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Abstract

In this thesis, an extended periodic Anderson model with an additional local Coulomb repul-
sion U fc between localized f electrons and conduction electrons is investigated by use of the
projector-based renormalization method (PRM). First, it is shown that the model in one di-
mension shows a valence transition, which becomes sharper, when the energy of the f level
approaches the Fermi level. The transition becomes also enhanced, when the hybridization V'
between the localized and conduction electrons decreases, for the case that the total number
of electrons is fixed. In the two-dimensional case, one finds a similar valence transition be-
havior. However, in the valence transition regime also a superconducting phase may occur.
To investigate this phase, we start from an Hamiltonian which includes small gauge symmetry
breaking fields. We derive renormalization equations, from which the superconducting pairing
functions are self-consistently determined. Our analytical and numerical results show that d-
wave superconductivity becomes dominant in the valence transition regime. This confirms the
suggestion by Miyake that valence fluctuations may lead to superconductivity in the Ce based

heavy-fermion systems under high pressure.

Kurzfassung

In dieser Arbeit wird mit Hilfe der projektiven Renormierungsmethode (PRM) ein erweitertes
periodische Anderson Modell untersucht, das zusétzlich eine Coulomb-Abstofiung zwischen den
lokalisierten f-Elektronen und den Leitungselektronen enthélt. In einer Dimension zeigt das
Modell einen Valenziibergang, wenn sich die Energie des f-Niveaus der Fermienergie nahert.
Der Ubergang wird ebenfalls schiirfer, wenn bei festgehaltener Gesamtelektronenzahl die Hybri-
disierung V zwischen den lokalisierten und den Leitungselekronen abnimmt. In zwei Dimensio-
nen findet man ein &hnliches Valenziibergangsverhalten. Allerdings kann zusétzlich eine supralei-
tende Phase im Valenziibergangsgebiet auftreten. Um die supraleitende Phase zu untersuchen,
betrachten wir einen Hamiltonoperator mit kleinen zuséatzlichen Feldern, die die Eichsymmetrie
brechen. Wir leiten Renormierungsgleichungen her, aus denen sich die supraleitenden Paar-
funktionen selbstkonsistent bestimmen lassen. Unsere analytischen und numerischen Reultate
zeigen, dass im Valenziibergangsgebiet d-Wellen-Supraleitung dominiert. Dies bestétigt eine
Vermutung von Miyake, dass Valenzfluktuationen in Ce-basierten Schwerfermionensystemen bei

hohen Driicken zur Supraleitung fithren kénnen.






Contents

[List of Figures|

(I _Introduction|

2 Extended periodic Anderson model (EPAM)|

[3 Projector-based renormalization method|

IR Tizah Fihe EPAM

[4.1  Generator of the unitary transtormation| . . . . . . . . .. ... ... ...

[4.2  Renormalization equations| . . . . . . . .. . ... 0L

[4.4  Expectation values| . . . . .. . ... oo

E N al Its Tor Tl 0 onal EPAM

[>.1 Dispersion relation| . . . . ... ... oo

[6 Superconductivity in the EPA M|

[6.1 Renormalized Hamiltonian for superconductivity|. . . . . . . . . ... . ..

[6.2  Superconducting pairing functions|. . . . . . . . ... ...

[6.3 Approximate solution for a large lattice|. . . . . . . . ... ...

iii



ii Contents

7 Numerical results for superconductivity in the two-dimensional EPAM| 63

[7.1 Numerical results for a large system|. . . . . . ... .. ... ... .. ... 63
(7.2 Exact numerical results for a small latticel . . . . . .. ... ... ... .. 67
8 Summary| 73
[A_The exact solvable Fano-Anderson model 77
AT Modell . . . . oo 77
[A.2  Projector-based renormalization approachl . . . .. . ... ... ... ... 79

(B Bogoliubov diagonalization| 83




List of Figures

(1.1  Experimental phase diagram of CeCuy(Siy_Gez)of. . . . . . . . . . . . .. ..

(1.2 (a) Bulk superconducting transition temperature 7., (b) residual resistivity po,

| Summerfield coefficient 7, and (c) prefactor A of the resistivity law p ~ AT are

| shown for CeCugSiz and CeCusGes as function of 77" . . . . . . . . . . . ..

|[Ll.o  Graphical representation of valence transition and superconductivity mediated

| by the valence fluctuations| . . . . . . . . . . . ...

|5.1 Fourier transformation C’gf (k) of <5ﬁ{ 6ﬁ{> for different values of f-electron oc-

| cupations (A7) . . ...

[0-2  The dependence of Vi, \ (left) and Uy g\ (right) on A . . . . .. .. ... ..

[0.0  The dependence of y.xon Al . . . . ...

[5.4  Renormalized quasiparticle energies €, of c-electrons for several values of the

| localized electron density (R/)| . . . . . . .. ...

[>.5 Renormalized quasiparticle energies € of c-electrons (a) for several values of V'

| and Uy, =1 (b) for several values of Us.and V' =0.1) . . . . . ... ... ...

[0.6  Renormalized quasiparticle energies ¢, of the c-electrons for two values of 7]

[5.7 (a) Averaged f occupation number (A/) and (b) renormalized f level é; as a

| function of the unrenormalized f energy e for several values of Us| . . . . . .

[5.8 Averaged f occupation number (#/) as a function of the unrenormalized f en-

| ergy € (a) for some values of temperature 7" and (b) for several values of the

| hybridization V|. . . . . . . ..o

111



iv List of Figures

[/.1 Renormalized energies of the conduction electrons, €y, and of the localized elec-

[ trons, wy, as functions of momentum k| . . . . . . ... ..o 64

|7.2 Superconducting energy gap, A{;f , with d,2_,»-wave symmetry as a function of

[ momentum Kl . . . . . . 65

/.0 Maximum value of the superconducting energy gaps as a function of L for a two

[ dimensional system with N = L x L latticesites]. . . . . . . . . .. ... ... 66

|7.4 Maximum value of the superconducting energy gap Alf(f and averaged f-electron

| occupation number (A/) as functions of €; for two values of U | . . . . . . . . 68

|7.5 Maximum value of Al{f as a function of the bare f-energy ey for several values

[ of temperature 1] . . . . . . . . . . e 69

|7.6 Maximum value of Alf(f as a function of the hybridization V for several values of

[ the bare f-energy ef| . . . . . . ..o oo 70

[7.7 Maximum values of (a) the superconducting energy gaps and (b) of the super-

| conducting pairing functions as functions of temperature] . . . . . . . . . . .. 72




Chapter 1

Introduction

Superconductivity was first discovered in 1911 by Heike Kamerlingh Onnes [I] while he
was studying the resistance of mercury. At the temperature of 4.2K, he observed that
the resistance suddenly disappeared and became unmeasurable in a small temperature
regime. For some decades later there was no theoretical understanding of the super-
conducting mechanism except the classical interpretation of London’s equations of the
Meissner effect [2]. Only in 1950, the first phenomenological theory of superconductivity
was proposed by Landau and Ginzburg [3]. This theory, which is called Ginzburg-Landau
theory of superconductivity, had great success in explaining the macroscopic properties
of superconductors. In particular, Abrikosov [4] showed that the Ginzburg-Landau the-
ory predicts the division of superconductors into the two categories now referred to as
Type I and Type II superconductors. Seven years later, the complete microscopic theory
of superconductivity was finally proposed by Bardeen, Cooper and Schrieffer (BCS) [5].
The BCS theory explained the superconducting current as a superfluid of Cooper pairs,
i.e., pairs of electrons interacting through the exchange of phonons. This theory is suc-
cessfully applied to most superconducting elements which are now called conventional

superconductors.

Since the discovery of the high temperature superconductors [6] as well as of su-

perconductivity in heavy fermion systems [7], physicists realized that the BCS theory

1



2 1. Introduction

is not always applicable. These compounds are called unconventional superconductors.
After years of debate and experimental measurements, now it is believed that the pair-
ing symmetry in the unconventional superconductors has not always s-wave symmetry
as in the conventional superconductors but also d-wave or other more complex symme-
tries. Therefore, the discovery of new mechanisms for superconductivity in the unconven-
tional superconductors has been one of the most attractive problems in condensed matter
physics. Investigating the phase diagrams that express the dependence of the ordering
temperatures (magnetic, superconducting, etc.) on external control parameters (pressure,
composition, etc.) of the unconventional superconductors shows that superconductivity
is often closely linked to magnetism. In particular, a number of studies in f-electron
systems showed that the superconducting state is often located close to the threshold of
magnetism [8,9]. These findings suggest that the mechanism that forms Cooper pairs can
be of magnetic origin. That means, an electron, which carries its own magnetic moment,
will produce a large polarization of its surroundings. This polarization produces a local
magnetic field which can be felt by a second electron. If the relative orientation of the
spins is appropriate, an attractive interaction will occur.

While the magnetic superconducting mechanism in the f-electron systems is still con-
troversially discussed, the new discovery of superconductivity in Ce-based narrow-band
metals [10, 3], 1T} 14, 15] under high pressure has shown that the superconducting pic-
ture is more complicated. As an example, let us look at the pressure dependence of the
superconducting critical temperatures of CeCuy(Si;—,Ge, )2 [16] as shown in Fig. [L.1] At
small pressure, the Ce 4f orbitals are singly occupied and carry a static moment which is
subject to long-range antiferromagnetic order (open circles for x = 0.1 and open squares
for z = 0.25). When the pressure is increased, the hybridization between the 4 f orbitals
and conduction bands is enhanced which leads to dynamical frustration (Kondo spin-flips)
and suppresses long-range order. The first superconducting dome emerges close to the
edge of the antiferromagnetic state. So, one believes that magnetically mediated pairing
may induce superconductivity (red dome). Further increasing the hybridization between

the localized and conduction electrons by increasing the hydrostatic pressure leads the
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Figure 1.1: Experimental phase diagram of CeCug(Si;—,Gey )2, which shows antiferromagnetic
(AFM) and superconducting (SC) transition temperatures versus relative pressure Ap = p — pe1
(pe1 is the critical pressure at which magnetic order is fully suppressed). Open symbols show
the AFM transition temperature (T) for z = 0.1 (circles, p.; = 1.5GPa) and for z = 0.25
(squares, p.; = 2.4GPa). Closed circles show the SC transition temperature (7.) for z = 0.1.
T. is also shown for z = 1 (solid line, p.; = 11.5GPa) and for x = 0 (dotted line from [10] and
dashed-dotted line from [I1], p.; = 0.4GPa). The approximate location of the volume collapse
observed in [12] is indicated by a vertical dashed line at Ap = 4GPa.

systems to an intermediate valence state. That means, the 4 f electrons delocalize through
stronger hybridization with ligand states and occupy wider energy bands at the Fermi en-
ergy. The transition from the integer valence to the intermediate valence configuration
may proceed through a first-order phase transition that involves a collapse of the unit cell
volume with no change in lattice symmetry (green dashed vertical line). In this regime, a
second superconducting dome opens with a higher critical temperature than the former
one. It is believed that here the superconductivity may be mediated by the valence fluc-

tuations. For small doping, z = 0.1 (closed symbols), the two superconducting domes are
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completely separated. On the other hand, in the case of © = 1 (solid line), or un-doping,
z = 0 (dotted line [10] or dashed dotted line [I2]), the two domes are smeared out and
overlap. Nevertheless, the secondary dome is still dominant and has a maximum value at
a pressure close to p,, at which the volume collapse was observed [17].

In order to bring forward more evidence that valence fluctuations mediate supercon-
ductivity in the Ce-based heavy fermion under high pressure, the dependence of key prop-
erties of CeCugSiy on 71" i.e., the temperature value defined in the inset of Fig. |1.2|c),
at which the resistivity p shows its maximum, is presented in Fig. [1.2| [12]. According to
reference [12], 77 depends linearly on the external pressure in the second superconduct-
ing dome. Therefore the key properties in Figll.2] as function of 77" and as function of
the external pressure are identical [I2]. Comparison of Fig. [1.2|(a) and Fig. [L.2[(b) shows
that in the regime of 77"**, at which the superconducting critical temperature reaches its
maximum, the residual resistivity py becomes enhanced. Moreover, the coefficient A of

the T2 law of the resistivity p decreases rapidly in the same T["** regime, see Fig. [1.2(c).



Since A scales as (m*/m)? in the strongly correlated limit, one has [I8§],

m* 1 —ng/2

=z (1.1)

m 1—mny

where ny being the f-occupation number of the Ce ions. We see that the rapid decrease
of A in Fig. [1.2{c) is related to the sharp change of the Ce valence. Note that the gain
in the residual resistivity pp can be understood as a many-particle effect which enhances
the impurity potential. It also is proportional to the valence susceptibility —(dny/0ey),,
where € is the atomic f level of the Ce ion and g is chemical potential [19]. Thus the
enhancement of pg close to the peak of T, in the high pressure regime of heavy fermion
compounds can directly be related to the degree of sharpness of the valence change.

The abrupt change of the valence of Ce ion in the heavy fermion systems under high
pressure was qualitatively described by including a large Coulomb repulsion Uy, (rep-
resented by pink arrows in Fig. between localized f and conduction electrons [20].
Increasing the applied pressure the localized electron energy € is shifted closer to the
Fermi level Er. There will be a point in which the effective f-level reaches the Fermi
level € +n;Us. = Er and the f-band will start to become empty. Here, n is again the
average occupation of the localized electrons. Therefore, on an individual 4 f hole site, the
repulsion caused by Uy, disappears and the density of conduction electrons will increase,
as shown in Fig. [1.3(b). This extra screening of the conduction electron density is not
strictly localized on the atom, but extends onto the neighboring sites. The f electrons on
Ce atoms in the neighborhood of the hole site will feel an increased repulsion (represented
by the thicker pink arrows). Thus it would be energetically favorable to transfer the f
electrons into the delocalized conduction band. This self-reinforcing tendency to transfer
electrons from the localized to conduction bands explains intuitively the abrupt change
in ny for larger Coulomb repulsion Uy, [21], 22].

The origin of superconductivity mediated by the valence fluctuations in the heavy
fermion systems is illustrated in Figs. (c—d). Due to the applied pressure, an isolated
pair of 4f° holes, separated by two lattice positions with an intervening filled 4f! site,

can occur. It is accompanied by their clouds of conduction electrons which will overlap at
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Cooper pairs

(b) (d)

pressure

Valence transition Superconductivity

Figure 1.3: Graphical representation of valence transition of f electrons in the presence of
Coulomb repulsion Uy, with conduction electrons. (a) f-level is far below the Fermi level and
all sites are filled. (b) Under high pressure, the f-level reaches the Fermi level and the f electrons
start to transfer into the conduction band. Empty 4f° sites will be screened by the conduction
electrons. (c) and (d) show how an attraction can raise, which forms Cooper pairs of 4f holes

and conduction electrons as well.

the intermediate site and further increase the Coulomb repulsion at that point. It would
therefore be energetically favorable for the two 4f holes to move on neighboring sites.
Thus, an attractive interaction between 4f holes results. The attractive interaction be-
tween localized holes is equivalent to that of conduction electrons. A couple of conduction
electrons as well as of localized holes can be considered as Cooper pairs. This argument
gives an intuitive understanding of the origin of the valence-fluctuation mechanism of

superconductivity.

The origin of superconductivity mediated by enhanced charge fluctuations caused by

repulsive interaction in a multiband systems was first proposed as a possible mechanism



of superconductivity in high-T, cuprates [23]. Motivated by further study of this mecha-
nism [24] 25], the relationship between valence fluctuation and superconductivity in heavy
fermion systems was initially put on a theoretical footing by Miyake in 1998 by including
an extra term which represents the Coulomb repulsion Uy, between the localized- f and
the conduction-c electrons into the periodic Anderson model (PAM) [26]. Solving this
extended periodic Anderson model (EPAM) in three dimensions by a slave-boson mean-
field approximation, the authors in [21] found that valence fluctuations were considerably
enhanced by a moderate strength of Uy, when the Coulomb repulsion between localized
electrons on the same site was assumed to be infinitely large. The valence fluctuations
occur if the f-electron level €; is tuned relative to the Fermi level. In a mean-field ap-
proximation, this special value of €; is of the order of half of the bandwidth. Associated
with the rapid valence change, d-wave superconductivity was found. Thus the authors
pointed out the possibility of superconductivity caused by valence fluctuations. This
scenario could explain various properties found in CeCuySis, at least qualitatively [27].
Solving the one-dimensional EPAM by use of the density matrix renormalization group
(DMRG), the authors in [22] also obtained the valence instability. However, it occurred
when Uy, was larger than the conduction bandwidth and the f-electron energy e; was
deeper than the lower bound of the conduction band. In this case, only singlet pairing
superconducting correlation functions were considered by assuming that the investigated
system can be described in analogy to the single-band Tomonaga-Luttinger liquid. The
obtained results showed that in the sharp valence transition regime, the superconducting
correlation functions for singlet pairing become dominant. This once more affirmed that
the EPAM can be used as a possible explanation of superconductivity due to the valence
fluctuations.

Recently, the EPAM has also been studied in the dynamical mean field theory (DMFT),
combined with exact diagonalization for infinite dimensions [28]. The obtained results are
in agreement with the ones found by the DMRG method. The work was done by the same
group for the EPAM in two dimensions by applying the fluctuation-exchange approxima-
tion. It showed that in the weak coupling region (modest strength of Uy.), a charge density
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wave was also instable which may cause superconductivity as well [29]. Therefore, it is
still unclear whether in the weak coupling or in the strong coupling regime, superconduc-
tivity due to the valence fluctuations occurs in the EPAM. That means, other possible
theoretical methods should also be used to study this problem.

In this thesis, we use a recently developed projector based renormalization method
(PRM) [30] to investigate the valence transition and superconductivity of the EPAM.
The PRM derives a solvable effective Hamiltonian by deriving and solving renormalization
equations using unitary transformations. The method has already been used to study the
valence transition in the PAM [31]. There, in the case of a fixed chemical potential, a
drastic change of the f-occupation from integral to mixed valence is found. This transition
can possibly be explained as a collapse of the large Fermi surface of the heavy fermion
state which incorporates not only the conduction electrons but also the localized electrons.
Nevertheless, due to the complicated process of deriving the renormalization equations for
the strongly correlated systems, various approximations had to be applied and no solution
could be obtained for degeneracy vy = 2. To overcome these restrictions and simplify
the renormalization process we use an extended version of the PRM based on choosing
a suitable generator [32, B33]. For this generator, we can restrict ourselves to second
order renormalization contributions during the unitary transformations, and instead of
difference equations we obtain differential equations which can easily be solved.

The thesis is organized as follows. In the next chapter we briefly describe the EPAM,
which is the PAM including the Coulomb repulsion between conduction and localized
electrons. Chapter 3 introduces the PRM. Its application to the EPAM is left to chapter
4. The numerical results for one-dimensional case are presented in chapter 5. There,
we discuss the renormalized dispersion relation of the conduction electrons as well as
the valence transition. Analytic calculations of the superconducting energy gaps and
superconducting pairing functions based on the results of the PRM are presented in
chapter 6. In chapter 7, we discuss the numerical results for d-wave superconducting

energy gaps in two dimensions. Finally, chapter 8 contains our conclusions.



Chapter 2

Extended periodic Anderson model

(EPAM)

As discussed in the introductory chapter, there are strong indications for an interrelation
of superconductivity and the abrupt change in the valence of the Ce ion in the Ce-based
heavy fermion systems under high pressure. Therefore, the extended periodic Anderson
model (EPAM) was proposed in [26] with the expectation that the Coulomb interaction
between the conduction electrons and the localized electrons can explain the abrupt change

in Ce f occupation. That model is described as follows

gf o Z szmf’Lm + Z €k — Ckmckm

1
+\/_N2Vk<fT Ckm € lkRz+hC>+UfC Z nzm zm’_l_Uf Z nzm zm’

k,i,m i,m,m’

(2.1)
m;ém

Here f! (fim) and ¢} (cion) are creation (annihilation) operators of f-electrons at site
¢ and conduction electrons with wave vector k, respectively. Angular momentum and
spin indices of the electrons are combined into the index m (of degeneracy v;) which is
assumed to be equal for f and c¢ electrons for simplicity. The excitation energies of f
and conduction electrons are denoted by €; and ex. The chemical potential is p which is

used for adjusting the total electron density. N is number of lattice sites and the Fourier

9



10 2. Extended periodic Anderson model (EPAM)

transformation of ¢ operators is defined by

1 R
o = NI Z R, (2.2)

A hybridization of strength Vi between localized and delocalized electrons is described
by the third term. In general, Vi may depend on k [34, [35], but for simplification a
k-independent V is used. The last two terms represent the local Coulomb repulsion
between f electrons (Uy) and between f and conduction electrons (Uy.). Since Uy > Uy,
we assume that Uy is infinite, so that the f sites can either be empty or singly occupied.
Due to the strong correlation between f-electrons, it is suitable to introduce Hubbard
operators

fjm = fz];n H (1- ”fm% (2.3)

1 (#m)

with n/ = fI ... The Hubbard operators do not obey the usual fermionic anticommu-

tation relations, instead one has

where

()

The quantity D;,, is a local projection operator on f states at site ¢ which are either
empty or singly occupied with an electron with index m.

It is useful to separate this quantity into two parts, a projection operator Py(i) on the
f

empty [ state at site ¢ and the projection operator n;,, on the singly occupied f-state,

where one electron with index m is present. That means, D;,, can be rewritten as

Dim = Poli)+0l, =1- > al, (2.5)
m(7#m)
where we have defined
Poli) = [J(— flfim), (2.6)
m(#m)
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With Uy — oo we rewrite the Hamiltonian (2.1)) as

8f - Z fsz%m + Z €x — Ckmckm

+ \/_N kzm V (i € 4 hc.) + Upe ; ng il . =
For simplifying our further calculation, we use the identity
Wit = ) + A (05 + 8(05) 0, (29)
so that
H = (ef + Upe(n Z £ fim + Z ex + Upeldd) — 1)l crom
(2.10)

Zv( fi ckmeikRi—l—h.c.) +Use Y 8(n5,)5( ) — UpeN (n) ().

k,z,m ismm/

The influence of Uy, on the valence transition was first discussed in the impurity Anderson
model [36]. In a mean field approximation, a discontinuous valence transition was obtained
for some large values of Uy.. For the periodic Anderson model, there exist some studies of
the effect of Uy, on valence fluctuations within Hartree-Fock like approximations |37, 13§],
slave boson, and large-N expansions [2I]. In all these approaches, Uy, could explain a
rapid change of the number of f-electrons as the f-level, €f, increases.

Without Uy,, (2.10) was successfully solved by the PRM in order to investigate the
valence transition in the case of fixed chemical potential [31, [32]. In the case of small
values of v¢, the f occupation drastically changes which shows a breakdown of a mixed-
valence state. On the other hand, without the hybridization term, the Hamiltonian ([2.10))
describes the Falicov-Kimball model, which has also been discussed in the framework
of the PRM [39] in one dimension. The remarkable results show that there appears a
gap, which is of the order of the Coulomb repulsion, Uy, in the quasiparticle excitation
energy of the conduction electrons. In the present work, the PRM is applied to (2.10)
for the case that a Coulomb repulsion Uy, and a hybridization V' terms between localized
and conduction electrons are simultaneously present. Therefore, gaps in the quasiparticle

spectrum of the conduction electrons can appear not only due to the Coulomb repulsion
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but also due to the hybridization. The influence of the hybridization on valence transition

as well as on superconductivity in the presence of the Coulomb interaction will also be

discussed.



Chapter 3

Projector-based renormalization

method

In this chapter, we present the concepts of the projector-based renormalization method
(PRM). The PRM was firstly introduced for solving many particle systems [30] based on
perturbation theory. The approach resembles Wegner’s flow equation method [40] and the
similarity renormalization by Wilson |41} 42] in some aspects. The PRM was successful
in investigating superconductivity based on the electron-phonon interaction [43] as well
as in the metal-insulator transition in the Holstein model [44]. Moreover, the PRM can
be expanded by applying it to many-particle Hamiltonians such as the periodic Anderson
model (PAM) in a non-perturbation way [45]. As a result, the PRM describes very well the
behavior of heavy-fermion systems. The famous slave-boson mean field theory [46], solving
for PAM, leads to an effectively free system consisting of two non-interacting fermionic
quasi-particles. Here in contrast, in the PRM the periodic Anderson model is mapped onto
an effective model that still takes into account electronic correlations. Thus, in principle
both the mixed valence and the integral valence solution can be found [3I]. A slight
modification of this PRM version is found by choosing suitable generators of the unitary
transformation. This modification is more adequate to investigate the periodic Anderson

model. Here, the discrete unitary transformation in the former version is replaced by

13



14 3. Projector-based renormalization method

a continuous one [32], [33]. This has the advantage that one can use available computer
subroutines to solve the renormalized equations in differential form. The exact solution
of the continuous approach in the framework of the PRM for the Fano-Anderson model
is shown in Appendix [A]

The PRM starts from the separation of a given many-particle Hamiltonian, H = Hy+
H;. It is assumed that the eigenvalues EY and the eigenvectors |n) of the unperturbed

part H
Holn) = EY|n), (3.1)

are known. They are used to investigate the corrections due to the presence of H; in
perturbation theory. The interaction Hamiltonian H;, which does not commute with H,,
has off-diagonal matrix elements, (n|H;|m) # 0 but no diagonal elements. The presence
of the interaction Hamiltonian usually prevents an exact solution of the full Hamiltonian
‘H, so that approximations are necessary.

The goal of the PRM is to transform the initial Hamiltonian into an effective Hamil-
tonian H, which has no transition matrix elements with energy differences larger than a
chosen cutoff A < A. Here A is the largest energy difference between any two eigenstates
of Hy, which are connected by H;. The Hamiltonian H, is determined by a unitary

transformation as

Hy = e He ™, (3.2)
which can also be written as a sum of two terms

Ha=Hox+ Hin (3.3)

Here for ‘H;, all matrix elements (n|H;\|m) with energy differences |E) — Eo| > A
vanish, (n|H;|m) = 0, where E) and |n) are the new eigenvalues and eigenstates of
Ho n. Note that in this framework, neither |n) nor |m) have to be low-energy eigenstates
of Hp. The unitary transformation guarantees that the new Hamiltonian has the
same eigenspectrum as the original one. To ensure the hermiticity of H,, the generator

X of the unitary transformation satisfies X = _X,.
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In the PRM, a crucial idea of the elimination of the transition matrix elements is
carried out by defining projection operators
Py\A= Y |n)(m|(n|Alm). (3.4)
E) B <
Note that P, is a superoperator acting on ordinary operators A of the Hilbert space of
the system. Therefore, P, can be interpreted as a projection operator in the Liouville
space that is built up by all operators of the Hilbert space. In the expression (3.4)), only
states |n) and |m) satisfying |E) — E)| < A contribute to the transition matrix. The
orthogonal complement of Py, Q) = 1 — P}, projects on the high-energy transitions of
A. To find an appropriate generator X, of the unitary transformation, we employ the
condition that the matrix elements for transitions of H, with energy differences larger

than \ vanish, i.e.,
Q\Hy, = 0, (3.5)

has to be fulfilled.

With the chosen generator X, the Hamiltonian H) can be evaluated by Eq. . It
is convenient to perform the elimination procedure step-wise. In this procedure, each step
reduces the cutoff energy A by a small amount AX. Starting at the initial cutoff A, after
the first step, all transitions with energy transfers between A and A — A\ are removed.
The subsequent steps remove all transitions larger than A — A\, A — 2A\, and so on.
The unitary transformation for the step from an intermediate cutoff A to the new cutoff

A — A\ can be evaluated as follows
Haan = e NAH, emXaan (3.6)
where the generator X a) is fixed by
Qi-aHo-axn = 0, (3.7)

in analogy to (3.2). This condition specifies that H,_a, contains no matrix elements

which connect eigenstates of Hp y—ax with energy differences larger than A — A\.
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It turns out that the generator X, o) of the unitary transformation is not yet com-
pletely determined by Egs. and . Indeed, the low-energetic excitations included
in X ax, namely the part Py_axX, ax, can be chosen arbitrarily. In principle, the re-
sult of the renormalization scheme does not depend on the particular choice of the part
P)_axX) ax. However, in practice the particular choice of Py_axX) ay is important. If
P)y_axX)ax = 0 is chosen, the minimal transformation is performed to match require-
ment ([3.7). This choice has been used in [30] and also in the discrete version of the
PRM [31]. However, in particular cases a non-zero choice for Py_a X, ax might help to
circumvent problems in the evaluation of the renormalization equations. In the continu-
ous version of the PRM [33], a non-zero P,_a X, ax is allowed and the generator X ax

can be written as follows

Xoax = Puoan X an + Qa_an X ax. (3.8)

Here the part Qx_axXxax ensures that Eq. is fulfilled. An appropriate choice of
the remaining part Py_a X, ax can be found in such a way that it almost completely
eliminates all interaction parameters before the cutoff energy A is reached. Therefore, the
former part (Qx_axXx ax) can be neglected.

Note that in general, new interaction terms can be generated in each renormaliza-
tion step. This might allow the investigation of competing interactions which naturally
emerge in the renormalization procedure. However, actual calculations require a closed
set of renormalization equations. Thus it is assumed that the originally chosen operator
structure of ‘H) is invariant with respect to further unitary transformations. Therefore
a factorization approximation has to be performed in order to trace back newly arising
complicated operators to terms already appearing in the renormalization ansatz. Conse-
quently, derived effective Hamiltonians might be limited in their possible applications to
certain parameter regions, if important operators have not been included in the renor-
malization scheme for parameter values outside these regions.

Due to the mentioned procedure, the renormalization equations contain expectation

values that must be calculated separately. In principle, these expectation values are
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defined with respect to H, because the factorization approximation was employed for
the renormalization step that transformed H, to Hy_ax. However, H, still contains
interactions that prevent a straight evaluation of the expectation values. The easiest
way to circumvent this difficulty is to neglect the interactions and to use the diagonal
unperturbed part Hy ) instead of H,. This approach has been successfully applied to
the Holstein model to investigate single particle excitations and phonon softening [47].
However, it turns out that often the interaction terms in H, are crucial for a proper
calculation of the required expectation values. Therefore, we include interaction effects
by calculating the expectation values with respect to the full Hamiltonian H instead of
‘H,. In this case, the renormalization equations need to be solved in a self-consistent
manner because they depend on expectation values defined with the full Hamiltonian
‘H. They are not known from the very beginning but can be determined from the fully
renormalized Hamiltonian H = limy_,o H, as follows:

The first way to evaluate the expectation values is based on the free energy that can

be calculated either from the original H or the renormalized H Hamiltonian,

1 1 ;
F = —BlnTre_BH =73 In Tre 7%, (3.9)

since H is obtained from H by a unitary transformation. The desired expectation values
can then be determined from the free energy by functional derivatives [43, [45].

The second one employs an additional unitary transformation for the operator variable

A

Tr (.Ae_ﬁH) Tr (Ae‘ﬂﬂ)
< > - Tre—PH - Tr@—/@":[

(3.10)

Here we defined A = lim,_o Ay, where Ay = ¢X» Ae . Therefore, additional renor-
malization equations need to be derived for the required operator variables A,.

In order to derive renormalization equations for the A-dependence of H) (and similar
for A)) one compares the A\-dependent coefficients of the respective operator terms in
the renormalization ansatz for Hy at cut-off A — AX with those of the explicitly
evaluated expression Eq. . In the case of A\ — 0, the difference equations reduce to
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differential equations. The final step A — 0 determines the fully renormalized Hamiltonian
Hr—o = Hor—o- The coefficients in the fully renormalized Hamiltonian depend on the
initial parameter values of the original model at cutoff A. At A — 0 the interaction
Hamiltonian H; is completely vanished, H; x—o = 0.

The PRM is based on the general idea that the interaction terms of a many particle
system H are eliminated by unitary transformations. This approach removes high energy
transitions but does not reduce the Hilbert space. This is different to the poor man’s
scaling [48] which removes high energy states, and then the Hilbert space is changed. The
similarity transformation of Wilson [41), 42] and the Wegner’s flow equation method [40]
start from continuous transformations in differential form. The present PRM is based on
discrete transformations which lead to coupled difference equations. Moreover, the step-
wise renormalization of the PRM allows a unified treatment on both sides of a quantum
phase transition [44] which seems not to be possible in the flow equation method. The
continuous transformation of Ref. [48] as discussed above also can be understood in the

framework of the PRM [33].



Chapter 4

Renormalization of the EPAM

4.1 Generator of the unitary transformation

In order to derive the renormalization equations, at first we have to find an approximate
expression for the generator of the unitary transformation (3.6). In this section, the
generator is found for the EPAM based on the continuous transformation idea in (3.8)).

Let us start by formally writing down the Hamiltonian of the EPAM (Eq. (2.10)) as

Ho = (ep+Upeln®) =) Y fhfim+ D (e + Upeldd) — 1) elyciom
,m k,m

— UpeN{(ne)(i') (4.1)

and
1 . .
Hi=——SV ( F1 o IR h.c.) + U tireraum: (4.2)
\/N k,im kq,m
with
1 S iR,
Gcetam = 370 (homCicrqm) > O(Fh fioms e R (4.3)

Here, the perturbation H; only contains the fluctuation part of the Coulomb repulsion
Ufc. In order to find an ansatz for H, we consider the following ansatz for the generator

X

1
~ 4.4
X/\ £0H17 ( )

19
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which is motivated by perturbation theory [30]. Here L, is the unperturbed Liouville
operator which is defined by LqA = [Hy, A] for any operator variable A. For the operators

in (4.2)), we obtain

Lok kt+qm = (Ek — Ektq) Ak ktqm: (45)
ﬁOfAlikam = (gf - gk)flimckm'

As one can see from these equations, the operators ax k+qm and flimckm can be interpreted
as eigenoperators of the Liouville operator £y. That means, the generator X to first order

would have the form

Xy = Z U k+a 20k kt+-q,m + Z Vi (fiCiem — hec), (4.6)

kq,m k,m

where Uy k+q and Vi y are prefactors. Thus, according to (4.6) and (3.2]), an ansatz for
‘H,, should read

H)\ = H())\ —+ Hl,)\a (47)
with
H()’)\ = N,uf)\ Z (f%fm)ll + Z Tie A (flimfkm> NL
m km

+ Z €k, \ C;mekm -+ Z gij,)\(Sﬁ{m(Sﬁfm/ + E)\,

k,m i1 (4.8)
Hin=P\H, = P, Z Vi (flmckm + h-C-> + P, Z Uk x+q, 20k k+q,m>
k,m kq,m

after all excitations with energies larger than cutoff A have been eliminated. Here, P, is
the projector in the Liouville space, which projects on the low-energy transitions smaller
than A with respect to the Hy . Note that due to the renormalization, an energy shift

E\, an additional hopping term between different f sites

o o 1 L oA .
1 _ L 2: t 7 ik(R,—R;)
<fkmfkm)NL - N = fimf]me ) (49)
1,5 (#i
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as well as a new density-density interaction between localized electrons have been gener-
ated in Ho . The hopping term between different f sites can also be called nonlocal (NL)

f particle-hole excitations in contrast to the local (L) one. They obey a simple relation
Ah A*A> =fi f 4.10
(Fladin)  + (Fhfn) = Fhouion: (4.10)

with

(Fd) = S Fhndion =~ 3 Fhfon (a.11)
k i

Here, the Fourier transformation of f electrons has been introduced

A 1 A
T T _ikR;
= E T gteiti 4.12
fkm /_N i fzm ( )
The initial parameter values of the original model (denoted by A = A) are

M A= € —|—UC<7”LC> — W, gi',A:()7 'Yk,A:O, Vk7A:V,
! r+Us j (4.13)

eren =k + Upe (7)) — 11, Ukiesqa = Upe,  Ex = —NUs(n)(A).

Next, we have to evaluate the action of the superoperator P on the interaction operators,
so that the requirement Q\H, = 0 is fulfilled. In order to find the excitation energies of
H1.x, we have to apply the unperturbed Liouville operator Ly, on ( fimckm + h.c.) and
ak k+q,m- Lhe resulting eigenvalues of £y can be understood as excitation energies due
to the hybridization and the Coulomb interaction, respectively.

Considering the contribution of the hybridization term, we have

‘Co)\flimckm = [HO,)U f]imckm]
£ 1 R i(k— o )
— (€f7,\ — Ek,)\) flikam + W Z(l — 5ij)7py)\fi-rijkam€Z(k P)R; ipR;
P,ij
1 R i(k—p)R; ipR;
T N3/2 Z (1 _5mm')7P,Asznf;mfjm’ckme (=P)R; giPR: (4.14)
p,ij,m’

where additional contributions which lead to double occupied f sites cancel. The second
and third term on the right hand side of Eq. (4.14) come from the special form of the
anticommutator relations (2.4)). From the second term of (4.14]) we see that only f electron
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operators, belonging to different sites ¢ # j, contribute. Therefore we can replace the
operator Dj,, by its expectation value
ve—1,.
D= (D) =1-L—=(a), (4.15)
vy
where the averaged occupation number of f electrons at site j, (ﬁ{ ) = > A]Tm f}m%

enters. Note that the factor D is independent on j and m. By neglecting the spin-flip

processes in (4.14)), we obtain

ﬁO,)\flimckm = (efa+ DYk —€kn) f;tmckm, (4.16)

where

Efa = ffa — D, (4.17)

and Y, = Y 1 /N is the averaged f dispersion.
Similarly, we also obtain the excitation energies of the Coulomb repulsion between the f-

and conduction electrons
Lok k+qm = (kA — Ektqr) Ok kt+q.m

(4.18)
+ Z(’Vp)\ - Vp—q,A>bk,k+q,P,m7
P

where

bk k+apm = %&Cimckm,m) Z O(fi s fjms )RR (4.19)

1, (#1),m/
The dispersion relation between f electrons in lowest order, v\ ~ V?/(ex —€y), is small
in the case of small hybridization V. So we can neglect the last term in Eq. ,
which simplifies our further calculation. Thus, to ensure that Q\H, = 0 is fulfilled, the

hybridization as well as the Coulomb repulsion matrix elements should include additional

f-functions. Thus we can write

Hiy=P\H, = Z O(X — |egr + Dy — €k
k,m

)Vk,)\ <fAlIkam + h.C)

4.20
+ Y 0\ = Jern — Ektan (4.20)

kq,m

) Uk k+q 20k kt-qm-
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The included 6 functions restrict the excitations to transition energies smaller than .
With this expression of H; \, we can form the generator X, oy as it was done before in

X

X>\7A,\ = Z Ozk(/\, A/\)(flimckm — hC) + Z 6k,k+q(/\, A/\)ak7k+q7m, (4‘21)

k,m kq,m

with new parameters ay (A, AX) and Sk k+q(A, AX). Note that o (A, AX) and Sy k1q(A, AX)
have to be chosen in such a way that the condition (3.7), Qx_axHr_ax = 0, is satisfied.
As discussed in the previous section, in the continuous version of the PRM, we choose

Py_axXxax # 0. We make the following ansatz

A 0N — | Ak

AAN) = Vi A AA
B e P
B O\ — |B ) (4.22)
Brriq(A, AN) = —ktad R IA Uerrqr AN,
el AN T A Bl
where
A =€+ Der —€kny Brkiga = €k — Ekiga- (4.23)

The constant x in (4.22) denotes an energy constant to ensure that the parameters
ax(A, AN) and Ok xiq(A, AN) are dimensionless. In the limit of small AX, we expect

an exponential decay for the interaction contributions in the renormalizing procedure due

to the choice (4.22)).

4.2 Renormalization equations

This section is devoted to derive the renormalization equations for the parameters of the
Hamiltonian (4.8]). For that purpose, we compare two different expressions of H,_ay in
order to obtain a relation of the renormalized parameters between the cutoffs A and A—AA.

The first expression of Hy_a, is obtained by rewriting the renormalization ansatz (4.7)
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at cutoffl A — A\

Hoiax =Y Ekr-Ar ChoClam + Nitfa- (AT Am>
A-BA = D EA-AN ComCiom + Nitga-ax ¥ (] .

km m
+ Z Vi A—AN <f]imfkm> - + Z gij,)\fA)\(Sﬁ{m(Sﬁfm/ + Ex_an
k,m inji (4.24)

+ Py_an Z Vier—ax (ﬁmckm + h-C-> + Py_an Z Uk x+q, 7 —ANOK k+q,m-

km kq,m

In Eq. (4.24), P,_a, is the projection operator in the Liouville space which projects on
the lower energy transition smaller than A — A\ with respect to the Ho y—a). That means,

all excitations with energies larger than cutoff A — A\ have been eliminated.

The second expression for Hy_a) is obtained from the unitary transformation applied

to Hy. From Egs. (3.6) and (4.7) we have

_§ ( X T -X X 7 -X
Hy Ay = ElAE AN cf Crme A AN +§ Vi€ A AN <fkmfkm>NL€ A AN

k,m k,m
X A -X X ~f cof  —X
+Nﬂf,/\§ XA (f:nfm>L6 AN _|_§ gijne A,AA(Snimé‘njmle RS N
m i i
mm’
4.25
P 174 Xaax [ £T h — X, A\ ( )
+ kA € JimCxm +hec. ) e
km
X -X
+ P, E Uk k+q € M2 i kpqme 2
kq,m

Since ax(A, AX) and Gk k+p(A, AX) are proportional to A, only the first order contribu-
tions in X, A have to be considered in the elimination procedure. That means, for any

operator A, we have

eXA,A,\Ae—X,\,A,\ — A= XA,A)\A’ (4.26)

where X Ay is a new superoperator, defined by X axA = [X) ax, 4]
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Applying (4.26]) to all operators in the Hamiltonian (4.25)), we obtain

Ceme 0 =l e+ arc (A AN (L ciem + hec)

km

) Brekra(h AN aicrrqm = Y Ferai X AN iciqiem:
q

q
_ r A ]' ¢
0 = (fifn) = D2 O AN (Fpm + e,
p

eXnax CLm

2o (717,)

L

D (flimckm + h.c.)

enax <f11mfkm> o e AN — (flimfkm> o k(A AN

+ {fluon +he )y [1-D = 3 (f;fm)J

(#m)

D(f;mcpm +h.c.) + (j?,mcpm +h.c.)

1
+ 5 g ap(A, AN)

« [1 -p- Y (f;fm>L]], (4.27)

(#m)

Xaaxsal sof —Xoaax — sof saf
e (5nim(5njm,e = 0Ny, 0N

jm’?
eXA’AA <flimckm + hC) eiXX’AA = <flimckm + hC) + 2C¥k()\7 A)\) (flimfkm) NL
(1), = P = (o) =0~ 3 (i), |

1

eXA,A,\ ak,k-&-q,me_X/\’AA = k. k+q,m + Nﬁk—i—q,k()\, A)\) C’gf(q) (cLJrq’ka_,_q’m — CTkkam)

1 ar A
+ (1 - 2<nf>) <<CL+q,ka+q,m> - <C;r<mckm>> N Z f;’fia’

- ((ClT(kam> - <Clt+q,mck+q,m>) (<nf> - 2<nf>2) ] :
Here

1 .
Cl(q) = v > (ond,, o0t e R), (4.28)
ij

In deriving the above expressions, additional factorization approximations were used in

order to keep only operators, which are also present in the renormalization ansatz (4.24]).
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The spin-flip contributions have also been neglected. Substituting these results into the
second expression of H)_a, and comparing it with the first one, we obtain the following
difference equations

1
EkA-AN = Ek) — 2 [ka,)\ak(/\a AN) + N Z CI (@) UieaerarBirar (A, A)\)],

qm’

ve—1 .
Hfr—ax = pPgx+ fN ;(’Yk,A — ) (A, AA)(flimckm + h.c.)

+ > VeaouA AN+ (07 = 1))

2
+(1 - 2<nf>)m Z Uk k+a)Brtak (A, AA)<CL+q,m’Ck+q,m'>7

qgkm’

Ter—ar = Y T 2DVi s (A, AN), (4.29)

1
Jka-AN = Gkt N Z Uga+kBatka(A AA) <<Cg+k,mcq+k,m> - <Cgmcqm>>

q?m

1
_m Z Uq,q+k’,)\5q+k’,q(>\7 AA) <<CL+k’7mcq+k’,m> - <C:rlmcqm>> )

qk’/,m

Vk,)ﬁA)\ = Vk,,\—Ak,,\Oék()\,A)\)>
Ukktar—ar = Ukktar — BrktarSerqkr(A, AN),

Ex-axn = Ex—)» (1-D) [(Vk,,\ — D) FlCiem +hec) + 2Vk)\<CTkkam>} (A, AX)

km

2 .
- N Z Uik x+a ) Brtak (A, A)\)<0L+q,mck+q,m> (C,ff(q) - <nf>2) .

ak,m

Here, the action of the projection operator has been included in ax (A, AX) as well as in
B x+q(As AX). These equations can be integrated step by step from A = A to A = 0, in or-
der to find the fully renormalized parameters. Nevertheless, ayx (A, AX) and Sy krq(A, AN)
are proportional to AX. For this purpose, we consider the limit of very small steps A\

and define

- . . Ozk()\,A)\)

Ger = lim RN (4.30)
> . A, AN
Buxsqr = lim M‘ (4.31)

ANS0 AN
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So, in the limit of A\ — 0, the above difference equations become differential equations,

which simplify the further evaluation

d&k)\
d\

dpiyx
d\

de,A
dA
dgk,,\
dX\

+

- 1 -
2 [kavkakvk + N Z Cﬁf(q) Uk,k+q,Aﬁk+q,k,A] ,
q
1 ~ ~ .
_N Z(fyk,)\ - 7A)<Vf - 1)Oék7)\<f;£mckm + h.C.>
k

2 N
N Z Vierbue a1+ (vy — 1)<0mekm>]
k

9 s
—(1—2(n")) N2 Z Uk,k-&-q,)ﬂk—i—q,k)\<CL+q,m/Ck+q,m’>7

qkm/

—QVk’)\dk’)\, (432)

1 ~
N Z Ug,a+kBa+k,an <<Cg+k,mcq+k,m> - (CLqum>>
q,m

1 ~
_m Z Uq’quk’,)\ﬁquk’,q,)\ <<CL+k’7qu+k’,m> - <CLqum>> 9

qk’/,m

Ak,/\@k,)\a

By x+a.2 0k k+q,)

Z(l — D) [(’Yk,A — F2) (o Crem + hc) + 2Vk,\<CLkam>] Qxa
km

2 = .
N Z Uk,k+q,Aﬁk+q,k,/\<01T<+q,mck+q,m> (C,ff(q) - <nf>2) :

qk,m

Note that the last equation for the energy shift E follows from the comparison of the re-

maining ¢ numbers in (4.24) and (4.25). The differential renormalization equations (4.32)

still depend on expectation values (chckm>, ( fimckm + h.c.), ('), and D, as well as on

the correlation function C’};f (k), which have to be determined simultaneously. In the fol-

lowing, all the expectation values are assumed to be independent on A. They will be

evaluated in the way, as was discussed in the previous section, Eq. (3.10). Solving the

differential equations (4.32)) for cut-off A — 0, all contributions from the hybridization and
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the Coulomb repulsion between localized and conduction electrons have completely been
included in the parameters of a renormalized Hamiltonian. The effective Hamiltonian is

written as follows

H = Hroo = Z €k CLkam + g Z ﬁmfzm +E

k,m i,m
o o (4.33)
+ > G0l + > A (Hofion)
i,j#i k,m

Note that the operator part H; » has completely disappeared due to the renormalization

procedure.

4.3 Renormalization of H

Using the formalism from (3.10)) with the effective Hamiltonian , we still can not
evaluate the expectation values, because there exist simultaneously interaction term g;;
and dispersion relation 4 between different f-sites. This prevents us from straightfor-
wardly determining the density of the f-electrons as well as their density-density corre-
lation. Therefore, a further elimination is required. Moreover, if we are concerned in
a mixed valence regime with (i) arround 1/2 and Uy, larger than V, in principle,
should be small in comparison to g;;. So we can consider the former part as perturbation
in the effective Hamiltonian and continue to apply the PRM a second time in order
to solve the model. In the Hamiltonian (4.33)), only the first term describes conduction
electrons and completely commutes with the other parts. Therefore, in order to simplify
the calculation, we can consider only the f-part in the Hamiltonian . The starting

point for the renormalization reads as follows

H{ = M, +H],, (4.34)
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with
7:{(];)\ = /1{ Z ]E;rmﬁm + Z f]z’j,A5ﬁ{m5ﬁ§m/ + EA, (4.35)
ism i.j#i
Hi, = Z Fisaf i fim- (4.36)
i\

Here we have rewritten the hopping term between the f-electrons on different sites in the

real space
< 1 ~ _—ik(R;—R;
Viih = N Ek Fgre” KRR, (4.37)

The initial conditions for the second PRM, according to (4.33)), are

AN =g Gia =G s =Y EBa=El (4.38)

In order to derive the renormalization equations for the parameters of the Hamilto-

nian (4.34)), we first apply the unitary transformation
~ ;oo f
Hioan = ¢BavHie B, (4.39)

f .
where Xj 4, is the new generator.

Similar to the renormalization before, the generator X f\c Ay can be found

X{,A)\ = Z O‘zfj ()‘7 A)‘)Afmm (440)
Here
2 ~ o £ i ~ r r ~
Al = D G0t fim = D GeinFln Fimo0d, | (4.41)
A\ i ey
with the prefactor
aYiialdON — |w;;
ol (1, A) = 2oV = Jial) (4.42)

(A = Jwijal)?
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where
1/2

wiga = 22| D (Grindsin — 2Grindsin + Grindsin) 085,000 [ (4.43)
7“787&{}'7]'}
Similarly as before, we find the renormalization equations for the parameters of the Hamil-
tonian by comparing ’I:{J; in Eq. 1' at cutoff A — A\ and 7‘2{_ Ay by the unitary trans-
formation (4.39)

- ~f af
dji} 2D - N A Qin | st
d\ N3 e Vi A (Girx gd’A)wm Y (G — Giga) —= s (fhnFim)s
~ o
dgijn 4 . . N (4.44)
d)\ - N2 TSZ;AT(QSJ’)\ grj,A)(gzr,)\ gzs,)\)wTs)\<f fsm>
dij
d)J\ :CUU)\OCZ)\,
where
T (X, AN)
~f . az]( 9
N (4.45)

Solving the set of differential equations (4.44]) with initial conditions (4.38]), we can find
the renormalized parameters for A — 0. Thus, the renormalized Hamiltonian for the

f-electrons reads

H = ~foszzm + ng&z 6n +E. (4.46)
J#z

This effective Hamiltonian describes the lattice-gas model of ions, which interact via a
possibly long-range interaction éw Therefore, we can use an additional Monte-Carlo

simulation or also a simple exact-diagonalization approach to evaluate the expectation

values (nf> - and Co~ S (00 5n

pstJ >Hf

Together with the conduction electron part of (4.33)), the final fully renormalized

Hamiltonian becomes

H = Z el Crom + 17 Z I fim + Z gijond ond  + E. (4.47)

k,m ,J#l
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This result is similar to the one obtained by employing the PRM to the Falicov-Kimball
model [39)].

4.4 Expectation values

To evaluate (¢} cim), (i) as well as (f) cim +h.c.) with the fully renormalized Hamilto-
nian (4.47)), we use the formulism (3.10)). For instance, in order to evaluate (¢l cim), one
can use the renormalization equations for the operators (chckm) A, which can be evaluated
as it was done for the Hamiltonian by choosing the same ansatz as in . The obtained
renormalization equations would have the same form as (4.32)). However, they have to be
solved with different initial values. Similar to (¢} cin), the other expectation values (7/)
and ( flimckm + h.c.) could also be evaluated. However, to restrict the numeric effort, we
are going to evaluate the expectation values by using separate renormalization equations

for the single creation and annihilation operators. For (¢ cim)x = € (A)ckm()) for

instance, we make the following ansatz
(V) = Trrclon + e i (4.48)
where zy ) and yy \ are A dependent coefficients with the initial values at A = A
rea =1, yea = 0. (4.49)

The operator structure of chm()\) in 1} is determined by the first order expression
in the interaction. We employ that the A-dependent operators also fulfill the fermionic

anticommutator relations and find that
1A ” + Dlgaen* = 1 (4.50)

has to hold for all k and \ values.
In order to derive the renormalization equations for the prefactors xy » and yy \ we

again consider the transformation step of ch()\) from A to A — AX. Similarly to the
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procedure for the full Hamiltonian, we obtain the differential equations

dx .
dl;\’)\ = Dyx a0,
(4.51)
dyi G
I\ K AQK -
Analogously, we employ
flim()\) = _Dyk,)\CTkm + xk,AfAltm (452)

to evaluate the other expectation values, (/) and (f] cim-+h.c.). Solving the differential
equations (4.51)) with the initial conditions (4.49)) and taking the limit A — 0, we obtain

renormalized prefactors 7, and 7. Now we can evaluate the expectation values

(o Ciom) = T2 (Ex0) + |c* (B, 2
/

(N frm) = D[ f(E10) + 181> (RL,) 2, (4.53)
(Al Crom + D) = =281 [Df(ffk) (0 >H]
where
1
() = N Z i T(E) = (Ao Cim) = P (4.54)

with = 1/T is inverse temperature.

Previous numerical results for the density-density correlation function of the f-electrons,
<(5ﬁ{ 5&{ ), obtained by employing classical Monte-Carlo to the renormalized Hamiltonian
of the Falicov-Kimball model (FKM) [39], shows that at non-zero temperature, this cor-
relation function has a maximum at R; = R; and decreases exponentially with increasing

= of

distance |R; — R;|. As discussed above, the correlation function C//. = <5ﬁ{m5ﬁfm,>ﬁ

psij

the present model should behave similarly. At ¢ = j we have

mm/ mm’ mm/’ (455)
= (') (1 — (A')).
This maximum value depends on the average occupation number (2/) of the f-electrons.

In the regimes in which (i) is either small or large, the contribution due to correlations
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between localized f-electrons becomes small. Furthermore, in the situation in which (n/)
changes abruptly from large values (/) ~ 1 to small values (A ) ~ 0, when é; reaches
the Fermi level, we can neglect the contributions from correlations between f-electrons.
In the weak coupling limit (small values of Uy.) the g-term, which was created due to the
density-density correlation between the localized electrons, can also be left out. Within
these approximations, the finally renormalized Hamiltonian becomes simple and reads

H = kzn; B L Cum + iy ; I fom + k; i (flfin) B (456)
This result looks the same as the one which was obtained by renormalizing the periodic
Anderson model [31, 32]. Nevertheless, it is different because the Coulomb interaction
strength Uy, not only changes the initial values of the differential equations but also
changes itself during the renormalization procedure. Thus, all renormalized parame-
ters depend on Uy.. With the modified Hamiltonian (4.56]), we now continue using the
ansatzs and . We evaluate the expectation values

<CALmCAkm> = |Zk|* f(ex) + D] * f (@), (457)
(fi o fram) = D2 f(2x) + D)se|* F (),

and

(fE ckm +h.c.) = —2DEdi [f(E) — flan)] - (4.58)

Here, the tilde symbols denote the renormalized parameters in the limit A — 0 and

Wk = fig+D(3—7). Besides the conventional Fermi function for the conduction electrons

from (4.54)), we also have introduced

F(@n) = 5 s (1.59)

where the factor D has been defined in (4.15).
Note, due to the unusual properties of the Hubbard operators in the Hamiltonian, there
is no straightforward way to evaluate (4.59) and further approximations are necessary. As

discussed in reference [31], when the renormalized f level is located above the chemical
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potential, one finds f(@x) ~ f(@k). In this case, the mean-field treatment of the elec-
tronic correlations, contained in H, is sufficient. Nevertheless, we are also concerned with

different position of the f level. So (4.59)), is evaluated as follows

N 1 % 5 _pr 1 T T
FE fem)i = il ( FE frme BH> et <emf Frme L e ﬁH) . (4.60)

where we have introduced the identity e~ PHePH = 1 and have used the property of cyclic
invariance of operators under the trace, Tr(abc) = Tr(bca). From the renormalized Hamil-

tonian (4.56)) and the anticommutator relation ({2.4]), we obtain

s —Bx U
(Nl frcm) 7 = 164;6—*% <{flim7 fkm}>ﬂ = f(@) (D)5 (4.61)
Thus , can be written as
Flan) = fojk) — (4.62)
D144 5, £(@)]

At this point, all physical quantities can be calculated. Their dependence on the
model parameters such as temperature 7', hybridization V', Coulomb repulsion Uy, etc.
can be found by solving the renormalization equations self-consistently. This procedure is

processed as follows: (i) Using guessed initial values for the expectation values (¢l cim),

(1), (f clm +h.c.), we can solve the differential equations and and obtain
renormalized parameters and prefactors. (ii) Next, we calculate a new approximation
for the set of expectation values. (iii) Finally, we perform the renormalization again by
using the new set of expectation values and repeat steps (ii) and (iii), until the iteration is
converged. The convergence is reached, if the difference of two consecutive approximations
to the expectation values is smaller than a chosen limit. Using the final expectation values,

we can calculate the physical quantities for describing the systems.



Chapter 5

Numerical results for the

one-dimensional EPAM

In this chapter we present our numerical results which are obtained by solving self-
consistently the renormalization equations for the EPAM. In the case of the impurity
Anderson model [49], the conduction band plays a role of the electron bath and hence
the chemical potential p is essentially fixed. However, in the case of the EPAM, u is
considerably affected by Uy, itself, so that we have to treat the problem for fixed total
number of electrons. In particular, this treatment is indispensable in the valence fluc-
tuation regime [2I]. In our thesis, only the results for fixed total occupation number
n = (n°) + (/) = 1.75 will be discussed. Moreover, we are interested in describing the
superconducting state, that means only two spin directions, up and down, of the electrons

are possible, thus the degeneracy vy = 2 case is concerned.

In the following, numerical results for the one-dimensional EPAM are shown. We
choose €, = —2t cos k for a non-interacting dispersion relation of the conduction electrons.
Here, t = 1 is chosen as a unit of energy. In this content, we discuss the renormalized
dispersion relation of conduction electrons. Next, the localized occupation number as
function of the bare f-energy €; is considered, when the valence state of Ce goes over

from the Kondo regime to the mixed valence regime by applying external pressure.

35
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5.1 Dispersion relation

At first, let us discuss the fully renormalized dispersion relation of the conduction elec-
trons due to the influence of the interaction terms in the one-dimensional system. As
shown in the previous chapter, we can solve the Egs. to obtain the renormalized
Hamiltonian when the expectation values are known. With this Hamiltonian one
can not easily evaluate the expectation values because of the presence of the non-diagonal
terms in (4.33). Therefore, the next renormalization process is necessary. Here, we have
renormalized the other parameters due to the contributions of 4%. So the final Hamil-
tonian for the f-electrons has a simple form. Combining with the conduction electrons,
the final Hamiltonian has the form of a renormalized Falicov-Kimball model (FKM) [39],

in which the expectation values (#f) and correlation function Cf . are easily evaluated

pyij
either by the classical Monte-Carlo method or by exact-diagonalization (ED). At small
temperature, the f-electron states in the FKM favor several almost homogeneous con-
figurations [39, [50]. This result had been rigorously proven in [50] for large Coulomb
repulsion between localized and conduction electrons. For arbitrary repulsion, it had

been conjectured by [51]. In the one-dimensional case, these configurations are listed in

table [5.1] [50].

As a typical case, we consider a f-electron filling of (/) = 1/3. There are three
equivalent degenerate ground states of period 3 with corresponding arrays {100100. .. },
{010010. ..}, and {001001 ... }. Therefore, we can use the following ansatz for the system

at very low temperatures

1

o) =

¢ (]100100...) +[010010...) + 001001 ...)). (5.1)

Within the state || we can evaluate the correlation function (A{ ﬁf ) as

1/3 |R; — R;| =0,3,6,9,...
(il f) = o (5.2)

O ’RJ—RZ|:1,2,4,5,
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(n') configurations

1 1111111111111111111. ..
2/3 1101101101101101101...
1/2 1010101010101010101. ..
1/3 1001001001001001001. ..
1/4 1000100010001000100. ..
1/5 1000010000100001000. ..

0 0000000000000000000. . .

Table 5.1: Typical examples of ground state configurations for different fillings.

For (d/) = 1/3, one obtains the correlation function of the fluctuation operators

2/9  |R;— Ri| =0,3,6,9,...
(5nlsnl) = ’ (5.3)

~1/9 |R;—Ri|=1,2,45 ...

Here we have denoted the lattice constant by @ = 1. Result of the correlation function
(5&{5&{) in is also valid in the case of (/) = 2/3.

Similarly, the correlation functions (57 57%; ) for the other cases of (Af) are easily
evaluated. Using the Fourier transformation as in Eq. , we obtain the correlation
function C’};f (k) in the momentum-space. Fig. shows the dependence of Cgf (k) on
momentum k for some different values of (/) with a number of lattice sites N = 200.
In the case (/) = 1/2, there are two Kronecker delta functions located at k* = +r.
For (n/) = 1/3, the Kronecker delta functions are present at k* = +27/3 with smaller
amplitudes. In general, increasing a natural number m with (/) = 1/m leads to smaller
amplitudes of the Kronecker delta functions in the correlation functions C/ (k). It turns
out that the results of CJ/ (k) for (n/) = 1/m and (#/) =1 —1/m are identical.

On the other hand, at large temperature, the correlation function decreases exponen-

tially with increasing distance |R; — R;|. That means, approximately only the site R; = R;
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Figure 5.1: Fourier transformation Cgf (k) of <5ﬁ{ (57%; ) for different values of f-electron occu-
pations (7). The correlation functions <5ﬁ{ 6ﬁ£ ) are evaluated as discussed in Eq. 1} for the

typical case (2f) = 1/3. The number of lattice sites is chosen as N = 200.

contributes to the correlation function, and its value is (/) (1 — (2/)). Therefore, we have
CI (k) =~ (f)(1 — (Af)), which is independent of k.

In the low temperature regime, the density-density correlation function of the localized
electrons is, for instance, approximately given by . Its value in the momentum space
is substituted into the differential equations with some guessed initial expectation
values for (Af), (¢l cm) and (f cpm + h.c.). Solving the set of differential equations
with the initial condition , we can find the renormalized Hamiltonian . Since
the Hamiltonian is not diagonal, we have to proceed as discussed in section 3 of
chapter 4, in order to remove the hopping part of 7:{{ . With the fully renormalized

Hamiltonian H according to (4.47), we are able to recalculate the expectation values

(n'), (C;mekm> and ( fgmckm + h.c.) according to || by using the renormalization

equations (4.51)). The new expectation values are now used to repeat the self-consistent
calculation until convergency is reached. In our work, we have to adjust the chemical

potential ; as well as ¢; to fulfill the condition n = (n°) + (Af) = 1.75 for a given value
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of (Af).

To illustrate the renormalization process, we show in Fig. the A-behavior of the
hybridization Vj x and Coulomb repulsion Uy /s, during the first renormalization step
for an one-dimensional lattice with N = 80 sites. In the figure, Vj,x (left) and Up /s
(right), is plotted as functions of A, for several values of k with Uy, =1,V =0.1,¢5 = —1
and T = 0.05. As expected, Vj » and Uy r/s decrease exponentially by lowering A for
all k-values. Hence, there are no contributions of the hybridization and of the Coulomb

interaction in the Hamiltonian for A — 0. Next, it turns out that the hopping term

0oL
L ////, g il
0.08 - |
0.06- ]
> |
0.04y ~ KIT=0/8 |
’  KT=28 |
0.02/ / k/T=3/8 |
i — k/T=5/8

% 0 100 10 b 50 L 100 150

Figure 5.2: The dependence of Vi » (left) and Uy, /g 5 (right) on A for several values of momen-

tum k at T'=0.05, V = 0.1, Uz, = 1, and ¢y = —1.0.

between the localized electrons ;5 y, which was introduced in Eq. , depends only
on the distance between lattice sites kK = |R; — R;|. Fig. |5.3[ shows the renormalization
behavior of 4, \ (denoting 7;; ») for different fixed values of  in the second renormalization
step. Similarly as before, also the hopping term decreases exponentially to zero, when
A approaches the excitation energies. This observation is valid for all other distances
k in the whole lattice. Therefore, after this step, we can conclude that the original
Hamiltonian has been completely renormalized to .

In order to find a reliable result for the renormalized dispersion relation of the con-
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Figure 5.3: The dependence of 7, x on A for some lattice distances, &, at T' = 0.05, V' = 0.1,
Use =1, and ¢y = —1.0.

duction electrons, €, a lattice with a larger number of lattice sites N = 200 is considered.
Fig. m shows the results for €, (opened black circle) with Uy, = 1, V' = 0.1 at small
temperature, T = 0.05 for different values of (2/). Because of €, = ¢_j, we can restrict
ourselves to the half-plane in momentum space, k£ > 0. In the case of quarter-filling for the
localized electrons, (Af) = 1/2, there are two gaps present. For the lower values of (if),
in Fig. (b,c,d), the number of gaps becomes larger. There is always one gap, which is
caused by the hybridization and opens at the Fermi momentum k. It enters due to the
crossing of the one-particle dispersion relation for the conduction and the localized elec-
trons. The other gaps are caused by the Uy.-term. The number of these gaps depends on
the number of Kronecker delta functions as well as on how they enter the density-density
correlation function CJ/ (k). For instance, in the case (2/) = 1/3, there is one Kronecker
delta function in Cgf(k), located at k* = 27 /3, for k > 0, as discussed in the Fig. (5.1). It
follows that the contribution of the second term in the first equation of is mainly
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Figure 5.4: Renormalized quasiparticle energies € of c-electrons for several values of the local-

ized electron density (/) with Us. =1, V =0.1, T = 0.05 and N = 200.

caused by k values close to p = k*/2 and p = 7 — k* /2. That means, only ¢ ) values with
k close to p change much more than the other k-values. On the other hand, the sign of
€px — €k—gx I Brrqra changes, when k passes through p, which leads to the opening of
a gap at these points. Therefore, in the renormalized dispersion relation of conduction
electrons for (/) = 1/3, there are two gaps at k = 7/3 and k = 27/3 caused, by the
Ujc-term. This result can be understood by noting that the bandgap is created due to a
weak periodic potential [52]. For the lattice with periodicity a (a is lattice constant), the
gap is present at k = K/2 with K is a reciprocal lattice vector, K = 2n7/a. In the case of
(n') = 1/3, as discussed above, the periodicity of the system is now 3a, or the reciprocal

lattice vector is K’ = 2nm/(3a). Thus, the gaps are present at k = 7/3 and k = 27/3 in
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the range 0 < k < 7. This explanation is also valid for the other periodic fillings in the

system.
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Figure 5.5: Renormalized quasiparticle energies €5 of c-electrons (a) for several values of V' and

Use =1 (b) for several values of Uy, and V = 0.1 at T = 0.05, N = 200, and (A/) = 1/3.

As mentioned before, the number of the Kronecker delta function-like contributions to
CJ/ (k) depends on (n/). However, their weights decrease with increasing number of the
Kronecker delta functions, as shown in the Fig. According to the renormalization in
equation for ey, this leads to a decrease of the weight of the gaps, which are caused
by Uy.. For example, in the case of (/) = 1/7 (Fig. (d)), the renormalized energy €
has six small gaps which are the same in the case of (#/) = 6/7. Comparing with &, in
the case of vanishing Uy.-term (first differential equation in (4.32)), we realize that they
are almost identical (the red line on the same Fig. |5.4(d)). That means, density-density
correlations between the localized electrons due to the Uy.-term can be neglected in this
case. We conclude that we can neglect the correlations between the localized electrons
for (A/) ~ 1 and (R/) ~ 0. As a consequence, correlations should also be neglected in
the case of a sharp valence transition of the localized electrons, in which the (A/) change
abruptly from 1 to 0, when €; passes through the Fermi level.

In order to investigate the influence of the other parameters on the conduction band

gaps, the typical case of a localized electron density (/) = 1/3 at small temperature
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Figure 5.6: Renormalized quasiparticle energies € of the c-electrons for two values of T and

Use =1,V =0.1, N =200, and (d/) = 1/3.

T = 0.05 is considered. Fig. |5.5(a) shows the renormalized energy €&, for a Coulomb
repulsion Uy, = 1, for different values of the hybridization V. As discussed above, there
are two reasons for the gaps. The gaps, caused by Uy, are unchanged with respect to their
position in k-space and their amplitudes. In contrast, the gap, caused by the hybridization,
becomes larger with increasing V. The latter behavior of €, agrees with that for the usual
PAM [33] 45]. Fig. [5.5(b) shows €, as function of Uy, for fixed hybridization V' = 0.1.
In contrast to Fig. |5.5(a), the gaps due to Uy, become larger with increasing Coulomb
repulsion, although their positions in the k-space are unchanged. This result corresponds
to the discussion in [39].

Next, we discuss the influence of the temperature on €,. In Fig. 5.6, € is plotted
for Us. = 1, V = 0.1, (2f) = 1/3 for two different values of temperature, T = 0.05
and T = 0.2. In the case of large temperature, T = 0.2, the density-density correlation
function of the localized electrons decreases exponentially as function of the distance

between the lattice sites [39]. As discussed in the previous chapter, in this case only the
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on-site correlation is important, i.e., C#/ (k) ~ (a/)(1 — (Af)), which does not depend
on momentum k. Therefore, the total bandwidth is increased and the gaps due to the

Coulomb repulsion vanish.

5.2 Valence transition

This section is devoted to the discussion of the valence transition of the EPAM. Under
applied pressure, the f-energy level of the localized electrons is shifted to a position close
to the Fermi level. Therefore, the localized electrons can jump to the conduction band,
and the f-energy level becomes more and more depopulated. We say, there exists a
valence transition. This phenomenon can be described by increasing the f-energy €; in
the EPAM. By exploring the dependence of the localized electron number (as function of
€r) on the other parameters, we can achieve a full picture about the valence transition of
the EPAM. In the following, numerical results are given, which were found from the fully
renormalized Hamiltonian (£.56). We discuss (2/) for the whole range of g, with a fixed

total number of electrons. A system with N = 80 lattice sites is considered.
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Figure 5.7: (a) Averaged f occupation number (7/) and (b) renormalized f level & as a function

of the unrenormalized f energy e; for several values of Uy, in the case of V' = 0.1 and T" = 0.05.

In Fig. [5.7(a), we present the valence transition as function of the bare f-level e;
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for different values of Uy.. It can be seen that increasing Uy, leads to a sharper valence
transition. Fig. (b) shows the dependence of the renormalized f electron energy €,
as function of unrenormalized quantity, ;. In the regimes with (Af) ~ 1 and (i/) ~ 0,
€¢ shows a linear dependence on €; with a slope o = 1, i.e, close to these regimes, the f
electron level is not renormalized but only shifted due to the chemical potential and MF
contribution of Uy, (see Eq. (4.13))). Close to these regimes, the MF calculation must be
adequate and the assumption that € is constant during the renormalization process can
be justified [31, 45]. In the mixed valence transition regime, é; changes with a smaller
slope as function of ;. The width of this regime is reduced, when Uy, is increased, which
corresponds to a sharper valence transition. In the case of Uy, = 2, there is a kink in
€7, which results from the sudden jump of (2/), shown in the left figure. Moreover, the
transition regime in Fig. |5.7|(a) is shifted to the left for an increased value of Uy.. Thus,
with Uy, large enough, €, has to be small in order to satisfy e; + Us.(n°) ~ Ep, where Ep
is the Fermi level.

In the PRM, the MF contributions of Uy, to €, and to €; are included in the initial
values . The fluctuation contributions of Uy, are responsible for the shift of (i/)
to the left also before the jump of (A) is visible, see Fig. [5.7(a). If we define a valence
susceptibility, x; := —9(hf)/0e;, our result implies that the maximum position of y; is
shifted to the left for increasing Uy.. This is in contrast to the slave-boson MF calcula-
tion [21], in which the maximum of x; almost remains at its position, when Uy, is varied
before the jump of (7/) appears. Nevertheless, our result fits with the DMRG calculation
of Ref. [22].

To investigate the effect of the other parameters on the valence transition, the depen-
dence of (Af) on €; is shown in Fig. (a) and Fig. (b), for different temperatures T
and hybridization strengths V. Fig.[5.8(a) shows that the lower temperatures T" leads to a
sharper (n/) as function of €;. At low temperatures the f-electrons mainly occupy levels
with energies smaller than the Fermi energy, Fr. Under these conditions, the f electrons
in Ce-systems are in the 4f' state. With increasing temperature, the f-electrons can be

excited to higher level which have a 4{9+[5d6s] configuration. Correspondingly, at larger
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Figure 5.8: Averaged f occupation number (7/) as a function of the unrenormalized f energy
€f (a) for some values of temperature 7" with Uy, = 2, V' = 0.1 and (b) for several values of the

hybridization V' with Uy, =2, T'= 0.05 (b).

temperatures, the valence fluctuation regime is broadened.

For fixed temperature 7" and Coulomb repulsion Uy, the valence transition behaves
similarly when the hybridization energy V' is varied. In Fig.[5.8(b), we plot the dependence
of (2/) on the f energy e for several values of V in the case of T = 0.05, Uj. = 2. It shows
that the valence transition gets smoother if the hybridization energy is increased. On the
other hand, by enhancing the hybridization between localized and conduction electrons,
the localized electrons easily convert to conduction electrons, and the two configurations

of Ce ions, 4f'(Ce®T) and 4f°(Ce'"), have the tendency to become degenerate.



Chapter 6

Superconductivity in the EPAM

One of the most advantages of the PRM is the possibility to investigate quantum phase
transitions. Already with the simplest version of the PRM with respect to perturbation
theory, a BCS-like equation was derived for the coupled electron-phonon system [43]. In
contrast to the Frohlich interaction [53], the deduced effective electron-electron interaction
for Cooper pairs did not contain singularities. Recently, also the competition between
the formation of charge-density waves and superconductivity for the two-dimensional
half-filled Holstein model was studied by the PRM [54]. In order to describe quantum
phase transitions on both sides of the transition, one often includes infinitesimally small
symmetry breaking fields in the Hamiltonian. During the renormalization processes, the
symmetry breaking fields gain weight. Thus, from the fully renormalized Hamiltonian the
order parameters can be found. In this chapter, we present an application of the PRM
to possible superconductivity in the two-dimensional EPAM. Self-consistent equations for
determining the superconducting order parameters are obtained. Our numerical results
for the superconducting energy gaps with d-wave symmetry in the two dimensional system

will be discussed in chapter 7.
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6.1 Renormalized Hamiltonian for superconductivity

The EPAM is gauge symmetry invariant. In order to describe the superconducting state
of this model, a BCS-like Hamiltonian will be derived, which breaks the gauge symme-
try. That means, the renormalized Hamiltonian includes gauge symmetry breaking fields.

Therefore, our ansatz for the Hamiltonian reads
Hx = Hox + Héff + Ha (6.1)

after all excitations with energies larger than A have been eliminated. Here H, x, Hi \ were
introduced in the previous chapter in Eq. (4.8]), where the usual EPAM was renormalized.
The part H§} in (6.1)) breaks the gauge symmetry. It has the form

BF « o PR
Hop =— Z <AIC<C,)\CI<TCT—k1 + Aff,,\ C—klckT> - Z (Ag)\flinikl + AQ} f—klfkT)
K 5 (6.2)
for ft fox £ fe pt % feyx ¢
- Z <Ai7/\cka—ki + AYS f—lekT> - Z (Ak,cA 0 T A C—klfkT> :
K K

The four fields Aﬁﬂ)\ (e,  denote ¢ or f) in Hfff couple to all possible operators of the
electrons which break the gauge invariance. They will play the role of the superconducting

energy gaps and depend on A. The initial values are chosen to be infinitesimally small
AL = 0. (6.3)

In order to derive a set of renormalization equations for the Hamiltonian , one can
first use the Bogoliubov transformation [55] in order to diagonalize the Hamiltonian
Hox + Hgf , as was done in Ref. [43]. By this way, the interaction part H; ) of the
Hamiltonian has to be expressed by the new quasiparticle operators, which also
would depend on the cutoff A\. Moreover, during the renormalization, some additional
interactions can appear which are difficult to control. After the renormalization step from
A to A — A\, the quasi-particle operators have to be transformed back to the original
operators in . However, there exists an alternative way which can be applied to

the renormalization procedure, and which was already used before. In the ansatz (6.1)),
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Hox + H(]ff and H; » are considered as the dominant part and as perturbation, respec-
tively. To perform the renormalization step by reducing the cutoff from A to A — A\, we
use the unitary transformation (3.6]), which satisfies . Note that in this way we have
neglected the small influence of Hgff in defining the generator X ax. By applying the
unitary transformation to , the renormalization contributions up to second order in
the interaction are not changed as compared to the normal state. This means, we can use
the generator X o) from to perform the renormalization of the Hamiltonian (6.1)).
Note that we are considering the superconducting state. Therefore, in the factorization
approximation, we have also to consider the possibility that the superconducting order
parameters should be non-zero, i.e., <aLTﬁik 1) # 0 (a, 3 denote the c or f-electron oper-
ators). In principle, also some other results from could change. Nevertheless, here
we restrict ourselves in evaluating the unitary transformation to first order. So only the

last expression in (4.27) is slightly modified. Thus, the unitary transformation of the
operator ay xiqm (4.3)) reads

X s -
AN e qm€ TN R g kg + [ XA, Gk ktbqm), (6.4)

where

[XA,A)\a @k,k+q,m] = <Oék()\, AA)f}imckJrq,m + Oék+q()\> A)‘>6mek+q,m>
1 A A iaR
< S0y Fa)e

1 . .
- N5(Cir<mck+q7m) Z ap(A, AA)(f;Jrq,ano + CI)UfP—CLU)
p,o
(6.5)

1
+ Nﬁkm,k()\, AN) C,ff(Q) (CL+q,ka+q,m - ClT(kam>

1 r A
+ (1—2(n')) <<CL+q,ka+q,m> - <0mekm>> N Z £ fio

i,07

- <<c;rc+q,mck+q,m> - <CLkam>> ((nf> - 2<nf>2) ] ’

where ax (A, AX) and Siiq (A, AN) are given by (4.22)).
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In the non-superconducting state, the contributions proportional to ay(\, AX) disap-
pear, as already obtained in the previous chapter. In the superconducting state, new
contributions from the factorization have to be considered. The factorization of the first

term in (6.5]) can be performed as follows. First we have
£ 1 A iqR; 1 ; - iqR;
flimckJrq’mN Z 6(fi1:rn’f’im/)e i — N Z (flikaJrq,mfiJrrn'fim’) el (6-6)

This equivalence is correct because we are interested only in contributions with k # k+q.

Using the Fourier transformation to the momentum-space for the f-operators, we obtain

L (; G \ar L .
N Z (flimck+q7mf;rm’fim'> et = m Z flimck+q,m I]an/fpzm'el(q puip)R:
i,m/

P1P2
im’

1 a A R 1 A R
_ T T _ Topt
- N E :5q,p1—p2fkmck+q,mfp1m'fp2m’ TN E , 5(171)1—92fkmfplm’CkJrqvmfmm'

P1pP2 P1p2
! m/

1 A oA A
B N Z Oq,p1—pa (1 — 5mm')5k,—p15k+q,—p2flimfikmfckJrq,mff(kJrq),M’

p1I/>2
1 ~ N ~
=~ >0 = S o P st am s
, o ) o )
- N > [6mT5m’lflinjklck+q7Tf vl + OmiOmt i i era fooerans

Lo s 1. & A
- NmefltTfjklf—(kJrq),iCkJrq,T + N(Smifimfltlck+q,lf—(k+q)ﬁ- (6.7)

By the same way, we also find

~ 1 I~ N i .
CmekJrq,mN Z 5(f;fm/fim’)e ar

1 A A A 1 A A A
= NCSmTCLTfiklff(k+q),ifk+qn - N(SmifikTCLlfk+q,lf*(k+Q)»T7 (6.8)
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and

1 A A
N(;(Clmck—kq,m) Z aP(AJ AA) (f;r)+q,m’cpm/ + Ci)m/ fP_(Lm/)

gy
= %%T <a_(k+q)(>\, ANl i e teraicicrar + k(X A)‘)CI]L(TCT—klf—(k-&-Q),lckJrq,T)
+%5m1 <a,(k+q)(>\, AN 1l v icogerayt + oo, AA)CJLkTCLLCk-&-q,if*(kJrQ),T> :
(6.9)
Therefore, after factorizing becomes
(XA AN, Qkkipm) =
onO0, AN 8t (i Pl Fotera erar + By i (ot s )
+ 5mi <<JEL(TJ?111>Ck+q,lf—(k+q),T + Jﬁikalil<Ck+q,1f—(k+q),T>> ]
+ 0 rq(A, A)\)% [5mT ((CLTﬁkQﬁ(km),ifkm,T + CIJLTfikL<f*(k+Q),lfk+q,T>)
+ 5mi <<ﬁkTCLl>fk+q,if—(k+q),T + ﬁkTCLl<fk+q,¢f—(k+qm>> ] (6.10)
0 (1etq) (A, AX) = [5 ((Cka_kQ Gera)LOkral + [l (e acran Cran) |
+ Om << Flck)erarc-aerar + Mg (eera e (k+q)T>>]
+ok(A, AA %[ ( CkTC—kl —(k+a),l Ck+q,1 T cchT kl<f— k+q) ick+qT>>
+ Om << Tckl Ck+qlf (k+a),1 T C chchl<ck+Qlf (k+a) T>>]
+constant.

For the operators in ([6.2)), the unitary transformation is similar. As an example, the

commutator of the generator X o, with the operator C;LTCT_k I is evaluated as follows

(X2, AA,cch kl Zap (A, AN (£ com — h.c.),cLTctkl]

(6.11)
+ Z Bp.pra(A, AN [ap prqms CLTCikL]'

pq,m

The first commutator is

[f mCpm> CkTCT—kl] [Cmepm’ CLTCT—M] = f[tm <5p,k5mTCT—k¢ - 5p,—k5mlclT<T) ) (6.12)
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and the second becomes
1 o N i .
CLm <5p+q7k5mTCT—kl — 5p+q,*k5mlCLT> N Z 5(f;rm/flm/)e qu_ (613)

So
[Xaan oyl ] = a\ AN Al — asie(\ AN fTy el

1 e
* Z Berc(\, ANyl 7 Z Ol Fom ) PR (6.14)

_Zﬁp (N, AN)e PleTNZ(S fzm —zp+k)

We see that, only p = k in the third and p = —k in the fourth terms will contribute in a
factorization approximation. This follows that 3, x and B, _k reduce to fxx and B_k _x,

which are zero. Therefore,
(X An, chTcikl] = ax (A, A)\)fliTcikl + a_k (A, A/\)CLTfjkl' (6.15)

Similarly, we obtain

[Xaan, ok cxr] = oA, A)\)C—kifkT + a_k(A, A/\)f—klck%
[XA,AM fliT]Eikl] =-D <04—k()\7 A)\)]EIITCT_H + Oék()\a A)\>CLTJEL(1> )

[Xa.an, ffklfkT] =-D <Oéfk()\> A)\)kalfm + axc (A, A)‘)fkaCkT> ;

[X,\7A)\, fliTCT*kl] = Oé_k(>\, A)‘)flinjki DOék()\ A)‘)CkTC K|’ (616)
X fokicxt] = a(X AN) foi fier — Daie(A, AN)e i et
[X/\»A)WCLTfikl] = Ozk()\,A)\)flinikl DO( k()\ A)\)C TC K|’
[Xaan coig fur] = oA, AN) foxy fig — Done(X, AN)e_yj ey

Comparing the coefficients of the different operator terms in the renormalization
ansatz at cutoff A — A\ with those, which were explicitly evaluated in the uni-
tary transformation, Hy_ay = eX*2 Hye X 22 we can obtain difference equations for
the renormalized parameters. In the limit A\ — 0, this set of difference equations be-

comes a set of differential equations. Besides the differential equations, obtained in (4.32)
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before, we obtain additional equations for the renormalization of the superconducting

energy gaps

ACC

1 B ~ B ~
-5 > Ukktan (a—k,x<f (et ), Ctba )+ Qi (C ot L f k+q,¢>) :
q

dAff

d;\()\ = — (Aﬁ;d,k)\ + Ai{:\dk’))

1 B ~ B R
+ > Ukktan (%A(f —(k+a), | Ch+a,1) T Oé—k,A<C—(k+q),¢fk+q,T>> ;
q
A (6.17)
k,)\ _ cc ~ Aff ~
no iy + DA A

1 ~ r n ~
+ > Ukkran (Qkﬂm(f ()L firat) — @k+q,A<Cf(k+q>,1Ck+q,T>) ;
q

dAfg;
d\

= —AF Gk + DAY ducr

1 ~ P N ~
+ ¥ > Ukktan (Oék+q,x<f —(kta), Lfkrat) — Oék+q,A<C—(k+q>,lck+q,T>) :
q

Combining with , we have obtained a full set of differential equations which
determine the renormalization of all parameters of the EPAM in the superconducting
state. However, by solving these equations we still can not obtain the fully renormalized
Hamiltonian, by which the expectation values can be estimated straightforwardly. This
is due to the density-density interaction term in , which prevents this evaluation.
However, in Section 4.4 it was shown that this interaction term is not important in the
case of a sharp valence transition regime. On the other hand, we are concerned with the
superconducting state which is expected to be found close to the sharp valence transition

regimes. Therefore, in the following the density-density interaction will be left out.

6.2 Superconducting pairing functions

Without the density-density correlation between the localized electrons, the set of differ-

ential equations for determining the parameters for the renormalized EPAM in the su-
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perconducting state becomes quite simple to solve. In order to solve the equations
and m for the initial conditions and , the expectation values which in-
clude (¢} cum), (fi cim +h.c.), (Af) as well as the superconducting pairing functions
have to be first determined. Similar to the previous chapter, these expectation values are
assumed to be defined for the original full Hamiltonian. Thus, they have to be evalu-
ated self-consistently. Starting by given expectation values, we can evaluate new values
for the renormalization parameters by using the renormalization procedure. After get-
ting a self-consistent solution, we have obtained the final Hamiltonian to describe the

superconducting state. In the limit A\ — 0, this Hamiltonian reads
=i - < (AT m) = e + E
Mfokmfk +Z'7k fkmfk NL+Z€k Crem Ck + F
k,m k,m k,m
- Z (AiCCLTCT_kl + Aic’*c—kLCkT> - Z (Aifclszikl + Af(ﬁ*ffklckT) (6.18)
k k
- Z (Aﬁfflinikl + Aif’*,ﬁklfkT) - Z (Aﬁcf TCT k| + Ak c— klfkT)
k Kk
Here, the tilde symbols are used to denote the fully renormalized parameters. Employing

the Bogoliubov diagonalization to (6.18)) (see Appendix , we can rewrite this result as

follows

ng (pi i+ 11 1) +ng (piy 1+ s i)

+Z[5k+wk— Ek—l—é'k] ZEk

Here p} (linear combinations of the conduction and localized electron operators) are new

(6.19)

fermion quasiparticle operators which have excitation energies, 811’2 = [(uk +Py)/ 2}
The somewhat lengthy expressions for uy and @y are given in the Appendix [B| (Eq. .

From the diagonal Hamiltonian (6.19)), we can evaluate the free energy

1 1 ~
F=—_-InTre " = —= InTre %"
54 5]

_ _% (Z In [1 i efﬁsli] n Zln [1 + eﬂfﬁD (6.20)
+Z[gk—|—wk— €1+52] ZEk
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which can be used to determine the superconducting pairing functions by functional

derivation. An example is

OF
OAT

(o) = —

oe, (6.21)

— kz [1 —2f(&EL) ]aA“* + Z [1 —2f Ek/)} DA

Here, f(&x) denotes the Fermi function with respect to the energy &. Using aAaﬂ */ 8Aﬁﬂ =
Ok and the explicit expression of 5k , Eq. can be simplified to

—2f(& u <
(cxjcxr)r %gl(){ (1 + \/;T) Ay

[(wk + IDA[P)AE — DAY ALAL| }

2 (6.22)
1 2£(&2) A
2 ~2 A2\ A 2 Acf A fe A ffx
DAL |F)VAY — DAY AL A )
+@[(Wk+| ARVAYS Kk Pk Bk }
Similarly, we have
: 2 D —2f(&) Uk \ R ff
(w1 fxr)gg = ) 1+\/(}Tk A
2 Acf A fc A ce,*
@+ IAPAY - AYALA ]}
(6.23)
D[1—2f(&)] (1_ uk )Aff
4E2 Vo) K
b [@ + IADAY - AYALAR] b,
VP
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- P (1) o

andles pagaL - paayay] |

VPx

e

(il + DYALPAL — DAFAYAL] }

(6.24)

2

_.I_
VvV Px

From the two last equations in (6.17]) we can see that Af;c/\ = Af{f \» because g \ = a_x .

Therefore, AI* = A/ and

(Fagen)ny = (Ccoxfur)i (6.25)

To evaluate the superconducting pairing functions with the full Hamiltonian, we can still

use the ansatz (4.48)) and (4.52)) with the renormalized prefactors Ty and gi. Therefore,

(coxpent) = Tolew e ) + T ow fir)m + 280 foi e )
(Foxi fir) = DX lcowicit ) + ol s fir )i — 2Dt foxeycict) 7 (6.26)

(foxient) = (72 — DR) (foxicxt)ig — Txcdin (D<kaiCkT>ﬂ - <ﬂklfkT>ﬂ) :

The other expectation values, such as (¢l cim), (fi cim +h.c.), and (4/) are determined
similarly to chapter 3, Eqgs. and .

From the above analytical calculations, we have obtained a set of self-consistent equa-
tions for evaluating the expectation values as well as superconducting pairing functions
of the EPAM by employing PRM. In chapter 7, we will discuss in detail its numerical
results for the two-dimensional systems. By concerning only on the valence transition
regime, a BCS-like self-consistent equation for determining the superconducting energy
gap in momentum space is also obtained. A nature of d-wave superconductivity due to

the valence fluctuations is profoundly discussed.
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6.3 Approximate solution for a large lattice

Another advantage of the analytical projector-based renormalization method (PRM) is
the possibility to consider larger systems than in usual numerical methods. Therefore,
one is able to investigate two- or three-dimensional systems for reasonably large lattice
sizes. The PRM is now applied to the two-dimensional EPAM in order to explore the

superconducting state in particular in the valence transition regime.

In the general case, we have to solve self-consistently the renormalization equations
in order to obtain analytical results as discussed in the previous section. However, we
encounter a large number of differential equations, which need a long time for being nu-
merically integrated, if we consider a large number of lattice sites. Thus, only a small
two-dimensional system with N = 16 x 16 lattice sites can be considered without addi-
tional approximations. The results for this case will be discussed in the next chapter.
Nevertheless, in order to make sure that the small system is enough to mimic the thermo-
dynamic limit, we shall first present a simplified solution which can be used for a larger
lattice. By using additional approximations, the solution becomes simple so that we can
explore a large system. We shall also obtain a BCS-like equation for the superconducting
energy gaps. An effective pairing interaction, which is strongly dependent on momentum,
is found in a simple relation with the hybridization V' and the Coulomb repulsion Uy, be-
tween the localized electrons and conduction electrons. It shows that superconductivity
can only occur in the case of simultaneous presence of Uy, and V. It also clarifies that
superconductivity due to the valence fluctuations is of d-wave nature. Therefore in the
next chapter, only numerical results for d-wave superconductivity will be considered. Our
results affirm that in heavy-fermion systems, d-wave symmetry is favored by valence fluc-
tuation [27, [56]. Note that by solving the Eliashberg equation in the fluctuation-exchange
approximation for the EPAM it was also found in Ref. [29] that the d-wave symmetry is

dominant as compared to the other symmetries in the valence transition regime.

As explained, this section is devoted to an analytical solution of the renormalization

equations for the EPAM in the superconducting state. In chapter 7, we shall give the
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corresponding numerical results for large systems. In order to evaluate analytically the
renormalization equations (4.32), we assume a A-independent energy of the f electrons
as in [B1L B3], usn — DA, ~ €. Also, the density-density correlation part between the

localized electrons is neglected. Therefore, from (4.32)) we have

dZ‘;A — 2DVirdin, (6.27)
dzy = Ay, (6.29)
where Ay ) = &5 + Dy — €x -
Eq. leads to the simple result
T = AT, (6.30)

where we have used the initial conditions (4.13]). Thus, Eq. (6.29)) can be rewritten as

N 1 dVi
= . 6.31
e el — 261 dA (6.31)
Inserting it into Eq. (6.27]), one finds
d ¢, « 2
a {Ek,)\ - (gf + f':k’A) €k7)\ + DVk7/\} - O (632)

which can easily be integrated and a quadratic equation for € is obtained. In the PRM,
the quasi-particles in the final Hamiltonian H do not change their characters as function
of the wave vector k. Therefore, €, jumps between the two solutions of the quadratic

equation (6.32) in order to minimize the derivations from the original ey 5 (see (4.13))

~ Erte sgn(és — e
G = 2 Qk»A_ an( f2 k’A)Wk, (6.33)

Wi = /(e — )2 +4DV2 (6.34)

The second quasi-particle band is given by

Ef +exa N sgn(€y — ex.n)
2 2

(I)k = éf -+ D’S/k = Wk. (635)
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The expectation values, formed with the original Hamiltonian, can be calculated by using

the renormalized one-particle operators as discussed in the chapter 4

fi(A—=0) = —Dipcl, + o fi | (6.37)
where we defined
1 5.
[ * = 5 [1 + sgn(&y —5k,A>%:| : (6.38)
> = ! 1 —sgn(éy — ex A)f_—gk’A . (6.39)
2D Wi

Therefore, the expectation values can easily be evaluated

1 N Er—¢€ _
(ChonCicm) = 5 {1 +sgn(éf — 8k,A)ﬂ] f(&w)

W
) K (6.40)
~ Er—¢ T~
+ 3 [1 —sgn(&y — akyA)kak’A} f(@k)
and
l_fz 1 — sgn(5; — gkA)f_—EkvA F(Ex)
2N 4 Wi
R (6.41)
vy Er —exA| 7/~

§N ; [2D -1+ sgn(ef — &k A)Tk‘| f(wk),

where f(@y) has been defined in .

In order to solve analytically the renormalization equations for the supercon-
ducting energy gaps, we note that the superconducting state only occurs at a momentum,
in which both f-band and c-band are close to the Fermi level. That means that at mo-
mentum k both quasi-particle bands, @y and €y, are located in the vicinity of the Fermi
level. This minimizes the factor |Ay| = |@x — &x|. Moreover, the most dominant con-
tributions of cy ) during the renormalization is at momenta k with the smallest values
| Ak Almin Of [Ak |- When A — |Ag \|min, the renormalization procedure is completed.

Therefore, we can substitute the A\-dependent parameters in (6.17)) by their renormalized
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values. For some momenta k close to the Fermi momentum, kr, we can approximate the
A dependence of ay ) by

: - )
Gr e —— o d o A Lo a), (6.42)
KA = [Ax])? KA = [Ax])

The constant k ensures that the exponent is dimensionless. Therefore, we obtain
. V ~ ~
Gy ~ =—0(A — |Ax])0(N — |Ax]), (6.43)
Ay
where the ¢ function denotes the delta Dirac function.

So, the set of renormalization equations (6.17)) is easily evaluated. The result is

N 2DV - 2V 1 A
ACC - —~—Afc - U — 644
K 1Nt qu: kkera (/= (ta) L Ceta ) (6.44)
. W .. W1 .
Al = A - == Uk ket (S~ (cra) Crra ) (6.45)
Ay A N q
A e A cC A 4
Afe = <Ak — DAY’ ) -
Ak
V o Vkx : :
o D P <<f—(k+q),1fk+qn> - (C—(k+q),10k+qn>> : (6.46)
q Ak+q

Here we have used Al* = A/ <f—(k+q),ick+q,T> = <C—(k+q),ifk+q,T>7 and the following

approximations

B 2 . .
Uk,k+q ~ Ufc exXp {_qul | lik|+§| D } 9(’Ak] - ‘Bk,k+q|>7
Kl Pkicra (6.47)

| Bicxerql x ~
Upxiq = Upeexp § ——————% 0(| Axtq| — [Brxrql):
e (| Axtql — |Brxsal) ? !

If we assume that in the valence fluctuation regime the f-electrons easily change
to conduction electrons at some states k ~ kg, we have ( f_kl fkT) ~ —(c_xjcky) and
DAl{f ~ —Aff for a constant total number of electrons. Thus, Eq. (6.46)) can be rewritten

as

Aﬁc _ %_VAic . % Ué,kﬁ-q
Ak N q Ak—i—q

{C-(cra).1Ccrart)- (6.48)
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By neglecting cubic terms in A’ in Egs. (6.2216.25)), we can obtain a simple relation

between each superconducting energy gap and its superconducting pairing function

(c_xjcnt) = DY,

A - (6.49)
(foxienr) = gL,

where, at temperature 7" — 0
1 1 1 1 1\ & —&?
(e 8) (-3 84
4{\& & & &) & — @il
R (6.50)
~ 1 1 4 1 i 1 1 (Ek — wk)
Ual\gte) T \a &) m-al]
Substituting (6.50)) and (6.48) into (6.44) we have

A cC 1 cc
Al=-% Y TekraAg, (6.51)
q

where

{4‘/2 Uk xrqficra = Ukktq9krq
Pk,k+q - =

e Acta (6.52)

-1
4v2 1 Z Serara 4v2
- T =~ U /U/ # 1 + ~ .

q’ k+q

Note from Egs. 1) that only some values of momentum q and k, at which ]§k7k+q\
approach to |Ay| or |Ay,q|, contribute to Uy yyq or Ukxiq Therefore, the second term
in the numerator of (6.52]) can be neglected. Moreover, in the valence fluctuation regime,

| Ax| becomes small, which means || ~ |&|. Thus gy is small compared to fi and

Piiera = Vieksqficras (6.53)
where
-1
42 Uy, 4V?
Vel a4 : (6.54)
Ak Akiq | Ax]?

Thus, Eq. (6.51)) becomes a simple BCS-type self-consistent equation for the supercon-

ducting energy gap Aff in momentum space. Vlfﬁf{ +q Tepresents the effective two-particle
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pairing interaction. In the BCS theory, Vlf,flf( +q 18 taken as a negative constant and there-

fore the energy gap solution of Eq. is structureless in momentum space (s-wave
superconductivity). However, in the present case Vlfﬁf( ¢ Strongly depends on momentum.
Therefore we may obtain a d-wave symmetrical solution for the superconducting energy
gap in momentum space [57]. Furthermore, from ({6.54) we see that Vlffif{ q becomes dom-
inant if Uy, is large and Ay Ay 4 is small. This only happens at the momentum at
which both quasi-particle bands are located close to the Fermi level and close to each
other. Therefore, part of the f-level is empty. This is the picture of a valence fluctuation
regime. Furthermore, from Egs. we see that the stable superconductivity can
be only obtained if there has a possibility for forming Cooper pairs between the conduc-
tion and localized electrons, ( f_klck¢>. That means the valence fluctuation is a crucial
point for mediating the superconductivity. By this analytical result, we can conclude that
the nature of the d-wave superconductivity is mediated by the valence fluctuations in the

EPAM.



Chapter 7

Numerical results for

superconductivity in the

two-dimensional EPAM

7.1 Numerical results for a large system

In this section, we discuss our numerical results for the superconducting energy gaps by

solving self-consistently Eqs. (6.44H6.46]) with the analytical results in Egs. (6.33] [6.35))
and (/6.40], [6.41]) for a large system of section 6.3. This problem is done in two steps. In

the first step, Eqgs. and , are solved self-consistently by arbitrarily
initial choices for the expectation values (n°) (density of the conduction electrons) and
(') (density of the localized electrons). After a self-consistent solution is found, the
obtained results are used to continue to solve Eqs. self-consistently to obtain
the superconducting energy gaps. In order to find d-wave superconductivity, we choose
Azf by, = Ag‘ﬁ (cosk, — cosky,) (where o, § denote c or f) as initial values of the super-
conducting energy gaps with amplitudes QAS‘B . The self-consistent procedure is stopped,
when convergence is achieved for the second step. In the present chapter, the total occu-

pation number of electrons is also fixed to n = (n°) + (/) = 1.75 and dispersion relation

63
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of non-interacting conduction electrons we have chosen e, = —2t(cos k,, + cos k). We set
2t = 1 as a unit of energy in order to have the same bandwidth of the conduction electrons
as in the one-dimensional case. Therefore, the present results and the one-dimensional
results, which have been discussed in the previous chapter, can be compared. A two-
dimensional system with N = 320 x 320 sites is investigated. The temperature is set to
be very small, T = 1073. The former typical values, Us. =1, V = 0.1, and n = 1.75 are
still kept.

Energy|t]

0.2
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0.05 J—
-0.05
0.1
0.15
0.2

Figure 7.1: Renormalized energies of the conduction electrons, &y, and of the localized electrons,
Wk, as functions of momentum k in the first quarter of the Brillouin zone at ¢y = —0.53 for

Use=1,V=0.1and T =1073.

At first, in Fig. the dispersion relations of the two quasi-particle bands are shown
for e; = —0.53. The red (plus) symbols are for c-electrons and the green (cross) symbols
for f-electrons. Because of the hybridization, each quasi-particle band has a jump at
the crossover between €; and the unrenormalized c-dispersion ey 5. For ¢4 = —0.53, the
jump is located close to the Fermi level in which both conduction and localized electrons

contribute to the formation of the Fermi surface. This picture describes the situation at
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a valence fluctuation regime.

In addition to the result of the dispersion relations in Fig. [7.1], the result for the
superconducting energy gap Aﬁf is shown in Fig. as function of momentum k in the first
quarter of the Brillouin zone for the same parameters as in Fig. Note that the nodes

Figure 7.2: Superconducting energy gap, Aﬁf , with d2_ 2-wave symmetry as a function of
momentum k in the first quarter of the Brillouin zone at ey = —0.53 for Uy, = 1, V = 0.1 and

T =103.

of Af:f are right in the diagonal direction of the Brillouin zone and the relation Aiﬁ T

—Ag », if fulfilled. Here the result is shown only for the superconducting energy gap built
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by the localized electrons. However, d,2_,» symmetry is also valid for the other possible
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Figure 7.3: Maximum value of the superconducting energy gaps as a function of L for a two
dimensional system with N = L x L lattice sites at ¢ = —0.53 for Uy, = 1, V = 0.1 and
T =1073.

superconducting energy gaps Aff, and AI{C as well as for the superconducting pairing
functions, (c_x|cky), (c—k| fkT>, and ( f_kl fkT)- The maximum of the superconducting
energy gap is located at the Fermi level which corresponds to the jump in the dispersion
relation of the quasi-particle bands. In other words, the superconducting-state is dominant
in the valence transition regime, in which some f-electrons become delocalized. The
maximum position of the superconducting energy gap is shifted in correspondence to the
shift of the jump position of the quasi-particle bands in momentum space. That means,
if the Fermi line is a square with the corners at (+m,0) and (0,4w), the maximum of
the superconducting energy gap is located in the vicinity of (£m,0) or (0,£7), which
follows from the initial choice of the d;2_,» symmetry for the superconducting energy gap
in self-consistent iteration. Furthermore, note that the SC-state is only found in a small

region in the momentum space, where the values of the superconducting energy gap is
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large. Therefore, the assumption we have used in is applicable. The non-monotonic
behavior in Fig. of the superconducting energy gap as function of k is similar to
that of the superconducting energy gap in the high temperature superconductors, which
might be mediated by magnetic fluctuations [58, 59, [60) [61]. In the present study, the
superconductivity is believed to be mediated by valence fluctuations.

By varying the number of lattice sites we have also examined the size effect of the
superconducting energy gaps in our problem. For instance, the maximum values of Aﬁﬂ
(o and B denote ¢ or f) are shown as functions of L (N = L x L) in Fig. for
the same parameters as in Fig. and Fig. [7.2l For small L, the maximum of each
superconducting energy gap first somewhat decreases and then slowly increases till it
reaches a size independent value as large L. Therefore, already a small system is able to

mimic the thermodynamic limit.

7.2 Exact numerical results for a small lattice

As discussed in the previous section, we can already consider a small two-dimensional
system to mimic the thermodynamic limit in the superconducting state of the EPAM
by the use of the PRM. In this section, we discuss the self-consistent solutions of the
superconducting energy gaps, as well as of the superconducting pairing functions, by
applying the full PRM of section 6.2 to the EPAM. A system with N = 16 x 16 lattice sites
will be considered. In analogy to the one-dimensional problem in the normal state, in order
to investigate the two-dimensional system by using PRM in the superconducting state, we
start from some guess for the expectation values (i), (¢l cion), and (fi cm+h.c.) as well
as for the superconducting pairing functions (c_x|ck), (x| fkT>7 and (f_yx ! fkT>- Solving
the differential equations (4.32)) and (6.17]) with the initial conditions and (6.3), we
obtain the renormalized Hamiltonian of the EPAM in the superconducting state .

Using the Bogolibov diagonalization, we can find the superconducting pairing functions
by use of the renormalized Hamiltonian. The differential equations (4.51]) are now used to

determine the expectation values with the full Hamiltonian. This calculation procedure
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of the expectation values has to be repeated until a self-consistent solution is achieved.
The symmetry for the order parameters in the superconducting state is put in by hand by
the chosen k-dependence of the initial superconducting pairing functions. For example, in
order to find a d,2_,» wave symmetry we choose (a_i|fk;) = A%s(cos k, — cos k), where
«, (3 denote the c or f-electron operators. If (a_y fk1) = Agﬁ(cos k; + cos k) is chosen,
we have s;2,,2-wave symmetry. Here, Agﬁ are constants. However, as concluded in the
previous section, only d-wave superconductivity is a solution in our study. Therefore, only
the d-wave symmetry is investigated in this section. Instead of showing all possible d-
wave superconducting energy gaps and superconducting pairing functions at all positions
in the Brillouin zone, we restrict ourselves to the ff-superconducting energy gap A{:f as
an illustration. Note that for a given set of the model parameters, the symmetries of all
possible d-wave superconducting energy gaps and superconducting pairing functions are
identical. The temperature dependence of their amplitudes will be left to a discussion at

the end of this section.
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Figure 7.4: Maximum value of superconducting energy gap Aﬁf and average f-electron occu-
pation number (7/) as functions of the bare f-energy e ¢ for two values of U, at T = 1072 and

V = 0.1. Note that the scale of (2) is restricted to values between (2f) =1 and (Af) = 0.92.
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Fig.|7.4{shows the behavior of the maximum value Afr{ax of the superconducting energy
gap Al{f as well as the density of the localized electrons as function of the bare f-energy, €.
We see that similarly to the results of the one-dimensional EPAM, in the two-dimensional
case, an increasing Uy, leads to a sharper valence transition. At the same time, for a regime
which shows a rapid change of the average f-occupation (2/) also the superconducting
energy gap becomes large. Thus, the regime where the superconducting state is stable,
becomes enhanced by increasing Uy, which leads to a sharper valence transition. Moreover,
note that superconductivity disappears in Fig. for values of the f-occupation (n/)
below 0.9. Therefore the approximation which leaves out the correlation between the
localized electrons is applicable in the superconducting state. This result is agreement
with the calculation in [21], in which the d-wave superconducting transition temperature
for the three-dimensional EPAM has a peak at a value €}, which is slightly smaller than
the value for €, which corresponds to the steepest slope of the f-occupation (as function

of €5). In [21], the transition temperature also drops down rapidly as e; > ¢} and gradually

decreases in the opposite direction. Note that from Fig. [7.4] one can conclude that the
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Figure 7.5: Maximum value of Aif as a function of the bare f-energy e; for several values of

temperature T at Us. = 1, V = 0.1.
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valence transition regime and thus the superconducting regimes shift to smaller values of
e when Uy, is increased. This is not the case for the slave-boson mean-field treatment.
The behavior for (A/) looks similar to the result in the one-dimensional EPAM. Our
results affirm that superconductivity becomes more stable by the influence of valence
fluctuations. Increasing Uy, in the EPAM is a crucial evidence for finding a sharp valence
transition and d-wave superconductivity in the valence transition regime. This behavior
can be explained by Eq. (6.54), where the effective pairing interaction Vfﬁf( +q 18 linear
dependent on Ug..

Similarly to the one-dimensional EPAM (Fig. [5.8(a)), also for the two-dimensional
EPAM a reduction of the temperature leads to a sharper valence transition. For the
two-dimensional case, the dependence of maximum value of the superconducting energy
gap Aﬁf on the temperature is shown in Fig. . It once more demonstrates that the
“window” of stable superconducting states broadens, when the valence transition becomes

sharper.
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Figure 7.6: Maximum value of Aﬁf as a function of the hybridization V for several values of

the bare f-energy e; at Ug. =1, T = 1075.

Increasing the hydrostatic pressure, the f-level is raised close to Fermi energy and the
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hybridization between the localized electrons with the conduction electrons becomes en-
hanced. Therefore, in heavy fermion systems, besides the f-level €, also the hybridization
V' can be considered as a parameter, which characterizes the applied external pressure.
In Fig. |7.6] we can see the behavior of the maximum value of Aif as functions of the
hybridization V' at temperature 7' = 10~3, Coulomb interaction Uy, = 1, for some values
of the bare f-energy e;. For each value of ¢/, A{zf first increases and then decreases as V'
is increased. This behavior can easily be understood in the picture of valence fluctuations
which mediate the superconductivity. Indeed, by increasing the hybridization, the f-level
comes close to the Fermi level and leads to more f-electron to jump to the conduction
bands. It thus raises the chance of forming Cooper pairs between f-holes (see Fig. [1.3)).
Nevertheless, if V' is large enough, a large number of holes in the f-level suppress the at-
tractive pairing interaction of isolated pairs of 4f° “holes” [20]. Furthermore, a “window”
in which the superconductivity becomes stable is shifted to smaller V" as €y is increased.
When the f-level €; is located far below the Fermi level, the hybridization has to become
larger in order to renormalize the f-level close to the Fermi level so that Cooper pairs can
be formed. This behavior also can be understood by the simplified analytical expression
for the effective pairing interaction in . Indeed, increasing the hybridization V' leads
to larger Vlfﬁf{ +q Nevertheless, the factor Ay and Ay 4 increase as linear dependence of
V. So when V is large, it makes some states which play a role to reduce the factor Ay be
far from the Fermi level or the superconductivity is suppressed.

The behavior of the superconducting energy gaps as well as of the superconducting
pairing functions for all possible combinations to form the Cooper pairs are shown in
Fig. as functions of temperature. As expected, the behavior of the superconducting
energy gaps and the superconducting pairing functions are equivalent. Due to this result,
we also can estimate the strength of an effective interaction between the Cooper pairs.
Superconductivity only exists for f-occupations larger than (i/) = 0.9. Thus, the density
of f-holes is quite small, which leads to a small density ( fx ! fkT> of the ff Cooper pairs
created by coupling between the holes (green symbols in Fig. (b)) This physical

picture results from the fact that the f-electrons are completely localized for (R/) =
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Figure 7.7: Maximum values of (a) the superconducting energy gaps and (b) of the supercon-

ducting pairing functions as functions of temperature for Uz, = 1, V = 0.1, and €; = —0.5.

1. For (') > 0.9 the density of f-holes is small, which means that it is difficult to
find enough holes, which interact with each other. This is in contrast to the situation
for the conduction electrons. The conduction electrons are delocalized. Therefore the
probability for a pairing between conduction electrons is dominant as shown by the black
symbols in Fig. (b) For the superconducting energy gaps the situation is reversed,
Fig. [7.7(a). Fig. [7.7(b) shows that in order to break the Cooper pairs between the f-
electrons, more energy has to be supplied than for pairs between conduction electrons. We
can also realize that all possible Cooper pairs in the system will disappear simultaneously
if the temperature is larger than a critical value. The critical temperature T, can be
determined by extrapolating the superconducting energy gaps or the superconducting

pairing functions as functions of temperature close to the critical temperature value.



Chapter 8

Summary

Observations in CeCuySiy and related compounds showed that in the pressure-temperature
phase diagram, there are two disconnected superconducting domes. The lower density
superconducting dome is located close to antiferromagnetic order. Thus, the supercon-
ductivity in this dome might be mediated by spin fluctuations. In the higher density
superconducting regime, the superconducting critical temperature is larger than that in
the first dome. There are experimental evidences for these compounds that in the high
pressure superconducting dome, a weakly first-order volume collapses, the residual re-
sistivity enhances, and the coefficient of the T2 law of the resistivity decreases. These
evidences are related to an enhancement of valence fluctuations. The aim of this thesis
was to discuss the possibility of superconductivity, which is induced by enhanced valence
fluctuations in the heavy fermion systems under high pressure. The enhancement of the
valence fluctuations is modeled by including a Coulomb repulsion term between the con-
duction and the localized electrons in the periodic Anderson model (PAM). This extended
PAM (EPAM) was investigated by a recently developed projector-based renormalization
method (PRM).

In chapter 2, we have presented the EPAM within representation which is useful for
further calculations. In the case of infinite Coulomb repulsion between the localized elec-

trons, the usual fermionic operators of the localized electrons were replaced by Hubbard
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operators in order to restrict multiple occupied f-sites.

Chapter 3 was devoted to the basic ideas of the PRM. Instead of eliminating high
energy states as in usual renormalization group methods, in the PRM high-energy tran-
sitions are successively eliminated. Thereby, a unitary transformation is used where all
states of the unitary space of the interacting system are kept. The PRM starts from
decomposing the Hamiltonian into two parts, a solvable unperturbed part and a per-
turbation, H = Hy + Hi, where the later part (H;) induces transitions between the
eigenstates of Hy. A renormalized Hamiltonian Hy, which only contains transitions with
transition energies smaller than some given cutoff energy A, has been constructed. In the
following a further renormalization of H, is evaluated by reducing the cutoff A to A — A\.
This is done by the unitary transformation, Hy_ay = e 2 H, e~ *3 21 which guarantees
that the eigenspectrum is not changed. The generator X, a» is specified by the condition
Qa_arHr_ax = 0, where Q)_a) is the projector on all transitions with energy differences
larger than A — AX. Note that only the corresponding part Qx_axXx ax of X ay is fixed,
whereas the orthogonal part Py_xX) ax can be chosen arbitrarily (Py_ax =1—Qx_a)).
In the thesis, Py_axX) ay is chosen to be nonzero. This additional freedom can be used,
as in Wegner’s flow equation method, to perform the unitary transformation continuously.
In this case, the interaction parameters were chosen to decay exponentially. By proceed-
ing the renormalization up to the final cutoff A = 0, all transitions induced by H;, can
be eliminated. The final Hamiltonian H = H_o is diagonal and allows to evaluate in
principle any correlation function of physical interest. In particular, note that the one-
particle excitations of H can be considered as quasiparticles of the coupled many-particle
system since the eigenspectrum of the original interacting Hamiltonian H and of H are
in principle the same.

By applying the present approach to the EPAM in the chapter 4, we obtained differen-
tial equations, which can be used to find the renormalized Hamiltonian. This Hamiltonian
includes a new density-density interaction term between the f-electrons on different sites,
which is generated during the renormalization procedure. Thus, we still can not straight-

forwardly determine the expectation values. Therefore, the second application of the PRM
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to this Hamiltonian is used. Finally, the completely renormalized Hamiltonian permits us
to evaluate the density of the localized electrons as well as its correlation function, C’géj.
However, this correlation function decays exponentially with the distance R; —R; between
the f-electrons. The decay becomes much faster when the temperature is increased. The
largest value of C’Zf;j is (A7) (1 — (Af)) ((Af) is the density of localized electrons) at zero
distance, 1 = j. Therefore, the density-density correlation function between the localized
electrons can be left out in the case of large or small densities of the localized electrons.
At high temperature it is replaced by a density-density correlation function on the same
site. With this approximation, the second step in the renormalization procedure can be
neglected, and it is very simple to calculate the expectation values. These simplifications
were also used in chapter 6.

On the basic of the analytical results, in the one-dimensional case, at chapter 5, the
numerical result for the renormalized dispersion relation of the conduction electrons and a
physical picture of the valence transition is given. Due to the presence of the hybridization
V and the Coulomb repulsion Uy, between localized and conduction electrons, various
gaps are found in the dispersion relation. The number of gaps depends on the density
of the localized electrons. It shows that in the case of large and of small (n/), the
dispersion relations for the conduction electrons is not changed by the presence of C’/{éj.
The results for the valence transition are discussed as function of various model parameters
such as Uy, and V' or temperature T". For fixed total electron number, we find that the
valence transition becomes sharper when Uy, is increased. On the other hand, the valence
transition also becomes sharper when either the temperature 7" or the hybridization V'
becomes smaller, when Uy, is kept constant.

Chapter 6 contains the application of the PRM to the superconducting state of the
EPAM. Small gauge symmetry breaking fields are included in the EPAM. The renormal-
ized Hamilonian of the EPAM in the superconducting state is found in analogy to chapter
4. After being diagonalized by use of the Bogoliubov method, this Hamiltonian allows to

determine the superconducting pairing functions of all possible Cooper pairs.

It was claimed by Miyake et al. that superconductivity in the heavy fermion material
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CeCusSiy and in related compounds at high pressure may be described by the EPAM.
However, only a three-dimensional system was considered by Miyake in a slave-boson
mean field approach. The symmetry of the superconducting energy gaps were not explic-
itly described. Therefore, in chapter 6 we have discussed the self-consistent solution of
the superconducting energy gaps for a two-dimensional EPAM model. By use of some
additional simplifications, a BCS-like equation is found. The resulting effective pairing
interaction depends strongly on momentum and becomes dominant in the valence transi-
tion regime. Our result verifies that superconductivity should have d-wave character and
is mediated by valence fluctuations. The numerical evaluation for our analytical results is
found for a two-dimensional system in chapter 7. First, we discuss the numerical solutions
for a large system by use of some additional approximations, and then for a small system
with V = 16 x 16 lattice sites, where the original renormalization equations of section 6.1
were used. Our results once more show that d-wave superconductivity becomes important

close to the valence transition.



Appendix A

The exact solvable Fano-Anderson

model

In this appendix, we illustrate the renormalization approach for the case of a simple

model, the Fano-Anderson model, which can be solved exactly [62].

A.1 Model

As simplification of the periodic Anderson model [49], the Fano-Anderson model consists
of dispersionless f electrons, which hybridize with the conduction electrons. Thereby, all

correlations are neglected. This model is given by

‘H ="Hy+ H;,
Hy = Z €KChy,Clom T €5 Z AN - A
km k,m ( 1)

H, = Z Vk(flimckm + hC)
km

Here fi (fim) and ¢l (i) are creation (annihilation) operators of f-electrons and
conduction electrons with wave vector k and angular momentum index m, respectively.

Both types of electrons are assumed to have the same index m with v; values. By
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introducing new fermion operators

O‘/Lm = ukflim + Uchkm7

(A.2)
ﬁl];m = _kaltm + ukcI{m’
which satisfy
luse|* + |vi)? = 1. (A.3)
We can represent the model ((A.1)) in the following form with two hybridized bands
H=>_ w ol + >0 B e (A4)
k,m k,m
where
(+) _ €x T €7 :|:1W
Wy 9 9 k;
Wy = \/(Ek —ep)? + 4VAl?,
and
1 € €
2 k f
—— (1=
ud"=3 ( Wi ) ’
) (A.5)
2 k — €
=—(1
o = 5 (14 %5-)
So, the f occupation number, for instance, can be determined and its result is
(i Frem) = lu* (el im) + 01 (Bl Brcm)
el + ot o
= |uk k| ———.
+ e’ 1+ e

The diagonalized Hamiltonian contains two eigenmodes aLm and ﬁlm, which
change their character as function of the wave vector k. Indeed, altm is a more f-like
excitation for ex < €; and a more c-like excitation for e > €, and vice versa for the ﬁlm
operators. Therefore, it is very difficult to distinguish the contribution of the conduction

or of the localized electrons to the band structure.
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A.2 Projector-based renormalization approach

In the renormalization approach, we integrate out the hybridization term between the lo-
calized and conduction electrons in order to obtain a diagonal effective Hamiltonian of free
quasi-particles. The starting point of the method is to formulate a renormalized Hamil-
tonian H, which is obtained after all excitations with energies larger than cutoff \ have

been eliminated. As discussed in the previous chapters, the renormalized Hamiltonian of

the Fano Anderson model (A.1)) at cutoff A can be written as follows

Hy = Hox + Hix
HO,A = Z Gk,)\cif(mckm + Z Wk,)\flimfkm

k,m k,m (A7)
Hl)\ = Z Vk)\(fltmckm + hC)
k,m

Here, €x  and wy , are the dispersion relations of the conduction and the localized electrons
at the cutoff \. The excitation energies are determined by applying the non-interacting

Liouville operator, Lo, to Hix

Loafl i = (€ex — W) fi Ciem. (A.8)

In order to derive the renormalization equations for the parameters of the Hamiltonian,
we compare the coefficients of the different operator terms in the two expressions of the
renormalized Hamiltonian at cutoff A — AX. They are obtained from (A.7) by two ways,

the first one is

_ T T
Hy—ar = E €k A—ANCip, Ckm. T+ E Wk A=A fiem frm

k, k,
N " (A.9)
+ Z Vk,/\—A)\(flikam +h.c.).
k,m
The second one is deduced from the unitary transformation
Ha—ar = Z Ek,AeXAchmekme’X*»M + Z u)k,)\ethAflimfkme*XA,Ax
Kk I
- " (A.10)

+ Z Vieae™ 8 (L e + huc)emSnan,

k,m
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where an approximate generator X, ax = Zk’m ar (A, AN)( flimckm — h.c.) is chosen. In
the limit of small A\, we can restrict ourselves to the first order contributions from the
generator. Comparing the prefactors of corresponding operators in and and
taking the limit A\ — 0, we find

dEk A

d): - 2Vk’)\&k’)\, (All)
SRRV (A.12)
N kAOKk )\, .
dVi -
dl;\’)\ = (wk)\ — Gk,)\)OékA. (A13)
Here
o a(h AN
G ) = Alf\rilo — AN (A.14)
Substituting dy  from (A.13)) into (A.11]), we have
dex x dVi
- = =2 . Al
(wk,A Ek,A) A Vk,,\ 9\ ( 5)

Comparing (A.11) and (A.12]), we also obtain
d(ex ) +win)

=0 A.16
d)\ Y ( )

or, g + wi x = €k + €. Therefore, we can rewrite (A.15) as

dEk)\ deA
-2 = =2V : A7
(Ek + ef Ek7>\) d)\ k,)\ d)\ ’ ( )
or

(Gk + Ef)gk - gi = (Ek + Gf)fk - Ei - V2. (A18)

Here €, = €x y—0 and Vi o = 0. So, we have found a quadratic equation which determine
the completely renormalized dispersion relations of conduction and localized electrons.
From Eq. , we realize that the derivations of €y ) are changed through the inter-
section of €\ and wy . Therefore, € jumps between the two solutions of the quadratic
equation

. ek +er sgn(ex — €y)

= T (A.19)

€k =
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where

Wie = /(e — €0)2 + Va2 (A.20)
From ({A.16]), we also obtain the second quasi-particle band

N €k + € sgn(ex — €
e = k2 £ %8 <“2 f)Wk. (A.21)

The fully renormalized Hamiltonian reads
H=> & cam+ Y Ocflpfim + E (A.22)
k,m k,m
This final result corresponds to the diagonal Hamiltonian (A.4). However, in contrast
to the eigenmodes aLm and ﬁlm, the renormalized Hamiltonian 1) is diagonal in the
eigenmodes flim and ch, which do not change their character as function of the wave
vectors. From the renormalized Hamiltonian , it is easy to evaluate the expectation

values. Indeed, the free energy can be calculated as
F = —BlnTre = —ElnTre . (A.23)

As an example, the f occupation number is found from the free energy by functional

derivative

(F fem) = oF (1 + sgn (e — ef)lek _ Ef) 1

Noe,  \2 2 Wi )1+ efox (A.24)
1 lex — ¢ 1 .
g el )T ) T

This result agrees with Eq. (A.6)). The other expectation values and quantities, calculated
by the two ways, are also identical. It follows that all static and dynamic quantitites, in-

volving electron creation and annihilation operators, can be determined in the framework

of the PRM.



82

A. The exact solvable Fano-Anderson model




Appendix B

Bogoliubov diagonalization

This appendix is devoted to the solution of the eigenvalue problem of H in Eq. (6.18).

Here, we perform a Bogoliubov transformation [55] by introducing new fermionic operators

1 2 3% £ 4% £
pl = ak*clT(T ay k| + ak*fliT — ay [k

which satisfy
[t 1]+ = Grae
or
akf? + a2 + Dla}? + Dlai]” = 1

The yet unknown pre-factors aj, are found by using the relation

[H, 1] = Byl

By evaluating the commutators, we obtain

[H, i) = (ékall(* + AfCaZ + DAf(fai*> CLT + (5 kad — AL a
- (w ay + DA ap + Alfa? )fkT (u)kak DA

33

Dﬁﬁc’*ai*> C_k|

(B.1)

(B.2)

(B.4)

(B.5)
— A"a > j
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where @i = fiy + D(Jx — 7). From (B.4), we find the linear equations for determining the

pre-factors ay,

&l + AraZ + DAY af* = Ealr
g — Al*al — DAI*a}* = — By
oead + DAY al* + Al°a? = By}
oeal — DA o — Ath*alx = — Bal

\

These are homogeneous linear equations, which only has non-trivial solutions for
det A =0, (B.7)

where
G — B AP 0 DAY/
~AL G+ B, —DA 0

0 Al oo —E. DAY
—A 0  —DAI™ &+ By

A:

Setting the determinant equal to zero leads to an equation for the eigenvalues FEy
| Ex|* — e Bxe|* + i = 0, (B.8)

where
u = & + O+ DAY + |AEP + DAL + 1A ),
ve= (82 + A7) (@ + DAPR) + Daan (1AL + A7) (B.9)
+ IDAYPIDALE - D (AgAi AL AP + A AT ALAL").

Defining @y = ui — 4vy, we have

(B.10)
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The eigenvectors ,ulT( are found from the condition 1’ and three of the four equations

in (B.6). For example, we have

[ Jab[? + a2[? + Dla[* + Dlai|? =
(x — Bx)ay + Afa? + DAY af* = 0

lcf “ait — (8x + Fy)ay + DAfC aPr =0 .
| Affad + (@ — Bx)ai + DAY alr = 0

Solving this system of equations, we obtain

where
2 3 (x> ~ Acfx A fe
ap = o = A = (& + Ex)(0x — Ex) + DA AL,
ot = DAY — D Rere Reeptt
k — A k>
Be = (@ — Ex) AL — DA DAY 64 :
5"
o B 34
Bi = —VD|ALAe" + VDAY (& )a—{ﬂ
! . AfP?
5k=\/5[Ek—€k—(wk—Ek) A };
and

4 i\ -1
|ai|2:{1+2(—?)} -
i \%

(B.11)

(B.12)

(B.13)

(B.14)

For the four values of Ej we also obtain four values for the set of {a}}. The four eigen-

vectors {ut } read

.
/lllj — all(l*clT(T allf*c K+ alg*fkT 14*f—k1

Nk—aichT_akC Kl + ai fkT_a f—kl

Nk _ ail*CLT . aiQ*c K+ a:‘»:s*fkT . a34*f—kl

/~Lk = ailc;rq - ak Cx| t a fkT - CLk f—kl

(B.15)
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From Egs. (B.15]), we obtain the representation of ¢ and f operators in terms of the

operators {uj }

1 3
ey = bt + 0202 + b3 + bipd

3
co = bt + 0B + b ) + bR (B.16)
fly = 0 md + 020+ 0P + b

r 3
Fac = bt nd + B2 + 0 + b

\

which satisfy > b7 | = 1. Substituting the above relations into the Hamiltonian (6.18)),

it can be rewritten as

4
H=> (-1 Bl +Z [ek+wk—(Ek+Ek ] +) G
K,j=1 Kk
= > Elm e+ 1 1) +Z<‘3k (1 i + b 130) (B.17)
k
+) [ékJrch— (5§+5§)} +Y Ci,
k k

1/2
where, 5&’2 = [(uk + \/qu)/Q] . ux and Py are defined in (B.9). From Hamilto-
nian (B.17)), the free energy can straightforwardly be evaluated, which is used to determine

the superconducting pairing functions of all possible Cooper pairs in the EPAM.
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