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Chapter 1

Introduction

Knowledge representation (KR) is an important subject in artificial intelligence and
cognitive science. Generally speaking, it is the approach to store explicit knowledge
about a particular domain so that computers are able to process and use it, and
above all to infer implicit knowledge from the one explicitly given, hence knowledge
representation and reasoning. Description Logics belong to a successful family of
KR formalisms, allowing to represent and reason with conceptual knowledge about a
domain of discourse.

This thesis proposes several reasoning techniques for a tractable Description Logic
that form a core of automated reasoning support for design and maintenance of ontolo-
gies, and investigates their usefulness and usability in realistic ontology applications
from the biomedical domain. It suggests that the use of Description Logics and their
reasoning support in ontology development helps to increase the clarity and coher-
ence which are important criteria for a high-quality ontology. Moreover, it suggests
that, for the specific application area of biomedical ontologies, the tractable Descrip-
tion Logic is sufficient in terms of expressivity and is robustly scalable in terms of
automated reasoning.

The claim has been supported by:

• the design and implementation of an optimized algorithm for classifying an on-
tology formulated in the tractable Description Logic;

• the design and implementation of supplemental reasoning techniques useful for
design and maintenance of ontologies, namely, extracting modules from an on-
tology and explaining a given consequence;

• the development of a modeling paradigm for the renown medical ontology Snomed

ct using the tractable Description Logic; and,

• the empirical evaluation of the implemented reasoning techniques through exten-
sive and systematic experiments on large-scale biomedical ontologies, including
an overview comparison with other state-of-the-art systems.

1
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Amphibian

FrogHarry

Color

Green

is-a

is-a

is-a

has-color

Figure 1.1: An example of a semantic network.

1.1 Knowledge Representation with Description Logics

Description Logics (DLs) have evolved from, thus greatly been influenced by, the early
KR formalisms of semantic networks [Qui67] and frames [Min81]. Both predecessors
of DLs share the notions of classes of individuals and relations between such classes.

These notions are realized in semantic networks as vertices and edges in a labeled
directed graph. Vertices represent either individuals or classes of individuals (also
called concepts), and labeled edges represent relations between them. A special type of
relation, called is-a, is used in semantic networks to specify the generality or specificity
of classes. It is this relationship that provides the basis for the inheritance of properties
and that defines a hierarchy over concepts [Bra79]. Other kinds of relationships are
realized as edges with other labels, e.g., has-color in Figure 1.1.

In the case of frame systems, concepts are realized as frames similar to the notion of
classes in object-oriented programming languages. Each frame has a name, a collection
of more general frames and a collection of slots. Slots are used to specify properties of
concepts by linking the current frame to others in a similar sense as edges in semantic
networks.

The main problem with both semantic networks and frame systems is that they
lacked a formally well-defined semantics. For instance, it is unclear what the edge
has-color in Figure 1.1 is intended to mean. One possible reading is that “frogs may
only have color green,” while another is that “frogs have at least a color green.” Yet,
the edge may be understood as a default property of frogs that can be overridden
later when more knowledge is specified. Moreover, allowing vertices to represent both
individuals and classes of individuals is ambiguous (e.g., Harry is intended to be an
individual frog as opposed to Frog and Amphibian). Having to rely on their own oper-
ational semantics, different reasoning algorithms for the same formalism could behave
differently upon the same knowledge base. To overcome this problem, declarative
semantics had to be defined formally and independently of any specific reasoning al-
gorithms. Attempts [Hay79, BL85] to employ relatively small fragments of first-order
logics in these early KR systems have eventually resulted in ‘logic-based concept lan-
guages’ which have later become known as Description Logics.
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The quest for tractable Description Logics

The quest for tractable (i.e., polynomial-time decidable) Description Logics started
in the 1980s after the first intractability results for DLs were shown [BL84, Neb88].
Until relatively recently, it was restricted to DLs that extend the basic language FL0,
which comprises the concept constructors conjunction and universal quantification.1

The main reason for this focusing was that, when clarifying the logical status of
property edges in semantic networks and slots in frames, the decision was taken that
edges and slots should be read as universal quantifications rather than existential
quantifications. In our example, the edge has-color would read that “frogs may only
have color green.”

In most applications of DLs, it is crucial to reason with terminologies or TBoxes2,
rather than with isolated concept descriptions. Unfortunately, as soon as terminologies
are taken into consideration, tractability turns out to be unattainable in FL0. Classi-
fying even the simplest form of terminologies (known as acyclic or unfoldable TBoxes)
that admit only acyclic concept definitions was shown to be coNP-hard [Neb90]. If
the most general form of terminologies is admitted (known as general TBoxes), which
consists of general concept inclusion (GCI) axioms as supported by all modern DL
systems, then classification in FL0 even becomes ExpTime-complete [BBL05].

For these reasons, and also because of the need for expressive DLs in applica-
tions, from the mid 1990s on, the DL community has mainly given up on the quest
of finding tractable DLs. Instead, it investigated more and more expressive DLs,
for which reasoning is worst-case intractable. The goal was then to find practical
reasoning procedures, i.e., algorithms that are easy to implement and optimize, and
which—though worst-case exponential or even worse—behave well in practice (see,
e.g., [HST00, HS04]). This line of research has resulted in the availability of highly
optimized DL systems for expressive Description Logics based on tableau algorithms
[Hor98, HM01b], and in successful applications—most notably is the recommenda-
tion by the W3C of the DL-based Web Ontology Language (better known as OWL)
[HPSv03] as the ontology language for the Semantic Web.

At the beginning of the present decade, the choice of value restrictions as a sine
qua non of DLs has been reconsidered. On the one hand, it was shown that the DL
EL, which allows for conjunction and existential restrictions, has better algorithmic
properties than FL0. To be more precise, classification of both acyclic and cyclic EL
TBoxes is tractable [Baa03], and this remains so even if general TBoxes with GCIs
are admitted [Bra04b]. Table 1.1 compares the worst-case complexity of reasoning in
FL0 and EL w.r.t. different kinds of terminologies (refer to the corresponding columns
in Table 2.3 on page 23). On the other hand, there are applications where value
restrictions are not needed, and where the expressive power of EL or small extensions
thereof appear to be sufficient. In fact, the Systematized Nomenclature of Medicine,
Clinical Terms, [SPSW01, Spa05] employs EL with an acyclic TBox extended with
role inclusion axioms. Also, the Gene Ontology [ABB+00], the thesaurus of the US

1These and other concept constructors, including their syntactic format and formal semantics, are
described in Table 2.1 on page 19.

2Various types of DL terminologies are introduced in Section 2.2
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Type of terminologies FL0 EL

the empty TBox polynomial [BL84] polynomial [BKM98]

acyclic TBoxes coNP-complete [Neb90] polynomial [Baa03]

cyclic TBoxes PSpace-complete [Baa96, Kd03] polynomial [Baa03]

general TBoxes ExpTime-complete [BBL05] polynomial [Bra04b]

Table 1.1: Comparing the Description Logics FL0 and EL.

National Cancer Institute and the Foundational Model of Anatomy can be seen as
acyclic EL TBoxes. Finally, large parts of the GALEN Medical Knowledge Base
[RH97] can also be expressed in EL with GCIs, role hierarchy, and transitive roles.

DL systems

As mentioned above, very expressive DLs have been investigated and practical algo-
rithms based on the tableau calculus have been devised. The tableau-based algorithms
for expressive DLs were then optimized and implemented in the DL reasoning systems
FaCT [Hor98] and Racer [HM01b]. These implementations used several optimization
techniques including the ones developed in [BHN+94, Hor97, HST00, HMT01]. With
the highly effective optimization techniques, these reasoning systems turned out to
perform surprisingly well on TBoxes from practical applications. It has been observed
that hard cases leading to the worst-case behaviors of the algorithms rarely occurred
in practice (see, e.g, [Hor98, HST00, HM01a]). This observation encouraged research
on pushing expressivity of DLs further and developing practical algorithms and new
optimization techniques.

Current tableau-based DL systems, such as FaCT++ [TH06], RacerPro [HM01b]
and Pellet [SPC+07], not only offer more expressive DLs (i.e., up to SROIQ [HKS06]
which is the logical underpinning of the new Web Ontology Language OWL 2 [CHM+08,
CMW+08]) but also employ additional optimizations that have been tailored toward
specific applications like biomedical ontologies (see, e.g., [HT05]). Alternative DL sys-
tems include KAON2 [Mot06], which implemented an algorithm based on resolution
reasoning and disjunctive datalog; and HermiT [MSH07], which implemented a novel
calculus known as ‘hypertableau.’

As opposed to the reasoners mentioned above, the CEL reasoner [BLS06] supports
the lightweight DL EL+, a tractable extension of EL (see Chapter 2). At first sight,
one might think that a polynomial-time algorithm is always better suited for imple-
mentation than worst-case exponential-time algorithms such as the ones underlying
those modern DL reasoners. However, due to a plethora of sophisticated optimization
techniques that have been developed for tableau algorithms over the last decade, it
is far from obvious whether a straightforward implementation of the polynomial-time
algorithm can compete with highly-optimized implementations of tableau algorithms.
A case in point is our experience with implementing the polynomial-time classifica-
tion algorithms for cyclic EL TBoxes introduced in [Baa03]: direct implementations
of both the algorithm for subsumption w.r.t. descriptive semantics (based on a re-
duction to satisfiability of propositional Horn formulas [DG84]) and the algorithm for
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subsumption w.r.t. greatest fixpoint semantics (based on computing the greatest sim-
ulation on a graph [HHK95]) did not lead to satisfactory results on the Gene Ontology
[Sun05b].

The CEL system consists of the first implementation of a refined polynomial-time
classification algorithm [BLS07], where an obvious obstacle for efficient implementa-
tion of the algorithm given in [BBL05] is removed—namely, the uninformed, brute-
force search for applicable completion rules (see Subsection 4.1.4 for the details). With
almost no further optimizations, the first implementation has demonstrated high per-
formance on specific applications of biomedical ontologies [BLS05]. Not only have
these empirical results of CEL encouraged the use of the tractable DL family of EL,
but they have also sparked interest in further research into new optimization tech-
niques for expressive DLs. By taking into account the underlying logic of the input
TBox, a tableau-based reasoner can wisely select the most optimal algorithm and/or
enable specific optimizations to perform reasoning (see, e.g., [HT05, HMW08]).

Besides the standard reasoning of classification, CEL supports incremental classi-
fication, module extraction and axiom pinpointing. The reasoning techniques imple-
mented in the CEL system, together with the implementation and empirical evaluation,
are the major results of the present thesis which are described in Chapter 4, 5 and 6,
respectively.

Formal ontologies

In the context of knowledge representation and reasoning, (formal) ontologies 3 are
specifications of conceptualization [Gru93b]. Conceptualization usually stands for
entities in reality, their categories and relationships among them. A specification
assigns symbolic representation to entities, categories and relationships, and constrains
the possible interpretations by means of formal axioms, cf. [Gru93b, Gua98]. Hence,
a terminology in the DL sense, e.g., a general TBox, can be seen as a formal ontology.

Ontologies based on Description Logics can be used, for example, to formalize tech-
nical vocabularies and to perform semantic indexing and query answering in variety
of applications, including:

• natural language processing,

• object-oriented database,

• software information systems,

• multimedia search systems,

• chemical process engineering,

• the Semantic Web, and

• biomedical informatics.

3According to [Qui53], Ontology (discipline) is the study of “what there is.” In our context, an

ontology is merely a formal specification of knowledge about a domain of discourse.
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In this thesis, we focus attention on ontologies from the domain of biomedical infor-
matics because of their shared characteristics that match the Description Logic under
consideration. The next section investigates a few biomedical ontologies and discusses
their common characteristics and challenges of reasoning with them.

1.2 Biomedical Ontologies

Given the vast knowledge of biology and medicine acquired even before the advent
of computing systems, not to mention the complexity of this knowledge, it is not as-
tonishing that researchers in these scientific branches have encountered the problem
of representing their knowledge in a systematic way. Several efforts to systematize
biomedical knowledge and standardize terms have eventually resulted in either classi-
fications of diseases, controlled vocabularies, thesauri, terminologies or ontologies. By
formalizing knowledge in an unequivocal way, the biomedical community can create
a common understanding of the subject in the sense that it helps reduce redundancy
in and heterogeneity of the domain knowledge.

The Systematized Nomenclature of Medicine, Clinical Terms (Snomed ct) is a com-
prehensive clinical and medical ontology that covers a wide range of concepts in the
domain, including anatomy, diseases, pharmaceutical products, clinical findings and
medical procedures [SPSW01, Spa05]. The presence of this terminology dated back
to 1965 when the College of American Pathologist (CAP) released the Systematized
Nomenclature of Pathology (Snop) which was extended in 1997 to the first version of
Systematized Nomenclature of Medicine, known as Snomed Reference Terminology
(rt) [SCC97, Spa00, Rec07]. It was claimed to be the first version of this terminology
to use the formal semantics (through the KRSS syntax [PSS93]) of the Description
Logic. The terminology has since been continually revised and finally merged with
Clinical Terms Version 3 [OPR95] to form the much more comprehensive terminology
Snomed ct, which comprises almost four hundred thousand concept definitions like

AmputationOfFinger ≡ HandExcision u
∃roleGroup.( ∃direct-procedure-site.FingerS u

∃method.Amputation )

A small extension of the Description Logic EL has so far been used as a primary lan-
guage for development where automated reasoning of classification has proved useful
in the generation of Snomed ct in ‘normal form’ [Spa01] for distribution purposes.

In 2007, the International Health Terminology Standards Development Organisa-
tion (IHTSDO) has been founded with the purpose to internationalize and standard-
ize Snomed ct as the reference clinical terminology among the member countries
[IHT07]. At the time of writing, Snomed ct is being translated into various other
languages apart from English and is freely available to all of the (currently nine)
IHTSDO member countries.

Due to its appropriate underlying logical formalism and large scale, Snomed ct

was taken as the prime ontology in our case study and experiments. More insight into
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this medical ontology, including some logical issues, is given in a dedicated chapter—
Chapter 3.

In 1992, the European project GALEN4 was launched in order to facilitate the inte-
gration of medical information systems by means of a common reference model for
medical terminology. Unlike the approach to Snomed rt by the CAP, who translated
an existing classification system for its previous version of the terminology into DL,
the strategy of the GALEN project was to invent a suitable KR formalism before de-
veloping the actual terminology. Through compilation of specific requirements for the
medical domain, the ‘GALEN Representation and Integration Language (GRAIL)’
was devised and used to develop the Galen medical ontology [RH97].

In order to benchmark his DL reasoner FaCT, Horrocks [Hor97] has translated the
Galen ontology into the DL format by proposing a mapping from GRAIL statements
to equivalent logical axioms formulated in the DL ALCHf R+ or SHf . An investiga-
tion of GRAIL under scrutiny has revealed that it also supports so-called inverse roles,
but this was not included in the ontology fragments used as benchmarks in [Hor97].
The mapping can easily be extended to take into account inverse roles. Since con-
cept disjunction, negation and universal quantification have not been included in the
GRAIL language, a more fine-tuned DL for Galen is ELHIf R+ [Vu08].

An interesting feature of Galen that distinguishes it from most biomedical on-
tologies is that it makes use of GCIs which can be used to add levels of granularity
and to supplement constraints. A classical example [HRG96] for the former case is
the use of a GCI like

Ulcer u ∃has-loc.Stomach v Ulcer u ∃has-loc.(Lining u ∃part-of.Stomach)

to bridge the term ‘ulcer of stomach’ to the more fine-grained term ‘ulcer of lining of
stomach’ since it is known that ulcer of the stomach is specific to the lining of the
stomach. An example for the latter case is the use of a GCI like

VitaminK1 v ∃has-function.Catalysing

to supplement the knowledge that “vitamin K1 has a function as a catalyst,” which
would have been inappropriate to have been incorporated into VitaminK1’s definition.

Apart from Snomed ct and Galen, the repository of Open Biomedical Ontologies
(OBO) is a large library of ontologies from the biological and medical domains. Most of
the ontologies available in the repository have been written in ‘OBO flat file format,’
which was originally designed for the Gene Ontology (Go) [ABB+00]. The OBO
format is relatively informal, but there have been attempts to map this format to
Description Logic semantics. An example is given in [Sun05b] where two translations
of the Gene Ontology were proposed, one of which turned out to correspond to the
OBO’s intended semantics.

4Generalised Architecture for Languages, Encyclopaedias and Nomenclatures in Medicine; see
http://www.OpenGALEN.org.

http://www.OpenGALEN.org
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More recently, Golbreich et al. has defined a semantic mapping from the OBO
flat file format to OWL [GHH+07]. As a consequence of this mapping, several other
biomedical ontologies readily available in the OBO format have been being translated
into OWL. The translation is beneficial to both the biomedical ontology community
and the reasoning community. On the one hand, the ontology developers from the
biomedical community can exploit ontology design and maintenance methodologies,
ontology editors and automated reasoning tools, several of which are available for free.
On the other hand, the translation also benefits the reasoning community since it gives
rise to new ontologies for benchmarking reasoning algorithms and implementations.

Similar to Snomed ct and Galen, biomedical ontologies developed using the
OBO language turned out to be expressible in the DL EL or tractable extensions
thereof. Unlike Galen, however, they do not use GCIs and purely rely on concept
definitions. Notable examples of OBO ontologies are the Gene Ontology, the thesaurus
of the US National Cancer Institute (Nci) and the Foundational Model of Anatomy
(Fma). All of the biomedical ontologies mentioned so far have been used as bench-
marks in the empirical evaluation of various reasoning techniques. Their individual
characteristics, including the size and types of axioms, are described in Section 6.1.

Common characteristics shared among biomedical ontologies can be summarized as
follows:

• Disjunction, negation, universal quantification and cardinality restrictions are
not explicitly required to formulate sensible ontologies in the biomedical domain.
Only concept constructors in EL, i.e., conjunction and existential quantification,
appear to be adequate.

• Transitivity and role hierarchy axioms play an indispensable role in biomedical
ontologies; while other role axioms, such as right-identity, functionality, domain
and range restrictions, are sometimes required.

• As an inevitable consequence of the complexity of the domain, biomedical on-
tologies are typically of very large scale, comprising hundreds of thousands of
concept definitions in some cases.

For most existing biomedical ontologies, the scalability of reasoning seems to outweigh
the expressivity of the ontology language. In order to address these specific require-
ments, the DL language and reasoning techniques developed in this thesis have been
tailored toward ontologies of the kind—the language is sufficiently expressive for the
application at hand5 and the reasoning techniques can be accomplished in polynomial
time.6

1.3 Tasks for Ontology Design and Maintenance

Before identifying the tasks for design and maintenance of formal ontologies, it is
essential to cast some light on what makes good ontologies. For this reason, we

5An exception is Galen; see Section 6.1 for some discussion.
6An exception is full axiom pinpointing; see Section 5.2 for the details.
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summarize the five basic principles for the design of formal ontologies proposed in
[Gru93a].

• Clarity : the ontology should effectively convey the intended meaning of its de-
fined terms. The meaning should be dissociated from the social and compu-
tational context. Complete definitions providing both necessary and sufficient
conditions are preferred over primitive ones providing only necessary conditions.

• Coherence: the ontology should be logically consistent. Also, implicit conse-
quences that contradict the domain knowledge should not be inferred from the
ontology.

• Extensibility : the ontological structure should be so that it is possible to extend
the ontology or refine some of its definitions monotonically, i.e., the meaning of
existing terms should be preserved.

• Minimal encoding bias: the ontology should be specified at the knowledge level,
independent of a specific symbol-level encoding.

• Minimal ontological commitment : the ontology should make as few claims about
the domain of discourse as possible, i.e., only terms essential for the intended
use of the ontology are defined. The weakest theory should be used to minimize
ontological commitment and thus allow the largest number of potential models.

Note that DL-based knowledge representation systems promote good ontologies ac-
cording to some of the above criteria. Clarity and minimal encoding criteria are at-
tained as direct results from the well-defined formal semantics of Description Logics.
Primitive and full concept definitions in DLs provide unambiguous utility to specify
terms, while general concept inclusions allow to supplement additional constraints
without having to interfere with existing definitions. Additionally, minimal encoding
bias can be alleviated with the help of advanced ontology editors and visualization
tools (e.g., Protégé as shown in Figure 1.2) that avoid hassles of a specific syntax (e.g.,
OWL) and thus help to promote coding at the knowledge level.

More relevant to the present dissertation are the roles of reasoning support in
shaping good ontologies in terms of coherence and extensibility. In [LLS06, LBF+06],
the authors described tasks relevant for ontology design and maintenance, and argued
how logical reasoning support can be used to accomplish them. The following are
tasks for ontology design and maintenance that directly relate to reasoning support
proposed in this thesis.

Authoring concept definitions. One of the most central activities during ontology
design and maintenance are the formulation of new concept definitions (in the
case of design) and the refinement of existing concept definitions (in the case
of maintenance). Due to the declarative style of DL semantics, the ontology
developer cannot use some execution model to guide his intuition about the
effects of design decisions. Unwanted implicit consequences may be incurred
without awareness of the developer and can be far from easy to detect by hand.
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Figure 1.2: The Protégé ontology editor.

Such implicit consequences could be that the ontology is logically inconsistent
(i.e., there is no model); that a concept in the ontology is unsatisfiable (i.e., it
cannot be instantiated); or that one concept is a subconcept of another. The
first two types of consequences immediately indicate flaws in the ontology since
an ontology is intended to represent at least a possible model, and a concept to
represent a class of objects. Subsumption may or may not be intended depending
on its intuition in the domain of discourse. At any rate, implicit subsumptions
need to be detected and reported to the domain expert for inspection.

The mentioned tasks directly correspond to the reasoning problems of consis-
tency, satisfiability and subsumption in DL. Most DL systems usually support
classification which is the computation of the subsumption hierarchy. Not only
is classification useful in detecting unwanted subsumptions, it also provides with
a visualization of the ontology’s structure and is the premier way to navigate
and access the ontology. Classification is normally implemented by means of
multiple subsumption checks, therefore it is of utmost important for ontology
maintenance that such a computation can be done incrementally when a small
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change is applied, i.e., previous classification information is reused.

Error management. Similar to writing large software programs, building large-scale
ontologies is an error-prone endeavor. The aforementioned reasoning support can
help alert the developer to the existence of errors. For example, ‘amputation
of finger’ is inferred to be a subconcept of the concept ‘amputation of upper
limb’ in Snomed ct, which is clearly unintended [SBSS07, SMH07] and reveals
a modeling error. However, given an unintended subsumption relationship in a
large ontology like Snomed ct with almost four hundred thousand axioms, it is
not always easy to find the erroneous axioms responsible for it by hand.

Automated reasoning support for error management comes in three flavors: pin-
pointing, explanation and revision. Pinpointing identifies those concept defini-
tions responsible for an error, while explanation aims to provide a convincing
argument that also involves explaining the interplay between the relevant con-
cept definitions. Automatic revision goes one step further by making concrete
suggestions for how to resolve the error. In the scope of this thesis, we focus
attention on pinpointing.

Ontology import. One of the first decisions to be made when building an ontology
is whether to start from scratch or to reuse available knowledge in existing on-
tologies. For example, when building an ontology describing medicinal products
of a pharmaceutical company, concepts of specific medical substances and hu-
man body parts may be used. In order to guarantee certain relationships among
those concepts, the designer may want to include more details about them. Since
these details have already been formulated properly in a standardized ontology
like Snomed ct, it should be less time consuming and more accurate to import
the ontology. The problem, however, is that such standardized ontologies are
typically designed to be comprehensive, thus very large, therefore importing the
whole ontology unnecessarily introduces overhead in computation.

It is thus helpful to be able to extract a small portion of the ontology that
contains only concept definitions relevant to the needs, i.e., knowledge about
the concepts to be imported. To this end, the automated reasoning support of
module extraction computes a subset of the ontology that is ensured to be small
and adequately capture the meaning of the imported concepts.

There are a few other tasks for ontology design and maintenance that can be mapped
to so-called ‘non-standard inferences’, such as least common subsumers, most spe-
cific concepts and concept matching. Non-standard inferences have been investigated
thoroughly in [Küs00, Bra06, Tur07].

1.4 Dissertation Outline

In this section, a content outline of the present dissertation is provided. Since a large
portion of the (technical and empirical) results presented in this dissertation have
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already been published in scientific journals, conferences or workshops, it also gives
an account of relevant publications.

The dissertation consists of three major parts. The first part, consisting of Chap-
ter 1, 2 and 3, is concerned about introduction of the terminological and notational
conventions that govern the rest of the thesis. Moreover, it gives motivations of the
work from real-world ontology applications. Technical results are presented in the
second part, which is divided into two chapters: Chapter 4 presents techniques for
standard reasoning, while Chapter 5 does for supplemental reasoning. The last part
reports on several evaluations using realistic life science ontologies in Chapter 6 and
gives summary of the outcome of the work in Chapter 7.

Chapter 2 is dedicated to most of preliminaries about Description Logics (DLs) that
are frequently referred to by other chapters. It introduces a number of well-known
DL dialects with emphasis on the EL family, depicts a small medical ontology that
will be used as a running example in technical chapters, and gives formal definitions
of an ontology, standard and supplemental reasoning problems.

In Chapter 3, we present a case study of using DLs in the EL family, featuring the
large-scale medical ontology Snomed ct. Several ontological and logical issues found
in Snomed ct are addressed in Section 3.2, and solutions to them using the DL EL+

are proposed in Section 3.3.
These results have been published in:

[SBSS07] Boontawee Suntisrivaraporn, Franz Baader, Stefan Schulz, and Kent Spack-
man. Replacing SEP-triplets in Snomed ct using tractable Description Logic
operators. In Jim Hunter Riccardo Bellazzi, Ameen Abu-Hanna, editor, Proceed-
ings of the 11th Conference on Artificial Intelligence in Medicine (AIME’07),
volume 4594 of Lecture Notes in Computer Science, pages 287–291. Springer-
Verlag, 2007.

[SSB07] Stefan Schulz, Boontawee Suntisrivaraporn, and Franz Baader. Snomed ct’s
problem list: Ontologists’ and logicians’ therapy suggestions. In Proceedings
of The Medinfo 2007 Congress, Studies in Health Technology and Informatics
(SHTI-series), pages 802–806. IOS Press, 2007.

[LBF+06] Carsten Lutz, Franz Baader, Enrico Franconi, Domenico Lembo, Ralf Möller,
Riccardo Rosati, Ulrike Sattler, Boontawee Suntisrivaraporn, and Sergio Tes-
saris. Reasoning support for ontology design. In Bernardo Cuenca Grau,
Pascal Hitzler, Connor Shankey, and Evan Wallace, editors, Proceedings of the
second international workshop OWL: Experiences and Directions, 2006.

In Chapter 4, we present several technical results for standard reasoning with EL+

ontologies. Section 4.1 describes a polynomial-time classification algorithm, together
with normalization and reduction of range restrictions which are also available in
EL+. A refined version of this algorithm for implementation purposes is proposed in
Subsection 4.1.4, while optimization techniques are discussed in Subsection 4.1.5.
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In Section 4.2, we introduce a modification to the refined classification algo-
rithm in which the computation is directed by the goal subsumption. The so-called
goal-directed subsumption algorithm is then used to effectively answer subsumption
queries.

In contrast to tableau-based algorithms, the innate output of the EL+ classification
algorithm is complete subsumer sets. By exploiting this fact, we develop a simplified
variant of the ‘enhanced traversal method’ to efficiently construct the concept hierar-
chy from the subsumer sets. Comparisons of the original and simplified methods are
discussed in Section 4.3.

Section 4.4 describes an algorithm for incremental classification that can be utilized
not only in certain scenarios of incremental reasoning but also in querying complex
subsumptions.

Finally, we investigate in Section 4.5 a technique for encoding ABox assertions as
general concept inclusions in the TBox. With such an encoding, an ontology equipped
with an assertional component can be realized by exploiting the classification algo-
rithm, as well as its optimizations.

Most of the results have been published in the following papers:7

[BLS05] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. Is tractable
reasoning in extensions of the Description Logic EL useful in practice? In Pro-
ceedings of the 2005 International Workshop on Methods for Modalities (M4M-
05), 2005.

[BLS06] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. CEL—a
polynomial-time reasoner for life science ontologies. In U. Furbach and N. Shankar,
editors, Proceedings of the 3rd International Joint Conference on Automated
Reasoning (IJCAR’06), volume 4130 of Lecture Notes in Artificial Intelligence,
pages 287–291. Springer-Verlag, 2006.

[BLS07] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. Is tractable
reasoning in extensions of the description logic EL useful in practice? Journal of
Logic, Language and Information, Special Issue on Method for Modality (M4M),
2007.

[Sun08] Boontawee Suntisrivaraporn. Module extraction and incremental classifica-
tion: A pragmatic approach for EL+ ontologies. In Sean Bechhofer, Manfred
Hauswirth, Joerg Hoffmann, and Manolis Koubarakis, editors, Proceedings of
the 5th European Semantic Web Conference (ESWC’08), volume 5021 of Lec-
ture Notes in Computer Science, pages 230–244. Springer-Verlag, 2008.

Chapter 5 describes technical results for two important supplemental reasoning ser-
vices: modularization in Section 5.1 and axiom pinpointing in Section 5.2. In Subsec-
tion 5.1.1, we introduce a new kind of module based on reachability in directed hy-
pergraph. We present a number of interesting properties of this kind of module, and

7Results presented in this dissertation are in fact extensions to those in the referred publications
because here we consider the more expressive DL EL+ (refer to Definition 6 on page 22).
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in Subsection 5.1.2, a connection between the goal-directed subsumption algorithm
and reachability-based modules is established. In the last subsection, we compare
our method based on reachability to other module extraction approaches. In particu-
lar, we prove that the reachability-based module is indeed equivalent to the minimal
module based on syntactic locality.

In Section 5.2, various techniques for axiom pinpointing are discussed and newly
developed. We start with identifying hardness complexity of the problem in Sub-
section 5.2.1. The black-box approach is addressed in Subsection 5.2.2, while the
glass-box approach, as well as a combined approach, is discussed in Subsection 5.2.3.
Finally, a novel approach using the reachability-based module to optimize the black-
box method is described in Section 5.2.4.

Most of the results in this chapter has been published in:

[Sun08] Boontawee Suntisrivaraporn. Module extraction and incremental classifica-
tion: A pragmatic approach for EL+ ontologies. In Sean Bechhofer, Manfred
Hauswirth, Joerg Hoffmann, and Manolis Koubarakis, editors, Proceedings of
the 5th European Semantic Web Conference (ESWC’08), volume 5021 of Lec-
ture Notes in Computer Science, pages 230–244. Springer-Verlag, 2008.

[BPS07a] Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn. Pin-
pointing in the description logic EL. In Proceedings of the 2007 International
Workshop on Description Logics (DL2007), CEUR-WS, 2007.

[BPS07b] Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn. Pinpoint-
ing in the description logic EL+. In Proceedings of the 30th German Conference
on Artificial Intelligence (KI’07), volume 4667 of Lecture Notes in Computer
Science, Osnabrück, Germany, 2007. Springer.

[BS08] Franz Baader and Boontawee Suntisrivaraporn. Debugging Snomed ct using
axiom pinpointing in the Description Logic EL+. In Proceedings of the 3rd
Knowledge Representation in Medicine Conference (KR-MED’08): Representing
and Sharing Knowledge Using Snomed, 2008.

Chapter 6 describes several large-scale ontologies from the life science application do-
main that were used as benchmarks in our empirical evaluations. Section 6.1 presents
the information concerning various aspects of these ontologies. In Section 6.2, we
describe the experimental setting and results for each technique evaluation.

We then summarize the technical and empirical results achieved in this PhD project
and suggest directions for future work in Chapter 7.

Last but not least, the following list includes other works that have been published
during the course of this PhD project but are out of scope of the present dissertation:

[SMS06] Stefan Schulz, Kornel Markó, and Boontawee Suntisrivaraporn. Complex
occurrents in clinical terminologies and their representation in a formal language.
In Proceedings of the First European Conference on Snomed ct (SMCS’06),
Copenhagen, Denmark, 2006.
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[TBK+06] Anni-Yasmin Turhan, Sean Bechhofer, Alissa Kaplunova, Thorsten Liebig,
Marko Luther, Ralf Möller, Olaf Noppens, Peter Patel-Schneider, Boontawee
Suntisrivaraporn, and Timo Weithöner. Dig 2.0 – towards a flexible interface for
Description Logic reasoners. In Bernardo Cuenca Grau, Pascal Hitzler, Connor
Shankey, and Evan Wallace, editors, Proceedings of the Second International
Workshop OWL: Experiences and Directions, November 2006.

[BNS08] Franz Baader, Novak Novakovic, and Boontawee Suntisrivaraporn. A proof-
theoretic subsumption reasoner for hybrid EL-TBoxes. In Proceedings of the
2008 International Workshop on Description Logics (DL2008), CEUR-WS, 2008.

[SQJH08] Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase. A
modularization-based approach to finding all justifications for OWL DL entail-
ments. In John Domingue and Chutiporn Anutariya, editors, Proceedings of the
3th Asian Semantic Web Conference (ASWC’08), volumn 5367 of Lecture Notes
in Computer Science. Springer-Verlag, 2008.
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Chapter 2

Preliminaries

In this chapter, we introduce the preliminary notions for knowledge representation
systems based on Description Logics (or DL system, for short), with emphasis on the
DL family of EL which is considered throughout the thesis.

In general, a DL system comprises three main components—the description lan-
guage, the ontology, and the reasoning services—which make up a set of logical ma-
chinery for various ontology-based tasks, from design and maintenance to re-use and
inter-operation. Figure 2.1 depicts generic architecture of such a system, with which
ontology developers and users may be interacting through an ontology graphical user
interface (GUI). In the first section, we introduce core elements of any description lan-
guage that are building blocks of conceptual representation objects and classes of ob-
jects from real world application domains. Then, we give definitions of various kinds of
ontological axioms in Section 2.2, which can be distinguished into two groups, namely
terminological and assertional axioms as suggested in Figure 2.1. Based on these ax-
ioms, the TBox and ABox components of an ontology are defined, and a small example
of life science ontology motivated by Galen and Snomed is also given. Section 2.3
and 2.4 formally define logical inference problems that correspond to standard and
supplemental reasoning services provided by DL systems, respectively. Non-standard
inferences, such as the computation of least common subsumer and most specific con-
cept, have been proposed and developed to help construct an ontology in a bottom-up
fashion. This is, however, beyond the scope of the present thesis, and we refer inter-
ested readers to [Küs00, Tur07].

2.1 The EL Family of Description Logics

As mentioned before, Description Logics (DLs) are a family of symbolic languages that
are used to formulate concepts and relationships among them. Alongside ontological
constructors (introduced in the next section), each DL is identified by its (concept)
description language. The description language specifies a set of so-called concept
constructors allowed in a given logic. These constructors are used to inductively define
complex concept descriptions starting with two disjoint sets of concept names CN and

17
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Figure 2.1: Architecture of a Description Logic-based knowledge representation system
(for short, DL system).

role names RN.1 As a general rule, the more concept constructors the logic provides,
the more expressive the concept descriptions can be formulated. Table 2.1 lists core
concept constructors that are widely considered in the literature. The second and third
column show the syntax and semantics elements, respectively. The DL that provides
exactly the concept constructors from this table is known as attributive language with
complements or ALC, which is the smallest Boolean-closed DL.2 There are, however, a
number of interesting sub-Boolean DLs, most of which disallow disjunction and (full)3

negation. As motivated in the first chapter, we are concerned with the sub-Boolean
DL EL and a few extensions thereof. In the following, we give a formal definition for
the syntax and semantics of this logic.

Definition 1 (Syntax of EL). Let CN and RN be two disjoint sets of concept and role
names, respectively. Then, EL concept descriptions or concepts are defined inductively
as follows:

• each concept name A ∈ CN is an EL concept description, and

• if C, D are EL concept descriptions and r ∈ RN is a role name, then the top
concept >, concept conjunction C uD, and existential quantification ∃r.C are

1In certain (expressive) description languages, a third set Ind of individuals can be used to describe
so-called nominal concepts. In the scope of this thesis, however, we consider individuals only when it
comes to the assertional component of an ontology.

2Strictly speaking, a DL must provide at least one quantifier, existential or universal. Thus, the
logic with the first five concept constructors is not a DL in this respect and is, in fact, equivalent to
the propositional logic.

3Some DLs, such as ALE , allow for so-called atomic negation ¬A which can be applied only in
front of undefined concept names A (see Definition 3 on page 20).
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Constructor name Syntax Semantics

top concept > ∆I

bottom concept ⊥ ∅

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

negation ¬C ∆I \ CI

existential quantification ∃r.C {d ∈ ∆I | ∃e : (d, e) ∈ rI ∧ e ∈ CI}

universal quantification ∀r.C {d ∈ ∆I | ∀e : (d, e) ∈ rI → e ∈ CI}

Table 2.1: Syntax and semantics of concept constructors.

also EL concept descriptions.

An EL concept description is atomic if it is the top concept or a concept name from
CN. Otherwise, it is said to be complex. 3

By convention, we use letters (possibly with subscripts and/or superscripts) A, B
to range over concept names, C, D, E over concept descriptions, and r, s, t over role
names. An example of EL concept description is:

Ulcer u ∃has-location.Mouth u ∃caused-by.Bacterium

which represents the concept of ‘bacterial oral ulcer.’ Concept descriptions in other
DL dialects are defined in the same fashion but with different sets of constructors.
The upper part of Table 2.3 on page 23 illustrates the supported concept constructors
of various DLs related to EL. Note that different logics, such as EL and ELH, may
provide the same set of concept constructors, but they deviate from each other relative
to their ontological constructors. When it is obvious from the context, we may omit
the prefix (e.g. ‘EL’) and simply say concept descriptions.

Like any DLs, the semantics of EL concept descriptions is defined through inter-
pretations:

Definition 2 (Semantics of EL). An interpretation I = (∆I , ·I) consists of a non-
empty set ∆I of interpretation domain and an interpretation function ·I , which assigns
to each concept name A ∈ CN a subset AI ⊆ ∆I and to each role name r ∈ RN a
binary relation rI ⊆ ∆I × ∆I . The interpretation function is extended to concept
descriptions by the inductive definitions given in the right column of Table 2.1. 3

2.2 Ontology: TBox and ABox

In the last section, we have seen concept constructors which are used to define con-
cept descriptions. To formulate statements about facts in the domain of interest,
we need an ontological formalism. For instance, one might be interested in stating
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Constructor name Syntax Semantics

concept definition A ≡ C AI = CI

concept inclusion C v D CI ⊆ DI

concept disjointness C uD v ⊥ CI ∩DI = ∅

domain restriction domain(r) v C {d ∈ ∆I | ∃e : (d, e) ∈ rI} ⊆ CI

range restriction range(r) v C {e ∈ ∆I | ∃d : (d, e) ∈ rI} ⊆ CI

functionality functional(r) ∀d ∈ ∆I : ]{e ∈ ∆I | (d, e) ∈ rI} ≤ 1

reflexivity reflexive(r) ∀d ∈ ∆I : (d, d) ⊆ rI

transitivity transitive(r) ∀d, e, f ∈ ∆I : (d, e), (e, f) ∈ rI → (d, f) ∈ rI

role hierarchy r v s rI ⊆ sI

role inclusion r1 ◦ · · · ◦ rk v s rI1 ◦ · · · ◦ rIk ⊆ sI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

Table 2.2: Syntax and semantics of ontological constructors.

that “endocarditis is an inflammation that has location on endocardium tissue,” that
“the part-of relation is transitive,” or that “Mr. Matt is taking antifungal antibiotics.”
Similarly, such a formalism is characterized by a set of ontological constructors the
description language provides. Table 2.2 lists most commonly used constructors, of
which the middle and right columns show their syntax and semantics elements. These
ontological constructors can be divided into three groups: concept axiom constructors,
role axiom constructors, and assertion (individual axiom) constructors. Our examples
above belong to these three groups, respectively, and can be formulated formally as
follows:

Endocarditis ≡ Inflammation u ∃has-location.Endocardium

transitive(part-of)
on-medication(MATT, ANONYM1), AntifungalAntibiotics(ANONYM1)

Conventionally, concept names are capitalized (e.g. Endocarditis), role names are writ-
ten in lower case (e.g. part-of), and individuals are written in upper case (e.g. MATT).

Based on these ontological constructors, we formally define the notions of TBox,
ABox, and finally, DL-based ontology. Intuitively, an ontology consists of the termi-
nological component (henceforth, TBox) and the assertional component (henceforth,
ABox). While the TBox contains definitions, relations, and constraints of terminol-
ogy (concepts and roles) used in the ontology, the ABox holds assertional statements
about concrete individuals w.r.t. that terminology. In DLs, there are a few kinds of
TBoxes, varying in their expressivity and complexity. We start with the simplest form
of TBox—unfoldable TBox :
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Definition 3 (TBox). Let A be a concept name and C a concept description. Then,
A ≡ C is a concept definition and A is said to be fully defined, and A v C is a
primitive concept definition and A is said to be primitively defined. Let / stand for ≡
or v. Then, a TBox T is a finite set of (possibly primitive) concept definitions such
that the uniqueness condition hold: for each concept name A, there is at most one
concept definition A / C for some concept description C.

A cyclic dependency is a sequence of definitions A1 / C1, . . . , An / Cn such that
A(i mod n)+1 occurs in Ci for all 1 ≤ i ≤ n. A TBox T is acyclic or unfoldable if it
contains no cyclic dependency. Otherwise, it is said to be cyclic.

A concept name P in T is undefined if it is neither fully defined nor primitively
defined in T . 3

Note that defined concept names in an unfoldable TBox can always be unfolded into an
independent concept description, in the sense that the TBox itself can be dispensed
with. A much more expressive formalism of TBox is called general TBox which is
supported by most state-of-the-art DL reasoners.

Definition 4 (General TBox). Let C, D be concept descriptions. Then, the ex-
pression C v D is a (general) concept inclusion (GCI). A general TBox is a finite set
of concept inclusions. 3

It is obvious that general TBoxes are more general than unfoldable TBoxes, since GCIs
can be used to express (primitive) concept definitions. In fact, a primitive concept
definition is a special kind of GCI, whereas a concept definition can be expressed by
means of two GCIs: A ≡ C by A v C and C v A.

Apart from concept definitions and inclusions, there are other interesting and
ontologically prominent axiom constructors, some of which are listed in the upper
part of Table 2.2. In some cases, one constructor can be simulated by another. For
instance, a domain restriction domain(r) v C can be expressed by the GCI ∃r.> v C.
Also, reflexivity, transitivity and role hierarchy are specializations of role inclusion
axioms of the forms ε v r, r ◦ r v r and r v s, respectively.4

Definition 5 (ABox). Let Ind be a set of individuals disjoint from CN and RN.
Then, expressions of the forms C(a) and r(a, b) are called concept assertion and role
assertion, respectively, where a, b ∈ Ind, r ∈ RN, and C is a concept description. An
ABox is a finite set of concept and role assertions. 3

Similar to concept and role names, we adopt the convention that the letters a, b, c, d, ...
range over individuals. Having defined TBox and ABox, we are now ready to give
the definition of ontology. As mentioned earlier, an ontology consists of terminological
and assertional parts. Though the assertional component commonly boils down to the
ABox we have just defined, the terminological part is somewhat more variable. Some
DLs only allow for unfoldable TBoxes, while some others allow for general TBoxes.
Yet, there are additional ontological constructors that are supported by some other
DLs. In the following, we formally define a tractable DL which is of the main focus
of this dissertation:

4Nevertheless, we list redundant ones as well for the sake of comprehensibility.
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Definition 6 (EL+ Ontology). Let CN, RN, Ind be disjoint sets of concept names,
role names, and individuals, respectively. An unrestricted EL+ ontology O is a finite
set of axioms of the forms indicated in EL+ column of Table 2.3 and shown in Table 2.2,
where A ∈ CN, a, b ∈ Ind, r, ri, s ∈ RN, and C, D are EL concept descriptions based
on CN and RN.

The ontology O is an EL+ ontology if it satisfies the syntactic restriction given in
Definition 8 on page 22. 3

In this thesis, the terms ‘terminology’ and ‘ontology’ are solely used in the technically
strict sense of a DL knowledge base, i.e., a set of logical axioms and assertions. By
definition, an ontology may comprise both knowledge about the domain (TBox) and
knowledge about individuals in the domain (ABox). We sometimes refer to these
two ontological components, respectively, as terminological and assertional parts of
the ontology. The size of an ontology O, denoted by |O|, is the number of symbols
used to write it. In the context of axiom pinpointing (see Section 5.2), cardinality
of an ontology is considered instead of its size, i.e., the number of ontological axioms
occurring in it.

Table 2.3 depicts various well-known DLs with their supported features, where 4

denotes compulsory features, while 3 denotes optional features that may or may not
be supported.5 We extend the notion of atomic concept descriptions to include the
bottom concept ⊥, which is the only new concept description in EL+ in addition to
the classical EL.

Following Definition 2, we can extend the interpretation function to cover the bot-
tom concept and define the semantics of TBox, ABox, and hence ontology. Intuitively,
an ontology has a model if all of its axioms can be simultaneously satisfied. Formally,
we give the following definition:

Definition 7 (Semantics of EL+ Ontology). Let I = (∆I , ·I) be an interpretation,
α an axiom, O an EL+ ontology. Then, we say that I satisfies α (written, I |= α)
if, and only if, the semantics condition for α from Table 2.2 is fulfilled under I. The
interpretation I is a model of O (written, I |= O) if, and only if, for each axiom
α ∈ O, I |= α. 3

The semantics of other DLs are defined in the same fashion by properly taking into
consideration the corresponding semantics conditions.

As aforementioned, an EL+ ontology has to satisfy a certain syntactic restriction,
without which the logic turns out to be intractable (and even undecidable) [BBL08].
Basically, undecidability is the result of the intricate interplay of range restrictions
and role inclusions. The syntactic restriction defined below prevents precisely this
interplay.

Definition 8 (EL+ Syntactic Restriction). For an ontology O and role names
r, s, we write O |= r v s (i.e., s is a supperrole of r w.r.t. O) if, and only if, r = s

5A few features of SHIF and SROIQ, including inverse role, nominal and qualified number
restriction, are omitted here. Interaction between range restrictions and role inclusions in EL+ has to
conform with the syntactic restriction specified in Definition 8, while role inclusions in SROIQ need
to satisfy an acyclicity condition [HKS06].
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DL dialects HL EL FL0 ELH EL+ ALC SHIF SROIQ

top concept 4 4 4 4 4 4 4 4

bottom concept 4 4 4 4

conjunction 4 4 4 4 4 4 4 4

disjunction 4 4 4

negation 4 4 4

exist. restrictions 4 4 4 4 4 4

value restrictions 4 4 4 4

concept definition 3 3 3 3 4 3 3 3

concept inclusion 3 3 3 3 4 3 3 3

domain restriction 3 3 3 4 3 3 3

concept disjointness 4 3 3 3

range restriction 4 3 3 3

functionality 4 4

reflexivity 4 4

transitivity 4 4 4

role hierarchy 4 4 4 4

role inclusion 4 4

concept assertion 3 3 3 3 4 3 3 4

role assertion 3 3 3 4 3 3 4

Table 2.3: Logical constructors in EL-related formalisms.

or O contains role inclusions r1 v r2, . . . , rk−1 v rk with r = r1 and s = rk. Also,
we write O |= range(r) v C if there is a role name s such that O |= r v s and
range(s) v C ∈ O. The EL+ syntactic restriction is as follows: If r1 ◦ · · · ◦ rk v s ∈ O
with k ≥ 1 and O |= range(s) v C, then O |= range(rk) v C. 3

Intuitively, the restriction ensures that a role inclusion r1 ◦ · · · ◦ rk v s, k ≥ 1, does
not induce any new range constraint on the role composition r1 ◦ · · · ◦ rk. Formally, it
ensures that if the role inclusion implies a role relationship (d, e) ∈ sI in the model,
then the range restrictions on s do not impose new concept memberships on e. Note
that the condition is vacuously true if the role inclusion is simply a reflexivity state-
ment, role hierarchy statement, a transitivity statement, or a generalized left-identity
axiom of the form r1 ◦ · · · ◦ rk v rk.

Before moving to the next section, we would like to demonstrate practical perti-
nence of the DL EL+ to biomedical ontologies by an example. Figure 2.2 portrays a
small EL+ ontology that is motivated by the realistic biomedical ontologies Galen

and Snomed.6 The ontology mainly concerns various kinds of inflammatory dis-
eases,7 related concepts, and relationships among them. Most syntactic elements of

6We disclaim responsibility of correctness of the statements in this ontology, both from clinical and
ontological perspectives. The example is created with only one objective in mind—to demonstrate
features of the logic.

7According to www.dictionary.com, appendicitis is an inflammation of the vermiform appendix,

www.dictionary.com
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α1 Appendix v BodyPart u ∃part-of.Intestine

α2 Endocardium v Tissue u ∃part-of.HeartValve u ∃part-of.HeartWall

α3 HeartValve v BodyValve u ∃part-of.Heart

α4 HeartWall v BodyWall u ∃part-of.Heart

α5 Appendicitis ≡ Inflammation u ∃has-location.Appendix

α6 Endocarditis ≡ Inflammation u ∃has-location.Endocardium

α7 Pancarditis ≡ Inflammation u ∃has-exact-location.Heart

α8 Inflammation v Disease u ∃acts-on.Tissue

α9 HeartDisease ≡ Disease u ∃has-location.Heart

α10 Tissue u Disease v ⊥

α11

HeartDisease u
∃causative-agent.Virus

v ViralDisease u ∃has-state.NeedsTreatment

α12 ε v part-of

α13 part-of ◦ part-of v part-of

α14 has-location ◦ part-of v has-location

α15 has-exact-location v has-location

Figure 2.2: An example EL+ ontology Omed.

the aforementioned role expressivity can be simulated by role inclusions.8 For example,
reflexive(part-of) can be written as the role inclusion α12, where ε denotes the nullary
role composition, whereas transitive(part-of) can be written as the role inclusion α13.
It is worthwhile to note, in particular, that the role inclusion of the form r ◦ s v r,
called right-identity, plays an important role in medical ontologies [Spa00, HS04]. In
our example, α14 is a right-identity axiom, and we say that the role part-of is a right
identity for the role has-location. The cardinality of Omed, as explicitly given by axiom
indexes, is 15, whereas the size |Omed| is 97.

2.3 Standard Reasoning Services

Different DL systems offer different reasoning services (also known as inference prob-
lems) to make certain implicit knowledge logically captured in an ontology explicit.
There are, however, a class of reasoning services that are commonly considered manda-
tory and supported by most DL systems. We refer to this class as standard reasoning
services. It includes

• concept satisfiability,

• concept subsumption,

endocarditis is an inflammation of the lining of the heart and the heart valves, and pancarditis is an
inflammation of the entire heart.

8Except for range restriction, which we will discuss in detail in Chapter 4
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• instance checking,

• consistency checking,

• classification,

• concept hierarchy computation,

• instance retrieval, and

• realization.

The first three reasoning services are local, in the sense that they perform on partic-
ular concepts and/or instances w.r.t. axioms in the ontology. On the contrary, the
remaining reasoning services are global, in the sense that they always take into ac-
count all concepts and/or instances occurring in the ontology. As we shall see later, a
global reasoning service could be realized by a finite number of calls to local reasoning
services.

In this section, we first give formal definitions of these inference problems and then
show some intuition w.r.t. our example ontology Omed.

Definition 9 (Satisfiability). Let O be an ontology and C, D concept descriptions.
Then, C is satisfiable w.r.t. O if there exists a model I of O such that CI 6= ∅.
Otherwise, C is unsatisfiable w.r.t. O .

Two concepts C and D are said to be disjoint w.r.t. O if their conjunction C uD
is unsatisfiable w.r.t. O. 3

Note that it is sometimes relevant to consider concept satisfiability w.r.t. the empty
ontology, i.e., consider the concept description alone. In such a case, we consider an
arbitrary interpretation that makes C non-empty. For example, all concept names
occurring in Omed are satisfiable w.r.t. the ontology. In fact, it is not hard to see
that an interpretation with two domain elements can satisfy all concept names by
properly partitioning them. An example of an unsatisfiable concept w.r.t. Omed is
Endocarditis u Endocardium. Again, it is not hard to see that, for any models I of
Omed, EndocarditisI and EndocardiumI are disjoint, and thus their intersection is the
empty set.

Definition 10 (Subsumption). LetO be an ontology and C, D concept descriptions.
Then, D subsumes C w.r.t. O (written, O |= C v D or C vO D) if CI ⊆ DI for all
models I ofO. We call C a subsumee or subconcept, and D a subsumer or superconcept.

D strictly subsumes C w.r.t. O (written, O |= C < D or C <O D) if, and only if,
C vO D, but not vice versa. If C and D subsume each other w.r.t. O, i.e., C vO D
and D vO C, then we say that C and D are equivalent w.r.t. O (written, O |= C ≡ D
or C ≡O D). 3

If concept definitions or inclusions are allowed, then we can restrict our attention
to subsumption between concept names. To be more precise, C vO D if, and only
if, A vO∪{A≡C,B≡D} B if, and only if, A vO∪{AvC,DvB} B, where A, B are fresh
concept names not occurring in O. We shall see in the next chapter how this idea can
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be realized to support complex subsumption queries. In our example, it holds that
HeartDisease subsumes Endocarditis and Pancarditis w.r.t. Omed. A more entangled
example is that the following concept description:

Inflammation u ∃has-location.HeartWall u ∃causative-agent.Virus

is subsumed by ∃has-state.NeedsTreatment w.r.t.Omed. To see this, note that Inflamma-

tion implies Disease, and ∃has-location.HeartWall implies ∃has-location.∃part-of.Heart.
By the right-identity axiom α14, the latter implies ∃has-location.Heart. This, together
with Disease, fulfills the definition of HeartDisease. Now, it is obvious to see that
the left hand side of our subsumption implies the left hand side of α11, thus also
∃has-state.NeedsTreatment.

In DLs without (any form of) negation such as EL, concept satisfiability is not
interesting since any concept descriptions are satisfiable.9 Having the bottom concept,
however, (un)satisfiability and subsumption are inter-reducible in EL+. On the one
hand, a concept description C is unsatisfiable w.r.t. O if, and only if, C vO ⊥. On the
other hand, C vO D if, and only if, A is unsatisfiable w.r.t. O extended with GCIs
A v C and A uD v ⊥ with A a fresh concept name.10

In case the ontology has an assertional component, thus individuals, we might be
interested in knowing implicit relationship between these individuals and concepts.
With the next standard reasoning service, this can be done:

Definition 11 (Instance checking). Let O be an ontology, C a concept description,
r a role name, and a, b individuals. Then, the individual a (the pair of individuals
(a, b), resp.) is an instance of C (r, resp.) w.r.t. O (written, O |= C(a) (O |= r(a, b),
resp.)) if, and only if, aI ∈ CI ((aI , bI) ∈ rI , resp.) for all models I of O. 3

So far, we have considered local inference problems, in the sense that they concern
a particular concept (pair of concepts) and/or an individual. In the following, we
formally introduce standard reasoning services that concern the whole ontology (i.e.,
all concepts and/or individuals):

Definition 12 (Consistency). Let O be an ontology. Then, O is consistent if, and
only if, it has a model; otherwise, it is inconsistent. 3

Consistency checking is a coarse-grained way to logically detect an error in the ontol-
ogy. If the ontology is inconsistent, i.e., does not admit a model, then by definition
any logical consequences vacuously follow. Thus, the ontology is meaningless. In our
example, Omed is consistent since it admits at least the aforementioned model with two
domain elements. However, though an ontology is consistent, it may still contain local
errors, such as, unsatisfiable concept names or unintended subsumption relationships.
For this reason, consistency checking alone is not sufficient to support the developers
in ontology design and maintenance.

9In fact, any EL concept descriptions C are satisfied by any interpretations I = (∆I , ·I) with
AI = ∆I and rI = ∆I × ∆I , for all concept names A and role names r occurring in C.

10In more expressive DLs with negation, the mentioned subsumption is reduced to asking whether
C u ¬D is unsatisfiable (see, e.g., [BN07]).
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A much more interesting reasoning service, which is based on concept subsumption,
therefore comes into play—ontology classification:

Definition 13 (Classification). Let O be an ontology and CN(O) the set of concept
names occurring in O. Then, classification of O is the identification of subsumptions
between all pairs of concept names in O, i.e., for all A, B ∈ CN(O), determine whether
or not A vO B. 3

It immediately follows from the definition that classification can be done by at most
a quadratic number of calls to the subsumption procedure. However, several heuristic
and optimization techniques can be employed to reduce the number of subsumption
calls by avoiding redundant calls and re-using old and told subsumption information.
We will discuss these optimizations in more detail in Section 4.3. Apart from speeding
up classification by reducing the number of subsumption calls, modern DL systems
often represent classification results in a so-called directed acyclic graph (DAG), where
a directed edge links a concept name (an equivalence class of concept names) to an
immediate subsumer (an equivalence class of immediate subsumers). We will later
refer to this graph as the concept hierarchy.

Definition 14 (Concept hierarchy). Let O be an ontology and CN(O) the set of
concept names occurring in O. Then, the concept hierarchy (or subsumption hier-
archy) of O is the most compact representation (CN(O),≺) of the partial ordering
(CN(O),vO) induced by the subsumption relation w.r.t. O. 3

A partial ordering is a reflexive, transitive, and antisymmetric relation. Obviously,
the subsumption relation is a partial ordering with ≡O the equivalence relation. The
relation ≺ denotes the immediate subsumption relation, which is the smallest relation
such that its reflexive-transitive closure is identical to vO. Precisely, A ≺ B if, and
only if, (i) A vO B; (ii) A 6≡O B; and (iii) there is no X such that A 6≡O X, B 6≡O X,
and A vO X vO B. Intuitively, concept hierarchy is the most space-efficient way
to represent classification results, dispensing with the non-immediate subsumptions
which can be easily computed by reflexive-transitive closure. Most, if not all, DL
systems indeed support output in this compact format. In our example, we have that
Endocarditis ≺ HeartDisease ≺ Disease, but Endocarditis 6≺ Disease. Considering the
whole ontology, the concept hierarchy of Omed can be depicted as in Figure 4.4 on
page 67.

Stemmed from instance checking, it is natural to consider the following service:
given an ontology and a concept name, retrieve all those individuals in the ontology
that are instances of the concept name. This reasoning service is known as instance
retrieval :

Definition 15 (Instance retrieval). Let O be an ontology, and A a concept name
in O. Then, the instance retrieval problem for A in O is the computation of all
individuals a from Ind(O) such that O |= A(a). 3

Conversely, the realization problem is, given an ontology and an individual, to deter-
mine all (most specific) concept names, to which the individual belongs:
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Definition 16 (Realization). Let O be an ontology, and a an individual in O. Then,
the realization problem for a inO is the computation of all most specific concept names
A from CN(O) such that O |= A(a), i.e., for every concept names B ∈ CN(O) with
B <O A, we have O 6|= B(a). 3

For each concept name A ∈ CN(O), instance retrieval gives us a set of instances
belonging to A. Obviously, if we have A vO B, then O |= A(a) implies O |= B(a)
for any individual a ∈ Ind(O). In other words, if we extend the subsumption relation
w.r.t. O to ≤O: (CN(O) ∪ Ind(O)) × (CN(O) ∪ Ind(O)) by including individuals and
the instance-of relation, then ≤O is a partial ordering. Precisely, X ≤O Y holds if,
and only if,

• X = Y , for X, Y ∈ Ind(O),

• X vO Y , for X, Y ∈ CN(O), or

• O |= Y (X), for X ∈ Ind(O) and Y ∈ CN(O).

Based on the same idea for concept hierarchy, we can extract the smallest rela-
tion ≺ such that its reflexive-transitive closure is identical to ≤O. This relation,
in conjunction with individuals and concept names, is called the realization hierar-
chy (CN(O) ∪ Ind(O),≺) of O. Similarly, this is the most compact representation of
instance retrieval results, since for each individual a only the most-specific concept
names, to which an individual a belongs, are kept. All other concept names, to which
a belongs, can be easily computed by transitive closure from the realization hierarchy.

Classification (realization, resp.) results in the form of the concept (realization,
resp.) hierarchy can be exploited by ontology editors to graphically display inferred
results to the user. This way, the user may navigate the hierarchy by expanding or
collapsing it from the top concept down to the bottom concept and individuals.

2.4 Supplemental Reasoning Services

The reasoning services defined in the previous section are supported by all state-of-
the-art DL reasoners, including CEL [BLS06], FaCT [Hor98, TH06], HermiT [MSH07],
KAON2 [Mot06], Pellet [SPC+07], and RacerPro [HM01b].11 As argued before, these
reasoning services undoubtedly help facilitate ontology engineering tasks, in particular
during the design and maintenance phases. As limitations of standard reasoning
services in real-world applications have been addressed, new non-standard inference
problems have emerged as important reasoning services (see, e.g., [Küs00, Bra06,
Tur07] and [SC03, LW07, CHKS07, Sun08]).

Similar to writing large programs, building large-scale ontologies is an error-prone
endeavor. Given an ontology under development, the ontology designer iteratively
authors new concept definitions and adds them to the ontology. Without adequate
knowledge of DLs or without enough attention to existing logical constraints and their
potential interaction with newly added definitions, the addition could lead to undesired

11A list of DL reasoners: http://www.cs.man.ac.uk/~sattler/reasoners.html.

http://www.cs.man.ac.uk/~sattler/reasoners.html


2.4 Supplemental Reasoning Services 29

consequences. The ontology might be turned inconsistent, or certain concepts might
become unsatisfiable. In the first case, any subsumption follows from the ontology,
which makes it globally meaningless. In the latter case, the unsatisfiable concepts
cannot instantiate individuals. Although this does not affect the whole ontology,
it does not reflect the initial intention that concepts represent classes of individuals.
Moreover, unsatisfiable concepts are equivalent to the bottom concept and thus can be
unified. Even in the case that there is no logical inconsistency, an inferred subsumption
might not be intended. As a real-world example, the subsumption relationship between
‘amputation of finger’ and ‘amputation of arm’ follows from Snomed, which is clearly
unintended [SBSS07, SMH07]. Standard reasoning of subsumption helps reveal such
a modeling error. However, out of almost four hundred thousand concept definitions,
it is virtually impossible to pinpoint the source of this error by hand.

To overcome this problem, some work on automating this process has recently been
invested. In this section, we formally introduce the notions of justification and modu-
larization, two supplemental reasoning services prominent in design and maintenance
of large-scale ontologies.

2.4.1 Justification and debugging

Given a subsumption relationship or another questionable consequence (e.g., unsatisfi-
ability or instantiation), justification computes a minimal subset (all minimal subsets)
of the ontology that has this consequence. In what follows, we call this minimal set a
MinA.12

Definition 17 (MinA). Let O be an ontology, and σ a logical entailment such that
O |= σ. Then, a subset S ⊆ O is a minimal axiom set (MinA) for σ w.r.t. O if, and
only if, (i) S |= σ, and (ii), for every S ′ ⊂ S, S ′ 6|= σ. 3

Intuitively, each axiom in a MinA is relevant to the entailment in question in the sense
that the entailment no longer follows without it. In other words, axioms in a MinA
are indispensable to retain the entailment. Note that MinAs need not be unique nor
minimum relative to set cardinality. For example, consider the subsumption relation-
ship σ = (Endocarditis v HeartDisease) that holds in Omed. It is not hard to verify
that the sets S1 = {α2, α3, α6, α8, α9, α14} and S2 = {α2, α4, α6, α8, α9, α14} are all
the MinAs for σ w.r.t. Omed.

In the context of ontology justification, it is common to consider the dual prob-
lem: given a subsumption relationship or another questionable entailment (e.g., un-
satisfiability or instantiation), compute a maximal subset (all maximal subsets) of the
ontology that does not have this entailment. In what follows, we call this maximal
set a MaNA.

Definition 18 (MaNA). Let O be an ontology, and σ a logical entailment such that
O |= σ. Then, a subset S ⊆ O is a maximal non-axiom set (MaNA) for σ w.r.t. O if,
and only if, (i) S 6|= σ, and (ii), for every S ′ ⊃ S, S ′ |= σ. 3

12A minimal set of axioms that has the entailment is sometimes called MUPS [SC03] or JUST
[PSK05, KPHS07] in the literature.
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Intuitively, given an ontology O and an unwanted entailment σ, a MaNA is a candidate
for the new, revised ontology with σ suppressed. The set complement of a MaNA
corresponds to a so-called diagnosis of an error [Rei87], i.e., a minimal hitting set of
all the MinAs.

Definition 19 (Hitting set). Let U be a universal set, and C = {S1, . . . , Sn} a
collection of subsets of U . A hitting set H for C is a subset of U such that Si∩H 6= ∅
for all 1 ≤ i ≤ n. A hitting set H is minimal if there is no H ′ ⊂ H such that H ′ is
a hitting set for C; and is cardinality minimal if there is no hitting set H ′ ⊂ H with
|H ′| < |H|. 3

Definition 20 (Diagnosis). Let O be an ontology, and σ a logical entailment such
that O |= σ. Then, a subset S ⊆ O is a diagnosis for σ w.r.t. O if, and only if, (i)
O\S 6|= σ, and (ii), for every S ′ ⊂ S, O\S ′ |= σ. 3

In DLs, if the ontology corresponds to the universal set U , and the set of all MinAs
corresponds to the collection of subsets C; then a minimal hitting set for C is a
diagnosis.

Maximality of MaNAs (hence, minimality of diagnoses) ensures that changes re-
quired to be applied to the ontology are kept to the minimum. Axiom pinpointing, i.e.,
the computation of MinAs, can be seen as a first step toward automated explanation
of an error, while the computation of MaNAs (equivalently, diagnoses) can be seen as
a first step toward automated revision of a faulty ontology.

2.4.2 Modularization

Given an ontology O (recall that an ontology is a set of axioms), a module essentially
is a subset of O that preserves a statement of interest or the statements involving
symbols of interest. Here, symbols specifically refer to individuals, concept names,
and role names. A set of interested symbols is called a signature. The signature of an
ontology O, denoted by Sig(O), is the disjoint union of the sets of concept names, role
names and individuals occurring in the ontology O, i.e., CN(O)∪RN(O)∪Ind(O). Sim-
ilarly, we define the signature of x (written, Sig(x)) with x a concept, role, individual
or axiom, in an obvious way. We call a potential logical entailment introduced in Sec-
tion 2.3 a statement.13 A statement can be unsatisfiability, subsumption, equivalence,
or instantiation that may or may not actually hold in the ontology.

Definition 21 (Module). Let L be a DL dialect, O an L ontology, and σ a statement
formulated in L. Then, an O′ ⊆ O is a module for σ in O (for short, a σ-module in
O) whenever: O |= σ if, and only if, O′ |= σ.

We say that O′ is a module for a signature S in O (for short, an S-module in O)
if for every L-statement σ with Sig(σ) ⊆ S, O′ is a σ-module in O. 3

13In [CHKS07, Sun08], the term ‘axiom’ was used both as a potential entailment and as an onto-
logical axiom. We use different terms here in order to avoid unnecessary confusion.
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Intuitively, a module in an ontology O is a subset O′ ⊆ O that preserves a statement
of interest or the statements over a signature of interest. Observe that the definition
is generic in the sense that the whole ontology is a module in itself. Nevertheless, such
a module is uninteresting, since it does not give us new information concerning the
ontology relative to the statement or the signature. In the following, we are interested
in reasonably small modules that are relatively cheap to extract.

Given an ontology O with an entailment σ, i.e., O |= σ, it is immediate that
a MinA for σ w.r.t. O is a σ-module in O. Moreover, it is a minimal module. In
fact, a σ-module satisfies only the first of the two conditions for being a MinA for
σ. Our MinAs S1 and S2 from the previous subsection are (minimal) modules for
Endocarditis v HeartDisease in Omed. Unfortunately, a procedure for computing MinAs
cannot be used effectively and efficiently to extract a module. First, MinAs are only
defined for a consequence, i.e., a statement that follows from the ontology. Second,
computation of MinAs is normally expensive and involve standard inference, such as
subsumption.

In [CHKS07], a specific type of module based on syntactic locality has been in-
troduced for the expressive DL SHOIQ. The notion of syntactic locality naturally
extends to SROIQ with the presence of (acyclic) role inclusions. We recap the defi-
nition of this module modulo the DL EL+ here and show a relationship between this
and our module in Section 5.1.

Definition 22 (Locality-based modules). Let O be an EL+ ontology, and S a
signature. The following grammar recursively defines Con⊥(S):

Con⊥(S) ::= A⊥ | (C⊥ u C) | (C u C⊥) | (∃r.C⊥) | (∃r⊥.C)

with r a role name, C a concept description, A⊥, r⊥ 6∈ S, and C⊥ ∈ Con⊥(S).
An EL+ axiom α is syntactically local w.r.t. S if it is one of the following forms:

(1) RI R⊥ v s where R⊥ is either a role name r⊥ 6∈ S or a role composition r1 ◦· · ·◦rn

with ri 6∈ S for some i ≤ n, or (2) GCI C⊥ v C where C⊥ ∈ Con⊥(S). We write
local(S) to denote the collection of all EL+ axioms that are syntactically local w.r.t.
S.

If O can be partitioned into O1 and O2 such that every axiom in O2 is syntactically
local w.r.t. S∪Sig(O1), then O1 is a locality-based module for S in O. We say that O1

is minimal if there is no O′
1 ⊂ O1 that is a locality-based module for S in O. 3

In [CHKS08], it has been shown that, given an ontology O and a signature S, there
always exists a unique, minimal locality-based module for S in O, denoted by Oloc

S
.

In the following, we define an important property of a module in order to be used
in optimization in axiom pinpointing.

Definition 23 (Subsumption module). Let O be an ontology, and A a concept
name occurring in O. Then, an O′ ⊆ O is a subsumption module for A in O whenever:
A vO B if, and only if, A vO′ B holds for all concept names B occurring in O.

The subsumption module O′ for A in O is called strong if the following holds for
all concept names B occurring in O: if A vO B, then every MinA for A vO B is a
subset of O′. 3



32 Preliminaries

Obviously, O itself is a strong subsumption module for every concept name A occurring
in O. In Section 5.1, we introduce a definition of a specific type of module that not
only enjoys the nice property of strong subsumption modularity but is also typically
quite small compared to the whole ontology.



Chapter 3

A Case Study: Snomed ct

Now that all the essential reasoning problems have been identified and formally defined
in the previous chapter, it should be appropriate to see how they fit in real-world ap-
plication scenarios. As already motivated in Introduction, the Description Logic (DL)
dialect under consideration, as well as fragments and slight extensions thereof, has
been and still is used as the logical underpinning of several biomedical ontologies,
most of which are of large scale. Due to the need for scalability of design and mainte-
nance, it is important that reasoning support can be achieved in reasonable runtime
if doable at all. This chapter presents a case study of the use of the Description Logic
EL+ in Snomed ct, which should hopefully shed some light on the usefulness of
logic-based design and maintenance of large-scale biomedical ontologies.

3.1 The Systematized Nomenclature of Medicine

The Systematized Nomenclature of Medicine, Clinical Terms (Snomed ct) is a com-
prehensive clinical and medical ontology that covers a wide range of concepts in the
domain [SPSW01, Spa05]. It was produced by merging Snomed Reference Termi-
nology (rt) [SCC97, Spa00, Rec07] with Clinical Terms version 3 (CTV3) [OPR95].
Snomed rt was developed by the College of American Pathologists (CAP) with the
aim to be a comprehensive clinical reference terminology for the retrieval and analysis
of data relating to the causes of diseases, the treatment of patients, or even retrieval of
health care information (e.g., medical literature search) [SCC97]. The rt version was
the first generation of the Snomed terminology to use the formal semantics (through
the KRSS syntax [PSS93]) of the Description Logic. This was mainly to address mul-
tiple hierarchical is-a relationships which had been undesirably indirect in the earlier
version (Snomed III). In 1993, the UK National Health Service (NHS) has adopted
the Read Codes, which had been developed by a medical practitioner Read, for health
electronic records. Later on, the terminology has been greatly expanded and enhanced
to have become Clinical Terms version 3 (CTV3). Between 1999 and 2002, the UK
NHS and CAP, along with Keiser Permanente, jointly worked to merge CTV3 and
Snomed rt. The key feature of the merge was the comprehensiveness of Snomed

ct, with 55% of the source concepts from CTV3 only and 31% from rt only. After

33
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the merge, the ontology has become freely available in both the US and UK.
In 2007, the International Health Terminology Standards Development Organisa-

tion (IHTSDO) has been founded with the purpose to internationalize and standard-
ize Snomed ct as the reference clinical terminology among the member countries
[IHT07]. Nowadays, Snomed ct is freely available to all of the (currently nine)
IHTSDO member countries and has been licensed in several other countries as well.
Additionally, IHTSDO gives out the ontology under ‘affiliate license’ for academic and
research purposes.

Snomed rt and Snomed ct have been developed with the help of the Description
Logic EL (see Definition 1 on page 19) which can be seen as an unfoldable TBox (see
Definition 3 on page 20) extended with role inclusions.1 An example of role inclusion
that occurs in the ontology is

causative-agent v associated-with

A concept in Snomed ct is called primitive if it is defined with a primitive concept
definition, and fully defined if it has a full concept definition.2 Examples of full and
primitive concept definitions are in order:

AmputationOfFinger ≡ HandExcision u
∃roleGroup.( ∃direct-procedure-site.FingerS u

∃method.Amputation )
FingerS v DigitOfHandS u HandP

Two interesting remarks concerning these examples are as follow. First, Snomed ct

purposefully uses the special role roleGroup to group two or more existential quan-
tifications in a definition [SDMW02]. In our example, the method of amputation is
grouped with finger structure as the direct procedure site. In some definitions, there
may be more than one such group, and without explicitly grouping them by roleGroup,
existential quantifications may inadvertently interact in an undesired way. Spackman
et al. have given an example of ‘Tetralogy of Fallot’ in [SDMW02]:

TetralogyOfFallot ≡ ∃rG.(∃s.RightVentricle u ∃m.Hypertrophy) u
∃rG.(∃s.Aorta u ∃m.Overriding) u
∃rG.(∃s.PulmonaryValve u ∃m.Stenosis) u
∃rG.(∃s.InterventricularSeptum u ∃m.IncompleteClosure)

where rG, s and m are abbreviations for roles roleGroup, site and morphology, respec-
tively. Obviously, if the preceding roleGroup existentials were dropped, any arbitrary
combination of morphology and site would be possible. For instance, if we query
for subconcepts of ∃s.PulmonaryValve u ∃m.IncompleteClosure, the modified definition
of Tetralogy (without roleGroup) is unintendedly retrieved as an answer. Second,
Snomed ct uses multiple codes for each anatomical entity (e.g., hand) to represent

1In Snomed ct lingo, this is known as the ‘stated form’ as opposed to the ‘distributed form.’
2Note that the notion of ‘primitive concept name’ here is different from that in, e.g., [Baa03,

Sun05b]. In the latter papers, primitive concept names are those that do not occur on the left-hand
side of a definition.
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the structure (HandS), the entity (HandE) and the part (HandP )—the encoding known
as SEP-triplet (see Subsection 3.2.1 below).3 Then, the primitive concept definition
given above expresses that the finger is part of the hand.

As of January/2005 release, Snomed ct contains 13 role inclusions, 38 719 concept
definitions and 340 972 primitive concept definitions (see Section 6.1 for more detail).

For the rest of the thesis, Snomed and Snomed ct are used interchangeably to
refer to the Snomed, Clinical Terms. The next section discusses issues of SEP-triplet
encoding in Snomed ct among others, and Section 3.3 proposes a modeling paradigm
for the ontology by using the full machinery of EL+.

3.2 Issues in Snomed ct

In [SSB07], we have outlined an array of existing issues in Snomed ct both from
ontologist’s and logician’s perspectives. Some of the issues can be solved by upgrading
the underpinning logical formalism to the Description Logic EL+ and by exploiting DL
reasoning support, whereas some others require ontological analysis under scrutiny.
In this section, we focus attention to those issues that logical reasoning based on the
DL EL+ can solve or, to a lesser degree, alleviate.

Individuals are missing in Snomed ct, while numerous Snomed concepts (such as
Europe, Germany and Thailand) intuitively stand for unique individuals. Instead
of formulating these individuals as instances of the concept GeographicLocation,
in Snomed ct they are simply concepts (thus, classes of individuals) subsumed
by GeographicLocation.

Top-level categories in Snomed ct are concept names that mimic meta-classes in
the sense that they categorize other concept names by means of subsumption.
For instance, the concept Niece is a subconcept of the concept SpecialConcept

which is obviously incorrect from the ontological point of view. In Snomed ct,
the concept SpecialConcept is one of the 18 top-level categories that are used to
segment the large ontology into disjointly categorized hierarchies. Undesirably,
however, there are a few concept names that belong to more than one top-level
category.

Relations or roles in Snomed ct are not constrained in the sense that certain roles
should only be applied to certain concepts (i.e., domain and range restrictions).
Even though no observable glitches may be detected in the ontology itself, the
use of the ontology as a background knowledge base where users may author
additional definitions (incorporate post-coordinated concepts into an extension
of Snomed ct) could violate this implicit modeling discipline and thus introduce
errors. Without an appropriate logical restriction on the applicability of a role,
such errors are hard or may even be impossible to detect.

Part-of relation is not in use in the current versions of Snomed ct. Instead, it for-
mulates a part-whole relation, for instance, between Finger and Hand by means

3Though this is employed in a rather incomplete way.
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of the subsumption relation and the so-called SEP-triplet. This method unnec-
essarily overloads the is-a hierarchy, increases the size of the anatomy portion
of the ontology, and causes confusion for ontology developers [Pat06, SBSS07].

Right-identity is used in Snomed ct [Spa00] to express the fact that “an ‘active
ingredient’ of a ‘direct substance’ is a ‘direct substance’.” The role inclusion:

direct-substance ◦ has-active-ingredient v direct-substance

could correctly capture the intuition of the fact if the role grouping technique
was not employed. With role grouping, existential quantifications in Snomed

ct are preceded by an existential quantification over roleGroup, for instance,
the definitions of AmputationOfFinger and TetralogyOfFallot. Particularly, the
role has-active-ingredient will always be preceded by roleGroup in any model of
the ontology, blocking a potential role chain as in the left-hand side of the right-
identity rule from happening. As a consequence, three subsumption relationships
that are supposed to hold in the presence of the right-identity rule cannot be
inferred from the ontology.

For the rest of the present section, we will discuss SEP-triplet encoding and its
use in Snomed ct.

3.2.1 SEP-Triplet encoding

The example of primitive concept definition above is part of an SEP-triplet. Precisely,
an SEP-triplet for A is composed of three concepts: the entity A, the part AP and
the structure AS , which are linked to each other by is-a and part-of relationships as
shown below:

AS

A AP
part-of

A v AS

AP v AS u ∃part-of.A

The SEP-triplet can be expressed by two (primitive) concept definitions as shown on
the right of the graph representation. Intuitively, the E-concept denotes the whole
entity of A, the P -concept denotes any proper part of A, and finally the S-concept
denotes the structure (which includes both the entity and any part) of A.

This encoding technique has been introduced by Schulz et al. in [SRH98] to ad-
dress the problem of logical reasoning without transitivity on roles. They proposed
a workaround method by embedding the aggregation hierarchy (part-of relation) in
the generalization hierarchy (is-a or subsumption relation) with the help of auxil-
iary concepts.4 In order to specify, for instance, that finger is part of hand, an
is-a link from the S-concept of Finger to the P -concept of Hand is added. To il-
lustrate the transitivity effect over the part-of relation, another such relationship

4The subsumption relation is inherently transitive and could be handled by the early knowledge
base reasoner LOOM [MB87] which was used in the experiments described in [SH01].
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Finger

FingerS

FingerP

Hand

HandS

HandP

UpperLimb

UpperLimbS

UpperLimbP

AmputationOfFinger

InjuryToFinger

AmputationOfHand

InjuryToHand

AmputationOfUpperLimb

InjuryToUpperLimb

Figure 3.1: Examples of idealized SEP-triplets in Snomed ct.

is considered: hand is part of upper limb. Figure 3.1 visualizes the three com-
plete SEP-triplets (representing three anatomical concepts) and the aggregation re-
lationships among them. In the figure, the solid and dashed edges denote sub-
sumption and part-of relationship, respectively; while the dotted edges represent
the relation has-location that link either clinical findings or medical procedures to
body parts. Again, the graph representation can be formulated in an EL TBox
shown in Figure 3.2. It is easy to see that transitivity of part-of can be simulated
through the intra-triplet part-of relationships and the intrinsic transitivity of (both
intra- and inter-triplet) subsumption relationships. Formally, it can be inferred that
Finger v FingerS v HandP v HandS v UpperLimbP v ∃part-of.UpperLimb.

Nonetheless, there are several problems with this transitivity workaround from
both ontological and practical viewpoints. First of all, resolving the aggregation hier-
archy (i.e., the hierarchy induced by part-of relationships) by means of the generaliza-
tion hierarchy (i.e., the hierarchy induced by subsumption relationships) is dangerous
since the two relationships are completely different by nature [Pat06]. In general,
characteristics are not inherited along the aggregation hierarchy, but are so along the
generalization hierarchy. There are, however, some characteristics for which propaga-
tion along the part-of hierarchy is desirable. In our example, the concept InjuryToFinger

is supposed to be classified as InjuryToHand and thus InjuryToUpperLimb, therefore it
is sensible to allow for propagation of the property ‘Injury to’ along the aggregation
hierarchy. On the contrary, the property ‘Amputation of’ should never propagate
in this way because it would be incorrect to say that ‘an amputation of finger is an
amputation of upper limb.’ In [SRH98], it has been proposed to choose between the
S-concepts whenever such inheritance is desired, and E-concepts otherwise (see Fig-
ure 3.1). Even though this approach works, it is rather confusing and error-prone as
indicated by a number of problems found in Snomed ct.

First of all, it has indeed turned out that is-a links in Snomed ct can be ambigu-
ous, i.e., it is not always clear whether they are introduced as part of the SEP-triplet
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UpperLimb v UpperLimbS

UpperLimbP v UpperLimbS u ∃part-of.UpperLimb

HandS v UpperLimbP

Hand v HandS

HandP v HandS u ∃part-of.Hand

Finger v HandP

Finger v FingerS

FingerP v FingerS u ∃part-of.Finger

InjuryToUpperLimb ≡ Injury u has-location.UpperLimbS

InjuryToHand ≡ Injury u has-location.HandS

InjuryToFinger ≡ Injury u has-location.FingerS

AmputationOfUpperLimb ≡ Amputation u has-location.UpperLimb

AmputationOfHand ≡ Amputation u has-location.Hand

AmputationOfFinger ≡ Amputation u has-location.Finger

Figure 3.2: An EL TBox representing the SEP-triplets and referring concepts.

approach or are supposed to represent a genuine generalization relationship. Second,
the SEP-triplet approach is error-prone since it works correctly only if it is employed
with a very strict modeling discipline. In Snomed, triplets are often modeled in an
incomplete way, in particular, the P -concept and the part-of link to it from the E-
concept are missing in most cases. In addition, the auxiliary S-concept is often used
as if it were a proper entity class. This mistake has resulted in many false positive
subsumption relationships that hold in the ontology due to unintended inheritance of
all characteristics along the aggregation hierarchy. Third, the approach introduces for
every proper concept in (the anatomy portion of) the ontology two auxiliary concepts
which results in a drastic increase in the ontology size. To add to the confusion, the
same term (essentially a string attached to each concept name) often ambiguously de-
notes both Snomed S-concepts and E-concepts, e.g., the terms ‘Finger’ and ‘Finger
structure’ are being allowed synonyms for the concept FingerS .

3.3 A Modeling Paradigm for Snomed ct Using EL+

One of the most prominent decisions to be made when modeling an ontology is the
concept description and ontology language. As presented in Chapter 2, there are nu-
merous DL dialects ranging from inexpressive sub-Boolean logics to highly expressive
ones with complex constructors like quantified number restriction and inverse roles.
Different DLs are suitable for different application domains and have different com-
plexity levels. Usually, the more expressive the logic gets, the higher the complexity
goes [Zol07]. For instance, the DL ALC has an ExpTime-complete subsumption prob-
lem when GCIs are admitted [Sch91] (see also [Don07]), while subsumption in EL+ is
polynomial (shown for its superlogic EL++ in [BBL05]). This means that reasoning
with the full machinery of ALC can potentially take time exponential in the size of the
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input—the ontology. On the one hand, it is important to take good care of complex-
ity of reasoning when the language is chosen, especially given the typically large scale
of biomedical ontologies. On the other hand, it is not less important to ensure that
essential aspects of the ontology can be properly expressed in the language chosen.
Most of the issues raised in the previous section are examples of underspecification of
concept definitions which stem from using the overly inexpressive DL EL.

To this end, we present a modeling paradigm for Snomed ct using the DL EL+

for two reasons:

• EL+ is proved tractable both from the theoretical [BBL05] and practical [BLS07]
points of view, with readily available DL systems (see, e.g., [BLS06]). Tractabil-
ity of the underlying ontology language is a key to scalability of reasoning.

• The machinery in EL+ is sufficient to address the issues in Section 3.2 (particu-
larly, the SEP-triplet encoding). By appropriately modeling constraints (such as
pairwise disjointness of top-level categories), previously invisible modeling errors
can now be automatically detected by a reasoner.

In the next subsection, a re-engineering approach for Snomed ct is proposed with em-
phasis on removing SEP-triplets. In Subsection 3.3.2, a number of usage scenarios of
reasoning techniques presented in this thesis will be presented which shall demonstrate
usability and usefulness of reasoning support in the process of design and maintenance
of Snomed ct.

3.3.1 Re-engineering Snomed ct

The main tenets of the SEP-triplet encoding are twofold: first, it helps mimic reasoning
with transitivity on the part-of relation; and second, it allows certain properties to
propagate along the aggregation hierarchy. Now, we propose an alternative approach
to these reasoning patterns by specifying them in a more direct and concise way
[SBSS07]. In what follows, let O be an EL+ ontology (see Definition 6 on page 22)
illustrating the transformation from the ontology in Figure 3.2 to one without SEP-
triplets.

Since the DL EL+ directly supports transitivity on roles (see Table 2.3 on page 23),
reasoning with transitivity of the part-of role can be done by simply adding the axiom
transitive(part-of) to O. Moreover, we suggest to model a subrole proper-part-of v
part-of which is also transitive. The distinction between the two partitive roles is that
part-of is reflexive, while proper-part-of is not. With this distinction, the P -concept
and S-concept of a triplet can be simply reformulated, respectively, by the following
concept definitions:

HandP ≡ ∃proper-part-of.Hand

HandS ≡ ∃part-of.Hand

whenever they are required.5 Though no explicit intra-triplet subsumption relation-
ships are specified, the triplet structure is retained, namely, HandP vO HandS (since

5Note that our modeling technique does not require the triplets, but this is presented in case that
backward compatibility becomes an issue.
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proper-part-of v part-of ∈ O) and Hand vO HandS (since Hand vO ∃part-of.Hand due
to reflexivity of part-of). Optionally, a role inclusion axiom (or a left-identity rule)6

part-of ◦ proper-part-of v proper-part-of

can be used to retain inter-triplet structures, e.g., the subsumption relationships
FingerS v HandP and HandS v UpperLimbP .

To state that “finger is part of hand” and “hand is part of upper limb,” the con-
cept inclusions Finger v ∃proper-part-of.Hand and Hand v ∃proper-part-of.UpperLimb

are added to the ontology O.7 By the semantics of transitivity and role hierarchy
(see Table 2.2 on page 20), it implies that Finger vO ∃proper-part-of.UpperLimb and
Finger vO ∃part-of.UpperLimb as required.

The other rationale of SEP-triplets in Snomed ct is to allow certain properties to
propagate along the aggregation hierarchy [SRH98]. It is realized in SEP-triplet en-
coding by using two target concepts for a single anatomical organ, for instance, FingerS

and Finger for finger. The same property (e.g., has-location) may point to either S or
E concepts depending on whether it is to propagate along the aggregation hierarchy
or not. This is rather not intuitive and error-prone as confirmed by the fact that
AmputationOfFinger is linked to FingerS in Snomed ct.

For getting rid of SEP-triplets, we propose to use two ‘has location’ relations:
has-location which is allowed to propagate along the aggregation hierarchy and used
in the definition of, e.g., InjuryToFinger; and has-exact-location which is not allowed
to propagate that way and is used in the definition of, e.g., AmputationOfFinger. To
enable the effect of propagation along the aggregation hierarchy, we use the following
right-identity rule [Spa00, SBSS07]:

has-location ◦ proper-part-of v has-location

Here, proper-part-of is said to be a right-identity of has-location. Intuitively, any occur-
rence of proper-part-of is absorbed to the right of the role has-location in the sense that,
e.g., ∃has-location.∃proper-part-of.Hand is subsumed by ∃has-location.Hand. Putting
together we obtain a re-engineered portion of Snomed ct shown in Figure 3.3 that
corresponds to the cumbersome modeling method with SEP-triplets (see Figure 3.2
on page 38).

In addition to using role inclusions to replace SEP-triplets, some other machinery
of EL+ could be used to alleviate difficulties during the modeling process of Snomed

ct. Some of the more important issues are discussed in order:

• The eighteen top-level categories are intended to be pairwise disjoint. The dis-
jointness however is not logically specified as axioms in the ontology. Thus, it
cannot be automatically detected if supposedly disjoint hierarchies happen to

6This, together with proper-part-of v part-of, forms a cycle over role inclusions which is not allowed
in SROIQ and thus OWL 2. Fortunately, such a cyclic dependency does not cause any trouble in
our setting with the DL EL+.

7These inclusions are indeed primitive concept definitions and thus can be incorporated into ex-
isting definitions of Finger and Hand, respectively, if any.
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Finger v BodyPart u ∃proper-part-of.Hand (1)

Hand v BodyPart u ∃proper-part-of.UpperLimb (2)

UpperLimb v BodyPart (3)

AmputationOfFinger ≡ Amputation u ∃has-exact-location.Finger (4)

AmputationOfHand ≡ Amputation u ∃has-exact-location.Hand (5)

AmputationOfUpperLimb ≡ Amputation u ∃has-exact-location.UpperLimb (6)

InjuryToFinger ≡ Injury u ∃has-location.Finger (7)

InjuryToHand ≡ Injury u ∃has-location.Hand (8)

InjuryToUpperLimb ≡ Injury u ∃has-location.UpperLimb (9)

proper-part-of ◦ proper-part-of v proper-part-of (10)

proper-part-of v part-of (11)

part-of ◦ part-of v part-of (12)

ε v part-of (13)

part-of ◦ proper-part-of v proper-part-of (14)

has-exact-location v has-location (15)

has-location ◦ proper-part-of v has-location (16)

Figure 3.3: A re-engineered portion of Snomed ct dispensing with SEP-triplets.

overlap. Our empirical analysis with the January/2005 release of Snomed ct

demonstrates evidence of this problem. In fact, the classification of the ontology
extended with pairwise disjointness axioms, e.g.,

ClinicalFinding u BodyStructure v ⊥

reveals that more than one hundred concepts become unsatisfiable due to the
fact that they belong to more than one top-level category.

• Certain roles in Snomed ct are designed to be used to connect concepts in a
certain category to those in another, as observed by Zhang et al. in [ZPTI06]. An
example for this modeling discipline is that concepts in the category ClinicalFind-

ing have a relationship findingSite with concepts in category BodyStructure. This
can directly be translated to domain and range restrictions as follows:

domain(findingSite) v ClinicalFinding

range(findingSite) v BodyStructure

Domain and range restrictions, in conjunction with the disjointness assertions
above, help to automatically detect any indisciplined role usage.8 Unlike the
case with disjointness constraints, adding domain and range restrictions did not
detect any modeling flaw in Snomed ct. However, such restrictions are helpful
when a user (who may not be aware of the implicit modeling discipline) extends
the ontology or post-coordinates concept descriptions.

8The syntactic restriction on range restrictions and role inclusions (see Definition 8 on page 22)
needs to be satisfied in order to ensure tractability of reasoning.
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• If role grouping is indispensable, it has to be taken into account when modeling
role inclusion axioms. More precisely, the only right-identity rule in Snomed

ct has to be rewritten to:

direct-substance ◦ roleGroup ◦ has-active-ingredient v direct-substance

which revives the missing three subsumptions and possibly other subsumptions
between post-coordinated concept descriptions. Likewise, additional role inclu-
sion axioms proposed in the new modeling paradigm (i.e., the axioms 10, 12, 14
and 16 in Figure 3.3 on page 41) need to be rewritten accordingly.

3.3.2 Usage scenarios of reasoning support

One of the most prominent benefits of using a Description Logic as the underlying
modeling language is its automated reasoning. This subsection discusses usage scenar-
ios of the reasoning services introduced in Section 2.3 and 2.4 that hopefully support
the tedious and error-prone process of designing and maintaining large-scale ontologies
like Snomed ct.

Satisfiability and consistency check whether there are any logical inconsistencies
in the ontology. An unsatisfiable concept reveals a modeling error since it is
equivalent to the bottom concept which cannot be instantiated. In EL+, the
only source of concept unsatisfiability is by violating disjointness axioms which
has been shown to be useful in the previous subsection when pairwise disjointness
is asserted among the top-level categories in Snomed ct.

If the ontology is inconsistent, it does not admit any model and anything logi-
cally follows from it. Obviously, this is undesirable and needs to be detected and
removed before any subsequent design and maintenance tasks can be carried out.
In EL+, it is possible though uncommon to encounter such a global inconsis-
tency. In most cases, inconsistencies involve the assertional component (ABox)
of the ontology in such a way that an unsatisfiable concept is instantiated by an
individual.

Subsumption and classification automatically infer specialization–generalization
relationships between two or more concepts. Unlike unsatisfiability and incon-
sistency, subsumption (except special cases A vO ⊥ and > vO A) does not
indicate a logical error within the ontology. It however may indicate unintu-
itive or unintended relationships that should not hold. An example that does
actually happen in Snomed ct is the subsumption AmputationOfFinger vO

AmputationOfHand [BS08]. Without automated reasoning support, it is not
easy to detect such a faulty subsumption relationship.

Classification computes subsumption relationships between all pairs of concept
names occurring in the ontology. Moreover, all concept names are arranged in
a lattice (i.e., directed acyclic graph) based on their subsumption relationships.
Such a concept lattice can not only be used for ontology navigation and visual-
ization but potentially also for the ontology ‘distribution normal form,’ in which
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only the most specific subsuming concept names are given in concept definitions
[Spa01].

Instance retrieval and realization involve scenarios where Snomed ct is used as
a background knowledge in data-rich applications. An example is a knowledge-
aware health information system in a hospital in which patient data, treatment
records, etc. are stored in an ABox. Instance checking and retrieval can then
be used to semantically retrieve relevant information from the data in the ABox
and the background knowledge in the TBox. For example, a general practi-
tioner currently treating pulmonary heart disease may be interested in retriev-
ing related previous treatment records, for instance, retrieval of instances of
the concept PatientRecordu∃has-symptom.Dyspnoeau∃has-symptom.ChestPainu
∃has-family-record.HeartDisease. On the other hand, given a patient record with
symptoms, family background and social context information, realization could
help in medical diagnoses in the sense that it automatically computes potential
diseases the patient may have.

Justification helps the ontology developer to understand why, for instance, one con-
cept is subsumed by another. The ‘amputation’ example given above obviously
is counter-intuitive and thus should be removed. In order to do that, the de-
veloper has to find the culprit for it, i.e., the minimal set of axioms that are
responsible for the subsumption. Given almost four hundred thousand axioms
in Snomed ct, it is practically impossible to find the culprit by hand. Auto-
mated reasoning support of explanation can help by computing a minimal subset
(all minimal subsets) of the ontology that have the consequence of interest. The
ontology developer then has to revise under scrutiny only a few relevant axioms
instead of the whole ontology to eliminate the unwanted consequence.

Modularization is particularly useful for ontology re-use and segmentation. Con-
sider the scenario where a medical company wants to model an ontology about
its pharmaceutical products. To reduce modeling time and to reuse existing
knowledge, it decides to import a relevant portion of Snomed ct. Before the
import actually takes place, Snomed ct has to be modularized based on the
concepts (and possibly also roles) of interest—in this case, those pharmaceutical
products the company has and wants to model. The extracted module of the
ontology is guaranteed to be relatively small while still capturing all relevant
information required.

Besides, modularization of all concept names appearing in the ontology helps
reveal semantic dependencies in and structures of the ontology.

More usage scenarios of logical reasoning support for design and maintenance of
ontologies have been discussed in [LBF+06, LLS06, CGG+07].
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Chapter 4

Techniques for Standard

Reasoning

In this chapter, we describe several algorithms for deciding standard DL inference
problems as defined in Section 2.3. As pointed out before, satisfiability can be reduced
to subsumption and subsumption is by definition a sub-problem of classification, so
it suffices to have a classification algorithm. Section 4.1 describes a polynomial-time
classification algorithm that, given an ontology, makes explicit the subsumption rela-
tionships between all pairs of concept names occurring in it. Since the core algorithm
works on an ontology in normal form that does not contain range restrictions, we
explain how an EL+ ontology can be transformed into a subsumption-preserving one
in the required format in Subsection 4.1.1 and 4.1.2. The last two subsections discuss
several techniques employed in the implementation and optimization of the algorithm
in the CEL reasoner. Although the classification algorithm can be used to answer
subsumption queries, it is not efficient since it also identifies all other subsumption
relationships. We develop a decision procedure that is directed by the target subsump-
tion in Section 4.2 and investigate a few methods for constructing a concept hierarchy
in Section 4.3. Then, we propose in Section 4.4 a pragmatic approach to incremen-
tal classification that is useful not only for certain scenario of incremental reasoning
but also for querying complex subsumptions. Finally, techniques for reasoning with
individuals (thus, ABox) are discussed in Section 4.5.

4.1 Classifying an EL+ Ontology

A polynomial-time algorithm for classification in EL with general concept inclusions
and role hierarchy axioms has been first proposed in [Bra04a], and shortly afterward
this algorithm has been enhanced and extended to the much more powerful DL EL++

in the “Pushing the EL Envelope” paper [BBL05] by Baader et al. Very recently,
the border of the tractable DL has been pushed yet further to support reflexivity and
range restriction on roles [BBL08] (the syntactic restriction in Definition 8 on page 22
applied). Here, we consider the slightly less expressive DL EL+ introduced in the
previous chapter and describe a refined version of the polytime classification algorithm

45
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for implementation purposes. The queue techniques used in the refined classification
algorithm are mainly inspired by the algorithm for satisfiability of propositional Horn
formulas proposed in [DG84].

Both in tableau-based DL systems and in earlier DL systems based on struc-
tural subsumption algorithms, classification and the concept hierarchy is computed
by performing multiple subsumption tests. In addition to optimizing the algorithm
for testing individual subsumption, such systems can also be optimized by minimizing
the number of subsumption tests needed to classify the ontology and to construct
the concept hierarchy [BHN+92, BHN+94, Hor97]. In contrast, our classification al-
gorithm simultaneously computes the subsumption relationships between all pairs of
concept names occurring in the input ontology.

The classification algorithm presented below does not treat range restrictions as
universal quantifiers in the way the standard tableau-based algorithm for expres-
sive DLs does,1 but rather eliminates them in quadratic time in such a way that
all (non)subsumptions are preserved. Only after the elimination is completed, the
core algorithm (i.e., the version that does not support range restrictions) can be ap-
plied. Also, the core classification algorithm accepts an ontology in normal form, so at
first the input ontology has to be transformed in linear time into a (non)subsumption
preserving one in normal form. Normalization and elimination of range restrictions
can naturally be seen as preprocessing steps of the overall classification procedure.2

4.1.1 Normalization

Given an EL+ ontology O, we write CN(O) to denote the set of concept names occur-
ring in O, CN>(O) to denote CN(O) augmented with the top concept, and CN⊥(O)
to denote CN(O) augmented with the bottom concept. Likewise, RN(O) denotes the
set of role names occurring in O.

Definition 24 (Normal form). An EL+ ontology O is in normal form if the fol-
lowing three conditions are satisfied:

1. all concept inclusions in O have one of the following forms:

GCI1 A1 u · · · uAn v B,
GCI2 A1 v ∃r.A2,
GCI3 ∃r.A1 v B

where Ai ∈ CN>(O) and B ∈ CN⊥(O);

2. all role inclusions in O have one of the following forms:

RI1 ε v r,
RI2 r v s,
RI3 r ◦ s v t

where r, s, t ∈ RN(O);

1In expressive DLs, the range restriction range(r) v C can be viewed as a GCI > v ∀r.C.
2This is precisely what the CEL reasoner does when an ontology is loaded to the system. See

[Sun05a] for the CEL reference manual.
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3. there are neither reflexivity statements, transitivity statements nor domain re-
strictions, and all range restrictions are of the form range(r) v A with A a
concept name.

3

Each domain restriction can be rewritten as a concept inclusion, while reflexivity
and transitivity statements are simply special cases of role inclusions. By introducing
new concept and role names, any EL+ ontology O can be turned into a normalized
ontology Õ that is a conservative extension of O, i.e., every model of Õ is also a
model of O, and every model of O can be extended to a model of Õ by appropriately
choosing the interpretations of the additional concept and role names. As a conse-
quence of conservativity, we have that C vO D if, and only if, C v eO D for all concept
descriptions C, D that are constructed from concept and role names occurring in O.

The transformation can be performed in linear time in the size of O and introduces
linearly many new concept and role names. Figure 4.1 shows the normalization rules
that are to be repeatedly applied to axioms in the ontology to obtain new axioms in
normal form according to Definition 24. Here, a rule application means that the axiom
on the left-hand side of the rule is replaced by the axiom(s) on the right-hand side.
Observe that Rule NR1-6 simply removes the left-hand concept inclusion by replacing
it with nothing. We need to partition the rule applications into three phases:

1. exhaustive applications of Normalization Rule NR1-1 to NR1-7;

2. exhaustive applications of Normalization Rule NR2-1 to NR2-3;

3. exhaustive applications of Normalization Rule NR3-1 to NR3-3,

in order to ensure a linear termination of the transformation.3 If all the rules are
exhaustively applied in an arbitrary order, the size of the resulting normalized ontology
may blow up quadratically in the size of the original ontology (see, e.g., Example 39
in [Sun05b]).

Lemma 25 (Normalization is linear and preserves subsumption). Normal-
ization of an EL+ ontology O runs in linear time in the size of O and yields another
EL+ ontology Õ in normal form whose size is linear in that of O. Moreover, Õ is a
conservative extension of O.

Proof.
Each of Normalization Rule NR1-1 to NR1-5 can be applied at most once for each

axiom of the forms shown on the left-hand side, and each application generates at
most two axioms of linear size. Analogously, the last two rules in the first phase may
be applied at most once to each concept inclusion in which the bottom concept occurs.
Let O′ be the result of exhaustive rule applications in the first phase. It is readily
shown that the first phase requires linear number of rule applications, that each rule
application takes linear time, and that |O′| is linear in |O|.

3In fact, the first two phases could be combined without affecting termination in linear time. The
resulting normalized ontology however may contain some irrelevant axioms due to tardy elimination
of axioms of the form C⊥ v D.
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NR1-1 domain(r) v C Ã ∃r.> v C

NR1-2 range(r) v C Ã range(r) v A, A v C

NR1-3 reflexive(r) Ã ε v r

NR1-4 transitive(r) Ã r ◦ r v r

NR1-5 C ≡ D Ã C v D, D v C

NR1-6 C⊥ v D Ã

NR1-7 C v D⊥
Ã C v ⊥

NR2-1 r1 ◦ · · · ◦ rk v s Ã r1 ◦ · · · ◦ rk−1 v u, u ◦ rk v s

NR2-2 C1 u · · · u Ĉ u · · · u Cn v D Ã Ĉ v A, C1 u · · · uA u · · · u Cn v D

NR2-3 ∃r.Ĉ v D Ã Ĉ v A, ∃r.A v D

NR3-1 Ĉ v D̂ Ã Ĉ v A, A v D̂

NR3-2 B v ∃r.Ĉ Ã B v ∃r.A, A v Ĉ

NR3-3 B v C uD Ã B v C, B v D

where r, ri, s denote role names, k > 2, C, Ci, D arbitrary concept descriptions, C⊥

a concept description in which ⊥ occurs, D⊥ a complex concept description in which
⊥ occurs, Ĉ, D̂ complex concept descriptions, B an atomic concept description.
Moreover, we write u to denote a fresh role name, and A a fresh concept name,
respectively.

Figure 4.1: Normalization rules.

Rule NR2-1 is applied at most once for each occurrence of “◦” in the role com-
position. Such an application increases the size of O′ by a constant, introducing a
new role name u and splitting the role inclusion to two. Similarly, the numbers of
applications of Rule NR2-2 and NR2-3 are bounded by the number of occurrences of
“u” and “∃”, respectively. Again, such an application increases the ontology size by
a constant, introducing a new concept name A and splitting the concept inclusion to
two. Therefore, the second phase runs in linear time and produces an ontology O′′ of
size linear in |O′|.

Rule NR3-1 is applicable at most once for each concept inclusion in O′′, and an
application of this rule takes a constant time and increases the size by a constant.
Analogous to the second phase, NR3-2 and NR3-3 can be applied at most once for each
occurrence of “∃” and “u” in O′′. Each application of NR3-2 increases the size by a
constant, and so does an application of NR3-2 (since B is atomic). So, the last phase of
normalization runs in linear time and produces an ontology Õ in normal form whose
size is linear in |O′′|, thus also linear in |O|.

To prove the second part of the lemma (i.e., to show that Õ is a conservative
extension of O), it suffices to show that each normalization rule is model-preserving
in the sense that any model of the rhs axiom(s) is also a model of the lhs axiom,
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and that any model of the lhs axiom can be extended to a model of the rhs axioms.
This is obvious for the case of NR1-1, NR1-3, NR1-4 and NR1-5, since they are simply
syntactic variants. For NR1-2, let I be a model of {range(r) v A, A v C}. It implies
immediately by the semantics that I |= range(r) v C. The other direction also holds
by interpreting A as the interpretation of C. For NR1-6 and NR1-7, it suffices to show
that C⊥ and D⊥ are equivalent to ⊥. But, this is vacuously the case by the semantics
of concept constructs in EL+ and the fact that ⊥ occurs in C⊥ and D⊥.

Model conservativity of all the other rules, apart from NR3-3, can be shown in the
same fashion as for NR1-2 by properly interpreting the new role or concept name. The
lhs and rhs of Rule NR3-3 are equivalent by the semantics of conjunction. o

It immediately follows that subsumption (thus, classification) w.r.t. an EL+ ontology
can be reduced in linear time to the same problem w.r.t. the normalized ontology.
Therefore, we may assume without loss of generality that a given EL+ ontology is in
normal form. Before the core classification algorithm can be described, we need to
perform one additional step to the normalized ontology, that is, to eliminate the range
restrictions in normal form.

4.1.2 Reducing out range restrictions

As mentioned earlier in this section, our EL+ algorithm does not handle a range
restriction range(r) v A as an equivalent inclusion > v ∀r.A like the way the standard
tableau-based algorithm does. Instead, it reduces out the range assertion range(r) v A
by asserting the concept name A directly into each existential quantification ∃r.C on
the right-hand side of a concept inclusion. In the following, we formally describe this
reduction and state a lemma.

Let O be an EL+ ontology in normal form. For each role name r ∈ RN(O),
rangeO(r) denotes the set of concept names A such that O |= range(r) v A, i.e.,
there exists a superrole s of r w.r.t. O such that range(s) v A ∈ O. To assert
range restrictions on r into existential quantifications, we introduce a fresh concept
name Xr,D for every normalized GCI C v ∃r.D in O. Intuitively, Xr,D denotes those
individuals in the model that satisfy both D and the range of r. We define the new
ontology O′ from O by removing all range restrictions and performing the following
operations:

1. exchange each GCI C v ∃r.D in O for the following GCIs

C v ∃r.Xr,D, Xr,D v D, Xr,D v A for all A ∈ rangeO(r);

2. for each role name r with ε v r ∈ O, add the GCI > v A for all A ∈ rangeO(r).

In [BBL08], the following result has been shown:

Lemma 26 (Range elimination preserves subsumption). Let O be an EL+ on-
tology in normal form, and O′ the resulting ontology from the abovementioned method.
For all concept names A0, B0 ∈ CN(O), we have

A0 vO B0 if, and only if, A0 vO′ B0.
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Proof. Both directions are proved by showing the contrapositive. The “⇐” direc-
tion is trivial since every (counter) model I of O can be extended to a (counter)
model I ′ of O′ by interpreting each of the new concept names Xr,D as {d ∈ DI |
there exists an e such that (e, d) ∈ rI }. Obviously, I ′ satisfies all the new GCIs.

For the “⇒” direction, let A0 6vO′ B0. Then, there is a model I ′ of O′ with a
witness individual w ∈ AI′

0 \B
I′

0 . Since I ′ need not satisfy the range restrictions in
O, I ′ is not necessarily a model of O. To fix this problem, r-edges that violate the
range restrictions are removed from I ′. Precisely, we construct a new interpretation I
such that I and I ′ share the same domain and agree on the interpretation of concept
names A and role names r with rangeO(r) = ∅. It modifies the interpretation of all
other roles as follows:

rI :=



(d, e) ∈ rI

′

| e ∈
⋂

A∈rangeO(r)

AI′



 .

Since we do not change the interpretation of concept names, it is the case that w ∈
AI

0\B
I
0 . It remains to show that I is indeed a model of O. We consider only axioms

in O that are potentially affected by the modification:

• Let C v ∃r.D ∈ O. Then, O′ contains the GCIs C v ∃r.Xr,D and Xr,D v D.
Let d ∈ CI . Since C is a concept name, d ∈ CI′

⊆ (∃r.Xr,D)I
′
. Hence, there

must be an e ∈ ∆I such that (d, e) ∈ rI
′

and e ∈ XI′

r,D ⊆ DI′
. Since D is a

concept name, e ∈ DI . By reduction, there is a GCI Xr,D v A in O′ for all
A ∈ rangeO(r). Thus, e ∈ AI′

which together with (d, e) ∈ rI
′

implies that
(d, e) ∈ rI . It follows that d ∈ (∃r.D)I as required.

• Let ∃r.C v D ∈ O. Then, this GCI is also in O′. Since (∃r.C)I
′
⊆ DI′

and
rI ⊆ rI

′
, we have (∃r.C)I ⊆ DI as required.

• Let ε v r ∈ O. Then, it is also in O′. Let d ∈ ∆I . Then, (d, d) ∈ rI
′
. By

reduction, there is a GCI > v A in O′ for all A ∈ rangeO(r). Thus, we have that
d ∈ AI′

for all concept names A, and the definition of I yields that (d, d) ∈ rI .

• Let r v s ∈ O. Then, it is also in O′. Since r v s ∈ O, we have rangeO(s) ⊆
rangeO(r). By definition of I, this together with rI

′
⊆ sI

′
yields rI ⊆ sI .

• Let r ◦ s v t ∈ O. Then, it is also in O′. Let (d, e) ∈ rI and (e, f) ∈ sI .
Then, (d, e) ∈ rI

′
, (e, f) ∈ sI

′
, and thus (d, f) ∈ sI

′
. The syntactic restriction

(see Definition 8 on page 22) on O ensures that rangeO(t) ⊆ rangeO(s). By the
definition of I, (e, f) ∈ sI implies that f ∈

⋂
A∈rangeO(s) AI′

. But, it follows that

f ∈
⋂

A∈rangeO(t) AI′
. This together with (d, f) ∈ tI

′
implies that (d, f) ∈ tI as

required.

• Let range(r) v A ∈ O and (d, e) ∈ rI . By the definition of I, e ∈ AI′
= AI .

o
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Observe that the reduction induces a quadratic blowup in the size of the original
ontology in normal form. Precisely, for each GCI C v ∃r.D, the reduction potentially
adds n new GCIs of the form Xr,D v A with n the number of all concept names A
in O. This however is the worst-case scenario which, we believe, does not happen in
biomedical ontology applications.

Recall that we require the syntactic restriction to be fulfilled for an EL+ ontology
(see Definition 8 on page 22). The elimination proposed in this subsection does not
work in the general case where the syntactic restriction is lifted. In fact, subsumption
w.r.t. an unrestricted EL+ ontology (see Definition 6 on page 22) is undecidable as
shown in [BBL08]. Essentially, the machinery of range restrictions and role inclu-
sions suffices to express the emptiness problem of the intersection of two context-free
grammars, which is known to be undecidable [HU79].

Since the range elimination procedure generates only new concept inclusions of
the form GCI1 or GCI2, the resulting ontology remains in normal form and contains no
range restrictions. For the rest of this chapter, we assume without loss of generality
that a given EL+ ontology is a finite set of concept and role inclusions of the forms
specified in Point 1 and 2 in Definition 24 on page 46.

4.1.3 An abstract classification algorithm

The EL family of Description Logics enjoys the nice algorithmic property that the
main inference problem of subsumption can be decided in polynomial time in the
size of the input ontology and concept descriptions. Speaking of the model-theoretic
semantics, the tractability is a consequence of the following properties:

• there always exists a canonical model I of size polynomial in the size of the
ontology O, i.e., A vO B if, and only if, there is a model I of O with |I| ≤ p(|O|)
and p a polynomial such that AI ⊆ BI ; and

• such a canonical model can be constructed in a deterministic manner, i.e., no
nondeterminism is involved in the model construction.

In other words, to decide subsumption in a DL in the EL family, we deterministi-
cally construct a polynomial-size canonical model and then simply check against this
model whether or not the subsumption in question holds. Obviously, such the model
construction can be performed in deterministic polynomial time.

The subsumption algorithm for EL++ proposed in [BBL05], which is an improved
and extended version of the similar one for ELH with GCIs in [Bra04a], essentially
constructs two mappings (one for subsumer sets and the other for role relations).
These mappings form an edge-labeled directed graph that purposefully corresponds
to the canonical model. In the scope of this thesis, we present the algorithm from
[BBL05] modulo the DL EL+ and later refine it for efficient implementation purposes.
To distinguish the former from the refined version, we call it the abstract classification
algorithm. The refinement is discussed in the next subsection.

The abstract classification takes as input an EL+ ontology O (in normal form
without range restrictions) and computes



52 Techniques for Standard Reasoning

CR1 If A1, . . . , An ∈ S(X), A1 u · · · uAn v B ∈ O, and B /∈ S(X)
then S(X) := S(X) ∪ {B}

CR2 If A ∈ S(X), A v ∃r.B ∈ O, and (X, B) /∈ R(r)
then R(r) := R(r) ∪ {(X, B)}

CR3 If (X, Y ) ∈ R(r), A ∈ S(Y ), ∃r.A v B ∈ O, and B /∈ S(X)
then S(X) := S(X) ∪ {B}

CR4 If (X, Y ) ∈ R(r), ⊥ ∈ S(Y ), and ⊥ /∈ S(X)
then S(X) := S(X) ∪ {⊥}

CR5 If (X, Y ) ∈ R(r), r v s ∈ O, and (X, Y ) /∈ R(s)
then R(s) := R(s) ∪ {(X, Y )}

CR6 If (X, Y ) ∈ R(r), (Y, Z) ∈ R(s), r ◦ s v t ∈ O, and (X, Z) /∈ R(t)
then R(t) := R(t) ∪ {(X, Z)}

Figure 4.2: Completion rules.

• a mapping S assigning to each element A of CN>(O) a subset S(A) of CN(O)∪
{>,⊥}, and

• a mapping R assigning to each element r of RN(O) a binary relation R(r) over
CN>(O).

Alternatively, we can view the mappings collectively as a completion graph CG =
(V, E, `) with the set of vertices V = CN>(O), the set of edges E = {(A, r, B) |
(A, B) ∈ R(r)}, and the vertex-labeling function ` = S.

The intuition is that these mappings make implicit subsumption relationships ex-
plicit in the sense that

• B ∈ S(A) implies A vO B, and

• (A, B) ∈ R(r) implies A vO ∃r.B.

We write O |= ε v r if, and only if, there is an s ∈ RN(O) such that O |= s v r
and ε v s ∈ O. The mappings are initialized by setting, for each A ∈ CN>(O),
S(A) := {A,>}; and, for each r ∈ RN(O),

R(r) :=

{
{(A, A) | A ∈ CN>(O)} if O |= ε v r;
∅ otherwise.

Then the sets S(·) and R(·) are extended by exhaustively applying the completion
rules shown in Figure 4.2 until no more rule applies. The following result has been
shown in [BBL05]:

Theorem 27 (Correctness of the abstract algorithm). Let O be an EL+ ontol-
ogy in normal form without range restrictions. The abstract algorithm applied to O
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terminates in time polynomial in the size of O and, after termination, we have, for
all concept names A, B in O, that

{B,⊥} ∩ S(A) 6= ∅ if, and only if, A vO B.

In fact, we can straightforwardly extend this theorem to cover those subsumptions that
involve the top and bottom concepts. While A vO > and ⊥ vO A vacuously hold true
in any ontology, subsumptions of the forms > vO A and A vO ⊥ denote that A is a
tautology and unsatisfiable concept, respectively. Moreover, the subsumption > vO ⊥
implies that the ontology O admits no model, which means that it is inconsistent. To
this end, it is not difficult to prove that Theorem 27 is still true if A ranges over
CN>(O) and B over CN⊥(O).

4.1.4 Refining the classification algorithm

The abstract algorithm presented in the previous subsection can classify an EL+

ontology in polynomial time by exhaustively applying the completion rules. One of
the main problems to be addressed when implementing the described algorithm is to
develop a good strategy for finding the next completion rule to be applied. If this is
realized by a näıve brute-force search, then one cannot expect an acceptable runtime
behavior on large inputs, despite being polynomial. As a solution to this problem,
we propose a refined version of the algorithm, which is inspired by the linear-time
algorithm for testing satisfiability of propositional Horn formulas proposed in [DG84].

The refined algorithm employs a set of queues—one for each concept name appear-
ing in the input ontology—to guide the application of completion rules. Intuitively,
the queues list modifications to the data structures (i.e., to the sets S(A) and R(r))
that still have to be carried out. The possible entries of the queues are of the form

B→ B′ and ∃r.B

with B, B′ concept names, r a role name, and B a set of concept names B1, . . . , Bn.
To simplify the notation, we simply write the first type of queue entry as B ′ for the
case B = ∅ and B1 → B′ for the case where B = {B1} is a singleton set. Intuitively,

• an entry B → B′ in queue(A) means that B′ has to be added to S(A) if B ⊆
S(A), i.e., if all elements in B subsume A, then so does B ′; and,

• ∃r.B ∈ queue(A) means that (A, B) has to be added to R(r).

Observe that an augmentation made to either S(·) or R(·) may trigger applicability
of other completion rules. Such potentially applicable rules are taken into account
by appropriately extending the respective queues immediately after the augmentation
takes place.

To facilitate describing the manipulation of the queues, we view the input on-
tology O (in normal form without range restrictions) as a mapping Ô from concept
descriptions to sets of queue entries as follows: for each atomic concept description
A ∈ CN>(O), Ô(A) is the minimal set of queue entries such that
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• if B1 u · · · uBn v B ∈ O and A = Bi for 1 ≤ i ≤ n, then

({Bj | 1 ≤ j ≤ n with Bj 6= A} → B) ∈ Ô(A);

• if A v ∃r.B ∈ O, then ∃r.B ∈ Ô(A).

Likewise, for each concept ∃r.A, Ô(∃r.A) is the minimal set of queue entries such
that, if ∃r.A v B ∈ O, then B ∈ Ô(∃r.A). Intuitively, Ô maps a premise (i.e.,
a concept name or an existential quantification occurring on the left-hand side of a
concept inclusion) to its immediate consequences (i.e., queue entries) as specified by
the concept inclusions in O. An immediate consequence is conditional if it is of the
form B→ B′ and B is not empty.

Since the queues in the refined algorithm are tightly coupled with the values in the
core mappings R(·) and S(·), we need to take them into account when the queues are
initialized. Recall that R(r) is initialized with {(A, A) | A ∈ CN>(O)} when the role r
is reflexive (i.e., O |= ε v r) and the empty set otherwise; whereas S(A) is initialized
with {A,>}. Therefore, we initialize queue(A) with

Ô(A)︸ ︷︷ ︸
A∈S(A)

∪ Ô(>)︸ ︷︷ ︸
>∈S(A)

∪ {x ∈ Ô(∃r.A) ∪ Ô(∃r.>) | O |= ε v r}︸ ︷︷ ︸
(A,A)∈R(r)

In other words, we initialize the queue of A by adding to it the immediate consequences
of being an instance of A, >, and—in the case that r is reflexive—∃r.A and ∃r.>.

Then, we repeatedly fetch (and thereby remove) entries from the queues and pro-
cess them using the procedure process displayed in Algorithm 1. To be more pre-
cise, the refined classification procedure dispatches the next available queue entry of
queue(A), together with the concept name A itself, to the procedure process. The
queues are being shrunk and expanded throughout classification, but eventually they
become all empty.

Observe that the first outer if-clause (line 1) of the procedure process implements
CR1, part of CR3, and part of CR4; whereas the second outer if-clause (line 12) imple-
ments CR2, the rest of CR3 and CR4, as well as CR5 and CR6. The recursive procedure
process-new-edge(A, r, B) is called by process to handle the effects of adding a new
pair (A, B) to R(r). Recall that the notation O |= r v s used in its top-most for-loop
stands for the reflexive-transitive closure of the role hierarchy axioms in O. Similarly,
the recursive procedure process-bottom(A) is called whenever the bottom concept is
involved in the rule application. In accordance with Rule CR4, the procedure not only
adds ⊥ to S(A) but also propagates it to S(A′) for all predecessors A′ of A.

Observe also that the refined algorithm need not perform any search to check which
completion rules are applicable. Once all the queues are empty, the classification is
done in the sense that no more completion rule is applicable.

The soundness and completeness of the refined algorithm will be demonstrated by
showing its conformity with the abstract algorithm and by the virtue that the abstract
algorithm is sound and complete. First of all, however, we demonstrate termination
of the algorithm in polynomial time.
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Algorithm 1 The refined classification algorithm.

Procedure process(A, X)
Input: A: concept name; X: queue entry

1: if X = B→ B, B ⊆ S(A) and B 6∈ S(A) then
2: if B = ⊥ then
3: process-bottom(A)
4: else
5: S(A) := S(A) ∪ {B}
6: queue(A) := queue(A) ∪ Ô(B)
7: for all concept names A′ and role names r with (A′, A) ∈ R(r) do
8: queue(A′) := queue(A′) ∪ Ô(∃r.B)
9: end for

10: end if
11: end if
12: if X = ∃r.B and (A, B) 6∈ R(r) then
13: if ⊥ ∈ S(B) and ⊥ 6∈ S(A) then
14: process-bottom(A)
15: end if
16: process-new-edge(A, r, B)
17: end if

Procedure process-new-edge(A, r, B)
Input: A, B: concept names; r: role name

1: for all role names s with O |= r v s do
2: R(s) := R(s) ∪ {(A, B)}
3: queue(A) := queue(A) ∪

⋃
{B′|B′∈S(B)} Ô(∃s.B′)

4: for all concept names A′ and role names t, u with t ◦ s v u ∈ O such that
(A′, A) ∈ R(t) and (A′, B) 6∈ R(u) do

5: process-new-edge(A′, u, B)
6: end for
7: for all concept names B′ and role names t, u with s ◦ t v u ∈ O such that

(B, B′) ∈ R(t) and (A, B′) 6∈ R(u) do
8: process-new-edge(A, u, B′)
9: end for

10: end for

Procedure process-bottom(A)
Input: A: concept name

1: S(A) := S(A) ∪ {⊥}
2: for all concept names A′ and role names r with (A′, A) ∈ R(r) such that ⊥ 6∈

S(A′) do
3: process-bottom(A′)
4: end for
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Lemma 28 (Termination). If the refined algorithm is applied to an ontology O with
|O| = n, then it terminates after O(n4) additions to the data structures S(·), R(·) and
queue(·).

Proof. To show termination of the refined algorithm, it suffices to show that there
are at most n4 additions to the data structure since every infinite run of the algorithm
must definitely perform infinitely many additions to the data structures. For the
sets S(·) and R(·), each element can be added at most once and after being added
no element is ever deleted. In the case of queue(·), however, entries are eventually
deleted (by means of fetching), and the same entry can be added to a specific queue
(e.g., queue(A)) several times.

Consider additions to the sets S(·). Since there are at most n such sets, each
set can contain at most n elements, and elements are never deleted, there can be at
most n2 additions. Analogously, it can be demonstrated that there can be at most
n3 additions for the sets R(·). Now, consider additions to queue(·). These are only
made together with an addition to S(·) or R(·). More precisely, together with a single
addition to S(A) come at most n additions (bounded by |Ô(B)|) to queue(A) and at
most n additions (bounded by |Ô(∃r.B)|) to queue(A′) for all predecessors A′ of A—at
most n2 additions for every addition to S(·). Each single addition to R(·) is followed
by at most n additions (bounded by the number of concept names) to queue(·).

Overall, this implies the bound of O(n4) for the total number of additions to the
data structures. o

Lemma 29 (Soundness). After the refined algorithm terminates on an ontology O,
the following holds for all A, B ∈ CN>(O):

if {B,⊥} ∩ S(A) 6= ∅, then A vO B.

Proof. To show soundness, we introduce a number of invariants on the three in-
terdependent data structures used in the refined algorithm and then show that the
invariants hold throughout the computation.

INV1 If B ∈ S(A), then A vO B.

INV2 If (A, B) ∈ R(r), then A vO ∃r.B

INV3 If ∃r.B ∈ queue(A), then A vO ∃r.B

INV4 If B→ B ∈ queue(A), then
∧

Bi∈B
(A vO Bi) implies A vO B.

Observe, in case that B = ∅, that INV4 degenerates to “if B ∈ queue(A), then A vO B”.
As a special case of INV1, if ⊥ ∈ S(A), then A vO ⊥. But, this vacuously implies
A vO B for any concept name B. So, satisfaction of INV1 throughout (and after) the
computation implies Lemma 29.

We start with demonstrating that the invariants hold after the initialization of
the refined algorithm. Since each of the sets S(A) is initialized with {A,>}, INV1 is
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clearly satisfied. Each of the sets R(r) is initialized with {(A, A) | A ∈ CN>(O)} if r
is reflexive and ∅ otherwise. In the latter case, INV2 is trivially satisfied. In the former
case, since (d, d) ∈ rI for every model I of O, d ∈ AI implies d ∈ (∃r.A)I , satisfying
INV2. Now suppose that ∃r.B ∈ queue(A). Since queue entries of this type (existential
quantification) are derived from Ô(A) ∪ Ô(>), either A v ∃r.B or > v ∃r.B must
belong to O. Either case implies that A vO ∃r.B, and thus INV3 is satisfied. For the
last invariant, suppose that B → B ∈ queue(A). There are two possibilities for B:
B = {B1, · · · , Bn} and B = ∅. In the first case, there must exist (up to commutativity
of u) a GCI AuB1u· · ·uBn v B in O. Due to the presence of this GCI and A vO A,
INV4 is satisfied. In the second case, B ∈ queue(A) may be derived either from A v B
or > v B in O or—in the case that r is reflexive—from ∃r.A v B or ∃r.> v B in O.
For the first two GCIs, it vacuously holds that A vO B, thus satisfying INV4. Since r
is reflexive in the last two cases, (d, d) ∈ rI for every model I of O and d ∈ ∆I . If
d ∈ AI , then d ∈ (∃r.A)I . The third GCI implies that d ∈ BI and thus satisfies INV4.
Since d ∈ >I , INV4 is also satisfied w.r.t. the last GCI.

After the initialization, the data structures are manipulated by the procedures
process (in lines 5, 6 and 8), process-new-edge (in lines 2 and 3) and process-bottom

(in line 1) in Algorithm 1. For the sake of succinctness, we refer to these lines as
L1–L6, respectively. Now, it remains to be shown that each manipulation preserves the
invariants.

L1 We need to show that INV1 (the only invariant that could be invalidated by L1) is
preserved. This line adds B to S(A) when process(A,B → B) is invoked with
B ⊆ S(A) and B 6= ⊥. The fact that B→ B is processed w.r.t. A means that it
was in the queue of A. By INV4, we have that

∧
Bi∈B

(A vO Bi) implies A vO B.
For each Bi ∈ B, we have A vO Bi due to INV1 and Bi ∈ S(A). This, together
with the implication above, yields A vO B. Hence, INV1 is preserved as required.

L2 We need to show that INV3 and INV4 are preserved. This line adds all the elements
of Ô(B) to queue(A) when process is invoked with arguments (A,B→ B) such
that B ⊆ S(A) and B 6= ⊥. We know that prior to this B has been added to
S(A) (in line L1), which implies A vO B by INV1. Thus, we may argue as for the
initialization step that INV3 and INV4 are preserved.

L3 We need to show that INV3 and INV4 are preserved. This line adds all the elements
of Ô(∃r.B) to queue(A′) for all r-predecessors A′ of A if B ∈ S(A). By INV1

and INV2, respectively, we have A vO B and A′ vO ∃r.A, which implies A′ vO

∃r.B. The existence of an element B′ in Ô(∃r.B) implies that the GCI ∃r.B v B′

belongs to O. Hence, we have A′ vO B′ and adding B′ to queue(A′) preserves
(the B = ∅ case of) INV4. Note that INV3 is intact since only atomic concepts
can be elements of Ô(∃r.B).

L4 We need to show that INV2 is preserved. This line adds (A, B) to R(s) when
process-new-edge(A, r, B) is invoked and O |= r v s. We make a case distinc-
tion according to the three possible reasons for which process-new-edge may be
invoked.
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First, assume that process-new-edge(A, r, B) is called by the process procedure.
In this case, ∃r.B was in the queue of A, and INV3 yields A vO ∃r.B. Together
with O |= r v s, this implies A vO ∃s.B, and thus INV2 is preserved.

Second, assume that process-new-edge(A, r, B) is called recursively by itself in
line 5. Then, there are role names t, u and a concept name A′ such that t ◦ u v
r ∈ O, (A, A′) ∈ R(t) and (A′, B) ∈ R(u). By INV2, we have A vO ∃t.A

′ and
A′ vO ∃u.B. Together with t ◦ u v r ∈ O and O |= r v s, we get A vO ∃s.B as
required to preserve INV2.

Third, assume that process-new-edge(A, r, B) is called recursively by itself in
line 8. It can be shown in analogy to the previous case that INV2 is preserved.

L5 We need to show that INV3 and INV4 are preserved. This line adds the elements
of Ô(∃s.B′) to queue(A) only if (A, B) ∈ R(s) and B ′ ∈ S(B). With the
same arguments as in case of L3, we have A vO ∃s.B vO ∃s.B

′ vO B′′ for all
B′′ ∈ Ô(∃s.B′). Thus, (the B = ∅ case of) INV4 is preserved. Again, INV3 is
intact since only atomic concepts can be elements of Ô(∃r.B).

L6 We need to show that INV1 is preserved. This line adds the bottom concept to
S(A) when process-bottom(A) is invoked. Again, we make a case distinction
according to the three sources of invocation.

First, assume that process-bottom(A) is called by line 3 of the process procedure.
In this case, B → ⊥ was in the queue of A, and B ⊆ S(A). With the same
arguments as in the case of L1, we have that A vO ⊥. Thus, INV1 is preserved.

Second, assume that process-bottom(A) is called by line 14 of the process pro-
cedure. In this case, ∃r.B was in the queue of A, and ⊥ ∈ S(B). The former
implies A vO ∃r.B by INV3, while the latter implies B vO ⊥ by INV1. Putting
together, we have that A vO ∃r.⊥ vO ⊥, which preserves INV1.

Third, assume that process-bottom(A′) is called recursively by itself in line 3.
Then, there is an r-successor A of A′ with ⊥ ∈ S(A). By INV1, INV2, and the
semantics, we have A′ vO ∃r.A vO ∃r.⊥ vO ⊥. Thus, INV1 is preserved.

o

Lemma 30 (Completeness). After the refined algorithm terminates on an ontology
O, the following holds for all A, B ∈ CN>(O):

if A vO B, then {B,⊥} ∩ S(A) 6= ∅.

Proof. Instead of proving completeness of the refined algorithm from scratch, we
demonstrate it by reusing the known completeness result of the abstract algorithm
given in [BBL05]. To recall, the completeness proofs of the abstract algorithm shows
the following: if O is an ontology, S, R are mappings as defined in Section 4.1.3 such
that

• for every A ∈ CN>(O), S(A) contains A and >;
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• for every r ∈ RN(O), R(r) contains (A, A) for all A ∈ CN>(O) if O |= ε v r;

• none of the completion rules in Figure 4.2 on page 52 is applicable to S, R,O;

then A vO B implies {B,⊥} ⊆ S(A).
In order to show Lemma 30, we demonstrate that the three itemized properties

hold after the refined algorithm terminates. The first two properties hold since the
refined algorithm initializes the sets S(·) and R(·) to precisely contain those elements.
Moreover, it never removes elements from S(·) and R(·). It remains to be shown that,
after termination of the refined algorithm, no completion rule is applicable.

Assume to the contrary of what has to be proven that there exists an applicable
completion rule after termination of the refined algorithm. We make a case distinction
according to the kind of completion rule and show that in each case our assumption
leads to a contradiction.

CR1 If this rule is applicable, then there exists an X ∈ CN>(O) and a concept inclu-
sion A1 u · · · u An v B in O such that A1, . . . , An ∈ S(X) and B 6∈ S(X). Let
` ≤ n be such that A` is the last element among A1, . . . , An to have been added
to S(X). When A` was added, the entry (A\{A`} → B) ∈ Ô(A`) was also put
into queue(X) due to the presence of the concept inclusion. Since B 6∈ S(X),
the conditional queue entry has not yet been processed w.r.t. X. This implies
that queue(X) is not empty and that the refined algorithm has not terminated,
contradicting the initial assumption.

CR2 If this rule is applicable, there exists an X ∈ CN>(O) and a GCI A v ∃r.B
in O such that A ∈ S(X) and (X, B) 6∈ R(r). When A was added to S(X),
the entry ∃r.B ∈ Ô(A) was added to queue(X). If this queue entry had been
processed, process-new-edge(X, r, B) would have been invoked, having added
(X, B) to R(r). Since (X, B) 6∈ R(r), the entry has not yet been processed and
the queue is not empty, contradicting the initial assumption.

CR3 If this rule is applicable, there are X, Y ∈ CN>(O) and a concept inclusion
∃r.A v B in O such that (X, Y ) ∈ R(r), A ∈ S(Y ) and B 6∈ S(X). We handle
the following two cases separately:

First, assume that (X, Y ) had been added to R(r) before A was added to S(Y ).
Then, the entry B ∈ Ô(∃r.A) was added to queue(X) when A was added to
S(Y ). However, B 6∈ S(X) means that this entry has not yet been processed
and the queue is not empty, contradicting the initial assumption.

Second, assume that A had been added to S(Y ) before (X, Y ) was added to
R(r). Then, the entry B ∈ Ô(∃r.A) was added to queue(X) when (X, Y ) was
added to R(r). Now, we can continue as in the first case.

CR4 If this rule is applicable, there are X, Y ∈ CN>(O) such that (X, Y ) ∈ R(r),
⊥ ∈ S(Y ) and ⊥ 6∈ S(X). Again, we distinguish the following two cases:

First, assume that (X, Y ) had been added to R(r) before ⊥ was added to S(Y ).
When the latter took place, the procedure process-bottom recursively propagated
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⊥ to all predecessors of Y . Since X is a predecessor of Y , the recursive call
ensures that ⊥ is eventually added to S(X). This contradicts the applicability
of Completion Rule CR4.

Second, assume that ⊥ had been added to S(Y ) before (X, Y ) was added to
R(r). When the latter took place, the procedure process-bottom is invoked
immediately, adding⊥ to S(X). This contradicts the applicability of Completion
Rule CR4.

CR5 If this rule is applicable, there are X, Y ∈ CN>(O) and a role inclusion r v s
in O such that (X, Y ) ∈ R(r)\R(s). The addition of (X, Y ) to R(r) took place
in the procedure process-new-edge that was invoked with arguments (X, u, Y )
for some role name u with O |= u v r. Since r v s ∈ O, we also have that
O |= u v s and that (X, Y ) was also added to R(s) in the same procedure call.
This contradicts the applicability of Completion Rule CR5.

CR6 If this rule is applicable, there are X, Y, Z ∈ CN>(O) and a role inclusion r◦s v t
in O such that (X, Y ) ∈ R(r), (Y, Z) ∈ R(s) and (X, Z) 6∈ R(t). We distinguish
the following two cases:

First, assume that (X, Y ) had been added to R(r) before (Y, Z) was added to
R(s). When the pair (Y, Z) was added to R(r) in the procedure process-new-

edge, the first inner for-loop and the recursive call therein ensure that (X, Z)
is eventually added to R(t). This contradicts the applicability of Completion
Rule CR6.

Second, assume that (Y, Z) had been added to R(s) before (X, Y ) was added to
R(r). This case is parallel to the previous case with the second inner for-loop
in place of the first.

o

Combining Lemma 29, 30 and 28, correctness of the refined EL+ classification
algorithm as stated by the following theorem is readily proved.

Theorem 31 (Correctness of the refined algorithm). The refined algorithm runs
in polynomial time, and it is sound and complete, i.e., after it terminates on the input
ontology O we have, for all concept names A, B in O, that

{B,⊥} ∩ S(A) 6= ∅ if, and only if, A vO B.

4.1.5 Optimization techniques

The main advantage of the refined classification algorithm over the abstract one is
essentially the fact that it need not perform search for applicable completion rules.
To enable acceptable classification time for large-scale ontologies, however, additional
optimizations are inevitable. This subsection describes some of the optimization tech-
niques which have been employed in the CEL reasoner (see [BLS06, Sun05a]).
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Figure 4.3: Dispensing with the r reflexive loops.

Avoid populating the reflexive role relation with identity pairs. The ini-
tialization adds all the identity pair (A, A), for all A ∈ CN>(O), into R(r) whenever r
is reflexive. Instead of explicitly putting the identity pairs into the role relation R(r),
handling of reflexivity can be hardcoded in the algorithm. For example, in addition
to the queue extension in lines 7–9 of process in Algorithm 1 on page 55, the following
must be added:

for all role names r with O |= ε v r do
queue(A) := queue(A) ∪ Ô(∃r.B)

end for

Additionally, we need to add a role hierarchy axiom s v t to O for each role inclusion
r ◦ s v t (or s ◦ r v t) in O with r reflexive. As a result, an application of CR6

with (X, X) ∈ R(r), (X, Y ) ∈ R(s), r ◦ s v t ∈ O boils down to one of CR5 with
(X, Y ) ∈ R(s), s v t ∈ O (see Figure 4.3).

Domain and range restrictions on reflexive roles. Similar to the second oper-
ation for elimination of range restrictions (see Subsection 4.1.2), a domain restriction
imposed on a reflexive role is a tautology. To be precise, we can exchange a concept
inclusion of the form ∃r.> v A (equivalent to domain(r) v A) in O for > v A if r is
reflexive (i.e., O |= ε v r).

Moreover, the range elimination in Subsection 4.1.2 can be simplified by skipping
the first operation if the role under consideration is reflexive. Precisely, exchange
range(r) v A in O for the concept inclusion > v A if O |= ε v r.

Isolation of S(>). The top concept and all its consequences of the forms X ∈
S(>) and (>, X) ∈ R(r) are also consequences of other concept names. This is the
reason why > is put into S(A) alongside A during initialization. However, this makes
computation w.r.t. consequences of > unnecessarily redundant in the sense that an
identical pattern of computation is carried out once for each set S(A). To avoid this,
we isolate S(>) from S(A) by initializing S(A) with the singleton set {A}, for every
concept name A ∈ CN(O). Membership testing operation such as B ∈? S(A) now
have to explicitly incorporate consequences from the top concept: B ∈? S(A)∪ S(>).

Told synonyms and structural equivalences Two concept names A, B ∈ CN>(O)
are said to be told synonyms in O if there are A0, . . . , An−1, for n > 1, such that
A = A0, B = An−1 and Ai ≡ A(i+1) mod n

∈ O, for all i < n. After the classification
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algorithm terminates, any told synonyms A, B have the same set of subsumers, i.e.,
S(A) = S(B). Thus, it is more economical to maintain and compute only one such set
for each synonymous class. Told synonyms could be extended to structural equiva-
lences. For instance, the concept description AuB is structurally equivalent to BuA.
By recognizing structural equivalence, we can minimize the number of newly intro-
duced concept names during normalization. For instance, ∃r.(A uB) and ∃r.(B uA)
are both normalized to ∃r.X with X the only new concept name that represents both
A uB and B uA.

Additionally, a fully defined concept name B with B ≡ Ĉ ∈ O is used to replace
the concept description Ĉ during normalization instead of introducing a new name A
and adding a GCI. For instance, NR2-3 simply rewrites ∃r.Ĉ v D to ∃r.B v D.

Multiple queues and types of entries In the procedure process, the type of queue
entry first has to be checked and then processed accordingly. There are three types
of queue entries: ∃r.B, B→ B and B (the special case of B→ B where B is empty).
Type checking (line 1 and 12 in process) of queue entries can be avoided by making
distinction from the start, i.e., instead of viewing the ontology O as a single mapping
Ô, we could view it as three mappings:

• Ô1 maps concepts to queue entries of type B;

• Ô2 maps concepts to queue entries of type B→ B;

• Ô1 maps concepts to queue entries of type ∃r.B;

Also, we use three queues for each concept name, one for each type of queue entry.
Queues queue1,queue2 and queue3 are extended w.r.t. Ô1, Ô2 and Ô3, respectively.
We extract three execution paths from process and therewith define three variants of
the procedure. Queue processing is done in a similar way, but now the right execution
path is determined by which queue is being processed. Thus, not only can we avoid a
number of if -statements, queues can also be prioritized based on their type. Finally,
finer grained data structures may be chosen which help to reduce storage requirement,
for instance, Ô1(·) and queue1(·) are sets of atomic concepts in contrast to existential
quantifications and conditional queue entries.

Pruning of the completion graph. Since ⊥ ∈ S(A) implies that A vO B for any
concept B ∈ CN>(O), subsequent rule applications that add B ′ to S(A) do not provide
new information. Thus, we need not perform further rule applications involving S(A)
as soon as it is known to be unsatisfiable. To minimize storage requirement, S(A) is
reduced to {⊥}. Furthermore, due to CR4 unsatisfiability propagates to all ancestors
in the completion graph. Also, any path (A1, A2) ∈ R(r1), · · · , (Ak, Ak+1) ∈ R(rk)
with ⊥ ∈ S(Ak+1) can be pruned from the completion graph.

Disabling R(·) for primitive TBoxes. A primitive TBox merely contains prim-
itive concept definitions in which ⊥ does not occur. Since no full concept definitions
nor concept inclusions occur in such a specialized case of EL+ ontology, normalized
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GCIs are either of the form GCI1 or GCI2 where ⊥ does not occur (see Definition 24
on page 46). Obviously, Completion Rule CR3 and CR4 can never be applied. Since
explicit information in R(·) is used by CR3 and CR4 to infer implicit subsumption in-
volving a GCI of the form GCI3 or ⊥, we can disable R(·) and the related completion
rules, namely, all the rules in Figure 4.2 on page 52 except for CR1.

In fact, classifying such a primitive TBox boils down to computation of the reflexive-
transitive closure of told subsumption relationships.

4.2 Querying Subsumption

Unlike structural subsumption algorithms for inexpressive DLs [Küs00, BN07] and
tableau-based algorithms for expressive DLs [BS01, BN07], the algorithm presented
above not only tests a particular subsumption but classifies the ontology. Since the
problem of classification can be viewed as a set of subsumption queries, we can in fact
use the classification algorithm as a decision procedure for subsumption in EL+. This
approach is however not directed by the subsumption in question, in the sense that it
computes all positive subsumption relationships and simply checks if the subsumption
in question is among them.

To avoid computation of irrelevant subsumption relationships, we modify (the
refined version of) the classification algorithm from Subsection 4.1.4 to obtain a goal-
directed subsumption algorithm. In a nutshell, the goal-directed subsumption al-
gorithm uses information in the subsumption query A0 v

?
O B0 to guide where the

computation starts and when it stops. It takes as input not only an EL+ ontology but
also two concept names A0, B0 between which subsumption is to be queried. Similar
to the refined classification algorithm, it normalizes the ontology (see Subsection 4.1.1)
and, if any, eliminates range restrictions (see Subsection 4.1.2) in it before the core
procedure can be started. In particular, it views the ontology in normal form without
range restrictions as the mapping Ô and uses the same data structures queue, R and
S as before. Algorithm 2 outlines the modified core procedure goal-directed-process to
replace process of Algorithm 1 on page 55. The recursive procedures process-new-edge

process-bottom are not shown here since both of them are intact.
The main difference is the initialization of R and S, thus of queue. Since we are not

interested in all subsumption relationships between all pairs of concept names, we need
not initialize S(·) and R(·) w.r.t. all concept names. Initialization of the mappings,
thus of the queues, is done on demand when a concept name becomes ‘activated.’
Since we are interested in the particular subsumption A0 v B0, we activate only
the concept name A0 at the beginning by initializing S(A0) with {A0,>}, R(r) with
{(A0, A0)} when the role r is reflexive (i.e., O |= ε v r) and the empty set otherwise,
and queue(A0) with

Ô(A0) ∪ Ô(>) ∪
⋃

r with O|=εvr

(
Ô(∃r.A0) ∪ Ô(∃r.>)

)

Another concept name B is activated only when it becomes the second component of
a tuple added to some R(r) and has not previously been activated (see line 15-16 in
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Algorithm 2 The goal-directed subsumption algorithm.

Procedure subsumes?(A0 v B0)
Input: (A0 v B0): target subsumption
Output: ‘positive’ or ‘negative’ answer to the subsumption

1: activate(A0)
2: while not empty(queue(A)) for some A ∈ CN>(O) do
3: X ← fetch(queue(A))
4: if goal-directed-process(A, X, A0, B0) = ‘positive’ then
5: return ‘positive’
6: end if
7: end while
8: return ‘negative’

Procedure goal-directed-process(A, X, A0, B0)
Input: A: concept name; X: queue entry (A0 v B0): target subsumption
Output: ‘positive’ or ‘unknown’ answer to the subsumption

1: if X = B→ B, B ⊆ S(A) and B 6∈ S(A) then
2: if B = ⊥ then
3: return ‘positive’
4: else
5: if A = A0 and B = B0 then
6: return ‘positive’
7: end if
8: S(A) := S(A) ∪ {B}
9: queue(A) := queue(A) ∪ Ô(B)

10: for all concept names A′ and role names r with (A′, A) ∈ R(r) do
11: queue(A′) := queue(A′) ∪ Ô(∃r.B)
12: end for
13: end if
14: end if
15: if X = ∃r.B and (A, B) 6∈ R(r) then
16: activate(B)
17: process-new-edge(A, r, B)
18: end if
19: return ‘unknown’

goal-directed-process of Algorithm 2). Thereby, S(B) is initialized with {B,>}, while
R(r) is augmented with the pair (B, B) in case that r is reflexive and stays the same
otherwise. We initialize queue(B) accordingly in the same fashion as for A0 above.
Observe that this activation strategy is well-defined in relation with the usage of these
data structures throughout the algorithm, in the sense that relevant data structures
are referred to only after they have been properly initialized.

Queues are processed in the same fashion as in the classification algorithm except
that the goal subsumption A0 v B0 is now being monitored (line 5), so that immedi-
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ately after B0 is added to S(A0), the algorithm terminates with the positive answer
(line 6). The positive answer is also returned once the bottom concept is encountered.
Otherwise, goal-directed-process terminates normally, and the next queue entry will be
fetched (line 3 in subsumes? of Algorithm 2) and processed (line 4). Unless ‘positive’
is returned, queue processing is continued until they are all empty. In this case, the
algorithm returns ‘negative.’

It is important to note that the goal-directed algorithm activates only concept
names relevant to the target subsumption A0 v B0, i.e., those nodes reachable from
A0 in the completion graph. Those that are not reachable from A0 obviously cannot
induce subsumption ramifications for A0 and are thus irrelevant. This tenet of the
goal-directed subsumption algorithm is closely related to reachability-based modular-
ization which is introduced and discussed in detail in Section 5.1. Also, an interesting
connection between these two notions is presented in Theorem 42 on page 86.

Theorem 32 (Correctness of the goal-directed algorithm). The goal-directed
subsumption algorithm runs in polynomial time, and it is sound and complete, i.e.,
after it terminates on the input ontology O and the concept names A0, B0, we have
that:

1. if subsumes(A0 v B0) returns ‘positive,’ then A0 vO B0.

2. if subsumes(A0 v B0) returns ‘negative,’ then A0 6vO B0.

Proof. Termination follows immediately from Lemma 28. Point 1 (soundness) can
be demonstrated along the same line as the proof of Lemma 29 with an additional
invariant to address Point 1 of the theorem:

INV5 If goal-directed-process returns ‘positive,’ then A0 vO B0.

Other invariants have been shown to hold throughout the computation of the refined
algorithm, and they obviously remain so w.r.t. the goal-directed algorithm. For the
new invariant, only lines 3 and 6 of goal-directed-process in Algorithm 2 are relevant.
To avoid ambiguity, we denote these lines as L7 and L8, respectively. Now, we show
that, in these two cases, INV5 holds.

L7 This line returns ‘positive’ when process(A,B → B) is invoked with B ⊆ S(A)
and B = ⊥. The fact that B → B is processed w.r.t. A means that it was in
the queue of A. By INV4, we have that

∧
Bi∈B

(A vO Bi) implies A vO B. For
each Bi ∈ B, we have A vO Bi due to INV1 and Bi ⊆ S(A). This, together
with the implication above, yields A vO B. Since A has been activated, it
must be reachable from A0 via some series of R(·). By INV2, it holds that
A0 vO ∃r1 . . .∃rk.A for some r1, . . . , rk ∈ RN(O). Since B = ⊥, we have that
A0 vO ⊥ and thus A0 vO B0, justifying INV5.

L8 This line returns ‘positive’ when process(A,B → B) is invoked with B ⊆ S(A),
A = A0 and B = B0. With the same arguments as in the case of L7, we have
that A vO B. Since A = A0 and B = B0, INV5 is readily justified.
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In order to show Point 2 (completeness), it suffices to use completeness of the
abstract algorithm and demonstrate that, after termination of the goal-directed sub-
sumption algorithm on A, B and O, we have that

• for every A ∈ CN>(O) such that A is activated, S(A) contains A and >.

• for every r ∈ RN(O) such that O |= ε v r, R(r) contains (A, A) for all activated
concept name A.

• if A is activated, no applicable completion rules may add (A, B) to R(r) or B
to S(A) for B ∈ CN>(O) and r ∈ RN(O).

The first two properties hold since we initialize the sets R(·) and S(·) to precisely
contain those elements whenever a new concept name becomes activated. These el-
ements are never removed throughout the course of execution. Since the algorithm
returns ‘negative,’ it is the case that neither L7 nor L8 is executed, implying that
{B0,⊥} ∩ S(A0) = ∅. By completeness of the abstract algorithm and the last prop-
erty above, this implies that A0 6vO B0.

It remains to show that the last property holds. Assume to the contrary that,
after Algorithm 2 has terminated, there exists an applicable completion rule that
adds either (A, B) to R(r) or B to S(A) where A has already been activated. We
make a case distinction according to the kind of completion rule and show that in
each case our assumption leads to a contradiction.

CR1–CR3, CR5, CR6 If one of these rules is applicable, a contradiction can be demon-
strated in an analogous way as in Lemma 30 on page 58, provided that X—as
well as Y in the case of CR3 and CR5; Y, Z in the case of CR6—is activated. By
assumption, X is activated. Since Y, Z have become second components of R(·),
they are also activated.

CR4 There are X, Y ∈ CN>(O) such that X is activated, (X, Y ) ∈ R(r), ⊥ ∈ S(Y )
and ⊥ 6∈ S(X). Since the goal-directed algorithm never adds ⊥ to S(·), this
immediately contradicts the applicability of CR4.

o

It is obvious to see that positive subsumption benefits directly from this modifica-
tion since the algorithm terminates as soon as the subsumption is known to be true.
Nonetheless, negative subsumption also benefits from the goal-directed approach, since
the subsumer sets of concept names that do not become activated are not populated,
thus saving space and time for computation.4

4.3 Computing the Concept Hierarchy

The innate output of the classification algorithm presented in Section 4.1 is a collection
of the sets S(A) for all concept names A, henceforth called subsumer sets. In contrast,

4This algorithm is implemented in the CEL reasoner and used whenever subsumption is queried
prior to classification. See [Sun05a] for the CEL reference manual.
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Figure 4.4: The concept hierarchy (DAG representation) of Omed.

tableau-based DL reasoners usually generate a directed acyclic graph (DAG) describing
the direct subsumption relation, i.e., for every concept name A they compute the sets
of its direct and strict subsumers and subsumees, which are the sets of concept names
B such that A <O B (B <O A) and there is no concept name X ∈ CN(O)\{A, B}
with A <O X <O B (B <O X <O A).

Such a directed acyclic graph is called the concept hierarchy (see Definition 14 on
page 27). Since the subsumption relation is a quasi-order rather than a partial order
(i.e., in general not antisymmetric), one node of the DAG actually corresponds to
an equivalence class of concept names rather than a single concept name. Figure 4.4
depicts the concept hierarchy of our example ontology in Figure 2.2 on page 24. Note
that every node in the hierarchy (including the root) represents a singleton equivalence
class, so we write the element (e.g., >) instead of the equivalence class (e.g., {>}).
For the sake of readability, the equivalence class for ⊥ and edges starting from it are
omitted, and obvious abbreviations for concept names are used. An edge in the DAG
such as Es → HD represents a direct and strict subsumption relationship between
Endocarditis and HeartDisease, i.e., Es <Omed

HD and there is no X ∈ CN(Omed) such
that Es <Omed

X and X <Omed
HD.

The advantage of using the concept hierarchy over subsumer sets is that this format
is more compact, and it directly supports browsing the subsumption hierarchy by going
from a concept name to its direct subsumers or subsumees. The disadvantage is that
answering a subsumption question A v?

O B then requires to compute the reflexive-
transitive closure of the direct and strict subsumption relation.

Two methods are discussed in this section. The next subsection discusses the well-
known enhanced traversal method [BHN+92, BHN+94] for constructing the concept
hierarchy by means of repeated calls to the subsumption testing procedure, while
Subsection 4.3.2 proposes a modified technique based on the complete subsumption
information from the subsumer sets.

4.3.1 Enhanced traversal method

Most DL systems for expressive DLs use a tableau-based subsumption testing algo-
rithm to compute the concept hierarchy. Apart from optimizing the subsumption
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testing algorithm itself, one can also optimize computation of the concept hierarchy
by reducing the number of required tests to the minimum. In [BHN+92, BHN+94],
an efficient algorithm called enhanced traversal method for computing the concept
hierarchy has been introduced and experimented in the KRIS system.

The enhanced traversal method initializes the DAG to contain >,⊥ and the only
edge ⊥ → >. For each concept name A ∈ CN(O), it inserts A into the DAG by identi-
fying A’s immediate and strict subsumers and subsumees in the graph. Thereby edges
from each of the subsumees to A and from A to each of the subsumers are added,
while existing edges between A’s subsumees and subsumers are removed. The en-
hanced traversal method performs two searches for each insert: the top search sweeps
down the hierarchy from the > concept until direct subsumers are identified; the bot-
tom search sweeps up the hierarchy from the ⊥ concept until direct subsumees are
identified.

Since we have an algorithm for testing individual subsumption (the goal-directed
subsumption algorithm in Section 4.2), we could directly use it in the enhanced traver-
sal method with known optimization techniques from [BHN+92, BHN+94] as well as
[Hor97]. These include the following:

• While inserting a concept A, the top search exploits the transitivity of the sub-
sumption relation by propagating negative subsumption results from the pre-
ceding tests down the hierarchy. To make this optimization effective, before
performing any subsumption test A v?

O B, a test A v?
O B′ for all subsumers B′

of B need to be tested. If there is a subsumer B ′ of B such that A 6vO B′, then
it obviously holds that A 6vO B. That is, a breadth first search is employed.

• The bottom search uses a dual technique to the previous case by propagating
negative subsumption results up the hierarchy.

• When the top search is finished, information concerning A’s direct subsumers is
effectively used to narrow down the candidates for being A’s direct subsumees.
Precisely, the bottom search can be confined to those concepts already known
to be subsumed by a subsumer of A.

• Told and structural subsumption information is also used to avoid certain sub-
sumption tests. To get the full advantage of this, concepts are inserted into the
DAG in the definition order, i.e., a concept name A can be inserted into the
DAG only after all A’s told subsumers have been.

• If the ontology is unfoldable, the bottom search phase can be totally omitted
when inserting a primitive concept. A primitive concept has no subsumees in
the current DAG (apart from ⊥) since it can only subsume concepts for which
it is a told subsumer, and since all those subsumees will be inserted later due to
the definition order.

4.3.2 Using the complete subsumption information

In contrast to the previous approach, the classification algorithm can be used directly
to produce the complete subsumption information in the form of subsumer sets. The
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concept hierarchy can then be extracted from them. In principle, converting sub-
sumer sets into a concept hierarchy is straightforward. For each concept name A, the
following can be computed:

• the set SS (A) := {B ∈ S(A) | A /∈ S(B)} of strict subsumers of A, i.e., sub-
sumers of A that are not equivalent to A;

• the set DS (A) := SS (A) \
(⋃

B∈SS(A) SS (B)
)

of direct subsumers of A;

• the set DS−(A) := {B | A ∈ DS (B)} of direct subsumees of A.

Clearly, the sets DS (A) and DS−(A), for all concept names A, yield a DAG represen-
tation of the concept hierarchy.

However, we do not use this näıve construction since computing the sets DS (A)
and DS−(A) is unnecessarily expensive (it needs quadratic time for each A and thus
cubic for the whole computation). In fact, it is possible to avoid the direct computation
of these sets according to the above definition by using an approach that is inspired by
the enhanced traversal method [BHN+94]. Another virtue of our alternative approach
is that the potentially costly set operations in the computation of DS (A) are replaced
by an efficient marking algorithm.

In order to explain the main idea underlying our algorithm, assume that a partial
concept hierarchy with respect to some subset of the concept names has already been
computed, and that a concept name A is to be inserted into the DAG. We start
by computing the set SS (A) of strict subsumers according to the definition given
above. The elements of S(A) \ SS (A) are the concepts that are equivalent to A.
To find all the direct subsumers of A among the elements of SS (A), we proceed as
follows. If all elements of SS (A) belong to the already computed DAG, we can find
the direct subsumers by using a simple graph traversal algorithm to mark all the
strict subsumers of elements of SS (A) in the DAG. The direct subsumers of A are
then those elements of SS (A) that are not marked. If there are elements of SS (A)
that do not belong to the already computed DAG, then we first insert these elements
into the DAG (by issuing recursive calls of the insertion procedure) before inserting
A. By following this strategy, we ensure that, when inserting a concept name A
into the DAG, all subsumers of A are already in the DAG, but no subsumee of A
is. Hence, our algorithm need not compute the direct subsumees explicitly. Instead,
it is enough to extend the set of direct subsumees of B by A in case B is found to
be a direct subsumer of A. Algorithm 3 shows a pseudo code representation of our
algorithm. The sets parents(A) and children(A) are used to store the direct subsumers
and direct subsumees of A, respectively; while the sets equivalents(A) are used to store
the concepts that are equivalent to A.5

A similar algorithm can be obtained if we view the collection of the subsumer sets
as a primitive TBox, that is, a set of primitive concept definitions:

A v
l

Bi∈S(A)

Bi

5Note that the description of the algorithm is a bit sloppy in that we do not distinguish between
a concept name and the node in the DAG representing (the equivalence class of) this name.
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Algorithm 3 Computing the concept hierarchy from the subsumer sets.

Procedure compute-dag

1: classified(>) := true
2: for each concept name A ∈ CN(O) do
3: if not classified(A) then
4: dag-classify(A)
5: end if
6: end for
7: for each concept A ∈ CN>(O) with children(A) = ∅ do
8: children(A) := {⊥}
9: end for

Procedure dag-classify(A)
Input: A: concept name

1: candidates := {>}
2: for all strict subsumers B ∈ S(A)\{A,>} do
3: if A ∈ S(B) then
4: classified(B) := true
5: equivalents(A) := equivalents(A) ∪ {B}
6: else
7: if not classified(B) then
8: dag-classify(B)
9: end if

10: candidates := candidates ∪ {B}
11: end if
12: end for
13: dag-insert(A, candidates)
14: classified(A) := true

Procedure dag-insert(A, candidates)
Input: A: concept name; candidates: set of concept names

1: marked(X) := false for all X ∈ CN>(O)
2: for all X ∈ CN>(O) and B ∈ candidates such that X ∈ parents(B) do
3: marked(X) := true
4: end for
5: parents(A) := {B ∈ candidates | marked(B) = false}
6: for all B ∈ parents(A) do
7: children(B) := children(B) ∪ {A}
8: end for

for each concept name A. Then, a simplified version of the enhanced traversal method
[BHN+94] is used to construct the DAG. Since the TBox is primitive and insertion
is done in the definition order, the bottom search can be dispensed with. With a
specialized optimization technique, called ‘completely defined concepts’ in [HT05], we
can do away with subsumption testing during the top search phase.



4.4 Incremental Classification 71

It is not a priori clear which of the two approaches presented in this section is more
efficient in practice, given the classification and subsumption algorithms in Section 4.1
and 4.2, respectively. Therefore, we have implemented and evaluated both strategies
in CEL, and the empirical evidence shows that the second strategy is at least 50%
more efficient than the first. The time required to compute the DAG (Algorithm 3) is
negligible compared to the time required to compute the subsumer sets (Algorithm 1
on page 55). For instance, the time ratio is less than 1% in the case of Snomed ct

(see Subsection 6.2.1 for the details and results for other ontologies). For this reason,
Algorithm 3 is used by the CEL reasoner whenever (part of) the concept hierarchy
is demanded. For instance, when direct subsumers or subsumees of a given concept
name is queried, or when the whole hierarchy is to be output. (See [Sun05a] for the
CEL reference manual.)

4.4 Incremental Classification

Although the classification (thus subsumption) algorithm can be used to query sub-
sumption between concept names, complex subsumptions such as

Inflammation u ∃has-location.Heart v?
Omed

HeartDisease u ∃has-state.NeedsTreatment

cannot be answered directly. First, the ontology Omed (from Figure 2.2 on page 24)
has to be augmented to

O′
med := Omed ∪ { A v Inflammation u ∃has-location.Heart,

HeartDisease u ∃has-state.NeedsTreatment v B }

with A, B new concept names, and then the subsumption test A v?
O′

med
B can be

carried out to decide the original complex subsumption. Since A, B are new names
not occurring in Omed, our complex subsumption holds if, and only if, A vO′

med
B.

This approach is effective but inefficient unless only one such complex subsumption
is queried for each ontology. Constructing and normalizing the augmented ontology
every time each subsumption is tested is not likely to be acceptable in practice, espe-
cially when the background ontology is large. For instance, normalization of Snomed

ct takes more than one minute.

In this section, the refined algorithm (henceforth referred to as the original algo-
rithm) from Subsection 4.1.4 is extended to cater for a duo-ontology O = (Op ∪ Ot)
with Op a permanent EL+ ontology and Ot a set of temporary GCIs. Intuitively, Op

is the input ontology of which axioms have been read in and processed before, while
Ot contains temporary GCIs that are asserted later. The main purpose is to reuse the
information readily made available by the preprocess and classification of Op. Once
Op has been classified, the classification of Op ∪Ot should not start from scratch, but
rather use the existing classification information w.r.t. Op together with the new GCIs
from Ot to do incremental classification.

In our extension, we use two sets of the core data structures Ô(·), R(·), S(·), but
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retain a single set of queues queue(·).6 The mappings Ôp, Rp, Sp are initialized and

populated exactly as in the original algorithm, i.e., Ôp encodes axioms in Op, and

Rp, Sp store subsumption relationships inferred from Op. Similarly, the mapping Ôt

encodes axioms in Ot, but Rt, St represent additional inferred subsumptions drawn
from Op ∪ Ot that are not already present in Rp, Sp, respectively. The extended
algorithm is based on the tenet that DLs are monotonic, i.e., Op |= α implies Op∪Ot |=
α. There may be an additional consequence β such that Op 6|= β but Op∪Ot |= β. The
extended algorithm stores such a consequence β in the separate set of data structures
Rt, St. Analogously to the original algorithm, queue entries are repeatedly fetched and
processed until all queues are empty. Instead of the procedures process, process-new-

edge and process-bottom, we use the extended versions for duo-ontology classification
as outlined in Algorithm 4.

The extended algorithm’s behavior is identical to that of Algorithm 1 if Op has not

been classified. In particular, Ôp(·) ∪ Ôt(·) here is equivalent to Ô(·) in Algorithm 1
given that O = (Op ∪Ot). Since no classification has taken place, Sp(A) = Rp(r) = ∅
for every concept name A and role name r. Initialization and processing of queues are
done in the same manner with the only difference that inferred consequences are now
stored in Rt and St.

If Op has been classified (thus, Sp, Rp have been populated), then proper initial-
ization has to be done w.r.t. previously inferred consequences (i.e., Sp, Rp) and new

GCIs (i.e., Ôt). To this end, we initialize the data structures by setting:

• for each role name r ∈ RN(O), Rt(r) := ∅;

• for each old concept name A ∈ CN(Op), St(A) := ∅ and

queue(A) :=
⋃

X∈Sp(A) Ôt(X) ∪
⋃

{(A,B)∈Rp(r),X∈Sp(B)} Ôt(∃r.X);

• for each new concept name A ∈ CN(Ot)\CN(Op), St(A) := {A,>}

queue(A) := Ôt(A) ∪ Ô(>) ∪
⋃

r with O|=εvr
(Ôt(∃r.A) ∪ Ô(∃r.>)).

After initialization, queue processing is carried out by Algorithm 4 until all the queues
are empty. Observe the structural analogy between these procedures and the original
ones in Algorithm 1 on page 55. Observe also the key difference: information is
always retrieved from both sets of data structures, e.g., Sp(A)∪ St(A) in line 1, while
modifications are only made to the temporary set of data structures, e.g., St(A) :=
St(A) ∪ {B} in line 2.

The correctness of this algorithm can be shown following the correctness proof’s
structures of the original algorithm w.r.t. additional subsumption consequences ob-
tained during incremental classification.

Theorem 33 (Correctness of Algorithm 4). Let O = (Op∪Ot) be a duo-ontology,
and Sp, Rp be the results after the original algorithm terminates on Op. Then, the duo-
ontology classification algorithm (Algorithm 4), applied to Ot, incrementally classifies

6Here, the optimization technique in Subsection 4.1.5 that uses multiple sets of queues is not taken
into account.
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Algorithm 4 The duo-ontology classification algorithm.

Procedure process-duo(A, X)
Input: A: concept name; X: queue entry;

1: if X = B→ B, B ⊆ Sp(A) ∪ St(A) and B 6∈ Sp(A) ∪ St(A) then
2: if B = ⊥ then
3: process-bottom-duo(A)
4: else
5: St(A) := St(A) ∪ {B}
6: queue(A) := queue(A) ∪ Ôp(B) ∪ Ôt(B)
7: for all concept names A′ and role names r with (A′, A) ∈ Rp(r) ∪Rt(r) do

8: queue(A′) := queue(A′) ∪ Ôp(∃r.B) ∪ Ôt(∃r.B)
9: end for

10: end if
11: end if
12: if X = ∃r.B and (A, B) 6∈ Rp(r) ∪Rt(r) then
13: if ⊥ ∈ S(B) and ⊥ 6∈ S(A) then
14: process-bottom-duo(A)
15: end if
16: process-new-edge-duo(A, r, B)
17: end if

Procedure process-new-edge-duo(A, r, B)
Input: A, B: concept names; r: role name;

1: for all role names s with Op |= r v s do
2: Rt(s) := Rt(s) ∪ {(A, B)}
3: queue(A) := queue(A) ∪

⋃
{B′|B′∈Sp(B)∪St(B)}(Ôp(∃s.B

′) ∪ Ôt(∃s.B
′))

4: for all concept name A′ and role names u, v with u ◦ s v v ∈ Op and
(A′, A) ∈ Rp(u) ∪Rt(u) and (A′, B) 6∈ Rp(v) ∪Rt(v) do

5: process-new-edge-duo(A′, v, B)
6: end for
7: for all concept name B′ and role names u, v with s ◦ u v v ∈ Op and

(B, B′) ∈ Rp(u) ∪Rt(u) and (A, B′) 6∈ Rp(v) ∪Rt(v) do
8: process-new-edge-duo(A, v, B ′)
9: end for

10: end for

Procedure process-bottom-duo(A)
Input: A: concept name;

1: St(A) := St(A) ∪ {⊥}
2: for all concept names A′ and role names r with (A′, A) ∈ Rp(r)∪Rt(r) such that
⊥ 6∈ Sp(A

′) ∪ St(A
′) do

3: process-bottom-duo(A′)
4: end for
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Ot against Op (i.e., classifies O) in time polynomial in the size of O. That is, after
termination of the algorithm, we have that, for all concept names A, B in O:

{B,⊥} ∩ (Sp(A) ∪ St(A)) 6= ∅ if, and only if, A vO B.

Proof. (Sketch)

Termination in polynomial time is straightforward and follows immediately from
Lemma 28 on page 56. In fact, the duo-ontology classification algorithm adds elements
to St(·) and Rt(·) and never deletes existing elements. Additionally, each such addition
induces only polynomially many additions to the queues.

Soundness is shown along the same line as in Lemma 29 on page 56 where INV1

and INV2 are modified to state the properties w.r.t. Sp(·) and Rp(·), respectively; and
where two additional invariants are introduced:

INV6 If B ∈ St(A), then A vO B.

INV7 If (A, B) ∈ Rt(r), then A vO ∃r.B

to capture the new set of data structures. Observe that INV1 and INV6 together form the
“only if” part (soundness) of the theorem. Since Algorithm 4 never manipulates Sp(·)
and Rp(·), INV1 and INV2 are preserved throughout the computation. Modifications
to St(·), Rt(·) and queue(·) can be shown to preserve all the other invariants in an
analogous way as in Lemma 29. Here, we only demonstrate the most interesting case:
initialization of queue(A) with A an old concept name in CN(Op). We make a case
distinction according to the source of the new queue entries.

• An element B → B from Ôt(X) with X ∈ Sp(A) is added to queue(A). Since
A vO X due to X ∈ Sp(A) and INV1, it suffices to show that

∧
Bi∈B

(X vO Bi)
implies X vO B. But, this is the case because there exists (up to commutativity
of u) a GCI X u B1 u · · · u Bn v B in Ot ⊆ O and X vO X. Thus, INV4 is
preserved.

• An element ∃r.B from Ôt(X) with X ∈ Sp(A) is added to queue(A). Thus, there
must exist a GCI X v ∃r.B in Ot ⊆ O. Since A vO X due to X ∈ Sp(A) and
INV1, it holds that A vO ∃r.B, preserving INV3.

• An element Y from Ôt(∃r.X) with X ∈ Sp(B) and (A, B) ∈ Rp(r) is added to
queue(A). Thus, INV1 and INV2, alongside X ∈ Sp(B) and (A, B) ∈ Rp(r), imply
that B vO X and A vO ∃r.B, respectively. There must also exist a GCI ∃r.X v
Y in Ot ⊆ O. Putting together, it holds that A vO ∃r.B vO ∃r.X vO Y , thus
preserving (the B = ∅ case of) INV4.

The completeness part of the theorem can be shown in the same way as in
Lemma 30 on page 58 using the completeness result of the abstract algorithm given
in [BBL05].

o
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In our example, we set Op to Omed and Ot to the set of the two new GCIs. We can
run the extended algorithm on Op∪Ot and reuse existing information in Sp and Rp, if
any. After termination, our complex subsumption boils down to the set membership
test B ∈? Sp(A)∪St(A) = St(A). (Recall that A is a new concept name not occurring
in Op, and thus Sp(A) = ∅.) To answer next subsumption queries, only Ot, Rt, St

and queue need to be initialized, leaving the background ontology Op and possibly its
classification information Rt, St intact.

Interestingly, this algorithm can be used effectively in certain scenarios of incre-
mental classification. Consider Op as a well-developed, permanent ontology, and Ot

as a small set of temporary axioms currently being authored. Obviously, if the per-
manent ontology is large, it would be impractical to reclassify from scratch every time
some new axioms are to be added. Algorithm 4 incrementally classifies Ot against
Op and its classification information. If the inferred consequences are satisfactory,
the temporary axioms can be committed to the permanent ontology by merging the
two sets of data structures. Otherwise, axioms in Ot and their inferred consequences
can be easily retracted, since these are segregated from Op and its consequences. To
be precise, we simply dump the values of Ot(·), Rt(·) and St(·), when the temporary
axioms are retracted. This incremental reasoning scenario has also been considered in
[Law08], where Snomed is used as a reference knowledge base, and where additional
definitions representing mappings from concepts in another terminology to concepts
in Snomed are defined and incorporated into the reference knowledge base. Since
Snomed is large and non-versatile in such a scenario, it is sensible to classify it only
once and reuse its classification results for subsequent reasoning w.r.t. a relatively
small and versatile user-defined ontology.

4.5 Reasoning with Individuals

In [Bra04b], Brandt proposed a polynomial classification algorithm for ELH with
GCIs and later extended it in [Bra04a] to deal with instance checking problem.7 The
idea is to extend the approach to deciding subsumption by means of completing the
subsumption graph to ABox individuals. The algorithm completes the extended map-
ping S which also maps every individual a to a set S(a) of concepts. The intuition is
that A belongs to S(a) if, and only if, the instance checking A(a) holds in O. In this
section, we exploit this technique in the abstract classification algorithm.

Recall from Definition 5 on page 21 that an ABox A (the assertional part of an
ontology O) is a set of assertions of the forms C(a) and r(a, b) with C a concept
description, r a role name, and a, b individuals. Before the core algorithm can be
started, we need to perform a couple of preprocessing steps to the ontology.

7The algorithm in [Bra04a, Bra04b] differs from the one presented in Subsection 4.1.3 in that it
maintains only S(·) but not R(·) mapping. Role relations are not made explicit in the same way as
in CR2, whereas interaction between axioms of the forms A v ∃r.B and ∃s.A′ v B′ is taken care of
by a rule that is essentially the combination of CR2, CR3 and CR5 in Figure 4.2 on page 52.
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4.5.1 Preprocessing the ABox

We extend the notion of ontology normal form to ABox assertions by admitting only
atomic concept assertions A(a) and role assertions r(a, b), where A ∈ CN(O), r ∈
RN(O) and a, b ∈ Ind(O). Normalization rules depicted in Figure 4.1 on page 48 can
be extended by adding the following rule:

NR1-8 C(a) Ã A(a), A v C

to deal with ABox concept assertions. It is not hard to see that an arbitrary EL+

ontology O can be transformed in linear time to Õ in normal form without complex
concept assertions such that (i) the size of Õ is linear in that of O, (ii) subsumption
A v B with A, B ∈ CN(O) is preserved, and (iii) instance checking A(a) with A ∈
CN(O) and a ∈ Ind(O) is preserved.

By reducing out range restrictions, role assertions in the ABox also needs to be
taken into account in addition to the reduction described in Subsection 4.1.2. For each
role assertion r(a, b) in O such that rangeO(r) 6= ∅, we add a new concept assertion
A(b) for each A ∈ rangeO(r). Again, it is not difficult to see that the extended
reduction is correct, i.e., it preserves subsumption and instance checking.

In what follows, we assume without loss of generality that the TBox is in normal
form (Definition 24 on page 46) without range restrictions and the ABox contains no
complex concept assertion.

4.5.2 Extending the algorithm with individuals

In order to reason with individuals, we extend the S and R mappings to take into
account ABox individuals as follows:

• a mapping S assigning to each element x of CN>(O) ∪ Ind(O) a subset S(x) of
CN(O) ∪ {>,⊥}, and

• a mapping R assigning to each element r of RN(O) a binary relation R(r) over
CN>(O) ∪ Ind(O).

In terms of completion graph, the set of vertices V is extended to CN>(O)∪Ind(O). In-
tuitively, the additional elements in the mappings represent inferred instance checking
statements in the sense that

• A ∈ S(a) implies O |= A(a),

• (a, A) ∈ R(r) implies O |= ∃r.A(a), and

• (a, b) ∈ R(r) implies O |= r(a, b).

When the algorithm terminates, the first statement is guaranteed to be complete, i.e.,
if O |= A(a), then we have A ∈ S(a).

Similar to the classification algorithm, it starts by initializing the two mappings
and then exhaustively applying the completion rules until no more rule applies. Ini-
tialization of S(A) with A ∈ CN(O) remains unchanged, while S(a) is initialized with
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Algorithm 5 The goal-directed instance checking algorithm.

Procedure instance?(B0(a))
Input: a: individual; B0: concept name
Output: ‘positive’ or ‘negative’ answer to the query

1: activate(a)
2: while not empty(queue(A)) for some A ∈ CN>(O) ∪ Ind(O) do
3: X ← fetch(queue(A))
4: if goal-directed-process(A, X, a, B0) = ‘positive’ then
5: return ‘positive’
6: end if
7: end while
8: return ‘negative’

{A|A(a) ∈ A} ∪ {>}, for each individual a ∈ Ind(O). For each role name r ∈ RN(O),
let rA = {(a, b) | r(a, b) ∈ A}. Then, we initialize the R mapping by setting:

R(r) :=

{
rA ∪ {(x, x) | x ∈ CN>(O) ∪ Ind(O)} if O |= ε v r;
rA otherwise.

The completion rules shown in Figure 4.2 on page 52 are intact and can be used
directly, where the variables X, Y, Z now range over CN>(O) ∪ Ind(O). Observe that
the pairs in R(·) can be in one of the forms (a, b), (A, B) or (a, A), where a, b are
individuals and A, B concept names. The last type, which links an individual to a
concept name, can be generated by CR2 and also reproduced by CR5 and CR6.

Theorem 34 (Correctness). Let O be an EL+ ontology in normal form without
range restrictions and complex concept assertions. The extended algorithm applied to
O terminates in time polynomial in the size of O and, after termination, we have that,
for all individuals a and concept names A in O:

{A,⊥} ∩ S(a) 6= ∅ if, and only if, O |= A(a).

Techniques developed in the refined classification algorithm (see Subsection 4.1.4) can
also be applied here with queue(·) extended to ABox individuals. While queue(A)
remains intact for all concept names A ∈ CN(O), we initialize queue(a) with

⋃

A∈S(a)

Ô(A) ∪
⋃

(a,b)∈R(r), X∈S(b)

Ô(∃r.X)

Correctness of the refined version of the extended algorithm with individuals can be
proved in a parallel way as in Theorem 33, where information made explicit by the
initialization (i.e., A ∈ S(a) and (a, b) ∈ R(r)) correspond to classification information
of the permanent ontology (i.e., Sp and Rp).

Given a specific instance checking query O |=? A(a), one can employ the goal-
directed approach (see Section 4.2) to the algorithm presented in this section to answer
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the query in a goal-directed fashion. More precisely, the procedure goal-directed-

process (see Algorithm 2 on page 64) is extended such that the variables A, A0 not
only range over concept names but also individuals. To this end, we outline the
procedure instance? in Algorithm 5 which is based on the procedure subsumes? (see
Algorithm 2 on page 64).8

Similarly, the simplified version of the enhanced traversal method (see Subsec-
tion 4.3.2) can be used to compute the realization hierarchy (see Definition 16 on
page 28). Observe that S : CN>(O) ∪ Ind(O) → CN(O) ∪ {>,⊥} implies that indi-
viduals never occur in any subsumer set. As a result, all the individuals occur in the
bottom most above ⊥ in the hierarchy, i.e., children(a) = {⊥} for all individuals a.
Moreover, given an individual a, parents(a) represents the set of most specific con-
cept names to which it belongs, whereas, given a concept name A, those individuals
underneath A in the hierarchy are all its instances.

8Like the subsumption algorithm, this is implemented in the CEL reasoner and used whenever
instance checking is asked prior to realization. See [Sun05a] for the CEL reference manual.



Chapter 5

Techniques for Supplemental

Reasoning

In this chapter, techniques for supplemental reasoning (i.e., extracting small modules
and finding justifications) are presented. Modularization has several potential ap-
plications both in optimization of automated reasoning and in ontology engineering
and usage. A usage scenario of modularization in ontology reuse and segmentation
has been given in Subsection 3.3.2, while its use in optimization of reasoning will be
discussed later in this chapter. Section 5.1 presents a new type of module based on
reachability and a number of interesting properties. In particular, we show that mod-
ularization in fact does not help speed up classical reasoning of subsumption if the
goal-directed subsumption algorithm in Section 4.2 is employed.

The second half of the chapter is dedicated to axiom pinpointing. Section 5.2.1
shows some inherent complexity in the problem of finding all justifications. Sub-
section 5.2.2 and 5.2.3 discuss the black-box and glass-box approaches, respectively.
Several algorithms for computing a single and all justifications are described. Finally,
we propose in Subsection 5.2.4 two combined methods for computing a single jus-
tification and a method for computing all justifications. In particular, we propose
a modularization-based approach to axiom pinpointing, in which module extraction
plays an important role.

In what follows, we focus attention on the terminological component (TBox) of an
EL+ ontology. This is not a real limitation since individuals can be encoded as special
least concepts, and ABox assertions as GCIs in the TBox part of an ontology (see
Section 4.5). By doing so, all the techniques presented in the following immediately
extend to ontologies with an assertional component as well.

It is worth mentioning other techniques for supplemental reasoning that are beyond
the scope of the present dissertation. These include the computation of least common
subsumers (lcs) and most specific concepts (msc) [Küs00], which have proven useful in
supporting bottom-up construction of the knowledge base. The problem of computing
lcs has been studied thoroughly in [Tur07, Küs00] and that of mcs in [Bra06, Küs00].

79
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5.1 Modularization

By Definition 21 on page 30, a module O′ is any subset of the ontology O that pre-
serves the statement σ of interest or all statements under the signature S of interest.
Obviously, the whole ontology O is a module for any statement or signature in it-
self, but it is vacuously uninteresting since it does not give us additional information
concerning the ontology relative to a specified context (i.e., through a statement or a
signature) of interest.

The notion of (deductive) conservative extension [GLWZ06] could be used as a
sufficient condition for extracting a module, since if O is a conservative extension
of O′ w.r.t. a signature S, then O′ is an S-module in O. Unfortunately, it is too
expensive to decide conservativity (e.g., ExpTime-complete already in EL with GCIs
[LW07]). Therefore, semantic modularization is highly complex in general with the
only exception of the DL EL with acyclic TBox, in which it is tractable to extract a
semantic module [KLWW08]. For this reason, several techniques for syntactic module
extraction have been proposed [NM03, SR06, CHKS07, Sun08], some of which are
logic-based and some are not.

In the first subsection, we introduce a new kind of module, called reachability-based
module, that is motivated by known optimization techniques adopted by DL reasoners,
including CEL. Also, we propose an algorithm for extracting such a module given an
ontology and a signature as input and show some interesting properties of modules of
this kind which are required to prove subsequent theorems. In Subsection 5.1.2, we
establish some connections between reachability-based modules and subsumption. In
particular, it is shown that the modules of this kind are strong subsumption modules
(see Definition 23 on page 31) which is essential in our modularization-based axiom
pinpointing (see Subsection 5.2.4). In Subsection 5.1.3, other extraction methods are
discussed and compared to the reachability-based approach. Particularly, we show
that the reachability-based module is equivalent to the minimal module based on
syntactic locality modulo the DL EL+.

Also, experiments on realistic biomedical ontologies have been performed. The
experimental results not only prove practical usability (time required to extract the
module) and usefulness (size of the extracted module) of our module extraction algo-
rithm but also reveal an insight into the ontology structure that reflects its complexity
in terms of classification. These empirical results are described in Subsection 6.2.4.

5.1.1 Reachability-based modules

To facilitate defining the forthcoming notions of reachability w.r.t. an ontology, a
module normal form is introduced.

Definition 35 (Module normal form). An EL+ ontology O is in module normal
form if all of its axioms are either concept inclusions C v D, role inclusions r1 ◦ · · · ◦
rn v s or range restrictions range(r) v D, where ⊥ does not occur in C. 3

Note that an ontology in the EL+ normal form defined in Section 4.1.1 is also in
module normal form, but not vice versa. Moreover, part of the normalization rules
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in Figure 4.1 on page 48 (precisely, NR1-1, NR1-3, NR1-4, NR1-5 and NR1-6) can be reused
here to linearly transform any ontology into a subsumption-preserving one in module
normal form. In ontology re-use scenario, it is an understandable requirement that a
module consists only of original axioms. That is, axioms in the module in the normal
form have to be mapped to their sources, but this can be easily done by keeping
the source axioms and the mapping between the source and the normalized axioms.
For the rest of this subsection, we thus assume without loss of generality that EL+

ontologies are in module normal form.
The mentioned optimization techniques are used to heuristically determine obvious

subsumption and non-subsumption relationships. They can be understood as the
reachability problem in a directed graph, considering concept names as nodes and
explicit subsumption relationships as edges in the graph.

Definition 36 (Tight/loose reachability). Let O be an EL+ ontology, A, B con-
cept names in O. The tight (loose) reachability graph Gt(O) (Gl(O)) for O is a tuple
(Vt, Et) ((Vl, El)) with Vt = CN(O) (Vl = CN(O)) and Et (El) the smallest set con-
taining an edge 〈A, B〉 if A v D ∈ O s.t. B is a conjunct in D (if C v D ∈ O s.t. A
occurs in C and B occurs in D).

We say that B is tightly reachable (loosely reachable) from A in O if there is a path
from A to B in Gt(O) (Gl(O)). 3

It is easy to see that, given an EL+ ontology O, Gt(O) and Gl(O) can be constructed
in linear time in the size of O. Observe that B is tightly reachable from A in O
implies A vO B, while A vO B implies that B is loosely reachable from A in O.1

The reachability heuristic for positive subsumption is also known as told subsumers,
which essentially is the reflexive and transitive closure of the explicitly stated sub-
sumption. DL systems benefit from this information to completely avoid certain kind
of subsumption test, as well as to classify concepts in the subsumption order.

In the DL EL+, the reachability heuristic for negative subsumptions can be ex-
ploited in module extraction. To achieve this, the loose reachability graph Gl(O) for O
needs to be extended in a straightforward way to cover all the symbols in O, i.e., also
role names. Precisely, we define the extension as G ′l(O) := (V ′

l , E′
l) with V ′

l = Sig(O)
and 〈x, y〉 ∈ E′

l if there is an axiom αL v αR ∈ O (i.e., a concept or role inclusion,
or a range restriction) such that x ∈ Sig(αL) and y ∈ Sig(αR). The module based
on the extended loose reachability for S in an ontology O (denoted by O loose

S
) can be

extracted as follows: construct G ′l(O), extract all the paths from a symbol x ∈ S in
G′l(O), and finally, accumulate axioms responsible for the edges in those paths. How-
ever, this kind of module is relatively large, and many axioms are often irrelevant.
In our example ontology Omed, the definition for HeartDisease would be extracted as
part of the module based on the extended loose reachability for S = {Appendicitis}
in Omed since the concept Disease is reachable from Appendicitis via Inflammation in
G′l(Omed). The fact that HeartDisease’s definition also involves the symbols has-location

and Heart is simply not taken into consideration here. In fact, the module for any

1To see the latter, assume that B is not loosely reachable from A in O. Then, a counter model
I of O can be constructed in a similar fashion as in the proof of Point 5 in Proposition 38 such that
AI\BI 6= ∅.
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kind of inflammatory morphology would comprise the definition for heart disease as
well.

In order to rule out such irrelevant axioms from the module, we need to make our
reachability notion stronger by taking into account all the symbols occurring on the
left-hand side of axioms. Precisely, the ontology O is viewed as a directed hypergraph
[AFF01] where each inclusion axiom αL v αR in O essentially specifies a collection of
hyperedges from the connected node Sig(αL) to each of the symbol in Sig(αR). For
example, the following half of axiom α9 in Omed (see Figure 2.2 on page 24)

Disease u ∃has-location.Heart v HeartDisease

represents a hyperedge 〈 {Disease, has-location, Heart} , HeartDisease 〉. Given a node x
in the hypergraph, the symbol HeartDisease is reachable from x if all symbols par-
ticipating in the connected nodes, i.e., Disease, has-location and Heart, are reachable
from x. Considering the example above, the concept Appendicitis, as well as most in-
flammatory morphology concepts, does not reach HeartDisease since it does not reach
Heart. Hence, the definition for HeartDisease is not extracted as part of the refined
module. To this end, we formally define our reachability-based modules as follows:

Definition 37 (Reachability-based modules). Let O be an EL+ ontology and
S ⊆ Sig(O) a signature. The set of S-reachable names in O is inductively defined:

• x is S-reachable in O, for every x ∈ S;

• for all inclusion axioms αL v αR ∈ O, if x is S-reachable in O for every x ∈
Sig(αL) then y is S-reachable in O for every y ∈ Sig(αR).

We call an axiom αL v αR S-reachable in O if every element of Sig(αL) is S-reachable
in O. The reachability-based module for S in O, denoted by Oreach

S
, consists of all

S-reachable axioms from O. 3

If S = {A} (S = {r}) is a singleton signature consisting only of the concept name A
(role name r), we simply write A-reachable (r-reachable) and Oreach

A (Oreach
r ). Intu-

itively, x is y-reachable in O means that y syntactically refers to x, either directly or
indirectly via axioms in O. If x, y are concept names, then the reachability suggests
a potential subsumption relationship y vO x. Note, in particular, that axioms of
the forms > v D and ε v r in O are vacuously reachable from any symbol in Sig(O)
because Sig(>) = Sig(ε) = ∅; therefore, they occur in every reachability-based module.

In our example, Oreach
Appendicitis contains axioms α1, α5, α8, α10 and α12–α14. Observe

that, in contrast to the module based on the extended loose reachability, obviously
irrelevant axioms like α9 and α11 (i.e., axioms related to HeartDisease) are not part
of the reachability-based module. We now show some properties of reachability and
reachability-based modules that are essential for establishing the subsequent results:

Proposition 38 (Properties of reachability and Oreach
S

). Let O be an EL+ ontol-
ogy, S,S1,S2 ⊆ Sig(O) signatures, x, y, z symbols in Sig(O), and A, B concept names
in CN(O). Then, the following properties hold:
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1. If S1 ⊆ S2, then Oreach
S1

⊆ Oreach
S2

.

2. If x is y-reachable and y is z-reachable, then x is z-reachable.

3. If x is y-reachable in O, then Oreach
x ⊆ Oreach

y

4. x ∈ S ∪ Sig(Oreach
S

) if, and only if, x is S-reachable in O.

5. If B is not A-reachable in O, then A 6vO B (unless A is unsatisfiable w.r.t. O).

Proof.
To show Point 1, it is enough to show, for each axiom α = (αL v αR) ∈ O, that

α ∈ Oreach
S1

implies α ∈ Oreach
S2

. By definition, it follows from α ∈ Oreach
S1

that x is S1-
reachable for all x ∈ Sig(αL). Due to the monotonicity of S-reachability and S1 ⊆ S2,
x is S2-reachable for all x ∈ Sig(αL). By definition, we have α ∈ Oreach

S2
.

For Point 2, we view y-reachability of x as existence of a hyperpath from y to x.
The claim is proved by induction on the length of this hyperpath. Induction Start
(length 0): y = x. Then, x is z-reachable. Induction Step (length n+1): there exists a
hyperedge 〈 {x1, . . . , xn}, x 〉 (i.e., an axiom αL v αR ∈ O with {x1, . . . , xn} = Sig(αL)
and x ∈ Sig(αR)) such that xi is y-reachable via a hyperpath of length n or less. By
induction hypothesis, xi is z-reachable for all xi ∈ Sig(αL). Thus, x is z-reachable by
definition.

Point 2 can now be used to prove Point 3. It suffices to show that α ∈ Oreach
x

implies α ∈ Oreach
y , for each α = (αL v αR) ∈ O. By definition, α ∈ Oreach

x implies
that, for all z ∈ Sig(αL), z is x-reachable. Since x is y-reachable, Point 2 implies that
z is y-reachable. This means that α is y-reachable, thus α ∈ Oreach

y .

“Only if” direction of Point 4: Trivial if x ∈ S. If x ∈ Sig(Oreach
S

), then there is
an α = (αL v αR) ∈ Oreach

S
such that x ∈ Sig(α). Since such an α is S-reachable, all

x′ ∈ Sig(αL) must be S-reachable. By definition, every x′ ∈ Sig(αR) is also reachable.
“If” direction: Assume that x is S-reachable. By definition, if x is S-reachable, then
x ∈ S, or there is an α = (αL v αR) ∈ O such that x ∈ Sig(αR) and, for all
y ∈ Sig(αL), y is reachable from S. It is trivial that x ∈ S ∪ Sig(Oreach

S
) in the first

case. In the latter case, we have that α is S-reachable, implying by definition that
α ∈ Oreach

S
. Thus, x ∈ Sig(α) ⊆ S ∪ Sig(Oreach

S
).

To prove Point 5, we assume that B is not A-reachable and that A is satisfiable
w.r.t. O. Partition O into O′ ∪ O′′ with O′ := {α ∈ O | α is A-reachable}, and
O′′ := O\O′. Since A is satisfiable w.r.t. O and O′ ⊆ O, A is also satisfiable w.r.t.
O′. Then, there is a model I ′ of O′ such that AI′

is not empty. Extend I ′ to a new
interpretation I by assigning xI := ∅ for all symbols x ∈ Sig(O′′)\Sig(O′). Obviously,
AI remains non-empty, while BI = ∅ since B is not in Sig(O′) (otherwise, B is A-
reachable contradicting the initial assumption). It remains to show that I is a model of
O. Since I and I ′ coincide on interpretation of all the symbols in Sig(O′) and I ′ |= O′,
I |= O′. Therefore, it suffices to demonstrate that I is a model of O′′. By definition,
every axiom α = (αL v αR) in O′′ is not A-reachable, i.e., there exists a symbol (role
or concept name) x ∈ Sig(αL) that is not A-reachable. Hence, x 6∈ Sig(O′) and xI = ∅.
By semantics of EL+, αI

L = ∅, implying that I |= α as required. o
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Algorithm 6 Extraction of a reachability-based module.

Procedure extract-module(O,S)
Input: O: EL+ ontology; S: signature
Output: OS: reachability-based module for S in O

1: OS := ∅
2: queue := active-axioms(S)
3: while not empty(queue) do
4: (αL v αR) := fetch(queue)
5: if Sig(αL) ⊆ S ∪ Sig(OS) then
6: OS := OS ∪ {αL v αR}
7: queue := queue ∪ (active-axioms(Sig(αR)) \ OS)
8: end if
9: end while

10: return OS

The converse of Point 5 is not true in general, for instance, Endocarditis involves Tissue

in the sense of reachability, but the corresponding subsumption does not follow from
the ontology. This suggests that we could use reachability in a directed hypergraph
as a heuristic for answering negative subsumption, in a similar but finer way as in the
loose reachability.

Algorithm 6 outlines a method for extracting the reachability-based module given
as input an EL+ ontology O and a signature S. Similar to the technique developed
for the refined classification algorithm (see Section 4.1), we view the input ontology
O as a mapping active-axioms : Sig(O)→ 2O with active-axioms(x) comprising all and
only axioms αL v αR ∈ O such that x occurs in αL. The intuition is that every
axiom α ∈ active-axioms(x) is ‘active’ for x in the sense that, for some y ∈ Sig(O),
y potentially is x-reachable via α. For convenience, we define active-axioms(S) :=⋃

x∈S
active-axioms(x) for a signature S ⊆ Sig(O).

Proposition 39 (Algorithm 6 produces Oreach
S

). Let O be an EL+ ontology, n the
number of axioms in O, and S ⊆ Sig(O) a signature. Algorithm 6 terminates after
O(n2) steps and returns the reachability-based module for S in O.

Proof. There are at most n axioms that can be added to OS, and once added they
are never removed. After each addition, the queue is augmented by active-axioms(·).
Since |active-axioms(·)| is bounded by n, the algorithm’s runtime is O(n2).

Let Oi
S

be the value of OS the algorithm has computed at the ith iteration, and
O∞

S
be the output after no more active axioms are to be processed. We prove by

induction on i that all axioms in Oi
S

are S-reachable. For the induction start, it is
trivial since O0

S
is empty. For the induction step, assume that αL v αR ∈ O

i+1
S
\Oi

S
is

the new axiom added at iteration i+1. This is possible only when the condition given
in line 5 is satisfied, i.e., Sig(αL) ⊆ S ∪ Sig(Oi

S
). By induction hypothesis, axioms in

Oi
S

are S-reachable, and thus all the symbols in Sig(αL) ⊆ S∪Sig(Oi
S
) are S-reachable.

By definition, αL v αR ∈ O
i+1
S

is S-reachable as required.
It remains to show that the algorithm extracts all S-reachable axioms. An axiom
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α = (αL v αR) is S-reachable if all symbols in Sig(αL) are S-reachable. All potential
S-reachable symbols according to Definition 37 on page 82 are considered through the
way the algorithm initializes and maintains queue. In fact, it starts with all active
axioms for S which corresponds to the base case in Definition 37. Then, it recursively
extends queue with all active axioms for Sig(αR) modulo OS once αL v αR is known
to be S-reachable which corresponds to the the induction case in Definition 37.

o

In fact, reachability can be reduced to propositional Horn clause implication. The
idea is to translate the EL+ ontology O in module normal form into a propositional
Horn formula φ[O] comprising the clauses:

l1 ∧ · · · ∧ lm → r1 ∧ · · · ∧ rn

if αL v αR ∈ O such that li ∈ Sig(αL) and rj ∈ Sig(αR), for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Given a signature S and a symbol x, x is S-reachable in O if, and only if, x is implied
by
∧

y∈S
y w.r.t. φ[O]. Hence, the algorithm proposed by Dowling and Gallier [DG84]

can be used to check S-reachability in linear time. Also, the counting technique used
in [DG84] can be exploited to extract the reachability-based module in linear time.
More precisely, a counter counter(α) is maintained for each axiom α = (αL v αR) in
O and initialized with |Sig(αL)|. Whenever a new symbol x becomes S-reachable, the
counters of all the active axioms for x are decremented by one. As soon as the counter
counter(α) reaches zero for some active axiom α = (αL v αR) ∈ active-axiom(x)
(meaning that all symbols in Sig(αL) are S-reachable), every symbol y ∈ Sig(αR) is
marked S-reachable. In addition, we mark the axiom with ‘reached’ to denote that it
is S-reachable, thus in the reachability-based module. The procedure carries on until
a fixpoint is reached, i.e., no more symbol is becoming S-reachable. This method
improves on Algorithm 6 in the sense that it treats an axiom only when the counter
reaches zero, i.e., the axiom is already known to be reachable. This avoids potential
redundant tests at line 5. The complexity of the Horn-motivated method is linear in
the size of the ontology.2

This shows that the presented algorithm is suboptimal since we can in principle
do better. In practice, however, |active-axioms(·)| is relatively small compared to the
size of the ontology and thus can effectively be considered as a constant. Moreover,
the left-hand side αL of an axiom is usually so small that the counting technique does
not really pay off. The experiment results described in Subsection 6.2.4 demonstrate
that Algorithm 6 performs quite well on realistic biomedical ontologies.

5.1.2 Modularity and Subsumption

In this subsection, we show certain connections between the reachability-based mod-
ules and subsumption.

2Note that, though Algorithm 6 runs in quadratic time, it is measured w.r.t. the number of axioms
in the ontology, as opposed to the size of the ontology.



86 Techniques for Supplemental Reasoning

Lemma 40 (Oreach
Sig(C) preserves C vO D). Let O be an EL+ ontology and S ⊆ Sig(O)

a signature. Then, C vO D if, and only if, C vOreach
S

D for arbitrary EL+ concept

descriptions C, D such that Sig(C) ⊆ S.

Proof. “If” direction immediately follows from monotonicity of EL+ and the fact
that Oreach

S
⊆ O, so only the “only if” direction remains to be shown. Assume to the

contrary that C vO D but C 6vOreach
S

D. Then, there must exist an interpretation

I and an individual w ∈ ∆I such that I |= Oreach
S

and w ∈ CI\DI . Modify I to
I ′ by setting xI′

:= ∅ for all x ∈ Sig(O)\(S ∪ Sig(Oreach
S

)). Obviously, I ′ is a model
of Oreach

S
since it does not change the interpretation of any symbol in it. For each

α = (αL v αR) ∈ O\Oreach
S

, we have αI′

L ⊆ αI′

R since α is not S-reachable and thus
αL is composed of an x with xI′

= ∅. Therefore, I ′ is a model of O. It remains to be
shown that w ∈ CI′

\DI′
. But, this is the case since both I and I ′ coincide on all the

symbols y ∈ Sig(C) ⊆ S, and DI′
⊆ DI .

o

It immediately follows that Oreach
S

is an S-module, i.e., it preserves all subsumption
relationships between concept descriptions constructed out of S. Moreover, the follow-
ing corollary is obtained when we restrict attention to subsumption between concept
names.

Corollary 41. Oreach
A is a subsumption module for A in O.

The property of subsumption module suggests that, to query subsumption, it is enough
to extract and maintain only linearly many reachability-based modules, i.e., one for
each concept name. Precisely, the module Oreach

A can be used to correctly answer
subsumption A v?

O B for every concept name B occurring in O. Consider our example
ontology from Chapter 2. It is not difficult to derive that Inflammation, Disease, and
HeartDisease are the only subsumers of the concept Endocarditis and to see that all
these subsumptions remain in the module Oreach

Endocarditis.

In principle, it should be highly effective to use a small subsumption module
to optimize standard reasoning of subsumption due to a smaller number of axioms
needed to be taken into consideration. This is nevertheless not helpful if the goal-
directed subsumption algorithm (see Section 4.2) is used for subsumption querying.
As already mentioned, there is a connection between this algorithm and reachability-
based modularity. In fact, any axiom that is involved in a rule application during
the computation of subsumes?(A v B) (see Algorithm 2 on page 64) belongs to the
reachability-based module Oreach

A in O. The following theorem states this correlation:

Theorem 42 (subsumes?(A0 v B0) only requires axioms in Oreach
A0

). Let O be

an ontology in EL+ normal form, and Oreach
A0

the reachability-based module for S =
{A0} in O. Then, subsumes?(A0 v B0) (i.e., the subsumption-testing procedure in
Algorithm 2 on page 64) only requires axioms in Oreach

A0
.
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Proof. Assume that Algorithm 2 requires α, for some axiom α ∈ O, i.e., α is used
in a rule application and thus causes addition to either S(·) or R(·). Before we can
prove the proposition, we need the following invariants:

INV1: If a concept name A is activated, then A is A0-reachable w.r.t. O.

INV2: If B ∈ S(A) for some concept names A, B, then B is A0-reachable w.r.t. O.

INV3: If (A, B) ∈ R(r) for some role name r, then r is A0-reachable w.r.t. O.

INV4: If (B → B) ∈ queue(A) and, for all B ′ ∈ B, B′ is A0-reachable, then B is
A0-reachable (a special case, if B ∈ queue(A), then B is A0-reachable); and, if
∃r.B ∈ queue(A), then r and B are A0-reachable.

INV5: If r is processed by process-new-edge, then r is A0-reachable w.r.t. O.

We start with demonstrating that all the invariants hold after initialization. The goal-
directed subsumption algorithm initializes itself by activating A0 and performing the
following operations:

• S(A0) := {A0,>};

• R(r) := {(A0, A0)} if O |= ε v r, or R(r) := ∅ otherwise; and

• queue(A0) := Ô(A0) ∪ Ô(>) ∪
⋃

r with O|=εvr

(
Ô(∃r.A0) ∪ Ô(∃r.>)

)
.

It is obvious to see that INV5 is not affected by initialization. INV1 and INV2 hold since
A0 is A0-reachable w.r.t. O by the definition of reachable names (see Definition 37
on page 82). We make a case distinction for INV3. In the first case, let r be such
that O |= ε v r, i.e., there exists a chain of role hierarchy axioms ε v r1, r1 v
r2, . . . , rn−1 v rn ∈ O with r = rn. Since Sig(ε) = ∅, all role names in the chain
are x-reachable for any x ∈ Sig(O). In particular, r is A0-reachable, thus preserving
INV3. In the second case, INV3 holds vacuously since R(r) is initialized with the empty
set. An entry that is added to the queue of A0 corresponds to one of the following
axioms (up to commutativity of u) for some concept names B(i) and role name s:
A0 u B1 u · · · u Bn v B, A0 v ∃s.B, > v B, > v ∃s.B, ∃r.A0 v B and ∃r.> v
B. The first axiom induces the conditional queue entry (B → B) ∈ Ô(A0) with
B = {B1, . . . , Bn}. By the definition of reachable names, if A0 and Bi for 1 ≤ i ≤ n
are A0-reachable, then B is as well A0-reachable. Hence, INV4 is preserved w.r.t. the
conditional queue entry since A0 is A0-reachable. In the special case where B = ∅ and
all other cases, adding any of these entries to queue(A0) does not violate INV4 since
all the symbols on the lhs of these axioms (i.e., r, A0) and thus those on the rhs (i.e.,
s, B) are A0-reachable.

After initialization, the data structures are manipulated and concept names be-
come activated. It remains to show that every modification preserves the invariants.
We make a case distinction based on the lines of execution that can potentially violate
one of the invariants above. Recall that only activated concepts A can be processed
by goal-directed-process.
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• In line 8 of goal-directed-process, B is added to S(A) if B ⊆ S(A). We need
to show that INV2 (the only invariant that could be invalidated) is preserved.
By INV2, B ⊆ S(A) implies that Bi is A0-reachable for every Bi ∈ B. Since
B → B was in queue(A), the first part of INV4 implies that B is A0-reachable,
thus preserving INV2 as required.

• In line 9 of goal-directed-process, elements from Ô(B) are added to queue(A).
We need to show that INV4 is preserved. Due to INV2 and the fact that B ∈
S(A), B is A0-reachable. There are three potential kinds of axioms involved,
i.e., B v B′, B v ∃r.B′, and B1 u · · · u Bn v B′ such that B = Bi and
1 ≤ i ≤ n. In the first two cases, B ′ (r, B′, resp.) is A0-reachable by the
definition of reachable names, thus preserving INV4. In the last case, the first
part of INV4 follows immediately from the definition of reachable names where
Sig(αL) = {B1, . . . , Bn} and Sig(αR) = {B′}.

• In line 11 of goal-directed-process, elements B ′′ of Ô(∃r.B) are added to queue(A′)
such that (A′, A) ∈ R(r) and B ∈ S(A). We need to show that INV4 is preserved.
Thus, there is an axiom ∃r.B v B′′ in O. It holds that B is A0-reachable due
to INV2 and B ∈ S(A), while r is A0-reachable due to INV3 and (A′, A) ∈ R(r).
By the definition of reachable names, B ′′ is also A0-reachable, preserving (the
special case of) INV4.

• In line 16 of goal-directed-process, B is activated. We need to show that INV1 is
preserved. Since ∃r.B occurred in queue(A), the second part of INV4 guarantees
that B (together with r) is A0-reachable, thus preserving INV1.

• In line 17 of goal-directed-process, the sub-procedure process-new-edge is invoked.
We need to show that INV5 is preserved. Since ∃r.B occurred in queue(A), the
second part of INV4 guarantees that r (together with B) is A0-reachable, thus
preserving INV5.

• In line 2 of process-new-edge, the pair (A, B) is added to R(s) with O |= r v s.
We need to show that INV3 is preserved. It is already shown above that r is
A0-reachable. It follows by the definition of reachable names that s is also
A0-reachable. Therefore, INV3 is preserved.

• In line 3 of process-new-edge, elements B ′′ of Ô(∃s.B′) with B′ ∈ S(B) are
added to queue(A). We need to show that INV4 is preserved. Thus, there exists
an axiom ∃s.B′ v B′′ in O. It is readily proved above that s is A0-reachable.
Due to INV2 and that B′ ∈ S(B), B′ is also A0-reachable. Hence, augmenting
the queue with B′′ preserves (the special case of) INV4.

• In line 5 of process-new-edge, we need to show that u is A0-reachable for INV5

to be preserved. There is an axiom t ◦ s v u in O such that (A′, A) ∈ R(t) and
(A, B) ∈ R(s). By INV3, both s and t are A0-reachable, and so is u as required.

• In line 8 of process-new-edge, preservation of INV5 can be demonstrated in a
parallel way.
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Now we show that α is indeed A0-reachable w.r.t. O, thus in Oreach
A0

. We make a
case distinction w.r.t. the form of α.

• X v Y is required when Y ∈ Ô(X) has been enqueued to queue(A) for some
concept name A. This means that X had been added to S(A), implying by INV2

that X is A0-reachable by INV2. Obviously, α is A0-reachable by the definition
of reachable axioms.

• X1u· · ·uXn v Y is required if Xi has been added to S(A) and {X1, . . . , Xn} ⊆
S(A) for some concept name A and 1 ≤ i ≤ n. By INV2, every Xi is A0-reachable,
and thus α is A0-reachable by definition.

• X v ∃r.Y (analogous to the first case).

• ∃r.X v Y is required when Y ∈ Ô(∃r.X) has been enqueued to queue(A) for
some concept name A (line 11 in goal-directed-process and line 3 in process-new-

edge). Since R(r) is not empty, INV3 implies that r is A0-reachable. Also, X is
A0-reachable since X occurs in some S(B). By definition, α is A0-reachable.

• r v s is required when it participates in the outer for-loop in process-new-edge.
Since r is A0-reachable by INV5, s is also A0-reachable.

• u ◦ s v v is required when the conditions in line 4 (resp, line 6) of process-new-

edge are satisfied. Obviously, α is A0-reachable since both u and s are.

o

We now establish the following result which plays a principal role in modularization-
based axiom pinpointing (see Subsection 5.2.4).

Theorem 43 (Oreach
A is strong subsumption module). Let O be an EL+ ontology

and A a concept name. Then Oreach
A is a strong subsumption module for A in O.

Proof. The fact that Oreach
A is a subsumption module is shown in Corollary 41 on

page 86. To show that it is strong, assume that A vO B holds, but there is a
MinA S for A vO B that is not contained in Oreach

A . Thus, there must be an axiom
α ∈ S \ Oreach

A . Define S1 := S ∩ Oreach
A . Note that S1 is a strict subset of S since

α 6∈ S1. We claim that A vS B implies A vS1 B which contradicts the fact that
S 6⊆ Oreach

A is a MinA for A vO B.

We prove the claim by showing the contraposition: assume that A 6vS1 B, i.e.,
there is a model I1 of S1 such that AI1 6⊆ BI1 . We extend I1 to I by setting yI := ∅
for all symbols (concept and role names) y that are not A-reachable. It is easy to see
that AI 6⊆ BI . In fact, we have AI = AI1 (since A is A-reachable); and BI = BI1

if B is A-reachable, or BI = ∅ otherwise. It remains to be shown that I is indeed a
model of S, i.e. satisfies all axioms β = (βL v βR) in S. There are two possibilities:

• β ∈ S1. Since S1 ⊆ O
reach
A , all symbols in Sig(β) are A-reachable. Consequently,

I1 and I coincide on the names occurring in βL v βR. Since I1 is a model of
S1, we thus have (βL)I = (βL)I1 ⊆ (βR)I1 = (βR)I .
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• β ∈ S\S1. Since S1 = S ∩ Oreach
A , we have that β is not A-reachable. Thus,

βL contains a name x that is not A-reachable. By the definition of I, xI = ∅,
implying that (βL)I = ∅. Hence, the axiom is trivially satisfied.

So, I is a model of S as required. o

5.1.3 Related extraction methods

Recently, various techniques for extracting fragments of ontologies have been proposed
in the literature. An example is the algorithm proposed in [SR06] which was devel-
oped specifically for the Galen medical knowledge base. The algorithm traverses in
definitional order and into existential quantifications but does not take into account
other dependencies such as role hierarchy and GCIs. This method is definition-closed
and as such corresponds to unfolding a concept. If applied to our example ontology
Omed (Figure 2.2 on page 24), the algorithm would extract only α7 and α8 as the seg-
mentation output for the signature S = {Pancarditis}, whereas Oreach

Pancarditis comprises
α7–α10 and α12–α15. Obviously, the segmentation output is not a subsumption mod-
ule for Pancarditis in the sense of Definition 23 on page 31 since it does not preserve,
e.g., the subsumption Pancarditis vOmed

HeartDisease.

Another example is the Prompt-Factor tool [NM03] which implements an algo-
rithm that, given an ontology O and a signature S, computes a subset O1 ⊆ O by
retrieving to O1 axioms that contain symbols in S and extending S with Sig(O1) un-
til a fixpoint is reached. This is similar to our modules based on the extended loose
reachability, but it does not distinguish symbols occurring on lhs and rhs of axioms.
Hence, it corresponds to the reachability problem in an undirected graph. Consid-
ering our example ontology, the tool would return the whole ontology as output for
S = {Pancarditis}, even though several axioms are irrelevant.

The following proposition formally states the relationships among the results of
these two methods and the reachability-based module:

Proposition 44 (Odef
S
⊆ Oreach

S
⊆ Oloose

S
⊆ Oprompt

S
). Let O be an EL+ ontology and

S a signature. Then, the following hold:

1. Odef
S
⊆ Oreach

S

2. Oreach
S

⊆ Oloose
S

3. Oloose
S
⊆ Oprompt

S

where Odef
S

is the result of applying the algorithm from [SR06] to O and S, Oreach
S

is
the reachability-based module for S in O, Oloose

S
is the module based on the extended

loose reachability for S in O, and Oprompt
S

is the result from the Prompt-Factor [NM03]
tool applied to O and S.
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Proof. Point 1 is trivial since Oreach
S

is definition-closed, i.e., contains all concept
definitions that are used for unfolding a concept A ∈ S.

Since reachability in (directed) hypergraph is stronger than that in (directed)
graph, Point 2 follows from the fact that if a hyperedge 〈 {x1, . . . , xn}, x 〉 (in the
corresponding hypergraph for S-reachability) is induced by an axiom α = (αL v αR)
with {x1, . . . , xn} = Sig(αL) and x ∈ Sig(αR), then there must also be an edge 〈xi, x〉
in G′l(O) for every xi.

For Point 3, Oprompt
S

is based on the extended loose reachability graph, in which
edges are undirected (bidirectional). Let G ′l(O) be the extended loose reachability
graph for O, and G ′′l (O) denote the undirected graph obtained from G ′l(O). Obviously,
if there is a path from an x ∈ S in the directed graph G ′l(O), then so is there in the
undirected graph G ′′l (O). Hence, the module based on reachability in G ′l(O) (i.e.,
Oloose

S
) is contained in the one based on reachability in G ′′l (O) (i.e., Oprompt

S
). o

By definition, a locality-based module (see Definition 22 on page 31 and [CHKS07,
CHWK07]) for a given signature is not necessarily unique, but the algorithm given
in [CHKS07] extract the minimal locality-based module for a given signature. It
was shown in [CHKS08] that given an ontology O and a signature S, there always
exists the unique minimal locality-based module Oloc

S
. The authors also showed that

modules based on syntactic locality are subsumption module in the sense defined in
Definition 23 on page 31. In the following, we show that the result from their algorithm
coincide with that from Algorithm 6. In other words, the reachability-based module
is equivalent to the minimal locality-based module.

Theorem 45 (Oreach
S

is the minimal locality-based module). Let O be an EL+

ontology, S ⊆ Sig(O) a signature. Then, Oreach
S

is the minimal locality-based module
for S in O.

Proof. First, we show that Oreach
S

is a locality-based module. To prove this, it
suffices to show that, for each axiom α = (αL v αR) ∈ O\Oreach

S
, α is syntactically

local w.r.t. S ∪ Sig(Oreach
S

). Since Oreach
S

comprises all S-reachable axioms, α is not
S-reachable, i.e., there exists an x ∈ Sig(αL) such that x is not S-reachable. By
Point 4 of Proposition 38 on page 82, x 6∈ S ∪ Sig(Oreach

S
). Since x occurs in αL, by

Definition 22 on page 31, α is syntactically local w.r.t. S ∪ Sig(Oreach
S

), as required.

It remains to be shown that Oreach
S

is minimal. Assume to the contrary that a
proper subset Oreach

S
\{α} is a locality-based module, for some axiom α = (αL v

αR) ∈ Oreach
S

. By definition, each axiom β ∈ O\(Oreach
S
\{α}) is syntactically local

w.r.t. S′ = S ∪ Sig(Oreach
S
\{α}). In particular, α is syntactically local w.r.t. S′. Our

claim is that α is not S-reachable w.r.t. O, contradicting the fact that α ∈ Oreach
S

. Ã
Claim: Let S′ = S ∪ Sig(Oreach

S
\{α}) with α syntactically local w.r.t. S′. Then, α is

not S-reachable w.r.t. O.

Since α = (αL v αR) is syntactically local w.r.t. S′, there must exist an x ∈ Sig(αL)
such that x 6∈ S′. There are two mutually disjoint possibilities:

• x 6∈ S∪ Sig(Oreach
S

). Then, x (thus, α) is not S-reachable by Point 4 of Proposi-
tion 38.



92 Techniques for Supplemental Reasoning

• x ∈ Sig(α)\(S∪ Sig(Oreach
S
\{α})). Then, x does not occur in S nor in any other

axioms in Oreach
S

apart from α. It follows that x cannot be S-reachable since
it only occurs in α, in which it occurs on the left-hand side. Thus, α is not
S-reachable w.r.t. O.

o

Below we formulate an immediate consequence of Theorem 43 and 45:

Corollary 46. Let O be an EL+ ontology and A a concept name. Then, a locality-
based module for S = {A} in O is a strong subsumption module for A in O.

Proof. Let O′ ⊆ O be a locality-based module for S = {A} in O. Theorem 45 implies
that Oreach

A ⊆ O′. By Theorem 43, Oreach
A contains all the MinAs for A vO B for all

concept names B in O. Hence, all those MinAs must also be contained O′, implying
that O′ is a strong subsumption module. o

The property of strong subsumption module also extends to locality-based modules
in the expressive DL SHOIQ. As this is out of scope of the present dissertation, we
refer the interested reader to [SQJH08].

Another consequence of Theorem 45 is that Algorithm 6 can be used to extract
a locality-based module in an EL+ ontology. The main difference, in contrast to the
algorithm used in [CHKS07, CHWK07], is that Algorithm 6 considers only “active”
axioms for Sig(αR) when a new axiom αL v αR is extracted, as opposed to all the
axioms in the ontology. This could help to greatly reduce the search space especially
when the number of active axioms is relatively small. Also, testing whether an EL+

axiom α = (αL v αR) is non-local w.r.t. a signature S∪Sig(OS) boils down to testing
S-reachability of α, which is a simpler operation of testing set inclusion Sig(αL) ⊆?

S ∪ Sig(OS). This is due to the fact that any EL+ concept description and role
composition αL, with an x ∈ Sig(αL) interpreted as the empty set, are themselves
interpreted as the empty set. This observation could be used to optimize module
extraction of ontologies formulated in expressive Description Logics.

5.2 Axiom Pinpointing

Similar to writing large software, building large-scale ontologies is an error-prone en-
deavor. Techniques for standard reasoning developed in Chapter 4, such as subsump-
tion, can help alert the developer or user of an ontology to the existence of errors.
For example, in the current version of the medical ontology Snomed ct, the concept
‘amputation of finger’ is classified as a subconcept of ‘amputation of hand,’ which is
clearly unintended [SBSS07, SMH07]. Formally, the following subsumption holds:

AmputationOfFinger vOSnomed AmputationOfHand. (5.1)

Finding the axioms that are responsible for this among almost four thousand axioms
of Snomed ct is at best not always easy by hand.

To overcome this, the problem of computing all justifications (henceforward, Mi-
nAs) has emerged as a key reasoning service for ontology design and maintenance
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[SC03, PSK05, MLPB06, BPS07b, BP07, KPHS07, BS08]. In [SC03], Schlobach and
Cornet have coined the name “axiom pinpointing” for the task of finding all MinAs,
given an entailment. Most of the work on axiom pinpointing in DLs was concerned
with rather expressive DLs (see, e.g., [SC03, PSK05, MLPB06]).

As a first step towards providing such support, Schlobach and Cornet [SC03] de-
scribe an algorithm for computing all the MinAs for a given entailment that follows
from an ontology (see Definition 17 on page 29). A MinA helps the user to com-
prehend why a certain consequence holds. The underlying DL considered in [SC03]
is ALC with an unfoldable TBox, and the unwanted entailments are unsatisfiability
of concepts. The algorithm is an extension of the known tableau-based satisfiabil-
ity algorithm for ALC [SSS91, BN07], where labels keep track of which axioms are
responsible for an assertion to be generated during the run of the algorithm.

The problem of computing MinAs of a DL ontology was actually considered earlier
in the context of extending DLs by default rules. In [BH95], Baader and Hollunder
tackled this problem by introducing a labeled extension of the tableau-based consis-
tency algorithm for ALC ABoxes [Hol90], which is very similar to the one described
later in [SC03]. The main difference is that the algorithm described in [BH95] does
not directly compute minimal subsets having an entailment, but rather a monotone
Boolean formula whose variables correspond to the axioms of the knowledge bases and
whose minimal satisfying valuations correspond to the MinAs. Another difference is
that in [BH95] the ABox is divided into a static and a refutable part, where the ele-
ments of the static part are assumed to be always present, and subsets are built only
of the refutable part of the ABox.

The approach by Schlobach and Cornet was extended by Parsia et al. [PSK05] to
more expressive DLs, and the one by Baader and Hollunder was extended by Meyer et
al. [MLPB06] to the case of ALC with general TBoxes, which are no longer unfoldable.

While the previous work on pinpointing in DLs considered fairly expressive DLs
that contain at least ALC, the results reported in this section are concerned with
pinpointing in the lightweight DL EL+. Also, we focus on subsumption as opposed
to unsatisfiability because this is more interesting in sub-EL+ logics and facilitate
discussion of the modularization-based approach.3

In Subsection 5.2.1, we investigate the inherently high complexity of axiom pin-
pointing in spite of tractability of standard reasoning. Subsection 5.2.2 is dedicated
to the black-box approach. It shows that one MinA can always be computed in
polynomial time, presents an improved black-box algorithm motivated by the binary
search, and describes an algorithm based on the hitting-set tree search for computing
all MinAs. The glass-box techniques for axiom pinpointing are discussed in Subsec-
tion 5.2.3. We describe an extension to the classification algorithm with the axiom
labeling techniques and show that it computes all MinAs in exponential time. Ad-
ditionally, a simplified version of the labeled algorithm is proposed that computes a
small (possibly non-minimal) set of axioms. To cope with large-scale ontologies, we
develop a novel approach based on the computation of reachability-based modules in
Subsection 5.2.4.

3Unsatisfiability and subsumption are interreducible (see Section 2.3).
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5.2.1 Complexity of axiom pinpointing

In this subsection, we show hardness results regarding the computation of all MinAs.
In fact, we only use expressivity of the sublanguage HL of EL with the simplest
form of terminology, i.e., unfoldable TBoxes.4 These hardness results are immediately
transfered to EL+ and EL++, as well as other Description Logics.

If we want to compute all MinAs, then in the worst case an exponential runtime
cannot be avoided since there may be exponentially many MinAs for a given sub-
sumption. The following example shows that this is already the case for acyclic HL
TBoxes.

Example 47 (Exponentially many MinAs). For all n ≥ 1, define Tn to be an
acyclic HL TBox consisting of the following (primitive) concept definitions:

A v P1 uQ1;
Pi v Pi+1 uQi+1, for 1 ≤ i < n;
Qi v Pi+1 uQi+1, for 1 ≤ i < n;
Pn v B;
Qn v B

The size of Tn is linear in n, and we have the consequence A vTn B. Obviously, there
are 2n MinAs for A vTn B since, for each i such that 1 ≤ i ≤ n, it suffices to have
either Pi’s or Qi’s definition. That is, either Pi v Pi+1 uQi+1 or Qi v Pi+1 uQi+1 in
the case that i < n, and either Pn v B or Qn v B otherwise. a

Though the standard reasoning of subsumption is polynomial, the combinatorial na-
ture of axiom pinpointing makes it hard to deal with all possible MinAs. In fact, as
soon as we want to know more about the properties of the set of all MinAs, this can-
not be achieved in polynomial time (unless P=NP). For instance, determining whether
there exists a MinA of which cardinality is bounded by a given natural number n is
NP-hard.

Lemma 48 (Lower bound). Let T be an acyclic HL TBox, A, B concept names
occurring in T , and n a natural number. It is NP-hard to decide whether or not there
is a MinA for A vT B of cardinality ≤ n.

Proof. This can be shown by a reduction of the NP-hard hitting set problem [GJ79]:
Given a collection S1, . . . Sk of sets and a natural number n, determining whether or
not there is a set H of cardinality ≤ n such that S ∩ Si 6= ∅ for i = 1, . . . , k. Such a
set H is called a hitting set. Given S1 = {p11, . . . , p1`1}, . . . , Sk = {pk1, . . . , pk`k

}, we
use a concept name Pij for every element pij ∈ S1 ∪ . . . ∪ Sk as well as the additional
concept names A, B, A11, . . . , Ak`k

, Q1, . . . , Qk. Define the acyclic HL TBox T as the
smallest set containing:

(1) A v
d

1≤i≤k,1≤j≤`i
Aij ;

(2) Aij v Pij , for 1 ≤ i ≤ k, 1 ≤ j ≤ `i;
(3) Pij v Qi, for 1 ≤ i ≤ k, 1 ≤ j ≤ `i;
(4) B ≡ Q1 u . . . uQk

4The sublanguage HL does not allow for roles and existential restrictions. The name is motivated
by the fact that GCIs involving HL concepts are essentially propositional Horn clauses.
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Our claim is that S1, . . . , Sk has a hitting set of cardinality ≤ n if, and only if, there
is a MinA for A vT B of cardinality ≤ n + k + 2.

“Only if” Let H be a hitting set of cardinality ≤ n. Define a subset S ⊆ T to be
the smallest set such that:

• axioms (1), (4) are in S;

• for each pij ∈ H, Aij v Pij ∈ S;

• for 1 ≤ i ≤ k and pij ∈ H, Pij v Qi ∈ S if Pij′ v Qi 6∈ S for all j′ 6= j.

Intuitively, we take exactly one axiom Pij v Qi, for each i, where Aij v Pij ∈ S. This
is possible since H is a hitting set. So, we have A vS B. Obviously, S has cardinality
≤ n + k + 2, thus there is a MinA S ′ ⊆ S for A vT B of cardinality ≤ n + k + 2.

“If” Let S ⊆ T be a MinA for A vT B of cardinality ≤ n + k + 2. Since S is
a MinA, it contains (1),(4), and exactly k axioms of type (3), one for each Qi. The
remaining ≤ n axioms are of type (2). Define a set H := {pij | Aij v Pij ∈ S}. By
construction, H is a hitting set, and its cardinality is ≤ n. o

The following result is a direct consequence of the fact that subsumption in EL++ is
decidable in polynomial time.

Lemma 49 (Upper bound). Let O be an EL++ ontology , A, B concept names
occurring in T , and n a natural number. The problem of deciding whether or not
there is a MinA for A vT B of cardinality ≤ n is in NP.

Proof. A subset S ⊆ O of cardinality n can be guessed in polynomial time and then
verified whether the subsumption A vS B holds. Clearly, such a subset exists if, and
only if, there is a MinA of cardinality ≤ n. o

The lower bound for the DL HL, in conjunction with the matching upper bound for
the DL EL++, gives us NP-completeness of the decision problem in the logics HL,
EL, EL+, and EL++:

Theorem 50. Let T be a terminology ranging from acyclic HL TBox to an EL++

ontology. Also, let A, B be concept names occurring in T , and n a natural number.
Then, it is NP-complete to decide whether or not there is a MinA for A vT B of
cardinality ≤ n.

In the context of output enumeration problems, in contrast to decision problems,
it is often more sensible to consider a different kind of complexity. The so-called
enumeration complexity for an enumeration problem has been introduced in [JPY88]
which takes into account not only the input (in our context, the ontology) but also
the output (the MinAs) of the algorithm. In a nutshell, there are three complexity
classes listed as follows, ordered from better behavior to worse:

Polynomial delay algorithms generate all the MinAs, one after the other in some
order, in such a way that the delay until the first MinA is output and between any
two consecutive MinAs is bounded by a polynomial in the size of the ontology.
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Incremental polynomial time algorithms can, given the ontology and a number
of (pre-computed) MinAs, generate or determine nonexistence of another MinA
in time polynomial in the combined size of the ontology and the given MinAs.

Polynomial total time algorithms generate all the MinAs in time polynomial in
the combined size of the ontology and all those MinAs.

It is not hard to visualize the hierarchy of these three complexity classes, i.e., poly-
nomial delay implies incremental polynomial time which in turn implies polynomial
total time. Ideally, one would expect a system to be so responsive that it generates
output with a polynomial delay. However, this notion is quite strong, and there is no
known axiom pinpointing algorithm that runs in polynomial delay. The least that we
could hope for is an algorithm that runs in polynomial total time.

It is still open as to which counting complexity class the problem of generating all
MinAs belongs. However, if we allow the knowledge base to comprise not only refutable
axioms but also static axioms (i.e., axioms believed to be flawless and ought not be
refuted), a hardness result concerning this type of complexity is known. Intuitively,
we are only interested in computing minimal sets of the refutable axioms, from which,
together with static axioms, the consequence follows. A similar ontological setting, as
well as potential application scenarios, is discussed earlier in Section 4.4. Formally,
we define the slightly generalized axiom pinpointing problem as follows:

Definition 51 (MinA for HL duo-TBox). Let T = (Ts ]Tr) be an HL TBox and
A, B concept names occurring in it such that A vT B. Then, a minimal axiom set
(MinA) for A vT B is a subset S of Tr such that A vTs∪S B, but A 6vTs∪S′ B for all
strict subsets S ′ ⊂ S. 3

Let T , A, B be as defined in the definition above. It has been shown in [BPS07b] that
there is no (unless P=NP) polynomial total time algorithm that computes all MinAs
for A vT B with T = (Ts ] Tr) an HL duo-TBox.

All the results that have been presented so far suggest that axiom pinpointing
is inherently hard, despite the tractability of the standard decision problems in the
corresponding logics. It is readily evident that the source of complexity lies at the
combinatorial nature of the set problem. In fact, a single MinA can be computed in
polynomial time, provided that the underlying DL of interest is tractable. The next
subsection has the details.

5.2.2 Black-box techniques

As mentioned in the previous subsection, a polynomial runtime can be attained if only
a single MinA is required for a subsumption relationship. Algorithm 7 describes how
this is achieved in an extremely näıve way. It goes through all axioms (in a given fixed
order) and throws away those axioms that are not essential to obtain the subsumption
relationship at hand. An axiom is not essential if the subsumption still holds in its
absence. This method of computing MinAs is commonly known in the literature as the
black-box approach. The term ‘black box’ refers to an existing DL reasoner used off the
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Algorithm 7 Linear extraction of a MinA.

Procedure lin-extract-mina(A, B,O)
Input: A, B: concept names; O: EL+ ontology
Output: MinA S for A vO B

1: S := O
2: for each axiom α ∈ O do
3: if A vS\{α} B then
4: S := S \ {α}
5: end if
6: end for
7: return S

shelf without the need to be internally modified. The minimization algorithm exploits
a DL reasoner by calling its standard inference services, for instance subsumption
queries in this case. Since the algorithm performs n subsumption tests (where n
is the number of axioms occurring the ontology) and each subsumption test takes
only polynomial time, the overall complexity of this algorithm is polynomial. It is
straightforward to see that its output actually is a MinA for A vO B.

Theorem 52. Given an EL+ ontology O and concept names A, B such that A vO B,
Algorithm 7 terminates in time polynomial in the size of O, and yields a MinA for
A vO B.

Although it requires polynomial time in theory, computing one MinA using Algo-
rithm 7 does not perform well on an average-size ontology and is highly infeasible on
large-scale ontologies like Snomed ct.5 In fact, it has to make as many calls to the
subsumption checking procedure as there are axioms in the ontology, which is almost
four hundred thousands in the case of Snomed ct.

Improved pruning algorithms

There is actually a lot of room for improvement following the observation that the
input ontology is normally much larger than the output MinA, i.e., most of the axioms
are irrelevant to a particular entailment. One way to improve the näıve algorithm is
to employ the so-called sliding window technique [KPHS07], in which a window of
varying size is sliding through the axioms and those axioms in the window are pruned
from the ontology. The special case where the window is of size one axiom boils down
to Algorithm 7. This simple idea effectively reduces the number of subsumption tests
because a large number of the axioms can be dispensed with during the minimization.
It is not priori clear what size the sliding window should have. In [KPHS07], the
authors start with window size n being either one tenth of the number of axioms or
ten (which ever is greater) and shrink the window size by some factor when pruning is
repeated. Whenever axioms in a block of window are not removed due to the presence

5The näıve minimization algorithm did not terminate on Snomed ct in 48 hours and took about
3 minutes to compute a MinA from NotGalen.
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Algorithm 8 Logarithmic extraction of a MinA.

Procedure log-extract-mina(A, B,O)
Input: A, B: concept names; O: EL+ ontology
Output: MinA for A vO B

1: return log-extract-mina-r(A, B, ∅,O)

Procedure log-extract-mina-r(A, B,Os,Or)
Input: A, B: concept names; Os: support set (of axioms); Or: EL

+ ontology
Output: minimal subset S ⊆ Or such that A vOs∪S B

1: if |Or| = 1 then
2: return Or

3: end if
4: S1,S2 := halve(Or)
5: if A vOs∪S1 B then
6: return log-extract-mina-r(A, B,Os,S1)
7: end if
8: if A vOs∪S2 B then
9: return log-extract-mina-r(A, B,Os,S2)

10: end if
11: S ′1 := log-extract-mina-r(A, B,Os ∪ S2,S1)
12: S ′2 := log-extract-mina-r(A, B,Os ∪ S

′
1,S2)

13: return S ′1 ∪ S
′
2

of an essential axiom in it, pruning is repeated with a smaller window to single out
this essential axiom. This process continues until the window size is one.

In [BS08], we have proposed to use the binary search technique of “halve and
check” to prune axioms. The same idea has been employed in [BM07] to minimize
valuation when computing prime implicates. Essentially, instead of going through
the axioms one by one and pruning one axiom at a time, the algorithm partitions
the ontology into two halves. It then employs a DL reasoner to check whether one
of them entails the subsumption. If the answer is ‘yes,’ it immediately recurses on
that half, throwing away half of the axioms in one step. Intuitively, this means that
the essential axioms in a MinA are all in one of the partitions. Otherwise, i.e., the
answer is ‘no,’ essential axioms spread over both partitions of the ontology. In this
case, the algorithm recurses on each half, while using the other half as the “support
set.” Algorithm 8 outlines this pruning strategy in more detail, where the function
halve partitions O into S1 ] S2 with ||S1| − |S2|| ≤ 1. Intuitively, the support set
Os carries axioms presumed to be essential for the subsumption. It is similar to the
static component of a duo-TBox (see Definition 51 on page 96), in the sense that
the function log-extract-mina-r minimizes Or w.r.t. A vOs∪Or B. The support set is
needed when essential axioms appear in both halves of the ontology. While one half is
being minimized, the other half is treated as if it were the static part of a duo-TBox.

It follows from the results in [BM07] that computing a MinA S for a given sub-
sumption A vO B with Algorithm 8 requires O ((|S| − 1) + |S|log(|O|/|S|)) subsump-
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tion tests, which greatly improves on the näıve minimization algorithm. That is, the
number of subsumption tests required by the algorithm is logarithmic in the size of
the input (i.e., the ontology O) but linear in the size of the output (i.e., the MinA
S). As its complexity suggests, the logarithmic minimization algorithm is effective
only when MinAs are much smaller than the ontology, or its computational over-
head may not pay off. In realistic ontologies, it is fortunately the case that MinAs
are relatively very small. For instance, the only MinA for our amputation example
in Snomed ct consists of six axioms (see Figure 6.8 on page 128). Whereas Algo-
rithm 7 requires the constant number of about four hundred thousand subsumption
tests, Algorithm 8 needs only about one hundred subsumption tests. Besides, early
subsumption tests required by the linear pruning algorithm are w.r.t. larger ontologies
than late subsumption tests since we start with O and iteratively throw away axioms.
With this algorithm, it is feasible to extract a small MinA from a large ontology.
Subsection 6.2.5 discusses the performance of black-box algorithms for computing one
MinA in Snomed ct.

Computing all MinAs

Given an ontology and an unwanted entailment, a single MinA is not sufficient to
remove the entailment from the ontology unless there exists only one MinA for the
entailment in question. To check whether a given MinA S is unique for A vO B, we
simply check if the subsumption still holds in the ontology excluding an axiom α from
S, i.e., check if A vO\{α} B for each α ∈ S. Obviously, if the test is affirmative for
some axiom α ∈ S, another MinA different from S must exist and can be obtained by
pruning O\{α}.

This can be generalized to the following problem: given an ontology O, a subsump-
tion A vO B and a collection of MinAs S1, . . . ,Sk for A vO B, determine whether
there exists another MinA S (different from all Si) for the subsumption. If any, it is
easy to see that such a MinA S has to do away with an axiom αi from each MinA Si,
with 1 ≤ i ≤ k. Otherwise, S is a superset of some Si and thus not a MinA. Then, we
need to search for a reduced ontology O\H with H a minimal set such that H∩Si 6= ∅
for all MinAs Si. If A vO\H B, then another MinA S (different from all Si) exists
and is contained in O\H. Either Algorithm 7 or 8 can then be used to prune O\H
and obtain a new MinA from the shrunk ontology.

Observe that searching for a set H is in fact the problem of computing minimal
hitting sets (see [GJ79] and Definition 19 on page 30): given a collection S1, . . .Sk of
sets, compute sets H such that H ∩ Si 6= ∅ for all i = 1, . . . , k, and there is no proper
subset H′ ⊂ H with this property. The hitting set tree (HST) algorithm developed in
[Rei87], as well as some optimization techniques introduced thereafter [GSW92], can
be utilized in our context of axiom pinpointing.

A hitting set tree (HST) algorithm for axiom pinpointing

As mentioned in Section 2.4, the ontology O corresponds to the universal set, while
the set of all MinAs S1, . . . ,Sk corresponds to the collection of subsets. The difference
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however is that, in axiom pinpointing, MinAs are not given but rather what need to
be computed. These are computed with the help of a black-box sub-procedure (i.e.,
either Algorithm 7 or 8) on the fly, while the hitting set tree (HST) is being expanded.
Every non-terminal node in the HST is labeled with a MinA, while every edge is
labeled with an axiom α ∈ O (more precisely, α ∈

⋃
1≤i≤k Si). For each node n in

the HST, H(n) denotes the set of edge labels on the path from the root of the HST
to the node n. Then, the label for n is a MinA S such that S ∩H(n) = ∅, if such a
MinA exists. In such a case (i.e., n is labeled by S), n has a successor nα for each
axiom α ∈ S, and the edge n→ nα is labeled with α. If there is no such MinA, n is a
terminus and thus marked by ¯. In this case, H(n) is a hitting set for the collection
of all MinAs.6

Algorithm 9 describes in detail the pinpointing algorithm based on HST expansion.
In the procedure hst-extract-all-minas, two global variables C and H are declared and
initialized with ∅. They are used throughout the HST expansion to store the computed
MinAs and hitting sets, respectively. In line 2, a first MinA S is computed with the
help of the black-box sub-procedure log-extract-mina7 and is taken as the label of the
root. Branches from the root are spawned by calling the recursive procedure expand-

hst for every axiom α ∈ S (line 4–6).
Line 1 to 5 of expand-hst implement two optimizations for the HST algorithms

[Rei87, GSW92, KPHS07] that help reduce the size of the HST and minimize calls
to the black-box sub-procedure. We discuss here only those optimizations that are
applicable to axiom pinpointing:8

Early path termination: This optimization is based on the observation that a su-
perset of a hitting set is itself a hitting set. Hence, if the current node n in the
HST is such that H(n) ⊇ H ′ for some previously computed hitting set H ′, then
H(n) is known to be a hitting set as well. As a result, there is no need to call
the black-box sub-procedure to check whether there is a MinA to label the node
n. In such a case, the node n is immediately marked by ⊗, and the path is
terminated.

Additionally, the current path to n can be terminated early if it is guaranteed
that all possible paths starting with H(n) have been considered previously in
the HST. This is the case if there exists a prefix-path P of some previously
computed hitting set H ′ such that P = H(n).9

MinA reuse: Recall that any non-terminus node n in the HST has to be labeled
with a MinA S such that S ∩ H(n) = ∅, if such a MinA exists. Without the
“MinA reuse” optimization, such a MinA is computed by calling the black-box
sub-procedure with a shrunk ontology O\H(n) as input. The obtained MinA S
satisfies the property stated above since S ⊆ O\H(n). To avoid calling to the

6Note that we do not need to know all the MinAs in order to compute a hitting set for all of them.
7This can be replaced by any black-box algorithm that computes one MinA, e.g., lin-extract-mina.
8E.g., an optimization designed to handle S1 ⊂ S2 in C cannot be employed here since any two

MinAs are incomparable relative to set inclusion.
9A hitting set computed by the HST algorithm can be viewed as a list where its elements are

ordered according to the path from the root to a leaf in the HST.
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Algorithm 9 Hitting set tree (HST) pinpointing algorithm.

Procedure hst-extract-all-minas(A, B,O)
Input: A, B: concept names; O: EL+ ontology
Output: collection C of all MinAs for A vO B

1: Global : C,H := ∅
2: S := log-extract-mina(A, B,O)
3: C := {S}
4: for each axiom α ∈ S do
5: expand-hst(A, B,O\{α}, {α})
6: end for
7: return C

Procedure expand-hst(A, B,O, H)
Input: A, B: concept names; O: EL+ ontology; H: list of edge labels
Side effects: modifications to S and H

1: if there exists some H ′ ∈ H such that H ′ ⊆ H or
H ′ contains a prefix-path P with P = H then

2: return (early path termination ⊗)
3: end if
4: if there exists some S ∈ C such that H ∩ S = ∅ then
5: S ′ := S (MinA reuse)
6: else
7: S ′ := log-extract-mina(A, B,O)
8: end if
9: if S ′ 6= ∅ then

10: C := C ∪ {S ′}
11: for each axiom α ∈ S ′ do
12: expand-hst(A, B,O\{α}, H ∪ {α})
13: end for
14: else
15: H := H ∪ {H} (normal termination ¯)
16: end if

sub-procedure, an existing MinA S ′ such that S ′ ∩H(n) = ∅ can be reused to
label the node n.

If none of the two optimizations applies, the black-box sub-procedure needs to be
invoked to compute another MinA S ′ (line 7). If such a MinA exists, expand-hst pro-
ceeds by spawning new edges, one for each of the axioms in S ′ (line 9–13). Otherwise,
a hitting set is found, and the path terminates normally (line 15).

Example 53 (HST pinpointing algorithm). Consider the HL TBox Tn in Exam-
ple 47 on page 94. With n = 2, T2 comprises 5 axioms as follows:

α1 : A v P1 uQ1, α2 : P1 v P2 uQ2, α4 : P2 v B,
α3 : Q1 v P2 uQ2, α5 : Q2 v B;
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n0 : {α1, α2, α4}

n2 : {α1, α3, α4}

n5 : {α1, α3, α5} n11 : {α1, α2, α5}

n9 : {α1, α3, α5}

n1 : ¯

n3 : ⊗ n4 : ¯

n6 : ⊗ n7 : ⊗ n8 : ¯

n10 : ⊗ n15 : ¯

n12 : ⊗ n13 : ⊗ n14 : ¯

α1

α2

α4

α1

α3 α4

α1
α3

α5

α1

α3

α5

α1
α2

α5

Figure 5.1: The hitting set tree produced by Algorithm 9 on Example 53.

and entails the subsumption σ = (A v B). As claimed in the referred example, there
are 22 = 4 MinAs for σ in T2. Figure 5.1 demonstrates the process of computing
all the MinAs by the HST pinpointing algorithm (i.e., Algorithm 9). To begin with,
T2 is pruned by log-extract-mina to obtain the first MinA {α1, α2, α4}, which is the
label of the root node n0 of the HST. The first branch terminates immediately since
T2\{α1} does not entail σ (marked by ¯ in n1). On the other hand, T2\{α2} |= σ,
and the second MinA {α1, α3, α4} can be computed by pruning T2\{α2} which labels
n2. When branching from n2 with α1, the optimization “early path termination” is
triggered since H(n3) ⊇ H(n1), preventing a call to log-extract-mina. In this case, n3 is
immediately labeled with ⊗, and the path is terminated early. This process continues
to expand HST until it finds all other MinAs for σ. Observe that the underlined label
of n9 in the right-most branch is the result of the “MinA reuse” optimization, where
{α1, α3, α5} is taken from n5. The total number of calls to log-extract-mina is the
number of distinct nodes (i.e., 4) plus the number of termini marked by ¯ (i.e., 5).

a

An obvious advantage of the black-box approaches is that the techniques can be used
with any existing reasoners that support standard inference services. The only major
drawback is its low performance on large-scale ontologies. In Subsection 5.2.4, we ad-
dress this problem by presenting a highly effective optimization based the computation
of reachability-based modules.

5.2.3 Glass-box techniques

An alternative to the approach presented in the previous subsection is known as the
glass-box approach. Likewise, the term ‘glass box’ refers to a DL reasoner whose
internal machinery is visible and of interest. In fact, the glass-box approach takes a
decision procedure (e.g., tableau algorithm) that gives affirmative or negative answer
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to a logical entailment query, and modifies it to a generating procedure that produces
as output a MinA (all MinAs) for a logical entailment in question.

The central tenet shared by all the previous work is that it extends a given decision
procedure with labels that keep the information about relevant axioms used during
the computation. A label may be a monotone Boolean formula or a set of sets of
axioms. Most of the previous work [SC03, BH95, MLPB06, KPHS07] focused on
tableau algorithms for specific DLs, while [BP07] considers a general tableau algorithm
for arbitrary DLs. In this subsection, we employ the glass-box techniques in the EL+

classification algorithm and discuss related issues.

A labeled classification algorithm

The labeling technique developed for tableau-based algorithms can be applied to the
polynomial-time classification algorithm (see Subsection 4.1.3). The approaches pre-
sented in [BH95, BPS07b] extend the standard reasoning algorithms by labeling each
inferred assertion with a so-called pinpointing formula: a monotone Boolean formula
from which all the MinAs can be derived. To facilitate the discussion that follows,
we follow the approach used in [SC03, PSK05] that labels each assertion with a set of
sets of (indices of) axioms. Such a set naturally corresponds to a pinpointing formula
in disjunctive normal form.

Inferred assertions the EL+ classification algorithm computes are of the forms
B ∈ S(A) or (A, B) ∈ R(r) (see Figure 4.2 on page 52). To facilitate describing the
modifications to this algorithm, these two types of assertions are viewed as (A, B)
and (A, r, B), respectively. In the labeled classification algorithm, each assertion π is
labeled with a set ` of axioms in O. The purpose of the label ` is to keep track of
the information about the axioms that have been used (through rule applications) in
order to produce π. Formally, we maintain the set of labeled assertions:

AS,R ⊆
(
CN>(O)× (CN>(O) ∪ {⊥})× 2O

)
∪
(
CN>(O)× RN(O)× CN>(O)× 2O

)
.

Observe that, unlike S(·) and R(·), an assertion (A, B) or (A, r, B) may occur in AS,R

several times with different labels ` ∈ 2O. The labeled algorithm initializes AS,R with
the smallest set consisting of:

• (A, A)∅ and (A,>)∅, for all concept names A ∈ CN>(O);

• (A, r, A)`, for r a role name such that O |= ε v r, where ` is a minimal set of
axioms containing ε v s ∈ O and a chain of role inclusion axioms ri v ri+1 ∈ O
with 0 ≤ i < n, r0 = s and rn = r.

Note that in the presence of reflexive roles, the labeled algorithm may initialize AS,R

with exponentially many labeled assertions. The following example demonstrates this:

Example 54. Let O be an EL+ ontology containing the following role inclusion
axioms:

ε v u0, ε v v0;
ui v ui+1, ui v vi+1, for 0 ≤ i < n;
vi v ui+1, vi v vi+1, for 0 ≤ i < n;
un v r, vn v r
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CR1 If {(X, A1)
`1 , . . . , (X, An)`n} ⊆ AS,R, α : A1 u · · · uAn v B ∈ O

and there is no (X, B)` ∈ AS,R such that ` ⊆ `1 ∪ · · · ∪ `n ∪ {α}

then AS,R := AS,R ⊕ (X, B)`1∪···∪`n∪{α}

CR2 If (X, A)`1 ∈ AS,R, α : A v ∃r.B ∈ O,
and there is no (X, r, B)` ∈ AS,R such that ` ⊆ `1 ∪ {α}

then AS,R := AS,R ⊕ (X, r, B)`1∪{α}

CR3 If {(X, r, Y )`1 , (Y, A)`2} ⊆ AS,R, α : ∃r.A v B ∈ O,
and there is no (X, B)` ∈ AS,R such that ` ⊆ `1 ∪ `2 ∪ {α}

then AS,R := AS,R ⊕ (X, B)`1∪`2∪{α}

CR4 If {(X, r, Y )`1 , (Y,⊥)`2} ⊆ AS,R,
and there is no (X,⊥)` such that ` ⊆ `1 ∪ `2

then AS,R := AS,R ⊕ (X,⊥)`1∪`2

CR5 If (X, r, Y )`1 ∈ AS,R, α : r v s ∈ O,
and there is no (X, s, Y )` such that ` ⊆ `1 ∪ {α}

then AS,R := AS,R ⊕ (X, s, Y )`1∪{α}

CR6 If {(X, r, Y )`1 , (Y, s, Z)`2 ⊆ AS,R, α : r ◦ s v t ∈ O,
and there is no (X, t, Z)` such that ` ⊆ `1 ∪ `2 ∪ {α}

then AS,R := AS,R ⊕ (X, t, Z)`1∪`2∪{α}

Figure 5.2: Labeled completion rules.

Obviously, the number of role inclusion axioms is linear in n, and O |= ε v r. There
are overall 2n+1 minimal chains of role inclusion axioms, i.e., ε v r0 v · · · v rn v r
where ri ∈ {ui, vi}. a

After initialization, the set of assertions AS,R (equivalent to S(·) and R(·) in Fig-
ure 4.2 on page 52) is extended by applying the labeled completion rules shown in
Figure 5.2 until no more rule applies. The update operator ⊕ is defined as follows:

AS,R ⊕ π` ≡ (AS,R\{π
`′ | ` ⊂ `′}) ∪ {π`}

Intuitively, ⊕ not only adds a new labeled assertion but also makes sure that only
minimal labels are maintained. Observe that a labeled completion rule may be applied
several times to assert the same assertion but with distinct labels. We denote by
A∗

S,R the completed set of labeled assertions obtained after the labeled classification

algorithm terminates and by lab∗(π) the set of π’s labels in A∗
S,R, i.e., {` | π` ∈ A∗

S,R}.
In contrast to the (unlabeled) classification algorithm, the labeled algorithm may not
terminate after a polynomial number of rule applications.

Lemma 55 (Termination). Given an EL+ ontology O in normal form. The labeled
classification algorithm terminates in time exponential in the size of O.
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Proof. Each rule application updates AS,R with the operator ⊕. An existing assertion
π`′ in AS,R may be removed when a new assertion π` has a proper subset ` ⊂ `′

as its label. Together with the preconditions of the labeled completion rules, it is
ensured that each labeled assertion is added to AS,R at most once. Unlike in the
unlabeled classification algorithm, there are exponentially many labeled assertions due
to exponentially many labels. Hence, the number of rule applications is exponential
in the size of O. Each rule application evidently takes time at most exponential in
the size of O. o

To show that the labeled classification algorithm is correct, we adopt the ω-
projection approach used in [BH95]. The idea is to establish the connection between
application of the labeled completion rules (see Figure 5.2), starting with an ontology
O, on the one hand, and application of the (unlabeled) completion rules (see Figure 4.2
on page 52), starting with a sub-ontology S ⊆ O, on the other hand.

Definition 56 (S-projection). Let S ⊆ O be a sub-ontology, and AS,R a set of
labeled assertions. The S-projection of AS,R (for short, S(AS,R)) is obtained from
AS,R by removing all assertions whose labels are not subsets of S. (That is, S(AS,R) :=
{π | π` ∈ AS,R and ` ⊆ S}.) 3

In what follows, we view R(·) and S(·) in the unlabeled classification algorithm as a
single set of unlabeled assertions in a straightforward way. Also, let O be an EL+ on-
tology in normal form (without range restrictions) with which the labeled classification
algorithm starts, and S ⊆ O a sub-ontology.

In the following, soundness and completeness of the labeled classification algorithm
are shown by projecting applications of labeled completion rules to those of unlabeled
completion rules, and reusing the known soundness and completeness results of the
unlabeled classification algorithm [BBL05].

Lemma 57 (Soundness). Let AS,R and A′
S,R be sets of labeled assertions such that

A′
S,R is obtained from AS,R by applying one of the labeled completion rule. Then,

one of the following holds: either S(A′
S,R) = S(AS,R), or S(A′

S,R) is obtained from
S(AS,R) by applying the corresponding (unlabeled) completion rule.

Proof. Assume that CR1 is applied to {(X, A1)
`1 , . . . , (X, An)`n} ⊆ AS,R such that

α : A1 u · · · uAn v B ∈ O. Let `′ = `1 ∪ · · · ∪ `n ∪ {α}. There are two possibilities:

• First, `′ 6⊆ S. In this case, we show that S(A′
S,R) = S(AS,R) by making a case

distinction:

– If no (X, B)` is in AS,R such that ` ⊆ S, then (X, B) is not in S(AS,R)
by the definition of S-projection (Definition 56). After rule application,
we have (X, B)`′ ∈ A′

S,R. Since `′ 6⊆ S, the S-projection definition again
implies that (X, B) is not in S(A′

S,R).

– If there exists an ` ⊆ S such that (X, B)` is in AS,R, then (X, B) is already
in S(AS,R) by the definition of S-projection. The new assertion (X, B)`′

cannot replace (X, B)` after the rule application since `′ 6⊂ `. Thus, we
have (X, B)` ∈ A′

S,R, implying by the S-projection definition that (X, B)
remains in S(A′

S,R).
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• Second, `′ ⊆ S. This, together with the definition of S-projection, implies that
{(X, A1), . . . , (X, An)} ⊆ S(AS,R). Since A′

S,R is obtained by updating AS,R

with (X, B)`′ , we know that (X, B) is contained in S(A′
S,R). If this assertion is

already present in S(AS,R), we have S(AS,R) = S(A′
S,R). Otherwise, S(A′

S,R) is
obtained from S(AS,R) by applying the unlabeled CR1.

All other cases can be demonstrated in an analogous way. o

The next lemma states that the projected set of assertions S(AS,R) is also complete.
This means, in particular, that the subsumer sets S(·) are complete.

Lemma 58 (Completeness). Let A∗
S,R be the complete set of labeled assertions to

which none of the labeled completion rules applies. Then, none of the (unlabeled)
completion rules applies to S(A∗

S,R).

Proof. We consider only CR1; all other cases can be demonstrated in an analogous
way. Assume that the assertions (X, A1), . . . , (X, An) are present in S(A∗

S,R) and
α : A1u · · ·uAn v B ∈ O. To show: the unlabeled CR1 cannot be applied to S(A∗

S,R).
There are two possibilities for S:

• α 6∈ S. In this case, the preconditions of CR1 are not fulfilled, and thus the rule
is not applicable.

• α ∈ S. Since (X, A1), . . . , (X, An) are present in S(A∗
S,R), there must be labeled

assertions (X, Ai)
`i ∈ A∗

S,R, for i ≤ n, such that `i ⊆ S. Completeness of A∗
S,R

implies that the labeled CR1 is not applicable. For this reason, it must be the
case that A∗

S,R contains (X, B)` with ` ⊆ `1∪· · ·∪ `n∪{α}. Since `i ⊆ S (for all
i) and α ∈ S, we have ` ⊆ S. By the definition of S-projection (Definition 56),
(X, B) is contained in S(A∗

S,R). This concludes that the unlabeled CR1 is not
applicable to S(A∗

S,R).

o

Putting the soundness and completeness together, the following three properties can
be established.

Theorem 59. Let O be an EL+ ontology in normal form (without range restrictions),
and A∗

S,R the completed set of labeled assertions obtained after termination of the
labeled classification algorithm on O. Then, the following hold for all concept names
A, B occurring in O:

1. if {(A, B)`, (A,⊥)`} ∩ A∗
S,R 6= ∅, then A v` B,

2. if A vS B for a sub-ontology S ⊆ O, then there exists an ` ⊆ S such that
{(A, B)`, (A,⊥)`} ∩ A∗

S,R 6= ∅; and

3. if {π`, π`′} ⊆ A∗
S,R, then ` and `′ are “⊆”-incomparable.
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Proof. Point 1 follows from Lemma 57 and the soundness of the classification algo-
rithm (the “only if” direction of Theorem 27 on page 52). In fact, the `-projection of
A∗

S,R contains either (A, B) or (A,⊥). Due to soundness of the unlabeled algorithm,
we know that A v` B.

For Point 2, we show the contraposition. Assume that there is no such ` ⊆ S
with {(A, B)`, (A,⊥)`} ∩ A∗

S,R 6= ∅. By Definition 56 on page 105, we have that
{(A, B), (A,⊥)} ∩ S(A∗

S,R) = ∅. By Lemma 58, S(A∗
S,R) is the complete result of

running the unlabeled classification algorithm on S. The completeness of the unlabeled
algorithm (the “if” direction of Theorem 27 on page 52) thus implies that A 6vS B,
as required.

For Point 3, it suffices to show that, after initialization and after each application
of a labeled completion rule, no two labels ` and `′ of the same assertion π are “⊆”-
comparable. Recall that A∗

S,R is initialized with the labeled assertions (A, A)∅, (A,>)∅

and (A, r, A)` if O |= ε v r. Since ∅ is the only label for π ∈ {(A, A), (A,>)}
and different labels ` for π = (A, r, A) must be minimal sets, Point 3 is satisfied
after initialization. After a rule application, a new label ` cannot be a superset (an
equivalent) of an existing label `′ since the last precondition of each labeled completion
rule has to be satisfied. If ` ⊂ `′, the update operator ⊕ makes sure that `′ is then
removed, thus satisfying Point 3. o

Intuitively, the three points of Theorem 59 together imply that, after termination of
the labeled classification algorithm, lab∗(A, B) is precisely the set of all MinAs for
A vO B. Viewing (the index of) each axiom as a propositional variable, lab∗(A, B) is
a pinpointing formula for A vO B. Pinpointing formulas constructed this way are in
disjunctive normal form and are minimal, in the sense that `1 6⊆ `2 for all disjuncts
`1, `2 in φ(π). In other words, every prime implicant of lab∗(A, B) is precisely one of
its disjuncts.10

De-normalization

Though producing minimal axiom sets, the labeled classification algorithm works on
an ontology in normal form. These sets cannot immediately be given to the ontology
developer as explanations to the entailment in question since they consist of normalized
axioms that differ from original ones and may use new concept/role names unknown
to the developer.

In order to obtain MinAs in original axioms, we maintain a possibly many-to-
many mapping from normalized axioms to their original source axioms. Formally,
define a function denorm : Õ → 2O, with O an EL+ ontology and Õ its normal
form. For brevity, we write denorm(`), with ` a set of normalized axioms, to denote⋃

α∈` denorm(α). Such a function can be constructed on the fly during normalization
(see Figure 4.1 on page 48). Given a labeled assertion (A, B)` ∈ A∗

S,R with A, B ∈

CN>(O), it is not hard to show that A vO′ B with O′ = denorm(`). The resulting
subset O′ of the original ontology O, however, need not be minimal. Non-minimality

10A prime implicant of a (monotone) propositional formula φ is the smallest conjunction of (positive)
literals implying φ [Qui52].
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is caused by the fact that a source axiom ax may be broken down to multiple axioms
α1, . . . , αn in normal form.

Example 60. Let O = {ax 1 : A v B u C, ax 2 : C v B} be an EL+ ontology,
and Õ = {α1 7→ {ax 1} : A v B, α2 7→ {ax 1} : A v C, α3 7→ {ax 2} : C v B}
its normal form with denorm mapping information. Then, the labeled classification
algorithm produces the completed set of assertions A∗

S,R containing (A, B){α1} and

(A, B){α2,α3}. Though both {α1} and {α2, α3} are MinAs w.r.t. Õ, only the former
is mapped to a MinA w.r.t. O, i.e., {ax 1}. The latter is mapped to a non-minimal
subset {ax 1, ax 2}, thus not a MinA w.r.t. O. a

This does not cause a problem in principle since all the MinAs in normal form
are readily available. In fact, we can simply check whether a de-normalized one is
minimal without requiring additional DL reasoning. More precisely, given a label
` ∈ lab∗(A, B), a subset S = denorm(`) of the original ontology is minimal if there is
no `′ 6= ` in lab∗(A, B) such that denorm(`′) ⊂ S.

Theorem 61 (Labeled algorithm computes all MinAs). Let O be an EL+ on-
tology, Õ its normal form, and denorm as defined above. Also, let A∗

S,R be the complete
set of labeled assertions obtained after the labeled classification algorithm terminates
on Õ. Then, the following are equivalent:

1. S is a MinA for A vO B, and

2. there exists an (A, B)` ∈ A∗
S,R such that S = denorm(`) and there is no (A, B)`′ ∈

A∗
S,R with denorm(`) ⊂ S.

Keeping a single label

Though termination of the labeled classification algorithm is attained, we helplessly
lose tractability of the originally polytime algorithm. This is a direct consequence
of our necessary modification to the preconditions of the labeled completion rules.
Readily having an assertion in AS,R, for instance (A, B)`, does not guarantee inappli-
cability of the rule that involves adding (A, B)`′ . In other words, not only assertions
proper but also their labels can determine applicability of the labeled completion rules.
Obviously, one cannot expect a polynomial-time algorithm for computing all MinAs,
given the complexity results in Subsection 5.2.1. However, provision of one MinA in
practically acceptable runtime is already useful in many ontology applications.

Therefore, we propose a small modification to the labeled classification algorithm
such that it labels each assertion π with precisely one label (i.e., a conjunction of
propositional variables). This is done by strengthening the preconditions of completion
rule applicability. Precisely, we modify the last precondition clause of every completion
rule to “there is no π` for some `.” Moreover, the update operation ⊕ boils down to
addition of the new labeled assertion to AS,R. In what follows, we refer to this variant
the single-labeled classification algorithm.

Observe that termination in polynomial time is regained. In fact, each rule applica-
tion corresponds to that of the abstract classification algorithm (see Subsection 4.1.3).
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The only difference is that the single-labeled algorithm aggregates tracing informa-
tion of axioms used to obtain an assertion during rule applications. Unfortunately,
the set of axioms (in normal form) corresponding to a computed label is not minimal
in general. An example demonstrating this is given below:

Example 62. Let the ontology O consist of the following GCIs:

α1 : A v X, α2 : X v ∃r.Y, α3 : ∃r.Z v B

α4 : Y v X, α5 : X v B, α6 : B v Z

After an application of CR1 w.r.t. α1 and CR2 w.r.t. α2, the assertion (A, r, Y ){α1,α2}

is added to AS,R. Similarly, we obtain (Y, Z){α4,α5,α6} ∈ AS,R after three applications
of CR1 w.r.t. α4, α5 and α6, consecutively. Both inferred assertions, together with α3,
enable applicability of CR3, adding the assertion (A, B)` to AS,R with ` = {α1, . . . , α6}.
However, ` is not minimal since the subset {α1, α5} ⊆ ` also entails A v B. a

In Example 62, the computation would not have terminated, had we employed the
full labeled classification algorithm. Instead, the labeled assertion (A, B){α1,α5} would
eventually have emerged and replaced (A, B)` in AS,R via the update operator ⊕.

Even if the single-labeled classification algorithm yielded a MinA in normal form,
we would still have to deal with another source of non-minimality as discussed above.
With a single MinA in normal form, it is impossible to check whether or not the
resulting set of original axioms is minimal (unless additional DL reasoning is em-
ployed). Given an assertion (A, B)` in the completed set of assertions A∗

S,R after

termination of the single-labeled classification algorithm, for A, B ∈ CN>(O), we call
the set denorm(`) a non-minimal axiom set (nMinA) for A vO B. Note that an
nMinA satisfies the first but not necessarily the second property for being a MinA
(c.f. Definition 17 on page 29).

The black-box approach (either Algorithm 7 on page 97 or Algorithm 8 on page 98)
can then be utilized to minimize an nMinA to obtain a MinA. Experiments described
in [BPS07b] have shown that this approach works well on medium-size ontologies.11

A labeled subsumption algorithm

Both labeled and single-labeled classification algorithms presented above compute all
MinAs (an nMinA) for every subsumption relationships in the ontology. This is a
legacy of the abstract classification algorithm. In the ontology debugging scenario, it
is usually the case that the ontology developer focuses on a single entailment (sub-
sumption in this context). The labeled and single-labeled classification algorithms are
thus not economical in this sense. Additionally, in order to carry out a fair empirical
comparison between the glass-box optimized and modularization optimized (details in
the subsequent subsection) black-box approaches to axiom pinpointing, we need to
modify our glass-box algorithm such that it focuses on the subsumption in question.

11It failed on Snomed ct with memory exhaustion since each of all the assertions (more than 5
million) is equipped with a label. This requires considerably more space.
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Algorithm 10 Glass-box optimized black-box (GOB) pinpointing algorithm.

Procedure gob-alg(A, B,O)
Input: A, B: concept names; O: EL+ ontology
Output: S: MinA for A vO B

1: S := lab-subsumes?(A, B,O)
2: return lin-extract-mina(A, B,S)

To this end, we propose a goal-directed, single-labeled subsumption algorithm that
is obtained by employing the single-labeling technique of the previous algorithm in the
goal-directed subsumption algorithm (see Subsection 4.2). Directed by the goal sub-
sumption, the algorithm activates only relevant concepts (in the sense of Theorem 42
on page 86) and terminates as soon as the subsumption is proved to hold. Soundness
of the goal-directed subsumption algorithm (see Point 1 of Theorem 32 on page 65)
and Lemma 57 imply the following corollary:

Corollary 63. Let O be an EL+ ontology in normal form, A, B ∈ CN(O), and A∗
S,R

the set of labeled assertions obtained after termination of the single-labeled subsump-
tion algorithm on O. Then, if (A, B)` ∈ A∗

S,R, then A v` B.

Like the single-labeled classification algorithm, however, the assertion’s label in A∗
S,R

does not necessarily represent a minimal set. But, this is not the only source of
non-minimality. Example 60 on page 108 demonstrates that de-normalization poten-
tially yields a non-minimal set of original axioms denorm(`) even though the set of
normalized axioms ` is minimal. Let lab-subsumes? be the single-labeled variant of Al-
gorithm 2 on page 64 that takes as input an ontology O and subsumption A v B, and
returns an nMinA for A vO B if the subsumption holds or the empty set otherwise.
Algorithm 10 outlines our Glass-box Optimized Black-box (GOB) algorithm.12

5.2.4 Modularization-based approach

In the GOB approach presented above, the labeled subsumption algorithm (which
computes an nMinA) can be seen as an optimization to the blackbox algorithm. We
employ the same idea in our novel approach based on the computation of reachability-
based modules (see Subsection 5.1.1). By Corollary 41 on page 86, we know that
A vO B if, and only if, A vOreach

A
B. It implies that Oreach

A contains at least a MinA
for A vO B, and thus it is sufficient to consider only axioms in the module when
extracting a MinA. Algorithm 11 outlines our Modularization Optimized Black-box
(MOB) algorithm mob-alg. Since reachability-based modules are usually quite small
(see [Sun08, CHKS07] and experimental results described in Subsection 6.2.4) but
not so small as nMinAs yielded by the labeled subsumption algorithm, it is not a
priori clear whether using the more complicated logarithmic minimization really pays
off. Refer to [BS08] and Subsection 6.2.5 for some evaluation results and discussion.

12The linear and logarithmic minimization algorithms are interchangeable in the GOB approach.
Due to usually very small size of nMinAs, however, the former has proved more efficient and thus
used in our evaluations.
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Algorithm 11 Modularization optimized black-box (MOB) pinpointing algorithm.

Procedure mob-alg(A, B,O)
Input: A, B: concept names; O: EL+ ontology
Output: MinA for A vO B

1: Oreach
A := extract-module(O, {A})

2: return log-extract-mina(A, B,Oreach
A )

Procedure mob-hst-alg(A, B,O)
Input: A, B: concept names; O: EL+ ontology
Output: collection of all MinAs for A vO B

1: Oreach
A := extract-module(O, {A})

2: return hst-extract-all-minas(A, B,Oreach
A )

Though lin-extract-mina performs slightly better in most cases w.r.t. Snomed, log-

extract-mina outperforms it by several orders of magnitude w.r.t. FullGalen. For
the sake of robustness, we adopt the logarithmic algorithm as the default minimization
method in our MOB approach.

In [BS08], we proposed an efficient method for checking uniqueness of the first
MinA S1 by using reachability-based modules. For this method to be complete, we
need a strong subsumption module in the sense of Definition 23 on page 31. For-
tunately, the reachability-based module Oreach

A is a strong subsumption module (see
Theorem 43 on page 89). To this end, it suffices to test whether or not A vOreach

A
\{α} B

for each axiom α ∈ S1. Note that the same idea does not apply to the GOB approach
since an nMinA is not a strong subsumption module.

Naturally, we exploit the strongness property of Oreach
A to drastically reduce the

search space the hitting set tree (HST) algorithm (see Algorithm 9 on page 101) and
the pruning algorithm need to traverse when computing all MinAs for A vO B. This
full pinpointing algorithm is outlined in mob-hst-alg of Algorithm 11.

To demonstrate the practicability of axiom pinpointing on large-scale ontologies like
Snomed ct, the three combined methods (i.e., gob-alg in Algorithm 10, and mob-alg

and mob-hst-alg in Algorithm 11) have been implemented in the CEL system. More-
over, the goal-directed subsumption algorithm (Algorithm 2 on page 64) implemented
also in CEL is used as the black-box subsumption reasoner while pruning axioms (ei-
ther by Algorithm 7 on page 97 or Algorithm 8 on page 98). Various experimental
results of these three methods on Snomed ct are discussed in Subsection 6.2.5.
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Chapter 6

Empirical Evaluation

This chapter is dedicated to evaluation of the various techniques (both for standard
and supplemental reasoning) developed in the present dissertation. The algorithms
described in the previous two chapters have been implemented in the CEL system.
The system description, as well as the reference manual and a few examples, can be
found in [Sun05a]. In the first section of this chapter, we introduce several realistic
biomedical ontologies that are used to benchmark CEL and other state-of-the-art DL
reasoners. Experiments and their empirical results are presented and discussed in
Section 6.2.

6.1 Ontology Test Suite

Surprisingly many realistic ontologies are formulated using the expressivity of EL and
extensions thereof—most of which are from the life science domain. To evaluate our
reasoning algorithms and demonstrate their scalability, we have selected a number of
large-scale biomedical ontologies to be used in our experiments. In the following, we
introduce each of these ontologies by providing a short description and Description
Logic properties, such as the number of axioms.

The Systematized Nomenclature of Medicine, Clinical Terms (Snomed) is
a comprehensive medical and clinical ontology. In Chapter 3, a case study of
EL+ provides an insight into this ontology. It is an unfoldable ELH TBox (see
Definition 3 on page 20) augmented with two complex role inclusion axioms.1.
As of release January/2005, Snomed consists of 340 972 primitive and 38 719
full concept definitions, 11 role hierarchy axioms, and a role inclusion axiom;
and refers to 379 691 concept and 62 role names.

The Thesaurus of the US National Cancer Institute (Nci) is a large and care-
fully designed ontology that has become a reference terminology covering areas
of basic and clinical science. The knowledge represented in Nci includes the
domains of diseases, drugs, anatomy, genes, gene products, techniques and bio-
logical processes, all with a cancer-centric focus in its content. It was originally

1To represent the right identity rule in the presence of roleGroup (see Section 3.1 for the details)
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designed to support coding activities across the National Cancer Institute and
to facilitate translational research in cancer.

In our experiments, we considered the OWL version2 that is formulated precisely
as an unfoldable EL TBox augmented with domain and range restrictions. It
primitively defines 27 652 concept names and refers to 70 role names, each of
which is constrained by a pair of domain and range restrictions.

The Galen Medical Knowledge Base (Galen) has been developed within an EU
project that sought to produce a reference ontology in a specialized DL (called
GRAIL) for use in developing and managing other terminologies and indexing
knowledge required for decision support, user interfaces and other knowledge
management tasks [Rec07].

The full version of this ontology contains 23 136 concept and 950 role names.3 It
is precisely based on SHIF dispensed with negation, disjunction and value re-
striction. The DL EL+ however can express most of its axioms, namely 95.75%,
and we obtained this fragment (henceforth, OFullGalen) for experimental pur-
poses by dropping role inverse and functionality axioms. The resulting ontology
can still be considered realistic and identical to the original one apart from a
small number of missing subsumption relationships involving the removed role
axioms.

Since the full version is both large and complex to be handled by DL reasoners,
a simplified version of Galen has often been considered as a decent benchmark
ontology for testing DL reasoners. This version4 has originally been produced
by Horrocks to evaluate FaCT and KRIS in his PhD thesis [Hor97]. It consists
of 2 748 concept and 413 role names. Again, we considered its EL+ fragment,
denoted by ONotGalen, by dropping role inverse and functionality axioms.

The Gene Ontology (Go) project is a collaborative effort to address the need for
consistent descriptions of gene products in different databases. It has developed
and is maintaining three controlled vocabularies (i.e., ontologies) that describe
gene products in terms of their associated biological processes, cellular compo-
nents and molecular functions in a species-independent manner.

The ontology, denoted by OGo, is formulated as an unfoldable EL TBox with a
single transitive role part-of. The release of OGo used in our experiments consists
of 20 465 concept names and the same number of primitive concept definitions,
one for each concept name. The facts that OGo is a primitive TBox and that it
contains no cyclic dependencies make it relatively easy to classify by most DL
reasoners.

The Foundational Model of Anatomy (Fma) is an evolving ontology concerned
with the formal representation of human anatomy. Its ontological framework can

2Downloadable at http://www.mindswap.iorg/2003/CancerOntology
3Downloadable at http://www.co-ode.org/galen
4Downloadable at http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/galen.owl

http://www.mindswap.iorg/2003/CancerOntology
http://www.co-ode.org/galen
http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/galen.owl
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Ontologies ]Concepts ]Roles ]Axioms Cycles

|CN(O)| |RN(O)| PCDef CDef GCI RH RI DR

OGo 20 465 1 19 465 0 0 0 1 0 no

ONci 27 652 70 27 635 0 0 0 0 140 no

OFma 75 139 2 75 139 0 0 0 2 0 yes

ONotGalen 2 748 413 2 030 695 408 416 26 0 yes

OFullGalen 23 136 950 13 149 9 968 1 951 958 58 0 yes

OSnomed 379 691 62 340 972 38 719 0 11 2 0 no

Table 6.1: The test suite of realistic biomedical ontologies.

be applied and extended to other species.5 Fma has four interrelated compo-
nents: (i) the anatomy taxonomy classifies anatomical entities according to their
generalization relationships; (ii) the anatomical structural abstraction specifies
the part–whole and spatial relationships among entities in the anatomy taxon-
omy; (iii) the anatomical transformation abstraction specifies the morphological
transformation of anatomical entities; and (iv) the metaknowledge ontology spec-
ifies the principles and rules that govern the way concepts and roles in the other
three components are represented.

The ontology, denoted by OFma, is indeed a large EL TBox extended with two
transitivity axioms, one for part-of and the other for has-part. The number of
concept names is 75 139. Concepts in OFma are only primitively defined like
most anatomical entities in any medical ontologies, yet connectivity of concepts
and cyclic dependencies make this ontology rather complex.

Table 6.1 summarizes the size and other pertinent characteristics of all the test-suite
ontologies. Numbers of axioms are broken down into the following kinds: primitive
concept definitions (PCDef), full concept definitions (CDef), general concept inclu-
sions (GCI), role hierarchy axioms (RH), role inclusions (RI) and domain and range
restrictions (DR). Note that ONci constrains each role name with a pair of domain
and range restrictions, and that domain restrictions could be regarded as GCIs in
EL+. For ONotGalen and OFullGalen, cyclic dependencies already exist when tak-
ing into account only concept definitions. The role inclusions in all ontologies except
OSnomed are indeed transitivity axioms. The two role inclusions in OSnomed represent
the right-identity rule in the presence of roleGroup (see Subsection 3.1 for the details).

It is worthwhile to mention that several other biomedical ontologies are—at the
time of writing—readily available in OWL6 thanks to a systematic mapping method-
ology and tool provided in [GHH+07]. In fact, most life science ontologies obtained
from the Open Biomedical Ontologies (OBO)7 repository turn out to be expressible in
EL+. These were not included in our experiments mostly because they are superseded
by aforementioned ontologies both in terms of scale and of expressivity.

5Available at http://sig.biostr.washington.edu/projects/fm/AboutFM.html
6Downloadable at http://owl.cs.manchester.ac.uk/repository/
7Available at http://www.bioontology.org/repositories.html

http://sig.biostr.washington.edu/projects/fm/AboutFM.html
http://owl.cs.manchester.ac.uk/repository/
http://www.bioontology.org/repositories.html
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6.2 Testing Methodology and Empirical Results

The majority of the reasoning techniques presented from Chapter 4 to 5 have been
implemented in the CEL reasoner.8 The current version of CEL is written in Common
Lisp and compiled and built using Allegro Common Lisp.

Like most evaluation methods for DL and other reasoning systems, all the exper-
iments described in this section use ‘CPU time’ as the main performance indicator.
Memory consumption is also discussed whenever appropriate. In order to confine the
execution environment and hence to induce sensible comparison, the experiments were
performed on the same Linux testing server sitting in a temperature-controlled room.
The server was equipped with a couple of 2.19GHz AMD Opteron processors and 2
GB of physical memory.

In the following, we describe our testing methodology and the empirical results of
each of the following reasoning algorithms implemented in the CEL reasoner:

• classification,

• incremental classification,

• subsumption query answering,

• modularization, and

• axiom pinpointing.

6.2.1 Classification

In order to evaluate the performance of CEL, the realistic ontologies described in the
previous section were preprocessed, classified and ‘taxonomized.’ By preprocessing,
CEL loads the ontology from file into the system, then normalizes and prepares it
for further operations (see Subsection 4.1.1 and 4.1.2). Classification is done by an
invocation to the ‘refined classification algorithm’ presented in Subsection 4.1.4 which
yields completed sets of subsumers. This information suffices to correctly answer
subsumption between two concept names but, unfortunately, not to output the concept
hierarchy or concept DAG. Algorithm 3 on page 70 is used to compute the concept
DAG from the completed set of subsumers.

These three steps were performed on all of the six benchmark ontologies. Compu-
tation time results are shown in the middle section of Table 6.2, whereas the upper
part present the percentage of positive subsumption relationships. Observe that there
are fewer than 1% of all pairs of concept names in all ontologies, for which the sub-
sumption holds. Evidently, most of the time was spent on classification, while the
computation time for the concept DAG was relatively minuscule given that the on-
tology had been classified. In fact, it took less time to compute the DAG than to
preprocess the ontology. The first (CEL†) and second (CEL‡) rows of the lower part
of Table 6.2 list the overall computation time, respectively, where the optimization

8The name stands for “Polynomial-time Classifier for the Description Logic EL+,” and the reasoner
is available at http://lat.inf.tu-dresden.de/systems/cel/.

http://lat.inf.tu-dresden.de/systems/cel/
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Ontologies OGo ONci OFma ONotGalen OFullGalen OSnomed

Positive subs. (%) 0.0482 0.0441 0.0184 0.6021 0.1648 0.0074

Preprocessing 0.46 1.09 5.39 0.28 2.54 60.56
Classification 0.95 2.28 3 920.23 2.51 197.99 1 188.85
Computing DAG 0.26 0.38 1.81 0.04 0.71 8.85

CEL† 1.67 3.75 3 927.43 2.83 201.24 1 258.26

CEL‡ 0.98 3.75 9.04 2.83 201.24 1 258.26
FaCT++ 20.12 1.72 time-out 3.28 mem-out 605.57
HermiT 16.75 34.92 123.32 12.35 mem-out mem-out
KAON2 mem-out mem-out time-out mem-out mem-out time-out
Pellet 52.58 36.11 7 753.57 31.56 mem-out mem-out
RacerPro 17.11 13.36 629.72 17.06 time-out 1 155.43

Table 6.2: Computation times (second).

“disabling R(·) for primitive TBoxes” (see Subsection 4.1.5) was disabled and enabled.
Observe that this optimization is effective on OGo and OFma which comprises only
primitive concept definitions. The standard version of CEL, with the optimization
disabled, took 1.67 and 3 927 seconds to process OGo and OFma, respectively, while it
merely took 0.98 and 9.04 seconds, respectively, when the optimization was enabled.
The presence of domain restrictions, full concept definitions and GCIs prevent the
other ontologies to benefit from this optimization, hence equal computation time by
both versions.

The empirical results have confirmed the algorithmic conjecture that the classifi-
cation algorithm performs well on loosely connected ontologies like most in our test
suite. For tightly connected ontologies, the algorithm has to construct a dense graph,
possibly with large node labels (S(·)) or a large number of edges (R(·)) or both. The
larger this graph structure becomes, the more the classification algorithm deteriorates.
A notable example is the classification (CEL†) of OFma which took more than twice the
classification time of OSnomed but generated less than one tenth of the subsumption
relationships in OSnomed. A very large portion of time was spent on populating R(·),
i.e., generating edges in the completion graph. The contrast in execution time in the
case of OFma suggests that the way R(·) is stored and maintained could be improved.

Since classification is one of the most classical inference services, it is supported by
all modern DL systems. For this reason, classification time is often used as a per-
formance indicator for DL systems. A number of state-of-the-art DL reasoners—
i.e., FaCT++9 [TH06], HermiT10 [MSH07], KAON211 [Mot06], Pellet12 [SPC+07] and
RacerPro13 [HM01b]—were considered for performance comparison. These DL reason-
ers vary in the sense that they implement different reasoning calculi and are written

9Version 1.2.0 available at http://code.google.com/p/factplusplus/
10Latest version available at http://web.comlab.ox.ac.uk/people/Boris.Motik/HermiT/
11Latest version available at http://kaon2.semanticweb.org/
12Version 1.5.2 available at http://pellet.owldl.com/
13Version 1.9.2 available at http://www.racer-systems.com/

http://code.google.com/p/factplusplus/
http://web.comlab.ox.ac.uk/people/Boris.Motik/HermiT/
http://kaon2.semanticweb.org/
http://pellet.owldl.com/
http://www.racer-systems.com/
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Figure 6.1: Performance comparison through classification time (second).

in different languages. For HermiT, KAON2 and Pellet, Sun’s Java Runtime Environ-
ment (JRE) version 1.6.0 was used with alloted 1.5GB heap space. Some reasoners
are not equipped with a profiling facility to internally measure CPU time. To achieve
comparable measurement, an external timing utility was used with all the classifying
systems.14

All ontologies in the test suite as described in the previous section were used
as benchmarks for comparing the performance of the DL reasoners. Since KAON2’s
parser, and hence HermiT’s parser, does not support (an extension of) the KRSS
syntax [PSS93], ontologies in the OWL format were used in their experiments. In
the case of OSnomed, the two complex role inclusions were only passed to CEL and
FaCT++ but not to the other reasoners, as the latter do not support such axioms.
Additionally, we needed to rename all the roles, because Snomed uses the same codes
for both roles and ‘attributive’ concepts but KAON2 and HermiT do not support such
name punning. It has to be noted however that such renaming could by no means affect
the meaning nor the classification results of the ontology. The rest of the table shows
the (two-run average) time taken by the respective reasoners to classify the biomedical
ontologies, where mem-out means that the reasoner failed due to memory exhaustion,
and time-out means that the reasoner did not terminate within the allocated time
of 24 hours. Figure 6.1 depicts a comparison chart of reasoners’ performance based
on their classification time, where both mem-out and time-out are displayed as full
vertical bars.

It can be seen from the chart and the table that CEL is the only DL reasoner that
can classify all six biomedical ontologies in the test suite and outperforms HermiT,
KAON2 and Pellet in all cases. Compared with the other reasoners, CEL is faster than
RacerPro w.r.t. all ontologies butOSnomed, and faster than FaCT++ w.r.t. all ontologies
but ONci and OSnomed. It should be noted that, when it first came into existence in
2005 [BLS05], CEL was the only academic DL system that was capable of classifying

14The shell time command: $> time --verbose -- ReasonerCommand [ReasonerOptions...]
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entire Snomed ct. This has subsequently sparked interest in the DL community to
research on optimization techniques specific to the biomedical ontologies (in particular,
to Snomed ct), and later enabled tableau-based reasoners like FaCT++ and RacerPro

to take advantage of simple structures of ontologies of this kind. Some of the most
effective optimizations employed in these systems are described in [HT05, HMW08].
For instance, the so-called ‘completely defined’ (CD) optimization [HT05] helps to
avoid the expensive top-search and bottom-search operations (see Subsection 4.3.1)
for those concept names A with a primitive definition like:

A v B1 u · · · uBn

with Bi concept names. This optimization is highly effective on OSnomed since it
contains many such definitions.15 When a large number of GCIs are present as in the
case of OFullGalen, however, these reasoners fail due to either memory exhaustion or
time out. Interestingly, CEL is the only reasoner that can classify OFullGalen.

HermiT and Pellet can classify the first four ontologies but fail on the last two, both
due to a memory problem. The HermiT reasoner, which implements the much less non-
deterministic hypertableau calculus [MSH07], shows a relatively good performance. In
fact, it noticeably outperforms Pellet in all cases and is even faster than FaCT++ and
RacerPro on some ontologies. KAON2 cannot classify any ontologies of this scale, but
it is fair to remark that this DL system has been designed to deal with and optimized
for conjunctive queries w.r.t. a large number of individuals.16

In what follows, the testing methodology and empirical results for incremental clas-
sification, subsumption query answering, modularization and axiom pinpointing are
described. In these experiments, only the CEL system was considered.

6.2.2 Incremental classification

To simulate usage scenarios of incremental classification, each ontology O in the test
suite was partitioned into a permanent ontology—representing the well-established
ontology that has previously been classified—and a set of temporary concept axioms—
simulating newly authored axioms the modeler wants to add to the ontology. To this
end, we have carried out 10 repetitions of the following operations for each tested
ontology O and each number n = 2, 4, 8, 16, 32, 64: (i) partitioned O into Op and Ot

such that the latter consisted of n randomly selected concept axioms from O; (ii) clas-
sified Op normally (Algorithm 1 on page 55); and finally, (iii) incrementally classified
Ot against Op (Algorithm 4 on page 73). The time required to compute steps (ii)
and (iii) was measured. The 20% trimmed average17 classification and incremental
classification times of the 10 repetitions are shown in Table 6.3, and the percentage
of time relative to the full classification time of the whole ontology O is visualized

15A highly-optimized implementation of the EL+ classification algorithm exists and is claimed to
classify OSnomed within two minutes [Law08].

16See [BHJV08] for an evaluation of this reasoning on KAON2 among other reasoners.
17In order to exclude rare extreme values, two time values (i.e., the lowest and highest) were

discarded, and the average was based on the eight median values.
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]Temp. axioms OGo ONci OFma

(|Ot|) C. time IC. time C. time IC. time C. time IC. time

2 0.83 0.14 2.24 0.88 3913.33 5.06
4 0.83 0.14 2.27 0.89 3921.03 6.72
8 0.82 0.14 2.27 0.90 3920.37 26.61
16 0.82 0.15 2.27 0.91 3924.56 61.17
32 0.82 0.15 2.27 0.93 3918.16 155.51
64 0.82 0.16 2.27 1.00 3895.23 358.16

]Temp. axioms ONotGalen OFullGalen OSnomed

(|Ot|) C. time IC. time C. time IC. time C. time IC. time

2 2.28 0.60 195.05 18.48 1 182.07 21.58
4 2.29 0.63 195.08 18.73 1 184.22 21.58
8 2.26 0.66 194.85 19.25 1 184.81 21.75
16 2.22 0.73 194.82 19.96 1 184.19 22.16
32 2.18 1.01 194.77 21.33 1 183.58 22.95
64 2.04 1.32 192.06 26.24 1 183.60 22.93

Table 6.3: Incremental classification time (second).

Figure 6.2: Relative (incremental) classification time w.r.t. full classification time
(percentage).

in Figure 6.2. For each bar on the chart, the dark blue slice represents the relative
classification time of Op, while the light blue slice represents the relative incremen-
tal classification time of Ot against Op. Hence, the entire bar depicts the overall
computation time.

Classification of Op took less time than the entire ontology O (except for little
noise in the case of OFma), since the former is a subset of the latter. The time re-
quired to incrementally classify Ot varied, depending on the ontology and according
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to the number of new axioms. As a rule, the larger Ot is, the more time it took
to incrementally classify it and also the more time it took overall to classify Op and
incrementally classify Ot. The overall computation time (i.e., the height of each bar)
was less than 150% for all ontologies and all numbers n. In the case of OGo, OFma,
OFullGalen and OSnomed, at most only 10% additional time was needed in order to
incrementally classify up to 64 additional axioms. The proportion of incremental clas-
sification time is larger for ONotGalen than other ontologies since it is relatively much
smaller. In fact, 64 axioms already constitute more than 2% of the entire ontology.
Though the size of ONci is in the same range as that of OGo and OFullGalen, its
relative incremental classification time was much greater (already at n = 2). This
phenomenon can probably be explicated by the fact that, on average, a concept defi-
nition in ONci contains many existential restrictions. Moreover, our range elimination
technique (see Subsection 4.1.2) replaces each and every GCI of the form A v ∃r.B
by precisely three GCIs in the case of ONci. As a result, a small number of origi-
nal axioms in ONci could generate many normalized axioms to be processed in the
incremental classification procedure.

At any rate, the duo-ontology classification algorithm (Algorithm 4 on page 73)
noticeably improved on standard classification from scratch, provided that the ontol-
ogy is modified only by adding axioms. As discussed in Section 4.4, limited retraction
of axioms, namely all those axioms in Ot, is possible in this setting by dumping the
additional subsumption information obtained during the incremental classification.
To retract only part of the axioms from Ot, say O′

t ⊆ Ot, one could first retract all
axioms in Ot and then incrementally classify Ot\O

′
t against Op. This should still

be more efficient than full classification from scratch since the dumping time of the
additional subsumptions is negligible and incremental classification of Ot\O

′
t against

Op takes much less time.

The other meaningful experiment on the incremental classification algorithm is to
simulate the evolution of the large medical ontology of Snomed ct. As mentioned in
Chapter 3, the present version of the ontology is the result of gradual development and
expansion, as well as of merging Snomed rt with Clinical Terms version 3. To simu-
late this evolution process, we first took a subset of OSnomed with about two hundred
thousand axioms and then classified it as usual. After the initial classification was
finished, we repeatedly supplied 100 additional axioms from the rest of OSnomed and
incrementally classified them against the previously classified axioms. This process
was carried out until no more axioms were left to be incrementally classified, i.e., the
entire ontology has eventually been considered.

The time required in each step of incremental classification is plotted in Figure 6.3.
Each of the very first steps took as small a classification time as 6 seconds or less, and
it slowly increased over the course of OSnomed’s expansion. The median of incremental
classification time over ten seconds was only 11.46 second, the amount of time that
should arguably be tolerable to be adopted in realistic development environment for
Snomed ct.18

18There were two extreme time values of 58 and 211 seconds which were likely the results of rare
interference from garbage collection.
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Figure 6.3: Incremental classification time (second) for OSnomed’s evolution.

Ontology OGo ONci OFma ONotGalen OFullGalen OSnomed

p subs(O) 0.016/10 0.062/10 0.44/10 0.29/10 75.43/7 900 0.41/20
n subs(O) 0.048/50 0.166/10 0.48/10 0.97/20 3 477.35/8 050 1.01/1 040

Table 6.4: Average/maximum subsumption testing time (millisecond).

6.2.3 Subsumption query answering

This subsection describes the experiments and their results of subsumption testing
(Algorithm 2 on page 64) in EL+ w.r.t. the tested biomedical ontologies. To evaluate
the goal-directed subsumption algorithm, we have sampled19 two sets of subsumptions
as follows: (i) randomly select 1 000 concept names from CN(O); (ii) for each A from
step (i), sample 5 distinct positive subsumptions O |= A v B with B 6∈ {A,>}; (iii)
for each A from step (i), sample 5 distinct negative subsumptions O 6|= A v B for
some B. We denote by p subs(O) and n subs(O) the sets of sampled subsumptions
obtained by steps (ii) and (iii) from the ontology O, respectively.

The goal-directed subsumption algorithm (Algorithm 2 on page 64) without any
heuristics and caching has been run for each subsumption in p subs(O) and n subs(O).
The average/maximum CPU time for each subsumption test in each ontology is shown
in Table 6.4. Observe that, on average, querying single subsumptions using Algo-
rithm 2 took tiny fractions of a second in most cases except for the negative subsump-
tions in OFullGalen. The hardest case for the ontology took just above eight seconds
in order to decide non-subsumption. These experiments empirically confirmed the
conjecture concerning the algorithm’s behavior that it should run faster on positive
subsumption since it immediately terminates once the goal subsumption is identified
but has to continue to finish processing all the queue entries otherwise. Except for
OFma, the time differences between querying positive subsumptions, i.e., p subs(O),
and negative ones, i.e., n subs(O), are more than double.

19Since there are about 144 billion pairs of concept names in the case of OSnomed and some sub-
sumption queries against OFullGalen took several seconds, performing subsumption queries between
all pairs would not be feasible; hence, the need for sampling.
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Ontologies Extraction time Recursive batch
median average maximum total extraction time

OGo ∼0.00 0.0001 0.01 1.41 0.52
ONci ∼0.00 0.0001 0.19 2.19 0.94
OFma 0.10 0.0688 1.17 5 171 mem-out
ONotGalen ∼0.00 0.0005 0.03 1.42 0.48
OFullGalen 0.01 0.0317 0.92 734 mem-out
OSnomed ∼0.00 0.0082 5.46 3 110 mem-out

Table 6.5: Time to extract the reachability-based modules (second).

It is interesting to give a remark on the relationship between the subsumption
querying time and the size of the reachability-based module as suggested by Theo-
rem 42 on page 86. The theorem states that the goal-directed subsumption algorithm
running on A v B w.r.t. O only requires axioms from the module Oreach

A . In the
next subsection, experimental results on the reachability-based modularization are
discussed. In particular, it will be seen that subsumption querying time is roughly
proportional to module sizes (see Table 6.4 above and Table 6.6 on page 124). The
only exception is OFma, of which subsumption querying time could drastically be min-
imized by the optimization “disabling R(·) for primitive TBoxes” in spite of its large
modules.

6.2.4 Modularization

Two sets of experiments were carried out to evaluate the modularization based on
reachability. The first set followed the experiments described in [CHKS07], where a
module for each concept name in each ontology was extracted (henceforth, referred
to as c-module for brevity). The reasons were that modules for single concepts form
a good indicator of the typical size of the modules compared to the whole ontol-
ogy. Moreover, modules for single concepts are especially interesting for optimization
both in standard reasoning of classification [CHKS07, CHWK07] and in axiom pin-
pointing [BS08, SQJH08]. Section 6.2.5 reports on the practical effectiveness of using
reachability-based modules in optimizing axiom pinpointing. The second set of exper-
iments concerned non-atomic signatures of varying sizes.

For each ontology O in the test suite and each concept name A occurring in
O, we have extracted the reachability-based module Oreach

A by using Algorithm 6 on
page 84. The time required to extract each c-module and its size were measured
and are summarized in Table 6.5 and 6.6, respectively. Observe that it took only a
tiny amount of time to extract a c-module based on reachability, where more than
two third of all the extractions required less than 10 milliseconds (shown as ∼ 0.00
in the table). However, extracting a large number of c-modules (i.e., as many as
the number of concept names) required considerably more time and even longer than
classification in some cases. This was nevertheless the result of multiple individual
extractions that are independent of each other and as such did not exploit the recursive
nature of reachability. In fact, Point 3 of Proposition 38 could be used to recursively
extract c-modules according to the reverse reachability order. Precisely, if A is B-



124 Empirical Evaluation

Ontologies Module size (%)
median average maximum

OGo 19 (0.0928) 28.42 (0.1389) 190 (0.9284)
ONci 12 (0.0434) 28.97 (0.1048) 436 (1.577)
OFma 22 234 (29.59) 14 881.13 (19.80) 22 276 (29.65)
ONotGalen 33 (1.201) 61.82 (2.250) 435 (15.83)
OFullGalen 167 (0.7218) 3 795.13 (16.40) 8 553 (36.97)
OSnomed 19 (0.0050) 30.99 (0.0082) 262 (0.0690)

Table 6.6: Size of the reachability-based modules (]axioms and percentage).

reachable, then Oreach
A ⊆ Oreach

B . Therefore, by extracting the smaller module Oreach
A

prior to the larger one Oreach
B , the extraction of the latter can exploit the information

made available from previous extractions. This idea was implemented and evaluated
against the test ontologies. Unlike Algorithm 6, it is not possible to measure individual
extraction time since the recursive algorithm extracts all c-modules at once.

The batch extraction time results are shown in the right column of Table 6.5, where
mem-out means that the algorithm failed due to memory exhaustion. As expected,
the recursion optimization helped to speed up extraction of c-modules, provided that
no memory issue was incurred. Considering OGo, ONci and ONotGalen, the recursive
algorithm required less than half of the CPU time required by Algorithm 6. In the
other three cases, however, recursive batch extraction was unattainable because a
huge amount of memory was required in order to store the extracted c-modules and
their signatures. Though there are less c-modules in OFullGalen than in ONci, many
c-modules in the former are of size at least an order of magnitude larger than those
in the latter. In contrast, OSnomed has only small c-modules, but its sheer number
of concept names (thus, c-modules) makes it also space-demanding for the recursive
algorithm. The same thing can be said for OFma, as it combines both the issue of a
large number of c-modules and that of large c-modules.

Statistical data concerning the size of c-modules are summarized in Table 6.6,
where values in parentheses represent the percentage of the size of a c-module relative
to the size of the whole ontology. Except for OFma and OFullGalen, all ontologies have
relatively very small c-modules, i.e., in the range below 450 axioms. The exceptional
ontologies have idiosyncratic structures, namely two distinct groups of c-modules, that
were revealed by reachability-based modularization. In the case of OFullGalen, just
above half of all c-modules (i.e., 12 119) are of size less than or equal to 459 axioms,
while the rest (i.e., 11 017) are of size between 7 875 and 8 553 axioms. Similarly,
24 867 c-modules in OFma are of size less than or equal to 32 axioms, and the rest
of size between 22 235 and 22 276 axioms. Surprisingly, there is no c-module of size
between those of these two groups.

The distribution of sizes of small c-modules in all ontologies is depicted in Fig-
ure 6.4. For readability reasons, frequency bars for c-module size larger than 200 are
trimmed off the chart. This does not affect the reading of the chart since more than
95% of the small c-modules are included and the ignored size values evenly disperse
the trimmed area of the chart. The depicted distribution is natural in the sense that
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Figure 6.4: Relative frequency of small c-modules.

Figure 6.5: Relative frequency of large c-modules.

there are a large number of smaller c-modules and a small number of larger ones. This
pattern is most vividly visible in the case of OGo, ONci and OSnomed, where about
50% of c-modules are of size 20 or less and about 95% of c-modules are of size 100 or
less. A similar pattern can also be seen—to a lesser degree—in the case of the two
Galen ontologies.

As pointed out earlier, there are two clusters of c-modules in OFullGalen and OFma

that are determined by their size. This disrupt distribution (see Figure 6.5) can be
seen as an indicator of the presence of big cyclic dependencies in the ontologies. From
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Figure 6.6: Size of the reachability-based modules against size of the signature.

the chart, there are almost 40% of c-modules in OFullGalen of size between 7 800 and
7 900 axioms and more than 60% of c-modules in OFma of size between 22 230 and
22 240 axioms.20 Though also containing cyclic dependencies, sizes of c-modules in
ONotGalen do not show such a distinctly disrupt distribution, but one could observe
a local peak in the range between 150 and 160 (see Figure 6.4).

To simulate ontology reuse scenario, where a part of a well-established ontology rele-
vant to the signature of interest is imported, we have designed and performed another
set of experiments. In these experiments, signatures of varying sizes from 10 to 1 000
(at 10-symbol intervals) were randomly generated from the signature of each test ontol-
ogy. For each ontology O and each generated signature S ⊆ Sig(O), the reachability-
based module Oreach

S
for S in O was extracted. The size of the reachability-based

module is plotted against the size of the signature in Figure 6.6. Observe that the
growth trends of OSnomed, ONci, OGo and ONotGalen appear proportional to the av-
erage size of c-module in the respective ontology (see Table 6.6 on page 124). The
modules in OFullGalen and OFma started at a relatively large size (i.e., about 30%)
because there was a good chance that one of the concept names in the signature was
involved in the larger cluster of c-modules. Since the reachability-based modules in
OSnomed were particularly very small, we have performed ‘stress test’ on it by allowing
the signature to grow up to 60 000 symbols. Figure 6.7 depicts the results. Surpris-
ingly, we needed almost 15% symbols from Sig(OSnomed) to obtain as large a module

20A brief inspection of OFma has revealed that this large cycle is a result of the cyclic definitions of
anatomical concepts, which are linked to each other by the roles part-of and has-part.
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Figure 6.7: Size of the reachability-based modules in OSnomed.

as 30% of its axioms. This result suggests that module extraction based on reacha-
bility is quite robust, both in terms of extraction time and module size, for several of
our test ontologies especially OSnomed.

6.2.5 Axiom pinpointing

This sections describes the methodology of testing our axiom pinpointing algorithms
presented in Section 5.2 and their empirical results. Precisely, the following three
algorithms:

• the Glass-box Optimized Black-box (GOB) single pinpointing algorithm
(gob-alg in Algorithm 10 on page 110)

• the Modularization Optimized Black-box (MOB) single pinpointing algorithm
(mob-alg in Algorithm 11 on page 111)

• the Modularization Optimized Black-box (MOB) full pinpointing algorithm
(mob-hst-alg in Algorithm 11 on page 111)

have been implemented and evaluated on OSnomed.
Since OSnomed (as well as the other ontologies in our test suite) does not contain

any unsatisfiable concepts, the type of consequence of interest for axiom pinpointing
in this context is subsumption. As used as our motivation earlier, the subsumption
relationship (Subsumption 5.1)

σ : AmputationOfFinger vOSnomed AmputationOfHand

holds in the considered version of OSnomed. An attempt to run the näıve pruning algo-
rithm (Algorithm 7 on page 97) failed; it did not terminate on this input after 24 hours.
The logarithmic extraction (Algorithm 8 on page 98) was successful on σ and required
1 565 seconds to compute a MinA of cardinality 6. By using (a simplified version of)
mob-hst-alg, it can be verified that this is indeed the only MinA for this subsumption.
The MinA comprising 6 axioms is shown in Figure 6.8. These axioms suggest that
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direct-procedure-site v procedure-site

AmputationOfFinger v AmputationOfFingerWithoutThumb

AmputationOfFingerWithoutThumb ≡ HandExcision u
∃roleGroup.(∃direct-procedure-site.FingerS u

∃method.Amputation )

AmputationOfHand ≡ HandExcision u
∃roleGroup.(∃procedure-site.HandS u

∃method.Amputation )

FingerS v DigitOfHandS u HandP

HandP v HandS u UpperExtremityP

Figure 6.8: The only MinA for AmputationOfFinger vOSnomed AmputationOfHand.

the culprit for this unintended subsumption is the incorrect use of the SEP-triplet en-
coding (see Subsection 3.2.1 for more details). Though Algorithm 8 improved greatly
on Algorithm 7, it was still far from being satisfactory for use in realistic debugging
scenarios. We could do much better by using either gob-alg or mob-alg algorithm,
which employs a different technique to reduce the search space before pruning the ax-
ioms. The nMinA for σ (as produced by the labeled subsumption algorithm) contains
7 axioms, whereas the reachability-based module for AmputationOfFinger in OSnomed

contains 57 axioms. Since the nMinA and module each guarantees to cover all axioms
in a MinA, a pruning technique can be used to extract a MinA from them. Due to
the usually small size of the nMinAs and the reachability-based modules in OSnomed,
the linear pruning technique proved more efficient on this specific ontology.21 For the
amputation example, both gob-alg and mob-alg algorithms took less than a second to
compute exactly the same MinA.

This experiment was generalized to consider other subsumptions. However, testing
the algorithms on all (positive) subsumptions was not feasible, since there are more
than five million subsumption relationships that follow from OSnomed: assuming an
average extraction time of half a second, this would have required a month. For this
reason, we generated 5 (possibly overlapping) sets of 1 000 sampled concept names
from CN(OSnomed), denoted by c-samples(n) with n = {1, 2, 3, 4, 5}. For each n, we
ran gob-alg (respectively, mob-alg) on all the subsumption relationships A vOSnomed B
such that A ∈ c-samples(n), B 6∈ {A,>}, and OSnomed |= A v B. Intuitively, we
considered all positive subsumption relationships between concept names that are
not tautologies and whose left-hand side component belongs to c-samples(n). This
sampling methodology is better than randomly sampling two concept names A, B
such that the subsumption between them holds, since the latter may potentially avoid
hard cases, e.g., a sample of told subsumptions. Our sampled subsumptions cover
told as well as complex subsumptions which well represent both easy and hard cases

21Despite what being said, the logarithmic pruning technique has been implemented as the default
subprocedure for axiom pinpointing in CEL since it is much more robust on arbitrary ontologies and
not much less efficient in the case of OSnomed.
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in OSnomed. Given |c-samples(n)| = 1 000 for all n, the number of subsumptions to
be considered varied depending on the sampled concepts (see the second column of
Table 6.7). For each subsumption considered, the time to compute an nMinA, its size,
the time to prune its axioms to obtain a MinA and the MinA size were measured. The
same was carried out for the mob-alg where, instead of nMinAs, reachability-based
modules were considered. The average/maximum of these experimental results are
listed in Table 6.7, segregated by c-samples(n).

Observe that the average time to compute a single MinA (i.e., the sum of the time
results in columns 3 and 5) was less than a second in all samples, regardless of the
algorithm. Though the extracted modules were already quite small (i.e., comprising
52 axioms on average and 165 axioms at most), the computed nMinAs were much
smaller (i.e., 8 axioms on average and 57 at most). This again empirically supports
Theorem 42 on page 86 since the labeled subsumption algorithm essentially behaves
the same as the unlabeled one but only keeps tract of axioms it requires. The price
for this smaller size however was that, in all cases, it took on average about three
times longer to extract an nMinA, i.e., the labeled subsumption algorithm plus a
small overhead for de-normalization mapping, than it did to extract the corresponding
module. Additionally, the extraction of an nMinA has to be done every time a MinA
for A vOSnomed B is to be computed, unlike the module OSnomed

A which can be reused
for any subsumptions A vOSnomed B′. Given the fact that nMinAs are smaller than
modules, it should in principle take less time to prune the former than the latter to
obtain a MinA. This nevertheless was not the case in our experiments. Our conjecture
is that garbage collection22 had to be carried out more often in gob-alg than in mob-

alg since it required more memory to run the labeled subsumption algorithm than
to run the module extraction algorithm. Moreover, there were some overheads in
communication between the two Lisp packages.23

Since the result from the pruning algorithm depends on the order of axioms in the
input, it should not be surprising that the two approaches could yield different MinAs
in the case that more than one exist. However, the average and maximum sizes of
the computed MinAs by the two approaches deviate only a little as observable in the
last but one column of the table. On average, a MinA in OSnomed comprises about
6 to 7 axioms like the one for the example subsumption σ which is small enough to
be inspected by the ontology developer by hand. Finally, the last column shows the
ratio of the size of MinA to that of nMinA (module, respectively). It demonstrates
that 84.87% of axioms in the nMinAs (13.41% in the modules) are relevant for the
subsumption in question w.r.t. OSnomed. Figure 6.9 depicts the size distribution of the
modules, the nMinAs and the MinAs. As easily visible from the chart, the modules
are quite small, but the nMinAs and yet MinAs are even smaller. In fact, the majority

22Garbage collection greatly influenced time results in axiom pinpointing experiments due to the
repeated use of the core reasoner as a black box which allocated and dumped the memory throughout
the computation.

23Unlike mob-alg, the gob-alg approach requires two core reasoners: the labeled subsumption algo-
rithm, which computes an nMinA; and the (unlabeled) subsumption algorithm, which is used as a
black box to prune the nMinA. To avoid namespace problems, these have been realized by using two
distinct packages.
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Concept samples A
from CN(OSnomed)

]Subs.
samples

Time to ext. nMinA
for AvOSnomed

A
B

(avg/max)

nMinA size
(avg/max)

Pruning time
for AvnMinA B

(avg/max)

MinA size
(avg/max)

MinA/nMinA
ratio (%)

c-samples(1) 14 279 0.0420 / 0.99 7.92 / 50 0.5732 / 5.26 6.68 / 37 84.27

c-samples(2) 14 209 0.0465 / 1.45 7.68 / 47 0.5701 / 5.77 6.53 / 35 85.01

c-samples(3) 14 840 0.0394 / 1.15 7.94 / 57 0.5907 / 5.60 6.76 / 38 85.17

c-samples(4) 14 617 0.0392 / 2.17 7.58 / 54 0.5717 / 6.56 6.42 / 36 84.68

c-samples(5) 14 377 0.0397 / 1.87 7.47 / 46 0.5676 / 5.57 6.37 / 33 85.20

Overall 72 322 0.0413 / 2.17 7.72 / 57 0.5748 / 6.56 6.55 / 38 84.87

Concept samples A
from CN(OSnomed)

]Subs.
samples

Time to extract
module OSnomed

A

(avg/max)

Module size
(avg/max)

Pruning time
for AvOSnomed

A
B

(avg/max)

MinA size
(avg/max)

MinA/OSnomed
A

ratio (%)

c-samples(1) 14 279 0.0142 / 0.05 52.69 / 161 0.3122 / 7.89 7.08 / 37 13.44

c-samples(2) 14 209 0.0135 / 0.06 52.80 / 165 0.2226 / 8.15 6.91 / 35 13.09

c-samples(3) 14 840 0.0139 / 0.05 52.08 / 145 0.2201 / 8.05 7.13 / 39 13.70

c-samples(4) 14 617 0.0139 / 0.06 51.17 / 163 0.1790 / 3.61 6.87 / 35 13.43

c-samples(5) 14 377 0.0133 / 0.06 51.23 / 158 0.1828 / 3.50 6.86 / 35 13.39

Overall 72 322 0.0138 / 0.06 51.99 / 165 0.2231 / 8.15 6.97 / 39 13.41

Table 6.7: Empirical results of the GOB and MOB approaches to axiom pinpointing on five sets of sampled
subsumptions in Snomed ct (time in seconds; size in number of axioms).
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Figure 6.9: Relative frequency of the sizes of modules, nMinAs and MinAs for the
sampled subsumptions in OSnomed.

of all subsumptions (80%) have a MinA of size ten axioms or less, and more than half
(55%) have a MinA of size five or less. Though the reachability-based module for
S = {A} in O is larger than its counterpart nMinA for A vO B, they cover all axioms
in all MinAs (and thus, diagnoses) for all subsumptions A v B ′ with B′ any concept
name in CN(O) (see Theorem 43 on page 89 and Definition 23 on page 31).

A MinA is useful in explaining logical consequences (for instance, the ‘amputation’
example discussed above) but not enough to suppress them. In general, a subsump-
tion may potentially have exponentially many MinAs (see Example 47 on page 94).
Removing all the axioms in a MinA does not guarantee that the consequence will be
suppressed because axioms in another MinA may still remain to support it. In order
to get rid of an unwanted consequence, a MaNA (see Definition 18 on page 29) or
a diagnosis (see Definition 20 on page 30) needs to be computed. Since MaNAs are
usually large and can easily be computed from diagnoses, we are often more interested
in the computation of the latter. Precisely, given an ontology O and a diagnosis D
for σ w.r.t. O, the set of axioms O\D is a MaNA for σ w.r.t. O. The modularization-
based HST pinpointing algorithm mob-hst-alg (refer to Algorithm 11 on page 111 and
Algorithm 9 on page 101) can be used to compute all MinAs as well as all diagnoses.
The last experiment carried out in this thesis concerns this algorithm on OSnomed.

Sampled subsumptions used in the previous experiments with more than one MinA
were considered in this experiment. There were hard cases in our sample where more
than 100 MinAs existed and the constructed hitting set tree was very large in spite of
the optimizations. In those hard cases, it took more than 24 hours and up to 72 hours
to compute all MinAs for a subsumption. For this reason, the number of computed
MinAs was limited in our experiment to 10. Therefore, the statistics shown in the
following will be divided into two groups:

• easy-samples consists of sampled subsumptions that have at least two but less
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Figure 6.10: Relative frequency of the numbers of all MinAs for easy-samples in
OSnomed.

Samples
]MinAs

(avg/max)
MinA size
(avg/max)

]Common ax.
(µ)

]All ax.
(ν)

µ/ν

easy-samples 3.74 / 9 8.02 / 26 4.77 / 22 12.30 / 39 0.39
hard-samples 10 / 10 16.39 / 45 7.01 / 30 32.53 / 63 0.22

Table 6.8: Statistical results on the computed MinAs in OSnomed.

than ten MinAs; and,

• hard-samples consists of sampled subsumptions that have at least ten MinAs.

Based on all the subsumptions considered, 10 492 (56.19%) subsumptions belong to
easy-samples, and 8 181 (43.81%) subsumptions to hard-samples. Table 6.8 shows the
average/maximum numbers of MinAs (]MinAs) and their size. It also presents the av-
erage/maximum numbers of common axioms in all MinAs, i.e., µ = |

⋂
MinAs S for σ S|,

and those of all axioms in all MinAs, i.e., ν = |
⋃

MinAs S for σ S|.
24 The average ratio

µ/ν, which indicates the degree of commonality of the computed MinAs, is shown in
the last column of the table. The statistical results for easy-samples are complete w.r.t.
all the MinAs, whereas those for hard-samples are partial. The relative distribution of
]MinAs below ten is shown in Figure 6.10. More than half of all the considered sub-
sumptions (51.51%) have 7 MinAs or less, i.e., the median of ]MinAs for easy-samples

and hard-samples collectively is 7. Though nothing can be said about the distribu-
tion of ]MinAs larger than 9, it is known from the test results that about 43% have
ten or more MinAs and that the largest known ]MinAs is 158. It can be observed
from the table that the MinA size is larger when there are more MinAs, i.e., a MinA

24Note that
S

B∈CN(O)

S

MinAs S for A v B
S is the smallest strong subsumption module for A in O

according to Definition 23 on page 31.



6.2 Testing Methodology and Empirical Results 133

Samples
]Diags

(avg/max)
Diag size

(avg/max)
]Common ax.

(µ)
]All ax.

(ν)
µ/ν

easy-samples 49.53 / 4 539 2.23 / 9 0 / 0 12.30 / 30 0.00
hard-samples 75.72 / 3 984 4.74 / 9 0.32 / 8 26.23 / 51 0.01

Table 6.9: Statistical results on the computed diagnoses in OSnomed.

for easy-samples is of size 8 axioms on average, whereas a MinA for hard-samples is
of size 16. Due to larger sizes of MinAs and a larger number of them, ν (i.e., the
number of all axioms) tends to be larger. It is not clear how µ (i.e., the number of
common axioms) changes, as larger MinAs increase the chance of common axioms but
a large number of MinAs decreases it. Interestingly, the degree of commonality of the
axioms in all MinAs is quite high, i.e., µ/ν is 0.39 and 0.22 for the easy and hard
cases, respectively. This means that about one third of axioms are shared among all
the MinAs. It is sensible to compare the size of the reachability-based module (30.99
axioms; see Table 6.6 on page 124) and ν (12.30 axioms; easy-samples in Table 6.8)
since the former is a strong subsumption module and ν is the number of axioms in
all MinAs for a particular subsumption A v B. Interestingly, as many as 40% of the
axioms in the module participate in a MinA for a particular subsumption. It has to
be noted that the module also covers all MinAs for all other subsumptions A v B ′

with B′ a concept name in CN(O).

The same statistics were collected for diagnoses and are presented in Table 6.9.
Compared to MinAs, there are an abundant number of diagnoses of which size is at
most 9 axioms. Given this two properties, it is not surprising to see that diagnoses
have so few axioms in common. In the case of easy-samples, no single axiom is shared
among diagnoses (i.e., µ = 0). Practical implication from these empirical results is
twofold: (i) to suppress an unwanted subsumption in Snomed, it suffices to remove
only a few axioms (i.e., 2.23 for easy-samples and 4.74 for hard-samples), but (ii) there
are a large number of distinct possibilities in doing so (i.e., at most 4 539 diagnoses
with no axiom in common).

Recall that the modularization-based HST pinpointing algorithm consists of three
computing components: module extraction, hitting set tree search and the pruning
component with a subsumption testing subprocedure. Like the single pinpointing al-
gorithms, the linear pruning strategy was employed in these experiments on OSnomed.
For each sampled subsumption, we have computed all (subject to the limit 10) Mi-
nAs and measured the time required to finish each of the computing components.
Additionally, the number of subsumption calls was counted. These time results are
summarized as average and maximum in Table 6.10, again divided by easy and hard
sampled subsumptions. Relevant remarks on the time results are discussed in order:

• The time to extract the reachability-based module is negligible compared to
the HST search time and total subsumption time. Comparing between the two
samples, it took less time to extract the module in the case of easy-samples

than hard-samples since the easy cases also yield smaller modules and smaller
reachability-based modules are easier to be extracted. On average, the module
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Samples
Time to extract
moduleOSnomed

A

(avg/max)

HST search time
excl. subs. calls

(avg/max)

]Subs. calls
(avg/max)

Total subs.
testing time
(avg/max)

easy-samples 0.01 / 2.06 0.07 / 44.08 177.60 / 4 732 8.80 / 131.97
hard-samples 0.02 / 3.96 0.09 / 39.90 769.98 / 4 308 37.77 / 375.68

Table 6.10: Time results (second) of the modularization-based HST pinpointing algo-
rithm on OSnomed.

size is 53 axioms for easy-samples whereas 84 for hard-samples.

• The HST search time represents the overheads required by Algorithm 9 on
page 101 in order to construct the search tree. In most cases, less time was
spent on this HST overheads than on actual subsumption testing. However, in
extreme cases like the one that produced 158 MinAs, HST became very large
with sparse MinAs found in the search tree. Since the algorithm had to re-
cursively call itself and expand the tree, but seldom invoked the subsumption
procedure to produce a next MinA, HST search time turned out to be much
larger than subsumption testing time.

• Pinpointing for hard-samples required more subsumption calls for two observable
reasons: first, hard subsumptions had more MinAs to be computed by pruning
axioms; and second, larger modules had to be pruned in the case of hard sub-
sumptions. Obviously, they required more invocations to the pruning procedure
and each invocation required more subsumption calls. As a result, the number
of overall subsumption calls averaged 178 and 770 in the case of easy-samples

and hard-samples, respectively. These subsumption tests took 37.77 seconds in
the case of hard-samples and only 8.80 seconds in easy-samples.

• Finally, the average time to compute all MinAs (the first 10 MinAs, respectively)
using the modularization-based HST pinpointing algorithm was 8.88 seconds
(37.88 seconds, respectively). Unlike the full glass-box approach25, this algo-
rithm computes the first MinA in less than half a second (see the time results of
the MOB approach in Table 6.7 on page 130) and generates the next MinAs—as
well as diagnoses—one after the other. This means that, while the computation
is being carried out, partial outputs, i.e., some MinAs and diagnoses, are readily
available for inspection by the ontology developer. An excessively long compu-
tation of all MinAs in certain hard cases can be interrupted when the developer
finds the culprit(s) for the error at hand.

It is easy to see that the effectiveness of the MOB approach heavily relies on the
c-module’s size and the subsumption testing time. Since c-modules in OGo, ONci

and ONotGalen are as small as those in OSnomed (see Table 6.6 on page 124) and it
takes less time to test subsumption w.r.t. these ontologies (see Table 6.4 on page 122),
similar empirical results can be expected. For OFma and OFullGalen, where about half

25This has not been considered for implementation in the scope of the present thesis.
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of the c-modules are large (see Figure 6.4 on page 125), the MOB approach may not
be as effective as in OSnomed. Nevertheless, with the largest c-modules of size about
one third of the entire ontology, the MOB approach should still improve on the pure
HST pinpointing algorithm (Algorithm 9 on page 101). At any rate, the logarithmic
pruning strategy should be adopted whenever the c-module being considered falls into
the larger clusters of OFma and OFullGalen.
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Chapter 7

Conclusions

This thesis investigated and proposed several reasoning techniques—both standard
and supplemental in the classical DL reasoning sense—that hopefully help alleviate
the hassles of design and maintenance of large-scale ontologies, especially those from
the life science domain. The central objective of this work was to investigate the
practicability of using DL-based reasoning support in realistic biomedical ontologies
in terms of reasonable response time and scalability.

To achieve this aim, we focused attention on the lightweight DL EL+ that, on
the one hand, possesses tractable reasoning problems in contrast to other families of
DLs like OWL, and on the other hand, is sufficiently expressive to formulate several
biomedical ontologies. Existing and novel reasoning techniques specific to this DL
have been investigated and implemented in the CEL system. In the following section,
major technical and empirical results of this thesis are discussed.

7.1 Discussion of Achieved Results

The major results achieved in the context of this thesis can be categorized into three
groups:

• the development of a modeling paradigm for Snomed ct;

• the design and implementation of techniques for standard reasoning—i.e., clas-
sification, incremental classification, subsumption and instance checking;

• the design and implementation of techniques for supplemental reasoning—i.e.,
modularization and axiom pinpointing;

• the empirical evaluation of the implemented reasoning techniques through exten-
sive and systematic experiments on large-scale biomedical ontologies, including
an overview comparison with the leading state-of-the-art DL reasoners w.r.t.
ontology classification.

137
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7.1.1 A modeling paradigm for Snomed ct

The renown medical ontology Snomed ct has been investigated thoroughly. In Chap-
ter 3, we have identified a number of ontological and logical issues within this ontology,
with emphasis on the faulty implementation of the so-called SEP encoding technique.
We argued that this encoding technique encourages modeling errors (as in the ‘am-
putation’ example) and unnecessarily triples the number of concepts in the anatomy
portion of the ontology. To solve the identified (logical) problems, a new modeling
paradigm for Snomed ct using the DL EL+ has been proposed that shall do away
with the hassles of modeling with SEP while still being able to rule out unintended
models.

7.1.2 Techniques for standard reasoning

In Section 4.1, a refined version of the known polynomial-time classification algorithm
for (a sufficiently expressive fragment of) the DL EL++ has been developed which
avoids the potentially costly operation of searching for the next Completion Rule
to apply. We have provided proofs of soundness and completeness of the refined
classification algorithm based on the existing proofs of the abstract algorithm. Apart
from the queue technique used in the refined version, we have developed a number
of optimization techniques, many of which are specific to the EL-based algorithm.
To yield the concept hierarchy, the complete subsumption information in the form of
subsumer sets is exploited in the simplified enhance traversal method that renders the
expensive top-search phase as cheap as a simple marking algorithm and totally avoids
the bottom-search phase.

A few variants of the refined classification algorithm were also proposed in the rest
of Chapter 4 in order to deal with subsumption, incremental classification, instance
checking and realization.

7.1.3 Techniques for supplemental reasoning

In Section 5.1, a logic-specific definition of a module based on the notion of reach-
ability in graphs was introduced, and an algorithm for extracting it was developed.
Interesting properties of reachability-based modules have been shown. For instance,
the reachability-based module is equivalent to the minimal syntactic locality-based
module modulo the DL EL+. The virtues of the module of this kind are twofold: it is
inexpensive to extract since reachability is based only on the syntax of the ontology,
and it is relatively small as confirmed by the empirical evidence (summarized in Sub-
section 7.1.4). It has also been shown that axioms required by the goal-directed sub-
sumption algorithms always belong to the reachability-based module which suggests,
to the contrary of many’s intuition, that testing subsumption using the goal-directed
algorithm against the module is not faster than doing so against the whole ontology.

Based on the tractable DL, the jump in complexity of axiom pinpointing has been
identified, i.e., deciding a given property w.r.t. all the MinAs for a subsumption is
an NP-complete problem despite tractability of the underlying logic. This jump in
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complexity is unobservable in expressive DLs such as OWL DL, where subsumption al-
ready requires exponential run time. It has been shown however that the computation
of an arbitrary MinA can still be achieved in polynomial time, given the tractable DL.
To compute a MinA (all MinAs), several techniques from the black-box and glass-
box approaches have been investigated, including the binary search technique, the
hitting-set tree search technique and the axiom labeling technique. Three combined
algorithms were proposed and implemented, two of which compute a single MinA and
the third one computes all MinAs. Promising empirical results on our approaches to
axiom pinpointing are summarized in Subsection 7.1.4.

7.1.4 Empirical evaluation

Most algorithms and techniques presented in this thesis have been implemented in the
CEL system which has been used to perform extensive empirical experiments, ranging
from the standard reasoning of classification to the supplemental reasoning of axiom
pinpointing. Results of the empirical evaluation are summarized as follows:

1. Classification is one of the most classical reasoning services and often used to
benchmark DL systems. Six reasoners were benchmarked against six ontologies.
CEL performs much better than most reasoners except FaCT++ and RacerPro.
Compared with these two reasoners, CEL is faster than RacerPro w.r.t. all on-
tologies but OSnomed, and faster than FaCT++ w.r.t. all ontologies but ONci and
OSnomed.

It should be noted that, when it first came into existence in 2005, CEL was
the only academic DL system that was capable of classifying entire Snomed

ct. This has subsequently sparked interest in the DL community to research on
optimization techniques specific to the biomedical ontologies, and later enabled
tableau-based reasoners like FaCT++ and RacerPro to take advantage of simple
structures of ontologies of this kind. When a large number of GCIs are present
as in the case of OFullGalen, however, they failed due to memory exhaustion.
Interestingly, CEL is the only reasoner among the six benchmarked DL systems
that was able to classify OFullGalen.

2. The empirical results on incremental classification have confirmed that a large
portion of time can be spared if previously inferred subsumption information is
reused when small changes are applied to the ontology. Moreover, the simulation
of OSnomed’s evolution suggests the practicality of our incremental classification
algorithm in development of this ontology.

3. The goal-directed subsumption algorithm has been evaluated on 5 000 positive
subsumptions and 5 000 negative ones. In general, positive subsumptions are
easier to decide since the algorithm terminates immediately as soon as the sub-
sumption is known to hold. At any rate, the average subsumption querying
time is in the sub-second range in most cases (and even sub-millisecond in sev-
eral cases), except the negative subsumptions in OFullGalen which took about
3.5 seconds on average.
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4. The reachability-based modules for single concept names are cheap to compute
(i.e., in the sub-second range) and are very small in most cases. OSnomed has
the smallest modules relative to the ontology size (with the largest having only
0.069% of all axioms), while each of OFma and OFullGalen contains a cluster of
larger modules (with the largest reachability-based modules having about one
third of their axioms).

Considering varying sizes of signatures, the growth rate of the reachability-based
modules is fairly slow. This suggests its practicality in the ontology re-use
scenario.

5. The three pinpointing algorithms have been evaluated on reasonable samples of
subsumptions in OSnomed. For single pinpointing algorithms, it took less than
a second by both MOB and GOB approaches to compute a MinA of size about
6–7 axioms on average. For the GOB approach, the nMinAs computed by the
labeled subsumption algorithm are almost always minimal, in which about one
axiom is redundant.

Finding all MinAs is much harder but still practical with our modularization-
based HST pinpointing algorithm that exploits modules to drastically reduce
the search space while pruning axioms. The experiments show that there are
usually a small number of MinAs (i.e., about 52% of multi-MinA subsumptions
have 7 MinAs or fewer) but rare cases with more than 100 MinAs do exist.
The HST algorithm simultaneously computes diagnoses (hence, MaNAs) for the
subsumption. In OSnomed, there are typically an abundant number of fairly
small diagnoses. It follows that, to suppress the subsumption in question, it
suffices to remove a few axioms in a diagnosis, but there are many possibilities
in doing so.

7.2 Directions for Future Work

Several directions for further research on reasoning techniques based on EL+ and
future development of the CEL system are in order:

• Investigating new optimization techniques and improving the existing ones.
Classification on OFma has pointed out the problem with a tightly connected
ontology that overloads the expected population of R(·), many elements of which
are transitive roles made explicit in the completion graph. It is thus worthwhile
to investigate whether an alternative treatment of transitive roles will improve
the performance.

• Extending the classification algorithm and the queue techniques for rule appli-
cation to intractable extensions of EL+, providing the currently missing concept
and role constructs that are required by some biomedical ontologies, notably,
the Galen medical knowledge base. Work in this direction has already been
studied by extending the abstract classification algorithm for EL+ to the one for
ELHIf R+ [Vu08]. Due to its deterministic nature, as opposed to tableau-based
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algorithms, the extended algorithm is expected to perform relatively well. It
however remains to be empirically verified.

• Using module extraction in full-fledged incremental classification has been first
proposed in [CHWK07]. The idea in a nutshell is to reuse certain previous
subsumption information in case it is ensured with the help of modules that
the information remains the same, given changes in the ontology. Also, in case
that previous subsumption information cannot be reused, modules can still be
exploited when new subsumption testing needs to be carried out. This could
be used to enhance our (semi-)incremental classification algorithm such that the
module-based technique is invoked only when an arbitrary axiom not in Ot is to
be retracted. Addition and retraction of axioms in Ot are taken care of directly
by the (semi-)incremental classification algorithm.

• The modularization-based approach to axiom pinpointing has proved promising
both in the tractable DL EL+ (see [BS08] and Subsection 6.2.5) and in OWL
DL [SQJH08]. The effectiveness of this approach directly depends on the size
of the module and the time required to compute it. In the previous work, a
trade-off between these two qualities was met by adopting the reachability-based
and minimal syntactic locality-based modules, respectively. As future work,
one could investigate the effectiveness of employing different kinds of (strong
subsumption) modules, for instance, semantic locality-based modules.

• Apart from its native Lisp-based console, CEL supports the DIG interface which
has XML and HTTP as its underlying technologies. The issue of efficiency
due to communication overheads has hindered the use of the reasoner in user-
friendly ontology editors like Protégé. The latest version of Protégé (version 4.0)
supports a more seamless integration of the editor and a DL reasoner via the
in-memory OWL API. Implementation of an OWL API wrapper for the CEL

system would undoubtedly extend its usability to a wider group of users.

The outstanding empirical results unequivocally suggest that a careful (though not ex-
tremely optimized) implementation of a polynomial-time algorithm can provide prac-
tically acceptable response time and scalability that are key requirements in design
and development of large-scale ontologies. Nevertheless, it has to be mentioned that
tractability also comes with limitation in terms of expressivity. As such, the CEL

system is never meant to be a replacement of an OWL reasoner, but rather an al-
ternative reasoner to ontology developers, whose ontological requirements can be met
by the expressivity of the DL EL+. Finally, it is hoped that the development of the
CEL system and its empirical evaluation will shed light on the usability and useful-
ness of tractable Description Logics in the EL family, and ignite interest in adopting
DL-based knowledge representation systems in industrial-scale applications.
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[BPS07a] F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the
Description Logic EL. In Proceedings of the 2007 International Workshop
on Description Logics (DL2007), CEUR-WS, 2007. ←↩ p. 14
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[SMS06] S. Schulz, K. Markó, and B. Suntisrivaraporn. Complex occurrents in
clinical terminologies and their representation in a formal language. In
Proceedings of the First European Conference on Snomed ct (SMCS’06),
Copenhagen, Denmark, 2006. ←↩ p. 14

[Spa00] K.A. Spackman. Managing clinical terminology hierarchies using algorith-
mic calculation of subsumption: Experience with Snomed rt. JAMIA,
2000. Fall Symposium Special Issue. ←↩ p. 6, 24, 33, 36, 40

[Spa01] K.A. Spackman. Normal forms for Description Logic expressions of clin-
ical concepts in Snomed rt. In Proceedings of the 2001 AMIA Annual
Symposium, pages 627–631. Hanley&Belfus, 2001. ←↩ p. 6, 43

[Spa05] K.A. Spackman. Rates of change in a large clinical terminology: Three
years experience with Snomed clinical terms. In Proceedings of the 2005
AMIA Annual Symposium, pages 714–718. Hanley&Belfus, 2005. ←↩ p.
3, 6, 33

[SPC+07] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet:
A practical OWL-DL reasoner. Web Semantics, 5(2):51–53, 2007. ←↩ p.
4, 28, 117

[SPSW01] M.Q. Stearns, C. Price, K.A. Spackman, and A.Y. Wang. Snomed clin-
ical terms: Overview of the development process and project status. In
Proceedings of the 2001 AMIA Annual Symposium, pages 662–666. Han-
ley&Belfus, 2001. ←↩ p. 3, 6, 33

[SQJH08] B. Suntisrivaraporn, G. Qi, Q. Ji, and P. Haase. A modularization-based
approach to finding all justifications for OWL DL entailments. In John
Domingue and Chutiporn Anutariya, editors, Proceedings of the 3th Asian
Semantic Web Conference (ASWC’08), Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2008. ←↩ p. 15, 92, 123, 141

[SR06] J. Seidenberg and A. Rector. Web ontology segmentation: Analysis, clas-
sification and use. In Proceedings of WWW. ACM, 2006. ←↩ p. 80,
90

[SRH98] S. Schulz, M. Romacker, and U. Hahn. Part-whole reasoning in medi-
cal ontologies revisited: Introducing SEP triplets into classification-based



BIBLIOGRAPHY 153

Description Logics. Journal of the American Medical Informatics Associ-
ation (JAMIA), pages 830–834, 1998. Section VIII Standards and Policies
- Issues in Knowledge Representation. ←↩ p. 36, 37, 40

[SSB07] S. Schulz, B. Suntisrivaraporn, and F. Baader. Snomed ct’s problem list:
Ontologists’ and logicians’ therapy suggestions. In Proceedings of The
Medinfo 2007 Congress, Studies in Health Technology and Informatics
(SHTI-series), pages 802–806. IOS Press, 2007. ←↩ p. 12, 35

[SSS91] M. Schmidt-Schaubß and G. Smolka. Attributive concept descriptions
with complements. Artificial Intelligence, 48(1):1–26, 1991. ←↩ p. 93

[Sun05a] B. Suntisrivaraporn. CEL—the reference manual. Available at
http://lat.inf.tu-dresden.de/systems/cel, 2005. ←↩ p. 46, 60, 66, 71, 78,
113

[Sun05b] B. Suntisrivaraporn. Optimization and implementation of subsumption
algorithms for the Description Logic EL with cyclic TBoxes and general
concept inclusion axioms. Master thesis, TU Dresden, Germany, 2005.
←↩ p. 5, 7, 34, 47

[Sun08] B. Suntisrivaraporn. Module extraction and incremental classification:
A pragmatic approach for EL+ ontologies. In Sean Bechhofer, Manfred
Hauswirth, Joerg Hoffmann, and Manolis Koubarakis, editors, Proceed-
ings of the 5th European Semantic Web Conference (ESWC’08), volume
5021 of Lecture Notes in Computer Science, pages 230–244. Springer-
Verlag, 2008. ←↩ p. 13, 14, 28, 30, 80, 110

[TBK+06] A.-Y. Turhan, S. Bechhofer, A. Kaplunova, T. Liebig, M. Luther,
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