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Chapter 1 Introduction 
 

Systematics and evolution are linked to each other and it is nearly impossible to 

investigate one of these topics without looking at the other. In addition the study of 

those two fields is not possible without understanding and studying related research 

fields, such as e.g. ecology. This is the reason, why the present thesis is not only 

consisting of one research topic, but also includes related fields like pollination 

biology or molecular evolution.  

 

The family Aristolochiaceae, as currently circumscribed, consists of four genera, 

belonging to two subfamilies (Aristolochioideae and Asaroideae) each with two 

genera (Neinhuis et al. 2005, Wanke et al. 2006b, 2006c). Saruma (a monotypic 

genus) and the small genus Asarum, ~85 spp. are merged in Asaroideae. The 

systematics and phylogeny of Asarum has been comprehensively studied by (Kelly 

1998). Systematic and evolutionary problems have been found only on the population 

and species level of closely related species within one section (Yamijdi et al., in 

press). Basically, this is due to hybridisation of this populations and species. The 

other subfamily Aristolochioideae consists of the genus Thottea (~30 spp., from 

southeast Asia), which is only poorly studied and the species rich genus Aristolochia 

(~500 spp., see Chapter 3). Besides the evolution of the genus Thottea more 

questions still need to be resolved.  These problems concern the monophyly of 

Aristolochiaceae, since Hydnoraceae, a parasitic family, and Lactoridaceae (a 

monotypic family from the Juan Fenadez Islands) cause the paraphyly of 

Aristolochiaceae (Nickrent et al. 2002, Wanke et al. 2006c). These questions are 

beyond the scope of the present thesis, but are currently under investigation or will be 

in due course.  

Although the issue of big genera is a hot topic in systematics, attempts to study these 

groups comprehensively are rare, mainly because a detailed knowledge on the 

specific group is an essential precondition which is nearly impossible to achieve by 

only one scientist. It is generally recognized (e.g. Frodin 2004) that botanists should 
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not consider these big genera as “black holes” but should focus on their resolution. 

Large genera pose high taxonomic challenges as well as unparalleled opportunities to 

study phenomena such as character evolution, changes in evolutionary diversification 

rates, adaptive radiations, rapid speciation, key innovations and chromosomal 

rearrangement (Berry et al. 2005). 

The present study deals with the species rich genus Aristolochia and tries to resolve 

the relationships within the genus (Chapter 3). Beside this, a kind of case study on 

molecular evolution, ecology, and biogeography has been performed on some 

specific topics raised during the investigation of the main clades (Chapter 3, 4, 5). 

These case studies will lead to further and more detailed investigations, and will be 

applicable to similar problems in other clades or geographical areas, as well as open 

the possibility to look at a specific topic from a different viewpoint. 

The presented thesis starts with a detailed circumscription of Aristolochiaceae and its 

relatives of the order Piperales (Chapter 2) followed by a more intensive investigation 

of the subfamily Aristolochioideae (Chapter 3). Finally, a detailed study of the 

subgenus Aristolochia focusing especially on the Old World representatives is 

presented. Chapters 3 & 4 report on findings, which raised several new questions and 

ideas for further studies. Each subchapter has its own introduction and abstract 

resulting in a short generall introduction here, to avoid too much redundant 

information. 
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Chapter 2 Evolution of Piperales – matK gene 
and trnK intron sequence data reveal lineage 

specific resolution contrast 
 
 
 
 
 
 
 

This study has been published as: 

Wanke, S., Jaramillo, MA., Borsch, T., Samain, MS., Quandt, D. 

Neinhuis, C., 2006. Molecular Phylogenetics and Evolution 

doi.org/10.1016/j.ympev.2006.07.007. 
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Abstract 
Piperales are one of the largest basal angiosperm orders with a nearly worldwide 

distribution. The order includes three species rich genera, Piper (ca. 1,000 species), 

Peperomia (ca. 1,500-1,700 species), and Aristolochia s. l. (ca. 500 species). 

Sequences of the matK gene and the non-coding trnK group II intron are analysed for 

a dense set of 105 taxa representing all families (except Hydnoraceae) and all 

generic segregates (except Euglypha within Aristolochiaceae) of Piperales. A large 

number of highly informative indels are found in the Piperales trnK/matK dataset. 

Within a narrow region approximately 500 nt downstream in the matK coding region 

(CDS), a length variable simple sequence repeat (SSR) expansion segment occurs, 

in which insertions and deletions have led to short frame-shifts. These are corrected 

shortly afterwards, resulting in a maximum of 6 amino acids being affected. 

Furthermore, additional non-functional matK copies were found in Zippelia 

begoniifolia, which can easily be discriminated from the functional open reading frame 

(ORF). The trnK/matK sequence data fully resolve relationships within Peperomia, 

whereas they are not effective within Piper. The resolution contrast is correlated with 

the rate heterogenity between those lineages. Parsimony, Bayesian and likelihood 

analyses result in virtually the same topology, and converge on the monophyly of 

Piperaceae and Saururaceae. Lactoris gains high support as sister to 

Aristolochiaceae subf. Aristolochioideae, but the different tree inference methods 

yield conflicting results with respect to the relationships of subfam. Asaroideae. In 

Piperaceae, a clade formed by the monotypic genus Zippelia and the small genus 

Manekia (=Sarcorhachis) is sister to the two large genera Piper and Peperomia.  



 13

Introduction 

The order Piperales is one of the most species rich clades among basal angiosperms, 

comprising about 3,300 species, with three genera that include more than 500 

species so-called “big genera” (Frodin, 2004,). Nearly all types of growth and life 

forms are represented, such as geophytes, herbs, succulents, lianas, shrubs, trees, 

parasites and epiphytes. Members of Piperales exhibit a diverse spectrum of 

specializations in floral morphology and pollination. On the one hand, 

Aristolochiaceae attract insects with their highly specialized flowers, on the other 

hand Piperaceae and Saururaceae possess perianthless reduced flowers that are 

pollinated by flies and bees (Semple, 1974; de Figuereido and Sazima, 2000; 

Marquis, 1988; Bornstein, 1989). Therefore, Piperales are an important lineage for 

understanding early angiosperm diversification. Piperales also comprise some 

economically important plants like Piper nigrum (black pepper) used as a spice and 

several Peperomia species that are widely used as ornamental plants. In addition, 

secondary metabolites of Aristolochiaceae such as aristolochic acids are important 

compounds in pharmacology (e.g. Nortier et al., 2000). 

Molecular data provide evidence for a sister relationship between Piperales and 

Canellales (e.g. Qiu et al., 1999; Savolainen et al., 2000; Qiu et al., 2005; Zanis et al., 

2002; Hilu et al., 2003; Borsch et al., 2003; Löhne and Borsch, 2005; Kim et al., 2004; 

Borsch et al., 2005). The close relationship of all four orders, Piperales, Canellales, 

Magnoliales and Laurales to form the magnoliid clade is meanwhile well supported by 

substitution based tree inferences (Borsch et al., 2005; Borsch et al., 2003; Qiu et al., 

2005; Zanis et al., 2002) and chloroplast genome microstructural changes (Löhne and 

Borsch, 2005). Phylogenetic analyses with a dense taxon sampling in Magnoliales 

(Sauquet et al., 2003), Laurales (Renner, 2005; Renner and Chanderbali, 2000; 

Renner, 1999) and Canellales (Karol et al., 2000; Suh et al., 1993) have been 

published, whereas Piperales lack a thorough molecular analysis.  
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Characterisation and utility of the trnK intron including the matK gene  

The matK coding region has a length of 1500-1600 bp in most angiosperms, and is 

located within domain V of the trnK UUU group II intron (Neuhaus and Link, 1987; Ems 

et al., 1995; Fig. 1). Based on structural similarities, this ORF has been suggested to 

code for a maturase (Neuhaus and Link, 1987; Mohr et al., 1993), and in fact matK is 

the only maturase of higher plant plastids (Vogel et al., 1997). Transcription 

experiments have shown that trnK including matK are co-transcribed (Chieba et al., 

1996) and there is accumulating evidence for the expression of the gene (Du Jardin 

et al., 1994; Barthet and Hilu, pers. comm.). Sequence variation is considerable, 

however, the reading frame of matK has been found intact even in extremely fast 

evolving lineages, such as Lentibulariaceae (Müller and Borsch, 2005a). Frameshift 

mutations in matK have been reported from Poaceae (Hilu and Alice, 1999) and 

Lentibulariaceae (Müller and Borsch, 2005a), although only near the 3’ end of the 

CDS where they apparently have minimal impact on function. Moreover, small 

inversions (2-4 codons) have been encountered in Amaranthaceae (Müller and 

Borsch, 2005b), again with minimal impact on the amino acid composition of the 

gene.  
 
Figure 1. The trnK/matK region. Coding regions are represented by enlarged black boxes, highly 
length-variable regions by small black boxes (H1-H7). Location of the trnK intron domains (DI – DVI) as 
well as domain X (DX) in matK are indicated. For further reference of the internal primers see Table 2. 
Size and position of length variable regions change with study group. Length of the region is presented 
proportional based on the situation found in Aristolochia reticulata. 
 

 
 

A peculiarity of matK are substitution rates in first and second codon positions 

approaching those in the third (Hilu and Liang, 1997), which contribute to the high 

overall evolutionary rate of matK in contrast to other chloroplast genes. MatK seems 



 15

to be single copy in the vast majority of plants, although some additional copies of 

pseudogenic nature have been discovered in Valerianaceae (Hidalgo et al., 2004; 

Bell et al., 2001), Nepenthaceae (Meimberg et al., 2006), as well as in some 

bryophyte lineages (Jankowiak et al., 2004). In all these cases, pseudogenic copies 

were easily identified and grouped together in phylogenetic reconstructions either 

based on distances or characters.  

The matK gene has become one of the most frequently used chloroplast gene 

markers in angiosperm phylogenetic studies. Since matK can easily be co-amplified 

with the flanking non-coding intron parts, the complete trnK intron is increasingly 

used, expanding the dataset to 2400-2700 bp. As a consequence, the utility of this 

region could be extended to the inter- and intra-species level (e.g., Müller and Borsch, 

2005a; Wanke et al., 2006b, Wanke et.al., 2006b). 

Circumscription of Piperales 

Piperales as considered here include the families Piperaceae, Aristolochiaceae, 

Saururaceae and Lactoridaceae as well as parasitic Hydnoraceae (Nickrent et al., 

2002; APG, 2003). However, Aristolochiaceae and Lactoridaceae were sometimes 

placed in their respective own orders Aristolochiales and Lactoridales (Takhtajan, 

1992, 1997). Hydnoraceae had been placed with other parasitic plants in Rafflesiales 

(Cronquist, 1988). Monophyly of Piperales is strongly supported by sequence (e.g. 

Chase et al., 1993; Graham and Olmstead, 2000; Mathews and Donoghue, 2000; 

Soltis et al., 2000; Borsch et al 2003; Hilu et al 2003; Jaramillo et al., 2004; Löhne 

and Borsch, 2005; Neinhuis et al., 2005; Borsch et al., 2005). A set of phenotypic 

characters has been suggested as synapomorphic for Piperales such as two-ranked 

leaves, sheathing leaf base, nuclear endosperm, a single adaxial prophyll, swollen 

nodes, distinct vascular bundles, wood with broad rays, vessel elements with simple 

perforation and secondary metabolism products like alkaloids from benzyl-isoquinolin 

and aporphine type (Doyle and Endress, 2000). All Piperales lineages show strong 

trends towards reduction and fusion of flower organs, with the genus Peperomia 

being considered to have the most reduced flowers in Piperales (Jaramillo et al., 

2004).  



 16

 

Major lineages within Piperales 

According to Jaramillo et al. (2004), Piperaceae comprise four genera, the large 

genera Peperomia Ruiz and Pavon (about 1700 species; Wanke et al., 2006d) and 

Piper L. (more than 1000 species; Jaramillo and Manos 2001) constituting the core of 

Piperaceae, and the small genera Manekia Trel. (considered as an earlier name of 

Sarcorhachis, Arias et al., in press), and Zippelia Blume.  The distinctiveness of 

Peperomia has long been recognized, either as subfamily Peperomioideae (Thorne 

1992), or, alternatively, as a separate family Peperomiaceae (e.g. Burger, 1977). The 

most detailed study on Peperomia was primarily based on fruit morphology by 

Dahlstedt (1900), dividing Peperomia into nine subgenera and seven sections. 

However trnK/matK data only support the monophyly: of subgenera Micropiper, 

Sphaerocarpidium (Wanke et al., 2006d). Monophyly of the genus has been 

substantiated by molecular approaches (Neinhuis et al., 2005, Jaramillo et al., 2004), 

flower morphology (Jaramillo et al., 2004) and pollen ultrastructure (Mathew and 

Mathew, 2001). Piper species are mostly shrubs, trees or lianas. Several generic 

names are included as synonyms within Piper, e.g. Arctottonia Trel., Macropiper Miq., 

Pothomorphe Miq., Ottonia Spreng. (Jaramillo and Manos 2001), and Trianaeopiper 

Trel. (Jaramillo and Callejas 2004). Analysis of ITS sequence data provides support 

for three major clades within Piper, which have diversified in Asia, the South Pacific 

and the Neotropics, respectively. Zippelia has been included in Piper or has been 

regarded as independent genus within Piperaceae or even Saururaceae. Recently, 

Zippelia together with Manekia has been proposed to be distantly related to Piper 

(Jaramillo and Manos, 2001), or to form a clade which is sister group to Piper and 

Peperomia (Jaramillo et al., 2004).  

Saururaceae contain six species in four genera with an East Asian – North American 

disjunction: Saururus, Gymnotheca, Anemopsis and Houttuynia (Liang, 1995). 

Several studies have been conducted to reveal phylogenetic relationships in this 

small family. Most of these studies dealt with ontogenetic/morphological data as 

characters (e g. Tucker et al., 1993; Liang and Tucker, 1995; Liang and Tucker, 1990; 
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Tucker, 1975; Tucker, 1981; Meng et al., 2003). Two hypotheses on relationships 

were formulated: 1. Anemopsis + Houttuynia and Saururus + Gymnotheca; 2. 

Saururus branching first, followed by Gymnotheca and Anemopsis + Houttuynia. This 

is also substantiated by chloroplast sequence data (Meng et al., 2003; Jaramillo et al., 

2004; Neinhuis et al., 2005), but contrasting with the signal obtained form the nuclear 

genome, which placed Anemopsis as sister to all other Saururaceae (Meng et al., 

2003). 

Aristolochiaceae are distributed worldwide. and are generally divided into two 

subfamilies, Asaroideae and Aristolochioideae (Huber, 1993). Asaroideae comprise 

about 85 species and occur mainly in northern temperate regions with a centre of 

diversity in Asia (Kelly, 1998), whereas Aristolochioideae have ca. 500 species and 

occur  predominantly in tropical-subtropical regions (Ma, 1990). The most recent 

classification for Asaroideae is based on Kelly (1997, 1998) who recognises two 

genera (Asarum and Saruma) with several segregates at the subgenus or section 

level in Asarum. González and Stevenson (2002) provide a detailed discussion of the 

various systematic treatments of Aristolochiaceae. They recognize five genera within 

Aristolochioideae: Thottea, Isotrema, Endodeca, Pararistolochia and Aristolochia. 

Holostylis (= Aristolochia holostylis (Duchartre) F.Gonzalez) and Euglypha have been 

included in a broadly circumscribed genus Aristolochia. Similarly, the most 

comprehensive analysis of morphological characters of Aristolochiaceae by Kelly and 

González (2003) recognizes seven genera: Asarum and Saruma in Asaroideae, in 

addition to the five in Aristolochioideae. Studies on Aristolochiaceae based on partial 

matK sequences (Murata et al., 2001) examined only four recognized genera. Other 

molecular inference (trnL-F) (Neinhuis et al. 2005) is largely congruent with the 

results of González and Stevenson (2002) and Kelly and González (2003). However, 

discrepancy exists among relationships between segregates within Aristolochia. 

Lactoris fernandeziana, the only species in Lactoridaceae, is confined to the Juan 

Fernandez Islands, Chile. Its systematic position has been controversial among 

members of basal angiosperms (for a review see Stuessy et al., 1998; González and 

Rudall, 2001) partly caused by a difficult interpretation of convergent morphological 
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characters e.g. pollen with a saccus (apart from Lactoris only known from 

gymnosperms; Carlquist, 1964; Zavada and Taylor, 1986). Molecular data also 

support the position within Piperales (Qiu et al., 2005; Hilu et al., 2003; Borsch et al., 

2003; Borsch et al., 2005), or even within Aristolochiaceae (Borsch et al., 2005; 

Neinhuis et al., 2005) making the family paraphyletic, or close to Aristolochiaceae and 

Hydnoraceae (Nickrent et al. 2002). 

 

This study aims to: A) characterize patterns of molecular evolution for the trnK/matK 

region in Piperales, using a dense taxon sampling, B) investigate patterns of 

microstructural changes within the trnK intron and the matK gene, C) resolve major 

clades within Piperales, investigate the relationships between small and large genera 

(Asarum/Saruma versus Aristolochioideae, Manekia/Zippelia versus 

Piper/Peperomia).
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Material and methods 

Sampling strategy  

A total of 105 accessions of Piperales are sampled, including a representative 

number of species/taxonomic groups for each genus in the order. Hydnoraceae 

(Hydnora and Prosopanche) have not been sampled as they lack the matK region in 

the cp genome (Nickrent, pers. comm.). In Piperaceae, 30 taxa are selected from the 

genus Piper (following the sampling of Jaramillo and Manos 2001)), 27 taxa of 

Peperomia (following the sampling of Wanke et al. (2006d), representing many 

subgenera recognised by Dahlstedt (1900)), as well as the monotypic genus Zippelia 

and two species of the genus Manekia. All four genera with in total five species of 

Saururaceae are sampled. Aristolochiaceae sampling includes 36 taxa from both 

subfamilies, representing all genera of Aristolochioideae accepted by González and 

Stevenson (2002) and Neinhuis et al. (2005) and a selection of Asaroideae. 

Lactoridaceae is represented by its only species Lactoris fernandeziana. Three 

genera of Canellales are used as outgroup. 

Plant material has either been collected in the field or has derived from plants 

cultivated in botanical gardens (collections of the Botanical Gardens Bonn and 

Dresden, Germany) as well as herbarium specimens. A list of the sampled species, 

along with collection localities, vouchers and GenBank accession numbers is 

provided in Table 1. For generic segregates, of which the taxonomy is until know 

unclear, the most common name is used, e.g. Macropiper within Piper (Smith, 1975). 
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Methods 

DNA-isolation, amplification and sequencing 

Total genomic DNA was isolated from fresh material, silica gel dried leaves or 

herbarium specimens. A modified CTAB procedure (with a triple-extraction was 

conducted as described in Borsch et al. (2003). 

The trnK/matK region was generally amplified in two parts with an overlap of 250 to 

400 bp, using the primers listed in Table 2. In some species, the trnK/matK region 

was amplified in three parts due to long insertions of AT rich microsatellites. 

Amplification profiles differed only with respect to annealing temperatures for the 

specific primer combination used, and were otherwise: 3 min at 96°C, 3 min at 50°C 

(48°C), 3 min at 72°C, 34 cycles (39 cycles) of 1 min at 94°C, 1.50 min at 48/50/52°C, 

3 min at 72°C and a final extension 20 min at 72°C. Reactions of 25 µl containing 15 

µl DNA template (2 ng/µl), 3.3 µl dNTP mix (1.25 mM each), 0.5 µl of each primer (20 

pmol/µl) and 1 U Taq Polymerase (Promega) were conducted. After gel 

electrophoresis the PCR products were purified using a QiaQuick gel extraction kit 

(QIAGEN). Direct sequencing used the ABI PrismTM BigDye Terminator Cycle 

Sequencing Ready Reaction Kit (Perkin Elmer) with subsequent electrophoresis on 

ABI 310 or 377 automated sequencers, or the CEQ DTCS Quick Start Kit (Beckman 

Coulter) with the CEQ 8000 sequencer, following standard protocols for each kit. In 

some cases, the PCR products were cloned using the pGEMT-easy vector kit 

(Promega) and sequenced with the amplification primers after plasmid isolation and 

purification through GFX microplasmid kit (AmerSham). Cloning followed standard 

procedures with 1 µl vector, 1 µl ligase, 5 µl Buffer (all provided with each kit) and 3 µl 

PCR product. 
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Sequence alignment and treatment of microstructural changes 

Sequences were manually aligned using PhyDE® (Müller et al., 2005) following 

alignment rules proposed by Borsch et al. (2003) and Löhne and Borsch (2005) and 

guided by secondary structures of DNA especially for length mutations and 

inversions. Secondary structures and the resulting free energy (∆G) of hairpins was 

calculated using RNAstructure 4.2 (Mathews et al., 2005). The aforementioned 

alignment rules have been compiled to account for mutational events other than 

nucleotide substitutions. The observed motifs are largely the result of simple 

sequence repeats (one or several copies), deletions, and inversions (see also Benson 

et al., 1997; Graham et al., 2000; Kelchner, 2000; Löhne and Borsch, 2005; Müller 

and Borsch, 2005a). Seven mutational hotspots were excluded from the final matrix 

(Table 3), especially microsatellites, because of uncertain primary homology. An indel 

matrix was calculated using the “simple indel coding” approach (SIC, Simmons and 

Ochoterena, 2000) as implemented in SeqState (Müller 2005a). The alignment and 

the indel matrix are available from TreeBASE (www.treebase.org). 

 

Phylogenetic analyses 

Phylogenetic reconstructions using heuristic searches under maximum parsimony 

(MP) were performed using PAUP* 4.0b10 (Swofford 2002). The strict consensus tree 

was inferred with command files for PAUP* 4.0b10generated by PRAP (Müller, 2004), 

implementing the Parsimony Ratchet (Nixon, 1999). The following ratchet settings 

were employed: 10 random addition cycles of 500 iterations each with a 25% of 

upweighting of the characters in the iterations. In addition, indels were analyzed 

employing SIC (Simmons and Ochoterena, 2000) as implemented in SeqState (Müller 

2005a). SeqState generates a ready-to-use Nexus file containing the sequence 

alignment with an automatically generated indel matrix appended. The evaluation of 

the MP tree was performed using the Bootstrap approach (Felsenstein, 1985), 

conducting 1000 replicates and random addition searches with 10 iterations per cycle. 

Decay values as further measurement of support for the individual clades were 
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obtained using PRAP in combination with PAUP* and the same options in effect as in 

the ratchet.  

Maximum likelihood analyses were executed assuming a general time reversible 

model (GTR), and a rate variation among sites following a gamma distribution (four 

categories represented by mean). GTR+G+I was chosen as the model that best fits 

the data by Modeltest v3.6 (Posada & Crandall 1998) employing the interface MTgui 

(Nuin, 2005). The settings proposed by Modeltest v3.6 [BaseFreq=(0.3384 0.1510 

0.1455), Nst=6, Rmatrix=(1.0672 1.7089 0.2936 0.6604 1.7089), Shape=1.2190, 

Pinvar=0.0621] were executed in PAUP. 

For Bayesian inference (BS) the program MrBayes v3.1 (Ronquist and Huelsenbeck, 

2003) was used. To acknowledge possible deviating substitution models for the 

coding and non-coding regions the data set was divided into two partitions. For both 

partitions, the GTR model of nucleotide substitution was assigned, assuming site-

specific rate categories following a gamma distribution. Two runs (106 generations 

each) with four chains each were run simultaneously, starting from random trees. 

Chains were sampled every 10 generations and the respective trees were written to a 

tree file. Calculation of the consensus tree and the posterior probability (PP) of clades 

was done based upon the trees sampled after the chains converged (25 %). Only 

PP’s of 95 and higher were considered significant (alpha = 0.05). Trees were 

compiled and drawn using TreeGraph (Müller and Müller, 2004).  

 

Relative rate test 

Relative rate tests according to Sarich and Wilson (1967) were used to quantify the 

degree of rate divergence between taxon sets (e.g. clades).. Relative rate differences 

were calculated between the main Piperales groups (Asaroideae, Aristolochioideae 

(excl. Thottea), Thottea, Saururaceae, Lactoridaceae, Manekia/Zippelia, Piper s.l., 

Peperomia). As in the phylogenetic analyses Canella, Drimys, and Pseudowintera 

were chosen as reference taxa. Calculations of differences in substitutional rates 

between groups were based on ML estimates of distances (GTR +G +I model). 

Calculations were performed with help of GRate (Müller, 2002; see Müller et al., 

2004) that allows to compare average rates of previously defined taxon sets. 
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Results 
Variability in the trnK intron and the matK gene 

In Piperales, the trnK intron (including the matK ORF) is 2533 bp on average, ranging 

from 2412-3258 bp. The matK gene itself has a length of 1509-1557 bp (mean 1534 

bp). Frequent microstructural changes lead to a considerably longer aligned dataset 

of 4256 characters, including hotspots (Fig. 1, Table 4). All hotspots are located in the 

trnK intron and their position and extension are given in Table 3. Sequences in 

hotspots are microsatellites consisting of stretches of poly-As or Ts except H1 that 

comprises long and highly-variable AT-rich sequence parts inserted in 

Aristolochioideae (excl. Thottea) sequences (cryptic simple microsatellite, Wanke et 

al, 2006a). Table 5 summarises lineage specific characteristics for partitioned 

datasets (Piper, Peperomia, Aristolochia s.l.). It is clearly shown that the number of 

parsimony informative characters, compared to outgroup, is similar between the three 

large genera. But parsimony informative characters within the clades are considerably 

different. Piper displays only ~1/3 to ~1/2 the amount of informative sites compared to 

Aristolochia or Peperomia, respectively. Generally, the number of variable characters 

is twice as high within Peperomia and Aristolochia compared to Piper.  
 
Table 5. Characterisation of the maximum parsimony trees obtained for the complete alignment 
(hotspots excluded) and partitioned sets representing the “giant genera”, to evaluate the lineage 
specific resolution contrast based on alignment characteristics. 
 
 without 

indels* 
with indels* Aristolochia Peperomia Piper 

trees found# 440 3434 1 6 609 
steps# 4303 5065 1371 1522 1029 
CI# 0.559 0.555 0.761 0.787 0.835 
RI# 0.913 0.906 0.842 0.810 0.863 
RC# 0.511 0.503 0.641 0.637 0.720 
HI# 0.441 0.445 0.239 0.213 0.165 
total char. # 3684 4089 3684 3684 3684 
constant char. # 2066 2066 2822 2695 2925 
uninformative char. # 432 605 313 370 255 
pars. informative char. # 1186 1418 549 619 504 
pars. informative char. %$ - - 10.365 6.743 3.740 
variable char. %$ - - 18.227 18.051 9.393 
* based on the complete alignment incl. outgroup 
# based on charactersets for the mentioned members plus outgroup, based on substitutions only, if not 

different indicated 
$ based on charactersets for the mentioned members without outgroup, based on substitutions only 
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Microstructural variation in the trnK intron 
A large number of length mutations has been identified and coded in a separate 

matrix (395 indels in total). Among these, 217 indels are located within the trnK 5’ 

intron, 59 in the matK gene and 119 in the trnK 3’ intron. Most of these indel events 

represent simple sequence repeats (SSR) of the flanking region (up to 25 bp in the 

intron and 15 bp, 5 codons, in the gene). An AT-rich microsatellite-like stretch is found 

in the domain I of the trnK intron (Fig 1, hotspot I). In Aristolochioideae (not present in 

Thottea), this cryptic simple microsatellite ranges from 29 bp in Isotrema to 443 bp in 

Endodeca. The internal structure of this repeat can be characterised as (AnTm)k. This 

microsatellite region is absent in all other Piperales. A second poly-A/T microsatellite 

is observed in Thottea (Fig. 2). Examination of the flanking regions and subsequent 

structural analysis reveals a hairpin with the microsatellite forming a terminal loop, 

which appears to have been inverted in the common ancestor of Thottea (Fig. 2). 

Compared to expected triplet insertions and in frame deletions, “self repairing” out-of-

frame indels around 600 nt upstream of the matK ORF start (Fig. 3, Tab. 6), 

apparently associated with a microsatellite, have been identified. Based on primary 

homology assessment, length mutations involving one or two nucleotides must be 

assumed, which are followed downstream by an additional length mutational event 

involving one or two nucleotides respectively. Therefore, the frameshift affects only 

five or six amino acids, the restoration of the original reading frame is observed in all 

cases. However, an out-of-frame deletion of two codons is found in the two species of 

Pararistolochia (around alignment position 2050). The matK gene of the Piperaceae 

is highly variable in length on its 3’ end, this variation is probably due to point 

mutations that result in early stop codons in several taxa (Fig. 4). 
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Figure 2. Position 356-397 of the alignment (trnK 5’ intron), showing a selection of taxa and the 
potential inverted sequences (boldface) in Thottea. Below the potential part as “normal” and as reverse 
complemented and aligned is given. Lowest shows the reverse complemented part aligned into the 
original selection. The absolute number of inverted nucleotides could not be detected due to the 
insertion of poly T’s. The secondary structure (∆G = -3.5) for this region is given as example from 
Thottea corymbosa, demonstrating the perfect stem-loop region of the potential inverted region. 
 
A. salvadorensis TTTCTTTGAACGGGACTCAAA-----------------AAAT-TAACCC----TTGGGTC 
A. tomentosa TTTCTTGGAACGGGACTAAAA-----------------AAAT-TCACCC----TTGGGTC 
A. manshurensis TTTCTTGGAACGGGACTAAAA-----------------AAAT-TCACCC----TTGGGTC 
A. serpentaria TTTCTTGGAACGGGACTAAAA-----------------AAAT-GCACCC----TTGGGTC 
Thottea dependens ATTCTTGGAACGGGATGCATTTTTTTTTTTTTTTTTTT-----TCATCT----TTAGGTC 
Thottea corymbosa ATTCTTAGAACGGGATGAATTTTTTTTTTTT------------TCATCT----TTGGGTC 
Thottea siliquosa ATTCTTGGAACGGGGTGCATTTTTTTTTT--------------TCATCT----TTGGGTC 
Asarum caudatum ATTCTTGGAACGGGACCAAAT-----------------CAATATCACCATTGATTGGGTC 
Saruma henryi ATTCTTGGAACGGGACCAAAT-----------------CAATATCACCATTGATTGGGTC 
Anemopsis californica ATTCTTGGAATGGGACCAAAT-----------------CAAT-TCATCC----TTGGGTC 
 
Thottea dependens              GATGCATTTTTTTTTTTTTTTTTTT-----TCATC 
Thottea corymbosa              GATGAATTTTTTTTTTTT------------TCATC 
Thottea siliquosa              GGTGCATTTTTTTTTT--------------TCATC 
Thottea dependens              GATGAAAAAAAAAAAAAAAAA----AAAT-GCATC 
Thottea corymbosa              GATGAAAAAAAAAA-----------AAAT-TCATC 
Thottea siliquosa              GATGAAAAAAAA-------------AAAT-GCACC 
 
A. salvadorensis TTTCTTTGAACGGGACTCAAA-----------------AAAT-TAACCC----TTGGGTC 
A. tomentosa TTTCTTGGAACGGGACTAAAA-----------------AAAT-TCACCC----TTGGGTC 
A. manshurensis TTTCTTGGAACGGGACTAAAA-----------------AAAT-TCACCC----TTGGGTC 
A. serpentaria TTTCTTGGAACGGGACTAAAA-----------------AAAT-GCACCC----TTGGGTC 
Thottea dependens TTTCTTGGAACGGGATGAAAAAAAAAAAAAAAAA----AAAT-GCATCC----TTGGGTC 
Thottea corymbosa TTTCTTGGAACGGGATGAAAAAAAAAA-----------AAAT-TCATCC----TTGGGTC 
Thottea siliquosa TTTCTTGGAACGGGATGAAAAAAAA-------------AAAT-GCACCC----TTGGGTC 
Asarum caudatum ATTCTTGGAACGGGACCAAAT-----------------CAATATCACCATTGATTGGGTC 
Saruma henryi ATTCTTGGAACGGGACCAAAT-----------------CAATATCACCATTGATTGGGTC 
Anemopsis californica ATTCTTGGAATGGGACCAAAT-----------------CAAT-TCATCC----TTGGGTC 

 

 
Thottea corymbosa ∆G = -3.5 
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Figure 3. Position 2020-2110 of the alignment. An example for the high amount of length mutational 
events within the matK gene. Frame shift mutations with the respective “self repairing part” are 
indicated in bold. Only parts of the complete matrix are shown. All effected AS are marked in bold and 
arranged how they should be aligned on nucleotide level to demonstrate frame shift events. 
 
Canella ATTACTCCAAAGAAA---------TCCATTTCCATT------TTT------TCA---------AAAGATAAT 
Drimys ATTACTCCAAAGAAA---------TCCATTTCCCTT------TTT------TCA---------AAAAGGAAT 
Pseudowintera ATTATTCCAAAGAAA---------TCCATTTCCATT------TTT------TCA---------AAAAGGAAT 
A. pentandra ATTAGTTCAAAGAAA---------TCCATTTTTTTT------TTC------TCA---------AAAGAGAAT 
A. bracteolata ATTAGTTCAAAGAAA---------TCCATTTCTTTT------TTC------TCA---------AAAGAGAAT 
A. albida ATTAGTTCAAAGAAA---------TCCATTTATTTT------TTC------TCATTCTCA---AAAGAGAAT 
A. pistolochia ATTAGTTCAAAGAAA---------TCCTTTTTTTTTT-----TTCTCAAA-TCA---------AAAGAGAAT 
A. parvifolia ATTAGTTCAAAGAAA---------TCCTTTTTT---------TTC------TCA---------AAGGGGAAT 
A. pichinch. ATTAATTCAAAGAAA---------TCCATTTTTATT------TTA------TCA---------AAAGGGAAT 
P. triactina ATTAGTTCAAAGAAA---------TCCATTTTTTTT------TTC------TCA---------AAAGAGAAT 
A. salvadoren. GTTAGTTCAAAGAAA---------TCCATTCTTTTTTTT---TTC------TCA---------AAAGAGAAT 
A. californica GTTAGTTCAAAGAAA---------TCCATTCCTTTTTTTTTTTTC------TCA---------AAAGAGAAT 
A. macrophylla GTTAGTTCAAAGAAA---------TCCATTCCTTTTTTT---TTC------TCA---------AAAGAGAAT 
A. serpentaria GTTAGTTCAAAGAAA---------TCCATTCCTTTTTTT---TTC------TCA---------AAAGAAAAT 
Th. siliquosa ATTAGTCCAAAGAAA---------TTCATTTCTTTT------TTC------TCA---------AAGGAGAAT 
Asa. caudatum ATTAGTCTAAAGAAA---------TCTATCTCTTTCTTT---TTT------TCA---------AAAGGGAAT 
Saruma henryi ATTAGTCCAAAGAAA---------TCTATCTCTTTCTTT---TTT------TCA---------AAAGGGAAT 
Lactoris ATTAGTCCAAAAAAA---------TCGATTTCTTTT------TTT------TCA---------AATGGGAAT 
Anemopsis ATTAGCCAAAAAAAA---------TCCATCTCT---------TTT------TCA------AAAGAAGAGAAT 
Gymnotheca ATTAGCAAAAAAAAA---------TCCATCTCT---------TTT------TCA------AAAGAAGAGAAT 
M. naranjoana ATTAGCCAAAAAAAA---------TTCTCTTCT---------TTT------TCA------AAAAAAGAGAAT 
P. decuma ATTAGCAAAAAAAAA---------TTCTTTTCT---------TTT------TCA------AAAAAAGAAAAT 
Pep. gracill. TTTAGCAAAAGA---------------------------------------------------AAAAAAAAT 
Pep. fraseri TTTAGCAAAATA---------------------------------------------------AAAAAAAAT 
Pep. trifolia TTTAGCAAAATAAAAAAAAA----TTCTTTTAT---------TTT------TCA--------AAAAAAAAAT 
Pep. argyreia TTTAAAAAAAAAAAAAAAAA----TTCTTTTCT---------TTT------TCT--------AAAAAAAAAT 
Pep. metallica TTTAGCAAAATAAAAAAAAA----TTCTTTTAT---------TTT------GAA--------AAATAAAAAT 
Pep. marmorata TTTAGCAAAAGAAAAAAAAG----TTCTTTTAT---------TTT------TCA--------AAAAAAAAAT 
Pep. fagerlin. TTTAGCAAAATAAAAAAAAAAA--TTCTTTTAT---------TTT------TCA-------AAAAAAAAAAT 
Pep. clusiifo. TTTAGCAAAATAAAAAAAAA----TTCTTTTCT---------TTT------TCA--------AAAAAAAAAT 
Pep. pernambu. TTTAGCAAAAGA---------------------------------------------------AAAAAAAAT 

 
Canella IleThrProLysLys---------SerIleSerIle------Phe------Ser---------LysAspAsn 
Drimys IleThrProLysLys---------SerIleSerIle------Phe------Ser---------LysArgAsn 
Pseudowintera IleIleProLysLys---------SerIleSerIle------Phe------Ser---------LysArgAsn 
A. pentandra IleSerSerLysLys---------SerIlePhePhe------Phe------Ser---------LysGluAsn 
A. bracteolata IleSerSerLysLys---------SerIleSerPhe------Phe------Ser---------LysGluAsn 
A. albida IleSerSerLysLys---------SerIleTyrPhe------Phe------SerPheSer---LysGluAsn 
A. pistolochia IleSerSerLysLys---------SerPhePhePheP-----heLeuLys-Ser---------LysGluAsn 
A. parvifolia IleSerSerLysLys---------SerPhePhe---------Phe------Ser---------LysGlyAsn 
A. pichinch. IleAsnSerLysLys---------SerIlePheIle------Leu------Ser---------LysGlyAsn 
P. triactina IleSerSerLysLys---------SerIlePhePhe------Phe------Ser---------LysGluAsn 
A. salvadoren. ValSerSerLysLys---------SerIleLeuPhePhe---Phe------Ser---------LysGluAsn 
A. californica ValSerSerLysLys---------SerIleProPhePhePhePhe------Ser---------LysGluAsn 
A. macrophylla ValSerSerLysLys---------SerIleProPhePhe---Phe------Ser---------LysGluAsn 
A. serpentaria ValSerSerLysLys---------SerIleProPhePhe---Phe------Ser---------LysGluAsn 
Th. siliquosa IleSerProLysLys---------PheIleSerPhe------Phe------Ser---------LysGluAsn 
Asa. caudatum IleSerLeuLysLys---------SerIleSerPhePhe---Phe------Ser---------LysGlyAsn 
Saruma henryi IleSerProLysLys---------SerIleSerPhe------Phe------Ser---------LysGlyAsn 
Lactoris IleSerProLysLys---------SerIleSerPhe------Phe------Ser---------AsnGlyAsn 
Anemopsis IleSerGlnLysLys---------SerIleSer---------Phe------Ser------LysGluGluAsn 
Gymnotheca IleSerLysLysLys---------SerIleSer---------Phe------Ser------LysGluGluAsn 
M. naranjoana IleSerGlnLysLys---------PheSerSer---------Phe------Ser------LysLysGluAsn 
P. decuma IleSerLysLysLys---------PhePheSer---------Phe------Ser------LysLysGluAsn 
Pep. gracill. PheSerLysArg---------------------------------------------------LysLysAsn 
Pep. fraseri PheSerLysIleLysLysAs----nSerPheIl---------ePh------eGl--------nLysLysAsn 
Pep. trifolia PheLysLysLysLysLysAs----nSerPheLe---------uPh------eLe--------uLysLysAsn 
Pep. argyreia PheSerLysIleLysLysAs----nSerPheIl---------eLe------uLy--------sAsnLysAsn 
Pep. metallica PheSerLysArgLysLysSe----rSerPheIl---------ePh------eGl--------nLysLysAsn 
Pep. marmorata PheSerLysIleLysLysLysI--leLeuLeuP---------heP------heL-------ysLysLysAsn 
Pep. fagerlin. PheSerLysIleLysLysAs----nSerPheLe---------uPh------eGl--------nLysLysAsn 
Pep. clusiifo. PheSerLysArg---------------------------------------------------LysLysAsn 
Pep. pernambu. PheSerLysLys---------------------------------------------------LysLysAsn 
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Figure 4. The 3’ part of the matK gene (position 3517-3570), showing the different positions of stop 
codons based on homology of the nucleotides a) nucleotide sequence b) amino acid sequence. Stop 
codons are indicated in boldface or as star respectively. Only a representing sampling of the dataset is 
indicated. 
 
a) 
 
Piper cinereum  CATACAAATGACTTGACCAATCATTAA------TGA----TTGATCACAAG 
Macropiper excelsum  CATACAAATGACTTGACCAATCATGAA------TGA----TTGATCATAAG 
Piper hispidum  CATACAAATGACTTGACCAATCATGAA------TGA----TTGATCATAAG 
Piper reticulatum  CATACAAATGACTTAACCAATCATGAA------TGA----TTGGTCATAAG 
Piper pulchrum  CATACAAATGACTTGACCAATCATGAA------TGA----TTGGTCATAAG 
Piper spoliatum  CATACAAATGACTTGACCAATCATGAA------TGA----TTGGTCATAAG 
Peperomia gracillima CATACAAATGACTTGACCAATCATGAA------TGA----TTGGTCATAAG 
Peperomia fraseri  CATACAAATGACTTGACCAATCAAGAA------TAA----TTGGTCATAAG 
Peperomia ppucuppucu  CATACAAATGACCTGACCAATCAATAATAATAATAA----TTGGTCATAAA 
Peperomia trifolia  CATACAAATGACCTGACCAATCAATAA------TAA----TTGGTCATAAG 
Peperomia rhombea  CGTACAAATTAACTCACCAATCAATAA------TAA----TTAGTCATAAG 
Peperomia cuspidilimba  CATACAAATTAACTGACCAATCAATAA------TAA----TTAGTCATAAG 
Peperomia pereskiifolia  CATACAAATGACCTGACCAATCAATAA------TAA----TTGGTCATAAG 
Peperomia maypuensis  CATACAAATGACTTGAACAATCAAGAA------TAA----TTGGTCATAAA 
Peperomia argyreia  CATACAAATGACTTGACCAATCAAGAA------TAA----TTGGTCATAAG 
Peperomia marmorata  CATACAAATGACTTGACCAATAAAGAA------TAA----TTAGTCATAAG 
Peperomia vinasiana  CAAACAAATGACTTGACCAATCAAGAA------TAA----TTAGTCATAAG 
 
b) 
 
Piper cinereum  HisThrAsnAspLeuThrAsnHisEOF------EOF----LeuIleThrArg 
Macropiper excelsum  HisThrAsnAspLeuThrAsnHisGlu------EOF----LeuIleIleArg 
Piper hispidum  HisThrAsnAspLeuThrAsnHisGlu------EOF----LeuIleIleArg 
Piper reticulatum  HisThrAsnAspLeuThrAsnHisGlu------EOF----LeuValIleArg 
Piper pulchrum  HisThrAsnAspLeuThrAsnHisGlu------EOF----LeuValIleArg 
Piper spoliatum  HisThrAsnAspLeuThrAsnHisGlu------EOF----LeuValIleArg 
Peperomia gracillima HisThrAsnAspLeuThrAsnHisGlu------EOF----LeuValIleArg 
Peperomia fraseri  HisThrAsnAspLeuThrAsnGlnGlu------EOF----LeuValIleArg 
Peperomia ppucuppucu  HisThrAsnAspLeuThrAsnGlnEOFEOFEOFEOF----LeuValIleArg 
Peperomia trifolia  HisThrAsnAspLeuThrAsnGlnEOF------EOF----LeuValIleArg 
Peperomia rhombea  HisThrAsnEOFLeuThrAsnGlnEOF------EOF----LeuValIleArg 
Peperomia cuspidilimba  HisThrAsnEOFLeuThrAsnGlnEOF------EOF----LeuValIleArg 
Peperomia pereskiifolia  HisThrAsnAspLeuThrAsnGlnEOF------EOF----LeuValIleArg 
Peperomia maypuensis  HisThrAsnAspLeuAsnAsnGlnGlu------EOF----LeuValIleLys 
Peperomia argyreia  HisThrAsnAspLeuThrAsnGlnGlu------EOF----LeuValIleArg 
Peperomia marmorata  HisThrAsnAspLeuThrAsnLysGlu------EOF----LeuValIleArg 
Peperomia vinasiana  GlnThrAsnAspLeuThrAsnGlnGlu------EOF----LeuValIleArg 
 
 
Additional, non-functional matK copies in Zippelia.  

While editing electropherograms of Zippelia, conspicuous overlapping peaks were 

observed from positions 3264 to 3271 in the alignment on the forward strand or 

positions 4047 to 4084 on the reverse strand. Different PCR products obtained with 

different primer combinations and sequencing of both strands showed the same 

pattern, thus exluding contamination or Taq errors. Subsequent to cloning and 

generating independent sequences per colony, five different products, differing by a 
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large number of point mutations and 9 length mutations, were obtained. All 

sequences were highly similar to matK sequences in Piperaceae, but most 

sequences exhibited a large number of internal stop codons. The sequence obtained 

from clone 2 showed a 7 bp gap within domain X, that was not corrected, thus clearly 

pointing to a non-functional copy of matK. The conserved domain X (135 nt in length), 

associated with the maturase activity of the protein, can be found from pos. 3237 to 

3371 in the Piperales matK alignment (Fig. 1). This variability pattern in Zippelia could 

only be explained by assuming the presence of at least five additional copies of matK. 

The only copy without internal stop codons and out-of-frame mutations, and thus 

unambiguously recognized as functional was used for the phylogenetic analyses. 

Evidence for polymorphic sites or additional matK copies was not found in any other 

investigated taxon or generated sequence for this study. 

 

Rate heterogeneity between lineages 

Between the seven main Piperales clades we observed highly significant (P<0.0001) 

rate heterogeneity, with the Piperaceae having pronounced rates compared to the 

remaining Piperales. Within Piperaceae, Peperomia displays the fastest evolutionary 

rate, followed by Piper and Sarcorhachis/Manekia. For the remaining clades, 

Asaroideae have the lowest and Lactoris the fastest rates. 

 

Trees resulting from maximum parsimony, likelihood and Bayesian inference 

The different methods employed in this study, maximum parsimony (Fig. 5), likelihood 

and Bayesian inference (Fig. 6) resulted in a nearly identical tree topology for the 

major groups. The present data set (2066 constant and 1186 parsimony informative 

(PI) characters) results in 440 most parsimonious trees (MPT) of 4303 steps; the strict 

consensus tree is depicted in Fig. 5 with the bootstrap and decay values depicted 

aling the branches. The coding of length mutational events has added 300 PI sites to 

the data matrix. The combined analysis has resulted in 3434 MPTs (5065 steps) 

(Table 5). The likelihood phylogram (-ln 30144.36066 ) is shown in Fig. 6 with the 

significantly supported branches (prosterior probabilities above 90) being emphasized 

by thick lines. 
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The relationship between Aristolochiaceae and Lactoris remains uncertain, as the 

analyses do not resolve the tree with high support. MP analyses show Asaroideae 

sister to a Lactoris + Aristolochioideae clade (no support), whereas the Bayesian and 

the likelihood analysis show Asaroideae sister to Piperaceae + Saururaceae (no 

support; PP 64). The Aristolochiaceae are paraphyletic with respect to Lactoris and 

split into two well- supported clades (Asaroideae and Aristolochioideae). The sister 

group relationship of Aristolochioideae and Lactoridaceae receive BS of 82% / 83% 

as well as PP of 100. Within subfamily Aristolochioideae, Thottea branches first 

followed by the Endodeca and Isotrema clade (maximal support) which is sister to the 

remaining Aristolochioideae. Among the remaining Aristolochioideae, Pararistolochia 

as well as segregates recognised by e.g. Huber (1985, 1993) like Einomeia are 

monophyletic. Hubers’s segregate “Howardia” is found to be polyphyletic, as the 

Aristolochia grandiflora complex has been treated as part of “Howardia”. 

Relationships among these segregates are generally not well supported in parsimony 

analyses. 

Saururaceae are monophyletic and sister to Piperaceae. Within Saururaceae, results 

obtained with the different search methods, are congruent, resolving Houttuynia and 

Anemopsis together and this clade sister to the remaining genera Saururus and 

Gymnotheca. Piperaceae are subdivided into two well-supported clades, the first one 

consisting of the small genera Manekia and Zippelia, and the two large genera Piper 

s. l. and Peperomia forming the second clade. Several infrageneric clades, such as 

Pothomorphe, Macrostachys and Macropiper, can be recognised with moderate to 

high support. In contrast to this, species relationships in Peperomia are fully resolved 

with generally high support, although the infrageneric clades are often polyphyletic 

(e.g. Tildenia, Rhynchophorum). 

 
Figure 5. Strict consensus tree of 440 most parsimonious trees (MPT’s; length 4303, CI = 0.559, RI = 
0.913, RC = 0.511). Bootstrap support values as well as decay indices are depicted along the 
branches; support values derived with an appended indel matrix are shown below the branches, 
whereas regular support values are depicted above. Indels were coded with SeqState (Müller, 2005a) 
using the SIC-approach (Simmons and Ochoterena, 2000). Members of “Howardia” are indicated with 
an asterisk (*).The Asian tropics and South Pacific clade is highlighted by a grey box. (see next page) 
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Figure 6. Likelihood phylogram. Significantly supported branches are indicated by thick lines (Posterior 
Probability ≥ 90%). The Asian tropics and South Pacific clade is highlighted by a grey box. 
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Discussion 
Microstructural changes in the matK CDS 

The matK ORF is maintained in all taxa of Piperales analysed in this study. Length 

variability, resulting from stop codons, of the ORF is confined to the 3' end, where 

minimal impact on the protein structure is expected (Hilu and Liang, 1997). This 

parallels results in other groups of angiosperms with highly variable matK sequences 

such as Lentibulariaceae (Müller and Borsch, 2005a), and the general situation in 

angiosperms as derived from the molecular evolutionary analysis of a 550-taxon data 

set (Borsch et al., pers. comm.). Microstructural changes in Piperales mostly involve 

one to three codons, rarely up to five codons. Since non-trimeric structural mutations 

are generally suppressed in coding regions (Metzgar et al., 2000), the matK gene 

therefore appears as a functional gene. The only situation where microstructural 

changes are not in triplets is associated with an internal microsatellite (Fig. 2). SSR 

expansion and contraction does not seem to be a rare process in coding regions, but 

often may result in changes of gene function (Li et al., 2004).  

 

Microstructural changes in the trnK group II intron 

The perhaps most striking microstructural variation is the extensive insertion of an 

AT-rich, microsatellite-like sequence in the domain I of the trnK intron. For the overall 

Piperales analysis, this portion had to be excluded (hotspot I), but at the species and 

even population level it has been found to be highly informative (Wanke et al., 

2006a). As in other non-coding chloroplast DNA, most microstructural changes are 

SSRs of four to nine nucleotides in length, whereas length mutations involving one to 

two nucleotides are particularly rare. An overall higher frequency of microstructural 

changes in the trnK intron as compared to the matK gene also conforms to a general 

trend and has been found in other studies with complete trnK/matK sequences in 

Amaranthaceae (Müller and Borsch, 2005b), Lamiales (Müller et al., 2004; 

Rahmanzadeh et al., 2005) and Magnoliales (Sauquet et al., 2003). 
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Presence of matK pseudogenes in Piperaceae 

The highly deviant copies of matK found in Zippelia can only be explained by the 

occurrence of several additional non-functional copies (paralogous pseudogenes) of 

matK. The presence in some copies of non-triplet microstructural changes in domain 

X which are not corrected shortly downstream, as well as the frequent occurrence of 

stop codons, are evidence for a pseudogenic nature of these additional matK copies. 

Given that all matK sequences from Zippelia group together in a parsimony analysis 

(trees not shown), it can be hypothesized that either gene duplication events occurred 

rather recently in an ancestor of Zippelia begoniifolia or that plastids might harbour 

different copies of the genome. Additional pseudogenic copies of matK have already 

been reported for other land plant lineages such as Bryophyta and Marchantiophyta 

(Jankowiak, 2004), Antocerotophyta and Lycophyta (Quandt et al., unpublished) and 

were also found in Valerianaceae (Hidalgo et al., 2004; Bell et al., 2001), and 

Nepenthaceae (Meimberg et al., 2006). Similar to Piperaceae, pseudogenes in 

Valerianaceae could be clearly distinguished from the functional matK CDS, and 

excluded from the actual phylogenetic analysis. There has been some discussion on 

a possible pseudogenic nature of matK in Orchidaceae, based on low transition-

transversion ratios and the presence of internal stop codons (Kores et al., 2000). 

However, this has not been confirmed by other recent studies (Kocyan et al., 2004; 

Van den Berg et al., 2005). Recently, the non-functional trnK/matK copies in 

Nepenthaceae were found to be translocated to the mitochondrial genome (Meimberg 

et al. 2006). Since multiple PCR amplification products of matK in Zippelia were 

obtained with primers annealing to internal parts of the ORF (at least one primer), 

there is currently no information on where these matK copies may be located. 

Although duplication of chloroplast genes resulting in paralogous copies is rare, there 

are reports of extensive trnF duplications in Asteraceae (Vijverberg and Bachmann, 

1999) and Brassicaceae (Koch et al., 2005). For trnF, Koch et al., (2005) clearly 

showed the tandem arrangement of copies in the plastome, whereas the situation is 

less clear for rbcL paralogues which occur in several angiosperm lineages. 

Cummings et al. (2003) provided evidence in Brassicaceae, Solanaceae and 

monocots for rbcL transfers into the mitochondrial genome, although there may also 



 43

be paralogous rbcL copies in the plastome of Orobanchaceae (Wolfe and Randle, 

2004).  

 
Figure 7. Relative substitutional rates in Piperales with reference to Peperomia (outgroup: Canella, 
Drimys, and Pseudowintera). X axis: taxa, y axis: d = K(Peperomia, outgroup) – K(taxa, outgroup); with 
K(i,j) = maximum likelihood estimate (GTR +G +I model) of substitutions per site between taxa. 
Significant rate differences (<0.0001) compared to Peperomia are indicated with an asterisk. 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Rate heterogeneity and lineage specific resolution contrast 

Relative rates of Peperomia and Piper are much higher as compared to 

Aristolochiaceae (Fig. 7) which is also paralleled by branchlength in Fig. 6. 

Nevertheless, internal resolution within the Piper clade is significantly less as 

compared to the Peperomia clade. Further comparison between those two lineages 

shows that internally the Peperomia clade exhibits about twice the amout of sequence 

variation in trnK/matK as compared to Piper (Table 5). The difference between 

genetic variation or parsimony informative sites within Piper, versus Piper compared 

to the outgroup, and the high relative rate indicates, that most of the parsimony 
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informative sites have been accumulated before the radiation of present Piper 

species but after the split of the Piper-Peperomia lineage. There are at least two 

possible explanations for the resolution contrast between Piper and Peperomia, two 

groups that show fairly similar global distribution patterns of extant species (although 

there are more species of Piper in tropical Asia). One is that rates continued to 

accelerate during the crown group diversification of Peperomia, thus leading to the 

accumulation of more variability among species. It seems that Peperomia species are 

more often narrow endemics, occupying specialized niches as epiphytes or 

succulents, what may lead to small effective population sizes. More work on these 

aspects is certainly needed.  The other is that rates have slowed down in Piper, 

thereby hindering the accumulation of a fairly good amount of historic information. It 

may be assumed that the crowngroup diversification in both genera started at about 

the same time, considering their comparable global distribution. Unfortunately, in the 

absence of reliable fossil material, no molecular dating approach is available for 

Piperales. The situation described here parallels findings in Lentibulariaceae, where 

trnK/matK sequences with accelerated rates fully resolve the Genlisea-Utricularia 

clade (Müller and Borsch 2005) in contrast to its sister clade Pinguicula (Cieslack et 

al. 2005).  

 

Relationships of  Lactoris  

This study provides strong evidence for the sistergroup relationship of Lactoris and 

Aristolochioideae and therewith the paraphyly of the family Aristolochiaceae as 

currently circumscribed. Depending on the combination of markers between different 

studies, or even within the same study, several molecular phylogenetic analyses have 

found Aristolochiaceae to be either para- or monophyletic (Duvall, 2000; Qiu et al., 

2000; Doyle and Endress, 2000; Soltis et al., 2000; Savolainen et al., 2000; Hilu et al., 

2003; Borsch et al., 2003; Borsch et al., 2005). However, several of these studies 

have not sampled both Asarum and Saruma, which could influence the branching 

pattern, and the supports for the relationships were often low. Based on 

morphological characters, the position of Lactoris was either hypothesized as close to 

Saururaceae (tenuinucellate ovules, development and morphology of stipules; 
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Igersheim and Endress, 1998; González and Rudall, 2001) or to Aristolochiaceae. 

The latter hypothesis was favoured by Doyle and Endress (2000) who listed several 

characters as potential synapomorphies for these taxa, e.g. presence of a perianth, 

presence of tepals, nearly sessile anthers that are strongly extrorse with a broad 

connective, and stamens basally fused with the gynoecium. But as already cited by 

González and Rudall (2001), most of these characters are symplesiomorphies of the 

whole order Piperales or even magnoliids. The basal fusion of stamens with the 

gynoecium as in Lactoris is present in Aristolochia but not in Asarum, Saruma or even 

Thottea. In addition, the only synapomorphy for Asaroideae and Lactoris cited by 

Doyle and Endress (2000) is the extended anther connective. From a molecular point 

of view, combining three fast evolving regions (Borsch et al., 2005) or a combination 

of nine genes from all three genomes (Qiu et al., 2005) increased the support for the 

most frequently found molecular tree (Lactoris sister to Aristolochioideae) to BS 89 

(PP 100) in Borsch et al. (2005) or 78 (BS) for the protein coding genes in Qiu et al. 

(2005). In addition, the inclusion of Hydnoraceae could only enhance the poly-or 

paraphyly of Aristolochiaceae, as the datasets of Nickrent et al. (2002) already 

suggests.  

 

Phylogeny of Aristolochiaceae 

The two subfamilies of Aristolochiaceae, Aristolochioideae and Asaroideae, are each 

well supported in the present analysis. In most analyses, the monophyly of 

Aristolochiaceae was only well supported (molecular and morphology), if Lactoris was 

not included. Under inclusion of Lactoris the monophyly of Aristolochiaceae was often 

only poorly supported, but another position of Asaroideae within Piperales was not 

favored, thus the Asaroideae were unresolved and a branch of its own. The inclusion 

of this subfamily into Aristolochiaceae is a consequence of the historical treatment. 

Asaroideae and Aristolochioideae have never been seriously discussed as two 

independent lineages.   

The subfamily Asaroideae consisting of the genera Asarum and Saruma, the sister 

relationship of these two genera, has been supported by other molecular (Qiu et al., 

2000; Soltis et al., 2000; Neinhuis et al., 2005) and morphological analyses (Kelly and 
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González, 2003). The latter mentioned the PII sieve tube plastid inclusions, 

pluricellular stigmatic papillae and seeds with elaiosomes as synapomorphies. 

Aristolochioideae include the two major lineages Thottea and Aristolochia s.l.. 

Additionally, these two lineages are well circumscribed based on molecular (for an 

overview, see Neinhuis et al. 2005) and morphological data (for an overview, see 

Kelly and González (2003)). The Aristolochia s.l. clade comprises two lineages: the 

first containing Isotrema and Endodeca, the second containing Pararistolochia and 

Aristolochia. These results are congruent with former studies (González and 

Stevenson, 2002; Kelly and González, 2003; Neinhuis et al., 2005). Within 

Aristolochia the relationships of the informal group "Howardia" + segregates, 

Einomeia and Aristolochia s. str., all accepted by Huber (1985), remain unclear. 

These taxa have always been treated as Aristolochia except by Huber (1985), who 

further subdivided this clade into what he informally calls ''Howardia'' (hexandrous 

Central and South American species), Einomeia (pentandrous Central American 

species) and Aristolochia s.str. (Mediterranean and Paleotropical species). He also 

cited strong synapomorphies for the monophyly of these groups (e.g. the 

pentamerous organisation of the gynostemium in Einomeia (Huber, 1985; González 

and Stevenson, 2002, Kelly and González, 2003). The relationship of the segregates 

Aristolochia grandiflora complex, Einomeia, “Howardia” p.p. and Aristolochia s. str. 

are incongruent among the present and the analysis of Neinhuis et al. (2005), but the 

different branching patterns are in both poorly supported.  

 

Phylogeny of Piperaceae 

This study confirms the monophyly of the Piperaceae and its subdivision into two 

major clades: one including the large genera Piper and Peperomia, and another the 

small genera Zippelia and Manekia. The same topology was recovered by Jaramillo 

and collaborators (2004) based on the analysis of the slowly evolving genes 18S 

rDNA, atpB, and rbcL sequence data for a reduced sampling within Piper and 

Peperomia.  

The first clade consists of the core Piperaceae with the large pantropical genera Piper 

and Peperomia. It is suggested that several outstanding characters in Peperomia 
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(e.g. paniculate inflorescences, peltate leaves) on which Dahlstedt's classification 

(Dahlstedt, 1900) has been based have evolved several times independently (Wanke 

et al., 2006d). Two subgenera from Dahlstedt (1900), Micropiper and 

Sphaerocarpidium (including Erasmia) and the three sections of subgenus 

Rhynchophorum could be regarded as monophyletic (Wanke et al., 2006d). This is 

also supported by morphological data. A very clear morphological synapomorphy for 

the subgenus Micropiper is the so-called pseudocupula at the base of the fruit 

(Dahlstedt, 1900). The fruits of all species of the subgenus Sphaerocarpidium are 

characterized by a large amount of sticky papillae distributed on the surface. The 

three sections of Rhynchophorum are each characterized by a typical fruit shape and 

fruit apex. The subgenus Panicularia was described on the basis of paniculate 

inflorescences but it is shown that this unusual character has evolved several times 

independently. The same accounts for the subgenus Tildenia in which the species 

with peltate leaves and shortened internodes are classified. The tuberous species 

belonging to the latter subgenus have been classified in a segregate section (Hill, 

1907) which forms the basalmost clade in the genus Peperomia. 

Piper (including Macropiper, Pothomorphe) is very diverse, varying in inflorescence 

position (terminal/axillary) and structure (solitary or clustered spikes or racemes), 

sexuality (bisexual or unisexual and then dioecious) and stamen number. The 

phylogeny presented here provides little resolution within Piper s.l. compared to 

earlier studies using the ITS region (Jaramillo and Manos, 2001). But the current 

analysis provides support for the monophyly of a Paleotropical clade, including taxa 

from both the Asian tropics and the South Pacific Islands. Piper species in the 

Paleotropics differ from their congeners in Tropical America in being dioecious plants 

with a climbing growing habit, while their Neotropical counterparts have bisexual 

flowers and several growing habits, i.e. shrubs, herbs treelets, but they are never real 

climbers. The monophyly of Paleotropical taxa had been suggested before (Callejas, 

1986; Jaramillo and Manos, 2001) but it was never well supported. The segregates 

Macrostachys, Enckea and Macropiper are also highly supported (BS 100/100, 98/98 

and 100/100), however, the present analysis does not provide support for many 



 48

segregates that had been supported in previous analyses using ITS sequence data 

(Jaramillo and Manos, 2001; Jaramillo et al., 2004; Jaramillo and Callejas, 2004).  

The second clade consists of Zippelia (monotypic) and Manekia (5 to 6 species). Both 

taxa have been associated with Piper (de Candolle, 1866, 1923; Callejas, 1986). The 

herbaceous, Asiatic genus Zippelia, with a floral structure similar to Saururus (Omori, 

1982), has been placed either in Saururaceae (Blume, 1830; Wu and Wang, 1957; 

Heywood, 1993) or in Piperaceae (Engler, 1893; Willis, 1957; Wu and Wang, 1958). 

In a cladistic analysis of taxa in Saururaceae and Piperaceae, mostly based on 

ontogenetic characters, the similarities between Zippelia and Saururus are identified 

as plesiomorphies and Zippelia appears as the basal taxon in Piperaceae (Tucker et 

al., 1993). Manekia was not included in this analysis. Zippelia shares several 

synapomorphies with Piperaceae, which indicate a close phylogenetic relationship 

with other taxa of Piperaceae, e.g. a double vascular cylinder in the stem, lack of 

discrete style, single ovule, basal placentation and fusion of two ventral bundles into 

one in each carpel (Liang and Tucker, 1995). Zippelia appears to represent a 

morphologically transitional genus between Saururaceae and Piperaceae, although 

indisputably belonging to the latter (Tucker et al., 1993). Several characters suggest 

that Zippelia is a more isolated evolutionary line in Piperaceae,  as expressed by 

floral development, which is different from the other piperaceous taxa (Liang and 

Tucker, 1995), as well as unique glochidiate fruits and a Drusa type of embryo sac 

(Lei et al., 2002). 

The little studied genus Manekia from Central America, northern South America and 

the Atlantic Forest of Brazil is a liana with fleshy, axillary inflorescences, similar to 

those of Peperomia.  

 

Phylogeny of Saururaceae 

The close relationship of Saururaceae and Piperaceae and the monophyly of 

Saururaceae are unquestionable. Comprehensive studies support the relationship 

between the two families based on morphology (Doyle and Endress, 2000; Tucker et 

al., 1993) and the monophyly of Saururaceae based on molecular data (e.g. Neinhuis 

et al., 2005; Jaramillo et al., 2004; Meng et al., 2002, 2003). This is also supported by 
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our results. The relationships found based on trnK/matK support the relationships 

found from most other molecular studies ((Saururus + Gymnotheca) and (Anemopsis 

+ Houttuynia)). Discrepancy occurs between morphological studies and molecular 

results within the family, and even among molecular results from different genomes. 

Most of the morphological and especially ontogenetic studies have considered 

Saururus to be the most basal branch, sister to all remaining Saururaceae (e.g. 

Tucker et al., 1993; Liang, 1995, Lei et al., 1991; Okada, 1986). The morphological 

characters, especially those of the flower within the perianthless Piperales have to be 

treated with caution. This was already mentioned by Jaramillo et al. (2004) and 

Neinhuis et al. (2005), as these plants show a high degree of reduction and fusion, 

which makes the detection of reversals or parallelisms more complicated. 

 

Concluding the present study, the evolution of trnK/matK in Piperales presents a case 

of striking rate heterogeneity of this gene in flowering plants. Particularly high rates 

are present in Peperomia, leading to an internally well resolved gene tree for this 

clade. High rates are further reflected in the accumulation of numerous specific length 

mutations, including self repairing frame shifts. Nevertheless, a complete reading 

frame of the matK gene is maintained, with unrepaired frame shift mutations being 

restricted to the downstream end of the gene. Further work will be necessary to 

explore possible causes that lead to the observed rate heterogeneity, including 

sequence comparisons of other genomic regions, analysis of speciation patterns, 

population structures and effective population sizes.  
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Abstract 
A combined phylogenetic analysis of the Aristolochioideae was conducted based on 

72 morphological characters and molecular datasets (matK gene, trnK intron, trnL 

intron, trnL-trnF spacer). The analysis sampled 33 species as the ingroup, including 

two species of Thottea and 30 species of Aristolochia and the monotypic genus 

Euglypha, which represent all the infrageneric taxa formally described; Saruma henryi 

and Asarum caudatum were used as the outgroup. The results corroborate a sister-

group relationship between Thottea and Aristolochia, and the paraphyly of 

Aristolochia with respect to Euglypha that consequently should be included into 

Aristolochia. Two of the three subgenera within Aristolochia (Isotrema and 

Pararistolochia) are shown to be monophyletic, whereas the signal obtained from the 

different datasets about the relationships within subg. Aristolochia is low and 

conflicting, resulting in collapsed or unsupported branches. The relationship between 

the New World and the Old World species of subgenus Aristolochia is conflictive 

because morphological data support these two groups as monophyletic, whereas 

molecular data show the monophyletic Old World species of Aristolochia nested 

within the New World species. A sister group relationship is proposed between A. 

lindneri and pentandrous species, which suggests that a group of five species from 

central and southern South America (including A. lindneri) could be monophyletic and 

sister to Aristolochia subsection Pentandrae, a monophyletic taxon consisting of 

about 35 species from southern USA, Mesoamerica, and the West Indies. 
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Introduction 

Aristolochiaceae, a member of the Piperales (Borsch et al. 2005, Qiu et al. 2005), 

consists of approximately 550 species, most of which are tropical, and subtropical. 

Although generic circumscription within the family has been in dispute for about two 

centuries (cf. González and Stevenson 2002, Neinhuis et al. 2005), recent authors 

recognize four genera in two subfamilies. The subfamily Asaroideae, characterized by 

an actinomorphic perianth, consists of two genera: the monotypic Saruma, endemic 

from central China, and Asarum with about 86 species from temperate areas of North 

America, Europe, and Asia. 

 

The subfamily Aristolochioideae includes Thottea, with less than 30 species with an 

actinomorphic perianth, which are restricted to tropical Asia; and Aristolochia 

(including the monotypic South American generic segregates Holostylis, and 

Euglypha), which is by far the largest genus of the family. Aristolochia has a 

monosymmetric perianth and is primarily pantropical but with some offshoots in 

subtropical, and temperate areas. The most consistent synapomorphies that relate 

these genera are found on the seed coat (González and Stevenson 2002, González 

and Rudall 2003), which consists of a two cell-layered testa, and a three cell-layered 

tegmen. The cells of the inner layer of the testa have crystals and thickened inner 

walls; the three layers of the tegmen are tangentially elongated and fibrous; fibers of 

the outer, and inner layers are parallel to the longitudinal axis of the seed, whereas 

those of the middle layer are perpendicular to them.  In addition, the following unique 

combination of characters strongly suggests that these genera form a monophyletic 

family: alternate, distichous leaves with palmate, reticulate venation, adaxial 

prophylls, oil cells, trimerous perianth (double in Saruma), two (Saruma, Asarum, and 

some Thottea spp.) or one (Aristolochia, and the remaining Thottea spp.) whorl(s) of 

six stamens (five in Aristolochia subsection Pentandrae Duchartre, and more than six 

in most Aristolochia subgenus Pararistolochia Schmidt), six carpels, and pollen in 

monosulcate or inaperturate monads. 
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Throughout the taxonomic history of the family, every possible combination of generic 

relationships can be found (summarized in González and Stevenson 2002). However, 

the most accepted, but yet contradictory classifications at a subfamily level are those 

by Schmidt (1935), and Huber (1960, 1985, 1993). Schmidt (1935), following the 

classic treatment by Klotzsch (1859), proposed that Asaroideae consists of Asarum 

plus Saruma plus Thottea. In contrast, Huber (1985, 1993) transferred Thottea to the 

subfamily Aristolochioideae along with Aristolochia. 

 

The genus Aristolochia has been treated in its broad sense by many authors 

(Duchartre 1854a, 1864, Hoehne 1942, Pfeifer 1966, 1970, Hou 1984, Nardi 1984, 

1991, Ma 1989, among others). However, as many as 15 segregates have been 

proposed (for a detailed revision see González and Stevenson 2002), of which 

Einomeia, Endodeca, “Howardia”, Isotrema, and Pararistolochia have recently been 

used at the generic level especially by Huber (1985, 1993). The splitting of 

Aristolochia is based primarily on floral, and fruit characters such as the morphology 

of the gynostemium, the gross shape of the perianth, the dehiscence of fruits, and the 

morphology of the seeds. 

 

Furthermore, Huber (1985, 1993) recognized two tribes, Isotrematinae (with 

Endodeca Raf., and Isotrema Raf.), and Aristolochiinae (with Aristolochia s. str., 

Einomeia, Euglypha Chodat and Hassler, Holostylis Duchartre, “Howardia” Klotzsch, 

and Pararistolochia Hutch. and Dalziel). “Howardia”  (an incorrect name; see 

discussion in Neinhuis et al. 2005) has been used for the hexandrous species of 

Aristolochia from the West Indies, and Central- and South America, and equals 

Aristolochia section Gymnolobus subsection Hexandrae Duchartre (1854a, 1864). 

 

Recent phylogenetic analyses based on morphological (González and Stevenson 

2002, Kelly and González 2003), and molecular data (Neinhuis et al. 2005) are 

consistent with Huber’s inclusion of Thottea in Aristolochioideae. These analyses also 

support the monophyly of the generic segregates Endodeca, Isotrema, and 

Pararistolochia. Furthermore, they indicate that Aristolochia in its broad sense is 
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paraphyletic with respect to Euglypha, Holostylis, and Einomeia (= Aristolochia 

subsection Pentandrae). Molecular data, in addition, separated A. grandiflora, and its 

allies from other “Howardia” (Neinhuis et al. 2005). 

 

Murata et al. (2001) conducted a phylogenetic analysis of Aristolochia s. l. based on 

matK sequences. Although Pararistolochia was not sampled, their results supported 

the monophyly of subgenera Isotrema, and Aristolochia. Furthermore, they suggested 

that the New World species of Aristolochia could be paraphyletic with respect to the 

Old World species, and that the pentandrous Aristolochia nelsonii Eastwood, from 

Mexico, could form a clade with A. burelae Herz., from Bolivia and Argentina. 

 

Because of the conflicts already mentioned, we conducted a simultaneous analysis of 

morphological, and fast evolving molecular data in order to test the monophyly, and 

the phylogenetic relationships within Aristolochia s. l., including all of the infrageneric 

taxa that have been proposed on the basis of morphological characters alone. In 

addition, we evaluated the congruence of morphological and molecular data, to 

propose or corroborate morphological synapomorphies of the major clades within the 

subfamily. 
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Material and methods 
Material 
DNA-Isolation, amplification and sequencing 

Total genomic DNA was isolated from fresh, silica dried material or herbarium 

specimens. The voucher specimens are listed in Table 1. Details of protocols are 

given in Borsch et al. (2003) using a modified triple-extraction approach with CTAB 

following the miniprep procedure of Liang and Hilu (1996). 

 

Methods 
The trnK/matK region was generally amplified in two parts with an overlapping region 

of 250 to 400 bp, using the primers shown in Table 2. Amplification profiles generally 

followed an initial denaturation 1 min at 94°C, annealing 1.5 min at 48°C, elongation 3 

min at 72°C, and a final extension 7 min at 72°C. Because of the high sequence 

variability within the trnK intron as well as the matK gene and because of periodically 

occurring poly-A or poly-T mononucleotide repeats, cryptic simple microsatellites, a 

large number of internal primers had to be designed specifically for the sequencing 

process. The Polymerase Chain Reaction (PCR) was carried out as a 25 µl reaction, 

containing 15 µl DNA template (1:100 delution genomic DNA), 3.3 µl dNTP mix (1.25 

mM each), 0.5 µl of each primer (20 pmol/µl), and 1 u Taq polymerase with self 

adjusting MgCl2 (Eppendorf). 

 

The trnL-F region was amplified following the procedure of Neinhuis et al. (2005). 

Primer sequences are also given in Neinhuis et al. (2005). 

 

Both PCR products, trnK/matK, and trnL-F, were purified by gel. The PCR products 

were then extracted using different commercial gel extraction kits (Macherey-Nagel 

NucleoSpin Extract II, and QIAGEN QiaQuick gel extraction) and directly sequenced 

with a CEQ DTCS Quick Start Kit (Beckman Coulter) on CEQ 8000 automated 

sequencer, following the standard protocol provided with each kit. 
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Sequence alignment and treatment of microstructural changes 

Sequences were manually aligned using PhyDe® (Müller et al. 2005) following 

alignment rules proposed by Borsch et al. (2003), and Löhne & Borsch (2005).  

Microsatellite structures were excluded due to ambiguous homology assessment. 

Indels have been considered to be an additional source for phylogenetic information 

with a low level of homoplasy. The origin of indels was usually easy to recognize 

(simple sequence repeats). Thereafter, indels were automatically coded employing 

the simple indel coding algorithm (SIC) (Simmons and Ochoterena 2000) via 

SeqState (Müller 2004) using the PhyDe® plugin option.  The alignment and the indel 

matrix can be obtained from www.treebase.org.  

 
Selection of outgroup taxa 

Saruma henryi and Asarum caudatum were used as outgroups. Choice of outgroup 

taxa is based on results from previous phylogenetic analyses of the family by 

González (1999a), González and Stevenson (2002), Kelly and González (2003), 

Murata et al. (2001), and Neinhuis et al. (2005). The family Lactoridaceae was 

excluded from our analysis (1) because of the conflictive relationships between 

Lactoris and Aristolochia (cf. González & Rudall 2001) and (2) because this study 

does not focus on the relationships within Aristolochiaceae but on the subfamily 

Aristolochioideae which is proven to be monophyletic. Therefore, Lactoris would be 

merely another outgroup member. 

 
Phylogenetic analyses 

Separate phylogenetic analyses were performed for each (morphological and 

molecular) dataset, and as combination of the molecular datasets only and as 

combination of molecular and morphological data. In both cases, the molecular 

datasets were analyzed either with substitutions only, or including coded length 

mutations. All trees calculated were based on the same maximum parsimony (MP) 

parameters, using the ratchet default settings of PRAP (Müller 2004) but with 10 

random addition cycles. The generated PRAP file was executed in PAUP*4b10 

(Swofford 2002). Evaluation of branch support was performed with 1000 bootstrap 
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replicates, and 10 random addition cycles on the MP results obtained from PRAP, 

and PAUP. 
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Table 2. Primers used in the present study (trnK/matK). 
 

Primer name direction Sequence (5’-3’) Design 
MG1 reverse AAC TAG TCG GAT GGA GTA GAT Liang & Hilu (1996) 
MG15 forward ATC TGG GTT GCT AAC TCA ATG Liang & Hilu (1996) 
NYmatK 480F forward CAT CTG GAA ATC TTG STT C Borsch (2000) 
trnK 3914Fdi forward GGG GTT GCT AAC TCA ACG G Johnson & Soltis 

(1995) 

psbA-R forward CGC GTC TCT CTA AAA TTG CAG TCA T 
Steele & Vilgalys 

(1994) 

AR-matK-660R reverse A(CT)G GAT TCG CAT TCA TA 
Scheplitz 

(unpublished)  
AS-matK-670R reverse GA(AG) AGG ATT GTT TAC G(AG)A G this study 
AS-matK-460F forward TAC TTC CCT TTT T(ACT)G AGG Wanke et al. 2006d 
AR-matK-080R reverse ACT CCT GAA A(AG)A GAA GTG G this study 
TH-matK-420F forward AAC TGA ATA AAT GGA TAG AGC this study 

AR-matK-420F forward AAG TGA ATA AAT GGA TAG AGC 
Wanke et al., 

2006a 
AR-matK-1850R reverse CCA GGC AAG ATA CTA AT this study 
AR-matK-1200F forward TTC CAA AGT CAA AAG AGC G this study 
AR-matK-1510R reverse TAG ACT CCT GAA A(AG)A GAA GTG G this study 
AR-matK-960R reverse AAC CTT TTC CCG CAT CAG G this study 
TH-matK-960R reverse AAC CTT TTC CCG CAT TAG A this study 
TH-matK-930F forward TAA TGC GGG AAA AGG TTC this study 
AR-matK-930F forward TAT TAG TAC CTG ATG CGG G this study 
AR-matK-780R reverse GGT CTT CTG AAA ATG ATT AC this study 
AR-matK-680R reverse CCG AGA AAA ACG AAT ATG GAT T this study 
AR-matK-1400F forward CTC TTT CAG GAG TCT ATC TAT G this study 
AR-matK-1450R reverse CGT TAG AGT TGC ACG TTA this study 
AR-matK-1510R reverse TAG ACT CCT GAA ARA GAA GTG G this study 
AR-matK-2100R reverse TGA AAA TGA TTA CAA AGC ACT AC this study 
AR-matK-2400R reverse ATT TTC TAG CAT TTG ACT CC this study 
AR-matK-2510R reverse AAA AAT CTC AAT AAA TGY AA this study 
AR-matK-3500R reverse ATC CAA ATA CCA AAT ASA TTC C this study 
AR-trnK-1320R reverse ATC GCT CTT TTG ACT TTG G Wanke et al. 2006a 
trnK-med-150F forward AGA GAA TAC TTC CAT CCT TAC CG this study 
trnK-med-440R reverse ATT CGT CTT TAC TCA CTC CGT A this study 
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The morphological data set is based on data published in González (1999a), and 

González and Stevenson (2002), which contained 66 species plus two composite 

terminals (subsection Pentandrae Duchartre, and the informal group Dipharus 

Klotzsch) in the ingroup.  

This data set was reduced to match the sampling of the molecular data (33 species) 

for the present analysis; the two composite terminals were reduced to A. micrantha, 

and A. pentandra (representing subsection Pentandrae), and A. labiata (representing 

group Dipharus). On the other hand, the present analysis includes A. albida, A. 

eriantha, A. gorgona, and A. pichinchensis, which were not included by González 

(1999a) or González and Stevenson (2002). The morphological dataset (Table 3, 

Appendix 1) includes 72 characters, 11 of which are from vegetative structures, 10 

from inflorescence architecture, 38 from flowers, and pollen, 6 from fruits, and 7 from 

seeds. All the multi-state characters (18) were treated as unordered.   
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Results 

Four shortest trees were obtained in the simultaneous analysis of all available 

information (molecular, coded length mutations, and morphology; Figs 1, 2C). The 

trees have a length of 2461 steps (L), CI = 0.72, RI = 0.79, and RC = 0.57 (Tab. 4).  

About 22 % of the total number of characters (4162) are parsimony-informative (86% 

of the characters from the morphological dataset are parsimony-informative; Table 4). 

All main clades receive maximal or nearly maximal bootstrap support values. Only 

three (exclusively concerning the relationships of crown groups) clades have no 

bootstrap values. The analysis supports that Thottea and Aristolochia s. l. are sister 

taxa. Furthermore, it recovers at least nine taxa existing in the traditional 

classification, including Thottea, Endodeca, Isotrema, Einomeia, and Pararistolochia. 

Within subgenus Aristolochia, the Old World species appear as monophyletic; the 

monophyly of the New World species is still uncertain (Figs. 1, 2), due to the conflicts 

shown in the strict consensus tree (Fig. 2), which is affecting the whole subgenus 

Aristolochia.  In addition, a sister group relationship between the two sampled species 

of Aristolochia subsection Pentandrae (= Einomeia) and A. lindneri is shown in all the 

analyses, with 100% bootstrap; however, the relationship of this subclade to the A. 

grandiflora complex, and to Aristolochia series Thyrsicae F. González (represented 

by A. acutifolia, and A. maxima) is also unsupported in the analysis based on 

morphology plus molecular plus coded length mutations. 

 

The combined molecular analysis (included coded length mutations) comprises a sum 

of 4090 characters (843 of which are parsimony-informative; Table 4); only two trees 

are obtained (Fig. 2B), with L = 2281, CI = 0.74, RI = 0.79, and RC = 0.58. Bootstrap 

values are also higher than 90% in most of the clades; only the relationships of crown 

subclades of subgenus Aristolochia have bootstraps lower than 50% (Fig. 2B). 

Euglypha rojasiana gains maximum support as sister to “Howardia” pro parte (p.p.) in 

most analyses or as part of a polytomy with “Howardia” p.p.. 

 
 

 



 
64

Ta
bl

e 
3.

 M
or

ph
ol

og
ic

al
 m

at
rix

.; 
ch

ar
ac

te
rs

 a
nd

 c
ha

ra
ct

er
 s

ta
te

s 
ar

e 
de

ta
ile

d 
in

 A
pp

en
di

x 
1 

(A
 =

 1
, 2

; -
 =

 in
ap

pl
ic

ab
le

; ?
 =

 u
nk

no
w

n)
. 

  
 
 
 
 
 
 
 
 
 
 
 

 
0
 

 
 
 
1
 
 
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
4
 
 
 
 
 
 
 
 
 
 
5
 
 
 
 
 
 
 
 
 
 
6
 
 
 
 
 
 
 
 
 
 
7
 

 
 

 
 

0
 
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
 
 
 
0
 
 
 
 
 
 
 
 
 
 
0
 

 
 
 
 
 
 
 
 

 
|
 

 
 
 
|
 

 
 
 
 
 
 
 
|
 
 
 
 
 
 
 
 
 
|
 
 
 

 
 
|
 

 
 
 
 
 
 
 
|
 
 
 
 
 
 
 
 
 
 
|
 
 
 
 
 
 
 
 
 
 
|
 

S
a
r
u
m
a
 
h
e
n
r
y
i
 
 
 
 
 
 
 
 
 
 
 
 

0
0
0
0
-
0
0
0
0
0
 
0
0
0
0
0
0
0
0
0
0
 
0
0
0
0
0
0
0
0
0
-
 
-
-
-
0
0
0
0
0
0
0
 
0
0
0
0
0
0
0
0
0
0
 
0
0
0
0
0
0
0
0
0
0
 
0
0
0
0
0
0
0
0
0
0
 
0
0
 

A
s
a
r
u
m
 
c
a
u
d
a
t
u
m
 
 
 
 
 
 
 
 
 
 

0
0
0
0
-
0
0
0
0
0
 
0
0
0
0
0
0
0
0
0
0
 
0
1
1
0
0
0
0
0
0
-
 
-
-
-
0
0
0
0
0
0
0
 
0
0
0
0
1
0
0
1
1
0
 
1
1
0
1
0
1
0
0
0
0
 
0
1
1
0
0
0
0
0
0
1
 
0
2
 

T
h
o
t
t
e
a
 
c
o
r
y
m
b
o
s
a
 
 
 
 
 
 
 
 

1
?
0
1
0
0
1
0
0
0
 
1
2
?
1
?
?
?
?
?
?
 
1
1
1
0
0
0
0
1
0
-
 
-
-
-
0
0
0
0
0
0
0
 
2
1
0
0
1
0
0
3
2
0
 
0
1
1
1
2
?
?
1
?
0
 
0
0
1
?
0
0
2
1
0
1
 
1
0
 

T
.
 
s
i
l
i
q
u
o
s
a
 
  

 
1
1
0
1
0
0
1
0
0
0
 
1
0
1
0
0
0
0
1
0
0
 
1
1
1
0
0
0
0
1
0
-
 
-
-
-
0
0
0
0
0
0
0
 
2
1
1
0
1
0
0
3
2
0
 
0
1
1
1
2
?
?
1
?
0
 
0
0
1
?
0
0
2
1
0
1
 
1
0
 

E
u
g
l
y
p
h
a
 
r
o
j
a
s
i
a
n
a
 
 
 
 
 

1
1
0
1
0
0
1
0
0
0
 
1
0
0
0
1
-
-
-
0
-
 
0
1
2
1
0
1
2
1
0
1
 
0
1
1
1
0
1
1
0
0
0
 
3
1
0
1
1
1
1
2
2
1
 
0
1
1
1
0
1
0
0
0
0
 
0
0
3
-
0
1
0
0
0
1
 
0
0
 

A
r
i
s
t
o
l
o
c
h
i
a
 
a
c
u
t
i
f
o
l
i
a
 
 

1
1
0
1
0
1
1
1
0
1
 
1
0
1
0
0
0
0
1
0
0
 
1
1
2
0
0
1
2
1
0
2
 
0
1
1
1
0
1
1
0
0
0
 
3
1
0
1
1
1
1
2
2
0
 
0
1
1
1
0
1
0
0
0
0
 
0
0
0
1
1
0
1
0
1
1
 
1
0
 

A
.
 
a
c
u
m
i
n
a
t
a
 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
1
0
1
0
0
0
 
1
0
1
0
0
1
0
1
0
1
 
0
1
2
1
0
1
2
1
1
0
 
0
1
1
1
0
1
1
0
0
0
 
3
1
0
1
1
1
0
4
2
0
 
0
1
1
1
0
1
0
0
1
0
 
0
0
0
1
0
0
1
0
2
1
 
1
0
 

A
.
 
a
r
b
o
r
e
a
 

 
 

1
1
0
1
0
0
1
0
0
1
 
1
0
1
0
0
0
0
1
0
0
 
1
1
2
0
0
1
1
1
0
0
 
0
0
2
0
0
1
0
0
0
1
 
3
1
1
1
1
1
1
2
2
0
 
2
1
1
1
0
1
2
0
1
0
 
0
0
1
0
0
0
0
0
0
0
 
0
0
 

A
.
 
b
r
a
c
t
e
o
l
a
t
a
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
0
0
 
1
0
0
0
0
1
0
1
0
-
 
0
1
2
1
0
1
2
1
1
0
 
0
1
1
1
0
1
1
0
0
0
 
3
1
0
1
1
1
0
4
2
0
 
0
1
1
1
0
1
0
0
1
0
 
0
0
0
1
0
0
0
0
0
1
 
0
0
 

A
.
 
c
a
l
i
f
o
r
n
i
c
a
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
0
1
 
0
0
0
0
0
1
0
1
0
-
 
0
1
2
0
0
1
1
1
0
0
 
0
0
2
0
0
0
0
0
0
0
 
3
1
1
1
1
1
1
2
2
0
 
0
1
1
1
0
1
2
0
1
0
 
0
0
1
0
0
0
0
0
0
1
 
0
0
 

A
.
 
c
l
e
m
a
t
i
t
i
s
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
1
0
1
0
0
0
 
1
0
0
0
0
0
0
1
0
-
 
0
1
2
0
0
1
2
1
1
0
 
0
1
1
1
0
1
1
0
0
0
 
3
1
0
1
1
1
0
4
2
0
 
0
1
1
1
0
1
0
0
1
0
 
0
0
0
0
0
0
1
0
0
1
 
0
0
 

A
.
 
c
o
r
d
i
f
l
o
r
a
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
0
0
 
1
1
0
1
1
-
-
-
1
-
 
0
1
2
0
0
1
2
1
0
1
 
1
1
1
1
0
1
1
0
0
0
 
3
1
0
1
1
1
1
2
2
0
 
0
1
1
1
0
1
0
0
0
0
 
0
0
0
1
0
0
0
0
0
1
 
0
0
 

A
.
 
g
o
r
g
o
n
a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
0
0
 
1
0
0
0
0
1
1
1
0
-
 
1
1
2
0
0
1
1
1
0
2
 
0
0
0
1
1
1
1
1
0
0
 
3
1
0
1
1
1
1
4
2
0
 
0
1
1
1
0
1
0
0
0
0
 
0
0
0
1
0
0
1
0
0
1
 
3
0
 

A
.
 
g
r
a
n
d
i
f
l
o
r
a
 

 
 
 
 
 

1
1
0
1
0
0
1
0
0
0
 
1
0
0
0
0
1
1
1
0
-
 
1
1
2
0
0
1
1
1
0
2
 
0
0
0
1
1
1
1
1
0
0
 
3
1
0
1
1
1
1
4
2
0
 
0
1
1
1
0
1
0
0
0
0
 
0
0
0
1
0
0
1
0
0
1
 
3
0
 

A
.
 
h
o
l
o
s
t
y
l
i
s
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
0
0
 
1
1
0
1
1
-
0
-
0
1
 
1
0
0
1
2
1
0
0
0
-
 
-
-
-
0
0
1
1
0
0
0
 
3
1
0
1
1
1
1
2
2
0
 
0
1
1
1
0
1
0
0
0
0
 
0
0
0
1
0
0
0
0
0
1
 
0
0
 

A
.
 
k
a
e
m
p
f
e
r
i
i
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
0
1
 
0
0
0
0
0
1
0
1
0
-
 
0
1
2
0
0
1
1
1
0
0
 
0
0
2
0
1
0
0
0
0
0
 
3
1
1
1
1
1
1
2
2
0
 
0
1
1
1
0
1
2
0
1
0
 
0
0
1
0
0
0
0
0
0
1
 
0
0
 

A
.
 
l
a
b
i
a
t
a
 
 
 
 
 
 
 
 

 
1
1
1
1
0
0
1
0
1
0
 
1
0
0
0
1
-
-
-
0
-
 
0
1
2
0
1
1
2
1
0
0
 
1
1
1
1
0
1
2
0
0
0
 
3
1
0
1
1
1
1
2
2
0
 
0
1
1
1
0
1
0
0
0
0
 
0
0
0
1
0
0
1
0
2
1
 
1
0
 

A
.
 
l
e
u
c
o
n
e
u
r
a
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
0
0
 
1
1
0
1
1
-
-
-
1
-
 
0
1
2
0
0
1
2
1
0
1
 
0
1
1
1
0
1
1
0
0
0
 
3
1
0
1
1
1
1
2
2
0
 
0
1
1
1
0
1
0
0
0
0
 
0
0
0
1
0
0
0
0
0
1
 
0
1
 

A
.
 
l
i
n
d
n
e
r
i
 

 
 
 
 
 

1
1
0
1
0
0
1
0
0
0
 
1
0
0
0
0
1
1
1
0
-
 
1
1
2
0
0
1
2
1
0
2
 
0
1
1
1
0
1
1
0
1
0
 
3
1
0
1
1
1
1
4
2
0
 
0
1
1
1
0
1
0
0
0
0
 
0
0
0
1
0
0
1
0
0
1
 
3
0
 

A
.
 
m
a
n
s
h
u
r
i
e
n
s
i
s
 
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
0
1
 
0
0
0
0
0
1
0
1
0
-
 
0
1
2
0
0
1
1
1
0
0
 
0
0
2
0
1
0
0
0
0
0
 
3
1
1
1
1
1
1
2
2
0
 
0
1
1
1
0
1
2
0
1
0
 
0
0
1
0
0
0
1
0
0
0
 
0
0
 

A
.
 
m
a
x
i
m
a
 

 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
1
0
1
 
1
0
1
0
0
0
0
1
0
0
 
1
1
2
0
0
1
2
1
0
2
 
1
1
1
1
0
1
1
0
0
0
 
3
1
0
1
1
1
1
2
2
0
 
0
1
1
1
0
1
0
0
0
0
 
0
0
0
1
1
0
1
0
1
1
 
1
0
 

A
.
 
m
i
c
r
a
n
t
h
a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
1
0
1
0
0
1
0
0
0
 
1
0
0
0
0
1
0
1
0
-
 
0
1
2
0
0
1
2
1
0
2
 
0
1
1
1
0
1
1
0
0
0
 
4
1
0
1
1
1
1
2
2
0
 
1
1
1
1
1
1
1
0
0
0
 
0
0
1
0
0
0
1
0
0
1
 
3
0
 

A
.
 
n
u
m
m
u
l
a
r
i
f
o
l
i
a
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
0
0
 
1
0
0
0
1
-
-
-
0
-
 
0
1
2
0
0
1
2
1
0
1
 
0
1
1
1
0
1
1
0
0
0
 
3
1
0
1
1
1
1
2
2
0
 
0
1
1
1
0
1
0
0
0
0
 
0
0
0
1
0
0
0
0
0
1
 
0
0
 

A
.
 
p
a
n
a
m
e
n
s
i
s
  
 
 
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
0
1
 
1
0
0
0
0
0
0
1
0
0
 
1
1
2
0
0
1
1
1
0
1
 
0
0
2
0
0
1
0
0
0
0
 
3
1
1
1
1
1
1
2
2
0
 
0
1
1
1
0
1
2
0
1
0
 
0
0
1
0
0
0
0
0
0
0
 
0
0
 

A
.
 
p
e
n
t
a
n
d
r
a
 
  
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
0
0
 
1
0
0
0
0
1
0
1
0
-
 
0
1
2
0
0
1
2
1
0
2
 
0
1
1
1
0
1
1
0
0
0
 
4
1
0
1
1
1
1
2
2
0
 
1
1
1
1
1
1
1
0
0
0
 
0
0
1
0
0
0
1
0
0
1
 
3
0
 

A
.
 
p
i
c
h
i
n
c
h
e
n
s
i
s
 
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
0
0
 
1
0
0
0
0
1
1
1
0
-
 
1
1
2
0
0
1
1
1
0
2
 
0
0
0
1
1
1
1
1
0
0
 
3
1
0
1
1
1
1
4
2
0
 
0
1
1
1
0
1
0
0
0
0
 
0
0
0
1
0
0
1
0
0
1
 
3
0
 

A
.
 
p
i
s
t
o
l
o
c
h
i
a
 
 
 
 
 
 
 
 
 
 

1
1
0
1
1
0
1
0
0
0
 
1
0
0
0
0
0
0
1
0
-
 
0
1
2
0
0
1
2
1
1
0
 
0
1
1
1
0
1
1
0
0
0
 
3
1
0
1
1
1
0
4
2
0
 
0
1
1
1
0
1
0
0
1
0
 
0
0
0
1
0
0
0
0
0
1
 
0
0
 

A
.
 
p
r
o
m
i
s
s
a
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
0
1
1
0
0
0
 
1
0
1
0
0
0
0
1
0
1
 
0
1
2
0
0
1
1
1
0
2
 
0
1
1
1
1
1
0
1
0
0
 
2
1
0
1
1
1
1
2
2
2
 
0
1
1
1
0
1
3
0
1
1
 
1
1
3
-
0
0
0
0
0
1
 
0
0
 

A
.
 
r
e
t
i
c
u
l
a
t
a
 
 
 
 
 
 
 
 
 
 
 
 

0
1
0
1
0
0
1
0
0
0
 
1
0
1
1
0
1
0
1
1
0
 
0
1
2
0
0
1
1
1
0
0
 
0
0
1
0
1
0
0
0
0
0
 
3
1
1
1
1
1
1
2
2
0
 
0
1
1
1
0
1
A
0
1
0
 
0
0
1
0
0
0
0
0
0
1
 
0
0
 

A
.
 
e
r
i
a
n
t
h
a
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
1
0
 
1
0
0
0
1
-
-
-
0
-
 
0
1
2
0
0
1
2
1
0
0
 
1
1
1
1
0
1
3
0
1
0
 
3
1
0
1
1
1
1
2
2
0
 
0
1
1
1
0
1
0
0
0
0
 
0
0
0
1
0
0
1
0
0
1
 
3
0
 

A
.
 
r
o
t
u
n
d
a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
0
0
0
1
0
0
0
 
1
0
0
0
1
-
-
-
0
-
 
0
1
2
0
0
1
2
1
1
0
 
0
1
1
1
0
1
1
0
0
0
 
3
1
0
1
1
1
0
4
2
0
 
0
1
1
1
0
1
0
0
1
0
 
0
0
0
0
0
0
0
0
0
1
 
0
0
 

A
.
 
s
e
r
p
e
n
t
a
r
i
a
 
 
 
 

 
 
 
 
 
 
0
1
0
1
0
0
1
0
0
0
 
1
0
0
1
0
1
0
1
1
-
 
0
1
2
0
0
1
1
1
0
0
 
0
0
1
0
1
0
0
0
0
0
 
3
1
1
1
1
1
1
2
2
0
 
0
1
1
1
0
1
A
0
1
0
 
0
0
1
0
0
0
0
0
0
1
 
0
0
 

A
.
 
t
o
m
e
n
t
o
s
a
 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
0
0
1
0
0
1
 
0
0
1
0
0
0
0
0
0
0
 
0
1
2
0
0
1
1
1
0
0
 
0
0
2
0
1
0
0
0
0
0
 
3
1
1
1
1
1
1
2
2
0
 
0
1
1
1
0
1
2
0
1
0
 
0
0
1
0
0
0
1
0
0
1
 
0
0
 

A
.
 
t
r
i
a
c
t
i
n
a
 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
0
1
0
1
1
0
0
0
 
1
0
1
0
0
0
0
1
0
1
 
0
1
2
0
0
1
1
1
0
2
 
0
1
1
1
1
0
0
0
0
0
 
2
1
0
1
1
1
1
2
2
2
 
0
1
1
1
0
1
3
0
1
1
 
1
1
3
-
0
0
0
0
0
1
 
0
0
 

A
.
 
t
r
i
l
o
b
a
t
a
 
 
 
 
 
 
 
 
 
 
 
 
 

1
1
1
1
0
0
1
0
1
0
 
1
0
0
0
1
-
-
-
0
-
 
0
1
2
0
1
1
2
1
0
1
 
1
1
1
1
0
1
1
1
0
0
 
3
1
0
1
1
1
1
2
2
0
 
0
1
1
1
0
1
0
0
0
0
 
0
0
0
1
0
0
1
0
2
1
 
1
0
 

 



 
65

Ta
bl

e 
4.

  S
ta

tis
tic

s c
om

pa
rin

g 
th

e 
re

su
lts

 fr
om

 d
iff

er
en

t d
at

as
et

s a
nd

 th
e 

an
al

ys
es

 c
on

du
ct

ed
.  

 
M

or
ph

ol
og

y 
In

de
ls

* 
trn

K
/ 

m
at

K
 

trn
K

/m
at

K
  

+ 
In

de
ls

 
trn

L-
F 

trn
L-

F 
+ 

In
de

ls
 

co
m

b.
 

m
ol

ec
ul

ar
 

co
m

b.
 

m
ol

ec
ul

ar
 

+ 
In

de
ls

* 

m
or

ph
ol

og
y 

+ 
m

ol
ec

ul
ar

 
m

or
ph

ol
og

y 
+ 

m
ol

ec
ul

ar
 

+ 
In

de
ls

* 
Fi

gu
re

 
n.

 s.
 

n.
 s.

 
n.

 s.
 

n.
s. 

n.
 s.

 
n.

 s.
 

2A
 

2B
 

2C
#  

1,
 2

C
 

to
ta

l n
um

be
r o

f 
ch

ar
ac

te
rs

. 
72

 
23

4 
26

90
 

28
17

 
11

66
 

12
73

 
38

56
 

40
90

 
39

28
 

41
62

 

co
ns

ta
nt

 
ch

ar
ac

te
rs

 
1 

- 
17

71
 

17
71

 
90

3 
90

3 
26

74
 

26
74

 
26

74
 

26
74

 

un
in

fo
rm

at
iv

e 
ch

ar
ac

te
rs

 
11

 
12

1 
33

1 
40

2 
12

1 
17

1 
45

2 
57

3 
46

3 
58

4 

nu
m

be
r a

nd
 

pe
rc

en
ta

ge
 o

f 
pa

rs
im

on
y-

in
fo

rm
at

iv
e 

ch
ar

ac
te

rs
  

61
 

(8
5.

9)
 

11
3 

(4
8.

3)
 

58
8 

(2
1.

9)
 

64
4 

(2
2.

9)
 

14
2 

(1
2.

2)
 

19
9 

(1
5.

6)
 

73
0 

(1
8.

9)
 

84
3 

(2
0.

6)
 

79
1 

(2
0.

1)
 

90
4 

(2
1.

7)
 

nu
m

be
r o

f m
os

t 
pa

rs
im

on
io

us
 

tre
es

 
43

 
73

0 
68

 
2 

6 
22

9 
8 

2 
6 

4 

le
ng

th
 

16
4 

33
4 

15
55

 
17

32
 

38
2 

55
2 

19
42

 
22

81
 

21
22

 
24

61
 

C
I 

0.
60

 
0.

70
 

0.
73

 
0.

73
 

0.
80

 
0.

75
 

0.
74

 
0.

74
 

0.
73

 
0.

72
 

R
I 

0.
80

 
0.

70
 

0.
80

 
0.

80
 

0.
82

 
0.

76
 

0.
80

 
0.

79
 

0.
80

 
0.

79
 

R
C

 
0.

48
 

0.
49

 
0.

59
 

0.
59

 
0.

70
 

0.
60

 
0.

60
 

0.
58

 
0.

58
 

0.
57

 
cl

ad
es

 re
so

lv
ed

  
18

 
9 

25
 

31
 

25
 

18
 

28
 

31
 

26
 

28
 

po
ly

to
m

ie
s i

n 
th

e 
st

ric
t c

on
se

ns
us

 
tre

e 
4 

4 
3 

1 
2 

3 
2 

1 
3 

2 

* 
 

 
ca

lc
ul

at
ed

 fr
om

 th
e 

co
m

bi
na

tio
n 

of
 a

ll 
m

ol
ec

ul
ar

 d
at

as
et

s (
co

de
d 

le
ng

th
 m

ut
at

io
n)

 
n.

 s.
 

 
 

tre
es

 n
ot

 sh
ow

n 
# 

 
 

to
po

lo
gy

 a
s  

fig
ur

e 



 

 

66

Fig. 1 Strict consensus tree based on the combined molecular and morphological datasets 
(substitutions and coded length mutations). Supports above each branch are bootstrap values. 
Segregated genera or infrageneric taxa previously proposed, and New World/Old World distribution 
are shown to the right. Asterisks indicate taxa originally treated as part of “Howardia”.  Pentandrous 
species are indicated with #. Numbers along branches correspond to sets of characters: 1. Thottea 
plus Aristolochia s. l.: woody plants, with hooked trichomes, a V- or U-shaped petiole base, a single 
whorl of stamens, and a completely inferior ovary, that is separated from the rest of the flower by an 
abscission zone. 2. Endodeca plus Isotrema: a ring-like structure around the perianth fauces 
(variously modified in some Central American species), a 3-lobed gynostemium, and grouped 
stamens. 3. Endodeca (i. e. Aristolochia reticulata plus A. serpentaria): herbaceous shoots, with scale-
like, not clasping subtending leaves, and shortened internodes on the partial inflorescences. 4. 
Subgenus Isotrema (minus Endodeca): abscission zone on the base of the petiole, floral tube evenly 
inflated, and almost as wide as the utricle. 5. Subgenus Pararistolochia plus subgenus Aristolochia: 
Conical hairs inside the floral tube, and/or limb; and slightly (not U-shaped) curved tube. 6. Subgenus 
Pararistolochia: a broad exine ridge on pollen grains, indehiscent, and warty fruits that have a strongly 
lignified pericarp, and a fleshy mesocarp. 7. Subgenus Aristolochia: abaxially concave perianth, 
completely monosymmetric floral limb with a complete fusion of the three sepals into one or two lobes, 
and ventricidal, and acropetal capsules. 8. Aristolochia subsection Pentandrae plus (A. burelae, A. 
lindneri, A. lozaniana, A. stuckertii, and A. urbaniana): bracteate flowers, large supratectal warts on 
the pollen grains, and basipetal, and loculicidal capsules. 9. Aristolochia series Thyrsicae: presence of 
an abscission zone in the base of the petiole, the base of the partial inflorescences, and the base of 
the peduncle, lattice-like septa on the capsules, and broadly oblong seeds with two wings. 
 
See next page. 
 



 

 

67

 
Saruma henryi

Asarum caudatum

100

100 T. siliquosa

T. corymbosa

100

100

100 A. reticulata

A. serpentaria

100

100 A. panamensis

A. arborea

89

A. californica

A. kaempferi

85 A. manshurensis

A. tomentosa

100

100 A. promissa

A. triactina

96

100

E. rojasiana

77

80 A. nummularifolia

A. leuconeura

60

A. eriantha

A. labiata

67 A. cf. cordiflora

A. holostylis

-

96

100
A. acuminata

96 A. bracteolata

A. albida

100
A. clematitis

68 A. rotunda

A. pistolochia

-

100 A. acutifolia

A. maxima

-

100
A. lindneri

100 A. pentandra

A. micrantha

100
A. grandiflora

96 A. pichinchensis

A. gorgona

Thottea

Endodeca

Euglypha

Isotrema

Pararistolochia

Howardia p.p.

Aristolochia s.str.

Aristolochia s.l.

Aristolochia s.l.

Thyrsicae*

*

Einomeia #

A. grandiflora
complex*

Old World

New World

Old World

New World

Old World

New World

Old World

New World

 

 
 
 
 
 
 

Aristolochia 
subg. Isotrema 

Aristolochia 
subg.  
Pararistolochia 

Aristolochia  
subg. Aristolochia 

1

2

3

6

4

8

5

7

9



 

 

68

Fig. 2 Simplified summary of trees (strict consensus trees, with bootstrap values) resulting from 
combination of different datasets, showing the incongruence between them. The taxa Isotrema and 
Endodeca are not shown, as relationships remain constant throughout all analysis. A) combined 
molecular datasets (based on substitutions only), B) combined molecular datasets (incl. coded length 
mutations), C) combined molecular datasets (based on substitutions + coded length mutations) + 
morphology. 
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Discussion 

The results of the simultaneous analyses based on molecular data alone, and on 

molecular plus morphological data are consistent with Huber’s (1985, 1993) inclusion 

of Thottea in Aristolochioideae.  The inclusion of Thottea in Aristolochioideae is 

supported by the following morphological synapomorphies: primarily woody plants, 

base of the petiole `U´ or `V´ shaped, hooked trichomes, partial inflorescence 

consisting of more than one flower (González 1999b), bracts distinct in shape from 

the normal leaves, abscission zone between the inferior ovary, and the rest of the 

flower, and stamens primarily arranged in one whorl. 

 

Our analysis also supports a sister-group relationship between the Aristolochia 

segregates Isotrema and Endodeca and confirms the sister-group relationship 

between subgenera Aristolochia and Pararistolochia. Two morphological 

synapomorphies (a three-lobed gynostemium, and an annulus, a ring-like structure 

around the mouth of the perianth that is variously modified in some Central American 

species; González and Stevenson 2000b) support the sister-group relationship within 

the two main clades of subgenus Isotrema (that is, the segregates Isotrema, and 

Endodeca).  On the other hand, the sister group relationship between subgenera 

Pararistolochia, and Aristolochia is supported by the presence of conical trichomes, 

especially throughout the inner surface of the perianth tube which are partially 

responsible for the trap mechanisms of the flowers. Subgenus Pararistolochia is 

represented by more than twenty species from Africa, and Australasia; morphological 

support for the monophyly of this subgenus comes from the gynostemium primarily 

with more than six (and up to 24) stigmatic lobes, and from the pollen grains, which 

develop a long, and massive exine ridge (González 1999a; González and Stevenson 

2002). 

 

Conflictive topologies are found within subgenus Aristolochia (Figs 1, 2A-C), where 

nearly all possible sistergroup relationships could be observed based on the 

combination of different data sets. The main incongruence involves the relationships 

of the Old World clade, and the New World species. The strict consensus trees 

resulting from all combined datasets (Figs. 2A, 2B, and 2C, respectively) are in favor 

of the hypothesis that the New World species are paraphyletic, although the support 

values are low. In contrast, the analysis based on the morphological data set alone 
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(not shown; see González 1999a, González and Stevenson 2002), supports the 

monophyly of the New World species of subgenus Aristolochia, which in turn are 

sister to the Old World species (i.e. Aristolochia s. str.). The tree obtained from the 

combined molecular data set (incl. indels) (Fig. 2B) differs from that obtained in the 

analysis based on morphological plus molecular data (incl. indels) (Fig. 1, 2C) in the 

placement of the Old World species of subgenus Aristolochia (=Aristolochia s. str.) 

which appear as sister only to the Aristolochia grandiflora complex + “Howardia” p.p. 

(incl. Euglypha) in the former (Fig. 2B), but to the New World subclade (Aristolochia 

ser. Thyrsicae (Aristolochia grandiflora complex (Aristolochia lindneri plus 

Einomeia))) in the latter (Fig. 2C). 

 

Most of the infrageneric taxa traditionally described within subgenus Aristolochia (cf. 

Duchartre 1854a, 1864, Masters 1875, Schmidt 1935, Hoehne 1927, 1942) were 

established primarily on the gross shape of the mature perianth, which is extremely 

variable and supplies some of the most important diagnostic characters at the 

species level. However, its phylogenetic information is limited because it is highly 

homoplastic (González and Stevenson 2000b, 2002). Our results identify only a few 

characters related to the perianth that are synapomorphic at different levels (see 

Conclusions). These are: a ring-like structure around the perianth fauces in 

segregates Isotrema plus Endodeca; the floral tube evenly inflated and almost as 

wide as the utricle in subgenus Isotrema; conical hairs inside the perianth, and a 

floral tube slightly curved in subgenera Pararistolochia plus Aristolochia; a perianth 

abaxially concave and completely monosymmetric (formed by the complete fusion of 

the three sepals) in subgenus Aristolochia. 

 

González (1990, 1991, 1997) proposed an alternative classification for the New 

World species based on characters from leaves, inflorescences, fruits, and seeds.  

So far, this classification is in general consistent with the phylogenies derived from 

molecular and combined datasets, especially because of the recognition of subseries 

Thyrsicae, a taxon of about 30 species supported as monophyletic by the following 

characters: presence of a zone of abscission in the base of the petiole, the base of 

the partial inflorescences, and the base of the peduncle; capsules with latticelike 

septa; and seeds broadly oblong with two wings. 
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The sister-group relationship between A. lindneri, from Bolivia and Paraguay, and the 

pentandrous species (A. micrantha, and A. pentandra) is supported by 100% 

bootstrap in all the analyses substantiating earlier results from Murata et al. (2001) 

based on only one pentandrous species sister to the hexandrous A. burelae, from 

Bolivia and Argentina. These two independent pieces of evidence are also supported 

by the following morphological characters in common between all the pentandrous 

species and a group of five species from central, and southern South America (A. 

burelae, A. lindneri, A. lozaniana, A. stukhertii, and A. urbaniana): Partial 

inflorescences cymose and reduced to one or two bracteate flowers, the bracts 

peltate or at least wide, and strongly clasping, the pollen grains reticulate with large 

supratectal warts, the capsules opening from the tip, and the seeds smooth, 

triangular, thick, non-winged, with the funicle linear, and completely fused to the seed 

proper (detailed descriptions of these characters are fully explained in González 

1999a, 1999b, 2001, González and Stevenson 2002, and González and Rudall 

2003). The disjunct distribution of these two monophyletic taxa (subsection 

Pentandrae, on one hand, and  A. burelae, A. lindneri, A. lozaniana, A. stukhertii, and 

A. urbaniana on the other) is similar to that found in closely related taxa in the 

Apiaceae, and Hydrophyllaceae (Constance 1963; Heckard 1963; see also the 

review by Raven 1963), which suggests the existence of a biogeographic pattern 

between sister taxa primarily found in the subtropical belt of North America, and 

Mesoamerica, on one hand, and the subtropical belt of South America, on the other. 

 

Finally, both the simultaneous, and the independent analyses corroborates that 

Aristolochia holostylis (formerly Holostylis reniformis) is nested within a group of 

South American species of Aristolochia, near Aristolochia cordiflora, as was 

previously suggested (González 1997, 1999a, González and Stevenson 2002). In 

fact, the new combination Aristolochia holostylis (Duchartre) F. González has already 

been made (González 1999c). Nesting of Euglypha rojasiana Chodat & Hassl. within 

the main New World clade of Aristolochia has also been proposed based on 

morphological data (González 1997, 1999a, González and Stevenson 2002), and is 

substantiated by our molecular data. Euglypha, a small climber of central South 

America, had been separated due to the constriction at the base of the utricle 

(resembling the subsection Podanthemum in Aristolochia s.str.) and the unusual fruit 

containing only one or two seeds per locule. 
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Conclusions 

The simultaneous molecular, and morphological analysis supports the recognition of 

two main pairs of lineages within Aristolochia s. l.: the segregates Endodeca plus 

Isotrema, and the subgenera Pararistolochia plus Aristolochia (incl. Euglypha). All 

main clades within Aristolochioideae reconstructed in the analysis are easily 

recognized by at least one morphological synapomorphy. In fact, names as old as 

Endodeca (Rafinesque 1828), Isotrema (Rafinesque 1819), and Pararistolochia 

(Hutchinson and Dalziel 1927), described on the bases of morphological grounds, 

could easily be validated as monophyletic taxa, which demonstrate the congruence 

between molecular data, and morphological traits. Aristolochia holostylis (=Holostylis 

reniformis) is nested within the bulk of South American species of Aristolochia, 

perhaps as sister to the Aristolochia cordiflora group; therefore Holostylis reniformis 

should be definitely abandoned. The genus Euglypha should also be abandoned as 

proposed by González (1997) and included into Aristolochia, and consequently 

named Aristolochia rojasiana (Chodat & Hassl.) F. González. 
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Appendix 1.  Morphological characters used in the present analysis. Most of the morphological 
characters included in this analysis were taken from living material, herbarium and spirit specimens, 
and field observations.  Literature has been employed only when data were insufficient or unclear.  All 
the multistate characters were treated as unordered. 
 
0.  Habit.  (0) herbaceous, (1) woody at least in the roots and/or rhizomes.  
1.  Growth units.  (0) sympodial (1)  monopodial (indeterminate).  Whereas growth units of Saruma and 
Asarum are sympodial, those of Aristolochia, Euglypha, Holostylis, and Thottea are monopodial; some 
species of subgenus Pararistolochia from Australia and New Guinea have sympodial growth units 
(González 1999b).   
2.  Elongating shoots.  (0) nearly straight, (1) strongly sinuous.  The elongating shoots of most of the 
Aristolochiaceae are nearly straight, but in some neotropical members of Aristolochia, they are strongly 
sinuous.  
3.  Number of axillary buds.  (0) one, (1) two or more.  In Asarum and Saruma there is one axillary bud 
per node whereas in Aristolochia, Euglypha, Holostylis and Thottea there are at least two axillary buds 
per node (González 1999b).     
4.  Arrangement of axillary buds.  (0) uniseriate, (1) biseriate.    
5.  Mature stems.  (0) circular, (1) medially constricted.  Stems in some species of Aristolochia become 
medially constricted thus producing a “figure 8” form in transverse section.    
6.  Hooked trichomes. (0) absent, (1) present.  Hooked trichomes are present in both vegetative and 
reproductive organs of Aristolochia, Euglypha, Holostylis and Thottea.  Although the number of cells on 
each trichome can vary from 3 to 8 in these taxa, the apical cell is always hook-shaped.       
7.  Leaf expansion.  (0) normal, (1) delayed.  In most of the species, the leaf primordium begins 
differentiation into petiole and blade in plastochrone 3-4 and the blade expands relatively rapidly; in 
other species the differentiation occurs at a late stage, and blade expansion is delayed (González and 
Stevenson 2002).   
8.  Vegetative prophylls.  (0) non-pseudostipular, (1) pseudostipular.  In a group of neotropical species, 
the prophyll of each renewal shoot develops into a sessile, round, clasping leaf called a pseudostipule 
(Duchartre 1854b, González 1990).       
9.  Petiole abscission zone. (0) absent, (1) present (González 1990, 1991, 1997, 1999b).  
10. Petiole base.  (0) U-shaped, (1) semicircular (González and Stevenson 2002).  
11. Position of the partial florescences.  (0) along leafy, elongated, main branches, (1) lateral racemes 
(Fig. 11D), (2) anthoblasts (González 1999b).   
12. Partial florescence.  (0) uniflowered, (1) bi/multiflowered (González 1999b).  Inflorescence 
development of Thottea corymbosa and T. grandiflora is not known, preventing the coding of this and 
characters 13-19 in these species.      
13. Pherophylls (0) leafy, (1) reduced (González 1999b).   
14. Flower.  (0) bracteate, (1) non-bracteate (González 1999b).  
15. Bract expansion.  (0) non-clasping, (1) clasping.  
16. Bract base.  (0) non-peltate, (1) peltate.  
17. Bract shape.  (0) similar in shape and size to leaves, (1) reduced (González and Stevenson 2002).  
18. Inflorescence internodes.  (0) elongated, (1) shortened (González 1999b).  
19. Inflorescence phyllotaxis. (0) distichous, (1) helicoid (González and Stevenson 2002).  
20. Peduncle abscission zone.  (0) absent, (1) present (González 1990, 1991, 1997, 1999b). 
21.  Perianth series.  (0)  two, (1) one.    
22.  Perianth shape.  (0)  rotate, (1) bell-shaped, (2) tubular.   
23.  Perianth.  (0) non-stipitate, (1) stipitate.  This character is not applicable to Asarum and Saruma, 
because the perianth in these genera is continuous with the peduncle.  In the other genera, there is a 
deep constriction between the perianth and the peduncle, above which the perianth may have a stipe 
or not. 
24.  Perianth base.  (0) symmetrical, (1) strongly asymmetrical. 
25.  Perianth.  (0) not differentiated, (1) differentiated into utricle, tube and limb.  In Aristolochia s.l. 
(that is, including, Euglypha and Aristolochia holostylis) the perianth has three parts, an inflated portion 
at its base called utricle, which extends into a more or less narrowed portion, the tube; the distal 
expanded part of the perianth, above the tube, is called the limb.  The tube in Aristolochia holostylis is 
shortened, but can be detected as an area between the utricle and the limb that lacks trichomes on the 
inside.  The perianth in the remaining genera is not differentiated into distinct parts (González and 
Stevenson 2000b). 
26.  Perianth concavity.  (0) absent, (1) adaxial, (2) abaxial (González and Stevenson 2000b).    



 

 

74

27.  Perianth abscission zone.  (0) absent, (1) present.  In all species of Aristolochia and Thottea, a 
constriction is formed above the ovary that functions as an abscission zone by means of which the 
perianth falls off along with the gynostemium at late anthesis.      
28.  Second order perianth veins.  (0) present, (1) absent.  Flowers of some species of Aristolochia 
lack the second order veins that run longitudinally along  the base of the perianth.  Thus, the perianth 
is supplied only by the six veins that enter the perianth from the ovary (González and Stevenson 
2000b).    
29.  Syrinx.  (0) absent, (1) incomplete, (2) complete.  The syrinx is an inner flange formed between 
the utricle and the tube.  This character is not applicable to Asarum, Saruma and Thottea, because the 
flowers in these genera are not differentiated into utricle and tube. 
30.  Tube position.  (0) longitudinal, (1) oblique.  At anthesis, the tube extends straight out from the 
utricle or is oblique to it, thus forming a sharp angle.  
31.  Tube curvature.  (0) strong (U-shaped), (1) slight (González and Stevenson 2000b).   
32.  Tube shape.  (0) distally inflated, (1) not inflated, (2) evenly inflated and almost as wide as the 
utricle.   
33.  Conical perianth trichomes. (0) absent, (1) present (Huber 1985, González and Stevenson 2000b). 
34.  Annulus.  (0) absent, (1) present.  The annulus is a circular flange at the juncture between the 
tube and the limb.   
35.  Limb symmetry.  (0) regular, (1) monosymmetric (González and Stevenson 2000b).  
36.  Limb lobes at anthesis.  (0)  three, (1) one, (2) two, one upper and one lower, (3)  two, lateral.   
37.  Tail-like appendages on perianth.  (0) absent, (1) present.   
38.  Limb.  (0) non fimbriate, (1) fimbriate.   
39.  Limb protrusion.  (0) absent, (1) present.   
40.  Stamen number.  (0) 12, (1) 24, (2) 8-10, (3) 6, (4) 5, (5) >25.    
41.  Stamen series.  (0) two, (1) one.  
42.  Stamens.  (0) equidistant, (1) grouped (González and Stevenson 2000a).     
43.  Stamens.  (0) free, (1) fused forming a gynostemium (González and Stevenson 2000a). 
44.  Stamen dehiscence.  (0) functionally introrse, (1) extrorse.  Anthers are functionally introrse in 
Saruma (Oliver 1889, Dickison 1992, Endress 1995, González and Stevenson 2000a). 
45.  Anthers.  (0) with filament, (1) sessile.  
46.  Anther length.  (0) short, (1) long.  In mature flowers of some species of Aristolochia, the length of 
the anthers is less than half the length of the gynostemium.  In others, the anthers are considerably 
longer (González and Stevenson 2002). 
47.  Pollen sculpturing. (0) reticulate, (1) microreticulate, (2) fossulate, (3)  areolate, (4) psilate 
(González 1999a). 
48.  Pollen aperture.  (0) sulcate, (1) porate, (2) inaperturate (González 1999a). 
49.  Pollen ridge.  (0)  absent, (1) poorly differentiated, (2) markedly differentiated (González 1999a; 
González et al. 2001).       
50.  Supratectal warts.  (0) none, (1) small, (2) large (González 1999a).   
51.  Ovary position.  (0) half-inferior, (1) inferior.    
52.  Ovary shape.  (0) globose, (1) linear (elongated and narrow).  
53.  Carpels.  (0) partially apocarpous, (1) syncarpous.   
54.  Mature carpels.  (0) 6, (1) 5, (2) 4.   
55.  Stigmas.  (0) free, (1) connate.   
56.  Gynostemium lobes.  (0) 6, (1) 5, (2) 3, (4) 8-10, (5) 12 (González and Stevenson 2000a, 2002).    
57.  Stigmatic papillae.  (0) present, (1) absent.  
58.  Position of the stigmatic papillae.  (0) terminal, (1) lateral/basal (González and Stevenson 2000a, 
2002).     
59.  Fruit surface.  (0) smooth, (1) verrucate.  
60.  Pericarp.  (0) membranous to chartaceous, (1) strongly lignified.  
61.  Mesocarp.  (0) dry, (1) fleshy.  
62.  Fruit.  (0) ventricidal, (1) septifragal, (2) irregularly dehiscent, (3) indehiscent.    
63.  Fruit dehiscence.  (0) basipetal, (1) acropetal.  
64.  Fruit septae.  (0) entire, (1) lattice-like.  
65.  Seeds per carpel.  (0) >5, (1) 1-2.  
66.  Seed contour.  (0) concave-convex, (1) flattened, (2) trigonous.  In transverse section, the contour 
of the seed proper appear concave-convex, flattened, or extremely curved and with the margins 
touching each other (Hou 1981, Huber 1985, González and Stevenson 2002).   
67.  Shape of the seed proper.  (0) ovoid, (1) ellipsoid (González and Stevenson 2002).  
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68.  Seed wings.  (0) absent or vestigial, (1) two, rectangular, (2) one, triangular-rhomboidal (González 
and Stevenson 2002).   
69.  Funicle.  (0) free from the seed, (1) fused to the seed (Huber 1985, González 1999a, González 
and Stevenson 2002, González and Rudall 2003). 
70.  Funicle.  (0) massive, (1) filiform, (2) papery, incomplete, (3)   papery, complete.  (González and 
Stevenson 2002, González and Rudall 2003).   
71.  Sticky aril.  (0) absent, (1) chalazal-funicular, (2) Asarum type, (3) funicular.  (González 1990, 
González and Stevenson 2002, González and Rudall 2003). 
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3.2 Colonisation, phylogeography and evolution of 
endemism in Mediterranean Aristolochia 

(Aristolochiaceae) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

77

Abstract 
This study provides evidence for a multiple colonisation of the western Old World 

from Asian ancestors within Aristolochia section Diplolobus (subsection Aristolochia 

and Podanthemum). Within subsection Podanthemum it is assumed, that the 

colonisation of the African continent happened at least two times independently. In 

contrast, for subsection Aristolochia, a rapid morphological radiation in the Near East 

(or close to this area) with subsequent star like colonisation of the different current 

distribution areas, which is not paralleled on the molecular level, appears to be more 

likely. Phylogenetic tree reconstruction is unsupported for these clades, but most 

clades are highly supported as monophyletic. Interestingly the Mediterranean and 

temperate Eurasian species, which are morphologically distinct (A. pistolochia, A. 

clematitis) are not clustering within the main clades, but are independent lineages. 

Analogue, A. rigida a species from Somalia is well-supported sister to the subsection 

Aristolochia. Within subsection Podanthemum the colonisation event from an Asian 

ancestor is clearly traceable, whereas in subsection Aristolochia the path is not 

traceable, since the ancestors are extinct or not present in the connecting areas. 

Within the Mediterranean, Near East and Caucasian species of subsection 

Aristolochia two morphologically and biogeographically well supported groups can be 

identified: the Near East/Caucasian species and the West Mediterranean species. 

The previous groupings for the latter, based on morphological characters, could be 

substantiated only partly by our results. This study provides the first phylogeny of all 

West Mediterranean species. In addition an independent complex is established 

including some micro endemic species. The phylogenetic results are discussed with 

respect to biogeography, and morphology, to give a first insight into the radiation and 

colonisation of the genus Aristolochia in the Mediterranean region. 
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Introduction  
Aristolochia in the extended Mediterranean region, including Turkey, Caucasus and 

the Near East, comprises up to 60 species and subspecies and thus represents one 

of most diverse lineages within the genus, even if the exact species number for 

Turkey, Caucasus and the Near East needs revision. Beyond this, it is one of the 

most northern occurrences of Aristolochia. 

A recent molecular phylogeny recovered the Mediterranean Aristolochia species as 

monophyletic (de Groot et al 2006). However, only very few members were included, 

as the aim of the study were to revise the African representatives of the genus. The 

Mediterranean species of the genus Aristolochia are part of Aristolochia s.str. 

(Neinhuis et al. 2005, Wanke et al. 2006b), an Old World clade probably nested 

within or sister to Neotropical clades (Wanke et al. 2006b). Aristolochia s. str. has 

been subdivided into two lineages based on morphological characters, subsection 

Podanthemum (unilabiate flowers with a stiped utricle) and subsection Aristolochia 

(unilabiate or bilabiate flowers with a sessile utricle), each recovered as monophyletic 

by molecular based phylogenies (Ohi-Thoma 2006) and in addition, supposed to be 

sister to each other (de Groot et al. 2006). The Old World distribution of the two 

subsections is similar to each other, as both occur in Asia and Africa. In contrast to 

the syntopic distribution in Asia, the African species of the two clades show distinct 

distribution areas. Subsection Podanthemum occurs south of the Sahara, whereas 

subsection Aristolochia is confined to North Africa, namely Tunisia, Algeria and 

Morocco, including the Canary Islands and Madeira (de Groot et al. 2006). In the 

Mediterranean and the adjacent Near East/Caucasia only members of subsection 

Aristolochia are found. For subsection Podanthemum a colonisation out of Asia has 

been postulated, based on the distribution of A. bracteolata from India, Sri Lanka, 

and Pakistan via the southern part of the Arabian Peninsula to East Africa and 

Central Africa (Sahel zone) and a subsequent radiation (de Groot et al. 2006). For 

subsection Aristolochia a similar colonisation route, starting from Asia towards 

Europe could be assumed, but was never studied in detail. Aristolochia rigida which 

occurs only in Somalia and Yemen, displays morphological affinities to the East 

Mediterranean/Caucasian species (bilabiate, curved perianth, sessile utricle), but 

from a biogeographic point of view a close relationship to other East African species 

could be assumed. Molecular results were unable to assign this species to any of the 

taxonomic groups mentioned above (de Groot et al. 2006).  
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Relationships within the west Mediterranean Aristolochia species 

Several floras dealing with the Mediterranean region have been published in the last 

decades treating also the genus Aristolochia e.g., Les Quatre Flores de France 

(Fournier 1990), Flora Iberica (Castroviejo 1986) or Flora Europaea (Nardi & Akeroyd 

1993). The assignment of a name to a taxon has been used inconsistently 

throughout these publications, as different names are used for the same species and 

vice versa. One of the most prominent examples, posing a floristic, taxonomic and 

nomenclatural problem, is Aristolochia longa = A. fontanesii (for details see Nardi 

1983, 1988). Actually, some of the species were unknown until recently, others 

simply mistreated. 

The west Mediterranean species (circumscribed here as plants with unilabiate, not 

curved perianth) have been placed in groups (complexes) indicating their 

relationships (e.g. Nardi 1984, 1991). These complexes are predominantly based on 

morphological similarities. Four species complexes have been proposed: the A. 

rotunda complex, the A. pallida complex, the A. fontanesii complex, and the A. 

sempervirens complex (Table 1). In contrast, A. sicula a microendemic and 

ecologically poorly studied species from the mountains of Sicily is not placed within 

any of the complexes. Further on, A. clematitis and A. pistolochia are well known and 

widespread in the Mediterranean area, but were not placed in any of the groups, as 

they are morphologically distinct. 
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Table 1. Traditional affiliation of the West-Mediterranean species to species complexes (according to 
different authors). Chromosome numbers are provided (incl. source) as well as current distribution of 
the species in Mediterranean region. 
 

Species 
complex 

(according to) 

Species 
included 

traditionally 

Chromosome 
numbers 

(according to) 

Current Distribution 

A. rotunda  2n=12 (Fabbri & 
Fagioli 1971, Nardi 
1984) 

Spain (incl. Majorca), S-France (incl. 
Corse), Italy (incl. Sicily, Sardinia), W- 
Croatia, Slovenia, Greece 

A. rotunda 
(Nardi 1984) 

A. bianorii  2n=12 (Castroviejo 
1986) 

Majorca, W-Minorca 

A. sempervirens 2n=14 (Montmollin 
1986) 

N-Algeria, E-Sicily, Peloponnesus, 
Crete, Rhode, Cyprus, Syria 

A. sempervirens 
(Nardi 1984) 

A. baetica Unknown S-Spain, Morocco, NW-Algeria 
A. fontanesii Unknown N-Algeria 
A. paucinervis 2n=36 (Nardi 1984) S-France, Spain, Morocco 
A. navicularis 2n=24 (Fabbri and 

Fagioli 1971, Nardi 
1984) 

S-Sardinia, Egadi Islands (west of 
Sicily), N-Tunisia 

A. parvifolia 2n=12 (Nardi & Nardi 
1987) 

Peloponnesus, Crete, Kos, Rhode, S-
Turkey, Syria, Lebanon, Israel 

A. fontanesii 
(Nardi 1984, 

1991) 

A. clusii 2n=12 (Nardi 1984) S-Italy, Sicily 
A. pallida 2n=10 Nardi 1984 France, Italy, Croatia, Greece (?) 
A. lutea 2n=8 (Fabbri & 

Fagioli 1971, Nardi 
1984, Fiorini 1988 

Italy, Slovenia, Balkan Peninsula 

A. elongata 2n=10 (Nardi 1989) Greece 
A. merxmuellerii# unknown Kosovo (former Yugoslavia) 
A. microstoma 2n=10 (Constantinidis 

et al. 1997) 
Greece 

A. tyrrhena 2n=26 (Nardi 1984) W-Corse, Sardinia 

A. pallida 
(Nardi 1984, 
1989, 1991) 

A. sicula* 2n=16 (Nardi 1984) Sicily 
* according to Ball (1964) 
# according to Mayer & Greuter (1985) 
 
 

Morphological characters and chromosome numbers 

As already mentioned above, the methods used to delimitate the complexes within 

the Mediterranean Aristolochia species are purely descriptive, more based on 

superficial morphological similarities than on cladistic concepts to test character 

evolution, and are probably posthoc assumptions for assumed probabilities of 

relationships. Morphological characters, which in the past were assumed to have 

great systematic value, are the subterranean parts of the plants, especially the 

rootstocks of the west Mediterranean species, the shape and size of the leaves, or 

petiole length alone and in comparison with the length of the peduncle (some of 

those have only been used within one species complex). Some perianth characters 

have been accepted as most reliable as well: the colour, the hairs inside the tube as 

well as the tube and limb shape (e.g. Nardi 1984). 
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Generally, Aristolochia species in the Mediterranean are calcicole plants (at least 

tolerate limestone grounds) and the most common growth form is geophytic, with 

summer dormancy and growth and flowering in spring. The two lianescent species 

instead are perennial, evergreen woody climbers with accelerated growth and 

flowering in spring. 

Chromosome numbers have been shown to be a valuable character to circumscribe 

clades in the genus Aristolochia. (Sugawara et al. 2001, Ohi-Thoma et al. 2006) and 

have been approved to fit largely to the evolutionary history inferred from molecular 

based phylogenies (Ohi-Thoma et al. 2006). The Aristolochia subg. Isotrema (tropical 

and temperate species) exhibit 2n = 32 chromosomes, 2n = 12 have been reported 

for Aristolochia subg. Pararistolochia and more diverse chromosome numbers in 

Aristolochia subg. Aristolochia with 2n = 14 present in Howardia p.p., the Aristolochia 

grandiflora complex, and Aristolochia subsect. Pentandrae. In series Thyrsicae 

chromosome counts of 2n = 16 and in Aristolochia burelae the lowest chromosome 

numbers in Aristolochia, 2n = 6, have been reported (Ohi-Thoma et al. 2006). In 

contrast to the numbers given above one of the crown groups, Aristolochia s.str., 

namely the Mediterranean species, exhibit numerous different chromosome 

numbers. The Asian and African species of subsection Podanthemum display a 

constant number of 2n = 12 whereas the subsection Aristolochia possesses mainly 

2n = 14 with the exception of the Mediterranean species, where 2n = 8, 10, 12, 14, 

16, 24, 32, 36 have been observed. The number of chromosomes had been used to 

divide the west Mediterranean species into complexes, if they fit to the a priori 

assumptions of the authors. If not, the numbers were neglected. 

 

This study aims to provide: A) the first phylogeny of west Mediterranean Aristolochia 

species to elucidate species relationships and to evaluate the former proposed 

groupings; B) an assessment of the evolution of major morphological characters, 

traditionally used to group and circumscribe species complexes, as well as to 

investigate chromosome numbers in the light of phylogenetic tree reconstruction, if 

available; and C) provide a first insight into the radiation and colonisation of 

Aristolochia in the Mediterranean region inferred from phylogenetic reconstruction, as 

well as to get access to the number of colonisation events of the Western Old World. 
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Material and Methods 
Sampling strategy – outgroup choice 

All West Mediterranean Aristolochia species presently accepted (following Flora 

Europaea, Nardi & Akeroyd 1993) are included in the analysis plus a selection of 

Near East, Caucasian and Asian species, all from subsection Aristolochia. In addition 

subsection Podanthemum was sampled by Asian and African representatives, 

covering the whole distribution area, to re-evaluate possible independent colonization 

events. 

For species, from which subspecies have been described, the first described 

subspecies is included, as unpublished preliminary results indicate that later 

published subspecies do not necessarily belong to the species to which they have 

been assigned as subspecies. Detailed studies with a broad sampling within these 

species complexes are beyond the scope of the present study, but will be the topic of 

upcoming studies on populations. Attention was especially paid to micro endemics, 

which are often morphologically distinct (e.g. A. microstoma, A. sicula). All West 

Mediterranean, East Mediterranean and Caucasian species were collected in the 

field. In the case of A. merxmuelleri, material was taken from the paratype (herbarium 

specimen) since the area of occurrence belongs to the most heavily mined areas in 

Kosovo. Most species from Asia, were also taken from herbarium specimens. A list of 

investigated species along with their collection localities, vouchers and GenBank 

accessions are given in Table 2 (for trnK intron and matK gene together). As 

outgroup neotropical Aristolochia species were used (A. salvadorensis, A. westlandii, 

A. macrophylla A. eriantha), who belong to different taxonomic groups (the first three 

belong to subgenus Isotrema, the last to “Howardia”). 
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Table 2. List of investigated species, the origin of the studied material (field or collection; collector only 
indicated when different from voucher), voucher information and the herbarium where the voucher has 
been deposited, GenBank accession numbers for the trnK/matK region (all sequences have been 
generated for this study, if not otherwise indicated, only some GenBank Accession have been 
received, sequences are available for reviewers, by Reviewer's PIN Number: 11026 at TreeBase.org). 
The affiliation to one of the two Old World subsections of genus Aristolochia subgenus Aristolochia is 
provided, if possible according to morphological characters. 
 

Aristolochia 
species 

affiliation Origin Voucher (Herbarium) GenBank 
accession 

A. acuminata 
Lam. 

Pod. BG Dresden, s.n. Wanke & Neinhuis 146 
(DR) 

DQ 296646

A. albida Duch. Pod. BG Bonn, 17419 Neinhuis 092 (DR) DQ 296648
BG Bonn, 14517 (Spain) Neinhuis 095 (DR) DQ 296653A. baetica L. Aristo.# 
Morocco, Tiznit, Assara Wanke s.n. (DR) - 
Spain, Majorca, Betlem Wanke 034 (DR) DQ 296664A. bianorii 

Sennen & Pau 
Aristo.+ 

Spain, Majorca, Soller Wanke 036 (DR) - 
A. bottae Jaub. 
& Spach 

Aristo.# Turkey, BG Bonn 02790, leg. 
Koenen 

Wanke 042 (DR) DQ 296659

A. bracteolata 
Lam. 

Pod. BG Bonn, 16714 Neinhuis 094 (DR) DQ 296647

A. clematitis L. Aristo.* Croatia, Ilovik/Asinello Island Meister et al. s.n. (DR) DQ 296651
Italy, Sicily, Villa di Marchese Wanke & Neinhuis 104 

(DR) 
DQ 296666A. clusii 

Lojacono 
Aristo.+ 

Italy, S-Italy, Bernalda Wanke 192 (DR) - 
A. debilis 
Siebold & 
Zucc. 

Aristo. BG Dresden Wanke 118 (DR) - 

A. gaudichaudii 
Duch. 

Pod. ? Murata et al. SETS8 (TI) - 

A. guichardii 
P.H. Davis & 
Kahn 

Arist. Greece, Rhode, Asklepio Wanke 186 (DR) - 

BG Bonn, Turkey  Neinhuis s.n. (DR) - A. pontica 
Lam. 

Aristo.# 
Georgien, Guria, Quabga, 
Karzchlis tawi, leg. Gröger & 
Lobin 304-2 

Wanke 210 (DR) DQ 296656

Greece, Peloponnesus, Mt. 
Kyparissias  

Wanke 169 (DR) DQ 296671A. elongata 
(Duchartre) 
Nardi 

Aristo.+ 

Greece, Is. Euboea Wanke 155 (DR) - 
A. eriantha 
Mart. & Zucc. 

outg BG Bonn, 12952 Neinhuis 99 (DR) DQ 532054a

A. fontanesii 
Boiss. & Reut. 

Aristo.+ Algeria, Algier, leg. Abdelkrim Wanke & Neinhuis 123 
(DR) 

DQ 296663

A. foveolata 
Merr. 

Aristo. ? Murata et al. SETS4 (TI) - 

A. hirta L. Aristo.# Greece, Samos, Pirgos-
Platanos 

Neinhuis 134 (DR) DQ 296657

A. iberica 
Fisch. & C.A. 
Mey. ex Boiss. 

Aristo.# Georgia, Lagodechi National 
Park, leg. Gröger & Lobin 
319-3 

Wanke 210 (DR) DQ 296655

A. incisa Duch. Aristo.# Greece, Samos, Pirgos-
Platanos 

Neinhuis 127 (DR) DQ 296658

A. jackii Steud. Pod. ? SETS56 (TI) - 
A. kankauensis 
Sasaki 

Pod. ? SETS35 (TI) - 

N-Italy, Passo di S. Boldo Wanke 100 (DR) - A. lutea Desf. Aristo.+ 
S-Italy, Monticchio Wanke 190 (DR) - 
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A. macrophylla 
Lam. 

outg. BG Dresden, s.n. Neinhuis s.n. (DR) DQ 882193a

A. 
merxmuelleri 
Mayer & 
Greuter 

Aristo.+ Kosovo, Mirusa, Konznik  Mayer 10.4.1968 
(LJU,M) 63193 

DQ 296673

Greece, Peloponnesus, Palea 
Epidaurus 

Neumann 008 (DR) DQ 296672A. microstoma 
Boiss. & 
Spruner 

Aristo.+ 

Greece, Attica, Mt. Parnitha Wanke 183 (DR) - 
Italy, Sardinia, Donori Wanke 019 (DR) - A. navicularis 

Nardi 
Aristo.+ 

Italy, Sardinian Nora Wanke 021 (DR) - 
N-Italy, Valdobiadene, Guitta-
Santo Steffano 

Wanke 101 (DR) DQ 296669A. pallida Willd. Aristo.+ 

S-Italy. Mt. Li Foi Wanke 204 (DR) - 
Greece, Rhode, Haraki Wanke 177 (DR) - A. parvifolia 

Sm. 
Aristo.+ 

Syria, Sallah Alden Mafoud 033/2 (DR) - 
BG Coimbra 135 Wanke & Neinhuis 148 

(DR) 
DQ 296662A. paucinervis 

Pomel 
Aristo.+ 

Spain, Alto del Mirlo Costa PA5 (MA) - 
A. pierrei 
Lecomte 

Pod. Thailand s. loc. s.coll, s.n. (DR) DQ 296649

A. pistolochia 
L. 

Aristo.* France, Cassis, Calenque 
d'En Veau, leg. Kreft  

Wanke 037 (DR 
025372) 

DQ 296652

A. rigida Duch. unknown Somalia, Bulo Burti Bally & Melville 15331 
(K,MO) 

- 

France, Corse, Figaretto 
Plage 

Wanke 015 (DR) DQ 296665A. rotunda L. Aristo.+ 

Greece, Loutroupigi Wanke 161 (DR) - 
A. 
salvadorensis 
Standl. 

outg. BG Bonn, 10720 Neinhuis 109 (DR) DQ 882191a

Italy, Sicily, Avola Wanke & Neinhuis 103 
(DR) 

DQ 296654A. 
sempervirens 
L. 

Aristo.* 

Syria, Umaltueur Mafoud 025/2 (DR) - 
Italy, Sicily, Piano Zucchi Wanke 209 (DR) DQ 296668A. sicula Tineo 

in Guss. 
Aristo.+ 

Italy, Sicily, Piano Zucchi II Wanke 191 (DR) - 
Italy, Sardinia, San Nicolao Wanke 024 (DR) DQ 296667A. tyrrhena 

Nardi & 
Arrigoni 

Aristo.+ 
France, Col de la Croix Wanke 009 (DR) - 

A. westlandii 
Hemsl. 

outg. BG Bonn, 14211 Neinhuis 115 (DR) DQ 532041a

+ grouped into W-Mediterranean species, based on morphology 
# grouped into E-Mediterranean species, based on morphology 
* grouping into west or east Mediterranean species not possible due to morphological transitional 
character states 
a Wanke et al 2006b 
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Table 3 Primers used in the present study. 
 
Primer Sequence 5’-3’ Design 
MG1 AAC TAG TCG GAT GGA GTA GAT Liang & Hilu (1996) 
MG15 ATC TGG GTT GCT AAC TCA ATG Liang & Hilu (1996) 
NY-matK-480F CAT CTG GAA ATC TTG STT C Borsch (2000) 
AS-matK-460F TAT TTC CCT TTT HGA GG Wanke et al. 2006d 
Pi-matK-1060F ACT TRT GGT CTC AAC YG Wanke et al. 2006d 
Pi-matK-1480F TCG TAA ACA YAA AAG TAC Wanke et al. 2006d 
AR-trnK-420F AAG TGA ATA AAT GGA TAG AGC Wanke et al. 2006a 
AR-trnK-1320R ATC GCT CTT TTG ACT TTG G Wanke et al. 2006a 
trnK-med-150F AGA GAA TAC TTC CAT CCT TAC CG Wanke et al. 2006b 
AR-matK-960R AAC CTT TTC CCG CAT CAG G Wanke et al. 2006b 
AR-matK-930F TAT TAG TAC CTG ATG CGG G Wanke et al. 2006b 
trnK-med-440R ATT CGT CTT TAC TCA CTC CGT A Wanke et al. 2006b 
AR-matK-1200F TTC CAA AGT CAA AAG AGC G Wanke et al. 2006b 
AR-matK-1450R CGT TAG AGT TGC ACG TTA Wanke et al. 2006b 
AR-matK-1510R TAG ACT CCT GAA ARA GAA GTG G Wanke et al. 2006b 
AR-matK-1400F CTC TTT CAG GAG TCT ATC TAT G Wanke et al. 2006b 
AR-matK-1850R CCA GGC AAG ATA CTA ATT Wanke et al. 2006b 
AR-matK-2510R AAA AAT CTC AAT AAA TGY AA Wanke et al. 2006b 
AR-matK-680R CCG AGA AAA ACG AAT ATG GAT T Wanke et al. 2006b 
AR-matK-660R AYG GAA TCG CAT TCA TA Wanke et al. 2006b 
AR-matK-2100R TGA AAA TGA TTA CAA AGC ACT AC Wanke et al. 2006b 
AR-matK-780R GGT CTT CTG AAA ATG ATT AC Wanke et al. 2006b 
AR-matK-2400R ATT TTC TAG CAT TTG ACT CC Wanke et al. 2006b 
AR-matK-3500R ATC CAA ATA CCA AAT ASA TTC C Wanke et al. 2006b 

 

 

Molecular methods, tree reconstruction, and evaluation of nodes  

The phylogeny is based on chloroplast sequence data of the trnK intron and the 

matK gene. This region has been shown to be a powerful marker to resolve species 

relationships (e.g. Müller & Borsch 2005). Amplification and sequencing follows 

methods described in Wanke et al. (2006c, 2006b). The primers used for 

amplification and sequencing are given in Table 3. The phylogenetic trees were 

calculated using methods described by Neinhuis et al. (2005) and Wanke et al. 

(2006b, 2006c), as implemented in PRAP (Müller 2004) and PAUP* 4.0b10 

(Swofford 2002) with 500 ratchet replicates, 10 random addition cycles and 1000 

bootstrap replicates. In contrast to the manual indel coding method used in Neinhuis 

et al. (2005) the automated simple indel coding (SIC) (following Simmons & 

Ochoterena 2000) and the modified complex indel coding (MCIC) method described 

by Müller (2006) were used, both implemented in SeqState (Müller 2005). The 

alignment is available from TreeBase.org. 
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Morphological characters, chromosome numbers and ecological framework 

Morphological characters were recorded in the field, from species collected in the 

field and grown in the Botanical Garden of the Technical University Dresden, as well 

as from herbarium specimens. In total nine characters were studied, covering the 

vegetative part of the plants, flower, and fruit morphology. Characters were chosen 

according to former publications where they have been proposed to be of “great 

systematic value”, to test their real inheritance, as well as characters, which are 

assumed to be less biased by parallel evolution (Tab. 4, Appendix 1). Chromosome 

numbers were taken from previously published papers (see Table. 3 and Ohi-Thoma 

et al. 2006, Verlaque & Filosa 1993, Fiorini & Nardi 1993, Murin 1976). 

As the ecological framework is a highly important factor for speciation, especially for 

closely related species, with a high degree of endemism, general factors were 

acquainted here. Correlations between morphological traits and ecological factors 

could either detect possible parallel evolution, as adaptation to abiotic factors or 

could identify key characters circumscribing niches for wide distributed or endemic 

plants, as reported by Rowe and Speck (2005). All general ecological factors were 

recorded in the field during extensive field work. 
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Results 
All results obtained for different datasets, which produced identical topologies, are 

compiled into one tree using TreeGraph (Müller & Müller 2004) (Fig. 1). Evaluation of 

nodes indicated on the branches, are bootstrap values (parsimony), (i) based on 

substitutions only (gaps treated as missing data), (ii) indels coded with SIC and, (iii) 

coded with MCIC. 

 

Characterisation and structure of the molecular dataset 

The total length of the alignment of the trnK/matK region comprises 3502 characters. 

The trnK 5’ intron represents 1673 characters, the matK gene 1562 and the trnK 3’ 

intron 265 characters. The absolute sequence length varies within the trnK 5’ intron 

from 710 to 903 bp, within the matK gene from 1509 to 1527 bp (503-509 AS) and 

within the trnK 3’ intron from 204 to 229 bp. The great length variation in the trnK 5’ 

intron is mainly based on several microsatellite structures, which were excluded due 

to uncertain homology assessment (Table 5). Among the West-Mediterranean 

species, homology assessment was possible for hotspot H1, due to secondary 

structure calculation, by applying a minimum free energy model and tracing simple 

sequence repeats (data not shown). Therefore, this hotspot was divided into two 

parts, from which the part for the West-Mediterranean species was used for tree 

calculations. For the East Mediterranean / Caucasian species a similar approach will 

be applicable, but is beyond the scope of the present study. The most frequent 

microsatellite structure (found 3 times) is a mononucleotide repeat or a combination 

of two mononucleotide repeats. Structures like that have been proposed to be highly 

homoplastic (e.g. Provan et al. 2001, Hale et al. 2004). A cryptic simple microsatellite 

region, which has been found only in Aristolochia (Wanke et al. 2006a) with the 

motive (AnTm)k was also found in the  trnK 3’ intron for the individuals sampled. A 

second cryptic simple microsatellite region was found only in the Mediterranean 

species, non Mediterranean species have a poly T mononucleotide repeat. A 

characterisation of these hotspots is shown as example for the West-Mediterranean 

species in Table 5. Tree statistics for the three different datasets are shown in Table 

6. In the aligned sequence parts, 128 indels were found and coded (each indel coded 

as one character for SIC). For MCIC this resulted in 19 complex coded characters 

and 31 simple coded characters. Most of the complex coded characters were found 
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in the cryptic simple microsatellite region. Most indel events appear as direct simple 

sequence repeats (SSR). 
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Phylogenetic Relationships 

The Old World species of Aristolochia subgenus Aristolochia split into two clades, 

first the subsection Podanthemum and second the subsection Aristolochia (Fig. 1). 

The Asian and African representatives of Podanthemum appear mixed in a highly 

supported monophyletic clade, including the widely distributed A. bracteolata 

(India to Africa). Aristolochia rigida is branching first within subsection Aristolochia, 

with high to moderate support depending of the analysis, followed by temperate 

Asian and temperate Eurasian representatives of subsection Aristolochia and A. 

pistolochia, which is endemic to Southern France and Spain. 

Within the remaining species of subsection Aristolochia, two major clades could be 

found: 1. the east Mediterranean species together with the Caucasian species and 

2. the west Mediterranean species together with the circum Mediterranean lianas 

(A. sempervirens complex) (Fig. 1). The relationships among the East 

Mediterranean and Caucasian species remain unclear, due to very low variability 

in the trnK/matK region, except the microsatellites that were excluded. Within the 

west Mediterranean species the former proposed groupings are only partly 

supported. The A. sempervirens complex remains unchanged. The A. pallida 

complex could be confirmed, but A. tyrrhena that was formerly thought to belong to 

the complex needs to be excluded. The following groupings were found in contrast 

to former proposed affinities:  A. fontanesii, A. parvifolia, A. paucinervis and A. 

navicularis are included in the A. fontanesii complex, A. clusii should be excluded. 

A. rotunda and A. bianorii could be confirmed as the A. rotunda complex but A. 

tyrrhena should be excluded. In contrast to earlier concepts we found different 

relationships for A. clusii (formerly Aristolochia fontanesii complex), A. tyrrhena 

and A. sicula (formerly Aristolochia pallida complex). These species form a distinct 

clade with maximum support (Fig 1.). 
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Figure 1. Strict consensus tree (parsimony) based on original matrix with coded indels included 
(SIC) (topology identical among all datasets). Support values from original matrix without coded 
length mutations above branches, below branches with simple indel coding (SIC) (first) and with 
modified complex indel coding (MCIC) (second). Chromosome counts taken from Table 1 
according to authors listed therein or according to Ohi-Thoma et al. (2006), Verlaque & Filosa 
(1993), Fiorini & Nardi (1993), Murin (1976) if not listed in Table 3. 
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Table 4. Morphological characters and important ecological factors coded according to Appendix 1 

 
species 1 2 3 4 5 6 7 8 9 10 11 12 
A. salvadorensis 3 1 4 1 2 0 2 1 0 0 2 0 
A. macrophylla 3 1 4 1 3 0 2 1 0 1 1 0 
A. westlandii 3 1 4 1 1 0 2 1 0 2 2 1 
A. eriantha 3 1 4 1 1 1 1 1 1 2 2 ? 
A. gaudichaudii 3 1 4 1 1 1 0 0 1 2 2 1 
A. kankauensis 3 1 4 1 1 1 0 0 1 2 2 1 
A. jackii 3 1 4 1 1 1 0 0 1 2 2 1 
A. acuminata 3 1 4 1 1 1 0 0 1 2 2 1 
A. bracteolata 3 1 4 1 2 1 0 0 1 3 1 2 
A. albida 3 1 4 1 1 1 0 0 1 2 1 1 
A. pierrei 3 1 4 1 1 1 0 0 1 2 2 1 
A. rigida 3 1 4 1 2 0 1 1 ? 3 3 2 
A. foveolata 3 1 4 1 1 1 0 1 1 2 ? ? 
A. debilis 0 1 4 1 1 1 0 1 1 2 ? ? 
A. clematitis 2 1 4 0 0 1 0 1 0 2 2 1 
A. pistolochia 1 1 4 1 0 1 0 1 1 2 3 3 
A. baetica 0 0 3 1 1 0 0 1 1 2 1 1 
A. sempervirens 0 0 3 1 1 0 0 1 1 2 1 1 
A. iberica 0 1 0 0 0 0 1 1 1 1 2 0 
A. pontica 0 1 0 0 0 0 0 1 1 1 2 0 
A. hirta 0 1 0 0 0 0 1 1 1 1 2 0 
A. cretica 0 1 0 0 0 0 1 1 1 1 2 0 
A. guichardii 0 1 0 0 0 0 1 1 1 1 2 0 
A. incisa 0 1 0 0 0 0 1 1 1 1 2 0 
A. bottae 0 1 0 0 0 0 1 1 1 1 2 0 
A. parvifolia 0 1 0 1 0 1 0 1 0 3 3 4 
A. navicularis 0 1 1 1 0 1 0 1 0 1 0 0 
A. paucinervis 0 1 1 1 0 1 0 1 0 1 2 1 
A. fontanesii 0 1 1 1 0 1 0 1 0 1 2 1 
A. bianorii 0 1 1 1 0 1 0 1 0 1 3 3 
A. rotunda 0 1 2 1 0 1 0 1 0 1 1 0 
A. clusii 0 1 0 1 0 1 0 1 0 1 2 1 
A. tyrrhena 0 1 0 0 0 1 0 1 0 1 3 4 
A. sicula 0 1 2 0 0 1 0 1 0 0 0 0 
A. pallida 0 1 2 1 0 1 0 1 0 1 1 0 
A. lutea 0 1 2 1 0 1 0 1 0 1 1 0 
A. elongata 0 1 1 1 0 1 0 1 0 1 1 0 
A. microstoma 0 1 1 1 0 1 0 1 0 1 2 1 
A. merxmuelleri 0 1 2 1 0 1 0 1 0 1 2 5 
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The underground parts as adaptation to ecological factors 

Within subsection Aristolochia different types of rootstocks have been evolved. 

This differentiation has to be interpreted without doubt as an adaptation to 

ecological conditions. Especially in all East Mediterranean and Caucasian species 

the very long rootstock is correlated with the limited availability of humidity, since 

the soil is deeply drying up during summer. In contrast, in the Western 

Mediterranean the interpretation of the underground parts is more complicated. 

The western Mediterranean Aristolochia are not occurring in similar habitats as 

Eastern Mediterranean species, or they are growing along streams, rivers, or year 

round wet places, which makes the development of deep penetrating rootstocks 

unnecessary. Those species never develop a rootstock, which is more than 5 

times longer than broad. Instead most of the species exhibit a globose rootstock, 

as sufficient water is always availible. West Mediterranean species, which show an 

elongated rootstock (A. parvifolia, A. thyrrena, A. clusii) are growing in calcareous 

gravel or rock crevices, were a globose rootstock does not make sense as water 

permeability is high and water retention is low.  
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Discussion 
Relationships of subsect. Aristolochia versus subsect. Podanthemum and its 

consequences for colonisation routes 

The two Old World subsections of subgenus Aristolochia are revealed as 

monophyletic, which is in accordance to previously published results (Ohi-Thoma 

et al. 2006). The morphological synapomorphy for those two clades are the stiped 

utricle in subsection Podanthemum, which is not present in subsection Aristolochia 

(Ohi-Thoma et al. 2006, de Groot et al. 2005). In contrast to the results obtained 

by de Groot et al. (2005), who postulated a colonisation of Africa out of Asia via 

Pakistan and the Arabian peninsula (based on data from A. bracteolata) and a 

subsequent radiation in Africa, the nesting of A. jackii (Asia) sister to A. albida, is 

contradicting this assumption or would suggest a second independent colonisation 

of Africa. Such a second colonisation scenario is substantiated by the frequent 

occurrence of A. albida in Madagascar, adjacent islands and the East African 

coast, whereas the rest of Central Africa is only poorly colonised, as inferred from 

investigated herbarium specimens (de Groot et al. 2005). The two species (A. 

jackii and A. albida) are morphologically very similar. 

The radiation of subsection Aristolochia is even more complicated. Aristolochia 

rigida (endemic to Somalia) gains reasonable support as the first branch of the 

subsection. De Groot et al. (2005) did not place this species in one of the two 

subsections of the Old World Aristolochia, due to the lack of statistical support. 

However, a close relationship to the Near East-Caucasian species has been 

postulated, because of morphological characters (trumpet-like flower tube and 

bilabiate flower limb) somehow similar to East Mediterranean and Caucasian 

species. Since the next branches represent temperate Asian (A. foveolata, A. 

debilis), temperate Eurasian (A. clematitis) and Mediterranean (A. pistolochia) 

species, a similar colonisation scenario as postulated for Podanthemum from an 

Asian ancestor, to the western Old World is not likely. Instead a rapid 

morphological radiation in the Near East (or close to this area) with subsequent 

star like colonisation of the different current distribution areas, which is not 

paralleled on the molecular level, appears to be more likely. Unfortunately, the 

common ancestor, who would support this assumption is not identified yet or does 

not exist any more. This assumption would also explain the low support for the 

nodes that lead to the different highly supported geographical clades.  
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Evolution among west Mediterranean species – synopsis of chromosome numbers 

and phylogenetic tree reconstruction 

Newly found relationships – the Aristolochia clusii complex 

In contrast to earlier systematic treatments new relationships are proposed based 

on molecular data for A. clusii, A. tyrrhena and A. sicula. These species form a 

distinct clade revealing maximum statistical support. Aristolochia clusii has been 

proposed to be part of the A. fontanesii complex due to the elongated rootstock, 

short petioles and peduncles and the chromosome number 2n=12. Aristolochia 

clusii has been considered as the basal most taxon in a ploidy series within the A. 

fontanesii complex (2n = 12, 2n = 24, 2n = 36, Nardi 1984) and due to its 

distribution close to members of A. fontanesii complex (Tunisia, Sicily, and 

Sardinia) (Eriksson et al. 1974, Nardi 1983, 1984). Morphological “affinities” of A. 

microstoma to A. clusii, as proposed by Nardi (1991), without specifying the 

characters, are in contrast to the obtained molecular results. The second species 

of this group, A. tyrrhena, has been proposed to belong to the A. pallida complex, 

displaying “characteristic” flower and leaf structures such as the elongated utricle 

(Nardi 1984, Nardi & Arrigoni 1983, Nardi & Ricceri 1987). Former authors did not 

use the chromosome counts in this particular case to explain their proposed 

grouping, since the A. pallida complex displays 2n = 8, 10 and A. tyrrhena 2n=26. 

Therefore this character did not help to substantiate the formerly proposed 

grouping. The rootstock, a character that was generally used to explain 

relationships in Mediterranean Aristolochia, also differs from A. pallida/A. lutea 

(globose) and A. tyrrhena (cylindrical, thin and elongated). The last species of this 

group, A. sicula, has been proposed to be distantly related to the A. pallida 

complex (Nardi 1984) or even as subspecies of A. pallida (Ball 1964), without 

mentioning any synapomorphy for this assumption. This species complex, 

recovered here for the first time, consists exclusively of micro-endemic species 

(paleo-endemics), and show a great variability in chromosome numbers, 

compared to other species complexes. These numbers are not explainable by 

simple polyploidisation. The most reasonble explanation for this variability is 

chromosome duplication followed by a subsequent loss of individual chromosomes 

or the addition of chromosomes to the diploid set (aneuploidy). Aristolochia clusii 

exhibits 2n=12 chromosomes, whereas A. sicula and A. tyrrhena show 2n=16 and 

2n=26, respectively. 



 

 

96

The Aristolochia fontanesii complex 

All species traditionally treated here are characterised by their elongated 

rootstock. This character has been used to separate this complex from other 

Mediterranean Aristolochia species. Since we are able to show that some species 

with an elongated rootstock, e.g. A. clusii (formerly proposed to be part of this 

complex, Nardi 1984), belong to another complex, this character needs to be 

treated with caution (Fig. 1, Tab. 6). The same applies to other characters, which 

are cited for the A. fontanesii complex such as the “rather short” petioles and 

peduncles (e.g. Nardi 1984). 

Polyploidy within a single species (autopolyploidy) is postulated here to be the 

driving force behind speciation within this complex because hybridisation can be 

neglected (see below). Chromosome doubling is known to open possibilities for 

new genetic combinations, likewise for the phenotypic plasticity and the adaptive 

capacity to the environment (e.g. Levin 1983). The resulting apo-endemic species 

would be A. paucinervis, A. navicularis, and A. fontanesii, whereas the patro-

endemic species is branching from the first node of the phylogenetic tree (A. 

parvifolia, 2n=12, x=2). Morphologically all apo-endemic species are clearly 

distinguishable from each other, by the size of the flower and the number of 

coloured nerves on the inner limb wall (de Groot et al 2006). The patro-endemic A. 

parvifolia exhibits a totally different phenotype, showing much smaller vegetative 

parts and a twisting flower limb, coloured with reticulate brownish nerves. All apo-

endemic species show a normal limb, which is greenish-yellow.  

 

The Aristolochia pallida complex 

This complex contains one of the most widespread Mediterranean species (A. 

lutea) as well as species with a very restricted distribution (A. merxmuellerii). The 

phylogenetic tree gains high support in most parts, except for the sistergroup 

relationship of A. elongata and A. microstoma. Morphologically, both species are 

easily distinguishable form each other and the rest of the species belonging to this 

complex. Aristolochia microstoma is easy to distinguish from all other Aristolochia 

species by the unique perianth morphology. The limb is reduced to a small beak or 

missing and the mouth of the tube is reduced to a pore (Nardi 1991). The function 

and pollination ecology of this unusual flower is unknown. Most likely the 

pollinators are small arthropods, which are living near the ground or even in the 
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forest litter, as the flower is often subterranean or only the brownish tip of the 

flower reaches the soil surface (Nardi 1991, Wanke personal observation). 

Aristolochia elongata shares an elongated rootstock with A. microstoma, which is 

globose in all other species of this complex. The remaining species are not easy to 

distinguish because differentiating characters were not used consistently and 

always in comparison to differing sets of species (e.g. Nardi 1984, 1991). For all 

species, except A. lutea (2n=8), the same chromosome number has been reported 

(2n=10), the main reason why A. lutea and A. pallida are still kept as distinct 

species. It should be mentioned here, that based on intensive fieldwork and 

cultivation of many accessions we tend to include at least A. lutea into A. pallida 

as the main morphological character distinguishing the two species (e.g. limb/tube 

length ratio ≥ 1 in A. pallida; < 1 in A. lutea) is recovered to be inconsistent within 

populations and under cultivation conditions. The here included accessions of A. 

lutea and A. pallida are not monophyletic in the phylogenetic analyses, but are 

clustering as geographical clades, which is further substantiated by unpublished 

data sampling more than 60 populations (Wanke, in prep). 

Ball (1964) treated A. sicula as subspecies of A. pallida, which was never 

accepted. Another microendemic species, A. merxmuelleri, only known from 

serpentine rich areas in Kosovo was also considered to be part of the A. pallida 

complex (Mayer & Greuter 1985). 

 

Aristolochia sempervirens complex  

Both species are lianas and share that they are able to spread by the formation of 

stolons. In addition, they are evergreen and produce flowers during the whole 

year, with a main flowering period in spring. All other species are only growing 

during the winter rainy season and the flowering period is restricted to one or two 

months in spring. For A. sempervirens the normal chromosome number for 

subsection Aristolochia (2n=14) has been reported (Montmollin 1986), which 

substantiates the position recovered in the phylogenetic analyses. 

 

Aristolochia sempervirens and A. baetica differ also in flower and leaf morphology 

and show similarities to the Near East and Caucasian species, as the limb is not 

elongated, the tube opens gradually and is slightly curved. Aristolochia baetica 

shows more cordate leaves, with a glaucous waxy surface, whereas the leaves of 
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A. sempervirens are more elongated, coriaceous and glabrous. These characters 

remain consistent throughout the distribution area. The flower form and colouration 

is also largely different. The results from the phylogenetic tree support the 

monophyly of of A. sempervirens but not of A. baetica. This is basically due to the 

fact, that unpublished results including more than 60 populations covering the 

whole distribution area show three independent lineages among the two species. 

One represents the core A. sempervirens and two clades among A. baetica. One 

A. baetica clade consists of South Moroccan populations (south from the High 

Atlas and the adjacent coastal area), which is sister to the A. sempervirens clade 

(Mahfoud et al. in prep). As the accession of A. baetica used here is belonging to 

the South-Moroccan clade, they appear as a polytomy. 

 

Aristolochia rotunda complex 

Aristolochia rotunda, the type species of the genus, is one of the most widespread 

Aristolochia species in the Mediterranean. The purple/greenish (A. rotunda) and 

purple/brownish (A. bianorii) inner part of the limb, as well as leaves without or 

with very short petioles, characterises the whole complex. Both species share the 

same chromosome number (2n=12) (Fabbri & Fagioli 1971, Nardi 1984, 

Castroviejo 1986). The biggest phenotypic differences between the two species is 

the size, A. bianorii is much smaller than A. rotunda. In addition they colonise two 

completely different ecological habitats. (dry places, often rock crevices vs. 

humous soil which is never completely dry) Lavergne et al. (2004) detected a clear 

trend for endemic species to be smaller in size, having also smaller flowers than 

their widespread congeners, which is also evident for A. bianorii and A. rotunda. 

 

Highly specialized pollination systems as shown by Rulik et al. (submitted) for A. 

pallida, may contribute to reproductive isolation and could therefore be a driving 

force for the evolution of endemism in many West-Mediterranean Aristolochia. 

This syndrome is often associated with highly modified flowers such as in 

Aristolochia. This is well known in the Mediterranean also for Ophrys species 

(morphological and chemical attraction and pollination barrier) (Paulus & Gack 

1990). 
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Pollination and other reasons for neglecting hybridisation 

Hybridisation, a common factor for speciation in the Mediterranean (Thompson 

2005), is only possible between sympatric, or closely neighbouring species, with 

pollinators able to cover the distance between the two species. This is only 

applicable for the minority of west Mediterranean Aristolochia species. If they have 

similar distribution patterns, they are normally separated, by altitude, or different 

ecological habitats. Occasionally we observed that some species occur syntopic, 

but never two species, that belong to the same species complex. In addition no 

morphologically “intermediate” individuals have been observed (excluding A. 

pallida / A. lutea). Furthermore results from A. pallida indicate that the 

Mediterranean species have a highly specialized interdependence with their 

pollinators (Phoridae) (Rulik et al. submitted.). Self-fertilisation is only poorly 

studied, but is likely to occure. Beside this, hybridisation is only known from very 

few neotropical Aristolochia species e.g. A. grandiflora and A. gorgona (Blanco 

2005). 

 

Biogeography, radiation and colonisation events of west Mediterranean endemics  

Mediterranean climate is highly affected by strong seasonality, temperate to cold 

winter, with rainfall and often extremely dry summer, with high mean temperatures. 

Geophytes generally outlast the summer period by summer dormancy with 

abandoning the aerial parts of the plant after flowering and fruiting, at hand for 

Aristolochia, but also well known for Cyclamen, Crocus, Iris, or many Orchids. This 

outlasting could have influenced the radiation of Mediterranean species, as 

adaptation to a comparatively drier habitat will necessarily lead to an underground 

structure, which is able to penetrate deeper into the soil to acquire humidity 

(elongated rootstock). Seeds are only germinating under humid conditions, and 

need to be dispersed by ants into their den (Wanke & Neinhuis, unpublished). 

Seedling survival could also be an important factor for the colonisation and 

survival of the present plant group, as it is known, that plant mortality is high at 

seedling stage (e.g. Herrera 1991) and ant dispersal is very local dispersal agent 

(Gomez & Espadaler 1998) (and necessitates several other preconditions). 

Micro-endemic species as ad hand (e.g. A. sicula, A. bianorii), should entirely be 

treated as endangered, as colonisation of new habitats from their current 

distribution area is not likely, as they now either occur on islands (dispersal by ants 
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from one island to the next or the continent is improbable) or island like habitats, 

with surrounding areas of unsuitable ecological framework. Habitats of such micro-

endemics are generally unique (Kruckeberg and Rabinowitz 1985, Debusche and 

Thompson 2003), and adaptation to surrounding and changing habitats is less 

likely in endemics, because of their morphological uniformity, which is often due a 

higher amount of inbreeding (Lavergne et al 2004). 
All West-Mediterranean species are endemic to the Mediterranean region except 

A. lutea, which also occurs on the Balkan Peninsula. A high degree of endemism 

is a widespread phenomenon in the Mediterranean area (Greuter 1991). Climatic 

changes have caused two common distribution patterns. First, schizo-endemic 

species evolved via fragmentation and isolation under climatic pressure and 

second, east west vicariance (Thompson 2005), substatiated by several studies in 

the Mediteranean such as the genus Senecio (Comes and Abott 1999a, 2001).  
 

Fig. 2 Distribution of the Aristolochia pallida complex. 
 

 
 

The Aristolochia pallida complex could belong to the first group of endemics, since 

they show the same number of chromosomes and their present day distribution is 

either widespread (A. lutea) or narrow (A. merxmuelleri). Aristolochia pallida is 

restricted to S-France and the adjacent part of N-Italy, besides some disjunct 

populations in NW Italy, S-Italy, N-Croatia and N-Greece (Nardi & Nardi 1987, 

Nardi 1989, Trinajstic 1990, Nardi 1991, Franjic & Trinajstic 1999). Interestingly, 

the isolated populations of A. pallida are surrounded by populations of A. lutea 

occurring from Italy to the Balkan Peninsula and Asia Minor and could even be 
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syntopic (Nardi 1984, 1991, Wanke unpublished data). In addition A. elongata and 

A. microstoma are adapted to temporarily dry habitats (elongated rootstock) in 

contrast to the species adapted to a year round humid soil (small, globose 

rootstock (A. pallida, A. lutea, A. merxmuelleri). The latter group primarily occurs in 

forests or similar habitats. These complex distribution patterns could be due to a 

re-colonisation from glacial refuges in southern Italy and Greece (A. pallida and A. 

lutea) or are the glacial refuges (A. elongata, A. microstoma and A. merxmuelleri), 

but these assumptions will need further investigation on the population level.  
 

Fig. 3 Distribution of the Aristolochia sempervirens complex. 
 

 
 

Aristolochia sempervirens and A. baetica should be regarded as east west 

vicariant endemics. A. baetica is restricted to Morocco and the southern Iberian 

Peninsula, a well known distribution pattern for many W-Mediterranean. In 

contrast, the distribution of A. sempervirens from Near East to Algeria including 

some islands of the Mediterranean (Cyprus, Rhode, Crete, the southern tip of the 

Peloponnesus, SE-Sicily) (Nardi 1984) may be the result of ancient anthropogenic 

introduction to the Islands and the coastline of N-Africa. This would explain why A. 

sempervirens is restricted to old settlements especially on Sicily, Rhodes and 

Cyprus. On the other hand the current distribution may reflect fragments of a 

larger contiguous area prior to the tectonic fragmentation. Both hypotheses would 

support also vicariance of both species, as they have no overlapping distribution 

area, as shown by de Groot et al. (2006). Interestingly, a similar distribution 
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pattern of two closely related species in NE-Morocco has also been found for A. 

paucinervis and A. fontanesii (de Groot et al. 2006). 

A second species complex for which east west vicariance is likely is the 

Aristolochia fontanesii complex. This group has a connection to the Near East via 

Cyprus and Greece, due to the occurrence of the first branching species A. 

parvifolia. All other species belonging to this complex are distributed in the west 

Mediterranean (Iberian Peninsula, S-France, N-Africa, S-Sardinia and the Egadi 

Islands) (Figure 3) (Nardi 1984, Wanke personal observations). The radiation of 

this species complex could be close to the present day distribution of A. parvifolia 

as inferred from phylogenetic tree reconstruction. However, it should be mentioned 

that a similar colonisation pathway could have been used by the A. sempervirens 

complex, which is also distributed in the Near East, Cyprus, the southern most 

Greek islands, Sicily and N-Africa (see above). 
 

Fig. 4 Distribution of the Aristolochia fontanesii complex. 
 

 
 

As observed by Nardi (1984) and de Groot et al. (2006) the species of the A. 

fontanesii complex are geographically isolated. A. paucinervis is found in S-France 

and the Iberian Peninsula and in N-Morocco. A. fontanesii, characterised by the 

largest flower of the west Mediterranean species, is only found in coastal Algeria. 

Following the coastline to the east, A. navicularis is found in Tunisia, with a 

disjunction in S-Sardinia and the Egadi Islands (west of the coast of Sicily), but not 

on Sicily itself (Nardi 1984, de Groot 2006). The similar distribution pattern of the 

two species complexes could be an indication for a similar colonisation event, at 
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the same time period and therewith under similar ecological condition and would in 

the reverse sense be in favour of a natural colonisation event for A. sempervirens 

instead of introduction. 

Many of the areas, where Aristolochia species occur such as Sicily, Crete, 

Corsica, Sardinia and the Balearic islands are among the regions of highest 

species diversity (Lobo et al. 2001) and show the highest rate of endemism in the 

Mediterranean (Medail and Quezel 1997). Beside this, these regions are zones of 

high tectonic activity, microplate fragmentation and isolation (e.g. Rosenbaum et 

al. 2002) and are at least partly among the areas of the Mediterranean, which 

have been less affected by human activities (Thompson 2005). Unfortunately 

dating approaches are not suitable due to lack of reliable fossils within the genus 

Aristolochia or other calibration possibilities, to test the congruence of present day 

distribution and tectonic activity. The evolution of the newly found species 

complexes is likely to have evolved via influence of such activity. 

The affinities between A. sicula, A. clusii and A. tyrrhena (Aristolochia clusii 

complex) perfectly fit to their geographical distribution (Fig. 2). A. clusii, as the 

most widespread species, is found in the southern part of Italy including Sicily and 

Malta (e.g. Nardi 1984, Borg 1927, Haslam et al. 1977). A. sicula, the least known 

and surely most endangered Aristolochia species of the Mediterranean, is only 

occurring in the understory of mountain forests in Sicily and A. tyrrhena is endemic 

to Sardinia and Corsica (e.g. Nardi 1987, Nardi & Arrigoni 1983). The occurrence 

of A. tyrrhena on both islands, Sardinia and Corsica, indicates that A. tyrrhena was 

present before the breaking of the landbridge connection between Corsica and 

Sardinia, 11.5-6 MYA (Orszag-Sperber et al. 1993) and its present day distribution 

on Corsica could be a relict of more widespread occurrence on Corsica in former 

times. All these limitations lead to the assumption that the current distribution of A. 

clusii complex are relicts and that the current species or their ancestors were 

distributed in the whole area, otherwise the colonisation of Corsica and Sardinia 

seems problematic (ant dispersed).  
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Fig. 5 Distribution of the Aristolochia clusii complex. 

 

 
 

Fig. 6 Distribution of the Aristolochia rotunda complex. 
 

 
 

The distribution of A. rotunda covers NE-Spain, S-France, Italy to NW-Turkey (e.g. 

Nardi 1984, 1991). In contrast, A. bianorii is only found on the Balearic Islands 

Majorca and W-Minorca (Knoche 1921, Bonafe 1978, Bonner 1985, Castroviejo 

1986, Bechett 1988, Romo 1994), whereas A. rotunda on the Balearic Islands is 

found only on the NE part of Minorca (Fig. 3). The populations of A. bianorii on 

Majorca are rather small and the number of individuals is very low. During own 

field and herbarium studies only six populations could be identified. This 

distribution pattern is interpreted here as neo-endemism, evolved via speciation at 
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the border of the distribution area (Minorca) of A. rotunda, by adaptation to 

different ecological conditions. Aristolochia bianorii occupies rock crevices by 

deep, thin rootstocks, tolerating low humidity, whereas A. rotunda generally grows 

at field margins, and abandoned fields with humus rich soil and higher water 

availability. In Cyclamen balearicum, a similar distribution is observed, likewise in 

accordance with ecological speciation (e.g. Debusche et al. 1997). In contrast to 

C. balearicum no occurrence of A. bianorii outside the Balearic Islands has been 

reported (e.g. S-France), negating a wider distribution in former times and the 

interpretation as relict refuge. Pollination of both species, which is not yet studied, 

could elucidate the speciation, as selfing could have played a major role for 

reproductive isolation of A. bianorii from the widespread A. rotunda. 

A detailed population genetic study, sampling the whole distribution area of A. 

rotunda and all six populations on the Balearic Islands is currently in preparation 

(Wanke et al, unpublished data) and will elucidate the genetic diversity of both 

sister taxa with respect to the current distribution. 

 
Evolution of growthform and underground parts 

The two lianas represent the first branch of the west Mediterranean species. 

Lianas are predominant in Asian species of subsection Aristolochia, but also 

widely distributed among other clades of the genus Aristolochia indicating parallel 

evolution of this growth form in several closely related lineages. Parallel evolution 

of growth forms is hardly studied in most plant lineages, but has been reported for 

pendant life forms in Bryophyta (Quandt and Huttunen 2004) and Secamonoideae 

within Apocynaceae (Lahaye et al. 2005), besides few others. This implicates, that 

being a liana represents an underlying developmental constrain in the genus 

Aristolochia (Speck et al 2003), which is occurring in several monophyletic clades 

independently. It should be made clear that the two different growth forms (herb 

versus liana) are both arising from rootstocks. The East and the West 

Mediterranean species (excl. the lianas) have developed the same underground 

parts, which develop only from seeds, whereas the lianas are able to develop their 

rootstock at each node of branches or cuttings. Based on our data, globose (A. 

pallida, A. lutea, A. sicula and A. rotunda), elongated (A. fontanesii complex, A. 

elongata, A. microstoma and A. bianorii), and very thin, elongated (A. tyrrhena, A. 

parvifolia) rootstocks are most likely a parallel adaptation to the substrate and the 
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climatic condition. The globose rootstock is mostly found in forests with year-round 

humid soil. The elongated (sometimes up to 1m long) vertical rootstock is a 

character found usually in plants, which have to survive a very long and dry 

summer (e.g. N-Africa, Syria). In stony places, lacking almost any soil, the plants 

are sometimes becoming lithophytes like A. bianorii. This species develops a very 

thin elongated rootstock penetrating into cracks. Summarizing, our data clearly 

indicate, that the underground parts of Aristolochia are inappropriate to 

circumscribe clades. Only within a given species the rootstock is more or less 

homogeneous and might be used as a character, e.g. to estimate the age of the 

plant. 
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Appendix 1: Morphological characters and general ecological factors 
 
1. underground parts:  
(0) rootstock; (1) no rootstock, fleshy roots; (2) rhizome; (3) normal roots. 
 
2. tiller offshoots:  
(0) present; (1) absent. 
 
3. rootstock shape:  
(0) elongated, at least 5 times longer than broad; (1) elongated, less than 5 times 
longer than broad; (2) globose; (3) knobby; (4) no rootstock. 
 
4. stem architecture: 
(0) simple, not branching; (1) branching (above ground). 
 
5. growthform: 
(0) geophyte, dormant in summer; (1) evergreen liana; (2) perennial shrub; (3) 
deciduous liana. 
 
6. perianth shape: 
(0) curved; (1) not curved. 
 
7. limb architecture: 
(0) unilabiate; (1) bilabiate; (2) trilabialte. 
 
8. utricle position: 
(0) stiped utricle; (1) sessile utricle. 
 
9. capsule dehiscent: 
(0) apical; (1) basal. 
 
10. sun exposure: 
(0) complete shade; (1) medium shade; (2) sun; (3) full sun. 
 
11. humidity of soil: 
(0) high, along streams, rivers, wet places; (1) temporarily wet, never completely 
dry; (2) mixed, in forests or shrubbery, macchia, temporarely dry, very dry during 
summer; (3) very low, calcerous gravel or garigue, high permeability, low retaining. 
 
12. soil: 
(0) humose; (1) clay; (2) sand; (3) rock crevices; (4) gravel; (5) serpentin. 
 
 



 

 

108

 
 
 

Chapter 4 Molecular Evolution 
 
 
 

4.1 Universal primers for a large cryptically simple 
cpDNA microsatellite region in Aristolochia. 

 
 
 
 
 
 
 
 

 
 

 
This study has been published as: 

Wanke, S., Quandt, D., Neinhuis, C., 2006. Molecular Ecology Notes. doi: 

10.1111/j.1471-8286.2006.01430.x. 
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Abstract 
We provide a new and valuable marker to study species relationships and 

population genetics in order to trace evolutionary, ecological, and conservational 

aspects in the genus Aristolochia. Universal primers for amplification and 

subsequent sequencing of a chloroplast microsatellite locus inside the trnK intron 

are presented. Utility of the primers has been tested in 32 species representing all 

clades of Aristolochia, including population studies within the A. pallida complex, 

A. clusii and A. rotunda. The microsatellite region is characterized as a (AnTm)k 

repeat of 22–438 bp containing a combination of different repeats arranged as 

‘cryptically simple’. 
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Generally, microsatellites have been defined as short repeated sequences of not 

more than six nucleotides that are multiplied in arrays up to 100 nucleotides (cf. 

Goldstein & Schlötterer 1999 and references therein). During the last decade the 

definition is becoming vaguer and the term is now used for all kinds of short motif 

repeats including minisatellites and the derived cryptically simple regions. Nuclear 

microsatellites serve as the most common marker for all kinds of studies on the 

population level, whereas studies using cpDNA microsatellites are rather limited, 

as they show lower mutation rates than nuclear microsatellites (e.g. Provan et al. 

1999). Furthermore, cpDNA microsatellites that originally have been defined as 

mononucleotide stretches (i.e. poly A or T stretches; Weising & Gartner 1999) 

have been reported to be highly homoplastic (e.g., Provan et al. 2001, Hale et al. 

2004). More complex cpDNA microsatellites consisting of repetitive elements with 

varying size and repeat patterns as reported here seem to have more phylogenetic 

potential on the population level and within closely related species. These features 

as well as the non-recombinant, uniparental inheritance and the possible detection 

of reticulate evolution when compared with nuclear results might offer a new scope 

of cpDNA microsatellite studies on the population level. 

 

The genus Aristolochia (Aristlochiaceae) differs from other angiosperms in several 

features e.g. expression patterns of the unique perianth (Jaramillo & Kramer 2004) 

but most importantly the utilization of plant material in herbal medicine makes 

studies necessary. Recent analyses indicate that some of the reported secondary 

components, such as “aristolochic acids” are nephrotoxic, carcinogenic and 

mutagenic. Therefore many countries prohibited the distribution of herbal 

medicines containing Aristolochia extracts or leaf material etc. As secondary 

metabolites are known to change conformation very fast, even within species, 

different effects on human health could be expected when different species or 

mixtures were used. Therefore, tools to distinguish between species or 

populations are urgently needed. The described primers represent a highly 

polymorphic tool for all kinds of studies in the increasingly important plant genus 

Aristolochia. 
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Table 1 List of the examined species, with the corresponding taxonomical affiliation. Species with 
analyses on population level are indicated with an asterisk. Cross species amplification using the 
primers AR-trnK-420F and AR-trnK-1320R was successful for all taxa. 
 
Taxonomic Group Investigated species 
Isotrema A. reticulata, A. serpentaria 
Endodeca A. manshuriensis, macrophylla, A. californica, A. tomentosa, A. 

westlandii, A. arborea, A. salvadorensis 
Pararistolochia A.  promissa, A. triactina 
Aristolochia s.l. 
incl. groups like 
Howardia, Einomeia 
and Holostylis 

A. labiata, A. eriantha, A. cordiflora, A. cruenta, A. chilensis, A. gigantea, 
A. pentandra, A. micrantha, A. erecta, A. bracteolate, A. albida, A. 
acuminata, A. baetica, A. pistolochia, A. parvifolia, A. pichinchensis, A. 
gorgona, A. clusii*, A. rotunda*, A. pallida*, A. holostylis 

 
 
The microsatellite region is located within the trnK intron and was found during a 

study on the evolution of Aristolochioideae (Wanke et al., 2006b). Interestingly, the 

genus Aristolochia is the only plant genus known to accumulate such 

microsatellites in the trnK intron (Wanke & Quandt unpublished data) that can be 

described as an (AnTm)k repetitive region ranging from 22 to 438 bp. AT repeats of 

plastid regions spanning more than 20 repeats have previously only been found in 

the liverwort genus Fossombronia (AT75+n, Quandt & Stech 2005). The presence 

and utility of the region was tested among 32 species of Aristolochia (Wanke et al., 

2006b) representing all clades (Neinhuis et al. 2005). A list of examined species 

with the indication of the corresponding grouping is presented in Table 1, cross-

species amplification was successful for all taxa. In order to illustrate the 

intraspecific variability of the region in Aristolochia we sequenced and analysed 30 

populations of the Aristolochia pallida complex. Alignment was carried out 

manually using PhyDE® (Müller et al. 2005). Thereafter, indels within the satellite 

region were automatically coded employing the simple indel coding algorithm (sic, 

Simmons and Ochoterena 2000) via Seqstate (Müller 2005) using the PhyDE® 

plugin option (Table 2). Alignment of the (AnTm)k repeats over the whole genus 

was impossible due to the “cryptically simple” nature of the repetitive elements 

(Tautz et al. 1986) that rendered the homology assessment ambiguous. Primers 

were designed manually and placed in more conserved areas of the group II 

intron, taking general primer rules into account: AR-trnK-420F AAG TGA ATA AAT 

GGA TAG AGC (Tm: 55,6°C); AR-trnK-1320R ATC GCT CTT TTG ACT TTG G 

(Tm: 56,2°C). PCR-reactions were carried out employing a T3 (Biometra) using the 

following parameters: an initial denaturation at 96°C for 1.5 min. followed by 34 

cycles of denaturation at 95°C for 30 sec., annealing at 50°C for 1 min. and 

extension at 72°C for 1.5 min plus a final extension at 72°C for 20 min. The 25 µl 



 

 

112

PCR reactions contained: 0.2 µl DNA template, 3.3 µl dNTP mix (1.25 mM each), 

0.5 µl of each primer (20 pmol/µl), 1 U Taq Polymerase (PeqLab) and 1 x Taq 

Polymerase buffer S (PeqLab). After separation by gel electrophoresis (1,2% 

Agarose Gel for 2.5 hours) the PCR products were purified using the NucleoSpin II 

kit (Macherei Nagel) and directly sequenced using the CEQ DTCS Quick Start Kit 

(Beckman Coulter) on a CEQ 8000 automated sequencer, following the standard 

protocol provided by the manufacturer. 

 

The universal primers described above will not only provide a useful marker to 

study populations, ecology and evolution in Aristolochia, but hold the potential to 

detect Aristolochia tissue in an unknown drug sample as well as to identify the 

species and its origin. 
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Chapter 5 Ecology and Biomechanics 
 
 
 

5.1 Trapped! Pollination of Aristolochia pallida Willd. in 
the Mediterranean 
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Abstract 
A first study of the pollination biology of a Mediterranean Aristolochia species in its 

natural habitat is presented. 183 flowers of Aristolochia pallida were investigated, 

which in total contained 73 arthropods, dominated by two groups of Diptera, 

Sciaridae (37%) and Phoridae (19%). However, only Phoridae are regarded as 

potential pollinators, since pollen has been found exclusively on the body surfaces of 

these insects. All Phoridae belong to the genus Megaselia and are recognised as 

four undescribed species. The measurements of flower and insect dimensions 

suggest that size is an important constrain for successful pollination: 1) the insects 

must have a definitive size for being able to enter the flower and 2) must be able to 

get in touch with the pollen. Only very few insect groups found in Aristolochia pallida 

fulfil these size requirements. However, size alone is not a sufficient constrain as too 

many fly species of the same size might be trapped but not function as pollinators. 

Instead, specific attraction is required as otherwise pollen is lost. Since all trapped 

Phoridae are males, a chemical attraction (pheromones) is proposed as an additional 

constrain. Since A. pallida flowers are protogynous, the record of Megaselia loaded 

with pollen found in a flower during its female stage proves that this insect must have 

been visited at least one different flower during its male stage before. Further on, this 

observation provides strong evidence that the flowers are cross-pollinated. All these 

factors indicate a highly specialised pollination of Aristolochia pallida by Megaselia 

species.  

 



 

 

116

Introduction 
The genus Aristolochia (Aristolochiaceae) consists of approximately 500 species, 

most of which are found in tropical, subtropical, and Mediterranean regions (Neinhuis 

et al. 2005; Wanke et al. 2006b, 2006c). Aristolochia flowers are highly derived, 

functioning as a trap for arthropods in order to ensure pollination (Knoll 1929). They 

are generally supposed to be pollinated by flies (Insecta: Diptera), attracting potential 

pollinators by a stinky odour (Sprengel 1793; Hildebrand 1867; Müller 1873; Correns 

1891, 1892; Knuth 1899; Faegri and van der Pijl 1979; Proctor et al. 1996). However, 

detailed studies in different Aristolochia lineages are largely lacking. 

It is not known whether the attracting mechanism is an odour deceiving decaying 

organic materials, animal excrements, carrion or fungi, a visual attraction, a chemical 

mimetic to fly pheromones or a combination of all of these features. Regarding the 

different flower types, its modifications, and different sizes, it is most probable that 

different mechanisms of pollinator attraction have been evolved in Aristolochia. 

The flower morphology poses a tubular perianth that is monosymmetric, 1-3(-6)-lobed 

and extremely modified. The perianth is subdivided into 1) an utricle, a balloon like 

structure forming the trap for the pollinators, containing the gynostemium, 2) a syrinx, 

a narrow zone between the tube and the utricle, forming the sluice of the trap and 3) 

the tube/limb, which appearance is diverse in size, form and colour (Gonzalez and 

Stevenson 2000a) (Fig. 1). The inner part of the tube is densely covered with 

downward directed trichomes to prevent the escape of potential pollinators 

(Oelschlägel et al. in press). At the base of the utricle, around the gynostemium, a 

somewhat circular transparent area exists which deceives an exit for the trapped 

pollinators. The gynostemium itself is the product of the fusion of the styles, stigmas, 

and stamens. During the male stage the pollen sacs open and spread considerably 

resulting in an enlarged surface (Gonzalez and Stevenson 2000b), presenting the 

pollen to the insect, which subsequently transports the pollen to a different flower. 
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Fig. 1 Drawing of an Aristolochia flower 
 

 
 

Attracted pollinators arriving on the flowers limb or the tube wall slide into the tube as 

the surface is covered with wax crystals. After being trapped, an escape is prevented 

by the downward directed hairs, so that only the direction deeper into the tube is 

possible. After passing the syrinx, the pollinator is attracted by the light, which shines 

through an annular, translucent window pane at the base of the utricle (Oelschlägel 

et al. in press). Due to the attraction by light, the pollinator eventually deposits the 

pollen on the stigmatic surface during the female stage while trying to escape through 

the ‘window’. Since the flowers are protogynous, the flower enters the male period 

shortly after closing of the stigmatic lobes by opening the anthers and exposing the 

pollen. At this stage, the pollinator is loaded with pollen. The whole procedure of 
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being trapped may last several days. In order to keep the pollinators alive during this 

time, two nectaries secrete a sugar rich solution to feed the flies (Daumann 1959). In 

addition hairs cover most of the inner walls of the utricle in order to provide enough 

humidity for captives (Neinhuis, unpublished data). At the end of the male stage, the 

trichomes, which form the trap wilt, lose their stiffness, and the pollinator is released. 

The syrinx and tube hairs shrivel and the flower moves from vertical to horizontal 

orientation to ensure that imprisoned flies are able to escape and pollinate the next 

flowers (Oelschlägel et al. in press). 

In the Mediterranean and adjacent Near East ~50 Aristolochia species occur, all of 

them are endemic to the area (Wanke et al., see chapter 3.2). The only exception is 

A. clematitis L., which is probably not native to this region (Wanke et al., see chapter 

3.2.) and for which several observations on their pollination biology have been made 

clearly outside its natural range or in cultivation (Ule 1898; Daumann 1971; Havelka 

1978). The most recent studies on the pollination biology of Mediterranean 

Aristolochia species date back to the 19th century (Delpino 1868, 1869), dealing with 

A. pallida Willd., A. rotunda L. and A. sempervirens L. (= A. altissima Desf.) from 

Italy. Unfortunately, these historic publications do not allow verification whether the 

studied plants are the same species that are currently accepted under these names. 

Reported flower visitors of A. clematitis are Phoridae: Megaselia sordida (Zetterstedt) 

(as Phora carbonaria Zetterstedt); Megaselia pulicaria (Fallen) (as Phora pulicaria 

Fallen) and Chironomidae: Chironomus gracilis Macquart (a nomen dubium, cf. Ashe 

and Cranston 1990: 353), but no information is given whether these insects carried 

pollen and thus the real pollinators remain unknown. Therefore, the pollination 

biology of the Mediterranean A. pallida is investigated in its natural habitat with 

special reference to the composition of the animal assemblage attracted by the 

flowers and the animals carrying pollen. 
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Materials and methods 
Flowers were collected in the field in natural occurring populations (in April). Sample 

sites of Aristolochia pallida are as follows (including information on vouchers): Italy, 

Mt. li Foi II (40°40'03,6''N 015°43'35,3''E), 1179 m, 5/16/2005, Wanke 196 (DR); Mt li 

Foi I (40°40'06,04''N 015°43'45,4''E), 1144 m, 5/16/2005, Wanke 204 (DR); Sant 

Eufemia, (38°15'16,0''N 015°51'03,9''E), 658 m, 5/18/2005, Wanke 206 (DR); Mt. 

Vulture (40°56'56,6''N 015°38'42,7''E), 1067 m, 5/16/2005, Wanke 207 (DR); 

Monticchio (40°56'13,2''N 015°37'02,1''E), 747 m, 5/15/2005, Wanke 190 (DR). The 

flower and the pedicel were preserved in 70% ethanol. The different stages of 

anthesis ranged from recently opened flowers to nearly dropped flowers. Subsequent 

investigation was made using a stereomicroscope Olympus SZX12 with 

magnification from 7x to 144x times. 

 

Measurements of functional perianth parts 

In order to evaluate the minimum - maximum size of potential pollinators we 

measured: a) the most narrow part of the tube, the syrinx; b) the distance between 

utricle wall and gynostemium, and c) the height of trapped arthropod (between 

underside of the coxae and highest point of the thorax). Measurements were carried 

out using an integrated ocular micrometer calibrated with stage micrometer. The 

stage of the stigma was recorded as pale or dark, as indication of the female or male 

phase of the particular flower. 

 

Taxonomy of possible pollinators 

Trapped arthropods were determined and counted. Identification and nomenclature 

of Diptera follows Papp and Darvas (2000), for scuttle flies (Phoridae) Disney (1989, 

1994) and for black fungus gnats (Sciaridae) Menzel and Mohrig (2000). 

 

Scanning Electron Microscopy (SEM) is used to search for pollen on the body 

surfaces of the insects as well as to distinguish phorid species. 
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Results 
Altogether, 183 flowers were investigated, 49 of which (27%) contained in total 73 

arthropod specimens. The majority of trapped species are Diptera (87.7%), beside 

other arthropods. Within the Diptera, scuttle flies (Phoridae) and black fungus gnats 

(Sciaridae) are dominating in numbers with 19.2 % and 37 % respectively (Table 1). 

30 (61.2%) of the 49 flowers containing arthropods showed a pale stigma indicating 

the female stage and 19 (38.8%) a dark stigma (male stage, open anthers). 

 
Table 1 Sum of arthropod specimens trapped in the flowers of A. pallida. The number of trapped 
individuals is given per order (and family), their dominance (portion on the entire catch) and the portion 
found in pale (female stage) and dark (male stage) flowers. *One specimen outside the flowers, 
floating in ethanol 
 
Order Family Number of 

individuals 
Dominance (%) Flower stage: 

pale/dark 
Acari  6 8,22 2/4 
Coleoptera  3 4,11 1/2 
Collembola  1 1,37 1/0 
Diptera Cecidomyiidae 2 2,74 2/0 
Diptera Chironomidae 1 1,37 0/1 
Diptera Empididae 2 2,74 2/0 
Diptera Phoridae 14 19,18 10/3* 
Diptera Sciaridae 27 36,99 14/13 
Diptera Sphaeroceridae 1 1,37 1/0 
Heteroptera  indet. (larvae) 7 9,59 4/3 
Homoptera Aphidae (larvae) 4 5,48 3/1 
Hymenoptera  2 2,74 2/0 
Lepidoptera (larva) 1 1,37 1/0 
Thysanoptera  2 2,74 1/1 

 
 

Phoridae (Diptera) 

All captured Phoridae are males (Table 2) and could be separated into four 

morphospecies A, B, C and D of the genus Megaselia. The species are recognised 

by differences of the bristle patterns of mesopleuron, epandrium, hypandrium, penis 

and anal tube as well as the colour of the halteres (Table 3). Phoridae are the only 

insects that carried pollen, which was found on the dorsal surface of the meso- and 

metathorax. The pollen can be identified clearly because of its inaperturate exine, 

which is characteristic for Aristolochia (Fig. 2; Gonzalez 1999). About 50% of the 

investigated phorid individuals are carrying different amounts of pollen grains (3–50) 

(Table 2). These individuals were predominantly found during the female flower 

stage.  
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Table 2 Number and sex of Diptera trapped in Aristolochia pallida, along with voucher information, 
stigma stage and the number of pollen grains per individual are given. Plant material has been 
deposited in the Herbarium Dresdense (DR) by the collection number. Arthropod specimens are 
deposited at the Museum für Tierkunde Dresden. 1) Morpho species of Megaselia are distinguished by 
characters given in Table 3. 2) Pollen grains per individual 
 
Voucher  Stigma Dipterous taxon 1) Number Sex Pollen 2) 
Phoridae 
W206-br001 dark Megaselia sp. A 1 male 0 
W206-br020 dark Megaselia sp. A 1 male 20 
W206-br009 pale Megaselia sp. B 1 male 0 
W206-br023 dark Megaselia sp. B 1 male 0 
W206-br055 - Megaselia sp. B 1 male 3 
W207-br003 pale Megaselia sp. C 1 male 0 
W196-br011 pale Megaselia sp. C 1 male 10 
W196-br011 pale Megaselia sp. C 1 male 20 
W196-br011 pale Megaselia sp. C 1 male 20 
W204-br004 pale Megaselia sp. C 1 male 0 
W204-br005 pale Megaselia sp. C 1 male 0 
W204-br014 pale Megaselia sp. C 1 male 0 
W206-br017 pale Megaselia sp. D 1 male 3 
W206-br017 pale Megaselia sp. D 1 male 50 
Sciaridae 
W207-br016 dark Bradysia rufescens-group 1 male 0 
W207-br008 pale Corynoptera parvula-group 1 male 0 
W206-br017 pale Corynoptera sp. 1 female 0 
W207-br010 pale Corynoptera sp. 2 female 0 
W207-br035 pale Epidapus microthorax-group 1 male 0 
W196-br001 pale Pseudolycoriella morenae-group 1 male 0 
W204-br004 pale Pseudolycoriella morenae-group 1 female 0 
W204-br005 pale Pseudolycoriella morenae-group 2 female 0 
W204-br006 dark Pseudolycoriella morenae-group 7 female 0 
W204-br006 dark Pseudolycoriella morenae-group 1 male 0 
W204-br011 pale Pseudolycoriella morenae-group 2 female 0 
W204-br013 dark Pseudolycoriella morenae-group 1 male 0 
W204-br016 pale Pseudolycoriella morenae-group 1 female 0 
W204-br021 pale Pseudolycoriella morenae-group 1 female 0 
W204-br025 pale Pseudolycoriella morenae-group 1 female 0 
W204-br027 dark Pseudolycoriella morenae-group 1 male 0 
W204-br034 dark Pseudolycoriella morenae-group 2 female 0 
 
 
Table 3 Characters of the four morphospecies of Megaselia (Diptera: Phoridae) found as pollinators in 
Aristolochia pallida. Terminology after Disney (1983) 
 

Morphospecies Character 
A B C D 

Mesopleuron five bristles in a 
row 

six bristles 
irregular 

bare seven bristles 
irregular 

Epandrium one bristle 
beside hairs 

only small mid 
stripe haired 

nearly entire surface 
haired 

one bristle 
beside hairs 

Hypandrium horizontal vertical horizontal horizontal 
Penis ventral edge 

concave, 
posterior edge 
convex 

ventral edge 
concave, 
posterior edge 
straight 

ventral edge straight, 
posterior edge convex 

ventral edge 
concave 
posterior edge 
concave 

Halteres dark brownish brownish to yellowish pale dark 
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Fig. 2 (a) Pollen grains on the thorax of Megaselia sp. (b) one single pollen grain enlarged, showing a 
germinating pollen tube 
 

 
 
Sciaridae (Diptera) 

Sciaridae are the most frequently found arthropod group in the flowers, represented 

by 20 specimens of Pseudolycoriella, four specimens of Cornyoptera and one 

specimen of Bradysia and Epidapus, each. The Sciaridae were found in flowers 

during the female as well as the male stage, but none of the Sciaridae carried pollen 

(Table 2). 

 

Remaining Arthropoda 

Each of the remaining arthropod groups has been found in the flowers only in small 

quantities. None of them carried pollen and consequently can be excluded as 

pollinators with high probability. It might be possible that at least some of these 

arthropod species have a closer relation with Aristolochia pallida, but their occurrence 

inside the flowers is probably purely accidental. Many of these remaining arthropods 

are found in larval stage (Table 1). 

 

Measurements of flower parts and pollinator size 

The diameter of the syrinx has been measured from all 183 flowers. The diameter 

has a mean of 1.37 mm ± 0.11; minimum of 1.12 mm and a maximum of 1.68 mm 

(median 1.40 mm). For a total of 60 flowers, the distance between the utricle wall and 
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upper edge of the gynostemium was measured, as this morphological character was 

only recorded after dissection of the flower and preparation of the trapped insects, 

the number of flowers showing an intact utricle, was lower, than the original number 

of studied flowers. This interspace has a mean of 1.05 mm ± 0.08, a minimum of 0.90 

mm, and a maximum of 1.20 mm (median = 1.00 mm) (Table 4; Fig. 3). Comparing 

the measurements of the flower and the size of the arthropods, the arthropods could 

be divided into four groups: 1) specimens bigger than the diameter of syrinx, hence 

they would not get through the syrinx and may block the flower tube (Chironomidae); 

2) specimens bigger than the interspace between utricle wall and gynostemium with 

no chance to get in touch with the anthers (Empididae); 3) specimens small enough 

to pass the interspace but big enough to interact with gynostemium (Phoridae, 

Sciaridae), 4) specimens much smaller in size, than the distance between utricle wall 

and the gynostemium.  

 
Fig. 3 Comparison of arthropod size, syrinx diameter, interspace between utricle wall and 
gynostemium and the taxonomic groups of trapped visitors. Highlighted pale grey part with dashed 
lines represent insects which are recognised as potential pollinators according to size requirements 
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The latter are not suitable of being loaded with pollen, because no part of their body 

would get in contact with the anthers (all remaining arthropods trapped by the 

flowers)(Fig. 3). The first group contains a single Chironomidae, which got stuck in 

the syrinx. The second group includes representatives of the dipteran families 

Sphaeroceridae, Empididae and Bradysia species of Sciaridae. The third group 

contains Megaselia and related species and the fourth group consist of the 

Cecidomyiidae and all arthropods smaller than these (Fig. 3). 

 
 
Table 4 Size in millimetre of trapped arthropods, their numbers found in the flowers, along with the 
taxonomic group, to which the insects belong. 1) No standard deviation available if only one specimen 
 
Arthropod group Mean Minimum Maximum Median Standard 

deviation 1) 
Number 

Thysanoptera 0,18 0,15 0,20 0,18 0,04 2 
Aphidae larvae 0,24 0,15 0,30 0,25 0,06 4 
Collembola 0,25 0,25 0,25 0,25 - 1 
Hymenoptera 0,28 0,20 0,35 0,28 0,11 2 
Acari 0,30 0,15 0,45 0,30 0,11 6 
Heteroptera larvae 0,41 0,30 0,50 0,40 0,07 7 
Cecidomyiidae 0,48 0,25 0,70 0,48 0,32 2 
Corynoptera female 0,62 0,55 0,70 0,60 0,08 3 
Epidapus male 0,65 0,65 0,65 0,65 - 1 
Corynoptera male 0,70 0,70 0,70 0,70 - 1 
Coleoptera 0,73 0,50 1,15 0,55 0,36 3 
Megaselia male 0,81 0,70 0,90 0,80 0,07 14 
Pseudolycoriella male 0,86 0,85 0,90 0,85 0,02 4 
Pseudolycoriella female 0,95 0,85 1,00 0,95 0,04 17 
Lepidoptera larva 1,00 1,00 1,00 1,00 - 1 
Empididae 1,03 0,95 1,10 1,03 0,11 2 
Bradysia male 1,10 1,10 1,10 1,10 - 1 
Sphaeroceridae 1,25 1,25 1,25 1,25 - 1 
Chironomidae 2,95 2,95 2,95 2,95 - 1 
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Discussion 
The present study reveals an assemblage of 73 arthropods in 49 Aristolochia pallida 

flowers, of which two groups, the Sciaridae and Phoridae (both Insecta, Diptera) 

where predominant with 37% and 19% respectively. However, only one arthropod 

group, the Phoridae, can be regarded as potential pollinators of this plant species as 

pollen has been found on the body surfaces of these insects only. All found Phoridae 

belong to the genus Megaselia. 

Since the A. pallida flowers like all other Aristolochiaceae are protogynous, the record 

of a Megaselia individual loaded with pollen and found in a flower during its female 

stage is a strong prove that this insect must have been visited at least one different 

flower during its male stage before. Therefore, the repeated visit of one Megaselia 

specimen in flowers of A. pallida suggests a specific attraction, though the specific 

mechanisms are not known yet. In addition, this observation provides strong 

evidence that the flowers are cross pollinated, since the Megaselia specimens carry 

the pollen to the flower during its female stage, before it develops the pollen itself. 

Self-pollination has been discussed for other Aristolochia species (e.g., Petch 1924; 

Razzak et al. 1992; Trujillo and Sérsic 2006) and is generally known to occur as 

addition to cross pollination in endemic plant species to ensure survival (Thompson 

2005). Whether self-pollination is a regular case in A. pallida needs further 

investigation. 

 

Phoridae have repeatedly been recorded in pollination studies of Aristolochia 

species, especially from the tropics. Three phorid species associated with the flowers 

of Aristolochia inflata Kunth and A. maxima Jacq. are recorded from Panama (Disney 

and Sakai 2001; Sakai 2002). Megaselia metropolitanoensis Disney and Puliciphora 

pygmaea (Borgmeier) have been reared from shed Aristolochia flowers collected 

from the forest floor, but there is no evidence that these two species are also 

pollinators of the respective flowers. Contrarily, adults of Megaselia sakaiae Disney 

were abundantly found in flowers of A. inflata and A. maxima during anthesis. From 

376 individuals found in A. maxima, 375 were females, as well as the 108 adults 

found in the flowers of A. inflata. In both Aristolochia species, the phorids were 

observed licking nectar secreted from the hairs on the inner surface of the utricle 

(Disney and Sakai 2001). In a more detailed study, 81% of the females carried pollen 

grains and thus are considered as pollinators of the flowers (Sakai 2002). The 
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females of M. sakaiae lay eggs inside the flowers of both species. Hatched larvae fed 

inside the flowers on sepals and the gynostemium and completed their development 

on the fallen, decaying flowers on the ground. The adults already emerged 15 days 

after oviposition (Disney and Sakai 2001). 

Hime and Costa (1985) report 109 adult Megaselia aristolochiae Prado in flowers of 

Aristolochia labiata Willd. in Brazil. 102 specimens of these were females, which laid 

eggs inside the flowers. Later the larvae developed in cavities within the utricle wall. 

There is no information given about any pollen adhering to the insects. 

Earlier than 1928 Brues recorded phorid flies from flowers of Aristolochia elegans 

Mast (= A. littoralis D. Parodi.) from Cuba: Dohrniphora cornuta (Bigot) (=Phora 

venusta Coquillett) and Megaselia (= Aphiochaeta) scalaris (Loew). Borgmeier (1925) 

reports hundreds of specimens of Megaselia scalaris (as Apiochaeta xanthina 

Speiser) again of A. elegans in Brasil. Hall and Brown (1993) investigated A. elegans 

in Florida. The authors collected 32 flowers, in which they found 349 phorid flies. 96% 

of them were males, belonging to seven species: Megaselia scalaris, M. aurea 

(Aldrich), M. perdita (Malloch) and four unidentified Megaselia-species. The authors 

provide a photograph showing a male of Megaselia aurea carrying a clump of A. 

elegans pollen, but no evidence is provided for correct identification of this pollen 

(see below). 

In Argentina, Trujillo and Sersic (2006) report that flowers of Aristolochia argentina 

Griseb. attract mainly female scuttle flies of the genus Megaselia, carrying pollen.  

Carr (1924) reports besides other fly species Aphiochaeta dahli Becker from the 

flowers of Aristolochia macrophylla Lam.. (= A. sipho L'Hér), cultivated in England. 

Unfortunately, no further information is provided. A. macrophylla is also visited by 

Megaselia nigriceps (Loew) (Schmitz et al. 1938–1981, as Apiochaeta; Speiser and 

Schmitz 1957, as Apiochaeta projecta (Becker)). 

A. tomentosa Sims. is known to be visited by Megaselia fungicola (Coquillett) 

(Robertson 1928, as Phora). 

Burgess et al. (2004) investigated Aristolochia grandiflora Sw. in Mexico. At the end 

of the first day of the female flower period they found about 454 insects per flower, 

269 were phorids, 144 staphylinids, 13 calliphorids, 16 muscids, and 4 heleomyzids. 

During the second day and after male flower period, the number of phorids still 

increased to 399 and that of staphylinids to 203. In three day old flowers, the authors 

found about 400 phorid larvae, which however did not develop inside the flowers and 
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died. Though phorids where the most common insects in the flowers of A. grandiflora, 

they carried only little amount of pollen compared to the Calliphoridae. Oviposition of 

phorids probably happens as a result of getting trapped, which is supported by the 

fact that all the larvae did not develop inside the flower and subsequently died. 

During a three year study on Aristolochia baenzigeri B. Hansen et L. 

Phuphathanaphong in Thailand (Bänziger and Disney 2006), 124 individuals of 

Phoridae, five of Agromyzidae and one of Sphaeroceridae were found inside the 

flowers. Phoridae were represented by 21 species from eight genera. Dohrniphora 

cornuta was the most dominant species in terms of both, proportion of all phorid 

individuals (39 of 92, which is 42%) as well as proportion of individuals carrying 

pollen (35 of 66, which is 53%). Males were carrying pollen slightly more frequent 

than females (20 (57%) males versus 15 (43%) females). 11 other phorid species 

with altogether 31 individuals were also found covered with pollen. In contrast to the 

results from the New World, phorids did not use the flowers as brood substrate. The 

cosmopolitan Dohrniphora cornuta breeds in a wide variety of decaying organic 

materials (Disney 1994). Furthermore the adults visit flowers of Aristolochia elegans 

in the New World (Brues 1928). A. baenzigeri belongs to the subgenus Isotrema, 

which has no trapping hairs in the tube and at the syrinx and therefore might be less 

selective for pollinators because this mechanism is missing. There is no evidence 

that the phorids pollinate the flowers of A. baenzigeri because it has not been shown 

yet that that these flies were trapped with pollen in the female flower stage (cf. 

Bänziger and Disney 2006). 

The Mediterranean A. sempervirens L. (= A. altissima Desf.) is visited by Megaselia 

pulicaria (s.l.) and Megaselia pumila (Meigen) (Delpino 1869). 

 

As mentioned above, the repeated flower visits of Aristolochia pallida by one 

Megaselia specimen suggests a highly specific interaction between these two 

organisms. However, the mechanisms selecting as well as attracting potential 

pollinators of Aristolochia species are insufficiently known. So far, two main strategies 

are recognised for Aristolochia pollination biology: (1) the micromyiophily attracting 

micro-diptera by small sized, bright coloured flowers, but without any strange smell 

recognizable to humans, and (2) the sapromyiophily attracting macro-diptera by large 

to giant flowers with dark colours and a smell reminding humans on animal 

excrements, sweat, carrion, rotten fish, old cheese or decaying plant material (Faegri 
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and van der Pijl 1979; Kugler 1970; Larson et al. 2001; Proctor et al. 1996). 

Sapromyiophily is described, e.g., for A. grandiflora in Mexico (Burgess et al. 2004), 

but might be a complex strategy as discussed by Larson et al. (2001). Its morphology 

as described by Bello et al. (in press) is similar to A. pallida concerning the trapping 

mechanism, but, its much bigger size allow that insects like certain Calliphoridae, 

Muscidae, Sepsidae and Heliomycidae (Diptera: Brachycera), with a larger body size 

can enter the utricle (Burgess et al. 2004). 

According to these definitions, the Mediterranean Aristolochia species represent the 

micromyiophily type. 

That size matters for the pollination of Aristolochia flowers has already been shown 

by Brantjes (1980) and is supported by the present study (Fig. 3). A fly larger than the 

diameter of the syrinx blocks the latter and blocks the entry and release of potential 

pollinators. Indeed, one individual Chironomidae has been observed which got stuck 

in the syrinx. Contrary, insects much smaller than the interspace between utricle wall 

and anthers cannot detach the pollen while walking on the utricle wall. The Megaselia 

specimens, who carried pollen, are slightly smaller as this interspace. However, on 

the one hand variability must be taken into account and on the other hand the length 

of legs has not been measured in stretched condition. Therefore the insects may 

appear smaller during measurement than in vivo. 

However, size cannot be the only factor, selecting insects for pollination. There are 

too many fly species of similar size, which strongly suggests that further mechanisms 

must exist. This study shows that Sciaridae with a similar body size entered the 

flowers, but they never carried any pollen. It remains questionable whether sciarids 

might be potential pollinators of A. pallida as the sample size is still small and 

preservation of the specimens in ethanol may have washed off the pollen from the 

insect bodies. 

 

Several studies (Hime and Costa 1985; Hall and Brown 1993; Disney and Sakai 

2001; Sakai 2002; Trujillo and Sersic 2006) as well as the present study represent a 

high bias towards males or females trapped by Aristolochia flowers. This suggests 

that an attracting system exists, which selects one of the sexes only and this system 

must be different from size selection. Only the study by Bänziger and Disney (2006) 

offered an equal amount of males and females, suggesting that a different attraction 

system occurs in A. baenzigeri in Thailand. 
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After all, phorids are not the only observed pollinators of Aristolochia flowers. Among 

the numerous arthropods recorded in Aristolochia flowers, there are some other 

Diptera and in one case also Coleoptera carrying pollen. Only Ceratopogonidae 

loaded with pollen are recorded from A. clematitis and A. bracteolata (Daumann 

1971; Razzak et al. 1992). Two specimens of Agromyzidae loaded with pollen were 

observed in A. baenzigeri, which however has been dominantly visited by pollen-

loaded phorids (Bänzinger & Disney 2006). In A. grandiflora, representatives of a 

number of fly taxa were recorded, including Phoridae, but only Calliphoridae und 

Muscidae carried pollen (Burgess et al. 2004). Trujillo & Sersic (2006) recorded 

Phoridae, Lonchaeidae and Chloropidae from A. argentina, of which phorids make 

70.7% and 62.5% of all visitors carried pollen, but the authors did not mention 

whether Lonchaeidae and Chloropidae are among them. In A. maxima, Phoridae and 

Drosophilidae as well as Staphylinidae were found carrying pollen, but only 

Drosophilidae carried 100 or more pollen grains per specimen (37% of 

Drosophilidae), while 99% of phorids and 82% of staphylinids carried 10 pollen grains 

or less (Sakai 2002). These results suggest that insects other than Phoridae have 

taken into account as Aristolochia pollinators too. However, evidence is mostly 

missing that all these insects carrying pollen indeed carried Aristolochia-pollen of the 

right species. In this study on A. pallida, it can be shown that the Megaselia 

specimens carried Aristolochia-pollen, which is characteristically globular and 

inaperturate (Fig. 2). However, these morphological characters available hardly allow 

distinguishing between different species of Aristolochia, which requires further 

investigations in order to find out the specificity in Aristolochia pollination biology. 

 

Summarizing, an Aristolochia pollinator needs to fulfil the following requirements: (1) 

be able to enter the flower, (2) be able to touch the anthers while walking on the 

utricle wall, (3) becomes repeatedly attracted by flowers of the same species, and (4) 

must be able to upload pollen. These criteria can be verified, if (1) an insect is found 

in an Aristolochia flower during its female stage, and (2) this insect is loaded with 

pollen of the same Aristolochia-species. 

So far, the only study that meets these requirements is that on A. clematitis by 

Daumann (1971). However, that study has been undertaken in Central Europe where 

A. clematitis is an introduced species. Therefore, the investigation of A. pallida 
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presented here is indeed the first study on the pollination biology of an Aristolochia 

species under natural conditions in the Mediterranean, which can evidently provide 

information on its pollinators. 
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