
Discrete Adjoints: Theoretical Analysis, Efficient

Computation, and Applications

HABILITATION

zur Erlangung des akademischen Grades

Doctor rerum naturalium habilitatis
(Dr. rer. nat. habil.)

vorgelegt

der Fakultät Mathematik und Naturwissenschaften
der Technischen Universität Dresden

von

Jun.Prof. Dr. Andrea Walther

geboren am 9. September 1970 in Bremerhaven

Gutachter: Prof. Dr. habil. Hubert Schwetlick, TU Dresden
Prof. Christian H. Bischof, Ph.D., RWTH Aachen
Prof. Lorenz T. Biegler, Ph.D., Carnegie Mellon University

Eingereicht am: 16. Mai 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236362401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

My attention was drawn to this research area by Prof. Andreas Griewank. I
would like to thank him for his inspiration as well as for many fruitful and lively
discussions. Furthermore, I thank Prof. Hubert Schwetlick for his support dur-
ing the preparation of this thesis. Special thanks are due to my husband for his
patience, understanding and encouragement during times of doubt. Further-
more I am grateful to my parents for the lifelong support and help they gave
me. Moreover I wish to thank all my colleagues at the Institute of Scientific
Computing, TU Dresden, for the pleasant working atmosphere.

iv

Contents

1 Discrete Adjoints: Analysis, Computation, Applications 1

1.1 Introduction . 1

1.2 Two Basic Modes of Automatic Differentiation 5

1.2.1 Function Evaluations . 6

1.2.2 The Forward Mode of AD 8

1.2.3 The Reverse Mode of AD 10

1.2.4 Implementation Strategies 13

1.3 Efficient Computation of Discrete Adjoints 15

1.3.1 Recomputation versus Storage 16

1.3.2 Exploitation of Sparsity 21

1.3.3 Differentiation of Fixpoint Iterations 25

1.4 Discrete Adjoints versus Continuous Adjoints 26

1.4.1 Two Different Optimization Approaches 26

1.4.2 Recomputation versus Storage for Continuous Adjoints . 29

1.5 Recent Mathematical Algorithms Based on Adjoint Information . 30

1.5.1 Adjoint-based Quasi-Newton Updates 30

1.5.2 Trust-region Algorithms with Inexact Jacobian Matrices . 33

2 Advantages of Binomial Checkpointing 35

2.1 Introduction . 35

2.2 Uniform Checkpoint Distribution 36

2.3 Binomial Checkpoint Distribution 39

2.4 Comparison of Both Checkpoint Distributions 40

2.5 Conclusions . 43

3 Computing Sparse Hessians with Automatic Differentiation 45

3.1 Introduction . 45

3.2 Computing a Sparsity Pattern . 47

3.2.1 Function Representation 47

3.2.2 Propagation of Nonlinear Interaction 48

3.2.3 Complexity Analysis . 50

3.2.4 Computing Sparsity Patterns 51

3.3 Computing the Seed Matrix . 52

3.4 Evaluating Hessian-Matrix Products 53

3.5 Numerical Examples . 56

3.6 Conclusion and Outlook . 59

v

vi CONTENTS

4 Evaluating Gradients in Optimal Control 61

4.1 Introduction . 61
4.2 Continuous Problem . 63
4.3 Discretized Problem . 64

4.3.1 Finite–Difference Evaluation of the Objective Gradient . . 65
4.3.2 Evaluation of the Gradient Using the Continuous Adjoint 65
4.3.3 Consistent Evaluation of the Objective Gradient 66
4.3.4 Evaluation of the Gradient Using AD 68

4.4 Software . 69
4.4.1 Discretizing the Continuous Problem 70
4.4.2 SQP Solver . 71

4.5 Examples . 71
4.6 Conclusions . 78

5 Automatic Differentiation for Explicit Runge-Kutta Methods 81

5.1 Introduction . 81
5.2 The Continuous Optimal Control Problem and its Gradient . . . 83
5.3 The Discrete Optimal Control Problem 85
5.4 Forward Mode of AD in Recursive Discretization 87
5.5 Reverse Mode of AD in Recursive Discretization 89
5.6 Numerical Illustration . 101
5.7 Conclusion . 104

6 Calculating Adjoints for the Navier-Stokes Equations 107

6.1 Introduction . 107
6.2 Adjoints for the Navier Stokes Equations 110

6.2.1 Analytical setting . 110
6.2.2 Discretization . 113

6.3 Reversal Schedules . 114
6.3.1 Subfunctions, Taping, and Adjoint Variables 115
6.3.2 Reversals of Function Evaluations 116
6.3.3 Minimal Reversal Cost . 118

6.4 Numerical results . 123
6.5 Summary . 126

7 Convergence of TR-Methods with Inexact Jacobians 129

7.1 Introduction . 129
7.2 Notations and Assumptions . 131
7.3 A Jacobian-free Trust-Region Method 134

7.3.1 The Normal Subproblem 134
7.3.2 The Tangential Subproblem 136
7.3.3 The Trust-Region Algorithm 139

7.4 Well-posedness of Algorithm I . 141
7.5 Convergence Analysis . 143
7.6 Conclusion . 148

Chapter 1

Discrete Adjoints: Analysis,

Computation, Applications

1.1 Introduction

The computation of derivatives forms an important ingredient for a wide range
of applications. For example, essentially all calculus-based optimization algo-
rithms employ at least derivative information of first order. Even second order
derivatives are often approximated or computed exactly to accelerate and/or
stabilize the optimization process. However, there are numerous additional ar-
eas, where the usage of derivatives is required. This includes the solution of
nonlinear equations, the integration of ordinary differential equations (ODEs)
using implicit methods, real-time optimization and sensitivity analysis. Deriva-
tives of very high order are required for the integration of ODEs and differential-
algebraic equations (DAEs) when applying Taylor methods. For the calculation
of derivative information, there are two important aspects that have to be taken
into account:

• The required accuracy of the derivatives.

• The computational complexity in terms of runtime and memory required
for the derivative computation.

To calculate the needed derivatives, one may employ either analytical deriva-
tives, finite differences, or automatic differentiation. These three approaches
will be described briefly and analyzed with respect to the two aspects men-
tioned above in the following paragraphs.

Analytical Derivatives If the function the derivative of which has to be
computed is given in a closed form, i.e., as an explicit formula, the basic rules
of differentiation, as for example the product rule and the quotient rule, can be
used to derive an explicit formula also for the corresponding first order deriva-
tives. This can be done either by hand or one may apply computer algebra
tools as for example MAPLE to derive an analytic representation of the deriva-
tives. The first alternative results for complicated and/or large expressions in

1

2 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

an error-prone and time-consuming process, whereas the second approach yields
for smaller applications quite reasonable results.

Analytic derivatives are not only available for functions given as a closed
expression but also for applications based on ordinary or partial differential
equations. To illustrate this fact for ODEs, we introduce the following optimal
control problem

Minimize J(y) = ϕ(y(tf))

s.t.
dy

dt
(t) = f(y(t), u(t)) t ∈ [0, tf], y(0) = y0, (1.1)

where y(t) ∈ R
n denotes the state and u(t) ∈ R

m denotes the control. The
dynamics are given by the right-hand side function f : R

n × R
m → R

n. The
initial state is described by the vector y0 ∈ R

n. To compute the value of
the objective function, ϕ : R

n → R evaluates the state at the final time tf ,
but other objective functions, for example of tracking type, are possible here.
For simplicity, we assume that all functions are sufficiently smooth such that
the existence of a solution is ensured and all necessary differentiations can be
performed. As can be seen, the state y is determined by the control u. Hence,
let y = ψ(u) denote the solution of the state equation (1.1) for a given control u.
Then, one can reformulate the objective function such that it depends only on
u, i.e., we have J̃(u) = J(y(u)). There exists two distinct ways for calculating
derivative information of the objective function J(u). The first one determines
for a given control u the sensitivity s(t) ∈ R

n in the direction of d(t) ∈ R
m

using the sensitivity equation

ds

dt
(t) = fy(ψ(u)(t), u(t)) s(t) + fu(ψ(u)(t), u(t)) d(t), s(0) = 0.

One obtains immediately the forward or sensitivity representation of the deriva-
tive of J̃ in direction d that is given by

DJ̃(u)d = ∇ϕ(ψ(u)(tf)) s(tf) .

Alternatively, one may employ the adjoint differential equation

−dλ
dt

(t) = fy(ψ(u)(t), u(t))T λ(t), λ(tf) = ∇ϕ(ψ(u)(tf))T .

The solution λ(t) ∈ R
n of this linear ODE is called the adjoint variable and

yields the gradient’s backward or adjoint representation [16, Section 2.4]

(DJ̃(u)(t))T = fu(ψ(u)(t), u(t))T λ(t) ∈ R
m×1.

It follows that one has to integrate the adjoint equation in backward direction
from tf to t for calculating the gradient at time t. Furthermore, one has to note
that the complete state y has to be known for this gradient calculation as soon
as the right-hand side function f is nonlinear in y.

Similar approaches can be used also if the state y is not determined by ODEs
but partial differential equations (PDEs). That is also for optimal control prob-
lems covered by PDEs the derivative calculation may by based on sensitivity

1.1 Introduction 3

or adjoint partial differential equations. Comprehensive introductions to this
topics can be found in the books [81, 139].

A main advantage of analytical derivatives is the exactness of the deriva-
tive information. Furthermore, for first order derivatives, the computational
complexity is quite often well when differentiating closed form expressions of
moderate size. If the application is based on differential equations, the com-
plexity of the derivative calculation depends on the problem dimensions and
whether the sensitivity or adjoint equation is employed. The sensitivity equa-
tions are especially suitable for the optimization of a few parameters, whereas
the adjoint approach provides a very efficient way in terms of runtime to com-
pute gradients for distributed control problems. For time-dependent problems
the memory requirement of the adjoint approach may be high due to the for-
ward solution that is required for the integration of the adjoint equation in the
case of nonlinear PDEs.

Applying the analytical derivative calculation recursively allows also the
computation of higher order derivatives. For example, MAPLE can be used
to derive explicit expressions of higher order derivatives for a given formula.
However, these expressions are frequently very expensive to evaluate, see, e.g.,
[125] for an experimental study. The repeated differentiation is also applicable
for differential equations. For example, the second order adjoint equation is
used in [120] to compute second order derivatives. However, the differential
equations become rather complicate and difficult to handle.

To conclude this paragraph, one can say that the analytical differentiation
allows the computation of exact derivative information. The efficiency of this
approach depends on the specific problem at hand. A main drawback of this
approach is that it is not applicable if one does not have a closed form repre-
sentation of the function to be differentiated either as explicit formula or based
on differential equations. Here, prominent examples are function evaluations
given as so-called legacy code. One important open question is the relation be-
tween the continuous derivative formulation using either sensitivity differential
equations or adjoint differential equations and the discrete derivative informa-
tion obtained for the discretized problem. A more detailed analysis of this topic
forms one main part of the thesis at hand. Pointers to existing literature on this
subject are given in Sec 1.4 together with a description of the own contributions.

Finite Differences If one assumes that the function to be differentiated is
sufficiently smooth, then there exists a corresponding Taylor expansion. Con-
sidering for simplicity a function f : R 7→ R, one obtains for a given point x
and a step size h the formula

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) +

Ignoring the terms of order two and higher, one derives the following approxi-
mation of the first derivative

f ′(x) ≈ f(x+ h)− f(x)

h
(1.2)

4 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

that requires only two function evaluations. Alternative approximation formu-
las based on the same idea can be found in [124]. Due to this very simple
approach to approximate derivatives the usage of finite differences is very wide
spread. Furthermore, it is the only possible approach to provide derivative in-
formation if the function evaluation is given only as black box and no further
information is available.

However, there are several drawbacks of this approach. The first one is the
appropriate choice of the step size h. If one chooses h too large, the truncation
error due to the cancellation of the Taylor expansion may cause a large error in
the approximation of the derivative. On the other hand, if h is too small, repre-
sentation errors on the computer due to the limited accuracy of computations
may lead to significant errors in the approximation of the derivative. Obviously,
this problem becomes even worse if the function does not map from R to R but
from R

n to R
m. For that reason, some sophisticated step size determination

algorithms have been developed. They are used for example in NPSOL [62] if
the user does not provide the derivative calculation. Besides the inaccuracy of
the derivatives, the computational complexity of the derivative calculation is
the second main draw back. Using the cheapest approximation given by (1.2),
one needs n+1 function evaluations to approximate the gradient of an objective
function f with f : R

n 7→ R. Hence, the finite difference approach is often not
feasible for optimization problems where the value of n is large and the function
evaluation is computationally expensive.

Automatic Differentiation Automatic Differentiation (AD) is a technique
that provides exact derivative information of a smooth vector-valued function

F : R
n → R

m, x 7→ y = F (x),

evaluated by a computer program. The book by Griewank [70] gives a compre-
hensive introduction to AD.

The key idea in automatic differentiation is the systematic application of the
chain rule. For this purpose, the computation of F is decomposed into a typ-
ically very long sequence of simple evaluations, e.g. additions, multiplications,
and calls to elementary operations such as sin() or exp(). The derivatives of
the simple operations with respect to their arguments can be easily calculated.
Applying the chain rule to the overall decomposition then yields derivative infor-
mation of the whole sequence of operations with respect to the input variables.
The two basic methods of AD, namely the forward mode and the reverse mode,
are described in Sec. 1.2 including the corresponding complexity estimates for
the derivative calculation. It is important to note that AD yields derivative
information that is exact within working accuracy. This means that no trunca-
tion errors occur. One main difference to the analytic computation of derivative
is that AD does not derive a closed form expression for the derivative. Instead,
exact derivative information given as numerical values is propagate forward or
backward through the function evaluation procedure. Throughout this thesis,
AD will be used to provide first- and second-order derivatives. However, it
should be mentioned that also derivatives of arbitrary order can be evaluated

1.2 Two Basic Modes of Automatic Differentiation 5

exactly with AD techniques when propagating Taylor polynomials through the
function evaluation procedure. This technique is used for example in [126] for
the computation of Lie derivatives and Lie brackets and in [78, 116] for the
integration of high-order DAEs using Taylor methods.

In the context of optimization problems, the forward mode of AD can be
seen as a discrete version of the sensitivity approach. Conversely, the reverse
mode of AD involves discrete adjoints somehow related to the continuous ad-
joint equation. Despite the fact that these parallels have already been hinted at
in [68], a detailed theoretical analysis of the relations between the exact discrete
derivatives provided by AD and the corresponding continuous derivative formu-
lation is still the subject of ongoing research. Additionally, the computation of
discrete adjoints face the same problem with respect to memory requirement as
the continuous adjoint: As soon as nonlinear dependencies occur in the func-
tion evaluation intermediate results of the function evaluation are needed for
discrete adjoints that are calculated once the function evaluation is finished.

During the last few decades the theoretical analysis and implementations of
AD are mainly dedicated to the efficient evaluation of discrete adjoints. Since
the computation of discrete adjoint is now feasible also for larger codes, the re-
search activities recently were extended also to the development of new mathe-
matical algorithms or the improvement of existing mathematical methods based
on discrete adjoint information and related results.

The topics mentioned in the last two paragraphs form the motivation for the
present thesis focused on the calculation of discrete adjoint information and its
application in mathematical algorithms. The research results can be split into
three aspects: First, the efficient computation of adjoint information including
the reduction of the corresponding memory requirement and the exploitation
of the problem structure. Second, the relation to the continuous adjoint ap-
proach and the consequences for example for optimization algorithms. Finally,
the development of new algorithms involving discrete adjoint information or
the improvement of existing mathematical methods. The remaining sections
of this chapter explain the technique of automatic differentiation in more de-
tail (Sec. 1.2). Furthermore, an overview about the current research and the
own contributions with respect to the three aspects mentioned above are given:
Section 1.3 is dedicated to the illustration of recent results with respect to the
efficient calculation of discrete adjoints. Current results with respect to the rela-
tions of the discretize-then-optimize approach and the optimize-then-discretize
approach are sketched in Sec. 1.4. This section includes also a discussion of
discrete adjoints versus continuous adjoints. Finally, the application of discrete
adjoints and related algorithms is the subject of Sec. 1.5.

1.2 Two Basic Modes of Automatic Differentiation

First results on automatic differentiation were published in the 1960s, see, e.g.,
[156, 157, 159]. Since then, extensive research activities have lead to a thorough
understanding and analysis of the basic modes of AD including theoretical com-
plexity results with respect to runtime and memory requirement. Besides the

6 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

theoretical foundation, several AD tools have matured over the past years to a
state that they are able to produce discrete sensitivity and adjoint information
of large and unstructured codes. A very incomplete list comprises for example
the tools ADIFOR [13], ADOL-C [154], CppAD [39], OpenAD [142], TAF [59]
and Tapenade [85]. Information about these and other tools as well as point-
ers to literature on AD can be found on the web-page of the AD-community
www.autodiff.org. In the remainder of this section, the main complexity results
and the two basic implementation strategies will be described in more detail.

1.2.1 Function Evaluations

To derive complexity estimates for the runtime and memory requirement needed
by automatic differentiation, it is assumed that the function F : R

n 7→ R
m, y =

F (x), to be differentiation is evaluated by a computer program. For a given
argument vector x the evaluation procedure can be decomposed into a sequence
of elementary operations ϕi, 1 ≤ i ≤ l, the derivatives of which can be computed
exactly. Here, we assume for simplicity that all elementary operations map into
the real numbers. The set of elementary operations that may occur during the
computation of y varies in dependence of the programming language that is
applied. Obviously, the contents of the set can be very different considering for
example function evaluations coded in C++, Fortran 90 or even Matlab.

One possible formalization of the decomposition into elementary operations
is shown in Figure 1.1 and called evaluation procedure [70]. Here, the precedence
relation j ≺ i denotes that the intermediate value vi depends directly on the
preceding intermediate value vj. As can be seen, the evaluation procedure

for i = 1, . . . , n
vi−n = xi

for i = 1, . . . , l
vi = ϕi(vj)j≺i

for i = 1, . . . ,m
yi = vl−i+1

Figure 1.1: Evaluation procedure

consists of an initialization part using the independent variables x in the first for-
loop, the actual function evaluation in the second for-loop, and the extraction
of the dependent variables in the last for-loop. This representation of a function
evaluation will be employed in the next subsections to describe the forward and
the reverse mode, respectively. We will use the coordinate transformation from
Cartesian coordinates to spherical coordinates, i.e., the equations

y1 =
√

x1
2 + x2

2 + x3
2 y2 = arccos

(

x1√
x1

2 + x2
2

)

y3 = arccot

(

x3√
x1

2 + x2
2

) (1.3)

1.2 Two Basic Modes of Automatic Differentiation 7

v−2 = x1

v−1 = x2

v0 = x3

v1 = v2
−2

v2 = v2
−1

v3 = v2
0

v4 = v1 + v2
v5 = v4 + v3
v6 =

√
v4

v7 = v−2 ∗ v6
v8 = v0 ∗ v6
v9 =

√
v5

v10 = arccos(v7)
v11 = arccot(v8)
y1 = v9
y2 = v10
y3 = v11

Figure 1.2: Evaluation procedure
(coordinate transformation)

as example to illustrate the concepts pre-
sented in this section. That is, we consider
the function F : D 7→ R

3, y = F (x), that
is defined by Equation (1.3) on the domain
D = {(x1, x2, x3) ∈ R

3 |xi > 0, i = 1, 2, 3}.
A possible evaluation procedure for the co-
ordinate transformation example is shown
in Fig. 1.2. The common subexpression
x1

2+x2
2 is computed only once and reused

afterwards during the function evaluation.
In the following subsections, we will see
that the derivative calculation benefits di-
rectly from the reusage of the computed
value. This forms one major difference
to the analytic derivative calculation us-
ing computer algebra tools where the ex-
ploitation of common subexpressions is still
a critical point, see, e.g., [125].
As alternative approach, one may employ
the computational graph defined by the el-
ementary operations. This formalization is
especially well suited if structural informa-

tion about the function evaluation, e.g., sparsity of the derivative matrices,
has to be exploited. This will be explained in more detail in Sec. 1.3. For
the coordinate transformation example (1.3) the corresponding computational
graph is shown in Fig. 1.3.

v0

v−1

v−2

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

Figure 1.3: Computational graph for coordinate transformation

It is assumed for simplicity in this introduction to AD that there are no
overwrites, i.e., the values of all intermediate values vi are available during the
whole function evaluation and therefore also during the derivative calculation.
The consequences of overwrites for the evaluation of the derivatives using the
reverse mode are discussed in Subsec. 1.3.1.

8 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

v−2 = x1 v̇−2 = ẋ1

v−1 = x2 v̇−1 = ẋ2

v0 = x3 v̇0 = ẋ3

v1 = v2
−2 v̇1 = 2v−2v̇−2

v2 = v2
−1 v̇2 = 2v−1v̇−1

v3 = v2
0 v̇3 = 2v0v̇0

v4 = v1 + v2 v̇4 = v̇1 + v̇2
v5 = v4 + v3 v̇5 = v̇4 + v̇3
v6 =

√
v4 v̇6 = −v̇4/(2v6)

v7 = v−2v6 v̇7 = v̇−2v6 + v−2v̇6
v8 = v0v6 v̇8 = v̇0v6 + v0v̇6
v9 =

√
v5 v̇9 = −v̇5/(2v9)

v10 = arccos(v7) v̇10 = − 1√
1−v2

7

v̇7

v11 = arccot(v8) v̇11 = − 1
1+v2

8

v̇8

y1 = v9 ẏ1 = v̇9
y2 = v10 ẏ2 = v̇10
y3 = v11 ẏ3 = v̇11

Figure 1.4: Forward mode differentiation (coordinate transformation)

1.2.2 The Forward Mode of AD

In Subsec. 1.2.1, we assumed that each elementary operation can be easily
and exactly differentiated with respect to its input values. This assumption
provides a very simple way to propagate derivative information through an
evaluation procedure. One only has to extend each elementary statement by
the corresponding statement for its total derivative using the chain rule and the
other basic differentiation rules. This approach is illustrated Fig. 1.4 using the
coordinate transformation example. Here, ẋ = (ẋ1, ẋ2, ẋ3) serves as input value
for the derivative computation.

In the case of a general evaluation procedure, the total derivative of an
elementary operation vi = ϕi(vj)j≺i is given by

v̇i =
∑

j≺i

∂ϕi

∂vj
(vj)j≺iv̇j .

Hence, for a general smooth function y = F (x) evaluated by an evaluation
procedure one obtains the derivative calculation shown in Fig. 1.5. Analyzing
the mathematical meaning of the output values ẏ = (ẏ1, . . . , ẏm), it follows that
the forward mode differentiation of AD yields the directional derivative

ẏ = F ′(x)ẋ,

see, e.g., [70]. Note that the derivative calculation for each elementary opera-
tion is exact and that the derivatives of the several elementary operations are
combined using the chain rule. Hence, the overall derivative ẏ = F ′(x)ẋ is exact
for given values of x and ẋ within the used working accuracy.

1.2 Two Basic Modes of Automatic Differentiation 9

for i = 1, . . . , n
vi−n = xi, v̇i−n = ẋi

for i = 1, . . . , l

[vi, v̇i] =
[

ϕi(vj)j≺i,
∑

j≺i
∂ϕi

∂vj
(vj)j≺iv̇j

]

for i = 1, . . . ,m
ym−i+1 = vl−i+1, ẏi = v̇l−i+1

Figure 1.5: Forward mode differentiation

As mentioned already at the beginning of this introduction, the second
important criterion for the derivative calculation is the computational effort
required to compute the derivative information, i.e., the runtime behavior and
the memory requirement. A very flexible complexity measure for the runtime
behavior was introduced in [70] taking different cost for an addition, a mul-
tiplication, a general nonlinear operation, and a memory access into account.
Under quite general assumption on the relations between these four components
of the complexity measure, e.g. that a multiplication is at least as costly as an
addition, one can derive the following complexity estimate

TIME(F ′(x)ẋ) ≤ c TIME(F (x)) with c ∈ [2, 2.5]

for a general smooth function y = F (x) and arbitrary input values x and ẋ
[70]. Hence, the runtime needed by the forward mode of AD to compute the
exact directional derivative F ′(x)ẋ is comparable or only slightly higher than
the runtime needed by finite differences to approximate the same derivative
information.

In Subsec. 1.2.1 we assumed that no overwrites occur during the evaluation
procedure. However, for the forward mode of AD well-defined overwrites of
intermediate values vi cause no real problem. That means, as long as the
evaluation procedure is well defined, i.e., computes the value y = F (x) correctly,
the same overwrites can also be used for the derivative values v̇i. In [70, Section
2.4], this property of forward compatibility is defined in more detail. Then, one
only has to ensure that the evaluation of the elementary operation and the
corresponding derivative calculation are performed in the correct order. For
example, let us assume that the statement vi = vj ∗ vk overwrites the value of
vj . Then the derivative calculation given by v̇i = v̇j ∗ vk + vj ∗ v̇k has to be
evaluated before the execution of the elementary operation to ensure that the
value of vj is still available. Hence, in the general forward mode differentiation
as stated in Fig. 1.5, the square brackets stand for a combined calculation of vi

and v̇i leaving the order of the corresponding calculations open. If this is taken
into account for the implementation of AD, the memory requirement for the
forward mode of AD is given by

RAM(F ′(x)ẋ) = 2 RAM(F (x)),

where RAM stands for random access memory.

10 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

To conclude this subsection on the forward mode of AD, it should be men-
tioned that the scalar forward mode presented here can be extended to a vector
version to compute multiple directional derivatives F ′(x)Ẋ for Ẋ ∈ R

n×p. This
generalization allows a considerable reduction in terms of runtime in compar-
ison to the evaluation of p single directional derivatives F ′(x)ẋ yielding the
same derivative information. Furthermore, the forward mode as presented in
this subsection can be extend to the propagation of higher order derivative using
Taylor polynomials instead of only first order information. Finally, there are
several results with respect to the differentiation of iterative processes, as for
example fixpoint iterations. Detailed information on these topics and additional
pointers can be found in [70].

1.2.3 The Reverse Mode of AD

The forward mode of AD can be easily motivated using a straightforward prop-
agation of derivatives in combination with the calculation of the function value
using the evaluation procedure. So far, there does not exist a similar obvious
derivation for the reverse mode. The reverse mode and similar approaches were
introduced in the literature for example in the context of the estimation of
round off errors [108], nonlinear sensitivity analysis [158], and the computation
of partial derivatives [134]. To motivate the reverse mode of AD, one may use
an extended system of equations, the implicit function theorem or a represen-
tation of the Jacobian matrix as a product of l matrices [70]. In this thesis,
we will use the reversal of the matrix-products to illustrate the reverse mode of
AD and the corresponding computation of discrete adjoints.

Once more, we assume that the evaluation procedure does not contain over-
writes. Then, all intermediates derivatives v̇i are simultaneously defined. Hence,
they can be combined in a large vector v̇ = (v̇1−n, . . . , v̇−1, v̇0, . . . , v̇l)

T ∈ R
n+l.

Analyzing the general forward mode of AD given by Fig. 1.5, the propagation
of the derivative information in the second for-loop is given by the recursion

v̇ = Aiv̇ for 1 ≤ i ≤ l,

where Ai denotes the matrix

Ai ≡ In+l + en+i

[(

∂ϕi

∂v1−n
(vj)j≺i, . . . ,

∂ϕi

∂vi−1
(vj)j≺i

)

− en+i

]T

,

In+l the identify matrix in R
(n+l)×(n+l), and ej the jth unit vector in R

n+l.
Additionally, we introduce the projection matrices

Pn = [In, 0, . . . , 0] ∈ R
n×(n+l) and Qm = [0, . . . , 0, Im] ∈ R

m×(n+l)

onto the first n and last m components of a (n + l) vector, respectively. This
yields the representation of the general forward mode of AD shown in Fig. 1.5
as a chain of matrix products:

ẏ = QmAlAl−1 · · ·A2A1P
T
n ẋ.

1.2 Two Basic Modes of Automatic Differentiation 11

Comparing this equation with the identity ẏ = F ′(x)ẋ, one obtains the product
representation

F ′(x) = QmAlAl−1 · · ·A2A1P
T
n

Transposing the chain of matrix-products yields for the matrix-vector product
x̄ = (F ′(x))T ȳ the equation

x̄ = PnA
T
1A

T
2 · · ·AT

l−1A
T
l Q

T
mȳ with

AT
i ≡ Il+n +

[(

∂ϕi

∂v1−n
(vj)j≺i, . . . ,

∂ϕi

∂vi−1
(vj)j≺i

)

− en+i

]

eTn+i.

Hence, for a given vector v̄ = (v̄1−n, . . . , v̄−1, v̄0, . . . , v̄l)
T ∈ R

n+l the multipli-
cation with AT

i from the left corresponds to the following operations on the
components v̄j:

• All v̄j with i 6= j 6≺ i are left unchanged.

• All v̄j with j ≺ i are incremented by ∂ϕi

∂vj
(vk)k≺iv̄i.

• Subsequently, v̄i is set to zero.

Since the computation of partial derivatives is based on the intermediate values
vi, the evaluation procedure has to be evaluated before the computation of the
derivative values v̄ can be performed. Hence, we obtain for a general smooth
function y = F (x) the derivative calculation shown in Fig. 1.6. Here, the first

for i = 1, . . . , n
vi−n = xi, v̄i−n = 0

for i = 1, . . . , l
vi = ϕi(vj)j≺i, v̄i = 0

for i = 1, . . . ,m
yi = vl−i+1

for i = 1, . . . ,m
v̄l−i+1 = ȳi

for i = l, . . . , 1

v̄j += v̄i
∂ϕi

∂vj
(vj)j≺i ∀j with j ≺ i

v̄i = 0
for i = 1, . . . , n

x̄i = v̄i−n

Figure 1.6: Reverse mode differentiation without overwrites

three for-loops, also called the forward sweep, correspond to the evaluation of
the function y = F (x). Subsequently, in the so-called adjoint sweep consisting
of the remaining three for-loops, the derivative values are computed. It is
important to note that the reverse mode of AD yields the value of the product

x̄T = ȳTF ′(x)

12 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

v−2 = x1, v̄−2 = 0, v−1 = x2, v̄−1 = 0, v0 = x3, v̄0 = 0
v1 = v2

−2, v̄1 = 0
v2 = v2

−1, v̄2 = 0
v3 = v2

0 , v̄3 = 0
v4 = v1 + v2, v̄4 = 0
v5 = v4 + v3, v̄5 = 0
v6 =

√
v4, v̄6 = 0

v7 = v−2 ∗ v6, v̄7 = 0
v8 = v0 ∗ v6, v̄8 = 0
v9 =

√
v5, v̄9 = 0

v10 = arccos(v7), v̄10 = 0
v11 = arccot(v8), v̄11 = 0
y1 = v9, y2 = v10, y3 = v11
v̄9 += ȳ1, v̄10 = ȳ2, v̄11 = ȳ3

v̄8 += v̄11 − 1
1+v2

8

, v̄11 = 0

v̄7 += v̄10 − 1√
1−v2

7

, v̄10 = 0

v̄5 −= v̄9/(2v9), v̄9 = 0
v̄0 += v̄8v6, v̄6 += v̄8v0, v̄8 = 0

v̄−2 += v̄7v6, v̄6 += v̄7v−2, v̄7 = 0
v̄4 −= v̄6/(2v6), v̄6 = 0

v̄4 += v̄5, v̄4 += v̄5, v̄5 = 0
v̄1 += v̄4, v̄2 += v̄4, v̄4 = 0

v̄0 += v̄32v0, v̄3 = 0
v̄−1 += v̄22v−1, v̄2 = 0

v̄−2 += v̄12v−2, v̄1 = 0
x̄1 = v̄−2, x̄2 = v̄−1, x̄3 = v̄0

Figure 1.7: Reverse mode differentiation (coordinate transformation)

and therefore a derivative information that can not be approximated easily with
finite differences. For the coordinate transformation, the resulting derivative
computations is shown in Fig. 1.7.

Using once more the complexity measure for the runtime behavior as intro-
duced in [70], one can derive for the reverse mode of AD the runtime estimate

TIME(ȳTF ′(x)) ≤ c TIME(F (x)) with c ∈ [3, 4] (1.4)

for a general smooth function y = F (x) and arbitrary input values x and ȳ. It
follows from the last inequality that the runtime required for computing the gra-
dient of a scalar-valued function within working accuracy can be bounded above
by a small multiple of the time needed for the function evaluation itself. Hence,
the runtime needed for computing the gradient is completely independent of n,
i.e., the number of its components. Here, we face an important difference in
comparison to the approximation of gradient information based on finite dif-
ferences, where the runtime increases for a gradient calculation linearly with
n. Therefore, Eq. (1.4) is also known as cheap gradient result. Similar good
complexity results in terms of runtime can be derived also for the analytical

1.2 Two Basic Modes of Automatic Differentiation 13

derivative computation based on adjoint differential equations.
In addition to the runtime behavior, one also has to analyze the memory

requirement of the derivative computation. So far, it is implicitly assumed in
the representation of the reverse mode that each intermediate value has an own
memory pad that is not overwritten by another intermediate result. Obviously,
this assumption usually does not hold for codes of reasonable size. However,
the values of the intermediates vj are needed to compute the partial derivatives
∂ϕi

∂vj
(vj)j≺i during the adjoint sweep. A very simple remedy to this problem is

the storage of the value vi before it is overwritten by the value ϕi(vj)j≺i and to
recover the value before the discrete adjoint of the statement vi = ϕi(vj)j≺i is
computed. This yields a memory requirement of sequentially accessed storage
that is proportional to the number of elementary operations performed, i.e.,
one has for this basic approach

MEM(ȳTF ′(x)) ∼ l,
where MEM stands for the required amount of sequentially accessed memory.
The resulting runtime effects will be discussed in more detail in Subsec. 1.3.1.

With respect to the randomly accessed memory one can show that

RAM(ȳTF ′(x)) ≤ 2 RAM(F (x)),

holds for reasonable assumptions on the evaluation procedure [70]. Once more,
one finds related complexity results for the analytical derivative computation
based on adjoint differential equations, where the full solution of the original
differential equation has to be stored in the nonlinear case.

It should be mentioned that the scalar reverse mode presented here can be
extended again to a vector version to compute multiple derivatives of the form
Ȳ TF ′(x) for Ȳ ∈ R

m×q. This generalization allows a considerable reduction in
terms of runtime in comparison to the evaluation of q single directional deriva-
tives ȳTF ′(x) yielding the same derivative information. Furthermore, there are
several results with respect to the differentiation of iterative processes. Detailed
information on these topics and further pointers to additional references can be
found in [70].

Throughout we will consider the reverse mode of AD and therefore the ap-
plication of an AD tool as our method of choice to provide discrete adjoint
information. For this reason, a rather detailed description of the underlying
process is given in this subsection. The term discrete reflects the fact that the
computer program used to compute the function value is based on discrete in-
formation, i.e., specific numerical values. This is in contrast to the continuous
adjoint information provided for example by the adjoint differential equations
in continuous form. Obviously, as alternative to the application of an AD tool,
discrete derivative information can be obtained by handcoding of a correspond-
ing calculation in a time-consuming and very error-prone process.

1.2.4 Implementation Strategies

There are two major approaches for implementing AD: source transformation
and operator overloading. Both approaches will be described briefly in the re-

14 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

mainder of this subsection. However, a third alternative, namely the integration
of AD into the compiler should be mentioned. Only recently, this strategy has
been implemented as a prototype version for the NAG Fortran compiler [114].
The integration of AD into a compiler requires comprehensive knowledge of the
compiler internals. Therefore, this alternative is difficult to realize. However, it
is very attractive for users as well as for researchers working on AD: The user
has not to deal with another software tool and the AD developer could exploit
all the information that is already available inside the compiler.

Source Transformation

An AD tool based on source transformation generates for a given source code to
evaluate a function a new source code for evaluating additionally the required
derivative information. This technique is especially well suited for the automatic
differentiation of Fortran 77 codes because this programming language allows
an appropriate analysis of the code.

The main ingredient of this approach for the developer of an AD tool is
a more or less complete compiler technology that has to be provided. This
is due to the fact that one has to perform a lexical analysis and a syntax
analysis of the given program. Subsequently, a semantic analysis is required to
obtain for example a dependence analysis in order to determine the independent
variables, the dependent variables, and all intermediate variables that have to
be differentiated. This yields a static data flow analysis including a symbol
table and error handler. Once, all this information is available, the forward
mode or the reverse mode of AD can be applied to derive the source code
for the computation of the required derivative information. Subsequently, an
optimization of the generated code can be performed yielding a new source file
for computing the desired derivative objects. Obviously, an AD tool based on
source transformation is very challenging from a developers point of view, where
the AD part itself comprises a comparable small part. Source transformation is
used for example by the packages ADIFOR [13], TAF [59], and Tapenade [85].

The development of the AD tool OpenAD [142] that is also based on source
transformation started quite recently. Here, the idea is to transform a given
computer program into an XML format. Then, all AD technology is based on
and applied to this internal representation. Subsequently, the XML represen-
tation extended by the derivative calculation is unparsed to obtain a computer
program that can be compiled with standard compilers. The advantage of this
approach is that a function evaluation given in any programming language can
be differentiated as soon as a corresponding parser into an XML representation
is available. Hence, the only remaining but nevertheless difficult part is the pro-
vision of appropriated parsers and unparsers for XML since the AD technology
for the XML representation can be exploited.

Operator Overloading

For a program written in C or C++ it is considerably more difficult to obtain the
required information as for example a dependency analysis for an efficient AD

1.3 Efficient Computation of Discrete Adjoints 15

implementation based on source transformation. This is due to the concepts of
dynamic memory allocation and pointers provided by C and C++. Therefore,
currently there exists no AD tool based on source transformation implementing
the reverse mode of AD, whereas there are some packages based on operator
overloading for the automatic differentiation of programs written in C or C++.
Here one can distinguish two different strategies.

Using operator overloading, an obvious strategy to implement AD is the
definition of a new class that contains the derivative values in combination
with the values of the original variables. The implementation of this approach
is very simple for the forward mode of AD. Applying the reverse mode of AD, the
derivative values are propagated backwards. That is, one starts computing the
derivatives of the dependents with respect to the last intermediate values and
traverses backwards through the evaluation process until the independents are
reached. Therefore, it is not possible to compute the derivatives simultaneously
with the values of the intermediates as proposed above for the forward mode. To
overcome this difficulty one may use a new class to build a graph that represents
the function to be differentiated during the function evaluation. This method is
used for example by the AD tool FADBAD [8]. To this end, a new data structure
is defined that allows the generation of appropriate backward references during
the function evaluation and stores the local derivatives during the reverse sweep.
It is important to note that the pointers in the resulting graph are oriented in
the opposite direction compared to the control flow and the access to nodes
happens largely at random. Furthermore, for bigger problems the fact that the
complete computational graph is kept in “core” may cause problems because of
the corresponding memory requirement.

Instead of keeping the derivative value in one composite structure with the
value of the variable one may use the operator overloading facility to log for each
operation during the function evaluation the corresponding operator and the
variables that are involved to generate an internal representation of the function
in addition to the function evaluation. This can be viewed as an representation
of the computational graph associated with the evaluation of the function at
a specific point x. Subsequently, the internal function representation is used
to compute the desired derivative objects. The AD tools ADOL-C [154] and
CppAD [39] are based on this technique.

During the work on this habilitation, the AD tool ADOL-C was extended
continuously to provide in addition to the theoretical results an implementation
that can be used for the efficient differentiation of C and C++ tools, see, e.g.,
[104, 150].

1.3 Efficient Computation of Discrete Adjoints

In Subsec. 1.2.3, the basic idea of computing discrete adjoint with the reverse
mode of AD was illustrated and only a short comment was made on the memory
required for the differentiation process. In this section, we describe the problem
in more detail and present several alternatives for the handling of the poten-
tially very large amount of memory that is needed to compute discrete adjoints.

16 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

Furthermore, we discuss methods for the efficient computation of discrete ad-
joints by exploiting specific properties of the function to be differentiated. These
properties comprise sparsity and fixpoint iterations.

1.3.1 Recomputation versus Storage

To simplify the presentation of the forward mode and the reverse mode, we
made in Subsec. 1.2.1 the assumption that the intermediate values vi are not
overwritten during the function evaluation. Obviously, this assumption does
not hold for any reasonable program, since the reusage of storage forms one
important ingredient of an efficient programming style.

As mentioned briefly in Subsec. 1.2.2, overwrites cause no problem for the
forward mode of AD if the derivative computation is adapted appropriately.
This situation changes completely for the reverse mode of AD. From Figs. 1.6
and 1.7 one can conclude that the intermediate values vi are required in reverse
order for the derivative calculation. Hence, if overwrites occur during the func-
tion evaluation, information required for the adjoint sweep may be lost, e.g.,
for the derivative calculation involving nonlinear operations as multiplications
or calls to intrinsic functions such as sin(). There are two alternatives to pro-
vide the required intermediate values: First, one may recompute the required
intermediate values. Second, as described already in Subsec. 1.2.3, one may
store them during the function evaluation onto a strictly sequential accessed
data structure. The former alternative is used as default option by the AD tool
TAF. However, due to the required recomputation the computing time for the
derivative information is then proportional to l2 where l denotes as throughout
the number of elementary operations evaluated during the computation of the
function value [70]. Hence, this approach is often not feasible. The second alter-
native, namely the storage of all intermediate values onto an appropriate data
structure is used for example by the AD tools ADOL-C and CppAD. The re-
sulting memory requirement is proportional to l, i.e., the number of elementary
operations performed during the function evaluation. For real-world problems
this fact may lead to an unacceptable memory requirement. Additionally the
computation of the derivatives may be slowed down considerably due the mem-
ory accesses. Here, one has to note that for the derivation of the runtime
estimate (1.4), one assumes that all intermediate values required for the deriva-
tive calculation are accessibly at a negligible cost. As long as the corresponding
sequential data structure can be kept in main memory, this assumption do hold.
However, for large-scale function evaluations, as for example the simulation of
the flow around an airfoil, the access to the sequential data structure is quite
often the critical point for the computing time of the derivatives. We will use
Speelpennings example given by

f : R
n 7→ R, y =

n
∏

i=1

xi

for the illustration of this fact. The corresponding gradient evaluation using the
reverse mode of AD is shown in Fig. 1.8. As can be seen, the only intermediate

1.3 Efficient Computation of Discrete Adjoints 17

for i = 1, . . . , n
vi−n = xi

v1 = 1
for i = 1, . . . , n

store(v1)
v1 = v1 ∗ vi−n

yi = v1, v̄1 = 1
for i = l, . . . , 1

read(v1)
v̄i−n = v̄1 ∗ v1, v̄1 = v̄1 ∗ vi−n

for i = 1, . . . , n
x̄i = v̄i−n

Figure 1.8: Reverse mode AD
(Speelpenning)

value v1 is overwritten by each ele-
mentary operation that is evaluated
for the computation of the function
f . Hence, the value of v1 has to
be stored onto the sequential data
structure in each elementary opera-
tion and read from the data struc-
ture for each computation of an dis-
crete adjoint v̄i.
These observation hold for all im-
plementations of AD independent of
a source transformation or an oper-
ator overloading approach. Hence,
also the corresponding effects on
the overall runtime that are caused
by storing and retrieving the values
can be observed for both implemen-

tation strategies. This fact is illustrated in Fig. 1.9 for the AD tools ADOL-C
and Tapenade. As can be seen, the runtime for one gradient calculation grows

10
2

10
4

10
6

10
8

0

1

2

3

4

5

6

n

ru
n

tim
e

 (
se

c)

ADOL−C

10
2

10
4

10
6

10
8

0

1

2

3

4

5

6

ru
n

tim
e

 (
se

c)

n

Tapenade

Figure 1.9: Execution time for gradient computation (Speelpennings example)

very slowly for n ≤ 100000 and n ≤ 1000000, respectively. For larger values of n,
the runtime increases dramatically. This is due to the fact that for these values
of n another memory medium, namely the disc, is used to store the intermediate
values required for the adjoint sweep. One has to note that this example only
serves to illustrate the influences of the memory access cost for different sizes
of the function to be differentiated. Naturally, the specific development of the
runtime depends on the function to be differentiated as well as the specific
internal settings of the AD tools.

To overcome the problems that are caused by the memory requirement of
the reverse mode of AD, several checkpointing approaches have been developed.
If the considered function evaluation has no specific structure, one may allow
the user of an AD tool to place checkpoints somewhere during the function
evaluation to reduce the overall memory requirement. This simple approach is
provided for example by the AD tool TAF [59]. As alternative, one may exploit
the call graph structure of the function evaluation to place checkpoints at the
entries of certain subroutines. This reversal strategy leads to a joint reversal
for the subroutines, see, e.g. [70], and therefore to a reduction of the memory

18 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

requirement. The subroutine-oriented checkpointing is used, e.g., by the AD
tools Tapenade [85] and OpenAD [115].

As soon as one can exploit additional information about the structure of the
function evaluation, an appropriate adapted checkpointing strategy can be used.
This is in particular the case if a time-stepping procedure is contained in the
function evaluation allowing the usage of a time-stepping oriented checkpoint-
ing. If the number of time steps N is known a-priori and if the computational
costs of the time steps are almost constant, one can compute checkpointing
schedules in advance. This approach is referred to as offline checkpointing.
One very popular offline checkpointing strategy is to distribute the checkpoints
equidistantly over the time interval, also known as windowing in the PDE con-
text, see, e.g., [6, 9], or multi-level checkpointing in the AD context, see, e.g.,
[87]. However, it was shown in [153] that this approach is not optimal. A more
advanced but still not optimal approach is the binary checkpointing used for
example in [105]. However, optimal checkpointing schedules based on binomial
coefficients can be computed for an a-priori known number of time steps in ad-
vance to achieve an optimal, i.e. minimal, runtime increase for a given number
of checkpoints [69, 76]. Hence, the required recomputations are reduced to a
minimum for a given number of checkpoints.

A detailed comparison of the windowing technique with the binomial check-
pointing is contained for the first time in [153], which is also part of this thesis
(see Chapter 2). The analysis presented in [153] yields that for a given number
of checkpoints and a given upper bound on the number of repeated forward
integrations, the binomial checkpointing approach allows the adjoint computa-
tion for a larger time horizon than the windowing technique. Furthermore, it
is shown that the time needed for the adjoint computation coincides for both
approaches if the windowing is not used recursively. Moreover, it is also proved
in [153] that for a given number of checkpoints the time required for the adjoint
computation with a recursive windowing exceeds the runtime needed for the
adjoint computation with the binomial checkpointing. Therefore, windowing
can be seen as not optimal, despite the fact that it is commonly used. The
theoretical analysis contained in [153], i.e., the relation of the maximal num-
ber N of time steps the adjoint of which can be computed using either the
windowing technique or binomial checkpointing as well as the analysis of the
overall runtime required by the two approaches were derived by the author of
this thesis.

So far, the binomial checkpointing algorithm was only available as separate
software tool called revolve, see also [76]. Hence, the user was responsible for the
integration and usage of the driver routine revolve into the application for the ex-
ploitation of the optimal checkpointing. Recently, the routine revolve was inte-
grated in cooperation with the author of this thesis into the AD tool ADOL-C to
allow an automated usage of the binomial checkpointing [104]. The runtime re-
sults presented in [104] show for the first time that checkpointing may lead even
to a decrease in runtime despite the fact that a considerable amount of interme-
diate information has to be recomputed. The numerical example that serves to
illustrate these runtime effects of the checkpointing procedure is an industrial

1.3 Efficient Computation of Discrete Adjoints 19

robot as depicted in Fig. 1.10 that
has to perform a fast turn-around
maneuver. We denote by q =
(q1, q2, q3) the angular coordinates
of the robot’s joints, where q1 is
referring to the angle between the
base and the two-arm system. The
robot is controlled via three control
functions u1, u2, u3 that denote the
respective angular momentum ap-
plied to the joints (from bottom to
top) by electrical motors. The con-
trol problem under consideration

q3

q3

q2
90◦ + q2 − q3

Figure 1.10: Robot ABB IRB 6400

is to minimize the energy-related objective where the final time tf is given
yielding the target function

J(q, u) =

∫ tf

0
[u1(t)

2 + u2(t)
2 + u3(t)

2] dt.

The complete equations of motion for this model can be found in [103]. The
robot’s task to perform a turn-around maneuver is expressed by means of initial
and terminal conditions in combination with control constraints [66]. However,
for illustrating the runtime effects of the checkpointing facility integrated in
ADOL-C only the gradient computation of J(q, u) with respect to u was con-
sidered.

To compute an approximation of the trajectory x, the standard Runge-
Kutta method of order 4 was applied for time integration resulting in about
800 lines of code. The integration and derivative computations were computed
using an AMD Athlon64 3200+ (512 kB L2-cache) and 1GB main memory.
The resulting averaged runtimes in seconds for one gradient computation are
shown in Fig. 1.11, where the runtime required for the derivative computa-
tion without checkpointing, i.e., the basic approach (BA), is illustrated by a
dotted line. The runtime needed by the checkpointing approach (CP) using
c = 2, 4, 8, 16, 32, 64(, 128, 256) checkpoints is given by the solid line. To illus-
trate the corresponding savings in memory requirement, Table 1.1 shows the
tape sizes for the basic approach as well as the tape and checkpoint sizes re-
quired by the checkpointing version. The tape size for the later varies since
the number of independents is a multiple of N due to the distributed control u.
One basic checkpointing assumption, i.e., the more checkpoints are used the less
runtime the execution needs, is clearly depicted by case N = 1000 in Fig. 1.11.
The smaller runtime for the basic approach completes the setting. However, the
more interesting cases for this example are N = 100 and N = 5000, respectively.
In these situations a smaller runtime was achieved even though checkpointing
was used. These results are due to a well-known effect, namely that comput-
ing from a level of the memory hierarchy that offers cheaper access cost may
result in a significant smaller runtime. For the robot example the computation
could be redirected from main memory mainly into the L2-cache of the pro-
cessor (N = 100) and from at least partially hard disk access completely into

20 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

10
1

0.04

0.05

0.06

0.07

0.08

0.09

number of checkpoints
ru

n
tim

e
in

 s
ec

N = 100

CP
BA

10
1

10
2

0.55

0.6

0.65

0.7

0.75

0.8

number of checkpoints

ru
n

tim
e

in
 s

ec

N = 500

CP
BA

10
1

10
2

2

2.5

3

3.5

number of checkpoints

ru
n

tim
e

in
 s

ec

N = 1000

CP
BA

10
1

10
2

100

150

200

number of checkpoints

ru
n

tim
e

in
 s

ec

N = 5000

CP
BA

Figure 1.11: Comparison of runtimes for N = 100, 500, 1000, 5000

time steps N 100 500 1000 5000

without checkpointing
tape size (KByte) 4.388,7 32.741,9 92.484,7 1.542.488,1

with checkpointing
tape size (KByte) 79,3 237,3 434,8 2.014,9

checkpoint size (KByte) 11,4 56,2 112,2 560,2

Table 1.1: Memory requirements for N = 100, 500, 1000, 5000

the main memory (N = 5000). The remaining case from Fig. 1.11 (N = 500)
depicts a situation where only the tape and a small number of the most recent
checkpoints can be kept within the L2-cache. Hence, a well chosen ratio be-
tween N and c causes in this case a significantly smaller recomputation rate
and results in a decreased overall runtime, making the checkpointing attractive.

Obviously, the time stepping procedure used for the integration of the state
equation may rely also on some adaptive steering of the size of the time steps.
Then, the number of time steps performed is known only after the complete
integration. Hence, an offline checkpointing is intractable. Instead, one may
apply a straightforward checkpointing by placing a checkpoint each time a cer-
tain number of time steps has been executed. This approach transforms the
uncertainty in the number of time steps to a uncertainty in the number of
checkpoints needed and is used for example by CVODES [132]. However, when
the amount of memory per checkpoint is very high one certainly wants to de-
termine the number of checkpoints required a-priori. Having a fixed number of
checkpoints to store intermediate states but an unknown number of time steps
for which the adjoint has to be computed on the base of the forward trajectory,

1.3 Efficient Computation of Discrete Adjoints 21

one has to decide on the fly, i.e., during the forward integration, where to place
the checkpoints. Hence, without knowing how many time steps are left to per-
form, one has to analyze the current distribution of the checkpoints. Depending
on the time steps performed so far, one may then discard the contents of one
checkpoint to store the current available state. Obviously, one may think that
this procedure could not be optimal since it may happen that one reaches the
final time just after replacing a checkpoint, in which case another checkpoint
distribution may be advantageous. A surprising efficient heuristic strategy to
rearrange the checkpoints was developed and analyzed in the diploma thesis
[135]. Here, a checkpoint distribution is judged by computing an approxima-
tion of the overall re-computation cost caused by the current distribution. This
number is compared with an approximation of the re-computation cost if one
resets a checkpoint to the currently available state. Despite the fact that signif-
icant simplifications are made for approximating the required re-computations,
the resulting adjoint computations are amazingly cheap in comparison to an
optimal checkpointing strategy. Here, one has to note that this optimal cost
can be computed obviously only afterwards when the number of time steps is
known. This heuristic for online checkpointing was implemented in the proce-
dure arevolve [95]. However, a main drawback of arevolve is that it is so far
not possible to prove for this algorithm an upper bound on the deviation from
the optimal checkpointing schedule because a heuristic is used to judge the
current checkpointing distributions. A new procedure for online checkpointing
that yields a provable time-optimal adjoint computation for a given number of
checkpoints was proposed in cooperation with the author of this thesis in [89]
and is currently expended to more general checkpointing approaches.

1.3.2 Exploitation of Sparsity

Quite often, the required derivative matrices of first and second order are sparse.
For example, the discretization of partial differential equations describing the
considered problem may yield sparse Jacobians and Hessians. When an op-
timization is coupled with the simulation it is important to take the sparsity
information into account for maintaining the efficiency of the overall process.
Therefore, some of the tools for nonlinear optimization assume already that the
user provides the Jacobians and Hessians already in a sparse format, see, e.g.,
[143, 146].

For the efficient computation of sparse Jacobian matrices, there are two dif-
ferent approaches: If the sparsity pattern of the sparse Jacobian is known, well-
established coloring algorithms in combination with AD allow its economical
evaluation by compression techniques. Alternatively, one may use the computa-
tional graph defined by the function evaluation and apply elimination techniques
to generate efficient evaluation methods for the whole Jacobian. Naturally, the
second alternative can be also applied for dense Jacobians. In the remainder of
this section, the two approaches are illustrated in more detail.

The overall process for computing a sparse Jacobian using compression tech-
niques is illustrated in Fig. 1.12. In step 1 of the process, the sparsity pattern
of the Jacobian is computed. It may also be needed to set up data structures

22 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

function

f

sparsity
pattern

P

seed
matrix

S
compressed form

A = JS or A = STJ
1 2 3

Figure 1.12: Computing sparse Jacobians with compression techniques

for an efficient storage and factorization of the sparse Jacobian. Compared
to the evaluation of the full Jacobian F ′(x) in real arithmetic for a function
y = F (x) ∈ R

m with x ∈ R
n, computing the Boolean matrix P ∈ {0, 1}m×n

representing its sparsity pattern in the obvious way requires considerably less
runtime and memory. For that purpose, the AD tools ADOL-C and TAF
provide the propagation of so-called Boolean patterns through the function
evaluation. Here, one may simply use a combination of unit vectors. More
sophisticated strategies were study for example in [74]. In step 2, the task of
finding a suitable seed matrix S ∈ R

n×p or S ∈ R
m×p such that p attains a min-

imal value is closely related to graph coloring problems which are well known
to be NP-hard. Fortunately, various algorithms based on heuristics have been
developed that generally yield very good approximations to the optimal color-
ing. For a comprehensive overview of this topic the reader is referred to [56].
The entries of the Jacobian J can be recovered from the compressed matrix A
directly, i.e., without requiring any further arithmetic, or via substitution, where
an additional arithmetic work is required. In general, a seed matrix suitable for
a substitution method has a smaller number of columns or rows p, respectively,
compared to one suitable for a direct method, an advantage attained at the cost
of a slightly higher computational effort involved in the matrix reconstruction
step.

Ideally, step 1, i.e., the computation of the sparsity pattern P and step 2,
i.e., the calculation of the so-called seed matrix S using graph coloring have to
be performed only once. Subsequently, in step 3, the compressed representation
of the sparse Jacobian can be computed using a vector version of AD. Finally,
the matrix entries of the sparse Jacobian have to be calculated with a suitable
recovery strategy.

As an alternative, the calculation of sparse Jacobians may also rely on elim-
ination rules for the corresponding computational graph as defined in Sub-
sec. 1.2.1. The aim of these elimination techniques is the derivation of an
bipartite graph with the following properties: First, the independent variables
and the dependent variables form two disjoint sets. Second, the labels of the
edges connecting these sets represent the corresponding entries of the Jaco-
bian. They should be computed with as less computation effort as possible.
For the coordinate transformation example, the corresponding bipartite graph
is shown by Fig. 1.13, where ci,j denotes the partial derivative ∂vi

∂vj
. There are

several approaches to derive the bipartite graph from the original one, as for
example forward edge elimination, backward edge elimination, forward vertex
elimination, and backward vertex elimination [70]. These techniques still rely
on the forward or backward propagation of information through the compu-

1.3 Efficient Computation of Discrete Adjoints 23

v0

v−1

v−2 v9

v10

v11

c−2,9
c−2,10c−2,11

c−1,9

c−1,10

c−1,11

c0,9

c0,10

c0,11

Figure 1.13: Bipartite computational graph for coordinate transformation

tational graph. Here, it can be shown that the back elimination corresponds
to the forward mode and the forward elimination to the reverse mode as pre-
sented in Sec. 1.2, see [70]. Straightforward generalizations of these techniques
are so-called cross country elimination procedures, where edges or vertices are
eliminated in an order that does not necessarily correspond to the numbering of
the vertices or edges. These elimination techniques have in common that they
yield a bipartite graph representing the entries of the Jacobian. However, they
may differ significantly in the number of operations required to compute the de-
sired partial derivatives. It is proved that the problem of finding an elimination
order that yields the Jacobian entries at minimal computational cost is NP-
hard for a general function F : R

n 7→ R
m [112]. Therefore, there has been an

extensive research on the derivation of efficient heuristics including for example
greedy Markowitz approaches or genetic algorithms, see, e.g., [110, 111].

The exploitation of sparsity for the computation of Jacobians has been an
area of active research over the last years. Several algorithms following the
approaches described above have been developed and analyzed theoretically,
see, e.g., [56, 57, 97]. Furthermore, there exist already some software packages
to apply these approaches, see, e.g. [113, 154]. The situation changes completely
if the sparsity of a Hessian matrix has to be exploited. So far, only AMPL can
compute the structural information about the Hessian automatically based on
the partial separability of the function to be differentiated [54]. Subsequently,
this sparsity information is exploited for the efficient computation of sparse
Hessians. As an alternative, the calculation of sparse Hessians may also rely on
elimination rules for the computational graph of the Hessian. This approach
was first considered in [43] and is still subject of current research.

As alternative a compression technique similar to the one shown in Fig. 1.12
can be used also to compute a compressed form of the sparse Hessian and
to reconstruct the desired Hessian entries afterwards. For this purpose, an
algorithm to compute the sparsity pattern of a Hessian based on the propagation
of index domains and nonlinear interaction domains along with the function
evaluation was proposed for the first time by the author in [150]. The results of
the paper will be sketched here briefly and are also part of the thesis at hand
(see Chapter 3). The index domains Xi are defined for each intermediate value

24 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

vi computed during the function evaluation such that

{

0 ≤ j ≤ n :
∂vi

∂xj
6≡ 0

}

⊆ Xi (1.5)

holds [70]. If equality holds in (1.5), the index domain Xi contains for the
intermediate value vi the indices of all independent variables xj which influence
the value of vi. A proper subset relation will occur in (1.5) if degeneracies arise
in the function evaluation.

The nonlinear interaction domains Ni are defined for each input variable xi,
1 ≤ i ≤ n, such that

{

0 ≤ j ≤ n :
∂2y

∂xi∂xj
6≡ 0

}

⊆ Ni (1.6)

is valid [150]. Hence, if equality holds in (1.6) the nonlinear interaction domains
Ni contains for the independent variable xi the indices of all independent vari-
ables xj that influence the value of the dependent variable y together with the
independent variable xi in a nonlinear way. Here again, degeneracies may cause
a proper subset relation in (1.6). Furthermore, equality may not hold if dead
ends are contained in the function evaluation; that is, if there are intermedi-
ate variables vi that were computed but not subsequently needed to calculate
y. After the computation of the nonlinear interaction domains, the sparsity
pattern of the Hessian can be easily constructed using the entries of the set Ni.

Using an operator overloading approach for the implementation of AD, the
index domains and the nonlinear interaction domains can be computed easily
using the generated internal function representation. A detailed description of
the updating procedure can be found in [150]. If a proper subset relation occurs
for the index domains or the nonlinear interaction domains, the algorithm de-
rived in [150] will yield an overestimate for the sparsity pattern, which results
in an increase in runtime but not in incorrect derivative values. The theoretical
analysis contained in [150] yields the following complexity result

Theorem 1.3.1 (Computing Sparsity Patterns of Hessians). Let OPS(NID)
denote the number of operations needed to generate all Ni, 1 ≤ i ≤ n by Algo-
rithm II as presented in Sec. 3.2.3. Then, the inequality

OPS
(

NID
)

≤ 6(1 + n̂)

l
∑

i=1

n̄i

is valid, where l is the number of elemental functions evaluated to compute the
function value, n̄i = |Xi|, and n̂ = max1≤i≤n |Ni|.

Similar to the compression technique for sparse Jacobians, the product of
a derivative matrix and a seed matrix has to be evaluated to compute the
compressed sparse Hessian. So far, only the scalar second order adjoint mode
to compute Hessian×vector products was available, see, e.g., [70]. In [150],
the author presents for the first time also a vector version of the second order

1.3 Efficient Computation of Discrete Adjoints 25

adjoint mode and a corresponding complexity estimate. It was shown that the
upper bound on the runtime

TIME(H(x)S) ≤ ωsoad pTIME(f(x)) with ωsoad ∈ [7, 10].

using the scalar order adjoint mode to compute H(x)S for a seed matrix S ∈
R

n×p can be reduced to the upper bound

TIME(H(x)S) ≤ ωsoadpTIME(f(x)) with ωsoadp ∈ [4 + 3p, 4 + 6p].

This saving is comparable to the runtime reduction that can be achieved by
switching from the scalar forward mode to the vector forward mode or from
the scalar reverse mode to the vector reverse mode for computing first order
derivatives.

The computation of the sparsity pattern as well as the vector version of
the second order adjoint mode were incorporated by the author in the AD
tool ADOL-C for numerical tests. Currently, the influence of the two basic
compression techniques, namely the direct approach and an approach based on
substitution, on the overall computing time for the computation of a sparse Hes-
sian are studied and will be published in the near future [55]. The experimental
results contained in that paper show that sparsity exploitation via compression
techniques enables one to affordably compute Hessians of dimensions that could
not have been computed otherwise. For sizes where dense Hessian computation
is at least possible, the saving in runtime obtained by exploiting sparsity via
coloring is drastic. Of the two sparsity-exploiting approaches, an acyclic col-
oring based substitution method is found to be faster, considering the overall
process.

1.3.3 Differentiation of Fixpoint Iterations

The black-box differentiation of iterative processes may be a critical point with
respect to the accuracy of the obtained derivatives but also with respect to
the computational complexity in terms of runtime and memory requirement.
One first remedy for time integration, i.e. the technique of checkpointing, was
already presented in Subsec. 1.3.1. Additionally, there are also several results
concerning the efficient and exact computation of derivative information for a
second class of iterative processes, namely fixpoint iterations, see, e.g. [61]. In
these cases, so far two different techniques are applied to overcome the prob-
lems caused by black-box differentiation. First, one may employ a so-called
piggy-back approach for the derivative calculation as presented in [72]. Here,
derivative information is propagated with the function evaluation also for the
reverse mode differentiation to compute adjoint information. By this means,
the storage of all intermediates computed in all fixpoint iterations is replaced
by the storage of the intermediates of only one iteration at any time since
the adjoint of each iteration is computed immediately with the iteration step.
Similar methods are known as one-shot optimization and used for example in
aerodynamic shape optimization, see, e.g., [86, 98].

As alternative, one may split the fixpoint iteration and the corresponding
derivative computation. Hence, first the fixpoint iteration is performed up

26 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

to a certain accuracy to obtain feasibility. Subsequently, the derivatives of
this iterative process are computed up to the desired exactness to apply for
example a gradient-based optimization. Using the forward mode of AD, this
splitting can be modified such that the propagation of the derivative calculation
is performed along with the fixpoint iteration only after a certain accuracy is
reached in the undifferentiated process. Then, the fixpoint iteration is stopped
as soon as the desired exactness of the function evaluation and the derivative
information is reached. For an application of this strategy see, e.g., [60]. The
strategy changes when computing discrete adjoints with the reverse mode of
AD after the evaluation of a fixpoint iteration. Then a corresponding iterative
process, the so-called reverse accumulation, for the calculation of the discrete
adjoint and an appropriated steering of the derivative computation to ensure a
desired accuracy as proposed [31] can be used. This algorithm is implemented
in TAF for the efficient computation of discrete adjoints [60]. Only recently, a
similar facility was incorporated in cooperation with the author in ADOL-C.
It has been already applied successfully for the optimization of an airfoil in a
cooperation with the DLR Braunschweig [53, 130].

1.4 Discrete Adjoints versus Continuous Adjoints

The reverse mode of AD is applied to function evaluations given as computer
program to calculate the desired discrete adjoint information. Hence, AD is
applied to compute the exact derivative of a discrete approximation of the con-
sidered function in its analytical or continuous form. Therefore, the reverse
mode of AD does not yield necessarily an approximation to the exact deriva-
tives of the continuous formulation of the function to be differentiated but
consistent derivative information for its discrete representation as computer
program. However, in numerous cases AD provides exactly what the user of
AD requires. Nevertheless, the observation explained above yields immediately
the question about the relation of the discrete derivative information provided
by AD and the continuous derivatives that can obtained from the continuous
problem formulation.

1.4.1 Two Different Optimization Approaches

In the literature, the resulting optimization approaches are frequently called
discretize-then-optimize methods when using the consistent discrete derivatives
provided for example by AD and optimize-then-discretize methods when the
derivatives are based on the continuous formulation using for example the
sensitivity or adjoint differential equation. So far, each of the two different
approaches is applied for optimization purposes when adjoint information is
required due to structure of the considered problem.

The optimize-then-discretize approach is used especially for PDE-constraint
optimization problems, see, e.g., [5, 52]. Recently, the continuous approach has
been extended for optimal control problems to avoid even the discretization of
the control completely, see, e.g., [41].

1.4 Discrete Adjoints versus Continuous Adjoints 27

One the other hand, frequently only a discrete description of the function
as computer program is available for optimization purposes. For these cases,
consistent discrete adjoints could be derived by hand in an error-prone and
time-consuming process, since these adjoint discretization schemes may not co-
incide with the integration schemes used for the state equations. Corresponding
results can be found, for example, in [18, 44, 84] for optimal control problems
based on ODEs, and in [2, 34, 109, 137] for the optimization of a PDE-based
model. To avoid the hand-coding of discrete adjoints, the reverse mode of au-
tomatic differentiation can be applied. Furthermore, the usage of AD ensures
an automated handling of boundary values in a consistent way.

Since the optimization algorithm often differs only in the generation of the
derivative information, the discussion about the two different approaches can
be frequently reduced to the choice between discrete adjoint information for
the discretize-then-optimize methods and continuous adjoint information for
the optimize-then-discretize methods. The consequences of the two different
approaches for an overall optimization process are sketched in Fig. 1.14. As

continuous

continuous

problem

problem

formulation

discretized

discretized consistent

derivatives

derivativesderivatives

optimal

optimal

solution

solution

= ?= ?= ?

Figure 1.14: Optimize-then-discretize versus discretize-then-optimize

can be seen, the first question is whether the derivative information provided
for the optimization process coincides and the second question is whether the
same optimal solution can be achieved. Examples for discrepancies can be found
frequently in the literature, see, e.g., [30] for the adjoint computation in a quite
general setting and [2, 34] for a general PDE-based optimal control problem
when using stabilized finite elements methods.

It was mentioned already in [68], that the reverse mode of AD yields a dis-
crete adjoint somehow related to the continuous adjoint equation. However,
so far only a limited theoretical analysis of the discrete adjoint information
provided by AD is available. There are at least two questions to be answered.
First, the relation between the discrete adjoints generated by AD and the con-
tinuous adjoints belonging to the discrete formulation of the function under
consideration has to be studied. In [47], first theoretical aspects were studied
for optimal control problems governed by ODEs. For optimal control problems
based on ODEs, a further study of the subject is contained in [67]. This paper,
which is also part of this thesis (see Chapter 4), compared for the first time the
gradient information obtained by the optimize-then-discretize approach with

28 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

the discrete adjoints provided by AD in an discretize-then-optimize approach.
As shown in this paper, the difference of the obtained derivative information
occurs if an interpolation of the control is required by the applied Runge-Kutta
method. Obviously, these interpolations based on the values of the control in-
fluence the value of the objective function in the discrete function formulation.
However, the interpolation can not be avoided for a recursive discretization used
by the discretize-then-optimize method. The influence of the interpolation is
completely neglected by the optimize-then-discretize approach. Besides this
analysis of the different adjoint information obtained by the two approaches,
the influence on the overall optimization process is also shown in [67]. The con-
tribution of the author of this thesis to the paper [67] comprises all parts that
cover the derivative information generated by AD. This includes 4.3.4, parts of
4.4, and the analysis of the different derivative information and the analysis of
the reason for these differences contained in 4.5. Furthermore, the remaining
parts of the Sects. 4.5 and 4.3 were derived and written in a strong cooperation
with the second author of [67].

The paper [149] is a direct continuation of the work presented in [67] and
also part of this thesis (see Chapter 5). For recursive discretizations, the re-
verse mode of AD provides the consistent objective gradient which depends
on the forward integration scheme as discussed, for example, in [48]. That is,
the reverse mode of AD yields the exact discrete gradient information for the
chosen discretization of the state equation. However, one has to note that AD
computes the exact derivative of an approximation of the objective and may
not yield an approximation to the exact derivatives of the objective. The pur-
pose of the paper [149] is to analyze this discrepancy and its impacts for the
recursive discretization in more detail. That means, for a fixed control function
the convergence rate of the discrete adjoint associated with the corresponding
discretized control problem to the corresponding continuous adjoint is analyzed.
For that purpose, the discretization schemes automatically derived by AD to
integrate the sensitivity equation and the adjoint differential equation of the
underlying optimal control problem are presented and analyzed with respect to
their theoretical properties. In detail, it is shown in [149] that the discretization
method obtained for the sensitivity equation inherits the convergence proper-
ties of the discretization scheme used for the state equation. A similar result
is proved for the adjoint differential equation provided that some additional as-
sumptions on the coefficients of the original discretization method are fulfilled.
Moreover, the computation of the required gradient information using the ap-
proximations of the sensitivity equation and the adjoint differential equation,
respectively, is discussed. Alternatively, the gradient information provided by
AD can be used as the exact discrete derivative information, which need not
coincide with the one based on the approximation of the sensitivity and adjoint
differential equation, respectively.

Hence, we choose for a given fixed control the discretize-then-optimize ap-
proach and compare the approximation that we achieve with the continuous so-
lutions of the optimize-then-discretize method. Therefore, the results presented
in [149] are related to [44, 84], where the convergence rate of the solution of the
discretized control problem to the solution of the continuous problem is studied

1.4 Discrete Adjoints versus Continuous Adjoints 29

for the full discretization approach.
For PDE-constrained optimization processes the relation of discrete adjoint

information provided for example by hand-coding or the usage of appropriate
discretization schemes for the adjoint differential equation were studied in sev-
eral papers, see, e.g., [2, 6, 7, 34]. Currently, similar topics are studied in a
project supervised by the author of this thesis to examine the effects of AD in
this context. The aim of this project is a semi-continuous adjoint generation,
for example if AD is applied only for the reference element of a finite element
discretization and not for the full FEM code. Then, the differentiation of grid
structures or even the generation of the finite element grid could be avoided
making this approach very attractive with respect to memory requirement and
runtime.

1.4.2 Recomputation versus Storage for Continuous Adjoints

As explained already in Section 1.3.1 for the discrete adjoint approach, the
intermediate results have to be either stored or recomputed. A similar situa-
tion occurs when the continuous adjoint differential equation is used to derive
gradient information as sketched briefly in the remainder of this subsection.

Let y denote the state variables describing a velocity field, p ∈ R the pres-
sure and u the control variables. A instationary, incompressible, viscous flow
in a time-space cylinder (0, T) × Ω is modeled by means of the Navier-Stokes
equations. Together with the target function, one obtains the problem descrip-
tion

minJ(y, u) :=
1

2

∫ T

0

∫

Ω
|y(x, t)− yd(x, t)|2dxdt +

µ

2

∫ T

0

∫

Ω
|u(x, t)|2dxdt

−ν∆y + y · ∇y +∇p = u in (0, T) × Ω,

div y = 0 in (0, T)× Ω,

y|t=0 = y0.

We assume that the velocity field is subject to adequate boundary conditions
and yd is a desired state. Together with the adjoint pressure ξ the corresponding
adjoint variables λ then satisfies the system

−∂λ
∂t − ν∆λ− (y · ∇)λ+ (∇y)Tλ+∇ξ = y − yd in (0, T)× Ω,

−div λ = 0 in (0, T) × Ω,
λ(x, t) = 0 on ∂Ω × (0, T),
λ(x, T) = 0 in Ω,

with suitable boundary conditions, see, e.g., [139]. As can be seen, the partial
differential equation for the adjoint variable has to be integrated backwards
in time due to the terminal condition. Additionally for a given control u,
the computation of λ requires knowledge of the state y(u) on the whole time
horizon. Therefore, the storage of y(u) may form a serious bottleneck for large
time horizons where y represents a 2- or 3-dimensional flow velocity field.

There are only few contributions to control of the instationary Navier-Stokes
equations that tackle the storage problem. Frequently, a time-stepping proce-
dure with constant step sizes is applied for the integration of the time-dependent

30 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

state equation allowing an offline checkpointing approach. The technique of
equidistant checkpointing and repeated forward integration, also known as win-
dowing, is discussed by Berggren and coauthors in [9, 10] or by Becker and coau-
thors in [6]. A corresponding study applying the binomial offline checkpointing
is contained in [96], which is also part of the thesis at hand (see Chapter 6).
In this paper the offline checkpointing procedure revolve originally designed for
AD purposes is applied for reducing the memory requirement of the continuous
adjoint computation. Using the proposed checkpointing technique, a reduction
of the storage requirement of two orders of magnitude is observed, whereas the
resulting slow down factor of the adjoint calculation caused by repeated for-
ward integrations of the Navier-Stokes equations lies only between 2 and 3. In
addition to this extension of binomial checkpointing also for the optimize-then-
discretize approach, a new proof of optimality is given, see Sec. 6.3. It uses
the new concept of frequency numbers first introduced in [135]. The new tech-
nique simplifies the proof of optimality significantly and yields in addition so far
unknown properties of the optimal checkpointing strategies as for example an
explicit formula of the frequency numbers, see Theorem 6.3.4. The contribution
of the author of the thesis to the paper [96] comprises the further development
of the presented checkpointing theory and of the procedure revolve as well as
the analysis and interpretation of the numerical results that were obtained in a
strong cooperation of the author of this thesis with the first author of [96].

1.5 Some Recent Mathematical Algorithms Based

on Adjoint Information

Motivated for example by the complexity result for finite differences as presented
in Sec. 1.1, it was widely assumed that the product of a vector and a Jacobian,
i.e., ȳTF ′(x), can not be computed or approximated with low computational
cost. As a consequence, major work was dedicated to so-called transposed-free
algorithms, e.g., for the iterative solution of linear or nonlinear equations. How-
ever, using the reverse mode of AD one can evaluate vector×Jacobian products
without even coming close to forming a matrix within working accuracy. Ad-
ditionally, the continuous adjoint approach for optimization problems modeled
by differential equations became more popular. These two developments re-
sult in a more intensive work on adjoint-based algorithms either by employing
the adjoint information directly for the optimization, e.g. by using gradient
based-optimization [94, 130], or by designing new algorithms based on adjoint
information. Therefore, the next two subsections present some recent results
for adjoint-based mathematical methods.

1.5.1 Adjoint-based Quasi-Newton Updates

In contrast with the theoretical and practical attractions of the BFGS formula
for positive definite Hessians, secant updates for non-symmetric Jacobians have
rarely met with success across a wide range of problems. One possible expla-
nation is that least change updates like the good and the bad Broyden formula

1.5 Recent Mathematical Algorithms Based on Adjoint Information 31

are strongly dependent on inner product norms and hence the scaling in the
domain or range of the underlying vector function. In contrast the BFGS and
all other updates of the Broyden class including the SR1 formula are known
to be invariant with respect to linear transformations on the variable domain,
provided the initial matrix for the approximation is adjusted accordingly.

Exploiting the fact that AD allows to evaluate Jacobian×vector products
and vector×Jacobian products exactly one can derive an approximation of the
Jacobian that combines for the first time heredity and a least change property
as shown in [128] for the solution of nonlinear systems. For this purpose, a
direct secant condition as well as an adjoint secant condition are exploited. It
is even possible to analyze for a class of adjoint-based quasi-Newton updates
the rate of convergence in more detail [75] and to show global convergence if an
adapted line search procedure is applied as globalization [129].

For solving a system of nonlinear equations, there is some freedom in spec-
ifying the adjoint secant condition [131]. When approximating the Jacobian
of an equality-constrained optimization problem, the situation changes and the
adjoint secant condition employs information on the adjoint variables of the
optimization problem. Furthermore, adjoint-based quasi-Newton updates were
first proposed for the solution of constraint optimization as two-sided rank 1
(TR1) update in [77] and in a slightly different form in [83]. For these rea-
sons, adjoint-based update formulas will be presented here in more detail in the
context of optimization problems.

Assume that an optimization strategy based on Sequential Quadratic Pro-
gramming (SQP) is applied to solve a nonlinear programming problem of the
general form

min
x∈Rn

f(x) s.t. c(x) = 0, (1.7)

where the objective f : R
n → R and the constraints c : R

n → R
m with n ≥ m

are given smooth functions. Note that the Jacobian of the constraints

A(x) = (∇c1(x), . . . ,∇cm(x))T ∈ R
m×n

may be dense, i.e., we do not assume that A(x) has any structure. In the absence
of inequality constraints, the SQP method can be observed as Newton’s method
applied to the KKT conditions of (1.7). The Newton step at iteration k can be
written as:

[

B(xk, λk) A(xk)T

A(xk) 0

][

sk

σk

]

= −
[

g(xk, λk)
c(xk)

]

(1.8)

where λk denotes the current Lagrange multipliers, B(x, λ) is the Hessian of
the Lagrange function

L(x, λ) = f(x) + λT c(x)

and g(x, λ) ≡ ∇xL(x, λ).
It is widely assumed that the Jacobian of the constraints is available using

either finite differences or analytical methods such as the sensitivity equations.

32 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

However, both approaches may result in very time-consuming computations,
especially if the Jacobian of the constraints is dense or unstructured. Therefore,
we may apply the TR1 update to generate an approximation Ak of the exact
constraint Jacobian A(xk). The TR1 update is defined by

Ak+1 = Ak + δkrkρ
T
k (1.9)

where

yk ≡ c(xk + sk)− c(xk), µT
k ≡ gT (xk + sk, λk + σk)− gT (xk + sk, λk)

rk ≡ yk −Ak sk, ρT
k ≡ µT

k − σT
k Ak,

σk ≡ λk+1 − λk ∈ R
m

to fulfill both the direct secant condition

Ak+1 sk = yk + (δkρ
T
k sk − 1)rk ≈ yk ≈ ∇c(xk) sk

as well as adjoint (i.e., transposed) secant condition

σT
k Ak+1 = µT

k + (δkσ
T
k rk − 1)ρT

k ≈ µT
k

approximately for any δk ∈ R. When ρT
k sk = σT

k rk 6= 0 the two secant condi-
tions on Ak+1 are consistent and one can check that (1.9) with δ = 1/ρT

k sk =
1/σT

k rk is the only rank-one update satisfying them. It is possible to reconstruct
the exact Jacobian A(xk) with m TR1 updates for the fixed iterate xk as shown
in the following proposition:

Proposition 1.5.1. Let the iterate xk be fixed and Ak be given. Choose linearly
independent vectors vi and wi for i ∈ {0, . . . ,m−1} such that with zi ≡ A(xk)vi,
τi ≡ wT

i A(xk), Ak,0 = Ak, and

Ak,i+1 ≡ Ak,i +
(zi −Ak,ivi)(τ

T
i − wT

i Ak,i)

(τT
i − wT

i Ak,i)vi
(1.10)

the inequality (τT
i − wT

i Ak,i)vi 6= 0 holds. Then Ak,m = A(xk).

Proof: Due to the assumption (τT
i − wT

i Ãi)vi 6= 0 the TR1 update (1.10)
is always well defined. First, we show by induction that wT

j Ak,l = τj for
j = 0, . . . , l − 1. By definition, the TR1 update satisfies the secant condi-
tion. Therefore, we have wT

0 Ak,1 = τ0. Now, we assume that wT
j Ak,l = τj holds

for some value l ≥ 1 and show that it holds also for l + 1. We have

wT
j (zl −Ak,lvl) = wT

j zl − wT
j Ak,lvl = wT

j A(xk)vl − wT
j Ak,lvl

= wT
j A(xk)vl − wT

j A(xk)vl = 0

for all j < l. Using (1.10), we obtain

wT
j Ak,l+1 = wT

j Ak,l = τj for all j < l

1.5 Recent Mathematical Algorithms Based on Adjoint Information 33

and wT
j Ak,l+1 = τT

l due to the secant condition. If m TR1 updates are per-
formed, it follows that

wT
j Ak,m = wT

j A(xk)

holds for the linearly independent steps wj, j = 0, . . . ,m − 1. This yields
Ak,m = A(xk).

To prevent excessive variations in the determinant of AkA
T
k the factor δk can

be limited, which effectively dampens the Jacobian update, see [79]. We can
maintain a factorized null space representation of the approximated derivative
information during the whole optimization procedure. Hence, instead of updat-
ing Ak directly, we may update the corresponding matrices

Lk ∈ R
m×m, Yk ∈ R

m×n, Zk ∈ R
n×d

with d = n−m, Yk and Zk orthonormal and Lk lower triangular such that

Ak = (Lk Yk), AkZk = 0, YkZk = 0.

For details on the update of this factorized representation, see [79].

1.5.2 Trust-region Algorithms with Inexact Jacobian Matrices

For numerous equality-constraint optimization problems, the underlying appli-
cation yields very large but also well-structured and sparse derivative matrices.
For example, this is quite often the case for PDE-constrained optimization.
The exploitation of these structural properties allows the development of very
efficient optimization algorithms, see, e.g., [143, 146]. However, there is also a
wide range of applications where the derivative matrices have somehow orthog-
onal characteristics, i.e., they are of rather small size but dense. Examples for
such a setting are Periodic Adsorption Processes (PAPs). PAPs are typically
operated in a cyclic manner. These cycle models consist of bed models, PDAEs
in time and space, solved for each step. After a relatively brief start-up period,
the adsorption beds run in a cyclic steady state, that is, the bed conditions at
the beginning of each cycle match those at the end of the cycle. This fact yields
dense constraint Jacobians, where the time required for the computation of
the Jacobian dominates the overall optimization process, see e.g., [101], where
a reduced Hessian SQP approach was applied for the optimization of a PAP
yielding a decomposition of (1.8). The Jacobian A(xk) was calculated from the
direct sensitivity approach applied to the DAE system and an approximation
of the reduced Hessian related to B(xk) was created by quasi-Newton updates.
The solution of the optimization problem indicates that significant improve-
ments are possible with modest computational effort. However, the bottleneck
to more efficient calculations is the evaluation of direct sensitivities to obtain
A(xk), which is a dense matrix. Hence, the efficient handling of the constraint
Jacobian is essential to evaluate a proposed design, to analyze a process for
safety, for controllability and operability, debottlenecking and retrofitting ex-
isting units, and for optimization of new design or existing installations.

34 Chapter 1. Discrete Adjoints: Analysis, Computation, Applications

The author of this thesis analyzed a class of trust-region sequential quadratic
programming algorithms for the solution of minimization problems with non-
linear equality constraints in the paper [148] which is also part of this thesis
(see Chapter 7). The proposed optimization method does not require the exact
evaluation of the constraint Jacobian in each optimization step but uses only an
approximation of this first-order derivative information. Hence, the presented
approach is especially well suited for equality constrained optimization problems
where the Jacobian of the constraints is dense. Globalization of the resulting
nonlinear programming algorithm is provided by a composite step trust region
approach with the tangential and normal steps and calculated by the approach
of Byrd and Omojukun, see [117]. For composite-step trust-region methods
that employ exact information, a comprehensive treatment of the convergence
properties can be found in [36]. Implementations of the Byrd-Omojokun trust-
region method are used successfully to solve equality constrained NLPs [4, 106].
Related implementations using augmented Lagrangian merit functions are pro-
posed and analyzed in [46]. Extensions of this approach to a more general class
of trust-region methods can be found in [42]. Box trust-region methods are an-
alyzed in [64]. More recently, trust-region methods without penalty functions
have been developed [49, 50, 51, 141].

The effects of inexact problem information on the global convergence of in-
exact SQP methods can be found, for example, in [100, 107, 144]. In a line
search setting, the effects of inexact information on the global convergence are
studied in [23]. For an inexact composite step trust-region SQP method a
first proof of global convergence is given in [88], where the analysis is focused
on inexactness arising from iterative system solves. The analysis and assump-
tions on inexactness presented in [148], i.e., Chapter 7, differ from [88] in the
following way: We do not consider a splitting of the variables into state and
control variables. Hence, we allow general unstructured approximations of the
Jacobian A(x) and the corresponding null space representation as well as in-
exactness due to iterative solves. The accuracy requirements for the presented
first-order global convergence result are based on the feasibility and the opti-
mality of the iterates. The corresponding criteria can be verified easily during
the optimization process to adjust the approximation quality of the constraint
Jacobian.

Recently, the trust region algorithm with inexact Jacobians was imple-
mented using the two-sided rank one (TR1) update as proposed in [77]. The
required gradients and Hessian-vector products are evaluated exactly using au-
tomatic differentiation. The numerical tests for several problems out of the
CUTEr collection verify good practical performance of the proposed algorithm
[151]. Additionally, an optimization problem based on a small simulated mov-
ing bed (SMB) system is studied in this paper. The cyclic behavior of the SMB
system yields a constraint Jacobian that is dense. Hence, this optimization
problem is representative for a whole class of problems where the evaluation
and factoring of the constraint Jacobian is the dominant computational cost.
As shown in [151], the problem involving a small simulated moving bed can be
solved easily and efficiently using the proposed trust region algorithm based on
inexact Jacobian information.

Chapter 2

Advantages of Binomial

Checkpointing for

Memory-reduced Adjoint

Calculations

Andrea Walther and Andreas Griewank1

In M. Feistauer, V. Doleǰśı, P. Knobloch, and K. Najzar, eds.,
Numerical Mathematics and Advanced Applications,

Proceedings of ENUMATH 2003, Prague, pp. 834 – 843, Springer (2004)

Abstract:

Checkpointing techniques become more and necessary for the computation of adjoints.

This paper presents the more common multi-level checkpointing as well as the less

known binomial checkpointing. The checkpointing approaches are compared with re-

spect to the number of time steps the adjoint of which can be calculated, the run-time

needed for the adjoint calculation and the memory requirement. Some examples illus-

trate the shown results

2.1 Introduction

For many time-dependent applications, the corresponding simulations can be
performed using ordinary or partial differential equations. Furthermore, quite
often there are quantities that influence the result of the simulation. Through-
out, we assume that these quantities are control functions, for example heating
in and/or at the boundary of a domain. To compute an approximation of the
simulated process for a time interval [0, T], one applies an appropriate integra-
tion scheme given by

y0 = y0 , yi = Fi(yi−1, ui−1, ti−1) i = 1, . . . ,N ,

where yi ∈ Rn denotes the state and ui ∈ Rm the control at time ti for a time
grid t0, . . . , tN with t0 = 0 and tN = T . The operator Fi : Rn ×Rm ×R 7→ Rn

1Institute of Mathematics, Humboldt University Berlin, Germany

35

36 Chapter 2. Advantages of Binomial Checkpointing

defines the time step to compute the state at time ti. Note that we do not
assume a uniform grid. To optimize a specific criterion or to obtain a desired
state, the cost functional

Ĵ(u) = J(y(u), u)

measures the quality of y(u) and u = (u1, . . . , uN). Here, y(u) = (y1(u), . . . ,
yN (u)) describes the dependence of the state y on the control u. For applying
a calculus-based optimization method, one may use an adjoint integration

ȳN = 0 , ȳi−1 = F̄i(ȳi, yi−1, ui−1, ti−1) i = N, . . . , 1 , (2.1)

motivated by the adjoint differential equation that belongs to the differential
equation describing the state. Subsequently or concurrently, the desired deriva-
tive information Ĵu(u) can be reconstructed from ȳ = (ȳ0, . . . , ȳN). The specific
choice of the adjoint steps F̄i depends on the forward integration and whether
one prefers the continuous adjoint or the discrete adjoint formulation, see, e.g.,
[65, 76, 92]. For the purpose of this paper, it is only important to note that
the adjoint integration has to be performed backwards in time and that the
complete forward trajectory y = (y0, . . . , yN−1) is required. Hence, storing all
states (y0, . . . , yN−1) during the forward integration and reading them in reverse
order during the adjoint integration forms one simple possibility to overcome
this difficulty. Then the computing time for the adjoint calculation consists of
the evaluation of N time steps Fi storing the state yi−1 and the evaluation of
N adjoint steps F̄i.

The storage requirement of the basic approach to calculate adjoints is pro-
portional to the number N of time steps. If we want to calculate the adjoint of
a real-world problem with thousands of time steps this memory requirement of
the basic approach may become a serious problem. For example, for computing
3D flows with unstructured grids one may need easily 10 to 100 MBytes to store
only one state vector yi [102]. Therefore, it is reasonable to assume that due
to their size, only a very limited number of intermediate states can be kept in
memory. They may serve as checkpoints, such that the required information for
the backward integration is generated piecewise during the adjoint calculation.
Sections 2.2 and 2.3 present two different checkpointing techniques. The result-
ing run-times and memory requirements are compared in Section 2.4. Finally,
some conclusions and an outlook are given in Section 2.5.

2.2 Uniform Checkpoint Distribution

To distribute the checkpoints equidistantly over the given number of time steps
forms one obvious solution to the storage requirement problem. Subsequently
the adjoints are computed for each of the resulting groups of time steps sepa-
rately. Denoting the number of checkpoints used by c, the corresponding cal-
culation of the adjoint values can be performed using the following algorithm
where the counter i is identified with the state yi:

2.2 Uniform Checkpoint Distribution 37

Two-level Checkpointing

Initialization: Reserve space for c1 checkpoints, store the initial state
y0 in the first one and set

c2 =

{

⌈N/(c1 + 1)⌉ if c1⌈N/(c1 + 1)⌉ < N
⌊N/(c1 + 1)⌋ else

Advance: Starting from the initial state, advance to state c1 · c2 by
performing the time steps Fi, 1 ≤ i ≤ c1 · c2. While integrating forward,
store the states (j − 1) c2 in the checkpoints j for j = 2, . . . , c1.

Reverse:

do p = c1, 0, -1

Evaluate the time steps Fi, p · c2 < i < N storing the states i,
p · c2 ≤ i < N − 1,

perform the adjoint steps F̄i, N ≥ i > p · c2 to calculate the adjoints,

set N = p · c2, if p > 0 read the contents of checkpoint p.

end do

Fig. 2.1 sketches the two-level checkpointing for N = 16 time steps and c =
c1 + c2 = 6. Throughout, the time steps are plotted along the vertical axis and
the computing time required for the adjoint calculation is represented by the
horizontal axis. Each solid horizontal line including the horizontal axis itself
represents a checkpoint. The time, when a state is stored in a checkpoint, is
marked with a black circle for the first level and with a black square for the
second level. The slanted black lines represent the evaluation of time steps. The
adjoint steps are drawn as dashed slanted lines. Finally, black arrows depict
the usage of a state yi for an adjoint step Fi+1 without performing the corre-
sponding time step Fi. This adjoint calculation is possible due to the assumed
structure (2.1) of the adjoint steps. Note, that it may be required to evaluate
FN once to initialize the adjoints. This evaluation can be introduced right af-
ter the evaluation of FN−1 for p = c1. For illustration purposes, we suppose
throughout that all time steps and all adjoint steps have the same temporal
complexity normalized to 1. However, to apply the presented optimal check-
pointing techniques, only the identical temporal complexity of all time steps is
required. In this example, 24 time steps are performed. Hence, the number
of additional time step evaluations caused by the two-level checkpointing com-
pared to the basic approach equals 9. Furthermore, at most 6 states have to be
kept in memory.

The two-level checkpointing has been proposed several times in the litera-
ture, e.g., [29, 105], and is easy to implement. Naturally, one can apply two-
level checkpointing repeatedly for the groups of time steps that are separated
by equidistant checkpoints. This approach is called multi-level checkpointing
[87] and sketched by Fig. 2.2 for the three-level case. The multi-level check-
pointing is defined by the number of levels r, the number of checkpoints ci that
are uniformly distributed at level i, i = 1, . . . , r − 1, and the number of states

38 Chapter 2. Advantages of Binomial Checkpointing

t

N

1

10

10 20 30 40

Figure 2.1: Two-level checkpointing for N = 16 time steps and c = c1 + c2 = 6
checkpoints

t

N

1 10

10

20 30 40 50 60

level 1
level 2
level 3

Figure 2.2: Three-level checkpointing for N = 18 time steps and c = 5 check-
points

cr that have to be stored at the highest level r. Hence, the parameters of the
adjoint calculation shown in Fig. 2.2 are c1 = 2, c2 = 2, and c3 = 1. For a given
r-level checkpointing, one easily derives the following identities

Nr =

r
∏

i=1

(ci + 1), Mr =

r
∑

i=1

ci, Tr =

r
∑

i=1

ciNr

ci + 1
= r N −

r
∑

i=1

r
∏

j=1

j 6=i

(cj + 1) ,

where Nr denotes the number of time steps for which the adjoint can be cal-
culated using the specific r-level checkpointing. The corresponding memory
requirement equals Mr. The number of time step evaluations required for the
adjoint calculation is given by Tr, since at the first level c1Nr/(c1+1) time steps
have to be evaluated to reach the second level. At the second level, one group
of time steps is divided into c2 + 1 groups. Hence, c2(Nr/c1 + 1)/(c2 + 1) time
steps have to be evaluated in each group to reach the third level. Therefore, we
obtain (c1 + 1)c2(Nr/c1 + 1)/(c2 + 1) = c2Nr/(c2 + 1) at the second level and
so on. It follows that each time step Fi is evaluated at most r times. Hence,
if we apply two-level checkpointing, each time step is evaluated no more than
two times.

The two- as well as the multi-level checkpointing technique have the draw-
back that at each level the checkpoints are not reused. Each checkpoint stores
at each level only one state and becomes idle as soon as the data that is stored
in the checkpoint has been used for the adjoint calculation. A method that
reuses the checkpoints as soon as possible is proposed in the next section.

2.3 Binomial Checkpoint Distribution 39

2.3 Binomial Checkpoint Distribution

When one applies the checkpointing technique proposed in [76], the adjoint
values are again generated piece by piece but only one state is employed for the
adjoint calculation at any time. Therefore, the checkpointing procedure has to
be adapted as follows:

Binomial Checkpointing

Initialization: Reserve space for c checkpoints and store the initial state
y0 in the first one.

do p = N , 1, -1

Advance: Starting from the last checkpoint assigned, advance to
state p− 1.
If checkpoints are free, set as many of them as possible to states i
along the way.

Reverse: Perform the adjoint step F̄p to calculate the adjoint.
If state p− 1 is stored in a checkpoint, free the checkpoint up.

end do

The memory requirement of this checkpointing procedure equals Mb = c. Nat-
urally, the question arises where one should place the checkpoints in the action
“Advance” of the algorithm to minimize the number of time step evaluations.
The application of the routine revolve ensures that the initiated checkpointing
process is provably optimal with respect to the run-time increase for a given
number of checkpoints [76]. More specifically, for the structure (2.1) of the
adjoint steps considered here, the following complexity result holds:

Theorem 2.3.1. Let N be the total number of time steps for which the ad-
joint has to be calculated. Suppose, up to c checkpoints are available at any
time. Then the minimal number of time step evaluations needed for the adjoint
calculation equals

Tb = N r −
(

c+ r

r − 1

)

,

where r the unique integer satisfying

(

c+ r − 1

r − 1

)

< N ≤
(

c+ r

r

)

. (2.2)

The proof of Theorem 2.3.1 (see [76]) constructs recursively checkpointing
schedules that attain the minimal number Tb. For the optimal checkpointing
procedures the positions of the checkpoints are given by binomial coefficients.
This fact explains the name binomial checkpointing. Furthermore, the proof of
Theorem 2.3.1 shows that each time step Fi is evaluated at most r times. Hence,
r has the same meaning as in the previous section. It was proved earlier that

40 Chapter 2. Advantages of Binomial Checkpointing

t

N

1

10

10 20 30 40 50 60

Figure 2.3: Binomial Checkpointing for N = 16 time steps and c = 3 check-
points

a logarithmic growth of memory and run-time can be achieved using binomial
checkpointing by providing an appropriate number of checkpoints [69].

The routine revolve implements the optimal binomial checkpointing and can
be incorporated easily in an existing adjoint calculation [63, 96]. Moreover, one
can build a heuristic based on revolve such that the adjoint calculation using
binomial checkpointing becomes applicable also if the number of time steps is
not known a-priori, e.g. due to adaptive time stepping, and/or if the temporal
complexity of the time steps is not constant, e.g. due to implicit methods [95].

One optimal checkpointing schedule computed with revolve for N = 16 time
steps and c = 3 checkpoints is shown in Fig. 2.3. Once more, it might be
necessary to evaluate FN once to initialize the adjoints. Since the situation is
the same for the multi-level checkpointing and does not influence the results
in the sequel, we ignore throughout the evaluation of FN . For the example
shown above, the number of time step evaluations equals Tr = 33. Compared
to the two-level checkpointing, the computing time for the adjoint calculation
increases by less than 50 %. Furthermore, only 3 states have to be kept in
memory. Hence, the storage requirement is reduced by 50 %. The relation
between the two checkpointing approaches will be discussed in more detail in
the next section.

2.4 Comparison of Both Checkpoint Distributions

The integer r has the same meaning for both checkpointing approaches, namely
the maximal number of times any particular time step Fi is evaluated during
the adjoint calculation. Hence for comparing both approaches, assume at the
beginning that r has the same value and that the same amount of memory is
used, i.e. Mr = Mb = c.

Now, we examine the maximal number of time steps N∗ for which an adjoint
calculation can be performed using the two approaches. Assuming that r is a
divisor of c and Mr = c, one obtains the identity

N∗
r =

(c

r
+ 1
)r

=

(

c+ r

r

)r

with ci =
c

r
, i = 1, . . . , r ,

2.4 Comparison of Both Checkpoint Distributions 41

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35 40 45 50

N
*

#checkpoints

Maximal N for r=2

binomial checkpointing
uniform checkpointing

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30 35 40 45 50

N
*

#checkpoints

Maximal N for r=3

binomial checkpointing
uniform checkpointing

0
10000
20000
30000
40000
50000
60000
70000
80000

0 5 10 15 20 25 30 35 40 45 50

N
*

#checkpoints

Maximal N for r=4

binomial checkpointing
uniform checkpointing

0
10000
20000
30000
40000
50000
60000
70000
80000

0 5 10 15 20 25 30 35 40 45 50
N

*
#checkpoints

Maximal N for r=5

binomial checkpointing
uniform checkpointing

Figure 2.4: N∗
r and N∗

b for r = 2, 3, 4, 5

for the uniform checkpoint distribution because of the structure of Nr. Theo-
rem 2.3.1 yields

N∗
b =

(

c+ r

r

)

=

r−1
∏

i=0

(

c

r − i + 1

)

for the binomial checkpoint distribution. Obviously, one has

c

r
+ 1 <

c

r − i + 1 for 0 < i ≤ r − 1 .

These inequalities yield N∗
r < N∗

b if r ≥ 2. Hence for all r ≥ 2 and and a given
c, binomial checkpointing allows the adjoint calculation for a larger number of
time steps compared to uniform checkpointing. In more detail, using Stirling’s
formula we obtain

N∗
b

N∗
r

≈
(

c+ r

r

)

(c

r
+ 1
)−r

=
1√
2πr

(c

r
+ 1
)c
≈ 1√

2πr
exp(r) .

Hence, the ratio of N∗
b and N∗

r grows exponentially in r without any dependence
on the number of available checkpoints. Fig. 2.4 shows N∗

r and N∗
b for the most

important values 2 ≤ r ≤ 5. Since r denotes the maximal number of times each
time step is evaluated, we have the following upper bounds for the number of
time steps evaluated during the adjoint calculation using r-level checkpointing
and binomial checkpointing, respectively:

Tr = c
(c

r
+ 1
)r−1

< rN∗
r and Tb = rN∗

b −
(

c+ r

r − 1

)

< rN∗
b .

42 Chapter 2. Advantages of Binomial Checkpointing

For example, it is possible to compute the adjoint for N = 23000 time steps
with only 50 checkpoints, less than 3N time step evaluations, and N adjoint
steps using binary checkpointing instead of three-level checkpointing, where
N∗

3 ≤ 5515. If we allow 4N time step evaluations then 35 checkpoints suffice to
compute the adjoint for 80000 time steps using binomial checkpointing, where
N∗

4 ≤ 9040. These numbers are only two possible combinations taken from
Fig. 2.4 to illustrate the really drastic decrease in memory requirement that
can be achieved if binomial checkpointing is applied.

However, usually the situation is the other way round, i.e. one knows N
and/or c and wants to compute the adjoint as cheap as possible in terms of
computing time. Here, the first observation is that r-level checkpointing intro-
duces an upper bound on the number of time steps the adjoint of which can
be computed, because the inequality N ≤ (c/r + 1)r must hold. Furthermore,
binomial checkpointing allows for numerous cases also a decrease in run-time
compared to the uniform checkpointing. For a given r-level checkpointing and
Mr = c, one has to compare Tr and Tb. Let rb be the unique integer satisfying
(2.2). Since at least one checkpoint has to be stored at each level, one obtains
the bound r ≤ c. I.e., one must have c >= log2(N) to apply uniform check-
pointing. Therefore, the following combinations of r and rb are possible for the
most important, moderate values of r:

r = 3 ⇒ rb ∈ {2, 3}, r = 4 ⇒ rb ∈ {3, 4}, r = 5 ⇒ rb ∈ {3, 4, 5} .

For 3 ≤ r ≤ 5, one easily checks that Tr > Tb holds if rb < r. For r = rb, one
can prove the following, more general result:

Theorem 2.4.1. Suppose for a given N and a r-level checkpointing with Mr = c
that the corresponding rb satisfying (2.2) coincide with r. Then, one has

T2 = 2N − c− 2 = Tb if r = rb = 2
Tr > Tb if r = rb > 2.

Proof: For rb = r = 2 the identity T2 = Tb is clear. For r = rb > 2, the
inequality

r
∑

i=1

r
∏

j=1

j 6=i

(cj + 1) =
(r − 1)!

(r − 1)!







r−1
∏

j=1

(cj + 1) + (cr + 1)

r−1
∑

i=1

r−1
∏

j=1

j 6=i

(cj + 1)







<
1

(r − 1)!

r
∏

i=2





r
∑

j=1

cj + i



 =

(

c+ r

r − 1

)

holds. Using the definitions of Tr and Tb, this relation yields immediately
Tr > Tb.

Hence, except for the case r = rb = 2, where Tr and Tb coincide, the run-time
caused by binomial checkpointing is less than the one caused by multi-level
checkpointing if r = rb.

2.5 Conclusions 43

2.5 Conclusions

This article discusses several checkpointing techniques, i.e., multi-level check-
pointing and binomial checkpointing. A detailed analysis of the number of time
steps the adjoint of which can be calculated, the run-time needed for the adjoint
calculation and the memory requirement is given.

One can conclude that binomial checkpointing allows adjoint calculations
with a surprisingly small fraction of the memory needed by the basic approach.
This storage reduction causes only a very moderate increase in run-time. On
the other hand, we see that r-level checkpointing induces for a given number of
checkpoints an upper bound on the number of time steps the adjoint of which
can be computed. This upper bound can only be increased by introducing a next
level of checkpointing. In addition it is shown that the run-time required for
the adjoint calculation with r-level checkpointing exceeds the run-time needed
for binomial checkpointing for the most important values of r > 2, whereas for
r = 2 both methods yield the same run-time. However, for r = 2 and a given
amount of memory, binomial checkpointing allows the adjoint computation for
a larger number of time steps. Hence, even for r = 2 binomial checkpointing is
preferable.

Moreover, it is quite often the case that the number N of time steps is not
known a-priori, for example due to an adaptive time stepping method. Then,
it becomes difficult to distribute the checkpoints for the two- or multi-level
checkpointing such that the minimal run-time is attained. For binomial check-
pointing the extension a-revolve deals with the unknown number of time steps
by using a heuristic for the checkpoint placements. In addition, a-revolve can
also handle time steps with varying temporal complexity. For time steps the
cost of which do not change drastically, the heuristics implemented in a-revolve
work well such that the corresponding adjoint calculation is only a few percent-
ages slower than the one based on revolve [95]. Hence, binomial checkpointing
provides memory-reduced adjoint calculation also in more general situations.

44 Chapter 2. Advantages of Binomial Checkpointing

Chapter 3

Computing Sparse Hessians

with Automatic

Differentiation

Andrea Walther
To appear in ACM Transaction on Mathematical Software

Abstract:

A new approach for computing a sparsity pattern for a Hessian is presented: nonlin-

earity information is propagated through the function evaluation yielding the nonzero

structure. A complexity analysis of the proposed algorithm is given. Once the sparsity

pattern is available, coloring algorithms can be applied to compute a seed matrix. To

evaluate the product of the Hessian and the seed matrix, a vector version for evaluating

second order adjoints is analyzed. New drivers of ADOL-C are provided implementing

the presented algorithms. Run-time analyses are given for some problems of the CUTE

collection.

3.1 Introduction

Several solvers for nonlinearly constrained optimization problems allow or even
require the provision of exact second order derivatives, e.g., [143, 146, 155].
Furthermore, exact second order derivatives are needed to compute parametric
sensitivities, e.g., for the real-time control of dynamical systems, see [20]. Quite
often, the corresponding Hessians are sparse, for example due to the discretiza-
tion of a differential equation describing the considered problem. To maintain
the efficiency of the algorithms, it is important to take this sparsity information
into account. Therefore, some of the tools, e.g., [143, 146], assume that the
user provides the Hessian in a sparse format.

As soon as a sparsity pattern for the Hessian is known, well-established
coloring algorithms, see, e.g., [33, 56], in combination with Automatic Dif-
ferentiation (AD) [70] allow the efficient computation of the required second
order information. The overall process is illustrated in Figure 3.1. Ideally, the
steps 1 and 2 of the process, i.e., the generation of the sparsity pattern P and

45

46 Chapter 3. Computing Sparse Hessians with Automatic Differentiation

the calculation of the so-called seed matrix S using graph coloring have to be
performed only once. Subsequently, the entries of the sparse Hessian can be
computed in a compressed form using the second order adjoint mode of AD.
The knowledge of the sparsity pattern P is essential for the approach sketched
in Figure 3.1.

function

f

sparsity
pattern

P

seed
matrix

S

calculation
of entries

B = H S
1 2 3

Figure 3.1: Computing sparse Hessians

So far, only AMPL [54] can compute structural information about the Hes-
sian automatically. For that purpose, the partial separability of the differ-
entiated function is exploited. In this paper, we propose and analyze a new
algorithm for computing a sparsity pattern P . As an alternative to the present
work, the calculation of sparse Hessians may also rely on elimination rules for
the computational graph of the Hessian. This approach was first considered
in [43] and is the subject of current research. Similar techniques are well-
established for the computation of the complete Jacobian [110, 111].

We assume throughout that the function f : R
n → R, x 7→ y, to be dif-

ferentiated is at least twice continuously differentiable and given as a computer
program in an imperative programming language. Then, the Hessian of f at a
given point x defined by

H(x) =













∂2f

∂x1∂x1
(x) · · · ∂2f

∂x1∂xn
(x)

...
...

∂2f

∂xn∂x1
(x) · · · ∂2f

∂xn∂xn
(x)













is a symmetric matrix. Due to the second order derivatives, an entry

Hij(x) =
∂2f

∂xi∂xj
(x)

in the Hessian can only be nonzero if the computation of y = f(x) involves a
term that depends nonlinearly on both xi and xj. In this paper, we propose
a new algorithm that propagates appropriate nonlinearity information through
the function computation. Subsequently, a sparsity pattern for the Hessian can
be derived directly from the propagated index sets. For any AD-tool based on
operator overloading, one can implement the proposed approach easily just as a
new variant of the derivative calculation. In this paper, we present a new driver
function of the AD-tool ADOL-C [154] to compute the required sparsity pattern.
Then, we generate a seed matrix S to compute the entries of the sparse Hessian
by applying a graph coloring algorithm first proposed in [33]. Subsequently, we
present a vector mode for computing second order adjoint information. This
vector version avoids the recomputation of intermediate results and reduces the

3.2 Computing a Sparsity Pattern 47

cost to evaluate the Hessian-matrix product H(x)S significantly. The proposed
approach is implemented as a recent driver of ADOL-C that allows for the first
time the computation of Hessian-matrix products instead of only Hessian-vector
products.

This paper has the following structure. In Section 3.2, we introduce the
function representation that is used to derive and analyze the proposed com-
putation of a sparsity pattern. Subsequently, the propagation of nonlinearity is
presented and a complexity analysis for the new algorithm is given. Section 3.3
sketches very briefly the graph coloring approach for generating the seed ma-
trix S. Furthermore, it describes a new driver of ADOL-C implementing this
algorithm. In Section 3.4, we present and analyze a vector version of the sec-
ond order adjoint mode of AD. The corresponding implementation in ADOL-C
is sketched. This includes also a new algorithm to compute the Hessian in a
sparse format. Section 3.5 contains run-time analyzes to verify the complexity
results. Finally, we draw some conclusions and give an outlook in Section 3.6.

3.2 Computing a Sparsity Pattern

3.2.1 Function Representation

Throughout, we assume that the calculation of y = f(x) can be split into a
presumably very long sequence of unary or binary operations. A formalization
of the function evaluation similar to the one introduced in [70] is shown in
Table 3.1. The first loop copies the current values of the independent variables
x1, . . . , xn into the internal variables v1−n, . . . , v0. The function evaluation itself
consisting of l unary or binary operations is performed in the second loop.
Finally the value of the dependent variable y is extracted from the corresponding
internal variable vl. As can be seen, each intermediate value vi with 1 ≤ i ≤ l
is computed by applying an elemental function ϕi. The function ϕi may have
one or two arguments identified by the precedence relation j ≺ i, where we have
ϕi(vj)j≺i = ϕi(vj) or ϕi(vj)j≺i = ϕi(vj , v̂) with j < i and j, ̂ < i, respectively.
Hence, the precedence relation j ≺ i denotes that vi depends directly on vj .

Algorithm I: Function evaluation

for i = 1, . . . , n
vi−n = xi

for i = 1, . . . , l
vi = ϕi(vj)j≺i

y = vl

Table 3.1: Formalization of evaluation

Since we assume that f is at least twice continuously differentiable, the set of
elemental functions may comprise simple evaluations, e.g., additions, multipli-
cations, and calls to intrinsic functions such as sin(x) or exp(x) provided by a
high level computer language like Fortran or C such that they are two times
differentiable. The approach presented below can be extended to piecewise-

48 Chapter 3. Computing Sparse Hessians with Automatic Differentiation

differentiable functions like max(vj , v̂) or
√
vj as long as these elemental func-

tions are evaluated on the differentiable parts.

3.2.2 Propagation of Nonlinear Interaction

Based on the decomposition into elemental functions, one can now define two
different index sets to propagate nonlinearity information through the function
evaluation. First, we will need index domains

Xk ≡ {j ≤ n : j − n ≺∗ k} for 1− n ≤ k ≤ l

for all intermediate variables vk as already defined in [70, Section 6.1]. Here, ≺∗

denotes the transitive closure of the precedence relation ≺. One can compute
the index domains using the forward recurrence

Xk =
⋃

j≺k

Xj from Xj−n = {j} for 1 ≤ j ≤ n.

This approach yields the inclusion
{

j ≤ n :
∂vk

∂xj
6≡ 0

}

⊆ Xk

and identity will hold as long as no degeneracy occurs. One example for a
proper subset relation is given by the statement sequence

v1 = sin(v0), v2 = cos(v0), v3 = v1 ∗ v1, v4 = v2 ∗ v2, v5 = v3 + v4

as mentioned already in [70]. Obviously, one has ∂v5/∂v0 = ∂v5/∂x1 = 0
but X5 = X4 = X3 = X2 = X1 = {1}. For the complexity analysis given in
Sec. 3.2.3, we define n̄k ≡ |Xk| for all 1− n ≤ k ≤ l.

The index domains Xk belonging to the dependent variables can be used
to exploit sparsity for the computation of Jacobian matrices as explained in
[70, Chapter 7]. However, we want to go one step further in computing a spar-
sity pattern for the Hessian. Therefore, we need additional index sets Ni,
1 ≤ i ≤ n, called nonlinear interaction domains (NID) for all independent
variables, such that

{

j ≤ n :
∂2y

∂xi∂xj
6≡ 0

}

⊆ Ni . (3.1)

Once more, degeneracies may cause a proper subset relation in (3.1). In the
case of second order derivatives considered here, degeneracy may, for example,
arise through statement sequences such as y = x(sin2(x) + cos2(x)) given by

v1 = sin(v0), v2 = cos(v0), v3 = v1 ∗ v1, v4 = v3 ∗ v0, v5 = v2 ∗ v2,
v6 = v5 ∗ v0, v7 = v6 + v4.

Then, one has ∂2v7/∂v
2
0 = ∂2v7/∂x

2
1 = 0 but N1 = {1}.

After setting Ni = ∅ at the beginning of the function evaluation, the NIDs
have to be updated for each nonlinear operation that occurs during the function

3.2 Computing a Sparsity Pattern 49

evaluation such that Ni contains the indices 1 ≤ j ≤ n of all independents that
are combined in a nonlinear fashion with the independent xi. This results in the
algorithm shown by Table 3.2. As can be seen from Algorithm II, dead ends,
i.e., intermediate variables vk that were computed but not needed subsequently
to calculate vl, can be contained in the function evaluation. These dead ends
may cause that identity does not hold in (3.1).

Algorithm II: Computation of nonlinear interaction domains

for i = 1, . . . , n
Xi−n ← {i}, Ni ← ∅

for i = 1, . . . , l
Xi ←

⋃

j≺i Xj (2)

if ϕi nonlinear then

if vi = ϕi(vj) then

∀k ∈ Xi : Nk ← Nk ∪ Xi (3)

if vi = ϕi(vj , v̂) then

if vi linear in vj then

∀k ∈ Xj : Nk ← Nk ∪ X̂ (4)

else

∀k ∈ Xj : Nk ← Nk ∪ Xi (5)

if vi linear in v̂ then

∀k ∈ X̂ : Nk ← Nk ∪ Xj (6)

else

∀k ∈ X̂ : Nk ← Nk ∪ Xi (7)

Table 3.2: Propagation of nonlinear interaction

Such dead ends have no consequences for the index domains Xk, since they are
defined for each intermediate value vk. Hence, if a dead end is contained in
the code, the corresponding index domains would be computed but they would
have no influence on the index domain of the dependent variable y. This does
not hold for the nonlinear interaction domains Ni, since the Ni are defined only
for the independent variables xi. Hence, if a dead end occurs the Ni would
be extended despite the fact that the computed values have no influence on
the dependent variable y. This would result in an overestimate of the sparsity
pattern.

To illustrate the algorithm, we will consider the function

f : R
6 → R, f(x) = sin(x1 x2) + cos(x3 + x4) + 3(x5 + x6).

Table 3.3 shows the function evaluation and the development of the index sets
Xi and Ni applying Algorithm II. As can be seen, the nonzero entries of the
row i or column i of the Hessian H(x) are given by the indices contained in the
NIDs Ni for all 1 ≤ i ≤ 6.

50 Chapter 3. Computing Sparse Hessians with Automatic Differentiation

for i = 1, . . . , 6
Xi−n= {i}, Ni = ∅

v1 = v−5 ∗ v−4, X1 = {1, 2}, N1 = {2}, N2 = {1}
v2 = sin(v1), X2 = {1, 2}, N1 = {1, 2}, N2 = {1, 2}
v3 = v−3 + v−2, X3 = {3, 4}
v4 = cos(v3), X4 = {3, 4}, N3 = {3, 4}, N4 = {3, 4}
v5 = v−1 + v0, X5 = {5, 6}
v6 = 3 ∗ v5, X6 = {5, 6}
v7 = v2 + v4, X7 = {1, 2, 3, 4}
v8 = v7 + v6, X8 = {1, 2, 3, 4, 5, 6}

Table 3.3: Function evaluation and execution of Algorithm II

3.2.3 Complexity Analysis

First, one has to note that an implementation of Algorithm II based on operator
overloading does not require the coding of the if-statements. Here, the corre-
sponding set operations can be coded together with or instead of the elemental
function evaluation. Therefore, we ignore the if-statements in the following
complexity analysis. To ensure that the proposed algorithm provides an effi-
cient method to compute a sparsity pattern for the Hessian H(x), we have to
examine the set operations (2) - (7) of Algorithm II. These merging operations
are performed in the following way, where flag denotes a logical array of length
n that is set to true:

Algorithm III: Merging of two sets

1. For each i in the first set, put i in the new set and set flag(i) to false.
2. For each i in the second set, put i in the new set if flag(i) is true.
3. For each i in the first set, set flag(i) to true.

For the complexity result proved in the following theorem, we define the execu-
tion of one of the loop bodies as one operation MERGE. Hence, the operation
count of the merging procedure is twice the length of the first list plus the
length of the second list. It is possible to prove the following result:

Theorem 3.2.1 (Complexity result for Algorithm II). Let OPS(NID) denote
the number of operations MERGE needed by Algorithm II to generate all Ni,
1 ≤ i ≤ n. Then, the inequality

OPS
(

NID
)

≤ 6(1 + n̂)
l
∑

i=1

n̄i (3.10)

is valid, where l is the number of elemental functions evaluated to compute the
function value of f , n̄i = |Xi|, and n̂ = max1≤i≤n |Ni|.
Proof: The set operation (2) is either Xi ← Xj if ϕi is unary or Xi ← Xj ∪ X̂

if ϕi is binary. We obtain for the operation count of the set operation (2) that

OPS
(

Xi ←
⋃

j≺i

Xj

)

≤ 3n̄i . (3.11)

3.2 Computing a Sparsity Pattern 51

Furthermore, the number of elements in each NID Ni, 1 ≤ i ≤ n, can be
bounded by

|Ni| ≤ n̂ (3.12)

due to the definition of n̂. Furthermore, we can conclude for the set operations
(3), (5), and (7) that

|Xi| = n̄i ≤ n̂ (3.13)

if vi is the result of a nonlinear operation because of (3.12). Due to the same
reason, we obtain for the set operations (4) and (6)

|X̂| = n̄̂ ≤ n̂ and |Xj | = n̄j ≤ n̂ , (3.14)

respectively. Using (3.13) and (3.14), it follows for the set operations (3) - (7)
that

OPS
(

∀k ∈ Xi : Nk ← Nk ∪ Xi

)

≤ n̄i(2n̂ + n̄i) ≤ n̄i(2n̂+ n̂) = 3n̂n̄i

OPS
(

∀k ∈ Xj : Nk ← Nk ∪ X̂

)

≤ n̄j(2n̂+ n̄̂) ≤ n̄i(2n̂+ n̂) = 3n̂n̄i

OPS
(

∀k ∈ Xj : Nk ← Nk ∪ Xi

)

≤ n̄j(2n̂ + n̄i) ≤ n̄i(2n̂+ n̂) = 3n̂n̄i

OPS
(

∀k ∈ X̂ : Nk ← Nk ∪ Xj

)

≤ n̄̂(2n̂+ n̄j) ≤ n̄i(2n̂+ n̂) = 3n̂n̄i

OPS
(

∀k ∈ X̂ : Nk ← Nk ∪ Xi

)

≤ n̄̂(2n̂ + n̄i) ≤ n̄i(2n̂+ n̂) = 3n̂n̄i .

The set operation (2) has to be executed exactly once for the calculation of
the intermediate vi, 1 ≤ i ≤ l. Furthermore, at most two of the set operations
(3) - (7) have to be executed. This yields the overall bound (3.10) due to the
assumption of unary and binary operations.

3.2.4 Computing Sparsity Patterns

The AD-tool ADOL-C was augmented with the new driver

int hess pat(short tag, int n, double* x, unsigned int** P, int option);

to compute a sparsity pattern for the Hessian for a given function according to
Algorithm II. The first argument, i.e., tag, identifies the internal representation
for which one wants to compute derivative information (see [154]). The next
argument is used for a consistency check comparing this value to the one that
is stored in the internal representation. The third argument, i.e., x, defines
the point for which a sparsity pattern for the Hessian is computed. After
the function call P contains a sparsity pattern for the Hessian, where P[j][0]
contains the number of nonzero elements in the jth row. The components P[j][i],
0 <i≤ P[j][0], store the indices of these entries. The usage of the routine hess pat
is described in more detail in [154] including information about allocation and
deallocation schemes.

Obviously, the sparsity pattern P may vary as a function of the independent
variable vector x for one of the following three reasons:

52 Chapter 3. Computing Sparse Hessians with Automatic Differentiation

(A) Numerical values may be incidentally zero,

(B) fmin, fmax or other conditional assignments may flip to a different branch
and

(C) the control flow may be completely changed.

According to the algorithm presented in this section, ADOL-C propagates
generic dependencies and disregards incidental zeros that are due to cancel-
lations or special values of the independent variables (case (A)). The treatment
of case (B) is determined by the last argument option of the new driver. The
default value is option = 0 resulting in a more conservative computation of a
sparsity pattern for the Hessian. It accounts for all dependencies that might
occur for any value of the independent variables. For example, the intermediate
vi = max(vj , v̂) is always assumed to depend on all independent variables that
vj or v̂ depend on and the index domain Xi is extended correspondingly. In
contrast, the tight version option = 1 gives this result only in the unlikely event
of an exact tie vj = v̂. Otherwise it sets the index domain Xi either to Xj or
to X̂, depending on whether vi = vj or vi = v̂ locally. Obviously, a sparsity
pattern obtained with the tight option may contain more zeros than the one
obtained with the safe option. On the other hand, it will only be valid at points
belonging to an area where the function f is locally smooth and that contains
the point at which the internal representation was generated. Case (C) results
in a negative return value of the new driver indicating that the internal repre-
sentation of the given function is not valid for the current argument x due to a
change in the control flow. Then, before computing a sparsity pattern one has
to generate a new internal representation by retaping the function evaluation
at x. Details can be found in the ADOL-C documentation [154].

3.3 Computing the Seed Matrix

For computing sparse Jacobians, the application of compression techniques is
now well-established. A comprehensive introduction to this approach can be
found for example in [70]. Naturally, the same idea can also be exploited for
computing sparse Hessians. Hence, the entries of the sparse Hessian are com-
puted by evaluating the product

B = H(x)S ∈ R
n×q

for a so-called seed matrix S ∈ R
n×q. Here, as simplest option the columns

of S are chosen as vectors the entries of which are either 0 or 1. After the
computation of the matrix B, one has to reconstruct the entries of H(x) from
the available derivative information, see, e.g., [70]. Depending on the choice
of the seed matrix, this may require solving a linear system whose matrix is
either a permutation of the identity or a triangular matrix. In the first case,
the entries of H(x) can be directly extracted from B. The resulting evaluation
scheme is therefore called direct. In the second case one has to solve simple
equations. Hence, the resulting evaluation scheme is called substitution-based.

3.4 Evaluating Hessian-Matrix Products 53

A first method to generate a seed matrix S was proposed by Powell and
Toint [122]. Later, Coleman and Moré [33] observed that the task of finding
a suitable S is equivalent to a graph coloring problem, where the symmetry
of the derivative matrix can be exploited to reduce the required number q of
columns in the seed matrix. The method proposed in [33] can be seen as a
relaxed distance-2 and a restricted distance-1 coloring. Therefore, it is referred
to as distance-3

2 coloring in [56]. This coloring method, recently studied also
by Albertson et al. [3], is now used by ADOL-C to generate the seed matrix S,
yielding a direct evaluation scheme. As alternative one may consider an acyclic
coloring as proposed in [32] that gives a substitution-based evaluation scheme.
This approach will be integrated into ADOL-C in the near future.

The new driver

int generate seed hess(int n, unsigned int** P, double*** S, int* q);

of ADOL-C has as input variables the number of independent variables n and a
sparsity pattern P computed for example by the algorithm described in the last
section or provided by the user. First, it performs a coloring of the adjacency
graph defined by the sparsity pattern P. The number of colors needed for the
coloring determines the number of columns q in the seed matrix. Subsequently,
the function allocates the memory needed by S and initializes S according to the
graph coloring. Additional information about the usage of generate seed hess
including details about the specific memory management can be found in [154].

3.4 Evaluating Hessian-Matrix Products

For a scalar valued function y = f(x) exact Hessian-vector products can be
computed by differentiating formally the results of the reverse mode of AD once
more with respect to x and ȳ using the scalar forward mode of AD. Using the
notation introduced in [70], this evaluation of second order adjoints is given by

y = f(x) - x̄ = ȳf ′(x) - ˙̄x = ȳf ′′(x)ẋ+ ˙̄yf ′(x) ∈ R
n, (3.15)

reverse forward

for x̄, ẋ, ˙̄x ∈ R
n and ȳ, ˙̄y ∈ R. Hence, the desired Hessian-vector product f ′′(x)ẋ

can be computed by setting ȳ = 1 and ˙̄y = 0. As shown in [70, Section 4.5], one
obtains the following complexity estimate for the evaluation of a Hessian-vector
product

TIME(f ′′(x)ẋ) ≤ ωsoadTIME(f(x)) with ωsoad ∈ [7, 10].

Evaluating the second order adjoint procedure denoted by the subscript soad
for the p columns which form the seed matrix, we obtain as complexity estimate
for evaluating H(x)S

TIME(H(x)S) ≤ ωsoad pTIME(f(x)) with ωsoad ∈ [7, 10]. (3.16)

Again setting ˙̄y = 0, i.e., ignoring the second term for computing ˙̄x in (3.15),
and applying the vector forward mode for a given matrix Ẋ ∈ R

n×p, one can

54 Chapter 3. Computing Sparse Hessians with Automatic Differentiation

similarly derive a vector version of the second order adjoint computation given
by

y = f(x) - x̄ = ȳf ′(x) - ˙̄X = ȳf ′′(x)Ẋ ∈ R
n×p

reverse forward

for x̄ ∈ R
n, Ẋ ∈ R

n×p, and ȳ ∈ R. Omitting the storage of intermediate values
for simplicity, the corresponding evaluation procedure is given in Table 3.4.

Algorithm IV: Evaluation of Hessian-matrix product

for i = 1, . . . , n

vi−n = xi, V̇i−n = Ẋi, v̄i−n = 0, ˙̄Vi−n = 0
for i = 1, . . . , l

vi = ϕi(vj)j≺i, V̇i =
∑

j≺i

∂

∂vj
ϕi(vj)j≺i V̇j, v̄i = 0, ˙̄Vi = 0

y = vl, Ẏ = V̇l, v̄l = ȳ

for i = l, . . . , 1

v̄j + = v̄i
∂

∂vj
ϕi(vj)j≺i for j ≺ i

˙̄Vj + = v̄i

∑

k≺i

∂2

∂vj∂vk
ϕi(vj)j≺i V̇k + ˙̄Vi

∂

∂vj
ϕi(vj)j≺i for j ≺ i

for i = 1, . . . , n

x̄i = v̄i−n, ˙̄Xi = ˙̄Vi−n

Table 3.4: Second order adjoint vector evaluation

To analyze the computation effort needed to evaluate H(x)S, we will use the
complexity analysis introduced in [70, Section 2.5]. Denoting the vector version
of the second order adjoint computation with soadp, we obtain for assigning a
constant, an addition or subtraction, a multiplication, and a general nonlinear
function ψ as elemental function ϕ the operation counts given in Table 3.5,
which can be directly derived from the complexity counts given in [70, Tables
3.6, 4.11]. Here, MOVES denotes the number of memory accesses. From the
stated operation counts, we can derive the run-time estimate

TIME(˙̄X) ≤ ωsoadpTIME(f(x)) (3.17)

according to [70, Section 2.5] with

ωsoadp = max

{

2 + 2p,
(12 + 6p)µ+ 3 + 3p

3µ+ 1
,

(11 + 11p)µ+ 2 + 5p + (3 + 6p)π

3µ+ π
, (3.18)

(7 + 7p)µ+ 1 + 2p + (1 + 4p)π + 4ν

2µ+ ν

}

∈ [4 + 3p, 4 + 6p].

The constants µ, π, and ν measure the complexity of a memory access, a

3.4 Evaluating Hessian-Matrix Products 55

Elemental function ϕ

soadp const add/sub mult ψ

MOV ES 2 + 2p 12 + 6p 11 + 11p 7 + 7p

ADDS 0 3 + 3p 2 + 5p 1 + 2p

MULTS 0 0 3 + 6p 1 + 4p

NLOPS 0 0 0 4

Table 3.5: Second order adjoint vector complexity

multiplication, and a nonlinear operation, respectively, where the complexity
of an addition is normalized to 1. The reduction in the run-time ratio from an
upper bound in [7p, 10p] to an upper bound in [4 + 3p, 4 + 6p] is caused by the
fact that values that are independent of the directions contained in Ẋ are reused
instead of recomputed. Hence, similar to the run-time reductions that can be
achieved by using the vector forward mode of AD instead of the scalar forward
mode for computing first derivatives, a decrease of the computing time needed
for directional second derivatives can be achieved by using a vector version.
The new ADOL-C driver

int hess mat(short tag, int n, int p, double* x, double** S, double** B);

implements the vector version of the second order adjoint computation. The
inputs are the identifier for the internal representation tag, the number of inde-
pendent variables n for a consistency check, the current value of the independent
variables x, and the seed matrix S. The result of the product H(x)S is stored as
output of the function call in the two-dimensional array B of size n × p. More
information about hess mat including details about the memory allocation can
be found in [154]. Using the three new ADOL-C drivers, it is possible to com-
pute sparse Hessians in an efficient way as we will see in the next section. Since
the Hessian entries are often required in a prescribed sparse format, ADOL-C
also provides a new driver that computes the sparse Hessian and stores the
entries directly in coordinate format:

int sparse hess(short tag, int n, int repeat, double* x, int* nnz,
unsigned int** r ind, unsigned int** c ind, double** H val);

Once more, the input variables are the identifier for the internal representation
tag, the number of independent variables n for a consistency check, the current
value of the independent variables x. Furthermore, the flag repeat=0 indicates
that a new seed matrix S has to be computed, whereas repeat=1 results in the
re-usage of the previously computed seed matrix. The input/output variable
nnz stores the number of the nonzero entries. Therefore, nnz also denotes the
length of the arrays r ind storing the row indices, c ind storing the column
indices, and H val storing the values of the nonzero entries. The manual [154]
contains more information about the routine sparse hess including details about
the corresponding memory management.

56 Chapter 3. Computing Sparse Hessians with Automatic Differentiation

3.5 Numerical Examples

In this section, we will employ the AD-tool ADOL-C to present some run-time
results for the proposed algorithms. For that purpose, we use optimization
problems from the CUTE collection [15].

The Computation of Sparsity Patterns

In this subsection, we report on the run-time behavior of the driver hess pat
described in Subsection 3.2.4 as an implementation of Algorithm II. As test
cases, we chose the Lagrange function of the CUTE problems broydnbd (n̂ = 1),
chainwoo (n̂ = 4), lminsurf (n̂ = 9), and morebv (n̂ = 5) with varying dimension
n. For all four examples there exists at least one index domain that contains
the indices of all independent variables, i.e., there is at least one i ∈ {1, . . . , l}
with n̄i = n. This is possible because the bounds (3.13) and (3.14) hold only
for intermediate variables that are the result and the argument of a nonlinear
operation, respectively. Furthermore, almost all rows of the Hessians have n̂
nonzero entries independent of the value of n. Throughout this subsection, the
figures report the run-time ratio

TIME
(

hess pat(...)
)

(1 + n̂)TIME(f)
. (3.19)

For n varying in the interval [1000, 10000] the run-time ratios obtained for the
considered examples are illustrated in Figure 3.2. As can be seen, a constant

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

dimension

ru
n−

tim
e

ra
tio

morebv
lminsurf
chainwoo
broydnbd

Figure 3.2: Run-time results for Algorithm II

run-time ratio is achieved for the broydnbd problem. For the problem chainwoo a
small increase of the run-time ratio can be observed. For the problems lminsurf

3.5 Numerical Examples 57

and morebv, we obtain a stronger increase of the run-time ratio (3.19). To
analyze the linear behavior in more detail, lines are add to the curves illustrating
the runtime results. The slopes for the added lines are well below 0.003.

To analyze the run-time behavior of Algorithm II in more detail, we per-
formed another test by varying the problem size and the number of nonzeros
n̂. For that purpose, we enlarged the original objective function by the addi-
tional term

f̃(x) = f(x) +
u
∑

j=1

xixi+j.

Hence, the number of nonzero diagonals in the Hessian of the Lagrange function
can be varied by choosing u appropriately. We generated test cases for the
problem chainwoo with n̂ = 7, 9, 11 instead of n̂ = 4 as in the original version.
Furthermore, we studied test cases for the morebv problem with n̂ = 7, 9, 11
instead of n̂ = 5 as in the original version. Figure 3.3 illustrates the run-
time ratios achieved. For both problems, the linear behavior of the run-time
ratio is almost the same if the number of nonzeros is increased. To ease the
interpretation of the results, we added a black solid line with the slope 0.0001
for chainwoo and 0.0025 for morebv. As can be seen, the constant describing the
linear increase of the run-time ratios is very small, which fits the expectations
based on the complexity result presented in Section 3.2.3. Only for the problem
chainwoo and n̂ = 9 and n̂ = 11 some cache effects disturbed the linear behavior
in the range n ∈ [8000, 9000]. For the examples considered here, the linear

2000 4000 6000 8000 10000

5

10

15

dimension

ru
n−

tim
e

ra
tio

chainwoo, nnz = 4
chainwoo, nnz = 7
chainwoo, nnz = 9
chainwoo, nnz = 11

2000 4000 6000 8000 10000

5

10

15

20

25

30

35

40

dimension

ru
n−

tim
e

ra
tio

morebv, nnz = 5
morebv, nnz = 7
morebv, nnz = 9
morebv, nnz = 11

Figure 3.3: Run-time results for Algorithm II and varying number of nonzeros

increase with n of the complexity of Algorithm II can be described by a very
small constant. Comparing the values observed for the run-time ratios with the
complexity results given by (3.15) or (3.17), one finds that a sparsity pattern
for the Hessian can be calculated at a cost that corresponds to the cost for
computing a few columns of the Hessian itself.

The Evaluation of Hessian-matrix Products

A second class of run-time tests was done for the newly proposed vector version
of the second order adjoint mode. Comparing the complexity bounds for scalar

58 Chapter 3. Computing Sparse Hessians with Automatic Differentiation

0 1 2 3 4 5 6
0

50

100

150

200

vectors / columns

ru
n−

tim
e

ra
tio

 (
dt

oc
2)

Hessian−vector products
Hessian−matrix products

0 10 20 30 40 50
0

200

400

600

800

vectors / columns

ru
n−

tim
e

ra
tio

 (
ei

ge
na

2)

Hessian−vector products
Hessian−matrix products

Figure 3.4: Hessian-vector and Hessian-matrix products

second order adjoints given in (3.16) and for the vector version given in (3.17)
and (3.18), one obtains

TIME(H(x)S)

TIME(f(x))
≤ ωsoad p ≤ 10p and

TIME(˙̄X)

TIME(f(x))
≤ ωsoadp ≤ 4 + 6p,

respectively. We computed the stated run-time ratios using the well established
driver hess vec of ADOL-C to compute p Hessian-vector products and the new
driver hess mat of ADOL-C to compute one Hessian-matrix product. The prob-
lems dtoc2 and eigena2 serve as test cases. For dtoc2 the corresponding seed
matrix has 6 columns independent of the size of the problem. For the numerical
tests we set the number of variables to n = 1485 and the number of constraints
to m = 990. The number of columns that form the seed matrix varies with
the problem size for eigena2. To get an impression also for a higher number
of columns, we set the number of independent variables to n = 2550 and the
number of constraints m = 1275, resulting in a seed matrix with 52 columns.

The achieved run-time ratios are illustrated by Figure 3.4. First of all, the
expected linear behavior in dependence on the number of vectors and columns,
respectively, is clearly visible. Furthermore, the line with the larger slope be-
longs to the scalar second order adjoint computation evaluating pHessian-vector
products. Hence, so far the theory is verified by the numerical examples, since
the vector version of the second order adjoint requires significantly less run-time.

Additionally, one can examine the slopes of the lines in more detail. For
that purpose the slopes are stated in Table 3.6. As can be seen, the scalar mode
is almost three times slower than the theory predicted for the dtoc2 example,
whereas the vector mode is only about two times slower than the theory.

For the eigena2 example, the function evaluation is a little bit more complicated
and the situation changes considerably in favor of ADOL-C. Here, the run-time
needed by the scalar mode is only about a factor 3/2 larger than expected. So
the operator-overloading tool ADOL-C comes almost close to the theory. The
same is true for the vector version of the second order adjoint, where the slope
is close to the theoretical bound 6.

3.6 Conclusion and Outlook 59

dtoc2 eigena2

scalar soad 28.6 16.5

vector soad 13.2 7.5

Table 3.6: Slopes obtained from run-time results

3.6 Conclusion and Outlook

This article presents the propagation of nonlinearity for determining a sparsity
pattern for a Hessian matrix. The complexity of the corresponding algorithm
is analyzed in detail. Once the sparsity pattern is available, well-known graph-
coloring techniques can be applied to generate a seed matrix. Subsequently,
the seed matrix can be used as input for a vector version of the second order
adjoint mode, that is proposed and analyzed in this paper for the first time. The
three ingredients – sparsity pattern, seed matrix, vector second order adjoint
computation – allow an efficient evaluation of sparse Hessians. Run-time results
verifying the theoretical results are presented for some problems of the CUTE
collection, where the AD-tool ADOL-C is used to compute the derivatives.

Future work can be devoted to the incorporation of more sophisticated co-
loring techniques which are the subject of current research. This includes also
the incorporation of a substitution-based seeding.

Acknowledgment

The author is grateful to Arijit Tarafdar and Assefaw Gebremedhin, Old Do-
minion University, for providing their graph coloring code. Furthermore, the
author would like to thank the anonymous referees for their very valuable com-
ments and constructive suggestions.

60 Chapter 3. Computing Sparse Hessians with Automatic Differentiation

Chapter 4

Evaluating Gradients in

Optimal Control —

Continuous Adjoints versus

Automatic Differentiation

Roland Griesse1 and Andrea Walther
Journal of Optimization Theory and Applications,

Volume 122(1), pp. 63 – 86 (2004).

Abstract:

This paper deals with the numerical solution of optimal control problems for ODEs.

The methods considered here rely on some standard optimization code to solve a dis-

cretized version of the control problem under consideration. We aim at providing the

optimization software not only with the discrete objective functional, but also with its

gradient. The objective gradient can be computed either from forward (sensitivity) or

backward (adjoint) information.

The purpose of this paper is to discuss various ways of adjoint computation. It will

be shown both theoretically and numerically that methods based on the continuous

adjoint equation require a careful choice of both the integrator and gradient assembly

formulae in order to obtain the gradient consistent with the discretized control prob-

lem. Particular attention will be given to automatic differentiation techniques which

automatically generate a suitable integrator.

4.1 Introduction

The field of optimal control problems for ODE looks back on a rich history of
books and research papers since the first facing of such problems in the 1950s.
Both theoretical and numerical aspects can be considered well studied.

In principle, there are two classes of methods to treat problems of opti-
mal control numerically, the first of which uses the Pontryagin maximum (or

1RADON Institute, Linz, Austria

61

62 Chapter 4. Evaluating Gradients in Optimal Control

minimum) principle to derive necessary conditions for the optimizer. These
conditions take the form of a multi-point boundary value problem for the state
and the additional adjoint equation. In the presence of control or state con-
straints, the switching structure—i.e. the points in time when the control en-
ters or leaves the boundary of the set of feasible controls—has to be known in
advance. An introductory treatment on these so-called indirect methods can
be found in Pesch [121]. Examples and issues on implementation are covered
e.g. in Bulirsch et. al. [17] and Hiltmann [91]. A boundary value problem solver
commonly used is described in Oberle and Grimm [118].

The second class is termed direct methods. These methods have in common
that, in a first step, some discretization renders the infinite-dimensional optimal
control problem into a finite-dimensional optimization task, also called an NLP
problem. The latter is usually solved by some optimization code, e.g. an SQP
solver.

Within the class of direct methods, two techniques can be distinguished:
Approaches that discretize both the control and state variables and pass the
discretized state equation on to the optimization code are often described as
full discretization concepts. Examples are collocation methods, see e.g. von
Stryk [145] and Betts [12]. Note that both discretized control and state variables
are treated as optimization variables by the optimization solver.

The second technique features discretization of the control variables only.
Consequently, evaluating the objective by a user-provided subroutine requires
forward integration of the state equation. The name recursive discretization is
usually attributed to these methods, inspired by the fact that all classical ODE
integration schemes (e.g. Runge-Kutta schemes) define the solution to the state
ODE recursively, time step by time step. We refer to Büskens and Maurer [19]
as well as Bock and Plitt [14] for more on these methods.

One major difference between full and recursive discretization is that the
first generates a huge amount of equality constraints containing the discretized
state equation (yet these have an almost block-diagonal Jacobian matrix), while
the latter produces a smaller amount of optimization variables, paid for by non-
trivial objective gradients.

We only study the recursive technique in the present paper. Our goal was to
provide the optimization solver with the gradient consistent with the discrete
objective function. Despite the long history of numerical solution of optimal
control problems, this feature is still not implemented in many optimal con-
trol codes. Although the control problems covered in this work are subject to
only simple control constraints, they still feature the relevant effects in gradient
computation. In a companion paper [66], we consider a more substantial ex-
ample involving state constraints and a rather complicated dynamical system,
computing also parametric sensitivities.

This paper is organized as follows: In Section 4.2, we introduce the optimal
control problem under consideration. Section 4.3 addresses discretization and
the central issue of finding gradient representations for the finite-dimensional
optimization problem. Main features of third-party and our own software are
exposed in Section 4.4. We present two examples in Section 4.5 to illustrate
the theoretical finding, and give a conclusion in Section 4.6.

4.2 Continuous Problem 63

4.2 Continuous Problem

We consider the following optimal control problem:

min J(y) = ϕ(y(tf)) (4.1)

s.t. ẏ(t) = f(y(t), u(t), t) t ∈ [0, tf] (4.2)

y(0) = y0 (4.3)

a ≤ u(t) ≤ b a, b ∈ R
m. (4.4)

The state y(t) has values in R
n while the control u(t) maps into R

m. Hence
the dynamics are given by a right hand side function f : R

n × R
m × R → R

n.
We assume that complete initial information y0 ∈ R

n is given. The objective
function ϕ : R

n → R evaluates the state at the given terminal time tf . In addi-
tion, the control is subject to box constraints on each of its components. Let us
assume that all functions are sufficiently smooth to carry out all differentiation
necessary.

Since the state y depends on the control u, it is natural to introduce an
objective in terms of the control variable only. To this end, let y = ψ(u) denote
the solution of the state equation (5.2)–(5.3) for a given control u, and define

J̃(u) = J(ψ(u)).

Since gradients2 play an important role in optimization, we present two distinct
representations of DJ̃(u). Both are based on the observation that by the chain
rule,

DJ̃(u) = DJ(ψ(u)) Dψ(u).

Strictly speaking, the derivative DJ̃(u) is an element of the dual of the control
function space. Typically, this dual space can again be identified with a space
of functions depending on the time t. We will make use of this fact shortly.

Let us define the sensitivity s(t) ∈ R
n for a given control u in the direction

of ū by the following ODE:

ṡ(t) = fy(ψ(u)(t), u(t), t) s(t) + fu(ψ(u)(t), u(t), t) ū(t) (4.5)

s(0) = 0. (4.6)

This immediately leads to the forward or sensitivity representation of the
gradient:

DJ̃(u)ū =

∫ tf

0
∇ϕ(ψ(u)(t)) s(t) dt. (4.7)

The attribute forward points to the fact that, in order to find the Gâteaux
variation DJ̃(u)ū, the sensitivity equation has to be integrated in forward di-
rection from 0 to t. Note that in (4.7), ∇ϕ(ψ(u)(t)) denotes the gradient of

2We will denote Fréchet derivatives in infinite-dimensional spaces by the
symbol D. Partial derivatives are indicated by a subscript, e.g. fy. Finite-
dimensional Jacobian matrices and gradients (row vectors) will both be abbre-
viated by ∇.

64 Chapter 4. Evaluating Gradients in Optimal Control

ϕ, evaluated at ψ(u)(t), and not the total derivative of the composite function
ϕ ◦ ψ. The same holds for (4.9) below.

As mentioned above, there is an alternative approach to represent the ob-
jective gradient based on the adjoint ODE

−λ̇(t) = fy(ψ(u)(t), u(t), t)T λ(t) (4.8)

λ(tf) = ∇ϕ(ψ(u)(tf))T . (4.9)

The solution λ(t) ∈ R
n of this linear ODE is called the adjoint variable and

yields the gradient’s backward or adjoint representation [16, Section 2.4]

(DJ̃(u)(t))T = fu(ψ(u)(t), u(t), t)T λ(t) ∈ R
m×1. (4.10)

Now, in order to determine the gradient at time t, the adjoint equation has
to be integrated in backward direction from tf to t.

It should be mentioned that the connection between the function space
interpretation of the objective gradient and its interpretation as a function de-
pending on time is illustrated by the following formula for the Gâteaux variation
in the direction of ū:

DJ̃(u)ū =

∫ tf

0
DJ̃(u)(t)T ū(t) dt. (4.11)

In this article, we pursue the adjoint approach.

4.3 Discretized Problem

In order to solve problem (4.1)–(4.4) numerically, some discretization has to
be carried out. Therefore, let the time interval [0, tf] be divided into Nt sub-
intervals of equal lengths. The time grid consists of points

tj = (j − 1) · h for j = 1, . . . ,Nt + 1

where h = tf/Nt is the time step length. For the sake of notation’s simplicity
we restrict the presentation to uniform grids. The use of an ODE integrator
with adaptive step size control, however, introduces conceptual differences and
is not considered here [45].

All control and state components will be approximated at the grid points
only, and we use the notation

yj to approximate y(tj), y = (y1, . . . , yNt+1)T ∈ R
(Nt+1)n

uj to approximate u(tj), u = (u1, . . . , uNt+1)T ∈ R
(Nt+1)m.

We end up with the following finite-dimensional NLP problem:

min J̃(u) = ϕ(ψNt+1(u))

s.t. a ≤ uj ≤ b
where y = ψ(u) = (ψ1(u), . . . , ψNt+1(u))T approximately satisfies the state
ODE of the problem. In our tests, we took ψ to represent the classical explicit
fourth-order Runge-Kutta scheme with constant step size h which leads to the
following algorithm to compute the discrete state vector y:

4.3 Discretized Problem 65

1. Let y1 = y0.

2. Given yj, compute yj+1 by

(a) k1 = f(yj, uj , tj)

(b) k2 = f(yj + 1
2hk1, u

j+ 1

2 , tj+
1

2)

(c) k3 = f(yj + 1
2hk2, u

j+ 1

2 , tj+
1

2)

(d) k4 = f(yj + hk3, u
j+1, tj + h)

(e) yj+1 = yj + h
6 [k1 + 2k2 + 2k3 + k4]

for j = 1, . . . , Nt. Here, tj+
1

2 denotes tj + h
2 and uj+ 1

2 is either equal to uj

(piecewise constant interpolation) or equal to uj+uj+1

2 (piecewise linear interpo-
lation).

As mentioned in Section 4.1, we consider only the discretized control func-
tions u as optimization variables, which has the effect that in every evaluation
of the objective ϕ(ψNt+1(u)), the forward equation has to be solved using the
Runge-Kutta integration scheme. We obtain a relatively small NLP problem
whose objective gradient is not trivial to evaluate: The term in question is the
gradient of the function

R
(Nt+1)m ∋ u 7→ J̃(u) = ϕ(ψNt+1(u)) ∈ R

where yNt+1 = ψNt+1(u) is a rather intricate function of u. We now turn to
some possibilities to compute this gradient ∇J̃(u).

4.3.1 Finite–Difference Evaluation of the Objective Gradient

As a first possibility, finite difference evaluation of ∇J̃(u) comes into mind.
Denoting the i-th component of uj by uj

i and letting eji be the unit vector of
length (Nt +1)m with the [(j−1)m+ i]-th entry equal to one, a one-sided finite
difference approximation is given by

∂J̃(u)

∂uj
i

≈ J̃(u+ ǫ eji)− J̃(u)

ǫ
.

Indeed, with appropriately chosen perturbations ǫ, the approximation is a
reliable estimate of the gradient, and no additional coding is needed beyond the
evaluation of J̃(u). However, every evaluation of ∇J̃(u) is as expensive as (Nt+
1)m evaluations of the objective itself, leading to unacceptable performance for
fine discretizations. This observation is confirmed in the numerical experiments
of Section 4.5.

4.3.2 Straightforward Evaluation of the Objective Gradient Us-

ing the Continuous Adjoint Equation

An alternative idea is to use the continuous gradient’s adjoint representation
(4.10) as a basis for the gradient computation. While in this subsection we

66 Chapter 4. Evaluating Gradients in Optimal Control

introduce a straightforward approach, we will find in the sequel that this simple
method yields an objective gradient that is not exactly consistent with the
objective value itself.

It is a natural idea to start by obtaining a discretized solution of the contin-
uous adjoint equation (4.8)–(4.9), and it is tempting to use the same integration
scheme as for the forward equation, working with step size −h instead of h since
integration is backwards in time.

Once the discrete adjoint has been computed, it is readily assumed that a
discretization of (4.10)–(4.11) yields the discrete gradient

∇J̃(u) =

(

∂J̃(u)

∂u1
, . . . ,

∂J̃(u)

∂uNt+1

)

.

However, as a detailed investigation in the sequel will reveal,

(

∂J̃(u)

∂uj

)T

6= hfu(ψj(u), uj , tj)Tλj , (4.12)

i.e., the formula on the right-hand side of (4.12) is not the correct representation
of the discrete gradient. The usage of this straightforward procedure leads to
incorrect gradients and can even cause an SQP solver to fail to converge as
shown in Section 4.5.

4.3.3 Consistent Evaluation of the Objective Gradient Using

the Continuous Adjoint Equation

In the previous subsection, we have introduced a straightforward and appeal-
ing method, aiming at computing the objective gradient, simply by discretizing
the continuous equations. We will now show that the quantity obtained in
this way is not the objective gradient. In order to get correct discrete gradi-
ent information, two major issues have to be taken into account: Finding a
suitable integration scheme for the continuous adjoint equation (4.8)–(4.9), and
assembling the gradient as suggested by (4.10) and (4.11).

The first part of this question has been addressed in Hager [84] for a general
Runge-Kutta integration scheme. In contrast to our presentation, Hager pur-
sues a full discretization approach for the underlying control problem, treating
the integration scheme as additional constraints. Moreover, he introduces ad-
ditional optimization variables, corresponding to the control functions at the
intermediate time grid points required by the Runge-Kutta scheme. While this
eliminates the need for control interpolation, it also leads to a larger optimiza-
tion problem and therefore is not very common in practical algorithms.

We will illustrate the relevant effects using for simplicity the explicit Euler
scheme for the forward state equation ẏ = f(y, u, t), i.e.,

yj+1 = yj + hf(yj, uj , tj).

4.3 Discretized Problem 67

In the spirit of adjoint information, the gradient ∇J̃(u) is evaluated from its
last to its first components:

∂J̃(u)

∂uNt+1
= ∇ϕ(ψNt+1(u))

∂ψNt+1(u)

∂uNt+1
= ∇ϕ(ψNt+1(u)) · 0

∂J̃(u)

∂uNt
= ∇ϕ(ψNt+1(u))

∂ψNt+1(u)

∂uNt

∂J̃(u)

∂uNt−1
= ∇ϕ(ψNt+1(u))

∂ψNt+1(u)

∂ψNt(u)

∂ψNt(u)

∂uNt−1

...

∂J̃(u)

∂u1
= ∇ϕ(ψNt+1(u))

∂ψNt+1(u)

∂ψNt(u)

∂ψNt(u)

∂ψNt−1(u)
· · · ∂ψ

3(u)

∂ψ2(u)

∂ψ2(u)

∂u1
.

These steps can be carried out efficiently by first aggregating the adjoint-like
quantities

(λNt+1)T = ∇ϕ(ψNt+1(u)) (4.13)

(λj)T = ∇ϕ(ψNt+1(u))
∂ψNt+1(u)

∂ψNt(u)

∂ψNt(u)

∂ψNt−1(u)
· · · ∂ψ

j+1(u)

∂ψj(u)
, (4.14)

where j = Nt, Nt − 1, . . . , 1.

Since for the explicit Euler scheme we have

ψj+1(u) = ψj(u) + hf(ψj(u), uj , tj)

and thus

∂ψj+1(u)

∂ψj(u)
= I + hfy(ψ

j(u), uj , tj), (4.15)

the λj obey the backward recursion

λj = [I + hfy(ψ
j(u), uj , tj)]Tλj+1. (4.16)

As an integration scheme applied to the adjoint ODE (4.8)–(4.9), (4.16) rep-
resents an explicit method backwards in time with right hand side information
taken partly from an implicit method.

For comparison, the implicit and explicit Euler schemes are

λj = [I − hfy(ψ
j(u), uj , tj)]−Tλj+1 (implicit Euler)

λj = [I + hfy(ψ
j+1(u), uj+1, tj+1)]Tλj+1 (explicit Euler).

Finally, the gradient sought can be obtained from the staggered formulae

∂J̃(u)

∂uNt+1
= 0 (4.17)

∂J̃(u)

∂uj
= (λj+1)Thfu(ψj(u), uj , tj), j = 1, . . . ,Nt. (4.18)

68 Chapter 4. Evaluating Gradients in Optimal Control

Summarizing, one has to exercise great caution when using the continuous
adjoint equation to generate discrete gradient information. In fact, it is rather
tedious to find the appropriate adjoint integration scheme and the gradient
evaluation formulae (4.17)–(4.18) by hand. This is the reason why this method
has not been included in our numerical tests: While it is assumed to be accurate
and fast, it is difficult to implement. In contrast to that, the approach using
automatic differentiation described in the following subsection generates the
same computational steps, avoiding error-prone hand-coding at only slightly
increased run-time.

4.3.4 Evaluation of the Objective Gradient Using Automatic

Differentiation

Over the last decades the technique of automatic differentiation (AD) has been
developed. This method, which is still not well known, offers an opportunity
to provide derivative information for a given code segment. A comprehensive
introduction to AD can be found in Griewank [70].

The key idea of automatic differentiation is the systematic application of
the chain rule. For many applications, the underlying model is described by a
nonlinear vector function F : R

N → R
M , x 7→ F (x), defined and evaluated by a

computer program. The computation of such a function F can be decomposed
into a (typically very long) sequence of simple evaluations, e.g. additions, mul-
tiplications, and calls to elementary function such as sin(xi) or exp(xi). The
derivatives with respect to the arguments of these operations can be easily cal-
culated. A systematic application of the chain rule then yields the derivatives
of the whole sequence with respect to the input variables x ∈ R

N . Depending
on the starting point of this methodology—either at the beginning or at the
end of the respective chain of computational steps—one distinguishes between
the forward mode and the reverse mode of AD. In our context of discretized
optimal control problems, F (x) is nothing else than the objective J̃(u), so that
N = (Nt + 1)m and M = 1. Using the forward mode resembles a discrete sen-
sitivity approach, cf. (4.5)–(4.6). I.e., the forward mode recursively computes
approximations to s(tj). Conversely, the reverse mode involves a discrete ana-
log to the continuous adjoint equation (4.8)–(4.9). These parallels have already
been hinted at in Griewank [68].

For both modes, the time-complexity results are based on the operation
count OF of the underlying vector function F . Using the forward mode of
AD, one column of the Jacobian ∇F can be calculated at no more than five
times OF [70]. One row of ∇F , i.e., the gradient of a scalar-valued component
function of F , is obtained using the reverse mode in its basic form also at no
more than five times OF [70]. It is important to realize that this bound for
the reverse mode is completely independent of the number of input variables,
N . From the results above, one obtains immediately that the forward mode
of AD allows the computation of Jacobians at an operation count of at most
five times the number of input variables N times OF . Conversely, the reverse
mode allows the computation of Jacobians for at most five times the number of
output variables M times OF . However, the memory requirement of the basic

4.4 Software 69

reverse mode is proportional to the time needed to evaluate the function F
itself. However, there are several strategies based on checkpointing to reduce
this memory requirement and a remarkable decrease can be obtained effortless.
In particular, for the time-integration problem considered in this paper there
are optimal checkpointing schedules that allow a logarithmic increase in the
memory requirement [76].

Analyzing our method presented in Subsection 4.3.3, one finds that com-
puting the gradient ∇J̃(u) recursively from ∂J̃(u)/∂uNt+1 down to ∂J̃(u)/∂u1

exactly matches the reverse mode of AD. The key observation is that the con-
sistent objective gradient presentation—which depends on the forward integra-
tion scheme—can be generated automatically. Hence, the usage of an AD tool
eliminates the hand-coding of derivative calculations, a rather involved and
error-prone process. Moreover, it is to be expected that the SQP solver per-
forms better when having access to the correct discrete gradient information.
This conjecture is confirmed by the numerical results presented in Section 4.5.
Nevertheless, one has to note that AD is applied here to compute the exact
derivative of an approximation of the objective and do not yield an approx-
imation to the exact derivatives of the objective. Hence, in numerous cases
AD provides exactly what the user of AD requires, but one has to keep this
difference in mind.

Derivatives have surfaced at many different locations in the discussion so
far. At first sight, there are two obvious possibilities of where to apply AD:

The first is to generate the recursion scheme for the quantities λj using AD.
The resulting backward integration can be viewed as the appropriate adjoint
scheme for the adjoint differential equation (5.6) with terminal condition (4.9).
We refer to this technique as adjoining one forward step. Note that AD auto-
matically takes care of computing fy and fu. However, one has to give some
thought to appropriately accumulate the adjoint-like quantities λj in order to
obtain the desired gradient.

An alternative approach makes use of AD to directly compute the gradient
∇J̃(u). Since we have a scalar-valued cost function J̃ with many input variables
u, the reverse mode of AD is preferable. It yields a code that implicitly features
the computation of λj-like quantities from j = Nt + 1 down to j = 1.

In order to use the first technique some insight is needed to accumulate the
desired gradient information. The benefit is a decrease in the overall run-time
because some recomputations and storage operations can be avoided. The sec-
ond technique represents an easy-to-use method, but leads to a larger temporal
and/or spatial complexity, depending on the AD tool applied. Run-time results
for both approaches are presented in Sec. 4.5.

4.4 Software

We used our own experimental software as an interface to the SQP solver Npsol

to conduct the numerical tests. This interface is described in the following
subsection. Information regarding Npsol is presented in the Sec. 4.4.2.

70 Chapter 4. Evaluating Gradients in Optimal Control

4.4.1 Discretizing the Continuous Problem

Our software has the following main features: The code has to provide the
objective value J̃(u) to Npsol for a given vector of optimization variables u
which correspond to the discretized control functions. To this end, the forward
equation has to be solved because the objective value depends on the terminal
state yNt+1. The integration of the forward equation is carried out using the
classical fourth-order Runge-Kutta scheme over an equidistant time grid. Since
values of f and thus of u are required not only at the time grid points tj , but
also at tj+

1

2 (see Section 4.3), linear or constant interpolation of the control is
utilized. In order to allow flexibility there are problem-specific subroutines to
compute the right hand side f , the initial values y0 and to assess the terminal
state via ϕ(yNt+1). Exchanging only the problem-specific parts, a variety of
problems can easily be coded.

In addition to the computation of the state trajectory, derivative evaluations
have to be performed. Our code offers four possibilities:

Finite Differences

When using finite differences to evaluate the objective gradient, the above in-
gredients to compute a solution of the forward equation are already sufficient
to solve the optimization problem.

Straightforward Discretization of Continuous Adjoint Equation

In this case, after integrating the forward equation, the adjoint equation must
be solved. This is done using the same Runge-Kutta scheme again. Whenever
the right hand side of the adjoint equation fy(·) depends on the state y, this

requires interpolation of the discrete state y to intermediate grid points tj+
1

2

which can be done either in a constant fashion, i.e., (yj+ 1

2 = yj+1) or in a linear

fashion, i.e., (yj+ 1

2 = (yj+1 + yj)/2). Furthermore, the user has to provide
subroutines to find the linearized right hand side fy(·), the gradient of ϕ and
fu(·)Tλ, cf. (4.12).

Application of AD

AD tools offer a convenient way to automatically generate the source code to
evaluate the gradient in consistency with the discrete objective. For our nu-
merical tests we used Odyssée [127], developed by INRIA Sophia Antipolis,
France. It is capable of differentiating FORTRAN 77 codes. Analyzing the
dependencies, Odyssée finds that the ODE integrator (i.e., the Runge-Kutta
scheme) and the user-provided routines for the right hand side f and the ob-
jective ϕ have to be differentiated. The resulting code can be used with no
further changes to compute the gradient of the objective. According to our ex-
perience, Odyssée is an easy-to-use and reliable tool. Only two minor changes
in our software were necessary: On the one hand, a goto-statement had to be
eliminated. On the other hand, a subroutine call which contained the same pa-
rameter twice (once as input and once as output) had to be changed, using an

4.5 Examples 71

auxiliary variable. After these rather minor modifications Odyssée generates
the desired code for ∇J̃(u) without any problems in a few seconds. Odyssée

was also used to differentiate only the subroutine accountable for one Runge-
Kutta step, as referred to adjoining one forward step, see Section 4.3.4.

4.4.2 SQP Solver

For solving the optimization problem, we use Philip Gill’s code Npsol, which is
one of the most renowned SQP codes. Npsol employs a dense SQP algorithm.
An augmented Lagrangian merit function ensures convergence from an arbitrary
starting point. Npsol is designed to minimize an arbitrary function subject to
constraints which may include simple bounds on the variables, linear constraints
and smooth nonlinear constraints. The problems to solve may contain up to
a few hundred constraints and variables, depending on the amount of memory
available. Npsol employs three tests of convergence only two of which apply
for our examples due to the absence of nonlinear constraints. A sequence of
optimization variables is considered converged when the norm of the search
direction is small compared to the norm of the current control values and when
the norm of the reduced gradient is small compared to the current objective
value. For the numerical examples in the subsequent section, we left all the
default tolerances unaltered. A detailed description of Npsol is contained in
Gill et. al. [62].

The user has to provide subroutines that define the objective and nonlin-
ear constraint functions as well as optionally their gradients. Our software
described in the previous subsection has exactly this functionality.

4.5 Examples

Example 4.5.1: Simple Problem from Economics

A trading company aims at maximizing its profit for the 8 months to come. Let
the price of the trading goods p(t) be known in advance. The company initially
has assets K. It can buy and sell the goods only at a limited rate. To keep
the good in stock, it must pay fees proportional to the amount in stock. The
constant a = 0.25 describes the fee to store one item for one time unit (month).

Let y1(t) denote the assets at time t ∈ [0, 8] and let y2(t) be the amount of
goods on stock. The control u(t) denotes buying and selling activity, subject
to the constraint −1 ≤ u(t) ≤ 1. The price for the goods is given by

p(t) =







6 + 0.5t 0 ≤ t ≤ 4
4 + t 4 ≤ t ≤ 6
10 6 ≤ t ≤ 8.

We obtain the following optimal control problem:

minϕ(y(tf)) = −y1(tf)− p(tf)y2(tf)

s.t. ẏ1(t) = −ay2(t)− p(t)u(t) y1(0) = 100

ẏ2(t) = u(t) y2(0) = 0

72 Chapter 4. Evaluating Gradients in Optimal Control

It is possible to derive the optimal control of this minimization problem ana-
lytically. It is of bang-bang type:

u(t) =

{

1 for 0 ≤ t ≤ 16
3

−1 for 16
3 < t ≤ 8.

The objective value is known to be ϕ(y(tf)) = −322/3 = −107.3. In this
example, one obtains the adjoint equation (independent of the state and control)

λ̇1(t) = 0 λ1(8) = −1

λ̇2(t) = −aλ1(t) λ2(8) = −10.

Its solution is

λ1(t) = −1 λ2(t) = −a(t− 8)− 10. (4.19)

Accordingly, the gradient (cf. (4.10)) of the continuous problem is

(DJ̃(u)(t))T = fu(ψ(u)(t), u(t), t)T λ(t)

= −p(t)λ1(t) + λ2(t)

= p(t)− a(t− 8)− 10.

In the sequel we present some numerical results for the time discretization using
Nt = 8 points in time. We expect the gradient obtained from straightforward
application of the adjoint approach (Section 4.3.2) to differ from the true gra-
dient. This can be observed in Fig. 4.1 for constant and linear interpolation of

0 1 2 3 4 5 6 7 8
−2

−1.5

−1

−0.5

0

0.5

time

exact gradient
inexact gradient

0 1 2 3 4 5 6 7 8
−2

−1.5

−1

−0.5

0

0.5

time

exact gradient
inexact gradient

constant interpolation linear interpolation

Figure 4.1: Inconsistency of the gradient for Example 4.5.1, constant and linear
interpolation of the control, Nt = 8

the control, respectively, at the off-grid points tj+
1

2 . These computations were
performed at the initial guess uj = 0.

It is interesting to note that the gradient in the case of constant interpolation
is inexact everywhere except at t = tf . In contrast to that, in the case of linear
interpolation, the gradient is correct except at t ∈ {t0, tf} and at the points

4.5 Examples 73

of non-differentiability of p which appears in fu. For this simple example, it is
possible to trace back this incorrect gradient information.

Let us first consider the calculation of the adjoint quantities λ1, . . . , λ9.
Using the fourth-order classical Runge-Kutta scheme we obtain

λ9 =

(

−1
−10

)

λj = λj+1 +

(

0
0.25

)

j = 8, . . . , 1. (4.20)

Applying AD to provide the gradient, the derivatives of the cost function with
respect to the discrete state variables yj—usually denoted by ȳj in the AD
context—are calculated. For the example considered here, the ȳj equal the
solution of the adjoint equation given by (4.20), i.e., λj ≡ ȳj . Furthermore, the
λj are the exact solution of the continuous adjoint equation at t = tj, cf. (4.19).
This can be attributed to the fact that our Runge-Kutta scheme integrates an
ODE with constant right hand side without error.

Hence, the inconsistency of the gradient shown in Fig. 4.1 can only result
from different accumulations of the gradient. Using the straightforward ap-
proach, each component of ∇J̃(u) is computed as

∂J̃(u)

∂uj
= −p(tj)λj

1 + λj
2 j = 1, . . . , 9, (4.21)

for Nt = 8. It is important to note that this formula stays the same, whether
constant interpolation or linear interpolation for the control is used. Therefore,
the different influence of the two control interpolation modes on the computed
objective value is completely neglected by the straightforward approach. This is
not true if AD is utilized to compute the gradient. Here, we obtain for constant
interpolation the formulas

∂J̃(u)

∂u9
=

1

6

(

− p(t9)λ9
1 + λ9

2

)

∂J̃(u)

∂uj
=

(

−2

3
p(tj+

1

2)− 1

3
p(tj)

)

λj
1 + λj

2 +
1

12
λj+1

1 , j = 8, . . . , 2

∂J̃(u)

∂u1
=

(

−2

3
p(t1+

1

2)− 1

6
p(t1)

)

λ1
1 +

5

6
λ1

2 +
1

12
λ2

1

for Nt = 8. Hence, the influence at the intermediate times tj+
1

2 comes into
play. The consideration of this influence of uj on the objective value and here
particularly the offset 1

12λ
j+1
1 is responsible for the altered gradient information

in the case of constant interpolation.
For linear interpolation, AD generates the formulas

∂J̃(u)

∂u9
=

(

−1

6
p(t9)− 1

3
p(t9−

1

2)

)

λ9
1 +

1

2
λ9

2 −
1

24
λ9

1 (4.22)

∂J̃(u)

∂uj
= −1

3

(

p(tj+
1

2) + p(tj) + p(tj−
1

2)

)

λj
1 + λj

2, j = 8, . . . , 1 (4.23)

∂J̃(u)

∂u1
=

(

−1

3
p(t1+

1

2)− 1

6
p(t1)

)

λ1
1 +

1

2
λ1

2 +
1

24
λ2

1. (4.24)

74 Chapter 4. Evaluating Gradients in Optimal Control

One deduces from (4.22) that the term − 1
24λ

9
1 causes the different gradient

information at time t9 = 8. At the times t7, t5, t3, and t2 the formula (4.23)
equals the gradient calculation (4.21) because of the linear behavior of the
function p(·). Hence, at these points in time the straightforward approach
and the AD approach yield the same gradient information. At t8 and t4, the
piecewise linear structure of p(·) leads to different values of the formulas (4.23)
and (4.21). Finally, for t1, i.e., t = 0, the formulas (4.24) and (4.21) are
completely different. This fact explains the large deviation of the gradient
information at t = 0.

As described before, we apply the AD tool Odyssée to derive code for
the computation of the discrete gradient. Therefore, besides the consistency of
the gradient, the run-time needed by the automatically generated code has to
be analyzed. The corresponding measurements to compute J̃(u) and ∇J̃(u)
are given in Tab. 4.1. As can be seen, the ratio of the two run-times for

constant interpolation linear interpolation

Nt 8 32 128 8 32 128

J̃(u) 0.0001 s 0.0006 s 0.0060 s 0.0001 s 0.0006 s 0.0061 s

∇J̃(u) 0.0005 s 0.0037 s 0.0324 s 0.0006 s 0.0040 s 0.0324 s

ratio 5.00 6.17 5.4 6.00 6.67 5.31

Table 4.1: Run-time of gradient calculation using Odyssée, Example 4.5.1

evaluating ∇J̃(u) and J̃(u) reaches almost the theoretical bound of five, the
gap being caused by Odyssée recomputing some intermediate results of the
forward integration. These recomputations are caused by the checkpointing
strategy implemented in Odyssée.

As a next step, we investigate how the inconsistency of the gradient affects
the SQP solver convergence. For this purpose, we did several test runs with
Nt ∈ {8, 32, 128} time grid points. The corresponding results, including run-
time, major iteration count, and the objective value are presented in Tab. 4.2
and Tab. 4.3 for constant and linear interpolation of the control, respectively.

CPU Time [sec] Major it. Objective

Nt 8 32 128 8 32 128 8 32 128

FD 0.019 0.325 43.298 4 17 67 -107.166 -107.322 -107.332

SF 0.014 0.037 0.693 3 13 51 -107.166 -107.322 -107.332

ADJ̃ 0.017 0.104 3.611 4 16 61 -107.166 -107.322 -107.332

ADa 0.018 0.099 3.207 4 16 61 -107.166 -107.322 -107.332

Table 4.2: SQP convergence behavior, Example 4.5.1, constant interpolation of
the control, Nt = 8|32|128

Here as throughout, FD denotes the finite differences approach. SF stands
for the straightforward evaluation of the gradient as described in Subsec. 4.3.2.
ADJ̃ denotes the approach to apply AD to the evaluation of the objective J̃(u),

4.5 Examples 75

CPU Time [sec] Major it. Objective

Nt 8 32 128 8 32 128 8 32 128

FD 0.022 0.386 46.579 6 18 69 -107.250 -107.328 -107.333

SF 0.014 0.039 0.688 3 13 51 -107.208 -107.325 -107.332

ADJ̃ 0.019 0.112 3.348 5 14 52 -107.250 -107.328 -107.333

ADa 0.018 0.101 2.969 5 14 52 -107.250 -107.328 -107.333

Table 4.3: SQP convergence behavior, Example 4.5.1, linear interpolation of
the control, Nt = 8|32|128

whereas ADa marks the approach to differentiate the Runge-Kutta step using
AD and to subsequently accumulate the desired gradient by hand-written code,
see Subsection 4.3.4.

From the results achieved one can conclude several things. First of all, it
is verified that the finite difference approach to compute the gradient is quite
exact, i.e., converges to the analytical solution, but inefficient. This observation
still holds even if the finite difference approximation of the objective gradient
is done more efficiently, using the trivial fact that ∂ψj(u)/∂ui = 0 whenever
i > j. This can save up to 50% of computational effort off the times given in
the run-time tables.

Secondly, the straightforward approach is fast but leads to an inexact so-
lution if the control is linearly interpolated. This is surprising because the
gradient information is exact at four points of time. Conversely, the inexact-
ness at eight points for the constant interpolation does not seem to influence
the optimization process. The low CPU times result on the one hand from the
efficient (hand-coded) computation of the adjoint information, and on the other
hand from the reduced major iteration numbers since the stopping criteria are
fulfilled earlier.

Thirdly, the AD approach performs best for the linear interpolation of the
control. It is much faster than finite differences and yet exact, i.e., computes
the analytical solution. Furthermore, one sees that automatic differentiation of
the Runge-Kutta steps and accumulation of the gradient by hand leads to only
minor run-time savings of at most 10% for Example 4.5.1.

While for this simple example the straightforward approach—at least in the
case of constant control interpolation—is competitive, it will cause the SQP
solver fail to converge in Example 4.5.2.

Example 4.5.2: Rayleigh Equation

The Rayleigh equation describes a so-called tunnel diode oscillator. This circuit
contains a power source whose voltage u(t) is the control variable. The current
x(t) obeys the ODE

ẍ(t) = −x(t) + ẋ(t)(1.4 − 0.14ẋ(t)2) + 4u(t).

76 Chapter 4. Evaluating Gradients in Optimal Control

As an objective function we take , cf. [18, 140, 99],

I(y, u) =

∫ tf

0
u(t)2 + x(t)2 dt.

This problem can easily be transformed into the form (4.1)–(4.4) described in
Section 4.2 via y1 = x, y2 = ẋ:

ẏ1(t) = y2(t)

ẏ2(t) = −y1(t) + y2(t)(1.4 − 0.14y2(t)
2) + 4u(t)

ẏ3(t) = u(t)2 + y1(t)
2

and objective

J(y) = ϕ(y(tf)) = y3(tf).

We assume initial conditions

y1(0) = −5, y2(0) = −5, y3(0) = 0,

and impose the control constraint |u(t)| ≤ 1. The final time is tf = 2.5. Note
that in contrast to the previous example, the right-hand side is non-linear in
the state variable y, so the adjoint equation depends on the state:

−λ̇ =





0 1 0
−1 1.4− 0.42y2

2 0
2y1 0 0





T

λ

with terminal conditions

λ1(tf) = 0, λ2(tf) = 0, λ3(tf) = 1.

Again, we compare the consistent gradient to the inconsistent gradient from
the straightforward adjoint approach. Since the right hand side of the adjoint
equation fy(·) now depends on the state, evaluations of yj+ 1

2 are necessary,
provided that the same Runge-Kutta scheme is used. As described in Section
4.4.1, we compare both constant and linear interpolation of the state. The
corresponding inconsistent gradients are shown in Figs. 4.2 and 4.3. Tab. 4.4
states the run-times needed to compute ∇J̃(u) and J̃(u) as well as their ratio.
Once more, the results achieved reach almost the theoretical bound of 5 and
are even better than in the first example. The second fact may be caused by
the more complex model to be differentiated. This is typically observed and is
due to the less effective compiler optimization for the forward integration.

Tabs. 4.5 and 4.6 show the important results concerning the optimization
process. Here, SFc indicates constant interpolation of the state during the
adjoint calculation using the straightforward approach, while SFl denotes linear
interpolation.

It has to be mentioned that in this example Npsol does not terminate the
optimization process until the given maximal number of major iterations is

4.5 Examples 77

0 0.5 1 1.5 2 2.5
−20

−15

−10

−5

0

time

exact gradient
inexact gradient

0 0.5 1 1.5 2 2.5
−20

−15

−10

−5

0

time

exact gradient
inexact gradient

constant interpolation linear interpolation

Figure 4.2: Inconsistence of the gradient, Example 4.5.2, constant interpolation
of the control, constant and linear interpolation of the state, Nt = 10

0 0.5 1 1.5 2 2.5
−20

−15

−10

−5

0

time

exact gradient
inexact gradient

0 0.5 1 1.5 2 2.5
−20

−15

−10

−5

0

time

exact gradient
inexact gradient

constant interpolation linear interpolation

Figure 4.3: Inconsistence of the gradient, Example 4.5.2, linear interpolation of
the control, constant and linear interpolation of the state, Nt = 10

reached. This is true for all combinations of constant and linear interpolation
of the state for the straightforward adjoint calculation. Nevertheless, after the
(comparably few) major iterations stated in parenthesis, the specified objective
value is reached. After that, Npsol chooses very small step sizes and practically
stagnates. The run-times stated for SFc and SFl are for the number of iterations
given, forcibly terminating Npsol.

The finite difference approach and the AD method yield a solution close to
the one presented in [18] which has an objective value of 42.80743761. Fur-
thermore, both ways of gradient calculations lead to the same objective value
that is smaller than the one computed with the SF technique. However, the
derivative calculation based on AD accelerates the computation enormously rel-
ative to FD. To explain this run-time behavior, we observe that the operation
count OJ̃(u) is asymptotically linear in the number of time grid points Nt. In
addition, we have verified one of the AD paradigms for the reverse mode, viz:

78 Chapter 4. Evaluating Gradients in Optimal Control

constant interpolation linear interpolation

Nt 8 32 128 8 32 128

J̃(u) 0.0001 s 0.0006 s 0.0060 s 0.0001 s 0.0007 s 0.0062 s

∇J̃(u) 0.0005 s 0.0033 s 0.0309 s 0.0006 s 0.0034 s 0.0321 s

ratio 5.00 5.50 5.15 6.00 4.85 5.18

Table 4.4: Run-time of gradient calculation using Odyssée, Example 4.5.2

CPU Time [sec] Major it. Objective

Nt 8 32 128 8 32 128 8 32 128

FD 0.023 0.411 21.628 9 17 19 41.1708 42.7991 42.8074

SFc 0.016 0.038 0.696 (5) (5) (22) 41.3785 42.8161 42.8103

SFl 0.018 0.036 0.426 (4) (5) (21) 41.5179 42.8207 42.8110

ADJ̃ 0.021 0.093 1.015 9 17 19 41.1708 42.7991 42.8074

ADa 0.020 0.074 0.758 9 17 19 41.1708 42.7991 42.8074

Table 4.5: SQP convergence behavior, Ex. 4.5.2, constant interpolation of u

The ratio ∇J̃(u) vs. J̃(u) being independent of the number of input variables
u, i.e., independent of Nt. Combining these two findings, we conclude that the
operation count for computing the objective plus its gradient using AD’s reverse
mode is asymptotically linear in the number of grid points. In contrast, it is
easily verified that the corresponding operations count using finite differences
is asymptotically quadratic in Nt.

Therefore, the statements made for the first example concerning the various
methods remain mainly true here. However, the use of the straightforward
approach is completely ruled out since the inaccuracy of the supplied derivatives
causes the SQP solver to stagnate.

4.6 Conclusions

We have studied the solution of discretized optimal control problems for ODEs.
The discretization was carried out by a Runge-Kutta scheme. While it is ap-
pealing to use adjoint information generated by the same scheme, this straight-
forward approach leads to inconsistent gradients in general. However, SQP
solvers rely on consistent and exact gradient information and can fail to con-
verge if inexact gradients are provided as was shown in Example 4.5.2.

Despite some theoretical studies how methods should cope with inexact
function and derivative information [26], one should look for alternatives. One
obvious variant is given by the finite difference approach. However, using finite
differences the run-time needed to compute the gradient grows quadratically in
the number of controls. In order to analyze the influence of this behavior on the
optimization process for our examples, a profiling of the optimization on a Ori-
gin 2000 using ssrun was done. We find that Npsol needed no more than 10%
of the computing time. This small portion is caused by the easy constraints,

4.6 Conclusions 79

CPU Time [sec] Major it. Objective

Nt 8 32 128 8 32 128 8 32 128

FD 0.030 0.500 15.165 17 31 22 41.1944 42.7985 42.8074

SFc 0.016 0.036 0.535 (4) (5) (22) 41.2670 42.8104 42.8101

SFl 0.017 0.036 0.546 (4) (5) (22) 41.3755 42.8185 42.8107

ADJ̃ 0.028 0.154 1.250 17 30 23 41.1944 42.7985 42.8074

ADa 0.025 0.124 1.020 17 30 23 41.1944 42.7985 42.8074

Table 4.6: SQP convergence behavior, Ex. 4.5.2, linear interpolation of u

namely only box-constraints for the controls. Because of the small percentage
required for Npsol, the computing time needed for calculation gradient infor-
mation plays an important role for the overall run-time. Hence, all savings that
can be achieved calculating derivatives have a direct and important impact on
the total run-time. Therefore, other ways to compute the gradient come into
play.

As can be seen also from Hager [84], finding the correct integration scheme
for the continuous adjoint equation is not a trivial task. We suggest using auto-
matic differentiation tools to relieve the user of this burden, allowing convenient
computation of the objective gradient.

It is interesting to note that automatic differentiation is receiving an in-
creasing amount of attention in the optimization community. The code Snopt,
a successor to Npsol suitable for large sparse optimization problems, has re-
cently been furnished with an interface to Adifor, another AD tool capable of
the forward mode, cf. Gertz et. al. [58].

While finding the correct adjoint integration scheme (i.e., by adjoining the
forward scheme by hand) and implementing it to solve the continuous adjoint
equation is still the ideal solution in terms of CPU time, it is not feasible in
practical situations: It requires the right hand side of the adjoint equation
fy(·) to be available symbolically, which can not be assumed for complicated
dynamical systems in contrast to our examples.

In a companion paper, we consider a realistic control problem with com-
plicated control and also state constraints [66]. In order that this problem be
solved efficiently by an SQP code, the constraint Jacobian will be computed
using AD. In addition, second order derivatives are generated applying AD for
the calculation of parametric sensitivities.

Acknowledgements

We would like to thank the anonymous referees for their careful reading of the
manuscript.

80 Chapter 4. Evaluating Gradients in Optimal Control

Chapter 5

Automatic Differentiation for

Explicit Runge-Kutta

Methods for Optimal Control

Andrea Walther
Journal of Computational Optimization and Applications,

Volume 36, pp. 83 – 108 (2007)

Abstract:

This paper considers the numerical solution of optimal control problems based on

ODEs. We assume that an explicit Runge-Kutta method is applied to integrate the

state equation in the context of a recursive discretization approach. To compute the

gradient of the cost function, one may employ Automatic Differentiation (AD). This

paper presents the integration schemes that are automatically generated when differ-

entiating the discretization of the state equation using AD. We show that they can be

seen as discretization methods for the sensitivity and adjoint differential equation of

the underlying control problem. Furthermore, we prove that the convergence rate of

the scheme automatically derived for the sensitivity equation coincides with the con-

vergence rate of the integration scheme for the state equation. Under mild additional

assumptions on the coefficients of the integration scheme for the state equation, we

show a similar result for the scheme automatically derived for the adjoint equation.

Numerical results illustrate the presented theoretical results.

5.1 Introduction

For numerous real-world applications, it is possible to influence the state or
process under consideration by varying the value of several parameters. Quite
often, this relation is modeled by a system of ordinary differential equations
that involves control functions. The control functions can be used to minimize
a cost function to obtain a desired state or process. There are many books
and research papers on optimal control problems based on ODEs and many
theoretical as well as numerical aspects are well studied.

81

82 Chapter 5. Automatic Differentiation for Explicit Runge-Kutta Methods

In order to compute an optimal control for a given problem, we may employ
derivative information in several representations. In general we distinguish two
classes. The first one comprises approaches that are based on the Pontryagin
maximum principle and yields a multi-point boundary value problem for the
state and the additional adjoint equation. Hence, these so-called indirect meth-
ods correspond to the solution of the continuous KKT system. An introduction
to this technique can be found in Pesch [121]. Implementation issues and exam-
ples of applications are contained e.g. in Bulirsch et. al. [17] and Hiltmann [91].
A software package based on an indirect method is described in Oberle [118].

The second class is termed direct methods. Here, in a first step one trans-
forms the infinite-dimensional optimal control problem into a finite-dimensional
optimization task. For that purpose, one may use collocation methods, see
e.g. von Stryk [145] and Betts [12]. Subsequently, one solves the complete
resulting discrete KKT system. Consequently, both the discretized state as
well as the discretized control are treated as optimization variables by the op-
timization algorithm. These methods, which are known as full discretization
concepts, lead to a huge number of equality constraints that have an almost
block-diagonal Jacobian matrix. As alternative, only the discretized controls
can be treated as optimization variables. Hence, the objective value can only
be obtained by one integration of the state equation and the optimization is
based on the non-trivial gradient of the cost function with respect to the dis-
cretized controls. These approaches are usually called recursive discretization.
The name is inspired by the fact that all classical ODE integration schemes
(e.g. Runge-Kutta schemes) define the solution to the state ODE recursively,
time step by time step. We point the reader to Büskens and Maurer [19] as
well as Bock and Plitt [14] for more information on these methods. One major
problem of this approach is to find a correct method to compute the gradient
information. For that purpose, one may derive a suitable integration scheme for
the adjoint differential equation. Usually, these adjoint discretization schemes
do not coincide with the integration schemes used for the state equation (see
e.g. [18, 152]). Therefore, their computation is by no means obvious.

Over the last decades, several research groups have developed the technique
of Automatic or Algorithmic Differentiation (AD), which allows the generation
of exact derivative information for a given code segment. A comprehensive in-
troduction to this method can be found in Griewank [70]. Furthermore, there
are numerous examples for the application of AD in the optimal control context,
see e.g. [25, 27, 94]. Theoretical aspects were for example studied in [47, 48].
Applying recursive discretizations, we can use AD to compute the consistent ob-
jective gradient which depends on the forward integration scheme as presented,
for example, in [48]. That is, AD yields the exact discrete gradient information
for the chosen discretization of the state equation. Therefore, the usage of an
AD tool eliminates the hand-coding of derivative calculations, a rather involved
and error-prone process. However, one has to keep in mind that AD computes
the exact derivative of an approximation of the objective and may not yield
an approximation to the exact derivatives of the objective. The purpose of
this paper is to analyze this discrepancy and its impacts for the recursive dis-
cretization in more detail. That means, we analyze for a fixed control function

5.2 The Continuous Optimal Control Problem and its Gradient 83

the convergence rate of the discrete adjoint associated with the corresponding
discretized control problem to the corresponding continuous adjoint. For that
purpose, we present the discretization schemes automatically derived by AD to
integrate the sensitivity equation and the adjoint equation of the underlying op-
timal control problem. Subsequently, we prove that the discretization method
obtained for the sensitivity equation inherits the convergence properties of the
discretization scheme used for the state equation. A similar result can be proved
for the adjoint equation provided that some additional assumptions on the co-
efficients of the original discretization method are fulfilled. Moreover, we sketch
the computation of the required gradient information using the approximations
of the sensitivity equation and the adjoint equation, respectively. However, we
also show that the gradient information provided by AD is the exact discrete
derivative information, which need not coincide with the one based on the ap-
proximation of the sensitivity and adjoint equation, respectively. This aspect
is subject of ongoing research and was studied for example in [48, 67].

Hence, we choose for a given fixed control the discretize-then-optimize ap-
proach and compare the approximation that we achieve with the continuous
solutions of the optimize-then-discretize method. The analysis in this paper
can be considered as a continuation of [67], where the effect of this difference
is examined by means of two numerical examples. Here, analyzes the discrete
adjoint information arising for one subproblem of a gradient-based optimiza-
tion procedure. Therefore, it is related to [44, 84], where the convergence rate
of the solution of the discretized control problem to the solution of the con-
tinuous problem is studied for the full discretization approach. That is, these
papers study the difference between the optimal solutions of the continuous
optimization problem and the discrete version.

The present paper has the following structure. In Section 5.2 we introduce
the continuous optimal control problem to be considered. Furthermore, we dis-
cuss two possibilities of computing the objective gradient for the continuous
formulation. Subsequently, we present the corresponding finite-dimensional op-
timization problem in Section 5.3. Section 5.4 introduces discretization schemes
for computing an approximate solution of the sensitivity equation. We prove
some convergence properties of the schemes generated by the forward mode of
AD. Convergence results for the recursive discretization applying the reverse
more of AD are proved in Section 5.5. Section 5.6 gives a numerical illustration
of the obtained results. Finally, we draw some conclusions in Section 5.7.

5.2 The Continuous Optimal Control Problem and

its Gradient

We consider the following optimal control problem:

Minimize J(y) = ϕ(y(tf)) (5.1)

s.t.
dy

dt
(t) = f(y(t), u(t)) t ∈ [0, tf] (5.2)

y(0) = y0 (5.3)

84 Chapter 5. Automatic Differentiation for Explicit Runge-Kutta Methods

where y(t) ∈ R
n denotes the state and u(t) ∈ R

m denotes the control. The dy-
namics are given by a right-hand side function f : R

n×R
m → R

n and y0 ∈ R
n

describes the initial conditions. To compute the value of the objective function,
ϕ : R

n → R evaluates the state at the prescribed final time tf . For simplicity,
we assume that all functions are sufficiently smooth such that the existence of
a solution is ensured and all necessary differentiations can be performed. Fur-
thermore, no constraints on the control are considered yet. Box constraints and
more complicated constraints on the control will be subject of further studies.

The state y is fully determined by the control u. Therefore, we may in-
troduce an objective in terms of the control variable only. To this end, we
define for a given control u and a corresponding solution y = ψ(u) of the state
equation (5.2)–(5.3) the objective function

J̃(u) = J(ψ(u))

depending only on u. Since optima are locally characterized as roots of the
gradient, we have a closer look at its representation. For that purpose, let the
symbol D denote Fréchet derivatives in infinite-dimensional spaces. Applying
the chain rule, one obtains

DJ̃(u) = DJ(ψ(u)) Dψ(u).

Now, one can employ two distinct ways for calculating DJ̃(u). The first one
determines for a given control u the sensitivity s(t) ∈ R

n in the direction of
d(t) ∈ R

m using the sensitivity equation:

ds

dt
(t) = fy(ψ(u)(t), u(t)) s(t) + fu(ψ(u)(t), u(t)) d(t), s(0) = 0. (5.4)

One obtains immediately the forward or sensitivity representation of the gradi-
ent:

DJ̃(u)d = ∇ϕ(ψ(u)(tf)) s(tf) . (5.5)

Here, the attribute forward refers to the fact that the sensitivity equation has
to be integrated in forward direction from 0 to tf to find the Gâteaux variation
DJ̃(u)d. It should be noted that in (5.5), ∇ϕ(ψ(u)(tf)) denotes the gradient
of ϕ with respect to y evaluated at ψ(u)(t), and not the total derivative of the
composite function ϕ ◦ ψ.

The following alternative computes the complete DJ̃(u) by employing the
adjoint differential equation

−dλ
dt

(t) = fy(ψ(u)(t), u(t))T λ(t), λ(tf) = ∇ϕ(ψ(u)(tf))T . (5.6)

The solution λ(t) ∈ R
n of this linear ODE is called the adjoint variable and

yields the gradient’s backward or adjoint representation [16, Section 2.4]

(DJ̃(u)(t))T = fu(ψ(u)(t), u(t))T λ(t) ∈ R
m×1. (5.7)

It follows that one has to integrate the adjoint equation in backward direction
from tf to t for calculating the gradient at time t. The connection between the

5.3 The Discrete Optimal Control Problem 85

interpretation of the objective gradient as a function depending on time and
its function space interpretation is illustrated by the following formula for the
Gâteaux variation in the direction of ū:

DJ̃(u)T ū =

∫ tf

0
DJ̃(u)(t)T ū(t) dt. (5.8)

All AD-tools that the author is aware of provide the forward mode which can be
seen as a discrete version of the sensitivity equation. On the other hand, not all
AD-tools allow the application of the reverse mode that forms a discrete analog
of the adjoint method. Therefore, we will consider sensitivity-based methods as
well as adjoint-based methods to compute gradient information in this paper.

5.3 The Discrete Optimal Control Problem

To solve the problem (5.1)–(5.3) numerically, we have to perform some dis-
cretizations. Therefore, assume that the time interval [0, tf] is divided into
N − 1 sub-intervals of equal length. Then the time grid consists of points

ti = (i− 1) · h for i = 1, . . . ,N (5.9)

where h = tf/(N − 1) is the time step length. For simplicity, we restrict here
the presentation to uniform grids.

All control and state components will be approximated at the grid points
only, where we use the notation

yi to approximate y(ti), y = (y1, . . . , yN)T ∈ R
Nn,

ui to approximate u(ti), u = (u1, . . . , uN)T ∈ R
N .

Here, we restrict the analysis to one distributed control for notational simpli-
city. The argumentation for several distributed controls only complicates the
formulation and can be easily integrated. We obtain the finite-dimensional NLP
problem

Minimize J̃(u) = ϕ(ψN (u))

where J̃ : R
Nm → R and y = ψ(u) = (ψ1(u), . . . ,ψN (u))T approximately

satisfies the state ODE (5.2) of the problem. Throughout the paper, we took
ψ to represent an explicit Runge-Kutta scheme with constant step size h.

In dependence on the specific Runge-Kutta scheme applied, the control func-
tion u has to be evaluated at arguments ti + cjh that may not lie on the time
grid (5.9). Then, one can consider these intermediate values as independent
optimization variables or as auxiliary values that are computed by an interpo-
lation scheme using the values of u on the grid points. The first approach is
applied for example in [84] for the full discretization. The latter is common for
recursive discretization methods. Therefore, we assume throughout that the
intermediate values ũj of the control function at time ti + cjh, 0 < cj < 1, are
computed by an interpolation polynomial p.

86 Chapter 5. Automatic Differentiation for Explicit Runge-Kutta Methods

For constant and linear interpolation at time t̃ with ti < t̃ < ti+1, only
the values of ui and ui+1 are required. Hence, the number of unknowns equals
Nm. Quadratic interpolation is rarely used due to the resulting oscillations in
the approximation of the control. Instead, one applies more frequently cubic
interpolation based on a cubic spline, see e.g. [124]. This approach requires in
addition to the Nm unknowns for linear interpolation only the values of u′1 and
u′N . The corresponding coefficients of the polynomials are defined by

αi = ui, βi =
ui+1 − ui

h
− h2γi + γi+1

6
, δi =

γi+1 − γi

h

where γ = (γ1, . . . , γN) is determined by the solution of a tridiagonal system

Dγ = r (5.10)

with a system matrix D independent of u. The right-hand side r is defined as

r1 =
6

h

(

u2 − u1

h
− u′1

)

, rN =
6

h

(

u′N −
uN − uN−1

h

)

,

ri =
3(ui+1 − 2ui + ui−1)

h2
, i = 2, . . . ,N − 1.

Hence, the cubic interpolation is available at low cost. For the sake of notational
simplicity, we will assume that the values of u′1 and u′N are fixed. However, the
presented analysis can be easily extended to allow also varying derivatives.
The discussed interpolation methods up to fourth order are shown in Table 5.1
and seem to cover numerous applications of the recursive discretization. To
abbreviate the notation, we combine the first two arguments of the interpolation
polynomial that belong to the control to one argument vi ≡ (ui, ui+1) ∈ R

2.

Type constant linear cubic

κ 1 2 4

p(vi, t) ui (ui+1 − uit)/h + ui αi + βit+ γit
2/2 + δit

3/6

Table 5.1: Interpolation polynomials p(vi, t) of order ν

Then, we obtain the following algorithm for computing the discrete state
vector y and the value of the objective function:

Algorithm 1: Integration of state equation

y1 = y0

For i = 1, N − 1, 1

For j = 1, s, 1

ỹj = yi + h
j−1
∑

l=1

ajl kl, ũj = p(vi, cjh)

kj = f(ỹj, ũj)

yi+1 = yi + h
s
∑

j=1
bjkj

5.4 Forward Mode of AD in Recursive Discretization 87

J̃ = ϕ(yN)

with cj =
∑j−1

l=1 ajl and ajl = 0 for l ≥ j. In the following sections we will
extend Algorithm 1 to compute in addition to the state and the cost function
also derivative information.

5.4 Forward Mode of AD in Recursive Discretization

For a given vector function F evaluated at a certain point x and a direction
ẋ, the scalar forward mode of AD yields the product F ′(x)ẋ, i.e. the Jacobian
F ′(x) multiplied by the vector ẋ from the right. The evaluation cost for such a
product can be bounded above by the product of a small constant and the cost
to evaluate the function itself. In the literature the value of the constant varies
between three and five depending on the considered computational complexity
estimates [70].

In our context of an optimal control problem, the discrete evaluation of the
cost function J̃ given by Algorithm 1 defines the vector function F that has
to be differentiated. Using the direction u̇ = (u̇1, . . . , u̇N)T ∈ R

N , the forward
mode of AD applied to F yields the following integration procedure [70]:

Algorithm 2: Applying AD, forward differentiation of state equation

y1 = y0, ẏ1 = 0n

For i = 1, N − 1, 1

For j = 1, s, 1

ỹj = yi + h
j−1
∑

l=1

ajl kl, ũj = p(vi, cjh),

˙̃yj = ẏi + h
j−1
∑

l=1

ajl k̇l
˙̃uj = pu(vi, cjh)u̇

kj = f(ỹj, ũj), k̇j = fy(ỹj , ũj) ˙̃yj + fu(ỹj, ũj) ˙̃uj

yi+1 = yi + h
s
∑

j=1
bjkj , ẏi+1 = ẏi + h

s
∑

j=1
bj k̇j

J̃ = ϕ(yN), ˙̃
J = ∇ϕ(yN)ẏN

Here, the customary notation in AD literature is used. Note that for cubic
interpolation, the derivative pu(vi, cjh) takes also the differentiation of the co-
efficients αi, βi, γi, δi with respect to u into account.

Employing the recursive discretization for solving the optimal control prob-
lem (5.1)–(5.3), one is interested in computing the complete gradient ∇J̃(u) of
the cost function with respect to the control variables u ∈ R

N . One obtains
the exact discrete derivative information ∇J̃(u) using the forward mode by
choosing the N unit vectors as directions u̇ because of the following argument.
Applying the chain rule, it follows that the derivative of J̃ with respect to the
ith component ui has the representation

∂J̃(u)

∂ui
=

N
∑

l=2

∇ϕ(ψN (u))
∂ψN (u)

∂ψN−1(u)
· · · ∂ψl+1(u)

∂ψl(u)

∂ψl(u)

∂ui
. (5.11)

88 Chapter 5. Automatic Differentiation for Explicit Runge-Kutta Methods

Let ei ∈ R
N be the ith unit vector. Then, one can conclude from the statements

for ˙̃uj , k̇j and ẏ that in the step i = 1 the derivative of ψ2 with respect to ui is
added to ẏ2. Furthermore from the statements for ˙̃yj and k̇j , one can see that
in step i > 1 the vector ẏi is first used to compute the derivative of ψi+1(u)
with respect to ψi(u) as well as the derivative of ψi+1(u) with respect to ui.
Subsequently, these values together with ẏi form ẏi+1, i.e. one has

ẏi+1 =
i+1
∑

l=2

∂ψi+1(u)

∂ψi(u)
· · · ∂ψl+1(u)

∂ψl(u)

∂ψl(u)

∂ui
.

Finally, the vector ẏN is multiplied by ∇ϕ(ψN (u)) to obtain the component of
the gradient belonging to ui. Hence, for evaluating ∇J̃(u) one has to propagate
N unit vectors through Algorithm 2. Obviously, this way to calculate ∇J̃ is very
costly for high dimensions N . Some savings can be obtained by using the vector
forward mode of AD, where a bundle of directions is propagated. Nevertheless,
the reverse mode of AD should be used for gradient calculation for moderate
and high dimensions whenever possible as illustrated in Section 5.5.

However, our aim was to analyze the approximate solution of the sensitivity
equation (5.4) generated by AD. For that purpose, Algorithm 3 states one
possibility to integrate the sensitivity equation applying the same Runge-Kutta
scheme used for integrating the state equation:

Algorithm 3: Integration of state and sensitivity equation

y1 = y0, s1 = 0n

For i = 1, N − 1, 1

For j = 1, s, 1

ỹj = yi + h
j−1
∑

l=1

ajl kl, ũj = p(vi, cjh)

s̃j = si + h
j−1
∑

l=1

ajl k̃l d̃j = q(wi, cjh)

kj = f(ỹj, ũj), k̃j = fy(ỹj , ũj)s̃j + fu(ỹj, ũj)d̃j

yi+1 = yi + h
s
∑

j=1
bjkj , si+1 = si + h

s
∑

j=1
bj k̃j

J̃ = ϕ(yN)

Here, q(wi, cjh) with wi = (di, di+1) interpolates the chosen direction d ∈ R
N

at the intermediate times ti + cjh with the same interpolation order κ as p. Let
us assume that the Runge-Kutta scheme applied in Algorithm 1 for the state
integration is consistent of order ν and an appropriate interpolation order κ ≥ ν
is used. Then the resulting approximations yi, i = 1, . . . ,N , are consistent of
order ν. In addition, it follows that also the approximate solution s of the
sensitivity equation obtained by Algorithm 3 is consistent of order ν. Hence,
one obtains that the convergence order of the integration method proposed in
Algorithm 3 for the sensitivity equation equals ν since the right-hand side f is
assumed to be sufficiently smooth.

To obtain a related convergence result for Algorithm 2, we examine now
the relation between Algorithm 2 and Algorithm 3. As can be seen, there are

5.5 Reverse Mode of AD in Recursive Discretization 89

similar recursions for ˙̃yj and s̃j as well as for k̇j and k̃j . The only difference lies
in the direction ˙̃uj and d̃j. Therefore, we have to examine the computation of
˙̃uj in more detail. For constant and linear interpolation it is very easy to check
that ˙̃uj = pu(vi, cjh)u̇ also yields a constant and linear interpolation of u̇. For
cubic interpolation, the system matrix D of (5.10) is constant with respect to
u. Let ru denote the differentiation of r with respect to all components of u.
Then, the product r̃ = ruu̇ agrees with r if one substitutes u̇i with ui since r is
only linear in u. Furthermore, one has for the derivative γu of γ with respect
to u the identity

γuu̇ = D−1ruu̇ = D−1r̃ = γ̃. (5.12)

Analyzing also the remaining coefficient vectors of the cubic interpolation poly-
nomial, e.g. α̃ ≡ αuu̇ = u̇, one finds easily that

˙̃uj = pu(vi, cjh)u̇ = α̃i + β̃it+ γ̃it
2/2 + δ̃it

3/6 (5.13)

is a cubic interpolation scheme for the given direction u̇ and the slopes
u̇′

1 = u̇′
N = 0. It follows that Algorithm 2 and Algorithm 3 yield the same

approximate solution ẏi and si, respectively, when u̇ = d and d′1 = d′N = 0
holds. Hence, we have proved the following convergence result:

Theorem 5.4.1 (Convergence of Forward Mode Discretization).
Assume that f and u are ν times continuously differentiable with ν ≤ 4. Suppose
that the integration method applied in Algorithm 1 is convergent of order ν.
Furthermore, let the order of the interpolation polynomial taken from Table 5.1
be not less than ν. Then one has for a given direction d with d′1 = d′N = 0
that the approximate solution ẏi, i = 1, . . . ,N , generated by the forward mode
of AD (Algorithm 2) converges with order ν to the continuous solution of the
sensitivity equation (5.4) if u̇ = d.

This theorem ensures that the discretization scheme generated by the for-
ward mode of AD applied to the state equation inherits the convergence rate
of the discretization scheme used for the state equation without any additional
assumptions. Note that nonzero values for the derivative of d at the times t0
and tN can be easily taken into account. Using the gradient representation
(5.5), we are now able to compute an approximation of the continuous gradient
of order ν ≤ 4 based on the approximate solution ẏi, i = 1, . . . ,N , of the sensi-
tivity equation by choosing the Nm unit vectors as directions u̇ in Algorithm 2.
Obviously, this approach is usually very costly for reasonable discretizations of
the original problem. Therefore, we will now turn to the reverse mode of AD
that provides a cheap computation of gradient information.

5.5 Reverse Mode of AD in Recursive Discretization

For a given vector function F evaluated at a certain point x with y = F (x) and
a weight vector ȳ, the scalar reverse mode of AD yields the product F ′(x)T ȳ,
i.e. the transposed Jacobian F ′(x)T multiplied by the vector ȳ from the right.

90 Chapter 5. Automatic Differentiation for Explicit Runge-Kutta Methods

Once more the evaluation cost for such a product can be bounded above by
the product of a small constant and the cost to evaluate the function itself.
Depending on the considered complexity estimates, the value of the constant
varies again between three and five [70]. Hence, the exact gradient of a scalar
valued function given by a computer program can be computed via AD with
an effort that is independent of the number of optimization variables. It seems
that this impressive result is yet not well enough appreciated compared to the
inexactness of finite differences and the effort to evaluate them.

In the context of an optimal control problem, the weight vector J̄ ∈ R is set
to J̄ = 1 and we are interested in the gradient ∇J̃(u) with u ∈ R

N . Then, the
scalar reverse mode of AD applied to the state integration given by Algorithm 1
corresponds to the following integration procedure [70]:

Algorithm 4: Applying AD, reverse differentiation of state equation

y1 = y0

For i = 1, N − 1, 1

For j = 1, s, 1

ỹj = yi + h
j−1
∑

l=1

ajl kl

ũj = p(vi, cjh)

kj = f(ỹj, ũj)

yi+1 = yi + h
s
∑

j=1
bjkj

J̃ = ϕ(yN)

ȳN = ∇ϕ(yN)T , ūi = 0m 1 ≤ i ≤ N
For i = N − 1, 1,−1

ȳi = ȳi+1 k̄j = h bj ȳi+1, j = 1, . . . , s

For j = s, 1,−1

¯̃yj = fy(ỹj, ũj)
T k̄j , ¯̃uj = fu(ỹj, ũj)

T k̄j

ū += pu(vi, cjh)
T ¯̃uj ,

ȳi += ¯̃yj, k̄l += hajl
¯̃yj, l = 1, . . . , j − 1

ȳ1 = 0.

Once more, the common notation in AD literature is used, where a+= b denotes
a = a+b. Applying this basic form of the scalar reverse mode, first the forward
integration is performed to calculate the values ỹj and ũj . Then, the second
for-loop computes the desired gradient ∇J̃(u) assuming that the intermediate
values ỹj and ũj of state i are still available. These intermediate values can be
stored sequentially onto a data structure and retrieved in reverse order when
they are needed. This approach is easy to implement but results in a memory
requirement that is proportional to the number N of time steps. To reduce this
potential enormous memory requirement, optimal checkpointing procedures are
available that can easily be incorporated into Algorithm 4 [76].

After these general remarks about the reverse mode of AD we return to

5.5 Reverse Mode of AD in Recursive Discretization 91

the analysis of the approximate solutions of the state equation (5.2) and the
adjoint equation (5.6) generated by the reverse mode of AD. First, one has to
note that the integration method for the state is not changed. Therefore, the
convergence order of the integration method applied for the state integration
does not change. This is also true for other approaches to compute the gra-
dient information ∇J̃(u) using the recursive discretization. Therefore, we face
the first important difference between the full discretization and the recursive
discretization. Using the full discretization, it may happen that the discrete
solution of the state does not converge to the continuous solution if a second
order Runge-Kutta method is used, see [84, Section 6]. In the remaining part
of this section, we will prove that for a fixed control function the approximate
solution of the continuous adjoint equation converges to the exact solution of
the continuous adjoint equation with order ν if the state approximation con-
verges already with order ν to the exact solution of the state equation. Here,
we face the second important difference between the full discretization and the
recursive discretization: The usual order conditions for Runge-Kutta schemes
are shown in Table 5.2, where the conditions for order ν comprise those listed in
Table 5.2 for that specific order as well as those for all lower orders. Using the
full discretization, it was proved by Hager that additional conditions have to be
fulfilled for ν ≥ 3 to ensure the order ν also in the optimal control context [84].

ν Conditions with ci =
∑s

j=1 aij, di =
∑s

j=1 bjaji

1
∑

bi = 1

2
∑

bici = 1
2

3
∑

cidi = 1
6 ,
∑

bic
2
i = 1

3

4
∑

bic
3
i = 1

4 ,
∑

biciaijcj = 1
8 ,
∑

biaijc
2
j = 1

12 ,
∑

biaijajkck = 1
24

Table 5.2: Order ν of a Runge-Kutta discretization for recursive discretization

With respect to the approximate solution of the adjoint equation given by
the reverse mode of AD, one obtains from Algorithm 4 the recursion

ȳi = ȳi+1 +

s
∑

j=1

¯̃yj, ȳN = ∇ϕ(yN)T , (5.14)

¯̃yj = fy(ỹj, ũj)
T k̄j = fy(ỹj, ũj)

T

(

h bj ȳi+1 + h

s
∑

l=j+1

alj
¯̃yl

)

.

Now, we transform this recursion into a formulation that is better suited for
the analysis. This modification is similar to the one used by Hager [84]. We
introduce a new variable ŷj by setting

ŷj = ȳi+1 +
s
∑

l=j+1

alj

bj
¯̃yl, j = 1, . . . , s, (5.15)

92 Chapter 5. Automatic Differentiation for Explicit Runge-Kutta Methods

where we assume bj > 0, j = 1, . . . , s. It follows that

¯̃yj = h bj fy(ỹj, ũj)
T ŷj. (5.16)

Exploiting the identities (5.15) and (5.16) yields

ŷj − ȳi+1 =

s
∑

l=j+1

alj

bj
¯̃yl =

s
∑

l=j+1

alj

bj

(

h bl fy(ỹl, ũl)
T ŷl

)

.

Using (5.14) and (5.16), we obtain the recursion

ȳi = ȳi+1 + h
s
∑

j=1

bj fy(ỹj , ũj)
T ŷj, ȳN = ∇ϕ(yN)T ,

ŷj = ȳi+1 +

s
∑

l=j+1

alj

bj

(

h bl fy(ỹl, ũl)
T ŷl

)

which marches still backwards. Therefore, we now change the direction of the
integration. This yields

ȳi+1 = ȳi − h
s
∑

j=1

bj fy(ỹj, ũj)
T ŷj, ȳN = ∇ϕ(yN)T

ŷj = ȳi − h
s
∑

l=1

bl fy(ỹl, ũl)
T ŷl +

s
∑

l=j+1

alj

bj

(

h bl fy(ỹl, ũl)
T ŷl

)

= ȳi − h
s
∑

l=1

ājlfy(ỹl, ũl)
T ŷl with ājl =

bjbl − blalj

bj

assuming alj = 0 if l ≤ j. Defining g(y, ȳ, u) = −fy(y, u)
T ȳ, we obtain

ȳi+1 = ȳi + h

s
∑

j=1

bj g(ỹj , ŷj, ũj), ȳN = ∇ϕ(yN)T (5.17)

ŷj = ȳi + h

s
∑

l=1

ājlg(ỹl, ŷl, ũl), ỹj = yi + h

j−1
∑

l=1

ajlf(ỹl, ũl), (5.18)

which requires the knowledge of the intermediate values y1, . . . , yN . The derived
integration scheme (5.17)–(5.18) for the adjoint equation (5.6) is very similar to
the one obtained by Hager for the full discretization. However, the important
difference is given by the fact that for the recursive discretization the function
f depends on the state and the control as well as the function g on the state,
the control, and the costate whereas for the full discretization the functions f ,
i.e. the right-hand side of the state equation, and φ, i.e. the right-hand side of
the costate equation, both depend on the state and the costate. In addition,
for the recursive discretization we interpolate the control at the intermediate
points ti +cjh and do not consider the intermediate values as additional control
variables. Hence, we can not simply refer to the consistency proof by Hager
[84], although there will be a significant similarity of the proofs.

5.5 Reverse Mode of AD in Recursive Discretization 93

Since the summations for ŷj and ỹj involve different coefficients ājl and ajl,
it is also not possible to apply the usual consistency theory for Runge-Kutta
schemes. Therefore, we use a similar approach to that of Butcher [21] but take
the specific situation with the different coefficients ājl and ajl as well as the
interpolation of the control into account. Despite the fact that the analysis
works also for higher order, we restrict the proof to schemes of order less than 5
since is seems quite unusual to have an appropriate interpolation that maintains
a higher order of the applied Runge-Kutta method.

Defining the function g̃ = (f, g, u′)T acting on (y, ȳ, u), the solution λ of the
adjoint equation (5.6) has the Taylor expansion

λ(t+ h) = λ(t) + gh+
1

2
g′g̃ h2 +

1

6

[

g′′g̃2 + g′g̃′
]

h3 +

1

24

[

g′′′g̃3 + 3g′′g̃g̃′ + g′g̃′′
]

h4 +O(h5).

Here, the functions g and g̃ as well as their derivatives are evaluated at the
point (y(t), λ(t), u(t)). The derivatives should be viewed in an operator context
introduced for example in [21] or [136]. Hence, the derivative g′ operates on a
vector and yields a scalar. The second derivative g′′ acts on a pair of vectors to
give a vector. Finally, one has g̃′ = (fyf + fuu

′, gyf + gȳg + guu
′, u′′)T and so

on.
For the Taylor expansion around the approximations ȳi, we define

ζ1(h) =





yi

ȳi

ui



 and ζj(h) =





ỹj

ŷj

ũj



 1 < j ≤ s

as well as the functions

G(ζ) =

s
∑

j=1

bjg(ζj) and Fj(ζ) =





∑j−1
l=1 ajlf(ỹl, ũl)

∑s
l=1 ājlg(ỹl, ŷl, ũl)

(p(vi, cjh)− ui)/h



 .

Then, one has

ζ(h) = ζ(0) + hF (ζ(h)) and ȳi+1 = ȳi + hG(ζ(h)).

Expanding G(ζ(h)) in a Taylor series around h = 0, we obtain

ȳi+1 = ȳi + hG+
1

2

[

2G′F
]

h2 +
1

6

[

3G′′F 2 + 6G′F ′F
]

h3 +

1

24

[

4G′′′F 3 + 24G′′FF ′F + 24G′(F ′)2F + 12G′F ′′F 2
]

h4 +O(h5),

where G, F , and their derivatives are evaluated at ζ(0). Now, we can prove the
main result of this section:

Theorem 5.5.1 (Convergence of Reverse Mode Discretization I).
Assume that f and u are ν times continuously differentiable with ν ≤ 4. Let
the integration method applied in Algorithm 1 be of order ν with coefficients

94 Chapter 5. Automatic Differentiation for Explicit Runge-Kutta Methods

bj > 0, 1 ≤ j ≤ s, i.e., it fulfills the conditions of Table 5.2 up to order ν.
Furthermore, let the order of the interpolation polynomial taken from Table 5.1
be not less than ν. Then, the approximate solution ȳi, i = 1, . . . ,N , generated by
the reverse mode of AD (Algorithm 4) converges with order ν to the continuous
solution of the adjoint equation (5.6).

Proof: We have to check for a given ν that the Taylor expansions of λ and
ȳ agree through all terms of order hκ, κ = 1, . . . , ν. For that purpose, the
arguments of the functions f and g are skipped since they are always evaluated
at the point (yi, ȳi, ui).

For ν = 1, the equation

g =
∑

bjg

has to be fulfilled, which yields with
∑

bj = 1 the condition for order 1 as stated
in Table 5.2. Here, we employ the summation convention that if an index range
does not appear on a summation sign then the summation is over each index,
taking values from 1 to s.

For ν = 2, we introduce abbreviations cj =
∑j−1

l=1 ajl, c̄j =
∑s

l=1 ājl, and
ûj = (p(vi, cjh)− ui)/h = (ũj − ui)/h. One has to check whether

g′g̃ = gyf + gȳg + guu
′
i (5.19)

agrees with

2G′F = 2

s
∑

j=1

bj
(

cjgyf + c̄jgȳg + guûj

)

(5.20)

up to terms of order 1. One obtains immediately the conditions

∑

bjcj =
1

2
=
∑

bj c̄j .

The first equality holds because of the usual order conditions for Runge-Kutta
schemes. Hence, it is fulfilled because the scheme for the forward integration
(Algorithm 1) is of order 2. The second equality is obtained by

∑

bj c̄j =
∑

bj
bjbl − blalj

bj
=
∑

bj −
∑

bjcj =
1

2
.

Additionally we have to take the interpolation of the control into account. For
the interpolation polynomials of order κ ≥ 2 that are given in Table 5.2, we
have

ûj = cju
′
i +O(h). (5.21)

Hence, the Taylor expansions of λ and ȳ agree through all terms of order κ,
κ = 1, 2 if the conditions for order κ ≤ 2 as stated in Table 5.2 are fulfilled.

For ν = 3, one obtains that gȳȳ = 0 since g depends only linearly on ȳ.
Hence, we have to consider

g′′g̃2 = gyyff + 2gyȳfg + (2gyuf + 2gȳug + guuu
′
i)u

′
i (5.22)

5.5 Reverse Mode of AD in Recursive Discretization 95

and

3G′′F 2 = 3
∑

bj

(

c2jgyyff + 2cj c̄jgyȳfg +

(2cjgyuf + 2c̄jgȳug + guuûj)ûj

)

.
(5.23)

For the terms gyyff and gyȳfg the identities

1

3
=
∑

bjc
2
j =

∑

bjcj c̄j (5.24)

must hold. The first one is again an usual order condition for Runge-Kutta
schemes. Therefore it is valid since the scheme applied in Algorithm 1 is sup-
posed to be of order 3. For the next equality, one has

∑

bjcj c̄j =
∑

bjcj
bjbl − blalj

bj
=
∑

bjcj

(

1− 1

bj

s
∑

l=1

blalj

)

=
1

2
−
∑

blaljcj =
1

6
.

With respect to the control u, condition (5.21) holds for the interpolation poly-
nomial of order κ ≥ 3. This fact together with the equality (5.24) yields that
(5.22) and (5.23) agree except for terms of higher order. Second, we examine

g′g̃′ = gy(fyf + fuu
′
i) + gȳ(gyf + gȳg + guu

′
i) + guu

′′
i (5.25)

and

G′F ′F =
∑

bj
(

ajl gy (clfyf + fuûl) + ājl gȳ (clgyf + c̄lgȳg + guûl)
)

, (5.26)

where no term bjgu occurs in (5.26) since the derivative of the third entry
of Fj , i.e., of (p(vi, 0) − ui)/h, with respect to ui vanishes for the interpolation
polynomial of order κ with κ ≥ 3 at t = 0. It follows from the Taylor expansions
of λ and ȳ that the equations

1

6
=
∑

bjajlcl =
∑

bj ājlcl =
∑

bj ājlc̄l (5.27)

must be valid. These equalities cover three terms of (5.25). The first one is an
usual condition for Runge-Kutta methods and holds because of the order of the
forward integration. For the second and third equation, we obtain

∑

bj ājlcl =
∑

bj
bjbl − blalj

bj
cl =

∑

bjblcl −
∑

blaljcl =
1

6
,

∑

bj ājlc̄l =
∑

bj
bjbl − blalj

bj
(1− 1

bl

s
∑

k=1

bkakl) =
1

6
.

Applying again the property (5.21) for the interpolation polynomials of order
κ ≥ 3 yields for the terms gyfuu

′
i and gȳguu

′
i of (5.25) two equalities of (5.27)

96 Chapter 5. Automatic Differentiation for Explicit Runge-Kutta Methods

both of which are valid. The remaining term guu
′′
i of (5.26) together with the

term guu
′
i of (5.19) forms the sum

gu

(

h2

2
u′i +

h3

6
u′′i

)

in the Taylor expansion of λ. Due to the interpolation order ν ≥ 3, we obtain

p(vi, cjh) = ui + cjhu
′
i +

1

2
c2jh

2u′′i +
1

6
c3jh

3u′′′i +O(h4) (5.28)

(see e.g. [124, Property 8.3]). It follows that we have for the term guûj of (5.20)
not only guûj = gucju

′
i + O(h), but for the corresponding term in the Taylor

expansion of ȳ that

h2
∑

bjguûj = h2gu

∑

bj(cju
′
i + c2jhu

′′
i /2 +O(h2))

= gu

(

h2

2
u′i +

h3

6
u′′i +O(h4)

)

.
(5.29)

Hence, for an interpolation order κ ≥ 3 the equations (5.25) and (5.26) agree
except for terms of higher order.

For ν = 4, first one has

g′′′g̃3 = gyyyf
3 + 3gyyȳf

2g + (3gyyuf
2 + 6gyȳufg)u

′
i+

(3gyuuf + 3gȳuug)(u
′
i)

2 + guuug(u
′
i)

3
(5.30)

and

4G′′′F 3 = 4
∑

bj

(

c3jgyyyf
3 + 3c2j c̄jgyyȳf

2g +

(3c2jgyyuf
2 + 6cj c̄jgyȳufg)u

′
i +

(3cjgyuuf + 3c̄jgȳuug)(u
′
i)

2 + guuug(u
′
i)

3
)

(5.31)

when taking gȳȳ = 0 into account. Hence, the equalities

1

4
=
∑

bjc
3
j =

∑

bjc
2
j c̄j (5.32)

must hold for the first four terms of (5.30). Once more, the first one is an usual
order condition for Runge-Kutta schemes and holds because of the order of the
forward integration. For the next equality, one obtains

∑

bjc
2
j c̄j =

∑

bjc
2
j

(

1− 1

bj

∑

blalj

)

=
1

2
−
∑

blaljc
2
j =

1

4
.

Employing condition (5.21) for the interpolation polynomial of order ν = 4
together with the equality (5.32) yield that (5.30) and (5.31) agree except for
terms of higher order. Second, we consider the term

3g′′g̃g̃′ = 3
(

(gyyf + gyȳg + gyuu
′
i)(fyf + fuu

′
i)+

(gyȳf + gȳuu
′
i)(gyf + gȳg + guu

′
i)+ (5.33)

u′′i (gyuf + gȳug + guuu
′
i)
)

5.5 Reverse Mode of AD in Recursive Discretization 97

as well as

24G′′FF ′F =

24
∑∑

(

bjajl(cjgyyf + c̄jgyȳg + gyuûj)(clfyf + fuûl)
)

+ (5.34)

24
∑

(

bj ājl(cjgyȳf + gȳuûj)(clgyf + c̄lgȳg + guûl)
)

.

It follows that the equalities

1

8
=
∑

bjcjajlcl =
∑

bj c̄jajlcl =
∑

bjcj ājlcl =
∑

bjcj ājlc̄l (5.35)

must be fulfilled. The first one is again an usual order condition for Runge-
Kutta schemes that holds since the order of the forward integration is assumed
to be 4, whereas the next three equalities can be proved by

∑

bj c̄jajlcl =
∑

bj

(

1− 1

bj

s
∑

k=1

bkakj

)

ajlcl =
∑

bjajlcl −
∑

bkakjajlcl =
1

8
,

∑

bjcj ājlcl =
∑

bjcj
bjbl − blalj

bj
cl =

∑

bjcjblcl −
∑

blclaljcj =
1

8
,

∑

bjcj ājlc̄l =
∑

bjcj
bjbl − blalj

bj
(1− 1

bl

s
∑

k=1

bkakl)

=
∑

bjcjbl −
∑

blaljcj −
∑

bjcjbkakl +
∑

bkaklaljcj =
1

8
.

Employing condition (5.21) for the interpolation polynomial of order ν = 4
together with the equality (5.35) yields that (5.33) and (5.34) agree up to terms
of higher order except for the part involving u′′i , namely u′′i (gyuf+gȳug+guuu

′
i).

We will examine this one later. Next, we analyze

g′g̃′′ = gy

[

fyyf
2 + 2fyufu

′
i + fy(fyf + fuu

′
i) + fuu(u′i)

2
]

+

gȳ

[

gyyf
2 + 2gyȳfg + 2gyufu

′
i + 2gȳugu

′
i+

guu(u′i)
2 + gy(fyf + fuu

′
i) + gȳ(gyf + gȳg + guu

′
i)
]

+

u′′i (gyfu + gȳgu) + guu
′′′
i

(5.36)

as well as

12G′F ′′F 2 =12
∑

bjajl gy

[

c2l fyyf
2 + 2clfyufûl + fuu(ûl)

2
]

+

12
∑

bj ājl gȳ

[

c2l gyyf
2 + 2cl c̄lgyȳfg + 2clgyufûl+ (5.37)

+2c̄lgȳugûl + guu(ûl)
2
]

and

G′(F ′)2F =
∑

bjajlalkgyfy(ckfyf + fuûk)+
∑

bj ājlalkgȳgy(ckfyf + fuûk)+ (5.38)
∑

bj ājlālkg
2
ȳ(ckgyf + c̄kgȳg + guûk).

98 Chapter 5. Automatic Differentiation for Explicit Runge-Kutta Methods

From (5.36) and (5.37), we can conclude that

1

12
=
∑

bjajlc
2
l =

∑

bj ājlc
2
l =

∑

bj ājlcl c̄l

must be valid, where the first one is an usual order condition for Runge-Kutta
schemes. Hence it is fulfilled because of the order of the forward integration.
The remaining two equalities hold since we have

∑

bj ājlc
2
l =

∑

bj
bjbl − blalj

bj
c2l =

∑

bjblc
2
l −

∑

blc
3
l =

1

12
,

∑

bj ājlclc̄l =
∑

(bj − alj)cl(bl −
s
∑

k=1

bkakl)

=
∑

blcl −
∑

bkaklclbj −
∑

blclalj +
∑

bkaklclalj =
1

12
.

From (5.36), (5.38), the Taylor expansions of λ and ȳ as well as the property
(5.21), it follows that

1

24
=
∑

bjajlalkck =
∑

bj ājlalkck =
∑

bj ājlālkck =
∑

bj ājlālkc̄k

must hold. Once more, the first one is fulfilled because the scheme applied in
Algorithm 1 is assumed to be of order 4. The next three identities are valid
because
∑

bj ājlalkck =
∑

(bjbl − blalj)alkck =
∑

bjblalkck −
∑

blaljalkck =
1

24
,

∑

bj ājlālkck =
∑

(bj − alj)(blbk − bkakl)ck

=
∑

bkck −
∑

bkaklck −
∑

blaljbkck +
∑

bkckaklalj =
1

24
,

∑

bj ājlālk c̄k =
∑

(bj − alj)(bl − akl)(bk −
s
∑

i=1

biaik)

= 1−
∑

bici −
∑

blcl +
∑

dkck −
∑

blcl +
∑

blclbici

+
∑

dlcl −
∑

biaikaklcl =
1

24
.

The remaining terms are u′′i (3gyuf + 3gȳug + 3guuu
′
i + gyfu + gȳgu) and guu

′′′
i .

The terms involving u′i in (5.22) and (5.25) as well as the terms involving u′′i in
(5.33) and (5.36) contribute via the sum

u′i
6

(2gyuf + 2gȳug + guuu
′
i + gyfu + gȳgu)h3+

u′′i
24

(3gyuf + 3gȳug + 3guuu
′
i + gyfu + gȳgu)h4

(5.39)

to the Taylor expansion of λ. On the other hand, we have from (5.23) and
(5.26)

h3

6

s
∑

j=1

bj

(

(6cjgyuf + 6c̄jgȳug + 3guuûj)ûj +

s
∑

l=1

6(ajl gyfu + ājlgȳgu)ûl

)

(5.40)

5.5 Reverse Mode of AD in Recursive Discretization 99

as contribution to the Taylor expansion of ȳ. The equation (5.28) yields for the
interpolation order ν ≥ 4

ûj = cju
′
i +

c2jhu
′′
i

2
+
c3jh

2u′′′i

6
+O(h3). (5.41)

Therefore, it is easy to check that (5.39) and (5.40) agree except for terms of
higher order. Furthermore, in the Taylor expansion of λ, the terms guu

′
i, guu

′′
i ,

and guu
′′′
i occur in the sum

gu

(

h2

2
u′i +

h3

6
u′′i +

h4

24
u′′′i

)

.

Because of (5.41), we have for the term guûj of (5.20) not only (5.29), but for
the corresponding term in the Taylor expansion of ȳ that

h2
∑

bjguûj = h2gu

∑

bj

(

cju
′
i +

c2jhu
′′
i

2
+
c3jh

2u′′′i

6
+O(h3)

)

= gu

(

h2

2
u′i +

h3

6
u′′i +

h4

24
u′′′i +O(h5)

)

.

Therefore, also the remaining terms agree except for terms of higher order.

We proved so far that the approximate solution generated by the scalar
reverse mode of AD has the consistency order ν. Since we assume also that the
functions f and u are sufficiently smooth on the whole time interval, one has
that the convergence order of the integration scheme obtained by applying the
scalar reverse mode of AD equals ν.

Hence, we have proved that for a fixed control the approximate solution of the
adjoint equation generated by the reverse mode of AD converges at the same
rate as the approximate solution of the state equation. That is, the discretiza-
tion scheme generated automatically for the adjoint differential equation by
applying the technique of Automatic Differentiation has the same convergence
order as the discretization scheme that is used for the forward integration un-
der fairly mild additional assumptions. This result differs from the convergence
result for the full discretization where the convergence rate of the optimal solu-
tion of the discretized control problem to the optimal solution of the continuous
problem is considered. Analyzing the proof, this difference is due to the fact
that the terms involving second- or higher-order derivatives of g with respect
to ȳ vanish for the recursive discretization. For that reason, no additional
conditions on the coefficients are needed. However, it may happen that due
to constraints on the control the right-hand sides f and g are only Lipschitz
continuous. This problem will not be discussed here but is subject to further
investigations.

It is possible to eliminate the restriction bi > 0 for Runge-Kutta schemes
up to second order using the full discretization approach [44]. We are able to
prove a related result for the recursive discretization. Instead of the recursion
(5.17)–(5.18), we exploit another formulation of the discretization scheme. It

100 Chapter 5. Automatic Differentiation for Explicit Runge-Kutta Methods

can be shown by inspection for s ≤ 4 and using a rather technical induction for
s > 4 that (5.17)–(5.18) is equivalent to the recursion

ȳi+1 = ȳi + h
∑

bj g(ỹj , y̌j, ũj), ȳN = ∇ϕ(yN)T (5.42)

y̌j = y̌i + h
s
∑

l=1

ǎjlg(ỹl, ŷl, ũl), ǎjl = bl − ajl (5.43)

ỹj = yi + h

j−1
∑

l=1

ajlf(ỹl, ũl), (5.44)

which does not require the restriction bj > 0. Using this Runge-Kutta scheme,
we obtain the following result:

Theorem 5.5.2 (Convergence of Reverse Mode Discretization II).
Assume that f and u are ν times continuously differentiable with ν ≤ 4. Let the
integration method applied in Algorithm 1 be of order ν, i.e., it fulfills the condi-
tions of Table 5.2 up to order ν. Furthermore, let the order of the interpolation
polynomial taken from Table 5.1 be not less than ν. Then, the approximate
solution ȳi, i = 1, . . . , N , generated by the reverse mode of AD (Algorithm 4)
converges at least with order κ = min{2, ν} to the continuous solution of the
adjoint equation (5.6).

Proof: Once more, we assume throughout, that the functions f and u are suffi-
ciently smooth on the whole domain such that convergence follows immediately
from consistency. The difference between the two formulations is caused by the
different values of c̄j =

∑

ājl and čj =
∑

ǎjl = 1 −∑ ajl = 1 − cj that need
not to coincide.

For ν = 1 only the condition
∑

bj = 1 has to be fulfilled as shown in the
proof of Theorem 5.1. This equality holds since the integration scheme applied
in Algorithm 1 is supposed to be of order 1 and we obtain κ = 1.

For ν = 2, we have to check whether

∑

bjcj = 1/2 =
∑

bj čj .

holds. The first equality holds because of the usual order conditions for Runge-
Kutta schemes in the ODE context. The second equality is valid since we have

∑

bj čj =
∑

bj(1− cj) =
∑

bj −
∑

bjcj = 1/2.

For ν = 3, the equation
∑

bjcj čj = 1/3 must hold in analogy to (5.24).
However, the recursion (5.42)–(5.44) yields

∑

bjcj čj =
∑

bjcj(1− cj) =
∑

bjcj −
∑

bjc
2
j = 1/2− 1/3 = 1/6.

Hence, using (5.42)-(5.44) it is not possible to prove a convergence order that
exceeds 2.

Using the approximate solution ȳi of the adjoint equation (5.6) of order ν,
we are able to compute the desired gradient information with order ν using

5.6 Numerical Illustration 101

the adjoint representation (5.7) given in Section 5.2. Furthermore, one has
to note the following important fact: Comparing (5.7) with the formulas for
ū of Algorithm 4, we obtain that the standard scalar reverse mode yields an
approximation of the continuous gradient of order ν if the influence of the
control on the interpolation procedure at intermediate times ti + cjh with 0 <
cj < 1 is completely neglected. For that purpose, it is required to passivate the
interpolation procedure during the application of AD to ignore the dependence
of the intermediate values on the control variables. The passivation of variables
is possible for some AD-tools, e.g. for ADOL-C [154]. However, this approach to
compute gradient information has not been exploited so far. Instead, usually
the vector ū = (ū1, . . . , ūN) is used for the optimization since ū is directly
generated by the reverse mode of AD without passivation. Then the values
ūj represent the exact discrete gradient information for the integration method
given by Algorithm 1. To verify this fact, we compare the discrete gradient
representation (5.11) with the computation of ū. For the Runge-Kutta method
of Algorithm 1, we have

∂ψi+1(u)

∂ψi(u)
= I + h

s
∑

j=1

fy(ỹj, ũj)
∂ỹj

∂yi
.

Hence, we obtain by inspecting the statements for ¯̃yj and k̄j of Algorithm 4

ȳi =

(

I + h

s
∑

j=1

fy(ỹj , ũj)
∂ỹj

∂yi

)T

ȳi+1 =

(

∂ψi+1(u)

∂ψi(u)

)T

ȳi+1.

Since ȳN is initialized to ∇ϕ(yN)T , one obtains the formula

ȳi =

(

∂ψi+1(u)

∂ψi(u)

)T

· · ·
(

∂ψN (u)

∂ψN−1(u)

)T

∇ϕ(yN)T .

Now, this derivative vector is used to compute the derivative of ψi(u) with
respect to u. For that purpose, the derivative of ψi(u) with respect to u is
composed for each intermediate time cjh because of the definition of k̄j and ¯̃uj .
Subsequently ¯̃uj is multiplied by the derivative of ũj with respect to u and the
result is added to the appropriate components of ū. Therefore, Algorithm 4
yields the exact discrete derivatives (5.11) of the discrete cost function J eval-
uated by Algorithm 1 with respect to the control vector u. However, since this
gradient computation does not coincide with a discrete version of the adjoint
representation (5.7) it is not possible to deduce an order of convergence for the
discrete gradient information ū generated directly by the reverse mode of AD.

5.6 Numerical Illustration

For the verification of the theoretical results presented in the last sections,
consider the following simple test problem taken from [84]:

min
1

2

∫ 1

0
u(t)2 + 2x(t)2dt s.t.

dx

dt
(t) = 0.5x(t) + u(t), x(0) = 1.

102 Chapter 5. Automatic Differentiation for Explicit Runge-Kutta Methods

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 10 100

er
ro

r

N

(a)

(b)

(c)

(d)

Figure 5.1: Discrete state error in L∞

This problem can easily be transformed into the form (5.1)–(5.3) described in
Section 5.2 using y1 = x, y2 = dx

dt and

dy1

dt
(t) = 0.5y1(t) + u(t), y1(0) = 1, (5.45)

dy2

dt
(t) = y1(t)

2 + 0.5u(t)2, y2(0) = 0. (5.46)

Then the objective is given by J(y) = ϕ(y(1)) = y2(1). This optimization
problem has the optimal solution [84]

y∗1(t) =
2e3t + e3

e3t/2(2 + e3)
, u∗(t) =

2(e3t − e3)
e3t/2(2 + e3)

,

y∗2(t) =
2e3t − e6−3t − 2 + e6

(2 + e3)2
.

To approximate y∗, we use u∗ as control and the Runge-Kutta schemes

(a) A =

[

0 0
1
2 0

]

, b =

[

0
1

]

, (b) A =





0 0 0
1
2 0 0
−1 0 0



, b =





1
6
2
3
1
6



,

(c) A =





0 0 0
1
2 0 0
0 3

4 0



, b =





2
9
1
3
4
9



, (d) A =









0 0 0 0
1
2 0 0 0
0 1

2 0 0
0 0 1 0









, b =









1
6
1
3
1
3
1
6









,

where scheme (a) is of order 2, schemes (b) and (c) are of order 3, and scheme
(d) is of order 4. These schemes were already used for numerical studies in
[84]. For scheme (a), we apply linear interpolation, for the remaining schemes
cubic interpolation. The resulting L∞ errors for the discrete state at the grid
points using the step size h = 1/N with N = 10, 20, 40, 80, 160, 320 are given in
Fig. 5.1.

5.6 Numerical Illustration 103

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 10 100

er
ro

r

N

(a)

(c)

(b)

(d)

Figure 5.2: Discrete sensitivity error in L∞

It follows that the computed errors correspond very well to the order of the
applied Runge-Kutta scheme. Note, that in the context of full discretization
methods, the scheme (b) may not even yield a convergent approximation for
the state equation (c.f. [84]).

From the state equations (5.45) – (5.46) follows that the sensitivity equations
are given by

ds1
dt

(t) = 0.5s1(t) + d(t), s1(0) = 0,

ds2
dt

(t) = 2x1(t)s1(t) + u(t)d(t), s2(0) = 0.

For the numerical experiments, we set d(t) = 1, which yields the analytical
solution

s1(t) = 2e−t/2 − 2, s2(t) =
4(e2t − e3t/2 − e3−t + e3−3t/2)

2 + e3
.

Applying the AD-tool ADOL-C, we implement Algorithm 2 to obtain the ap-
proximate solution ẏ of the sensitivity equation. The L∞ errors for this discrete
sensitivity at the grid points are illustrated by Fig. 5.2. Once more, the resulting
error plot illustrates perfectly the order of the applied Runge-Kutta scheme.

Finally for the state equations (5.45) – (5.46), the corresponding adjoint
equation is given by

λ1

dt
(t) = −0.5λ1(t)− 2y1(t)λ2(t), λ(1) = 0,

λ2

dt
(t) = 0, λ2(1) = 1,

with the analytical solution

λ1(t) =
e3−t − 2e2t

et/2(2 + e3)
, λ2(t) = 1.

Employing the reverse mode of ADOL-C, we implement Algorithm 4 to obtain
the approximate solution ȳ of the continuous adjoint equation. The L∞ errors

104 Chapter 5. Automatic Differentiation for Explicit Runge-Kutta Methods

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 10 100

er
ro

r

N

(a)

(c)

(b)

(d)

Figure 5.3: Discrete adjoint error in L∞

for this discrete adjoint at the grid points are shown in Fig. 5.3. This error
plot illustrates the convergence rate of the adjoint Runge-Kutta methods cor-
responding to the schemes (a), (b), and (c) very well. Only for scheme (d), the
corresponding adjoint scheme shows the expected convergence behavior only
for the finer discretizations. This may be due to the inexact information of the
forward computation required by Algorithm 4. However, it is important to note
that no additional conditions are required to obtain the convergence order 3 for
scheme (c) which differs from the full discretization context.

5.7 Conclusion

This paper presents an analysis of the derivative information generated by the
forward mode and reverse mode of AD for the recursive discretization in optimal
control.

It has been shown that the forward mode of AD generates an approximate
solution to the corresponding sensitivity equation of order ν if the Runge-Kutta
method used for the integration of the state equation is already of order ν. Ex-
ploiting the approximate solution, we can compute an approximation of the
continuous gradient of order ν. The standard initialization using unit vectors
yields the exact discrete gradient information for the forward integration pro-
cedure as illustrated in this paper.

Furthermore, it is shown that the approximate solution of the adjoint equa-
tion obtained by the reverse mode of AD is of order ν if the integration method
of the discrete version of the state equation is of order ν provided that one has
bi > 0. These results for the recursive discretization differ remarkably from
the results obtains for the full discretization by Hager [84]. The less restric-
tive conditions for the coefficients of the Runge-Kutta scheme result from the
fixed control for the recursive discretization whereas the control depends on
the state and adjoint for the full discretization. Once more, the approximate
solution presented here can be applied to compute an approximation of the
continuous gradient of the same order ν. However, this gradient information is
not generated directly by a black-box AD approach. The gradient information

5.7 Conclusion 105

obtained by applying the standard reverse mode of AD equals again the exact
discrete gradient as illustrated by this paper.

The question whether it is preferable to use the continuous gradient or the
discrete gradient in an optimization procedure is still open and the answer de-
pends certainly on the underlying problem to be solved. So far, all applications
of AD known to the author provide the exact discrete gradient information.
Based on the results of this paper, one may use now an approximation to the
continuous gradient as alternative. Hence, it is possible to study the influences
of the different derivative information on the optimization process. This subject
will be investigated in the future. Furthermore, one has to examine the case
when control constraints destroy the differentiability of the right-hand sides,
which is ignored in this paper.

Acknowledgments

The author is indebted to Roland Griesse because the joint work with him
raise several questions examined in this paper. Furthermore, the author likes
to thank Andreas Griewank and Christian Grossmann for many discussions on
the subject.

106 Chapter 5. Automatic Differentiation for Explicit Runge-Kutta Methods

Chapter 6

An Optimal Memory-reduced

Procedure for Calculating

Adjoints of the Instationary

Navier-Stokes Equations

Michael Hinze1, Andrea Walther, and Julia Sternberg1

Optimal Control Applications and Methods
Volume 27(1), pp. 19 – 40 (2006).

Abstract:

This paper discusses approximation schemes for adjoints in control of the instationary

Navier-Stokes system. It tackles the storage problem arising in the numerical calcu-

lation of the appearing adjoint equations by proposing a low-storage approach which

utilizes optimal checkpointing. For this purpose, a new proof of optimality is given.

This new approach gives so far unknown properties of the optimal checkpointing strate-

gies and thus provides new insights. The optimal checkpointing allows a remarkable

memory reduction by accepting a slight increase in run-time caused by repeated for-

ward integrations as illustrated by means of the Navier-Stokes equations. In particular,

a memory reduction of two orders of magnitude causes only a slow down factor of 2-3

in run-time.

6.1 Introduction

Adjoints are the most important tool for computing sensitivities in control prob-
lems for the time dependent Navier-Stokes equations. In particular, this is the
case when the number of control variables is large and thus forbids approaches
based on finite difference methods. To illustrate the role of adjoints for calculat-
ing sensitivities let us consider the following abstract optimal control problem:
Find an optimal control u ∈ U that minimizes the functional

Ĵ(u) := J(y(u), u), (6.1)

1Department of Mathematics, University of Hamburg, Germany

107

108 Chapter 6. Calculating Adjoints for the Navier-Stokes Equations

where y ∈ Y and u are related through the equality constraints

G(y, u) = 0 (6.2)

in Z∗. Here and throughout, the superscript ∗ either denotes duals of functions
spaces or adjoint operators, where it follows from the context which operation
is performed. The superscript −∗ stands for the corresponding inverse operator.
Furthermore, (U, (·, ·)U), (Y, (·, ·)Y) and (Z, (·, ·)Z) denote Hilbert spaces. The
functions J : Y ×U → R and G : Y ×U → Z∗ are sufficiently smooth mappings.
For simplicity, from here onwards we assume that equation (6.2) admits a unique
solution y(u) for every u ∈ U . For the same reason, we assume that J(y, u) =
J1(y) + J2(u), G(y, u) = G1(y) − Bu and that B : U → Z∗ is a bounded
linear mapping. Let the derivative Gy(y, u) have a bounded inverse for every
(y, u) ∈ Y × U . In Section 6.2 we will show that control problems for the
instationary Navier-Stokes equations fit into this setting.

The first and second derivatives of the functional Ĵ are the main ingredients
of modern optimization algorithms for the numerical solution of (6.1) – (6.2).
For the action of Ĵ ′ at point u in direction δu, we obtain

(Ĵ ′(u), δu)U = 〈Jy(y, u), y
′(u)δu〉Y ∗,Y + (Ju(y, u), δu)U

utilizing the chain rule. The implicit function theorem applied to equation (6.2)
yields

y′(u) = −Gy(y, u)
−1Gu(y, u),

which implies

〈Jy(y, u), y
′(u)δu〉Y ∗,Y = (−Gu(y, u)∗Gy(y, u)

−∗Jy(y, u), δu)U .

Introducing the adjoint variable λ := −Gy(y, u)
−∗Jy(y, u) ∈ Z we finally can

express the gradient of Ĵ as

Ĵ ′(u) = Ju(y(u), u) +Gu(y(u), u)∗λ. (6.3)

In other words, all directional derivatives of the functional Ĵ can be calculated
with the help of the adjoint variable λ, which in turn is obtained by one solve
of the adjoint equation

Gy(y, u)
∗λ = −Jy(y, u). (6.4)

By similar calculations and transformations we obtain the reduced Hessian,
i.e. the second derivative, of the functional Ĵ :

Ĵ ′′(u) = Gu(y(u), u)∗Gy(y(u), u)
−∗ {Jyy(y(u), u)+

〈Gyy(y(u), u)(·, ·), λ〉Z∗ ,Z}Gy(y(u), u)
−1Gu(y(u), u) + Juu(y(u), u). (6.5)

From its structure we conclude that the application of Ĵ ′′(u) to an element
δu ∈ U amounts to the following algorithm

6.1 Introduction 109

Algorithm I: Reduced Hessian times control

1. Solve Gy(y(u), u)v = Gu(y(u), u)δu for v ∈ Y ,

2. form right-hand side
g(y, u, λ, v) := Jyy(y(u), u)v + 〈Gyy(y(u), u)(v, ·), λ〉Z∗ ,Z ,

3. solve Gy(y(u), u)
∗µ = g(y, u, λ, v) for µ ∈ Z,

4. evaluate µ̃ := Gu(y(u), u)∗µ, and finally,

5. set Ĵ ′′(u)δu = µ̃+ Juu(y(u), u)δu.

One observes, that the adjoint operator Gy(y(u), u)
∗ is needed twice: One time

to evaluate λ defined by equation (6.4) for a given u ∈ U and the second time
to provide µ in step 3 for applying Ĵ ′′(u). Here we note that in the context of
inexact Newton methods the evaluation of Hessian times increment plays the
central role.

We think of (6.2) as an abstract realization of the instationary Navier-Stokes
equations on the time horizon [0, T] with y denoting the state variables and u
serving as control variables. For a given control u, the computation of λ and
µ requires knowledge of the state y(u) on the whole time horizon. Therefore,
the storage of y(u) forms a serious bottleneck for large time horizons where y
represents a 2- or 3-dimensional flow velocity field.

As partial remedy to this storage problem, this paper presents an optimal
checkpointing strategy that is applied to compute adjoints for the instationary
Navier-Stokes equations. Using the proposed checkpointing technique, a storage
reduction of two orders of magnitude is observed, whereas the resulting slow
down factor of the adjoint calculation caused by repeated forward integrations of
the Navier-Stokes equations lies only between 2 and 3. The main algorithmical
tool utilized was revolve which Griewank and the second author developed in
[76]. This binomial checkpointing strategy features the adjoint computation
within a minimal run time for a given number of checkpoints. In the present
paper, a new proof of optimality is given in Theorem 6.3.5. It uses the new
concept of frequency numbers first introduced in [135]. The new technique
simplifies the proof significantly and yields in addition so far unknown properties
of the optimal checkpointing strategies as for example Theorem 6.3.4.

As far as the authors know there are only few contributions to control of the
instationary Navier-Stokes equations that tackle the storage problem. The tech-
nique of equidistant checkpointing and repeated forward integration, also known
as windowing, is discussed by Berggren and coauthors in [9, 10]. A detailed
comparison of the windowing technique, also called multi-level checkpointing,
with the checkpointing strategy proposed in the present paper is contained in
[153]. The analysis yields that for a given number of checkpoints and a given
upper bound on the number of repeated forward integrations, the checkpointing
approach used in this paper allows the adjoint computation for a larger time
horizon. Furthermore, it is shown that the time needed for the adjoint compu-
tation coincides for both approaches if the windowing is not used recursively.
Moreover, it is also proved in [153] that for a given number of checkpoints the

110 Chapter 6. Calculating Adjoints for the Navier-Stokes Equations

time required for the adjoint computation with a recursive windowing exceeds
the run time needed for the adjoint computation with the checkpointing method
proposed in this paper. Therefore, windowing can be seen as not optimal.

The application of the optimal checkpointing strategy for the Burgers equa-
tion is discussed in [152]. This approach has been extended to an adaptive
memory and run-time reduced checkpointing strategy by the third author in
[135]. Its application for calculating adjoints of the instationary Navier-Stokes
system is examined in [95], where the case of a-priory unknown number of time
steps with different computational complexity is considered. For this purpose,
the extended package a-revolve for adaptive checkpointing is utilized.

For a general analytical framework of first and second order derivatives for
control of the instationary Navier-Stokes equations we refer to the work [93] by
Kunisch and the first author. For further contributions to (distributed) control
of the instationary Navier-Stokes system we refer to Gunzburger and Manservisi
[82].

This paper is organized as follows. In Section 6.2 the instationary Navier-
Stokes equations are adapted to the setting introduced at the beginning of
Section 6.1. Appropriate discretizations of the direct and the adjoint PDEs
are given. Section 6.3 introduces reversal schedules including a new proof of
optimality for the proposed checkpointing strategies. For this purpose, we in-
troduce for the first time the concept of frequency numbers. They are used
to derive new properties of the optimal reversal schedules, which presumably
can be exploited in more detail in further studies. Section 6.4 illustrates the
capabilities of the checkpointing algorithm proposed here with respect to mem-
ory reduction. The resulting storage requirements and run-times are given and
discussed. Finally, Section 6.5 presents a summary.

6.2 Adjoints for the Navier Stokes Equations

As model application we now illustrate how derivatives of the reduced functional
Ĵ in control of the instationary Navier-Stokes equations can be realized utilizing
the formalism developed in the previous section. We begin with stating an
appropriate functional analytic setting (for details see [92, 93]).

6.2.1 Analytical setting

To define the spaces and operators required for the investigation of the control
problem (6.1) – (6.2), let Ω ⊂ R

2 denote a bounded domain and [0, T] a time
horizon. Further, set Q := Ω× (0, T). We introduce the solenoidal spaces

H = {v ∈ C∞
0 (Ω)2 : div v = 0}−|·|

L2 , V = {v ∈ C∞
0 (Ω)2 : div v = 0}−|·|

H1 ,

with the superscripts denoting closures in the respective norms. For the subse-
quent considerations it is convenient to introduce the spaces

W = {v ∈ L2(V) : vt ∈ L2(V ∗)} and Z := L2(V)×H,

6.2 Adjoints for the Navier Stokes Equations 111

where W is endowed with the norm

|v|W = |v|L2(V) + |vt|L2(V ∗)

and V ∗ denotes the dual space of V . Here L2(V) is an abbreviation for
L2(0, T ;V) and similarly L2(V ∗) = L2(0, T ;V ∗). We recall that up to a set
of measure zero in (0, T) elements v ∈ W can be identified with elements in
C([0, T];H). By U we denote the Hilbert space of controls which is identified
with its dual U∗ and we set 〈·, ·〉 := 〈·, ·〉L2(V ∗),L2(V). Finally we assume that the
cost functional J : (y, u) ∈ W × U → J(y, u) = J1(y) + J2(u) is bounded from
below, weakly lower semi-continuous, twice Fréchet differentiable with locally
Lipschitzean second derivative, and radially unbounded in u, i.e. J(y, u) →∞
as |u|U →∞, for every y ∈W .

Example 6.2.1. These assumptions are satisfied for cost functionals including
tracking type functionals (also with tracking of states at the final time T)

J(y, u) =
1

2

∫

Q

|y − z|2dx dt +
γ

2

∫

Ω

|y(T)− z(T)|2dx+
α

2
|u|2U , (6.6)

and functionals involving the vorticity of the fluid

J(y, u) =
1

2

∫

Q

|∇x × y(t, ·)|2 dx dt +
α

2
|u|2U , (6.7)

where α, γ > 0 and z ∈ W are given. Of course, these functionals are even
infinitely Fréchet differentiable on W × U .

We define the nonlinear mapping

G : W × U → Z∗

by

G(y, u) = (∂y
∂t + (y · ∇)y − ν∆y −Bu, y(0)− y0),

where B ∈ L(U,L2(V ∗)) denotes the control extension operator, y0 ∈ H and
ν = 1/Re with Re denoting the Reynolds number. In variational form the
instationary Navier-Stokes equations can be expressed as: Given u ∈ U find
y ∈W such that y(0) = y0 in H and

〈yt, v〉 + 〈(y · ∇)y, v〉 + ν(∇y,∇v)L2(L2) = 〈Bu, v〉 ∀ v ∈ L2(V), (6.8)

which in turn equivalently can be expressed by

G(y, u) = 0.

Next we note that for every u ∈ U equation (6.8) admits a unique solution y =
y(u), see Temam [138]. Utilizing the control-to-state mapping u 7→ y(u) and

112 Chapter 6. Calculating Adjoints for the Navier-Stokes Equations

defining Y := W , the optimal control problem for the Navier-Stokes equations
may be formulated as

min Ĵ(u) = J(y(u), u) subject to u ∈ U, (6.9)

which is exactly of the form (6.1) – (6.2). It is proven by Abergel et al. [1]
that (6.9) admits a solution (y∗(u), u∗) ∈ W × U =: X. Furthermore, the op-
erator G = (G1, G2) : X → Z∗ is infinitely Fréchet differentiable with Lipschitz
continuous first derivative, constant second derivative and vanishing third and
higher derivatives, see [92, 93]. As a consequence the differentiability proper-
ties of the functional J are carried forward to the functional Ĵ and it is now
clear how the expressions for Ĵ ′ and Ĵ ′′ in (6.3) and (6.5), respectively, are to
be understood once the actions of the operator Gy(y, u)

−1 and Gy(y, u)
−∗ are

known. To describe these actions for given Jy(y, u), let the function λ ∈ Z be
defined by

λ = (λ1, λ2) = −Gy(y, u)
−∗Jy(y, u),

and for (f, v0) ∈ Z∗ set

v := Gy(y, u)
−1(f, v0). (6.10)

From now onwards, we assume that all functions are sufficiently smooth. Precise
regularity statements of the variables y, v, and λ can be found in [92, 93].

For numerical considerations it is convenient to formulate the equations
(6.8) in the primitive setting given by

yt − ν∆y + (y · ∇)y +∇p = Bu in Q,
−div y = 0 in Q,
y(x, t) = 0 on ∂Ω× (0, T),
y(x, 0) = y0(x) in Ω,















(6.11)

where p denotes the pressure. Together with the adjoint pressure ξ the adjoint
variables λ of (6.4) satisfies the system

−λ1
t − ν∆λ1 − (y · ∇)λ1 + (∇y)tλ1 +∇ξ = −J (t)

1y
(y) in Q,

−div λ1 = 0 in Q,
λ1(x, t) = 0 on ∂Ω× (0, T),

λ1(x, T) = −J (T)
1y

(y) in Ω,



















(6.12)

and λ2 = λ1(0). The superscripts (t), (T) refer to a possible dependence of the
representative of the functional J1y on the time instances (t) and (T), respec-
tively. Finally, together with some pressure h the function v of (6.10) satisfies

vt − ν∆v + (y · ∇)v + (v · ∇)y +∇h = f in Q,
−div v = 0 in Q,
v(x, t) = 0 on ∂Ω× (0, T),
v(x, 0) = v0(x) in Ω.















(6.13)

6.2 Adjoints for the Navier Stokes Equations 113

6.2.2 Discretization

In order to provide a numerical approximation of Ĵ ′(u) for given u ∈ U , the par-
tial differential equations (6.11) for y(u) and (6.12) for λ have to be discretized
appropriately. For the numerical tests presented in Section 6.4, Taylor-Hood
finite elements are used for spatial discretization, i.e. continuous, piecewise
quadratic polynomials for the velocity approximation and continuous, piece-
wise linear polynomials for the pressure approximation for both y and λ. To
discretize w.r.t. time, we fix an equidistant time grid 0 = t0 < · · · < tl = T ,
where tk := k∆t and ∆t := T/l.

As time discretization scheme for (6.11) we apply a semi-implicit Euler-
scheme, i.e. implicit w.r.t. diffusive terms, explicit w.r.t. convective terms. The
resulting scheme for states yj with 0 ≤ j < l is given by

yj+1−yj

∆t − ν∆yj+1 +∇pj+1 = (Bu)j − (yj∇yj) in Ω,

−div yj+1 = 0 in Ω, yj+1 = 0 on ∂Ω,
(6.14)

where y0 = y(0). To be prepared for Section 6.3.2 we rewrite this forward
integration scheme in the form

yj+1 = F (yj , (Bu)j), (6.15)

where the time step function F (yj , (Bu)j) is defined as

F (y, z) := ∆t (P − ν∆tS)−1 (z − (y∇) y) + Py. (6.16)

Here, S denotes the Stokes operator. The operator P defines the Leray pro-
jection L2(Ω)2,3 → {v ∈ L2(Ω)2,3, div v = 0} [37]. As will be seen in the
subsequent Section 6.3, equation (6.15) matches exactly the time step defini-
tion (6.22) that forms the basis for the reversal schedules.

The time discretization scheme of the adjoint variables λ in (6.12) is more
involved. Here we take the transpose of the semi-implicit time discretization of
equation (6.13) yielding

vj+1

∆t − ν∆vj+1 +∇hj+1 = f j + vj

∆t − (yj∇vj)− (vj∇yj) in Ω,

−div vj+1 = 0 in Ω, vj+1 = 0 on ∂Ω,
(6.17)

for 0 ≤ j < l, where v0 = v(0). To derive the time integration scheme for the
adjoint variables, it is convenient to reformulate this initial condition in the
form

v0

∆t − ν∆v0 +∇h0 = v0

∆t − ν∆v0 in Ω,

−div v0 = 0 in Ω, v0 = 0 on ∂Ω,
(6.18)

where we set h0 ≡ 0 and require v0 ∈ V ∩H2(Ω)2.
Let now λ ≡ λ1. Formally transposing the scheme (6.17), (6.18), we obtain

for the adjoint equations and j = l − k ≥ 0 the integration scheme

λl−k

∆t − ν∆λl−k = λl−k+1

∆t −∇ξl−k − J (tl−k)
1y

(yl−k)

+ (λl−k+1∇yl−k)− (∇yl−k)tλl−k+1 in Ω,

−divλl−k = 0 in Ω, λl−k = 0 on ∂Ω

(6.19)

114 Chapter 6. Calculating Adjoints for the Navier-Stokes Equations

where the states yl−k are given by the solution of (6.14) and λi ≡ 0 for all
i ≥ l + 1. We note that the initial state λl in this integration scheme satisfies
the quasi-Stokes system

λl

∆t − ν∆λl −∇ξl = −J (tl)
1y

(yl, ul) in Ω,

−div λl = 0 in Ω, λl−k = 0 on ∂Ω.

This adjoint integration scheme may be rewritten as

λj = F̄ (tj , y
j, λj+1), (6.20)

where

F̄ (t, y, z) := ∆t (P − ν∆tS)−1
(

−J (t)
1y

(y) + (z∇) y − (∇y)t z
)

+ Pz. (6.21)

Next let us briefly discuss the time discretization of Ĵ ′′(u)δu described in
Algorithm I. To begin with we note that

〈Gyy(y(u), u)(a, b), (λ, λ
2)〉Z∗,Z = 〈(a∇)b+ (b∇a), λ〉L2(V ∗),L2(V),

which is independent of y and u, and Gu(y, u) = (−B, 0). To discretize step 1
of Algorithm I we propose to apply scheme (6.17) – (6.18) for the computation
of v with v0 ≡ 0. In step 2 the numerical results of schemes (6.14) for y and
(6.19) for λ are utilized to evaluate the right-hand side g(y, u, λ, v). Finally, for
the numerical computation of µ in step 3, we propose to utilize again scheme
(6.19), where the terms containing the functional J have to be replaced by
the corresponding terms of the right-hand side g(y, u, λ, v) from step 2. We
emphasize that in general both, the state y and the variable v enter into the
right-hand side g(y, u, λ, v).

Remark 6.2.2. The application of the time-discretization scheme (6.19) for the
adjoint equations guarantees among other things symmetry of the discretized
reduced Hessian, c.f. (6.5). It also follows immediately from this approach
that the states y in the convective terms in (6.19) are taken at the same time
instances as the unknown adjoint variables.

We finally note that v0 ∈ V ∩H2(Ω)2 is the minimal regularity requirement
for proving error estimates for numerical approximation schemes of the Navier-
Stokes system, compare [40, 90].

In practical applications of flow control, the storage of the states y (and v)
needed for the adjoint calculations forms a serious bottleneck, in particular for
large time horizons [0, T]. As remedy to this memory requirement problem, in
the next section we propose an optimal memory reduced procedure for calcu-
lating adjoints which allows a memory reduction of two orders of magnitude for
our numerical example while only causing a slow down factor of 2-3 in run-time.

6.3 Reversal Schedules

In this section we give a general introduction of reversal schedules based on
checkpointing strategies. They can be applied for the numerical integration of

6.3 Reversal Schedules 115

backward-in-time problems such as (6.12). To this end, we refer to (6.2) as
realization of a forward PDE and to (6.4) as realization of an adjoint PDE,
respectively. Furthermore, we present a new proof of optimality. Using this
new technique, one can derive properties of the optimal reversal schedules that
have been unknown so far. They provide new insight and may be used for
further theoretical studies.

6.3.1 Subfunctions, Taping, and Adjoint Variables

For calculating an approximation of the state y(u) corresponding to the control
u one usually has to evaluate subfunctions Fj , 0 ≤ j < l, called time steps,
that act on the state yj to calculate the subsequent intermediate state yj+1 for
0 ≤ j < l depending on a control action ūj , i.e.,

yj+1 = Fj(y
j , ūj) . (6.22)

In our application we have Fj(y
j, ūj) = F (yj , (Bu)j) with F from (6.16). To

compute a solution of the adjoint PDE the discretization yield adjoint time
steps F̄j for l > i ≥ 0 with

λj = λj+1 F ′
j(y

j , ūj) ≡ F̄j(y
j , ūj , λj+1) . (6.23)

In our model application, we have F̄j(y
j, ūj , λj+1) = F̄ (tj , y

j, λj+1) with F̄
given by (6.21), where the prime denotes differentiation with respect to y. Note
that in our application λj+1 does not directly depend on the control action ūj ,
which is the case in many control problems for partial differential equations.
The evaluation of F̄j may require some intermediate results calculated during
the computation of yj+1 from the previous state yj . Hence, it is supposed that
for each j ∈ {0, . . . , l − 1}, there exists a preparation step F̂j that combines
the recording of intermediate values onto a data structure called tape and the
evaluation of Fj . In our application, in addition to the evaluation of Fj the
recording step F̂j performs the storage of yj and (Bu)j on disk and/or memory
stacks.

Using the recording step F̂j and the adjoint time step F̄j the basic way to
integrate the adjoint PDE reads as follows.

Algorithm II: Basic approach

Initialization: Set y to the initial value y0.

Recording: do j = 0, l − 1
Perform yj+1 = F̂j(y

j , ūj)
end do

Reverse: Initialize the adjoint λl+1 = 0
do j = l, 0,−1

Perform λj = F̄j(y
j, ūj , λj+1)

end do

116 Chapter 6. Calculating Adjoints for the Navier-Stokes Equations

Remark 6.3.1. Let us note that the basic approach does not require a-priori
discretization of the controls. Rather it requires evaluation of the control actions
ū, respectively at the time instances tj. In our application, we have ū = Bu.

It is clear that the storage requirement of the basic approach is proportional to
the number l of time steps because intermediate data of l time steps are stored
during the recording steps. Suppose that we want to calculate the adjoint of a
real-world problem with thousand of time steps. Then the memory requirement
of the basic approach becomes a problem even if only the intermediate states
yj, j = 0, . . . , l, have to be saved on the tape. For example, for computing 3D
flows with unstructured grids one may need easily 10 to 100 MBytes to store
one state vector yj [102]. Therefore, it is reasonable to assume that due to their
size, only a very limited number of intermediate states can be kept in memory.
They will be used as checkpoints. Applying a checkpointing technique, the re-
quired intermediate values are generated piecewise by restarting the evaluation
repeatedly from these suitably placed checkpoints, according to requests by the
reversal process. Therefore, the calculation of F can be reversed based on a
checkpointing strategy, even in such cases where the basic method to calculate
adjoints fails due to excessive memory requirement (see e.g. [76, 80]).

6.3.2 Reversals of Function Evaluations

To derive an optimal reversal strategy, one has to take into account four pa-
rameters:

1.) the number l of time steps to be reversed;

2.) the number c of checkpoints that can be accommodated;

3.) the number p of processors that are available; and

4.) the step costs: τj = TIME(Fj), τ̂j = TIME(F̂j), τ̄j = TIME(F̄j).

If the number of time steps l is known a-priori, one very popular checkpointing
strategy is to distribute the checkpoint equidistantly over the time interval, see
e.g. [87]. This technique is also known as windowing, see [10]. However, it
was shown in [153] that this checkpointing approach is not optimal. In this
paper, we apply well known optimal reversal schedules for serial machines, i.e.
p = 1, and constant step costs τj = τ ∈ R, also known as offline checkpointing.
However, we present a new proof of optimality. The optimal offline checkpoint-
ing allows an enormous reduction of the memory required to reverse a given
evolution in comparison with the basic approach (see e.g. [69, 80, 70]). This
achievable memory reduction will be illustrated by the numerical results in Sec-
tion 6.4. Even if the step costs τj = TIME(Fj) are not constant it is possible to
compute optimal reversal schedules for one processor machines [147]. However
in both cases, i.e. constant and non constant step costs, one has to pay for the
improvements in the form of a greater temporal complexity because of repeated
forward integrations. If a multi-processor can be applied to perform the rever-
sal then optimal parallel reversal schedules ensure that the adjoint values are
obtained in minimal wall-clock time [147].

6.3 Reversal Schedules 117

Nevertheless, our motivation was to study the run-time behavior of adjoint
calculations using a serial machine. Furthermore, the step costs τj are nearly
constant. Therefore, we apply the offline checkpointing provided by the routine
revolve for constant step costs [76]. To reverse a given time integration, revolve
initiates a do-loop similar to the following one:

Algorithm III: Offline checkpointing (reversal schedule)

Initialization: Reserve space for c checkpoints and set the first one to the
initial state.

do p = l, 1, -1

Advance: Starting from the last checkpoint assigned, advance to
state yp−1, performing forward time steps without recording of in-
termediates. If one or more checkpoints are free, set as many of them
as possible to intermediate states along the way.

Reverse: Perform the recording step yp = F̂p−1(y
p−1, ūp−1) and the

reverse step F̄p−1(y
p−1, ūp−1, λp) to calculate the adjoint λp−1. If

state yp−1 is stored in a checkpoint, free the checkpoint up for sub-
sequent use.

end do

The question arises, where to place the checkpoints in the Advances of Algo-
rithm III. The strategy implemented in revolve ensures that the initiated reversal
process is provably optimal with respect to the run-time increase for a given
number of checkpoints. Moreover, it can be shown that the resulting reversal
schedules allow a growth of memory and run-time that is only logarithmic in
the number l of time steps [69]. One such optimal reversal schedule computed
with revolve for ten time steps and three checkpoints is shown in Fig. 6.1.

1

1

10

10

20 30

l

t

Figure 6.1: Optimal Reversal Strategy for l = 10 and c = 3

Here, the time steps are plotted along the vertical axis. The computing
time required for the reversal is represented by the horizontal axis that can
be thought of as the computational axis. Each solid horizontal line including
the computational axis itself represents a checkpoint. The solid slanted lines

118 Chapter 6. Calculating Adjoints for the Navier-Stokes Equations

represent the Advances of Algorithm III. Here, the setting of a checkpoint is
marked with a dot. The corresponding Reverses are visualized by dotted slanted
lines.

6.3.3 Minimal Reversal Cost

Naturally, one wants to analyze the increase in run-time caused by the check-
pointing approach in more detail. Usually, the number of checkpoints that fit
into the available memory is fixed and the number of time steps to be reversed
varies depending on the current problem specification. For given values of the
number l of time steps and the number of checkpoints c, let t(l, c) denote the
minimal number of time steps Fj that are performed during the execution of a
reversal schedule.

To establish an explicit formula for the minimal cost t(l, c) we introduce
some characteristic quantities. First, we will examine the number of times
one particular time step is evaluated during the execution of a given reversal
schedule S:

Definition 6.3.2 (Repetition Number). Let a reversal schedule S for the re-
versal of l time steps be given. The repetition number ri(S) counts how often
the time step Fi is evaluated during the execution of the reversal schedule S.
The maximal repetition number rmax(S) is defined by

rmax(S) = max
0≤i≤l−1

ri(S).

The repetition numbers can be used to group the time steps to be reversed
in the following way:

Definition 6.3.3 (Frequency Number). Suppose a reversal schedule S for the
reversal of l time steps is given. The frequency numbers mj(S), 0 ≤ j ≤
rmax(S), defined by

mj(S) = | {ri(S) = j, 0 ≤ i ≤ l − 1} |,

count how many time steps are evaluated exactly j times during the execution
of the reversal schedule S.

Hence, the operator |·| in Definition 6.3.3 determines the cardinal number of
a given set. To establish an explicit formula for the frequency numbers, a given
reversal schedule S will be decomposed into two smaller substructures S1 and S2

as illustrated in Fig. 6.2. As shown in [70, Lemma 12.2], each reversal schedule
S can be decomposed into two subschedules S1 and S2 without affecting the
overall execution cost. This can be done by first storing the intermediate state
y ľ into a checkpoint. Then the time steps Fľ, ..., Fl−1 are reversed using up to
c− 1 checkpoints at any time with the subschedule S2. Subsequently, the time
steps F0, ..., Fľ−1, are reversed using the subschedule S1. This can be defined
by the following binary composition

S = S1 ◦ S2. (6.24)

6.3 Reversal Schedules 119

0

l

tS1

S2

S

ľ

Figure 6.2: Decomposition of reversal schedule S = S1 ◦ S2

Since a reversal schedule S for reversing l time steps can also be used to reverse
l̃ time steps with l̃ < l, we now define lmax(S) as the maximal number of time
steps that can be reversed with the reversal schedule S and the corresponding
rmax(S) as defined in Def. 6.3.2. Using the decomposition (6.24), one can then
easily derive the relations

lmax(S1 ◦ S2) = lmax(S1) + lmax(S2), (6.25)

rmax(S1 ◦ S2) = max
{

rmax(S1) + 1, rmax(S2)
}

, (6.26)

mj(S) = mj(S
2) +mj−1(S

1), (6.27)

see, e.g. [135]. We will employ the identities (6.25) - (6.27) to derive an explicit
formula for the minimal number t(c, l) of time step evaluations that are required
for computing the adjoint of an given sequence with l time steps with up to c
checkpoints accommodated at any time.

As is proven in [69], the maximal number l(c, r) of time steps, which can be
reversed with up to c checkpoints and at most r evaluations of each time step
is given by

l(c, r) = β(c, r) ≡
(

c+ r

c

)

≈ 1√
2π

[

1 +
r

c

]c
[

1 +
c

r

]r
√

1

c
+

1

r
, (6.28)

using (6.25). Let t(S) denote the number of time step evaluations that are
required by S to compute the adjoint of a sequence with lmax(S) time steps.
For a reversal schedule S using c checkpoints with

β(c, r − 1) < lmax(S) ≤ β(c, r), (6.29)

and t(S) = t(c, lmax(S)), i.e., S is optimal, one has obviously

rmax(S) = r. (6.30)

Using the concept of repetition numbers, now one can prove additionally the
following property:

Theorem 6.3.4 (Explicit Formula for Frequency Numbers). Assume that l
time steps are reversed using Algorithm III with up to c checkpoints accommo-
dated at any time. Let the number of time step evaluations be minimal, i.e.
equal to t(c, l). Then, one has

mj(c, l) = β(c− 1, j) =

(

c− 1 + j

c− 1

)

, 0 ≤ j < r, (6.31)

120 Chapter 6. Calculating Adjoints for the Navier-Stokes Equations

where mj(c, l) denotes the number of time steps evaluated exactly j times for
reversing l time steps using up to c checkpoints and the minimal number of time
step evaluations t(c, l). The integer r is determined by the equations (6.29) and
(6.30).

Proof: The relation (6.31) can be proven by induction:

Trivial Case I: c = 1.
To achieve the minimal number t(1, l) of time step evaluations, we can explicitly
derive the corresponding reversal schedule: The only checkpoint available must
be set to the initial state y0. For the first Reverse action of Algorithm III,
the time steps Fj , 0 < j < l − 1 have to be evaluated. To perform the next
Reverse action, the time steps Fj , 0 < j < l−2 have to be evaluated and so on.
Hence, for the overall reversal, the first time step F0 is evaluated l − 1 times,
the second time step F1 is evaluated l−2 times and so on. Therefore, we obtain
mj(c, l) = 1, 0 ≤ j ≤ l − 1 = r since

l(1, r − 1) = β(1, r − 1) = r − 1 < l ≤ r = β(1, r) = l(c, r).

Using the definition of the function β(c, j), it follows that

mj(1, l) = 1 = β(0, j), 0 ≤ j ≤ r.

Trivial Case II: j = 0.
As can be seen from Algorithm III, all time steps except the last one, i.e., F̂l−1,
are evaluated at least one time, since during the reversal schedule only the
preparing step F̂l−1 and the reverse step F̄l−1 but not the original time step
Fl−1 are executed. Therefore, one obtains m0(c, l) = 1 and

m0(c, l) = 1 = β(c− 1, 0).

using once more the definition of the function β(c, j). Hence, for the two trivial
cases, the identity (6.31) holds.

Induction step in lexicographical order of (c, j):
The numbers c > 1 and j > 0 are given. Assume that the assertion (6.31) is
true for all (c̃, ̃) with ̃ < j or c̃ = c and ̃ < j. Now it will be shown that
equality (6.31) is valid for the pair (c, j).

The applied optimal reversal schedule S can be split into two subschedules
S = S1 ◦ S2, where the subschedule S1 uses up to c checkpoints and the sub-
schedule S2 up to (c− 1) checkpoints as explained above. Furthermore, since S
is optimal also the subschedules S1 and S2 have to be optimal since otherwise
S could be improved. Then we have due to the induction assumption that

mj−1(S
1) = mj−1(c, ľ) = β(c− 1, j − 1),

mj(S
2) = mj(c− 1, l − ľ) = β(c− 2, j).

(6.32)

6.3 Reversal Schedules 121

Applying the recursive formula (6.27) for frequency numbers, we obtain

mj(S) = mj(S
2) +mj−1(S

1) = mj(c− 1, l − ľ) +mj−1(c, ľ)

= β(c − 2, j) + β(c− 1, j − 1) =
(c+ j − 2)!

(c− 2)! j!
+

(c+ j − 2)!

(c− 1)! (j − 1)!

=
(c+ j − 2)!

(c− 2)! (j − 1)!

(

1

j
+

1

c− 1

)

=
(c+ j − 2)!

(c− 2)! (j − 1)!

(c+ j − 1)

j (c− 1)

=
(c+ j − 1)!

(c− 1)! j!
= β(c− 1, j) = mj(c, l).

Therefore, the relation (6.31) is proven.

Now, we can present a new proof for the explicit formula of t(c, l) that is based
on the frequency numbers and much simpler in the argumentation than the
original one presented in [76]:

Theorem 6.3.5 (Minimal Evaluation Cost). The minimal evaluation cost to
reverse l time steps with up to c checkpoints accommodated at any time has the
explicit form

t(l, c) = rl− β(c+ 1, r − 1), (6.33)

with r being the unique integer satisfying β(c, r − 1) < l ≤ β(c, r).

Proof: We will employ the frequency numbers to prove the explicit formula of
the minimal cost t(l, c). For given values of l and c, we have

t(l, c) =
r
∑

j=0

j mj(c, l) and l =
r
∑

j=0

mj(c, l). (6.34)

The last equation yields

mr(c, l) = l −
r−1
∑

j=0

mj(c, l). (6.35)

We derive equation (6.33) in two steps: First, identity (6.33) will be proven for
the case l = β(c, r). Second, we will generalize this result for situations, where
the number l of time steps satisfies l(c, r − 1) < l < l(c, r).

Step 1: l = β(c, r)

Using Theorem 6.3.4 and the identity (6.35), we have

mr(c, l) = l −
r−1
∑

j=0

mj(c, l) = l −
r−1
∑

j=0

β(c− 1, j) = β(c, r)−
r−1
∑

j=0

(

c− 1 + j

c− 1

)

=

(

c+ r

c

)

−
(

c− 1 + r

c

)

=

(

c+ r − 1

c− 1

)

= β(c− 1, r).

122 Chapter 6. Calculating Adjoints for the Navier-Stokes Equations

Using (6.34), it follows that

t(l, c) =

r
∑

j=0

j mj(c, l) =

r
∑

j=0

j β(c− 1, j) =

r
∑

j=0

j
(c+ j − 1)!

j!(c− 1)!

=

r
∑

j=0

(c+ j − 1)!

(j − 1)!(c − 1)!
=

r
∑

j=0

c
(c+ j − 1)!

(j − 1)!c!
= c

r
∑

j=0

β(c, j − 1)

= c
r
∑

j=1

(

c+ j − 1

c

)

= c

(

c+ r − 1

c+ 1

)

= c
(c+ r)!

(c+ 1)!(r − 1)!

=
(c+ r)!

c!(r − 1)!
− (c+ r)!

(c+ 1)!(r − 1)!
= r

(

c+ r

c

)

−
(

c+ r

c+ 1

)

= rl − β(c+ 1, r − 1).

Step 2: β(c, r − 1) = l(c, r − 1) < l < l(c, r) = β(c, r)
For this case, one can derive

mr(c, l) = l −
r−1
∑

j=0

mj(c, l) = l −
(

c− 1 + r

c

)

= l − β(c, r − 1) + β(c, r)− β(c, r) = l + β(c− 1, r)− β(c, r).

Using once more (6.34) yields

t(c, l) =

r
∑

j=0

j mj(c, l) =

r−1
∑

j=0

j β(c− 1, j) + rmr(c, l)

=

r−1
∑

j=0

j
(c+ j − 1)!

j!(c − 1)!
+ rβ(c− 1, r)− r(β(c, r)− l)

=

r−1
∑

j=0

(c+ j − 1)!

(j − 1)!(c − 1)!
+ r

(c + r − 1)!

r!(c− 1)!
− r(β(c, r) − l)

=

r
∑

j=0

(c+ j − 1)!

(j − 1)!(c − 1)!
− r(β(c, r)− l) = cβ(c+ 1, r − 1)− r(β(c, r) − l)

= rl + c
(c+ r)!

(c+ 1)!(r − 1)!
− (c+ r)!

c!(r − 1)!
= rl +

(c+ r)!

c!(r − 1)!
(

c

c+ 1
− 1)

= rl − β(c+ 1, r − 1).

Hence, equation (6.33) was proven for any number l of time steps that satisfies
the inequality β(c, r − 1) < l ≤ β(c, r).

Using Theorem 6.3.5 and Stirling’s formula, the equation (6.28) yields

l ∼











exp(r)/
√
r if c ∼ r

cr if c≫ r = const

rc if r ≫ c = const

6.4 Numerical results 123

as well as the asymptotic behavior

lim
l→∞

t(l, c)

l1+c
=

c
√
c! ≈ c

e
.

Thus we see that binomial checkpointing allows a reduction of the spatial com-
plexity by the factor of size c/l at the expense of an increase in the temporal
complements of size c

√
l which can be seen as an attractive way to reduce the

enormous memory requirement caused by the basic approach as given by Algo-
rithm II.

6.4 Numerical results

To illustrate the potential of the checkpointing approach with respect to mem-
ory reduction, a cavity flow problem serves as numerical example. The domain
is given by the unit square Ω := (0, 1)× (0, 1). We normalized the final time to
1, i.e., T = 1, and set Re = 1

ν = 10. The equation

y0(x) = e

[

(cos 2πx1 − 1) sin 2πx2

− (cos 2πx2 − 1) sin 2πx1

]

with the Euler number e is used as initial condition. The time-dependent func-
tion to be approximated is given by

z(x, t) =

[

ϕx2
(x1, x2, t)

−ϕx1
(x1, x2, t)

]

.

Here, ϕ is defined through the stream function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.3: Left: Cavity flow at t = 0.01, right: Desired flow at T = 1

ϕ(x1, x2, t) = θ(x1, t)θ(x2, t)

with θ(y, t) = (1−y)2(1− cos 2kπt) for y ∈ [0, 1]. Fig. 6.3 shows the cavity flow
at t = 0.01 together with the desired flow at T = 1. As cost function we chose

J(y, u) =
1

2

∫ T

0

∫

Ω
|y − z|2dx dt +

c

2

∫ T

0

∫

Ω
|u|2dx dt

124 Chapter 6. Calculating Adjoints for the Navier-Stokes Equations

with c = 0.01. In what follows we focus on the numerical evaluation of Ĵ ′(u),
where we recall that Ĵ(u) = J(y(u), u).

For this application, using the recording steps F̂ (yj , (Bu)j) and the adjoint
steps F̄ (tj, y

j , λj+1), one may compute the gradient Ĵ ′(u) applying the basic
approach as given by Algorithm II. Then, a complete trajectory is stored onto
the tape during the forward integration. Subsequently, the tape is read back-
ward during the adjoint calculation. Using a discretization with 2113 velocity
nodes and 545 pressure nodes, the storage of the full state information causes a
memory requirement of 3.8 MByte for l = 100 time steps. If 10.000 time steps
have to be performed the memory requirement equals 380 MByte. Note, that
only a 2D problem is considered. For computing the solution of a 3D problem
the situation gets even worse.

The reversal schedules presented in Section 6.3 now offer the opportunity
to reduce this memory requirement drastically. For that purpose, the routine
revolve is employed, which realizes a do-loop like that illustrated by Algorithm
III in Section 6.3. The implementation of revolve is described in detail in [76],
to where we refer for detailed implementational issues. Nevertheless, one has to
note that for the performed do-loop, in addition to the functions F (yj , (Bu)j),
F̂j(y

j , (Bu)j), and F̄ (tj , y
j , λj+1) which are required also for the basic approach

to calculate adjoints, only coding of the routines for storing and retrieving a
checkpoint is necessary. Therefore, it is usually no problem to incorporate a
reversal schedule into the adjoint calculation. The resulting enormous reduction
of memory requirement at the cost of a comparably slight increase in run-time
is illustrated in the remainder of this section.

The desired gradient Ĵ ′(u) was computed applying revolve and several num-
bers of checkpoints. Figure 6.4 shows the observed run-time behavior for l = 100
time steps. Here, the vertical axis gives the ratio of the run-time needed to com-
pute Ĵ ′(u) and the run-time to compute Ĵ(u). The horizontal axis denotes the
number of checkpoints used by the reversal schedule.

To compare the achieved results with the basic approach for computing
adjoints, one has to note that the run-time for computing Ĵ ′(u) is bounded
above by a small constant times the run-time to compute Ĵ(u). The value of
the constant varies between three and five depending on the specific opera-
tion counts and memory accesses [70]. As can be seen, the run-time ratio for
the checkpointing approach varies between 2 and 5 for a reasonable number
of checkpoints. This behavior results in a slow down factor up to 2 compared
to the basic approach, where a complete trajectory is stored to compute the
adjoint values. That is, using the checkpointing approach the computation of
the adjoints is at most twice as slow as the basic approach, where a complete
forward trajectory is stored. Nevertheless, the achieved memory requirement
can be reduced enormously. Using the same example discretization as men-
tioned above, namely 2113 velocity nodes and 545 pressure nodes one needs 38
kByte to store one checkpoint. Hence, if the reversal schedule utilize 5 check-
points, the memory requirement equals 228 kByte for calculating adjoints with
reversal schedules. If the basic approach is applied, the memory requirement
amount to 3.8 MByte. The dependence of the run-time ratio on the size of the
grid as shown in Fig. 6.4 is remarkable. According to the theory developed in

6.4 Numerical results 125

1 2 3 4 5 6 7 8 9

5

10

15

20

25

30

35

40

45

50

55

60

ru
n

tim
e

ra
tio

#Checkpoints

2113 v−nodes, 545 p−nodes, 1024 triangles
545 v−nodes, 145 p−nodes, 256 triangles
145 v−nodes, 41 p−nodes, 64 triangles
41 v−nodes, 13 p−nodes, 16 triangles

Figure 6.4: Run-time behavior, 100 Time Steps

[70] the displayed run-time ratio should be mesh independent. However, so far,
there is no explanation for the mesh-dependent behavior and further studies
are needed.

The possible memory reduction gets even more impressive if the number of
time steps grows. Figure 6.5 shows the observed run-time behavior for l = 1000
time steps. Here, the run-time ratio varies between 2 and 7 for a reasonable
number of checkpoints. Compared to the basic approach, where a complete tra-
jectory is stored and read backwards to calculate the adjoints, these run-times
represent a slow down factor of up to three. On the other hand, the memory
requirement can be reduced drastically in comparison to the basic approach.
For example, using 20 checkpoints the adjoint calculation based on the reversal
schedule requires 798 kByte for the same discretization as above. Applying the
basic approach, the used memory adds up to 38 MByte. Hence, there are two
orders of magnitude between the two storage requirements. Therefore, it is
shown that reversal schedules enable an immense memory reduction at a slight
increase in run-time.

The zig-zagging of the run-time curves in Fig. 6.5 can be interpreted in the
following way: Other processes had to be performed on the machine during the
calculation of the gradient is performed. Therefore, the run-time depends also
naturally on the current load of the machine. Since the resulting variations vary
around a certain run-time ratio if the number of checkpoints exceeds an lower
bound one may draw the conclusion that the number of checkpoints is not the
main influence on the run-time behavior. Hence above the lower bound, the
number of checkpoints can be varied without a big influence on the run-time.
The fact is also illustrated by the flat development of the run-time ratios in

126 Chapter 6. Calculating Adjoints for the Navier-Stokes Equations

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

#Checkpoints

ru
n

tim
e

ra
tio

2113 v−nodes, 545 p−nodes, 1024 triangles
545 v−nodes, 145 p−nodes, 256 triangles
145 v−nodes, 41 p−nodes, 64 triangles

Figure 6.5: Run-Time behavior, 1000 Time Steps

Fig. 6.4 if the number of checkpoints exceeds three.

Figure 6.6 shows two frequency number profiles for 1000 time steps, where
c = 5 and c = 10 checkpoints are available resulting in r = 8 in the first case and
r = 4 in the second case. As we observe, the frequency number profiles for these
numbers of checkpoints are quite different. For c = 5 checkpoints, we have that
m8(5, 1000) < m7(5, 1000). This is due to the fact 1000 ≪ lmax(5, 8) = 1287.
As a consequence, for c = 5 the maximal frequency number β(4, 8) = 495 for 5
checkpoints and 8 repetitions is not attained. Instead, we have m8(5, 1000) =
208 that is given by

m8(5, 1000) = m8(5, 1000) − (lmax(5, 8) − l) = 495 − (1287 − 1000) = 208,

see the proof of Theorem 6.3.5. Hence, only 208 time steps are executed ex-
actly eight times. In the second case, i.e., for c = 10 checkpoints and r = 4,
the inequality m4(10, 1000) > m3(10, 1000) is valid. We have l = 1000 ≈
lmax(10, 4) = 1001, which is the maximal number of time steps that can be re-
versed with c = 10 and at most r = 4 executions of each time step. Therefore,
in this case, almost the maximal frequency number β(9, 4) = 715 is required,
since lmax(10, 4)− l = 1001− 1000 = 1. Thus, 714 time steps are executed four
times.

All computations were performed on an two-processor personal computer
with ADLON 1GHz CPU and 512 MB memory.

6.5 Summary

This paper in its first part presents recipes for the numerical treatment of re-
duced gradients and reduced Hessians times increments for cost functionals

6.5 Summary 127

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

j

m
j(c

,l)

m
j
(5,1000)

m
j
(10,1000)

Figure 6.6: Frequency number profiles for 1000 time steps with 5 and 10 check-
points

involving the incompressible Navier-Stokes systems as state equations. Among
other things these recipes guarantee symmetry of the discretized reduced Hes-
sian. Their core is a balanced numerical treatment of the Navier-Stokes equa-
tions, their derivative and the adjoint of the latter.

For adjoint calculations, one has to provide information computed during
the forward integration in reverse order. The basic approach, namely the com-
plete recording of the required information onto one stack, causes an enormous
memory requirement.

As remedy, in its second part the paper presents optimal reversal schedules
that allow a drastic reduction of the memory requirement at only a compa-
rable slight increase in run-time. In this context, we present a new proof for
the optimal complexity yielding also so far unknown properties of the optimal
reversal schedules. The resulting memory reduction and run-time behavior is
studied for the calculation of adjoints of the incompressible Navier-Stokes equa-
tions by applying the checkpointing routine revolve. The achieved results are
quite promising. Nevertheless, one has to study further the dependence of the
run-time ratios on the size of the discretization.

Acknowledgment

The first author acknowledges support of the Sonderforschungsbereich 609 that
is funded by the Deutsche Forschungsgemeinschaft. Furthermore, we would like
to thank the anonymous referees for their valuable comments and hints.

128 Chapter 6. Calculating Adjoints for the Navier-Stokes Equations

Chapter 7

A First-order Convergence

Analysis of Trust-region

Methods with Inexact

Jacobians

Andrea Walther
Submitted to SIAM Journal on Optimization (in revision)

Abstract:

A class of trust-region sequential quadratic programming algorithms for the solution of

minimization problems with nonlinear equality constraints is analyzed. The considered

class of optimization methods does not require the exact evaluation of the constraint

Jacobian in each optimization step but uses only an approximation of this first-order

derivative information. Hence, the presented approach is especially well suited for

equality constrained optimization problems where the Jacobian of the constraints is

dense.

The accuracy requirements for the presented first-order global convergence result

are based on the feasibility and the optimality of the iterates. The corresponding crite-

ria can be verified easily during the optimization process to adjust the approximation

quality of the constraint Jacobian.

7.1 Introduction

Trust-region successive quadratic programming (SQP) algorithms have been
applied efficiently to solve a wide range of nonlinear optimization problems
given by

min
x∈RN

f(x) subject to c(x) = 0, (7.1)

where the objective f : R
N → R and the vector of the constraints c : R

N → R
M

with N ≥ M are given smooth functions. For the majority of the trust-region
SQP type algorithms, the computation of the next iterate requires the solution

129

130 Chapter 7. Convergence of TR-Methods with Inexact Jacobians

of a linear system of the form

A(xk)A(xk)
T v = b,

where

A(x) = (∇c1(x), . . . ,∇cM (x))T ∈ R
M×N

is the exact matrix of the constraint gradients at x. Furthermore, a represen-
tation Z(x) of the null space of A(x) is needed frequently for the computation
of the next step. For these reasons, the explicit forming and factoring of the
constraint Jacobian A(x) provides an efficient step calculation if A(x) is sparse
and well structured, see, e.g., [4]. As an alternative, one may use iterative
system solves up to a certain accuracy, for example Krylov subspace or multi-
grid methods, for the step calculation in each iteration, see, e.g., [88, 106, 155].
However, both approaches may result in very time-consuming computations, es-
pecially if the Jacobian of the constraints is dense or unstructured. Therefore,
we present and analyze in this paper a class of trust-region SQP algorithms that
does not require the exact evaluation of the constraint Jacobian or an iterative
solution of a linear system with a system matrix that involves the constraint
Jacobian. Instead the algorithm proposed works only with an approximation of
this first-order information. Hence, the algorithm presented here is well suited
for optimization problems of moderate size but with a special structure of the
constraint Jacobian. The corresponding applications cover the wide range of
periodic adsorption processes including for example the purification of hydro-
gen. In these cases, the Jacobian of the equality constraints is dense due to
the periodicity of the underlying chemical process. As a consequence, the run-
time needed for the optimization process may be dominated significantly by the
computation of the dense Jacobian and its factorization, see, e.g., [101]. For
these optimization tasks and problems with a similar structure, the algorithm
proposed in this paper may allow a considerable reduction of the computing
time required to calculate a solution.

For numerous optimization problems, the considered system is described by
ordinary or partial differential equations the discretization of which yields the
equality constraints. Exploiting the direct sensitivity equation or the adjoint
differential equation, one can evaluate products of the Jacobian A(x) and a
given vector v, i.e., A(x)v and A(x)T v. Related derivative information can be
computed also by applying automatic differentiation [70]. Hence, it is reason-
able to assume that one can evaluate exact products of the Jacobian multiplied
from the right or from the left by a given vector. However, the computation
of the complete Jacobian matrix A(x) may be very time-consuming, especially
if A(x) is dense or unstructured, since many Jacobian-vector products are re-
quired to build the full matrix A(x) in these cases. Therefore, we present
an algorithm that uses only Jacobian-vector and vector-Jacobian products but
avoids the calculation and factorization of A(x) in each optimization step or the
iterative solve of a linear system involving A(x) as part of the system matrix.

To solve the optimization problem (7.1), we follow the approach proposed
by Byrd [22] and Omojokun [119]. For composite-step trust-region methods

7.2 Notations and Assumptions 131

that employ exact information, a comprehensive treatment of the convergence
properties can be found in [36]. Implementations of the Byrd-Omojokun trust-
region method are used successfully to solve equality constrained NLPs [4, 106].
Related implementations using augmented Lagrangian merit functions are pro-
posed and analyzed in [46]. Extensions of this approach to a more general class
of trust-region methods can be found in [42]. Box trust-region methods are
analyzed in [64]. More recently, trust-region methods without penalty func-
tions have been developed by Fletcher et al. [49, 50, 51] as well as Ulbrich and
Ulbrich [141].

The effects of inexact problem information on the global convergence of in-
exact SQP methods can be found, for example, in [100, 107, 144]. In a line
search setting, the effects of inexact information on the global convergence are
studied in [23]. For an inexact composite step trust-region SQP method a first
proof of global convergence is given in [88], where the analysis is focused on
inexactness arising from iterative system solves. Our analysis and assumptions
on inexactness differ from [88] in the following way: We do not consider a split-
ting of the variables into state and control variables. Hence, we allow general
unstructured approximations of the Jacobian A(x) and the corresponding null
space representation as well as inexactness due to iterative solves. The proofs of
first-order convergence given in this paper are based on ideas presented in [24].
Since we concentrate our analysis on the effects of inexact Jacobian information,
the present paper does not examine the performance of the algorithm in the
presence of dependent constraint gradients. Therefore, we assume in contrast
to [24] throughout that the constraint Jacobian has full rank. Furthermore, we
do not incorporate inequality constraints as in [24], since the efficient handling
of inequalities in the case of inexact constraint Jacobians is subject of further
research.

This paper has the following structure. In Section 7.2 we introduce the no-
tation and the main assumptions that are used for the proof of global first-order
convergence. Subsequently, we discuss our inexact trust-region SQP algorithm
in Section 7.3. The well-posedness of this algorithm will be shown in Section 7.4.
Section 7.5 contains the proof of global convergence to first-order critical points.
Finally, some conclusions and possible extensions are presented in Section 7.6.

7.2 Notations and Assumptions

The Lagrangian of (7.1) is defined by

L(x, λ) = f(x) + λT c(x).

Assuming that a suitable constraint qualification is fulfilled, the first-order op-
timality conditions yield for an optimal solution x∗ of (7.1) that

∇xL(x∗, λ∗) = ∇f(x∗) +A(x∗)
Tλ∗ = 0

∇λL(x∗, λ∗) = c(x∗) = 0

132 Chapter 7. Convergence of TR-Methods with Inexact Jacobians

holds for a certain Lagrange multiplier λ∗ ∈ R
M . To apply an SQP trust-region

algorithm, we approximately solve in the kth iteration the quadratic program

min
d∈RN

∇f(xk)
Td+

1

2
dTBkd

subject to A(xk)d+ c(xk) = 0

‖d‖ ≤ ∆k

(7.2)

to compute a new step dk for a given iterate xk, a given trust-region radius ∆k,
and Lagrange multipliers λk. Here and throughout, Bk may stand for the exact
second-order information ∇2

xxL(xk, λk). Then, the functions f(·) and c(·) have
to be twice continuously differentiable. Alternatively, one may use a symmetric
matrix approximating the Hessian ∇2

xxL(xk, λk). Furthermore, ‖·‖ denotes the
Euclidean norm ‖ · ‖2.

Since problem (7.2) may have no feasible solution, relaxation strategies were
studied, see, e.g., [28, 123, 133]. As alternative to overcome this difficulty,
one can use a composite-step method. Following the approach of Byrd and
Omojokun, we define the merit function

φ(x;µ) = f(x) + µ‖c(x)‖

with the penalty parameter µ > 0 to judge the progress toward the solution.
This merit function is exact but non-differentiable due to the Euclidean norm
in the second term. A model of φ(·;µk) around an iterate xk is given by the
function

mk(d) = f(xk) +∇f(xk)
Td+

1

2
dTBkd+ µk‖c(xk) +A(xk)d‖.

For measuring the progress of our algorithm, we define for a given iterate xk

and a step d the actual reduction in the merit function as

aredk(d) = φ(xk;µk)− φ(xk + d;µk). (7.3)

The predicted reduction in the merit function is defined as the change of the
model mk caused by a step d, i.e.,

predk(d) = mk(0)−mk(d)

= −∇f(xk)
T d− 1

2
dTBkd+ µk(‖c(xk)‖ − ‖c(xk) +A(xk)d‖).

(7.4)

We suppose that for each iteration k one can provide an approximation Ak of
the exact Jacobian A(xk) and an approximation Zk of an exact null space basis
Z(xk) with A(xk)Z(xk) = 0 and AkZk = 0. Hence, we refer to the exact ma-
trix information as A(xk) and Z(xk) and to the corresponding approximation
as Ak and Zk, respectively. The approximation of the derivative matrices using
quasi-Newton update formulas fits into this setting. For this purpose, one may
employ the well-known symmetric rank one (SR1) update formula to approxi-
mate the Hessian ∇2

xxL(xk, λk). This approach is examined for unconstrained
optimization in [35]. The two-sided rank one (TR1) update formula as proposed

7.2 Notations and Assumptions 133

in [77] can be used to approximate the constraint Jacobian. Another possibility
would be to compute the required Hessian-vector products exactly employing
for example automatic differentiation. For the first-order information, the exact
information A(xk) and Z(xk) could be computed for the iterate k and used for
the following iterates as long as the restrictions on the inexactness are fulfilled.
This is a promising approach since the iterates converge frequently in a tangen-
tial way toward the optimal solution. This observation holds when the Hessian
is approximated for example by a quasi-Newton formula and the exact Jacobian
of the constraints is used. We observe the same behavior in our first numerical
experiments for numerous test problems using the TR1 update to approximate
the Jacobian. Therefore, the changes in the null space will be hopefully rather
small at the end of the optimization procedure.

To prove the convergence results presented in this paper, we define
D ≡ N −M and make the following assumptions:

(AS1) A(xk) has full row rank for all iterates xk with σD(A(xk)) ≥ σ̂ > 0,
where σD(A(xk)) denotes the smallest singular value of A(xk).

(AS2) Ak has full row rank for all iterations with σD(Ak) ≥ σ̃ > 0.
(AS3) Zk ∈ R

N×D has full column rank D for all iterates xk with
σD(Zk) ≥ σ̌ > 0 and remains bounded.

(AS4) The sequence {f(xk)} is bounded below. The sequences {∇f(xk)},
{c(xk)}, {A(xk)}, and {Bk} are bounded.

(AS5) The functions ∇f(·), c(·), and A(·) are Lipschitz continuous on an
open convex set X containing all iterates.

(AS6) The gradients∇f(x),∇xL(x, λ), the gradient-vector product∇f(x)Td
and the products A(x)v, wTA(x) can be evaluated exactly.

(AS7) For fixed xk, the approximation Zk can be improved in a finite number
of steps such that an exact null space representation Z(xk) is obtained.

Assumption (AS1) is needed to prove the feasibility of all limit points and
to derive upper bounds for the normal steps in Sec. 7.5. A similar assumption
is made in [88, Sec. 3.3] to prove first-order global convergence. In the paper
[24], the upper bound for the normal step is derived using also an assumption
similar to (AS1). Furthermore, the analysis in [24] explicitly studies the rank
deficiency of the constraint Jacobian A(xk) and its influence on the overall
algorithm. That is, the iterates could converge either to a feasible point or to a
limit point failing the linear independence constraint qualification. Therefore,
an assumption similar to (AS1) is not made for this part of [24]. However, the
present paper focuses mainly on the convergence of a trust-region algorithm
with inexact Jacobian information. For that reason, we decided not to explore
the possibility that A(xk) is rank deficient since this would complicate the
analysis considerably. The convergence to a limit point not satisfying the linear
independence constraint qualification may be the subject of future research.

In (AS7), we assume that we can improve the approximation Zk such that it
represents an exact null space Z(xk) of A(xk) after a finite number of improve-
ment steps. This is possible, for example, for the TR1 approach by performing
M rank one updates without changing the current iterate xk since the TR1
update procedure yields the exact Jacobian A(xk) for fixed xk after at most M

134 Chapter 7. Convergence of TR-Methods with Inexact Jacobians

updates. This can be verified in the following way: Starting with an approxi-
mation Ã0 = Ak one performs M TR1 updates of the form

Ãi+1 ≡ Ãi +
(yi − Ãivi)(τ

T
i − wT

i Ãi)

(τT
i − wT

i Ãi)vi

with yi ≡ A(xk)vi and τi ≡ wT
i A(xk) for arbitrary linearly independent vectors

vi and wi chosen such that (τT
i − wT

i Ãi)vi 6= 0 holds. Due to the heredity of
the rank one update, one obtains after M updates that

wT
i ÃM = wT

i A(xk) for all i = 0, . . . ,M − 1.

The proof of this identity is similar to the proof of a related result for the SR1
update and can be found in [151]. Since the wi, 0 ≤ i < M , are M linearly
independent vectors, it follows that ÃM = A(xk). Using an equivalent update
procedure for a factorized null space representation, one obtains an exact null
space representation Zk = Z(xk) after at most M updates [79]. If one freezes
the Jacobian and null space information as proposed above, one can evaluate
new exact Jacobian information if the restrictions on the inexactness are not
valid any more. This approach ensures that assumption (AS7) holds. Hence,
one can use the approximation Zk = Zk−1 and improve the approximation of
the null space if required.

All other assumptions are either standard assumptions required also for the
global convergence analysis in other papers, i.e., (AS4) and (AS5), or motivated
by the applications that we had in mind when designing the algorithm, i.e.,
(AS2), (AS3), and (AS6).

7.3 A Jacobian-free Trust-Region Method

To apply a composite step trust-region method as proposed by Byrd and Omo-
jokun, we first compute a normal step n that lies well inside the trust-region
radius and that attempts to satisfy the linear constraints in (7.2). Subsequently,
we take a tangential step t toward optimality. Putting both steps together, we
obtain the total step d = n+ t.

7.3.1 The Normal Subproblem

For the current iterate xk, we compute a normal step nk that best satisfies the
linearized constraints by solving the normal subproblem

min
n∈RN

‖c(xk) +A(xk)n‖2

subject to ‖n‖ ≤ ∆̃k

(7.5)

with ∆̃k = κ∆k and κ ∈ (0, 1). This optimization problem may have infinitely
many solutions. The exact Cauchy step for (7.5) is given by

nC
k = −αC

k A(xk)
T c(xk) (7.6)

7.3 A Jacobian-free Trust-Region Method 135

where αC
k is the optimal solution of the problem

min
α≥0
‖c(xk)− αA(xk)A(xk)

T c(xk)‖

subject to ‖αA(xk)T c(xk)‖ ≤ ∆̃k.
(7.7)

Hence, due to our assumption (AS6) that we can evaluate A(xk)v and A(xk)
Tw

for given v and w exactly, we are able to compute the exact Cauchy step. Never-
theless, employing only the exact Cauchy step may yield very slow convergence
[117]. To accelerate the optimization process, one could use in addition also
the exact Newton step. This global minimizer of the unconstrained version of
(7.5) is given by

nN (xk) = −A(xk)
+c(xk) = −A(xk)

T (A(xk)A(xk)T)−1c(xk).

However, we do not want to compute the vector (A(xk)A(xk)
T)−1c(xk) ex-

actly. Alternatively, if one assumes that an approximation (AkA
T
k)−1c(xk) can

be evaluated at low computational cost, for example, by maintaining a fac-
torized approximation of A(xk) as described in [79], then one could use the
approximation

nN
k = −A(xk)

T (AkA
T
k)−1c(xk)

of the exact Newton step. In combination with the exact Cauchy step, then
one may compute the inexact dogleg step of Powell by setting

nD
k = ηnN

k + (1− η)nC
k

with η = 1 if ‖nN
k ‖ ≤ ∆̃k. Otherwise η ∈ [0, 1] would be adjusted such that the

length of nD
k is equal to ∆̃k.

For obtaining convergence, one has to analyze the reduction in the linearized
constraints caused by the normal step. For that purpose, we define the normal
predicted reduction for a vector n as

npredk(n) = ‖c(xk)‖ − ‖c(xk) +A(xk)n‖ (7.8)

and require that the normal step nk computed in the kth iteration satisfies the
following condition:

Normal Cauchy Decrease Condition. An approximate solution nk of the
normal subproblem (7.5) must satisfy

npredk(nk) ≥ γnnpredk(n
C
k), (7.9)

for some constant γn > 0.

To guarantee that a sufficient normal Cauchy decrease is achieved, one may
either use the exact Cauchy step itself as normal step. Then (7.9) is obviously
fulfilled with γn = 1. If one uses the inexact dogleg step, one can ensure that
(7.9) holds by maximizing npredk(.) over the dogleg path. For our convergence
analysis, the normal steps nk have to fulfill the range space condition

∃ vk ∈ R
M such that nk = AT (xk)vk, i.e., nk ⊥ ker (A(xk)) , (7.10)

136 Chapter 7. Convergence of TR-Methods with Inexact Jacobians

holds for all iterations k ∈ N. Note that the normal steps nD
k , nC

k , and a linear
combination of nD

k and nC
k are of the form AT (xk)vk such that they fulfill (7.10).

Since α = 0 is feasible for the optimization problem (7.7), it follows from
(7.9) that

npredk(nk) ≥ 0 (7.11)

holds. One can improve the bound on the normal predicted reduction as shown
for example in [36, Lemma 15.4.17] and [24, Lemma 2]. The main ingredi-
ents of the proofs are the normal Cauchy decrease condition and the property
‖A(xk)uC

k ‖ > 0 for uC
k ≡ −A(xk)

T c(xk) 6= 0 due to the full rank of A(xk), i.e.,
assumption (AS1), and uC

k ⊥ ker(A(xk)). Since the inexactness of the Jacobian
does not influence the derivation of the result, we skip the proof of the following
lemma. It can be proved exactly along the lines of Lemma 2 in [24].

Lemma 7.3.1. Suppose that assumption (AS1) holds. Let nk be an approximate
solution of the normal subproblem (7.5) such that (7.9) holds. Then

‖c(xk)‖npredk(nk) ≥
γn

2
‖A(xk)T c(xk)‖min

{

∆̃k,
‖A(xk)T c(xk)‖
‖A(xk)‖2

}

. (7.12)

7.3.2 The Tangential Subproblem

Given a current iterate xk, we compute the tangential step towards optimality.
Usually, one tries to maintain linearized feasibility, i.e., the exact tangential
step t(xk) = Z(xk)pk should be in the exact null space of the constraints. Since
we have only an approximation Zk of the exact null space Z(xk) available, we
will have to safeguard the computation of the tangential step tk = Zkpk by
limiting the amount of inexactness as will be explained later.

However, first we concentrate on computing an approximate solution of the
inexact tangential subproblem

min
p∈RN−M

(∇f(xk)+Bknk)
TZkp+

1

2
pTZT

k BkZkp

‖Zkp‖ ≤ ∆̂k

(7.13)

with ∆̂k = (1− κ)∆k.

The steepest descent direction in the null space basis variables for this op-
timization problem at p = 0 is given by

pC
k = −ZT

k (∇f(xk)+Bknk), (7.14)

see, e.g., [24, 88]. For judging the improvement provided by the tangential
step, we define the tangential predicted reduction produced by a tangential step
t = Zkp as change in the objective function of the tangential subproblem.
Hence, we have

tpredk(t) = −(∇f(xk)+Bknk)
T t− 1

2
tTBkt.

7.3 A Jacobian-free Trust-Region Method 137

To ensure global convergence of our trust-region algorithm, we will impose the
following condition on the tangential step:

Tangential Cauchy Decrease Condition. An approximate solution tk of
the tangential subproblem (7.13) must satisfy

tpredk(tk) ≥ γt tpredk(θ
C
k Zkp

C
k), (7.15)

for some constant γt > 0, where θC
k solves the problem

min
θ≥0

[

−tpredk(θZkp
C
k)
]

subject to ‖θZkp
C
k ‖ ≤ ∆̂k.

(7.16)

Since θ = 0 is feasible for the optimization problem (7.16), it follows that

tpredk(tk) ≥ 0. (7.17)

For deriving a sharper bound on the tangential predicted reduction that is
needed for the convergence analysis, we cite the following result [24, Lemma 1]:

Lemma 7.3.2. Consider the one-dimensional problem

min
z≥0

ψ(z) ≡ 1

2
az2 − bz

subject to z ≤ y

where b ≥ 0 and y > 0. Then the optimal value ψ∗ satisfies

ψ∗ ≤ −
b

2
min

{

y,
b

|a|

}

if a 6= 0 and ψ∗ ≤ −by if a = 0.

The derivation of a tighter lower bound for the tangential predicted re-
duction is based also on the representation of the null space of the constraint
Jacobian. In the corresponding proofs of [36, Lemma 15.4.2] and [24, Lemma
3], the steepest descent direction is computed with an exact null space repre-
sentation. The same holds true for the corresponding estimate in [88, Section
3.1.2]. We do not require that an exact null space representation is available
but use only the inexact tangential subproblem (7.13). Therefore, we state the
full proof of the following result, where we use ideas applied to prove Lemma 3
in [24].

Lemma 7.3.3. Suppose that assumptions (AS3) and (AS4) hold. Let tk be an
approximate solution of the tangential subproblem (7.13) that satisfies (7.15).
Then

tpredk(tk) ≥ γ̂‖pC
k ‖min

{

∆̂k, ‖pC
k ‖
}

(7.18)

for a constant γ̂ > 0.

138 Chapter 7. Convergence of TR-Methods with Inexact Jacobians

Proof: Inequality (7.18) clearly holds if pC
k = 0. Hence, we now assume that

pC
k 6= 0. Then, problem (7.16) is equivalent to

min
θ≥0
−1

2
(pC

k)TZT
k BkZkp

C
k θ

2 − ‖pC
k ‖2θ

subject to θ ≤ ∆̂k

‖Zkp
C
k ‖
.

(7.19)

First assume that (pC
k)TZT

k BkZkp
C
k 6= 0. Lemma 7.3.2 applied to problem

(7.19) yields

−tpredk(θ
C
k Zkp

C
k) ≤ −1

2
‖pC

k ‖2 min

{

∆̂k

‖Zkp
C
k ‖
,

‖pC
k ‖2

|(pC
k)TZT

k BkZkp
C
k |

}

.

Combining this inequality with (7.15) and using norm inequalities, we obtain

tpredk(tk) ≥
γt

2
‖pC

k ‖min

{

∆̂k

‖ZT
k Zk‖1/2

,
‖pC

k ‖
‖ZT

k BkZk‖

}

.

Since we assume that the approximations {Zk} remain bounded, we have that
{ZT

k Zk} are bounded. In addition, {Bk} is bounded, which yields that ZT
k BkZk

is bounded. Hence, we can deduce from the last inequality that there exists a
positive constant γ̂ such that (7.18) holds.

We do not assume that Bk has full rank. Therefore, it may happen that
(pC

k)TZT
k BkZkp

C
k = 0 even if pC

k 6= 0. Then the solution of (7.19) is given by

θC
k = ∆̂k

‖ZkpC
k
‖
. It follows that

−tpredk(θ
C
k Zkp

C
k) ≤ −‖pC

k ‖2
∆̂k

‖Zkp
C
k ‖
≤ −‖pC

k ‖
∆̂k

‖ZT
k Zk‖1/2

.

Since
{

Zk

}

remains bounded, this inequality proves the assertion.

To accelerate the convergence, one may use not the steepest descent direction
given by (7.14) but an approximation of the Newton step. For this purpose, we
may apply the Steihaug CG algorithm, see, e.g., [24, 117], as long as (7.15) is
fulfilled for the tangential step tk.

The matrix Zk only approximates the null space Z(xk) of the exact Ja-
cobian A(xk). Hence, one has for the combined step dk = nk + tk that the
identity A(xk)dk = A(xk)nk is not necessarily valid. Therefore, we obtain for
the predicted reduction (7.4) of the function mk the equation

predk(dk) = −∇f(xk)
T (nk + tk)−

1

2
(nk + tk)

TBk(nk + tk)

+ µk(‖c(xk)‖ − ‖c(xk) +A(xk)(nk + tk)‖)
= tpred(tk) + µknpred(nk) + χk + errk(dk, µk),

where

χk = −∇f(xk)
Tnk −

1

2
nT

kBknk (7.20)

errk(dk, µk) = µk(‖c(xk) +A(xk)nk‖ − ‖c(xk) +A(xk)dk‖).

7.3 A Jacobian-free Trust-Region Method 139

As can be seen, errk(dk, µk) is a measure for the error in Zk, i.e., in the approx-
imation of Z(xk). Since the usual identity for the predicted reduction is not
valid, we define an inexact predicted reduction

ipredk(dk) = tpred(tk) + µknpred(nk) + χk (7.21)

by omitting the error term. We will use this inexact measure for our trust-
region algorithm. However, to ensure well-posedness and convergence for the
considered class of trust-region methods, we need a bound on the error term
errk(dk, µk). Obviously, one can derive that

|errk(dk, µk)| = µk

∣

∣‖c(xk) +A(xk)nk‖ − ‖c(xk) +A(xk)dk‖
∣

∣

≤ µk‖A(xk)tk‖ ≤ µk ν∆
2
k.

Hence, one may use a criterion like

‖A(xk)tk‖ ≤ ν∆2
k (7.22)

for a constant ν > 0 to bound the inexactness that is due to the tangential step.
This inequality can be easily verified by evaluating one Jacobian-vector product.
Similar requirements on the inexactness can be found in [88, Section 4.1.4] in the
context of the convergence analysis of inexact trust-region methods for PDE-
constrained optimization problems and in [36, Section 10.4] for trust-region
methods in the unconstrained case. However, using (7.22) it may happen that
predk(dk) may become negative if errk(dk, µk) is large relative to ipredk(dk).
For this reason, we will use the direct criterion

−errk(dk, µk) <

(

1− η − 1− η
2

)

ipredk(dk) (7.23)

for a constant η ∈ (0, 1). This inequality can be used to control the error in
the inexact predicted reduction and therefore allows to ensure well-posedness
of the algorithm. Note that one only has to bound a negative errk(dk, µk) since
a positive error even lead to a larger predk(dk). If (7.23) holds, one has

predk(dk) = ipredk(dk) + errk(dk, µk)

> ipredk(dk)−
(

1− η − 1− η
2

)

ipredk(dk) (7.24)

>

(

η +
1− η

2

)

ipredk(dk) ≥ 0

if ipredk(dk) ≥ 0. Once more, (7.23) can be easily verified by evaluating two
Jacobian-vector products.

7.3.3 The Trust-Region Algorithm

After specifying the computation of the normal and tangential step, we can now
state a detailed description of our algorithm for solving the NLP (7.1):

140 Chapter 7. Convergence of TR-Methods with Inexact Jacobians

Algorithm I:

Start: Set initial values x0, λ0, µ−1 > 0, A0, Z0, ∆0, ρ ∈ (0, 1), η ∈ (0, 1),
ω ∈ (0, 1

2), and ν > 0
for k = 0, 1, . . .

1. Compute a normal step nk such that (7.9) and (7.10) hold.

2. Compute a tangential step tk such that (7.15) holds.
Compute the total step dk = nk + tk.

3. Compute the smallest value µ̃k such that

ipredk(dk) = tpred(tk) + µ̃knpred(nk) + χk ≥ ρ µ̃k npredk(nk). (7.25)

If µ̃k ≤ µk−1, set µk = µk−1, otherwise set µk = max{µ̃k, 1.5µk−1}.
4. If (7.23) does not hold, update Ak and Zk and go to step 1.

5. If

aredk(dk) < η ipredk(dk)

decrease ∆k by a constant factor and go to 1.

6. Set xk+1 = xk + dk and choose a ∆k+1 such that ∆k+1 ≥ ∆k

7. Compute new Ak+1, Zk+1, and Lagrange multipliers λk+1 using

λk+1 = −(Ak+1A
T
k+1)

−1A(xk+1)∇f(xk+1) (7.26)

such that ‖ZT
k+1A(xk+1)

Tλk+1‖ ≤ ω‖ZT
k+1∇f(xk+1)‖.

8. If ZT
k+1∇f(xk+1) = 0 and c(xk+1) = 0 go to 7 to improve Zk+1,

else increase k by 1 and go to 1.

Algorithm I represents a Byrd-Omojokun trust-region algorithm that takes the
inexactness of the Jacobian and its null space representation into account. To
clarify this point we will discuss now each step of Algorithm I and compare it to
a standard Byrd-Omojokun approach. The computation of a normal direction
in Step 1 is identical to a standard approach where the normal Cauchy decrease
condition and the range space condition have to be fulfilled. Note that the
inexactness of the Jacobian may enter into the normal direction due to the
choice of the normal step. The tangential direction computed in Step 2 has to
fulfill the tangential Cauchy decrease condition, i.e., a standard requirement for
a Byrd-Omojokun algorithm.

In Step 3, χk can be of any sign. Furthermore, we have that npredk(nk) and
tpredk(tk) are nonnegative due to (7.11) and (7.17). Hence, if npredk(nk) > 0
holds it follows that ipredk(dk) ≥ ρµk npredk(nk) is valid when

µk ≥
−χk

(1 − ρ)npredk(nk)
.

This lower bound is a sufficient condition, but not necessary, as condition (7.25)
may hold also for smaller values of µk. If npredk(nk) = 0 one can conclude from
Lemma 7.3.1 that c(xk) = 0 due to assumption (AS1). Therefore, nk = 0 solves
the normal subproblem (7.5). The solution of (7.5) must be unique because of

7.4 Well-posedness of Algorithm I 141

the range space condition (7.10). It follows for npredk(nk) = 0 that nk = 0,
χk = 0, and that (7.25) is satisfied for any value of µk.

The additional test on (7.23) in Step 4 ensures that the inexactness of the
Jacobian and its null space representation does not harm the tangential direc-
tion too much. Due to assumption (AS7), we need only a finite number of
improvement steps for fixed xk to obtain an exact Zk = Z(xk) such that (7.23)
is fulfilled.

The Steps 5 and 6 are standard update procedures of a trust-region algo-
rithm. One only has to remember that ipred(dk) is not equal to the predicted
reduction pred(dk) due to the inexactness allowed here. We will see later that
the algorithm converges despite this inexactness.

In Step 7, we compute an approximation Zk+1 of the exact null space such
that the inexactness is limited to a certain amount in the direction λk+1. Such
an approximation can be found due to assumption (AS7). Subsequently, we
test whether the approximation Zk+1 is good enough. A stationary point of the
NLP (7.1) would satisfy the equations

Z(xk+1)
T∇f(xk+1) = 0 c(xk+1) = 0

due to the first-order optimality condition. However, we do not have an exact
null space representation Z(xk+1). Therefore, in Step 8 we check whether xk+1

is a stationary point of the inexact problem, i.e., whether the equations

ZT
k+1∇f(xk+1) = 0 c(xk+1) = 0

hold. If this is the case but xk+1 is not a KKT point of the NLP (7.1), we
have that Z(xk+1)

T∇f(xk+1) 6= 0. Hence, our approximation Zk+1 of the null
space Z(xk+1) must be improved to obtain well-posedness. Due to assumption
(AS7), we need only a finite number of improvement steps for fixed xk to obtain
ZT

k+1∇f(xk+1) 6= 0. Hence, it follows that there can be only an infinite cycling
between Step 7 and 8 if xk+1 is an KKT point of the NLP (7.1).

7.4 Well-posedness of Algorithm I

An important property of a trust-region algorithm is the well-posedness. Here,
one has to show that the trust-region radius cannot shrink to zero if an iterate
xk is not a stationary point of the NLP (7.1). For this purpose, we analyze the
relation of the actual and predicted reduction. We will employ ideas used in
the proof of Lemma 4 in [24]. In addition, we must take the inexactness of the
Jacobian and its null space representation into account. That is, we have to
ensure that the error term errk(dk, µk) does not dominate the model. In Step 4
of Algorithm I, we require that (7.23) holds. Employing this inequality, we can
prove the following result that is related to Lemma 4 in [24].

Lemma 7.4.1. Assume that the assumptions (AS4), (AS5), and (AS7) hold on
the open convex set X containing all iterates. Then there exists a positive
constant ζ such that for any iterate xk and any step dk = nk + tk generated by
Algorithm I with [xk, xk +dk] ⊂ X and aredk(dk) ≤ η ipredk(dk), it follows that

0 ≤ ηipredk(dk)− aredk(dk) ≤ ζ(1 + µk)∆
2
k (7.27)

142 Chapter 7. Convergence of TR-Methods with Inexact Jacobians

Proof: Since A(·) is Lipschitz continuous, there exists a constant ζ ′ > 0 such
that

∣

∣ ‖c(xk + dk)‖ − ‖c(xk) +A(xk)dk ‖
∣

∣ ≤ ‖c(xk + dk)− c(xk)−A(xk)dk ‖
≤ sup

x̃∈[xk,xk+dk]
‖A(x̃)−A(xk)‖ ‖dk‖

≤ ζ ′∆2
k .

As in Lemma 4 of [24], the last inequality, the definitions (7.3) and (7.4), the
Lipschitz continuity of ∇f , and the boundedness of B yield

|predk(dk)− aredk(dk) | ≤
∣

∣

∣f(xk + dk)−f(xk)−∇f(xk)
T dk−

1

2
dT

kBkdk

+µk(‖c(xk +dk)‖−‖c(xk)+A(xk)dk‖)
∣

∣

∣

≤ ζ(1 + µk)∆
2
k

for some positive constant ζ. Combining the last two inequalities with the
bound (7.23) on the error and therefore (7.24), we obtain

0 < ηipredk(dk)− aredk(dk) ≤
(

η +
1− η

2

)

ipredk(dk)− aredk(dk)

≤ predk(dk)− aredk(dk) ≤ ζ(1 + µk)∆
2
k .

Next, we have to prove that Algorithm I can not generate an infinite cycling
between Steps 1 and 5. To show that an acceptable step is determined with a
finite number of reductions of ∆k even if the Jacobian and its null space repre-
sentation are inexact, we employ two properties: First, it follows for c(xk) = 0
from (7.8), (7.11), and assumption (AS1) that npredk(nk,i) = 0, nk,i = 0, and
therefore pC

k = −ZT
k ∇f(xk) 6= 0 due to Steps 7 and 8 of Algorithm I. Second,

it follows for c(xk) 6= 0 from assumption (AS1) that A(xk)
T c(xk) 6= 0. Using

these properties of our inexact setting, the proof of the following result is simi-
lar to the one of Proposition 1 in [24] taking the modified estimate (7.27) into
account. Therefore, we only will state the parts of the proof that differ from
the proof of [24, Proposition 1].

Proposition 7.4.2. Let assumption (AS1) hold. Suppose that xk is not a
stationary point of the NLP (7.1). Then there exists a ∆0

k such that

aredk(dk) ≥ η ipredk(dk)

for any ∆ ∈ (0,∆0
k).

Proof: Let the iterate xk be fixed. To prove the assertion, we assume that
there is a subsequence indexed by i of trust radii ∆k,i such that ∆k,i converges
to zero and that aredk(dk,i) < η ipredk(dk,i) for the corresponding steps dk,i =
nk,i + tk,i and the penalty parameter µk,i for all i.

7.5 Convergence Analysis 143

For η ∈ (0, 1), the inequality aredk(dk,i) < η ipredk(dk,i) yields

(

η +
1− η

2

)

ipredk(dk,i)− aredk(dk,i) >
1− η

2
ipredk(dk,i) ≥ 0.

Then, it follows from Lemma 7.4.1 in combination with ∆k,i → 0 that

ipredk(dk,i) = (1 + µk,i)o(‖dk,i‖). (7.28)

This equation can be used exactly along the lines of the proof of Proposition 1
in [24] to produce a contradiction proving the assertion of the proposition.
Therefore, we skip the rest of the proof here.

Hence, to obtain well-posedness of Algorithm I even in the presence of inexact
first-order information one has to ensure that the approximation Zk of the
exact null space representation is not too bad. In our approach the effects of
the inexactness are bounded for the tangential step by the additional condition
(7.23). This suffices to show the bound (7.27). Additionally, the test on the
quality of Zk in Step 7 and 8 of Algorithm 1 ensures that there can not be an
infinite cycling between Step 1 and 5, i.e., an acceptable step can be computed
with a finite number of iterations. Note that only the inexactness of the null
space approximation Zk but not the inexactness of the constraint Jacobian
approximation Ak has to be controlled to achieve well-posedness.

7.5 Convergence Analysis

Comparing the following theorem with its counterpart in [24], one finds that
the result presented here is less general. This is due to the fact that we con-
centrate the analysis in this paper mainly on the influence of inexact Jacobian
information. That is, we do not want to study the performance of Algorithm I
in the presence of dependent constraint gradients as in [24] but focus on the
effects caused by inexact constraint Jacobian information. Therefore, we as-
sume in contrast to [24] that the exact constraint Jacobian A(xk) has full row
rank, i.e., assumption (AS1) holds. Otherwise, the iterates generated by Algo-
rithm I may converge to a limit point failing the linear independence constraint
qualification. For the derivation of the next result, it is not required to handle
the inexactness of Ak and Zk directly. The inexact first-order information are
taken into account by Lemma 7.4.1 which is used in the proof of the following
assertion. Due to the estimate in Lemma 7.4.1 that differs from [24, Proposition
1], we state the parts of the proof that differ from [24, Lemma 7], but skip the
rather long remaining parts of the proof.

Theorem 7.5.1 (Feasibility of all limit points). Assume that (AS1) – (AS7)
hold. Then, we have

lim
k→∞

c(xk) = 0.

144 Chapter 7. Convergence of TR-Methods with Inexact Jacobians

Proof: We define the function

Ψ(x) = ‖A(x)T c(x)‖ .
Using the assumptions (AS4) and (AS5), we obtain that there are constants
ǫ1, ǫ2, ǫ3 > 0 such that

|Ψ(x)−Ψ(xl)| = ‖A(x)T c(x)−A(x)T c(xl) +A(x)T c(xl)−A(xl)
T c(xl)‖

≤ ǫ1‖x− xl‖ + ǫ2‖x− xl‖ ≤ ǫ3‖x− xl‖
(7.29)

holds for any two points x and xl in X . Now, consider an arbitrary iterate xl

with Ψl ≡ Ψ(xl) 6= 0. First, we will show that Algorithm I accepts all sufficiently
small steps that are in a neighborhood of the iterate xl. If the current step dk is
acceptable nothing has to be shown, otherwise one has aredk(dk) < η ipredk(dk)
and Lemma 7.4.1 can be applied. We define the ball

Bl = {x : ‖x− xl‖ < Ψl/(2ǫ3)} .
Applying (7.29) yields for any x ∈ Bl that Ψ(x) ≥ Ψl/2 > 0. It follows that
there exists a constant c̄ with ‖c(x)‖ ≥ c̄ > 0. Using Lemma 7.3.1 and the
assumption (AS4) yields the existence of a constant ǫ4 > 0 such that for any
iterate xk ∈ Bl the inequality

ipredk(dk) ≥ ρµknpredk(nk) ≥ µkǫ4Ψl min{∆̃k,Ψl} (7.30)

holds. For sufficient small ∆k it follows that

ipredk(dk) ≥ µkǫ4Ψl∆̃k. (7.31)

Employing this inequality together with the estimate derived in the proof of
Lemma 7.4.1, we have

0 ≤

(

η + 1−η
2

)

ipredk(dk)− aredk(dk)

ipredk(dk)
≤ ζ(1 + µk)∆

2
k

µkǫ4Ψl∆̃k

and therefore

ared ≥ ηipredk(dk) +

(

1− η
2
− ζ(1 + µk)∆k

µkǫ4Ψl

)

ipredk(dk) .

For ∆k sufficiently small, the second term on the right-hand side is non-negative.
Hence, for all xk ∈ Bl and all such ∆k, we have

aredk(dk) ≥ η ipredk(dk) (7.32)

which results in acceptance of dk due to Step 4 of Algorithm I. The remainder
of this proof follows exactly along the lines of [24, Lemma 7].

To prove the first-order optimality of all limit points, we need that the normal
step can be bounded by the normal predicted reduction and that the penalty
factor µk eventually becomes constant. For that purpose, we present the next
two lemmas. For the proofs of the following two results, it is not necessary to
handle the inexactness of Ak and Zk directly. Nevertheless, we state the two
proofs since the derivation differs slightly from the proofs contained in [24] due
to the different setting.

7.5 Convergence Analysis 145

Lemma 7.5.2 (Upper bound on normal step). Let assumptions (AS1) and (AS4)
be fulfilled. Then there exists a positive constant γ such that

‖nk‖ ≤ γ npredk(nk) (7.33)

Proof: Using Lemma 7.3.1, we have for the normal step

‖c(xk)‖npredk(nk) ≥
γn

2
‖A(xk)

T c(xk)‖min

{

∆̃k,
‖A(xk)

T c(xk)‖
‖A(xk)‖2

}

.

If c(xk) = 0 then inequality (7.33) is trivially satisfied. Therefore assume that
c(xk) 6= 0. Since A(xk) is supposed to remain bounded there exists a constant
σ̄ = supk ‖A(xk)‖. Together with assumption (AS1), this gives

npredk(nk) ≥
γn

2
σ̂min

{

∆̃k,
σ̂‖c(xk)‖

σ̄2

}

. (7.34)

Now, we have to consider two cases. First, let ‖c(xk)‖ ≥ σ̂∆̃k/2. Using σ̄ ≥ σ̂
and the trust-region constraint, we obtain

npredk(nk) ≥
γn

2
σ̂min

{

1,
σ̂2

2σ̄2

}

∆̃k ≥
γnσ̂

3

4σ̄2
‖nk‖.

This yields (7.33). Second, assume that ‖c(xk)‖ < σ̂∆̃k/2. To derive the upper
bound (7.33) in this case, we employ (7.10) and Lemma 7.3.1. Hence, there
exists a vector vk ∈ R

M such that

‖c(xk)‖2 ≥ ‖c(xk) +A(xk)nk‖2

= ‖c(xk)‖2 + 2c(xk)TA(xk)nk + ‖A(xk)A(xk)T vk‖2.
One obtains

‖A(xk)A(xk)
T vk‖2 ≤ −2c(xk)TA(xk)nk.

Using the Cauchy-Schwarz inequality, it follows that

‖A(xk)A(xk)T vk‖ ≤ 2‖c(xk)‖.
Due to assumption (AS1), this inequality implies that

‖nk‖ = ‖A(xk)T vk‖ ≤
2

σ̂
‖c(xk)‖.

Employing the last inequality and (7.34), we have

npredk(nk) ≥
γn

2
σ̂min

{

∆̃k,
σ̂‖c(xk)‖

σ̄2

}

≥ γn

2
σ̂min

{

2

σ̂
,
σ̂

σ̄2

}

‖c(xk)‖

≥ γn min

{

2

σ̂
,
σ̂

σ̄2

}

‖nk‖,

which concludes the proof.

Lemma 7.5.3 (Bound on hpred and constant µk for k ≥ k1). Suppose that
the assumptions (AS1) and (AS4) are satisfied. Then the sequence of penalty
parameters {µk} is bounded. Furthermore, there exist an index k1 and positive
constants µ̄ and ξ, such that µk = µ̄ holds for all k ≥ k1 and

ipredk(dk) ≥ ξtpredk(tk). (7.35)

146 Chapter 7. Convergence of TR-Methods with Inexact Jacobians

Proof: The sequences {∇f(xk)} and {Bk} are bounded due to assumption
(AS4). It follows from (7.8) that npredk(nk) ≤ ‖c(xk)‖. Furthermore, ‖c(xk)‖
is bounded due to assumption (AS4). Hence, npredk(nk) is bounded. Using
(7.33), we obtain that there exists a constant ξ1 such that

−∇f(xk)
Tnk −

1

2
nT

kBknk ≥ −ξ1npredk(nk).

Then, we can deduce from the definition (7.21) of ipredk(dk) that

ipredk(dk) ≥ tpred(tk) + µknpred(nk)− ξ1npredk(nk). (7.36)

Employing that npredk(nk) ≥ 0 and tpredk(tk) ≥ 0, we can derive from this
inequality that (7.25) in Step 3 of Algorithm I holds for µk ≥ ξ1/(1−ρ). Hence,
if µk becomes larger than ξ1/(1 − ρ), it will never be increased. Taking into
account that Algorithm I increases µk by a constant factor this yields that after
some iterate, e.g. k1, µk will remain unchanged at some value µ̄.

Then, it follows from (7.21) and (7.25) that

ipredk(dk) ≥ tpred(tk)− ξ1npredk(nk) ≥ tpred(tk)−
ξ1
ρµk

ipredk(dk).

Hence, (7.35) is satisfied with 1/ξ = 1 + ξ1/(ρ µ̄).

Now, the field is prepared to prove the main result of this paper, namely the con-
vergence to a first-order critical point from an arbitrary starting point. That is,
we prove global convergence for our trust-region method given by Algorithm I.
For this purpose, we have to take the inexactness of Zk explicitly into account:
The bound on the error in the null space representation provided by Step 7 of
Algorithm I is directly required to prove the following result. Therefore, we
state the full proof, where we also employ ideas from [24, Lemma 12].

Theorem 7.5.4 (All limit points are first-order optimal). Suppose that (AS1)
– (AS7) hold. Then, it follows that

lim
k→∞

∇xL(xk, λk) = lim
k→∞

(∇f(xk) +A(xk)
Tλk) = 0

where the multipliers λk are defined as in (7.26).

Proof: Step 7 of Algorithm I ensures that

‖ZT
k A(xk)

Tλk‖ ≤ ω‖ZT
k ∇f(xk)‖

for ω ∈ (0, 1
2) and k > 0. This yields for qk = ∇xL(xk, λk)

‖ZT
k qk‖ = ‖ZT

k (∇f(xk) +A(xk)
Tλk)‖ ≥ ‖ZT

k ∇f(xk)‖ − ‖ZT
k A(xk)

Tλk‖

≥ (1− ω)‖ZT
k ∇f(xk)‖ ≥

1− ω
ω
‖ZT

k A(xk)
Tλk‖.

Setting ̺ = ω/(1 − ω) ∈ (0, 1), we obtain

̺‖ZT
k qk‖ ≥ ‖ZT

k A(xk)
Tλk‖.

7.5 Convergence Analysis 147

It follows that there exists a constant γ′1 such that (AS3) and (AS4) yield

‖pC
k ‖ = ‖ − ZT

k (∇f(xk) +Bknk)‖
= ‖ − ZT

k ∇f(xk)− ZT
k A(xk)

Tλk + ZT
k A(xk)Tλk − ZT

k Bknk‖
= ‖ − ZT

k qk + ZT
k A(xk)Tλk − ZT

k Bknk‖
≥ σ̌‖qk‖ − ̺σ̌‖qk‖ − γ′1‖nk‖ = (1− ̺)σ̌‖qk‖ − γ′1‖nk‖

is valid.

To obtain a contradiction, suppose that limk→∞ qk = 0 does not hold.
Then, there exists a constant ϑ > 0 such that 0 < ϑ ≤ 1

4 lim supk→∞ ‖qk‖.
Lemma 7.5.1 ensures that c(xk) → 0. Together with Lemma 7.5.2 this yields
‖nk‖ → 0. Hence, there is an arbitrarily large l such that for the iterate xl and
all k ≥ l, we have ‖ql‖ > 3ϑ and γ′1‖nk‖ < (1 − ̺)σ̌ϑ. Let γL be the Lipschitz
constant for qk. We define the ball Bl = {x : ‖x− xl‖ ≤ ϑ/γL}. Now, assume
that the iterates xk with k > l do not leave Bl. Then, it follows for all k that

‖pC
k ‖ ≥ (1− ̺)σ̌(‖ql‖ − ‖ql − qk‖)− γ′1‖nk‖
≥ (1− ̺)σ̌(3ϑ − ϑ− ϑ) = (1− ̺)σ̌ϑ > 0.

Employing Lemma 7.3.3 and Lemma 7.5.3 gives with γ′2 = ξ γ̂(1− ̺)σ̌ that

ipredk(dk) ≥ ξ tpredk(tk) ≥ γ′2 ϑmin{∆̂k, (1 − ̺)σ̌ ϑ}. (7.37)

Now, we define the scaled merit function

φ̃(x;µ) ≡ 1

µ
φ(x;µ) =

1

µ
f(x) + ‖c(x)‖

as proposed in [24]. Since the values {f(xk)} of the objective function are
bounded below, we can add a constant to f such that f(xk) ≥ 0 holds at all
iterates. Then, we can deduce from Step 4 of Algorithm I and the fact that µk

is nondecreasing, see Lemma 7.5.3, that

φ̃(xk;µk)−
η ipredk(dk)

µk
≥ φ̃(xk+1;µk)

= φ̃(xk+1;µk+1) +

(

1

µk

− 1

µk+1

)

f(xk+1)

≥ φ̃(xk+1;µk+1).

That is, the sequence φ̃(xk;µk) is decreasing. Furthermore, the boundedness of
f(xk) gives

φ̃(xk;µk) =
1

µk
f(xk) + ‖c(xk)‖ ≥ K (7.38)

for a constant K ∈ R. The fact that {φ̃(xk;µk)} is bounded and Lemma 7.5.3
imply that ipredk(dk) → 0 since otherwise {φ̃(xk;µk)} would not be bounded.

148 Chapter 7. Convergence of TR-Methods with Inexact Jacobians

Together with (7.37) this implies ∆̂k → 0. Taking l sufficiently large yields for
any k ≥ l with xk ∈ Bl that ∆̂k ≤ min{1, (1 − ̺)σ̌ϑ} and therefore

ipredk(dk) ≥ γ′2 ϑ∆̂k. (7.39)

If xk ∈ Bl, we employ the same argument as in the proof of Theorem 7.5.1 to
show that an acceptable step is generated for sufficiently small ∆k. Hence, if
xk ∈ Bl for all k > l then ∆k would eventually stop decreasing. However, this
contradicts the fact that ∆̂k → 0. Thus the sequence {xk} must leave Bl for
some k > l.

In that case, suppose that xk+1 is the first iterate after xl that is not con-
tained in Bl. We deduce from (7.39) and ∆̂k = (1− κ)∆k that

φ(xk+1;µk+1) ≤ φ(xl;µl)− η
k
∑

j=l

ipred(xj , µj)

≤ φ(xl;µl)− γ′2ϑ(1− κ)
k
∑

j=l

∆j

≤ φ(xl;µl)− γ′2(1− κ)ϑ2/γL.

(7.40)

One can derive the last inequality from the fact xk+1 has left the ball Bl with
radius ϑ/γL. The sequence {φ(xk;µk)} is decreasing and bounded below due
to (7.38). Hence, it converges. This is a contradiction to the fact that l can be
chosen arbitrarily large in (7.40) and the fact that ϑ > 0. Therefore, qk → 0.

Once more, one only has to limit the error due to the inexact null space repre-
sentation Zk for the proof of global convergence. Therefore, an implementation
of Algorithm I will have to handle the approximation of the null space represen-
tation carefully. One possibility is to employ the TR1 update of the Jacobian
that also provides an approximation of the null space representation [79]. We
will present corresponding numerical results in a forthcoming paper [151].

7.6 Conclusion

In this paper, we have proposed and analyzed for the first time a class of trust-
region methods based only on inexact information on the constraint Jacobian
and the null space representation without any assumption on the method to
approximate these matrices. Using two conditions measuring the inexactness
of the null space representation, we prove global first-order convergence for the
presented algorithm under quite mild conditions. The two required conditions
on the inexactness can be easily verified during the optimization process.

Due to the non-differentiable merit function and the weak assumptions on
the inexactness, one may need to accelerate the convergence rate using addi-
tional safe-guard strategies for the inexactness possibly in combination with a
second order correction or a watch-dog technique.

In addition to this subject, future work will also comprise the handling
of inequality constraints. The introduction of slack variables in combination
with interior point techniques would be one possibility. Alternatively, one may
analyze projection methods to incorporate, for example, bound constraints.

7.6 Conclusion 149

Acknowledgments

The author is very thankful to Lorenz T. Biegler for numerous discussions on
trust-region methods. Furthermore, the author is grateful to Jorge Nocedal and
Hubert Schwetlick for their motivating comments on the subject of this paper.
The valuable comments and hints of the anonymous referees are also gratefully
acknowledged.

150 Chapter 7. Convergence of TR-Methods with Inexact Jacobians

Bibliography

[1] F. Abergel and R. Temam. On some control problems in fluid mechanics.
Theoret. Comput. Fluid Dynamics, 1:303–325, 1990.

[2] F. Abraham, M. Behr, and M. Heinkenschloss. The effect of stabilization
in finite element methods for the optimal boundary control of the Oseen
equations. Finite Elements in Analysis and Design, 41:229–251, 2004.

[3] A. Albertson, G. Chappell, H. Kierstead, A. Kündgen, and R. Rama-
murthu. Coloring with no 2-colored P4’s. Electron. J. Comb., 11(1):R26,
2004.

[4] A. Arora and L. Biegler. A trust region SQP algorithm for equality
constrained parameter estimation with simple parameter bounds. Com-
put. Optim. Appl., 28(1):51–86, 2004.

[5] G. Bärwolff and M. Hinze. Optimization of semiconductor melts. ZAMM,
86:423–437, 2006.

[6] R. Becker, D. Meidner, and B. Vexler. Efficient numerical solution of
parabolic optimization problems by finite element methods. Optim. Meth-
ods Softw., 2007. To appear.

[7] R. Becker and B. Vexler. Optimal control of the convection-diffusion
equation using stabilized finite element methods. Num. Math., 2007. To
appear.

[8] C. Bendtsen and O. Stauning. FADBAD, a flexible C++ package for auto-
matic differentiation. Technical report, Technical University of Denmark,
1996.

[9] M. Berggren. Numerical solution of a flow control problem: Vorticity
reduction by dynamic boundary action. SIAM J. Sci. Comput., 19(3):829–
860, 1998.

[10] M. Berggren, R. Glowinski, and J.L. Lions. A computational approach
to controllability issues for flow-related models. I: Pointwise control of
the viscous Burgers equation. Int. J. Comput. Fluid Dyn., 7(3):237–252,
1996.

[11] M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational
Differentiation: Techniques, Applications, and Tools. SIAM, Phil., 1996.

151

152 BIBLIOGRAPHY

[12] J.T. Betts. Practical Methods for Optimal Control Using Nonlinear Pro-
gramming. SIAM, Philadelphia, 2001.

[13] C. Bischof, A. Carle, P. Hovland, P. Khademi, and A. Mauer. ADIFOR
2.0 user’s guide (Revision D). Technical Report CRPC-95516-S, Argonne
National Laboratory, USA, 1998.

[14] H.G. Bock and K.-J. Plitt. A multiple shooting algorithm for direct solu-
tion of optimal control problems. In Proceedings of the 9th IFAC World
Congress, pages 243–247. Pergamon Press, 1984.

[15] I. Bongartz, A.R. Conn, N. Gould, and Ph. Toint. CUTE: Constrained
and unconstrained testing environment. ACM Trans. Math. Softw.,
21:123–160, 1995.

[16] A.E. Bryson and Y. Ho. Applied Optimal Control—Optimization, Es-
timation, and Control. Hemisphere Publishing Corporation, New York,
1975.

[17] R. Bulirsch, E. Nerz, H.J. Pesch, and O. von Stryk. Combining direct and
indirect methods in nonlinear optimal control: Range maximization of a
hang glider. In R. Bulirsch, A. Miele, J. Stoer, and K.H. Well, editors,
Optimal Control, Calculus of Variations, Optimal Control Theory and
Numerical Methods, pages 273–288. Birkhäuser, 1993.

[18] C. Büskens. Optimierungsmethoden und Sensitivitätsanalyse für optimale
Steuerprozesse mit Steuer- und Zustandsbeschränkungen. PhD thesis,
Westfälische Wilhelms-Universität Münster, 1998.

[19] C. Büskens and H. Maurer. SQP-methods for solving optimal control
problems with control and state constraints: Adjoint variables, sensitivity
analysis and real-time control. J. Comp. App. Math., 120:85–108, 2000.

[20] C. Büskens and H. Maurer. Sensitivity analysis and real-time optimiza-
tion of parametric nonlinear programming problems. In M. Gröschel,
S. Krumke, and J. Rambau, editors, Online Optimization of Large Scale
Systems: State of the Art, pages 3–16. Springer, 2001.

[21] J.C. Butcher. The numerical analysis of ordinary differential equations.
John Wiley, New York, 1987.

[22] R. Byrd. Robust trust region methods for constrained optimization, Hous-
ton, USA. Third SIAM Conference on Optimization, 1987.

[23] R. Byrd, F. Curtis, and J. Nocedal. Inexact SQP methods for equal-
ity constrained optimization. Technical report, Northwestern University,
USA, 2006.

[24] R. Byrd, J. Gilbert, and J. Nocedal. A trust region method based on
interior point techniques for nonlinear programming. Math. Program.,
89A:149–185, 2000.

BIBLIOGRAPHY 153

[25] J.-B. Caillau and J. Noailles. Continuous optimal control sensitivity anal-
ysis with AD. In Corliss et al. [38], pages 109–117.

[26] R. Carter. Numerical experience with a class of algorithms for nonlinear
optimization using inexact function and gradient information. SIAM J.
Sci. Comput., 14:368–388, 1993.

[27] D. Casanova, R.S. Sharp, M. Final, B. Christianson, and P. Symonds.
Application of automatic differentiation to race car performance optimi-
sation. In Corliss et al. [38], pages 109–117.

[28] M.R. Celis, J.E. Dennis, and R.A. Tapia. A trust region strategy for
nonlinear equality constrained optimization. In Numerical optimization,
Proc. SIAM Conf., pages 71–82, 1985.

[29] I. Charpentier. Checkpointing schemes for adjoint codes: Application to
the meteorological model meso-nh. SIAM J. Sci. Comput., 22:2135–2151,
2001.

[30] G. Chavent. Identification of distributed parameter systems: About
the output least square method, its implementation, and identifiability.
Identification and system parameter estimation, Proc. 5th IFAC Symp.,
Darmstadt 1979, Vol. 1, 85-97, 1980.

[31] B. Christianson. Reverse accumulation and implicit functions. Optim.
Methods Softw., 9(4):307–322, 1998.

[32] T. Coleman and J. Cai. The cyclic coloring problem and estimation of
sparse Hessian matrices. SIAM J. Alg. Disc. Meth., 7:221–235, 1986.

[33] T. Coleman and J. Moré. Estimation of sparse Hessian matrices and
graph coloring problems. Math. Program., 28:243–270, 1984.

[34] S.S. Collis and M. Heinkenschloss. Analysis of the streamline up-
wind/Petrov Galerkin method applied to the solution of optimal control
problems. Technical Report CAAM TR02-01, CAAM, 2002.

[35] A. Conn, N. Gould, and Ph. Toint. Convergence of quasi-Newton ma-
trices generated by the symmetric rank one update. Math. Program.,
50A(2):177–196, 1991.

[36] A. Conn, N. Gould, and Ph. Toint. Trust-region methods. SIAM, 2000.

[37] P. Constantin and C. Foias. Navier-Stokes Equations. The University of
Chicago Press, 1988.

[38] G.F. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann,
editors. Automatic Differentiation: From Simulation to Optimization.
Springer, New York, 2001.

[39] CppAD. web-site: http://www.seanet.com/∼bradbell/CppAD/.

154 BIBLIOGRAPHY

[40] K. Deckelnick and M. Hinze. Error estimates in space and time for
tracking-type control of the instationary Stokes system. International
Series on Numerical Mathematics, 143:87–103, 2002.

[41] K. Deckelnick and M. Hinze. Semidiscretization and error estimates for
distributed control of the instationary Navier-Stokes equations. Numer.
Math., 97:297–320, 2004.

[42] J. Dennis, M. El-Alem, and M. Maciel. A global convergence theory for
general trust-region-based algorithms for equality constrained optimiza-
tion. SIAM J. Optim., 7(1):177–207, 1997.

[43] L. Dixon. Use of automatic differentiation for calculating Hessians and
Newton steps. In Griewank and Corliss [71], pages 114–125.

[44] A.L. Dontchev, W. Hager, and V. Veliov. Second-order Runge-Kutta
approximations in control constrained optimal control. SIAM J. Numer.
Anal., 38:202–226, 2000.

[45] P. Eberhard and C. Bischof. Automatic differentiation of numerical inte-
gration algorithms. Math. Comput., 68(226):717–731, 1999.

[46] M. El-Alem. A global convergence theory for the Celis-Dennis-Tapia
trust-region algorithm for constrained optimization. SIAM J. Nu-
mer. Anal., 28(1):266–290, 1991.

[47] Y.G. Evtushenko. Automatic differentiation viewed from optimal control
theory. In Griewank and Corliss [71], pages 25–30.

[48] Y.G. Evtushenko. Computation of exact gradients in distributed dynamic
systems. Optim. Methods Softw., 9(1-3):45–75, 1998.

[49] R. Fletcher, N. Gould, S. Leyffer, P. Toint, and A. Wächter. Global
convergence of a trust-region SQP-filter algorithm for general nonlinear
programming. SIAM J. Optim., 13(3):635–659, 2003.

[50] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty
function. Math. Program., 91A(2):239–269, 2002.

[51] R. Fletcher, S. Leyffer, and P. Toint. On the global convergence of a
filter-SQP algorithm. SIAM J. Optim., 13(1):44–59, 2002.

[52] N. Gauger. Aerodynamic shape optimization using the adjoint Euler
equations. In T. Sonar and I. Thomas, editors, Proceedings of the GAMM
workshop, pages 87–96. Logos Verlag, 2001.

[53] N. Gauger, A. Walther, C. Moldenhauer, and M. Widhalm. Automatic
differentiation of an entire design chain with applications. Technical re-
port, TU Dresden, 2006. To appear in Jahresbericht 2007 der Arbeitsge-
meinschaft Strömungen mit Ablösung STAB.

BIBLIOGRAPHY 155

[54] D. Gay. More AD of nonlinear AMPL models: Computing Hessian in-
formation and exploiting partial separability. In Berz et al. [11], pages
173–184.

[55] A. Gebremedhin, A. Pothen, A. Tarafdar, and A. Walther. Efficient
computation of sparse Hessians: An experimental study using ADOL-C.
Technical report, Old Dominion University, 2006. Submitted (INFORMS
Journal on Computing, in revision).

[56] A.H. Gebremedhin, F. Manne, and A. Pothen. What color is your
Jacobian? Graph coloring for computing derivatives. SIAM Review,
47(4):629–705, 2005.

[57] U. Geitner, J. Utke, and A. Griewank. Automatic computation of sparse
Jacobians by applying the method of Newsam and Ramsdell. In Berz
et al. [11], pages 161–172.

[58] M. Gertz, P. Gill, and J. Muetherig. User’s guide for SNADIOPT: A
package adding automatic differentiation to SNOPT. Technical Report
NA 01-01, Department of Mathematics, University of California, 2001.

[59] R. Giering and T. Kaminski. Recipes for Adjoint Code Construction.
ACM Trans. Math. Software, 24:437–474, 1998.

[60] R. Giering, T. Kaminski, and T. Slawig. Generating efficient derivative
code with TAF: Adjoint and tangent linear Euler flow around an airfoil.
Future Generation Computer Systems, 21(8):1345–1355, 2005.

[61] M.B. Giles. On the iterative solution of adjoint equations. In Corliss et al.
[38], pages 145–151.

[62] P. Gill, W. Murray, M. Saunders, and M. Wright. User’s guide for NPSOL
5.0: A fortran package for nonlinear programming. Technical Report NA
98-2, Department of Mathematics, University of California, San Diego,
1998.

[63] M. Gockenbach, D. Reynolds, and W. Symes. Efficient and automatic
implementation of the adjoint state method. ACM Trans. Math. Software,
28:22–44, 2002.

[64] F. Gomes, M. Maciel, and J. Martinez. Nonlinear programming algo-
rithms using trust regions and augmented Lagrangians with nonmonotone
penalty parameters. Math. Program., 84A(1):161–200, 1999.

[65] R. Griesse. Parametric sensitivity analysis in optimal control of a reaction-
diffusion system. II: Practical methods and examples. Optim. Methods
Softw., 19(2):217–242, 2004.

[66] R. Griesse and A. Walther. Parametric sensitivities for optimal control
problems using automatic differentiation. Opt. Cont. Appl. Meth., 24:297–
314, 2003.

156 BIBLIOGRAPHY

[67] R. Griesse and A. Walther. Evaluating gradients in optimal control —
continuous adjoints versus automatic differentiation. J. Opt. Theo. Appl.,
122(1):63–86, 2004.

[68] A. Griewank. On automatic differentiation. In M. Iri and K. Tanabe, edi-
tors, Mathematical Programming: Recent Developments and Applications,
pages 83–107. Kluwer Academic Publishers, 1989.

[69] A. Griewank. Achieving logarithmic growth of temporal and spatial com-
plexity in reverse automatic differentiation. Optim. Methods Softw., 1:35–
54, 1992.

[70] A. Griewank. Evaluating Derivatives: Principles and Techniques of Al-
gorithmic Differentiation. Number 19 in Frontiers in Appl. Math. SIAM,
Philadelphia, 2000.

[71] A. Griewank and G. Corliss, editors. Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Applications, Philadelphia, 1991.
SIAM.

[72] A. Griewank and C. Faure. Piggyback differentiation and optimization.
In L. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waan-
ders, editors, Large-scale PDE-constrained optimization, LNCSE 30,
pages 148–164. Springer, 2003.

[73] A. Griewank, D. Juedes, and J. Utke. ADOL-C: A package for
the automatic differentiation of algorithms written in C/C++. ACM
Trans. Math. Softw., 22:131–167, 1996.

[74] A. Griewank and C. Mitev. Verifying Jacobian sparsity. In Corliss et al.
[38], pages 271–279.

[75] A. Griewank, S. Schlenkrich, and A. Walther. A quasi-Newton method
with optimal R-order without independence assumption. Technical Re-
port 340, MATHEON, 2006. Submitted (Optim. Methods Softw., in re-
vision).

[76] A. Griewank and A. Walther. Revolve: An implementation of checkpoint-
ing for the reverse or adjoint mode of computational differentiation. ACM
Trans. Math. Software, 26:19–45, 2000.

[77] A. Griewank and A. Walther. On constrained optimization by adjoint-
based quasi-Newton methods. Optim. Methods Softw., 17:869–889, 2002.

[78] A. Griewank and A. Walther. On the efficient generation of Taylor ex-
pansions for DAE solutions by automatic differentiation. In J. Dongarra,
K. Madsen, and J. Wasniewski, editors, Proceedings of PARA’04, LNCS
3732, pages 1089 – 1098, 2006.

[79] A. Griewank, A. Walther, and M. Korzec. Maintaining factorized KKT
systems subject to rank-one updates of Hessians and Jacobians. Op-
tim. Methods Softw., 22(2):279–295, 2007.

BIBLIOGRAPHY 157

[80] J. Grimm, L. Pottier, and N. Rostaing-Schmidt. Optimal time and min-
imum space-time product for reversing a certain class of programs. In
Berz et al. [11], pages 95–106.

[81] M.D. Gunzburger. Perspectives in flow control and optimization. SIAM,
2003.

[82] M.D. Gunzburger and S. Manservisi. Analysis and approximation of the
velocity tracking problem for Navier-Stokes flows with distributed control.
SIAM J. Numer. Anal., 37:1481–1512, 2000.

[83] E. Haber. Quasi-Newton methods for large scale electromagnetic inverse
problems. Inverse Problems, 21:305–317, 2004.

[84] W. Hager. Runge-Kutta methods in optimal control and the transformed
adjoint system. Numer. Math., 87:247–282, 2000.

[85] L. Hascoët and V. Pascual. Tapenade 2.1 user’s guide. Tech. Rep. 300,
INRIA, 2004.

[86] S.B. Hazra, V. Schulz, J. Brezillon, and N. Gauger. Aerodynamic shape
optimization using simultaneous pseudo-timestepping. J. Comput. Phys.,
204(1):46–64, 2005.

[87] P. Heimbach, C. Hill, and R. Giering. An efficient exact adjoint of the
parallel MIT general circulation model, generated via automatic differen-
tiation. Future Generation Computer Systems, 21:1356–1371, 2005.

[88] M. Heinkenschloss and L.N. Vicente. Analysis of inexact trust-region SQP
algorithms. SIAM J. Optim., 12(2):283–302, 2001.

[89] V. Heuveline and A. Walther. Online checkpointing for adjoint computa-
tion in PDEs: Application to goal-oriented adaptivity and flow control.
In W.E. Nagel, W.V. Walter, and W. Lehner, editors, Proceeding of Euro-
Par 2006, LNCS 4128, pages 689 – 699. Springer, 2006.

[90] J.G. Heywood and R. Rannacher. Finite-element approximation of the
nonstationary Navier-Stokes problem, I-IV. SIAM J. Numer. Anal.,
19:275-311, 23:750-777, 25:489-512, 27:353-384, 1982-1990.

[91] P. Hiltmann. Numerische Lösung von Mehrpunkt-Randwertproblemen
und Aufgaben der optimalen Steuerung mit Steuerfunktionen über
endlichdimensionalen Räumen. PhD thesis, TU München, Mathematis-
ches Institut, 1989.

[92] M. Hinze. Optimal and instantaneous control of the instationary Navier-
Stokes equations. Habilitationsschrift, Fachbereich Mathematik, TU
Berlin, 1999.

[93] M. Hinze and K. Kunisch. Second order methods for optimal control of
time-dependent fluid flow. SIAM J. Control Optim., 40:925–946, 2001.

158 BIBLIOGRAPHY

[94] M. Hinze and T. Slawig. Adjoint gradients compared to gradients from
algorithmic differentiation in instantaneous control of the Navier-Stokes
equations. Optim. Methods Softw., 18(3):299–315, 2003.

[95] M. Hinze and J. Sternberg. A-revolve: An adaptive memory and run-
time-reduced procedure for calculating adjoints; with an application to
the instationary Navier-Stokes system. Optim. Methods Softw., 20(6):645–
663, 2005.

[96] M. Hinze, A. Walther, and J. Sternberg. An optimal memory-reduced
procedure for calculating adjoints of the instationary Navier-Stokes equa-
tions. Opt. Cont. Appl. Meth., 27(1):19–40, 2005.

[97] S. Hossain and T. Steihaug. Computing a sparse Jacobian matrix by rows
and columns. Optim. Methods Softw., 10:33–48, 1998.

[98] A. Iollo, G. Kuruvila, and S. Ta’asan. Pseudotime method for shape
design of Euler flows. AIAA J., 34(9):1807–1813, 1996.

[99] D.H. Jacobson and D.Q. Mayne. Differential Dynamic Programming.
American Elsevier Publishing Company, 1970.

[100] H. Jäger and E. Sachs. Global convergence of inexact reduced SQP meth-
ods. Optim. Methods Softw., 7:83–110, 1997.

[101] L. Jiang, L.T. Biegler, and G. Fox. Optimization of pressure swing ad-
sorption systems for air separation. AIChE Journal, 49:1140–1157, 2003.

[102] H.-J. Kaltenbacher, W. Jürgens, and A. Spille. Numerische Simulation,
Beeinflussung und Eigenmoden-Analyse einer abgelösten Strömung mit
Querkomponente. Ergebnisberichte SFB 557 TP A6, 2001.

[103] M. Knauer and C. Büskens. Real-time trajectory planning of the indus-
trial robot IRB 6400. In PAMM, volume 3, pages 515–516, 2003.

[104] A. Kowarz and A. Walther. Optimal checkpointing for time-stepping
procedures in ADOL-C. In V.N. Alexandrov, G.D. van Albada, P.M.A.
Sloot, and J.J. Dongarra, editors, Proceedings of ICCS 2006, LNCS 3994,
pages 541–549. Springer, 2006.

[105] K. Kubota. A fortran 77 preprocessor for reverse mode automatic differen-
tiation with recursive checkpointing. Optim. Methods Softw., 10:319–335,
1998.

[106] M. Lalee, J. Nocedal, and T. Plantenga. On the implementation of an
algorithm for large-scale equality constrained optimization. SIAM J. Op-
tim., 8(3):682–706, 1998.

[107] F. Leibfritz and E. Sachs. Inexact SQP interior point methods and large
scale optimal control problems. SIAM J. Cont. Opt., 38(1):272–293, 1999.

BIBLIOGRAPHY 159

[108] S. Linnainmaa. Taylor expansion of the accumulated rounding error. BIT
(Nordisk Tidskrift for Informationsbehandling), 16:146 – 160, 1976.

[109] S. Nadarajah and A. Jameson. A comparison of the continuous and dis-
crete adjoint approach to automatic aerodynamic optimization. AIAA-
2000-0667, 2000.

[110] U. Naumann. Cheaper Jacobians by simulated annealing. SIAM J. Op-
tim., 13:660–674, 2002.

[111] U. Naumann. Optimal accumulation of Jacobian matrices by elimination
methods on the dual computational graph. Math. Program., 99A:399–421,
2004.

[112] U. Naumann. Optimal Jacobian accumulation is NP-complete. Math.
Prog., 2006. In Press. Appeared on Springer’s ”Online First” Web portal.

[113] U. Naumann and P. Gottschling. Angel - automatic differentiation nested
graph elimination library. http://angellib.sourceforge.net/.

[114] U. Naumann and J. Riehme. A differentiation-enabled fortran 95 com-
piler. ACM Trans. Math. Softw., 31(4):458–474, 2005.

[115] U. Naumann, J. Utke, A. Lyons, and M. Fagan. Control flow reversal
for adjoint code generation. In Proceedings of SCAM 2004, pages 55–64.
IEEE Computer Society, 2004.

[116] N.S. Nedialkov and J.D. Pryce. Solving differential-algebraic equations
by Taylor series. I: Computing Taylor coefficients. BIT, 45(3):561–591,
2005.

[117] J. Nocedal and S. Wright. Numerical Optimization. Springer, 1999.

[118] H. Oberle and W. Grimm. Bndsco — a program for the numerical so-
lution of optimal control problems. Technical Report 515, Institute for
Flight System Dynamics, Oberpfaffenhofen, German Aerospace Research
Establishment DLR, 1989.

[119] E. Omojokun. Trust region algorithms for optimization with nonlinear
equality and inequality constraints. PhD thesis, Dept. of Computer Sci-
ence, University of Colorado, 1989.

[120] D.B. Özyurt and P.I. Barton. Cheap second order directional derivatives
of stiff ODE embedded functionals. SIAM J. Sci. Comput., 26(5):1725–
1743, 2005.

[121] H.J. Pesch. Offline and online computation of optimal trajectories in the
aerospace field. In A. Miele and A. Salvetti, editors, Applied Mathemat-
ics in Aerospace Science and Engineering, volume 44 of Mathematical
Concepts and Methods in Science and Engineering, pages 165–220, 1994.

160 BIBLIOGRAPHY

[122] M. Powell and Ph. Toint. On the estimation of sparse Hessian matrices.
SIAM J. Numer. Anal., 16:1060–1074, 1979.

[123] M. Powell and Y. Yuan. A trust region algorithm for equality constrained
optimization. Math. Program., 49A(2):189–211, 1990.

[124] A. Quarteroni, R. Sacco, and F. Saleri. Numercial Mathematics. Springer,
New York, 2000.

[125] K. Röbenack. Automatic differentiation and nonlinear controller design
by exact linearization. Future Generation Computer Systems, 21(8):1372–
1379, 2005.

[126] K. Röbenack and K. J. Reinschke. The computation of Lie derivatives and
Lie brackets based on automatic differentiation. ZAMM, 84(2):114–123,
2004.

[127] N. Rostaing, S. Dalmas, and A. Galligo. Automatic differentiation in
ODYSSEE. In Berz et al. [11], pages 558–568.

[128] S. Schlenkrich, A. Griewank, and A. Walther. Local convergence analysis
of TR1 updates for solving nonlinear equations. Technical Report Preprint
337, MATHEON, 2006. Submitted (Math. Program.).

[129] S. Schlenkrich and A. Walther. Global convergence of quasi-Newton meth-
ods based on adjoint tangent rank-1 updates. Technical report, TU Dres-
den, 2006. Submitted (Appl. Num. Math., in revision).

[130] S. Schlenkrich, A. Walther, N. Gauger, and R. Heinrich. Differentiating
fixed point iterations with ADOL-C: Gradient calculation for fluid dy-
namics. Technical report, TU Dresden, 2006. To appear in proceedings
of HPSC 2006.

[131] S. Schlenkrich, A. Walther, and A. Griewank. Application of AD-based
quasi-Newton-methods to stiff ODEs. In H. M. Bücker, G. Corliss, P. Hov-
land, U. Naumann, and B. Norris, editors, Automatic Differentiation:
Applications, Theory, and Implementations, LNCSE 50, pages 89–98.
Springer, 2005.

[132] R. Serban and A.C. Hindmarsh. CVODES: An ODE solver with sensi-
tivity analysis capabilities. UCRL-JP-20039, LLNL, 2003.

[133] G. Shultz, R. Schnabel, and R. Byrd. A family of trust region based
algorithms for unconstrained minimization with strong global convergence
properties. SIAM J. Numer. Anal., 22(1):47–67, 1985.

[134] B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given
by Algorithms. PhD thesis, University of Illinois, 1980.

[135] J. Sternberg. Adaptive Umkehrschemata für Schrittfolgen mit nicht-
uniformen Kosten, 2002. Diplomarbeit.

BIBLIOGRAPHY 161

[136] K. Strehmel and R. Weiner. Numerik gewöhnlicher Differentialgleichun-
gen. Teubner Studienbücher: Mathematik. Teubner, Stuttgart, 1995.

[137] O. Talagrand and P. Courtier. Variational assimilation of meteorological
observations with the adjoint vorticity equation – Part I. Theory. Q. J.
R. Meteorol. Soc., 113:1311–1328, 1987.

[138] R. Temam. Navier-Stokes Equations. North-Holland, 1979.

[139] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen.
Vieweg Verlag, 2005.

[140] T. Tun and T.S. Dillon. Extensions of the differential dynamic program-
ming method to include systems with state dependent control constraints
and state variable inequality constraints. Journal of Applied Science and
Engineering, 3A:171–192, 1978.

[141] M. Ulbrich and S. Ulbrich. Non-monotone trust region methods for
nonlinear equality constrained optimization without a penalty function.
Math. Program., 95B(1):103–135, 2003.

[142] J. Utke. OpenAD: Algorithm implementation user guide. Tech. Mem.
ANL/MCS–TM–274, MCS, Arg. Nat. Lab., Argonne, Ill., 2004. online at
ftp://info.mcs.anl.gov/pub/tech reports/reports/TM-274.pdf.

[143] R. Vanderbei and D. Shanno. An interior-point algorithm for nonconvex
nonlinear programming. Comput. Optim. Appl., 13:231–252, 1999.

[144] S. Volkwein and M. Weiser. Affine invariant convergence analysis for
inexact augmented Lagrangian-SQP methods. SIAM J. Cont. Opt.,
41(3):875–899, 2002.

[145] O. von Stryk. User’s guide for dircol (version 2.1): A direct collocation
method for the numerical solution of optimal control problems. Technical
report, TU Darmstadt, 2000.

[146] A. Wächter and L. Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Math.
Program., 106(1):25–57, 2006.

[147] A. Walther. Program Reversal Schedules for Single- and Multi-processor
Machines. Ph.D. thesis, Institute of Scientific Computing, 1999.

[148] A. Walther. A first-order convergence analysis of trust-region methods
with inexact Jacobians. Technical Report MATH-WR-01-2005, TU Dres-
den, 2005. Submitted (SIAM J. Optim., in revision).

[149] A. Walther. Automatic differentiation of explicit Runge-Kutta methods
for optimal control. J. Comp. Opt. Appl., 36:83 – 108, 2007.

[150] A. Walther. Computing sparse Hessians with automatic differentiation.
ACM Trans. Math. Softw., 2007. To appear.

162 BIBLIOGRAPHY

[151] A. Walther and L. Biegler. A trust-region algorithm for nonlinear pro-
gramming problems with dense constraint Jacobians. Technical Report
MATH-WR-01-2007, TU Dresden, 2007. Submitted (J. Comp. Opt.
Appl.).

[152] A. Walther and A. Griewank. Applying the checkpointing routine treev-
erse to discretizations of Burgers’ equation. In H.-J. Bungartz, F. Durst,
and C. Zenger, editors, High Performance Scientific and Engineering
Computing, LNCSE 8, pages 13–24. Springer, 1999.

[153] A. Walther and A. Griewank. Advantages of binomial checkpointing for
memory-reduced adjoint calculations. In M. Feistauer et al., editor, Nu-
merical mathematics and advanced applications, pages 834–843. Springer,
2004. Proceedings of ENUMATH 2003.

[154] A. Walther, A. Kowarz, and A. Griewank. Documentation of ADOL-C:
version 1.10.1, 2005. Updated version of [73].

[155] R. Waltz and J. Nocedal. KNITRO user’s manual. Technical Report
OTC 05/2003, Optimization Technology Center, Northwestern Univer-
sity, Evanston, IL 60208, USA, 2003.

[156] G. Wanner. Integration gewöhnlicher Differentialgleichnugen,
Lie Reihen,Runge-Kutta-Methoden, volume XI, 831/831a of B.I-
Hochschulskripten. Bib. Institut, 1969.

[157] R.E. Wengert. A simple automatic derivative evaluation program. Comm.
ACM, 7:463–464, 1964.

[158] P.J. Werbos. Application of advances in nonlinear sensitivity analysis. In
R.F. Drenick and F. Kozin, editors, System Modeling and Optimization:
Proceedings of the 19th IFIP Conference New York, volume 38 of Lecture
Notes in Control Inform. Sci., pages 762–770. Springer Verlag, New York,
1982.

[159] GJ.H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press,
Oxford, UK, 1965.

Erklärung

gemäß §6 Abs. 2, Ziffer 2 der Habilitationsordnung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe
Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt
habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken
sind als solche kenntlich gemacht. Die Arbeit wurde bisher weder im Inland
noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde
vorgelegt.

Bestandteil der Habilitationsschrift sind die Veröffentlichungen

[1] R. Griesse und A. Walther. Evaluating gradients in optimal control
- continuous adjoints versus automatic differentiation. Journal of Opti-
mization Theory and Applications, 122(1), pp. 63 – 86 (2004).

[2] M. Hinze, A. Walther und J. Sternberg. An optimal memory-reduced
procedure for calculating adjoints of the instationary Navier-Stokes equa-
tions. Optimal Control Applications and Methods, 27(1), pp. 19 – 40
(2006).

[3] A. Walther. Automatic differentiation of explicit Runge-Kutta methods
for optimal control. Journal of Computational Optimization and Appli-
cations, 36:83 – 108 (2007).

[4] A. Walther. Computing Sparse Hessians with Automatic Differentiation.
Preprint MATH-WR-03-2005, TU Dresden (2005). Erscheint in ACM
Transaction on Mathematical Software.

[5] A. Walther. A first-order convergence analysis of trust-region methods
with inexact Jacobians. Modifizierte Version von Preprint MATH-WR-
01-2005, TU Dresden (2005). Eingereicht (SIAM Journal of Optimization,
in Revision).

[6] A. Walther und A. Griewank. Advantages of binomial checkpointing
for memory-reduced adjoint calculations. In M. Feistauer, V. Doleǰśı,
P. Knobloch, and K. Najzar, eds., Numerical Mathematics and Advanced
Applications, ENUMATH 2003, Prag, pp. 834 – 843, Springer (2004).

Meine Beiträge in den Veröffentlichungen [1], [2] und [6] ordnen sich wie
folgt ein:

• In [1], d.h. Kapitel 4 der Habilitationsschrift:
Die im Kapitel 4, Abschnitt 4.3, enthaltene Darstellung und Untersuchung
der diskreten Gradienten-Berechnung habe ich hergeleitet. Das gleiche
trifft auf den Vergleich der diskreten Gradienten mit den analytischen

Gradienten im Kapitel 4, Abschnitt 4.5, zu. Die dafür erforderlichen nu-
merischen Ergebnisse, d.h. auch die Umsetzung als Computerprogramm
wie im Kapitel 4, Abschnitt 4.4 beschrieben, waren das Ergebnis einer
engen Zusammenarbeit von Roland Griesse und mir. Eine noch genauere
genauer Einordnung der eigenen Leistungen auch im Vergleich zu be-
reits vorhandenen Literatur befindet sich auf den Seiten 27 und 28 der
vorgelegten Habilitationsschrift.

• In [2], d.h. Kapitel 6 der Habilitationsschrift:
An der Herleitung der im Kapitel 6, Abschnitt 6.3, dargestellen neuen
Komplexitätstheorie für das binomiale Checkpointing habe ich durch we-
sentliche Beiträge mitgewirkt. Die im Kapitel 6, Abschnitt 6.4 enthal-
tenen numerischen Ergbnisse entstanden in enger Zusammenarbeit von
Michael Hinze und mir. Die Analyse und Interpretation der numerischen
Ergebnisse (Kapitel 6, Abschnitt 6.4) stammt von mir. Eine noch genauere
genauer Einordnung der eigenen Leistungen auch im Vergleich zu be-
reits vorhandenen Literatur befindet sich auf den Seiten 29 und 30 der
vorgelegten Habilitationsschrift.

• In [6], d.h. Kapitel 2 der Habilitationsschrift:
An der Herleitung der im Kapitel 2, Abschnitt 2.3, dargestellten theo-
retischen Ergebnissen zum binomialen Checkpointing war ich massgeblich
mitbeteiligt. Die im Kapitel 2, Abschnitt 2.4, dargelegten theoretischen
Ergebnisse zum Vergleich des äquidistanten und des binomialen Check-
pointing habe ich alleine erarbeitet. Eine noch genauere genauer Einord-
nung der eigenen Leistungen auch im Vergleich zu bereits vorhandenen
Literatur befindet sich auf den Seiten 17 und 18 der vorgelegten Habili-
tationsschrift.

Dresden, den 10. Mai 2007

