value for MP is the lower resource requirements due to reduced
scheduling overhead.

Figure 8.23.: Influence of Microperiods on QoS

The JCP+ resource calculation can be easily adapted to a number of microperiods
MP > 1 by considering the whole group’s processing time as t and the input and output
batch sizes (bi and bo) multiplied with MP as the amount of consumed and produced
data, respectively.

8.3. JCP+ Adaptation

This section combines the JCP+ calculation of Section 8.1 with the specific scheduling
strategies of Section 8.2. First, within Section 8.3.1, the resource calculation (CPU
utilization and overall memory consumption) for the different combinations of scheduling
strategies is performed. Then, Section 8.3.2 extends Section 8.3.1 by focusing on the
different states in which an operator can be if Max Throughput run time scheduling is
used. Finally, Section 8.3.3 acts as a summary of Chapter 8 and explains the procedure

130

8.3. JCP+ Adaptation

of resource and QoS calculation in conjunction with testing against available resources
and the required QoS.

8.3.1. Scheduling-Strategy-Specific Resource and QoS Calculation

The application and combination of different scheduling strategies influences the JCP+
calculation and thus the resulting amount of resources and the achieved Quality-of-
Service. Table 8.1 states the possible combinations:

Run Time Scheduling
Min Delay Max Throughput

Data Rate Scheduling

Avg Data Rate configuration I configuration III

Max Data Rate configuration II configuration IV

Table 8.1.: Combination of Scheduling Strategies

All of the four combinations may be used. To clearly distinguish the Average Data
Rate strategy from the Max Data Rate strategy (which differ in the period length basis),
we denote the (large) period length of the former as Pi,ADR and the (small) period length
of the latter as Pi,MDR.

Furthermore, the identifier m always refers to the total number of operator instances
of a query instance QI∗, whereas the identifier n denotes the total number of operator
instances within an operator path OP ∈ QI∗.

Configuration I: Min Delay Runtime with Avg Data Rate Scheduling

If the Average Data Rate strategy is combined with the Min Delay strategy, Formulas 8.6
(maximum path delay) and 8.8 (overall memory), as proposed by the generic calculation,
are directly used for obtaining the total delay D and the overall memory size M . The
CPU utilization calculation is based on Formula 8.9. The processing times ti as well
as the maximum jitter values τ⊤

i are accumulated in relation to the respective operator
instance period length Pi,ADR

C MD−ADR
QI∗ =

m∑

i=1

ti + τ⊤
i

Pi,ADR

(8.13)

The resulting output delay consists of the sum of all operator instance delays di plus
the processing time tn of the root operator instance, since this is not covered by the
delay di. It equals the generic calculation approach:

D MD−ADR
QI∗ = tn +

n∑

i=1

di (8.14)

131

8. Integrated Cost Model and Scheduling Approaches of QStream

Note that an arbitrary operator path OPj ∈ QI∗ can be used, as the delay of all
operator paths has been adjusted to be equal. The calculation of the overall memory
requirements M also remain unchanged, as proposed by Formula 8.8:

M MD−ADR
QI∗ =

m∑

i=1

(si + Bi) (8.15)

Configuration II: Min Delay with Max Data Rate Scheduling

The calculation for combining Min Delay with Max Data Rate scheduling is similar to
the previous scheduling configuration. The CPU utilization calculation equals Formula
8.13, as the CPU utilization is independent of the data rate scheduling strategy:

C MD−MDR
QI∗ =

m∑

i=1

ti + τ⊤
i

Pi,MDR
(8.16)

The generic formulas for intermediate FIFO memory and intermediate delay calcula-
tion can be simplified, since no jitter compensation of τ⊤ and σ⊖ has to be performed
any longer within the intermediate buffer: The FIFO buffer is only required for adapting
the buffer access granularities of the producer and consumer operator instance and for
holding the data if the producer is too early (τ⊥) or produces too much data (σ⊕). Thus,
one relies on the jitter-based calculation of Formula 8.3 and sets τ⊤ = 0 and σ⊖ = 0 for
the delay calculation of a single producer-consumer relationship. One gets

d MD−MDR
i = ti + Pi+1 (8.17)

and

D MD−MDR
QI∗ = tn +

n∑

i=1

(d MD−MDR
i) (8.18)

for the total delay, respectively (based on Formulas 8.6 and 8.7). For the FIFO
buffer size calculation, the jitters τ⊥ and σ⊕ have to be included in the calculation, as
the producer operator instance may still jitter in this manner despite the fact that a
maximum data rate is assumed. Based on Formula 8.4, one gets

B MD−MDR
i =

⌈

bii+1 + σ⊕ + r · (ti + τ⊥)
⌉

(8.19)

According to Formula 8.8, the total memory requirement is

M MD−MDR
QI∗ =

m∑

i=1

(si + B MD−MDR
i) (8.20)

132

8.3. JCP+ Adaptation

Configuration III: Max Throughput with Avg Data Rate Scheduling

Using this scheduling configuration, the time jitter values τ⊤ or τ⊕ do not need to be
considered for calculating the CPU utilization. The calculation of D (based on the
generic formula 8.9 looks like:

C MT−ADR
QI∗ =

m∑

i=1

ti
Pi,ADR

(8.21)

The starting point when obtaining the intermediate and overall memory consumption
as well as the intermediate and total delay is the calculation approach from Configuration
I. In addition, both the inter-operator delays and the FIFO buffer sizes have to be
extended. To account for that, an additional FIFO buffer size B∗

i and an additional delay
d∗i are added for each producer-consumer-relationship. For the concrete calculation of
B∗

i and d∗i , the next section (Section 8.3.2) is recommended due to the complexity of the
calculations. Up to now, D has been obtained as

D MT−ADR
QI∗ = tn +

n∑

i=1

(di + d∗i) (8.22)

based on Formula 8.14. For M , one obtains

M MT−ADR
QI∗ =

m∑

i=1

(si + Bi + B∗
i) (8.23)

based on Formula 8.15.

Configuration IV: Max Throughput with Max Data Rate Scheduling

Here, again, the time jitter values τ⊤ or τ⊕ do not need to be considered for calculating
the CPU utilization. The calculation of D (directly based on the generic Formula 8.9)
looks like:

C MT−MDR
QI∗ =

m∑

i=1

ti
Pi,MDR

(8.24)

In order to obtain the intermediate and overall memory consumption as well as the
intermediate and total delay, one relies on the calculation of Configuration II, except
that–as with the previous configuration–additional delays and FIFO buffer sizes have to
be considered. These additional values of B∗

i and d∗i are the same as above and for their
calculation the next section is to be consulted. The inter-operator delay equals the delay
of Configuration II (Formula 8.17):

133

8. Integrated Cost Model and Scheduling Approaches of QStream

d MT−MDR
i = ti + Pi+1 (8.25)

and thus one gets a total delay of

D MT−MDR
QI∗ = tn +

n∑

i=1

(d MT−MDR
i + d∗i) (8.26)

The intermediate FIFO sizes also equal the ones from Configuration II (Formula 8.19),

B MT−MDR
i =

⌈

bii+1 + σ⊕ + r · (ti + τ⊥)
⌉

(8.27)

and give a total memory requirement of

M MT−MDR
QI∗ =

m∑

i=1

(si + B MT−MDR
i + B∗

i) (8.28)

8.3.2. JCP+ Extension for the Max Throughput Run Time Strategy

Individual operator instances may be delayed based on the priority within the Max
Throughput run time scheduling strategy.

The states of an operator were described in the related work section. The application
of that concept on a higher level means that each of the operator instances OIi of a
standing query running with Max Throughput strategy can be in three different states
during its ’lifetime:’

1. If OIi is consuming and producing the desired amount of data periodically, it is in
normal operation state.

2. If OIi is blocked due to jitter and compensation of higher-prioritized processes, it
neither reads nor writes any data from the input buffer or to the output buffer: it
is in the so-called blocking state.

3. If OIi is compensating a jitter, it runs faster than normal, which comes along
with consuming and producing data in uninterrupted fashion. This is called the
compensation state.

Putting the focus on the continuous dataflow between consecutive operator instances,
all different constellations of states of the producer and the connected consumer must
be considered (Table 8.2). The goal here is to identify the worst cases for the required
intermediate buffer as well as for the consumer delay to enable continuous data flow. The
worst case regarding the required buffer occurs if the producer delivers an extraordinary

134

8.3. JCP+ Adaptation

amount of data during its compensation and the consumer is blocked (worst case A).
The intermediate buffer must be enlarged to avoid overflow.

In contrast, the worst case regarding the delay time (which the consumer must wait
until it starts reading the data from the buffer) occurs if the producer is blocked and the
consumer reads an extraordinary amount of data during its compensation (worst case
B). The delay as well as the intermediate buffer must be enlarged to ensure that always
enough data are available.

The following two paragraphs derive formulas for the additional amount of required
resources. It is assumed that the two consecutive operator instances are OIi and OIi+1.
The associated priorities are pi and pi+1, respectively. Furthermore, the overall jitter
τall,i as well as jitter compensation times tcomp,i of the involved operator instances are
known.

Producer Operator OIi

normal operation blocking compensation

Consumer
Operator OIi+1

normal operation no additional re-
sources required
as both operators
work as scheduled
with JCP+

if pi > pi+1: im-
possible

if pi > pi+1: im-
possible

if pi < pi+1: cov-
ered by B

if pi < pi+1: cov-
ered by A

blocking if pi > pi+1: cov-
ered by A

no additional re-
sources required
as none of the two
operators works;

if pi > pi+1:
worst case A
(too much data)

if pi < pi+1: im-
possible

if pi < pi+1: im-
possible

if pi < pi+1: im-
possible

compensation if pi > pi+1: cov-
ered by A

if pi > pi+1: im-
possible;

impossible combi-
nation as only one
of the operators
can be in compen-
sation state at a
time

if pi < pi+1: im-
possible

if pi < pi+1:
worst case B
(data is missing)

Table 8.2.: Combination of Operator States

135

8. Integrated Cost Model and Scheduling Approaches of QStream

Worst Case A: Producer Must Not Be Blocked

In worst case A, the producer priority is higher than the consumer priority: pi > pi+1.
The intermediate buffer must be large enough to additionally hold producer data during
the producer compensation process and during the producer’s consecutive regular work.
The issue is illustrated in Figure 8.24: The producer operator receives a jitter τall,producer

and adjacently compensates this jitter. During its compensation time tcomp,producer, the
operator fills up the intermediate buffer more and more but–due to the lower priority–
the consumer operator is still blocked and thus cannot read out any buffer data. A
buffer increment is therefore required. After the compensation, the producer operator
continues with its regular periodic work.

Figure 8.24.: Operator Blocking Behavior: Producer Operator with Higher Priority than
Consumer Operator

If the consumer is the direct successor of the producer in order of priorities, the jitter
τall,consumer of the consumer ends exactly at the time the producer has finished its jitter
compensation (diff = 0). If there are other operator instances in between of the producer
and the consumer regarding the priority, these other operators may compensate before
the consumer and diff > 0. A further buffer incrementation is required.

The additional buffer requirements (denoted as B∗
i) are given in Formula 8.29. The

labels ’producer’ and ’consumer’ together with the operator dataflow position ’i’ and
’i + 1’ are used in the formula to ease readability.

The two components of the increased buffer are marked as (a) and (b), respectively.
The value of diff can be obtained as

diff = τall,consumer(i+1) − τall,producer(i) − tcomp,producer(i)

136

8.3. JCP+ Adaptation

The amount of additionally produced tuples during the producer’s compensation is
determined by dividing the producer’s compensation time by its regular processing time
(per run) and multiplying this value with the producer’s output batch size (first sum-
mand). The second summand incorporates the amount of tuples produced during the
time diff.

B∗
i =

(a) producer jitter compensation
︷ ︸︸ ︷⌈

tcomp,producer(i)

tproducer(i)

⌉

· boproducer(i) +

(b) producer regular work
︷ ︸︸ ︷⌈

diff

Pproducer(i)

⌉

· boproducer,i (8.29)

A starvation of the consumer is barred as the producer may only produce too much
data. Thus a lead time extension is not required in this case:

d∗i = 0 (8.30)

Worst Case B: Consumer Must Not Be Blocked

A starvation of the consumer may only happen if the producer priority is smaller than
the consumer priority: pi < pi+1. The delay as well as the buffer between the oper-
ator instances OIi and OIi+1 must be increased to give the producer enough time for
producing as much data as the consumer needs.

This issue is illustrated in Figure 8.25. The consumer operator receives a jitter
τall,consumer and immediately compensates this jitter. During its compensation time
tcomp,consumer, the operator continuously reads out tuples from the intermediate buffer
but–due to its lower priority–the producer operator is still blocked and thus cannot pro-
duce any buffer data. A lead time increment (which comes along with a buffer increment)
is therefore required. After the compensation, the consumer operator continues with its
regular periodic work.

If the producer is the direct successor of the consumer in order of priorities, its overall
jitter τall,consumer ends exactly at the time the consumer has finished its jitter compen-
sation and it holds that diff = 0. If there are other operator instances in between of the
producer and the consumer regarding the priority, these other operators may compensate
in between and it holds that diff > 0.

The additional buffer requirements (denoted as Bi) are given in Formula 8.31. The
two components of an increased buffer are again marked as (a) and (b), respectively.
The value of diff can be calculated as

diff = τall,producer(i) − τall,consumer(i+1) − tcomp,consumer(i+1)

The former summand incorporates dividing the compensation time by the regular run-
time to determine the number of runs the compensation outlasts. Then, the summand is
multiplied with the number of tuples which arrive during each run. The latter summand
consists of the amount of additionally required tuples during the time diff.

137

8. Integrated Cost Model and Scheduling Approaches of QStream

Figure 8.25.: Operator Blocking Behavior: Consumer Operator with Higher Priority
than Producer Operator

B∗
i =

(a) consumer jitter compensation
︷ ︸︸ ︷⌈

tcomp,consumer(i+1)

tconsumer(i+1)

⌉

· biconsumer(i+1) +

(b) consumer regular work
︷ ︸︸ ︷⌈

diff

Pconsumer(i+1)

⌉

· biconsumer(i+1) (8.31)

Formula 8.32 calculates the additional lead time requirements (denoted as di). There,
the additional buffer size B∗

i is divided by the output batch size boproducer of the producer
operator to determine the number of periods required to produce that data. Finally,
this number of producer periods is converted into a time measure by multiplying the
intermediate result with the producer’s period length Pproducer.

d∗i =
B∗

i

boproducer(i)
· Pproducer(i) (8.32)

Now, the final resource (overall memory) and QoS (total delay) for the Max Through-
put strategy can be obtained easily by including the results in Formulas 8.22 and 8.23
(Configuration III) and in Formulas 8.26 and 8.28 (Configuration IV).

8.3.3. Overall Resource Calculation and QoS Negotiation Steps

This section summarizes the resource calculation and QoS negotiation steps of QStream.
The procedure is illustrated in Figure 8.26. The points where required resources and

138

8.3. JCP+ Adaptation

Figure 8.26.: QStream Overall Resource Calculation Steps

QoS are tested against available resources and against user requirements, respectively,
are denoted by an ellipse.

The procedure’s input parameters comprise the standing query instance QI, the time-
based QoS requirements, the data rate of the data source Rsource, and the selected
scheduling configuration. The content-based QoS requirements are currently not con-
sidered for negotiation within QStream.

The first step consists of the determination of the standing query instance’s evaluation
speed by calculating the period length of each operator instance (Section 8.1.1). If a
non-controllable data source is connected and the source data rate is not high enough,
the standing query is rejected for that reason. Otherwise, if the source data rate is higher
than required, an adjustment operator is inserted in the second step. Besides, priorities
are assigned to the operator instances in reverse order of their period lengths (following
the RMS strategy).

Within the third step, the JCP+ calculation is applied to the previously adapted
standing query instance, depending on the selected scheduling strategy for runtime as
well as for data rate. Afterwards, the overall delay can be tested against the delay
QoS requirement. Furthermore, required processing time resources (percent of CPU
utilization) are tested. If one of them is not fulfilled, the standing query is rejected
again.

139

8. Integrated Cost Model and Scheduling Approaches of QStream

If join operators are involved and the delay of the individual operator paths differ,
a delay compensation is applied as the fourth step. There, the FIFO buffers of the
respective join input streams with the shorter path delay are extended to hold as many
additional tuples as the join input stream delivers during the delay difference. After the
join input buffers have been enlarged, the required memory must be tested against the
available memory and–if the system’s resources are not sufficient–the standing query is
rejected.

If all required resources are available and the user-given QoS can be fulfilled, the
procedure’s results are the parameters for setting up the RMS scheduling. Otherwise,
lower requirements in terms of output data rate Rmin or a higher tolerance regarding
the output delay Dmax must be negotiated and the procedure may be repeated with the
new (lower) requirements. If one still does not come to a conclusion, the standing query
must be rejected.

8.4. Summary

This chapter presented the main concepts of providing time-based QoS guarantees. The
JCP+ calculation approach allows for obtaining operator-based as well as stream-based
resources. The scheduling strategies for the individual operator run times as well as for
the data rate illustrate different possibilities of mapping the operator-level resource re-
quirements to the system-specific resource allocation interface. The appropriate schedul-
ing strategies can be chosen depending on the available resources and on the user’s pref-
erences. Thus, the conceptual basis for calculating, allocating, and assuring resources
during runtime is given.

140

9. The QStream Robustness Concept

At runtime of a QoS-guarantee DSMS, specific attention must be paid to the operator
network’s behavior to permanently fulfill the QoS guarantees. The general problem is
that the resource reservation was based on query and data stream statistics which were
supposed to not change over time. Within realistic application scenarios, this assumption
does not hold. First, statistics of incoming data can only be estimated based on historical
data and on the experience of the DSMS administrator. Second, statistics will change
over time along with the input data streams.

QStream’s solution for changing statistics is the robustness concept, which was intro-
duced in [SLSL05]. It allows to trade off the amount of resources for considering micro
jitter and the number of adaptations which a DSMS has to perform during runtime. An
adaptation is initiated every time the continuous data flow within the DSMS is inter-
rupted due to insufficient resources. From a conceptual poin of view, an adaptation is
triggered every time the actual jitter exceeds the amount of micro jitter.

The remainder of this chapter is structured as follows: First, Section 9.1 defines robust-
ness formally. Then, Section 9.2 gives an overview of QStream’s adaptation procedure.
Thereafter, Section 9.3 introduces the Data Stream Characteristics (DSCs). They are
used to describe data streams as well as operator instances. It is assumed that–although
in a broader sense–the behavior of operator instances also depends on the input data
and is therefore covered by the term ’DSC.’ Finally, different prediction models which
are to be applied to the DSCs are presented in Section 9.4. The goal there is to obtain
JCP+ parameters for the future DSMS runtime.

9.1. Robustness Calculation

Figure 9.1 illustrates the adaptation process: if the data exchange of the DSMS is
blocked, an adaptation is triggered. For deriving new scheduling parameters, collected
statistics are used together with an appropriate prediction model. The QoS negotiation
process and the resource calculation have to be performed anew, the latest resource re-
quirements have to be reserved, and running operator instances have to be re-initialized.

The borderline between micro and macro jitter is determined by the granted resources,
and thus, the system’s robustness can be adjusted by the DSMS administrator: The more
resources are available for considering micro jitter, the less often a DSMS adaptation is
required and the higher the robustenss will be.

The respective characteristics of a DSMS running a set of standing queries is reflected
by the robustness curve which is schematically shown in Figure 9.2. The amount of
granted resources for jitter compensation is annotated on the x-axis and the resulting

141

9. The QStream Robustness Concept

Figure 9.1.: QStream Adaptation Loop

robustness value is annotated on the y-axis. The robustness curve does not necessarily
increase monotonically; depending on the time point at which the adaptations take place,
the robustness value may remain constant or even decrease temporarily if the resources
are slightly increased. This issue will be discussed later in the evaluation chapter.

Figure 9.2.: Robustness Curve

The robustness value itself can be derived by counting the number of adaptations
per time. It is the ratio between the number of adaptations n and the monitor dura-
tion tmonitor scaled to an interval of (0, 1] (Formula 9.1). If no adaptation within the
considered time span took place, the robustness has a maximum value of Ω = 1:

Ω =
1

n
tmonitor

+ 1
(9.1)

The robustness curve of Figure 9.2 can be ’recorded’ by determining Ω for different
amounts of granted resources (in terms of jitter tolerance).

9.2. The Macro Jitter Adaptation Concept

The robustenss value Ω directly depends on the number of DSMS adaptations within a
given time span. Therefore, the discussion of the remainder of this chapter focuses on
adaptation event handling and on the DSMS parameter calculation.

142

9.2. The Macro Jitter Adaptation Concept

9.2.1. Adaptation Procedure

The adaptation procedure is based on a standing query instance QI and on the DSCs
which reside in the DSC repository. The adaptation is initiated by a trigger and may
occur at any position of the query instance at any time (Figure 9.3). The triggers
considered by QStream are either buffer-full events (efull) or buffer-empty events (eempty)
and may be signaled during the read or write operation of an operator instance. The
exception is the last operator instance of the query; it may only fire eempty triggers on
unsuccessful read attempts.

Figure 9.3.: QStream Monitoring Concept - Adaptation Triggers

Identifying the DSMS Bottleneck

When a trigger is fired, the reason for the adaptation can be narrowed down to a specific
structural part of the network, which either produces too much or too few data. Note
that one must distinguish based on the data rate scheduling strategy which is currently
used.

If the DSMS runs on average data rate strategy, a trigger is fired every time an operator
instance (consumer) attempts to read from an empty buffer and every time an operator
instance (producer) tries to write to a full buffer. Otherwise, if the maximum data rate
strategy is used, only write attempts to full buffers are treated as error events and thus
are used as triggers for an adaptation.

The reasons for the buffer read or write faults are twofold:

• If efull was signaled from operator instance OIi, either one of the operator instances
downstream of OI is blocked or the operator instance OIi itself has produced too
much data.

In the former case, some of the downstream operators, including OIi+1, are unable
to consume the desired amount of data. The exact position of the erroneous
operator instance within the standing query cannot be identified in an easy way.
Any of the downstream operators may cause full buffers but only the efull event
which arrives first is considered.

143

9. The QStream Robustness Concept

If OIi itself has produced too much data, the data rate reduction boi

bii
becomes

higher than expected, for example, due to a changing value distribution within the
input data stream.

• If eempty was signaled from operator instance OIi, then any operator instance
upstream from OIi may have produced less than the desired amount of data. The
erroneous operator instance may be OIi−1 or any of its predecessors; in the latter
case, the problem of too few data in the intermediate buffers may occur also at
other FIFO queues. Similar to signaling the efull events, only the event which
arrives first is considered.

Adaptation Procedure

Due to the uncertainty of identifying erroneous operator instances and–much more
important–due to the necessity to perform a new data rate propagation, resource and
QoS calculation anyway, the adaptation procedure of QStream is kept very simple. It
consists of six steps:

1. First and continuously, DSCs are collected and stored in the DSC repository.

2. Then, every time an adaptation trigger (efull or eempty) is fired, the prediction
model and the calculation rules for obtaining the required JCP+ parameters for
the future DSMS runtime are determined.

3. Based on the new parameters, a new resource reservation following the JCP+
calculation as well as a new QoS negotiation is performed.

4. If the resource reservation and QoS negotiation for QI have been successful, all
operator instances belonging to QI are suspended (their work is stopped without
deleting or destroying the operator instance).

5. The new period length Pi of each operator instance OIi ∈ QI is scheduled and
the intermediate FIFO buffers are adapted regarding size. (The minimum FIFO
buffer size is given by the FIFO fill level - no tuples are deleted)

6. Finally, the previously suspended operators are re-activated to continue their work
with regard to the new delay value which was calculated in between of each two
operator instances.

It is important to notice, that the states of all operators and the tuples residing in the
FIFO buffers are kept during the adaptation procedure.

9.2.2. Adaptation Effects on QoS and Resources

The success of an adaptation depends on two things: First, there must be enough re-
sources available to put the new DSMS configuration into effect. Second and inextricably
linked to that, the (initial) QoS negotiation must be generous enough to allow for the

144

9.3. Collecting Data Stream Characteristics

new (time-dependent) result quality descriptor Q̂time(Rmin,Dmax). In principle, if not
enough resources in terms of memory or processing time are available for evaluating
the current standing query, the QoS requirements must be weakened with the following
effects:

• If the result data rate requirement Rmin is reduced, the operator instances are
allowed to work slowlier (with larger period lengths), which also leads to larger
output delay D. From the viewpoint of resources, the CPU utilization decreases
proportionally with a reduced data rate.

• If no compromise for the result data rate is allowed but the output delay can be
decreased arbitrarily, one can use the Max Throughput instead of the Min Delay
strategy. As a precondition, enough FIFO queue memory must be available.

• If plentiful CPU resources are available, the query may be evaluated using the
Max Data Rate strategy. It consumes a lot of CPU time but results in very small
intermediate buffers and a low output delay. If–in addition–Min Delay was selected,
the focus is on minimal output delay, whereas with Max Throughput strategy, the
focus is shifted to minimal buffers.

The resource consumption increases with higher jitter tolerance. Taking this point into
account, the DSMS administrator can trade off jitter tolerance and DSMS robustness
using the robustness curve. If all efforts of QoS negotiation and resource reservation fail
and thus, the QoS of the query result would be too low, the standing query instance can
be removed from the DSMS.

9.3. Collecting Data Stream Characteristics

QStream requires DSCs mainly for two reasons: It must be possible to detect the point
in time at which an adaptation should be initiated (trigger) and the DSCs must allow
the calculation of new scheduling parameters.

DSCs can be either direct or indirect : Direct DSCs contain low-level information on
the data exchange process. Examples are the amount of exchanged data or the operator
instances’ processing times and selectivity. In contrast, indirect DSCs contain more high-
level information. This includes histograms, quantile estimators or stream periodicities
and periodic patterns. The current QStream prototype focuses on direct DSCs because
they are adequate and sufficient for obtaining JCP+ parameters.

DSCs may be valid and useful either for the current standing query instance only
(where they have been measured) or they may be extended to other (concurrently run-
ning or future) standing query instances as well. Generally, DSCs obtained directly from
the data source stream can easily be used in a variety of standing query instances. Oth-
erwise, if a DSC is measured after some operator instances have pre-processed the data
stream, the scope is limited: The DSCs obtained that way can only be ’transferred’ to
other query instances which are structurally identical up to the point where the DSCs
have been measured.

145

9. The QStream Robustness Concept

9.3.1. Conceptual DSC Monitoring Architecture

Monitoring and collecting DSCs is a challenging task: on the one hand, the monitoring
process must allow for obtaining all DSCs which are required for the adaptation process
and the JCP+ calculation. In the case of QStream, this includes information about
the established buffers as well as operator instance characteristics. On the other hand,
monitoring and collecting must be performed with only a minimal overhead at DSMS
runtime to avoid falsification of the measured values and to not exert too much influence
on the query evaluation process.

The DSC acquisition task involves two components: a DSC collector and a DSC
repository. The collector is responsible for measuring the characteristics, whereas the
repository must offer capacity for storing historical DSC values and functionality for
predicting and querying DSCs. In the remainder of this section, three generic DSC
acquisition approaches are described. When doing so, the DSC collector is always es-
tablished as an independent module, whereas the realization and position of the DSC
collector (monitor) varies.

Dedicated Monitor Operators

Within this approach, the monitor is a separate DSMS operator instance plugged in
between two regular operator instances of the standing query instance (Figure 9.4).

Figure 9.4.: Dedicated Monitoring Concept

The monitor components gather the necessary statistics and hand over the stream
tuples unchanged. As a benefit, the DSMS operator concept (and implementational
framework) can easily be used for implementing monitor operators. The drawback of
this solution is that the query instance must be structurally changed due to the new
operator instances. This would also require a new resource calculation and reservation
as well as a new QoS negotiation. Furthermore, only indirect DSCs can be monitored,
as the monitor has no access to the runtime statistics of other operator instances.

146

9.3. Collecting Data Stream Characteristics

Decoupled Monitors

The second possibility is to run the monitor independent of the standing query instance
(Figure 9.5). This leads to a kind of a shadow network, as monitors are established for
each buffer and for each operator instance which is of interest from this viewpoint.

Figure 9.5.: Decoupled Monitoring Concept

This approach is less invasive than the previous one. It allows to dynamically attach
and detach monitors to standing query instance components. Furthermore, the monitors
can be lower-prioritized than ordinary operator instances, and thus, they do not neces-
sarily influence the runtime behavior of the standing query instance. Consequently–if
the DSMS workload is high–it may happen that some DSCs cannot be measured and
stored in the DSC repository. Anyhow, this solution has an additional drawback: if
extra components for monitoring each buffer and each operator instance are created, the
overhead in terms of memory as well as processing time requirements is too high.

Inline Monitors

A combination of the two former approaches was found to be most promising for the use
within QStream: a monitor is closely coupled with each of the operator instances (Figure
9.6). This causes only limited overhead and gives flexibility for measuring all required
(direct and indirect) operator characteristics. The buffers can be indirectly monitored by
plugging some monitor functionality into the I/O layer of the appropriate producer and
consumer operators because each intermediate buffer is filled and depleted by exactly
one producer or consumer. Most of the operator functionality is implemented as an
extra thread running in parallel to each operator instance’s main thread. This reduces
the influence on the monitored standing query instance to a minimum. In addition, this
concept allows for giving the monitor thread a lower priority to not disturb the query
evaluation process. Obviously, it also leads to a (tolerable) loss of monitor information
in overload situations.

Using the inline monitors, QStream focuses on direct DSCs with the scope of the
running query instance. A distinction is made between error events and re-estimators.

147

9. The QStream Robustness Concept

Figure 9.6.: Integrated Monitoring Concept

Buffer overflow and buffer underrun events belong to the error events and are used as
triggers for adaptations. In comparison, concrete re-estimators are

• Average operator instances processing time: For obtaining the processing
times, the monitor uses the information provided by the operating system’s sched-
uler. The scheduler stores the cumulated number of time slices (so-called ’jiffies’)
which an operator instance has used. If this value is multiplied with the duration
of a such a time slice (CPU clock-dependent), one obtains an operator instance’s
processing time. For JCP+, the average processing time t is of interest; it can
easily be obtained by applying an average calculation to the individual values.

• Processing time jitter (absolute and cumulated): To describe the processing
characteristic more precisely, a processing time jitter in terms of absolute minimum
(negative) τ⊥, absolute maximum (positive) τ⊤ and cumulated maximum (posi-
tive) τ⊕ is calculated from the individual processing time measurements and stored
in the DSC repository.

• Average number of produced tuples: The average number of output tuples
per operator run bo is obtained by monitoring the write actions to an operator’s
outgoing FIFO queue. Thereafter, the average is calculated.

• Output size jitter (cumulated): The maximum cumulated (positive) and the
minimum cumulated (negative) output size jitters σ⊕ and σ⊖ respectively are
determined and stored in the DSC repository in the same manner as the processing
time jitter.

9.3.2. DSC Measurement and Collection Concepts

The individual transmission of each processing time value and each output size value
from the inline monitor to the DSC repository, obviously, would cause a non-tolerable
overhead regarding the runtime of the monitor procedure. In the worst case, more
statistical information than stream tuples would have to be handled by the DSMS.

For that reason, QStream pre-aggregates the operator instance statistics t and bo
within the time span defined by a so-called basic window at the inline monitor. Every

148

9.3. Collecting Data Stream Characteristics

time the basic window has elapsed, the aggregated characteristics are transferred to
the DSC repository. Figure 9.7 depicts this aspect and denotes the basic windows as
w1, ..., wi, ..., wn.

basic window

w1

D
S

C
 v

al
ue

elapsed timeoriginal DSC behavior

pre−aggregated DSC value

local (basic window) minimum and maximum value

w w w w2 4 53

Figure 9.7.: Statistics Pre-Aggregation within an Operator Instance

The pre-aggregation causes problems with obtaining the overall operator instance’s
jitter characteristics: the absolute and cumulated minima and maxima cannot be ob-
tained directly, as the individual measured values of t and bo are not available any longer
within the DSC repository. Instead, the DCSs must be pre-calculated separately for each
basic window, transferred to the DSC repository, and the final (global) DSCs have to
be determined on the basis of the local ones. Unfortunately this is only possible for the
average values and for the absolute minima and maxima–not for the cumulated ones.
Thus, if the two-step aggregation concept is used, τ⊥ and τ⊤ can be directly calculated,
whereas τ⊕, σ⊖ and σ⊕ can only be estimated based on the previous jitter values.

Inline Monitor Synchronization

The inline monitor is a component running in parallel to the operator instance at a lower
priority. The data are transferred asynchronously by the inline monitor at the end of
each basic window. The synchronization between operator instance and inline monitor
is illustrated in Figure 9.8. The operator instance works as long as the basic window
lasts and stores the characteristics into a ring buffer. Then, it triggers the collection and
transfer process. If the inline monitor receives that signal, it creates an appropriate DSC
packet, makes an additional test for its validity (i.e. test if the operator instance has
already overwritten parts of the ring buffer) and sends the packet to the repository. The
inline monitor works periodically with the same period length as the operator instance
to ensure that it can pick up the statistics after each operator instance run (if the basic
window would have elapsed).

If the CPU utilization is too high, it is possible that the inline monitor may not receive
enough processing time to perform its work. Then, a shadow storage concept for handing
over the DSCs from the operator instance to the inline monitor could easily be applied.

149

9. The QStream Robustness Concept

yes no

worksend = true ?

sleep until next period

send := true

yes no

send = true ?

send := false

yes

operator process

main threadmonitor thread

sleep until next period

send := false

no

noyes

basic window end ?

send = true ?

create DSC packet

send packet

synchronization

Figure 9.8.: Inline Monitor Synchronization

DSC Repository

The DSC repository stores characteristics of all operator instances. Only a limited
history per operator instance can be maintained due to space restrictions. There are
two cases which must receive particular attention: First, if an error event was sent in
addition to the DSC packet, the DSCs of the current basic window must not be considered
for further processing–they can be dropped as they recorded erroneous behavior of the
operator instance(s). Second, there may be gaps in the DSC history due to overload
situations where characteristics could not be sent at all. Thus, the range of historical
DSCs will be restricted to a time span without gaps and error events.

9.4. Prediction Models and DSMS Parameters

The QStream prediction model focuses on the trend and on the period. The recognition
of periodic behavior within the DSCs is restricted to the amount of stored DSC history:
if the periods are larger than the time span covered by the repository, they will not be
detected by any prediction model. Otherwise, if the DSC periods are shorter than the
time span covered by a single basic window, the period will stay unconsidered, too. The
following prediction models are well-known and are used as examples within the QStream
adaptation framework. They focus on the case where the DCSs behave periodically and
the period length is somewhere in between of the basic window length and the time span
covered by the DSC repository.

9.4.1. Prediction Models

It is implicitly assumed that the data stream’s as well as the operator instances’ future
behavior is similar to the past behavior. One focuses on the new average value (arith-

150

9.4. Prediction Models and DSMS Parameters

metic mean) of the processing time and output size as well as the appropriate jitter
characteristics (minima and maxima). In a first step, the prediction model has to iden-
tify the historical time span which shall be considered. Secondly, the DSC values of that
time span are used to calculate the new arithmetic mean as well as the appropriate jitter.
Within QStream, two kinds of prediction models are used. They incorporate either fixed
or data-dependent (variable) weighting of the historical data and are described next.

Algorithms with Fixed Weighting

A very simple prediction would be to use the stored arithmetic means over all (historical)
basic windows, calculate the average and use this value as the new DSC mean. When
doing so, each historical DSC value would receive the same weight. This prediction is
very easy to implement and causes only low runtime overhead. This goes on the cost
of the prediction quality. Figure 9.9 shows two example DSC histories which cause the
model to fail.

D
S

C
 v

al
ue

most likely future

calculated future

’old’ behavior ’new’ behavior

elapsed time

average DSC value

average DSC value elapsed time

D
C

S
 v

al
ue

whole period half period

elapsed time

(a) trend within DSC behavior (b) periodic DSC behavior

Figure 9.9.: Problems with Equal-Weighting

First, in Figure 9.9(a) the most recent DCS behavior significantly differs from the
historical one and the determined average value is clearly not a good choice. In Figure
9.9(b), one DSC period and a half is contained in the DSC repository and due to this
(due to the ’half’ period), the predicted average becomes imprecise again.

A better suited prediction model is exponential smoothing, which gives a stronger
weight to the more recent DSC values. The prediction quality is better than with simple
equally weighted average calculation as it includes the trend of the DSCs.

Algorithms with Data-Dependent (Variable) Weighting

A more sophisticated prediction (in comparison to the formerly presented models) is to
apply a trend analysis to the stored DSC values (based on [Sch01]). The goal is to detect
a preferably long periodic behavior and to use this behavior for the prediction of the
future arithmetic mean. Figure 9.10 depicts this idea by showing trend lines for different
historical ranges.

151

9. The QStream Robustness Concept

w1 w w2 3
D

S
C

 v
al

ue

elapsed time

basic window

trend line

DSC behavior
x

Figure 9.10.: Trend Analysis Approach

In principle, all trend lines ranging from the most recent DSC value back to the
complete history are calculated. Then, the trend line with the smallest gradient describes
the longest and most recent periodic behavior. It is used for identifying the historical
time span of interest, which overspans the windows w2 and w3 in the example. In other
words: the new average is calculated using the set of DSC values from time point x in
history up to the most recent DSC value.

Selecting and Evaluating Prediction Models

All of the described prediction models can be selected within the QStream DSMS. They
differ in the complexity (overhead at runtime) and in the prediction quality depending
on the input signal. Their ’prediction precision’ can be evaluated by applying each of
them to the same input data characteristic and comparing the predicted mean values
with the actual ones (for example, by calculating the mean square error). With that
concept, the prediction model can be replaced arbitrarily at runtime with the goal of the
best prediction quality for the appropriate data stream and operator instance behavior.
Another possibility would be to choose the most adequate model in an a priori fashion
by using additional knowledge of the source data stream or of the operator instance
implementation.

9.4.2. Scheduling Parameter Determination

This section describes how to obtain the new JCP+ parameters from the stored DSC
values. Within the first part, all required parameters are obtained directly from the indi-
vidual DSCs. Then, within the second part, the JCP+ parameters (except for cumulated
jitter) are calculated from the pre-aggregated DSC values.

152

9.4. Prediction Models and DSMS Parameters

Direct Parameter Calculation

In the context of the direct parameter calculation, the basis is the individual operator
instance processing time tj together with the number of produced tuples boj which have
been gathered for each operator run.

If the prediction function fpredict is applied to a number of (bo1, ..., boj , ..., bon) output-
sized DSC values, it results in the predicted value bopredict.

bopredict = fpredict1(bo1, ..., boj , ..., bon) (9.2)

In the same manner, the predicted processing time average tpredict can be obtained
from the individual operator instance’s processing times (t1, ..., tj , ..., tn):

tpredict = fpredict2(t1, ..., tj , ..., tn) (9.3)

The prediction functions fpredict1 and fpredict2 can be chosen arbitrarily depending on
the assumed DSC behavior.

After the prediction of the average runtime and output size, the appropriate jitter
values of the past are determined. It is important to notice that this procedure can only
result in lower jitter values than before due to the following reason: If the former jitter
tolerance was not sufficient and thus an adaptation was triggered, no larger jitter values
than assumed by the previous JCP+ calculation can be found in the DSC repository.
As a consequence, this procedure is only useful for reducing the jitter tolerance to the
required minimum.

If the reason for an adaptation obviously does not lie in a wrong value of bo or t, one
must increase the tolerance of processing time or output size jitter. This may be done
either based on estimations or stepwise until no more adaptations occur. The procedure
of determining decreased jitter values differs for output size and processing time:

• Output size jitter determination: For the output size jitter, the cumulated
minimum σ⊖ and the cumulated maximum σ⊕ are calculated based on the single
output size values boj and based on the new average output size bopredict. When
doing so, for each boj , the signed difference to the average is added to σ. Simultane-
ously, the overall minimum and maximum of the cumulated jitter are maintained.
The procedure is formalized in Algorithm 2.

The result values bonew as well as σ⊖ and σ⊕ are directly used as input for per-
forming a new JCP+ calculation.

• Processing time jitter determination: The processing time jitter is obtained
similar to the output size jitter. The only difference is that the new absolute
minimum (negative) processing time jitter τ⊥ and the new absolute maximum
(positive) processing time jitter τ⊤ must be calculated in addition to the new
cumulated maximum (positive) processing time jitter τ⊕. The absolute minimum

153

9. The QStream Robustness Concept

Algorithm 2 Calculation of minimum and maximum cumulated output jitter of an
operator instance

Require: scheduled average output sizes bo, set of single output sizes bo1, ..., boj , ..., bon

1: # initialization
2: set σ⊕ := 0
3: set σ⊖ := 0
4: set σ := 0
5:

6: # iteration over all measured values boj

7: for all boj from j = 1, ..., n do
8:

9: # calculate new size jitter value
10: σ := σ + (boj − bonew)
11:

12: # refresh new jitter maxima and minima
13: if σ > σ⊕ then
14: # current run’s output is larger than previous maximum
15: σ⊕ := σ
16: else if σ < σ⊖ then
17: # current run’s output is smaller than previous minimum
18: σ⊖ := σ
19: end if
20: end for

and the absolute maximum processing time jitter throughout all stored values are
calculated straightforward as:

τ⊥ =
n

max
j=1

(tnew − tj) (9.4)

τ⊤ =
n

max
j=1

(tj − tnew) (9.5)

The concept of calculating the cumulation jitter maximum is costlier and formal-
ized in Algorithm 3. In contrast to Algorithm 2, the current cumulated jitter τ
value must not fall below zero because the (periodically scheduled) operator in-
stances cannot profit if an operator instance finishes earlier than expected, and
in contrast to the cumulated output size jitter, the saved amount of time cannot
be carried over to future operator runs. Thus, if the current processing time tj
is smaller than the average tnew, the cumulated value is decreased but does not
become smaller than zero.

As a result of the processing time jitter calculation, the predicted average runtime
tpredict as well as the jitter values τ⊥, τ⊤ and τ⊕ can be used as input parameters
for performing a new JCP+ calculation.

154

9.4. Prediction Models and DSMS Parameters

Algorithm 3 Calculation of maximal cumulated processing time jitter of an operator
instance
Require: average (old) processing time t, set of processing times t1, ..., tj , ..., tn
1: # initialization
2: set τ := 0
3: set τ⊕ := 0
4:

5: # iteration over all measured values
6: for all tj from j = 1, ..., n do
7:

8: # calculate new time jitter value
9: if tj > tnew then

10: # add jitter unconditionally
11: τ := τ + tj − tnew

12: else
13: # delete only a (reduced) amount of jitter
14: # that jitter doesn’t become negative
15: if τ − (tj − tnew) ≥ 0 then
16: # early finish can be used for lowering cumulative jitter
17: τ := τ − (tj − tnew)
18: else
19: # early finish can be used for setting cumulative max time to zero as a minimum
20: # do not allow negative values
21: τ := 0
22: end if
23: end if
24:

25: # refresh new maxima
26: if τ > τ⊕ then
27: set τ⊕ := τ
28: end if
29: end for

155

9. The QStream Robustness Concept

Two-Step Parameter Calculation

If the DSCs are pre-aggregated within the monitor, the calculation rules must be mod-
ified. Within a first step, aggregates of twj

and bowj
are calculated within the inline

monitor at the end of each basic window wj using the individual output sizes and the
individual processing times, respectively. This is achieved by Formulas 9.6 and 9.7:

bowj
=

∑m
i=1 boi

m
(9.6)

twj
=

∑m
i=1 ti
m

(9.7)

Furthermore, the absolute minimum (negative) t⊥wi
as well as the absolute maximum

(positive) t⊤wi
of the operator instance processing times are calculated per basic window

wi by using Formulas 9.8 and 9.9. The basis is a window’s average processing time twj
:

τ ⊥
wj

=
m

max
i=1

(twj
− tj) (9.8)

τ ⊤
wj

=
m

max
i=1

(tj − twj
) (9.9)

All four aggregate values are sent to the DSC repository and stored there.
Then, within the DSC repository, the final average output size bopredict and the final

average processing time tpredict are predicted similar to the one-step parameter calcula-
tion. Therefore, the pre-aggregated average values are inserted into Formulas 9.10 and
9.11.

bopredict = fpredict(bow1
, ..., bowj

, ..., bown) (9.10)

tpredict = fpredict(tw1
, ..., twj

, ..., twn) (9.11)

The new absolute minimum and the absolute maximum processing jitter τ⊥ and τ⊤

can be calculated from the predicted average tpredict and the additionally transferred
minima and maxima. When doing so, one must consider that the transferred minimum
and maximum jitter was only valid within the window wj . It must now be adjusted
using ∆t, which equals the difference of the basic window average processing time twj

and the predicted new average processing time tpredict: ∆t = tpredict − twj
. Then, the

global extreme values are obtained as

τ⊥ =
n

max
j=1

(τ⊥
wj

− ∆t) (9.12)

τ⊤ =
n

max
j=1

(τ⊤
wj

− ∆t) (9.13)

156

9.5. Summary

Obtaining the data source input rate: If the connected data source works independent
of the DSMS (non-controllable data source), its data dissemination rate may change over
time. The DSMS input data rate can only be estimated, as the monitor cannot recognize
the write operations to the first buffer: in case that the first buffer does not fill up, the
input data rate is lower than assumed. Otherwise, for buffer overflows, the data source
dissemination rate was too high for the current DSMS configuration.

9.5. Summary

This section presented the robustness concept of QStream. The motivation was to treat
robustness as an additional quality measure which can be influenced by the user in terms
of more generous resources. Aside from the monitoring of operator instance and data
exchange behavior, the adaptation event itself can be subject of monitoring and eval-
uation but on a more macroscopic layer. For example, operator instances or operator
instance sequences which frequently cause adaptation events can be identified. Further-
more, data sources which show unpredictable behavior as well as operator instances with
sporadically increased per-run processing times may receive particular attention.

Furthermore, the robustness concept offers a measure for the effectiveness of a predic-
tion model: the fewer adaptations occur with a constant amount of jitter tolerance (i.e.
the higher Ω is), the better do the predicted JCP+ parameters and the jitter estimation
meet the DSMS requirements. Thus, different prediction models can be easily compared
to each other by calculating the robustness value based on the same standing query
instance and based on the same input data (stream) configuration.

157

9. The QStream Robustness Concept

158

Part III.

QStream Prototype and Evaluation

159

10. The QStream Prototype

This section provides an overview of the QStream DSMS from the implementational
perspective. It starts with an introduction of the DSMS application concept (Section
10.1). Thereafter, in Section 10.2, the DSMS components and their implementation are
described. Finally, Section 10.3 discusses QStream’s interface for acquiring sensor data
using dedicated data acquisition hardware.

10.1. Application Concept

The current QStream implementation runs within a centralized computing environment.
The coarse-grained components are illustrated in Figure 10.1.

Figure 10.1.: QStream Hardware Environment

QStream favors so-called data acquisition (DAQ) hardware as input devices. A net-
work interface can be used if the appropriate network driver offers real-time capabilities;
it is not yet implemented and left out for future work. For testing purposes and for
running experiments materialized stream data also residing in the storage subsystem
can be used. QStream pre-loads these data within the current implementation, as disk
access cannot assure any QoS. Furthermore, the output options only include presenting
it on the monitor GUI and writing it back to the storage subsystem.

QStream runs as an application within a Linux environment. The latter is extended to
offer real-time functionality by using the Real-time Application Interface (RTAI, [Mou03,
Man03, Tea02, Tea06]). Figure 10.2 classifies QStream regarding the different software
layers.

Operating System Layer

The operating system layer offers full linux functionality combined with support for hard
and soft real-time applications. Note that a hard real-time program receives higher

161

10. The QStream Prototype

Figure 10.2.: QStream Software Environment

priority than the linux operating system kernel and thus cannot be interrupted by the
ordinary kernel work, such as handling input/output of peripheral devices, executing
system calls, etc. In contrast, a soft real-time component runs with a priority higher
than all other (best-effort) processes but may be interrupted by kernel activity.

During the RTOS initialization time, the basic timer period must be set. This timer
period is the smallest time slice after which the scheduler can switch between concurrent
operators - it represents a trade-off between fine-grained time allocation on the one
hand and scheduling (context switching) overhead on the other hand. Compared to the
concept of microperiods, the basic timer period is set only once (during initialization)
and is valid for all components to be executed within the RTOS environment. For
QStream, a value of 20µs was selected.

Application Layer

The application layer contains the QStream DSMS as well as other (QStream-independent)
program components. The QStream components run as so-called LXRT programs1 in
hard or in soft real-time; both make use of the real-time extensions provided by RTAI.
Other applications (besides QStream) are supposed to run in best-effort mode; they
only make use of standard Linux functionality. An alternative would be to implement
each component as a kernel module and thus to start it with the ’insmod’ command (to
load/start the module) and to stop it with the ’rmmod’ command (to remove/stop the
module). This provides a smaller execution overhead but complicates the development
process.

10.2. Architecture

QStream consists of the program components, as illustrated in Figure 10.3. The first
component is the query engine for performing the main data stream evaluation work.
The user interface is implemented within the controller. It allows for choosing standing
queries, negotiating Quality-of-Service, setting up parameters of the RTOS environment

1RTAI extension to allow real-time components to run as userspace programs

162

10.2. Architecture

and configuring the runtime environment. The statmon receives the DSCs from the op-
erator instances of the query engine and maintains them using the DSC repository. The
monitor GUI is a graphical monitor for displaying and–if required–for storing arbitrary
stream data and DSC information. The global catalog is not an active component but
a kind of repository for holding DSMS and network configuration information and for
’light-weight’ exchange of low-volume data. All components are described in more detail
within the remainder of this section.

Figure 10.3.: QStream Architecture

The global catalog is implemented on a shared-memory basis. Each QStream compo-
nent maintains appropriate pointer information to access the catalog entries. Catalog
entries can be divided into global (DSMS-specific) and local (operator- and FIFO queue-
specific) entries. The former include monitor and adaptation information like

• length of the basic window maintained by the inline monitors,

• number of basic windows the DSC repository consists of,

• prediction model to be used by the statmon,

• selected data rate and runtime scheduling strategy, and

• update frequency of the monitor GUI.

The operator- and FIFO queue-specific entries are

• operator instance’s monitor configuration (switch inline monitoring on/off, select
the DSCs to be monitored),

163

10. The QStream Prototype

• operator task descriptions (ID of operator task and appropriate inline monitor
task),

• operator instance control information (pause and resume operator instances if re-
quired),

• FIFO queue descriptors (queue size, read and write pointers for synchronization),
and

• stream schema information (number, type and size of attribute values of the inter-
mediate data stream descriptors).

Controller

The controller component is implemented as a soft real-time process. It provides an
interface for selecting standing queries as well as for specifying QoS requirements. Fur-
thermore, the scheduling strategy can be configured and the QoS negotiation process
can be performed. Most important, the query evaluation process can be started and
stopped. During runtime, the controller is informed whether an adaptation trigger is
fired. If so, the controller inquires the most recent standing query parameters from the
statmon and performs an adaptation.

Query Engine

The query engine (Figure 10.4) is not a monolithic program component; it consists of
individual instances of elementary operators which have been introduced previously in
Chapter 7. Every two operator instances are connected by a FIFO queue to allow for
uni-directional data exchange.

Figure 10.4.: Query Engine Implementation

Regarding the real-time standing query evaluation, each operator instance is an inde-
pendent RTAI hard real-time component running as an LXRT thread. From a conceptual
point of view, the operator instances run in parallel, each of them with its own peri-
odicity. The runtime parameters as well as the input and output stream descriptors
are maintained within the global catalog. In addition, at creation time, the operator

164

10.3. Sensor Data Acquisition

instances receive some initialization parameters via the command line interface. During
runtime, the global catalog is used (and polled) to receive recent control information (for
suspending, resuming or exiting) from the controller.

The inline monitor (thread) contained in each operator instance is responsible for
sending all DSCs to the statmon each time a basic window has elapsed. This happens
in similar fashion as the regular data exchange via a FIFO queue.

Statmon and Monitor GUI

The statmon as well as the monitor GUI run as soft real-time processes as it is tolerable
to lose some DSCs or some monitor GUI input data in situations of high stream load.
The statmon maintains a ring buffer as a history of basic window DSCs of each operator
instance (→ DSC repository). Furthermore, the statmon applies the selected prediction
model on that basis every time it receives an inquiry from the controller. The DSCs are
obtained via a FIFO queue.

The monitor GUI is the component of the QStream DSMS with the lowest priority.
It receives the relevant monitor data via a dedicated FIFO queue from the statmon.
Furthermore, it provides a user-interface for selecting and configuring a variety of views
and diagrams and additionally enables storing the results on hard disk. Generally, the
monitor GUI is useful for short-term as well as long-term monitoring of processing times,
FIFO fill levels, adaptation effects and DSMS robustness.

10.3. Sensor Data Acquisition

The origin of a data stream can be manifold but within this first prototype, QStream
favors low-level data sources by supporting data acquisition (DAQ) from sensors mea-
suring physical values. The sensor signals (analog or digital) are sampled2 using DAQ
hardware. Thereafter, they are available as DSMS source streams. Depending on the
kind of sensor signal, the stream may have a continuous, a discontinuous or an event
character and thus all three partial stream classes CS, DS and ES have to be annotated
as meta data, respectively.

The approach of acquiring sensor input data is illustrated in Figure 10.5. First, the
sensor ’translates’ physical values (temperature, pressure, brightness, strength, etc.) to a
voltage value. Then, the voltage value is converted into a data stream tuple by taking the
voltage at discrete time points (→ discretization or sampling), followed by a quantization
of the value with a certain accuracy. Both steps, the discretization and the quantization,
are technically limited by the DAQ hardware. QStream, for example, has been tested
with a National Instruments DAQ board (NI 6024E, [Nat04]) offering 12 bit quantization
accuracy and a sampling rate/frequency of 200, 000samples

second
.

2The sampling process at this point has nothing to do with database or data stream sampling methods
- its origin lies in the signal processing techniques and in the analog-to-digital conversion (ADC)

165

10. The QStream Prototype

Figure 10.5.: DAQ Hardware Components

10.3.1. The Comedi Device Interface

Due to the fact that a variety of DAQ hardware with different capabilities regarding
sampling rate, quantization accuracy and input voltage sensitivity is available, it is not
beneficial to implement specific hardware support for each individual device. Therefore,
QStream makes use of the Comedi interface ([SHB03]). Comedi stands for ’linux con-
trol and measurement device interface’. It encapsulates DAQ hardware and provides an
API for accessing it from linux applications. Comedi allows to access different (real)
input channels as well as other on-board DAQ hardware (e.g. timers, counters, config-
uration information) through so-called ’subdevices’ of the actual device (Figure 10.6).
For example, counters and timers can be programmed and used for measurement tasks
and configuration subdevices are–as the name already indicates–required for Comedi
configuration and hardware initialization.

Figure 10.6.: Subdevices Provided by Comedi

The Comedi concept has been adapted to the RTAI real-time environment, which
allows applications to acquire sensor data in real-time, process them in real-time and
output the result in real-time, too. Figure 10.7 illustrates the different components
involved in the DAQ process: For each DAQ hardware component, a vendor-specific
driver module exists. On top of it, the ’kcomedilib’ provides an API for kernel modules
- either for real-time or for non-real-time. User-mode applications are supported via
two libraries: ’comedilib’ for non-real-time applications and ’libcomedilxrt’ for real-time
applications (also called LXRT-Comedi). QStream makes use of the LXRT-Comedi

166

10.3. Sensor Data Acquisition

Figure 10.7.: DAQ software stack

API for accessing the Comedi services as it is an user-mode application. The basic
programming concepts as well as an API documentation of Comedi are given in [SHB03].

10.3.2. QStream Data Acquisition Techniques

Most of the data acquisition hardware provides the capability to acquire the data in either
synchronous or asynchronous mode. The difference lies in how far the DAQ procedure
is pushed down to the hardware: Reading data from the sensors has to be performed
repeatedly, as the acquisition should result in a data stream. In synchronous mode,
the consecutive acquisition steps are controlled by the application program, whereas in
asynchronous mode, the hardware of the DAQ board takes over this job. Both acquisition
techniques are described next.

Synchronous Data Acquisition

In synchronous mode, the application program itself initiates every single sensor reading.
Then, the application has to wait until the results are available and thus it is blocked
during that time. This procedure is sketched in Figure 10.8. The user program instructs

Figure 10.8.: Synchronous Data Acquisition Sequence

167

10. The QStream Prototype

the Comedi module to either acquire a single sensor value or a (finite) sequence of sensor
values from one or from multiple sensors. Thereafter, the Comedi module forwards the
request to the DAQ hardware and if the results become available, the Comedi module
returns them to the calling application. Due to the blocking behavior, this technique is
not suited for acquiring data streams.

Asynchronous Data Acquisition

If precisely timed equidistant sensor readings are indispensable, the data acquisition
procedure has to be pushed down to the DAQ hardware as far as possible. In asyn-
chronous DAQ mode, repeated and periodic readings from one or from multiple sensors
can be programmed and scheduled. In contrast to the synchronous mode, the timing of
the readings are controlled by the DAQ hardware and–once the acquisition process has
been initiated–the acquisition results can be obtained continuously by the application
program (the calling program component is not blocked). The procedure is illustrated
in Figure 10.9.

Figure 10.9.: Asynchronous Data Acquisition Sequence

At start time, the application program sends a DAQ requirements list (scan configu-
ration) to the Comedi module. If the DAQ board’s hardware is powerful enough (with
respect to the overall sampling frequency, reading from multiple channels, etc.) and the
periodic acquisition tasks are schedulable, the scan job is admitted and the data acqui-
sition starts. From that time on, the application program is responsible for continuously
fetching the sensor data from a previously allocated shared memory area. It has to be
ensured that the application program is fast enough. Otherwise, unread input data will
be overwritten. Generally, the application program is informed by semaphores when an
appropriate portion of input data is available. Thus, the overall data acquisition concept

168

10.3. Sensor Data Acquisition

can be characterized as push-based and is therefore well-suited for the use within a data
stream management system.

10.3.3. QStream Data Acquisition Strategies

For asynchronous data acquisition, a scan configuration has to include all parallel DAQ
tasks. Figure 10.10 depicts a scan configuration, where a scan contains a number of n
consecutive sensor readings.

Figure 10.10.: Scan Configuration

Whether or not a scan can be put into effect depends on the DAQ board capabilities.
First, the number of sensor readings within a scan is limited. Second, the minimum
distance between two consecutive readings cannot be chosen arbitrarily small, as the
DAQ board comes along with an upper bound regarding the overall sampling frequency.
In addition, the DAQ board must provide the number of channels the DSMS requires,
and the input voltage ranges (sensitivity) must meet the sensors’ output characteristics.

Once admitted, a scan is executed repeatedly and forms the basis for continuously
reading data from the desired sensors. From the viewpoint of a DSMS, the challenge
now is to merge all DAQ requirements from one or more standing queries into one scan
configuration.

Therefore, first, a list of source acquisition requirements based on the standing query
configurations is created. This includes the source input channel which is to be scanned
and the sampling frequency which shall be used. From additional information sources,
the input sensitivity (voltage range) must also be given as parameter. Then, a Comedi
command representing the scan is created out of the requirements. The Comedi com-
mand is tested against the DAQ hardware’s capabilities and–if it is admitted–the DAQ
process can be initialized and started. Finally–and during the lifetime of the appropri-
ate standing queries–the data are fetched from the sensors and provided to the DSMS
operator instances as input streams.

169

10. The QStream Prototype

10.4. Summary

The current QStream implementation status includes a centralized DSMS with a query
engine, a controller, a statmon and a monitor GUI component. A couple of standing
queries are pre-configured for proving and testing the scheduling and adaptation strate-
gies. The queries consist of elementary operators like filter, sampling, aggregation and
join. Furthermore, comprehensive monitoring facilities are implemented, which allow for
observing data stream characteristics and provide low-level information about operator
processes and FIFO queues.

The sensor data acquisition concept is partially realized: In synchronous mode, sensor
data can be used as input for standing queries, whereas in asynchronous mode, the DAQ
process is implemented as an independent RTAI hard real-time component.

As future work for implementation, both (synchronous and asynchronous) DAQ modes
should be made completely available for standing query evaluation. Furthermore, the
output facilities of the DAQ boards should be addressed to provide control information
for peripheral devices. In addition, it would be interesting to distribute the query engine
across different nodes and make use of real-time-capable network drivers for implement-
ing the distributed data flow. Regarding the real-time environment, QStream could be
taken to other (RT)OS environments and the QoS requirements could be weakened in
terms of tolerating a certain amount of exceeded deadlines (soft real-time). Last but not
least, a flexible and comfortable graphical user interface for specifying standing queries
is required. Alternatively, a declarative query language like CQL could be adapted and
implemented.

170

11. Evaluation

The evaluation section’s goal is to complement this thesis by presenting experiments
which corroborate the resource calculation approach and the scheduling strategies of
Chapter 8 as well as the robustness considerations of Chapter 9. First, Section 11.1 de-
scribes the hardware and software environment which was used for the evaluation of the
QStream prototype. Then, Section 11.2 presents statistics, or rather data stream char-
acteristics (DSCs), from QStream’s filter which stand as examples for all implemented
operator instances. Thereafter, Section 11.3 discusses the scalability of the data rate
and runtime scheduling strategies simply based on the relationship of two consecutive
operators. Section 11.4 completes the former scalability experiments by calculating the
resources required by an example standing query. Finally, Section 11.5 corroborates
the robustness concept by testing adaptation strategies and determining the robustness
curve of a given configuration.

11.1. Test Environment Setup

All experiments have been conducted locally on an Intel Celeron PC with a CPU fre-
quency of 2.8 GHz and 512 MB amount of main memory. The operating system envi-
ronment consists of a Linux with kernel version 2.6.8.1, an Adeos 2.6r7/x86 patch and
RTAI version 3.1. The periodic scheduling mode is used and the timer is initialized with
a period length of 20µs (20.114ns) The timer’s period length may also be chosen smaller
to achieve higher accuracy, but–as a drawback–the overhead of context switching would
not be tolerable any longer. A value of 20µs was found to be a good compromise.

All operator instance time measurements have been performed using the
rt get exec time (...) RTAI function, which reads out the CPU cycles which a real-
time process (operator instance) has used. Then, this value is scaled with the duration
of such a CPU cycle, which in turn depends on the server’s processing speed and is
2, 802, 385 throughout the experiments.

The operator’s output sizes have been determined by simply counting the outgoing
tuples. Furthermore, for data rates, the abbreviation tps (tuples per second) is used.

11.2. Scheduling Parameter Determination

Within the resource calculation chapter, the processing time t as well as the output size
bo of an operator instance were assumed to be available from the DSC repository.

171

11. Evaluation

11.2.1. Operator Instance Processing Times

Figure 11.1 depicts the processing times of the individual filter operator’s runs. Curves
of four different microperiod values ranging from 1 to 250 are given. Obviously, the
processing time increases as more microperiods are executed. Additionally, the absolute
time jitter (as distance from the smallest to the largest time value within an individual
curve) also increases.

 0

 50

 100

 150

 200

 250

 20 40 60 80 100 120 140

O
pe

ra
to

r
pr

oc
es

si
ng

 ti
m

e
in

 m
ic

ro
se

co
nd

s

Operator instance run

microperiod = 1
microperiod = 8

microperiod = 25
microperiod = 65

Figure 11.1.: Influence of Microperiods on Operator Instances’ Processing Times

For a better illustration, Figure 11.2 shows the processing times per operator run
by simply dividing the measured processing time values by the appropriate number of
microperiods. It can be seen that the per-run processing time rapidly decreases as the
number of microperiods grows. In other words, if each operator run were to be scheduled
individually (MP = 1), the result would be a huge scheduling overhead.

Going one step further, Figure 11.3 allows for reasoning about the processing time
jitter depending on the selected number of microperiods. It shows the processing time
jitter (absolute and cumulated maximum value, absolute minimum value) scaled to the
appropriate per-run processing time. This leads to the conclusion that–for a low number
of microperiods and thus for only short units of work with small measured times–the
processing time jitter values are extraordinarily high and thus should not be considered
for resource reservation. From a value of MP ≥ 100 on (t ≥ 70µs in case of the filter
operator instance), the relative time jitter becomes moderately low and not too many
resources are wasted when these times are used as scheduling basis.

172

11.2. Scheduling Parameter Determination

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 10 100

O
pe

ra
to

r
ru

n
ex

ec
ut

io
n

tim
e

in
 m

ic
ro

se
co

nd
s

Number of microperiods

data source operator
data sink operator

filter operator

Figure 11.2.: Influence of Microperiods on Scheduling Overhead

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300 350 400 450 500

D
ev

ia
tio

n
of

 p
ro

ce
ss

in
g

tim
e

in
 %

 o
f a

ve
ra

ge

Number of microperiods

avg run time = 100 %
relative positive jitter

relative negative jitter
max pos cumulated jitter

Figure 11.3.: Influence of Microperiods on Relative Time Jitter

173

11. Evaluation

11.2.2. Operator Instance Output Volume

Now, the data volume output characteristic including output jitter is illustrated as ex-
ample for the filter operator in the diagram in Figure 11.4. The filter has a selectivity
of 0.4969, which equals the average output size bo per run. The output jitter depends
on the input data attribute values: if the attribute value fulfills the filter predicate, it
is passed by and the curve increases by one element during a run. Otherwise, if the
attribute value is discarded, the output size remains at the previous level.

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40 45 50

O
ut

pu
t s

iz
e

in
 tu

pl
es

Operator instance run

filter output volume, MP=1
filter output volume, MP=4
filter output volume, MP=8

Figure 11.4.: Filter Output Volume Example

Within the diagram, the output behavior of three different numbers of microperiods
is given. As one can see, the output batch jitter becomes smaller as the number of
microperiod grows (the blue curve of MP = 8 has a much smoother appearance than
the curves of MP = 1 or MP = 4). This is obvious because the filter output is ’balanced’
more and more when considering a number of consecutive operator instance runs.

Figure 11.5 depicts the filter operator’s cumulated output jitter (input data configu-
ration and filter predicate remain the same) to illustrate the output jitter throughout
a large time span. The cumulated minimum σ⊖ and maximum σ⊕ are annotated ap-
propriately. Although the input data was supposed to be equally distributed and the
filter’s selectivity was to be 0.5, a cumulated minimum jitter of σ⊖ = 43 and a cumulated
maximum jitter of σ⊕ = 25 arise during runtime and must therefore be considered as
input parameter for the JCP+ resource calculation.

174

11.2. Scheduling Parameter Determination

-100

-50

 0

 50

 100

 0 2000 4000 6000 8000 10000

C
um

ul
at

ed
 o

ut
pu

t j
itt

er
 in

 tu
pl

es

Operator instance run

cumulated filter batch jitter, MP=1
cumulated maximum
cumulated minimum

Figure 11.5.: Cumulated Filter Operator Output Jitter

175

11. Evaluation

176

11.3. Scalability of Scheduling Strategies

11.3. Scalability of Scheduling Strategies

This section reviews the individual scheduling strategies and contemplates them from
the perspective of scalability. Therefore, Table 11.1 first names the different scheduling
configurations. It is equivalent to Table 8.1 from Section 8.3.1.

Run Time Scheduling
Min Delay (MD) Max Throughput

(MT)

Data Rate Scheduling

Avg Data Rate (ADR) configuration I configuration III

Max Data Rate (MDR) configuration II configuration IV

Table 11.1.: Combination of Scheduling Strategies

On that basis, the scheduling strategies are compared pairwise. First, Section 11.3.1
discusses the resource consumption of the MD and MT runtime scheduling strategy
(Configuration I versus Configuration III). Then, in Section 11.3.2, the jitter influence
on the query resources for the ADR and MDR data rate scheduling strategy are compared
(Configuration I versus Configuration II).

11.3.1. Run Time Scheduling Strategy Comparison - Configuration I versus
Configuration III

The first part of this section examines the influence of an operator’s processing time jitter
(τ⊥ and τ⊤) on the required CPU utilization. Four curves of CPU utilization depending
on the data rate are displayed in Figure 11.6. One belongs to the Max Throughput
strategy, the other three represent the Min Delay strategy with different values of τ⊥

and τ⊤ (where τ⊥ equals τ⊤).
Two conclusions can be drawn, both of which approve the scheduling strategies’ moti-

vation: First, the CPU utilization of both runtime scheduling strategies increases linearly
with the data rate at which the standing query is evaluated. Second, when using the
Max Throughput strategy, the processing time jitter of an operator instance does not
have any effect on the CPU utilization because it is only the average run time of an
operator instance that was considered for the determination of the CPU utilization. For
that reason, additional MT graphs are left out in the diagram. The CPU utilization
of the Min Delay curves increases (linearly) with the amount of time jitter because τ⊥

and τ⊤ must be added completely to the average runtime when determining the CPU
utilization (worst-case consideration).

The drawbacks of the MT strategy are the increased inter-operator delays and, as
a result, the higher buffer requirements. Figure 11.7 puts the focus on this issue and
compares the inter-operator delay of both strategies depending on the time jitter of an
operator instance (which is to be interpreted as τ⊤ in MD strategy and as τ⊕ in MT
strategy). Both the red and the green curve increase linearly but the MT delay is sig-
nificantly higher. The initial increase of the MT delay is caused by the consideration of

177

11. Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

C
P

U
 u

til
iz

at
io

n
in

 p
er

ce
nt

Data rate in tuples per second

Max Throughput strategy (MT)
Min Delay strategy (MD), time jitter = 0.3 ms
Min Delay strategy (MD), time jitter = 0.6 ms
Min Delay strategy (MD), time jitter = 1.0 ms

Figure 11.6.: CPU Utilization of MD versus MT

whole-numbered multiples of the operator instance’s period length during the calcula-
tion. In addition to the delay graphs, the CPU utilization of MD and MT is shown as
a dotted line.

If the CPU is working to its full capacity, no higher amounts of jitter can be considered
in the MD strategy. Therefore (for sake of completeness), the scalability of buffer size
and operator delay depending on larger jitter values τ⊕ is given in Figure 11.8 exclusively
for the MT strategy. Both the buffer resource and the delay QoS measure scale linearly
with τ⊕. Again, the ’staircase’ behavior is caused by the consideration of whole multiples
of the operator’s period lengths when calculating the required resources. The CPU
utilization within the experiment is 0.4 and remains constant.

11.3.2. Data Rate Scheduling Strategy Comparison - Configuration I versus
Configuration II

In comparison to the former set of experiments, now the Avg Data Rate strategy is
compared with the Max Data Rate strategy. The diagrams in Figure 11.9 and 11.10
depict the intermediate buffer size requirements depending on the time jitter (τ⊥ = τ⊤)
of the producer operator.

Both batch and time jitter have linear influence on the intermediate buffer size. For
MDR, the memory resources are lower than for ADR, as buffer underuns are tolerated
and thus only the jitter τ⊤ must be considered. Due to the fact that τ⊥ equals τ⊤, the
MDR buffer requirements are exactly half of the ADR buffer requirements. The cause

178

11.3. Scalability of Scheduling Strategies

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200
 0

 20

 40

 60

 80

 100

In
te

r-
op

er
at

or
 d

el
ay

 in
 m

ic
ro

se
co

nd
s

C
P

U
 u

til
iz

at
io

n
in

 %

Time jitter in microseconds

delay (MT)
delay (MD)

CPU utiltzation (MT)
CPU utiltzation (MD)

Figure 11.7.: Scalability of Output Delay: MD versus MT (CPU Utilization of MT is
Constant at 0.4)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10
 0

 20

 40

 60

 80

 100

 120

In
te

r-
op

er
at

or
 d

el
ay

 in
 m

ill
is

ec
on

ds

In
te

r-
op

er
at

or
 b

uf
fe

r
in

 tu
pl

es

Cumulated time jitter in milliseconds

delay
buffer

Figure 11.8.: Scalability of Output Delay and Buffer Size in MT

179

11. Evaluation

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16 18 20

In
te

rm
ed

ia
te

 b
uf

fe
r

si
ze

 in
 tu

pl
es

Batch jitter in tuples

Avg Data Rate strategy
Max Data Rate strategy

Figure 11.9.: Scalability of Buffer Size: MDR versus ADR

for the ’staircase’ effect in the diagram in Figure 11.10 is the rounding-off of the buffer
size to the next whole-numbered amount of tuples.

180

11.3. Scalability of Scheduling Strategies

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800 900 1000

In
te

rm
ed

ia
te

 b
uf

fe
r

si
ze

 in
 tu

pl
es

Time jitter in milliseconds

Avg Data Rate strategy
Max Data Rate strategy

Figure 11.10.: Scalability of Buffer Size: MDR versus ADR.

181

11. Evaluation

182

11.4. Example Query Resource Consumption

11.4. Example Query Resource Consumption

The focus of the experiments is now shifted to a larger example query which is given
by Figure 11.11. Accordingly, Table 11.2 states the deployed operators along with the
query-specific parameter settings.

Figure 11.11.: Example standing query instance QI

11.4.1. Description of Operators and Operator Instances

Operator Parameters Description

source delivers randomly distributed numerical data
(two-tuples, event stream ES)

Ofilter filter predicate on second attribute

Osync−join mode = OUTER

Oprojection passes by timestamp and second attribute value

Osampling N = 6, n = 3 stratified sampling

Oagg fagg = AV G, f =
10

jumping window aggregation

sink reads out the tuples from the last FIFO queue

Table 11.2.: Description of elementary operators

The operators of the example query are listed in Table 11.2 and the corresponding
operator instance descriptions are given in Table 11.3. There, each operator instance’s
period length and input batch size are listed as an excerpt of data rate requirements the
query runs on. Due to the large absolute time jitters at a lower number of microperiods,
a value of MP = 100 was selected for this experiment. This means that within each
scheduled period, an operator instance is executed exactly 100 times.

Table 11.4 lists the DSCs of the operator instances. They are specific for the test
server as well as for the example standing query. The given time as well as output size
statistics (except bo) refer to the configuration of MP = 100, too. In detail, there are
the average runtime per period t, the absolute and cumulative time jitter values τ⊥, τ⊤

and τ⊕, the average number of output tuples per run bo, and the cumulative size jitter
σ⊕ and σ⊖, respectively.

183

11. Evaluation

Operator Period Length (µs) for a given Input Batch
Result Data Rate (tps) Size (tuples)

100 200 ... 1000 ... 2000 bi

source 24988.00 12494.00 2498.80 1249.40 —

OIfilter 24988.00 12494.00 2498.80 1249.40 1

OIsync−join 50000.00 25000.00 5000.00 2500.00 1

OIprojection 50000.00 25000.00 5000.00 2500.00 1

OIsampling 300000.00 150000.00 30000.00 15000.00 6

OIagg 100000.00 50000.00 10000.00 5000.00 1

sink 1000000.00 500000.00 100000.00 50000.00 1

Table 11.3.: Operator Parameters

Operator Times Characteristics(µs) Size Characteristics
(tuples)

t τ⊥ τ⊤ τ⊕ bo σ⊖ σ⊕

source 189.2 25.76 4.24 328.9 1 0 0

OIfilter 211.5 32.46 24.54 356.2 0.49976 152.2 93.51

OIsync−join 320.3 25.66 8.338 695.1 1 0 0

OIprojection 276 29.03 10.97 527.6 1 0 0

OIsampling 806.5 16.47 7.531 155 3 0 0

OIagg 172.3 22.66 8.336 346.1 0.1 4 8

sink 168.1 5.913 4.087 14.74 0 0 0

Table 11.4.: DSCs of Example Operator Instances

The time jitter characteristics of all participating operator instances are visualized
in Figure 11.12 in excerpts. The filter operator instance jitters most, followed by the
aggregation operator instance. Both of them also incorporate size jitter when producing
data. The filter operator instance’s output depends on whether the stream tuples fulfill
the filter predicate. The number of tuples which belong to one (time-based) aggregation
group is determined by the tuples’ internal timestamp information and may vary, too.
The cumulative output size jitter of OIfilter and OIagg is illustrated in Figure 11.13.
The appropriate minimum and maximum values of Table 11.4 can be read directly from
the diagrams.

184

11.4. Example Query Resource Consumption

 0

 0.1

 0.2

 0.3

 0.4

 10 20 30 40 50 60 70 80

P
ro

ce
ss

in
g

tim
e

/ m
s

Operator instance run (* 100)

Filter

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80

P
ro

ce
ss

in
g

tim
e

/ m
s

Operator instance run (* 100)

Sync Join

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80

P
ro

ce
ss

in
g

tim
e

/ m
s

Operator instance run (* 100)

Projection

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80

P
ro

ce
ss

in
g

tim
e

/ m
s

Operator instance run (* 100)

Sampling

 0

 0.1

 0.2

 0.3

 0.4

 10 20 30 40 50 60 70 80

P
ro

ce
ss

in
g

tim
e

/ m
s

Operator instance run (* 100)

Aggregation

Figure 11.12.: Processing Time Characteristics of Example Operator Instances
(MP=100)

11.4.2. Example Query Resources and Quality-of-Service

Finally, query QI gets scheduled with Average Data Rate strategy. There, the resource
consumption in terms of intermediate buffer sizes and CPU utilization, together with the
result QoS in terms of output delay, is given for different result data rate requirements
Rmin (Table 11.5). The basis is the appropriate formulas of the Min Delay and Max
Throughput runtime scheduling strategy. Therefore, the operator instance’s batch sizes
(input and output) have been multiplied with the selected number of microperiods to

185

11. Evaluation

-200
-150
-100

-50
 0

 50
 100
 150
 200

 0 200 400 600 800 1000C
um

ul
at

ed
 o

ut
pu

t j
itt

er
 /

tu
pl

es

Operator instance run (* 100)

Filter

-20
-15
-10

-5
 0
 5

 10
 15
 20

 0 200 400 600 800 1000C
um

ul
at

ed
 o

ut
pu

t j
itt

er
 /

tu
pl

es

Operator instance run (* 100)

Aggregation

Figure 11.13.: Batch Size Characteristics of Example Operator Instances (MP=100)

get the correct result (i.e. if bo = 3 and MP = 100, a value of bo′ = 300 must be used
instead).

The output delays for the application of different scheduling strategies to QI are
illustrated in the diagrams in Figure 11.14 and 11.15. First, in Figure 11.14, the output
delays of the MT and MD strategies are compared, both depending on the required result
data rate Rmin. Note that the CPU utilization graphs stop at a value of 69% because
with higher utilization, the scheduling is not QoS-guaranteeing any longer, as not all
operator instance period deadlines can be met (overload criteria of RMS scheduling).
This implies that a maximum data rate of 1200 tps (MD) and 1400 tps (MT) can be
achieved. If higher data rates are used, the data exchange may become blocking.

It can be seen from the delay curves that the higher the data rate (and thus the
higher the CPU utilization), the larger the output delay of the MT strategy becomes.
The reason lies in the jitter compensation process. It depends on the remaining CPU
time, which decreases continuously at higher data rates. In contrast, the output delay
of MD seems to remain constant.

Figure 11.15 focuses on the data rate range where the CPU utilization is below the
limit of 69% and thus allows the observation of the behavior of the output delay in
more detail: First, the output delay of both runtime scheduling strategies decreases
with a growing data rate because–if the standing query instance works faster–the tuples
are handed over from operator to operator more quickly. Then, at a data rate of about
1000 tps, the remaining CPU time becomes too small to compensate all the time jitter of
the operators within the current operator instance’s period. As a result, the consecutive
operator instances are delayed more and more to give them enough time to compensate
their time jitter. This directly influences the output delay and–although not shown in
the diagrams–the FIFO queue sizes.

The data rate from which on the output delay of MT starts to increase depends on
the amount of cumulated operator instance time jitter: If more jitter has to be covered,
the output delay of MT will increase at lower data rates due to the limited amount of
remaining CPU time.

186

11.4. Example Query Resource Consumption

Result Data
Rate Require-
ment (tps)

Result Resources and QoS

MD Strategy MT Strategy

CPU
Util.

FIFO
Mem
(tuples)

Output
Delay
(ms)

CPU
Util.

FIFO
Mem
(tuples)

Output
Delay
(ms)

100 0.0544106 2709 1644 0.04849 3317 1744
200 0.108821 2717 823 0.0969801 3325 873
300 0.163232 2723 549 0.14547 3331 582
400 0.217642 2730 412 0.19396 3338 437
500 0.272053 2739 330 0.24245 3347 350
600 0.326463 2745 275 0.29094 3353 292
700 0.380874 2752 236 0.33943 3360 250
800 0.435284 2758 207 0.38792 3366 219
900 0.489695 2764 184 0.43641 3372 195
1000 0.544106 2773 166 0.4849 3381 176
1100 0.598516 2779 151 0.53339 13337 815
1200 0.652927 2786 138 0.58188 60534 3530
1300 (0.707337) 2794 128 0.63037 84552 4651
1400 (0.761748) 2800 119 0.67886 101718 5262
1500 (0.816158) 2810 111 (0.727351) 146278 7178
1600 (0.870569) 2816 104 (0.775841) 405104 18973
1700 (0.92498) 2823 98 (0.824331) 637360 28504
1800 (0.97939) 2829 93 (0.872821) 1110017 47476
1900 (1.0338) 2836 88 (0.921311) 2055104 83693
2000 (1.08821) 2845 84 (0.969801) 5069213 189344

Table 11.5.: Resources and QoS of Example Query

187

11. Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 20

 40

 60

 80

 100

O
ut

pu
t d

el
ay

 in
 s

ec
on

ds

C
P

U
 u

til
iz

at
io

n
in

 %

Data rate in tuples per second

delay-MT
delay-MD
CPU-MT
CPU-MD

CPU limit for RMS (0.69)

Figure 11.14.: Output Delay of MT Strategy Depending on Data Rate

 0

 2

 4

 6

 8

 0 200 400 600 800 1000 1200 1400

O
ut

pu
t d

el
ay

 in
 s

ec
on

ds

Data rate in tuples per second

delay-MD
delay-MT

Figure 11.15.: Output Delay of MT Strategy Depending on Data Rate - Schedulable
Range

188

11.5. Adaptation and Robustness

11.5. Adaptation and Robustness

The DSMS’ ability to adapt to new environmental situations has been examined using
a simple test standing query consisting of three operators (Figure 11.16).

Figure 11.16.: Example Standing Query Instance for Adaptation Experiments

The data source delivers a stream containing 100, 000 random attribute values ranging
from 0 to 99. Thereafter, a filter operator passes by only those tuples that have an
attribute value smaller than 50. The analysis of the source data gives a filter predicate
selectivity of exactly 0.49976. Furthermore, the filter output stream contains a large
cumulated batch jitter of σ⊖ = 164 tuples and σ⊕ = 104 tuples (Figure 11.17), which
has to be compensated by the consecutive FIFO buffer. The number of microperiods is 1
throughout the adaptation experiment. The required result data rate is Rmin = 500 tps.

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
um

ul
at

ed
 o

ut
pu

t j
itt

er
 in

 tu
pl

es

Operator instance run

cumulated filter batch jitter, MP=1

Figure 11.17.: Cumulated Filter Batch Jitter (MP = 1)

The goal of this experiment is to show that the smaller the granted resources in terms
of filter operator output buffer size, the more adaptations take place, and thus, the lower
the DSMS robustness. Therefore, the appropriate FIFO queue size is decreased step by
step, starting with a sufficient size of 268 tuples. The DSMS is monitored performing

189

11. Evaluation

adaptations and the robustness value Ω is calculated from the number of adaptations
and the monitor time span. Two aspects of adaptation are illustrated in Figure 11.18.
First, the diagram depicts the adaptation time points of the individual experiments.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 50 100 150 200 250 300

E
xp

er
im

en
t n

um
be

r
(D

at
a

ra
te

 p
re

di
ct

io
n

qu
al

ity
)

Runtime in seconds

FIFO mem = 8 tuples
FIFO mem = 28 tuples
FIFO mem = 48 tuples
FIFO mem = 68 tuples

FIFO mem = 108 tuples
FIFO mem = 148 tuples
FIFO mem = 168 tuples
FIFO mem = 188 tuples
FIFO mem = 208 tuples
FIFO mem = 228 tuples
FIFO mem = 248 tuples

15% data rate prediction bound

Figure 11.18.: Adaptation Time Points and Predicted Filter Output Data Rate

190

11.6. Summary

The graph with sufficient FIFO queue memory (268tuples) is left out here because
no adaptation occurs during the whole runtime. It becomes clear that the number of
adaptations increases as more FIFO memory is granted. The duration between the query
evaluation start and the first adaptation decreases monotonically, whereas the overall
number of adaptations increases in general but not monotonically (as the graphs of test
runs 5 and 6 show).

Furthermore, the adaptation time points are extended by the value of the predicted
filter output data rate. At starting time, the data rate is 500tps in each test, run
which acts as the basis for the graph. During runtime, each participating adaptation
changes the data rate, which is qualitatively shown as a percentage of the initial value.
For data rate prediction, the simple average calculation based on historical values is
used. When doing so, one must know how the adaptation procedure of the prototype
works: For the initial standing query configuration, the result data rate requirement
Rmin = 500 tps is propagated upwards to obtain the data rates as well as the period
lengths of all participating operator instances. Then, if an adaptation is triggered, the
newly predicted data rates are (only) propagated down to the data source (opposite
direction). As a result, the filter output, and thus the data sink input data rate (which
were initially set to a value of exactly 500 tps), is changed repeatedly. If adaptations
take place, the new currently predicted data rate is propagated down to the data sink,
whereas the data rates of the operators upstream to the adapted one (in this case the
filter and the data source) remain constant. For that reason, only the filter’s output
data rate or the data sink’s input data rate vary in the experiment.

It can be seen that the number of adaptations increase as the granted resources (FIFO
memory) are reduced. Furthermore, the data rate prediction gets worse with lower
memory resources. This in turn can lead to deviations of about 15 percent between the
real average value and the predicted one. The reason is that–if adaptations take place
very frequently–the history of DSC values stored in the DSC repository is interrupted,
and thus, only the (very few) most recent values (which have arrived after the last
adaptation) can be considered when predicting the new filter output data rate.

Finally, the robustness value Ω is calculated from the individual experimental results.
One obtains a robustness curve as illustrated in Figure 11.19.

Two things need to be mentioned here: First, the more FIFO memory is granted
for a given standing query evaluation, the fewer adaptations take place and the higher
the robustness value Ω. Second, the robustness values does not necessarily increase
monotonically with the amount of FIFO memory. As the test runs 6 (148 tuples buffer
size) and 7 (108 tuples buffer size) show, the robustness may also decrease temporary
depending on the batch jitter distribution over time and depending on the predicted new
data rate.

11.6. Summary

The evaluation showed that the resource calculation model as well as the scheduling
strategies of QStream meet the requirements of QoS-aware data stream processing. It

191

11. Evaluation

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 50 100 150 200 250 300

R
ob

us
tn

es
s

Filter output FIFO mem in tuples

Figure 11.19.: Robustness Curve

was confirmed that–if resources for covering the worst case of data stream characteristics
are available–the negotiated QoS can be provided during the lifetime of the standing
query. Moreover, the resource allocation is adapted to the query evaluation process to
not waste any memory and to not unnecessarily delay the result data. If occasional
interruptions of the QoS guarantees can be tolerated, the robustness concept may be
applied. The trade-off between the amount of query evaluation resources and the time
span during which a query runs without any adaptation was impressively demonstrated.

192

Part IV.

Summary

193

QoS-Aware Data Stream Processing

Data stream processing in a QoS-aware manner is a challenging area in current research
and development activities. New applications in the field of data management require
the efficient processing of transient data which are disseminated in the form of streams.
In this context, existing concepts and implementations are first exploited and adapted to
the processing paradigms of transient data and permanent (standing) queries. Second,
data stream processing is often connected with sensor data management, which comes
along with a variety of hardware-oriented solutions, mostly implemented on digital signal
processing hardware. The challenge at this point is to keep up with the predictability
and–more specifically–with the real-time capability of such solutions. This thesis put
the focus on this very issue by providing Quality-of-Service guarantees for the DSMS
and paying particular attention to the evaluation of standing queries with associated
time constraints. Moreover, the flexibility of a pure software-based solution is combined
with the predictability of a hardware-oriented one.

Modeling Aspects

The thesis started with a comprehensive overview of related work. Thereafter, it pre-
sented a novel data stream processing model which allows for stream classification based
on the temporal data source behavior and distinguishes different data stream classes.
Furthermore, content-based as well as time-based QoS metrics belong to each data
stream. The content-based QoS metrics (signal frequency and inconsistency) describe
how the original sensor data are reflected within the data stream. In a broader sense,
the signal frequency is associated with the stream’s information content, whereas the
inconsistency stands for an error measure regarding the relation of timestamps and at-
tribute values. The thesis’ focus was clearly on the time-based QoS metrics (data rate
and delay). They describe the temporal aspect of data stream processing by annotating
the data rate as well as a delay property for each intermediate stream and by propa-
gating them from the data sources to the data sink. The challenge of providing QoS
guarantees is directly associated with meeting the overall requirement for the delay and
the result data rate at the output stream of the last operator. Therefore, dedicated
resource calculation and scheduling strategies are given.

Cost Calculation and Scheduling Strategies

The thesis presented the JCP+ cost calculation approach. It allows for calculating
operator- as well as stream-based resources required for evaluating a standing query
with the demanded (time-based) result quality. Moreover, JCP+ results in the overall
delay based on a given standing query evaluation speed.

For providing QoS guarantees, it is essential to efficiently map the calculated resources
to the operating system underneath and thus to make an appropriate reservation. In
this regard, the thesis presented scheduling strategies for considering alternative operator
processing times and alternative data rates as reservation basis. This is beneficial as it
allows to trade off required resources like memory and CPU consumption. Moreover, it

195

is also possible to trade resources (e.g. CPU consumption) against quality metrics (e.g.
overall delay) and thus to have some clearance during the QoS negotiation process.

Robustness Concept

The resource calculation basis is the characteristics of the data streams and of the
operators which are initially estimated and then continuously improved by monitoring
the query evaluation. In this context, the overall goal is not to find ’perfect’ overall
charactaristics. As data streams change over time, it is more important to quickly detect
such changes and to obtain possible future characteristics using an adequate prediction
model. The QStream robustness concept comprises trading the steady query evalation
process against the amount of reserved resources. The more resources one spends on
covering jitter in terms of operator processing time or output data volume, the longer
the DSMS runs without an interruption of the continuous data flow, and the higher the
system’s robustness. The relationship between the amount of resources and robustness
is described by the query-specific robustness curve.

Future Work

Providing hard limits regarding the Quality-of-Service requirements comes with the need
for sufficient resources to cover the worst case, e.g. regarding the processing time jitter or
regarding the output volume jitter. Weakening the hard Quality-of-Service constraints
(soft QoS) could be promising if the surrounding application allows it. In a broader sense,
the robustness concept acts as a first step in this direction; it may be extended by future
work. Another interesting issue–although not discussed in this thesis–is distributed
stream processing while keeping up (hard or soft) QoS guarantees. The processing
concepts of QStream could either be distributed to a set of participating servers or
directly pushed down to the sensor devices which are able to acquire and pre-process
sensor data in the form of streams.

196

List of Figures

1.1. Overhead Cable with a Current Collector 2

1.2. Casting Mold Sensor Equipment . 3

1.3. DSMS versus DBMS . 4

1.4. Overview of the DSMS Operational Perspective 5

1.5. Structure of This Thesis . 7

2.1. Session Constitution in Hancock ([CFPR00]) 13

2.2. Query Extensions for DSMS . 15

2.3. Specification of QoS Diagrams in Aurora ([CcC+02]) 17

2.4. Example Dataflow Implementation ([GV04]) 19

2.5. Query Plan Components of STREAM ([ABB+03]) 20

2.6. Query Plan Components of Aurora ([CcC+02]) 20

2.7. QoS Metrics Classification . 23

2.8. QoS Negotiation in QoS Guarantee DSMS 25

2.9. DSMS Optimization Steps . 27

3.1. Sharing Synopses in STREAM ([ABB+04]) 31

3.2. Sharing Computational Efforts for Aggregation Operations ([ZKOS05]) . 31

3.3. Sharing Windows for Executing Different Join Operations ([HFAE03]) . 32

4.1. Process State Transitions ([SGG02]) . 38

4.2. Operator Execution Modes . 38

4.3. Scheduling Levels . 39

4.4. Overhead of Thread Execution in Aurora ([CcR+03]) 40

4.5. Scheduling Granularity . 41

4.6. Lower Envelope Dataflow Simulation ([BBDM03]) 44

5.1. DSMS Operational Perspective / Runtime Processes 47

5.2. Runtime Resource Management . 48

5.3. Flexible Query Plans of TelegraphCQ ([CCD+03]) 50

5.4. Adaptation Cycles of STREAM ([ABB+04]) 51

5.5. Example Drop Box Placement ([TcZ+03]) 52

5.6. Drop Box Placement in STREAM ([BDM04]) 54

6.1. Relationship between Stream, Partial Stream and Stream Tuple 61

6.2. QStream Stream Classification . 62

6.3. Creating Tuples from the Sensor Signal 62

197

LIST OF FIGURES

6.4. Necessity of Punctuation Messages . 63

6.5. QoS Negotiation Process . 64

6.6. Inconsistency at Join Operations . 66

6.7. Specification and Runtime Layer . 68

6.8. Illustration of Operator Transfer Functions 69

6.9. Example Query Representation by a DAG 70

7.1. Resample Operator Examples . 74

7.2. Example of Resampling Operator Inconsistency Propagation 77

7.3. Tuple Reconstruction within a Discontinuous Partial Stream 79

7.4. Functionality of the Aggregation Operator 81

7.5. Sliding Window Example of the Aggregation Operator 82

7.6. Example for the Aggregation of a Discontinuous Partial Data Stream . . 83

7.7. Inconsistency Propagation of Aggregation Operator 86

7.8. Sync Join Motivation . 89

7.9. Sync Join Processing Steps . 90

7.10. Inconsistency Propagation for Sync Join 95

7.11. Filter Operator Creating a Punctuation Message 98

7.12. Example Standing Query Q . 101

8.1. QStream Data Rate Propagation Example 109

8.2. Insertion of a Compensation Operator for Data Rate Adjustment 110

8.3. Producer-Consumer Relationship Example 111

8.4. Operator Traces . 112

8.5. Producer / Consumer Traces . 113

8.6. Approximations . 113

8.7. Possible Occurences of Producer Jitter 114

8.8. Jitter Accumulation for Worst-Case Delay 115

8.9. QStream Jitter Accumulation . 116

8.10. QStream Overall Resources . 116

8.11. QStream delay adaptation for a standing query instance QI∗ 117

8.12. Integrated Resource Management . 119

8.13. Scheduled Processing Time in Min Delay Strategy 120

8.14. Scheduled Processing Time in Max Throughput Strategy 121

8.15. Period Exceeding . 122

8.16. Compensation Time Using Max Throughput Strategy 123

8.17. Orthogonality of Dataflow Order and Priority Order 124

8.18. Determining Free Processing Time . 126

8.19. Example Standing Query Instance . 126

8.20. Example Compensation Process of MT Strategy (from [SLL05]) 127

8.21. Data Rate Scheduling Strategies . 128

8.22. Operator Trace with Microperiods . 129

8.23. Influence of Microperiods on QoS . 130

198

LIST OF FIGURES

8.24. Operator Blocking Behavior: Producer Operator with Higher Priority
than Consumer Operator . 136

8.25. Operator Blocking Behavior: Consumer Operator with Higher Priority
than Producer Operator . 138

8.26. QStream Overall Resource Calculation Steps 139

9.1. QStream Adaptation Loop . 142

9.2. Robustness Curve . 142

9.3. QStream Monitoring Concept - Adaptation Triggers 143

9.4. Dedicated Monitoring Concept . 146

9.5. Decoupled Monitoring Concept . 147

9.6. Integrated Monitoring Concept . 148

9.7. Statistics Pre-Aggregation within an Operator Instance 149

9.8. Inline Monitor Synchronization . 150

9.9. Problems with Equal-Weighting . 151

9.10. Trend Analysis Approach . 152

10.1. QStream Hardware Environment . 161

10.2. QStream Software Environment . 162

10.3. QStream Architecture . 163

10.4. Query Engine Implementation . 164

10.5. DAQ Hardware Components . 166

10.6. Subdevices Provided by Comedi . 166

10.7. DAQ software stack . 167

10.8. Synchronous Data Acquisition Sequence 167

10.9. Asynchronous Data Acquisition Sequence 168

10.10. Scan Configuration . 169

11.1. Influence of Microperiods on Operator Instances’ Processing Times . . . 172

11.2. Influence of Microperiods on Scheduling Overhead 173

11.3. Influence of Microperiods on Relative Time Jitter 173

11.4. Filter Output Volume Example . 174

11.5. Cumulated Filter Operator Output Jitter 175

11.6. CPU Utilization of MD versus MT . 178

11.7. Scalability of Output Delay: MD versus MT (CPU Utilization of MT is
Constant at 0.4) . 179

11.8. Scalability of Output Delay and Buffer Size in MT 179

11.9. Scalability of Buffer Size: MDR versus ADR 180

11.10. Scalability of Buffer Size: MDR versus ADR. 181

11.11. Example standing query instance QI . 183

11.12. Processing Time Characteristics of Example Operator Instances (MP=100)185

11.13. Batch Size Characteristics of Example Operator Instances (MP=100) . . 186

11.14. Output Delay of MT Strategy Depending on Data Rate 188

199

LIST OF FIGURES

11.15. Output Delay of MT Strategy Depending on Data Rate - Schedulable
Range . 188

11.16. Example Standing Query Instance for Adaptation Experiments 189
11.17. Cumulated Filter Batch Jitter (MP = 1) 189
11.18. Adaptation Time Points and Predicted Filter Output Data Rate 190
11.19. Robustness Curve . 192

200

List of Tables

2.1. Comparison of QoS Management Approaches 26

4.1. DSMS Scheduling Criteria and Optimization Goals 43

7.1. Stream Class Transformations of the Aggregation Operator 84
7.2. Join Classification . 88
7.3. Overview of QStream Operators . 103

8.1. Combination of Scheduling Strategies . 131
8.2. Combination of Operator States . 135

11.1. Combination of Scheduling Strategies . 177
11.2. Description of elementary operators . 183
11.3. Operator Parameters . 184
11.4. DSCs of Example Operator Instances . 184
11.5. Resources and QoS of Example Query 187

201

LIST OF TABLES

202

Glossary

ADR Average Data Rate scheduling strategy
API Application Programming Interface
CQL Continous Query Language - Anfragesprache in STREAM
CS Continuous Partial Stream
DAQ Data Acquisition
DBMS Data Base Management System
DS Discontinuous Partial Stream
DSC Data Stream Characteristics
DSMS Data Stream Management System
ES Event Partial Stream
FIFO First-In-First-Out
GUI Graphical User Interface
JCP Jitter-constrained Periodic Streams
LXRT RTAI library for providing soft and hard real-time in user space
MD Min Delay scheduling strategy
MDR Max Data Rate scheduling strategy
MQO Multi-Query Optimization
MT Max Throughput scheduling strategy
OS Operating System
QEP Query Execution Plan
QoS Quality-of-Service
RMS Rate Monitonic Scheduling
RTAI Realtime Application Interface - Echtzeiterweiterung fr Linux
RTOS Real-time Operating System
SHM Shared Memory
SP Scheduling Plan

203

Bibliography

[AAB+05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel,
Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey,
Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B.
Zdonik. The Design of the Borealis Stream Processing Engine. In Proceedings
of the Second Biennial Conference on Innovative Data Systems Research
(CIDR 2005, January 4-7, Alisomar (CA), USA), pages 277–289, 2005.

[ABB+03] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito,
Rajeev Motwani, Itaru Nishizawa, Utkarsh Srivastava, Dilys Thomas, Ro-
hit Varma, and Jennifer Widom. STREAM: The Stanford Stream Data
Manager. IEEE Data Engineering Bulletin, 26(1):19–26, 2003.

[ABB+04] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur
Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom.
STREAM: The Stanford Data Stream Management System. Technical re-
port, Department of Computer Science, Stanford University, 2004.

[ABc+05] Yanif Ahmad, Bradley Berg, Ugur Çetintemel, Mark Humphrey, Jeong-Hyon
Hwang, Anjali Jhingran, Anurag Maskey, Olga Papaemmanouil, Alex Rasin,
Nesime Tatbul, Wenjuan Xing, Ying Xing, and Stanley B. Zdonik. Dis-
tributed operation in the Borealis stream processing engine. In Proceedings
of the 2005 ACM SIGMOD International Conference on Management of
Data (SIGMOD 2005, June 13-16, Baltimore (MD), USA), pages 882–884,
2005.

[ABW03] Arvind Arasu, Shivnath Babu, and Jennifer Widom. CQL: A Language
for Continuous Queries over Streams and Relations. In Database Program-
ming Languages, 9th International Workshop (DBPL 2003, September 6-8,
Potsdam, Germany), pages 1–19, 2003.

[ACc+03] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Chris-
tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan-
ley B. Zdonik. Aurora: a new model and architecture for data stream man-
agement. VLDB Journal, 12(2):120–139, 2003.

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive
Query Processing. In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (SIGMOD 2000, May 16-18, Dallas
(TX), USA), 2000, pages 261–272, 2000.

205

BIBLIOGRAPHY

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Ap-
proximating the Frequency Moments. In Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing (STOC 1996, May
22-24, Philadelphia (PA), USA), pages 20–29, 1996.

[AN04] Ahmed Ayad and Jeffrey F. Naughton. Static Optimization of Conjunctive
Queries with Sliding Windows Over Infinite Streams. In Proceedings of
the 2004 ACM SIGMOD International Conference on Management of Data
(SIGMOD 2004, June 13-18, Paris, France), pages 419–430, 2004.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and Issues in Data Stream Systems. In Proceedings of the
Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS 2002, June 3-5, Madison (WS), USA), pages
1–16, 2002.

[BBD+04] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Dilys
Thomas. Operator scheduling in data stream systems. The VLDB Journal,
13(4):333–353, 2004.

[BBDM03] Brian Babcock, Shivnath Babu, Mayur Datar, and Rajeev Motwanis. Chain:
Operator Scheduling for Memory Minimization in Data Stream Systems. In
Proceedings of the 2003 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 2003, June 9-12, San Diego (CA), USA), pages
253–264, 2003.

[BDE+97] Claudio Bettini, Curtis E. Dyreson, William S. Evans, Richard T. Snodgrass,
and Xiaoyang S. Wang. A Glossary of Time Granularity Concepts. In
Temporal Databases, Dagstuhl, pages 406–413, 1997.

[BDM03] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding tech-
niques for data stream systems. In Proceedings of the 2003 Workshop on
Management and Processing of Data Streams (MPDS’03, June 8, San Diego
(CA), USA), 2003.

[BDM04] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load Shedding for
Aggregation Queries over Data Streams. In Proceedings of the 20th Inter-
national Conference on Data Engineering (ICDE 2004, March 30 - April 2,
Boston (MA), USA), pages 350–361, 2004.

[BGS01] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards Sensor
Database Systems. In Proceedings of the Mobile Data Management, Second
International Conference (MDM 2001, January 8-10, Hong Kong, China),
pages 3–14, 2001.

[BMM+04] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and
Jennifer Widom. Adaptive Ordering of Pipelined Stream Filters. In Proceed-

206

BIBLIOGRAPHY

ings of the 2004 ACM SIGMOD International Conference on Management
of Data (SIGMOD 2004, June 13-18, Paris, France), pages 407–418, 2004.

[BSLH05] Henrike Berthold, Sven Schmidt, Wolfgang Lehner, and Claude-Joachim
Hamann. Integrated Resource Management for Data Stream Systems. In
Proceedings of the 20th Annual ACM Symposium on Applied Computing
(SAC 2005, March 13-17, Santa Fe (NM), USA), pages 555–562, 2005.

[BSW04] Shivnath Babu, Utkarsh Srivastava, and Jennifer Widom. Exploiting k-
constraints to reduce memory overhead in continuous queries over data
streams. ACM Transactions on Database Systems (TODS), 29(3):545–580,
2004.

[CA04] Damianos Chatziantoniou and Achilleas Anagnostopoulos. NESTREAM:
Querying Nested Streams. SIGMOD Record, 33(3):71–78, 2004.

[CcC+02] Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sang-
don Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan-
ley B. Zdonik. Monitoring Streams - A New Class of Data Management Ap-
plications. In Proceedings of 28th International Conference on Very Large
Data Bases (VLDB 2002, August 20-23, Hong Kong, China), pages 215–226,
2002.

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.
Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel
Madden, Vijayshankar Raman, Frederick Reiss, and Mehul A. Shahhah.
TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In
Proceedings of the First Biennial Conference on Innovative Data Systems
Research (CIDR, January 5-8, Asilomar (CA), USA), 2003.

[CcR+03] Donald Carney, Ugur Çetintemel, Alex Rasin, Stanley B. Zdonik, Mitch
Cherniack, and Michael Stonebraker. Operator Scheduling in a Data Stream
Manager. In Proceedings of 29th International Conference on Very Large
Data Bases (VLDB 2003, September 9-12, 2003, Berlin, Germany), pages
838–849, 2003.

[CD02] Jianjun Chen and David J. DeWitt. Dynamic Re-Grouping of Continuous
Queries. Technical report, Computer Sciences Department, University of
Wisconsin-Madison, 1210 West Dayton Street, Madison (WI), USA, 2002.

[CDN01] Surajit Chaudhuri, Gautam Das, and Vivek R. Narasayya. A ro-
bust, optimization-based approach for approximate answering of aggregate
queries. In Proceedings of the 2001 ACM SIGMOD International Conference
on Management of Data (SIGMOD 2001, May 21-23, Santa Barbara (CA)
USA), 2001.

207

BIBLIOGRAPHY

[CDN02] Jianjun Chen, David J. DeWitt, and Jeffrey F. Naughton. Design and Eval-
uation of Alternative Selection Placement Strategies in Optimizing Contin-
uous Queries. In Proceedings of the 18th International Conference on Data
Engineering (ICDE, February 26 - March 1, San Jose (CA), USA), pages
345–356, 2002.

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases. In Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data
(SIGMOD 2000, May 16-18, Dallas (TX), USA), pages 379–390, 2000.

[CFPR00] Corinna Cortes, Kathleen Fisher, Daryl Pregibon, and Anne Rogers. Han-
cock: A Language for Extracting Signatures from Data Streams. In Pro-
ceedings of the sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (SIGKDD 2000, August 20-23, Boston (MA),
USA), pages 9–17. ACM, 2000.

[CHK+03] Michael Cammert, Christoph Heinz, Jürgen Krämer, Alexander Markowetz,
and Bernhard Seeger. PIPES: A Multi-Threaded Publish-Subscribe Ar-
chitecture for Continuous Queries over Streaming Data Sources. Technical
report, Philipps-University Marburg, Department of Mathematics and Com-
puter Science, 2003.

[CJSS03a] Charles D. Cranor, Theodore Johnson, Oliver Spatscheck, and Vladislav
Shkapenyuk. Gigascope: A Stream Database for Network Applications. In
Proceedings of the 2003 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 2003, June 9-12, 2003, San Diego (CA), USA),
pages 647–651. ACM, 2003.

[CJSS03b] Charles D. Cranor, Theodore Johnson, Oliver Spatscheck, and Vladislav
Shkapenyuk. The Gigascope Stream Database. IEEE Data Engineering
Bulletin, 26(1):27–32, 2003.

[CKSV06] Michael Cammert, Jürgen Krämer, Bernhard Seeger, and Sonny Vaupel.
An Approach to Adaptive Memory Management in Data Stream Systems.
In Proceedings of the 22nd International Conference on Data Engineering
(ICDE 2006, April 3-7, Atlanta (GA), USA), page 137, 2006.

[CMN99] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. On Random
Sampling over Joins. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD 1999, June 1-3, Philadelphia
(PA), USA), pages 263–274, 1999.

[Coc77] William G. Cochran. Sampling Techniques. Wilay, New York, 3. edition,
1977.

[Dat00] Christopher J. Date. An Introduction to Database Systems. Addison Wesley,
7. edition, 2000.

208

BIBLIOGRAPHY

[DGGR02] Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi.
Processing complex aggregate queries over data streams. In Proceedings of
the 1999 ACM SIGMOD International Conference on Management of Data
(SIGMOD 1999, June 1-3, Philadelphia (PA), USA), pages 61–72, 2002.

[DGR03] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. Approximate
Join Processing Over Data Streams. In Proceedings of the 2003 ACM SIG-
MOD International Conference on Management of Data (SIGMOD 2003,
June 9-12, San Diego (CA), USA), pages 40–51, 2003.

[FHKS05] Conny Franke, Michael Hartung, Marcel Karnstedt, and Kai-Uwe Sattler.
Quality-aware Mining of Data Streams. In Proceedings of the 10th Inter-
national Conference on Information Quality (ICIQ 2005, November 4-6,
Boston (MA), USA), 2005.

[GBLP96] Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. Data
Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-
Tab, and Sub-Total. In Proceedings of the Twelfth International Conference
on Data Engineering (ICDE 1996, February 26 - March 1, New Orleans
(LA), USA), pages 152–159, 1996.

[GG02] Minos N. Garofalakis and Johannes Gehrke. Querying and Mining DataS-
treams: You only Get One Look. (Tutorial). In Proceedings of the 28th
International Conference on Very Large Data Bases (VLDB 2002, August
20-23, Hong Kong, China), 2002.

[GÖ03a] Lukasz Golab and M. Tamer Özsu. Data Stream Management Issues - A
Survey. Technical report, School of Computer Science, University of Water-
loo, Canada, 2003.

[GÖ03b] Lukasz Golab and M. Tamer Özsu. Issues in data stream management.
SIGMOD Record, 32(2):5–14, 2003.

[GÖ03c] Lukasz Golab and M. Tamer Özsu. Processing Sliding Window Multi-Joins
in Continuous Queries over Data Streams. In Proceedings of 29th Interna-
tional Conference on Very Large Data Bases (VLDB 2003, September 9-12,
Berlin, Germany), pages 500–511, 2003.

[Gra93] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM
Computing Surveys, 25(2):73–170, 1993.

[GV04] Janusz R. Getta and Ehsan Vossough. Optimization of Data Stream Pro-
cessing. SIGMOD Record, 33(3):34–39, 2004.

[Haa97] Peter J. Haas. Large-Sample and Deterministic Confidence Intervals for
Online Aggregation. In Proceedings of the Ninth International Conference
on Scientific and Statistical Database Management (SSDBM’97, August 11-
13, Olympia (WA), USA), pages 51–63, 1997.

209

BIBLIOGRAPHY

[Haa05] Peter J. Haas. Data-stream sampling: basic techniques and results. Data
Stream Management: Processing High Speed Data Streams. Springer Verlag,
2005.

[HAE05] Moustafa A. Hammad, Walid G. Aref, and Ahmed K. Elmagarmid. Optimiz-
ing In-Order Execution of Continuous Queries over Streamed Sensor Data.
In Proceedings of the 17th International Scientific and Statitical Database
Management Conference (SSDBM’05, June 27-29, Santa Barbara (CA),
USA), pages 143–146, 2005.

[Ham97] Claude-Joachim Hamann. On the Quantitative Specification of Jitter Con-
strained Periodic Streams. In Proceedings of the 5th International Workshop
on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS 1997, January 15-17, Haifa, Israel), pages 171–176,
1997.

[HBR+05] Jeong-Hyon Hwang, Magdalena Balazinska, Alex Rasin, Ugur Çetintemel,
Michael Stonebraker, and Stanley B. Zdonik. High-Availability Algorithms
for Distributed Stream Processing. In Proceedings of the 21st International
Conference on Data Engineering (ICDE 2005, April 5-8, Tokyo, Japan),
pages 779–790, 2005.

[HFAE03] Moustafa A. Hammad, Michael J. Franklin, Walid G. Aref, and Ahmed K.
Elmagarmid. Scheduling for shared window joins over data streams. In Pro-
ceedings of 29th International Conference on Very Large Data Bases (VLDB
2003, September 9-12, Berlin, Germany), pages 297–308, 2003.

[HHW97] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online Aggrega-
tion. In Proceedings of the 1997 ACM SIGMOD International Conference
on Management of Data (SIGMOD 1997, May 13-15, Tucson (AZ), USA),
pages 171–182, 1997.

[HMA+04] Moustafa A. Hammad, Mohamed F. Mokbel, Mohamed H. Ali, Walid G.
Aref, Ann Christine Catlin, Ahmed K. Elmagarmid, Mohamed Y. Eltabakh,
Mohamed G. Elfeky, Thanaa M. Ghanem, Robert Gwadera, Ihab F. Ilyas,
Mirette S. Marzouk, and Xiaopeng Xiong. Nile: A Query Processing Engine
for Data Streams. In Proceedings of the 20th International Conference on
Data Engineering (ICDE 2004, March 30 - April 2, Boston (MA), USA),
page 851, 2004.

[JC04] Qingchun Jiang and Sharma Chakravarthy. Scheduling Strategies for Pro-
cessing Continuous Queries over Streams. In Proceedings of the 21st British
National Conference on Databases (BNCOD 21, July 7-9, Edinburgh, UK),
pages 16–30, 2004.

210

BIBLIOGRAPHY

[JKM+98] H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poosala, Ken-
neth C. Sevcik, and Torsten Suel. Optimal Histograms with Quality Guar-
antees. In Proceedings of 24rd International Conference on Very Large Data
Bases (VLDB 1998, August 24-27, New York City (NY), USA), pages 275–
286, 1998.

[JMSS05] Theodore Johnson, S. Muthukrishnan, Vladislav Shkapenyuk, and Oliver
Spatscheck. A Heartbeat Mechanism and Its Application in Gigascope. In
Proceedings of the 31st International Conference on Very Large Data Bases
(VLDB 2005, August 30 - September 2, Trondheim, Norway), pages 1079–
1088, 2005.

[KNV03] Jaewoo Kang, Jeffrey F. Naughton, and Stratis Viglas. Evaluating Window
Joins over Unbounded Streams. In Proceedings of the 19th International
Conference on Data Engineering (ICDE 2003, March 5-8, Bangalore, India),
pages 341–352, 2003.

[KS03] Nick Koudas and Divesh Srivastava. Data Stream Query Processing: A
Tutorial. In Proceedings of 29th International Conference on Very Large
Data Bases (VLDB 2003, September 9-12, Berlin, Germany), page 1149.
Morgan Kaufmann, 2003.

[KS04] Jürgen Krämer and Bernhard Seeger. PIPES - A Public Infrastructure for
Processing and Exploring Streams. In Proceedings of the 2004 ACM SIG-
MOD International Conference on Management of Data (SIGMOD 2004,
June 13-18, Paris, France), pages 925–926, 2004.

[KS05a] Nick Koudas and Divesh Srivastava. Approximate Joins: Concepts and
Techniques. (Tutorial). In Proceedings of the 31st International Conference
on Very Large Data Bases (VLDB 2005, August 30 - September 2, Trond-
heim, Norway), page 1363, 2005.

[KS05b] Jürgen Krämer and Bernhard Seeger. A Temporal Foundation for Continu-
ous Queries over Data Streams. In Proceedings of the Eleventh International
Conference on Management of Data (COMAD 2005, January 6-8, Goa, In-
dia), pages 70–82, 2005.

[KSKR05] Richard Kuntschke, Bernhard Stegmaier, Alfons Kemper, and Angelika
Reiser. StreamGlobe: Processing and Sharing Data Streams in Grid-Based
P2P Infrastructures. In Proceedings of the 31st International Conference on
Very Large Data Bases (VLDB 2005, August 30 - September 2, Trondheim,
Norway), pages 1259–1262, 2005.

[KSSS04a] Christoph Koch, Stefanie Scherzinger, Nicole Schweikardt, and Bernhard
Stegmaier. FluXQuery: An Optimizing XQuery Processor for Streaming
XML Data. In Proceedings of the 30th International Conference on Very

211

BIBLIOGRAPHY

Large Data Bases (VLDB 2004, August 30 - September 3, Toronto, Canada),
pages 1309–1312, 2004.

[KSSS04b] Christoph Koch, Stefanie Scherzinger, Nicole Schweikardt, and Bernhard
Stegmaier. Schema-based scheduling of event processors and buffer min-
imization for queries on structured data streams. In Proceedings of the
Thirtieth International Conference on Very Large Data Bases (VLDB 2004,
August 30 - September 3, Toronto, Canada), pages 228–239, 2004.

[LS03] Alberto Lerner and Dennis Shasha. AQuery: Query Language for Ordered
Data, Optimization Techniques, and Experiments. In Proceedings of 29th In-
ternational Conference on Very Large Data Bases (VLDB 2003, September
9-12, Berlin, Germany), pages 345–356, 2003.

[LZJ+05] Bin Liu, Yali Zhu, Mariana Jbantova, Bradley Momberger, and Elke A.
Rundensteiner. A Dynamically Adaptive Distributed System for Processing
Complex Continuous Queries. In Proceedings of the 31st International Con-
ference on Very Large Data Bases (VLDB 2005, August 30 - September 2,
Trondheim, Norway), pages 1338–1341, 2005.

[Man03] Paolo Mantegazza. Dissecting RTAI. Dipartimento di Ingegneria
Aerospaziale - Politecnico di Milano, 2003.

[Mat04] The MathWorks. Signal Processing Toolbox User’s Guide, 2004.

[MF02] Samuel Madden and Michael J. Franklin. Fjording the Stream: An Archi-
tecture for Queries Over Streaming Sensor Data. In Proceedings of the 18th
International Conference on Data Engineering (ICDE 2002, February 26 -
March 1, San Jose (CA), USA), pages 555–566, 2002.

[MFHH03] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
The Design of an Acquisitional Query Processor For Sensor Networks. In
Proceedings of the 2003 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 2003, June 9-12, San Diego (CA), USA), pages
491–502, 2003.

[MFHH05] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. TinyDB: an acquisitional query processing system for sensor networks.
ACM Transactions on Database Systems (TODS), 30(1):122 – 173, 2005.

[Mou03] Patrick Mourot. RTAI Internals Presentation, 2003.

[MSHR02] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vijayshankar
Raman. Continuously adaptive continuous queries over streams. In Proceed-
ings of the 2002 ACM SIGMOD International Conference on Management
of Data (SIGMOD 2002, June 3-6, Madison (WS), USA), pages 49–60,
2002.

212

BIBLIOGRAPHY

[MWA+03] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath
Babu, Mayur Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosen-
stein, and Rohit Varma. Query Processing, Resource Management, and
Approximation in a Data Stream Managament System. In Proceedings of
the First Biennial Conference on Innovative Data Systems Research (CIDR
2003, January 5-8, 2003, Asilomar (CA), USA), 2003.

[Nat04] National Instruments Corporation. E Series Help, July 2004.

[NS95] Klara Nahrstedt and Ralf Steinmetz. Multimedia: Computing, Communi-
cations & Applications. Prentice Hall., 1995.

[OFB04] Dan Olteanu, Tim Furche, and François Bry. An efficient single-pass query
evaluator for XML data streams. In Proceedings of the 2004 ACM Sym-
posium on Applied Computing (SAC 2004, March 14-17, Nicosia, Cyprus),
pages 627–631, 2004.

[OMFB02] Dan Olteanu, Holger Meuss, Tim Furche, and François Bry. XPath: Look-
ing Forward. In In Proceedings of the XML-Based Data Management and
Multimedia Engineering Workshop (EDBT 2002 Workshop, March 24-28,
Prague, Czech Republic), pages 109–127, 2002.

[RDZ+05] Elke A. Rundensteiner, Luping Ding, Yali Zhu, Timothy Sutherland, and
Bradford Pielech. CAPE: A Constraint-Aware Adaptive Stream Processing
Engine. Stream Data Management (Advances in Database Systems Series).
Springer Verlag, pages 83–111, 2005.

[RSSB00] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and
Extensible Algorithms for Multi Query Optimization. In Weidong Chen, Jef-
frey F. Naughton, and Philip A. Bernstein, editors, Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data (SIG-
MOD 2000, May 16-18, Dallas (TX), USA), pages 249–260, 2000.

[SAM98] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-Driven
Exploration of OLAP Data Cubes. In Proceedings of the 6th International
Conference on Extending Database Technology (EDBT’98, March 23-27, Va-
lencia, Spain), pages 168–182, 1998.

[Sch01] Rainer Schlittgen. Zeitreihenanalyse. Oldenbourg, 9 edition, May 2001.

[ScZ05] Michael Stonebraker, Ugur Çetintemel, and Stan Zdonik. The 8 Require-
ments of Real-Time Stream Processing. SIGMOD Record, 34(4):42–47, De-
cember 2005.

[SFL05] Sven Schmidt, Marc Fiedler, and Wolfgang Lehner. Source-aware Join
Strategies of Sensor Data Streams. In Proceedings of the 17th International
Scientific and Statitical Database Management Conference (SSDBM’05,
June 27-29, Santa Barbara (CA), USA), 2005.

213

BIBLIOGRAPHY

[SG84] Julius O. Smith and P. Gossett. A Flexible Sampling-Rate Conversion
Method. In Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP’84, March 19 - 21, San Diego
(CA), USA), pages 112–115, 1984.

[SGG02] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating sys-
tem concepts. Wiley, 6th edition, 2002.

[SH90] Samuel D. Stearns and Don R. Hush. Digital Signal Analysis. Prentice Hall,
2nd edition, 1990.

[SH98] Mark Sullivan and Andrew Heybey. Tribeca: A System for Managing Large
Databases of Network Traffic. In Proceedings of the 1998 USENIX Annual
Technical Conference (USENIX 1998, May 15-19, New Orleans (LA), USA),
1998.

[SHB03] David Schleef, Frank Hess, and Herman Bruyninckx. The Control and Mea-
surement Device Interface handbook. 2003.

[SKK04] Bernhard Stegmaier, Richard Kuntschke, and Alfons Kemper. StreamGlobe:
adaptive query processing and optimization in streaming P2P environments.
In Proceeedings of the 1st international workshop on Data management for
sensor networks (DMSN 2004, August 30, Toronto, Canada), pages 88–97,
2004.

[SLL05] Sven Schmidt, Thomas Legler, and Wolfgang Lehner. Real-time Scheduling
for Data Stream Management Systems. In Proceedings of the 17th Euromicro
Conference on Real-Time Systems (ECRTS’05, July 6-8, Palma de Mallorca,
Spain), 2005.

[SLSL05] Sven Schmidt, Thomas Legler, Sebastian Schaer, and Wolfgang Lehner. Ro-
bust Real-time Query Processing with QStream. In Proceedings of the 31st
International Conference on Very Large Data Bases (VLDB 2005, August
30 - September 2, Trondheim, Norway), pages 1299–1302, 2005.

[SMFH01] Mehul A. Shah, Samuel Madden, Michael J. Franklin, and Joseph M. Heller-
stein. Java Support for Data-Intensive Systems: Experiences Building the
Telegraph Dataflow System. SIGMOD Record, 30(4):103–114, 2001.

[SMW05] Utkarsh Srivastava, Kamesh Munagala, and Jennifer Widom. Operator
Placement for In-Network Stream Query Processing. In Proceedings of the
Twenty-fourth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS 2005, June 13-16, Baltimore (MD), USA),
2005.

[Sta04] Stanford University. STREAM: The Stanford Stream Data Manager - User
Guide and Design Document., 2004.

214

BIBLIOGRAPHY

[Sul96] Mark Sullivan. Tribeca: A Stream Database Manager for Network Traffic
Analysis. In Proceedings of 22th International Conference on Very Large
Data Bases (VLDB’96, September 3-6, Mumbai (Bombay), India), page 594.
Morgan Kaufmann, 1996.

[SW98] Claude E. Shannon and Warren Weaver. The mathematical theory of com-
munication. University of Illinois Press, 1998.

[SW04a] Utkarsh Srivastava and Jennifer Widom. Flexible Time Management in
Data Stream Systems. In Proceedings of the Twenty-third ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS
2004, June 14-16, Paris, France), pages 263–274, 2004.

[SW04b] Utkarsh Srivastava and Jennifer Widom. Memory-limited execution of win-
dowed stream joins. In Proceedings of the Thirtieth International Conference
on Very Large Data Bases (VLDB 2004, August 30 - September 3, Toronto,
Canada), pages 324–335, 2004.

[Tan92] Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.

[TcZ+03] Nesime Tatbul, Ugur Çetintemel, Stanley B. Zdonik, Mitch Cherniack, and
Michael Stonebraker. Load Shedding in a Data Stream Manager. In Pro-
ceedings of 29th International Conference on Very Large Data Bases (VLDB
2003, September 9-12, Berlin, Germany), pages 309–320, 2003.

[Tea02] RTAI Development Team. DIAPM RTAI - Beginner’s Guide, 2002.

[Tea06] RTAI Development Team. RTAI API Documentation, 2006.

[TMSF03] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. Exploit-
ing punctuation semantics in continuous data streams. In IEEE Transactions
on Knowledge and Data Engineering, volume 15, pages 555–568, 2003.

[UF00] Tolga Urhan and Michael J. Franklin. XJoin: A reactively-scheduled
pipelined join operator. IEEE Data Engineering Bulletin, 23(2):27–33, 2000.

[VN02] Stratis Viglas and Jeffrey F. Naughton. Rate-based query optimization for
streaming information sources. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data (SIGMOD 2002, June
3-6, Madison (WS), USA), pages 37–48, 2002.

[VNB03] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the Out-
put Rate of Multi-Way Join Queries over Streaming Information Sources.
In Proceedings of 29th International Conference on Very Large Data Bases
(VLDB 2003, September 9-12, Berlin, Germany), pages 285–296, 2003.

[WW94] Carl A. Waldspurger and William E. Weihl. Lottery Scheduling: Flexi-
ble Proportional-Share Resource Management. In Proceedings of the First

215

BIBLIOGRAPHY

USENIX Symposium on Operating Systems Design and Implementation
(OSDI 1994, November 14-17, Monterey (CA), USA), pages 1–11, 1994.

[YG02] Yong Yao and Johannes Gehrke. The cougar approach to in-network query
processing in sensor networks. SIGMOD Record, 31(3):9–18, 2002.

[ZGTS03] Donghui Zhang, Dimitrios Gunopulos, Vassilis J. Tsotras, and Bernhard
Seeger. Temporal and spatio-temporal aggregations over data streams using
multiple time granularities. Information Systems, 28(1-2):61–84, 2003.

[ZKOS05] Rui Zhang, Nick Koudas, Beng C. Ooi, and Divesh Srivastava. Multiple
Aggregations Over Data Streams. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data (SIGMOD 2005, June
13-16, Baltimore (MD), USA), pages 299–310, 2005.

[ZRH04] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. Dynamic Plan
Migration for Continuous Queries Over Data Streams. In Proceedings of
the 2004 ACM SIGMOD International Conference on Management of Data
(SIGMOD 2004, June 13-18, Paris, France), pages 431–442, 2004.

[ZSC+03] Stanley B. Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur Çetintemel,
Magdalena Balazinska, and Hari Balakrishnan. The Aurora and Medusa
Projects. IEEE Data Eng. Bull.IEEE Data Engineering Bulletin, 26(1):3–
10, 2003.

216

Selbstständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Literatur und Hilfsmittel angefertigt habe.

Dresden, 17. Oktober 2006

Sven Schmidt

	Introduction
	Related Models and Systems
	Fundamental Prerequisites for Data Stream Processing
	Data Stream Modeling Aspects
	Internal Structure of Data Stream Items
	Temporal Relationship of Consecutive Data Items
	Attribute Evaluation Over Time

	Characteristics of Standing Queries
	Type of Query Specification
	Standing Query Extensions
	Query Plans
	Operators

	Quality-of-Service in Data Stream Processing
	QoS Metrics Classification
	QoS-Oriented Classification of DSMS

	Perspectives of Data Stream Query Optimization

	Structural Query Optimization
	Optimization Steps
	Logical Query Optimization
	Physical Query Optimization
	Multi-Query Optimization for DSMS

	Cost Models and Functions
	Operator-Specific Cost Models
	Generic Cost Models

	Structural Optimization Techniques
	Minimizing Resource Consumption
	Maximizing QoS

	Summary

	Temporal Query Optimization
	Preliminaries
	Operator States
	Continuously Running Operators
	Scheduling Classification

	Scheduling Mechanisms
	DSMS Level Scheduling Mechanism
	OS Level Scheduling Mechanism and Optimizations
	Scheduling Granularity

	Scheduling Strategies
	Scheduling for Minimizing Resource Consumption
	Scheduling for Maximizing Quality-of-Service
	Scheduling for Guaranteed Quality-of-Service

	Summary

	Runtime Management
	Re-Optimization
	Adaptation
	Adaptation for Resource Minimization and QoS Maximization
	Adaptation for Time-Based QoS Guarantees

	Approximation
	Generic Approximation
	Operator-Specific Approximation

	Summary

	QStream: Towards a Robust, Quality-of-Service Guarantee Data Stream Management System
	QStream Modeling Aspects
	Data Stream Model
	Data Streams and Stream Tuples
	Partial Streams and Stream Classes
	Stream Punctuation

	QoS Model
	QoS Negotiation Concept
	Content-Based QoS Metrics
	Time-Based QoS Metrics
	Quality Request

	Operator Model
	Generic Operator Model
	Standing Query Representation
	Quality Propagation

	Summary

	QStream Operators
	Helper Operators
	Resample
	Reconstruct

	Stateful Operators
	Aggregation
	Sync-Join
	Sampling

	Stateless Operators
	Filter
	Projection

	Summary

	Integrated Cost Model and Scheduling Approaches of QStream
	The JCP+ Cost Model
	Cost Model Assumptions
	Generic JCP+ Calculation
	JCP+ Calculation for a Standing Query Instance

	Scheduling Strategies
	Run Time Scheduling Strategies
	Data Rate Scheduling Strategy
	Scheduling Optimization: Concept of Microperiods

	JCP+ Adaptation
	Scheduling-Strategy-Specific Resource and QoS Calculation
	JCP+ Extension for the Max Throughput Run Time Strategy
	Overall Resource Calculation and QoS Negotiation Steps

	Summary

	The QStream Robustness Concept
	Robustness Calculation
	The Macro Jitter Adaptation Concept
	Adaptation Procedure
	Adaptation Effects on QoS and Resources

	Collecting Data Stream Characteristics
	Conceptual DSC Monitoring Architecture
	DSC Measurement and Collection Concepts

	Prediction Models and DSMS Parameters
	Prediction Models
	Scheduling Parameter Determination

	Summary

	QStream Prototype and Evaluation
	The QStream Prototype
	Application Concept
	Architecture
	Sensor Data Acquisition
	The Comedi Device Interface
	QStream Data Acquisition Techniques
	QStream Data Acquisition Strategies

	Summary

	Evaluation
	Test Environment Setup
	Scheduling Parameter Determination
	Operator Instance Processing Times
	Operator Instance Output Volume

	Scalability of Scheduling Strategies
	Run Time Scheduling Strategy Comparison
	Data Rate Scheduling Strategy Comparison

	Example Query Resource Consumption
	Description of Operators and Operator Instances
	Example Query Resources and Quality-of-Service

	Adaptation and Robustness
	Summary

	Summary
	List of Figures
	List of Tables
	Glossary
	Bibliography

