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Flexural Analysis and Design of Textile Reinforced Concrete* 

Chote Soranakom1 and Barzin Mobasher2 

Summary: A model is presented to use normalized multi-linear tension and com-
pression material characteristics of strain-hardening textile reinforced concrete 
and derive closed form expressions for predicting moment-curvature capacity. A 
set of design equations are derived and simplified for use in spreadsheet based 
applications. The model is applicable for both strain-softening and strain-
hardening materials.  The predictability of the simplified model is checked by 
model calibration and development of design charts for moment capacity and 
stress developed throughout the cross section of a flexural member. Model is 
calibrated by predicting the results of Alkali Resistant Glass and Polyethylene 
fabrics. A case for the flexural design of Glass Fiber Reinforced Concrete 
(GFRC) specimen as a simply supported beam subjected to distributed load is 
used to demonstrate the design procedure.  

1 Introduction 

Recent interest in the area of Textile Reinforced Concrete (TRC) has led to the development 
of novel cement based materials with a significant degree of strength, ductility, and versatil-
ity. These materials that are as much as an order of magnitude higher in strength and two 
orders of magnitude higher in ductility than fiber reinforced concrete (FRC), have been de-
veloped using innovative fabrics, matrices and manufacturing processes such as computer 
controlled closed loop pultrusion and filament winding. A variety of fiber and fabric systems 
such as Alkali resistant (AR) glass fibers, polypropelene (PE), polyethylene (PE), and Poly 
Vinyl Alcohol (PVA) have been utilized [1,2]. Mechanical properties of the composites 
measured using uniaxial tensile, flexural, and shear tests indicate that the tensile strength as 
high as 25 MPa, and strain capacity of 1-8%. The fracture toughness as compared to the con-
ventional FRC materials is increased by as much as two orders of magnitude. The dominant 
toughening mechanisms in these systems are attributed to matrix cracking, ply delamination, 
and crack deflection mechanisms as studied by means of fluorescent microscopy, scanning 
electron microscopy. TRC materials currently compete with a range of other propriety prod-
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ucts under trademark CARDIFRC® [3] and Ductal® [4], and ECC [5]. The difference how-
ever is that the work conducted in the area of TRC materials is conducted and published in 
open literature thus resulting in a significant number of publications that have propelled this 
area to a new stage. 

Strain hardening materials are well suited for applications that eliminate conventional rein-
forcement or for the structures in seismic regions where high ductility is desired. In addition, 
these materials offer fatigue and impact resistance and are attractive for use in industrial 
structures, highways, bridges, earthquake, hurricane, and high wind loading conditions. The 
design and implementation of these systems requires one to acknowledge and use the strain-
hardening response that is attributed to multiple cracking during a tension test. The post-
crack response that exceeds the first crack stress over a large strain range is modeled using a 
reduced stiffness parameter. Unlike FRC that fracture localization occurs immediately after 
the first crack is formed, propagation of initial crack in strain hardening composites is re-
sisted by fiber bridging mechanism. Since a substantial amount of energy is required to fur-
ther extend existing cracks, secondary cracks form. Single crack localization is therefore 
shifted to multiple distributed cracking mechanisms, leading to macroscopic pseudo-strain 
hardening behaviors. Classes of strain-softening and hardening FRC are discussed by 
Naaman and Reinhardt [6].  

 In order to facilitate the potential use of these materials, fundamental approaches for tensile 
and flexural design are needed. This paper addresses methods to predict moment-rotation 
capacity integrated with a general template for predicting load deformation performance is 
presented. Two examples of analysis and design of various structural systems are used to 
demonstrate the calculation steps. 

2 Simplified Strain-Hardening Fiber Reinforced Concrete Model 

A general strain hardening tensile, and a elastic perfectly plastic compression model as de-
rived by Soranakom and Mobasher [7] and shown in Fig. 1 is used. Tensile response is de-
fined by tensile stiffness, E, first crack tensile strain εcr, cracking tensile strength, σcr = Eεcr, 
post crack modulus Ecr and ultimate tensile capacity, εtm. The post peak tensile capacity, or 
the softening range is shown as a constant stress level μEεcr. The compression response is 
defined by the compressive strength σcy defined as ωγEεcr. In order to simplify material char-
acteristics of strain-hardening FRC, and yet obtain closed form design equation generation 
several assumptions are made. Equations can furthermore be simplified to idealized bilinear 
tension and elastic compression models as shown in Fig. 2(a)&(b) by ignoring the post-peak 
ranges in both tension and compression. In order to reduce the complexity of material re-
sponse to the useable range, one has to disregard the post-peak tensile response and plasticity 
in the compression region. It has been shown that the difference in compressive and tensile 
modulus has negligible effect to the ultimate moment capacity [7]. By defining all parameters 
as normalized with respect to minimum number of variables, closed form derivations are ob-
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tained. Applied tensile and compressive strains at bottom and top fibers, β, and λ are defined 
as 
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 Material parameters required for the simplified models are summarized as follows. Parame-
ters, α, μ, η, ω,  are defined respectively as representing normalized, tensile strain at peak 
strength, post-crack modulus, compressive yield strain: 
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Fig. 1: Full option material models for both strain-hardening and strain-softening FRC: (a) 

tension model and (b) compression model; 

For typical strain-hardening FRC, the compressive strength is several times higher than the 
tensile strength. Thus, the flexural capacity is controlled by the weaker tension and the com-
pressive stress is normally low in the elastic range. For this reason, the elastic compression 
model [Fig. 2(b)] is used. For the development of design equations, the compressive stress 
developed in a beam section is limited to the yield compressive stress σcy = 0.85fc’ at com-
pressive yield strain εcy, where fc’ is the uniaxial compressive strength.  

3 Derivation of Moment Capacity 

Moment capacity of a beam section according to the imposed tensile strain at the bottom fi-
ber (εt = βεcr) can be derived based on the assumed linear strain distribution as shown in Fig. 
2(a). By using material models described in Fig. 1(a)&(b), the corresponding stress diagram 
is obtained as shown in Fig. 2(b) in which the stress distribution is subdivided into a com-
pression zone 1, tension zone 1 and 2. Force components and their centroidal distance to the 
neutral axis in each zone can be expressed as:  
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Fig. 2: Strain and stress diagrams at the post crack stage (Ranges 2.1, and 3.1 Table 1), (a) 
strain distribution; and (b) stress distribution 

where F and y are the force and its centroid, respectively; subscripts c1,t1,t2 designate com-
pression zone 1, tension zone 1 and 2, respectively; b and h are the width and the height of 
the beam, respectively. In Zone 2.1, the post peak tensile response, μEεcr, does not play a 
role, and the neutral axis parameter k is found by solving the equilibrium of net internal 
forces equal to zero, Fc1 + Ft1 + Ft2 = 0.  
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The nominal moment capacity Mn is obtained by taking the first moment of force about the 
neutral axis, Mn = Fc1yc1 + Ft1yt1 + Ft2yt2, and it is expressed as a product of the normalized 
nominal moment mn and the cracking moment Mcr (for γ=1) as follows: 

2
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If the full stress strain response is desired, then the location of Neutral axis and moment ca-
pacity are obtained under the definitions provided in Table 1. In zone 3.1 and 3.2, the equa-
tions listed in Table 1 can be simplified and used similar to equations 6, 7 and 8. In this table 
the derivations of all potential combinations for the interaction of tensile and compressive 
response are presented. Note that depending on the relationship among material parameters, 
any of the zones 2.a, and 2.b, or 3.a, and 3.b are potentially possible.  

Analysis of these equations indicates that the contribution of fibers is mostly apparent in the 
post cracking tensile region, where the response continues to increase after cracking [Fig. 
1(a)]. The post-crack modulus Ecr is relatively flat with values of η= 0.00-0.4 for a majority 
of cement composites. The tensile strain at peak strength εpeak is relatively large compared to 
the cracking tensile strain εcr and may be as high as α = 100 for polymeric based fiber sys-
tems. These unique characteristics cause the flexural strength to increase after cracking. If the 
post-peak tensile strength is ignored in the typical strain-hardening FRC, the flexural strength 
reaches its maximum at the maximum tensile strength. Furthermore the effect of post crack 
tensile response parameter μ can be ignored for a simplified analysis. In the most simplistic 
way, one needs to determine two parameters in terms of post crack stiffness η, and post crack 
ultimate strain capacity α, to estimate the maximum moment capacity for the design pur-
poses.  

According to bilinear tension and elastic compression models shown in Fig. 1(a)&(b), the 
maximum moment capacity is obtained when the normalized tensile strain at the bottom fiber 
(β = εt/εcr) reaches the tensile strain at peak strength (α = εtm/εcr). The simplified equations 
(8) - (10) for moment capacity are applicable for the compressive stress in elastic region only. 
The elastic condition must be checked by computing the normalized compressive strain de-
veloped at the top fiber λ and compare it to the normalized yield compressive strain ω. The 
general solutions for all the cases are presented in Table 1. Using the strain diagram in Fig. 
2(a), one can obtain the relationship between the top compressive strain and bottom tensile 
strain as follow: 
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By substituting εc = λεcr and εt = βεcr in Eq.(9), then limit the maximum compressive strain to 
the yield compressive strain εcy = ωεcr. Finally, the condition expressed in a normalized form 
is: 

1
k

k
λ β ω= ≤

−
   (10) 

The case represented by case 2.1 of Table 1, where the tensile behavior is elastic-plastic 
while the compressive behavior is still elastic is studied next. Equations for other cases can 
also be developed. The general solution presented in Table 1 can be simplified as follows. 
The location of Neutral axis represented as a function of applied tensile strain β is repre-
sented as:  

β γ
η β β β= + − + −=

+
2A ( 1 2 )k 2A

A
1  (11) 

This equation can be easily simplified by assuming equal tension and compression stiffness 
(γ=1 ).  Furthermore, for elastic perfectly plastic tension materials (η=0 ) the equation re-
duces to: 

2 1
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β β

−
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− +
k    (12) 

Table 2 presents the case of (γ=1 ), for different values of post-crack stiffness η = 0.5, 0.2, 
0.1, 0.05, 0.01, and 0.001. Note that the neutral axis is a function β and can be used in calcu-
lation of the moment, or the moment curvature relationship. These general response are 
shown in Figures 4a and 4b and show that with an increase in applied tensile strain, the neu-
tral axis compression zone decreases, however this decrease is a function of post crack tensile 
stiffness factor. The moment curvature relationship in this range in ascending, however, its 
rate is a function of the post crack tensile stiffness. The parameter based fit equations in the 
third and fourth column are obtained by curve fitting the simulated response from the closed 
form derivations and are applicable within 1% accuracy of the closed form results. Using 
these equations, one can generate the moment capacity and moment-curvature response for 
any cross section using basic tensile material parameters in the 2.1 range as defined in Ta-
ble 2. 
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4 Analysis - Prediction of Load Deflection Response of Fabric Cement Com-

posites 

Two types of fabric systems are discussed including bonded Alkali Resistant (AR) glass, and 
woven polyethylene mesh. AR glass Fabric reinforced cement composites were manufac-
tured using a cement paste with a water to cement ratio of 0.45, and AR glass fabrics manu-
factured by Saint-Gobain Technical Fabrics Inc. The grid size was 25.4x25.4 mm with 2 
yarns in each the longitudinal and transverse directions. Each yarn consisted of 1579 fila-
ments, each 19 microns in diameter. Two layers of fabric were placed at the top and bottom 
of the specimens to provide reinforcement in each direction: VL =VT = 0.70%. Figure 4.a 
represents the tensile stress stain response of the AR Glass sample. The initial response is 
linear elastic up to about 2 MPa. After cracking the load is transferred to the fabric layers. 
Subsequent cracking results in formation of parallel cracks [8][9]. As multiple cracking takes 
place, the stiffness of the sample significantly drops while the crack spacing continuously 
decreases up to about 20 mm and reaches saturation crack spacing at this level. The satura-
tion of crack spacing correlates to overall strain levels corresponding to 1.5%. The reduced 
stiffness of the sample in the post crack region is clearly shown. A similar behavior is also 
obtained from the Polyethylene fabric composite samples. The stress strain and crack spacing 
response is shown in Figure 4.b. Note that the slope in the post crack phase is significantly 
lower than the AR glass composites, however the strain capacity is higher and the crack spac-
ing is much smaller than AR Glass composites. 

Table 1: Neutral axis, moment, and moment-curvature of a material with γ = 1 η= 0.0001- 0.5. 

η 
A,  ( Ak

A β
=

+
) 

)'(M k   )'(ϕM  

0.5 β β β+ +20.5( 1- 2 ) 2 -1  1 60.773 0.108 10− −− + x k  0.507 0.686ϕ+  

0.2 β β β+ +20.2( 1- 2 ) 2 -1  2 60.654 0.516 10− −+ x k  1.105 0.383ϕ+  

0.1 β β β+ +20.1( 1- 2 ) 2 -1  2 61.276 0.289 10− −+ x k  1.461 .234ϕ+  

0.05 β β β+ +20.05( 1- 2 ) 2 -1  2 61.645 .1632 10− −+ x k  1.720 .1401ϕ+  

0.01 β β β+ +20.01( 1- 2 ) 2 -1  10.852 0.456 −+ k  1.342 0.371 ϕ+  

0.0001 β β β+ +20.0001( 1- 2 ) 2 - 1  3.177 3.068− k  3.021 2.047 / ϕ−  
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Table 2: Neutral axis parameter k, normalized moment m and normalized curvature φ  for 

each stage of normalized tensile strain at bottom fiber (β) 
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moment curvature response in the Range 2.1 

 

Fig. 4: Uniaxial tension stress strain response of a) AR-Glass and b) Polyethylene fabric 
composites. 

In order to correlate the tension and bending responses, the simulation procedure employed 
experimental data from a set of specimens under uniaxial tension and three point bending 
tests. Tension specimens were approximately 10x25x200 mm. Flexural specimens for the 
four point bending test were 10x25x200 mm with a clear span of 152 mm. Fig. 5(a) shows 
the tension test results of a specimen along with the fitted tension model that is used in simu-
lation. No attempt was made to obtain a best fit curve to the response. The parameters for the 
bilinear tension model were obtained by fitting the model to uniaxial tension test results. The 
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material properties for the simulation of AR Glass Fabric composites were : α= 
100, μ = 0.1, η = 0.05, γ = 1.0, and, ω = 20.4, while the limits of the modeling were βtu = 250, 
and λcu = 150.  The Young modulus of tension and compression response (E) was obtained 
by assuming a value of 18000 MPa, and a first crack strain capacity of εcr  = 0.0002 was 
used. The ultimate strain capacity was computed from the overall response. One can also 
conduct a back-calculation procedure of the load deflection curve to obtain the initial 
modulus of the tensile response E directly from the uniaxial test. The ultimate compressive 
strength of cement pastes was assumed to be the typical value of f’cr= Eω εcr 
= 20.4(18)(0.0002)= 73.4 MPa.   

Figure 5b shows the predicted flexural load deflection response of cement composites. The 
steps in calculation of load-defelection response form the moment-curvature have been dis-
cussed in detail in recent publications dealing with strain hardening [10] and strain softening 
type composites [11][12]. Note that in these systems, the high tensile stiffness and strength of 
the composite leads to high values for the load, and distributed flexural cracking. Analysis of 
the samples indicates formation of diagonal tensions cracks in the samples due to the shear 
failure mechanism. No provisions for shear cracking were accounted in for the present ap-
proach. No attempt was made to simulate the response beyond the first major flexural crack. 

 

Fig. 5: Tensile stress strain response input model and predicted load deflection response of 
AR-Glass fabric composites. 
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Fig. 6: Tension stress strain response input model and predicted load deflection response of 

Polyethylene (PE) fabric composites. 

The material properties for the simulation of PE fabric composites were: 
α = 150, μ = 0.4, η = 0.008, γ = 1.0, and, ω = 20.4. the constants were εcr = 0.0002, and 
E = 18000 MPa, while the limits of the modeling were βtu = 250, and λcu = 150. The overall 
tensile response for the PE composites is shown in Figure 6.a.  

Τo demonstrate the ability of the algorithm to predict load-deflection response for strain har-
dening material, the flexural specimens for the four point bending test were 25 x 10 x 200 
mm with a clear span of 152 mm. The material parameters for tension model were deter-
mined by fitting the model to the uniaxial tension test result as shown by the solid line in Fig. 
5(a) and 6(a). The average material properties were: compressive strength fc’ = 73.4 MPa.  
The initial tensile modulus E = 18 GPa and the first cracking tensile strain εcr = 200 μstr were 
used as they correlated with the uniaxial tensile test results. The ultimate compressive strain 
εcu was assumed to be α εcr = 150 (0.0002) = 3%. All parameters used in the simulation are 
provided in the same figure. The solid curves in Fig. 5(b) and 6(b) show the predicted flex-
ural response obtained by the simulation process. The prediction for the strain hardening ma-
terial during the pre- and post-crack stages agreed well with the experimental results; Note 
that the formation of the distributed crack system can be adequately described by the smeared 
pseudo-strain model.  

Figures 5 (b) and 6 (b) show the predictions of the equivalent load-deflection response for 
AR glass and PE fabrics respectively. Simulation using direct tension data underestimates the 
equivalent flexural stress. This may be due to several factors including the size effect, uni-
formity in loading in tension vs. the linear strain distribution in flexure. The underestimation 
of the flexural capacity of the beam can be eliminated by increasing the tensile capacity by a 
scaling parameters as discussed in earlier publications, however these topics are beyond the 
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scope of present work. Alternatively, one can use the flexural response and develop a back-
calculation procedure to calculate a direct fit to the experimental flexural data. 

5 Design Example- Simply supported Beam Under Distributed Load 

The methodology used in the design of conventional reinforced concrete according to ACI-
318 [13] is adopted next. The nominal moment capacity of a flexural member Mn must be 
decreased by a reduction factor to account for variability in materials and workmanships. The 
reduced capacity must be greater than the ultimate moment Mu due to factored loading by 
ACI Sec. 9.2.  

r n uM Mφ ≥             (13) 

where φr is the reduction factor for strain-hardening FRC and may be conservatively taken as 
0.65, equal to the reduction factor for compressive failure of plain concrete as stipulated by 
ACI Sec. C.3.5. Despite the post-crack flexural response of HPFRC is ductile such that it can 
sustain large deflections after cracking, it fails abruptly with little warning after passing the 
ultimate moment. For this reason, a conservative reduction factor for compressive failure of 
plain concrete is adopted. Equations 7 and 8 derived earlier in addition to the parameters of 
Table 2, form the basis for the design procedures.  

The objective of this section is to design a 300 mm span simply supported beam subjected to 
a uniformly distributed live load pressure of 550 kPa. The material is a strain-hardening 
GFRC with Young’s modulus E =15 GPa, cracking tensile strength σcr of 5.85 MPa, and an 
ultimate compressive strength fc’ of 65 MPa. The ultimate tensile strength σpeak of 9 MPa, 
tensile strain at peak strength εpeak of 0.009 and density of 20.4 kN/m3 are used. 

While the self weight is negligible compared to the load applied, however in this case it is 
computed to illustrate the factored loads. By assuming a thickness between 100 and 150 mm, 
one can calculate the self weight as: 

0.15 20.4 3.06 kPasww = × =  

The ultimate factored load is calculated as: 

1.2( ) 1.6( ) 1.2(3.06) 1.6(550) 884kPauw DL LL= + = + =  

Consider the beam over a strip one meter in width one can calculate the maximum moment at 
mid span of the beam as the design load:  

2 2884 0.3 9.94 kN-m/m
8 8
u

u
w LM ×

= = =  

The next step is to calculate the normalized moment capacity of the GFRC used in this design 
which requires calculation of the material parameters according to Eqs. (1) – (4) as follows: 
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15000
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3.9 10

peak

cr

ε
α

ε −= = =
×

 

Normalized post-crack tensile modulus, 9 5.85 0.0244
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crE
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− ×
 

Normalized yield compressive strain, 
'0.85 0.85 65 9.4

5.85
cy c

cr cr

fσ
ω

σ σ
× ×

= = = =   

The neutral axis and normalized moment capacity can be calculated by using the maximum 
value of β = α in Eqs. (8)&(10) as the ultimate tensile capacity: 

 ( ) ( )2 2
1 2 1 2 1 0.0244 23.1 2 23.1 1 2 23.1 1 57.12C η β β β= − + + − = − × + + × − =   

Neutral axis depth parameter, 
2 2

1 1
2 2

1

57.12 23.1 57.12 0.246
57.12 23.1

C C
k

C
β
β

− − ×
= = =

− −
 

 2 2
2 1 12 57.12 2 57.12 23.1 23.1 2162C C C β β= + − = + × × − =  

Therefore the normalized moment capacity is obtained as: 

 
2 3 2 3

2 2 2
2 1 2 0.246 2 0.246 1 2 23.1 0.2462162 3.21

1 1 0.24623.1n
k k km C

k
β

β
− + − × + × ×
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At this stage one has to verify that the normalized compressive strain developed at the top 
fiber by Eq. (10). 

 0.246 23.1 7.54 9.5 =>OK
1 1 0.246

k
k

λ β ω= = = < =
− −

 

The compressive strain is in the elastic stage; therefore the calculated normalized moment mn 
= 3.21 is valid. By using the normalized moment capacity, one can determine the cracking 
moment required to carry the ultimate moment by Eqs. (6), (7),&(8). 

9.94 4.76 kN-m/m
0.65 3.21

n u
cr

n r n

M MM
m mφ

= = = =
×

 

Finally, the required thickness is determined by Eq. (7) 
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At this stage, one can use a thickness of 75 mm which is less than the assumed thickness of 
150 mm in the estimation of the self weight (conservative). It is not necessary to recalculate 
the new self weight since the weight is negligible compared to the live load.  

Alternatively, one can use the design charts presented in Fig. 7 can be used to quickly esti-
mate the normalized moment capacity. The use of the chart requires one to first draw a verti-
cal line from β = α = 23.1 to the curve at η = 0.0244, and get mn = 3.25 from the mn - β chart. 
This establishes the normalized moment capacity. In order to check for the range of applica-
bility of the equation, one has to continue the vertical line and get λ = 7.7 from the λ - β chart. 
Since λ is lower than the normalized yield compressive strain ω = 9.4, the assumption of fail-
ure in the elastic compression zone and the obtained value of mn = 3.25 is valid. It can be 
seen that the values λ = 7.7 and mn = 3.25 manually picked from the charts are very close to 
the exact values λ = 7.54 and mn = 3.21 directly computed from the equations. Once mn is 
identified, the required cracking moment Mcr and thickness h can be calculated using an elas-
tically equivalent section as shown before. 
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Fig. 7: Design Chart for the three point beam design using the closed form equations 
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