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Abstract 

 

Multiphase flow denotes the simultaneous flow of two or more physically distinct and 

immiscible substances and it can be widely found in several engineering applications, 

for instance, power generation, chemical engineering and crude oil extraction and 

processing. In many of those applications, multiphase flows determine safety and 

efficiency aspects of processes and plants where they occur. Therefore, the 

measurement and imaging of multiphase flows has received much attention in recent 

years, largely driven by a need of many industry branches to accurately quantify, 

predict and control the flow of multiphase mixtures. Moreover, multiphase flow 

measurements also form the basis in which models and simulations can be developed 

and validated. 

In this work, the use of electrical impedance techniques for multiphase flow 

measurement has been investigated. Three different impedance sensor systems to 

quantify and monitor multiphase flows have been developed, implemented and 

metrologically evaluated. The first one is a complex permittivity needle probe which 

can detect the phases of a multiphase flow at its probe tip by simultaneous 

measurement of the electrical conductivity and permittivity at up to 20 kHz 

repetition rate. Two-dimensional images of the phase distribution in pipe cross 

section can be obtained by the newly developed capacitance wire-mesh sensor. The 

sensor is able to discriminate fluids with different relative permittivity (dielectric 

constant) values in a multiphase flow and achieves frame frequencies of up to 10 000 

frames per second. The third sensor introduced in this thesis is a planar array sensor 

which can be employed to visualize fluid distributions along the surface of objects and 

near-wall flows. The planar sensor can be mounted onto the wall of pipes or vessels 

and thus has a minimal influence on the flow. It can be operated by a conductivity-

based as well as permittivity-based electronics at imaging speeds of up to 
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10 000 frames/s. All three sensor modalities have been employed in different flow 

applications which are discussed in this thesis.  

The main contribution of this research work to the field of multiphase flow 

measurement technology is therefore the development, characterization and 

application of new sensors based on electrical impedance measurement. All sensors 

present high-speed capability and two of them allow for imaging phase fraction 

distributions. The sensors are furthermore very robust and can thus easily be 

employed in a number of multiphase flow applications in research and industry. 
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 Roman symbols* 

A Area m2 

a, b Proportionality factors - 

A, B, C, D  Proportionality factors (complex) - 

B Susceptance S 

C Capacitance F 

c Concentration vol% 

C(i,j) Reference point for calibration - 

D Dielectric displacement C/m2 

d Distance m 

E Electrical field V/m 

f Frequency Hz 

G Conductance S 

g Gravity acceleration vector m/s2 

h Liquid level m 

I Radiation intensity W/m2 

I Electrical current A 

i, j Spatial indices - 

j Imaginary unit 1−  - 

k Temporal index - 

kg Geometry factor m 

l Size of simple cell m 

M modulus function - 

                                     
* Note that in this thesis the bold-faced variables such as Z or ε  represent a complex quantity or a 

vector. 
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N Number of wires/time steps - 

P Polarization density C/m2 

Pk phase indicator function of phase k - 

Q Volumetric flow rate m3/s 

R Resistance Ω 

s Slip ratio  - 

s Complex frequency   

T Time interval s 

T Temperature K (°C) 

t Time s 

U Velocity m/s 

U(x) Uncertainty of quantity x - 

V Voltage V 

w Wetting level - 

x Position vector m 

X Reactance Ω 

Y Admittance S 

Z Impedance Ω 

z Water thickness m 

 

 

 Greek symbols 

Δε Maximal deviation from the mean value - 

Γ Boundary  

α Void fraction - 

β Parameter of Cole-Cole equation - 

χe Electric susceptibility - 

δ Relative deviation from a reference value - 

ε Electric permittivity - 

γ Penetration depth m 

κ Admittivity S/m 

μ Absorption coefficient m−1 

μ Magnetic permeability - 

θ Angle rad, ° 
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ρ Density g/m3 

ρ Electric charge density C/m3 

σ Conductivity S/m 

τ Time constant s 

ω Angular frequency  rad/s 

ω Rotational speed s−1 
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c-s Cross-sectional averaged 
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L Low 
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r Ressonace 

s Stray, Static 
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W Water 
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1 Introduction 
 

This opening chapter presents the motivation and objectives of the 

thesis as well as summarizes the contents of further chapters. 

1.1 Motivation 

The importance of metrology in all fields of science and technology cannot be 

overstated. It provides experimental data on which theories are developed, and then 

accepted or rejected. In addition, metrological activities, such as testing and 

measurement, are valuable inputs to monitor and control properties of objects and 

behavior of processes in industrial applications. 

This thesis contributes to the science of measurement and is concerned with the 

use of impedance measurement techniques and data processing to visualize and 

quantify flow of multiphase mixtures. 

Multiphase flow denotes the simultaneous flow of two or more physically distinct 

and immiscible substances. The main characteristics of a multiphase system are the 

presence of phase boundaries. Hence, not only mixtures of substances in different 

aggregate states (i.e. gas, liquid or solid), such as gas-liquid mixtures, but also 

mixtures of immiscible substances of the same aggregate state, such as oil-water 

mixtures, are subsumed under this term. 

Multiphase flows are important in a broad range of engineering disciplines, in a 

wide spectrum of industrial applications, and in many other scientific fields such as 

biology, chemistry, meteorology and physics (Crowe 2006). From environmental 

phenomena to chemical processes and power generation, multiphase flow can be 

found everywhere. Common technology-relevant examples are found in nuclear 

engineering, where steam-water two-phase flows occur in light water reactors, in the 

crude oil extraction and processing, where three-phase air-oil-water flow is 
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encountered in the wells, risers, and in pipelines that carry the fluids, and in chemical 

process engineering with different multiphase flow occurring in reactors, bubble 

columns, pipework and plant components. In all these cases, multiphase flows 

determine the efficiency and safety of processes and plants. Therefore, the correct 

control and prediction of such flows is crucial for efficiency and safe operation of 

systems. 

While single phase flow is relatively well understood and many different measuring 

techniques and commercial solutions for single phase flow meters are available, 

multiphase flow being a complex phenomenon is much more difficult to model, 

predict and measure (Hewitt 1978). Thus, there has been an increasing need from 

both industry and academia for measuring techniques which allow the direct 

knowledge of flow parameters in multiphase systems: 

• as source of reliable data for the better understanding of such flows as well as 

for the validation of computational simulations, 

• to enable improved design and increased operational efficiency of existing and 

new processes and equipments, and finally  

• for the online monitoring and control of processes and devices where such 

multiphase flow occurs. 

 

As a consequence of this large interest, a considerable number of measuring 

techniques have been developed and used in the past to investigate multiphase flows. 

However, none of the proposed techniques can claim a universal applicability and 

some of them have considerable drawbacks and may fail in particular practical 

situations. 

The motivation for the work presented in this thesis is to develop and implement 

innovative impedance sensors to be applied in the measurement and imaging of 

multiphase flows which may fulfill the gap left open by current measuring techniques. 

Impedance sensors, in which the measurand causes a variation of an electrical 

characteristics such as resistance or capacitance, have found widespread use in 

industrial applications mainly due to their simplicity, low fabrication costs and 

robustness (Pallas-Areny and Webster 2001). Impedance measurement is a common 

tool for the characterization of electrical properties of materials and substances, for 

instance in analytical chemistry or material science, in which measurement times of 

seconds to minutes are used to achieve high measurement accuracy in the analysis of 
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sometime fully unknown substances. In process diagnostics, measuring times in the 

range of microseconds are required to investigate instationary flow phenomena. 

Moreover, the substances involved (and consequently their electrical properties) are 

known a priori. 

 

1.2 Objectives  

The main goal of the present work is to investigate and develop innovative 

impedance sensors for the investigation of multiphase flows. Impedance measurements 

in multiphase mixtures allow individual phases to be distinguished from each other 

based on their different specific electrical properties (e.g. conductivity or 

permittivity). Besides of the possibility to investigate the phases of fluid mixtures, 

imaging of impedance structures and consequently the visualization of the structure 

of flows and processes may be achieved by the use of multichannel systems and 

proper data processing. This thesis is, thus, primarily focused on the development of 

novel sensor systems, measuring electronics as well as data processing routines for the 

measurement and imaging of multiphase flow phenomena, mainly focused on gas-

liquid multiphase flows. One challenge in achieving this objective is the need for 

sensors and instruments which are able to perform high-speed measurements. As flow 

velocity increases, flow structures change from stationary to instationary and may 

present transient character. In order to investigate the dynamics of transient 

multiphase flows, typical measurement repetition frequencies of up to 10 kHz must be 

reached. 

In accomplishing these objectives, specifically, three different sensor systems have 

been developed and tested: 

(i) a complex permittivity needle probe for local flow measurement, 

(ii) a capacitance wire-mesh sensor for the cross-sectional imaging of pipe flows, 

and 

(iii) a planar array sensor for the visualization of fluid distributions and near-

wall flows. 
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1.3 Thesis outline 

The thesis is organized as follows. 

The aim of chapters 2 and 3 of this thesis is to give an overview of the areas of 

multiphase flow measurement as well as the theory of electrical impedance of fluids 

and its measurement. Chapter 2 gives a short review on multiphase flow and an 

overview of state-of-the-art measuring techniques. Chapter 3 describes the theory of 

electrical properties of fluids; the concepts of impedance and complex permittivity are 

introduced and the current impedance measurement methods are described. This 

chapter also presents preliminary impedance measurements in fluids with a simple 

probe. 

The following three chapters 4 to 6 introduce the above-mentioned newly 

developed sensors along with the evaluation of each sensor system. Furthermore, 

some applications of each sensor in the investigation of flow phenomena are also 

presented. Thus, in chapter 4 the novel needle probe based on complex permittivity 

for local flow measurement is described. Chapter 5 depicts the capacitance wire-mesh 

sensor which allows the imaging of multiphase flows with high spatial and temporal 

resolution. Finally, chapter 6 introduces a new planar array sensor for the 

visualization of fluid distributions along the surface of vessels. 

The thesis finishes in chapter 7 with conclusions, a discussion of main results 

obtained and suggestions for future work. 

Some parts of the work described in this thesis are based on papers which were 

already published in international journals and conferences. The papers are properly 

cited in the text of the thesis and were included in the references. Furthermore, a 

consistent list of these papers can be found in Appendix A. 
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2 Principles of multiphase flow measurement 
 

The objective of this chapter is to provide a background to the work 

presented in this thesis in which measuring methods using impedance 

sensors are developed to investigate multiphase flows. The chapter 

starts with an explanation of some essentials of multiphase flows. The 

current state of the art in multiphase flow measuring technology is 

then described including information on design, application, 

advantages and disadvantages of some selected instruments. The 

chapter will focus on the discussion of gas-liquid flows occurring in 

pipes as they are most common for industrial applications. 

2.1 Multiphase flow 

As stated earlier, multiphase flow is a general term that describes multiple fluid 

components in a flowing stream. The main characteristic of multiphase flows is the 

presence of phase boundaries arriving from two or more physically distinct and 

immiscible substances. In industrial applications, multiphase flows are typically 

constrained to pipes or vessels. The so-called phases may be gas, solid or liquid, and 

each may be a mixture of one or more components. In this way, basically four 

different types of multiphase mixtures may be identified (Crowe 2006, Brennen 2005). 

• Gas-liquid flow is found, for instance, in boiling and condensation operations 

and inside many pipelines.  

• Gas-solid flow may occur in a fluidized bed and in the pneumatic conveyance 

of solid particles. 

• Liquid-solid flow takes place during the flow of suspensions such as river bed 

sediments and coal-water slurry. 
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• Immiscible liquid-liquid flow happens, for example, as oil-water emulsions in 

the chemical industry. 

 

Of primary interest in this thesis are gas-liquid flows either as two-phase flow, e.g. 

air-water or air-oil, or as a three-phase flow, for instance air-oil-water flow which is 

very common for the oil industry. 

The scope of this section is limited as it is intended as a brief introduction in the 

field. For further information, see recent textbooks about gas-liquid flows (Azzopardi 

2006) and multiphase flow in general (Crowe 2006, Brennen 2005) as well as the 

tutorials Ghajar (2005) and Wörner (2003).  

  

2.1.1 Flow patterns 

In gas-liquid flows, since the interfaces are deformable, there are in principle an 

infinite number of ways in which the interfaces can be distributed within the flow. 

These distributions can be classified into a number of interfacial distributions, which 

is a considerable aid in developing models for two-phase flows. The types of 

interfacial distributions are termed flow patterns (or flow regimes). While a large 

variety of types of flow patterns have been defined in the literature, a small number 

of major patterns are widely accepted, as described below. 

The parameters that govern the occurrence of a given flow pattern are numerous. 

Among them, the most important are flow rates of each phase, fluid properties of 

each phase, pipe geometry, pipe inclination, and flow direction (upward, downward, 

co-current, counter-current). The discussion of all these parameters is out of scope of 

this section. The most common cases involve horizontal flow and vertical up-flow 

where both phases are flowing upwards. Both cases will be considered here 

(Azzopardi 2006). 

The major flow regimes found in vertical gas-liquid up-flow in a pipe of circular 

cross-section are illustrated in Figure 2.1a displayed from left to right in order of 

increasing gas flow rate at a given constant liquid flow rate. 

• Bubbly flow: at low gas flow rates this is the predominant flow regime, where 

the gas flows as a myriad of bubbles in a continuous liquid phase. 

• Slug flow: as the gas flow rate increases, collisions between bubbles are more 

frequent and they coalesce, eventually forming large bullet shaped bubbles, 
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often called Taylor bubbles. The liquid slugs between the Taylor bubbles often 

contain a dispersion of smaller bubbles. 

• Churn flow: with further increase in gas flow rate, the Taylor bubbles in slug 

flow break down into an unstable pattern in which there is a churning or 

oscillatory motion of liquid in the tube. The gas now exists predominately as 

large irregularly shaped bubbles with smaller bubbles entrained in the liquid 

phase. 

• Annular flow: when the gas flow rate is sufficiently large to support a liquid 

film at the surface of the pipe, the gas flows continuously through the center of 

the pipe. The liquid flows along the pipe wall as an annular film and can also be 

carried along the central gas core as small liquid droplets. 

 

 

 

Figure 2.1: Flow regimes in (a) vertical gas-liquid up-flows and (b) horizontal gas-liquid 
flows. 

 

Gas-liquid flow regimes in horizontal pipes are similar to the vertical flow regimes 

above, except the effect of gravity now tends to cause the gas to flow predominantly 

along the top of the pipe. The flow regimes are summarized in Figure 2.1b, from top 

to bottom in order of increasing gas flow rate. 
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• Bubbly flow: this, like the equivalent pattern in vertical flow, consists of gas 

bubbles flowing in a liquid continuum. However, gravity tends to make bubble 

accumulate in the upper part of the pipe, as illustrated.  

• Plug flow: when the gas flow rate is increased, bubbles coalesce forming bullet 

shaped bubbles as also observed in vertical flow, but here they travel along the 

top of the pipe. 

• Stratified flow: In this flow pattern the liquid flows in the lower part of the pipe 

the gas above with smooth interface. In real situations, the gas-liquid interface 

is rarely smooth, and ripples appear on the liquid surface. 

• Wavy flow: it occurs as the ripples increase in amplitude generating waves due 

to the increase in gas flow rate. 

• Slug flow: when the amplitude of the waves travelling along the liquid surface 

become sufficiently large that they touch the top of the pipe. The gas flows as 

bigger bubbles and in the liquid slugs many smaller bubbles may be entrained. 

• Annular flow occurs when the gas flow rate is large enough to support a liquid 

film around the pipe walls. Liquid is also transported as droplets distributed 

throughout the continuous gas stream flowing along the center of the pipe. The 

liquid film is thicker along the bottom of the pipe because of the effect of 

gravity. 
 

The determination of flow patterns still largely depends on visual observations, e.g. 

by means of a high-speed camera, but this is subjective and only possible for flows in 

transparent tubes. Thus, recently some analytical techniques have been made 

available by various types of instruments. Pressure transducers or void fraction 

sensors (either electrical impedance or radiation based techniques) allied with 

mathematical and statistical models are commonly used to analyze the signal 

fluctuation characteristics and thus to determine the flow pattern (Rouhani and 

Sohal 1983). 

The regions over which the different types of flow can occur are conveniently 

shown on a flow pattern map in which a function of the gas flow rate is plotted 

against a function of the liquid flow rate and boundary lines are drawn to delineate 

the various regions. Transition curves on flow maps should be considered as 

transition zones analogous to that between laminar and turbulent conditions in single 

phase flows. For a more comprehensive and fundamental treatment of two-phase flow 
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transitions, refer to Barnea (1987). An example of a flow pattern map produced for a 

vertical up-flow in a round pipe is illustrated in Figure 2.2. The regime named 

dispersed bubbly is a sub-pattern classification of bubbly flow in which the bubbles 

are formed due to turbulent energy (Azzopardi 2006). Note that a map like this will 

only be valid for a specific pipe, particular pressure and a specific multiphase 

mixture. 

 

 

Figure 2.2: Flow pattern map for a vertical air-water up-flow in a round pipe of 67 mm 
diameter. Lines indicate the flow pattern transition model as described in Azzopardi et al. 
(2008). Liquid and gas superficial velocities are defined as volumetric flow rate divided by 
the cross sectional area of the pipe. These are the velocities which would occur if only one 
fluid (gas or liquid) was flowing alone in the pipe. 

 

The various gas-liquid flow regimes discussed above still apply when the liquid is 

composed of two phases, as is the case in gas-oil-water three-phase flows; although 

the presence of different liquid phases may introduce extra complexity to the flow 

pattern depending on the degree of mixing of the components. In a well developed 

flow, oil and water may become separated and flow as distinct phases. On the other 

hand, the two liquid components may be well mixed or emulsified and the oil and 

water can often be considered as a single liquid phase in terms of flow regime and 

velocity. A recent discussion on three-phase flow patterns and their classification can 

be found by Keskin and Zhang (2007). 
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2.1.2 Modeling of multiphase flow 

Multiphase flows are generally of complex nature due to the existence of multiple, 

deformable and moving interfaces, significant discontinuities of fluid properties and 

complicated flow fields near the interface. For instance, the flow conditions in a pipe 

vary along its length, over its cross section, and with time. A multiphase flow is an 

extremely complex three-dimensional transient problem. Furthermore, there are 

serious deficiencies in modeling of turbulence flows that occur in most practical cases 

(even for single phase flow). Thus, fundamental analytical predictions of multiphase 

flows are not readily achievable.  

It may be possible at some distant time in the future to code the partial 

differential equations governing fluid flows given by the space- and time-dependent 

energy, mass, and momentum balances (known as Navier-Stokes equations) for each 

of the phases and to compute every detail of a multiphase flow. But the computer 

power and speed required to do this are far beyond capability for most of the flows 

that are commonly experienced. Therefore, simplifications are essential in realistic 

models of multiphase flows. The most common model used is the so-called two-fluid 

model (Hewitt 1999, Wörner 2003, Crowe 2006). It is based on the premise that is 

sufficient to describe each phase as a continuum occupying some part of the domain 

space (e.g. pipe). Here, effective conservation equations (of mass, momentum and 

energy) are developed for the two phases, including interaction terms between the 

phases. These equations are then solved either theoretically or computationally. By 

averaging terms in the equations over time, space, or other appropriate variables, the 

two-fluid model may be reduced to more manageable forms, such as the time-

averaged one-dimensional model which is perhaps the most important and common 

method developed for analyzing two-phase pressure drop and heat transfer (Ghajar 

2005). Other frequently used models are the homogeneous and drift-flux models 

(Hewitt 1999).  

In recent years, the progressively increasing computer power has fostered the 

development and application of flow simulation codes, commonly known as 

computational fluid dynamics (CFD). A complete description of multiphase flow, 

specifying the phase present and its velocity at each point in the flow and for a given 

simulation time, is the approach used in CFD. Of course, space and time variables 

are discretized in order to be numerically solved. Furthermore, the use of some model 

(e.g. turbulence models) is required to reduce the computational power necessary to 

predict the flow phenomena. A number of commercial CFD software packages are 
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currently available, for instance CFX (Ansys 2008), Fluent (Fluent 2008), OpenFoam 

(OpenCFD 2008), and have successfully been applied for single phase flow problems. 

CFD codes are becoming powerful tools in the hand of engineers who design plants 

and have to predict flow-related safety and efficiency issues. Moreover, the use of 

CFD simulations of multiphase flow is still in an early stage of development. 

Although some workers have produced successful solutions to engineering multiphase 

flow problems, the ultimate accuracy and the general applicability of CFD 

simulations depend intrinsically on the empirical relationships and simplifications 

used in codes to model multiphase flow. As a result, CFD code validation has more 

and more risen to a key issue equally important to code development. It is obvious 

that successful code validation is a main quality criterion for CFD codes and only 

sufficiently validated code can be admitted to safety-related predictions, for instance 

in nuclear reactor safety. CFD code validation requires small and medium scale 

multiphase flow experiments with accurate, multi-dimensional and non- or minimal 

intrusive measurement techniques for different physical parameters, such as phase 

fraction distributions, temperature fields, pressure fields, velocity fields, and 

concentration fields. Also therefore, multiphase flow measurement techniques have 

got a strong impulse in recent years. 

 

2.2 State-of-the-art multiphase flow measuring techniques 

Online visualization and quantitative parameter assessment of multiphase flows are 

highly desirable in many research and industrial application areas, for instance as  

control and monitoring aid of industrial processes or as source of data for the 

validation of models and simulations. Because of this high interest many efforts have 

been made to develop measuring techniques to measure and image multiphase flows. 

In addition to the already known problems encountered in any measuring method 

for single phase flows - amply described, for instance, in Baker (2000), further 

difficulties appear when attempting to measure quantities in multiphase mixtures. 

One of these difficulties is related to the presence of two or more phases which of 

course leads to the need for differentiation between the phases. For transient flow, 

such differentiation must occur at high temporal resolution due to the unsteady 

nature of the flow, i.e. a high data acquisition rate is required. Others difficulties 

arrive from the conditions of flow confinement, such as opaque metallic walls, or 

complex test section geometries. Such constrains may limit the use of some measuring 
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principles. Moreover, the robustness of sensors is an import issue for some industrial 

applications where harsh environmental conditions occur, i.e. high pressure, high 

temperature and/or the presence of aggressive media.  

Despite these difficulties, advances in instrumentation technology and signal 

processing techniques have led to a rapid proliferation of available experimental 

methods for measurement of practical or fundamental parameters in multiphase flows 

with a fair degree of accuracy. The purpose of this section is to present the principles 

of a few state-of-the-art measuring techniques mainly focused on void fraction and 

phase distribution measurement in gas-liquid flows. Good reviews in this field are 

given by Boyer et al. (2002), Bertola (2003) and Hammer et al. (2006). 

For reviews covering a broader spectrum following references are indicated. 

• An overview on multiphase flow measurement in general can be gained from 

the review Oddie et al. (2004).  

• For further details of measurement techniques specifically intended for 

 gas-solid flow, see Werther (1999),  

 for liquid-solid (or slurry) flow, see Mishra et al. (1997), and  

 for liquid-liquid flow, see Jana et al. (2007). 

• Furthermore, two review papers have mainly focused on the discussion of 

experimental techniques for CFD validations (Tayebi et al. 2001, Prasser 

2008). 

 

2.2.1 Phase fraction measurement  

The phase fraction for gas-liquid flows is commonly known as the void fraction for 

the gas phase and the liquid hold-up for the liquid phase. Both quantities are 

interchangeable with help of the continuity equation which requires the sum of 

gaseous and liquid phase fraction to equal unity. Thus, in the following the term void 

fraction will be preferably used to indicate the phase fraction.   

Void fraction is a dimensionless quantity indicating the fraction of a geometric or 

temporal domain occupied by the gaseous phase. It is one of the most import 

parameters used to characterize multiphase flows. It is the key physical value for 

determining numerous other important parameters, such as mixture density and 

viscosity, for obtaining the relative averaged velocity of the phases, and is of 
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fundamental importance in models for predicting flow pattern transitions, heat 

transfer and pressure drop (Azzopardi 2006, Crowe 2006). 

Phase fractions may be mathematically described by the introduction of a phase 

indicator (or density) function Pk which is a binary function and represents the 

presence or absence of phase k at a given position x and given time t, hence  

 ( )
1 if   phase 

,
0 if   phase k

k
P t

k

⎧ ∈⎪⎪= ⎨⎪ ∉⎪⎩

x
x

x
. (2.1) 

By averaging the gas indicator function PG over different spatial or temporal domains 

one can obtain different definitions for the void fraction, e.g. local, radial, cross-

sectional and volumetric (Delhaye et al. 1981, Bertola 2003). 

Void fraction measurement techniques are based on various principles. Usually, 

instruments are sensitive to some physical property which is different for each phase, 

such as density or electrical conductivity. In this section, measuring techniques for 

local and cross-sectional measurements are depicted. In addition, a brief introduction 

to the challenging field of three-phase flow metering in the oil industry is given. 

a) Local measurement 

Local void fraction is typically measured using a miniature needle-shaped probe, 

which determines the actual phase present at the probe tip. Needle probes are 

designed to pierce bubbles and droplets. In this way, they determine the phase 

indicator function (2.1) at a given point x. From the measured gas indicator function 

PG, the local time-averaged void fraction is defined as 

 ( ) ( )G
1lim ,

T
T

P t dt
T

α
→∞

= ∫x x . (2.2) 

For a sufficiently long measurement time T (2.2) can be approximated by 

 ( ) G G

G L

T T
T T T

α = =
+

x , (2.3) 

where TG and TL denote the cumulated residence-time of the gas and liquid phases 

within the time interval T. By moving the probe in different positions, a mapping of 

the void fraction distribution in a given area or volume can be achieved, though it is 

sometimes a cumbersome practice.  
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Different measuring principles based on conductance, capacitance, optical, 

temperature or electrochemical measurements have been applied to the differentiation 

of phases. Excellent reviews are found in Cartellier and Achard (1990) and Jones and 

Delhaye (1976). However, the most common are electrical and optical needle probes. 

In the case of optical probes, a light beam is guided along the probe, usually by 

means of an optical fiber, to its tip. Depending on the phase present at probe tip, the 

light is transmitted trough the medium or reflected back. A photodetector at the 

other end of the fiber converts the intensity of the reflected light into a voltage signal 

thus being an indicator for the phase.  

Electrical probes use either direct current or alternating current excitation and the 

probe acts basically as a switch. Figure 2.3a illustrates an example of an electrical 

probe design. When the phase at the probe tip is electrically conducting, a current 

flows from the inner excitation electrode to the grounded external electrode. If the 

phase at probe tip is non-conducting the circuit is open and there is no current 

circulation. Usually, the current is converted into a proportional voltage which again 

is an indication of the phase present at probe tip. Typical probe signals obtained with 

a conductivity probe are shown in Figure 2.3b. Although the probe signal should be 

theoretically rectangular, the probe response is not exactly square because of the 

finite size of the tip, the wetting/dewetting time of interface covering the tip, and the 

response time of the probe and electronics. Therefore, the acquired signal is binarized 

by an appropriate trigger level (Jones and Delhaye 1976). 

 

 

Figure 2.3: Conductivity needle probe design (Chanson 2002). (a) Lateral cut, (b) typical 
voltage signal obtained in a bubbly flow as well as the corresponding binarized signal by 
an exemplary threshold. Data were obtained by an advanced needle probe described by 
Schleicher et al. (2008a). 
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Choosing the one or other physical principle behind the needle probe 

measurements is of course a matter of the type of substances to be investigated. For 

instance, the first requirement to be met when using conductivity or optical probe in 

two-phase flow is that one phase has a significantly different electrical conductivity or 

refraction index, respectively. 

Needle probes are used as single-tip or double-tip designs, depending on the kind of 

data expected: single-tip probes lead to gas fraction, and bubbling frequency; double-

tip probes allow measurements of bubble velocity, mean bubble chord length and 

time-average local interfacial area (Cartellier and Achard 1990). 

Some researchers proposed multiple point probes, for instance a four tip probe 

(Kim and Ishii 2001). Such probes can determine other components of dispersed 

phase velocity regardless of bubble shape, diameter and direction. However, the 

probes rapidly become bulky and so hydrodynamic interaction between bubbles and 

the probe can no longer be neglected. In addition, the data analysis to extract 

physical quantities is much more complex than for single-tips probes. 

b) Cross-sectional measurement 

The cross-sectional averaged void fraction αc-s yields from averaging the phase 

indicator function (2.1) over the cross-sectional area A of a pipe or vessel at a given 

time 

 ( ) ( ) G
c-s G

G L

1 ,
A

At P t da
A A A

α = =
+∫ x , (2.4) 

where AG and AL denote the cumulated cross-sectional areas occupied by the gas and 

liquid phases, respectively, within the cross section considered. It is typically 

measured by means of radiation attenuation or electrical impedance techniques which 

are described below. 

 

Figure 2.4: Two schemas for the measurement of cross-sectional void fraction by radiation 
attenuation techniques. (a) One-shot technique, (b) multibeam densitometer. 
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Usually setup of radiation attenuation techniques consist of a radioactive source 

(commonly γ-ray or x-ray but also neutrons) and a radiation detector, placed so that 

the beam passes trough the flow and is monitored on the opposite side of the 

multiphase mixture (Figure 2.4). For a homogeneous medium the radiation 

attenuation of a collimated, mono-energetic beam follows the exponential law  

 ( )0 expI I dμ= − , (2.5) 

where I0 is the intensity of incident radiation, I is the intensity of transmitted 

radiation, μ is the absorption coefficient of medium and d is the distance the beam 

travels through the medium. For the measurement of cross-sectional void fraction the 

narrow beam must be replaced by a linear source (a radiation sheet, Figure 2.4). This 

is called one-shot technique. However, for this configuration the simple relationship 

(2.5) does not hold, because absorption depends on both flow pattern and pipe 

geometry, so that calibration measurements with mockup setups that simulate the 

different flow regimes and void fractions are necessary. Another way to obtain αc-s is 

to employ a multibeam densitometer. An exemplary setup with only three beams is 

shown in Figure 2.4. The beams are attenuated according to (2.5) and the 

measurement of the attenuation of each beam can be used to determine the cross-

sectional void fraction by the numerical integration (Delhaye et al. 1981). 

Typical commonly used radioactive sources of gamma radiation include isotopes of 

americium, cesium or cobalt. Radiation is generally detected by means of a 

scintillator coupled to a photodetector. The scintillator absorbs radiation and emits 

visible light by fluorescence (Johansen 2005). 

 

 

Figure 2.5: Configuration of electrodes for electrical conductivity probes: (a) two full 
rings, (b) half rings. 

The electrical impedance technique, also known as impedance probe, is based on 

the fact that the liquid and gas phases have different electrical conductivities and/or 
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relative permittivities. Impedance probes offer high frequency response, low cost, and 

relative ease of construction. 

By placing electrodes at the perimeter of a pipe and measuring the impedance 

across the electrodes, the void fraction of the pipe may be deduced. As shown by 

Ceccio and George (1996) in their extensive review analysis on impedance techniques, 

there are many different possibilities to arrange a system of electrodes for void 

fraction measurement purposes. Furthermore, the impedance technique has been 

almost exclusively implemented in two categories depending on the type of 

instrumentation used and liquid material to be investigated: electrical conductivity 

and capacitance probes. 

With reference to the conductivity probes, flush-mounted ring electrodes were 

successfully employed first by Asali et al. (1985), and then by Andreussi et al. (1988), 

Tsochatzidis et al. (1992), Fossa (1998), among others. A typical arrangement is 

represented by two metallic rings annealed in the pipe inner wall, as shown in Figure 

2.5a. Ma et al. (1991) and later Costigan and Whalley (1997) developed a probe with 

other electrode configuration which has been also successfully employed for the 

investigation of two-phase flows. It is constituted by a pair of measuring half-rings 

facing one another with two guard electrodes (again half-rings) maintained at the 

potential of the corresponding measuring electrodes (Figure 2.5b). 

 

 

 

Figure 2.6: Configuration of electrodes for capacitance probes: (a) concave plates, (b) 
double ring, (c) helical.  

Capacitance probes may be applied to two-phase flow problems where the liquid is 

a non-conducting material such as oil, for instance. Furthermore, such probes provide 

the possibility of a fully non-intrusive way to measure void fractions. In fact, unlike 

conductive probes, the electrodes do not need to be in contact with the fluids (Stott 

et al. 1985). As for conductivity probes, there are many possibilities for assembling 

the electrodes of a capacitance-based measurement system (Sami et al. 1980). The 

most common arrangements are: helical sensor (Geraets and Borst 1988), concave 

plate sensor (Elkow and Rezkallah 1996) and ring type sensor (Ahmed 2006). These 
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electrode configurations are depicted in Figure 2.6. It is common that the capacitance 

of those setups is in the range of 0.1 to 10 pF. Thus, proper shielding against stray 

capacitance and a good signal-to-noise ratio are extremely important for a correct 

void fraction measurement. Articles by Huang et al. (1988, 1989) have reviewed 

electrode guard methods and capacitance measurement techniques.  

Combination of conductive and capacitive measurements has been also reported in 

the literature, but this practice is less common. The measurement of the complex 

value of impedance was described for three component fraction measurement 

(Dykesteen et al. 1985) and for water content measurement in oil-water emulsions 

(García-Golding et al. 1995). 

c) Multiphase flow metering in the oil industry 

Three-phase gas-oil-water flows are common in the oil industry. Most of the gas and 

oil reservoirs naturally contain water or due to the pressure decrease with production, 

the natural pressure of an oil reservoir is maintained by injecting water. Therefore, 

water is produced along with oil and gas which results in a three-phase gas-oil-water 

flow in wellbore and surface gathering systems. Three-phase flows thus occur in the 

wells, in the flow lines connecting the wells to the platform and in the risers 

conducting the fluid from the flow lines to the top of the platform (Hewitt 2005). 

Under the multiphase flow circumstances, the following parameters are required to 

compute flow rates of each phase: (i) the cross-sectional phase fraction and (ii) the 

axial velocity of each phase. The volumetric flow rate Qx of a given phase x is 

determined by the product of phase velocity Ux and area of the pipe occupied by the 

respective phase Ax 

 x x xQ A U= ⋅   (2.6) 

Since Ax may be calculated from the phase fraction x xA A α= ⋅ , where A is the pipe 

area, basically six variables must be estimated in the general multiphase 

measurement problem, i.e. three phase fractions and three phase velocities (Letton et 

al. 1997): 

  ( )T O G W O O G G W WQ Q Q Q A U U Uα α α= + + = ⋅ + ⋅ + ⋅ , (2.7) 

where the subscripts O, G, and W denote oil, gas and water phases in a three-phase 

flow, respectively.  
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In this way, making measurements in such three-phase flows presents special 

difficulties. A distinction needs to be made between the gas and liquid phases, and 

also between the primary and secondary liquid components. Basically two strategies 

have been used in multiphase flow meters in the gas and oil industry: phase 

separation meters or in-line meters. For a review in that field, Corneliussen et al. 

(2005), and the review in Baker (2000, chapter 14) are indicated. 

Phase separation meters, as the name already suggests, are characterized by the 

fact that the phases are separated before measurement. The three phases are then 

measured individually using some single-phase measuring technique. With the space 

on a production platform becoming more expensive, and the development of subsea 

production systems increasing, the use of conventional offshore separators is becoming 

less desirable. Therefore, the growth in research and development of in-line 

multiphase flow metering systems has been exponential since the early 1980s (Falcone 

et al. 2002). 

Today there is a variety of in-line multiphase flow meters installed onshore and 

offshore and other being developed which use different sensing techniques and models 

to calculate multiphase flow rates via (2.7). For the measurement of phase fractions, 

current systems are based on dual energy gamma ray method or the combination of 

two of the following techniques: mono-energetic gamma ray absorption, 

resistance/capacitance measurements or microwave sensors (Babelli 2002, Falcone et 

al. 2002, Yeung 2007). Recently, a dual energy x-ray tomograph has been presented 

by Hu et al. (2005) for time-resolved phase fraction distribution measurement which 

has been used only for research purposes yet. Phase velocities are usually measured 

by cross-correlation techniques from signals of two axially spaced sensors. With an 

alternative approach, some other flow meters firstly homogenize the flow assuring all 

phases are well-mixed and the assumption that all three phases flow with equal 

velocity (Uo = Ug = Uw = U) may be applied. The mixture velocity is then 

determined by a conventional venturi meter or a positive displacement meter. 

Varying level of accuracy requirements exists in multiphase flow measurement 

depending on how the information will be utilized, for instance, for fiscal or 

monitoring purposes. Although many alternative metering systems have been 

developed and tested, none can be referred to as universally accurate and/or 

applicable. The market potential is huge. Yeung (2007) estimates that only 0.2% of 

current oil wells are instrumented with multiphase flow meters. Thus, there are many 
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opportunities; and the search for new technologies and innovative solutions for this 

challenging field still persists.  

 

2.2.2 Tomographic flow imaging 

Tomographic multiphase flow imaging, more commonly called process tomography or 

industrial process tomography, finds many applications in the imaging and 

measurement of industrial processes. A tomographic image is a two-dimensional 

representation of a slice through an object. The use of various tomographic methods 

is widespread in diagnostic medicine (Kak and Slaney 1988) and several imaging 

modalities originally developed for medical imaging are now being adapted to 

industrial process imaging. The use of tomographic imaging for the investigation of 

multiphase flows has been reported in a few exhaustive review papers (Dyakowski 

1996, Chaouki et al. 1997, Williams and Jia 2003, Prasser 2008) and books (Williams 

and Beck 1995, McCann and Scott 2005). 

 

 

 

Figure 2.7: Principle of process tomography. Different types of measurement are described 
in text. 

 

The general principle of computed tomography (CT) for multiphase flow consists 

of measuring a physical property through the pipe or vessel that can be related to the 

phase fraction (e.g. electrical impedance, attenuation coefficient). A number of 

integral, independent measurements are taken from sensors (or electrodes) placed on 

the periphery of the test object at different angular positions either by rotation of 

arrangements or electronic switching. After measurements have been completed, the 

local properties of the flow can be calculated by means of a so-called reconstruction 

algorithm. Evidently, the reconstructed image ( )'φ r  may not be always identical 

with the real distribution ( )φ r . Figure 2.7 illustrates schematically this process. The 
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image reconstruction in tomography implies solving an inverse problem, i.e. obtaining 

the spatial distribution of the imaged parameter from a plurality of measurements 

and the known geometry of the problem. A conventional computer is often used for 

off-line image reconstruction. However, for real-time reconstruction parallel 

computing systems may be applied. There are many types of tomography systems 

based on different sensing techniques such as electrical, ultrasound, radiation. A short 

description of current most common tomographic technique for multiphase flow 

measurement is given in the following. 

 

a) X-ray, γ-ray and neutron tomography 

X-ray, γ-ray and neutron tomography can be seen as an evolution of the 

densitometry method for cross-sectional void fraction measurement as described in 

section 2.2.1b). These modalities are based on the attenuation of radiation by matter. 

Since gas and liquid present different attenuation characteristics for the radiation, 

images of void fraction distributions may be obtained. The set of projections needed 

for the reconstruction of the images are generated either by rotating source and 

detectors around the pipe or by the use of multiple source and detectors (Johansen 

2005). The use of x-ray tomography for void fraction measurements was described, 

for instance, by Hervieu et al. 2002 and Heindel et al. (2008), while use of gamma ray 

tomography was reported by Kumar et al. (1995), Hampel et al. (2007), among 

others. All the above-mentioned techniques yield time-averaged rather than 

instantaneous phase distribution images due to the use of mechanically rotating 

parts. The time resolution of such systems is limited to a few images per second. 

Attempts to increase time resolution have been reported by Johansen et al. (1996) 

who describe a γ-ray tomography system operated by five gamma sources in parallel 

capable to generate 100 fps, by Hori et al. (1998) who introduced a multitube x-ray 

scanner which achieve 2 000 fps and recently by Bieberle et al. (2007) who used an 

electron beam to generate a fast moving x-ray spot and reached 10 000 fps. These 

approaches allow the study of dynamically changing phase distributions. However, 

such solutions are still comparatively complex and cost-intensive. 

Neutrons have some advantages in terms of their attenuation in matter in 

comparison to photons. For example, organic materials or water are clearly visible in 

neutron radiographs because of their high hydrogen content, while many structural 

materials such as aluminium or steel are nearly transparent. Nevertheless, neutron 
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tomography requires complex, expensive and heavy equipment for the generation of 

neutrons, and therefore its use for the investigation of multiphase flows has been 

limited in the past (Hussein et al. 1986).  

 

b) Magnetic resonant imaging  

Magnetic resonant imaging (MRI) is widely used in medical diagnostics, which is 

based on the paramagnetic properties of the nuclei. MRI scanners use the 

phenomenon of nuclear magnetic resonance of hydrogen nuclei in conjunction with 

radio frequency (rf) and magnetic gradient pulses to map the object under 

investigation (Mantle and Sederman 2003). Basically, MRI detects the concentration 

of hydrogen atoms, thus liquid water presents excellent contrast. MRI is able not 

only to determine the density of nuclei but also the velocity in case of moving 

objects. Mantle and Sederman (2003) and Hall (2005) reported some flow applications 

of MRI in their reviews. Some limitations of MRI are the necessity of non-magnetic, 

non-conducting pipes to allow the measurements, the rather low imaging frequency 

and the relatively high hardware cost. A special MRI technique called Echo-planar 

Imaging can achieve up to 140 frame per second and it was used to investigate slug 

flow (Reyes Jr. et al. 1998). However, this technique needs even more costly hardware 

than conventional MRI to achieve such a frame rate.  

 

c) Positron emission tomography  

Positron emission tomography (PET) is based on the use of a γ-ray emitting 

radioisotope as a flow tracer. External detectors are used to measure the number of 

rays emerging from the system which provides the information needed to reconstruct 

the tracer distribution by the standard tomographic approach. In a multiphase flow, 

one of the phases can be labeled and its behavior analyzed (Parker and McNeil 1996). 

However, the acquisition time of a PET system lies in the order of minutes and is 

thus too slow for rapidly evolving flows. An alternative method is the positron 

emission particle tracking (PEPT) which involves introducing a single labeled tracer 

particle in the process which has its trajectory tracked by using advanced algorithms 

(Parker et al. 1993). The overall system time response is in the range of milliseconds 

and a particle moving at speeds about 1 m/s was reliably followed. 
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d) Optical tomography  

Optical tomography uses low energy electromagnetic radiation, either of the infrared, 

visible or ultraviolet wavelength range, to measure extinction profiles from an object 

and subsequently reconstruct the data by means of CT algorithms. A few researchers 

have reported on optical tomography for the investigation of single phase and 

multiphase flows (Rzasa and Plaskowski 2003, Ruzairi and Chan 2004, Schleicher et 

al. 2008b). The common characteristic of these systems is the use of low-cost light 

emitters and detectors. Another example of optical tomography applied to process 

investigation is described by Carey et al. (2000) and Hindle et al. (2001), who 

performed chemical species imaging by exploiting specific substance absorption at 

near-infrared band. Optical tomographs may reach very high temporal resolution of a 

few thousand frames/s. Nevertheless, regarding gas-liquid flows, optical systems can 

only be successfully employed to flows with low void fraction (typically up to 10%) 

due to the fact that the flow becomes opaque for light at high voidage. Optical 

systems also need transparent walls and transparent liquids to be able to investigate 

the flow. 

e) Ultrasound tomography 

Tomography based on ultrasonic waves has also been applied to investigate 

multiphase flows (Hoyle 1996). An ultrasonic system detects changes in the acoustic 

impedance properties between objects. Gas-liquid flow exhibits a marked acoustic 

impedance difference between gas and liquid interfaces. In ultrasound tomography 

multiple ultrasonic transducers are mounted around the pipe. Basically, reflection 

mode (Yang M. et al. 1999) and transmission mode (Rahiman et al. 2006, Supardan 

et al. 2007) measurements can be applied, in which the reflected or transmitted 

ultrasonic waves are evaluated, respectively, along with suitable reconstruction 

procedure. Frame rates obtained are in the range of a few hundred images per second. 

One advantage of ultrasound tomography is the possibility to image flows inside 

opaque objects. However, the limitation regarding low void fractions is similar as for 

optical systems. 

f) Electrical tomography 

An important field in process tomography is the one concerned with electrical 

impedance tomography (EIT) which exploits the interaction of electrical fields with 

matter. The main task of EIT is to determine conductivity or permittivity 
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distributions which are linked to phase distributions in a multiphase flow. Thus, EIT 

is also referred to electrical resistance tomography (ERT) or electrical capacitance 

tomography (ECT) depending on the modality. Some researchers have erroneously 

used the term EIT as synonym to ERT. However EIT should be used only when both 

resistance and capacitance are measured (called dual-modality), as described by 

Marashdeh et al. (2007) and Cao et al. (2007). 

In EIT a number of electrodes are arranged equally spaced around a pipe or vessel 

to be interrogated. For ECT systems, the electrodes are normally non-invasive, lying 

outside the wall, as well as non-intrusive, touching but not penetrating the wall. For 

resistance and impedance measurements the electrodes are usually invasive but not 

intrusive. Figure 2.8 shows typical configurations. An image is obtained by applying 

electrical fields and measuring the resulting sensor responses. The full set of data is 

obtained by successive activation of every electrode while the responses of all 

remaining electrodes are measured. In ECT the excitation signals are generated by 

applying voltages and also voltages are measured, while in ERT currents are injected 

and voltages are measured. The choice for one or other modality mainly depends on 

the target of interest. ERT has been used to image concentration distributions in 

saline, gas-liquid mixtures, and slurries, among others applications. Since ECT is 

suitable for the investigation of non-conducting materials, it has been applied to oil-

gas two-phase flow, bubble columns, fluidized bed, etc. For more extensive reviews of 

the electrical modalities, see Xie et al. (1995), Dyakowski et al. (2000), York (2001), 

Tapp et al. (2003) and Yang and Peng (2003). 

 

 

 

Figure 2.8: Typical electrodes arrangement in electrical tomography systems: (a) 12 
electrodes ECT system and (b) 16 electrodes ERT/EIT system. 
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EIT systems are relatively fast (up to 1 000 images per second), low cost and 

simple to operate. The main disadvantage of EIT is its moderate spatial resolution of 

the resultant image. The measured electrical signals are a non-linear function of 

phase fractions and flow configuration and unlike x-ray or γ-rays, electrical fields 

cannot be confined to a narrow path between a transmitter and receiver. This is 

called the soft-field property of electrical tomography.  

A third electrical modality, electromagnetic tomography (EMT) or magnetic 

inductance tomography has been reported which is based on mutual inductance 

measurements. EMT is suitable for imaging highly conducting or magnetic materials, 

such as metals and minerals (Peyton et al. 1996). 

 

 

2.2.3 Wire-mesh sensor 

Wire-mesh sensors are flow imaging devices and allow the investigation of multiphase 

flows with high spatial and temporal resolution. Although they could not be 

considered belonging to classical tomographic technique, because their working 

principle is based on intrusive electrodes to generate the images, it has been accepted 

as an alternative technique to the tomography systems previously described. This 

type of sensor was introduced about ten years ago by Prasser et al. (1998) at FZD 

and since then it has been successfully employed by a number of researchers to 

investigate different single phase and two-phase flow phenomena. An overview over 

the capabilities of wire-mesh sensors was recently summarized by Prasser (2008). 

The sensor is a hybrid solution in between intrusive local measurement of phase 

fraction and tomographic cross-sectional imaging. The sensor comprises of two sets of 

wires stretched over the cross-section of a vessel or pipe with a small axial separation 

between them. Each plane of parallel wires is positioned perpendicular to each other, 

thus forming a grid of electrodes (Figure 2.9). The associated electronics measures the 

local conductivity in the gaps of all crossing points at high repetition rate. 

Considering a two-phase flow consisted of an electrically conducting phase and 

another one non-conducting, for instance air and water, the obtained conductivity 

measurements are an indication of the phase present at each crossing point. Hence, 

the sensor is able to determine instantaneous void fraction distributions over the pipe 

cross section. 
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Figure 2.9: (a) schematic representation of a wire-mesh sensor; (b) photograph of a 
typical sensor developed at FZD. 

 

Regarding the measuring principle, a multiplexed excitation-measuring scheme is 

applied, as described below. The wires of the one plane are used as transmitters and 

the wires of the other plane as receivers. Figure 2.10 shows the block diagram of the 

electronics of a conductivity wire-mesh sensor for an exemplary 4 × 4 sensor 

configuration. The transmitter wires are activated by supplying them with bipolar 

voltage pulses in a successive order by switches the S1−S4. The non-activated 

electrodes are connected to ground potential. The current at a receiver wire resulting 

from the activation of a given transmitter wire is a measure of the conductivity of the 

fluid in the corresponding control volume close to the crossing point of the two wires. 

The currents from all receiver wires are sampled simultaneously. This procedure is 

repeated for all transmitter electrodes. After activating the last transmitter wire, a 

complete set of measurements for the whole cross-section has been acquired. The 

measurements are in fact voltages which are proportional to the conductivity of the 

medium around each crossing point of the wire grid at the very moment of data 

sampling. In this manner, the wire mesh subdivides the flow channel cross section 

into a number of independent sub-regions, where each crossing point represents one 

sub-region. Each of the measured signals reflects the constitution of the flow within 

its associated sub-region, i.e. each crossing point acts as local phase indicator. Hence, 

the set of data obtained from the sensor directly represents the phase distribution 

over the cross-section and no reconstruction procedure, e.g. by solving an inverse 

problem, is needed in order to determine cross-sectional phase distributions. 
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Figure 2.10: Wire-mesh sensor electronics with a 4 × 4 sensor configuration (Prasser et al. 
1998). 

From the first publication (Prasser et al. 1998) the technology of wire-mesh sensors 

has steadily been developed towards increasing frame rate (Prasser et al. 2002b), 

bubble size measurement (Prasser et al. 2001), gas phase velocity measurement 

(Manera et al. 2006), measurement at elevated pressures (Pietruske and Prasser 

2007). In the scope of research work wire mesh sensors have extensively been used in 

the following fields: steam-water pipe flow (Prasser et al. 2007), mixing scenarios in 

pressurized water reactor models (Prasser et al. 2003), water hammers in pipes 

(Dudlik et al. 2002), and transient boiling (Manera et al. 2006). Today sensors can be 

devised with up to 64 × 64 wires, wire diameters down to 0.05 mm, in diversity of 

different cross-section geometries and operating parameters. High-pressure wire-mesh 

sensors can be employed for temperatures and pressures up to 286 °C and 7 MPa, 

respectively (Pietruske and Prasser 2007). Associated electronics for signal generation 

and data acquisition achieves a maximum temporal resolution of 10 000 frames per 

second (Prasser et al. 2002b). 

The intrusiveness effect of wire-mesh sensors has been investigated by high-speed 

camera measurements (Prasser et al. 2001, Wangjiraniran et al. 2003) and by 

comparison with a fast x-ray tomography system (Prasser et al. 2005b). The results 

have shown that the sensor yields images of an undisturbed flow. Influences of the 

mesh are found only downstream from the sensor. In this way, wire-mesh sensors 

offer a compromise. The disadvantage of being intrusive is in part compensated by 

high temporal resolution, low cost, and simplicity when compared with other imaging 

systems. 



28    2 Principles of multiphase flow measurement 

 

Another wire-mesh device was also introduced by Reinecke et al. (1996, 1998). 

However, this device employs three set of wires forming an angle of 120° whereby the 

conductance of each parallel wire pair is measured. In this way, three independent 

projections of the flow cross section are obtained. The conductivity distribution is 

interpreted as the void fraction distribution. The transformation from the measured 

conductance data into the image has to be performed by applying a tomographic 

image reconstruction algorithm. This is the main difference to the above described 

sensor (which performs direct flow imaging) and also is the main disadvantage of this 

solution. The system of equations to be solved for the image reconstruction is highly 

underdetermined and must be iteratively resolved which cannot be assumed free of 

artifacts and is very time consuming. 

 

2.2.4 Other techniques 

Gas-liquid flows have been also investigated by a variety of other measuring 

techniques different to those discussed above. Some examples are optical and 

velocimetry methods. 

Optical visualization is probably the first diagnostic tool chosen when multiphase 

flows are investigated. High-speed cameras are easy to operate and typically reach 

frame rates of tens of kilohertz. Thus, by proper image processing algorithms, optical 

visualization techniques are useful to investigate the form and behavior of bubbles 

(e.g. shape, size, velocity), as well as phase boundaries in gas-liquid flows. It has been 

very frequently reported in the literature (e.g. Lage and Esposito 1999, Zaruba et al. 

2005). The limitations of optical techniques are obvious: only the vicinity of the wall 

can be observed at high void fraction and transparent walls as well as a transparent 

liquid are required. 

Another classical optical technique for flow studies is the particle image 

velocimetry (PIV). It is used for measuring the instantaneous flow velocity. Images of 

small tracers freely flowing in the fluid under study are acquired at two or more 

times by pulsing some light source (Adrian 1991). The motion of these tracers is then 

a measure of the motion of the fluid, and, consequently, a whole flow field can be 

estimated. Recently, PIV technique has been further developed and successfully 

applied to study gas-liquid multiphase flows (Hassan 2002, Bröder and Sommerfeld 

2002). 
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Other optical velocimetry techniques that have been applied in gas-liquid flows are 

the laser Doppler anemometry (LDA) and derived techniques (Chaouki et al. 1997, 

Bauckhage 1996) which yield well-localized values of liquid velocity. The 

measurements are usually very fast, allowing to determine velocity fluctuations. 

Hot wire (or hot film) anemometry probes have been applied to two-phase flows 

for the measurement of fluid velocities since the 1960s (Jones and Delhaye 1976). 

This technique is based on the cooling effect a fluid flow causes in an electrically 

heated metal wire (or film). The wire's resistance is proportional to its temperature 

and based on heat transfer principles, the heat flux to the surrounding fluid can be 

inferred and thereby the fluid velocity. More recently two- and tree-film probes were 

introduced for the determination of other velocities components (Bruuns 1995). 

There is a recent trend to combine modalities (called multimodality approach) in 

order to enhance the applicability of unique modality techniques, thus offering the 

potential for greater detail and better accuracy in the flow measurement. A few 

examples of multimodality systems have been reported so far, for instance: resistance, 

capacitance and ultrasonic tomography (Hoyle et al. 2001), γ-ray and capacitance 

tomography (Hjertaker et al. 2005), combined electrical and ultrasound measurements 

(Dyakowski et al. 2005), and ECT/ERT system (Marashdeh et al. 2007). 

 

2.2.5 Overview 

As discussed throughout the section 2.2, each one of the above techniques has its 

advantages, disadvantages and limitations. An overview over the different measuring 

techniques is given in Table 2.1 along with some parameters for comparison. The 

choice of a particular technique is dependent on many, sometimes competing, aspects 

which include:  

• physical properties of the constituents of a multiphase flow, 

• parameter of interest (e.g. phase distribution, velocity), 

• temporal resolution, 

• local, integral or spatially resolved measurements,  

• issues regarding flow confinement (e.g. pipe/vessel material and geometry), 

• temperature and pressure in pipe or vessel, 

• cost of equipment/installation, 
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• physical dimensions of devices (transportability), and 

• potential hazards to personnel involved (e.g. radiation protection). 

 

 

Table 2.1: Comparison of gas-liquid two-phase flow measuring techniques. Spatial 
resolution: (A) ≈ 1 mm, (B) 2-5 mm, (C) > 5 mm. Temporal resolution: (I) minute, (II) 
second, (III) millisecond, (IV) microsecond. Cost: ($) low, ($$) medium, ($$$) high. 

Technique 
Spatial 

resolution 

Temporal 

resolution 
Cost Comments 

Needle probe B1 IV $ intrusive 

Cross-sectional 

measurement 
No IV $ no imaging 

x-ray and 

γ-ray CT 
A I,III2 $$$ ionizing radiation, safety issues 

Neutron CT A I $$$ bulky and complex apparatus 

MRI A I $$$ 
not suitable for magnetic and 

electrically conducting walls 

PET B I,III3 $$$ need of radioisotope labeling 

Optical CT B IV $ 
only suitable for low void fractions 

and transparent walls and fluids 

Ultrasound CT B III $$ only suitable for low void fractions 

Electrical CT C III $ soft-field problems 

PIV, high speed 

camera 
A III, IV $$ 

only suitable for low void fractions 

and transparent walls and fluids 

Wire-mesh 

sensor 
B IV $ 

intrusive, only for conducting 

fluids 
 

1) achieved by mechanical movement of probe, 2) recent developments, 3) PEPT 
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2.3 Conclusions 

The study of multiphase flow phenomena is a challenging field involving 

multidisciplinary knowledge disciplines. Experiments and reliable experimental 

techniques are essential tools to improve the understanding about multiphase flows. 

Two-phase gas-liquid flow are among the most import types of multiphase flow and 

occurs extensively throughout industries, for instance, in boilers, gas and oil transport 

pipelines, chemical processes. 

In this chapter some essentials of gas-liquid flows were presented. Furthermore, the 

principles of the major measuring techniques for the investigation of such flows were 

revised and discussed. Although much progress has been made in the last years in the 

development and application of flow measurement techniques, none of the proposed 

techniques can claim a universal applicability or absolute accuracy for multiphase 

flow measurement. Notably is need for high-speed flow measurement and imaging 

required to investigate highly transient flows, which has mostly motivated the work 

of this thesis. In this fashion, there is a need of innovative measuring techniques 

which may fulfill the gap left open by current techniques. In this thesis, three novel 

sensors based on impedance measurements are introduced. Thus, following the 

current trend for multimodality techniques, a novel dual-modality 

conductivity/permittivity needle probe is presented in chapter 4. A further 

development of current wire-mesh sensor is described in chapter 5, where capacitance 

(permittivity) measurements are used allowing the sensor to be employed in the 

investigation of non-conducting fluids too. Finally, a novel non-intrusive sensor 

modality for imaging fluid distributions and near-wall flows is introduced in 

chapter 6. 
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3 Electrical impedance measurements in fluids 
 

Impedance measurement is commonly used for circuits, components, 

material or solution characterization. In this chapter the theory of 

impedance and its measurement is reviewed with focus on the 

impedance measurement in fluids. This chapter starts with some basic 

definitions. Further it describes the electrical properties of fluids and 

reviews the different impedance measuring techniques. The auto-

balancing bridge method is discussed in detail. Finally, first 

impedance measurements results with a simple probe are presented. 

3.1 Electrical properties of fluids 

Fluids as well as matter in general may be classified according to their 

electromagnetic properties. Although some fluids such as ferrofluids have appreciable 

magnetic properties, most of them are non-magnetic. On the other hand, all fluids 

present electrical properties, which is the focus of this section. The following 

description is mainly based on the books from Dorf (2000) and Macdonald (1987).  

 

3.1.1 Definitions: impedance and complex permittivity 

In electrodynamics the impedance describes the relationship between voltage and 

current for non-steady-state behavior. Mostly a sinusoidal alternating current (ac) is 

considered. A voltage ( ) ( )Vcosv t V tω θ= +  at angular frequency ω = 2πf is applied 

to a material or circuit and the resulting electrical current ( ) ( )Icosi t I tω θ= +  is 

measured. The resulting impedance Z is calculated by Ohm's law in complex notation 

 = VZ
I

, (3.1)  
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where ( )VexpV jθ=V  is the complex voltage, ( )IexpI jθ=I  the complex current, 

and 1j = −  the imaginary unit.  Hence the impedance is a complex value  

 ( )( ) ( )V I Zexp expV j Z j
I

θ θ θ= − =Z  (3.2) 

having a magnitude or modulus Z and a phase angle θZ. Note that in this thesis the 

bold-faced variables such as Z represent a complex quantity or in other cases vectors. 

The concept of impedance assumes that electrical properties of the material/circuit 

are time-invariant. Impedance is a more general concept than resistance because it 

takes phase differences between voltage and current into account, and it has become 

a fundamental and essential concept in electrical engineering. The impedance has 

frequently been designated as the ac impedance or the complex impedance. Both 

these modifiers are redundant and should be omitted. Sometimes it is more 

convenient to use the inverse of Z, the admittance 

 ( ) ( )Y Z
1 1exp expY j j

Z
θ θ= = = = −IY

V Z
. (3.3) 

The word "immittance" was proposed by Bode (1959) and is a combination of the 

words "impedance" and the reverse quantity "admittance". These terms do not only 

occur in electrodynamics but wherever wave propagation takes place - in acoustics as 

well as in elasticity. Figure 3.1 shows their representation in the complex plane. 

Equations (3.2) and (3.3) give the definition in polar coordinates. Using Euler's 

identity ( ) ( ) ( )exp cos sinj jθ θ θ= + , one obtains in rectangular coordinates 

 ( ) ( )Z Zcos sinZ jZ R jXθ θ= + = +Z , (3.4) 

 ( ) ( )Y Ycos sinY jY G jBθ θ= + = +Y . (3.5) 

From Figure 3.1 it is easy to demonstrate that 

 2 2Z R X= + , 2 2Y G B= + , (3.6) 

 1
Z tan X

R
θ − ⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠, 

1
Y tan B

G
θ − ⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠ . (3.7) 

The real parts are the resistance R and the conductance G. They indicate the 

losses within the circuit. The imaginary parts, which are termed reactance X and 
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susceptance B, respectively, are a measure of the reactive energy stored in the circuit 

during one period. In general, all these quantities are frequency-dependent. 

 

 

Figure 3.1: Representation of impedance and admittance in the complex plane showing 
the relations between rectangular and polar coordinates. Note that the units are different 
for each vector. 

Impedance is by definition a complex quantity and is only real when θ = 0 and 

thus Z = R, that is, for purely resistive behavior. The impedance of ideal inductors 

and capacitors is purely imaginary with different signs according to the phase shift of 

±90° between voltage and current. A general element or network is therefore called 

inductive or capacitive at a given frequency corresponding to the sign of the 

imaginary part of its impedance.  

The above definitions apply very well in circuit and network theory. However, a 

much more common parameter used to characterize materials is the complex relative 

permittivity ε . This quantity is related to the complex absolute permittivity 

a 0ε= ⋅ε ε , where ε0 = 8.85 pF/m is the permittivity of free space. The relative 

permittivity ε  is a dimensionless quantity. In this thesis the complex relative 

permittivity will be referred to as complex permittivity, denoted by ε , only. As its 

name indicates it is a complex quantity 

 ' ''jε ε= − ⋅ε  (3.8) 

comprising a real part ε' (commonly called the permittivity) and imaginary part ε'' or 

the loss factor. According to 

 0ε=D Eε  (3.9) 
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the complex permittivity ε  relates the dielectric displacement D to the electric field 

strength E. A more detailed and general description of the complex permittivity 

concept based on Maxwell's equations is given in Appendix B. Basically, the real part 

of the complex permittivity describes the ability of a material to support an electrical 

field, i.e. a measure of energy storage, and the imaginary represents the losses in the 

material. These losses include dielectric loss due to relaxation or resonant effects in 

the materials as well as loss by ionic conduction. More details of these phenomena are 

described in section 3.1.2. Under complex phasor notation (see Apendix B.1), the 

fields are assumed to present sinusoidal alternating variations with time. Thus, the 

losses in the material are manifested as phase angle difference between D and E 

fields. Therefore, it is customary to assess the magnitude of loss of a given material in 

terms of the value of its dissipation factor or loss tangent 

 ''tan
'

εθ
ε

=  (3.10) 

where θ denotes the phase angle between D and E fields. This value is high for lossy 

(or conductive) materials. 

Impedance measurements to investigate solid, liquid or gaseous substances are 

carried out with the help of a measuring cell or probe. The simplest cell is composed 

by two identical parallel plane electrodes as shown in Figure 3.2. The relationship 

connecting the electrical properties of the substance between the plates with the 

measured cell admittance is 

 g 0j kω ε=Y ε . (3.11) 

The geometry factor kg reflects the ratio of the cross-sectional area of the sampled 

fluid volume and the length or distance between the electrodes. For the simple cell of 

Figure 3.2 it may be approximate to 

 
2

g
l Ak
d d

= = , (3.12) 

where A is the area of the square plates of side l, and d the distance separating them. 

Here the fringing effects are neglected. For more complex geometries, kg can be 

theoretically estimated based on analytical solutions or simulations as well as 

experimentally determined with the help of reference measurements. 
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Figure 3.2: Example of a simple measuring cell. 

Each one of the particular representations of impedance-related functions can be 

easily converted into any other. Table 3.1 shows the conversion between the most 

important parameters described in this section. While the complex permittivity ε  is 

only dependent of the material properties, admittance Y and impedance Z do also 

depend on the experimental setup via the geometry factor kg. 

Table 3.1: Relations between some impedance-related functions. c g 0C k ε=  represents the 
capacitance of the empty measuring cell. 

 Z Y ε  

Z = - Y−1 ( ) 1 1
cj Cω − −ε  

Y = Z−1 - cj Cω ε  

ε  = ( ) 1 1
cj Cω − −Z  ( ) 1

cj Cω − Y  - 

 

Some other impedance-related functions have been used to characterize materials 

in the literature, though having lesser importance for the present work. One of these 

functions is the modulus function 1−=M ε . Furthermore, some researchers 

investigating ionic liquids have used a parameter called complex conductivity σ  or 

admittivity κ  which is related to the complex permittivity by 0jωε= =σ κ ε . 

Though all parameter are equivalent, for clarity only the parameters of Table 3.1 will 

be employed. 

Yet, the term impedance (immitance) spectroscopy or dielectric spectrometry are 

often used to indicate the measurement of electrical properties of materials over a 

spectrum of frequencies. Impedance spectroscopy plays an important role in 

fundamental and applied electrochemistry and materials science (Macdonald 1987). 
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3.1.2 Dielectric relaxation 

The complex permittivity ε  of fluids, though not always, shows dielectric relaxation 

in which 'ε  decreases with increasing frequency. A fluid may have several dielectric 

mechanisms or polarization effects that contribute to its overall permittivity. Figure 

3.3 depicts schematically the different dielectric mechanics. Dipole orientation and 

ionic conduction interact strongly at radio waves and microwave frequencies. Atomic 

and electronic mechanisms occur predominately in the optical frequencies. Each 

dielectric mechanism has a characteristic frequency. As frequency increases, the slow 

mechanisms drop out in turn, leaving the faster ones to contribute to the 

permittivity. The nonrelaxation-type ionic conduction losses are readily perceptible 

over the low-frequency spectrum and decrease monotonically with frequency.  

 

 

Figure 3.3: Schematic representation of different dielectric mechanism. Slightly modified 
from Agilent (2006a). 

 

The dielectric mechanism behavior for many fluids in the microwave frequency 

region is characterized by a single relaxation process. This behavior is mathematically 

described by the Debye equation, which relates the complex permittivity ε to the 

relaxation time τ of the relaxation process, the low-frequency or static value of the 

real permittivity εs, and the high- or optical-frequency value of the real permittivity 

ε∞ . Thus, for a single relaxation process (Macdonald 1987) 

 s

1 j
ε εε

ωτ
∞

∞
−= +

+
ε . (3.13) 

The frequency at which the ε'' peak appears is obtained from time constant τ  
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 c
1

2
f

πτ
= . (3.14) 

The relationship given by (3.13) omits the effects of conduction. Many liquids 

contain a conductivity contribution due to the motion of ion pairs with the electrical 

conductivity itself being independent on frequency. Thus, the model is expanded to 

include a static conductivity term σ (see Appendix B.3) and (3.13) is rewritten as 

 s

01
j

j
ε ε σε

ωτ ωε
∞

∞
−= + −

+
ε . (3.15) 

Even if σ is relatively small as is the case of insulators it may dominate ε at 

sufficiently low frequencies. The real and imaginary parts of (3.15) are given by 

 { }
( )

s
2

' Re
1
ε εε ε

ωτ
∞

∞
−= = +

+
ε  (3.16) 

and 

 { }
( )

( )

s
2

0

'' Im
1

ωτ ε εσε
ωε ωτ

∞−
= = +

+
ε . (3.17) 

In Figure 3.4, ε' and ε'' are exemplary plotted according to (3.16) and (3.17) for 

water at 25°C for two different conductivity values. 

 

 

Figure 3.4: Real and imaginary parts of the complex permittivity for water at 25°C 
according to the Debye relaxation function. Permittivity and time constant values were 
taken from Table 3.2. Conductivity values σ were arbitrarily chosen; 0.1 μS/cm 
corresponds to deionized water and 400 μS/cm to tap water.  
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Figure 3.5: Equivalent circuit representing Debye equation (3.15). 

 

Debye equation (3.15) can also be expressed as an equivalent circuit shown in 

Figure 3.5 with the identities: 

 
( )

1
g

1 g 0

2 g 0 s

2
2

1R
k

C k

C k

R
C

σ
ε ε

ε ε ε
τ

∞

∞

=

=

= −

=

 (3.18)  

where kg represents the geometry factor of the measuring cell. 

In practice not all fluids obey the simple Debye equation. A number of other 

empirical Debye-type functions have been proposed to describe the behavior of 

materials (Macdonald 1987). Those relations assume not only one single relaxation 

time τ but multiple relaxation times. One of the most widely used functions is the so-

called Cole-Cole equation 

 
( )
s

11 j β
ε εε

ωτ
∞

∞ −
−= +

+
ε , (3.19) 

where β is a parameter which gives a measure of the broadening in the peak of ε'', 
indicating a distribution of relaxation times (Macdonald 1987). For β = 0, (3.19) 

becomes the Debye equation (3.15). Cole-Cole equation (3.19) was used for the 

characterization of a wide variety of liquids. The parameters for a few exemplary 

liquids are given in Table 3.2. 

From the values for τ of Table 3.2 and (3.14) it is easy to show that all relaxation 

processes occur in the GHz-range. In this thesis the frequency range of measurements 

is limited to a few tens of MHz. As a result, the relaxation mechanisms can be 

disregarded and from now on the complex permittivity of a fluid will be treated as its 

low-frequency equivalent, which is given by 
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0

j σε
ωε

= −ε , (3.20) 

where ε will be used to represent the static relative permittivity εs (sometimes called 

the dielectric constant). Furthermore, the equivalent low-frequency circuit of a liquid 

is given by the parallel connection of a capacitor and a resistor, whose admittance is 

obtained by putting (3.20) in (3.11), yielding 

 ( )g 0k jσ ωε ε= +Y . (3.21) 

Separating (3.21) in real and imaginary parts and remembering that Y = G + jωC, 

the conductance G and the capacitance C are obtained as follows. 

 
g

g 0

G k

C k

σ

ε ε

=

=
 (3.22)  

 

Table 3.2: Dielectric relaxation parameters for selected liquids at 25°C. All values except 
that one for crude oil were taken from Buckley and Maryott (1958). Crude oil values 
according to Folgerø (1998). 

Substance ε∞  sε  β τ (ps) 

2-Propanol 3.2 20 0 291.78 

Air 1 - - - 

Crude oil 2.32 2.19 0.52 11.30 

Diethyl Ether 1.82 4.24 0 2.17 

Ethanol 4.2 24 0 127.85 

Ethylene Glycol 3 37 0.23 79.57 

Water (deionized) 5 78 0 8.08 

 

 

3.2 Impedance measuring techniques 

3.2.1 Overview 

Since impedance is a complex quantity, one must determine two parameters: 

magnitude and phase or real and imaginary part of voltages or currents, commonly 

denominated as vector measurements. The general approach to measure impedance is 
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to apply an electrical stimulus (a known voltage or current) to the electrodes and 

observe the response (the resulting current or voltage).  

Basically, there are three different types of electrical stimuli which are used for 

impedance measurements. 

1) The most common and standard one, is to measure impedance by applying a 

single-frequency (pure sine wave) voltage and measuring the phase shift and 

amplitude, or real and imaginary parts, of the resulting current at that 

frequency using either analog circuit or analog-to-digital conversion and signal 

processing algorithm to analyze the response. 

2) The second approach is to apply a transient voltage, e.g. a pulse or a step 

function, and to measure the resulting time-varying current. Both input and 

output signals are Fourier-transformed into the frequency domain, yielding 

frequency-dependent impedance.  

3) A third technique is to apply a voltage signal composed of random (white) 

noise and measure the resulting current. The frequency-dependent impedance 

can be calculated from the power density spectra of input and output signals.  

 

The latter two approaches measure the impedance over a range of frequency and 

are therefore classified as broadband measurements. Both need rather complex signal 

generation and processing, making it difficult for high-speed measurements. 

Therefore, the first approach is more appropriate for the work of this thesis.  

Independent of the type of stimulus, there also exist several techniques for 

impedance measurement depending on frequency range, required accuracy, 

measurement range, and system complexity. For more details of the current 

measuring techniques the recent review by Kaatze and Feldman (2006), and the 

works Agilent (2006b) and Macdonald (1987) are indicated.  

Measurement of voltages and currents at microwave frequencies (> 100 MHz) are 

difficult and often not directly applicable to high-frequency devices. For that reason, 

the determination of impedances is derived from measurements of reflection and 

transmission of waves in conjunction with the concept of distributed circuits. 

Commercial network analyzers and time domain reflectometers are widely used for 

this purpose (Agilent 2006b, Gregory and Clarke 2006). 

At lower frequencies (up to MHz range) impedance is determined using lumped 

circuits, which are measured by current–voltage (or I-V), bridge or resonant methods 
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(Agilent 2006b). Since in this thesis the low-frequency range is of particular interest, 

these methods are briefly described below. 

 

 

Figure 3.6: The I-V measuring method for determining the impedance. (a) Principle of 
measurement. (b) More practical circuit using voltage measurements only. 

 

3.2.2 Low-frequency methods 

a) Direct measurement 

A simple way to measure impedances follows directly from its defining equation (3.1). 

Applying a known sinusoidal voltage to the terminal and measuring magnitude and 

phase of the current, or vice-versa, gives the desired quantity (Figure 3.6a). The 

phase angle information is obtained by comparing the relative phase between voltage 

and current by means of a phase detector. A variant on this method using only the 

better practicable voltage measurements is shown in Figure 3.6b. One finds that 

 1
x

2 1

R
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ −⎝ ⎠

VZ
V V

. (3.23) 

In both cases, the resistor R must be accurately known and small compared to the 

modulus of impedance Zx = |Zx| to achieve reliable measurements.  

 

b) Bridge circuits 

A second approach is the bridge circuit which has been widely used for the 

measurement of impedances. Alternating current bridges are low-cost standard 

laboratory devices to measure impedances over a wide frequency range from dc up to 

300 MHz with very high precision. The general configuration is shown in Figure 3.7.  
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Figure 3.7: Basic bridge circuit for impedance measurement. 

 

Their working principle is based on the fact that if the bridge is balanced, i.e. the 

voltage Vd is zero, the following condition holds 

 x 1

2 3

=Z Z
Z Z

. (3.24) 

Thus by adjusting one or other arm of the bridge, the balancing condition is reached 

and the unknown impedance can be calculated with (3.24). Since the quantities are 

complex, (3.24) involves the adjustment of two parameters to achieve balance: 

magnitude and phase or real and imaginary part of Vd. In this way, if the impedances 

Z1, Z2 and Z3 are known, it yields 

 1
x 2 x 1 3 2

3

andZZ Z
Z

θ θ θ θ= = − + . (3.25) 

 

In practice, the impedances Z1, Z2 and Z3 are connections of resistors and 

capacitors. Inductors are usually avoided because they always have a resistive 

component and it is difficult and expensive to manufacture inductors with exactly 

defined and reproducible electrical properties. There exist various types of bridges 

depending on how the elements are designed and interconnected. To choose the 

correct configuration, it must be known whether the unknown impedance is 

capacitive or inductive. Otherwise, a zero adjustment is not always possible since the 

balancing condition may not be fulfilled. In the case that only changes in the 

impedance are to be measured, the bridge may be operated out of balance. This type 

of operation is known as deflection-type bridge. For this condition, the complex 

voltage Vd is proportional to the unknown impedance Zx 

 d 2 3

x 2 1 3

= −
+ +

V Z Z
V Z Z Z Z

. (3.26)  
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Frequently used bridge circuits are the Wheatstone, Hay, Maxwell and Schering 

Bridge (Oliver and Cage 1971, Morris 2001, Bera and Chattopadhyay 2003). 

c) Resonant methods 

The third method is called resonant method. As its name already indicates, it makes 

use of the resonance effect of LC circuits to determine the impedance. Typical circuit 

configurations are shown in Figure 3.8. The resonant frequency is given by 

 r
1

2
f

LCπ
= . (3.27) 

This method also requires a previous knowledge of if the impedance under test is 

capacitive or inductive in order to compose an appropriate resonant circuit. That 

means, at least one component L or C must be previously known. Basically, two 

strategies have been used for determining the reactance (L or C) of a resonant circuit. 

The excitation frequency may be varied searching for the resonance condition, where 

the measured voltage at R achieves a maximum, or the RLC network is connected 

being part of an oscillator circuit, in which the output frequency is accurately 

measured. Both strategies are equivalent and the unknown reactance can be obtained 

using (3.27).  

The fact that at resonance condition the imaginary part of circuit impedance 

vanishes can be used to determine the resistive part of impedance. Hence, 

 r
x

r

VR
I

= , (3.28) 

where Vr and Ir are the voltage and current values measured at resonance. 

 

 

 

Figure 3.8: Typical resonant circuits for the measurement of impedance. (a) General 
principle of measurement. (b) Variant of (a) where the oscillator output frequency f is a 
measure of the unknown quantity (L or C). 
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d) Comparison 

Although, in principle, all three measuring methods are equivalent and might be 

employed for the impedance measurements of fluids, they are not always appropriate. 

The I-V method tough being very simple has a low accuracy. The bridge method 

exhibits high accuracy, but due to the need of balancing this method is considered 

not suitable for fast, repeated and continuous measurements. The resonant method 

achieves good accuracy but there also is a need for resonance tuning, thus resulting to 

the same problem like for bridge circuits. Deflection bridges do not need any 

balancing. However the high number of components constituting a bridge circuit is 

undesired in multichannel systems. Furthermore, all above methods are sensitive to 

stray capacitances to ground which are usually present in measuring probes due to, 

for instance, connecting cables or other grounded metallic parts of a probe. Such 

stray capacitances may falsify the impedance measurements and must be 

compensated leading to more complex circuits. 

As a result of these limitations of the standard methods, the chosen method for 

measuring impedance in this work is an improved variant of the I-V method 

previously discussed, called auto-balancing bridge. It will be described in detail in the 

next section. The auto-balancing bridge is a simple, accurate, fast response and stray-

capacitance immune circuit, thus being well suited for high-speed impedance 

measurements in multiphase flows. Furthermore, due to the small component count 

the circuit is optimal for the use in multichannel systems.  

 

3.3 The auto-balancing bridge 

3.3.1 Circuit analysis 

The I-V method is the simplest way to measure impedance. However its use is limited 

to only few applications. The measurement can be enhanced using an operational 

amplifier (opamp) with high input and low output resistance (Figure 3.9). This 

circuit configuration is synonymously known as auto-balancing bridge, 

transimpedance amplifier or current-voltage converter. This type of circuit is typical 

for many types of impedance measuring circuits and has also been successfully used 

in ECT systems (Yang and York 1999) where is denominated ac-based measuring 

method. It presents high signal-to-noise ratio and stray-capacitance immunity, i.e. it 

is able to measure small inter-electrode impedances in the presence of large stray 
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capacitances to ground. Furthermore, it has a fast response time and is thus suitable 

for high-speed measurements. 

 

 

Figure 3.9: (a) Basic circuit configuration of the auto-balancing bridge impedance 
measuring method. (b) Practical circuit for measuring capacitive impedances formed as 
parallel circuit of a capacitor and a resistor. 

The basic circuit diagram is given in Figure 3.9a, where Vi is the excitation 

voltage, Zx represents the unknown impedance and Zf the feedback network. The 

potential at the operational amplifier inverting pin is maintained at zero thus called 

virtual ground. In this way, the current through Zf balances with the Zx current by 

the action of the opamp which increases its output voltage to compensate the current 

through Zf. 

The impedance is calculated using voltage measurement at the opamp output. 

Assuming that the opamp is ideal the output voltage Vo is determined by  

 o f x

i x f

= − = −V Z Y
V Z Y

. (3.29) 

A practical circuit for the measurement of capacitive impedances, which are in 

scope of this thesis, is shown in Figure 3.9b. The impedances Zx and Zf are formed by 

the parallel circuit of a resistor and a capacitor. Further, Cs1 and Cs2 represent the 

stray capacitances to ground which are caused, for instance, by cables used to 

connect the circuit with a sensor. In principle, these stray capacitances have no 

influence in the circuit since Cs1 is directly driven by the source voltage and Cs2 is 

virtually grounded by the opamp. From (3.29) and (3.5) one obtains 

 o x x

i f f

G j C
G j C

ω
ω

⎛ ⎞+ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
V
V

, (3.30) 

where ω = 2πf and f is the frequency of the excitation signal.  
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Figure 3.10: Frequency response of the auto-balancing bridge circuit of Figure 3.9b for 
typical expected component values. Cf = 10 pF, Gf = 10 μS (100 kΩ), Cx and Gx (Rx) are 
indicated in the plots. 

The determination of the two unknown in (3.30), i.e. Cx and Gx, involves the 

measurement of two quantities which might be: 

(a) amplitude and phase at a single frequency,  

(b) real and imaginary parts of Vo at a single frequency (for instance with an IQ-

demodulator) or  

(c) two amplitudes at different frequencies. 

 

Mathematically speaking, all these approaches are equivalent but from the 

metrological point of view they basically differ in the circuit complexity, 

implementation and uncertainties in the measured values. In the past all three 

approaches have been successfully employed. A discussion on this issue is given by 

Georgakopoulus et al. (2003). The former two measuring strategies (a) and (b) are a 

direct consequence of the complex quantity nature of impedance and will not be 

further discussed here. For a better understanding of the third approach, the circuit 

frequency response will be closer analyzed. Taking the modulus of (3.30) one obtains 
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. (3.31) 

The theoretical frequency responses of the circuit from Figure 3.9b for typical 

values expected in the investigation of fluids are plotted in Figure 3.10. Two plateaus 

can be easily identified. The magnitude of each plateau is given by the quotient of 
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Gx/Gf and Cx/Cf which are obtained taking the limit for f → 0 and f → ∞ of (3.31). 

In principle, any two frequencies may be chosen for determining the unknown 

components. The simplest choice is to select two frequencies located exactly in each 

plateau (Da Silva et al. 2005). 

The analysis presented previously considered an ideal opamp with infinite 

frequency response. Nevertheless, the frequency response of the opamp also influences 

the overall circuit response and was not included in (3.31). Practical and theoretical 

analysis of non-ideal opamp characteristic is given by Gamio et al. (2001). One of the 

conclusions from that work is that the opamp includes a second pole to the overall 

response located at the higher frequencies caused by the finite bandwidth of an 

opamp. Although the authors had focused on capacitance measurement only, the 

conclusions there can be used for the general impedance case here. A simplified 

(asymptotic) frequency response of the auto-balancing bridge circuit is illustrated in 

Figure 3.11. 

The proper dimensioning of the feedback network, i.e. Cf and Gf, plays an 

important role for the correct operation of the auto-balancing bridge. Here the 

operation frequency and the characteristics of the opamp used must be taken into 

account. Furthermore, in many practical situations only one parameter Cx or Gx are 

of interest or are present as physical quantity. In this way, the circuit may then be 

dimensioned as capacitance or resistance dominant, respectively. 
 

 

Figure 3.11: Schematic and simplified frequency response of a practical auto-balancing 
bridge taking into account the opamp non-ideal frequency response. 

 

3.3.2 Simple measuring cell 

To confirm the theoretical analysis, a preliminary investigation of the auto-balancing 

bridge circuit in the measurement of the electrical properties of selected liquids and 

air was carried out and is described in this section. For this purpose the experimental 

setup depicted in Figure 3.12 was used.  
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Figure 3.12: Experimental setup for the measurement of electrical properties of selected 
substances. 

The function generator (Agilent 33250A) was configured to sweep a sine voltage 

with constant amplitude of 10 Vpp from 1 kHz to the maximum frequency achievable 

of 80 MHz in a time spam of 500 ms. The output voltage of the opamp was 

monitored with an oscilloscope (Tektronix TDS2014) and the data transferred to a 

computer via a serial cable. The raw data for each measurement was peak-detected 

and low-pass filtered using signal processing algorithms so that only the envelope of 

the sine wave voltage was detected. The opamp employed was the OPA656 (Texas 

Instruments) which has a FET input and gain-bandwidth product of 230 MHz hence 

being suitable for high-impedance and high-frequency measurements. The measuring 

cell was built with simple rectangular parallel-plate geometry. Five substances having 

different conductivity and static permittivity values in a broad range were poured in 

a recipient where the cell was located while the voltage spectrum response was 

measured as described above. Also the empty cell (air) was measured. 

The measured spectra are depicted in Figure 3.13, where the two plateaus as 

anticipated from (3.31) can be clearly seen. The peak occurring at the frequency of 

about 60 MHz is caused by the decreasing phase margin due to the OPA656 

frequency response which possesses a further non-dominant pole at about 400 MHz. 

Each substance can be easily distinguished from each other either in the low-

frequency (resistive) plateau other in the high-frequency (capacitive) one. As 

previously described the conductance and capacitance of the measuring cell are linked 

respectively to the electrical conductivity and permittivity of the substance under 

test. A quantitative analysis is presented in Figure 3.14, where the measured gain at 

the low-frequency and high-frequency plateaus was plotted against the reference 

electrical properties of the investigated fluids, i.e. electrical conductivity and 

permittivity. Further, the measured data were fitted to a line and the resulting 

parameters are shown in the respective plots. The very good agreement between the 
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expected linear dependence and the obtained regression lines is confirmed by the good 

correlation coefficients of about 0.99; thus confirming that the circuit is well suited 

for the investigation of the electrical properties of fluids. 

 

 

Figure 3.13: Frequency response curves for selected substances measured with setup from 
Figure 3.12. Air ε = 1, σ = 0. Oil ε = 2, σ = 0. Isopropanol ε = 19, σ = 0.06 μS/cm. 
Glycol ε = 37, σ = 3 μS/cm. Deionized Water ε = 79, σ = 2 μS/cm. Water + salt ε = 79, 
σ = 26 μS/cm. 

 

 

Figure 3.14: Correlations of the measured gains at low- and high-frequency plateaus with 
(a) electrical conductivity and (b) permittivity of tested substances, respectively. ( ) 
measuring points, (−) least-squares linear fit. 
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3.4 Conclusions 

This chapter was dedicated to review the basic electrical properties of fluids and the 

current-in-use techniques to measure impedances in general. The chosen technique for 

the investigation of fluids, the auto-balancing bridge was described in detail and its 

frequency response analyzed. The theoretical predictions were then confirmed by first 

fluid measurements with a simple measuring cell. The auto-balancing bridge is a 

simple and valuable technique to measure the impedance of fluids. 

In this way, a solid theoretical and practical basis was established, which is applied 

in the development of innovative sensor systems to the investigation of multiphase 

flows. In this thesis three operation modes for the auto-balancing bridge were 

exploited in conjunction with different sensors which will be described in more detail 

in the following chapters along with the metrological characterization of each 

developed sensor system: 

• in chapter 4 as impedance measuring circuit, 

• in chapter 5 as capacitance measuring circuit, and 

• in chapter 6 as resistance as well as capacitance measuring circuit.  
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4 Complex permittivity needle probe 
 

This chapter presents a novel needle probe measuring system based 

on high-speed complex permittivity measurements. The measuring 

circuit is a direct application of the auto-balancing bridge circuit 

discussed in the previous chapter in conjunction with a specially 

designed needle probe. Such probes are able to distinguish the 

different phases or components of a flow by measuring the complex 

value of the electrical impedance at a high data rate. 

4.1 Introduction 

Measurement with local needle probes is a well-established method for the 

investigation of two-phase flows (section 2.2.1a). Needle probes can identify the 

phase, which is momentarily present at the location of the needle tip. Based on this 

local phase information, different flow parameters can be derived. A number of 

measuring principles have been employed for the needle probes in the past. Most 

sensors employ conductivity, capacitance, optical and temperature measurement 

techniques (Cartellier and Achard 1990). However, each one of these techniques has 

limitations regarding the range of substances it is able to measure. Conductivity or 

resistivity probes can only differentiate an electrically conducting phase from a non-

conducting one. Capacitances probes encounter problems when permittivities of the 

two phases are similar. The same difficulty occurs with optical probes and low 

refractive index differences. Temperature probes require sufficient temperature 

differences in the substances, which are to be discriminated. Therefore, these probes 

have been utilized almost exclusively in two-phase flow measurements. 

In recent years some efforts have been made by applying dual modality measuring 

techniques for enhancing the range of substances in the investigation of multiphase 

flows, in which two different sensing techniques are used to distinguish the different 
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flow constituents. Schleicher et al. (2008a) have developed a conductivity probe with 

integrated micro-thermocouple, which is able to synchronously measure temperature 

and conductivity and which has been applied to measure a steam-gas-water flow. An 

optical needle probe combining reflectance and fluorescence measurements has been 

reported by Ramos et al. (2001) for the investigation of oil-water-gas flows. A dual 

fiber optical needle probe was described in Fordham et al. (1999) also for the 

investigation of oil-water-gas flows, where reflectance signals of a cleaved fiber were 

used for gas/liquid discrimination and reflectance signals of an oblique probe for 

oil/not-oil discrimination. 

Combination of conductivity with dielectric constant measurements could enhance 

the applicability of needle probe systems. Some application fields which may benefit 

of dual-modality conductivity/permittivity sensors are the investigation of three-

phase gas-liquid-liquid flows (oil extraction and processing) as well as the monitoring 

of mixing processes in chemical reactors such as blending of gasoline fractions or soft 

drinks production.  

Commercial measuring instruments like RLC meters or impedance analyzers can 

only achieve a few measurements per second and are thus not suitable for high-speed 

measurements which are required in the investigation of transient fluid flow. For this 

reason, a high-speed complex permittivity needle probe was developed and tested (Da 

Silva et al. 2007a). In the next sections, the system is first briefly described; followed 

by the characterization of the probe system and finally some applications of the new 

developed needle probe are presented and discussed.  

 

4.2 System description 

4.2.1 Needle probe 

The developed system consists of a needle probe and a dedicated electronics 

responsible to generate and measure the sine wave signals required to determine the 

complex permittivity. The probe itself is built in a double coaxial geometry (Figure 

4.1). Two stainless steel electrodes (excitation and measuring electrode) are isolated 

from the common ground electrode. Both coaxial structures are soldered together or 

placed inside a third stainless steel tube. Two needle probes with different sizes were 

manufactured. Figure 4.1 shows both probes and their physical dimensions. The 

electrical capacitance of the free pair of electrodes (sensitive area) is approximately 

0.06 pF and 0.1 pF in air for the probes named "one" and "two", respectively. 
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Figure 4.1: (a) Schematic diagram of a needle probe and (b,c) photographs of both 
manufactured probes. The electrodes are of 1 mm and 0.9 mm diameter for probe "one" 
and "two", respectively. 

The principle of operation of the needle probe system is given as follows. The 

electronics applies a sinusoidally alternating voltage to the excitation electrode and 

determines the complex value of current (amplitude and phase) flowing from the 

excitation electrode towards the measuring electrode. The admittance Y is calculated 

by Ohm's law, i.e. the ratio between current I and voltage V. The measured 

admittance is related to the electrical conductivity σ and relative permittivity ε of 

the fluids at the probe tip by ( )g 0k jσ ωε ε= +Y  (3.21). The geometry factor kg 

reflects the ratio of the cross-sectional area of the sampled fluid volume and the 

length or distance between the electrodes. In this way, the introduction of different 

fluids at the probe tip will produce different measured admittance values allowing 

these substances to be distinguished. Note that a large area/length ratio is desired to 

produce large admittance values which are easier to detect by the electronics. There 

exist hence two possibilities to optimize the geometry. The probe tip can either be 

designed with a large area or the distance between the electrodes can be decreased. 

Nevertheless, there are limits for these arrangements. A larger probe tip (free 

electrodes) and thus a larger area would produce a higher disturbance in the flow 

which is undesired. Furthermore, a smaller distance between the electrodes can make 

the probe insensitive to given flow conditions, for instance air bubbles might not be 

detected due to dewetting problems at the probe tip. Therefore two probes were 

constructed. Probe "one" is more appropriate for a bubbly flow due to its arrow-type 

tip which can better pierce bubbles and its larger electrode distance. The probe "two" 
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was optimized for the investigation of a mixing process in a stirred tank which is 

better described in section 4.4.2. Evidently, other scaled up or down variations of the 

probe can be designed in order to adapt to other applications or constraints.  

 

 

Figure 4.2: Block diagram of the electronic circuitry to measure the complex permittivity 
of a needle probe system. 

 

4.2.2 Measuring electronics  

A block diagram of the electronic circuitry can be seen in Figure 4.2. A direct digital 

synthesizer (DDS) generates the excitation sine wave voltage. Frequencies from 

100 kHz up to 1 MHz can be generated and are user-selectable. The alternating 

excitation voltage Vi is supplied to the excitation electrode by means of a coaxial 

cable. The measuring electrode is connected to a transimpedance amplifier also by 

means of a coaxial cable.  From section 3.3.1 it is known that the output voltage of 

the auto-balancing bridge is a measure of the admittance under test, here 

denominated Ym, hence  

 o i m
f

1= ⋅ ⋅V V Y
Y

, (4.1) 
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where Yf is the feedback admittance. The output voltage Vo is then input to the 

amplitude and phase detector block. The integrated circuit (IC) AD8302 realizes the 

function of measuring amplitude and phase. This IC determines the amplitude ratio 

and the phase difference from Vo and a reference signal VR. The AD8302 measures 

phase differences in two quadrants (e.g. from 0° to 180°) and achieves the best 

accuracy in the phase measurement only between phase differences of 20° and 160° 

(nominal accuracy 0.5°). Since the phase difference caused by the needle probe was 

expected to be as small as a few degrees for non-conducting substances, a phase 

shifter was required to allow the AD8302 to work with highest accuracy. The phase 

shifter was easily implemented by means of a second DDS, which generates a 

reference voltage VR with known amplitude and digitally programmable phase. 

Usually, a 90° phase delay was generated, thus placing the operation point of the 

AD8302 in the center of its measuring range. For this reason, both DDS generators 

are phase-synchronized by sharing the same clock source. A big advantage of a DDS-

based phase shifter is the fact that the phase shift is independent of frequency. The 

two dc output signals of the AD8302, which carry the information on amplitude and 

phase difference, are fed into the analog-to-digital converter (ADC), 12 bit, 

20 000 samples/s per channel, of the data acquisition (DAQ) module PMD-1208FS 

(Measurement and Computing Inc.). The DAQ module is connected to a PC through 

a USB port. The digital port of the DAQ module is used to program the DDS sine 

generators. Furthermore, a control and measurement software in the PC determines 

the frequency and phase lag of each DDS, controls the analog-to-digital conversion 

sequence and realizes the calculation of the admittance from the measured amplitude 

and phase values. A detailed description of the design and implementation of the 

system can be found in the diploma thesis Brückner (2005). 

 

4.2.3 Complex permittivity measurement 

The measuring admittance Ym represents the sum of the fluid admittance Yx and a 

residual admittance YR (e.g. stray capacitance, resistance and inductance of cables, 

etc.) though being small, this residual admittance falsifies the measurement and a 

calibration routine is thus necessary. Equation (4.1) is modified to 

  x R
o i

f

+= −Y YV V
Y

 . (4.2) 
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From (4.2), it can be shown that the fluid admittance Yx is linearly dependent on the 

measured output voltage Vo in the form 

  x o= + ⋅Y A B V , (4.3) 

where A and B are proportionality factors. As mentioned in section 3.1.1, fluids are 

better characterized by their complex permittivity rather than their impedance or 

admittance. According to theory described there, the admittance of the probe and the 

complex permittivity of the fluid at probe's tip are directly proportional. In this way, 

from (4.3) and (3.11) one obtains 

 x o= + ⋅C D Vε . (4.4) 

Therefore, a two-point calibration is sufficient to determine the system variables C 

and D. For that, two known reference substances with known complex permittivity 

(ε1 and ε2) may be connected to the probe and Vo measured for both conditions 

obtaining Vo1 and Vo2. The values for system variables are then determined from 

 2 o1 1 o1

o1 o2

⋅ − ⋅=
−

V VC
V V

ε ε , (4.5) 

 2 1

o1 o2

−=
−

D
V V
ε ε .  (4.6) 

With the help of the above formulae, it is now possible to calibrate a complex 

permittivity needle probe at two materials with known electrical properties, e.g. air 

and water. In the case, one is interested only to differentiate the phases or 

components of a fluid flow, e.g. gas phase detection in a bubbly flow, the calibration 

procedure is not anymore necessary, since the measured voltage Vo already carries 

this information in its complex value. Each component or phase is associated to a 

point in the complex plane. Thus, this value can be evaluated directly to determine 

the phase/component indicator function (2.1) and derived parameters. 

 

4.3 Measurement uncertainty 

System outputs, i.e. amplitude and phase measurements, were evaluated for drift and 

random noise. A 100 kΩ resistor was connected to the needle probe electrodes and the 

outputs were monitored for one hour at maximum sampling rate of 20 kS/s. A one-
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minute moving-average filter was used to reduce random noise for determination of 

the drift. System drift was defined as maximum deviation of the outputs over the 

period. The measured drift was 34.13 mV and 0.637°. Random noise was estimated as 

the standard deviation of the signals over a time equal to one minute. Measured 

random noise was 14.42 mV and 0.272°. Applying the uncertainty propagation rules 

(ISO 1995) in (4.4), one can estimate both the drift and random noise for the 

complex permittivity parameter:  

 ( ) ( )oU U= ⋅D Vε , (4.7) 

where U(ε) represents the uncertainty in the complex permittivity, U(Vo) the 

uncertainty in the measured output voltage and D is defined in (4.4). Drift and 

random noise were then calculated from (4.7) by using typical calibration values for 

D. Drift values were 0.4272 and 0.0023 μS/cm for permittivity and conductivity, 

respectively. Furthermore, random noise value was 0.1810 for permittivity and 

0.0009 μS/cm for conductivity. 

The system was also tested in measuring different liquids and air. The liquids were 

put in a metal cylinder of 10 cm in height, 10 cm in diameter and the probe was 

located in the center. First, the system was calibrated by measuring air (empty 

probe) and deionized water. The excitation frequency was 200 kHz and sampling 

frequency 20 kS/s. The measurements were carried out with both needle probe 

designs.  

 

 

Figure 4.3: Results of conductivity (a) and permittivity (b) measurement by the needle 
probe compared with reference values. The dashed lines represent a deviation of 7% from 
the ideal line (−). 
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Table 4.1: Relative permittivity ε and electrical conductivity σ of different liquids and air 
used in the uncertainty evaluation of the needle probe system. 

Substance    ε σ (μS/cm) 

Air 1.00 0.0 

Silicone Oil 2.78 0.0 

Diethyl Ether 4.27 0.0 

Isopropanol 19.74 0.1 

Glycol 40.56 1.5 

Deionized Water 79.86 2.5 

Water + Salt 79.86 13.1 

 

Figure 4.3 show the results of measured properties (mean value of 10 

measurements) compared with reference data. These figures show also a 7% deviation 

line (dashed). The relative permittivity reference was taken from Lide (2005) and 

calculated for the ambient temperature of the samples. Conductivity and temperature 

references of the samples were measured by the conductivity meter Cond 330i (WTW 

GmbH, Germany, 0.5% measurement uncertainty). The reference values are shown in 

Table 4.1. 

The maximum relative deviation compared with the reference values was 7.0% for 

permittivity and 4.9% for conductivity, respectively. Both needle probe designs 

present similar results showing that the calibration routine fully compensates the 

different geometry factors (due to the different dimensions) of each probe. 

 

4.4 Application to flow measurement 

4.4.1 Three-phase flow 

In order to examine the capability of the present system to be applied in the 

investigation of three-phase flows, it was employed to measure air and water bubbles 

flowing in gasoline. The system was calibrated by measuring air and deionized water. 

The excitation frequency was 200 kHz and sampling frequency was 20 kHz. The 

probe "one" (Figure 4.1b) was then located inside an acrylic glass column (rectangular 

cross-section, 20 mm × 10 mm) filled with gasoline (ε ≈ 2). The flow of bubbles was 

synchronously recorded with a high-speed video camera (MotionPro HS Series, 
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Redlake) operated at 1 000 fps with image size of 640 × 640 pixels, in order to 

evaluate the needle probe data. 

First, air bubbles were generated at the bottom of the column. Figure 4.4a shows 

the temporal evolution of relative permittivity and conductivity registered by the 

needle probe for the measurement of a single air bubble (approximately 200 mm3) as 

well as three single shot images of the ascending bubble. The relative permittivity 

value is lowered by the passage of the bubble, but the conductivity signal remains 

constant at a value near zero, as expected, since gasoline and air are non-conducting.  

 

      

Figure 4.4: Temporal evolution of relative permittivity and conductivity signals for (a) an 
air bubble ascending in gasoline and (b) a water bubble descending in gasoline and their 
respectively video images; t indicates the time of the image and g the gravity acceleration 
vector. 

As a second experiment, water bubbles with conductivity of 2 μS/cm were dropped 

into the column filled with gasoline. Figure 4.4b shows the results. Again, three single 

shot images show the water bubble (approximately 100 mm3) descending in gasoline 

and the diagram shows the temporal evolution of relative permittivity and 

conductivity. In this experiment both signals increase, since water is conductive and 

has a larger relative permittivity (ε ≈ 80) than gasoline (ε ≈ 2).  

In a further experiment, a few air bubbles and then a few water bubbles 

(σ = 2 μS/cm) were sequentially generated in the vessel filled with gasoline. The 

detected signals are depicted in Figure 4.5. By the passage of the bubbles through the 
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needle probe tip, some spikes in the signals are produced depending on the fluid 

phase. In order to automatically distinguish which phase is momentarily in contact 

with the probe tip, the following procedure is proposed. 

• A threshold in the conductivity signal σt can be used to decide between a 

conducting and a non-conducting phase. In Figure 4.5 a threshold value of 

0.4 μS/cm was used, which represents 20% of the water conductivity. This way, 

the water phase can be recognized. 

• If the conductivity is bellow σt, i.e. the phase is non-conducting, a second 

threshold in the relative permittivity signal εt can then discriminate between a 

non-conducting liquid and gas phase. In this example a threshold with the value 

of 1.8 was used corresponding to a level of 80% in between of the gasoline and 

air levels, as indicated in the figure. 

• In this fashion, if ε > εt, the phase is identified as gasoline; otherwise if ε < εt, 

the phase at the probe tip is detected as air. 

 

 

Figure 4.5: An example of the complex permittivity signals of a gasoline-water-air flow 
measured with the complex permittivity needle probe. 

 

4.4.2 Two substances mixing experiment 

A further application area of the impedance needle probe is the investigation of 

substance mixing in chemical reactors. Mixing of different density liquids occur in a 

variety of industrial applications, e.g. in blending of gasoline fractions, mixing of 

polymers and soft drinks production. A key experiment was conducted to investigate 
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the performance of the new probe, whereby the mixing process of water and 

isopropanol was measured with the probe "two" (Figure 4.1c). 

First, a static calibration curve with defined concentrations was taken by mixing 

known volumes of isopropanol in water. The outputs were measured at 20 kfps and 

10 values were averaged. Figure 4.6 depicts the results. The relative permittivity 

shows almost a linear dependence to the isopropanol concentration. In other hand the 

conductivity is strongly non-linear. Therefore, in the following analysis only the 

permittivity signals will be analyzed. 

 

 

 

Figure 4.6: (a) Permittivity of isopropanol-water mixture for different isopropanol 
concentrations. Relative permittivity measurements (×), square root of relative 
permittivity (○) and linear fit for both curves (lines). (b) Conductivity of isopropanol-
water mixture for different isopropanol concentrations, (×) denotes measurement points 
and line the polynomial fit. 

 

There exist many theories to explain the permittivity behavior of a two substances 

mixture (Nelson et al. 1991). The Birchak formula (Birchak et al. 1974) can be well 

applied to describe the effective permittivity εm of an isopropanol-water mixture. It 

has the form 

  m i i i w(1 )c cε ε ε= ⋅ + − , (4.8) 

where ci is the isopropanol concentration, εi and εw are the relative permittivities of 

isopropanol and water, respectively. Resolving (4.8) for ci yields 

 m w
i

i w

c
ε ε
ε ε

−
=

−
. (4.9) 
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Since εi and εw are constants, the isopropanol concentration is directly proportional to 

the square root of the mixture permittivity. This was also experimentally verified, as 

can be seen in Figure 4.6. As a result, the isopropanol concentration can be 

determined by measuring the relative permittivity of the mixture and solving (4.9). 

 

 

 

Figure 4.7: (a) Isopropanol concentration measured with the needle probe, and (b) single 
shot images of mixing experiment from the camcorder. 

 

The mixing experiment was carried out in a laboratory scale Büchi Ecoclave 1.6 

liter tank. The reactor inner diameter was d = 82 mm. The reactor was mechanically 

agitated by the Pfaudler impeller, which was connected to a dc motor. The needle 

probe "two" was placed 25 mm above the impeller and in a radial position 10 mm 

from tank's center. The excitation frequency was set to 200 kHz and the sampling 

frequency to 20 kHz. The needle probe was firstly calibrated by measuring air and 

water. The mixing experiment was also monitored by a digital camcorder Panasonic 

NV-GS 400 at 50 fps. The used liquids were mutually miscible with densities of 
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998 kg/m3 for the water and 780 kg/m3 for the isopropanol. Since both substances are 

transparent, the isopropanol was colored by a blue ink, in order to provide contrast 

for the video visualization. The total liquid level was h = 82 mm, chosen to be close 

to the commonly found in the mixing practice ratio of d/h = 1. A two layer initial 

condition was obtained by first pouring 345 ml water and then 75 ml isopropanol into 

the tank. The mixing process was started by rotating the impeller at 187 rpm. The 

temporal evaluation of the isopropanol concentration determined by the needle probe, 

which is based on permittivity measurements and calculated via (4.9), are shown in 

Figure 4.7, as well as three single shot images from the camcorder. 

At t = 0 the impeller started rotating. After five seconds the isopropanol 

component surface reached the needle probe thus rapidly increasing the measured 

concentration. A maximum concentration of about 70% is obtained between t = 5 s 

and t = 15 s. From t = 15 s the isopropanol concentration started decreasing. 

Complete mixing was reached 40 seconds after the impeller rotation started. The final 

isopropanol concentration was measured to be 16.5% (mean value of last five 

seconds), very close to the theoretical value 17.8% calculated from the initial 

component volume ratio (i.e. cfinal = 75 ml / 420 ml). The camcorder images of Figure 

4.7 also illustrate the mixing process: t = 0 s initial stratified condition; t = 10 s the 

two components were brought into motion by the rotating impeller, the interfacial 

area of both components can be well identified; and t = 40 s both substances are 

completely mixed. 

The time-resolved local concentration measurement by the needle probe can reveal 

some details about the mixing behavior of two miscible liquids with different 

densities. For example, the fluctuations in the concentration values suggest that the 

interfacial area of both components was oscillating over the measurement point. 

 

4.5 Conclusions 

The evaluation of the sensor shows good linearity, reproducibility and adequate 

accuracy when compared with reference values. For the first time the local complex 

permittivity measurements of a three-phase bubbly flow have been presented. The 

sensor is able to differentiate each phase by evaluating both relative permittivity and 

conductivity signals.  
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Furthermore, the good accuracy in complex permittivity measurements enables the 

sensor not only to be employed as phase discriminator but also to measure 

concentration of a two-component mixing.  

The probe was also evaluated to measure local concentration of a mixing process 

on a laboratory scale stirred tank. The detailed analysis of such measurements can 

reveal more details about the mixing process and should be further investigated. 

 Finally, all these characteristics combined with the high-speed measurement 

system feature make the needle probe system a suitable new tool to investigate 

dynamic phenomena in multiphase flow. 
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5 Capacitance wire-mesh sensor 
 

Wire-mesh sensors are able to image multiphase flows with high 

spatial and temporal resolution. A novel wire-mesh sensor based on 

capacitance (permittivity) measurements is presented in this chapter. 

The developed sensor can be used to measure transient phase fraction 

distributions in a flow cross section, such as in a pipe or another 

vessel by discriminating fluids with different permittivity values. 

5.1 Introduction 

Several measuring techniques for the investigation of flow phenomena have been 

proposed and investigated in the past (see section 2.2). Especially the use of 

tomography visualization techniques are of great interest since these are non-invasive 

and enable the visualization of phase fractions distributions in multiphase flows. 

However, currently all of the existing technical solutions have considerable 

drawbacks. Thus, x-ray, γ-ray, PET and MRI scanners yet do not have sufficient 

time resolution either due to the requirement for rotating parts in the scanners or 

limits in radiation power. Electrical tomography techniques (e.g. ERT, ECT) achieve 

high time resolution but have intrinsically low spatial resolution due to the applied 

soft fields. Optical and ultrasound tomography are only suited for flows with low void 

fraction.  

The conductivity wire-mesh sensor, which was first proposed for high-speed liquid 

flow measurements by Prasser et al. (1998), is a hybrid solution in between intrusive 

probe and tomographic cross-sectional imaging (section 2.2.3). Void fraction and 

bubble size measurements with temporal resolution of up to 10 000 frames per second 

(fps) and spatial resolution of up to 2 mm have been achieved (Prasser et al. 2002b). 

Nevertheless, current wire-mesh systems are only suitable to investigate flows where 

one phase is a conductive medium, typically with electrical conductivity of at least 
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0.5 μS/cm. Therefore, wire-mesh sensors have almost exclusively been used for the 

investigation of air-water or steam-water systems. 

 

 

Figure 5.1: Photo of the experimental wire-mesh sensors used in this work. (a) Laboratory 
sensor with 16 × 16 configuration and (b) 24 × 24 wire-mesh sensor for pipe flow 
investigation. 

In the chemical processing industry the occurrence of non-conducting fluids such as 

oil or organic liquids are common, for instance in distillation columns or in pipelines. 

In those applications the measurements with current wire-mesh sensor would fail. 

However, this limitation can be overcome by performing permittivity (or capacitance) 

measurements instead of conductivity measurements (Da Silva et al. 2007b). In this 

way, a great number of new application fields of wire-mesh sensors can be explored. 

This chapter presents design, evaluation and application of a novel wire-mesh 

sensor system based on permittivity (capacitance) measurements which has been 

applied to investigate multiphase flows involving non-conducting fluids. The 

evaluation of sensor includes simulation analysis of electrical field distribution 

(section 5.3) and experimental tests regarding metrological quantities (section 5.4). 

Some flow applications of the sensor are described in section 5.5. 

 

5.2 System description 

5.2.1 Sensor and measuring electronics 

The prototype sensor used for experimental verification of the capacitance 

measurement technique has the same design as a conductivity wire-mesh sensor 
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(Figure 5.1a). It consists of two planes of 16 stainless steel wires of 0.12 mm 

diameter, 3.12 mm separation for wires of same plane, and 1.5 mm axial plane 

distance. The wires are mounted in a rectangular acrylic frame that itself is part of a 

rectangular flow channel. A 24 × 24 wire-mesh sensor was built up and applied for 

the investigation of a pipe flow (see section 5.5.1). It consists of two planes of 24 

stainless steel wires of 0.12 mm diameter evenly distributed over the 67 mm diameter 

(Figure 5.1b), and 1.5 mm axial plane separation. The sensor was constructed using 

printed-circuit board (PCB) as described in Schleicher et al. (2007). The sensor is 

framed in an acrylic flange, which allows it to be mounted in a flow loop.  

The operating principle of the electronics is similar to the conductivity wire-mesh 

sensor (Prasser et al. 1998). However, while the conductivity wire-mesh sensor is 

excited by bipolar voltage pulses and currents are measured with a dc measuring 

scheme, the capacitance wire-mesh sensor utilizes an appropriate ac excitation and 

measuring scheme. Hence, a sinusoidally alternating voltage is applied for excitation 

and the receiver circuit must encompass a demodulation scheme. Figure 5.2 depicts 

the block diagram of the electronic design for a simplified 4 × 4 sensor configuration. 

The excitation voltage is generated by means of a direct digital synthesizer (DDS) 

circuit with selectable frequency in the range from 0.1 to 10 MHz. This signal is then 

time-multiplexed to each of the excitation electrodes by means of a set of analog 

switches. In order to create a low impedance path, the outputs of the switches are 

buffered by opamps. A set of auto-balancing bridge circuits (OPA656 based) converts 

the currents flowing from transmitter towards receiver electrodes into proportional 

voltages. Furthermore, these sine wave voltages are demodulated using logarithmic 

detectors (AD8307), in order to convert them into dc proportional voltages, which 

are in turn digitized by the ADCs. A microcontroller controls the multiplexer, 

programs the DDS and controls the analog-to-digital conversion timing. Digitized 

data are sent to a computer, where they are processed and visualized. 

To realize an independent local phase fraction measurement in each crossing point, 

i.e. to suppress the crosstalk between the individual sub-regions, the following 

excitation scheme is employed (Figure 5.3). The transmitter electrodes are activated 

consecutively, while keeping all other transmitter electrodes at ground potential. All 

currents flowing from transmitter to receiver electrodes at the other wire plane are 

measured in parallel as described above. Since the receiver electrodes are also at 

ground potential by the opamp's virtual ground, the electrical field is concentrated 

along the active transmitter wire and the current measured at one receiver wire is 
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only proportional to the capacitance (permittivity) of the surrounding flow phase at 

the crossing point. This fact was detailed analyzed and confirmed by electrical field 

simulations (see section 5.3). 

Two different electronics have been designed, implemented and tested (Wollrab 

2006, Thiele 2007). The recent electronics can operate sensors of up to 64 × 64 wire 

configuration and achieves up to 7 000 fps for a 32 × 32 sensor. 

 

 

Figure 5.2: Schematic diagram of a simplified 4 × 4 wire-mesh sensor electronics. 

 

 

 

Figure 5.3: Excitation scheme of the wire-mesh sensor electronics. 
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5.2.2 Permittivity measurement 

Since the input quantity for each crossing point in the capacitance wire-mesh sensor 

is expected to be composed by a single unknown capacitor, the auto-balancing bridge 

method was optimized for capacitance measurement only. Figure 5.4 shows an 

equivalent circuit for one crossing point, where Vi is the sine wave excitation voltage, 

Cx represents the crossing point capacitance to be measured, and Cf and Rf represent 

the feedback network. Cs1 and Cs2 are also shown in the figure and they represent the 

stray capacitances to ground generated for instance by the cables or other grounded 

electrodes. However, they have no influence in the circuit as already discussed in 

section 3.3.1. 

 

Figure 5.4: Capacitance measuring equivalent circuit for one crossing point. 

Assuming that the opamp is ideal and that the internal resistance of the analog 

switch is zero, the output voltage Vo is determined by 

 x f
o i

f f

j
1 j

C R
C R

ω
ω

⎛ ⎞⎟⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
V V , (5.1) 

where ω = 2πf is the angular frequency of the excitation voltage, which is a simplified 

version of (3.30). In fact, the analog switch has an on-resistance of a few ohms which 

only marginally influences the circuit. If the operating frequency is chosen so that 

ωRfCf » 1, (5.1) is simplified to 

 x
o i

f

CV V
C

= − ⋅ , (5.2) 

meaning that the circuit is capacitance-dominant. In this situation the phase lag 

between input and output voltages is exactly 180° which is given by the minus signal 

in (5.2) since the circuit is in an inverting configuration. Hence, it can be stated that 

by measuring only the amplitude of the complex quantity Vo, i.e. Vo, it is possible to 
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determine the capacitance value of the fluid phase at the crossing point. For the 

feedback network Rf = 1 MΩ and Cf = 1 pF were employed, and a typical excitation 

frequency of 5 MHz was chosen. In this way, ωRfCf  = 31 and (5.2) is a good 

approximation. Nevertheless, (5.1) may also be used if more accurate values are 

needed. 

The sinusoidal alternating voltage Vo has to be demodulated so that it can be 

digitized, i.e. the ac signal has to be converted into a proportional dc one. Since a 

high signal dynamics from measurements on different substances are expected, a 

logarithmic detector scheme for the demodulation of the ac signal was chosen. Even 

very small changes in the capacitance Cx (and consequently in Vo) can be measured 

by maintaining a fast response time. The log-detector AD8307 output is in the form 

  o
log a

b

ln VV V
V

⎛ ⎞⎟⎜ ⎟= ⋅ ⎜ ⎟⎜ ⎟⎜⎝ ⎠
, (5.3) 

where Va and Vb are constants of the integrated circuit. Taking (5.2) into (5.3) and 

remembering (3.22) that Cx is directly proportional to permittivity εx of the substance 

in the crossing point, it results in 

 ( )log xlnV a bε= ⋅ + , (5.4) 

where a and b are constants that encompass the geometry factor kg of a crossing 

point, Rf and Cf, the log-detector constants, f the measuring frequency and Vi the 

input voltage. 

The acquired voltages Vlog for all crossing points are saved in an Nx × Ny × Nt 

data matrix in computer memory, where Nx and Ny denote the number of sender and 

receiver electrodes and Nt the number of acquired time steps. The data are related to 

the permittivity distribution over the cross section via (5.4), but evidently this raw 

data need further processing to discriminate phases or determine absolute capacitance 

values. Due to differences in the electrical characteristics of the individual 

components, for instance resistor tolerances, opamp gains etc, there is a considerable 

intrinsic variance in the measured values of each crossing point. In order to 

compensate this variance, a calibration routine is required, which is described as 

follows. 

First, the sensor is measured with a substance of low permittivity εL covering the 

whole sensor giving a reference data matrix 
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which is an average of the raw data over a sufficient temporal range. Here, i and j 

denote the wire indices and k the temporal sampling point index.  

The procedure is then repeated with the entire cross section of the sensor covered 

with another substance having a higher permittivity εH, which gives another reference 

data matrix denoted by HV . In this fashion, applying equation (5.4) for both 

calibration data matrixes HV  and LV  it is possible to calculate the constants of (5.4) 

for every crossing point as 
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Finally, the permittivity distribution over the cross-section can be determined by 

inverting (5.4) and applying it for every crossing point, thus 

 log( , , ) ( , )
( , , ) exp

( , )
V i j k b i j

i j k
a i j

ε
⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

. (5.8) 

In the case that the lower permittivity reference substance is air which has ε = 1, 

(5.8) is simplified to 
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L
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V i j k V
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For the determination of the local phase fraction distribution ( , , )i j kα , a linear 

relationship between the measured permittivity and the phase fraction is assumed 

  H

H L

( , ) ( , , )( , , )
( , ) ( , )
i j i j ki j k
i j i j

ε εα
ε ε

−=
−

. (5.10) 

The assumption of a linear dependence between the local phase fraction level and 

the crossing point permittivity is obviously a simplification. It basically models the 

crossing points as a parallel plate capacitor with a homogenous phase distribution 

between capacitor's plates. An analogous assumption has been successfully employed 

for conductivity wire-mesh sensors (Prasser et al. 1998) and for ECT systems 
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(McKeen and Pugsley 2002). In the case of complex multiphase flows, more 

elaborated calibration relationships may be necessary, for instance encompassing 

models for the effective permittivity of mixtures. This way, (5.10) can be understood 

as first-order approximation. 

Further data processing on the cross-sectional phase fraction distributions ( , , )i j kα  

may then be performed to identify single bubbles or determine characteristic bubble 

or phase boundary parameters. Such algorithms have been successfully used for the 

conductivity wire-mesh sensor and are described in Manera et al. (2006), Prasser et 

al. (2001) and Richter et al. (2002). 

 

5.3 Numerical field simulation 

5.3.1 Model description and voltage distribution 

The commercial software Comsol Multiphysics version 3.2 (Comsol 2008) was used to 

numerically predict the electrical field distribution within a wire-mesh sensor. This 

software package is based on finite element method (FEM) to solve partial 

differential equation (PDE) problems. 

 

 

Figure 5.5: Geometry model of the simulated setup. The wire diameter is 0.1 mm, the 
distance between parallel wires 2 mm, and the axial separation between the wire planes 
1.5 mm. The simulation domain was defined by a cuboid with volume of 6 × 6 × 8 mm3. 

 



 5.3 Numerical field simulation    75 

 

 

Figure 5.6: Voltage distribution for the simulated sensor as described in Figure 5.5. The 
value of each isosurface (in volts) is indicated in the figure. 

A simplified 5 × 5 wire-mesh sensor geometry was modeled in three-dimensions, as 

depicted in Figure 5.5. Since the sensor dimensions are much smaller than the 

wavelength of the electrical fields employed, the wire-mesh sensor can be considered 

as an electrostatic field problem. Thus, the voltage V within the sensor can be 

calculated by solving the Poisson's equation in the form (see Appendix B.1, compare 

with (B.17)) 

 ( ) ( )( )0 0Vε ε∇ ∇ =r r , (5.11) 

assuming the free charge density ρ in the material is zero, where r is position vector, 

ε0 and ε are permittivity of vacuum and relative permittivity, respectively. To 

complete the model, the following boundary conditions were used. The voltage of the 

active transmitter wire, denoted by Tx, is set to +1 V while all other wires are on 

ground potential. Concerning the simulation domain (cuboid), the four lateral faces 

are set to a symmetry interface, satisfying 0⋅ =n D  (the normal component of the 

electric displacement equals zero); top and bottom faces are set to ground potential. 

A grid composed of approximately 200 000 tetrahedral elements was generated and 

the PDE problem was solved using an algebraic-multigrid solver. The simulation took 

about 60 s to converge (normalized residual error less than 10-7) in a Pentium III 

1.7 GHz, 1 GB RAM computer. Figure 5.6 shows the obtained voltage distribution. 
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The isosurfaces are concentric cylinders close to the emitter wire, as for a 

conventional line charge, whereas approaching the other grounded emitter wires they 

get distorted. 

 

5.3.2 Crossing point capacitance 

To qualitatively evaluate the field distribution of a wire-mesh sensor, a perturbation 

approach was employed. A perturbation is placed within the simulation volume and 

its impact on the capacitance of a crossing point is analyzed. The simulated 

capacitance of a crossing point Csim between the active transmitter wire and a given 

receiver wire is calculated by integrating the induced surface charge density ρ over 

the wire boundaries Γ 

 ( )sim
1C d
V

ρ
Γ

= Γ ⋅ Γ∫ . (5.12) 

This integral is implemented as post-processing option in the Comsol software. 

The crossing point capacitance for perturbations with different sizes was evaluated. 

For this purpose, a rectangular block of 1.4 mm height (touching the wires) and with 

sizes of 0.5, 1, 2 and 4 mm was placed at the origin of simulation domain and 

consequently at the middle of the central crossing point (Figure 5.7a). The 

perturbation permittivity was varied in the range εp = 1 to 80, while the simulation 

domain permittivity was kept constant with value εd = 80. Figure 5.7b displays the 

obtained capacitance values. The size of the block was normalized by the wire 

distance dw (2 mm). The unperturbed crossing point capacitance (εd = 80) was found 

to be 0.9573 pF while the empty sensor was 11.97 fF (εd = 1), i.e. exactly 80 times 

smaller, as expected.  

From Figure 5.7, it is evident that the capacitance values show linear dependence 

on the perturbation permittivity εp. In this test, a crossing point may be described as 

a capacitor having two dielectrics in parallel between its electrodes. The resulting 

capacitance is given by the parallel circuit of the individual capacitances of each 

dielectric, i.e. by the addition of each component. Thus, the resulting capacitance is 

linearly dependent on each individual capacitance and consequently on each 

permittivity value. Of course, the smaller the size of a perturbation, the smaller is the 

induced change in the capacitance. For the perturbation of size 2⋅dw, the crossing 

point capacitance lowers to the level of an empty sensor capacitance value. Hence, 
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this suggests that the measurement volume of a crossing point may be larger than a 

cube with size dw centered at the crossing point, as accepted for the conductivity 

wire-mesh sensor (Richter et al. 2002). 

 

 

Figure 5.7: (a) Simulation arrangement for the investigation of the perturbation influence 
on the capacitance values. Two blocks are exemplary shown in the figure. (b) Capacitance 
values for four different perturbations sizes in a medium with εd = 80. The block sizes 
were normalized by the wire distance dw. 

 

5.3.3 Spatial sensitivity 

For a closer examination of the measurement volume of a crossing point, the 

following test was carried out. A small block perturbation of side 0.25⋅dw and 1.4 mm 

height (again touching the wires) was moved from the origin of simulation domain 

along the x- and y-axis. To quantify the sensitivity, a similar approach proposed by 

Lucas et al. (1999) was applied. The change in the capacitance ΔC due to the 

presence of the perturbation was used to define the spatial sensitivity ψ as 

 
( )max

C
C

ψ Δ=
Δ

, (5.13) 

where ( )maxCΔ  is the maximum ΔC, which occurred for the perturbation located at 

the origin. The spatial sensitivity for the central receiver wire, Rx0, and a 

neighboring one, Rx1, were computed for 10 perturbation positions in the x-direction. 

Furthermore, the spatial sensitivity for Rx0 in the y-direction was determined for 

seven perturbation positions. 
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Figure 5.8: (a) Simulation setup for the determination of the measurement volume of a 
crossing point. (b) Spatial sensitivity distribution of the wire-mesh sensor in x- and y-
directions. Symbols represent simulated conditions. 

Figure 5.8 illustrates the simulation setup and shows the obtained spatial 

sensitivities. All three responses show similar behavior in which the sensitivity starts 

at a maximum and decays to zero with an exponential shape. The sensitivities 

determined for Rx0 in x- and y-axis are almost identical. From this, it can be 

concluded that the measurement volume of crossing point is axial-symmetric in 

relation to the z-axis. Comparing the sensitivity responses for the wires Rx0 and Rx1, 

it can be seen that the both spatial sensitivities have also an almost identical 

response but are spatially displaced by the value 1⋅dw. Although the spatial sensitivity 

reaches values near zero only at distances of approximately 1⋅dw far apart of the wire, 

the assumption that the measurement volume has a cubic shape with side of 0.5⋅dw 

(Richter et al. 2002) is still a good approximation and will be used in the next 

sections of this chapter. 

A similar analysis as described above was performed to determine the sensitivity in 

the axial direction. A block perturbation of side 1⋅dw and high of 0.5 mm was moved 

in the z-direction in 10 positions and the spatial sensitivity calculated. Figure 5.9 

depicts the setup as well as the resulting spatial sensitivity. The sensitivity presents a 

flat response in between the wires, while it abruptly lowers to values near null for 

positions outside the volume between the wires. The response is symmetrical to the x-

y-plane. It follows that the measurement volume is confined to the space between the 

wire planes.  
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Figure 5.9: (a) Simulation arrangement for the determination of the sensitivity in z-
direction. (b) Spatial sensitivity distribution of the wire-mesh sensor in z-direction. 
Symbols represent simulated conditions. 

The simulations presented were repeated for slightly modified wire-mesh sensor 

dimensions, showing similar results for the voltage distribution and sensitivity 

analysis when compared with normalized dimensions. The capacitances of the empty 

sensor for all simulated cases are shown in Table 5.1. 

Table 5.1: Crossing point capacitances (in Femtofarad) for a few simulated wire-mesh 
sensor geometries and empty sensor (ε = 1), where dw is the distance between wires in a 
plane and dz is the axial distance of the two wire planes. 

        dw (mm) 

dz (mm) 
2.0 2.5 3.0 

1.5 11.97 16.11 20.12 

2.0 9.43 13.44 16.83 

2.5 7.87 11.32 14.42 

 

5.4 System evaluation 

In this section, the experimental system performance evaluation is described. The two 

different measuring systems developed to operate wire-mesh sensors differed only in 

the analog-to-digital conversion scheme and consequently in the maximal achievable 

frame rate as well as in the number of transmitter-receiver pairs. In the following 

evaluation, a 16 × 16 prototype sensor was used. The results obtained are similar to 

the 64 × 64 prototype. 
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5.4.1 Measurement uncertainty 

The novel wire-mesh sensor was firstly investigated regarding its accuracy and ability 

of distinguishing different substances. For this purpose, the wire-mesh sensor was 

entirely covered by some selected substances and 10 frames at the maximum 

sampling frequency were recorded and averaged in order to suppress random noise. 

The excitation frequency was set to 5 MHz and the input voltage amplitude to 3 Vpp. 

The calibration routine as described in section 5.2.2 was slightly modified. Instead of 

using a two-point calibration, a linear least-square regression of (5.4) for every 

crossing point was performed. That means, that (5.6) and (5.7) were replaced for 

their least-squares versions. Table 5.2 shows the selected substances and their 

reference permittivity, as well as the mean value of all crossing points  

  
16 16

1 1

1 ( , )
256 i j

i jε ε
= =

= ∑∑ , (5.14) 

the relative deviation from the mean value for each substance 

 
ref

ref

ε εδ
ε
−=  , (5.15) 

and the maximal deviation from the mean value 

  
,

( , )MAX
i j

i jε εε
ε∀ ∀

⎛ ⎞− ⎟⎜Δ = ⎟⎜ ⎟⎟⎜⎝ ⎠
, (5.16) 

where ( , )i jε  represents the measured permittivity distribution for each substance. 

Mean and maximal deviations between the measured and expected values were found 

to be less than 10%.  

In order to investigate the individual crossing points, the measured voltage for all 

crossing points log( , )V i j  were plotted in dependence on the permittivity for the 

measured substances (Figure 5.10a). From that, the linear dependence of Vlog over the 

logarithm of ε becomes evident, as predicted by (5.4). The individual lines have 

different linear and angular coefficients, i.e. parameters a and b in (5.4), thus 

indicating the need for a calibration routine. There is a group of lines which are 

dislocated from the most lines. These outlier lines come all from the same receiver 

channels and may be attributed to a larger component tolerance deviation. The 

values determined by (5.8) after the calibration routine are compared with the 

reference values in Figure 5.10b. All results fall within a 10% deviation (dashed 
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lines). Even the few outlier lines in Figure 5.10a were correctly calibrated producing 

results within the 10% deviation bands.  

Table 5.2: Results for the permittivity measurement with different substances. The 
reference permittivity values were taken from Lide (2005). Table also presents the mean 
value of measured permittivity ε  according to (5.14), the relative deviation δ to the 
reference permittivity according to (5.15), and the maximal deviation from the mean 
value over the 256 measuring points Δε according to (5.16). 

Substance εref (-) ε (-) δ (%) Δε (%) 

Air  1.0   1.02 1.68 8.18 

Silicone Oil  2.0   1.92 -3.91 5.64 

2-propanol 20.1 20.27 0.85 9.10 

Glycol 41.1 45.18 9.92 0.86 

Deionized Water 80.1 73.98 -7.64 7.67 

 

 

 

Figure 5.10: (a) Measured logarithmic voltage Vlog in dependence on the relative 
permittivity. (b) Comparison of measured (5.8) and the reference permittivity values. The 
dashed lines represent the 10% deviation from the ideal line; error bars representing the 
maximal signal deviation from mean value (•) are smaller in size than the symbols and 
therefore are not visible.  

The system was then investigated regarding instrumental noise. The wire-mesh 

sensor was covered with silicone oil and 1 000 frames were recorded at 625 fps. Again 

a voltage amplitude of 3 Vpp and excitation frequency of 5 MHz were used. The 

standard deviation of the measured voltages Vlog for each crossing point over the 

1 000 frames was used to estimate the instrumental noise. Figure 5.11 illustrates the 
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distribution of the standard deviation of the measured voltages for the 256 crossing 

points. A maximal value of the standard deviation of 0.58 mV was obtained. 

Using the uncertainty propagation rules (ISO 1995) in (5.8), the noise in the 

permittivity measurement caused by the noise in the voltage measurement can be 

estimated. Hence, 

 
( ) ( )logU VU

a
ε
ε

=  , (5.17) 

where U(x) denotes the uncertainty in the quantity x. Applying a typical value for 

the system parameter a = 0.2154 and taking the maximal value of 0.58 mV from 

Figure 5.11, a maximal relative noise level of 0.27% in the permittivity measurement 

is found. This noise level is much smaller than the maximal deviation of the 

individual crossing point measurements as showed in Table 5.2 and can therefore be 

neglected. 

 

Figure 5.11: Distribution of the standard deviations for all 256 crossing points determined 
from 1 000 acquired frames for the wire-mesh sensor covered with silicone oil. 

 

5.4.2 Time response 

To assess the system time response, the step response of one crossing point was 

evaluated. The excitation frequency of 5 MHz was switched on and off at a 50 kHz 

repetition rate by means of the analog switch (Sx in Figure 5.4). The analog switch 

control voltage Vctr, the excitation voltage at the crossing point Vcp, and the log-

detector output voltage Vlog were measured with an oscilloscope.  Figure 5.12 presents 
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the results showing normalized voltages. It is clear that the time response of the 

circuit is determined by the receiver circuit response. While the voltage Vcp responds 

within a few nanoseconds, Vlog presents typical exponential first-order system 

response. The measured settling times for 1% error in Vlog were 4.13 μs and 4.40 μs 

for turn on and turn off, respectively. These values are slightly larger than the ones 

specified in the log-detector data sheet, which is explained by the fact that a larger 

capacitor value (68 pF instead of 2 pF recommended in the data sheet) was used at 

the log-detector output to reduce the output signal ripple. If required, the time 

response might thus still be improved by lowering the capacitor value, but on cost of 

increasing the noise level and thus the uncertainty in the measurements. The 

measured time response corresponds to a maximal sampling frequency of 225 kHz for 

the analogue-digital conversion and thus gives a maximal frame rate of 14 063 fps for 

the actual 16 × 16 sensor configuration. 

 

 

Figure 5.12: Step response of the receiver circuit showing the normalized analogue switch 
control voltage Vctr, the excitation voltage Vcp, and the log-detector output voltage Vlog. 

 

5.4.3 Comparison with conductivity wire-mesh sensor 

In order to compare the image produced by the novel capacitance wire-mesh with a 

standard conductivity wire-mesh sensor, the following experiment was carried out. 

Since water is a conducting substance it can be measured by both conductivity and 

capacitance wire-mesh sensors and was therefore chosen.  

The flow channel with integrated sensor was filled with water (electrical 

conductivity σ = 2 μS/cm), placed in the horizontal position and rotated 45°. In this 
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way, a well-defined planar phase boundary imitating a stratified two-phase flow is 

realized. Figure 5.13a presents the cross-sectional images generated by both systems, 

where 10 frames were acquired at 625 fps and averaged. In Figure 5.13b the lines of 

equal void fraction α are shown, which were calculated by interpolating the measured 

values at the crossing points. These lines represent the interface between the two 

phases. The agreement between the images obtained with both systems as well the 

lines of equal void fraction are very good. The figures also illustrate the suppression 

of crosstalk between the individual crossing points. The presence of crosstalk would 

have caused a blurring effect in the image and hence a distortion in the line of equal 

void fraction. The water-air interface would not have been correctly represented. In 

fact, the accuracy of the detection of the interfacial area corresponds to the size of 

one mesh of wires, i.e. 3.12 mm for this sensor. In this way, the image produced by 

the capacitance wire-mesh sensor (as well as the conductivity sensor) is free of 

crosstalk artifacts. 

 

 

 
 

Figure 5.13: (a) Cross-sectional images obtained with the capacitance and conductivity 
wire-mesh sensors when measuring a planar phase boundary. The gray scale represents 
the void fraction α. (b) Comparison of the lines of equal void fraction for three selected 
values (α = 0.25, 0.50, and 0.75). The lines were calculated by interpolating the measured 
values at the crossing points. 
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5.4.4 Influence of liquid conductivity 

Although the circuit of the capacitance wire-mesh sensor was conceived and 

implemented to measure capacitances, the influence of liquid conductivity, i.e. the 

resistive part of impedance, on the auto-balancing circuit was investigated. In this 

way, as described in section 3.1.2, the unknown impedance of a crossing point for a 

lossy dielectric is formed by a capacitor (linked with fluid permittivity) and a resistor 

(linked with fluid conductivity). 

The rectangular cross-section wire-mesh sensor (Figure 5.1a) was filled with water 

of increasing conductivity values which was obtained by the controlled addition of 

sodium chloride. The reference conductivity was monitored with a conductivity meter 

Cond 330i (WTW GmbH, Germany, 0.5% measurement uncertainty). For each 

reference conductivity value, 10 frames were acquired at 625 fps and averaged. Figure 

5.14a shows the measured Vlog voltages for the conductivity values varying from 1 to 

104 μS/cm (or 10−4 to 1 S/m). The lowest investigated value of 1 μS/cm represents 

deionized water. Tap water has a conductivity of about 400 μS/cm. The highest 

value measured (104 μS/cm) corresponds approximately to sea water with a salinity 

of 5.6 g/l at 25 °C and 105 Pa (Perkins and Lewis 1980). 

Figure 5.14 shows the measured voltage for different conductivity values of water 

for one exemplary crossing point. Similar behavior was found for the other crossing 

points. Basically, two regions can be identified. For conductivity values of up to 

100 μS/cm, the measured voltages Vlog are constant; meaning that the conductivity 

does not play any role, i.e the circuit is capacitance-dominant. For conductivity 

values higher than 100 μS/cm, the measured voltage increases with increasing 

conductivity. In this second region the resistive part of the impedance starts 

influencing the measurement. It is predicted that at a certain point the circuit 

becomes resistance dominant and the response of Vlog turns linearly dependent on the 

conductivity. 

To demonstrate the above described behavior a closer analysis was performed. 

Since the measured quantity is now complex, the relationship governing the circuit 

output voltage must be revised. In the circuit of Figure 5.4, the logarithmic detector 

measures the amplitude of the sine wave voltage Vo disregarding its phase value, thus 

(5.4) may be written considering the modulus of the complex permittivity of a 

crossing point 
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0
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ωε
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. (5.18)  

Using the identity of complex numbers 2 2x jy x y+ = +  and rearranging (5.18), 

one obtains 

 ( )( )2 2
log ' ln ' 'V a c bσ= ⋅ + + , (5.19) 

where a', b' and c' are constants. A non-linear least-squares fit was performed using 

(5.19). Figure 5.14 also depicts the obtained regression curve to the measured data. 

Additionally, two asymptotic lines (dotted) are also shown, indicating the two regions 

previously mentioned. The horizontal line represents the capacitive region and the 

inclined line the resistive one. Furthermore, the excellent regression coefficient 

R2 = 0.999 confirms the proposed model. With this experiment the possibility of 

investigation of conductive liquids by means of a capacitance wire-mesh sensor is 

demonstrated. Further work should emphasize the investigation of flowing two-phase 

mixtures. 

 

 

Figure 5.14: Measured voltage (×) in dependence of water conductivity for an exemplary 
crossing point. Non-linear least-squares regression (full line), where the capacitive and 
resistive dominant regions are clearly shown by the help of the two asymptotic lines 
(dotted). 
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5.5 Application to flow measurement  

In order to demonstrate the applicability of the newly developed sensor in 

investigation of flow problems, a few selected flow experiments have been carried out 

which are presented and discussed in this section. It is not the aim here to completely 

investigate the flow phenomena, but rather present the sensor as new experimental 

tool. 

 

5.5.1 Oil-air stagnant two-phase flow 

As a first application, the capacitance wire-mesh sensor was employed to measure 

silicone oil/air stagnant two-phase flow. The vertical flow channel with the integrated 

wire-mesh sensor (Figure 5.1a) was filled with silicone oil (ε = 2.7) and air was 

injected at the bottom of the column through a hole located in the very center of the 

channel. Hence, the flow channel was operated as a very simple bubble column. The 

wire-mesh sensor controlled by the first generation electronics was set up to acquire 

data at maximum frame rate of 625 fps. Two reference images for the calibration 

routine with 100% gas and 100% liquid were acquired at the beginning of the 

experiments.  

 

Figure 5.15: (a) Axial and (b) cross-sectional slice images of an oil/air bubbly two-phase 
flow acquired with the capacitance wire-mesh sensor. 
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Figure 5.15 shows images obtained with the sensor and application of the 

calibration routine. The four cross-section images show details of one single bubble 

for selected time frames. The image on the left (Figure 5.15a) is an axial slice image 

which is produced by taking the values from electrode number eight, i.e. along a 

central chord of the channel. Two larger bubbles can be observed. Note that the 

vertical axis has the dimension of time and not space. Although the permittivity 

values of the two substances are rather close to each other, they are precisely 

distinguished by the capacitance wire-mesh sensor. 

 

5.5.2 Oil-air vertical pipe flow 

The capacitance wire-mesh sensor was also tested to measure pipe flow under 

industrial conditions. The 24 × 24 wire-mesh sensor (Figure 5.1b) was used to 

investigate an oil-gas vertical flow in a 67 mm diameter pipe in different flow regimes. 

The experiments were carried out on an inclinable rig facility of the Chemical 

Engineering Laboratory of the School of Chemical and Environmental Engineering, 

University of Nottingham, UK. It had been employed for earlier studies with a 

38 mm diameter pipe (Geraci et al. 2007). It had more recently been modified and 

used for flow measurements with the present 67 mm diameter pipe (Hernandez Perez 

et al. 2007).  

Table 5.3: Some physical properties of the silicone oil used in the experiments. 

Parameter Value 

relative permittivity 2.7 

density 900 kg/m3 

viscosity 5.25 mPa⋅s 

surface tension 0.02 N/m 

 

a) Experimental setup and data analysis 

The facility consists of an inclinable 6 m long rigid steel frame which can be rotated 

between vertical to horizontal (Figure 5.16). The 67 mm test pipe made of 

transparent acrylic glass is mounted on the frame and was instrumented with the 

wire-mesh sensor and a high-speed camera (Photron, Fastcam-APX 120K). The fluids 
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used were silicone oil and air. Some physical characteristics of the silicone oil are 

listed in Table 5.3. 

 Oil was taken from a storage tank and pumped through a set of rotameters to 

monitor the flow rate and into the mixer. Air from the main laboratory 6 bar-

compressed-air system was mixed with the oil in the pipe inlet. The air flow rate was 

also monitored by a set of calibrated rotameters. The oil-air mixer was mounted at 

the bottom of the test pipe. The wire-mesh was located 5 m from inlet (i.e. one meter 

from the outlet) so that the flow monitored was well-developed. The pipe outlet is 

connected to a gravity separator, where the air is released to atmosphere and the 

liquid is returned to the storage tank. The high-speed video system was located 0.5 m 

below the wire-mesh sensor. 

 

Figure 5.16: Experimental setup of inclinable rig facility at University of Nottingham, 
UK; (a) schematic diagram and (b) photo.  

In the work presented here, the pipe was mounted vertically and measurements 

were carried out under different conditions determined by the superficial gas velocity 

UG, in order to investigate flow regimes. For the preset value of the superficial liquid 

velocity UL = 0.2 m/s different values of the superficial gas velocity were chosen in a 

range between 0.05 and 4.7 m/s. After adjustment of UG the flow was measured with 
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the wire-mesh sensor at a frame rate of 5 000 fps and in parallel with the high-speed 

video system at 1 000 fps. 

Two visualization techniques were used to display the measured wire-mesh data: 

(i) axial slice images and (ii) side projections. In the former one the temporal 

evolution of phase fraction values along the central electrode is displayed. Thus, such 

an image obtains the character of a side view of the flow structure on a vertical cut 

through the pipe along the axial direction. With the second technique, side 

projections are processed using a simplified ray-tracing algorithm as described in 

detail by Prasser et al. (2005a). In this visualization technique, an illumination of the 

three-dimensional phase fraction distribution by parallel white light is assumed and 

the light intensity departing in the direction of a virtual observer is calculated. For 

this purpose, virtual absorption and dispersion coefficients for the three light 

components (red, green and blue) are assigned to the liquid and gaseous phase, 

respectively. This method supplies instructive pseudo-3D imaging. 

b) Flow patterns in vertical pipe 

The function of the sensor is illustrated on examples of flow visualization for a 

constant UL = 0.2 m/s. The pictures in Figure 5.17 show the transition of a few 

different flow regimes processed with both visualization techniques described above.  

At the lowest gas flow rate, bubbly flow is observed. By increasing the gas 

superficial velocities, the transition to slug flow, churn turbulent flow, and finally to 

annular flow occurs. The vertical axis represents the time of 3 s. This time-axis may 

be transformed into a virtual z-axis, when it is scaled according to the velocity of the 

gaseous phase (Prasser et al. 2005a). 

In Figure 5.17a, side projections are displayed from which the flow pattern can be 

easily recognized. However, the side projections have the same disadvantage which 

also occurs in visual observation of transparent pipes: with increasing gas fractions, 

the visualization of internal structures is no longer possible and the depth information 

of flow is lost. For this reason, the axial slice images are also presented (Figure 

5.17b). Such slice images have the advantage of presenting the flow structure in the 

mid-plane of the pipe without the view obstruction by bubbles in the region close to 

the pipe wall. For instance, the images where UG ≥ 0.47 m/s, some irregular flow 

structures can still be identified, whereby for the side projections almost nothing can 

be identified. Thus, both visualization techniques complement each other in the 

visualization of flow structures. 
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Figure 5.17: Visualization of wire-mesh sensor data obtained in the pipe flow 
measurement for UL = 0.2 m/s; (a) side projections and (b) axial slice images. The 
corresponded flow patterns obtained are also indicated.  
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Figure 5.18: Time series and probably density functions (PDF) of the cross-sectional 
averaged data for three flow conditions; (a) bubbly, (b) slug and (c) churn flow. 

Quantitative insights of the flow are obtained by the cross-sectional averaged time 

series of the void fraction measured by the wire-mesh sensor. For more details in the 

algorithmic calculation of such time series see Prasser et al. (2002a). Examples of 

time series are illustrated in Figure 5.18. The cases were selected to be in bubbly flow 

(UG = 0.05 m/s), slug flow (0.9 m/s) and churn flow (2.83 m/s). 

The low gas flow rate condition is characterized by low void fraction with quite 

regular peaks of higher void fraction probably representing clusters of bubbles. The 

slug flow data has alternate periods of high and low void fraction. The case for higher 

flow rate is churn flow which has mainly high void fractions with regular troughs of 

lower signal. In Figure 5.18 the probably density functions (PDF) of the time series 

are also plotted, showing the typical low void fraction peak for bubbly flow, the 

double peak for slug flow, and the broadened peak at higher void fractions for the 

churn flow (Costigan and Whalley 1997). 

c) Comparison with high-speed camera images 

For qualitative comparison purposes, the pipe flow was also investigated by means of 

a high-speed video system. Figure 5.19 shows two exemplary images for gas 

superficial velocities of 0.05 and 2.83 m/s. Even for the lowest gas flow rate it is 
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obvious that due to the swarms of small bubbles in the pipe the optical investigation 

of flow structures located in the inner circle of the pipe is difficult. However, a bigger 

bubble may be recognized (indicated by an arrow). For UG = 2.83 m/s, the two-

phase oil-air mixture forms a foam which completely obfuscates the pipe internal, 

thus no information of the flow structure can be obtained. For those observations, the 

limitation of optical visualization techniques in the investigation of multiphase flows 

becomes clear. Optical methods are only suitable for the case of very low void 

fraction values. Here the advantages of using a wire-mesh sensor for the flow 

visualization are fairly clear. 

 

 

Figure 5.19: Video images of the oil-gas flow for two different gas superficial velocities Ug; 
(a) 0.05 m/s; (b) 2.83 m/s.  

As described above and from Figure 5.19, for the lowest gas superficial velocity, 

the flow is characterized by a swarm of small bubbles which disturb the optical 

visualization and from the visual inspection are expected to have diameters of a few 

millimeters only. Of course, the wire-mesh sensor cannot resolve bubbles smaller than 

its spatial resolution (2.8 mm for the sensor used), but the passage of such small 

bubbles between the crossing points of a wire-mesh sensor lower the measured signal. 

As a result, the bubbles are not fully resolved but their presence can be detected. 

This fact is readily appreciated in the PDF for UG = 0.05 where the peak occurs at 

about 0.06 void fraction. Earlier studies with the wire-mesh sensor in air-water 

systems have shown that the peak for bubbly flow at similar conditions occurs at 

much lower void fraction values (Azzopardi et al. 2008) due to the fact that the 

swarm of small bubbles was not present. The main reason for the occurrence of small 

bubbles in the oil-air system is the much lower surface tension of oil than water 

which induces the formation of such small bubbles.  
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5.5.3 Three-phase flow 

Three-phase gas-oil-water flow is a common occurrence in the petroleum industry. 

Although many different three-phase metering systems have been developed and 

tested (see section 2.2.1c), none can be referred to as generally applicable or 

universally accurate. Many current systems utilize radioactive sources in their 

measurement concept, so that such meters must comply with high security and 

reliability standards due to environmental and legal issues (Corneliussen et al. 2005). 

Therefore, there is a continuous search for new technologies which may substitute the 

radiation-based phase fractions distribution measurement. 

A possible alternative to the current-in-use systems can be the newly developed 

capacitance wire-mesh sensor. The good accuracy achieved in the permittivity 

measurement (section 5.4.1) allows the wire-mesh system to securely distinguish each 

of the three phases of an air, oil and water flow. A preliminary test has been 

performed regarding the capability of the system to investigate a three-phase flow. 

The flow channel with integrated wire-mesh sensor was filled up with air, oil and 

water in such a way that each of these substances occupies one third of the cross-

section area. It was also placed in a horizontal position. In this way, a three-layer 

structure as shown in Figure 5.20 was obtained which imitates a stratified flow. Prior 

to begin of the experiment a two-point calibration was realized with air and water as 

reference. One single image was acquired and Figure 5.20 depicts the result, in which 

a logarithmic color scale was used for the permittivity values. Although the 

permittivity values of air (ε = 1), oil (ε = 2) and water (ε = 80) lay in a high 

dynamic range, all three phases can be clearly recognized. 

In order to further investigate the capability of the wire-mesh sensor for 

investigating transient three-phase flow, the flow channel with integrated sensor, 

having the three substances air, oil and water, was shaken to simulate a flow in the 

sensor box. The 16 × 16 wire-mesh sensor was configured to acquire 625 fps while the 

sensor box was agitated. Figure 5.21 depicts the slice image for the central electrode 

of the flow measured during three seconds. With the employed color scale, air is 

shown in red, oil in orange and water in blue color, respectively. Starting from the 

stratified condition at the beginning of the experiment, an oil slug followed by two 

water slugs can be clearly seen. The interfacial areas between each phase are also 

visible having intermediate colors. 
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Figure 5.20: (a) Photo and (b) cross-sectional image of an imitated three-phase stratified 
flow constituted of air, oil and water. A logarithmic color scale was used for the 
permittivity values. 

 

 

Figure 5.21: Slice image for the central electrode of the three-phase flow. 

 A last experiment was carried out aiming to monitor the separation process of a 

three-phase air-oil-water mixture. For this reason, the sensor box (as previously used) 

containing the three substances was heftily agitated in order to properly homogenize 

the multiphase mixture. As a result of the mixing process, an emulsion is formed 

which was also visually observed. After the agitation the sensor was put at rest. The 

agitation and the following separation process were monitored by the wire-mesh 

sensor and in parallel with a video camera. Figure 5.22 depicts the process evolution 

where a slice image of the central electrode for a period of 60 s is displayed. The 

gaseous phase separates very rapidly from the liquid mixture due to the large 
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difference in density between gas and liquid phases. The emulsion formed by the 

agitation can be clearly observed as light blue region in the axial view having a 

permittivity value between 2 (for oil) and 80 (for water). The emulsion is 

continuously broken up and at the end of the 50 s period the three phases are 

completely separated. This behavior was also monitored by the video camera. The 

three static video images at exemplary time steps in Figure 5.22 also show the 

evolution of the separation process. The emulsion is seen as opaque region due to 

high light scattering. 

The simple experiments described in this section have shown promising results in 

the investigation of three-phase flow problems, thus encouraging for the further 

investigation of the performance of the wire-mesh sensor in real three-phase flows. 

 

 

Figure 5.22: Measurement of the separation process of an air-oil-water mixture. (a) Video 
images, (b) slice image for the central electrode. 

 

5.6 Conclusions 

In this chapter the development, evaluation and application of a new wire-mesh 

sensor imaging system was presented. The system is based on capacitance 

(permittivity) measurements and can measure the phase fraction distribution in a 

flow cross-section with high spatial and temporal resolution. This new sensor is able 
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to measure in either electrically non-conducting or conducting fluids. The 

investigation of the conductivity influence on the capacitive measuring circuit shows 

that the wire-mesh sensor may be also applied to investigate conductive fluids with 

conductivity values σ up to 1 S/m. In addition to the improved range of measurable 

substances, another special advantage of the capacitance wire-mesh sensor is the 

possibility to use electrically isolated wires, which enables to operate the sensor with 

protective wire coatings, for instance in aggressive media. 

The spatial sensitivity of a crossing point in the wire-mesh sensor for different 

geometries has been analyzed by means of simulations with a commercial FEM 

software. The results support the hitherto accepted assumption that the measurement 

volume of a crossing point can be approximated by a cube centered at the crossing 

point. Nevertheless, the exact sensitivity may be taken into account leading to an 

improved measurement accuracy of a wire-mesh sensor. 

The experimental evaluation of the prototype wire-mesh sensor system has shown 

good reproducibility and accuracy in capacitance measurements even at a rather 

short response time, thus allowing the system to be employed in the investigation of 

a wide range of substances even with close permittivity values, such as for air and oil. 

The good system accuracy also allows for the investigation of three-phase air-oil-

water mixtures. In preliminary experiments, the three phases in a stratified condition 

as well as in a simulated flow were correctly acquired, and the emulsion formation 

was also properly captured by the sensor. The evaluation of performance and 

limitations of the sensor for three-phase flow applications must still be deepener 

investigated in the future. 
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6 Planar array sensor 
 

This chapter introduces a novel sensor modality for imaging near-wall 

multiphase flows. The planar sensor is formed by a matrix of 

interdigital sensing structures and an associated electronics that 

measures very fast the conductivity or permittivity of the multiphase 

mixture at each individual sensing structure. In this way, 

instantaneous images of fluid distributions over sensor's surface are 

obtained. 

6.1 Introduction 

Interdigital electrode structures have been used for decades in a large diversity of 

sensing applications and research fields. Among them, the most common are 

nondestructive testing, chemical and physical sensing, biotechnology and 

telecommunications (Mamishev et al. 2004, Mukhopadhyay 2005). The working 

principle of interdigital sensors is based on the interaction of the electrical field 

generated by the sensor with the material or substance under test. The perturbation 

of the electrical field can be detected at a sensing electrode and is related to 

conductive or dielectric properties of the substance/material in the vicinity of the 

sensor. An important advantage of such electrode systems is the simple and cheap 

fabrication process and the possibility to investigate materials or substances from 

measurements with a single-side surface contact. Most of the current technical 

implementations of such sensors use one or a few sensing structures to investigate the 

material under test. The measurement accuracy must be high in order to assess 

chemical or physical material properties whereas the measuring time is normally not 

a concern and typically ranges from hundreds of milliseconds to a few minutes 

depending on application and accuracy needs (Mamishev et al., 2004, Kaatze and 

Feldman 2006). More recently multichannel sensors have been introduced to improve 
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the capability of sensing systems (Wittstock 2002). As a result, either the 

simultaneous measurement of multiple parameters or the introduction of imaging 

capability has been achieved (Gardner et al. 1995, Hermes et al. 1994, Wang et al. 

1996).  

The characteristics described above combined with high-speed measurements make 

interdigital sensors very attractive to be employed in the investigation of flow 

phenomena. The sensor can be mounted onto the wall of pipes or vessels and thus 

have a minimal influence on the flow.  

For the investigation of highly transient multiphase flows, a novel high-speed 

imaging system was developed based on electrical impedance measurements of a 

multichannel interdigital sensor (Da Silva et al. 2007c). The sensor comprises of a 

matrix of sensing structures which are individually measured in a multiplexed 

manner. By measuring the electrical conductivity or the permittivity of the 

interdigital sensing structures, phases of a multiphase flow or component 

concentration can be visualized and monitored. The images obtained from the sensor 

thus represent the component or phase distribution over the sensing area. 

This chapter initially describes the developed planar array sensors. Two different 

sensing principles were applied to operate the planar sensors: conductivity-based and 

permittivity-based. Each sensor modality is described individually in separated 

sections. Moreover, for each type of measuring principle developed, the sensor system 

is experimentally evaluated and some flow applications are presented and discussed. 

 

6.2 Interdigital array sensor 

The planar array sensors used to investigate flow problems were manufactured using 

standard printed-circuit board (PCB) fabrication technology. The simplicity and low 

cost of this fabrication technology permits a rapid design and manufacturing of 

arbitrary sensor geometries. Two examples of manufactured sensors are shown in 

Figure 6.1 and Figure 6.2. The former was built in a rectangular geometry with 4096 

interdigital sensing structures evenly distributed over an area of 620 mm × 500 mm. 

The interdigital sensing structures are multiplexed in a matrix with 64 driver (rows) 

and 64 sensing electrodes (columns). The sensor board was designed to fit to an 

experimental flow channel. Four high-density connectors at the back side of the 

sensor (not shown in Figure 6.1) allow the sensor to be connected to the measuring 

electronics. 
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Figure 6.1: Printed-circuit board of a planar sensor containing 64 × 64 interdigital sensing 
structures fitted to an experimental flow channel. The size of each sensing structure is 
5.8 mm × 6.6 mm and the size of the whole sensor is 620 mm by 500 mm. 

 

 

Figure 6.2: Printed circuit board of a planar sensor constructed for mounting inside a 
fluid coupling with a modified layout of 32 × 32 interdigital electrodes and an interdigital 
sensing structure in detail. The spatial resolution of a single sensing structure is 
2 mm × 3 mm. 

 

The sensor of Figure 6.2 has a modified half-moon shape with approximately 1 000 

sensing structures arranged in a 32 × 32 matrix. This sensor was employed to 

investigate the fluid distribution inside a fluid coupling (see section 6.3.5). A bar-line 

extension of the board carries the ground shielded sensor lines to a connector. In both 
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cases the electrodes are gold plated to reduce electrochemical effects during electrical 

measurement. 

 

6.3 Conductivity-based planar sensor 

6.3.1 System description 

The measuring electronics applied for the conductivity measurement is similar to the 

electronics of a conductivity wire-mesh sensor (Prasser et al. 1998) and is described 

below. Figure 6.3 depicts the block diagram of the measuring electronics for an 

exemplary 64 × 64 electrodes configuration as well as the timing diagram for the 

excitation-measuring scheme. 

The transmitter electrodes are connected to a bipolar voltage source in a successive 

order while all the other transmitter electrodes are connected to ground potential by 

means of a set of analog switches. The outputs of the switches are buffered by 

operational amplifiers in order to create a low impedance path. This step assures that 

the potential of all transmitter electrodes, except the one of the currently activated 

electrode, are at ground potential. A bipolar excitation voltage (dc-free) is employed 

to avoid electrolysis effects. 

The electrical currents flowing from the activated electrode to the sensing electrode 

are converted to voltage by a set of auto-balancing bridge circuits. Since the quantity 

of interest here is the electrical conductivity of the fluid over a sensing structure, the 

auto-balancing bridge circuit is dimensioned to be resistance-dominant. The 

capacitors in the feedback network of the opamps showed in Figure 6.3 serve only for 

frequency compensation. Typical wave forms for the excitation and the measured 

voltages are also shown in Figure 6.3. All voltages are analog-to-digital converted 

simultaneously at the rising edge of the sample-and-hold signal. This routine is 

repeated for all transmitter electrodes being activated. Once all transmitter electrodes 

have been activated and all currents have been measured, one frame is obtained 

containing 4096 values (for this sensor type) which corresponds to the distribution of 

the electrical conductivity over the sensor surface. 

The various frames acquired during a measurement are saved in an Nx × Ny × Nt 

data matrix in computer memory, where Nx, Ny are the number of transmitter and 

receiver electrodes and Nt denotes the number of time steps. The electronics is able to 

produce up to 2 500 images per second. 
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Figure 6.3: (a) Simplified block diagram of the measuring electronics. (b) Timing diagram 
for the multiplexed excitation and measuring scheme for the sensor. Voltages are sampled 
at the rising edge of the sample-and-hold signal. One frame is complete when the 64 
transmitter electrodes have been activated and all currents have been measured. The 
signal SP denotes the polarity switch and S1 to S64 the analog switches. 

 

6.3.2 Data processing 

The voltage values measured by the surface sensor are proportional to the electrical 

current flowing from the transmitter electrode to the receiver electrode. This current 

basically depends on two parameters:  

 

• the electrical conductivity σ of the liquid and  

• the liquid wetting level (or liquid film thickness) of a sensing structure. 

 

Depending on the application one of those two parameters can be explored to 

generate information about the fluid distribution across the sensor. Since the system 

generates only one measurement for two unknowns, one of the parameters must be 

known beforehand or kept constant during the experiments to generate an 

unambiguous output. In this way, two different situations can be investigated. In the 

case the wetting level is constant, that means, the sensing structures are always 

covered by a liquid, conductivity tracers can be applied to evaluate the flow in the 
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channel. The other choice is to measure the liquid distribution across the sensor 

assuming the conductivity being constant. For instance, the presence of gas bubbles 

on the surface can be detected due to the fact that the bubbles will change the 

wetting level of a sensing structure.   

The acquired voltages for all sensing structures are saved in a data matrix, in the 

form ( ), ,V i j k  where i and j denote spatial coordinates and k the temporal point 

index. In principle, the evaluation of the measured voltage matrix ( ), ,V i j k  would be 

sufficient to investigate the component or phase distribution across the sensor 

surface. However, differences in the electrical response of the individual transmitter-

receiver pairs, due to tolerances of electronic component or sensor elements, cause a 

variance in the measured signals which in turn produces artifacts in the resulting 

images. To compensate this variance two strategies are used to correct sensor’s 

outputs depending on the measurement type, which are described bellow. 

In the case that absolute conductivity values are to be assessed, the formula 

 ( ) ( ) ( ) ( ), , , , , ,i j k V i j k a i j b i jσ = ⋅ +   (6.1) 

may be used for calibration, since the measured voltage is directly proportional to the 

electrical conductivity of the liquid at the sensing structure. The parameters a(i,j) 

and b(i,j) are determined from measurements with substances of known conductivity. 

For this reason, data are firstly acquired with a substance of low conductivity σL 

covering the whole sensor, thus producing the reference data matrix L( , )V i j . 

Normally average values over a certain time are used to reduce statistical signal 

fluctuations. This procedure is then repeated with the entire sensor surface covered 

with another substance having a higher conductivity value σH, which gives the second 

data matrix H( , )V i j . In this fashion, applying (6.1) for both measurement situations, 

it is possible to determine them from 

  
H L

H L( , )
( , ) ( , )

a i j
V i j V i j

σ σ−=
−

, (6.2) 

 
H L L H

H L

( , ) ( , )( , )
( , ) ( , )

V i j V i jb i j
V i j V i j

σ σ⋅ − ⋅=
−

. (6.3) 

Assuming the second situation described above, where the wetting level or phase 

distributions are to be determined instead of conductivity values, the parameter 
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"wetting level" ( ), ,w i j k  may be introduced, which is determined from the ratio of the 

measured voltage and a reference point, hence 

 ( ) ( )
( )
, ,

, ,
,

V i j k
w i j k

C i j
=  , (6.4) 

where C(i,j) is the reference point which is obtained from a measurement when the 

whole sensor is covered by liquid. In this way, the wetting level w assumes values 

between zero and one, meaning a fully dry or a fully wet sensing structure, 

respectively. 

With the described procedures in this section, images of the instantaneous fluid 

distributions across the sensor can be generated by mapping the wetting level 

( ), ,w i j k  or conductivity values ( ), ,i j kσ  to a color scale and then plotting them in 

the spatial directions of i and j for a fixed value of index k. Sequences of these 

distributions can be viewed as video sequences by stepwise incrementing the temporal 

index k. 

 

6.3.3 System evaluation 

a) Measurement uncertainty 

The system was firstly investigated regarding its accuracy in measuring the electrical 

conductivity. For this purpose different concentrations of sodium chloride were 

dissolved in deionized water thus obtaining solutions with different electrical 

conductivity values. The flow channel of Figure 6.1 was sequentially filled with NaCl-

water solution with known conductivity value. Reference conductivity of the samples 

was measured by the conductivity meter Cond 330i (WTW GmbH, Germany, 0.5% 

uncertainty). For each reference conductivity value, 10 frames were acquired with the 

array sensor at a frequency of 2 500 Hz and averaged. 

Figure 6.4a depicts the measured voltage values in dependence on the reference 

conductivity for all 4096 sensing structures. The error bars represent the maximal 

signal deviation from the mean values (circles). The three solid lines denote the linear 

fits for mean, maximal and minimal values within a same reference conductivity 

value. A linear dependence of measured voltage V versus conductivity values σ is 

obtained, as anticipated by (6.1). Each driving-sensing electrode pair has its own 

response. The large signal deviation is clearly shown in the plot. Its maximal value 

accounts to 32% when compared to the mean value. In principle, 4 096 lines with 
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different slopes and constant terms are obtained. Thus, the need of a calibration 

routine is evident, as already described in section 6.3.2. 

 

 

Figure 6.4: (a) Measured voltage in dependence of the electrical conductivity. The three 
solid lines represent the linear fits for mean, maximal and minimal values within a same 
reference conductivity value. (b) Comparison of calculated values after calibration by 
(6.1) and reference conductivity values. The dashed lines represent the 10% deviation 
from the ideal line (solid line). In both plots the errors bars denote the maximal voltage 
deviation from mean values (full circles). 

The results obtained after the calibration routine are compared with the reference 

conductivity values in Figure 6.4b. The error bars represent the maximal signal 

deviation within a single conductivity value. The maximal value for the deviation is 

reduced to 7%, excluding the measurement at 3 μS/cm. Furthermore, all 

measurements for conductivity values of more than 3 μS/cm fall within a 10% 

deviation (dashed lines). The measurements for the conductivity value of 3 μS/cm 

(first data point) have a too low voltage level (mean value of 130 mV) being more 

sensitive to noise and consequently lowering the accuracy. If lower conductivity 

values are to be investigated with the sensor, some parameters of the electronics such 

as amplifier gains or the amplitude of excitation voltage can be easily adapted for a 

new operation range.  

The conductivity-based sensor was next evaluated regarding instrumental noise. 

For that, 1 000 frames at 2 500 Hz were acquired for the flow channel filled with 

water having a conductivity value of 150 μS/cm. The standard deviation for each 

sensing structure over the 1 000 frames was determined. The maximal noise value 

found was 0.49%, which is one order of magnitude lower than the value obtained in 

the uncertainty evaluation (Figure 6.4).  
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b) Depth sensitivity  

In order to experimentally evaluate the depth sensitivity of the sensor, the following 

experiment was carried out. The flow channel of Figure 6.1 with the integrated 

planar sensor was firstly put in the horizontal position. An electrically non-

conducting glass plate of 120 mm × 200 mm size and 3 mm thickness was placed 

over the planar sensor so that one of its endpoints was raised by a thin plastic spacer 

of 1.5 mm thickness while the other one was in direct contact with the sensor, 

forming an inclined plane as shown in Figure 6.5a. The flow channel was then filled 

up with water (conductivity 250 μS/cm). In this way, a continuously growing water 

thickness over the sensor in an area of 15 × 25 sensing structures was generated. In 

the following analysis only this area was taken into account. Ten frames at 2 500 fps 

were acquired and averaged. From the measured voltage values, the wetting levels 

were computed from (6.4) and a calibration measurement which was previously taken 

when the whole sensor was fully covered by water without plate. Figure 6.5b shows 

the mean values over the 15 rows for the calculated wetting levels. The form of the 

curve is an exponential rise which commensurate with previous analysis of interdigital 

structures (Li et al. 2006).  

 

 

Figure 6.5: (a) Experimental setup for the depth sensitivity estimation. (b) Wetting level 
response for different water thickness over the sensor surface. 

 

There is no strict definition of penetration depth. Therefore the penetration depth 

97γ  of the sensor was defined as the liquid thickness producing a signal level which 
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represents 97% of the asymptotic value (w = 1), i.e. the value for the case the 

thickness is infinite. In this way, 

 
( )
( )

97 0.97
V z
V z

γ=
=

= ∞
 , (6.5) 

where z is the water thickness across the sensor. By using interpolation of the 

measured data, one obtains a value of 97γ  = 0.69 mm. This value denotes the 

maximal liquid thickness which influences the measurements at a planar sensor. 

Similar accuracy, noise and depth sensitivity results have also been obtained in the 

evaluation of the sensor of Figure 6.2 having smaller interdigital structures. Since 

they are quite similar to the values obtained in this section, these results are omitted 

here and the reader is referred to Da Silva et al. (2008). 

 

6.3.4 Measurement of a buoyancy-driven flow 

Buoyancy driven flow is often found in many engineering applications such as mixing 

process of fluids with different density. In nuclear reactors, fluid mixing induced by 

buoyancy effect is relevant for 

• boron dilution issues, when highly borated water with different temperature 

mixes with the ambient water in the reactor pressure vessel, 

• pressurized thermal shock scenarios, when cold emergency cooling water is 

injected into the reactor and is contacted with the vessel wall, and 

• containment analysis, when in the case of severe accidents, hot hydrogen and 

steam mix with the containment atmosphere. 

 

Especially the problems related to the fluid mixing of borated and unborated water 

has been the scope of investigation at FZD (Rohde et al. 2005; Prasser et al. 2003). In 

certain situations, when a lack of boron concentration occurs in the reactor, 

additional borated water is added to the core via an emergency injection system. This 

borated water has usually a colder temperature than the ambient coolant. Therefore, 

both the boron concentration and the temperature will affect the density difference of 

the fluids being mixed and therefore affect the mixing processes that occur in such 

situations. Thus, the degree of mixing of weakly and highly borated coolant is a 

critical issue with respect to the reactivity insertion into the reactor core. In this way, 
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understanding the impact of such phenomena can help in the design and operation of 

nuclear reactors. 

The aim of the present study was to analyze the mixing processes related to the 

boron dilution problem for safety-relevant scenarios in reactors. A simple vertical test 

facility was constructed as nuclear reactor geometries are complex leading to the 

mixing processes that are not widely understood or where the influence of the 

buoyancy may not be significant.  

a) Experimental setup 

A vertical mixing test facility with simple geometry having rectangular cross section 

was designed and constructed (Figure 6.6). Five identical rectangular segments as 

described in Figure 6.1 are stacked together. Each segment is made of acrylic glass 

which is 500 mm wide by 625 mm high by 100 mm deep. The whole test section is 

3.32 m high. A flow inlet is located in between segments 1 and 2, while an outlet is 

positioned in between segments 4 and 5. Segment number 2, right after the inlet, is 

instrumented with the planar sensor. In this region the most interesting mixing 

process occurs. The facility ensures that the gravity force acts along a significant 

length scale.  

In order to visualize the mixing process of two liquids having different densities in 

a controlled manner, the following experiment was carried out. Water-glucose 

mixtures were used to produce density gradients. A glucose-water solution containing 

6% glucose has a corresponding density of 1020 kg⋅m-3, i.e. 2% density difference to 

clean water. This is equivalent to about 60 K temperature difference. Furthermore, 

sodium chloride was added to the higher density water-glucose solution acting as 

tracer. In this way, the mixing process of clean water with the glucose-water solution 

can be monitored by means of the planar sensor. It has been shown that the 

conductivity measurement can be linked to the temperature or density gradients by 

(Prasser et al. 2003) 

  ( ) ( ) ( ) ( )L L L

H L H L H L

, , , , , ,
, ,

i j k T i j k T i j k
i j k

T T
σ σ ρ ρθ

σ σ ρ ρ
− − −= ≅ ≅

− − −
, (6.6) 

where θ is called mixing scalar (assuming values between 0 and 1), σ is the measured 

conductivity, T temperature and ρ density. The subscripts H and L stand for the 

high and low values, respectively, which represent the parameter difference of the 

used liquids. In the experiment described below, clean water and water-glucose 
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solution having a conductivity of 60 μS/cm and 200 μS/cm, respectively, were used. 

The execution of the experiment consists of few subsequent steps.  

1. Clean water is added into the test section up to the bottom of segment 2. 

2. Water-glucose solution is very slowly inserted from the bottom taking care 

not to mix both components. In this way, a layered structured is obtained 

having clean water in segments 1-2 and the more dense water-glucose solution 

in segments 3-5. This step ensures the formation of a well-defined initial 

condition which is very important for later comparison purposes with CFD 

simulations.  

3. Finally, the mixing process is initiated by flowing water-glucose solution 

through the inlet with a constant flow rate of 0.35 L/s. 

 

 

 

Figure 6.6: Schematic diagram (a) and photograph (b) of the test facility used in the 
buoyancy-driven flow experiment. 
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Figure 6.7: Instantaneous images of the mixing scalar θ. For details about the experiment 
see text. 

b) Results 

The mixing process was monitored with the planar sensor for 200 s at 300 fps. Since 

the process is rather slow the frame frequency could also be lowered. Figure 6.7 

depicts 12 instantaneous mixing scalar θ distributions over the sensor surface. In the 

image for t = 0, the boundary between the two components and a transition region 

can be observed. As the water-glucose solution flows into the channel, the formation 

of a circular jet can be clearly seen. The subsequent images show the mixing of the 
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two substances. At the time t = 200 the mean value of the mixing scalar was 

θ  = 0.92, indicating an almost complete mixing. The further analysis of the image 

sequences may reveal additional details about the mixing behavior of two miscible 

liquids with different densities. 

The main objective of such an experiment is to generate experimental data for the 

validation of CFD codes related to the influence of buoyancy in turbulence models. A 

preliminary analysis referring to this is presented by Vaibar et al. (2007). Later, other 

experiments with different flow rates and density gradients may be carried out and 

compared with CFD predictions.  

 

6.3.5 Fluid distributions in a fluid coupling 

Fluid couplings are widely employed as torque conversion elements in heavy load 

rotating drive systems and can be found in numerous technical systems such as power 

plants, naval vessels, railed vehicles, busses and trucks. Although there are many 

different designs of such couplings, the operation principle is the same. Figure 6.8 

shows an elementary fluid coupling which consists of a metal housing and two bladed 

wheels, called pump and turbine. In such couplings, the mechanical input power at 

the pump impeller is converted into kinetic energy in the working fluid, and then 

reconverted into mechanical energy in the turbine. The inherent speed difference 

between turbine and pump wheels is quantified by the so-called slip s which is 

defined according to 

 T

P

1s ω
ω

= − , (6.7) 

where ω is the rotational speed and the subscripts T and P denote turbine and pump, 

respectively. 

 

Figure 6.8: Mechanical assembly and functional principle of a fluid coupling. 
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The power transmission characteristics of fluid couplings are highly influenced by 

the fluid flow structure inside the coupling. The experimental investigation of the 

flow characteristics inside a fluid coupling during operation is thus of great 

importance for the optimization of static and transient behavior of those devices 

(Höller 2000). However, so far it has been considered as impossible to perform 

measurements on running fluid couplings due to their complex design as well as fast 

rotational speed.  

As an initial step towards the experimental investigation of fluid couplings, the 

planar sensor technology was adapted to the measurement of two-phase flow patterns 

in a blade channel of a fluid coupling during regular operation. In the following 

sections, the experimental setup and some initial results are presented and discussed. 

a) Experimental Setup 

Experiments on a fluid coupling were carried out in the coupling test field of Voith 

Turbo in Crailsheim, Germany. The coupling used in the experiments is a special test 

coupling with a profile diameter of 422 mm which operates with water and has some 

deviations from a standard design. Both shafts of the coupling extend to one side, 

which is achieved by a hollow pump shaft enclosing the axial turbine shaft. This gives 

full access to the coupling from one side and, thus, facilitated the mounting of the 

electronics on the pump wheel. Both shafts are driven independently by two speed-

controlled electric motors. In this way, the rotational speed of the pump and turbine 

and thereby the slip rate can be adjusted. 

Two half-moon sensors (Figure 6.2) were mounted on the pressure-side and the 

suction-side walls of a blade channel inside a test coupling (Figure 6.9). Two sensors 

are required in order to visualize the flow at the two blade walls, pressure side wall 

(upon which liquid is pushed by the tangential force), and the suction side wall (from 

which liquid escapes by the action of tangential forces). Since it was technologically 

easier, the sensors were mounted into different blade channels. This has no impact on 

the measurement results since, due to symmetry, the flow can be considered being 

similar in different channels. 

A modified version of the conductivity-based electronics discussed in section 6.3.1 

was used for such measurements. A major revision of the planar sensor electronics 

was required to meet the requirements imposed by the conditions of a running fluid 

coupling. The electronics have to be small, compact, and also able to rotate with the 

coupling wheel. To comply with those constraints, the electronics was conceived (i) to 
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be supplied by a battery, (ii) to contain enough memory to save the measured data 

acquired during operation, and (iii) to be controlled by a wireless link. Thus, the 

whole system is fully autonomous. A detailed system description and evaluation can 

be found in Da Silva et al. (2008). 

Figure 6.9 shows some photos of the setup, where the pump wheel of the test 

coupling with two mounted sensors as well as the developed electronics attached to 

the pump side can be seen. A metal cover (not shown in the figure) enclosed the 

electronics for safety reasons during the experiments. 

 

 

Figure 6.9: (a) Surface sensors mounted on the wall of a blade channel. The metallic 
fixations outside the coupling serve as protection and mechanical stability for the cables 
connecting the sensor with the electronics. (b) Detail view of one blade channel. (c) 
Measurement electronics mounted on the test coupling without the metal cover. 

b) Results 

Measurements with the new sensor system were performed in the test coupling during 

regular operation. The experiments were run with pump rotational speed of 790 rpm 

while the turbine speed was set for two conditions, namely 790 rpm and 474 rpm, i.e. 

at slip rates of 0% and 40%. Furthermore, the coupling was operated at a partial 

filling of 80% and the planar sensor electronics was set up for acquiring images at 

10 000 fps.  
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Figure 6.10a shows two exemplary images of instantaneous liquid distributions at 

slip rates of 0% and 40% for the pressure and suction-side sensors. The images show 

the wetting level w. It was calculated from (6.4) using as reference value a 

measurement taken prior to begin of the experiment, whereby the sensor was 

completely covered by water. At zero slip, a steady flow condition is established. The 

liquid level is parallel to the rotation axis and the phase transition between air and 

water is very sharp. For an increased slip value, the liquid level moves into a diagonal 

position and the phase boundary starts oscillating. In Figure 6.10b the raw images for 

the slip condition of 40% were processed and fitted in an illustration of a blade 

channel to give an idea of the real condition inside the coupling. In order to show the 

high-speed capability of the system, a sequence of successive images of the pressure-

side sensor for a slip rate of 40% is depicted in Figure 6.11. A water wave can be 

clearly observed moving along the sensor in the direction indicated by the arrow in 

the first picture. Note that only every 20th image from the data acquired at 

10 000 fps is shown in the figure. 

 

 

Figure 6.10: (a) Selected instantaneous liquid distribution images for the pressure and 
suction-side blade walls at the indicated slip values for the test coupling. For operating 
conditions see text. The right images display the liquid distribution at the suction side 
and the left image at the pressure side. (b) Exemplary images obtained from the suction 
and pressure-side sensors and illustration of a blade channel with the images fitted in it 
for s = 40%. 



116    6 Planar array sensor 

 

 

Figure 6.11: Sequence of successive images of pressure-side sensor obtained for s = 40% 
which shows some details, such as droplet impinging on the sensor and a water wave 
moving along it. The arrow indicates the wave direction. Only every 20th image from the 
acquired data at 10 000 fps is shown. 

 

A primary objective of the work described in this section was to present a new tool 

for high-speed time-resolved investigation of the fluid distribution in the coupling 

wheel channels. The data produced by the planar sensor may help to improve the 

understanding of the behavior of industrial couplings. In addition, these data may 

also be used to validate theoretical models of flow processes and computational 

simulations of current couplings or to support the design of new couplings. 

 

6.4 Permittivity-based planar sensor 

6.4.1 System description 

The electronics used to operate the planar sensor is based on a capacitance wire-mesh 

sensor (see section 5.2.1) and is briefly described below. The block diagram of the 

electronics for an exemplary sensor with 32 × 32 electrodes configuration as well the 

time diagram of the excitation signals are shown in Figure 6.12. For a detailed 

system description and evaluation see Thiele et al. (2008). The time-multiplexed 

excitation and measurement scheme is also used here. The transmitter electrodes are 

successively connected to a sinusoidal voltage while the transmitter electrodes are 

measured in parallel. When all 32 transmitter electrodes have been activated and all 

sensing blocks have been sampled, one obtains a matrix of 1 024 elements with values 

corresponding to the distribution of the capacitance (permittivity) over the sensor 

surface. From the data matrix, an image can be easily achieved without any 

reconstruction algorithm. A data logger with 512 Mbyte storage capacity is connected 
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via USB interface to a computer, where the digitized data are processed and 

visualized. A microcontroller controls the excitation and acquisition signals timing as 

well as the frequency of excitation voltage. The electronics is able to produce up to 

10 000 fps for a sensor with 32 × 32 sensing structures. 

 

 

Figure 6.12: (a) Block diagram of capacitance planar sensor system. (b) Temporal 
excitation scheme of the transmitter electrodes S1 to S32 with sinusoidal voltage 
excitation and the point of digitalization with an ADC controlled by the sample-and-hold 
signal. 

 

6.4.2 Permittivity measurement 

The auto-balancing bridge method was employed to measure the capacitance of the 

interdigital sensing structures. An equivalent circuit for one sensing structure is 

shown in Figure 6.13. The same structure as in the capacitance wire-mesh sensor has 

been maintained (see section 5.2.1), except that a signal conditioning block was 

included in order to adapt the signal levels to the new capacitance range of the 

planar sensor. The sensing circuit is formed by three basic stages which are described 

as follows. The auto-balancing bridge which has its voltage output proportional to 

the unknown capacitance (permittivity) according to 

 x
x i

f

CV V
C

= − ⋅ , (6.8) 
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when the feedback network of the opamp, Cf and Rf, are so dimensioned that the 

auto-balancing bridge circuit is made capacitance dominant (for a complete 

discussion see 5.2.1). As previously mentioned, the circuit is immune to stray 

capacitances Cs1 and Cs2. Referring to (3.22), the capacitance at each sensing 

structure Cx is directly proportional to the permittivity εx of the fluid 

 x g 0 xC k ε ε=  (6.9) 

 

 

Figure 6.13: Equivalent one-channel circuit for measuring the permittivity. 

 

Hence, from (6.8) and (6.9), Vx is also proportional to the permittivity of the fluid 

over the interdigital sensor. The second stage, a logarithmic detector IC (AD8307) 

demodulates the sine-wave opamp's output voltage, i.e. converts it into a proportional 

dc voltage. Its transfer function is given by 

  x
log a

b

ln VV V
V

⎛ ⎞⎟⎜ ⎟= ⋅ ⎜ ⎟⎜ ⎟⎜⎝ ⎠
, (6.10) 

where Va, Vb are constants of the integrated circuit. Before being digitized the voltage 

Vlog passes a conditioning block, which removes the dc offset introduced by the log 

detector and scales it for the full ADC range (0...5 V). The conditioning block has 

the following transfer function 

  1 2 2
o log REF

1 1

R R RV V V
R R

⎛ ⎞+ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠
, (6.11) 

where R1 and R2 and VREF are constants. Combining equations (6.8) to (6.11) it can 

be shown that 



 6.4 Permittivity-based planar sensor    119 

 

 ( )o xlnV a bε= ⋅ + , (6.12) 

where a and b are constants that encompass all the circuit constants. Consequently, 

the measured voltage Vo effectively represents the permittivity of the sensing 

structures. The logarithmic response assures the measurement of even very small 

permittivity values. 

Due to small intrinsic differences of the employed ICs and tolerances in resistor 

and capacitor values, there is a variance in the measured voltage over all 

measurement channels. Thus, calibration of these channels is necessary to achieve 

reliable output readings. A similar calibration routine as described in section 5.2.2 

must be performed and is shortly described below.  

For the calibration routine, first the surface sensor is fully covered with a 

substance of low permittivity εL, in most cases air εL = 1, and the data matrix L
oV  is 

acquired for all sensing structures i and j. Usually average values over a definite time 

are used to reduce the influence of noise. A second data matrix H
oV  is acquired for 

the situation the sensor is covered with a substance of high permittivity εH. In the 

case that the lower permittivity reference substance is air with ε = 1, the calculation 

of εx simplifies to (section 5.2.2)  

 ( )
L

o o
x HH L

o o

( , , ) ( , )( , , ) exp ln
( , ) ( , )

V i j k V i ji j k
V i j V i j

ε ε
⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ −⎝ ⎠

. (6.13) 

 

6.4.3 System evaluation 

a) Measurement uncertainty 

A similar approach as described in section 6.3.3 for the evaluation of the 

conductivity-based system was also applied. The sensor used for the experimental 

evaluation is shown in Figure 6.14. The geometry of the interdigital structure is the 

same as for the sensor of Figure 6.2, but a rectangular sensor geometry was used. An 

acrylic box of 35 mm height is mounted around the sensing area serving as vessel for 

the liquids to be investigated. 

First, the system was evaluated regarding accuracy, where five different substances 

and air (empty sensor) in a permittivity range from 1 to 80 were measured. The 

reference permittivity values ε are listed in Table 6.1. For each substance, 10 frames 

were acquired at 10 kHz and an average value was taken to reduce random noise. 
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Figure 6.14: Planar array sensor employed for the experimental evaluation of the 
permittivity-based electronics. The size of interdigital structures is 2 mm × 3 mm. 

 

Figure 6.15a shows the measured voltage values Vo for all substances analyzed. 

Each cross in the figure represents the value obtained for one interdigital structure. 

Measured points belonging to the same interdigital structure were connected by 

means of straight lines. As the figure displays a semi-logarithmic plot, the 

relationship between measured voltage and permittivity appears as linear functions, 

as predicted from (6.12). In principle, there are 1 024 different lines. One can also 

easily indentify the variations in the measured voltages for the measurements at the 

same substance. A deviation of up to 36% from minimum to maximum value is 

encountered. As stated earlier, these variations are caused by the differences in the 

characteristic of each transmitter-receiver pair which can be compensated by a 

calibration routine. 

Table 6.1: Substances analyzed for the evaluation of sensor accuracy. Reference relative 
permittivity values were taken from Lide (2005).  

substance relative permittivity (-) 

air  1.0 

oil  2.1 

isopropanol 20.1 

ethanol 25.1 

ethylene glycol 40.3 

deonized water 79.9 
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Figure 6.15: Results for the measurement of different substances in a relative permittivity 
range of 1 to 80. (a) Measured voltages. (b) Permittivity values calculated with (6.13) in 
comparison with reference ones. Dotted lines represent a ± 10% deviation line.   

 

The calibration procedure described in the previous section was applied to the 

measured voltages in order to estimate the measured permittivity values. Figure 

6.15b illustrates the results of the measured permittivity compared with reference 

ones. The graphic was plotted in a log-log scale to emphasize the good linearity even 

for small permittivity values. All measured relative permittivity values fall within the 

10% deviation lines (dashed lines). The size of error bars in the figure is of the same 

magnitude of the symbols and therefore error bars are only roughly recognized. They 

represent the maximal deviation of measured permittivity within one substance. The 

highest value found was 3.3% for water. 

The system was also investigated regarding instrumental noise. The surface sensor 

was fully covered with isopropanol. The standard deviation of the measured 

permittivity over the 1 000 frames at a repetition rate of 5 kHz was taken to estimate 

the instrumental noise. A maximal value of the standard deviation over all sensing 

structures of 0.97% was obtained. This value is much lower than the obtained 

accuracy as described above and can therefore be neglected.  

 

b) Depth sensitivity 

An important parameter for the correct interpretation of the images generated by the 

planar sensor is the determination of the depth sensitivity. For this purpose a similar 

procedure as described in section 6.3.3b) was applied. An electrically non-conducting 
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polyvinyl chloride plate (ε = 4) is placed across the sensor in such a way that an 

inclined plane is created. This assembly was immersed in ethanol (ε = 25) which 

resulted in a liquid film of continuously increasing thickness on the sensor surface 

(compare Figure 6.5a). The plate was covering the whole sensitive area of the sensor. 

Ten frames at 5 kHz were acquired and averaged. From the measured voltage values 

the wetting levels for all sensing structures were computed by  

 ( )
( ) ( )
( ) ( )

o p, ,
,

, ,
V i j A i j

w i j
E i j A i j

−
=

−
 , (6.14) 

where A(i,j) denotes a reference measurement of air (or empty sensor), Ap(i,j) a 

further reference measurement with the plate placed over the sensor in the same 

configuration as described above, but without liquid, and finally E(i,j) a reference 

measurement when the sensor was fully covered by ethanol without the plate. Note 

that (6.14) is a modified version of (6.4). In the numerator of (6.14), the influence in 

the measured voltages caused by the presence of the plate is eliminated. The 

denominator is a reference value to determine the wetting level. Since air has a 

permittivity of one and already produces voltage readings at sensor output, those 

values are subtracted from the ethanol reference. In this fashion, only the liquid 

portion of the signal is evaluated in (6.14).  

 

 

Figure 6.16: Wetting level as a function of liquid film thickness obtained in the 
experimental evaluation of depth sensitivity for the planar sensor of Figure 6.14 being 
operated by the conductivity-based as well as by the permittivity-based electronics. 
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The mean values over the 8 central rows with varying wetting level are depicted in 

Figure 6.16. For comparison purposes, the depth sensitivity of the planar sensor was 

also determined from measurements with the conductivity-based electronics by the 

same procedure as described in section 6.3.3b). The resulting wetting level values w 

are shown in Figure 6.16 as well. Both curves show similar behavior, an exponential 

rise to a maximum, corroborating with previous analysis (section 6.3.3b), Li et al. 

2006). The values from the permittivity measurements are slightly higher than the 

conductivity ones in the lower range of thickness values. This small disagreement 

may be explained by the influence of the polyvinyl chloride plate which was not fully 

eliminated in (6.14). However, it is expected that the both curves would be identical, 

if the permittivity value of the plate were ε = 1. The penetration depth was again 

defined as the thickness value for which the wetting level reaches the value of 97%. In 

spite of the small deviation of both curves in Figure 6.16, penetration depth was 

found γ97 = 0.75 mm for both measurements. This value represents the maximal 

liquid thickness which influences the measurements at the planar sensor. 

 

6.4.4 Two substances mixing measurement 

To show the capability of the surface sensor in investigating transient flow 

phenomena, a simple mixing experiment of two non-conductive fluids was carried out. 

The planar sensor with attached acrylic box (Figure 6.14) was used in this 

experiment. The liquids could be introduced into the vessel by a small opening. 

Further, the sensor was titled about 40°. For simplicity reasons the images obtained 

will be displayed horizontally so that the liquid level will appear inclined. 

The initial condition for the mixing experiment was obtained by firstly filling the 

vessel with 40 mL isopropanol (ε = 20.1) and then by very carefully introducing 

40 mL of benzene (ε = 2.0) to avoid the pre-mixing of both fluids. The upper part of 

the sensing area was left empty (air). Calibration measurements as described in 

section 6.4.2 were carried out using isopropanol and air before the execution of the 

mixing experiment. From the initial stratified condition, the both liquids were 

brought into motion by simple agitation of the sensor box for 10 s. The permittivity 

value distribution over the sensor surface was monitored for 15 s at the repetition 

rate of 1 kHz. Some selected images of the calibrated data by (6.13) are shown in 

Figure 6.17, where the dynamic mixing process can be observed. At t = 0 a three-

layer stratified structure formed by isopropanol, benzene and air can be easily 
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recognized. The interfaces air-benzene and benzene-isopropanol are correctly captured 

by the sensor and the fast transition is an indication of low crosstalk between the 

sensor structures. Any crosstalk would have caused a smearing of the imaging of the 

inter-phase surface. At t = 15 s both liquids are fully mixed. The upper images in 

Figure 6.17 show further two instantaneous distributions. The whole mixing process 

is rather turbulent and occasionally some structures like waves or jets can be 

identified. The lower images depict the temporal evolution of one exemplary jet with 

a time resolution of 10 ms, i.e. only every tenth image is shown. Thus, the acquisition 

frequency used is sufficient for the investigation of this mixing process.  

 

 

Figure 6.17: Images of a two-component mixing experiment. At t = 0 (initial condition) a 
three-layer stratified structure formed by isopropanol, benzene and air can be easily 
recognized. The following images show the mixing process caused by the agitation of the 
sensor box. At t = 15 s the complete mixing was reached. 

After reaching the full mixing the measured mixture permittivity was εm = 7.9, 

which is obtained from the average value for the area covered by the liquid. Further, 

the final effective permittivity value of the mixture can be theoretically calculated 

with help of the Birchak formula (Birchak et al. 1974)  

  m i i i b(1 )c cε ε ε= ⋅ + − , (6.15) 
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where ci is the isopropanol concentration, εi and εb are the permittivities of 

isopropanol and benzene, respectively. The isopropanol concentration is obtained 

from the volume fractions of each liquid ci = 0.5 (= 40 mL/80 mL). Since εI = 20.1 

and εb = 2.0, from (6.15) the mixture permittivity is calculated to be 8.69. The 

measured value is very close to the theoretical value and the relative deviation of the 

measured permittivity is 9.1%. 

 

6.5 Conclusions 

A new sensor modality for the investigation of fluid flow phenomena has been 

developed and tested. The planar sensor comprises an array of interdigital sensors 

which are individually interrogated in a multiplexed manner at very fast repetition 

rate. The coplanar electrodes configuration allows the sensor to be placed on the wall 

of pipes or vessels and thus having a minimal influence on the flow. 

The new sensor can be operated either with a conductivity-based electronics or a 

permittivity-based one. The planar sensor is able to detect phases or components in 

dynamic fluid flow. The electronics performs a two-dimensional measurement of an 

electrical parameter (conductivity or permittivity) of interdigital sensing structures, 

which effectively gives images of the instantaneous fluid distribution over the sensor 

surface.  

Both systems are able to perform measurements at up to 10 000 fps which allows 

the investigation of highly transient flows. Both electronics present good accuracy 

and low noise even at rather high measuring frequencies. The depth sensitivity has 

been also experimentally determined showing results compatible with other studies. 

Besides the sensor characterization, a few flow measurement experiments were 

presented and discussed, thus indicating some application fields for the novel sensors. 

Further work may encompass optimization of the interdigital electrode structure 

with help of electric field simulations to improve depth sensitivity or signal quality. 

Furthermore, the use of the presented sensors in similar flow problems is planned 

serving as basis for better understanding of such flows or as validation data base for 

CFD codes.   
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7 Conclusions 
 

In this concluding chapter the main achievements of the thesis are 

summarized as well as some issues for future work are discussed.  

7.1 Conclusions 

The experimental investigation of multiphase flow is essential to the better 

understanding and optimization of processes and devices in many engineering 

applications. The measurement of multiphase flow also forms the basis for validation 

of models and simulations. In this work, impedance sensors for the measurement and 

imaging of gas-liquid multiphase flows were investigated and tested. Specifically three 

different sensor systems were developed, characterized with indications to 

measurement uncertainty, advantages and limitations, as well as applied in some 

potential applications. 

The complex permittivity needle probe (Chapter 4) may be used for local 

multiphase flow measurement. It measures simultaneously and very fast the 

conductivity and permittivity values of fluids at the probe tip. It has been applied to 

measure oil-gas-water three-phase flow and also to monitor the mixing of two 

substances in a chemical reactor. 

Cross-sectional images of a pipe flow can be obtained be means of the newly 

developed capacitance wire-mesh sensor (Chapter 5). It is a further development of 

current conductivity sensors. The range of substances, it may be applied to, is now 

not limited to conducting liquids. Maximal frame rates of 10 kfps have been reached, 

which places this sensor among the fastest imaging techniques. High spatial and 

temporal resolution images of gas-oil two-phase flow have been obtained. 

Furthermore, the sensor may also be applied for the investigation of three-phase 

flows, whereby initial measurements have shown promising results. 
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A new sensor modality was also presented within the work of this thesis. A planar 

array sensor was proposed to investigate fluid distributions along the surface of 

objects and near-wall flows (Chapter 6). It can be operated by a conductivity-based 

as well as permittivity-based electronics. In this way, a number of applications are 

possible. This sensor was successfully applied to investigate the liquid distribution 

inside a fluid coupling during regular operation rotating at 790 rpm, to the 

visualization of mixing process of scenarios relevant to nuclear safety, and to the 

visualization of mixing of two non-conducting liquids. 

All sensor systems present high-speed capability thus being well suited for 

investigation of transient phenomena. The applications presented within this work 

are evidently not exhaustive, but serve as basis to the deployment of the developed 

sensor systems for future work.  

The main contribution of this research work to the field of multiphase flow 

measurement technology is therefore the development, characterization and 

application of new sensors based on electrical impedance measurement. All sensors 

were optimized with respect to a very high measurement speed and two of them offer 

the capability for two-dimensional measurement (phase fraction imaging). The 

sensors are furthermore very robust and can easily be employed in a number of 

applications in research and industry. 

 

7.2 Outlook 

As already stated, the main task for the future is to employ the newly developed 

sensors for systematic investigation of flow phenomena or to search industrial 

applications for them. Nevertheless, for future research, it is interesting to have a 

closer look at following points. 

 

• The needle probe may be provided with a miniature thermocouple thus 

generating a three-modality probe. Further, the temperature information may 

be used to compensate conductivity/permittivity readings. 

• The exact spatial sensitivity distribution of a wire-mesh sensor, as described in 

section 5.3.3, may be taken into account in the image processing algorithm 

possibility leading to an improvement in the measurement accuracy. 
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• The capability and limitations of the use of the capacitance wire-mesh sensor 

for the investigation of three-phase flows should be carried on, as already 

started in section 5.5.3. 

• Other geometries for the sensing structures of planar sensors may be 

investigated aiming to optimize signal sensitivity or penetration depth. 

• The development of dual-modality electronics for wire-mesh and planar array 

may be investigated which perform simultaneous conductivity and permittivity 

measurements. 
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Appendix B – Electromagnetic theory 
 

In this appendix, some background information on the 

electromagnetic theory is presented.  

B.1 Maxwell's equations 

The most general formulation of the laws of electricity and magnetism is due to 

Maxwell who in 1864 unified the observations of Faraday, Gauss and Ampere in the 

following four equations 

 ( ) ( ),
,

t
t

t
∂∇× = −

∂
B rE r   (Faraday's law) (B.1) 

 ( ) ( ) ( ),
, ,

t
t t

t
∂∇× = +

∂
D rH r J r   (Ampere's law) (B.2) 

  ( ) ( ), ,t t∇⋅ =D r rρ   (Gaussian law) (B.3) 

  ( ), 0t∇⋅ =B r   (Gaussian law) (B.4) 

where the field variables are defined as: 

 

E: electric field strength  (V/m) 

D: electric displacement  (C/m2) 

H: magnetic field strength  (A/m) 

B: magnetic flux density  (T; tesla) 

J:  electric current density  (A/m2) 

ρ : electric charge density  (C/m3) 
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and r and t are position vector and time, respectively. A good introductory textbook 

on electromagnetic theory is that one of Hayt and Buck (2000).   

In order to solve electrodynamic problems, a further set of relationships among the 

field quantities D, E, B, and H must be established as there are more variables than 

equations contained within Maxwell's equations. These additional equations are 

known as constitutive relations and they arise from physical consideration of the 

media in the problem to be solved. The constitutive relations for an isotropic medium 

can be written simply as 

 ( ) ( )0, ,t tε ε=D r E r  (B.5) 

 ( ) ( )0, ,t tμ μ=B r H r  (B.6) 

where μ is the relative magnetic permeability and ε the relative electric permittivity. 

It has to be noted that the usual symbol for the relative permeability is μr and for 

relative permittivity is εr, but the subscripts are omitted for the sake of clarity, 

noting that μ and ε are dimensionless. In free space void of any matter, μ0 = 4π⋅10−7 

H/m and ε0 = 8.85⋅10−12 F/m. Equations (B.5) and (B.6) assume an isotropic 

medium, whereby under isotropy is meant that the field vector E is parallel to D and 

the field vector H is parallel to B. In the case of anisotropic media, μ and ε become 

tensors, however these analyses is referred to a more advanced book (e.g. Ramo et al. 

1994).  

A third constitution relation is the Ohm's law 

 ( ) ( ), ,t tσ=J r E r  (B.7)  

where σ is the material's electrical conductivity (in S/m).  

In linear media described by isotropic constitutive relations, the Maxwell's 

equations are linear and therefore the superposition principle can be used to 

decompose any time varying fields into a series of time harmonics for which solutions 

can be readily obtained. This procedure amounts to taking a Fourier transform of 

equations (B.1) to (B.4) which yields Maxwell's equations in the frequency domain. 

 jω∇× = −E B  (B.8) 

 jω∇× = +H J D  (B.9) 

  ∇⋅ =D ρ  (B.10) 
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  0∇⋅ =B  (B.11) 

The field variables are now expressed with the complex phasor convention. According 

to this convention, fields can be described by ( ) ( ){ }, Re expt j tω=E r E , and so forth. 

The constitutive equations are also updated for the frequency domain notation 

 0ε=D Eε  (B.12) 

  0μ=B Hμ  (B.13) 

where ε  and μ  are now complex quantities denoting complex permittivity and 

complex permeability, respectively. In this work, only dielectric materials were 

investigated so that the magnetic properties may be considered to be equal to 

vacuum, i.e. μ = 1. 

 

a) Electrostatic approximation and Poison's equation 

The electrostatic approximation of Maxwell's equations assumes that the rate of 

change of the magnetic field is low (or absent), hence 

 0
t

∂ ≈
∂
B . (B.14) 

From Faraday's law (B.1), this implies that the electrical field E is irrotational, i.e.  

  0∇× =E . (B.15)  

Furthermore, it is possible to express the electric field E as the gradient of a scalar 

function, called the electrostatic potential or voltage V 

 V= −∇E . (B.16) 

Using this fact together with the Gaussian law (B.3) and the constitutive relation 

(B.5), yields 

 ( )0 Vε ε∇ ∇ = ρ , (B.17) 

which is the Poisson's equation with spatially varying permittivity. The equation is 

linear, and the principle of superposition may be applied (Hayt and Buck 2000). 
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B.2 Polarization 

When an external electric field is applied to a dielectric material (or insulator) where 

only relatively few free charges exist, the so-called bounded charges can be displaced 

or stretched. In such cases, the atom or molecule of the material forms an electric 

dipole that maintains an electric field. Consequently, each volume element of the 

material behaves as an electric dipole. The dipole field tends to oppose the applied 

field. Dielectric materials that exhibit non-zero distribution of such bound charge 

separations are said to be polarized. When a material is linear and isotropic in 

nature, the polarization density P is related to applied electric field intensity E as 

follows 

 0 eε χ=P E . (B.18) 

where χe is called the electric susceptibility of the material. The electric polarization 

vector P is an auxiliary vector in electrodynamics that accounts for the creation of 

atomic dipoles in a material due to an applied electric field. The polarization is 

hidden in the constitute equation (B.5) in the following way 

 ( )0 0 e 01ε ε χ ε ε= + = + =D E P E E , (B.19) 

where the electric displacement D was separated into a vacuum contribution 0ε E , 

and one arising from the material P. The relative permittivity of a material is thus 

given by e1ε χ= + . 

The relationship (B.19) is the constitutive equation for the static case. In a time 

varying electric field the polarization is frequency-dependent. Polarization of a 

material may be classified according interfacial, orientational, atomic and electronic 

polarization mechanisms; each of them having a characteristic frequency where it 

occurs. The time required for polarization to occur is directly related to the distance 

over which charge is being displaced and the ease with which it can be displaced. 

Interfacial polarization which depends on the detailed electrode configuration is 

generally not observed at frequencies above 100 Hz. Orientational (or dipole) 

polarization typically takes place at microwave frequencies. Atomic polarization arises 

with molecular vibrations at frequencies around GHz and THz and electronic 

polarization shows up at infrared to ultraviolet range (1014-1016 Hz). For a detailed 

description on these phenomena see Raju (2003). 
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The frequency domain response of a dielectric medium may also be written in 

terms of the dielectric permittivity which is defined by the constitutive relation 

(B.12) in frequency domain, where  

 ( )' ''jε ε= −ε  (B.20) 

is the complex permittivity comprising a real part ε' (commonly called the 

permittivity) and imaginary part ε'' or the loss factor. In the case that the medium 

has several polarization mechanisms coexisting and not significantly interacting 

among themselves, the complex permittivity can be expressed as the sum of the 

contributions of the individual mechanisms: 

 ( ) ( ) ( ) ( ) ( )1 ' '' ' ''i i
i i

j jω χ ω χ ω ε ω ε ω= + − = −∑ ∑ε  (B.21) 

where summation extends over all the separate polarization mechanisms labeled with 

the index i.  

Figure B.1 illustrates an exemplary function for (B.21). The real part of the 

permittivity ( )'ε ω  is made up of contributions of all loss processes at frequencies 

higher than the frequency in question. Though in Figure B.1 the polarization 

mechanisms are shown, for the sake of clarity, as distinct and clearly separable, in 

reality the peaks may be broader and often overlap.  

 

 

Figure B.1: Schematic illustration of different polarization mechanisms. Three 
contributing processes are shown denoted by the subscripts i = 1, 2 and 3. The processes 
associated with χ1 and χ2 are Debye-type relaxation processes and χ3 is a resonance 
process. 
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B.3 Debye relaxation model 

When a direct voltage applied to a dielectric for a sufficiently long duration is 

suddenly removed, the decay of polarization to zero value is not instantaneous but 

takes a finite time. This is the time required for the dipoles to revert to a random 

distribution, in equilibrium with the temperature of the medium, from a field-oriented 

alignment. Similarly, the building up of polarization following the sudden application 

of a direct voltage takes also a finite time interval before the polarization attains its 

maximum value. This phenomenon is described by the general term dielectric 

relaxation. 

 

Figure B.2: Transient response of a generic sample showing single relation. 

In the simplest case, the polarization of a sample will relax towards the steady 

state as a first-order process characterized by a single time constant τ. A typical 

transient response on the application of a unit step function is given in Figure B.2. 

This has the form 

 ( ) ( )s 1 exp tD t D D D
τ∞ ∞

⎛ ⎞⎛ ⎞⎟⎜ ⎟⎜= + − − − ⎟⎟⎜ ⎜ ⎟⎟⎜ ⎝ ⎠⎝ ⎠
, (B.22) 

which is characterized by an instantaneous response D∞  following an exponential 

growth to the static value sD . From (B.22), this relationship may also be written in 

terms of permittivity 

 ( ) ( )s 1 exp ttε ε ε ε
τ∞ ∞

⎛ ⎞⎛ ⎞⎟⎜ ⎟⎜= + − − − ⎟⎟⎜ ⎜ ⎟⎟⎜ ⎝ ⎠⎝ ⎠
. (B.23) 

Taking the Laplace transform to convert to the complex frequency (s) domain 
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{ } ( ) ( )s s

1/s s s s
ε ε ε εε ε

τ
∞ ∞∞ − −

= + −
+

 (B.24) 

where { }ε  is the Laplace-transformed function of ( )tε . Rearranging the terms yields 

 { } s

1 s
ε εε ε

τ
∞

∞
−= +
+

. (B.25) 

Setting s = jω to obtain the frequency domain response 

 s

1 j
ε εε

ωτ
∞

∞
−= +

+
ε , (B.26) 

which is a single relaxation Debye equation, where ε  is the complex permittivity 

function.   

Since all media invariably possess a finite (although, possibly, very small) 

conductivity σ, this contribution will show up in any measurement of the dielectric 

response. From Ampere's law (B.9), and the constitutive relations (B.7) and (B.5), 

one obtains 

 effj jσ ωε ω∇× = − =H E E Eε , (B.27) 

where the effective permittivity effε  was chosen such that  

 eff
0

j σ
ωε

= −ε ε . (B.28) 

Equation (B.28) demonstrates that static conductivity shows up as losses increase 

in a dielectric measurement. Furthermore, even if σ is relatively small as it is the case 

in the insulating fluids, it may dominate effε  at sufficiently low frequencies. In order 

to extract the actual complex permittivity ε  of the material from the measured 

permittivity effε , an independent measurement of σ is required. 

In the general form, by inserting (B.20) into (B.28), one obtains 

 eff
0

' ''j σε ε
ωε

⎛ ⎞⎟⎜ ⎟= − +⎜ ⎟⎜ ⎟⎜⎝ ⎠
ε . (B.29) 

For the case of low frequencies, where the dielectric losses ε'' = 0 and ε' = ε  (static 

relative permittivity) 

 eff
0

j σε
ωε

= = −ε ε . (B.30) 
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Here for the sake of clarity eff =ε ε . This equation was already presented in chapter 3 

as (3.20). 

 

 




